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A compositional time series is defined as a multiple time series in which each of the
series has values bounded between zero and one and, moreover, the sum of the series equals
one at each time point. Data with such characteristics are observed in repeated surveys when
a survey variable has a multinomial response and the interest lies on the proportion of units
classified in each of its categories. In this case the survey estimates are proportions of a
whole subject to a unity-sum constraint.

This thesis proposes state-space models for improving estimation of compositional
data from repeated surveys taking into account the sampling errors. The proposed modelling
procedure provides bounded predictions and signal estimates for the compositions, satisfying
the unity-sum constraint, while taking into account the sampling errors. This is accomplished
by mapping the compositions from the Simplex onto the Real space using the additive
logratio transformation, then modelling the transformed data via multivariate state-space
models, and finally applying the additive logistic transformation to obtain estimates in the
original scale. In addition it is shown that the modelling procedure is permutation invariant.

The method is applied to compositional data from the Brazilian Labour Force Survey.
The model for the survey estimates is a combination of the multivariate models specified for
the signal and noise processes. Estimates for the vector of proportions of labour market status
and the unemployment rate are obtained. Estimates of seasonally adjusted series are also
produced. The results of the empirical work lead to the conclusion that smoother trends are
obtained with a model which explicitly accounts for the sampling errors, when compared
with the results from other standard procedures for seasonal adjustment.
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1 Introduction

1.1 Motivation

This thesis focuses on the estimation and analysis of repeated surveys. More
precisely, it deals with the use of the state-space approach for modelling compositional time
series from repeated surveys, while taking into account the sampling errors.

The term composition is used here to indicaté a vector of non-negative elements
representing proportions of a whole, subject to a unity-sum constraint (Aitchison,1986). A
compositional time series is a multivariate time series comprising observations of
compositions at each time point (Brunsdon, 1987).

There are two main approaches for estimation incorporating the past information
available in repeated surveys. One is the classical sampling approach in which the
parameters of interest are considered as fixed but unknown quantities. The other is the time
series approach in which the targets for inference are regarded as random quantities which
can be modelled by a time series process. Regarding the latter, there are two alternative ways
of fitting time series models to repeated survey data. One applies Box & Jenkins(1970) type
procedures for fitting ARIMA models and uses signal extraction theory (Whittle, 1983) to
estimate the unknown population quantities. The other, very much in use nowadays, employs
the state-space approach (Harvey, 1989) which can be used to fit both ARIMA and structural
time series models.

Most of the work available in this area concentrates on modelling univariate series of
survey data. The exceptions are mostly concerned with small area estimation, in which the
same target variable is considered across different (small) domains. Although much has
already been done regarding modelling univariate series of survey estimates, models for

multivariate survey data are not readily available in the literature.
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Therefore, a key feature of this thesis is the use of vector ARMA and multivariate
structural models to improve estimation and analysis in repeated surveys, by allowing two
or more survey variables to be modelled simultaneously, while taking the sampling errors
into account.

The motivation for this work originated from the fact that statistical agencies around
the world often investigate many variables in each of their surveys. In addition, some of
these variables have multinomial response, and for these variables the interest lies on the
estimation of the proportion of units classified in each of their categories. When is this case,
the survey estimates are proportions of a whole subject to a unity-sum constraint
(compositions).

Hence there is a need for a modelling procedure which, while taking into account the
sampling errors, allows different survey variables to be modelled concurrently satisfying,
when required, a unity-sum constraint.

Another topic of current interest which is addressed in the thesis regards the seasonal
adjustment of vector time series of survey data. When two or more series subjected to a sum
constraint need to be seasonally adjusted the analyst always faces the dual choice of either
adjusting each of the series individually and then producing the seasonally adjusted aggregate
series from the individually adjusted ones or to directly adjust the aggregate series depending
on the prime objective of the analysis.

However, modelling the series simultaneously via multivariate structural models yields
seasonally adjusted series which satisfy the underlying sum constraint. Moreover, because
the time series models proposed in this thesis explicitly account for sampling errors (the noise
process), the resulting seasonally adjusted figures and trend estimates are related to the
underlying signal which represents the unobservable population quantities.

This thesis presents a framework to model multivariate data from repeated surveys,

taking into account the sampling errors, with special emphasis on the compositional case.
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1.2 Outline

Chapter 2 describes some basic ideas and concepts used in the repeated survey
context. First, the key objectives of analysis and basic types of repeated surveys are
examined. Then the classical sampling and the traditional time series approaches for
estimation and analysis of repeated surveys are briefly reviewed. Chapter 3 defines state-
space models and discusses the representation of ARMA and structural time series models
in the state-space framework.

Chapter 4 reviews the use of state-space models for improving estimation in repeated
surveys, including some references to the case in which the target quantities are proportions.
The solutions available for this case consist in modelling the original series of estimated
proportions using, the state-space approach, without applying any transformation. This
approach is examined in detail in Chapter 5.

For simplicity, all the analysis carried out in Chapter 5 refers to the case of univariate
time series. Despite this, the overall idea about the problem to be tackled here is developed
in this chapter, which also provides evidence that the current state-space approach for
modelling proportions does not guarantee that the predictions and signal estimates are
bounded between zero and one.

A new approach for modelling compositional data from overlapping surveys is
proposed in Chapter 6. It proposes a class of multivariate state-space models for series of
compositional data which take into account the sampling errors and, which simultaneously
attempt to guarantee predictions and signal estimates satisfying the underlying constraints
imposed by compositions.

The complete specification of a time series model for survey data embraces the
identification of a suitable model to represent the sampling error process. Chapter 7 addresses

this issue, developing procedures for dealing with the multivariate and compositional case.
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Finally, in Chapter 8, the methods are applied to compositional data from the
Brazilian Labour Force Survey which comprises estimates of the vector of proportions of
labour market status. The model for the survey estimates is a combination of the multivariate
models specified for the signal and noise processes. Estimates of seasonally adjusted
compositions and unemployment rate series are also produced. The results appear to show
that the underlying structure obtained from this approach is simpler than that obtained using
standard methods for seasonal adjustment such as the X-11 programme. Chapter 9 reviews

the key conclusions of the thesis and presents some ideas for future work.



2 Analysis of Repeated Surveys

2.1 Introduction

Repeated surveys (also known as longitudinal surveys, surveys across time or surveys
in successive occasions) are employed by many organizations, such as national statistical
agencies, to provide information enabling a study of the evolution of the population in time.

Denote by ¢ a population quantity of inferest at time ; and assume that
observations are made at equally spaced time intervals ;=12 .. T . Let y, represent a
survey-based estimate of ¢ . A repeated survey produce a time series {y } comprising
estimates of the unknown target series {§} . Examples of possible target quantities 9,
are the monthly proportion of unemployed people in a country or the quarterly total of
industrial production. However, the target parameters may not be just simple means or totals.

Before proceeding further, some notation and terminology need to be specified.
Adopting the usual convention, a statistic (a random variable) that can be used to estimate
(or predict) some unknown quantity is called an estimartor. The value associated with a
particular realization of that statistic is called an estimate. The same notation will be used
here to represent both an estimator and its realization, the estimate. That is, the same
notation is used to denote an unknown but observable quantity and its observed value. The
precise meaning will be made clear according to the context in which it is used. For
example, ¥, above represents an estimator for 9, which becomes an estimate when the
survey is effectively carried out.

Duncan & Kalton(1987) and Kalton & Citro(1993) identified several possible
objectives for repeated surveys, including:

(i) the estimation of population parameters at distinct time points - {6,,1=1,2,..} ;
(ii) the estimation of population parameters averaged across

_ T
time - ()T=%E 0, , T=1,2,..;
t=1
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(iii) the estimation of change - A, =6, - 0

-1
(iv) the cumulation of samples over time.

At this point, it is important to specify that this research is concerned with the first
objective listed above. That is, the centre of interest throughout this thesis will be the
estimation of population parameters such as means, totals or ratio means at each survey
round. A variety of survey designs can be used to meet objectives (i) to (iv), by collecting
data at several points in time. The differences between these designs come mostly from the
strategies for inclusion/exclusion of units in the sample on distinct survey rounds. One way
to characterize these survey designs is by the level of sample overlap between occasions,
based on which Duncan & Kalton(1987) distinguished four different types of element survey
designs:

(a) series of cross-sectional surveys (non-overlapping surveys) -on each occasion a sample
of the existing population is selected and no attempt is made to ensure that any unit is
included on more than one occasion; instead it may be specified that units cannot be included
in more than one survey round;

(b) repeated panel surveys (complete overlapping surveys) - on each occasion similar
measurements are made on the same fixed sample, and usually the sampling units are kept
in the panel during the whole course of the survey;

(c) rotating panel surveys or rotating sampling (partially overlapping surveys) - some units
are retained on the sample from one occasion to the next, and some are replaced by newly
selected ones; the set of sampling units that join and leave the survey at the same time is
usually called a panel or a rotation group;

(d) split-panel surveys (partially overlapping surveys) - this design is a combination of a
panel with a cross-sectional or rotating panel survey; in this case, one portion of the initially
selected sample is maintained fixed for all occasions, and the other portion is partly (rotation)

or wholly (cross-sectional) substituted at each survey round.
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The choice of the survey design and the overlapping pattern depends on the survey’s
overall aims as well as on operational constraints (for a detailed discussion see Duncan &
Kalton, 1987, Cochran,1977, pp.344-345 or Kish, 1987, Chapter 6). Although defined for
element survey designs, the above categories also apply for multi-stage surveys. In the case
of master samples, for example, the primary sampling units are maintained fixed for several

occasions whereas other stage units can follow some rotation pattern.
2.2 Classical Sampling Approach

In the classical sampling approach, the sequence of population parameters {6,} is
considered as a set of fixed yet unknown quantities. Early results about estimation of
population parameters in time from repeated surveys, using the classical sampling approach,
were reported by Jessen(1942), Yates(1949) and Patterson(1950). These papers provided a
general theory for designing samples and estimating means, totals and change with partial
replacement of the sampling units. It is interesting to note that both Yates(1949) and
Patterson(1950) based their work on the assumption that the observations y, of the survey
variable y for unit i at time ¢ were random quantities, related to previous
observations for the same unit y, , , for h=1,2,..,7-1 , with some correlation structure,
whereas the population parameters 6, were treated as fixed and unknown quantities.
Extensions of this early work were provided by Eckler(1955), Woodruff(1963), Rao &
Graham(1964), Gurney & Daly(1965), Singh(1968), Wolter(1979) and Tikkiwal(1979).

A common feature of all the papers adopting the classical sampling approach for
repeated surveys was the use of composite estimators. Gurney & Daly(1965) defined a
composite estimator as a "weighted average of two or more linear unbiased estimators of a
specific characteristic for a given time period, where the weights are selected in order to
reduce the variance when compared with the variances of the original estimators”. Generally,

the linear unbiased estimators considered were based on the matched and unmatched sample
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portions from different survey rounds. The composite estimators were defined recursively
and used a limited number of linear unbiased estimators combined with past composite
estimators.

The papers listed above examined the formulation of composite estimators and the
determination of the optimal proportion of sampling units to retain in the sample from one
occasion to next, in order to minimize the variance of the composite estimator.

Gurney & Daly(1965) introduced the concept of an elementary estimate. An
elementary estimate is based on data from a single time period and only includes values from
a set of units that join and leave the survey at the same time. Therefore an elementary
estimate only uses data from a single rotation group in a single survey round.

Let y® bethe k* elementary estimate at time t for the population parameter

6, and let

¥ =0 +eP 2.1

where e® is the sampling error. Under the assumptions that 6, is a fixed yet unknown

®

quantity and that y,” 1is design unbiased for @ vV k=1,..,K , it follows that

¢
Ep(e,(k)) =0 , Vk=1,.,K . Here E, denotes the expectation operator with respect
to the randomization distribution and the index k=1,2,..,K does not refer to an individual
sampling unit, but to a rotation group (or panel). It is usually assumed that {e®} hasa
known correlation structure over time. The specification of the elementary estimates as well
as their correlation structure over time depends on the survey’s pattern of overlap.
Consider a rotating panel survey, such as the U.S. Current Population Survey, which
has a 4-8-4 rotating system (Bureau of the Census, 1978). In this case, eight elementary
estimates are available every month, because each of the eight rotation groups surveyed each
month provides an (unbiased) estimate for the target population quantity.
Gurney & Daly(1965) obtained the minimum variance linear unbiased estimator

(MVLUE) for 6, within the class of estimators that are linear combinations of elementary

estimators. They used multivariate analysis techniques in order to obtain the coefficients of
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the desired MVLUE. Later Smith(1978), Wolter(1979) and Jones(1980) provided simpler
developments of their result, as follows.

Assume that K rotation groups were investigated at each survey round in a survey
which has been carried out for T occasions. Hence KT elementary estimates would be
available for the analyst after survey round 7 . In this case a generalization of equation

(2.1) can be written in a matrix form as

y=X40 +e 2.2)

b

where y isa (KT X 1) vector of elementary estimates for all occasionsuptotime 7 , X
isa (KTXT) "design" matrix of 0’s and 1’s indicating which element of y is associated

with each element of 6 , a (TX1) vector with components 6 , and e 1is a

:
(KTx1) vector with E(e) =0 and Ep(ee’) =X , where X is the variance-
covariance matrix of the elementary estimates assumed known. Note that e represents the
vector of survey sampling errors regarding the elementary estimates.
Applying generalized least squares (Rao, 1973, p. 230), the MVLUE for 6 is

obtained as

9 = (X/E—l X)-l X' ¢! y 2.3)

b

with V(@) = (X’ £1X)"' . Furthermore, the MVLUE for any linear combination L’
is L' , with variance L' (X’Z'X)!' L .

If the survey has no overlap, L becomes diagonal and each 6, is estimated
independently of 6,_, h = 1,2,.,t-1 , that is, using only the information provided by

y&  k=1,..,K .

Note that (2.3) makes use of all data available up to time 7 . Hence the coefficients
used in the MVLUE would change on every occasion after collecting additional
observations,which would imply the need to update all previous estimates. This is not a

desirable property.
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Woiter(1979) argued that it would be very simple to construct a MVLUE for any
rotating scheme by setting up the appropriate vector y of elementary estimates and
specifying the covariance matrix X and the design matrix X . However, he and other
authors (Binder & Hidiroglou, 1988 , Binder & Dick, 1989) pointed out that some difficulties
appear when computing MVLU estimates in practice. One of them is the inversion of the
covariance matrix X , which can become large if many historical elementary estimates are
considered. In fact, the order of (X’ X'X) increases as 7 increases.

In addition, as pointed out by Smith(1978), to employ an estimator ? asin (2.3)
the analyst must be able to obtain individual observations on each occasion and also to trace
the same unit for all repetitions of the survey in order to evaluate the correlations between
units at different times and to correctly form the rotation groups for computing the
elementary estimates. Smith(1978) classified this procedure as primary analysis, and used the
term secondary analysis to describe those other procedures based solely on the aggregate

estimates from each survey round (such as y, ).
2.3 Traditional Time Series Approach

Focusing now on the unknown population quantity 6, , it is quite natural to imagine
that the knowledge of 6, ,..,0,, conveys useful information about 6, . However this
assumption does not imply that 6, is perfectly predictable from 6, ,..,0,_; . One way of
representing this situation is by considering 6§, to be a random variable which evolves
stochastically in time following a certain time series model. Such a framework, first proposed
by Blight & Scott(1973), Scott & Smith(1974) and Scott, Smith & Jones(1977) is considered
in the this section.

Blight & Scott(1973) introduced an estimation procedure for partially overlapping
repeated surveys in which the population mean was assumed to vary over time. They allowed

the population means on different occasions to be correlated by assuming a first-order
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autoregressive model for {6} (Box & Jenkins, 1970, p.56), denoted hereafter AR(1). An
AR(1) model was also adopted for the individual population values {y,} .

A recursive relationship for the estimation of 6, and for its estimator’s variance was
derived using the conditional probability distribution of 6, given all the elementary
estimates up to time ¢ . Using Bayes’ theorem, this probability function was factorized
according to the information specified by the time series models for {6,} and {y,} .
However, because the recursive formulae depended on the elementary estimates and on the
correlation between individual values, this estimator required a form of primary analysis, as
in the classical sampling approach.The problem is that the individual sample observations

y; are not always available to the analyst.

Hence, Scott & Smith(1974) and later Scott, Smith & Jones(1977) proposed a time
series approach based on secondary analysis. Using signal extraction results (see e.g. Whittle,
1983, pp.46-47 or Reinsel, 1993, pp. 218-220), estimators were provided for the population
mean for both overlapping and non-overlapping surveys, considering the following

decomposition:

Y, =0, +e 2.4

t

where {0,} , {y,} and {e,} arerandom processes with y, being a design-unbiased
estimate of the unknown population quantity 6, based only on data from time t, and e,
denoting the sampling error such that E(e,|0) =0 and V(e |6,) = S .

By analogy with the signal extraction approach, 6, is the signal and e, is the
noise. In this context, one is interested in estimating the unobservable signal, 6, , based on
the past and current observations, y,,..,y, , in the presence of noise. In order to employ
the signal extraction results to estimate 6, , it is necessary to add the following assumptions
to the model (2.4):

(i) {6,} , or a suitable difference of it, is stationary;

(i) {e} Iis stationary;

(iii) {6,} and {e,} are uncorrelated time series.
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Under this model, the classical signal extraction approach for the estimation of 6,

is to determine a linear filter:

[+ ]
0, = E 4Gy
j=0

such that ?)t is close to 6, in the sense that the mean squared estimation error (MSE)

E®,-8) =E®, - Y ay) ,
j=0

is a minimum among all possible linear filters.
In order to illustrate the use of the signal extraction procedure to estimate the current
value of the population parameter consider the case of a non-overlapping repeated survey.

Following Scott & Smith(1974), {6,} isassumed to follow an AR(1) process of the form:
01 = ¢01-1 + nl 4 (2'5)

where 7, are white noise disturbances with mean zero and variance o) , denoted
hereafter by %, ~ WN(O, ori) ,and |¢| < 1 . For non-overlapping surveys with small
sampling fractions, e, and e_; are considered uncorrelated for j = 1,2,..,¢-1 , and
the structure of the noise process {e,} is completely specified by the sampling variance
of y, asan estimator of 8, , denoted here as o) . The observed series { y,} 1isthen
assumed to be the sum of two random processes, an AR(1) and a white noise process, where { 6,}

and {e} are uncorrelated time series. The main objective of the signal extraction

procedure is to estimate the signal given the observed series. In this case, the sample estimate

can be expressed as

y, =0, +e i +e 2.6)

with 5, ~ WN(0,0’) and e, ~ WN(0,d%) .
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From (2.6), it follows that
(1 - ¢B)y, = n, + (1 - 6B)e, . 2.7)
Therefore {y,} followsan ARMA(1,1) model which can be alternatively represented by

(1-¢B)y, = (1 - 5B)e, 2.8)

with g ~ WN(0,0?) having the same underlying autocovariance structure for {y,} as
2.7).

The model parameters o¢. and & in (2.8) are determined by equating the
covariances in (2.7) and (2.8). The signal estimator ?)t based on the classical signal
extraction approach is given by (for details see Scott, Smith & Jones, 1977 or Reinsel, 1993,
p.221):

b, - [1 - ﬁ] Y §y, - 2.9)
% | 4

This is exactly the estimator of 6, proposed by Scott & Smith(1974).

Scott, Smith & Jones(1977) extended the results in Scott & Smith(1974) for complex
survey designs. In addition to the non-overlapping case they examined single-stage and two-
stage overlapping surveys. Since the autocovariance structure of the sampling errors depends
on the pattern of overlap, the authors used different ARMA models for both {6} and

{e,} . They also provided an interesting discussion about which ARMA models would be
appropriate under different survey designs.

Regarding the sampling error process {e,} , for example, they suggested that for
completely overlapping surveys an AR(1) would be a reasonable model. For partially
overlapping surveys in which the units are rotated out of the sample after q occasions in the
survey (which implies that there are no common units in the samples of times ¢ and

t-j , for j > q , a moving-average process of order q (MA(q)) was recommended
because the autocorrelation function for such models is zero for lags greater than q. A

detailed discussion about modelling of the sampling error process is found in Chapter 7.
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Jones(1980) derived a minimum mean squared linear estimator (MMSLE) for
0 = (6,,0,,..,0,) which encompasses all the previous results. Using the vector of

unbiased estimates y = (y,,..,y;) such that

=0 +e 2.10)

2

with E(e|6) =0 and E(ee’|6) = X ,where X isassumed known, and allowing 6
itself to be a random variable with mean p and variance-covariance matrix V , the best

linear estimator of @ given y is obtained as (see Rao, 1973, p.234):
D =p+CECt+VYIEly - p) . 2.11)

Notingthat (X! + V)™ = V - V(V + £)'V (seeresult 2.9 from Rao, 1973, p.33), 8

can be rewritten as:

b=+ VV IO - p) @.12)

’

with variance V - V(V + £)1V .

Observing that:

p=E®) =Ey) , V=COV0,y =COV(0,0+e) (2.13a)

i

V(y) = E[V(y|0)] + VIE(y|0)] = (£ + V) (2.13b)

’

it becomes clear that, when assuming normality of (#,y) , the estimator b given by
(2.11) or (2.12) corresponds to the conditional expectation of @ given y (see Rao, 1973,
p.522). Note that the derivation in (2.13) assumes # and e uncorrelated.

If a primary analysis was to be carried out, instead of a secondary analysis, the
vectors y and would have to include all the elementary estimates up to time 7 and the

model (2.10) would have to be modified by including a matrix X , asin (2.2). In this case,

b=p+ XX+ VY X2 - Xp) . (2.14)
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When p is completely unknown, Rao(1973, p.234) shows that (2.14) reduces to
the estimator in (2.3) obtained under the assumption that @ is fixed rather than random.

As already discussed for the classical sampling approach, to employ an estimator such
as (2.14) one needs to invert matrices with dimensionality equal to the number of elementary
estimates available up to time 7 . Moreover, (2.14) depends on the covariance structure
of the unobservable quantity # . Assuming # and e uncorrelated, V can be obtained
as W(y) - I which, in turn, can be estimated from the observed data. This constitutes an
additional and very practical reason for requiring stationarity of {e,} .

The autocovariance structure of {6,} can be obtained if one knows the
autocovariance generating function of {y} and {e} , since the sampling error and the
signal processes are assumed to be uncorrelated. Then estimates of the autocovariance
structure of the signal {6,} may be readily obtained if the sampling error autocovariances
can be estimated using design-based methods. Moreover, assuming {e,} to be stationary,
information about sampling covariances can be pooled over time to estimate COV(e,,e,_,) ,
which in this case depend only on the lag 4 . Observe that these covariances need to be
estimated from a single realization of the series.

One way of overcoming both problems (the estimation of the covariance matrix of

6 and the manipulation of large matrices) is by formulating the signal extraction problem
in terms of state-space models and the Kalman Filter (Anderson & Moore, 1980, Harrison
& Stevens, 1976 and Harvey,1989). Once a model has been expressed in a state-space form,
the Kalman Filter equations can be used to develop a recursive procedure for producing the
MMSLE (or MMSE) of the unobservable population quantity of interest. Moreover, by
expressing the model in state-space form, the likelihood function for y is directly obtained
from the specified model and can be maximized to estimate the unknown model parameters.

Binder & Hidiroglou(1988), Binder & Dick(1989), Tiller(1989), and Pferffermann,
Burck & Ben-Tuvia(1989) introduced the state-space models for estimation in repeated

surveys. Some other applications of state-space models for repeated surveys can be found in



Chapter 2 16

Binder & Dick(1990), Pfeffermann(1991), Tiller(1992), Pfeffermann & Bleuer(1993),
Binder, Bleuer & Dick(1993) and Pfeffermann, Bell & Signorelli(1996).

Before reviewing the role that state-space models can play in developing an approach
for improving estimation in repeated surveys, the next chapter introduces the state-space

formulation with the Kalman Filter equations for the analysis of the time series.
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3 State-Space Models
3.1 Introduction

The basic ideas of state-space models have their roots in control engineering and the
physical sciences, where a system is a mathematical model for a real world process that
accepts a number of inputs and gives rise to a number of outputs. One way of describing a
system is by using the State-Space representation. State-space models consist of two
equations. The first equation, the observation (or measurement) equation, represents the
relationship between the observations and the current state of the unobservable model
components. The second, the transition (or system) equation, describes how the unobservable
components evolve stochastically in time.

Let y,.,y, be a sequence of vectors of M-dimensional observations (or
measurements), namely Y, = Qs and let Oy Oy be a sequence of stochastic
state-vectors. In a state-space framework the relationship between ¥, and @, is described
by

the Observation Equation:
yt = Hzaz + 81 (3.18)

where ¥, is (Mx1) ,' H isa (Mxpn) matrix, o, isa (nx1) vector called
state-vector, and g, isa (Mx1) vector of serially uncorrelated normally distributed
disturbances with mean zero and covariance matrix U, -

In general, the elements of the state-vector are not observable. However, they are
assumed to be generated by a first order Markov process that can be described by

the System Equation:

«, = T, + G, (3.1b)

ot

where T, and G, are (nxn) and (nxg) matrices, respectively, and 7, is a

vector of serially uncorrelated normally distributed disturbances with mean zero and
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covariance matrix @, . T, is usually called transition or state matrix.
In general, the system matrices {H,, U, , T,, G,, @} may depend on sets of
unknown parameters, or hyperparameters, that must be estimated. If the system matrices do
not change over time the model is said to be time-invariant. Most of the models considered
throughout this thesis are of this type.
To complete the specification of the state-space system in (3.1) two additional
assumptions are needed:
(i) the initial state-vector «, is normally distributed with mean and covariance matrix given
by E(og) = b0 5 Wy = Py 5
(i) the disturbances &, and 7, are mutually uncorrelated over time and also uncorrelated

with the initial state vector, namely
COV(e,, 1) =0, COV(,, o) =0, COV(y, , ) =0 V1

These assumptions are needed for a simpler derivation of the Kalman Filter recursion
equations. However, the normality assumptions can be dropped and the transition and
measurement disturbances can be correlated, allowing more general results to be obtained.

The main feature of this approach is the ability of providing filtered estimates of the
unobservable state-vector and to predict future values of the observations. Anderson and
Moore(1979, sect.2.1) emphasize the differences between filtering, smoothing, and
prediction. For them, filtering means recovering at time ¢ information about some
unobservable quantity associated with a system using measurements or observations right up
totime ¢ (but notthose available after time ¢ ). Smoothing is concerned with recovering
information about unobservable system quantities using measurements obtained both before
and after time ¢ . Consequently, the recovery does not occur at time ¢ (but after that).

Finally, prediction forecasts the future system behaviour at time ¢’ > ¢ , given data up

to time ¢
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One quantity of particular interest in the system is the state-vector. It is set up in such
a way that it carries all the information about the system which is essential to determine its
future behaviour. The current state is defined by Wei(1993, p.384) as the minimum set of
information that, together with future inputs, is sufficient to describe the future system
behaviour. Therefore, the state-space representation of a system is also called the Markovian
representation, because given the present state, the future of a system is independent of its
past.

Once a model has been put in a state-space form, one can use the Kalman Filter to
establish a recursive procedure for making inference about the state-vector and the system
measurements. The recursive procedure is carried out in two stages, the first one prior to
observing y, , which produces the prediction equations. The second is carried out after
observing y, , which produces the updating equations. The procedure was originally
developed by R.E. Kalman(Kalman, 1960, Kalman & Bucy, 1961).

When using the Kalman Filter, an optimal estimator of the state-vector at time ¢
can be computed based on the information available at that time. Further, assuming the
disturbances and the initial state-vector to be normally distributed, the Kalman Filter provides

the minimum mean square estimator (MMSE) of «, , which is the conditional mean of

o
o, given y, , .., Yy, . When the normality assumptions are dropped, the Kalman Filter
gives the minimum mean square linear estimator (MMSLE), since it minimizes the mean
square error within the class of all linear estimators. In Section 3.3, the Kalman Filter
recursion equations are presented. Before that, however, Section 3.2 recalls some results
about estimation which are necessary for their derivation.
An important point to note is that a state-space representation of a linear system is not
unique. In fact, if one considers an arbitrary non-singular (nXn) matrix N then, from

equation (3.1b) a new state vector e« =N«  can be defined. Letting

T, =NT,N' , G/ =NG, , H = H N itfollows that
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Ne, = NT, N'Ne«_,+NG,y |,
y,=HN'Ne, +¢ ,
so that
a; =T, o + Gt‘ 7

y, = H o +¢

t 3

which, in turn, is an alternative and equivalent representation for (3.1). The features of
different state-space representations for a system are discussed in Harvey(1989, p.102) and
Reinsel(1993, pp.193-215). The choice of the representation can depend, for example, on the

objective of the analysis (see Section 3.5).

3.2 Estimation Criteria

As stated before, at any fixed time t, the filter aims to provide information about a

random variable e, given the (observed) values of another random variable, say

D, = »1,..,y.) where D, represent all the available information up to time T . The

natural way of doing this is via the conditional probability function of «, given D, . It

is well known that the best estimator of o, given D, is the mean of the conditional

H
distribution, that is E(a, | D) . Here best is used in the sense of minimizing the mean

square error.

Result 3.1 (see, e.g., Anderson & Moore, 1979, p.26)
Let o and D be two jointly distributed random vectors. The minimum mean
square estimator(MMSE) & of o intermsof D isgivenby & = E(a|D) .Then &

is uniquely specified as the conditional mean of e« given D .
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Another useful result regards the case in which « and D are jointly normally

distributed. It can be found, for example, in Rao(1973, p.522).

Result 3.2

Let o« and D be two jointly distributed normal vectors, with mean and

covariance matrix given by

m Y X

(44 o« o oo aD

E [ } = V[ ] - | : -2)
D m, D Yo, L

DD

Then «|D is normally distributed with

E@|D) =m_+X_ Ep, (D-m) |, (3.3a)

VD) =X _-L ,EmE, . (3.3b)

The next result gives the minimum mean square linear estimator of e« based on the

available information D .

Result 3.3 (Anderson & Moore,1979, sect. 5.2)

ILet o« and D be two jointly distributed random vectors with mean and
covariance as in (3.2). A linear estimator of « given D isoftheform &« = AD + b ,
where A is a fixed matrix and b is a fixed vector. The minimum mean square linear

estimator of « given D is the one for which A and & minimize
E{|lo - AD - b||?} = E{(x - AD - b) (o - AD - b)} . 3.4)

Then the minimum mean square linear estimator(MMSLE) corresponds to A = X _, oo
and b =m_- Am, , hence yielding the same estimator as in (3.3a), with covariance
error matrix as in (3.3b).The value of corresponding minimum mean square error(MSE) is

given by Trace(XL__ - EQDE’DIDEIQD) .
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Corollary 3.1

a) The MMSLE is unbiased, thatis, E(a - &) =0 .
b)If « and D are jointly normally distributed random vectors then the MMSLE is equal
to the MMSE ( E(a | D) ).

Using these results the Kalman Filter equations can be derived. Appendix A1l contains
the derivation of the Kalman Filter equations under the assumption that the disturbances and
the initial state-vector are normally distributed. When the normality assumptions are relaxed
the expressions of the estimators remain unchanged based on Result 3.3. However, in this

case, the filter provides the MMSLE of &, given D, , rather than the MMSE (see

:
Harvey, 1989, pp.110-111).

Returning to model (3.1), note that the conditional probability function

P(e,| y,,--,¥,.,) summarizes all the information that y,,..,y,, containabout e, . To

solve the prediction and filtering problems it is necessary first to compute the sequence

E, y, 5.,y for t=1,2,. .
Denote &, , = E(,| y,,.-,¥,,) = E(a,|D,,) , and by

Pt|t-1 = E {(at - &t|t—l)(at B &tlt-l)/ IDt-l} = V(atlDt—l) ’

the error covariance matrix associated with &, , . Similarly, the filtered estimate
E(a,|D,,y,) = E(a,| D,) is denoted by &,
P

tle -

i With associated error covariance matrix
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3.3 The Kalman Filter Equations
3.3.1 The Prediction Equations

Suppose that the current time is ¢-1 , so one has observed D,_; but does not

know any of the states e;,a,,..,,_, . Suppose, however, that &

a1 > the "best”

estimator of e,_, , is available to the analyst. At time 7-1 , the knowledge about e, _,
is expressed by its MMSE and the associated error covariance matrix Pz—1| .1 - Then,
t

before observing y, , an optimal estimator for «, is &t|t-1 . Therefore the prediction

equations for «, and the corresponding covariance matrix are (details in Appendix Al):
&t|t-1 = E(at |Dt—1) = Tt&t—llt—l ’

PIIt—l - V(atlDt_1) = T,P T,; + G,Q,Glt ; vie=1,,..,T.

7 -12-1

(3.5a)

To predict y, based on D, , the one step ahead forecast is given by (details also in

Appendix Al):

yAtlt—l = E(ytlD-l) = Ht&t|t-1 ’
Fy. = VO,|D.)

t|1-1

(3.5b)

"

HP, H,+U, Vt=1,.T.

7 tfe-1

3.3.2 The Updating Equations and the Steady-State

Just before observing y, , the inference about the state-vector e, relies on the
distribution P(a,|D,_,) . After observing y, the MMSE for «, given y, is
E(e,| D,) . This conditional distribution is directly obtained via the standard results for
the multivariate normal distribution (see Result 3.2) using P(e,,y,|D,,) . Then, the

updating equations (also in Appendix Al) are given by:
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&tlt = E(a, | Dt) = &t|t—1 + Pt|t 1H Flt l(y; - yt“-l) ’ (3.5(:)
Ptlt = V(atlDt) = Ptlt— P[I, lH Fl;- HlPt|t 1 V t=1,...,T.

The above equation for &,, provides the filtered estimate for o, as soon as the

observation y, becomes available to the analyst.

Equations (3.5a), (3.5b), (3.5¢) are the so-called Kalman Filter Equations. Putting

together (3.5a) and (3.5¢), P, is obtained as:
Pt+1|t = t+1( 1)z-1 Pt}t 1H Fll lHth|; 1)Tt+l +G 1+1 Q,+1 Gnl . (3‘6)
In addition, letting
P, H Fj, =K |, 3.7
it follows that
&t|t = at]tl + K(y, - yt|t-1) =Ky + - Kth)&qt—l 3.8)

Note that &, is a weighted average of the previous estimate of «, and the observation
Y, , for cases in which H, = I .Denoting (y, - §,,.1) = &,,, > the MMSE for «,

is given by:

Py
at|t

= &l|t—l Kt 8t|t 1 * (3'9)

The prediction errors ¢, , are often called innovations, because they sum up all the new
information contained in y, that was not available from the previous history of the system
(summarized in &, ). It becomes clear from (3.9) that the filter has a recursive
prediction-correction form since the estimate &, equals the prediction of o, from
observations up to time -1 updated by a factor K, times the innovation term ¢, .
The matrix K, is known as the Kalman gain.

Before proceeding further it is important to define the concept of steady-state filter
of time-invariant models which will be used in Chapter 5. Following Harvey(1989, p.118),

a Kalman filter is in a steady-state if the covariance matrix P

o1t is time invariant, that is,
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P, P =P . (3.10)

412 = t]t-1

The Kalman Filter has a steady-state solution if there is a time invariant covariance matrix
of the form (3.10) which satisfies equation (3.6). Therefore, if this matrix exists, it is the

solution of the following equation:

P - (P-PH' F'HP)T -GQG' =0 , (3.11a)
with
F=HPH +U . (3.11b)

The state-space model and the Kalman Filter can also provide predicted values for

¥, and e, forany futuretime z+j with j >1 , given the observations up to time 7
(for details, see Harvey,1989, pp.222-223). Another feature of the Kalman Filter is the
ability to smooth the state-vector, as a retrospective estimator, when new information
becomes available. In this case it is possible to revise the inferences about previous values

of the state-vector based on recent data.

3.3.3 Smoothing

Harvey(1989, pp.149-155) discusses three alternative ways of computing smoothed
estimates. The one adopted here is known as fixed-interval smoothing. The recursion starts
attime T , with é&;,, and P, obtained from (3.5¢), and runs backwards producing
smoothed estimates in the order 7,7-1,..,1 . In a Gaussian model, the fixed-interval

smoothed estimator is defined as:

&tlT = &tlt + P; (&HIII_T&II') ’ 3.12)
Pt]T = Pt|t + P/ (Pt+l|T_Pt|t)P; ’

where P, =P, T' P, V t=T-1,.,1 .

tjt
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3.4 Decomposition of the Likelihood Function

As pointed out earlier, the system matrices may be unknown depending on
hyperparameters (2) that must be estimated. In this case the use of the Kalman Filter
enables the evaluation of the likelihood which is used to estimate any unknown parameter in
the model. Harvey(1989, sect. 3.4), examines the application of maximum likelihood
estimation to time series modelling, a situation in which the observations y,,y,,..,y, are

not independently distributed. In this case, their joint distribution can be obtained using the

conditional probability density function p(y,|D,_,) as:

p(D,R) = pOy,-,y,Q) =[], pO,ID,)

Recalling the prediction equations in (3.5b) and working with normality assumptions, it

follows that:

1
D, ) =1T"
P( 4 ) Ht=1 (2,,‘.)M/2lFrlt_llllz

-1 . _ .
exp{'?(y; _y,|,_1 )/ F't|tl-l (yt _ytlt-l)} M

Then the log-likelihood £(Q;D,) is given by:

MT 1w ; - .
2 = _T log(ZW)—-iE {log ‘I:tlt-ll +(yt _y;|1-1)/ F't|tl-l(y;—y;|1-1)}’ (3.13)
t=1

where log denotes natural logarithm.

