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This thesis extends earlier works by Wheeler, Boettinger and McFadden [1, 2], and Aziz

[9], on a non-equilibrium phenomenon commonly observed in rapid solidification, called 'solute

trapping'. The phase-field model by Wheeler, Boettinger and McFadden (denoted as WBM2),

and a sharp interface model, known as the Continuous Growth Model (CGM), due to Aziz,

are found to show similar solute trapping behaviours.

Numerical and asymptotic analyses are carried out on the WBM2 model. The numerical

results establish the possible cause of solute trapping, which is, the relative size of the diffu-

sive length scale of the solute field, and the characteristic thickness of the interface. As the

solidification velocity increases, the diffusive length scale of the solute field decreases. When

its value becomes comparable or smaller than the characteristic thickness of the interface,

solute trapping occurs. This relationship cannot be realised by the Continuous Growth Model

because it is a sharp interface model, in which, the interface is assumed to have negligible

thickness. This result emphasises the capability of a phase-field model in studying the solute

trapping phenomenon.

The asymptotic analysis successfully produces an explicit form for the 'diffusive speed',

which is an important parameter in solute trapping, as it scales the solidification velocity. So-

lute trapping becomes important when the solidification velocity exceeds this diffusive speed.

The explicit expression obtained for the diffusive speed, relates it directly to the material

parameters of the alloy; this is the first theory to provide such a relationship. A comparison

with values calculated from experimental data on solute trapping shows that this expression

supports the experimental results.

Another non-equilibrium effect found in rapid solidification processes, is the 'kinetic un-

dercooling' effect. This effect is also succesfully captured by the WBM2 model, where the

numerical values of the interface temperature is found to decrease with the interface velocity.
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Chapter 1

Introduction

Solidification is an important industrial process which finds application in the production

of materials used in the fabrication of modern electronic devices, as well as the casting of

metals. In the case of electronic materials, controlled solidification is necessary to provide a

very high quality product. The optimisation of control techniques for this process requires a

rigorous method to tackle the issue effectively. Thereby, mathematical models are established

to introduce a practical way of assessing the techniques, by relating the fundamental concepts

involved in the solidification process, to practice.

The essential aim of this thesis is to provide a step forward in the development of mathe-

matical models of solidification processes. It builds on the original work of Wheeler, Boettinger

and McFadden [1, 2] which focuses on a particular type of model known as the 'Phase-field

Model'. Their proposed version of the model has been successful in predicting typical phe-

nomena observed in solidification, one of which, is in the prediction of 'solute trapping' during

the rapid solidification of a binary alloy [2]. This development motivates most of the work

carried out in this thesis whose main emphasis is on the rapid solidification of a binary alloy.

Solute trapping is a 'non-equilibrium' phenomenon that is commonly observed in rapid

solidification of alloys. It has been identified as one of the factors involved in the formation

of supersaturated solid solutions in rapid solidification during pulsed laser melting [3] . The

uniform distribution of solute in alloys produced in this way, is a great advantage in subse-

quent processing of the material [4]. The limited understanding of the mechanisms of solute

trapping, and rapid solidification in general, emphasise the importance of the analyses carried

out in this thesis. Current solidification theories mainly focus on the concept of 'equilibrium

solidification', which is commonly associated with much slower rates of solidification. Improve-

ments in rapid solidification techniques in recent years, have enabled in-depth experimental



studies of the process. This is a great advantage towards providing a more comprehensive

understanding of the non-equilibrium nature of rapid solidification processes.

1.1 Background

Knowledge of solidification processes is needed in order to understand how solidification models

are derived. We set out, in chapter 2, by considering solidification on a microscopic level, where

we focus our attention on the processes occurring in the region separating the two bulk phases,

the liquid phase and the solid phase. This region is called 'the solid-liquid interface'. During

solidification, the growth of solid causes the interface to move forward into the liquid, thus

it is often referred as the 'moving boundary' or the 'free boundary'. There are two different

types of mathematical formulations of the process, known as the Sharp Interface Model

and the Phase-field Model.

A detailed description of the sharp interface model is given in chapter 2, which involves

deriving an appropriate set of governing equations for temperature and concentration in the

bulk phases, as well as boundary conditions at the 'outer boundary', i.e., the boundary around

the melted region, and a set of conditions at the moving boundary, i.e., the interface. The

concept of 'equilibrium solidification' is also introduced here; this is used to derive the con-

ditions for temperature and concentration at a slowly moving interface, where the conditions

are very closely approximated by the equilibrium conditions [5]. An extension of this model

to the rapid solidification process, takes into account the deviation, from equilibrium to non-

equilibrium, of the interfacial conditions (often referred as the 'response function'). This leads

to the derivation of the corresponding non-equilibrium versions of the response functions given

by Boettinger et. al. [6, 7]; their results are outlined.

1.2 Overview

This section provides an overview of each chapter of the thesis. Chapters 3 and 4 contain liter-

ature reviews on phase-field models and solute trapping models respectively. In the remaining

chapters, we discuss the analyses we carried out on the WBM2 model.

1.2.1 Chapter 3

The phase-field model is described in this chapter, where the state of art of the model is

reviewed. The differences between the phase-field model and the sharp interface model are



outlined and the simplest form of the model, which corresponds to the solidification of a pure

material is described. Several analyses of the phase-field model that have been carried out

over the years are summarised here, for example the derivation of the thermodynamically

consistent phase-field model, the sharp interface limits of the model as well as the numerical

calculations. The description of several extensions to the model to include anisotropy, and

the extension to binary alloys are also included.

The phase-field model which will be used in this thesis is referred to as the 'WBM2 model',

proposed by Wheeler, Boettinger and McFadden [2], and it is described in detail in the last

section of chapter 3. The model is for isothermal solidification of a binary alloy, where

the solid and liquid solutions are assumed to be ideal. It is a generalisation of an earlier

model WBM1 [1]. In WBM2, a solute gradient energy is added in the corresponding free

energy functional. The generalisation was made because the WBM1 model failed to capture

the correct variation in the jump of concentration across the interface, with interface velocity.

