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The 2-period travelling salesman problem originates from the collection of milk from

dairy farmers in County Dublin, Ireland. Specifically, a group of dairy farms is allocated

to a milk tanker. Of these farms some require every day collection, and others require

collection every other day. The problem is to identify two tours with a combined

distance that is minimised such that each farm requiring collection every day is visited by

both tours, and each farm requiring collection every other day is visited by exactly one

tour.

Optimal solution procedures are developed for examples of the problem. These

procedures are based on integer programming formulations. These formulations are

solved directly for small problems. The solution of medium sized problems, up to 100

nodes, require LP relaxation, subtour and comb constraints, and ultimately the solution

of a considerably constrained {0,1} model. The solution process identifies an important

group of inequalities whose explicit presence in the model dramatically improves our

ability to solve medium sized problems.

For problems with over 100 nodes the search time for an optimal solution becomes

excessive. In these cases heuristic procedures, which provide good, but not necessarily

optimal solutions, are used. A range of heuristic procedures are developed and

empirically analysed. In the absence of an optimal answer, the heuristic solutions are

compared with a lower bound on the optimal answer. Three classes of bounds are

developed. The first class is based on increasingly constrained LP relaxations. The

second class is based on an extension of the 1-tree concept. The third class is based on

Lagrangian relaxation.
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Chapter 1 2-Period Travelling Salesman Problem

1.1 Background in the Irish Milk Industry

The fresh milk output from Irish dairy farmers is either collected once a day or once

every second day by large bulk milk tankers. The preferred option is to call once to

each farmer every second day. However, the required collection frequency for a

particular fanner depends on the capacity of the milk storage tank on the farm. If the

on-farm tank capacity is not sufficient to hold two days milk output, then that farmer

must be called to every day. Various schemes are in operation to encourage farmers

who require collection every day to upgrade their on-farm milk storage tanks.

Every 2nd Day

Every Day

Day 2 Routes

Figure 1.1: Day 1 and Day 2 Milk Collection Routes

At present the scheduler of the milk tanker fleet has two problems. The first problem is

to decide on how best to allocate the farmers requiring collection every second day to

either a Dayi route or a Day2 route. A Dayi route is driven on Mondays, Wednesdays,

etc. The Day2 route is driven on Tuesdays, Thursdays, etc. Having allocated the every

second day farmers, the scheduler must now, having regard for vehicle capacity,



generate efficient tours to service both the every day and every second day farmers.

The solution to a typical milk collection problem is shown in Figure 1.1.

The problem of the milk scheduler can be described as follows :

Let V1 = { Farmers Requiring Every Second Day Collection }

V2 = { Farmers Requiring Every Day Collection }

Ti = { Set of Routes Driven on Day 1, of total length 1( Ti) }

T2 = { Set of Routes Driven on Day 2, of total length 1( T2 ) }

Find the partition of V1 into V \ and V^ , where:

V1! = { Set of Every Second Day Farmers allocated to Day 1 }

V*2 = { Set of Every Second Day Farmers allocated to Day 2 }

V2 + V1] = { Set of customers to be collected on Day 1 }

V2 + VX2 = { Set of customers to be collected on Day 2 }

Such that 1( Ti ) + 1( T2 ) is minimised, having regard for vehicle capacity.

The practical solution to the milk collection problem is a series of routes for Day 1 and

a series of routes for Day 2. The data used for the problem, later termed in this thesis

as the 42 node problem, is taken from a real milk collection problem from County

Meath, Ireland. The problem, introduced in this thesis as the 2-period Travelling

Salesman Problem, is a relaxation of the practical milk collection problem in that the

capacity restrictions are removed. In the absence of the truck capacity restriction, the

solution will be one large tour for Day 1 and a second large tour for Day 2.



1.2 Additional Applications of the 2-Period TSP.

While the 2-period TSP has its origins in the milk collection arena, relaxations of

many other routing problems can be formulated as the 2-period TSP. These include

applications with Airport Coach Services and Post Collection. In addition, the

formulation has application to the distribution of goods to retail outlets where the size

of the outlet dictates the frequency and level of service the outlet is to receive. In this

latter case the 2-period model can be generalised to an m-period model. The m-period

problem is discussed in Chapter 8.

1.2.1 Airport Coach Service Application.

An airport coach servicing down-town hotels calls to the larger hotels every half-hour,

and to the smaller hotels every hour. The tours that start on the hour call to all of the

larger hotels and to a subset of the smaller hotels. The tours that start on the half-hour

also call to all of the large hotels, and the remainder of the small hotels not serviced by

the tours that start on the hour. The situation can be depicted as follows :

Large Hotel

/ Small Hotel

Tour that starts
on the half hour

Tour that starts
on the hour

Figure 1.2 : Routes for the Airport Coach Service



Ignoring capacity constraints, the coach operator seeks to partition optimally the small

hotels across the two tours, while generating optimal tours for the coaches.

1.2.2 Post Collection Application

To facilitate customers wishing to post letters, the Post Office locates, at various

places in a town, post-boxes. Depending on the location of the post-boxes, the boxes

are emptied by a Post Office service van every hour or every two hours. Ignoring

capacity and maximum length of tour constraints, the allocation of post-boxes to tours,

and the optimal design of the tours is an application of the 2-Period TSP.

1.3 Comparison with the Standard Travelling Salesman Problem.

The standard travelling salesman problem, TSP, is concerned with the tour of

minimum length required to pass through every node in a graph. A considerable effort

has been used by academics to investigate the TSP. When the author first encountered

the 2-period TSP, he assumed that this problem could be transformed into a TSP, and,

thus, all of the thought applied to the TSP could be used. The basis of the

transformation was to be as follows,

where V1 = { Nodes to be visited by only 1 tour tours }

V2 = { Depot and all nodes to be visited by both tours },

Step 1: Form a new problem consisting of the nodes from V1 and the

nodes from V2 included twice. Contained within V2 is the depot,

and, therefore, the depot is also included twice.

Step 2: Modify the distance matrix to prevent the tour travelling directly

from node i £ V2 to its duplicate node. This is achieved by setting

the distance from node i to its duplicate node at infinity.



Figure 1.3 shows the nodes of an 11 node version of the 2-period TSP. For this

problem V2 = { 1, 2, 3, 4, 5 } and V1 = { 6, 7, 8, 9, 10, 11}. Figure 1.4 shows the

transformed problem with all nodes in V2 duplicated.

2

10
I

I

Figure 1.3 : 11 node 2-Period TSP.

I I '

Figure 1.4 : 11 node 2-Period TSP with nodes 1 to 5 duplicated.

A travelling salesman solution to the transformed problem would consist of a large

tour which visits the depot twice, each node e V2 twice, and each node e V1 only

once. Such a solution is shown in Figure 1.5.

Unfortunately, the solution to the 2-period problem is two tours, and it is impossible to

untangle the required two tours from the one tour obtained from the transformed

problem.



Figure 1.5 : Optimal TSP Tour through the transformed problem.

The failure to transform the 2-period problem into a TSP opens the door on a new

variant of the TSP. This variant has many practical examples and therefore warrants

the full analysis detailed in this thesis.



1.4 Definition of the 2-Period TSP

The symmetric 2-period TSP is defined on a complete undirected graph G = (V,E) on

n nodes, with node set V, arc set E, and costs Cy. V is divided into two sets, V1 and

V2. V1 contains ni nodes each of which is to be visited by only one tour. V2 contains

n2 nodes each of which is to be visited by both tours. The problem is stated as

Minimise J J ^ C ^ (1.1)
ieF j>i k=\

subject to

X*=2. ieV2,k = l,2 (1.2)

= °' ieV\k = \,2 (1.3)

Subtour Elimination Constraints (1.4)

Yn + Yi2 = l, ieV1 (1.5)
Xijk = 0 o r l ij eVJ>i,andk = lor2 (1.6)

4 =0orl ieV\k= I or2 (1.7)

Xyk = 1 if arc i to j is used by tour k; otherwise X^ =0. The Y variables are associated

with the nodes to be visited by only one tour. Yfc = 1 if node i, i e V1, is on tour k;

otherwise Y& = 0. Constraints (1.5) require that each node i, where ie V1, is only on

one of the two tours.

Constraints (1.2) and (1.3) together form the 2-matching constraints. Constraints (1.2)

require that 2 arcs from each tour are attached to all nodes in V2. While constraints

(1.3) force each node in V1 to be connected by two arcs to one of the tours. The tour

to which a node i in V1 is connected depends on whether Yu or Yi2 equals 1.

The subtour elimination constraints, constraints (1.4), require that the solution to the

2-period TSP be two complete tours. The constraints are derived from the subtour



elimination constraints for the Standard Symmetric Travelling Salesman Problem. For

that problem the sub-tour elimination constraint suggests that

Vj.. < n(S)-l, where S is a subset of the set of all nodes.
i.jsS

To extend this sub-tour elimination concept to the 2-Period TSP requires a partition of

S, a subset of all nodes, into S1 and S2 , where S1 contains nodes visited by only one

tour, and S2 contains nodes visited by both tours. The form of the generalised sub-tour

elimination constraint depends on whether either S1 or S2 are empty. The three

possible cases are:

Case 1 : S1 = (j), S contains only nodes visited by both tours.

I X..j < n(S2)-1, for k = 1 or 2
iJeS ljk

Case 2 : S1 and S2 ̂  (f>, S contains both types of nodes.

I X < 2X+»0S2)-l, fbrk=lor2
iJeS JK i*s>

Case 3 : S2 = <j>, S contains only nodes visited by one of the tours.

4 - Max{Ylk], for k = 1 or 2
l ieS

The solution to the standard TSP is a tour of minimum length. The 2-period TSP is

more complex in that the solution contains both an allocation of the nodes in V1 to one

of the tours, and also a set of two tours of minimum total length.

When the 2-period TSP problem arises in a practical application, there is always the

hope that an optimal solution can be found. Industry would like to believe that when

Management Science is brought to a problem, then an optimal answer is available for

implementation. However, like the TSP, if the search for an optimal solution proves

impractical, then, the only resort is heuristic procedures.



1.5 Thesis Overview.

This thesis is concerned with the 2-period TSP. Chapter 2 reviews the academic

literature on the TSP, and uses the experience of other researchers to indicate how

solutions can be effectively obtained for this new variant of the TSP.

Chapter 3 optimally solves 3 examples of the 2-period TSP. These examples, termed

the 11 node, 21 node, and 42 node problems, represent small and medium sized

versions of the problem. The data within the 42 node problem relates to a problem of

milk collection from Ireland. Chapter 3 shows that, for small problems, the {0,1}

mathematical formulation can be solved in reasonable time with sub-tour elimination

constraints being added on an "as needed" basis. This direct solution of the {0,1}

formulation fails in Chapter 3 for the 42 node problem. An approach based on an

increasingly constrained LP relaxation is required to solve the 42 node problem.

Chapter 4 builds on the successful solutions obtained in Chapter 3, and attempts to use

the same solution methodology on a 100 node version of the problem. The explosive

combinatorial nature of the problem is exposed in Chapter 4, and only after a heroic

struggle did the 100 node problem finally yield an optimal solution.

Historically two solution methodologies have evolved for the TSP. One is based on LP

relaxations and {0,1} solution. This procedure is used in Chapters 3 and 4. The other

methodology is based on branch and bound. Fundamental to this approach is the ability

to find good lower bounds on the optimal solution. Chapter 5 discusses various

approaches for obtaining lower bounds for the 2-period TSP. In addition to their use in

obtaining optimal solutions, bounds are invaluable when analysing heuristic solutions in

the absence of an optimal solution.

The problems, within Chapter 4, of finding an optimal solution to a 100 node version

of the 2-period TSP, suggest that 100 nodes is very close to the upper limit on the

problem size that can be optimally solved. Chapter 6 introduces heuristic procedures as



an alternative option when a good, but not necessary optimal , solution is required.

Chapter 7 empirically analyses a variety of heuristic procedures.

Chapter 8 summarises the thesis, and identifies areas of potential future research.

1.6 Dayi and Day2 Tours.

The 2-period TSP finds its origins in the mundane art of milk collection in County

Meath, Ireland. In this application the scheduler attempts to find a solution for day 1

and a solution for day 2. To reflect the humble origins of the problem, the two tours

created by the 2-period TSP are termed the Dayi and Day2 tours in this thesis.

10



Chapter 2 Literature Review

2.1 Introduction

The travelling salesman problem is the problem of finding the shortest Hamiltonian

tour in a graph. This problem appears to have been formulated some 70 years ago and

has been the subject of intensive investigation in combinatorial optimisation during the

past 40 years. The interest in the problem arises both from the many practical problems

that can be formulated as a TSP, and also because of its pivotal position in the

mathematics of combinatorial optimisation.

The 2-period TSP, introduced in Chapter 1, is a variant of the TSP. This suggests that

the history of the attempts to find optimal solutions to the TSP is of interest, and

hopefully the experiences from the successes and failures will guide us in our attempts

to find solutions to the 2-period TSP.

The original attempts at solving the TSP are based on Mathematical Formulations of

the problem.

2.2 Mathematical Formulation

In their survey paper, Bellmore and Nemhauser [ 1966 ], described two mathematical

formulations for the Travelling Salesman Problem. The first is based on the work by

Dantzig, Fulkerson and Johnson [1954], the second is from work by Miller, Tucker

and Zemlin [I960]. The main difference in these formulations is in how they handle the

requirement that the solution is a tour. The two formulations for an asymmetric

problem on n nodes are :

11



Formulation I ( Dantzig et al )

Minimise

Subject to (/" = 1,..., n),

(J = l,...,n),

S is a subset of n nodes

Formulation II ( Miller et al)

Minimise ^ Cy Xtj

•j

Subject to 'YJXlJ• = 1

u, > 0

(1 < / < « ) ,

(2 </<»),

(2<j <ri)andi

(2 < / < n)

Formulation II requires significantly fewer constraints than Formulation I. However, as

Bellmore and Nemhauser, show this does not necessarily mean that Formulation II is

easier to solve. Consider a simple example of n nodes, where a solution consists of

subtours ( 2, 3, 4, 2 ) and ( 5, ..., n, 5 ). Formulation I would block these subtours by

the constraint:

X23 + X34 + X42 < 2

12



Using Formulation II, three constraints are required

u 2 -u 3 + (n-l)X23<n-2

U4 - U2 + (n-l)X42 < n - 2

When these constraints are added we get

Although this constraint is sufficient to block the subtour, it is weaker than

X23 + X34 + X42 < 2

and admits more feasible fractional subtours.

The solution of Formulation I with the integer restriction replaced by 0 < Xy < 1 will

not generally provide a {0,1} solution. In 1954, Dantzig, Fulkerson, and Johnson

found an optimal solution to a 42 city problem starting with the LP relaxation of

Formulation I. They overcame the large number of subtour elimination constraints by

beginning with only a few, and then adding new ones only as they were needed to

block subtours. They used the cutting constraints, a forerunner of Gomory's cutting

planes, to rule out fractional subtours while preserving integer solutions.

Miller, Tucker, and Zemlin [1960] experimented using a similar approach with

Formulation II. Unfortunately, the results were disappointing. Since the work done by

Miller et al, very little attention has been given to Formulation II although the LP

relaxation is clearly weaker than that of Formulation I. It is suggested in Chapter 8,

that possibly Formulation II justifies further attention.

Claus [ 1984] outlines a further formulation for the TSP. This formulation replaces the

exponential number subtour elimination constraints by a number of constraints that is

proportional to the number of nodes times the number of finite cost arcs in the graph.

In addition, the new formulation introduces a new set of variables. Claus argues that

the resulting polytope is smaller that the subtour elimination polytope. Few

experimental results exist for this formulation.

13



2.3 Optimal Solution Based on Mathematical Programming

Miliotis [ 1976 ], using the pioneering FORTRAN Code of Land-Powell [ 1973],

reports the successful solution of medium sized, < 50 nodes, TSP's using a

combination of LP relaxation, inequalities added on an "as needed" basis, and

branching to eliminate fractional values and to restore integer solutions. Miliotis notes

that only a small number of omitted constraints are added during the solution process.

The use of pure Linear Programming to solve a TSP requires a set of inequalities that

will linearly describe the convex polytope. Grotschel and Padberg [1977] suggest that

the number of linear inequalities required to describe the polytope is astronomically

large, and that an algorithmic approach to the TSP based on linear inequalities must

fail.

In their paper, Grotschel and Padberg [1977] prove that:

• The 2-matching constraints,

• The subtour elimination constraints, and

• The comb constraints, suggested by Chvatal [ 1973 ],

define facets of the polytope for the symmetric TSP. However, they also state that

these inequalities to not completely characterise the polytope of tours. The intersection

of the above inequalities has fractional as well as tour vertices.

Grotschel and Padberg [ 1977 ] show that, while the number of the above constraints

is so large that they cannot be explicitly included in the formulation, a linear

programming approach which adds constraints on an "as needed" basis performs very

well. They show that, since no complete linear description of the polytope is known,

the optimal solution to the LP model is a lower bound on the optimum tour length.

Finally, they suggest, that integer programming can be used to bridge the gap between

the lower bound and the optimal solution.

14



Padberg and Hong [ 1980 ] support earlier work that inequalities defining facets of the

convex hull of tours are of substantial computational value in the solution of symmetric

TSPs. Their approach is to use a heuristic tour as a starting solution for a linear

programme, and then to gradually add more inequalities that define facets in order to

prove optimality.

Johnson and McGeoch [1995] report that the TSP is one of the major success stories

of optimisation. Years of research into optimisation techniques, combined with the

continuing rapid growth in computer technology have led from one new record to

another. Over the past 15 years, the record for the largest nontrivial TSP solved to

optimality has grown considerably from the famous 318 cities problem of Crowder

and Padberg [ 1980].

An adaptation of the approach used by Grotschel and Padberg [ 1977 ] is the

methodology used in Chapter 3 and Chapter 4 to find optimal solutions to the 42 node

and 100 node problems.

In parallel with the search for optimal procedures based on Mathematical

Programming, Branch and Bound approaches have been developed.

15



2.4 Branch and Bound

Garfinkel [ 1979 ] suggests that Branch and Bound approaches are appropriate for

virtually all combinatorial problems. The term Branch and Bound appears in two

different contexts in the search for an optimal solution to the TSP.

Firstly, it is a means of moving forward when an LP formulation, on the type discussed

in Section 2.3, yields a non {0,1} integer solution. In this case the general approach is

to take a variable x, that should be {0, 1}, but whose current value is fractional, and

branch on x=0 and x=l. This leads to a search tree which grows until a bounding

approach indicates that a branch need not be explored beyond some node. This

approach is used in Dantzig, Fulkerson & Johnson [1954].

Branch and bound is also used when an optimal solution of an easily solvable

relaxation of the TSP is found. If this solution is a tour then the process terminates. If a

solution is not a tour, then the solution is used as a lower bound on the tour, and the

problem is branched into a set of sub-problems. The process continues until one of the

sub-problems yields a feasible tour, and the bounding process suggests that the

remaining nodes offer no potential for a better solution. Little, Murty, Sweeney and

Karel [ 1963] describe such an approach for the TSP. Their bounding process is based

on matrix reduction, while the branching is done by forcing one arc to be in the

solution of one of the sub-problems, and prohibiting that same arc from the other sub-

problems.

For Branch and Bound the quality of the computed bounds is of greater importance for

the effectiveness of the algorithm that the branching rules used. The most celebrated

bound for the symmetric TSP is one developed by Held and Karp [1970] and is based

on the concept of a 1-tree. A 1-tree is derived from the minimum spanning tree plus an

additional arc. The quality of the bound from the 1-tree is not usually very good.

However, the quality of the bound can be increased considerably by the use of

16



Lagrangean relaxation. Empirical results suggests that this bound is normally within

1% of the optimal tour length.

Other bounds for the TSP have been derived from,

• The Assignment Problem, Balas and Christofides [ 1976 ], and

• The Shortest n-Paths, Houck, Picard, Queyranne and Vemuganti, [ 1977 ].

2.5 Need for Heuristics

Network problems can be classified according to a theoretical scheme based on the

notion of "polynomially-bounded" and "NP-hard" classes. The class P is composed of

those problems for which polynomially-bounded algorithms are known to exist. A

polynomially-bounded algorithm is a procedure whose worst case computational effort

increases only polynomially with problem size. Problems belonging to the class P can

generally be solved to optimality quite efficiently.

In contrast to the class P, there is a large class of combinatorial problems for which no

polynomially-bounded algorithm has yet been found. This is the class of "NP-hard"

problems. For a more precise definition see Garey and Johnson [ 1979].

The class of NP-hard problems may be viewed as forming a hard core of problems that

polynomial algorithms have not been able to penetrate so far. The practical implication

of this classification is that for NP-hard problems, even a modest increase in problem

size will result in a prohibitive growth in the computational time required to find the

optimal solution. The TSP is a well known NP-hard problem.

To overcome our inability to find optimal solutions to large examples of NP-hard

problems, one frequently resorts to heuristic or approximate procedures.

17



2.6 Heuristic Procedures

Notwithstanding the impressive gains in obtaining optimal solutions from increasingly

larger TSPs, the reality is that heuristic procedures are still required to find "good"

solutions in practical applications.

Johnson and McGeoch [1995] suggest that the world of heuristic approaches to the

TSP can be divided into two classes - local search approaches and tour construction

heuristics. They report that tour construction heuristics do surprisingly well in practice,

and that local search heuristics typically get within 3-4% of the optimal. They remark

that the success of the traditional approaches leaves less room for the new approaches

like tabu search and simulated annealing to make a contribution.

2.7 Analysis of Heuristics

The development of alternate heuristics for the TSP requires a methodology to

compare their relative performance. Three different methods of comparison are

available. These are empirical analysis, worst-case analysis and probabilistic analysis.

Empirical analysis is the traditional method of comparison. The heuristic, under

consideration, is applied to a set of test problems and the solution values obtained are

compared to the optimal solution, if it is known, or to a lower bound, if the optimal

solution is not known, or to other heuristic results. Over time a series of test problems

have evolved in the academic literature, and all new heuristics are compared against

these test problems. The problem with empirical analysis is that it gives no

performance guarantees. What use is it in a practical situation that the methodology

you have adopted normally performs well, but you have just been unlucky?

Fisher [ 1980 ] defines worst-case analysis as a way of establishing the maximum

deviation from optimality that can occur when a specified heuristic is applied within a

given problem class. Worst-case analysis has the advantage of providing a guarantee
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on "how bad" the heuristic result could be. The main disadvantage is that the worst-

case performance is usually not predictive of average performance. The best worst

case polynomially bounded heuristic for the TSP is one suggested by Christofides [

1977]. This bound is marginally improved by Cornuejols and Nemhauser [ 1978 ].

To overcome some of the negativity associated with worst-case analysis, probabilistic

analysis is introduced. Probabilistic analysis predicts how the heuristic will perform for

a "typical" problem instance. What defines a "typical problem" is a major drawback

with probabilistic analysis.

In this thesis, various test problems are defined for the 2-period TSP, and the

developed heuristics are empirically tested against these test problems.

2.8 Variants of the Travelling Salesman Problem

The 2-period TSP is only one of many variants of the basic TSP. Other variants include

: Prize Collecting Travelling Salesman, Balas [ 1989 ]

M-Tour Travelling Salesman, Russell [ 1976 ]

Bottleneck Travelling Salesman, Garfinkel and Gilbert [ 1978 ]

Time-Dependent Travelling Salesman, Fox, Gavish and Graves [1980],

Examinations of the above variants are important because they add insight into the

variant, and then by reflection back to the basic TSP. For example, the analysis by

Balas [1989] of the inequalities that define the polytope of the Price Collecting

Travelling Salesman Problem is of help when one analyses the inequalities of the 2-

period TSP.
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2.9 The Period Routing Problem

Both the vehicle routing problem and the travelling salesman problem are traditionally

concerned with minimising total distance or total cost on the assumption that any tour

derived or routes generated will be followed on a particular day. In formulating these

models no regard is had for such practical considerations as driver familiarity with a

route, customer requirements for a fixed call, and varying customer service levels.

Practical considerations suggest that a routing model with a time horizon longer than

one day, The Period Routing Model, may have many applications.

Beasley [1984] distinguished three different types of vehicle routing problems - The

Daily Routing, The Period Routing, and the Fixed Routes.

The Daily Routing is concerned with developing a set of vehicle routes for a single

day's deliveries. The vast bulk of routing heuristics such as Clarke and Wright [1964]

have been developed for this type of problem.

The Period Routing is where a set of vehicle routes is developed for a certain period to

meet customer service levels requirements. The typical period here is seven days, and

customers have such requirements as only deliveries on Mondays and Thursdays, or

Fridays only, etc. Christofides and Beasley [ 1984] developed a heuristic for the

problem of designing vehicle routes to meet service levels for customers. Their

heuristic is based on an initial allocation of customers to days, followed by an

interchange procedure. Russell and Igo [1979] examines a routing problem in which

the objective is to assign customer demand points to days of the week in order to

optimise the week's routing effort.

The Fixed Routes problem arises when a set of vehicle routes has to be developed that

can operate unchanged for a given period of time. The model has application in the

area of milk collection because dairy farmers require the milk tanker to call at fixed
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times so as to synchronise with milking time. Beasley [1984] suggests a heuristic for

the Fixed Routes problem.

The 2-Period TSP is both a variant of the TSP, and an example of a Period Routing

Model.
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Chapter 3 Optimal Solution

This chapter describes the solution of three examples of the 2-period TSP. These

examples, termed the 11 node, 21 node and 42 node problems, represent small and

medium sized versions of the problem. This chapter demonstrates that, while small

problems can be solved directly using direct {0,1} programming, increasing the

problem size considerably complicates the search for an optimal solution.

3.1 11 Node Problem

The 11 node problem consists of a depot, node number 1, 4 nodes to be visited by both

tours, and 6 nodes to be visited by only one tour. The data for this problem is

contained in Appendix 1.

