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The 2-period travelling salesman problem originates from the collection of milk from
dairy farmers in County Dublin, Ireland. Specifically, a group of dairy farms is allocated
to a milk tanker. Of these farms some require every day collection, and others require
collection every other day. The problem is to identify two tours with a combined
distance that s minimised such that each farm requiring collection every day is visited by
both tours, and each farm requiring collection every other day is visited by exactly one

tour.

Optimal solution procedures are developed for examples of the problem. These
procedures are based on integer programming formulations. These formulations are
solved directly for small problems. The solution of medium sized problems, up to 100
nodes, require LP relaxation, subtour and comb constraints, and ultimately the solution
of a considerably constrained {0,1} model. The solution process identifies an important
group of inequalities whose explicit presence in the model dramatically improves our

ability to solve medium sized problems.

For problems with over 100 nodes the search time for an optimal solution becomes
excessive. In these cases heuristic procedures, which provide good, but not necessarily
optimal solutions, are used. A range of heuristic procedures are developed and
empirically analysed. In the absence of an optimal answer, the heuristic solutions are
compared with a lower bound on the optimal answer. Three classes of bounds are
developed. The first class is based on increasingly constrained LP relaxations. The
second class is based on an extension of the 1-tree concept. The third class is based on

Lagrangian relaxation.
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Chapter 1  2-Period Travelling Salesman Problem

1.1 Background in the Irish Milk Industry

The fresh milk output from Irish dairy farmers is either collected once a day or once
every second day by large bulk milk tankers. The preferred option is to call once to
each farmer every second day. However, the required collection frequency for a
particular farmer depends on the capacity of the milk storage tank on the farm. If the
on-farm tank capacity is not sufficient to hold two days milk output, then that farmer
must be called to every day. Various schemes are in operation to encourage farmers

who require collection every day to upgrade their on-farm milk storage tanks.

Every 2nd Day
& SIS

Every Day
—

Day 1 Routes

Day 2 Routes

Figure 1.1 : Day 1 and Day 2 Milk Collection Routes

At present the scheduler of the milk tanker fleet has two problems. The first problem is
to decide on how best to allocate the farmers requiring collection every second day to
either a Day; route or a Day, route. A Day, route is driven on Mondays, Wednesdays,
etc. The Day, route is driven on Tuesdays, Thursdays, etc. Having allocated the every

second day farmers, the scheduler must now, having regard for vehicle capacity,



generate efficient tours to service both the every day and every second day farmers.

The solution to a typical milk collection problem is shown in Figure 1.1.
The problem of the milk scheduler can be described as follows :

Let V'= { Farmers Requiring Every Second Day Collection }
V? = { Farmers Requiring Every Day Collection }
T, = { Set of Routes Driven on Day 1, of total length I( T, ) }
T, = { Set of Routes Driven on Day 2, of total length I( T ) }

Find the partition of V!into V!, and V', , where:
V', = { Set of Every Second Day Farmers allocated to Day 1 }

V', = { Set of Every Second Day Farmers allocated to Day 2 }

V? + V', = { Set of customers to be collected on Day 1 }

V> + V', = { Set of customers to be collected on Day 2 }

Such that I T; ) + I( T2 ) is minimised, having regard for vehicle capacity.

The practical solution to the milk collection problem is a series of routes for Day 1 and
a series of routes for Day 2. The data used for the problem, later termed in this thesis
as the 42 node problem, is taken from a real milk collection problem from County
Meath, Ireland. The problem, introduced in this thesis as the 2-period Travelling
Salesman Problem, is a relaxation of the practical milk collection problem in that the
capacity restrictions are removed. In the absence of the truck capacity restriction, the

solution will be one large tour for Day 1 and a second large tour for Day 2.




1.2 Additional Applications of the 2-Period TSP.

While the 2-period TSP has its origins in the milk collection arena, relaxations of
many other routing problems can be formulated as the 2-period TSP. These include
applications with Airport Coach Services and Post Collection. In addition, the
formulation has application to the distribution of goods to retail outlets where the size
of the outlet dictates the frequency and level of service the outlet is to receive. In this
latter case the 2-period model can be generalised to an m-period model. The m-period

problem is discussed in Chapter 8.

1.2.1 Airport Coach Service Application.

An airport coach servicing down-town hotels calls to the larger hotels every half-hour,
and to the smaller hotels every hour. The tours that start on the hour call to all of the
larger hotels and to a subset of the smaller hotels. The tours that start on the half-hour
also call to all of the large hotels, and the remainder of the small hotels not serviced by

the tours that start on the hour. The situation can be depicted as follows :

Large Hotel
/ Small Hotel
Tour that starts
on the half hour
Tourthatstagts: 5 oolsi= o
on the hour

Figure 1.2 : Routes for the Airport Coach Service




Ignoring capacity constraints, the coach operator seeks to partition optimally the small

hotels across the two tours, while generating optimal tours for the coaches.

1.2.2 Post Collection Application

To facilitate customers wishing to post letters, the Post Office locates, at various
places in a town, post-boxes. Depending on the location of the post-boxes, the boxes
are emptied by a Post Office service van every hour or every two hours. Ignoring
capacity and maximum length of tour constraints, the allocation of post-boxes to tours,

and the optimal design of the tours is an application of the 2-Period TSP.

1.3  Comparison with the Standard Travelling Salesman Problem.

The standard travelling salesman problem, TSP, is concerned with the tour of
minimum length required to pass through every node in a graph. A considerable effort
has been used by academics to investigate the TSP. When the author first encountered
the 2-period TSP, he assumed that this problem could be transformed into a TSP, and,
thus, all of the thought applied to the TSP could be used. The basis of the

transformation was to be as follows,

where V' = { Nodes to be visited by only 1 tour tours }
V? = { Depot and all nodes to be visited by both tours },

Step 1: Form a new problem consisting of the nodes from V' and the
nodes from V” included twice. Contained within V? is the depot,

and, therefore, the depot is also included twice.

Step 2: Modify the distance matrix to prevent the tour travelling directly
from node i € V” to its duplicate node. This is achieved by setting

the distance from node i to its duplicate node at infinity.




Figure 1.3 shows the nodes of an 11 node version of the 2-period TSP. For this
problem Vo= 192345 }and V' = {6, 7, 8,9, 10, 11}. Figure 1.4 shows the

transformed problem with all nodes in V* duplicated.
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Figure 1.3 : 11 node 2-Period TSP.
6
=
3 s
@ ®
Y 2
3 .5. L J
9
. -
'm
10 4 4
5 = e o :
= 1 J &
H = =

Figure 1.4 : 11 node 2-Period TSP with nodes 1 to 5 duplicated.

A travelling salesman solution to the transformed problem would consist of a large
tour which visits the depot twice, each node € V? twice, and each node € V' only

once. Such a solution is shown in Figure 1.5.

Unfortunately, the solution to the 2-period problem is two tours, and it is impossible to
untangle the required two tours from the one tour obtained from the transformed

problem.

wn



Figure 1.5 : Optimal TSP Tour through the transformed problem.

The failure to transform the 2-period problem into a TSP opens the door on a new
variant of the TSP. This variant has many practical examples and therefore warrants

the full analysis detailed in this thesis.



1.4 Definition of the 2-Period TSP

The symmetric 2-period TSP is defined on a complete undirected graph G = (V,E) on
n nodes, with node set V, arc set E, and costs C;;. V is divided into two sets, V! and
V2 V' contains n; nodes each of which is to be visited by only one tour. V> contains

n, nodes each of which is to be visited by both tours. The problem is stated as

Minimise zziCyka (1.1)

i ji k=1

subject 4,

DX+ D Xy =2, ieV?, k=12 (1.2)
Juj<i Jij>i

DXt D X, —2Y, =0, iel k=12 (1.3)
Ju<i Jij>i

Subtour Elimination Constraints (1.4)
Y +Y,=1, iel! (1.5)
Xy =0orl i,jeV,j>i,andk =1or?2 (1.6)
Y, =0orl ieV', k=1or2 (1.7)

Xjix = 1ifarcitojis used by tour k; otherwise X =0. The Y variables are associated
with the nodes to be visited by only one tour. Yy = 1 if node i, i € V', is on tour k;
otherwise Yy = 0. Constraints (1.5) require that each node i, where i V', is only on

one of the two tours.

Constraints (1.2) and (1.3) together form the 2-matching constraints. Constraints (1.2)
require that 2 arcs from each tour are attached to all nodes in V>. While constraints
(1.3) force each node in V' to be connected by two arcs to one of the tours. The tour

to which a node i in V' is connected depends on whether Y;; or Y, equals 1.

The subtour elimination constraints, constraints (1.4), require that the solution to the

2-period TSP be two complete tours. The constraints are derived from the subtour

7




elimination constraints for the Standard Symmetric Travelling Salesman Problem. For

that problem the sub-tour elimination constraint suggests that

ZX ;< nS)—1, where S is a subset of the set of all nodes.

i.jes
To extend this sub-tour elimination concept to the 2-Period TSP requires a partition of
S, a subset of all nodes, into S' and S* , where S’ contains nodes visited by only one
tour, and S” contains nodes visited by both tours. The form of the generalised sub-tour
elimination constraint depends on whether either S' or S° are empty. The three

possible cases are:

Case 1: S'=¢, S contains only nodes visited by both tours.

z Xy < n(s*)—1, fork=1lor2
i,jes Y

Case2:S' and S”# ¢, S contains both types of nodes.

T X, < DY +n(S$)-1, fork=1o0r2
.. itk -
i,jesS ies

Case 3 : S*=¢ , S contains only nodes visited by one of the tours.

I X< Zxk —Agx[xk], fork=1or2

i,je S ieS
The solution to the standard TSP is a tour of minimum length. The 2-period TSP is
more complex in that the solution contains both an allocation of the nodes in V' to one

of the tours, and also a set of two tours of minimum total length.

When the 2-period TSP problem arises in a practical application, there is always the
hope that an optimal solution can be found. Industry would like to believe that when
Management Science is brought to a problem, then an optimal answer is available for
implementation. However, like the TSP, if the search for an optimal solution proves

impractical, then, the only resort is heuristic procedures.




1.5 Thesis Overview.

This thesis is concerned with the 2-period TSP. Chapter 2 reviews the academic
literature on the TSP, and uses the experience of other researchers to indicate how

solutions can be effectively obtained for this new variant of the TSP.

Chapter 3 optimally solves 3 examples of the 2-period TSP. These examples, termed
the 11 node, 21 node, and 42 node problems, represent small and medium sized
versions of the problem. The data within the 42 node problem relates to a problem of
milk collection from Ireland. Chapter 3 shows that, for small problems, the {0,1}
mathematical formulation can be solved in reasonable time with sub-tour elimination
constraints being added on an “as needed” basis. This direct solution of the {0,1}
formulation fails in Chapter 3 for the 42 node problem. An approach based on an

increasingly constrained LP relaxation is required to solve the 42 node problem.

Chapter 4 builds on the successful solutions obtained in Chapter 3, and attempts to use
the same solution methodology on a 100 node version of the problem. The explosive
combinatorial nature of the problem is exposed in Chapter 4, and only after a heroic

struggle did the 100 node problem finally yield an optimal solution.

Historically two solution methodologies have evolved for the TSP. One is based on LP
relaxations and {0,1} solution. This procedure is used in Chapters 3 and 4. The other
methodology is based on branch and bound. Fundamental to this approach is the ability
to find good lower bounds on the optimal solution. Chapter 5 discusses various
approaches for obtaining lower bounds for the 2-period TSP. In addition to their use in
obtaining optimal solutions, bounds are invaluable when analysing heuristic solutions in

the absence of an optimal solution.

The problems, within Chapter 4, of finding an optimal solution to a 100 node version
of the 2-period TSP, suggest that 100 nodes is very close to the upper limit on the

problem size that can be optimally solved. Chapter 6 introduces heuristic procedures as




an alternative option when a good, but not necessary optimal , solution is required.

Chapter 7 empirically analyses a variety of heuristic procedures.

Chapter 8 summarises the thesis, and identifies areas of potential future research.

1.6 Day, and Day; Tours.

The 2-period TSP finds its origins in the mundane art of milk collection in County
Meath, Ireland. In this application the scheduler attempts to find a solution for day 1

and a solution for day 2. To reflect the humble origins of the problem, the two tours

created by the 2-period TSP are termed the Day; and Day, tours in this thesis.

10




Chapter 2 Literature Review

2.1 Introduction

The travelling salesman problem is the problem of finding the shortest Hamiltonian
tour in a graph. This problem appears to have been formulated some 70 years ago and
has been the subject of intensive investigation in combinatorial optimisation during the
past 40 years. The interest in the problem arises both from the many practical problems
that can be formulated as a TSP, and also because of its pivotal position in the

mathematics of combinatorial optimisation.

The 2-period TSP, introduced in Chapter 1, is a variant of the TSP. This suggests that
the history of the attempts to find optimal solutions to the TSP is of interest, and
hopefully the experiences from the successes and failures will guide us in our attempts

to find solutions to the 2-period TSP.

The original attempts at solving the TSP are based on Mathematical Formulations of

the problem.

2.2 Mathematical Formulation

In their survey paper, Bellmore and Nemhauser [ 1966 ], described two mathematical
formulations for the Travelling Salesman Problem. The first is based on the work by
Dantzig, Fulkerson and Johnson [1954], the second is from work by Miller, Tucker
and Zemlin [1960]. The main difference in these formulations is in how they handle the
requirement that the solution is a tour. The two formulations for an asymmetric

problem on n nodes are :

11




Formulation 1 ( Dantzig et al )

Minimise Z C,X,

iJ

Subjectto » X, =1 (i =1,.,n),
]
ZXij =1 (j = 1,...,n),
ZZ:X,.j <[S]-1  Sisa subset of n nodes
ieS,.jeS
X, =0}

Formulation II ( Miller et al )

Minimise Y C, X,
i
Subject to ZXU. =1 (1<i<n)

J
>X, =1 (1< j<n),
u,—u, +(n-DX, <n-2 (2<i<n),
2<j<mandi=#j
X, =01
u >0 (2<i<n)

Formulation II requires significantly fewer constraints than Formulation I. However, as

Bellmore and Nemhauser, show this does not necessarily mean that Formulation II is

easier to solve. Consider a simple example of n nodes, where a solution consists of

subtours ( 2, 3,4,2)and (5, ..., n, 5). Formulation I would block these subtours by

the constraint :

X+t Xu+tXp<2

12




Using Formulation II, three constraints are required
Uz-us F(n-1)Xp:<n-2
us-us+(0-1)Xz4<n-2
u-wt+(n-1)Xp<n-2

When these constraints are added we get

Xos + X3+ X2 <3-3/(n-1)
Although this constraint is sufficient to block the subtour, it is weaker than
X+ Xz +Xpp<2

and admits more feasible fractional subtours.

The solution of Formulation I with the integer restriction replaced by 0 < Xj; < 1 will
not generally provide a {0,1} solution. In 1954, Dantzig, Fulkerson, and Johnson
found an optimal solution to a 42 city problem starting with the LP relaxation of
Formulation 1. They overcame the large number of subtour elimination constraints by
beginning with only a few, and then adding new ones only as they were needed to
block subtours. They used the cutting constraints, a forerunner of Gomory's cutting

planes, to rule out fractional subtours while preserving integer solutions.

Miller, Tucker, and Zemlin [1960] experimented using a similar approach with
Formulation II. Unfortunately, the results were disappointing. Since the work done by
Miller et al, very little attention has been given to Formulation II although the LP
relaxation is clearly weaker than that of Formulation I. It is suggested in Chapter 8,

that possibly Formulation II justifies further attention.

Claus [ 1984] outlines a further formulation for the TSP. This formulation replaces the
exponential number subtour elimination constraints by a number of constraints that is
proportional to the number of nodes times the number of finite cost arcs in the graph.
In addition, the new formulation introduces a new set of variables. Claus argues that
the resulting polytope is smaller that the subtour elimination polytope. Few

experimental results exist for this formulation.

13




2.3 Optimal Solution Based on Mathematical Programming

Miliotis [ 1976 ], using the pioneering FORTRAN Code of Land-Powell [ 1973],
reports the successful solution of medium sized, < 50 nodes, TSP’s using a
combination of LP relaxation, inequalities added on an “as needed” basis, and
branching to eliminate fractional values and to restore integer solutions. Miliotis notes

that only a small number of omitted constraints are added during the solution process.

The use of pure Linear Programming to solve a TSP requires a set of inequalities that
will linearly describe the convex polytope. Grotschel and Padberg [1977] suggest that
the number of linear inequalities required to describe the polytope is astronomically
large, and that an algorithmic approach to the TSP based on linear inequalities must

fail.

In their paper, Grotschel and Padberg [1977] prove that :

. The 2-matching constraints,
. The subtour elimination constraints, and
. The comb constraints, suggested by Chvatal [ 1973 ],

define facets of the polytope for the symmetric TSP. However, they also state that
these inequalities to not completely characterise the polytope of tours. The intersection

of the above inequalities has fractional as well as tour vertices.

Grotschel and Padberg [ 1977 | show that, while the number of the above constraints
is so large that they cannot be explicitly included in the formulation, a linear
programming approach which adds constraints on an "as needed" basis performs very
well. They show that, since no complete linear description of the polytope is known,
the optimal solution to the LP model is a lower bound on the optimum tour length.
Finally, they suggest, that integer programming can be used to bridge the gap between

the lower bound and the optimal solution.

14




Padberg and Hong [ 1980 ] support earlier work that inequalities defining facets of the
convex hull of tours are of substantial computational value in the solution of symmetric
TSPs. Their approach is to use a heuristic tour as a starting solution for a linear
programme, and then to gradually add more inequalities that define facets in order to

prove optimality.

Johnson and McGeoch [1995] report that the TSP is one of the major success stories
of optimisation. Years of research into optimisation techniques, combined with the
continuing rapid growth in computer technology have led from one new record to
another. Over the past 15 years, the record for the largest nontrivial TSP solved to
optimality has grown considerably from the famous 318 cities problem of Crowder

and Padberg [ 1980 |.
An adaptation of the approach used by Grotschel and Padberg [ 1977 ] is the
methodology used in Chapter 3 and Chapter 4 to find optimal solutions to the 42 node

and 100 node problems.

In parallel with the search for optimal procedures based on Mathematical

Programming, Branch and Bound approaches have been developed.

15




2.4 Branch and Bound

Garfinkel [ 1979 ] suggests that Branch and Bound approaches are appropriate for
virtually all combinatorial problems. The term Branch and Bound appears in two

different contexts in the search for an optimal solution to the TSP.

Firstly, it is a means of moving forward when an LP formulation, on the type discussed
in Section 2.3, yields a non { 0,1} integer solution. In this case the general approach is
to take a variable x, that should be {0, 1}, but whose current value is fractional, and
branch on x=0 and x=1. This leads to a search tree which grows until a bounding
approach indicates that a branch need not be explored beyond some node. This

approach is used in Dantzig, Fulkerson & Johnson [1954].

Branch and bound is also used when an optimal solution of an easily solvable
relaxation of the TSP is found. If this solution is a tour then the process terminates. If a
solution is not a tour, then the solution is used as a lower bound on the tour, and the
problem is branched into a set of sub-problems. The process continues until one of the
sub-problems yields a feasible tour, and the bounding process suggests that the
remaining nodes offer no potential for a better solution. Little, Murty, Sweeney and
Karel [ 1963] describe such an approach for the TSP. Their bounding process is based
on matrix reduction, while the branching is done by forcing one arc to be in the
solution of one of the sub-problems, and prohibiting that same arc from the other sub-

problems.

For Branch and Bound the quality of the computed bounds is of greater importance for
the effectiveness of the algorithm that the branching rules used. The most celebrated
bound for the symmetric TSP is one developed by Held and Karp [1970] and is based
on the concept of a 1-tree. A 1-tree is derived from the minimum spanning tree plus an
additional arc. The quality of the bound from the 1-tree is not usually very good.

However, the quality of the bound can be increased considerably by the use of

16




Lagrangean relaxation. Empirical results suggests that this bound is normally within

1% of the optimal tour length.

Other bounds for the TSP have been derived from,
e The Assignment Problem, Balas and Christofides [ 1976 ], and

e The Shortest n-Paths, Houck, Picard, Queyranne and Vemuganti, [ 1977 ].

25 Need for Heuristics

Network problems can be classified according to a theoretical scheme based on the
notion of "polynomially-bounded" and "NP-hard" classes. The class P is composed of
those problems for which polynomially-bounded algorithms are known to exist. A
polynomially-bounded algorithm is a procedure whose worst case computational effort
increases only polynomially with problem size. Problems belonging to the class P can

generally be solved to optimality quite efficiently.

In contrast to the class P, there is a large class of combinatorial problems for which no
polynomially-bounded algorithm has yet been found. This is the class of "NP-hard"

problems. For a more precise definition see Garey and Johnson [ 1979].

The class of NP-hard problems may be viewed as forming a hard core of problems that
polynomial algorithms have not been able to penetrate so far. The practical implication
of this classification is that for NP-hard problems, even a modest increase in problem
size will result in a prohibitive growth in the computational time required to find the

optimal solution. The TSP is a well known NP-hard problem.

To overcome our inability to find optimal solutions to large examples of NP-hard

problems, one frequently resorts to heuristic or approximate procedures.

17




2.6 Heuristic Procedures

Notwithstanding the impressive gains in obtaining optimal solutions from increasingly
larger TSPs, the reality is that heuristic procedures are still required to find “good”

solutions in practical applications.

Johnson and McGeoch [1995] suggest that the world of heuristic approaches to the
TSP can be divided into two classes - local search approaches and tour construction
heuristics. They report that tour construction heuristics do surprisingly well in practice,
and that local search heuristics typically get within 3-4% of the optimal. They remark
that the success of the traditional approaches leaves less room for the new approaches

like tabu search and simulated annealing to make a contribution.

2.7  Analysis of Heuristics

The development of alternate heuristics for the TSP requires a methodology to
compare their relative performance. Three different methods of comparison are

available. These are empirical analysis, worst-case analysis and probabilistic analysis.

Empirical analysis is the traditional method of comparison. The heuristic, under
consideration, is applied to a set of test problems and the solution values obtained are
compared to the optimal solution, if it is known, or to a lower bound, if the optimal
solution is not known, or to other heuristic results. Over time a series of test problems
have evolved in the academic literature, and all new heuristics are compared against
these test problems. The problem with empirical analysis is that it gives no
performance guarantees. What use is it in a practical situation that the methodology

you have adopted normally performs well, but you have just been unlucky?
Fisher [ 1980 ] defines worst-case analysis as a way of establishing the maximum
deviation from optimality that can occur when a specified heuristic is applied within a

given problem class. Worst-case analysis has the advantage of providing a guarantee
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on “how bad” the heuristic result could be. The main disadvantage is that the worst-
case performance is usually not predictive of average performance. The best worst
case polynomially bounded heuristic for the TSP is one suggested by Christofides [
1977]. This bound is marginally improved by Cornuejols and Nemhauser [ 1978 ].

To overcome some of the negativity associated with worst-case analysis, probabilistic
analysis is introduced. Probabilistic analysis predicts how the heuristic will perform for
a “typical” problem instance. What defines a “typical problem” is a major drawback

with probabilistic analysis.

In this thesis, various test problems are defined for the 2-period TSP, and the

developed heuristics are empirically tested against these test problems.

2.8  Variants of the Travelling Salesman Problem

The 2-period TSP is only one of many variants of the basic TSP. Other variants include
Prize Collecting Travelling Salesman, Balas [ 1989 ]
M-Tour Travelling Salesman, Russell [ 1976 ]
Bottleneck Travelling Salesman, Garfinkel and Gilbert [ 1978 ]

Time-Dependent Travelling Salesman, Fox, Gavish and Graves [1980].

Examinations of the above variants are important because they add insight into the
variant, and then by reflection back to the basic TSP. For example, the analysis by
Balas [1989] of the inequalities that define the polytope of the Price Collecting
Travelling Salesman Problem is of help when one analyses the inequalities of the 2-

period TSP.
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2.9  The Period Routing Problem

Both the vehicle routing problem and the travelling salesman problem are traditionally
concerned with minimising total distance or total cost on the assumption that any tour
derived or routes generated will be followed on a particular day. In formulating these
models no regard is had for such practical considerations as driver familiarity with a
route, customer requirements for a fixed call, and varying customer service levels.
Practical considerations suggest that a routing model with a time horizon longer than

one day, The Period Routing Model, may have many applications.

Beasley [1984] distinguished three different types of vehicle routing problems - The
Daily Routing, The Period Routing, and the Fixed Routes.

The Daily Routing is concerned with developing a set of vehicle routes for a single
day's deliveries. The vast bulk of routing heuristics such as Clarke and Wright [1964]

have been developed for this type of problem.

