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This research consists of two parts involving non-parametric procedures for assessing

interaction and main effects . The first part is concerned with the problem of interaction

in two-way layouts with one observation per cell. After a survey of the work done so

far attention is centered on the work carried out by Wolfe et al. based on orthogonal

Latin squares. Analysis is made of the three procedures proposed and it is shown

that for one of them the critical values for the test involved and hence the powers are

highly dependent on the main effects. Proposals are made to adjust the data for the

main effects by aligning the data within the levels of the two factors through row and

column means or medians. A power comparison based on a Monte-Carlo simulation

study reveals that the modified procedures do stabilize the critical points of the tests

and lead to a more consistent power performance.

The second part of the research originates from a blocked factorial experiment at

Cambridge Laboratory, Cereals Research Department involving two factors. Measure-

ment of the response variable is not possible and hence a non-parametric procedure

is sought for analysis. A Friedman-type procedure is proposed for the analysis which

leads to over-estimation of the residual variance and hence reduced power performance

when testing one effect in the presence of the others. Two modifications are made to

the proposed procedure and through a power study based on simulations it is shown

that one of the modifications mitigates the drop in power performance and leads to a

procedure which is comparable to the ANOVA under normality and is more efficient

when severe deviations from normality occur.



Contents

Acknowledgements xi

1 Testing Interaction in a Two-Way Layout 1

1.1 Introduction 1

1.2 Previous Work 3

1.3 Rank Interaction 4

2 Testing Interaction Using Latin Squares 10

2.1 Introduction 10

2.2 Latin Square Structure 11

2.3 The Non-parametric Tests 13

2.4 Null Distributions 16

2.5 Null Distributions Corrected 20

2.6 Monte Carlo Simulation Power Comparisons 24

3 Two Alternative Non-parametric Tests 29

3.1 Introduction 29

3.2 Studying the Critical Values 30

3.3 Conclusions 37

3.4 Alternative Tests for Interaction 38



Ill

3.4.1 Modification of the JR test using medians 40

3.4.2 Modification of the JR test using means 42

3.5 A Power Comparison 44

3.6 Conclusions 49

3.7 Further Work 50

4 The Use of Ranked Data in Blocked Factorial Experiments 51

4.1 Introduction 51

4.2 General Model 53

4.3 Problem with the Measurements 56

4.4 A Blocked Factorial Experiment 56

4.5 A Non-Parametric Approach 57

4.6 Non-Parametric Test Statistics Based on Ranks 58

4.7 Expected value and Variance of T 59

4.8 Test Statistics 61

4.9 Independence of the Contrasts 62

4.10 Relationship with Friedman's Statistic 64

4.11 Distribution of Friedman's Statistic 66

4.12 Null Distributions 66

4.12.1 Exact Null Distribution for the Design (2 2 2) 67

4.12.2 Exact Null Distribution for the Design (2 2 3) 69

4.12.3 Exact Null Distribution for the Design (2 3 2) 69

4.12.4 Comparison with the Simulated Distributions 71

4.13 Simulation Error 74

4.14 Comparison with Normal Distribution 75

4.15 Simulated Null Distributions 81

4.16 Power Study 87



IV

4.17 Accuracy of Simulated Powers 89

4.18 Power Comparison 90

4.19 Problem with the Variance 107

4.20 Variance Reduction Under Hx 108

4.21 Summary and Conclusions 114

5 Modification of the Proposed Procedure 115

5.1 Introduction 115

5.2 Null Distributions 116

5.3 Power Comparisons 123

5.4 Conclusions 140

6 The Analogue 142

6.1 Introduction 142

6.2 Null Distribution 143

6.3 Power Comparisons 150

6.4 A Comparison of the four Methods 167

6.5 Summary and Conclusions 171

7 Performance under Non-normal Distributions 172

7.1 Introduction 172

7.2 Power Comparisons under Exponential Distribution 173

7.3 Power Comparison under Chi-Square One Distribution 179

7.4 Power Comparison under Chi-Square Four Distribution . . . . . . . . . 184

7.5 Power Comparisons under Cauchy Distribution 188

7.6 Conclusions 192

7.7 Summary of the Work 193

7.8 Recommendations for Future Work 194



Appendix 196

Bibliography 211



List of Figures

1.1 Performance curves showing the Response against Factor U at two levels

of Factor V in four different situations 6

4.1 The Probability Polygon and Normal Density presentation for the three

designs (2 2 2), (2 2 3) and (2 3 2) 79

4.2 Comparison of the Exact and Normal Cumulatives for the three De-

signs (2 2 2), (2 2 3) and (2 3 2). The solid line is for the cumulative

normal 80

4.3 Power Comparisons for Design 2 5 2 showing the effect of extraneous

components on main effects and interaction under the Ranking Proce-

dure and Normal Distribution 96

4.4 Power Comparisons for Design 4 4 2 showing the effect of extraneous

components on main effects and interaction under the Ranking Proce-

dure and Normal Distribution 99

4.5 Power Comparisons for Design 4 6 2 showing the effect of extraneous

components on main effects and interaction under the Ranking Proce-

dure and Normal Distribution 103

4.6 Power Comparisons for Design 5 5 2 showing the effect of extraneous

components on main effects and interaction under the Ranking Proce-

dure and Normal Distribution 106

VI



VII

5.1 Power Comparisons for Design 2 5 2 showing the effect of extraneous

components on main effects and interaction under the Modified Proce-

dure and Normal Distribution 127

5.2 Power Comparisons for Design 4 4 2 showing the effect of extraneous

components on main effects and interaction under the Modified Proce-

dure and Normal Distribution 130

5.3 Power Comparisons for Design 4 6 2 showing the effect of extraneous

components on main effects and interaction under the Modified Proce-

dure and Normal Distribution 134

5.4 Power Comparisons for Design 5 5 2 showing the effect of extraneous

components on main effects and interaction under the Modified Proce-

dure and Normal Distribution 137

6.1 Power Comparisons for Design 2 5 2 showing the effect of extraneous

components on main effects and interaction under the Analogue Proce-

dure and Normal Distribution 156

6.2 Power Comparisons for Design 4 4 2 showing the effect of extraneous

components on main effects and interaction under the Analogue Proce-

dure and Normal Distribution 159

6.3 Power Comparisons for Design 4 6 2 showing the effect of extraneous

components on main effects and interaction under the Analogue Proce-

dure and Normal Distribution 163

6.4 Power Comparisons for Design 5 5 2 showing the effect of extraneous

components on main effects and interaction under the Analogue Proce-

dure and Normal Distribution 166



vm

6.5 Power Comparison for Testing the Linear Component of Factor U in the

Presence of the Linear Component of Factor V and the Linear by Linear

Component of Interaction for the Designs 2 5 2, 4 4 2, 4 6 2, and 5 5 2

under Normal Distribution 168

6.6 Power Comparison for Testing the Linear Component of Factor V in the

Presence of the Linear Component of Factor U and the Linear by Linear

Component of Interaction for the Designs 2 5 2 , 4 4 2 , 4 6 2 , and 5 5 2

under Normal Distribution 169

6.7 Power Comparison for Testing the Linear by Linear Component of In-

teraction in the Presence of the Linear Component of Factor U and the

Linear Component of Factor V for the Designs 2 5 2, 4 4 2, 4 6 2, and

5 5 2 under Normal Distribution 170

7.1 Power Comparison for Testing the Linear Component of Factor U in the

Presence of the Linear Component of Factor V and the Linear by Linear

Component of Interaction for the Designs 2 5 2, 4 4 2, 4 6 2, and 5 5 2

under Exponential Distribution 176

7.2 Power Comparison for Testing the Linear Component of Factor V in the

Presence of the Linear Component of Factor U and the Linear by Linear

Component of Interaction for the Designs 2 5 2, 4 4 2, 4 6 2, and 5 5 2

under Exponential Distribution 177

7.3 Power Comparison for Testing the Linear by Linear Component of In-

teraction in the Presence of the Linear Component of Factor U and the

Linear Component of Factor V for the Designs 2 5 2, 4 4 2, 4 6 2, and

5 5 2 under Exponential Distribution 178



I X

7.4 Power Comparison for Testing the Linear Component of Factor U in the

Presence of the Linear Component of Factor V and the Linear by Linear

Component of Interaction for the Designs 2 5 2, 4 4 2, 4 6 2, and 5 5 2

under Chi-Square One Distribution 181

7.5 Power Comparison for Testing the Linear Component of Factor V in the

Presence of the Linear Component of Factor U and the Linear by Linear

Component of Interaction for the Designs 2 5 2 , 4 4 2 , 4 6 2 , and 5 5 2

under Chi-Square One Distribution 182

7.6 Power Comparison for Testing the Linear by Linear Component of In-

teraction in the Presence of the Linear Component of Factor U and the

Linear Component of Factor V for the Designs 2 5 2, 4 4 2, 4 6 2, and

5 5 2 under Chi-Square One Distribution 183

7.7 Power Comparison for Testing the Linear Component of Factor U in the

Presence of the Linear Component of Factor V and the Linear by Linear

Component of Interaction for the Designs 2 5 2 , 4 4 2 , 4 6 2 , and 5 5 2

under Chi-Square Four Distribution 185

7.8 Power Comparison for Testing the Linear Component of Factor V in the

Presence of the Linear Component of Factor U and the Linear by Linear

Component of Interaction for the Designs 2 5 2, 4 4 2, 4 6 2, and 5 5 2

under Chi-Square Four Distribution 186

7.9 Power Comparison for Testing the Linear by Linear Component of In-

teraction in the Presence of the Linear Component of Factor U and the

Linear Component of Factor V for the Designs 2 5 2, 4 4 2, 4 6 2, and

5 5 2 under Chi-Square Four Distribution 187



7.10 Power Comparison for Testing the Linear Component of Factor U in the

Presence of the Linear Component of Factor V and the Linear by Linear

Component of Interaction for the Designs 2 5 2, 4 4 2, 4 6 2, and 5 5 2

under Cauchy Distribution 189

7.11 Power Comparison for Testing the Linear Component of Factor V in the

Presence of the Linear Component of Factor U and the Linear by Linear

Component of Interaction for the Designs 2 5 2, 4 4 2, 4 6 2, and 5 5 2

under Cauchy Distribution 190

7.12 Power Comparison for Testing the Linear by Linear Component of In-

teraction in the Presence of the Linear Component of Factor U and the

Linear Component of Factor V for the Designs 2 5 2, 4 4 2, 4 6 2, and

5 5 2 under Cauchy Distribution 191



XI

ACKNOWLEDGEMENTS

I am grateful to my supervisor Dr. P. Prescott who taught me how to "persevere"

and without whose help, guidance and encouragement this research would not have

been possible.

I wish to thank Dr. S.M. Lewis for her encouragement and support throughout this

research.

I would also like to thank Dr. David Adams, Ray Brown and Peter Hubbard for

their computing assistance.

Many thanks to my fellow students Mehdi, Parviz, James, Dominic, Akbar, Chris-

tine, Denise, Rory and Pedro who made the difficult times pass easier by boosting up

the morale, to Massih and Shabnam for the wonderful relaxing holiday breaks we had

in London and to Hassan for all those invigorating sport sessions.

I would like to express my deep gratitude to my brother Rasul, who started it all, for

all his sincere support and help throughout the past four years. My sincere thanks are

also due to Majid for chasing up my problems at home and to Karim for his continued

guidance and encouragement.

My deep gratitude are also due to my father, my mother, my father in-law, and my

mother in-law for their love and support all the way.

I can not forget my colleages at Shahid Beheshty University. My special thanks to

Siamak who gave me the incentive and to Mohammad Reza for his help and guidance.

Finally I would like to thank my wife Mitra without whose endurance, encourage-

ment and motivation the mission would not have been accomplished, and my sons

Abtin and Armin for their patience and tolerance.

Lastly I would like to thank my sponsor Ministry of Education and my employer

Shahid Beheshty University for enabling me to undertake the project.



Chapter 1

Testing Interaction in a Two-Way

Layout

1.1 Introduction

In an experimental situation where the effects of two factors are being investigated on

a response variable, one is usually interested in the separate individual effect of each

factor and also their joint effect. The former are known as main effects and the latter

as the interaction and the relationship between the response and the two factors is

described through a model. In order to assess the importance of either of the main

effects, it is essential that the problem of non-additivity or presence of interaction

between the two factors is first dealt with. In classical statistics the usual model for a

two-way layout with k observations per cell is as follows:

Vijk = V + " ; + (3j + jij + eljk i = 1 , 2 , . . . , / j = 1,2,..., J

k =1,2,.. . ,A' (1.1)

where e^ 's are mutually independent, identically distributed normal variates with

mean equal to 0 and variance a2, cti is the main effect of level i of factor [/, /?,- is
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the main effect of level j of factor V and 7^ is the interaction effect arising from a

combination of level i of factor U and level j of factor V. Standard analysis of variance

procedures can be used to test the main effects and interaction. The degrees of freedom

allocation is as follows:

(/ — 1) for the sum of squares for factor U, (J — 1) for the sum of squares for factor V,

((/ — 1)(J — 1)) for the sum of squares for interactions and IJ(K — 1) for the sum of

squares for error. The partition of the total sum of squares is:

E E X>* - y...)2 = E E E(y.-. - y-f + E E Efo - y-f
i=l j=l k=l i=l 3 = 1 k=l i=l j=l k=l

I J K

+ E E E f e - Vi- - v-i- + y~ f
i=l j=l k=l

J = I 3=1 fc=i

The first term on the right is the sum of squares for factor U, the second is the sum of

squares for factor V, the third is the sum of squares for interaction and the last term is

the sum of squares for error. Division of each sum of squares by its degree of freedom

will give us the relevant mean squares and the division of each mean square by the

mean square error will provide us with the F-ratio for testing the effect in question.

Here a test for interaction is available because there is an independent estimate for

error due to the m replicates in each cell against which all the effects, including the

interaction, can be tested.

Now consider the case where we have only one observation per cell. The model is:

yij = n + a,- + fij + 7i3 + eij z = 1,2,... ,7 j = 1,2,..., J (1.3)

The partition of the total sum of squares is:

i=l 3=1 i=l j=l

I J

1=1 3=1
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The first component is due to factor U, the second component is due to factor V

and the third is due to the interaction between U and V. If we assume there is no

interaction, then we can test the main effects because the third component will be the

error sum of squares and we can test the main effects against the error. On the other

hand, if interaction does exist, then we do not have a standard test for the main effects

in the classical setting of normally distributed data because in this case we do not

have an estimate for the error. Nor do we have a standard test for interaction. This

one-observation per cell situation has always been a difficult problem. Over the years

there have been several attempts to address this but all of them have been restrictive

in the sense that they are either capable of detecting a particular type of interaction

or they are applicable in particular situations because of the conditions imposed upon

them. In the next section these methods of assessing interaction are reviewed and in

chapter 2 some of the more recent research is considered.

1.2 Previous Work

Tukey (1949) suggested a test for interaction which drew several criticisms and modifi-

cations. This test is based on a partition of the error sum of squares into a component

with one degree of freedom due to interaction and a remainder component for error

and is designed for the assessment of a particular kind of interaction known as product

interaction. The null hypothesis is that 7^ = 0 for all i and j and the alternative

hypothesis is that 7^ = pcti(3j for some constant p. Under the assumption of normality

the test statistic has an F-distribution with one and IJ — I — J degrees of freedom.

Obviously the test is very restrictive for the type of interaction it can detect.

Other approaches have used non-parametric procedures and in such cases the model

assumptions are different. The condition of normality is replaced so that the assump-

tions for Cy's are that they are mutually independent, identically distributed, continu-
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ous random variables with common median 9. We now review the non-parametric tests

of interaction for two-way layouts with emphasis on methods applied to cases with one

observation per cell.

Rank-based nonparametric approaches to the problem of non-additivity are rare.

Most of these approaches require replications in the cells of the two-way layout. Among

them are the rank transform approaches of Iman (1974) and Conover and Iman (1976).

In this method, observations are replaced by their ranks taken over all observations,

and an analysis of variance is carried out on these ranks. Suitable F-ratios are then used

to investigate the main effects and the interaction. The first non-parametric procedure

available in the literature which can be used in a single observation case is that of

DeKroon and Van der Laan (1981) for a special type of interaction which they call

rank-interaction. We need to explain this concept of rank interaction and differentiate

between it and the more usual kind of interaction.

1.3 Rank Interaction

Intuitively we say that two factors interact if the effect of one factor depends on the

levels of the other. Non-existence of an interaction implies that the effect of one factor

is the same at the different levels of the other factor. This would indicate that the

response curves are parallel in the factor domain. De Kroon and van der Laan (1981)

introduced the weaker concept of rank interaction in which the rankings of levels of

one factor are compared across levels of another factor. If we have two factors U and

V and the ranking of U is the same at all levels of V, then they say there is complete

"concordance" in the ranking and hence no rank interaction of U across V, otherwise

there is some "discordance" in the rankings and rank interaction is said to exist and the

notation U*(V) is used for this rank interaction. Similarly, if the rankings of factor V is

not the same at all levels of factor U then there is rank interaction and it is denoted bv
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V*{U). The following points which indicate the limitations of rank interaction should

be noted.

Rank interaction is not symmetric with respect to U and V and so rank interaction

of type U*(V) does not imply rank interaction of type V*(U) and vice versa. In diagram

(c) of Figure 1.1 we have a situation where we have only rank interaction of type V*(U).

Similarly in diagram (d) only rank interaction U * (V) exists. Consequently the non-

existence of U*(V) does not imply the non-existence of V*(U). We should note that

situations where there is rank interaction form a subset of all those where there is

interaction in the usual sense. Thus if we have interaction in the usual sense we may

or may not have rank interaction and also if there is no rank interaction we may or

may not have interaction in the usual sense. In diagram (b) of Figure 1.1 we have a

situation where no rank interaction exists but obviously we do have interaction.
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Response

V2

U

a) No interaction

Response

V2

u
b) No rank interaction

Response

U

c) Rank interaction V*(U)

Response

U

d) Rank interaction U*(V)

Figure 1.1: Performance curves showing the Response against Factor U at two levels

of Factor V in four different situations.
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De Kroon and Van Der Laan's method for assessing rank interaction based on model

(1.1) uses a Kruscal Wallis type statistic to compare the levels of one factor at all levels

of the other factor. The statistic is shown to be made up of two statistics, one showing

the overall assessment of one factor (Friedman' Test) and the other assessing the rank

interaction. The analysis runs along the following lines:

Consider testing the null hypothesis

Ho : ct'i + 7Xj = a2 + 72j = ••• = &i + 7/j i = 1, 2, . . . ,«/ (1.5)

which implies that factor U has no effect at all against the alternative

Hi : Ho does not hold. (1-6)

We are comparing the ranking of levels of factor U across the levels of factor V.

For each level of V we rank all the observations at that level. We denote by r ^ the

rank of the fcth observation at level i of U and level j of V. Thus f,-j. is the mean rank

of the observations in cell (ij) or the mean rank of all the observations at level i of

U and level j of V. Similarly rt-.. is the mean rank of all the observations at level i of

factor U. Finally f... denotes the mean rank of all the observations.

Let T = Y,~j=i(Lj) where Lj is the Kruscal Wallis statistic for testing factor U at

level j of factor V and thus T is the sum of J Kruscal Wallis statistics. In that case

The statistic T can be written as a sum of two statistics T\ and T2. T\ is the Friedman

statistic which is:

^ S S l - f - ) 2 (L8)

T2 can be obtained by subtraction.
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- f 1 ) i=1 J=1 k=1

1 9 I J K

12 I J K

(1.9)

The above formula for T2 can be simplified if we note that f.j. is equal to ?".... Therefore

T2 is written as :
1 r> I J

£ £ i > ^ (L10)
Thus in the rank interaction method, there are three statistics involved when we

compare rankings of the / levels of U over the J levels of V. These are: (a) T, a sum

of J independent Kruscal-Wallis statistics, one for each level of V;(b) Ti, the overall

Friedman statistic for comparing the / levels of U which is sensitive to differences

between levels of U; and, finally, (c) T2 = T — Ti, which is sensitive to differences

among the rankings of levels of U at different levels of V and is therefore the statistic

for testing rank interaction. The statistic T2 assesses the rank interaction U*(V). If

ranking is carried out within the levels of factor U, and attention is centered on testing

the levels of factor V, then following the same reasoning another statistic is obtained

for assessing V*{U). As we notice the two tests do not detect all differences in the 7;J'S

as shown in diagram b in Figure 1.1. Instead they are designed to detect discordance

either in the ranking vectors of (a! + /jij,a2 + 72J, •••, oci + 7/j) for j = 1,2,..., J or in

the ranking vectors of (/?i + jn: j32 + 7̂ 2, •••, PJ + 7/j) for i = 1,2,..., I. We should note

that although the rank interaction procedure has been proposed for situations where

there are K observations per cell, it can be used when there is only one observation

per cell.

Wolfe, Dean and Hartlaub (1990) proposed a non-parametric ranking procedure

for testing interaction in a single replicate two-way layout based on orthogonal Latin
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squares and later Wolfe, Dean, Wiers, and Hartlaub(1992) used the same ideas to test

the main effects in the presence of interaction. In the next chapter we consider their

methodology for testing interaction which includes a section on our proposed corrected

form for one of the statistics suggested in their paper together with the corrected values

for the null distribution percentiles. In chapter 3 an analysis is made of one of the tests

and two new procedures for testing interaction are proposed. A power study which

assesses the performance of our proposed tests is included.



Chapter 2

Testing Interaction Using Latin

Squares

2.1 Introduction

In this chapter we assume that we have a two-way layout with one observation per cell.

The model that we entertain is

yii = a t + Pj + 7ij + x n i = l , 2 , . . . , I j = l , 2 , . . . , J (2.1)

where a,- is the main effect of level i of factor U, f3j is the main effect of level j of factor

V and 7y is the interaction effect arising from a combination of level i of factor U

and level j of factor V and the x,j's are mutually independent, identically distributed,

continuous random variables with common median 0. If we further assume I = J = n

and n is a power of a prime, then following Wolfe, Dean, and Hartlaub(1990), the

properties of orthogonal Latin squares together with alignment and ranking of data

may be used to develop tests for interaction in model (2.1).

10
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2.2 Latin Square Structure

Latin square designs are commonly used when there are three sources of variation,

two represented by the rows and columns of the design and the other, treatments for

example, are represented by the letters. The following shows an example of a Latin

square.

A Latin Square

A B C D E

B C D E A

C D E A B

D E A B C

E A B C D

In such a design every treatment appears once and only once in each row and once and

only once in each column so that the rows, columns and treatments are orthogonal to

each other. This orthogonal property of a Latin square may be used to set up a test for

interaction in a two-way layout. In fact, since the interaction is orthogonal to rows and

columns in a two-way layout, the 'treatment' component in a Latin square is part of

the interaction component in a two-way layout. The properties of a set of orthogonal

Latin squares, if one exists, may be used to identify the interaction component. For

example, with n = 5, a set of four mutually orthogonal Latin squares may be used

to partition the sum of squares due to interaction in a two-way layout as a set of

'treatment' components obtained from the set of orthogonal squares. To illustrate the

ideas, consider the following set of four orthogonal Latin squares listed in Fisher and

Yates Tables :
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Four Orthogonal Latin Squares

ABCDE ABCDE ABCDE ABCDE

BCEAD CEDBA DABEC EDACB

CEDBA DABEC EDACB BCEAD

DABEC EDACB BCEAD CEDBA

EDACB BCEAD CEDBA DABEC

For each Latin square design the rows and columns are orthogonal to the treatments

represented by the letters. Therefore, if we identify for each square the treatment

letters with the corresponding observations in the two-way layout, the treatment sum

of squares will form part of the interaction (or error) sum of squares. Use of four Latin

squares forming an orthogonal set will enable all sixteen degrees of freedom for error to

be associated with four treatment sums of squares each with four degrees of freedom.

For each Latin square five interaction bands may be defined in such a way that each

interaction band consists of observations relating to the letters corresponding to one

treatment. For example, for the first Latin square the interaction bands are defined as

follows:

Interaction Bands for Square 1

Band A : (X-n, X24l X35, X42, X53)

BandB:(X12,X21,X34,X43,X55)

BandC : (X13lX22, X31, X45,X54)

BandD : (Xi4, X25} X33, X4i, X52)

BandE : {X15,X23,X32,X44,X51)

The sum of squares for treatments in this Latin square is part of the interaction sum

of squares. In the same way we have similar contributions from each of the other Latin
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squares. Therefore we have the following partition of the interaction sum of squares in

the two-way layout.

/ J

> - Vi. - y.i + y-f = ii + h + h + h (2.2)

where // is the sum of squares of treatments relating to Latin square /.

2.3 The Non-parametric Tests

Thus we have a partition of the total sum of squares into six orthogonal sums of squares

each with four degrees of freedom one each for rows and columns and four corresponding

to the particular Latin squares used to partition the interaction(error)sum of squares.

Three different procedures were investigated by Wolfe, Dean and Hartlaub(1990) for

testing these interaction components. With the data arranged in a square n X n table,

rows corresponding to the levels of factor U and columns corresponding to the levels

of factor V, these procedures are defined as follows:

I- Procedure RC: The data are initially aligned with respect to factor U. This means

that for each level of U, the median of the observation at that level is subtracted from

each observation at that level. Having aligned the data with respect to U the data are

ranked within each level of factor V. The ranks are then summed over the n interaction

bands identified by the letters of one of the n x n Latin squares in the orthogonal set.

The ranks are summed in this way using the interaction bands corresponding to each

of the squares in the orthogonal set.

A Friedman type statistic can be obtained for each Latin square / as follows :

Fi = JZ{rik ~ n(n + l)/2)2 / = 1, 2,. . . , (n - 1) (2.3)

fc=i

where r\k is the sum of ranks in interaction band k of Latin square /. Thus for each of

the n — 1 orthogonal Latin squares / a statistic Fi is obtained. The test statistic for
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this procedure is :

RC = maximum(Fu F2,..., Fn-i ) (2.4)

The idea of aligning and ranking is hopefully to remove the nuisance main effects and

to provide a ranking method for assessing interaction. Aligning within the levels of

U we try to remove the effect due to this factor. Similarly by ranking within the

levels of V we try to adjust the data for the nuisance factor V and follow this with a

Friedman-type ranking procedure to investigate the differences between the rank sums

which provide a test for interaction. How successful these adjustments are in removing

the main effects, will be investigated by determining the power of this procedure using

a Monte-Carlo Simulation Study as described in section (2.6).

II- Procedure CR: In this procedure we carry out the alignment with respect to

factor V and then rank the aligned data within the levels of the U factor. Similar

Friedman-type statistics are denned using the rank sums for each interaction band and

each Latin square as for procedure I. In this case, we define

Gi = f > , f c - n(n + l)/2)2 / = l , 2 , . . . , ( n - l ) (2.5)

where Sik is the sum of the ranks for interaction band k in Latin square /, and the

overall test statistic is defined as

CR = maximum(Gi, G2,..., Gn-i ) (2-6)

III- Procedure JR: In this test procedure no adjustments for the main effects are

made. The data values are simply ranked from 1 to n2 and, for each Latin square, a

Friedman-type statistic is defined using the rank sums for the associated interaction

bands. For the Latin square / define

^ = £ > f c - n(n2 + I)/2)2 / = 1,2,..., (n - 1) (2.7)
k=i
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where tik is sum of ranks of interaction band k for Latin square / and then define

JR = maximum(Hi, H2,..., Hn-\ ) (2-8)

to provide an alternative test statistic.

Wolfe et al.(1990) define Hi to be

- n2(n2 + l)/2)2 (2.9)

which is different from the definition above and seems to be incorrect. The following

reasoning justifies this. If we let r^ denote the rank of the (ij)th entry in the two way

table, then

E(ttk) = nE(rij) (2.10)

since tik is the sum of ranks of n observations. If we let p(r{j) denote the probability

that the rank of the (ij )th entry is r^, then

k=\ 1=1 t=l j=l

= (^2 + l)/2 (2.11)

therefore,

E(tlk) = n(n2 + l)/2 (2.12)

We believe that the revised definition of Hi is correct and that the results shown in

Wolfe et al.(1990) are adrift by a constant. We shall return to this ambiguity later

when discussing the null distribution of JR.

Notice that in applying the JR test there are no adjustments made for the main

effects. Obviously the presence of any main effects will affect the performance of the

test. This will be confirmed in the power comparisons considered later.
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2.4 Null Distributions

The hypotheses of real interest are:

Ho '• [jij = 0 , i — 1,2,...,/ and j = 1,2,..., J; a,-'s and /5j's unrestricted]

-Hi : [7y's not all zero; a,-'s and /?j's unrestricted]

Since none of the test statistics RC, CR or JR is exactly distribution free under the

above Ho we consider the critical values for the more restrictive null hypothesis

H* : [ ax — a2 = ... = a / , j3x = f32 = ... = /3j and

7 n = 712 = ••• = 7 u — 7 2 i = 722 = ••• = lu]

Using Monte-Carlo simulations null distributions were obtained for the more re-

strictive case of no main effects. Under these conditions the distributions of RC and

CR are identical. Hence, only a single set of critical values is required for the associ-

ated tests. To obtain the required critical values for the tests based on RC(CR) and

JR, Monte Carlo simulation is employed under HQ and normally distributed errors.

Independent sets of n2 mutually independent standard normal variables are generated

through a fortran program and the values of the proposed non-parametric statistics

RC(CR) and JR are calculated for each of these n X n tables of data. Combining these

values, empirical approximations are obtained to the null (H£) distributions for each

of the test statistics. Table 2.1 shows the observed empirical percentiles correspond-

ing to upper tail probabilities immediately below and above (or equal to, as the case

may be) the standard nominal significance levels of .01,.025, .05 and .10 for the new

statistics RC(CR) and JR and design sizes n = 3,4,5,7,8 and 9. The values shown

in the table were obtained by Wolfe et al. and are given in their paper. Later some
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corrections required to the table are described and modified values produced by these

revised simulations are provided.
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Table 2.1: Simulated Null (HQ) Distribution Percentiles

for the Statistics RC(CR) and JR

Empirical percentiles closest to the

Significance Levels a = .01, .025, .05, .10

Table Sizes n = 3,4,5,7,8,9.

n

3

4

RC(CR)

X

18

62

64

66

68

72

74

80

P0(RC > x)

.092

.132

.093

.083

.046

.028

.018

.003

JR

X

689

693

695

701

713

729

4934

4936

5016

5078

5080

5156

P0(JR > x)

.140

.098

.056

.049

.021

.007

.102

.098

.050

.027

.024

.010
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Table 2.1 continued

N

5

7

8

9

RC(CR)

X

141.5

142.0

155.0

168.0

182.5

514.5

562.5

608.0

665.0

868

942

1014

1104

1336.0

1445.5

1543.5

1677.0

Po(RC > x)

.102

.098

.050

.025

.010

.100

.050

.025

.010

.10

.05

.025

.010

.100

.050

.025

.010

JR

X

22746

23046

23324

23652

229561

231553

233445

235763

575988

580096

583946

588904

1298914

1306568

1314084

1323678

Po(JR > x)

.100

.050

.025

.010

.100

.050

.025

.010

.100

.050

.025

.010

.100

.050

.025

.010
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2.5 Null Distributions Corrected

In the previous section it was pointed out that the correct form for the JR statistic for

Latin square / is:

n
3(n2 4- 1 "l2

Hi = E C * - "(«2 + !)/2)2 = E % - [" J (2-13)
4

n

E
The form given by Wolfe et al. (1990) is

Hi = E(t,fc - ™ V + i)/2)2 = E 4 - n^U\+ 1)2 (2-14)

But on further investigation it seems that the null distribution of JR was obtained by

neither of the formulas above. The formula giving rise to the tabulated null distribu-

tion seems to have been :

H, — \^(i,, — r>(n -4- 1 1 IO\2 — \^ t2 — ^ ' (0 1 <\

This would mean that the values have been inflated by the amount

n3(n2 + l)2 n2(n + I)2 _ n3(n4 + n2 - 2n)
4 4 4

Using the above formula, the null distribution of the JR statistic was corrected for

each n. The following table shows the corrected form of the JR distribution together

with the RC(CR) distribution.
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Table 2.1 Corrected

Simulated Null (H£) Distribution Percentiles

for the Statistics RC(CR) and JR

Empirical percentiles closest to the

Significance Levels a = .01, .025, .05, .10

Table Sizes n = 3,4,5, 7, 8,9.

N

3

RC(CR)

X

18

Po(RC > x)

.092

P£{RC> x)

.0968

JR

X

122

126

128

134

146

162

Po(JR > x)

.140

.098

.056

.049

.021

.007

PQ(RC > x)

.1438

.1002

.0568

.0495

.0210

.0069

The probabilities Po were obtained by Wolfe et al., except that those for JR have been

scaled down to allow for the error. The probabilities Po* were obtained by us based on

100,000 sets of n2 mutually independent standard normal variables. There are some

discrepancies. Our simulations show that for n = 5 the empirical percentile closest

to a = .05 for JR is 3032 as shown in table 3.1 on page 31. For some levels closer

empirical percentiles can be obtained.
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Table 2.1 Corrected continued

Simulated Null (HQ) Distribution Percentiles

for the Statistics RC(CR) and JR

Empirical percentiles closest to the

Significance Levels a = .01, .025, .05, .10

Table Sizes n = 3,4, 5, 7,8,9.

