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A study is undertaken of three physical problems in which singular partial integro-differential equations
arise. The equations result from applying thin aerofoil theory to two-dimensional potential flow
over a free boundary. In all cases the work builds on existing steady models, for which ordinary
singular integro-differential equations have been derived, to obtain time-dependent equations. The
first of the physical problems examined is the sail equation, which describes the behaviour of a thin,
flexible, inextensible sail in a high-Reynolds-number cross-flow at a small, but time-dependent, angle
of incidence to the sail. A review of literature on the sail problem is presented. The unsteady equation
is then solved numerically for various angles of incidence and sail masses. Variations of the unsteady
sail equation are also derived to describe the sail as the sail mass becomes very small or very large,
and to describe the flapping of a flag. An analytic expression is found for the low-mass sail given a
particular set of functions for the angle of attack, for which the tension in the sail, and hence the lift,
are zero.

The second problem examined is that of slot injection into a high-Reynolds-number cross-flow driven
by an excess pressure in the slot. A literature review of slot injection to, and suction from, a free
stream is presented, and then the unsteady injection problem is considered. Three different regimes
are found for slot injection, according to the time scale of the pressure variations. Of these, the most
important is the 'interactive' time scale, for which a third order singular partial integro-differential
equation is obtained for the height of the shear layer separating the injected fluid from the free
stream. For the other two cases, analytic solutions are found in terms of the known steady solutions.
Discussion of the behaviour over more than one time scale is also presented. The numerical solution
of the interactive equations, and singular partial integro-differential equations in general, is discussed,
and it is concluded that in general integral transforms need not prevent stable numerical schemes
from being found, and a condition for the numerical stability of finite difference schemes for singular
partial integro-differential equations is obtained.

The third physical system discussed is suction from a high-Reynolds-number cross-flow. For this
system a singular partial integro-differential equation is derived and solved, and closed form expressions
for the mass transfer into the slot and the height of the shear layer are found. It is found that for a
sudden change in the suction slot pressure, the mass transfer exhibits oscillatory decay to the steady
solutions. The suction problem is related to the slot injection problem, and the transition between
the two problems, when the slot pressure takes values both above and below the free stream pressure,
is considered for various time scales, with equations unifying injection and suction presented for two
different time scales. For changes over the shorter time scale it is shown how closed form solutions for
the mass transfer may be found directly from the unsteady suction equations.
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PRINCIPAL NOTATION
Throughout, asterisks are used to denote non-dimensionalised variables, for example x* denotes x
divided by the characteristic length scale.

b(x) 2arcsina;2 - 2 log 2 12 (1 - x)~?, i.e. the inverse finite-range Hilbert transform of log 1 - x
Courant number
Distance between masts of sail

f(t) Slot pressure function
/„ Modified Bessel functions
Jv Bessel functions
k Wave-number of instabilities
(. Length of the sail
L Width of the slot
n Number of mesh points
p Pressure
Pb Pressure at the boundary, y = S(x)
Poo Pressure at infinity
Re Reynolds number
cf \ f Displacement of sail from the a;—axis

[ Height of blown region
t Time
T Tension in the sail
u, v Velocity components in the x and y directions
Uoo i U Velocity of the cross-flow
vw Injection velocity
x, y Cartesian co-ordinates
a Angle of incidence of cross-flow to the sail
(5 Tension parameter, given by (52 = T/(p'U2)
7(1) Source/sink/vortex strength at (x, 0)
5 Small parameter in the sail problem, a measure of the displacement of the sail

Non-dimensional measure of the pressure difference between the slot and the free stream
Measure of the excess length of the sail, e = (£ — c)/c

K Strength of singularity at leading edge of the sail
A Tension parameter for steady sail, A = 2pU2c/T = n//32

(x For unsteady sail, fi = 2pc/p'
£ Variable of integration in a;—direction
p Density of fluid
p' Mass per unit length of the sail
a Defined by a = Q S{i)d£,
cj) Velocity potential in blown region
$0 Velocity potential in outer region
•0 In sail problem, tp = Sx

* Two-dimensional streamfunction : (u,v) = (^y,~^!x)

to Frequency of instabilities
f- Cauchy Principal Value integral

Note tha t the term Hilbert transform is here used to denote the integral transform with Cauchy kernel,
(£ — a;)"1 , over any region of integration.



Chapter 1

Introduction

A study is undertaken of singular partial integro-differential equations arising in unsteady two-

dimensional fluid dynamics problems involving thin aerofoil theory. All the equations contain Hilbert

transforms, for which some useful results are detailed in appendix A. This study is motivated in part

by the study of the cooling of turbine blades, where cool gas passes through slots or holes onto the

blade surface. The cooling gas is sucked from a channel inside the blade, and expelled into the free

stream, see figure 1.1. The slot cooling system cools the blade down in two different ways : the cool

Hot external flow

Injected coolant fluid

Figure 1.1: A schematic diagram of the film cooling system

air in the internal passages of the blade removes heat from the body of the blade, and the cooling air

which is expelled into the free stream insulates the surface of the blade from the hot gases flowing

past. A single blade may have many slots all over the surface of the blade, but they are usually

concentrated at the leading edge of the blade, since it is this part which is usually subject to the most

extreme heat. This cooling may have significant effects on the lifetime of the blade : Barry (1976)

[5] showed that a variation of 20°C around a mean blade temperature of 900°C can halve or double

the life of a blade. Unfortunately turbulent mixing downstream of the point at which the cooling gas

is injected means that the heat from the external flow will penetrate the cooling layer downstream

of the slot. Improved cooling of the blade will allow higher temperatures of the gas that enters the



turbine to be used. This in turn improves fuel efficiency, and it is the cooling mechanism which allows

temperatures of approximately 1400°C (from Morland (1988) [60]) to be used in a modern commercial

jet engine. Similar considerations apply to the related subject of slot injection from the leading edge

of a Joukowski aerofoil. Hubbard & Riley (1995) [46] showed that slot injection may delay separation,

and hence increase the lift of the aerofoil, as well as cool the surface downstream of separation. The

flow will here be modelled by slot injection into a free stream.

The problem of suction into a slot from a free stream is also relevant to film cooling, as before

the cooling air is emitted from the surface of the blade, it must be sucked from a channel inside the

blade. It is also relevant to 'rim sealing', which again is related to modern gas turbines : between the

rotating turbine disc and a stator hot mainstream gas may be ingested, which can severely affect disc

temperatures. Again, air may be injected into the external flow in order to prevent this ingestion, see

figure 1.2.

external flow

rotor stator :•

<

Figure 1.2: A schematic diagram of the rim seal. This an axisymmetric problem, with the rotor
rotating out of the page.

This is essentially a three-dimensional problem and so will require further study, though it is hoped

that examination of the two-dimensional system will provide at least a qualitative guide to the axisym-

metric and fully three-dimensional problems. The relevance of slot suction to the rim seal problem is

in the behaviour when the difference between the slot pressure and the external pressure can change

sign so that slot injection can become slot suction, or vice versa. This is also relevant to a range of

problems including the fluid flow produced by wind blowing past a nuclear reactor containment dome,

discussed by Kapila and Drew (1987) [49]. In this problem the interior of the dome is maintained

at a pressure less than that of the outside atmosphere so that contaminated air is prevented from

seeping out of the dome through small gaps which lie between the segments from which the dome is

constructed. However should atmospheric pressure drop below that in the dome then the problem will

become an unsteady problem in which both blowing and sucking occur, so the 'blowing and sucking'

problem will be of particular relevance.

Other related problems in which flows similar to those obtained for slot injection may occur include



convector heating from a flat plate, as studied by, for example, Smith & Riley (1979) [77], and flow

of blood in branching arteries and veins. Moreover, analysis of the film cooling problem will provide

some insight into other problems with 'blown-off' boundary layers, for example, flow down a step or

past a blunt body, as studied by O'Malley et al (1991) [65]. The analysis of the equations derived

will also be applicable to other physical problems in which similar integro-differential equations with

Cauchy kernels, (£ - x)~l, arise, such as crack formation (e.g. Fitt et al (1995) [32]).

Three problems in particular are focussed upon. In all three cases the work is based on an existing

steady model, but unsteady models have not previously been considered. The first problem considered

is two-dimensional uniform irrotational flow of an inviscid fluid at a small angle of incidence to a thin,

flexible, inextensible membrane. This problem is discussed in chapter 2. For a steady flow the shape

of the membrane may be described by a linear integro-differential equation, usually referred to as the

sail equation (the equation is usually attributed to Thwaites (1961) [91], but was originally derived

by Voelz (1950) [107]), whose validity is dependent on the facts that the excess length of the sail, in

other words the distance by which the length of the sail exceeds the distance between the masts, is

small relative to the distance between the masts, and that the angle of inclination of the flow to the

sail is small. All small variables in the problem, in particular the angle of incidence of the sail to

the crossflow, and the deviation of the sail from a straight line between the masts, are scaled relative

to the square-root of this excess length. Part of the motivation of the study of this equation is in

order to provide further insight into the mathematics arising from the slot cooling problem, in that a

similar type of equation is derived, although the sail equation, unlike the equation derived from slot

injection, is linear. It is however an interesting and relevant problem in its own right, and is also

relevant to the study of flexible-sail type wind-turbines, see for example Fleming & Probert (1984)

[36]. By allowing the angle of inclination to depend on time, a more complicated, but still linear, time-

dependent singular partial integro-differential equation has been derived. It is this time-dependent

equation that is of particular interest, and which constitutes the new research of this chapter. The

numerical solution of this equation is discussed, and results are presented, in chapter 3. Previously

little work has been found on the study of singular partial integro-differential equations, in this or

any other context, so the work on the unsteady sail equation is particularly important, not only in

its own right, but also in relation to other problems, and in particular the unsteady slot injection and

suction problems of chapters 5 and 6. Chapter 2 ends with a discussion of the limiting behaviour

of the unsteady sail in the cases where the relative mass of the sail becomes large or small, and the

case where the scaled angle of incidence of the crossflow to the sail becomes large. The consequences

of this analysis for a flapping flag are also discussed, and another singular partial integro-differential

equation is derived to describe the shape of the flag. This equation may be reduced to an ordinary

integro-differential equation describing sinusoidal flapping of a flag in a steady cross-flow.

The second problem considered is that of injection from a slot into a uniform flow of a high-Reynolds-
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number fluid, the 'blowing' problem, in two dimensions. The injection is driven by a small pressure

difference between the slot and the external flow, and again linearised thin aerofoil theory applies. A

small parameter is defined by the relative difference between the pressure at the bottom of the slot

and the external pressure at infinity, with the other variables in the problem being dependent upon

this small parameter. Chapter 4 contains a review of previous literature on the subject, which almost

exclusively is concerned with the steady problem. Chapter 5 then examines the unsteady problem, in

which the slot pressure is allowed to vary with time. Three different systems of equations are then

derived according to the time scale of the change in the slot pressure, each system containing at least

one singular partial integro-differential equation. The 'suction problem', again in two dimensions with

the suction of a high Reynolds number fluid being driven by a pressure difference between the slot and

the external flow, is discussed in chapter 6. Again, previous time-independent studies are discussed

and then the relevant singular partial integro-differential equations are derived by allowing the slot

pressure to vary with time. Unlike in the blowing problem, the equations derived are linear, and may

be solved by analytic methods in some cases. The solutions are then given for some possible choices

of slot pressure profiles (e.g. sinusoidal, linear, step function). The case where injection and suction

both take place over a period of time is discussed in chapter 7, where equations unifying the two cases

are presented for changes over two of the time scales defined. For the shorter of these time scales, the

equations are similar to those of slot suction, and are solved by the same methods.

Chapters 8 and 9 then discuss attempts to solve the time-dependent blowing (i.e. injection) equa-

tions derived in chapter 5 numerically, and analyse the solution of singular partial integro-differential

equations in general. It is found that if, as was the case with the unsteady sail equation, the highest

derivatives in the equation are not contained in the transform, the integral transform does not affect

numerical stability. If the transform does contain at least one of the highest derivatives, then although

the presence of a singular integral will affect numerical stability, it is sometimes possible to find stable

finite difference schemes to solve these equations numerically, and further that the behaviour of singu-

lar partial integro-differential equations is closely linked to those of the partial differential equations

obtained by replacing the integral transform operator with the identity operator. A numerical solution

is found for a particular singular partial integro-differential equation of this kind, and this is found

to converge to the known solution. In the case of the time dependent slot injection equations, the

associated partial differential equation is third order, which leads to formidable problems in finding a

stable numerical scheme for the associated partial differential equation, and thus for the full system

containing the singular integral. Chapter 10 gives a summary of the results obtained, and proposes

some areas in which the analysis could be extended.

All the computations described here were done using a silicon graphics Indigo 2XL workstation, and

FORTRAN coding. Where required, linear matrix equations were solved using NAG routine F04ATF,

and Bessel functions were evaluated using NAG routine S18DEF.
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Chapter 2

The Sail Equation

The sail equation of Voelz (1950) [107] and Thwaites (1961) [91] is similar to the steady slot injection

equation of Fitt et al (1985) [34] in that it is a singular integro-differential equation containing a

Cauchy kernel, for which no analytic solution has been found. Furthermore although in both cases

there is a significant amount of literature on the physical problem which the equation addresses, there

is very little literature on the unsteady problem. In both cases analysis of the unsteady problem leads

to an equation with a singular partial integro-differential equation, and again this class of equation is

not one that has previously been examined. The techniques in the derivation and the analysis of the

sail equation, which is linear, will therefore be of use in the more complicated unsteady slot injection

and suction equations. Furthermore the numerical problems posed by the sail equation will be similar

to those of the slot injection equation.

2.1 The Aerodynamic Theory of Flexible Surfaces

Most studies of flow past a sail to date have been two-dimensional, one of the first mathematical

models being completed by Cisotti (1932) [19]. In this study the sail was assumed to be non-porous,

with the flow separating at the trailing edge of the sail (the "leach"), to form a quiescent wake.

This differed from the work of Voelz (1950) [107], in whose model the sail was considered as a linear

distribution of vortices, with the flow considered to be incompressible and irrotational, and the sail

assumed to be non-porous and inextensible. It is this model upon which the analysis of the problem

in this chapter will largely be based. This model applied thin aerofoil theory (see, for example, Van

Dyke (1964) [99]), assuming that the sail deviates from a straight line connecting the masts by only a

small amount, thus permitting linear asymptotics to be used, with the angle of attack of the cross-flow

remaining small. From this a linear integro-differential equation for the shape of the sail depending

on the ratio of the angle of attack to the excess length of the sail was derived. This equation was

then numerically solved for a variety of sail lengths, and the lift, moment, and pressure distribution

on the sail were also calculated. Bugler (1957) [11] undertook a more thorough analysis based on a

similar model. However it is the work of Thwaites (1961) [91] which is most usually associated with
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this problem. Thwaites's work was similar to that of Voelz, deriving the same equation, apparently

independently, although Thwaites's equation extends the theory to apply to a porous sail where the

flow through the sail is proportional to the pressure difference across it. Moreover Thwaites found

solutions beyond the range examined by Voelz, in particular finding a range of solutions with zero lift

for a non-zero angle of attack. (These are the even eigenvalues of section 2.2.3). Nielsen (1963) [63]

independently completed a study similar to that of Thwaites based on Fourier series and numerical

matrix techniques rather than integral equations, and found that numerically his results were in good

agreement with those of Thwaites and Voelz. Nielsen also examined the three-dimensional problem,

and performed some experiments. The experiments largely agreed with the numerical calculations,

with errors being thought to be caused in part by porosity of the sail and boundary layer effects,

although Chapleo (1968) [16] argued that errors may have been caused by overestimation of the lift

due to camber. Barakat (1968) [4] studied the influence of the porosity of the sail and extended the

theory to a two-lobed sail, and Tuck & Haselgrove (1972) [97] considered the problem in which the sail

is not rigidly attached to the trailing edge but instead attached to a rope, or sheet, which is inflexible

and fixed at one end. They found that as the length of the sheet increases the lift decreases but the

stability of the sail increases. A three-dimensional linear analysis was completed by Nickel (1987) [62],

using the 'lifting line theory' of Prandtl (1918) [70].

A more general study, valid for greater angles of incidence than those of Voelz or Thwaites was

completed by Dugan (1970) [27] who used the behavioural model developed by Cisotti. This was a

non-linear free-streamline model, allowing separation of the flow at the trailing edge, assuming constant

tension in the sail. A non-linear singular integral equation was found and solved numerically, obtaining

the sail profile and the drag, lift and moment experienced by the sail, although the model breaks down

for small angles of attack. Vanden-Broeck (1982) [101] used a similar model to derive and numerically

solve an integro-differential equation for arbitrary angles of incidence. Jackson (1983) [48] considered

an extensible sail, and derived a non-linear equation for arbitrary angles of attack. Computational

procedures were also applied for a viscous flow with a Reynolds number of between 2 x 103 and 104

for elastic, inextensible, and constant tension sails, by Smith & Shyy (1995b) [82] for steady flow,

and Smith & Shyy (1995a) [81] for unsteady flow. Other unsteady analyses include that of Backer

et al (1991) [2], for the related non-linear problem of fibres fluttering in an airspinning process, and

that of Haselgrove & Tuck (1976) [45], who found that for a low-mass sail of infinite length there is a

critical value of the sail tension, with the sail being stable or unstable to small disturbances according

to whether the tension is less than or greater than the critical value. This work is the most similar to

that of this chapter, in that it is applied to a linear inextensible sail, and thus is an extension of the

equation derived by Voelz. However their work considered only a sail of zero mass, whereas the work

of this chapter will consider sails of finite length and finite mass, as well as considering the asymptotic

analysis as the sail length and sail mass tend towards zero or infinity. Their work also allowed vortices

13



to be shed from the sail, with a line vortex appearing downstream of the sail along the axis of the sail.

Although the models of Voelz, Thwaites, and Nielsen, and the equations derived, are essentially the

same, comparisons to the steady results will be made using the work of Thwaites (1961) [91] (henceforth

referred to as 'Thwaites'), as this is the most complete and detailed analysis of the theoretical steady

problem.

2.2 The Sail Equation

The sail equation, as presented by Thwaites, concerns the uniform two-dimensional flow of an inviscid,

incompressible fluid at low angle of incidence, a, past a porous, flexible, inextensible, thin sail of finite

length. It gives a singular integro-differential equation for the shape of the sail. Figure 2.1 gives a

schematic representation of the sail. Since the sail is taken to be of zero thickness, the flow just above

Figure 2.1: A Schematic Diagram of the Sail

the sail and the flow just below the sail will be parallel to the sail, so the sail contains no sources.

There will however be a net lift on the sail, so the sail may be modelled as a distribution of vortices

of strength 7(x), lying on the line

V = S(x), 0 < x < c,

where S(x) is small compared to c, so to lowest order the vortices lie on the a;-axis between x — 0 and

x — c. Let c5 be a measure of the size of S(x), leaving the question of how <5 relates to other variables

in the problem open for now. Then using the fact that the potential corresponding to a vortex of

strength 7 at the point (x',y') in thin aerofoil theory is 7arctan (frfr) , where 7 is small (of order

5), the velocity potential, $, may be written as an order S perturbation to the velocity potential of a

uniform flow Ux, in the form

= U(xcosa +y since)+ — j(£) arctan ( —— ) d£.
2?r JO \C, — x J

(2.1)

In order to relate j(x) to the shape of the sail S{x) it is necessary to compare the direction of the flow

just above the sail to that predicted by the potential. In order for this to be possible it is necessary to

define the porosity of the sail, a{x). Thwaites defined the porosity a(x) of the sail for the purposes of
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this problem by assuming that the velocity of the fluid through the sail in the y-direction is a(x)^y(x)

(the velocity in the z-direction through the sail may be ignored as it will be of the order of 5-y(x)).

The flow just above the sail will therefore be the sum of two components : the tangential term from

the fluid flowing over the sail, and the normal term from the fluid flowing through the sail. The second

of these terms is aj in the vertical direction and the first of these will be of magnitude U{1 + O(S))

with a slope of S'(x). Thus the slope of the total flow just above the sail will be

\imv/u = S'(x) + ?f, (2.2)

where u and v denote the velocities in the x and y directions. Since u = $x, v = $ y , the left-hand

side of equation 2.2 may be written as

Ua + (2n)~1 fc T^j-*) dC 4- O(n3)
lim v/u = lim _

y^ jj + (27r)_i jc T-^3Lpdt + 0(a
2)

The integral term in the denominator of this equation may be ignored, as it is of order S and thus

negligible compared to U. Thus after substitution from equation 2.2 the equation reduces to

and hence

- 4 ^
7T Jo £~

(2.3)

This equation relates S'(x) to j(x). In order to relate j(x) to S"(x) and thus obtain an integral

equation for S'(x) it is necessary to balance the lift on an element of the sail against the tension.

Consider an element of the sail with length 5s whose end-points are at (x, S(x)) and (x + 5x, S(x + Sx))

respectively. Comparison of forces in the ^-direction shows that 5T = 0 to lowest order. The y-

component of the tension force, FT, is given by

FT = (T + ST) sin(ip + dtp) - T sin ip, (2.4)

where ip is the angle that the sail makes with the horizontal, i.e. tant/> = Sx. This force FT must be

equal and opposite to the lift. The y-component of the aerodynamic force on the sail element, FA, is

FA = p-Ss cos ip — p+Ss cos %jj, (2.5)

where p- and p+ represent the values of the pressure just below and just above the sail respectively.

Hence p_ — P+, which will henceforth be denoted as Ap, is the lift at a given value of x.

This lift may be determined by Bernoulli's equation. The flow is irrotational and steady, so p +

±p(u2 + v2) will be constant throughout the flow, where p represents the pressure, and p the fluid

density. In particular

lim (p + -pq2) = lim (p + ~pq2), 0 < x < c,
J/-X3- I 2/-+0+ I

15



where q2 = u2 + v2 = u2(l + O(52)) from equation 2.2. From equation 2.1 the right-hand side of the

above equation is

Using the fact that ± i lim^o* 3,2+yg is the Dirac delta function, <5(a;), the following result is obtained :

lim u2 = U2 + 2U~ f ±*Y{t)ir6(x - f)d£ + o(7
2).

y->0± ZTT JO

It then follows that

Ap = pU-y(x).. (2.6)

This may be substituted into the expressions for the tension and lift forces, equations 2.4 and 2.5. As

the perturbation is small, tani/> is equal to ip to within order ip3, and in the limit as 6s tends to zero,

Ss/Sx = 1 + O(i>2). Hence the relationship between 7 and the aerodynamic force is

TS"(x) + pU-y(x) = 0. (2.7)

This confirms that j(x) is of order S as S'(x) = O(S). We can now write the 'Sail Equation' in

terms of S(x):

{ T^di = 2U{S'{X) ~ a) - wa{x)s"{x)- (2-8)
The boundary conditions are S(x) = 0 at x = 0 and x = c since the ends of the sail are fixed, and

the requirement that the Kutta condition is satisfied at the trailing edge, S"(x) = 0 at x = c. This

extra requirement is necessary due to the presence of the integral transform, whose inverse is non-

unique (see section A.2.1). The physical interpretation given by the Kutta condition is that there is

no separation at the trailing edge, so the flow re-attaches smoothly.

Henceforth it is convenient to work in terms of non-dimensional variables. In his original derivation

of the equations Thwaites scaled S(x) with ca, with the assumption that a is small. In other words,

the small parameter 5 was taken to be a. This implies that the length of the sail must only exceed c,

the distance between the ends of the sail, by an amount of order ca2, since the length of the sail is

given by the integral of the square-root of (1 + S'2). Thus Thwaites defined the excess length of the

sail, e, by denoting the length of the sail as c(l + e), i.e.

= / [1 + S'2(x))idx. (2.9)
Jo

With this definition, and Thwaites's scaling of S with a, e is of order (a2). Thwaites's variable £/c is

equivalent to e2 defined here.

The non-dimensionalisation used in this analysis, therefore, will scale S(x) with ce^, so the small

parameter 6, will be ei. (Note that since this analysis is only to first order in e^, all terms of order

e will be negligible). There are several advantages to this scaling. The first of these is that since it is

desired to progress from Thwaites's steady equation to a new, unsteady, equation, it makes sense to
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re-scale with a parameter that will not be dependent on time. Although an unsteady system could

be considered with a sail of varying length, but a fixed angle of attack, this is considered unrealistic

and a sail with a fixed length and a variable angle of attack will be considered in the sections on the

unsteady sail equation, from section 2.3 onwards. Furthermore even in the steady case it is preferable

to scale with e= rather than a, as it allows a to be zero, or, equivalently, much less than ei. Thwaites

found the sail shapes corresponding to a = 0, but considered them to be "meaningless" as a result

of his choice of scaling. Using the same scaling, Chambers (1966) [15] interpreted the same solutions

as being the free modes of a flag (for a discussion of how the sail equation relates to a flag, see

section 2.9). In addition it is shown in section 2.7 that for both the steady and unsteady equation,

with this choice of scaling there is no requirement for a to be of order e?, although a must be small

for the sail to represent a small perturbation to the free stream. The non-dimensionalisation used

henceforth is therefore given by :-

x = ex*,

y = ce*y*,

D{X) — Ce^D {X J,

_ 2£Pc
A - - y - ,

a(x) = a*(x*),

a = e5a*,

if) = e^S*'(x*).

In terms of these variables equation 2.8 becomes

_ ! _ / 5 * & M = \{S*'(x*) - a*) - 2a*(x*)S*"{x*), (2.10)
Wo (S-z*)

with boundary conditions, as before, 5*(0) = 5*(1) = 0 and S*"(l) = 0. There is now a further

condition, which enables A to be determined, namely that the scaled excess length is unity. From

equation 2.9 in non-dimensionalised co-ordinates this may be written as

1 = i / S*' (x*)dx* +o(e). (2.11)
2 Jo

This condition will be referred to as 'the length condition' and is important to both the steady and

unsteady cases.

Henceforth the sail will be taken to be non-porous (a = 0), for simplicity. Equation 2.10 may also

be inverted by the methods discussed in section A.2.2 to give

(

o

*"(Here the inversion has been chosen in order to give 5*"(1) = 0 .
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2.2.1 Lift

Solution of the above equations give the sail shape, S*(x*), and the tension parameter, A, for a given

ratio of angle of attack to excess sail length, a*. From this other features of the flow may be deduced,

for example the velocity just above and below the sail, the pressure coefficient at each point, the total

lift on the sail, and the load on each mast. Of these, the total lift is the statistic of most interest in

both the steady and the unsteady problem. It may easily be calculated in terms of S, by observing

that the pressure difference across the sail at a given value of x* is given by equation 2.6, and that

the total lift is just the integral of the lift at each point over the sail. Hence, combining equations 2.6

and 2.7,

Total lift = / Apdx
Jo

= / pU-y(x)dx
Jo

r ,
= — T I ip dx

Jo

^ (2.13)
A

The force on each mast may also be calculated, by considering an element of length dx at the end

of the sail. Since, in this linear model, to lowest order all forces are horizontal, with the tension, T,

being constant, the horizontal force on each mast will be a force of magnitude T (i.e. 2pU2cX~1)

inwards. In the vertical direction the force on the mast will be the same as the vertical component

of the tension, which is Tip, and so, in non-dimensionalised co-ordinates, the force on the leading

mast will be 2pt/2cA""1e5S'*'(0), and the force on the trailing mast will be -2pU2c\~1e^S*1 {I). This

confirms the expression for the lift given by equation 2.13, and moreover, since the expressions for the

force on each mast will be the same for an unsteady sail, this demonstrates that equation 2.13 will be

valid for an unsteady sail.

2.2.2 Numerical Solution of the Steady Equation

Voelz, Thwaites and Nielsen solved the sail equation in the form given by equation 2.12, for a given

A, by similar methods. The transformation 2x — 1 - cos 9 was used and the solution was assumed to

be given by Fourier series. Here, however, a finite difference method will be used, as this will also be

appropriate to the unsteady equation, and the slot equations which are derived in chapter 5. In the

form given by equation 2.12 there are two singularities : the (f — a;)"1 singularity in the integrand

at £ = x*, and the square-root singularity at x* = 0. However integration with respect to x* will

remove the latter of these, and weaken the former to give a logarithmic singularity, which will pose
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no problems numerically. Since equation 2.12 gives, using equation A.8,

" ' n x*h J o ( 1 -
it follows from integration with respect to x* that

(2.14)

arcsmin y/x* — log

— Aa* [ arcsin\/x*' + Vx*y/l — a;* J + ipo-

Here, ^o is a constant, which is determined from the condition that 5* is zero at x* = 0 and x* = 1.

The values of 5*' at & will therefore be denoted by ipi for 0 < i < n, where the & are a mesh with

£i = i/n, and n + 1 is the number of points. With this notation the above equation becomes

n - l

for 1 < i < n — 1. Here, /(£, a;) is given by

= 2 arcsin i/a? — log
1 - e

£, x) = 2 arcsin \fx arcsin — ^arcsin \/x" + 2\fx\J\ — x arcsin

via some simple, although rather long-winded, algebra. Hence a matrix equation for the variables

is obtained, for 0 < i < n — 1. The system is closed with the equation
n - l

= o,

corresponding to the fact that the sail is fixed at both ends. The matrix is singular only for values of

A corresponding to a* — 0. In this case an extra condition is required to solve the matrix equation.

Although this condition is the length condition, it is not possible to explicitly enter this into the

matrix equation, as it is non-linear, so the solution may be found by imposing, S*' = 1 at x* = 0, say,

and then re-scaling.

The matrix equation is solved for a given A. This gives a solution, ip = S*'. This may not satisfy the

length condition, equation 2.11. However, since the equation to be solved, equation 2.14, is invariant

under the transformation (5*, A, a*) ->• (kS*,\,ka*) it follows that a scaled solution which does

satisfy the length condition will be a solution for some a*. In fact if the above scheme is solved for a

given A, with a* set to 1, for example, then the correct value of a* corresponding to that A is given

/=X=
1 f
2 JO2 JO

a
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Thus a plot of A against a* may be drawn, and is shown in figure 2.2, with the broken line representing

the asymptotic behaviour of A for large values of a* (see section 2.2.4).

lO-i

Asymptotic Solution

Figure 2.2: Calculated Values of A Plotted Against a*

The error in this scheme is the error in evaluating the integral of I^tp. Since the approximation

made is that ip is constant on the interval (£*, £fc+i), the error will be of order I^tp'Sx, where 5x is the

difference between mesh points. Since I^ip' is order 1 everywhere, the error in this scheme is 5x~x,

i.e. n~l.

One interesting feature of the solutions is that for a given sail length and angle of attack, more than

one solution is possible, each corresponding to a different value of A. For example with a* = 0.4, A

may be 1.92866,2.82537, or 6.08502. (These values were obtained using the above numerical scheme

with 200 mesh points). The corresponding sail shapes are illustrated in figure 2.3. The next section

will go on to discuss this phenomenon, and how it relates to the eigenvalues of the problem.

2.2.3 Eigenvalues

A relationship between A and a* was determined from the numerical calculations described above

and was expressed in figure 2.2. The obvious feature of this graph is that the relationship between A

and a* is not one to one. To place this into context it is necessary to examine the existence of the

eigenvalues of this problem, defined by the values of A for which there is smooth separation at the

leading edge, as well as the trailing edge.

Using the result given by equation A.8, equation 2.12 may be written

rl £^S*'(£) / l — x*
/o
f
Jo

(2.15)

Consider the behaviour of S* near x* = 1. The a* term suggests that 5*" ~ (1 - x*)i, which in

turn suggests that 5*' will analytically tend to a constant (which in general will be non-zero) so the

coefficient of (£ - a;*)"1 will have a square-root singularity. Thus, according to equation A.12, the

20



-0

Figure 2.3: The Three Sail Shapes for a* = 0.4

integral transform will tend to a constant, and so both terms on the right-hand side will asymptotically

tend towards a multiple of (1 —x*) 5. Since there is no reason for these terms to be equal the asymptotic

behaviour of S* near x* = 1 will be given by S*" ~ K(l — x*)5, for some constant K.

Near x* = 0, by similar reasoning, 5*' will tend to a constant, so from equation A.12 the singular

integral will tend to a constant. Thus both terms of equation 2.15 will exhibit square-root singularities

at x* = 0. Hence as x* tends to zero,

A i f1 s"(t
7T J0 £ 2 ( 1 — ,

(2.16)

Therefore there will almost always be a square-root singularity in the second derivative of S* at x* = 0,

of which the strength is given by this equation. Note that the above equation does not imply that

this singularity is proportional to A as the sail shape S*(x*) exhibits a non-linear dependency on A.

This singularity corresponds to non-smooth separation at the leading edge. However it is found that

for certain discrete values of A, i.e. certain values of a*, the strength of the singularity given by the

above equation will be zero, so there is smooth attachment at the leading edge. These values of A are

the eigenvalues of the problem, and for these values S*"(0) = 0.

These eigenvalues will be denoted by A», with corresponding eigenfunctions S*(x*), i = 1,2,....

The values of these eigenvalues may be found numerically. Equation 2.16 shows that any solution of

the sail equation for which S* is symmetric about x = \ will be an eigenfunction for the case when

a* = 0. The eigenfunctions Sl{x*) corresponding to odd values of i turn out to be symmetric about

x = -, whereas the eigenfunctions corresponding to even values of i are antisymmetric about x = \,

ie S*(x*) = (-l) i+1S'*(l - x*) for all eigenfunctions 5*. Thwaites obtained values for the first

six eigenvalues, as shown in the table below, and these were confirmed by the numerical calculations
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detailed in section 2.2.2.

Eigenvalues 2.316
A3

5.507 8.635

A4

11.78

A, Afi

14.93 18.08

The solutions of the equations for other values of A were also evaluated numerically, and another

feature that becomes apparent is that the solutions are wholly concave only when A < Ai. In general

for Xi < X < Aj+i the solution y* = S*(x*) will cross the z-axis i times between 0 and 1. Thus Si(x*)

is the only concave eigenfunction, and there are no concave eigenfunctions when a* ^ 0. Furthermore

for any value of a* there will be a solution with A < Ai. This puts the condition, observed by Thwaites

and others, that a concave sail will only occur in the region A < Ai into perspective, as a concave

solution exists for all values of a*. Furthermore this is the only solution for a* > a j , r a , where ot*max

was found to be 0.971. This is consistent with the intuitive expectation that concave sails are those

most commonly experienced in a steady flow.