Since (¥, - §,,.1) = &, is a vector of prediction errors, (3.13) is known as the
prediction error decomposition form of the log-likelihood. A complete description of the
state-space modelling procedure embraces the computation of the log-likelihood function, its
maximization with respect to the unknown parameters as well as the initialization of the
Kalman Filter. These aspects are discussed in Harvey(1989, Chapters 3 and 4),
Pferffermann(1991) and Binder, Bleuer & Dick(1993). They will, however, be addressed
later in the thesis when describing the empirical work. For details about the use of state-

space models and the Kalman Filter in a time series framework refer to Harvey(1989).
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Using the definitions introduced in this and previous sections, the use of state-space
models in a time series analysis context will be considered next. The state-space
representation of univariate ARMA models is described in Section 3.5. Section 3.7.2 contains
the state-space representation for the univariate structural time series models. As this thesis
is mostly concerned with compositional data, which implies that multivariate models are
needed to represent both the signal and sampling error processes, Sections 3.6 and 3.7.3
review typical VARMA and multivariate structural models, respectively. In Chapter 4,
various examples of the use of state-space models for improving estimation in repeated

surveys are given.

3.5 The State-Space Representation of Integrated
Autoregressive Moving Average Models

Integrated Autoregressive Moving Average (ARIMA) models can be represented in
a state-space form for both univariate and multiple time series (Harvey & Phillips, 1979,
Wei, 1993, Chapter 15, Reinsel, 1993, Chapter 7). For details about the standard theory
regarding ARMA/ARIMA models, the reader is referred to Box & Jenkins(1970, Chapters
3 and 4) or Wei(1993, Chapters 3 and 4). A stationary time series is represented via a time-
invariant system and, as stated before, this representation is not unique. In a time-invariant
state-space model the system matrices {H,, U, , T,, G, , @} are all independent of
time and can, therefore, be defined without the time subscript. Harvey(1989, Sect.3.3) and
Anderson & Moore(1979, Chapter 4) examine the properties of time-invariant systems. The
state-space formulation of the ARIMA models will be defined and illustrated considering the
univariate case. Reinsel(1993, chapter 7) provides the results regarding the multivariate case
which are considered in Section 3.6. Harvey & Phillips(1979) provided the state-space
representation of seasonal ARIMA models. As a special case of it, they also provided an

equivalent result for ARMA models. What follows next is based on their work.
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Definition 3.1
Let B be the backshift operator, i.e. By,=y,, , B%y,=y_, ,etc., and lets denote
the seasonal period. Then, an integrated seasonal autoregressive moving average model,

ARIMA(p,d,q)(P,D,Q), , for a univariate time series {y,} is given by:
NB*) ¢B)1 - B)Y (1 - BY’ y, = y(B)5B)e, , (3.14a)

with e, independent N(O,o?) and

t

AB) = 1-N\B*-N\B¥-..-\,B*
¥(B®) = 1-v,B*-y,B¥-..-y,B%
¢(B) = 1-¢,B-¢,B>-..-¢ B?

5(B) = 1-8B-8,B*-..-5 Bf

An alternative representation is given by

©B)y, = 5(B) e, (3.14b)

where o(B) = MB*) ¢B)(1 - B)Y (1 - B9)® isa(p+d+sP+sD)-degree polynomial and
%B) = v(B®) 6(B) is a (q+sQ)-degree polynomial.
It follows as a special case from definition 3.1 that a zero mean stationary ARMA

model can be written as:

#(B)y, = 6(B) ¢, (3.14¢)

Result 3.5 (Harvey & Phillips,1979)
A seasonal ARIMA(p,d,q)(P,D,Q), model, as in Definition 3.1 (see equation (3.14b)),

can be represented by a state-space model, having the following observation and systems

equations:
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observation equation

y, = Ho, ; (3.15a)

H

system equation

@, =Te , +Gn, , (3.15b)
with:
@
I(r- DX({-1)
T = ,
_‘Pr : 01X(r—1)

where r = max(p+d+sP+sD,q+sQ+1) , G =1[1,-9,,-9,,..,-9_1 ,
H =1[1,0,0,..,0] and e, = (oy,,0,,,..,,) is defined as

O[lt = yt ’
o = Y1t it vl Y vy

-9, _,¢-d¢ ,-..-0

-1 & 0

for i =2,.,r . Where necessary ¢ = (@1,-s@pgepp) OF & = (J),..,0,,,) 18
augmented with zeros to have dimension r.

The representation of ARMA models in a state-space form is a special case of Result
3.5 in which d=s=P=D=Q=0 . Consequently, ¢(B) and ¢(B) reduce to ¢(B)
and &(B) , respectively, as in Definition 3.1. Appendix A2 contains an example of a state-
space representation for an ARMA(2,2) model.

A state-space representation of an ARMA process is not unique. Wei(1993, Chapter
5) summarises Akaike’s (1974,1975) Markovian representation which is valid either for
univariate or for multiple time series. This is exactly the one used by the Statespace

Procedure in the SAS\ETS software package (SAS,1988).
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Focusing attention on the use of state-space models for survey estimation, ARMA
models are expressed most conveniently by Harvey and Phillips’ representation (as it will be

shown in Chapter 4).
3.6 The State-Space Representation of Vector Time Series

Wei(1993, Chapter 14) presents the theory of vector ( or multiple) time series whereas
Reinsel(1993, chapter 7) provides a good review of different state-space formulations for
vector time series. The vector ARMA model and its respective state-space representation are

now introduced.

Definition 3.2 (Wei, 1993, pp.335-336)
A vector autoregressive moving average model (VARMA) for an M-dimensional

multiple time series {y,} (with mean vector E(y,) ) is given by
®(B)Y, = O(B)e, |, (3.16)

with Y, =y, - E(y,) ,

]

®B) =1- B - .. - & B

b

©B)=1-6,B-. -06B7 ,

where ®,.,9,,0,,.,0, are MXM coefficient matrices and ¢, isan

M-dimensional white noise random vector with zero mean and covariance structure;

E(e,el4) = G.17
0 A#0
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Result 3.6 (Reinsel, 1993, p.203-204)
An M-dimensional vector ARMA(p,q) model, as in Definition 3.2, can be represented

by a state-space model, having the following observation and systems equations:

observation equation

y, = Ha, ; (3.18a)

t

system equation

o =T, +Gy, , (3.18b)
with:
" ® I 0 - - 0
®, 01 - - 0
T = i P ,
. 00 - - I
¢ 00 - - 0

G =1[1,-6,,-0,,.,-0,_1 |,

=€

where r = max(p,q+1) . In addition,

H=[I:0:0:-:0] and e, = (a1,00,,..,a,) is defined as
oy, = (ylp ""yMt)/ ’

o, = D,y ,+P, ¥t Py, (i

-0,,4,-0,a_,~-..-0,_,a ., , i=2,.,r

Where necessary & = (®,,..,%,) or 0 = (0,,..,0,) isaugmented with zero matrices.
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Having introduced the state-space representation for ARMA and vector ARMA time
series, it is important to consider another approach widely used for representing the signal
process { 6,} .Itis concerned with Structural Time Series Models (Harvey, 1989), which

is introduced in the next section.

3.7 Structural Time Series Models in State-Space Form
3.7.1 Preliminaries

The principal feature of structural time series models is that they are formulated in
terms of components which have a direct interpretation such as trend, seasonals and cycles.
Moreover, structural time series models are set up in such a way that the unobservable
components are stochastic. Since each component is influenced by a disturbance term, the
structural time series can be represented in a state-space form, with the state of the system
representing the various unobservable components. Then the Kalman Filter can be used to
update the state as new observations become available. Hence, both ARIMA and structural
time series models can be viewed as special classes of state-space models.

The idea of representing time series by unobservable components models is not a
recent one. Nerlove et al.(1979) provide a good review of the historic use of this approach.
They also present the unobservable components models as a possible extension of ARMA
models. In this case each component is represented via an ARMA process and its optimal
estimate (or smoothed value) is obtained as a solution to a signal extraction problem.
Engle(1978) extended this framework for the case in which the unobservable components are
assumed to follow ARIMA models. Later Bell(1984) established the results to extend
Whittle’s(1983) signal extraction formulation for the case of non-stationary unobservable

components models.



Chapter 3 33

Corresponding to each structural model there is a reduced form model that includes
only observable variables. The reduced form of a structural model is an ARIMA model. For
details on structural time series models the reader is referred to Harvey(1989), which is a
book dedicated to the analysis of structural time series models and the Kalman Filter.
Sections 3.7.2 and 3.7.3 below describes some univariate and multivariate structural time

series models.

3.7.2 Univariate Structural Time Series Models

Consider the local level or random walk plus noise model defined by:

Ve b &

(3.19)
B, = Byt
where p, is the trend or level, ¢ ~ N(O,aﬁ) , M~ N(O,of,) for t=1,..,T .
Note that the disturbances can also be considered pure white noise without normality
assumptions. Examining the model in (3.19) in the light of the state-space formulation (3.1),
it becomes clear that model (3.19) corresponds to a state-space model with one-dimensional
statt o, equal to u, , and with transition matrix T , as wellas H and G , now
having a single element. The only parameters of the model which require estimation are af
and af, . If the trend component of a structural model is not generated by a random walk,

one can add a stochastic linear trend to the model. The local linear trend model is given by:

y'=#[+8[’

K

B,

Poy * By + 0, (3.20a)
Bt-l + E; ’

where & , w, and £, are mutually uncorrelated normally distributed disturbances with

mean zero and variances o> , ¢, and ori . Alternatively the disturbances could be white

noise sequences.
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The local linear trend model (3.20a) can be written in a state-space form as:

y=Hea +& (3.20b)
o, = Tat—l * 7, ’ (3.20(:)
where
Bl omenop T |t gL |«
«, Bt ’ - ’ - 01 ’ - 01 > N, Et ’
2 03’ 0 2
with V() = o0 and V(n,) = Q, = | = diag(d,,0?) .
0 o}

A widely used, yet more elaborate model is the basic structural model (BSM), with

observation equation given by:
yt = l“'t + ‘Yt + 8[ 2

where g, is the trend or level, v, is the seasonal component and ¢, is the irregular

component at time ¢ . The system equations that describe the evolution of x, and v,

are given by:
Be = By * Byt o,
3 Bt = Bt'l + E; ’
s-1 (3'21)
Yo = XYy Vs
\ j=1

where s is the number of seasons and ¢,,w,,£,,», are mutually uncorrelated normally

. . . . . . . 2 2 2 2
distributed (or white noise) disturbances with zero mean and variances o¢},0,,0;,0

| 2

respectively.
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The use of the basic structural model is illustrated in Chapter 4. The next section

introduces the multivariate structural time series models.

3.7.3 Multivariate Structural Time Series Models

Let y,,y,,..,y, be a sequence of M X1 vectors. Following Harvey(1989,
pp-429), the multivariate structural framework allows the unobservable components to be
contemporaneously correlated. As in the univariate case, the simplest structural model is the

local level or random walk plus noise model defined as:

y; ”';+8; ’

(3.22)
K, = By vt

where p, isa M X1 vector of trend/level components and &, and %, are M X1
vectors normally distributed with mean zero and covariance matrices X, and X for
t=1,..,T . Note that the relation between the series arises via the off-diagonal elements
of the disturbance covariance matrices. In a multivariate framework the disturbances can also
be considered pure white noise without normality assumptions. Comparing model (3.19) with
model (3.22) it becomes clear that the latter is a straightforward generalization of the

univariate local level model.

The same is valid for the local linear trend model defined in (3.20), implying that the

multivariate local linear trend model is given by:

y’ = “t + 8[ b
B = By * By tow (3.23a)
ﬁt = ﬁt—l + Et 2

where ¢, , w, and §, are M X1 mutually uncorrelated normally distributed vectors

with mean zero and covariance matrices £, , £  and I, .
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The local linear trend model (3.23a) can be written in a state-space form as:

y,=He, +¢, , (3.23b)
o =Te_ +17, , (3.23¢)
with

[ &, 11
«, = ﬁl ,H=um®@,1a[01]®h,

10 ©,
G=_01}®5’ m=[a],

where I, denotes a M XM identity matrix and & is the Kronecker product. In

addition, it is assumed that:

L 0
Vin,) = Q, = 0 %
£

Finally, as expected, the multivariate basic structural model is a generalization of
model (3.21). Its detailed specification is presented later in Sections 6.4 and 8.2.2 when
multivariate basic structural models are employed to model compositional survey data.

The state-space formulation introduced in this chapter can be used to provide signal
extraction results in the analysis of repeated surveys. In the presence of sampling error, the
signal (the unknown population quantity) is not directly observable. Instead, an estimate or
a vector of elementary estimates is observed which differs from unknown signal due to
sampling errors. This situation can be modelled in the state-space approach by including any
component required to describe the time series model assumed for the signal process in the

state-vector o, .
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Moreover, the system equation can also be used to model the sampling error.
Therefore, the state-vector would contain components of the time series models for both the
signal and noise. In the case of non-overlapping surveys, with independent sampling errors,
the disturbance in the observation equation could be used to represent the sampling error.

In general, when dealing with survey data, the signal process is either represented by
an ARMA or a Structural time series model (Harvey, 1989) whereas the sampling error is
assumed to follow an ARMA model(Box & Jenkins, 1970, sect.3.4). The following chapter

reviews the use of state-space models in survey estimation.
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4 State-Space Models for
Survey Estimation

4.1 Introduction

Two different approaches for incorporating the information contained in repeated
samples were introduced in Chapter 2, namely, the classical sampling approach and the
traditional time series approach. In this and subsequent chapters, the state-space approach
will be considered.

Binder & Hidiroglou(1988) introduced the use of state-space models in survey
estimation to overcome the practical difficulties that arise when applying Jones’ result (2.12
or 2.14). Their idea was to use the Kalman Filter equations to produce the MMSE of

{ 6.} sgivenall the available information p, . Inorder to outline their procedure consider
a set-up where ¥, isa (kx1) vector of elementary estimates for time ; , and e,

is a vector of sampling errors, ¢  is not directly observable, and
y,=10 +e, , 4.1)

where 1, is a unit column vector.

The time series model for the survey estimate is the combination of two distinct
models. One to describe the evolution of the unobservable population quantities {6} over
time and another to represent the time series relationship between the sampling errors {e}
of the sample estimates. As an example (from Binder and Hidiroglou,1988), consider the
simple case where {6} is an AR(1) process, { e} is a MA(1), ¥, and e, are
scalars, meaning that just one elementary estimate is available on each occasion. The model

for Y, is then given by:

Y. = 0, +e
yt = 01 +et

6, = 0., + ¢
9, = 0, + & or )
e, = v, - B~y e = b, +,
4 t -1 th = —ﬁ'y[
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The corresponding state-space formulation is:

oo e (4.2a)
at = Tat—l + Gn, ’
where:
b 1 600 10 g
at = t ,H/ = 1 ,T= 0 O 1 ’G = O 1 ’1" = [ t] .(4.2b)
b 0 000 0 _B Y:

It becomes clear from equations (4.2) that the complete model for {6 ,e,y,} can
be formulated as a state-space model where the state-vector includes components from both
the {6,} and { e} processes.

When working with state-space models for repeated surveys, the disturbance term in
the observation equation will not be used to model the sampling error, because the latter can
be correlated over time due to the presence of overlapping units. Instead, the sampling errors
must be included in the state-vector «, . Hence, in general, state-space models for data
from overlapping surveys have the form (4.2a), that is, have no disturbance term in the
observation equation. Authors who worked with such models discovered that ignoring the
serial correlation of the sampling errors may imply biased estimates for the model parameters
(see, for example, Binder & Dick, 1989 and Binder, Bleuer and Dick, 1993).

Using the Kalman Filter equations in (3.5), an estimator for e, given all available

data at time ¢ is given by:

&,I, = &,“_1 + P:|:-1H’ (HP,I,_1 H')™! O, - H&t“_l) , (4.3a)
with error covariance matrix
P, =P, ,-P, H (HP, H)H . (4.3b)
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From (4.2b) and (4.3a), it follows that 9”, =L &m with L’ = (100) and

associated error covariance matrix L' P, L . Therefore:

b, = L'éy, ~L'P, H (HP, H)'(y, - H&,,,)
=8,,+L P,  H (HP, H)(y, - 9., 4.4)
=0, LK@, -9y
where 9,“_1 is the first component of &, ,, and
K, , =P, H (HP, H')"
Note that
L'P, H = COV(L'w,y,|D,_) = COV(8,,y,|D_) . (4.5)

Using the Kalman Filter equations, the observed sample estimate at time ¢ can be

separated into its signal and noise components as:

— ]/ A - / A - A A
Y =L %\ + (H-L )atlt - 0!]! + et|t ’

where (H - L’) = (0 1 0) is exactly the vector of coefficients that should be used to

A

extract & can be interpreted as a composite-type

tt

from &, . Both (A)m and €,
estimator that allows the combination of an estimate based on past data with current sample
information, as in (4.4), to obtain an improved estimate. Moreover, from (4.4), note that

K, can be interpret as a ratio between COV(0,,y,|D,_,) and W(y,|D,,) . Then,
rewriting (4.4) as

A

0,“ =L'K,y, + L' (1-K,H) o,

>

shows that, in both the time series and state-space approaches, the smaller the variance of

the sample estimate, the greater its weight, and thus the closer ?)tl , 1s to the current sample

estimate y, .
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Before proceeding, it is important to note that the application of the classical signal
extraction procedure (Section 2.3) to improve estimation in repeated surveys is based on the
assumption that {6,} and {e,} are uncorrelated time series. To support the use of this
approach, a key result was provided by Bell & Hillmer(1990), namely that, if y, isa
design unbiased estimator for 6, then {6,} and {e,} are uncorrelated time series.

However, when using the state-space approach for modelling repeated surveys this
assumption can be dropped. This is possible because both the signal 6, and the sampling
error e, are placed in the state-vector o, which can accommodate correlated
components. Note that the basic assumption in the state-space approach is that the model
disturbances should be mutually uncorrelated over time and also uncorrelated with the initial
state-vector (Chapter 3, p.18). Moreover, a class of state-space models which are suitable
for representing data from overlapping surveys have the form of (4.2a), with no disturbance
term in the observation equation. Therefore the presence of correlated components in the
state-vector when no disturbance term is added to the observation equation does not violate
any model assumption. Indeed, the state-space representation of ARMA models (see Result
3.5) contains correlated components in the state-vector, since it is comprised of linear
combinations of the observed series. Note, in addition, that there is no disturbance term in
the observation equation. This is a quite interesting feature of the state-space approach since
having both, signal and noise, depending on the same populations units it is not natural to
assume that {6,} and {e,} are uncorrelated. For example when modelling series of
estimated proportions, the variance of the sampling error is a function of the unobservable
population proportion. If y, is the unbiased estimator for a proportion 6, under simple
random sampling, then:

(N, - n)

Ve, 10) = VO, = 6,10) = VO,10) = S-S

6(1-6) ,

where N, and n, are the sizes of the finite population and the sample on time ¢ .
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Hence the assumption of uncorrelatedness of the signal and noise processes should not be
considered when using state-space models for estimation in overlapping surveys .

The next section gives a brief review of how state-space models can be used to
jmprove survey estimates. The papers by Binder & Hidiroglou(1988), Binder &
Dick(1989,1990), Pfeffermann(1991), Binder, Bleuer & Dick(1993), Pfeffermann, Bell &

Signorelli(1996) illustrate the usefulness of this approach.

4.2 Models for Single Time Series and for Series of
Cross-Sectional Data

As mentioned before, when working with the time series or state-space approach, the

model for the survey estimates is a combination of the models adopted forboth { 6,} and
{e} .

As argued by Pfeffermann(1991), the time series models for { 6,} and { e,}
depend on the survey design and on the pattern of sample overlap (if any). In addition, they
may vary according to the level of data available which determines when primary or
secondary analysis is to take place. Moreover, the models are influenced by the presumed
long term behaviour of the population means and their components. Models for single time
series use either elementary (rotation group) estimates or the average of the rotation group
estimates as input data.

Binder & Hidiroglou(1988), Binder & Dick(1989,1990), Pfeffermann(1991) and
Tiller(1992) focused their work on the single time series case, estimating aggregate
population means or totals. In all these papers, except Pfeffermann(1991), a secondary
analysis was performed on the series of aggregate estimates. Pfeffermann(1991) used,
instead, the elementary estimates as input data.

The papers by Pfeffermann, Burck & Ben-Tuvia(1989), Pfeffermann & Burck(1990),
Pfeffermann & Bleuer(1993) and Pfeffermann, Bell & Signorelli(1996) propose models that
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use the rotation group estimates for each small area as the input data, in the context of small
area estimation. The rest of this chapter examines these works, since they represent the state
of the art regarding the use of state-space models for survey estimation.

Binder & Hidiroglou(1988) fitted an ARMA model to the Canadian Travel Survey
assuming independent sampling errors. Binder & Dick(1989,1990) modelled the monthly
number of unemployed people from the Canadian Labour Force Survey. In this rotating panel
survey, each panel (containing one-sixth of the selected households) remains in the sample
for six consecutive months. They assumed that the series of sample estimates could be

decomposed as
V,=xiy+ b +e

where x,y was a deterministic regression term, {6} was represented by an
ARIMA(1,1,0) model and { e,} by an ARMA(3,6).

Pfeffermann(1991) fitted a basic structural model similar to (3.21) to the Israeli
Labour Force Survey, which is a quarterly survey of households with four rotation groups
in every quarter. On each survey occasion, one panel of households is fresh and other three
have already been included in the sample on some occasion in the past. Every new panel is
included in the survey for two quarters, is rotated out for two quarters and comes back for
only two more survey rounds. Pfeffermann considered the elementary estimates as input data
but also performed a secondary analysis, using the average of the rotation group estimates,
and compared the two approaches. His model also assumed that observations y, belonging

to the same household i (individual sampling units) follow an AR(1) model of the form

Yo ~ 0: =P (yt-l,i - 0:—1) Y
€, =p € 1 s
where |p| < 1 and {»,} ¢ =2,3,.. are white noise with mean zero and variance
0_2

y
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When using the individual rotation group estimates as input data, Pfeffermann(1991)
also assumed that the four rotation groups, of equal size M , surveyed in a certain occasion
were independent. So each rotation group was considered as an independent simple random
sample of households. He also included rotation group bias as a linear regression term in the
model. The model was fitted to simulated data as well as to a series of the number of hours
worked and the number of weeks worked.

Once the model parameters have been estimated using the prediction error
decomposition form of the likelihood (as in 3.13), the Kalman Filter equations can be applied
to estimate the population mean and its components (such as seasonal effects) using linear
combinations of the state vector as in (4.4). Pfeffermann points out that this approach enables
the decomposition of the population mean using more information than is usually considered
by the traditional procedures for seasonal adjustment like, for example, X11-ARIMA
(Dagum, 1980).

Another example of the use of state-space models in survey estimation can be found
in Tiller(1989). He fitted a state-space model to the unemployment rate series generated by
the U.S. Current Population Survey (CPS) which has a 4-8-4 rotation scheme (sec Bureau
of the Census, 1978). The observed CPS estimate of the unemployment rate y, is once
again represented by the sum of two processes { 6,} and { e,} . The unobservable
population mean process {6,} was modelled as a function of observable economic

variables (assumed to be independent of the sampling error in the observed series) as:
0,=X8,+v, |, (4.6)

where X, isa 1Xk vector of observed regressor variables, 3

, isa kX1 vector of

stochastic coefficients treated as varying according to an AR(1) process, written as

B =T,B, +» (4.7a)

1 b

where T, isa kXk matrix of fixed parameters and », isa kX1 vector of white

noise disturbances with covariance matrix V = DIAG (0,2,‘, s ‘72.) .
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The disturbance term v, in (4.6) is the part of signal that is not accounted for by
the regression term. Since v, can be serially correlated, it is represented by the following

ARMA(p,q) model
¢, By, = 0B, , (4.7b)

. . R . . 2
where €, is white noise with variance o .

The noise component e, is used to incorporate features of the CPS sample design

into the modelling process. It represents the sampling error and is modeled by:
e, = v,e (4.8a)
where v, accounts for changes in variance and e,” follows an ARMA(p*,q*) model:

¢ (Be, = 5,(Be, , (4.8b)

. . . . . 2
where e, is white noise with variance o, .

et

The model defined by equations (4.6), (4.7) and (4.8) can be written in a state-space
form with the unobservable signal and the noise as state variables. For this specific problem

the unobservable variables are B, , v, and e . Since v, and e, follow,

respectively, ARMA(p,q) and ARMA(p*,q*) models, they are converted into vectors «

(21

and o, , using the procedure introduced in Result 3.5. Then, the state-space model is:

[

yt Ht o
4.9)

o

1
~
R
+
Q

=

t -1
with:
/ / /
o, = (Bt s Oy aet)/ ’

where &, and «, are,respectively, rx1 and r*X1 state vectors, as in Result 3.5,

with r = max(p,q+1) and r* = max(p*,q" +1) . In addition,

Ht = (X;’l’o,-_l"ynor'—l) >
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’

T = DIAG(T,,T,,T,) , G = DIAG(l,,,G,,G,)

- . — -
¢vl I(r—l)x(r—l) ¢el I(r'—l)x(r'—l)

¢ur O ¢er " O

L. - - -

G, =[1,- 8., 8,,] , G, =1[1,-8,,.,-8,,.,] ,

/
1’; = (vl ’ev;’eet)/

The random disturbances are assumed to be mutually uncorrelated, hence the

variance-covariance matrix of 7, is (from 4.7 and 4.8):
Q = DIAG(V,o0,,0,)

The signal component can be estimated using 9,“ =[X,,0,0, 0,14 6p] &y, -

Tiller(1992) extended the previous model by adding a trend, a seasonal and an
irregular component to the signal decomposition. He reported encouraging results about the
reduction in variance over the traditional survey estimation but also pointed out that, as
expected, care is required when choosing the models for the signal and sampling error
processes. Pfeffermann & Burck(1990) reported that the time series and state-space
approaches are not routinely used by statistical agencies because the classical survey
estimators of the aggregate means are usually as efficient as the model-based ones when the
model holds and more robust when the model fails to hold. However, the use of structural
time series models allows for the estimation of unobservable signal components such as
trend, seasonals and cycles while taking into account the sampling errors.

Pfeffermann, Burck & Ben-Tuvia(1989), Pfeffermann & Burck(1990), Pfeffermann
& Bleuer(1993), Pfeffermann, Bell & Signorelli(1996) developed state-space models for

dealing with a time series of cross-sectional data. As stated before, the use of a model-based
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approach is suitable for cases in which the survey error component is large. This generally
occurs in the context of small area (or domain) estimation due to small sample sizes. The
authors considered a model to improve estimation in small domains that exploits both cross-
sectional relationships between small areas and time series properties of the data.

Pfeffermann & Bleuer(1993) modelled the Canadian Labour Force Survey. A basic
structural model, adapted to the case of a monthly survey (12 seasonals) with six rotation
groups each month, was used to represent the signal of each small area. They also assumed
separate autoregressive relationships for the six sampling error series, corresponding to the
six monthly elementary estimates. For joint modelling of small areas, assuming that the
sampling errors were independent between areas, just the model for the signal { 6,} was
extended to account for the cross-sectional correlations. Then the model allowed for non-zero
contemporary correlation between the error terms corresponding to the unobservable signal
components. Working with this assumption means that if there is an increase in the trend
level in one small area, similar increases are expected to occur in other areas. The final
model was constructed by combining the models for all small areas.

To protect the procedure against model failures, monthly sample estimates in the
aggregate level were forced to coincide with the model-based ones. This was done by adding
linear constraints to the observation equation. Moreover, the model also accounted for
changes in the variances of the sampling errors over time as well as for rotation group bias.

Pfeffermann & Bleuer examined the results of fitting this state-space model to the
unemployment rate series. They compared the model-based estimates with the traditional
design-based ones, reporting that the two sets of estimates behaved very similarly. However
the model-based estimates (for the joint model) were more stable and had smaller standard
error than the survey estimates. The estimates for the seasonal effects produced by the
modelling procedure and by using X11-ARIMA were also compared. The seasonal effects
produced by the two approaches were very close, the same happening for the trend estimate

although in this case the X11 curve was smoother than the model curve.
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Although some improvement in survey estimation can be achieved by modelling the
time series relationships of the survey estimates, this approach is model dependent. Binder,
Bleuer & Dick(1993) pointed out that a data set can match with a wide class of models. To
examine this issue they fitted two different models to a series of the number of unemployed
people from the Canadian Labour Force Survey.

One of the models used the log-transformed series as inputs, employing a secondary
analysis in which just the aggregate estimate was considered. The unobservable population
mean was assumed to follow a seasonal ARIMA(1,1,0)(1,1,0),, model. The model for the
sampling errors was given by : e, = k¢, , where k, was the standard error estimated
from the survey and ¢, assumed to follow an ARMA(3,6). The standard error for the log-
transformed data was computed by using Taylor linearization.

The other model was the one described in Pfeffermann & Bleuer(1993) which uses
the original monthly elementary estimates as the input data. They reported that both models
appear to give estimates which are consistent with the data, concluding that models with
entirely different structures can provide acceptable results.

In a recent work, Pfeffermann, Bell and Signorelli(1996) fitted state-space models to
the Australian regional unemployment and labour force participation rate series. Their aim
was to provide estimates for the trend of the series free from spurious cycles possibly
induced by the autocorrelations of the sampling errors. The authors claimed that these cycles
are not identified or removed when using standard procedures for seasonal adjustment such
as the X-11 program. Using a basic structural model for the signal and an AR(2) model for
the noise they produced estimates for the trend which were smoother than those obtained
from the X-11.

This section has described the use of state-space models in survey estimation. It is
interesting to note that some of these models were fitted to series of proportions. In fact, both
Pfeffermann & Bleuer(1993) and Tiller(1992) implemented their procedures in order to

improve estimation of unemployment rates. Hence, it is reasonable to ask whether the
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predictions for y, and the filtered estimates for 6, provided by those models are always
pounded between zero and one.

Having reviewed the literature regarding the use of state-space models to improve
estimation in repeated survey it becomes clear that no attempt has been made to model
simultaneous more than one survey variable. Indeed, Binder, Bleuer and Dick(1993) reported
that little work had been done on taking advantage of the correlations among variables in a
repeated survey. Most of the work they reviewed dealt with the case of small area estimation
where the same target variable is considered across different small domains. In fact, although
much has already been discussed regarding modelling univariate series of survey estimates,
there is little discussion of models for multivariate survey data in the literature. Chapter 6
and 7 introduce the use of multivariate time series models for survey estimation. Before that,
however, the issue of modelling series of proportions will be examined; firstly in the context
of time series analysis without taking into account the sampling error and then considering

that the observed series are subject to sampling errors.



50
5 Modelling Time Series of Proportions

5.1 Introduction and Review of Existing Approaches

The problem of modelling both univariate and multivariate series of proportions was
studied by Wallis(1987) and Brunsdon(1987). One of the difficulties in modelling time series
of proportions arises because proportions are bounded between zero and one, but standard
time series models are not similarly constrained. Thus there is no guarantee that the forecasts
obtained when fitting standard time series models will belong to the interval [0, 1] .

Wallis(1987) applied the logistic transformation, suggested by Aitchison &
Shen(1980), to time series known to be bounded between zero and one. These series are
typically measured as proportions or percentages, like unemployment rates. For a univariate
time series v} o such that (< y,<1 vi, he recommended using the transformed

series {y."} where

yt‘ = log [ Y ] ’
1 -y,

and to model the transformed series using conventional ARMA models.

Smith & Brunsdon(1986) pointed out, however, that if the proportions {y,} are all
in the range [0.2,0.8] they can be modelled in the conventional way with little risk of
producing predictions lying outside [0Q,1] . But they agreed that if a series of proportions
evolves close to any of the boundaries of the domain, the use of the logistic transformation
is recommended.

Brunsdon(1987) considered the case of multiple time series in which each of the series
has values bounded between zero and one and, moreover, the sum of the series equals one
at each time point. Data with such characteristics (unity-sum constraint and bounded between
0 and 1) are known as compositional data. Formally, a compositional time series is defined

(see Brunsdon, 1987, p.75) as a sequence of vectors Y, = Oyses yﬂm,,)’ belonging to the
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Simplex S , defined as

SM={y: 0<y <1,m=1,.M+1;Y y, =1}

Aitchison(1986) examined the difficulties of applying standard methods to modelling
and analysing compositions. For instance, the interpretation of the covariance structure of
a composition is different from the standard interpretation of covariances and correlation
between components of an unrestricted vector. For example, considering y, = (¥,,,Y,,,Ys)

it follows from the properties of a composition that
COV(Yy, » Yy * Yu * ¥3) = COV(y,,,1) = 0
But this also implies that
COV(yy»Y,) + COV(Y,,,7y) + COV(yy,Y5) =0,
and consequently

COV(yu’yz;) + COV(yuayg,;) = - VAR(yu) ’

meaning that at least one of the covariances on the left-hand side must be negative. This
feature of compositional data is known as the negative bias difficulty.

Another issue examined by Aitchison(1986) is the lack of parametric distributions
defined on the appropriate Simplex. One class of distributions which was considered for
describing compositional data is the Dirichlet. However, every Dirichlet composition can be
considered as being formed from a basis of independent Gamma random variables(Aitchison,
1986, p.59). This independence property of the basis components does not match with the
characteristics of many compositions found in practice. Therefore the Dirichlet class is not
always suitable for the parametric modelling of compositions.

To tackle these problems Aitchison(1986) suggested the use of transformations to map

compositions from the Simplex S onto RY . One such transformation is the additive
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logratio transformation ( a,, ) defined in Aitchison(1986, p.113) and first adopted for a time

series context by Brunsdon(1987, p.75), given by v,=a, (¥,)=(V,,5-,Vy,) , With

v"“:log[ I ] , m=1,..M , Vit |, G.1)

yM+1,t

usually called the

me

M
where log denotes the natural logarithm. Note that y,.,, =1 - Yy
m=1
fill-up value, is used as the reference variable or category.
The inverse transformation, known as the additive logistic transformation ( a " ), 1s

given by y, = ay(v,) = (V1s> > Yaer,.) such that

exp(v,,)
- ! m=1,..M , vt ,
1+ Y exp(v,)
Vot = 1 - (5.2)
Ml m=M+1 |, V¢
1+ Z;CXP(VJ')
L J=

Regarding the choice of a parametric distribution defined on the Simplex S¥ |

Aitchison & Shen(1980) introduced the additive logistic normal distribution :

LM(“,}:) = 11 T exp{ —%(vt ‘u>/2'1("t —u)} s

5.3
12722 T]»., 5-3)
m=1

where v, = a,(y,) is as defined above.

The authors showed that when the logratios v, are normally distributed with mean p
and covariance matrix X , i.e. v, ~ N, (p,L) , the M+1-part composition has an
additive logistic normal distribution as defined in (5.3).

Working with compositional time series, Brunsdon(1987) recommended the use of
transformations to map the series of compositions from the Simplex onto the Real space

before using Vector ARMA models (Tiao & Box,1981) for estimation and analysis. Note that
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in the alternative, if applying standard univariate time series methods of analysis to each of
the components of a composition, there is no guarantee either that the forecasts will be
bounded between zero and one, or that their sum will be one. Although the application of
a logistic transformation to each of the individual series of proportions would guarantee
individual forecasts restricted to the interval [0,1] it would still not satisfy automatically
the vital unity-sum constraint. She also proved an important invariance property that when
the vector of transformed series computed using the fill-up value as the reference variable
(as in (5.1)) follows a VARMA(p,q) process of dimension M , then transformed vectors
based on any other reference variable (y,, , m =1,..,M) also followa VARMA(p,q),
all of them representing the same model for the original composition. This implies that any
vector component can be selected as the reference variable for the transformation without
affecting the results of the modelling procedure. This approach for analysing compositional
time series is quite interesting because, in general, the behaviour of the complete vector is
of interest, not only of one of its components. Treating the set of series as a multiple time
series enables the analyst to study the dynamics of relationships between the components.

The work of Wallis(1987) and Brunsdon(1987) provides useful insight about
modelling time series of proportions. However, these authors did not consider the fact that
the observed time series are often subject to sampling errors. They also did not make use of
structural time series models or, more generally, state-space models. Hence this thesis
extends their work by focusing on the development of a state-space approach for modelling
proportions and compositions from repeated surveys taking into account the sampling errors.
This raises the issue of whether it is necessary to transform the data in a state-space
framework in order to guarantee that the signal estimates and observation predictions are
always bounded between zero.