The Period Routing is where a set of vehicle routes is developed for a certain period to

meet customer service levels requirements. The typical period here is seven days, and
customers have such requirements as only deliveries on Mondays and Thursdays, or
Fridays only, etc. Christofides and Beasley [ 1984] developed a heuristic for the
problem of designing vehicle routes to meet service levels for customers. Their
heuristic is based on an initial allocation of customers to days, followed by an
interchange procedure. Russell and Igo [1979] examines a routing problem in which
the objective is to assign customer demand points to days of the week in order to

optimise the week’s routing effort.
The Fixed Routes problem arises when a set of vehicle routes has to be developed that

can operate unchanged for a given period of time. The model has application in the

area of milk collection because dairy farmers require the milk tanker to call at fixed
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times so as to synchronise with milking time. Beasley [1984] suggests a heuristic for

the Fixed Routes problem.

The 2-Period TSP is both a variant of the TSP, and an example of a Pertod Routing
Model.
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Chapter 3 Optimal Solution

This chapter describes the solution of three examples of the 2-period TSP. These
examples, termed the 11 node, 21 node and 42 node problems, represent small and
medium sized versions of the problem. This chapter demonstrates that, while small
problems can be solved directly using direct {0,1} programming, increasing the

problem size considerably complicates the search for an optimal solution.

3.1 11 Node Problem

The 11 node problem consists of a depot, node number 1, 4 nodes to be visited by both
tours, and 6 nodes to be visited by only one tour. The data for this problem is

contained in Appendix 1.

Section 1.4 of chapter 1 details a {0,1} formulation for a general 2-period TSP. The

formulation for the 11 node problem is as follows :

Minimise Z = 41X 021 + 58Xo031 + 14Xora11 + 54Xo0s1 + 73Xores1 +
40X 071 + 45Xg0s1 + 50Xo1 001 + 10Xar 01 + 40Xo1a1 + 22Xez031 +
36X 041 + 14Xo0s1 + 42Xp2061 + 64Xon071 + 36Xoz0s1 + 31XKonper +
32Xo101 *+ 50Xgo110 + 57Xoz0a1 + 10Xoz0s1 + 54Xozesn + 86Xezoern +
32Xo3081 + T3Xazo01 + 50Xoz101 + S1Xozg10 + 50Xea0sa + 61Xo4061 T
32Xona071 + S1Xoaosn T 36Xoa001 + 10Xoan01 + 51Xoa111 + 45Xos0s1 +
78Xosor1 + 36Xosos1 + 63Xosoon + 45Xosi01 + 54Xosna + 73Xosonn
T8Xos0z1 + 45Xos001 + 63Xos101 T 92XKosi11 + 82Xors1 + 30Xpneo1 T
41Xo7101 + 80Xor111 + 81Xogoen + 41Xogi01 + 20Xog111 + 45Xoei01 t
85Xn0111 + 41XGoaa + 41Xg1 022 + 58Xoresz + 14Xa10a0 + 54Xg1050 +
731062 + 40Xg1.072 + 45Xo1082 + 50Xo1002 + 10Xo1102 + 40Xo1 012 +
22Xoo 32 + 36X0a2 + 14Xon0s2 T 42Xes2 + 64Xo2072 + 36Xon0gn T
51Xmos2 + 32Xoz002 + 50Xoa112 + 57Xos042 + 10X03052 + 54Xo3062 +
86Xo3072 + 32Xo3es2 + 73Xozeez + 50Xez102 + 51Xozna + 50Xopg0s0 +
61Xo4062 + 32Xos072 + S1Xopqes2 + 36Xoa092 + 10Xoq102 + 51Xoq112 +
45Xos062 + 78Xos072 + 36Xgs0s2 + 63Xos002 + 45Xos102 + 34Xos 12 t
T3Xos 2 + T8Xososz + 45Xos092 + 63Xos102 + 92Xops112 + 82Xomgs2 +
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30Xo7002 + 41Xo7002 + 80Xo7112 + 81Xogoos + 41Xogi02 T 20Xog 112
45X09102 + 850112 + 41Xj0012

Subject to:

1. Xor,021 + Xorz1 + Xor,0a1 + Xoros1 + Xo10s,1 + Xorort + Xores1 + Xoroor + Xor,10,0 + Xor11,1 = 2

2. Koron1 + Xozos1 + Xozoai + Xozost + Xozess + Xozo71 + Xozogt + Kozt + Xozio1 T Xoz,11,1 = 2

3. Koroat + Xozoa1 + Xozoar + Xos st + Xozos1 + Xozor,1 + Xozos + Xozoe1 T Xozio1 + Xoz11,1 = 2

4. Xoro41 + Xozoar T Xozoa1 + Xoagsi + Xoags1 + Xosor1 + Koaos + Xoaoo1 + Xoaro1 + Xog1n =2

5. Xo1,05.1 + Xoz0s,1 T Xo3,05,1 + Xoaos,t + Xos6,1 + Xosg71 + Xosos1 + Xosget + Xos101 + Xosi1,1 =2

6. Xoto22 + Xo1,032 T Xoioaz + Xors.2 + Xoros2 + Xoror2 + Xoros2 + Xoroe2 + Xovao2 + Xor112 =2

7. Xor022 + Xoz,032 + Xoz,042 + Xo2,052 + Xo2,062 + Xo,072 + Xozes2 + Xoz,002 + Xozi02 + Xoz,112 =2

8. Xo1,032 T Xoz,032 + Xozoa2 + Kozos2 + Xozosz + Xozor2 + Xosese + Xosesz + Xozsop + Xoan2 =2

9. Xo1.042 + Xozoaz T Xozoaz + Koaosz + Xoaos2 + Xoaor2 + Xoaosz + Xoagsr + Xoato2 + Xoa12 =2

10.  Xoios2 + Xozes2 + Xozos2 + Xoaosz + Xosos2 + Xosor2 + Xososo + Xospo2 + Xos102 + Xosi12=2

11, Xorosi + Xoz0s1 + Xoz s, + Xoaos,1 + Xos06,1 + Xos,07,1 + Xosos1 + Xos0,1 T Xos,10,1 + Xos.11.1 - 2Ye61 =0
12. Kor,07.1 + Xozo7.1 + Xozo7.1 + Xoao7.1 + Xoso7.1 + Xosor1 + Xozes1 + Xozee1 + Xoz101 + Koz -2Y071 =0
13, Xoios1 T Xozs1 + Xoz0s1 + Xosos1 + Xosos.1 + Xosos.r + Xozos1 + Xosoo1 T Xos.10,1 + Xog11.1 - 2Y0s1 =0
14. Korgo1 + Xozoo1 + Xozooa + Xoago1 + Xoseo1 + Xoseo1 + Xoz 001 + Xogoeon + Xos 101 + Xoo11,1 ~2 Y001 =0
15. Kor101 + Xoz101 + Xozio1 + Xoago1 + Xos,01 + Xos 101 T Xor.10,1 + Xosi0,1 + Xos10,0 + Xi011,1 - 2Y101 =0
16, Ko+ Xozan1 + Xozinn + Xoanng + Xosin + Xosin + Xozi1a + Xog 11 + Xoo 111 + Xioar1 -2Y11, =0
17. Koros2 + Xozos2 T Xozos2 + Xoaosz + Xos0s2 + Xos.072 + Xosos2 + Xosoez + Xos.102 + Xosi12-2Y0s2 =0
18. Xo1,072 + Xozo72 + Xozgr2 + Xoaor2 + Xosor2 + Xosor2 + Xoresz T Xore02 + Xozp02 + Xor12 - 2Y072 =0
19.  Xois2 + Xozoes2 + Xos0s2 + Xoses2 + Xosos2 + Xoses2 + Xozes2 + Xosg o2 + Xos 102 + Xog 1,2 - 2Y0s2 =0
20, Xoro2 + Xo2002 + Xozpoz + Xoa0o2 + Xose2 + Xoso2 + Xo7,002 + Xos002 T Xoo,102 + Xoo112-2Ype2=0
21. Xor102 + Xoz,102 + Xos 102 + Xoa 102 + Xos 102 + Xos102 T Xo7,102 + Xog102 + Xooro2 + Xio112-2Y102=0
22. Kotz + Xoz,112 + Xoz 1,2 + Xoanz + Xos1.2 + Xos,i12 + Xova12 + Xogarz + Xoori2 + Xi0112-2Y112=0
23. Yosi+ Yos2=1

24 Yo+ Youa=1

25. Yosi+ Yogo=1

26 Yoo+ Ypea=1

217. Yion+ Y2 =1

28. Yiau+Yn2=1

29, XycandYye{0,1}

30.  The solution is two tours, with nodes 1 to 5 on both tours, and nodes 6 to 11 on only 1 tour.



Constraints 1 to 10 require that nodes 1 to 5 are connected to each of the two tours by
two arcs. Constraints 11 to 22 force nodes 6 to 11 to be connected by two arcs to only
one tour. The tour to which these nodes are connected depends on which of the Y’s

have a value of 1.

Constraint 30 requires that any solution is consistent with the tour requirements. The
number of constraints required to explicitly express constraint 30 is large. Thus, the
solution methodology adopted is to ignore constraint 30, and then, on an “ as needed “

basis to add constraints to prevent violations.

The above problem, with constraint 30 ignored, is solved using the {0,1} algorithm of
CPLEX. The solution is shown in Figures 3.1 and 3.2.

Figure 3.1 : 2-Matching Solution for Day;

Figure 3.2 : 2-Matching Solution for Day-
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The solutions in Figures 3.1 and 3.2 have a total length of 359. The solution for Day,
contains subtours. To prevent these subtours occurring in later solutions the following

constraints are added to the model.

Xo1,042 T Xo1,102 T Xo4,102 < 2

Xo2,032 + Xoz2052 + Xo3,052 <2
Because of the symmetry in the problem, the above constraints are duplicated to apply
also to Day;

Xo1,041 T Xo1,10,1 + Xos,101 <2

Xo2,03,1 + Xo2,05,1 T Xo3,051 < 2

Adding the 4 additional constraints to the model gives a new solution shown in Figures

33and 3.4

1"

Figure 3.4 : Optimal Solution for Day,
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The solutions, shown in Figures 3.3 and 3.4, have a total tour length of 406. The

solution satisfies the tour requirements, and is, therefore, the optimal solution.

The {0,1} programming facility within the CPLEX package solves the above problem
is less than 1 second. For problems of equivalent size to the 11 node problem, the

above solution methodology provides an optimal solution in reasonable time.

3.2 21 Node Problem

The 21 node problem consists of a depot, node number 1, 8 nodes to be visited by both
tours, and 12 nodes to be visited by only one tour. The data for this problem is

contained in Appendix 2, and the nodes are displayed in Figure 3.5.
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Figure 3.5 : 21 Node Problem

The integer programming formulation of the above problems contains
440 decision variables of the form {0,1},
42 2-matching constraints,
12 constraints of the form Y;; + Y = 1, and

Subtour elimination constraints.
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The solution procedure adopted is to initially solve the {0,1} formulation with the
subtour elimination constraints ignored. A loop is then entered during which subtour
elimination constraints are added on an “as needed* basis, and the model resolved. The

loop terminates when the solution meets all of the tour requirements.

The initial solution, the 2-matching solution, with all subtour elimination constraints

ignored is shown in Figures 3.6 and 3.7. The objective value of this solution is 627.
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Figure 3.6 : 2-Matching Solution for Day;
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Figure 3.7 : 2-Matching Solution for Day,

0

As Figures 3.6 and 3.7 show, the 2-matching solution contains subtours. Several

iterations are required in which subtour elimination constraints are added on an “as

7.



needed” basis. Finally, a solution is obtained that satisfies the tour requirements. This

solution with an objective value of 660 is shown in Figures 3.8 and 3.9.

20

Figure 3.8 : Optimal Solution for Day;

11
kDemt /

Figure 3.9 : Optimal Solution for Day,

The time to solve the {0,1} model at each stage in the above procedure is of the order
of several hours on a pentium running CPLEX. This excessive processing time
suggests that for problems of a larger size this direct approach is not realistic. This
indirect approach using LP relaxation is introduced in the solution of the 42 node

problem.
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3.3 42 Node Problem

The 42 node problem originates from the green fields surrounding Dublin, Ireland.
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Here a cluster of 41 dairy farms are allocated to a milk tanker. Depending on the size

of on-farm storage capacity, the milk from some farms must be collected every day,

while other farms with sufficient storage to hold the milk output from two days, can be

collected every other day. The scheduler creates two tours, and each tour is driven on

alternate days. It is the scheduler’s responsibility to allocate the every other day farms

to one of the tours.
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In practice the capacity of the tanker is of importance, and the scheduler attempts to
allocate each every other day farm to a tour so as to minimise the total distance over
the two days, having regard for the ability of the tanker to transport the milk on both
days. For the purpose of the analysis in this thesis, the tanker capacity restriction is

removed, and the decision of the scheduler depends solely on minimising total distance.

Should milk be collected from a farm every day? What impact does collecting the milk
every second day have on milk quality? The answers to both of these questions depend
on the quality of the on-farm storage system. If the milk can be cooled quickly on farm,
and then stored below 4°C, milk will last for several days. As the quality of on-farm
storage increases, the dairy sector is considering moving from every second day
collection to every third day collection. To implement this concept, farmers must be
encouraged to increase both the quality and capacity of their on-farm storage tanks. In
this case some farms will require collection every day, some farms every second day,
and some farms every third day. If the tanker capacity restriction is removed from this
new problem, we have a m-period TSP. This problem will be mentioned again in

Chapter 8.

For the 42 node problem Node 1 corresponds to the depot,
Nodes 2 to 13 require every day collection, and

Nodes 14 to 42 require collection every other day.

Appendix 3 details the location of the nodes. The analysis assumes that the distance
between the farms, called nodes for the remainder of this thests, is the straight line

distance.




3.3.1 Solution of the 42 Node Problem

In Section 3.1 and Section 3.2 small versions of the 2-period TSP are solved directly
using {0,1} programming. This approach requires excessive processing time for the 21
node problem. An attempt to directly solve the 2-matching {0,1} formulation of the 42
node problem was terminated after the CPLEX programme failed to find an optimal

answer after several days continuous running on a Pentium PC.

This failure of the direct approach prompted the development of an more sophisticated
procedure. This new approach solves increasingly constrained LP relaxations of the
model. It is only when the LP relaxation satisfies all sub-tour and comb constraints
that an attempt is made to solve the problem using integer programming. All timings
quoted in this Section are obtained using the CPLEX package on a Pentium Pro PC

running Windows NT. Figure 3.14 contains a flow diagram of the solution process.
3.3.2 Stage 1. 2-Matching Linear Programming Relaxation.

The starting LP relaxation is the one derived from the 2 matching constraints. The

formulation of which is :

41 42 2
Minimise »_ > > C, X,

i=1 j=i+l k=1
Subject to
i-1 42
DXt DXy =2, i=1..13, k=1,2
j=1 J=itl

i—1 42
DX+ DXy ~2Y, =0, i=14..42, k=1, 2
J=1

J=i+l
Y, +Y,=1, i=14.. 42
0<X,andY, <1

itk




The above formulation consists of 1,722 X variables, 58 Y variables, and 113

constraints. The solution of this gives a value of 1,554 in a time of 0.27 seconds.

3.3.3 Stage 2. Constraint to remove the symmetry between Day; and
Day..

The solution to the above LP relaxation is the same for the two days. As additional
constraints are added to the formulation it is found that adding a constraint to prevent
some condition for one of the days, simply causes that condition to occur on the other
day. To break the symmetry in the problem, a constraint is added which forces Node

14 to be on the Day; tour. The form of this constraint is : Y41 =1
The solution of this model gives a value of 1,568 in a time of 0.27 seconds.
3.3.4 Stage 3. Constraints of the form X, < Yi. added iteratively.

The logic of the problem suggests that if node j, one of the every other day nodes, is
not to be visited by tour k, then all of the X;x must equal zero. These requirements,
named the VUB, variable upper bound, constraints by a friend and colleague Professor

Paul Williams, are incorporated into the relaxation by the constraints :

X <Yy, 1>),j=14...42, k=12
Xy <Yy, i<j,j=14.42 k=12

The power and importance of the above constraints are shown by the increase in the
objective value solution that is obtained when the VUB constraints are added to the
formulation. It will also be demonstrated later in this section that they are the

difference between success and failure when one attempts to solve the problem using

integer programming.




The number of VUB inequalities is quite large, and thus the approach is adopted
whereby these constraints were added to the LP-relaxation on an “as needed” basis.
In all 71 VUB constraints are violated and explicit constraints are added, and at the

conclusion of this Stage a solution of value 1,694.5 was obtained in a time of 0.44

seconds.

Later in the process, as additional constraints were added to the LP-relaxation, the
solutions are checked for VUB violations, and additional constraints are added as

required.
3.3.5 Generalised Sub-tour Elimination Constraints

For the Standard Symmetric Travelling Salesman Problem, the sub-tour elimination

constraint demands that

> X, < nS)-1, where S is a subset of the set of all nodes.

i.jes
To extend this sub-tour elimination concept to the 2-Period TSP requires a partition of
S, a subset of all nodes, into S' and S? , where S” contains nodes visited on both days,
and S' contains nodes visited on only one day. The form of the generalised sub-tour

elimination constraint depends on whether either S' or S are empty. The three

possible cases are:
Case 1: S'=¢, S contains only nodes visited on both days.
vy X, < nsSH-1, fork=1lor2
. ij
i,jeS

Case 2 : S' and $*# ¢, S contains both types of nodes.

2 Xijks ZZk—n(Sz)—l, fork=1o0r2
i,jes ics



Case3:S°=¢, S contains only nodes visited on one day.

2 Xl.jkg sz—z\gx[xk], fork=1or2
i,jes ies

Consider the following examples that occur during the solution exercise.
Example I: Xs31=1,Xs61 =1, and Xs5, = 1

This is a violation of a Case 1 type constraint, and the following inequalities are added

to the problem :

Xsg1 + Xse1 + Xesg1 £2
X532 + Xseo T Xesoz <2

Even though the violation only occurred on Day;, a constraint is added for both days

to avoid this portion of the solution jumping to the other day.

Example 2 X10739,1 = 025, X10’34’1 = 025, and X34’39’1 = 025, Wlth
Y3471 =0.25 and Y39A1 =0.25.

The Case 2 inequalities added are :

Xi039,1 T Xiozar T Xagzoqr < Yza+ Yaog

Xi0392 T X342 + Xz4302 < Yza2+ Yio2

A programme was written to automatically identify all circuits in the solution. For each
circuit, the programme then sums the X values for all arcs in the circuit. Next, the
programme checks whether the sum of the X’s violates a subtour elimination
constraint. Details of this programme that automatically detects violations of circuit

based sub-tour constraints are given in Appendix 7. This programme is imbedded in a
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loop that consisted of solving the Linear Programme, and then using the automatic
procedure both to detect violations and then to add the appropriate constraints. This
process continues until no circuit based sub-tour violations exist. In addition to
checking for sub-tour violations the programme adds, as required to prevent violations,

VUB constraints.

In total the above loop is performed 7 times and 54 sub-tour elimination constraints

together with an additional 6 VUB constraints are added.
The solution of the final loop gives a value of 1,711.8 in a time of 0.55 seconds.
This solution is shown in Figure 3.10. and the values are given in Appendix 4. The

value on each arc is the sum of Xj; and Xy, for that arc. If no figure is associated with

an arc, then Xjj; + Xjjz = 1 for that arc.

g 0.25 ’

18

Figure 3.10 : LP Relaxation Solution after Stage 4.




3.3.6 Stage S. Simple Comb Constraints.

At the end of Stage 4, the LP solution satisfies all generalised sub-tour inequalities.
The next stage is to identify comb constraints that might be violated. For the STSP,
the simplest of the combs will consist of a handle of 3 nodes, with a tooth of a single

arc attached to each node. The constraint for this comb is derived as follows :

Eqn1: Node A: Xi+Xo+ Xy

IA
[\

Eqn2: NodeB: Xo+ X5+ X5

IA
(]

Eqn3: Node C: Xy+Xs+Xe <2

Eqn4: X; <1
Eqgn5: X; <1
Eqné: Xe <1

Summing the above 6 equations gives :

X+ X+ X+ X+ Xs+Xs ) < 9

Which implies, because of the integer requirement,

Xi+ X+ X+ X+ X5+ Xs < 4

The above proof was first suggested by Chvatal, and forms the simplest of the Chvatal
Cuts.



One can also argue on intuitive grounds that any feasible solution to the above can use
at most 4 of the above 6 arcs. In the diagram below the tour travels along X,, X,, and

Xs. In addition, the tour travels along arc Xs. The use of any other arc is impossible in

a feasible solution.

Extending the above to a handle of n nodes suggests :

n where € € comb
Z X,<n+ L_J refers to an arc in the
ecConib comb.

The above inequalities applies to simple combs for which the tooth at each node
consists of a single arc. Obviously more complicated structures exist. The comb
concept is now extended to the to the 2-Period TSP, and the solutions are analysed on

a case by case basis. Later in this section, a more general approached is adopted.

Consider the following portion of the solution shown in Figure 3.10.

Depot

The above figure shows a comb, in which the handle, H, consists of nodes 3, 17 and
18. The teeth consist of nodes 1, 4, and 16. The sum of arc values for this comb

equals 4.8. The limit on the arc values for this comb can be derived as follows:
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Day 1, Node 3 : X3161+ X3171 T X3,1815 2

Day 1, Node 17: X371 T Xa71 + Xi7181< 2Y7:
Day 1, Node 18: X181+ X381+ Xi17,181< 2Y181
Day 2, Node 3 : X3,16,2 + X3,17,2 3r X3,18_2_<_ 2

Day 2, Node 17: X372 T Xa172 + Xi7,182< 2Y172
Day 2, Node 18: X182+ X3182 + Xi17182< 2Y 182
Arc 3 - 16: X3,16,1 ar X3,16,2 <

Arc4-17: Xaa71+ X172 < 1

Arc 1 - 18: X1~1371 ks Xl,lg’z =<l

2
Adding the above equations suggests 2 Z Z S €zl
ecComb k=1

2
which implies DD =5

ecComb k=1

An examination of the comb confirms the result that at most 5 arcs in the comb can be
used in a feasible solution. In the diagram below, the solid lines are arcs from a Day;
tour, and the dashed lines are arc from a Day, tour. The use of any other arcs yields an

infeasible solution.

Day; TOUr commm—

Bay> Fous-ioo o -
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For the above comb, the actual sum of the X values equals 4.8. This value is less that

the inequality limit of 5, and thus, in this instance, the comb constraint is not violated.

Examples of other Combs, contained in Figure 3.10., which are investigated are shown

below :

For the above comb Z Z X, = 4.8 which satifies the limit of 5

ecComb k=1

For the above comb, the sum of X’s contained in the comb must be < 8. In fact, the

values add to 8, and thus the comb inequality is satisfied.

The limit of at most 8 for the above comb can be proved either by summing
inequalities or by an intuitive argument. The intuitive argument is based on the
maximum number of arcs in the comb that can be used in a feasible solution. The
diagram below suggests that, if 8 arcs are used, then the introduction of an additional

arc would produce an infeasible solution.




Consider the following portion of the solution from Figure 3.10.

5

In the above comb, the handle consists of nodes 8, 31, 37, 32, 36, 11, 33, 7, 30, and

28,
tooth 1 consists of nodes 7 and 29,
tooth 2 consists of nodes 11 and 9, and

tooth 3 consists of nodes 8, 5, 25, 24, 26, 23, 27, and 6.

The constraints for the comb are calculated as follows :

Sub tour elimination constraint for tooth 3 : >X <9
Sub tour elimination constraint for tooth 3 less node 8 XX <7
Node degree constraints for all nodes in the handle 22X <26

X720+ X202 < 1

Xoait+ Xo 252

2
A sum of the above constraints suggests that 2 Z ZX xS 45
ecComb k=1
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2
thus, z ZXek <22

ecComb k=1

The actual values for the above comb Z Z X, =22.75.

ecComb k=1

A constraint limiting the sum to 22 was added to the formulation and the model

resolved. The solution gave a value of 1713.19 in a time of 0.55 seconds.

This solution is shown in Figure 3.11. and the values are given in Appendix 5. The
value on each arc is the sum of Xj; and Xy, for that arc. If no figure is associated with

an arc, then Xj; + Xj;; = 1 for that arc

Figure 3.11 : LP Relaxation Solution after 1st set of Comb Constraints.

3.3.7 Derivation of the General Comb Constraints

Consider a comb consisting of a handle, H, and a set of teeth Ty, T,, ..., T..

H consists of n nodes {H;, H, ... Hy }. Of these n nodes some are every day nodes,

and the remainder are every other day nodes.
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Teeth are attached to the handle at various nodes, as shown below:

H2 Hg Tm

For each tooth in the comb, 2 constraints are derived. Constraint 1 is a subtour
elimination constraint for the nodes in the tooth. Constraint 2 is a subtour elimination
constraint for the nodes in the tooth with the node connecting the tooth to the handle
excluded. The form of these constraints depends on whether the comb contains any

every day nodes.

