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Responses made on scales with ordered categories (ordinal responses) can be
analysed using multinomial models which include 'threshold parameters'. These
models have become established over the last 20 years, in which time research has
focused on models with location terms which allow for a change in location of the
threshold parameters. These location terms explain one type of difference between
patterns of ordinal responses. Another type of difference can be explained by the
inclusion of scaling terms in the model.

Where ordinal responses are observed repeatedly on the same subject the analyst
has a challenge to explain the correlation between these intra-subject responses.
This thesis presents a new approach to this challenge which involves fitting one of
the multinomial models, the cumulative logit model, with subject-specific location
and scaling terms. These terms may be fixed effects or random effects and both
cases are investigated. The approach is motivated by data from telecommunications
experiments, and when used to analyse these data, it is found that the model gives
a good explanation of the correlation between intra-subject responses. A new piece
of general-purpose software is introduced which allows the fitting, by maximum-
likelihood, of cumulative link models with both location and scaling terms.

It is possible to fit the cumulative logit model by using generalized estimating
equations (GEE). One particular type of GEE is discussed in detail and referred
to as 'independent binomials'. An advantage to the use of this method of fitting
the cumulative logit model is its straightforward implementation. Some theoreti-
cal comparisons are performed to compare the efficiency of independent-binomials
estimation of model parameters with the efficiency of maximum-likelihood estima-
tion. It is concluded that the loss of efficiency in independent-binomials cannot be
considered too great to warrant its dismissal as a method of estimation.
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Chapter 1

Introduction

This thesis examines issues involved with modelling ordinal response data. Ordinal

responses are common features of research in psychology, medicine, agriculture, etc.

A typical ordinal scale is labelled with the words "Good", "Fair", "Poor", "Bad".

In a psychology experiment this scale might be used to record different subjects'

opinions of a mood stimulus. In medicine the measurement of interest might be a

patient's reaction to a prescribed drug and doctors might use the ordinal scale in the

appraisal of the patients. In agriculture the scale might be used to classify plants

according to a subjective quality such as hardiness.

The application of interest in this thesis is telecommunications research where

the ordinal response is a subject's opinion of a telephone connection. Everyone who

has experience of using telephonic communication knows that the quality of the

connection can vary a great deal. At present, the general quality of connections

on national telephone calls is good. However, the quality of the connection can be

much worse if more modern telephones, e.g. mobile phones, are used. The quality of

long-distance connections can also be quite poor. The quantification of the general

public's opinion towards different connections and discovering which components

of the connection are important in the formation of these opinions is important



research for any telecommunications company.

A statistical topic of concern in this thesis is the problem posed by repeated ob-

servations being made on the same sampling unit. An assumption of much statistical

modelling is the independence of observations (conditional on the effects included

in the model). Where different observations are made on the same sampling unit it

is quite likely that there will be correlation between these intra-unit observations.

It is possible that the inclusion of suitable unit-specific explanatory effects in a

model will allow for this intra-unit correlation. It may be necessary to model this

correlation explicitly. The issue of repeated intra-unit observations has been vigor-

ously addressed in recent literature. Analysis methods have been developed for all

types of univariate repeated data, i.e. binary responses, continuous responses and

both ordered and unordered categorical responses. The work in this thesis considers

only the approach to the modelling of repeated ordinal responses where explanatory

variables are included in the model to account for intra-unit correlation.

Historically, the most common method of modelling ordinal response data in-

volved assigning increasing integer scores to the ordered categories and fitting a

linear model to these scores. The parameters in the model were estimated by least-

squares. This approach has two drawbacks. Firstly, the choice of scores is arbitrary

and, secondly, it is necessary to assume that the data when scored are, conditionally

on the covariates in the model, observations from a normal distribution.

Another method that has been used is to reduce the data to binomial responses

by dichotomising the response scale at some arbitrary point. The dichotomised

responses are then modelled using logistic regression for a binary response. This has

the drawback that information is being discarded in the dichotomisation process.

Also the choice of where to make the dichotomy is arbitrary and the results obtained

from the logistic regression depend on this choice. Thus, different conclusions may

be reached for different dichotomisations.



A more recent approach to modelling ordinal response data is to recognise explic-

itly that the responses are observations from a multinomial distribution. McCullagh

(1980) proposed a family of models based on the cumulative probabilities of each

category. Alternative models based on continuation-ratio probabilities are also dis-

cussed in that paper. These models are traditionally fitted by maximum-likelihood

although recent work demonstrates how a Bayesian perspective of the model leads

to the Gibbs sampler being used. It is also possible to define quasi-likelihood esti-

mating equations to fit the model and an advantage of this is the straightforward

extension to the analysis of data containing repeated ordinal responses on the same

sampling unit.

The background to multinomial modelling of ordinal responses is presented in

Chapter 2. A cohesive model framework is defined which encapsulates a wide va-

riety of multinomial models for ordinal response data. This framework relates an

underlying probability via a link function to a combination of explanatory variables.

The three types of probability discussed in this thesis are cumulative probability,

continuation-ratio probability and, more briefly, adjacent-category probability. The

combination of explanatory variables is typically linear (and the corresponding pa-

rameters termed location parameters) although a particular instance of non-linearity,

the model with a scaling term, is discussed in detail. A number of known equiva-

lences between different multinomial models for ordinal responses are discussed and

a new result demonstrating the asymptotical equivalence of the cumulative probit

and adjacent-category probit models is introduced. Some terminological issues are

discussed with a view to standardizing terminology. Also discussed briefly in Chap-

ter 2 are some of the alternative methods that have been devised for modelling

ordinal response data. These include the linear model with integer scores assigned

to categories.

The telecommunications research motivating much of the work in this thesis

was performed at the laboratories of British Telecom (BT) in Ipswich. The ordinal



response is one of a variety of measurements recorded in designed experiments per-

formed by BT. Chapter 3 describes the experimentation in detail. The experimental

designs are introduced, the experimental procedure is described and the resultant

data are discussed. Data from the BT experiments are used to make a comparison

of the goodness of fit of two models. The first model is the linear model with inte-

gers assigned to categories. This model leads to the construction of an analysis of

variance table to aid the testing of significance of explanatory variables. The sec-

ond model is a continuation-ratio logit model which is an example of a multinomial

model. Two criteria to compare the models, mean scores and fitted categories, are

discussed and applied to the BT data.

The ordinal responses that are observed in the BT experiments are longitudinal

in nature. A number of subjects respond to different sequences of stimuli. It is

possible that the preceding stimulus or response will have an effect on the response

given to the current stimulus. This type of effect is termed a carry-over effect. An

approach to analysing the carry-over of response using the continuation-ratio logit

model is presented in Chapter 3. This approach is applied to data from the BT

experiments.

For the goodness of fit comparisons in Chapter 3 the intra-subject responses are

assumed to be independent (conditional on the covariates in the model). This serves

to demonstrate these comparisons but is not an intuitively appealing assumption.

For the carry-over analysis it is assumed that responses are independent conditional

on the immediately preceding responses (and other covariates in the model). It

is possible to define generalized estimating equations (GEE) which allow for some

general correlation structure between intra-subject responses. The use of GEE,

assuming independence of intra-subject responses, to fit a multinomial model is

demonstrated in this thesis. However, the use of GEE with a general correlation

structure between intra-subject responses is not pursued. The reason for this is that

informal analysis of the BT data suggests an alternative approach, which has as



a key consideration the pattern of responses observed for each subject. In simple

terms, this new approach allows for these patterns to differ in their location on

the response scale and to differ in the degree to which they are spread across the

response scale.

The vehicle for this new method is a particular multinomial model, the cumula-

tive logit model, with location and scaling terms for each subject. Any of the other

cumulative link models would also serve the purpose. A hierarchy of cumulative

logit models can be fitted to test the different types of subject-specific effects. The

application of this method to the BT data is the focus of Chapter 5. Results of fit-

ting the model hierarchy are presented. The possibility of using this method when

the subject effects are assumed to be random effects is also investigated in Chap-

ter 5. Initially the cumulative logit model with a random subject location effect is

fitted to the BT data and the results discussed. The necessary score equations are

presented for maximum-likelihood estimation of the more complicated model where

there is both a random subject scaling effect and a random subject location effect.

Chapter 4 gives detailed discussion of the different methods of fitting the cu-

mulative logit model and software implementation of these methods. Maximum-

likelihood estimation of the cumulative logit model with location effects only is

possible in current widely-available software. A GEE method with an indepen-

dence working correlation matrix, termed independent binomials, is an alternative

to maximum likelihood. Under this working correlation the GEEs reduce to the score

equations of a maximum-likelihood analysis of independent binomial responses and

is thus implementable in any software with a routine for logistic regression of binary

observations. Fitting the model with a scaling term is more difficult to implement.

Two methods are considered in Chapter 4 to do this. Firstly, a set of GLIM4

macros is introduced to fit the model by maximum-likelihood. These macros are

general purpose and have been included in the GLIM Macro Library. Secondly, the

independent-binomials method is employed by succesive relaxations of the model.



Results from the use of both of these methods are given in Chapter 5 and differences

discussed.

The method of independent binomials for fitting the cumulative logit model in-

volves independence of the cumulative multinomial counts as a working assumption.

This working assumption allows the method to be implemented in widely available

software routines. However the method requires more justification than ease of im-

plementation. The empirical and asymptotic relative efficiency comparisons made

in Chapter 6 support the use of independent binomials as a method of estimation of

the cumulative logit model. These comparisons are of estimates from various GEE

methods of fitting the cumulative logit model (including independent binomials)

with maximum-likelihood estimates. Further asymptotic relative efficiency compar-

isons are given for maximum-likelihood estimates and estimates obtained when the

analysis is reduced to a binomial one by the dichotomisation of the response scale.

Finally, some concluding remarks are made in Chapter 7. The outcomes of the

analyses in Chapter 5 and the conclusions to be drawn from them are discussed.

The main results in the thesis are discussed in a wider context and avenues for

future research are suggested. Comparisons are made between the approach taken

in this thesis to modelling longitudinal ordinal responses and alternative approaches

considered in the literature.



Chapter 2

Ordinal response modelling

2.1 Introduction

The use of ordered categorical response scales to collect data is widespread. In social

surveys this has been a popular method of generating data for a number of years.

An example comes from the 1972 U.S. General Social Survey of the National Data

Program. Responses were sought on people's attitude toward abortion. The scale

on which these responses were made has three categories: Generally disapprove,

Middle position, Generally approve. In psychological research ordinal scales are

frequently used as rating scales in experiments. An example which is examined in

further detail in this thesis comes from Kijewski, Swensson and Judy (1989). They

discuss an experiment in which a subject is required to respond to a range of visual

stimuli, the responses being made on a 12-category ordinal scale with 6 grades of

bright and 6 grades of dark. The statistical practice of grouping continuous data

into ordered categories is another example of how ordinal responses originate.

A number of different methods of analysing data with an ordinal response have

been developed. A simple approach involves assigning a score to each category

and then analysing these scores using a standard linear model or non-parametric



methods. These approaches do have the drawback that the scores assigned are

arbitrary. One example of such an approach is the method that Agresti (1984, §8.3)

calls the mean response model. This involves performing an analysis of variance

on the scores assigned to the levels of the ordinal response. There are obvious

advantages to using this model. The interpretation of the parameter estimates is in

terms of means or adjusted means, both of which are very familiar concepts. Also,

analysis of variance is a well known statistical technique and its application to ordinal

response problems would remove the need for a different technique. However, this

method does assume that, conditional on the covariates in the model, the integer

scores assigned to categories are normally distributed.

Another potential drawback to the mean response model is that it does not

necessarily give simple overall conclusions. For example, consider an ordinal scale

which consists of four social class groupings and a variable such as income. If social

class is considered as the response variable, successive integer scores (1 to 4) can be

assigned to the ordered categories and then an analysis of variance can be performed

on these scores, using income as an explanatory variable. From the fitted model the

parameter estimate for the effect of income can easily be interpreted as the increase

in fitted score for a unit increase in income. For a person of given income the model

provides the following type of conclusion.

With an income of 10,000 pounds a person will have on average a social

class score of 2.38.

This conclusion requires further interpretation — what is a social class score of 2.38

and how does it relate to the initial categories? If the scores are changed do the

conclusions change?

An approach to analysing ordinal responses which does not involve the assign-

ment of arbitrary scores to categories is now motivated. If Y can be thought of as

the ordered categorical manifestation of an underlying continuous random variable



Y* then it is assumed that Y is observed in the following manner:

Y = j if 9^ <Y*<93 (j = l,...,/<-)

where 9j can be thought of as some unknown 'cut-point' on the underlying con-

tinuum. Now let Y* take the linear form Y* = x,-/? + e, where e has a specified

distribution F and E(e) = 0. The design matrix here is X of which x,- is the ap-

propriate row and the parameters to be estimated are contained in the vector f3.

Taking this form for Y* gives:

?(Yt=j) =

i - x,-/3 < a < 6} - Xi/

which leads to

The 9jS are necessarily ordered, 01 < 62 < • • • < 0K-I ?
 a n ( i these are augmented by

the definitions 6Q = —oo and 9K = oo.

If we take the distribution of F to be the logistic distribution then we obtain the

model

which is the cumulative logit or proportional odds model for ordinal responses. This

and related models are discussed in the influential paper by McCullagh (1980).

A model of this form (which is not based on arbitrary score-assignment) will give

the following type of conclusion to the example above.

With an income of 10,000 pounds a person has an 85% chance of being

in social class group 2.



The tone of this conclusion may seem less definite than the conclusion from a score-

based model. However there are no further interpretation problems since it is stated

concisely in terms of the initial response scale.

This chapter contains an introduction to the cumulative logit model and other

related models. Several connections between different models are noted and a new

asymptotic equivalence is introduced. Terminological difficulties are discussed in

detail for two models, the proportional odds or cumulative logit model and the

proportional hazards or cumulative complementary-log-log model. Other relevant

topics are touched on. These include the type of ordinal scale, the sampling mecha-

nism employed to generate the data, and the different types of covariate effect that

may be estimated via a model for an ordinal response. This latter topic includes

the important considerations of models with scaling terms and models with random

effects, both of which are examined in detail in other parts of the thesis.

2.2 A general model form

A general framework for a group of models for analysing an ordinal response Y, with

K ordered categories, is

link(IIy) = 0j-x,-/3. (2.2)

The term II y- is a probability, which is some function of the individual category

probabilities 7rtJ-. An example is IIjj = 7r8i + - • • + 7ru- = 7^, the cumulative probability

of category j . The term 'link' refers to a monotone function which maps (0,1) onto

(—00,00), for example the logit link, log(II/(l — II)). The threshold parameters,

9j (j — 1 , . . . , K — 1), correspond to the boundaries between the j — I and jth

categories of Y. The row xt- of the design matrix, X, contains explanatory variable

values corresponding to the ith response. In the case of an ordinal explanatory

variable the analyst may simply treat this variable as unordered categorical. Another

10



possibility is is to apply an integer score to the categories and treat the variable

as quantitative. The vector (3 contains parameters of interest which describe the

covariate effects.

This framework includes the cumulative logit model discussed in the introduction

to this chapter. The framework is a convenient way of describing, in one formula, a

range of closely related models. It also highlights the similarities among a variety

of these models. Models in the framework (2.2) may have some of the following

properties.

1. Stochastic ordering. Strict stochastic ordering of two groups (i = 1,2) is

denned if either 71 j > -f2j or 7ij < 72 j for all j - From equation (2.2)

and this implies strict stochastic ordering.

2. Palindromic invariance. If a model is invariant to a reversal of the category

ordering, then it is said to be palindromic invariant (after McCullagh 1978).

This invariance holds if the only change in the parameters after a reversal of

category order is that f3 changes sign, and the OjS reverse order.

3. Invariance to contiguous-category collapsing. If the form of the model and the

parameters (f3,8j) do not change when the responses from two neighbouring

categories are merged, then that model is said to be invariant to contiguous-

category collapsing. In fact the only change is that the relevant Oj parameter

is removed. Anderson & Philips (1981) give an example of this consideration.

11



2.2.1 Link functions

The distribution F (of which the link function in (2.2) is the inverse) can be taken

as any monotone increasing function that maps [0,1] onto (—00,00). The logit link

(2.3)

has been introduced in this section. This link function is obtained when the logistic

distribution is the assumed form for F. The function defined in (2.3) is symmetric

about n = 0.5, where F'^U) = 0, in that F'1 (II) = -F'1 (1 - II).

A link function which behaves in a similar manner to the logit link is the probit

link function. The probit link function is denned as

F-1(n) = $-1 (n)

where $(.) is the cumulative distribution function of a standard normal random

variable. This link function is also symmetric about II = 0.5, where F~r (II) = 0, in

that F-1(n) = - F - ^ i - n ) .

There is a pair of commonly-used non-symmetric link functions. These are the

complementary log-log and log-log links. The complementary log-log link is defined

as

and is obtained when the assumed form of F is the standard extreme minimum

value distribution. The log-log link is defined as

and is obtained when the assumed form of F is the standard extreme maximum value

distribution. It is related to the complementary log-log link by F^1 (IT) = Fy1 (1 —II).

The complementary log-log link is more usually employed because it behaves in an

almost identical fashion to the logit link in the region II < 0.5.
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For a more complete discussion of link functions refer to §4.3 in McCullagh &

Nelder (1989).

2.2.2 Probabilities II

Cumulative probability

The case of Ily = P(Y{ < j) — 7^, the cumulative probability of category j , has

been introduced already in this section. The cumulative logit model is defined in

equation (2.1). In this thesis models based on the cumulative probability are referred

to as cumulative link models. When discussing a particular member of the class of

cumulative link models, the word link is replaced by the name of the particular link

function being used, hence cumulative logit model.

Terminology here has become somewhat confused. McCullagh proposed the

name 'proportional odds' for the cumulative logit model and 'proportional hazards'

for the cumulative complementary log-log model. The second of these can be mis-

leading as will be demonstrated in §2.5.4. In this thesis, the terminology that gives

rise to the names cumulative logit and cumulative complementary log-log will be

adhered to.

All models based on the cumulative probability imply stochastic ordering. The

cumulative logit and cumulative probit models are palindromic invariant due to a

combination of the symmetric nature of the link functions and the simple form of

the cumulative probability. The cumulative complementary log-log model is not

palindromic invariant but the same f3 parameters and the same 9j parameters in

reverse will be obtained if the categories are defined in reverse order and a cumulative

log-log model is fitted. All the cumulative link models are invariant to contiguous

category collapsing.
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Continuation-ratio probability

Another probability, to be used in place of IIy in equation (2.2), that has been dis-

cussed in the literature (by e.g. Agresti, 1984) is the continuation-ratio probability

Any appropriate link function may be used to form a model with the continuation-

ratio probability. For example, what will be referred to as the continuation-ratio

logit model:

or equivalently

Similarly there are the continuation-ratio complementary log-log and continuation-

ratio probit models when the link function is the complementary log-log and probit

respectively. The continuation-ratio link models do not have the same appeal to

an underlying continuum as is the case with the cumulative link models. Note that

the threshold parameters (fys) in a continuation-ratio link model are not, in general,

ordered. All continuation-ratio link models define strict stochastic ordering but they

are not, in general, invariant to the collapsing of contiguous categories.

It is straightforward to use general purpose binary regression software to fit

the three continuation-ratio link models mentioned here. This is possible because

the likelihood function for continuation-ratio link models can be split into K — 1

independent binomial likelihood functions. To demonstrate, consider the case of

an ordinal response having four categories (A' = 4). The likelihood for the z'th

observation is proportional to

_ y . l _2K2 _ M 3 _ W 4nil Ti2 ^iS Ti4

where yij = 1 if the ordinal response j/,- = j and yij = 0 otherwise. This may

14



equivalently be written as

X
7T i2 V'2

Viz
X

But, since £2j 7r,j = 1, this is also the joint likelihood for one observation from each

of the three independent binomial distributions,

B(l,7rtl)

+ +

B

A continuation-ratio link model is in this case

ii) = 9\ — x,-/

linkf — ) = 62-XiP
\iTi2 + 7Ti3 + 7Ci4J

link ( ** ) - 6»3-x,-/3

So if the continuation-ratio link model is considered to have three levels then each

level models one of the binomial probabilities in the expanded likelihood. This means

that any software package that includes the facility for fitting logistic regression

models to binomial data can be used to fit continuation-ratio link models. This is a

practical advantage to using these models.

Adjacent-category probability

A third probability, to be used in place of n,-j in equation (2.2), that has been given

attention in the literature is the adjacent-category probability

Ilij = - — — - .
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This is the probability of an observation being in category j given that it is in

category j or j' + 1. The adjacent-category link models imply stochastic ordering.

One particular case, the logit version, is equivalent to a log-linear model for expected

cell frequencies that employs integer scores for the ordered categories of the response

— see Agresti (1984) §7.

2.2.3 Covariate effects

The general framework introduced in equation (2.2) allows for covariate effects in

the linear form 8j — x,/9. The parameters (3 will be referred to as location effect

parameters. These are fixed effects. When dealing with cumulative link models

these location effects can be interpreted as changes in the location of the underlying

response distribution on the underlying continuum.

It also makes sense to consider changes in scale of the underlying response dis-

tribution. With this in mind McCullagh (1980) defines a general cumulative link

model

link(7ij) = (0j - x,-/?)/ exp(z,-r) (2.4)

where the parameters r can be interpreted as changes in the scale or dispersion

of the underlying distribution. In general, this model no longer defines a mode

of strict stochastic ordering. Chapter 5 includes an analysis using scaling terms

applied to the BT data described in Chapter 3. In Chapter 4 a new general purpose

method of fitting this model (and cumulative link models with location terms only) is

introduced. This general purpose method is implemented in GLIM4 and is published

in the GLIM4 Macro Library. As scaling terms are heavily investigated in this thesis

the next section will discuss the issue of scaling terms in a cumulative logit model

in more detail.

Another covariate structure, more flexible than the scaling structure, is one that

includes a full interaction between covariate effects and the threshold parameters.
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In the model framework this is represented by,

) = 6tJ - Xip (2.5)

where now the % = 0j(z,-) are functions of what are termed 'category-specific'

variables z8-. Tutz (1991) discusses the covariate effects described in equation (2.5)

for both cumulative models and continuation-ratio models. Examples of the use of

models of this form are given in Chapter 3 and Chapter 5.

If the ordinal response data under consideration are in the form of repeated

measures on the same sampling units then the inclusion of random effects in the

model may be appropriate. The repeated measures may be clustered observations,

e.g responses on different children where family is the sampling unit or responses

from different eyes where the sampling units are individuals. The repeated measures

may be longitudinal observations where responses are observed at different time

points on the same sampling unit.

Hedeker Sz Gibbons (1994) have developed an appropriate methodology for the

inclusion of random effects in cumulative link models. They propose a model for

the continuous response underlying the repeated ordinal response as follows:

Yf^vrisCti + XisP + ei, (2.6)

where there are s = l,...,n,- observations on i = l , . . . , n sampling units. The

vector w,-, is a design vector for the random effects a{. The covariate design vec-

tor is given by x,s and the regression parameters are contained in p. Hedeker &

Gibbons (1994) assume that the distribution of the random effects is multivariate

normal, independent of the errors e,-s which are assumed to be independent and nor-

mally distributed. This implies the cumulative probit model. Assuming the logistic

distribution for the errors would give the cumulative logit model.

The estimation of the parameters in the model may be performed by maximum

likelihood but this requires the evaluation of an integral as the random effect distri-
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bution needs to be integrated out of the likelihood. This integration is performed

by Gaussian quadrature in the software developed by Hedeker (1993). All models in

the framework (2.2) have the same form of likelihood function, i.e. multinomial, and

so the consideration of a random effect is similar for all such models. An alternative

to numerical integration is to use a Gibbs sampling approach.

Jansen (1990) gives an example of the use of random effects in clustered ordinal

data. The application that he discusses is an agricultural experiment where an ordi-

nal response is observed for each strawberry plant within a cluster, the cluster being

defined by the plot in which the strawberry plant was grown. A random effect for

plots is included in the cumulative logit model and a normal distribution is assumed

as the prior for this random effect. For parameter estimation Jansen (1990) uses

Gaussian quadrature to perform the integration in the likelihood function. A similar

application is that of Ezzet & Whitehead (1991) who analyse longitudinal data from

a cross-over trial using a random effects model. There are two responses measured

on each subject in the trial and a subject-specific random effect is considered in the

same manner as the plot random effect in Jansen (1990). Ezzet & Whitehead (1991)

integrate the likelihood by using numerical integration routines in FORTRAN.

Ten Have & Uttal (1994) deal with an example from a clinical psychology ex-

periment where repeated ordinal observations are made on children. They use the

continuation-ratio logit model and include random effects for children. To evaluate

the resulting integral in the likelihood function Ten Have & Uttal (1994) employ the

Gibbs sampler.

A special case, the cumulative complementary log-log model, is investigated by

Crouchley (1995). He discusses this model with a distribution for the random effects

from the Hougaard family (Hougaard, 1986). In this particular situation Crouchley

(1995) shows how a closed form is obtained for the likelihood function and recourse

to numerical integration or Gaussian quadrature is unnecessary.
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2.3 The cumulative logit model with a scaling

term

2.3.1 Introduction

The cumulative logit model with a scaling term T proposed by McCullagh (1980) is

log IY~^— ) = (0j - x,-/?)/ exp(Zir). (2.7)

As mentioned in the previous section the scaling term describes changes in the

variance or scale (or dispersion) of the underlying response distribution.

A simple example of the cumulative logit model with a scaling term is now given.

Imagine a set of data which can be divided into 2 groups according to the values of

a binary characteristic. Consider

logit (71 j) = (9j — ft\)l exp(ri)

logit (72j) = \f)j — P2)l exp(r2) ? , (*-°)

fa = 0 Tj = 0

a cumulative logit model with a scaling term. The binary explanatory variable has

both a location and scale parameter associated with it. The responses are split into

2 groups according to the value of the binary covariate. The responses in these 2

groups are assumed to be observations from 2 underlying probability distributions.

The difference between the underlying distributions is described via the cumulative

logit model in two ways:

1. by the difference in their location, described by (32

2. and the difference in their dispersion, described by r2.

The example given by model (2.8) demonstrates a very simple covariate structure

in a cumulative logit model with a scaling term. With more complex covariate
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structures a more complicated model can be formulated, for example

log f lahxi ) = (0. - w Q - x,-/?)/exp(x,-r + zhv). (2.9)

In this model there are three distinct ways for a covariate to describe the underlying

distribution:

1. Through a location parameter only, e.g. covariates w3 in model (2.9).

2. Through a scale parameter only, e.g. covariates Z/j in model (2.9).

3. Via both location and scale parameters, e.g. covariates X; in model (2.9).

McCullagh (1980) points out that the model with a scaling term no longer implies

stochastic ordering. Where stochastic ordering holds, either 71 j > 72J for all j ,

or 72J > 7ij for all j . The model with a scaling term (2.8) can be interpreted as

describing underlying distributions which are not, in general, stochastically ordered.

However, given values of the covariates of type 2 and 3 above it can be said that the

underlying response distributions are stochastically ordered regardless of covariates

of type 1.

An alternative form of the cumulative logit model with a scaling term is

log I ™ J = 6j exp(z,-A) - Xi/3. (2.10)

which is discussed by Kijewski et al (1989). The advantage of this parameterisation

is that the scaling parameters A can be interpreted more directly in terms of fitted

category probabilities. The exp(z;A) term has a multiplicative effect on the cut-

point parameters 0j. Consider a simple example of model (2.10) with one binary

covariate:

(2.11)

= 0

20



The value of A2 has the effect of either clustering the cut-points on the underlying

continuum (if A2 < 0) or spreading them out (if A2 > 0). The estimates of the

cut-point parameters give fitted probabilities for level 1 of the covariate. If the

cut-points are more spread out in level 2 of the covariate (by a value of A2 > 0)

then the fitted probabilities in the extreme categories are smaller for level 2 than

for level 1 of the covariate. Similarly if the cut-points are more clustered in level 2

of the covariate (by a value of A2 < 0) then the fitted probabilities in the extreme

categories are larger for level 2 than for level 1 of the covariate.

Figure 2.1: Effect of scaling term (A) on the fitted probabilities in the extreme

categories of a 5 category response

Value of lambda

The theme of interpreting a scaling term, A, with respect to fitted probabilities

can be continued further. Consider again the situation of a cumulative logit model

with one binary covariate but now suppose that the ordinal response has 5 categories.

Assume that the category probabilities for level 1 are known and equal (iTij = 0.2
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Table 2.1: Quality of right eye vision in men and women

Men

Women

Vision quality

Highest 2 3 Lowest

1053 782 893 514

1976 2256 2456 789

Total

3242

7477

Cumulative proportions

Men

Women

0

0

.32

.26

0

0

.57

.57

0

0

.84

.89

1

1

.00

.00

for all j). Figure 2.1 illustrates how the extreme-category probabilities for level 2

vary with the value of the scaling term, A. From Figure 2.1 it can be seen how

increasing values of the scaling term result in a shift of the total probability from

ITi and 7r5 to TT2, TT3 and TT4. Also note that when A = 0 the fitted probabilities for

level 2 equal the probabilities for level 1 and thus %2\ + ^25 = 0.2 + 0.2 = 0.4.

2.3.2 When is a model with a scaling term appropriate?

In this chapter the cumulative logit model is introduced in terms of an underlying

continuum. The location and scaling terms are interpreted with respect to under-

lying probability density functions defined on this continuum. In these terms the

model with a scaling term is appropriate when it is possible that the underlying

cumulative probability functions associated with some combination of explanatory

variables are not stochastically ordered.

The data in Table 2.1 are analysed by McCullagh (1980). The explanatory vari-

able in this example is sex, a binary variable. If the cumulative proportions given in

Table 2.1 are observations from two underlying cumulative probability distributions
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-Pi and F2, then it would seem that F\ and F2 are not stochastically ordered. Hence

it is appropriate to consider a model with a scaling term (e.g. model 2.7) in this

example.

The quality-of-vision data in Table 2.1 is one example of a lack of stochastic or-

dering in real data. Another example is the data from the BT experiments described

in Chapter 3. In the BT data the lack of stochastic ordering (which is highlighted

in §5.2.1) is due to differences between subjects in their use of the ordinal scale.

2.4 Sampling

The likelihood function that is used in estimation procedures for fitting the models

in the framework (2.2) is the multinomial likelihood function. For a A'-category

ordinal response this is proportional to

where y,-j is the observation in the z'jth cell. The n multinomial observations j / ; =

(j/ii, yi2, • • •, yu<), where ~£j Vij = mi, have expectation

E(Yi) = (m.-TTji, mlTi2,..., m,-7r,-A')-

It is assumed, conditional on all effects in the model, that the multinomial variables

Yi are independent of each other and that the multinomial totals mi are fixed.

If the multinomial observations y,- are made on a randomly-selected subset of a

large population then it may be safe to assume that the variables Yi are indepen-

dent. Care must be taken however as it is not hard to imagine situations where

the sampling procedure yields a set of observations which come from correlated Yi

variables.

The case of repeated sampling, i.e. several multinomial observations taken on

the same sampling unit, gives rise to longitudinal data. It is likely that there will
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be correlation between the repeated observations on the same unit. In Chapter 4 a

method of fitting the cumulative logit model using generalized estimating equations

(GEE) is discussed. This fitting method involves a 'working' correlation matrix being

formed. In the case of longitudinal data this working correlation matrix may be

defined to reflect possible correlation between the intra-unit repeated observations.

Whilst this thesis examines in detail the use of GEE as a method of fitting the

cumulative logit model, the extension of GEE to longitudinal ordinal responses is

not pursued. Recent work has been done in this direction by Clayton (1992), Lipsitz

et al (1994) and Miller et al (1993).

2.5 Model relationships

2.5.1 The equivalence of the cumulative complementary-

log-log and continuation-ratio complementary-log-log

models

This relationship has long been recognised, for example see the comments of Preg-

ibon in the discussion of McCullagh (1980). The relationship is formally specified

by Laara, &i Matthews (1985). If the cumulative complementary log-log model is

defined as

and the continuation-ratio complementary log-log model is defined as

log(- log(l - Sij)) = ip3 - x,-a

where <Sy = P(Y{ = j\Y{ > j) is the continuation-ratio probability, then the param-

eters a and (3 are equivalent and the threshold parameters 6j and %/>j of the two

models are related by

( ^ + e * - ' ) (; = 2 , . . . , A ' - 1).
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2.5.2 Approximate equivalence of cumulative probit and

adjacent-category probit models

Further exploration of relationships like that in the previous section, between mod-

els from the framework in equation (2.2), led to the following: when the number of

categories is large, a cumulative probit model with equally-spaced cutpoints is ap-

proximately equivalent to the corresponding adjacent-category probit model. This

finding appears to be new and a heuristic derivation is now presented.