The property of integral transforms given by section A.3 is also of relevance to this equation,

although in order for it to be applied the singularity in ux* must be subtracted out. Hence it is best

to consider a function u defined by

S*. =u(x*) + 2Ky/{x*{l-x*)},

where K is the strength of the singularity given by equation 2.16. Note that the Hilbert transform of

the derivative of yj{x*(l - x*)} may easily be evaluated by use of equation A.8. Substitution of the

definition of u into equation 2.10 therefore gives

_ I 1 _H«—d£ + 2K = A (« + 2K^{X*(1 - x*)} - a*).
7T JO i~X*

As ux has no singularities, it will satisfy the requirements for equation A.10 to hold, so multiplication

of both sides by ux* and integration from 0 to 1 yields

(2.17)2K(U(1) - u(0)) = A (\u\\) - \u\$) + 2K f ux.y/{x'{l - x*)} dx* - a> ( l ) -
\2 2 Jo

This provides a useful check on any numerical results obtained, and is particularly interesting when A

is an eigenvalue, for in this case K is zero. From the above equation it follows that if K is zero, either

u(0) = u(l) or u(0) + u(l) = 2a*. Recall that from the definition of u, if re = 0 then u = S*,, and

from equation 2.13 that the lift is proportional to u(l) - u(0). The solutions for 5* corresponding to

the odd eigenvalues are symmetric about x* = | , so u(0) = -w(l), so these will correspond to the

case where w(l) + u(0) = 2a* = 0. The even eigenvalues give antisymmetric solutions so u(l) = w(0)

in this case. From equation 2.13 it follows that the lift is zero for any sails with non-zero angle of

attack and smooth separation at the leading edge, but for sails with zero angle of attack there will be

a non-zero lift.
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2.2.4 The Sail Shape for Large Angles of Incidence

For small values of the tension parameter, A, sometimes referred to as the Weber number, the function

S(x) will be of order A and so equation 2.10 may be reduced to

(2.18)

This may be solved to give a solution for S*'(x) in the limit as A -> 0, by the methods detailed in

section A.2.3, bearing in mind that the solution must be chosen so that S*" = 0 at x* = 1. Hence

-^ - arcsin Vx* - Vx*s/l - x* ) ,
8 /

(2.19)

and from this S* may be found, see figure 2.4.

0.7

Figure 2.4: The Sail Shape Under Large Tension

Since, according to the length condition given by equation 2.11, S*' must be order 1, this gives that

a* A must be order 1. Hence for a given sail length, this case, where the tension is high, corresponds

to a high angle of incidence, or more precisely, to a high value of ae~i. The formula obtained by

substituting the above expression for 5*' into the length condition is

= 2 (2.20)

for large values of a*. The corresponding lift will follow from equation 2.13 to give

64 3

(2.21)
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2.3 An Unsteady Formulation of the Sail Equation

Thwaites's sail equation deals with a uniform flow at constant incidence a to a light, inextensible,

porous sail. A more realistic case is when the angle, a, is a function of time. This will lead to a sail

shape, y = S(x,t) which will be dependent on time. This case has not previously been examined for

a sail with non-zero mass. For simplicity the porosity of the sail will be taken to be zero, although it

would not be particularly difficult to extend the analysis below to include the effects of porosity. The

velocity potential for the flow, $, will be similar to that for the time independent case, i.e.

$(x,y,t) = U{x cos a(t)+y sin a{t)) + -^--f 7(£,i) arctan ( —^— ) d£, (2.22)
w J ^XJ*" Jo V? ~ * J

where, as before, 7 is the vortex strength at a given point on the sail, and c is the distance between

the two fixed ends of the sail. As before the length of the sail is given as c(l + e), thus defining the

small parameter e. The condition that the sail is a free boundary is

— (y-S(x,t)) = 0, (2.23)

which reduces to

l ^ + fi.
Substituting $ from equation 2.22 gives

fC l M r f ^ (2.24)

where, as in the steady case, a is assumed to be small, and terms of order a2, i.e. e, are ignored. All

working is performed to order e5, i.e. to order a.

In the steady case, 7 was related to S"(x) by the condition that the tension in the sail had to

balance the lift given by the vortex 7, i.e. the pressure difference above and below the sail. In the

unsteady case this is no longer the case since the sail is moving, so the equation becomes force = mass

x acceleration. Using the notation of the steady sail, section 2.2, this equation applied to a finite

element of the sail is

FT + FA=p'Ss^, (2.25)

where p' is the mass per unit length of the sail. As before, the tension force, FT, is given by equa-

tion 2.4. Bernoulli's equation will now include a time-dependent term, so it will be necessary to find

Ap, and hence FA, from the unsteady Bernoulli equation in the form

lim ($t +p+ \pq2) = lim (*t +P+ T;P12)- (2-26)
y->0+ I 3/-+0- I

This may be written in the form
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It is easiest to consider the three terms separately. Equation 2.22 gives

*t = Ua'(t)(ycosa-xsina) + — 4 -yt{£,t) arctan ( — — ] d£. (2.28)

^ Jo \t.-xj

The first term in this equation will be continuous over the boundary y = 0. The integrand in the

second term will also be continuous except at f = x. However this part of the integral will not

contribute to equation 2.27 since

lim -/ arctan ( —^— | df = 0.

The pressure term in equation 2.26 will just be [p]°_ which is -A p. The third term will be pUj(x, t)

as evaluated in the steady case. Thus equation 2.26 becomes

Ap = pU-y(x,t).

This may be combined with equations 2.4, 2.5 and 2.25 to give

p'Sufis = Tcosipdip + pU-ycosipds,

and hence, in the limit as ip tends to zero,

pUj(x, t) + TSXX = p'Stu (2.29)

This gives us an expression for 7 which may in turn be substituted into equation 2.24 to give the time

dependent sail equation,

The boundary conditions will be the same as those of the steady case, namely 5(0, t) = 5(1, t) = 0,

since the ends of the sails are fixed, and the Kutta condition 5"(1, t) = 0. As expected, with all time

derivatives set to zero, the steady sail equation, equation 2.8 is recovered.

This may also be expressed in non-dimensional co-ordinates defined similarly to those of the steady

equation :

x = ex*,

S(x,t) = ce^S

2pc

f> = J[-£r.
a(t) =
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In these co-ordinates equation 2.30 becomes

- 4 - ^ 7 : r^-dC = fJ.(SL + S* - a*it*)), (2.31)
xJo € -x*

with the boundary conditions S*(l,t*) = S*(O,t*) = 0 and S*.x.(l,t*) = 0. The initial conditions

necessary are the values of 5* and St*. at t* = 0, say. The equation is dependent on two non-

dimensional parameters, \i and j3. (The parameter A = 2p^ c in the steady sail equation is equal to

fif3~2 in this notation). Of these, /i is dependent only on the initial conditions given and will clearly

be constant in space and time in this model. However it is not immediately obvious that the tension,

T, of the sail will be a constant over time, although it is a constant over x to first order, since shearing

forces are neglected. The value of T, and hence /3, must be chosen so that the solution of equation 2.31,

S(x,t), has constant length, as before, as given by the length condition, equation 2.11. Therefore a

complete solution for S*(x*,t*) for a given j3 will not be a physical solution (i.e. a solution which

conserves sail length) unless that solution satisfies equation 2.11 for all values oft*. This may not be

possible for constant values of (5 and so the tension, /3, must be considered as a function of time.

The condition that the length be constant is not the only condition that could have been chosen.

For an extensible sail, a linear relation between excess length and tension could have been used, for

example

where A; is a constant, measuring the inextensibility of the sail, and £o is the length of the sail under

zero tension. In this case, the constant length condition is equivalent to having k infinitely large.

2.4 Similarity Solutions

If is often useful to find similarity solutions to partial differential equations. Power-law similarity

solutions will exist for an equation in a function S*(x*,t*) if there exist 7 and 6 such that the

equation is invariant under the transformation

{x*,t*,S*) >—* (kx*,k'1T,ksS*).

Consider the effect of such a transform upon the singular integral in the unsteady sail equation

(equation 2.31), writing the integrand as /(£,£*), and denoting {x,t,J) as {kx*,k^t*,k5f). The

resulting expression will be

o Z-x* Jo

where the substitution f = ku has been made. Immediately it may be seen that the resulting expression

will not be of the same kind as the original expression as the upper limit of the range of integration

has changed. Hence there can be no power-law similarity solutions to a partial integro-differential

equation with a finite range of integration, although it will be seen in section 8.2 that such solutions
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do exist in the slot injection problem, where the range of integration is semi-infinite. However for the

unsteady sail equation it is possible that more complicated similarity solutions exist, although none

have as yet been found.

2.5 An Unsteady Sail of Low Mass

The unsteady equation given above, equation 2.31, is dependent on three dimensionless parameters :

a*, the angle of incidence, /?, the tension, and /u, an inverse measure of the mass of the sail. Of these

the choice of (3 is governed by the length condition, so for a sail of a given length the shape will depend

on only two parameters : a* and /x. Consider the case where the mass of the sail is low, i.e. fi is large.

Dividing the unsteady sail equation (equation 2.31) by /i gives

— 4
l Q* _ f)2q*

(2.32)
4* - x*

which, assuming that 0 remains order 1, suggests that the right-hand side will tend to zero for large

values of [i. However this is incorrect since the equation

has the general solution

S* =f{x*-t*)+ / a*(r)dT,
Jo

where / is an arbitrary function. Defining A(t*) such that At* = a*, there will be a solution which

satisfies the boundary conditions S*(0) = 5*(1) = 0 if and only if

A(t - 1) = A{t),

which will not in general be the case. However for periodic functions A, i.e. periodic functions a*,

with period 1, it will be possible to obtain solutions which will have a finite tension. Note though that

there is another condition on a* created by the length condition, for this type of solution to exist,

namely that f
o

For example, if a* = 2cos2n?ri*, then the function

S(x* t*) = — (sm2mr(x* - t*) + sm2mrt't) (2.33)
v nix

will be a solution and will satisfy the length condition for all integer values of n. Functions a* for

which such solutions are possible may be thought of as eigenfunctions. Fig 2.5 shows a plot of this

solution for n = 1, with t* taking the values 0,0.2,0.4,0.6,0.8. The solution is periodic with period 1.

Note that the attachment at the leading edge will be smooth for all t*. Since equation 2.33 implies

that S*. will take the same value at x* = 0 and x* - 1 it follows that for these sail shapes the lift

will be zero, from equation 2.13.
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Figure 2.5: A Low Mass Sail Shape, With Order 1 Tension

For functions a* that do not satisfy this condition, or are not periodic with period 1, a solution

will not be possible with the above assumptions for large fi. This is because the assumption that j3

remains of order 1 is dangerously naive, particularly bearing in mind the dependence of the tension on

the angle of incidence in the steady state problem (section 2.2.4). Hence in general for large values of

H it is reasonable to assume that ft2 will scale with /x so that only the S*,t, term will become negligible

in equation 2.32 to give

_ i a2_ f
7T (1 Jo -X*

(2.34)

with the usual boundary conditions. Note that there is only one 'independent' non-dimensional

parameter, as the parameter &- must be chosen such that the length condition is satisfied. The

requirement that /?2 scales with // is not a surprising one, since physically (52 is a measure of the

tension in the sail, and pi, being a measure of the relative densities of the sail and of air, is a measure

of the relative importance of inertia to aerodynamical effects. For a sail with low mass inertia is

relatively unimportant, and so only a high tension can act to balance the aerodynamical effects.

Furthermore in the steady problem it is only the ratio of pi to /32 which is important. The numerical

solution of the above equation is considered in section 9.9.

The above analysis has assumed that a* remains of order 1. For a sail of low mass with a high angle

of incidence (i.e. high (i and high a*) the a* term dominates the right-hand side of equation 2.34,

requiring that /32 = 0{y.a*) and giving essentially the same equation as that for the steady state

solution for large a*, namely

o £*
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which will have the same solution as that for the steady state solution for large A given by equation 2.19.

2.6 An Unsteady Sail of High Mass

For a sail of large mass per unit area, p will be small. For order 1 values of a* in the limit as fi ->• 0,

the right-hand side of equation 2.31 will tend to zero and so the Hilbert transform of St*,t» - [i2S*x.x,

will be zero. This means that 5t*,t. - fi2S*,x, must be a constant multiple of x*~? (1 - x*)~i, and

from the Kutta condition, Sx»x* = 0, it follows that

S;.t. - f32S*x,x, = 0, (2.35)

with the usual boundary conditions and the length condition. Note that in general it would appear

that (i will be order 1, since although the aerodynamic effects are now negligible, the inertia effects

will be order 1, and thus the tension will be order 1 to balance this. In effect this is the wave equation

with a non-constant velocity, caused by the requirement that the tension varies in such a way as to

preserve length. In other words, the sail behaves like a string under non-constant tension, with the

length being fixed not only on an order 1 level, but at the level denned by the perturbations of the

string.

One immediate aspect of this equation is that unless fi is zero there is no steady solution which

satisfies both the boundary conditions and the length condition, so the sail will always be in motion

for non-zero fi.

To analyse this equation further, this equation may be posed in such a way as to make the coefficients

of the highest derivatives constant by the introduction of a variable r defined by j ^ = fi, recalling

that fi is a function of time. This reduces the equation to

s;T + 7(r)s;-s;.a . =o,

where 7(1-) = ppj- If T(r) is denned by V = 7, and S(X*,T) by S = e2 rS, then the first derivative

in t* may be eliminated to give

STT-SX*X. +7(^)5 = 0,

where 7 is defined by

7 1 ( 2 7 ' ( T ) + 7 2 ( T ) ) .
4

Although a solution to this equation may be found for given functions 7, using a Riemann function,

for the purposes of this problem 7 is unknown, and must be determined by the length condition.

With this in mind, the fact that the boundary conditions are 5(0, t*) = 5(1,**) = 0, suggests the

use of separable solutions. Returning to the form suggested in equation 2.35, solutions of the form

Xlx*)T(t*) must all satisfy
X" 1 T"
- ^ = ^ ^ r = constant.
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From the boundary conditions it follows that X(0) = X(l) = 0 and so the constant in the above

equation must be negative, giving solutions for X of the form Xn = sin nirx* where n must be an

integer. Since only linearly independent solutions need be considered, attention may be restricted to

positive values of n. The corresponding Tn are the solutions of

T" = -n2iT2/32T, (2.36)

which implies that Tn(t*) = T\{nt*). By multiplying both sides by 2X", this may be written

_lL(J"2\ _ _ 2 2o2 d rp2
dt* dt*

If (3 is now considered as a function of T, an implicit solution may be found,

t* ~ t*0 = f dTl (2-37)
Jo

where T\ and Ti are variables of integration and A and t% are arbitrary constants. These constants

may be determined by the initial values of T'n and Tn. Without loss of generality Tn(0) may be defined

to be one. However since separable solutions cannot satisfy the length condition, it will be necessary

to consider linear combinations of separable solutions to find an expression for the shape of the sail.

For this reason the idea of considering /3 as a function of T is undesirable, since the above equation

defines all the Tn, and (3 will have to take the same value for all Tn at any given time.

Any function of the form J2 anXn(x*)Tn(t*) will automatically satisfy equation 2.35 and the bound-

ary conditions. The an may be determined by the initial conditions, bearing in mind that Tn(0) = 1, so

the an will in fact be the coefficients of the Fourier sine series for S(x, 0). However to determine /3 the

length condition must be applied, bearing in mind that the Tn depend on f3 according to equation 2.36.

Applying the length condition, and recalling that Xn - sinn-nx*, and that Tn(t*) = Ti(ni*), gives

dx* = 1,

2

1 Cs2

2 Jo \

2 Jo \n=l " /
/ oo \ 2

- j I V^ niran cosmrx*Tn(t*) j dx* = 1,

n = l

where use has been made of the usual orthogonality relations between the functions {cosnTra;*} when

multiplying out the bracket to eliminate the cross-terms. This immediately shows that there will be

no solution with constant /3, since in this case Ti(t*) = sin/̂ Tri* and the series becomes a Fourier

sine series, which cannot identically equal 1. (It also shows that, since X is a Fourier sine series, it

must be odd). Furthermore it seems reasonable to expect that, for most choices of an (which depend
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only on the initial conditions) there will be no possible /3 which will give 7\ so as to satisfy the above

equation, and hence the length condition. Clearly something is wrong with the assumptions made,

and again it must be that the assumption that (3 is order 1 that is flawed. Hence in the absence of

aerodynamic forces there will not usually be a balance between the tension in the sail and inertia,

and the sail will remain in steady state. This is clear for an initial value problem with zero initial

time derivative, since as long as the initial value of S, S(0)(z*) satisfies the length condition and the

boundary conditions, it will give a solution for S for all values of t* as long as 0 = 0. If the initial time

derivative, Sw(x*) is non-zero, then the motion will remain linear, with 5 = S^ + t'S^, as long

as the length condition is still satisfied, and then there will be an impulse in the tension parameter (3

which will either stop or reverse the motion. In section 2.8 it is shown by energy considerations that

the motion will be reversed.

Naturally since the aerodynamic forces are negligible the size of a* is no longer relevant, unless

it is sufficiently large that a*\i is order 1. In this case, from equation 2.31, and using the result of

equation A.8, the sail equation becomes

x*

with the usual boundary conditions S* = 0 at x* = 0 and x* = 1 and S*«x, = 0 at x* = 1. The

tension therefore cannot be zero. This can be seen either by considering the length condition, or the

behaviour near x* = 0. In fact the solution will be the same as that for a large angle of incidence

with an order 1 value of /x, as considered below, i.e. with the sail shape, S*, being constant, and /32

scaling with a*/j. The reasons why this is so are discussed in the next section.

2.7 Large Angles of Incidence

Although a must be much less than one to satisfy some assumptions made in the derivation of the

unsteady equations, there is no reason why a* (defined by ae~~?) should remain order 1. The behaviour

for large a* when fi is large or small has been discussed at the end of the two preceding sections. If [i

is order 1 then in order for equation 2.31 to balance, 01 must scale with a*, and all other terms will

become negligible leaving

Hence there will be a quasi-steady solution, which will be the same as the solution given by equa-

tion 2.19 for a high tension (or, equivalently, high angle of incidence) sail in the steady state case of

section 2.2.4. Furthermore, since the solution of the above equation will scale with /xa*/3~2, the length

condition implies that this must be constant, and so 01 will vary in proportion to a*, and 5* will in

fact be completely independent of time. By comparison with equation 2.20 it follows that

- - . (2.39)
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Physically this is because a high relative angle of incidence implies a high tension. (It also implies

that the aerodynamic force on the sail is dominated by the uniform part of the flow, and not by the

aerodynamic lift forces caused by the interaction of the sail with the flow). Hence the inertia of the sail

becomes negligible relative to the forces on it and the equation of motion becomes a balance between

the tension and the uniform part of the flow. Since there is only one sail shape which provides the

right balance for this, this shape will remain constant as long as a* is much greater than unity, even

though a* may vary with time.

2.8 The Energy Equation

In order to discuss the energy of this system it is convenient to re-write the unsteady sail equation of

equation 2.31 in terms of two variables, which yields

S*t,t,-{12S*X,X, = w(x*,t*), (2.40)

*7 f V d r = s;.+s;.-a*. (2.4i)
n Jo £ ~ x

Since the first of these equations is essentially Newton's second law, with j representing the aerody-

namic force and the S*,x, term representing the force due to the tension, integration over the distance

travelled in the direction of the force will give an expression for the energy of the system. Since the

force is in the y direction the distance travelled against the force, for a given x* is given by dS*

evaluated at fixed x*, i.e. S*,dt*. This suggests the idea of multiplying equation 2.40 by St* and

integrating over time, to give an expression for the energy at a given value of x*. To obtain the total

energy this must be integrated with respect to x* between 0 and 1. On multiplying equation 2.40 by

St* and integrating over x* the following result is obtained :

Of these the first term clearly corresponds to the kinetic energy of the sail. The integral in the second

term may be integrated by parts to give

S*x,t,Sx,dx* = 0 - A Q £ S*x,
2dx^ = 0,

observing that 5 t . is zero at both ends of the sail, and that the length condition means that the

integral over (0,1) of S%» is constant. Since this integral corresponds to the work done by the tension

force on the sail is it not surprising that this will be zero if and only if the sail is inextensible, since an

extensible sail could store energy. Thus the energy equation becomes a balance between the kinetic

energy and the energy obtained from the aerodynamic lift. Therefore it remains to evaluate the

contribution to the energy from the aerodynamic lift. It is possible to express this in terms of S* only,

but this does not provide any particular insight into the problem for order one values of /i, so for an
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inextensible sail it is more convenient to write the energy equation as

d (\ rl

ySt.dx*. (2.42)

However in the case where fi was taken to be small, in other words the high mass sail, the energy

contribution from the aerodynamic force, which is proportional to fi, will also be small, and so only

the kinetic energy term remains from equation 2.42, so it must be zero. Hence the kinetic energy of

the sail is constant in the limit as // tends to zero.

In the case where \x is small but a* \i is order 1, an expression for the energy may again be obtained,

since in this case equation 2.41 becomes

i / -rid*)
— r ~~z dt = —a ,
" Jo s ~ x

giving 7 = a* J^f- (see section A.2.3). Hence the energy equation, from equation 2.42 is

This shows that the sail may gain or lose kinetic energy in some cases, and in particular that if S^ is

of the same sign for all values of x*, then the sail will gain kinetic energy if this sign is the same as

that of a*, and will lose kinetic energy if this is the opposite sign. This is the expected result, that

a sail moving against the cross-flow will be doing work against the cross-flow and therefore will lose

energy to it.

2.9 A Flag Flapping

A natural extension to the sail theory discussed above, is the question of the behaviour of a light

inextensible membrane fixed at one end only, in effect a flag. It would appear that the only difference

between a sail and a flag will be that the boundary condition that the trailing edge is fixed, 5*(1, t*) —

0, will now be removed. However it should also be noted that the removal of this condition means

that the sail is no longer required to deviate from the :r-axis by only a small, order e5, amount, as

was the case with the sail.

The flag will be modelled, as the sail was, by a line of vortices. The scaling of the perturbation of S

from the z-axis, will still be made with cea, where it is now assumed that a = O(e5). However since

the trailing edge is free, the tension must be zero at this point. As the tension is constant, for the

same reasons as in the sail problem, this implies zero tension throughout the flag. This would appear

to contradict observations, however this condition only applies to a linear flag, and the ordinary flags

one sees, flapping with tension in the flag, are clearly non-linear, since they deviate significantly from

being a straight line. For a non-linear model of a flag, the reader is referred to Backer et al (1991) [2],

who consider the industrial problem of artificial fibres in an airspinning process. Hence the equation

for the flapping of a flag will be the unsteady sail equation, equation 2.31, with @ — 0. Note that since

33



the flag has no preferred alignment, the initial angle of incidence of the cross-flow to the flag may be

set to zero without loss of generality. Thus the flag equation is

1 f1 s;.t.
~j JT-^^ = M ^ . +S;. -a*(f)), (2-44)
n Jo C ~ x

with boundary conditions S*{0,t*) = 0 and Sx*x.(l,t*) = 0, and initial conditions on 5* and St*. as

before, with a* given. Since this now involves only first order derivatives in x* these will be sufficient

boundary conditions, and this gives a closed system, with the only parameter, fi, known a priori.

Clearly the steady solution, corresponding to a and all t*-derivatives being zero, will be 5* = 0, so in

a steady flow the flag will merely align itself with the flow. This is not surprising as the flag has no

tension, and in the unsteady case it is only the inertia of the flag that prevents it from being aligned

with the flow.

The length condition, equation 2.11, which was of such importance with the sail equation, will also

be replaced. This is partly because there is no 'excess' length as before, since the length of the flag is

the only length in the problem. In the sail equation the non-dimensionalisation was made with respect

to c, the distance between the ends of the sail. Since the distance between the ends of the flag is not

known, in the flag problem the non-dimensionalisation must be made with respect to the length of the

flag, which in this problem will be denoted by I. This does not affect the equations derived, since to

lowest order the length of the flag, or sail, and the distance between its ends, are the same. However

it does appear that the length condition, equation 2.11, is violated, since in the steady case, with S

being zero everywhere, the excess length is zero, but as soon as 5 is not zero the excess length will

increase. This anomaly occurs because the distance between the ends of the flag will decrease when

5 deviates from zero, and so the correct dimensional expression for the length is

£ = / (1 + Sxfdx,

where c is the x co-ordinate of the end-point of the flag. Using the same scalings as with the sail

equation, this gives

c+-el S*x,
2dx*=£

2 Jo
and hence £ - c is order e. The substitution K = ^ p into the above equation gives, to lowest order,

£ / S1*. dx* = 2K,
Jo

from which K, and thus c, may be evaluated, if desired. Although in theory this shows that all the

integrals in the flag equation are not from 0 to I, but from 0 to c, or in the non-dimensionalised form

of equation 2.44, not from 0 to 1 but from 0 to 1 - K, this does not affect the equation since to lowest

order these expressions are the same. Thus there is no length condition analogous to that of the sail

equation.
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The absence of a length condition facilitates the stability analysis, as the problem is now linear.

Furthermore, solutions may be sought of the form S0(x*)eiwt*. Substitution of this into the flag

equation (equation 2.44) for a* = 0 gives the ordinary integro-differential equation

x*)), (2.45)
71 Jo s ~ x

with the boundary condition 5o(0) = 0. This is then an eigenvalue problem for LU, with the solutions

So corresponding to the modes of a napping flag in a uniform steady cross-flow.

However it is the unsteady sail equation for order 1 sail masses which is of most interest. Since no

analytical solutions have been found for the steady equation, it seems likely that it will be difficult

to find any for the unsteady equation, and none have as yet been found, except in the limiting cases

described above. However, it is possible to solve the unsteady equation numerically, and results will

be presented in chapter 3.
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Chapter 3

Numerical Solution of the Unsteady
Sail Equation

The unsteady sail equation is a singular partial integro-differential equation. There are few examples

of such equations being solved, the most notable exception being the Benjamin-Ono equation (see

section 8.3). It is hoped therefore, that solving the unsteady sail equation numerically will provide

insight into the general problem of singular partial integro-differential equations, as well as being of

interest in their own right.

The unsteady sail equation was derived in section 2.3, and for a sail of order 1 mass, where the

scaled angle of incidence was order 1, was given by equation 2.31, namely

1 f Su-mSu = ̂ ^ +St_
ft Jo ? - x

with the boundary conditions S(0,t) = S(l,i) = Sxx(l,t) = 0 and the system closed, to permit

evaluation of the unknown parameter /?(£), by the length condition

\ f S2
xdx = 1.

1 Jo
(3.2)

Note that for the remainder of this chapter the asterisks used to denote non-dimensionalised variables

have been omitted.

In principle this should be a tractable problem, since equation 3.1 may be inverted to give

(3.3)

an equation in which the singular integral transform affects only the first order derivatives, and so in

the highest derivatives the equation is merely a second order hyperbolic partial differential equation.

One of the purposes of this chapter is to determine what numerical problems are posed by having an

integral transform. However there are two problems peculiar to this equation, or rather this system

of equations in S(x) and /?, since f3 is not known a priori. The first of these is that, although

equation 3.1 is linear in S, the presence of the (32SXX term means that it is not a linear system in the
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two unknowns. The second problem is that it was shown in section 2.2.3 that that there is usually a

square-root singularity in the second derivative of 5 at x = 0, which will affect the accuracy of the

equations.

In the numerical solution to the steady problem obtained by Thwaites the non-linearity question

was resolved by considering the problem when the tension parameter was known, and then obtaining

from this an expression for the length of the sail. As a result of this a graph may be plotted for

the length of the sail against the tension parameter, and so a complete picture of the sail may be

found for any given sail length. Note that in Thwaites's formulation of the problem, the sail length

plays a similar role to that of the angle of attack in the formulation given here, as a result of the

non-dimensionalisation used by Thwaites (see section 2.2). However this method is inappropriate for

the unsteady problem, since the tension parameter is now a function of time, and it is not realistic

to solve the linear equation for all possible functions of time. Furthermore it is not possible to super-

impose solutions for different tension parameters, as such solutions would not satisfy the non-linear

length condition. For the steady problem, the singularity was dealt with by Thwaites by making the

substitution 2x = 1 — cos# and then solving for S as a function of 9. However this has does not

resolve the problem of how to deal with the term outside the integral in equation 3.3, as any errors

in the Hilbert transform will be multiplied by a factor of x~?. This problem, and that of evaluating

a principal value integral at all, may be overcome in the steady case by integrating equation 3.3 with

respect to x, in which case (with all time derivatives equal to zero) all that remains is an ordinary

integral equation with a kernel which has a logarithmic singularity, and which exhibits no singularity

at x = 0, see section 2.2.2. However when considering the unsteady problem the Stt term prevents

this method from being used.

For these reasons the method used by Thwaites for numerical solution of the equation, in particular

the substitution 2x = 1 - cos#, will not be used, and other methods are necessary to deal with the

non-linearity and the singularity at zero.

Another method used for solving the steady sail equation is that of of Nielsen (1963) [63], who used

a Fourier sine series. Similar methods include those of Chambers (1966) [15], who used a variational

method based on Nielsen's method, and that of Tuck (1972) [97], who used a Fourier sine series method

to solve the equation in the case where the sail has a rigid attachment. Another method particularly

appropriate to the solution of singular integro-differential equations with a Cauchy kernel is the use

of Chebychev polynomials, which have been used, for example by Frankel (1995) [39].

3.1 Finite Difference Schemes

It is easiest to think of the system of equations 3.1 and 3.2 (or, equivalently, 3.3 and 3.2) as being one

singular partial integro-differential equation, equation 3.1, with a parameter, /3, which is implicitly

given by equation 3.2. Unfortunately, since /3 is a function of time, it will need to be determined
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separately at each time step. Since there is no explicit formula for (3 it can only be found by a 'trial

and error' method. In particular, Newton's method suggests itself for f3. This may be applied by

defining a variable £, by

£ = I [ Sldx- 1. (3.4)
z Jo

Thus a solution is sought for (1 such that the 5 obtained from the solution of equation 3.1 satisfies

£ = 0. Hence at a given time, £ will depend on the choice of ft and may be written as £(/3). Thus at

each time step the problem is reduced to the solution of £(/?) — 0, which may be solved by Newton's

method, the iterative scheme being

~ £7c5y
with (3i denoting the ith estimate of f3 at each time step. Unfortunately £'(/3) must be calculated

numerically. Furthermore there is no reason for I{j3) — 0 to have a unique solution at a given time,

although this does prove to be the case in the examples discussed below. For the moment it may be

assumed that (3 may be found by this method, in which case the question arises of finding a stable

scheme for equation 3.1.

Since only highest derivatives are important in determining the stability of an equation, to find a

stable difference scheme it is only necessary to examine the left-hand side of equation 3.1, or equival-

ently, equation 3.3, which just gives a variable speed wave equation. The fact that (5 varies does not

contribute to any particular difficulty towards finding a stable difference scheme since, by a re-scaling

defined by ̂  = /?, the highest derivatives of the equation give

f32STT +013' ST = 02Sxx

which, ignoring first order derivatives, is just the wave equation.

3.1.1 An Implicit Second Order Scheme

Two obvious finite difference schemes therefore present themselves to the solution of equation 3.3

with the appropriate boundary conditions, namely S = 0 at x = 0 and x = 1. The first of these is a

direct second order scheme in terms of 5, with SJ
{ denoting the value of 5 at position & and time tj.

However the equation may also be written as a system of two first order equations in two variables,

for example in terms of u = Sx and v = St- (In this case one of the equations would be ut = vx).

Firstly though, the second order equation will be discussed.

As with the slot injection problem, there are various methods of evaluating the singular integral on

the right-hand side of equation 3.3. In the context of the slot injection problem, a further discussion

of some of the methods available may be found in section 9.2. Here, the approximation will be made

by taking the function to be transformed, h, to be constant over each mesh region, and evaluating the
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transform at the centre of each mesh interval, (& + f i+1)/2. Hence

t)log
6+1 - x

where {6} is some mesh covering the region [0,1] with n points. The mesh used will be linear, with

& = i/n, Sj denoting S(xi,tj), and Sx being the difference between mesh points. The expressions

used to evaluate Sx and St at each mesh point will be given by central differences. Hence the following

approximations will be made

ra-1

n - 1

* = 0

(3.5)

(3.6)

with v denoting St- The arrays

1

2(k -
2{k-

/ 6
l/i-

0
0

+ i

6

+
—

+ i

l
l J

log

(3.7)

(3.8)
2(fc-i)-3

Using a central difference approximator for the second derivatives, Su and Sxx, and a central

difference approximator for St, the following discretisation of equation 3.3 is obtained.

-2SJ
St2 P • fUXj

'si+i
— HWik 2St

• uRikSi, (3.9)

where aj denotes a(tj). Note that this scheme is implicit, due to the SJ
k
+1 terms on the right-

hand side. When applying von Neumann stability analysis to a scheme of this kind, all the terms

except those corresponding to second order derivatives, i.e. the first term on each side, may be

ignored. For justification of this, and further discussion of von Neumann analysis, see section 8.6

However it is also necessary to consider a perturbation in 13. Hence, with the usual perturbation,

(5^ ft) ^ (5 4- Aei(kix-u&t) ̂  p _|_ Be~iul5t), the expression obtained is

e-iu,st _ 2 = - 2) + 2 pSxxSt2.{2coskSx 2) + 2 .
oxz A

Since the last term will be order St2, it will be negligible compared to the other terms, so as expected

the fact that (3 will vary with time will not per se affect the stability of any numerical scheme. Defining

z to be e~
iu5t, the above equation is a quadratic in z of the form

z2 - 2bz + 1 = 0,
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where
, _ o0

2St2 . 2 kSx

Since the z° term in the quadratic equation is 1, the product of the roots will be one. If the roots

are real and distinct then there will clearly be a root with \z\ > 1, and the scheme will be numerically

unstable. If there is a repeated root, or complex roots, then they will both satisfy \z\ = 1 and so

instabilities will neither grow nor decay, and the scheme will be numerically stable. Thus the scheme

will be stable if and only if b2 < 1, which will only be true for all values of k if and only if

0St _
c = (3.10)

Sx

which defines the Courant number, c.

The boundary conditions using this method are simply that S;j and S£ are zero for all values of j .

3.1.2 An Explicit Scheme

Although the previous scheme is stable, it is also worth examining a scheme suggested by re-writing

equation 3.3 as a system of two equations in two variables, to see if an explicit scheme may be obtained.

There are various methods in which two variables may be defined to make this a system in two first

order variables, one of which is given by defining u = Sx and v = St- With these definitions the

following system is obtained from equation 3.3.

r-i

(3.11)

(3.12)

The boundary conditions are now v = 0 at both ends of the sail, which will be sufficient. Moreover it

is known that the integral of u over the whole region (0,1) is zero, and that ux is zero at x = 1.