N

4

5

X

62

64

66

68

72

74

80

141.5

142.0

155.0

168.0

182.5

RC(CR,

P0(RC> x)

.132

.093

.083

.046

.028

.018

.003

.102

.098

.050

.025

.010

)

PS(RC > x)

.1343

.0952

.0847

.0469

.0293

.0184

.0032

.1013

.0976

.0495

.0244

.0107

JR

X

710

712

792

854

856

932

2746

3046

3324

3652

PQ(JR > x)

.102

.098

.050

.027

.024

.010

.100

.050

.025

.010

P$(RC> x)

.1028

.1001

.0515

.0265

.0256

.0109

.0992

.0480

.0232

.0091
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Table 2.1 Corrected continued

Simulated Null (HQ) Distribution Percentiles

for the Statistics RC(CR) and JR

Empirical percentiles closest to the

Significance Levels a — .01, .025, .05, .10

Table Sizes n = 3,4,5, 7, 8, 9.

N

7

8

9

RC(CR)

X

514.5

562.5

608.0

665.0

868

942

1014

1104

1336.0

1445.5

1543.5

1677.0

Po(RC > x)

.100

.050

.025

.010

.10

.05

.025

.010

.100

.050

.025

.010

Po(RC > x)

.0992

.0496

.0242

.0094

.0998

.0481

.0255

.0100

.0988

.0507

.0272

.0104

JR

X

20674

22666

24558

26876

45556

49664

53514

58472

91690

99344

106860

116454

P0(JR > x)

.100

.050

.025

.010

.100

.050

.025

.010

.100

.050

.025

.010

PS(RC > x)

.0972

.0481

.0239

.0094

.1037

.0499

.0260

.0102

.1016

.0513

.0253

.0104
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0

1

- 2

2

.5

.75

.5

1

0

1

1.5

- . 5

- 1

- 1
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2.6 Monte Carlo Simulation Power Comparisons

In order to compare the power properties of the three test statistics JR, RC, and CR

through Monte Carlo Simulation we concentrated on the setting with n = 5. The

following five patterns were used as the factor U and/or factor V main effects, and are

to be regarded as nuisance factors when testing for interaction. They are as follows:

Main Effect 1 - 1 - . 5

Main Effect 2 -1.5 -.75

Main Effect 3 1.5 1

Main Effect 4 3 2

Main Effect 5 - 1 0

These main effects represent trends of different types and magnitudes. For example

main effect 1 is a linear trend while main effect 5 is quadratic, and main effect 3 is

cubic. Main effect 2 is 1.5 times main effect 1 and main effect 4 has twice the magnitude

of main effect 3. In the simulations, a number of different interaction matrices 7^ are

used. These include the product interaction with 7^ defined to be a;/?j where a, and

f3j are the main effects of U and V respectively, and a class of interactions proposed

by Martin(1980).

This class of interaction was suggested following a generalisation (Martin, 1980) of

an experimental situation given by Vyvyan(l955). The experiment involved grafting of

varieties of apple tree scions and rootstocks in which each apple tree variety was used

as both scion and rootstock, resulting in a square design with similar variety rootstock

and scion along the diagonal and different combinations in the off diagonal entries. The

interaction component in such experiments may be partitioned into three components

each assessing a certain attribute of the grafting process. These three features are

called the equivalence feature, the union feature and the consistancy feature. The first

represents a comparison of the combination of the same varieties versus combinations of
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different varieties; the second assesses the relative success of the various kinds of grafts

within pairs of varieties and the third assesses the relative dominance of rootstock and

scion in each pair of varieties. The interactions referred to as Martin interactions are

such that certain components in this partition would lead to significant effects.

The following is an example of this type of interaction (Wolfe et al. 1993):

1.84

-.22

-.94

.09

- . 77

.92

.08

- .92

-1.20

1.11

1.51

2.08

1.21

.53

-5 .33

2.28

2.59

2.30

-7 .65

.48

-6 .56

-4 .55

-1 .64

8.23

4.51

To identify different models for the simulation results we shall use the notation

(up,Vq,0) or (up,vq, M) where p,q = 1,2,3,4,5 represent the case where the main

effects present are up and vq and the interactions are either all zero or given by the

matrix M.

Table 2.2 shows the power of the JR, RC and CR tests using a 5 percent significance

level for n — 5 and a selection of alternative models; (0,0,0) represents the null case

already included in Table 2.1.
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Table 2.2: Monte Carlo Simulated Rejection Rate Estimates

for an Underlying Normal Distribution

Significance Level a = .05, n = 5

Configurations

(0,0,0)

(0,^,0)

(0,u2,0)

(0,^3,0)

(0,^4,0)

(0,^5,0)

(«i ,0 ,0)

(«2,0,0)

(«3,0,0)

(«4,0,0)

(us,0,0)

("1,^1,0)

(ui,v2,0)

(ui,v3,0)

(ui,u4,0)

(u1,v5,0)

(U2,V2,O)

(U2,V3,O)

(u2,u4,0)

(u2,v5,Q)

(u3,vi,0)

(u3,v2,0)

JR

.051

.004

.000

.000

.000

.000

.004

.000

.001

.000

.000

.000

.000

.000

.000

.000

.000

.000

.000

.000

.000

.000

.000

Tests

RC

.049

.030

.019

.023

.005

.024

.050

.050

.049

.049

.050

.030

.019

.022

.005

.024

.030

.019

.022

.005

.024

.030

.019

CR

.049

.050

.049

.049

.050

.050

.030

.020

.022

.005

.023

.031

.031

.030

.030

.030

.018

.018

.019

.020

.018

.022

.022

Configurations

(u3,u3,0)

(u3,v4,0)

(u3,v5,0)

( M 4 , U ! , 0 )

(«4,u2,0)

(U4,V3,O)

(u4,u4,0)

(1*4,̂ 5,0)

(«5,Vl,0)

("5,^2,0)

("5,^3, 0)

(u5,u4,0)

(«5,U5,0)

(0,0, M)

(0,Vl,M)

(0,u2,M)

(0,v3,M)

(0,v4,M)

(0,w5,M)

(«i,0,M)

(« 2 , 0 ,M)

(« 3 , 0 ,M)

(w4 ,0,M)

Ji?

.000

.000

.000

.000

.000

.000

.000

.000

.000

.000

.000

.000

.000

.429

.312

.223

.233

.016

.155

.474

.390

.152

.005

Tests

RC

.022

.005

.023

.030

.019

.022

.005

.023

.030

.019

.022

.004

.023

.168

.131

.098

.115

.073

.152

.169

.167

.168

.169

CR

.022

.022

.022

.005

.005

.005

.005

.005

.023

.024

.023

.024

.023

.136

.137

.135

.136

.137

.136

.156

.155

.126

.090
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Table 2.2 Continued

Monte Carlo Simulated Rejection Rate Estimates

for an Underlying Normal Distribution

Significance Level a = .05, n = 5

Configurations

(«5,0,M)

(Ul,vuM)

(«1,1>2,M)

(U!,W3,M)

(ui,u4,Af)

(ui,us,M)

(lt2,Ul,M)

(u2,u2,M)

(u2,u3,Af)

(u2,u4,M)

(M 2 ,U 5 ,M)

(M 3 ,UI ,M)

(u3,u2,M)

.180

.368

.288

.201

.011

.187

.339

.270

.138

.005

.151

.116

.075

Tests

RC

.166

.131

.099

.117

.074

.154

.130

.099

.117

.074

.253

.131

.099

CR

.129

.156

.158

.157

.156

.157

.152

.154

.154

.155

.154

.126

.124

Configurations

(u3,v3,M)

(u3,v4,M)

(u3,vs,M)

(u4,vuM)

(u4,v2,M)

(u4,v3,M)

(u4jv4, M)

(u4,v5,M)

(us,vi,M)

(us,v2,M)

(u5,v3,M)

(u5,v4,M)

(«5,U5,M)

JR

.064

.002

.039

.003

.001

.001

.000

.001

.111

.070

.092

.006

.101

Tests

RC

.115

.074

.153

.132

.100

.116

.073

.153

.131

.100

.116

.073

.152

CR

.124

.125

.126

.090

.089

.090

.089

.088

.129

.131

.131

.130

.131

When all the three effects are zero, the rejection rates provide an evaluation of

the type I error. We can see that the values are close to the significance level of five

percent. When the interaction effect is zero and at least one of the main effects is not

zero, the rates provide us with information about how well the various nominal levels are

maintained over the broader null hypothesis HQ. For example when interaction effect

and main effect U are zero, the power of the JR test is close to zero and substantially

smaller than the nominal type I error. For the RC test the powers are also less than
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the nominal significance level of five percent. In fact, the values vary from .030 to

.005. As may be seen, the larger the main effect V, the smaller the type I error. The

explanation for this is that when the main effect V is present the null distributions of

RC are shifted to the left. The larger the main effect is the larger the magnitude of the

shift. Obviously for RC the ranking is not having the effect of removing the main effect

of V. The same feature is evident when U is non-zero and V is zero and it is clear that

just ranking the data is not removing the influence of the main effects. For the CR

tests, where the model is of the form (0,i>2,0), the powers are close to the significance

level which implies that the effect of the non-zero V main effect is being adequately

removed by the aligning which is carried out within the levels of V. In contrast to this,

the CR tests when the model is of the form (up, 0, 0) behave in the same way as the

RC tests for the model(0,u2, 0) as was to be expected.

When the interaction effect is non-zero, but the main effects are zero the rejection

rates are estimates of the powers of the tests in the absence of main effects. In this case

we can see that the JR test performs much better than either RC or CR. For example,

compare the value of .423 for the JR test with .173 and .138 for the RC and CR tests

respectively for the case (0,0, M). When the interaction effect and also main effects

are non-zero, the simulated rejection rates, are, of course, estimates of the powers of

the associated tests in the presence of the nuisance main effects. As we can see in

situations where the main effects are small, the statistic JR outperforms CR and RC

but as soon as any main effect becomes sizable JR's power drops and this conforms

with our expectations since JR does not make any adjustments for the main effects.

It also appears that aligning is more effective than ranking in adjusting for the main

effects. This is apparent since RC performs better than CR when the U effect is large.

Similarly we notice that CR performs better than RC when the V effect is large.
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Two Alternative Non-parametric

Tests

3.1 Introduction

fn chapter 2 the null distributions of the test statistics for testing interaction effects

were obtained under the hypothesis of no main effects and no interaction effects. This

would mean that when testing for interaction effects we are implicitly assuming that

alignment and ranking of the data virtually removes any main effects that are present

so that we will be dealing with the null distributions under no main effects and no

interaction effects. In this chapter we are going to investigate whether the technique

applied is really effective and whether alignment and ranking do adjust the data to

account for the possible presence of main effects prior to conducting a rank test for

interactions.

29
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3.2 Studying the Critical Values

To investigate whether the null distributions of the test statistics are affected by the

presence of main effects, different combinations of the same five patterns in section

(2.6) were chosen for the main effects. A series of simulations was carried out to obtain

the null distributions of the statistics in the presence of the nuisance main effects.

To find the null distribution under the various combinations of main effects, some

modifications were made to the fortran program. For each combination of the two

main effects the five percent point of the null distribution was obtained based on a

simulation consisting of 100, 000 sets of data. The five percent critical points of the

null distribution for each combination of the two main effects are shown in Table 3.1.
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Table 3.1: Five Percent Critical Points

for the JR, RC and CR Null Distributions

for some combinations of main effects, N = 5

Configurations

(0,0)

(0,ui)

(0,*>2)

(0,v3)

(0,t>4)

(0,0
(«i,0)

(«2,0)

(«3,0)

(u4,0)

(«s,0)

(ui,Ui)

("1,^2)

("1,^3)

(ui,v4)

JR Statistic

3032

2218

1590

1802

770

1626

2206

1594

1810

766

1626

1730

1330

1474

690

1346

RC Statistic

154.5

146.5

140

141.5

122

142.5

154

154

154

154.5

155

146.5

140

142

122

142.5

CR Statistic

155

154.5

155

154.5

154.5

155

146.5

139.5

142

122

143

146.5

146.5

146.5

146.5

146.5



chapter 3 32

Table 3.1 continued

Five Percent Critical pants

for the JR, RC and CR Null Dstributions

for some combinations of main rffects, TV = 5

Configurations

(u2,vi)

{U2,V2)

{u2,v3)

(u2,v5)

(«3,^l)

(U3,V2)

("3, V3)

(u3,v4)

(U3,V5)

(«4,Ul)

(U4,V2)

(u4,f3)

(u4,v4)

(u4:v5)

(«5,Ul)

(^5,^2)

(^5,^3)

(u5,v4)

JR Statistic

1330

1090

1180

622

1098

1472

1176

1282

644

1184

690

622

646

474

630

1352

1098

1186

628

1118

RC Statistic

146.5

139.5

142

122

143.5

146.5

139.5

142

122

142.5

146.5

139.5

141.5

122

142.5

146.5

139.5

142

122

142.5

CR Statistic

139.5

138.5

139.5

139.5

140

142

142

142

142

141.5

122

122

121.5

122

122

142.5

142.5

143.5

142.5

142.5
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As can be seen the five percent points obtained for the JR. and RC statistics under

zero main effects and zero interaction were 3032 and f 55 respectively. Obviously from

the values given in Table 3.1, the two tests suggested are not stable under the presence

of main effects. The null distribution changes substantially for different configurations

of main effects. The five percent points for the JR statistic under various configurations

are much lower than 3032. For the main effect combination (114,̂ 4), the critical point

for the JR statistic is 474 which shows a substantial shift. We can see that the larger

the size of the main effects, the larger the reduction in the critical point. Thus the

power values are affected by this instability and would be greater than those listed in

the paper by Wolfe et al. where the approximate critical point values are used. Even

for the RC statistic, the five percent point goes down to as low as 122. Obviously the

null distributions are shifting downwards due to the presence of main effects. They

are certainly highly dependent on the magnitudes of any main effects which might be

present. But using 3032 and 155 corresponding to the critical values with no main

effects implies that the null distributions remain fixed. The power comparisons are

conducted under the assumption that the tests are stable under various configurations

of main effects, which is clearly not true. To see how the power values change, when

comparisons are made to the specific critical values, simulations based on 100,000 sets

of data were carried out using the new critical points. Of course, in practice it would

not be possible to know which critical values were the ones to use. The following

computations were carried out to illustrate the effect that the presence of main effects

can have on the apparent power of the tests involving aligning and ranking.
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Power values were obtained for various configurations using the following interaction

matrix :

.33

-.59

-.90

1.29

-.13

.94

.29

-.94

-.94

-1.22

1.2

1.04

.47

.91

-3.62

1.48

2.62

2.38

-6.26

-.21

-3.94

-3.35

-2.89

5.00

5.18

The results of the simulation studies with this interaction matrix and various combi-

nations of main effects u and v are shown in Table 3.2, which gives the rejection rates

for JR and RC using the fixed critical values 3032 and 155 respectively and using

the variable critical values which would be appropriate if the magnitudes of the main

effects present were known.
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Table 3.2: Monte Carlo Simulated Rejection Rate Estimates

for an Underlying Normal Distribution

Significance Level a = .05, n = 5

Configurations

(0,0)

(0,ui)

(0,u2)

(0,f3)

(0,u4)

(0,u5)

(m,o)

(«2,0)

(«3,0)

(«4,0)

(W5,O)

(ui,ui)

(«l,u2)

(«l,v3)

(ui,u4)

(u2,v2)

(u2,v3)

(u2,v4)

(u2,v5)

JR

.380

.249

.154

.136

.004

.095

.312

.194

.131

.003

.073

.247

.181

.078

.002

.081

.166

.119

.036

.001

.043

JR corrected

.380

.815

.992

.937

1.000

.988

.861

.994

.967

1.000

.982

.992

1.000

.991

1.000

.998

1.000

1.000

1.000

1.000

1.000

RC

.141

.132

.123

.084

.055

.086

.140

.138

.139

.139

.139

.132

.124

.082

.056

.088

.131

.122

.083

.056

.087

RC corrected

.141

.184

.218

.159

.270

.150

.148

.146

.146

.141

.139

.183

.217

.152

.272

.151

.183

.220

.154

.274

.148

CR

.144

.142

.144

.144

.145

.144

.152

.156

.103

.030

.036

.152

.152

.153

.153

.153

.153

.155

.156

.156

.156

CR corrected

.144

.145

.144

.147

.147

.144

.207

.267

.187

.193

.077

.206

.207

.207

.208

.207

.265

.278

.268

.269

.265
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Table 3.2 Continued

Monte Carlo Simulated Rejection Rate Est imates

for an Underlying Normal Distribution

Significance Level a = .05, n = 5

Configurations

(«3,^i)

(U3,V2)

(u3,v4)

(u3}v5)

(u4,v2)

(u4:v3)

(u4,v4)

(u4,v5)

(«5,Ui)

("5,^2)

("5,^3)

(u5}v4)

(u5,v5)

JR

.068

.029

.045

.001

.023

.001

.000

.001

.000

.000

.049

.024

.012

.000

.013

JR corrected

.997

1.000

.999

1.000

1.000

1.000

1.000

1.000

1.000

1.000

.998

1.000

.999

1.000

1.000

RC

.133

.123

.082

.055

.087

.134

.122

.083

.055

.087

.131

.123

.083

.057

.087

RC corrected

.185

.219

.153

.274

.151

.186

.220

.159

.271

.149

.182

.220

.152

.273

.150

CR

.106

.103

.104

.103

.104

.029

.030

.031

.030

.030

.036

.037

.036

.036

.037

CR corrected

.189

.187

.187

.188

.194

.193

.194

.201

.193

.192

.079

.079

.076

.078

.079
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As can be seen the power values for the JR test based on the variable critical values

are much higher than those using the fixed critical point. This is due to the fact that the

null distribution of JR changes substantially with the addition of main effects and using

the critical point corresponding to zero main effects for all the different configurations

of main effects will result in low values for the power. Thus comparing the JR power

values based on fixed critical point with those of the other tests would not provide us

with a fair comparison. This should not come to us as a surprise since the JR test does

nothing to remove the main effects whatsoever and obviously the main effects do affect

the null distribution and as a result the power values for the tests on interaction. In

the next chapter we will suggest some changes to the JR test to improve the deficiency

noticed.

Now turning our attention to the RC test we see that the corrected critical values

are different from the fixed critical value obtained by setting the main effects and

interaction to zero but these differences are not as large as they were for the the JR

test. We can see improvement on the power values but not as substantial as they were

for the JR test. The reason is of course that the RC test does attempt to remove

the nuisance factors by aligning and ranking but these adjustments are not completely

effective in removing the main effects.

3.3 Conclusions

In order to test the interaction in the presence of the main effects, three different testing

procedures were proposed. For two of them alignment and ranking are used to adjust

the data for the main effects before obtaining a Friedman-type statistic based on the

interaction bands. For the third procedure the whole data are ranked and a Friedman-

type statistic is obtained. Analysis of critical points shows that the null distribution

is affected by the presence of main effects and the critical points are shifted to the left
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which leads to a loss of power. The greater the magnitude of the main effects, the

more the critical points are shifted, and the greater the power loss. The reduction in

power is much more severe for the JR test and this is conceivable since this test does

not involve any adjustment to the main effects.

3.4 Alternative Tests for Interaction

In this section we are going to propose two tests for interaction based on the work

done so far and then we will follow that with a power comparison. First we show the

power results for an interaction effect matrix which acts along the interaction bands.

The actual interaction matrix is:

- 3

2

0

1

0

2

- 1

f

2

- 4

3

- 3

2

^

- 1

- 1

1

- 3

0

3

- 1

1

0

- 2

2

The values in the above interaction matrix have been chosen in such a way to magnify

the differences among the interaction bands. This is done with a view to getting

"some feel" for the best power performance that one could expect with the banding

technique(Wolfe et al. 1990) and would facilitate the power comparison between the

different proposed procedures for testing interaction based on the orthogonal Latin

squares methodology.

The following table shows the power calculations for the three tests JR, RC and

CR applying the above interaction matrix.

Obviously the three tests are dependent on the main effects though not to the same

extent. The power values for the JR test are highly variable and heavily dependent on

the main effects. With no main effects the power for JR test is .975 compared with the
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Table 3.3: Monte Carlo Simulated Rejection Rate Estimates

for an Underlying Normal Distribution

Significance Level a = .05, n = 5

Configurations

(0,0,M)

(0,vi,M)

(0,«2,M)

(0,v3,M)

(0,u4, M)

(0,u5,M)

(«i,0,M)

(u2,0,M)

(«3,0,M)

(«4,0,M)

(u5,0,M)

(ux,ui,M)

(«i,u2,M)

(ui,u3,M)

(ui,u4,M)

(«i,u5,M)

(U2,UI,M)

(u2 ,u2 ,Af)

Ji?

.975

.871

.664

.818

.081

.752

.910

.756

.848

.096

.664

.718

.480

.685

.050

.591

.514

.295

Tests

RC

.634

.523

.470

.601

.481

.560

.635

.634

.631

.636

.635

.524

.470

.601

.480

.556

.524

.474

CR

.686

.687

.688

.689

.687

.686

.639

.583

.710

.577

.645

.640

.639

.640

.637

.636

.583

.581

Configurations

(w2,u3,M)

(u2,u4,M)

(u2,vs,M)

(u3,vuM)

(U37V2,M)

(u3,v37M)

(U3,V4,M)

(u3,v5,M)

(u4,ui,M)

(uA,v2,M)

(u4,v3,M)

(u4,v4,M)

(u4:v5,M)

(u5,vuM)

(us,v2,M)

(u5,v3,M)

(u5,v4,M)

(u5,v5,M)

JR

.498

.026

.373

.635

.382

.513

.022

.457

.038

.013

.024

.000

.038

.438

.249

.407

.018

.354

Tests

RC

.599

.483

.558

.528

.470

.601

.481

.558

.525

.469

.601

.481

.555

.525

.472

.601

.480

.558

CR

.583

.583

.584

.710

.710

.709

.711

.708

.571

.576

.574

.574

.574

.647

.645

.648

.647

.646
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values .634 for RC test and .686 for CR test. Thus in the absence of main effects the

JR test is much more powerful than the other two tests. Even when the main effects

are small in magnitude the JR test is still more efficient. For main effects (ui,fi) the

power for the JR test is .718 compared with the values .524 for the RC test and .640

for the CR test. But with increase in the magnitude of the main effects the three tests

show loss of power, however the drop in power is much larger for the JR test. For main

effects (t«4, U4) the power for the JR test is only .0003 compared with the values .481

for RC and .574 for the CR test.

3.4.1 Modification of the JR test using medians

Because of the way the JR test is affected by main effects we decided to adjust the

data for the main effects before applying the JR test. Adjustments can be made by

aligning the rows and columns either through means or through medians. Alignments

through medians is done by subtracting from each observation the corresponding row

median. Having adjusted the data for row effects we can now make adjustments for

column effects. We subtract from each observation the corresponding column median.

Having adjusted the data for the main effects we can now rank the adjusted data and

apply the JR test. We refer to this modified test using alignment for medians as the

JR(med) test.

To see how effective the alignments are in stabilising the critical points, we simulated

the null distributions for various combinations of main effects and obtained the critical

points for the five percent significance level.

Examination of the critical points shows that the values are much more stable.

Although the values are still dependent on the main effects to some extent, the depen-

dency is much less than before. When there are no main effects, the critical point is

3823 and we can see all the other values are smaller than this. Obviously there is a

slight shift of the null distribution but it is much less than before.
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Table 3.4: Critical Points for the JR Null Distribution

after Alignments with Medians

Significance Level a=.O5, n = 5

Configurations

(0,0)

(0,ui)

(0,v2)

(0,v3)

(0,u4)

(0,u5)

(«i,0)

(U2, 0)

{u3, 0)

(w4,0)

(«5,0)

(til, V\)

(ui, u2)

(«l,w3)

(ui, u4)

(itl, ^5)

(«2,«l)

(U2,U2)

Critical Points

3864.5

3860

3864

3852

3854

3863

3599.5

3414.5

3478.5

3025.5

3517.5

3603.5

3605.5

3611.5

3609.5

3608

3424

3413.5

Configuration

(u2,v3)

(u2,v4)

(U2,vs)

(«3,Ul)

(u3,v2)

(u3,v3)

(U3,V4)

(«3,U5)

(«4,U!)

(u4,v2)

(u4,v3)

(u4,v4)

(u4,v5)

(U5, Vi)

(U5, U2)

(U5, U3)

(u5,u4)

(u6,t;5)

Critical Points

3416

3423

3433.5

3485.5

3478

3474

3473

3478.5

3038.5

3044

3033.5

3032

3038

3512.5

3515

3524

3510

3509.5
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3.4.2 Modification of the JR test using means

A second procedure is proposed for testing interaction by aligning the rows and columns

through means before applying a Friedman-type test to the interaction bands. To ad-

just for the row effect, the corresponding row mean is subtracted from each observation.

Having adjusted the data for the row effects, we subtract from each adjusted observa-

tion the corresponding column mean. These adjustments are equivalent to obtaining

the residuals in a two way analysis of variance which are free from the main effects.

These residuals are, then, ranked and the Friedman-type test statistic is obtained for

each Latin square. We refer to this modified test using alignment for means as the

JR(mean) test.

Again to see the effectiveness of the proposed procedure the null distributions for

this alternative statistic JR(mean) were simulated for combinations of main effects and

the five percent critical points obtained. The results are shown in Table 3.5.

The new critical values are relatively stable. In fact it can be shown that alignments

through means remove the main effects since this is equivalent to estimating the main

effects using least squares and then analysing the resulting residuals.



chapter 3 43

Table 3.5: Critical Points for the JR Null Distribution

after Alignments with Means

Significance Level a=.O5, n = 5

Configurations

(0,0)

(0,ui)

(0,u2)

(0,u3)

(<W
(0,0
(«i, 0)

(W2? 0)

("3,0)

(u4,0)

(«5,0)

(«l,«l)

(«l,u2)

(til, f3)

(itl, U4)

(«l,w5)

(«2,«l)

(u2,t;3)

Critical Points

4094

4094

4108

4094

4100

4096

4086

4096

4092

4094

4102

4094

4100

4094

4106

4086

4096

4086

Configurations

(«2,W4)

(«2,US)

(U3,V2)

(U3l V3)

{U3i vi)

{Us, V5)

(«4,Ui)

(U4,V2)

(u4,v3)

(U4,V4)

(«5,Ul)

(«5, U2)

(U5, U3)

(«5,U4)

Critical Points

4088

4102

4108

4094

4096

4094

4102

4096

4106

4112

4098

4098

4104

4094

4094

4108

4086

4102
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3.5 A Power Comparison

To see how well our two proposed tests perform, a power study was carried out com-

paring JR, RC and the two new tests JR(med) and JR(mean). The interaction matrix

applied is the one introduced in section (3.4). The results of these simulations for the

various combinations of main effects are given in Table 3.6.
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Table 3.6: Monte Carlo Simulated Rejection Rate Estimates

for an Underlying Normal Distribution

Significance Level a = .05, n = 5

Configurations

(0,0,M)

(0,Vl,M)

(0,u2, M)

(0,v3,M)

(0,v4,M)

(0,vs,M)

(«i,0,M)

(«2,0,M)

(«3,0,M)

(u4,0,Af)

(«5,0,M)

(ui,ui,M)

(«i,u2,M)

(ui,u3,M)

(uuv4,M)

(uuv5,M)

(u2,fi,M)

(u2 ,u2 ,M)

.975

.871

.664

.818

.081

.752

.910

.756

.848

.096

.664

.718

.480

.685

.050

.591

.514

.295

JR(med)

.671

.671

.672

.672

.671

.670

.604

.534

.622

.443

.566

.605

.606

.606

.603

.600

.534

.535

Tests

JR(mean)

.687

.686

.688

.686

.686

.686

.688

.687

.686

.688

.687

.689

.688

.690

.687

.686

.687

.689

RC

.634

.523

.470

.601

.481

.560

.635

.634

.631

.636

.635

.524

.470

.601

.480

.556

.524

.474

CR

.686

.687

.688

.689

.687

.686

.639

.583

.710

.577

.645

.640

.639

.640

.637

.636

.583

.581
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Table 3.6 Continued

Monte Carlo Simulated Rejection Rate Estimates

for an Underlying Normal Distribution

Significance Level a = .05, n = 5

Configurations

(u2,v3,M)

(u2,v4,M)

(u2}v5,M)

(U3,V!,M)

(u3,v2,M)

(u3,v3,M)

(u3,v4,M)

(u3,v5,M)

(u4,vi,M)

(u4,v2,M)

(u4:v3:M)

(u4lv4lM)

(u4,v5,M)

(u s ,ui ,M)

(us,v2,M)

(us,v3,M)

(u5,v4,M)

(u5,vs,M)

JR

.498

.026

.373

.635

.382

.513

.022

.457

.038

.013

.024

.000

.038

.438

.249

.407

.018

.354

JR(med)

.536

.537

.535

.621

.623

.622

.623

.622

.441

.442

.444

.442

.442

.568

.567

.567

.569

.568

Tests

JR(mean)

.688

.687

.689

.688

.687

.687

.688

.688

.686

.688

.690

.688

.687

.687

.690

.689

.688

.691

RC

.599

.483

.558

.528

.470

.601

.481

.558

.525

.469

.601

.481

.555

.525

.472

.601

.480

.558

CR

.583

.583

.584

.710

.710

.709

.711

.708

.571

.576

.574

.574

.574

.647

.645

.648

.647

.646
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Comparing the power values we can see that the JR test aligned through means,

JR(mean), is the most stable among the five tests and has the best overall power

performance. It maintains a power of .69 in the absence of main effects and also in the

presence of any combinations of main effects. For most combinations of main effects

it shows higher powers than the other tests. In the presence of main effects (144,̂ 4)

the power of JR(mean) is .6877 compared with .0003 for JR, .4425 for JR(median),

.4813 for RC and .5739 for CR. While the JR(mean) is robust in the presence of main

effects the JR(median) is not. We can see that JR(median) is robust in the presence

of v effects only. When there is no u effect the power variation is from .670 to .672 for

different values of the v effect which is well within the simulation error. However with

a u effect and no v effect in the model the power values change from .443 to .622. This

feature is evident for all sets of power values with fixed u effect over the variation in

the v effect. This behavior of JR(median) is due to the order of alignments applied for

removing the main effects. Alignment was used for the u effect first and then applied

to adjust the data for the v effects. Obviously this upsets the previous alignment for

the u effect. This upset due to the order of alignments does not occur for the JR(mean)

test because alignments through means simply reduces the data to the residuals.

Power comparisons were also carried out under multiplicative interaction. The

results have not been shown since the powers obtained were all less than 10 percent for

all the tests considered here. The low power performance is due to the intrinsic nature

of the Latin square procedure. With this type of interaction the model is

yij = cti + fa + ctifij + Xij i = 1, 2 , . . . , / j = 1 ,2 , . . . , J (3.1)

Here the interaction effect for each cell is the product of the corresponding main effects.

The methodology, based on Latin squares picks up interactions along the interaction

bands making distinctions between various bands. Because of the way the observations

are included in each band, each interaction band carries the effects of all levels of both
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factors in a product form and thus the rank sums for the bands tend to be similar

resulting in a low value for the test statistics. As a result, the procedure fails to detect

multiplicative interaction.

We noticed that for the Martin type of interaction the powers were also low and

only for the interaction matrix acting along the bands did we have the powers raised to

a certain extent. Thus it seems that the proposed methodology is capable of detecting

only certain type of interactions i.e. interactions that are compatible with the inter-

action bands in one of the orthogonal Latin squares and attempts in modifying the

tests do not seem to result in more powerful tests. We noticed that even for situations

where interactions are along the bands the maximum power observed was .69 which

shows that the methodology proposed is not efficient.
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3.6 Conclusions

The three non-parametric tests proposed by Wolfe, Dean, Hartlaub were studied and

found to be dependent on the main effects. Analysis of the Joint Rank Procedure

revealed that the critical values were highly variable and heavily dependent on the

main effects. It is shown that alignment through medians prior to ranking stabilizes the

critical points, and alignment through the means removes the main effects. Based on

this study two non-parametric procedures are proposed for testing the interaction. Our

power study revealed that for interaction effect matrices acting close to the interaction

bands, the JR mean aligned test has the best overall performance among all the tests

studied under the normal distribution. For product interaction all the tests perform

poorly showing powers less than 10 percent. We think that the poor performance is due

to the structure of the tests. Latin square structure is not capable of detecting this form

of interaction because of the way this interaction spreads over the two-way design. In

fact the same argument can be used about Martin-type interaction effect matrices with

less severity. In brief, all the tests mentioned here based on orthogonal Latin squares

properties can be effective for the detection of interaction only if the interaction spreads

along the interaction bands. Wolfe et al.(1990) propose "work on the development of

ways to tie the selection of a banding scheme (or other clustering mechanism for the

data)to the specific type of interaction deemed most likely to be present and/or to be

most important in the problem under consideration". But practical applications giving

rise to such circumstances are few and far between. For the multiplicative interaction

which is common in practice or assessment of interaction in general the methodology

has low power of detection.
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3.7 Further Work

There are different ways of extending this work:

1. To compare the efficiency of the proposed tests with that of Tukey's and

also De Kroon and van der Laan's test on rank interaction, one may embark

upon a power study involving all the tests on interaction with only a single

replicate discussed so far.