Consider the cumulative probit model

$-1(70-) = ^-x,-)S (2.12)

with equally-spaced cutpoints, 9j — 9j_i = h (j = 2 , . . . , A' —1). The 'corresponding'

adjacent-category probit model is

/ 7 [ j j \ = 9 * i/3> (j = i , . . . , A - _ i ) . (2.13)

To see that model (2.13) is approximately equivalent to model (2.12) when K is

large (and hence h small), note that for 2 < j < K — 2,

+ h- x,-/?)

by the Taylor expansion, where <f>(z) denotes the normal density. Note also that for

2 < j < K - 2

and hence

2
Thus

9j - xtP) - \h2<f>'{6j - *iP) + O(h3)

iP) + O(h3)

VO{h2).
2 4 <f>(9j - x,-/
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B u t <f>'(z)/<f>(z) = -z, so

TTij 1 h
= 2 + I (

and thus, using the Taylor expansion on the right hand side,

Thus model (2.13) is approximately equivalent to model (2.12) for j = 2 , . . . , K — 2.

Provided that the end categories can be neglected, which is not unreasonable when

the number of categories is large, the cumulative probit model is approximately

equivalent to the adjacent-category probit model. Note that the same is not true for

other link functions: the key property of the probit in this regard is that (f>'(z)/<f>(z)

is linear in z.

No application for this result is immediately apparent. It has no consequences

for the remainder of the thesis, and so is not pursued further.

2.5.3 The relationship between continuation-ratio link mod-

els and Cox's proportional hazards for survival data

The hazard function

h(t;Xi) = hm
dt

is used to define the well-known proportional hazards model for survival data in

continuous time

for some functions ip and ho(£). Consider the exponential function as a form for ip

and

H0(t)= l\G{t)dt.
Jo

26



Then the proportional hazards model is equivalent to the continuation-ratio com-

plementary log-log model

with

9j = log [H0{t3)- H0(t^ ) ] .

An alternative version of the proportional hazards model for discrete time (Cox

1972) is

where now h(£;x;) = P(T; < t + l|Tj- > t). The relational function ip recommended

by Cox &: Oakes (1984) §7 is ^(x;/?) = exp(x;/?). In this case the model becomes a

logistic model for the hazard function in discrete time. It is then equivalent to the

continuation-ratio logit model

with

2.5.4 Note on terminology

Having established the close relationship of both the continuation-ratio logit and

continuation-ratio complementary log-log models to the proportional hazards model

for survival data it becomes misleading to refer to the cumulative complementary

log-log as the proportional hazards model.

Following the argument of McCullagh (1980) motivating the use of the name, it

seems that a more appropriate name for him to have arrived at would have been the

proportional log survivors model. This can be seen from the relationship between
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the continuation-ratio complementary log-log model and the proportional hazards

model for survival data and the equivalence between the former and the cumulative

complementary log-log model shown in §2.5.1. To make the distinction clear this is

now shown explicitly for the cumulative complementary log-log model. In discrete

time the survivor function S(i;xs-) = P(T,- > t) becomes (1 — 7^). For two groups

(i = 1,2) the cumulative complementary log-log model is specified as

log(- log(l- 7 l j)) = Oj-xnP ' (2.14)

log(-log(l-7 2 j)) = 0 ; - x 2 0 (2.15)

and (equation 2.14) — (equation 2.15) gives

log(l -
= exp x2 - xx).

log( l - 7 2 i )

So the cumulative complementary log-log model defines proportional log survivor

functions in the case of discrete time. McCullagh used the name proportional haz-

ards because proportional log survivor functions are also denned (in the continuous

case) by the proportional hazards model.

Given the different application of models to survival data and to ordinal re-

sponse data, it seems appropriate that different names should be used for models

in the two arenas. The use of the name cumulative complementary log-log model

will prevent confusion arising firstly from its equivalence to the continuation-ratio

complementary log-log model and secondly from the connections of both it and the

continuation-ratio logit model to models for survival data.

It is also worth noting the motivation of the name 'proportional odds' model. The

cumulative logit model is a proportional odds model for the event Y < j . However

it is also true that the continuation-ratio logit model is a proportional odds model

for the event Y = j\Y > j . Thus the name proportional odds model may equally

well be applied to either. As a means of reference and as a means of description

the name proportional odds is unhelpful. The name cumulative logit is descriptive
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of the model and, within the terminology framework suggested in this chapter, it is

an appropriate reference.

2.6 Special scales

2.6.1 Ordinal scales, known cut-points

Terza (1985) gives an account of this special kind of response scale when the data

are analysed by the cumulative probit model. Ordinal data often arises from group-

ing continuous data. Usually when this happens the cut-points of the continuous

scale used to define the ordered groups are known, e.g. income being grouped into

< $10,000, $10,000 - $20,000 and > $20,000. Terza demonstrates how this infor-

mation may be used in a model of the form given in equation (2.5).

2.6.2 Partially ordered response scales

Consider a response scale, the categories of which can be grouped into two separate

groups. For example, consider a 5-category scale separated into a group containing

the ordered categories 1 to 3 and a second group containing the categories 4 and 5.

Methods for dealing with this form of response scale have been considered by Tutz

(1989) and Wang (1986). Wang introduces a parameterization of the multinomial

likelihood equation which allows for partial ordering, with nominal and ordinal scales

as extreme cases. He re-defines the likelihood in terms of A = (A')"1 logrr. The

matrix A is called the relational matrix and it contains all the ordering information

for the categories. Wang recommends models based on the parameters A. In the

extreme case of an ordinal scale these parameters are given by Ay = — log(7rt-j_i /TTJJ),

i.e. the adjacent-category logits.

The approach of Tutz is different. He constructs a multiple-level ordinal response
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model that he refers to as a compound model. The motivation behind this can be

illustrated by considering the example mentioned above. Consider the category

allocation as a binary choice at the first level between the first three categories and

the other two categories. If the allocation is to the former then there is an ordinal

structure to model within that group. If allocation is to the latter then there is a

further binary structure to model within that group. The modelling procedure at

the second level is conditional on the first level.

In the example mentioned above the two approaches yield models based on the

following transformations of the category probabilities TTJ. Wang's method is to

model log(A) where
. ( 7T2 7T3 7 T 5 \ '

A = TTj, , , 7T4,
V IT i 7T2 7 T 4 /

but with the constraint ]T TTJ = 1 one of these is redundant. Tutz's method, employ-

ing continuation-ratio logit models at each of the two levels of the response scale,

models log(A*) where,

L ~ h 7i*2 "I" 71*3 7Ti 7T 2 7i
A* =

7r4 + T5 7T2 + X3 7T3 7T5

2.7 Alternative model approaches

There is a brief discussion in the introduction to this chapter of the modelling

approaches of assigning arbitrary scores to categories and analysing the resultant

data via a log-linear model or an analysis of variance. The extension of log-linear

modelling to ordinal data has been widely investigated and is well documented by

Agresti (1984 §5). This method is useful when investigating association between

variables (if no response variable can be identified).

As mentioned before, the use of any score-based model carries with it the arbi-

trariness of the scoring mechanism but, as Agresti (1984 §8) points out, interpreta-

tion may be easier in such a model than in a multinomial model. A generalization of
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the score-based modelling approaches is to make the score an estimable parameter

of the model (Agresti 1984 §8). Thus the score giving the best fit is chosen. While

this may lead to a set of scores which give a good fit to the data, interpretation is

not necessarily any easier than in a model with a simple (e.g. integer) set of scores.

One final alternative approach which has not yet been mentioned is the stereotype

model suggested by Anderson (1984). Consider the logistic regression model for

categorical data ,

- = -j) =

Anderson (1984) proposed a modification to this formulation which replaces x4/?j

with </>jXi/3 (i.e. taking the f3j to be parallel). Considering the <f)j parameters to be

monotone decreasing leads to the stereotype model:

The fitting of this model does not involve prior constraint of the cj>j parameters,

Anderson regards a posteriori investigation of the ordering of these parameters as

the key to determining the ordinality of the response scale. A concept which is used

in this context is indistinguishability. If an explanatory variable is not predictive

between two contiguous categories then those categories are said to be indistinguish-

able. This could be seen from the parameter estimates if two categories had equal

values of </>j. Anderson's advice is to then combine these categories and repeat the

analysis.
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Chapter 3

Introduction to the British

Telecom data

3.1 Introduction

When we use the telephone we frequently experience 'good lines' and 'bad lines'.

This is due to a whole range of factors such as the type of telephone we are using,

the distance between these telephones, the type of electrical connection used to relay

the conversation, the amount of background noise where we are making the call, and

our own previous experience of telephones. Most of these factors are quantitative,

e.g. electrical features such as signal loss from one end of a connection to the other.

British Telecom (BT) is involved in ongoing experimentation into all aspects

of telephony. Their experiments are run at British Telecom Laboratories (BTL) in

Martlesham. One group at BTL is concerned with measuring the speech-transmission

performance of complete telephone connections, as perceived by the human users. It

does this by eliciting the opinion of people on different telephone connections. Much

of the work in this thesis arose through a research contract on this topic between

BT and Southampton University.
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Table 3.1: BT Experiments

Conversation

Limited duration: E198, E200, E212, E216.

Unlimited duration: E136, E139, E140, E199,

E211, E213.

Listening

2 subjects per row: E247, E264.

1 subject per row: F064, F065.

Special design: F100.

The data from a number of BT experiments are analysed in this thesis. A full

list of the experiments is contained in Table 3.1 from which it can be seen that

the experiments fall into two distinct types: conversation experiments and listening

experiments. Conversation experiments involve pairs of subjects conversing on the

telephone, whereas listening experiments involve individual subjects listening to pre-

recorded speech over the telephone.

In both types of experiment the aim is to obtain subject responses in order to

compare different transmission conditions. The transmission conditions are combi-

nations of settings of particular electrical features of telephone connections such as

loudness, signal loss, artificial interference and echo, which is the name given to the

delayed audible return of one's own voice from the distant end of the connection.

The method of eliciting peoples' opinion has developed over the many years that

BT have been investigating the performance of different transmission conditions. In

the data from BT experiments analysed in this thesis, opinion has been recorded on

a 5-category ordered scale (see Figures 3.1 and 3.2 for example).

In this chapter a preliminary description of each type of BT experiment: con-
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versation and listening, is given. Terminology for experimental design is introduced

and the types of design used for the BT experiments are outlined. It is possible that

a subject's response is influenced by exposure to earlier periods in the experiment.

For example if the condition in the preceding period was bad then a subject may

respond favourably in the current period to a moderate transmission condition. If

the condition in the preceding period was very good then the subject may respond

unfavourably to a moderate condition in the current period. The effect of features of

preceding periods of an experiment on the response in the current period are called

carry-over effects, and these are discussed in this chapter. Two separate modelling

issues are introduced, both motivated by data from the BT experiments. The first

issue is how the goodness of fit of the linear model underlying analysis of variance

(ANOVA) compares with the continuation-ratio logit model. Both of these models

were introduced in Chapter 2. Secondly a new method of analysing carry-over ef-

fects using the continuation-ratio logit model is introduced. Since the motivation

for this method of carry-over analysis comes from the BT data, application of the

method to these data is presented.

3.1.1 Listening experiments

The typical procedure for a listening experiment can be described as follows.

After receiving initial instructions a subject sits in a soundproofed cabinet with a

telephone set and the instructions for the experimental procedure on a table in front

of them. During the experiment, an experimental controller (located in a control

room) instructs the subject via a loud-speaker. The telephone rings, the subject

picks it up and listens as some sentences are read out. When these have finished a

signal is given for the subject to respond with their opinion of the transmission con-

dition. Typically this is done by choosing a category from a five-point scale, graded

descriptively from 'No meaning understood with any feasible effort' to 'Complete
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Figure 3.1: Typical response scale for listening experiments.

Effort

4.

3.

2.

1.

0.

required

Complete

Attention

Moderate

to understand the meaning of sentences

relaxation possible; no effort required

necessary; no appreciable effort

effort required

Considerable effort required

No meaning understood with any feasible

required

effort

relaxation possible; no effort required' (see Figure 3.1). The subject listens to a va-

riety of sentences spoken by different voices under different transmission conditions,

and at every prompt records an opinion.

The order in which a subject hears the conditions is determined by an experi-

mental design. This design can be set out as a two-way layout in which each row

corresponds to a subject and each column to a period. There is a well-developed lit-

erature on the design of experiments, e.g. Montgomery (1984), and on row-column

layouts in particular, e.g. Jones &: Kenward (1989) and Street & Street (1987). At

each intersection of a row and a column any number of attributes (or factors) may be

allocated. The allocation employed affects the usefulness of the information gained

from the experiment.

In the BT listening experiments facilities are usually available to perform the

experiment in two different cabinets simultaneously. In this case there are two sub-

jects corresponding to each row of the design. For a given row-column intersection,

values of three factors (transmission condition, sentence list and talker) are speci-

fied. The design is complicated by the fact that each period contains a number of

sub-periods (typically 5). The transmission condition, sentence list and talker are
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all allocated to the period and are thus the same for each sub-period within that

period. However, the listening level is different in each sub-period. The listening

level affects the loudness at which the subject hears the talker over the telephone.

The number of sets of sentences in the sentence list equals the number of listening

levels (which is also equal to the number of sub-periods) and in each sub-period a

different set of sentences from the list is used. Although the listening level is treated

as a factor at the experimental design stage, the different levels correspond to signal

level measurements and hence listening level may be treated as either a continuous

variable or a factor at the analysis stage.

An example of the values of the factors and the data obtained from one period

of a listening experiment is

Col- Row Cond- Voice Sentence

umn ition list

3 10 2 1 8

Listening

level

4

2

1

5

3

Opinio

Cabinet 1

3

1

0

3

2

n score

Cabinet 2

2

2

0

4

2

Note that the column, row, condition, voice and sentence list apply to the entire

period and hence apply to each sub-period. In this example there are 5 sub-periods.

There are also two subjects in the row (one in cabinet 1 and the other in cabinet

2). The opinion responses are made using the 5-point scale and numerically coded

as in Figure 3.1.

3.1.2 Conversation experiments

There are three main differences between a conversation and a listening experiment.
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1. A conversation experiment consists of a number of pairs of subjects and each

pair engages in conversation over the telephone; this is in contrast to a lis-

tening experiment where single subjects listen to pre-recorded speech. The

two subjects in each pair sit in different cabinets which will be referred to as

ends, implying the two ends of the telephone connection. As in the listening

experiments, each subject sits at a table on which there are a telephone set

and a sheet of instructions describing the experimental procedure. One of the

instructions given to the subjects is to avoid discussing their opinion of the

transmission condition. This is an attempt to remove one possible violation of

independence of the opinion scores of the two subjects. Similarly to listening

experiments, there is an experimental controller who instructs the subjects on

procedure.

2. Another factor is introduced in order to stimulate conversation but which is

not of primary interest in the analysis of the experiments. This stimulus takes

the form of a set of picture-cards (a picture-set) for which subjects are asked

to complete a task. For example, the pair of subjects will have 8 cards each

of which only 6 are common to both. The subjects have to discover which

cards they have in common and agree on an order of preference for them. It is

important that subjects receive fresh stimuli in each period regardless of the

task being performed. This helps to avoid fatigue in the subjects.

3. An important practical difference between listening and conversation experi-

ments is the amount of time it takes to arrive at the subjects' opinion response.

In a listening experiment a subject only has to listen to a few sentences be-

fore recording an opinion. In a conversation experiment a subject engages in

conversation and then gives an opinion. In some conversation experiments the

duration of this conversation is determined by the subjects. They talk for as

long as is necessary to complete the task that they have been set. In other
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conversation experiments the duration of the conversation is constrained (e.g.

to 3 minutes). In the time-constrained experiments, the subjects are usually

asked to select and discuss the picture-sets rather than perform a particular

task with them. The conversation is halted by the experimental controller at

the appropriate time. Time-constrained experiments are open to the criticism

that they are not representative of real telephone conversations. They arise

from practical concerns about the potential length of time an experiment will

take if the subjects are free to converse for as long as they wish. Conversa-

tion experiments where the duration of the conversation is at the subjects'

discretion can occasionally result in extremely long conversations.

Figure 3.2: Typical response scale for conversation experiments.

Opinion of the telephone connection

4. Excellent

3. Good

2. Fair

1. Poor

0. Bad

One period in a conversation experiment is as follows. One subject rings the other

and they hold a conversation either to accomplish the task involving the picture-

set or to converse for the specified time. When the conversation is finished the

subjects hang-up and are prompted by the experiment controller to give an opinion

of the transmission condition. This opinion is typically given on a five point scale

graded descriptively from 'Bad' to 'Excellent' (see Figure 3.2). The subjects also

give a binary response to a question on difficulty in hearing over the connection.

This completes one period of the experiment. Unknown to the subjects, various
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objective measurements on the speech signals are also made. Only the ordinal

response is investigated in this thesis, so the other response variables will not be

mentioned further.

The experimental design for conversation experiments has a row-column struc-

ture, but unlike listening experiments they have no nested sub-periods within the

periods. In addition to the transmission conditions the picture-sets must be allo-

cated to the row-column intersections.

3.1.3 Carry-over considerations

In any given period of an experiment a subject's response may be influenced by the

various factors in the experimental procedure. If a subject's response is influenced

by the value of a factor in the previous period then that subject is said to experience

a carry-over effect due to that factor. For example in the BT conversation exper-

iments, a subject's response might be determined not just by the picture-set and

condition experienced in a period but also by the condition that was experienced in

the previous period. It is possible to imagine some sort of comparative process going

on in the subject's mind. Does the condition in the current period seem better or

worse than the condition in the previous condition?

This concern over the possible effect on the response in the present period of

features of the previous period is a common one in experimentation where sub-

jects receive a sequence of treatments. One of the first authors on this subject was

Williams (1949, 1950) who was concerned with applications in agricultural experi-

ments. A complete introduction to experimentation in the presence of carry-over is

given by Jones & Kenward (1989) where the emphasis is on medical applications.

Other applications where carry-over effects cause concern include psychology and

human-factors engineering.

The carry-over effects need not be limited to the immediately preceding period.
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There may be carry-over effects from two periods ago or earlier. The terminology

usually used is to call carry-over from the immediately preceding period, first-order

carry-over, and carry-over from the last-but-one period, second-order carry-over,

and so on.

3.2 Design of the BT experiments

The purpose of experimental designs in general is to allocate experimental factors,

usually in such a way as to maximise the information extracted from the experiment.

Not all of the factors are necessarily of direct interest, those that are not are called

nuisance factors. Each factor has a number of levels, i.e. values (quantitative or

qualitative) which the factor may take. Two factors are said to be orthogonal if

every level of one of the factors occurs in the design the same number of times with

every level of the other factor. A level of a factor may be aliased with certain levels

of other factors. When this occurs it is impossible to estimate the effect of the level

of the factor separately of those levels of other factors with which it is aliased (see

McCullagh & Nelder, 1989 §3.5).

Figure 3.3: A 4 x 4 Latin square

Row

1

2

3

4

1

A

B

C

D

Column

2

B

C

D

A

3

C

D

A

B

4

D

A

B

C

A Latin square design is a row-column arrangement for 1 treatment factor in
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which every level of the treatment factor occurs exactly once in every row and once

in every column. Thus treatments are orthogonal to both rows and columns. An

example of a Latin square is given in Figure 3.3. In this example the rows can be

taken to represent subjects and columns correspond to periods of the experiment.

The letters A to D represent the 4 levels of the treatment factor. A Latin square

design is optimal in the sense that when the responses from the experiment are

analysed by a linear model, the variance of the treatment contrasts is minimised.

This optimality only holds if there is no carry-over effect of treatment.

A Graeco-Latin square is a row-column design for two treatment factors. At

every intersection of row and column the levels of two factors are specified. These

levels are specified in such a way that every level of one treatment occurs with

every level of the other treatment exactly once across the design. Thus the design

gives orthogonality between the two treatment factors. Further there is pairwise

orthogonality between the treatment factors, rows and columns. A Graeco-Latin

square can be constructed by superimposing two orthogonal Latin squares.

It is possible to superimpose more than two mutually-orthogonal Latin squares.

Thus row-column designs for more than two factors can be constructed. These are

called Hyper-Graeco-Latin square designs and in any one of them there is pairwise

orthogonality between the treatment factors, rows and columns.

A Williams Latin square design (Williams 1949) uses a particular form of Latin

square and has been widely used for experiments where carry-over effects are an-

ticipated. If the columns of the design denote periods, then the specification of

treatment levels across columns gives the allocation order of the treatment for each

row. A treatment is said to be balanced if every level of the treatment is preceded

by every other level of that factor the same number of times in the design. The

treatment factor in a Williams Latin square design is balanced across columns. In

Figure 3.4, a Williams Latin square design for a treatment with 4 levels, it can be
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Figure 3.4: A 4 x 4 Williams Latin square

Row

1
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4

1
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B

D

A

C

3

C

A

D

B

4

D

C

B

A

seen that every level of treatment is followed by every other level exactly once in

the design.

3.2.1 The design of conversation experiment E199

In experiment E199 there were 8 transmission conditions of interest. To ensure that

each subject received each condition once, 8 periods were included in the experiment.

This required the use of 8 different picture-sets. For this experiment, the carry-over

of condition was a consideration at the design stage. The design is constructed as

follows. An 8 x 8 Williams Latin square for conditions (rows 1 to 8 and columns 1

to 8 of the condition matrix in Table 3.2) is repeated but with the rows permutated

in a specific order. This results in a rectangle of size 16 rows by 8 columns for the

allocation of conditions. An 8 x 8 Latin square (rows 1 to 8 and columns 1 to 8 of

the picture-set matrix in Table 3.2) is repeated without permutation of the rows to

give a rectangle for the allocation of picture-sets. Note that the initial Latin square

for picture-sets is simply constructed by starting with row 1 containing the integers

from 1 to 8 inclusive and cycling this row by adding 1, modulo 8, to give the other

7 rows.
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Column

Row

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

0

8

1

2

3

4

5

6

7

4

5

6

7

8

1

2

3

1

8

1

2

3

4

5

6

7

4

5

6

7

8

1

2

3

Table
2 3

3.2:
4

Condition

1

2

3

4

5

6

7

8

5

6

8

1

2

3

4

7

8

1

2

3

4

5

6

3

4

5

6

7

8

1

2

2

3

4

5

6

7

8

1

6

7

8

1

2

3

4

5

Design
5 6

matrix

6

7

8

1

2

3

4

5

2

3

4

5

6

7

8

1

3

4

5

6

7

8

1

2

7

8

1

2

3

4

5

6

for

7

5

6

7

8

1

2

3

4

1

2

3

4

5

6

7

8

Experiment
8

4

5

6

7

8

1

2

3

8

1

2

3

4

5

6

7

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

1

1

8

7

6

5

4

3

2

1

8

7

6

5

4

3

2

2

E199
3 4

Picture-set

2

1

8

7

6

5

4

3

2

1

8

6

5

4

3

3

2

1

8

7

6

5

4

3

2

1

8

7

6

5

4

4

3

2

1

8

7

6

5

4

3

2

1

8

7

6

5

5 6

matrix

5

4

3

2

1

8

7

6

5

4

3

2

1

8

7

6

6

5

4

3

2

1

8

7

6

5

4

3

2

1

8

7

7

7

6

5

4

3

2

1

8

7

6

5

4

3

2

1

8

8

8

7

6

5

4

3

2

1

8

7

6

5

4

3

2

1

Table 3.2 shows the two rectangles that are superimposed to produce the Graeco-

Latin square design for experiment E199. This design gives pairwise orthogonality

between conditions, picture-sets, rows and columns. In fact each condition appears

in each row once, in each column twice and with each picture-set twice. Similarly

each picture-set appears in each row once and in each column twice. Conditions are

balanced in the design because a Williams Latin square was initially used for them.

A warm-up period, labelled column 0 in the design, is included in the experiment

to familiarise subjects with the experimental procedure. The data from this warm-
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up period are not included in the analysis of the experiment. A picture-set which is

not used in the rest of the experiment (labelled picture-set 0) is given to all subjects

in the warm-up period. The conditions allocated to column 1 are duplicated in

the warm-up period (column 0). The use of a warm-up period means that there

is a preceding condition associated with the responses in column 1. Thus for the

analysis, every condition is preceded by every other condition, and itself, the same

number of times. This property will be referred to as complete balance.

The design in columns 1 to 8 does not give orthogonality between picture-sets

and condition carry-over; every picture-set occurs with 6 carry-over conditions twice

and 2 carry-over conditions once. However, if the information on condition carry-

over from the warm-up period is used in analysis then picture-sets and condition

carry-over are orthogonal.

3.2.2 The design of listening experiment E247

In experiment E247 there are 12 conditions and hence 12 periods are used. Of these

conditions, 3 are synthesised conditions. This means that synthetic speech is used

as opposed to a human voice. In this case condition and voice are not completely

separate factors. The position in the design of each synthesiser condition fixes the

position of the corresponding synthesiser voice in the design. The other 9 conditions

occur with speech from 3 different human male talkers. The design ensures that each

human voice occurs in every row 3 times and in every column 3 times. Also every

voice occurs with every one of the 9 non-synthesised conditions the same number of

times.

Each row has a pair of subjects assigned to it, one subject in each of two cabinets.

There are 12 different sentence lists, each list containing 5 sets of sentences. These

lists are used with both synthesiser and other conditions. The design is constructed

by superimposing two Latin squares and one modified Latin square. The Latin
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square for conditions is given in Table 3.3, the Latin square for sentence lists is given

in Table 3.4 and finally the square for voices is given in Table 3.5. Note that in Table

3.5 the numbers 1,2,3 represent human voices and the numbers 10,11,12 represent

synthetic speech. These last three numbers correspond directly to conditions 2,4,6

respectively in Table 3.3 and hence voice 10 is aliased with condition 2, etc.

The three squares are superimposed to produce the design but note that this

is not a Hyper-Graeco-Latin square design because the squares for conditions and

voices are not orthogonal. This is because of the restriction relating to synthesised

speech. The square for sentence-lists is orthogonal to both of the other squares.

This design gives pairwise orthogonality between conditions, sentence-lists, voices,

rows and columns except for the pairing conditions with voices.

The design was obtained by performing an exhaustive search of 12 x 12 Latin

squares listed by Fisher & Yates (1963) to find combinations such that if three

symbols represented three synthetic voices and the other nine symbols represented

three human talkers, each condition and each sentence list would still occur equally

often with each other and with each talker.

There were 5 listening levels used in 5 sub-periods in each period of the experi-

ment. One listening level was allocated to each sub-period at random. A different

set of sentences from the sentence list was used in each sub-period.

Note that the design was augmented by a warm-up period, labelled column 0

in Tables 3.3, 3.4 and 3.5. A different condition from those used in the rest of the

experiment was used in this warm-up period and labelled condition 0. Similarly

sentence-list 0 and voice 0 were used in the warm-up period. The listening levels

used in the warm-up period were the same as in the design in columns 1-12 and

were allocated at random to the 5 sub-periods in the warm-up period.
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Table 3.3: Design matrix for conditions in experiment E247.

Column

Row

1

2

3

4

5

6

7

8

9

10

11

12

0

0

0

0

0

0

0

0

0

0

0

0

0

1

8

3

12

10

4

5

1

9

6

7

11

2

2

6

7

4

2

8

9

11

1

10

5

3

12

3

2

9

6

4

10

11

7

3

12

1

5

8

4

9

4

11

5

6

2

10

1

8

12

3

5

11

6

9

7

1

2

4

12

3

10

8

5

6

1

8

5

3

9

10

12

2

11

6

4

7

7

5

12

3

1

7

8

10

6

9

4

2

11

8

10

5

8

12

6

1

3

11

2

9

7

4

9

4

11

2

6

12

7

9

5

8

3

1

10

10

7

2

11

9

3

4

6

8

5

12

10

1

11

3

10

1

5

11

12

8

4

7

2

6

9

12

12

1

10

8

2

3

5

7

4

11

9

6
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Table 3.4: Design matrix for sentence lists in experiment E247

Column

Row

1

2

3

4

5

6

7

8

9

10

11

12

0

0

0

0

0

0

0

0

0

0

0

0

0

1

7

1

12

3

6

2

11

4

9

8

5

10

2

5

11

4

7

10

12

3

8

1

6

9

2

3

1

7

6

9

12

8

5

10

3

2

11

4

4

8

2

7

4

1

3

12

5

10

9

6

11

5

10

4

9

6

3

5

8

1

12

11

2

7

6

6

12

5

8

11

7

4

9

2

1

10

3

4

10

3

12

9

11

2

7

6

5

8

1

8

9

3

8

5

2

4

7

6

11

10

1

12

9

3

9

2

11

8

10

1

12

5

4

7

6

10

12

6

11

2

5

1

10

3

8

7

4

9

11

2

8

1

10

7

9

6

11

4

3

12

5

12

11

5

10

1

4

6

9

2

7

12

3

8
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Column

Row

1

2

3

4

5

6

7

8

9

10

11

12

Table 3.5: Design matrix for voices in experiment E247.

0 1 2 3 4 5 6 7 8 9 10 11 12

0 11

0 1

0 2

0 3

0 12

1

2

3 3

1 1

2 2

1 1

3 1 3 2 3 12 2 2 1 10

1 12 10 3 1 3 3 11 2 2

0 2 12 10 3 2 1

0 3 1 3 11 12 2

0 1 11 12 2 1 3

0 3 10 11 1 3 2

2

3

1

3

1

2

3

9

11

2

10

12

r—
i

10

3

9

2 10 11 1

1

1 1 12

1 3 10 12

0 2 3 2 3 2 12 11

0 1 2 1 2 1 11 10

0 10 3 2 3 :

2 11 1

1 10 3 3 2 11

1 1 1 10 3

3 3 3 12 2

1 2 11 1 1 3 12
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3.3 Comparing the goodness of fit of analysis

of variance and the continuation-ratio logit

model

3.3.1 Introduction

Table 3.6: Important explanatory variables for the BT Experiments

Limited duration:

Unlimited duration:

2 subjects per row:

1 subject per row:

Conversation

Cabinet+Row+Cabinet.Row+Column+Condition

Cabinet+Row+Cabinet.Row+Column+Condition

+Picture set

Listening

Cabinet+Row+Cabinet.Row+Column+Condition

+Voice+Listening level+Sentence list

Subject+Column+Condition

+Voice+Listening level+Sentence list

The British Telecom data described in detail in this chapter give rise to an ordinal

response problem. The scores given on the opinion rating scale in Figure 3.1 or Fig-

ure 3.2 constitute a 5-level ordinal response variable. Factors that may be included

as explanatory variables in a model for the data from these experiments are outlined

in Table 3.6. Note that in this table Cabinet.Row means the interaction between

Cabinet and Row. Also note that the combination Cabinet+Row+Cabinet.Row can

be replaced with a single factor for subject.

The traditional British Telecom method of analysis for opinion score responses

has been to perform an analysis of variance (ANOVA) on the numerical scores (0 to

4) assigned to the categories (see Richards 1973). One of the assumptions underlying
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the ANOVA procedure is that the errors in the response variable follow a normal

distribution. The opinion score is constrained to one of five values, and so is a

discrete rather than a continuous response. Approximating a discrete response with

five values by a normal curve is rather a crude approach. Also the use of integers

from 0 to 4 is arbitrary. The use of any linear combination of this set of integers

would give the exact same results when used in ANOVA. But any set of scores that

are not a linear combination of these integers will give different results. The first

of these considerations has the consequence of inefficient estimation of parameters.

The second has the consequence that the results may change with different scores

and, thus, the conclusions from the model may change with different scores. This is

not a desirable property.

The types of designs used in these experiments, e.g. those discussed in this chap-

ter based on Hyper-Graeco-Latin squares and Williams Latin squares, give orthog-

onality between most factors of concern. However, not all possible combinations of

factors are included, e.g if in a listening experiment, conditions, voices and sentence-

lists are pairwise orthogonal, not every possible combination of the levels of these

three factors will necessarily appear in the design. There is no replication of the

design for any of the experiments. Replication would involve repeating the experi-

mental design for further subjects. Because of the lack of replication and because

the experiments do not exhaustively cover every possible combination of levels of

factors the data arising from these experiments are sparse.

If the data are regarded as a contingency table cross-classified by the ordinal

response and the categorical covariates, then the characteristic of sparse data is

that many cells contain zero counts. This has repercussions on the model fitting

procedures and is a problem well documented for logistic regression [e.g. Collett,

§3 1991). However, it is a problem that has not received much attention in the

case of ordinal-response regression. Anderson gives voice to the concern raised by

this problem in the discussion of McCullagh (1980), as do Fienberg, Atkinson and
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the author himself. A practical effect of sparse data on some models is to make

parameter estimates infinite as the model predicts perfectly in some cells of the

table.