Although WBM2 qualitatively predicts the correct variation (i.e., solute trapping) in the sharp

interface limit, it is still not clear whether the improvement is due to the solute gradient energy

term, or, the particular distinguished limit they chose for their asymptotic analysis. This is

one of the important issues that is resolved in this thesis.

The free energy functional used in the model is given in this section, together with the

corresponding governing equations for the phase-field and the solute field, along with the

appropriate boundary conditions. The asymptotic analysis of the model in the sharp interface

limit (where the interface is assumed to be planar) is summarised and the resulting boundary

conditions across the interface are presented. The solute trapping phenomena observed in

the leading order solution of the solute field is discussed briefly. Several other calculations

for binary alloys are also discussed, they include the computation of dendrites in binary alloy

solidification and a phase-field description of growth of a eutectic alloy.

1.2.2 Chapter 4

This chapter contains discussions of solute trapping models. We describe three different solute

trapping models, the Stepwise Growth Model (SGM), the Continuous Growth Model

(CGM) and the Aperiodic Stepwise Growth Model (ASGM). All of these models are due

to Aziz [9], and they are based on the sharp interface formulation of solidification processes.

The three models differ in their description of the growth mechanism of the solid, although it

can be shown that there are special cases in which they are equivalent. In all the models, the

same measure of solute trapping is used, i.e. the partition coefficient k. This is defined as the



ratio of the solute concentration in the far-field to the maximum concentration. Experimental

observations suggest that its value should rise from an equilibrium value, ke, say (whenever

ke < 1), where ke is a constant for each alloy, at a constant temperature, to a saturation

value of unity, as the interface velocity increases, i.e. as the system departs from equilibrium.

(Whenever ke > 1, the value of k should decrease from ke to unity, as the interface velocity

increases). All the models are successful in predicting the 'qualitative' variation of k, but the

CGM is noted to be the most successful in predicting its 'quantitative' value [4, 8].

Each solute trapping model contains a fitting parameter which is denned as the 'diffusive

speed' (solute trapping is observed when the interface speed exceeds this speed). Its value is

denned to be the ratio of the interface diffusion coefficient, Di, to the inter-atomic distance A.

Because of the difficulty in obtaining direct measurements for Di and A, the diffusive speed is

commonly assumed to be approximately equal to the ratio of the diffusivity in the liquid bulk

phase to the interface width, but experimental measurements on solute trapping have proved

the inaccuracy of this assumption [4].

At the end of chapter 4, we describe the experimental procedures involved in measuring

the value of the partition coefficient for a particular interface speed. We also review the

experimental results on solute trapping, observed in several alloys like the Silicon based alloys.

One of the important results we highlight here is the inverse correlation found between the

diffusive speed and the equilibrium partition coefficient, an observation made by Smith et.

al. [4].

1.2.3 Chapter 5

The analysis of the WBM2 model carried out in [2] assumes the solid-liquid interface to be

planar, and that the melted alloy transforms from an ideal liquid solution to an ideal solid

solution during solidification. These assumptions provide a very simplified description of the

process, hence, in order to afford a comparison with the 'real' system, further extensions need

to be done. To this end, we used the model to propose a formulation in chapter 5, that

assumes a curved solid-liquid interface.

In the curved interface formulation, the WBM2 model is expressed in a suitable curvi-

linear coordinate system. The sharp interface limit of this new configuration produces a set

of boundary conditions across the interface. The resulting equation for the interface temper-

ature is shown to capture the physical effect, known as the 'thermal undercooling' (or the

'Gibbs-Thomson effect'), due to the curvature of the interface and the interface velocity. The

undercooling effect due to the moving interface is also captured.



1.2.4 Chapter 6

Another extension of the WBM2 model is considered here which deals with transformation

of a regular liquid solution to a regular solid solution. This is referred as the 'regular

solution' model. It involves adding an extra term in the free energy density function of the

WBM2 model. This term corresponds to the 'entropy of mixing' associated with the regular-

solution mixture. It contains a parameter G, which is the energy of pairwise interaction of

the atoms, and represents a measure of the regularity of the solutions. The equilibrium phase

diagram associated with this new model, is constructed for different values of G using the

common tangent construction derived from both classical thermodynamics and the phase-

field model.

1.2.5 Chapter 7

In this chapter, the solute trapping behaviour in the WBM2 phase-field model is analysed

numerically, where the partition coefficient, k, is derived from the solutions for the solute

field, obtained for a particular interface velocity. The definition for k is adopted from [2], and

given by
far — field concentration . .

k — , (1.1)
maximum concentration of solute'

The governing equations are non-dimensionalised in such a way that the solute gradient

energy coefficient, S, may be set to zero. We also allow the diffusivity to vary monotonically

across the interface, from a value DL on the liquid side, to a value of D$ on the solid side, where

DL and Ds are the diffusivities in the liquid and solid bulk phases respectively. The numerical

procedures involved in the computation of the solutions are explained, with a demonstration

of how a well-resolved solution is obtained.

The solutions are computed for the Nickel-Copper alloy (whose material parameters are

given in appendix B), where they are described, for DS/DL = 1 and for DS/DL ^ 1. In

the case of DS/DL = 1, the solutions are first computed for 5 ^ 0, an equivalent case to

the one considered by Wheeler et. al. in [2]. The numerical solution for the solute field in

this case, exhibits solute trapping as the interface velocity increases, confirming their results.

The computations are then performed with 5 = 0 which has the effect of removing the solute

gradient energy term from the model. Comparison of the results in the two cases, 6 ^ 0 and

S — 0, leads to the conclusion that the solute gradient energy term is not a prerequisite for

solute trapping. Therefore, for simplicity, the remainder of the calculations are carried out

with 6 = 0.
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The effect of varying diffusivity is captured by setting DSJDL ¥" 1- This helps to predict

the nature of the solutions as we approach the more realistic limit of DS/DL <C 0, i.e.,

the liquid diffusivity is far greater than the solid diffusivity. The interface temperature also

forms part of the solution, where we are able to obtain a set of values for the temperature

corresponding to a range of interface speeds. The temperature variation with velocity is

compared with the results predicted from sharp interface models.