Section 1.4 of chapter 1 details a {0,1} formulation for a general 2-period TSP. The

formulation for the 11 node problem is as follows :

M i n i m i s e Z = 41Xoi,ozi + 58Xoi,O3.i + 14Xoli04,i + 54Xoi,O5,i + 73Xo,,O6,i +

40X01,07,1 + 45X01,08,1 + 50X01,09,1 + 10X01,10,1 + 40X01,11,1 + 22X02,03.1 +

J6XQ2,04,1 "•

32Xo2,lO,l "•

32Xo3,O8,l ~*

32Xo4,O7,l "̂

78Xo5.o",i "1

78Xo6,O8,l H

41X07,10.1 "i

85Xo9,n,i H

73Xoi,O6,2 H

22X02,03,2 "̂

51X02.09,2 ^

86X03,07,2 ^

61XQ4,06,2 ^

45Xo5,O6,2 "

73XQ6.07,2

- 14Xo2,O5,l H

- 50Xo2,u,i H

73X03,09,1 ^

51Xo4,O8,l ^

- 36Xo5,O8,l H

- 45X06,09,1 H

- 80X0^,11,1 J

^ 41X10,11., -

- 4OXoi,O7,2 H

1- 3 6X02,04,2 •

H 32Xo2,lO,2 -

I" 32Xo3,O8,2 •

I" 32Xo4,O7,2 "

I" 78X^5.07,2 "

1" 7 8 X Q 6 08,2

- 42X02,06,1 +

- 57Xo3,O4,l +

~ 50-?v03 101 ~T~

' -?Oyvo4 09 1

H 63Xo5,O9,l +

H 63Xo6,io,, +

H 81Xo8,O9,l +

I" 41X01,02,2 ~*~

1- 45X01,08,2 +

I" 14X02,05.2 "*"

f- 50X02,11,2 +

H 73Xo3,O9,2 +

I" 51Xo4,O8,2 +

1" 36Xo5,08,2 "*"

1- 45Xo6,O9,2 +

64XQ2,07,1 ^

10X03,05,1 H

51Xo3,,i,i H

10X04,10,1 ~l

45Xo5,lo.l H

92X06,11,1 H

41X08,10,1 ^

5oXoi,o3,2

50X01,09,2 H

42XQ2,06,2 "

57Xo3,O4,2 "

50X03,10,2 -

3 6X04,09,2 "

63Xo5,O9.2 "

63Xj6,10,2 "

- 36Xo2,O8,l

I" 54Xo3,O6,l

- 50XQ4,05,1

H 51X04,11,1

H 54Xo5,ll,l

H 82X07.08,1

I- 20Xo8,i,,i

f" 14Xoi5O4,2

H 10XoUo,2

1" 64Xo2,07.2

H 1OXO3,O5,2

^ 51X03.11,2

1" 45Xo5510,2

•- 92X06.11.2

+ 51X02,09,1

~t~ 06X03,07.1

+ 61XQ4,06,1

+ 45Xo5,O6.I

+ 73Xo6,O7,l

+ 30XQ-,09.1

+ 45Xo9,,o,i

+ 54X01.05.2

+ 40X01,11,2

+ 36X02.08.2

+ 54Xo3,O6,2

+ 5OXo4,O5.2

+ 51X04,11.2

+ 54X05.,,.;

+ 82XQ-.08.2
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30X<)7,09,2 + 41X07,10,2 + 80X07,11,2 + 81Xog,O9,2 + 41Xo8,10,2 + 2OXo8,ll,

45Xo9,10,2 + 85Xo9,ii 2 + 41X)0,11.2

Subject to:

1- Xoi,O2,l + Xoi,O3,l + Xoi,O4,l + Xoi,O5,l + Xoi,O6,l + Xoi,O7,l + Xoi,O8,l + Xoi,O9,l + Xoi,lO,l + Xoi,ll,l = 2

2. Xoi,O2,l + Xo2,O3,l + Xo2,O4,l + Xo2,O5,l + Xo2,O6,l + Xo2,O7,l + Xo2,O8,l + Xo2,O9,l + Xo2,lO,l + Xo2,ll,l = 2

3 . Xoi,O3,l + Xo2,O3,l + Xo3,O4,l + Xo3,O5,l + Xo3,O6,l + Xo3,O7,l + Xo3,O8,l + Xo3,O9,l + Xo3,lO,l + Xo3,ll,l = 2

4. Xoi,O4,l + Xo2,O4,l + Xo3,04,l + Xo4,O5,l + Xo4,O6,l + Xo4,O7,l + Xfl4,08,l + Xo4,O9,l + Xo4,lO,l + Xo4,U,l = 2

5. Xoi,O5,l + Xo2,O5,l + Xo3,O5,l + Xo4,O5,l + Xo5,O6,l + Xo5,O7,l + Xo5,O8,l + Xo5,O9,l + XQ5,10,1 + Xo5,H,l = 2

6. Xoi,O2,2 + Xoi,O3,2 + Xoi,O4,2 + Xoi,O5,2 ~*~ Xoi,O6,2 + Xol,07,2 + Xoi,O8,2 + Xoi,O9,2 + Xoi,lO,2 + Xoi,ll,2 = 2

7. Xoi,O2,2 + Xo2,O3,2 + Xo2,O4,2 + Xo2,O5,2 + Xo2,O6,2 + Xo2,O7,2 + Xo2,O8,2 + Xo2,O9,2 + Xo2,lO,2 + Xo2,ll,2 = 2

8. Xoi,O3,2 + Xo2,O3,2 + Xo3,O4,2 + Xo3,O5,2 + Xo3,O6,2 + Xo3,O7,2 + Xo3,O8,2 + Xo3,O9,2 + Xo3,lO,2 + Xo3,ll,2 = 2

9. Xoi,O4,2 + Xo2,O4,2 + Xo3.O4,2 + Xo4,O5,2 + Xo4,O6,2 + Xo4,O7,2 + Xo4,O8,2 + Xo4,O9,2 + Xo4,lO,2 + X(M,li,2 = 2

10. Xoi,O5,2 + Xo2,O5,2 + Xo3,05,2 + Xo4,O5,2 + Xo5,O6,2 + Xo5,O7,2 + Xo5,08,2 + Xo5,O9,2 + Xo5,lO,2 + X(>5,11,2 = 2

1 1 . Xoi,06,I + Xo2,O6,l + Xo3,O6,l + Xo4,O6,l + Xo5,O6,l + Xo6,O7,l + Xod,O8,l + Xo6,O9,l + Xoo,10,l + Xoo.11,1 - 2Yo<5,l = 0

12. Xoi,O7,l + Xo2,O7,l + Xo3,O7,l + Xo4,O7,l + Xo5,O7,l + Xo6,O7,l + Xo7,O8,l + Xo7,O9,l + Xo7,lO,l + Xo7,ll,l - 2Yo7,l = 0

13. Xoi,O8,l + Xo2,O8,l + Xo3,O8,l + Xo4,O8,l + Xo5,O8,l + Xo6,O8,l + Xo7,O8,l + Xo8,09,l + Xo8,lO,l + Xo8,ll,l - 2Yo8,l = 0

14. Xoi,O9,l + Xo2,O9,l + Xo3,O9,l + Xo4,O9,l + Xo5,O9,l + Xo6,O9,l + Xo7,O9,l + Xo8,09,l + Xo9,lO,l + Xo9,U,l - 2Yo9,l = 0

15. Xoi.10,1 + Xo2,lO,l + Xo3,lO,l + Xo4,lO,l + Xo5,lO,l + XQ6,10,1 + Xo7,lO,l + Xo8,IO,l + Xo9,lO,l + Xio.11,1 - 2Y]0,l = 0

16. Xoi.n.i + Xo2,n,i + Xo3,ii,i + Xo4,n,i + Xo5,n,i + Xoe. iu + Xo7,n,i + Xo8,n,i + Xo9,n,i + X i o j u - 2 Y n , i = 0

17. Xoi.06,2 + Xo2,O6,2 + Xo3,O6,2 + Xo4,O6,2 + Xo5,O6,2 + Xo6.O7,2 + Xo6,08,2 + Xo6,O9,2 + Xo6,lO,2 + Xo6,ll,2 - 2Yo6,2 = 0

18. Xoi,O7,2 + Xo2,O7,2 + Xo3,O7,2 + Xo4,O7,2 + Xo5,O7,2 + Xo6,O7,2 + Xo7,O8,2 + Xo7,O9,2 + Xo7,lO,2 + Xo7,11.2 - 2Yo7,2 = 0

19. Xoi,O8,2 + Xo2,O8,2 + Xo3,O8,2 + Xo4,O8,2 + Xo5,O8,2 + Xo6,O8,2 + Xo7,OS,2 + Xo8,O9,2 + Xo8,lO,2 + Xo8,ll,2 - 2Yo8,2 = 0

2 0 . Xoi,O9,2 + Xo2,O9,2 + Xo3,09,2 + Xo4,O9,2 + Xo5,O9,2 + Xo6,O9,2 + Xo7,O9,2 + Xo8,O9,2 + Xo9,lO.2 + X()9,H,2 - 2Yo9.2 = 0

2 1 . Xoi.10,2 + Xo2,lO,2 + XQ3,10,2 + Xo4,lO,2 + XQ5,10,2 + Xo6,lO,2 + Xo7,lO,2 + Xo8,lO,2 + Xo9,lO,2 + Xio,ll,2 - 2Ylo,2 = 0

2 2 . Xoi,ll,2 + Xo2,ll,2 + Xo3,ll,2 + X04.II.2 + Xo5,ll,2 + Xo6,ll,2 + Xo7,ll,2 + Xo8,ll,2 + Xo9,ll,2 + Xio,ll,2 - 2Yn,2 = 0

23. Yoe.i + Y06,2 = 1

24. Y07,i + Y07.2 = 1

25. Y08.1 + Yo8,2 = 1

26. Y09,i + Y09,2 = 1

27. Yio,i + Yio,2 = 1

28. Y l u + Yi , , 2= l

29. X l j k a n d Y l k e { 0 , l }

30. The solution is two tours, with nodes 1 to 5 on both tours, and nodes 6 to 11 on only 1 tour.
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Constraints 1 to 10 require that nodes 1 to 5 are connected to each of the two tours by

two arcs. Constraints 11 to 22 force nodes 6 to 11 to be connected by two arcs to only

one tour. The tour to which these nodes are connected depends on which of the Y's

have a value of 1.

Constraint 30 requires that any solution is consistent with the tour requirements. The

number of constraints required to explicitly express constraint 30 is large. Thus, the

solution methodology adopted is to ignore constraint 30, and then, on an " as needed "

basis to add constraints to prevent violations.

The above problem, with constraint 30 ignored, is solved using the {0,1} algorithm of

CPLEX. The solution is shown in Figures 3.1 and 3.2.

Figure 3.1: 2-Matching Solution for Davi

11

Figure 3.2 : 2-Matching Solution for Day?
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The solutions in Figures 3.1 and 3.2 have a total length of 359. The solution for Day2

contains subtours. To prevent these subtours occurring in later solutions the following

constraints are added to the model.

i,O4,2 + Xoi,10,2 + X()4,10,2 ^ 2

2,O3,2 + X<)2,05,2 + X()3,05,2 ^ 2

Because of the symmetry in the problem, the above constraints are duplicated to apply

also to Dayi

X()l,04,l + Xoi,lO,l + X()4,10,l ^ 2

X()2,03,l + Xo2,O5,l + X()3,05,l ^ 2

Adding the 4 additional constraints to the model gives a new solution shown in Figures

3.3 and 3.4

Figure 3.3 : Optimal Solution for

11

Figure 3.4 : Optimal Solution for Day?
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The solutions, shown in Figures 3.3 and 3.4, have a total tour length of 406. The

solution satisfies the tour requirements, and is, therefore, the optimal solution.

The {0,1} programming facility within the CPLEX package solves the above problem

is less than 1 second. For problems of equivalent size to the 11 node problem, the

above solution methodology provides an optimal solution in reasonable time.

3.2 21 Node Problem

The 21 node problem consists of a depot, node number 1, 8 nodes to be visited by both

tours, and 12 nodes to be visited by only one tour. The data for this problem is

contained in Appendix 2, and the nodes are displayed in Figure 3.5.

20

• 16 • 5 • *

• 15 B»

• « •» B 1 3

• 2 »4 mu

10 _ 17

Depot "

Figure 3.5 : 21 Node Problem

The integer programming formulation of the above problems contains

440 decision variables of the form {0,1},

42 2-matching constraints,

12 constraints of the form Yn + Y;2 = 1, and

Subtour elimination constraints.

26



The solution procedure adopted is to initially solve the {0,1} formulation with the

subtour elimination constraints ignored. A loop is then entered during which subtour

elimination constraints are added on an "as needed" basis, and the model resolved. The

loop terminates when the solution meets all of the tour requirements.

The initial solution, the 2-matching solution, with all subtour elimination constraints

ignored is shown in Figures 3.6 and 3.7. The objective value of this solution is 627.

16

20

Figure 3.6 : 2-Matching Solution for Dayi

Figure 3.7 : 2-Matching Solution for Day?.

As Figures 3.6 and 3.7 show, the 2-matching solution contains subtours. Several

iterations are required in which subtour elimination constraints are added on an "as
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needed" basis. Finally, a solution is obtained that satisfies the tour requirements. This

solution with an objective value of 660 is shown in Figures 3.8 and 3.9.

Figure 3.8 : Optimal Solution for Davi

116

.10

20

Figure 3.9 : Optimal Solution for Day?.

The time to solve the {0,1} model at each stage in the above procedure is of the order

of several hours on a pentium running CPLEX. This excessive processing time

suggests that for problems of a larger size this direct approach is not realistic. This

indirect approach using LP relaxation is introduced in the solution of the 42 node

problem.
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3.3 42 Node Problem

The 42 node problem originates from the green fields surrounding Dublin, Ireland.

41
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10
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35
• ^38

u 39

Here a cluster of 41 dairy farms are allocated to a milk tanker. Depending on the size

of on-farm storage capacity, the milk from some farms must be collected every day,

while other farms with sufficient storage to hold the milk output from two days, can be

collected every other day. The scheduler creates two tours, and each tour is driven on

alternate days. It is the scheduler's responsibility to allocate the every other day farms

to one of the tours.
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In practice the capacity of the tanker is of importance, and the scheduler attempts to

allocate each every other day farm to a tour so as to minimise the total distance over

the two days, having regard for the ability of the tanker to transport the milk on both

days. For the purpose of the analysis in this thesis, the tanker capacity restriction is

removed, and the decision of the scheduler depends solely on minimising total distance.

Should milk be collected from a farm every day? What impact does collecting the milk

every second day have on milk quality? The answers to both of these questions depend

on the quality of the on-farm storage system. If the milk can be cooled quickly on farm,

and then stored below 4°C, milk will last for several days. As the quality of on-farm

storage increases, the dairy sector is considering moving from every second day

collection to every third day collection. To implement this concept, farmers must be

encouraged to increase both the quality and capacity of their on-farm storage tanks. In

this case some farms will require collection every day, some farms every second day,

and some farms every third day. If the tanker capacity restriction is removed from this

new problem, we have a m-period TSP. This problem will be mentioned again in

Chapter 8.

For the 42 node problem Node 1 corresponds to the depot,

Nodes 2 to 13 require every day collection, and

Nodes 14 to 42 require collection every other day.

Appendix 3 details the location of the nodes. The analysis assumes that the distance

between the farms, called nodes for the remainder of this thesis, is the straight line

distance.
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3.3.1 Solution of the 42 Node Problem

In Section 3.1 and Section 3.2 small versions of the 2-period TSP are solved directly

using {0,1} programming. This approach requires excessive processing time for the 21

node problem. An attempt to directly solve the 2-matching {0,1} formulation of the 42

node problem was terminated after the CPLEX programme failed to find an optimal

answer after several days continuous running on a Pentium PC.

This failure of the direct approach prompted the development of an more sophisticated

procedure. This new approach solves increasingly constrained LP relaxations of the

model. It is only when the LP relaxation satisfies all sub-tour and comb constraints

that an attempt is made to solve the problem using integer programming. All timings

quoted in this Section are obtained using the CPLEX package on a Pentium Pro PC

running Windows NT. Figure 3.14 contains a flow diagram of the solution process.

3.3.2 Stage 1. 2-Matching Linear Programming Relaxation.

The starting LP relaxation is the one derived from the 2 matching constraints. The

formulation of which is :

41 42 2

Minimise

Subject to

£2 # = 2 , i = l.. 13, k = \, 2
7=1 j=i+\

Z ^ + 2 X * - 2 ^ = 0, / = 14...42, * = 1, 2
7=1 7=z+l

Yn + Yi2 = \, i = \4... 4 2

0 <XijkandYik < 1
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The above formulation consists of 1,722 X variables, 58 Y variables, and 113

constraints. The solution of this gives a value of 1,554 in a time of 0.27 seconds.

3.3.3 Stage 2. Constraint to remove the symmetry between Dayi and
TVDay2.

The solution to the above LP relaxation is the same for the two days. As additional

constraints are added to the formulation it is found that adding a constraint to prevent

some condition for one of the days, simply causes that condition to occur on the other

day. To break the symmetry in the problem, a constraint is added which forces Node

14 to be on the Dayi tour. The form of this constraint is : Y14-1 = 1

The solution of this model gives a value of 1,568 in a time of 0.27 seconds.

3.3.4 Stage 3. Constraints of the form Xyk < Yik added iteratively.

The logic of the problem suggests that if node j , one of the every other day nodes, is

not to be visited by tour k, then all of the Xyk must equal zero. These requirements,

named the VUB, variable upper bound, constraints by a friend and colleague Professor

Paul Williams, are incorporated into the relaxation by the constraints :

XJlk<Y]k, i > j , y = 14... 42 , * = 1,2

XJ]k<Yjk, K J , J = 1 4 . . . 42, A: = 1,2

The power and importance of the above constraints are shown by the increase in the

objective value solution that is obtained when the VUB constraints are added to the

formulation. It will also be demonstrated later in this section that they are the

difference between success and failure when one attempts to solve the problem using

integer programming.
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The number of VUB inequalities is quite large, and thus the approach is adopted

whereby these constraints were added to the LP-relaxation on an "as needed" basis.

In all 71 VUB constraints are violated and explicit constraints are added, and at the

conclusion of this Stage a solution of value 1,694.5 was obtained in a time of 0.44

seconds.

Later in the process, as additional constraints were added to the LP-relaxation, the

solutions are checked for VUB violations, and additional constraints are added as

required.

3.3.5 Generalised Sub-tour Elimination Constraints

For the Standard Symmetric Travelling Salesman Problem, the sub-tour elimination

constraint demands that

r < n(S)-l, where S is a subset of the set of all nodes.

To extend this sub-tour elimination concept to the 2-Period TSP requires a partition of

S, a subset of all nodes, into S1 and S2 , where S2 contains nodes visited on both days,

and S1 contains nodes visited on only one day. The form of the generalised sub-tour

elimination constraint depends on whether either S1 or S2 are empty. The three

possible cases are:

Case 1 : S1 = <(), S contains only nodes visited on both days.

X X. < n{S2)-l, fo rk=lor2
7,7 eS

Case 2 : S1 and S2 ^ <}>, S contains both types of nodes.

-\, f o r k = l o r 2
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Case 3 : S - § , S contains only nodes visited on one day.

£ X
iik ^ E y * -M${YA> for k = 1 or 2

Consider the following examples that occur during the solution exercise.

Example 1 : X5,8,i = 1, X5Ai = 1, and X^g.i = 1

This is a violation of a Case 1 type constraint, and the following inequalities are added

to the problem :

X5.8J + X56J + -^6,8,1 — 2

Xs,8,2 + X5.6.2 + X6,8?2 ^ 2

Even though the violation only occurred on Dayi, a constraint is added for both days

to avoid this portion of the solution jumping to the other day.

Example 2 : XiO,39,i = 0.25, Xio,34,i = 0.25, and X34,39,i = 0.25, with

Y34,i = 0.25 and Y39.i = 0.25.

The Case 2 inequalities added are :

XlO,39,l + Xio,34,l

Xio.39,2 +

A programme was written to automatically identify all circuits in the solution. For each

circuit, the programme then sums the X values for all arcs in the circuit. Next, the

programme checks whether the sum of the X's violates a subtour elimination

constraint. Details of this programme that automatically detects violations of circuit

based sub-tour constraints are given in Appendix 7. This programme is imbedded in a
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loop that consisted of solving the Linear Programme, and then using the automatic

procedure both to detect violations and then to add the appropriate constraints. This

process continues until no circuit based sub-tour violations exist. In addition to

checking for sub-tour violations the programme adds, as required to prevent violations,

VUB constraints.

In total the above loop is performed 7 times and 54 sub-tour elimination constraints

together with an additional 6 VUB constraints are added.

The solution of the final loop gives a value of 1,711.8 in a time of 0.55 seconds.

This solution is shown in Figure 3.10. and the values are given in Appendix 4. The

value on each arc is the sum of Xyi and Xy-2 for that arc. If no figure is associated with

an arc, then Xyi + Xy2 = 1 for that arc.

37

39

Figure 3.10 : LP Relaxation Solution after Stage 4.
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3.3.6 Stage 5. Simple Comb Constraints.

At the end of Stage 4, the LP solution satisfies all generalised sub-tour inequalities.

The next stage is to identify comb constraints that might be violated. For the STSP,

the simplest of the combs will consist of a handle of 3 nodes, with a tooth of a single

arc attached to each node. The constraint for this comb is derived as follows :

x2 x5
X4

Summing the above 6 equations gives :

Xs

Eqn 1 :

Eqn 2 :

Eqn 3 :

Eqn 4 :

Eqn 5 :

Eqn 6 :

Node A:

Node B :

Node C :

w

x2

X4

x3

\)

+ X3 + X

+ X5 + X

< 1

< 1

< 1

v^y

4 < 2

5 < 2

6 < 2

< 9

Which implies, because of the integer requirement,

X3+X4 < 4

The above proof was first suggested by Chvatal, and forms the simplest of the Chvatal

Cuts.
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One can also argue on intuitive grounds that any feasible solution to the above can use

at most 4 of the above 6 arcs. In the diagram below the tour travels along Xi, X2, and

X3. In addition, the tour travels along arc Xe. The use of any other arc is impossible in

a feasible solution.

Extending the above to a handle of n nodes suggests :

JJXe<n
edComb

n

2

where e e comb
refers to an arc in the
comb.

The above inequalities applies to simple combs for which the tooth at each node

consists of a single arc. Obviously more complicated structures exist. The comb

concept is now extended to the to the 2-Period TSP, and the solutions are analysed on

a case by case basis. Later in this section, a more general approached is adopted.

Consider the following portion of the solution shown in Figure 3.10.

Depot

The above figure shows a comb, in which the handle, H, consists of nodes 3, 17 and

18. The teeth consist of nodes 1, 4, and 16. The sum of arc values for this comb

equals 4.8. The limit on the arc values for this comb can be derived as follows:
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Day 1, Node 3 :

Day l,Node 17:

Day 1, Node 18:

3j8;i < 2

i7;ig;i < 2

njs,! ^ 2Yi8,l

Day 2, Node 3 :

Day 2, Node 17:

Day 2, Node 18:

^ 2

Arc 3 - 16:

Arc 4 - 17:

Arc 1 - 18:

3,16,l

Adding the above equations suggests 9 V Y J < 11
ed^omb k=l

which implies
e&Comb k=\

An examination of the comb confirms the result that at most 5 arcs in the comb can be

used in a feasible solution. In the diagram below, the solid lines are arcs from a Dayi

tour, and the dashed lines are arc from a Day2 tour. The use of any other arcs yields an

infeasible solution.

Dayi Tour

Day2 Tour
Depot
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For the above comb, the actual sum of the X values equals 4.8. This value is less that

the inequality limit of 5, and thus, in this instance, the comb constraint is not violated.

Examples of other Combs, contained in Figure 3.10., which are investigated are shown

below:

39

For the above comb 2^ zl x ek = 4.8 which satifies the limit of 5
eeComb k=\

For the above comb, the sum of X's contained in the comb must be < 8. In fact, the

values add to 8, and thus the comb inequality is satisfied.

The limit of at most 8 for the above comb can be proved either by summing

inequalities or by an intuitive argument. The intuitive argument is based on the

maximum number of arcs in the comb that can be used in a feasible solution. The

diagram below suggests that, if 8 arcs are used, then the introduction of an additional

arc would produce an infeasible solution.

Dayi

Day2



Consider the following portion of the solution from Figure 3.10.

5
k 8

31

24

37

23

In the above comb, the handle consists of nodes 8, 31, 37, 32, 36, 11, 33, 7, 30, and

28,

tooth 1 consists of nodes 7 and 29,

tooth 2 consists of nodes 11 and 9, and

tooth 3 consists of nodes 8, 5, 25, 24, 26, 23, 27, and 6.

The constraints for the comb are calculated as follows :

Sub tour elimination constraint for tooth 3 :

Sub tour elimination constraint for tooth 3 less node 8

Z X < 9

I X < 7

Node degree constraints for all nodes in the handle <26

X9.HJ+ ^ 2

A sum of the above constraints suggests that

2

k=\
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thus,
eeComb k=\

The actual values for the above comb Xek = 2 2 . 7 5 .
teComb k = \

A constraint limiting the sum to 22 was added to the formulation and the model

resolved. The solution gave a value of 1713.19 in a time of 0.55 seconds.

This solution is shown in Figure 3.11. and the values are given in Appendix 5. The

value on each arc is the sum of Xyl and X-,,2 for that arc. If no figure is associated with

an arc, then X^ + Xy2 = 1 for that arc

37

41 36

39

Efepot

Figure 3.11 : LP Relaxation Solution after 1st set of Comb Constraints.

3.3.7 Derivation of the General Comb Constraints

Consider a comb consisting of a handle, H, and a set of teeth Ti, T2, ..., Tr.

H consists of n nodes {Ru H2, ... Hn }. Of these n nodes some are every day nodes,

and the remainder are every other day nodes.
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Teeth are attached to the handle at various nodes, as shown below:

Tm

For each tooth in the comb, 2 constraints are derived. Constraint 1 is a subtour

elimination constraint for the nodes in the tooth. Constraint 2 is a subtour elimination

constraint for the nodes in the tooth with the node connecting the tooth to the handle

excluded. The form of these constraints depends on whether the comb contains any

every day nodes.

Consider the tooth, Tra, connected to the handle at node Hj, :

Constraint 1 : X X x»k - 2 * (Number of Every Day Nodes in Tm ) +

( Number of Every Other Day Nodes in Tm )

- 2 ; if Tm contains some Every Day Nodes.

"i]k < (Number of Every Other Day Nodes in Tm ) -1 ;

ifT contains no Every Day Nodes.

y e Tm *=1

k = \
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Constraint 2 : 2u L, X k < 2 * (Number of Every Day Nodes in Tm - H ,) +
ijeTm-H . k = l

( N u m b e r o f E v e r y O t h e r D a y N o d e s in Tm - H ( )

- 2 ; if Tm - H j c o n t a i n s s o m e E v e r y D a y N o d e s .

Z-. LJ X iJk < ( N u m b e r o f E v e r y O t h e r D a y N o d e s in Tm - H j ) - 1

if Tm - H ; c o n t a i n s n o E v e r v D a v N o d e s .

For every node in the handle a node degree constraint is generated. These constraints

suggest that:

/_, /_, Xijk < 4 ; if the node is an Every Day Node.
ijk

All arcs connect k = \
to the node

ijk
All arcs connect £=1
to the node

2

X Xiik < 2 ; if the node is an Every Other Day Node.

The complete comb constraint is achieved by adding the constraints of types 1 and 2

for all the teeth with the node degree constraints for all of the nodes in the handle. The

left-hand side of this addition is twice the sum of all the arcs in the comb, while the

right-hand side is a real number. The strength of the comb constraint is achieved if the

right-hand side total is an odd number. The comb inequality is then achieved by

dividing the sum by 2 and rounding down.
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The following portion of the solution in Figure 3.11. is analysed using the above

approach as follows :

Handle = {3, 17, 18}

Ti={17 ,4}

T 2 = { 3 , 13,14,15, 16,40,41,42}

For tooth 1 :

Constraint 1 has right-hand side = 8

Constraint 2 has right-hand side = 6

For tooth 2:

Constraint 1 has right-hand side = 1

Constraint 2 has right-hand side = 0

For the Handle

Sum of node degrees < 8

The addition of the above right-hand sides comes to 23. This divided by 2 and rounded

down provides 11 as a limit of the sum of the arcs in the comb. The actual solution

values with a sum of 11.47 violate this condition. A comb constraint preventing this

44



comb occurring in a later solution was added and the formulation resolved. The

solution gave a value of 1715.21 in a time of 0.55 seconds.

Additional effort could be spent identifying further comb constraints. However, an

attempt at solving the problem using integer programming proved successful and the

search for comb constraints was terminated.

3.3.8 Integer Programming Solution of the LP Model

On completion of Stages 1 to 5, the Linear Programme consisted of 1780 variables and

237 constraints. A complete listing of the constraints added in Stages 2, 3, 4 and 5 is

shown in Appendix 8.

This LP is a relaxation of the original problem in which both the X and Y variables

must take values from {0, 1}. Introducing this restriction on the X and Y variables

and solving the IP by CPLEX gave an optimal solution, with no subtours, of 1,725 in

a time of 25.54 seconds.

This solution is shown in Figures 3.12 and 3.13 and the values are given in Appendix

6.

5 . 8

41

18

Figure 3.12: Optimal Tour for Davi.
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25
37

41

40

14 24

42

39

Figure 3.13: Optimal Tour for Day?.

The success of the IP solution at this stage is in contrast with an attempt to solve the

original integer version of the 2 matching formulation using CPLEX. Table 3.1 shows

the results of attempts at solving the IP at various points in the solution process.

Table 3.1 shows the impact of

the additional VUB constraints,

subtour elimination constraints, and

comb constraints

on the ability of CPLEX to solve the IP problem.
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Model Stage

2-Matching

2-Matching plus VUB

2-Matching plus VUB and

Subtour Elimination

2-Matching plus VUB, Subtour

Elimination and Comb

Constraints.

Processing

time (Sees)

-

56.03

43.12

25.54

Solution

Failed

1,709

1,725

1,725

Nodes

-

3,773

1,995

1,106

Iterations

-

17,630

25,881

15,256

Table 3.1 : Integer Programming Solutions using CPLEX.

The above table verifies the major importance of the VUB constraints in any attempt

to solve this problem using Integer Programming.

Figure 3.14 represents the flow through the solution approach used to solve the 42-

node problem.
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Start

Solve 2-Matching LP
Relaxation

1,554

Break Dayi and Day2

Symmetry
1,568

Add, as required

and resolve

Add, as required,
Sub-Tour

Elimination Constraint

Add, as required,
Comb

Constraint

Yes

Yes

Yes

1,694.5

No? 1,715.2

Solve using Integer
Programming

1,725

Figure 3.14 Solution Process for the 42 node problem
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3.4 Conclusion

The 11 node 2-period TSP can be realistically solved using {0,1} integer programming

directly, with the subtour elimination constraints added on an "as needed" basis. This

direct approached falters, but with perseverance can be made to succeed, for the 21

node problem.