Consider the tooth, T, connected to the handle at node H;, :

_Constraint 1: Z Z X e

yeT, k=1

IA

2 * (Number of Every Day Nodesin T, ) +

( Number of Every Other Day Nodes in T, )

- 2; if T contains some Every Day Nodes.

M
o3
IA

( Number of Every Other Day Nodesin T ) -1 ;

if T contains no Every Day Nodes.

42



Constraint 2 : > Z X

IA

2*(Number of Every Day Nodes in T -H ;) +

(Number of Every Other Day Nodesin T, - H )

- 2, if T, - H, contains some Every Day Nodes.

M
M-

>
IA

(Number of Every Other Day Nodesin T, - H,) -1 ;

jeT,-H, k=1 )

if T, - H, contains no Every Day Nodes.

For every node in the handle a node degree constraint is generated. These constraints

suggest that :

Z Z X, < 4 ; ifthenodeis an Every Day Node.

All arcs connect k=1
to the node

> Yx,

All arcs connect k=1
to the node

IA

2 ; ifthe node is an Every Other Day Node.

The complete comb constraint is achieved by adding the constraints of types 1 and 2
for all the teeth with the node degree constraints for all of the nodes in the handle. The
left-hand side of this addition is twice the sum of all the arcs in the comb, while the
right-hand side is a real number. The strength of the comb constraint is achieved if the
right-hand side total is an odd number. The comb inequality is then achieved by

dividing the sum by 2 and rounding down.
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The following portion of the solution in Figure 3.11. is analysed using the above

approach as follows :

Handle= {3,17,18}
T,={174}
T,={3, 13, 14, 15, 16, 40, 41, 42 }

Fortooth 1 :
Constraint 1 has right-hand side = 8
Constraint 2 has right-hand side = 6

For tooth 2:
Constraint 1 has right-hand side = 1
Constraint 2 has right-hand side = 0

For the Handle

Sum of node degrees < 8
The addition of the above right-hand sides comes to 23. This divided by 2 and rounded

down provides 11 as a limit of the sum of the arcs in the comb. The actual solution

values with a sum of 11.47 violate this condition. A comb constraint preventing this
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comb occurring in a later solution was added and the formulation resolved. The

solution gave a value of 1715.21 in a time of 0.55 seconds.

Additional effort could be spent identifying further comb constraints. However, an
attempt at solving the problem using integer programming proved successful and the

search for comb constraints was terminated.

3.3.8 Integer Programming Solution of the LP Model

On completion of Stages 1 to 5, the Linear Programme consisted of 1780 variables and
237 constraints. A complete listing of the constraints added in Stages 2, 3, 4 and 5 is

shown in Appendix 8.

This LP is a relaxation of the original problem in which both the X and Y variables
must take values from {0, 1}. Introducing this restriction on the X and Y variables
and solving the IP by CPLEX gave an optimal solution, with no subtours, of 1,725 in

a time of 25.54 seconds.

This solution is shown in Figures 3.12 and 3.13 and the values are given in Appendix
6.

Figure 3.12 : Optimal Tour for Day;.




Figure 3.13 : Optimaj Tour for Day,.

The success of the IP solution at this stage is in contrast with an attempt to solve the
original integer version of the 2 matching formulation using CPLEX. Table 3.1 shows

the results of attempts at solving the IP at various points in the solution process.

Table 3.1 shows the impact of
- the additional VUB constraints,
- subtour elimination constraints, and
- comb constraints

on the ability of CPLEX to solve the IP problem.
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Elimination and Comb

Constraints.

Model Stage Processing Solution | Nodes | Iterations
time (Secs)
2-Matching - Failed - -
2-Matching plus VUB 56.03 1,709 3,773 17,630
2-Matching plus VUB and 43.12 1,725 1,995 | 25,881
Subtour Elimination
2-Matching plus VUB, Subtour 25.54 1,725 1,106 | 15,256

Table 3.1 : Integer Programming Solutions using CPLEX.

The above table verifies the major importance of the VUB constraints in any attempt

to solve this problem using Integer Programming.

Figure 3.14 represents the flow through the solution approach used to solve the 42-

node problem.
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Solve 2-Mafching LP
Relaxation

1,554

A

Break Day, and Day,
Symmetry

1,568

Add, as required
Xijk < Yik
and resolve

Add, as required,
Sub-Tour
Elimination Constraint

Add, as required,
Comb
Constrant

Figure 3.14 Solution Process for the 42 node problem

»
L&

VUB

Yes L
Violations

Violation
of

Sub-Tours
9

Yes

Violation
of

Comb
?

Yes

1,715.2

Solve using Integer
Programming

1,725

48




34 Conclusion

The 11 node 2-period TSP can be realistically solved using {0,1} integer programming
directly, with the subtour elimination constraints added on an “as needed” basis. This

direct approached falters, but with perseverance can be made to succeed, for the 21

node problem.

The direct approach is unrealistic for the 42 node problem, and an approach based on
successive LP relaxations provides an optimal solution. Within this approach, the
VUB constraints are the difference between success and failure. Their addition to the
2-matching LP relaxation moves the problem forward to a stage where direct {0,1}
programming will optimally solve the problem. Generalised subtour and comb
constraints also help in moving the LP relaxation closer to the optimal answer, but not

to the same extent as the VUB constraints.

A version of the solution methodology for the 42-node problem is published in Butler,
Williams and Yarrow [1997]. The approach in that paper differs marginally from the
approach used in this thesis. In the paper the VUB constraints are added at each stage
on an “as needed” basis. While, in this thesis, a VUB constraint, once added, remains

in the model.
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Chapter 4.  Optimal Solution of the 100 Node Problem.

This chapter describes the procedure to find an optimal solution to an 100 node
example of the 2-Period TSP. The 100 nodes consists of 40 nodes that are to be
serviced by both tours, and 60 nodes that are to be serviced by only one tour. The

data for this problem is contained in Appendix 9

4.1 Solution Approach

Chapter 3 describes a successful attempt to solve the 42-node problem. There, the
solution procedure consists of a staged approached in which an increasingly
constrained LP relaxation is solved. When the LP satisfies all VUB, subtour and comb
constraints, then {0,1} programming is used to provide the optimal solution. It was
initially hoped that this philosophy could be applied to the 100 node problem.
However, as is described below, and as should have been expected with any
combinatorial problem, the final solution proved extremely elusive, and as soon as one
felt that the optimal solution was in sight, then the problem seemed to regain control,
and in the space of one step the solution seemed as far away as ever. Professor Paul
Williams described the solution seeking exercise as similar to nailing jelly to a wall -

Just as it seemed that it was finally stable, a new area would ooze out, and .....

4.2  2-Matching and VUB Constraints

The 2 matching LP relaxation of the 100 node problem consists of 9,900 X variables,
120 Y variables and 260 constraints. This LP gave an objective value solution of 1,049

in a time of 1.48 seconds.

Following the methodology developed for the 42 node problem, a constraint is next
added to break the symmetry of the problem. The LP solution at this stage contains
VUB violations. Through a process of resolving the model and adding VUB

constraints as needed, a solution is found that violates no VUB constraint. The



resulting LP contains 395 constraints with a solution of 1,157.5. The above increase in

the objective function from

1,049 to 1,157.5 once again shows the power and

importance of the VUB constraints. Unfortunately, it was later found that no other

class of constraint yields such an increase in the objective function.

4.3 Subtour Elimination Constraints

As described in Chapter 3, a computer program was written to identify and introduce

the necessary preventative constraints for circuit based subtour violations. In all 165

subtour elimination constraints are added to the model. At the end of this stage, the LP

model consists of 560 constraints, and solves with a value of 1,199.56.

A diagram of the process is :

Solve 2-Matching LP
Relaxation

1,049

A

Break Day; and Day,
Symmetry

1,049

h 4

Add, as required

Yes -

« Xik < Y Violations
and resolve
. Violation
Add, as required, of circuit
¢ Sub-Tour based
Elimination Constraint Sub-Tours

1.199.56

260 Constraints

261 Constraints

395 Constraints

560 Constraints




At point A, above, the LP model contains 10,020 variables and 560 constraints. The
objective value solution of this LP is 1,199.56. This solution contains fractional values
for some of the arcs. The best that can be said is that the value of 1,199.56 is a lower

bound on the optimal solution.

Three possible options were considered for the way forward from point A. These are :

1. Add the restrictions X and Yi € {0,1} and attempt to solve.
2. Add the restriction Yy € {0,1}, while leaving 0 < Xjjx < 1, and
continue.
3. Increase the complexity of the LP relaxation by identifying

firstly, non-circuit based sub-tour violations and then comb

constraint violations.

Obviously, option 1 is the simplest. But realistically, option 1 is doomed to failure and
so it proved. The complexity of the problem totally defeated CPLEX on a Pentium
Pro. The CPLEX package aborted after 90,000 iterations when the 32 megabytes of

core memory became inadequate to hold the solution tree.
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4.4 Heuristic Answer 1

Before failure, CPLEX found an integer solution, with subtours, of 1,213. This
solution is not proven to be optimal. Analysis of this solution gave a partition of the
Y’s across the two tours. This might not be the optimal partition, but maybe it could
be used as part of a heuristic solution to find a good upper bound. This detour into a

heuristic solution proceeds as follows:

1. The LP model at point A is restricted by assigning the Y variables to

the values suggested by the above partition.

2. The Xjj are restricted to {0,1}.

(8]

The IP formulation is solved using CPLEX. In the solution sub-tours
are identified and constraints are added to prevent their re-occurrence.

The model is continually resolved until two feasible tours are found.

In the above heuristic, because the Y variables are pinned, CPLEX is solving 2
independent TSP problems. The final run produces an objective value solution of 1,225
in a time of 5.33 seconds. These tours are shown in Figures 4.1 and 4.2. This heuristic

solution is considerably better that the previous best heuristic of 1,278.
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100 Node Problem J

Figure 4.1. Day; tour of heuristic solution of total length 1,225
| 100 Node Problem |

Figure 4.2. Day, tour of heuristic solution of total length 1,225
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An update of the solution process is as follows

lXukandY,k <1

Solution satisfies VUB
and circuit based
subtour constraints

X and Yy € {0,1} Xgand Yy <1

Y € {0,1}

X;jk <1
CPLEX failure Identify Subtours Identify non circuit
based sub-tour
Record Y partition violations
X < {0.1) l
and Yy pinned
Identify Comb
Violations
Solve using CPLEX, with

subtour elimination
constraints on an “as
needed” basis

Heuristic Solution
of 1,225




4.5 Y’s restricted to {0,1}

Earlier in this section it was stated that 3 options were considered as the way forward

from point A. Option 1 led to a heuristic solution. Points B and C above correspond to

the previous options 2 and 3. These options are restated as

2. Add the restriction Yy € {0,1}, while leaving 0 < X; < 1, and

continue.

[US]

Increase the complexity of the LP relaxation by identifying
firstly, non-circuit based sub-tour violations and then comb

constraint violations.

The road from A to B, above, involves restricting the Y variables to {0, 1 }. Solving
this MIP gives a solution of 1,202.67. This solution contains subtours. Using the
automatic procedure for eliminating circuit based sub-tours subtours yields the same

objective value solution of 1,202.67.

4.6 Heuristic Answer 11

The options from this point are either to use IP, or else to attempt to identify non-
circuit based subtour violations. Once again the simplest option is to use {0,1}
programming. Unfortunately, CPLEX again failed due to memory space limitations.
However, before failure, CPLEX produced an unproven integer solution, with
subtours, of 1,204. As is described earlier in this section, this 1,204 becomes the basis
of a heuristic solution. The Y values are pinned at the values suggested by the 1,204
solution, and the X variables are optimised. After eliminating several sub-tours, a
heuristic solution of 1,224 is obtained. This is 1 better that the previous best heuristic

solution. This solution is shown in Figures 4.3 and 4.4.
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100 Node Problem

Figure 4.3 : Day; tour of heuristic solution of total length 1.224
| 100 Node Problem |

Figure 4.4 : Day, tour of heuristic solution of total length 1,224




4.7 Non-Circuit Based Subtours

The diagram of the solution process is now :

Xjx and Yy, € {0,1}

Heuristic Solution
of 1,225

X € {0,1}

Yi € {0,1}
Xijkﬁl

Circuit based Subtour
Free Solution of
1,202.67

Heuristic Solution
of 1,224

The model at the point B, in the previous solution tree, contains :

B

Xijk and Yyg <1

Identify non circuit
based sub-tour
violations

Identify non circuit
based subtour
violations

|

9,900 X variables, where 0 <X <1,

120 Y variables of the form { 0,1 }, and

562 constraints.

58

Identify Comb
Violations




The objective value solution to this model is 1,202.667. This solution contains no
circuit based sub-tours. However, having manually drawn the solution, several non
circuit based subtours were found. One such example is shown below :

& 28

|87
10

87

72 100

In the above diagram the value shown on each arc is Xj; + X, for that arc.
Individually, no circuit violates a subtour elimination constraint. However, the total
value of the arcs connecting the 4 nodes must be < 4. The above values sum to 5. Thus

the constraint
X281 + X282 T Xiogz1 T Xiogz2 + Xio,1001 + Xio1002 + Xossr1 + Xogsro +<4

is added to the model.

An iterative process of identifying and then preventing both circuit based and non
circuit based sub-tour violations increased the solution value of the objective function
to 1,213.5. The aggregate solution for the two days is shown in Figure 4.5. The value
shown on each arc is Xj;; + Xjj, for that arc. It is only when this value does not equal 1,

that the appropriate value is shown.
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100 Node Problem J

Figure 4.5 : MIP Solution at point D in the solution tree.

A detailed examination of Figure 4.5. suggests that this solution contains neither
subtour or comb violations. At this stage a gap of 10.5 exists between the best
heuristic objective value solution of 1,224 and the best lower bound solution of

1,213.5. Integer programming using CPLEX is now used to bridge this gap.

4.8  Solution by {0,1} Programming

The ability of CPLEX to solve the IP model at this stage proved difficult, and only
after interesting experimentation between the CPLEX parameters that governs the
solution strategy between depth-first search and best-bound search did CPLEX finally
provide an optimal integer answer. Several of the initial answers contained subtours,
but the final, sub-tour free, answer with an objective value solution of 1,224 is
obtained. This solution is shown in Figures 4.6 and 4.7. The existence of the optimal

solution made it unnecessary to explore further node C.
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Xijk and Y,k S {0,1}

The final part of the solution process looks as follows

Xijk and Yy <1

Yi e {0,1}
X < 1
Heuristic Solution Circuit based.Subtour Identlfy non circuit
of 1,225 Free Solution of based sub-tour
1,202.67 violations
Xk € {0,1}

Heuristic Solution Identify non circuit

of 1.224 based subtour
’ violations

Identify Comb
Violations

|

Identify Comb
Violations

|

Subtour and Comb
Free Solution of
1,213.50

Xix € {0,1}

X

Optimal Solution of
1,224
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r 100 Node Problem J

Figure 4.6 : Day; tour of optimal solution of total length 1,224

r 100 Node Problem |

Figure 4.7 : Day, tour of optimal solution of total length 1.224
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4.9 Conclasion

A structured solution approach was developed to solve the 42 node problem. In
general this approach is followed with the 100 node problem. However, due to the
combinatorial explosive nature of the problem, considerable manual input is required to
move the solution process forward. It took all of the luck and perseverance of the

author, combined with a great deal of insight from Professor Williams, to finally

extract the optimal solution from the problem.

It was late one Sunday evening that the author finally obtained the optimal answer, and
as he closed this chapter of the thesis, he left the 100 node problem defeated, but with
admiration for a problem, that could be so simply stated, and yet put up such a gallant
fight to project is optimal solution. Finally, the author warns future explorers not to
travel into the depths of a 2-period problem of more than 100 nodes without due

caution.

In relation, to the solution procedure, the author is reminded of the words of Sir
Winston Churchill, who in 1930 when discussing World War 1, stated that “ The War
was decided in the first twenty days of fighting, and all that happened afterwards
consisted in battles which, however formidable and devasiating, were but desperate
and vain appeals against the decision of Fate.” The war here is the battle with the
100 node problem to yield its optimal solution. Churchill’s first twenty days
correspond to the VUB constraints. Their contribution to the LP relaxation are

impressive, and place the problem into the range of solution by integer programming.
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Chapter S: Bounds for the 2-Period TSP.

In Chapters 3 and 4, both the 42 node and 100 node versions of the 2-period TSP are
optimally solved using a combination of constrained LP relaxations and integer
programming. Another general purpose methodology that is adapted to the TSP is the
technique of Branch and Bound. The concept goes back to the work of Dantzig,
Fulkerson & Johnson [ 1954 ] on the TSP, although the term branch and bound was
first used - and in the context of the TSP - by Little, Murty, Sweeney & Karel [ 1963 ].
As its name implies, branch and bound consists of two fundamental procedures.
Branching is the process of partitioning a large problem into two or more sub-
problems, and bounding is the process of calculating a lower bound on the optimal

solution of a given sub-problem.

The ability of the branch and bound approach to optimally solve a discrete optimisation
problem depends on the quality of the bounds produced. This chapter investigates
three classes of bounds for the 2-period TSP. The first class is based on increasingly
constrained LP relaxations. The second class is based on an extension of the work
done by Held & Karp [ 1970, 1971 ] on the 1-tree concept. The third is based on

Lagrangian relaxation.

In addition to their importance within optimal solution procedures, bounds play a
major role in the evaluation of heuristic procedures. A key aspect in the empirical
evaluation of heuristics is the comparison of the heuristic result with the optimal tour
length. Unfortunately, especially for large problems, the optimal tour length is not
known. In these cases it has become the practice to compare heuristic results to the

best bound on the optimal solution.

5.1 Bounds based on LP Relaxations

The symmetric 2-period TSP is defined on a complete undirected graph G = (V,E) on

. . . 1
n nodes, with node set V and arc set E and costs Cj;. V is divided into two sets, V' and
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2 1 : . . .. 5
V©. V' contains n; nodes each of which is to be visited by only one tour. V° contains

n, nodes each of which is to be visited by both tours. The problem is stated as

2
Minimise ZZZ(%XW (5.1

el f>i k=l
subject to
DX+ DXy =2, iel,, k=12 (5.2)
Jij<i Jij>i
2N+ 2K =26,=0, eV, k=12 (5:3)
Jj<i Jii>i
Subtour Elimination Constraints (5.4)
Y, +Y,=1, iel, (5.5
Xy =0orl i,jeV,j>i,andk=1or?2 (5.6)
Y, =0orl ielV, k= lor2 (5.7)

A detailed explanation of subtour elimination constraints (5.4) is contained in Section

1.4 of Chapter 1.

As part of the solution procedure to the 42 node and 100 node examples of the 2-
period TSP, detailed in Chapter 3 and Chapter 4, various LP relaxations are solved. All
of these LP relaxations are solved in a few seconds using CPLEX on a Pentium Pro.

These solutions provide bounds on the optimal solution.

S.1.1 2-Matching LP Relaxation

The 2-matching LP relaxation is obtained by removing constraints (5.4) and relaxing
the {0,1} requirement in (5.6) and (5.7) to 0 < Xj and Yu = L. Experience from

Chapter 3 and Chapter 4 suggests that this relaxation provides a poor bound. The




bound being 90% for the 42 node problem, and only 86% for the 100 node problem of
the optimal value.

The solution to the 2-matching LP relaxation violates, what are termed in Chapter 3,
the VUB constraints. By explicitly adding VUB constraints on an “as needed basis”
provides a solution that satisfies both the 2-matching constraints and the VUB
constraints. The quality of the bound provided by this solution is better, being 98% and

95% on the optimal solution for the 42 node and 100 node problems respectively.

5.1.2 Held-Karp Bound

One of the best lower bounds for the symmetric TSP, called the Held-Karp lower
bound, is the solution to the linear programming relaxation of the standard integer
programming formulation. Johnson, McGeoch and Rothberg [ 1996 ] show that, for
randomly generated problems, the optimal tour length averages less than 0.8% over the
Held-Karp bound. This LP relaxation satisfies all of the 2-matching and subtour
elimination constraints. For the TSP the Held-Karp bound can be obtained either by
solving the LP relaxation and then adding generalised subtour elimination constraints,

or by Lagrangian relaxation applied to the 1-tree concept.

The 2-period problem is defined by the mathematical formulation (5.1) to (5.7). An LP
relaxation of this formulation is obtained by replacing the integer restriction in (5.6)
and (5.7) by the constraints :

0<X, <1

0<Y, <1

To reflect the pioneering work done by Held and Karp, the bound obtained from the

solution of the above relaxation is termed the Held-Karp bound for the 2-period TSP.

The Held-Karp bound for the 2-period TSP is obtained by first solving the 2-matching

. - - . (44
LP relaxation. Generalised subtour elimination constraints are next added on an “as
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needed” basis. The solution obtained is the required bound. This process is performed
in Chapter 3 for the 42 node problem and Chapter 4 for the 100 node problem. The

results provide a lower bound on the optimal answer of 99.2% and 99% for the 42 an

100 node problems respectively.

Table 5.1 summarises the quality of the bounds obtained from LP relaxations for the

42 node and 100 node problems.

Bound
Model 42 Node 100 Node
2-matching LP relaxation. 1,554 90% 1,049 86%
2-matching LP relaxation 1,694.5 98% 1,157 95%
plus VUB constraints
Held-Karp Bound 1,711.8 99.2% 1,211 99%
Optimal 1,725 1,224

Table 5.1 : Bounds from LP Relaxation

5.2  Bounds from the Shortest Spanning 1-Tree.

A relaxation of the 2-period TSP is obtained by removing the restriction that the
solution consists of two tours. In the one tour relaxation, each every day node is
duplicated, and each every second day node is included only once. Therefore, the
single tour passes through each every day node twice, and once through each every
second day node. A value of o is allocated to the distance between the two
occurrences of each every day node. This prevents the tour travelling directly between

these duplicated nodes.

The figure 5.1 shows the 11 node 2-period TSP with each every day node duplicated.

In this problem, nodes 1 to 5 are every day nodes, and are duplicated with nodes 1° to

57 respectively.
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mb

Figure 5.1 : 11 node 2-Period TSP with nodes 1 to 5 duplicated.

The TSP relaxation of the 11 node 2-period TSP contains 16 nodes. In general, the
TSP relaxation of the 2-period TSP is defined on a complete undirected graph G =
(V,E) on 2n; + n; nodes. The node set V contains the nodes from V' together with the
nodes from V? included twice. The symmetric cost matrix, Cy, is derived in an obvious
fashion from the original 2-period cost matrix, with the addition that C;: = oo for alli
V?. The problem is stated as

Minimise ZZC,,XU ieV, (5.8)
ieV j>i

subject to

2 X, + DX, =2, eV, (5.9)

Jij<i Jip>i

Subtour Elimination Constraints (5.10)

X, =0orl i,jeV,j>i, (5.11)

A relaxation of the TSP can be obtained through the following amendments to the

above formulation:

° All the equations in (5.9), except one, are replaced by their sum. This

sum forces the total number of arcs in the solution to equal 2n, + n; - 2.
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° The remaining equation from (5.9) relates to one of the nodes and
forces it to have degree 2. The choice of this node is arbitrary, but the

choice affects the value of the objective solution.
The above relaxation, termed a 1-tree by Held and Karp, is a lower bound on the TSP.

The 1-tree can be solved by omitting a nominated node, and then solving the MST
through the remaining nodes. The omitted node is now connected to the spanning tree

with the two shortest arcs.

Let Z; be the value of the solution to the 1-tree when node i € V is nominated as the
node to be omitted during the solution procedure. Z; is a lower bound for the TSP, and

is also a lower bound on the original 2-period TSP from which the TSP is derived.

The best bound, Z~ , is obtained by omitting each node in turn, and then selecting the

largest of the 1-tree solutions, that is

Z"= Max (Z,)

Figure 5.2 shows the 1-tree solution for the revised 11 node TSP with node 1 as the

omitted node. The solution to this 1-tree problem has an objective value solution of
300.

Figure 5.2 : 1-Tree for the revised 11 node TSP with node 1° as the omitted node.
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The impact of the choice of node to be omitted during the 1-tree algorithm for the 11
node 2-period TSP is shown in the following Table 5.2.

Node to be Excluded Value of the 1-tree.

1 300
300
296
300
296
328
322
326
322
300
326

O 00~ ON U B W

—_ =
— O

Table 5.2 : Length of the 1-tree as a function of the excluded node.

The highest value in the above table, and thus the best bound from the 1-tree relaxation

is 328. This is 81% of the optimal solution of 406.

The quality of the bound for the 2-period TSP from the 1-tree relaxation is consistently

poor, the bound averages only 80% of the optimal value.