Hence, before proceeding further in the direction of modelling compositional survey
data, it is important to take a decision about whether or not a transformation should be

applied to the data. Although Wallis(1987) and Brunsdon(1987) recommended the use of
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transformations before fitting ARMA or VARMA models, other authors such as Tiller(1992),
Pfeffermann & Bleuer(1993) and Pfeffermann, Bell & Signorelli(1996) used a state-space
approach for modelling "raw" unemployment rate series. This could be an indication that,
by using a specific state-space model, the problem of modelling "raw" proportions is under
control. If so, what are the features of this formulation that lead to such results? To

investigate this issue consider the following conjecture.

Conjecture 5.1
The use of the state-space approach for modelling proportions based on repeated

surveys guarantees that the filtered estimates 8, are always bounded between zero and

¢t

one.

If this conjecture was always true, it would imply that there was no need of a
transformation. On the other hand, if the conjecture fails to hold, the models for series of
proportions (and consequently for compositions) should be applied to the transformed data.
To simplify the discussion, the use of structural time series models will initially be
considered without taking into account the sampling errors. So, to begin with, the case of a

local level model for a univariate time series of proportions will be analysed.
3.2 The Local Level Model for Proportions

Consider the local level model for a single series of estimated proportions {y,}

given by,

1]
D
+
3}

Vi £ (5.4)



Chapter 5 55

where @, is the unobservable level (or true unobservable proportion), e, and 7, are
mutually uncorrelated normally distributed disturbances, with mean zero and variances o’
and af, , respectively.

The idea is to verify whether the use of the state-space approach for modelling the
observed series of proportions {y,} guarantees that the signal estimates 9” , and also the
predictions  §,,,,, are bounded between zero and one. It is then necessary to examine the
estimates obtained via the Kalman Filter, and to check whether these estimates lie inside

[0, 1] . Ideally, to carry out the analysis, these estimates should be expressed in terms
of the observed series {y,} .

Therefore, for each of the models examined in this chapter, explicit expressions for
the filtered estimates are provided in terms of the observations. These expressions are
obtained by using the steady-state filter (see Chapter 3, p.25) corresponding to each model.
For the local level model considered in this section, the steady-state filtered estimate for 6,

has the form (details in Appendix B1):

a"’ = (1 - x)9t—llt—l + xyt ) (5-5)

with

x=_2F , 5.6
P+ g}

and P is a solution to equation (3.11a). Then 9,“ has the form of an exponentially
weighted moving average (EWMA) with smoothing constant X\ given by (5.6) where

O0<XN<1 because P is strictly positive. By repeated substitution, it follows that

-1
0, = kg (1 - NYy, + (1 -N6, . (5.7
£
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Assuming that 6, = 0 and that {y,} is a series of proportions, equation (5.7)
eXpresses 9,|, as a linear combination of y,,..,y, with y, € [0,1] V=1, .In
order to guarantee that the estimate 9,“ is bounded between zero and one it is sufficient
to have the sum of the weights in the linear combination (5.7) less than or equal to one, since
each of the weights is also bounded between zero and one, i.e. since

0 < N(1-NY <1 Vj because 0 < N < 1 . Hence it suffices to show that
-1

)\Z (1 -NY <1 (5.8)
j=0

to prove that 9, » € [0,1] . But this statement is true since the weights in the EWMA sum

to unity. In fact, if ¢ is large,

lim [xzh a - xy] = Alim Et- (1 - Ny
L j=0 oo Jj=0
T 1 -(1-N"] _
M, [1—(1—»] :

The one step ahead forecast for a local level model is given by §,,, = 9,_”,_1 sO
that both the model forecasts as well the estimates for the unobservable level are bounded
between zero and one. Consequently, when dealing with a structural local level model there
is no need to apply any transformation to the series in order to get predictions and estimates
guaranteed to lie in the [0,1] interval. Thus, Conjecture 5.1 is not contradicted for the
local level model.

Although suitable for modelling non-overlapping surveys, the model in (5.4) does not
allow for any time series structure regarding the sampling errors. Thus it seems reasonable

to explore a model which includes some structure for the sampling errors and seems suitable

for the case of overlapping surveys, in order to verify if Conjecture 5.1 stands for more

Ccomplex models.
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5.3 A Simple Model for Estimated Proportions from
Completely Overlapping Surveys

Consider the case of a panel survey in which all the units are retained for all survey
rounds. The effect of overlap is to introduce correlations between the sampling errors
e, , ¢, Y h which must be estimated from the data. As suggested by Scott, Smith &
Jones(1977), a first-order autoregressive model is commonly used for the sampling error in
a complete overlapping survey. For the signal 6, , which represents the true unobservable

proportions, a structural model can be used. Here the simplest of the structural models is

employed: the local level model. Then, the model for the survey estimate is given by:

b, +e ,

=
[

5.9)

>
1}
D
+
Q

)
I

- Bet—l + bt

where {aq,} and {b,} are |uncorrelated series of disturbances with
a, ~ WNO ,d2) , b ~ WNO , o,) and |B] < 1.

This model presents similar features to those introduced in Chapter 4, and when the

sampling error is included in the state-vector there is no added disturbance term in the

observation equation. Thus model (5.9) can be expressed in the state-space form as

H ,
Y % (5.10a)

@ = To_, + G,

where
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Il I ) I Y I Rl B
a, = et ’ _[ ]’ - OB ’ = 01 ”7,‘ bt .

Using the Kalman Filter equations (3.5), the filtered estimate for o, is obtained as

A A -1 Py

Oy = at]t-l + Ptlt—l H' F,,H(y, - }’,],_1) s (5.11a)
with

B = T (5.11b)

yAtlt—l = HT&t—l|t—1

As t increases the filter can reach a steady-state. Once again, to obtain the steady-

state filter, the error covariance matrix P must be the solution of the equation (3.11a) with

Representing the steady-state covariance matrix P by

pl pll
P , (5.12)
p12 p2

the steady-state filter is given by (details in appendix B2)

tht

(1 - W)@Hlt_1 + Wy, - BWé;—llt—l ’ (5.13a)
etlt =B Wét—llt—l +(1 - W)yt -1 - W)a

>

-1|2-1 ’

where
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w=_"1"Po . (5.13b)

pPy *+2py, + D,

Note that, by repeated substitution (details in Appendix B3):

by = (L= WL = W)+ W0, - BWI(L - W)+ BW]e,
o (5.14)
+ Wy + W(l - WX1 - B)E [(1 - W)+ 6W]"‘1y,_j '
)

Assuming that 6, = e, = 0 , it follows that the steady-state filtered estimate for 6, is

given by:

-1

by =Wy, + W -W)1-B)Y [(1-W)+BWYly, . (5.15)
j=1

Using (5.15) it is possible to investigate whether the use of model (5.9) guarantees
that the filtered signal estimates are bounded between zero and one, when dealing with a
series of proportions. Before proceeding it is important to identify which restrictions are
imposed on W . Note that W is a function of the elements of the steady-state error

covariance matrix P . The subsequent relations below follow directly from equation

(3.11a):
2
p, - (p,p, - P12) _ 02 -0 | (5.16a)
Py *2p, *+ D,
2
Py, + Bap, — P2) _ : (5.16b)
Py * 2p, + P,
2 _ 2
P, - B (P2P1 P12) _ 0_12, -0 . (5.16¢)

Py *+2py, +p,

Moreover, since P is a covariance matrix it must be nonnegative definite, that is:

pp, -pHh =0 . (5.17)
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Also, it follows from equation (5.16a) that:

P+t 2P v Py ‘

implying that
P, *2p, +p, >0 . (5.18)

Substituting the solution for the system of equations (5.16) into (5.13b) it follows that W

can be written as (see details in Appendix B4):

we_ PP , (5.19)
P, +2p, + P,
with
5 - (L+362-48)-(B-1VE +26+47+1 (5.200)
' 2(8-1) ’
P = -Bp, +8 (5.20b)
Po=(1-BPpl+@4B -2 -1)p, +p-28 , (5.20¢)

where 7 = o}/ o> .

Having obtained an expression for W in terms of B8 and 7 , the next step is
to analyse the use of model (5.9) for handling a series of proportions regarding the
production of bounded estimates. That is, is time to check whether or not

0< 9t|t <1 Vvt . The conditions for getting the filter estimates in (5.15) bounded

between zero and one are:
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-1
W+ WA-W)Y1-8)) (1-W) + BWY' < 1,
=1

(5.21a)
0<WwW<1 |, (5.21b)
0< W(l-W)(1-BI(1-W)-BWY'< 1 j=1,.2-1, (5.21¢)

Equations (5.21) state that the sum of the weights in the linear combination (5.15) must be
less than or equal to one, and also that each of the weights must be bounded between zero
and one.

For large t , equation (5.21a) is always satisfied and, in addition, W is bounded
between zero and one. However, condition (5.21c) is not satisfied for all j . Figure 5.1
displays a contour plot for the functionin (5.21c) when j=2 , whichisthe coefficientof y,_,
in the linear combination (5.17). The range for B8 was chosen suchthat |[§| < 1 and

oG < g (implying 0 < 7 <1 ). As oo and o are the varances of the
disturbances terms in the noise and signal model, there is no reason to assume o > d
but, in any case, the result introduced next is also valid for = > 1 .

Figure 5.1 shows that for values of B € [-1,0] the weight for y,_, in 9,!,

can be negative. Therefore, there is no guarantee that, when fitting model (5.9) to a series

of estimated proportions, the signal estimates 6. wil belong to [0,1] . Note, in

ot
addition, that although the model assumed for the signal 4, was a local level with no added
error in the observation equation, the filtered estimates are not necessarily bounded. The
presence of possibly negative weights in (5.15) implies that the fact that y, € [0,1] Vv ¢

does not guarantee that (9,1, € [0,1] . When the analysis was carried out with 7 > 1

the same conclusions were achieved. Consequently, the model in (5.11) contradicts

Conjecture 5.1.
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This indicates that model (5.9) may be of limited service for modelling series of
proportions if the assurance of valid bounded filtered estimates is required. This can be used
as an argument for the adoption of a logistic transformation, for example, prior to the use

of the state-space approach for modelling proportions.

5.4 Conclusion

This chapter focused on the analysis of ordinary state-space models for series of
estimated proportions. It was demonstrated, by disproving Conjecture 5.1, that it is not
possible to ensure in general that signal estimates are always bounded between zero and one,
if models are fitted to proportions directly without any transformation. Restricting the
analysis to the case of modelling data from overlapping surveys, one procedure (see Chapter

4) is to fit a structural model for { 6,} assuming an ARMA model for the sampling errors
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{e,} .Model (5.9) is a simple but proper example of this sort of state-space model, widely
used nowadays, to improve estimation in repeated surveys. The evidence provided in Section
5.3 leads to the conclusion that the direct use of the state-space approach for modelling

proportions without any prior transformation in repeated surveys does not always guarantee

bounded filtered estimates. Hence Conjecture 5.1 is false.

If the use of a state-space model does not itself guarantee bounded filtered estimates,
it seems reasonable to require that the data to be transformed before modelling. In the case
of compositional data, following the work of Brunsdon(1987), the data can be transformed
using the additive logratio transformation in (5.1). The use of logit or logratio
transformations of the estimates as inputs to the state-space model (or any other signal
extraction approach) affects the way the sampling errors should be modelled. This issue will
be discussed in Chapter 7. So far, all the analysis has been concerned with the univariate
case. The multivariate/compositional case will be addressed in Chapter 6 where state-space

models for handling compositional data from overlapping surveys are proposed.
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6 State-Space Modelling of Compositional
Data from Repeated Surveys

6.1 Introduction

This chapter considers the use of state-space models for improving estimation of
compositional data in a repeated survey framework. Although compositional data were
previously modelled using a state-space (structural time series) approach by Quintana &
West(1988) and Shephard & Harvey(1989), these authors did not address the issue of
modelling the autocovariance structure of the sampling errors when the observed
compositions are obtained from repeated sample surveys.

Quintana and West(1988) employed a Bayesian approach and fitted a Dynamic Linear
Model to a set of Mexican imports series, which were classified as: consumer, intermediate
and capital. The data were first converted from the original scale to proportions in order to
analyse the relative behaviour of the series. Then a log-ratio transformation (West &
Harrison, 1989, p.641) was applied to the three series of proportions, with the transformed
data as inputs when fitting a local linear model. The final analysis was presented in terms of
the transformed compositions and no attempt was made to recover the trend estimates for the
original series.

Shephard & Harvey(1989) fitted a local level model to the time series of shares of the
vote for the three main parties at the British General Elections, from 1974 to 1987. Their
approach was to fit this multivariate structural model to a vector of proportions of votes
comprising all but one of the parties (or groups of parties) and to obtain the level of support
of the remaining party (or group) by subtraction, since the sum of all the proportions is
unity. The authors recommended this procedure, reporting that the technique of dropping one
of the series is a standard practice in systems of regression equations, and that it leads to the
$ame result as if a maximum-likelihood estimation procedure was applied to a full set of

quations with constraints imposed on the covariance matrix of the disturbances. Although
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this procedure guarantees that the sum of the predictions equals one, it does not guarantee
that the predictions for each of the series are bounded between zero and one.

Shephard & Harvey(1989) overcame this last problem by using a local level model
which, as was demonstrated in Chapter 5, always produces bounded predictions when the
inputs are bounded. They noted this fact and argued that the use of a local level model was
appropriate because more general models could not guarantee predictions always belonging
to [0,1] . Regarding the model disturbances, they assumed that the error of the
observation equation was mainly the sampling error. They looked at the sequence of opinion
polls as non-overlapping repeated surveys, and assumed that the auto-covariance of the
sampling errors was zero for any lag greater than or equal to one, i.e.assumed that the
observation errors were independent through time. However, the authors did not take into
account that the polls are in general based on a master sample (see Smith, 1996) which
implies an overlap between the primary sampling units. They defined the covariance matrix
of the errors such as to represent the variance and covariance of the sampling errors on each
occasion.

This review of the available literature in the area of modelling compositional data in
repeated surveys reveals that little work was done to take the sampling errors into account,
particularly for the case of overlapping surveys. Moreover, although suggested by Quintana
& West(1988) and Harvey & Shephard(1993) that different structural models (rather than the
local level model) could be fitted to compositional data, this has still not been tried yet and
no other models were evaluated in practice.

The evidence provided in Chapter 5 for univariate series, together with the work of
Brunsdon(1987), leads to the conclusion that the only way, in general, of guaranteeing
bounded predictions and signal estimates for compositional data, when fitting either structural
Or a vector ARMA models, is by using a transformation such as the additive logratio
transformation or one of the other transformations proposed by Aitchison(1986). However,

one drawback of this approach is that, when applying structural models to the transformed
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data, great care is needed to define how (and which of) the unobservable components of the
original series can be estimated from the model fitted to the transformed series.

In Section 6.2 two different models are proposed for compositional data from
overlapping surveys which take the sampling error into account. Because the interest lies in
survey data, the purpose of the modelling procedures is not only to provide predictions for
the observed series but also to improve the estimation of the unobservable signal and its
components. Both types of models are extensions to the work of Brunsdon(1987). The idea
is to apply the additive logratio transformation to the data, which can then be modelled via
either structural or vector ARMA models in a multivariate state-space formulation.

At this point two alternative routes can be considered. One way is to model both
signal and noise in the transformed scale via vector ARMA models (Tiao & Box, 1981; Wei,
1993, chapter 14). The final model is the superposition of these two muitivariate models.
Following West & Harrison(1989, p.182) the term superposition is used here to refer to a
construction of a complex model from different, simpler, component models. This will be
called the General Multivariate Model. An example of this formulation is presented in
Section 6.3.

Another way of modelling the transformed data is by assuming that the signal of the
transformed series (looking at each of them via an univariate perspective) can be modelled
by similar univariate structural models, with model parameters being different across series.
In addition, the noise process can be represented by a vector ARMA process. This type of
model will be named hereafter as Common Components Model, as in Barbosa(1989). An
example of this formulation is provided in Section 6.4.

It will be shown that both procedures produce predictions and signal estimates
bounded between zero and one, satisfying the unity-sum constraint. The state-space
formulation for compositional data is examined in more detail in the next section where, for
simplicity, it is formally defined considering a composition lying in the Simplex S . This

Case is of particular interest because the modelling procedures proposed here will be tested
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using data from the Brazilian Labour Force Survey which produces monthly estimates of the
employed, the unemployed and of the people who are not in the labour force. The survey’s
target population comprises people who are 15 years old or more. Using this information it
is possible to form, at each survey round, a vector of proportions using the total population
aged 15 years or more as the reference variable. Each of these vectors represents a tri-

dimensional random variable which lies in the Simplex $% .

6.2 A Framework for Modelling Compositional Data
from Overlapping Surveys

Assume that the point estimates for a set of population characteristics obtained from

a repeated overlapping survey form the basis of a composition. From Aitchison(1986, p.31),
"a basis w of M+1  parts is a (M+1)X1 vector of positive components
(w;,..,W,,,) all recorded on the same measurement scale”. A basis completely determines
its composition y , defined as the vector y = w / 1’w . The composition y belongs

to the Simplex S , defined as

M+1

$¥ = {y:0<y,<1,m=1,.,M+1; ¥ y,=1} ,
m=1

In the case of a sample survey, let y, be a vector of estimated proportions subject
1o a unity-sum constraint. Data with such characteristics are observed in repeated surveys
when a survey variable has a multinomial response but the interest lies in the proportion of
units classified in each of its categories. At this point, having defined the concept of a basis,
one can argue that an alternative approach to deal with this problem is by directly modelling
the components of the basis as a multivariate time series. Note, however, that the basis is
not always available to the analyst as in the case of a survey in which individuals are
requested to inform the composition of their expenditures as proportions of their income.

And, even if they are asked to record their expenditures over a period of time, what is
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generally published is the overall pattern (or composition) of expenditures. In addition, if a
component of the basis is small (recall that w_ € [0, ], vm ), fitting a time series model
to that components can lead to negative predictions.

In a labour force survey, for example, the estimates of the total number of people
who are unemployed (m=1) , employed (m=2) and not in the labour force (m=3)
form the basis w, = (w,,w,,w,) of a composition y, = (,,,5,,Y;)  Where

wmt
Yy = ———— for m=1,2,3 .
wlt + w2t + w3t
The observed compositional time series {y,} can then be defined as the sequence

of vectors

Y, = Oy Yy Ys) s (6.1)

where
y,, 1s the estimated proportion of unemployed people at time 7
Y, 1s the estimated proportion of employed people at time #;
Y, 1s the estimated proportion of people who are not in the labour force at time 7. It is
easy to see that y lies in the Simplex §* .
Consider now that y, = (y,,,.. ,de’,)’ is a vector of sample estimates belonging
to the Simplex §¥ . Since each of its components is subject to sampling errors, y_ . can

mt

be decomposed into signal and noise components as

Vor =0, +e€ , m=1,. M+1

mit mi

, 6.2)

where 6, is the unknown population proportion assumed to follow a time series model,
and e, isthe sampling error. Considering the M+1 series simultaneously, (6.2) can be

written in vector form as:

Y. =0, +e 6.3)

where ¢ = (0y5-r0y.,,) and e, = (e,,..,€,, ) .Inaddition, it is assumed that
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M+l M+1

E 0 = E y,=1 Ve, (6.4a)
m=1 m=1

which implies that

Y oe,=0, vi. (6.4b)

Following Bell & Hillmer(1990), the model in (6.3) can be rewritten as

e
ymt = 0’"’ [1 ’ _it] i om’um, ’ (6.53)
emt
with
e
u, = [1 +0_""] = +a, , (6.5b)
mt
e
where @, = _oﬁ represents the relative sampling error of the estimated proportion.
mt

Applying the additive logratio transformation to the vector y, with components

given in (6.5a) produces a transformed vector v, = a,(y,) = (v,,,..,V,,) defined on

R . If y,,,, is used as the reference variable, the transformed vector has as its m®

component:
r ’ 0 u
v"“ = log ymt = log mt “mt
L yM+l,t ) 0M+l,t uM+1,t
(6.6)
= log ™| + (logu,, - logu,,,,) , m=1,..M
L 0M+1,t ]
From (6.6), a vector model for the transformed series can be written as:
v, =0, +e 6.7
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with v, = (v, ,os V) 5 07 = (0 4.y Ou)

and e, = (€; ,., ey) , where v, =10g(¥,/Yy.,) » Om =1o0g(6,, /0,.,,) and
en = log(u,/u,, ) ,for m=1,. M . Note that model (6.7) has the same form as

model (6.3).

Before proceeding further, it is interesting to note that a Taylor linearization of

log(u,,) = log(1 + #,) yields (details in Appendix C1):

log(u,) = @, + O,(n;") . (6.8)

Assuming n, large, yields the approximation:

log(u,,) = @, 6.9
Substituting (6.9) in (6.7) results in,
0
vmt - log ymt ~ log mi + (ﬁmt _ ﬁMd,;) ] (6.10)
y M+l M+1,¢t

Then e, =(,,~f,,,,) can be interpreted as a contrast of the relative sampling errors.
To describe the survey data model (6.7) must incorporate time series models for both {8, }

and {e",} . Hencea multivariate model for the transformed data is given by:

v, =0, +e
0; = 1® 9, + G v° (6.11)
e = TO ey v GO A

The configurationof 7T® , G® , @ , T® |, G® and %©® will depend on the
form of the time series models for {0, } and {e~, } . However, regardless of which
model is chosen to represent the signal and noise processes, (6.11) can be expressed via a

State-space formulation as:
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v, = Ha, ;
(6.12)
o, = Te, + Gy,
where
0;
at = - ’
€,

or is any appropriate set of present and past information such that the future behaviour of the
system can be completely described by the knowledge of the present state. For example,

o, could comprise unobservable components representing the trend and seasonals of

1

{6} and past values of {e, } . The other matrices H,T,G and », have the form:

% : 0
H:[Hw) H<e>] , T=| o ,
0 : 7@
G0 5
G = o com= |,
0 : G© n;

If the vector y, = (y,,,., )’M+1,;)/ is permuted, a different version of the additive
logratio transformation is obtained. Let y™ denote a permutation of y, with the elements y,,
and y,, . interchanged. In this case, the element y,, # y,,, , is used as the reference
variable. Aitchison(1986, p.93) defined the permutation matrix ®, as an identity matrix
of order (M+1) with the columns m and M+1 interchanged. If the permutation

®, is applied to the composition y, = (¥y,,.sFps-» yml’t)’ it yields:

(m)
Yoo =@y, = OusrsVagorer oY) - (6.13)

The effect of the permutation ®, on the logratio vector v, is such that (Aitchison, 1986,
Pp.93-94 and Brunsdon, 1987, pp.61-62):
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W=z (6.14)
with

1 isj#m  ij=1,..M ,

(6.152)
{Zm}i]. = -1 j=m i=1,..M
0 elsewhere .
The matrix Z_ satisfies
[ml =Z , (6.15b)
and
|Z,| = +1 . (6.15¢)

The additive logistic transformation is a one-to-one transformation from v, € R¥
to y,€ SM (Aitchison, 1986, p.113), meaning that a, (»") = y™ . Recall that the
general state-space model for v, defined in (6.7) is given by (6.12). Now, let

t

v = Z v, forall r=1,..,T . Then a general state-space model for ¥™ is:

Zyv, =Z Ha, ;

m i
(6.16a)
o, =Ta  +Gy,
or
W= (Z,H) e, ;
(6.16b)
a, = Ta,_, + Gy,

The issue here is how the permutations affect statistical procedures for compositional
data. It is important to investigate if the modelling procedure proposed in this thesis is
Permutation invariant. That is, if the state-space modelling procedure for compositional time

series is invariant to the choice of the reference variable. Theorem 6.1 settles this question
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stating that any permutation of y, (and consequently any transformed v, ) can be taken

as the input for the state-space model since they all yield the same results.

Theorem 6.1
The state-space approach is permutation invariant. That is, the state-space models in
(6.12) and (6.16) represent the same model for y, on the Simplex, except that y, has

been permuted.

Proof of Theorem 6.1:
A state-space modelling procedure consists of:
(i) the formulation of a state-space model;
(ii) the use of the Kalman Filter equations for prediction, updating and smoothing;
(iii) the estimation the unknown hyperparameters via maximum-likelihood.

Regarding items (i) and (ii), it is evident that the permutation does not affect the state-
vector or the system equation in (6.16). A permutation of the observations only affects the
observation or measurement equation which represents the relationship between the
observations and the current state components. Hence, although the relation between the
observed transformed series and the state-vector was adjusted for the permutation, the state
vector remained the same.

The prediction and smoothing equations for model (6.16) are given by (for details see
Chapter 3, pp.23-25):

A

atlt—l = E(atID;-l) = T,&

te-1)1-1 ’
1’,],_1 = We,|D,,) TP T + GQG'

t-1]-1

(6.17a)

and
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957;)-1 = E(VSM)ID-l) = ZmH&m-l = vatlt—l ’
(6.17b)
l’l':)-l = V(vf’n)lbt—l) = ZmHPtlt-l (ZmH)/ = ZmFt|t—1 Z,m ’
implying that
by, = B(o,|D) = &y + Py H' Zy B (07 = 9i0)
= &t|t-l + Pt|t-lH/ ZC" (ZmFtlt—lzin)-l(vat_Zmi}t[z-l)
n 1 . (6.17¢)
= 0y Pt]t—lH/Ff-lf‘l(vr - vtlt—l) ’
Ptlt = V(a[ | Dt) = Ptlt—l - Pt|t—1 H' Fll-ll-lHPt]t—l ’
and
&I|T = &tlt + Pt|tTP[+1|t(ét+1|t - Tdt|t) ’ 6.17d)
Pt]T = Pt[t *+ PIIIT/ Pl-*lllf(Pt+1|T_Pt+1|t)P;*11ltTPI/II

It becomes clear from equations (6.17a), (6.17c) and (6.17b) that the updating,

filtering and smoothing equations remain unchanged.
Regarding the one-step ahead forecast in (6.17b), note that
Vi, ~NZ, Pt ZyFyy Z,,) whereas v, ~N(9,,,,F, ) .Recall, from Chapter 5
(p.52), that when considering v normally distributed with mean x and covariance

matrix L , y is said to have an additive logistic normal distribution in the Simplex S

denoted by LM(u,X) . Hence, as

m)  _ (m) (m) 5
VNN s Vi) ~ N2, 9,1 Z, Fy Z0)

)

it follows that

G|,y V) ~LMZ, 3, ,Z F,  Z,)

fe-12 “m " -t

Because the additive logratio transformation is a one-to-one transformation,

( (m) (m) )/

(m)
Vi sy Vi

conveys the same information as (V" ...,..,y72) . Thus,
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Yy = OF [,y ~ LM Z Pyers Zn Fyy zZ,) (6.18a)
whereas
ytlt—l = (yl |yl""’yt—1) ~LM(‘A’1|,_1 ’ F'tlt—l) . (6.18b)

However, Aitchison and Shen(1980) showed that L*(Z u,Z X Z) is simply a rotation
of L¥(n,X) .

In conclusion, L”(f’,lt_l,F,It_l) and L™(Z ¥ Z F,  Z,) denote the same

-1 “m Lope-

distribution but with a permutation in the Simplex §* . Consequently, the same one-step
ahead forecasts are obtained for the original compositional vector using either v, or "
as inputs for the state-space models. Hence the prediction, updating and smoothing equations
are permutation invariant.

Finally, as pointed out in Chapter 3, the system matrices can depend on
hyperparameters (2) that must be estimated. The use of the Kalman Filter enables the
evaluation of the likelihood which is used to estimate any unknown parameter in the model.
For a situation in which the observations v, v, ..., ¥ are not independently distributed,

their joint distribution can be obtained using the conditional probability density functions

o |D, ) as:
0", v, 0) = [, p”|D,.)

From the predictions equations in (6.17b) it follows that the likelihood is given by:

2@, .. ) =TI 1
’ 3ty =1
= @oM?|Z,F,, \Z,|

)
(6.19)

1 . B A
exP{ _5(Zmvt_vatlt—l)/(ZmEh-lZ:”) I(vat_zm vtl"l )} )
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Note that

|Zm l;ltlt—l Zlml = IZml 'F'tll-ll IZ”"I = IF""'ll ’ (6.20)
since |Z |=+1 .
In addition,

Z \4 “va _ /(Zmlrt - Zlm) _I(va _Zm vt t-) =

Z,v~Z, V) = : |e-1 (6.21)

v, - i)t|t-1)/ Ff‘llt-l v, - ﬁt[t-l)

Then, it becomes clear that £(Q,v",..,v"") = £(Q,v,,..,v,;) . Hence the likelihood
function is also permutation invariant. Another way of reaching this conclusion is observing
that the (modulus of) the Jacobian of this transformation v™ = Z v, equals one.
Moreover, both »™ and v, represent the same composition. Therefore, the state-space
modelling procedure is permutation invariant. In summary, it has been shown that whichever
permutation is used to construct the time series of logratios, the same inferences are obtained
when returning to the original Simplex.

In order to illustrate how to get filtered and smoothed estimates for {6, 6} after
modelling the transformed series, the next two sections introduce examples of a General
Multivariate Model and a Common Components Model, respectively. Later, in Chapter 8§,
a Common Components Model will be used to model compositional data from the Brazilian

Labour Force Survey. It is interesting to note that the modelling procedure established in this

thesis is directly applicable to unconstrained multivariate series.
6.3 The General Multivariate Model

The basic idea of the General Multivariate Model approach is to fit vector ARMA
models (as in Definition 3.2, Chapter 3, p.30) to both {6, } and {e; } . A detailed
discussion about the specific problem of modelling the sampling error series in a multivariate

and compositional framework is presented in Chapter 7.
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Meanwhile, to illustrate the use of a General Multivariate Model in a compositional
framework, consider the case of a completely overlapping survey estimating proportions
subject to a unity-sum constraint belonging to the Simplex §* . By analogy with the
univariate case (discussed in Scott, Smith & Jones, 1977), assume that both the signal and
noise components (of the transformed survey data) follow a first-order autoregressive model.
Hence, considering that v, € R? | it will be assumed that both {8, } and {e; } , as

defined in (6.7), follow a VAR(1), given by:

r - -1

. ® ® * ®
01 1 12 01,01 M (6.22a)
= +
. ® 9) . ® ’
0y 21 gz 02,:-1 N2
[ . r () (e) * (G] ]
€y, 11 12 €111 N1 (6.22b)
. = © © . * @© )
€ 21 22 € -1 N
The state-space representation of (6.22a) is:
v, = He,
(6.23)
@ = Te  +19, ,
with:

at = (el.t ’92: ’el: ’eZ: )/ ’

- L * -
- /
at-l - (61,1-1 ’ol,t—l ’el,t—l aez,x-l) ’

1=, 0, 00,00 Y
H - 1010 ’
0101
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(] © -}
11 12
@ o .
21 22 ¢ 0
T = ’
. © @
0 : 181 182

@ Q]
21 22

where n(,o) and n(f) are bivariate normal vectors, with mean zero and covariance matrices X,
and I, , respectively. Moreover, 1156) and 17(,”) are assumed to be mutually uncorrelated
processes with no serial correlation.

Once the model has been expressed in a state-space formulation, the Kalman Filter
equations can be used to provide filtered and smoothed estimates for «, and predictions

for v, . From equations (3.5) it follows that

fytlt—l = HT&:-1|;-1 ’ (6.243)
&tlt = H&t—llt—l + Ptlt-l H/ (HPtlt-l H/ )-1 (vt - vt|t-l) y (6.24b)
&tlT =&, + PtltT/Pr+1|t(ﬁz+1|g -Té&,,) . (6.24¢)

Hence the filtered estimates 8,

for the transformed signal #, can be obtained from

&, by using:

131

0, =11100]%,, . (6.252)

*

Similarly, smoothed estimates ?)tlT for the transformed signal 6, are computed via

0y = 1110014, . (6.25h)

Moreover, smoothed estimates bqr for the original signal 6, can be retrieved from
(6.25b) by applying the additive logistic transformation a;' , as in equation (5.2), namely

From (6.26a) and (6.26b) it becomes clear that the use of the additive logistic
3

A

=1 , and 0 < ¢ <1, m=1,2,3 ,

m,t|T m,t|[T —

transformation guaranteesthat Y 8
m=1
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. _ exp(é,;, )
Oty = ——— m=1,2 (6.26a)
1+Y exp (8 ,r)
k=1
) 1
34T ' (6.26b)

2
1+Y exp(()k',,lr)
=1

leading to bounded signal estimates that sum to one across the series at every time point 7 .

The one-step ahead forecasts for the original series can also be obtained by applying the

additive logistic transformation to f’,“_l . Thus
A — exp(om,;“-l)
tfoct = : m=1,2 (6.272)
1+ E exp(vk,m-l)
k=1
_ 1
Foates = (6.27b)

2
1+ E exp(vk,t]t-l)
k=1

An important point to note regarding equations (6.26) and (6.27) is that neither ?)tlT nor
5’:|z-1 are minimum mean square estimators (MMSE). Recall from Results 3.1 and 3.2 that,
for example, the MMSE for y, in terms of (y,,..,y,,) is given by
E[y,|¥;,5¥1] = Elay 0) 167 ()0, (v, )],
which differs from P = a{l(E[vll V,,.,¥,1) . As mentioned
before, (y,|y,,-s¥,.,) ~ L¥(¥,,, ,F,,,) . Hence the MMSE for y, in terms of
(¥15-,¥,,) is the mean of an additive logistic normal distribution with parameters P i1
and F, , .The same occurs when estimating the signal in the original scale. A MMSE for 0,
is given by
E[0,]y,,¥7] = E[a, (0]) 65" (7) 0085 ()]
whereas 941 = a{l(E[(),' |v,5..,v;]) . The MMSE for 0, interms of (y,,..,y,) is

given by the mean of an additive logistic normal distribution with parameters Way, and
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WP, W , where W is the a row vector as in equation 6.25.

Unfortunately closed forms for the moments of the additive logistic normal
distribution are not available. As pointed out by Aitchison(1986, p.116), numerical
approximations for the moments have to be computed by Hermitian integration. Brunsdon
(1987, Chapter 5) investigated the problem of estimating the mean and variance of an
additive logistic normal distribution and also considered other location parameters such as
the mode. She derived numerical approximations for the mean and mode and compared the
results with the so-called naive estimates (those obtained by applying the additive logistic

transformation). Her findings suggest that when F,

i1 18 small, such that the distribution

is dense around one area, it is possible to use the inverse transformation as an approximation
to the mean. She used the mean, mode and inverse transformation when predicting the

proportion of votes for the three major parties in the British general elections via vector
ARMA models and found that "the various predictors were almost indistinguishable" since
all of the data points for the series were packed away from the extremes (Brunsdon, 1987,
p.178). That is, there were no compositions y, such that y =1, y, =0 for all
J#Em =1,. M+1 .

Following Brunsdon(1987) the additive logistic transformation will be used in this
thesis to get filtered and smoothed estimates for the signal in the original scale as well as
predictions for the survey estimates.