British Telecom desires to bring their analysis techniques up to date. They are

concerned about the problem of inefficiency of the ANOVA model and the arbitrari-

ness of the integers chosen. Their software of choice for analyses is GLIM (Francis

et al 1993). A probability link model of the type described in Chapter 2 would

be theoretically more appealing for ordinal response analysis than ANOVA. At the

time that this work was done the particular models that could most straightfor-

wardly be fitted in GLIM were the continuation-ratio link models. This situation

has changed with the introduction of the GLIM4 macros (Wolfe 1996), which allow

general purpose fitting of cumulative link models. However, the GLIM4 macros are

not flexible enough to enable the fitting of interaction terms involving the threshold

parameters, of which the carry-over parameter matrix introduced in this chapter is

an example. This carry-over parameter matrix is introduced as a useful analysis

where other carry-over analyses are not possible. To maintain consistency of the

work the continuation-ratio models are used throughout this chapter.

In order to adopt a single continuation-ratio link model from the range of pos-

sibilities, some comparative work was done on data from a number of experiments.

The same selection of explanatory variables was used in all models. For both the

logit and probit links convergence was quite fast (5-6 cycles). The fit (in terms of de-

viance) was very similar for these two models. It is not surprising that these should

give such similar fits, as the two link functions are similar. One difference between

these two models is that the model algebra is simpler for the continuation-ratio

logit model than for the continuation-ratio probit model. The other link examined

was the complementary log-log link. Note that the continuation-ratio complemen-

tary log-log model is equivalent to the cumulative complementary log-log model, see

§2.5.1. When all of the required explanatory variables are included in this model,
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trouble is encountered during the fitting process as the linear predictor tends to plus

or minus infinity for some data points. When this occurs GLIM sets the relevant

fitted value to zero or one, meaning that the model fits perfectly in these cells of the

table. This problem is due to the sparseness of the data. A subset of the explanatory

variables was chosen and the deviance values for the complementary log-log logit

and probit link models were compared. It was found that the continuation-ratio

complementary log-log model gave a worse fit to the data than the other two1. As

a result of this comparative work the continuation-ratio logit model was chosen as

the model for further work.

The model to be used for comparison with the ANOVA results is the continuation-

ratio logit model which is defined in §2.2.2 as

log (j^-) = 03 - Xifi (3.1)

where the vector xt- consists of indicators for the levels of the explanatory factors,

(e.g. condition, row, column etc.). A fitting procedure gives parameter estimates ft

and from these, estimates of the cell probabilities 7Ty may be calculated.

One potential advantage of ANOVA over the continuation-ratio logit model is

the ability to construct a unique ANOVA table for the variables in the model if all

the variables are mutually orthogonal, and from this table to draw direct conclusions

about the significance of the variables. It is possible to construct a corresponding ta-

ble when fitting the continuation-ratio logit model, the so-called analysis-of-deviance

table (McCullagh & Nelder, §2.3.2 1989). It is formed by fitting the model one ex-

planatory variable at a time and attributing deviance figures to each successive

variable by inspection of the residual deviance at each stage. Unlike the ANOVA

table, however, the analysis-of-deviance (ANODE) table is arbitrary in that the

1For example in experiment E198 the deviances for the logit, probit and complementary log-

log link are 557.8, 557.6 and 584.2 respectively on 746 degrees of freedom. This is for a model

containing Cabinet and Condition as explanatory variables.
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precise deviance attributed to each variable depends on which other variables have

already been included in the model, regardless of orthogonality.

However this apparent advantage of the ANOVA table is illusory. Firstly its

uniqueness depends on orthogonality between all the variables in the model. Also,

as the table is based on sums of squares obtained from the scores assigned to each

category, this implies that the ANOVA table depends on the choice of scores. A

different assignment of scores to categories will produce a different ANOVA table.

Thus the ANOVA table is arbitrary with an infinite number of variations. The

arbitrariness of the ANODE table is perhaps less serious, in that the number of

variations is limited by the number of explanatory variables in the model.

3.3.2 Methods and results of comparison

A thorough comparison of the continuation-ratio logit model and the analysis-of-

variance (ANOVA) model is now outlined. The residual sum of squares is the quan-

tity that is minimised when fitting ANOVA. The continuation-ratio logit model is

fitted by maximising the multinomial likelihood function for the model. A con-

trived residual sum of squares (RSSCR), calculated from the fitted probabilities

of the continuation-ratio logit model, is proposed. This contrived residual sum of

squares for the continuation-ratio logit model can be directly compared with the

residual sum of squares as minimised in ANOVA. The proposed sum of squares for

the continuation-ratio logit model is calculated as follows:

with \ji given by
k-\

j=0

The fitted value y,- is calculated by multiplying the fitted probabilities from the

continuation-ratio model TTy by the scores j = 0 to 4 as used in the ANOVA model
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for this data, giving a fitted mean score for the continuation-ratio logit model.

This method of comparison has been applied to the results from experiments

E198, E199, E247 and E264. Table 3.7 summarises the comparison. For all ex-

Table 3.7: Sums of squares comparison

Experiment

E198

E199

E247

E264

RSSA

76.6

52.9

598.1

642.1

RSS*A

76.0

51.9

573.6

619.3

RSSCR

75.6

50.8

566.5

607.5

periments we note that the value of the contrived sum of squares (RSSCR) for the

continuation-ratio logit model is smaller than the ANOVA sum of squares (RSSA)-

Thus the continuation-ratio logit model is outperforming ANOVA in the criterion

which has actually been minimised in order to fit the latter model. This implies that

the continuation-ratio logit model is fitting the data better than the linear model

underlying ANOVA.

There is one flaw in this comparison which might explain why RSSCR is consis-

tently smaller than RSSA- For ANOVA the range of fitted values is

—oo < y < oo

whereas for the continuation-ratio logit model the range of fitted values is

0 < y < 4.

This means that the differences y — y may be larger for the analysis of variance, not

because it fits the data worse than the continuation-ratio logit model, but because

the fitted values are not constrained to lie in a narrow interval of the real line. To
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adjust the comparison method to allow for this difference in fitted-value range, the

following is proposed: crudely constrain the ANOVA fitted values by letting

jT = O if y<0

y* = 4 if y > 4.

The new constrained sum of squares will be called RSS^. Table 3.7 also gives values

of RSS^ for the four experiments and it can be seen that the values of RSSCR are

smaller than these constrained ANOVA sums of squares. The conclusion is the same

as before, the continuation-ratio model is fitting the data in these experiments better

than the ANOVA model.

The comparison of sum-of-squares values is a comparison which is unfair to

the continuation-ratio logit model because the residual sum of squares is precisely

the criterion which is minimised when fitting the ANOVA model. Thus it may be

stressed that the continuation-ratio logit model is outperforming the linear model

underlying ANOVA, giving a better fit to the data. Another type of comparison

is considered which does not have any obvious favouritism. This second method of

comparison also uses fitted values, but rather than fitted mean scores the comparison

uses fitted categories.

For ANOVA the fitted category for each observation is calculated by

0 if y < 0.5

Predicted category =

1 if 0.5 < y < 1.5

2 if 1.5 < y < 2.5

3 if 2.5 < y < 3.5

4 if 3.5 < y.

Note that this is an arbitrary choice but one that ties in with the arbitrary integers

0 to 4 that are used in the ANOVA models for the BT data under consideration.

For the continuation-ratio logit model fitted categories may be calculated from

the fitted probabilities of each category for each observation. There are several
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methods to calculate fitted categories. Anderson & Phillips (1981) suggest two.

Firstly, they consider

predicted category for zth response = a where 7rja = max(7T;j : j = 0,1,2,3,4)

i.e. taking the predicted category to be the category with largest (modal) TT,J.

Secondly, Anderson Sz Phillips (1981) consider

predicted category for zth response = a where 0a_i < J^x,-/? < 0a.

However, they use this predictor in the context of a cumulative logit model, which

has a strong appeal to an underlying continuum. Indeed for all cumulative link

models the threshold parameters (OJS) are ordered. This is not necessarily true for

continuation-ratio link models. Hence, this approach would not be appropriate to

use here. A third possiblity in keeping with the theme of comparison with ANOVA

is to use the fitted scores from the continuation-ratio logit model that are calculated

to obtain RSSCR and use the same allocation rule as for fitted values from ANOVA.

This is referred to as the mid-score allocation rule.

To choose one of these methods, either the method of modal TT̂  or the mid-score

allocation rule, cross-tabulations are made of observed against fitted categories. This

was done for the 4 experiments in Table 3.7. It was found that the modal 7rtj method

gave much better results for all experiments. This method gave more correctly fitting

categories, fewer fits that were incorrect by more than one category, and also gave

a closer agreement of distribution of fitted categories to the distribution of obseved

categories. Thus the comparison of the continuation-ratio logit model with ANOVA

was done using fitted values obtained from the method of modal 7Ty.

The cross-tabulation of observed category by fitted category from ANOVA for

experiment E264 is given in Table 3.8. The cross-tabulation of observed category by

fitted category (by method of modal 7rtj) from the continuation-ratio logit model for

experiment E264 is given in Table 3.9. From these 2 tables the following observations
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Table 3.8: Observed by fitted categories from ANOVA (E264)

0

Observed 1

category 2

3

4

Total

0

114

28

1

1

0

144

Fitted category

1

97

177

53

5

0

332

2

12

103

209

107

10

441

3

0

7

64

177

113

361

4

0

0

3

35

124

162

Total

223

315

330

325

247

1440

are made. The continuation-ratio logit model gives more fitted categories equal to

the observed categories (the total of the numbers on the diagonals, 840 and 801).

For ANOVA, fewer fitted categories are more than one category away from the

observed category (the numbers in the top-right and bottom-left regions of each

table, totalling 39 for ANOVA and 40 for continuation-ratio logit). Finally, in the

margins of the table it can be seen that the distribution of fitted categories from the

continuation-ratio model is closer to the observed distribution than the distribution

of fitted categories from the ANOVA model.

The difference in marginal distribution of fitted categories highlights a problem

with this method of comparison. The fitted categories for the ANOVA are obtained

by using arbitrary cut-points of the real line. Each cut-point is the mean of the

scores allocated to the categories on either side of that cut-point (e.g. 2.5 is the

cut-point between categories scored 2 and 3). However, it is clear from the ANOVA

results in Table 3.8 that these cut-points produce a distribution of fitted categories

that does not correspond very closely to the distribution of observed categories. If

we wished to obtain a table of fitted categories for the ANOVA without making

any comparison to fitted categories by another method, then the cut-point should
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Table 3.9: Observed by fitted categories from continuation-ratio logit model (E264)

0

Observed 1

category 2

3

4

Total

0

141

46

4

1

0

192

Fitted category

1

73

173

60

5

0

311

2

9

83

173

77

2

344

3

0

13

87

177

69

346

4

0

0

6

65

176

247

Total

223

315

330

325

247

1440

be chosen such that the marginal total of fitted categories is equal to the marginal

total of observed categories.

Fixing the marginal totals for fitted categories to equal the marginal totals for

observed categories is not suitable when we wish to make a comparison between

the ANOVA results and the continuation-ratio logit results. For this comparison it

is more appropriate to fix the marginal totals for fitted categories by the ANOVA

model to equal the marginal totals for fitted categories (method of modal TT;J) by

the continuation-ratio logit model. For experiment E264 the appropriate cross-

classification is given in Table 3.10. From this table it is observed that the marginal

total of fitted categories is equal to the margin in Table 3.9 for the continuation-

ratio logit model. The number of correct predictions is now 823 and the number

of predictions more than one category out is 36. These numbers compare directly

with 840 correct predictions and 40 predictions more than one category out for

the continuation-ratio logit model shown in Table 3.9. There are more correctly

fitted categories by the continuation-ratio logit model but this model also gives more

predicted categories more than one category wrong. The comparison is inconclusive.
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Table 3.10: ANOVA — Fitted margin fixed to equal continuation-ratio fitted margin

0

Observed 1

category 2

3

4

Total

0

139

48

4

1

0

192

Fitted category

1

76

167

60

8

0

315

2

8

91

167

75

3

330

3

0

9

95

174

68

325

4

0

0

4

67

176

247

Total

223

315

330

325

247

1440

3.4 Modelling carry-over effects in the BT data

3.4.1 Introduction

In this chapter a model from the probability link class denned in Chapter 2 is chosen

for modelling the data from BT experiments. The model is the continuation-ratio

logit model given in equation (3.1) and the reasons for this choice are outlined in

§3.3.1. In the previous section comparisons are made between this model and the

traditional BT method of analysis, ANOVA. The continuation-ratio logit model is a

more sophisticated analysis tool for ordinal data than the linear model underlying

ANOVA. The conclusion from the comparisons in the previous section is that the

continuation-ratio logit model fits the BT data better than the linear model that

underlies ANOVA.

In §3.1.3 there is a discussion of carry-over effects. Researchers at British Telecom

have become concerned about the possible existence of carry-over effects in their

experiments. Unfortunately, due to the sparse nature of the data, it is difficult to

examine interactions (principally the interaction between condition and preceding
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condition) which might shed light on the nature of any carry-over effects. With

this in mind an experiment (F100) was designed and implemented in late 1995.

To investigate the large number of other experiments for carry-over, an approach

to modelling carry-over that involves a carry-over parameter matrix is discussed in

this section.

The approach to modelling carry-over that is now introduced involves investi-

gating an interaction between current response and previous response. This may be

done by altering the formulation of model (3.1) to

iog ( - 3 * - ) = e3 + @jk - x ^ (3.2)
\i -ink)

where now k denotes the previous response. Fitting this model will give a matrix of

parameters with elements Ojk and of dimension (K — l)xK where K is the number

of categories. Note that with the threshold parameters (OJS) also in the model, there

will be K — 1 redundant parameters among the 6jkS. Thus the number of degrees

of freedom associated with 6jk in this model is (A' — 1) x (K — 1).

This matrix of carry-over parameters and its interpretation are discussed in

§3.4.3. Beforehand residuals from model (3.1) are examined to detect if there is

any pattern in the residuals which might further motivate the use of model (3.2).

3.4.2 Residual analysis

The continuation-ratio logit model (3.1) with explanatory variables as listed in Ta-

ble 3.6 is fitted to data from the experiments in Table 3.1. For each experiment

a tabulation of observed responses categorised by previous response is made. Also

a tabulation summing the fitted probabilities from model (3.1) across previous re-

sponse is made for each experiment. These two tables are given for a range of BT

experiments in Appendix A.
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Figure 3.5: Residual analysis : Group 1

This highlights the main pattern in the residuals given in Appendix A. The residuals
for 9 experiments are given in this group, arranged in the order;

E198 E199 E200
E211 E212 E213
E136 E139 E140

Response

1

2

3

4

5

1

+ ' + +'

1 X I

Previous Response
2 3 4

— — —

+' + - '

- +' - '

5

+' + +

— — —

: : :

Notes

1. These patterns are for residuals as denned in equation (3.3).

2. A plus represents a positive residual (underfitting) and a minus represents a
negative residual (overfitting).

3. Residuals which satisfy \rk\ < 0.6 (i.e. are small in value) are marked with a
prime.

4. Blank boxes are left where there are few large residuals or where the directions
of the residuals are not consistent across the experiments. For example cell
(1,1) could have been left blank. It is included for comparative purposes with
the corresponding cell in Figure 3.6.
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Figure 3.6: Residual analysis : Group 2

This highlights the second pattern in the residuals given in Appendix A. The resid-
uals for 4 experiments are given in this group, arranged in the order;

E216 E247
E264 F064

Response

1

2

3

4

5

1

+ +

Previous Response
2 3 4

+' +

'

5

+ +'

_ / i

i

Notes

1. These patterns are for residuals as defined in equation (3.3).

2. A plus represents a positive residual (underfitting) and a minus represents a
negative residual (overfitting).

3. Residuals which satisfy
prime.

< 0.6 (i.e. are small in value) are marked with a

4. Blank boxes are left where there are few large residuals or where the directions
of the residuals are not consistent across the experiments. For example cell
(5,5) could have been left blank. It is included for comparitive purposes with
the corresponding cell in Figure 3.5.

5. The residuals from experiment F065 do not correspond either to the pattern
in group 1 (Figure 3.5) or to the pattern in group 2
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To compare these two tables for a particular experiment, a residual is calculated.

This residual is defined for the kth cell by

rt={-VET) <3-3)

where Ok and Ek are the observed and expected (or fitted) values in the kth cell.

Where the value of the residual is close to 0 the model fits the data well. Negative

residuals show where the model is over-fitting and positive residuals show where the

model is under-fitting. In Figure 3.5 the experiments are grouped according to the

overall pattern of their values of r^. For group 1 the model consistently underfits

in three corners of the table. There is consistent over-fitting in cells (1,3) and

(5,3). Thus more occasions are observed of one extreme response being followed by

another extreme response (except for category 1 followed by itself) than the model

predicts. Also fewer occasions are observed of an extreme response following the

central response (category 3) than the model predicts. The other cells which have

consistent residual values across these experiments are (4,3) and (4,5).

For group 2 as identified in Figure 3.6, a different overall pattern in the residuals

is noted, albeit with similarities to the pattern for group 1. The differences between

the pattern for group 1 and that for group 2 is in the corners and in cell (4,5). For

group 2 there is no consistent value for the residuals in the 2 corners (5,1) and (5,5)

as opposed to the consistent positive values noted for group 1. However in group 2

the residuals in cell (1,1), are consistently positive. In cell (4,5) for group 2 there is

no consistent value for the residuals.

When group 1 in Figure 3.5 and group 2 in Figure 3.6 are compared with the

grouping of types of experiment in Table 3.1 it can be seen that all the experiments

in group 1 are conversation experiments. Three out of four of the experiments in

group 2 are listening experiments.
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3.4.3 Interpretation of carry-over parameter matrix

To understand the parameter estimates in the carry-over parameter matrix it is

instructive to consider a simple example first. Suppose that the model

log (3.4)

is fitted to an ordinal response with K = 5 categories, and that the parameter

estimates from the fitting process are those given in Table 3.11. Now using these

Table 3.11: Parameter estimates for simple example

1

J2

3

4

Previous response

1

0

0

0

0

2

0

0

1

3

-3

0

0

3

4

-1

0

0

2

k

5

0

0

0

0

0 x =-2

0 2 = - l

03= 0

eA= I

parameter estimates we may calculate fitted cell probabilities (itjk) for each combi-

nation of response and previous response according to the relationships defined by

the continuation-ratio logit model:

and so forth to k = 1 — TTU- — 7r2A; — ̂ 3fc —
1 + exp(6>i + Olk)

The fitted probabilities for each value of previous response k are given in Table 3.12.

Note that the fitted probabilities in column 1 of Table 3.12 are calculated from the

fitted values of the threshold parameters (6JS) alone as 6j\ = 0 for all j . If the

model is a good fit to the original data then the fitted probabilities will be close in

value to the observed probabilities. Assuming that this is the case here, the fitted

probabilities in Table 3.12 show the structure in a set of observed data that can
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Table 3.12: Fitted probabilities for simple example

K2k

K3k

K4k

1

0.12

0.24

0.32

0.24

0.09

Previous response k

2

0.05

0.26

0.35

0.31

0.04

3

0.01

0.27

0.36

0.36

0.01

4

0.05

0.26

0.35

0.33

0.02

5

0.12

0.24

0.32

0.24

0.09

be represented by the cumulative logit model (3.4) with parameter estimates as in

Table 3.11.

In order to interpret the carry-over parameter matrix, first note that each row

in the matrix must have one parameter set to zero (typically the parameter in the

first column) and that all parameters in a row are relative to this. Thus #13 = —3 is

not an absolute parameter value for the effect of a previous score of 3 on category 1,

it is relative to the effect of a previous score of 1 on category 1 being equal to zero.

From model (3.4) the linear predictor, 0j-\-6jk is defined in terms of an underlying

continuation-ratio pjf., where

TTjjfc
Pjk = : — :

So the effect of a previous score is to change the values of the underlying continuation-

ratios. For j = 1, 91 + 6ik is defined solely in terms of TTU-. SO a negative parameter

estimate in the first row of the carry-over parameter matrix will reduce the fitted

probability in category 1. From Table 3.12 it can be seen that the fitted probability

for category 1 is smaller for a previous score of 3 than for a previous score of 1. If

a parameter estimate in the first row of the carry-over parameter matrix is smaller

than any other parameter estimate in that row then that indicates for which previous
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response the probability for category 1 is smallest. For j = 4, 64 -\- 94). is defined in

terms of ^4k/^5k, the ratio of the probabilities for category 4 and category 5. Thus

a positive parameter estimate in the fourth row of the carry-over parameter matrix

will increase the ratio of the fitted probabilities for category 4 and category 5. From

Table 3.12 it can be seen that the ratio of the fitted probabilities for category 4 and

category 5 is larger for a previous score of 3 than for a previous score of 1. If a pa-

rameter estimate in the fourth row of the carry-over parameter matrix is larger than

any other parameter estimate in that row then that indicates for which previous

response the ratio of the probabilities in category 4 and category 5 is largest.

3.4.4 Carry-over matrices in analysis of BT data

The illustration in the previous section is tailored to reflect the results from the BT

data sets. In Figures 3.5 and 3.6 patterns in the residuals from model (3.1) have

been noted, and these patterns suggest consistent misfitting by the model. This

consistent misfitting is in categories 1, 4 and 5 of the opinion score response. For

a response in category 1 or 5, the model underfits if the previous response is in

category 1 or 5, and overfits if the previous response is in category 3. The reverse is

true for a current response in category 4; the model overfits if the previous response

is in category 1 or 5, and underfits if the previous response is in category 3. So when

fitting model (3.2) to data from these experiments significant parameter estimates in

the first and fourth rows of the carry-over matrix of parameters are to be expected.

For group 1 as identified in Figure 3.5, the relative values of the estimates in rows

1 and 4 should be similar to those in the example in §3.4.3 (given that column 1

estimates are set equal to zero). In row 1 decreasing estimates from column 1 to the

central column 3 and increasing estimates from column 3 to column 5 are expected,

with a positive estimate expected for column 5. In row 4 a pattern of increasing

estimates from column 1 to column 3 and decreasing estimates from column 3 to
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column 5 with a negative estimate for column 5 are expected.

The carry-over parameter estimates for the BT experiments are given in Table

3.13. If there is a cell in the table of observed values with a zero count then the

parameter estimate corresponding to that cell will be infinite. If this occurs in

column 1 then all estimates in that row will be infinite (as they are evaluated relative

to the estimate in column 1). In this case values for the parameter estimates in the

columns other than column 1 may be obtained by changing the column of parameters

that is set to zero. The deviance and degrees of freedom corresponding to the matrix

are given in Table 3.13 and these values may be tested against the x2 distribution for

significance of the parameter matrix (note that the 5% value of x?6 1S 26.3). Thus

the matrix is significant at a 5% level of significance in all experiments bar E200.

For experiments in group 1 the parameters in rows 1 and 4 do appear to follow the

values that we would expect.
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Table 3.13: Carry-over parameter matrices

E198 deviance: 52.6 E199 deviance: 26.8

Cut-
Point

1
2
3
4

1
0
0
0
0

Previous response
2

1.49
-1.51
0.81
1.86

3

-0.53
-0.49
1.27
4.97

4

-0.26
-0.45
-0.05
2.98

5

1.72
1.32
0.17

-0.18

E200 deviance: 16.4

Cut-
Point

1
2

3
4

1
0
0
0
0

Previous
2

-0.79
-0.35
1.51
1.08

3
-0.36
-0.24
0.16
1.35

response
4

-0.56
0.51
0.58
0.44

5
2.18
0.55
0.87

-0.02

E212 deviance: 28.2

Cut-
Point

1
2
3
4

1
0
0
0
0

Previous response
2

0.63
-2.08
0.37
2.48

3
-0.99
-1.75
-0.39
3.63

4
0.25

-1.13
-0.36
0.21

5
0.83

-1.95
0.24

-0.08

E216 deviance: 48.6

Cut-
Point

1
2
3
4

1
0
0
0
0

Previous response
2

-0.37
-1.17
0.92
1.42

3
-1.02
-0.86
-0.19
3.12

4

-0.93
-0.64
0.04
1.45

5

-0.90
1.61

-0.95
0.45

1
2
3
4

1
0
0
0
0

Previous response
2

-1.00
-1.01
0.96
1.03

3

0.72
1.12

-0.29
0.79

4

1.90
1.54
1.10
0.75

5

4.64
0.91
1.14
0.70

1
2
3
4

1
0
0
0
0

E211

-1
-0
1

deviance: 35.8

Previous
2

67
62
.50

3

1.20
-1.31
1.97

response
4

oo
1.08

-2.31
0.00

2
-1
-1

5

.56

.14

.85

1
2

3
4

1
0
0
0
0

E213 deviance : 37.4

Previous response
2

1.26
-0.26
-0.40
1.25

3
oo

-4.00
-0.86
0.79

4

-0.94
-2.22
-1.59
1.54

5

1.83
-2.63
-0.32
-0.16

1
2
3
4

1
0
0
0
0

E136 c

0
-0
1

leviance : 27.0

Previous response
2

34
81
87

3
oo

-0.26
-0.37
1.98

4

-1.07
-0.64
1.37

-0
-0
-0

5

.28

.98

.39
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Table 3.13: Carry-over parameter matrices continued

E139 deviance: 42.0 E140 deviance: 40.9

Cut-
Point

1
2
3
4

1
0
0
0
0

-1
-0
-0
0

Previous
2

.37

.44

.98

.56

3
-3.02
-0.40
-0.73
0.91

response

0
-0
-0
4

4
24
04
99
42

5

1.21
-1.88
-1.42
-1.40

E247 deviance: 37.7

Cut-
Point

1
2

3
4

1
0
0
0
0

Previous
2

-0.79
-0
0
1

26
76
58

3
-0.98
-0.04
0.74
2.46

response

-1
0
0
1

4
09
12
83
79

-1
-0
0
2

5
.08
.17
.80
.22

F064 deviance: 37.7

Cut-
Point

1
2

3
4

1
0
0
0
0

-1
0

Previous
2

13
21

0.23
0 76

3
-1.54
-0.19
-0.16
0.94

response
4

-0.86
-0.72
0.21
0.05

5

-0.19
-0.42
-1.53
0.76

1
2
3
4

1
0
0
0
0

Previous response
2

-0.50
-0.00
2.46
1.15

3

-0.63
1.93
1.96
2.65

4
0.23
0.73
2.79
2.29

5
1.15
4.53
2.62
0.35

1
2
3
4

1
0
0
0
0

E264 (ieviance : 70.4

Previous response
2

-0.87
-1.18
0.66

-0.75

3
-1.70
-1.25
0.57
0.07

4
-1.08
-1.32
-0.10
-0.36

5
0.35

-0.59
0.72
0.14

1
2
3
4

1
0
0
0
0

F065 cleviance : 27.3

Previous response
2

-0.06
0.93
1.28

-2.00

3

-0.08
0.69

-0.22
-0.71

4
1.28
1.13

-1.01
-1.48

5
2.23
1
0

-1

45
46
76

3.4.5 Conclusions

For the experiments considered (in Table 3.1), there does appear to be a significant

carry-over effect of response which can be modelled by the carry-over parameter

matrices and which is consistent across experiments in 2 different patterns. However

a note of caution must be introduced. The two distinct groups of experiments which

have been noted in Figures 3.5 and 3.6 correspond to the grouping of experiments
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that is made from the informal analysis of score frequencies presented in Chapter 5.

The conclusion from that analysis is that it is necessary to allow fully for subject

variability in the model by including a subject scaling term before investigating for

carry-over effects of any nature.

This conclusion is arrived at because of differences between subjects in their

use of the extreme categories of the scale, a feature which is highlighted in the

exploratory analysis of score frequencies in Chapter 5. The carry-over parameter

matrices discussed in this chapter contain consistent patterns in the parameters

corresponding to categories 1, 4 and 5. So it is entirely possible that what has been

attributed to carry-over of response could in fact be a subject-specific effect. In

other words, the subject scaling effect that is considered in Chapter 5 and the effect

modelled by the carry-over parameter matrix may be confounded. It makes sense

to analyse these experiments allowing fully for subject variability by inclusion of a

scaling term before further analysing for carry-over.
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Chapter 4

Methods of fitting the cumulative

logit model

4.1 Introduction

In this chapter an account is given of several methods of fitting the cumulative logit

model. Software facilities for implementing these methods are discussed. Two dis-

tinct cases of the cumulative logit model are considered: the model with location

terms only, and the model with location and scaling terms. For the cumulative

logit model with location terms only, two distinct approaches to parameter esti-

mation are discussed. These approaches are maximum likelihood and generalized

estimating equations. A set of general purpose GLIM macros is introduced for fitting

cumulative logit and other cumulative link models in GLIM4 by maximum likeli-

hood. The approach of generalized estimating equations (GEE) leads to a number

of alternative methods based on using different working correlation matrices. GEE

with the true correlation matrix for multinomial observations is equivalent to maxi-

mum likelihood estimation and this equivalence is demonstrated. Two other possible

working correlation matrices are Clayton's (1992) correlation matrix and a matrix
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similar to Clayton's but based on equal marginal probabilities. A method employing

the identity matrix as a working correlation is discussed in this chapter in detail.

This particular GEE method is referred to as the method of independent binomials.

For the cumulative logit model with location and scaling terms, the general pur-

pose GLIM4 macros introduced in this chapter may be used for maximum likelihood

fitting of the model. Two forms of the model with a scaling term are discussed and

both can be fitted using the GLIM4 macros. At present there is no widely-available

routine for general-purpose fitting of these models in any other software. A suc-

cessive relaxation approach to fitting the model by independent binomials is also

discussed. This approach involves iterations between estimating the location effects

holding the scaling effects constant and estimating the scaling effects holding the

location effects constant.

Figure 4.1 displays current software options for fitting the cumulative logit model.

It also serves as a guide to the organisation of this chapter. In §4.2 discussion is

of fitting methods for the cumulative logit model with location effects only. In §4.3

fitting methods for the cumulative logit model with location and scaling effects are

discussed. Figure 4.1 is meant as a quick reference guide. Details and discussion of

each fitting method are contained in this chapter.
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Figure 4.1: Software for implementing methods of fitting the cumulative logit model

Fitting

Method

Maximum

Likelihood

GEE - working

correlation matrix:

1) true

2) Clayton's

3) Equal-margins

Independent Binomials

Cumulatn

Location effects only

SAS, SPlus, BMDP,

LIMDEP, GLIM4 etc.

As for

maximum-likelihood

SPlus,

Specific SAS macros

SPlus,

Specific SAS macros

SPlus, GLIM4, SAS,

LIMDEP, BMDP, etc

re logit model

Location and scale effects

(0j-Xi/?)/exp(ziT) or

6j exp(ziA) — x;/?

GLIM4

Specific SAS program

As for

maximum-likelihood

-

-

Specific GLIM4 program
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4.2 Fitting the cumulative logit model with lo-

cation terms only

4.2.1 The cumulative logit model with location terms only

The cumulative logit model with location terms only (for a A'-category ordinal

response) is

l o§ ( l ^ ~ ) = B> ~ Xi /5 0" = 1. • • •, K - 1) (4.1)

as defined in Chapter 2. In this section maximum likelihood and generalized estimat-

ing equation approaches to fitting this model will be discussed. The latter approach

includes as a special case a method which we call the method of independent bino-

mials. This particular method has a practical appeal because it is straightforward

to fit in widely-available logistic regression software.

4.2.2 Maximum likelihood

Introduction

Model (4.1) can be fitted using maximum likelihood. Note that this model is not

a generalized linear model as defined in McCullagh k. Nelder (1989) and this will

now be shown with their notation suitably adapted. A vector of observations y,

with length n(K — 1), is assumed to be a realisation of a random variable Y whose

components are independently distributed (the distribution being a member of an

exponential family) with means E(Y) = /.i. A systematic component 77 is defined

as a linear combination of explanatory variables. The systematic component rj is

related to n by
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where g(.) is termed a link function and can be any monotonic, differentiate func-

tion.

For the cumulative logit model we assume that the data are realisations of the

multinomial distribution with

E(Yij) = rriiTTij

where TT;J are the underlying cell probabilities and the row sums m; are taken as

fixed. Model (4.1) is denned in terms of the cumulative cell probabilities, 7,-j. The

relationship between /4y- = E(Y{j) and rjij = 9j — X{/3 is

in/mi = (1 + e '̂1 T1

(1 + c"1"2

There is no single link function g(.) that can be applied to the left-hand side of

these equations to give the right-hand side. Thus the model does not fit into the

generalized linear model framework. Note however that this relationship between

fiij and T]ij for the cumulative logit model does satisfy the definition of a composite

link as introduced by Thompson & Baker (1981). A composite link function is one

that allows /xy- to depend on more than one rjij.