To ensure stability, a Lax-Friedrichs type of scheme will be applied (see section 9.3.1 for further

details), with central differences, to give the following explicit scheme :

- o ' I J ~ " \ \l £ I &<-"-™K ' v Ln-~ K / ' t^O.-LOj

Vi+lj+1 "-i+1 ' " t - 1 , " " "1+1 ~t- l /o -IA\

u\ = + ^ . (3.14)

For the purposes of stability analysis, the last term in the first equation may be ignored, as it

does not contain any derivatives. On application to the scheme of a perturbation of a Fourier mode,

with the perturbation to u being given by AzeikSx and the perturbation to v being Bzelk5x, where

z = e~
iul6t, the following expressions are obtained :

Bz = B cos kSx + A——i sin kSx,
Sx

Az = AcoskSx + B—i sinkSx,
ox
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which will only have a non-trivial solution if

hence

= - M p sin2 kSx,
V (IT /

z = cos kSx ± —-i sin kSx.
ox

Therefore a necessary and sufficient condition for z to lie within or on the unit circle, and thus for

the scheme to be stable, is the same condition as before, that the Courant number, c, defined by

equation 3.10 is less than one.

Since this scheme is explicit it will naturally require fewer computations at each time step, so this

method will be used for the calculations below. One slight disadvantage is that, since at each time

step, the updated value of u, from equation 3.14, is independent of (3, some care is needed to apply

the length condition, equation 3.2. An expression using v is required, and this may be obtained by

differentiating equation 3.2 with respect to time, to give the condition on (3 that v be chosen such that

I uvxdx = 0
o

3.2 Initial and Boundary Conditions

With the second order central difference scheme given by equation 3.9, the boundary conditions

5(0) = 0 and 5(1) = 0 may simply be applied as 5^ = 0 and SJ
n = 0 for all j . For the initial value

problem Sf and S^1 must also be given for all i. For the explicit scheme given by equations 3.13 and

3.14, the same boundary conditions must be applied by imposing v=Q at both ends (recalling that

v = St). Hence v^ and vJ
n are zero for all values of j . The initial values of u may be found from the

numerical solution of the steady problem detailed in section 2.2.2, with initial values of v = 0 used

everywhere.

The values of u at the ends of the sail may simply be given by applying the second equation of

the system, equation 3.12, namely ut = vx, at each end. However since central differences are used

in the scheme for derivatives with respect to x (see equations 3.13 and 3.14), and there is no central

difference approximator for a;-derivatives at the ends, it is best to apply this equation at the centre of

the interval between the end-point and the next mesh point. These points will be denoted by x - £i

and x = £n_i, with £i lying at the mid-point of £0 and £i, and £,n_^ lying at the mid-point of £n_i

and £n. Central difference approximators may then be used for the values of the z-derivative at these

points. Thus the following approximations are made

ut\x=i t=tj = 2 ( ° St ° + ~LTt / '
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_ vi ~ vo

with, as elsewhere, forward differences used for derivatives with respect to time. Since all the vJ
0 and

v3
n will be zero for all j , this gives the boundary conditions for the scheme given by equations 3.13

and 3.14 as

Sx
vi+1 = o

St
n n-1 n-1 ^ n n-l)

vj
n

+1 = o

An alternative boundary condition for u would be to impose that /^ udx is zero, which is certainly

true. However by not imposing this condition, since it is not implicit in the scheme, a useful check on

the validity of the equations is obtained.

3.3 Convergence of the Schemes

For a function which is differentiable an infinite number of times, the approximations

made in the previous section will be accurate to within order uxx6x and Sxxx^x respectively. However

in the case of the sail equation, it was shown in section 2.2.3, that Sxx, and thus ux, will almost always

exhibit a square-root singularity at x = 0. This reduces the accuracy of the above schemes from within

an order of magnitude Sx to within an order of magnitude of dx?. This is a significant difference, and

so it makes sense to subtract out the singularity. One way in which this may be achieved is to define

u = u — Kxi, with K chosen such that there is no singularity in u at x = 0. With such a choice of n

the error in the estimation of uxx will now be of order Sx.

However this will not in itself increase the accuracy of the overall scheme, since the accuracy of the

evaluation of the Hilbert transform given by equation 3.6 (the same equation applies for evaluation of

the integral involving u as for that involving v) has not yet been discussed in detail. In principle this

should be accurate to within order Sx, since the only approximation made was that the coefficient of

the Cauchy kernel, WA/J-T^ should be constant over each interval. This is clearly going to be a poor

approximation near x = 1, and so an improvement in the method for the Hilbert transform in this
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model may be made by observing that since a substitution z = • . / -§- gives

thus defining /(£, x), then it follows that

This suggests replacing the expression for Qik given by equation 3.7 with

Although this solves the problem of the square-root singularity in the integrand at £ = 1, the accuracy

will only be to within order (Sx log Sx) as before, as the magnitude of the terms near i = k (i.e. f = x)

will be of order of magnitude SxlogSx. This does not affect accuracy much, as log Sx tends to infinity

so slowly. However the problem of the square-root singularity outside the integrand at x = 0 remains,

as /(£, x) will be asymptotically equal to x~? for small x. It is difficult to see how this problem may

be resolved for small x, as it is not possible to integrate this singularity out in the unsteady equation.

Hence it will be necessary to proceed with an error of order Sxi.

3.4 Results

The acceptance of an order Sx? (i.e. n~ 2) error in the numerical scheme is a serious problem. Although

a significant amount of computational time is saved by using the explicit, rather than the implicit,

scheme, the evaluation of the Hilbert transform, by whatever method, must take O(n) calculations for

each mesh point, and hence O(n2) calculations altogether. The condition that the Courant number

(see equation 3.10) be less than one requires that St — O(8x), so that St = O(l/n), and so it will

necessarily require O(n) steps to reach a given time. Thus the number of computations to arrive at a

solution for t = t\, say, is O(n3ti). This will give an accuracy of O(t\n~*). Hence to obtain a solution

for t up to 5 to accuracy 0.01 would require n ~ 2.5 x 105, and hence order 7.8 x 1016 calculations.

Clearly some compromises will need to be made. In the computations described below, n was taken

to be 1000, giving a reasonable accuracy of order 0.03ti. Unless otherwise stated, \i = 1.

Several independent checks are available to test the validity of these results. Firstly the sail shape,

S, may also be evaluated by integrating u with respect to x, and compared with the value obtained by

integrating v. Secondly, from these values of S, it should be the case that 5 = 0 at x = 1. Thirdly, the

length obtained for the sail shape may be compared over time : it should remain constant. Analysis

of the errors in these checks indicate that the error at time ti is roughly tiW~%, so the solutions for t\

greater than about 3 must be treated with some caution. For clarity the sail shapes presented below
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have been re-scaled, with 5(1) set to zero, by rescaling 5 >-> ̂ {S - xS(l,t)), where £ is chosen so

that the length condition is satisfied. The values of 5(1, t) and 1 - £ were within the errors expected

from the above discussion. The time taken for the computations up to time tx was typically around

minutes.

Henceforth, the term 'concave' will be used to describe a sail in which the curvature is of the same

sign throughout, which is equivalent to having 5 the same sign throughout. Concave sails will be

described as 'positive' or 'negative' according to whether they lie above or below the positive x-axis.

3.4.1 Change of Sign of Camber

From equation 3.1, the obvious result that if (5, /3) is a solution for a given a, then ( -5 , (3) is a solution

for —a follows, as it does from the steady equation, equation 2.10. Considering only concave sails,

one question of interest is the behaviour of the sail when the sail changes from a negative solution to

a positive one. One example of a possible choice of a(t) for this would be to have an initial condition

of a = 0, with a negative sail (recalling that for a = 0 both positive and negative concave sails are

possible), and then to increase the value of a linearly to one. This choice of a will be denoted by

ai(t). Hence

It would be expected in this case that the sail shape will change from a negative one to a positive one.

Calculations were performed according to the scheme described above, with the sail shapes determined

by integrating v, i.e. St with respect to time. For t taking integer values from zero to four the sail

shapes obtained are shown in figure 3.1.

The sail shapes indicate the change, as expected, from a sail with negative camber to one with

positive camber, although the similarity between the sail shapes for t = 0 and t = 1 suggest that the

change is very slow at first. The final sail shape is similar to the steady state solution for a = 1. In

fact, virtually all concave steady sail shapes are very similar. This means that in order to analyse

whether the sail has reached its 'final' position, it is important to examine the values of v, i.e. St, or

more conveniently, the kinetic energy, given by \ Jo v2dx. Figure 3.2 shows the values of the tension

parameter, /?, and the kinetic energy, plotted against time for t up to 5.

The sudden fall in the kinetic energy appears to indicate that the sail will approach the steady

shape for a = 1. However from the numerical solution of the steady sail in section 2.2.2, it is known

that the steady shape for a = 1 has a tension parameter of 13 = 0.8089, so at t = 5 there is clearly

some way to go, and so the sail shape will remain in some kind of oscillatory behaviour until all the

kinetic energy is dissipated.
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Figure 3.1: The Sail Shape for a = ai(t)
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Figure 3.2: The Tension and Kinetic Energy of the Sail for a = ai(t)
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Figure 3.3: The tension parameter, f3, lift, and kinetic energy of the sail for t between 5 and 10,
a =

Although the computational errors become significant for t much larger than 5, it is still instructive

to examine the numerical solutions obtained, and these are shown in figure 3.3. These indicate that,

from the fact that the lift becomes significantly positive, the shape found near t = 9 is close to that

for the steady solution with positive camber. However the sail still possesses some kinetic energy at

this stage, which may take some time to dissipate.

3.4.2 Changes to First Eigenvalue Solution

For the steady problem, when the angle of attack, a, is zero, there are two different solutions for

each eigenvalue, differing only in sign. It would seem likely, therefore, that a perturbation to a could

enable the sail to switch from one solution to the other, even if a then returns to zero. An example

of a possible choice of a for which this could be attempted would be a increasing linearly from zero

to one with a(t) = t, and then decreasing linearly from one to zero, with a(t) = 2-t, then remaining

thereafter at a = 0. For this reason experiments will be attempted with a(t) = a2{t), where

{ t 0 < t < 1,
2-t 1 < * < 2,

0 t<0,t>2.

Thus if the sail starts from the negative steady solution (i.e. that for which 5 is negative for all x), it

would seem likely that it will change sign. With this choice of a the sail shapes obtained for t taking

integer values from 0 to 10 are shown in figure 3.4

This suggests strong oscillatory behaviour, with the sail varying between positive and negative

solutions. For t much larger than 10, the inaccuracies become too large for meaningful results to be

obtained. The tension, lift and kinetic energy are plotted against time in figure 3.5.
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Figure 3.4: Sail Shapes for t From 0 to 10, for a = a2(t)

These confirm the oscillatory behaviour. The fact that the peaks of the kinetic energy occur at

roughly the same values appear to suggest that the motion is not damped. However this is not clear,

and a more thorough stability analysis is needed to determine this. The question of stability will be

addressed in a forthcoming paper.

Intuitively, it would seem that a smaller sail mass would result in faster changes to the sail shape.

Thus, in the above example, the sail could change sign before the angle has been reduced to zero, and

thus the desired change from a negative to a positive solution could occur. The above calculations
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Figure 3.5: Tension, Lift and Kinetic Energy for a = aiit)

were therefore repeated, with /x = 5, recalling that a low mass sail corresponds to a high value

of fj,. Unfortunately, increasing fi increases /3 (in the steady case f32 is proportional to /z), and from

equation 3.13 it follows that errors are proportional to /32, so the accuracy of the scheme will decrease

in this case. However the results produced indicate that the effect of changing the mass of the sail

is not merely to increase the rate at which the shape changes, although this would appear to be the

initial effect.

Figure 3.6 shows the sail shapes for t from 0 to 3, and although the sail initially moves towards

a positive steady solution, it appears to move back. This is confirmed by figure 3.7, which shows

the tension, lift and kinetic energy. This shows some sort of oscillatory behaviour, but it is not clear

whether the sail will settle for the positive or negative steady solution, or oscillate indefinitely. One

would expect oscillations to decay more quickly for high fi, from equation 2.42, but it is not clear here

that this is the case. After t becomes approximately 0.35 numerical inaccuracies become significantly

large, so it is not possible to find meaningful solutions for n = 1000.

Alternatively, with /z = 1, a could be chosen so that it remains at a = 1 for a non-zero length of

time. The a chosen for this case is given by

< * < 1 ,
0 t <0 ,
1 0
1 1 < t <2 ,

3 - i 2 < t < 3,
0 t > 3.

For this example, the tension, lift, and kinetic energy are depicted in figure 3.8.
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Figure 3.6: Sail Shapes for /x — 5, a = 02(t)

-1

Figure 3.7: The tension, lift, and kinetic energy of the sail when /i = 5, a = 0:2 (£)

Contrary to expectations, the solution does not appear to settle at the positive a = 0 solution, but

seems to oscillate somewhere between positive and negative solutions. This impression is confirmed

by the sail shapes, depicted in figure 3.9.
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Figure 3.8: Th Tension, Lift, and Kinetic Energy, for a = a3(t)

Although, as mentioned earlier there is some doubt as to the accuracy of these values for large values

of t, the behaviour of the lift, kiretic energy and tension do appear to obey some intuitive principles,

suggesting that even for large valies of t, the results are qualitatively correct. In particular, when the

lift takes a maximum positive or ;egative value, the kinetic energy is at a minimum, and the tension is

at a maximum. These points corespond to the extreme values of the sail. Conversely, the maximum

values of the kinetic energy occurwhen the sail is at the middle of a transition from a negative solution

to a positive solution. At these pints, most of the aerodynamic force is expended on giving the sail

motion, so the lift is zero, and he tension is at a minimum. The facts that the value about which

the lift is oscillating increases, ad that the maxima of the kinetic energy start to decrease slowly,

suggest that the sail will eventualy settle to the positive a = 0 solution. The oscillatory behaviour is

a consequence of the hyperbolic lature of the sail equation, as in its highest derivatives it is just the

wave equation. The energy dissiiation must come from the sail doing work against the aerodynamic

lift, when the motion of the sail s against the direction of the lift. However, when the motion of the

sail is in the same direction as i.e lift, the sail will gain kinetic energy, so the energy of the sail will

not decrease monotonically, and nay not decay to zero at all.

3.4.3 Sails With Positi/e Camber

For concave sails whose camber ioes not change over time, the sail shapes in the steady case are all

qualitatively similar, with the a- 0 shapes and a ->• oo shapes represented in figure 3.10.

Since the sail shapes are so sinilar, it is to be expected that the unsteady case for change from one

to another will be relatively simile, and take place over a much shorter time scale than the previous
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Figure 3.9: Sail Shapes for t from 0 to 10, with a = a3(t)

examples. An example of this would be to examine the change as a increases from 0 to 1, and stays

at t = 1, with the initial shape being the positive a = 0 solution, so a = ai(t). Figure 3.11 shows

the kinetic energy plotted against time for this case, and since the kinetic energy is small, it follows

that the sail shape moves only very little. Figure 3.12 shows the sail shapes for t = 0 and t = 1.

Computations were carried out for values of t up to seven, but for clarity these are not displayed as

they are virtually identical to the shape for t = 1. Comparison with the shape for t = 1 in the steady

state is made, and the difference is well within the expected computational error.
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Figure 3.10: Sail Shapes for a = 0 and a —>• oo

It is therefore concluded that, although the sail is unlikely to be unstable in all cases, any oscillations

may take a long time to decay, and in some cases may not decay at all. A more thorough analytical

stability analysis is therefore required, and this will be conducted in a forthcoming paper.

However stability analysis is complicated by the fact that addition of a Fourier mode, j[e
t(kSx-"Si)

to any solution, must also satisfy the length condition, given by equation 3.2. Substitution of the

added mode into the length condition yields

A
Jo

~wt)dx = 0.

This result cannot hold for all k unless A is 0, which suggests that stability analysis be conducted

by another method. Haselgrove Sz Tuck (1976) [45] circumvented this problem by ignoring the length

condition and assuming that the perturbation in the tension parameter was proportional to e~l"st,

although the analysis is then that of a sail which is extensible to first order.

The above results give some indication in how to find numerical solutions for singular partial integro-

differential equations. However, the low-mass sail equation (equation 2.34) is slightly harder to solve

numerically as the highest ^-derivative lies within the Hilbert transform, but the highest i-derivative

lies outside, so the effect of the Hilbert transform will not be confined to highest order derivatives.

A more detailed numerical analysis of such equations is presented in chapters 8 and 9, and a stable

scheme for the low-mass equation is given in section 9.9. However, it is the order 1 mass case, for

which results have already been presented, that is of most interest. Therefore attention will now be

diverted from the sail equation to the problem of slot injection into a free stream.
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Chapter 4

Injection Into a Free Stream

4.1 Introduction

Having examined the unsteady sail equation, similar techniques will be applied to the problem of un-

steady slot injection into a free stream, which is particularly relevant to film cooling in turbine engines.

Although the equations derived are similar, the equations for slot injection are significantly more com-

plicated. However in order to justify the physical assumptions made in deriving the equations, it is

necessary to examine the physical problem of slot injection into a free stream.

There exists a large amount of experimental and theoretical literature on the subject of slot injection

into a free stream. Much of this is concerned with film cooling, i.e. the case where the injected fluid

is cooler than the free stream, which has applications in, for example, turbine blades. This review

will concentrate on theoretical studies made which employ careful order of magnitude estimates of all

the terms in the equations of motion, and film cooling will be ignored, i.e. the temperature will be

assumed to take the same value throughout. A review of the field of slot-injection was completed by

Goldstein (1971) [42], and a more recent study has been completed by Fitt (1983) [30].

The importance of viscosity is dependent on the Reynolds number, denned by ratio of the product of

the characteristic velocity, U, and length, L, to the dynamic viscosity, Re = ^~-. Of crucial importance

is the ratio of the order of magnitude of the ratio of the blowing velocity out of the slot, vw, to the free

stream velocity U^, in comparison with the Reynolds number, Re, based on [T^ and a characteristic

length scale of the system, L. The length scale of the system chosen varies according to the system -

in some, but not all models, it is the width of the slot, but in others it is the characteristic length scale

of the external flow, which would be given, say, by the radius of curvature of the surface, or the height

of the channel through which the crossflow travels. It is assumed throughout that Re > 1. When

the region in which blowing takes place is finite, there will be a boundary layer on the plate upstream

of the blowing, and the behaviour of this boundary layer will vary according to the blowing velocity.

The following two-dimensional regimes have been considered for cases where vw is a given function on

a finite region of the surface of a flat plate, with the flow past the plate laminar, with typical velocity

UOQ. In many cases the flow past the plate will be uniform. It is assumed that a boundary layer will
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have formed before the onset of blowing, except in models where injection starts at the leading edge

of the plate. Different regimes have been identified according to the order of magnitude of vw/Uco.

There is no universally agreed terminology for the different regimes (weak, hard, etc.), the definitions

used here are depicted in figure 4.1.

Blowing velocity / Uoo

0 Re-i Re~i Re0

1 1 • 1—-

I

Very Weak | Weak Strong Massive

I
I Hard
I

Boundary layer attached] Boundary layer blown off

I

Figure 4.1: The Different Regimes for Injection into a Cross-Flow

4.2 Very Weak Blowing

Even in the absence of blowing, a boundary layer will form along the plate. According to boundary

layer theory (see, for example, Stewartson (1964) [85]), the velocity in the boundary layer normal to the

plate will be of order UocRe~i. Hence blowing velocities of an order of magnitude less than UooRe~^

will not affect the boundary conditions to the boundary layer equations to lowest order. However when

vw = CUooRe"^, where C is a constant of order 1, the blowing will affect the boundary conditions, the

usual no-slip condition being replaced by the condition that v = vw on the plate. With this condition,

Emmons & Leigh (1954) [28] showed that the system may be solved for constant blowing by the

Blasius similarity transform provided C < 0.6192. The reason for this condition is that as C —> 0.6192

the boundary layer approaches a state of zero wall shear and is apparently blown off the plate. Thus

the boundary layer will remain attached to the blowing surface only when vw < 0.6192f/ooi?e~2 and

this regime will be referred to as very weak blowing.

4.3 Boundary Layer Separation

The form of the solution as C —> 0.6192 was obtained analytically by Kassoy (1970) [50] in the absence

of a pressure gradient, and with a blowing velocity profile vw(x) oc x"^. He separated the boundary

layer into two regions : near the wall a linearised form of the Blasius equation applies subject to

the boundary condition at the wall v = vw, u = 0 (where u and v are the components of velocity

in the x and y directions respectively). The other region is described by the full Blasius equation,

with the boundary conditions being those of the free stream, the two regions being connected by an
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asymptotic matching condition. The two regions are divided by a streamline that emanates from the

onset of blowing, with the region below the dividing streamline consisting of injected fluid. The flow

in the outer region is essentially that given by Lock's mixing layer system, see for example Lock (1951)

[56]. As C —> 0.6192 the wall shear approaches zero smoothly as the effects of viscosity become less

important in the region closer to the wall, and the streamline separating the two regions moves away

from the wall, leading to a drastic thickening of the total boundary layer. Qualitatively the same

behaviour will result for distributions of the injection velocity other than the distribution vw oc x~z,

which was assumed in order to facilitate analytic solutions.

The stability of separating boundary layers has been the focus of much study in various con-

texts, usually with the separation being caused by factors other than wall injection. A possible

break-up mechanism for any boundary layer encountering any localised singularity was proposed by

Smith (1989) [76]. Duck (1990a,1990b) [26, 25] considered three-dimensional separation, based on the

triple-deck analysis of Stewartson (1969) [86]. He derived a non-linear, unsteady, system of partial

differential equations, which was solved numerically, strongly suggesting that breakdown may occur

at a finite time and finite spatial position. Peridier et al (1991) [67] computed the boundary layer

solution for an unsteady boundary layer induced by the motion of a rectilinear vortex above an infinite

plane wall using interacting boundary layer methods. Nonlinear breakup solutions were computed by

Vickers & Smith (1994) [106] just beyond a breakaway-separation point, with a vortex sheet being

produced near the smooth solid surface, with local inner-outer interaction. Further computations were

performed by Cassel et al (1996) [13], who examined the viscous-inviscid interaction just upstream of

the separation region and whose results suggest that any interaction can provoke a singularity of the

type considered by Smith (1989). However in the work considered here, the behaviour of the boundary

layer at separation is of less interest than the separated flow downstream.

4.4 Cole &; Aroesty Theory

Cole & Aroesty (1968) [20] developed an inviscid model for blowing at a higher rate than that discussed

above, with blowing velocity Vw/Uoo small, but sufficiently large to blow the boundary layer off the

plate. This large range of orders of magnitude will be referred to here as hard blowing. This model

assumes a thin, inviscid injectant layer, with the effects of viscosity confined to the interface between

the outer flow and the injected flow. This interface is a shear layer of negligible thickness. The shape

of the shear layer is given by y = SS(x) with 5(0) = 0, thus assuming separation at the onset of

blowing, since x = 0 is defined as the point at which blowing commences. Here S is a small parameter

denned by the condition that 5(1) = 1. Their analysis showed that the order of magnitude of S is

O {vw/Uoo)3 • By expanding the terms in powers of 5 they obtained an equation for S(x) in terms of

the pressure P(x) and the blowing velocity vw(x) for compressible flow. For incompressible flow with
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unit density this reduces to

± [ X ^ , de. (4.1)S(x) = [
V2J0

A closed system for P and S for a given blowing velocity was obtained by applying results from thin

aerofoil theory, i.e.
f f ^ subsonic flow

- supersonic flow.

The constraints on the blowing velocity for this theory to apply are that Vw/U^, « 1, so that higher

powers of S may be ignored, that vw/U<x, > 0.6192i?e~2 so that the boundary layer blows off, and

that vw/Uoo 3> Re~s, so that viscosity may be ignored in the injected region. Clearly for very large

Reynolds numbers the last of these conditions is redundant.

4.5 Weak Blowing

Klemp & Acrivos (1972) [54] considered uniform flow of an incompressible fluid past a semi-infinite flat

plate subject to a blowing velocity of CUoo Re~? where C > 0.6192 and is of order 1. The term weak

blowing will be used to describe blowing of this order of magnitude, i.e. v̂ /L ôo = 0{Re~?), when it

is sufficient to blow off the boundary layer. Their model followed from the Cole-Aroesty model, with

separation assumed to take place at the onset of blowing, and a region underneath the boundary layer

of injected fluid which is to first approximation inviscid, in which the horizontal velocity, u, is of order

UooRe^i. The height of this region is O(Re~%), while the blown off viscous boundary layer still has

thickness LRe~?, and is therefore thin in comparison with the blown layer for large values of Re. In

this model viscous effects are confined to the boundary layer, since the external flow and the injected

flow are inviscid. Expressions for the shape of the streamline dividing the boundary layer from the

inviscid fluid were derived for velocity profiles vw = Re~^xm~1, 0 < m < 1, where x = 0 is the point

at which blowing begins. However, as in the Cole-Aroesty model no solution was found for the case

of uniform blowing over a region of infinite length.

Catherall et al (1965) [14] found that if vw is constant and the blowing region is the entire plate

(i.e. blowing commences at the leading edge of the semi-infinite plate, and continues to infinity) then
C/2 L

separation will occur at a distance 0.7456^ fRe downstream from the leading edge of the plate. Smith

& Stewartson (1973a) [78] argued that the adverse pressure gradient caused by the rapid thickening of

the boundary layer in its neighbourhood may cause the separation point to move upstream. However

the structure of the flow is not well understood near the separation point.

4.6 Strong Blowing

The term strong blowing is often used to refer to any blowing satisfying Re~? <C w^/t/oo ^ 1, e.g. by

Smith (1973) [75]. However for the purposes of this review this rather broad range of blowing velocities
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shall be referred to as hard blowing. In this review the term strong will be reserved for injection

velocities satisfying the more precise condition that vw/Uoo = O(Re~i). This follows the convention

of Smith & Stewartson (1973a) [78], who conducted a study of slot injection with vw/Uoo = O(Re~»)

over an injection region 0{LRe~»). These scalings were chosen in order to balance the interaction

between the boundary layer and the mainstream above it. Their study consisted of a triple-deck

analysis of the kind considered by Stewartson & Williams (1969) [88], with the lower deck of thickness

O(Le3), the boundary layer O(Le4), and the upper deck O(Le3) where e = Re~«. This model was

more complete than the Cole-Aroesty model in that it showed how the pressure builds up ahead of the

slot and readjusts downstream of it. A crucial difference between this model and that of Cole-Aroesty

is that in the Cole-Aroesty model separation of the boundary layer is presumed to occur at the onset

of blowing, whereas in the model of Smith & Stewartson (1973a) [78] separation is allowed to occur

at some point x = xs after the commencement of blowing at x = xo, with 0 < xs — XQ < O(e2).

One advantage of this model is that it permits a constant blowing velocity profile without a pressure

singularity : that this is not permissible in the Cole-Aroesty model was shown by Smith (1972) [74],

(in the subsonic case it may be shown that p(x) ~ const ( - log x) 3 as x -t 0). In this model the

pressure rises ahead of the slot, with the blowing being driven by a favourable pressure gradient.

This model was then extended to 'plate injection' by Smith & Stewartson (1973b) [79], in which

the injection takes place over a distance of O(L). In this model the separation takes place before the

onset of blowing, i.e. xs < x0 with L > x0 - xs > e2L. The flow over the blowing region may be

described completely, with the separated flow settled down to a fully developed state in which it is

virtually at rest. There are thus four different regions : the region below the separated boundary layer

before the onset of blowing, the blown region (below the boundary layer after the onset of blowing),

the boundary layer, and the free stream. In a later study Stewartson (1974) [87] showed that a fully

consistent solution of the Navier-Stokes equations could be constructed by dividing the flow field into

seventeen regions. However there is no smooth transition between the models of slot blowing (blowing

region of order Le3) and plate blowing (blowing region of order L).

4.7 Massive Blowing

The term massive blowing refers to when the injection velocity satisfies vw/Uoo = O(l). In this case

there will be no shear layer produced, so the flow field will be analytic on the dividing streamline.

Milne-Thomson (1949) [59] examined the case when the injection is so strong that a large, essentially

inviscid disturbance is produced in the free stream from a point or a line source as in the theory of a

Rankine solid. However Ting & Ruger (1965) [92] showed that should the ratio of the slot pressure to

the external pressure, p^,, drop below | even an idealised model assuming laminar irrotational flow

becomes a complicated free-boundary problem which must be solved numerically. Nevertheless the-

oretical analyses have been conducted by, for example, Inger & Gaitatzes (1971) [47], Thomas (1969)
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[90], Wallace & Kemp (1969) [108], Roy & Nath (1992) [72], and Vasantha & Nath (1986) [103],

with experimental work having been conducted by, for example, Hartunian & Spencer (1967) [44] and

Bott (1968) [8].

4.8 Total Pressure Ratio

In all the above models, solutions have been found for a given injection velocity, vw through the

wall. However in practice this is difficult to set up experimentally, and it is more usual to have the

fluid being injected from a slot, with the slot pressure being given. Fitt et al (1985) [34] (henceforth

to be referred to as 'Fitt') considered slot injection into a free stream in which the pressure in the

slot is given, see figure 4.2. The model is dependent on a small parameter, e, which is defined by

ip = M

Figure 4.2: A Schematic Diagram of the Slot Injection Model

the slot pressure exceeding the free stream pressure by ipf/^e2 where U^ is the velocity of the free

stream at infinity, and p is the density of the (incompressible) fluid. The model assumes subsonic

flow throughout. His model combined the Cole-Aroesty theory discussed above with Rankine flow, i.e.

flow past a series of sources. The parameter S in the Cole-Aroesty model is roughly equivalent to e2.

This is combined with a Rankine flow above the shear layer, with a series of sources of strength O(e2)

which lead to a vertical velocity of 0(e3) just above the shear layer after separation. The streamline

exhibits a 'lid effect' with 5(0) = S"(0) = 0, and the velocity normal to the flat surface being of order

Uoo€3 over the slot region, except near the trailing edge where it may reach an order of magnitude

of f/ooC. By imposing continuity of pressure at the shear layer an integro-differential equation was

derived for the shape of the dividing streamline y = e2S(x) and solved numerically.

S'(ft { ~\ 0 < x < l ,
T^Z = . , .,a (4-3)

where M is the mass transfer out of the slot, and x is scaled with L, the slot width. The model

assumes separation at the leading edge of the slot, with all the effects of viscosity being confined to a
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shear layer of negligible thickness separating the blown region from the free stream. The mass transfer

out of the slot was calculated and took a value of approximately l.OiLUoope3. This is another feature

that makes this analysis an improvement on the methods described earlier : in this method the mass

flow may be predicted from the pressure difference. The fact that the injection velocity increases by

an order of magnitude near the trailing edge of the slot means that this model does not correspond

exactly to any of the regimes described in figure 4.1.

The conditions for the validity of this model are that the blown region be inviscid, that the thickness

of the shear layer is zero, and that the pressure difference, e2, be sufficiently small for linear asymptotics

to be used. The assumption that the fluid in the blown region is inviscid may be tested by examination

of the Navier-Stokes equation,

1 ^ 2

ut + uux + vuy = —p x + vv u.

From the scalings detailed above, all the non-viscous terms will be O(e2), with the viscous term being

O(e~3Re~1). Thus it is required that e~5 <C Re. For the thickness of the shear layer to be negligible,

its thickness, which is 0{LRe~z) must be much less than that of the blown region, which is O(Le2).

This gives the weaker condition that e~4 -C Re. Hence the domain of validity of this model is that

Re'* < e < 1. (4.4)

This is a slightly weaker condition than that for the Cole-Aroesty model. This is because separation

at the leading edge of the slot will occur whatever the pressure difference, due to the geometry of the

system, whereas in the Cole-Aroesty model separation will only occur for sufficiently large values of

Vw/Uoo- The assumption that the onset of separation occurs at a negligible distance from the leading

edge of the slot may be justified by the work of Stewartson & Williams (1969) who for 'strong' blowing

found that the separation point will lie at a distance of order LRe~* from the onset of blowing, which

in this case corresponds to the leading edge of the slot.

That the system for pressure-driven injection of Fitt is similar to the velocity-driven Cole-Aroesty

model may be seen from the fact, which has not previously been noted, that an equation similar to

that of Fitt (equation 4.3) may also be obtained from the formula given by Cole & Aroesty when the

injected velocity has a profile vw(x) = 5(x — 1), where 5 is a Dirac delta function. Substitution of this

velocity profile into equation 4.1 gives

f 0 0<x < 1,
S'(x) =

Then substituting for P from equation 4.2 one obtains

The reason for the differences between this equation and equation 4.3 lies in part from the different way

in which S(x) is defined : Cole & Aroesty scaled S(x) by the condition S(l) = 1, whereas Fitt scaled
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S with Le2. However this will lead only to the constants being different in the two equations. The

more fundamental difference between this equation and that derived by Fitt is that Cole & Aroesty

assume that separation takes place at the onset of blowing, i.e. at the trailing edge of the slot, where

in this case the injected velocity is infinite. In Fitt's model the separation takes place at the leading

edge of the slot, whereas almost all of the blowing takes place at the trailing edge of the slot. It seems

plausible that the correct choice for vw, with vw being finite and positive for 0 < x < 1, and tending

to zero as x tends to zero, but behaving like a Dirac delta function at x = 1, would replicate the

equation of Fitt, as now in both cases separation would occur at x = 0.

Fitt's model however, unlike the Cole-Aroesty model, gives a continuous model for the streamline

without the pressure singularity required in the Cole-Aroesty model discussed earlier. There is a

discontinuity in the pressure at x = 1, however this is caused by the fact that changes in the pressure

take place over a typical length scale of Le in this region, whereas in the rest of the system they take

place over a region of length scale L. Thus by employing a complete analysis of the region near the

trailing edge of the slot, a continuous expression for p may be found in terms of (x/Le). However

since this discontinuity only takes place over a region of length O(Le) this will not have a significant

effect on the solution for the streamline S(x) or for the mass transfer M.

The effect of a slightly different slot geometry was considered by Fitt & Wilmott (1994) [35] who

considered a slot in which the leading edge of the slot was higher than the trailing edge, and for

which just upstream of the leading edge there was a separation ramp. This geometry encouraged

clean separation at the leading edge. Expressions were derived for the mass flow for various shapes of

separation ramps.