In summary, the use of a General Multivariate Model enables the analyst to model
compositional time series data taking into account the sampling errors in repeated overlapping
surveys. However no estimates of the structural components of the series such as trend and
seasonals can be obtained within the vector ARMA formulation. The Common Components
Model which can encompass structural time series models is considered in the next section

as an alternative approach that might solve this problem.
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6.4 The Common Components Model

For simpiicity, consider the case of a completely overlapping survey that produces
quarterly estimates of a composition which lies in the Simplex $§° . In the Common
Components Multivariate formulation, the models for each of the univariate signal process 6,
must have the same form. Assume that each of 6,, follows a basic structural model as

follows:

emt = Lﬂl‘t + Sn:t b m=1’2 b

_ - - ([)
Lmt - Lm,t—l + Rm,t—l * NMme ’

(6.28)

_ » (6]
Rmt - Rm,l—l * M ’

3
. - (s)
Sm = —E Sm,l—j * My ’
Jj=t

where 6, = log(@,/6,) , en =log(u,/u,) , L, is the trend or level of the
unobservable transformed signal #6,, , R, is the corresponding change in the level,

S, is the seasonal component of 6, . The disturbances 4% , 2 , & are assumed
to be mutually uncorrelated normally distributed with mean zero and variances

0,2,,, S O s O , Tespectively. Note that an alternative model to the signal is one which
decomposes 6, into trend, seasonal and irregular components. Here, no irregular term
was included in the signal model (6.28) since it is assumed that, when modelling survey data,
its variation is mainly the sampling variation which is in turn properly accounted for by the
model for the noise process. In a practical situation one can fit a model with an added

irregular term to check the validity of this assumption. Later, in Chapter 8, a model

including an irregular component for the signal is also fitted to the data.
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The multivariate model for {0, } has the following state-space formulation:

0 t. = H® afo) )
(6.29)

©® _ 0 O )
o = T()at—l + G(g)ﬂt ’

where

H® = [101001®1, , o=[L; Ly Ry Ry Sy Sy w Sira Sapa 1,

(. O O O 0O & 6y
N = Cmie 26 e M2 M M2 )

1007
010
G®=1(001] @I
000
[0 0 0]
and
- - -
01 : 0,,,
T = ® I,
-1 -1 -1
0., 1 0 O
i 0 1 0]
The model equations in (6.29) are supplemented by the cross sectional assumption :
L, 0
}:0 = 2:r ’
0 )>

that is, the two series are linked via the off-diagonal elements of I,,Z I .
Regarding the model for the sampling errors, assume that the (multivariate) noise
Process {e, } can be represented by a vector autoregressive model of first order as in

(Section 6.3, 6.22b). Now, putting (6.29) and (6.22b) together, a common components model



-

Chapter 6 83

for the transformed survey estimates v, is given by:

(6.30)

R
L]
~
R
+
Q
=

with

_ =/ «! »/ ! ./ LRV _ * - » - - LY
o, = (Lt th ,St ’st—l ’St—2 €y ) - (th ’Lzr a---’Sl,t—z ’SZ,t-2 » €1t ’e2t) ’

'y «! »! »/ ! »t
— /
o, = (Lt-l aRt—l ’st-l ’St-2 ast—3 ’et—l) ’

PRI C AN A A A
100010000010
H=[H(0),1]®I2= 3
010001000001
T ® I, 0 ]
N A |
E¢11¢12
0
i ¢21¢22_
G® 0
G=| o
0 I
and
L, : 0
V(‘r’t)=Q= ......
0 : X
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The smoothed estimates &, for «, in model (6.30) can be computed using the

Kalman Filter equation in (3.12) and O,IT can be obtained from &, using:

8, =[100010..0]&,=W&, |, (6.31a)
with covariance matrix given by
Vb)) = WP, W (6.31b)

where P, is the covariance matrix of the smoothed state-vector &, .Note that (6.31)
yields the signal extraction estimates for 6, = log(6,, /6, ) , m=1,2 .Estimatesfor L;
and S, can also be obtained from &, , simply by pre-multiplying the state-vector

estimate by a suitable row vector as in (6.31a) to extract the component estimates. In addition

vt+l|t = Hat+1|t

- HT&,, (6.32)

is the one-step ahead prediction for the transformed series.
As in Section 6.3, estimates for 6, and predictions for y  are computed by
applying the a;' transformation to @ :IT and ¥ . Once again the use of the additive

t+1]e

logistic transformation guarantees that:
3
0 Y Py =1 with 0 <73,
m=1
3 A
@ ¥ 8,,=1 with 0 =<2
m=1
Unfortunately, although L/, and S; can be estimated from model (6.30), it is
not straightforward to obtain estimates for the structural unobservable components of the

original signal @, , such as L, and S, ;. . However, if a multiplicative model with no

irregular component is assumed for {6, } , such that:
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01, = L, Su ’
6, = L,S, , (6.33)
03; = L, Ssr ’

where L, and S, for m=1,2,3 , represent the trend and seasonal components of

each of the unobservable signal, then applying an additive logratio transformation to 6,

results in:
logL S L S
1og (@ /6,y = 28Em S ) oo | I | Lygg | Sm | a1z (6.34)
log(L,, S, ) L, N
But (6.34) can be rewritten as
Om = Lo + Sme (6.35)

with L, =log(L, /L,) and S, =log(S, /S,) which can be estimated from model
(6.30).

Hence the use of a basic structural model for {8} corresponds to the case in

which the underlying model for {6 decomposes the original signal into its trend and
seasonal components in a multiplicative way. Therefore, it is assumed hereafter that the

relation between the original signal and its components is given by the equations in (6.33).

To derive estimates, either filtered or smoothed, for L, and S,, note that:

exp(Sy;) = S,/ 8,

(6.36a)
eXP(Sz:) =8/ 8

and also that
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exp(Ly) = L,/ L, |, (6.36b)

L,/L

exp(Ly ) | Ly,

To recover §,,,S,,,S;, ,in (6.36a), it is necessary to assume an explicit relationship
between these unobservable components based on model (6.33). By doing this, a third
equation can be added to each of the systems in (6.36) and an estimate of the original series
components can be obtained. Note that the systems have three unknowns for just two
equations. If, for example, it could be assumed that 23: S, =1 then §, in (6.36a)
would be obtained by using an expression equivalent to tffé additive logistic transformation.

But this assumption does not appear natural when considering the multiplicative model in

(6.33) which implies that

L,S, +L,S, +L,S, =1

3
since, in a compositional framework, E 6.,=1.

m=1

The same analysis is valid for the levels/trends L, . Although, in this case, it is
quite natural to assume that they do sum to one across the series, being also bounded
between zero and one. Hence, trend estimates for the original series can be obtained solving
the system

eXP(Ll:) = L /L ’

1z 3

exp(L,; ) L,/L, |, (6.37a)
L,+L,+L, =1

’

which results in

L - @) mels

2
1 +Y exp(Ly)
k=1

(6.37b)
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- i exp(Ls) (6.37¢)
k=1
As there is no irregular component in model (6.33), and consequently in (6.35), the
seasonally adjusted figures are given by the trend estimates in (6.37). Therefore, the
smoothed estimates for the trend of the original series of proportions are obtained by
applying the additive logistic transformation a, ' to L,'|T . Consequently, estimates for

the seasonal components of the original proportions can be computed by taking

Spur = =22, m=1,..,3 . (6.38)

Alternatively, without assuming any relation between the trend or seasonals across the
series what can be obtained from model (6.30) are estimates for the trend and seasonals of
the series comprising ratios of the original proportions.

From (6.36), it follows that:

00S) _ 5w (6.39a)
exp(Sy)  Su

exp(Ly ) L,

=2 (6.39b)
exp(Ly) L

And, from the multiplicative model (6.33), one gets:
O _ Lu S (6.40)
01: le Slt

For labour force surveys, an important issue is to estimate the unemployment rate
series and also to produce seasonally adjusted figures. Recall from equations (6.1) and (6.2)

that 6, and 0, represent the unknown population proportions of unemployed and
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employed people, respectively. Using these proportions, the unknown unemployment rate at

time ¢ 1is defined as

'Y = 01‘ = 1 = % + 1)-1
t 0“ + 0, A« %) 0“

1z

(6.41)

1 01:

notation, drop the dependence of the moments on the available information. That, is denote

0 6
From Result 3.1, a MMSE for 0_2‘ is given by E [_2-’ | ¥yses yT} . For convenience of

6 6
the MMSE for 0—2‘ simply as E If)_” |D:| where D represents the necessary

1z 1t
6
information to produce either filtered or smoothed estimates. In order to get E l:.(.)_z.’ |D:|

1t
note that:

0 0‘ * *
Su L 22O nes -85 (6.42)
b exp(fy)

From the standard log-normal theory it folllows that (see, for example, Encyclopedia
of Statistical Science,1985,vol.5, pp.134-136):

E [Z—:ID] = exp(E[6; -0, | D] + % Vi -85 D) (6.43a)
where

E[6, -6, |D] = E[6,, | D]1-E[6;,| D] , (6.43b)
and

V6, -0;, | D1 = V[6, | D] + V[6;, |D] - 2COV[b,,,6;, |D] . (6.430)

are obtained from the state smoothed (or filtered) estimates in (6.31) and respective

Covariance matrices. In addition,
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1

02‘ - *
V[’o_‘lD] - {exp(E[om_elt |D])_1} X (6.44)
{exp(2E[65 -6y, | D) + V[6y -6y |D1)}
Employing an approximation for the first and second moments of functions of random

variables based on Taylor expansion (details in Appendix C2) one gets the following

approximation for the MMSE of +, :

- 0
l v| 22 p
02: 01:
E[v,|D] = | E O—ID +1[ + S (6.45a)
1z
E % + 1
011
with

-4

0 )
Vly,| D] = E[@BlD] +1 V[-(;ID

1t 1z

] (6.45b)

1z 1z

6 ]
where E |:0_2‘ ID] and V [:0_2’ |D:| are obtained using expressions (6.43) and (6.44).

The expressions (6.45a) and (6.45b) will be employed in Chapter 8 to compute model
dependent estimates for the unemployment rate series and corresponding standard errors.
When analysing an unemployment rate series the analyst usually requires estimates for the
underlying trend and/or seasonally adjusted figures. Based on model (6.30) seasonally
adjusted figures can be obtained as:

sa L L
Y, = = = (_& + 1)'1
th + L2t (1 + l) 1

(6.46)
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Then the seasonally adjusted unemployment rate series can be estimated by using

E[v: | D] which is computed following the same steps as described in (6.43) to (6.45).

0 .
One interesting point to note is that, because E |:_2‘ ID] > 0 , it follows that
1

-1

E|2p| 41 (647
6lt

is always bounded between zero and one. However, it is not clear whether or not the same
is true regarding the expression in (6.45a). Note that, although (6.45a) is a better
approximation than (6.47) for the MMSE of v, , the second term in (6.45) is usually
negligible. Hence the choice of the estimator for the unemployment rate based on model
(6.30) depends on whether or not the series evolve sufficiently close to boundaries, in which
case the use of the estimator in (6.47) could be recommended.

In conclusion, a Common Components Model provides signal (and trend) estimates
bounded between zero and one in accordance with the unity-sum constraint. Moreover, model
(6.30), provides estimates for seasonal and trend components of series comprising ratios of

the original proportions which is a quite useful feature of the proposed modelling procedure.

6.5 Summary

This chapter has introduced a method for modelling compositional time series from
repeated surveys taking into account the sampling errors. It has been shown that the state-
space modelling procedure is permutation invariant and that both the General Multivariate
Model and the Common Components Model provide predictions and signal estimates which
belong to the Simplex. In addition, the use of a Common Components Model enables the
analyst to get trend and seasonally adjusted estimates for the original proportions and for

series comprising ratios of the original proportions.
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The application of the proposed state-space approach to survey data requires the
estimation of the correlation structure of the sampling errors . When fitting a Common
Components Model to the Brazilian Labour Force Survey data (or any other survey data),
it will be necessary to estimate the autocovariance structure of {e,” } in order to
formulate an appropriate time series model for this "contrast" of sampling errors.

Chapter 7 outlines important issues, regarding the identification of time series models
for the sampling error process that need to be addressed in order to complete the

specification and implementation of the models proposed in this chapter.
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7 Time Series Models for the
Sampling Error Process

7.1 Introduction

Use of the State-Space approach for improving estimation in repeated surveys
provides great flexibility in the specification of the time series models for both the signal
process {6} and the noise process {e} - This chapter deals with modelling of the
sampling error process {e} - It focuses on the identification procedures for the sampling
error model and discusses the links between the model formulation and the sampling design.

The model specification depends on the sampling design, particularly on the level of
sample overlap between occasions, and also on the availability of data. In a panel survey, if
the individual records y, are available on each occasion and can be linked throughout the
survey period, a full primary analysis can be carried out. On the other hand, if only the
published aggregate estimates y, are available, then only a secondary analysis can be
carried out. In rotating panel surveys, the analyst can obtain the elementary panel (or rotation
group) estimates y}"’ (as in Chapter 2, section 2.2). This case will be named hereafter as
an elementary analysis, although some authors do not differentiate an elementary analysis
from a primary analysis.

Many authors considered the problem of modelling the sampling error process, in a
univariate framework, see for example, Pfeffermann(1989,1991), Binder & Dick(1990), Bell
& Hillmer(1990), Tiller(1992), Pfeffermann & Bleuer(1993), Binder, Bleuer and Dick(1993)
and Pfeffermann, Bell & Signorelli(1996). There are two general approaches for identifying
the model for the sampling errors. One, which can be called the quantitative method of
analysis, refers to procedures in which a direct estimate of the sampling error autocorrelation
function is obtained from the survey data. The other, hereafter called the qualitative method,
is usually adopted when the analyst is unable to obtain direct estimates of the sampling error

autocorrelation function. In this case, assumptions are made regarding the pattern of such
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covariances (or correlations) according to the survey sampling design.

Models for univariate time series of sampling errors are reviewed first according to
both qualitative and quantitative approaches and different cases of data availability. Then the
multivariate case is considered, and the multivariate framework is adapted to model the

sampling error process when dealing with compositional data from repeated surveys.
7.2 The Univariate Case

Recall from (2.4) the following decomposition for the survey-based estimate y, :

y, =6, +e

4 ’

where 6, and e, represent the finite population parameter of interest at time t and the
sampling error, respectively. Assume that y, is a design-unbiased estimator for 6, , i.e.

E(e,|6,) =0 ,andlet W(e,|8) =S? represent the design variance of y, - With the time
series approach {y,} , {6,} and {e} are treated as random quantities each, to be

modelled by a time series process.
7.2.1 Quantitative Analysis via the Design-Based Approach

When data are available for individual sampling units and these can be identified
throughout the duration of the survey (that is, when it is possible to link survey microdata
over time), VesB) = COV(e, ,,e,|0,,,0,) can be estimated via Yy6(h)  using design

based methods because
Yeoh) = COV(Y,,~0,,,%,-8,16,,,0) = COV(y,,,3,18,,,6,) = v,,,(h).

Assuming {e,} stationary, «v,,(h) dependson h butnoton ¢ . Therefore
Y.o(h) can be estimated by
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T-h

A 1 A
’Y¢|0(h) = T__h poct COV(yt-h’yxl ox-h’og)

Using estimates of the sampling error autocovariances and variances, an estimated
autocorrelation function can be obtained and the model for the sampling error identified.
Before proceeding further it is interesting to address the problem of modelling the
noise process from a log-transformed series of survey estimates. Consider the case when a
logarithmic transformation is to be applied to the survey estimates (as in Binder, Bleuer &

Dick,1993). The model can be written as:
et
V=0 +e=6(1+2) . (7.1)
H
Applying the logarithmic transformation to both sides of equation (7.1) results in

log(y,) = log() + log(l+%) ~ log(8,) + % , (7.2)
t

t

Hence, when modelling the log-transformed series of survey estimates, the noise component
is approximately represented by the relative sampling errors of the original series of

estimates. In addition, from (7.1) it follows that:

V
o v|e| - Helb) Y010
b, 0 6’
ji cov 6 .6
(ll) cov .e‘_-h , 'e_tlot—me; - (yt—hytl t-h t)
t-h ' 0,19,

Putting (i) and (ii) together yields:

(9 e

CORR [ 01 h , -o—t | 6,0, = CORR(y,.,, , yt|()t_h,9’) ) (7.3)
t-h t

Therefore the model for the relative sampling errors can be identified from the

autocorrelation function of the original series of estimates.
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When working with rotating panel surveys, instead of modelling the aggregate
sampling error, the analyst has the choice of modelling independently the series for each
rotation group. Let K be the number of rotation groups investigated on each survey
occasion and y,(k) , k=1,..,K denote the elementary estimates at time t. The procedure
described above could be applied for each of the series {e®} for k = 1,..,K , where
e = y¥- 6, . If there is no rotation bias and provided each y® is an unbiased
estimator of 6, , then the sample autocorrelation function of the elementary estimates can
be used to identify a time series model for {e®} .

Train, Cahoon & Makens(1978) reported the design-based autocovariance structure
for some national level statistics of the U.S.Current Population Survey which Bell &
Hillmer(1988) used to model national teenage unemployment. In addition, Bell &
Hillmer(1990) developed sampling error models for the U.S. Retail Trade Survey analysing
the design-based covariances obtained from a study using sample microdata. Lee(1990)

presented design-based estimates for the correlations between rotation group estimates in the

Canadian Labour Force Survey.
7.2.2 Quantitative Analysis Based on Pseudo Errors

In the case of a rotating panel survey, in which only the elementary estimates are
available to the analyst, the model for the sampling errors can be identified (as suggested by
Tiller,1992 , Pfeffermann & Bleuer,1993 and Pfeffermann, Bell & Signorelli,1996) by

analysing the so-called pseudo errors given by:

e = y® -y (7.9)

! ’

K
where y, = Kiz y® | If there is no rotation bias, it follows that:
k=1
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£ k 1 &
e® = )’;()"}’, =y® - —E)’z()
K T
_ou® 1 _ (7.5)
- t 0;) ET (yt 0;)
K k=1
o 1 = ® ®
= et( —Fg e' = e, - et

Thus contrasts in  &® are in fact functions of the rotation group sampling errors only.
Assuming that the sampling errors are uncorrelated if the rotation groups do not overlap, and
also that the autocorrelation structure of {e®} depends on the lag but not on the rotation
group, it can be shown that CORR( e®,e®) = CORR(eP,e®)) (see Appendix D1). In this
case, the estimated covariances (or correlations) can be obtained without conditioning on §,
and 6_, (notethat 6, is canceled outin expression (7.5)). Models for the rotation group
sampling errors can be specified by applying simple model identification procedures to the
various pseudo error series, {€®} , k=1,..,K . Hence, after generating a pseudo error
series, its autocorrelation function can be estimated using time series procedures from any
standard statistical software. Note, however, that this procedure depends on the restrictive
assumption that the autocorrelation structure of the sampling errors does not vary between
rotation groups. To overcome this problem, Pfeffermann, Bell and Signorelli(1996) proposed
a method which allows for different rotation group autocorrelation structures.

Consider a two-stage survey in which the rotation groups are composed of mutually
exclusive primary sampling units which remain in the sample for all survey occasions.
Consider, in addition, that the rotation pattern applies to panels of second stage units (for an
example, refer to Chapter 8, section 8.1). In this case let y,(k) denote an elementary
estimate obtained from the k“* rotation group. Note that y® , r=1,2,.. , are based

either on the same panel of second stage units or different panels selected from the same set

of primary sampling units. Following Pfeffermann, Bell and Signorelli(1996) assume that:
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(i) COV(e,_,,,e,")) =0 if k#j Vvt,h , that is, in the case of no overlap between

rotation groups the sampling errors are uncorrelated;

(ii) COV(e,(f,),,e,")) = f,k) vt for k=1,..,K , that is, the autocovariance depends on

the lags and on the rotation groups but not on t.

These autocovariances refer to either the same panel of second stage units enumerated in
different months or to different panels selected from the same set of primary sampling units

(a new panel and its predecessors). Using (i) and (ii) one gets:

COV(e,_,,e,) = v, =

K K

LY (covel ey = Ly 7.6
k=1 k=1

From (7.4) and (7.5), it follows that COW(&%,e®) = C is equal to

® (]
COV(et—h et h’et - t)

1 K
cov(e? - —E e, el - 7(2: e’)
k=1

7.7

K
cov(e®, e - % Y covie8,e?)
j=1

1 K 1 K K
% X COV(ers,e) + — 3037 COVer, &)
j=1

i=1 j=1

Using (i) and (ii), Pfeffermann, Bell & Signorelli(1996) showed that (7.7) results in:

ch - o1 o 1
h Yr X e K E ’Y
2] ® 1 w— o
= |1-2 4 (7.8)
[ X Yr I < Yo
2 1 ® 1 w— o 11w 1 0
= 1-Z+__ + = |1~-_ +
[ X Kz] Tn 3 £y Yh X h K? h
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In addition, using (7.6) and (7.8), it follows that

Saf -y [1og] H ey L

k=1 J;ek

(1) K-1
= Ll_ ]Z‘l: ( );

K
) (7.9)

f 2. 1 K 1 ®
= -+ -

RS Kz]g;%'

4 2"K K
- [ X5 ] Y40 = (K*-K)y, = (K*-K) COVle,,,e)

k=1

Hence, as in Pfeffermann, Bell & Signorelli(1996), the autocorrelation function p, of the

sampling errors can be obtained as:

(K*-K)COV(e,_,,e,)

c® ‘/( K?>-K) COV(e,,e,) (K*-K) COV(e,,,e,.,) (7.10)

COVee,,,e)
COV(e,,e) COV(e, ,,e,,)

In a practical situation, an estimate for the autocorrelation function in (7.10) is
computed using the sample autocovariance function of the pseudo error series. In addition,
using the Yule-Walker equations (see Wei, 1993, p.135) and the estimated autocorrelation
function, the analyst can obtain estimates for the partial autocorrelation function of the

sampling error process as well as estimates for the parameters of time series model.
7.2.3 The Qualitative Analysis

For situations in which neither the individual observations nor the elementary
estimates are available to the analyst, Scott, Smith and Jones(1977) proposed a time series
approach based on a secondary analysis. They employed qualitative analysis to specify the

model holding for the sampling errors. Following their approach, consider a single-stage
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overlapping survey and let y, = E w,y,; be a linear estimator for 6
i€s,
denotes the set of units in the sample at time t. Assume that the conditional covariance

. , where s,

between different units is zero, i.e. that

COV(Y, 1 »¥410,4,6) =0 ,i#j,vh=0,1,. (7.11)
and denote by

COV(Y, 1 1»Yu| 0,4,0) = y(B) . (7.12)

Then it follows that

COVie,,.e,|0,,,6)

cov E Wt-h,i yt-h,i’z wg‘ y{ilet-h’ot

i€s,, Jj€s,

Y WoWw, COVY,, 1,y,10,,.8)  (7.13)

i€ 55,4

1]

v E WiniWa

i€s s,

In addition, WV(e,|#0,) is given by

Ve,|0) = V [Ewﬁ yﬁw,]
i€s (7.14)
= Y wp VO,10)+2 Y ww, COV(y,,y,|6)
i€, i<j€s,

Using (7.11) and (7.12) with k=0 one gets

Vie,16) = Y wi V(3,16)

i€s,

YO Y, wi

i€s,

(7.15)

Note that V(e,|6,) = V(e,,|0,,) since {e} isassumed to be stationary. Putting (7.13)

and (7.15) together results in:
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B Y WeniWa

i€s,(b,,
CORR(et-h ’ et I ot—h ’ 0:) = pe[O(h) = I 3 . (7016)
7(0) E Wy

i€y,

Assuming that y, is an equally weighted estimator and that the weights are held

fixed for all survey rounds, i.e. that w,=w ,it follows that

COV(e, ,,e,10,,,0) = ~v(B) Y, w_, ,w, = v() n)w® , (7.17)
i€,

and also that

Vie,16) = Y wi V(y,16)

i€s,

, (7.18)
= 1@ Y wi = nwiy0)
i€s,
where n(h) is the number of common unitsin s, and s,_, .
Then putting (7.17) and (7.18) together leads to
2
CORR(e, ,€,10,4,8) = py) = XD
vO)nw (7.19)
L CL N NP

where =, is the proportion of overlap between the two occasions and p(h) = -:))% .
Examining the above correlation structure in (7.19), Scott, Smith and Jones(1977)
pointed out that if x, =0 for h > g then p.h) =0 for h > g , suggesting a
MA(q) for the sampling errors. In addition, for panel surveys in which all units are retained
in the sample for all survey rounds it follows that =, = 1 and p.s(h) has the general
form p(h) . In this case the authors suggested adopting the simplifying assumption that

p(h) = p" , which implies an AR(1) model for the sampling errors.
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When the proportion of overlap, w, , is constant for all survey rounds it follows that
P, , = 7p(h) . This can happen either in a split-panel or in a rotating panel survey.
By assuming that the autocorrelation of the sampling errors decays exponentially over time,
that is  p,,(h) o xp" , Scott, Smith & Jones(1977) suggested an ARMA(1,1) model to
represent the sampling error process.
The authors also provided the same sort of analysis for multi-stage surveys pointing
out that in this case the overlap can occur at any sampling stage. Consider for example a

two-stage survey. The value y, for the j % unit in the i™ psu at time ¢ was

modelled as:

Vg =0+ 4y + By (7.20)

where A, and B, are cluster-level and unit-level random effects with zero means and
variances 0,2, and o , respectively. It was assumed that secondary stage units (ssu) within
the same primary sampling unit (psu) are correlated whereas units in different primary

sampling units are uncorrelated. Then, to complete the model specification consider:

() COV(A,,,;,B;) =0 Vihij

v (R)i=i' Vit,h
0 i=i Vt,h

)

(i) COV(A,., ;,4,) = {

_ [ n®i=i'j=j’ vi,h
(iii) COV(Bx-h,'y"Bti’i’) {0 otherwise

(iv) all the other covariances are zero.

Expressing y, as a linear estimator in which the weights are attached to the

secondary stage units yields Yy Y w,y, , where Y Y w, =1 is the unbiasedness
ij€Es, ijEs,
condition. The sampling error is given by
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€ = yt-ot = EZ wﬁiyﬁi—ol = EZW yuj (’EEW
i,jEs, i,j€s, i,jEs, (7.21)
= 2 Wy - Y Wb = Y w0y -

i,jEs, i,jEs, i,jEs,

Using (7.20) and (7.21) it follows that

= 2 ) w;(4;+B) = 3 w4, +ZE w By

ijEs, i€s, i,jEs,
with w, = Y w
Thus,

COV(e,,,e,|9,,,8)

= COV(Z t-h,i thz+Evahy t-hq’EWA +EZ tj a]

i€s,, i,jEs,, i,j€s,

= COV(Ez: t-h,i ,hnz n)+C0V(E t-h,i tht’Ezwnj ﬂJ
i€s, Li€s,

+ COV(ZEEW—hy t-h U’E u)+C0V(EE}:W,,,y t-h, u’zzwul o)
i,jEs ij€s,, i,j€Es,

= Z t -h,i n COV(A: h,i? ) + E wt—h,i E wn_'i COV(At-h,i’an)

i€s,Us, i€s,s,, JEs,
Y ¥Yw, ¥y w,,ConB,, ..4) + YN w,, W, COV(B,, ..B,) .
i€ss,, JEs, i,jEs,Us.,

Using the assumptions (i) to (iv) it follows that

COV(et h? tlot—ho) 'Ya(h) E wt-h,iwu' + 'Yb(h) Z E wt-h,ijwu'j

i €55, ijEs N5,

Denoting

VAR(e,[6) = v, @Y wi + v,@Y, Y wy =82 V1,

i€s, i,jEs,

yields



v

Chapter 7 103

CORR(et—h ’ et l ot—h ’ ot) =p elo(h)

v.(R)

AL
= E WiniWe * ’ EE Win,iWai

S2 i€ s s, S2 i JEs, (5,

AL (M)
- b(th) + =3

S2

(7.22)

b,th

with b,¢h) = Y, w.,,w, and bh) = Y Y W, .w, .
i€s s, iLJE 55,

Although the autocorrelation in (7.22) seems to represent a complex stochastic
process, Scott, Smith & Jones(1977)showed that for some survey designs this function
matches the autocorrelation function of low order ARMA processes. If the samples do not
overlap for h>q it follows that s[)s,, = {&} Vh=g,q+1,.. then

b(h) = b(h) =0 Vh>gq andthesampling error process can be represented by a MA(q)
model. When independent samples of secondary sampling units are drawn from the selected

primary sampling units on each occasion it follows that b,(t,h) = 0 VA >0 . In this case,

Y.(h)

S2

poh) = 227 b.(t,h)

If the overlap between primary sampling units and the weights are constant over time, say
Wy =Ww; Vi ,then b(th) =b and

Y.

2
t

=bp,(h

pos®) = b

Working with the assumption that p_(h) decays exponentially the authors suggested an
ARMA(1,1) model for the sampling error process forany 0<b<1 .

The analysis presented above illustrates that even without an estimate for the
autocorrelation function of the sampling errors the analyst can propose a reasonable time
series model for the sampling error process. Note, however, that the qualitative approach
requires rather strong assumptions about the underlying autocorrelation structure of the

individual units. Before proceeding further it is important to note that the use of a qualitative
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analysis is not confined to cases in which the final model is fitted using aggregate estimates
as inputs. Pfeffermann(1991) employed a qualitative analysis in order to define the model
holding for the rotation group sampling errors in the Israeli Labour Force Survey. Following
Blight & Scott(1973), the author assumed a relationship between individual values given by
¥:=0, =0~ 0.4) + v, , whichinduces a first order autoregressive model for the
rotation group sampling errors. Hence the model for the sampling error was again defined
without the estimation of an autocorrelation function using sample data.
Having discussed the two different approaches to model the sampling error in a
univariate framework, the next step is to introduce procedures to model multiple time series

of sampling errors.

7.3 The Multivariate Case

Denote by 0, = (6,,,..,0,,) a vector of M finite population parameters of
interest at time t. Note that here the indexes 1¢,..,Mt are used to express that M
variables are being modelled concurrently. In this case y,, denotes the individual value
of the characteristic m attime ¢ fortheunit i .Let y, = (y,,,..,),) Tepresent
a vector of survey-based estimates of @, . If the vector of sampling errors is

e, = (e,,..,e,) , it follows that:

yl 0t+et

Assuming that y, is design unbiased then E(e |8) =0 and V(e |0)=E, , where
L, contains the sampling variances and covariances of y, as an estimator of 4, .

In a multivariate framework the main objective is to model simultaneously a multiple
time series of survey estimates in order to get signal estimates for 0, . Following the ideas
described for the univariate case, it seems natural that the analyst should now base the model
identification procedure on the cross-correlation function (Wei, 1993, p-333) of the sampling

Crror series. Before proceeding further, recall from Definition 3.2 that a VARMA model for
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a M-dimensional multiple time series {e,} (with mean vector E(e,)=0 ) is defined as
®(B)e, = 6(B)a, . The cross-covariance matrix function for the Vector ARMA process

{e,} (from Wei, 1993, p.333) is given by:
I'(h) = COV(e,,.e) = E(e,, €/) ,

e,) . The cross-correlation function for the vector

m,t-h?

where {T' (1)}, = 7,.(h) = COV(e

process is defined as:
P () = D]"T () D"

where D, is the diagonal matrix in which the m® diagonal element is the variance of the

m" process. That is:
D, = diag(v,,,(0),,7,4,(0))

The sections that follow introduce the general framework for modelling multiple time series

of sampling errors.
7.3.1 The Quantitative Analysis

When the individual sampling units are available and the survey microdata can be
linked overtime T'(h) canbe estimated via the conditional covariances T, ,(h) ,given §,

and 0,_, , using design-based methods. Consider, for example, the bivariate case where

T,,(h) has the form:
Pelo(h) - I: COV(el,t—ha €y, |01—h’ 0,) COV(el,t_h, e2,| 0t-h R 0:)]

COV( e2,t—h 4 eltl ot—h ) 01) COV(eZ,t-h ’ e2t I 0t—h ’ 0t)

(7.23)

_ COV(yl J1-h ’ylt l ot—h ’ 0t) COV(yl,t—h’yzz) | ot-h 4 01)
COV(yZ,t—h ’yltl gt-h’ 01) COV(y2,t—h ’y2t | ot—h ’ 01) ’

and each matrix cell can be estimated as described in Section 7.2.1.
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Note that, in practice, the estimates in (7.23) are computed for some set of time
points ¢ andlags h . The standard procedure (see for example, Bell & Hillmer, 1990)
is to average them over ¢ to obtain "improved" estimates of the covariances.

In principle, the identification for vector time series is similar to that for univariate
time series. Hence, a suitable time series model for a multivariate process can be identified
from the pattern of its cross-correlation and partial autoregression matrices as in Wei(1993,
p.350-351). Based on the estimated cross-covariance matrices for the sampling errors,
estimates for the cross-correlation and partial autoregression matrices and can be computed
and a time series model to reproduce this correlation structure can be formulated.

In the case of a rotating panel survey, when only the K elementary estimates are
available, K M-dimensional time series of pseudo errors can be constructed from
deviations of the rotation group estimates about the overall mean. Following the same

notation as in Section 7.2.1, a time series of pseudo errors for the k* rotation group is

defined as:

=y -y, = (Y = OF ¥ ) 7.240)

’

K
where y, = -I'(l_ Y P
k=1

Note that if there is no rotation bias and if y_, is an unbiased estimator for 6, , then

) k)
e® =y® -6, for m=1,..,M and

1 K
ey = yP-y, =0 - Y P
K 3

=,
1l

K

0P - 0) - 23 O -0, (7.24b)

k=1

K
Hn 1 3 G
= eP-_Y P =P - ¢,
K =

Assuming that the correlations between sampling errors do not depend on the rotation
groups (although they may depend on the lags and may vary between characteristics) and

assuming, in addition, that if the rotation groups do not overlap the corresponding sampling
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errors are uncorrelated, it can be shown that P®() = PP(h) (see Appendix D2 for
7 details). In this case, the model holding for the rotation group sampling error series {e'
can be specified by applying model identification procedures to each of the (multiple) pseudo
error series {&®} . The sample cross-correlation functions can be estimated using any
statistical software capable of handling multiple time series (such as the SCA, 1986, for
example).

However, as in the univariate case (Section 7.2.1), the assumption that the cross-
correlations do not depend on the rotation group is not always appropriate. To circumvent
this problem, the method introduced by Pfeffermann, Bell & Signorelli(1996), described in
Section 7.2.1, is adapted for a multivariate framework as follows.

Consider, as in Section 7.2.2, a two-stage survey in which the rotation groups are
composed of mutually exclusive primary sampling units which remain in the sample for all
survey occasions. Recall that the rotation pattern applies to panels of second stage units.

Denote by e the error term for the m® characteristic at time ¢ refering to the k%

rotation group. Note that ¢ , r=1,2,.. , refer either to the same panel of second stage
units or different panels selected from the same set of primary sampling units.

Let
CORR(e, ,,e,) = P(h) = D> T()D " | (7.25)

where the element in row m and column [/ of T (h) , denoted v, (k) is given by

K K
Twlh) = COV(e,, ,,e) = COV | L3 eﬁf,-h,izezf*’] . (7.26)
KT K
and
D, = diag(v;,(0),-,0)) . (7.27)

In addition, assume that
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(i) COV(e,,‘f),,_,,,e,ﬁk’) =0 if j#k Vit,h,m,l ,thatis, in the case of no overlap between

rotation groups the sampling errors are uncorrelated;

(ii) the sampling error autocovariances vary between characteristics, depend on the lags and
on the rotation groups, but not on ¢ . That is, COWV(e® ,,el) = &) for

m

k=1,.,K and m,l=1,..,.M .

Using (i) and (ii) it follows that

Yuh) = COV(e, ,,,e,) = COV

I o 1o
ey em, -hy > €
K 121: ™K ; ‘ (7.28)

1 — ¢
X E 'Y;(n;(h)
k=1

Now denote the cross-correlation matrix of the series of pseudo errors by P,(h) ,

where:

P(h) = CORR(e},,8") = (DY) Tqm(dP)™” (7.29)
with

{T? M)}, = COV(Ey, 1 8)) (7.30)

From (7.24), it follows that

COV(&Y),4,87) = COV(ew n-e, .. e -e,) (7.31)

’

with
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® ®
COV(em t-h em - h’elz eu)

k * (k) (k)
COV(e()—h _Eem t-hs € —'E

K (7.32)
= COV(e® 4, e) E cov(ed, ,,ed)
j=1
1 K " 1 K K
Tz E COV(e,,, t—h’elg) + 2 EE COV(&?: h,el?)
K ia K* & 5a
Using (i) and (ii), (7.32) results in:
| o ¥ E 1 K
{rPm},, = va® - “(h) - v;i(h) = 2 )
- 72(] OSSP
(7.33)
f 2
- 1—7(+—] e - LY A8
L Jj#k
( 1
- 1—?] V8B + 5 3 20
L ]#k

To obtain the cross-correlation matrices of the sampling errors note that using (7.28) one gets

]

Y I 3 [(1 URY A0 + L Yool (h)}

& L per (7.34)
K*-K ud ® 5
= h) = (K*-K)y_(h
2o i) = (K=K, )
From (7.34) it follows that
K
(K*-K)T(h) = Y. T8%) . (7.35)

k=1
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‘ The same sort of argument implies that
K
(K*-K)D, = Y, DY . (7.36)
k=1

Now, taking (7.35) and (7.37) into the expression (7.25) for the sampling error cross-

correlation matrix, leads to

K -1/2 X X -1/2
P(h) = [E (D‘?)} [E r‘:th)] [E (D‘é")] . (7.37)

k=1

Therefore the cross-covariance matrices and the cross-correlation function of the
sampling error process can be obtained by averaging the pseudo error cross-covariance
matrices. Consequently, a multivariate time series model for the sampling errors can be
identified and estimates of the parameter matrices can be computed, provided the series of

pseudo-errors are available.
7.3.2 The Qualitative Analysis

This section introduces a framework for modelling multiple time series of sampling
errors based on a qualitative analysis. This is, in fact, a generalization of the ideas presented
by Scott, Smith & Jones(1977).

Consider the case of a single-stage survey and let

Vi = 3 Wi Vo (7.38)

i€s,

be a linear estimator of 6, for m=1,..,M . Assume that, given 0, and 0, :
M)  COV(y, 4 =0 for i #j, vmlrh;
(ll) COV(ym,t-h,i’ylti) = 'yml(h) , V m,l,[,h,i .
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Since

n
]

Felo(h) coV( € € l ox—h s 0t) cov(y t-h 0t—h i 0: I 0t—h ’ 01)

COV(y;-h ’yt | 0[—};7 01) = Fylo(h) ’

then
{Pelv(h)}ml = COV(em,t—h ’ elt | 01—h ’ 0t) = COV(ym,t-h ’ylt l ot—h 4 01) * (7'39)

Substituting (7.38) in (7.39) and using (i) and (ii) yields

COV(em,t-h ’ elt | 0t-h’ 0t)

]

COV E wm,!—h,i ym,t—h,i’; wlg' yhj I 0t—h’0t
JEs,

i€s,,

Y WiniWi COVOY, iV l0,,0) (7.40)

i€ss,,

= 7,7 E W toni Wi

i€s()s,,

As a special case, consider that y . is an equally weighted estimator and that the same
weights are used for all M characteristics of interest. If the weights are held fixed for all

survey rounds ( w_.=w , V m,¢,i ) then equation (7.40) can be simplified to:

COV(em,:—h’elzlot—h’ox) = YiP) Z WotcniWi = Y miP) nmw? , (7.41)

i€ 55,

for m,l = 1,.,M ,where n(h) isthe number of common unitsin s, and s,_, . Then

it follows that
L, = n(w® T() (7.42)

where {I'(h)},, = v,,(h) , as defined in (i). That is, T'(%) is a matrix in which the

elements represent covariances between individual units. Note in addition that

oy

&
Y
b
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COV(emt’emtl 0l—h’0t) = COV E wmu' ymti’ E wmg' ymg' | 0t—h’0t

i€s, Jj€s,

E Wi Wes COVYs Y | 0,150 (7.43)

i€s,

Yom®) Y Wi = V(@) nW?

i€y,

where n is the total sample size on each survey round. From equation (7.43) it follows

that, for the variances,
D,, = nw?D = nw’diag(v,,(0) , - , 7,,(©0) . (7.44)

Putting equations (7.42) and (7.44) together results in:

P, (h) = D, T,,h) D7

(nw? D)™ n(h) w2T'(h) (nw*D)™? (7.45)
- X0 ey - w20

where P(h) = D'>T'(h) D' is the cross-correlation matrix of the individual units.