The direct approach is unrealistic for the 42 node problem, and an approach based on

successive LP relaxations provides an optimal solution. Within this approach, the

VUB constraints are the difference between success and failure. Their addition to the

2-matching LP relaxation moves the problem forward to a stage where direct {0,1}

programming will optimally solve the problem. Generalised subtour and comb

constraints also help in moving the LP relaxation closer to the optimal answer, but not

to the same extent as the VUB constraints.

A version of the solution methodology for the 42-node problem is published in Butler,

Williams and Yarrow [1997]. The approach in that paper differs marginally from the

approach used in this thesis. In the paper the VUB constraints are added at each stage

on an "as needed" basis. While, in this thesis, a VUB constraint, once added, remains

in the model.
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Chapter 4. Optimal Solution of the 100 Node Problem.

This chapter describes the procedure to find an optimal solution to an 100 node

example of the 2-Period TSP. The 100 nodes consists of 40 nodes that are to be

serviced by both tours, and 60 nodes that are to be serviced by only one tour. The

data for this problem is contained in Appendix 9

4.1 Solution Approach

Chapter 3 describes a successful attempt to solve the 42-node problem. There, the

solution procedure consists of a staged approached in which an increasingly

constrained LP relaxation is solved. When the LP satisfies all VUB, subtour and comb

constraints, then {0,1} programming is used to provide the optimal solution. It was

initially hoped that this philosophy could be applied to the 100 node problem.

However, as is described below, and as should have been expected with any

combinatorial problem, the final solution proved extremely elusive, and as soon as one

felt that the optimal solution was in sight, then the problem seemed to regain control,

and in the space of one step the solution seemed as far away as ever. Professor Paul

Williams described the solution seeking exercise as similar to nailing jelly to a wall -

just as it seemed that it was finally stable, a new area would ooze out, and

4.2 2-Matching and VUB Constraints

The 2 matching LP relaxation of the 100 node problem consists of 9,900 X variables,

120 Y variables and 260 constraints. This LP gave an objective value solution of 1,049

in a time of 1.48 seconds.

Following the methodology developed for the 42 node problem, a constraint is next

added to break the symmetry of the problem. The LP solution at this stage contains

VUB violations. Through a process of resolving the model and adding VUB

constraints as needed, a solution is found that violates no VUB constraint. The
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resulting LP contains 395 constraints with a solution of 1,157.5. The above increase in

the objective function from 1,049 to 1,157.5 once again shows the power and

importance of the VUB constraints. Unfortunately, it was later found that no other

class of constraint yields such an increase in the objective function.

4.3 Subtour Elimination Constraints

As described in Chapter 3, a computer program was written to identify and introduce

the necessary preventative constraints for circuit based subtour violations. In all 165

subtour elimination constraints are added to the model. At the end of this stage, the LP

model consists of 560 constraints, and solves with a value of 1,199.56.

A diagram of the process is :

Solve 2-Matching LP
Relaxation

1,049

Break Dayi and Day2

Symmetry

1,049

Add, as required
Xijk < Yik

and resolve

Yes

1,157.5

Add, as required,
Sub-Tour

Elimination Constraint

Yes
Violation
of circuit

based
Sub-Tours

260 Constraints

261 Constraints

395 Constraints

560 Constraints



At point A, above, the LP model contains 10,020 variables and 560 constraints. The

objective value solution of this LP is 1,199.56. This solution contains fractional values

for some of the arcs. The best that can be said is that the value of 1,199.56 is a lower

bound on the optimal solution.

Three possible options were considered for the way forward from point A. These are :

1. Add the restrictions Xyk and Y;k e {0,1} and attempt to solve.

2. Add the restriction Y& e {0,1}, while leaving 0 < X;jk < 1, and

continue.

3. Increase the complexity of the LP relaxation by identifying

firstly, non-circuit based sub-tour violations and then comb

constraint violations.

Obviously, option 1 is the simplest. But realistically, option 1 is doomed to failure and

so it proved. The complexity of the problem totally defeated CPLEX on a Pentium

Pro. The CPLEX package aborted after 90,000 iterations when the 32 megabytes of

core memory became inadequate to hold the solution tree.
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4.4 Heuristic Answer I

Before failure, CPLEX found an integer solution, with subtours, of 1,213. This

solution is not proven to be optimal. Analysis of this solution gave a partition of the

Y's across the two tours. This might not be the optimal partition, but maybe it could

be used as part of a heuristic solution to find a good upper bound. This detour into a

heuristic solution proceeds as follows:

1. The LP model at point A is restricted by assigning the Y variables to

the values suggested by the above partition.

2. The Xyk are restricted to {0,1}.

3. The IP formulation is solved using CPLEX. In the solution sub-tours

are identified and constraints are added to prevent their re-occurrence.

The model is continually resolved until two feasible tours are found.

In the above heuristic, because the Y variables are pinned, CPLEX is solving 2

independent TSP problems. The final run produces an objective value solution of 1,225

in a time of 5.33 seconds. These tours are shown in Figures 4.1 and 4.2. This heuristic

solution is considerably better that the previous best heuristic of 1,278.

53



100 Node Problem

Figure 4.1. Davi tour of heuristic solution of total length 1,225

100 Node Problem

Figure 4.2. Day? tour of heuristic solution of total length 1,225
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An update of the solution process is as follows

Xijk and Y* < 1

Solution satisfies VUB
and circuit based

subtour constraints

CPLEX failure

Record Y partition

Xijk e {0,1}
and Yft pinned

Solve using CPLEX, with
subtour elimination

constraints on an "as
needed" basis

Heuristic Solution
of 1,225

Identify Subtours

Xijk and Y* < 1

Identify non circuit
based sub-tour

violations

Identify Comb
Violations
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4.5 Y's restricted to {0,1}

Earlier in this section it was stated that 3 options were considered as the way forward

from point A. Option 1 led to a heuristic solution. Points B and C above correspond to

the previous options 2 and 3. These options are restated as :

2. Add the restriction Yik e {0,1}, while leaving 0 < Xijk < 1, and

continue.

3. Increase the complexity of the LP relaxation by identifying

firstly, non-circuit based sub-tour violations and then comb

constraint violations.

The road from A to B, above, involves restricting the Y variables to {0, 1 }. Solving

this MTP gives a solution of 1,202.67. This solution contains subtours. Using the

automatic procedure for eliminating circuit based sub-tours subtours yields the same

objective value solution of 1,202.67.

4.6 Heuristic Answer II

The options from this point are either to use IP, or else to attempt to identify non-

circuit based subtour violations. Once again the simplest option is to use {0,1}

programming. Unfortunately, CPLEX again failed due to memory space limitations.

However, before failure, CPLEX produced an unproven integer solution, with

subtours, of 1,204. As is described earlier in this section, this 1,204 becomes the basis

of a heuristic solution. The Y values are pinned at the values suggested by the 1,204

solution, and the X variables are optimised. After eliminating several sub-tours, a

heuristic solution of 1,224 is obtained. This is 1 better that the previous best heuristic

solution. This solution is shown in Figures 4.3 and 4.4.
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100 Node Problem

Figure 4.3 : Davi tour of heuristic solution of total length 1,224

100 Node Problem

Figure 4.4 : Day? tour of heuristic solution of total length 1.224
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4.7 Non-Circuit Based Subtours

The diagram of the solution process is now

Xijk and Y* e{0,l}

Heuristic Solution
of 1,225

Xijk e {0,1}

Heuristic Solution

of 1,224

Circuit based Subtour
Free Solution of

1,202.67

Xijk and Yji < 1

Identify non circuit
based subtour

violations

Identify non circuit
based sub-tour

violations

Identify Comb
Violations

The model at the point B, in the previous solution tree, contains

9,900 X variables, where 0 < X < 1,

120 Y variables of the form { 0,1 }, and

562 constraints.
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The objective value solution to this model is 1,202.667. This solution contains no

circuit based sub-tours. However, having manually drawn the solution, several non

circuit based subtours were found. One such example is shown below :

In the above diagram the value shown on each arc is Xyi + Xp for that arc.

Individually, no circuit violates a subtour elimination constraint. However, the total

value of the arcs connecting the 4 nodes must be < 4. The above values sum to 5. Thus

the constraint

Xior28,l + Xio,28,2 + Xio,87,l + Xio,87,2 + Xio,lOO,l + Xio,lOO,2 + X28,87,l + X28,8Z2 + ^ 4

is added to the model.

An iterative process of identifying and then preventing both circuit based and non

circuit based sub-tour violations increased the solution value of the objective function

to 1,213.5. The aggregate solution for the two days is shown in Figure 4.5. The value

shown on each arc is Xyi + Xp for that arc. It is only when this value does not equal 1,

that the appropriate value is shown.
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100 Node Problem

Figure 4.5 : MIP Solution at point D in the solution tree.

A detailed examination of Figure 4.5. suggests that this solution contains neither

subtour or comb violations. At this stage a gap of 10.5 exists between the best

heuristic objective value solution of 1,224 and the best lower bound solution of

1,213.5. Integer programming using CPLEX is now used to bridge this gap.

4.8 Solution by {0,1} Programming

The ability of CPLEX to solve the IP model at this stage proved difficult, and only

after interesting experimentation between the CPLEX parameters that governs the

solution strategy between depth-first search and best-bound search did CPLEX finally

provide an optimal integer answer. Several of the initial answers contained subtours,

but the final, sub-tour free, answer with an objective value solution of 1,224 is

obtained. This solution is shown in Figures 4.6 and 4.7. The existence of the optimal

solution made it unnecessary to explore further node C.
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The final part of the solution process looks as follows :

Xijk and Y* < 1

Heuristic Solution
of 1,225

X i jke{0,l}

Heuristic Solution

of 1,224

Circuit based Subtour
Free Solution of

1,202.67

Identify non circuit
based subtour

violations

Identify Comb
Violations

Subtour and Comb
Free Solution of

1,213.50

Xijke{0,l}

Identify non circuit
based sub-tour

violations

Optimal Solution of
1,224

Identify Comb
Violations

f End j
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100 Node Problem

Figure 4.6 : Davx tour of optimal solution of total length 1,224

100 Node Problem

Figure 4.7 : Day? t o u r of optimal solution of total length 1,224
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4.9 Conclusion

A structured solution approach was developed to solve the 42 node problem. In

general this approach is followed with the 100 node problem. However, due to the

combinatorial explosive nature of the problem, considerable manual input is required to

move the solution process forward. It took all of the luck and perseverance of the

author, combined with a great deal of insight from Professor Williams, to finally

extract the optimal solution from the problem.

It was late one Sunday evening that the author finally obtained the optimal answer, and

as he closed this chapter of the thesis, he left the 100 node problem defeated, but with

admiration for a problem, that could be so simply stated, and yet put up such a gallant

fight to project is optimal solution. Finally, the author warns future explorers not to

travel into the depths of a 2-period problem of more than 100 nodes without due

caution.

In relation, to the solution procedure, the author is reminded of the words of Sir

Winston Churchill, who in 1930 when discussing World War I, stated that " The War

was decided in the first twenty days of fighting, and all that happened afterwards

consisted in battles which, however formidable and devastating, were but desperate

and vain appeals against the decision of Fate. " The war here is the battle with the

100 node problem to yield its optimal solution. Churchill's first twenty days

correspond to the VUB constraints. Their contribution to the LP relaxation are

impressive, and place the problem into the range of solution by integer programming.
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Chapter 5 : Bounds for the 2-Period TSP.

In Chapters 3 and 4, both the 42 node and 100 node versions of the 2-period TSP are

optimally solved using a combination of constrained LP relaxations and integer

programming. Another general purpose methodology that is adapted to the TSP is the

technique of Branch and Bound. The concept goes back to the work of Dantzig,

Fulkerson & Johnson [ 1954 ] on the TSP, although the term branch and bound was

first used - and in the context of the TSP - by Little, Murty, Sweeney & Karel [ 1963 ].

As its name implies, branch and bound consists of two fundamental procedures.

Branching is the process of partitioning a large problem into two or more sub-

problems, and bounding is the process of calculating a lower bound on the optimal

solution of a given sub-problem.

The ability of the branch and bound approach to optimally solve a discrete optimisation

problem depends on the quality of the bounds produced. This chapter investigates

three classes of bounds for the 2-period TSP. The first class is based on increasingly

constrained LP relaxations. The second class is based on an extension of the work

done by Held & Karp [ 1970, 1971 ] on the 1-tree concept. The third is based on

Lagrangian relaxation.

In addition to their importance within optimal solution procedures, bounds play a

major role in the evaluation of heuristic procedures. A key aspect in the empirical

evaluation of heuristics is the comparison of the heuristic result with the optimal tour

length. Unfortunately, especially for large problems, the optimal tour length is not

known. In these cases it has become the practice to compare heuristic results to the

best bound on the optimal solution.

5.1 Bounds based on LP Relaxations

The symmetric 2-period TSP is defined on a complete undirected graph G = (V,E) on

n nodes with node set V and arc set E and costs cy. V is divided into two sets, V1 and
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V . V contains m nodes each of which is to be visited by only one tour. V2 contains

n2 nodes each of which is to be visited by both tours. The problem is stated
as

Minimise ZsLLQjX* (5 n
ieV ;>i k=\

subject to

IX* + IX* = 2, 1 e V2, k =1, 2 (5.2)
j-j<' J-J>'

I X * + I X , -2Ylk = 0, / E Vx, k = 1, 2 (5.3)

Subtour Elimination Constraints (5.4)

Ya + Yl2= 1, / e Vx (5.5)

^ = 0 o r l j,jeVJ>i,andk = lor2 (5.6)

4 = 0 o r l / e p ; , A:= I or 2 (5.7)

A detailed explanation of subtour elimination constraints (5.4) is contained in Section

1.4 of Chapter 1.

As part of the solution procedure to the 42 node and 100 node examples of the 2-

period TSP, detailed in Chapter 3 and Chapter 4, various LP relaxations are solved. All

of these LP relaxations are solved in a few seconds using CPLEX on a Pentium Pro.

These solutions provide bounds on the optimal solution.

5.1.1 2-Matching LP Relaxation

The 2-matching LP relaxation is obtained by removing constraints (5.4) and relaxing

the {0,1} requirement in (5.6) and (5.7) to 0 < XIjk and Y* < 1. Experience from

Chapter 3 and Chapter 4 suggests that this relaxation provides a poor bound. The
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bound being 90% for the 42 node problem, and only 86% for the 100 node problem of

the optimal value.

The solution to the 2-matching LP relaxation violates, what are termed in Chapter 3,

the VUB constraints. By explicitly adding VUB constraints on an "as needed basis"

provides a solution that satisfies both the 2-matching constraints and the VUB

constraints. The quality of the bound provided by this solution is better, being 98% and

95% on the optimal solution for the 42 node and 100 node problems respectively.

5.1.2 Held-Karp Bound

One of the best lower bounds for the symmetric TSP, called the Held-Karp lower

bound, is the solution to the linear programming relaxation of the standard integer

programming formulation. Johnson, McGeoch and Rothberg [ 1996 ] show that, for

randomly generated problems, the optimal tour length averages less than 0.8% over the

Held-Karp bound. This LP relaxation satisfies all of the 2-matching and subtour

elimination constraints. For the TSP the Held-Karp bound can be obtained either by

solving the LP relaxation and then adding generalised subtour elimination constraints,

or by Lagrangian relaxation applied to the 1-tree concept.

The 2-period problem is defined by the mathematical formulation (5.1) to (5.7). An LP

relaxation of this formulation is obtained by replacing the integer restriction in (5.6)

and (5.7) by the constraints :

0<Xijk< 1

0 < Y. < 1ik

To reflect the pioneering work done by Held and Karp, the bound obtained from the

solution of the above relaxation is termed the Held-Karp bound for the 2-period TSP.

The Held-Karp bound for the 2-period TSP is obtained by first solving the 2-matching

LP relaxation. Generalised subtour elimination constraints are next added on an "as
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needed" basis. The solution obtained is the required bound. This process is performed

in Chapter 3 for the 42 node problem and Chapter 4 for the 100 node problem. The

results provide a lower bound on the optimal answer of 99.2% and 99% for the 42 an

100 node problems respectively.

Table 5.1 summarises the quality of the bounds obtained from LP relaxations for the

42 node and 100 node problems.

Model

2-matching LP relaxation.

2-matching LP relaxation
plus VUB constraints

Held-Karp Bound

Optimal

Bound

42 Node

1,554 90%

1,694.5 98%

1,711.8 99.2%

1,725

100 Node

1,049 86%

1,157 95%

1,211 99%

1,224

Table 5.1: Bounds from LP Relaxation

5.2 Bounds from the Shortest Spanning 1-Tree.

A relaxation of the 2-period TSP is obtained by removing the restriction that the

solution consists of two tours. In the one tour relaxation, each every day node is

duplicated, and each every second day node is included only once. Therefore, the

single tour passes through each every day node twice, and once through each every

second day node. A value of oc is allocated to the distance between the two

occurrences of each every day node. This prevents the tour travelling directly between

these duplicated nodes.

The figure 5.1 shows the 11 node 2-period TSP with each every day node duplicated.

In this problem, nodes 1 to 5 are every day nodes, and are duplicated with nodes 1' to

5' respectively.
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Figure 5.1 : 11 node 2-Period TSP with nodes 1 to 5 duplicated.

The TSP relaxation of the 11 node 2-period TSP contains 16 nodes. In general, the

TSP relaxation of the 2-period TSP is defined on a complete undirected graph G =

(V,E) on 2n2 + ni nodes. The node set V contains the nodes from V1 together with the

nodes from V2 included twice. The symmetric cost matrix, Cy-, is derived in an obvious

fashion from the original 2-period cost matrix, with the addition that Qi- — oo for all i e

V2. The problem is stated as

Minimise LlJZ^X^ i e V, (5.8)
ieV j>i

subject to

IX+IX=2 ' ?"e F> (5-9>
Subtour Elimination Constraints (5.10)

* f f = 0 a r l i,jeVj>i, (5.11)

A relaxation of the TSP can be obtained through the following amendments to the

above formulation:

• All the equations in (5.9), except one, are replaced by their sum. This

sum forces the total number of arcs in the solution to equal 2n2 + ni - 2.
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• The remaining equation from (5.9) relates to one of the nodes and

forces it to have degree 2. The choice of this node is arbitrary, but the

choice affects the value of the objective solution.

The above relaxation, termed a 1-tree by Held and Karp, is a lower bound on the TSP.

The 1-tree can be solved by omitting a nominated node, and then solving the MST

through the remaining nodes. The omitted node is now connected to the spanning tree

with the two shortest arcs.

Let Zj be the value of the solution to the 1-tree when node i e V is nominated as the

node to be omitted during the solution procedure. Z; is a lower bound for the TSP, and

is also a lower bound on the original 2-period TSP from which the TSP is derived.

The best bound, Z*, is obtained by omitting each node in turn, and then selecting the

largest of the 1-tree solutions, that is

Z* = Max (Z f)

Figure 5.2 shows the 1-tree solution for the revised 11 node TSP with node 1' as the

omitted node. The solution to this 1-tree problem has an objective value solution of

300.

Figure 5.2 : 1-Tree for the revised 11 node TSP with node 1' as the omitted node.
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The impact of the choice of node to be omitted during the 1-tree algorithm for the 11

node 2-period TSP is shown in the following Table 5.2.

Node to be Excluded
1
2
3
4
5
6
7
8
9
10
11

Value of the 1-tree
300
300
296
300
296
328
322
326
322
300
326

Table 5.2 : Length of the 1-tree as a function of the excluded node.

The highest value in the above table, and thus the best bound from the 1-tree relaxation

is 328. This is 81% of the optimal solution of 406.

The quality of the bound for the 2-period TSP from the 1-tree relaxation is consistently

poor, the bound averages only 80% of the optimal value.

5.3 Lagrangean Relaxation

The quality of the 1-tree bound can be improved if the node degree constraints,

expressed in equations (5.9), are included in the objective function by means of

Lagrange multipliers X. Equations (5.9) are as follows :

v. = 2, i e V, (5.9)
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The Lagrangean problem,

= Min { YLq,Xv + Jj,t( Zx + J > = 2)
J<f

where X is any n vector,

is a relaxation of the TSP. P(A) is a lower bound on the 2-period TSP for all X. The

best bound is obtained by finding X* such that

P(A,*) = Max P(A.)

The problem of finding the best value for X is complex, and involves, what is called,

subgradient optimisation. This process starts with an initial estimate for X and then X is

updated as P(X) hopefully converges to its optimal value.

Despite its simplicity, the subgradient method gives rise to a number of problems

regarding the rate of convergence of P(A,). Held, Wolfe, and Crowder [ 1974 ]

provides references for the impact of the subgradient parameters on the rate of

convergence.

The formula used in this section is :

where tk is the " step - length", and

df is the degree of node i at iteration k..

Various studies exist for the best value for tk. It can be shown that the subgradient

optimisation process converges if

* = co and Lim^f* = 0.
k=\

Series of the form 1 + \ + \ + \ + satisfy the above conditions.
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5.3.1 Best choice for /.

The empirical study was performed using the 42 node problem. In each case 100

iterations were performed and the value of P(X) is recorded.

Case 1 :

Using various values for t and a, Table 5.3 is produced.

t
1
5
1
5

a
0.9
0.9
0.99
0.99

Bound after 100 iterations
1,581.47
1611.16
1606.21
1578.09

Table 5.3 : Convergence Value as a Function of/ and a.

Note : the above series for t does not conform to the conditions in the literature for

convergence. However, surprisingly good rates of convergence are obtained.

Case 2 :

k _ 1
A,=O,t = j

Unfortunately, the above series does not converge to the "best" value within 100

iterations. Other series of a similar form were tested, and none of these performed as

well as the best of Case 1.

The bound obtained from the 1-tree relaxation depends on the choice of node to be

omitted during the procedure. However, as is to be expected from Lagrangean theory,

empirical analysis shows that the choice of node to be omitted during the 1-tree

procedure has no effect on either the convergence or the final value obtained by the

Lagrangean procedure.
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Table 5.4 show the bounds obtained from both the "best" 1-tree and Lagrangean

relaxation for the various 2-period problems.

Bound from

"Best" 1-tree

Lagrangean Relaxation

Optimal

Bound from

"Best" 1-tree

Lagrangean Relaxation

Optimal

11 Node

328

359

406

42 Node

1,404

1,611

1,725

Problem

81%

88%

Problem

81%

93%

21 Node

528

578

660

100 Node

904

1,127

1,224

80%

88%

80%

92%

Table 5.4 : 1-Tree and Lagrangean Relaxation Bounds
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5.4 Lagrangean Relaxation n.

The 2-matching relaxation of the 2-period TSP can be stated as
2

Z = Minimise / , / , / tQ X,

subject to

ieV2, k = l, 2

(5.12)

(5.13)

Xljk = 0 o r l

Yik = 0 o r l

= 0 / e F it = 1 2

/,7 e F,y > i,andk = 1 or 2

/ e Vx, A: = 1 or 2

(5.14)

(5.15)

(5.16)

(5.17)

Z, the optimal solution to the 2-matching, is a lower bound on the optimal solution to

the 2-period TSP.

Z, in turn, has a lower bound ZLp which is the solution of the 2-matching problem with

the integer constraints, (5.16) and (5.17), replaced by

o<xiJk< 1

0<Y l k <l

Consider the problem, created from the 2-matching by adding the constraints (5.13)

and (5.14) into the objective function in a Lagrangean fashion. This problem
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Z (u,v) = Minimise { +

subject to

,,t + Jj, - 2

ieV,

Oorl

Oorl

/,7 e Vj > i,andk = lor2

ieVx,k= I or 2

where u, and v are vectors, provides a lower bound on Z.

It is easy to solve this relaxation for given values of u and v. The optimal solution is

Xyk = 0; if the objective function coefficient of Xjjk > 0.

= 1; otherwise.

In addition, either Yn or Y;2 is set to 1 depending on which has the smaller objective

function coefficient.

Subgradient optimisation is used to find the values for u and v that maximises Z(u,v).

For the 42 node problem, Z(u,v) converges to 1,554. While the 100 node problem

converges to 1,049.

These bounds are the same as ZLp. This is to be expected, since Fisher (1981) shows

that a sufficient condition for Max ( Z(u,v) ) = ZLP is that the Lagrangian problem is

unaffected by removing the integrality restriction on the variables. Geoffiion ( 1974 )

calls this the integrality property.

Since the bound produced by Lagrangean Relaxation II is only as good as the LP

relaxation of the 2-matching problem, has this bound any importance1? The answer is
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yes, and mainly from a computational perspective. For large problems, the size of the

LP might prove difficult to solve. Whereas the solution of the Lagrangian problem is

much simpler.

5.5 Comparison of Bounds.

This chapter derives bounds from both LP relaxations and shortest spanning 1-trees.

The bounds, in increasing order of magnitude, for both the 42 node and 100 node are

shown in Table 5.5.

Bound from

"Best" 1-tree

Lagrangian Relaxation II

2-Matching LP Relaxation

1-tree + Lagrangean
Relaxation

2-Matching Relaxation plus
VUB constraints.

Held-Karp Bound

Optimal

42

1,404

1,554

1,554

1,611

1,694

1,711

1

Node

.5

.8

,725

Problem

81%

90%

90%

93%

98%

99.2%

100

522

1,049

1,049

1,127

1,157

1,211

1

Node

80%

86%

86%

92%

95%

99%

224

Table 5.5 : Bounds for the 2-Period TSP.

Aside from the Held-Karp bound, the quality of the other bounds are sufficiently poor

to suggest that branch and bound is not a viable option for solving very large 2-period

TSPs. Further research is required to create bounds that will make branch and bound

at least as competitive with LP based models for solving medium sized 2-period TSPs.
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Chapter 6 Heuristic Procedures

Chapter 3 and Chapter 4 investigate procedures for finding the optimal solution to

examples of the 2-period TSP. Experience from these chapters suggest that for

problems with over 100 nodes the search time for an optimal solution becomes

excessive. This chapter focuses on heuristic solutions, and the design of procedures

that while not guaranteed to find optimal tours, do find what one hopes are 'good'

solutions.

6.1 Heuristic Procedures

Three classes of heuristics are introduced in this section. These are

a tour construction procedure,

a cluster first route second procedure, and finally

a tour improvement procedure.

Tour construction procedures start with an initial tour, and then using selection rules

and insertion rules add new nodes to the solution.

Cluster first route second procedures use a clustering rule to group nodes and then

tour generating procedures are used to sequence the nodes in a cluster in a route.

Tour improvement procedures start with a feasible solution and then seek to improve

on the answer via a sequence of interchanges. The starting Node for the tour

improvement procedure can be either a random sequence of nodes or else a solution

generated by another heuristic.

The examination of heuristics is concerned with predicting the quality of the solution

to be provided by the heuristic. Johnson and Papadimitriou [1985] identify three

approaches for the comparison of heuristics. These are : worst case analysis,

probabilistic analysis, and empirical testing. Each of these approaches has its
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advantages and its drawbacks. The results reported in this chapter are concerned with

the performance of the three classes of heuristics against the 11 node, 21 node, 42

node, 100 node and 200 node problems. Optimal solutions are available for the first

four of these test problems. For the 200 node problem a lower bound is used for

comparison with the heuristic solution. The data for the 200 node problem is

contained in Appendix 10.

The results reported in this chapter are not exhaustive. A more detailed empirical

analysis of the heuristics is contained in Chapter 7

6.2 Cheapest Insertion Heuristic

This heuristic is from the class of tour construction procedures. In creating tour

construction procedures, decisions must be made as to

• the choice of the initial subtour.

• the selection criteria that will be used to identify who next enters the tour.

• the insertion criterion that will dictate where the new entrant is placed in

the tour.

With some algorithms, such as the cheapest insertion algorithm, the decisions as to

what node is to be inserted and where are made at the same time, other algorithms

can be created which employ different criteria. Variants such as nearest addition,

nearest insertion, farthest insertion, and greatest angle of insertion can be identified.

For the purpose of analysis in this chapter a variant of the cheapest insertion is used

as representative of the tour construction class.