2. One could investigate the efficiency of the proposed procedures when the

errors are non-normal.

3. Latin square structure has also been used to test the main effects in the

presence of interaction (Wolfe et al., 1992). Similar analysis to the work

done so far might be undertaken to see if a more efficient test procedure

can be obtained for testing the main effects in a two-way layout with one

observation per cell.
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The Use of Ranked Data in

Blocked Factorial Experiments

4.1 Introduction

This research originated from an experiment at Cambridge Laboratory, Cereals Re-

search Department, John Innes Centre in which the effects of elevated atmospheric

concentration of carbon dioxide and a nitrate fertiliser on the development of disease

on plants were investigated.

The aim of the experiment was to see if the amount of disease which developed on

plants depended on the atmospheric concentration of carbon dioxide. They were also

interested to know if the amount of nitrate fertilizer supplied to the plants affected the

development of disease, either separately from carbon dioxide or in an interaction with

it.

There were two levels of carbon dioxide concentration and five levels of nitrate

fertilizer. Thus we have a factorial experiment with one factor, carbon dioxide, at two

levels and the other, nitrate fertilizer, at five levels. They could use up to a maximum

of twelve replicates for each combination of treatment levels. It is expected that the

51
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design would involve all the ten treatment combinations using twelve replicates. The

amount of disease on plants grown under the different treatment combinations would

be the response variable.

Consider first how one would analyse such a design if the response could be mea-

sured on a continuous scale. A standard factorial analysis would produce an analysis

of variance dividing the total sum of squares into the main effects and interaction

components as follows:

Source of variation Degrees of Freedom

Main Effect

Main Effect

Interaction

Residual

co2

NO3

C02x NO3

1

4

4

110

Total 119

Since the second factor is a quantitative factor it would be possible to divide the effects

into components testing the shape of the response curve(or surface) i.e. we could define

linear, quadratic, cubic, and quartic components using orthogonal polynomials. This

is particularly straight forward if the levels of NO3 are equally spaced on an interval,

since the coefficients of the relevant contrasts may be found in standard tables. These

coefficients define contrasts which correspond to the particular shape of the response

curve. Thus the full partition of the total sum of squares would then be:
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Source of variation D.F

Main Effect of C02 1

Main Effect of N0 3 4

Linear Component of N0 3

Quadratic Component of NO3

Cubic Component of NO3

Quartic Component of NO3

Interaction CO2 X NO3 4

CO2 by Linear NO3

CO2 by Quadratic NO3

CO2 by Cubic NO3

CO2 by Quartic NO3

Residual 110

1

1

1

1

1

1

1

1

Total 119

The residual sum of squares could be further split up to test other features of the

design, such as blocks, if these had been incorporated in the design.

4.2 General Model

Now to generalise the problem, let us assume that we have a factorial experiment with

two factors U and V with the number of levels / and J respectively. We further assume

that the experiment is run in a randomised block design and the number of blocks used

is M. Thus the general model we are considering is:

(4.1)
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where y!jm is the observation at level i of factor U and level j of factor V in block m,

oti is the effect of level i of factor U, (3j is the effect of level j of factor V, (a/3)ij is the

interaction effect due to the combination of level i of factor U and level j of factor V,

7m is the effect of block m and Cym is the error term associated with the observation

Vijm • The e^ 's are assumed to be identically and independently distributed continuous

random variables. To be able to use ANOVA we need to add the normality assumption

as well. The partition of the total sum of squares is:

I j M i j M I J M

i=l j = l m=l «'=1 j=l rn=\ t=l j = l rre=l
I J M I J M

+ E E E is* - ft. - n + y-f + E E E (v..m - y-f
i=l j = l rre=l i=l j=l m=l

+ E E E (v^m - U - y..m + y... f (4.2)
i=l j=l m=l

The first sum of squares is for factor U and is denoted by SS(U), the second sum of

squares is for factor V and is denoted by SS(V), the third sum of squares is for the

interaction between U and V, and is denoted by SS(U X V), the fourth sum of squares

is for the blocks and is denoted by SS(B) and finally the last sum of squares is for the

random error and is denoted by SS(E). The total sum of squares is denoted by SS(T).

Using the above notation we can now show in the table 4.1 the analysis of variance for

the model under study. The main effect and interaction sums of squares are further

partitioned into their orthogonal components for quantitative factors to determine the

shape of the response as illustrated earlier. The tests on components of main effects

and interaction are carried out by contrasts. A typical contrast can be represented as:

K

^ - (4-3)
8 = 1

here K is the number of treatment combinations, i8-. is the total on treatment i, and

Ci is the contrast coefficient relating to treatment i and there is a constraint on c,-'s,

Ei=x ^ = 0. We also assume £i=i cf = 1.
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Table 4.1: Table of Analysis of Variance for a Factorial Experiment with Two

Factors Performed in a Randomised Block Design

Source of Variation Sum of Squares D.F Mean Squares F-Ratios

Factor U SS(U) / - I MS(U) = ^ MS(U)
MS(E)

Factor V SS(V) J-l MS(V) = MS(V)
MS(B)

Blocks SS(B) M - 1 MS(B) = M - l
MS(B)
MS(B)

Interaction U x V SS(U x V) ( / - ! ) ( J - l ) MS(U xV)- ss
(i-D(J-i)

MS(UxV)
MS(B)

Error SS(E) MS(E) = SS(E)
(IJ-D(M-l)

Total SS(T) IJM-1

Each contrast is used to test a particular component of one of the main effects or

interaction. For instance, one of them would test the linear component of factor U and

another would test the linear by linear component of the interaction. The contrasts

are orthogonal and with the assumption of normality this would imply that they are

independent and thus independent tests can be made by comparing the sum of squares

of each contrast with the mean square of the error term in the experiment. Each

contrast carries one degree of freedom.
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4.3 Problem with the Measurements

The above procedure for the analysis is dependent upon exact measurements for the

response variable. Numerical measurements of the amount of disease on a plant leal,

such as the percentage of the leaf area which is covered by the disease, are difficult and

time consuming to obtain, and could be unreliable. It is possible in practice, however,

to rank the plants according to the level of disease on them, which would provide a

comparison between plants. This sounds fine, but ranking all the experimental units as

a single group could get extremely tedious and again could be unreliable. Experience

shows that it is fairly easy to rank a small number of the most infected and least infected

plants but those in the middle are not nearly so easy to rank. Thus if we consider each

replicate of the factorial experiment as a block, then ranking the observations in a

block would be a relatively simple task.

4.4 A Blocked Factorial Experiment

From a practical point of view then it would be more appropriate to consider the above

factorial experiment to be performed in a randomised block design. This would involve

setting up blocks each of which would allow a complete replicate of the factorial ex-

periment. Within each block the assignment of treatments to experimental units is

randomised. Ranking all the observations in a block would not be difficult. Ranking is

done separately in each block. A randomised block experiment in which the responses

to a number of different treatments are compared using ranks within blocks may be

analysed using Friedman's test. Here we have a similar situation except that the treat-

ments consist of all combinations of the levels of the factors. The question is, is there

a test similar to Friedman's test, i.e. one in which responses are ranked within blocks,

which would allow a test of the main effects and the interaction component. Such a
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test would be of more general application since situations like this are quite common

in industry, particularly in biological and agricultural experiments where obtaining

exact quantitative measurements of the response variable is often difficult. A more

general method of analysis not constrained by the requirement of exact measurements

is therefore quite desirable.

4.5 A Non-Parametric Approach

Let us assume that we have a factorial experiment with two factors U and V with the

number of levels / and J respectively. We are performing the factorial experiment in a

randomised block design with M blocks, each block representing a complete replicate

of the experiment. Thus we have K = IJ observations in each block, i.e, one ob-

servation for every factor combination. As explained before, allocation of treatments

to experimental units within each block is carried out at random. Furthermore, we

assume that the factors are quantitative and the levels are equally spaced. Here we

rank the observations within each block separately to obtain the rankings shown in the

table below.

Replication

1

2

3

M

sum

1

R\i

R21

R31

RMT.

R.I

2

R\2

R22

R32

RM2

R.2

Treatment

3

i?l3

-R23

-R33

RM3

R.3

K

RlK

R2K

. R3K

RMK

R.K
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In the table R^ is the rank of treatment k in block m and each row shows the ranks of

the observations for each block. In this layout the observations are ranked across the

rows from 1 to K so that the ranks in each row will sum to the value K(K -\-1)/2. Let

R.k denote the sum of the ranks for treatment combination k, where k = 1, 2,. . . , K.

If we simply had K treatments to compare and these were ranked in the rows as

described, this would be the situation which might be analysed using Friedman's test

statistic. While the Friedman test applies to one factor only, here we have a factorial

experiment involving two factors. In the next section we propose a procedure which is

an extension of the Friedman test to a factorial experiment with two factors.

4.6 Non-Parametric Test Statistics Based on Ranks

Our proposed non-parametric approach is defined as follows:

To test a particular component of a main effect or interaction we use the relevant

parametric contrast and replace the values of the observations involved for each treat-

ment combination with their corresponding ranks which are obtained by ranking the

observations in each block separately. Thus the sum of values for each treatment is

replaced with the sum of the ranks. The expected value and the variance of each con-

trast can now be obtained under the null hypothesis. Our non-parametric test statistic

for testing the effect under question is defined as the standardised form of the relevant

rank-based contrast.

The orthogonal contrasts are defined on treatment rank sums as follows:
K

r = £Cjti2.fc (4.4)
k=l

where R.k is the sum of ranks for treatment k, and Ck is the contrast coefficient

relating to treatment k and as mentioned before Ylk=i ck — 0 and Y2k=i c\ ~ 1-

In the next section we shall find the expected value and variance of these rank-based

contrasts.
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4.7 Expected value and Variance of T

The expected value and variance of T under the null hypothesis Ho of no treatment

effects are obtained as follows:

E(T\H0) =

E(R.k) =

fc=i

M

K

m=l

fc=l

fc=l A s = l

(4.5)

= - [ 1 + 2 + .. . + !<}

(4.6)

(4.7)

(4.8)

(4.9)

(4.10)

(4.11)

The left hand side is the square of the sum of contrast coefficients and is therefore

equal to zero. Thus:

i
If we use the above result in the formula for the variance then:

V(T\H0) = (J2cl)[V(R.k)-Cov(R.k,R,)}
k=\

(4.14)
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The terms V(R.k) and Cov(R.k,R.t) can be derived and then substituted in this

equation.

M

V(R.k) =
7 7 1 = 1

because R,k is the sum of M independent ranks.

1 K((K + 1)(2K
K 6

6
(Ji + 1 ) ( 2 A ' + 1) (A' + l ) 2

6

12

If we substitute this result in (4.15), we obtain the variance of

To obtain the covariance of two ranks

we note that:

and i?^ in the same block

k=\

= 0
k=i
K K

(4.16)

(4.17)

(4.18)

( 4 . 2 0 )

(4.21)

(4.22)

(4.23)

= 0
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after substitution for the variance of Rmk, the covariance of R^ and R^ can be

derived.

RA = _ ^ _ 1 ^ (4.24)
'IU> / -i c\ V /

To find the covariance of i?^ and R,t we note that:

^ ^ (4-25)

) + K(K-l)Cov{R.k,R.t)

V{R.k) = ^ 1 / ^ ^ ) = ^ ! : tl (4.26)
m=l

After substitution for the variance of R,k, the covariance of R.k and R,t can be obtained

as:

(4.27)

If we substitute for the variance of R.k and covariance of R.k and R,t in the formula

(4.14), we obtain a formula for the variance of the contrast:

%±V±4 (4.28,

Since the sum of squares of the coefficients is taken to be 1, the formula for the variance

of a contrast becomes:

4.8 Test Statistics

The contrast T can now be standardised and if a normal approximation is used, then

one can say that under the null hypothesis the standardised form of the contrast has
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a standard normal distribution:

l-f2=\H0)~N(p,l) (4.30)
\^JV(T) I

With K = IJ treatment combinations, there are K — 1 orthogonal contrasts leading

to K — 1 test statistics, I — 1 of them are used to test the components of the main

effect due to factor [/, J — 1 of them are used to test the components of the main effect

due to factor V, and finally the other (/ — 1)(J — 1) test statistics are used for testing

the various components of the interaction.

4.9 Independence of the Contrasts

In the previous section the rank sums were formed into orthogonal contrasts to test the

components of the main effects and interaction. Here we verify that such contrasts are,

under the null hypothesis of no main effects and interaction, uncorrelated. Suppose

we have n random variables yi,y2,... ,yn which are identically distributed with mean

[i and variance a2, p is the coefficient of correlation between any two of the variables

and is assumed to be fixed. Thus Cov(yi,yj) = pa2 for all i ^ j . Consider two linear

contrasts Tx = aTy and T<i = bTy where yT = (j/i, . . . , j/n), aT = (a i , . . . , a n ) and

hT = (&!,..., bn) such that aT . l = 0 and b T . l = 0 and here 1 denotes a column vector

with all its elements equal to one. The covariance of T\ and T2 is given by

Cov(Ti,T2) = a rVb (4.31)

where V = {1(1 — p) + 3p}cr2 is the variance-covariance matrix of y, I is the in x n)

identity matrix, and J is an (n x n) matrix of l's. This becomes,

Cov(Tl7T2) = aT{I(l-p)+Jp}ba2 (4.32)

= a-2(l-p)&Tb + pa2aTJb (4.33)

= <r2(l - p)aTb (4.34)
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since a r l = 0. If T\ and T-i are orthogonal contrasts then aTb = 0 and 7\ and Ti are

uncorrelated. If the ?/,-'s are normally distributed then T\ and T2 will be independent

normal variables. Note that independence of T\ and T2 does not require independence

of the 2/,-'s. Thus the following conclusions can be drawn:

1- If yj's denote the treatment totals, then the resulting T;'s will denote the test statis-

tics for the classical procedure. From the previous discussion with the assumption of

normality these test statistics are independent, and this would imply that we are deal-

ing with K — 1 independent tests. We note that the independence assumption is not

required here.

2- If 1 '̂s denote the treatment rank sums, then the resulting T,-'s will denote the test

statistics for the non-parametric approach proposed. As proved the orthogonality of

the contrasts would lead to test statistics which are uncorrelated. If normal approxima-

tion is applicable, then again this would lead to mutual independence for the contrasts.

As we know the ranks within each block are correlated, but we have shown that this

does not affect the independence for the test statistics.

3- If we assume that the two linear combinations are two contrasts based on treatment

rank sums and in the formula for the covariance of T\ and T2 we change the index 2

to 1, then we obtain a simple formula for the variance of a contrast from the formula

for the covariance. Thus Cov(T\,T\) = Var(T\) and therefore we have the following

formula for the variance of a contrast based on rank sums.

Var{Tx) = aTVa (4.35)

= a2(l - />)aTa (4.36)

? (4.37)

Now if we substitute the covariance of two rank sums Cov(R_k,R.t) for pa2 and the

variance of a rank sum V(R.k) for a2, then Var(Tx) = Y:a2[V(R.k) - Cov(R.k,R.t)]

which has the same form as the formula in (4.14) and if we substitute 1 for the sum of



chapter 4 64

squares of the coefficients and substitute for the variance and covariance terms we will

arrive at the formula (4.29) for the variance of a contrast.

4.10 Relationship with Friedman's Statistic

The Friedman statistic is defined as

F - MK(KTrj£S 2—J (4-38)

where M is the number of blocks, K the number of treatments and Ri, denotes the sum

of ranks on treatment i. Consider the contrasts Tj, j = 1,2,..., K-l corresponding to

the orthogonal components for the main effects and the interaction for a polynomial

fit. We can write these contrasts in the following manner.

K

Tj = T,ciiRi. j = h2,...,K-l (4.39)

and here Cji is the coefficient of treatment i in contrast j . Thus the variance of Tj is

V(IS) = ffiii. ,4.40)

We would like to prove the following relationship

12 * , M(K +1)^2 12

which means the Friedman statistic is equal to the sum of squares of the standardized

contrasts discussed earlier. To prove that we should establish the following

^ ^ ) . (4.42)
j=l i=\

Let
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We need to prove that

K K-\ K
c*#.)2- ( 4 - 4 3 )

8=1 j = l 8=1

Consider the following K transformations

+ c12i?2. + • • • + CIKRK. = T\

C21R1. + c22R2. H 1- c2KRK = T2

Z? I ~D 1 1 E? T 1

We can see that £f=i ^=CJJ = -^Yf=\cji = ° for j = 1,2,..., A' - 1. Hence,

Ti, T2, . . . , TA-I are orthogonal to T/< and we have a set of A' orthogonal transforma-

tions.

Let T be the (K x 1) vector of Tj values, R the (K x 1) vector of i?8-. values and A

the (K x A') matrix of the coefficients. Then

T = AR (4.44)

and TTT = (AR)TAR = RTATAR = RTR since the matrix A is orthogonal. But

£ £ 1 21/ = TTT and E ( 1 I -R2 = RTR- Hence

/< A'

YT? = YRl (4.45)
i=l i=l

We note that TK = (-^?E^-i i?i.)2 = KR2 and therefore

E(,R, - i?)2 = E i?2 - KR2 = E r,2 (4-46)
4 = 1 8 = 1 8 = 1

But
AT-l K-l K

D \2

8=1 i = l 8=1

and thus the relation (4.41) is established.
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4.11 Distribution of Friedman's Statistic

The exact distribution of Friedman's statistic can be obtained using combinatorial

analysis and principles of counting. The discussion in the previous section can be

used to obtain the asymptotic distribution of Friedman's statistic. By the Central

Limit Theorem the asymptotic distribution of each standardized contrast is normal.

Thus the asymptotic distribution of the square of each contrast is chi-square with one

degree of freedom. We showed that the contrasts are uncorrelated and because of the

asymptotic normality they are asymptotically independent. Therefore we have K — 1

independent chi-square variables and because of the additivity property of independent

chi-square variables their sum has also chi-square distribution. Thus we have shown

that the asymptotic distribution of Friedman's statistic is chi-square with K — 1 degrees

of freedom.

4.12 Null Distributions

The exact null distribution of the test statistics can be obtained using combinatorial

analysis. We shall determine the exact null distribution for three small designs: (2 2 2),

(2 2 3) and (3 3 2) where the first index indicates the number of levels of one factor, the

second shows the number of levels of the other factor, and the last one is the number of

blocks used. We then compare the exact distributions with the corresponding simulated

distributions and later compare them with the standard normal distribution. One can

use the same reasoning to obtain the null distributions for larger designs with the aid of

an algorithm to compute the probabilities determined by the involved combinatorics.

We shall show that for larger designs the normal distribution provides an adequate

approximation for most practical purposes.
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4.12.1 Exact Null Distribution for the Design (2 2 2)

For this design we have a factorial experiment involving two factors each with two

levels. Here we have three contrasts, one for each of the main effects and one for

the interaction. Thus we have four treatments in each block. The number of ways

we can rank these four treatments is 4! = 24. Since we have two blocks the total

number of ways we can rank the whole data is (4!) x (4!) = 576 taking into account

the fact that ranking is done independently in each block. The contrast coefficients,

before being standardised, are —1 and 1. Let us take the contrast for one of the

main effects, (ab) — (b) + (a) — (1). For each particular rank configuration we have

four ranks contained in (ab) + (a) and four in —(b) — (l). The ranks of treatments (ab)

and a have a permutation of 2! in each block assuming there are no ties. Similarly the

other two treatments have a permutation of 2! in each block. As far as the value of

the statistic is concerned all these permutations give rise to the same value for the test

statistic. Thus each particular rank configuration will give rise to a value for the test

statistic which is repeated (2!)4 = f6 times and therefore we have just (576 -f-16) = 36

rank configurations to consider. The other configurations will just be permutations of

the others in the manner explained above and therefore would give rise to the same

values for the test statistic.

The rank configuration that gives rise to the maximum value of the test statistic

would allocate the ranks 3,4 to treatments (ab),(a) and the ranks 1,2 to treatments

(&), (1) in each block. Thus the maximum value for the contrast is 2(3+4) —2(1+2) = 8.

Similarly the rank configuration that gives rise to the minimum value of the test statistic

would allocate the ranks 1,2 to treatments (ab),(a) and the ranks 3,4 to treatments

(6), (1) and this would lead to a value of —8 for the contrast. We can calculate the

variance of the test statistic as:

Var(T\H0) = MAtf̂ 1} Y!Li 4 = 2x4\A
2
+1) x 4 = 40/3. In this way the maximum value
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of the statistic is obtained as 8/(^/40/3) = 2.191 and the minimum value is —2.191.

To find the exact probability for each value of the test statistic we count the number

of the corresponding possible rank configurations. For the maximum value, we must

allocate the ranks 1,2 to treatments (&),(l) and the ranks 3,4 to treatments (ab),(a)

in each block. If we now disregard the common number of repetitions due to the

permutations explained before, we can have only one rank configuration out of the

possible 36. Thus the probability is 1/36.

To be able to explain the probabilities for the other values in an easier manner

we just concentrate on the rank allocation to treatments (6),(1) in each block since

this allocation would automatically determine the rank allocation to the other two

treatments in the block as well and thus we can find the values of the test statistic.

To find the probability for the second largest value of the statistic we notice that

we must allocate the ranks 1, 2 to treatments (6), (1) in one block and the ranks 1,3 in

the other block. Thus the number of possible configurations is 2 which is the number

of permutations of the two blocks with different allocations. The value of the test

statistic is obtained by finding the contrast value first and then dividing it by the

standard deviation. Thus the contrast value is (3 + 4 + 2 + 4) — (1 + 2 + 1 + 3)) = 6 and

the value of the statistic is 6/(^/40/3) = 1.643 The probability for this value is, then,

2/36 assuming there are no ties. For the next largest value we must allocate the ranks

1,2 to treatments (&),(1) in one block and 1,4 in the other block or 1,2 in one block

and 2, 3 in the other block or 1,3 in both blocks. The first two would give rise to two

rank configurations each since the pattern in each block is different, while the third

case would give rise to just one rank configuration since the pattern in the blocks is

the same. The corresponding contrast value is (12) — (8) = 4 and the value of the test

statistic is 4/(W40/3) = 1.095. We have a total of 5 possibilities for this value which

gives us the probability 5/36. Other values are obtained in a similar fashion until the

contrast value becomes 0. These values and their associated probabilities, are shown
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Table 4.2: The Exact Null Distribution of the Test Statistic
Design (2 2 2)

Values

Exact Probability

-2.191

1/36

-1.643

2/36

-1.095

5/36

-.548

6/36

0

8/36

.548

6/36

1.095

5/36

1.643

2/36

2.191

1/36

in Table 4.2. Because of the symmetry of the distribution the probabilities associated

with negative test scores can be derived in a similar fashion.

4.12.2 Exact Null Distribution for the Design (2 2 3)

The number of rank configurations for this design is (4!)3 = 13824. Here again we can

reason that for each particular rank configuration we have (2!)6 = 64 permutations

giving rise to the same value for the test statistic. Thus here we have 13824/64 = 216

rank configurations to consider. In a similar manner we can find the values of the test

statistic and the corresponding probabilities counting the combinations that give rise

to the same values of the statistic. The table 4.3 gives the full exact distribution of the

linear component for this design.

4.12.3 Exact Null Distribution for the Design (2 3 2)

The number of treatments per block is 2 x 3 = 6 and so the number of possible

rankings in each block is (6!) = 720 and thus the total number of rank configurations

for all the data is 7202 = 518400. We now concentrate on the null distribution of the

linear component of the first factor. As before the contrast coefficients are —1 and

1. Here for each rank configuration we have (3!)4 = 1296 permutations giving rise to

the same value for the statistic. Thus we have 518400/1296 = 400 configurations to

consider. The maximum value of the statistic is obtained when the ranks 1,2,3 are
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Table 4.3: The Exact Null Distribution of the Test Statistic

Design (2 2 3)

Values

-2.683

-2.236

-1.789

-1.342

-0.894

-0.447

0

Probability

1/216

3/216

9/216

16/216

27/216

33/216

38/216

Values

0.447

0.894

1.342

1.789

2.236

2.683

Probability

33/216

27/216

16/216

9/216

3/216

1/216

allocated to one level of the factor and the ranks 4,5,6 to the other in each block. The

contrast value is 2(4 + 5 + 6) — 2(1 + 2 + 3) = 18. The variance of the test statistic

is 2(6)(7)(6)/12 = 42 and so the maximum value of the statistic is 18/\/42 = 2.777.

The probability for this value is 1/400. The second largest value is obtained when

the ranks 1,2,3 are allocated to one level of the factor in one block while in the

other block the ranks 1,2,4 are allocated to the same level, the contrast value is

(4 + 5 + 6 + 3 + 5 + 6) - (1 + 2 + 3 + 1 + 2 + 4) = 29 - 13 = 16 and the value of the

statistic is 16/\/42 = 2.4689 with the corresponding probability of 2/400. For the next

largest value we have three configurations to consider, namely, allocating the ranks

1.2.4 to one level of the factor in each block, or allocating 1,2,3 in one block and

1.2.5 in the other or allocating 1,2,3 in one block and 1,3,4 in the other. The first

one would count as one rank configuration and the others as two to allow for the block

permutation. Thus the probability is 5/400 relating to the value of 14/\/42 = 2.160

for the test statistic. Continuing in the same manner we can obtain the other values of

the statistic and keeping track of the combinations leading to the same values we can
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Table 4.4: The Exact Null Distribution of the Test Statistic

Design (2 3 2)

Values

-2.777

-2.469

-2.160

-1.852

-1.543

-1.234

-.926

Probability

1/400

2/400

5/400

10/400

16/400

24/400

33/400

Values

-.617

-.309

0

.309

.617

.926

1.234

Probability

40/400

45/400

48/400

45/400

40/400

33/400

24/400

Values

1.543

1.852

2.160

2.469

2.777

Probability

16/400

10/400

5/400

2/400

1/400

obtain the corresponding probabilities.

For larger designs the exact null distribution can be obtained in a similar fashion.

As the number of levels of the factors and also the number of blocks increase it would

be very difficult and impractical to follow the various combinations and do the counting

by hand. However one can write a computer program and the exact distributions can

be obtained, if necessary, fairly easily in this way.

4.12.4 Comparison with the Simulated Distributions

To be able to assess the accuracy of the null distributions obtained by simulation

we compare the exact distribution with the corresponding simulated distribution for

the three designs considered above. The tables 4.5, 4.6, and 4.7 compare the exact

distributions with their simulated counterparts. Each simulated distribution is based

on 100, 000 independent repetitions of the experiment. For each run of the experiment

K random numbers are taken from the standard normal distribution for each block
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Table 4.5: Comparison of the Exact Null Distribution and the
Simulated Distribution Design (2 2 2)

Values

Exact Probability

Simulated Prob.

-2.191

.0278

.0271

-1.643

.0555

.0555

-1.095

.1389

.1397

-.548

.1667

.1666

0

.2222

.2228

.548

.1667

.1666

1.095

.1389

.1389

1.643

.0555

.0549

2.191

.0278

.0279

Table 4.6: Comparison of the Exact Null Distribution and the

Simulated Distribution Design (2 2 3)

Values

-2.683

-2.236

-1.789

-1.342

-0.894

-0.447

0

Exact Probability

.00463

.01389

.04167

.07407

.12500

.15278

.17592

Simulated

.00434

.01372

.04204

.07420

.12680

.15024

.17266

Values

.447

.894

1.342

1.789

2.236

2.683

Exact Probability

.15278

.12500

.07407

.04167

.01389

.00463

Simulated

.15248

.12768

.07522

.04210

.01418

.00434

through a fortran program which is included in the appendix. The random observations

thus obtained are ranked separately within each block and then for each treatment

combination the corresponding rank sum is obtained. Thus the value of each contrast

is calculated. In this way for each contrast a vector of calculated values is obtained

from which the relevant simulated null distribution is derived.
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Table 4.7: Comparison of the Exact Null Distribution and the

Simulated Distribution Design (2 3 2)

Values

-2.777

-2.469

-2.160

-1.852

-1.543

-1.234

-0.926

-0.617

-0.309

0

Exact Probability

.00250

.00500

.01250

.02500

.04000

.06000

.08250

.10000

.11250

.12000

Simulated

.00246

.00470

.01326

.02424

.03988

.06000

.08340

.09878

.11216

.11936

Values

0.309

0.617

0.926

1.234

1.543

1.852

2.160

2.469

2.777

Exact Probability

.11250

.10000

.08250

.06000

.04000

.02500

.01250

.00500

.00250

Simulated

.11134

.10098

.08176

.06320

.04000

.02376

.01282

.00526

.00264
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4.13 Simulation Error

The simulated null distributions presented throughout this work are all based on

100, 000 simulations. A 95% confidence interval for a simulated probability would

be given by

p ± 1.96(y/p(l -p)/100000)

where p is the exact probability. Table 4.8 shows the margin of error, given by

1.96(yjp(l -p)/100000)

for a range of values of p together with corresponding percentage errors. It can be

seen that for the exact probability of .025 or more we should expect the simulated

probabilities to be in error by at most 4 percent. With p larger than .3 we expect the

the simulated probabilities to be in error by less than 1% and for probabilities above

90% the margin of error is .21% at most.

Comparison of the exact probabilities with the simulated values shown in Tables

4.5, 4.6 and 4.7 assures us of the accuracy of the simulated probabilities. We can see

that the errors are within the expected accuracies set in Table 4.8. Thus the simulated

null distributions based on 100,000 independent runs are good approximations for the

null distributions of the test statistics and can be used in testing hypotheses and in

power calculations where exact distributions are not available or when the accuracy of

normal approximation is in jdoubt.
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Table 4.8: Expected Accuracy of the Simulated Null Distributions

Based on 100,000 Simulations

Probability

.01

.025

.05

.10

.20

.30

.40

.50

Simulation Error

.0006

.0010

.0013

.0019

.0025

.0028

.0030

.0031

% Error

6.2

3.9

2.7

1.9

1.2

.95

.76

.62

Probability

.60

.70

.80

.90

.95

.975

.99

Simulation Error

.0030

.0028

.0025

.0019

.0013

.0010

.0006

% Error

.51

.41

.31

.21

.14

.10

.06

4.14 Comparison with Normal Distribution

To see how close the normal approximation is to the exact distribution, the cumulative

distribution functions were evaluated at each point of the distributions using the normal

approximation and the exact distributions. Tables 4.9, 4.10, and 4.11 give a comparison

of the exact and approximate distribution functions. We can see that with the increase

in block size and also in the number of levels of the factors, the distribution of the test

statistic tends to get closer to normality.

To be able to see the closeness graphically, we have compared the probability dis-

tributions with the normal density and also the cumulative distributions with the

cumulative normal. To compare the probability distributions, we first adjust the exact

distributions to draw the probability polygons. Each exact probability would denote

the area of a rectangle the height of which can be obtained by dividing the probability
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Table 4.9: Comparison of the Cumulative Distribution Functions of the

Statistic and the Normal Distribution Design (2 2 2)

Values

Exact

Normal

-2.191

.0278

.0142

-1.643

.0833

.0502

-1.095

.2222

.1368

-.548

.3889

.2918

0

.6111

.5000

.548

.7778

.7081

1.095

.9167

.8632

1.643

.9722

.9498

2.191

1.0000

.9858

Table 4.10: Comparison of the Cumulative Distribution Functions of the

Statistic and the Normal Distribution Design (2 2 3)

Values

-2.683

-2.236

-1.789

-1.342

-0.894

-0.447

0

Exact

.0046

.0185

.0602

.1342

.2593

.4120

.5880

Normal

.0036

.0127

.0368

.0898

.1857

.3274

.5000

Values

.447

.894

1.342

1.789

2.236

2.683

Exact

.7407

.8657

.9398

.9815

.9954

1.0000

Normal

.6726

.8144

.9101

.9632

.9873

.9964
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Table 4.11: Comparison of the Cumulative Distribution Functions of the

Statistic and the Normal Distribution Design (2 3 2)

Values

-2.777

-2.469

-2.160

-1.852

-1.543

-1.234

-0.926

-0.617

-0.309

0

Exact

.0025

.0075

.0200

.0450

.0850

.1450

.2275

.3275

.4400

.5600

Normal

.0027

.0068

.0154

.0320

.0614

.1086

.1772

.2686

.3787

.5000

Values

0.309

0.617

0.926

1.234

1.543

1.852

2.160

2.469

2.777

Exact

.6725

.7725

.8550

.9150

.9550

.9800

.9925

.9975

1.0000

Normal

.6212

.7315

.8227

.8915

.9386

.9680

.9846

.9932

.9973
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by the difference between two consecutive values of the test statistic. Having obtained

the adjusted values we can draw the probability polygons for each distribution. To

be able to assess the normal approximation we superimpose the normal density graph.