The important results for fitting the cumulative logit model by maximum likeli-

hood are now given. The model may be written in the form

for notational simplicity where (3* is a vector containing the parameters (0,(3). The

vector x*- is a row from the expanded design matrix X* which includes zero/one
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indicators for the cut-point parameters as well as the vectors x,-. The log likelihood

for the multinomial observations y; = (t/ t l,..., yiK) is proportional to

(4-2)

For estimation the partial derivatives

dl

d/3; ^ dli2 d/3;

- 7 , ) ^ - (4-3)
U

are required and here

91 = Vji
9jij Kij 7T i ( i+1)

for 1 < j < K. Note that this corrects a mistake on pages 172 and 173 of McCullagh

and Nelder (1989).

The capacity to fit model (4.1) by maximum likelihood exists in some stan-

dard software packages. For example in SAS (SAS Institute, Inc. 1987) the proce-

dure PROC LOGISTIC can be used. In GENSTAT (Payne et al, 1993) the command

ORDINALLOGISTIC is available.

GLIM4 macros

Hutchinson (1985) was the first to propose a method for fitting model (4.1) in

GLIM3.77. He uses the procedure for composite-link functions described by Thomp-

son & Baker (1981). An important development in GLIM subsequent to Hutchin-

son's work was the production of a set of macros for fitting general non-linear models,

which were originally published in Ekholm, Green & Palmgren (1986). Ekholm &

Palmgren (1988) demonstrated the technique of using these macros to fit the cumu-

lative logit model. The macros for fitting non-linear models have been updated for

use in GLIM4 (Francis et al, 1993) by Ekholm & Green (1995).
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The macros presented in Appendix B enable general purpose fitting of cumulative

link models. They are much more than just an update of the work by Ekholm &

Palmgren (1988). Two features of GLIM4 which are not available in GLIM3.77 are

used in the macros. These are the ability to print to macros (page 143, Francis et

al, 1993) and the method for fitting non-linear models described at pp 201-203 of

Francis et al, 1993. An initialization macro very similar to that used by Ekholm

& Green (1995) is employed. Most of the work which Ekholm k, Palmgren (1988)

require the user to do (i.e. specifying the form for °/oeta) is performed internally. The

user is left with minimal work to do. The user is given a choice of link functions to

use, enabling the fitting of cumulative probit and cumulative complementary-log-log

models in addition to the cumultive logit model. The use by Ekholm & Palmgren

(1988) of general numerical derivatives to update the model matrix is replaced with

the use of the analytical derivatives for these cumulative link models. This greatly

improves the time efficiency of the model fitting process. For a model fitted to data

from BT experiment E198, for example, the time to fit the model in GLIM4 using

the numerical derivatives was 3 minutes and 48 seconds whereas using the analytical

derivatives the time taken was 25 seconds. This comparison was done on a SPARC

station 2.

These macros have been included in the GLIM Macro Library under the name

ORDINAL. The submission includes detailed instructions for their use which are

printed in the Macro Library Guide. Further description may be found in the

GLIM Newsletter article, Wolfe (1996). Confirmation that the output from these

macros agrees with results obtained by other authors can be found in this article.

The macros, the instructions on how to use them and the GLIM Newsletter article

are all available on the Internet at URL

h t t p : //www. maths . sot on. ac. uk/rw/r_wolf e. html

Further disussion of the macros can be found in §4.3.2.
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4.2.3 Generalized estimating equations

An alternative approach to maximum likelihood for fitting model (4.1) is discussed

by Clayton (1992). He suggests the use of generalized estimating equations (GEE,

see Liang & Zeger, 1986) to estimate the parameters of the model. As a method

of estimation GEE is an example of quasi-likelihood estimation (see VVedderburn

1974, McCullagh 1983) specifically tailored with longitudinal data analysis in mind.

Longitudinal data are characterised by repeated observations on the same sampling

unit. The use of GEE to fit model (4.1) makes the extension to analysis of longi-

tudinal ordinal responses straightforward. The GEE notation introduced by Liang

& Zeger (1986) is tailored in a particular manner for fitting the cumulative logit

model. This tailoring is now described.

To apply GEE to fitting the cumulative logit model (Clayton, 1992) each re-

sponse yi on the A'-category ordinal scale is converted into (A' — 1) binary responses

yn,..., ytj^) by the rule

t f 1 Vi<j
4 = . (4-4)

I 0 otherwise.

These binary responses yjj take the role of the repeated observations within a sam-

pling unit.

For units i = 1 , . . . , n we observe responses yjj (repeated observations within i

are at j = 1,.. ., K — 1). The response vector y\ = ( j / ^ , . . . , r/̂ /f—i ) is a realisation

of the random variable Y± which has expectation E(Yt-) = ~fi(/3). The generalized

estimating equations are defined as

i=\

where the matrix D{ contains the derivatives d^i/d(3T and

Vi = A?R(a)AJ (4.6)
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with Ai(ji) being a diagonal matrix of variance functions. Note that V{ — cov(Y^ )

only if R(a) is the true correlation matrix for Yi . Otherwise R(a) is referred to

as a 'working' correlation matrix which is characterised by the parameters a. The

simplest form that R(ct) can take is the identity matrix in which case the GEE

reduce to the score equations of a likelihood analysis of binomial observations in

which those observations are assumed to be independent. More complicated forms

of R(a) can be used, often based on an educated guess which borrows strength

across subjects to estimate the true underlying correlation structure. The benefit of

an improved working correlation matrix is in improved efficiency in estimating the

parameters /3.

The estimated standard errors of the estimates J3 are only given by the square-

roots of the diagonal elements of

c5vM0) = (DTV-1D)-1 (4.7)

if the covariance matrix cov(Y^) = V is correctly specified. When a working corre-

lation matrix based on a guess at the true correlation structure is being used this

covariance matrix is not correct. The estimated standard errors of the estimates

J3 are then given by the square-roots of the diagonal elements of the 'information

sandwich'

CSVR0) = {bTv-x by1 fry-1 (t/f - 7)(yf - 7ft/-1 Di^v-1 by1 (4.8)

and these are referred to as robust standard errors. These robust standard errors

are frequently presented with the corresponding elements of covjvr(/3) which are then

referred to as 'naive' standard errors.

Returning to the observed response yt- on the A'-category ordinal scale; if it is

assumed that yi are independent of each other then the correlation matrix for y]-

will be block diagonal. The known correlation between the binary responses

( 4 - 9 )
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where -ŷ - = E(Y^), can be used in GEE removing the need to form a working

correlation matrix. In this case the analysis is equivalent to maximum-likelihood

but note that this equivalence depends on the assumption of independence of the

t/iS. This equivalence is shown explicitly for a particular case in §6.3.4.

Clayton (1992) suggests using the observed marginal cumulative proportions in

place of 7,-j in equation (4.9) to obtain a working correlation matrix that is constant

for all i. This method of fitting the model may be implemented in S-Plus (StatSci,

1993) using the function gee() (written by Vincent Carey) which is available via

Statlib on the Internet at URL ht tp : / /unix .hensa .ac .uk .

An alternative working correlation matrix (also constant for all i) can be con-

structed by assuming that the marginal cell probabilities are equally likely. This

method can also be implemented in S-plus using the gee() function. The equal-

margins GEE method is similar in spirit to Clayton's GEE method in that both use

working correlation matrices which are constant for each multinomial observation.

Clayton's GEE method uses the observed marginal cell proportions to calculate the

working correlation. Equal-margins GEE takes the marginal cell probabilities to be

equal. Thus the working correlation matrix is data-dependent in Clayton's GEE

but not in equal-margins GEE. Because of this, equal-margins GEE is used in some

theoretical comparisons presented in Chapter 6. The results for equal-margins GEE

should give some indication of how Clayton's GEE would perform.

4.2.4 The method of independent binomials

The method of independent binomials to fit model (4.1) involves the use of general-

ized estimating equations (discussed in the previous section) with an independence

working correlation matrix. This implies as a working assumption that the collapsed

binomial observations y- are independent of each other. The important practical

advantage of using GEE with an independence working correlation matrix is that
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it is possible to implement the method using widely-available routines which per-

form logistic regression on independent binary responses. When used to fit model

(4.1) a logistic regression routine will produce estimated naive standard errors for

the parameter estimates. Estimated robust standard errors can be calculated from

the information sandwich formula (equation 4.8) using the true correlations given

in equation (4.9) with 7^ replaced by the estimated value 7^ from the routine. An

investigation of the efficiency of parameter estimation by this method relative to

estimation by maximum likelihood can be found in Chapter 6.

A logistic regression routine estimates the parameters of model (4.1) by max-

imising the log-likelihood function for independent binary observations

A - l

IB(TT; y) = E E 4 loS7u + (1 - vh) M 1 - m)- (4-10)
* 3

Note that a maximum-likelihood routine for fitting model (4.1) maximises the multi-

nomial log-likelihood function

IM(V, y) = E Va lo§ TH (4-U)
ij

where y,-j = 1 if y,- = j . The deviance is related in general to a log-likelihood function

by the relation

D{ir;y) = 2l{y;y)-2l(iv;y) (4.12)

where l(y,y) is the log-likelihood function for the saturated model (i.e., where the

model fits the data perfectly). For both /M(TT;J/) and /B(TT;?/) the value of the log-

likelihood in the saturated model is zero.

A logistic regression routine will give a deviance value which is calculated from

the log-likelihood function for independent binary observations. This deviance will

be labelled DB(V, TT/B). Using the fitted values 7CJB from the logistic regression rou-

tine a value of the multinomial deviance function may be calculated. This deviance

will be labelled 5M(2/ ;T/B) . It makes sense to compare both this deviance and
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DB(V', TT/B) with the minimised value of the multinomial deviance function obtained

when fitting the model by maximum-likelihood, DM(V', KML)
 saY- Obviously

For the BT experiments analysed in Chapter 5, it is found that

(4.14)

Whether this inequality is true in general is now investigated. For one multinomial

observation equation (4.10) gives

htili; %ij) = log TTii + 1" log(7Ta + h TTij)

+ log(l - 7T.-1 7TO+1 ) + h log 7CiK

and equation (4.11) gives

hi(yi\Kij) = logii-y.

For inequality (4.14) to hold it is required that

hi(yi;xij) > h(yi;hj)

i.e. iTij > Ttn x • • • x (in H \- iij)

x (1 - 7rtl iii+l) x • • • x TtiK

which is obviously true for irn and TT^-. However, this does not necessarily hold in

the intermediate categories and thus inequality (4.14) does not hold in general.

It is important to consider the deviance function as it is the quantity on which

tests of significance are often based in generalized linear modelling. When the cumu-

lative logit model is being fitted using independent binomials it is appropriate to use

the multinomial deviance function calculated with the fitted values obtained from

the logistic regression routine, i.e. DM(2/; XIB),
 a n d not the deviance

that would routinely be reported by a binomial regression program.
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4.3 Fitting the cumulative logit model with a

scaling term

4.3.1 The cumulative logit model with location and scaling

terms

Two forms of the cumulative logit model with location and scaling terms are con-

sidered in this chapter. The first of these two forms is

( ^ ) M*iT)- (4-15)

where z; is a row from the design matrix Z for the scaling terms and r is the vector of

scaling effect parameters. This model was introduced in Chapter 2. It is helpful to

think of a continuum underlying the ordinal response and probability distributions

being defined on this continuum. With this in mind the scaling effect parameters,

r, describe changes in the variance or scale (or dispersion) of the probability distri-

bution denned on the underlying continuum.

The second form of the model is

log (T-T^-) = 9, exp(ZiA) - xi/3. (4.16)

where the vector of scaling effect parameters, A, can be interpreted in terms of fitted

category probabilities. Both of the models, (4.15) and (4.16), are discussed in detail

in §2.3.

4.3.2 Maximum likelihood using GLIM4 macros

The macros introduced in §4.2.2 can also be used to fit the cumulative logit model

with a scaling term. As far as the internal workings of the macros are concerned

the scaling term is just one more part of the non-linearity of the model. The macros
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allow the fitting of the two forms of the cumulative logit model with a scaling term

given by (4.15) and (4.16).

The use of either the logit, probit or complementary-log-log link functions is

possible when fitting either form of the model using the macros. Cox (1995) fits the

cumulative logit model with a scaling term (model 4.15) using a special program

written in SAS. However, the GLIM4 macros presented here are the only currently-

available general-purpose routine for fitting cumulative link models with scaling

terms in widely-available software. A demonstration of the use of the GLIM4 macros

for fitting the cumulative logit model with a scaling term is now given.

Table 4.1: Data from rating visual stimuli

Category Judgement

1

2

3

4

5

6

7

8

9

10

11

12

6 dark

5 dark

4 dark

3 dark

2 dark

1 dark

1 bright

2 bright

3 bright

4 bright

5 bright

6 bright

Total

Class

-2

19

14

3

2

0

0

0

0

0

0

0

0

38

1

Contrast

-1

3

4

11

5

13

0

2

0

0

0

0

0

38

2

0

0

0

0

3

15

14

4

3

0

1

0

0

40

3

level

+ 1

0

0

0

1

4

1

8

8

11

7

0

0

40

4

+2

0

0

0

0

0

0

0

1

4

12

8

13

38

5
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Consider the data in Table 4.1 from Kijewski, Swensson & Judy (1989). The

data arise from one subject rating 196 visual stimuli. The ratings are made on a

12-category ordinal scale and the stimuli are drawn from 5 classes. These 5 classes

are defined by the contrast level of the visual stimuli. The third class is taken as

the reference class.

We wish to fit the cumulative logit model with a scaling term,

where /?,• denotes the location effect of class and r; denotes the scaling effect of class.

Using GLIM4 the macros are inputted and then the following commands are used:

$units 60$

$data obs$

$read

19 3 0 0 0

14 4 0 0 0

3 11 0 0 0

2 5 3 1 0

0 13 15 4 0

0 0 14 1 0

0 2 4 8 0

0 0 3 8 1

0 0 0 11 4

0 0 1 7 12

0 0 0 0 8

0 0 0 0 13

$ca cats=°/,gl(l2,5) : class='/,gl(5,1) : rows=class$

$factor class 5 (3)$

$list model=class$
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$l is t s_model=class$

Scycle 20 0.00001$

$use ORDINAL obs rows cats$

$d e$

$pri 'Chi-square, sum(o-e) "2/e : ' °/,X2$

$return

The location term is specified by $l is t model=class$ and the scaling term by

$l is t s_model=class$. The link function is set to logit by default. The con-

vergence criterion is strengthened by $cycle 20 0.00001$. Finally the internally

calculated x2 statistic is printed out. The output from the analysis is as follows.

[o] Checks completed, the model will now be f i t t ed .

[o]

[o] scaled deviance = 27.648 at cycle 11

[o] residual df = 36

[o]

Co]

[o] Cut-point 1 = CUT_[1] = -7.244

[o] Cut-point 2 = exp(CUT_[2]) + cut-point 1 = -5.562

[o] Cut-point 3 = exp(CUT_C3]) + cut-point 2 = -3.960

Co] Cut-point 4 = exp(CUT_C4]) + cut-point 3 = -2.755

Co] Cut-point 5 = exp(CUT_C5]) + cut-point 4 = -0.0540

Co] Cut-point 6 = exp(CUT_C6]) + cut-point 5 = 1.076

Co] Cut-point 7 = exp(CUT_C7]) + cut-point 6 = 2.391

Co] Cut-point 8 = exp(CUT_C8]) + cut-point 7 = 3.685

Co] Cut-point 9 = exp(CUT_C9]) + cut-point 8 = 5.545

Co] Cut-point 10 = exp(CUT_ClO]) + cut-point 9 = 8.967

Co] Cut-point 11 = exp(CUT_Cll]) + cut-point 10 = 10.46
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Co]

Co]

Co]

Co]

Co]

Co]

Co]

Co]

Co]

Co]

Co]

Co]

Co]

Co]

Co]

Co]

Co]

Co]

Co]

Co]

Co]

Co]

Co]

Co]

Co]

Co]

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

estimate

-7.244

0.5198

0.4711

0.1870

0.9935

0.1221

0.2739

0.2574

0.6210

1.230

0.4040

-7.258

-3.599

0.000

3.318

9.272

-0.04848

0.3449

0.000

0.3538

0.5625

s . e .

1.810

0.4433

0.3886

0.3859

0.2127

0.2436

0.2891

0.3587

0.3712

0.4398

0.5381

1.836

0.8680

aliased

0.7811

2.578

0.4469

0.2865

aliased

0.2750

0.4374

scale parameter 1.000

Chi-square, sum(o-e)'*2/e : 25

parameter

CUT_Cl]

CUT_[2]

CUT_[3]

CUT_[4]

CUT_[5]

CUT_[6]

CUT.[7]

CUT_[8]

CUT_C9]

CUT,[10]

CUT_[H]

CLASS__[1]

CLASS__[2]

CLASS__C3]

CLASS__C4]

CLASS__C5]

S_CLASS_Cl]

S_CLASS_C2]

S_CLASS_[3]

S_CLASS_[4]

S_CLASS_[5]

.73

The estimates of the location effect parameters (/?i, 02, etc.) are given by

CLASS—Cl], CLASS_[2], etc. The estimates of the scaling effect parameters (ri,
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r2, etc.) are given by S_CLASS_[l], S_CLASS_[2] , etc. The cut-point values indicate

the position of the cut-points on the underlying probability distribution for class 3.

The location effect parameters quantify the shift in this distribution for the other

classes. The scaling effect parameters quantify the change in dispersion of this dis-

tribution for the other classes. As an example of the interpretation of the scaling

effect parameters consider r5 = 0.56. This value is with reference to T3 = 0 and

implies that the underlying distribution of responses to class 5 is more dispersed

than the underlying distribution of responses to class 3.

Interpretation is possible directly in terms of the cut-points. For class 3 the cut-

points are located at ( — 7.24,..., 10.46). For class 5 these cut-points are shifted by

—9.27 giving ( —16.51,..., 1.19) and then condensed by a factor exp(0.56) = 1.76.

This gives the cut-points for class 5 as (—9.41,... ,0.68). The point has been made

in §2.3 that such a clustering of cut-points towards the middle of the scale yields

larger fitted probabilities at the extreme categories. For class 5 the final cut-point

is at 0.68 giving a fitted probability of 0.34 in category 12 for this class. Without

taking the scaling effect into account, the cut-point is at 1.19 which gives a fitted

probability of 0.23 in category 12 (although to make this comparison properly the

model should be fitted without the scaling effect and then the cut-point calculated).

Note that the observed proportion in this cell is 13/38 = 0.34.

The deviance of 27.6 on 36 degrees of freedom suggests that the model fits the

data well. The same conclusion is obtained from the \2 test of 25.7 on 36 degrees of

freedom, although with either statistic the test validity is open to question because

of the sparse nature of the data.

After fitting the model with the above code one could subsequently remove the

scaling term from the model with

$delete s_model$

$use 0RDINAL$
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and to then test for the significance of the scaling term using the change in deviance.

This test shows an increase in deviance of 4.4 on 4 degrees of freedom when the term

is removed from the model. Thus there is no significant evidence to support the

inclusion of the scaling term in the model. Investigation of the parameter estimates

for the location effect of c lass shows them to be roughly equally spaced. Hence it

may be sufficient to consider c lass as a variate rather than a factor. This may be

tested by using

$ca class=class-3$

$var c lass$

$use 0RDIMAL$

and noting an increase in deviance of only 0.9 on 3 degrees of freedom. From this

we conclude that there is no significant evidence of nonlinearity in the dependence

on class.

This example fits model (4.15) to the data. To make a direct comparison with

the results of Kijewski et al (1989) we need to fit the cumulative probit model with

the same form of scaling term as given by model (4.16). The form of the cumulative

logit model with a scaling term that is used by the macros is governed by a scalar

argument (the fourth formal argument) to the macro ORDINAL. If this scalar is not

provided or has value 1 then the form of the model in equation (4.15) is fitted. If

the scalar has value 2 then the form of the model in equation (4.16) is used. To fit

the cumulative probit model of Kijewski et al (1989) the following commands are

used.

$link p$

$calc °/.f=2$

$use ORDINAL obs rows cats °/,f$

However when fitting this form of the model to this particular data the fitting
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procedure breaks down. This is an example where the user needs to provide initial

parameter estimates that are more informative than those calculated automatically

by ORDINAL. The vector of intital parameter estimates is given as the fifth formal

argument to ORDINAL. In this case using

$ass p = - 4 , - 0 . 1 , - 0 . 1 , - 0 . 1 , - 0 . 1 , - 0 . 1 , - 0 . 1 , - 0 . 1 , - 0 . 1 , 0 . 1 , - 0 . 1 ,

-4 , -2 ,0 ,2 ,4 ,0 ,0 ,0 ,0 ,0$

$use ORDINAL * * * * p$

enables ORDINAL to fit the model. The results from the general-purpose macros

agree with the results given by Kijewski et al (1989).

4.3.3 The method of independent binomials

In §4.2.4 the method of independent binomials for fitting the cumulative logit model

with location terms only is discussed. It is pointed out that a practical advantage

of this fitting method is that a standard logistic regression routine is sufficient to

implement the method. A further advantage to the method is that it is also possible

to fit the cumulative logit model with location and scaling terms by repeated use

of the logistic regression routine. To do this a successive relaxation approach to

fitting models with non-linear systematic components is used. The term successive

relaxation is used because at successive iterations a set of parameters is taken as

constant to reduce the systematic component to a linear one.

In a generalized linear model the linear predictor 77 is a linear combination of

explanatory effects which need to be estimated. For example

rnj=xia + zj^ (4.18)

where Xj,Zj are design vectors for covariates and a,/3 are the parameter vectors to

be estimated. Suppose now that we have a model which satisfies all the conditions
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to be termed a generalized linear model except that the systematic component of the

model is not a linear combination of explanatory variables. Suppose for example,

that the form of this non-linearity is

Tj*jk = X;a x wfc7 + Zj/? (4.19)

where x,-, Zj, a, f3 are as above, w^ is another design vector and 7 is another param-

eter vector to be estimated. The redundancy in the parameters a, 7 can be removed

by taking a.\ = 1 for example. In order to estimate the parameters (0,^,7) the

following idea may be used. At the first step the values of a are taken to be equal

to 1. This gives a linear predictor and the parameters f3 and 7 may be straightfor-

wardly estimated by a routine for generalized linear models. At the second step,

7 is taken to be constant with values given by the estimates obtained in the first

step. The vector a is no longer taken to be constant. This gives a linear predictor

and estimates can be obtained for a and (5. In the third step the vector a is again

taken to be constant, this time with values given by the estimates obtained in step

2. Updated estimates for /3 and 7 are obtained. The method "see-saws" between

taking a to be constant while obtaining estimates for 7, and taking 7 to be constant

while obtaining estimates for a. This successive relaxation process is continued until

convergence is obtained.

In §4.2.4 there is a discussion of how the method of independent binomials for fit-

ting the cumulative logit model with location terms only may be implemented using

a routine for logistic regression. This is possible because the generalized estimating

equations in this case reduce to the score equations of an analysis of independent

binomial observations. Now consider using a logistic regression routine to fit the cu-

mulative logit model with location and scaling terms (model 4.16). The systematic

component of the model has the same form as that in equation (4.19). Since the

score equations for a generalized linear model are being used, it is possible to use the

successive relaxation approach to fit the model with a scaling term. It is similarly
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possible to use this approach to fit the form of the model with location and scaling

terms given in equation (4.15) although this is not pursued in this thesis.

While successive relaxation leads to satisfactory parameter estimates it must be

noted that the standard errors associated with these estimates will be incorrect.

At each iteration one set of parameters is held fixed while the other parameters

are estimated. This means that the standard errors calculated for the estimated

parameters at that iteration will be too small. In contrast, fitting the model with

a scaling term by the method of maximum likelihood, implemented in the ORDINAL

macros of Wolfe (1996), will give the correct standard errors.
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Chapter 5

Subject effects in the cumulative

logit model

5.1 Introduction

This chapter presents a novel approach to the analysis of longitudinal ordinal re-

sponses. The approach is motivated by data from the BT experiments which are

described in Chapter 3. In these experiments subjects make repeated responses on a

5-category ordinal scale. Some exploratory analyses are performed on subject's pat-

terns of response across the categories. The frequency of response category use for

each experiment is also examined. From these exploratory analyses it is concluded

that in addition to a subject-specific location term in the model it is necessary to in-

vestigate the significance of another subject-specific term; a subject-specific scaling

term. This investigation is done by fitting a hierarchy of cumulative logit models.

The cumulative logit model is chosen because the interpretation of a scaling term

is simpler in this model than any of the other multinomial models for an ordinal

response discussed in Chapter 2. This hierarchy of models is fitted to data from

experiment El98 to fully illustrate the approach and then applied to a wide range
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of BT experiments.

A number of technical issues involved with the fitting of the model hierarchy are

discussed. Two methods of fitting the cumulative logit model, maximum-likelihood

and independent binomials (both discussed in Chapter 4), are used for applying the

hierarchy to the BT data and the results from each are compared. There is also a

comparison of two different forms of the cumuative logit model with a scaling term.

These two forms are discussed in §2.3 and are introduced by McCullagh (1980) and

Kijewski et al (1989). The application of the model hierarchy to ordinal scales with

numbers of categories different to 5 is mentioned.

The approach to analysing longitudinal ordinal responses of fitting a hierarchy

of models takes the correlation between intra-subject responses into account by

including subject-specific explanatory variables in the model. A further consider-

ation, leading to a more familiar modelling approach to repeated response data,

is to assume that these subject-specific terms are random effects with a particular

distribution. The cumulative logit model with random location effects, discussed in

§2.2.3, is applied to the data and the results examined. The cumulative logit model

with both random location and scaling effects is considered and the score equations

for fitting the model are presented.

5.2 Exploratory data analysis

5.2.1 Differences in subjects' response patterns

Table 5.1 gives the observed response distributions for 4 particular subjects in ex-

periment E198. Comparing the responses for subjects 9 and 10 we can immediately

see that subject 10 tends to score higher on the scale than subject 9. This com-

parison can also be made via the observed cumulative proportions. The observed
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Table 5.1: Examples of subject response patterns from experiment E198

Subject

9

10

13

16

1

2

0

0

2

Category

2

1

2

1

1

3

1

2

3

1

4

4

1

4

1

5

0

3

0

3

cumulative proportions in each category for subject 9 are ( | , | , | , 1 , 1 ) and those

for subject 10 are (0, | , | , | , 1). For each of the categories, the observed cumulative

proportion for subject 10 is not larger than that for subject 9.

The difference between subjects 13 and 16 is qualitatively different from the

difference between subjects 9 and 10. Inspection of the observed responses for the

former pair leads to the conclusion that subject 16 tends to spread their responses

towards the extremes of the scale, relative to subject 13 who tends to cluster their

responses in the central categories. Again this comparison can be made via observed

cumulative proportions. For subject 13 these are (0, | , | , 1 , 1 ) and for subject 16

( | , | , | , | , 1 ) . For categories 1 and 2 the observed cumulative proportions for subject

16 are larger than those for subject 13. For category 4 the observed cumulative

proportion for subject 16 is smaller than that for subject 13.

An advantage of thinking in terms of observed cumulative proportions is that

models exist which relate underlying cumulative probabilities to co-variate effects.

One such model is the cumulative logit model which is introduced in Chapter 2. To

recap briefly on a motivation for this model, an unobservable continuous response,

Y*, is thought of as underlying the observed ordinal response, Y (with K categories).

The ordinal response is observed as Y = j if Y* is in the interval (6j-\ , 9j] where

the 9j parameters can be thought of as cut-points on the underlying continuum.
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The form Y* = x.i/3 + et- is taken as a model for the underlying response. When

the logistic distribution is assumed for the errors et-, this gives the cumulative logit

model

f - ^ - ) =^--x,-/9. (5.1)
1 W

The location effect parameters in the vector /3 allow for the cut-points to shift, en

bloc, up or down the continuum. Hence, a subject-specific location term quantifies

differences between subjects scoring higher or lower than each other. This is the

kind of difference observed between subjects 9 and 10 in Table 5.1.

A more general form of the cumulative logit model is also defined in Chapter 2.

This involves a scaling term in the model. There are two forms of the model with a

scaling term described in §2.3. These are

7> (5-2)

which is presented by McCullagh (1980) and

log (j^—) = 0i exp(ZiA) - Xifi (5.3)

V l ~~ Hi I

which is discussed by Kijewski et al (1989). The scaling term quantifies how much

responses are spread out (or concentrated) across the ordinal scale. Hence a subject-

specific scaling term quantifies the type of difference between subjects observed in

subjects 13 and 16 in Table 5.1.

5.2.2 Further motivation for the model

In experiment E198, 9 subjects did not use category 1, 15 subjects used category

1 once, 6 subjects used category 1 twice and 2 subjects used category 1 thrice.

This is the frequency distribution for category 1 in experiment E198. The frequency

distribution for each category is given in Appendix C for all experiments in Table 3.1.

Examination of the marginal totals for each response category in every experiment
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shows that categories 1 and 5 are the least used in all experiments except F064 and

F065.

In this section the frequency distributions of categories presented in Appendix C

will be investigated in detail and hypotheses about subject response behaviour will

be based upon them. Two points about Appendix C are noted before progressing.

1. For each experiment the frequency distribution of the response categories will

depend on the set of conditions used in the experiment. If all the conditions

are good, it is expected that the higher categories will be used very frequently.

If there are no large differences between the conditions used in an experiment

then the dispersion amongst responses is expected to be small.

2. In Chapter 3 the design of these experiments is introduced. The number of

times each condition appears in each row in the experiment will influence

how many times a subject uses each response category. Ideally the conditions

will be orthogonal to rows so that every subject receives each condition the

same number of times. This is a feature of the design of all the experiments

considered here. However, in the implementation of some of these experiments,

mistakes were made in the allocation of condition. The experiments not to

have conditions orthogonal to rows are conversation experiments E199, E200,

E211, E212 and E213. Of these, experiments E200 and E212 have only minor

departures from orthogonality. Particular care must be taken for experiments

E199, E211 and E213.

Further inspection of the marginal distributions of responses in Appendix C re-

veals that for conversation experiments E136-E213, category 4 is the modal response

category and categories 1 and 5 have roughly equal totals, both less than the other

category totals. It is of particular interest to note that the marginal total in cat-

egory 1 and the marginal total in category 5 are sums of quite different frequency

distributions. The responses in category 5 come from a small number of subjects
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using that category very frequently. The responses in category 1 accumulate from

a lot of subjects using that category a small number of times.

As an example consider the marginal distribution of responses from experiment

E140 in Appendix C. Category 4 is the mode in the marginal response totals.

Categories 1 and 5 have the smallest values of the marginal totals, 18 and 32 re-

spectively. The 18 responses in category 1 arise from 11 subjects using category

1 once, 2 subjects using category 1 twice and 1 subject using it thrice. The 32

responses in category 5 arise from 3 subjects using category 5 once, 1 subject using

it twice, 2 subjects using it four times and 3 subjects using it five times or more.

Although fewer subjects use category 5 than category 1 (9 to 14) the subjects who

use category 5 use it very frequently.

In experiments E136-E213, it is surprising that category 5 is not used more often

given that the mode for all these experiments is category 4. What is striking is the

large number of subjects (roughly half on average) who do not give a response in

category 5. The subjects who do not use category 5 are not all just low scorers;

if they were then they would increase the frequency of their category 1 responses.

From the tables in Appendix C it can be seen that no subject uses category 1 very

frequently for this set of experiments. A hypothesis to explain this is that a lot

of subjects are concentrating their responses in the middle of the scale. Another

hypothesis is that many subjects use category 4 instead of category 5 in order to

keep category 5 'up their sleeve'. The subjects who do use category 5 tend to use

it frequently. Of these, some may be high scorers who correspondingly do not use

the lower categories very frequently. However, not all of these subjects are just

high scorers. Table 5.2 demonstrates that in experiment E200 there is only a small

difference in the use of category 1 between those subjects who do not use category

5 and those subjects who do use category 5. From Table 5.2 it can also be observed

that there are subjects who do not use either extreme category (4 subjects from

32), which means that they have concentrated their responses in middle categories.
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There are subjects who use both categories 1 and 5 (10 subjects from 32), which

means that they have spread their responses right across the response scale.

Table 5.2: Use of category 1 according to use of category 5 for E200

Use of cat. 5

0 times

At least once

Use of category 1

0 times Once Twice Thrice

4 4 6 3

5 5 5 0

It must be noted regarding point 2 at the beginning of this section that close

inspection of the subject response profiles in experiments E199, E211 and E213

shows that in these experiments the pattern of subject behaviour with the extreme

categories seems to exist regardless of the effect that lack of orthogonality has on

these response profiles. To assess this properly would require a model-based analysis,

the proposal of which is the main purpose of this chapter.