The cheapest insertion heuristic for the 2-period TSP first generates a 2-opt tour

through all of the every day nodes, including the depot. This tour, T, becomes the

starting tour for the day 1 tour, T u and the day 2 tour, T2. For the purpose of

generating T, the 2-opt procedure uses the every day nodes and depot in a random

order as the starting tour.
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Having created the initial tours, nodes are selected, from the set of un-allocated every

other day nodes, for inclusion into one of the above tours. The selection criterion and

insertion criterion are combined and the selected node is chosen as the node whose

cost of insertion into one of the two tours is the cheapest. The process ends when all

of the every other day nodes have been allocated to a tour.

The steps in the cheapest heuristic are as follows :

Step 1 : Generate a 2-opt tour, T, through all of the every day nodes,

including the depot using a random sequence of nodes as the initial

tour.

Step 2 : Initialise

T,= T,

T2= T, and

V1 = { Set of Every other day nodes }.

Step 3 : For all nodes j e V 1 calculate

dij = cheapest way to insert node j into Ti

= Min { d(i,j) + d(j,i+l) - d(i,i+l)} for all i e Ti

d2j = cheapest way to insert node j into T2

= Min { d(i,j) + dO,i+l) - d(i,i+l)} for all i e T2
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Step 4 : Find the node k e V 1 such that

dk = Min { d^ , d2k }

if dik = Min { dJk, d2k} then

insert node k into Ti after node i

else

insert node k into T2 after node i

delete node k from V1

Step 5: IfV1={0}thenend

else goto Step 3

6.2.1 Application of the Cheapest Insertion Heuristic to the 21 node problem.

Step 1 : Generate a 2-opt tour, T, through all of the every day nodes,

including the depot. This tour is shown in Figure 6.1
20

16

.10

Figure 6.1: 2-opt Tour Through All of the Every Day Nodes

Step 2 : Ti = { 1 - 3 - 8 - 5 - 6 - 2 - 4 - 7 - 9 - 1 }

T2= { 1 - 3 - 8 - 5 - 6 - 2 - 4 - 7 - 9 - 1 }

V1 = { 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20 }
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Step 3, 4 & 5 Repeated selection from V1 of the cheapest node to insert. The results

of these steps are included in the following table.

Iteration

1

2

3

4

5

6

7

8

9

10

11

12

Node to Insert

17

13

15

19

11

12

18

16

14

21

10

20

After Node

7

3

8

8

1

11

19

5

3

6

7

8

Into Day

lor 2

1

1

1

1

1

1

1

1

2

1

2

2

Heuristic Results :

Ti = { 1 - 1 1 - 1 2 - 3 - 1 3 - 8 - 1 9 - 1 8 - 1 5 - 5 - 1 6 - 6 - 2 1 - 2 - 4 - 7 - 1 7 - 9 - 1 }

T2 = { 1 - 3 - 14 - 8 - 20 - 5 - 6 - 2 - 4 - 7 - 10 - 9 - 1 }

The total length of the two tours is 691. This contrasts with the optimal solution of

660.

6.3 Inside/Outside Heuristic

The second class of heuristics discussed in this paper is a cluster first, route second

procedure. The concept of cluster first, route second was first introduced by Gillet

and Miller [ 1974 ] with their Sweep heuristic for the vehicle routing problem. The 2-

period TSP can be reduced to two TSP's if a decision is made as to how the every
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second day nodes are to be allocated over the two days. Thus, once a decision is

made as to how the every second day nodes are allocated to the two days, one is then

left with two tour creation problems. Adequate solutions can be found to these two

problems by using any of the TSP tour generating heuristics.

Various criterion can be suggested that could cluster the every second day nodes into

two groups. The clustering criterion used in this section is based on whether a node

falls inside or outside a 2-opt tour through all of the every day nodes, including the

depot.

The rationale behind this heuristic is that on both tours all of the every day nodes

must be visited, and that the tour through these nodes underlies the final solution for

both days. On one day the tour will veer inwards and pick up all of the every other

day nodes inside the tour. On the other day the tour will veer outwards and pick up

all of the every other day nodes outside the tour.

Figure 6.2 shows how the nodes inside the 2-opt tour through all of the every day

nodes are allocated to Day 1, and the nodes outside the tour are allocated to Day 2.

2 opt tour
through the
every day
nodes

Depot

Fieure 6.2 : Inside/Outside Partitioning of Every Second Day Nodes
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The steps in the heuristic are as follows :

Step 1 : Generate a 2-opt tour, T, through all of the every day nodes,

including the depot. The initial tour for the 2-opt procedure is a

random ordering of the nodes.

Step 2 : Initialise

V = { Nodes Requiring Every Day Collection }

V = { Nodes Requiring Every Other Collection }

Step 3 Cluster V1 into V1! and V^ , where:

V i = { Set of Every Other Day nodes allocated to Day 1 }

V'2 = { Set of Every Other Day nodes allocated to Day 2 }

on the basis of whether a Node is inside or outside tour T.

Step 4 : Allocate

V2 + V \ = { Set of nodes to be collected on Day 1 }

V2 + VT
2 = { Set of nodes to be collected on Day 2 }

Step 5: Use the 2-opt procedure to find tours, Ti and T2 , through the sets

V2 + V1! and V2 + V^ . Random sequence of nodes are used as the

starting tours for the 2-opt procedure.

6.3.1 Application of the Inside/Outside Heuristic to the 21 node problem.

Step 1 : Generate a 2-opt tour, T, through all of the every day nodes,

including the depot. This tour is shown in Figure 6.3.
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20

I 16

.10

Figure 6.3 : 2-opt Tour Through All of the Every Day Nodes

Step 2 : V 1 = {10,11,12,13,14,15,16,17,18,19,20}

Step 3 : Cluster V1 into

Inside, V1, = {13,14,15,18,19}

Outside, V1
2= { 10, 11, 12, 16, 17, 20, 21 }

Step 4: Allocate

{ 1, 2, 3, 4, 5, 6, 7, 8, 9, 13, 14, 15, 18, 19 } to Day 1

{ 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 16, 17, 20, 21 } to Day 2

Step 5: Use the 2-opt procedure with random sequences as the initial tours to

find tours through the Dayi and Day2 allocations.

The result of the Inside/Outside heuristic is :

T,= { 1 - 9 - 7 - 2 - 6 - 5 - 1 5 - 1 9 - 8 - 1 3 - 3 - 1 4 - 1 8 - 4 - 1 }

T2 = { 1 - 1 1 - 1 2 - 3 - 2 0 - 8 - 5 - 1 6 - 6 - 2 - 21 - 10 - 9 - 17 - 7 - 4 - 1 }

The total length is 696. This contrasts with the optimal solution of 660.
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6.4 Tour Improvement heuristic

The concept of a tour improvement procedure is well established for the TSP. The

best known procedures are Croes [ 1958 ], Lin [ 1965 ], and Lin and Kernighan [

1973 ]. A tour improvement heuristic creates a local optimal solution. The solution

generated by the heuristic is the best solution within a neighbourhood. This process

starts with an initial solution, chosen arbitrarily or generated by some other heuristic.

The neighbourhood of this initial tour is examined, and if there is no neighbouring

solution which is shorter that the initial solution, then this solution is at least a 'local

optimum'. If a shorter solution is found, then this new solution becomes the basis of a

new neighbourhood search, and the process is repeated until no better solution can be

found within a neighbourhood. The heuristic by Lin and Kernighan [ 1973 ] defines

the 'neighbours' of a tour to be those tours which can be generated from it by a

limited number of interchanges of tour edges.

The tour improvement heuristic detailed in this section is a variant of the 2-opt

procedure for the TSP. The procedure starts with an initial tour, Ti , for Day 1 and

an initial tour, T2 , for Day 2. These tours can either be a random sequence and

random allocation of the every second day nodes or else the tours can be a heuristic

solution. The two initial tours Ti and T2 are combined into a composite tour as

follows :

T2

Depot Depot Depot

Figure 6.4 : Composite Tour for the Tour Improvement Heuristic

The neighbourhood of this initial tour is created by considering all feasible

combinations of pairs of nodes. Arcs connecting these nodes in the current tour are

deleted and a possible reconnection is considered. The arcs to be deleted and

reconnected for each feasible combination of i and j are as follows :
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Current Position :

(a)

Possible
Reconnection:

(b)

Figure 6.5 : Tour Improvement Example, (a) Current (b) Reconnected

If any of the feasible reconnections yield a reduction in the length of the composite

tour then the deletions and reconnections are made and the neighbourhood search

restarts. This neighbourhood search continues until there is no feasible deletion and

reconnection that improves the current solution.

To test the performance of the Tour Improvement procedure, the heuristic was

applied three times to each of the 5 test problems. Firstly, a random sequence of

nodes together with a random allocation of the every second day nodes over the two

days was used as the initial tour. In the second and third applications the initial tour

was provided by both the cheapest insertion and inside/outside heuristics.

The performances of the tour improvement heuristic are detailed later in this chapter.
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6.5 Heuristic Results

This section shows the results from applying the heuristic procedures to the 11 node,

21 node and 42 node problems.

The heuristics examined in this section are :

• Cheapest Insertion.

• Inside/Outside.

• Tour Improvement with Cheapest Insertion as the initial tour.

• Tour Improvement with Inside/Outside as the initial tour.

• Tour Improvement with random initial tour.

6.6 Heuristic Results for the 11 Node Problem

The results achieved when each of the heuristics is applied to the 11 node problem are

detailed below. The results are given in Appendix 11.

6.6.1 Cheapest Insertion Heuristic

Total Length of Cheapest Insertion Heuristic solution is 413.
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6.6.2 Inside/Outside Heuristic

Total Length of Inside/Outside Heuristic solution is 413.

6.6.3 Tour Improvement Heuristic with Cheapest Insertion as the Initial Tour

Length of heuristic solution is 406.

6.6.4 Improvement Heuristic with Inside/Outside as the Initial Tour

Length of heuristic solution is 413.
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6.6.5 Improvement Heuristic with Random Initial Tour

Length of Tour Improvement Heuristic solution is 406.

6.7 Heuristic Results for the 21 Node Problem

The results achieved when each of the heuristics is applied to the 21 node problem are

detailed below. The results are given in Appendix 12.

6.7.1 Cheapest Insertion Heuristic

90-r

80

70-

60-

50

40 -

30-

20--

10--

0 -

10 20 30 40 50 60 70 80 90

The length of the cheapest heuristic solution is 691
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6.7.2 Inside/Outside Heuristic

90 j

80 -

70 -

60-

50-

40 -•

30-

20-

10 -

0 -

116

The length of the inside/outside heuristic solution is 696.

. . - • " ' 2 $

10 20 30 40 50 60 70 80 90

6.7.3 Tour Improvement Heuristic with Cheapest Insertion as the Initial Tour

90

80

70

60

50-

40
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.-•-•' 20
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The length of the heuristic solution is 679.
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6.7.4 Tour Improvement Heuristic with Inside/Outside as the Initial Tour

90--

80--

70 ••

6 0 -

5 0 - •

40-

30-

20-

10--

0 -

10 20 30 40 50 60 70 80 90

The length of the heuristic solution is 693.

6.7.5 Tour Improvement Heuristic with Random Initial Tour

90-r

80

70-

6 0 - •

50-

40

30

20

10

0 -

10 20 30 40 50 60 70 80 90

The length of the heuristic solution is 664.
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6.8 Heuristic Results for the 42 Node Problem

The results achieved when each of the heuristics is applied to the 42 node problem are

detailed below. The results are given in Appendix 13.

6.8.1 Cheapest Insertion Heuristic

200 j

180 -

160 -

140

120

100

SO-

60

40-

20

0

"a.

.41

30 100 150 200 250 300

Total Length of Cheapest Insertion Heuristic = 1,791.

6.8.2 Inside/Outside Heuristic

200 j

ISO

160-

140

120-

100

«0

60

4 0 -

20

0 -

.41

* 4 0

14

f-41

50 100 150 200

Total Length of Inside/Outside Heuristic = 1,891.
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6.8.3 Tour Improvement Heuristic with Cheapest Insertion as the Initial Tour

200 T

ISO

160

140 -

120 -•

100-

80

60

40-

20

0

100 150 200 250 300

Total Length of the heuristic solution = 1,782.

6.8.4 Tour Improvement Heuristic with Inside/Outside as the Initial Tour

Total Length of the heuristic solution = 1,750.
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6.8.5 Tour Improvement Heuristic with Random Initial Tour

200 r

180 ••

160-

140-.

120 ••

100 -

SO-

60

40-

20-

0 -

*'.42

14

100 130 200 250 300

Total Length of heuristic solution = 1,859.

6.9 100 Node and 200 Node Problems

The results of applying the heuristics to the 100 node and 200 node problems are

detailed in Appendix 14 and Appendix 15.

6.10 Computational Results

The results of applying the 2-period heuristics to the five test problems are summarised

in Table 6.1. The optimal solution is available for the test problems of size 11, 21, 42,

and 100 nodes. In the absence of an optimal solution for the test problems of size 200,

the current best lower bounds, derived from an LP relaxation solution, is shown.
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Number

of Nodes

11

21

42

100

200

Optimal

Solution

406

660

1,725

1,224

Lower

Bound

1,518

Cheapest

Insertion

Heuristic

413

691

1,791

1,349

1,896

Inside/

Outside

Heuristic

413

696

1,891

1,331

1,881

Tour

Improvement

& Cheapest

Insertion

406

679

1,782

1,278

1,821

Tour

Improvement

&

Inside/Outside

413

693

1,750

1,292

1,814

Tour

Improvement

& Random

Start

406

664

1,859

1,458

2,298

Table 6.1 : Computational Results for the Heuristic Tour Lengths

Analysis of the Table 6.1 suggests that:

1. The two-step composite procedure of the tour improvement process applied to

an original heuristic solution gives the best answer to each of the test

problems, with the exception of the 21 node problem.

2. On the basis of the five test problems, there is little to choose between the

solutions offered by the cheapest insertion and the inside/outside heuristics. For

the five test problems each heuristic is better for two of the problems , and they

both give the same solution for the 11 node problem.

3. For the test problems with known optimal solutions, the best heuristic answer

is inside 4.5% of optimally .

4. The poor solutions to the larger test problems generated by the tour

improvement heuristic over a random start suggests that the use of random

initial tours will not lead to good solutions with this version of the tour

improvement procedure. This contrasts with the high quality of solution given
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by the tour improvement procedure when applied to initial tours provided by

another heuristic.

As suggested earlier in this chapter, no attempt is made here to perform a detailed

analysis of 2-period heuristics. The objective behind this chapter is to introduce a range

of heuristics for the 2-period TSP. Chapter 7 will perform a more comprehensive

empirical analysis of the heuristics.
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Chapter 7 Empirical Study of 2-Period Heuristics

7.1 Introduction

Chapter 6 introduces three classes of heuristics for the 2-period TSP. These are :

a tour construction class,

a cluster first route second class, and

a tour improvement class.

In this chapter, examples of the above classes of are analysed under the methodology

proposed by Ball and Magazine [ 1981 ]. In their paper several criteria are suggested

for the comparison of heuristics. These include :

Quality of Solution,

Running Time,

Ease of Implementation,

Flexibility, and

Simplicity.

Of the above criteria, Running Time and Quality of Solution can be objectively

measured, the remaining criteria, Flexibility, Ease of Implementation, and Simplicity

are more subjective. Later in this chapter scores are allocated, on the scale of 1 to 10,

for each heuristic for these subjective criteria.

7.2 Running Time and Quality of Solution

To test the performance of the heuristics under the headings of Running Time and

Quality of Solution a set of test problems were randomly generated. The test problems

contained 10 examples of problems of size 50, 100, 150, 200, 250, 500, and 1,000

nodes. For each test problem the number of every day nodes is randomly generated in

the range 25% to 75% of the problem size. For each test problem a set of X,Y co-

ordinates was randomly generated with both X and Y in the range 0 to 100. The d(i,j)
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matrix for each problem is calculated using the rounded integer Euclidean distance

between the points. Full details of the Test Problems can be obtained from the author.

Implementations of the various heuristics are applied to each test problem. The

average solution lengths and the average running times for each heuristic over the 10

test problems for each of the 7 sizes of problems are calculated. The results are

reported later in the chapter. The implementation by the author of the various

heuristics might not be optimal. However, the comparative nature of the analysis

minimises this negative aspect.

7.3 Tour Construction Heuristics

In creating tour construction heuristics, three decisions must be made. These are :

1. The choice of the initial subtours.

With the 2-Period TSP, the final solution is two tours, thus, two initial

tours will be initialised which will then grow into the final solution.

For the heuristics analysed in this section, the initial tours consist of a

simple loop from the depot back to itself.

2. The selection criteria that will be used to identify which node ( not

already in the solution) should next enter the solution.

3. The insertion criterion that will dictate into which of the two subtours

and where the new entrant is placed.

With some algorithms, such as the cheapest insertion algorithm, decisions 2 and 3,

that is the decisions as to which node is to be inserted and where, are made at the

same time.
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Once the Tour Construction algorithm creates the initial tour, the procedure loops

through decisions 2 and 3 until all unallocated nodes have been allocated to a tour.

The literature on Tour Construction heuristics for the TSP suggest many variants. The

variants adapted for the 2-period TSP and analysed in the Chapter are :

• Nearest Insertion,

• Cheapest Insertion,

• Arbitrary Insertion,

• Farthest Insertion,

• Nearest Addition, and

• Cheapest Addition.

In the above titles, the word "Insertion" means that when a new node is identified for

inclusion in a tour, then all possible positions for that new node in the tour are

quantified, and the smallest selected. On the other-hand, the word "Addition" implies

that the process of selecting a node for inclusion, also identifies the position in the tour

where the new node is to be placed.

All of the heuristics are implemented by the author, and the timings are based on the

performance of the heuristics on a Pentium Pro PC.
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7.3.1 Nearest Insertion Heuristic

Let Depot = Node number 1

V1 = { Set of Nodes to be visited by only one tour }

V2 = { Set of Nodes to be visited by both tours }

Step 1 : Initialisation.

Initial Tour for Dayi = { 1 - 1 }

Initial Tour for Day2 = { 1 - 1 }

U = { Set of unallocated Nodes }

= {[VM + t V ' - l J + t V 2 - ! ] }

The nodes in set V1 are included once, and the nodes in V2, minus the

depot are included twice. The reason that the every day nodes are

included twice is that each of them must be allocated twice, once to

Dayi and once to Day2.

Step 2 : Selection.

Find the node k from the set of unallocated nodes that is closest to any

node in the subtours.

Step 3 : Insertion

Insert k into one of the subtours between two nodes i and j so that

d(i,k) + d(kj) - d(i,j) is minimised. In this step it must be insured that

each every day node only appears once in each tour.

Delete node k from the set of unallocated nodes.

Loot Steps 2 and Step 3 are repeated until the set of unallocated nodes is

empty.
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7.3.2 Cheapest Insertion

Step 1 Same as for the Nearest Insertion heuristic.

Steps 2 and 3 are combined into one step as follows :

For each node in the set of unallocated nodes, calculate the least cost

way of inserting the node into one of the tours. The node with the

smallest of the least insertion costs is selected. This node is inserted in

the position that gave its least insertion cost.

Loot Same as for the Nearest Insertion heuristic.

7.3.3 Arbitrary Insertion

Step 1 Same as for the Nearest Insertion.

Step 2 Select a node k at random from the set of unallocated nodes.

Step 3 Same as for the Nearest Insertion.

Loop Same as for the Nearest Insertion.

7.3.4 Farthest Insertion,

Step 1 Same as for the Nearest Insertion.

Step 2 Find the node k from the set of unallocated nodes that is the farthest

from any node in the subtours.

Step 3 Same as for the Nearest Insertion.
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Loot Same as for the Nearest Insertion.

7.3.5 Nearest Addition

Step 1 Same as for the Nearest Insertion.

Step 2 Find the node k from the set of unallocated nodes that is the closest to

any node in the subtours.

Identify the node j in the subtour that is the closest to the node to be

inserted.

Step 3 Add the node k to the subtour either immediately before or after the

node j , which ever is the cheapest.

Loop Same as for the Nearest Insertion.

7.3.6 Cheapest Addition

Step 1 Same as for the Nearest Insertion.

Step 2 and Step 3 are combined :

Loot

Find the node k from the set of unallocated nodes, and the node j from

one of the subtours, so that the cost of inserting k immediately before

or after j is a minimum.

Same as for the Nearest Insertion.
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7.4 Computational Results for the Tour Construction Heuristics.

Table 7.1 shows the average tour length, averaged over the 10 examples, for the

various problem sizes using the different variants of the Tour Construction Heuristics.

Variant

Nearest Insertion

Cheapest Insertion

Arbitrary Insertion

Farthest Insertion

Nearest Addition

Cheapest Addition

Problem Size, Number of Nodes

50

1,103

1,090

1,014

998

1.158

1,090

100

1,625

1,588

1,481

1,455

1.709

1.588

150

1,895

1,824

1,737

1,736

1.987

1,824

200

2,436

2,317

2,237

2,289

2.565

2,317

250

2,529

2,419

2,343

2,389

2.615

2,356

500

3,720

3,682

3,683

3.806

1,000

4,551

Table 7.1 : Average Heuristic Tour Length

Blank cells in Table 7.1 suggest that the heuristic was unable to solve the test problem

is a reasonable processing time.

Values in a cell coloured RED in Table 7.1 are the smallest average distance for that

problem size. This honour is shared among 2 heuristics - Arbitrary Insertion and

Farthest Insertion. It can be argued that the Farthest Insertion heuristic brings the

extreme points into the solution at an early stage, and can then accommodate later

arrivals around these points. It is this approach that generates the good heuristic

solution.

Table 7.1 is based on average tour lengths over 10 problems. This averaging process

might be marginally distorting the results. However, the author is confident that the

recommendations arising from this section have validity.
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Values coloured in BLUE have the largest average distance for a given problem size.

This distinction of being the worst heuristic is attached to the Nearest Addition

Heuristic.

The results from Table 7.1 are shown in graphical form in Figure 7.1.
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Arbitrary Insertion

-Farthest Insertion

-Nearest Addition

-Cheapest Addition
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Problem Size. Number of Nodes
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Figure 7.1 : Average Heuristic Solution versus Problem Size

Figure 7.1 shows the following :

• Cheapest Insertion and Cheapest Addition fail to solve problems over 250 nodes.

• Only Arbitrary Insertion can solve a problem of size 1,000 nodes.

• Consistently the better solutions are given by the Farthest Insertion and Arbitrary

Insertion.

Typically, heuristic procedures are a trade off between quality of solution and

processing time. Table 7.2 shows the average processing time, in seconds, required by

each heuristic variant for each size of problem.
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Variant

Nearest Insertion

Cheapest Insertion

Arbitrary Insertion

Farthest Insertion

Nearest Addition

Cheapest Addition

Problem Size, Number of Nodes

50

6

11

1

7

5

12

100

39

105

2

50

38

104

150

101

236

4

151

99

236

200

382

879

11

518

374

876

250

550

1.120

14

826

464

1.116

500

4.995

64

5.257

4.713

1,000

166

Table 7.2 : Average Solution Time in seconds

The first observation from Table 7.2 is the large difference between the time taken by

the Arbitrary Insertion heuristic, and all the other heuristics. Within the tour

construction procedure, the selection step decides which unallocated node is next to

join the solution. The cheapest, the nearest, the farthest, etc. make a large number of

comparisons before the node is selected. The majority of processing time used by the

heuristic is taken up by this selection step. With the Arbitrary heuristic no such time is

spent. Here a node is selected at random .

Both the Cheapest Insertion and Cheapest Addition heuristics make a complex

decision at the selection step. They decide at this step, not only who is to be selected

from the set of unallocated nodes, but also where the selected node is to be positioned

in the tour. The processing time required by the selection step dictates the overall

processing time of the heuristic. Thus, the processing times taken by the Cheapest

Insertion and Cheapest Addition heuristics are excessive, and under the test conditions

are unable to solve a problem in excess of 250 nodes.

A graph of the processing time results is shown in Figure 7.2.
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Figure 7.2 : Average Processing Time versus Problem Size

Figure 7.2 shows the following:

• Cheapest Insertion and Cheapest Addition fail to solve problems over

250 nodes.

• All heuristics, with the exception of Arbitrary Insertion, have a

processing time that grows polynomially with node size.

• Arbitrary Insertion is the only realistic option for large problem sizes.
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7.4.1 Recommendations from the Class of Tour Construction Heuristics

In all six variants of tour construction heuristics are examined. Based on the empirical

results shown in Table 7.1 and Table 7.2, the following conclusions and

recommendations can be made :

4.

5.

The Nearest Insertion consistently performs worse than the Farthest

Insertion under the two headings of average solution length and average

processing time.

Both the Cheapest Insertion and Cheapest Addition take excessive

processing time, and the resulting solutions are inferior to other

heuristics.

Arbitrary Insertion and Farthest Insertion consistently provide the best

average heuristic solutions.

Nearest Addition provides for every test problem the worst solution.

Arbitrary Insertion offers the only option for solving large problems ( >

1,000 nodes).

Arbitrary Insertion offers, in every case, the least cost, or the 2nd least

cost, heuristic solution.

In conclusion, the author recommends Arbitrary Insertion as the "best" of the tour

construction heuristics.
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Figure 8.2 : Optimal Solution of Total Length 1,217

The optimal solution to the revised 11 node problem has a total length of 1,217.
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Cluster Rule : The clustering criterion is based on whether a point falls inside or

outside a 2-opt tour through all of the every day points,

including the depot.

Tour Generation 2-opt tours through all of the nodes allocated to Dayi and Day

The results of this heuristic against the set of test problems is shown in Table 7.3 and

Table 7.4.

7.5.2 Left Right Heuristic

In a conversation that the author had with an old milk scheduler, the scheduler

suggested " that on one day he concentrates on the East of the county, while on the

other day he concentrates on the West". From this conversation developed the Left-

Right heuristic.

In essence a vertical line is drawn on the plane containing the nodes. All every second

day nodes to the right of this line are allocated to Dayi and all to the left are allocated

to Day2. Where the vertical line is drawn can be the subject of further analysis. For the

purpose of this study, the vertical line is drawn trough the depot.

Cluster Rule : A vertical line is drawn through the depot. All every other day

points to the right of this line are allocated to Dayi, the

remainder are allocated to Day2

Tour Generation 2-opt tours through all of the nodes allocated to Dayi and Day 2
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7.6 Computational Results for Cluster First, Route Second Heuristic

As is described earlier in the chapter, the heuristics are applied to 10 test problems

from 7 different problem sizes. Table 7.3 shows the average tour length. While Table

7.4 shows the average processing time.

Variant

Inside Outside

Left Right

Tour Construction

Problem Size, Number of Nodes

50

1,007

997

998

100

1,450

1,421

1,455

150

1,693

1,641

1,736

200

2,218

2,125

2,237

250

2,301

2,205

2,343

500

3,682

1,000

4,551

Table 7.3 : Average Heuristic Tour Length

Included in Table 7.3 are the "best" results from the Tour Construction Heuristics. The

conclusions from the above table are :

1. "Left Right" gives consistently better results than the "Inside Outside".

There is no obvious explanation for this, except possibly due to the

random nature of the test problems. The "Left Right" clustering rule

might provide a more equitable partition of the every other day nodes.

2. "Left Right" gives better results that the best of the Tour Construction

Heuristic.

3. The excessive processing time required by the 2-opt routing step in the

"Left Right" heuristic prohibits solutions for problems in excess of 250

nodes. The explosive increase in processing time for the "Left Right"

heuristic is confirmed in Table 7.4.
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Variant

Inside/Outside

Left Right

Arbitrary Insertion

Problem Size, Number of Nodes

50

20

16

1

100

223

172

2

150

789

618

4

200

2,123

1,866

11

250

3,300

3,027

14

500

64

1,000

166

Table 7.4 : Average Solution Time in seconds

Included in Table 7.4 are the processing time for the Arbitrary Insertion heuristic.

It is sometimes quoted " that what you put into a heuristic, that is what you get back".

Unfortunately, this does not seem to apply to the "Left Right" heuristic.

There is no real comparison between the processing time required by "Left Right" and

the Arbitrary Insertion heuristics. For problems in excess of 100 nodes, the 'Left

Right" becomes expensive of processing time. While, the Arbitrary Insertion happily

solves in reasonable time problems of 1,000 nodes.

7.7 Tour Improvement heuristic

The concept and details of a Tour Improvement procedure for the 2-period TSP is

outlined in Chapter 6.