4.9 Trailing Edge Separation

The problem when separation takes place at the trailing edge as well, leading to the existence of two

free boundaries has also been discussed, for example by Stojanovic (1988) [89] who proved that if the

lower region (i.e. the region below the streamline which separates at the trailing edge) is assumed to

have constant pressure then there exist continuous solutions for the two streamlines. This was also

analysed by O'Malley (1988) [64] who assumed that the region below the dividing streamline at the

trailing edge would be of constant pressure, and thence derived the equation

2 f°° S'(£) 1 - M 2 I <- T < r

nT F^*H S2(Xr) ""' (4-5)
K J0 ? ~ X

 M2

where xr, to be found, is the end of the separation bubble, i.e. where the streamline that separates at

the trailing edge of the slot re-attaches to the plane y = 0. O'Malley also derived the equation
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for flow where injection takes place into a free stream with a pressure gradient, with A a measure of the

strength of the pressure gradient. Asymptotic analysis and numerical solutions of these equations were

performed by Fitt (1986) [31], who went on to consider a more realistic model for the separation bubble

in the former of these equations. In this analysis the bubble is composed of two distinct regions, one in

which the pressure is, as before, constant, and the other where the vorticity is constant. However this

model differed from those considered previously in this context in that it allowed the slot pressure to

be of an order of magnitude higher than in the problems previously considered in this context, so that

the injected flow leaves the slot parallel to the slot walls. Re-attachment of the streamline separated

at the trailing edge was taken to be tangential to the wall. This gave the equation

with boundary conditions 5(0) = S(xr) = S'(xT) = 0 and S'(0) = oo (note that in this problem, unlike

those discussed previously in this section, x = 0 corresponds to the trailing edge of the slot). Again

an asymptotic expression was found for 5 both at x = 0 and as x —> oo, and a numerical solution

obtained for given values of xr. Expressions were found for the jump in the Bernoulli constant in

the separated region and for the singularity in S'(0) as functions of xr and it was conjectured that a

limiting singularity strength may lead to a constant vorticity region of infinite length. However it was

not possible for the numerical scheme used to confirm this.

4.10 Experimental Work

An experimental analysis of the blowing problem with a given pressure ratio was conducted by Fitt

et al (1985) [34]. Pressure measurements were made at the wall for the cases when the slot had a

sharp trailing edge, and where the slot had a 6mm trailing edge (the width of the slot was 40mm). It

was found that at the lowest injection rates the mass flow was well above that predicted by linearised

theory. As the injection rate increased, the results came closer to those predicted, and then deviated

from the predicted result for larger injection rates. The reasons proposed for the discrepancies were

that for lower injection rates the boundary layer thickness becomes as large as the injected layer and

so viscous effects become important. For larger injection rates the separation at the trailing edge

becomes significant, which accounts for the difference between the predicted result and that measured

in the experiment in this case. The effect of rounding off the trailing edge of the slot was as predicted,

but the effect on the mass flow was not marked. Shapes of the dividing streamlines were also given

by experiment using a liquid crystal thermochromic indicator.

In the context of the rim seal problem discussed in chapter 1 comparisons of the predictions from

Fitt et al (1985) [34] with experiment were made by Hamabe & Ishida (1992) [43] and Chew et

al (1994) [18]. Again both sets of measurements showed good agreements with the predictions from

the theory.
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4.11 Suction From a Free Stream

The case when the pressure in the slot drops below the free-stream pressure, p ^ , is also of interest.

If the pressure is maintained below p,^ for long enough, slot suction from the free stream will ensue,

which is clearly an undesirable situation in the context of film cooling of turbine blades, or to the rim

seals described in chapter 1. A study of a physical problem similar to that discussed in the previous

chapter for slot blowing, but with order one pressure differences permitted, was conducted by Dewynne

et al (1989) [22]. This considered two-dimensional steady slot suction of a high-Reynolds-number,

incompressible, fluid from a uniform flow. Unlike the slot blowing problem, however, a solution was

found for the flow for order one pressure differences between the slot and the external flow, by use

of hodograph techniques. It was found that the streamline that divides the fluid which enters the

slot from that which remains outside does not re-attach at the trailing edge except at a critical value

for the difference in slot pressures. For slot suction stronger than this critical value the stagnation

point, where the re-attachment takes place, occurs downstream of the slot on the channel wall, and

moves monotonically to infinity with increasing suction strength. For slot suction weaker than this

the stagnation point is located on the wall of the slot, but the behaviour of the stagnation point is

not monotonic with respect to suction strength in this case. In fact there is a finite suction strength

for which the location of the stagnation point reaches a maximum distance from the corner, and for

suction strength less than this the stagnation point moves towards the corner, and for small suction

strengths is situated arbitrarily close to the corner. This is a result of the separation of the flow at

the stagnation point.

Furthermore a linearised problem was discussed, where the pressure difference between the slot and

the external flow was taken to be small as in the blowing problem. The exact solutions were shown

to be asymptotically equal to the linearised solutions as the suction strength vanishes. The linearised

three-dimensional problem, in which the slot is taken to be an infinitely long cylinder, was discussed

by Dewynne et al (1990) [23]. Here, an eigenfunction expansion was obtained for the perturbation

potential in terms of associated Legendre and trigonometric functions, giving an infinite system of

linear equations for the eigenfunction coefficients which was then solved analytically. Thus an exact

expression was found for the mass flow rate, and an analytic expression for the channel-wall pressure

were found.

Prior to Dewynne et al (1989) [22] most 'suction' problems concentrated on flow fields with different

geometries to the slot system. Milne-Thomson (1949) [59] considered the special case of a branch of

a canal where the dividing streamline stagnates at the apex formed by the walls of the main channel

and the branch. This may be thought of as a generalisation of the slot suction problem to slots which

are not perpendicular to the uniform flow, however this work did not consider the separation of the

flow at the leading edge of the slot which necessarily occurs with a perpendicular slot. Michell (1890)

[57] considered the aperture problem in which instead of a slot there is an aperture in a wall dividing
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the uniform flow from a stagnant region. The stagnant region is at a pressure lower than the static

pressure far upstream in the region of uniform flow and hence fluid is drawn through the aperture.

However in this problem the flow that is sucked through the aperture is bounded by free streamlines

rather than the fixed slot walls. A relationship was deduced between the angle through which the

flow through the aperture is turned and the static pressure drop across the wall far downstream.

Watson (1946) [109] extended this to the case where the region of uniform flow is of infinite breadth,

and Bliss (1982) [6] considered the three-dimensional problem with a slender aperture and a small

static pressure drop.

For a slot which is not set perpendicular to the wall, Michell (1890) [57] showed that there is a

critical value of the suction rate at which it is possible to have two constant pressure separated flow

regions. Below this value of the suction rate, the streamline that separates at the trailing edge (due to

the fact that the stagnation point lies downstream of the trailing edge) will re-attach, and that which

separates at the leading edge will not. Above this critical value the streamline which separates at

the leading edge will re-attach, and that which separates at the trailing edge will not. At the critical

value neither streamline will re-attach. This critical suction rate is proportional to the square of the

tangent of the angle of inclination, a fact which confirms that for a slot aligned perpendicularly to the

wall the streamline separating at the leading edge will not re-attach.

Fitt & Lattimer (1996) [33] considered a linearised system in which a suction slot is placed down-

stream of an injection slot, following the work of Fitt et al (1985) and the linearised part of Deywnne

et al (1989). A series of equations was derived according to whether the slot suction was sufficient to

ingest all of the injected fluid or not. It was found that, for sufficiently weak slot suction, the 'suction'

slot could be maintained at a pressure less than the free stream pressure, but still inject fluid into the

free-stream, as a result of the interference caused by the upstream injection slot.

Experimental work on the steady suction problem was performed by Morland (1988) [60] both for

weak suction and strong suction. The mass flow was controlled and static pressure measurements were

made, from which the stagnation point and velocity minimum were inferred. This found reasonable

quantitative agreement between the results predicted by the theory (which is the same as the theory

used by Dewynne et al (1989) [22]) and the results found from experiment, and in particular the

path taken by the stagnation point for various suction strengths concurred with that predicted by

the theory. Some discrepancies were involved for strong sucking, probably due to the influence of the

separated flow region present at the trailing edge. Experiments for weak suction agreed well with

the linearised model except at the trailing edge of the slot. This was not surprising, however, as the

linearised theory is not valid at the trailing edge.

Experiments were also conducted by Chew et al (1994) [18] in the context of the rim sealing problem

discussed in chapter 1 . Measurements were made of the pressure for various values of annular

axial flow. However the results did not agree well with the theory. Possible reasons for this include
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circumferential pressure asymmetries in the annulus, and static pressure recovery in the seal. The

former of these is not relevant to the two-dimensional theory described above, however, and so these

results suggest that when considering rim sealing it may be necessary to examine three-dimensional

effects.

4.12 Three-Dimensional Film Cooling

There are two possible approaches to extending the above work to three dimensions. The first is

to consider the flow as extending over the half space z > 0 with a cylindrical, infinitely deep slot

extending over the region {a;2 + y2 < r,z < 0}, and then for blowing or sucking to impose a time

dependent pressure difference at the bottom of the slot. For the steady case this has been examined

for suction by Dewynne et al (1990) [23], although unlike the two-dimensional problem studied by

Dewynne et al (1989) [22] only weak suction was studied, using linear asymptotics. Alternatively

the rim sealing problem, discussed in chapter 1, gives an axisymmetric problem, relevant to modern

gas turbines, which may be of interest, as Chew et al (1994) [18] have observed that it is necessary

to study unsteady effects in the analysis of this problem. However with regard to the rim sealing

problem Campbell (1978) [12] noted that circumferential pressure variations in the main gas flow

path will affect ingestion of the hot gas. The pressure asymmetry may be caused by guide vanes,

rotor blades or other disturbances, and so it would be of use to extend the work detailed above to the

three-dimensional problems. However, since the unsteady problem has not previously been examined,

it will be of use to study the two-dimensional slot injection and suction problems, and this will be the

subject of the next two chapters.
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Chapter 5

Unsteady Slot Injection

5.1 Steady Slot Injection

The work in this chapter will describe unsteady slot injection into a high-Reynolds-number cross-flow.

As the most physically realistic way of imposing time-dependent injection is by controlling the pressure

at the bottom of the slot, the model used will be that considered by Fitt et al (1985) [34] for steady

slot injection, as discussed in section 4.8. The analysis assumed incompressible irrotational flow both

in the injected flow and in the free stream, with a thin shear layer separating the two. The layer is

assumed to separate at the leading edge of the slot, but not at the trailing edge. In practice there may

be separation at both the leading and the trailing edge, depending sensitively on the local geometry

near the edges of the slot : this is discussed in section 4.9. It may be assumed that the separation

will take place at a small distance from the leading edge of the slot, although full triple-deck analysis

similar to some of those described in section 4.3 is required for a detailed analysis of the boundary

layer separation at the leading edge. Moreover, at the onset of separation, the flow will be in the

x—direction, i.e. in the direction of the cross-flow. The effects of viscosity are confined to the shear

layer, which is given by y = S(x,t). The slot pressure is taken to be p ^ + ^pU^e2, with p^ the

free-stream pressure at infinity, p the density of the gas, and C/QQ the velocity of the flow at infinity.

This defines e which is a dimensionless parameter that is required to be much smaller than one for this

analysis. The width of the slot is L. The domain of validity for this model is discussed in section 4.8,

with the bounds on e being given by equation 4.4. Figure 4.2 shows a schematic representation of the

slot injection system.

By imposing the condition that pressure must be continuous across the shear layer, an integro-

differential equation was found for S(x) parametrised by a constant, M, which represents the mass

flow out of the slot.
2 f°° S'(£)dZ _ f 1 (0 < x < L),

TtJo £~X

By imposing that the shear layer is continuous the mass flow, and hence S(x), and the pressure profile

at the surface of the blade, were calculated, with the mass flow M being given by Fitt et al (1985)
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[34] as approximately l.O

5.2 The Interactive Case

For the purposes of this analysis the same assumptions as above will be made as in the steady case,

except that the slot pressure will be taken to be px + \pe2U%of{t), where f(t) is a given function of

time satisfying f{t) > 0 at all times. The region marked O in figure 4.2 is modelled by thin aerofoil

theory, i.e. by considering the shear layer as a distribution of sources of strength (2w)~1e2j(x, t) along

the positive a>axis. This gives a time-dependent potential $o(x,y,t),

*o(x,y,t) = Uoax+€^ J%(U)log ((Xf2
+y^) d£. (5.2)

In this analysis it is important to determine the order of magnitude of each term, so henceforth

non-dimensionalised co-ordinates will be used. These are given by

x = Lx*,
Ly* in outer flow,

' Le2y* in injected flow,

S(x) = Le2S*(x*),

t = LU^e-H*,

<&F{x,y,t) = LE/ooe^z-.y*,**).

where $F denotes the velocity potential in the blown region F in figure 4.2.

Some care must be taken with the order of magnitude of these quantities. It is well known from

thin aerofoil theory that a pressure difference of order e2 produces a disturbance of thickness order

Le2 (e.g. Woods (1961) [110]), and so the characteristic height of the blown region is of order Le2.

The order of magnitude of y will be the same in region F since here 0 < y < S(x,t). A pressure

difference of order e2 over an order one length scale implies (for example from Bernoulli's equation)

a velocity of order e in region F, so the corresponding velocity potential is of order e. Equation 5.2

implies that $o - UooX will be of order e2.

The characteristic time scale is also of some significance. The most obvious choice would be a time

scale of LU^1 since this is the characteristic time scale in the outer flow. However the flow in the F

region has velocity of magnitude eUoo a nd so a time scale Lf/^1e -1 is also relevant. The time scale

is determined by the pressure variations in the slot, and so it will be of interest to discuss more than

one possible scaling of t. The case where t is scaled as above, i.e. with time scale LU^1e~1, will be

referred to as the interactive case. In this case the flow above the shear layer will be quasi-steady and

the flow below the shear layer will be unsteady. For any longer time scale the flow will be quasi-steady

in both cases.
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Bernoulli's equation states that the quantity p$t + p + \p{u2 + v2) (where p denotes pressure, p

density, and (u, v) velocity) is independent of position for irrotational flow of an inviscid fluid. This

may also be written

P*ot+P+\p{*2
Ox+*2oy) = F{t), (5.3)

for some function of time, F(t). In order to apply this equation it is necessary to evaluate the

derivatives of $o ,

«Ox = Uoo-\ / —— rdf, (5.4)
K Jo (x- 0 +y20 +y2

2Uoo fc

K JO
(5-5)

+ y2

?. (5.6)
2?r

The latter of the integrals may be expressed as a singular integral using integration by parts, since all

time derivatives vanish at the limits of the integral.

When considering the outer flow only, the shear layer y = S(x) is just the positive a>axis to

lowest order, thus to compare the terms in Bernoulli's equation at the shear layer to the values taken

at infinity, it is necessary to evaluate the left-hand side of equation 5.3 at {x,0) and at (—oo,0).

Immediately it can be seen that the $oy term will disappear, and the <f?oz term will equal Uoo a t

infinity.

Substituting in the non-dimensionalised co-ordinates it may be seen that $ot is of order e3, $oy is

of order e2, and <$>ox — Coo is order e2. Thus to lowest order, equation 5.3 may be re-written

1 „ , 1

where, poo and C/oo denote the pressure and velocity at infinity respectively, andpt denotes the pressure

at the shear layer (the condition that the pressure is continuous across the shear layer means that pb

denotes the pressure both just above and just below the shear layer). Substitution from equation 5.4

gives

Pb-Poo = jif_ r 7(g,o(s-o dr

TT Jo (x-O2 + y2 *
According to the non-dimensionalisation used, the expression on the left-hand side of this equation is

just e2p*b.

It may be seen that in the above integral the contribution from the region (x — e, x + e) will be zero

by symmetry, thus the singular integral may be evaluated as a Cauchy principal value. The above

equation may be expressed in non-dimensionalised co-ordinates, observing that the y2 terms can be

ignored, to give

p*,=-i 7 U 'l 'dC- (5.7)

One difference between the unsteady case and the steady case is that the shear layer dividing the

external flow from the blown region does not have to be a streamline in unsteady flow. This condition
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is replaced by the kinematic condition, namely that

— (y-S(x,t)) =v-St(x,t)-uSx(x,t) =0 (5.8)

must hold at y — S{x,t). It is largely in this equation that the importance of the scale of the time

changes becomes apparent, as the order of magnitude of the St term will depend on the time scale.

This gives another condition from which the source strength, 7, may be found.

Observing that

l m \ 7 ^¥~,—2 = *S(X - £)>
y->o+ (x - £)2 + V2

u and v may be obtained in the limit as y tends to S(x) from above by differentiating $0 to give

lim u = lim
3/-XJ+ y->0+ TV Jo £- X

lim v= lim $o v = e2U00^({x,t).
y->0+ y-+0+

Combining this with equation 5.8 gives that

u 1 + O(e2) u

Writing this in terms of non-dimensionalised co-ordinates shows that

(5-9)

(5.10)

This gives 7 in terms of S, and hence it follows that, to lowest order,

In order to analyse the F region of the fluid, the injected flow, we will assume that the flow is

irrotational. Irrotational flow may seem unlikely at first, but since all velocities in the slot are small,

the vorticity in the slot will be small (of order e3), and since vorticity is constant along streamlines

in two-dimensional flow, a small vorticity in the slot will remain small in the cooling flow. Vorticity

in the blown region can be significant, however, if the flow does not separate smoothly at the trailing

edge. In this case a separation vortex may be set up in the vicinity of the trailing edge, and this

may have significant effects which will lead to the different equations for this system described in

section 4.9. However this phenomenon depends sensitively (i.e. on length scales of Le or less) on the

geometry of the slot near the trailing edge, and for the purpose of this analysis it will be assumed that

the geometry of the slot is such that the separation is smooth, and so the flow will be irrotational.

The assumption of irrotational flow means that Laplace's equation holds for the velocity potential

in the blown region. In non-dimensionalised co-ordinates, this gives

L-lUoot<j)x.x. +L-1e-3Uoc>(j>y.y, = 0 .

Therefore to lowest order cp is linear in y*, i.e.

r=A(x*,t*)y*+B(x*,t*) + e4cPi(x*,y\n + ... (5.12)
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Clearly the normal velocity must be zero at the fixed boundary y* = 0. This implies that A = 0, and

so to lowest order <j> is a function of x* and t* only. This function B will henceforth be denoted by 4>Q.

We may evaluate the pressure at the shear layer by use of Bernoulli's equation. The total pressure

at the bottom of the slot is given as p+ ^pU^e2 f(t), and as this must be constant along streamlines

it follows that this must be constant everywhere. Hence we have

Pb + ^ F I + $F2
y) + P$Ft =P+ ^pUl,

Using the non-dimensionalised variables, $>FX
 wiU be 0(Ucoe) and $/rt will be 0(C/ooe2). However

$Fy will be LC/QOC" 1 ^ . , which according to equation 5.12, is Uooe
3(j)iy*, and so is much smaller than

the other two terms. As in the steady case, all velocities are order Uoo£2 or less in the slot, and so the

pressure will be constant above the slot. Hence in non-dimensional co-ordinates Bernoulli's equation

reduces to
* r /(**) o < z * < i

Pb~ I / ( * ' ) - ^ . - 2 0 O t . x*>\. (5-13)

This may be combined with equations 5.7 and 5.11 to eliminate 7 and p£, leaving a relationship

between S* and <J>Q. In order to close the system it is necessary to apply the kinematic condition in

the region below the shear layer. In this region, the familiar equation

becomes, in non-dimensionalised variables,

LUooetfay. = U^d^.Sl. + tfooe3SV (5.14)

Therefore it is necessary to evaluate (fiiy- This follows from Laplace's equation, which must be

satisfied by <j). From equation 5.12 this reduces to

4>0x>x> +<t>lyy = 0 ,

and so, as (fio is a function of x* and t* only,

& „. =-<pOx*x*y* + C(x*,t*).

The condition of zero normal velocity on y* = 0 implies that C = 0, so at the shear layer 4>iy* is just

—S*(j)Qxtx,. On substitution of this expression into equation 5.14 we are left with the desired equation

relating 0o to 5*, namely

{4>Ox>S*)x. +S*t, = 0 .

For convenience we will henceforth write <f> for cfio, and combine this result with the pressure balance

equation suggested by equations 5.7, 5.11 and 5.13. Hence we have a system of two variables in <f> and

S*, given by

2

71" Jo
.S*)*.+St*. = 0. (5.16)
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The boundary conditions for this equation are S* and 5*. are zero at x* = 0, and it may be arbitrarily

imposed that <f> = 0 at x* = 1, as <f> is the velocity potential. Initial conditions are also needed for (j>

and S*. These equations will be referred to as the interactive equations for slot injection.

The mass transfer function will now depend on how far downstream of the slot it is evaluated. This

function will be denoted by M(x,t), and is given by

fS(x) ,S*
M= $Fxdy = LUxe

3 4>Ox,dy* = LU^^.S* (5.17)

Jo Jo

in the blown region, x* > 1. The physical interpretation of M in the region 0 < x* < 1 is less clear,

but is irrelevant to the problem. This suggests that M be non-dimensionalised according to

M = LU^M*. (5.18)

The interactive equations 5.15 and 5.16 may therefore be expressed in terms of M* and S* only, as

they are in the steady state equations. In this form they are

/(*) 0 < a : * < l ,
* (519)

2 [°° S*. f
- f T*—^ = 1
W JO ? ~x [

o
S*2(x*,t') ~ d

M*. + 5t*. = 0. (5.20)

Equation 5.20 suggests that the system may be expressed in terms of one variable, a. This variable

corresponds to the total mass of fluid that has been blown from the slot as far as distance x in time

t, and is defined by the equations :-

ox = 5, (5.21)

at = -M. (5.22)

with a = 0 at x = 0. The non-dimensionalised variable, a*, will just be a/L2e2.

Hence the time-dependent slot injection equation for the interactive case in terms of a*(x*,t*) is

with boundary conditions a*(0,t*) = cr*,(O,£*) = ox*x*{Q,t*) = 0 and appropriate initial conditions

on a* and a\,.

In whichever form they are presented, these equations pose a problem of significant complexity, being

a non-linear system. Nonetheless it is felt that the equations derived with this non-dimensionalisation

are the most important for the understanding of the slot injection problem, and so numerical ap-

proaches to this system are considered in chapters 8 and 9. Although it seems unlikely that analytic

solutions will be found for this equation, an asymptotic analysis may be performed. This will give in-

sight into the equations and results which are useful both to a physical understanding of the problem,

and to the numerical analysis.
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5.3 The Asymptotic Behaviour of the Shear Layer

5.3.1 Behaviour for Small x

The asymptotic behaviour of S(x) at the leading edge of the slot may be determined fairly easily by

inverting equations 5.19 and 5.20, according to the inversion formula given by equation A.3, giving

^ « + <7*- . , (5.24)

where C is independent of x*. It is immediately apparent that C is zero for all values of t* from the

boundary condition S*,(O,t*) = 0. For x* < 1 the above integral is not singular, so the asymptotic

behaviour of S* near zero will be given by

* ( $ y (5.25)

In the quasi-steady case of section 5.4 the function K(t) will be proportional to f(t). However in the

interactive case it not clear that this is the case, in other words the behaviour of the shear layer near

the leading edge at a given time may not be dependent only on the slot pressure at that time, but

may also be sensitive to the behaviour over a period of time. K(t) may be found by letting x* tend

to zero in equation 5.24 to give

5.3.2 Behaviour Near the Trailing Edge

Near x* = 1 there is a jump discontinuity in the transform of S*,. Therefore there will be a logarithmic

singularity in S*, at x* = 1, (see section A.4.3), so

Sx* ~ i*r ± log | l -z* | asz* -»• 1± ,

where K^- are constants. This implies that

S ~C±+K±\og\l-x*\ as a;* -» 1±,

however it is not obvious that C+ and C~ are the same. It would seem possible for C+ to be greater

than C~ : this would correspond to there being a jump discontinuity in S* at x* = 1, with S* taking

a range of values at this point. This would certainly be the case were Sx to be an order of magnitude

larger than Le2 in some region (1 — e, 1 + e). Suppose that the order of magnitude of Sx is ea at

x* = 1 for some a < 2. Then from equation 5.11 this would lead to a source strength of order ea and

hence a pressure difference of order ea. Since the pressure is continuous across the shear layer, this

would lead to a similar pressure difference of order ea just below the shear layer, and so the horizontal

component of the velocity, which is the largest component, in the blown region would be of order et .

Multiplying this velocity by the height of the shear layer at the trailing edge will give a mass flow of
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order e2+ 2 which contradicts conservation of mass unless a — 2 as the mass flow is of order e3 in the

blown region. Hence Sx must be of order Le2 at the trailing edge.

A jump discontinuity would still be possible for Sx order Le2. However this would imply that

Sx would behave like a Dirac delta function at the trailing edge, and it is known (see, for example,

appendix 1 of Fitt (1983)), that this would imply a singularity of the form l/(x* — 1) at the trailing

edge. This contradicts the fact that the pressure is constant for x* < 1, as the pressure is the Hilbert

transform of Sx in this region. Hence there can be no jump discontinuity at the trailing edge, and so

C+ will equal C~ (which equals C, say). Hence the asymptotic behaviour at x* = 1 is given by

5 ~ C + K± log | l -a ;* | as a;* -> 1± . (5.27)

5.3.3 Behaviour for Large x

For large values of x* it is necessary that S*» tends to zero in order that the singular integral in

equation 5.19, which is the expression for the value of the pressure at the shear layer, exists. In the

steady case the behaviour at infinity is given by Fitt et al (1985) [34] as

S* =M* + O{l/x*),

which implies that, as 4>%»S* = u*S* = M*,

<j>* =x* +O(logz*).

In the unsteady case it would appear reasonable for S* to obey the same sort of behaviour. With

this assumption it follows that the leading order terms in the expansions of both <j>* and S* must be

independent of time, otherwise the time-derivatives dominate equations 5.15 and 5.16. Note though

that from equation A. 13 that the Hilbert transform of a function with the asymptotic profile of x*~2

is asymptotically equal to x* ~2 log x*. Hence the asymptotic expansion of S* and (j>* must be given

by

S* = C0 + Clx*-1+C2(t*)x*-2\ogx* + ... (5.28)

^ * +K2(t*)x*-1logx* + ... (5.29)

where F'(i) = f(t) — 1. These give the results necessary from equations 5.15 and 5.16, that

(#.s)x.+s;. =0.

Note in particular that Co, C\, and K\ do not depend on time. This implies that both S* and u*, and

thus M*, are independent of time to within O{x*~2\ogx*). This is a surprising and counter-intuitive

result, as one would normally expect the behaviour at infinity to vary with the slot-pressure in a

subsonic flow. However it must be remembered that this regime is for changes on the interactive time
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scale only, so implicitly it has been assumed that there is no variation on any other time scale. Thus

it is more accurate to say that u*, S*, and M* will only change by order x*~2 logo;* over a length of

time of order L/UooC. The asymptotic behaviour when variation takes place over both quasi-steady

and interactive time scales is considered in section 5.6.

5.4 The Quasi-Steady Case

The system becomes quasi-steady if the changes in the slot pressure take place over a time scale of

LU^o
1e~2 or longer. In this case all the time derivatives will be an order of magnitude smaller than

in the interactive case, and the equation (in terms of M and S) will be as follows, with the same

boundary conditions as before :-

2 f00 St. { fit*) 0 < x* < 1,

TT Jo $ - X { J\l > ~ S*{x*,t*)2 X > 1.

Since there are no time derivatives, t* will behave as a parameter. The equation derived from con-

servation of mass beneath the shear layer will now reduce to M*. = 0, which is the justification for

writing M* = M*(t*) in the above equation. The boundary conditions S*, = 5* = 0 at x = 0 are

sufficient information to find a solution and determine M*, as in the steady case. At a given time,

the equation will be the same as that for a steady system with slot pressure p^ + ̂ pU%oe
2f(t). Thus

the solution for this will be a family of steady state solutions parametrised by t* given by

S(x,t) = f(t)S0(x),

M{t) = $

where So(x) is the solution of equation 5.1, the steady state injection equation, and Mo is the corres-

ponding mass transfer. The prediction that the mass flow is proportional to fit) 2 has not previously

been recognised, and is physically very significant, as it is the mass flow that is of most interest,

particularly downstream of the slot. The importance of this relation is underlined by the fact that

the mass flow far downstream of the slot does not vary with time over the interactive time scale, as

was shown in section 5.3.3. It will also be shown in section 5.5 that it does not vary over shorter time

scales, so far downstream this relationship between slot pressure and mass transfer is valid over all

time scales.

5.5 The Fast Unsteady Case

Changes occurring over a time scale of order LU^1 present a different problem to those discussed

above, since the time scale of variations in the slot pressure is now an order of magnitude smaller

than the natural time scale of the flow in the blown region. Furthermore the flow in the outer region
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will now be fully unsteady, which is a contrast to the interactive case where it is quasi-steady, so time

derivatives will become significant in this part of the flow. However, over the new time scale, there

will be no motion in the blown layer in a finite time, since the velocity in this region is 0(C/ooe). By

conservation of mass therefore, the height of the shear layer must remain constant in this region. This

means that, even if the slot pressure only varies over a time scale of L/Uoo, the height of the shear

layer, and the velocity of the fluid in the blown region underneath it, can only vary to lowest order

over a time scale of L/UooC, although lower order terms will vary over the shorter time scale. Note

that although the height of the shear layer is not varying with time in the blown region, it will vary

over the slot.

Since all time derivatives are zero in the blown region to lowest order, the only effect of the change

in the slot pressure is in the region above the slot. Here, the pressure changes will affect the height of

the shear layer. The equation describing this may be derived in essentially the same way as for the

interactive case, except that time derivatives are now significant. In particular, from equation 5.9 it

follows that the source strength, e27, will be given by

just above the shear layer. Furthermore, the $ot term, given by equation 5.6, becomes significant.

This may be integrated by parts, as before, but particular care must be taken with this integration,

since a jump discontinuity in S, i.e. ax, is likely at x = L, as S is unsteady for x < 1 but steady for

x > L. Hence it is prudent to split this integral into two parts. For convenience, as before, a will be

defined such that ax = S, and a = 0 at x = 0. Hence, from equation 5.6, using the above expression

for 7,
e2Uoo ( [^ fa

$ot = o °° f d£ + f
<™ \Jo JL

from which,

lim §ot = -
7T Jo £ - z

, , _ i , . [x - .

Of the two terms in square brackets, the contributions from 0 and oo will be zero, as in the interactive

case, but the two terms from x = L need not cancel, since the value for L+ will be zero, as the flow is

steady for x > L, but the value for L~~ may be non-zero. Therefore let the contribution from L~ be

denoted by 2N{t)U00\og\k=fi\. Then

N(t) = e2!/"1 [axt + U^att)\x=L . (5.32)

The expression obtained for <J>ot is therefore

L-xr UJZZ+E&LV+inkmlog7T Jo
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Hence from equation 5.3, i.e. Bernoulli's equation for the external flow, by substituting the expression

from equation $01 as before, it follows that

Pb_ }_TT2 _ e ^cy f°° a££ + 1Uz}a£t + UZ?<Jtt , , U^e2 . . , . , , L — x
7 2 ° ° ~ ~ = F(t),

where F(t) is some function of time only. In fact, by letting x —> oo, it follows that F(t) — p~lp<x, +

i [ / ^ , and so

Pb " P o o

7T

L — x
(5.33)

This describes the behaviour above the shear layer, and it is imposed that pb — p^ = | /

the slot region, so the behaviour of the shear layer above the slot is given by

L — x

in

= 21/QQ r

K To Z — x _
L

(5.34)

Since all time-derivatives are zero in the blown region, over the time scale chosen, L/Uoo, the value of

a in the blown region will just equal its initial value, which must be given from the initial conditions.

Hence the above equation is sufficient to describe the shear layer everywhere, with the only unknowns

being the value of a in the region (0,1) and N(t). In non-dimensionalised co-ordinates, with the

non-dimensionalised variables defined in the same way as previously, except

a = L2e2a*,

this may be written as

(5.35)

which is valid for x* < 1. The boundary conditions for this equation at x* = 0 are a* = 0, from the

definition of a*, cr*. = 0, from the definition of S*, since <r*. = S*, and <r*,x» = S*x* = 0, since

smooth separation must occur at the leading edge. Thus a solution for a* may be obtained, which

will be dependent on time for x* < 1 (i.e. the region above the slot), and independent of time for

x* > 1, i.e. the blown region. This will lead to a jump discontinuity at x = L in the solution found

for S*. However this merely indicates that the above analysis is invalid in a region of width Le near

the trailing edge, x* — 1. Near x* = 1 it is therefore to be expected that S*. will tend to infinity.

Equation 5.35 may be solved, by use of the inversion formula detailed in section A.2.2, and the

inversion for log 1 — x* given in appendix B. The boundary conditions are that a* = a*x, — o*x*x, = 0

at x* — 0, so the inversion used will be that of equation A.6. The inverse of f(t), which will just be

f(t) multiplied by the inverse of 1, is given by equation A.8. Hence

1
-siOO (5.36)
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where b(x*) is the inverse of log |1 — x*\, and is given in appendix B, and gi(x*) is the inverse of

1 f°° SU^,0)
- 4 -~ d£.
7T J l £ - X*

This may be solved by use of the change of co-ordinates (" = x* — t*, r\ = x* + t*, to give

a = ai(x* -t*) + (x* +t*)a2(x* - t*) - g2(x*)

f I (
O Jo V2

- Z

where g2" = Qi and 92(0) = $2(0) = 0- From the boundary conditions that a = ax = 0, it follows that

ai and a2 are zero. Therefore, changing the order of integration gives

a = -g2(x*) + J L f (1 - z) ( [JLlf(z -x*+ f) + N(z - x* + t*)b(z)) dz.

Although N is as yet unknown, it may be determined from an ordinary integro-differential equation

by substituting the above expression into equation 5.32. Hence a, and therefore S* may be found,

since S* = a*,. For more details of how this is done, the suction problem of chapter 6 discusses an

almost identical system of equations, derived in section 6.2, and solved in sections 6.3, 6.4, and 6.5.

The function g2 (x*) may be easily found from the initial conditions, observing that if /(£*) = 1 for

all t*, the steady state solution will be recovered, with N(t*) = 0, and hence

g'2{x*) = -S*{x*,0) + Vx~*Vl-x*.

Solutions are not presented here, as it is not the behaviour of the shear layer above the slot that is

of interest, but the mass transfer, and the velocity, downstream of the slot, and these are constant on

the time scale described here. Hence it is the interactive case that is of most interest, as only changes

on this time scale, i.e. L/Uoo€, or longer, can affect the mass flow.