A procedure is formulated so that for each interface speed V, a corresponding value for

the partition coefficient k is calculated from the profile of the solute field obtained at that

particular value of V, using equation (1.1). We performed least squares fitting on the numerical

data, where we fit the following function to the k data,

ke + V/VD
k = TTVjv^' (L2)

which is the form for the partition coefficient given by CGM. The quantity VD denotes the

diffusive speed, and in this case, it acts as a fitting parameter. Repeating the procedure for

a number of sets of k — V data, we are able to study the correlation between VD and (i) the

equilibrium partition coefficient ke (assumed less than 1), (ii) the diffusivity ratio DS/DL,

and (iii) the interface width.

1.2.6 Chapter 8

In this chapter, an asymptotic analysis is carried out in the high interface velocity limit. In this

limit, regular expansions for the phase-field and the solute field are obtained. The partition

coefficient is defined in the same way as in the numerical analysis, i.e., (1.1). Therefore, a

corresponding expansion for k is obtained, which shows the value increases to unity as V

increases (ke is assumed to be less than 1). The first two terms of the expansion are observed

to be independent of S, which supports the claim we made earlier based on the numerical

results, that solute trapping is independent of the solute gradient energy term.

We proceed by expanding the form for k given by the CGM in the same limit. A functional

form for VD is found by equating this expansion with the expansion for k obtained earlier from

the WBM2 model. This is done under the assumption that the trapping behaviour captured

in both models is quantitatively the same x. Encouragingly, the functional form shows that

VD decreases with increasing values of ke, which is in agreement with experimental results.
lrThe validity of this assumption is later confirmed, where in the 'dilute limit', the 'interdiffusion fluxes'

from the two models are found to be almost exactly identical. The interdiffusion flux is the flux of solute atoms

that are diffusing away from the interface. It is derived in CGM using the chemical rate theory, whereas in the

WBM2 model, it is given by the multiple of the gradient of the 'interdiffusion potential'

11



The analyses are extended to cases where ke > 1 and V < 0 (melting), where similar results

are produced.

A more general form for Vb is obtained in the case Ds/D^ ̂  1. For the more realistic

case where DS/DL ~ 0, the asymptotic approximation for Vp is compared with a set of data

from experiment on solute trapping of several Silicon alloys.

1.3 Main results

In this thesis we set out to address several important issues regarding the solute trapping

phenomena, observed in an earlier work by Wheeler et. al. [2]. These issues are outlined

below;

(i) the dependence of the solute gradient energy term on solute trapping;

(ii) the dependence of various length scale in the problem, and their relative sizes, on solute

trapping;

(iii) to find a better means of estimating the value of the diffusive speed for a specific alloy;

(iv) to establish a connection between the WBM2 model and the CGM.

After performing numerical and asymptotic analyses on the WBM2 model, we have success-

fully obtained results that enable us to resolve the issues above.

The successful prediction of solute trapping in the analysis of Wheeler et. al. in [2] has

suggested that the inclusion of the solute gradient energy term in the free energy functional,

may be the important factor that leads to this result. On the other hand, our numerical

results clearly show that the solute trapping is not due to the solute gradient energy

term. This result however, does not explain why solute trapping is not observed in the earlier

model, WBM1 [1]. After analysing the length scales used in both formulations, [1] and [2],

we discover that solute trapping is intimately related to the relative sizes of the diffusive

length scale of the solute field, and the characteristic thickness of the interface.

The diffusive length scale, denoted as D/V, decreases in size as the solidification velocity, V, is

increased. When its size becomes comparable or smaller than the interface thickness, solute

trapping results. It is not possible to draw this conclusion from Aziz's solute trapping models

because they are based on the sharp interface models, where the interface is assumed to have

negligible thickness, and hence prevent a direct connection between the interface thickness

and the effect of solidification velocity on the length scale of the solute field.

12



The diffusive speed Vb is an important parameter which appears in all the solute trapping

models described in chapter 4. However, none of the solute trapping theories to date is able

to provide an explicit form for it. The common assumption that

the diffusion coefficient in the liquid
the interface thickness

has been experimentally proven to be inaccurate by Smith et. al. [4], thereby, a better estimate

is clearly needed. This issue is tackled in our asymptotic analysis, where we have succeeded

in producing a functional form for Vb which relates it to measurable parameters of

the alloy, such as the equilibrium segregation coefficient, ke, the diffusivity ratio, DS/DL,

and the interface thickness, l%. It is even more encouraging to see that the form for Vb is

inversely correlated with ke, confirming the experimental prediction of Smith et. al. [4].

The agreement is shown to be both qualitative and quantitative, since we are able to show

that the values of Vb calculated using this functional form correspond to a reasonable

value of the interface thickness.

One interesting factor that arises from the analysis of the WBM2 model is that the pre-

dicted solute trapping behaviour resembles the behaviour observed in the CGM. Although

both models are derived using two completely different formulations (phase-field formulation

(WBM2) and sharp interface formulation (CGM)), the partition coefficient from both mod-

els are shown to have a very similar dependence on the interface velocity. Furthermore, the

explicit functional form we obtain for Vb shows both quantitative and qualitative agreements

with the values of Vb) derived using the CGM, from experimental results. A more detailed

analysis of the governing equations for the solute field from both models has shown that, in

the dilute alloy limit, the interdiff'usion flux of both models are very similar. Because the

interdiffusion flux plays an important role in the solute trapping process, the results offer an

explanation as to why the solute trapping behaviour predicted in both models show a lot of

resemblance.

In summary, this thesis provides several contributions to existing solute trapping theories.

It also highlights the capabilities of the WBM2 model in predicting characteristic behaviours

of solute trapping, and other non-equilibrium aspects of rapid solidification, for example, the

kinetic undercooling. These findings should encourage further developments in the study of

non-equilibrium solidification.