In this section 2 examples of Tour Improvement heuristics are analysed. These are :

• Tour Improvement after random initial tours, and

• Tour Improvement after Arbitrary Insertion initial tour.
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7.8 Computational Results for Tour Improvement Heuristics

The computational results are

Variant

Tour Improvement

(Random Tour)

Tour Improvement

(Arbitrary Insertion)

Arbitrary Insertion

shown in Table 7.5 and Table 7. 6

Problem Size, Number of Nodes

50

1,052

954

1,014

100

1,615

1,372

1,481

150

1,870

1,555

1,737

200

2,072

2,237

250

2,062

2,343

500

3,682

1,000

4,551

Table 7.5 : Average Heuristic Tour Length

Variant

Tour Improvement

(Random Tour )

Tour Improvement

(Arbitrary Insertion)

Arbitrary Insertion

Problem Size, Number of Nodes

50

150

17

1

100

1,525

115

2

150

4,725

417

4

200

956

11

250

1,817

14

500

64

1,000

166

Table 7.6 : Average Solution Time in seconds

Observations on the above tables suggest:

1. Tour Improvement after a random start takes an excessive processing time to

converge. Based on the quality of solution and processing time, the Tour

Construction after a random start is excluded from further consideration.
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2. Tour Improvement, using Arbitrary Insertion heuristic as the initial tour,

provides, on average, a 9% improvement in tour length.

3. Tour Improvement heuristics use excessive processing time.

113



7.9 Conclusions

Table 7.7 and Table 7.8 detail the average solution length, and average processing time

for the best heuristic in each class.

Variant

Tour Improvement

(Arbitrary Insertion)

Left Right

Arbitrary Insertion

Problem Size, Number of Nodes

50

954

997

1,014

100

1,372

1,421

1,481

150

1,555

1,641

1,737

200

2,072

2,125

2,237

250

2,062

2,205

2,343

500

3,682

1,000

4,551

Table 7.7 : Average Heuristic Tour Length

Variant

Tour Improvement

(Arbitrary Insertion)

Left Right

Arbitrary Insertion

Problem Size, Number of Nodes

50

17

16

1

100

115

172

2

150

417

618

4

200

956

1.866

11

250

1,817

3,027

14

500

64

1,000

166

Table 7.8 : Average Solution Time in seconds

Analysis of the above tables suggest:

1. Tour Improvement, with Arbitrary Insertion as the starting tour, provides a

better solution in shorter processing time than the Left Right heuristic.
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2. The recommendation for practical problems is to obtain a solution using the

Arbitrary Insertion heuristic. Then, depending on processing power available,

and the size of problem consider using the Tour Improvement approach to

improve the solution quality. On average a 9% reduction can be expected from

the Tour Improvement process.
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7.10 Subjective Comparative Measures.

The previous sections compare heuristics based on the quality of solution produced

and the computer time required to obtain these solutions. Both of these measures are

quantifiable, and thus an objective comparison can be made.

A comparison of heuristics under such headings as Ease of Implementation, Flexibility

and Simplicity is highly subjective. The best that can be said about the following

comparison is that they reflect the views of the author, who's only qualification is that

he has agonised over the computer implementation, discussed their meaning with

Consultancy clients who must implement the answer, and has generally been associated

with the heuristics over a period of many years.

An example of the above is a discussion that the author had with a consulting client.

The author was attempting to explain to the client the basis of the heuristic that could

be used to solve the client's routing problem. The client fully appreciated the rationale

behind the "Inside/Outside" clustering methodology , but the client steadfastly refused

to consider the "Largest Insertion" heuristic. No matter what the empirical evidence is,

the client was not impressed by this approach.

In the following sections, the author allocates a score, on a scale of 1 to 10, to the

various heuristics.

7.10.1 Ease of Implementation,

This criteria can be interpreted either as the ease with which the steps in the heuristic

can be implemented in a computer programme, or else as the ease with which the

heuristic can be used in a practical implementation.
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Using the first interpretation, the author suggests that the Tour Construction Heuristics

are the easiest to programme, while the Tour Improvement would be the hardest. The

author's allocation of scores is :

Heuristic

Tour Construction

Cluster First, Route Second

Tour Improvement

Ease of Programming the

Heuristic Algorithm

Score 1 = Easy

Score 10 = Hard

4

6

9

Table 7.9 : Ease of Programming Score

The alternate interpretation of the "Ease of Implementation" criteria, that is the ability

of the heuristic to adapt to a practical application, yields different scores. A client will

readily accept the "Inside Outside" concept. Tour Improvement procedures find favour

in the field. However, 'Tarthest Insertion" and "Left Right" do not inspire confidence

with clients. The author's scores are :

Heuristic

Farthest Insertion

"Left Right"

Cheapest Insertion

Nearest Insertion

"Inside/Outside"

Tour Improvement

Acceptability to a Client

Score 1 = Little

Score 10 = Very Good

2

2

6

7

8

9

Table 7.10 : Acceptability to Client Score
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7.10.2 Flexibility

Heuristic procedures by their nature find a "good" solution within a certain

neighbourhood. On occasions, the heuristic can be unlucky and the solution it finds is

far from optimal. Because of this, it is desirable to be able to offer the heuristic a

different "seed" and hopefully, bad luck will not strike twice, and a more acceptable

solution is obtained.

Tour construction procedures offered this possibility. For instance an answer can be

obtained from the Nearest Insertion heuristic. A marginal change in the programme

will allow the same programme produce the Farthest Insertion solution. The flexibility

that comes from a range of implementations is available with Tour Construction

Heuristics. By their nature, Cluster First Route Second heuristics do not offer the same

flexibility.

The ultimate in flexibility comes from the Tour Improvement class. A heuristic solution

stuck at a poor solution can be shaken to a more acceptable answer using the Tour

Improvement approach. The author's scores are :

Heuristic

Cluster First, Route Second

Tour Construction

Tour Improvement

Flexibility

Score 1 = Rigid

Score 10 = Flexible.

2

7

9

Table 7.11 : Flexibility Score
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7.10.3 Simplicity

Basic to the 2-period TSP is a partitioning of the every other day nodes into two

groups. Recalling how the milk scheduler solves his 2-period problem. His approach is

to divide and then route. This simple concept is inherent in the Cluster First Route

Second approach. At the far extreme is the "2opt" procedure. To explain the

intricacies of this to a client is not easy. From experience with clients, the author's

scale is as follows :

Heuristic

Cluster First, Route Second

Tour Construction

Tour Improvement

Simplicity

Score 1 = Simple

Score 10 = Complex

2

4

9

Table 7.12 : Simplicity to Client Score
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7.11 Conclusion

Heuristics are a poor substitute for the optimal answer. Their existence derives from

our inability to find an optimal answer. Heuristics should be judged on their ability to

find a "good" answer in reasonable time. That task has been achieved for the 2-period

TSP.

The advice for practitioners is to use the Arbitrary Insertion heuristic. As a final answer

it is a "good" answer obtained with little processing time. The quality of this answer

can be considerably improved, by an estimate average reduction of 9%, by post

processing the solution through the Tour Improvement procedure. The limited analysis

from Chapter 6 suggests that the solution from the Tour Improvement will be within

4% of the optimal.

In section 7.10, the heuristics are compared under subjective headings. The utility of

this analysis is questionable, and it simply reflects the view of the author.
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Chapter 8 Conclusion and Further Work

8.1 First Encounter with the 2-Period TSP

The author first encountered the 2-Period TSP in 1978 as part of a rationalisation

study into the collection routes of an Irish dairy company. Advances with on-farm

refrigeration allowed the dairy to collect milk from farms every second day if the farm

had sufficient on-farm capacity to hold the output from two days milk production. The

author was asked to investigate the implication of every other day collection. Based on

very simple partitioning algorithms the routing economics seemed to suggest that

savings could be made if some farms were moved from every day to every other day

collection. Thus, in the late 1970's this dairy company introduced an incentive scheme

to encourage farms to update their on-farm milk storage.

Consultancy assignments tend to favour a very pragmatic and often cursory approach.

The client normally wants a good answer in reasonable time and not the optimal

answer weeks later, and thus, the first encounter between the author and the 2-period

TSP was very short. In the years that followed the author often questioned the respect

given to the 2-period TSP on that first encounter. Questions such as :

• Can the 2-period TSP be formulated as a standard TSP?

• Is the 2-period TSP as difficult to solve as the standard TSP?

• Has the 2-period TSP applications outside the milk industry?

• Can optimal solution procedures be developed for the 2-Period TSP?

• Do heuristic procedures give good answers in reasonable time?

• Can efficient bounds be developed so that heuristics can be evaluated?

The above questions are all reasonable, and the author embarked on a voyage of

discovery with Professor Paul Williams to answer the above questions. Luckily, the 2-

period TSP rose to the challenge, and offered the author an insight into the full arena

of combinatorial optimisation.
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8.2 Realised Objectives

The investigation of the 2-period TSP yields a rich harvest. This is due in a large part

to the number of practical routing applications that can be modelled by either the 2-

period TSP or by the more general m-period TSP. Examples can be found in :

• transfer of passengers from hotels to airports,

• collection of mail from post boxes, and

• the distribution of goods to shops where different shops have different call

frequencies.

Early in the investigation it became obvious that the 2-period TSP can not be

transformed into the standard TSP. This means that ideas can be borrowed from the

TSP, but must be re-modelled to suit the needs of the 2-period TSP. The practical

applications for the formulation required information on the availability of optimal

solutions for the 2-period TSP. We have shown in this thesis that examples of up to

100 nodes can be solved optimally. While for larger problems good heuristic

procedures are available. As with any combinatorial type problem, the choice of best

solution methodology depends on problem size. Table 8.1 lists, for the 2-period TSP,

the best solution approach for various problem size.

An interesting by product of the optimal solution approach is the emergence of the

VUB constraints. Some of these constraints are violated by the 2-Matching LP

relaxation. Including these constraints on an "as needed" basis dramatically improves

the basic LP solution. It is obviously an interesting area for further study to investigate

the possibility that such variables might exist for the Standard Travelling Salesman

Problem. The only way to increase the lower bound for the TSP, obtained from the LP

relaxation of the 2-matching constraints, is to add generalised subtours. If VUB type

constraints, with the ease with which they can be found, exist, then a better lower

bound can be obtained.
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Problem Size

( Number of Nodes )

< 15

10 to 25

20 to 50

50 to 100

>50

Recommended Solution Approach

Direct approach using { 0,1 }

programming with subtour constraints

added on an "as needed" basis.

At the upper end of this range a direct

approach using {0,1} is very expensive of

processing time. Perseverance, and good

technology, will yield an optimal answer.

Step 1 LP relaxation including 2-

matching, VUB, Subtour, and

comb constraints.

Step 2. {0,1} programming of the model

from Step 1.

We are now at the limit of our ability to

find an optimal solution. A man-machine

interaction is the only way that an optimal

answer can be obtained.

Advise Heuristic Procedures. However,

the use of a tour improvement heuristic

with a tour construction solution as a

seed, will produce a "good" solution

Table 8.1 : Problem Size and "Best" Solution Approach
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The author bids farewell to the 2-period TSP, but does acknowledge that considerable

potential exists for further work.

8.3 Area for Further Study

Areas requiring further study include :

• every third day collection within the milk industry.

• application of the m-period TSP to distributing goods to shops.

• Re-introduction of the route capacity restriction.

• the status of the VUB, generalised subtour and comb constraints. Are

they facets of the polytope?

• Alternate mathematical formulations.

• Prim's algorithm provides a greedy algorithm for the TSP. Does such a

greedy algorithm exist for the 2-period TSP? Can it be extended to a 2-

tree concept? Can Lagrangian relaxation be used to improve the bound?

• the use of Simulated Annealing to produce better heuristics.

Each of the above items are discussed in the following sections. The author wishes

well all future researchers of the 2-period TSP.

8.3.1 Every 3rd Day Collection within the Milk Industry

In the late 1970's improved on-farm refrigeration allowed milk to be collected from

farms every other day. Further improvements with both on-farm refrigeration and dairy

hygiene, now, permit milk to be stored on-farm for up to three days. What implications

has this for milk collection costs?
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With the possibility of every 3rd day collection, a collection route will now have three

types of farms. These are :

• farms requiring collection every day,

• farms requiring collection every second day, and

• farms requiring collection every third day.

The above problem can be formulated as a 6-period TSP, with

Farms to be collected every day

will be collected on Dayi, Day2, Day3, Day4, Day5, and Day6.

Farms to be collected every

second day will be collected on Dayi, Day3, and Days or

4, and Day6.

Farms to be collected every

third day will be collected on Dayi and Day4,

Day2 and Day5, or

Day3 and Day6.

To introduce a mathematical formulation of the above problem, assume that for the 11

node problem nodes 7, 9 and 11 have improved their on-farm tank capacity, and have

moved to every third day collection. The revised call frequency is as shown in Table

8.2
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Node

1

2

3

4

5

6

7

8

9

10

11

Call

Type

Every

Every

Every

Every

Every

Second

Third

Second

Third

Second

Third

Dayi

1

1

1

1

1

1

1

1

1

1

1

Day2

1

1

1

1

1

1

1

1

1

1

1

Day3

1

1

1

1

1

1

1

1

1

1

1

Day4

1

1

1

1

1

1

1

1

1

1

1

Day5

1

1

1

1

1

1

1

1

1

1

1

Day6

1

1

1

1

1

1

1

1

1

1

1

Table 8.2 : Call Frequency for the Revised 11 Node Problem
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The solution to the above model is six tours, one for each of the six days. The

objective function of the model is to minimise the total length of the 6 tours.

The decision variables are :

Xjjk = 1, if the tour on Dayt uses the link from i to j .

= 0, otherwise.

In addition, Y variables are used to indicate which tour the every second and every

third day nodes are on. Table 8.3 shows the Y variables.

Node

6

7

8

9,

10

11

Call

Type

Second

Third

Second

Third

Second

Third

DaYl

Yea

Y7,i

Ysa

Y9,i

Yioa

Yu,i

Day2

Y6,2

Y7,2

Y8,2

Y9,2

Yio,2

Y n , 2

Days

Y7,3

Y8 3

Y9;3

Y]0,3

Y 1 U

Day4

Y6,4

Y7,4

Y M

Y^4

Yio,4

Yn,4

Day5

Y6;5

Y7,5

Ys;5

Y9,5

Yio,5

Yll,5

Day6

Y6,6

Y7,6

Y8,6

Y9;6

Y]0,6

Yiis6

Table 8.3 : Y Variables for the Revised 11 Node Problem

For the Every Second Day Nodes :

Y u + Y,2 = 1

Yi.3 + Yj,4 = 1

either Y u + Y y + Y;,5 = 0 and Yi;2 + Yii4 + Yi>6 = 3

or Yi>2 + Yi,4 + Yi>6 = 0 and Y u + Y u + Yij5 = 3.
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The above is written as

Y u + Yi,2 = 1

Yy + Y;,4 = 1

Yi,5 + Yj.6 = 1

Y u + Yi,3 + Y1;5 = 3W;

Y,2 + Yi>4 + Yi,6 = 3Q;

Wi + Qi = 1

Y,WandQ e { 0,1 }

Equivalent constraints for the every third day nodes are

Y u + Y,.2 + Yi3 = 1

Yu + Yj,s + Yi,6 = 1

Y u + Y,.4 = 2W;

Yu + Y.,5 =2Q ;

W; + Q; + Ri = 1

Y,W, Q and R E {0,1 }

The model will contain a 2-matching constraint for every node for every tour. For

nodes 1 to 5, the every day nodes, the right-hand-side will always be 2. For the other

nodes the right-hand-side will be 2Y. This forces these nodes to be connected by two

arcs to only the tours that visit these nodes.

The model formulation is given in Appendix 16.

The solution approach is to first solve the 2-matching problem The solution is shown

Figure 8.1.
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Dayi Solution Day2 Solution

Day3 Solution Day4 Solution

Days Solution Day6 Solution

Figure 8.1 ; 2-Matching Solution

The solutions for Dayi and Days contain subtours. Subtour elimination constraints are

added on an "as needed" basis, and further solutions are obtained. Unfortunately, the

solution time to solve the above model is excessive. The solution shown in Figure 8.2

took several hours to obtain using CPLEX on a Pentium Pro Pc.
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6

8 fi \ /

H i ®

s

11

6

3 5

r-—i
10 4

Dayi Solution Day2 Solution

Day3 Solution

6 6

3 5

^^****"^-^ 10 ^ V . ' *

Day4 Solution

Days Solution Day6 Solution

Figure 8.2 : Optimal Solution of Total Length 1,217

The optimal solution to the revised 11 node problem has a total length of 1,217.
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The original 11 node problem, with its combination of every day and every second day

nodes, has a combined 2-day optimal solution of 406. The 6 day solution is three times

this figure. Thus, the minimum total length over the six days is 1,218. The movement

to every third day collection for a subset of the nodes produces an minimum length

solution for the six days of 1,217. This implies that the reduction in milk collection

costs is a saving of 1 in 1,218.

The above calculations are not realistic, but do serve as an example of how to quantify

the cost implications of every third day collection. The experience from solving the

above 11 node problem suggests that this problem size is close to the maximum size

that can be solved by direct {0,1}. Further research is required to investigate other

optimal solution approaches. The author believes that heuristic procedures are

necessary to solve even medium sized versions of this problem.
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8.3.2 Delivery of Product to Customers with Different Call Frequencies

The frequency with which a distributor calls on its customers depends on the size of

the customer. For example, large supermarkets might require a visit every day, medium

sized shops might require a visit twice a week, while for smaller shops one visit a week

might suffice. Hidden within such statements as twice a week are an implied gap

between calls. Thus twice a week might really mean a call on Monday and Friday, or

Tuesday and Thursday, etc.

Once options exist as to the required day on which a customer is to be visited, then the

problem can be formulated using the m-period TSP model with the necessary Y

variables.

Experience from the attempt to solve the 6-period, every 3rd day collection, 11 node

problem suggests that optimal solutions will be hard to find. Research is required on

the availability of optimal solution procedures. In the absence of an optimal answer,

further research is required to develop good heuristic procedures.

The author is currently investigating a distribution fleet for Dublin County which uses a

fleet of 26 refrigerated trucks to deliver milk and other dairy products to

approximately 400 shops of varying size. Management are interested in the impact on

distribution costs of varying the call frequency that the various shop type currently

receive. The model formulation in this example is a typical capacitated m-period

model. Where m will have a value of six, no calls are made on Sunday. The author has

no prospect of finding the optimal solution to this problem, and is currently relying on

a heuristic procedure to obtain good solutions.

8.3.3 Impact of the Route Capacity Restriction

When a milk scheduler is deciding which of the every other day farms to be allocated

to a particular day, he must have regard for milk tanker capacity. Within the original
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problem definition for the 2-period TSP no capacity or tour length restrictions exist.

For all of the practical applications noted for the 2-period TSP, most would have some

capacity restriction. In discussions with academic colleagues, opinion is divided on

whether the presence of the capacity restriction would make the problem easier or

harder to solve. The author leaves to future researchers the specification and analysis

of the capacitated 2-period TSP.

8.4 Facets of the Polytope

In Chapters 3 and 4 medium sized versions of the 2-period TSP are optimally solved

using an increasingly constrained LP relaxation. The initial LP relaxation consists only

of the 2-matching constraints. Constraints of three types are then added on an "as

needed" basis. The classes of constraints added are :

• VUB constraints,

• Subtour elimination constraints, and

• Comb constraints.

When the LP relaxation contains no violations of the above constraint classes, the

optimal solution of the model is obtained by {0,1} programming. No attempt is made

to prove that the above constraint classes are facets of the polytope. In this thesis, the

classes of constraints are simply used to move the LP relaxation into the range of {0,1}

programming. The question of their status as facets is left to a future researcher.
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8.5 Alternate Mathematical Formulation

The mathematical formulation for the 2-period TSP used in this thesis is based on the

formulation for the TSP quoted in Miliotis [1976]. In that paper the formulation for the

asymmetric TSP on a set of n nodes is :

Minimise ̂ Q-X^

Subject to ^Xv. = 1 0' = 1,..., n),
j

i

]JT Xfj < \S - 1 S is a subset of n nodes

XJ} = 0,1

The above formulation contains n2 - 2 variables and 2n + 2n - 2 constraints.

An alternate, and more compact, formulation is proposed by Miller, Tucker & Zemlin

[I960]. In their formulation, in addition to the Xy variables, extra indicator variables,

Ui, are defined. These u; variables, together with the constraints

ut-iij+(n-l)XiJ <n-2 (2 </<«),

(2<j <n)andi

insure that a solution represents a feasible tour.

The complete Miller, Tucker & Zemlin formulation is
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Minimise ]T Ctj Xi}
•j

Subject to YJ Xv = l 0 - ' - ")'

^ = 1 QZJZn\

ii,. -nj +(n-Y)X0 <n-2 (2<i<ri),

(2< j <ri)andi * j

w, > 0 (2 </'<«)

The above formulation has n2 + n constraints and n2 variables Thus, this formulation

has the advantage in that it contains significantly less constraints that the Miliotis

formulation. The importance of this advantage is questionable. In practice, using

Miliotis formulation, if subtour elimination constraints are added on an "as needed"

basis, then only a small number of constraints are required.

Versions of the 2-period TSP are solved in this thesis using the Miliotis type

formulation. Research is required to investigate how the Miller formulation can be

adapted to the 2-period TSP.

Claus [ 1984] outlines a further formulation for the TSP. This formulation replaces the

exponential number subtour elimination constrains by a number of constraints that is

proportional to the number of nodes times the number of finite cost arcs in the graph.

In addition, the new formulation introduces a new set of variables. Claus argues that

the resulting polytope is smaller than the subtour elimination polytope. Research is

required to investigate the importance of this formulation to the 2-period TSP.
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8.6 Greedy Algorithm

The minimum spanning tree, MST, is a well known lower bound for the TSP. A 1-tree

is formed by adding a selected arc to the MST. The 1-tree contains as many arcs as

does a TSP tour, and provides a lower bound on the length of the optimal tour. The

quality of this bound can improved considerably through the use of Lagrangian

relaxation. The MST and 1-tree concept is of significant importance largely due to the

fact that a greedy algorithm exists that finds an optimal solution.

It is easy to adapt Prim's algorithm to the 2-period problem - an algorithm used by the

author grows two trees, one for Dayi and one for Day2, in a manner similar to Prim.

If an additional arc is added to both of these trees, then a graph exists, possibly termed

a 2-tree, that has the same number of arcs as the optimal solution to the 2-period TSP.

Has the 2-tree graph the same property as the 1-tree for the TSP, that is, is the length

of the 2-tree graph a lower bound on the optimal solution to the 2-period TSP? While

investigating the possible bounds for the 2-period TSP, the author was initially

convinced that the 2-tree was in fact a lower bound. This confidence was shaken when

the 2-tree bound was increased through Lagrangian relaxation to a value above a

known optimal solution. Obviously in this latter example a flaw exists. However,

where is the flaw - is this flaw in the implementation of the greedy algorithm, the

choice of the two arcs to be added, or the Lagrangian relaxation.

The questions left to a future researcher include :

• Can Prim's greedy algorithm be adapted to provide a guaranteed lower

bound for the 2-period TSP?

• Can two additional arcs be added to improve this bound9

• Can the bound be improved through Lagrangian relaxation?
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The author is concerned that the partitioning component of the 2-period TSP makes

the greedy concept inappropriate.

8.7 Simulated Annealing

Chapter 6 analyses various heuristic procedures for the 2-period TSP. Table 6.1

summarises the findings, and suggests that tour improvement procedures are a useful

solution technique for the 2-Period TSP. Kirkpatrick, Gelatt and Vecchi [ 1982 ]

introduced the concept of adding a probabilistic dimension to either accepting or

rejecting tour modifications in a tour improvement procedure. This process, termed

Simulated Annealing, has shown potential with other combinatorial problems. Future

research is required to investigate the utility of Simulated Annealing to the 2-period

TSP.
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Appendix 1

11 Node Problem

Node
Number

1
2
3
4
5
6
7
8
9
10
11

X Coord.

50
40
20
60
30
70
90
10
90
50
10

Y Coordinate

Every
Day

50
60
20
60

Every
Second Day

80
10
30
40
20
10

Depot

10

Distance Matrix

1
2
3
4
5
6
7
8
9
10

1 2
41

3
58
22

4
14
36
57

5
54
14
10
50

6
73
42
54
61
45

7
40
64
86
32
78
73

8
45
36
32
51
36
78
82

9
50
51
73
36
63
45
30
81

10
10
32
50
10
45
63
41
41
45

11
40
50
51
51
54
92
80
20
85
41
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Appendix 2

21 Node Problem

X, Y Coordinates

Node
Number

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21

X Coord.

50
30
90
50
30
10
40
80
20
10
70
90
80
70
50
10
30
60
70
90
20

Y Coordinate

Every
Day

50
40
50
80
60
40
80
10

Every
Second Day

30
10
20
60
50
70
80
30
60
70
90
40

Depot

10
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21 Node Problem - Distance Matrix.

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20

1 2 3 4 5
45 50 40 73

61 20 30
41 72

36

6
64
22
82
41
28

7
32
14
50
14
41
36

8
76
58
41
42
50
73
57

9
30
41
76
50
71
51
36
92

10
45
28
81
45
54
30
32
86
22

11
20
57
36
45
81
78
42
71
50
63

12
41
67
20
50
85
89
54
61
71
81
22

13
58
51
22
32
54
70
45
20
78
76
51
41

14
45
40
22
20
50
61
32
32
64
63
40
36
14

15
60
28
50
20
22
41
32
32
67
57
63
64
32
28

16
81
36
89
50
20
20
50
70
71
50
92
100
73
67
41

17
28
20
61
28
50
36
14
71
22
20
45
61
58
45
45
54

18
51
32
36
14
36
50
28
28
64
58
51
50
20
14
14
54
42

19
63
45
36
28
41
61
42
14
78
72
60
54
14
20
20
61
57
14

20
89
72
50
57
61
85
71
14
106
100
82
70
32
45
45
81
85
42
28

21
42
14
70
32
41
22
20
72
30
14
58
73
63
51
42
41
14
45
58
86
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Appendix 3

42 Node Problem

Node Number

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42

X Coord.

210
141
95
174
150
161
201
189
241
248
242
278
91
91
105
93
137
131
182
201
219
164
134
127
116
146
150
193
204
205
210
227
224
236
263
248
230
278
266
66
62
42

Y Coordinate

Every
Day

103
53
61
193
166
139
191
127
73
140
118
107

Every
Second Day

155
135
81
57
17
97
77
66
128
144
167
185
161
159
168
121
162
182
164
141
91
96
156
176
90
61
116
151
86

Depot

19
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Appendix 4

Fractional Solution satisfying all sub-tour elimination constraints

i
1
1
1
1
2
2
2
2
3
3
3
3
3
4
4
5
5
5
6
6
6
7
7
7
7
8
8
9
9
10
10
10
10
11
11
12
12
13
13
13
13
14
14
15
17
19

i
4
10
18
21
13
19
22
23
13
16
17
18
42
17
20
6
8
25
8
26
27
22
29
30
33
28
31
11
12
21
34
35
39
33
36
35
38
15
16
40
42
15
41
23
18
20

Xiji

1.

1.

0.75

0.2
0.8
0.25

0.1
0.1
0.6
0.2
1.
0.8
0.2
1.

0.35

0.65

0.65

0.12

0.23

0.8
0
0.6
0.6
0.6
0.4
1.
1.
1.
0.2
0.8

0.6
0.4
1.

0.95

0.1
0.05

0.05

1.
1.
0.05

0.2
0.2

Xjj2

1.
0.2
0.8

1.
0.6
0.2
0.2
0.1
0.9
0.2
0.8

.2

.8
1
.65
.35
.35
.13333:

.51666'

.2
1
.4
.4
.4
.6
1.
1.

0.8

1.
0.4
0.6

1.

0.9

Xjjl + Xjj2

2.
0.2
0.8
1.
1.75

0.8
1.
0.45

0.2
1.
0.8
1.
1.
1.
1.
2.
1.
1.
1.
0.25

0.75

1.
1.
1.
1.
1.
1.
2.
2.
1.
1.
0.8
1.
1.
1.
1.
1.
0.95

1.
0.05

0.05

1
1
0.05

0.2
0.2
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19
20
23
23
23
24
24
26
28
31
32
32
34
38
40
40

29
34
24
26
27
25
26
27
30
37
36
37
35
39
41
42

0.53
0.12
0.12
0.65
0.12
0.35
0.6
0.4
0.4
0.4
0.2

1.
0.95

1.
0.8
0.22
0.38
0.13
0.35
0.13
0.65
0.4
0.6
0.6
0.6

1.