Similarly to the univariate case, if there is no overlap between the sampling units
(7,=0)for h>gq then P, =0 Vv h > q . The cross-correlation matrix for a
vector moving-average process of order q is zero for lags greater than q (see appendix D3
for details). Thus for single-stage short-term overlapping surveys, in which units are retained
in the sample for q consecutive occasions, a vector MA(q) model should be appropriate for
the sampling error process. The same sort of argument can be used to model the sampling
error process according to different patterns of overlap and the above results can be readily
€xtended for the case of two-stage surveys.

For a single-stage completely overlapping survey it follows that w,=1 and

Pe“,(h) in (47) has the general form P(h) . Assuming that P(h) o< P* | a vector AR(1)

model may be suggested for the sampling error process {e,} . Note that the cross-
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correlation matrix for a vector AR(1) has the form (see Appendix D3):
P(») = PO) (%;} (7.46)

with ® = D2@ D' . The expression in (7.46) indicates that P(h) has a die-out
pattern as in the autocorrelation function of a univariate AR(1) process.
A VARMA(1,1) model could also be used to represent the sampling error process,

since its cross-correlation function can be expressed (details in Appendix D3) as
P(h) = PA)®Y" h=2

It is interesting to note that this dual choice is not available when modelling the
sampling error process from completely overlapping surveys in a univariate framework.

Recall that the autocorrelation function of an AR(1) model is given by

pth) = p" h=>1 (7.47)

3

with p(0) = 1 , and that the autocorrelation function of an ARMA(1,1) has the form
p(h) = p"c h=2 . (7.48)

Comparing the functions in (7.47) and (7.48) it becomes clear that the AR(1) model is a
better choice for completely overlapping surveys whereas an ARMA(1,1) is a more suitable
model for partially overlapping surveys with constant proportion of overlap.

In a multivariate framework there are reasons to favour the VAR(1) model. Foremost,
the univariate model structure implied by a Vector AR(1) model is such that the individual
series follow ARMA(M,M-1) models (see Reinsel, 1993, p.29, Maravall & Mathis, 1994 or
Chan & Wallis,1978). Note that, M and M-1 are the maximum orders for the individual
ARMA models. Particularly, if {®,}, =0 for i#j=1,.,M ,each {e,} series
( m=1,..,M ) would follow an AR(1) model (for an example see Appendix D4). In fact,
this special case mirrors a situation in which the analyst is modelling each series separately
since the off-diagonal elements in the parameter matrix $, represent exactly the lack of

influence of each series on the others. Therefore a VAR(1) model for the multivariate process { e}
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matches quite well with the existing theory for the univariate case.

In addition, two VARMA(p,q) models (with p,q >0 ) can give rise to the same
covariance matrix structure I'(h) . In other words the models can be observationally
equivalent (see Reinsel, 1993, pp.36-39). In this case certain constraints need to be imposed
on the matrix operators ®(B) and &(h) to select uniquely one parameter set from a class
of equivalent structures. Hence some analysts prefer to restrict attention to Vector
Autoregressive models.

In a partially overlapping survey with constant proportion of overlap, the sampling
error process can also be modelled by a VAR(1) model. In this case «, == , which implies

P, (h) = 7 P(h) . Assuming P(h) P" yields P, (h) = x P* . Consequently, once
again a VAR(1) can be used to model the sampling errors.

Consider now the case of a two-stage survey. As in section 7.2.2, it will be assumed
that units within the same psu are correlated whereas units in different psu’s are uncorrelated.

Let y,, be the value of the j” unit within the i* primary sampling unit for

characteristic m attime ¢ . Based on Scott, Smith and Jones(1977), given 6, , ¥,
can be modelled by the following random effects model:
Yo = O + Aps * By (7.49)

where A, is a cluster-level random term with zero mean and variance o, and B,
is a unit-level random term with zero mean and variance o>, . To complete the model

specification it is assumed that:

() COV(A, By =0 Y mlthii'j (7.50a)

v, (h) i=i'm=1v1,h

(i) COVA,, ,, ., A.) = { Y i=1/m#1V1,h
0 i#i’ vm,lth

(7.50b)
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v, i=i'j=j' m=1Vvt,h (7.500)
VI
(iii) COV(B,, ., .,Bj) = 1 YmdM) I=1'j=j" m=1 ¥ 1,k
0 otherwise

Expressing y_ as a linear estimator in which the weights are attached to the

secondary stage units yields =YY WYy Where Y Y w, . =1 is the

ij€Es, i,jE€s,
unbiasedness condition. Then, the sampling error is given by

EZ mtl}ymtq - mt

]

et = ymt - omt

iI,jE s,

DD IR D D) DR (7.51)
ij€Es, ijEs,

= Z; mitij (ymtij - 0mt)
i,jE s,

Using (7.49) and (7.51) it follows that

Ez mnj an]) = E mtl mtz + Ez miij mtl] )

i,jEs, i€y, i,jEs,

with w_. =Y w_. . Hence,

mtij
J€s,

COV(e,, , e, |0

th’t

COV E m,t-h,i mt—hz Ezwmbhy mt—hy’z Iu+zz Itij ln;

i€s,, i,jE€s,, i,jE€s,

COV(E m,t-h,i ml—hl’z lti)

i€s,,

* COV(; m,t-h,i mtht’zz ltlj ltij)
i€y, i,jEs,

+ COV(ZGZ m,t-h,ij m t-h y’z ln')
i,j€Es,

* COV(ZEE m,t-h,ij m t-h,ij? Z E wlty Blaj)'
i,jEs, i,jEs,
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Then
COVe,, . 4,€,19,,,0,)

Y W, 4 W COV(A

i€s\)s.,

+ E m,1=h, i Ewlllj cov(4,, t-h,i’Blu'j)

i€s,Us, JEs,

+ XY Wy Y W, ;COVB, ., . A,)

i€s\s,, J€s,,

+ Z Z m,i-h ywlu) COV(Bm ,t=h, ¥ ’Bluj) ‘

i,j €s,Us,.,

Ay)

m,t-h,i’

Using the assumptions (7.50) it follows that

COV(e,, ,.;» €, 10,.,,90,) {Pe|0(h) Yt =

(7.52)
’ymla(h) E m t-h, 1 'leb(h) Z E m,t~h,ij lty
i€50s,., i,j €55,

Let

V(€n10) = 1O Y Wi * VDY Way = Ve

i€s, i,jE€s,

and

D,, = diag(S.,Sz,..,5%) . (7.53)
The cross-correlation matrix of the sampling error process given  6,,8,_,,0, ,,... is defined
as

-2 1/2

Pe| ") = D, T, D, 3 (7.54)

Substituting (7.52) and (7.53) into (7.54) results in:
’lea(h)_ E m t-h 1 7mlb(h) E E m J-h,ij ltl]
{P,M},, = Al AL . (7.55)

S2 82



r—————__*

Chapter 7 117

From (7.55) it becomes clear that if the samples do not overlap for h>g , then

58, = {D} Vh=q,q+1,.. and P, (h) = 0 . Therefore, as it was suggested for
single-stage surveys, the sampling error process can be modelled by a vector MA(q).
When independent samples of units are drawn from the selected psu’s on each

occasion one gets

Y Wiy =0 VA>O0

ixi e srnsl-&
and

1 ()] E W 1oni Wai
i€sfs
{P,,(M}, = o . (7.56)

If the same weights are wused for all M characteristics, say

Wi =W,=Ww, Vmil=1,. M , equation (7.56) becomes

P, ,(h) = Ezn: Wi Ws PO (7.57)
Lj€s,s.
with
h
(B}, = Yma®
S22

If, in addition, the proportion of overlap as well as the weights are held fixed for all survey

rounds the cross-correlation matrix in (7.57) takes the form

P,,(h) o CP(h)




Chapter 7 118

Assuming

P(i) o P* (7.58)
one gets

P, ,(h) o CcPp*

Based on the above simplifying assumptions a VAR(1) can be used to represent the sampling
error process in a two-stage survey with no overlap between ssu and constant (partial or
complete) overlap between psu’s.

Although the assumption in (7.58) is a bit restrictive, it relates quite well to the theory
introduced by Scott, Smith and Jones(1977) for the univariate case. Regarding the weights,
the above assumptions require an estimation procedure in which no adjustment for non-

response or any sort of calibration is employed.
7.4 The Compositional Case

Let y, = (¥y»»Yu,) beavector of sample estimates belonging to the Simplex S
as defined in Section 6.2. Since each of its components is subject to sampling errors recall

that y  can be decomposed into signal and noise as

ymt=0mt+e

mt ’

m=1,.,M+1 | (7.59)

where @ , is the unknown population proportion assumed to follow a time series model,
and ¢, is the sampling error. Considering the M+1 series simultaneously, (7.59) can

be written in vector form as:

y,=40,+e (7.60)

where 0, = (0,,,..,0,.,,) and e, = (e,,..,e,, ) .Inaddition, it is assumed that
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M+l M+l
E 0, = E Vi (7.61)
m=1 m=1
which implies that
M+l
E e, =0, v . (7.61)
m=1
The model in (7.59) can be rewritten as
e
))ml = om' [1 : fl] ) omtumt ’ m=1’-",M+]- . (7.62)
mit
Applying the additive logratio transformation to the vector y, with components
given in (7.62) produces a transformed series v, = a,(y,) = (v,,,..,V,)’ definedon R¥
which has as its m™ component:

' 0
| v, = log Ym_ | - log [ .6__""_uL. ]
u

| | Y1t ) M1, e
(7.63)
0 u
= log m + log m , m=1,..M
L 0M+1,t ] uM+1,t
The sequence of vectors {v,} , r=1,2,.. isa multivariate time series in R¥ .
From (7.63), a vector model for the transformed series {v,} can be written as:
=0 e 764
with 0, = (0 ,.., 0) , e = (e, ,.., €) ,where 6, = log(0m, / 8y.,,) and
en = log(u,/u,, ) ,for m=1,.,M.
Assuming n, large, recall from Chapter 6 the approximation:
e
log(um) = log [1 + ?t == ﬂm , (7.65)
t
e
Where 7, = .6".'.’ , which are the relative sampling errors.
mt
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Hence e, = log(u,) - log(u,,, ) = &, ~ 8, , canbe interpreted as a contrast of the

mi

relative sampling errors. Substituting (7.65) into (7.63) results in,

yM#l,t M+t

0
Vor = IOg[ L ] = log[ ; i ] + (4, - an,:) . (7.66)

A time series model to describe the transformed survey data {v,} must incorporate
time series models for both {0, } and {e*,} . Hence, the analyst faces once again the
problem of modelling the sampling error process. The issue here is how to estimate the
cross-correlation matrix function of {e,} condition or not on {#,} (if one is working
with the quantitative approach).

It is important to note that expression (7.64) for the transformed series {v,} isof
the same form as expression (7.60) for the original series {y,} . Consequently a design-

based estimate for T',.(h) is denoted as

COV(el.,t—h ’ el: | Ot:h ] 01‘) """ COV(eltt-h ’ eb;t I et'—h ’ 01‘ )

T,.,.() =

_COV( eb;,t—h ’ el: ‘ et‘-h s 0; ) """ COV( el&;,t—h s e)l;t l etth ’ 0;)

which can be estimated via T,,.(h) , the sampling variances and covariances of the
observed transformed series.

Although, in principle, the framework introduced in Sections 7.3.1 and 7.3.2 should
also apply to the transformed model (7.64), the solution is not so straightforward. First and
foremost, the transformed variables v, (m=1,..,M) are not defined at the individual
level. Hence T,.,-(h) cannot be estimated via L, ,-(h) using microdata.

The problems regarding the estimation of the covariance (correlation) structure of the
sampling errors from compositional time series are discussed in the following sections.

Section 7.4.1 presents a quantitative design-based approach for evaluating P,.(h) , whereas

in Section 7.4.2 a method based on pseudo errors is introduced.
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7.4.1 Quantitative Design-Based Analysis for the Compositional Case

As introduced in Sections 7.2.1 and 7.3.1, one way of estimating the autocorrelation
structure of the sampling errors is via design-based methods. In the compositional case,
design-based estimates for the cross-correlation matrix function P,.(h) = D;\? T,.(h) D;\?

can be obtained via  P,.,,.(h) = D,.};. T,.,.(h) D:j;. , where
{P¢'|o-(h)}m1 = COV(em.,t—haelz; Iozth’ot‘) = COV(em‘,t-h’ el:‘ lot_h’ot)
and
D,., = diag[V(ey, |9), ..., V(ex:| 0]

Using (7.66) it follows that COWV(e,, ..., e, |0,,,0,) is given by

e e 14 e
COV| sk - ML | b - Lt 9,_;.,9:)
m,t-h M+1,t-h k M+1,t
_ 1
= 0 COV(em,t-h’ehIet-h’et)
m,t-h "k
1
_e_____e_.._._ COV(em’,_h’qu,:|ﬂt—h’et)
m,t-h " M+1,t (7.67)
1
— -e—-———._ COV( eM+1,t-h ’ elt I el-h ’ et)
M+1,¢t-h It
1
+ -é—-—-———— COV(eM+1,t-h’eM+l,tIet—h’et) :

M+l t-h “M+1,t

Using the model formulation in (7.60) one could be tempted to estimate the
Covariance components COV(e, ,,,e,l0,,,0) ,for m,I=1,. .M V t,h in(7.67)via
COV(Y,, ,-4>Yl0,4,0,) . However, because {y,} isa time series of compositions these
Covariances, known as "crude covariances" (Aitchinson 1986, p.52), give rise to values

which are difficult to interpret. This happens not only because of the unity-sum constraint
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which is inherent of any composition but also because its components are ratios with common
denominators and such that, each ratio has common elements in its numerator and
denominator.

As pointed out by Aitchison(1986, p.64), "All the difficulties arising in the traditional
approach to covariances and correlations between components of compositions come from
a lack of appreciation that to carry over ideas which are highly successful for one particular
space, such as R | into another very different sample space, namely S , may be
completely inappropriate. ... the adoption of a crude covariance structure causes more
confusion about the nature of compositional variability than it removes". For a detailed
discussion regarding the difficulties of interpreting the "crude covariance structure" of
compositional data refer to Aitchison(1986, p.52-58).

Note that, for the compositional case, it follows from (7.61) that sampling errors

e,, are subject to a zero-sum constraint. Hence, the covariances in (7.67) are also subject

to some of the interpretation difficulties pointed out by Aitchison(1986) for compositions. For

example, since

COV(e,, e, +..v¢y,, ) =0

then

COV(e,,e,) + .. + COV(e, ey, ) = -V(e,)

Therefore the approximation in (7.66), which is generally used when modelling series of log-
transformed survey data (as in Section 7.2.1), is not very useful in the compositional case.
In fact, it forces the analysis back to the original Simplex space which incorporates all the
unwanted constraints. Hence, the standard procedure of evaluating the autocovariance
structure of the sampling errors using the design-based covariances of the observed
(compositional) series of survey estimates is not recommended in this case due to the well

known pitfalls of applying standard statistical procedures to compositional data.
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Furthermore, any attempt to estimate T,.,.(h) via

{Fv|0' Y = COV( logy,, ;. ~108Ys.1, 145108~ logyud,;l 0,0, ) (7.68)

would also be quite difficult to interpret because the estimation of such covariances by using
Taylor series methods (see Wolter, 1985, Chapter 6) would also require the computation of
COVQ,, 4>V, 0,) for m=1,..M Vv ¢,k .Itisimportant to emphasize that this
thesis deals with survey estimates, so that thebasis {w,} and the respective compositions {y,}
are defined at the "aggregate" level, instead of at the "unit" level as in Aitchison(1986).
Consider the case of a two-stage labour force survey in which enumeration areas are
the primary sampling units, households are the secondary sampling units and the residents
are the analysis units. In this case w,, is an estimate of a total in a subdomain. If w_,
can be written as a linear estimator in which the weights are attached to the secondary

sampling units and if the weights are the same for all the characteristics, it follows that

i,jEs,

] Woe = 33 Gy Wy (7.69)
|

|

|

|

with ") a, =1, where w,y; is the total number of residents, in the sample of time
TjEs,

t , in the j*® household of the i® enumeration area in the m™ domain. Accordingly,

% E E au'j wm‘tij

: ij€s, Wont
Vi = . = , m=1,2,3 . (7.70)
‘ . Wi Wy, Wy,
2Dy, Way
i,j€Es, m=1

Therefore, for the scope of this thesis, the basis {w,} are vectors of estimated
totals. As a consequence, some of the solutions proposed by Aitchison(1986) to overcome
the "covariance difficulties" of compositional data are not directly applicable in this sample

i survey environment,
| One case of particular interest is the concept of correlation based on the covariances
i of logratios introduced by Aitchison(1986, p.77). He suggested the following logratio

| Covariance matrix to determine the covariance structure of a composition.
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Definition 7.1
Fora M+1- part composition x ,the M XM matrix

{Z} = COVllog(x,,/x,,,) » log(x,/ %) (7.7

M+1
where m,l=1,. .M , x, >0 Vv m and E x,, = 1 ,is termed the logratio covariance

m=1

matrix of a composition.

Although the expression in (7.68) is also a logratio covariance, y, (in 7.70) is not

defined at the individual level and, moreover,

logw,, = log " Y a, iy # XX a, logwyy

i,jEs, i,jE€s,

However, Aitchison(1986, p.86) also provided the following definition for the

covariance matrix of a basis.

Definition 7.2
The covariance structure of a M+1- part basis w is

the (M+1) X (M+1) covariance matrix € of the vector Inw , such that

{Q} = COV(logw,,logw) m,l=1,.. . M+1 . (7.72)

Aitchison(1986, p.86) pointed out that the above covariance structure is perfectly
compatible with the covariance structure for compositions defined in (7.71). In fact
L=AQA" ,where A =[L,,:1,.1.

Note that v_, (in 7.63) can be alternatively expressed as
vmt = log(ymt/yM+l,t) = 1og(u)mt/"vbﬁl,t) = logwmt_logwbhl,t
Hence the covariance in (7.68) can be expressed as a basis logratio covariance

{va- }m= COV(logw,, , ~logw,,, . ,.,logw,~logw,.,, [0.4,0) . (7.73)
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In a survey framework, the estimated total in each of the M+1 subdomains are

random variables. In addition, the population total on each occasion is, in general, estimated

by the survey (it does not come as fixed value from an external source), thus
M+1

E w_, V¢t are also random variables. Therefore, there are no particular constraints
m=1

regarding the components of w, = (w,,,..,W,,, )’ or w, itself. Consequently, the
covariance in (7.68) can be estimated via (7.73) using Taylor linearization.
From (7.73) we get that

{Pvlﬁ' }ml = COV( vm,t—h ’ vlt | ot:h’ 01. )

1]

COV(logw,, , ,~logW,,,, .,,logw,~logw,., [0.,,0)

COV(logw,, ,_,,logw, |0.,,6,)

- COV(logw,, ., ,1ogw,., ,10.4,6.) (7.74)

- COV(log w,,,, ,,,logw, [0, :,0.)

+ COV(log W,,,, ,.,,10g Wy, ,104,8,7) .

+1,2

In addition, from (7.64) it follows that Pe'|0'(h) =L, = L, ,(h) and consequently

P,...(0) = B, (&) = D7 T,,(h) D;i}

b

with
Dv|0 = diag[V(log w,,-log w,,,, , |6),.., V(log w,,-log Wi 10))]

Thus an estimate of the cross-correlation matrix function of {e*} can be computed using

t;
CoV(iogw,, ,,logw, |0,,,0,) v | 7=0,1,2,-
m,l=1,.,M+1 .

(7.75)

The covariances in (7.75) can be obtained via design-based methods using Taylor

linearization (see Wolter, 1985, p.225-227) as follows.
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Let WP = (W s Wy oo Wiy s Wi,y )| Beavector of population totals and

_ p : :
let W, = (W s s Wy s Wio Wy ,,)'  denote the corresponding vector of estimators

based on the sample. Define

G(WEn

(log W, ., l0g Wy, ., ,logW,,.., log WM+1,:)/
[g,(WER), g,(WER) | ) 8od(WEM)Y

as the parameter of interest which can be estimated by

G(w®P)

/
(logw, , 5., logwy,, ,,,logw,,..,logw,., )

[8,(WwP) , &W ), o) ugdWEM)Y

The matrix of mean squared errors is given approximately by (Wolter, 1985, p.226):

E{[Gw ") -GW"MI[Gw*P) -GW"P)]'} = A, Ty5 A, (7.76)
where (T}, = COV(w,w,10,,,0) , i,j=(1,t-h),..,(M+1,r) and the matrix A,
ag.(Weh
is the Jacobian of the transformation with {At},,j = _§‘_(§___2 , I =1,.,2M+2 . An
w,
estimator of (7.76) is given by: !
WGwem) = A, 1“15:!»;') Ai , (7.77)
where
. a8 (wtP)
{At}i'j = a—
W, (7.78)
= diag[lw, sy UWy s, Uwy 1wy 1

and {IA‘SI’;') i = COV(wi,wj |0,.,,0,) . Substituting the covariances in (7.74) by the values
obtained in (7.78) yields an estimate of the cross-covariance matrix of the transformed
sampling errors. Note that, in practice, an estimate is computed for each ¢ and £ .
However, assuming {e; } a jointly stationary process, T,.(h) depends on the lag &

but not on ¢ . For this reason we can average over ¢ the estimated cross-covariances

matrices of lag & to obtain an estimate of T',.(h) (and also P,.(h) ).
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Hence, by representing the transformed variables v, as logratios of the basis
components, a design-based procedure is available for estimating the correlation structure of
the sampling errors. In addition, based on the estimated cross-covariance matrix of the
sampling error process, we can also compute estimates of the partial autoregression matrices
(as in Section 7.3.1). Finally, using the estimates of the cross-correlation and partial
autoregression function of the sampling error process, a multivariate time series model for
the {e, } process can be identified.

One drawback of this method is the amount of computation it requires. Also, in
practice, it may be difficult to link survey microdata over time to estimate sampling
covariances directly. Fortunately, when elementary estimates are available, the cross-

correlation matrices of the (transformed) noise process can be obtained using (transformed)

pseudo errors. In fact, the method introduced in Section 7.3.1 can be adapted to the

compositional case as follows.

7.4.2 Estimation of the Noise Cross-Correlation Matrices Using

Pseudo Errors in a Compositional Case

Consider the case of a rotating panel survey in which K elementary estimates are
available. Let y, be a vector of estimated proportions subject to a unity-sum constraint.
Assume also that the same constraint holds for each vector of elementary estimates y® .

11

In this case, each of its components can be decomposed as

=g, v e® o m=1,. M1, (7.79)

where el is the k™ rotation group sampling error. Considering the series

simultaneously, (7.79) can be written in vector form as:

| y(’k) =9, + e® (7.80)

t ’

® _ ,® ® s .
where e’ = (ey,, ..,ea0y) , With
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M+1

M+l

®
E ymt = E 0",; v t’k ’
m=1 m=1

l which implies that

M+l

Yy e =0, v,k
m=1

The model in (7.79) can be rewritten as

mt

®
Ymi = O, [1 + ZL] =0,ul . (7.81)

Applying the additive logratio transformation to the vector y% in (7.79) produces

the transformed series v® = a_(y¥) = (v?,..,v%) , defined on R , which has as its

m® component (m=1,..,M) :

(3]
® Yome

)

0mtu”lt
V. = log -5 =log| ———nx
Yum+1,e ouq,; Upar,e

. P

( 9 ®
log mi + log [ umt ]

*)
M+1,t uM,l,,
P

(7.82)

1

=

From (7.82), a vector model for the k™ series of transformed elementary estimates can

be written as:

wO =97 v e ® (7.83)

[ 4 ’

with ¢;® = (e;% ,.., e®)Y and e,® =logud/uyy,) ,for m=1,.,M .
From (7.83) it becomes clear that K M-dimensional time series of transformed

pseudo errors can be constructed from deviations of the transformed rotation group estimates

about their overall mean. Following the same notation as in Section 7.3.1, the transformed

pseudo errors for the k“ rotation group are defined as:
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oy . ® “® k G )
€, ® = (élt( ’""éMt( )/ = v(t)—v; = (vl(t) “ Vs v)flt _VM;)/ ’ (7.84)
1 K
where v, = ?E v® . Note, in addition, that
k=1
1 K
g;® = Wy, =P - VP
K k=1
K
k . 1 k .
=00 -0) - =Y (0 -0) (7.85)
K k=1

K

«w_ 1 «® . ® .

= € _—E:er = € - €
K =

From (7.83), together with (7.84) and (7.85), it becomes clear that the framework
introduced in Section 7.3.1 can also be applied to the transformed model. That is, the cross-
correlation matrices of the transformed sampling errors can be obtained by computing the

cross-covariances matrices of the transformed pseudo errors using

K
(K*-K)T, () = Y, TSn) (7.86a)
k=1
and
K
(K*-K)D,. =y, DY . (7.86b)
k=1
Consequently,
K ~1/2 X « -1/2
P () = [z Dg*z] [z I‘(f)(h)] [z D;kz] . (7.87)
k=1 k=1 k=1

It is important to note that the assumptions (items (i) and (ii) from Section 7.3.1) on
which these results are based are still reasonable for the compositional case. This is because
it seems sensible to assume that if the rotation groups do not overlap the transformed
sampling errors are uncorrelated. It also seems appropriate to assume that the correlation

between transformed sampling errors depends on the rotation groups and on the lags, but not

on ¢ .
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Before proceeding further a final issue must be raised. Note that in (7.84) and (7.85) v,

is defined as v, = — E v with v = KL Z v . Using this above definition and
=1

expressing Vv, in terms of the original proportions, leads to

1 Yt
= ® _ m
th = -E’?_:vmt - —E:lg[ ® ]

Yae1,e

1] (7.88)
i

1
K " L.¢
®
H yM*l,t
k=1

log

I
—_—
Q
oQ
—
e
| &
z is
[——
Ni—l
1}

Hence, from this perspective, the transformed series v,, is a function of the geometric
means of the original rotation group estimates of the target proportions.

On the other hand, by assuming that the survey estimator for the original proportions
is obtained by averaging the original rotation group estimates (as in Section 7.2.2 and Section

7.3.1), it would follow that

_Ey(k)
m=m[%w=mg____ (7.89)

yM+1 t
s 73]
= Ede '

which indicates that v_, is a function of the arithmetic mean of the original rotation group

estimates of the target proportions.

The differences between (7.88) and (7.89) are expected to be negligible since it is
known that the geometric mean is approximately equal to the arithmetic mean when the
dispersion is relatively small. If there is no rotation bias, it is reasonable to expect that the

differences between the rotation group estimates are modest.
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Having addressed the problems of how to model the survey estimates in a
compositional framework (see Chapter 6) and how to identify the time series model for the

sampling errors, the next step is to test the proposed modelling procedure in practice.

Chapter 8 presents the results of an empirical study using compositional data from the

Brazilian Labour Force Survey.

r’ T TTTT——
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8 Modelling Compositional Time Series
in the Brazilian Labour Force Survey

This chapter presents the empirical results obtained when fitting a Common
Components Multivariate Model to the Brazilian Labour Force Survey data. The overall aim
here is to illustrate the usefulness of this modelling procedure in a genuine survey situation.

The computer programs to implement the modelling procedures were written using
the Interactive Matrix Language of the SAS System (IML/SAS) and are available in

Appendix E.

8.1 The Brazilian Labour Force Survey and
the Data Set for The Empirical Work

The Brazilian Labour Force Survey (BLFS) collects monthly information about
employment, hours of work, education and wages together with some demographic
information. It classifies the survey respondents aged 15 and over into three main groups -
in employment, unemployed or economically inactive (not in the labour force) - according
to their circumstances in the week prior to the interview, following the International Labour
Organization (ILO) definitions.

The survey targets the population aged 15 or over, living at one of the six major
metropolitan areas in the country. The BLFS is a two-stage sample survey in which the
primary sampling units (psu) are the census’ enumeration areas and the second-stage units
(ssu) are the households, which are completely enumerated. Within each area the primary
sampling units are selected with probabilities proportional to their sizes and then a fixed
number of households is selected from each psu via systematic sampling. The primary
sampling units remain the same for a period of roughly 10 years (as in a Master sample).
New primary sampling units are selected when information from a new population census

becomes available.
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In addition, the BLFS is a rotating panel survey. For any given month the sample is
composed of four rotation groups of mutually exclusive sets of primary sampling units. The

rotation pattern applies to panels of second-stage units (households). Within each rotation

group a panel of households stays in the sample for four consecutive months, is rotated out
for the following 8 months and then returns for another four consecutive months. It is then
dropped from the survey. Each month one panel is rotated out of the sample. The substitute
panel can be a completely new panel or one that is returning after eight months of absence.
Note that the 4-8-4 rotation pattern induces a complex correlation structure for the sampling

errors over time. The rotation pattern is illustrated in Figure 8.1 where, within a rotation

group, common letters denote the same panel of households whereas different letters denote

different panels of households selected from the same set of primary sampling units. Note
that in any given month 75% of the households are in common with the previous month.
The empirical work was carried out using data from one metropolitan area, Sdo
Paulo, covering the period from January 1989 to September 1993 (57 observations).
Approximately 6000 households are visited every month in this area. Data for the years
before 1989 were not included due to changes in the sample design (the sample size was
reduced at the end of 1988). Also, from November 1993 onwards a new sample was
implemented based on the results of the 1991 population census. The quantities of interest
are the proportions of people classified as employed, unemployed and inactive (as defined

in Section 6.2, p.68), and also the unemployment rate (as in (6.41), p.87). Using the monthly

individual observations, the series of sample estimates and their respective estimated standard
errors were computed using the survey’s standard estimators which are based on data of each
specific survey round at a time. For each month two sets of estimates were obtained. The
direct sample estimates, derived from the complete set of data collected at a given month,
and the four elementary estimates, each of them based on data from a single rotation group.
The panel estimates will be used to help identify the time series model for the sampling

errors. Figures 8.2 to 8.5 display the series of sample estimates.
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Figure 8.1 - Rotation Pattern of the Brazilian Labour Force Survey
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In order to understand the behaviour of the series one has to consider the Brazilian
political and economical environment during 1989-1993. In November/December 1989 a
presidential election took place. This was the first president elected by direct vote since 1960.
At the end of 1989 the inflation rate reached around 80% per month. In March 1990 the new
president took over and carried out an economic reform. He stayed in the job for less than
three years, being impeached in 1992. In October 1992 the vice-president assumed the
presidency. During 1989-1993 different economic reform plans were implemented by
different governments and the country’s currency changed twice. A comprehensive analysis
of the labour market in Brazil is out of the scope of this thesis and the issues raised above
were just to illustrate some of the underlying factors affecting the behaviour of the series.
In the following section a time series model for compositional data from the Brazilian Labour

Force is introduced.

In this study the observed compositional time series is defined as the sequence of

vectors

Y. = QYY) 8.1)

where:
y,, 1s the estimated proportion of unemployed people in month ¢ ;
Y,, 1s the estimated proportion of employed people in month ¢ ;

Y,, is the estimated proportion of economically inactive people in month ¢

The estimated unemployment rate for month ¢ is defined as:

Vi
y1t+y2:

r, =

8.2)
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8.2 The Modelling Procedure

In a survey environment the principal aim of the modelling procedure is to improve
estimation of the unobservable signal and its components. Note that when the time series is
obtained from a sample survey it is subject to sampling error. Moreover, in a rotating panel
survey such as the BLFS, the sampling errors are autocorrelated. As pointed out by
Tiller(1992) and Pfeffermann, Bell & Signorelli(1996), these autocorrelations can induce
spurious trends which get confounded with the underlying signal trend when the latter is the
one of real interest. When sampling errors are not taken into account, their autocorrelation
structure may be absorbed into the irregular term or even into the seasonal or trend
components, possibly affecting the inferences about the model.

The model for the BLFS must take into account the special features of the data. First,
it is a compositional time series belonging to the Simplex S$> at each time ¢ . Second,
the time series are subject to sampling errors. Following the results provided in Chapter 6,
the idea is to map the composition onto R? using the additive logratio transformation.
Then, the transformed composition is modelled using a multivariate state-space model taking
into account the autocorrelation between the sampling errors. That is, the multivariate model
for the sample estimates is a combination of the multivariate models for the signal and noise
processes. Finally, the model based estimates are transformed back to the original space.
Before proceeding further, recall from Chapter 6 the following notation and definitions.

As y, in(8.1) is a vector of sample estimates, each of its components is subject to

sampling errors. Hence, it can be modelled as

ymt=0mt + €

mt ’

m=1,2,3 | 8.3)

where §_, is the target population quantity and e, is the sampling error.
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Model (8.3) can be expressed in a vector form as:
yt = 01 + et b

where 0, = (6,,,0,,,0,) and e, = (e,,e,,e,) . Rewriting (8.3) as

mi

Vme = 0’"' [1 ' %] ) 0mtumt , m=1,2,3 @4

and applying the additive logratio transformation to the vector y, in (8.4) results in

|
0 u
v, = log Im | log | -2 ™
y3! 3tu3l
8.5
] |
= log | -Z| +log s , m=1,2
03t ] u3t
The vector model for the transformed series is:
v, = 0, +e (8.6)

WIth v; = (Vlt ’ vzt)/ ’ 0; = (ol‘t ’ 02.1 )/ ) el. = (el: ’ e2: )/ ’ 0»:: = log<0m; / 03;)
and e, =log(u /u,) , for m=1,2 .

Hence the model for the transformed sample estimates, v, , is composed of a

t 3
multivariate model for the transformed signal @, , describing how the transformed
population quantities evolve in time, and a multivariate model representing the time series
relationship between transformed sampling errors e, . Sections 8.2.2 and 8.2.3 present the

models for the signal and the noise processes, respectively. Figure 8.6 below displays the

series of transformed compositions.



Chapter 8 140

BRAZILIAN LABOUR FORCE SERIES ~ SAD PAULO
TRANSFORMED COMPOSITIONS

0.6 1 L -2.0
9

U
E N
M 0.5 Y r —2.5 g
P p ) M
L . X P
o] ‘ L
Y t““ o
M Y
E M
N 0.4 - -30 E
T N
T

Q.3 A -3.5

T T T T T
JAN8S JANSQ JANS1 JAN92 JANO3 JANS4

DATE

— - LOG {EMPLOYMENT /NILF)
*—%—% — LOG (UNEMPLOYMENT/NILF)
VERTICAL LINES = SEPTEMBER 89 ~ 93

Flgure 8.6

8.2.2 The Model for the Transformed Signal o

The transformed signal process {68, } is assumed to follow a multivariate basic
structural model (BSM), in which each of {#f,,} follows a basic structural time series
model, with the model parameters being possibly different across the series. The cross-
sectional relationship between the series comes in via the correlation structure of the system

disturbances. The model for {6,} , m=1,2 is given by

omt = Lmt + Sn:t ’

L] L]

= - (U]
Lmt - 'm,t-1 + Rm,t—l * N ’

. . g 8.7
) Rmt = Rm,t—l + T’r(nz ’

11
x _ - (5)
Sm = ‘Z Sme-t * Mme
i
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where L., is the trend/level component of the unobservable transformed signal §,, |,

R, is the corresponding change in the level,and S, is the seasonal component of

0, - The disturbances n,‘,’,’ , 71,(3 , nf,’,f are assumed to be mutually uncorrelated normally

- . . 2 2 2 .
distributed with mean zero and variances o, , 0, , 6, , respectively.

m’

The multivariate model (8.7) for {6, } has the following state-space formulation:

. 9
6, = H® af)

’

(8.8)

© 0 O ©
o, ™ ot G? L s

where

H? = [1010000000000]@12 ; CYEG)= [Ll: Lz: R1: Rz: Sl: Sz: Sljt—lO Szj:—lo ]/ s

o _ O 6 0 0O 60 6y
‘ % = (0 M2 M Mo M M2 ) s

\ I,
G® = | .. .. ® I,
010x3
and
1 02x11
01
-1 -1 . -1 -1
T® = ® I,
1 0 .. 0 0
| 0,.,, i 0 1 . 0 O
‘ 0 0 1 0_
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The model equations in (8.8) are supplemented by the cross sectional assumption:

that is, the two series are linked via the off-diagonal elements of X, X ,E_ .