5.6 Variation Over Two Time Scales

So far it has been assumed that the variation in the slot pressure may be said to take place over any

time scale. However for a function such as f(t) = t, for t > 0, the slot pressure will vary over all

time scales. Moreover, since the equations derived are non-linear, it is not possible to super-impose

solutions of the different time scales. Here, a system in which changes take place over both the quasi-

steady and the interactive time scale will be considered. A suitable example of such a time scale would

be f(t) = sint/ti +sint/t2, where t\ = L/Uoc^2 and t2 = L/UOQC. In such a case particular care must

be taken with the non-dimensionalisation, and a 'two-tier' non-dimensionalisation must be applied for

time,

x = Lx*,

t = LU-h-HM+LU-h-HW,
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S = Le2 (S(B)(z*,*<«>) +S w (a :* ,

f(t) =

The functions S^ and (f>^ are the quasi-steady solutions, given by equation 5.31. The functions S^

and </>W are the deviations from the quasi-steady solutions, which will take place on the interactive

time scale, and which are of the same order of magnitude as S^ and 4>^ respectively. On application

of this non-dimensionalisation into the usual equations, i.e. the pressure balance (equations 5.7,5.11

and 5.13), and the kinematic condition (equation 5.8) the following equations, which are similar to

the interactive equations in the form given by equations 5.15 and 5.16 are obtained.

2 f°° S^+S^ = f fM + / « 0 < x* < 1,
Wo Z-x* \ / («)+/(*)_ (0(9)+0(O£_ 20J ( j ) X*>1,

observing that all derivatives with respect to t^ will be an order of magnitude smaller than any other

terms. Since S^ and <j>^ are the solutions for the quasi-steady equations, i.e. equation 5.30 with

<j)^) S^ — M^ a function of t^ only, the terms in the above equations containing only quasi-steady

terms may be subtracted out. Hence the system of equations for variations over the interactive time

scale, with variations also taking place over the quasi-steady time scale is

2 f°° S^ ( /W 0 < x* < 1,

- t T^*^ = \ /« - 24$4$ - ^ - 2 < x- > 1, (5-3?)

0 = (^SM + 4>{SS(l) + ̂ S{i)) t + S%. (5.38)

Here, /W is given, and S^ and 4>^ are given by equation 5.31.

The asymptotic expressions as x tends to infinity will be similar to those given for the interactive

case by equations 5.28 and 5.29. The only difference is that some of the terms which were constant

will now be given by functions of t^. Hence

+ . . . , (5.39)

^ . . . (5.40)

Here, as before, F^ is defined according to F^ = /W — 1. From the definition of S^ it follows that

Co and K\ must be zero, as these contribute to S^.

Variation over fast and unsteady time scales simultaneously is complicated by the fact that to

calculate the pressure in the blown region for the fast case to the same order of magnitude as in the

interactive case, i.e. pU^e2, it is necessary to examine second order terms in the velocity potential.

Nevertheless, the same principles will apply.
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5.7 Stability

The stability of the shear layer need only be considered on the interactive time scale, since on the

fast time scale the shear layer does not change, and on the quasi-steady time scale the shear layer will

scale with f(t). To consider the stability of the shear layer, SQ (X*) may be taken to be a steady-state

solution of the system. A test for stability may be conducted by perturbing the steady state solution

with a Fourier mode, denned by

S*(x*,t*) = S^(x*) + Le2Aei^t'-kx^

where A and B are much less than one (but larger than e) and 4>Q(X*) is the steady state solution.

Substitution of this into the interactive equations, i.e. equations 5.15 and 5.16, gives, to first order,

for x* > 1,
., » 1 r°° eikZ

Aike~lkx - 4 d£ - iku*QB + itoB = 0, (5.41)
K Jo (,-x*

Au*Ox. + Au*oik + BS^ik)2 + BS£xJk - iuA = 0, (5.42)

where UQ = 4>ox,- Note that for x* < 1 the only term in the first equation is the Hilbert transform

term, which is proportional to zero, and hence A is zero, implying that B is zero so there can be

no instabilities. It is therefore sufficient to consider the region x* > 1. In this region, for large fc,

equation 5.42 may be simplified to

{iku*0 - iu)A - k2SoB = 0. (5.43)

The integral in equation 5.41 may also be simplified, by observing that, if k is positive,

1 r°

- 7
7T Jo

1 f™ eiu
 J 1 [<*> eiu ,

= —f —du f —du,
TV J_00 U TV J_k-lx. U

= i-O(k~l). (5.44)

For negative k, the result —i + O(k~l) is obtained, and so equation 5.41 may be simplified to

= -(ikuo-iu>)B = O. (5.45)

1 r°° eikt,

J f -X*

With these simplifications, it follows from equations 5.43 and 5.45 that non-trivial solutions will exist

for A and B only if

Sok2\k\ = -(iku*0-iu>)2.

Hence for sufficiently large k values of w with negative imaginary part may exist, and so e~ltjjt may

grow exponentially. This means that the flow is linearly unstable for x* > 1.

79



Linear instabilities of separated flow have been studied by many authors, with it known experi-

mentally that a separating laminar flow may break down abruptly as the flow becomes turbulent, see

for example Van Dyke (1982) [100]. Non-linear instability was studied by Brown et al (1988) [10],

who considered separation from an aerofoil, with a region of constant vorticity beneath the aerofoil,

and found instabilities by essentially the same method as described above. Similarity solutions for the

breakdown region were then found and solved for both subsonic and supersonic flow. For subsonic flow

above a region of zero vorticity, as in the slot injection problem, a symmetric cusped region was found,

with the height of the shear layer, the velocity and the pressure being given analytically (equation 5.4

of Brown et al (1988)).

It seems likely that the instabilities for slot injection will be similar, although it is not clear how far

downstream of the slot they will occur. The fact that instabilities arise is not entirely surprising, as

both the external and the injected region are modelled as being inviscid, with an unstable vortex sheet

separating them. However in practice the lower order effects of viscosity often act in order to stabilise

the flow, so instabilities may not occur until a considerable distance downstream of the slot. There

is some experimental evidence of this in the fact that the shear layers observed by Fitt et al (1985)

[34] were observed to be stable. Nevertheless the onset of instabilities and turbulent mixing is an

important aspect of film cooling, and would be a useful area for further research.
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Chapter 6

Unsteady Slot Suction

6.1 Steady Suction Into a Slot

The unsteady analysis of slot suction detailed in this chapter will follow the two-dimensional analysis

of Dewynne et al (1989) [22], in the asymptotic case for low strength slot suction, and so will be

similar in kind to the analysis of the blowing problem. Section 4.11 contains further details of the

models that have been used for slot suction.

In the steady case the slot pressure will be p ^ — \pU^oe
2, and the model for the external flow is

now that of a series of sinks in the region 0 < x < L along the a;-axis. A schematic representation

is shown in figure 6.1 The streamline that separates at the point (0,0) will be denoted by \P = 0,

Un

• • • • • • . y = T ( x )

y = S(x)

s
L

Figure 6.1: Slot suction in a steady system

where ^ is the stream function for the outer flow. For x < 0 it will simply lie on the a;-axis, but for

0 < x < L it will separate, and the equation of this streamline will be given by y = Le2S(x) in this

region.

The crucial difference between linear slot suction and slot injection is that there is no 'blown' region

with suction analogous to region F in the injection case. The only two regions are the perturbed
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free-stream, and the region beneath the shear layer, in which all velocities are zero. Furthermore since

the mass flow is inwards, it comes from the fast moving free-stream, and thus is an order of magnitude

larger than in the injection case : as before, the height of the perturbation will be of order Le2, so

as the suction velocity is necessarily UQO, the mass flow will now be of order LUoopt2, as opposed to

the order LV00pe' appropriate for the injection problem. The conditions on e are that it be small, so

that linear asymptotics may be applied, and that the shear layer be of negligible width. As this shear

layer is of thickness 0(LRe~2), and the height of the streamline is O(Le2), this gives the bounds on

e for this model to apply as being

Re~* < e < 1.

Non-dimensionalising is done in the same way as in the 'injection' case, except that the mass flow

will now be of magnitude LU^e2. Imposing the condition that the slope of the flow just above this

streamline will be Le2S*'(x) as before, this leads to a stream function in the outer region given by

TTI 2 fL ( \
* = LUooy —— / S*'(£) arctan f I dt;. (6-1)

^ Jo V? ~ x )

(This is just the imaginary part of the complex potential corresponding to the slot injection problem,

given by equation 5.2, but with a sign change).

Applying Bernoulli's equation above and below the flow, imposing continuity of pressure across the

shear layer, and neglecting velocities in the slot as before, leads to the result that, to lowest order,

^ ; <%*• (6.2)

This equation, obtained by matching pressures, is the governing equation of the flow, since the stream

function may be obtained in terms of S (see equation 6.1). The boundary conditions, as for the

analogous slot equation, are derived from the assumption of smooth separation at the leading edge,

and are that S* = S*. = 0 at x* = 0.

The solution of this is for 5*' given in section A.2.3, as being proportional to ^/{x/(l — x)}, with

the choice of solution determined by the fact that S* and 5*' are zero at x* = 0. Integration of this

with respect to x* gives
arcsin(Va;*)

Zi

The streamline which touches the point (1,0) is also of some interest. This is the streamline which

divides the part of the flow which will enter the slot from the part which will pass over the slot. This

streamline will be denoted by y = Le2T*(x*), with the value of <5 on this streamline given by $ = M.

As with slot injection, pM will measure the mass transfer into the slot, although now M* is defined

by M = LUooe2M*. With these definitions, T*{x*) will be given by

arc tan ( g * . j <% = LU^M". (6.4)
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The mass flow, M, may be found by evaluating it the top of the slot. This may be done since the

vertical velocity, —<f>x is known in this region, and may be evaluated along this line using equation 6.3

M=f Vx(x,0)dx = -Uooe
2 [ S'(x)dx=jLUooe

2. (6.5)
Jo Jo 4

Thus equation 6.4 becomes

Differentiating this equation with respect to x* produces the result that, to lowest order, T is given

by
I _ I / x* n <" ̂ * ^ 1

(6.7)

and so the line y = T*(x*) is given by

f z* < 0,
j + jVa^ 1 / ! ~ £* ~ | arcsin ^/i* 0 < a;* < 1 (6-8)
0 a;* > 1.

This is consistent with thin aerofoil theory since the velocity in the y—direction is given by — limy_).0+ tyx

Since T{x) and S(x) are both streamlines, they must both be given by ̂  = T'(x) = S'(x) both above

the slot and in the region to the left of the slot. Since they are both of height O(Le2), they are both

at y = 0 to lowest order, and so the expressions for u and v at y = T and y = S will be the same, so

T" and S" will be the same.

6.2 Unsteady Suction

As with the injection problem, the time-dependency of the system in which gas is sucked in the slot

will be introduced by making the slot pressure equal to p — ̂ pU^e2 f(t), where f(t) > 0. The non-

dimensional variable t* will be defined by t = L/Uoot* so that pressure variations take place over a

time scale of unit order of magnitude. This is the natural time scale of the flow, as the velocity is

0{Uoo) throughout the flow. Hence any changes over a time scale larger than this will be quasi-steady.

By modelling the flow outside the slot by potential flow with a series of sources as before, and

choosing a source strength such that

2-(y-Le2S(x,t))=0,

one may express the velocity potential in terms of S(x, t)

£• (6-9)

Note that, as in the injection case, S(x,t) is no longer a streamline is the shear layer dividing the

external flow from the static flow in the slot.
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The mass transfer at the top the slot, 2Mo(t) may be evaluated to give

LUoof?M0{t) = - (6.10)

where a(x,t) is denned by ax = S and <j(0,t) = 0. Bernoulli's equation will now contain a $ t term

and, taking the limit as y tends to S(x,t) from above, the pressure at the boundary will be given by

Pb-Poo H y=S(x,t)

IP e2

2

IT

L-x

K Jo S-X ' 1 " " " \ I

Since velocities are zero in the slot, the left-hand side of the equation will be equal to the non-

dimensionalised static pressure at the bottom of the slot, which is maintained at —f(t). In non-

dimensionalised co-ordinates this reduces to

2
-M0'(t*) log(l - (6.11)

This is the unsteady version of equation 6.2, and may be expressed entirely in terms of a by applying

the non-dimensionalised version of equation 6.10. The boundary conditions on a* are that a* = ox* =

ax,x, = 0, since the flow is assumed to separate smoothly. Initial conditions are needed for a and

Of • This equation may be inverted according to the formulae described in section A.2.2, with the

condition that all the derivatives of a* up to second order in x* are zero implying that the formula

used in equation A.6 is the required version to use, with no singularity in the inverse transform at

x* = 0. This gives

CFft* — ~ (6.12)

where b{x*) is given by

to give

b(x*) = 2 I arcsin Vx* - log 2 (6.13)

(see appendix B). Note that the system of equations given by equation 6.12 and 6.10 is very similar

to those for fast injection, given by equations 5.36 and 5.32, with ./V replaced by —MQ. This result

has implications for the problem where injection and suction both take place over a period of time

and is discussed in section 7.4.

For a given Mo, equation 6.12 is a parabolic second order partial differential equation. This may be

solved by changing co-ordinates from (x*,t*) to (£,??) = (a;* + t*,x* — t*) and integrating twice with

respect to £. Hence a is given in terms of MQ as

a = ax{x* - t*) + {x* + t*)a2(x* - **)
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- - / M0'(x2-x*+t*)b(x2)dx2dx1, (6.14)
7T Jo Jo

where a± and a2 are functions which may be determined from the boundary conditions. As the

boundary conditions are a = ox* = 0 at x* — 0 it turns out that a\ and a2 are identically equal to

zero.

The solution for a above assumes that f(t) and M0(t) are denned for all t, including t < 0. This

requires some care when solving the equations. In particular if suction commences at t = 0 (with

f(t) = 1 for all t > 0, say), with the system being described by free stream flow with no suction for all

t < 0 then the correct form for /(£) is /(£) = H(t) which will not give the same solution as f(t) = 1.

This means that the form of the solution at a given time depends not only on the strength of the

suction, but on the history of the strength of the suction.

On substitution of equation 6.10 into the expression for a defined by equation 6.14, an integral

equation may be obtained for Mo(t*),

0(t*) = / lf{xi - 1 + f)J-^—dxi + - f Mfai -
Jo ^ \ 1 ~ Xi TV Jo

M0(t*) = / lf{xi - 1 + f)J-^—dxi + - f Mfai - 1 + t*)b{Xl) dxY. (6.15)
J ^ \ 1 X TV J

From the linearised part of the theory of Dewynne et al (1989) [22] it is known that the particle

path that attaches at the trailing edge is within order Le3 of the particle pa,th that divides the part of

the flow that is sucked into the slot from the part that is not. Therefore these may be considered as

the same particle path, and will be denoted by y = Le2T*(x*,t). This particle path may be evaluated,

as in the steady case, from the equation

e2M(x*,t*) = e2T(x*,t*) -±J (S*. + 5t*.) arctan

by differentiating with respect to time. However in the steady case the equation derived from this

condition was found to be equivalent to that obtained from the condition that the line y = Le2T(x, t)

is a streamline, i.e. -§j(y — Le2T(x,t)) = 0 on y = Lt2T(x,t). Re-writing this as

expressions for T(x, t) may be found in the three regions of the flow, since v = $ y is given in terms of

a(x, t) from equation 6.9, and u = f/oo to lowest order.

• For x < 0, v = 0 to lowest order and u = Uoo so this condition leads to T*, + Tt* = 0, or

T*(x*,t*) = d(x* - t*) in this region.

• ForO < x < L,v = Le2(S*,+SZ.) and hence T*(x*, t*) = S*(x*,t*) +c2(x* -t*) in this region.

• For x > L, v = 0 to lowest order, so again Tx*. + Tt. = 0, or T*{x*,t*) = c3(x* - t*) in this

region. Since T* is defined by the condition that T*(l,t*) = 0 for all t*, cz must be identically

equal to zero in this region. Hence T* is everywhere zero in this region.
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The functions Ci(x* — t*) and c-2(x* — t*) may be found by imposing continuity of T(x, t) at x* = 0

and x* = 1. This gives ci(f) = c2(£) = -S*(l - 0- T h u s T*(x*,t*) may be found given S*(x*,t*).

Since the integral equation for S*(x*,t*) involves M0(x*,t*) the next step is to solve the integral

equation for Mo(x*,t*) for a given /(£*), i.e. equation 6.15, which will henceforth be referred to as

the mass transfer equation.

6.3 General Solution of the Mass Transfer Equation

Henceforth the asterisk notation used to denote non-dimensional quantities will be omitted. The mass

transfer equation, equation 6.15 may therefore be written in the form.

M0(t) = f ~f(Xl - 1 + t)J-^-dx! + - f M'0{Xl - 1 + t)b(Xl) dXl.J 2 y 1 z n J

An immediate feature of the mass transfer equation is that it exhibits a linear dependence on /(£),

i.e. if M^\t) is a solution for f{1\t) and M^\t) is a solution for f^\t) then M^\t) + kM^2\t) is

a solution for f^l\t) + kf^2\t) for any constant k. It may also be differentiated through with respect

to time, so that if Mo is a solution for / , then MQ will be a solution for / ' . Furthermore the steady

state solution, Mo(t) = J, is clearly a solution when f(t) = 1, agreeing with the previous steady

analysis. Two different solution techniques have been used to solve this equation analytically, suitable

for different choices of f(t) : the method of degenerate kernel, and the use of integral transformations.

6.3.1 The Method of Degenerate Kernel

The method of degenerate kernel is suitable when the function f(t) satisfies the condition that

f(x — t + 1) may be written as a linear combination of a finite number of separable functions, i.e.

2 = 1

where all of the functions bi(t) satisfy the same condition, i.e.

the solution is Mo = ̂  Aib{{t) where the Ai may be found by direct substitution. Examples of possible

functions f(t) for which this method is applicable include f(t) = t and /(£) = sini^i. Although neither

of these is a valid choice for /(£) in this system since a condition for the validity of this model is that

f(t) > 0, the solutions are of interest owing to the property of linearity which means that given the

solution for /(£) = sint a more physically useful solution such as that for /(£) = 1 + sint may easily

be obtained. They also apply to the case where injection and suction both take place over a period

of time, discussed in section 7.4. Furthermore the solution for f(t) = t should provide a guide as to

the behaviour of f(t) = tH(t) (where H(t) is the Heaviside step function) for large t. Other possible

86



choices for /(£) for which this method could be applied include any linear combination of /(£) = tn,

where n is a non-negative integer, and trigonometric and exponential functions. The solutions for

f(t) — t and f(t) = smvt are given in sections 6.4.1 and 6.4.2 respectively.

6.3.2 Solution Using Integral Transformations

The integral transformations used to solve the mass transfer equation are Laplace and Fourier trans-

forms : this method is suitable when f(t) is a linear combination of functions which possess a Fourier

or Laplace transform. Realistic examples of functions f(t) for which Laplace transforms may be used

include H(t), tH(t), H(t) sini/£,ff(£)e*; examples for which Fourier transforms are applicable include

sin ft and S(t).

Before taking Laplace transforms it is convenient to re-write the integrals in the mass transfer

equation (equation 6.15), as being over the range (0, oo), i.e.

1 f°
2 Jo

i r°°
-
TT JO

O

The two integrals on the right-hand side are convolutions. This follows as they may both be written

in the form

i:
where hi(xi) is zero for negative Xi and /i2(a;i) is zero outside the region [—1,1]. The first function

will be zero for x\ < 1 — £ and the second will be zero for xi > 1, so the value of the above integral will

not be changed if the limits of the integral are replaced by 1 — t and 1. On substitution of u = 1 — x\,

the above integral is

h\(t — u)h2(u)du,

which is the usual form for a convolution.

It is now necessary to evaluate the transforms of the part of the integrands that are functions of x\

only. The first of these is

e-px dx

dx

/ Jr. e-pxH(l-x)dx = / , / —

d f1 e~px

dp Jo x 3(1 - x) i

dp Jo

The modified Bessel function I0(p) is given by the integral representation (see, for example, Abramow-

itz k Stegun (1964) [1])

I0(z) = - [ e±zcos6de.
K Jo
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Hence the above integral is

Ze-v*H{l-x)dx = -n±
dp

= §'-«(*©-'•(!))•
using elementary properties of the modified Bessel functions. The other transform required is the

Laplace transform of b(xi)H(l — x\). In order to evaluate this integral it is necessary to evaluate the

Laplace transform of H{1 — xi) arcsin s

arcsin
poo r\
I e~pxaxcsmy/xH{l~x)dx = / e~px

Jo Jo

[ p—px "I 1 i /"I p—px
arcsin A/X H— / x~^{l — x)~1dx

~P Jo Wo 2
_ 7re~p 7T _ E / p \

- 2 p + 2^6 2 ° V2/

P P )

The Laplace transform of b is then a linear combination of this expression and that obtained from

equation 6.17 according to the expression for b(x) given by equation 6.13.

Now, by taking Laplace transforms of equation 6.16 and writing the Laplace transforms of Mo(t)

and f(t) as MQ(J>) and f(p) respectively, the following expression may be obtained for Mo-

This is valid when f(t) = 0 for all t < 0 and M0(t) = 0 for all t < 0.

If f(t) is non-zero for t < 0 then it is necessary, where possible, to take Fourier transforms, which

leads to the similar formula

where Jo, J\ denote Bessel functions and / and MQ denote the Fourier transforms of / and Mo

respectively. This expression is valid for Fourier transformable functions / such as /(£) = smut, for

which a solution is given in section 6.4.2.

6.3.3 The singularities of Mo

In order to invert this integral it is necessary to determine the poles of Mo and evaluate the residues.

It is clear from equation 6.18 that poles of f(p) will be poles of MQ , and since /o and I\ are analytic

everywhere the only other singularities will be poles of the denominator in the right-hand side, which

will henceforth be denoted by g(p), i.e.



Since the function g(p) satisfies

g(p) = aip),

the poles occur in conjugate pairs. All the poles may therefore be written as —Xt ± ipn where the A;

are all real and the /Xj are positive real numbers. Using the Newton-Raphson method 320 pairs of

simple roots have been found, of which the corresponding values of Aj and \ii for the first 6 roots are

shown in the table below.

A,
Mi

i

2
1

= 1
.530
.983

i = 2
3.774
8.976

i

4.
15

= 3
277
.409

i

4.
21

= 4

609
.763

2 = 5

4.857
28.088

i

5.
34

= 6
056
.400

It may be shown from the asymptotic analysis in section 6.3.4 that there are an infinite number of

poles. The residue of eptMo(p) at the poles, — Â  ± ifii is given by
oo

\ p Ait ( ry . r*r\o 11 . / _1_ f\ • Cl

where the a, and Pi are real numbers given by

ai-iPi=4f(pi)—— (6.20)
io (f) iogz ^ -t-pij -t- ±1 \*f) {i. -t Pi log 4)

with pi = — Xi + ifii.

Clearly the assumption that all the poles Pi lie to the left of the imaginary axis in the p—plane,

i.e. all the Xi are positive, is necessary in order to prevent an exponentially increasing mass transfer

function in those of the above examples where Laplace transforms are used. It is also relevant to the

case when Fourier transforms are used, for example when f(t) = l. In this case it is to be expected

that the only solution is Mo(t) — j , i.e. the steady state solution. However substitution of f(t) = 1

into equation 6.19 gives

Mo(t) = T -T
ILO

(6.21)
J 0 ( f ) + i w l o g 2 ( J o ( f ) + i J 1 ( | ) ) '

since f(u>) = — ̂ j - The integral on the right-hand side of the above equation may be evaluated using

a contour which closes in the upper half-plane, and in the neighbourhood of the pole at u> = 0 takes

the shape of a semi-circle, the radius of which will tend to zero. The other poles of the integrand will

be at ipi, i.e. =F/ZJ — iAj. Hence the assumption that all the pi (or, more precisely, all the pi with

non-zero residue) lie to the left-hand side of the imaginary axis is equivalent to all of the poles in the

integrand above being outside the contour. If this is the case then evaluation of the above integral

gives Mo(t) = ^otherwise there will be additional terms of the form e~Xit(ai coswi + ft sin/x^f). Hence

the assumption that the pi lie to the left of the imaginary axis is equivalent to M0(t) = f being the

unique solution when f(t) = 1. Due to the linearity of the mass transfer equation this is also equivalent

to the statement that
1 f1

M0(t) = - / MQ{X - 1 + t)b(x) dx
K Jo
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has no non-zero solution.

The question of whether g(p) has any multiple roots is also of interest, since this will affect the form

of the solution for M0(t). If there were a multiple root then g'(p) would have to equal zero at a root

of g(p). In other words the equations

g(p) = (H-plog2)7o(p/2) + (Plog2)J1(p/2)=0,

g'(p) = (log 2 + iplog2^) J0(p/2) + Q + ^plog2^ hip/2) = 0.

must have a simultaneous solution. By comparing the ratios of the coefficients of Jo and h this

requires that
l+plog2 _ 21og2+plog2

p log 2 1+p log 2

The solution to the above equation is

P = 21og2(log2-l)-

which is clearly a real number, and so will not be a root of g(p) = 0, since g(p) has no real roots.

Hence the functions g(p) and g'(p) have no common roots and so g(p) will have no multiple roots.

6.3.4 Asymptotic Behaviour of the Poles of Mo

Another feature of the poles pn that is of interest is the nature of them as n —» oo. In order to

simplify this problem the transformation u = ip will be used, so that the function g(p) becomes

g(u) = Jo ( | ) - iulog2 (Jo ( | ) - i

The asymptotic behaviour of the Bessel functions Jo and J\ for large z is given by, from e.g. Ab-

ramowitz & Stegun (1964) [1],

Mz) ~

n _9

for | axgz\ < TT. Substituting this into the expression for g(uj) gives

T~ ( wlog2cos(f + f)-iwlog2sin(f + f)
+ i ^ cos(f + f) + (1 - | log2) sin(f + f) + oiw-1 sin f)

This expression will be valid for all positive x, where w = x + iy. The fact that the roots of g(p) are

of the form —Aj ± ifii, where A{ and /x̂  are positive real numbers, means that the roots of g(to) will be

of the form ±x + iy where x is positive and y is negative. Hence it is sufficient to look for the roots in

the right-hand half of the complex plane. In the above expression the dominant terms for large values

of ui, once the common factor has been divided out, will be

| +J)) = wlog2exp (-i ( | + J)) =
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At a root of g(ui), this term will have to cancel with the next largest term, which will be of order

cos (j), i-e. e'^L This is clearly not possible for positive y, since the above term will be we^, which

will not cancel with e^ for large values of u>. Hence it is necessary to look for values of u> in the lower

half of the complex plane, i.e. y < 0. When this is the case, cancellation will occur provided ei is of

the same order of magnitude as ue~%. This requires ey ~ x.

Substituting u = x + iy into equation 6.22, and ignoring terms which are of an order of magnitude

less than e~% gives

L ~ i 3 L ( 1 log2)ieee + Iog2e^e~^e1^ = 0,

and hence

2a; log 2 = (log 2 - l)eixe~y.

From the last equation it follows that e" must be a negative real number (since log 2 — 1 is negative),

and hence

x = (2n + 1)TT, n an integer.

From this, y may be calculated to give

l - l o g 2 \JV = l0S i^bgjJ •
This analysis shows that there are no roots of g(u) in the upper half plane, and so there are no roots

of g(p) in the right half plane, for large values of |p|. Since there are no roots of g(p) for small p (since

the Io(p) term, which is non-zero dominates), this means that if any roots of I(p) in the right-hand

plane were to exist, they would necessarily be of order 1. As no such roots have been found, and any

such roots would imply non-uniqueness of the steady solution (see section 6.3.3), it will henceforth be

assumed that no such roots exist.

The asymptotic behaviour for the An and [in as n —> oo is given by the above expressions for x and

y as being

Xn =
1_log2

Values of this asymptotic profile are plotted against the calculated values of —Aj + J/XJ in figure 6.2,

and these show that the calculated values tend quickly to the asymptotic behaviour.

This asymptotic behaviour is crucial in determining the convergence of the series which makes up

the 'correction term' in the expressions given above for the mass transfer Mo, i.e.

oo

2_,e~Xit(&i cos/ijt + Pi sin flit).
2 = 1

Clearly it is necessary that this series converges for the above results to be meaningful. A question

that also arises in the calculation of the height of the shear layer, S(x,t), is whether the first and
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Figure 6.2: The First Eleven Poles of g(p) in the Upper Half-Plane

second derivatives of the following series will converge. Since the â  depend on the function /(£). this

will depend crucially on the function f(t). On substitution of the appropriate asymptotic expansion

for the modified Bessel functions into equation 6.20, the following asymptotic expression is obtained

for Qj and /3i :

ai-ift=4/(p)- = . (6.23)
•tpi log 2 + log 2e~P - \e-P

Substitution of pi = — A; + \ii into the above equation gives an expression for a» and Pi which will be

of order I^Sil. Since for large values of i the pi resemble odd multiples of TT, the sum of the a* and

Pi will be convergent for any function f(t) provided f(p) tends to zero for large p. (The sum of the

on will be equal to the correction term in the mass transfer function at t = 0). Thus the functions

chosen above, /(£) = H(t), f(t) = tH(t) etc will all satisfy these conditions and so the mass transfer

will be finite. However it will not always be possible to differentiate term by term, since with each

differentiation a factor of \xn comes out. For example with f(t) = H(t) the an will be of order n~2

and so the terms finan will be of order n~1 and so the series will not converge at t = 0. However

the term e~Xnt will be of order n~t (since A = o(log/x) = o(logn) and so for positive t the series will

converge. Hence the expression obtained for the correction to the mass transfer will be differentiable

for all positive t, but the mass transfer will not be differentiable for t = 0.
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6.4 Particular Solutions of the Mass Transfer Equation

6.4.1 f(t)=t

When f(t) = t, the solution expected from the method of degenerate kernel will be MQ = At+B, where

A and B are constants. This may easily be verified, and A and B evaluated, by direct substitution

into the mass transfer equation (equation 6.15) to give

1 fl I x 1 f1 I x 1 f1

At + B = - (x-1), dx + -t J dx + - Ab(x)dx.
2 JQ \j 1 - x 2 Jo \] 1 - x IT Jo

Since this must be true for all t, the coefficients of t must be equal to give

and hence

This gives the solution for Mo(t) for the case when f{t) = t as

J ^ J (6.24)

Since the fact that f{t) < 0 for t < 0 means that such a choice for f(t) is not strictly valid, nevertheless

it does provide a clear and simple example of how this method of solution works. Furthermore since

this method may be applied for any polynomial function, a solution may be found using this method

for any function f(t) satisfying /(£) = Ylantn- Furthermore this method may be expected to be a

good approximation for large t in the case when f(t) = tH(t), and it is shown in example 6.4.3 that

this is indeed the case.

6.4.2 f(t) = sin ut

A more useful example for which the method of degenerate kernel may be used is that for which

/(£) = sin vt for all t, where v is a positive real number. Although f(t) = sin t is not itself a valid choice

of /(£) for the suction problem, the mass transfer function for choices of f(t) such as f(t) = 1 + smvt

and f(t) = sin2 vt are easily deduced from the solution for f(t) = sin^£. As in the previous example,

the integrands may be separated by elementary trigonometric formulae with the solution for Mo(t)

being Mo(t) — Acosvt + Bsmvt. By substituting this into the mass transfer equation, A and B

may be found directly via some involved algebra. However it is simpler to solve the equation using

Fourier transforms. The Fourier transform of f(t) = sin vt is given by f(u>) = Tri(S(i/+ u>) — 8{v — u)).

Substituting this into equation 6.19 gives

TT (Jo ( | ) + iJx {%))nWu + u>) - 5(u - a;))
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Inverting this transform gives (for v > 0).

~ivt

which yields

where

M0(i) = Ay cos ft + Bv sin i/i,

(f) Jx (f) + i/

J? (f)

(J0
2 ( |) + J? (f)

(6.25)

(6.26)

"" 4 Jo ( I ) - 2 i / l o g 2 J 0 ( | ) Ji (f) +z/ 2 ( log2) 2 (J 0
2 ( | ) + J 2 ( | ) ) ' ( 6 '2 7^

This result may be confirmed by direct substitution. Thus for all real positive f it follows that Av < 0

and Bv > 0. Hence the mass transfer and the pressure difference will never be in phase, with the

phase lag taking a value between 0 and -| for all v. A phase lag of | will only occur when 2i/ is a root

of the Bessel function Jo and a phase lag of zero will only occur for f = 0. In the limit as f —> oo

both A and B will tend towards zero, with fAv = 0(1) = f2Bv in the limit.

6.4.3 f(t) = tH(t)

Laplace transforms provide the simplest method for solving the mass transfer equation when f(t) =

tH(t). Substituting into equation 6.18 gives

^ U W - 4 ^ 7 0 ( f ) + p l o g 2 ( / 0 ( | ) + / 1 ( | ) ) -

The residue of eptM0(p) at the double pole p = 0 is given by

(6.28)

7T 7T 7T

p = 0

Thus the solution for the mass transfer equation when f(t) = tH(t) is given by

M0(t) = jH{t)
1 \
j - \og2 + ̂ 2 e~ Xit(ai cos mt + fa sin int) I (6.29)

where the cti and fii are given by equation 6.23. Hence a slot pressure which increases linearly with

time will give a mass transfer function which is linear with an oscillating exponentially decaying

correction function. In the limit as t —> oo it will be the same as the solution given in equation 6.24

for f(t) = t. The mass transfer in this case is plotted against time in figure 6.3.
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Figure 6.3: Mass Transfer when f(t) = tH(t)

6.4.4 f(t) = H(t)

The Laplace transform of H{t), the Heaviside function is equal to 1/p. Hence the Laplace transform

of Mo(t) will have a simple pole at the origin as well as at the simple poles pi — — Xi ± ifii. From

equation 6.18 the residue of eptM0(p) at p = 0 will be equal to

7T Jo(0)+/i(0) n
4/0(0)+01og2(/0(0)

This will lead to a solution

M0(t) = -H{t) 1 e Xit(ai cos fiit + (3i sin fiit

where the A« and fi{ are as before, but the a* and ̂  are given by

1 I n I ^ - 1 —]— / -i I -—• )
• r\ A

Figure 6.4 shows the behaviour of the mass transfer function in this case.

6.4.5 f(t) = sin vtH{t)

The Laplace transform of sin vtH{t) is given by

Substitution of this into equation 6.18 gives

eptM0(p) = -re
4 P2 + ̂  h (f)+plog2(/o(f)

(6.30)

(6.31)
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Figure 6.4: Mass Transfer when f(t) = H(t)

which has poles at p = ±iv and at p = pi = —Aj ± i\n. The residues at p = ±iv sum to Av cosvt +

Bv sin vt, where A and B are given by equation 6.26. The poles at p = pi give residues of the form

+ fli smuit). Hence the solution for the mass transfer function in this case ise~Xit(ai

Mo (t) = Av cos vt + Bv sin vt + — t + /%

where the at and Pi are given by

- iPi = 4-

(6.32)

(6.33)
Pi + ^ Io {f) Iog2 (2 +Pi) + h ( f ) (1+Pi log 2)'

As expected, in the limit as t -> oo this will tend to the solution found for f(t) = sin vt in section 6.4.2.