The discussion for experiments E136-E213 does not immediately apply to the

other experiments. First, consider experiment E216 which is the only other conver-

sation experiment in Table 3.1. The mode for E216 is category 2 and the discussion

used earlier is still relevant here but now the situation is reversed: subjects are re-

luctant to use category 1 even though category 2 is the mode. There still appear to

be differences between subjects in their use of the scale. These differences cannot

be solely explained by the idea of some subjects scoring lower than others: the idea

of subjects bunching responses in the middle of the scale or pushing responses to

both extremes must be considered.

The other 4 experiments are listening experiments. The marginal distributions

of responses are different from those encountered in the conversation experiments.

Experiments F064 and F065 have category 1 as the mode and there is nothing
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obviously peculiar about the subjects' use of categories in these 2 experiments. Ex-

periments E247 and E264 have fewer responses in the extreme categories than in

any of the middle three categories. Note that subjects make many more responses in

listening experiments than in conversation experiments. The listening experiment

with fewest responses per subject is F065 with 36 whereas the conversation experi-

ments with the largest number of responses per subject are E216 with 18 and E136

with 15. It could be argued that the amount of difference between subjects in the

spread of their responses diminishes with an increased ratio of number of responses

to number of response categories. For the BT data an informal check is performed

in §5.4 to see if this might be the case.

In conclusion, there is a group of experiments (group 1) which exhibit the same

pattern of subject behaviour and frequency of category use. It consists of exper-

iments E136, E139, E140, E198, E199, E200, E211, E212, E213. The patterns of

subject behaviour and frequency of category use in the other experiments (E216,

E247, E264, F064, F065) do not conform to the pattern observed in group 1, nor is

there any homogeneity in these other patterns.

A final point to be made is repeated from §3.4.5. A full account of subject

variablity must be allowed for before testing for carry-over effects. If this is not

done then it is possible to detect a subject-specific effect that has not been allowed

for and to mis-interpret it as a carry-over effect. It is possible that the significance of

the carry-over parameter matrices in §3.4.4 may be due to the confounded subject-

specific scaling term which has not been allowed for in the base model used in the

analyses in §3.4.4. This is likely given that group 1 of experiments identified in this

section correspond exactly with Group 1 in Figure 3.5.
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5.3 Subject-specific fixed effects in the cumula-

tive logit model

The cumulative logit model was discussed in the previous section. Two types of

subject-specific effects, location and scale, can be estimated via this model and

their interpretation was also discussed in the previous section. The cumulative logit

model with a subject-specific location term is

log f r 2 ^ - ) = % -<*.- x,-/? (5.4)
V1 - 7 W

where subjects are denoted by s and all other co-variates are denoted by i. Model

(5.4) describes differences in location between subjects which are quantified by the

location parameters as. Given values of the co-variates indexed by i the difference

in location between subject 1 and subject 2 is a\ — a2.

A form of the cumulative logit model that allows for a completely general subject-

specific effect is as follows,

log (T^*—) = 03 + 6JS - x,-/? (5.5)

V1 -Hi')

which is introduced in §2.2.3. The cut-point by subject interaction term 6js allows

as fully as possible for differences between subjects in their use of the response scale.

Given values for co-variates indexed by i the difference between two subjects (say

subject 1 and 2) is given by Oji — 9j2. This difference depends on which cut-point

is considered. In model (5.4) the difference between two sets of subjects' cut-points

was a linear function of the location effects for those subjects, i.e. the difference

in their as values, and not dependent on the cut-points. Hence model (5.4) can be

thought of as a special case of model (5.5).

The cumulative logit model with a subject-specific scaling term of the form

introduced by Kijewski et al (1989) is

1 = Oj exp(As) - as - x,-/? (5.6)
Hjs )
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and this can also be thought of as a special case of model (5.5). Note that the form

of the cumulative logit model with a scaling term (5.2) introduced by McCullagh

(1980) is not a special case of model (5.5).

In model (5.6), given values for co-variates indexed by z, there is a set of cut-

points associated with each subject. For example taking X;/? = 0, the cut-points

associated with subject 1 are

6>iexp(Ai) - Qi, #2exp(Ai) - a l5 6l
3exp(A1) - au 04exp(Ai) - ax

and the cut-points associated with subject 2 are

6>iexp(A2) - a2, 92 exp(A2) - a2, 6>3exp(A2) - a2, 0 4 exp(A 2 ) -a 2

The differences between these two sets of cut-points are given by

- exp(A2)] - ( a i - a2) (5.7)

for each cut-point 9j. This can be seen as a particular structure for the interaction

term of model (5.5). Also since the difference between the as parameters is a special

case of formula (5.7), the model with a location term only (5.4), is a special case of

the model with a scaling term (5.6). This gives the following hierarchy of models,

the simplest model coming first,

log ( lijs

1 -

This hierarchy provides a natural way of testing for evidence of subject effects.

Initially the model without any subject effects is fitted and the deviance and degrees
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of freedom noted. Then the model with the subject location term is fitted. The

change in deviance and degrees of freedom can be attributed to the subject location

term. The model with subject location and subject scaling terms is then fitted.

The change in deviance and degrees of freedom can be attributed to the subject

scaling term. Finally the model with the full interaction is fitted and the deviance

and degrees of freedom noted. The change in deviance and degrees of freedom

can be thought of as "residual" subject description. This describes any differences

between subjects after location and scale have both been taken into account. All

changes in deviance can be compared with an appropriate \2 distribution to assess

the significance of components of the interaction between cut-points and subjects.

5.4 Analysis using subject-specific fixed effects

The hierarchy of cumulative logit models introduced in the previous section is used to

analyse data from conversation experiments E136-E213 and listening experiments

E247, E264, F064 and F065. The method of independent binomials described in

§4.3.3 is used to fit the model in GLIM. Note that maximum likelihood estimation

of models (5.4) and (5.6) is possible in the GLIM4 macros of Wolfe (1996). However,

estimation of the full interaction term 8js in model (5.5) is beyond the scope of these

macros. Comparison is made in this section of the results from the two methods of

fitting and the results are found to be very similar. Results obtained from fitting

the hierarchy of models to 12 BT experiments are very heterogenous, so initially

discussion will be limited to the analysis of experiment E198.

In experiment E198 the ordinal response is "Opinion score", a subject's rating of

a telephone line transmission condition on the 5 category ordered scale given in Fig-

ure 3.2. The 'base' cumulative logit model includes the following set of explanatory

variables: Condition, Column, End, and the interactions of Condition and Column

with End. A full description of these explanatory variables and the experimental
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Table 5.3: Deviance table for experiment E198

Deviance df

Base model 534.0 991

+ Subject location term 111.0 30

+ Subject scaling term 69.1 31

+ Residual subject description 73.8 62

Model with full subject description 280.1 868

design can be found in Chapter 3. An analysis of deviance table was constructed

following the guidelines of §5.3 and is presented in Table 5.3. The base model has

residual deviance of 534.0 on 991 degrees of freedom. The apparently large num-

ber of degrees of freedom (there are only 256 responses in the experiment) arises

from the expansion to independent binary responses used to fit the model. Each

5-category ordinal response expands to 4 independent binary responses, thus for 256

ordinal responses there are 1024 binary responses.

There are 32 subjects in experiment E198, arranged in 16 pairs since it is a

conversation experiment. When the subject location term is included in the model

(i.e. Subject is included as an explanatory factor) the decrease in deviance is 111.0

on 30 degrees of freedom. This is highly significant when tested against the xlo

distribution. Note that one degree of freedom of the subject location term is used

up by estimating End in the base model.

When the subject scaling term is included in the model it is necessary to use a

more complex fitting process to fit the model by independent binomials. The succes-

sive relaxation approach to fitting models which contain a mixture of multiplicative

and additive explanatory terms, described in §4.3.3, is employed. The reduction in

deviance is 69.1 on 31 degrees of freedom. This is highly significant when tested
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against the x\\ distribution.

Finally a residual deviance for subject description is calculated by fitting the base

model with an interaction term between Subject and Cut-point. The deviance for

this model is 280.1 on 868 degrees of freedom. The deviance attributable to residual

subject description is then calculated as 73.8 on 62 degrees of freedom, which is not

significant if tested against the %62 distribution.

The analysis of deviance tables for experiments E136-E140, E199-E213, E247,

E264, F064 and F065 are collected in Table 5.4. The base model for limited dura-

tion experiments (E200, E212) is the same as that for E198. For unlimited duration

experiments (E136, E139, E140, E199, E211, E213) there is also an explanatory

variable for Picture-sets included in the base model. For the listening experiments

(E247, E264, F064, F065) the base model includes the explanatory variables, Condi-

tion, Column, Sentence list, Listening level and Voice. There is agreement across the

experiments in the significance of the subject location and scaling terms. Similarly

there is agreement in the lack of significance of the residual subject description:

experiment E140 is the only experiment that has a highly significant amount of

subject-specific residual deviance and experiments E211 and F065 have borderline

significant amounts of subject-specific residual deviance. Appendix D contains the

subject-specific contributions to the residual deviance in experiment E140. Inspec-

tion of these indicates that the improvement in fit obtained from the full interaction

model over the scaling model is largest for subjects 2, 9, 6, 3 and 4. Indeed the de-

viance attributed to the residual subject description (91.6 on 46 degrees of freedom)

is no longer significant if the contribution of subjects 2 and 9 is subtracted. The

subject response profiles in experiment E140 are also presented in Appendix D but

it is difficult to deduce from these in what way the subjects with large contributions

to the residual deviance differ from the other subjects in the experiment.
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Table 5.4: Deviance tables for experiments E136-E140 E199-E213, E247, E264, F064

and F065

Base model

+ Location

-f Scaling

+ Residual

Full model

df

984

30

31

62

861

E199

dev.

482.4

118.5

72.9

62.4

228.6

E211

dev.

466.2

101.9

97.4

83.0

183.9

df

982

30

31

62

859

E213

dev.

512.2

134.3

88.3

60.2

229.4

df

991

30

31

62

868

E200

dev.

551.8

150.1

60.5

48.5

292.7

E212

dev.

569.8

102.1

45.4

66.7

355.6

Base model

+ Location

+ Scaling

+ Residual

Full model

df

1725

28

29

58

1610

E136

dev.

1055.9

267.0

95.9

65.7

627.3

df

1092

22

23

46

1001

E139

dev.

677.2

249.3

131.2

53.4

243.3

E140

dev.

620.0

163.7

64.2

91.6

300.5

Base model

+ Location

+ Scaling

+ Residual

Full model

df

5717

23

23

46

5625

E247

dev.

2909.8

273.3

68.9

56.1

2511.5

E264

dev.

2934

217

121

52

2544

df

2837

11

11

22

2793

F064

dev.

1387.2

135.7

26.9

16.9

1207.7

df

1687

11

11

22

1643

F065

dev.

809.9

168.1

36.0

35.4

570.4
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Table 5.5: Number of responses per subject in the BT experiments

Experiment Responses per subject

E198-E213 8

E139, E140

E136

F065

F064, E247, E264

12

15

36

60

It is possible to examine the results of the subject-specific hierarchy analysis

to check whether there is any obvious change in strength of the scaling effect with

increasing numbers of responses per subject. This concern is discussed in §5.2.2.

The number of responses made by each subject in a range of BT experiments is

given in Table 5.5. Simply examining the stx-ength of the scaling effect across these

experiments indicates that there is no evidence of a change in the effect with an

increase in the number of responses per subject.

In all of the experiments considered in this thesis the ordinal response scale

has 5 categories. Using the responses from experiment F100 it is possible to check

Table 5.6: Deviance table for experiment F100

Base model

+ Subject location term

+ Subject scaling term

+ Residual subject description

Model with full subject description

Deviance

652.5

181.4

36.5

19.7

414.8

df

827

15

15

15

782
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whether the scaling effect only exists for response scales with 5 categories. Experi-

ment F100 (discussed briefly in §3.4.1) was performed with the same opinion score

response scale as these other experiments, but the conditions used were such that no

responses in category 1 were recorded in the experiment. The analysis in this case is

effectively reduced to the analysis of a 4-category response. The hierarchy of models

was fitted to test for subject effects, the only difference to the analyses in Table 5.4

being that the residual subject description has one less dimension for F100. Testing

the deviance results in Table 5.6 against the x?s distribution show that both subject

location and subject scaling effects are significant and that residual subject descrip-

tion is not significant. So for an analysis of a 4-category response the subject effects

are the same as in the analyses of a 5-category response. This comparison should

be performed for an experiment where the actual response scale has 4 categories

before any firm conclusions are drawn. Note that if the response scale only contains

3 ordered categories then there are only two dimensions to the full interaction of

subject and cut-point. If subject location and subject scale are included in a model

for a 3-category ordinal response, then there is no residual subject description.

The deviances given in Table 5.4 are calculated using the likelihood function for

multinomial data (equation 4.11 in §4.2.4). These deviances are labelled DM{V, ^IB)

(see §4.2.4) as they are values of the multinomial deviance function calculated with

fitted values from the method of independent binomials. The deviance that is quoted

by a binary logistic regression routine comes from the likelihood function for binary

data (equation 4.10 in §4.2.4). This deviance is labelled J?B(J/;TT/B)
 a n d it can be

seen from Table 5.7 how the value of this deviance is much greater than DM{V; RIB)

for the four experiments included in the table. Also note that the value of the

deviance allotted to the subject-specific effects would be distorted if DB{

were used to make the deviance tables collected together in Table 5.4.
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Table 5.7: Comparison of deviances in listening experiments

Model

Base

+Subject

location

+Subject

scale

+Cut-point

by Subject

interaction

Exper-

iment

E247

E264

F064

F065

E247

E264

F064

F065

E247

E264

F064

F065

E247

E264

F064

F065

Independent binomials

DB(y-TIB)

3193.6

3244.3

1545.7

900.3

2834.1

2936.7

1354.2

675.3

2762.8

2806.6

1319.7

636.8

2718.7

2764.2

1307.0

604.0

DM{y*iB)

2910

2934

1387

809.9

2636

2717

1252

641.8

2567.6

2596.0

1224.6

605.8

2511.5

2544.0

1207.7

570.4

Maximum likelihood

Form 1 Form 2

2907

2930

1384

807.9

2633.1

2713.3

1248.2

639.9

2563.3

2591.0

1220.5

602.6

2611.6

2660.0

1201.9

607.3

-

-

-

-
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With the exception of the model with the full interaction between cut-points

and subjects, all of the models fitted here by the method of independent binomials

can also be fitted by maximum likelihood in GLIM4 using the macros presented

in Appendix B. Thus it is possible to compare the values of -DM(J/;T<7B) with the

deviances obtained from maximum likelihood, DM(V, ̂ ML )• This is done for experi-

ments E247, E264, F064 and F065 in Table 5.7 resulting in the conclusion for these

data that

DM(y,xIB) fa DM(y,XML)- (5.8)

Note that DM{V'I^IB) is always greater than -DJW(2/; TTML)
 a s this latter deviance is

minimised by maximum-likelihood fitting of the model.

The form of the cumulative logit model with a scaling term that was introduced

by Kijewski et al (1989) (model 5.3) is used for the analyses in Table 5.4. This form is

used because of its place in the model hierarchy for analysing subject-specific effects

discussed in the previous section. This form of the model is labelled Form 1 in Table

5.7. When using the GLIM4 macros (Wolfe, 1996) it is straightforward to change

from this form of the model to the alternative form introduced by McCullagh (1980)

(model 2.7). This form is labelled Form 2 in Table 5.7. The deviances obtained for

the two forms of the model may be compared. For experiments E247, E264, F064

and F065 this comparison shows that Form 1 of the model gives a better fit to the

data in 3 experiments. For experiment F064 Form 2 gives a better fit.

It is worthwhile pursuing the comparison in experiment F064 further. As already

noted Form 2 of the model with a scaling term gives a better fit to the data in this

experiment than Form 1. The values of DM(V',^ML) for the two forms are 1220.5

and 1201.9 respectively. In Table 5.4 the value of DM{V',^IB) for the full model is

1207.7. This value is greater than the value of DM{V\ ̂ ML ) for this model but from

the conclusion made in (5.8) this discrepancy would be expected to be small. So in

this experiment Form 1 of the cumulative logit model with a scaling term seems to
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give a better fit to the data than the cumulative logit model with a cut-point by

subject interaction term. This emphasises the need to consider both forms of the

cumulative logit model with a scaling term.

We may conclude for this set of experiments that the majority of variation due

to differences between subjects is contained in the subject location effect and the

subject scaling effect, both of which are highly significant. Any remaining subject-

specific effects are not significant.

5.5 Subject-specific random effects in the cumu-

lative logit model

The analysis presented in the previous section is one approach to modelling lon-

gitudinal ordinal responses. The cumulative logit model is used for analysis and

the correlation between intra-subject responses is modelled by the inclusion of a

subject-specific location term and a subject-specific scaling term in the model. Two

methods are used to fit this model: maximum-likelihood, and generalized estimating

equations with an independence working correlation structure (independent bino-

mials). In general, maximum-likelihood estimates are only consistent if the number

of parameters in the model remains small as the number of sampling units in the

data increases. In the analysis of the previous section the sampling units are the

subjects. For each subject there are two subject-specific parameters in the model.

Hence, in general, the maximum-likelihood estimates of parameters in the model

with subject-specific location and scaling terms are not consistent as the number

of subjects increases to infinity. Similarly the independent-binomials estimates will

not, in general, be consistent. In the BT data there is a lot of information per

subject as is demonstrated by the number of responses per subject displayed in Ta-

ble 5.5. The amount of information per subject supports the use of the modelling
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approach with subject-specific location and scaling terms because it means that the

total number of responses in the data is much larger than the total number of sub-

jects. In a fixed effect analysis such as this it is effectively the responses that are

taken to be the sampling units.

An alternative approach to subject-specific modelling which avoids the possibility

of inconsistent estimation is to assume that the subject-specific terms in the model

are random effects. Random location effects in the cumulative logit model are

discussed in §2.2.3. The cumulative logit model with a subject-specific location

random effect can be written as

log (r^^—) = h -u>.- K0 (5.9)
V1 - 7 W

where u>s is the random effect and is assumed to have some distribution, e.g. u>s ~

N(0,cr^,). An example of the use of this covariate structure for a binary logistic

regression model (a simple case of model (5.9) with K = 2) is given by Zeger et al

(1988). They note the tendency of the absolute values of the covariate parameters

to increase with the variance in the random effect a^,.

Estimation of the parameters by maximum likelihood requires maximisation of

the log-likelihood function

log L = £ log I jo n ^ t(us)dus \ (5.10)

where (f>(u>s) represents the normal density function. This can be done by Gaussian

quadrature as described by Jansen (1990) and implemented in MIXOR by Hedeker

(1993). An alternative approach is to use the Gibbs sampler which is implemented

in the software BUGS (Spiegelhalter et al, 1994).

Estimation of the parameters in the cumulative logit model with random ef-

fects is also possible in principle using generalized estimating equations. Zeger et

al (1988) demonstrate how this is done in the case of K — 2, the logistic regression

model for binary responses. The use of GEE to fit the model for general K needs to
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be investigated. Using GEE to fit the model involves the use of a working correla-

tion matrix. This working correlation may be parameterised appropriately to take

intra-subject correlation into account. The random effect for subject location then

describes the inter-subject differences that are manifested in the higher or lower

scoring by subjects on the response scale.

In the BT data significant subject-specific differences have been found which are

manifested firstly in the higher or lower scoring by subjects on the response scale

and secondly by the clustering or spreading to the extremes of responses by the

subjects. A new random effects model must be proposed to cater for these two

types of subject difference. The model chosen is the cumulative logit model with

form:

log ( ltjs ) = B3 exp(C,<7C) - cosau - x,-/? (5.11)

where LOS is a random effect describing subject location, (s is a random effect de-

scribing subject scaling and these two random effects are assumed to come from two

independent standard normal distributions. The amount of random dispersion is

measured by a^ and au.

The parameters in the proposed model (5.11) can be estimated by maximum

likelihood. Consider ns repeated responses for each subject s (from a total of S

subjects) such that Y,s ns = n. The individual cell probabilities for a given response

i from subject s are

j exp((crc) -

where F denotes the cumulative logistic distribution and the subscript s is dropped

from uis and £s for clarity.
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The likelihood function for a given subject s with response vector Ys is given by

where
' 1 if Yis = j

0 otherwise.
mijs =

The marginal density of Ys is then expressed as the integral

h{Y,) =

where g(.) represents the standard normal density. The marginal log-likelihood can

be written as

5=1

and this can be differentiated with respect to the model parameters and set to

zero in order to obtain the maximum-likelihood estimates. The differentiation of

the marginal log-likelihood follows the chain rule. For example, differentiation with

respect to some particular location parameter f3r is obtained from

dlogL = s ! dh(Ys) dl(Ya\u,(,0) dnijs

3(5 jr{ l s)j{ ,(,f3) dirlJS d(3r •

For notational simplicity only part of this chain is considered, so for f3r the following

derivative is obtained:

d-W- =ff thmiM l(Ys\u,03)g(u)g(0^dcod( (5.12)

where

Tjijs = Oj exp(((7C) -

and

d/3r
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The expression for dh(Ys)/daw differs from expression (5.12) only in that dr]ijs/df3r

is replaced by

For a particular cut-point parameter 9j> the derivative
Kr)h!Y\ r r n* K

^T1 = / / E E
Ot/ji J(, Jw i _ 1 j = 1

Finally, differentiation with respect to the dispersion parameter of the subject-

specific random scaling effect yields
Us K

_1 =l

where

The score equations that are defined by

dlogL _* ! dh(Y.)

where $ = (6, f3, crw, a^) have not been implemented in any general-purpose software

routine. It should be possible to extend the MIXOR program of Hedeker (1993) to

cope with this second type of random effect. Unfortunately time ran out before this

could be attempted as a contribution to this thesis. The development of general-

purpose software to fit the cumulative logit model with both random location and

scale effects would be of practical value. For the BT data analysed in this thesis

the significance of subject-specific location and scaling terms has been established.

There is an argument for including terms in the model for these effects that are

random as opposed to fixed. For the BT data, at least, general-purpose software for

fitting random location and scaling terms in a cumulative logit model would be of

great use.
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5.6 Analysis using subject-specific random ef-

fects

A comparison between two types of subject-specific analysis is now made. The first

type of analysis includes the subject-specific location term as a fixed effect term in

the model (equation 5.4). The second type of analysis considers the subject location

term to be a random effect and a variance term for this random effect is included in

the model (equation 5.9). Results are presented for a cumulative logit model with

a subject location term fitted to data from experiment E198.

To make the comparison of the two types of modelling approach only Condition is

included as an explanatory term in the design vector x,-. A full list of the parameter

estimates and standard errors are given in Appendix E and the estimates of the

Condition effects for both models are also given in Table 5.8. The cut-points in the

fixed effects model relate to subject 1. In the random effect model the cut-points

relate to an average subject. Hence, it is not sensible to make a direct comparison

of the cut-points from the two models. The estimate of the random effect variance

term is aw = 1.11. In the fixed effects model (5.4) the estimates of subject-specific

location terms vary between a15 = —4.40 and a2i = 1.81 relative to subject 1. The

standard deviation in these individual fixed effects estimates is 1.46.

The deviance for the fixed effects model is 446.1 on 918 degrees of freedom and

for the random effect model it is 519.7 on 948 degrees of freedom. The reduction in

deviance from a model with no subject location term to a model with either fixed

or random subject location can be tested. The reduction in deviance for the fixed

effect subject location term is 102.3 on 31 degrees of freedom and the reduction in

deviance for the random effect subject location term is 28.6 on 1 degree of freedom.

When compared to the relevant x2 distributions both of these are highly significant

reductions in deviance.
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Table 5.8: Parameter estimates and standard errors of Condition effect for two

approaches to subject-specific location modelling of experiment E198

Condition

Condition

Condition

Condition

Condition

Condition

Condition

Condition

1

2

3

4

5

6

7

8

Type

Fixed

p.e.

0

-0.39

-0.64

-7.29

-0.34

-2.94

-6.39

-9.26

of modelling approach

effects

(0

(0

(0

(o
(0

(o
(o

s.e

-

.50)

.50)

.74)

.50)

.54)

.69)

.84)

Random effect

p.e.

0

-0.36

-0.58

-6.67

-0.33

-2.68

-5.89

-8.45

(0

(0

(1

(o
(o
(0

(0

s.e.

-

75)

59)

07)

90)

81)

94)

98)

The parameter estimates of the condition effects (given in Table 5.8) show that

the two approaches to modelling subject location yield similar estimates of the other

explanatory variables in the model. The estimates from the random effect model are

closer to zero than those from the fixed effect model. Despite this shrinkage towards

zero the estimates from the random effect model have larger standard errors than

those from the fixed effect model. This seems to indicate that the fixed effect model

gives a false sense of accuracy in the estimation of these covariate effects. This might

be explained by the fact that in the fixed effect analysis although the sampling units

are the subjects, effectively the individual responses are taken as the sampling units,

implying more independent information than actually exists. In the random-effect

analysis the true situation of the subjects being the sampling units is acknowledged.
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5.7 Conclusions

The proposed random effects model with random subject-specific location and scal-

ing terms (5.11) deserves further investigation. It can be seen from the analysis in

the previous section how the model with a random subject-specific location effect

only (5.9) applies to the BT data. An advantage to using these random effects

models as opposed to their fixed effects counterparts is that the theoretical problem

of inconsistent estimation discussed in §5.5 is not encountered. As noted in that

section, the use of the fixed effect approach is supported by the large number of

responses per subject. This is borne out in the similarity in the parameter estimates

obtained from the fixed and random effect approaches investigated in §5.6.

The interpretation of the covariate terms (/?) is the same in both approaches.

However, prediction is different for the two approaches. In a random effects model

prediction is made for an 'average' subject. In a fixed effects model prediction is

made for particular subjects involved in the experiment.

Finally, a drawback to the random effects approach is the requirement of as-

suming a distributional shape for each random effect. For the work in this chapter,

independent normal distributions are assumed for the two random effects. A sensi-

tivity analysis needs to be performed to check whether the results depend on this

choice of distributional shape.
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Chapter 6

Comparing different methods of

fitting the cumulative logit model

6.1 Introduction

In Chapter 4 several different methods of fitting the cumulative logit model are intro-

duced. This chapter is concerned with comparisons between these different methods

of fitting the cumulative logit model. The methods investigated are maximum likeli-

hood, generalized estimating equations (GEE) using the true correlation matrix for

multinomial variables, GEE with Clayton's working correlation matrix, GEE with a

working correlation matrix based on equal marginal probabilities, and 'independent

binomials' (i.e., GEE with an independence working correlation matrix). As noted

in §4.2.3 the first two of these are equivalent. One other approach for modelling

an ordinal response is considered. This approach involves dichotomising the ordinal

scale and modelling the resultant data with a logistic regression model for binomial

observations.

The initial comparisons are empirical in nature. These serve to compare differ-

ent methods in real-life data modelling. Some theoretical comparisons are made by

119



investigating the asymptotic relative efficiency of estimates from different methods.

Theoretical comparisons are not included for Clayton's GEE method because the

working correlation matrix used in this method is data-dependent. As an alter-

native, theoretical comparisons are made for GEE with an equal-margins working

correlation matrix. This method is similar in spirit to Clayton's GEE method and

in many practical analyses the two methods will give similar results.

The comparisons made in this chapter were prompted by practical experience

of using the different methods of fitting the cumulative logit model. This experi-

ence indicates that there is not much gain to be made by using GEE with either

Clayton's or equal-margins working correlation matrices over the method of inde-

pendent binomials. In most instances of practical data analysis encountered during

this work the estimates obtained from independent binomials are similar to those

obtained from maximum likelihood. For almost all the instances encountered during

this work, when the estimates are compared with their standard errors (by using a

t-test say) then, although the exact results are different, the qualitative conclusions

drawn from these results are the same for the two fitting methods.

6.2 Empirical comparison

6.2.1 Example 1

Consider the data analysed by Clayton (1992) and presented in Table 6.1. The

ordinal reponse variable is the time taken to fall asleep for 239 subjects. The subjects

are grouped according to whether they had received an active treatment or a placebo.

The data are analysed by fitting the cumulative logit model. Four different methods

are used to fit the model: maximum likelihood, Clayton's GEE method, GEE with

correlation based on equal marginal probabilities, and independent binomials. The
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model is

Table 6.1: Time to falling asleep for 239 subjects

Time (minutes)

Treatment < 20 20-30 30-60 > 60

Active

Placebo

40

31

49

29

19

35

11

25

log = 0, - Pi (6.1)

where the parameter /% denotes the treatment effect. The convention (3\ = 0 is

employed. The maximum likelihood estimates are obtained from GLIM4 using the

ORDINAL macros (see §4.2.2). The estimates from the three GEE methods are ob-

tained from the gee function in S-Plus.

Table 6.2: Parameter estimates and standard errors for treatment effect /32.

Method of fitting the cumulative logit model

Maximum

likelihood

p.e. s.e

Clayton's

GEE

p.e. Robust s.e.

Equal-margins

GEE

p.e. Robust s.e.

Independent

binomials

p.e. Robust s.e.

0.761 (0.238) 0.762 (0.239) 0.770 (0.239) 0.789 (0.240)

The parameter estimates and standard errors for /?2 from the four analyses are

given in Table 6.2. In this example the different estimates of the treatment effect

parameter obtained from fitting the model by maximum likelihood and by Clayton's

GEE method agree to two decimal places, 0.76. The estimate is slightly larger, 0.77,

when the model is fitted by equal-margins GEE and larger again, 0.79, when the

model is fitted by independent binomials. The standard error of the maximum-
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likelihood estimate agrees to two decimal places with the robust standard errors of

the estimates from all three GEE methods. A test of significance of the treatment

effect shows that the parameter is significantly different from zero whichever method

of fitting the model is used.

6.2.2 Example 2

The data in this example come from experiment E198 in the BT set of experiments.

The same four methods of fitting the cumulative logit model used in Example 1 are

employed. The model fitted to these data is

log ( T ^ ^ - ) = 63 - A - xfc£. (6.2)

where fa denote the condition contrasts, and the explanatory variables in the design

vector Xfc are End and Column. In this example the parameters of interest are /?,-.

As in the previous example the maximum likelihood estimates are obtained using

GLIM4 and the estimates from the three GEE methods are obtained using S-Plus.

The estimates of fa from the four methods of fitting the cumulative logit model

are reported in Table 6.3. From this table it can be seen that the estimates obtained

from Clayton's GEE and equal-margins GEE methods are similar to each other.

The largest absolute difference between these two sets of parameters is 0.23 for fa

and the largest relative difference is that for fa. The standard errors for these two

sets of estimates agree closely except for fa, the parameter with the largest absolute

difference in the parameter estimates.

It also seems reasonable to say that the estimates obtained from fitting the

model by maximum likelihood and independent binomials agree closely. The largest

absolute difference between these two sets of parameter estimates is 0.21 for fa and

the largest relative difference is that for fa. The standard errors are slightly different

but the difference is not systematic. There is a systematic difference between the
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Table 6.3: Parameter estimates and standard errors for Condition contrasts in ex-

periment E198

-Pi

-02

-03

-04

-05

-06

— 07

-0s

Method of

Maximum

likelihood

p.e.

0

0.29

0.48

5.74

0.37

2.33

5.13

7.21

(0

(o
(0

(0

(0

(0

(0

s.e

-

.47)

.47)

.64)

.47)

.50)

.61)

.69)

fitting the

Clayton's

p.e.

0

0.20

0.20

5.51

0.36

2.32

5.73

7.12

GEE

Robust

s.e.

-

(0.47)

(0.50)

(0.76)

(0.55)

(0.55)

(0.68)

(0.77)

cumulative logit

Equal-margins

p.e.

0

0.22

0.18

5.53

0.41

2.42

5.96

7.14

GEE

Robust

(0

(0

(0

(o
(o
(0

s.e.

-

48)

51)

78)

55)

57)

77)

(0.79)

model

Independent

binomials

p.e.

0

0.24

0.55

5.73

0.40

2.29

4.92

7.21

Robust

s.e.

-

(0.42)

(0.49)

(0.60)

(0.51)

(0.50)

(0.70)

(0.64)

standard errors obtained from maximum likelihood and the standard errors obtained

from GEE using either Clayton's or equal-margins working correlation matrices. The

standard errors of the maximum-likelihood estimates are smaller than the standard

errors of the estimates from either of these GEE methods.