§.3  Lagrangean Relaxation

The quality of the 1-tree bound can be improved if the node degree constraints,

expressed in equations (5.9), are included in the objective function by means of

Lagrange multipliers A. Equations (5.9) are as follows :

ZXJ.,+ ZXI.].:Z, iel, (5.9)

Jij<i Jij>i
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The Lagrangean problem,
P(A)=Min{ ZVZCU/YU + Z;“]( Zin_,_Zx_]_:z) }
i€V j>i ielV i<i i

where A 1s any # vector,

is a relaxation of the TSP. P(1) is a lower bound on the 2-period TSP for all A. The
best bound is obtained by finding A" such that

P(L") = Max P(})

The problem of finding the best value for A is complex, and involves, what is called,
subgradient optimisation. This process starts with an initial estimate for A and then A is

updated as P(A) hopefully converges to its optimal value.

Despite its simplicity, the subgradient method gives rise to a number of problems
regarding the rate of convergence of P(A). Held, Wolfe, and Crowder [ 1974 ]
provides references for the impact of the subgradient parameters on the rate of

convergence.

The formula used in this section is :
AR =it dl -2), ieV
where t* is the "step -length", and
d* is the degree of node i at iteration k..

Various studies exist for the best value for 7. It can be shown that the subgradient

optimisation process converges if

>'tF =0 and Lim, 2" =0.
k=1

Series of the form 1 + l + % + %+ ........ satisfy the above conditions.
2
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5.3.1 Best choice for 7*.

The empirical study was performed using the 42 node problem. In each case 100

iterations were performed and the value of P(}) is recorded.

Case 1:

AN =Alvld ), e
A7=0,1=t,and """ = * ¢*

Using various values for ¢ and o, Table 5.3 is produced.

t o Bound after 100 iterations
1 0.9 1,581.47
5 0.9 1611.16
1 0.99 1606.21
5 0.99 1578.09

Table 5.3 : Convergence Value as a Function of ¢ and o..

Note - the above series for ¢ does not conform to the conditions in the literature for

convergence. However, surprisingly good rates of convergence are obtained.

Case 2 :

At =2k df -2), ieV

1

x|

Al=0,1" =

Unfortunately, the above series does not converge to the “best” value within 100

iterations. Other series of a similar form were tested, and none of these performed as

well as the best of Case 1.

The bound obtained from the 1-tree relaxation depends on the choice of node to be
omitted during the procedure. However, as is to be expected from Lagrangean theory,

empirical analysis shows that the choice of node to be omitted during the 1-tree
procedure has no effect on either the convergence of the final value obtained by the

Lagrangean procedure.
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Table 5.4 show the bounds obtained from both the “best” 1-tree and Lagrangean

relaxation for the various 2-period problems.

Problem
Bound from 11 Node 21 Node
“Best” 1-tree 328 81% 528 80%
Lagrangean Relaxation 359 88% 578 88%
Optimal 406 660
Problem
Bound from 42 Node 100 Node
“Best” 1-tree 1,404 81% 904 80%
Lagrangean Relaxation 1,611 93% 1,127 92%
Optimal 1,725 1,224

Table 5.4 - 1-Tree and Lagrangean Relaxation Bounds
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5.4 Lagrangean Relaxation IT.

The 2-matching relaxation of the 2-period TSP can be stated as -

2

Z = Minimise 3, > C, X, (5.12)

i€V j>i k=1
subject 1o
ZXJ-,-H ZX,-,k=2, ieV, k=12 (5.13)
Ji<i Jir>i
ZX]'ik+ ZX{fk—2Kk20> iEI/l: k=1, 2 (514)
Jj<i Jiy>i
Y+, =1, ieV, (5.15)
X, =0orl i,jeV,j>i,andk=1o0r2 (5.16)
Y =0orl ielV,k=1lor2 (5.17)

Z, the optimal solution to the 2-matching, is a lower bound on the optimal solution to

the 2-period TSP.

Z, in turn, has a lower bound Zp which is the solution of the 2-matching problem with
the integer constraints, (5.16) and (5.17), replaced by
0<Xx., <1

gk —

0<Y, <1

Consider the problem, created from the 2-matching by adding the constraints (5.13)

and (5.14) into the objective function in a Lagrangean fashion. This problem
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Zww - Mimmise { XSS x. ¢ Ya (z Y, j

1eV 1> k=l iev, \Ug =
+zv(z R REIAY
iev, \ysl IS,
subject 1o
Y, +Y,=1, iel
X, =0orl i,jeV.,j>i,andk=1or?2
Y, =0orl ieV,k= 1or2

where u, and v are vectors, provides a lower bound on Z.

It is easy to solve this relaxation for given values of u and v. The optimal solution is
X = 0; if the objective function coefficient of Xix > 0.
= 1 otherwise.
In addition, either Y;; or Y;; is set to 1 depending on which has the smaller objective

function coefficient.

Subgradient optimisation is used to find the values for u and v that maximises Z(u,v).
For the 42 node problem, Z(u,v) converges to 1,554, While the 100 node problem

converges to 1,049.

These bounds are the same as Zip. This is to be expected, since Fisher (1981) shows
that a sufficient condition for Max ( Z(u,v) ) = Zip is that the Lagrangian problem is

unaffected by removing the integrality restriction on the variables. Geoffrion ( 1974 )

calls this the integrality property.

Since the bound produced by Lagrangean Relaxation II is only as good as the LP

relaxation of the 2-matching problem, has this bound any importance? The answer is



yes, and mainly from a computational perspective. For large problems, the size of the

LP might prove difficult to solve. Whereas the solution of the Lagrangian problem is

much simpler.
55 Comparison of Bounds.

This chapter derives bounds from both LP relaxations and shortest spanning 1-trees.

The bounds, in increasing order of magnitude, for both the 42 node and 100 node are

shown in Table 5.5,

Problem

Bound from 42 Node 100 Node
“Best” 1-tree 1,404 81% 522 80%
Lagrangian Relaxation II 1,554 90% 1,049 86%
2-Matching LP Relaxation 1,554 90% 1,049 86%
I-tree + Lagrangean 1,611 93% 1,127 92%
Relaxation
2-Matching Relaxation plus 1,694.5 98% 1,157 95%
VUB constraints.
Held-Karp Bound 1,711.8 99.2% 1,211 99%
Optimal 1,725 1,224

Table 5.5 : Bounds for the 2-Period TSP.

Aside from the Held-Karp bound, the quality of the other bounds are sufficiently poor
to suggest that branch and bound is not a viable option for solving very large 2-period
TSPs. Further research is required to create bounds that will make branch and bound

at least as competitive with LP based models for solving medium sized 2-period TSPs.
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Chapter 6  Heuristic Procedures

Chapter 3 and Chapter 4 investigate procedures for finding the optimal solution to
examples of the 2-period TSP. Experience from these chapters suggest that for
problems with over 100 nodes the search time for an optimal solution becomes
excessive. This chapter focuses on heuristic solutions, and the design of procedures

that while not guaranteed to find optimal tours, do find what one hopes are ‘good’

solutions.
6.1 Heuristic Procedures

Three classes of heuristics are introduced in this section. These are
a tour construction procedure,
a cluster first route second procedure, and finally

a tour improvement procedure.

Tour construction procedures start with an initial tour, and then using selection rules

and insertion rules add new nodes to the solution.

Cluster first route second procedures use a clustering rule to group nodes and then

tour generating procedures are used to sequence the nodes in a cluster in a route.

Tour improvement procedures start with a feasible solution and then seek to improve
on the answer via a sequence of interchanges. The starting Node for the tour
improvement procedure can be either a random sequence of nodes or else a solution

generated by another heuristic.

The examination of heuristics is concerned with predicting the quality of the solution
to be provided by the heuristic. Johnson and Papadimitriou [1985] identify three
approaches for the comparison of heuristics. These are : worst case analysis,

probabilistic analysis, and empirical testing. Each of these approaches has its
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advantages and its drawbacks. The results reported in this chapter are concerned with

the performance of the three classes of heuristics against the 11 node, 21 node, 42
node, 100 node and 200 node problems. Optimal solutions are available for the first
four of these test problems. For the 200 node problem a lower bound is used for

comparison with the heuristic solution. The data for the 200 node problem is

contained in Appendix 10.

The results reported in this chapter are not exhaustive. A more detailed empirical

analysis of the heuristics is contained in Chapter 7
6.2 Cheapest Insertion Heuristic

This heuristic is from the class of tour construction procedures. In creating tour
construction procedures, decisions must be made as to
e the choice of the initial subtour.
e the selection criteria that will be used to identify who next enters the tour.
e the insertion criterion that will dictate where the new entrant is placed in

the tour.

With some algorithms, such as the cheapest insertion algorithm, the decisions as to
what node is to be inserted and where are made at the same time, other algorithms
can be created which employ different criteria. Variants such as nearest addition,
nearest insertion, farthest insertion, and greatest angle of insertion can be identified.
For the purpose of analysis in this chapter a variant of the cheapest insertion is used

as representative of the tour construction class.

The cheapest insertion heuristic for the 2-period TSP first generates a 2-opt tour
through all of the every day nodes, including the depot. This tour, T, becomes the
starting tour for the day 1 tour, Ty, and the day 2 tour, T, For the purpose of

generating T, the 2-opt procedure uses the every day nodes and depot in a random

order as the starting tour.
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Having created the initial tours, nodes are selected, from the set of un-allocated every
other day nodes, for inclusion into one of the above tours. The selection criterion and
insertion criterion are combined and the selected node is chosen as the node whose
cost of insertion into one of the two tours is the cheapest. The process ends when all

of the every other day nodes have been allocated to a tour.

The steps in the cheapest heuristic are as follows :

Step 1: Generate a 2-opt tour, T, through all of the every day nodes,

including the depot using a random sequence of nodes as the initial

tour.
Step 2 : Initialise

T,= T,

T,= T, and

V! = { Set of Every other day nodes }.
Step 3 : For all nodes j € V' calculate

dy; = cheapest way to insert node j into T,

= Min { d(i,j) + d(,i+1) - d(i,i+1)} foralli € Ty

T, d@.i+1)

—( ) (o y——

T,

O

d; = cheapest way to insert node j into T»

— Min { d(i,j) + d(,i+1) - (it 1)} for alli e T2
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Step 4 : Find the node k € V' such that
de = Min { dix, dox }
if de = Min { dix, dx } then
insert node k into T; after node i
else

insert node k into T, after node i

delete node k from V'

Step 5: If V! ={} then end
else goto Step 3

6.2.1 Application of the Cheapest Insertion Heuristic to the 21 node problem.

Step 1: Generate a 2-opt tour, T, through all of the every day nodes,
including the depot. This tour is shown in Figure 6.1

H 16

Figure 6.1 : 2-opt Tour Through All of the Every Day Nodes

Step 2 : T,= {1-3-8-5-6-2-4-7-9-1}
To= {1-3-8-5-6-2-4-7-9-1}
Vi= (10,11, 12,13, 14,15, 16,17, 18, 19, 20 }
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Step 3,4 & 5 Repeated selection from V' of the cheapest node to insert. The results

of these steps are included in the following table.

Iteration Node to Insert After Node | Imto Day
lor2
1 17 7 1
2 13 3 1
3 15 8 1
4 19 8 1
5 11 1 1
6 12 11 1
7 18 19 1
8 16 5 1
9 14 3 2
10 21 6 1
11 10 7 2
12 20 8 2

Heuristic Results :

Ty= {1-11-12-3-13-8-19-18-15-5-16-6-21-2-4-7-17-9-1}
To= {1-3-14-8-20-5-6-2-4-7-10-9-1}

The total length of the two tours is 691. This contrasts with the optimal solution of

660.

6.3 Inside/Qutside Heuristic

The second class of heuristics discussed in this paper is a cluster first, route second
procedure. The concept of cluster first, route second was first introduced by Gillet
and Miller [ 1974 ] with their Sweep heuristic for the vehicle routing problem. The 2-

period TSP can be reduced to two TSP’s if a decision is made as to how the every
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second day nodes are to be allocated over the two days. Thus, once a decision is

made as to how the every second day nodes are allocated to the two days, one is then
left with two tour creation problems. Adequate solutions can be found to these two

problems by using any of the TSP tour generating heuristics.

Various criterion can be suggested that could cluster the every second day nodes into
two groups. The clustering criterion used in this section is based on whether a node

falls inside or outside a 2-opt tour through all of the every day nodes, including the

depot.

The rationale behind this heuristic is that on both tours all of the every day nodes
must be visited, and that the tour through these nodes underlies the final solution for
both days. On one day the tour will veer inwards and pick up all of the every other
day nodes inside the tour. On the other day the tour will veer outwards and pick up

all of the every other day nodes outside the tour.

Figure 6.2 shows how the nodes inside the 2-opt tour through all of the every day

nodes are allocated to Day 1, and the nodes outside the tour are allocated to Day 2.

2 opt tour
through the
every day
nodes

-—

Figure 6.2 : Inside/Outside Partitioning of Every Second Day Nodes
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The steps in the heuristic are as follows -

Step 1:

Step 2 :

Step 3

Step 4 :

Step 5:

Generate a 2-opt tour, T, through all of the every day nodes,
including the depot. The initial tour for the 2-opt procedure is a

random ordering of the nodes.

Initialise
V? = { Nodes Requiring Every Day Collection }
V' = { Nodes Requiring Every Other Collection }

Cluster V'into V', and V', , where:
V', = { Set of Every Other Day nodes allocated to Day 1 }
V', = { Set of Every Other Day nodes allocated to Day 2 }

on the basis of whether a Node is inside or outside tour T.

Allocate
V? + V', = { Set of nodes to be collected on Day 1 }
V? + V', = { Set of nodes to be collected on Day 2 }

Use the 2-opt procedure to find tours, T, and T, , through the sets
V2 + V! and V2 + V', . Random sequence of nodes are used as the

starting tours for the 2-opt procedure.

6.3.1 Application of the Inside/Outside Heuristic to the 21 node problem.

Step 1:

Generate a 2-opt tour, T, through all of the every day nodes,

including the depot. This tour is shown in Figure 6.3.
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Figure 6.3 : 2-opt Tour Through All of the Every Day Nodes

Step 2 : VIO 1D SSEA5 ST 19 00
Step 3 : Cluster V' into
Inside, V', = {13,14,15,18,19}
Outside, V',= {10, 11, 12, 16, 17, 20, 21 }
Step 4: Allocate
{1,2,3,4,5,6,7,8,9,13,14,15,18,19 } toDay 1
{1,2,3,4,5,6,7,8,9,10, 11, 12, 16, 17, 20, 21 } to Day 2

Step 5: Use the 2-opt procedure with random sequences as the initial tours to

find tours through the Day; and Day, allocations.
The result of the Inside/Outside heuristic is :
Ti= {1-9-7-2-6-5-15-19-8-13-3-14-18-4-1}

T,= {1-11-12-3-20-8-5-16-6-2-21-10-9-17-7-4-1}
The total length is 696. This contrasts with the optimal solution of 660.
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6.4 Tour Improvement heuristic

The concept of a tour improvement procedure is well established for the TSP. The
best known procedures are Croes [ 1958 |, Lin [ 1965 ], and Lin and Kernighan [
1973 ]. A tour improvement heuristic creates a local optimal solution. The solution
generated by the heuristic is the best solution within a neighbourhood. This process
starts with an initial solution, chosen arbitrarily or generated by some other heuristic.
The neighbourhood of this initial tour is examined, and if there is no neighbouring
solution which is shorter that the initial solution, then this solution is at least a ‘local
optimum’. If a shorter solution is found, then this new solution becomes the basis of a
new neighbourhood search, and the process is repeated until no better solution can be
found within a neighbourhood. The heuristic by Lin and Kernighan [ 1973 ] defines
the ‘neighbours’ of a tour to be those tours which can be generated from it by a

limited number of interchanges of tour edges.

The tour improvement heuristic detailed in this section is a variant of the 2-opt
procedure for the TSP. The procedure starts with an initial tour, T, , for Day 1 and
an initial tour, T, , for Day 2. These tours can either be a random sequence and
random allocation of the every second day nodes or else the tours can be a heuristic
solution. The two initial tours T; and T, are combined into a composite tour as

follows :

G (O o] ) (O]

Figure 6.4 : Composite Tour for the Tour Improvement Heuristic

The neighbourhood of this initial tour is created by considering all feasible
combinations of pairs of nodes. Arcs connecting these nodes in the current tour are

deleted and a possible reconnection is considered. The arcs to be deleted and

reconnected for each feasible combination of i and j are as follows :




O SO — DO

(a)
S e O-O-@ @
Reconnection:  \_/ \__ . Q

(b)

Figure 6.5 : Tour Improvement Example. (a) Current (b) Reconnected

If any of the feasible reconnections yield a reduction in the length of the composite
tour then the deletions and reconnections are made and the neighbourhood search
restarts. This neighbourhood search continues until there is no feasible deletion and

reconnection that improves the current solution.

To test the performance of the Tour Improvement procedure, the heuristic was
applied three times to each of the 5 test problems. Firstly, a random sequence of
nodes together with a random allocation of the every second day nodes over the two
days was used as the initial tour. In the second and third applications the initial tour

was provided by both the cheapest insertion and inside/outside heuristics.

The performances of the tour improvement heuristic are detailed later in this chapter.
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6.5 Heuristic Results

This section shows the results from applying the heuristic procedures to the 11 node,

21 node and 42 node problems.

The heuristics examined in this section are :
e Cheapest Insertion.
e Inside/Outside.
e Tour Improvement with Cheapest Insertion as the initial tour.
e Tour Improvement with Inside/Outside as the initial tour.

e Tour Improvement with random initial tour.

6.6 Heuristic Results for the 11 Node Problem

The results achieved when each of the heuristics is applied to the 11 node problem are

detailed below. The results are given in Appendix 11.

6.6.1 Cheapest Insertion Heuristic

Total Length of Cheapest Insertion Heuristic solution is 413.
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6.6.2 Inside/Outside Heuristic

Total Length of Inside/Outside Heuristic solution is 413.

6.6.3 Tour Improvement Heuristic with Cheapest Insertion as the Initial Tour

6

SIS |

Length of heuristic solution is 406.

6.6.4 Improvement Heuristic with Inside/Outside as the Initial Tour

o
=

6

Length of heuristic solution is 413.
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6.6.5 Improvement Heuristic with Random Initial Tour

6

Length of Tour Improvement Heuristic solution is 406.

6.7 Heuristic Results for the 21 Node Problem

The results achieved when each of the heuristics is applied to the 21 node problem are

detailed below. The results are given in Appendix 12.

SIS

R

6.7.1 Cheapest Insertion Heuristic

The length of the cheapest heuristic solution is 691
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6.7.2 Inside/Outside Heuristic

The length of the inside/outside heuristic solution is 696.

6.7.3 Tour Improvement Heuristic with Cheapest Insertion as the Initial Tour

The length of the heuristic solution is 679.
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6.7.4 Tour Improvement Heuristic with Inside/Outside as the Initial Tour

90 T

80 +

70 +

20 30

The length of the heuristic solution is 693.

50 70 80

6.7.5 Tour Improvement Heuristic with Random Initial Tour

20 +

30

The length of the heuristic solution is 664.
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6.8 Heuristic Results for the 42 Node Problem

The results achieved when each of the heuristics is applied to the 42 node problem are

detailed below. The results are given in Appendix 13.

6.8.1 Cheapest Insertion Heuristic

120 +

300
Total Length of Cheapest Insertion Heuristic = 1,791.

6.8.2 Inside/Outside Heuristic

200 -
180 -
160 +
140 +
120 -
1003T e
20 Iiiz___
60 +
w0+

20 +

Total Length of Inside/Outside Heuristic = 1,891.
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6.8.3 Tour Improvement Heuristic with Cheapest Insertion as the Initial Tour

200 +
180 +

140 +
120 +

100 +
80 + W

Total Length of the heuristic solution = 1,782.

6.8.4 Tour Improvement Heuristic with Inside/Outside as the Initial Tour

200 +
180 —
160 +
140 +
120 +
100 +~
80 —
60 +
40 +

20 +

300

Total Length of the heuristic solution = 1,750.
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6.8.5 Tour Improvement Heuristic with Random Initial Tour

200
180 +
160 -+
140 +
120 +

30 | Ba

0 50 100 150 200 250 300

Total Length of heuristic solution = 1,859.

6.9 100 Node and 200 Node Problems

The results of applying the heuristics to the 100 node and 200 node problems are
detailed in Appendix 14 and Appendix 15.

6.10 Computational Results
The results of applying the 2-period heuristics to the five test problems are summarised
in Table 6.1. The optimal solution is available for the test problems of size 11, 21, 42,

and 100 nodes. In the absence of an optimal solution for the test problems of size 200,

the current best lower bounds, derived from an LP relaxation solution, is shown.
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Number | Optimal | Lower | Cheapest Inside/ Tour Tour Tour
of Nodes | Solution | Bound | Insertion Outside Improvement | Improvement | Improvement
Heuristic Heuristic & Cheapest & & Random
Insertion Inside/Outside Start
11 406 413 413 406 413 406
21 660 691 696 679 693 664
42 1,725 1,791 1,891 1,782 1,750 1,359
100 1,224 1,349 1,331 1,278 1292 1,458
200 1,518 1,896 1,881 1,821 1,814 2,298

Table 6.1 : Computational Results for the Heuristic Tour Lengths

Analysis of the Table 6.1 suggests that :

The two-step composite procedure of the tour improvement process applied to
an original heuristic solution gives the best answer to each of the test

problems, with the exception of the 21 node problem.

On the basis of the five test problems, there is little to choose between the
solutions offered by the cheapest insertion and the inside/outside heuristics. For
the five test problems each heuristic is better for two of the problems , and they

both give the same solution for the 11 node problem.

For the test problems with known optimal solutions, the best heuristic answer

is inside 4.5% of optimality .

The poor solutions to the larger test problems generated by the tour
improvement heuristic over a random start suggests that the use of random
initial tours will not lead to good solutions with this version of the tour

improvement procedure. This contrasts with the high quality of solution given
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by the tour improvement procedure when applied to initial tours provided by

another heuristic.

As suggested earlier in this chapter, no attempt is made here to perform a detailed
analysis of 2-period heuristics. The objective behind this chapter is to introduce a range
of heuristics for the 2-period TSP. Chapter 7 will perform a more comprehensive

empirical analysis of the heuristics.
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Chapter 7 Empirical Study of 2-Period Heuristics

7.1 Introduction

Chapter 6 introduces three classes of heuristics for the 2-period TSP. These are :
a tour construction class,
a cluster first route second class, and

a tour improvement class.

In this chapter, examples of the above classes of are analysed under the methodology
proposed by Ball and Magazine [ 1981 ]. In their paper several criteria are suggested
for the comparison of heuristics. These include :

Quality of Solution,

Running Time,

Ease of Implementation,

Flexibility, and

Simplicity.

Of the above criteria, Running Time and Quality of Solution can be objectively
measured, the remaining criteria, Flexibility, Ease of Implementation, and Simplicity
are more subjective. Later in this chapter scores are allocated, on the scale of 1 to 10,

for each heuristic for these subjective criteria.

7.2 Running Time and Quality of Selution

To test the performance of the heuristics under the headings of Running Time and
Quality of Solution a set of test problems were randomly generated. The test problems
contained 10 examples of problems of size 50, 100, 150, 200, 250, 500, and 1,000
nodes. For each test problem the number of every day nodes is randomly generated in
the range 25% to 75% of the problem size. For each test problem a set of X,Y co-

ordinates was randomly generated with both X and Y in the range 0 to 100. The d(i;j)

97




matrix for each problem is calculated using the rounded integer Euclidean distance

between the points. Full details of the Test Problems can be obtained from the author.

Implementations of the various heuristics are applied to each test problem. The
average solution lengths and the average running times for each heuristic over the 10
test problems for each of the 7 sizes of problems are calculated. The results are
reported later in the chapter. The implementation by the author of the various

heuristics might not be optimal. However, the comparative nature of the analysis

minimises this negative aspect.
7.3 Tour Construction Heuristics
In creating tour construction heuristics, three decisions must be made. These are

1. The choice of the initial subtours.

With the 2-Period TSP, the final solution is two tours, thus, two initial

tours will be initialised which will then grow into the final solution.

For the heuristics analysed in this section, the initial tours consist of a

simple loop from the depot back to itself.

2. The selection criteria that will be used to identify which node ( not

already in the solution) should next enter the solution.

3. The insertion criterion that will dictate into which of the two subtours

and where the new entrant is placed.

With some algorithms, such as the cheapest insertion algorithm, decisions 2 and 3,
that is the decisions as to which node is to be inserted and where, are made at the

same time.
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Once the Tour Construction algorithm creates the initial tour, the procedure loops

through decisions 2 and 3 until all unallocated nodes have been allocated to a tour.

The literature on Tour Construction heuristics for the TSP suggest many variants. The

variants adapted for the 2-period TSP and analysed in the Chapter are

. Nearest Insertion,

. Cheapest Insertion,

. Arbitrary Insertion,

. Farthest Insertion,

° Nearest Addition, and

. Cheapest Addition.

In the above titles, the word “Insertion” means that when a new node is identified for
inclusion in a tour, then all possible positions for that new node in the tour are
quantified, and the smallest selected. On the other-hand, the word “Addition” implies
that the process of selecting a node for inclusion, also identifies the position in the tour

where the new node is to be placed.