1.
0.8
0.75
0.5
0.25
1.
0.25
1.
1.
1.
1.
1.
0.2
1.
1.
0.95
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Appendix 5

Fractional Solution satisfying the 1st Set of Comb Constraints

i
1
1
1
2
2
2
2
3
3
3
3
4
4
5
5
5
6
6
6
7
7
7
7
8
8
9
9
10
10
10
11
11
11
12
13
13
13
13
14
14
15
19
21
23
24
24

i
4
10
21
13
19
22
23
13
16
17
42
17
20
6
8
25
8
26
27
22
29
30
33
28
31
11
12
21
34
35
32
33
36
35
15
16
40
42
15
41
23
20
34
24
25
26

Xjji

1
.473118
.526882
.408602
.032258

1
.55914
.236559
.236559
.526882

1
.526882
.473118

1
.27957
.72043
.72043
.139785
.139785

1
.064516
.5

.435484

.467742

.532258
1
1

.053763

.473118
1

.032258

.435484

.532258
1

.88172
.236559
.11828
.11828
1
1

.11828
.473118
.473118
.44086
.72043
.139785

Xjj2

1

.473118
1

.55914

.44086
.236559
.763441

.473118

.526882
1

.72043

.27957

.27957
.139785
.580645

.935484
.5

.532258

.532258

.467742
1
1

.473118

.526882

.532258

.467742

.763441

.27957
.139785

Xjji + Xjj2

2
.473118

1
1.408602
.591398

1
1

.473118
1

.526882
1
1
1
2
1
1
1

.27957

.72043
1
1
1

.967742
1
1
2
2

.526881
1
1

.032258

.967742
1
1

.88172
1

.11828

.11828
1
1

.11828
.473118
.473118
.44086
1

.27957
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24
26
28
29
30
31
32
32
36
40
40
1
3
7
10
12
17
19
20
23
38

27
27
30
33
31
37
36
37
37
41
42
18
18
28
39
38
18
29
34
26
39

.139785
.27957
.467742
.064516
.032258

.5

.5
.532258
.032258

1
.88172

.139785
.72043
.5

.467742

.467742

.467742

.526882
1

.032258
1
1

.473118

.935484

.526882
.44086

1

.27957
1

.967742

.064516

.032258

.967742

.967742
1

.032258
1

.88172
.526882

1
.032258

1
1

.473118

.935484

.526882
.44086

1
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Appendix 6

Optimal Solution to the 42 node problem

i
1
1
1
2
2
2
3
•3

j

3
3
4
4
5
5
5
6
6
7
7
7
7
8
8
9
9
10
10
10
11
11
12
12
13
14
14
15
17
19
19
23
24
26
28
31
32
32

i
4
10
21
13
22
23
13
16
18
42
17
20
6
8
25
8
27
22
29
30
33
28
31
11
12
21
34
39
33
36
35
38
16
15
41
24
18
20
29
26
25
27
30
37
36
37

Xjji

1
1

1
1

1

1

1
1

1
1

1
1

1
1
1

1

1
1

1
1
1
1

1
1

1

1
1
1

Xjj2

1

1
1

1
1

1

1

1
1

1

1
1
1

1
1
1

1
1

1

1

1

1
1

Xijl + Xjj2

2
1
1
2
1
1
1
1
1
1
1
1
2
1
1
1
1
1
1
1
1
1
1
2
2
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
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34
38
40
40

35
39
41
42

1

1
1

1
1
1
1
1
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Appendix 7

Program to automatically detect violated sub-tour elimination constraints.

The complete IP formulation of the 2-Period TSP contains all possible sub-tour

elimination constraints. The solution methodology adopted in this thesis is to add

constraints on an "as needed" basis to the LP relaxation. A programme was written to

identify within an LP solution all violations of the sub-tour inequalities. The

programme was based on an algorithm described by Dr Derek O'Connor, a friend and

departmental colleague at University College Dublin.

The algorithm first identifies all subtours within the LP solution. For each sub-tour the

programme then classifies the sub-tour into 1 of 3 categories. The categories depend

on whether S, the set of nodes in the sub-tour, contains all, some, or none of both day

nodes. The inequalities that the sum of the X and, in some cases, the Y values for the

sub-tour must satisfies depends on the categorisation of the sub-tour. In the event that

a particular sub-tour violates an inequality, the programme writes to a computer file a

constraint to prevent the sub-tour occurring in a later solution. The file containing all

constraints is appended to the LP Relaxation, and the CPLEX package solves the new

model.

The loop consisting of: CPLEX solution of the LP Model

Identification of sub-tour violations.

Generation of constraints into a computer file.

LP Model extended by the addition of the new

constraints.

was programmed in a DOS Batch File, and the process terminated when the LP

solution contained no sub-tour violations.

The computer programme was written in Basic, and designed to run on a standard PC.

A copy of the computer code is available from the author.
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Appendix 8

Constraints introduced by Stages 2, 3, 4, and 5.

Constraint to remove symmetry between Day 1 and Day 2.

.cll4: Y0141 = 1

VUB Constraints.

cl l5: X0140151 -Y0151<=0
cll6: X0030161 - Y0161 <= 0
cll7: X0030181 - Y0181 <= 0
cll8: X0020191 - Y0191 <= 0
cll9: X0040201 - Y0201 <= 0
cl20: X0010211 - Y0211 <= 0
cl21: X0020221 - Y0221 <= 0
cl22: X0230241 - Y0231 <= 0
cl23: X0230241 - Y0241 <= 0
cl24: X0050251 - Y0251 <= 0
cl25: X0260271 - Y0261 <= 0
cl26: X0080281 - Y0281 <= 0
cl27: X0070291 - Y0291 <= 0
cl28: X0070301 - Y0301 <= 0
cl29: X0080311 - Y0311<= 0
cl30: X0320371 - Y0321 <= 0
cl31: X0090331 - Y0331 <= 0
cl32: X0100341 - Y0341 <= 0
cl33: X0120351 - Y0351 <= 0
cl34: X0110361 - Y0361 <= 0
cl35: X0320371 - Y0371 <= 0
cl36: X0120381 - YO381 <= 0
cl37: X0100391 - Y0391 <= 0
cl38: X0130421 - Y0421 <= 0
cl39: X0130152 - Y0152 <= 0
cl40: X0030162 - Y0162 <= 0
cl41: X0170182 - Y0182 <= 0
cl42: X0020192 - Y0192 <= 0
cl43: X0040202 - Y0202 <= 0
cl44: X0010212 - Y0212 <= 0
cl45: X0020222 - Y0222 <= 0
cl46: X0230242 - Y0232 <= 0
cl47: X0230242 - Y0242 <= 0
cl48: X0050252 - Y0252 <= 0
cl49: X0060262 - Y0262 <= 0
cl50: X0080282 - Y0282 <= 0
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cl51: X0070292 - Y0292 <= 0
cl52: X0070302 - Y0302 <= 0
cl53: X0080312-Y0312<=0
cl54: X0320372 - Y0322 <= 0
cl55: X0090332 - Y0332 <= 0
cl56: XO100342 - Y0342 <= 0
cl57: X0120352 - Y0352 <= 0
cl58: X0110362 - Y0362 <= 0
cl59: X0320372 - Y0372 <= 0
cl60: X0120382 - Y0382 <= 0
cl61: X0100392 - Y0392 <= 0
cl62: X0130422 - Y0422 <= 0
cl63: X0030171 - Y0171 <= 0
cl64: X0020231 - Y0231 <= 0
cl65: X0240251 - Y0241 <= 0
cl66: X0240251 - Y0251 <= 0
cl67: X0060261 - Y0261 <= 0
cl68:X0110331 - Y0331<=0
cl69:X0140411 -Y0411 <= 0
cl70: X0030172 - Y0172 <= 0
cl71: X0030182 - Y0182 <= 0
cl72: X0020232 - Y0232 <= 0
cl73: X0240252 - Y0242 <= 0
cl74: X0240252 - Y0252 <= 0
cl75: X0260272 - Y0262 <= 0
cl76: X0070332 - Y0332 <= 0
cl77: X0400412 - Y0412 <= 0
cl78: X0060272 - Y0272 <= 0
cl79: X0110332 - Y0332 <= 0
cl80: X0260271 - Y0271 <= 0
cl81:X0070331 -Y0331<=0
cl82: X0060271 - Y0271 <= 0
cl83: X0400411 - Y0401 <= 0
cl84: X0260272 - Y0272 <= 0
cl85: X0130402 - Y0402 <= 0
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Generalised Sub-tour Elimination Constraints

cl86: X0030171 + X0030181 + X0170181 - Y0171 - Y0181 <= 0
c!87: X0030172 + X0030182 + X0170182 - Y0172 - Y0182 <= 0
cl88: X0060261 + X0060271 + X0260271 - Y0261 - Y0271 <= 0
cl89: X0060262 + X0060272 + X0260272 - Y0262 - Y0272 <= 0
cl90: X0130151 + X0130401 + X0140151 + X0140411 + X0400411 - Y0141

Y0151 -Y0401 - Y0411 <= 0
cl91: X0130152 + X0130402 + X0140152 + X0140412 + X0400412 - Y0142

Y0152 - Y0402 - Y0412 <= 0
cl92: X0400421 - Y0421 <= 0
cl93: X0030422 - Y0422 <= 0
cl94: X0050061 + X0050081 + X0060081 <= 2
cl95: X0050062 + X0050082 + X0060082 <= 2
cl96: X0100341 + X0100391 + X0340391 - Y0341 - Y0391 <= 0
cl97: X0100342 + X0100392 + X0340392 - Y0342 - Y0392 <= 0
cl98: X0120351 + X0120381 + X0350381 - Y0351 - Y0381 <= 0
cl99: X0120352 + X0120382 + X0350382 - Y0352 - Y0382 <= 0
c200: X0010041 + X0010101 + X0020131 + X0020191 + X0030181 +

X0030421 +X0040171 + X0070291 + X0070331 +X0090111 +
X0090121 +XO1OO351 +X0110331 +X0120351 +XO13O151 +
X0140151 +X0140411+X0170181 +X0190291 +X0400411 +
X0400421 - Y0141 - Y0151-Y0171-Y0181-Y0191-
Y0291 - Y0331 - YO351 - Y0401 - Y0411 - Y0421 <= 9

c201: X0010042 + X0010102 + X0020132 + X0020192 + X0030182 +
X0030422 + X0040172 + X0070292 + X0070332 + X0090112 +
X0090122 + X0100352 + X0110332 + X0120352 + X0130152 +
X0140152 + X0140412 + X0170182 + X0190292 + X0400412 +
X0400422 - Y0142 - Y0152 - Y0172 - Y0182 - Y0192 -
Y0292 - Y0332 - Y0352 - Y0402 - Y0412 - Y0422 <= 9

c202: X0020191 + X0020221 + X0070221 + X0070291 + XO190291 - Y0191
Y0221 - Y0291 <= 1

c203: X0020192 + X0020222 + X0070222 + X0070292 + XO 190292 - Y0192
Y0222 - Y0292 <= 1

c204: X0010041 + X0010211 + X0040201 + X0200211 - Y0201 - Y0211<= 1
c205: X0010042 + XOO10212 + X0040202 + X0200212 - Y0202 - Y0212 <= 1
c206: X0050061 + X0050251 + X0060271 + X0240251 + X0240261 +

X0260271 - Y0241 - Y0251 - Y0261 - Y0271 <= 1
c207: X0050062 + X0050252 + X0060272 + X0240252 + X0240262 +

X0260272 - Y0242 - Y0252 - Y0262 - Y0272 <= 1
c208: X0030161 + X0030421 + X0130151 + X0130161 + X0140151 +

X0140411 +X0400411 + X0400421 - Y0141 - Y0151 - Y0161 -
Y0401 - Y0411 -Y0421 <= 1

c209: X0030162 + X0030422 + X0130152 + X0130162 + X0140152 +
XO 140412 + X0400412 + X0400422 - Y0142 - Y0152 -
Y0162 - Y0402 - Y0412 - Y0422 <= 1

c210: XOO 10041 + XOO 10201 + X0040201 - Y0201 <= 1
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c211: XOO10042 + XOO10202 + X0040202 - Y0202 <= 1
c212: X0050061 + X0050251 + X0060271 + X0230241 + X0230261 +

X0240251 + X0260271 - Y0231 - Y0241 - Y0251 - Y0261 - Y0271 <= 1
c213: X0050062 + X0050252 + X0060272 + X0230242 + X0230262 +

X0240252 + X0260272 - Y0232 - Y0242 - Y0252 - Y0262 - Y0272 <= 1
c214: X0030131 +X0030421 +X0130151 +X0140151 +X0140411 +

X0400411 + X0400421 - Y0141 - Y0151 - Y0401 - Y0411 - Y0421 <= 1
c215: X0030132 + X0030422 + X0130152 + X0140152 + X0140412 +

X0400412 + X0400422 - Y0142 - Y0152 - Y0402 - Y0412 - Y0422 <= 1
c216: X0230261 - Y0231 <= 0
c217: X0030131 +X0030161 +X0130161 - Y0161 <= 1
c218: X0030132 + X0030162 + X0130162 - Y0162 <= 1
c219: X0060261 + X0060271 + X0260271 - Y0261 - Y0271 <= 0
c220: X0060262 + X0060272 + X0260272 - Y0262 - Y0272 <= 0
c221: X0030421 - Y0421 <= 0
c222: X0400422 - Y0402 <= 0
c223: X0140151 +X0140411 +X0150411 -Y0141 - Y0151 <= 0
c224: X0140152 + X0140412 + X0150412 - Y0142 - Y0152 <= 0
c225: X0140151 + X0140411 + X0150411 -Y0141 - Y0411<=0
c226: X0140152 + X0140412 + X0150412 - Y0142 - Y0412 <= 0
c227: X0140151 +X0140411 +X0150411 -Y0151 -Y0411 <= 0
c228: X0140152 + X0140412 + X0150412 - Y0152 - Y0412 <= 0
c229: X0130151 +X0130401 +X0140151 +X0140411 +X0400411 - Y0141 -

Y0151 - Y0401 -Y0411<=0
c230: X0130152 + X0130402 + X0140152 + X0140412 + X0400412 - Y0142 -

Y0152 - Y0402 - Y0412 <= 0
c231: XO190202 - Y0192 <= 0
c232: X0020191 + X0020221 + X0070221 + X0070291 + XO 190291 -

Y0191 - Y0221 - Y0291 <= 1
c23 3: X0020192 + X0020222 + X0070222 + X0070292 + XO 190292 -

Y0192 - Y0222 - Y0292 <= 1
c234: X0010041 + X0010101 + X0040201 + X0100341 + X0200341 -

Y0201 - Y0341 <= 2
c235: X0010042 + X0010102 + X0040202 + X0100342 + X0200342 -

Y0202-Y0342 <= 2
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Comb Constraints

c236: X0050061 + X0050081 + X0050251 + X0060081 + X0060261 + X0060271
+ X0070291 + X0070301 + X0070331 + X0080281 + X0080311 + X0090111
+ XOl 10331 + XOl 10361 +X0230241 +X0230261 +X0230271 +X0240251
+ X0240261 + X0260271 + X0280301 + X0310371 + X0320361 + X0320371
+ X0050062 + X0050082 + X0050252 + X0060082 + X0060262 + X0060272
+ X0070292 + X0070302 + X0070332 + X0080282 + XOO8O312 + X0090112
+ XOl 10332 + XOl 10362 + X0230242 + X0230262 + X0230272 + X0240252
+ X0240262 + X0260272 + X0280302 + X0310372 + X0320362 + X0320372

<=22

c237:X0030131 + X0030161 + X0030171 + X0030181 + X0040171 + X0030421
+ X0130161 +X0130151+X0170181+ X0140151 +X0140411 +X0400411
+ X0130401 + X0400421 + X0130421
+ X0030132 + X0030162 + X0030172 + X0030182 + X0040172 + X0030422
+ X0130162 + X0130152 + X0170182 + X0140152 + X0140412 + X0400412
+ X0130402 + X0400422 + X0130422 <= 11
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Appendix 9

100 Node Problem

Node
Number

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42

X Coord.

70
57
30
1

81
4
86
37
87
94
52
5
46
62
26
82
58
91
69
24
10
67
57
10
28
29
30
97
27
16
41
71
63
18
8
90
78
28
63
42
56
91

Y Coordinate

Every
Day

28
77
76
70
41
79
96
5

36
76
59
29
64
27
82
98
22
98
53
99
1

10
79
4
38
94
40
16
64
41
32
20
58
45
26
37
91
62
9

Every
Second Day

69
83

Depot

50
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Node
Number

43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
8

69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88

X Coord.

2
91
67
51
35
26
24
6
36
15
25
54
93
50
10
45
59
1
7
33
0
65
82
19
45
14
92
8

40
49
32
58
92
44
87
27
25
3

79
23
25
4
20
58
92
54

Y Coordinate

Every
Day

Every
Second Day

54
43
50
46
40
5
97
39
48
47
62
15
65
39
78
75
83
21
10
12
53
54
8
67
35
70
53
75
46
20
9
16
9

27
75
67
8
32
29
48
34
48
86
75
33
8

Depot

156



Node
Number

89
90
91
92
93
94
95
96
97
98
99
100

X Coord.

63
96
92
34
47
99
2
54
53
84
67
99

Y Coordinate

Every
Day

Every
Second Day

41
11
62
14
21
13
34
92
40
82
72
33

Depot

157



Appendix 10

200 Node Problem

Node
Number

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43

X Coord.

55
73
21
76
11
21
85
76
86
37
83
30
40
55
14
23
72
59
39
3

68
37
34
52
55
25
39
28
49
62
6
14
4

40
56
72
64
51
18
87
11
39
89

Y Coordinate

Every
Day

6
27
74
7
16
7
4
33
34
9
6
73
10
89
86
83
41
13
42
51
17
4
79
47
76
93
74
75
51
68
27
21
17
26
5
5

48
22
99
28
62
18

Every
Second Day

Depot

23
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Node
Number

44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89

X Coord.

24
17
50
79
73
93
81
62
0
39
30
26
98
94
47
24
38
85
85
22
15
80
47
49
3

34
37
51
0

44
13
36
83
93
32
25
55
4
4
7
95
90
41
82
8
3

Y Coordinate

Every
Day

68
18
73
33
90
14
38
95
17
45
12
91
19
52
95
12
36
1

80
12
30
40
8

48
31
51
13
37
91
99
77
4
33
81
75
33
98
77
28
12
99
0
54
89
69
46

Every
Second Day

Depot
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Node
Number

90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135

X Coord.

3
13
77
82
58
81
10
7
19
27
93
47
4
9

39
10
83
48
34
92
26
78
95
29
56
99
13
46
94
24
7
7
18
30
70
65
8
9

25
11
80
15
70
28
77
18

Y Coordinate

Every
Day

12

Every
Second Day

22
11
44
61
24
49
4
4
15
76
71
37
76
2
72
3

94
24
67
42
13
35
98
36
87
13
41
65
26
60
54
53
48
24
28
20
29
9

37
30
55
65
88
43
65

Depot

160



Node
Number

136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181

X Coord.

28
34
75
51
1

42
57
63
17
93
59
64
79
32
17
80
18
32
17
1

42
59
50
31
85
17
57
37
56
0
80
1

93
41
12
70
10
61
50
3

45
18
40
25
17
72

Y Coordinate

Every
Day

Every
Second Day

68
71
66
11
66
10
98
0
25
1

87
46
84
92
73
24
99
0
44
13
1

80
80
53
35
66
11
90
23
29
58
29
10
21
90
82
83
26
69
18
94
11
5
15
36
79

Depot

161



Node
Number

182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200

X Coord.

32
73
68
2

25
50
18
89
21
71
14
49
74
18
78
90
38
85
59

Y Coordinate

Every
Day

Every
Second Day

2
9

29
10
3

44
60
23
68
21
53
15
73
48
75
18
7
93
34

Depot

162



Appendix 11

Heuristic Solutions for the 11 Node Problem

Cheapest Insertion Day 1 Tour: Depot - 4 - 7 - 9 - 6 - 2 - 5 - 3 - 1 0 -
Depot

Day 2 Tour : Depot - 4 - 2 - 5 - 3 -8 - 11 - Depot

Inside/Outside Day 1 Tour: Depot - 4 - 7 - 9 - 6 - 2 - 5 - 3 - 8 - 1 1
Depot

Day 2 Tour: Depot - 4 - 2 - 5 - 3 -10 -Depot

Tour Improvement:
(Cheapest Insertion as
Initial Tour )

Day

Day

1

2

Tour:

Tour:

Depot -
Depot

Depot -

4

4

- 7

-2

- 9

- 5 -

- 6

3 -

-5

8 -

-3

11

- 2 - 10-

- Depot

Tour Improvement:
(Inside/Outside as Initial
Tour)

Day

Day

1

2

Tour:

Tour:

Depot -
Depot

Depot -

4

4

-7

-2

-9

-5

-6 -2-

- 10

5-

- 1

3 - 8 - 11 -

Tour Improvement: Day 1 Tour : Depot - 4 - 7 - 9 - 6 - 5 - 3 - 2 - 1 0 -
( Random Initial Tour ) Depot

Day 2 Tour : Depot - 4 - 2 - 5 - 3 - 8 - 1 1 - Depot
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Appendix 12

Heuristic Solutions for the 21 Node Problem

Cheapest Insertion Day 1 Tour: Depot - 3 - 1 4 - 8 - 2 0 - 5 - 6 - 2 - 4 - 7 -
10-9-Depot

Day 2 Tour : Depot - 11 - 12 - 3 - 13 - 8 - 19 - 18 - 15
- 5 - 1 6 - 6 - 2 1 - 2 - 4 - 7 - 1 7 - 9 -
Depot

Inside/Outside Day 1 Tour : Depot - 9-7 - 2 - 6 - 5 - 15 - 19 - 8 - 13-
3 - 1 4 - 18-4-Depot

Day 2 Tour : Depot - 11 - 12 - 3 - 20 - 8 - 5 - 16 - 6 - 2
- 21 - 10 - 9 - 17 - 7 - 4 - Depot

Tour Improvement:
( Cheapest Insertion as
Initial Tour )

Day

Day

1

2

Tour :

Tour:

Depot -
21 - 10

Depot -
- 5 - 1 6

3 -
- 9

11
-6

1 4 - 8 -
- Depot

- 1 2 - 3
- 2 - 4 -

20-

- 13
7 -

- 5 -

-8
17-

6

-
9

- 2 - 4 -

19 -18 -
- Depot

7 -

15

Tour Improvement:
(Inside/Outside as Initial
Tour)

Day

Day

1

2

Tour:

Tour:

Depot - 9
- 1 4 - 1 8 -

Depot - 1
- 2 1 - 1 0 -

-2
• 4 -

1 -
• 9 -

- 6 - 5 - 1 5 - 1 9 - 8 - 1 3 - 3
• 7 Depot

1 2 - 3 - 2 0 - 8 - 5 - 1 6 - 6 - 2
- 17-7-4-Depot

Tour Improvement: Day 1 Tour : Depot - 3 - 14 - 13 - 8 - 15 - 5 - 16 - 6 - 2
( Random Initial Tour ) - 4 - 7 - - 1 7 - 9 - Depot

Day 2 Tour : Depot - 9 - 10 - 21 - 6 - 5 - 2 - 7 - 4 - 18
- 1 9 - 8 - 2 0 - 3 - 1 2 - 1 1 -Depot
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Appendix 13

Heuristic Solutions for the 42 NodeJiroblem

Cheapest Insertion Day 1 Tour • Depot - 10 - 39 - 38 -12 - 9 - 11 - 29 - 7 - 30 - 32
- 37 - 31 - 8 - 5 - 6 - 22 - 19 - 2 - 13 - 42 - 3 - 18
- 4 - Depot

Day 2 Tour : Depot - 21 - 20 - 34 -10 - 35 -12 - 9 -11 - 36 -
33 - 7 - 28 - 8 - 5 - 6 - 27 - 26 - 25 - 24 - 23 - 2 -
15 . 14 . 4 1 . 4 0 -13 - 16 - 3 -17 - 4 - Depot

Inside/Outside Day

Day

1

2

Tour :

Tour:

1-10-34
22-7-29
- Depot

Depot -4
- 36 - 37 -
2-13-15

-35
-19

- 7 -
3 1 -
- 14

-12
- 2 -

30-
8 - 5
-41

- 9 -
13-

32-
-25
-40

11-33
16-3 -

9-10-
-24-6
-42-3

-28
17-

39-
-27
-18

- 8 - 5 - 6 -
4-20-21

38-12-11
- 26 - 23 -
- Depot

Tour Improvement: Day 1 Tour
(Cheapest Insertion as
Initial Tour )

Day 2 Tour

Depot - 10 - 39 - 38 - 12 - 36 - 11 - 9 - 29 - 7 - 32
- 37 - 31 - 8 - 5 - 6 - 22 - 19 - 2 - 13 - 42 - 3 - 18
- 4 - Depot

Depot - 21 - 20 - 34 -10 - 35 - 12 - 9 -11 - 33 - 7
- 30 - 28 - 8 - 6 - 27 - 26 - 5 - 25 - 24 - 23 - 2 -
15 . 14 . 41 . 40 -13 -16 - 3 -17 - 4 - Depot

Tour Improvement:
(Inside/Outside as Initial
Tour)

Day

Day

1

2

Tour:

Tour:

Depot-
- 5 - 6
Depot

Depot

10
22

-4
- 1 1 - 3 6 -
27-23
Depot

-2

-35
- 2 -

-19
32-
-13

-12
13-

- 7 -
37-
-15

- 9 -
16

29-
3 1 -
-14

11
3 -

34-
8 - ;
-41

- 3 3 -
17-^

10-
5-25
-40

7 - 3 0 - 2 8 - 8
1 - 2 0 - 2 1 -

39 - 38 - 12 - 9
- 24 - 26 - 6 -
. 42 - 3 - 18 -

Tour Improvement: Day 1 Tour
( Random Initial Tour )

Day 2 Tour

Depot -10 - 39 - 38 -12 - 11 - 9 - 29 - 7 - 30 - 28
- 8 - 6 - 5 - 25 - 24 - 14 - 41 - 40 - 42 - 3 - 16 -
13 - 2 - 4 - Depot

Depot - 21 - 10 - 9 - 11 - 33 - 7 - 6 - 27 - 26 - 5 -
8 - 31 - 37 - 32 - 36 - 12 - 35 - 34 - 20 - 4 - 17 -
18 - 3 -13 -15 - 23 - 22 - 2 -19 - Depot
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Appendix 14

Heuristic Solutions for the 100 Node Problem

Cheapest Insertion Day 1 Tour:

Day 2 Tour:

Depot - 39 -14 - 5 - 7
- 1 1 - 8 - 2 7 - 3 8 - 8 5 -
68-3 -20-35-6 -95
29 - 25 - 40 - 93 - 72 -
36 - 100 - 10 - 28 - 69
-31-56-97-89-64

Depot - 39 -14 - 99 - f
-16-19-17-96-11
- 24 - 57 - 70 - 4 - 12 -
78 - 53 - 20 - 82 - 52 -
15 - 29 - 79 - 48 - 25 -
- 22 - 65 - 9 - 75 - 90 -
-44-37-81-32-33
. 7 1 . 46 - 45 - Depot

-16-19-17
21-24-4 -
- 80 - 60 - 6
54 - 74 - 23 -
-37-32-33
-Depot

-59
12-

-86
34-

-41
30-

L - 26 - 15 -
22
-2

- 91 - 55 - 77 - 1
- 58 - 8 - 27 -
63 - 43 - 34 •
35 . 84 - 6 - .
73 - 62 - 92 -
94 - 18 - 36
- 2 - 13 - 67

38
30

>0-
40

• 8 7

• 3 1

- 9 -
-13

-42
-49
-66
26-
-88
-10
-47

18-
-76

-98
-21
- 3 -
8 3 -
-23
-28
-51

Inside/Outside Day 1 Tour : Depot - 64 - 39 -14 - 99 - 5 - 7 -16 -19 -17 - 59
- 86 - 41 - 11 - 58 - 8 - 27 - 38 - 3 - 85 - 21 - 24 -
57 . 4 . 70 - 68 - 66 - 30 - 12 - 34 - 20 - 82 - 52 -
35 - 6 - 26 - 47 - 51 - 71 - 31 - 46 - 2 - 32 - 33 -
74 - 72 - 93 - 13 - 76 - 15 - 29 - 25 - 73 - 62 - 92
. 40 - 54 - 23 - 22 - 65 - 9 - 18 - 36 - 87 - 10 - 28
-81 -37-Depot