6.3 Asymptotic relative efficiency comparisons

6.3.1 Introduction

Asymptotic relative efficiency (ARE) is defined as follows. Let 9\ and 92 be two

consistent estimators of 9. The asymptotic relative efficiency of 6\ with respect to
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92 is the limit

l im
var(02)

var(0i)

where n is the sample size. If this limit is less than 1 we say that 0\ is asymptotically

less efficient than 92. If the limit is exactly 1, the two estimators are asymptotically

equally efficient to first order approximation.

In this section ARE comparisons are made of the parameter estimates obtained

from the different methods of fitting the cumulative logit model that are discussed in

§6.1. Note that consistency is a general property of maximum-likelihood estimates

under the standard regularity conditions. Note that, again subject to standard regu-

larity conditions, consistency is also a general property of GEE estimates irrespective

of the choice of working correlation matrix.

The ARE comparisons will be made for the simple case of a cumulative logit

model with one binary covariate. This is

log

log
- 72,

= ej ~ A

(6.3)

for a /^-category ordinal response, where A is the covariate effect parameter of

interest. It is assumed that the number of responses in group 1 (ni) is equal to the

number of responses in group 2 (n2) and are denoted n\ = n2 = n. This model can

be thought of as comparing the multinomial distribution of probabilities in the 2 x K

contingency table in Table 6.4. To simplify the ARE comparisons it is necessary to

make assumptions about the model and in the comparisons made in this chapter it

is assumed that the cell probabilities in the first row of the table are equal. That is

1
I ' l l = 7r12 = • • • = TT\K = — .

This assumption is referred to as 'equal 7rs in group 1'. It implies that the cut-points
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Table 6.4: Cell probabilities in a 2 X K contingency table

Row Category

2 3 - - K

^12 ""13

""22

in model (6.3) are

0j = log

= log

= log

Note, however, that it is not assumed that the cut-points are known in the estimation

of model (6.3) and, hence, in the calculation of the asymptotic relative efficiencies

for the estimates of A.

3

6.3.2 Variance of maximum-likelihood estimator of A

In §4.2.2 the method of fitting the cumulative logit model by maximum likelihood

is discussed. The estimate of A in model (6.3) obtained from fitting the model by

maximum likelihood is denoted AML • A standard result from maximum-likelihood

theory for the asymptotic variance of maximum-likelihood estimators is

a v a r
I" /

(/3ML) = - \ E \\

where / is the log-likelihood function for the model. The following result for the

general cumulative logit model (4.1)

82l\ ,
-E

K-l

\ 3=1

(6.4)
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is given by Agresti (1984), Appendix B.3, with

Equation (6.4) can be used to obtain

2 / 7^ V 1
avar(AML) = 53 I n* H 7y7i(j+i)7i"t-(i+i)

2 3 / K

= E
See McCullagh & Nelder (1989), Excercise 5.3 for alternative forms of the summation

of probabilities in equation (6.5). In the case of K = 3, n = nx = ni and when the

equal-7rs-in-group-l assumption is in force, equation (6.5) gives

3
avar(AML) = -

n
(6.6)

6.3.3 Variance of the independent-binomials estimator of

A

In §4.2.3 the method of fitting the cumulative logit model by generalized estimating

equations (GEE) is discussed. The notion of a working correlation matrix, R(a),

described by the unknown parameters a is introduced. The asymptotic variance of

GEE estimates is labelled avar(/3). The information sandwich formula

acov(/3) = (DTV~1 D)-1 DTV~1 cov(yt)y-1 D^V'1 D)'1, (6.7)

where cov(yt) is the known form of covariance matrix of the expanded binary re-

sponses (see definition 4.4), is used to calculate the asymptotical covariance matrix

of the parameter estimates. The diagonal elements of the matrix in equation (6.7)

give avar(/3). Note that the matrix D = AX contains the derivatives dfij/df3r where

A = diag {n,-7y(l — 7»j)}, X is the model design matrix and

V = A2R(a)A
12. (6.8)
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The method of independent binomials employs the identity matrix as a working

correlation matrix. We denote the estimate of A in model (6.3) as A/B when fitting

the model by the method of independent binomials. The asymptotic variance of this

estimate is given by the final diagonal element of

)-1XTacov(#/B, A/B) = (XTAX)-1X T AX)'1. (6.9)

For general K and n\ = 112 = n, the value of avar(A/g) is given by the equation

avar(A/a) = na2
A'-l K-l

k=l

72j(l - 12j)

-72j )
Sik\ (6.10)

where
1

a = —
(K-\

- l

is the final diagonal element of (XTAX) 1 and

-Jt = 72j(l-72i)-2

A'-l

+2

A'-l

72j I A" - J -
fc=l

i-i
+ 2Z72fc

fc=i

7ife(l -

The asymptotic relative efficiency comparisons made in this chapter are made

for responses with 3 categories, (K = 3), under the equal-7rs-in-group-l assumption

and with equal group sizes n\ = n2 = n. In this case, the result for the asymptotic

variance of the independent-binomials estimator of A is

721 (1 - 7 2 l )
avar(A / B ) = na2 721 (2 - 721 - 722) +

+722(1 - 721 - 722) + 721 +

| + 72i(l - 7 2 1 ) '

722(1 -

-722)
(6.11)

where
a = l\ |72i(l-72i) §722(1 -722)

n L§ + 72i(l -721) 1 + 722(1-722).

- 1
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and

= -72i(l-72i)-2 721(1-722)

= -722(1 - 722) - 2721(1 - 722)-

722(1 - 722) [ | + 721(1 - 722)]

1 + 722(1 -722)

6.3.4 The GEE-with-true-correlation estimator of A

If the cumulative logit model is fitted by GEE with the true correlation matrix in

place of a working correlation matrix then the estimation is equivalent to maximum-

likelihood estimation. This is discussed in §4.2.3. The explicit equivalence in the

case of K = 3 for model (6.3) is now shown. The GEEs are given by

which reduce to the simultaneous equations

712(1-711)
"712-711 712^11

722(1—21)

722—121

-722(1-022)
722—121

-72l(l-72l) \

722^121

722(l—72l)
722—121

/ t
2/ii

2/12

v\i

V 2/22

- 7 1 1

-712

- 7 2 1

- 722

\ / rs \

1

U

0

0

{ 0 i
x 0 0 722 1 - 721 t

Using the relationship y^ — y\- — y\-_x the maximum-likelihood equations are

r\ j

2/12 - 2/ i i 1

+ 7 2 1 ( 1 - 7 2 1 ) ^ -
|7r

7T1 2

2/21 2/22 "~ 2/21 = 0

~ = 712(1-712)

r..t ?/t
2/12 — 2/11

+722(1 - 722)

7T12

/ — 2/

1 - 2/12

1 - 7 1 2

2/22 — 2/21 1 — 2/22

1 - 7 2 2
= 0

- 721(1-721)
I 7T21 7T22

128



+722(1 - 722)
2/22 ~ 2/21 1 ~ 2/22 = 0

7T22 1 — 7 2 2 .

and it is straightforward to show that these two sets of estimating equations are

equal. For example, the third and final equation in both sets reduces to the simple

form

(1 - 721)2/22 - 722(1 - ylx) = 0.

6.3.5 Variance of the GEE-with-equal-margins-correlation

estimator of A

The method of fitting the cumulative logit model by GEE with a working correlation

matrix based on equal marginal probabilities is discussed in §4.2.3. This working

correlation matrix is symmetric and block diagonal with the elements in every block

being given by

Rjj{a) = 1 l < j < A ' - l

i(K — k)
Rjk(a) = A 7TT7 T I < j < k < K - I.

\ k(K — ])

This working correlation matrix is used to obtain a covariance matrix for equal-

margin GEE, labelled Vg, from the familiar relationship given in equation (6.8).

The estimate of A in model (6.3) obtained from this fitting method is denoted

by AE and the asymptotic variance of this estimate is denoted by avar(A#). The

information sandwich formula gives

= (XTAVE-1 AX)-1 XTAV£1 cov(yt)V^1 AX(XTAV£1 AX)'1 (6.12)

the final diagonal element of which is avar(Ag).

In the case of K = 3, n\ — 712 = n and under the equal-7rs-in-group-l assumption
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r
the components of the information sandwich (equation 6.12) are

/

and

X =

A = n

1 0
0 I

1 0 0

0 1 0

1 0 1

0 1 1

0

0

0 0 721(1-721)

0

0

0

0 0 0

1

1
~ 2

0

0

722(1 - 7 2 2 )

1.
"2

1

0

0

0

0

1

0

0

1.
"2

cov(?/') = n

2 1
9 9

I 2
9 9

0

0

0

0

0

0

0 721(1-721) 721(1-722)

0 7 2 1 ( l -7 2 2 ) 722(1- 722) J

The explicit expression for the asymptotic variance of A# in this case is cumbersome

and is relegated to Appendix F.

6.3.6 Variance of the dichotomisation estimator of A

Consider dichotomising the A'-category ordinal response between categories m and

m-f 1. The resultant binary observations can then be analysed by logistic regression.

The estimate of A in model (6.3) obtained from this method of analysis is denoted

by ALR and the asymptotic variance of this estimate is denoted by avar(Aijt). Note
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that when K = 2 this method is identical to maximum likelihood. An expression

for this variance is given in Appendix 2 of Armstrong & Sloan (1989) as

3 2

avar
i=\

3 ' K ^ 3 '

j=l I \j=m+l

- 1

(6.13)

which is obtained by considering ALR as a special case of A ML when K = 2 and

employing expression (6.5). Note that in Appendix 2 of Armstrong Sz Sloan (1989)

the inverse values are mistakenly printed for the variances, V&T(AML ) a n d var(A^fi).

In the case of K = 3, n\ = n2 = n, under the equal-7rs-in-group-l assumption

and with a dichotomy made at m = 1, the asymptotic variance of ALR is

(6.14)

If the dichotomy is made at m = 2 the asymptotic variance of ALR is

avar(Ar«) = ^ (l.5 - [l - 72
3
2 - (1 - 722)3]"1) • (6.15)

6.3.7 Comparison of GEE methods with Maximum likeli-

hood for a 3-category ordinal response

Figure 6.1 shows the asymptotic relative efficiencies of the estimators of A in model

(6.3) from two GEE methods of fitting compared with the estimator from maximum

likelihood. The two GEE methods are independent binomials and equal-margins

GEE. The graph demonstrates that at A = 0 both of the GEE methods and max-

imum likelihood are asymptotically equally efficient to a first order approximation

since the value of the ARE is 1 for both GEE estimators.

The asymptotic efficiencies of the GEE estimators relative to the maximum-

likelihood estimator decrease as the value of A increases or decreases from the origin

until a turning point is reached. The ARE value is at a minimum at the turning

points, hence inefficiency in the GEE estimates is largest at these points. As the
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Figure 6.1: Asymptotic relative efficiency for independent binomials and equal-

margins GEE compared with maximum likelihood

-g

Equal-margins
Independent
Binomials

O

Delta

value of A increases further (decreases further) beyond the turning points the ARE

values increase. Hence, the GEE estimators 'recover' efficiency relative to maximum

likelihood and this efficiency reaches the same asymptote as A —> 00 or A —• —00.

This asymptote is equal to 1 for the equal-margins GEE estimator and hence this

estimator is asymptotically as efficient as the maximum-likelihood estimator as the

absolute value of A increases. The asymptote is equal to 25/28 = 0.89 for the

independent-binomials estimator.

6.3.8 Comparison of Dichotomisation method with Maxi-

mum likelihood for a 3-category ordinal response
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Figure 6.2: Asymptotic relative efficiency for dichotomisation and maximum likeli-

hood

Best dichotomy
Worst dichotomy

—1

-1O

1

O

Delta

1
1O

Figure 6.2 shows the asymptotic relative efficiency of the estimator of A in model

(6.3) from the dichotomisation method of fitting compared with the estimator from

maximum likelihood. For Figure 6.2 the dichotomy given by m = 1 is chosen for

A < 0 and the dichotomy given by m = 2 is chosen for A > 0 (and is drawn as a

solid line). As Armstrong & Sloan (1989) note, the greatest loss of efficiency when

using the dichotomisation method will be a the point A = 0 where the value of the

asymptotic relative efficiency is | . This is confirmed in Figure 6.2 and it is further

noted that the two estimators are asymptotically equally efficient as A -> 00 or

A —> — 00. The region of interest in most applied problems is roughly —5 < A < 5.

It is worth noting that the ARE is equal to approximately 0.9 at a treament effect

of ±2.5.

Note that if the dichotomy is chosen prior to analysis then the asymptotic effi-
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ciency of the dichotomisation estimator relative to the maximum likelihood estimator

has an asymptote at 1 in one direction and 0.25 in the other direction. Thus if the

dichotomy is chosen prior to analysis the dichotomistaion estimator of A could be

up to 4 times less efficient than the maximum-likelihood estimator.

6.4 Conclusion

The two examples presented in this chapter provide an empirical comparison of

methods of fitting the cumulative logit model. From these examples we may con-

clude that there are small differences in the estimates obtained from maximum like-

lihood and independent binomials. In example 2 there are considerable differences

in individual parameter estimates obtained from maximum likelihood and either

Clayton's GEE or equal-margins GEE.

The asymptotic relative efficiency comparison compares the estimate of a treat-

ment effect obtained from each of two GEE methods with the estimate obtained

from maximum likelihood. The comparison indicates that there is a loss of effi-

ciency in parameter estimation when using the GEE methods but that there is a

limit to this loss. For the particular case examined where the response has 3 cate-

gories, the model has 1 treatment parameter, there are equal group sizes and under

the equal-7rs-in-group-l assumption, this loss of efficiency is always less than 12% for

the independent binomials estimator and less than 7% for the equal-margins GEE

estimator and depends on the size of the treatment effect.

Interestingly, in the region of potentially greatest statistical interest (where the

treatment effect is near zero), the loss of efficiency in the independent-binomials

estimator compared with the equal-margins GEE estimator is slight. For example

the asymptotic relative efficiency between the independent-binomials and equal-

margins GEE estimators is approximately 0.95 at a treament effect of ±2.5. The
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asymptotic relative efficiency of these two estimators has a minimum of 0.89 which

is the asymptote as the treatment effect tends to ±00.
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Chapter 7

Concluding remarks

The purpose of this chapter is to draw out the main conclusions from the thesis and

where appropriate to discuss them in a wider context. Areas are pointed out where

further work would be worthwhile. There has been a large amount of published

work in recent years on the topic of repeated measures. As the ordinal responses

from the BT data investigated in this thesis are longitudinal in nature a discussion

of how the approach taken in this thesis to modelling these responses relates to other

methods of modelling repeated ordinal responses is needed. Some interesting work,

that was published too recently to be included in any detail in this thesis, is briefly

discussed.

7.1 Conclusions and suggestions for future work

The tools used to analyse ordinal response data that are examined in this thesis are

members of the family of multinomial models defined by the framework in equation

(2.2). One of the issues that is discussed in this thesis is a problem of terminology

with regard to these models. In §2.5.4 an argument is put forward for reference to

these models by use of the probability and link function from which each model is
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denned. For example, it is suggested that the name cumulative logit model should be

used rather than proportional odds model. These models are now well established

and a standard terminology needs to be adopted for them. Recently published

articles indicate that the scientific community is still divided in the names used to

refer to these models. This can be illustrated using the cumulative logit model which

in Kenward et al (1994) is called the marginal proportional odds model. Hedeker

Sz Gibbons (1994) refer to it as the logistic regression with the threshold concept,

econometricians refer to ordered logit analysis while Miller et al (1993) agree with

the name cumulative logit model. Whatever terminology is used, it is necessary

to distinguish between different types of terms included in the model. The names

'location terms' and 'scaling terms' are used and as noted in §2.2.3 and §5.5 these

terms may represent fixed or random effects.

In Chapter 3 a comparison is performed between the linear model underlying

analysis of variance and the continuation-ratio logit model. This comparison is a

goodness-of-fit comparison and is quantified using both fitted mean scores and fitted

categories. The conclusion is that the multinomial model fits the data better than a

linear model. This is not a surprising conclusion to reach given the drawbacks to the

linear model, namely the necessity of assigning arbitrary integers to the categories

and assuming that the scored observations come from a normal distribution. It is

conceivable that for other data the fit of the linear model, as judged by the criteria

used in Chapter 3, could be better than the fit of the continuation-ratio logit model.

It is also possible that a different choice of arbitrary scores gives a linear model that

fits the data better than the continuation-ratio logit model. The results from the

linear model and any conclusions drawn from these results are always dependent

on the chosen set of scores. The continuation-ratio logit and any other multinomial

model for ordinal responses defined by equation (2.2) avoid this dependency.

The continuation-ratio logit model is used in §3.4 for an analysis of the carry-over

effect of response. Note that the model includes a subject-specific location term.
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By including an interaction between previous score and the threshold parameters,

the model is parameterised to allow for the current response to depend in different

ways on different immediately preceding responses. This threshold by previous re-

sponse interaction provides a 'carry-over parameter matrix' which can be tested for

significance and investigated for potential patterns of carry-over. When this anal-

ysis is applied to the BT data it is found that the carry-over parameter matrix is

significant and a pattern emerges across the different experiments considered. How-

ever, a cautionary tone is introduced when these results are compared with other

exploratory analyses of the same data. These exploratory analyses suggest that

there is a subject-specific scaling effect which is not taken account of in the carry-

over analysis. It is possible what is being called a carry-over effect of response can

alternatively be explained by this subject-specific scaling effect.

These considerations lead to the analyses in Chapter 5 where in addition to a

subject-specific location effect, a subject-specific scaling effect is investigated. The

need for a subject-specific approach to longitudinal ordinal response data as sug-

gested in Chapter 5 has been recognised at least since Torgerson (1958). The model

used to perform these subject-specific analyses is the cumulative logit model. The

inclusion of a scaling term in the cumulative logit model is more straightforward

than in a continuation-ratio model. This is because the cumulative logit model can

be developed by assuming that the ordinal response is a manifestation of an under-

lying continuous response and that the threshold parameters indicate cut-points on

the underlying continuum between different categorical responses. Necessarily the

threshold parameters are ordered in this case. However, in a continuation-ratio logit

model the threshold parameters are not, in general, ordered. Thus scaling terms in

a continuation-ratio model are not intuitively appealing although further research

could be done to investigate such a model.

Part of the work for this thesis was the development of a piece of general purpose

software to fit cumulative link models with location and scaling terms by maximum
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likelihood. The software is in the form of macros which can be used with GLIM4

and these have been included in the GLIM Macro Library. The fitting of cumulative

link models with a scaling term is not a general feature of any other widely-available

software so these macros are a valuable practical tool for analysis. Further work

that would make these macros even more useful would be to allow interaction terms

between explanatory variables and the cut-point parameters. This would enable the

fitting of the carry-over parameter matrix in a cumulative logit model.

The GLIM4 macros are discussed in Chapter 4 along with an alternative method

of fitting the model with a scaling term. This alternative method uses independent

binomials in a succesive-relaxation scheme. A comparison of the application of

the two methods to the BT data is presented in Chapter 5 where it is concluded

that while the independent-binomials method cannot give a better fit (in terms

of deviance) to the data than maximum-likelihood, for these data the deviance

obtained from the former is reasonably close to the deviance obtained for the later.

Maximum-likelihood estimation is preferable to independent binomials in that the

maximum-likelihood estimates are optimal, but it is concluded that for these data,

at least, the independent-binomials method does not give misleading results.

The discussion of scaling terms in this thesis makes it clear that there is more

than one possible formulation of the cumulative logit model when a scaling term is

included. Two formulations are considered and are loosely referred to as McCullagh's

and Kijewski's forms. It is possible to fit both forms of the model with the GLIM4

macros. In the analyses in Chapter 5 Kijewski's form is chosen because of its place

in a hierarchy of models. However, the analysis presented in Table 5.7 shows that

this form of the model does not necessarily give a better fit to the data. Of 4

experiments analysed, Kijewski's form gives a better fit to the data from three

and McCullagh's form gives a better fit to the other. The conclusion is that both

forms have a place in the analyst's toolkit. Note that the interpretation of the

scaling term is slightly different for the two forms. McCullagh's form of a subject-
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specific scaling term implies that subjects differ in the dispersion of their underlying

response distribution. Kijewski's form of a subject-specific scaling term implies that

the dispersion of these underlying distributions are the same for all subjects but

that the subjects differ in the way they interpret the scale.

The comparison of maximum-likelihood estimates and independent-binomials es-

timates is continued in Chapter 6. Here the emphasis is on some theoretical results.

The asymptotic variance of the maximum-likelihood estimator of a treatment ef-

fect in a simple cumulative logit model is stated. Results are presented for the

asymptotic variance of the independent-binomials estimator of the same treatment

effect. The asymptotic relative efficiency of the independent-binomials estimator to

the maximum-likelihood estimator demonstrates that the loss of efficiency in the

former tends to an asymptotic value as the absolute value of the treatment effect

increases. It is noted that this asymptote is not the maximum loss of efficiency. In

the particular case investigated in Chapter 6 the difference between the maximum

loss of efficiency and the asymptotic loss of efficiency is about 1%. The asymptotic

loss of efficiency in the independent-binomials estimator tends to 11% as the abso-

lute value of the treatment effect increases. Also of interest is the fact that when

there is no treatment effect, the two estimators are asymptotically equally efficient

to first order approximations. The broad conclusion is that the loss of efficiency in

the independent-binomials estimator might be tolerable if other considerations, such

as ease of computation, make it preferable to the maximum-likelihood estimator.

The asymptotic efficiencies of two other estimators relative to the maximum-

likelihood estimator are also presented in Chapter 6. Firstly, the estimator from a

GEE method using an equal-margins working correlation matrix is found to have

a loss of efficiency that is not as great as the independent-binomials estimator.

Indeed as the treatment effect increases in absolute value, the former is found to be

asymptotically equally efficient to maximum-likelihood. The equal-margins working

correlation matrix is block diagonal because for this simple case of the model, the
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ordinal responses are assumed to be independent. When modelling repeated ordinal

responses, some of the off-diagonal blocks can be assigned a correlation structure

to represent the correlation between repeated measurements on the same sampling

unit. The asymptotic relative efficiency result augurs well for estimates obtained

from GEE with a working correlation constructed from the diagonal blocks of the

equal-margins correlation matrix with other off-diagonal blocks allowing for intra-

unit repeated measures.

The other asymptotic relative efficiency comparison given in Chapter 6 is for

an estimator of the treatment effect using a quite different method of analysing the

data. This is the dichotomisation method where the ordinal scale is dichotomised by

amalgamating the responses above and below a particular cut-point. The resultant

data is analysed using binomial logistic regression. This is a technique which has

been used historically when binomial logistic regression routines were available in

numerous statistical software packages and multinomial modelling methods were not

well-developed. The asymptotic relative efficiency comparison shows that if the cut-

point is chosen to minimise the variance of the estimtor then the loss in efficiency

reaches a maximum of 25% at a zero treatment effect. With the optimal choice of

cut-point the estimator is, as the absolute value of the treatment effect increases,

asymptotically equally efficient to the maximum-likelihood estimator. However, if

a sub-optimal cut-point is chosen for the dichotomisation then the loss of efficiency

in the estimator of the treatment effect can be substantial.

7.2 Repeated ordinal responses

The subject-specific analyses in Chapter 5 take the form of fitting a hierarchy of

cumulative logit models. Two different methods are employed to fit the models,

namely maximum-likelihood and independent-binomials. The hierarchy provides a

way of testing the strength of subject-specific location and scaling terms. These
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terms are initially considered to be fixed effects and when applied to the BT data

the conclusion is that both subject-specific location and scaling terms are significant.

It is also concluded that there are no further significant subject-specific terms. The

analysis with subject-specific location and scaling considered as random effects is also

investigated. A subject-specific random location term is found to be significant. The

reported precision in estimation of other explanatory terms reduces slightly when

the subject-specific location term is taken to be random rather than fixed. This

suggests that the fixed effect analysis gives a false sense of accuracy in the estimation

of these other explanatory terms. This is partly due to the fact that in the fixed

effect analysis the sampling units are effectively taken to be the individual responses.

In the random effect analysis the true situation of subjects being the sampling units

is considered and there are far fewer subjects than responses. The investigation of

the model with a random subject-specific scaling term is developed only insofar as

the equations necessary for fitting the model by maximum likelihood are presented.

At present these equations have not been implemented. Unfortunately time did

not allow the fitting of this model but this remains an important area for further

research.

Kenward et al (1994) model repeated ordinal response data in two different

ways. They ignore any intra-unit correlation and fit the cumulative logit model

using GEE with the true correlation structure for the collapsed binary responses.

Secondly, they introduce notation to generalise the Dale model (Dale, 1986) for

bivariate ordinal responses to the multivariate case. This approach takes intra-unit

correlation into account by increased complexity in the relationship between the

model parameters and the joint probabilities that define the likelihood. They find

that the GEE approach and the likelihood-based approach give similar results in the

case of complete-history data but that there are substantial differences in the case

of data missing at random (MAR). The conclusion is that non-likelihood methods

(GEE) should be used with caution when data are MAR. This is misleading however
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as they do not mention the equivalence between the GEE analysis that they use

and the maximum-likelihood score equations ignoring intra-unit correlation. That

is, GEE in the way that they use it is equivalent to a likelihood-based approach.

The results that they find should be summed up by saying that taking intra-unit

correlation into account in the model is particularly important when the data are

MAR. Work needs to be done to establish which means of taking this intra-unit

correlation into account, a more complicated working correlation in GEE or the

Dale model as defined by Ken ward et al (1994), is better.

Other recent work has investigated the use of GEE to fit the cumulative logit

model to repeated measures data when intra-unit correlation is taken into account,

e.g. Clayton (1992), Miller et al (1993) and Lipsitz et al (1994). The latter paper

investigates the performance of what is referred to in this thesis as full GEE (i.e.

GEE with the true correlation matrix for collapsed binary responses) using a variety

of choices for modelling the off-block-diagonal correlation between repeated ordinal

responses. They have written a specific SAS macro to implement this analysis. In

Chapter 5 of this thesis an analysis of repeated ordinal responses is presented with a

novel approach to taking correlation between intra-subject repeated responses into

account by including a subject-specific scaling term in the cumulative logit model.

The use of a complicated working correlation structure in GEE to analyse this

problem needs to be compared with the results from the scaling term approach. It

is possible that a parsimonious parameterisation of the working correlation matrix

may be found which gives a similarly good fit to the data as found by the scaling-

term approach.

Three approaches have been discussed for tackling intra-subject repeated re-

sponses and these are:

1. Including location and scaling terms (either fixed or random) in the model.

2. Using the likelihood-based multivariate version of the Dale model.
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3. Using GEE with a working correlation matrix designed to account for intra-

subject correlation.

The first two of these are examples of a subject-specific approach to the problem

of longitudinal data. The estimates of the model parameters are interpreted as the

average effect of the covariate on a particular subject (either a particular subject in

the data or an average subject from the population of subjects in the data). Zeger

et al (1988) distinguish between population-averaged and subject-specific analyses.

The third approach listed above, GEE, is an example of a population-averaged

model. The parameters from a population-averaged model are interpreted as the

average effect of covariates on the population from which the subjects were drawn.

7.3 A Bayesian perspective

The two methods of fitting the cumulative logit model that are investigated in this

thesis are maximum-likelihood and GEE. A recent proposal by Chipman & Hamada

(1996) to fit cumulative link models with location terms only, is to assume a prior

distribution for the location terms and the cut-point parameters and to employ Gibbs

sampling to estimate the posterior distributions of these parameters. In maximum-

likelihood or GEE fitting, point estimates of the parameters are obtained and in

extreme situations these estimates may, albeit justifiably, be infinite. This can cause

problems with fitting algorithms used to implement these methods. An advantage

to fitting the model by the Gibbs sampling method is that estimation is more stable

as infinite parameter estimates are not encountered. However, it is likely that the

posterior distribution will depend heavily on the prior distribution for parameters

which are located at infinity in maximum-likelihood fitting. The application of Gibbs

sampling to the fitting of the cumulative logit model is an interesting development

that deserves thorough examination, both into its properties and into comparisons
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between results from it and from maximum likelihood.

Another reason for further investigation of a Gibbs sampling approach to fitting

the cumulative logit model is the extension to deal with random effects. Ten Have &:

Uttal (1994) demonstrate how Gibbs sampling may be used to integrate a random

effect out of a maximum-likelihood fit of a continuation-ratio logit model. The widely

and freely available BUGS software (Gilks et al, 1994) will soon offer the capability

of fitting the cumulative logit model by use of Gibbs sampling. This should provide

a platform for a full investigation of the use of Gibbs sampling to fit this model.