8.2.3 The Model for the Noise Process {e, }

The use of a vector time series model to represent the sampling error series is a key
feature of this modelling procedure. The model identification for multiple time series is
usually based on the cross-correlation matrices and partial lag correlation matrices (for
details, see Wei, 1993, p.356).

The correlation structure of the sampling errors, which are unobservable components,
can be estimated using pseudo errors as suggested in Chapter 7. Recall from section 7.4.2
that, when dealing with compositional time series from rotating panel surveys, the cross-
covariance matrices for the noise process {e, } can be obtained from the cross-covariance
matrices of the transformed pseudo errors.

For the Brazilian Labour Force Survey, the estimates for cross-covariances of the

transformed sampling errors were obtained using

K 4
[ Y f;k?(h)] [ ¥ P;*?(h)] (8.9)
r .= L =LY :

K?-K 12

where fg?(h) , k=1,..,4 is the estimated cross-covariance of lag & for the k*

transformed pseudo error series.
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Estimates of the cross-correlation function and partial lag correlation matrices for

{e;} were computed, based on the estimates in (8.9), using a recursive algorithm

provided in Wei(1993, pp.359-362). This algorithm is a vector generalization of Durbin’s
(1960) recursive computational procedure for univariate partial autocorrelations.

A program in SAS-IML was developed to compute the estimates and provide the
corresponding schematic representations (as in Tiao & Box, 1981). In addition, a statistical
test to help establish the order of a suitable vector autoregressive process to represent the
noise series was also carried out. Using the results in Wei(1993,p.362), if IA’,.]. are the
elements of the sample partial lag correlation matrices, then under the null hypothesis that {e, }
is a vector autoregressive process of order s-1 , M. }A’ij(s)]2 is asymptotically
distributed as a X with one degree of freedom. Consequently

X(s) = M f: f: [IA’,.].(s)]z ~ xfw . Figures 8.7 and 8.8 provide the estimates for the
cross—correlalt:ilonj =1and partial lag correlation matrices and their respective schematic
representation together with the p-values for the statistical test.

The form of the correlation matrices and the results for the statistical test indicate that
a VAR(1) can be used to represent the transformed sampling error process. Two other
models were considered to represent the noise process, a VAR(2) and a VARMAC(],1).

Care must be taken when using the results of the schematic representations and the

x* test statistic X(s) above. The asymptotic expression for the variance of the sample
autocorrelations (which is used to construct the schematic representation) is related to the
standard estimator of the cross-correlation matrix, namely the sample cross-correlation matrix
(see Wei, 1993, pp.350), which cannot be computed because the sampling error series is itself
unobservable. The estimates used here were obtained from a different estimator, namely that
defined in (8.9). Although aware of these potential problems, the estimates obtained here
using the transformed pseudo errors provided the only clues for identifying a suitable model

for the error process.
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Figure 8.8
PARTIAL LAG CORRELATION MATRICES

LAG 1 LAG 2 LAG 3 LAG 4
0.422 -0.035 0.094 -0.050 -0.013 0.152 -0.168 -0.102
0.044 0.060 0.099 -0.023 0.144 0.048 -0.004 0.032

LAG 5 LAG 6 LAG 7 LAG 8
-0.054 0.015 0.084 0.164 0.020 -0.134 -0.095 -0.097
0.012 -0.101 0.013 -0.025 -0.035 -0.103 0.025 0.100

LAG 9 LAG 10 LAG 11 LAG 12
0.062 0.045 0.092 -0.015 0.033 0.006 -0.019 0.081
-0.033 0.081 0.079 -0.102 -0.007 0.089 0.088 0.157

SCHEMATIC REPRESENTATION OF THE PARTIAL LLAG CORRELATIONS

LAG 1 LAG 2 LAG 3 LAG 4
+ . . . . . . .

X(S) TO BE COMPARED WITH A x? WITH M? DEGREES OF FREEDOM
(M=2 IS THE DIMENSION OF THE SERIES)

LAG X(S) p_value
1 10.52 0.0325
2 1.23 0.8731
3 2.64 0.6198
4 2.26 0.6881
5 0.77 0.9424
6 1.99 0.7376
7 1.72 0.7871
8 1.66 0.7980
9 0.77 0.9424

10 1.43 0.8390

11 0.51 0.9725

12 2.25 0.6899
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The parameter estimates for the VAR(1) and VAR(2) models were computed via the

same algorithm used to compute the partial lag correlation. For vector moving average

models, the model parameters can be obtained using the corresponding cross-covariance
function. A simple method for solving the resulting system of equations can be found in
Jenkins & Alavi(1981). The parameter estimates for the VARMA(1,1) were computed from
the relation between the estimated cross-covariance function and the parameter matrices as
in Wei(1993,pp.346-347).

The VAR(1) model fitted to {e, } is given by:

ey 0.4497 -0.0187 | | e a, (8.102)
= +
. ~0.2867 0.0773 . a,|

€ €34-1

with

& _ |00001736  0.32 (8.10b)
«~ 10.0003051 0.0052033 |

where the element in bold is the estimated correlation based on the variances and covariance
in the lower triangular matrix.

The parameter estimates for the VAR(2) are:

M [ 0.4497 —0.0187] €11 [ 0.06957 0.0140] €112 a,
= + +
e -0.2867 0.0773| | o7, -0.2617 -0.0072 ers a,,
(8.11a)
with
& _ |00001739 031 (8.11b)
a 0.0003001 0.0052281
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Finally, the VARMA(1,1) has the form:

ey [ 0.7347 0.2414] €11 [ 0.3162 0.2590] a,,, a,
= - +
e -0.9224 -0.2072 ey -0.7666 -0.2749 ay, a,
(8.12a)
with
. . 0.0001723  0.37 (8.12b)
« "~ 10.0003476 0.0051660|

Having defined the candidate models for the noise process, the next step is to obtain

the model for the survey estimates.

8.2.4 The Model for the Survey Estimates

The model for the transformed survey estimates is a superposition of the models
proposed in Sections 8.2.2 and 8.2.3. The general state-space representation of the

multivariate model for v, is given by:

v = Ha

t t ’

(8.13)
o, = Ty, + G,

The configuration of the system matrices together with the state and disturbance
vectors are defined according to the model chosen for the noise process, as presented in
Table 8.1. For details on the state-space representation of VARMA models refer to
Reinsel(1993, Section 7.2).
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Table 8.1 - State-Space Models for the Transformed Estimates
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System BSM +VAR(1) BSM+VAR(2) BSM+VARMAC(1,1)
Matrices
o, (e ey (e ey (e e, ,(-0a)’y
n, (n® ,a) (n® ,a) (' ,ay)
H [H?,1]1 ® I, [H?,1,0] ® I, [H®,1,0] ® I,
T T® : 0 T : 0 0 T : 0 : 0 |
0 ® 0 P % 0 ¢ : I
(0 L 0 Jo :0: 0|
[ ()] T
G G® : 0 GO 0 G 0
........................ .
0 I, 0 1, 0 2
b _9-

For all the above models the covariance matrix of the model disturbances is given by:

)>

0 =V(y,) =
0 : X

a

Once the model for the survey estimates has been put in the state-space form, the
Kalman Filter equations (from Chapter 3, Section 3.3) are used to get filtered and smoothed
estimates for the unobservable components. The application of the Kalman Filter requires the
estimation of the unknown hyperparameters (the covariances X,,X ,X_ ) and the estimation

of the initial state vector and respective covariance matrix.
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8.2.5 The Estimation of the Model and Initialization of the Kalman Filter

Assuming that the disturbances %, are normally distributed the log-likelihood
function of the (transformed) observations can be expressed via the prediction error
decomposition (see Chapter 3, Section 3.4 for details). Estimates for the model covariances
were obtained by maximum likelihood, applying a quasi-Newton optimization technique.
Following Fernandez and Harvey(1990), the constraint that the estimates for the unknown
covariance matrices X, are positive semi-definite was implemented by defining lower
triangular matrices A such that AA’ = X, (see Graybill, 1983, pp.208-209) and
maximizing the likelihood with respect to the elements of A . From the theory of maximum
likelihood estimation it follows that estimates for the original parameters (¢°) can be
readily obtained from the estimates of the derived parameters (¢) applying the inverse
transformation to the maximum likelihood estimates (for details see Cramer, 1989, pp.31-33).
In this case, the numerically evaluated Hessian matrix provides variance estimates for the
transformed hyperparameters (the elements of the triangular matrices A ). The covariance

matrix for the original parameter set was obtained via:
™) =J (e)J'

where J is the Jacobian of the transformation.

A computer program to implement the maximization procedure was developed using
the optimization routine NLPQN from SAS-IML. The Hessian was evaluated numerically
using the NLPFDD routine from SAS-IML which computes finite difference approximations
for first- and second-order derivatives. The program for Kalman Filter updating, smoothing
and prediction is an adaptation of a SAS-IML program kindly provided by Prof.
D.Pfeffermann.

The initialization of the Kalman filter was carried out using a diffuse prior. By this
approach the non-stationary components (o®)’ of the state-vector were initialized with

very large error variances and the respective components of the initial state vector were taken

r’f ' o TS
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as zero. The stationary components (e, e, )’ were initialized by the corresponding

unconditional mean and variance. Following Mittnik(1991), the unconditional state covariance
matrix for a VAR(1) is simply its autocovariance matrix Pil'o = T',.(0) and in the case of

a VAR(2) it is given by
: r,.0) T,.(D)
P o=
17 Q) 1.0
The unconditional variance for the VARMA(1,1) process was obtained solving the equation
vec (P‘{[o) = [I-T®T]" vec( GE,G’ ), from Harvey(1989,p.121), where
® I I

T = and G =
00 -0

Hence the inifialization of the Kalman Filter was carried out with:

ch, : 0

éy), = 030x1 , o = :

0 : P,
where ¢=10° and Pi[ o Wwas computed using the sample cross-correlation and parameters
matrices from (8.10), (8.11) and (8.12). The use of a diffuse prior implies that the first 13
innovations and their associated variances are not included in the computation of the
likelihood. Note that d=13 is the number of non-stationary elements in each of the
univariate models (for details see Harvey, 1989, Chapters 3,4 and 8). This procedure has the
advantage of being computationally simple. Different approaches for initializing the Kalman
Filter are discussed in Harvey & Peters(1984), Harvey(1989, Sections 3.4.3 and 4.2.2) and
De Jong(1988,1989,1991). The estimation procedure was tested by fitting structural models
(as in Chapter 3) to some of the tutorial data sets available in STAMP5.0(Koopman et
al,1995). The results from STAMPS.0 were used as benchmarks, since it is well-known
software designed to analyse time series using univariate and multivariate structural time

series models. Note, however, that it does not allow for sampling variation.
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The following section presents the results obtained when fitting the candidate models defined

in Table 8.1 to the Brazilian Labour Force Survey data.

8.3 Parameter Estimation

The parameter estimates and respective asymptotic standard errors (displayed in
parenthesis) for the different state-space models are presented in Table 8.2. The values in
bold are the estimated correlations. Note that the estimation of the model for the sampling
errors was implemented outside the Kalman Filter as described in Section 8.2.3. As the

seasonal and slope covariance matrices are consistently very small they can be omitted from

the signal model. This implies that the seasonals are assumed to be deterministic and the
slope is assumed to be fixed, giving rise to a local level model with drift and non-stochastic
seasonals for the signal. Indeed, as pointed out by Koopman et al(1995, p.39), when the
number of years considered in the analysis is small it seems reasonable to fix the seasonals
since there is not enough data to allow the estimation of a changing pattern. Besides, the fact
that fixed seasonals are the outcome of estimation is a satisfactory feature of the modelling
procedure. Models containing irregular terms (for the signal) were also tested. As expected,
in the presence of an explicit model for the sampling error, there was no need to include
irregular components in the model for the signal. This followed because all the elements of
their estimated covariance matrix were small and, consequently, were taken as zero.
Regarding the model for the noise process, the choice between a pure autoregressive or a
VARMAC(1,1) model has little effect on the parameter estimates and goodness-of-fit measures
(Table 8.4). Recall from Section 8.2.3 that based on the identification procedure a VAR(1)
seemed adequate to represent the noise process. However, it will be seen later in this chapter
that a basic structural model (with fixed slope and seasonals) plus a VARMAC(1,1) yields

smaller standard errors for the unemployment rate estimates when compared with those from

a VAR(1) or VAR(2).
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Table 8.2 - Estimates for the Hyperparameters
and Respective Standard Errors
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Model £ x 10 £ x107 £ x107
(log-liK)®
BSM+AR(]) "2.64 0.10 7.08 1.00 0.29 -0.70
| (200.40) 099 (19) oy
| 1.48  85.4 25.75 93.61 -0.36 0.90
| 4.26) (30.92) 73) (389) (750) (2000)
= BSM + 277 0.13
AR(1)® (0.93) [0 _] [0 _]
(200.24) 20 878 0 o
| (3.56) (27.11)
BSM+AR(2) £2.69  0.10 r672 1007 | [ <o ]
(200.28) (0.90) 18) 0)
1.55 84.0 24.39 88.44 0.03  0.99
| (3.18) (27.18) L0 G7)] | | @36 (000)
VA%SI}(‘IIAZLM) [2.64 0.0 7680 1.007 [ [ <iom ]
(0.84) (18) 0)
(200.51) 135 845 24.59 88.92 <102 0.08
| (3.67) (28.56) | (70) (376) ] | O (722
=BSM +©@ [2.78  0.12 T
VARMA(1,1) (0.91) 0 - 0"
00035 1.95 87.0 00 00
|(3.55) (27.10)]

(1) Maximum value of the Log-Likelihood

(2) Local Level Model with Drift and Fixed Seasonals for the Signal
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In addition to the models introduced in Section 8.2.4 an alternative basic structural

model (as in Chapter 3, Section 3.7.3) that did not explicitly take into account the sampling

errors was also fitted to the data (see the parameter estimates in Table 8.3).

Table 8.3 Parameter Estimates When Ignoring the Sampling Errors

Hyperparameters BSM
Stochastic Level = Local Level +
Slope , Seasonals Drift +
Fixed Seasonals
£ x10* 4.21 0.19 427 0.21
0.91) (0.90)
439 129.71 4.59 113.18
(3.74) (26.86) (3.79) (28.37)
£ x107 [3.38  1.00]
(18) 0 -
10.42 32.10 00
| (60) (260 |
£ x10° 0.05  0.90 ]
(20) 0 -
0.30 2.29 00
| (460) (1050) |
£ x10°¢ 0.51 1.00
3.0) 0 -
5.23 53.95 00
(5.68) (771.1)
Log-Lik.® " 204.48 204.47

(1) Maximum value of the Log-Likelihood
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The irregular term was removed from the model because the elements of its
covariance matrix were quite small when compared with the respective standard errors,
although it has in some way captured the autocorrelation structure of the sampling errors.
The same happened to the disturbances of the slope and seasonal equations. It is not
straightforward to test whether the variances are zero or not in a structural time series
framework, as discussed in Harvey(1989, Chapter 5). Problems arise when, under the null
hypothesis, the parameters lie on the boundary of the parameter space (which is exactly the
case of testing for null variances). However Koopman et al(1995) pointed out that it is not
unusual to find a variance going to zero. Indeed, when using STAMPS5.0 to fit a basic
structural model to the BLFS data, the resulting covariance matrices for the slope and
seasonal disturbances and for the irregular term were estimated as being zero, confirming the
above results. Hence, the models that will be considered here for further analysis are those

with fixed slope and seasonals, i.e. the models marked with (=) on Tables 8.2 and 8.3.
8.4 Model Performance and Diagnostic Tests

The empirical distributions of the standardized residuals (as defined in

Koopman,1995,p.203) were compared with a standard normal distribution to verify the

assumption that the one-step ahead forecasting errors, i.e. the innovations (v,-v,,,) , are

normal deviates. The Shapiro-Wilk statistic was computed using the UNIVARIATE
procedure from SAS which, also produces normal probability plots. Examination of the
residuals and their autocorrelations revealed no evidence to reject the hypothesis of normality
and suggested no major inadequacies regarding the fitted models. In addition, three measures

of goodness of fit were computed as follows:
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(i) the mean bias in predicting the transformed survey estimates

MB = é vl—vt|t-l

f=dr1 t-d ’

(ii) the mean absolute bias

T

|V, =V |
MAB = t t]e-1
tg;l t-d ’

(iii) the square root of the mean squared relative prediction error

t=d+1 t

2
SQRE = i |:£v’__:";‘):| /(t-d)

Table 8.4, which contains a summary of the goodness of fit measures together with
the prediction error covariance matrix(PEV), shows that the models performed in a similar
way. However, care must be taken when analysing the PEV since for a BSM with dummy
seasonals it does not converge exponentially fast to a steady-state. Note that all three models
have the same number of unknown parameters since the model parameters for the noise
process are computed separately, and consequently are assumed to be known. The errors
when predicting the transformed survey estimates are quite small indicating that all the
models fitted well. Notice, however, that although the model which ignores the sampling
variation presents a slightly better performance it has the clear drawback of not being able
to produce separate estimates for the noise and signal components when the latter is the one
of real interest.

Tiller(1992) compared univariate state-space models that do and do not account for
sampling errors and reported that, when the sampling error was not explicitly modelled, its
autocorrelation ended up in the irregular term leading to a well fitted model. He also reported
that in the presence of a model accounting for the sampling variation, there was no need to
include an irregular term in the signal model. Interesting enough, a model to represent the

BLFS survey estimates (without accounting for sampling errors) does not require an irregular
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term. This can be due to the fact that two series are modelled simultaneously, so that the
series variation is satisfactorily represented through the relationship between their underlying
trends/levels.

Table 8.4 Measures of Goodness of Fit Based on the Innovations

Model® MB MAB SQRE(%

ode QRE(%) PEV x 10

BSM+AR(l) || -0.0041® 0.0209 3.58 ] -
0.0093¢ 0.1264 4.07 6.34 0.24

_8.84 216.12_

BSM+ -0.0040 0.0211 3.59 _ -
VARMA(], 1) 0.0091 0.1260 4.06 6.33  0.24

_9.02 215.04_

BSM® -0.0035 0.0202 3.26 _ -
0.0073 0.1192 3.67 5.32  0.20

_5.74 163.98_

(1) Here the model components are a local level with drift and fixed seasonals.
(2) Model without accounting for sampling variation.

(3) Results obtained when estimating log(emp/nilf).

(4) Results obtained when estimating log(une/nilf).

8.5 Results and Discussion

As mentioned before, the main objective of this modelling procedure was to
improve estimation in repeated surveys dealing with compositional data. Recall from
Chapter 4 (p.40), that the filtered estimate (and consequently the smoothed estimate) for
the signal can be interpreted as a composite-type estimate obtained from the combination
of an estimate based on past data (0,', 1) Wwith the current sample information (v,) .
Recall, in addition, that the smaller the variance of the design based estimate, the closer
the filtered estimate is to the current sample estimate. Figures 8.9 to 8.12 display the
design based estimates and the model dependent estimates for the vector of proportions of

labour market status and the unemployment rate.
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BRAZILIAN LABOUR FORCE SERIES — SAO PAULO
DESIGN BASED AND MODEL DEPENDENT ESTIMATES
PROPORTION OF PEOPLE IN EMPLOYMENT
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VERTICAL LINES = SEPTEMBER 90 — 93
Figure 8.9
BRAZILIAN LABOUR FORCE SERIES — SAO PAULO
DESIGN BASED AND MODEL DEPENDENT ESTIMATES
PROPORTION OF UNEMPLOYED PEQPLE
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Figure 8.10
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BRAZILIAN LABOUR FORCE SERIES — SAOQO PAULO
DESIGN BASED AND MODEL DEPENDENT ESTIMATES
PROPGRTION OF INACTIVE PEQPLE
0.42 T
.40 -
E
S
T
i
M 0.38 4
A .
T L Y
E ~
s z v
Q.36 4 ~3
l\
3 \J
Q.34 4
T T T T T
JANSQ JANS | JANS2 JANS3 JAND4
DATE
MODEL DEPENDENT ESTIMATES
s—s_& DESIGN BASED ESTIMATES
VERTICAL LINES = SEPTEMBER 90 — 93
Figure B.11
BRAZILIAN LABOUR FORCE SERIES — SAQ PAULO
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The model dependent estimates are the smoothed estimates, which are based on

data from the whole sample period, obtained when fitting a basic structural model for the

signal and a VARMA(1,1) model to the noise. The expressions for mapping the

transformed estimates back to the original Simplex were introduced in Chapter 6, Sections
6.3 and 6.4. For all four target quantities the signal estimates behave similarly to the
design based estimates although some of the turning points of the latter were smoothed
out. Figure 8.13 displays the estimated relative errors (defined as the ratio between the
estimated standard errors and the corresponding point estimates). The estimated relative
errors for the model dependent estimates show much less variability and are, in general,

lower than those obtained for the survey estimates.

BRAZILIAN LABOUR FORCE SERIES — SAO PAULO
ESTIMATED RELATIVE ERRORS OF THE UNEMPLOYMENT RATE ESTIMATES
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MODEL DEPENDENT ESTIMATES FROM BSM+VARMA(1,1)
*—%—® DESIGN BASED ESTIMATES
VERTICAL LINES = SEPTEMBER 90 — 93

Figure 8.13

Seasonally adjusted estimates were obtained based on the basic structural model

defined for the signal process. The seasonally adjusted estimates for the unemployment
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rate series obtained under the model were compared with those produced by the X11
procedure from SAS-ETS which is an adaptation of the Bureau of the Census X-11
seasonal adjustment program.

Figure 8.14 displays the seasonally adjusted series produced by both methods.
Note that the model proposed here produces a smoother curve than the X11. This can be
explained by the fact that the model dependent seasonally adjusted values represent mostly
the underlying trend of the unobservable signal, since there was no irregular component

in the signal model due to the inclusion of a specific model for the sampling error

component. On the other hand, the X11 estimates were obtained based on a multiplicative
decomposition for the observed unemployment rate series. In this case, the seasonally

adjusted values comprise the trend/level and irregular components.

BRAZILIAN LABOUR FORCE SERIES — SAO PAULO
SEASONALLY ADJUSTED ESTIMATES OF THE UNEMPLOYMENT RATE
OBTAINED VIA THE STRUCTURAL MODEL AND THE X—11 PROCEDURE
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Figure B.14
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In addition, Figure 8.15 shows that the X11 and model dependent estimates of the
seasonal effects behave quite similarly. This leads to the conclusion that, in this study, the
X11 trend and irregular components have incorporated features from the sampling error
process. Pfeffermann, Bell & Signorelli(1996) had reached a similar conclusion when

analysing the Australian unemployment rate series.

BRAZILIAN L ABOUR FORCE SERIES — SAO PAULO
ESTIMATED SEASONAL EFFECTS OF THE UNEMPLOYMENT RATE

w-HomMMm r>Zouv>mn
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*—t_» X1t ESTIMATES

VERTICAL LINES = SEPTEMBER 90 — 93

Figure 8.15

Figure 8.16 compares the trend estimates obtained when ignoring the sampling
variation with those derived when their autocorrelation is modelled via a VARMA(1,1).
The trend produced by the model which takes into account the sampling error is
smoother, suggesting that the model succeeded in removing the underlying fluctuations
induced by the correlation structure of the sampling errors. Finally, Figure 8.17 displays
the model dependent estimates for the seasonal effects of the original compositions. The
important point to note here is that these estimates were obtained concurrently from a
multivariate model which took into account two very important features of the data,

namely the compositional constraints and the presence of sampling errors.
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BRAZILIAN LABOUR FORCE SERIES — SAO PAULO
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The present study using compositional data from the Brazilian Labour Force
Survey has illustrated the usefulness of the proposed modelling procedure, yielding signal
estimates satisfying the unity-sum constraint. The results appear to show that the
underlying trend obtained from this approach is smoother than that obtained from standard
methods for seasonal adjustment, suggesting that when the sampling errors are not
properly accounted for they end up incorporated into the trend. In addition, the estimated
relative errors of model dependent unemployment rate estimates are in general lower than

those regarding the design based estimates.
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9 Conclusions and Further Research

9.1 Conclusions

This thesis proposed a state-space approach for modelling compositional time series
from repeated surveys while taking the sampling errors into account. The idea was to
combine the existing theory for the analysis of compositional time series with the state-space
formulation of time series models, to improve estimation of population parameters using data
from repeated sample surveys. The most important feature of the modelling procedure is that
it provides bounded predictions and signal estimates of the parameters in a composition,
while satisfying the unity-sum constraint and taking into account the sampling errors.

This was accomplished by mapping the compositions from the Simplex onto the Real
space using the additive logratio transformation, then modelling the transformed data via
multivariate state-space models, and finally applying the additive logistic transformation to
obtain estimates in the original scale. Previous work regarding compositional time series did
not address the problem that, in a survey situation, the series are subject to sampling errors.
On the other hand, the state-space approach for improving estimation in repeated surveys has
never before been applied to model compositional data from overlapping surveys.

Most of the previous work in this area was concerned with improving estimation of
univariate series of proportions like, for example, unemployment rate series. The procedure
usually adopted for such cases was to fit the time series models directly to the original series
of estimated proportions. However, the analysis in Chapter 5 led to the conclusion that it is
not possible to ensure that the signal estimates are always bounded between zero and one,
if state-space models are fitted directly to series of proportions without any transformation.
Because this reasoning extends naturally to series of compositions, a decision in favour of
transforming the original compositional data before modelling was taken here.

The use of the additive logratio transformation to map the compositions from the

Simplex onto the Real space gave rise to the inevitable question of whether or not the choice
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of the reference variable would affect the modelling procedure and corresponding results.
This issue was addressed in Section 6.2, where it was shown that the proposed modelling
procedure is permutation invariant, i.e. whichever permutation of y 1is used to construct
the time series of logratios, the same inferences are obtained when returning to the original
Simplex. Although the emphasis of this thesis was on the compositional case, the framework
introduced in Sections 6.3 and 6.4 is directly applicable for modelling unconstrained
multivariate data from repeated surveys, allowing two or more survey variables to be
modelled simultaneously while taking into account the sampling errors.

Section 7.3 established a comprehensive framework for specifying time series models
for the unobservable sampling error process in the multivariate case, extending previous work
for the univariate case by Pfeffermann & Bleuer(1993), Pfeffermann, Bell & Signorelli(1996)
and Scott, Smith & Jones(1977). In addition, Section 7.4 provided the theory for modelling

time series of transformed sampling errors for the compositional case.

The empirical work using the Brazilian Labour Force Survey data, described in
Chapter 8, demonstrated the usefulness of this modelling procedure in a genuine survey
situation. It proved that the proposed approach could be routinely employed to obtain
improved estimates in large scale surveys, such as labour force surveys. The results of the
empirical work also lead to the conclusion that smoother trends are obtained with a model
which explicitly accounts for the sampling errors, when compared with the results from other
standard procedures. This suggests that methods which do not model the sampling errors
properly may end up propagating their influence into the trend and seasonal components. In

addition, because the model dependent estimators can be viewed as composite-type

estimators, combining past and current survey data, the estimated relative errors for the
model dependent estimates of the unemployment rate were in general lower than those
corresponding to the design based estimates.

One drawback of the modelling procedure proposed here is that although confidence
regions for the original compositional vector can be constructed based on the model

dependent estimates using the additive logistic normal distribution, confidence intervals for
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the individual proportions are not readily available. These intervals could be obtained from
marginal distributions of the additive logistic normal distribution, which can only be
evaluated by integrating out some of the elements of the compositional vector. However, as

pointed out by Brunsdon(1987, p.135), this produces intractable expressions.

9.2 Recommendations for Further Research

Under a state-space formulation, a wide variety of models are available to represent
the multivariate signal and noise processes, which favours a broader use of this modelling
procedure. Therefore a potential extension of this work would be the application of the
modelling procedure developed here to different data sets. Further empirical research could
consider situations where the composition lies on a Simplex with a dimension higher than two
and/or with compositions evolving closer to the boundaries of the interval [0,1]. Another
point regards the Kalman Filter routine employed for the empirical work in Chapter 8, which
might probably be improved by using the diffuse Kalman Filter as recommended in recent
literature.

In addition, better insight on the performance of the modelling procedure might be
gained via its application to simulated data, for which the "true" underlying models are
known. The models considered here can also be extended to incorporate rotation group bias
effects and explanatory variables.

In the view of a more general survey framework, note that the quantitative procedure
proposed for estimating the cross-correlation function of the sampling errors was mostly
based on the pseudo-errors obtained from panel estimates, with the panels pre-defined
according to the sampling scheme. Further research is now needed to extend this procedure
for surveys in which the elementary estimates and corresponding pseudo-errors are not those
pre-defined by the sample selection scheme. For example, the elementary estimates could be
obtained from disjoint sub-samples selected from the original sample, similarly to the idea

of random groups for variance estimation (see Wolter, Chapter 2).
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Another interesting issue regards the seasonal adjustment of multivariate time series.
This thesis provided a method for seasonally adjusting compositional data taking into account
the unity-sum constraint and the presence of sampling errors. However further research is
needed to model sum-constrained series in general, to handle situations in which the interest
lies on the analysis of the basis w instead of the compositions y. For example, statistical
agencies often need to produce seasonally adjusted estimates of industrial production per type
of industry in accordance with the seasonally adjusted figures for the total industrial
production. The problem is similar to that of benchmarking series of cross-sectional data.

One theoretical issue which also deserves further attention is the provision of

confidence intervals for the individual proportions which, as mentioned before, has not been
covered in this thesis. Another theoretical issue deserving further research is that only the
additive logratio transformation and its inverse, the additive logistic transformation, were
considered here, although other permutation invariant transformations that map compositions

from the Simplex onto the Real space could also be considered.
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Appendix Al - The Kalman Filter Equations
Consider the system:
y,=Ha +e (Al.1a)
a,=Ta_ +Gy . (Al1.1b)

By convention define, for (=0 , o, ~ N(&0|0’P0|0) - {e,} and {n,} are
mutually uncorrelated normally distributed disturbances with mean zero and covariance
matrices U, and 0, » respectively. The vectors of disturbances are also uncorrelated with

the initial state-vector o,

Considering &0|o = E(oy | y,) and P0|o = Ve, | y,) it follows that:

&IIO = E(allyo) = E(Tlao + Glnllyo) = E(Tlaolyo) = Tl cAY()|0 ’ (Al'za)
P1|o = E[(“l'&uo) (0‘1"&”0)/ | %1

EU(T, oy +Gymy =Tyt ) (T, 0+ Gy 1y — T, &010)/ | %)
ElT, (0‘0_6‘0|0)(%'6‘o|o)/ T, | %] +G1E(771’1; | ¥0) G,
= T,P,,T: + G,Q,G;

(Al1.2b)

In addition, from (A1.2), it follows that

5’”0 = E(yllyo) =EH o + £1|yo) = H| é\11|0 »

Fi o = EL(¥-5,0) 0 =F110) 1¥]

E[(H o + & - H &) (H e +¢ - H &”0)’ 1 yo)
ETH, () ~&,0) (e, =8 ,) Hy |yl + E(e, €113y

H P, H + U,
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COV(al,yllyo) = E[(ax_&uo) (H, o, +& -H, &1|0)/ | ¥l
E[(al_&llo)(al_&”o)/ Hi |y

= P, H;
Therefore,
A /
@, 0 P, P, H;
Yo ~ N . ’ ,
N Hg,, H P, H P H+U,

Using Result 3.2, yields:

o, =E(e, Iyo’y1)=6‘1|o+P1|oHi (H, P1|0H; +U) " (y,-H, &, o)

P1|1 = V(e |35,3) = P1|o - P1|0H; (H1P1|0H1+U1)_1H1P1]0
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Repeating these steps for £=2,3,.. one gets the general recursion equations in (3.5).
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Appendix A2 - State-Space Representation of an
ARMA(2,2) Model
Consider the following ARMA(2,2) model:
Y=Yy * BYin v €~ b6 + e, (A2.1)

Using Result 3.5, the state-space representation for (A2.1) is given by:

=100, ,
6, 10 1
at = ¢2 O 1 at-l + _61 Et ’
000 -9,
with
Y.
o, = ¢2y,-1_61 6,‘62 €1 ’
_626t
and
Yia
o, = | 92Y,.,70,€,-0,¢,

-0, €

2 “t-1
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Appendix B1 - Equation (5.5)

From the Kalman Filter equations in (3.5), the prediction and updating equations for

the local level model are given by:

0:[:—1 = 0t-1|t—1 ’
2

Pt\t—l = Px—l]t—l + Oy 3

Ve = 0:—11:—1 ’ (B1.1)
2 2 2

Ft[t—l = Pt—l|t—l + Oy +t o = PI|I—1 + o, ’

0:]: = 0t|t-1 + Pt\t-l o, - yAt|t-1)/Ftlr—1 )
2

Pz|z = Pt]t-l - Ptlt-l/Ft|t-1

The Kalman Filter has a steady-state solution if there exist a time-invariant error
covariance matrix that satisfies equation (3.11a) which, in this case, is given by
P=P—-PF'1P+03 , where F-1=p+ g .
Substituting p and F for p and F

-1t t-1e

in (B1.1), it follows that:

A A Py, - Jy)
otlt = 0t|t—1 _t ~ _tlt 1"
P + ¢,
- + P(y, - 01—1[;—1)
t—llt—l P + 02

P A
[1 - P+ 02] ot-llt-l +
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Appendix B2 - Equation (5.13)
Using the Kalman Filter equations (3.5), the filtered estimate for @, is:
&tlt = &t|t-l + Pt|t—1 H' Ftitl-l(yt - yAtlt-l) ’ (B2.1a)
with
&tlt—l = T&t—l]t-l ’ (B2.1b)
y\t|t—1 = HT&[-1|I—1
The steady-state covariance matrix P is the solution of the equation (as in (3.11a)):
P-T[P-PH (HPH'Y'HP|T - GQG =0 (B2.2)
where,
a0
0 =
0 az

Representing the steady-state covariance matrix as:

Py Pnn
b | (B2.3)
Py P,

implies that:

HPH' =p, +2p, +p, , (B2.4)

Substituting (B2.3) and (B2.4) into (B2.2) it follows that the steady-state filter is given by:
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. 10} . 1 P, Py 1 01 10| . (B2.5)
o, = o L —— - o, .
|t 0 B t-1]1-1 P1+2P12 +p2 pn p2 1 yt 0 .3 -1j2-1

Consequently:
b, 1ol [6.. poap ,
| _ -1]1-1 . 1 1 P1a 0y -
] g 7 y = Byl
[e“‘} [0 le [et-llt-l:l p1+2P12 +D, [p12+p2] d t -1 1}-1

. Py * Py
P+ 2p, + D,

D>

[y, - :ut— Bet 1|t1] ’

te T Vel
(B2.6)

Dy * Py _ b
D, + 2P12 + D, [yt t 1|2-1 Bet-1|t 1]

>

3]

1] = Bet—llt—l +

Because,
P, * P =1 - by + Py
Py *2py Dy Py *+2py, + D,
+ +
denote W = D1 " P and 1 -w=_F2"Po .
Py + 2D, D, Py + 2D, * Dy

Therefore,

0:]: = (1 - W)at—llt—l * Wyt BWet -1fe-1 ’

éx|t =B Wét—l]t—l +(1 - Wiy, - (1 - W)0:-1|t-1

a8 - -
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Appendix B3 - Equation (5.14)

From equations (5.13) it follows that:

by, = (1 - W)L - Wb

a2t Wl BWeé .1+ Wy,

BWIBWE ., + (1 - W)y, - (1 = W)b,,,]

(1 - W)[(l - W) + BW]9,_2|1_2 - BW[(I - W) + BW]é;-2|g-2
+ Wy, + W(l - W) - By,

(1 - W)[(l - W) * BW]{(I - W)al-3|t~3 + Wyt-2 - BWét—3|t-3}

“BWI(L - W) + BWI{BWé 5,5 + (1 =~ W)y, - (1 - w)b 5 ,}
+ Wy, + W - W) - B)y,,

[(1-W) +(1-WPBWIh ., +[(1-W)y+BW(I-W)Wy,
-BWI(L - WY+ BW(L - W)IE, ., - B2W2[(1 - W) + BW]é_,,,

“BWI(L - W) + BWI(L - W)y, - BW(L - W)I(L - W) + BW1h,,,,
+ Wy, + W(l - W)L - B)y,,

[(1 - W)Y +2(1 - W3BW+ W (1 - W)]h
[-BW( - WY -282W2(1 - W) - BW3]e,,

+[(1 - WYPW+ W2 (1 -W)-8W(A -W) -W1y,
+ Wy, + W - WY1 - B)y,,

1-3|1-3

(1 -W(1 -WY +28W( - W) + 32W?]8
~BWI(1 - WY +28W(1 - W) + B2W2]é,,,,
+ W(l - w)(1l -B)IL -wW( -y, + Wl -wW)1 -B)y,, + Wy,

t-3|1-3

A-WH(L-W)+BWPB,,, ~BWIL-W)+BWPé,,,
+ W - W) -8)[(1 -W) +B8W]y, + W - W)(1 - By, + Wy,

(1 -W)(1-W)+BWI'6, - BWI[(l - W)+ BW]'e,
-1

+ Wy, + W(l - W) - 3)2_: [(A-W)+BWYly,.
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Appendix B4 - Final Expressions for 5, , p, and W

Using relations (5.17) and (5.18), the solution for the system of equations (5.16) is

given by:
T R (B4-12)
‘ 2(8 - 17 ’

Py = -Bp, + Bau (B4.1b)

2 2
P o26pi +4p, B, +Bpi ~2p, B0 + B0 - 0up, ~26(0%) (B4.19
o

Letting o2 = 742 , allows p, tobe expressed as:

o= (1+382-48)-B-1) VA +28+47+1 (B4.2)
b 2(8-1) ’

because the other expression in (B4.1a) would imply pD, - ph < 0, for 18] <1
and 7 > 0 , in disagreement with (5.17).