Fig 4.1 shows the comparisons. For the cumulative distributions we join the points for

each design and compare the approximated cumulatives with the line for the standard

normal cumulative. Fig 4.2 shows the comparison for the cumulative distributions.

Comparison of the tabulated values and also the graphical presentations demon-

strate that the distribution of the test statistic approaches normality when the number

of blocks increases and also when the number of levels of the factors increases. For

larger designs the normal distribution would provide sufficient accuracy, in particular

null percentage points obtained from the normal approximation would be sufficiently

accurate for practical purposes as we shall see in the next section.
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Figure 4.1: The Probability Polygon and Normal Density presentation for the three de-

signs (2 2 2), (2 2 3) and (2 3 2).
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4.15 Simulated Null Distributions

Simulation methods were used to investigate the null distributions of these rank-based

statistics. A computer program was written in fortran for this purpose. For each

design considered, a simulation of 100,000 experiments was used and various percentage

points obtained. These percentage points were subsequently compared with those of

the normal distribution to investigate the adequacy of the asymptotic results. This was

done for a wide range of design sizes starting with two levels for each factor gradually

increasing the number of levels. For each specific design, the distribution was obtained

for different numbers of blocks. These results are given in Tables 4.12 to 4.18. For each

case, the first line shows the percentage points for the normal distribution and then

the corresponding percentage points for each test statistic are given. Each line shows

the results for a main effect or an interaction component as indicated. We can see that

tests for designs with 2 factors at 2 levels are not adequately represented by the normal

approximation. This is due to the discrete nature of the statistics and as a result some of

the percentage points coincide. For these cases the exact distributions obtained, either

theoretically by permutation methods or by simulation, can be used in our testing

procedures. But we can see that as we increase the number of levels of the factors and

blocks, the discreteness reduces gradually and the distributions tend to converge to

the asymptotic results so that for a design as small as 3 3 2 the approximation seems

reasonable. For example the 95 percent point for the linear component of factor U is

1.687 and for the linear by linear interaction it is 1.678, fairly close to the asymptotic

value of 1.645. Similarly, for the design 2 5 5 the values are 1.635,1.651 and 1.618 for

the main effects U, V and the linear interaction respectively. Thus, apart from very

small designs, normal approximation provides an accurate and practical test procedure

based on ranks for all the other designs. Simulations for various other designs have

been performed and are available with the author.
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Table 4.12: Simulated Percentage Points of

the Distributions of the Test Statistics

under the Corresponding Null Hypotheses

Design Parameters 7 = 2, J = 2, M -2

Points

Asymptotic

Linear U

Linear V

Lint/ x LinV

90%

1.282

1.095

1.095

1.095

95%

1.645

1.643

1.643

1.643

97.5%

1.960

2.191

2.191

2.191

99%

2.326

2.191

2.191

2.191

99.5%

2.576

2.191

2.191

2.191

Table 4.13: Simulated Percentage Points of

the Distributions of the Test Statistics

under the Corresponding Null Hypotheses

Design Parameters 7 = 2, J = 2, M = 3

Points

Asymptotic

Linear U

Linear V

Lint/ x LinV

90%

1.282

1.342

1.342

1.342

95%

1.645

1.789

1.789

1.789

97.5%

1.960

1.789

1.789

1.789

99%

2.326

2.236

2.236

2.236

99

2.

2.

2.

2.

.5%

576

236

236

236
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Table 4.14: Simulated Percentage Points of

the Distributions of the Test Statistics

under the Corresponding Null Hypotheses

Design Parameters 1 = 2, J = 3, M = 2

Points

Asymptotic

Linear U

Linear V

Quadratic V

Lint/ x LinF

Lint/ x QuadF

90%

1.282

1.234

1.323

1.309

1.323

1.309

95%

1.645

1.543

1.701

1.637

1.701

1.637

97

1.

1.

1.

1.

1.

1.

.5%

960

852

890

964

890

964

99%

2.326

2.160

2.268

2.291

2.268

2.182

99.5%

2.576

2.469

2.457

2.291

2.457

2.400

Table 4.15: Simulated Percentage Points of

the Distributions of the Test Statistics

under the Corresponding Null Hypotheses

Design Parameters 1 = 2, J = 3, M = 3

Points

Asymptotic

Linear U

Linear V

Quadratic^

Lint/ x LinV

Lint/ x QuadV

90%

1

1

1

1

1

1

282

386

234

336

.234

.336

95%

1.645

1.638

1.697

1.604

1.697

1.604

97.5%

1.960

1.890

2.006

1.871

2.006

1.960

99%

2.326

2.394

2.315

2.405

2.315

2.227

99.5%

2.576

2.646

2.469

2.405

2.469

2.405
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Table 4.16: Simulated Percentage Points of

the Distributions of the Test Statistics

under the Corresponding Null Hypotheses

Design Parameters 7 = 3, J = 3, M = 2

Points

Asymptotic

Linear U

Quadratic U

Linear V

Quadratic V

Lint/ x LinV

Lin/7 x QuadV

Quadf7 x LinV

Quadt/ x Quady

90%

1.282

1.265

1.278

1.265

1.278

1.291

1.267

1.267

1.291

95%

1.645

1.687

1.643

1.687

1.643

1.678

1.640

1.640

1.678

97.5%

1.960

1.897

2.008

1.897

2.008

1.936

1.938

1.938

1.936

99%

2.326

2.214

2.191

2.214

2.191

2.195

2.236

2.236

2.195

99.5%

2.576

2.424

2.556

2.424

2.556

2.453

2.460

2.460

2.453
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Table 4.17: Simulated Percentage Points of

the Distributions of the Test Statistics

under the Corresponding Null Hypotheses

Design Parameters / = 3, J = 3, M = 3

Points

Asymptotic

Linear U

Quadratic U

Linear V

Quadratic V

Lint/ x LinV

Lint/ x QuadV

Quadt/ x LinV

Quadt/ x QuadV

90%

1.282

1.291

1.342

1.291

1.342

1.265

1.278

1.278

1.265

95%

1.645

1.635

1.640

1.635

1.640

1.687

1.643

1.643

1.687

97.5%

1.960

1.980

1.938

1.980

1.938

1.897

1.947

1.947

1.897

99%

2.326

2.238

2.236

2.238

2.236

2.214

2.252

2.252

2.319

99.5%

2.576

2.496

2.534

2.496

2.534

2.530

2.495

2.495

2.530
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Table 4.18: Simulated Percentage Points of

the Distributions of the Test Statistics

under the Corresponding Null Hypotheses

Design Parameters 1 — 2, J = 5, M = 5

Points

Asymptotic

Linear U

Linear V

Quadratic V

Cubic V

Quartic V

Lint/ x LinV^

Lint/ x Quad]/

Lint/ x Cubicy

Lineart/ x QuarticV

90%

1.282

1.261

1.288

1.284

1.288

1.311

1.288

1.284

1.288

1.286

95%

1.645

1.635

1.651

1.647

1.651

1.685

1.618

1.647

1.651

1.648

97.5%

1.960

1.915

1.949

1.954

1.949

1.997

1.949

1.954

1.949

1.960

99%

2.326

2.289

2.312

2.345

2.312

2.309

2.312

2.289

2.312

2.309

99.5%

2.576

2.569

2.510

2.596

2.543

2.559

2.510

2.540

2.510

2.534
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4.16 Power Study

In the power studies that are described here the analysis of variance procedure will be

used as the optimal method and the alternative rank-based procedures will be compared

with this. This assumes that the actual responses are available, which favours the

ANOVA procedure. If, as in the practical situation which initiated these investigations,

the actual responses are not available then it will not be possible to consider the analysis

of variance and it will be necessary to employ a suitable rank-based method.

In order to assess the efficiency of the proposed non-parametric procedure, a power

study was undertaken. Simulations, based on 30,000 experiments, were carried out to

compare the powers of the non-parametric method and the standard analysis of vari-

ance procedure based on F-tests. We assume that the two factors are quantitative and

levels of each factor are equidistant. Thus we can use the coefficients of orthogonal

polynomials to obtain the contrast for the effect under study. In this work we shall

concentrate on examining the linear component of the main effects and the linear by

linear component of the interaction for a variety of design sizes and for a range of

models which include linear main effects and interaction components of varying mag-

nitudes. The power study included designs / J M , where / and J are the numbers of

levels of the two factors U and V respectively and M is the number of blocks, taking

the following values:

1) / = 2, J = 5, M = 2

2) / = 4, J = 4, M = 2

3) / = 5, J = 5, M = 2

4) / = 4, J = 6, M = 2

The alternative models used in the power study include terms to represent linear com-

ponents of the main effects and linear by linear interaction. Without loss of generality

the constant term fj, and the block effects j m in model (4.1) are set to zero. A series of
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models is considered of the form

Model 1 : (U, 0, 0) yljm = 9l(i - ut) + eijm (4.47)

Model 2 : (0, V, 0) yijm = g2(j -Vj) + eljm (4.48)

Model 3 : (0,0, UV) y<jm = g3(i - Ui)(j - Vj) + Qjm (4.49)

Model 4 : (£7, V, 0) y i jm = ^ ( i - u{) + g2{j - v3) + eiji7l (4.50)

Model 5 : (£/, 0, UV) yijm = g1(i - Ui) + g3(i - Ui)(j - Uj) + eijm (4.51)

MoJe/ 6 : (U, V, UV) yijm = gx{i - u,-) + g2(j - ^ ) + 53(« - Ui)(j ~ v3) + eijm (4.52)

where U{ and Vj depend on the number of factor levels and are 1.5,2,2.5,3 and 3.5

for 2,3,4,5 and 6 factor levels respectively. The coefficients gi,g2 and g3 ranged over

different values to increase the magnitude of the relevant components. Comparisons of

powers were arranged to show the influence of additional components on the power of

the tests to detect specific components. For example, a comparison of the results for

model 1 (£7,0,0), model 4 (£7,V,0) and model 6 (£7, V, UV) illustrates the changes in

the powers to detect the linear component of £7 where a linear component of V and a

linear x linear component of the interaction are present. Similarly, a comparison of the

results for model 3 (0,0, UV), model 5 (£7,0, UV) and model 6 (U, V, UV) illustrates

the changes in the powers to detect the linear X linear component of interaction when

a linear component of U and a linear component of V are present.

The errors e,jm are standard normal variates and were generated through a fortran

subroutine written for this purpose. To obtain the power performance for each effect

various values were chosen for each coefficient. For each set of values for the coefficients,
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30,000 standard normal variates were generated and the t/jjTO's were obtained through

the corresponding model. For each data set thus obtained the values of the corre-

sponding statistics were computed and compared with the appropriate critical values

for both the ANOVA procedure and the Ranking Method for the same data sets. In

this way powers were calculated for different values of the coefficients under study and

tabulated. Tabulated values of power were then processed through an S-Plus program

to provide us with the relevant power performance curves.

4.17 Accuracy of Simulated Powers

The power calculations presented in the next section are based on 30,000 simulated

experiments. A 95% confidence interval for the true power P would be given approxi-

mately by

p± 1 .96(^(1-^/30000)

where p is the estimated power. The following table shows the margin of error, given

by

1.96(^(1 -p)/30000)

for a range of values of p. It can be seen that for powers above 95 percent we should

expect the simulated powers to be in error by at most 0.25 percent. Even for values

of the power in the middle of the range near 0.5, the error is likely to be only about

1%. Therefore 30,000 simulated experiments should be sufficient for the required

comparisons.
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Table 4.19 shows the error margin for various values of p.

Table 4.19: Error Margin for Various Values of P

Simulated Power

.01 or .99

.02 or .97

.05 or .95

.10 or .90

.20 or .80

.30 or .70

.40 or .60

.50

Error Margin

.00112

.00158

.00247

.00339

.00452

.00518

.00554

.00565

The tabulated results are discussed and illustrated in the next section.

4.18 Power Comparison

Tables 4.20 to 4.29 show the power comparisons for the designs under study and the

Figures 4.3, 4.4, 4.5, and 4.6 are the corresponding graphical presentations.

Tables 4.20, 4.21, 4.22 and Fig 4.3 illustrate the power comparisons for ANOVA

and the Ranking Method for the linear main effects and the linear by linear interaction

for design 2 5 2. For each effect we can see the influence of the the relevant extraneous

components in the model. Concentrating on factor U, we can see the following features.

The power curve for ANOVA is not affected by the presence of other effects in the

model and thus we have the same power curve for factor U for all models incorporating

different extraneous effects. For the Ranking Method the power performance depends

highly on the other effects present. Rankl shows the powers when only the effect



chapter 4 91

under study, namely, factor U is included in the model (Model 1) while Rank2 shows

the power for U when the main effect V is included in the model as well(Model 4) and

finally Rank3 is the power curve for U in the presence of both the main effect V and

the interaction effect £/V(Model 6).

As we can see the power curve for the Ranking Method is almost the same as that

for the ANOVA when there is no nuisance effect present. When the main effect V is

added the powers for the Ranking Method decrease as seen by Rank2. With the main

effect V and interaction UV both included there is a further drop in power for U as

indicated by Rank3. Thus we can see that with more extraneous effects present the

power drops substantially.

The same trend is observed when we investigate the power performance for factor V.

Again here, as with factor U, when we have only the main effect V in the model(Model

2), we can see that the powers for ANOVA and Rankl are almost identical and with

the addition of the extraneous effects U and interaction UV there is substantial loss of

power. Rank2 shows the powers for V in the presence of U effect(Model 4) and Rank3

is the power curve for V in the presence of main effect U and interaction t/VModel 6).

With the main effect U and interaction UV both in the model, the power drops from

.985 to .441 for g2 = ±.750, a drop of more than 50 percent in power due to presence

of U effect and interaction.

As we can see the power curves for the interaction are the same as those for the V

effect within the error accuracy due to the simulation. This is due to the fact that we

have only two levels for factor U. Here Rankl is the power curve for the interaction

UV for the Ranking Method in the absence of any significant main effects(Model 3).

Rank2 shows the powers for UV in the presence of U effect only(Model 5) and finally

Rank3 is the power curve for interaction UV in the presence of both main effects U

and V(Model 6).

Tables 4.23, 4.24 and Fig 4.4 show the power comparisons for design 442. Again
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we can see that the powers for the Ranking Method and ANOVA are quite close when

there are no extraneous effects present and with V effect and interaction effect UV

added we can see the drop in power though not as much as the drop for the design

252. For g\ = —.8 the power for U is .995 under Model 1 compared with the power

of .785 under the full model and .997 for the ANOVA. We can see the same trend for

the interaction. Tables 4.25, 4.26, 4.27 and Figure 4.5 show the power curves for the

main effect and interaction for design 462. The same trend is observed though with

less intensity. As we can see for this design the effect of extraneous effects on power

performance for both the main effects and the interaction is less severe than that for

the smaller designs. And finally Tables 4.28, 4.29 and Figure 4.6 illustrate the power

curves for the main effects U, V and the interaction UV for design 5 5 2. With increase

in design size the decrease in powers due to the presence of extraneous effects becomes

less. For the U effect in design 5 5 2 when g\ = —.510 the power under Model 1 is .998

compared with the value of .952 under the full model, a drop of less than 5 percent in

power only.
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Table 4.20: Simulated Powers for ANOVA and the Ranking Method

Testing the Linear Component of Factor U

Design Parameters 1 = 2, J = 5, M = 2, a = .05

9i

-2.250

-2.100

-1.950

-1.800

-1.650

-1.500

-1.350

-1.200

-1.050

-0.900

-0.750

-0.600

-0.450

-0.300

-0.150

0.000

ANOVA

0.993

0.986

0.972

0.945

0.907

0.848

0.767

0.665

0.550

0.435

0.324

0.225

0.149

0.092

0.061

0.050

Rankl

0.992

0.983

0.969

0.939

0.897

0.836

0.749

0.650

0.530

0.417

0.304

0.211

0.140

0.083

0.052

0.045

Rank2

0.901

0.875

0.842

0.788

0.737

0.676

0.601

0.520

0.428

0.349

0.261

0.186

0.129

0.080

0.053

0.045

Rank3

0.605

0.585

0.573

0.533

0.512

0.474

0.434

0.390

0.332

0.284

0.223

0.165

0.120

0.076

0.052

0.045

9i

0.150

0.300

0.450

0.600

0.750

0.900

1.050

1.200

1.350

1.500

1.650

1.800

1.950

2.100

2.250

ANOVA

0.061

0.092

0.153

0.231

0.324

0.435

0.554

0.663

0.766

0.844

0.907

0.944

0.972

0.985

0.994

Rankl

0.055

0.082

0.139

0.214

0.308

0.416

0.535

0.650

0.751

0.832

0.898

0.941

0.968

0.984

0.994

Rank2

0.053

0.081

0.132

0.193

0.263

0.345

0.432

0.519

0.599

0.675

0.741

0.792

0.839

0.874

0.904

Rank3

0.052

0.077

0.121

0.170

0.227

0.282

0.335

0.389

0.434

0.474

0.513

0.539

0.567

0.589

0.608
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Table 4.21: Simulated Powers for ANOVA and the Ranking Method

Testing the Linear Component of Factor V

Design Parameters 1 = 2, J = 5, M = 2, a = .05

92

-0.750

-0.700

-0.650

-0.600

-0.550

-0.500

-0.450

-0.400

-0.350

-0.300

-0.250

-0.200

-0.150

-0.100

-0.050

0.000

ANOVA

0.987

0.974

0.957

0.919

0.871

0.802

0.719

0.618

0.511

0.399

0.294

0.204

0.136

0.089

0.059

0.050

Rankl

0.985

0.969

0.953

0.913

0.864

0.797

0.709

0.606

0.500

0.390

0.286

0.199

0.131

0.085

0.056

0.049

Rank2

0.823

0.790

0.752

0.708

0.651

0.593

0.526

0.459

0.388

0.312

0.238

0.176

0.120

0.083

0.056

0.049

Rank3

0.441

0.433

0.415

0.399

0.381

0.360

0.330

0.305

0.274

0.234

0.192

0.150

0.109

0.079

0.056

0.049

92

0.050

0.100

0.150

0.200

0.250

0.300

0.350

0.400

0.450

0.500

0.550

0.600

0.650

0.700

0.750

ANOVA

0.060

0.088

0.139

0.205

0.291

0.395

0.510

0.610

0.718

0.802

0.872

0.920

0.953

0.974

0.988

Rankl

0.057

0.084

0.134

0.198

0.282

0.385

0.500

0.606

0.708

0.792

0.865

0.915

0.949

0.970

0.986

Rank2

0.056

0.082

0.123

0.177

0.239

0.308

0.387

0.459

0.527

0.595

0.651

0.704

0.751

0.785

0.823

Rank3

0.055

0.079

0.112

0.150

0.190

0.235

0.274

0.308

0.336

0.357

0.382

0.398

0.412

0.426

0.440
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Table 4.22: Simulated Powers for ANOVA and the Ranking Method

Testing the Linear by Linear Component of Interaction

Design Parameters 1 = 2, J = 5, M = 2, a = .05

93

-1.500

-1.400

-1.300

-1.200

-1.100

-1.000

-0.900

-0.800

-0.700

-0.600

-0.500

-0.400

-0.300

-0.200

-0.100

0.000

ANOVA

0.987

0.974

0.953

0.919

0.872

0.807

0.723

0.618

0.509

0.395

0.297

0.203

0.136

0.089

0.061

0.050

Rankl

0.985

0.970

0.951

0.914

0.863

0.798

0.708

0.610

0.499

0.393

0.287

0.198

0.133

0.087

0.059

0.048

Rank2

0.824

0.785

0.747

0.707

0.651

0.601

0.530

0.459

0.387

0.313

0.239

0.176

0.122

0.084

0.058

0.048

Rank3

0.441

0.424

0.412

0.404

0.382

0.361

0.338

0.306

0.276

0.235

0.192

0.148

0.112

0.079

0.058

0.048

93

0.100

0.200

0.300

0.400

0.500

0.600

0.700

0.800

0.900

1.000

1.100

1.200

1.300

1.400

1.500

ANOVA

0.061

0.085

0.138

0.209

0.291

0.398

0.510

0.611

0.716

0.803

0.868

0.921

0.954

0.974

0.987

Rankl

0.058

0.085

0.133

0.204

0.284

0.390

0.505

0.606

0.708

0.795

0.861

0.915

0.950

0.971

0.986

Rank2

0.057

0.081

0.122

0.175

0.238

0.312

0.387

0.456

0.527

0.595

0.649

0.703

0.745

0.790

0.825

Rank3

0.056

0.078

0.110

0.153

0.196

0.237

0.276

0.305

0.334

0.363

0.377

0.398

0.414

0.430

0.437
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Testing the Linear Component of Factor U Testing the Linear Component of Factor V

ANOVA
Ranki (U,0,0)
Rank2(U,V,0)
Rank3 (U,V,UV)

-2 -1 0

g-values

-0.5 0.0

g-values

0.5

Testing the Linear by Linear Interaction

ANOVA
Ranki (0,0,UV)
Rank2 (U,0,UV)
Rank3 (U,V,UV)

-1.5 -1.0 -0.5 0.0 0.5 1.0 1.5

g-values

Figure 4.3: Power Comparisons for Design 2 5 2 showing the effect of extraneous

components on main effects and interaction under the Ranking Procedure and Normal

Distribution.
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Table 4.23: Simulated Powers for ANOVA and the Ranking Method

Testing the Linear Component of Factor U

Design Parameters / = 4, J = 4, M = 2, a = .05

9i

-0.800

-0.760

-0.720

-0.680

-0.640

-0.600

-0.560

-0.520

-0.480

-0.440

-0.400

-0.360

-0.320

-0.280

-0.240

-0.200

-0.160

-0.120

-0.080

-0.040

0.000

ANOVA

0.997

0.994

0.988

0.981

0.967

0.943

0.913

0.869

0.811

0.743

0.657

0.568

0.475

0.386

0.296

0.219

0.154

0.111

0.079

0.057

0.047

Rankl

0.995

0.993

0.985

0.976

0.960

0.932

0.900

0.854

0.792

0.721

0.636

0.548

0.457

0.366

0.283

0.204

0.146

0.103

0.071

0.054

0.047

Rank2

0.967

0.954

0.933

0.915

0.886

0.846

0.805

0.755

0.694

0.629

0.554

0.480

0.404

0.329

0.259

0.192

0.138

0.100

0.071

0.054

0.047

Rank3

0.785

0.767

0.740

0.712

0.682

0.645

0.612

0.576

0.531

0.485

0.433

0.383

0.329

0.275

0.224

0.170

0.128

0.096

0.069

0.053

0.047

9\

0.040

0.080

0.120

0.160

0.200

0.240

0.280

0.320

0.360

0.400

0.440

0.480

0.520

0.560

0.600

0.640

0.680

0.720

0.760

0.800

ANOVA

0.058

0.077

0.109

0.153

0.223

0.302

0.386

0.474

0.566

0.666

0.742

0.810

0.866

0.912

0.942

0.965

0.980

0.990

0.993

0.997

Rankl

0.053

0.073

0.103

0.147

0.211

0.290

0.368

0.453

0.542

0.640

0.719

0.792

0.850

0.900

0.931

0.958

0.975

0.987

0.992

0.996

Rank2

0.053

0.071

0.099

0.139

0.197

0.265

0.332

0.400

0.477

0.558

0.629

0.692

0.753

0.806

0.848

0.883

0.914

0.938

0.952

0.964

Rank3

0.053

0.069

0.095

0.130

0.178

0.228

0.276

0.326

0.382

0.433

0.482

0.526

0.573

0.612

0.650

0.682

0.716

0.745

0.763

0.784
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Table 4.24: Simulated Powers for ANOVA and the Ranking Method

Testing the Linear by Linear Component of Interaction

Design Parameters / = 4, J = 4, M = 2, a = .05

93

-0.720

-0.680

-0.640

-0.600

-0.560

-0.520

-0.480

-0.440

-0.400

-0.360

-0.320

-0.280

-0.240

-0.200

-0.160

-0.120

-0.080

-0.040

0.000

ANOVA

0.997

0.995

0.988

0.977

0.959

0.929

0.886

0.828

0.753

0.663

0.561

0.458

0.357

0.264

0.185

0.126

0.082

0.058

0.051

Rankl

0.996

0.992

0.985

0.970

0.952

0.917

0.872

0.813

0.734

0.643

0.542

0.439

0.342

0.256

0.177

0.121

0.081

0.058

0.051

Rank2

0.956

0.942

0.923

0.892

0.864

0.820

0.767

0.707

0.635

0.555

0.473

0.390

0.312

0.234

0.167

0.117

0.079

0.057

0.051

Rank3

0.849

0.821

0.798

0.764

0.733

0.688

0.644

0.588

0.538

0.476

0.409

0.344

0.280

0.214

0.159

0.113

0.077

0.057

0.051

93

0.040

0.080

0.120

0.160

0.200

0.240

0.280

0.320

0.360

0.400

0.440

0.480

0.520

0.560

0.600

0.640

0.680

0.720

ANOVA

0.059

0.083

0.126

0.185

0.265

0.357

0.455

0.564

0.660

0.757

0.825

0.885

0.929

0.959

0.978

0.988

0.994

0.998

Rankl

0.057

0.082

0.120

0.179

0.259

0.344

0.441

0.545

0.639

0.737

0.811

0.871

0.916

0.951

0.973

0.985

0.991

0.996

Rank2

0.057

0.080

0.116

0.169

0.236

0.308

0.389

0.476

0.556

0.639

0.707

0.768

0.816

0.862

0.897

0.921

0.940

0.956

Rank3

0.057

0.079

0.111

0.161

0.216

0.276

0.341

0.412

0.472

0.542

0.592

0.645

0.688

0.728

0.765

0.798

0.822

0.844
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(D

O
CL

00

d

CD

d

C\J

d

Testing the Linear Component of Factor U

ANOVA
Ranki (U,0,0)
Rank2 (U,V,0)
Rank3 (U.V.UV)

-0.5 0.0

g-values

0.5

CD

O
Q.

Testing the Linear by Linear Component of Interaction

CO

d

CD

d

d

-0.6 -0.4 -0.2 0.0 0.2

g-values

0.4 0.6

Figure 4.4: Power Comparisons for Design 4 4 2 showing the effect of extraneous

components on main effects and interaction under the Ranking Procedure and Normal

Distribution.
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Table 4.25: Simulated Powers for ANOVA and the Ranking Method

Testing the Linear Component of Factor U

Design Parameters 7 = 4, J = 6, M = 2, a = .05

9i

-0.600

-0.565

-0.529

-0.494

-0.459

-0.424

-0.388

-0.353

-0.318

-0.282

-0.247

-0.212

-0.176

-0.141

-0.106

-0.071

-0.035

0.000

ANOVA

0.993

0.986

0.976

0.955

0.924

0.882

0.822

0.743

0.657

0.563

0.453

0.348

0.256

0.179

0.123

0.078

0.057

0.051

Rankl

0.992

0.983

0.970

0.948

0.914

0.870

0.803

0.725

0.637

0.544

0.436

0.339

0.249

0.172

0.118

0.077

0.056

0.050

Rank2

0.971

0.956

0.935

0.901

0.862

0.810

0.742

0.665

0.585

0.503

0.403

0.317

0.236

0.167

0.115

0.077

0.055

0.050

Rank3

0.911

0.893

0.864

0.820

0.778

0.724

0.664

0.595

0.525

0.456

0.370

0.293

0.222

0.159

0.112

0.076

0.055

0.050

93

0.035

0.071

0.106

0.141

0.176

0.212

0.247

0.282

0.318

0.353

0.388

0.424

0.459

0.494

0.529

0.565

0.600

ANOVA

0.058

0.083

0.125

0.185

0.262

0.347

0.446

0.554

0.659

0.747

0.825

0.882

0.924

0.956

0.976

0.986

0.994

Rankl

0.057

0.080

0.123

0.181

0.254

0.335

0.431

0.539

0.635

0.727

0.808

0.869

0.915

0.948

0.971

0.984

0.992

Rank2

0.056

0.079

0.119

0.173

0.239

0.314

0.400

0.496

0.586

0.670

0.748

0.810

0.861

0.903

0.934

0.956

0.971

Rank3

0.057

0.079

0.116

0.166

0.226

0.290

0.364

0.448

0.528

0.600

0.670

0.724

0.776

0.821

0.860

0.887

0.915
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Table 4.26: Simulated Powers for ANOVA and the Ranking Method

Testing the Linear Component of Factor V

Design Parameters / = 4, J = 6, M = 2, a = .05

92

-0.400

-0.376

-0.353

-0.329

-0.306

-0.282

-0.259

-0.235

-0.212

-0.188

-0.165

-0.141

-0.118

-0.094

-0.071

-0.047

-0.024

0.000

ANOVA

0.995

0.990

0.978

0.962

0.938

0.895

0.837

0.762

0.670

0.566

0.466

0.360

0.270

0.188

0.130

0.083

0.060

0.049

Rankl

0.993

0.986

0.976

0.956

0.929

0.885

0.825

0.750

0.656

0.553

0.450

0.350

0.264

0.184

0.124

0.082

0.060

0.049

Rank2

0.977

0.962

0.945

0.916

0.882

0.836

0.768

0.692

0.609

0.513

0.421

0.329

0.250

0.178

0.122

0.082

0.060

0.049

Rank3

0.927

0.901

0.876

0.841

0.801

0.754

0.688

0.619

0.544

0.462

0.384

0.304

0.235

0.170

0.120

0.079

0.059

0.049

93

0.024

0.047

0.071

0.094

0.118

0.141

0.165

0.188

0.212

0.235

0.259

0.282

0.306

0.329

0.353

0.376

0.400

ANOVA

0.060

0.082

0.130

0.188

0.261

0.359

0.460

0.572

0.671

0.763

0.837

0.894

0.934

0.960

0.980

0.989

0.995

Rankl

0.059

0.080

0.127

0.183

0.256

0.349

0.452

0.558

0.657

0.746

0.823

0.882

0.926

0.954

0.977

0.987

0.994

Rank2

0.059

0.079

0.124

0.175

0.244

0.326

0.422

0.521

0.610

0.694

0.768

0.832

0.880

0.914

0.946

0.965

0.977

Rank3

0.059

0.078

0.119

0.169

0.229

0.301

0.384

0.472

0.547

0.616

0.686

0.747

0.799

0.835

0.874

0.901

0.926
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Table 4.27: Simulated Powers for ANOVA and the Ranking Method

Testing the Linear by Linear Component of Interaction

Design Parameters / = 4, J = 6, M = 2, a = .05

93

-0.340

-0.320

-0.300

-0.280

-0.260

-0.240

-0.220

-0.200

-0.180

-0.160

-0.140

-0.120

-0.100

-0.080

-0.060

-0.040

-0.020

0.000

ANOVA

0.990

0.983

0.966

0.945

0.909

0.861

0.795

0.716

0.628

0.529

0.427

0.331

0.244

0.173

0.120

0.080

0.056

0.051

Rankl

0.986

0.977

0.960

0.933

0.895

0.843

0.778

0.696

0.605

0.509

0.406

0.320

0.236

0.165

0.114

0.081

0.056

0.049

Rank2

0.942

0.922

0.893

0.860

0.809

0.757

0.693

0.618

0.538

0.456

0.369

0.295

0.222

0.158

0.111

0.079

0.055

0.049

Rank3

0.831

0.806

0.771

0.737

0.689

0.645

0.590

0.531

0.467

0.403

0.331

0.268

0.205

0.151

0.107

0.077

0.056

0.049

93

0.020

0.040

0.060

0.080

0.100

0.120

0.140

0.160

0.180

0.200

0.220

0.240

0.260

0.280

0.300

0.320

0.340

ANOVA

0.056

0.080

0.118

0.173

0.243

0.331

0.429

0.525

0.626

0.720

0.794

0.861

0.913

0.944

0.966

0.983

0.990

Rankl

0.056

0.077

0.114

0.163

0.235

0.320

0.410

0.504

0.605

0.697

0.775

0.843

0.899

0.934

0.960

0.978

0.986

Rank2

0.056

0.075

0.111

0.156

0.218

0.292

0.374

0.452

0.539

0.618

0.688

0.756

0.813

0.856

0.893

0.922

0.943

Rank3

0.056

0.074

0.109

0.148

0.203

0.268

0.334

0.397

0.468

0.531

0.586

0.643

0.694

0.734

0.774

0.804

0.828
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Figure 4.5: Power Comparisons for Design 4 6 2 showing the effect of extraneous

components on main effects and interaction under the Ranking Procedure and Normal

Distribution.
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Table 4.28: Simulated Powers for ANOVA and the Ranking Method

Testing the Linear Component of Factor U

Design Parameters 7 = 5, J = 5, M = 2, a = .05

9i

-0.510

-0.480

-0.450

-0.420

-0.390

-0.360

-0.330

-0.300

-0.270

-0.240

-0.210

-0.180

-0.150

-0.120

-0.090

-0.060

-0.030

0.000

ANOVA

0.998

0.996

0.992

0.981

0.963

0.934

0.882

0.825

0.735

0.633

0.521

0.411

0.306

0.210

0.137

0.088

0.061

0.049

Rankl

0.998

0.995

0.989

0.978

0.955

0.923

0.870

0.806

0.720

0.617

0.505

0.396

0.294

0.201

0.131

0.084

0.057

0.049

Rank2

0.989

0.980

0.967

0.949

0.917

0.875

0.817

0.752

0.666

0.572

0.466

0.369

0.277

0.192

0.128

0.084

0.057

0.049

Rank3

0.952

0.935

0.912

0.884

0.848

0.800

0.743

0.681

0.602

0.518

0.429

0.340

0.261

0.186

0.122

0.083

0.058

0.049

93

0.030

0.060

0.090

0.120

0.150

0.180

0.210

0.240

0.270

0.300

0.330

0.360

0.390

0.420

0.450

0.480

0.510

ANOVA

0.060

0.088

0.140

0.213

0.301

0.407

0.524

0.636

0.736

0.824

0.885

0.931

0.963

0.980

0.990

0.996

0.998

Rankl

0.060

0.086

0.132

0.206

0.292

0.395

0.509

0.617

0.718

0.811

0.872

0.921

0.955

0.976

0.987

0.995

0.998

Rank2

0.060

0.084

0.130

0.195

0.275

0.368

0.472

0.571

0.668

0.755

0.818

0.875

0.917

0.946

0.967

0.982

0.989

Rank3

0.060

0.084

0.127

0.188

0.260

0.339

0.432

0.517

0.602

0.681

0.741

0.802

0.845

0.881

0.911

0.938

0.952
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Table 4.29: Simulated Powers for ANOVA and the Ranking Method

Testing the Linear by Linear Component of Interaction

Design Parameters 7 = 5, J = 5, M = 2, a = .05

93

-0.340

-0.320

-0.300

-0.280

-0.260

-0.240

-0.220

-0.200

-0.180

-0.160

-0.140

-0.120

-0.100

-0.080

-0.060

-0.040

-0.020

0.000

ANOVA

0.996

0.993

0.983

0.968

0.940

0.899

0.845

0.770

0.686

0.586

0.474

0.368

0.275

0.193

0.127

0.085

0.056

0.050

Rankl

0.995

0.989

0.980

0.961

0.931

0.885

0.830

0.753

0.662

0.566

0.456

0.358

0.266

0.187

0.125

0.083

0.054

0.047

Rank2

0.961

0.946

0.925

0.891

0.852

0.798

0.739

0.666

0.589

0.502

0.412

0.323

0.247

0.177

0.121

0.080

0.054

0.047

Rank3

0.860

0.840

0.807

0.775

0.732

0.686

0.630

0.573

0.511

0.441

0.367

0.292

0.230

0.166

0.116

0.080

0.054

0.047

93

0.020

0.040

0.060

0.080

0.100

0.120

0.140

0.160

0.180

0.200

0.220

0.240

0.260

0.280

0.300

0.320

0.340

ANOVA

0.059

0.083

0.126

0.187

0.273

0.367

0.478

0.586

0.684

0.775

0.850

0.903

0.942

0.968

0.982

0.991

0.996

Rankl

0.058

0.083

0.123

0.184

0.260

0.353

0.460

0.566

0.662

0.757

0.833

0.889

0.931

0.961

0.979

0.989

0.994

Rank2

0.058

0.082

0.120

0.175

0.241

0.321

0.413

0.503

0.587

0.673

0.741

0.801

0.851

0.897

0.920

0.944

0.960

Rank3

0.057

0.079

0.115

0.163

0.223

0.292

0.369

0.441

0.511

0.579

0.638

0.691

0.733

0.782

0.806

0.839

0.858
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Figure 4.6: Power Comparisons for Design 5 5 2 showing the effect of extraneous

components on main effects and interaction under the Ranking Procedure and Normal

Distribution.
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4.19 Problem with the Variance

In classical analysis of variance procedures the tests of significance are based on the

residual mean square. The residual mean square error is an unbiased estimator for the

residual variation. This quantity remains valid as an estimate for the variance when

non-zero effects are present. Thus the estimate for the variance of each observation is

the same whether the null hypothesis is true or not and furthermore when we are using

orthogonal contrasts for testing various effects it does not make any difference whether

we test each effect in the presence of other effects or alone. That is the reason why the

power curve for any effect in the model using the ANOVA method is exactly the same

whether the test is conducted alone or in the presence of other non-zero effects.