In fact, as figure 6.5 shows, it will tend to the asymptotic solution very quickly.

6.5 Evaluation of the Height of the Shear Layer

Given the mass transfer, the shear layer S(x,t) may be evaluated from equation 6.14, recalling that

S(x,t) = ax(x,t). In the case when f{t) = H(t), the expression for the mass transfer Mo(t) is given

in section 6.4.4, and S(x,t) is

S(x, t) = a'(x) - H(x - t)(a'{x - t) + ta"(x - t)) - ^ - t)b'(x - t)

- l E / / (-*2i-tf)e-X'{x2-x+t)cosfH(x2-x + t)b(x2)dx2dx1

— - V / f -AJCOS/^(:EI - x + t) - fii sin fii(xi - x + t)e~Xi(-Xl~x+t"lj b(xi)dxi,
4 •_, Jo ^ '
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Figure 6.5: Mass Transfer when /(£) = sin tH(t)

where
I / 3\ /3 \

a{x) = -\[x\J\ — x ( x - - j + arcsin \fx I - - x j . (6.34)

This may be simplified slightly, since the double integral in the expression for 5 may be written as a

single integral, by reversing the order of integration and observing that the integrand does not depend

o n i i . Hence

S{x,t) = --H(t) {a'{x) - H(x - t)(a'(x - t) + ta"(x - t)) - \tH{t)H(x - t)b'(x - t)
Zd ~r

-Y" [X(l-x. )(-A2- 2)e-M*2-z+

- ~y2 (-\icos[ii(xi - x+ t) — Hisinfii(xi — x+ t)e~Xi(Xl~x+t^)b(xi)dxi,
i=\ JO

The values of S(x,t) for the case f(t) = H(t) are plotted in figure 6.6, for t taking the values

0.2,0.4,0.6,0.8,1. The shape for t = 1 is almost indistinguishable from the steady state solution given

by equation 6.3

Similarly, in the case when f(t) = tH(t) the shear layer is given by

S(x,t) = --H{t){a1{x)-(x-t)a{x))

- -H(t)H(x - t)((x - t)(a(x -t)+ ta'{x - t)) - (ax{x - t) + ta\(x - *)))
ZJ

\ { x ) - H(t)H(x - t){(B(x -t)+ tb{x - t)))

- -Y, (l-x2)(-\
2
i-H

2i)e-Xi{x2-x+
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S(x)

Figure 6.6: The Shear Layer, S(x), with f(t) = H(t)

I » «
- - V {-Xi) cos fiiixi -x + Q-fiismmix! - x+ t)e-Xi^-x+t^b(x1)dx1(6.35)

i=i •'°

where B(x) is given by B'(x) = b(x), i.e.

B{x) = (2a;- 1 - 2 log 2) arcsin ̂ fx + (1 + 2 log 2) V^Vl - x. (6.36)

In the above expressions, the integrals may be expressed as products of exponential and Bessel

functions. However the resulting expressions are long-winded, and not particularly helpful, and so are

not presented here.

6.6 Asymptotic Behaviour as t —> 0

For a system which is steady for t < 0 the behaviour for small t is of interest. This may be derived

from equations 6.10 and 6.12. For example if f(t) ~ tn as t —> 0 for some constant positive n, then

if IT ~ tm, say, then equation 6.10 implies that MQ ~ tm~1, and so from equation 6.12 it follows that

m — 2 = n, so that in a system in which the difference between the slot pressure and the external

pressure behaves asymptotically for small t as tn, S(x,t) will behave as tn+2 and the mass transfer as

tn+1.

A dimensional argument leads to the same result : the dimensions of Mo are LUoo = L2/T (with T

denoting time), the dimension of the height of the shear layer is L, and the dimension of the pressure

difference is pU^ — M2/T2 (with M denoting mass). Hence it is to be expected that changes in the

mass transfer will be slower than changes in the pressure difference and faster than the changes in

S(x, t) by a factor of t. Note that all changes will still occur over a time scale of L/Uoo, as this is the
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natural time scale of the flow. Nevertheless there is a significant time delay evident from the fact that

for small t, the mass transfer will be a factor of t smaller than the slot pressure.

The question of the behaviour of small values of /(£) opens up the larger problem in which the slot

pressure function /(£) changes sign, so that injection and suction both occur over a period of time.

The next chapter will therefore consider the transition between injection and suction.

99



Chapter 7

Combining Suction and Injection

So far the cases of injection and suction have been treated completely separately : the slot pressure

has always been taken to be always greater than the external pressure or always less than the external

pressure. However a case of some interest is that concerning a slot pressure which over a period of time

takes values both greater than and less than the external pressure. In discussion of the suction case in

section 6.2 onwards it was observed that there is a time lag between changes in the slot pressure and

the mass transfer. Since the difference between blowing and sucking is determined by whether the

mass transfer is into or out of the slot it is to be expected that the change from sucking to blowing

will not take place at the time when /(£) = 0 but at a finite time after f(t) has changed sign, at the

time when the mass transfer is zero.

Note that in this chapter the asterisks used to denote non-dimensionalised variables have been

omitted.

7.1 Transition from Suction to Injection

For a system in which sucking changes to blowing it is expected that the equations derived in section 5.2

will remain valid until some time t = U. In the suction case, as depicted in figure 6.1 there were two

paths of interest : the shear layer dividing the flow into the slot from the static fluid already in the

slot, y = S(x), and the particle path that re-attaches at the trailing edge of the slot and divides the

fluid that will enter the slot from that which will not, y = T(x). It is to be expected that as the

difference between the slot pressure and the external pressure decreases these two paths will begin

to converge, and in the limiting case as t ->• U they will be the same line. Thus U may be defined

equivalently as satisfying MQ{U) = 0, 5(1, ti) = 0 or even M(x, U) = 0 for all x. For t > ti the system

may be considered as an injection case and the equations derived in section 6.2 will be applicable to

the problem, with initial conditions for S(x) on 0 < x < 1 given by the value of S(x) as t —> U.
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7.2 Transition from Injection to Suction

When the system changes from blowing to sucking, ti may be denned as before as satisfying 5(1, ij) = 0.

However the 'blown' layer of fluid which has already been blown out of the slot will affect the flow

(see figure 7.1) so the system will not be simply a case of slot suction with the appropriate boundary

conditions. Instead the external flow will have to be modelled as uniform flow, with a series of

Un

= S1{x,t)

P = Poo + h

\

2f(t)

Figure 7.1: The Transition from Injection to Suction

sinks at the top of the slot as before, but with the blown layer also remaining as a series of sources

along some region of the positive a;—axis. Initially this region will simply be x > 1, but as the blown

region of fluid is blown further downstream the region will be x > XQ (t) where XQ will be the point at

which the blown region of fluid commences. Note that the blown region cannot become completely

disconnected from the trailing edge, as the vortex sheet cannot emanate from a wall, but instead must

emanate from the separation at the trailing edge. However the height of the vortex sheet may be less

than O(e2) up to a point x0, and thus it may be said that the blown region commences downstream

of the slot.

The fact that this problem contains features of both injection and suction at the same time, in that

although suction is occurring there is still a blown layer, suggests that it would be helpful to seek a

unifying equation for both slot injection and suction.

7.3 A Unified Interactive Equation

The purpose of this section is to find an equation which describes both suction and injection for a slot

when changes to the slot pressure take place over a time scale of L/UooC. Note that this time scale

is the quasi-steady time scale for slot suction. The slot pressure will be defined by p ^ + \pUlce
2 J{t)

so that a positive /(£) corresponds to slot injection while a negative /(£) corresponds to slot suction.

With this definition the equations in terms of 5 and <j> (where <j> denotes the velocity potential of the

101



blown region) are

Wo

2 r
W

(0^5),. + 5 t = 0, for a > 1 , (7.2)

for slot injection, and

ff T ^ = /(t) (7-3)
Jo s ~ x

for slot suction. The slot injection equations are equations 5.15 and 5.16 which were derived in

section 5.2. The suction equation for this time scale is equation 6.11, derived in section 6.2, with the

time derivatives omitted, since this is the quasi-steady time scale for suction. The omission of the

time derivatives means that it is now convenient to work in terms of 5, rather than a, recalling that

ax — 5. The boundary conditions for the equations are the same, i.e. 5 = Sx = 0 at x = 0, with

0(1) =0 .

There are two crucial differences between the injection and suction equations : the first is the

variable 4> which does not appear in the suction equations. This is not an insurmountable problem

as it means that any definition of </> for the suction problem will not affect the equation. The second

problem is that the suction equation is only valid over the region (0,1), and indeed physically S(x,t)

is only defined over this region. In fact when there is a transition from injection to suction, as in

figure 7.1, there are two shear layers : the shear layer in the slot, separating the ingested flow from the

static flow in the slot, and the shear layer separating the blown fluid from the external flow. Although

these could both be termed S(x,t), according to whether x is greater than or less than 1, this could

be confusing, so they will be termed Si(x,t) and S2(x,t), with Si representing the height of the shear

layer in or above the slot, and valid for 0 < x < 1, and 52 representing the height of the blown region,

and valid for x > 1. It follows from this that S\ may take either sign according to whether the system

is sucking or blowing, but 52 must be non-negative, although in the suction only case it will be zero,

as there is no blown region. With this notation the injection equations 7.1 and 7.2 may be written

_ /

(^Sa)x + 52t = 0, for x > 1. (7.5)

The boundary conditions for this are that Si and Six are 0 at x = 0. Furthermore, since in the

original injection problem 5 had to be continuous, 5i(l) = 52(1).

For this to be a unifying equation for suction and injection, the above equations must also be

satisfied when there is no injection. The second equation, equation 7.5 will clearly be satisfied if

52 = 0 for x > 1, i.e. everywhere. This makes physical sense, as in the suction only case there is no

blown region, which intuitively is the same as there being a blown region of zero height. This also

means that equation 7.4 will be satisfied in the region x < 1. However some care must be used for

the region x > 1. Physically both the suction equation and equation 7.4 are derived from a pressure
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balance. However if there is no blown region, then there is no need for a pressure balance on x > 1,

which is then a fixed boundary. This illustrates the danger in equating a blown region of thickness

zero with no blown region. This problem may be overcome, however, by a correct definition of <f>.

Since if there is no blown region 52 = 0, any value of <j> chosen will automatically satisfy equation 7.5.

This makes sense because if there is no blown region, the velocity potential in the blown region is

an open question. However if the lack of a blown region is to be modelled as a blown region of zero

thickness, then (f> must be chosen so as to be the velocity potential that would achieve a pressure

balance for x > 1 at the shear layer. If this is done then the pressure balance equation, equation 7.4

will be valid for x > 1. Thus equations 7.4 and 7.5 are the unifying equations in the interactive case.

The boundary conditions on Si and <f>\ are that S\ = S\x = <j>(l) = 0. The boundary condition on

S2 is that if 5i(l) is positive then, by continuity of the shear layer, 52(1) = 5i(l), and if 5i(l) is

negative, then, since the slot is now a suction slot, 52(1) =0 .

If f(i) is positive, equations 7.4 and 7.5 reduce to the interactive injection equations 7.1 and 7.2,

and if f(t) is negative the solution of the equations will be, using the analysis of steady suction, (see

equation 6.3,

Si(x,t) — —f(t) (%/zVl — x — arcsiny/x) ,

S2(x,t) = 0.

The solution for <j> must be chosen so that the right-hand side of equation 7.4 balances, so for x > 1,

The integral above, which for x > 1 is a non-singular integral, may be evaluated, reducing the above

equation to
2 / X

<Px + 4>t = f{t)\ r ,
\ x — 1

with <f>(l) — 0. This may be solved using Charpit's equations, see, for example, Sneddon (1957) [83],

although the solution is not given here, as it has no physical relevance. However this does indicate

that the system of equations 7.4 and 7.5 can describe problems in which both injection and suction

occur. The boundary conditions are that S\ = S\x = 0 at x = 0, that (j> = 0 at x = 1 for all t, and

that 52(1) = max(5i(l),0). Appropriate initial conditions are also required for <j>, Si and 52- It may

also be necessary to impose that 52 is non-negative.

7.4 A Unified Equation in the Fast Regime

The fast regime, where the slot pressure changes over a time scale of order L/Uoa, is important to the

study of problems like the rim seal problem, discussed in chapter 1, where slot injection is desired, but

changes in the external pressure over a short time scale mean that some suction may occur. For the
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suction only case, the equations for changes on this time scale were derived in section 6.2 and solved

in sections 6.3, 6.4 and 6.5. The equations in terms of a and Mo, where MQ represents the mass flow

evaluated at the top of the slot, were given by equations 6.12 and 6.10 and, in non-dimensionalised

variables, were

fit) I i 1
axx+2axt + att = —ir\-, M'ob{x),

2 \ 1 — x n
Mo = ~ (<TX + <7t)\x=1 •

For the same time scale, the corresponding equations for slot injection were derived in section 5.5 and

were given by equations 5.36 and 5.32 to give

gi(x) +b(x), (7.6)
1 — X 7T

N = (axt + att)\x=1. (7.7)

Here, g\ may be determined from the initial conditions. Both sets of equations are valid in the region

0 < x < 1. These equations are very similar. Clearly N(t) corresponds to — Mg(t). The change in

the sign of f(t) is to be expected, as the suction equations were derived assuming a slot pressure

of Poo — \pU^x>£2 f{i), whereas the injection equations assumed a slot pressure of j»oo + \pUtJ1 /(*)•

Here, f(t) will be denned in the positive direction, as for injection, so the slot pressure will be

Poo + \pU^oe
2 f{t). Now the only difference between the sets of equations for slot injection and slot

suction is the function gi(x) which exists for slot injection. It is not surprising that the two physical

problems give similar equations, as in this regime the injected region is effectively steady, so will not

interact with the region above the slot. The only difference is that in fast slot injection, there is

a region (which does not move) of blown fluid, which will affect the pressure distribution. This is

manifested in the slot injection equations in the function g\ (x) which represents the contribution to

the pressure from the blown region. Since for slot suction there is no blown region, gi(x) is zero in

this case.

Thus the fast slot injection equations, given by equations 7.6 and 7.7, and repeated here, are the

unified equations for slot injection and slot suction over the fast time scale. The function gi(x) may be

determined from the initial conditions, as in section 5.5. These equations may be solved in the same

way as the slot suction equations may be solved, for which solutions are presented in sections 6.3,

6.4 and 6.5. The only difference between the solutions of the transition equations and the suction

equations (apart from the change in the way /(*) is defined) will be the effects of the function g\.

As the equations are linear, this will just result in addition of a term g% to a, where g2' = g\, and

g'2(0) = 32(0) = 0. Thus the solutions for 5 and Mo will only be changed by addition of g'2(x) and

—g2(l) respectively. If the initial conditions are taken to be those of slot injection, then the mass

transfer into the slot will be of order LUocpe2, as for slot suction, and may be measured by Mo- The

mass transfer out of the slot will be of order LUocpe3. If the initial conditions are those of slot suction,
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then Mo will still correspond to the mass transfer while suction is taking place, but has no physical

meaning while injection is taking place. In this case the mass transfer out of the slot will be zero to

lowest order, as the injected region of flow starts of as being zero, and so must remain as zero (i.e.

S(x) = 0 for all x > 0). Since the flow in the injected region has a velocity of order U<x,e, there

will be an injected region of height O(e2) within a distance of order Le from the trailing edge set up

within this time scale. The injection mass transfer in such a case will still be of order LU^pe3, and to

evaluate this term it is necessary to examine lower order terms. In this case another singular partial

linear integro-differential equation will be derived, with time-derivatives of both a and <j> both being

significant.

However it is the case where over the longer time scale, injection is taking place that is of most

relevance to the rim seal problem. The fact that closed form solutions may be found for this equation

is a particularly useful result that may measure the mass transfer when there is a sudden dip in the

slot pressure (or a sudden increase in the external pressure) over a time scale of L/Uoa-

7.5 Equal Mass Suction and Injection

For ordinary slot suction the mass transfer is order LU^pe2, whereas for slot injection it is order

LUoope3. This shows that for the interactive unified equations (equations 7.4 and 7.5), in which both

suction and injection occur over the interactive time scale, the mass of fluid ingested into the slot will

be an order of magnitude greater than the fluid injected into the free stream. Hence to consider a

system in which both mass flows are equal, either the injection must take place for a much longer time

than the suction, or the strength of the injection, defined by e2f(t), must be much stronger than the

strength of the suction. If the injection takes place for a longer time than the suction, then for the

mass flows to be of the same order of magnitude the difference in the time scales must be by a factor

of e~~l. If the injection time scale is order e~2L/U00 and the suction time scale is order e~1L/U00, then

the problem is quasi-steady both for suction and injection. If the injection time is order e~1L/Uoo,

and the suction time is order L/Uoo then both problems are fully unsteady. In this case the transition

will take place over the shorter time scale, and the flow will be described by the unified equations for

fast transition, i.e. equations 7.6 and 7.7.

If the injection and suction pressures both vary over the same time scale then same order mass

flow may still result if the injection and suction pressures are of different orders of magnitude. For

this to occur, ef must be of the same order as e2
s, where et and es define the injection and suction

slot pressures according to the usual relationship p = p^ + ^pU^e2 f(t), with f(t) of order 1. Hence
2

es = ef, so, to lowest order, the shear layer once suction has commenced will be at a height of zero,

and the suction will not affect the blown region downstream.

However, for most realistic cases it is felt that the pressure difference is unlikely to change by

an order of magnitude. Since the most interesting case for transition is given by time changes for
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injection over an order e xt/L[/oo time scale, i.e. the interactive time scale, the numerical solution of

the interactive equations will be the subject of the next two chapters.
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Chapter 8

Numerical Analysis of the
Interactive Equations

8.1 Brief Description of the System of Equations

This chapter is concerned only with the initial value problem for the system of equations for un-

steady slot injection derived in section 5.2. As previously mentioned, the system of equations may

be expressed in many different ways : in terms of any two of it, S and M or in terms of a single

variable a, (note that in this chapter the asterisks used to denote non-dimensionalised variables will

be omitted). Naturally the choice of variables does not fundamentally affect the nature of the system

of equations, although it will affect any numerical scheme. To obtain an equation in terms of one

variable, without the necessity for any integrals other than the integral transform, it is necessary to

differentiate equation 5.23 with respect to x. Note that as axx = Sx = 0 at both ends of the singular

integral, it is permissible to differentiate through the integral transform (see section A.5). This gives

the injection equation in the form

0 x < 1,
o f - z 1 (Tt°xx+<rl(rtt -2axataxt x > 1.

Hence the equation is a non-linear partial differential equation, containing an integral transform. The

situation is further complicated by the fact that the integral transform is strongly singular, and by the

fact that the equation must be separated into two distinct regions. A more serious problem though

is that, unlike the unsteady sail equation of chapters 2 and 3, the highest derivatives (axxx and au)

occur neither both inside nor both outside the integral transform. Although linear and quasi-linear

partial differential equations are relatively well understood, and there is some understanding of both

non-linear partial differential equations and linear singular integro-differential equations, no literature

has been found on the numerical solution of singular partial integro-differential equations. Under

the usual definitions the presence of the integral transform in the highest derivative means that it is

not even possible to apply the usual techniques of partial differential equations to this equation, for

example to find the characteristics or eigenvalues of the problem.
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The attempts to solve the equations numerically may be classified into two types : the first consists

of variations on the normal finite difference type scheme, whereas the other consists of an iterative

method of solving the equation, based on inverting the Hilbert transform, which is related to the

method of solving the steady equation used by Fitt et al (1985) [34]. This type of method for

unsteady equations will be referred to as 'sequential iteration'. However first it is worth examining

analytic solutions of the equations, in particular to see if any similarity solutions exist.

8.2 Similarity Solutions

Although the presence of the inhomogenous term f(t) in the original formulation of the equations, i.e.

equations 5.19 and 5.20, will preclude similarity solutions as a solution of practical use (in equation 8.1,

where the f(t) term has been eliminated by differentiation, the inhomogeneity is effectively introduced

by the boundary conditions) it is still of interest to find them as solutions for the equation. However

even without the inhomogeneity the difference between the two expressions for the Hilbert transform

over (0,1) and (l,oo) mean that it is not possible to find non-trivial similarity solutions over the

whole region. To see this consider equation 8.1 and consider any value of x > 1 at a given time.

Then assuming a similarity solution exists, there exist an a and a (3 such that a(x, i) = t@ f{rf) where

r] = xt~a. Then observing that the Hilbert transform of such a function will be in the same form,

iL^ld^ = -fO°t-^-dC = t0H(ri), (8.2)
o ? ~ x Jo C ~ V

for any function / for which the Hilbert transform is H, and that this Hilbert transform is zero for

x < 1, it must be that the Hilbert transform is zero for all values of 77 and thus all values of x.

Since the only functions for which this is true are proportional to x~? (see section A.1.1), and the

right-hand side of equation 8.1 must be zero for x < 1, this gives only the solution t°x~2. Hence it is

more helpful to consider only the region x > 1.

Considering only the region x > 1, and setting a = 0 outside this region, equation 8.1 is invari-

ant under the transformation (x — l,t,S) i-» (X(x — 1), A7, A4"27^). Hence solutions exist of the

form a(x,t) — tAa~2 f(xt~~a) where / must satisfy the non-linear ordinary singular integro-differential

equation
1 poo tmrt\

• = (4a - 2) 2 / " / 2 + 0:77(1 - a)}' - 2(2a - I ) 2 / ' / . (8.3)
Solutions of the form f(x — ct), where c is a constant, may often be found for partial differential

equations, as both derivatives will be of the same form. However, they will not be applicable to this

equation as the semi-infinite integral transform of such a function is given by

Jo £ ~ x

f
Jo

du + 4 — y ' du.
J { t)

..du + 4 y
o u-(x- ct) J_ct u-{x- ct)
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The first integral in the above expression is a function of x — ct, but the second will not be, unless

f(u) is zero for all u < 0. However if this were to hold, f(x — ct) would be zero everywhere for large

values of t, so this will not be a particularly helpful solution. Similarly non-zero functions of the form

f(x + ct) cannot be solutions.

8.3 The Benjamin-Ono Equation

The most well-known singular partial integro-differential equation is the Benjamin-Ono equation

(Brooke Benjamin (1967) [9], Ono (1975) [66]), given by

ut + 2uux + i - T ^M.^ = 0.

The crucial difference between this equation and the singular partial integro-differential equations

examined here, is that the range of integration is the whole real axis. This permits solutions of the

form u(x — ct) and u(x + ct), which cannot be found for the equations studied for the sail and slot

problems of chapters 2,5, and 6, as the range of integration has a finite boundary (see section 8.2).

Brooke Benjamin (1967) found a solitary wave solution, which was shown to be a soliton solution by

Chen et al (1979) [17], who found iV-soliton solutions. The equation possesses many other special

features, making it the focus of much study, partly in relation to the Korteg-de Vries equation (Korteg

& de Vries (1895) [55]),

ut + 6uux + uxxx = 0,

which was first introduced in the theory of long surface water waves. Bock & Kruskal (1979) [7]

showed that the Benjamin-Ono equation has an infinite number of conserved densities, and hence

derived linearised equations, by use of a Miura transformation,

u =

Other properties of the Benjamin-Ono equation include the relationship between the linear eigenvalue

problem and an inverse scattering transform (Fokas & Ablowitz (1983) [38]), and the fact that the

equation possesses two non-local linear operators, which generate infinitely many commuting sym-

metries and constants of the motion (Fokas & Fuchssteiner (1981) [37]). However, no detailed work

has been found on numerical solutions of this equation, nor for the non-linear equations of Santini

et al (1987) [73] which also examined singular partial differential equations in the context of inverse

scattering theory. In any case, it is not clear that such work would be applicable to the interactive

slot injection problem, in which the range of integration is semi-infinite, rather than infinite.

There is more literature on integro-differential equations in only one variable, with a method of re-

ducing integro-differential equations with Cauchy kernel to integral equations given by Gakhov (1965)

[41]. Closed form solutions for a class of integro-differential equations with Cauchy kernels over the

semi-infinite range have also been found by Varley & Walker (1989) [102]. Stability conditions have
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been found for integro-differential equations by Drozdov (1996) [24], and existence and uniqueness

theorems have been found for weakly singular convolution kernels by Engler (1996) [29]. However, all

of the above apply to linear equations only, with there being very few analytical results available on

non-linear integro-differential equations with Cauchy kernel. However such equations occur frequently

in a range of physical problems, in particular thin aerofoil theory (e.g. Fitt et al (1985) [34], and King

& Tuck (1993) [53]), and the behaviour of cracks (e.g. Kaya & Erdogan (1987b) [51], Fitt et al (1995)

[32]), and have been solved numerically, usually by iterative methods.

8.4 Description of the Method of Sequential Iteration

For this method the formulation used for the interactive slot injection equations will be that used in

section 5.2, given by equations 5.19 and 5.20. In order to solve the equations it is convenient to re-write

the two equations in a different form, inverting the Hilbert transform in equation 5.19 according to

the methods detailed in section A.1.2 (note that the particular inversion taken will be that compatible

with the boundary conditions). This gives the following equation

This equation may be integrated with respect to x to give an expression for S(x,t). Similarly equa-

tion 5.20 may be integrated with respect to x. Note that the value of M at infinity, which will

henceforth be denoted by MQO, is known from the initial conditions, as it will remain constant, ac-

cording to the asymptotic analysis of section 5.3.3. Hence the system of two equations may be written

M(x, t) = - f Std£ + Moo. (8.5)
•zoo

For the moment only cases where /(£) is one for negative t will be considered. When f(t) is

identically equal to one all time derivatives may be ignored and the second equation reduces to

M — Moo, so M will now be a constant. The problem then becomes that for the steady state system

solved by Fitt et al (1985) [34]. However the method used there will not be applicable to this more
2

general problem, since it uses a rescaling S = MJoT to give
ft i rz ~\

£, (8.6)

thus eliminating Moo. M^ is then found from the condition that M^ = Soo = T3(oo). The above

equation is sufficient to determine T, and hence 5, with an iterative numerical relaxation scheme.

However when /(£) is not a constant, the unsteady term in equation 8.4 means that a similar rescaling

will no longer be possible, and so it will no longer be possible to eliminate Moo and reduce the problem

to a single equation in one variable only.
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One apparently unwelcome result of the inversion of the Hilbert transform is the fact that the

function f(t) has now disappeared from the problem since it does not appear in either equation, nor

in the boundary conditions. This may seem a little peculiar since it is to be expected that the height

of the shear layer and the mass flow are dependent on the slot pressure. This is analogous to the

steady state problem in which, after the re-scaling, the equation is reduced to

2 f00

K Jo
from which the unknown constant M^ disappears upon inversion. In fact it would appear that the

constant M ^ cannot be determined from the above equation with the usual boundary conditions

(T(0) = 7^(0) = 0), and that a one-parameter family of solutions will result. However from physical

considerations it is possible to impose another constraint upon the system that is sufficient to determine

Moo and T(x) uniquely, namely continuity at x — 1. It may be seen from numerical solutions to this

problem that if a value of Moo other than the correct value is chosen, the solution derived will satisfy

the above equation, but the value of T(l) determined by integrating Tx from 0 to 1 will differ from

that determined by integrating from 1 to infinity by a value depending on M^. The reason for this is

that the expression for Tx derived in equation 8.6 was obtained by integrating the expression obtained

by inverting the original Hilbert transform, and so assumes that there are no jump discontinuities.

However the expression obtained for Tx has a logarithmic singularity at x = 1 (see section 5.3.2) and

so such a solution may exist. The values of T(x) are given at two points however : at x = 0, T is

given by the boundary conditions, and as x —> oo T is given as being equal to Mjo by an asymptotic

analysis similar to that described in section 5.3.3. Hence the correct value of Mx> to satisfy continuity

is given by the equation
f1 f°° i
/ T(.dt; + / T^ = M&.

Jo J\

In the interactive problem, as mentioned earlier, it will not be as simple to solve the problem since

it is not possible to eliminate M ^ with a re-scaling. Although it would seem from equations 8.4 and

8.5 that it will be possible to solve the equations by a predictor-corrector method, as the equations

have been integrated and all the boundary conditions been applied, the function /(£) has disappeared

from the equations. Again this is because it is possible to choose a value of M such that equations 8.4

and 8.5 are satisfied, but the function S has a jump discontinuity at x = 1. In order to prevent this

discontinuity, it is necessary to impose another condition on the equations. As in the steady state,

this equation arises from the fact that the Hilbert transform must be zero at infinity. Since the Hilbert

transform at infinity is given by the right-hand side of equation 5.19 it follows that

# • (8.8)

Thus M and S must satisfy equations 8.4, 8.5 and 8.8 at each time step.

The method used to solve this system of equations, given S and M at time t = 0, say, will then be

as follows.
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1. Make an estimate for M at the new time. A possible estimate would be M(x, t + 5t) = 2M(x, t) -

M(x,t — St) as this assumes linear variations in M.

2. Using this estimate for M, find the solution for S from equation 8.4 using a method similar

to that employed in the steady state case (possible now since M is now 'known'), by repeated

iteration until convergence is obtained to within a specified limit.

3. From equation 8.5 a new estimate for M may now be obtained.

4. Repeat steps 2 and 3 until convergence is obtained to within a specified limit.

5. If the values of M and 5 obtained do not satisfy equation 8.8, then re-scale M according to

equation 8.8 and repeat step 2.

6. Advance another time step.

An alternative would be to apply step 3 before convergence is reached in step 2, in other words to

obtain the second estimate for M after only one iteration of equation 8.4. However although this is

quicker, it would seem that the system may be less likely to converge.

8.5 A Test Problem for Sequential Iteration

In order to test the accuracy and validity of the above method of solution a test problem has been

constructed, to which the analytic solution is known. The problem chosen is the system of equations

in M and 5,

- / ° ° ^ = S + M-G(t), (8.9)
T JO €~X

Mx + St = 0, (8.10)

where G(t) is any given function of t.

Appropriate initial conditions will also be given so that the solution will be

S(x,t) = H(x-t){F{x-t)-l), (8.11)

M(x,t) = H(x-t)(F(x-t) + l)+G(t), (8.12)

where F(x) is given as the function of one variable which satisfies F(0) = 1, F(oo) = 0 and

= F(x). (8.13)Jo £ - X

That the solution for 5 and M is given by equations 8.11 and 8.12 to the system defined by equa-

tions 8.9 and 8.10 may be seen from the fact that substitution of these solutions into equation 8.9 just

gives equation 8.13, by which F is defined, and substitution into equation 8.12 gives Mx = F'(x — t)

and St = -F'{x-t).
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Expressions for the function F in terms of Laplace transforms are given by Stewartson (1960) [84]

and Varley & Walker (1989) [102]. The expression given by Stewartson for F(x) is

r i r \ogu i
rexP - r / r-rr?du .

The method used to solve this will be essentially the same as the first method of solving the equations

for the interactive case discussed above. However some modifications have had to be made due to the

linearity of this system, since in equation 8.9 an arbitrary multiple of F(^x) may be added to S to

give another solution for a given M. Hence it is necessary for each iteration of this equation to ensure

that 5(0) = 0. It is not thought that a similar situation will arise in the interactive problem, as there

are sufficient boundary conditions for the problem to be well posed.

8.6 Stability Analysis of the Test Problem

Due to the complexity of the problem, the method for analysis of the numerical stability of these

equations will be the von Neumann method rather than the matrix method (for details, see, for

example, Smith (1965) [80]). Although application of this method will not conclusively prove the

stability or otherwise of a numerical scheme, as some of the equations are non-linear and the expected

solution is not periodic, this type of analysis often gives useful results even when the theoretical basis

for it is not rigorously justified, see for example Richtmyer (1967) [71]. Considering for now the test

problem given by equations 8.9 and 8.10, with the numerical scheme described above, and ignoring

for now the effect of boundary conditions, a Fourier perturbation will be added to an exact solution

(S,M) to give (S + Aei(-kx~ut\ M + Bei{-kx~w^) where k is real and A and B are small. Recalling

that the numerical scheme is obtained, as in the 'real' problem by inverting the Hilbert transform and

integrating with respect to a;, so that the equations may be written

s{x> t) = hf (-2\/f+log

M{x,t) = - f Std£ + G{t) + Moo.
Joo

The domain, namely [0, oo), will be discretised into n equally spaced regions (XJ,XJ+I) with xn+\ =

i r a a l , say, and defining Sj = S(x£, tj), leaving open for now the question of the time difference. This

yields the following discretisation of the above equations :

p=0

25x
5t

where Sx = XJ — Xj-i, 6t = tj - tj-i, and Aep and Qe are given by

2rnrAlp = 2&(p* - (p + 1)^) + (p + 1 - £) log P + ^ + <
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Qe = -47T

Note that the asymptotic expression for the solution F'(x) ~ — (7rx)~5; which was first noted by

Stewartson (1960) [84], but is relatively simple to calculate, was used to calculate the Q(.

With this discretisation, application of the Fourier perturbation, cancellation of the first order

terms, and ignoring all terms of second or higher order in A and B, or first order in Sx or St, gives

the following equations

Sr
A(l- e

iujSt)— - Bi sin kSx = 0,
otot

(A + B)e 'ikx Aipe
ipkSx = A.

p = 0

Thus for there to be non-zero solutions of A and B, and writing the coefficient of (A + B) in the

second equation as C = CR + iCj,

Sx
1i{ - e

iuH )C = -isinkSx(C - 1),

and hence

C ox

1 + -r~ sin
Sx \C\2 (8.14)

The numerical scheme will be unstable if there are values of k such that the perturbations will grow

in amplitude over time. Since k is real, the amplitude of the perturbations is proportional to le"1""5*!

and so for the perturbations to be stable, the term on the right of equation 8.14 must have a modulus

of greater than unity. Although no analytic expression for C has been found, some calculations have

been done to calculate the size of this term for various values. These consistently give values for

je-iw<5t| whjch are less than unity, thus suggesting the scheme is stable. Moreover this is independent

of whether the expression for St in equation 8.10 is given by forward difference, 6t~l(Sj — Sj~ ), or

using the Lax-Friedrichs formulation, ~St~1(2S3
e — S\~^\ - SJ

eZl) (see section 9.3.1). Computations

carried out using the scheme described above prove to be stable, with the numerical solution produced

within O(8x) of the analytical solution. Figure 8.1 shows the numerical solution for S compared with

its correct value. Calculations were performed with 100 mesh points, with xmax = 10, and St = Sx.

The error is, as expected, of order 0.1, which is the maximum of Sx and xmax.