All of the heuristics are implemented by the author, and the timings are based on the

performance of the heuristics on a Pentium Pro PC.

99




7.3.1 Nearest Insertion Heuristic

Let  Depot = Node number 1

V' = { Set of Nodes to be visited by only one tour }
V? = { Set of Nodes to be visited by both tours }

Step 1: Initialisation.

Initial Tour for Day; ={1-1}

Initial Tour for Day, = { 1-1}

U = { Set of unallocated Nodes }

= {[VI+V -0+ V-1

The nodes in set V' are included once, and the nodes in V2, minus the
depot are included twice. The reason that the every day nodes are
included twice is that each of them must be allocated twice, once to

Day, and once to Day,.

Step 2 : Selection.
Find the node k from the set of unallocated nodes that is closest to any

node in the subtours.

Step 3 : Insertion
Insert k into one of the subtours between two nodes i and j so that
d(i,k) + d(k,j) - d(i,j) is minimised. In this step it must be insured that

each every day node only appears once in each tour.
Delete node k from the set of unallocated nodes.

Loop Steps 2 and Step 3 are repeated until the set of unallocated nodes is

empty.
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7.3.2 Cheapest Insertion

Step 1 Same as for the Nearest Insertion heuristic.

Steps 2 and 3 are combined into one step as follows :
For each node in the set of unallocated nodes, calculate the least cost
way of inserting the node into one of the tours. The node with the
smallest of the least insertion costs is selected. This node is inserted in

the position that gave its least insertion cost.

Same as for the Nearest Insertion heuristic.

2
Q
Q

7.3.3 Arbitrary Insertion

Step 1 Same as for the Nearest Insertion.
Step 2 Select a node k at random from the set of unallocated nodes.
Step 3 Same as for the Nearest Insertion.
Loop Same as for the Nearest Insertion.

7.3.4 Farthest Insertion,

Step 1 Same as for the Nearest Insertion.
Step 2 Find the node k from the set of unallocated nodes that is the farthest

from any node in the subtours.

Step 3 Same as for the Nearest Insertion.
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Loop Same as for the Nearest Insertion.

7.3.5 Nearest Addition

Step 1 Same as for the Nearest Insertion.
Step 2 Find the node k from the set of unallocated nodes that is the closest to

any node in the subtours.

Identify the node j in the subtour that is the closest to the node to be

inserted.

Step 3 Add the node k to the subtour either immediately before or after the

node j, which ever is the cheapest.

Loop Same as for the Nearest Insertion.

7.3.6 Cheapest Addition

Step 1 Same as for the Nearest Insertion.

Step 2 and Step 3 are combined :

Find the node k from the set of unallocated nodes, and the node j from
one of the subtours, so that the cost of inserting k immediately before

or after j is a minimum.

Loop Same as for the Nearest Insertion.
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7.4  Computational Results for the Tour Construction Heuristics.

Table 7.1 shows the average tour length, averaged over the 10 examples, for the

various problem sizes using the different variants of the Tour Construction Heuristics.

Problem Size, Number of Nodes

Variant 50 100 150 | 200 | 250 500 | 1,000

Nearest Insertion L1035:(01.625 181 895 98436582539 ¢t 3579()

Cheapest Insertion | 1,090 | 1,588 | 1824 |2317 |2419

Arbitrary Insertion | 1,014 | 1,481 | 1,737 | 2237 | 2343 |3.682 | 4,551

Farthest Insertion 998 1455 | 1,736 | 2,289 |2389 | 3,683

Nearest Addition 1,158 | 1,709 | 1.987 | 2.565 | 2,615 | 3.806

Cheapest Addition 1,090 | 1,588 | 1,824 | 2317 | 2356

Table 7.1 : Average Heuristic Tour Length

Blank cells in Table 7.1 suggest that the heuristic was unable to solve the test problem

is a reasonable processing time.

Values in a cell coloured RED in Table 7.1 are the smallest average distance for that
problem size. This honour is shared among 2 heuristics - Arbitrary Insertion and
Farthest Insertion. It can be argued that the Farthest Insertion heuristic brings the
extreme points into the solution at an early stage, and can then accommodate later
arrivals around these points. It is this approach that generates the good heuristic

solution.

Table 7.1 is based on average tour lengths over 10 problems. This averaging process
might be marginally distorting the results. However, the author is confident that the

recommendations arising from this section have validity.
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Values coloured in BLUE have the largest average distance for a given problem size.
This distinction of being the worst heuristic is attached to the Nearest Addition

Heuristic.

The results from Table 7.1 are shown in graphical form in Figure 7.1.

o
» 5,000 T
- 4,000 F ——Nearest Insertion
= 500 Cheapest Insertion

o L T
= Arbitrary Insertion
Sﬂ 2,000 + ———Farthest Insertion
= Nearest Addition
> 1.000 + Cheapest Addition

- t t t = 1
200 400 600 800 1,000

Problem Size, Number of Nodes

Figure 7.1 : Average Heuristic Solution versus Problem Size

Figure 7.1 shows the following :

e Cheapest Insertion and Cheapest Addition fail to solve problems over 250 nodes.

e Only Arbitrary Insertion can solve a problem of size 1,000 nodes.

e Consistently the better solutions are given by the Farthest Insertion and Arbitrary

Insertion.
Typically, heuristic procedures are a trade off between quality of solution and

processing time. Table 7.2 shows the average processing time, in seconds, required by

each heuristic variant for each size of problem.
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Problem Size, Number of Nodes
Variant 50 100 150 200 250 500 1,000

Nearest Insertion 6 39 101 382 550 | 4.995
Cheapest Insertion 11 105 236 879 | 1.120

Arbitrary Insertion 1 2 4 11 14 6+ 166
Farthest Insertion 7 50 151 518 826 | 5.257

Nearest Addition 5 38 99 374 464 4713
Cheapest Addition 12 104 236 876 1.116

Table 7.2 : Average Solution Time in seconds

The first observation from Table 7.2 is the large difference between the time taken by
the Arbitrary Insertion heuristic, and all the other heuristics. Within the tour
construction procedure, the selection step decides which unallocated node is next to
join the solution. The cheapest, the nearest, the farthest, etc. make a large number of
comparisons before the node is selected. The majority of processing time used by the
heuristic is taken up by this selection step. With the Arbitrary heuristic no such time is

spent. Here a node is selected at random .

Both the Cheapest Insertion and Cheapest Addition heuristics make a complex
decision at the selection step. They decide at this step, not only who is to be selected
from the set of unallocated nodes, but also where the selected node is to be positioned
in the tour. The processing time required by the selection step dictates the overall
processing time of the heuristic. Thus, the processing times taken by the Cheapest
Insertion and Cheapest Addition heuristics are excessive, and under the test conditions

are unable to solve a problem in excess of 250 nodes.

A graph of the processing time results is shown in Figure 7.2.
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Figure 7.2 : Average Processing Time versus Problem Size

Figure 7.2 shows the following:

° Cheapest Insertion and Cheapest Addition fail to solve problems over
250 nodes.
° All heuristics, with the exception of Arbitrary Insertion, have a

processing time that grows polynomially with node size.

o Arbitrary Insertion is the only realistic option for large problem sizes.
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7.4.1 Recommendations from the Class of Tour Construction Heuristics

In all six variants of tour construction heuristics are examined. Based on the empirical

results shown

in Table 7.1 and Table 7.2, the following conclusions and

recommendations can be made -

1.

(9]

The Nearest Insertion consistently performs worse than the Farthest

Insertion under the two headings of average solution length and average

processing time.

Both the Cheapest Insertion and Cheapest Addition take excessive
processing time, and the resulting solutions are inferior to other

heuristics.

Arbitrary Insertion and Farthest Insertion consistently provide the best

average heuristic solutions.
Nearest Addition provides for every test problem the worst solution.

Arbitrary Insertion offers the only option for solving large problems ( >

1,000 nodes ).

Arbitrary Insertion offers, in every case, the least cost, or the 2nd least

cost, heuristic solution.

In conclusion, the author recommends Arbitrary Insertion as the “best” of the tour

construction heuristics.
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Day; Solution

Day, Solution

Day; Solution

Day, Solution

Days Solution

Days Solution

Figure 8.2 : Optimal Solution of Total Length 1.217

The optimal solution to the revised 11 node problem has a total length of 1,217.
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Cluster Rule : The clustering criterion is based on whether a point falls inside or

outside a 2-opt tour through all of the every day points,
including the depot.

Tour Generation 2-opt tours through all of the nodes allocated to Day; and Day ».

The results of this heuristic against the set of test problems is shown in Table 7.3 and

Table 7.4.

7.5.2 Left Right Heuristic

In a conversation that the author had with an old milk scheduler, the scheduler
suggested “ that on one day he concentrates on the East of the county, while on the
other day he concentrates on the West”. From this conversation developed the Left-

Right heuristic.

In essence a vertical line is drawn on the plane containing the nodes. All every second
day nodes to the right of this line are aliocated to Day, and all to the left are allocated
to Day,. Where the vertical line is drawn can be the subject of further analysis. For the

purpose of this study, the vertical line is drawn trough the depot.
Cluster Rule : A vertical line is drawn through the depot. All every other day
points to the right of this line are allocated to Day,, the

remainder are allocated to Day..

Tour Generation 2-opt tours through all of the nodes allocated to Day, and Day ».
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7.6  Computational Results for Cluster First, Route Second Heuristic

As is described earlier in the chapter, the heuristics are applied to 10 test problems
from 7 different problem sizes. Table 7.3 shows the average tour length. While Table

7.4 shows the average processing time.

Problem Size, Number of Nodes

Variant 50 100 150 | 200 | 250 | 500 | 1,000
Inside Outside 1,007 | 1,450 | 1,693 | 2,218 | 2,301
Left Right 997 1,421 | 1,641 | 2,125 | 2205

Tour Construction 998 1,455 | 1,736 | 2,237 | 2,343 | 3,682 | 4,551

Table 7.3 : Average Heuristic Tour Length

Included in Table 7.3 are the “best” results from the Tour Construction Heuristics. The

conclusions from the above table are :

L “Left Right” gives consistently better results than the “Inside Outside”.
There is no obvious explanation for this, except possibly due to the
random nature of the test problems. The “Left Right” clustering rule

might provide a more equitable partition of the every other day nodes.

A “Left Right” gives better results that the best of the Tour Construction
Heuristic.
3 The excessive processing time required by the 2-opt routing step in the

“Left Right” heuristic prohibits solutions for problems in excess of 250
nodes. The explosive increase in processing time for the “Left Right”

heuristic is confirmed in Table 7.4.
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Problem Size, Number of Nodes
Variant 50 100 | 150 | 200 | 250 | 500 | 1,000
Inside/Outside 20 223 789 2,123 | 3,300
Left Right 16 172 618 | 1,866 | 3,027
Arbitrary Insertion 1 2 4 11 14 64 166

Table 7.4 : Average Solution Time in seconds

Included in Table 7.4 are the processing time for the Arbitrary Insertion heuristic.

It is sometimes quoted “ that what you put into a heuristic, that is what you get back”.

Unfortunately, this does not seem to apply to the “Left Right” heuristic.

There is no real comparison between the processing time required by “Left Right” and
the Arbitrary Insertion heuristics. For problems in excess of 100 nodes, the “Left
Right” becomes expensive of processing time. While, the Arbitrary Insertion happily
solves in reasonable time problems of 1,000 nodes.

7.7  Tour Improvement heuristic

The concept and details of a Tour Improvement procedure for the 2-period TSP is

outlined in Chapter 6.

In this section 2 examples of Tour Improvement heuristics are analysed. These are :

o Tour Improvement after random initial tours, and

o Tour Improvement after Arbitrary Insertion initial tour.
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7.8  Computational Results for Tour Improvement Heuristics

The computational results are shown in Table 7.5 and Table 7.6

Problem Size, Number of Nodes

Variant 50 100 150 | 200 | 250 | 500 | 1,000

Tour Improvement | 1.052 | 1,615 | 1,870

(Random Tour )

Tour Improvement 954 1,372 15555 41 2:072 21" 2:062

(Arbitrary Insertion)

Arbitrary Insertion 1,014 | 1,481 [ 1,737 | 2,237 {2343 | 3,682 | 4,551

Table 7.5 : Average Heuristic Tour Length

Problem Size, Number of Nodes
Variant 50 100 150 200 250 500 | 1,000
Tour Improvement 150 1,525 | 4,725
(Random Tour )
Tour Improvement 17 115 417 956 1,817
(Arbitrary Insertion)
Arbitrary Insertion 1 2 4 11 14 64 166

Table 7.6 : Average Solution Time in seconds

Observations on the above tables suggest :

1. Tour Improvement after a random start takes an excessive processing time to
converge. Based on the quality of solution and processing time, the Tour

Construction after a random start is excluded from further consideration.
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2. Tour Improvement, using Arbitrary Insertion heuristic as the initial tour,

provides, on average, a 9% improvement in tour length.

-

3. Tour Improvement heuristics use excessive processing time.
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7.9 Conclusions

Table 7.7 and Table 7.8 detail the average solution length, and average processing time

for the best heuristic in each class.

Problem Size, Number of Nodes
Variant 50 100 150 200 250 500 | 1,000
Tour Improvement | 954 1,372 | 1,555 | 2,072 | 2,062
(Arbitrary Insertion)
Left Right 997 12421: b 1ie4l  [127125" 1-2.205
Arbitrary Insertion 1,014 1,481 157370111:2.237 172343 |13.:682 ¥ |- 4.551
Table 7.7 : Average Heuristic Tour Length
Problem Size, Number of Nodes
Variant 50 100 150 200 250 500 | 1,000
Tour Improvement 17 115 417 956 | 1817
(Arbitrary Insertion)
Left Right 16 172 618 1,866 | 3,027
Arbitrary Insertion 1 2 4 11 14 64 166
Table 7.8 : Average Solution Time in seconds
Analysis of the above tables suggest :
1% Tour Improvement, with Arbitrary Insertion as the starting tour, provides a

better solution in shorter processing time than the Left Right heuristic.
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The recommendation for practical problems is to obtain a solution using the
Arbitrary Insertion heuristic. Then, depending on processing power available,
and the size of problem consider using the Tour Improvement approach to

improve the solution quality. On average a 9% reduction can be expected from

the Tour Improvement process.




7.10  Subjective Comparative Measures.

The previous sections compare heuristics based on the quality of solution produced
and the computer time required to obtain these solutions. Both of these measures are

quantifiable, and thus an objective comparison can be made.

A comparison of heuristics under such headings as Ease of Implementation, Flexibility
and Simplicity is highly subjective. The best that can be said about the following
comparison is that they reflect the views of the author, who’s only qualification is that
he has agonised over the computer implementation, discussed their meaning with
Consultancy clients who must implement the answer, and has generally been associated

with the heuristics over a period of many years.

An example of the above is a discussion that the author had with a consulting client.
The author was attempting to explain to the client the basis of the heuristic that could
be used to solve the client’s routing problem. The client fully appreciated the rationale
behind the “Inside/Outside” clustering methodology , but the client steadfastly refused
to consider the “Largest Insertion” heuristic. No matter what the empirical evidence is,

the client was not impressed by this approach.

In the following sections, the author allocates a score, on a scale of 1 to 10, to the

various heuristics.
7.10.1 Ease of Implementation,
This criteria can be interpreted either as the ease with which the steps in the heuristic

can be implemented in a computer programme, or else as the ease with which the

heuristic can be used in a practical implementation.
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Using the first interpretation, the author suggests that the Tour Construction Heuristics

are the easiest to programme, while the Tour Improvement would be the hardest. The

author’s allocation of scores is -

Ease of Programming the
Heuristic Heuristic Algorithm
Score 1 = Easy
Score 10 = Hard

Tour Construction 4
Cluster First, Route Second 6
Tour Improvement 9

Table 7.9 : Ease of Programming Score

The alternate interpretation of the “Ease of Implementation™ criteria, that is the ability
of the heuristic to adapt to a practical application, yields different scores. A client will
readily accept the “Inside Outside” concept. Tour Improvement procedures find favour
in the field. However, “Farthest Insertion” and “Left Right” do not inspire confidence

with clients. The author’s scores are :

Acceptability to a Client
Heuristic Score 1 = Little

Score 10 = Very Good

Farthest Insertion

“Leﬂ Right'n

Cheapest Insertion

Nearest Insertion

“Inside/Outside”

| e | | N} N

Tour Improvement

Table 7.10 : Acceptability to Client Score
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7.10.2 Flexibility

Heuristic procedures by their nature find a “good” solution within a certain
neighbourhood. On occasions, the heuristic can be unlucky and the solution it finds is
far from optimal. Because of this, it is desirable to be able to offer the heuristic a
different “seed” and hopefully, bad luck will not strike twice, and a more acceptable

solution is obtained.

Tour construction procedures offered this possibility. For instance an answer can be
obtained from the Nearest Insertion heuristic. A marginal change in the programme
will allow the same programme produce the Farthest Insertion solution. The flexibility
that comes from a range of implementations is available with Tour Construction
Heuristics. By their nature, Cluster First Route Second heuristics do not offer the same

flexibility.

The ultimate in flexibility comes from the Tour Improvement class. A heuristic solution
stuck at a poor solution can be shaken to a more acceptable answer using the Tour

Improvement approach. The author’s scores are :

Flexibility
Heuristic Score 1 = Rigid
Score 10 = Flexible.
Cluster First, Route Second 2
Tour Construction 7
Tour Improvement 9

Table 7.11 : Flexibility Score
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7.10.3 Simplicity

Basic to the 2-period TSP is a partitioning of the every other day nodes into two
groups. Recalling how the milk scheduler solves his 2-period problem. His approach is
to divide and then route. This simple concept is inherent in the Cluster First Route
Second approach. At the far extreme is the “2opt” procedure. To explain the

intricacies of this to a client is not easy. From experience with clients, the author’s

scale is as follows :

Heuristic

Simplicity
Score 1 = Simple

Score 10 = Complex

Cluster First, Route Second 2
Tour Construction 4
Tour Improvement 9

Table 7.12 : Simplicity to Client Score
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7.11 Conclusion

Heuristics are a poor substitute for the optimal answer. Their existence derives from
our inability to find an optimal answer. Heuristics should be judged on their ability to

find a “good” answer in reasonable time. That task has been achieved for the 2-period

TSP.

The advice for practitioners is to use the Arbitrary Insertion heuristic. As a final answer
it is a “good” answer obtained with little processing time. The quality of this answer
can be considerably improved, by an estimate average reduction of 9%, by post
processing the solution through the Tour Improvement procedure. The limited analysis
from Chapter 6 suggests that the solution from the Tour Improvement will be within

4% of the optimal.

In section 7.10, the heuristics are compared under subjective headings. The utility of

this analysis is questionable, and it simply reflects the view of the author.
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Chapter 8 Conclusion and Further Work

8.1 First Encounter with the 2-Period TSP

The author first encountered the 2-Period TSP in 1978 as part of a rationalisation
study into the collection routes of an Irish dairy company. Advances with on-farm
refrigeration allowed the dairy to collect milk from farms every second day if the farm
had sufficient on-farm capacity to hold the output from two days milk production. The
author was asked to investigate the implication of every other day collection. Based on
very simple partitioning algorithms the routing economics seemed to suggest that
savings could be made if some farms were moved from every day to every other day
collection. Thus, in the late 1970’s this dairy company introduced an incentive scheme

to encourage farms to update their on-farm milk storage.

Consultancy assignments tend to favour a very pragmatic and often cursory approach.
The client normally wants a good answer in reasonable time and not the optimal
answer weeks later, and thus, the first encounter between the author and the 2-period
TSP was very short. In the years that followed the author often questioned the respect

given to the 2-period TSP on that first encounter. Questions such as :

e (Can the 2-period TSP be formulated as a standard TSP?

e Isthe 2-period TSP as difficult to solve as the standard TSP?

e  Has the 2-period TSP applications outside the milk industry?

e  Can optimal solution procedures be developed for the 2-Period TSP?
e Do heuristic procedures give good answers in reasonable time?

e Can efficient bounds be developed so that heuristics can be evaluated?

The above questions are all reasonable, and the author embarked on a voyage of
discovery with Professor Paul Williams to answer the above questions. Luckily, the 2-
period TSP rose to the challenge, and offered the author an insight into the full arena

of combinatorial optimisation.
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8.2 Realised Objectives

The investigation of the 2-period TSP yields a rich harvest. This is due in a large part
to the number of practical routing applications that can be modelled by either the 2-

period TSP or by the more general m-period TSP. Examples can be found in

¢ transfer of passengers from hotels to airports,
e collection of mail from post boxes, and

e the distribution of goods to shops where different shops have different call

frequencies.

Early in the investigation it became obvious that the 2-period TSP can not be
transformed into the standard TSP. This means that ideas can be borrowed from the
TSP, but must be re-modelled to suit the needs of the 2-period TSP. The practical
applications for the formulation required information on the availability of optimal
solutions for the 2-period TSP. We have shown in this thesis that examples of up to
100 nodes can be solved optimally. While for larger problems good heuristic
procedures are available. As with any combinatorial type problem, the choice of best
solution methodology depends on problem size. Table 8.1 lists, for the 2-period TSP,

the best solution approach for various problem size.

An interesting by product of the optimal solution approach is the emergence of the
VUB constraints. Some of these constraints are violated by the 2-Matching LP
relaxation. Including these constraints on an “as needed” basis dramatically improves
the basic LP solution. It is obviously an interesting area for further study to investigate
the possibility that such variables might exist for the Standard Travelling Salesman
Problem. The only way to increase the lower bound for the TSP, obtained from the LP
relaxation of the 2-matching constraints, is to add generalised subtours. If VUB type
constraints, with the ease with which they can be found, exist, then a better lower

bound can be obtained.
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Problem Size

( Number of Nodes )

Recommended Solution Approach

Direct approach using { 0,1 }
programming with subtour constraints

added on an “as needed” basis.

10 to 25

At the upper end of this range a direct
approach using {0,1} is very expensive of
processing time. Perseverance, and good

technology, will yield an optimal answer.

20 to 50

Step 1 LP relaxation including 2-
matching, VUB, Subtour, and

comb constraints.

Step 2. {0,1} programming of the model
from Step 1.

50 to 100

We are now at the limit of our ability to
find an optimal solution. A man-machine
interaction is the only way that an optimal

answer can be obtained.

Advise Heuristic Procedures. However,
the use of a tour improvement heuristic
with a tour construction solution as a

seed, will produce a “good” solution

Table 8.1 : Problem Size and “Best” Solution Approach
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The author bids farewell to the 2-period TSP, but does acknowledge that considerable

potential exists for further work.

8.3  Area for Further Study

Areas requiring further study include :

o every third day collection within the milk industry.

. application of the m-period TSP to distributing goods to shops.

. Re-introduction of the route capacity restriction.

o the status of the VUB, generalised subtour and comb constraints. Are

they facets of the polytope?
) Alternate mathematical formulations.

. Prim’s algorithm provides a greedy algorithm for the TSP. Does such a
greedy algorithm exist for the 2-period TSP? Can it be extended to a 2-

tree concept? Can Lagrangian relaxation be used to improve the bound?

3 the use of Simulated Annealing to produce better heuristics.

Each of the above items are discussed in the following sections. The author wishes

well all future researchers of the 2-period TSP.

8.3.1 Every 3rd Day Collection within the Milk Industry

In the late 1970’s improved on-farm refrigeration allowed milk to be collected from
farms every other day. Further improvements with both on-farm refrigeration and dairy
hygiene, now, permit milk to be stored on-farm for up to three days. What implications

has this for milk collection costs?
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With the possibility of every 3rd day collection, a collection route will now have three

types of farms. These are :

o farms requiring collection every day,
o farms requiring collection every second day, and
. farms requiring collection every third day.

The above problem can be formulated as a 6-period TSP, with
Farms to be collected every day

will be collected on Day,, Day,, Days, Day,, Days, and Days.

Farms to be collected every
second day will be collected on Day;, Days, and Days or

Day», Days, and Days.

Farms to be collected every

third day will be collected on Day; and Day, ,
Day, and Days , or
Days and Days .

To introduce a mathematical formulation of the above problem, assume that for the 11
node problem nodes 7, 9 and 11 have improved their on-farm tank capacity, and have
moved to every third day collection. The revised call frequency is as shown in Table

82

125




Node Call Day, Day, Days; Day, Days Days
Type
1 Every 1 1 1 1 1 1
2 Every 1 1 1 1 1 1
3 Every 1 1 1 1 1 1
4 Every 1 1 1 1 1 1
5 Every 1 1 1 1 1 1
6 Second 1 1 1
1 1 1
7 Third 1 1
1 1
1 1
8 Second 1 1 1
1 1 1
9 Third 1 1
1 1
1 1
10 Second 1 1 1
1 1 1
11 Third 1 1

Table 8.2 : Call Frequency for the Revised 11 Node Problem




The solution to the above model is six tours, one for each of the six days. The

objective function of the model is to minimise the total length of the 6 tours.