However, when we are using non-parametric methods the situation is different. If we

have K observations, then under the null hypothesis of no treatment effect, the variance

of each observation is * ^ • This is the situation when each observation is equally

likely to have any available rank. The important point to observe is that under the

alternative hypothesis the above quantity is no longer an unbiased estimator for the

residual variation. In fact it will provide an over-estimate for the variance because in

this case the variability in some subsets of the data is "constrained" (Shirley, 1986).

The problem of over-estimation of variance has been addressed repeatedly in multiple

comparison procedures, see for example Steel(1960), Shorack(1967), Shirley(1977), and

Williams(1986).

This over-estimation of the variance leads to the loss of power. Furthermore, if we

are conducting the test in the presence of other non-zero effects there will be more

constraint on the variability and thus the over-estimation of variance will be more

severe. Consequently there will be further power loss. In fact one can say that the

more non-zero effects present, the more serious is the problem of over-estimation of

variance, and the greater the drop in power. In the next chapter we shall use the
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available data to estimate the variance and use it to test the main effects and the

interaction as a means of reducing the variance over-estimation and the consequent

power loss. In the next section we show that the variance of any contrast is maximum

under the null hypothesis of no treatment effect.

4.20 Variance Reduction Under Hi

We now illustrate that under the alternative hypothesis the variance of a contrast

is reduced. To establish this we first apply a heuristic approach to arrive at two

conjectures and then prove a lemma. The problem can be put down in the following

basic form.

The initial assumption is that we have K identically distributed independent random

variables which we denote as Xj, X2,..., XK- The ranks Rx, R2,..., RK are allocated

to these sample values corresponding to the increasing order of the Xi,i = 1, 2, . . . , K.

The ranks are such that Y.f=i ft = ^ ^ •

Under this assumption the probability function of Ri is

Pi(r) = j for r = 1,2,...,K. (4.53)

for each i = 1, 2 , . . . , K. The joint probability function of Ri, Rj is

Pij(r,s)= K{Il_l) for r,s = 1 , 2 , . . . , A ' (4.54)

r ± s

for i,j = 1,2,... ,K with i ^ j . In this case, the variance-covariance matrix of

R = (i?i, i?2, • • •, RK)T is given by V = a l + 6J where

a + b = Var(Ri) = ^ ^

and
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The variance of any contrast T = CTR, where c is a vector of coefficients such that

l r c = 0 (and crc = 1), is given by

Var(T) = cTVc = cT(aI+6J)c (4.55)

= acTIc + 6crJc (4.56)

= a + 6.0 (4.57)

= a (4.58)

, e . Var(T) = IPZ1 + K±1=K{K+1)
V ' 1 2 12 12 y '

Now suppose that the initial assumption is not true and that the X\,X2, • • • ,Xk are

K independent observations from K populations with different means. One or more

of the populations have means which are different from the others. With no loss of

generality suppose that population 1 has a mean greater than populations 2 to K so

that X\ will tend to be higher than the other observations, then its rank will tend

to be larger than the ranks of the other observations. The probability function of R\

will be of the form pi(r), for r = 1,2,..., A', with pi(r) < j ^ for small values of r

and pi(r) > jr for larger values of r. In other words, pi(r) will not be uniform over

r = 1, 2 , . . . , K. As a consequence of this, pi(r) will not be uniform for i = 2, 3. . . . , K

either.

We can use similar reasoning for pij(r,s) the joint probability function of Ri,Rj.

Since the mean of population 1 is greater than the mean of population j , then the

observation X\ will tend to be greater than the observation Xj, then R^ (the rank of

the observation from population 1) will tend to be greater than Rj(the rank of the ob-

servation from population j). Thus pij(r,s) > pij(s,r) for r > s and therefore we do

not have the uniformity along the non-diagonal points attained under the assumption

of Xi's coming from the same distribution. As a result of this we will not have the

uniformity for any other joint probability function of the ranks either.

Having illustrated the properties of the distribution of each random variable Rt and
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the joint distribution of each two variables R{ and Rj under the alternative assumption

we can now compare these distributions with their counterparts under the the initial

assumption and arrive at the following two conjectures:

Conjecture 1

(Var(Ri) | Hx) < (Var(Rt) \ Ho) (i = 1, 2 , . . . , K)

Here Ho refers to the assumption of identical means and Hi refers to situations where

not all the means are equal.

Conjecture 2

(Cov(Ri, Rj) | Hx) > (Cov(Ri, Rj) \H0) (i = 1,2,..., K, j = 1,2,..., K, j ^ i)

Since the covariances are all negative we can say that the absolute value of each co-

variance is at its maximum under the assumption of identical means.

The following Lemma establishes the relation between each variance and the covari-

ances.

Lemma 1

-Var(R3) = J2 Cov(R3: R{) (j = 1,2,..., K). (4.60)

Proof of Lemma 1:

Since

K

Y^Ri = K(K + l)/2 (4.61)
2 = 1

(4.62)

On taking variance of both sides we obtain:

(j = 1,2,. . . , K) (4.63)
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However, since

K

j2^ = J2Ri + Rj (4-64)

K

Y, Ri) = Var(Y^ Ri) + Var(Rj) + 2Cov(Rj, £ # 0 = 0 (4.65)

If we substitute Var(Rj) for Var{J2i^j Ri) w e obtain

-Var(Rj) = Cov(R3, £ Ri) = £ Cov(Rh Rt) (j = 1,2,..., / i ) . (4.66)

Now we can use Conjectures 1,2, and Lemma 1 to establish the following theorem

about the variance of a linear combination of the random variables i?j's.

Theorem:

The variance of a linear combination of the ranks R^s is maximum under the assump-

tion of K identical distributions.

Proof of the Theorem:

Let T = Yl!i=i ciRi be a linear combination of ranks where the c8-'s are constants. Then

Var(J2 CiRi) = £ c2
%Var(Rt) + £ £ clCjCov(Rl: R3). (4.67)

2=1 i=\ 8 = 1 J^t

The first sum consists of terms which are all positive. The second sum consists of

both positive and negative terms depending upon the signs of c; and Cj. If ct- and c}

have opposite signs, then, with the covariance being, negative the corresponding term

will be positive. On the other hand, if the coefficients have the same sign, then the

corresponding term will be negative. If all the terms in the second sum are positive

then, as a result of Conjecture 1 and Conjecture 2, it follows that the variance of the

linear combination would be maximum when all the variances are maximum and all

the covariances are minimum which would mean that the underlying distributions are

all identical. Now let us assume that there is a negative term in the second summation.
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It follows that the product of the corresponding coefficients cm and cn is positive. Now

suppose that the maximum variance for the linear combination is attained where the

corresponding covariance is not at its minimum. Let a denote the increase in the

value of the covariance. Then the total increase in the second summation due to this

increase in the value of the covariance is 2cmcna. Now by lemma 1 the increase a in

Cov(Rm, Rn) will induce a corresponding decrease a in the variances of Rm and Rn.

Thus the corresponding total decrease in the first summation is (c2
m + c2

n)a. We note

that

(c2
m + <?n)a > 2cmcna

We have shown that the increase in the second summation due to an increase in one of

the covariances is less than the resulting decrease in the first summation. We conclude

that the maximum cannot be attained at a point other than when all the covariances

are at their minimum. Thus the maximum variance is obtained only when the variances

are maximum and the covariances at their minimum, that is under the null hypothesis

of K identical distributions. We notice that the result of the theorem applies to any

linear combination of the ranks and therefore to any contrast based on the ranks.

To get an idea of the magnitude of the variance reduction involved we give an

example for K = 2 and M — 1. Under the initial assumption, Pi(r) = 1/2 and also

P2( r) = 1/2 for r = 1,2. Var^) = Var(R2) = 1/4 and Cov{RuR2) = -1 /4 . Thus

the variance of the only contrast R\ — R2 is 1. Now if we change the probabilities we

can calculate the variances and the covariance involved and thus work out the variance

of the contrast for each set of probabilities under the alternative assumption. Let

P^r = 1) = p, then Var(R1) = Var(R2) = p(l - p) and Cov(R1,R2) = - p ( l - p).

Thus Var(Ri — R2) = 4p(l — p) and the contrast variance can be calculated in terms

of the probability p.
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Contrast Variance under H\ K = 2, M = 1

Probability

Var(T)

1/2

1

1/3

.89

1/4

.75

1/5

.65

1/6

.55

1/7

.49

We can see that as p changes from 1/2 to 1/7 the reduction in variance is more than

50 percent which is fairly large.
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4.21 Summary and Conclusions

The origin of our research was a problem in biology that required the design of a blocked

factorial experiment involving two factors. Exact measurements were not available and

thus we needed a non-parametric method for the analysis. A ranking procedure was

proposed for the analysis which was an extension of Friedman's test. The relationship

between the two procedures was established. Orthogonal contrasts were used to test

the linear components of the main effects and the interaction. Null distributions for

normal error were investigated. Exact distributions were obtained for three small

designs and simulation methods were employed to find the null distributions for larger

designs. We found that unless the design under study is very small we can use the

normal distribution as a good approximation to the null distributions. The power

performance of the procedure was obtained for a number of designs with varying sizes

and a comparison was made with analysis of variance. We have shown that when

the errors in the underlying model are normally distributed, the powers are quite

comparable if there are no extraneous effects in the model. In fact in this case our

procedure reduces to Friedman's test when applied to the linear component of the

effect in question and thus the high powers are just another justification of the efficiency

of Friedman's test. But if there are other effects present in the model the proposed

procedure loses power and with more nuisance effects in the model the power loss

becomes substantial for small designs. With the help of two conjectures and a lemma

a theorem is proved showing that the variance of a contrast is minimum under the

null hypothesis of no treatment effect and thus the power loss observed is shown to

be due to over-estimation of the residual variance under the alternative hypothesis. In

the next chapter we shall apply a modification to the non-parametric procedure with

a view to overcoming this problem.
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Modification of the Proposed

Procedure

5.1 Introduction

In chapter 4 we saw that the proposed ranking procedure had shortcomings in that

the power of the test on one effect depended on the extraneous factors present in

the model. In this chapter, in order to tackle the problem of over-estimation of the

contrast variance, we shall estimate the error variance by pooling all the components

of interaction except the linear by linear component. The test statistic for each effect

is obtained by squaring the relevant contrast and dividing by the error variance. In

the next section we shall show the simulated null distributions for a number of designs

and this is followed by a section on power comparisons with the analysis of variance

procedure.

115
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5.2 Null Distributions

The smallest design for which our modified method could be used is the design 2 3

2 since we cannot apply this method to the design 2 2 2 because here we have just

the linear by linear component for the interaction. The largest design considered is

the design 5 5 2. The null distributions of the test statistics for testing the main

effects and the linear by linear component of the interaction have been obtained for a

number of designs in this range. To be able to assess the accuracy of the asymptotic

F-distribution in approximating the null distributions, a comparison is made between

the simulated distributions and the F-distribution. Samples were generated through a

random normal generator using a fortran program. For each design 100,000 sets of data

were generated and the value of our proposed non-parametric statistic calculated. The

approximate null distributions for a number of designs are shown in Tables 5.1 to 5.7.

For design 2 3 2 Table 5.1 shows that the percentage points beyond 95 percent are at

infinity. This is due to the fact that the probability of getting a zero in the denominator

of the test statistic is about .045. For design 2 4 2 this probability reduces to 0.0027

and we can see that simulated percentage points are much closer to the asymptotic

points. For the 95 percent point the simulated value for the linear components is

18.000 compared with the asymptotic value of 18.510. For higher percentage points

the differences are more. It can be seen that for larger designs the simulated values are

close to the asymptotic values. For design 2 5 2 the simulated 95 percent points range

from 10.075 to 10.428 compared with the asymptotic value of 10.130. With increase

in design size the approximation improves substantially so that for design 5 5 2 the

simulated 95 percent points range from 4.507 to 4.576 which are fairly close to the

asymptotic value of 4.543.

Thus apart from designs 232 and 242 the F-distribution provides a fairly good

approximation for the null distributions of the test statistics. For designs 232 and 242
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one can use the simulated distributions as approximations to the exact distributions.
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Table 5.1: Simulated Percentage Points of

the Distributions of the Test Statistics

under the Modified Method

Design Parameters 7 = 2, J = 3, M = 2

Points

Asymptotic

Linear U

Linear V

Quadratic V

LinU x LinV

90%

39.860

32.000

40.333

49.000

48.000

95%

161.400

392.000

363.000

225.000

363.000

97.5%

647.800

oo

oo

oo

oo

99%

4052.000

oo

oo

oo

oo

99.5%

16211.000

oo

oo

oo

oo

Table 5.2: Simulated Percentage Points of

the Distributions of the Test Statistics

under the Modified Method

Design Parameters 7 = 2, J = 4, M = 2

Points

Asymptotic

Linear U

Linear V

Quadratic V

Cubic V

Linl7xLinV

90%

8.526

8.621

8.522

8.780

8.914

8.244

95%

18.510

18.000

18.000

18.000

19.600

18.000

97.5%

38.510

40.000

38.400

40.000

40.500

40.500

99%

98.500

106.667

98.000

111.111

108.000

98.000

99.5%

198.500

250.000

242.000

250.000

280.333

288.000
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Table 5.3: Simulated Percentage Points of

the Distributions of the Test Statistics

under the Modified Method

Design Parameters 1 = 3, J = 3, M = 2

Points

Asymptotic

Linear U

Quadratic U

Linear V

Quadratic V

Lint/x Lin V

90%

5

5

5

5

5

5

538

505

586

503

678

491

95%

10.130

10.138

10.376

10.138

10.500

9.991

97

17.

17.

17.

17.

18.

17.

5%

440

357

909

455

000

640

99%

34.120

33.750

34.615

33.346

34.615

33.923

99.5%

55.550

54.188

56.250

54.000

57.836

54.730

Table 5.4: Simulated Percentage Points of

the Distributions of the Test Statistics

under the Modified Method

Design Parameters / = 2, J = 5, M ~ 2

Points

Asymptotic

Linear U

Linear V

Quadratic V

Cubic V

Quartic V

Lint/ x Liny

90%

5.538

5.580

5.449

5.637

5.616

5.717

5.491

95%

10.130

10.213

10.075

10.313

10.347

10.428

10.075

97.5%

17.440

17.552

17.455

17.857

17.827

18.263

17.361

99%

34.120

34.714

34.679

35.336

36.000

35.424

34.306

99.5%

55.550

56.250

55.418

56.317

60.750

57.677

54.000
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Table 5.5: Simulated Percentage Points of

the Distributions of the Test Statistics

under the Modified Method

Design Parameters / = 4, J = 4, M = 2

Points

Asymptotic

Linear U

Quadratic U

Cubic U

Linear V

Quadratic V

Cubic V

Lini!7xLinV

90%

3.458

3.488

3.508

3.483

3.546

3.517

3.515

3.553

95%

5.318

5.360

5.461

5.396

5.427

5.470

5.462

5.405

97.5%

7.571

7.620

7.834

7.701

7.800

7.789

7.779

7.676

99%

11.260

11.605

11.529

11.561

11.272

11.604

11.654

11.612

99.5%

14.690

15.037

15.367

15.149

14.352

14.936

15.319

15.226
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Table 5.6: Simulated Percentage Points of

the Distributions of the Test Statistics

under the Modified Method

Design Parameters / = 4, J = 6, M — 2

Points

Asymptotic

Linear U

Quadratic U

Cubic U

Quartic U

Linear V

Quadratic V

Cubic V

Quartic V

Lint/xLinV

90%

3.102

3.138

3.099

3.136

3.095

3.164

3.112

3.143

3.127

3.113

95%

4.600

4.651

4.605

4.678

4.603

4.706

4.601

4.757

4.667

4.599

97.5%

6.298

6.416

6.427

6.460

6.427

6.523

6.342

6.586

6.470

6.310

99%

8.862

9.035

9.073

8.985

9.221

9.097

8.892

9.449

9.204

8.760

99.5%

11.060

11.361

11.362

11.283

11.608

11.408

11.130

11.954

11.568

10.899
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Table 5.7: Simulated Percentage Points of

the Distributions of the Test Statistics

under the Modified Method

Design Parameters / = 5, J = 5, M — 2

Points

Asymptotic

Linear U

Quadratic U

Cubic U

Quartic U

Linear V

Quadratic V

Cubic V

Quartic V

L'mUxL'mV

90%

3.073

3.076

3.076

3.074

3.078

3.058

3.073

3.068

3.056

3.100

95%

4.543

4.538

4.576

4.539

4.533

4.507

4.542

4.551

4.541

4.556

97.5%

6.200

6.266

6.247

6.198

6.209

6.178

6.230

6.228

6.219

6.204

99%

8.683

8.899

8.653

8.820

8.748

8.691

8.912

8.744

8.857

8.768

99.5%

10.800

11.291

10.677

10.964

10.922

10.655

11.052

10.972

11.192

11.179
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5.3 Power Comparisons

A power study was undertaken to analyse the performance of the modified method and

to see if the shortcomings of our Ranking Method as described in chapter 4 have been

overcome. The power comparisons were performed on the same four designs discussed

in the previous chapter and for each design the same six models as in the previous

chapter were incorporated to enable us to assess the efficiency of our modification in

removing the effect of the nuisance factors. In the Figures used for power comparisons

Modi refers to the simulated powers under the modified procedure when the only effect

included in the model is the effect under study. For testing main effects Mod2 refers

to the model when only the two main effects are included in the model and for the test

on interaction, Mod2 refers to the model when only the interaction effect and the U

effect are included in the model. Similarly Mod3 refers to the simulated powers under

the modified procedure when the three effects(linear main effects and the linear by

linear interaction) are all included in the model. The power curves Modi, Mod2, and

Mod3 refer to power performance under the modified procedure while ANOVA refers

to the power performance for the analysis of variance procedure which is the same

under all the models specified above. The power comparisons were performed under

the assumption of normal errors and thus standard normal variates were generated and

added to the model. As before the number of simulation runs for each calculation was

30,000.

Tables 5.8 to 5.17 show the power comparisons and Figures 5.1 to 5.4 illustrate

the corresponding power curves for the various model comparisons for the four designs

indicated.
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Table 5.8: Simulated Powers for ANOVA and the Modified Method

Testing the Linear Component of Factor U

Design Parameters 1 = 2, J = 5, M = 2, a = .05

9i

-2.250

-2.100

-1.950

-1.800

-1.650

-1.500

-1.350

-1.200

-1.050

-0.900

-0.750

-0.600

-0.450

-0.300

-0.150

0.000

ANOVA

0.993

0.986

0.972

0.945

0.907

0.848

0.767

0.665

0.550

0.435

0.324

0.225

0.149

0.092

0.061

0.050

Modi

0.894

0.856

0.812

0.753

0.686

0.608

0.528

0.442

0.362

0.285

0.212

0.156

0.114

0.078

0.056

0.051

Mod2

0.852

0.812

0.762

0.702

0.639

0.570

0.496

0.414

0.339

0.273

0.207

0.152

0.111

0.077

0.056

0.051

Mod3

0.584

0.568

0.551

0.517

0.491

0.448

0.408

0.355

0.305

0.254

0.199

0.146

0.109

0.078

0.058

0.051

9\

0.150

0.300

0.450

0.600

0.750

0.900

1.050

1.200

1.350

1.500

1.650

1.800

1.950

2.100

2.250

ANOVA

0.061

0.092

0.153

0.231

0.324

0.435

0.554

0.663

0.766

0.844

0.907

0.944

0.972

0.985

0.994

Modi

0.058

0.078

0.114

0.156

0.217

0.287

0.361

0.444

0.533

0.609

0.686

0.748

0.811

0.856

0.896

Mod2

0.057

0.076

0.114

0.154

0.213

0.272

0.345

0.415

0.494

0.570

0.642

0.702

0.762

0.812

0.852

Mod3

0.057

0.075

0.111

0.149

0.202

0.252

0.310

0.361

0.410

0.452

0.493

0.519

0.551

0.567

0.586
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Table 5.9: Simulated Powers for ANOVA and the Modified Method

Testing the Linear Component of Factor V

Design Parameters 1 = 2, J = 5, M = 2, a = .05

92

-0.750

-0.700

-0.650

-0.600

-0.550

-0.500

-0.450

-0.400

-0.350

-0.300

-0.250

-0.200

-0.150

-0.100

-0.050

0.000

ANOVA

0.987

0.974

0.957

0.919

0.871

0.802

0.719

0.618

0.511

0.399

0.294

0.204

0.136

0.089

0.059

0.050

Modi

0.830

0.783

0.736

0.670

0.603

0.530

0.455

0.377

0.310

0.244

0.183

0.139

0.100

0.071

0.054

0.048

Mod2

0.800

0.757

0.708

0.648

0.580

0.507

0.436

0.368

0.303

0.241

0.181

0.136

0.101

0.072

0.055

0.048

Mod3

0.470

0.459

0.438

0.417

0.389

0.360

0.329

0.295

0.253

0.211

0.169

0.129

0.096

0.072

0.054

0.048

92

0.050

0.100

0.150

0.200

0.250

0.300

0.350

0.400

0.450

0.500

0.550

0.600

0.650

0.700

0.750

ANOVA

0.060

0.088

0.139

0.205

0.291

0.395

0.510

0.610

0.718

0.802

0.872

0.920

0.953

0.974

0.988

Modi

0.057

0.069

0.099

0.138

0.186

0.243

0.314

0.380

0.457

0.529

0.605

0.670

0.729

0.783

0.831

Mod2

0.057

0.068

0.100

0.138

0.180

0.240

0.305

0.367

0.441

0.513

0.580

0.643

0.703

0.756

0.801

Mod3

0.057

0.068

0.098

0.129

0.166

0.208

0.254

0.293

0.329

0.362

0.392

0.414

0.439

0.453

0.468
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Table 5.10: Simulated Powers for ANOVA and the Modified Method

Testing the Linear by Linear Component of Interaction

Design Parameters 1 = 2, J — 5, M = 2, a = .05

93

-1.500

-1.400

-1.300

-1.200

-1.100

-1.000

-0.900

-0.800

-0.700

-0.600

-0.500

-0.400

-0.300

-0.200

-0.100

0.000

ANOVA

0.987

0.974

0.953

0.919

0.872

0.807

0.723

0.618

0.509

0.395

0.297

0.203

0.136

0.089

0.061

0.050

Modi

0.830

0.782

0.731

0.675

0.606

0.532

0.461

0.379

0.312

0.245

0.185

0.138

0.097

0.073

0.056

0.049

Mod2

0.801

0.755

0.702

0.645

0.580

0.513

0.443

0.368

0.305

0.241

0.184

0.138

0.100

0.074

0.056

0.049

Mod3

0.472

0.451

0.439

0.420

0.390

0.363

0.335

0.293

0.254

0.211

0.167

0.127

0.096

0.072

0.056

0.049

93

0.100

0.200

0.300

0.400

0.500

0.600

0.700

0.800

0.900

1.000

1.100

1.200

1.300

1.400

1.500

ANOVA

0.061

0.085

0.138

0.209

0.291

0.398

0.510

0.611

0.716

0.803

0.868

0.921

0.954

0.974

0.987

Modi

0.056

0.071

0.100

0.139

0.187

0.246

0.314

0.382

0.460

0.533

0.604

0.668

0.728

0.781

0.833

Mod2

0.056

0.070

0.099

0.137

0.184

0.241

0.307

0.366

0.438

0.514

0.579

0.643

0.700

0.752

0.803

Mod3

0.056

0.069

0.097

0.129

0.167

0.209

0.256

0.291

0.329

0.364

0.388

0.414

0.437

0.453

0.467
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Testing the Linear Component of Factor U Testing the Linear Component of Factor V
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Figure 5.1: Power Comparisons for Design 2 5 2 showing the effect of extraneous

components on main effects and interaction under the Modified Procedure and Normal

Distribution.
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Table 5.11: Simulated Powers for ANOVA and the Modified Method

Testing the Linear Component of Factor U

Design Parameters / = 4, J = 4, M = 2, a = .05

9i

-0.800

-0.760

-0.720

-0.680

-0.640

-0.600

-0.560

-0.520

-0.480

-0.440

-0.400

-0.360

-0.320

-0.280

-0.240

-0.200

-0.160

-0.120

-0.080

-0.040

0.000

ANOVA

0.997

0.994

0.988

0.981

0.967

0.943

0.913

0.869

0.811

0.743

0.657

0.568

0.475

0.386

0.296

0.219

0.154

0.111

0.079

0.057

0.047

Modi

0.988

0.980

0.967

0.950

0.925

0.887

0.847

0.792

0.726

0.652

0.571

0.488

0.404

0.325

0.255

0.189

0.137

0.100

0.071

0.055

0.050

Mod2

0.983

0.974

0.959

0.940

0.912

0.873

0.830

0.778

0.711

0.641

0.563

0.479

0.401

0.324

0.250

0.187

0.137

0.102

0.072

0.055

0.050

Mod3

0.916

0.900

0.874

0.850

0.820

0.773

0.733

0.687

0.630

0.570

0.503

0.435

0.368

0.301

0.238

0.181

0.133

0.101

0.072

0.056

0.050

9i

0.040

0.080

0.120

0.160

0.200

0.240

0.280

0.320

0.360

0.400

0.440

0.480

0.520

0.560

0.600

0.640

0.680

0.720

0.760

0.800

ANOVA

0.058

0.077

0.109

0.153

0.223

0.302

0.386

0.474

0.566

0.666

0.742

0.810

0.866

0.912

0.942

0.965

0.980

0.990

0.993

0.997

Modi

0.057

0.070

0.102

0.138

0.192

0.260

0.328

0.401

0.484

0.572

0.651

0.722

0.789

0.845

0.886

0.921

0.948

0.967

0.979

0.987

Mod2

0.056

0.069

0.102

0.137

0.192

0.257

0.322

0.395

0.477

0.559

0.639

0.707

0.776

0.830

0.875

0.912

0.940

0.960

0.973

0.982

Mod3

0.055

0.069

0.099

0.135

0.185

0.245

0.302

0.366

0.434

0.502

0.571

0.625

0.683

0.731

0.778

0.816

0.852

0.878

0.894

0.915
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Table 5.12: Simulated Powers for ANOVA and the Modified Method

Testing the Linear by Linear Component of Interaction

Design Parameters / = 4, J = 4, M = 2, a = .05

#3

-0.720

-0.680

-0.640

-0.600

-0.560

-0.520

-0.480

-0.440

-0.400

-0.360

-0.320

-0.280

-0.240

-0.200

-0.160

-0.120

-0.080

-0.040

0.000

ANOVA

0.997

0.995

0.988

0.977

0.959

0.929

0.886

0.828

0.753

0.663

0.561

0.458

0.357

0.264

0.185

0.126

0.082

0.058

0.051

Modi

0.986

0.975

0.960

0.933

0.903

0.858

0.798

0.734

0.652

0.559

0.469

0.380

0.298

0.219

0.157

0.109

0.078

0.057

0.052

Mod2

0.970

0.955

0.936

0.905

0.870

0.821

0.763

0.697

0.616

0.535

0.450

0.365

0.288

0.215

0.153

0.110

0.078

0.057

0.052

Mod3

0.933

0.909

0.885

0.849

0.811

0.767

0.708

0.646

0.581

0.503

0.425

0.350

0.279

0.208

0.154

0.108

0.076

0.056

0.052

93

0.040

0.080

0.120

0.160

0.200

0.240

0.280

0.320

0.360

0.400

0.440

0.480

0.520

0.560

0.600

0.640

0.680

0.720

ANOVA

0.059

0.083

0.126

0.185

0.265

0.357

0.455

0.564

0.660

0.757

0.825

0.885

0.929

0.959

0.978

0.988

0.994

0.998

Modi

0.057

0.077

0.109

0.156

0.222

0.294

0.379

0.472

0.558

0.653

0.732

0.801

0.853

0.901

0.938

0.960

0.975

0.986

Mod2

0.056

0.076

0.108

0.154

0.216

0.287

0.363

0.451

0.533

0.621

0.696

0.761

0.819

0.869

0.907

0.934

0.954

0.970

Mod3

0.057

0.077

0.106

0.151

0.211

0.278

0.348

0.428

0.502

0.581

0.650

0.712

0.765

0.812

0.855

0.886

0.910

0.930
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Figure 5.2: Power Comparisons for Design 4 4 2 showing the effect of extraneous

components on main effects and interaction under the Modified Procedure and Normal

Distribution.
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Table 5.13: Simulated Powers for ANOVA and the Modified Method