It will also allow an investigation into Gibbs sampling as a method of fitting the

cumulative logit model with random effects.
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Appendix A

Tabulations of response in

present period against response

in previous period for each

experiment
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A.I Experiment E136

Table A.I: Previous response against present response (E136)

Previous
response

1
Present 2

response 3
4
5

1

0
5

11
6
1

2

5
13
14
27

4

3

10
21
36
51

9

4

7
21
52
77
17

5

4
5
8

13
33

Total

26
65

120
174
65

Table A.2: Previous response against fitted present response (E136)

Previous
response

1
Fitted 2

present 3
response 4

5

1

0.39
3.89

10.24
7.84
0.64

2

4.27
10.03
20.12
23.65
4.93

3

11.18
19.66
35.37
48.30
12.49

4

8.01
26.14
47.92
73.59
18.35

5

2.15
5.04
8.28

20.03
27.50

Table A.3: Residuals calculated from [O-E]/sqrt[E] (E136)

Previous
response

1
Present 2

response 3
4
5

1

-0.626
0.560
0.239

-0.657
0.451

2

0.351
0.939

-1.365
0.689

-0.418

3

-0.353
0.302
0.106
0.389

-0.988

4

-0.356
-1.005
0.590
0.398

-0.315

5

1.267
-0.020
-0.098
-1.571
1.050
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A.2 Experiment E139

Table A.4: Previous response against present response (E139)

Previous
response

1
Present 2

response 3
4
5

1

4
9
6
3
1

2

5
14
20
13

1

3

3
25
34
25

2

4

10
11
25
47

5

5

2
1
5
6

11

Total

24
60
90
94
20

Table A.5: Previous response against fitted present response (E139)

Previous
response

1
Fitted 2

present 3
response 4

5

1

2.92
9.12
6.26
4.45
0.26

2

5.95
12.61
20.59
13.28
0.58

3

7.18
21.74
32.21
26.35

1.52

4

7.21
13.40
27.63
40.02

9.74

5

0.74
2.90
4.39
9.15
7.82

Table A.6: Residuals calculated from [O-E]/sqrt[E] (E139)

Previous
response

1
Present 2

response 3
4
5

1

0.634
-0.039
-0.104
-0.685
1.450

2

-0.390
0.393

-0.130
-0.077
0.561

3

-1.560
0.698
0.315

-0.262
0.389

4

1.037
-0.655
-0.500
1.103

-1.518

5

1.473
-1.116
0.289

-1.041
1.138
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A.3 Experiment E140

Table A.7: Previous response against present response (E140)

Previous
response

1
Present 2

response 3
4
5

1

2
2

3
9
1

2

2
8

20
14
3

3

6
19
20
35

3

4

7
13
38
36
10

5

1
8
3

10
15

Total

18
50
84

104
32

Table A.8: Previous response against fitted present response (E140)

Previous
response

1
Fitted 2

present 3
response 4

5

1

1.65
3.33
4.70
6.79
0.52

2

2.29
10.63
16.47
14.81
2.79

3

7.11
15.37
24.54
31.12
4.86

4

6.14
17.20
31.89
37.29
11.48

5

0.79
3.48
6.56

14.32
11.84

Table A.9: Residuals calculated from [O-E]/sqrt[E] (E140)

Previous
response

1
Present 2

response 3
4
5

1

0.271
-0.730
-0.785
0.846
0.667

2

-0.194
-0.807
0.870

-0.210
0.124

3

-0.418
0.926

-0.916
0.696

-0.845

4

0.346
-1.012
1.082

-0.211
-0.437

5

0.230
2.426

-1.390
-1.142
0.917
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A.4 Experiment E198

Table A. 10: Previous response against present response (E198)

Previous
response

1
Present 2

response 3
4
5

1

3
9
6
7
4

2

9
5

16
14
7

3

8
14
16
19
2

4

7
19
14
29
10

5

6
9
3
4

16

Total

33
56
55
73
39

Table A.11: Previous response against fitted present response (E198)

Previous
response

1
Fitted 2

present 3
response 4

5

1

3.85
7.76
7.16
8.60
1.62

2

6.45
9.88

11.31
16.90
6.47

3

9.95
12.34
13.77
15.44
7.50

4

8.87
17.69
16.89
21.75
13.80

5

3.88
8.60
5.88

10.08
9.55

Table A.12: Residuals calculated from [O-E]/sqrt[E] (E198)

Previous
response

1
Present 2

response 3
4
5

1

-0.433
0.444

-0.433
-0.547
1.863

2

1.006
-1.552
1.395

-0.705
0.210

3

-0.619
0.473
0.600
0.905

-2.007

4

-0.627
0.311

-0.704
1.556

-1.023

5

1.074
0.135

-1.188
-1.915
2.087
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A.5 Experiment E199

Table A. 13: Previous response against present response (E199)

Previous
response

1
Present 2

response 3
4
5

1

1
3
7

16
4

2

2
3

15
17
4

3

8
11
5

21
2

4

17
22
20
33
10

5

6
2
4

11
12

Total

34
41
51
98
32

Table A. 14: Previous response against fitted present response (E199)

Previous
response

1
Fitted 2

present 3
response 4

5

1

1.60
3.55
7.34

16.05
2.46

2

3.09
4.51

11.27
18.06
4.07

3

10.02
8.17
8.10

18.22
2.49

4

16.37
19.97
20.28
34.63
10.75

5

2.92
4.66
4.14

11.42
11.86

Table A.15: Residuals calculated from [O-E]/sqrt[E] (E199)

Previous
response

1
Present 2

response 3
4
5

1

-0.475
-0.294
-0.125
-0.012
0.982

2

-0.621
-0.710
1.111

-0.250
-0.033

3

-0.637
0.989

-1.090
0.651

-0.308

4

0.155
0.454

-0.062
-0.276
-0.229

5

1.806
-1.232
-0.071
-0.125
0.042
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A.6 Experiment E200

Table A. 16: Previous response against present response (E200)

Previous
response

1
Present 2

response 3
4
5

1

10
6
6

12
4

2

6
8

11
11
2

3

10
9

10
22

4

4

9
15
15
37
13

5

5
3
6
8

14

Total

40
41
48
90
37

Table A. 17: Previous response against fitted present response (E200)

Previous
response

1
Fitted 2

present 3
response 4

5

1

9.61
6.79
6.85

11.53
3.22

2

7.18
7.82
7.92

12.11
2.97

3

10.43
8.98

11.10
18.74
5.74

4

10.74
12.32
15.95
37.93
12.07

5

2.04
4.47
6.53

10.15
12.81

Table A.18: Residuals calculated from [O-E]/sqrt[E] (E200)

Previous
response

1
Present 2

response 3
4
5

1

0.126
-0.303
-0.326
0.139
0.434

2

-0.440
0.064
1.094

-0.319
-0.565

3

-0.135
0.005

-0.329
0.753

-0.727

4

-0.530
0.765

-0.237
-0.150
0.266

5

2.069
-0.694
-0.209
-0.675
0.333
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A.7 Experiment E211

Table A.19: Previous response against present response (E211)

Previous
response

1
Present 2

response 3
4
5

1

0
4
7
8
2

2

5
6

11
17

1

3

3
9

10
24

1

4

12
17
16
57
14

5

2
8
4
8

10

Total

22
44
48

114
28

Table A.20: Previous response against fitted present response (E211)

Previous
response

1
Fitted 2

present 3
response 4

5

1

0.87
4.29
4.69
9.37
1.78

2

5.42
7.88
7.19

17.04
2.47

3

4.75
6.48

10.35
22.08
3.34

4

9.25
18.37
21.00
54.52
12.86

5

1.70
6.04
5.81

11.18
7.27

Table A.21: Residuals calculated from [O-E]/sqrt[E] (E211)

Previous
response

1
Present 2

response 3
4
5

1

-0.935
-0.138
1.067

-0.449
0.167

2

-0.179
-0.671
1.421

-0.009
-0.937

3

-0.804
0.989

-0.109
0.410

-1.281

4

0.903
-0.320
-1.090
0.336
0.318

5

0.227
0.797

-0.750
-0.951
1.013
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A.8 Experiment E212

Table A.22: Previous response against present response (E212)

Previous
response

1
Present 2

response 3
4
5

1

3
6
6
8
2

2

4
3

13
15

1

3

7
12
19
29

1

4

14
14
18
36
15

5

3
2

7
9
9

Total

31
37
63
97
28

Table A.23: Previous response against fitted present response (E212)

Previous
response

1
Fitted 2

present 3
response 4

5

1

3.29
3.79
7.20
9.51
1.21

2

2.61
5.06

10.97
13.97
3.39

3

9.98
10.90
18.79
23.35
4.98

4

13.18
13.93
21.31
37.18
11.41

5

1.94
3.63
5.91

11.56
6.97

Table A.24: Residuals calculated from [O-E]/sqrt[E] (E212)

Previous
response

1
Present 2

response 3
4
5

1

-0.161
1.137

-0.448
-0.490
0.722

2

0.861
-0.915
0.613
0.275

-1.299

3

-0.944
0.335
0.048
1.169

-1.783

4

0.226
0.020

-0.717
-0.193
1.064

5

0.763
-0.855
0.447

-0.752
0.771
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A.9 Experiment E213

Table A.25: Previous response against present response (E213)

Previous
response

1
Present 2

response 3
4
5

1

1
3
2
8
4

2

8
12
5

14
4

3

0
5

13
18
9

4

5
21
15
47
12

5

6
4
8

10
22

Total

20
45
43
97
51

Table A.26: Previous response against fitted present response (E213)

Previous
response

1
Fitted 2

present 3
response 4

5

0
1
2
9
3

1

.89

.98

.37

.75

.00

2

6.05
10.23
8.24

14.15
4.33

3

1.12
7.56
9.31

18.62
8.39

4

8.44
17.15
17.44
39.99
16.97

5

3.50
7.39
6.12

14.10
18.90

Table A.27: Residuals calculated from [O-E]/sqrt[E] (E213)

Previous
response

1
Present 2

response 3
4
5

1

0.114
0.720

-0.239
-0.561
0.575

2

0.795
0.553

-1.127
-0.041
-0.160

3

-1.058
-0.931
1.209

-0.144
0.210

4

-1.185
0.928

-0.584
1.108

-1.207

5

1.336
-1.246
0.762

-1.091
0.713
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A.10 Experiment E216

Table A.28: Previous response against present response (E216)

Previous
response

1
Present 2

response 3
4
5

1

34
51
18
12
4

2

47
71
75
36

6

3

22
60
43
46

2

4

15
44
33
34

8

5

1
12

1
5
4

Total

119
238
170
133
24

Table A.29: Previous response against fitted present response (E216)

Previous
response

1
Fitted 2

present 3
response 4

5

1

28.15
50.01
26.08
13.23

1.53

2

43.97
83.35
56.09
44.88

6.71

3

27.05
57.40
45.19
37.24
6.11

4

18.32
41.30
35.55
31.44

7.39

5

1.50
7.12
5.84
5.82
2.72

Table A.30: Residuals calculated from [O-E]/sqrt[E] (E216)

Previous
response

1
Present 2

response 3
4
5

1

1.102
0.141

-1.583
-0.339
2.000

2

0.457
-1.353
2.525

-1.326
-0.274

3

-0.972
0.343

-0.327
1.436

-1.662

4

-0.776
0.421

-0.429
0.457
0.225

5

-0.409
1.830

-2.004
-0.340
0.780
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A.11 Experiment E247

Table A.31: Previous response against present response (E247)

Previous
response

1
Present 2

response 3
4
5

1

118
69
24

8
13

2

69
122
102
45
22

3

25
94

102
83
32

4

12
57
72
72
72

5

9
20
40
70
88

Total

233
362
340
278
227

Table A.32: Previous response against fitted present response (E247)

Previous
response

1
Fitted 2

present 3
response 4

5

1

102.43
82.32
29.17
11.05
7.03

2

73.80
122.86
96.61
48.76
17.96

3

30.06
87.07

103.12
76.60
39.14

4

15.72
49.44
75.29
78.89
65.66

5

10.98
19.76
38.69
65.21
92.36

Table A.33: Residuals calculated from [O-E]/sqrt[E] (E247)

Previous
response

1
Present 2

response 3
4
5

1

1.538
-1.468
-0.956
-0.918
2.251

2

-0.559
-0.078
0.548

-0.539
0.953

3

-0.924
0.742

-0.111
0.732

-1.142

4

-0.939
1.076

-0.379
-0.775
0.782

5

-0.598
0.055
0.210
0.594

-0.454
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A.12 Experiment E264

Table A.34: Previous response against present response (E264)

Previous
response

1
Present 2

response 3
4
5

1

114
67
17
14
7

2

57
92
97
44
22

3

19
80

101
86
47

4

18
53
70

106
80

5

15
23
45
75
91

Total

223
315
330
325
247

Table A.35: Previous response against fitted present response (E264)

Previous
response

1
Fitted 2

present 3
response 4

5

1

98.92
66.87
31.59
14.46
7.15

2

60.96
92.73
87.30
54.74
16.27

3

32.66
74.94
90.27
84.46
50.67

4

21.15
57.21
81.13
95.70
71.81

9
22
45
74
97

5

.32

.01

.31

.86

.50

Table A.36: Residuals calculated from [O-E]/sqrt[E] (E264)

Previous
response

1
Present 2

response 3
4
5

1

1.516
0.015

-2.596
-0.121
-0.057

2

-0.507
-0.075
1.038

-1.452
1.420

3

-2.390
0.584
1.129
0.168

-0.516

4

-0.685
-0.557
-1.236
1.053
0.966

5

1.859
0.211

-0.047
0.017

-0.658
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A. 13 Experiment F064

Table A.37: Previous response against present response (F064)

Previous
response

1
Present 2

response 3
4
5

1

153
45
21

8
4

2

42
63
48
18

5

3

24
52
52
32
10

4

7
13
42
23
15

5

5
5
6

18
9

Total

231
178
169
99
43

Table A.38: Previous response against fitted present response (F064)

Previous
response

1
Fitted 2

present 3
response 4

5

1

139.24
57.22
22.71
8.82
3.02

2

48.58
53.25
47.64
20.90
5.64

3

31.96
45.58
50.78
28.96
12.72

4

7.11
18.10
33.87
27.75
13.18

5

4.12
6.68

11.60
11.52
9.08

Table A.39: Residuals calculated from [O-E]/sqrt[E] (F064)

Previous
response

1
Present 2

response 3
4
5

1

1.166
-1.615
-0.358
-0.274
0.565

2

-0.944
1.336
0.053

-0.634
-0.269

3

-1.407
0.951
0.171
0.564

-0.763

4

-0.040
-1.198
1.397

-0.902
0.502

5

0.436
-0.651
-1.645
1.907

-0.025
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A.14 Experiment F065

Table A.40: Previous response against present response (F065)

Previous
response

1
Present 2

response 3
4
5

1

72
22
15
12
2

2

29
43
27

3
2

3

8
27
37
19
7

4

7
7

10
28
15

5

8
4
7
7

14

Total

124
103
96
69
40

Table A.41: Previous response against fitted present response (F065)

Previous
response

1
Fitted 2

present 3
response 4

5

1

73.02
23.47
12.36
9.72
4.44

2

31.15
40.01
23.80

7.63
1.41

9
27
35
17
9

3

.02

.38

.31

.29

.00

4

5.14
7.82

16.00
25.36
12.68

5

5.69
4.62
7.44
9.65

12.61

Table A.42: Residuals calculated from [O-E]/sqrt[E] (F065)

Previous
response

1
Present 2

response 3
4
5

1

-0.119
-0.302
0.752
0.732

-1.159

2

-0.385
0.473
0.656

-1.676
0.493

3

-0.339
-0.072
0.284
0.411

-0.667

4

0.822
-0.292
-1.500
0.523
0.650

5

0.971
-0.289
-0.161
-0.852
0.391
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Appendix B

Listing of the GLIM4 macros for
fitting cumulative link models
with location and scaling terms

These macros, instructions on how to use them and a GLIM Newsletter article
(Wolfe 1996) describing them are all available on the Internet at URL
h t t p : //www.maths . soton.ac .uk/rw/r_wolf e .html

$sub ORDINAL
!

$pr : ' Author: R. Wolfe'$!
$pr ' Version 1.1 GLIM 4 November 1995'$!
$pr ' Main macros:'$!
$pr ' ORDINAL Fits a cumulative link model to an ordinal response.'$!
$pr ' The following formal arguments must be set:'$!
$pr ' c/,l the response variable's!
$pr ' °/,2 the rows of the contingency table'$!
$pr ' c/,3 the categories of the ordinal response'$!
$pr ' The following formal arguments are optional:'$!
$pr ; °/,4 scalar denoting the form of model for the scale effects'$!
$pr ' °/05 vector of intial values for parameter estimates'$!
$pr $!
$pr ' The two lists; '$!
$pr ' model a list of terms to include as location effects'$!
$pr ' s_model a list of terms to include as scale effects'$!
$pr ' are available to pass terms into the model.'$!
$pr ' INDI_DAT: A macro that may be used if the data are in'$!
$pr ' individual-level format.'$!
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$pr ' It creates new variables for rows and categories. It;$!
$pr ' expands the response and any variables in model or s_model'$!
$pr ' Formal arguments: °/,l individual-level response variable.'$!

$pr ' 7,2 name for rows variable.'$!
$pr ' °/,3 name for categories variable.'$!
$pr ' %4 name for expanded response variable.'$!
$pr ' Output: The deviance and degrees of freedom for the model are'$!
$pr ' displayed. Also information about cut-point parameters and'$!

$pr ' interactions (if included) is printed.'$!
$pr ' Example of use:'$!
$pr ' $units 8$'$!
$pr ' $data treat count rows cats$'$!
$pr ' $read'$!
$pr ' 1 40 1 1 1 49 1 2 1 19 1 3
$pr ' 2 31 2 1 2 29 2 2 2 35 2 3
$pr ' $factor treat 2$'$!
$pr ' $use ORDINAL count rows cats$'$!
$pr ' $list model=treat$'$!

$pr ' $use ORDINALS' : $!

1 11 1 4'$!
2 25 2 4'$!

! Important identifiers (all macros).
! Tl_ T2_ T3_ : Three temporary macros that are used and reused.
! C_ETA1_ : Used to calculate values for the identifier etal_.
! C_ETA2_ : Used to calculate values for the identifier eta2_.
! C_TAU_ : Used to calculate values for the identifier tau_.
! C_LP_ : Used in the initialisation to calculate °/,lp.
! C_L_ : Used to calculate values for the identifiers 11_, 12_, 13_ etc.
! C_DLP_ : Used to calculate values for the identifier dlp_.

Important identifiers (maxj_ and link_ are scalars. Others are all vectors)

maxj_
link.

P-
etal_
eta2_
tau_
rhs_
gam_

the number of response categories.
indicates which link function is required.
the current parameter estimates.
contribution of cut-points to right-hand side of model.
contribution of linear terms (from model list) to the same.
contribution of scaling terms (from s_model list) to the same.
right-hand side of model formula.
fitted values of gamma (cumultaive probabilities).
fitted values of pi (cell probabilities).
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! dl_, d2_, d3_ etc. : These store the derivatives d(pi)/d(p). They are used
! to calculate new values for the (internal) model matrices. This is
! the method of fitting non-linear models described by Ekholm and Green
! (1995) GLIM Newsletter 'Fitting nonlinear models in GLIM4 using
! numerical derivatives'. We employ the analytical derivatives for the
! cumulative link model rather than the general numerical derivatives.
! dgam_, ftau_, dlp_ and 11_, 12_ etc. : Other identifiers used in calculating
! the derivatives.
!

! Other identifiers (scalars).
i

! s_ : Indicates the scaling effect model form.
! len_yv_ : The length of the response variable.
! fitl_ : An indicator to decide whether or not to use macro M_PE_.
! oops_ : Used as an indicator of whether a fault has been encountered.
! wipe_ : Inidcates whether or not to use macro 0_DEL_.
! The following three indicators are used in checking the robustness of the
! fitting procedure.
! dvlast_ : The deviance at the previous iteration.
! div_ : The change in deviance at the previous iteration.
! osc_ : The number of times the deviance has increased.
! The following two indicators are used in identifying interactions.
! t_l_ : The position of the first term of the interaction in the list.
! t_2_ : The position of the second term of the interaction in the list.
j

! Other identifiers (vectors).

! in_ i_ indl_ ind2_ : all used in indexing other key vectors,
! j_ : Ordered categories - used for indexing.
! th_ : Cut-points on underlying continuum.
! prop_ : Observed proportions per response category,
i

$m ORDINAL !

! This is the main macro. It is called by the user and it in turn calls the
! other macros. The first thing done is to perform some checks to
! ensure that the macros don't crash.
j

$ca
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$ca 0/,z2=l-0/.eq(0/.lin,l)-0/0eq(
0/,lin>2)*

0/,scf-0/.eq('/.lin,3)-0/.eq(0/.lin)6)-
0/,eq(0/.lin)7)$!

$ca 0/.z3=°/,gt(0/.len(model)+°/,len(s_model) ,30)$!
$de s_ $nu s_$!
$ar 0_SETS_ °/,4 $sw c/.a4 0_SETS_$ !
$ca s_=s_+°/0eq('/.a4,0) : °/.z4=°/,gt (s_ ,2)+'/,lt (s_, 1)$ !
$fault '1,2.1 'The y-variate, ROWS variable and CATS variable must be provided.'$!
$fault °/0z2 'Incorrect link function - (only g,p and c are available) .'$!
$fault °/0z3 'Too many explanatory variables - 30 is the maximum permissible.'$!
$fault c/,z4 'Incorrect scaling formulation - (only 1 or 2 are available) .'$!
!

! Next various identifiers that are required later in the fitting process are
! defined and calculated.
!

$de fitl_ t_l_ t_2_ oops_ div_ osc_ dvlast_ wipe_ maxj_ len_yv_$!
$nu fitl_ t_l_ t_2_ oops_ div_ osc_ dvlast_ link_ wipe_ maxj_ len_yv_$!
$ca link_=(0/olt(

c/olinJ4)+2*
0/1eq('/.lin,6)+3*

0/.eq(1/,lin,7))*(l-°/Beq(
0/,lin,2)) !

+link_*c/.eq(°/.lin,2)$!
$output 0$!
$ta"for °/,3 by cat_nos$ !
$output 6$ !
$ca maxj_=cat_nos(°/,len(cat_nos)) : osc_=0 : len_yv_=c/,len(0/0l)$!
$wa off $un len_yv_ $de cut_ p_ in_ i_ il_ sum_ j_ cat_nos $wa on$!
$yvar %1$!
$va i_ il_$!
$ca i_='/.cu(l) : °/,zl=maxj_-2 : c/,z2=7 : c/,z3=16 : °/,z4=len_yv_/maxj_$!
$so j_,i_ °/.3,i_ c/,2,°/,3$ ! j_ and i_ are used later in indexing.
$ta the °/,yv total for %2 into rowsum$ !
$ca sum_=rowsum(°/,2) $de rowsum$ ! sum_ : total observations per row.
i

! 0_METH_ is the user-defined method (used later on). It calculates various
! identifiers by using the contents of appropriate macros. These macros are
! now created.
I

$pr (s=T2_) '1' : (s=C_ETAl_) 'p_(l)*' T2_ : (s=C_DLP_) '11_'$!
$pr (s=C_LP_) "/.lp+p_(l)*d3_*sum_/°/.exp('/.eta)';$!
$pr (s=C_L_) 'll_(i_)=0/.l(i_*°/.eq(j_,l)) : il_=i_*°/.eq(j_,2) ' ;$!
$pr (s=C_L_) C_L_ ': ll_(il_)=-ll_(i_( (y,cu(l)-l)*°/.gt (j_, 1)))' ;$ !
$ar 0_CUTS_ °/,3 $wh °/.zl 0_CUTS_$!
$pr (s=C_ETA2_) " : (s=C_TAU_) " : (s=PE_INF0) " $ !
$ca a/.z5=6 : c/.z6=maxj_-l$!
$pr (s=0_LP_) '1+CUT_' : (s=Tl_) " : (s=DEL_TRM_) 'CUT_ '$!
$ca a/.zl=0/,len(model)+0/,eq(°/.len(model) ,-l)$!
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$ar O_TERM_ model °/.z5 C_ETA2_ 0I_ 0L_ 0M_ $wh °/.zl 0_TERM_$!
$pr (s=Tl_) ' S _ ' $ !
$ca °/0z5=6 : %zl=0/,len(s_model)+0/,eq(°/,len(s_model) , - l ) $ !
$ar 0_TERM_ s_model %z5 C_TAU_ 0I_ 0L_ 0M_ $wh °/,zl 0_TERM_$!
$ca %zl=2-c/.a5$!
$ar O_CP1_ °/,5 : 0_CP2_ 7.3 $sw °/,zl O_CP1_ 0_CP2_ $tidy 0_CP2_$!
$pr :'Checks completed, the model will now be fitted. Please be patient...':$!
i

! The internal macros have all been set up. Now GLIM goes on to fit the model.
!

$ca wipe_=O+wipe_ : °/,zl=°/,len(p_)$!
$sw wipe_ O_DEL_$!
$va %zl in_$!
$ca in_=l : fitl_=O : dl_=0 : d2_=0 : °/,zl=-len_yv_/maxj_$!
$baseline 0 °/.zl$!
$er p $link 1 $ini 0_INI_ $me * 0_METH_$!
$us 0_METH_ °/.3 $ti O_METH_ $ca fitl_=l$!
$sc 1.0 $fit #O_LP_-1$!
j

! The model has now been fitted, all unwanted structures are deleted and final
! output is calculated and printed,
i

$ti 0_METH_$!
$nu theta_$!

$ca c/,zl=maxj_-2 : theta_=p_(l)$!
$pr (s=PE_INF0) PE_INF0 ; 'Cut-point 1 = CUT_[1] = '!
theta_;$!
$wh y.zl O_THETA_$!
$wa off$!

$de Tl_ T2_ T3_ C_ETA1_ C_ETA2_ C_TAU_ C_DLP_ v2_ C_L_ O_LP_ dl_ d2_ i_ in_$!
$de d3_ 11_ fitl_ t_l_ t_2_ oops_ div_ osc_ dvlast_ il_ j_ sum_ len_yv_ maxj_$!
$de wipe_ s_ p_$!
$wa on$!
$pr PE_INF0$!
$$e ! This is the end of macro ORDINAL.

i

! A user-defined initialisation (0_INI_) and fitting method (O_METH_) are
! defined to fit the internal model (0_LP_). The macro 0_METH_ in turn calls

! the macros M_PE_ (which extracts parameter estimates from the previous fit)
! and M_DERIV_ (which performs some of the calculations necessary for
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! calculating derivates.
j

i

$m O_INI_ $arg C_LP_ dl_ d2_ $ca °/,lp=O : °/.lp=#C_LP_ $de C_LP_$$e!

$m (Iocal=dlp_,dgam_,etal_,eta2_,tau_,rhs_,pi_,gam_,ftau_) O_METH_ !
$sw fitl_ M_PE_$!
$ca etal_=O : eta2_=0 : tau_=O : dlp_=O : °/,z2=15-°/.eq(link_,2)*10$!
$ar C_ETA1_ etal_ : C_ETA2_ eta2_ : C_TAU_ tau_ : C_L_ dgam_ : C_DLP_ dlp_$!
$ca etal_=O+#C_ETAl_ : eta2_=0#C_ETA2_ : tau_=O#C_TAU_$!
$ca rhs_=°/.if(s_==l,(etal_-eta2_)/°/,exp(tau_),etal_*0/,exp(tau_)-eta2_) !

: rhs_=°/,if(rhs_>'/.z2,°/.z2,rhs_) : rhs_=c/.if(rhs_<-°/1z2,-°/,z2,rhs_) !
: gam_=0/,eq(link_,l)/(l+y,exp(-rhs_))+'/,eq(link_,2)*0/.np(rhs_) !

+°/.eq(link_, 3) *°/,if (rhs_>2 .5,0. 999995 , l-°/,exp(-°/,exp (rhs_) ) ) !
: dgam_=°/1eq(link_, l)*gam_*(l-gam_)-°/,eq(link_,3)*(l-gam_)*y,log(l-gam_) !

+'/,eq(link_,2)*y,exp(-(rhs_**2)/2)/y,sqrt(2*y.pi)$!
$ca #C_L_ : ftau_=%exp((-s_+3*0/,eq(s_,2))*tau_) : dlp_=#C_DLP_ !

: dl_=-dlp_*y.if(s_==l,l/°/,exp(tau_),l) !
: d2_=ll_*(-p_(l)+y,if(s_==l,eta2_,0)) !
: d3_=dlp_*ftau_ : dlp_=dlp_-ll_ : pi_=gam_ : °/,zl=maxj_-2$!

$pr (s=Tl_) ''$!
$ar M_DERIV_ eta2_ dlp_ ftau_ $wh °/,zl M_DERIV_$!
$ca gam_=gam_*y,ne(yol ,maxj_)+y,eq(y,l ,maxj_)$ !

: pi_=°/.if(pi_<0.000005,0.000005,pi_) !
: d2_=d2_*ftau_*(s_-3*c/,eq(s_,2)) !
: °/.eta=c/,log(sum_*pi_) : c/.z6=2 : °/,z2=maxj_-l$!

!

! Having calculated updated values for the derivatives the method now proceeds
! to create the matrices for the internal model. One matrix is created for
! every term in the two special lists model and s_model.
I

! M_CUTS_ : creates the matrix for the cut-point parameters.
! MI_ : creates the matrices for interaction terms.
! MM_ : creates the matrix for a matrix term.
! ML_ : creates matrices for all other terms.

$ar M_CUTS_ v2_ $wh c/.z2 M_CUTS_$!
$ca °/.z6=maxj_-l : °/,zl=°/.z6 : '/tz2=%len(v2_)$!
$va °/.z2 cut_$!
$ca cut_=v2_ (°/.gl (len_yv_, °/,zl) + (c/ogl (°/,zl, 1) -1) *len_yv_) $de v2_$ !
$array cut_ len_yv_,°/ozl$!
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$ca °/Qzl=y,len(model)+yieq('/.len(model) ,-
$pr (s=Tl_) ''$!
$ar Q_TERM_ model dl_ * MI_ ML_ MM_ $wh °/,zl 0_TERM_$!
$ca c/.zl=y,len(s_model)+1/,eq(y,len(s_model) ,-l)$!
$pr (s=Tl_) 'S_'$!
$ a r 0_TERM_ s_model d2_ * MI_ ML_ MM_ $wh Q/.zl 0_TERM_$!
$$e ! End of macro 0_METH_

! The macros in this section are general macros used in setting-up by the
! macro ORDINAL, and in fitting the model by the macro O_METH_.

$m O_TERM_ !
! This macro identifies the type of the current term and switches to the
! appropriate macros.
$ca yiz2=y.len(y.l)-y.zl+l : y.zl=°/.zl-l$!
$pr (s=T2_) 'i_' : (s=T3_) *n c/.l[7.z2]$!
$ca %z4=2-%eq(y.match(T2_,T3_) , l)+°/.gt ('/.lenC/.l C°/.z2] ) ,len_yv_)$ !
$ar '/A 7.1 7.2 7.3 : 7.5 7.1 7.2 7.3 : 7.6 7.1 7,2 7,3 $sw %z4 7A 7.5 °/.6$$e!
i

$m O_CHK1_ !
! This pair of macros (O_CHK1_ and 0_CHK2_) identify which terms make up the
! interaction term. Checks are also performed to ensure that the interaction
! specification is valid.
$ar 0_CHK2_ °/.l $wh 0/,z8 0_CHK2_$!
$ca y.z3=ytz3+l : °/.z8=l : oops_=°/.gt (y,z3,y.len('/.l) )$!
$fault oops_ 'Number (a or b) specified in i_a_b is outside range of list.'$$e!
i

$m 0_CHK2_ !
$pr (s=T2_) J i _ ' *i °/,z3 '_' *i c/,z8$!
$ca y.z7=°/.match(T2_,T3_)*2/3 : t_l_='/,z3 : t_2_='/0z8$!
$ca oops_=yteq(°/,z7, 2) *y.eq(

c/,z3 ,y.z8) $ !
$fault oops_ 'A term cannot interact with itself.'$!
$ca ytz8=(yiz8+l)*

l/.ne(y.z7,2)*y.lt(yiz8,y.len(y.l)) : y.z3=yoz3*y.ne(°/.z7,2)$!
$sk °/.z7$$e!
i

$m ML_C0NT_ $p r (s=T2_) *n %1 [°/0z2] $$e!
$m ML_FACT_ $p r (s=T2_) ' ( ' *n 7.1 C'/.z2] ' = = ' * i '/,z8 J ) ' $ $ e !
$m M_NULL_ $p r (s=T2_) ' O ' $ $ e !
i
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I

! The macros in this section are repeatedly used in the fitting procedure by
! the macro O_METH_.
! Note that the macros used to calculate the derivatives d(eta)/d(pi) come
! in four alternative groups.
! The first group (just M_CUTS_) is used for the cut-point parameters.
! The second group (ML_ ML_1_) is used for all terms other than interactions,
! matrices or the cut-points.
! The third group (MI_ MI_1_ MI_2_ MI_C_F_ MI_F_C_ MI_F_F_) is used for
! interaction terms.
! The fourth group (MM_ MM_1_) is used for matrix terms.
j

$m M_PE_ !
! This macro perform checks on the deviance to ensure robustness of the
! fitting procedure.
$extract '/.pe$ !
$ca p_(IN_*0/,cu(l))=%pe(IN_*0/.cu(IN_)) : oops_=°/.lt(div_ ,O)*c/.gt (°/.dv,dvlast_)$ !
$fault oops_ 'Iterations diverged: try using a better set of intial values'$!
$ca div_=(dvlast_-'/,dv)*°/1ne(dvlast_,O) : osc_=osc_+'/,gt (°/,dv,dvlast_)$ !
$ca oops_=%gt(osc_,2) : dvlast_=°/,dv$!
$fault oops_ 'Deviance oscillating. Use: dis e :a pe might be infinite'$$e!
j

$m M_DERIV_ !
! This macro calculates the vectors d2_, d3_, d4_ etc.
$ca '/.z2=maxj_-'/,zl : c/,z3=°/.z2+2 : °/,zl=°/.zl-l$!
$pr (s=T2_) 'd' *i °/.z3 '_'$!
$ca #T2_=%2*0/,exp(p_(%z2))*°/03$!
$pr (s=T2_) '1' *i °/,z2 '_' : (s=Tl_) Tl_ '-°/,exp(p_(' *i c/.z2 '))';$!
$ca °/.2=°/.2-#T2_ : d2_=d2_+#T2_*(-p_(l)#Tl_+c/,if (s_==l ,°/,l ,0))$$e !
!
$m (local=vl_) M_CUTS_ !
! This is the calculation of d(eta)/d(pi) for
! parameter number c/,z6 (a cut-point parameter) .
$ca c/,z2=c/.z2-l : 0/.z6=°/,z6+l$!
$pr (s=Tl_) 'd' *i °/0z6 '_'$!
$ca vl_=#Tl_*sum_/°/.exp(°/,eta)$!
$as '/.l=°/.l,vl_$de vl_$$e!

$m (local=vvl_) ML_ !
! This macro calculates the internal model matrix for term °/.l[c/.z2]
$ca 0/.z5=c/.lev(0/.l[°/.z2]) : 0/,z5=%z5+0/.eq(0/.z5,0) : '/.z4=c/.z5$!
$ar ML_1_ °/,l °/,2 vvl_$wh °/tz4 ML_1_$!

174



$pr (s=T2_) Tl_ *n 0/.l[0/.z2] '__'$!
$ca °/,z9=°/,len(vvl_)$var c/,z9 #T2_$!
$ca #T2_=vvl_ (°/.gl (len_yv_,c/,z5) + (7,gl (7.z5 ,1) -1) *len_yv_) $ !
$array #T2_ len_yv_ ,c/,z5$de vvl_$$e!