Defining p, as

5 - | (1+362-46)-(B-DVF+28+47+1 (B4.3)
‘ 2(8-17 ’

it follows that P Py and p, can be expressed as

pl = 0'3 p"l , (B4.3a)
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D = _B o_:pl + BU: = 03(_Bp1 + B) = 6: plz > (B4'3b)

1 - ~ -
p, = L (25?260 b 4B B, +610)' P
Ua
_ 27 22 ~ 2 N2 N0 2,2
26%(0)’ P, B - (@)’ B, - 26’ | (B4.30
= UZ[ P~12 - 28p, +4B8p, + szf - 2321’1 + B - P, - 28]
= 0‘21 P,
In addition, it becomes clear that W can be written as:
W = Py * Py _ 0.P, + %Py - _ P, +~ﬁ12 _ (B4.4))
Py *2p, *+ D, o.p, + 202]712 + (I?,p'2 by *+ 2P, + P,
Hence by dependingon p, , p,, and p, , W isinturna functionof B and 7 .
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Appendix C1 - Equation (6.8)
~ -1
log(u,, ) =14, + Op(n, )
The following proof is based on Bell & Hillmer(1990).
Note that gz = Em }’,,,,0_—___0,,,, is the relative sampling error of the estimator
y . - Therefore ™ ™
mt
- Vme ~ emt
E(@,l6,,)=E|——=|6_,|=0 , (C1.1)
emt
if ¥, is design-unbiased for 0., > and
-0 Wy, -6 |6 14 0
via, 0-v [ 2m Onmle | - YOu OuelO) _ YOm0 (C1.2)
O e 6 62
mt mt

When estimating a population mean, it is often true

VO l0,) < X, (C1.3)

nl

where p  is the sample size at time ; and K is some constant.
Equation (C1.3) can be expressed alternatively as

Vil ) = O@) (C1.4)

meaning that v(y |6 ) is of roughly the same order of magnitude as 5, . This result
is based on the theory of simple random sampling, although this relation can often be
accepted as valid for other sample designs.

Note that (C1.2) together with (C1.3) imply that:

V()’m|0m)<K/”t< K

2 - 2 Y
omt omt omt n

v@,,|6,,) = , (C1.5)

!
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then
v@,le,)=0@") |, (C1.6)

provided 6 _, is bounded away from zero.

Putting (C1.6) and (C1.1) together, results in:
V(8,,16,) = E(Gy|6,) = O(™)

Now, using Theorem 6.2.1 from Wolter(1985, p.222), it follows that if

E(a]9,,) = O(n™) (C1.7a)
then

i, = O,(n ") . (C1.7b)
Therefore,

Uy, =1+ @, =1+0m") . (C1.8)

Wolter(1985, p.223) provides the Taylor approximation for a continuous function

g() of a random variable u# around a as follows:
gw) = g(a) + g’(@)(u-a) + R(u,a) (C1.9)

where g’(a) is the first derivative of g(.) evaluated at a and R(u,a) is the

remainder series.

In addition, theorem 6.2.2 from Wolter(1985, p.223) states that, if
u=a-+0,0) , (C1.10a)
then g(u) can be expressed using (C1.9) with

R(u,a) = O,(b)) . (C1.10b)
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Therefore, using (C1.9) and (C1.10) for the case in which

gw) = log(u,) = log(1 + 4,) = log(1 + O,(n,"*)) ,

with a=1 and O,®,) = O,(n, ") , it follows that

log(1) + 1 (u,,-1) + Op(nt_l)

me u,,=1

log(u,,)

0+u, ~1+ Op(n,'l)

1+d,-1+0(n")

U

+0(n)

Which proves expression (6.8).



190
Appendix C2 - Equations (6.45a) and (6.45b)

E[y,|D] and V[y,|D]

Following Lindley(1965, pp.134-135), consider a function z = g(x)
of a random variable x such that E(x) = . Assume that the function g() is
differentiable up to a second-order and assume in addition that y(x) is finite. The Taylor

approximation for E[z] = E[g(x)] 1S given by

E[Z] = E[g™)] = gw) + 0.5g(w) V(x) , (C2.1)

and an approximation for the variance has the form

Viz] = VIg®] = [&'WT V) . (C2.2)
Let

X, = [z_j:+1] . (C2.3)
Then

E[x,|D] = E [_zlﬁt |D:| +1 (C2.9)
VIx,|D] = V [%w} : (C2.5)

Now noting that v, = gbx) = x,'l and also that g/ x) = - x? and g’ ) = 2x7°
it follows, by putting (C2.1) to (C2.5) together,that
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E[y,|D] = E7'[x,|D] +

- 02:
8 Vg 1P (C2.6)
E|ZID| +1[ + X

1t

and

VIy,|D1 =~ (-Elx,|D1?)* VIx,|D]

- (C2.7)
02[ 02t
= E|ZD| +1( V|Z|D ,
01! olt

as in Chapter 6, Equations (6.45a) and (6.45b).
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Appendix D1 - Section 7.2.2

CORR(¢%,6®)=CORR(e®,e)

A pseudo error is defined as

e® = )’z(k) -y, (D1.1)

where y, = = Z y(") If there is no rotation bias, it follows that:
k 1

1 K
&’ = yP-y =" - =Y "

K =
1 K
= 0°-0) - X 00 - 6) L
k=1
A k
= eto_?; t() _ ’() -,

From (D1.2), cowe®, e®) isequalto
coviel,-e,, el -e) = COV(e®) - _E e, e® "T< Z e®)
K
= COV(e5, ) 2: cov(e,e”) (D1.3)
j=1

1 K 1 K K
-2 2 CoVeh,e®) + = T Y Coveh,e)
j=1

K2 i=1 j=1
It is assumed that

i) cowvel,eP) =0 if i=k vr,h , thatis, in the case of no overlap between

rotation groups the sampling errors are uncorrelated;

(i) covel,e) = cov(el,e®) v t,h for jk=1,. K ,thatis, theautocovariance

depend on the lags but not on the rotation groups.



Appendix D1 193

Using (i) and (ii), results in:
COV(e,(f,), € > e’(k) - et) B [ te % ] COV(e!(fl)l ’ e‘(k)) . (D1.4)
Also, assuming {e®} vk stationary,

cov(e®-e,el-e)

® ®
COV(e. n-e, ,, 1€, )

(D1.5)

1
[1 - ’IZ] covie®,e®)

Since

cove® e®
CORR(&%,e%) = (e @)

b

1 1
cov(e® e®)? covie®,e®)?

using (D1.4) and (D1.5), it follows that

CORR(e®.,eP)=CORR(e®,e®)
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Appendix D2 - Section 7.3.1
k k
CORR(&",,&®) = CORR(eY),, e
CORR(&%,,&®) = PAn) = (D)™ T8y (9™ (D2.1)

with

{rPm)},, = COV(&? .., &)

’

and

D® = diag(VAREY), .., VAR(e%))

Note that, if there is no rotation bias and if Y., is an unbiased estimator for 0. > then

® _ ,® -
e = Ym -0 for m=1. M and

1
& = yP-y, =0 - =Yy
K
1 K
= 0P -0) - L3 0P - 0) (02.2)

K 5

o Ly o _ ®
e —_k_; e, =¢€> -e,
Then (D2.2) implies that

cov(e®,, &) = cov(e®,-e,,,e"-¢) . (D2.3)

Using the properties of covariance matrices of random vectors (see Reinsel, 1993, p.13) the

covariance in (2.3) becomes:

CoV(&s, &) = CoVely,e’) - covied,e,) 2.4
- COV(e,_,,e?) + COV(e,,,e,).

It is assumed that

@) cowve?,,e®) =0 if ixk vrh , thatis, in the case of no overlap between

rotation groups the sampling errors are uncorrelated;
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(ii) the sampling error autocovariances vary between characteristics and depend on the lags
but not on the rotation groups, that is, COV(efk),,,e,k)) = COV( ef'),,,ef‘)) = I‘(f)(h) Vit,h
for i,k=1,..,K

Using (i), (ii) and properties of the covariance of random vectors (see Reinsel, 1993,

p-13) one gets:

cov(e®,,e®) =1m (D2.5)

K
cov(e®,e) = COV(ef’f),,,_Ee(")) - 71( 3" COV(f, €)
=

(D2.6)
1
= _TI';(® ;
Z e (M)
1 K X
COV(e,_,,e,) = COV(T{}:ef?,,, Ee()
=+ (D2.7)
1 = - ® K r® )
= — cov(ed,, e? = T,
K2§J=zl ( t-h t K2
Substituting (D2.5)-(D2.7) into (D2.4) results in
P = cov(e®,, &) - [171(] rem (D2.8)
In addition, D¥ = diag(VAR(ED),..,VAR(eY)) with
VAR(e®) = (1-1/K) VAR(e®) . (D2.9)

Then, from (D2.8) and (D2.9), it follows that

IP(h) = CORR(E®,, &)

1 -12 1 1 -12
[1-7(] (DP) 2 [1—7(] o) [1?] (DY)-17

= (D?)? ®m) (D¥)? = CORR(eF,,e®)
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Appendix D3 - Cross-Covariance and Cross-Correlation
Matrices of Vector ARMA Models

The following results can be found in Reinsel(1993, Chapter 2), Wei(1993, Chapter
14) and Liu(1986, Chapter 5).

Let z, = (z,,2,,2,) With r=+1,+2,. bea
M-dimensional jointly stationary real valued process so that the mean f( z )=E(z) is
constant for m=1,.. M , and the cross-covariance between 20 1oh and z, for all
m,l=1,..,M arefunctions only of thelag 4 . The cross-covariance matrix function of {Zt}

is given by:

I (h) = COV(z,,,2,) = E(Z,, Z))

where 7, =z, - E(z) and {Tm)},, = v,.(h) = COV(z, ,4:2,) -
The cross-correlation matrix function for a vector process is defined by:
-1/2 ~-1/2
P() = D, (h) D, ,

where D, is a diagonal matrix in which the m™ diagonal element is the variance of the m®

process. That is

D, = diag(y,,0), 7,00
Y, milP)
[Y,mm(®) (01"

and (P (h)},,, = p,(h) =

Note that, since

'Yzmz(h) E[(Zm,;-h _E(Zm))(zu) _E(Zz))]
E[ (Zz; —E(Zl)) - (Zm,,_h —E(Zm) ) ]

');lm(_h)
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it follows that
T () =T(-h ,

P = P(-h)

A vector autoregressive moving average model of orders p and q (VARMA(p,q)) for
a M-dimensional multiple time series {z,} (with mean vector E(z,) ) is given by
®(B)Z, = 6(B)a, , where Z =1z, - E(z) ,
®B)=1-%B-. -¢,B",
6B) =1-6B - .. -6 B? and a, isa M-dimensional white noise random vector

with zero mean and covariance structure:

Y h=0;

a

E(a,_haf) =
0 A#0.

For a Vector MA(q) process
Z,=(I-68B-. -5B%a, |, (D3.1)
it can be shown that

q-h ,
,20: 6] Ea 6j¢h h=0,...,q )
=
T, h) = (D3.2)
0 h>q,

where 6, = -1 . Note that the cross-covariance cuts off after lag q. Therefore the cross-

correlation matrix for the Vector MA(q) process in (D3.1) is given by:

Ph =0 Vvh>q
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For a Vector MA(1) process one gets

-h
Y 5 I, 4, h=0,1,
j=0
r,(h) = (D3.3)
0 h>1,

with
ro-==x,+é I, o,

(D3.4)
r() =-c,o .

Then it becomes clear that the cross-covariance and the cross-correlation matrix functions for

a Vector MA(1) process cut off after lag 1.

The general Vector AR(p) process is given by
(I-%B-. -%B)Z =a, . (D3.5)

The cross-covariance matrix of (D3.5) is

p
Y r(-N®; + L, h=0;
Jj=1
(D3.6)
rm=3 ,
Y I,G-He; h=1,2,...
j=1

For a stationary Vector AR(1) process

r(-)& +x, h=0, 3
I - (D37
I (h-1) & h>1,

yielding
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(T =T(1y® +I, =TI 0% +E,,
r) =r, 04,
r, =T0% =TI0%,

A

(D3.8)
| Ik =T 0",
which implies
- D;''r (0 D;"” D\*&}" D" (D3.9)
= PO (@) h=1 ,
with (&;)" = D?%/"D]"? |
The cross-covariance matrix of a Vector ARMA(p,q) process is given by
d / { 7
E I‘z(h_]')‘p] - E %_hzaﬁj h=0,...,q N
j=1 j=h
(D3.10)
=1 »
Y T (h-pE; h>q,
j=1
with (B) = ®(B)'é(B) .
For a stationary Vector ARMA(1,1) process
1
rG-D® -3 ¥.,L8 h=0,1,
L) = i=0 (D3.11)

I (h-1) ¥ h=>1,

yielding
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([ T,0 =T,(1)® +X, -¥E,8
r( =Tr,0¢ - I, ,

(D3.12)
rQ =rme,

A

7h-1

r®=rG-ne =T,0H% ,

which implies

7h-1

D;IIZ Pz(h) D;1/2 = D;IIZ PZ(I) (I>1 D-1/2

K4

P

D;uz r,(1) D;1/2 Dilz q)ih—l D2 (3.15)

k4

« h-1

Pz(l)(q)l) ’ h=2 H

« (h-1 12 x /h-1

with (&)= DI* !

-1/2

D,
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Appendix D4 - Univariate Models Implied by a Vector
Autoregressive Model

Let Z, = (24,23 2y) with s=+41,42,.. bea
M-dimensional jointly stationary real valued process.
The general Vector AR(p) process for a M-dimensional multiple time series {z,}

(with mean vector E(z,) ) 1s given by
2B)Z, - a, (D4.1)

where Z =z -Ez), B =1-%B - .. - B’ and a, is a M-dimensional
white noise random vector.

To obtain the univariate representation of Z._ (m=1,..,M) express (D4.1) as
Z =[2®B1'a, = [2B)|"'® B)a, , (D4.2)

where |e| denotes determinant of a matrix and ¢ *(B) is the adjoint matrix of §(B)
( see Reinsel, 1993, p.29, Maravall & Mathis, 1994 and Chan & Wallis, 1978).
Multiplying both sides of (D4.2) by |$(B)| results in

|®(B)| Z, = ®*(B)a, . (D4.3)
Writing the relation (D4.3) as
Y(B)Z, = EZB)a, , (D4.4)

it becomes clear that (D4.4) is an alternative Vector ARMA representation in which the AR

coefficient matrix is diagonal.
As an example (from Liu, 1986), consider the simple stationary bivariate AR(1)

model (1 - ®B)Z, = a, with

¢11 ¢12
$ =
! [¢21 ¢22]
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Note that:
1 _¢1lB _¢1zB
. @B = |(I - ®,(B))| =
(l) - ¢21B 1- ¢22B

(1_¢1IB)(1_¢22B) - ¢12¢21 B? >

1- ¢2zB ¢1zB

¢21B 1 _¢uB

(ii) ®*(B) =

Substituting (i) and (ii) in (D4.3) yields

1-6,B -¢,,8 [a,,] (D4.5)

Z
[(1-¢,,B)(1-¢,B) - ¢,¢ B2][ “] =
1t 22B 12721 Z, a ¢21B 1- é, 2B a,

4

Thus, each series of a bivariate AR(1) model follows an univariate ARMA(2,1) model. Note

that if ¢, = ¢, = 0 , (D4.5) becomes

(1-¢,BX1-¢,B)Z, = (1-¢,,B)a, ,
(1_¢11B)(1-¢223)Zzt (1_¢11B)a2t s

resulting in

(1-¢,B)Z, = q
(1-¢,B)Z,

"
1)

Hence, if é; (i#j) , each series would follow an AR(1) model.



203

Appendix E1 - SAS/IML program for Identification of

Multiple Time Series Models for the
Sampling Error Process

/* program errormul.sas ====—=—-—--- - - ee— e e cce oo —————

computes the autocovariances, the crosscorrelationms,

the autoregression and partial lag correlation matrices of a
multiple time series process of sampling errors. It also
computes preliminary parameter estimates for Vector AR(p)

options linesize=72 ps=58 nodate;
options mprint symbolgen;

/* the Brazilian Labour Force Survey is a rotating panel survey
in which 4 panels are enumerated per month. Each of the following
data sets contains the series of transformed pseudo-errors for
a specific panel */

filename
filename
filename
filename

inl
in2
in3
in4

’c:/denise/data/pseudol.dat’;
’c: /denise/data/pseudo2.dat’;
’c:/denise/data/pseudo3.dat’;
'c:/denise/data/pseudod.dat’;

/* files with the subroutines for model identification
and parameter estimation */

filename identmul ’‘c:/denise/sas/identmul.mac’;
filename estimvar ’‘c:/denise/sas/estimvar.mac’;

/* Reads the transformed pseudo-errors for a given
rotation group. The values are multiplied by 1,000 to
increase the number of significant digits when caculating
the autocovariances */

$¥MACRO READ;

%do rg=1 %to 4;

data pseudoé&rg;
infile iné&rg;

input year month panel $ peemp peune;
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peemp = peemp * 1000;
peune = peune * 1000;
%end;
%$MEND;
%$READ;

TITLEl ’‘BRAZILIAN LABOUR FORCE SURVEY';

TITLE2 ’IDENTIFICATION OF THE TIME SERIES MODEL’;
TITLE3 /‘FOR THE TRANSFORMED SAMPLING ERRORS’;
run;

PROC IML;
* RESET LOG; /* use this option if you want to have the results
printed in the .LOG . in this case no .LST wil be created #*/

$MACRO MATRIX;
%¥do rg=1 %to 4;

/* Inputs the bivariate series of the pseudo errors
(per rotation group) into IML */

START READDATA ;
USE PSEUDO&Irq;
READ ALL INTO RG&rg VAR {PEEMP PEUNE};
CLOSE PSEUDO&rq;

FINISH READDATA;

RUN READDATA ;

[Rkkkkhhkhkkhhkkhhhkhhhhkkhhhhhkhhhhhkhhhhkhhhhhhkhkkhkkkkhkkkkk
* The autocovariances are computed for each rotation group andx*
*then averaged to produce the autocovariances of the sampling *
*error series. Note that the autocovariance of the sampling *
*errors is equal the sum of the autocovariances of the pseudo *
*errors divided by (k*2 - k), where k in the number of panels *
****************************************************************/
/* calculates autocovariances matrices of lag = 0 to 24,

the autocovariance is defined as

E[(y_t - ymean t)(y t+h - ymean_t+h)’] */

START AUTOCOV;
TT= NROW(RG&rg); /* length of the series */
M = NCOL(RG&rg) ; /*dimension of the series, in this example M=2%*/
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GAMMA&rg = J(M*24,M,0); /* vertical concatenation of gammal to
gammaz24*/

GAMMAT&rg = GAMMA&YXg;

MEANRG= RG&rgf:,];

VECMEAN= REPEAT (MEANRG,TT,1);

CENTER = RG&rg - VECMEAN;

DO H=0 TO 24 BY 1;

CENTER1= CENTER[1:TT-H,];
CENTER2= CENTER[H+1:TT,];

IF H = 0 THEN DO; /* note that peemp and peune have been
multiplied by 1000 */
GAMMAO&rg = (CENTER1' * CENTER2)/(1000000#TT) ;
END;
ELSE DO;
GAMMA&Yg[M* (H-1)+1:M* (H-1)+M,1:M] =
(CENTER1‘**CENTER2) / (1000000#TT) ;
GAMMAT&rg[M* (H-1)+1:M* (H-1)+M,1:M] =
( (CENTER1**CENTER2) / (1000000#TT) ) ‘;
END;
END;
FREE MEANRG VECMEAN CENTER CENTER1 CENTER2;
FINISH AUTOCOV;
RUN AUTOCOV;

%end;
$MEND;

$MATRIX;

/* computes de average of the pseudo-errors autocovariance

matrices note that k”2 - k = 12 for the Brazilian Labour
Force Survey (K=4)%*/

START MEANCOV;

GAMMAO = ( GAMMAOl + GAMMAO2 + GAMMAO3 + GAMMAO4) / 12;
GAMMA = ( GAMMA1l + GAMMA2 + GAMMA3 + GAMMA4 ) / 12;
GAMMAT = ( GAMMAT1 + GAMMAT2 + GAMMAT3 + GAMMAT4) / 12;
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FREE GAMMAOl1 GAMMAO2 GAMMAO3 GAMMAO4 GAMMAl GAMMAZ2 GAMMA3 GAMMA4
GAMMAT1 GAMMAT2 GAMMAT3 GAMMAT4;

GAMMA1 = GAMMA[1:M,1:M];
GAMMA2 = GAMMA[M+1:M+M,1:M];

print gamma0 GAMMAl GAMMA2;
FINISH MEANCOV;
RUN MEANCOV;

%$include identmul; /* calls routine which computes the cross-

correlations and partial lag correlation*/
$identmul;

%$include estimvar; /* call the routine which computes the
preliminary estimates*/

%$estimvar(2); /* p=2 is the order of the VAR(p) */

QUIT;

/* macro identul.mac ==-==~-recccccccn e m e m e mcmmm—m e

Computes the crosscorrelations, autoregression and
partial lag correlation matrices of a multiple time series .

It uses the covariances computed with the subroutines autocov
and meancov.

==> REFERENCE ===
WEI(1993), pages 359-361

==> TO EXECUTE: %INCLUDE IDENTMUL;
%$IDENTMUL

$MACRO IDENTMUL;
START IDENTMUL;

/* computes inverse of gammaO */
IGAMMAO = INV(GAMMAO) ;

/* Inverse of square root of diagonal of GAMMAO */
D = INV(SQRT(DIAG(GAMMAO))) ;
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/* crosscorrelation matrix function */
CORR=J (M, M*24,0) ;

RHO = GAMMA;

DO H =1 TO 24;

RHO[M* (H-1)+1:M* (H-1)+M, ] = D*GAMMA[M* (H-1)+1:M*(H-1)+M, ]* D;

CORR[ ,M* (H-1) +1:M#* (H-1)+M] =
ROUND (RHO [M* (H-1) +1:M* (H-1)+M, ],0.001) ;

END;

/* prints the cross-correlation matrices */

CORR1_4 = CORR[1:M,1:4*M];
CORR5 8 = CORR[1:M,4*M+1:8*M];
COR9 12 = CORR[1:M,8*M+1:12%M];
COR13 16 = CORR[1:M,12*M+1:16%*M];
COR17_20 = CORR[1:M,16*M+1:20%M];
LAG = J(1,20%*M, "’ 'y ;

DO J =0 TO 19;
LAG{1,J*M+1] = ’ LAG’;
NO = J+1;
LAG[1,J*M+2] = CHAR(NO,3);

END;

LAG1 = LAG[1,1:4*M];

LAG2 = LAG[1,4*M+1:8%M];

LAG3 = LAG[1,8*M+1:12*M)];

LAG4 = LAG[1,12*M+1:16*M];

LAGS = LAG[1,16*M+1:20%*M];

CORR1 4 = LAGl // CHAR(CORR1 4 ,6,3);
CORR5 8 = LAG2 // CHAR(CORR5 8,6,3);

COR9 12 LAG3 // CHAR(COR9 12,6,3);
COR13 16 = LAG4 // CHAR(COR13_16,6,3);
COR17 20 = LAGS // CHAR(COR17_20,6,3);
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PRINT ‘CROSS-CORRELATION MATRICES’,
CORR1_4 , CORR5_8 ,

COR9 12 , COR13_16 ,

COR17 20 /;

FREE CORR CORR1 4 CORR5_8 CORS_12 COR13_16 COR17_20;

/*schematic representation of the cross-correlation matrices*/
GRAPH = J(20*M,M,’ .’);
DO I =1 TO 20*M;

DO J = 1 TO M;

-~

IF RHO[I,J] < =(2/SQRT(TT)) THEN GRAPH[I,J] = ' -~
ELSE IF RHO[I,J] > ( 2/SQRT(TT)) THEN GRAPH[I,J] = '

~e we

+
-

END;
END;

CORR=J (M, 20*M,’ .’);
DO H = 1 TO 20;

CORR[,M* (H-1)+1:M* (H-1) +M] = GRAPH[M* (H-1)+1:M#* (H~1)+M, ];

END;

CORR1 4 = LAGl // CORR[1:M,1:4%*M];
CORR5 8 = LAG2 // CORR[1:M,4*M+1:8%M];
COR9 12 = LAG3 // CORR[1:M,8%M+1:12%M];
COR13_16 = LAG4 // CORR[1:M,12*M+1:16%M];
COR17 20 = LAG5 // CORR[1:M,16*M+1:20%*M];

PRINT ’SCHEMATIC REPRESENTATION OF CROSS-CORRELATIONS’,
CORR1 4 , CORR5 8 , COR9 12 , COR13 16 , COR17 20 /;

FREE GRAPH CORR CORR1_4 CORR5_8 COR9_12 COR13_16 COR17_20;



Appendix El

/********************************************

Calculates partial autoregression matrices and
partial lag correlation matrix function

using algorithm in Wei (1993, p.359-361).
*******************************************/

DO H=1 TO 15;

IF H=1 THEN DO;

VU = GAMMAO;

Vv = GAMMAO;

VVU = GAMMA[1:M,];

ALPHA = GAMMAT[1:M,] * IGAMMAO;

BETA = GAMMA[1:M,] * IGAMMAO;
ALPHAT = ALPHA;

DU = INV(SQRT(DIAG(VU)));
DV = INV(SQRT(DIAG(VV)));

LAGCORR DV * VVU * DU;
AUTOREG = (VVU)‘* INV(VV);

END;
ELSE DO;

VU = GAMMAO - ALPHA * GAMMA[1:M*(H-1),];
VV = GAMMAO - BETA * GAMMAT[1:M*(H-1),];
VVU = GAMMA([M* (H-1)+1:M* (H-1)+M,] -
(ALPHAT * GAMMAT[1:M*(H-1),])"

ALPHAHH = VVU' * INV(VV);
BETAHH = VVU * INV(VU);

IF H=2 THEN DO;

ALPHAHK = ALPHA - ALPHAHH * BETA;
ALPHAN = ALPHAHK |! ALPHAHH;
ALPHANT = ALPHAHH |! ALPHAHK;
BETAHK = BETA - BETAHH * ALPHA;
BETAN = BETAHK || BETAHH;

-
!
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END;
ELSE DO;
ALPHAN = ALPHAHH;
ALPHANT = ALPHAHH;

BETAN = BETAHH;

DO K = H-1 TO 1 BY -1;

ALPHAHK = ALPHA[,M*K-1:M*K] -
ALPHAHH * BETA[,M#* (H-K)-1
ALPHAN = ALPHAHK |! ALPHAN;
ALPHANT = ALPHANT !! ALPHAHK;
BETAHK = BETA[,M*K-1:M*K] -
BETAHH * ALPHA[,M* (H-K)-1
BETAN = BETAHK !|! BETAN;
END;
END;
DU = INV(SQRT(DIAG(VU)));

DV = INV(SQRT(DIAG(VV)));
LAGCORR = LAGCORR // ( DV * VVU * DU );
AUTOREG = AUTOREG // ( (VVU)' * INV(VV) };

ALPHA = ALPHAN;
ALPHAT = ALPHANT;
BETA = BETAN;
END;
END;

/* prints the autoregression and
partial lag correlation matrices */

AUTO = J(M,M*15,0);
LAGC = J(M,M*15,0);
DO H =1 TO 15;

:M* (H-K) 1;

:M* (H-K) ];

AUTOT([ ,M* (H=-1)+1:M* (H-1)+M ]

ROUND (AUTOREG [M* (H-1) +1:M* (H-1) +M, ], . 001) ;

LAGCT [, M* (H=-1)+1:M*%* (H-=-1)+ M ]

210
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ROUND (LAGCORR[M* (H-1)+1:M#* (H-1)+M, ], .001) ;

END;

AR1 4 = LAG1 // CHAR(AUTO[1:M,1:4*M],6,3);

AR5 8 = LAG2 // CHAR(AUTO[1:M,4*M+1:8%M],6,3);
AR9 12 = LAG3 // CHAR(AUTO[1:M,8*M+1:12*M],6,3);
PAR1 4 = LAGl // CHAR(LAGC[1:M,1:4*M],6,3);
PARS 8 = LAG2 // CHAR(LAGC[1:M,4*M+1:8%M],6,3);
PAR9 12 = LAG3 // CHAR(LAGC[1:M,8%M+1:12*M],6,3);

PRINT ‘AUTOREGRESSION MATRICES’,
AR1 4 , AR5 8 , AR9_12 ;

PRINT /PARTIAL LAG CORRELATION MATRICES’,
PAR1 4 , PAR5 8 , PAR9 12 /;

FREE AUTO LAGC AR1 4 AR5 8 AR9 12 PAR1 4 PARS5 8 PAR9 12;

/*schematic representation of the partial lag correlation
matrices*/

GRAPH = J(15*M,M,’ .’);
DO I = 1 TO 15%M;

DO J = 1 TO M;

|
|

IF LAGCORR[I,J] < -(2/SQRT(TT)) THEN GRAPH[I,J] =
ELSE IF LAGCORR(I,J] > ( 2/SQRT(TT)) THEN GRAPH[I,J]
END;

END;

i
-
+
-
s W

CORR=J (M,15*M,’ .’);
DO H = 1 TO 15;

CORR[,M* (H-1)+1:M* (H-1) +M] = GRAPH[M* (H-1)+1:M* (H-1)+M, ];
END;
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CORR1 4 = LAG1 // CORR[1:M,1:4%M];
CORR5 8 = LAG2 // CORR[1:M,4*M+1:8%M];
COR9 12 = LAG3 // CORR[1:M,8%M+1:12%M];

PRINT ’SCHEMATIC REPRESENTATION OF THE PARTIAL LAG CORRELATIONS',
CORR1 4 , CORR5 8 , COR9_12 /;

FREE GRAPH CORR CORR1 4 CORR5 8 COR9_ 12 LAG LAGl LAG2 LAG3 LAG3
LAG4 LAGS;

/* computes the statistic sum(i and j)_ lagcorr(h)~2
to help identifying the order of an VAR,
see Wel, 1993, page 362 */

X H = J(15,1,0);
LAG = J(15,1,0);
P VALUE = J(15,1,0);

DO H =1 TO 15;
X _H[H,] = ROUND(TT * SSQ(LAGCORR[M* (H-1)+1:M*(H-1)+M,]),0.01);

LAG[H, ] H;
P_VALUE[H,] = ROUND((1 - PROBCHI(X H[H,],M**2)),.0001);

END;

PRINT ’X(H) TO BE COMPARED WITH A CHI-SQUARED WITH M~2 DEGREES
OF FREEDOM’,’ (M IS THE DIMENSION OF THE SERIES)’,

LAG X H P VALUE ;

FINISH IDENTMUL;

RUN IDENTMUL;

$MEND IDENTMUL;
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/* macro estimvar.mag ========——————mccem e ————— =
computes the Yule-Walker estimates for Vector autoregressive
model. It uses the covariances computed with the subroutines

autocov and meancov.

==> REFERENCE ===>
WEI(1993), pages 359-361

==> TO EXECUTE: %INCLUDE ESTIMVAR;
%$ESTIMVAR (PROGRAM PARAMETERS DESCRIBED BELOW)

==> PARAMETERS NEEDED TO CALL THE ESTIMVAR MACRO

&ORDER —-==> ORDER OF THE AUTOREGRESSIVE MODEL

%¥MACRO ESTIMVAR (ORDER) ;
START ESTIMVAR;

/********************************************

Calculates the Yule-Walker estimates using

the algorithm in Wei(1993, p.359-361).
*******************************************/

DO H=1 TO &order;

IF H=1 THEN DO;

VU = GAMMAO;

Vv = GAMMAO;

VVU = GAMMA[1:M,];

PHI = GAMMAT[1:M,] * IGAMMAO;
BETA = GAMMA[1:M,] * IGAMMAO;
PHIT = PHI;

$IF &order = 1 $THEN %DO;
PHITT = PHI\;
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SIGMA = GAMMAO - (GAMMAT{l:M#*&order,])‘>*PHITT;
DO I=1 TO M;
DO J=1 TO M;
SIGMA(I,J]) = SIGMA[J,I];
END;
END;

PRINT ’'PARAMETER MATRICES OF A VAR(’ "&order" ‘) MODEL‘,

PHI;
PRINT ’‘NOISE COVARIANCE MATRIX’, SIGMA;
$END;
END;
ELSE DO;
VU = GAMMAO - PHI * GAMMA[1:M*(H-1),];

VvV =

GAMMAO - BETA * GAMMAT[1:M*(H-1),];

VVU = GAMMA[M* (H-1)+1:M* (H~-1)+M,] -

(PHIT * GAMMAT([1:M#*(H-1),])" ;

PHIHH = VVU' * INV(VV);
BETAHH = VVU * INV(VU);

IF H=2 THEN DO;

PHIHK = PHI - PHIHH * BETA;
PHIN = PHIHK || PHIHH;
PHINT = PHIHH || PHIHK;
PHINTT = PHIHK' // PHIHH‘;
BETAHK = BETA - BETAHH * PHI;
BETAN = BETAHK |! BETAHH;
END;

ELSE DO;

PHIN = PHIHH;

PHINT = PHIHH;

PHINTT = PHIHH';

BETAN = BETAHH;

D

O K = H-1 TO 1 BY -1;

PHIHK = PHI[,M*K-1:M*K] - PHIHH * BETA[ ,M* (H-K) -1:M* (H-K) ] ;
PHIN = PHIHK !| PHIN;

PHINT = PHINT || PHIHK;

PHINTT = PHIHK‘ // PHINTT;
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BETAHK = BETA[,M*K-1:M*K] -
BETAHH * PHI[,M* (H-K)-1:M#*(H-K)];
BETAN = BETAHK !! BETAN;
END;
END;
PHI = PHIN;
PHIT = PHINT;

PHITT = PHINTT;

BETA BETAN;
SIGMA = GAMMAO - (GAMMAT[l:M*&order,]) ‘*PHITT;
DO I=1 TO M;
DO J=1 TO M;
SIGMA(I,J] = SIGMA[J,I];
END;
END;

PRINT ’‘PARAMETER MATRICES OF A VAR(’ "&order" ‘) MODEL’ ,

PHI;
PRINT ’NOISE COVARIANCE MATRIX’, SIGMA;
END;
END;

FREE VU VvV VVvU GAMMAO IGAMMAO GAMMA GAMMAT BETA BETAHK BETAHH
BETANH PHIT PHIN PHINT PHINTT PHITT PHIHH PHIHK DU DV;

FINISH ESTIMVAR;
RUN ESTIMVAR;

$MEND ESTIMVAR;
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Appendix E2 - SAS/IML programs to fit

State-Space Models

/** BLFS.SAS %%kkdkkkkhkhkhhhkhhhkhhhhhhhhhhhhhhkhhhhhhhhkhhhhkhbhhkhd

*% THIS PROGRAM FITS A STATE SPACE MODEL TO THE BRAZILIAN
*#% LABOUR FORCE SURVEY DATA. THE MODEL FOR THE SIGNAL IS
*#** TS A COMMOM COMPONENT BASIC STRUCTURAL MODEL. THE MODEL
*#% FOR THE SAMPLING ERRORS IS A VAR(1l) MODEL.