Testing the Linear Component of Factor U

Design Parameters / = 4, J = 6, M = 2, a = .05

9i

-0.600

-0.565

-0.529

-0.494

-0.459

-0.424

-0.388

-0.353

-0.318

-0.282

-0.247

-0.212

-0.176

-0.141

-0.106

-0.071

-0.035

0.000

ANOVA

0.993

0.986

0.976

0.955

0.924

0.882

0.822

0.743

0.657

0.563

0.453

0.348

0.256

0.179

0.123

0.078

0.057

0.051

Modi

0.986

0.975

0.955

0.927

0.888

0.838

0.767

0.687

0.604

0.510

0.408

0.319

0.234

0.164

0.114

0.077

0.057

0.051

Mod2

0.983

0.972

0.950

0.921

0.882

0.830

0.760

0.681

0.597

0.506

0.405

0.316

0.232

0.165

0.115

0.077

0.056

0.051

Mod3

0.962

0.946

0.920

0.886

0.847

0.790

0.726

0.650

0.570

0.488

0.392

0.309

0.229

0.164

0.114

0.076

0.056

0.051

93

0.035

0.071

0.106

0.141

0.176

0.212

0.247

0.282

0.318

0.353

0.388

0.424

0.459

0.494

0.529

0.565

0.600

ANOVA

0.058

0.083

0.125

0.185

0.262

0.347

0.446

0.554

0.659

0.747

0.825

0.882

0.924

0.956

0.976

0.986

0.994

Modi

0.059

0.079

0.117

0.169

0.237

0.316

0.401

0.507

0.600

0.687

0.774

0.837

0.888

0.928

0.958

0.974

0.985

Mod2

0.059

0.079

0.117

0.170

0.237

0.314

0.400

0.502

0.597

0.683

0.765

0.831

0.883

0.924

0.952

0.970

0.983

Mod3

0.059

0.080

0.114

0.168

0.232

0.307

0.386

0.482

0.571

0.654

0.731

0.791

0.845

0.886

0.922

0.945

0.964
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Table 5.14: Simulated Powers for ANOVA and the Modified Method

Testing the Linear Component of Factor V

Design Parameters 1 = 4, J = 6, M = 2, a = .05

92

-0.400

-0.376

-0.353

-0.329

-0.306

-0.282

-0.259

-0.235

-0.212

-0.188

-0.165

-0.141

-0.118

-0.094

-0.071

-0.047

-0.024

0.000

ANOVA

0.995

0.990

0.978

0.962

0.938

0.895

0.837

0.762

0.670

0.566

0.466

0.360

0.270

0.188

0.130

0.083

0.060

0.049

Modi

0.988

0.978

0.961

0.937

0.903

0.854

0.787

0.708

0.615

0.513

0.416

0.324

0.245

0.173

0.118

0.079

0.058

0.051

Mod2

0.986

0.974

0.958

0.930

0.898

0.848

0.780

0.699

0.611

0.510

0.415

0.321

0.244

0.172

0.118

0.078

0.058

0.051

Mod3

0.968

0.950

0.930

0.897

0.859

0.810

0.743

0.666

0.584

0.487

0.401

0.313

0.240

0.170

0.118

0.078

0.058

0.051

93

0.024

0.047

0.071

0.094

0.118

0.141

0.165

0.188

0.212

0.235

0.259

0.282

0.306

0.329

0.353

0.376

0.400

ANOVA

0.060

0.082

0.130

0.188

0.261

0.359

0.460

0.572

0.671

0.763

0.837

0.894

0.934

0.960

0.980

0.989

0.995

Modi

0.057

0.077

0.120

0.171

0.239

0.320

0.418

0.518

0.617

0.704

0.785

0.852

0.901

0.935

0.961

0.978

0.989

Mod2

0.057

0.077

0.120

0.172

0.239

0.318

0.417

0.517

0.611

0.699

0.778

0.847

0.895

0.930

0.957

0.975

0.986

Mod3

0.058

0.076

0.118

0.170

0.234

0.309

0.401

0.495

0.585

0.665

0.743

0.807

0.859

0.897

0.928

0.949

0.967
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Table 5.15: Simulated Powers for ANOVA and the Modified Method

Testing the Linear by Linear Component of Interaction

Design Parameters 1 = 4, J = 6, M = 2, a = .05

93

-0.340

-0.320

-0.300

-0.280

-0.260

-0.240

-0.220

-0.200

-0.180

-0.160

-0.140

-0.120

-0.100

-0.080

-0.060

-0.040

-0.020

0.000

ANOVA

0.990

0.983

0.966

0.945

0.909

0.861

0.795

0.716

0.628

0.529

0.427

0.331

0.244

0.173

0.120

0.080

0.056

0.051

Modi

0.978

0.963

0.939

0.909

0.865

0.807

0.735

0.656

0.566

0.473

0.377

0.298

0.221

0.158

0.112

0.079

0.055

0.050

Mod2

0.963

0.946

0.918

0.885

0.837

0.778

0.709

0.632

0.548

0.459

0.367

0.290

0.218

0.154

0.110

0.078

0.055

0.050

Mod3

0.932

0.908

0.877

0.840

0.793

0.735

0.671

0.597

0.518

0.439

0.354

0.282

0.211

0.153

0.109

0.079

0.056

0.050

93

0.020

0.040

0.060

0.080

0.100

0.120

0.140

0.160

0.180

0.200

0.220

0.240

0.260

0.280

0.300

0.320

0.340

ANOVA

0.056

0.080

0.118

0.173

0.243

0.331

0.429

0.525

0.626

0.720

0.794

0.861

0.913

0.944

0.966

0.983

0.990

Modi

0.057

0.077

0.110

0.155

0.217

0.296

0.381

0.468

0.565

0.655

0.735

0.807

0.868

0.908

0.940

0.965

0.978

Mod2

0.057

0.076

0.110

0.154

0.212

0.289

0.370

0.451

0.547

0.632

0.706

0.778

0.839

0.882

0.918

0.947

0.965

Mod3

0.057

0.075

0.108

0.152

0.207

0.281

0.355

0.433

0.519

0.597

0.668

0.732

0.794

0.841

0.878

0.910

0.931
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Testing the Linear Component of Factor U Testing the Linear Component of Factor V

s
Q_

\ ^

\

ANOVA

- - Mod2 (U,V,0)
- - Mod3 (U,V,UV) >>

li1

I1

\I
-0.6 -0.4 -0.2 0.0 0.2 0.4 0.6

g-values

I

ANOVA
Modi (0,V,0)
Mod2 (U,V,0)
Mod3(U,V,UV)

\ /

-0.4 -0.2 0.0

g-values

0.2 0.4

Testing the Linear by Linear Interaction

ANOVA
• Modi (0,0,UV)
- Mod2 (U,0,UV)
- Mod3(U,V,UV)

-0.2 0.0

g-values

0.2

Figure 5.3: Power Comparisons for Design 4 6 2 showing the effect of extraneous

components on main effects and interaction under the Modified Procedure and Normal

Distribution.



chapter 5 135

Table 5.16: Simulated Powers for ANOVA and the Modified Method

Testing the Linear Component of Factor U

Design Parameters 7 = 5, J = 5, M = 2, a = .05

9\

-0.510

-0.480

-0.450

-0.420

-0.390

-0.360

-0.330

-0.300

-0.270

-0.240

-0.210

-0.180

-0.150

-0.120

-0.090

-0.060

-0.030

0.000

ANOVA

0.998

0.996

0.992

0.981

0.963

0.934

0.882

0.825

0.735

0.633

0.521

0.411

0.306

0.210

0.137

0.088

0.061

0.049

Modi

0.996

0.990

0.981

0.967

0.940

0.901

0.842

0.773

0.685

0.584

0.477

0.374

0.275

0.193

0.127

0.085

0.059

0.051

Mod2

0.995

0.988

0.979

0.963

0.935

0.893

0.838

0.770

0.679

0.581

0.472

0.371

0.274

0.191

0.128

0.085

0.059

0.051

Mod3

0.983

0.973

0.960

0.936

0.905

0.860

0.805

0.739

0.651

0.557

0.454

0.360

0.269

0.190

0.125

0.085

0.059

0.051

0.030

0.060

0.090

0.120

0.150

0.180

0.210

0.240

0.270

0.300

0.330

0.360

0.390

0.420

0.450

0.480

0.510

ANOVA

0.060

0.088

0.140

0.213

0.301

0.407

0.524

0.636

0.736

0.824

0.885

0.931

0.963

0.980

0.990

0.996

0.998

Modi

0.061

0.084

0.127

0.195

0.278

0.374

0.476

0.583

0.683

0.776

0.844

0.897

0.940

0.966

0.981

0.991

0.996

Mod2

0.061

0.084

0.127

0.193

0.276

0.370

0.475

0.577

0.679

0.771

0.838

0.892

0.934

0.961

0.978

0.990

0.995

Mod3

0.060

0.084

0.127

0.192

0.269

0.359

0.461

0.555

0.651

0.741

0.804

0.863

0.904

0.936

0.958

0.975

0.984
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Table 5.17: Simulated Powers for ANOVA and the Modified Method

Testing the Linear by Linear Component of Interaction

Design Parameters I = 5, J = 5, M = 2, a = .05

93

-0.340

-0.320

-0.300

-0.280

-0.260

-0.240

-0.220

-0.200

-0.180

-0.160

-0.140

-0.120

-0.100

-0.080

-0.060

-0.040

-0.020

0.000

ANOVA

0.996

0.993

0.983

0.968

0.940

0.899

0.845

0.770

0.686

0.586

0.474

0.368

0.275

0.193

0.127

0.085

0.056

0.050

Modi

0.990

0.981

0.968

0.944

0.906

0.855

0.794

0.712

0.625

0.529

0.425

0.332

0.250

0.175

0.119

0.080

0.054

0.048

Mod2

0.979

0.968

0.950

0.921

0.880

0.827

0.764

0.686

0.601

0.508

0.414

0.325

0.244

0.173

0.117

0.079

0.054

0.048

Mod3

0.954

0.938

0.915

0.881

0.841

0.784

0.724

0.652

0.571

0.486

0.397

0.313

0.238

0.170

0.116

0.079

0.054

0.048

93

0.020

0.040

0.060

0.080

0.100

0.120

0.140

0.160

0.180

0.200

0.220

0.240

0.260

0.280

0.300

0.320

0.340

ANOVA

0.059

0.083

0.126

0.187

0.273

0.367

0.478

0.586

0.684

0.775

0.850

0.903

0.942

0.968

0.982

0.991

0.996

Modi

0.056

0.080

0.116

0.173

0.243

0.326

0.430

0.529

0.624

0.718

0.795

0.860

0.909

0.944

0.966

0.982

0.989

Mod2

0.056

0.080

0.116

0.170

0.241

0.318

0.415

0.509

0.599

0.694

0.766

0.829

0.881

0.923

0.946

0.968

0.980

Mod3

0.056

0.079

0.117

0.166

0.233

0.309

0.400

0.487

0.574

0.655

0.727

0.789

0.839

0.885

0.910

0.936

0.951

L
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Testing the Linear Component of Factor U

ANOVA
Modi (U,0,0)
Mod2 (U,V,0)
Mod3 (U,V,UV)

-0.4 -0.2 0.0

g-values

0.2 0.4
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Testing the Linear by Linear Interaction

ANOVA
Modi (O.O.UV)
Mod2(U,0,UV)
Mod3(U,V,UV)

V /
-0.2 0.0

g-values

0.2

Figure 5.4: Power Comparisons for Design 5 5 2 showing the effect of extraneous

components on main effects and interaction under the Modified Procedure and Normal

Distribution.



chapter 5 138

Tables 5.8, 5.9, 5.10 and Fig 5.1 show the power comparisons for ANOVA and the

Modified Method for testing the linear main effects and the linear by linear component

of interaction under models incorporating different extraneous effects when the under-

lying design is 252. As before the power curves for the analysis of variance procedures

remain the same under different models whether extraneous effects are present or not,

while the power curves for the Modified Method depend heavily on the presence of

extraneous effects. For the factor U, Modi shows the powers when only the effect

under study, namely, factor U is included in the model while mod2 shows the power

for U when the main effect V is included in the model as well and finally Mod3 is the

power curve for U in the presence of both the main effect V and the interaction effect

UV.

A comparison of the power performance of the Ranking Method and the Modified

Method for testing the U effect in design 252 can be made by referring to figures 4.3

and 5.1 which indicate that the Ranking Method performs better than the modified

method both in the presence and absence of extraneous effects. For gi = —2.250 the

power under Rankl is .992 compared with the value of .894 under Modi. For the full

model the power is .605 under Rank3 compared with the value of .584 under Mod3.

The difference between Modi and Mod2 in Fig 4.3 is less than the corresponding

difference between Rankl and Rank2 in Fig 5.1. It seems that with the modified proce-

dure the test for factor U is less affected by the presence of factor V compared with the

corresponding test under the Ranking Method. For g\ = —2.25 the reduction in power

due to the presence of factor V is 9 percent for the Ranking Method compared with a 4

percent reduction for the Modified Method. However the addition of interaction causes

the gap to widen and we notice that we have not been able to remove the effect of the

extraneous factors in the model. The same distinctions are noted when we compare the

power performances for testing the V effect and also the interaction effect UV. Thus

we note that as far as the design 252 is concerned the Modified Method has had an
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adverse effect on power performance in that the modification has not only resulted in

power loss but also our main purpose for removing the effect of the extraneous factors

has not been fulfilled either.

Tables 5.11, 5.12 and Fig 5.2 show the power curves under the Modified Method

for the design 442. Comparing them with those in Fig 4.4 for the Ranking Method the

following observations can be noted:

1- The powers for Rankl are greater than those for Modi which indicates that the

Ranking Method is still performing better than the Modified Method when there are

no extraneous effects present.

2- The powers for Mod2 are greater than those for Rank2 and also the powers for

Mod3 are greater than those for Rank3 which would indicate that in the presence of

extraneous effects the Modified Method performs better than the Ranking Method.

3- The differences between the power curves for the Modified Method are less than

the corresponding differences for the Ranking Method and this would indicate that

relative to the Ranking Method the Modified Method is less affected by the presence of

extraneous effects. In fact, the difference between Modi and Mod2 is almost negligible

which shows that the test on one main effect is not much affected by the presence of

the other factor in the model.

Similar distinctions are made if we compare the powers for the interaction effect.

The Ranking Method performs better than the Modified Method when there are no

main effects but when main effects are present the Modified Method performs better.

In the same way as noticed for the main effects, the test for interaction under the

Modified Method is also less affected by the presence of main effects. Thus we can see

that although the Ranking Method shows superiority in the absence of other effects

in the model, nevertheless, with this increase in design size the Modified Method not

only gains power but also is less affected by the nuisance effects.

Tables 5.13, 5.14, 5.15 and Figure 5.3 illustrate the power performance curves for



chapter 5 140

the main effects and interaction for design 462 under the Modified Method. Again,

comparison of the performance curves with their counterparts for the Ranking Method,

in Figure 4.5 demonstrate that apart from the situation where there are no nuisance

effects there is some gain in power for the Modified Method and, for the test on main

effects, the effect of the extraneous main effect almost vanishes and it is only the

presence of interaction that lowers the powers. Finally Tables 5.16, 5.17 and Figure 5.4

show the performance of the tests on main effect U and interaction UV respectively for

the design 552 under the Modified Method. Again comparison with the corresponding

Figure 4.6 shows that, in the absence of nuisance effects, the Ranking Method still

demonstrates superiority but the difference between the two methods becomes almost

negligible with the increasing values of g. For this increased design size there is further

gain in power and the effects of nuisance factors become less. For the U effect, when

g\ = —.510 the power under the ANOVA is .998 compared with the value of .996 under

Modi and .983 under the full model, a reduction of 1.2 percent in power only.

5.4 Conclusions

A modified form of our proposed Ranking Method was introduced. The modification

was obtained by estimating the error variance by pooling the nonlinear components of

the interaction with a view to removing the over-estimation of the contrast variance

when testing one effect in the presence of other effects. Our study of the power curves

for a number of designs of varying sizes showed that for small designs such as 252

the modification has adverse effects. Not only have we not been able to remove the

effect of the nuisance factors but there is a drop in power as well when we compare

the power performance of our modified procedure with that of our original proposed

Ranking Method based on a partition of Friedman's test statistic.

However with increase in design size the performance of the modified test improves.
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Although in the absence of nuisance effects the Ranking Method still has higher pow-

ers, there is a gain in power under the modified method when nuisance effects exist.

Furthermore, for the tests on main effects the reduction in power due to the extrane-

ous effect of the other factor becomes negligible. In general the effect of the nuisance

factors diminishes so that for a design such as 552 the Modified Method can be a good

substitute for ANOVA. However our modified procedure has shortcomings in that it is

not suitable for small designs and the problem of nuisance effects still exists, although

the drop in performance is rather small with increase in design size. In the next sec-

tion we shall introduce yet another modification to overcome the shortcomings of our

modified procedure.



Chapter 6

The Analogue

6.1 Introduction

In this chapter we attempt to overcome the difficulties encountered with both the

extension to Friedman's test(ranking) and the modified version of this test(modified)

by estimating the contrast error variance using the blocking structure of the experi-

ment. Here we estimate the error variance for each treatment using the ranks of the

corresponding observations in the blocks and averaging over all treatments, i.e.

K M

V2 = E E ( ^ » ~ Rk.)2/(K - 1)(M - 1).

The test statistic for each effect is obtained by squaring the relevant contrast and

dividing by the estimated error variance. The resulting statistics are shown to have F

distributions under the null hypothesis. One advantage of using this method is that it

is easy to implement since it is equivalent to applying the usual ANOVA to the ranks

within the blocked design. Since it is related to ANOVA in this way we shall refer to

this method as the "Analogue" method. We confirm that except for the small designs

considered, the resulting test statistics are distributed as F variables under the null

hypothesis.

142
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6.2 Null Distribution

A computer program was written to simulate the null distributions. The simulation

run applied was 100, 000 experiments. For each simulation the value of each statistic

was calculated under the null hypothesis of no treatment effect and thus a vector of

null values was obtained and subsequently ordered to yield the null distribution of

each statistic. Tables 6.1 to 6.8 show the percentage points of these simulated null

distributions for a number of designs with different sizes.

For design 2 2 2 the percentage points beyond 95 percent are indicated as infinity.

For this design the probability of the sum of squares error becoming zero is (1/4!) =

.0417 and thus the simulated percentage points are quite different from the poirts for

the F distribution due to the discrete nature of the distributions. For design 2 32 the

probability of getting a zero in the denominator is (1/6!) = .00139 and we can see that

the simulated percentage points are much closer to the F values compared wi;h the

2 2 2 design. For the 95 percent point the simulated values range from 8.000 to 8.352

compared with the value 6.608 for the F distribution. With increase in design size there

is substantial improvement in the approximation. For design 2 5 2 the probabiity of

zero is (1/10!) = 2.75 x 10~7. For the 95 percent point the simulated values rang? from

5.326 to 5.409 compared with the asymptotic value of 5.117. For larger designs the

differences are quite negligible. For design 5 5 2 the simulated values range fron 4.246

to 4.310 compared with the value 4.260 for the F distribution.

We conclude that for the small designs 2 2 2, 2 3 2, the asymptotic results ere not

accurate due to the high probability of zero in the denominator of the test statistics.

For these designs one can use the simulated distributions as approximations to the

exact distributions. For larger designs the asymptotic values provide us with good

approximations to the distributions of the test statistics.
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Table 6.1: Simulated Percentage Points of

the Distributions of the Test Statistics

under the Analogue

Design Parameters / = 2, J = 2, M = 2

Points

Asymptotic

Linear U

Linear V

Lint/x LinV

90%

5.538

12.000

12.000

12.000

95%

10.130

24.000

24.000

24.000

97.5%

17.440

oo

oo

oo

99%

34.120

oo

oo

oo

99.5%

55.550

oo

oo

oo

Table 6.2: Simulated Percentage Points of

the Distributions of the Test Statistics

under the Analogue

Design Parameters 1 = 2, J = 3, M = 2

Points

Asymptotic

Linear U

Linear V

Quadratic V

Lin[/xLinV

90%

4.060

4.615

4.444

4.286

4.375

95%

6.608

8.167

8.182

8.352

8.000

97.5%

10.010

13.333

15.000

15.000

13.333

99%

16.260

26.667

25.312

23.438

25.312

99.

22.

41.

40.

45.

40.

5%

780

667

833

938

833
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Table 6.3: Simulated Percentage Points of

the Distributions of the Test Statistics

under the Analogue

Design Parameters 7 = 2, J = 4, M = 2

Points

Asymptotic

Linear U

Linear V

Quadratic V

Cubic V

L'mUxL'mV

90%

3.589

3.730

3.746

3.728

3.765

3.733

95%

5.591

6.034

6.050

6.034

6.050

5.973

97

8.

8.

9.

9.

9.

8.

.5%

073

823

113

000

100

960

99%

12.250

14.175

14.787

14.787

14.450

14.400

99

16

19

19

21

19

19

.5%

.240

.717

.886

.000

.785

.886

Table 6.4: Simulated Percentage Points of

the Distributions of the Test Statistics

under the Analogue

Design Parameters 7 = 3, J = 3, M = 2

Points

Asymptotic

Linear U

Quadratic U

Linear V

Quadratic V

Linf/xLinV

90%

3.458

3.568

3.507

3.539

3.571

3.596

95%

5.318

5.633

5.556

5.597

5.628

5.633

97.5%

7.571

8.170

8.167

8.202

8.167

8.258

99%

11.260

12.800

12.522

12.789

13.000

12.600

99.5%

14.690

17.333

17.043

17.361

17.818

16.941

L
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Table 6.5: Simulated Percentage Points of

the Distributions of the Test Statistics

under the Analogue

Design Parameters 1 = 2, J = 5, M = 2

Points

Asymptotic

Linear U

Linear V

Quadratic V

Cubic V

Quartic V

Lint/ x LinV

90%

3.360

3.456

3.422

3.496

3.457

3.426

3.451

95%

5.117

5.358

5.326

5.403

5.409

5.369

5.358

97.5%

7.209

7.855

7.766

7.727

7.850

7.653

7.766

99%

10.560

12.166

11.719

11.716

11.912

11.716

11.683

99

13

16

15

15

16

15

15

.5%

.610

.200

.532

.572

.200

.366

.817
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Table 6.6: Simulated Percentage Points of

the Distributions of the Test Statistics

under the Analogue

Design Parameters / = 4, J = 4, M = 2

Points

Asymptotic

Linear U

Quadratic U

Cubic U

Linear V

Quadratic V

Cubic V

L'mUxL'mV

90%

3.073

3.062

3.097

3.091

3.052

3.066

3.115

3.044

95%

4.543

4.576

4.601

4.562

4.474

4.559

4.641

4.510

97.5%

6.200

6.295

6.368

6.178

6.125

6.207

6.445

6.123

99%

8.683

8.883

9.007

8.834

8.606

8.744

9.143

8.670

99.5%

10.800

11.235

11.188

11.129

10.756

10.920

11.341

10.898
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Table 6.7: Simulated Percentage Points of

the Distributions of the Test Statistics

under the Analogue

Design Parameters 7 = 4, J = 6, M = 2

Points

Asymptotic

Linear U

Quadratic U

Cubic U

Quartic U

Linear V

Quadratic V

Cubic V

Quartic V

Lin?7xLmV

90%

2.937

2.960

2.943

2.969

2.927

2.996

2.934

2.933

2.936

2.938

95%

4.279

4.360

4.327

4.361

4.292

4.366

4.261

4.351

4.288

4.334

97.5%

5.750

5.889

5.854

5.873

5.804

5.858

5.787

5.962

5.827

5.943

99%

7.881

8.084

8.186

8.167

8.082

8.286

7.965

8.192

8.062

8.155

99.5%

9.635

9.946

10.232

10.089

9.825

10.228

9.794

10.223

9.753

10.084
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Table 6.8: Simulated Percentage Points of

the Distributions of the Test Statistics

under the Analogue

Design Parameters 1 = 5, J = 5, M = 2

Points

Asymptotic

Linear U

Quadratic U

Cubic U

Quartic U

Linear V

Quadratic V

Cubic V

Quartic V

Lint/xLinV

90%

2.927

2.940

2.928

2.950

2.954

2.923

2.938

2.922

2.917

2.958

95%

4.260

4.284

4.277

4.293

4.283

4.282

4.288

4.271

4.246

4.310

97.5%

5.717

5.772

5.764

5.824

5.782

5.805

5.803

5.745

5.792

5.801

99%

7.823

7.948

7.963

7.918

7.972

7.919

8.139

7.939

7.975

7.937

99.5%

9.551

9.707

9.791

9.644

9.823

9.765

10.057

9.827

9.876

9.794
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6.3 Power Comparisons

To assess the efficiency of the Analogue, power comparisons were made for the same

four designs studied in chapters 4 and 5. As before for each effect under study four

power comparisons are made. ANOVA refers to the powers under analysis of variance

procedure, Anall refers to the powers under the analogue in the absence of any ex-

traneous effects(Models 1, 2, 3), Anal3 refers to the powers in the presence of both

extraneous effects(Model 6). For the power comparisons involving main effects Anal2

refers to the powers for the linear main effect under study in the presence of only the

other main effect(Model 4) while for the interaction effect it refers to the powers for

the linear by linear component of interaction in the presence of only the linear com-

ponent of factor U(Model 5). Tables 6.9 to 6.18 show the power values for the above

comparisons and Figures 6.1, 6.2, 6.3 and 6.4 illustrate the results.

Comparison of the power curves for the Analogue and those for the Ranking Method

and the Modified Method reveals the following points.

1- In the absence of extraneous effects the Ranking Method performs better than

the Modified and the Analogue for all the effects studied for the four designs and this

superiority shows itself for all values of the coefficients gi,g2,g3- Furthermore, we can

see that the powers for the Ranking Method and the Analogue are quite close and

comparable to those of ANOVA. For design 2 5 2, in testing the U effect with no other

component in the model when g1 = 1.65, the Ranking Method shows the power value

of .898, compared with .686 for the Modified, .883 for the Analogue and .907 for the

ANOVA. For the test on interaction when g3 = —1.5, the power for the ANOVA is

.987 compared with .985 for the Ranking Method, .976 for the Analogue, and .830 for

the Modified Method. We can see that the difference between the Ranking Method

and the Analogue is negligible. In fact for testing the main effects in the absence of

extraneous effects the Ranking procedure reduces to ordinary Friedman test for a one-
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way layout where instead of having one observation at each level we have replications

and the number of replications is the number of levels of the other factor while for the

test on interaction the procedure is the same as the test on the linear component of

Friedman's test. Thus here we are comparing the linear component of the Friedman

test with that of ANOVA.

2- The differences between the power curves for the Analogue are less than the cor-

responding differences for the Modified and the Ranking Method which illustrate the

fact that the Analogue is less affected by the presence of extraneous effects than the

other two methods. For design 2 5 2 for the U effect when g\ = 2.250 the reduction in

power due to the presence of the nuisance components is 8 percent for the Analogue

compared with 34.6 percent for the Modified Method and 38.8 percent for the Ranking

Method. For larger designs the differences between these power losses are reduced.

For design 4 4 2 for the U effect, when </i = —.8 the power loss is 2.8 percent for the

Analogue compared with 7.3 percent for the Modified Method and 21.1 percent for the

Ranking Method.

3- In the absence of interaction effect under the Analogue the power curves for the

main effects indicate that the power loss due to the presence of the other main effect is

quite small in small designs and becomes negligible in large designs. This same feature

can also be seen for the Modified Method but it is more pronounced for the Analogue.

For design 2 5 2 for g\ = 2.250, the reduction in power due to presence of the factor

V is .6 percent for the Analogue compared with 4.9 percent for the Modified Method

and 9 percent reduction for the Ranking Method.

4- For the test on interaction under the Analogue the power loss due to the presence

of only one main effect is quite small. For the 2 5 2 design when g% = —1.5, the power

loss due to the presence of the U effect is .6 percent for the Analogue compared with

3.5 percent for the Modified Method and 16.3 percent for the Ranking Method.

In the next section we shall compare the power performance of the four procedures
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studied under the full model.
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Table 6.9: Simulated Powers for ANOVA and the Analogue

Testing the Linear Component of Factor U

Design Parameters 1 = 2, J = 5, M = 2, a = .05

9\

-2.250

-2.100

-1.950

-1.800

-1.650

-1.500

-1.350

-1.200

-1.050

-0.900

-0.750

-0.600

-0.450

-0.300

-0.150

0.000

ANOVA

0.993

0.986

0.972

0.945

0.907

0.848

0.767

0.665

0.550

0.435

0.324

0.225

0.149

0.092

0.061

0.050

an all

0.989

0.978

0.960

0.927

0.883

0.820

0.734

0.638

0.524

0.415

0.311

0.219

0.148

0.093

0.062

0.054

anal2

0.983

0.969

0.950

0.912

0.869

0.803

0.723

0.626

0.516

0.412

0.311

0.218

0.147

0.093

0.062

0.054

anal 3

0.907

0.886

0.858

0.815

0.779

0.717

0.650

0.570

0.478

0.392

0.300

0.215

0.147

0.093

0.063

0.054

9i

0.150

0.300

0.450

0.600

0.750

0.900

1.050

1.200

1.350

1.500

1.650

1.800

1.950

2.100

2.250

ANOVA

0.061

0.092

0.153

0.231

0.324

0.435

0.554

0.663

0.766

0.844

0.907

0.944

0.972

0.985

0.994

anall

0.065

0.095

0.151

0.221

0.311

0.414

0.529

0.635

0.733

0.816

0.883

0.928

0.959

0.978

0.989

anal2

0.065

0.094

0.153

0.221

0.308

0.410

0.521

0.624

0.723

0.802

0.870

0.915

0.949

0.969

0.983

anal3

0.065

0.095

0.153

0.220

0.302

0.393

0.486

0.572

0.651

0.715

0.775

0.817

0.859

0.889

0.910
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Table 6.10: Simulated Powers for ANOVA and the Analogue

Testing the Linear Component of Factor V

Design Parameters 1 = 2, J = 5, M = 2, a = .05

m
-0.750

-0.700

-0.650

-0.600

-0.550

-0.500

-0.450

-0.400

-0.350

-0.300

-0.250

-0.200

-0.150

-0.100

-0.050

0.000

ANOVA

0.987

0.974

0.957

0.919

0.871

0.802

0.719

0.618

0.511

0.399

0.294

0.204

0.136

0.089

0.059

0.050

an all

0.976

0.958

0.934

0.891

0.836

0.766

0.677

0.580

0.476

0.375

0.279

0.198

0.132

0.091

0.061

0.054

anal2

0.970

0.949

0.925

0.879

0.821

0.751

0.664

0.568

0.471

0.370

0.279

0.198

0.132

0.090

0.061

0.054

anal 3

0.792

0.764

0.730

0.691

0.648

0.600

0.538

0.474

0.404

0.327

0.253

0.186

0.128

0.088

0.061

0.054

92

0.050

0.100

0.150

0.200

0.250

0.300

0.350

0.400

0.450

0.500

0.550

0.600

0.650

0.700

0.750

ANOVA

0.060

0.088

0.139

0.205

0.291

0.395

0.510

0.610

0.718

0.802

0.872

0.920

0.953

0.974

0.988

an all

0.063

0.089

0.137

0.196

0.278

0.370

0.480

0.578

0.676

0.762

0.836

0.893

0.931

0.956

0.978

anal2

0.063

0.090

0.139

0.201

0.272

0.366

0.471

0.568

0.661

0.751

0.826

0.879

0.919

0.949

0.971

anal3

0.062

0.090

0.132

0.187

0.251

0.324

0.404

0.472

0.540

0.597

0.650

0.693

0.729

0.761

0.787
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Table 6.11: Simulated Powers for ANOVA and the Analogue

Testing the Linear by Linear Component of Interaction

Design Parameters 7 = 2, J = 5, M = 2, a = .05

93

-1.500

-1.400

-1.300

-1.200

-1.100

-1.000

-0.900

-0.800

-0.700

-0.600

-0.500

-0.400

-0.300

-0.200

-0.100

0.000

ANOVA

0.987

0.974

0.953

0.919

0.872

0.807

0.723

0.618

0.509

0.395

0.297

0.203

0.136

0.089

0.061

0.050

an all

0.976

0.957

0.932

0.890

0.836

0.765

0.678

0.583

0.478

0.375

0.281

0.195

0.134

0.090

0.065

0.054

anal2

0.970

0.949

0.922

0.878

0.823

0.754

0.669

0.572

0.470

0.370

0.277

0.196

0.132

0.089

0.064

0.054

anal 3

0.792

0.760

0.730

0.692

0.649

0.606

0.543

0.476

0.410

0.330

0.253

0.183

0.131

0.088

0.065

0.054

93

0.100

0.200

0.300

0.400

0.500

0.600

0.700

0.800

0.900

1.000

1.100

1.200

1.300

1.400

1.500

ANOVA

0.061

0.085

0.138

0.209

0.291

0.398

0.510

0.611

0.716

0.803

0.868

0.921

0.954

0.974

0.987

anall

0.063

0.088

0.136

0.202

0.278

0.371

0.480

0.575

0.674

0.765

0.834

0.892

0.933

0.959

0.977

anal2

0.064

0.090

0.135

0.199

0.276

0.368

0.470

0.566

0.664

0.751

0.818

0.879

0.919

0.949

0.971

anal3

0.064

0.087

0.130

0.189

0.255

0.327

0.405

0.472

0.539

0.600

0.648

0.693

0.730

0.766

0.787
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Testing the Linear Component of Factor U Testing the Linear Component of Factor V