Day 2 Tour : Depot - 37 - 32 - 33 - 2 - 40 - 88 - 23 - 22 - 9 - 75
. 90 - 94 - 18 - 36 - 100 - 10 - 28 - 44 - 69 - 91 -
55 . 5 . 77 . 7 . 42 - 98 - 16 - 19 - 17 - 96 - 39 -
14 - 11 - 8 - 27 - 38 - 49 - 21 - 4 - 24 - 3 - 78 - 53
- 20 - 34 - 30 - 12 - 43 - 63 - 84 - 35 - 6 - 50 - 95
- 80 - 60 - 61 - 79 - 48 - 25 - 29 - 15 - 83 - 26 -
31 - 67 -13 - 56 - 97 - 89 - 45 - Depot

Tour Improvement: Day 1 Tour :
(Cheapest Insertion as
Initial Tour )

Day 2 Tour :

Depot- 64-39-14-5-7
- 1 1 - 5 8 - 3 - 8 - 2 7 - 3 8 -
68-30
80-60
-22-9

-34-20-12-43
-61-29-25-40

- 16
8 5 -
-63
-93

- 19 - 17 - 96 - 59
21 - 24 - 4 - 70 -
- 84 - 35 - 6 - 95 -
-72-54-74-23

-18-36-100-28-10-37-32-33-2
- 13 - 76 - 15 - 26 - 47 - 3

Depot-
55-77
49-21
53-20
79-48
-9-75

39-14-41 -11 .
- 7 - 42 - 98 - 16 -
- 24 - 57 - 4 - 12 -
- 82 - 52 - 35 - 6 -
-25-73-62-92
-90-94-18-36

-81-32-33-2-13-67
-Depot

L - 56 - 97 - 89 - Depot

86-
19-
34-
50-
-40
-87
-31

99 - 5 - 69 - 91 -
17 - 8 - 27 - 38 -
30 - 66 - 3 - 78 -
26 - 83 - 15 - 29 -
-88-23-22-65
- 10 - 28 - 44 - 37
-51-71-46-45
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Tour Improvement: Day 1 Tour : Depot - 64 - 39 -14 - 99 - 5 - 7 -16 -19 -17 - 96
(Inside/Outside as Initial -11 - 58 - 3 - 8 - 27 - 38 - 85 - 21 - 24 - 57 - 4 -
j s 70 - 68 - 66 - 30 - 12 - 34 - 20 - 82 - 52 - 35 - 6 -

' 50-26-51-71-31-46-2-33-74-54-72-
93 - 13 - 76 - 15 - 29 - 25 - 73 - 62 - 92 - 40 - 23
- 22 - 65 - 9 - 18 - 36 - 87 - 10 - 28 - 81 - 32 - 37
- Depot

Day 2 Tour : Depot - 37 - 32 - 33 - 2 -13 - 40 - 88 - 23 - 22 - 9
- 75 - 90 - 94 - 18 - 36 - 100 - 10 - 28 - 44 - 69 -
91 - 55 - 5 - 77 - 7 - 42 - 98 - 16 - 19 - 17 - 59 -
86 - 39 - 14 - 41 - 11 - 8 - 27 - 38 - 49 - 21 - 4 -
24 - 3 - 78 - 53 - 20 - 34 - 30 - 12 - 43 - 63 - 84 -
35 - 6 - 95 - 80 - 60 - 61 - 79 - 48 - 25 - 29 - 15 -
83 - 26 - 47 - 31 - 67 - 56 - 97 - 89 - 45 - Depot

Tour Improvement: Day 1 Tour : Depot - 37 - 36 -18 - 94 - 90 - 75 - 9 - 22 - 23 -
(Random Initial Tour) 88 -40 -25 -29 -15 -50 -6 -35 -84 -63 -43 -

12-4-70-24-21-38-27-8-17-19-16-7
- 5 - 55 - 91 - 69 - 28 - 10 - 44 - 39 - 14 - 41 - 11
- 58 - 3 - 66 - 30 - 34 - 20 - 26 - 47 - 31 - 67 - 13
- 2 - 33 - 32 - 89 - Depot

D a y 2 Tour : Depot - 46 - 31 - 61 - 60 - 80 - 95 - 6 - 35 - 52 -
20 - 11 - 59 - 86 - 99 - 5 - 77 - 7 - 42 - 98 - 16 -
19 - 17 - 96 - 8 - 27 - 38 - 49 - 21 - 85 - 3 - 78 -
53 - 51 - 71 - 56 - 97 - 2 - 65 - 9 - 22 - 23 - 54 -
72 - 93 - 76 - 13 - 26 - 12 - 4 - 24 - 57 - 68 - 30 -
34 - 82 - 83 - 15 - 29 - 79 - 48 - 25 - 73 - 62 - 92
. 40 - 74 - 33 - 32 - 81 - 87 - 100 - 28 - 10 - 18 -
36 - 37 - 45 - 64 -14 - 39 - Depot
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Appendix 15

Heuristic Solutions for the 200 Node Problem

Cheapest Insertion Day 1 Tour : Depot -164 -191 -124 - 184 - 125 -173 - 35 -
71 - 114 - 200 - 18 - 25 - 30 - 147 - 21 - 94 - 132
- 138-166-109- 118-57-93-134-65-50-
47 - 130 - 76 - 160 - 9 - 112 - 189 - 43 - 197 - 56
- 49 - 168 - 145 - 85 - 61 - 106 - 7 - 11 - 111 - 92
- 183 - 8 - 2 - 36 - 143 - 37 - 162 - 14 - 139 - 66 -
178 - 156 - 104 - 75 - 23 - 153 - 182 - 12 - 186 -
98 - 5 - 97 - 83 - 185 - 90 - 155 - 52 - 175 - 126 -
33 - 82 - 165 - 167 - 68 - 102 - 20 - 89 - 96 - 192
- 154 - 195 - 122 - 188 - 131 - 121 - 120 - 31 - 88
- 105 - 103 - 81 - 72 - 170 - 15 - 172 - 74 - 150 -
26 - 16 - 133 - 55 - 149 - 163 - 27 - 73 - 176 - 58
- 107 - 80 - 142 - 51 - 48 - 199 - 40 - 84 - 115 -
77 - 100 - 62 - 87 - 148 - 196 - 4 - 194 - 181 - 17
- 171 - 157 - 24 - 158 - 29 - 46 - 174 - 101 - 13 -
137 - 78 - 28 - 135 - 161 - 190 - 44 - 136 - 42 -
86 - 67 - 38 - 187 - 117 - 110 - 123 - 159 - 69 -
53 . 60 - 10 - 108 - 79 - 180 - 129 - 64 - 127 - 41
- 32 - 91 - 144 - 3 - 119 - 39 - 45 - 6 - 63 - 59 -
179 - 99 - 54 - 70 -19 - 22 - 34 -169 - Depot

D a y 2 Tour : Depot - 35 - 71 -18 - 25 - 30 - 21 - 57 - 65 - 50 -
47 . 76 - 9 - 151 - 95 - 43 - 56 - 49 - 85 - 61 - 7 -
11-8-2-36-37-14-66-141-198-75-23
- 12 - 128 - 177 - 116 - 5 - 83 - 90 - 52 - 33 - 82 -
68 - 20 - 89 - 140 - 31 - 88 - 81 - 72 - 15 - 74 -
26 - 16 - 55 - 152 - 113 - 27 - 73 - 58 - 80 - 51 -
48 - 40 - 84 - 77 - 62 - 87 - 4 - 17 - 146 - 24 - 29
- 46 - 13 - 78 - 28 - 44 - 42 - 86 - 67 - 38 - 69 -
53 - 60 - 10 - 79 - 64 - 41 - 32 - 3 - 39 - 45 - 6 -
63 - 59 - 54 - 70 -19 - 22 - 34 -193 - Depot
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200 Node Problem

Inside/Outside Day 1 Tour : Depot -164 -173 -125 -184 -124 -191 - 37 -
36-2-8-183-92-111-11-7-61-85-49-
56 - 197 - 43 - 95 - 151 - 130 - 47 - 76 - 9 - 50 -
65 - 134 - 93 - 57 - 4 - 62 - 77 - 84 - 40 - 199 -
87 - 148 - 17 - 48 - 146 - 51 - 80 - 107 - 58 - 176
- 73 - 27 - 163 - 149 - 55 - 133 - 16 - 15 - 172 -
72 - 81 - 103 - 105 - 88 - 31 - 120 - 121 - 131 -
192 - 96 - 89 - 20 - 102 - 68 - 82 - 127 - 41 - 129
- 154 - 195 - 122 - 188 - 135 - 161 - 190 - 44 -
150 - 74 - 26 - 28 - 78 - 13 - 158 - 24 - 29 - 46 -
42 - 86 - 69 - 159 - 123 - 110 - 180 - 64 - 32 - 91
- 126 - 33 - 175 - 52 - 90 - 83 - 5 - 116 - 177 -
128 - 12 - 23 - 75 - 198 - 141 - 66 - 139 - 14 -
162 - 193 - 34 - 22 - 19 - 70 - 54 - 59 - 63 - 6 -
45 . 39 . 144 . 3 . 79 . 10 - 60 - 53 - 67 - 38 - 30
- 21 -147 - 18 - 25 - 71 - 114 - 200 - 35 - Depot

Day 2 Tour : Depot - 35 - 71 -18 - 25 - 38 - 67 -187 -117 -
60 - 10 - 53 - 69 - 86 - 42 - 136 - 44 - 26 - 28 -
78 - 137 - 13 - 101 - 29 - 46 - 174 - 94 - 30 - 21 -
65 - 50 - 47 - 76 - 160 - 9 - 112 - 57 - 118 - 109 -
166 - 138 - 132 - 194 - 4 - 196 - 181 - 87 - 62 -
100 - 77 - 115 - 84 - 40 - 48 - 17 - 171 - 157 - 24
- 51 - 142 - 80 - 58 - 73 - 27 - 113 - 55 - 16 - 152
- 15 - 170 - 72 - 81 - 74 - 88 - 31 - 140 - 89 - 20 -
68 - 167 - 165 - 82 - 33 - 52 - 155 - 90 - 185 - 83
- 97 - 5 - 98 - 186 - 153 - 182 - 75 - 23 - 12 - 59 -
63 - 45 - 32 - 41 - 64 - 79 - 119 - 3 - 39 - 6 - 179
. 99 . 54 . 108 - 169 - 34 - 22 - 70 - 19 - 178 -
104 - 156 - 66 - 143 - 61 - 85 - 145 - 168 - 49 -
56 - 189 - 43 - 11 - 7 - 106 - 8 - 2 - 36 - 37 - 14 -
Depot
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200 Node Problem

Tour Improvement: D a y 1 Tour : Depot -164 -191 -124 -184 -125 -173 - 35 -
( Cheapest Insertion as 71"114"200"18"147 - 21 - 30 - 94 -132 -
T ... , £, >. 138 - 109 -118 - 57 - 93 -134 - 65 - 50 - 47 - 76
Initial Tour ) - 9 -112 -189 - 43 -197 - 56 - 49 -168 -145 -

85 - 61 - 106 - 7 - 11 - 111 - 92 - 183 - 8 - 2 - 36
- 143 - 37 - 162 - 14 - 139 - 66 - 178 - 156 - 104
- 75 - 23 - 153 - 182 - 12 - 186 - 98 - 5 - 97 - 83 -
185 - 90 - 155 - 52 - 175 - 126 - 33 - 82 - 165 -
167 - 68 - 102 - 20 - 89 - 96 - 154 - 195 - 122 -
192 -131 - 188 - 31 - 88 -105 - 74 -103 - 81 -
72 - 170 - 15 - 16 - 133 - 55 - 149 - 163 - 27 - 73
- 176 - 58 - 107 - 80 - 142 - 51 - 48 - 148 - 87 -
199 - 40 - 84 - 115 - 77 - 100 - 62 - 196 - 4 - 194
- 181 - 17 - 171 - 157 - 24 - 158 - 29 - 46 - 174 -
101 - 13 - 137 - 78 - 28 - 26 - 135 - 161 - 190 -
44 - 136 - 42 - 86 - 67 - 38 - 25 - 187 - 117 - 110
- 123 - 159 - 69 - 53 - 60 - 10 - 108 - 79 - 180 -
129 - 127 - 41 - 64 - 32 - 144 - 3 - 39 - 45 - 6 -
63 - 59 - 179 - 99 - 54 - 70 - 19 - 22 - 34 - 169 -
Depot

Day 2 Tour : Depot - 35 - 71 -18 - 25 - 30 - 21 -166 - 57 - 65
- 50 - 76 - 9 - 160 - 47 - 130 - 151 - 95 - 43 - 56 -
49-85-61-7-11-8-2-36-37-14-66-
141 - 198 - 75 - 23 - 12 - 128 - 177 - 116 - 5 - 83
- 90 - 52 - 33 - 82 - 68 - 20 - 89 - 121 - 120 - 140
- 31 - 88 - 81 - 72 - 15 - 172 - 74 - 150 - 26 - 16 -
55 - 152 - 113 - 27 - 73 - 58 - 80 - 51 - 48 - 87 -
40 - 84 - 77 - 62 - 4 - 17 - 146 - 24 - 29 - 46 - 13
- 78 - 28 - 44 - 42 - 69 - 86 - 67 - 38 - 53 - 60 -
10-79-119-3-64-41-32-91-39-45-6-
63 - 59 - 54 - 70 -19 - 22 - 34 -193 - Depot
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200 Node Problem

Tour Improvement: Day 1 Tour : Depot -164 -173 -125 -184 -124 -191 - 37 -
(Inside/Outside as Initial 36-2-8-183-92-111-11-7-106-61-85
1 x -49-56-197-43-189-95-151-130-47-

r > 76 - 9 - 160 - 50 - 65 - 93 - 57 - 166 - 4 - 196 -
62 - 77 - 84 - 40 - 199 - 87 - 148 - 181 - 17 - 48 -
51 - 80 - 107 - 58 - 176 - 73 - 27 - 163 - 149 - 55
- 133 - 16 - 15 - 172 - 72 - 81 - 88 - 31 - 120 -
131 - 192 - 96 - 89 - 20 - 102 - 68 - 82 - 127 - 41
- 129 - 154 - 195 - 122 - 188 - 135 - 161 - 190 -
44 - 150 - 74 - 26 - 28 - 78 - 13 - 158 - 24 - 29 -
46 - 101 - 42 - 86 - 69 - 159 - 123 - 110 - 180 -
64 - 32 - 91 - 126 - 33 - 175 - 52 - 90 - 83 - 5 -
116 - 177 - 128 - 12 - 23 - 75 - 198 - 141 - 66 -
14 - 139 - 193 - 34 - 22 - 19 - 70 - 54 - 59 - 63 -
6 - 45 - 39 - 144 - 3 - 79 - 10 - 60 - 53 - 67 - 38 -
25 - 30 - 21 - 147 - 18 - 71 - 114 - 200 - 35 -
Depot

D a y 2 Tour : Depot - 35 - 71 -18 - 25 - 38 - 67 -187 -117 -
60 - 10 - 53 - 69 - 86 - 42 - 136 - 44 - 26 - 28 -
78 - 137 - 13 - 24 - 29 - 46 - 174 - 94 - 30 - 21 -
134 - 65 - 50 - 47 - 76 - 9 - 112 - 57 - 118 - 109 -
138 - 132 - 194 - 4 - 62 - 100 - 77 - 115 - 84 - 40
. 87 - 48 - 17 - 171 - 157 - 146 - 51 - 142 - 80 -
58 - 73 - 27 - 113 - 152 - 55 - 16 - 15 - 170 - 72 -
81 - 103 - 74 - 105 - 88 - 31 - 140 - 121 - 89 - 20
- 68 - 167 - 165 - 82 - 33 - 52 - 155 - 90 - 185 -
83 - 97 - 5 - 98 - 186 - 153 - 182 - 75 - 23 - 12 -
54 - 59 - 63 - 6 - 45 - 39 - 32 - 41 - 64 - 79 - 3 -
119 - 179 - 99 - 108 - 169 - 34 - 22 - 70 - 19 -
178 - 104 - 156 - 66 - 143 - 61 - 85 - 145 - 168 -
49 - 56 - 43 - 11 - 7 - 8 - 2 - 36 - 37 - 162 - 14 -
Depot

171



200 Node Problem

Tour Improvement: Day 1 Tour : Depot - 35 - 71 -187 - 86 - 42 -13 - 78 - 28 - 26
( Random Initial Tour ) - 74 -103 - 81 - 72 -170 -15 -16 - 55 -149 -

163 - 27 - 73 - 58 - 107 - 146 - 48 - 87 - 199 - 40
- 84 - 115 - 77 - 62 - 166 - 93 - 47 - 130 - 95 -
151 - 92 - 183 - 8 - 61 - 85 - 7 - 11 - 2 - 36 - 37 -
14 - 66 - 198 - 75 - 23 - 12 - 186 - 98 - 5 - 97 -
185 - 90 - 126 - 91 - 39 - 3 - 53 - 174 - 46 - 29 -
24 - 80 - 142 - 51 - 17 - 181 - 4 - 57 - 112 - 56 -
49 . 197 - 43 - 189 - 9 - 76 - 50 - 65 - 21 - 30 -
147 - 18 - 25 - 38 - 67 - 69 - 44 - 190 - 161 - 88 -
31 - 89 - 20 - 102 - 68 - 82 - 45 - 6 - 179 - 99 -
70 - 19 - 34 - 22 - 54 - 59 - 63 - 116 - 83 - 52 -
33 .127 - 41 - 32 - 64 - 79 -10 - 60 - Depot

D a y 2 Tour : Depot -164 - 35 -173 -124 -191 - 111 -11 - 7 -
43 . 9 . 160 - 76 - 47 - 50 - 65 - 134 - 21 - 137 -
78 - 16 - 15 - 72 - 172 - 81 - 140 - 121 - 96 - 129
. 64 - 144 - 39 - 59 - 128 - 153 - 182 - 108 - 10 -
60 - 123 - 159 - 136 - 44 - 28 - 26 - 133 - 55 -
152 - 113 - 27 - 73 - 176 - 58 - 80 - 51 - 48 - 40 -
84 - 87 - 148 - 17 - 171 - 157 - 29 - 101 - 86 - 53
- 110 - 180 - 82 - 167 - 165 - 68 - 20 - 89 - 192 -
188 - 135 - 150 - 74 - 105 - 88 - 31 - 120 - 131 -
122 - 195 - 154 - 119 - 178 - 156 - 104 - 75 - 23 -
12 - 6 - 45 - 90 - 155 - 52 - 175 - 33 - 3 - 79 - 69
- 42 - 13 - 158 - 24 - 46 - 94 - 18 - 184 - 125 -
200 - 114 - 71 - 117 - 67 - 38 - 25 - 30 - 132 -
138 - 194 - 4 - 196 -62-77 - 100 - 109 - 118 -
57 . 56 - 49 - 168 - 145 - 85 - 61 - 106 - 8 - 2 -
36 - 143 - 37 - 162 - 14 - 139 - 193 - 169 - 34 -
22 - 32 - 41 - 83 - 5 - 177 - 63 - 54 - 70 - 19 -
141 -66-Depot
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Appendix 16

IP Formulation of Every Third Day Milk Collection.

Minimise Z =

4OXQI,O7,I '

36Xo2,O4,l "

32X02,10,1 "

32Xo3,O8,l '

32Xo4,07,l "

78XQ5,07,1 '

41X01,02,1 -<

' 'r^./voi 08 I

4- 1 A. Y
' LLTJ\J)2 05 1

*" 50Xo2,,,,i "

f 73X03,09,1 -

+~ 51Xo4,O8,l

+• 36Xo5,O8,l "

- 58X01,03,1 +

t- 50X01,09,1 +

f 42X02,06,1 +

t- 57X03,04,1 +

*- 50Xo3,io,i +

<" 36XQ4,09,1 +

f 6 3 X Q 5 09.1 +

14Xoi,o4,i

10Xoi,io,i

64Xo2,O7,l

10X03,05,1

51X03,11,1

10X04,10,1

4 5 X Q 5 10.1

4 0 X o U , ,1 +22X02,03.1

36Xo2,O8,l + 51Xo2,O9,l

54Xo3,O6.1 + 86X03,0^,1

5OXo4,O5,l + 61Xo4,O6,l

51Xo4,ll,l + 45Xos,O6,l

54Xo5,n,l + 73Xo6,O7,l

41Xo7, 41Xo8,lO,l 45Xo9,lo,l

85Xo9,iU

4IX01.02.2

45Xjl ,08,2

14Xo2.05,2

5OXo2,H,2

73XQ3,09,2

51XQ4,08,2

36Xo5.O8,2

45Xo6,O9,2

8OXo7,ll,2

41X10,11,2

41X01.02,3

45Xoi,O8,3

14Xo2.O5,3

50X02,11,3

73Xo3.O9,3

5 1XQ4,08,3

36XQ5.08,3

45XQ6,09,3

8OXo7,n,3

41Xio,n.3

41Xoi,o2,4

45Xoi,O8,4

14Xo2,O5,4

+ 41Xio,n,i ^

+ 58Xol,O3,2 "*

+ 50X01,09,2 ~i

+ 42Xo2,O6,2 H

+ 57X03,04.2 "*

+ 50X03,10,2 ^

+ 36Xo4,O9,2 H

+ 63X05,09,2 ^

+ 63XJ6 ,10 ,2 ^

+ 81 Xo8,O9,2 ^

+

+ 5 8X01,03,3 ^

+ 50X01,09,3 -

+ 42Xo2,O6,3 "

+ 57Xo3,O4,3 "

+ 5OXo3,io,3 -

+ 3 6X04,09,3

+ 63Xo5,O9,3 "

+ 63Xo6,lO,3 "

+ 81Xo8,O9,3 "

+

+ 58Xoi,O3,4 '

+ 50Xo,,o9,4 -

+ 42Xo2,O6,4 "

- 14Xoi,04,2 H

- 10X01,10,2 H

- 64X02,07,2 ^

- 10X03,05,2 ^

- 51X03,11,2 H

- 10X04,10.2 ^

- 45X05,10,2 H

- 92X06,11.2 -

- 41Xo8,io,2 "

h 14Xoi,o4,3 -

1- 10X01,10,3 "

I" 64Xo2,O7,3 "

1- 10X03.05,3 "

f- 51X03,11,3 "

1- 10X04,10,3 "

1- 45X05,10,3 -

(- 92X06,11,3 -

I" 41Xos,lO,3 "

*• 14Xoi,O4,4 -

^ lOXo.,,0,4 -

1- 64Xo2,o7,4 -

- 54X01,05,2 ^

h 4OXoi,n,2 H

- 3 6X02,08,2 ^

1" 54X03.06.2 ~*

H 5OXo4,O5,2 ^

H 51Xo4,ll,2 H

1- 54Xo5,u,2 H

h 82X07,08,2 H

h 20Xo8,ll,2 H

1- 54X01,05,3 "

1- 4OXoi,11,3 -

I" 36Xo2,O8,3 -

t- 54Xo3,06,3 "

(" 50Xo4,05,3 "

)- 51X04,11,3 "

t- 54X05,11,3 "

t- 82Xc,7,o8,3 -

f- 20X08,11,3 "

f 54X01,05,4 -

f 4OXo,,l 1,4 -

+• 36Xo2,08,4 "

- 73X01,06,2 "•

- 22Xo2,O3,2 H

51X02,09,2 ~*

- 86X03,07,2 "•

61Xo4,O6,2 "*

45Xo5,O6.2 ^

- 73Xo6,O7,2 H

^ 3 0X07,09,2 "̂

H 45Xo9,io,2 H

1- 73Xoi,O6,3 H

1- 22X02,03,3 ^

1- 51X02,09,3 -̂

1- 86X03,07,3 "

I" 61Xo4,06,3 '

I" 45Xo5,O6,3 '

I" 73Xo6,O7,3 "

I" 3OXo7,O9,3 "

f- 45X09,10,3 -

I" 73Xoi,O6,4 "

<• 22X02,03,4 "

t- 51X02094 "

- 4OXoi ,07,2

- 36Xo2,O4,2

- 32X02,10,2

- 32Xo3,O8,2

3 2X04,07,2

78XQ5,07.2

78Xo6,O8,2

- 41X07,10,2

- 85Xo9,ll,2

r 4OXoi,O7,3

1- 36Xo2,O4,3

1- 32X02,10,3

1- 3 2X03,08,3

1- 3 2X04,07,3

I" 78XQ5,07.3

^ 78X06,08,3

1" 41X07,10,3

1" 85Xo9,ll,3

1- 40X01,07,4

t~ 36Xo2,O4,4

"̂ 32Xo2 10 4
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50Xo2,n,4 +

73Xo3,O9,4 +

51Xo4,08,4 +

36Xo5,08,4 +

45Xo6,09,4 +

8OXo7,ii,4 +

41X10,11,4 +

41X01,02,5 +

45Xoi,O8,5 +

14X02,05,5 +

50Xo2,ll,5 +

73Xo3,09,5 +

51Xo4,08,5 +

36Xos,08,5 +

45Xo6,O9,5 +

80X07,H,5 +

41X10,11,5 +

41X01,02,6 +

45X01,08,6 +

14X02,05,6 +

50X02,11,6 +

73Xo3,O9,6 +

51Xo4,08,6 +

36Xo5,O8,6 +

45Xo6,09,6 +

80Xo7,H,6 +

41X10,11.6

57Xo3,04,4 "+

50X03,10,4 •*

36Xo4,O9,4 ~+

63Xo5,O9,4 "*

63Xo6,10,4 "*

81Xo8,09,4 "*

58Xoi,O3,5 ~*

50X01,09,5 "*

42Xo2,o6,5 ^

57X03,04,5 H

50X03,10,5 ^

36Xo4,09,5 ^

63Xo5,09,5 H

63X06,10,5 H

81X08,09,5 ^

58Xoi,O3,6 ^

50X01,09,6 H

42Xo2,06,6 H

57Xo3,o4,6 -

50X03,10,6 "

36Xo4,o9.6 -

6 3X05,09,6 "

63Xo6,10,6 "

81X08,09,6 -

- 10X03,05,4 ^

- 51X03,11,4 ^

- 10X04,10,4 •»

- 45X05,10,4 H

- 92Xo6,n,4 ^

- 4 1XO8,IO,4 H

10^C H

- 64Xo2,O7,5 "•

- 10Xo3,05,5 H

- 51X03,11,5 H

t" 10Xo4,10,5 H

H 45XO5,io,5 H

H 92Xo6,n,5 -

H 41X08,10,5 "

y 14X01,04,6

y 10X01,10,6

I" 64Xo2,O7,6 "

I" 10Xo3,05,6 •

h 51X03,11,6 "

•• 10X04.10,6 -

1- 45X05,10,6 "

^ 92Xo6,ii.6 -

I- 4 1XO8,IO,6 "

- 54Xo3,06,4 H

- 50X04,05,4 H

- 51X04,11,4 ^

- 54X05,11,4 H

- 82X07,08,4 H

- 20Xo8,l,,4 H

- 54Xoi,o5,5 H

- 40Xoi,n,5 H

- 36Xo2,O8,5 H

1- 54Xo3,O6,5 '

H 50Xo4,05,5 "

H 51X04,1 ,,5 -

1- 54X05,11,5 -

I- 82Xo7,o8,5 -

y 20Xo8,,,,5 -

1- 54X01,05,6 "

1- 40X01,11,6 -

t- 36Xo2,08,6 "

I- 54Xo3,o6,6 -

i~ 50Xo405,6 "

^~ 51-A04J16 "

*- 54X05,11,6 •

f" 82Xo7;OS,6 "

*• 20X08,11,6 •

- 86X03,07,4 ^

i" 61X04,06,4 H

- 45Xo5,06,4 ^

73Xo6,O7,4 ^

- 30Xo7,09,4 "•

^ 45Xo9,lO,4 H

^ 73Xo,,O6,5 H

1" 22X02,03,5 ^

i" 51X02,09,5 ^

1- 86X03,07,5 H

I" 61Xo4,O6,5 H

t" 45Xo5,o6,5 -

t" 73Xo6,07,5 •

I" 30Xo7,09,5 "