13



Chapter 2

The solidification process

A system undergoing solidification can be described macroscopically as one that consists of

two distinct phases, solid and liquid, lying adjacent to each other with a thin interfacial

region separating them. The temperature gradient across the interface promotes various

processes that transform the liquid into solid at the interface, thereby changing the position

of the interface. These processes are governed by a set of concepts describing the transport

processes, thermodynamics and material science. In order to gain a thorough understanding

of the interface dynamics, it is necessary to study the interface processes on the microscopic

scale.

The interface is envisioned to be of two different types, an atomically flat interface, and

a diffuse interface (see Fig. 2.1). On an atomically flat interface, the solid atoms are very

closely packed resulting in a well-defined boundary between the solid and liquid. Transition

from liquid to solid is assumed to take place across a single atomic layer. On the other hand,

the diffuse interface is more 'atomically rough'. The ordering of the atoms changes over a

number of atomic layers, getting more and more ordered towards the fully crystalline side,

where all the atoms are in their appropriate lattice sites and all heat of fusion is released [5].

During solidification, an atom from the liquid phase will find a site on the solid-liquid

interface and 'attach' itself to it. The atom will naturally choose a site where it will lose a

maximum amount of its heat of fusion if it moves there. Such a site would have to be where

the atom gains a large number of nearest neighbours. The ease with which the solid can grow

depends very much on the proportion of interface sites that are favorable for the atoms. A

diffuse interface has a higher proportion of favorable sites for growth on it, compared to a

flat interface; therefore it grows more easily. The growth mechanism of the two interfaces is

also expected to be different. Because growth of solid occurs more easily, the diffuse interface

14



(a)

(b)

Figure 2.1: The two types of solid-liquid interface, (a) atomically flat interface, (b) a diffuse interface.
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moves uniformly into the liquid and it is said to be a 'continuous growth'. Forward growth of

a flat interface occurs preferentially at steps which sweep laterally across the interface, this is

called 'lateral growth'.

In the next section we will discuss how the solidification process (applied to a binary alloy

case) is analysed mathematically. Two different mathematical formulations are introduced,

the sharp interface model and the phase-field model.

2.1 Mathematical analysis of solidification

Over the years, a number of mathematical models [1, 9, 10, 11, 12, 13, 14, 15] have been

developed to describe phase transitions in solidification. The classical modelling approach

[9, 10] represents the solid-liquid interface as a microscopically thin evolving surface. The

governing equations are typically, diffusion equations for heat and concentration, formulated

independently in the bulk phases. Boundary conditions are posed at the interface, which

express the conservation of heat and mass across the interface and the assumption of local

interface equilibrium. This gives rise to a free boundary problem. Numerical solutions require

the tracking of the free boundary, involving intricate numerical schemes for problems with

complex goemetries. Models of this type are commonly known as Sharp Interface Models, and

the corresponding model for a binary alloy is described in detail below.

The Phase-field Models are a more recent development compared to the sharp interface

models. We will mostly focus our attention on the phase-field model in this thesis where a

detailed description of the model is given in chapter 3.

2.1.1 Sharp interface model of the solidification of a binary alloy

The simplest sharp interface model of alloy solidification is one that describes the solidification

of a dilute binary alloy (i.e. the mole fraction of a component of the alloy is very small

compared to that of its complement), contained in a fixed region Q,. In such a case, we

consider the system as a solvent-solute system, where, if the alloy is made up of components

A and B, the A component is treated as the solvent and B as the solute. Let us define c to

be the mole fraction of solute in the system, and T to be the system temperature. Therefore

the diffusion of solute and heat in the solid bulk phase is described by,

dc
D<?V 2 c- — = 0, (2.1)

16



and
FTP

V72T1 U1 n (0 0\

respectively, where D5 and K^ are the solute and thermal diffusivity for the solid respectively,

which are assumed constant. There is a similar pair of equations for the solute and heat

diffusion in the liquid phase. We use the customary subscripts S and L to denote the respective

quantities in the solid and liquid. These four equations are the governing equations for the

solidification process.

Typically, conditions are imposed at the boundary of Q, to ensure no solute or heat enters

or leaves the system. Thereby, we require

-^z = 0 and; — = 0, (2.3)
on on

where fi is the outward unit vector, normal to the fixed boundary. The governing equations

(2.1) and (2.2), together with boundary conditions in (2.3) guarantees the conservation of

solute and heat within the system.

Solute and heat are also conserved across the moving solid-liquid interface, a notion which

is expressed in terms of their fluxes, and provide interfacial boundary conditions for the

problem. The conservation of solute satisfies the following boundary condition,

Ds(Vc • h)s - DL{Vc • n)L = (cL - cs)Vn, (2.4)

applied on the solid on the interface, S, and the conservation of heat (also applied on S) is

given by,

(2.5)

which allows for the latent heat production, denoted by the term proportional to L, where L

is the latent heat of fusion. Here, n represents the unit vector normal to the interface, directed

into the liquid, which has a velocity component Vn in that direction. The quantities cs and

CL are the interfacial concentrations on the solid and liquid side respectively.

Further, boundary conditions are imposed based on the assumption of local equilibrium at

the interface. The equilibrium conditions for heat and solute are summarised by the so-called

'phase diagram'. (See chapter 5 for a detailed discussion). An example of an idealised phase

diagram is shown in Fig. 2.2(i). It gives the values of the interfacial concentrations of the

solid and liquid phases, cs and c/,, at a particular interfacial temperature. In the case of a

dilute alloy, the phase diagram may be approximated by straight lines as the temperature of

interest lies in the domain close to the melting point of the major component, TM, say (see
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Figure 2.2: (i) The phase diagram of the Nickel-Copper alloy which is an example of an idealised phase

diagram, (ii) The idealised phase diagram for a dilute alloy.
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Fig. 2.2(ii)). The two interfacial concentrations are related through the following equation,

cs = kcL. (2.6)

This equation describes the solute partitioning at the interface, where k indicates the degree

of partitioning. Under the assumption of local equilibrium, k takes the value ke, the so-called

equilibrium partition coefficient.