\ *

— ANOVA
-— Anali (U,0,0)
- - Anal2(U,V,0)
• - Anal3 (U,V,UV)

-2

V\
'AA\ v

\ '
\

\
«

\ \

n\\\\\\\\

ANOVA
Anah (0,V,0)
Anal2 (U,V,O)
Anal3 (U,V,UV)

j

jl
II
1

/fft?
Is

/ 'li /
1

l

-0.5

g-values

0.0

g-values

0.5

Testing the Linear by Linear Interaction

ANOVA

-1.5 -1.0 -0.5 0.0 0.5 1.0 1.5

g-values

Figure 6.1: Power Comparisons for Design 2 5 2 showing the effect of extraneous

components on main effects and interaction under the Analogue Procedure and Normal

Distribution.
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Table 6.12: Simulated Powers for ANOVA and the Analogue

Testing the Linear Component of Factor U

Design Parameters / = 4, J = 4, M = 2, a = .05

-0.800

-0.760

-0.720

-0.680

-0.640

-0.600

-0.560

-0.520

-0.480

-0.440

-0.400

-0.360

-0.320

-0.280

-0.240

-0.200

-0.160

-0.120

-0.080

-0.040

0.000

ANOVA

0.997

0.994

0.988

0.981

0.967

0.943

0.913

0.869

0.811

0.743

0.657

0.568

0.475

0.386

0.296

0.219

0.154

0.111

0.079

0.057

0.047

anall

0.994

0.990

0.981

0.969

0.953

0.921

0.888

0.840

0.779

0.706

0.625

0.538

0.450

0.363

0.280

0.208

0.150

0.107

0.077

0.057

0.050

anal2

0.992

0.988

0.978

0.967

0.948

0.917

0.879

0.833

0.771

0.703

0.615

0.534

0.449

0.360

0.279

0.208

0.150

0.106

0.078

0.058

0.050

anal3

0.966

0.954

0.934

0.916

0.889

0.851

0.812

0.767

0.710

0.642

0.567

0.495

0.421

0.345

0.269

0.200

0.144

0.106

0.077

0.057

0.050

9\

0.040

0.080

0.120

0.160

0.200

0.240

0.280

0.320

0.360

0.400

0.440

0.480

0.520

0.560

0.600

0.640

0.680

0.720

0.760

0.800

ANOVA

0.058

0.077

0.109

0.153

0.223

0.302

0.386

0.474

0.566

0.666

0.742

0.810

0.866

0.912

0.942

0.965

0.980

0.990

0.993

0.997

anall

0.057

0.077

0.107

0.148

0.212

0.288

0.365

0.446

0.534

0.632

0.707

0.779

0.837

0.887

0.921

0.950

0.969

0.984

0.989

0.994

anal2

0.057

0.077

0.106

0.148

0.212

0.284

0.364

0.442

0.530

0.626

0.699

0.771

0.831

0.879

0.916

0.946

0.966

0.980

0.986

0.992

anal3

0.058

0.076

0.105

0.146

0.206

0.273

0.343

0.417

0.492

0.575

0.643

0.707

0.762

0.813

0.855

0.887

0.915

0.940

0.950

0.964
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Table 6.13: Simulated Powers for ANOVA and the Analogue

Testing the Linear by Linear Component of Interaction

Design Parameters / = 4, J = 4, M = 2, a = .05

# 3

-0.720

-0.680

-0.640

-0.600

-0.560

-0.520

-0.480

-0.440

-0.400

-0.360

-0.320

-0.280

-0.240

-0.200

-0.160

-0.120

-0.080

-0.040

0.000

ANOVA

0.997

0.995

0.988

0.977

0.959

0.929

0.886

0.828

0.753

0.663

0.561

0.458

0.357

0.264

0.185

0.126

0.082

0.058

0.051

an all

0.994

0.988

0.980

0.961

0.940

0.901

0.852

0.793

0.711

0.622

0.523

0.425

0.332

0.249

0.172

0.120

0.083

0.059

0.052

anal2

0.986

0.979

0.964

0.941

0.915

0.874

0.821

0.759

0.678

0.596

0.503

0.410

0.323

0.243

0.169

0.120

0.082

0.059

0.052

anal3

0.967

0.951

0.933

0.905

0.879

0.833

0.778

0.716

0.647

0.567

0.484

0.397

0.310

0.236

0.168

0.118

0.081

0.059

0.052

93

0.040

0.080

0.120

0.160

0.200

0.240

0.280

0.320

0.360

0.400

0.440

0.480

0.520

0.560

0.600

0.640

0.680

0.720

ANOVA

0.059

0.083

0.126

0.185

0.265

0.357

0.455

0.564

0.660

0.757

0.825

0.885

0.929

0.959

0.978

0.988

0.994

0.998

anall

0.060

0.082

0.122

0.175

0.248

0.331

0.423

0.528

0.615

0.714

0.789

0.852

0.900

0.937

0.964

0.978

0.988

0.994

anal2

0.060

0.082

0.121

0.173

0.242

0.321

0.407

0.509

0.591

0.686

0.760

0.822

0.872

0.912

0.945

0.963

0.977

0.986

anal3

0.060

0.082

0.120

0.171

0.238

0.311

0.392

0.486

0.565

0.653

0.717

0.779

0.831

0.874

0.907

0.934

0.951

0.964
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Figure 6.2: Power Comparisons for Design 4 4 2 showing the effect of extraneous

components on main effects and interaction under the Analogue Procedure and Normal

Distribution.
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Table 6.14: Simulated Powers for ANOVA and the Analogue

Testing the Linear Component of Factor U

Design Parameters 7 = 4, J = 6, M = 2, a = .05

9i

-0.635

-0.600

-0.565

-0.529

-0.494

-0.459

-0.424

-0.388

-0.353

-0.318

-0.282

-0.247

-0.212

-0.176

-0.141

-0.106

-0.071

-0.035

0.000

ANOVA

0.997

0.993

0.986

0.976

0.955

0.924

0.882

0.822

0.743

0.657

0.563

0.453

0.348

0.256

0.179

0.123

0.078

0.057

0.051

anall

0.994

0.989

0.980

0.965

0.940

0.906

0.859

0.793

0.713

0.623

0.533

0.428

0.332

0.244

0.171

0.119

0.078

0.057

0.052

anal2

0.994

0.988

0.978

0.963

0.937

0.903

0.856

0.790

0.706

0.622

0.533

0.427

0.331

0.243

0.172

0.120

0.078

0.057

0.052

anal3

0.984

0.974

0.961

0.941

0.911

0.872

0.820

0.762

0.679

0.598

0.514

0.417

0.324

0.241

0.169

0.118

0.078

0.057

0.052

93

0.035

0.071

0.106

0.141

0.176

0.212

0.247

0.282

0.318

0.353

0.388

0.424

0.459

0.494

0.529

0.565

0.600

0.635

ANOVA

0.058

0.083

0.125

0.185

0.262

0.347

0.446

0.554

0.659

0.747

0.825

0.882

0.924

0.956

0.976

0.986

0.994

0.997

anall

0.058

0.081

0.122

0.177

0.248

0.329

0.422

0.527

0.625

0.713

0.795

0.858

0.906

0.941

0.965

0.980

0.990

0.994

anal2

0.058

0.081

0.122

0.176

0.247

0.325

0.424

0.525

0.624

0.710

0.790

0.853

0.902

0.938

0.964

0.978

0.988

0.994

anal3

0.059

0.081

0.122

0.175

0.243

0.319

0.409

0.506

0.602

0.687

0.762

0.823

0.873

0.910

0.941

0.960

0.975

0.984
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Table 6.15: Simulated Powers for ANOVA and the Analogue

Testing the Linear Component of Factor V

Design Parameters / = 4, J = 6, M = 2, a = .05

92

-0.424

-0.400

-0.376

-0.353

-0.329

-0.306

-0.282

-0.259

-0.235

-0.212

-0.188

-0.165

-0.141

-0.118

-0.094

-0.071

-0.047

-0.024

0.000

ANOVA

0.998

0.995

0.990

0.978

0.962

0.938

0.895

0.837

0.762

0.670

0.566

0.466

0.360

0.270

0.188

0.130

0.083

0.060

0.049

an all

0.996

0.991

0.983

0.970

0.948

0.920

0.873

0.809

0.734

0.637

0.537

0.439

0.340

0.256

0.180

0.124

0.082

0.060

0.050

anal2

0.995

0.990

0.981

0.968

0.946

0.917

0.870

0.807

0.728

0.636

0.536

0.439

0.339

0.255

0.179

0.124

0.081

0.060

0.050

anal3

0.986

0.979

0.964

0.946

0.920

0.887

0.838

0.775

0.699

0.613

0.516

0.425

0.331

0.251

0.178

0.122

0.081

0.059

0.050

93

0.024

0.047

0.071

0.094

0.118

0.141

0.165

0.188

0.212

0.235

0.259

0.282

0.306

0.329

0.353

0.376

0.400

0.424

ANOVA

0.060

0.082

0.130

0.188

0.261

0.359

0.460

0.572

0.671

0.763

0.837

0.894

0.934

0.960

0.980

0.989

0.995

0.998

an all

0.060

0.081

0.124

0.180

0.249

0.339

0.437

0.543

0.642

0.733

0.810

0.868

0.916

0.946

0.972

0.983

0.991

0.995

anal2

0.061

0.080

0.125

0.179

0.250

0.335

0.436

0.543

0.637

0.729

0.804

0.866

0.914

0.945

0.969

0.981

0.990

0.995

anal3

0.061

0.079

0.123

0.177

0.245

0.330

0.424

0.524

0.618

0.700

0.772

0.835

0.884

0.916

0.947

0.964

0.979

0.985
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Table 6.16: Simulated Powers for ANOVA and the Analogue

Testing the Linear by Linear Component of Interaction

Design Parameters / = 4, J = 6, M = 2, a = .05

93

-0.360

-0.340

-0.320

-0.300

-0.280

-0.260

-0.240

-0.220

-0.200

-0.180

-0.160

-0.140

-0.120

-0.100

-0.080

-0.060

-0.040

-0.020

0.000

ANOVA

0.996

0.990

0.983

0.966

0.945

0.909

0.861

0.795

0.716

0.628

0.529

0.427

0.331

0.244

0.173

0.120

0.080

0.056

0.051

anall

0.992

0.984

0.972

0.952

0.926

0.882

0.829

0.765

0.682

0.592

0.498

0.399

0.312

0.231

0.163

0.114

0.079

0.058

0.052

anal2

0.984

0.974

0.961

0.935

0.905

0.858

0.807

0.740

0.659

0.573

0.484

0.391

0.307

0.228

0.162

0.114

0.079

0.057

0.052

anal3

0.965

0.950

0.930

0.903

0.870

0.822

0.768

0.705

0.628

0.547

0.465

0.376

0.298

0.222

0.160

0.111

0.078

0.056

0.052

92,

0.020

0.040

0.060

0.080

0.100

0.120

0.140

0.160

0.180

0.200

0.220

0.240

0.260

0.280

0.300

0.320

0.340

0.360

ANOVA

0.056

0.080

0.118

0.173

0.243

0.331

0.429

0.525

0.626

0.720

0.794

0.861

0.913

0.944

0.966

0.983

0.990

0.996

anall

0.056

0.078

0.113

0.161

0.230

0.315

0.401

0.494

0.591

0.684

0.760

0.833

0.886

0.927

0.954

0.973

0.982

0.992

anal2

0.056

0.077

0.112

0.161

0.226

0.306

0.391

0.478

0.576

0.660

0.738

0.806

0.864

0.906

0.935

0.961

0.974

0.985

anal3

0.057

0.077

0.112

0.158

0.221

0.297

0.380

0.461

0.549

0.630

0.703

0.768

0.825

0.870

0.902

0.930

0.949

0.964
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Testing the Linear Component of Factor U Testing the Linear Component of Factor V

ANOVA
AnaH (U,0,0)
Anal2(U,V,0)
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Figure 6.3: Power Comparisons for Design 4 6 2 showing the effect of extraneous

components on main effects and interaction under the Analogue Procedure and Normal

Distribution.
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Table 6.17: Simulated Powers for ANOVA and the Analogue

Testing the Linear Component of Factor U

Design Parameters 7 = 5, J = 5, M = 2, a = .05

9i

-0.510

-0.480

-0.450

-0.420

-0.390

-0.360

-0.330

-0.300

-0.270

-0.240

-0.210

-0.180

-0.150

-0.120

-0.090

-0.060

-0.030

0.000

ANOVA

0.998

0.996

0.992

0.981

0.963

0.934

0.882

0.825

0.735

0.633

0.521

0.411

0.306

0.210

0.137

0.088

0.061

0.049

anall

0.997

0.994

0.986

0.973

0.950

0.916

0.862

0.797

0.709

0.605

0.496

0.387

0.292

0.200

0.134

0.086

0.060

0.050

anal2

0.996

0.993

0.985

0.971

0.947

0.912

0.858

0.793

0.700

0.604

0.492

0.384

0.290

0.199

0.132

0.086

0.060

0.050

anal3

0.989

0.982

0.971

0.952

0.924

0.884

0.828

0.767

0.680

0.581

0.479

0.375

0.285

0.197

0.131

0.086

0.061

0.050

93

0.030

0.060

0.090

0.120

0.150

0.180

0.210

0.240

0.270

0.300

0.330

0.360

0.390

0.420

0.450

0.480

0.510

ANOVA

0.060

0.088

0.140

0.213

0.301

0.407

0.524

0.636

0.736

0.824

0.885

0.931

0.963

0.980

0.990

0.996

0.998

anall

0.061

0.086

0.134

0.203

0.285

0.387

0.499

0.607

0.705

0.798

0.862

0.914

0.950

0.973

0.985

0.994

0.997

anal2

0.061

0.087

0.135

0.203

0.283

0.387

0.497

0.602

0.705

0.793

0.859

0.908

0.947

0.970

0.984

0.993

0.997

anal 3

0.061

0.086

0.134

0.200

0.279

0.373

0.482

0.584

0.679

0.768

0.829

0.884

0.924

0.951

0.970

0.982

0.990
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Table 6.18: Simulated Powers for ANOVA and the Analogue

Testing the Linear by Linear Component of Interaction

Design Parameters / = 5, J = 5, M = 2, a = .05

92,

-0.340

-0.320

-0.300

-0.280

-0.260

-0.240

-0.220

-0.200

-0.180

-0.160

-0.140

-0.120

-0.100

-0.080

-0.060

-0.040

-0.020

0.000

ANOVA

0.996

0.993

0.983

0.968

0.940

0.899

0.845

0.770

0.686

0.586

0.474

0.368

0.275

0.193

0.127

0.085

0.056

0.050

anall

0.993

0.986

0.975

0.954

0.920

0.874

0.817

0.736

0.647

0.554

0.446

0.347

0.260

0.182

0.123

0.084

0.056

0.049

anal2

0.985

0.978

0.961

0.937

0.900

0.848

0.788

0.711

0.626

0.532

0.431

0.339

0.254

0.180

0.123

0.082

0.056

0.049

anal3

0.967

0.954

0.931

0.903

0.863

0.812

0.750

0.682

0.600

0.511

0.418

0.327

0.250

0.176

0.120

0.082

0.055

0.049

#3

0.020

0.040

0.060

0.080

0.100

0.120

0.140

0.160

0.180

0.200

0.220

0.240

0.260

0.280

0.300

0.320

0.340

ANOVA

0.059

0.083

0.126

0.187

0.273

0.367

0.478

0.586

0.684

0.775

0.850

0.903

0.942

0.968

0.982

0.991

0.996

anall

0.060

0.081

0.121

0.180

0.255

0.343

0.449

0.552

0.647

0.741

0.818

0.876

0.922

0.955

0.973

0.986

0.993

anal2

0.059

0.081

0.120

0.178

0.252

0.336

0.437

0.534

0.624

0.716

0.792

0.852

0.900

0.937

0.959

0.976

0.986

anal3

0.059

0.080

0.117

0.175

0.247

0.325

0.420

0.513

0.599

0.685

0.757

0.815

0.864

0.905

0.932

0.953

0.966
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Figure 6.4: Power Comparisons for Design 5 5 2 showing the effect of extraneous

components on main effects and interaction under the Analogue Procedure and Normal

Distribution.
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6.4 A Comparison of the four Methods

In order to have an overall assessment of the four methods applied, namely, ANOVA,

the Ranking Method, the Modified and the Analogue we make a simultaneous power

comparison for each effect in the presence of the other two. Figure 6.5 shows the

comparisons for factor U for the four designs studied in this work. Similarly, Figures

6.6 and 6.7 show the power comparisons for factor V and the interaction respectively.

In the presence of the extraneous effects the difference in powers is quite consider-

able for design 252. For the U effect when gx = -2.550, the power for the ANOVA

is .999 compared with .940 for the Analogue, .608 for the Modified, and .636 for the

Ranking Method. For the interaction when g3 = —1.7, the power for the ANOVA is

.997 compared with .835 for the Analogue, .493 for the Modified Method, and .462 for

the Ranking Method. Thus we can see that the Analogue performs much better than

the other two methods. Thus the weakness that was noticed for the Ranking Method

and the Modified Method with regard to the nuisance effects has been mitigated sub-

stantially by the Analogue.

With increase in design size the difference in powers is reduced. For design 4 6 2

for the U effect when g1 = —.6 the power for the ANOVA is .994 compared with .974

for the Analogue, .962 for the Modified, and .915 for the Ranking Method and for the

interaction when g3 = —.38, the power for the ANOVA is .998 compared with .976

for the Analogue, .963 for the Modified and .875 for the Ranking Method. We can

see that, regardless of the design and the effect under study, the Analogue has higher

powers than the Modified and the Ranking Method.
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Power Comparison Design 2 5 2
Testing the Linear Component of U
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Figure 6.5: Power Comparison for Testing the Linear Component of Factor U in the

Presence of the Linear Component of Factor V and the Linear by Linear Component

of Interaction for the Designs 2 5 2, 4 4 2, 4 6 2, and 5 5 2 under Normal Distribution.
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Figure 6.6: Power Comparison for Testing the Linear Component of Factor V in the

Presence of the Linear Component of Factor U and the Linear by Linear Component

of Interaction for the Designs 2 5 2, 4 4 2, 4 6 2, and 5 5 2 under Normal Distribution.
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Power Comparison Design 2 5 2
Testing the Linear by Linear interaction
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Figure 6.7: Power Comparison for Testing the Linear by Linear Component of Interac-

tion in the Presence of the Linear Component of Factor U and the Linear Component

of Factor V for the Designs 2 5 2, 4 4 2, 4 6 2, and 5 5 2 under Normal Distribution.
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6.5 Summary and Conclusions

Making use of the rank variation of each treatment in different blocks the error variance

is estimated which leads to an estimate for the contrast variance and an alternative

procedure for analysis. The procedure obtained called the "Analogue" mitigates the

problem of power loss due to the presence of nuisance components encountered before.

It is shown that in the absence of extraneous effects the powers are quite close to

those for the Ranking Method and in the presence of them the powers are higher than

those for the two procedures studied before. The superiority in power performance is

significant for small designs. The substantial loss of power which was observed for the

Ranking Method and the Modified Method under the full model is now greatly reduced

for the Analogue. Furthermore, it is shown that that for the tests on main effects the

power loss is mainly due to the presence of the interaction rather than the other main

effect while for the test on interaction the loss in power is due to the joint presence of

the two main effects in the model.

The powers of the Analogue are, in general comparable to those of the Analysis of

Variance procedure and, therefore, the procedure is a good substitute for the ANOVA

whenever the application of the latter is not possible due to unavailability of the ob-

servations for the response variable or when the accuracy of the ANOVA is in doubt

due to the violation of the normality assumption.

In the next chapter we shall study the efficiency of our proposed procedure when

non-normality prevails.



Chapter 7

Performance under Non-normal

Distributions

7.1 Introduction

In the previous chapters we saw that when the errors are normally distributed ANOVA

is more powerful than the non-parametric methods proposed. In cases where data are

non-normal, standard procedures can be applied to find a suitable transformation so

that the transformed data follow a normal distribution making it possible to apply

ANOVA. The alternative would be to apply a non-parametric procedure.

The analysis of variance procedure is based on the assumption of normality while

the non-parametric methods are not, thus we expect the ANOVA to lose efficiency when

deviations from normality occur. On the other hand, the non-parametric methods are

distribution free under the null hypothesis, however, under the alternative hypothesis,

they are dependent on the underlying distribution too. As a result the power perfor-

mance of ANOVA and the non-parametric methods all depend upon the underlying

distribution. It would be interesting to know how they compare. In this chapter we

shall investigate the powers under non-normal conditions. To be able to assess the
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efficiency of the non-parametric methods against ANOVA under various non-normal

conditions, we compared the powers when the errors have one of the following four

distributions:

1- Exponential Distribution

2- Chi-Square One Distribution

3- Chi-Square Four Distribution

4- Cauchy Distribution.

The choice of the exponential distribution was its application in practical problems.

Chi-square one was chosen to see how the powers compare under a severely skewed

distribution. With the increase in degrees of freedom for the chi-square distribution,

skewness is reduced and with the approach to normality the relative performance of

ANOVA is expected to improve. Finally the choice of the Cauchy distribution was

to see how the powers compare when the data are exposed to severe outliers on both

sides.

Again, as for the normal distribution, the powers for each effect were calculated in

the presence of the other effects. In the following sections we shall examine the power

study for each distribution separately. In each case results were produced for the same

four designs as investigated in previous sections. In section 7.7 a summary is given of

the work done so far and the conclusions reached and finally in section 7.8 we make

some recommendations about possible future research on the topic.

7.2 Power Comparisons under Exponential Distri-

bution

Random variables were generated from an exponential distribution with parameter

a = 1 and were included in the model as described in section 4.14. Powers were calcu-
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lated based on 30,000 independent simulations. Figures 7.1, 7.2, 7.3 show the power

comparisons for the main effect U, V and interaction UV respectively. Comparison of

power curves for the main effect U under exponential distribution and the correspond-

ing ones in Figure 6.5 under normal distribution reveal the following points.

1- For designs 2 5 2 and 4 4 2 the Analogue has a slightly better performance for small

magnitudes of g but after a certain point the powers for ANOVA tend to be higher,

though the difference between the two is less than the corresponding difference under

normality. For design 2 5 2 the ANOVA procedure is not as powerful as the Analogue

for values of g around zero corresponding to powers less than 50% for negative g and

less than 40% for positive g. We define the points where the power curves cross as

"change over points", where the relative power performance of the ANOVA procedure

becomes less than the power for the Analogue Method. For design 4 4 2 the change

over points are around the power value of 80%. There is a slight lack of symmetry for

the power curves of the non-parametric methods and this lack of symmetry is reduced

with increase in design size.

2- For designs 4 6 2 and 5 5 2 the Analogue has higher powers for powers up to 98% af-

ter which the powers are practically the same as for the ANOVA. The Ranking Method

and the Modified have higher powers than ANOVA for small g values but after a certain

point ANOVA shows superiority.

For the V effect the power curves are the same for the designs 4 4 2 and 5 5 2 as

those for the U effect within the random error fluctuation due to the symmetry of the

design. For the 2 5 2 design the difference between the Analogue and the ANOVA is

less for the U effect than the V effect but for the 4 6 2 design the power curves for the

two effects are similar. But for the interaction the pattern is slightly different for the

designs 4 6 2 and 5 5 2. For these two designs the change over point for the negative

values of g is different from the one for the positive g values. For the negative values for

the powers up to 95% the Analogue has higher powers while for the positive values the
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change over point is around 80%. Thus, under exponential distribution, except for the

design 2 5 2 where ANOVA still maintains its superiority for the larger magnitudes of

the g value, for the other three designs the Analogue has a better overall performance.

The superiority in performance for the Analogue is evident with increase in design size.
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Power Comparison Design 2 5 2
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Figure 7.1: Power Comparison for Testing the Linear Component of Factor U in the

Presence of the Linear Component of Factor V and the Linear by Linear Component of

Interaction for the Designs 2 5 2, 4 4 2, 4 6 2, and 5 5 2 under Exponential Distribution.
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Figure 7.2: Power Comparison for Testing the Linear Component of Factor V in the

Presence of the Linear Component of Factor U and the Linear by Linear Component of

Interaction for the Designs 2 5 2, 4 4 2, 4 6 2, and 5 5 2 under Exponential Distribution.
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Power Comparison Design 2 5 2
Testing the Linear by Linear interaction
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7.3 Power Comparison under Chi-Square One Dis-

tribution

Figures 7.4, 7.5 and 7.6 show the powers for testing the effects U, V and interaction for

the four designs under Chi-square distribution with one degree of freedom respectively.

For the U effect the following features can be noted.

1- For design 2 5 2 the analogue has better performance up to the power value around

60% after which the ANOVA is more powerful.

2- For design 4 4 2 for the negative values of g the analogue has better performance

up to the power value around 94% after which the ANOVA tends to be slightly more

powerful though for the positive values the Analogue has higher powers for practically

all the g values.

3- For designs 4 6 2 and 5 5 2 the analogue and the modified method are more powerful

than the ANOVA.

For the V effect the pattern is similar. For design 2 5 2 the change over point

for the negative g values is around power value of 50% while for the positive g values

the change over point is around power value of 40%. For designs 4 4 2 and 5 5 2 the

pattern is the same as for the U effect due to the symmetry of the design. Again there

is a slight lack of symmetry for the power curves of the non-parametric methods for

the designs 2 5 2 and 4 4 2 and again with increase in design size the asymmetry is

reduced for the designs 4 6 2 and 5 5 2. There is very little trace of asymmetry for the

Analogue. For design 4 6 2 the analogue and the modified are more powerful than the

ANOVA.

For the interaction effect lack of symmetry is noticeable for all the four designs

under study. For design 2 5 2 the power curves for interaction are the same as those for

the V effect due to the intrinsic structure of the design. Thus the asymmetry observed

for the V effect shows itself for the interaction as well. For design 4 4 2 for the negative
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values of g the Analogue has higher powers. For the positive g values for powers less

the 87% the Analogue has higher powers but for higher powers the ANOVA is more

powerful. For the designs 4 6 2 and 5 5 2 for the negative g values the Analogue

is superior to the ANOVA. For the positive g values there is a slight decline for the

Analogue but the power performance of Analogue is still superior.
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Figure 7.4: Power Comparison for Testing the Linear Component of Factor U in the

Presence of the Linear Component of Factor V and the Linear by Linear Component

of Interaction for the Designs 2 5 2, 4 4 2, 4 6 2, and 5 5 2 under Chi-Square One

Distribution.



chapter 7 182

Power Comparison Design 2 5 2
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Figure 7.5: Power Comparison for Testing the Linear Component of Factor V in the

Presence of the Linear Component of Factor U and the Linear by Linear Component

of Interaction for the Designs 2 5 2, 4 4 2, 4 6 2, and 5 5 2 under Chi-Square One

Distribution.
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Figure 7.6: Power Comparison for Testing the Linear by Linear Component of Interac-

tion in the Presence of the Linear Component of Factor U and the Linear Component

of Factor V for the Designs 2 5 2, 4 4 2, 4 6 2, and 5 5 2 under Chi-Square One

Distribution.
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7.4 Power Comparison under Chi-Square Four Dis-

tribution

Figures 7.7, 7.8 and 7.9 show the power comparisons for the effects U, V and interaction

respectively under chi-square distribution with four degrees of freedom. For the U effect

the following features are noted.

1- For designs 2 5 2 and 4 4 2 the Analogue has higher powers for g values with small

magnitudes but for large magnitudes the ANOVA is more powerful. For design 2 5 2

the approximate change over points are at power values 40% and 27% and at power

values of 57% and 48% for the 4 4 2 design.

2- For design 4 6 2 the change over points are at powers 80% and 86% and finally for

design 5 5 2 they are at powers 86% and 91% but for large magnitudes the differences

between the ANOVA and the Analogue are quite small.

For the V effect the pattern is quite similar except that for the 2 5 2 design the

difference between the ANOVA and the Analogue is more than that for the U effect

when large magnitudes of g are being considered. For the interaction effect the patterns

for the designs 4 4 2, 4 6 2 and 5 5 2 are the same except that the gaps between the

ANOVA ana the Analogue have widened. For the 2 5 2 design the power curves are

the same as those for the V effect as mentioned before.

Chi-square one distribution is highly skewed and we saw that, in general, the Ana-

logue was more powerful than the ANOVA procedure. Chi-square four distribution is

less skewed and indeed with the relative power performance of ANOVA.. Thus whereas

for Chi-square one the Analogue was the more powerful procedure, under Chi-square

four the ANOVA has gained efficiency so that for large magnitudes of g values the

powers for the ANOVA procedure are now higher than those for the Analogue. This

superiority in power is more distinct in small designs and with increase in design size

tends to lose intensity.
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Figure 7.7: Power Comparison for Testing the Linear Component of Factor U in the
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Power Comparison Design 2 5 2
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7.5 Power Comparisons under Cauchy Distribu-

tion

In previous sections we showed that when the error distribution is skewed then the

Analogue performs better than the Analysis of Variance procedure, the more skewed the

underlying distribution, the better the relative power performance of the Analogue. In

this section we shall investigate the powers under Cauchy distribution. Here although

we have an error distribution which is symmetric around zero, yet the errors are exposed

to extreme outliers much larger than normal and thus we expect power loss for the

ANOVA due to deviation from normality. The non-parametric procedures, however,

being concerned only with the ranks of the observations are not so much affected.

Figures 7.10, 7.11 and 7.12 show the power comparisons for the U effect, V effect

and interaction respectively. We notice that ANOVA does not hold the significance

level a = 0.05 because here the outliers inflate the error which leads to the test not

even retaining the nominal level. We can also see that for the three designs 4 4 2,

4 6 2 and 5 5 2 the three non-parametric methods proposed perform much better

than the ANOVA. For the 2 5 2 design only the Analogue has higher powers than

ANOVA. For this design for the U effect when g-y = —35.7, the power for the Analogue

is .957 compared with .917 for the ANOVA, .834 for the Ranking Method and .522 for

the Modified Method. With increase in design size the differences become dramatic.

For design 5 5 2 for U effect when g\ = —2.550, the power for the Analogue is .994

compared with .989 for the Modified Method, .976 for the Ranking Method and .650

for the ANOVA. The same pattern is seen for the V effect and the interaction. Thus

we notice there is a huge power loss on the ANOVA procedure due to the existence of

outliers.
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Figure 7.10: Power Comparison for Testing the Linear Component of Factor U in the

Presence of the Linear Component of Factor V and the Linear by Linear Component
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7.6 Conclusions

Power comparisons under exponential distribution, chi-square one, chi-square four and

Cauchy distribution reveals the fact that deviation from normality affects the ANOVA

performance severely and that the relative performance of the Analogue against the

ANOVA improves under the four distributions studied. Under Cauchy distribution

not only does the Analogue perform much better but the Modified and the Ranking

method also have higher powers when the design size is not small. Under exponential

and chi-square one distributions the Analogue has the better overall performance when

the design size is not small. Under chi-square four distribution the overall performance

of the Analogue is slightly better than the ANOVA for the larger designs 4 6 2 and

5 5 2 but for the other two designs the ANOVA has the better overall performance.

Thus with decrease in skewness and approach to normality the ANOVA gains power.

This research has revealed the following:

1- Under conditions of normality the analysis of variance procedure has higher powers

than the non-parametric procedures proposed for the analysis of a factorial experiment

with two factors run in a completely randomised block structure. However the powers

under ANOVA are only slightly higher than those for the Analogue.

2- When the normality assumption is violated, the ANOVA is no longer the optimum

method for the analysis and the non-parametric procedure proposed in this work is

more efficient if the design size is not small.

3- If the underlying population has a Cauchy distribution, the Analogue has much

better power performance for all the designs studied.
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7.7 Summary of the Work

The origin of our research was a problem in biology that required the design and

analysis of a blocked factorial experiment. The nature of the problem was such that

accurate measurements of the response variable were not possible and thus the analysis

of variance procedure was not applicable. An attempt was made to extend the Friedman

test to a factorial experiment. Ranking was applied independently within each block

and orthogonal polynomial analysis used to test the components of main effects and

interaction. Exact null distributions were obtained for small designs and the results

tabulated. It was shown that, with a slight increase in design size, application of a

normal approximation was feasible. Power comparisons revealed that the procedure

was powerful and comparable to AN OVA if the effect under study was isolated, but

with other components being present the test showed a substantial power loss. It was

shown that the loss in power was due to over-estimation of the variance under the

alternative hypothesis and that the variance of the contrast was maximum under the

null hypothesis of no treatment effects.

A modification was proposed by estimating the variance through pooling the non-

linear components of the interaction. Null distributions were simulated and shown to

have approximate normal distributions with increase in design size. Power compar-

isons indicated that although there was some improvement in power performance yet

the effect of extraneous components was still evident. Thus a further modification

was adopted by estimating the contrast variance through the error variance between

replications in different blocks. This was found to be effective in reducing the power

loss due to the presence of the nuisance components. Power analysis showed that the

procedure was efficient and comparable to ANOVA.