The decision variables are :

Xik=1,

=0, otherwise.

if the tour on Dayy uses the link from i to ).

In addition, Y variables are used to indicate which tour the every second and every

third day nodes are on. Table 8.3 shows the Y variables.

Node Call Day; Day, Days Day, Days Days
Type
6 Second Ye.1 Y2 Y3 Y4 Yo Y6
7 Third Y71 Y, Y73 Y74 Y75 Y6
8 Second Ys Yso Ys3 Ysa Yss Yse
9, Third Yo, Yo, Yos3 Yo Yos Yos
10 Second Yio1 Y2 Yio3 Yio4 Yios Yios
11 Third Yua Yo Y3 Y4 Yiis Yiis

Table 8.3 : Y Variables for the Revised 11 Node Problem

For the Every Second Day Nodes :

Yiit+tYia=1

Yis +Yia=

Y;s + Yie =1, and

either Yi; +Yis+Yis=0and Yo+ Yis+Yis=3
or Yi2tYis+Yis=0and Yi; +Yiz+Yis=3.
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The above is written as

Yii+tYio=1
Yis+Yia=1
Yis+ Yie=1

Yii+Yis + Yis =3W;
Yio+ Yia + Yis = 3Q;
W, +Q;=1

Y, WandQ e { 0,1}

Equivalent constraints for the every third day nodes are :

Yii+tYia+Yiz=1
YiatYis+Yis=1

Yiit Yia =2W;
Yiz+ Yis =2Q;
Yis + Yis =2R;
Wi+ Qi +Ri=1

Y,W,QandR € { 0,1}

The model will contain a 2-matching constraint for every node for every tour. For
nodes 1 to 5, the every day nodes, the right-hand-side will always be 2. For the other
nodes the right-hand-side will be 2Y. This forces these nodes to be connected by two

arcs to only the tours that visit these nodes.

The model formulation is given in Appendix 16.

The solution approach is to first solve the 2-matching problem The solution is shown

Figure 8.1.
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10 4

Day; Solution

Day, Solution

Day, Solution

The solutions for Day; and Day; contain subtours. Subtour elimination constraints are
added on an “as needed” basis, and further solutions are obtained. Unfortunately, the

solution time to solve the above model is excessive. The solution shown in Figure 8.2

Days Solution

Figure 8.1 : 2-Matching Solution

Days Solution

took several hours to obtain using CPLEX on a Pentium Pro Pc.
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Days Solution Days Solution

Figure 8.2 : Optimal Solution of Total Length 1.217

The optimal solution to the revised 11 node problem has a total length of 1,217.
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The original 11 node problem, with its combination of every day and every second day
nodes, has a combined 2-day optimal solution of 406. The 6 day solution is three times
this figure. Thus, the minimum total length over the six days is 1,218. The movement
to every third day collection for a subset of the nodes produces an minimum length
solution for the six days of 1,217. This implies that the reduction in milk collection

costs is a saving of 1 in 1,218.

The above calculations are not realistic, but do serve as an example of how to quantify
the cost implications of every third day collection. The experience from solving the
above 11 node problem suggests that this problem size is close to the maximum size
that can be solved by direct {0,1}. Further research is required to investigate other
optimal solution approaches. The author believes that heuristic procedures are

necessary to solve even medium sized versions of this problem.
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8.3.2 Delivery of Product to Customers with Different Call Frequencies

The frequency with which a distributor calls on its customers depends on the size of
the customer. For example, large supermarkets might require a visit every day, medium
sized shops might require a visit twice a week, while for smaller shops one visit a week
might suffice. Hidden within such statements as twice a week are an implied gap
between calls. Thus twice a week might really mean a call on Monday and Friday, or

Tuesday and Thursday, etc.

Once options exist as to the required day on which a customer is to be visited, then the
problem can be formulated using the m-period TSP model with the necessary Y

variables.

Experience from the attempt to solve the 6-period, every 3rd day collection, 11 node
problem suggests that optimal solutions will be hard to find. Research is required on
the availability of optimal solution procedures. In the absence of an optimal answer,

further research is required to develop good heuristic procedures.

The author is currently investigating a distribution fleet for Dublin County which uses a
fleet of 26 refrigerated trucks to deliver milk and other dairy products to
approximately 400 shops of varying size. Management are interested in the impact on
distribution costs of varying the call frequency that the various shop type currently
recetve. The model formulation in this example is a typical capacitated m-period
model. Where m will have a value of six, no calls are made on Sunday. The author has
no prospect of finding the optimal solution to this problem, and is currently relying on

a heuristic procedure to obtain good solutions.

8.3.3 Impact of the Route Capacity Restriction

When a milk scheduler is deciding which of the every other day farms to be allocated

to a particular day, he must have regard for milk tanker capacity. Within the original
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problem definition for the 2-period TSP no capacity or tour length restrictions exist.
For all of the practical applications noted for the 2-period TSP, most would have some
capacity restriction. In discussions with academic colleagues, opinion is divided on
whether the presence of the capacity restriction would make the problem easier or
harder to solve. The author leaves to future researchers the specification and analysis

of the capacitated 2-period TSP.

8.4  Facets of the Polytope

In Chapters 3 and 4 medium sized versions of the 2-period TSP are optimally solved
using an increasingly constrained LP relaxation. The initial LP relaxation consists only
of the 2-matching constraints. Constraints of three types are then added on an “as

needed” basis. The classes of constraints added are :

. VUB constraints,
. Subtour elimination constraints, and
° Comb constraints.

When the LP relaxation contains no violations of the above constraint classes, the
optimal solution of the model is obtained by {0,1} programming. No attempt is made
to prove that the above constraint classes are facets of the polytope. In this thesis, the
classes of constraints are simply used to move the LP relaxation into the range of {0,1}

programming. The question of their status as facets is left to a future researcher.



8.5 Alternate Mathematical Formulation

The mathematical formulation for the 2-period TSP used in this thesis is based on the
formulation for the TSP quoted in Miliotis [1976]. In that paper the formulation for the

asymmetric TSP on a set of n nodes is :

Minimise Z C,X,

ij

Subjectto » X, =1 (@ =1,.,n),
-
Z‘Xvij :1 (.] = 17"'>n))
> X, <|8|-1  Sisa subset of n nodes
ieS,jes
X, =0l

The above formulation contains n” - 2 variables and 2" + 2n - 2 constraints.

An alternate, and more compact, formulation is proposed by Miller, Tucker & Zemlin
[1960]. In their formulation, in addition to the Xj; variables, extra indicator variables,

u;, are defined. These u; variables, together with the constraints

u—u, +(n-DX, <n-2 (2 <i<n),

(2<j<n)andi# j

insure that a solution represents a feasible tour.

The complete Miller, Tucker & Zemlin formulation is :
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Minimise C.X.
70
ij

Subject to ZXy‘ =1 (1<i<n)
J

u—u, +(m-1)X, <n-2 (2<i<n),

2<j<n)andi = j
u >0 (2<i<n)

The above formulation has n> + n constraints and n’® variables Thus, this formulation
has the advantage in that it contains significantly less constraints that the Miliotis
formulation. The importance of this advantage is questionable. In practice, using
Miliotis formulation, if subtour elimination constraints are added on an “as needed”

basis, then only a small number of constraints are required.

Versions of the 2-period TSP are solved in this thesis using the Miliotis type
formulation. Research is required to investigate how the Miller formulation can be

adapted to the 2-period TSP.

Claus [ 1984] outlines a further formulation for the TSP. This formulation replaces the
exponential number subtour elimination constrains by a number of constraints that is
proportional to the number of nodes times the number of finite cost arcs in the graph.
In addition, the new formulation introduces a new set of variables. Claus argues that
the resulting polytope is smaller than the subtour elimination polytope. Research is

required to investigate the importance of this formulation to the 2-period TSP.



8.6  Greedy Algorithm

The minimum spanning tree, MST, is a well known lower bound for the TSP. A 1-tree
is formed by adding a selected arc to the MST. The 1-tree contains as many arcs as
does a TSP tour, and provides a lower bound on the length of the optimal tour. The
quality of this bound can improved considerably through the use of Lagrangian
relaxation. The MST and 1-tree concept is of significant importance largely due to the

fact that a greedy algorithm exists that finds an optimal solution.

It is easy to adapt Prim’s algorithm to the 2-period problem - an algorithm used by the
author grows two trees, one for Day; and one for Day; , in a manner similar to Prim.
If an additional arc is added to both of these trees, then a graph exists, possibly termed

a 2-tree, that has the same number of arcs as the optimal solution to the 2-period TSP.

Has the 2-tree graph the same property as the 1-tree for the TSP, that is, is the length
of the 2-tree graph a lower bound on the optimal solution to the 2-period TSP? While
investigating the possible bounds for the 2-period TSP, the author was initially
convinced that the 2-tree was in fact a lower bound. This confidence was shaken when
the 2-tree bound was increased through Lagrangian relaxation to a value above a
known optimal solution. Obviously in this latter example a flaw exists. However,
where is the flaw - is this flaw in the implementation of the greedy algorithm, the

choice of the two arcs to be added, or the Lagrangian relaxation.

The questions left to a future researcher include :
. Can Prim’s greedy algorithm be adapted to provide a guaranteed lower
bound for the 2-period TSP?
. Can two additional arcs be added to improve this bound?

. Can the bound be improved through Lagrangian relaxation?
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The author is concerned that the partitioning component of the 2-period TSP makes

the greedy concept inappropriate.

8.7 Simulated Annealing

Chapter 6 analyses various heuristic procedures for the 2-period TSP. Table 6.1
summarises the findings, and suggests that tour improvement procedures are a useful
solution technique for the 2-Period TSP. Kirkpatrick, Gelatt and Vecchi [ 1982 ]
introduced the concept of adding a probabilistic dimension to either accepting or
rejecting tour modifications in a tour improvement procedure. This process, termed
Simulated Annealing, has shown potential with other combinatorial problems. Future
research is required to investigate the utility of Simulated Annealing to the 2-period

TSP.
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Appendix 1

11 Node Problem

Node X Coord. Y Coordinate
Number
Every Every Depot
Day Second Day
1 50 10
2 40 50
3 20 60
4 60 20
5 30 60
6 70 80
7 90 10
8 10 30
9 90 40
10 50 20
11 10 10
Distance Matrix
2 3 4 ] 6 7 8 9 10 11
1 41 58 14 54 73 40 45 50 10 40
2 22 36 14 42 64 36 51 32 50
3 57 10 54 86 32 73 50 51
4 50 61 32 51 36 10 51
5 45 78 36 63 45 54
6 73 78 45 63 92
7 82 30 41 80
8 81 41 20
9 45 85
10 41
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Appendix 2

21 Node Problem

X, Y Coordinates

Node X Coord. Y Coordinate
Number
Every Every Depot
Day Second Day

1 50 10
2 30 50

3 90 40

4 50 50

5 30 80

6 10 60

7 40 40

8 80 80

9 20 10

10 10 30

11 70 10

12 90 20

13 80 60

14 70 50

15 50 70

16 10 80

17 30 30

18 60 60

19 70 70

20 90 90

21 20 40
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441

21 Node Problem - Distance Matrix.

6 10 11 12 13 14 15 16 17 18 19 20 21
1 45 50 40 73 64 32 76 30 45 20 41 58 45 60 81 28 51 63 39 42
2 61 20 30 22 14 58 41 28 57 67 51 40 28 36 20 32 45 72 14
3 41 72 82 50 41 76 81 36 20 22 22 50 89 61 36 36 50 70
4 36 41 14 42 50 45 45 50 32 20 20 50 28 14 28 57 32
5 28 41 50 71 54 81 85 54 50 22 20 50 36 41 61 41
6 36 73 51 30 78 89 70 61 41 20 36 50 61 85 22
7 57 36 32 42 54 :
8 92 36 71 61
9 22 50 71
10 63 81
11 22
12
13
14
15
16
17
18
19




Appendix 3

42 Node Problem
Node Number X Coord. Y Coordinate
Every Every Depot
Day Second Day

1 210 19
2 141 103

3 95 53

4 174 61

5 150 193

6 161 166

7 201 139

8 189 191

9 241 127

10 248 73

11 242 140

12 278 118

13 91 107

14 91 155
15 105 135
16 93 81
17 137 57
18 131 17
19 182 97
20 201 77
21 219 66
22 164 128
23 134 144
24 127 167
25 116 185
26 146 161
27 150 159
28 193 168
29 204 121
30 205 162
31 210 182
32 227 164
33 224 141
34 236 91
35 263 96
36 248 156
37 230 176
38 278 90
39 266 61
40 66 116
41 62 151
42 42 86
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Appendix 4

Fractional Solution satisfying all sub-tour elimination constraints

i j Xij1 Xiiz Xij1 + Xij2
1 4 1. 1. 2.

1 10 0.2 0.2
1 18 0.3 0.8
1 21 1. 1.

2 13 0.75 1. 1.75
2 19 0.2 0.6 0.8
2 22 0.8 0.2 1.

2 23 0.25 0.2 0.45
3 13 0.1 0.1 0.2
3 16 0.1 0.9 1.

3 17 0.6 0.2 0.8
3 18 0.2 0.8 1.

3 42 1. 1.

4 17 0.8 2 1.

4 20 0.2 8 1.

5 6 1. 1 2.

5 8 0.35 65 1.

5 25 0.65 35 1.

6 8 0.65 35 1.

6 26 0.12 133333 0.25
6 27 0.23 516667 0.75
7 22 0.8 2 1.

7 29 0 1 1.

7 30 0.6 4 1.

7 33 0.6 4 1.

8 28 0.6 4 1.

8 31 0.4 .6 1.

9 11 1. 1. 2.

9 12 1. 2.
10 21 1. 1.
10 34 0.2 0.8 1.
10 35 0.8 0.8
10 39 ' 1. 1.
11 33 0.6 0.4 1.
11 36 04 0.6 1.
12 35 1. 1.
12 38 1. 1.
13 15 0.95 0.95
13 16 0.1 0.9 1.
13 40 0.05 0.05
13 42 0.05 0.05
14 15 1. 1

14 41 1. 1

15 23 0.05 0.05
17 18 0.2 0.2
19 20 0.2 0.2
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19 29 1. 1.
20 34 0.8 0.8
23 24 0.53 0.22 0.75
23 26 0.12 0.38 0.5
23 27 0.12 0.13 0.25
24 25 0.65 0.35 1.
24 26 0.12 0.13 0.25
26 27 0.35 0.65 1.
28 30 0.6 0.4 1.
31 37 0.4 0.6 1.
32 36 0.4 0.6 1.
32 37 0.4 0.6 1.
34 35 0.2 0.2
38 39 1. 1.
40 41 1. 1.
40 42 0.95 0.95
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Appendix 5

Fractional Solution satisfying the

1st Set of Comb Constraints

i i Xiit Xij2 Xijt + Xijz |
1 4 1 1 2

1 10 473118 473118
1 21 .526882 473118 1

2 13 .408602 1 1.408602
2 19 032258 55914 .591398
2 22 1 1

2 23 55914 44086 1

3 13 .236559 236559 473118
3 16 236559 763441 1

3 17 .526882 .526882
3 42 1 1

4 17 526882 473118 1

4 20 473118 526882 1

5 6 1 1 2

5 8 27957 72043 1

5 25 72043 27957 1

6 8 72043 27957 1

6 26 .139785 139785 27957
6 27 139785 .580645 72043
7 22 1 1

7 29 064516 935484 1

7 30 3 5 1

7 33 435484 532258 967742
8 28 467742 532258 1

8 31 532258 467742 1

9 11 1 1 2

9 12 1 1 2

10 21 .053763 473118 .526881
10 34 473118 .526882 1

10 35 1 1

11 32 .032258 .032258
11 33 435484 532258 967742
11 36 .532258 467742 1

12 35 1 1

13 15 88172 .88172
13 16 .236559 763441 1

13 40 11828 .11828
13 42 11828 11828
14 15 1 1

14 41 1 1

15 23 11828 .11828
19 20 473118 473118
21 34 473118 473118
23 24 44086 .44086
24 25 72043 27957 1
24 26 .139785 .139785 27957
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24 27 139785 1139785 27957
26 27 27957 72043 1
28 30 467742 5 967742
29 33 064516 064516
30 31 032258 032258
31 37 5 467742 967742
32 36 5 467742 967742
32 37 .532258 467742 1
36 37 032258 032258
40 41 1 1
40 42 88172 88172
1 18 526882 .526882
3 18 1 1
7 28 032258 032258
10 39 1 1
12 38 1 1
17 18 473118 473118
19 29 935484 935484
20 34 526882 526882
23 26 44086 44086
38 39 1 1
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Appendix 6

Optimal Solution to the 42 node problem

i J Xij1 Xij2 Xij1 + Xij
1 4 1 1 2
1 10 1 1
1 21 1 1
2 13 1 1 2
2 22 1 1
2 23 1 1
3 13 1 1
3 16 1 1
3 18 1 1
3 42 1 1
4 17 1 1
4 20 1 1
5 6 1 1 2
5 8 1 1
5 25 1 1
6 8 1 1
6 27 1 1
7 22 1 1
7 29 1 1
7 30 1 1
7 33 1 1
8 28 1 1
8 31 1 1
9 11 1 1 2
9 12 1 1 2
10 21 1 1
10 34 1 1
10 39 1
11 33 1
11 36 1 1
12 35 1 1
12 38 1 1
13 16 1 1
14 15 1 1
14 41 1 1
15 24 1 1
17 18 1 1
19 20 1 1
19 29 1 1
23 26 1 1
24 25 1 1
26 27 1 1
28 30 1 1
31 37 1 1
32 36 1 1
32 37 1 1
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35
39
41

42

34
38
40
40
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Appendix 7

Program to automatically detect violated sub-tour elimination constraints.

The complete IP formulation of the 2-Period TSP contains all possible sub-tour
elimination constraints. The solution methodology adopted in this thesis is to add
constraints on an “as needed” basis to the LP relaxation. A programme was written to
identify within an LP solution all violations of the sub-tour inequalities. The
programme was based on an algorithm described by Dr Derek O’Connor, a friend and

departmental colleague at University College Dublin.

The algorithm first identifies all subtours within the LP solution. For each sub-tour the
programme then classifies the sub-tour into 1 of 3 categories. The categories depend
on whether S, the set of nodes in the sub-tour, contains all, some, or none of both day
nodes. The inequalities that the sum of the X and, in some cases, the Y values for the
sub-tour must satisfies depends on the categorisation of the sub-tour. In the event that
a particular sub-tour violates an inequality, the programme writes to a computer file a
constraint to prevent the sub-tour occurring in a later solution. The file containing all
constraints is appended to the LP Relaxation, and the CPLEX package solves the new

model.

The loop consisting of : CPLEX solution of the LP Model
Identification of sub-tour violations.
Generation of constraints into a computer file.
LP Model extended by the addition of the new

constraints.

was programmed in a DOS Batch File, and the process terminated when the LP

solution contained no sub-tour violations.

The computer programme was written in Basic, and designed to run on a standard PC.

A copy of the computer code is available from the author.
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Appendix 8

Constraints introduced by Stages 2. 3. 4, and 5.

Constraint to remove symmetry between Day 1 and Day 2.
c114: Y0141 =1
VUB Constraints.

cl15: X0140151 - Y0151 <=0
cl16: X0030161 - Y0161 <=0
cl17: X0030181 - Y0181 <=0
c118: X0020191 - Y0191 <=0
c119: X0040201 - Y0201 <=0
c120: X0010211 - Y0211 <=0
cl121: X0020221 - Y0221 <=0
cl22: X0230241 - Y0231 <=0
c123: X0230241 - Y0241 <=0
c124: X0050251 - Y0251 <=0
c125: X0260271 - Y0261 <=0
c126: X0080281 - Y0281 <=0
cl127: X0070291 - Y0291 <=0
c128: X0070301 - Y0301 <=0
c129: X0080311 - Y0311 <=0
¢130: X0320371 - Y0321 <=0
c131: X0090331 - Y0331 <=0
cl32: X0100341 - Y0341 <=0
c133: X0120351 - Y0351 <=0
c134: X0110361 - Y0361 <=0
cl35: X0320371 - Y0371 <=0
cl36: X0120381 - Y0381 <=0
c137: X0100391 - Y0391 <=0
c138: X0130421 - Y0421 <=0
cl39: X0130152 - Y0152 <=0
c140: X0030162 - Y0162 <=0
cl41: X0170182 - Y0182 <=0
cl42: X0020192 - Y0192 <=0
c143: X0040202 - Y0202 <=0
cl44: X0010212 - Y0212 <=0
c145: X0020222 - Y0222 <=0
c146: X0230242 - Y0232 <=0
cl47: X0230242 - Y0242 <=0
c148: X0050252 - Y0252 <=0
c149: X0060262 - Y0262 <=0
c150: X0080282 - Y0282 <=0

150



cl5l:
cl52:
cl153:
cl54:
cl55:
cl56:

cl57:

cl58:
cl159:

c160:

cl6l:
cl62:
cl63:

clo4:

clo65:
cl66:
clo7:
cl68:
cl69:
cl170:
cl71:
cl72:
cl73:
cl74:
cl75:
cl76:
cl77:
cl78:
cl79:
c180:
cl81:
c182:
cl183:
cl184:
c185:

X0070292 - Y0292 <=0
X0070302 - Y0302 <=0
X0080312-Y0312<=0
X0320372-Y0322<=0
X0090332 - Y0332 <=0
X0100342 - Y0342 <=0
X0120352-Y0352<=0
X0110362 - Y0362 <=0
X0320372 - Y0372 <=0
X0120382 - Y0382 <=0
X0100392 - Y0392 <=0
X0130422-Y0422 <=0
X0030171 - Y0171 <=0
X0020231 - Y0231 <=0
X0240251 - Y0241 <=0
X0240251 - Y0251 <=0
X0060261 - Y0261 <=0
X0110331 -Y0331 <=0
X0140411-Y0411 <=0
X0030172-Y0172 <=0
X0030182 - Y0182 <=0
X0020232 - Y0232 <=0
X0240252 - Y0242 <=0
X0240252 - Y0252 <=0
X0260272 - Y0262 <=0
X0070332-Y0332<=0
X0400412-Y0412<=0
X0060272 - Y0272 <=0
X0110332 -Y0332<=0
X0260271 - Y0271 <=0
X0070331 - Y0331 <=0
X0060271 - Y0271 <=0
X0400411 - Y0401 <=0
X0260272 - Y0272 <=0
X0130402 - Y0402 <=0



Generalised Sub-tour Elimination Constraints

cl86: X0030171 + X0030181 + X0170181 - Y0171 - YO181 <=0

ci87: X0030172 + X0030182 + X0170182 - Y0172 - Y0182 <=0

cl88: X0060261 + X0060271 + X0260271 - Y0261 - Y0271 <=0

cl89:  X0060262 + X0060272 + X0260272 - Y0262 - Y0272 <=0

cl90:  XO0130151 + X0130401 + X0140151 + X0140411 + X0400411 - Y0141 -
Y0151 - Y0401 - Y0411 <=0

cl91:  X0130152 + X0130402 + X0140152 + X0140412 + X0400412 - Y0142 -
Y0152 -Y0402-Y0412 <=0

c192:  X0400421 - Y0421 <=0

cl93:  X0030422 - Y0422 <=0

cl94:  X0050061 + X0050081 + X0060081 <=2

cl95:  X0050062 + X0050082 + X0060082 <=2

cl196: X0100341 + X0100391 + X0340391 - Y0341 - Y0391 <=0

cl97:  X0100342 + X0100392 + X0340392 - Y0342 - Y0392 <=0

¢198: X0120351 + X0120381 + X0350381 - Y0351 - Y0381 <=0

cl99: X0120352 + X0120382 + X0350382 - Y0352 - Y0382 <=0

c200: X0010041 + X0010101 + X0020131 + X0020191 + X0030181 +
X0030421 + X0040171 + X0070291 + X0070331 + X0090111 +
X0090121 + X0100351 + X0110331 + X0120351 + X0130151 +
X0140151 +X0140411 + X0170181 + X0190291 + X0400411 +
X0400421 - Y0141 - YO151 - Y0171 - YO181 - YOIOI -
Y0291 - Y0331 - YO351 - Y0401 - Y0411 - Y0421 <=9

c201: X0010042 + X0010102 + X0020132 + X0020192 + X0030182 +
X0030422 + X0040172 + X0070292 + X0070332 + X0090112 +
X0090122 + X0100352 + X0110332 + X0120352 + X0130152 +
X0140152 + X0140412 +X0170182 + X0190292 + X0400412 +
X0400422 - Y0142 - Y0152 - Y0172 - YO182 - YO192 -
Y0292 - Y0332 - Y0352 - Y0402 - Y0412 - Y0422 <=9

c202: X0020191 + X0020221 + X0070221 + X0070291 + X0190291 - Y0191 -
Y0221 - Y0291 <=1

c203:  X0020192 + X0020222 + X0070222 + X0070292 + X0190292 - Y0192 -
Y0222 - Y0292 <=1

c204: X0010041 + X0010211 + X0040201 + X0200211 - Y0201 - Y0211 <=1

c205: X0010042 + X0010212 + X0040202 + X0200212 - Y0202 - Y0212 <=1

c206:  X0050061 + X0050251 + X0060271 + X0240251 + X0240261 +
X0260271 - Y0241 - Y0251 - Y0261 - Y0271 <=1

c207:  X0050062 + X0050252 + X0060272 + X0240252 + X0240262 +
X0260272 - Y0242 - Y0252 - Y0262 - Y0272 <=1

c208: X0030161 + X0030421 + X0130151 + X0130161 + X0140151 +
X0140411 + X0400411 + X0400421 - Y0141 - YO151 - YO161 -
Y0401 - Y0411 - Y0421 <=1

c209:  X0030162 + X0030422 + X0130152 + X0130162 + X0140152 +
X0140412 + X0400412 + X0400422 - Y0142 - YO152 -
Y0162 - Y0402 - Y0412 - Y0422 <= ]

c210: X0010041 + X0010201 + X0040201 - Y0201 <=1
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c211:
c212:

c213:

c214:

c215:

c216:
c217:
c218:
c219:
c220:
c221:
c222:
c223:
c224:
c225:
c226:
c227:
c228:
c229:

c230:

c231:
c232:

c233:

c234:

c235:

X0010042 + X0010202 + X0040202 - Y0202 <=1

X0050061 + X0050251 + X0060271 + X0230241 + X0230261 +
X0240251 + X0260271 - Y0231 - Y0241 - Y0251 - Y0261 - Y0271 <=1
X0050062 + X0050252 + X0060272 + X0230242 + X0230262 +
X0240252 + X0260272 - Y0232 - Y0242 - Y0252 - Y0262 - Y0272 <=1
X0030131 + X0030421 + X0130151 + X0140151 + X0140411 +
X0400411 +X0400421 - Y0141 - YO151 - Y0401 - Y0411 - Y0421 <=1
X0030132 + X0030422 + X0130152 + X0140152 + X0140412 +
X0400412 +X0400422 - Y0142 - YO152 - Y0402 - Y0412 - Y0422 <=1
X0230261 - Y0231 <=0

X0030131 + X0030161 + X0130161 - Y0161 <=1

X0030132 + X0030162 + X0130162 - Y0162 <=1

X0060261 + X0060271 + X0260271 - Y0261 - Y0271 <=0

X0060262 + X0060272 + X0260272 - Y0262 - Y0272 <=0

X0030421 - Y0421 <=0

X0400422 - Y0402 <=0

X0140151 + X0140411 +X0150411 - Y0141 - Y0151 <=0

X0140152 + X0140412 + X0150412 - Y0142 - Y0152 <=0

X0140151 +X0140411 +X0150411 - Y0141 - Y0411 <=0

X0140152 + X0140412 + X0150412 - Y0142 - Y0412 <=0

X0140151 +X0140411 + X0150411 - YO151 - Y0411 <=0

X0140152 +X0140412 + X0150412 - Y0152 - Y0412 <=0

X0130151 + X0130401 + X0140151 + X0140411 + X0400411 - YO141 -
Y0151 -Y0401-Y0411 <=0

X0130152 +X0130402 + X0140152 + X0140412 + X0400412 - Y0142 -
YO0152 -Y0402 - Y0412 <=0

X0190202 - Y0192 <=0

X0020191 + X0020221 + X0070221 + X0070291 + X0190291 -

Y0191 - Y0221 - Y0291 <=1

X0020192 + X0020222 + X0070222 + X0070292 + X0190292 -

Y0192 - Y0222 -Y0292 <=1

X0010041 +X0010101 +X0040201 + X0100341 + X0200341 -

Y0201 - Y0341 <=2

X0010042 + X0010102 + X0040202 + X0100342 + X0200342 -

Y0202 - Y0342 <=2

153




Comb Constraints

€236: X0050061 + X0050081 + X0050251 + X0060081 + X0060261 + X0060271
+ X0070291 + X0070301 + X0070331 + X0080281 + X0080311 + X0090111
+X0110331 + X0110361 + X0230241 + X0230261 + X0230271 + X0240251
+X0240261 + X0260271 + X0280301 + X0310371 + X0320361 + X0320371
+ X0050062 + X0050082 + X0050252 + X0060082 + X0060262 + X0060272
+ X0070292 + X0070302 + X0070332 + X0080282 + X0080312 + X0090112
+X0110332 + X0110362 + X0230242 + X0230262 + X0230272 + X0240252

+ X0240262 + X0260272 + X0280302 + X0310372 + X0320362 + X0320372
<=22

€237:X0030131 + X0030161 + X0030171 + X0030181 + X0040171 + X0030421
+ X0130161 + X0130151 + X0170181 + X0140151 + X0140411 + X0400411
+ X0130401 + X0400421 + X0130421
+ X0030132 + X0030162 + X0030172 + X0030182 + X0040172 + X0030422

+X0130162 + X0130152 + X0170182 + X0140152 + X0140412 + X0400412
+X0130402 + X0400422 + X0130422 <= 11




Appendix 9

100 Node Problem
Node X Coord. Y Coordinate
Number
Every Every Depot
Day Second Day
1 70 50
2 57 28
3 30 77
4 1 76
5 81 70
6 4 41
7 86 79
8 37 96
9 87 5
10 94 36
11 52 76
12 5 59
13 46 29
14 62 64
15 26 27
16 82 82
17 58 98
18 91 22
19 69 98
20 24 53
21 10 99
22 67 1
23 57 10
24 10 79
25 28 4
26 29 38
27 30 94
28 97 40
29 27 16
30 16 64
31 41 41
32 71 32
33 63 20
34 18 58
35 8 45
36 90 26
37 78 37
38 28 91
39 63 62
40 42 9
41 56 69
42 91 83
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Node X Coord. Y Coordinate
Number
Every Every Depot
Day Second Day

43 2 54
44 91 43
45 67 50
46 51 46
47 35 40
48 26 5
49 24 97
50 6 39
51 36 48
52 15 47
53 25 62
54 54 15
55 93 65
56 50 39
57 10 78
58 45 75
59 59 83
60 1 21
61 7 10
62 33 12
63 0 53
64 65 54
63 82 8
66 19 67
67 45 35
8 14 70
69 92 53
70 8 75
71 40 46
72 49 20
73 32 9
74 58 16
75 92 9
76 44 27
77 87 75
78 27 67
79 25 8
80 3 32
81 79 29
82 23 43
83 25 34
84 4 48
85 20 86
86 58 75
87 92 33
88 54 8

156




Node X Coord. Y Coordinate
Number
Every Every Depot

Day Second Day
89 63 41
30 96 11
91 92 62
92 34 14
93 47 21
94 99 13
95 2 34
96 54 92
97 53 40
98 84 82
99 67 72
100 99 33
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Appendix 10

200 Node Problem
Node X Coord. Y Coordinate
Number
Every Every Depot
Day Second Day

1 55 23
2 73 6
3 21 27
4 76 74
5 11 7
o 21 16
7 85 7
8 76 4
9 86 33
10 37 34
11 83 9
12 30 6
13 40 73
14 55 10
15 14 89
16 23 86
17 72 83
18 59 41
19 39 13
20 3 42
21 68 51
22 37 17
23 34 4
24 52 79
25 55 47
26 25 76
27 39 93
28 28 74
29 49 75
30 62 51
31 6 68
32 14 27
33 4 21
34 40 17
35 56 26
36 72 5
37 64 5
38 51 48
39 18 22
40 87 99
41 11 28
42 39 62
43 89 18
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Node X Coord. Y Coordinate
Number
Every Every Depot
Day Second Day

44 24 68
45 17 18
46 50 73
47 79 33
48 73 90
49 93 14
50 81 38
51 62 95
52 0 17
53 39 45
54 30 12
55 26 91
56 98 19
57 94 52
58 47 95
59 24 12
60 38 36
61 85 1

62 85 80
63 22 12
64 15 30
65 80 40
66 47 8

67 49 48
68 3 31
69 34 51
70 37 13
71 51 37
72 0 91
73 44 99
74 13 77
75 3 4

76 83 33
77 93 81
78 32 75
79 25 33
80 55 98
81 4 77
82 4 28
83 7 12
84 95 99
85 90 0

86 41 54
87 82 89
88 8 69
89 3 46
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Node X Coord. Y Coordinate
Number
Every Every Depot
Day Second Day

90 3 12

91 13 22
92 77 11
93 82 44
94 58 61
95 81 24
96 10 49
97 7 4
98 19 4
99 27 15
100 93 76
101 47 71
102 4 37
103 9 76
104 39 2
105 10 72
106 33 3
107 48 94
108 34 24
109 92 67
110 26 42
111 78 13
112 95 35
113 29 98
114 56 36
115 99 87
116 13 13
117 46 41
118 94 65
119 24 26
120 7 60
121 7 54
122 18 53
123 30 48
124 70 24
125 63 28
126 8 20
127 9 29
128 25 9
129 11 37
130 80 30
131 15 55
132 70 65
133 28 88
134 77 43
135 18 65
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Node X Coord. Y Coordinate
Number
Every Every Depot
Day Second Day

136 28 68
137 34 71
138 75 66
139 51 11
140 1 66
141 42 10
142 57 98
143 63 0

144 17 25
145 93 1

146 59 87
147 64 46
148 79 84
149 32 92
150 17 73
151 80 24
152 18 99
153 32 0

154 17 44
155 1 13
156 42 1

157 59 80
158 50 80
159 31 53
160 85 35
161 17 66
162 57 11
163 37 90
164 56 23
165 0 29
166 80 58
167 1 29
168 93 10
169 41 21
170 12 90
171 70 82
172 10 83
173 61 26
174 50 69
175 3 18
176 45 94
177 18 11
178 40 5

179 25 15
180 17 36
181 72 79
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Node X Coord. Y Coordinate
Number
Every Every Depot
Day Second Day
182 32 2
183 73 9
184 68 29
185 2 10
186 25 3
187 50 44
188 18 60
189 89 23
190 21 68
191 71 21
192 14 533
193 49 15
194 74 73
195 18 48
196 78 75
197 90 18
198 38 7
199 85 93
200 59 34

162




Appendix 11

Heuristic Solutions for the 11 Node Problem

Cheapest Insertion Day 1 Tour : Depot-4-7-9-6-2-5-3-10-
Depot
Day 2 Tour : Depot-4-2-5-3-8-11-Depot
Inside/Outside Day 1 Tour : Depot-4-7-9-6-2-5-3-8-11-
Depot
Day 2 Tour : Depot-4-2-5-3-10 - Depot
Tour Improvement : Day 1 Tour: Depot- 4-7-9-6-5-3-2-10-

( Cheapest Insertion as
Initial Tour )

Depot

Day 2 Tour : Depot-4-2-5-3-8-11-Depot
Tour Improvement : Day 1 Tour : Depot-4-7-9-6-2-5-3-8-11-
( Inside/Outside as Initial Depot
Tour )

Day 2 Tour : Depot-4-2-5-3-10-1
Tour Improvement : Day 1 Tour : Depot- 4-7-9-6-5-3-2-10-
( Random Initial Tour ) Depot

Day 2 Tour : Depot-4-2-5-3-8-11-Depot
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Appendix 12

Heuristic Solutions for the 21 Node Problem

Cheapest Insertion Day 1 Tour : Depot-3-14-8-20-5-6-2-4-7-
10 - 9 - Depot
Day 2 Tour : Depot-11-12-3-13-8-19-18-15
-5-16-6-21-2-4-7-17-9-
Depot
Inside/Outside Day 1 Tour: Depot-9-7-2-6-5-15-19-8-13 -
3-14-18-4-Depot
Day 2 Tour : Depot-11-12-3-20-8-5-16-6-2
-21-10-9-17-7-4 - Depot
Tour Improvemerit : Day 1 Tour : Depot-3-14-8-20-5-6-2-4-7-

( Cheapest Insertion as
Initial Tour )

21-10-9 - Depot

Day 2 Tour : Depot-11-12-3-13-8-19-18-15
-5-16-6-2-4-7-17-9-Depot
Tour Improvement : Day 1 Tour : Depot-9-2-6-5-15-19-8-13-3
( Inside/Outside as Initial - 14 -18 -4 - 7 Depot
Tour )
Day 2 Tour : Depot-11-12-3-20-8-5-16-6-2
-21-10-9-17-7-4 -Depot
Tour Improvement : Day 1 Tour : Depot-3-14-13-8-15-5-16-6-2
( Random Initial Tour ) -4-7--17-9 - Depot
Day 2 Tour : Depot-9-10-21-6-5-2-7-4-18

-19-8-20-3-12-11 -Depot
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Appendix 13

Heuristic Solutions for the 42 Node Problem

Cheapest Insertion

Day 1 Tour :

Day 2 Tour :

Depot - 10-39-38-12-9-11-29-7-30-32
-37-31-8-5-6-22-19-2-13-42-3-18
-4 - Depot

Depot-21-20-34-10-35-12-9-11-36 -
33-7-28-8-5-6-27-26-25-24-23-2-
15-14-41-40-13-16-3-17 -4 - Depot

Inside/Qutside

Day 1 Tour :

Day 2 Tour :

1-10-34-35-12-9-11-33-28-8-5-6-
22-7-29-19-2-13-16-3-17-4-20-21
- Depot

Depot -4-7-30-32-9-10-39-38-12-11
-36-37-31-8-5-25-24-6-27-26-23 -
2-13-15-14-41-40-42-3-18 - Depot

Tour Improvement :
( Cheapest Insertion as
Initial Tour )

Day 1 Tour :

Day 2 Tour :

Depot -10-39-38-12-36-11-9-29-7-32
-37-31-8-5-6-22-19-2-13-42-3-18
-4 - Depot

Depot-21-20-34-10-35-12-9-11-33-7
-30-28-8-6-27-26-5-25-24-23-2-
15-14-41-40-13-16-3-17-4 - Depot

Tour Improvement :
( Inside/Outside as Initial
Tour )

Day 1 Tour :

Day 2 Tour :

Depot-10-35-12-9-11-33-7-30-28-8
-5-6-22-2-13-16-3-17-4-20-21-
Depot

Depot -4-19-7-29-34-10-39-38-12-9
-11-36-32-37-31-8-5-25-24-26-6-
27-23-2-13-15-14-41-40-42-3-18-
Depot

Tour Improvement :
( Random Initial Tour )

Day 1 Tour :

Day 2 Tour :

Depot - 10-39-38-12-11-9-29-7-30-28
-8-6-5-25-24-14-41-40-42-3-16-
13 - 2 - 4 - Depot

Depot-21-10-9-11-33-7-6-27-26-5-
8-31-37-32-36-12-35-34-20-4-17-
18-3-13-15-23-22-2-19 - Depot

165




Appendix 14

Heuristic Solutions for the 100 Node Problem

Depot-39-14-5-7-16-19-17-59 - 86 - 41
-11-8-27-38-85-21-24-4-12-34-30-
68-3-20-35-6-95-80-60-61-26-15-

29-25-40-93-72-54-74-23-22-9-18 -
36-100-10-28-69-37-32-33-2-13-76
-31-56 - 97 - 89 - 64 - Depot

Depot-39-14-99-5-91-55-77-7-42-98
-16-19-17-96-11-58-8-27-38-49 -21
-24-57-70-4-12-63-43-34-30-66-3 -
78-53-20-82-52-35-84-6-50-26-83-
15-29-79-48-25-73-62-92 -40 - 88 - 23
-22-65-9-75-90-94-18-36-87-10-28
-44-37-81-32-33-2-13-67-31-47-51
-71 - 46 - 45 - Depot

Depot-64-39-14-99-5-7-16-19-17-59
-86-41-11-58-8-27-38-3-85-21-24-
57-4-70-68-66-30-12-34-20-82-52-
35-6-26-47-51-71-31-46-2-32-33-

74-72-93-13-76-15-29-25-73-62-92
-40-54-23-22-65-9-18-36-87-10-28
- 81 - 37 - Depot

Depot-37-32-33-2-40-88-23-22-9-75
-90-94-18-36-100-10-28-44-69-91 -
55-5-77-7-42-98-16-19-17-96-39 -
14-11-8-27-38-49-21-4-24-3-78-53
-20-34-30-12-43-63-84-35-6-50-95
-80-60-61-79-48-25-29-15-83-26-
31-67-13-56-97 -89 -45 - Depot

Cheapest Insertion Day 1 Tour :
Day 2 Tour :
Inside/Outside Day 1 Tour :
Day 2 Tour :
Tour Improvement : Day 1 Tour :
( Cheapest Insertion as
Initial Tour )
Day 2 Tour :

Depot-64-39-14-5-7-16-19-17-96-59
-11-58-3-8-27-38-85-21-24-4-70-
68-30-34-20-12-43-63-84-35-6-95-
80-60-61-29-25-40-93-72-54-74-23
-22-9-18-36-100-28-10-37-32-33-2
-13-76-15-26-47-31-56-97 -89 - Depot

Depot-39-14-41-11-86-99-5-69-91 -
55-77-7-42-98-16-19-17-8-27-38-
49-21-24-57-4-12-34-30-66-3-78 -
53-20-82-52-35-6-50-26-83-15-29-
79-48-25-73-62-92-40-88-23-22-65
-9-75-90-94-18-36-87-10-28-44-37
-81-32-33-2-13-67-31-51-71-46-45
- Depot
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Tour Improvement : Day 1 Tour :

( Inside/Outside as Initial

Depot-64-39-14-99-5-7-16-19-17-96
-11-58-3-8-27-38-85-21-24-57-4-
70-68-66-30-12-34-20-82-52-35-6-
50-26-51-71-31-46-2-33-74-54-72 -
93-13-76-15-29-25-73-62-92-40-23
-22-65-9-18-36-87-10-28-81-32-37
- Depot

Depot-37-32-33-2-13-40-88-23-22-9
-75-90-94-18-36-100-10-28-44-69 -
91-55-5-77-7-42-98-16-19-17-59 -
86-39-14-41-11-8-27-38-49-21-4-
24-3-78-53-20-34-30-12-43-63-84 -
35-6-95-80-60-61-79-48-25-29-15-
83-26-47-31-67-56-97-89-45 -Depot

Tour)

Day 2 Tour :
Tour Improvement : Day 1 Tour :
( Random Initial Tour )

Day 2 Tour :

Depot-37-36-18-94-90-75-9-22-23 -

88-40-25-29-15-50-6-35-84-63-43-
12-4-70-24-21-38-27-8-17-19-16-7
-5-55-91-69-28-10-44-39-14-41-11
-58-3-66-30-34-20-26-47-31-67-13
-2-33-32-89 - Depot

Depot -46-31-61-60-80-95-6-35-52-
20-11-39-86-99-5-77-7-42-98-16 -
19-17-96-8-27-38-49-21-85-3-78-
53-51-71-56-97-2-65-9-22-23-54-
72-93-76-13-26-12-4-24-57-68-30 -
34-82-83-15-29-79-48-25-73-62-92
-40-74-33-32-81-87-100-28-10-18 -
36 -37-45-64 - 14 - 39 - Depot
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Appendix 15

Heuristic Solutions for the 200 Node Problem

Cheapest Insertion Day 1 Tour : Depot - 164 - 191 - 124 - 184 - 125 - 173 - 35 -
71-114-200-18-25-30-147-21-94-132
-138-166-109-118-57-93-134-65-50-
47-130-76-160-9-112-189-43-197-56
-49-168-145-85-61-106-7-11-111-92
-183-8-2-36-143-37-162-14-139-66 -
178 - 156 - 104 -75-23-153-182-12 - 186 -
98-5-97-83-185-90-155-52-175-126 -
33-82-165-167-68-102-20-89-96-192
-154-195-122-188-131-121-120-31-88
-105-103-81-72-170-15-172-74 - 150 -
26-16-133-55-149-163-27-73-176 - 58
-107-80-142-51-48-199-40-84-115-
77-100-62-87-148-196-4-194 - 181 -17
-171-157-24-158-29-46-174-101-13 -
137-78-28-135-161-190-44-136-42 -
86-67-38-187-117-110-123-159-69 -
53-60-10-108-79-180-129-64 -127-41
-32-91-144-3-119-39-45-6-063-59-
179-99-54-70-19 - 22 - 34 - 169 - Depot

Day 2 Tour Depot - 35 - 71 - 18 - 25 - 30 - 21 - 57 - 65 - 50 -
47-76-9-151-95-43-56-49-85-61-7-
11-8-2-36-37-14-66 - 141 - 198 - 75 - 23
-12-128-177-116-5-83-90-52-33-82 -
68-20-89-140-31-88-81-72-15-74 -
26 -16 -55-152-113-27-73 - 58 -80 - 51 -
48-40-84-77-62-87-4-17-146-24 -29
-46-13-78-28-44-42-86-67-38-69 -
53-60-10-79-64-41-32-3-39-45-6-
63 -59-54-70-19 - 22 - 34 - 193 - Depot
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200 Node Problem

Inside/Outside

Day 1 Tour :

Day 2 Tour :

Depot - 164 - 173 - 125 - 184 - 124 - 191 - 37 -
36-2-8-183-92-111-11-7-61-85-49 -
56-197-43-95-151-130-47-76-9-50 -
65-134-93-57-4-62-77-84-40-199 -
87-148-17-48-146-51-80-107-58-176
-73-27-163-149-55-133-16-15-172 -
72-81-103-105-88-31-120-121-131-
192-96-89-20-102-68-82-127-41-129
-154-195-122-188-135-161-190-44 -
150-74-26-28-78-13-158-24-29-46 -
42-86-69-159-123-110-180-64-32-91
-126-33-175-52-90-83-5-116-177 -
128 -12-23-75-198-141-66-139-14 -
162-193-34-22-19-70-54-59-63-6-
45-39-144-3-79-10-60-53-67-38-30
-21-147-18-25-71-114 - 200 - 35 - Depot

Depot -35-71-18-25-38-67-187-117 -
60-10-53-69-86-42-136-44-26-28-
78 -137-13-101-29-46-174-94 -30-21 -
65-50-47-76-160-9-112-57-118-109 -
166 - 138-132-194-4-196-181-87-62 -
100-77-115-84-40-48-17-171-157-24
-51-142-80-58-73-27-113-55-16-152
-15-170-72-81-74-88-31-140-89-20 -
68-167-165-82-33-52-155-90-185-83
-97-5-98-186-153-182-75-23-12-59-
63-45-32-41-64-79-119-3-39-6-179
-99-54-108-169-34-22-70-19-178 -
104 - 156 - 66 - 143 - 61 -85 -145- 168 - 49 -
56-189-43-11-7-106-8-2-36-37-14 -
Depot

169




200 Node Problem

Tour Improvement : Day 1 Tour:

( Cheapest Insertion as
Initial Tour )

Day 2 Tour :

Depot - 164 - 191 - 124 - 184 - 125-173 -35 -
71-114-200-18 - 147 -21-30-94 - 132 -
138-109-118-57-93-134-65-50-47-76
-9-112-189-43-197-56-49-168 - 145 -
85-61-106-7-11-111-92-183-8-2-36
-143-37-162-14-139-66 - 178 - 156 - 104
-75-23-153-182-12-186-98-5-97-83 -
185-90-155-52-175-126-33-82-165-
167-68-102-20-89-96-154-195-122 -
192 -131-188-31-88-105-74-103-81 -
72-170-15-16-133-55-149-163-27-73
-176 -58 -107-80-142-51-48-148 -87 -
199-40-84-115-77-100-62 - 196 - 4 - 194
-181-17-171-157-24-158-29-46-174 -
101-13-137-78-28-26-135-161-190 -
44-136-42-86-67-38-25-187-117-110
-123-159-69-53-60-10-108-79 - 180 -
129-127-41-64-32-144-3-39-45-6-
63-59-179-99-54-70-19-22-34-169 -
Depot

Depot -35-71-18-25-30-21-166-57-65
-50-76-9-160-47-130-151-95-43-56-
49-85-61-7-11-8-2-36-37-14-66-
141-198-75-23-12-128-177-116-5-83
-90-52-33-82-68-20-89-121-120-140
-31-88-81-72-15-172-74-150-26-16 -
55-152-113-27-73-58-80-51-48-87-
40-84-77-62-4-17-146-24-29-46-13
-78-28-44-42-69-86-67-38-53-60-
10-79-119-3-64-41-32-91-39-45-6-
63-59-54-70-19-22-34-193 - Depot
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200 Node Problem

Tour Improvement :
( Inside/Outside as Initial
Tour )

Day 1 Tour:

Day 2 Tour :

Depot - 164 - 173 - 125 - 184 - 124 - 191 - 37 -
36-2-8-183-92-111-11-7-106-61-85
-49-56-197-43-189-95-151-130-47 -
76-9-160-50-65-93-57-166-4-196 -
62-77-84-40-199-87-148-181-17-48 -
51-80-107-58-176-73-27-163-149-55
-133-16-15-172-72-81-88-31-120-
131-192-96-89-20-102-68 -82-127 - 41
-129-154-195-122-188 -135-161-190 -
44-150-74-26-28-78-13-158-24-29-
46-101-42-86-69-159-123-110-180 -
64-32-91-126-33-175-52-90-83-5-
116 -177-128-12-23-75-198 - 141 -66 -
14-139-193-34-22-19-70-54 -59-63 -
6-45-39-144-3-79-10-60-53-67-38 -
25-30-21-147-18-71-114-200-35 -
Depot

Depot-35-71-18-25-38-67-187-117 -
60-10-53-69-86-42-136-44-26-28 -
78-137-13-24-29-46-174-94-30-21 -
134-65-50-47-76-9-112-57-118 - 109 -
138-132-194-4-62-100-77-115-84 -40
-87-48-17-171-157-146-51-142-80 -
58-73-27-113-152-55-16-15-170-72 -
81-103-74-105-88-31-140-121-89-20
-68-167-165-82-33-52-155-90-185 -
83-97-5-98-186-153-182-75-23-12-
54-59-63-6-45-39-32-41-64-79-3 -
119-179-99-108-169-34-22-70-19 -
178 - 104 - 156 - 66 - 143 -61 - 85 - 145 - 168 -
49-56-43-11-7-8-2-36-37-162-14 -
Depot
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200 Node Problem

Tour Improvement :
( Random Initial Tour )

Day 1 Tour:

Day 2 Tour :

Depot-35-71-187-86-42-13-78-28-26
-74-103-81-72-170-15-16-55-149 -
163-27-73-58-107-146-48-87-199-40
-84-115-77-62-166-93 -47 -130-95 -
151-92-183-8-61-85-7-11-2-36-37-
14-66-198-75-23-12-186-98-5-97-
185-90-126-91-39-3-53-174-46-29 -
24-80-142-51-17-181-4-57-112-56-
49-197-43-189-9-76-50-65-21-30-
147 -18-25-38-67-69-44-190 - 161 - 88 -
31-89-20-102-68-82-45-6-179-99 -
70-19-34-22-54-59-63-116-83-52 -
33-127-41-32-64-79-10 - 60 - Depot

Depot - 164 -35-173-124-191-111-11-7 -
43-9-160-76-47-50-65-134-21-137-
78-16-15-72-172-81-140-121-96 - 129
-64-144-39-59-128-153-182-108-10 -
60-123-159-136-44-28-26-133-55-
152-113-27-73-176-58 -80 - 51 - 48 - 40 -
84-87-148-17-171-157-29-101-86-53
-110-180-82-167-165-68-20-89-192 -
188 -135-150-74-105-88-31-120-131 -
122-195-154-119-178-156-104 - 75 -23 -
12-6-45-90-155-52-175-33-3-79-69
-42-13-158-24-46-94-18-184 - 125 -
200-114-71-117-67-38-25-30-132-
138-194-4-196-62-77-100-109 - 118 -
57-56-49-168-145-85-61-106-8-2-
36-143-37-162-14-139-193 - 169 - 34 -
22-32-41-83-5-177-63-54-70-19 -
141 - 66 - Depot
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Appendix 16

IP Formulation of Every Third Day Milk Collection.