The temperature is assumed continuous across the interface and its interfacial value, in

the dilute limit, is given by,

T^TM + mLcL + TMr/C, (2.7)

where mi, is the slope of the liquidus curve (the loci of CL on the phase diagram). The term

TMT/C is the effective change in the melting point due to the Gibbs-Thomson effect (i.e., the

effect due to the interface being curved) with T being the capillary constant (defined as the

ratio of the interfacial surface free energy to the latent heat of fusion per unit volume) and

/C is the average curvature of the interface. Equations (2.1) to (2.7) provide a free boundary

problem for the solidification of a dilute alloy.

2.2 Rapid solidification

The assumption of local interface equilibrium only holds when the solid-liquid interface is

either stationary or it is moving at a very slow rate (typically 10~3cms^1). In solidification

techniques such as the pulsed laser melting, the growth velocities are found to achieve up

to several metres per second. Under such circumstances, the recrystallization of the melted

region takes place under conditions that are far from equilibrium. Recent developments in

the rapid solidification techniques have provided fundamental information on high-speed, non-

equilibrium solidification. For example, it is observed that the value of the (non-equilibrium)

partition coefficient k, is greater than the corresponding equilibrium value ke (whenever ke <

1). It is also found that k has a velocity dependence, and as the interface velocity increases,

k rises to a saturation value of unity.

The observed increase in the value of k is termed as 'solute trapping'. It is a phenomenon

in which the solute atoms are trapped in the solid by the rapid incorporation of new layers

of atoms at the interface. During solidification, a solute atom exchanges places many times

across the interface before they are permanently embedded into the solid [3]. When the the

growth of solid occurs rapidly, the solute atom has a much reduced opportunity to escape into

the liquid.

19



The mathematical study of non-equilibrium solidification processes to date have mostly

been performed on sharp interface model. An extension of the simple version of the sharp

interface model we presented in the previous section, to rapid solidification was provided by

Baker and Cahn [16, 17]. They proposed a model with a thermodynamically consistent for-

mulation for the interfacial boundary conditions in non-equilibrium solidification. This model

employs the same governing equations (2.1) and (2.2) in the bulk phases and interfacial con-

servation equations (2.4) and (2.5). The conditions due to the assumption of local equilibrium,

(2.6) and (2.7), were replaced by the following equations (in the dilute limit),

cs = k(Vn)cL, (2.8)

and

T = T(Vn,cL)+TMTK, (2.9)

where

and

T(Vn, cL) = TM + m(Vn)cL - j ^ r — . (2.H)
(ke - 1) Vo

The quantity /% has dimensions of the reciprocal of the normal interface velocity Vn, and

m{Vn) is given by,

m(Vn) = mL j l - ~ — [ke - k (1 - Hk/ke))]} ,

where the liquidus slope m^,, is obtained from the phase diagram at the dilute limit. The

velocity VQ is defined in [18] to be the upper bound for Vn. The local interface temperature

(2.9) (derived by Boettinger et. al. [6, 7]) is obtained from thermodynamic arguments for the

free energy of the non-equilibrium system, and it corresponds to a process where 'solute drag'

is limited. The more detailed treatment of solute trapping carried out by Aziz [9, 19, 20] will

be discussed in chapter 4.

The study of rapid solidification using a diffuse interface model of solidification has been

minimal. Advances in the development of the phase-field model, has made it possible for the

numerical calculations of complicated geometries of the interface [21, 22]. These methods can

be used to produce numerical computations of the solute trapping phenomenon and gain more

insights into nonequilibrium solidification. The study in this direction has been proposed by

Wheeler et. al. [1, 2], and their work is extended in this thesis.
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Chapter 3

Phase-field Models

The phase-field method is an alternative approach to the sharp interface model in modelling

solidification processes. It captures both the microscopic and the continuum aspects of the

solid-liquid interface. An important difference between these two approaches is that, while

the classical method involves prescribing boundary conditions at the evolving interface, the

phase-field method avoids any explicit reference to it. Instead, an order parameter, i.e.,

the phase-field, </>(x, t) is introduced to label the liquid and solid phases explicitly. It is a

continuous function of space, x, and time, t and characterises the phase of the system at each

point (x, t). This function assumes constant values in the solid and liquid bulk phases, and

varies monotonically between these two values, over thin transition layers which represent the

interface. Therefore, unlike the classical models, which assume the interface to have negligible

thickness, the phase-field model attributes a finite thickness to the interface and allows it to

have an internal structure.

The concept of an order parameter has its roots in statistical physics and finds appli-

cations in the study of critical phenomena in dynamical systems. It goes back as early as

1893, when van der Waals [23] employed the method in his study of a fluid near its critical

point. The approach was later used in the study of high temperature superconductivity by

Landau and Ginzburg [24]. A model of spinodal decomposition for metallic alloys was pro-

posed by Cahn and Hilliard [14] who derived the so-called 'Cahn-Hilliard equation' from the

'Landau-Ginzburg' energy functional (which is given in equation (3.1) below), in which, solute

concentration was treated as the conserved order parameter. A similar theory was applied in

the development of the 'Allen-Cahn equation' for the motion of a curved antiphase boundary

[15] (with non-conserved solute).

The phase-field model for a pure material was first suggested by Langer [11] following an
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adaptation of a similar model called 'Model C by Halperin et. al. [25]. At around the same

time, similar models of the solidification of a pure material were developed by Caginalp [12],

Collins and Levine [13] and Umantsev and Roitburd [26]. Since then, phase-field models have

received more attention as their potential was realised.

The model is generally based on a Landau-Ginzburg free energy functional, T, assumed

to be a function of (f> and is given by,

dn, (3.1)

where $7 is the region occupied by the system. The free energy density f((f>,..) is usually chosen

to have the double-well form with respect to </>, with minimas in the solid and liquid. The

gradient energy coefficient e determines the thickness of the interface [11] and the gradient

energy term |V(^|2 is associated with the surface free energy of the interface [14].