All the comparisons carried out so far were based upon the assumption of normality

which is essential to the analysis of variance procedure. Finally power comparisons were
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carried out under various non-normal conditions. The analysis revealed that when

the error distribution under study is skewed the non-parametric procedure developed

in this work is in general more powerful than the analysis of variance procedure if

the design size is not too small. The more skewed the underlying distribution the

more relative gain in power for the non-parametric method. Power comparisons under

Cauchy distribution revealed that the proposed non-parametric procedure was superior

to the ANOVA procedure for all the parameter values for the four designs under study.

7.8 Recommendations for Future Work

The work done so far can be extended in the following ways.

1. The power comparisons were used only for the linear components of the

main effects and interactions. The analysis can be extended by including

higher order components in the model.

2. The method was used for a factorial experiment with two factors only, the

procedure may be applied to larger factorial experiments.

3. In some cicumstances where the normal distribution is not applicable a con-

taminated normal distribution might be a good approximation for the pop-

ulation under study when outliers occur or when there is skewness. Power

comparisons can be made under various contaminated normal distributions.

4. There are instances where exact measurements are available but it may be

assumed that the underlying continuous variable does not follow a normal

distribution. In such cicumstances one might apply the ANOVA procedure

based on normal scores. A power comparison can be made between this

method and the proposed procedures based on ranks.
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5. Throughout this work, assessment of the main effects and interactions has

been made based on tests of hypothesis. Attempts can be made to find

confidence intervals for the effects using ranks.

Theoretical work can also be undertaken in the following directions.

6. The two conjectures made to prove the theorem that the variance of a con-

trast attains its maximum under the assumption of no treatment effects can

be proved.

7. The distribution of the rank of each treatment under the null hypothesis is a

uniform discrete distribution. We could study the distribution of the ranks

under a range of alternative treatment means.

8. Asymptotic null distributions have been dealt with heuristically throughout

the work based on simulations. One could establish them theoretically.

9. One could study the asymptotic relative efficiency of the Analogue.



Appendix

C This program is for a power comparison between the ANOVA procedure
C and three non-parametric methods for a factorial experiment with two
C factors in a randomised block structure. The analysis is based on
C orthogonal contrasts corresponding to orthogonal polynomials.
C For the non-parametric methods the data are ranked separately in
C each block and the three methods are constructed as following. For
C the first method the contrasts are constructed using the ranks. The
C contrasts are then divided by their corresponding standard deviation
c under the null hypothesis of no effect at all. For the second method
c all the interaction components except the linear by linear component
c are pooled together to give us an estimate for the variance of the
c contrasts. F distribution provides a good approximation for the null
c distributions. For the third method the analogue of ANOVA is carried
c out on the ranks. Data is generated from a normal distribution and
c for any desired model the power function is obtained by simulation
c for every method and the results are then compared for all the com-
c ponents of the main effects and interaction considered in the model.
C*******************************************************

implicit double precision (A-H,0-Z)
dimension DATAO(1O,10,11)
dimension gl(50),g2(50),g3(50)
dimension FR(10),FC(10),p(50,25),pl(50,25),p2(50,25),p3(50,25)
double precision tmp(30000)
dimension Fl(25,30000),F(25,30000),F2(25,30000),F3(25,30000)
dimension FI(10,10),CR(10,10),CC(10,10),CMR(10)
dimension CMC(IO),CMI(10,10)
dimension CMCN(IO),CMRM(10),CMIM
dimension A(10,10 ,11) ,B(10,10,11)
common // ic, ir, in, il
common /test/ gl,g2,g3,i2
0PEN( UNIT=11, FILE=Jnl23252i')
0PEN( UMIT=12, FILE='nl23252o')
READ(11,*) ISEED1,ISEED2
DO 10 1=1,10
CALL RAMD(R1,R2,ISEED1,ISEED2)

10 CONTINUE
READ(ll,*)IR,IC,IN,id,if

196
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DO 25 I=1,IR-1
25 READ(11,*)(CR(I,J), J=1,IR)

DO 30 I=1,IC-1
30 READ(11,*)(CC(I,J), J=1,IC)

read(ll,*)c,cl,c2
do 99 i2=l,if
g3(i2)=-1.7+.l*float(i2-l)
g2(i2)=g3(i2)/2.
gl(i2)=1.5*g3(i2)
DO 90 11=1,ID
it=il

111 DO 21 1=1,IR
DO 21 K=1,IN
do 21 j=l,ic
call normal(zl,z2, iseedl,iseed2)
z=zl
DATAO(I,J,K)=gl(i2)*float(i-1.5)+g2(i2)*float(j-3)+
+g3(i2)*float((i-1.5)*(j-3))+z

21 A(I,J,K)=datao(i,j,k)
CALL FACT2 (CR.CC,DATAO,FR,FC,FI,F)
if(it.eq.il)then
go to 112
else

go to 111
endif

112 do 31 i=l,ir*ic-l
31 F3(i,Il)=F(i,Il)

call rankc(ir,ic,in,a,b)
DO 20 k=l,IN
DO 20 J=1,IC
DO 20 1=1,IR

20 DATAO(I,J,K)=b(i,j,k)
CALL FACT2 (CR,CC,DATAO,FR,FC,FI,F)
if(it.eq.il)then
go to 113
else

go to 111
endif

113 CALL RANK2 (CR,CC,DATAO,CMR,CMC,CMI,CMRN,CMCN,CMIN5F1,F2)
if(it.eq.il)then
go to 90
else

go to 111
endif

90 continue
call stat (ID.F.TMP)
call stat (ID.F3.TMP)
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call stat (ID,F1,TMP)
call stat (ID,F2,TMP)
call PVAL(F,C,ID,P,i2)
call PVAL(F3,C,ID,P3,i2)
call PVAL(Fl,Cl,ID,Pl,i2)
call PVAL(F2,C2,ID,P2,i2)
write(12,14)

14 format(9x,'Power Comparison for the Non-parametric Methods And
+ the AN0VA'/,30x,'Normal Distribution')
write(12,16) ir,ic,in,id

16 format(5x,' Model ',5x, 'IR=',12,5x,'IC='12,5x,'IN='12,
+10x,'ID='I6)
write(12,9) dl,d2,d3

9 format(2x ,'g = ',f8.3,' gl = \f8.3,' g2 = \f8.3/)
write (12,7)

7 format(13x,'Simulated Powers for the ANOVA and Ranking methods'/

write(12,ll)
11 format(5x,' p = 0.050 p= 0.025
+ '/4x,'anova analog ranks modified anova analog ranks
+ modified')

do 97 i=l,ir+ic-l
write (12,8) P3(i2,i),P(i2,i),Pl(i2,i),P2(i2,i)

8 FORMAT(2x,F7.3,lx,F7.3,lx,F7.3,2x,F7.3,3x,F7.3,lx,F7.3,lx,
+F7.3,2x,F7.3)

97 continue
99 continue

write(12,60)
60 format(9x,'Power Comparison for the Non-parametric Methods And
+ the ANQVA'/,29x,'Normal Distribution')
write(12,61) ir,ic,in,id

61 format(5x,J Model ',5x, 'IR=',12,5x,'IC='12,5x,'IN='12,
+10x,'ID='I6)
write(12,*)' y=gl(i-1.5)

c write(12,62) dl,d2,d3
c 62 format(2x ,'g = ',f8.3,' gl = ',f8.3,' g2 = ',f8.3/)

write (12,63)
63 format(I3x,'Simulated Powers for the ANOVA and Ranking methods'/

+'************************Linear Main Effect u*****************')
write(12,64)

64 format(5x,' p = 0.050
+ '/14x,'g-value anova analog ranks modified')
do 66 i=l,if
write (12,65) gl(i),P3(i,1),P(i,1),Pl(i,1),P2(i,1)

65 F0RMAT(13x,F7.3,4x,F7.3,3x,F7.3,lx,F7.3,3x,F7.3)
66 continue

write(12 , * ) ' * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * '

write (12,73)
73 format(13x,'Simulated Powers for the ANOVA and Ranking methods'/
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c ********************************
SUBROUTINE FACT2 (CR,CC,DATAO,FR,FC,FI,F)
implicit double precision (A-H,0-Z)
double precision DATA0(l0,10,11),DATA(10,10),RSUM(10)
double precision CSUM(IO),SSR(10),SSC(10),SSI(10,10)
double precision FR(10),FC(10)
double precision F(25,30000)
double precision Fl(10,10),CR(10,10),CC(10,10),CMR(10)
double precision CMC(IO),CMI(10,10),DR(10),DC(10),D(10,10)
double precision msrow, mscol, msint,mse,msbl
common // ic, ir, in, il
common /test/ gl(50),g2(50),g3(50),i2

C *********CALCULATION OF TOTAL SUM OF SQUARES**********
c* print *, 'Entered FACT2'

T=0
SS=O
DO 100 1=1,IR
DO 101 J=1,IC
DATA(I,J)=O
DO 102 K=1,IN
T=T+DATAO(I,J,K)
SS=SS+ (DATA0(I,J,K))**2
DATA(I,J)=DATA(I,J)+DATAO(I,J,K)

102 CONTINUE
101 CONTINUE
100 CONTINUE

C=(T**2)/(IR*IC*IN)
SST=SS-C

C ******************ROW AND COLUMN TOTALS*********************
DO 103 1=1,IR
RSUM(I)=O

103 CONTINUE
DO 104 1=1,IR
DO 105 J=1,IC
RSUM(I)=RSUM(I)+DATA(I,J)

105 CONTINUE
104 CONTINUE

DO 106 J=1,IC
CSUM(J)=O

106 CONTINUE
DO 107 J=1,IC
DO 108 1=1,IR
CSUM(J)=CSUM(J)+DATA(I,J)

108 CONTINUE
107 CONTINUE

C *************ORTHOGONAL COMPONENTS FOR ROW EFFECTS*************
SSROW=O
DO 201 I=1,IR-1
CMR(I)=0
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DR(I)=O
DO 200 J=1,IR
CMR(I)=CMR(I)+RSUM(J)*CR(I,J)
DR(I)=DR(I)+CR(I,J)**2

200 CONTINUE
SSR(I)=CMR(I)**2/(IC*IN*DR(I))
SSROW=SSROW+SSR(I)
MSROW=SSROW/(IR-1)

201 CONTINUE
C **********ORTHOGONAL COMPONENTS FOR COLUMN EFFECTS*********

SSCOL=O
DO 301 I=1,IC-1
CMC(I)=O
DC(I)=O
DO 300 J=1,IC
CMC(I)=CMC(I)+CSUM(J)*CC(I,J)
DC(I)=DC(I)+CC(I,J)**2

300 CONTINUE
SSC(I)=CMC(I)**2/(IR*IN*DC(I))
SSCOL=SSCOL+SSC(I)
MSCOL=SSCOL/(IC-1)

301 CONTINUE
C ******************SUM OF SQUARES BLOCKS*********************

TBL=O
DO 5 K=1,IN
TK=O
DO 6 J=1,IC
DO 7 1=1,IR
TK=TK+DATAO(I,J,K)

7 CONTINUE
6 CONTINUE

TBL=TBL+TK**2
5 CONTINUE

SSBL=(TBL/(IR*IC))-C
MSBL=SSBL/(IN-1)

C ************ORTHOGONAL COMPONENTS FOR INTERACTION EFFECTS*****
SSINT=O
DO 400 I=1,IR-1
DO 401 J=1,IC-1
D(I,J)=O
CMI(I,J)=O
DO 402 K=1,IR
DO 403 L=1,IC
CMI(I,J)=CMI(I)J)+CR(IJK)*CC(JJL)*DATA(K,L)
D(I,J)=D(I,J)+(CR(I,K)*CC(J,L))**2

403 CONTINUE
402 CONTINUE

SSI(I,J)=CMI(I)J)**2/(IN*D(I5J))
SSINT=SSINT+SSI(I,J)
MSINT=SSINT/((IR-1)*(IC-1))
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401 CONTINUE
400 CONTINUE

SSE=SST-SSROW-SSCOL-SSINT-SSBL
MSE=SSE/((IR*IC-1)*(IN-1))
if (mse .eq. 0.0 ) then
write(12,444), gl(i2),g2(i2),g3(i2), sst,ssrow,sscol,ssint,ssbl

444 format(5x, 'gl(i2)=J,f6.2,5x, 'g2(i2)=',f6.2,5x, 'g3(i2) = J,f6 . 2
+2x,Jsst=',f8.2,2x,'ssrow=',f8.2,2x,'sscol=),f8.2,)ssint=),f8.2,
+2x,Jssbl=Jf8.2/)
write(12,445), il, i2

445 format (5x,;il=\ 16, 5x,'i2=',12/)
do 999, n=l,in
do 998, 1=1,ir
write(12, '(10F7.1)'), (datao(l,m,n), m=l,ic)

998 continue
999 continue

il=il-l
else

C **********************************************************
DO 454 I=1,IR-1
FR(I)=SSR(I)/MSE

454 CONTINUE
C

DO 455 1= 1,IC-1
FC(I)=SSC(I)/MSE

455 CONTINUE
C *********

DO 456 I=1,IR-1
DO 457 J=1,IC-1
FI(I,J)=SSI(I,J)/MSE

457 CONTINUE
456 CONTINUE
C

J=0
DO 410 I=1,IR-1
J=J+1
F(J,I1)=FR(I)

410 CONTINUE
DO 411 I=1,IC-1
J=J+1
F(J,I1)=FC(I)

411 CONTINUE
J=J+1

endif
c* print *, 'Exit FACT2'

RETURN
END

c **********************************
SUBROUTINE RANKC(M1, M2, m3, A, B)
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C This routine ranks the blocks of the matrix A and stores
C the results in the matrix B.

implicit double precision (A-H,O-Z)
INTEGER Ml, M2, M3, ORD(IOO)
double precision A(10,10,10), B(10,10,10), TEMP(100), TEMP2(100)

c* print *, 'Entered RANKC
C Loop through the blocks of A.

do 300 k=l,m3
C Create a temporary vector for a block of A.

DO 100 J = 1, M2
do 100 i = 1, ml
1 = i + (j-l)*ml
TEMP(l) = A(i,j,k)

100 CONTINUE
mr=ml*m2

C Sort the vector and place the ranks in the matrix B.
CALL JQSORT (TEMP, mr, ORD)
CALL TIES (TEMP, Mr, ORD, TEMP2)
DO 200 J = 1, M2
DO 200 I = 1 , Ml
L = I + (J-l)*ml

B(I,J,K) = TEMP2(L)
200 CONTINUE
300 CONTINUE

c* print *, 'Exit RANKC'
RETURN
END

c*********************************************
SUBROUTINE JQSORT (A,N,0RD)

C ACM QUICKSORT - ALGORITHM #402 - IMPLEMENTED IN FORTRAN BY
C WILLIAM H. VERITY
C COMPUTATION CENTER
C PENNSYLVANIA STATE UNIVERSITY
C UNIVERSITY PARK, PA. 16802
C

implicit double precision (A-H,0-Z)
INTEGER ORD,IPPLST,P,Q,U,U1,YP
double precision A(N), X, XX, Z, ZZ, Y
DIMENSION 0RD(N),IPPLST(2,20)

C
C TO SORT DIFFERENT INPUT LISTS, CHANGE THE FOLLOWING
C SPECIFICATION STATEMENTS.
C
C
C FOR ALL BUT CHARACTER SORTS, THE ARRAY "A" AND THE SIX SCALARS
C WILL BE THE SAME TYPE. THE SIX SCALARS HOLD VARIOUS VALUES OF THE
C "A" VECTOR DURING EXECUTION.
* print *, 'Entered JQSORT'

NDEEP = 0
Ul = N
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LI = 1
C THE FOLLOWING TWO LINES ARE
C NEEDED IF NO PREVIOUS ORDER
C IS GIVEN.

DO 100 I = i,N
100 ORD(I) = I
105 IF (U1.GT.L1) GO TO 110

* print *, 'Exit JQSORT'
RETURN

C
110 L = LI

U = Ul
C
C PART
C

115 P = L
Q = U

C FOR CHARACTER SORTS, THE FOLLOWING 3 STATEMENTS WOULD BECOME
C X = ORD(P)
C Z = ORD(Q)
C IF (CLE(A(X),A(Z),LEN))GO TO 2
C
C WHERE "CLE" IS A LOGICAL FUNCTION WHICH RETURNS "TRUE" IF THE
C FIRST ARGUMENT IS LESS THAN OR EQUAL TO THE SECOND, BASED ON "LEN"
C CHARACTERS.
C

KDUM = ORD(P)
X = A(KDUM)
KDUM = ORD(Q)
Z = A(KDUM)
IF (X.LE.Z) GO TO 120
Y = X
X = Z
Z = Y
YP = ORD(P)
ORD(P) = ORD(Q)
ORD(Q) = YP

120 IF (U-L.LE.l) GO TO 170
XX = X
IX = P
ZZ = Z
IZ = Q

C
C LEFT
C

125 P = P+l
IF (P.GE.Q) GO TO 130
KDUM = ORD(P)
X = A(KDUM)
IF (X.GE.XX) GO TO 135
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130
GO TO 125
P = Q-l
GO TO 160

C
C
C

C
C
C

RIGHT

135 Q = Q-l
IF (Q.LE.P) GO TO 140
KDUM = ORD(Q)
Z = A(KDUM)
IF (Z.LE.ZZ) GO TO 145
GO TO 135

140 Q = P
P = P-l
Z = X
KDUM = ORD(P)
X = A(KDUM)

DIST

145 IF (X.LE.Z) GO TO 150
Y = X
X = Z
Z = Y
IP = ORD(P)
ORD(P) = ORD(Q)
ORD(Q) = IP

150 IF (X.LE.XX) GO TO 155
XX = X
IX = P

155 IF (Z.GE.ZZ) GO TO 125
ZZ = Z
IZ = Q
GO TO 125

C
C
C
OUT

160 CONTINUE
IF (.NOT.(P.NE.IX.AND.X.NE.XX)) GO TO 165
IP = ORD(P)
ORD(P) = ORD(IX)
ORD(IX) = IP

165 CONTINUE
IF (.NOT.(Q.NE.IZ.AND.Z.NE.ZZ)) GO TO 170
IQ = ORD(Q)
ORD(Q) = ORD(IZ)
ORD(IZ) = IQ

170 CONTINUE
IF (U-Q.LE.P-L) GO TO 175
LI = L
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Ul = P-l
L = Q+l
GO TO 180

175 Ul = U
LI = Q+l
U = P-l

180 CONTINUE
IF (U1.LE.L1) GO TO 185

C
C START RECURSIVE CALL
C

NDEEP = NDEEP+1
IPPLST(1,NDEEP) = U
IPPLST(2,NDEEP) = L
GO TO 110

185 IF (U.GT.L) GO TO 115
C
C POP BACK UP IN THE RECURSION LIST
C

IF (NDEEP.EQ.O) GO TO 105
U = IPPLST(1,NDEEP)
L = IPPLST(2,NDEEP)
NDEEP = NDEEP-1
GO TO 185

C END QSORT
END

c*********************************************************************
SUBROUTINE TIES (E, N, ORD, F)
implicit double precision (A-H,O-Z)
INTEGER N, ORD(N), IPOS, K, ISUM, COUNT
double precision E(N), F(N), G(8l), H(81)

c* print *, 'Entered TIES'
DO 100 I = 1, N

G(I) = E(0RD(I))
100 CONTINUE

H(N) = FLOAT(N)
IPOS = 0
K = 1

125 IF (K.LT.N) THEN
ISUM = K
COUNT = 1

135 IF (G(K+1).EQ.G(K)) THEN
ISUM = ISUM + (K+l)
K = K + 1
COUNT = COUNT + 1
IF (K.EQ.N) GO TO 145
GO TO 135

ELSE
145 DO 150 I = 1, COUNT

if (count .eq. 0) stop 'zero count'
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HCIPOS+I) = (FLOAT(ISUM))/COUNT
150 CONTINUE

IPOS = IPOS + COUNT
K = K + 1
GO TO 125

END IF
ELSE

DO 200 I = 1, N
F(0RD(I)) = H(I)

200 CONTINUE
END IF

c* print *, 'Exit TIES'
RETURN
END

C *******************************
SUBROUTINE RANK2 (CR,CC3DATA0,CMR,CMC,CMI,CMRN,CMCN,CMIN,F1,F2)
implicit double precision (A-H,O-Z)
double precision DATA0(10,10,11),DATA(10,10),RSUM(10)
double precision CSUM(lO)
double precision Fl(25 ,30000),F2(25,30000)
double precision CR(10,10),CC(10,10),CMR(10)
double precision CMC(10),CMI(10,10),DR(1O),DC(10),D(10,10)
double precision CMRN(IO), CMCN(IO), CMIN

common // ic, ir, in, il
common /test/ gl(50),g2(50),g3(50),i2

c* print *, 'Entered RANK2'
DO 100 1=1,IR
DO 101 J=1,IC
DATA(I,J)=O
DO 102 K=1,IN
DATA(I, J)=DATA(I,J)+DATAO(I,J,K)

102 CONTINUE
101 CONTINUE
100 CONTINUE

C ********************p,ow AND COLUMN TOTALS********************
DO 103 1=1,IR
RSUM(I)=O

103 CONTINUE
DO 104 1=1,IR
DO 105 J=1,IC
RSUM(I)=RSUM(I)+DATA(I,J)

105 CONTINUE
104 CONTINUE

DO 106 J=1,IC
CSUM(J)=O

106 CONTINUE
DO 107 J=1,IC
DO 108 1=1,IR
CSUM(J)=CSUM(J)+DATA(I,J)

108 CONTINUE



Appendix 208

107 CONTINUE
C *************ORTHOGONAL COMPONENTS FOR ROW EFFECTS*********

DO 201 I=1,IR-1
CMR(I)=0
DR(I)=O
DO 200 J=1,IR
CMR(I)=CMR(I)+RSUM(J)*CR(I,J)
DR(I)=DR(I)+CR(I,J)**2

200 CONTINUE
G=((IR*IC*float((IR*IC+l))/12.)*IC*IN*DR(I))**.5
if (g .eq. 0.0 ) stop 'its G'
CMR(I)=CMR(I)/G
cmr(I)=(cmr(I))**2

201 CONTINUE
C **************ORTHOGONAL COMPONENTS FOR COLUMN EFFECTS********

DO 301 I=1,IC-1
CMC(I)=O
DC(I)=O
DO 300 J=1,IC
CMC(I)=CMC(I)+CSUM(J)*CC(I,J)
DC(I)=DC(I)+CC(I,J)**2

300 CONTINUE
G=((IR*IC*float((IR*IC+1))/12.)*IR*IN*DC(I))**.5
if (g .eq. 0.0 ) stop 'its 2nd G'
CMC(I)=CMC(I)/G
cmc(I)=(cmc(I))**2

301 CONTINUE
C ***********ORTHOGONAL COMPONENTS FOR INTERACTION EFFECTS*******

SCMI=O
DO 400 I=1,IR-1
DO 401 J=1,IC-1
D(I,J)=O
CMI(I,J)=O
DO 402 K=1,IR
DO 403 L=1,IC
CMI(I,J)=CMI(IJJ)+CR(I,K)*CC(J)L)*DATA(K,L)
D(I,J)=D(I,J)+(CR(I,K)*CC(J,L))**2

403 CONTINUE
402 CONTINUE

G=((IR*IC*float((IR*IC+l))/12.)*IN*D(I,J))**.5
if (g .eq. 0.0 ) stop 'its 3rd G'
CMI(I,J)=CMI(I,J)/G
cmi(I,J)=(cmi(I,J))**2

c SCMI =SCMI+CMI(I,J)**2
SCMI =SCMI+CMI(I,J)

401 CONTINUE
400 CONTINUE
C **********************************************************

SCMI=SCMI-CMI(1,1)
if (semi .eq. 0.0 ) then
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write(12,555), gl(i2),g2(i2),g3(i2)
555 format(5x, 'gl(i2)=',f6.2,5x, ;g2(i2)=',f6.2,5x, 'g3(i2)=',f6.2)

write(12,445), il,i2
445 format (5x,'il=\ 16, 5x,'i2=',I2)

do 999, n=l,2
do 998, 1=1,2
write(12, '(5F7.1)'), (datao(l,m,n), m=l,5)

998 continue
999 continue

write(12,*), 'cmi:'
write(12,*), (cmi(l,m),m=l,4)

else
C *****************The u e w p_Ra-t;i0S***************************

DO 501 I=1,IR-1
CMRN(I)=(FLOAT((IC-1)*(IR-1)-1))*CMR(I)/SCMI

501 CONTINUE
DO 502 1=1, IC-1
CMCN(I)=(FLOAT((IC-1)*(IR-1)-1))*CMC(I)/SCMI

502 CONTINUE
CMIN =(FLOAT((IC-1)*(IR-1)-1))*CMI(1,1)/SCMI

cc write(12,*)'***************************************** >
J=0
DO 410 I=1,IR-1
J=J+1
F2(J,I1)=CMRN(I)
F1(J,I1)=CMR(I)

410 CONTINUE
DO 411 1=1,IC-1
J=J+1
F2(J,I1)=CMCN(I)
F1(J,I1)=CMC(I)

411 CONTINUE
J=J+1
F2(J,I1)=CMIN

endif
c* print *, 'Exit RANK2'

RETURN
END

C ***************************************
SUBROUTINE STAT(ID,F,TMP)
implicit double precision (A-H,O-Z)
double precision tmp(50000)
double precision f(25,30000)
common // ic, ir

c* print *, 'Entered STAT'
DO 91 J=l,ir+ic-l
DO 92 1=1,ID

92 TMP(I)=F(J,I)



Appendix 210

CALL mOlcaf(TMP,1,ID, 'k ' , ifail)
Kl=18.0*ID/20.0
K2=19.0*ID/20.0
K3=19.5*ID/20.0
K4=19.8*ID/20.0
K5=19.9*ID/20.0

c WRITE(12,93) TMP(Kl),TMP(K2),TMP(K3),TMP(K4),TMP(K5)
c 93 F0RMAT(2X,5(3X,F11.3))

do 94 i=l,id
94 f(j,i)=tmp(i)
91 CONTINUE

c* print *, 'Exit STAT'
RETURN
END

c ***********************************************************
SUBROUTINE PVAL(F,C,ID,P,k)
implicit double precision (A-H,Q-Z)
double precision F(25,30000),P(50,25)
common // ic, ir

c print *, 'Entered PVAL'
DO 10 I=l,ir+ic-l
j=id

15 z=abs(f(i,j))
IF(z.Ge.C) GO TO 25
p(k,i)=float((ID-J))/float(ID)
GO TO 20

25 J=J-1
if(j.eq.0) then
go to 26
else
GO TO 15
endif

20 j = l
35 z=abs(f(i,j))

if(z.ge.c) go to 45
P(k,i)=p(k,i)+float(j-l)/float(id)
go to 10

45 j=j+l
if(j-id.gt.O) go to 26
go to 35

26 p(k,i)=l
10 CONTINUE

c print *, 'Exit PVAL'
RETURN
END

C ***********************************************************:

integer function myhandler( sig, code, context )
call abort()
end



Bibliography

1. Akritas, M. G. (1990), The rank Transform Method in some two-factor

designs, J. Amer. Statist. Assoc, 85, 73-78.

2. Bennet, B. M. (1968), Rank-order tests of linear hypotheses, J.R. Statist.

Soc, B , 30, 483-489.

3. Bhapkar, V. P. and Gore, A. P. (1974), A non-parametric test for interaction

in two-way layouts, Sankhya, Series A, 36(3), 261-272.

4. Blair, R. C , Sawilowsky, S. S. and Higgens, J. J. (1987), Limitations of the

rank transform statistic in tests for interaction, Commun. Statist. -Simul.

Comp., 16, 1133-1145.

5. Conover, W. J. (1980), Practical non-parametric statistics, 2ed. New York:

Wiley

6. Conover, W. J. and Iman, R. L. (1976), Limitations of the Rank Transform

Statistic in Tests for Interaction, Commun. Statist.- Th. Meth., A5, 1349-

1368.

7. Cruskal. W. H. and Wallis. W. A. (1952), Use of ranks on one-criterion

variance analysis, J. Amer. Statist. Ass., 47, 583-621 (corrections in 48,

907-911).

8. De Kroon, J. and Van der Laan, P. (1981), Distribution-Free Test Pro-

cedures in Two-Way Layouts: A Concept of Rank-Interaction, Statistica

211



Bibliography 212

Neerlandica, 35, 189-213. Dunn, O. J.(1964), Multiple comparisons using

rank sums, Technometrics, 6, 241-252.

9. Friedman, M. (1937), The use of ranks to avoid the assumption of normality

implicit in the analysis of variance, Journal of the American Statistical As-

sociation, 32, 675-701. Goodman, L. A. and Haberman, S. J. (1990), The

analysis of non-additivity in two-way analysis of variance, J. Amer. Statist.

Assoc, 85, 139-145.

10. Gosh, M. N. and Sharma, D. (1963), Power of Tukey's test for non-additivity,

Journal of the Royal Statistical Society, Series B, 25, 213-219. Hegemann,

V. and Johnson, D. E. (1976), On analyzing two-way AOV data with inter-

action, Technometrics, 18, 273-281.

11. Hettmansperger, Thomas P. (1984), Statistical inference based on ranks,

New York: Wiley.

12. Hollander, M. and Wolfe, D. A. (1973), Non-parametric statistical methods,

New York: Wiley.

13. Iman, R. L. (1974), A power study of a rank transform for the two-way

classification model when interaction may be present, The Canadian Journal

of Statistics, c, 2, 227-239.

14. Iman, R. L. and Conover, W. J. (1976), A comparison of several rank tests

for the two-way layout, (SAND76-0631), Sandia Laboratories, Alberqerque,

NM.

15. John, Peter W. M. (1971), Statistical design and analysis of experiments,

New York: MacMilan.

16. Lemmer, H. H. and Stoker, D. J. (1967), A distribution-free analysis of

variance for the two-way classification, South African Statistical Journal, 1,

67-74.



Bibliography 213

17. Mack, G. A. (1981), A quick and easy distribution-free test for main ef-

fects in a two-factor ANOVA, Communications in Statistics- Simulation

and Computation, B10(6), 571-591.

18. Mandel, J. (1971), A New Analysis of variance Model for Non-Additive

Data, Technometrics, 13, 1-18.

19. Martin, K.J. (1980), A Partition of a Two-Factor Interaction, with an Agri-

culture Example, Appl. Statist., 29, 149-155.

20. Mathew, T. and Sinha, B. K. (1991), Towards an optimum test for non-

additivity in Tukey's model, J.Mult. An., 36, 68-94.

21. Sawilowsky, S. S. (1990), Nonparametric Tests of Interaction in Experimen-

tal Design, Review of Educational Research, 60, 91-126.

22. Sawilowsky, S. S., Blair, R. c. and Higgens, J. J. (1989), An investigation

of type I error and power properties of the rank transform procedure in

factorial ANOVA, J. Ed. Statist., 14, 255-267.

23. Scheirer, C. J., Ray, W. S. and Hare, N. (1976), The analysis of ranked

data derived from completely randomised factorial designs, Biometrics, 32,

429-434.

24. Shirley. E. A. C. (1977), A non-parametric equivalent of William's test for

contrasting increasing dose-levels of a treatment, Biometrics, 33, 386-389.

25. Shirley, E. A. C. (1987), Applications of ranking methods to multiple com-

parison procedures and factorial experiments, Appl. Statist., 36, 205-213.

26. Shorack, G. R. (1967), Testing against ordered alternatives in model I anal-

ysis of variance: normal theory and non-parametric, Ann. Math. Statist.,

38, 1740-1752.



Bibliography 214

27. Steel, R. G. D. (1960), A rank sum test for comparing all pairs of treatments,

Technometrics, 2, 197-207.

28. Thomas, G. E., Kiwanga, S. S. (1993), Use of ranking and scoring methods

in the analysis of ordered categorical data from factorial experiments, The

Statistician (1993), 42, pp. 55-67.

29. Thompson, G. L. (1991), A note on the rank transform for interactions,

Biometrika, 78, 697-701.

30. Tukey, J. W. (1949), One degree of freedom for non-additivity, Biometrics,

5, 232-242.

31. Tukey, J. W. (1991), The philosophy of multiple comparisons, Statist. Sci.,

6, 100-116.

32. Vyvyan, M. C. (1955) Interrelation of scion and rootstock in fruit trees. I.

Weights and relative weights of young trees formed by the reciprocal unions,

as scion and rootstock, of three apple rootstock varieties : M.IX, M.IV and

M.XIL, Ann. Bot, 19, 401-423.

33. Williams, D. A. (1986) A note on Shirley's non-parametric test for compar-

ing several dose levels with a zero-dose control, Biometrics, 42, 183-186.

34. Wolfe, D. A., Dean, A. M., and Hartlaub, B. A. (1990), Nonparametric

Rank-Based Test Procedures for the Presence of Interaction.I. No Replica-

tions, Commun. Statist.-Th. Meth., A19, 4355-4382.