However since it is assumed that 5 and M tend to zero as x tends to infinity in evaluating the

integral, it is important that xmax is sufficiently large, so that F{x — t) is small, so the numerical

solution is only valid while t -C xmax.
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Figure 8.1: Comparison of numerical and analytic solutions for the test problem using sequential
iteration

8.7 Stability Analysis of the Interactive Problem

For the interactive problem, i.e. equations 5.19 and 5.20 the same approach was used. In this problem

there is the added complication of the fact that the equations are different in the two regions. For

the purposes of stability analysis, though, only the second region will be considered. The effect of the

first region on the system of equations is twofold : it affects the boundary conditions at x = 1, since

continuity is imposed there, and it gives another term in equation 5.19, which will be the part of the

integral over the region (0,1). However, considering the solution over the region (0,1) as 'known',

addition of this term will not affect stability. Hence analysis will be applied to the following system :

1"~ \<t>l~<t>u (8.15)

(8.16)

(8.17)

-i rOO Q

L1 _jfl
71" J o £-••

Mx •St = 0,

, M
** = ~S~-

with the discretisation given by

p=0
5t

0 =

Clearly there are many possible discretisations, for example the Lax-Friedrichs type formulation of

the mass conservation equation (the second equation in the above system) could be dropped in favour
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of the forward difference formulation. In that and the other equations forward difference approx-

imations to first derivatives could be replaced by central difference approximations. However both

experimentally, i.e. by applying different discretisations, and theoretically, by use of von Neumann

stability analysis, it can be seen that these adjustments do not have a significant effect on the stability

of this system. Applying the von Neumann analysis to this system with (S, M, <f>) being perturbed to

(S + Aei(-kx~ut^>, M + Bei{-kx~^, 4> + Ce*1""1 ' ) gives the following system of equations.

tit
= A,

fir
2Bi sin kSxe-iujSt + -fA(e~iw5t - cos kSx) = 0,

ot
B M _ ^eikSx - 1
~S~S^A ~ ° Sx •

From the requirement that there be a non-trivial solution for A, B and C an expression may be

obtained for e~lu;St. However in practice evaluating it will not be a trivial exercise, particularly since

it will be strongly dependent on the values of M and S, which are unknown except in the steady state

case where f(t) is constant. Although it seems likely that values of e~llJj5t greater than unity will

be possible, it is best that numerical experiments are performed in order to see if this scheme works.

Unfortunately in all cases the iteration failed to converge after a few time steps, irrespective of the

choice of relaxation parameter, or accuracy of iteration. For the few time steps, if any, for which values

are obtained, the growth of instabilities is evident. For example, with £max = 1.9, n = 10, f(t) = 1,

and a relaxation parameter in the iteration of 8 = 0.1, the iteration fails to converge after three time

steps. Furthermore only the first two steps approximate well to the expected steady solution. The

solutions for S(x) are displayed in figure 8.2.

Minor variations to this scheme such as increasing the number of mesh points or the value of £n,

working in terms of 5 and <f>, rather than S and M, altering the values of St/Sx and the relaxation

parameter 0, and using the Lax-Friedrichs formulation for a;—derivatives, all failed to improve the

stability of this scheme. Part of the difficulty in finding a stable scheme lies in the fact that stability

analysis of the sequential iteration method is more complicated than for standard finite difference

schemes. For this reason a stable finite difference scheme for the equations was sought, and this is

discussed in chapter 8.
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Figure 8.2: Output from the sequential iteration scheme for the interactive problem for the first 3
time steps
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Chapter 9

Explicit Finite Difference Methods

9.1 Finite Difference Methods

Although the sequential iteration method has its advantages, it is less obvious than traditional finite

difference methods of solving the equation, as would be applied to a standard partial differential

equation (i.e. one without a singular integral). The main disadvantage of using finite difference

methods, and one of the reasons that the sequential iteration method was originally conceived, is

that the inversion of the Hilbert transform followed by integration that was used in the sequential

iteration method, and which leads to a logarithmically singular integral, rather than the strongly

singular Cauchy integral, is no longer possible. Hence it is now necessary to find some method of

numerically evaluating a Cauchy principal value integral. However there are notable advantages to

finite difference methods : since no iteration is used, there is no requirement that the iterative scheme

converges at each time step, and the absence of iteration will mean that fewer computations will be

needed. Furthermore von Neumann stability analysis will be simpler using this method. As with the

sequential iteration method it is important to examine a number of test equations to examine how

the stability or otherwise of the interactive equation is affected by features such as non-linearity and,

more importantly, the Hilbert transform. In particular the question arises of which partial differential

equation will provide the best analogy to the full interactive problem. In Tuck (1991) [96] an integro-

differential equation is compared to the equivalent differential equation with the Hilbert transform

(j-dx) operator replaced by the differential operator ^ . This is justified on two counts : their inverses

are unique to within addition of a one parameter family of functions, and asymptotically they have

the same effect on the sinx and cos x, an important consideration in that particular study but less

so in this one. For this type of problem it seems more appropriate to replace the Hilbert transform

operator with the identity operator, and one of the aims of this chapter is to explain why it is felt that

for numerical purposes this is the best way to approach the question of finding numerical solutions to

this equation. Naturally no replacement of the Hilbert transform operator can give even a qualitative

approximation for the solution, but for the purposes of understanding the equation it is felt that the

'equivalent' partial differential equation is worth discussing, as the properties of partial differential
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equations are so much better understood.

9.2 Finding Numerical Approximations to Hilbert Transforms

As mentioned in the previous section, the disadvantage of using the finite difference method is that

it now becomes necessary to evaluate the Hilbert transform of the function Sx- This is particularly

difficult as the Cauchy kernel (£ — a;)"1 does not lend itself well to numerical solutions, as to evaluate

the Cauchy principal value integral directly it is necessary to ignore a region arbitrarily close to the

singularity, which will lead to at least two terms in the integral expression which will be unbounded as

the size of the mesh tends to zero. Although in theory these terms should cancel there is a danger that

errors will become larger. Furthermore as the mesh size becomes smaller, the size of this singularity

will increase. This suggests using indirect methods of evaluating the integral.

Here, the notation Hi will be used for the approximation of the singular integral /•<?(£)(£ ~ &)"1-

The most obvious way to evaluate the integral is to approximate the integrand, <?(£)(£ — &)"1 by a

piecewise constant function, taking the values gk(£k — &)"1 o v e r each region (£fc,£fc+i)- The intervals

bounded by £; are omitted, as these correspond to the region (x — e,x + e), which is omitted in

the integral when a Cauchy principal value integral is performed. Considering for the moment only

functions integrated over the integral (0,1) with an even mesh this leads to the expression

n—1 „

*« E ] % (9-D
3

However this is undesirable, largely because the function g(£)(£ — x)~l will have a very large

derivative near £ = x, and hence the approximation of the integrand to a piecewise constant function

becomes inaccurate, although not as much as one would suppose as if g is well behaved there is some

cancellation of terms to the left and right of £ = x. Nevertheless a better approximation is to take the

function g to be piecewise constant. Furthermore to avoid evaluating the transform at a mesh point,

which means that it will not be possible to integrate over either of the regions which have £i as an

end-point, the approximation Hi = \{Hi_i. +Hi+i) can be made, where Hi:izi denotes the evaluation

of the transform at £ i ± i = | (& + £i±i)- This gives

n - l

log (9.2)
i=0

This method may be further refined by use of a spline to approximate #(£). This is particularly

appropriate when the function g, whose transform is to be evaluated, is of the form g = h', where

h is the unknown variable. Further details on methods for increasing the accuracy are discussed by

Piessens et al (1976) [68].

For the purposes of this study the function g to be transformed is of the form g — h!, where h is

given only at the discrete set of points £j. Hence any advantage gained by using a more sophisticated
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method of numerical integration to improve accuracy may be lost if insufficient care is taken over

the approximation used for h'. Veldman (1979) [104] and Veldman k Dijkstra (1980) [105] used

integration by parts to obtain the following expression

assuming h! is zero at both ends of the integral. This has the advantage that the integral is no longer

a Cauchy principal value, but instead contains only an integrable singularity. However this requires

a numerical approximation to h" which is particularly inappropriate in our case as it was shown

in section 5.3 that the function 5, which will be analogous to h in the solution of the interactive

equations, has a logarithmic singularity in the first derivative at x = 1. Hence it makes more sense

to apply the method used by Davis & Werle (1982) [21] and apply the integration by parts the other

way round to give

h'(O h{b) r"h{b) r h(Q ^ h(b) ^ / dg

where the integrals on the right-hand side must be interpreted in the Hadamard sense, and it has been

assumed that h(a) is zero. Again it is necessary that the function is evaluated at points other than

the mesh points, and so the approximation Hi = \{Hi+i + H^i) will be used again. The behaviour

of the sum obtained by using this expression is qualitatively different from the previous methods, as

there is no Cauchy principal value. However the sum produced,

1 y^ 4/tt

k=0 v '

still leads to singularities as the coefficient of g^ will tend to infinity as Sx —»• 0. This will now be

cancelled by the sum of the rest of the terms, which will all have a negative coefficient of gk- This

differs from the Cauchy principal value type integrals where the coefficients of terms at equal distances

from £ = x cancel out pairwise to within order 1.

When dealing with an integro-differential equation over the region (-co, oo) resulting from boundary

layer separation, Peridier et al (1991) [67] made a transformation of the type £ = tan(|-#). This has

the advantage that it is no longer necessary to find an estimate for the tail of the integral (i.e. the

integral between the last mesh point and infinity). Furthermore the equation was made second order

accurate by taking the function to be transformed, h', to be piecewise linear rather than piecewise

constant. In other words, in each interval h(x) will be approximated by the linear function that

satisfies /i(&) = & and /i(fi+i) = &+i, namely

(9.6)

Other methods of evaluating integrals with Cauchy coefficients include using product integration

methods, which are detailed, for example, by Baker (1977) [3]. Some other useful formulae are

detailed by Kaya & Erdogan (1987a) [52].
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As a test of the accuracy of some of the methods described above, numerical approximations to the

transform of the derivative of h(x) = (1 + a;)"1 will be obtained. The correct value of the transform

is given by

To ~i
log a;

This choice of function was used as it has a similar asymptotic expansion to that of the shear layer,

S(x), in the interactive problem, i.e. hx is O(x~2) (see section 5.3.3). In the calculations a uniform

mesh was used, with the £n = 10, unless stated otherwise. The non-singular part of the integral, i.e.

£ > 10, was obtained by using the asymptotic formula

From this the values of h at a further n mesh points, {ft}f"n+i, may be calculated. This means that

the assumption implicit in the above approximations, that x is not being evaluated near the end of

the range of integration, will be valid for large values of x.

Applying the same asymptotic expansion for £ > £n, /i'(£) will be given, to within order x~3, by

—h(l;n)£n/x
2. Therefore the 'tail' of the integral may be approximated by

~ X

Calculated errors for this function are displayed in figure 9.1. The methods used to evaluate it are

based on the methods described above. The first two are based on the integration by parts described

by equations 9.4 and 9.3 respectively, and the third is the more straightforward method defined by

equation 9.2.

0.16 —I 1

Method 1 O
Method 2 +
Method 3 •

Figure 9.1: Errors in the different ways of numerically evaluating Hilbert transforms
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Since the error in the singular integral is O(Sx), it is to be expected that in this case, with n — 100

and Sx = 0.1, that an order 0.1 error will result. This is confirmed by figure 9.1, but the first method,

that used by Davis & Werle (1982) [21], proves the most effective. Results for the first few mesh

points, near x = 0, are not displayed, and do not prove to be small for the first few mesh points. This

is because the assumption that x is not near the boundary of the domain of integration is not valid

here. To estimate these values it is best to use an asymptotic series. However this problem is not

relevant to the interactive slot injection problem of equations 5.15 and 5.16, as the Hilbert transform

here only needs to be evaluated for x > 1.

9.3 The Test Problem for the Interactive Equation

As discussed earlier, when discussing properties such as stability of the interactive equations it is

permissible to ignore the region (0,1) and concentrate instead on the problem posed in the other region.

Hence the test problem will be chosen to be similar to the interactive equations, equations 5.15 and

5.16, except without the integral transforms. Throughout this chapter the equations will be expressed

in terms of cf> and S, rather than M and S, as was the case in the previous chapter. Replacing the

Hilbert operator by the identity the following 'test' system of equations is derived.

^ /(t), (9.7)

(<{>XS)X+St = 0. (9.8)

Note that the choice of coefficient of Sx chosen in the first equation is entirely arbitrary — that term

could equally well be replaced by, for example, — Sx since the kernel of the transform (£ — a;)"1 will

take both positive and negative values.

As with the interactive problem, these test equations can be combined to give a single equation by

differentiating equation 9.7 with respect to x. Hence

o\axXx = <J\OXX + o2
xou - 2ax(jt(Txt, (9.9)

where ax = S, at = —<j)xS. This will have similarity solutions of the same form as those of the

interactive equations, namely a(x,t) = tAa~2f(xt~a), where / must satisfy the non-linear ordinary

differential equation

Z'3/'" = (4a - 2)2/"/2 + «»?(1 - a)f'3 - 2(2a - ifff. (9.10)

The single equation form of the problem, equation 9.9, shows that the system of equations 9.7 and

9.8 is a quasi-linear third order system of partial differential equations. Writing this as a system of

equations in S, 0 and u, where u = <f>x, gives

5 \ / 0 1 0 \ / S1
0
u

u
2
1
0

0
0
5
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The characteristics of this system are given by ^ = A where the A are the roots of the equation

\B — \A\ = 0 when the above equation is written as Aux + Bu>t = a where u) is the column vector

with components (S,4>,u). The cubic equation this gives for A is A35 = 0, so the only characteristics

are given by dt = 0. Thus the necessary conditions to solve the problem on the region (1, oo) will be

the initial values of S and <j>, and the values of S, <p and u on x = 1. In the interactive problem 5

and Sx are given by analysis of the region (0,1), using the fact that 5(0) = Sx(0) = 0, and it may be

arbitrarily imposed that <p(l) = 0.

The most straightforward difference scheme for this system of equations, using the usual notation,

is the following :-

••

Applying the von Neumann stability analysis, with (S, (j>) ->• (S + Aei(-kSx-u>t\(f> + Bei(-kSx~u^) to

this scheme gives the following system of equations for A and B.

A[~isinkSx] + B (e-
iLjSt - 1 + u^-isinkSx] = 0, (9.12)

\ox J \ ox J

A (e-
iuj5t -l+ui-^-smk5x + ux6t] +B (-^-SJsinkSx + -^rS(2 cos kSx - 2) ) =0, (9.13)

y ox J \ox ox'* J

where u = <j>x. Note that at this stage the following terms may be ignored as they will be an order of

magnitude smaller than the other terms : the ux5t term in the coefficient of A in the second equation

will certainly be smaller than the other terms in that bracket, as will the j^Sxisinkdx term in the

coefficient of B in the second equation. Thus for there to be a non-trivial solution for A and B the

following equation must hold

-iw5t j + isink6x ) i sin kdxe-iw5t _ j + u—isink6x ) = i sin kdx—-S(2 cos kSx - 2).
ox J ox6

If Jj is order 1, then the term on the right-hand side will dominate and values of |e~lw<5t| greater than

one will certainly be possible. Hence the ratio of interest, which must be order 1, is St2/Sx3, which

will henceforth be denoted by r2. If this is order 1 then J£ will be small and hence

e-iust = j ± 2ri/5sin — e^y/smkSx + O{5x*). (9.14)

Clearly the above expression permits values for e~lbj5t greater than unity, since the last term is a

complex number with a non-zero real part, and so one of the possible solutions will have a real part

greater than one. Hence the above scheme is unstable and it will be necessary to examine other

numerical schemes.
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9.3.1 Lax-Friedrichs Scheme

The Lax-Friedrichs scheme, as discussed earlier, is particularly useful for hyperbolic equations, and

first order partial differential equations, for example ut + ux = 0 for which the scheme

is unstable, since the usual perturbation gives

Sx

which will always have a modulus greater than one for some values of k. However by replacing the

term u\ in the approximation for ut by its average over the neighbouring mesh points to obtain the

scheme
(

2 Sx { 2 J '

the "1" in the expression for e~~luSt (equation 9.15) is replaced by a "cos kSx", giving

e-iw5t __ (.Qskfij. — isinkSx.
ox

which will have a modulus of less than one provided 11£ | is less than one.

In this test problem, therefore, the equivalent change in the approximations for St and <j>t will have

the same effect, namely in the stability analysis the "1" in each of equations 9.12 and 9.13 will be

replaced by a cos Hz, so equation 9.14 will become

e-iu,« = cos kdx ± 2rVS sin — e ^ Vsin kdx + O(8x?), (9.16)

where s = sin M^.. Noting that \/8r25 is real, this means that there will always be a value of e l0j5t

with a real part greater than one, since for small values of s the real part of the right-hand side will be

1 ± \/8r2Ss2 to within order s2. Hence use of the Lax-Friedrichs formulation alone will not provide

a stable solution for this problem.

9.3.2 The Crank-Nicolson Method

The Crank-Nicolson method is often used in the context of parabolic equations. Used with the heat

equation it has the effect of making any difference scheme stable regardless of the size of j ^ • To see

this it is necessary to apply the normal perturbation to the ordinary explicit difference scheme

to give

6 = 1 " 4 ^ 2
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Therefore values of e lu6t with modulus greater than one are permissible if j ^ is greater than | .

However the Crank-Nicolson method changes the scheme in that instead of using the forward time

difference 8t~l(u{+l — v\) at the time-step corresponding to j and equating it to the central second

derivative approximation at time j , it uses central difference approximators at the time step j + \,

using linear interpolation where necessary. This gives the scheme

St 1

and hence

2 '" '" - '

Thus the effect of this scheme in general is to replace a scheme of the form

«r = <
for some matrix {Aik}, with one of the form

v>+1=U{+Aik±(ui+1+ui),

which changes the stability criterion from something of the form

to

^ e l 1 |
2 + a 2 + a 2 + a

Thus the Crank-Nicolson scheme will be stable as long as o is positive. In particular it stabilises a

scheme where the instability is caused by the term a in a stability criterion such as that of equation 9.17

becoming too positive, so that e~luj6t becomes less than —1. However this does not apply in the test

problem, as from equation 9.14 the problem is that "a" is allowed to be negative. In this case the

Crank-Nicolson is unhelpful, as from the above equation if a is negative unbounded values of e~lLoSt

may occur.

9.3.3 Averaging

Another possible way to improve the stability is to apply the above formulae for all S^+1 and 4>l+

and then to take the average value of the next and previous mesh points, i.e. apply

2
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where 5 denotes the expression for Sj+1 obtained by applying a previous scheme. To consider the

effect this will have on stability, suppose that the previous scheme yields the stability relation

e-™st = a,

where a in general will depend on kSx, and, for a non-linear equation, on S, <f>, etc. Then, when the

above formula for the averaging process is applied, the new relation will be

e-iu6t = \a(eik6x + e-ikSxj =ac0SkSx.

This is a partial improvement, and will certainly not lead to new instabilities, but it will only be able

to make an unstable scheme stable if the original expression for e~iw6t became greater than unity only

for values of kdx where cos kSx is small. This is not the case in any of the schemes for the interactive

test problem, so averaging will not in itself give a stable scheme.

Although this suggests the above schemes will be unstable, use of von Neumann analysis does not

provide a rigorous proof. Hence the above schemes were tried for the test problem. All were found

to become unstable quickly, as predicted from the von Neumann analysis. The computations were

performed with f(t) = 1, and boundary conditions <f>(l,t) = 5(1, t) = Sx(l,t) — 0. The region over

which the equations were solved was (0,10). The initial conditions were 5 = 1 and <f> = x. With

these conditions, the solution should be 5 = 1 and <j> = x for all t. Figure 9.2 shows the behaviour

of 5 at t = 2 for three sets of computations, all using 100 mesh points. The graph denoted 'A' was

used for the scheme defined by equation 9.11. The graph labelled 'B' used the Lax-Friedrichs scheme,

and graph ' C used Lax-Friedrichs and averaging. Clearly instabilities have arisen. The time steps in

these computations were given by St/Sx? = 0.9, but in practice the instabilities arose irrespective of

the size of the time steps used.

9.4 A Simpler Test Problem

The difficulty in finding a solution for the above equations has so far been in the fact that the system

is third order, a fact which is most easily seen from equation 9.9. However replacing the crxxx with

axx will change this equation to a more familiar looking second order equation. One way of achieving

this without making drastic changes to the test problem given by equations 9.7 and 9.8 is to replace

the Sx term in equation 9.7 with 5 to give the following system of equations

S+\<t>l+<Pt = \f(t), (9.18)

((f>xS)x + St = 0. (9.19)

These are effectively the interactive equations over the region x > 1 with the Hilbert transform of 5X

replaced by 5. However this is a more fundamental change than replacing the Hilbert transform of

Sx with Sx as the system is now second order.
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9 10

Figure 9.2: Numerical Instabilities for the Test Problem Without Hilbert Transform

This is now a hyperbolic second order system of equations. Differentiation of the first equation with

respect to x means they may be written as a system of two first order equations in two variables, S

and u = (f>x.
1 u
u S

0 1
1 0

Writing this as Au)x + Bu>t = 0 as before, except with u> = (S,u), the characteristics are given by

f̂f = A where the A are given by the solutions of the equation \A - XB\ = 0. Thus A = u ± y/S, and

so for S non-zero the characteristics are real and distinct.

As before this system will have similarity solutions, this time of the form 5 = t2a~2f(r)), u = ta~lg{rj),

where r\ = xt~a and / and g satisfy

(9.20)

(9.21)

-ar/s ' + gg1 + / ' + (a - T)g = 0,

(fg)'-ar,f' + (2a-2)f = 0.

Although it is often preferable to solve hyperbolic equations by changing to characteristic co-ordinates,

this will not be done here as there is no such analogy with the more complicated third order problem.

Instead a numerical scheme similar to those used in the preceding chapter will be used. Using the

Lax-Friedrichs formulation for differentiation with respect to time, and replacing the Sx term with S,

equations 9.11 will be replaced by

st i ;/(t) - ; i r i t l . / - ' ) -sn, (9.22)
2Sx

(9-23)
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Application of the usual perturbation, as in the previous section, will lead to an equation similar to

equations 9.12 and 9.13. However use of the Lax-Friedrichs formulation will mean that the two terms

of the form e~luSt — 1 will be replaced by e~luSt — cos kSx. Furthermore the change of Sx to 5 in the

first equation means that in equation 9.12, the coefficient of A will change from | | i sin kSx to St. The

condition that A and B are non-zero now becomes

^ - 2). (9.24)u^ismk5x) = ^r
ox J oxz

Note that the ratio of importance is now | | as expected, since this is a second order hyperbolic

equation. This ratio will henceforth be denoted by r. The above result shows that, with this scheme,

if kSx = 7r then e~lu)5t will equal — 1 ± 2ir\fS, which will clearly have a modulus of greater than one.

However this problem would not arise if the cos kSx term were replaced by a cos 2k5x term. As this

term arises in the approximation for cj>xx it is necessary to reconsider the approximation used for (j>xx

in the scheme. In the scheme of equations 9.22 and 9.23 this approximation appears in the very last

term, and was

Here, this will be replaced with

The reasons why this is necessary are rather subtle and need not be discussed here. The change in

the perturbation analysis will be in the right-hand side of equation 9.24, where the term in brackets,

(2cosfc«5a; — 2), will be replaced by (cos2Ha; - l)/2. Hence

(e-iuj5t - cos k5x + uir sin kSx)2 = r2S{cos2kSx - l)/2. (9.25)

On taking the square-root of this, it follows that

e-iu&t = c o s kSx _ ir(u ± ^ s i n

Therefore the scheme will always be stable provided r(u + y/S) < 1. This is the expected result since

u + \/S is the largest eigenvalue of the problem, so r(u + \/5) is the Courant number. In practice a

Courant number of 0.95 is often chosen in order to exclude non-linear instabilities. Note that choice

of a Courant number less than one will mean that the scheme will satisfy the CFL condition and be

convergent, as well as stable (see, for example, Smith (1965) [80]).

Applying this scheme with initial conditions for 0 and S, and boundary conditions at x = 0 for 5

and (j)x the following results may be produced for Courant numbers of less than 1. The mesh used

was even, with fn = 10, with a Courant number of 0.9, and boundary conditions 5 = 1 and <f> = 0 at

x = 1. The initial conditions were 5 = 1 and (j> = x, with f(t) = 1 for t < 0, and f(t) = 1 +1/{\ + i)

for positive t. The choice of a function f(t) which is discontinuous in the second derivative appears
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to give a singularity in S along x = t, but this does not cause any numerical problems. The solutions

found for 5 are shown in figure 9.3, for various values of n, where n is the number of mesh points, and

show convergence with an error of order O(Sx). For a Courant number greater than one the numerical

solution quickly diverges, as expected.

Figure 9.3: Numerical solutions to the second order test problem without a Hilbert transform for
various numbers of mesh points

9.5 The Effect of the Hilbert Transform

Although the simpler second order test problem has now been solved numerically, the question of how

to attack the interactive problem remains open. There are two crucial differences between the problem

solved in the preceding section and the interactive problem : the fact that the interactive problem is

third order, and the presence of the Hilbert transform in the interactive problem. It has already been

shown that the presence of the extra x-derivative in the interactive equation, even when the Hilbert

transform is excluded, poses formidable problems from a numerical point of view, however the effect

of the Hilbert transform has not yet been discussed in any detail. One point of interest is the question

of to what extent the 'order' of any partial differential equation containing a Hilbert transform may

be defined, as a transform of Sx may also be interpreted as a transform of 5 or Sxx etc, by a change

of kernel obtained by integration by parts (as in equations 9.3 and 9.4). Indeed, as has already been

mentioned, a case could be made for arguing that the presence of a Hilbert transform has the effect

of increasing the order of the equation by 1, on the grounds that the inverse of the Hilbert transform

has the same dimension of non-uniqueness as the inverse of differentiation, and furthermore that in

the form in which the kernel is integrable without recourse to a Cauchy principal value, i.e. that of
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equation 9.3, the transform is of the function Sxx. Nevertheless, in this analysis, for the purposes of

finding numerical solutions the singular partial integro-differential equation which will be compared to

that of the last section will be the second order equation with the S replaced by the Hilbert transform

of S.

This may partly be justified by considering Fourier transforms with respect to x and t. Suppose a

function f(x,t) has a Fourier transform f(k,u), where k and u are the x and t transform variables

respectively. The transforms of fx and ft will then be — ikf and —iuf. However the Fourier transform

of the infinite-range Hilbert transform will just be «7rsgn(A;). This suggests that in stability analyses

the growth of unstable modes will only be affected by infinite range Hilbert transforms to within

multiplication by a constant.

For the purposes of this analysis the method used to estimate the Hilbert transform of a function

S, with S(£p) = Sp, will be given by ^2AiPSp, where

[ 0 i=p.

Note that this is not quite enough to give a good approximation to the Hilbert transform, especially

at large values of i, as the range of integration is (0, oo) whereas the sum defined above is only an

approximation over the range (0, £n). However it will be assumed that £n is sufficiently large that S is

small for values of 5 larger than £n and that, for the moment, only instabilities far from the boundary

of the mesh region are being considered.

The contribution to the stability condition from the Hilbert transform term of a function S, at

x = fy, t = tj, is obtained by evaluating the sum when the Sj are replaced by S3
e + Aei(k6x-u5t) a n ( j

the order A term divided by e
l(.kx-ut) ^ as the other terms were. Applying this to the sum evaluated

at the mesh point £e = £Sx gives

p=0 p=0

The first feature to observe in this expression is that each term is order one, unlike a term corresponding

to an cc—derivative, say, in which there would be a factor 6x-1. This justifies the hypothesis that in

some sense the Hilbert transform operator 'corresponds' with the identity operator.

To simplify this sum, note that from equation 9.26, Ae^-P = —Aiti+P, and assume that £ < \n (the

corresponding expression for £ > | n is only slightly different), to give an expression for the sum. Let

this sum be denoted by 2iC2, then

I n-l

2iC2 = Y^2iAi,t+g8inqk8x+ £ ) Atpe^p-^k5x. (9.27)
9=1 p=2(+l

From equation 9.26 it follows that A(p is of order (£ —p)~x for large values of £ - p . Since £6x = x,

it follows that everywhere except near x = 0, £ is large, and so in the second sum of equation 9.27

130



the values of I — p will be large. Thus this sum will tend to a sum of terms of the form eip9/p, where

9 = kSx, and it is well known, e.g. from Gradshteyn & Ryzhik (1965) (page 38), that this sum is

convergent for non-zero values of 9, with the sum of the series being given by

^ e
ipi) 1 , t 26 IT-6

l 4 +V 2 2
p=i

for 0 < 9 < 2TT. For order 1 values of kSx = 9, therefore, the second sum of equation 9.27 will be

convergent, and since the largest terms are of order (£ — p) - 1 , this series will be of order (£ — p)~1,

although for small values of 9 = kSx, it will be of order logkSx(£ — p)""1.

By the same reasoning the first sum of equation 9.27 is convergent, although since there are no

cosine terms, there is no logarithmic singularity for small values of k6x. Hence C is a real number,

which may be obtained by numerically evaluating the sum. The possible largest value of C, which

is the value of most interest, will be obtained in the limit as kSx —>• 0. Hence C is given by, from

equation 9.27,

C2 = sup Vlog-^ i - s ing&E, (9.28)
fri 2q-l

which may be evaluated numerically to about 1.55. (This is the value obtained for 5000 terms with

9 = 0.01). A maximum value of TT/2 is obtained for the related series q~l smq8x, and this seems

likely to be close to C. This ties in well with the fact that the expected perturbation from the Fourier

mode, is ±2iC, whereas the effect of a Hilbert transform on the Fourier transform of a function is

known to be to multiply it by ±i7r. Thus it may be said, that for the purposes of Fourier analysis of

numerical schemes for partial differential equations with Hilbert transforms, that in the same way that

differentiation with respect to x and t have the effect of multiplication by ik and — iui respectively,

so the Hilbert transform has the effect of multiplying by ±ITT. This result will hold for all singular

partial integro-differential equations with Hilbert transforms, and regardless of whether the Hilbert

transform is over a finite, infinite, or semi-infinite region, although for the finite and semi-infinite cases

the instability criteria will be different near the boundaries.

9.6 A Test Problem With a Hilbert Transform

Replacement of the function 5 in equation 9.18 with the semi-infinite range Hilbert transform gives

the following test problem

i r s ^ t i i ^ = i
i" Jo ? - x 2 2

{<l>xS)x+St = 0. (9.30)

The presence of similarity solutions will not be affected by the Hilbert transform, as shown by equa-

tion 8.2, and they will take the same form as the similarity solutions of equations 9.18 and 9.19,

namely S = t2a~2f(r)), u = ta~1g(r]), where r\ = xt~a and / and g will satisfy a very similar pair of
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equations to equations 9.20, i.e.

-aVg' + gg' + - i P^d^ + {a-l)g = 0, (9.31)
Tf JO S ~ V

(fg)'-arifl + (2a-2)f = 0. (9.32)

For the purposes of finding a numerical solution to this system, the calculation of the Hilbert

transform at each mesh point & will be given by the integral over the region (0, oo), taking S to be

equal to S& over each interval (£fc,£fc+i)- This gives a numerical scheme, using the Lax-Friedrichs

formulation as before, similar to that for the previous problem, for which the scheme was given by

equations 9.22 and 9.23. The only change is the introduction of the Hilbert transform, which gives

-1) - £ ̂ ] , (9-33)

(9.34)

\ (^+1^-1)\ ( 2 ^ )

where the Aip define the singular integral and are given by equation 9.26.

From section 9.5 it follows that the effect of a Hilbert transform in the stability analysis is to

introduce a factor ±2iC2, where C2 is defined by equation 9.28 and is roughly TT/2. Given C2,

the expression for the stability of the numerical scheme described above by equations 9.33 and 9.34

becomes that of equation 9.24 (which gave the value of e~lu5i for the test problem of section 9.4, in

which there was no Hilbert transform), with the right-hand side being multiplied by 2iC2, giving

* • i kS\ L
g i n kS = _L2iC

2S{2 cos kSx - 2),
ox ) oxz

and hence

e-iu,st = cosk5x - ir (usinkSx ± (1 + i)CVSsin^-j . (9.35)

This may be expanded in powers of kSx, in which case the real part of e~luSt will be

)2 + O(k6xf.

Therefore instabilities may grow for kSx small. However, this analysis is only relevant for kSx S> 5x,

and for finite values of Sx it is likely that there will be no kdx for which both k » 1 and kdx is

sufficiently small for e~
lu6t to be greater than one. For order 1 values of kSx, the highest value for

|e-iw«| obtained from equation 9.35 will be when the ± sign is taken to be positive, and sin kSx =

—sin^l2-, so that imaginary terms are of the same sign. In this case the expression may be given in

terms of y = s i n ^ .

e-iu5t = 1_2y2 + rCyfSy + iy (ru + rCVS^j .

e-iwH\2 WJVI therefore be a quartic in y, with a maximum near y = 0, and tending towards infinity

for positive and negative y. Note though that since y = sin ̂ l2-, only values of y between -1 and 1
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need be considered. The minima will be reached near the value of given by 2j/2 = 1 + rC\fS, as the

real part of e~lwSt is zero here. For sufficiently small r this will be in the region (—1,1). Hence the

condition for e~luSt to be less than one everywhere except in the region near y — 0 may be obtained

by imposing that it is less than one at y = ±1. This will hold provided

r2{(C^S - I)2 + (u + C\fS)2} < 1,

where C is given by equation 9.28.

Thus a Courant number, c, may usefully be defined by

c = {(cvs~iy + (u +

It is expected (although not conclusively proven) that numerical experiments performed with a Cour-

ant number of less than one will be stable and converge to the correct solution. However, as a result

of the instability near k5x = 0, for larger values of n a smaller value of r may be needed. Naturally

convergence cannot be tested until the correct solution is known, so in order to test the validity of

this analysis, the equation was modified slightly so that there will be a known analytical solution with

which the numerical solution may be compared. Since both stability and convergence are dependent

only on the highest derivatives in a problem, the stability analysis considered above will also be valid

for the following system of equations on the region (1, oo)

i r o x<i,
7T Jo

(4>XS)X+St = 0.

where h is an arbitrary function of time, a is an arbitrary constant, and S is given over the region

(0,1). The solution of this system is

S d>

The method used to evaluate the Hilbert transform was that used in the above stability analysis,

i.e. Hi was given by AiPSp where AiP was given by equation 9.26. However in order to prevent large

errors occurring for values of x near the last mesh point xmax it is necessary to numerically estimate

the values of S over the region (xmax,2xmax) and apply the singular integral transform over the region

(0, 2xmax), then adding a tail. This may be done by asymptotic methods, observing that S behaves

like £~5 over this region. Although this observation is based upon the known solution, it is usually

possible to obtain some sort of asymptotic expression at infinity when the solution is not known, as

was done with the interactive equations in section 5.3. It is necessary to do this as the largest terms

in the sum are those immediately either side of x, which must cancel each other out to lowest order,

and so it is necessary that sufficient terms are always taken either side of x for this cancellation to

occur.
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Because of the non-linearity of the problem it is important that the assumptions made previously

about S and u, namely that they are both positive and order 1, are true, and so h and a must be

chosen accordingly. The examples used below are those of the steady problem with h = 1, a = 1,

and the unsteady problem with h = A — t, a = 0 with t < 4. The boundary values necessary are

5(1, t) = h(t) and 4>{l,t) = 0, with initial values given for 5 and 0 by h(0) = 4, /i'(0) = 0.