** THE INPUT DATA ARE THE AVERAGE OF THE TRANSFORMED PANEL

ESTIMATES
hhkhhhhhkhhhhhhkhhhhhhdhhhhhhhhhhhhhhhhdhhhhhhhhhhhdbhhhhdbhhhhkin/

options linesize=72 ps=58 nodate;
options mprint symbolgen;

/* files with the transformed sample estimates v®

per rotation group */

filename
filename
filename
filename

inl
in2
in3
in4

’c:/denise/data/estiml.dat’
c:/denise/data/estim2.dat’
’c:/denise/data/estim3.dat’
’c:/denise/data/estim4.dat’

e wme e g

/* routines for computing smoothed estimates and
for estimating the signal of the original compositions */

filename
filename

/* Reads
Force

kalsmt ’c:/denise/sas/kalsmt.mac’;
estim c:/denise/sas/estim.mac’;

the
for

/* £ile with

filename

out

transformed panel estimates from Brazilian Labour
a given rotation group */

the estimates in the original scale */

’c:/denise/data/results.dat’;
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%$MACRO READ;
%do rg=1 %to 4;

data estim&rg;
infile in&rg;
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input year month panel $ pemp pune pnilf vl v2;

run;
%end;

$MEND;

$READ;

TITLEl ‘BRAZILIAN LABOUR FORCE SURVEY’;

TITLE2
! (STOCHASTIC TREND + STOCHASTIC SLOPE + DUMMY

data estim;
set estiml estim2 estim3 estim4;

proc sort data=estim;
by year month;

4
/* the input data is %E v %/
P

proc means data = estim mean noprint;
by year month;
var vl v2;
output out= estim mean=vl v2;
run;
PROC IML;

/* Inputs the bivariate series into IML */

START READDATA;
USE ESTIM;

READ ALL INTO V VAR {vl1l v2};

SEASONAL) + VAR(1) ’;
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CLOSE ESTIM;
FINISH READDATA;
RUN READDATA;

PRINT’ESTIMATION OF THE UNKNOWN PARAMETERS’;
PRINT’USING QUASI-NEWTON METHOD FROM SAS IML’;

[*x** state-space model defined as **xkkkkkkkkkkkkkkkkkkkkkhkk

v_t = Z x alpha_t + epsilon_t V(epislon) = U

alpha t = T x alpha _t-1 + G x eta_t V(eta ) Q
**************************************************************/

COL1={'V1’ ’V2'};
PRINT / ‘INPUT DATA’, V (!COLNAME=COL1!);

VPRIME = V'; /* it will be used as input to LIKL */

/* observation matrix */
Z =1I(2)}13(2,2,0);iI(2)},J(2,20,0);;I(2);

ZPRIME = Z};

PRINT ‘TRANSPOSE OF THE OBSERVATION MATRIX’, ZPRIME;
FREE ZPRIME;

/* initial state vector alpha0 and variance PO */
ALPHAO = J(28,1,0);

K=100000; /* KI = PO the difuse prior */
SIGNALPO = I(26) * K;

/* stationary components of
the state vector errorP0 = GammaO */

ERRORPO = { 0.000215 0.00032 ,
0.00032 0.0052142 };

PO = BLOCK(SIGNALPO, ERRORPO) ;

PRINT ’INITIAL STATE-VECTOR AND INITIAL STATE COVARIANCE MATRIX’,
’ ALPHA1|0 ' ALPHAO , ’‘P1!0 ! PO;
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/* transition matrix */

co0-1-1-1-1-1-1-1-1-1-1 -1,

}i

o

T1 @ I(2);

T11

/* parameter matrix of the VAR(1) for the

transformed sampling errors as in Chapter 8 */

14

-.018747

.4496519
-.286699

{

T22

.0772841 };

T22)

J(26,2,0)) // (J(2,26,0)

FREE T1 T11l T22;

/* G matrix from alpha t

T x alpha t-1 + G x eta t */

{1000,

Gl

0100,
0010,
0 00O,
000 O,
000 O,
0000,
000O0,
000 O,
0000,
0000,
000 O,
000 O,

000 1};
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G =Gl @ I(2);
FREE G1;

/* number of observations */
TT=NCOL (VPRIME) ;

/* dimension of the state vector */

DIM1=NROW (ALPHAO) ;

/* dimension of the observation vector */

DIM2=NROW (VPRIME) ;

/* first observation for computation of the likelihood */

/* I am using difuse prior so the estimates for the
non-stationary components of the state-vector will be computed
automatically based on the d=13 first observations */

2Z=14;

PRINT ’FIRST OBSERVATION FOR COMPUTATION OF THE LIKELIHOOD'’, ZZ;

khkkkkhkkkhkkhkkkhkhkhkhkhkkhkkhkkhkhkhkkkkkhhkhkhkkkkkhkkhkhkhkkkkhkkhkkkkkkkkkikkkk

SUBROUTINE TO DO THE KALMAN FILTER AND CALCULATE THE
INNOVATIONS, THEIR VARIANCES (F) AND THE KALMAN GAIN(K).
THE STATE VECTOR ALPHA AND ITS COVARIANCE MATRIX P ARE
NOT PRODUCED AS PART OF THE OUTPUT.

INPUT: OBS: TRANSPOSED MATRIX OF THE OBSERVATIONS
DIMENSION OF THE MULTIPLE TIME SERIES x TT
ALPHAO: INITIAL STATE VECTOR (COLUMN VECTOR)

Po: COVARIANCE MATRIS OF ALPHAO

Z: MEASUREMENT EQUATION MATRIX (OR VECTOR)
TRANS: TRANSITION MATRIX

G: SYSTEM NOISE MATRIX

Q: COVARIANCE MATRIX OF THE SYSTEM ERRORS

OUTPUT: INNOV: INNOVATION MATRIX
F: VARIANCE OF THE INNOVATION
K: KALMAN GAIN MATRIX
NOTE: EACH COLUMN OF OBS, 1INNOV, F AND K
REPRESENTS A TIME POINT.
THE SUB-MATRIX OF K LOCATED IN
COLUMN DIM2*(T-1)+1 TO DIM2*T (WHERE DIM2 IS THE
NUMBER OF ROW OF OBS) IS THE KALMAN GAIN MATRIX
OF THE VECTOR ALPHA IN THE T-TH COLUMN OF ALPHA.

% % % ¥ ¥ ¥ ¥ F* * ¥ ¥ ¥ ¥ ¥ ¥ ¥ ¥ F* ¥ ¥ * * *

*

¥ % ¥ % F % O H ¥ F ¥ F ok ¥ H X ¥ ¥ ¥ F * % * * *

* This routine was kindly provided by Prof. D.Pfeffermann
***************************************************************;
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START KALFIL(INNOV,F,ALPHA,P,APRE,PPRE,DIM1,DIM2,TT,
2% ,VPRIME,ALPHAO,PO, 2Z,TRANS,G,Q,U);

/* matrices initialisation and definitions */
/* APRE: FORECAST OF ALPHA_t{t-l

PPRE: COVARIANCE MATRIX OF APRE

ALPHA: ALPHA t!t

P: COVARIANCE MATRIX OF ALPHA */

INNOV = J(DIM2,TT,0);
K = J(DIM1,DIM2*TT,O0);
F = J(DIM2,DIM2*TT,0);

DO T=1 TO TT BY 1;
IF T=1 THEN DO;
APRE = ALPHAO;

PPRE = PO;
END;
ELSE DO;
APRE = TRANS*ALPHA;
PPRE = TRANS*P*TRANS' + G*Q*G‘;
END;

F[,DIM2* (T-1)+1:DIM2*T] Z*PPRE*Z‘ + U;
K[,DIM2*(T-1)+1:DIM2*T] = PPRE*Z‘*
INV(F[,DIM2* (T-1)+1:DIM2*T]);
INNOV[,T] = VPRIME[,T] - Z*APRE;
ALPHA = APRE + K[,DIM2*(T-1)+1:DIM2*T]*INNOV[,T];
P=(I(DIM1)-K[,DIM2*(T-1)+1:DIM2*T]*Z)*PPRE;
END;

FREE K;

FINISH KALFIL;
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hhkhkhkkkhkhkhkhkhkhkhkhkkhkkhkkhkkhkkhkhhkhhkhkhkhkhhkhhkhkhhkkhkhkhkhhkhkhhkkhhhkhitikkk
SUBROUTINE TO EVALUATE THE LIKELIHOOD

FUNCTION AT DIFFERENT ESTIMATED VALUES OF THE COVARIANCES
MATRICES OF THE MODEL.

* % * ¥ *
* * % ¥ *

*INPUT: ZZ: FIRST OBSERVATION FOR COMPUTATION OF LIKELIHOOD#*
OBS: OBSERVATIONS

R: PARAMETER ESTIMATES

FINALR : FINAL PARAMETER ESTIMATES

*
*
*
*
*
*
kkkkhkkhkhkhkhkhkhkkhkhkhkhkhkhkhhkkhkkhkhkhhhhhkkhkhkhkhkhhkhkhkhhkkkhkhkkhkdhhhhkhhkid

*
*
*
OUTPUT:  F:VALUES OF THE LOG-LIK. EVALUATED AT R *
*
*;

START LIKL(R) GLOBAL(INNOV,F,ALPHA,P,APRE,PPRE,DIM1,DIM2,TT,
7% ,VPRIME,ALPHAO, PO, Z, TRANS,G,Q,U) ;

/* from Fernandez & Harvey, JBES,1990, vol 8, pp.71-81
The unknown parameters in the BSM are the elements
of Sigma_L , Sigma R and Sigma_S. The constraint that
these covariances matrices are positive semi-definite is

1
implemented by defining lower triangular matrices x2

1 1/
such that =£2£? =% and by maximizing the likelihood with

1
respect to the elements =2 */

/* system noise covariance matrix */
SQRT QL = (R[,1] {| {0}) // (R[{,2] || R[,3]);
QL = SQRT QL * SQRT QL‘;

SQRT_OQR (R[,4) {1 {0}) // (R[,5] || R[,6]1);
QR = SQRT QR * SQRT QR‘;

SQRT QS = (R([,7] {| {0}) // (R[(,8] || R(,9]);
QS = SQRT_QS * SQRT QS‘;
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/* covariance matrix of the white noise disturbances
of the VAR(1l) process for the transformed sampling
errors as in Chapter 8 */

SIGMAE = { .0001736 .0003051 ,
.0003051 .0052033 };

Q=BLOCK (QL, QR, QS, SIGMAE) ;
FREE SQRT QL SQRT QR SQRT QS QL QR QS;

/* observation noise covariance matrix */
U=J(2,2,0);

/*obtains the innovations and their variances
with R as parameter */

RUN KALFIL(INNOV,F,ALPHA,P,APRE,PPRE,DIM1,DIM2,TT,
zZ,VPRIME, ALPHAO, PO, Z, TRANS, G, Q,U) ;

/* calculates the log-likelihood function =*/
LIKT = J(1,TT,0);

DO T=1 TO TT BY 1;
LIKT[,T]=LOG(DET(F[,DIM2* (T-1)+1:DIM2*T]))+

223

INNOV[,T] *INV(F[,DIM2*(T-1)+1:DIM2*T]) *INNOV[,T];

END;

NIKT=LIKT[, 2Z:NCOL(LIKT) ];
F=-.5#NIKT[,+];

FREE LIKT NIKT;
RETURN (F) ;
FINISH LIKL;

/* use the quasi-Newton optimization routine to maximize the

likelihood and get the parameters estimates */

/* initial values of the unknown parameter vector */

R = {0.367880 3.6789E-8 0.367880 0.223130 2.2323E-8 0.223130

0.1353353 1.3534E-8 0.1353353 };
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/* initial system noise covariance matrix */

SQRT_QLO = (R[,1] {}{ {0}) // (R[,2] ii R([,31);
QLO = SQRT_QLO * SQRT_QLO‘;

SQRT QRO = (R[,4] i} {0}) // (R[,5] ii R[,6]);
QRO = SQRT_QRO * SQRT_QRO‘;

SQRT_QS0= (R[,7] ;i {0}) // (R[,8] ii R[,91);

QS0 = SQRT_QSO * SQRT_QSO0‘;

SIGMAE = { .0001736 .0003051 ,
.0003051 .0052033 };

PRINT /INITIAL SYSTEM NOISE COVARIANCE MATRIX’
QRO, QS0, SIGMAE;

, QLO,

FREE SQRT_QLO SQRT QRO SQRT QSO QLO QRO QS0 ;

/* sas-iml routine to maximize the log-likelihood */
OPTN = { 1 3 . 3 };

Tc={. .. 000 1le-9. . . 1E-9. . };

CALL NLPQN(RC,FINALR,"LIKL",R,OPTN,,TC);

/* define a new Q matrix */
/* system noise covariance matrix */

SQRT QL = (FINALR[,1] !! {0}) // (FINALR[,2] || FINALR[,3]);
QL = SQRT_ QL * SQRT QL‘;

SQRT QR=(FINALR[,4] !! {0}) // (FINALR([,5] !! FINALR[,6]);
QR = SQRT QR * SQRT QR‘;

SQRT QS = (FINALR[,7] |! {0}) // (FINALR[,8] || FINALR[,9]);
Qs = SQRT QS * SQRT QS‘;

SIGMAE = { .0001736 .0003051 ,
.0003051 .0052033 };

Q=BLOCK (QL, QR,QS,SIGMAE) ;
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PRINT ’ESTIMATE OF Q VIA QUASI-NEWTON OPTIMIZATION',
QL [FORMAT = 19.12], QR [FORMAT = 19.12] ,
QS [FORMAT = 19.12];

FREE SQRT QL SQRT QR SQRT QS QL QR QS;

/* sas-iml routine to evaluate the second derivatives (hessian
matrix) of the log-likelihood function */

CALL NLPFDD (MAXLIKL,GRAD,HESS,"LIKL",FINALR) ;
PRINT ’‘maximum value of the log-likelihood’ MAXLIKL;
/* estimates of the covariance matrix of the hyperparameters#*/

/* V=J x (abs(hess)) x J°
where J=Jacobian of the Cholesky transformation. Note that

of bl |a* ab
c] lo c] lab p2s+c?
with, for example, FINALR[,1]=a, FINALR([,2]=b and FINAL[,3]=c */

/* Jacobian of the transformation */

JL = ( (2*FINALR[,1]) !! J(1,2,0) ) //

( FINALR[,2] !! FINALR[,1] !! 0 ) //

(0 !l (2*FINALR[,2]) || (2*FINALR(,3]) );
JR = ( (2*FINALR[,4]) |! J3(1,2,0) ) //

( FINALR[,5] !! FINALR[,4] !! 0 ) //

( 0 |! (2%FINALR[,5]) || (2*FINALR[,6]) );
Js = ( (2*FINALR[,7]) || J(1,2,0) ) //

( FINALR[,8] !! FINALR[,7] !! 0 ) //

( 0 !l (2*FINALR[,8)) !|! (2*FINALR[,9]) );

COVLT =-(INV(HESS[1:3,1:3]));
COVL = JL * COVLT * JL‘;

COVRT = - (INV(HESS[4:6,4:6]));
COVR = JR * COVRT * JR‘;
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COVST = - (INV(HESS[7:9,7:9]));
COVS = JS * COVST * JS‘;

PRINT ’‘ESTIMATED VARIANCE OF THE PARAMETER COMPONENTS’,
COVL, COVR, COVS;

/* run the filter with the final parameter estimates
to get estimates of the smoothed values */

$INCLUDE ESTIM; /* macro with fixed-lag smoothing algorithm
to compute estimates of the state in the
original scale. */

/* creates data sets with the final estimates
in the original scale*/

/* matrix with: filtered, smoothed and seasonally adjusted signal
estimates, plus the one-step ahead forecasts for the observed
series, the innovations, estimates for the undemployment rate,
and the seasonally adjusted unemployment rate with respective
standard errors */

RESULTS = OALPHA‘!! OASMT' |
| 1
] |

SAOASMT' !! OSTEP‘!! INNOV‘ !!
UNEMP' !|! STDUNE‘ N

I
I
| SAUNE‘ STDSAUNE: ;

COL={'’EMPFIL’ 'UNEFIL’ 'NILFFIL’
' EMPSMT' 'UNESMT’ 'NILFSMT'’
"EMPSA’ "UNESA’ 'NILFSA’
fEMPSTEP’ ‘UNESTEP’ 'NILFSTEP’
/VEMPINOV’ ’/VUNEINOV’
'RATE’ 'STDRATE’ ’SARATE’ /STDSARAT'};

CREATE SAIDA FROM RESULTS [COLNAME=COL] ;
APPEND FROM RESULTS;

CLOSE SAIDA;

QUIT;

PROC PRINT DATA=SAIDA;
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DATA _NULL ;
SET SAIDA;
FILE OUT;
PUT EMPFIL

EMPSA

UNEFIL

VEMPINOV VUNEINOV

RATE

RUN;

STDRATE SARATE STDSARAT;

NILFFIL EMPSMT UNESMT NILFSMT
UNESA NILFSA EMPSTEP UNESTEP NILFSTEP
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hhkkkhkkkkhkhkhkhkhkkkkhkhhhhkhkhkkhhkkkkkhkhkkhhhhkkhkhkhkkhhhkkkhhkhkhkhkhhkkkhkhkk

ESTIM.MAC

INPUT: OBS:
ALPHA:
P:
APRE:
PPRE:
ONESTEP:

F:

ASMT:
PSMT:

VPRIME:

TRANS:
U:

Q:

G:
DIM1:
DIM2:
TT:

% % o ok ¥ N F ¥ * ¥ ¥ ¥ ¥ ¥ * ¥ ¥ * F F * * ¥ * ¥ * ¥ * * ¥ * ¥

SUBROUTINE TO EVALUATE MODEL BASED ESTIMATES (PREDICTED,
FILTERED, SMOOTHED AND SEASONALLY ADJUSTED) WITH THEIR
RESPECTIVE CONFIDENCE INTERVALS AND/OR VARIANCES

MATRIX OF THE OBSERVATIONS

ESTIMATE OF THE CURRENT STATE
COVARIANCE MATRIX OF ALPHA

PREDICTED STATE VECTOR

COVARIANCE MATRIX OF APRE

ONE STEP AHED FORECAST OF TRANSFORMED
INPUT SERIES (V)

COVARIANCE MATRIX OF ONESTEP

SMOOTHED STATE VECTOR

COVARIANCE MATRIX OF ASMT

TRANSFORMED INPUT SERIES
TRANSPOSED MATRIX OF THE OBSERVATIONS

DIMENSION OF THE MULTIPLE TIME SERIES x TT

MESUREMENT EQUATION MATRIX (OR VECTOR)
TRANSITION MATRIX

COVARTANCE MATRIX OF THE OBSERVATION ERROR

COVARIANCE MATRIX OF THE SYSTEM ERRORS
SYSTEM NOISE MATRIX

DIMENSION OF THE STATE-VECTOR
DIMENSION OF THE OBSERVATION VECTOR
LENGTH OF THE SERIES
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* QUTPUT: OALPHA: ESTIMATE OF CURRENT STATE IN THE ORIGINAL  *
* SCALE *
* OSTEP: ONE STEP AHEAD FORECAST OF THE *
* ORIGINAL SERIES *
* OASMT: SMOOOTHED ESTIMATE OF THE STATE *
* IN THE ORIGINAL SCALE *
* SAOASMT : SEASONALLY ADJUSTED SMOOOTHED ESTIMATES *
* IN THE ORIGINAL SCALE *
* UNEMP:  SMOOTHED ESTIMATES OF THE UNEMPLOYMENT RATE *
* STDUNE: ESTIMATED STANDARD ERROR OF THE ESTIMATES  *
* SAUNE :  SEASONALLY ADJUSTED SMOOTHED ESTIMATES OF  *
* THE UNEMPLOYMENT RATE *
* STDSAUNE: ESTIMATE STANDARD ERROR OF SAUNE *
* %*
* NOTE: EACH COLUMN OF OBS, ALPHA, APRE , OALPHA, OSTEP, ETC.*
* REPRESENTS A TIME POINT. *
* THE SUB-MATRIX OF P LOCATED IN *
* COLUMN DIM1*(T-1)+1 TO DIM1*T (WHERE DIM1 IS THE *
* NUMBER OF ROWS OF ALPHA) IS THE COVATIANCE MATRIX *
* OF THE VECTOR ALPHA IN THE T-TH COLUMN OF ALPHA. *
* THE SUB-MATRIX OF F LOCATED IN *
* COLUMN DIM2* (T-1)+1 TO DIM2*T (WHERE DIM2 IS THE *
* NUMBER OF COLS OF OBS) IS THE COVARIANCE MATRIX *
* OF THE VECTOR OBS IN THE T-TH COL OF OBS (M * TT) *
* *

*

khkkkkkhkhkhkkhhkhhhhhkkhhhhhhhrkhhhhhkkrhhhkrkhhkhrkdhhhrhkhkhkrkrk;
%¥MACRO ESTIM;

START ESTIM(ALPHA,P,APRE,PPRE,ONESTEP, F,6ASMT, PSMT,VPRIME, Z, Z2Z,
TRANS,G,U,Q,DIM1,DIM2,TT,ALPHAO,PO, INNOV,6K, SMOOTH,
OALPHA,OSTEP, OASMT, SAOASMT, UNEMP, STDUNE,

SAUNE, STDSAUNE);

/* run the filter with the final parameter estimates
to get estimates of the smoothed values */

SMOOTH=1;

/*macro with fixed-interval smoothing algorithm*/
$INCLUDE KALSMT;

$KALSMT;

FREE PRINTPRE PSTAR K ;
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/* filtered estimates of the signal theta t =L t + S t */
/* filtered estimates of theta in the original scale */
/* t = 14 depends on firstobs(zz) */

W={1010000000000O0 0} @ I(2) ;
VARTHE = J(2,DIM2*NCOL(ALPHA),O);

THETA J(2,NCOL(ALPHA) , 0) ;

OALPHA J (3,NCOL (ALPHA) ,0) ;

DO T=14 TO NCOL(ALPHA) BY 1;
THETA[,T] = W * ALPHA[,T];

VARTHE[ ,DIM2#(T-1)+1:DIM2#T] =
W * P[,DIM1#(T-1)+1:DIM1#T] * W‘;

/* filtered estimates for the signal in the original scale */
OALPHA[3,T] = 1 / ( 1 + EXP(THETA[1,T]) + EXP(THETA[2,T]));
DO K=1 TO 2 BY 1;

OALPHA[K,T] = EXP(THETA[K,T}) / ( 1 + EXP(THETA[1,T]) +
EXP (THETA{2,T]));
END;
END;

/* smoothed estimates of the signal theta_ t = L t + S_t */
/* smoothed estimates of theta in the original scale */
W={1010000000000O0} @I() ;

THETA = J(2,NCOL(ALPHA),O0);
OASMT = J(3,NCOL(ALPHA),O0);
THETAl 2 = J(1,NCOL(ALPHA),O0);
UNEMP = J(1,NCOL(ALPHA),O0) ;
VTHETA1l 2= J(1,NCOL(ALPHA),O0);
STDUNE = J(1,NCOL(ALPHA),O0);
EXP1 2 = J(1,NCOL(ALPHA),O0);
VEXP1 2 = J(1,NCOL(ALPHA),O0);

DO T=14 TO NCOL(ASMT) BY 1;

THETA[,T] = W * ASMT([,T];
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VARTHE [, DIM2# (T-1) +1:DIM2#T] =
W * PSMT[,DIM1#(T-1)+1:DIM1#T] * W‘;

/* mean and variance of THETA STAR 1 - THETA_STAR 1 */
/* where theta_star_1 = log (theta_emp / theta nilf) */
/* and theta star 2 log (theta une / theta nilf) */

THETA1 2[,T] THETA[1,T] - THETA[2,T];

VTHETA1l 2[,T] = VARTHE[1,DIM2#(T-1)+1] + VARTHE[2,DIM2#T]
- 2 * VARTHE[1,DIM2#T];

/* mean and variance of exp(theta star 1 - theta_star_ 2) */

EXP1 2[,T]

EXP(THETAl1 2(,T) + 0.5 * VTHETAl 2[,T]);

VEXP1 2[,T]

(EXP(VTHETAl 2[,T]) - 1) *
(EXP (2*THETA1 2(,T] + VTHETAl 2[,T]));

/* approximate MMSE and standard error of unemployment rate */

UNEMP([,T] = INV(EXP1 2[,T] + 1) +
VEXP1 2[,T] / (EXP1 2[,T] + 1)**3;
STDUNE[,T] = SQRT((INV(EXP1 2(,T] + 1))**4 * VEXP1 2[,T]) ;

/* Smoothed estimates for the signal in the original scale */

OASMT([3,T] = 1 / ( 1 + EXP(THETA[1,T]) + EXP(THETA[2,T]));
DO K=1 TO 2 BY 1;
OASMT([K,T] = EXP(THETA[K,T]) / ( 1 + EXP(THETA[1,T]) +
EXP (THETA[2,T])) ;

END;
END;
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/* seasonally adjusted smoothed estimates of the signal
theta_t = L_t , note that there is no irrregular term#*/

/* seasonally adjusted smoothed estimates of theta in the
original scale*/

W={10000000000000O01} @ I(2) ;
VARTHE = J(2,DIM2*NCOL(ALPHA) ,0) ;
ADJTHETA J(2,NCOL (ALPHA) ,0) ;

SAOASMT J (3,NCOL (ALPHA) ,0) ;

THETA1 2 = J(1,NCOL(ALPHA),0);
SAUNE = J(1,NCOL(ALPHA),O0);
VTHETA1 2= J(1,NCOL(ALPHA),O0);

STDSAUNE = J(1,NCOL(ALPHA),O) ;
EXP1 2 = J(1,NCOL(ALPHA),O0);
VEXP1 2 = J(1,NCOL(ALPHA),O0);

DO T=14 TO NCOL(ALPHA) BY 1;
ADJTHETA[,T] = W * ASMT[,T];
VARTHE([ ,DIM2#(T-1)+1:DIM2#T]=W*PSMT[,DIM1# (T-1)+1:DIM1#T]*W";
/* mean and variance of THETA STAR 1 - THETA_STAR 2 */
THETAl1_2[,T] = ADJTHETA[1,T] - ADJTHETA[2,T];

VTHETA1 2[,T] = VARTHE[1,DIM2#(T-1)+1] + VARTHE[2,DIM2#T)
- 2 * VARTHE[1,DIM2#T];

/* mean and variance of exp(theta_star 2 - theta_star 1) */

EXP1 2[,T]

EXP(THETA1 2[,T] + 0.5 * VTHETAl 2[,T]);

VEXP1_2[,T) (EXP (VTHETAl 2[,T]) - 1) *

(EXP(2*THETA1 2[,T] + VTHETAl 2[,T]));

/* approximate MMSE and standard error of seasonally adjusted
unemployment rate*/

SAUNE[,T] = INV(EXP1 2[,T] + 1) +
VEXP1 2[,T] / (EXP1_2[,T] + 1)**3;
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STDSAUNE[,T] = SQRT((INV(EXP1 2[,T] + 1))*%*4 * VEXP1 2[,T]);

/* seasonally adjusted smoothed estimates for the signal
in the original scale */

SAOASMT[3,T] = 1 / ( 1 + EXP(ADJTHETA[1,T]) +
EXP (ADJTHETA[2,T])) ;

DO K=1 TO 2 BY 1;
SAOASMT[K,T] =
EXP (ADJTHETA[K,T]) / ( 1 + EXP(ADJTHETA[1,T]) +
EXP (ADJTHETA[2,T])) ;
END;
END;

/*estimates of the one-step ahead forecast y t|t-1 (in the
original scale)*/

OSTEP = J(3,NCOL (ONESTEP),0);
DO T=14 TO NCOL(ONESTEP) BY 1;
OSTEP[3,T] =1 / ( 1 + EXP(ONESTEP[{1,T]) + EXP(ONESTEP[2,T]));
DO K=1 TO 2 BY 1;
OSTEP[K,T] = EXP(ONESTEP[K,T]) /
(1 + EXP(ONESTEP[1,T]) +
EXP (ONESTEP[2,T]));
END;
END;
FREE THETA VARTHE ADJTHETA VTHETAl 2 THETAl 2 EXP1l 2 VEXP1l 2;
FINISH ESTIM;
RUN ESTIM(ALPHA,P,APRE,PPRE,ONESTEP, F,ASMT, PSMT,VPRIME, Z, 272,
TRANS,G,U,Q,DIM1,DIM2,TT,ALPHAO,PO, INNOV,K, SMOOTH,
OALPHA,OSTEP,OASMT, SAOASMT, UNEMP, STDUNE,

SAUNE, STDSAUNE) ;

$MEND ESTIM;
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hkkkhhkhhkkhkhkhhkhhkhhhhhhkhhhhhhhhhhhhhhhkkhkkhkhhkhrhhkhhkkhhkkhkkk
* KALSMT.MAC

* SUBROUTINE TO DO THE KALMAN FILTER WITH TIME INVARIANT
* MATRICES Z,TRANS, G, U AND Q.

* INPUT: OBS: MATRIX OF THE OBSERVATIONS

* ALPHAO: INITIAL STATE VECTOR (COLUM VECTOR)
PO: COVARIANCE MATRIS OF ALPHAO
Z: MESUREMENT EQUATION MATRIX (OR VECTOR)
TRANS: TRANSITION MATRIX
u: COVARIANCE MATRIX OF THE OBSERVATION ERROR
Q: COVARIANCE MATRIX OF THE SYSTEM ERRORS
G: SYSTEM NOISE MATRIX

SMOOTH: 1=SMOOTHING, 0=NO SMOOTHING

OUTPUT: APRE: STATE VECTOR MATRIX FROM THE PREDICTION
PPRE: COVARIANCE MATRIX OF APRE
ALPHA: STATE VECTOR MATRIX
P: COVARIANCE MATRICES OF THE STATE VECTORS
INNOV: INNOVATION MATRIX
F: VARIANCE OF THE INNOVATION
K: KALMAN GAIN MATRIX
ASMT: STATE VECTOR MATRIX SMOOTHED
PSMTO: COVARIANCE MATRIX OF AMST AT TIME O

NOTE: EACH COLUMN OF OBS, ALPHA, INNOV, F AND K
REPRESENTS A TIME POINT.
THE SUB-MATRIX OF P LOCATED IN
COLUMN DIM1*(T-1)+1 TO DIM1*T (WHERE DIM1 IS THE
NUMBER OF ROWS OF ALPHA) IS THE COVATIANCE MATRIX
OF THE VECTOR ALPHA IN THE T-TH COLUMN OF ALPHA.
THE SUB-MATRIX OF K LOCATED IN
COLUMN DIM2#*(T-1)+1 TO DIM2*T (WHERE DIM2 IS THE
NUMBER OF COLS OF OBS) IS THE KALMAN GAIN MATRIX
OF THE VECTOR ALPHA IN THE T-TH COLUMN OF ALPHA.

% ¥ % ¥ ¥ N ok ¥ H % F ¥ % ¥ X % ¥ ¥ ¥ ¥ ¥ ¥ F * * ¥ *

*The core of this routine was kindly provided by:
* Prof D.Pfeffermann
***************************************************************;

% O % % %k ¥ % % N N N ¥ F ¥ F F F X ¥ * F % ¥ F ¥ ¥ ¥ * * X ¥ ¥ * *

%¥MACRO KALSMT;

START KALSMT (APRE, PPRE,ALPHA, P, INNOV,ONESTEP, K, F, ASMT,PSMT,
DIM1,DIM2,TT,VPRIME, 22,
ALPHAO, PO, Z, TRANS, G, U, Q, SMOOTH) ;
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/* dimension of the state vector */
DIM1=NROW (ALPHAO) ;

/* dimension of the observation vector #*/
DIM2=NROW (VPRIME) ;

/* number of observations */

TT=NCOL (VPRIME) ;

/* matrices initialisation and definitions */
/* APRE : forecast of alpha = alpha t]t-1 */

APRE=J (DIM1,TT,0);
ALPHA=J (DIM1,TT,O) ;
ASMT=J (DIM1,TT,0) ;
INNOV=J (DIM2,TT,0) ;
ONESTEP=J (DIM2,TT, 0) ;
K=J (DIM1,DIM2*TT,0) ;
F=J (DIM2,DIM2*TT,0) ;
P=J (DIM1,DIM1*TT,0) ;
PPRE=J (DIM1,DIM1*TT,O0) ;
PSMT=J (DIM1,DIM1*TT,0) ;

/* standardized and relative innovations */
INNOVRES = J(DIM2,NCOL(INNOV),O0);

FSQRT = J(DIM2,DIM2*TT,0) ;

RELAT = J(DIM2,NCOL(INNOV),O0);

DO T=1 TO TT BY 1;
IF T=1 THEN DO;

APRE[,T] =ALPHAO;
PPRE[,DIM1*(T-1)+1:DIM1*T] = PO;

F[,DIM2* (T-1)+1:DIM2*T] =
Z*PPRE[,DIM1* (T-1)+1:DIM1*T]*2Z\ + U;
K[,DIM2*(T-1)+1:DIM2*T] = PPRE[,DIM1*(T-1)+1:DIM1*T]*Z"*
INV(F[,DIM2*(T-1)+1:DIM2*T]);

ONESTEP[,T]= Z*APRE[,T];
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INNOV[,T] = VPRIME[,T] - ONESTEP{,T];
ALPHA[,T] = APRE[,T] + K[,DIM2*(T-1)+1:DIM2*T]*INNOV[,T];
P[,DIM1*(T-1)+1:DIM1*T] =
(I(DIM1)~-K[,DIM2%* (T-1)+1:DIM2*T]*Z)
*PPRE[,DIM1* (T-1)+1:DIM1*T];

END;
ELSE DO;

APRE([,T])=TRANS*ALPHA([,T-1];
F[,DIM2*(T-1)+1:DIM2*T] =
Z* (TRANS*P[,DIM1* (T-2)+1:DIM1* (T-1) ] *TRANS\+G*Q*G") *Z +U;

PPRE[,DIM1%* (T-1)+1:DIM1*T] =
TRANS*P[ ,DIM1* (T-2)+1:DIM1*(T-1) J*TRANS® + G * Q * G‘ ;

K[,DIM2* (T-1)+1:DIM2*T] =
(TRANS*P[ ,DIM1* (T-2)+1:DIM1* (T-1) J*TRANS '+ G*Q*G‘) * Z‘*
INV(F[,DIM2* (T-1)+1:DIM2*T]) ;
ONESTEP[,T]= Z*APRE[,T];
INNOV[,T] = VPRIME[,T] - Z*APRE[,T];

ALPHA[,T] = APRE[,T] + K[,DIM2*(T-1)+1:DIM2*T]*INNOV[,T];

P[,DIM1*(T-1)+1:DIM1*T] =
(I(DIM1)~K[,DIM2*(T-1)+1:DIM2*T]%Z2)*
(TRANS*P[,DIM1* (T-2)+1:DIM1* (T-1) ]*TRANS" + G*Q*G‘);
/* standardized innovations */
SQRTF = SQRT(VECDIAG(F[,DIM2*(T-1)+1:DIM2*T]));
INNOVRES[,T] = INNOV[,T] / SQRTF;
/* RELATIVE INNOVATIONS */

RELAT[,T] = INNOV[,T] / VPRIME[,T);

END;
END;

FREE K ;
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/* PREDICTION ERROR VARIANCE FOR THE T=TT-2, TT-1, TT */
PEV = F[,DIM2%(TT-2-1)+1:DIM2*TT];

/* MEASURES OF GOODNESS OF FIT BASED ON THE ONE~STEP AHEAD
PREDICTIONS ERRORS ( THE INNOVATIONS ) */

ERRORS= J(DIM2,TT-ZZ+1,0);

ERRORS = INNOV[,2Z:TT];
REL RELAT[,Z2Z:TT);

MB = ERRORS(,+] / (TT-2Z+1);

ABSERROR = ABS ( ERRORS);

MAB = ABSERROR{,+] / (TT-2Z+1);

SQRE = REL[,##] / (TT-22+1);

/* putting the standardized innov in the vector innov */
DO T =1 TO TT BY 1;

IF T < ZZ THEN DO;

INNOV[,T] = 0;
END;
ELSE DO;
INNOV[,T] = INNOVRESI[,T];
END;
END;

PRINT MB MAB SQRE, PEV;

FREE SQRTF INNOVRES ERRORS RELAT REL ABSERROR PEV;
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/* this part does the smoothing */
/* fixed-interval smoothing - Harvey,1989,ppl54-155 */

IF SMOOTH=1 THEN DO;
/* initialisation for time t = tt */

ASMT[,TT] = ALPHA[,TT];
ASMTFI=ASMT[,TT]";
* PRINT’ESTIMATE OF THE CURRENT STATE VECTOR —ALPHA_t}t’,
ASMTFI;
PSMT[,DIM1# (TT-1)+1:DIM1#TT] = P[,DIM1#(TT-1)+1:DIM1#TT];
*PRINT ’/V-C MATRIX OF FILTERED STATE ESTIMATORS AT TIME TT’/,
PSMT;
/* smoothing for t = tt-1,...,2 */
/* if MT is singular for some t , INV(MT) can be replaced
by its generalised inverse as suggested by Kohn and
Ansley(1983) - from Harvey,1989,p.154 */

DO T= TT-1 TO 1 BY -1;

MT = TRANS*P[,DIM1%*(T-1)+1:DIM1*T]*TRANS' + G * Q * G‘;
PSTAR = P[,DIM1#(T-1)+1:DIM1#T]*TRANS"'*GINV (MT) ;

ASMT[,T]= ALPHA[,T] + PSTAR * (ASMT[,T+1]-TRANS*ALPHA[,T]) ;
PSMT[,DIM1#(T-1)+1:DIM1#T] =
P{,DIM1#(T-1)+1:DIM1#T]+

PSTAR* (PSMT[ ,DIM1# (T)+1:DIM1# (T+1) ]-MT) *PSTAR";

END;
END;

FINISH KALSMT;

RUN KALSMT (APRE, PPRE,ALPHA, P, INNOV,ONESTEP, K, F, ASMT, PSMT,
DIM1,DIM2,TT,VPRIME, ZZ,
ALPHAO, PO, Z, TRANS,G,U,Q, SMOOTH) ;

¥MEND KALSMT;