Many different forms of the free energy density function /(<£,..) have been suggested. The

phase-field model of a solidification process of a pure material developed by Kobayashi [21]

employs the following form for /(<£, T),

/(</»,T) = W \\{p - l)[p - 1/2 - (5(T)}dp , (3.2)
Jo

or,

0 / 1 rj~i\ J L 2 / J L 1 \ 2 I i V / i 2 / O O J L \ / *~) O N

where W is a constant with dimensions of energy per unit volume, /3(T) is a monotonic

decreasing function of T such that (3(TM) = 0, TM is the melting point of the material and

|/3(T)| < 1/2 (to ensure the minima of / are at <f> = 0 and 4> — 1)- Here 0 = 0 represents

the liquid phase and <j>= \, the solid phase. Figure 3.1 shows the double-well form of / with

respect to (p. Notice that when T = TM, f has a 'symmetric double-well' form, where at

the melting temperature, the second term in (3.3) (which is an 'asymmetric' function of 0)

is identically equal to zero. Other choices of /(</>,..) have been proposed by Penrose and Fife

[27], Langer [11], Caginalp [12] and Wang et. al. [28].
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Figure 3.1: The variation of free energy density /(0,T) given by (3.2), with <f>. The function is drawn for

three different characteristic values of T; T = TM, T > TM and T <TM [1].

The governing equation for the phase-field is derived from the free energy functional by

requiring the functional to decrease monotonically in time, consistent with the second law of

thermodynamics. The equation is postulated to be of the form,

5:F
(3.4)

where M\ is positive and may depend on the phase-field, the composition and the temperature

of the system, and

Other equations, describing the transport processes (i.e., equations for composition and tem-

perature) are modified by adding terms that depend on the phase-field to allow, for example,

for latent heat production in the interfacial region.
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3.1 Thermodynamics

Penrose and Fife [27] claimed that the phase-field model is thermodynamically sound when

applied to an isothermal process but a difficulty arises when it is extended to a non-isothermal

case. The usual derivation for a non-isothermal model starts by deriving a governing equation

for the phase-field from a Helmholtz free-energy functional that is applicable to an isothermal

situation. The equation for the temperature field is obtained by altering the corresponding

classical equation so that the latent heat production is accounted for by a source term pro-

portional to the time derivative of the phase-field. For example, a modified equation due to

Langer [11] and Caginalp [12] is given (in our notation) as,

7V2T = p c — + L ^ (3 5)

where 7 is the thermal conductivity, cp is the heat capacity per unit mass, p is the density

and L is the latent heat per unit volume.

This procedure, apparently, does not guarantee the free energy functional to always de-

crease on solution paths [27]. An alternative method was proposed by Penrose and Fife [27]

in which the phase-field and temperature field are derived in a thermodynamically consistent

manner from a single entropy functional, S given by,

s=L [~
where es is a constant, s((f),e) represents the entropy density function and e is the internal

energy density. This method was used by Wang et. al. [28] to develop a class of phase-field

models that are guaranteed to be thermodynamically consistent.

3.2 The relation between phase-field models and sharp inter-

face models

In sharp interface models, boundary conditions are prescribed at the interface and interfacial

physical mechanisms, such as the Gibbs-Thomson effect, are represented by these conditions

explicitly. In phase-field models however, the association of the internal layers of the interface

with realistic physical features is rather more implicit. It has been shown that common free

boundary problems (sharp interface models) with their corresponding interfacial boundary

conditions, are recovered in asymptotic limits in which the thickness of the interface goes to

zero. This relationship can provide a means to relate the parameters in a phase-field model

with material parameters. For the purpose of demonstrating this relationship, we summarise
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the results of Wheeler et. al. [1], where they calculated the solution of the phase-field equation

(3.4) with the free energy density f(<f>,T), given by the form in (3.2). They consider the case

of isothermal solidification of a pure material, where the solid-liquid interface is planar. The

one-dimensional phase-field equation is given as,

V deb ,„ _.

is given as,

Wf3(T)</>(l -

where V is the velocity of the interface and

W
) = —

A solution to (3.7) with the property <f> —> 1 as z —oo and <f> —>• 0 as z —> +oo is,

1+exp f f y ^

which represents <j> through the interfacial layer. It exists only when

V = -Mxe/3(T)V2W.

(3-8)

(3.9)

Since the free energy difference between the solid and liquid phases, i.e., W/3(T)/6 (evaluated

from the integration of (3.2)), is often approximated as L(T — TM)/TM, then we have,

fi{T) = WTM ' ( 3- 1 0 )

where W is a constant, T is the interfacial temperature and TM is the melting temperature.

Equation (3.9) indicates that the interface velocity V, is related to the temperature deviation

from the melting temperature, which may be interpreted as a non-equilibrium effect in which

the interface moves in response to a difference in free energy density between the two phases.

From the form of the solution (3.8), it can be inferred that the characteristic interface

thickness, Zj, is given by,

The surface energy, a, or the interfacial free energy is denned in [14] as the difference, per

unit area of an equilibrium interface, between the actual free energy of the system

and the free energy it would have in the bulk phases (where </> is uniform). Now, the

total energy of the system (in 3-D) is given as follows,

which, in 1-D reduces to,
r + oo g2

= -4>2
z + f(cf>,T)dz.

J — oo ^

(3.12)

(3.13)
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Using the definition for the surface energy above, we have

f + OO -;2 rV r+cc

M)dz- f(l,TM)dz- f(0,TM)dz. (3.14)
J—oo ^0

From definition of / in (3.3), we see that

which gives,

a =
—oo

e2

' M dz. (3.15)

After substituting for <f)(z) given by (3.8), (3.15) evaluates to give,

It is evident from expressions (3.11) and (3.16) that the characteristic length scale of the

interface and its surface energy, both depend on e. It is therefore natural to expect that in

the limit e —> 0, we will recover the corresponding free boundary problem.

The relationship between the two types of models has been investigated by Caginalp [29].