Applying the above scheme, numerical experiments were run, for both the steady and the unsteady

problem. The graphs below on the whole show good agreement with the known analytic solution, for

sufficiently low Courant number, thus confirming the hypothesis that the Hilbert transform is not per

se an obstacle to finding a numerical scheme for a singular partial integro-differential equation which

is stable and convergent. The maximum value of the Courant number before the solutions stabilise

was found to be about 1.3 for n = 100. Figure 9.4 indicates the solutions found for Courant numbers

of 1.3 and 1.4 for the steady state problem.
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Figure 9.4: Solutions to the second order test problem with different Courant numbers at t = 10.

For the unsteady problem, the solution found for 5 at t = 2 is shown for n = 10, n = 100, and

n = 500, in figure 9.5, and compared with the analytic solution 5 = h{t)x~ll2. This shows that the

solution is converging to the correct solution. As expected, a lower Courant number is needed for

higher values of n so the Courant number was taken to be 0.8 in these computations, with xmax set

to 10 for n = 10 and n = 100, and n = 23 for n — 1000. The motivation behind this choice of xmax is

that the accuracy is limited by two factors : the thickness of the mesh, which gives an error of O(5x),

i.e. O(xmax/n), and the estimation of the tail of the integral, in which there is an error of O(x^ax).

Thus for a given n, the optimal choice will be when these errors are of an equal order of magnitude,
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so

implying that xmax ~U2. With this choice of xmax, the error will be O(n 2). Figure 9.5 shows the

numerical solution converging to the analytic solution as n increases.
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Figure 9.5: Numerical solution of the unsteady second order test equation for various mesh sizes

9.7 The Linearised Third Order Equation

Before looking at other schemes often used to improve stability it is worth noting that the stability

of any scheme is determined by its highest derivatives only. This is manifested in the above stability

analysis by the observation that some of the terms in the expression for e~lu>st were less than order

1 when r is order 1. These terms correspond to the 4>XSX term in equation 9.8 and the \(^x term

in equation 9.7. Furthermore the effect of the non-linearity on the stability of the equations is now

confined to the coefficient of r in the final expression for e~luSt (e.g. equation 9.14 or equation 9.16)

being multiplied by a factor of y/S. However S is positive and order 1, and furthermore, since in the

steady problem it varies only by a factor of 2 in the region in which this stability analysis is being

conducted, setting this term equal to 1 is unlikely to vary the fundamental properties of this equation

with regard to stability. Hence before examining other, more complicated, stability it is better to

examine the 'simplified' form of the equations, in which all derivatives save those of the highest order

are set to zero, and the remaining terms linearised where necessary. In other words the \<$c term in

equation 9.7 is set to zero, and the (<j)xS)x term in equation 9.8 is replaced by (f>xx. This leads to the
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following system

Sx + 4>t = 0,

4>xx + St = 0,

or, expressing it as a single equation in a as before, by differentiating the first equation with respect

to x and imposing ax = S,

crXxx = on- (9.36)

Note that this is the equation that one would expect to arrive at after making the same simplifications

to equation 8.1, and that it has the same properties with regard to characteristics, etc, as the original

equation. Hence any search for a stable numerical scheme for the interactive problem must focus

on this equation, with the assumption that any stable scheme for this equation will also be stable

for the test problem defined by equations 9.7 and 9.8. The fact that once a numerical scheme had

been found for the second order test problem, the introduction of the Hilbert transform did not

present an insurmountable obstacle suggests that such a scheme may give, with certain modifications,

a numerically stable solution to the interactive problem.

The fact that it has not been possible to find a numerical solution to the third order test problem

of section 9.3 suggests that the sticking point in finding a stable numerical scheme for the interactive

problem is not related to the Hilbert transform, or to the non-linearity of the problem, but to the

usual difficulties in finding stable schemes for third order problems, and in particular the third order

problem axxx = att, the linearised simplified version of the full interactive problem. The methods

described above (Lax-Friedrichs, Crank-Nicolson, etc) fail to provide a stable numerical scheme for

this equation for the same reasons as they fail for the interactive problem, so further discussion of

this equation, which is considerably easier to analyse than the full interactive problem, is necessary

to obtain a better understanding. One possible starting point is to examine the stability of separable

solutions to the linearised equation, since the general solution may be written in the form

/•C

= /

J — C

where the X(x; n)T'(£; fi) are the separable solutions parametrised by \i.

Setting a(x,t) = X(x)T(t) and substituting into the linearised equation axxx = att gives X'"/X =

T"jT ^constant. The linearly independent solutions for X are thus X = e^x, e~^^x cos ^/J-x, and

e-\iix g j n ¥^-fj,x, where \i is a real constant. The solutions for T are either sinusoidal or exponential

depending on the sign of /i. Whether a boundary value problem permits growing exponential modes

or not depends on the boundary conditions. Given the boundary conditions X(0) = 0 with X and

X' tending to zero as x tends to infinity, there is no non-zero solution if /x is negative. If \i is positive

a = fii is real and positive. In this case the solution for X is e~^x sin ^/xa;, with a general solution

for a of Xeat + Xe~at, and so exponentially growing modes are possible. Alternatively the boundary
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conditions X(0) = -^'(0) = 0, with X tending to zero as x tends to infinity permit no non-zero

solution. This demonstrates the importance of boundary conditions with regard to stable solutions.

One of the disadvantages of the linearisation that led to this equation is that the corresponding

boundary conditions are not clear. The absence of the Hilbert transform will mean that one fewer

conditions will be needed. Furthermore in order to convert the system of equations into an equation

in one variable, the equation involving f(t) had to be differentiated, thus f(t) enters the equation

only through the boundary conditions. In the interactive problem 5 and Sx are given as being zero

at x = 0, and thus are given implicitly at x — 1 by the inversion. Note that only the condition

that 5(0, t) = 0 is related to the corresponding partial differential equation, as the condition that

Sx(0,t) = 0 provides information regarding the inversion of the Hilbert transform (this is why the

original steady equation required two boundary conditions, even though it was only first order with

regard to differentiation). The missing boundary condition must therefore involve f(t), and so must

arise from the fact that the Hilbert transform must tend to zero for large x. From equation 5.20 it

then follows that <j>t + \4>x tends to f(t) as x tends to infinity, and, since for the purposes of this

linearised equation the term <fix has been ignored as it does not feature a highest derivative, this gives

the condition 4>t —* f(t) as x -» oo. Differentiating this, and expressing it in terms of a gives ott -> 0,

and so, bearing in mind that for the separable solutions att is proportional to a, the appropriate

boundary conditions are a -»• 0 as x -> oo, along with a(0,t) = 0 (from the definition of a) and

ax(0,t) = 0. The fact that these conditions permit no non-zero solutions suggest that this equation

has been over-simplified.

If the procedures as followed above are used, save the ignoring of the non-linear terms, the equation

in terms of one variable, with no Hilbert transform, and no terms in any but the highest derivatives,

may be written

Ox°xxx = ott- (9.37)

In some ways this is more desirable than the linearised version above, as the boundary condition

cr(0,i) = ax(0,t) = cr(oo,i) = 0 will not necessarily lead to a non-zero solution. Furthermore it

is invariant under the transformation x H> —X, and so more appropriate to a physical situation.

However since it is non-linear, separable solutions are not as easy to find, and the previous problems

with numerical stability remain. Clearly, further study of this equation would be helpful to finding a

stable scheme for the interactive equations, and this would be a useful area into which further research

could be conducted.

9.8 The Full Interactive Problem

The success of the numerical scheme for equations 9.29 and 9.30 relies upon the fact that from a

numerical point of view, the Hilbert transform does not behave like a derivative, but like the identity

operator. However this is not a desirable feature for the interactive equations, since no scheme has

137



yet been found for the third order problem without the Hilbert transform. For this reason it is to be

expected that any approximation to the Hilbert transform of Sx which is of the form

/-. n—1

i=0

(where (Sx)k denotes the numerical derivative S at the mesh point k by, for example, a central

difference operator) will be unstable. This proves to be the case in numerical experiments. However

an approximation that applied integration by parts, as in equation 9.4, would be preferable, as 5 is no

longer explicitly differentiated. The approximation corresponding to this form is that of equation 9.5,

and applying the usual perturbation to this gives a first order error of

1 n—^ A iokdx
TT . v -ikX l V ^ ^

HP+h*e 5x ^ 1 - 4{q - pY "

The term in the above sum corresponding to q = p is 45x~1, and the sum of the terms corresponding

to q = p ± 1 is — ̂ Sx"1 coskSx, etc. Thus the first order error, for order 1 values of kSx, will

be of order 8x~l, as is the first order for differentiation. Thus although the differentiation in this

method is implicit, as far as von Neumann analysis is concerned, the operation that takes S to the

Hilbert transform of Sx is still a derivative. The averaging process Hp = \{Hp_i + Hp+i) has no

effect on this phenomenon. Numerical experiments have been carried out which confirm this, and the

interactive equations become unstable very quickly, even when the function S is given over the region

(0,1). Examples of the growth of instabilities for the interactive problem, with xmax = 11, a Courant

number of 0.9 and a slot pressure f(t) = 1, which should yield the steady solutions, are shown in

figure 9.6.

Although a stable numerical scheme has not been found for the interactive injection equations, it has

been shown that the presence of a Hilbert transform need not per se pose an insurmountable obstacle

to finding such schemes. In particular it seems that the main obstacle to the interactive problem

is caused by the fact that it is third order, and thus of a similar type to the linearised equation,

equation 9.36. It is therefore suggested that a stable scheme must be found for this equation, with a

stable scheme for the non-linear integro-differential equation likely to be found by a similar method.

One possible way to find such a solution would be to add a term to equation 9.36 of the form 5xaxxxx,

which will tend to zero in the limit as Sx —> 0, but may have a stabilising effect. This would be a

similar kind of scheme to the Lax-Friedrichs scheme described earlier (section 9.3.1), which may be

thought of as addition of a term of the kind 5xSxx.

One final conclusion from the numerical analysis of these equations is that if a partial integro-

differential equation can be expressed in such a way that the integral transform contains no terms in

the highest derivatives of the equation, then the integral transform will not affect numerical stability

of the equation. A corollary of this is that in the case that the integral transform is invertible, an

integro-differential equation in which the integral transform contains only highest derivatives will also
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Figure 9.6: Growth of numerical instabilities for solution of interactive problem using finite difference
methods

be solvable numerically, provided the partial differential equation consisting of the highest derivatives

is solvable, as is the case with the unsteady sail equation solved in chapter 3. Since the unsteady sail

equation (equation 2.31), in terms of its highest derivatives was just the wave equation, any stable

scheme for the wave equation will be stable for the unsteady sail equation.

9.9 The Low Mass Sail and Flag Equations

The equation given for an unsteady sail in the limit as its mass tends to zero was given by equation 2.32.

In this case p, is large, but [i~1(32 is order 1. Ignoring all terms save those in the highest derivatives,

this equation may be written
i PP- r1 Set

T-^-d£ = St, (9.38)

with the boundary conditions given by S = 0 at x = 0 and x = 1, and Sxx = 0 at x = 1, and initial

conditions on 5, as before.

This appears to be similar to the heat equation, with the Cauchy kernel, and its consequent change

of sign at £ = x, indicating that the ratio of St to Sxx will have to be considered as taking both

positive and negative values. However there is a fundamental difference between the ordinary heat

equation,

and the backwards heat equation
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in that if f(t) is a solution for one of the above equations, then f(-t) will be the solution for another.

This has serious implications for stability, as if a scheme is found for the first equation, for which

e-iu<5t| < ^ then n atUrally \etuSt\ > 1, which suggests that the same scheme when applied to the

second equation will be unstable, unless e~lU)5t is identically equal to one. Some research has been

conducted on such 'forward-backward' heat equations, for example by Turfus (1986) [98], and Freidlin

& Weinberger (1993) [40]. However it must be recalled, from section 9.5, that the effect of the Hilbert

transform is not multiplication by ± 1 , but ±i. This changes the stability criterion completely and a

stable difference scheme may be found for the low-mass sail equation (equation 9.38), using a three-

level time difference scheme, that is

where as usual S^ denotes S(£p , i ,) , and H^ denotes some evaluation of the Hilbert transform at the

point £p, typically given by an expression of the form

n - l
fJJ — V ^ A CJ
" p ~ 2-~i P9Jqi

q=0

where the Apq are given by equation 9.26. Since it is known from section 9.5 that applying the usual

von Neumann perturbation to Hj gives ±i , it follows that

e-*"« = e™st ± 2-^-^i (2 cos kSx - 2)).
pz oxz

For convenience, the notation z = e~lwSt, r = St/Sx2 will be introduced. With this notation, the

above equation is a quadratic in z of the form

z2 - 2ibz - 1 = 0,

where b is a real number given by
H . 2 kSx

The product of the roots will therefore be 1. Hence for there to be no roots of modulus greater than

one, they must both be of modulus one. This will happen if the roots are complex, or there is a double

root. For convenience, y will be defined by y = iz. With this definition, \y\ = \z\. The quadratic for

y is then

y2 - 2by + 1 = 0.

The equation for y has real coefficients, with the product of the roots equalling 1. Therefore, if the

roots are a complex conjugate pair then, since their moduli must be equal, they must both be equal

to 1. This condition will be satisfied provided the above equation has no real roots, i.e. provided

6 2 < 1 .
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Hence stability for this three-level difference scheme may be achieved provided

This shows that stable schemes are possible for singular partial integro-differential equations, even

where the transform contains a highest derivative. This case is particularly interesting, as the asso-

ciated partial differential equation is not unconditionally stable under the equivalent scheme if the

Hilbert transform is replaced by a constant, but only stable if the constant is of the right sign. Further-

more, in its highest derivatives the low-mass sail equation is the same as the Benjamin-Ono equation,

discussed in section 8.3, with the domain of integration and the non-linearity in the first-order x-

derivative being the only significant differences. Therefore it is anticipated that the above scheme,

with the obvious modifications, would be applicable to the Benjamin-Ono equation.

The stable scheme for the low-mass equation, along with the results successfully obtained for the

test equation of section 9.6, shows that it is sometimes possible to find numerical solutions to singular

partial integro-differential equations, and how the stability analysis must proceed in order to determine

whether a scheme will be successful.
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Chapter 10

Conclusions

10.1 Summary of Results

The results presented show that although singular partial integro-differential equations pose particular

problems, these problems are not necessarily insurmountable. In particular, the numerical work on

the unsteady sail equation in chapter 3, the test problem of section 9.6, and the stability analysis

of the low-mass sail equation of section 9.9, show that numerical solutions may sometimes be found

for them. However the von Neumann analysis of chapter 9 shows that in order to be able to find a

stable numerical scheme for a singular partial integro-differential equation, it is necessary to consider

the corresponding partial differential equation, with the integral transform replaced by a positive or

negative constant. If there are no stable schemes for the corresponding partial differential equation,

then there are unlikely to be any for the singular partial integro-differential equation. This poses

particular problems for finding numerical solutions of the interactive equations of section 5.2. However

for equations for which the corresponding partial differential equation has stable numerical schemes,

a numerical scheme may sometimes be obtained. In general the effect of a Hilbert transform on a

stability condition will be for a factor of ±in to appear.

For the physical problem of the unsteady sail, the results presented in section 3.4 show how the

shape of the sail, the lift and the tension vary with the angle of attack. In particular it is shown that

for a variation between concave sail shapes with the same sign camber, the sail shape approaches that

of the steady state with virtually no oscillatory behaviour. However, when the sail shape changes

camber, the sail shape does not change monotonically with time to the new sail shape, but oscillates

between sail shapes of opposite camber. The problem is less complicated for the high-mass sail of

section 2.6, which is unaffected by the aerodynamic flow, and so will be stationary. The low-mass

sail of section 2.5 is likely to behave similarly to the order 1 mass sail, although the numerical results

presented in section 3.4.2 suggest that instabilities are likely to become more significant. The analytic

solutions found for the low-mass sail (equation 2.33) for particular angles of attack, also indicate that

a non-zero angle of attack can still generate zero lift, as in the steady case. The problem where the

relative angle of incidence is large may also be solved entirely analytically (section 2.7). In this case
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the sail shape remains constant and the tension is proportional to the angle of incidence. The analysis

of the flag equation also provides an eigenvalue problem for possible modes of a flapping flag in a

steady cross-flow, given by equation 2.45.

For the injection and suction problems a variety of useful results have been obtained. The analysis

of the quasi-steady injection (section 5.4) gives a result, not previously observed, that the mass flow

will depend on the slot pressure to the power of 1.5. Furthermore, analysis of the fast case (section 5.5)

indicates that for the purposes of computing the mass flow, only changes over the interactive time scale,

L/Uooe, need be considered. The analysis of the interactive case indicates that changes far downstream

may only occur on the quasi-steady time scale, L/U^e2, and gives the asymptotic expression for the

changes at infinity. The stability analysis of section 5.7 indicates that the shear layer separating the

injected region from the free stream is unstable, which has led to problems in the numerical analysis

of the interactive equations.

For the suction problem, the mass transfer and the height of the shear layer were solved analytically

in chapter 6. The solution for a slot pressure function H(t) in section 6.4.4 indicates that over a short

period of time the mass transfer for a given slot pressure may be higher if the slot pressure has

been increased from a lower value than for the steady state, as the mass transfer does not depend

monotonically on the slot pressure function. The results for a sinusoidal slot pressure function in

section 6.4.2 also indicate that the mass transfer will never be in phase with the slot pressure function,

with the phase lag given by equations 6.25 and 6.26. Furthermore the fact that the equations may

be solved analytically for any slot pressure which is a linear combination of polynomial, exponential

or sinusoidal or other Laplace transformable or Fourier transformable functions indicates that an

expression may be obtained for the length of time for which the slot pressure will need to exceed zero

for the system to change from suction to injection.

The discussion of the transition between injection and suction of chapter 7 indicates how research

into this problem could proceed, with the behaviour of the system being described by the unified

equations 7.4 and 7.5. However to solve this equation numerically it is necessary to solve the interactive

slot injection equations, which will prove difficult because of their inherent instability. Nevertheless

the slot suction equations are sufficient for it to be possible to analytically compute the length of time

for a suction slot to become an injection slot, for a given slot pressure profile. The order of magnitude

of this time will be L/C/QO, as this is the time scale of changes to slot suction. However, the changes

will only be noticeable at an order L distance downstream of the slot after a time of order L/UooC,

and far downstream of the slot after a time of order L/UooC2. The conclusion of section 7.4, show

how closed form expressions may be found for the mass transfer and height of the shear layer when

the transition is over the fast time scale, L/Uoo. This is a particularly useful result for problems such

as the rim seal problem, where slot injection is desired, but suction may occur over small time scales

as a result of external pressure variations.
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10.2 Avenues for Future Research

From the results presented for the sail equation, it is clear that a more thorough stability analysis

is required to determine the stability of the sail. Accuracy of the numerical solutions found may

also be improved, possibly by use of a Galerkin method. Galerkin methods, in particular by using

some useful well-known properties of Chebychev polynomials, are frequently used in the context of

integro-differential equations over a finite range, for example by Frankel (1995) [39]. Future work

might examine the stability of such methods, as well as how they might be used to improve accuracy.

A stability analysis may also be performed for the flag equation. This will be a slightly simpler

problem, as there is no length condition as there was for the sail. For the interactive slot injection

equations, examination of the instabilities found for the shear layer in the injected region would also

be of interest, particularly as the mixing of the free-stream is particularly relevant to the film cooling

problem. It seems likely that instabilities will be similar to those found for high-Reynolds-number

flow over a separated recirculating eddy by Brown et al (1988) [10].

Other possible extensions to the theory applied here include extending the study to three dimensions.

For the slot injection and suction problems there is the axisymmetric rim seal problem, and the

problems of suction into and injection from a cylindrical slot. These have been studied for steady

flow (by Chew et al (1994) [18], Dewynne et al (1990) [23] and Fitt (1983) [30], respectively), but the

unsteady case has not yet been considered.

In order to find a numerical solution to the interactive slot injection equations, it would be useful

to find a solution to the linearised equation, equation 9.36, i.e.

Although there are severe difficulties in finding stable numerical schemes for such an equation, one

possible method would be to add a term of the form Sxaxxxx. In the limit as 5x tends to zero,

the equation would still be the same, but the fourth order derivative may have a stabilising effect.

Although such a scheme may not necessarily be stable when applied to the full non-linear equation

with the Hilbert transform, it seems likely that it would help such a scheme to be found.
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Appendix A

Useful Results Regarding Singular
Integrals

All of the results in this appendix may be found in Muskhelishvili (1953) [61] and Gakhov (1965)

[41], (henceforth referred to as 'Muskhelishvili' and 'Gakhov') to which the reader is referred for a

comprehensive analysis on one-dimensional singular integrals. For a discussion of the properties of

multidimensional singular integrals the reader is referred to Mikhlin (1965) [58]. A comprehensive

survey on the infinite range Hilbert transformation was completed by Titchmarsh (1948) [93], and

Pipkin (1991) [69], completed a less comprehensive, but still valuable, study of Cauchy principal value

integrals. Note that here the term Hilbert transform will be used for any integral transform with a

Cauchy kernel (£ — a;)"1, although in some parts of the literature the term is restricted to the case

where the domain of integration is the entire real axis. Under this definition it is necessary to classify

Hilbert transforms over real domains into three types, according to whether the domain of integration

is infinite at both ends, infinite at one end, or finite. Thus a real function f(x), assuming it satisfies

the appropriate integrability conditions will have a finite Hilbert transform, a semi-infinite Hilbert

transform and an infinite Hilbert transform, given respectively by

ff
Jo £ - x n Jo € ~ x

Note that the multiplication of the reciprocal of TT is usually, but not always, given as part of the

definition of the Hilbert transform. Sometimes the re is replaced by JTT, which, in the case of the

infinite transform makes it self-inverting for some classes of function. Clearly for a semi-infinite region

other than (0, oo) or a finite region other than (0,1) the results described below will still apply, subject

to some trivial modifications.
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A.I Properties of Semi-Infinite Hilbert Transforms

A.I.I Non-Uniqueness of Inverse

Since over any interval the Hilbert transform is a linear operator the question of non-uniqueness of

the inverse of a function (assuming that the inverse exists) will be related to the number of functions

whose Hilbert transform is zero. It may easily be shown that

and it is shown in Muskhelishvili that constant multiples of x~ 2 are the only functions whose Hilbert

transform is zero. Hence all inverses will be unique only to within addition of a one parameter family

of solutions.

A. 1.2 Inversion Formulae

Inversion of a Hilbert transform is equivalent to solution of the equation

°°

which has a solution given by the explicit formula

Hf^^+cx~" (A-2)

where C is an arbitrary constant. Either of the above expressions may be used, since they are both

equivalent, provided g(x) tends to zero sufficiently quickly for the integral in the first expression to

exist. To see that this is so, observe that the difference between the two expressions is given by

-f
* Jowhich is a constant multiple of £ 2 provided the integral exists. The inversion formula may be verified

by use of the Bertrand-Poincare formula, and is valid for Holder continuous functions, g, i.e. functions

for which there exist A and /z such that

- g{x2)\ <A\xi - z 2

for all x\ and x2 within the domain of integration.

A.2 Properties of Finite Hilbert Transforms

A.2.1 Non-Uniqueness of Inverse

As with the semi-infinite Hilbert transform, there is only one linearly independent function with

Hilbert transform equal to zero, given by x~? (1 — x)~?. As before it is fairly easy to show that

If
7T Jo

(A.4)
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by use of the substitution t2 =

A.2.2 Inversion Formulae

As with the semi-infinite Hilbert transform, the solution to the equation

may be written in more than one way, any of which are equivalent, and all of which contain an arbitrary

constant, C. The explicit formula for the inversion, again valid for Holder continuous functions, then

becomes

l / 1 ^ U % (A.5)

( A J )

A.2.3 Inverse of 1

It may easily be found that

( A .8 )

and so the inverse of 1 is given by ± (xr^J P m s a n arbitrary multiple of £"~2(1 — x)~5.

A.3 A Property of All Hilbert Transforms

Another result which is useful for a variety of reasons, particularly for giving an independent numerical

check, is valid for all Hilbert transforms of a function which is square integrable over the domain of

integration. In Fitt (1986) [31] this property is attributed to a suggestion by P. Wilmott, although in

fact it is a simple, but important, consequence of Parseval's theorem as given by Tricomi (1951) [94],

/
JL

(A.9)

(where (f)1 represents the Hilbert transform of <f)\ over the range L) in the particular case where

(fi± = (f)2. This theorem relies on the fact that the above integral is

JL JL
d£dx,

which is antisymmetric in £ and x and so must be zero assuming the order of integration may be

reversed. Hence <f>i4>2 must be L1, i.e. its modulus must be Lebesgue integrable, in order that Fubini's

theorem may apply, and so the order of integration may be reversed. Note that if <j)\ = fa the criterion
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for the theorem to apply is that <\>\ must be square integrable, see for example, Tricomi (1951) [95].

In this case the more specific rule

„ ~ x

applies.

A.4 Asymptotic Behaviour of Hilbert Transforms

A.4.1 Asymptotic Behaviour at a Boundary

Consider the behaviour of the finite or semi-infinite transform of a function f{x) near x = 0. A

constant L will be defined as the upper limit of the domain of integration, so that L = 1 corresponds

to a finite Hilbert transform and a semi-infinite transform corresponds to L tending to infinity. With

this notation, in the case where L is finite, the Hilbert transform may be written

If / is differentiable at x — 0, therefore, there will be a logarithmic singularity at x = 0 of strength

TT-lf{X)\0gL.

If / is not differentiable at x = 0 then it is convenient to define a variable y such that

With this notation the Hilbert transform of f(x) will be

/o s ~ •*- " Jy

This confirms the previous result, that there will be a logarithmic singularity if / is differentiable, since

the singular integral from 0 to y will just be /(0) log ̂ , to lowest order, and as a choice of y as a power

of x, e.g. 12, is consistent with the definition of y, this term is just proportional to log x. The second

term will also exhibit a dependence on logy, and thus logo;. Note that in the case /(0) = 0, both

terms will be zero and so there is no singularity, with the Hilbert transform approaching a constant

as x tends to zero. This constant will be given by

. . . <-L

— hm

If / has a power-law singularity, f(x) ~ x p, then the second term in equation A.11 for the Hilbert

transform will be of order y~p, which by a suitable choice of y may be defined to be smaller than any

negative power of z, and so may be ignored. The first term will be the singular integral from 0 to y,
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and thus will only depend on the behaviour of f(x) near x = 0. Using the result, from Pipkin (1991)

[69], that for p between 0 and 1, and x between 0 and 1

dt cot pirif
* Jo,0

it follows that the asymptotic behaviour of the transform of any function with a power-law singularity

will be a power-law singularity of the same index, with the exception of the case where f(x) ~ x~^,

in which case the singularity will be zero and so the transform will tend towards a constant.

To summarise, therefore, as x —> 0,

{ const. if f(x) ->• 0,

const. if f(x) - kx~% ->• 0 for some k, (X T>\
kf(0)logx i f [ A Z)

i£f(x)~x-*,0<p<l.

Clearly the same results will be obtained near x = 1 for the finite integral.

A.4.2 Asymptotic Behaviour at Infinity

For the behaviour as x tends to infinity, (this applies to semi-infinite and infinite transforms only) it

is useful to define y slightly differently, by

although again, y may be chosen to be a power of x. The singular integral for large x, is now given by

TV JO S ~~ X £" JO S \ X J n Jy S X

This shows that the asymptotic behaviour of the transform for large x will depend entirely on the

behaviour of the function / for large x, save for a contribution of order at most a;"1. Since from

Pipkin (1991) [69] it is known that for x and p both between 0 and 1,

d£ cot pn

it follows that a function which asymptotically behaves as a power law will have a transform with the

same behaviour (with the exception, as before, of x~ *, which will give zero contribution). Furthermore

the result that
dt log xf

Jo

Jo (l + t)(t-x) x + 1

shows that for any function for which f(x) ~ x~l as x —> oo, the transform will behave as - 2 ^ , and

the result that
£°° dt 1 _ _ log a:

70 (l+t)2(t-x) ~'x~Tl~ (a;+1)2

shows that for any function for which f(x) ~ x~2, the transform will behave as a;"1.
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These results may be summarised as before to give, for x —> oo,

/(£) if /(a;) - kx 2 ~ a; 2 for some A;,
1°£^ if f(x) ^ 3.-1
1 ii j{X) ~ x •-, u < p <. i.

The asymptotic behaviour of transforms of functions with logarithmic or power-logarithmic asymp-

totic behaviour is discussed by Gakhov (1965) [41].

A.4.3 Effect of Jump Discontinuities

If f(x) has a jump discontinuity at a point x = a, say, then its Hilbert transform will not exist at that

point. However, provided the discontinuities are integrable and occur at only discrete values of x, the

transform will exist at other values of x. Since the transform is linear, and any jump discontinuity

may be cancelled out by subtraction of a Heaviside step function, it is only necessary to examine the

transform of a step function, H(x). Since, for example,

f°° #(£-1) -H(£-2)
f 1 d£ = log
Jo s ~ x

2-x

l - x '

it follows that a jump discontinuity will always result in a logarithmic singularity in the Hilbert

transform at the same point, although not necessarily of the same strength. From the inversion

formulae it also follows that a logarithmic singularity will result in a jump discontinuity.

A.5 The Derivative of a Hilbert Transform

The effect of differentiating a Hilbert transform is essentially the same for finite, semi-infinite and in-

finite range transforms. The expression for the derivative, assuming the function / , to be transformed,

is differentiable, and that / ' is integrable, is given by, from the definition of a Cauchy principal value,

Ar / P-T \ f - T T - b ( l - T V — " /

In order to prove this, it is necessary to consider Hi(x + h) — Hi(x), where Hi(x) is the value of the

transform evaluated at x. This difference is given by

( f(£) \ I rx~e rb \ f f(£\ \
{ - r ^ r r h ) - / d W ^ ) \ t i ) '
VC x " / \Ja Jx+t J \ ? ~ x J

in the limit as e tends to zero. Consider the region (x — e, x + e) in the first integral. In this region the

integrand will be O(h~l), so the integral over this region will be at most O(eh~1). In the limit as e

tends to zero therefore, this term will be zero. Similarly the region (x + h — e, x + h + e) in the second

term will be zero in the limit. Hence both integrals are over the same region, giving the expression

f A (
x+z Jx+h+e J \Z-X-h
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This may be integrated by parts to give

(•x+h—t( rx

/

Jo

-/(a;

x+h+e

Z,-x-h b — x — h
b — x

e) log
h + e

+ /(a; + h - e) log -^— - f(x + e) log
h-e

h+e a-x-h
+f{x - e) log f(a) log .

In the limit as e —> 0, the second and third non-integral terms will cancel, as will the fourth and fifth.

The integral term will contain only a logarithmic singularity, so addition of the region (x+h—e,x+h+e

to the domain of integration will not affect the value of the integral. Hence the above expression is

given by

Z-x-h , . , . , b — x — h ., . , a — x — h
f(b)log— /(a) log-

b — x a — x

The integral in the above expression clearly exists. Expanding the whole of the above expression in

powers of h gives

yja £-x x-b a-xj

This gives the required result.

Note that the requirement that / ' is integrable is an important one and does not immediately

follow from the fact that / is differentiable, as there are functions such as x~* which have a Hilbert

transform (when integrated from 0 to 1), but whose derivatives do not, as they are not integrable.
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Appendix B

The Derivation of b(x

The function b(x), discussed in sections 5.5, 6.2 and 7.4, is defined by

Inverting this integral by the methods detailed in section A. 1.2 gives
rl / l - £ l o g ( l - 0

d£,

(B.I)

(B.2)

where the inversion was taken so as to ensure that 6(0) = 0. The above integral may be calculated by

use of the substitution z2 = j-^? to give the expression

2 r iog(i + z2

b{x) =
I-OO

-dz.
TT{i.—X)J0 [Z + i){Z —

Since the integrand in the above equation is even, the above integral may be expressed as an integral

over the whole real axis. By taking branch cuts from i to infinity and —i to infinity along the imaginary

axis the above integral may be found by contour integration by using a key-hole contour around the

part of the branch cut in the upper half plane.

A less time consuming method to solve for the function b(x) is to differentiate equation B.I to find

an expression for the Hilbert transform of b'(x). Unfortunately care must be taken with this since

b(x) has a square root singularity at x = 1. Thus it will be necessary to subtract off the singularity

at this point. In order to do this it is necessary to examine the behaviour of b(x) as x —> 1. It may be

shown from equation B.2 that as x —> 1

b(x) = 1./IH-/1 l°z\ltdZ + O(VT^)
7T V 1 - X Jo V 4 A / 1 - £

= -(l-x)-i ^- f (l-ZY^C^dZ +O(VT^x)

d
dp 2 + O(VY^x)

*

= -21og2(l-x)~=
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where (3 represents the Beta function and $ represents the digamma function. Similarly it may be

shown that near x = 0

b(x) = (2 — 21og2)a;5 + O(x^).

Hence it may be deduced that the function c{x) given by

I x
y 1 — x

will be continuous and finite at both x = 0 and x = 1. It may then be easily shown from equation B.I,

using equation A.8, that

Differentiation of the above equation and integration by parts, which is now permissible since c'{x)

will have only a square root singularity at each end of the integral, and c{x) is well behaved, (see

section A.5) gives

Jo £ ~~ x 7T1 — x 1 — a;'

recalling that 6(0) = 0, so c(0) must equal zero. By applying the inversion formula for finite range

Hilbert transforms (see section A.2.2) it may be seen that

yfxyjl — x

In order to satisfy the asymptotic expressions for c(x) which follow from those derived for b(x) it

follows that K = 1 and c(l) = TT. Hence

c(x) = 2 arcsin \fx

and so b is given as being
/ or

b{x) =2 arcsin y/x - 2 log 2 . / - (B.3)
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