Minimise

7 =

40Xo107.1
36X02,041
32X 10
32Xo3,08.1
32Xo4,01,1
78Xos5,07.1
78Xo6,08.1
41Xo7,101
85X090,11,1
41X01.02.2
45X 01,082
14X2.052
50Xm11.2
73Xo03.002
51Xo4.082
36Xo0s.082
45X 06,002
80Xo7.11,2
41X1011.2
41Xo1.023
45Xo1.08.3
14X02.053
50Xo2113
73X03.003
51Xo4.083
36X05.083
45X 6,003
80Xq7,11,3
41X40113
41 X102,
45Xo1,08.4
14 X005,

T L T T T T R R S S S R S S

41Xo1,021
45Xo1.08.1
14X02,05.1
50Xo2.11.1
73X03,09.1
51Xo4.081
36X05,08.1
45X06,09,1
80Xo7.11.1
41Xi0111
58Xo1.032
501,002
42X02,06,2
57Xo3.042
50X43,10.2
36X04,00.2
63X05,00,2
63Xo6.102
81Xog.002

58Xo1,033
50X 01,003
42X02,063
57Xo3.043
50X03.103
36Xo04.003
63X05,003
63Xo6103
81Xog.003

58X01,03,4
50X01,09,4
42X 02,064

_*.

+ o+ 4+ o+ 4+ o+ o+ A+ o+ o+ o+ 4+ o+ o+

58Xo 031 + 14Xa1 049
50Xo1001 + 10Xo1,101
42X061 T 64Xo207,1
57Xo3041 + 10Xo30s
50Xo3101 + 51Xoz11,
36Xoa001 + 10Xo4101
63X0s5001 + 45Xos,101
63Xos101 + 92Xos111
81Xog091 t+ 41Xog101
14Xo1,042 + 54Xo1052
10X01.102 + 40Xo1 110
64X 072 + 36Xga0s2
10Xo3050 + 54Xo03,062
51Xo3 112 + 50Xoa0s2
10Xoa100 + 51Xo4112
45Xos102 + 54Xos112
92Xo6112 + 82Xg7 082
41Xog102 + 20Xog 11,2
14X01 043 + 54Xo01053
10Xa 105 + 40Xo1113
64X 013 T 36Xon083
10X03.055 T 54Xo3063
51Xo3 113 + 50Xo40s3
10Xo4303 + 51Xoa113
45X0s5103 + 54Xos113
92Xos113 + 82X 083
41Xog103 + 20Xpg 113
14Xo1,044 + 54Xo1 054
10Xo1.104 + 40Xo1 11,4
64X 074 T 36Xo2,084
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+

+ o+ o+ o+ o+ o+ o+ o+ o+ + o+ o+ o+ o+ + o+

+ o+ o+ o+ o+ o+ o+ o+ o+

54X 050 + T3Xo1061 T
+ 22X 031 T

40Xo1,11,1
36Xo2081
54X03.06.1
50X04,05.1
51Xo4111
54Xos11.0
82X7.08.1
20Xog11,1

73X'01 06,2
22Xp.032
51Xo2002
86Xg3.07.2
61Xo4,052
45X0s5.06.2
73Xo6.072
30X07,00.2
45X09.102

73Xo1.06,3
22X 02033
51Xo02.093
86X03,07.3
6 1X04,06,3
45Xo05.063
73X06,O7,3
30X07,00,3
45 X09,1 03

73Xo1.06.4
22)(02,03,4
5 1X02,09,4

+
+
+
+
+
+
+

+ o+ o+ 4+ o+ o+ o+ +

+ o+ + + o+ o+ o+ o+ o+

51Xo2,00.1
86X03,07.1
61X04.061
45X05,06.1
73Xo6,07.1
30Xo7,09,1
45X0910.1

40X01 ,07.2
3 6XO2,04,2
32X00102
32X03.082
32Xo4072
78X05,07.2
78X06,08,2
4 1 X07,1 0,2
8 5 XOQ,I 1,2

40X1 07,3
36Xm,043
32X02103
32X03,083
3204073
78X 05,073
78X06,08.3
41X 103
85X09,1 1.3

40X 07,4
36Xo204.4
32Xoz,104

+ o+ o+ o+ o+ o+ 4+ o+ + 4+ o+ o+ o+ 4+

+ 4+ o+ o+ o+ o+ o+ 4+

+




50Xm11,4 + 57Xo300a T 10X03054 + 54Xo3064 + 86Xo3074 + 32Xo3084
T3Xo3004 + 50Xo3104 + 51 Xoz114 T 50Xos0s4 + 61Xoa064 + 32X04074
51Xos084 + 36Xo4004 + 10Xos104 + 51Xosn14 + 45Xos0s4 + 78Xos07.4
36Xos04 t 63Xos094 T 45Xos004 + 54Xos11.4 T T3Xosora + T8Xos084
45Xos004 + 63Xos104 T 92Xo611.4 + 82Xo7084 + 30Xo7004 + 41X07.104
80Xo711,4 + 81Xpgooa + 41Xog104 + 20Xog 114 + 45X09104 + 85Xo011.4
41X4011,4 +

41Xo1 005 + 38Xor03s + 14Xo10a5 + 54Xor0ss + 73Xo1065 + 40Xo1,07,5
45Xo1,085 + 50Xo1005 + 10Xo1 105 + 40Xo1115 + 22Xg0035 + 36Xoz04.5
14X 0055 + 42Xo0065 + 64Xo207,5 T 36Xo208s + 51Xon00s + 32Xen105
50X 11,5 + 57Xz 005 T 10Xo3055 + 54Xos065 + 86Xezmns + 32Xos085
73X03.005 t 50Xo3105 + 51Xo3115 + 50Xo4055 + 61Xos065 + 32Xo4075
S51Xo4085 + 36Xoa005 + 10Xo4105 + 51Xos115 + 45Xos06s + 78Xos 075
36Xososs + 63Xos005 T 45Xos105 + 54Xosa1s T T3Xosors T 78Xosces
45Xo6095 T 63Xos105 + 92Xos115 T 82Xor0s5 + 30Xo7005 + 41Xo7105
80Xy711,5 + 81Xos095 + 41Xog105 + 20Xog11,5s + 45XKo0105 + 85Xoo 11,5
41Xh0015 +

41Xo1.026 + 5801036 + 14Xo1046 T 54Xo1056 + 73Xo1066 T 40Xo1.076
45Xo1086 T 50Xo1.006 + 10Xo1106 + 40Xo1116 + 22X2036 T 36Xo2046
14Xo2056 + 42X02066 + 64Xo2076 + 36Xon086 T S1Xoz096 + 32Xon106
50Xoz116 T 57Xoz046 T 10Xo3056 + 534Xo3066 + 86Xo3076 + 32Xo0z086
T3Xo3006 + 50Xoz106 + 31Xo3116 + 50Xoa0s6 + 61Xos0s6 T 32Xo4076
51Xoa086 T 36Xoa006 + 10Xoa106 + 51Xoa116 + 45Xos0s6 + 78Xos076
36Xos086 T 63Xos006 T 43Xos106 + 54Xos116 T T3Xosors + 7T8Xos0s6
45Xos006 + 63Xos106 T 92Xos116 T 82Xo7086 + 30Xgr006 T 41Xo7106
80Xo7116 + 81Xog006 + H1Xog 106 + 20Xog116 + 45X00106 + 85Xo011.6
41X40116

Subject to:

Kor02,1 + Xopos,1 + Xora1 + Xoros + Xorost + Xor07,1 + Xorest + Xoro1 + Xoni0n + Xowint =2
Xor02,1 T Xoz2,03.1 + Xoz,041 + Xozos1 + Xoz61 + Xozora + Xozos1 + Xozoor + Xoziog + Xozi11 = 2
Xo1.03,1 + Xo2,03,1 + Xoz0a1 + Xozos1 + Xozos, + Xozorn + Xosesr + Xozoon + Xozzen + Xos i1 =2
Xoro41 + Xozoa1 + Xozoa1 + Xoaos1 + Xoas + Xoaor, + Xoaos1 + Xoso1 + Xoaon + Xoarg = 2

Xo1,05,1 + Xoz,05.1 + Xoz.0s1 + Xoaosa + Xos s + Xoso7,1 + Xosos1 + Xosoor + Xosi01 + Xos,11,1 = 2

Kor022 T Xor03.2 + Xoi0a2 + Xoros2 + Xore2 + Xor,072 + Xoros2 + Xoro2 + Xorioz + Xor 112 = 2

Xoroz2 + Xz 032 + Xoz,042 T Xoz,052 + Xozos2 + Xoz72 + Xozs2 + Xo2,002 + Xozroz + Xozi12 = 2
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+ o+ o+ o+ o+ o+

+ + 4+ o+ 4+ o+ 4+ o+

+ 4+ o+ o+ o+ o+ o+ o+ o+




Xor032 + Xozs2 + Xozpaz + Xozos2 + Xozosz + Xozor2 + Xosesr + Xosoor + Xozioz + Xozp12=2
Kor042 + Xoz0a2 + Xoz 042 + Xoaosz + Xoaos2 + Xoa07,2 + Xoas + Xoape2 + Xoao2 + Xoar12 = 2

Xo1,052 + Xozos2 + Xozos2 + Xoaosz + Xosger + Xoso72 + Xossz + Xosee2 + Xos,102 + Xos 2 =2

Korm3 + Xor,033 + Xor,043 + Xor,053 + Xor,063 + Xor,073 + Xo1,083 + Xor03 + Xoy103 + Xor,113 = 2
Koroz23 + X33 + Koz + Xozs3 + Xozs3 + Xo2,073 + Xoz83 + Xozeos + Xoz,103 + Xog11,3= 2
Xo1,033 + Xozg33 + Xo3043 + Xo3053 + Xo3,063 + X373 + Xoz sz + Xos o3 + Xos,103 + Xoa113= 2
Xo1,043 + Xoza3 + Xo3043 + Xoaoss + Xoagss + Xoaor3 + Xoaoss + Xoaoes + Xosroz + Xoa113=2

Xo1,053 + Xoz,053 + Xoz 053 T Xo4053 + Xoss3 + Xos.07.3 + Xosess + Xoso3 + Xos,103 + Xos113= 2

Kot02.4 T Xor,03.4 + Xor.0a4 + Xor,054 + Xor064 T Xor,07,4 + Xor,0s4 + Xor004 + Xovr04 + Xor11.4= 2
Xor02.4 + Xoz03.4 + Xo2,044 + Xoz054 + Xoz,064 + Xo2,07,4 T Xoz,08.4 + Xozos4 + Xo2,104 + Xoz,11.4 = 2
Xor.034 + Xo2034 + Xozoas + Xo3osa + Xozgea + Xo3,074 + Xozosa + Xoseos + Xozjoa+ Xozira=2
Kor0a4 + Xoo a4+ Xoaosa + Xosesa + Xoagsa + Xoaora + Xoaoss + Xoaoos + Kogro4 + Xos11,4= 2

Koros,4 T Xozs.4 + Xo3,05.4 + Xoaosa + Xos o4 + Xos7.4 + Xososa + Xos09,4 + Xos 104 + Xos 11,4 = 2

Kor,02,5 + Xor,035 + Xor.o45 + Xores5 + Xo1,065 + Xo,07,5 + Xo1,085 + Xo1,005 + Xo,105 + Xor,11,5 = 2
Korozs + Xozozs + Xoz0a5 + Xooss + Xozoss T Xozor,s + Xozoss + Xozoes T Xoz105 + Xoz,11,5 =2
Xo1,03.5 + Xoz,03,5 + Xozoas + Xozos,s + Xozes + Xozors + Xozoss + Xozoes + Xoznos + Xoza1,s = 2
Xor0a5 + Xoz045 + Xo3 45 + Xoaoss T Xoaoss + Xoaors + Xoaoss + Xoaoos + Xoaios + Xosi1,5=2

Xo1,05,5 + Xo2,05,5 + Xoaoss + Xoaoss + Xoso6s + Xos07,5 + Xosss + Xosoos + Xos,10,5 + Xos,11.5= 2

Korozs + Xor,03.6 + Xo1,046 + Xo1,056 + Xot,066 + Xo1,07.6 + Xor.086 + o096 + Xo1,105 + Xor116 = 2
Xor,02.6 + Xoz036 + Xozoas + Xoz056 + Xozoss + Xo2,07.6 + Xozss + Xo2,006 + Xoz,106 T Xoa11,6 = 2
Xot,036 + Xo2,036 + Xozoas + Xo03056 + Xo3,066 + X0307.6 T Xo30ss + X03,006 + Xoz106 + Xoz,11,6 = 2
Xor,046 + Xonoas + Xozoas + Xoaoss + Xoaoss + Xoaors + Xososs + Xoaoos + Xoa106 T Xoa1,6 = 2

Xo1.0s6 T Xo2,0s6 + Xo3ose + Xoaoss + Xososs + Xoso7,6 + Xososs T Xosgos + Xossos T Xossis = 2

Kor,06,1 + Xo2,06.1 + Xoz6.1 + Xoaos.1 + Xosos,1 + Xoso7,1 + Xoss.1 + Xoss.1 + Xos101 + Xoe11,1 - 2Y0s1 = 0
Koro71 + Xozor1 + Xozor1 + Xoaor1 + Xosor,1 + Xoso7,1 + Xo7081 + Xo7001 + Xoz101 + o711 -2Y071 =0
Xor,08.1 + Xo2,081 + Xoz081 + Xoaosa + Xosogi + Xosesr + Xor.os1 + Xogoo1 + Xogo1 + Xog11,1 - 2Y0g1 = 0
Xor00,1 + Xo2,001 + Xoz,09,1 + Xoaoo1 + Xos00,1 + Xos,00,1 + Xo7,00.1 + Xogoo.1 + Xos101 + Xoo,11,1 - 2Y0e1 =0
Xor,101 + Xoz101 + Xoz1o,1 + Xoa101 + Xosao1 + Xos.10.1 + Xozaor + Xospo1 + Xoo100 + Xio11.1 - 2Y101 =0

Xor1, + Xozi1,1 + Koz + Xoagng + Xosn,1 + Xos,i1,0 + Koz + Xogin1 + Xoojint + Xio1,1 - 2Y11,0 =0

Kor062 T Xo2,062 + Xosgs2 + Xoaos2 + Xos 62 + Xo6,07.2 + Xos,082 + Xos,00,2 + Xog,102 + Xos,11.2 - 2Y0s2 = 0
Koto72 + Xo2072 + Xoz 72 + Xoagr2 + Koso72 + Xosor2 + Xors2 + Xor02 + Xo7,102 + Xor112-2Y072=0
Kor082 + Xo2,082 + Xoaosz + Xoaos2 + Xoses2 + Xos0s2 + Xo7,082 + Xogos2 + Xog102 + Xog11,2 - 2Y0s2= 0
Xot092 + Xo2.002 + Xo3,002 + Xoapo o + Xoseor + Xosoer + Xor0e2 + Xogoez + Xoo 102 + Xoo112 - 2Y092 =0

Xot102 + Xoz,102 T Xoa02 + Xoao2 + Xos102 + Xos.102 + Xor.102 + Xosg102 + Xoojjo2 + X10,112 - 2Y102=0
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Koz + Xozng + Xosa2 + Xoar12 + Xosaiz + Xosir2 + Xoz12 + Xog1,2 + Xoopr2 + X112~ 2Y112 =0

Xo1063 + Xo2063 + Xo3063 T Xoa063 + Xos063 + Xo6,07.3 + Xos,083 + Kos o3 + Xos,103 + Xos 113 -2Y0s3 =0
Kor073 + Xoz,073 + Xozor,3 + Xoaor,3 + Kospr,3 + Xos,73 + Koz,sz + Xoro3 + Koriez + Xornz-2Yor3=0
Xor08.3 + Xoz083 + Xo3,08.3 + Xoa083 + Xoss3 + Xososs + Xo7,083 + Xog93 + Xog 03 + Xog113-2Yos3 =0
Xor003 + Xoo003 + Xozoo3 + Xoaoes + Xosoe3 + Xosoe3 + Xoz,093 + Xogoes T Xos,103 + Xog,11.3-2Y093 =0
Ko,103 + Xoz,103 + Xoa,103 + Xos103 + Xos103 + Xos,103 + Xo7,103 T Xog 103 + Xoo1o3 + Xi10113-2Y102=0

Kotz + Xoot13 + Koz + Xoai1,3 + Xosaiz + Xos11,3 + Xoz,113 + Xog 11,3 + Xoo11,3 + X1o,13-2Y133=0

Kor,06.4 + Xo2064 + Xoz 064 + Xos,0s.4 + Xosos4 + Xos,07.4 + Xososa T Xos09.4 + Xos,104 + Xos114-2Y064=0
Xor07.4 + Xo2,07,4 + Xozo7,4 + Xoapra + Xosor.4 + Xoso7,4 + Xorosa + Xor004 + Xor,104 + Xoz11.4 - 2Y074=0
Ko1,084 + Xo2,084 + Xo308.4 + Xosos4 + Xosors + Xosos4 + Xo7,084 T Xogo,4 + Xog 104 + Xosg,11.4 - 2Y0s4 =0
Ko1.094 + Xoz,004 + Xo3004 + Xoage.4 + Xoseo4 + Xosoa + Xo7,004 + Xog 004+ Xoo104 + Xooi1,4-2Y094=0
Xor104 + Xo2,104 + Xo3,104 + Koa104 + Xos,104 T Xos,104 + Xo7,104 + Xog.104 + Xog104 + Xig1.4- 2Y104=0

Xovi1.4+ Xoz 1.4+ Xoziia + Xoaia + Xosi1.4+ Xos,1,4 + Xoza1.4 + Xogai.a + Xooa + Xioi1a-2Y114=0

Kot,06.5 + Xo2,065 T Xo03,06,5 + Xoaos,s + Xoss,s + Xos,07.5 + Xososs T Xos09,5 + Xos,105 + Xos11.5 - 2Yoss = 0
Xot.07,5 T Xo2.07,5 + Xog7,5 + Xoagrs + Xosgrs + Xosor,s + Xo7,08s + Xor,005 + Xo7,105 + Xori15-2Y075=0
Xor08s + Xoz085 + Xo3ss + Xoaoss + Xososs + Xososs + Xor0s5 + Xogoos + Xog o5+ Xos11,5-2Yoss=0
Kor,00,5 T Xo209,5 + Xoz,09,5 + Xoaoos + Xosgos T Xososs + Xoz.00,5 + Xogos,s + Xoo105 + Xoa11,5- 2Y0e5= 0
Xot,105 + Xoz105 + Xoz 105 + Xoa105 + Xos,10,5 + Xos.105 + Xoz,105 + Xos,10.5 + Xooos + Xio11,5-2Y105 =0

Kortrs + Xozi1,5 + Xozi,s + Xoair,s + Xosit,s + Xos,i1,5 + Xozi1s + Xogi1,5 T Xoo1,5 + Xioa1s-2Y11,5=0

Xo1,06.6 + Xo02,066 T Xo03,066 + Xoaoss + Xososs T Xosore + Xos.os.s + Xos09s + Xos,106 + Xos11.6 -2Y0s6 =0
Kor,076 + Xo2,076 + Xoz.07,6 + Xoao7,6 + Xos07,6 + Xoso7.6 + Xor,086 + Xo7,096 + Xor,106 + Xoz11,6 - 2Yo07,6 = 0
Xor086 + Xoz,086 + Xo3,086 T Xoaoss + Xososs + Xososs + Xoross + Xosoos + Xosg 106 T Xog 11,6 - 2Yogs = 0
Xor006 + Xozos + Xoz 06 + Xoa00,6 T Xosgos + Xosoos + Xo7.006 + Xogoos + Xoo 106 + Xoo11.6-2Y0es =0
Xot106 T Xoz106 T Xoz106 + Xoa06 + Xos,106 + Xos.106 + Xo7,106 + Xog10,6 + Xoo106 + Xioirs - 2Y106 =0

Kov1.6 + Xozi1.6 T Xozi1.6 + Xoa 6 + Xos16 + Xos,11,6 + Xor16 + Xogi1,6 + Koon16 + Xioi6-2Y116 =0

Yos,1 + Yos2 = 1

Yos3+ Yosa =1

Yoss+ Yoss = 1

Yos1+ Yos3+ Yoos = 3Wos
Yos2+ Yosa + Yoss = 3Qos
Wos+ Qo =1
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Yos1+ Yoga=1
Yogs+ Yoga=1

Yos5+ Yoss =1

Yos1 + Yosz + Yogs = 3Wog
Yos2 + Yosat+ Yoss = 3Qos

Wog+ Qo =1

Yior+ Yoo =1
Yioa+ Yios=1
Yios+ Yios=1

Yioi+ Yios+ Yios=3Wy
Yoo+ Yios+ Yios = 3Qu0

Wi+ Q=1

Yori+ Yoo+ Yor3=1
Yora+ Yors+ Yore=1
Yor1+ Yora =2Wy;
Yor2+ Yor,5 = 2Qo7
Yors+ Yors =2Rer
Wor+ Qo7 + Re7 = 1

Yoo1+ Yoo+ Yooz =1
Yoo.a+ Yoos+ Yoo = 1
Yoor+ Yoos =2Woo
Yooz + Yoo5 = 2Q0s
Yooz + Yoos =2Rge
Wog + Qos + Roo = 1

Yia+tYu2+Yus=1
Yia+ Yis+ Yiug=1
Yig+ Yiua =2Wy
Y2+ Yis =2Qu
Yius+ Yus =2Rn
Wi+ Qu+Riu=1

Xix Yic Wi Qand R;

Solution is six tours,

e {0.1}
with nodes 1 to 5 on all tours,

nodes 6. 8, and 10 on 3 tours, and
nodes 7. 9. and 11 on two tour.
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