$m (local=vl_) ML_1_ !
! This is the calculation of d(eta)/d(pi) for
! parameter number °/,z6 from term 7,l[7.z2].
$ca 7.z4=7.z4-l : 7.z8=7.z5-7.z4 : c/.z9=l+0/.eq(°/.ref (7.1 [°/,z2] ) )°/.z8)+2*°/,eq(

G/,z5,
$ar ML_FACT_ 7,1 : ML_C0NT_ 7.1 $sw °/.z9 ML_FACT_ M_NULL_ ML_C0NT_$!
$ca vl_=#T2_*7.2*sum_/7.exp(7.eta) : 0/.z6=°/.z6+l$!
$as °/,3=0/.3,vl_$de vl_$$e!
I

$m (local=vvl_) MI_ !
! This macro calculates the internal model matrix for interaction term y,l[0/,z2]
$ca 0/.z3=l : '/.z8=l$!
$ar O_CHK1_ 7.1 $wh c/,z3 O_CHK1_$!
$ca 7.z5=7.1ev(7.1[t_l_]) : 7.z5=7.z5+7.eq(7.z5,0) : 7.z4=7.z5$!
$ca 7.z3='/,lev(°/.l[t_2_]) : 7.z3=7.z3+7.eq(7.z3,0)$!
$ar MI_1_ 7.1 7.2 vvl_ $wh 7,z4 MI_1_$!
$pr (s=T2_) Tl_ *n %l[°/.z2] '__';$!
$ca 7.z5=7.z5*7.z3 : 7.z9=7.1en(vvl_)$!
$va 7.z9 #T2_$!
$ca #T2_=vvl_ (7.gl (len_yv_ ,%z5) + (7,gl (7.z5,1) -1) *len_yv_)$ !
$array #T2_ Ien_yv_//,z5 $de vvl_$$e!
!
$m MI_1_ !
! This macro provides a second level of looping for macro MI_
$ca 7.z4=7.z4-l : 7.z7=7.z3$!
$ar MI_2_ 7.1 7.2 7.3 $wh 7.z7 MI_2_$$e!
!
$m (local=vl_) MI_2_ !
! This is the calculation of d(eta)/d(pi) for
! parameter number 7,z6 from the interaction i_[t_l_]_[t_2_] .
$ca 7,z7=°/.z7-l : 7.z6=7.z6+l$!
$ca 7.z9=l+2*ytne(7.ref (7,l[t_lJ) ,y.lev(7.1[t_l_])-y.z4) !
+7.ne(7.ref (7.1 Ct_2_] ) ,7.1ev(7.1 Ct_2_] )-7.z7) !
+4*(7.eq(7.1ev(7.1[t_l_]),0)+7.eq(7.1ev(7.1[t_2_]),0))$!
$ar MI_C_F_ 7.1 : MI_F_C_ 7,1 : MI_F_F_ 7.1$!
$sw 7.z9 M_NULL_ M_MULL_ M_NULL_ MI_F_F_ M_NULL_ MI_C_F_ MI_F_C_$!
$ca vl_=#T2_*7.2*sum_/7,exp(7.eta)$!
$as 7.3=7.3,vl_$de vl_$$e!
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j

$m MI_C_F_ ! This macro is exclusively used by MI_
$ca 0/.z9='/,lev(0/.lCt_2_])-0/.z7$!
$pr (s=T2_) *n '/.l[t_l_] '*(' *n °/.l[t_2_] '==' *i (/.z9 ')'$$e!
!

$m MI_F_C_ ! This macro is exclusively used by MI_
$ca c/,z8=°/,lev(0/,l[t_l_])-%z4$ !
$pr (s=T2_) '(' *n 8/,l[t_l_] '==' *i °/.z8 ' ) * ' *n c/.l [t_2_] $$e!
I

$m MI_F_F_ ! This macro is exclusively used by MI_
$ca °/.z9=0/,lev(0/.l[t_2_])-°/0z7 : y.z8=y,lev('/.l [t_l_] )-°/.z4$ !
$pr (s=T2_) '(> *n °/.l[t_l_] '==' *i c/.z8 ')*(' *n °/.l [t_2_]'==' *i °/.z9 ')'$$e!
!

$m (local=vvl_) MM_ !
! This macro calculates the internal model matrix for matrix term %l[°/,z2]
$ca c/,z7='/.len(°/1l[%z2]) :

 0/.z5=°/,z7/len_yv_ : c/,z4='/.z5$!
$ar MM_1_ °/,l '/.2 vvl_$wh c/,z4 MM_1_$!
$pr (s=T2_) Tl_ *n °/.l[°/.z2] ' _ _ ' $ !
$va y,z7 #T2_$!
$ca #T2_=vvl_(0/tgl(len_yv_//1z5) + (°/0gl(y8z5,l)-l)*len_yv_)$!
$array #T2_ Ien_yv_,'/,z5$de vvl_$$e!
I

$m (local=vl_) MM_1_ !
! This i s the ca lcula t ion of d (e t a ) /d (p i ) for
! parameter number °/,z6 of the matrix term °/,l[yoz2]
$ca '/,z4=°/.z4-l : °/,z8=0/,z5-0/oz4 : 0/.z6=y.z6+l$!
$pr (s=T2_) ;newJ *i °/.z6 ' _ ' $ !
$ca vl_=#T2_*y,2*sum_/y,exp(y,eta)$!
$as y.3=y.3,vl_$de vl_$$e!
i

! The following set of macros are used once, prior to fitting, to set up the
! internal macros.
! Note that these macros are in four groups.
! The first group (just O_CUTS_) is used for the cut-point parameters.
! The second group (0L_ OL_1_) is used for all terms other than interactions,
! matrices or the cut-points.
! The third group (0I_ OI_1_ 0I_2_ 0I_C_F_ 0I_F_C_ 0I_F_F_) is used for
! interaction terms.
! The fourth group (0M_ OM_1_) is used for matrix terms.
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I

$m O_SETS_ ! Sets the value of the scale identifier s_
$ca s_=°/,l$$e!
I

$m 0_CUTS_ ! Sets up macros C_L_, C_LP_, C_ETA1_, C_DLP_.
$ca y,zl=y.zl-l : 0/.z2=°/.z2-l : 0/.z3=°/.z3-1 : c/.z4=maxj_-°/.zl : c/.z5=°/.z4-l : 0/,z6=°/,z5-l$!
$ca °/Dz7=°/oz4+l : 0/,z8=l/3 : 0/.z9=2$!
$ar RESET_C_ * 0/.z2 C_ETA1_ c/.z8 $sw °/.z2 RESET_C_$!
$ar RESET_C_ * D/.z3 C_DLP_ 0/.z9 $sw c/.z3 RESET_C_$!
$pr (s=C_L_) C_L_ ': 1' *i c/.z5 '_(i_)=°/.l(i_*°/.eq(j_,' *i °/,z5 !
')) : il_=i_*°/.eq(j_,' *i °/.z4 ')';$!
$pr (s=C_L_) C_L_ ' : 1 ' *i °/0z5 ' _ ( i l _ ) = - l ' *i °/.z5 '_(i_((0 / ,cu(l)-l)*°/.gt(j_, ' !
*i °/.z5 ')))';$!
$pr (s=C_LP_) C_LP_ ' : °/,lp=°/,lp+p_(' *i 0/,z5 ')*d' *i c/,z7 '_*sum_/0/,exp(0/.eta) ' ;$!
$pr (s=T2_) T2_ '-(' *n 7,1 '==' *i 0/.z6 ')';$!
$pr (s=C_DLP_) C_DLP_ '+1' *i °/.z5 '_'$!
$pr (s=C_ETAl_) C_ETA1_ '+°/.exp(p_(' *i %z5 '))*(' T2_ ')';$$e!
I

$m 0L_ ! Used to set up macros 0_LP_ and to call OL_1_.
$pr (s=0_LP_) 0_LP_ ' + ' Tl_ *n °/.l[y.z2] '__';$!
$pr (s=T2_) Tl_ *n y.l[°/.z2] '__'$!
$wa off $de #T2_ $wa on$!
$ca y.z3=y.lev(y.l[y.z23) : I/.z4=y.z3+y.eq(I/.z3,0)$!
$ar OL_1_ 7,1 y,2 °/,3$!
$wh y,z4 0L_l_$$e!
i

$m OL_1_ ! Used to set up macros C_LP_ C_ETA2_ C_TAU_.
$ca ytz6=y.z6+l : °/.2=y.2-l :

 0/.z9=l$!
$ar RESET_C_ * '/,2 '/.3 Q/.z9 $sw °/.2 RESET_C_$!
$ca y.z4=°/.z4-l : yoz8=y,z3-°/.z4$!
$ca y.z9=y0eq(°/.z3,0)*2+l+y0eq(y,ref (°/.l [%z2] ) ,y.z8)*y.ne(

c/.z3,0)$ !
$ar ML_FACT_ °/,l : ML_C0NT_ 7,1 $sw c/,z9 ML_FACT_ M_NULL_ ML_C0NT_$!
$pr (s=C_LP_) C_LP_ ' :y,lp=y.lp+' T2_ '*p_(' *i °/.z6 ' )*'/.l*sum_/y,exp(y.eta) ' ;$ !
$pr (s=y,3) y.3 ' + ' T2_ '*p_(' *i %z6 ')';$$e!
!

$m 0I_ ! Used to set up macros 0_LP_ and call OI_1_.
$ar O_CHK1_ */,l$!
$ca '/.z3=l : °/.z8=l$wh °/,z3 O_CHK1_$!
$pr (s=T3_) 'i_' : (s=T2_) *n °/.l[t_l_]$!
$ca oops_=°/,match(T3_,T2_)$!
$fault oops_ Ja,b in i_a_b cannot refer to another interaction term.'$!
$pr (s=T3_) Ji_' : (s=T2_) *n °/.l[t_2_]$!
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$ca oops_=7.match(T3_,T2_)$!
$ f a u l t oops_ ' a , b in i_a_b cannot r e f e r t o another i n t e r a c t i o n t e r m . ' $ !
$pr (s=0_LP_) O_LP_ ' + ' Tl_ *n 7.1[°/.z2] ' _ _ ' ; $ !
$pr (s=T2_) Tl_ *n '/,l[7.z2] ' _ _ ' $ !
$wa off $de #T2_ $wa on$!
$ca ytz4=

l/.lev(I/.l [t_l_] )+7,eq(7.1ev(7.1 [t.lj ) ,0)$ !
$ar 0I_l_ 7.1 7,2 °/.3 $wh °/,z4 0I_l_$$e!
j

$m 0I_l_ ! Used to provide another level of looping for 0I_2_.
$ca Q/.z4=y.z4-l : y.z7=y,lev(°/.l [t_l_] )-°/.z4$ !
$ca y,z8=y0lev(y.lCt_2_])+y,eq(y.lev(y.l[t_2_]) ,0)$!
$ar 0I_2_ °/,l °/,2 °/,3 $wh '/,z8 0I_2_$$e!
i

$m 0I_2_ ! Used to set up macros C_LP_, C_ETA2_, C_TAU_ for interaction terms.
$ca °/.z6=y.z6+l : c/,2=°/.2-l : c/.z9=l$!
$ar RESET_C_ * '/,2 °/,3 '/,z9 $sw °/,2 RESET_C_$!
$ca y.z8=y.z8-l : y.z3=y,lev(°/.l [t_2_] )-c/,z8$!
$ca y.z9=l+2*y.ne(y.ref (y.l[t_lj) ,y.z7)+y.ne(y.ref (y.l[t_2j) ,y.z3) !
+4*(yteq(y.lev(

0/.lCt_lJ),O)+7,eq(7.1ev(7,lCt_2_]))O)) : oops_=7,eq(7.z9,9)$!
$fault oops_ 'Mo interaction is possible between two continuous variables'$!
$ar 0I_F_F_ 7.1 : 0I_C_F_ 7.1 : 0I_F_C_ 7.1$!
$sw Xz9 M_NULL_ M_NULL_ M_NULL_ 0I_F_F_ M_NULL_ OI_C_F_ 0I_F_C_$!
$pr (s=C_LP_) C_LP_ ' :7.1p=°/.lp+' T2_ '*p_0 *i °/.z6 ' )*°/.2*sum_/y.exp(y.eta) ' ;$!
$pr (s='/.3) y,3 ' + ' T2_ '*p_(' *i 0/.z6 ')';$$e!
!

$m 0I_F_F_ !
$pr (s=T2_) '(' *n °/.l[t_l_] '==' *i °/0z7 ')*(' *n

 c/.l[t_2_] >==>*i %z3 ')'$!
$pr (s=PE_INF0) PE_INF0 'Parameter ' *i D/.z6 ' is ' *n °/.l[t_l_] '[' *i o/.z7 !
' ] . ' *n °/.l[t_2_] '[' *i y,z3 ']';$$e!
I
$m 0I_C_F_ !
$pr (s=T2_) *n °/.l[t_l_] '*(' *n °/.l[t_2_] '=='*i °/,z3 ')'$!
$pr (s=PE_INF0) PE_INFO 'Parameter [' *i °/,z6 '] is ' *n °/.l[t_l_] '.' !
*n °/.l[t_2_] '[' *i y.z3 ']';$$e!
j

$m 0I_F_C_ !
$pr (s=T2_) '(' *n °/.l[t_l_] '==' *i °/,z7 ' ) * ' *n °/.l[t_2_]$!
$ p r (s=PE_INF0) PE_INF0 ' P a r a m e t e r [ ' * i °/,z6 ' ] i s ' *n ' / . l [ t _ l _ ] ' [ ' * i °/.z7 !

' ] . ' *n 0 / . lCt_2_] ; $ $ e !
j

$m 0M_ ! Used to set up macro 0_LP_ and to call macro 0M_l_.
$pr (s=0_LP_) 0_LP_ ' + ' Tl_ *n o/.l[o/.z2] '__';$!
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$pr (s=T2_) Tl_ *n °/.l['/.z2] '__'$!
$wa off $de #T2_ $wa on$!
$ca c/0z4=0/olen(c/.l[°/.z2]) : 0/.z3='/.z4/len_yv_ : 0/.z9=l$!
$ar OM_1_ 7,1 7,2 7,3 $wh 7,7.3 0M_l_$$e!
!

$m OM_1_ ! Used to set up macros C_LP_, C_ETA2_, C_TAU_ for matrix terms.
$ca c/.z6=°/,z6+l : °/.2=°/.2-l : c/.z3='/.z3-l : 0/.z8=°/,z4/len_yv_-°/.z3$!
$ar RESET_C_ * 7,2 °/.3 c/.z9$sw %2 RESET_C_$!
$va °/.z4 index_$!
$ca index_=0/.gl(°/.z4/len_yv_,l) : index_=°/.eq(index. ,'/,z8)$ !
$pr (s=T2_) 'new' *i 7,2.6 ' _ ' $ !
$pi #T2_ 0/.l[°/,z2] index_$!
$pr (s=C_LP_) C_LP_ ' : c/,lp=°/,lp+' T2_ '*p_C *i 7,2.6 ' )*'/.l*sum_/°/.exp(°/,eta) ' ; $ !
$pr (s=%3) °/,3 ' + ' T2_ '*p_C *i 0/,z6 ' ) ' ; $ $ e !

I
! Other macros used by the macro ORDINAL before fitting takes place,
j

$m O_CP1_ !
! This macro sets p_ if the user has provided an initial value vector
$ca p_='/.l : oops_=l-°/.eq(0/.z6,'/.len(°/,l))$!
$fault oops_ 'Initial values vector is incorrect length.'$$e!
i

$m (Iocal=indl_,ind2_,th_,prop_) 0_CP2_ !
! This macro calculates the initial values (p_) if they have not been supplied
! by the user. All the values of p_ are set to zero except the cut-points;
! these are determined from the observed totals in each response category.
$ca °/1z2=maxj_-l : °/,z3=maxj_-2$!
$va °/,z2 indl_ th_ : c/.z3 ind2_ : 7,2.6 p_$!
$ta the °/,yv total for °/,l into prop_$ !
$ca prop_=°/,cu(prop_) : c/1z3=prop_(°/,len(prop_)) : indl_=%cu(l)$!
$ca th_(indl_)=°/0eq(link_Jl)*

0/.log(prop_(indl_)/(°/,z3-prop_(indl_)))+c/.eq(link_,2)!
*c/.nd(prop_(indl_)/°/.z3) +%eq(link_ J3)*'/0log(-

0/.log(l-prop_(indl_)/°/.z3))$!
$ca ind2_=%cu(l) + l : p_(l)=th_(l) : p_(ind2_)=0/.log(th_(ind2_)-th_(ind2_-l) )$
$$e!
i

$m O_DEL_ !
! This is used to remove macros after they are finished with.
! The advantage of this is to maximise the number of identifiers available.
! The disadvantage is that the macros need to be reloaded after use.
$de O_CUTS_ 0L_ OL_1_ 0I_ OI_1_ 0I_2_ 0M_ OM_1_ WIPE.MAC INDI_DAT INDI_SW_$!
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$de OI_F_F_ OI_C_F_ OI_F_C O_CP1_ 0_CP2_ RESET_C_ INDI_WT_ IND_MAT_ IND_TRM_$!
$de INDI_SC_ IND_FAC_ O_SETS_$!
$e!
i

$m RESET_C_ !
! This splits up incoherently long commands written in macros for internal use.
$ca y,2=6*y,4 $pr (s=°/.3) °/.3 ': °/.l=°/.l'$$e!
I

$m O_THETA_ !
! This macro calculates and prints the values for the underlying cut-points
! from the functions used in fitting the model.
$ca c/oz2=maxj_-°/,zl : '/,z3=°/,z2-l :

 0/.zl=°/.zl-l : c/,z4=°/,z2+2$!
$ca theta_=c/,exp(p_(°/,z2))+theta_$!
$pr (s=PE_INF0) PE.INFO 'Cut-point ' *i °/.z2 ' = exp(CUT_[' *i %z2 !
']) + cut-point ' *i °/,z3 ' = ' theta_;$!
$pr (s=Tl_) '1' *i c/.z2 '_' : (s=Tl_) Tl_ ' d' *i °/.z4 '_'$!
$de #Tl_$$e!
j

i

!

! Macros available to the user
!

$m WIPE_MAC $nu wipe_ $ca wipe_=l$$e! This sets the indicator to use O_DEL_
j

$m INDI.DAT !
! These macros expand individual level data to the form required by ORDINAL.
$ca °/,zl=l-°/,al : °/0z2=l-°/,a2 :

 0/.z3=l-°/,a3 : c/.z4=l-'/.a4$!
$fault %zl 'The response variable must be provided.'$!
$fault °/,z2 'A name for the ROWS variable must be provided.'$!
$fault °/,z3 'A name for the CATS variable must be provided. ;$!
$fault c/,z4 'A name for the expanded response variable must be provided.'$!
$nu maxy_ newlen_$!
$ta the %1 largest into maxy_$!
$ca °/,zl=0/,len(°/,l) : newlen_=maxy_*°/,zl$!
$sl newlen_$!
$ca '/.3=°/1gl(maxy_)l) : '/02=%gl(°/.zl ,maxy_)
$ar INDI_WT_ °/.2 $sw °/.pwf IMDI_WT_$!
$ca 0/.z2=°/.len(model)+'/.eq(c/.len(model) ,-l)$
$ca '/,z8=c/,len(s_model)+0/,eq(°/.len(s_model) ,-
$list s_model=s_model $pr (s=Tl_) s_model$!
$wa off $list t_list $de s_model $wa on$!
$ar INDI_SW_ model IND_TRM_ IND_MAT_ °/.2 $wh °/.z2 INDI_SW_$!
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$wa off $list model=t_list $de t_list $wa on$!
$ca y0z2=y.ne('/,z8,0)$!
$sw °/.z2 INDI_SC_$!
$ca I/,z2='/.z8$
$ar INDI_SW_ s_model IND_TRM_ IND_MAT_ °/.2 $wh °/.z2 INDI_SW_$!
$wa off $list s_model=t_list $de t_list maxy_ newlen_$!
$wa on$$e!
!
$m INDI_WT_ $ca wt_=y,pw(y,l) $de °/,pw $we wt_ $$e! Re-sets the weight vector.
j

$m INDI_SW_ ! Switches to the appropriate macro depending on the term type.
$pr (s=T2_) »i_' : (s=T3_) *n 0/,l[l]$!
$ca 0/.z2=y.z2-l : 0/.z9=y,len(y.l [l] )$!
$nst °/.i=y,i-#T3_$!
$ca yoz4=(l-y,eq(y.match(T2_,T3_),l)+y,gt(y.z9,yozl))*yolt(y.z9,newlen_)$!
$ar °/.2 °/.4 $sw c/.z4 '/,2 °/.3$!
$ l i s t t_list=t_list,#T3_$$e!

$m INDI_SC_ $list s_model=#Tl_ : t_list$$e!
j

$m (local=term_) IND_TRM_ ! Used if term is neither interaction nor matrix.
$ca term_=#T3_(y.l) : c/,z5=y.lev(#T3_) : c/,z6=y,ref (#T3_)$!
$de #T3_$!
$ca #T3_=term_ : c/,z7=l/.ne(y,z5,0)$!
$sw °/.z7 IND_FAC_$!
$ti $$e!
j

$m IND_FAC_ $f actor #T3_ 0/,z5(0/,z6)$$e! Used by IND_TRM_ if term is a factor.
!

$m (local=indl_) IND_MAT_! Used if term is a matrix.
$ca yoz5=y,z9*maxy_$
$va °/,z5 fact_$
$ca f act_=#T3_ ('/.gl(0/.z9/y.zl, 1) + (°/0z9/y.zl) * (°/.gl (yoz9, y.z9/°/,zl*maxy_) -1))$ !
$de #T3_$!
$ca #T3_=fact_ : l/,z5='/.zl*maxy_ : 0/.z6='/.z9/°/.zl$!
$array #T3_ y.z5//tz6$!
$ t i $$e

$RETURN

181



Appendix C

Frequency distributions for all
five categories of the response
scale

C.I Conversation experiments (9 or 10 periods)

Note that for these experiments the data included in the tables come from columns
1-8 of the experiment.

1
2

Category 3
4
5

0
9
-

4
4

16

Table

1
15
14
11
5
2

C.I : E198

Frequency
2
6

12
10
9
6

3
2
6
4
6
7

4 5 6
. . .

3 - -
8 - -
1 - -

7
-
-
-
-
-

Times used
33
56
55
73
39
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1
2

Category 3
4
5

0
8
5
6
1

19

1
14
16
12

2
4

Table C.2: E199

Frequency
2

10
8
5
7
4

3
-
3
7

10
1

4
-
-
2

8
3

5 6
-
-

-
4 -
1 -

7
-
-
-
-
-

Times used
34
41
51
98
32

1
2

Category 3
4
5

0
9
7
5
2

17

1
9

12
11

3
5

Table C.3: E200

Frequency
2

11
10
11
6
4

3
3
3
5

12
1

4
-
-

-
7
4

5 6
-
-

-
1 1
1 -

7
-
-
-
-
-

Times used
40
41
48
90
37

1
2

Category 3
4
5

0
14
6
5
-

21

1
14
11
11

5
3

Table C.4 : E211

Frequency
2
4

12
13

1
2

3
-
3
1
6
3

4 5 6

. . .
2 - -

12 7 1
3 - -

7
-
-

-
-
-

Times used
22
44
48

114
28
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1
2

Category 3
4
5

0
13
5
4
1

14

Table

1
10
17
8
2

12

C.5 : E212

Frequency
2
6

10
10
10
5

3
3
-

7
7
-

4 5
-

2 -
7 4
-

6
-
-

1
1
1

7
-
-
-
-
-

Times used
31
37
63
97
28

1
2
3
4
5

0
15
4
8
3

12

1
14
14
11
3
5

Table C

Frequency
2 3
3 -

11 3
8 4
6 7
6 5

4
-
-

1
5
2

6:

5
-
-
-

7
1

E213

6 7
-
-
-

1 -
1 -

Times used
20
45
43
97
51
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C.2 Conversation experiments (13 periods)

Note that for these experiments the data included in the tables come from columns
1-12 of the experiment.

Table C.7: E139

1
2

Category 3
4
5

0
13
5
2
1

17

1
3
4
2
5
4

2
4
3
4
2
1

Frequency
3
3
5
6
5
-

4
1
3
-
3
-

5
-
1
2
3
1

6
-
3
5
2
-

7
-
-
2
-

-

>7
-
-
1
3
1

Times used
24
60
90
94
20

1
2

Category 3
4
5

0
10
2
3
1

15

1
11
8
2
1
3

Table C

2
2
5
2
-
1

1 O.
; . O . E140

Frequency
3
1
7
3
7
-

4
-
1
7
4
2

5
-
-

4
5
1

6
-
-

1
3
1

7
-
1
1
1
-

8
-
-

1
2
1

Times used
18
50
84

104
32
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C.3 Conversation experiment (16 periods)

Note that for this experiment the data included in the tables come from columns
1-15 of the experiment.

Table C.9: E136

1
2

Category 3
4
5

0
13
4
1
1

13

1
10
10
4
1
8

2
5
5
3
-
2

Frequency
3
2
3
4
5
-

4
-
5
8
3
2

5
-
2
2

4
1

of
6
-
1
3
3
1

response
7
-
-
3
7
-

8
-
-

1
1
1

category
9 10 11

1
2 1 1
-

12
-
-

-
1
1

13
-
-

-
-
1

Times used
26
65

120
174
65

C.4 Conversation experiment (20 periods)

Note that for this experiment the data included in the tables come from columns
1-9 and 11-19 of the experiment.

Table CIO: E216

1
2

Category 3
4
5

0
4
-
-
-

22

Frequency
1
2
-

1
6
9

2

7
2
5
3
3

3

7
2
6

12
2

of
4
9
3
6
5
-

response
5
2
2
6
5
-

6
3
9

10
3
-

category
7
1
6
1
1
-

8 9
1 -

11 1
1 -
1 -
-

10
-
-
-
-
-

Times used
116
225
158
126
21
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C.5 Listening experiments

Note that for these experiments the data included in the tables come from columns
1-12 of the experiment.

Table C.ll: E247 (5 listening levels)

1
2

Category 3
4
5

Frequency
0-4

3
-

-
-
2

5-9
10

1
2
8

12

of response category
10-14

5
14

9
12

9

15-19
5
5

13
4
1

>20
1
4
-
-
-

Times used
233
362
340
278
227

Table C.12: E264 (5 listening levels)

1
2

Category 3
4
5

Frequency
0-4

4
-
-
-
2

5-9
9
3
1
4

11

of response category
10-14

6
13
14
10
8

15-19 20-24
5
8
7 2
8 2
2 1

Times used
223
315
330
325
247

Table C.13: F064 (5 listening levels)

1
2

Category 3
4
5

Frequency
0-4 5-9

-
2
1
9

9 2

of response category
10-14 15-19 20-24

2
2
6
2
1

5 5
7 1
5
1
-

Times used
231
178
169

99
43

187



Table C.14: F065 (3 listening levels)

1
2

Category 3
4
5

Frequency of
0-2

-
-

-
1
4

3-5
2
2

1
5
6

6-8
2
5
5
4
1

response category
9-11

4
4
5
2
1

12-14 >14
4

1
1
-
-

Times used
124
103
96
69
40
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Appendix D

Further subject-specific analysis
of experiment E140
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Table D.I: Subject response profiles in E140

Subject
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24

1

1
0
0
1
1
2
1
0
0
0
1
2
0
0
1
1
1
0
1
0
1
3
0
1

Response
2

2
7
3
1
1
1
4
2

3
0
3
1
0
2
2
2
1
3
3
1
1
3
1
3

3

5
4
0
2
1
1
4
4
4
0
4
5
3
7
3
0
6
4
2
8
5
3
5
4

4

4
0
1
8
5
8
3
6
3
7
4
4
3
3
5
5
3
5
6
3
5
3
6
4

5

0
1
8
0
4
0
0
0
2
5
0
0
6
0
1
4
1
0
0
0
0
0
0
0
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Table D.2: Subject-specific contributions to deviance in E140

Subject
1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24

Scaling model
9.29

27.35
18.11
12.55
11.59
19.24
19.06
7.32

25.62
13.49
13.14
14.32
23.39
9.00

12.52
21.64
18.27
8.53

16.13
22.09
10.88
25.75
22.34
10.47

Interaction model
4.45
7.48
8.18
4.98
8.21
8.67

23.90
5.22

11.67
14.00
10.14
11.92
20.27

7.14
11.85
23.32
13.18
8.77

13.84
22.39
8.28

22.48
21.53
8.60

Residual description
-4.84

-19.87
-9.93
-7.57
-3.38

-10.57
+4.84
-2.10

-13.96
+0.51
-3.00
-2.40
-3.12
-1.86
-0.67

+1.68
-5.09

+0.24
-2.29

+0.30
-2.60
-3.27
-0.81
-1.87

Total 392.09 300.47 -91.63
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Appendix E

Results of fixed effects and
random effect modelling of
subject location for experiment
E198

Table E.I: Fixed effects results

Deviance = 446.1
Degrees of freedom = 918

Term

Cut-point
Cut-point
Cut-point
Cut-point
Condition
Condition
Condition
Condition
Condition
Condition

1
2
3
4
1
2
3
4
5
6

Parameter
estimate

-10.00
-6.36
-3.35
-0.41

0
-0.39
-0.64
-7.29
-0.34
-2.94

Standard
error

(1.07)
-
-
-
-

(0.50)
(0.50)
(0.74)
(0.50)
(0.54)
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Table E.I: Fixed effects results continued

Term

Condition 7
Condition 8
Subject 1
Subject 2
Subject 3
Subject 4
Subject 5
Subject 6
Subject 7
Subject 8
Subject 9
Subject 10
Subject 11
Subject 12
Subject 13
Subject 14
Subject 15
Subject 16
Subject 17
Subject 18
Subject 19
Subject 20
Subject 21
Subject 22
Subject 23
Subject 24
Subject 25
Subject 26
Subject 27
Subject 28
Subject 29
Subject 30
Subject 31
Subject 32

Parameter
estimate

-6.39
-9.26

0
0.76

-1.66
-1.90
-0.30
-1.29
-1.33
-0.03
-2.07
-0.02
-2.28
-0.85
-0.63
-3.40
-4.40
-0.72
-1.68
-0.44
0.42

-3.80
-1.69
-2.58
-2.52
-1.22
-0.83
-0.43
1.81

-2.12
1.29

-1.81
-3.39
-2.99

Standard
error

(0.69)
(0.84)

-
(1.02)
(1.02)
(1.02)
(0.99)
(1.01)
(1.01)
(0.99)
(1.02)
(0.99)
(1.02)
(1.00)
(0.99)
(1.04)
(1.10)
(0.99)
(1.02)
(0.99)
(1.00)
(1.06)
(1.02)
(1.02)
(1.02)
(1.01)
(1.00)
(0.99)
(1.09)
(1.02)
(1.05)
(1.02)
(1.04)
(1.02)
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Table E.2: Random effects results

Deviance = 519.7
Degrees of freedom = 948

Term

Cut-point 1
Cut-point 2
Cut-point 3
Cut-point 4
Condition 1
Condition 2
Condition 3
Condition 4
Condition 5
Condition 6
Condition 7
Condition 8

Variance term

Parameter
estimate

-7.95
-4.64
-1.84
0.80

0
-0.36
-0.58
-6.67
-0.33
-2.68
-5.89
-8.45
1.11

Standard
error

(1.13)
-
-
-
-

(0.75)
(0.59)
(1.07)
(0.90)
(0.81)
(0.94)
(0.98)
(0.34)

Calculation of the intracluster correlation

residual variance = ^ (assumed for the logistic distribution)
cluster variance = (1.110)2 = 1.232

intracluster correlation = -, nnl'?f_-> ,^ = 0.272
1.232+(ir2/3)
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Appendix F

Variance of the estimator of A

when the fitting method is GEE

with an equal-margins working

correlation matrix

The method of fitting the cumulative logit model by GEE with a working correlation

based on equal marginal probabilities is discussed in §4.2.3. The calculation of the

asymptotic variance of the estimate of a treatment effect under this fitting method

is described in §6.3.5.

The explicit expression for the asymptotic variance of A# for the case of K = 3,

n = m = n2 and when the equal TTS in group 1 assumption is in force, is

Z1/(<P)-2Z2/d + Z3

(Ej=l 72j(l - 72j) - V 721722 (1 - 721 )(1 - 722) -

where
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7 2 1 ( 1 - 7 2 2
T, \

722(1-721)



+GI - + 722(1-722) 7 -
6 4 \

72i(l - 722)

722(1 -721)

+2G1G2 I -— + ^72i(l - 722) - 1/721722(1 -72i)(l -722)! ,

- 7 2 l ) + ^ 2 7 2 2 ( 1 - 7 2 2 ) ] I - "- " A

- 722)

722(1 - 7 2 1 ) / .

h + G2) I—T2l(l - 722) - \jl2ll22{l ~72l)(l -722)1 ,

= [72l(l - 7 2 l ) +722(1 -722)]

5

72i(l -722)

4 \ | 722(1 -721)

2 , . r - 722) - 2/721722(1 - 72i)(l ~ 722),

= Gi721(1 - 721) + G2722(l - 722) - -(Gi + G2)\J721722(1 - 72i)(l - 722),

1 3 2
d = ^ + -721722(1 -72 i ) ( l -722) + g [721(1-721)+ 722(1-722)]

-0^/721722(1 - 72i)(l ~ 722),

1
~ 72l) + g

3
~ 722) + -721722(1 - - 722)

-7:^/721722(1 - 72i)(l - 722)

and

1 2 3
G2 = -721(1 - 721) + -722(1 - 722) + -721722(1 - 72i)(l - 722)

-7/721722(1 - 72i)(l - 722)-
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