I" 45XQ9,IO,5 "

^ 73Xo,,o6,6 -

(" 22X02,03,6 "

*~ 51X02,09,6 "

^ 86X03,07,6 -

I" 61Xo4,06,6 '

+• 45Xo5,06,6 "

f 73X06,07,6 -

+" 30Xo7,09,6 -

*r 45Xo9,10,6 "

- 32Xo3,O8,4

- 32Xo4,Q7.4

/oyvi)s o"? 4

/ OjrvQg 08 4

- 41X07,10,4

- 85X09,11.4

' 4OX01,07,5

I- 3 6X02,04.5

y 32X02,10,5

y 3 2X03,08.5

y 32Xo4,07,5

1 /O^LQ5 07.^

r /O-/V06 08 5

I" 41X07,105

1" 40X01,07,6

\- 36Xo2,O4.6

1" 32X02,10,6

1" 32Xo3,0S,6

y 32Xo4,07,6

y 78Xo5,O7.6

y 78X06,08,6

f 41X07,10,6

^ 85X09,11,6

Subject to:

Xoi,O2,l + Xoi,O3,l + Xoi,O4,l + Xoi,O5,l + Xoi,O6,l + Xoi,O7,l + Xoi,O8,l + Xoi,O9,l + Xoi.10,1 + Xoi.11,1 = 2

Xoi,O2,l + Xo2,O3,l + Xo2,O4,l + Xo2,O5,l + Xo2,O6,l + Xo2,O7,l + Xo2,O8,l + Xo2,O9,l + Xo2,lO,l + Xo2,ll,l = 2

Xoi.03,1 + Xo2,O3,l + Xo3,O4,l + Xo3,O5,l + Xo3,O6,l + Xo3,O7,l + Xo3,O8,l + Xo3,09,l + Xo3,lO,l + Xo3,ll,l = 2

Xoi,O4,l + Xo2,04,l + Xo3,O4,l + Xo4,O5,l + Xo4,O6,l + Xo4,O7,l + Xo4,O8,l + Xo4,O9,l + Xo4,lO,l + Xo4,ll,l = 2

Xoi,O5,l + Xo2,O5,l + Xo3,O5,l + X()4,05,l + Xo5,O6,l + Xo5,O7,l + Xo5,O8,l + Xo5,O9,l + Xo5,lO,l + Xo5,ll,l = 2

Xoi,O2,2 + Xoi,03,2 + Xoi,O4,2 + Xoi,O5,2 + Xoi,O6,2 + Xoi,O7,2 + Xoi,O8,2 + Xol,O9,2 + Xoi,lO,2 + Xoi,ll,2 = 2

Xoi.02,2 + Xo2,O3,2 + Xfl2,04,2 + Xo2,O5,2 + Xo2,O6,2 + Xo2,O7,2 + Xo2,O8,2 + Xo2,O9,2 + Xo2,lO,2 + Xo2,ll,2 = 2
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Xoi,O3,2 + Xo2,O3,2 + Xo3,O4,2 + Xo3,O5,2 + Xo3,O6,2 + Xo3,O7,2 + Xo3,O8,2 + X()3,09,2 + Xo3,lO,2 + Xo3,ll,2 ~ 2

Xoi,O4,2 + Xo2,O4,2 + Xo3,O4,2 + Xo4,O5,2 + Xo4,O6,2 + Xo4,O7,2 + Xo4,OS,2 + Xo4,O9,2 + Xo4,lO,2 + Xo4,ll,2 = 2

Xoi,05,2 + XQ2,05,2 + Xo3,O5,2 + Xo4jo5,2 + Xo5,O6,2 + Xo5,O7,2 + Xo5,O8,2 + Xo5,O9,2 + Xo5,lO,2 + Xo5,ll,2 = 2

Xoi,O2,3 + Xoi,O3,3 + Xoi,O4,3 + Xoi,05,3 + Xoi,O6,3 + Xoi,07,3 + Xoi,O8,3 + Xoi,O9,3 + Xoi,lO,3 + Xoi,ll,3 = 2

Xoi,O2,3 + X()2,03,3 + Xo2,O4,3 + Xo2,O5,3 + Xo2,O6,3 + Xo2,O7,3 + Xo2,O8,3 + Xo2,O9,3 + X()2,10,3 + Xo2,ll,3 = 2

Xoi,O3,3 + Xo2,O3,3 + Xo3,O4,3 + XQ3,05,3 + Xo3,O6,3 + Xo3,O7,3 + Xo3,O8,3 + Xo3,O9,3 + X()3,10,3 + Xo3,ll,3 = 2

Xoi,O4,3 + Xo2,O4,3 + X<)3,04,3 + Xo4,O5,3 + Xo4,O6,3 + Xo4,O7,3 + Xo4,O8,3 + Xo4,O9,3 + Xo4,lO,3 + Xo4,ll,3 = 2

Xoi,O5,3 + Xo2,O5,3 + Xo3,O5,3 + XQ4,05,3 + Xo5,O6,3 + Xo5,O7,3 + Xo5,O8,3 + Xf)5,09,3 + Xo5,lO,3 + Xo5,ll,3 = 2

Xoi,02,4 + Xoi,O3,4 + Xoi,O4,4 + Xoi,O5,4 + Xoi,06,4 + Xoi,07,4 + Xoi,O8,4 + Xoi,O9,4 + Xoi,lO,4 + Xoi,ll,4 = 2

Xoi,O2,4 + Xo2,O3,4 + Xo2,O4,4 + Xo2,O5,4 + XQ2,06,4 + Xo2,O7,4 + Xo2,O8,4 + Xo2,09,4 + X()2,10,4 + Xo2,l 1,4 = 2

Xoi,O3,4 + Xo2,O3,4 + Xo3,O4,4 + Xo3,O5,4 + Xo3,O6,4 + Xo3,O7,4 + Xo3,O8,4 + Xo3,O9,4 + Xo3,lO,4 + Xo3,ll,4 = 2

Xoi,O4,4 + Xo2,O4,4 + Xo3,O4,4 + Xo4,O5,4 + Xo4,O6,4 + Xo4,O7,4 + Xo4,O8,4 + Xo4,O9,4 + X()4,10,4 + Xo4.11,4 = 2

Xoi,O5,4 + Xo2,O5,4 + Xo3,O5,4 + Xo4,O5,4 + Xo5,O6,4 + Xo5,O7,4 + Xo5,O8,4 + Xo5,O9,4 + Xo5,lO,4 + Xo5,ll,4 = 2

Xfll.02,5 + Xoi,O3,5 + Xoi,O4,5 + Xoi,O5,5 + Xoi,O6,5 + Xoi,O7,5 + Xoi,O8,5 + Xoi,O9,5 + Xoi.10,5 + Xoi,ll,5 = 2

Xoi7O2,5 + Xo2,O3,5 + Xo2,O4,5 + Xo2,O5,5 + Xo2,O6,5 + Xo2,O7,5 + Xo2,O8,5 + Xo2,O9,5 + Xo2,lO,5 + Xo2,ll,5 = 2

Xoi,O3,5 + XQ2,03,5 + Xo3,O4,5 + Xo3,O5,5 + Xo3,O6,5 + Xo3,O7,5 + Xo3,O8,5 + Xo3,O9,5 + Xo3,lO,5 + Xo3,ll,5 = 2

Xoi,O4,5 + Xo2,O4,5 + Xo3,O4,5 + Xo4,O5,5 + Xo4,O6,5 + Xo4,O7,5 + Xo4,O8,5 + Xo4,O9,5 + X()4,I0,5 + Xo4,ll,5 = 2

Xo 1,05,5 + Xo2,O5,5 + Xo3,O5,5 + Xo4,O5,5 + Xo5,O6,5 + Xo5,O7,5 + Xo5,O8,5 + Xo5,O9,5 + Xo5,lO,5 + Xo5,ll,5 = 2

Xoi.02,6 + Xoi,O3,6 + Xoi,O4,6 + Xoi,O5,6 + Xoi,O6,6 + Xoi,O7,6 + Xoi,O8,6 + Xoi,O9,6 + XoiJO.6 + Xoi,ll,6 = 2

Xoi,02,o + Xo2,O3,6 + Xo2,O4,6 + Xo2,O5,6 + Xo2,O6,6 + Xo2,O7,6 + Xo2,O8,6 + Xo2,O9,6 + Xo2,lO,6 + Xo2,l 1,6 = 2

Xoi,O3,6 + Xo2,O3,6 + Xo3,04,6 + Xo3,O5,6 + Xo3,O6,6 + Xo3,O7,6 + Xo3.O8,6 + Xo3,O9,6 + XQ3,10,6 + Xo3,ll,6 = 2

Xoi,O4,6 + Xo2,O4,6 + Xo3,O4,6 + Xo4,O5,6 + Xo4,O6,6 + Xo4,O7,6 + Xo4,O8,6 + Xo4,O9,6 + Xo4,lO,6 + Xo4,l 1,6 = 2

Xoi.05,6 + X()2,05,6 + Xo3,O5,6 + Xo4,O5,6 + Xo5,06,6 + Xo5,O7,6 + Xo5,O8,6 + Xo5,O9,6 + Xo5,6O,6 + Xo5,61.6 = 2

Xoi,O6,l + Xo2,O6,l + Xo3,O6,l + Xo4,O6,l + Xo5,O6,l + Xo6,O7,l + Xo6,O8,l + Xo6,O9,l + X()6,10,l + Xo6,ll,l - 2Yo6,l = 0

Xoi.07,1 + Xo2,O7,l + X()3,07,l + Xo4,O7,l + Xo5,O7,l + Xo6,O7,l + Xo7,O8,l + Xo7,O9,l + Xo7,lO,l + Xo7,lU " 2Yo7,l = 0

Xoi,O8,l + Xo2,O8,l + Xo3,O8,l + Xo4,O8,l + Xo5,O8,l + Xod,08,l + Xo7,O8,l + Xo8,O9,l + Xo8,lO,l + Xo8,ll,l - 2Yo8.1 = 0

Xol,09,l + Xo2,O9,l + Xo3,O9,l + Xo4,O9,l + Xo5,O9,l + Xo6,O9,l + Xo7,O9,l + Xo8,O9,l + Xo9,lO,l + Xo9,ll,l - 2Yo9,l = 0

Xoi.10,1 + Xo2,lO,l + Xo3,lO,l + Xo4,lO,l + Xo5,10,l + Xo6,lO,l + Xo7,lO,l + X()8,10,l + Xo9,lO,l + Xl0,U,l " 2Yl0J = 0

Xoi,ll,l + Xo2,ll,l + Xo3,ll,l + Xo4,ll,l + Xo5,ll,l + Xo6,ll,l + Xo7,ll,l + Xo8,ll,l + Xo9,ll,l + Xio,ll,l - 2 Y l l j = 0

Xoi,O6,2 + Xo2,O6,2 + Xo3,06,2 + Xo4,O6,2 + Xo5,O6,2 + Xo6,O7,2 + Xo6,O8,2 + Xo6,O9,2 + Xoo,10,2 + Xo6,ll,2 - 2Yo6?2
 = 0

Xol,O7,2 + Xo2,O7,2 + Xo3,O7,2 + Xo4.O7,2 + Xo5,O7,2 + Xo6,O7,2 + Xo7,O8,2 + Xo7,O9,2 + Xo7,lO,2 + Xo7,ll,2 - 2Yo7.2 = 0

Xoi,O8,2 + Xf)2,08,2 + Xo3,O8,2 + Xo4,O8,2 + Xo5,O8,2 + Xoo,08,2 + Xo7,O8,2 + Xo8,O9,2 + Xo8,lO,2 + Xo8,ll,2 - 2YQ8,2 = 0

Xoi,O9,2 + Xo2,O9,2 + Xo3,O9,2 + Xo4,O9,2 + Xo5,O9,2 + Xo6,O9,2 + Xo7,O9,2 + Xo8,O9,2 + Xo9,lO,2 + Xo9,11.2 " 2Yo9,2 = 0

Xoi,lO,2 + Xo2,lO,2 + Xo3,lO,2 + X()4,10,2 + Xo5,lO,2 + Xoo,10,2 + XQ7,10,2 + Xo8,lO,2 + Xo9,lO,2 + Xio,ll,2 " 2Ylo,2 = 0
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Xoi,ll,2 + Xo2,ll,2 + Xo3,ll,2 + Xo4,ll,2 + Xo5,ll,2 + Xo6,ll,2 + Xo7,ll,2 + Xo8,ll,2 + Xo9,ll,2 + Xio,ll,2 - 2Yn,2 ~ 0

Xoi,O6,3 + Xo2,O6,3 + Xo3,O6,3 + Xo4,O6,3 + Xo5,O6,3 + Xfl6,07,3 + Xo6,O8,3 + Xo6,O9,3 + Xo6,lO,3 + Xoo,ll,3 - 2Yo6,3 = 0

Xoi,O7,3 + Xo2,O7,3 + Xo3,O7,3 + Xo4,O7,3 + Xo5,O7,3 + Xo6,O7,3 + Xo7,O8,3 + Xo7,O9,3 + Xo7,lO,3 + Xo7,ll,3 " 2Yo7,3 = 0

Xoi,08,3 + Xo2,O8,3 + Xo3,O8,3 + Xo4,O8,3 + Xo5,O8,3 + Xo6,O8,3 + Xo7,O8,3 + Xo8,O9,3 + X()8,10,3 + Xo8,ll,3 - 2Yo8,3 = 0

Xoi,O9,3 + Xo2,O9,3 + Xo3,O9,3 + Xo4,O9,3 + Xo5,O9,3 + Xo6,O9,3 + Xo7,O9,3 + Xos,O9,3 + Xo9,lO,3 + Xo9,ll,3 - 2Yo9,3 = 0

Xoi,lO,3 + Xo2,lO,3 + Xo3,lO,3 + Xo4,10,3 + Xo5,lO,3 + Xo6,lO,3 + Xo7,lO,3 + Xo8,IO,3 + Xo9,lO,3 + Xio,ll,3 - 2Ylo,3 = 0

4,ll,3 + Xo5,ll,3 + Xo6,ll,3 + Xo7,ll,3 + Xo8,ll,3 + Xo9,ll,3+ Xio,ll,3 " 2Yn ,3 = 0

Xoi,O6,4 + Xo2,O6,4 + XQ3,06,4 + Xo4,O6,4 + Xo5,O6,4 + Xo6,O7,4 + Xo6,O8,4 + Xo6,O9,4 + Xo6,lO,4 + Xo6,ll,4 - 2Y(x;,4 = 0

Xoi,O7,4 + Xo2,O7,4 + X<)3,07,4 + Xo4,O7,4 + Xo5,07,4 + Xo6,O7,4 + Xo7,O8,4 + Xo7,O9,4 + Xo7,lO,4 + Xo7,ll,4 - 2Y()7,4 = 0

Xoi,O8,4 + Xo2,O8,4 + Xo3,O8,4 + Xo4,O8,4 + Xo5,O8,4 + Xo6,O8,4 + Xo7,O8,4 + Xo8,O9,4 + X()8,10,4 + Xo8,11.4 - 2Yo8,4 = 0

Xo 1,09,4 + Xo2,09,4 + Xo3,O9,4 + Xo4,O9,4 + Xo5,O9,4 + Xo6,O9,4 + Xo7,O9,4 + Xo8,O9,4 + Xo9,lO,4 + Xo9,ll,4 - 2Yo9,4 = 0

Xoi,10,4 + Xo2,lO,4 + Xo3,lO,4 + Xo4,10,4 + Xo5,lO,4 + X()6,10,4 + Xo7,lO,4 + Xo8,10,4 + Xo9,lO,4 + Xio,ll,4 - 2Yl0,4 = 0

Xoi.11,4 + Xo2,ll,4 + Xo3,ll,4 + Xo4,U,4 + Xo5,ll,4 + Xo6,U,4 + Xo7,ll,4 + XQ8,11,4 + Xo9,ll,4 + Xl0,ll,4 - 2Yn,4 = 0

Xoi,O6,5 + Xo2,O6,5 + Xo3,O6,5 + Xo4,O6,5 + Xo5,06,5 + Xo6,O7,5 + Xo6,O8,5 + Xo6,O9,5 + Xo6,lO,5 + Xo6,ll,5 " 2Yo6,5 = 0

Xoi.07,5 + Xo2,O7,5 + Xo3,O7,5 + Xo4,O7,5 + Xo5,O7,5 + XQ6,07,5 + Xo7,O8,5 + Xo7,O9,5 + Xo7,lO,5 + Xo7,ll,5 - 2Yo7,5 = 0

Xoi,O8,5 + Xo2,O8,5 + Xo3,O8,5 + Xo4,O8,5 + Xo5,O8,5 + Xoo,08,5 + Xo7,O8,5 + Xo8,O9,5 + Xo8,lO,5 + Xo8,ll,5 " 2Yo8.5 = 0

Xoi,O9,5 + Xo2,O9,5 + Xo3,O9,5 + Xo4,O9,5 + Xo5.O9,5 + Xo6,O9,5 + Xo7,O9,5 + Xo8,O9,5 + Xo9,10,5 + Xo9,ll,5 - 2Yo9,5 = 0

Xoi,lO,5 + Xo2,lO,5 + Xo3,lO,5 + Xo4,lO,5 + Xo5,lO,5 + Xo6,lO,5 + Xo7,lO,5 + Xo8,lO,5 + Xo9,lO,5 + Xio,ll,5 - 2Yl0.5 = 0

Xoi,ll,5 + Xo2,ll,5 + Xo3,ll,5 + Xo4,ll,5 + Xo5,ll,5 + Xo6,ll,5 + Xo7,ll,5 + Xo8,ll,5 + Xo9,ll,5 + Xio,ll,5 - 2Yn ,5 = 0

Xoi,O6,6 + Xo2,O6,6 + Xo3,O6,<5 + Xo4,O6,6 + XQ5,06.6 + Xo6,O7,6 + Xo6,O8,6 + Xo6,O9,6 + Xo6,lO,6 + Xo6,ll,6 - 2Yo6,6 = 0

Xoi,O7,6 + Xo2.O7,6 + Xo3,O7,6 + Xo4,O7,6 + Xo5,O7,6 + Xo6,O7,6 + Xo7,O8,6 + Xo7,O9,6 + Xo7,lO,6 + Xo7,ll,6 " 2Yo7,6 = 0

Xoi,O8,6 + Xfl2,08,6 + Xo3,O8,6 + Xo4,O8,6 + Xo5,O8,6 + Xo6,O8,6 + Xo7,O8,(j + Xo8,O9,6 + Xo8,lO,6 + Xo8,ll,6 - 2Yo8,6 = 0

Xoi,O9,S + Xo2,O9,6 + Xo3,O9,6 + Xo4,O9,6 + Xfl5,09,6 + Xo6,O9,6 + Xfl7,09,6 + Xo8,O9,6 + Xo9,10,o + Xo9,ll,6 " 2Yo9,6 = 0

Xoi,lO,6 + Xo2,lO,6 + Xo3,lO,(5 + Xo4,lO,6 + Xo5,10,6 + Xo6,10,6 + Xo7,lO,6 + Xo8,lO,6 + Xo9,lO,6 + Xio,ll,6 - 2Ylo.fi = 0

Xoi.11,6 + Xo2,ll,6 + Xo3,ll,6 + Xo4,ll,6 + Xo5,ll,6 + Xo6,ll,6 + Xo7,ll,6 + Xo8,ll,6 + Xo9,ll,6 + Xio,ll,6 - 2Yn,6 = 0

Yo6,l + Yo6,2 = 1

Yo6,3 + Yo6,4 = 1

Yo6,5 + Yo6,6 = 1

Y06,l + Yo6,3 + Y0o,5 = 3 W 0 6

Yo6,2 + Yo6,4 + Yo6,6 = 3Qo6

W06 + Qo« = 1
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Yo8,l + Yo8,2 - 1

Yo8,3 + Yo8.4 = 1

Y08,5 + Y08,6 = 1

Yo8,l + Yo8,3 + Yo8.5 = 3 W 0 8

Y08,2 + Y08,4 + Yo8,6 = 3Q08

Yio,i + Yio,2 = 1

Y 1 0 , 3 + Y I 0 , 4 = l

Y i o , 5 + Y , o , 6 = l

Yio,i + Yio,3 + Y10.5 = 3Wio

Yio,2 + Y10.4 + Yio,6 = 3Qio

W10 + Q10 = 1

Y07,l + Y07,2 + Y07,3 = 1

Yo7,4 + Yo7,5 + Yo7,6 = 1

Y07,l + Y07,4 = 2W07

YO7,2 + Yo7,5 = 2 Q o 7

Yo7,3 + Yo7,6 = 2R()7

W07 + QO7 + Ro7 = 1

Yo9,l + Yo9,2 + Yo9,3 = 1

Yo9,4 + Yo9,5 + Y09.6 = 1

Yo9,l + Yo9,4 = 2Wo9

Yo9,2 + Yo9,5 = 2 Q 0 9

Yo9,3+Yo9,6 = 2 R 0 9

W 0 9 + Qoo + R<)9 = 1

Yi,,, + YiM =2Wn

Yn,2 + Y,i,5 =2QM

YH3+YH.6 =2Rn

W n + Q u + R n = l

XijtYjk W.Q.andR, e {O.I }

Solution is six tours, with nodes 1 to 5 on all tours,
nodes 6, 8, and 10 on 3 tours, and
nodes 7. 9. and 11 on two tour.

177



References

M. Ball and M. Magazine, 1981, "The Design and Analysis of Heuristics", Networks

11, pp 215-219.

E. Balas, 1989, "The Prize Collecting Travelling Salesman Problem", Networks 19,

pp 621-636.

E. Balas and N. Christ ofides, 1976, "A New Penalty Method for the Travelling

Salesman Problem", Presented at the 9th Math. Prog. Symposium, Budapest.

J. E. Beasley, 1984, "FixedRoutes", J. Opl Res. Soc. Vol 35, pp 49-55.

M. Bellmore and G. L. Nemhauser, 1968, "The Travelling Salesman Problem : A

Survey", Operations Research 16, pp 538-558.

M Butler, H P Williams, and L A Yarrow, 1997, "The Two-Period Travelling

Salesman Problem Applied to Milk Collection in Ireland', To appear : Computational

Optimization and Applications 1, pp 1-16.

V. Chvatal, 1973, "Edmond's Polytopes and Weakly Hamiltonian Graphs", Maths.

Prog 3.

N. Christofides and J. E. Beasley, 1984, "The Period Routing Problem", Networks 14,

pp 237-256.

N. Christofides, A. Mingozzi, P. Toth, and C. Sandi, 1979, "Combinatorial

Optimisation", John Wiley a Sons.

N. Christofides, 1977, "Worst-Case Analysis of a New Heuristic for the Travelling

Salesman Problem", Management Science Research Report No 388, Carnegie-Mellon

University.

178



A. Claus, 1984, "A New Formulation For The Travelling Salesman Problem", SIAM

J. Alg. Disc. Meth., Vol 5, pp 21-25.

G. Clarke and J. W. Wright, 1964, "Schedulling of Vehicles from a Cetral Depot to a

Number of Delivery Points", Operations Research 12, pp 568-581.

G. Cornuejols and G. L. Nemhauser, 1978, "Tight Bounds for Christofides' Travelling

Salesman Heuristic", Mathematical Programming 14, pp 16-121.

G A Croes, 1958, "A Method for Solving Travelling Salesman Problems",

Operations Research 6, pp 791-812.

H. Crowder and M. W. Padberg, 1980, "Solving Large-Scale Travelling Salesman

Problems toOptimality ", Management Science 26, pp 495-509.

G. B. Dantzig, Fulkerson, D. R., and Johnson, S. M., 1954, "Solution of a Large-Scale

Travelling Salesman Problem", Operations Research, Vol 2, pp 393-410.

C. Derman and M. Klein, 1966, "Surveillance of Multi-Component Systems: A

Stochastic Travelling Salesman Problem", Naval Res. Logist. Quart. 13, pp 103-111.

M. L. Fisher, 1981, "The Lagrangian Relaxation Method for Solving Integer

Programming Problems", Management Science, Vol 27, No. 1, pp 1-18.

M. L. Fisher, 1980, "Worst-Case Analysis of Heuristic Algortihms", Management

Science 26, pp 1- 17.

M. L. Fisher, 1985, "An Applications Oriented Guide to Lagrangian Relaxation",

Interfaces 15, No. 2, pp 10-21.

179



K. R. Fox, B. Gavish, and S. C. Graves, 1980, "An n-Constraint Formulation of the

Time Dependent Travelling Salesman Problem", Operations Research 2, pp 191-194.

R. S. Garfinkel and K.C. Gilbert, 1978, "The Bottleneck Travelling Salesman

Problem: Algorithms and Probabilistic Analysis", J. Assoc. Comput. Mach. 25, pp

435-448.

M. R. Garey and D. S. Johnson, 1979, "Computers and Intractability: A guide to the

Theory oj'NT'-Completeness", Freeman, San Francisco.

B E Gillet and L R Miller, 1974, "A Heuristic Algorithm for the Vehicle Dispatch

Problem ", Operations Research, 22, 340-349

M Grotschel, and M W. Padberg, 1977, "On the Symmetric Travelling Salesman

Problem: Theory and Computation". Optimisation and Operations Research, Lecture

Notes in Economics and Mathematical Systems 157, Springer, Berlin, pp 105-115.

M. Held and Karp, R. M. 1970, "The Tavelling Salesman Problem and Minimum

Spanning Trees", Operations Research, Vol 18, pp 1138-1162.

M. Held and Karp, R. M. 1971, "The Travelling Salesman Problem and Minimum

Spanning Trees: Part 77", Math. Programming I, pp 6-25.

M. Held, Wolfe, P., and Crowder, H. P., 1974, "Validation of Subgradient

Optimization", Math. Programming 6, pp 62-88.

D. Houck, J. Picard, M. Queyranne, and R. Vemuganti, 1977, "The Travelling

Salesman Problem and Shortest n-Paths", University of Maryland.

180



D. S. Johnson and L. A. McGeoch, 1995, "The Travelling Salesman Problem: A Case

Study in Local Optimization", Department of Mathematics and Computer Science,

Amherst College, Amherst, MAO 1002.

D. S. Johnson, McGeoch, L. A., and Rothberg E., 1996, "Asymptotic Experimental

Analysis for the Held-Karp Travelling Salesman Bound", Proceedings of the 7th

Annual ACM-Siam Symposium on discrete algorithms.

D S Johnson and C H Papadimitriou, 1985, "Performance Guarantees for Heuristics",

The Travelling Salesman Problem, Edited by E L Lawler, L K Lenstra, A H G Rinnooy

Kan, and D B Shmoys, Chapter 5.

S Kirkpatrick, C D Gelatt, and M P Vecchi, 1982, "Optimisation by Simulated

Annealing", IBM Computer Science/Engineering Technology Report, IBM Thomas J

Watson Research Centre, Yorktown Heights, NY.

A. Land and S. Powell, 1973, "Fortran Codes for Mathematical Programming",

Wiley, New York.

E. L. Lawler, Lenstra J K., Rinnooy Kan, A .H. G., and Shmoys D. B., 1985, "The

Travelling Salesman Problem", John Wiley & Sons.

S Lin, 1965, "Computer Solutions of the Travelling Salesman Problem ", Bell System

Tech J. 44, pp 2245-2269.

S Lin and B W Kernighan, 1973 "An Effective Heuristic Algorithm for the Travelling

Salesman Problem", Operations Research 21, 498-516.

J. D. Little, Murty, K. G, Sweeney, D. W., and Karl, C , 1963, "An Algorithm for the

Traveling Salesman Problem", Operations Research, Vol 11, pp 972-989.

181



P. Miliotis, 1976, "Integer Programming Approaches to the Travelling Salesman

Problem", Math. Programming 10, pp 367-378.

C. E. Miller, A. W. Tucker, and R. A. Zemlin, 1960, "Integer Programming

Formulations and Traveling Salesman Problems ", J. ACM 7, pp 3236-329.

M Padberg and S Hong, 1980, "On the Symmetric Travelling Salesman Problem : A

Computational Study", Mathematical Programnming Study 12, pp 78-107.

R. Russell, 1977, "An Effective Heuristic for the M-Tour Travelling Salesman

Problem with Some Side Conditions", Operations Research 25, pp 517 - 524.

R. Russell and W. Igo, 1979, "An Assignment Routing Problem", Networks 9, pp 1-

17.

182