He showed that in various distinguished limits of the phase-field model, in which e —>• 0,

different free boundary problems are recovered. These free boundary problems include a

variety of the classical Stefan problems and the Hele-Shaw type problems. They emerge

from an asymptotic analysis of the same phase-field model, in different distinguished limits

in which e —> 0, giving rise to different type of problems. In particular, if W = O(e~2) and

Mi = O(e~2), he obtained the following jump conditions for the temperature, at the interface,

of the corresponding free boundary problem,

[dT~\L

K\~\ =-LVn, (3.17)
[dn\s

and,

^ - ^ , (3.18)
L \x

where fi is the attachment kinetic parameter of the interface which is related to Mi, K, is

the curvature of the interface, K is the dimensionless thermal diffusivity and Vn is the normal

velocity of the interface into the liquid. Hence, we see from (3.18) that the Gibbs-Thomson

effect (the term proportional to /C) and interface kinetics are featured by the phase-field model.

3.3 Anisotropy

Anisotropy plays a very important role in the macroscopic description of solidification and

hence its inclusion in phase-field models is significantly vital. An interface is said to be
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anisotropic when properties like the surface free energy and interface kinetics depend on

the orientation of the interface. In particular, during dendritic solidification, it has been

proposed in microscopic solvability theory [30, 31] that, surface energy anisotropy is important

in governing the operating state of a dendrite tip.

Several methods have been proposed to include crystalline anisotropy in phase-field models.

An early attempt in this direction was made by Caginalp and Fife [32] who modified the 'square

gradient term' in the free energy functional by replacing it with a more general quadratic form

with different coefficients in each coordinate direction. Another possible modification to the

gradient term to include terms of higher derivatives of </>, was first suggested by Langer [11].

A different approach was employed by Cahn and Kikuchi [33] who included the effect of

anisotropy through the inclusion of nearest-neighbour-interactions. Recently, Kobayashi [21]

introduced another method on a 2-D model, which is to allow the gradient energy coefficient,

namely e, to depend on the local orientation of the gradient of the phase-field (i.e. e = £r)(9)

where 9 is the angle between the interface normal and a fixed direction, the z-axis say, rj(9)

is a function that determines the anisotropy of the surface energy, and £ is a parameter).

Kobayashi's method was adopted by McFadden et. al. [34]. They introduced a similar

phase-field model, in which, an asymptotic analysis in the limit e —> 0 was conducted. In this

limit, they obtained a modified boundary condition for temperature (i.e. an anisotropic form

of the Gibbs-Thomson effect given in (3.18) was recovered in 2-D), namely,

, ( S . I 9 )

where the term agg represents the second derivative with respect to 9 of the surface energy.

This result is equivalent to the form obtained from conventional thermodynamic arguments

(Herring [35]). The corresponding result in 3-D, obtained using £-vector formulation, is dis-

cussed by Wheeler and McFadden [36]. Due to the dependence of the interface kinetics on e

(as can be seen from (3.9), this approach results in the inclusion of anisotropy not only in the

surface energy, but also in the interface kinetic term.

3.4 Numerical Calculations.

In the context of numerical computation of solidification processes, phase-field models have

many advantages over the free boundary formulations. The introduction of the phase-field

variable into the problem allows the whole domain of solidification to be treated in the same

way numerically. Phase-field models are able to show the transition between liquid and solid

through the smooth (but extremely localised) changes in the phase-field variable. Moreover,
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the explicit tracking of the interface (common in numerical treatments of the free bound-

ary formulations) which usually leads to difficulties when the interface develops complicated

geometries, can be avoided.

Computations on phase-field models have been conducted for dendritic solidification. Such

a case requires the inclusion of anisotropy effects. In addition to the methods discussed in the

last section, anisotropy may also be provided implicitly by the underlying grid used in the

computation. This method was employed by Smith [37] and Umantsev et. al. [38] in early

computations on the phase-field models. Recent works by Kobayashi [21] and Wheeler et. al.

[22] provided successful computations of dendrites from phase-field models with anisotropy

included. Kobayashi conducted calculations in 2-D on an anisotropic model of a pure ma-

terial, in which, the effect of thermal noise was included at the interface. The results were

remarkable in that the computer simulations exhibited realistic dendritic features such as side

arm formations, coarsening effects and liquid pockets. These calculations were repeated by

Wheeler et. al. using finer mesh in order to investigate the accuracy of Kobayashi's results

and how they correspond with realistic growth conditions of an actual material. The results

were compared with current theories of dendrite tip selection like the Ivantsov solution [39],

marginal stability theory [40, 41, 42, 43] and microscopic solvability theory [31], and gave very

good agreement.

3.5 Phase-field models of binary alloys

Until recently, phase-field models have been confined to solidification in pure materials. Pio-

neering studies of solidification in alloys using phase-field models were established by Wheeler,

Boettinger and McFadden [1] and Lowen, Bechoefer and Tuckerman [44]. The former devel-

oped a phase-field model of an isothermal solidification of a binary alloy and used an analogous

asymptotic analysis to the one employed by Caginalp [29] for the pure material, to show that

their model recovers classical sharp interface models. However, their model predicts, in this

asymptotic limit, a jump in the concentration across the interface, which increases in magni-

tude as the solidification velocity is increased. This contradicts the experimental results on

rapid solidification. To remedy this shortcoming, they generalised their model by including

a gradient energy term for the solute field, in the free energy functional (3.1). This new

model [2] (which will henceforth be referred to as Wheeler, Boettinger and McFadden 2

(WBM2)) predicts a decrease of the interfacial concentration jump with increasing growth

rate, (i.e., solute trapping), as observed in experiments.
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3.5.1 WBM2 model

Wheeler et. al. [2] considered a binary alloy with components A and B, in which A is the

solvent and B, the solute. The Helmholtz free-energy functional used in the model was given

by,

~ L dfi, (3.20)
£ 2

y ' • r i ' 2

where c is the composition of solute. The term proportional to S2 in (3.20) is the so-called

solute gradient energy term, which is absent from their earlier model [1]. Both models assumed

the solid and liquid solutions of the alloy to be ideal solutions, leading to the following choice

of Helmholtz free energy density function

f(<t>,c) = cfB(<f>) + (1 - c)fA{4>) + — [cine + (1 - c)ln(l - c)], (3.21)

where the quantities R, T and vm are respectively the universal gas constant, the temperature

of the system and the molar volume (assumed constant). The term proportional to RT/vm

is the contribution of the entropy of mixing of an ideal solution, and the functions /A(</>) and

/B(<^) are the free energies of the pure components which take the same form as (3.2).

Governing equations postulated in both models are similar, where the phase-field, </> is

governed by equation (3.4). An additional equation for the solute field is given by,

(3.22)

where J- is given by (3.20) and

The quantity M2 is a mobility constant and is related to the diffusion coefficient by,

D M
v

(3.23)

It can be seen from this relation that the diffusion coefficient is the same in both liquid and

solid. The diffusivities in the two phases may be distinguished by letting D be a monotonic

function in (f> that takes a value, DL, in the liquid bulk phase, and, D$, in the solid bulk phase

[1]. We tackle this issue later in chapter 7.

The governing equations, together with the following boundary conditions (for a finite

volume O),

d4> _ dc _ d{V2c) _
on on on
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where n is the outward unit normal to the boundary of £1, ensure consistency with the second

law of thermodynamics in that they guarantee T decreases monotonically in time. They also

express the conservation of solute within the system.

In the 1-D formulation of the model, the solid-liquid interface is assumed to be planar and

move with constant speed V in the z direction. Therefore, the solidifying alloy is assumed to

occupy an infinite region —oo < z < +00 where the origin z = 0 is chosen to correspond to

4> = 1/2; the liquid is considered to be situated in the region z > 0 and the solid, in the region

z < 0. The appropriate far-field boundary conditions are therefore given by

(</>,c) -*• (3.25)
(l,c_oo), as z ->• - 0 0 ,

(0, c+oo), as z -> +00,

where c_oo and c+0O are the far-field concentrations.

The non-dimensionalised versions of (3.4) and (3.22), formulated in the frame of reference

attached to the moving interface are,

(3.26)r(-2)-_2 , 7(0)1 _ 0

di di
d2c

where

and

-2)--2

V =

dz

D '

m =
e2Ml

(3.27)

(3.28)

(3.29)
I Mi IM2 D

are non-dimensional representations of the interface velocity and mobility of the interface,

respectively. The length scale lg = 5^Jvm/RT has been chosen as the reference length scale

so that z = z/lg, here e = e/S and the non-dimensional free energy density / = f/[RT/vm]

takes the form

f(cj),c) - cfB + (1 - c)fA + cine + (1 - c) ln(l - c), (3.30)

where

(3.31)

with
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i (3.32)

LA (T-T™)
6[RT/vm] [RT/vm] T^.

and

T = 724-

The quantity CT^ is the non-dimensional surface energy of pure A given by aA/(ey/RT/vm)

where a A is its dimensional value and WA has been eliminated in favour of aA using the

relation

(3-33)

Similar definitions hold for the B component. We have employed the notation /(") = cfg +

(1 — c)fA to simplify the non-dimensional expression for the free energy density.

3.5.2 Asymptot ic analysis for e/8 < 1 of W B M 2

An asymptotic analysis of governing equations (3.26) and (3.27) was carried in the limit e -> 0.

Two separately distinguishable regions emerged from this analysis, which were referred to as

the inner region and the outer region. In the inner region, where z is of O(e2), c is constant

and cf) varies between zero and unity. The inner region is therefore associated with the solid-

liquid phase transition. In the outer region, c varies but </> is effectively zero or unity. When

the two regions were matched, the following free boundary problem was recovered, at leading

order:

Ji + V c = ^ (3.34)

where c^ is the common value of the far-field concentrations c_oo and c+oo, as required by

conservation of solute for this steady-state solution. The appropriate boundary conditions at

z = 0 are

n), (3-35)

dz\ = T ' (3-36)

5=0+ ^ ^

= AFA - AFB, (3.37)
2=0-
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where x IS the interfacial concentration which satisfies the equation,

T /["del \dc]

m
(3-38)

(The interfacial concentration when the interface is stationary was found to be c* (T), and for

T = 0 it corresponds to the concentration for which the free energy curves of the solid and

liquid intersect). The quantity T is given by,

T = ^ & ^ ' ( 3 - 3 9 )

where

a* = yX<7| + (l-x)cr2, (3.40)

is a weighted average of the surface energies of the two components. The boundary conditions

express continuity of the solute field, the chemical potentials and conservation of solute.

The numerical solution of this leading order problem displayed solute trapping as V was

increased. To investigate the dependence of the solute profile on V, they rescaled the non-

dimensional equation (3.34) and expressed it in the z coordinate, where

Z = z/[Coo(l - Coo)/V}1^ = z/lS[Coo(l - C o o V F ] 1 ^

and found an explicit expression for c in the high V limit, showing, the maximum concentration

of solute decreases like V~2'3. Defining the partition coefficient, k as

far — field concentration .„ ,H.
k = : — : — , (3-41)

maximum value ol the concentration

they managed to compare their dependence of k on V with the result by Aziz [9] and found

a good qualitative agreement between the two results.

3.5.3 Developments in phase-field models of binary alloys

Computation of dendrites using phase-field models of binary alloy was first presented by War-

ren and Boettinger [45], in which, the solid and liquid phases were allowed to have different

diffusivities. Realistic growth patterns were obtained, which include the development, coars-

ening and coalescence of secondary and tertiary dendrite arms. Caginalp and Xie [46] analysed

the sharp interface limit of a non-isothermal model and recovered the classical free boundary

problems. Several models describing the eutectic growth (when two different solid phases grow

from a single liquid phase) in binary alloy solidification have also been produced. These in-

clude the works by Karma [47], Elder et. al. [48] and Wheeler et. al. [49]. The latter proposed

two models of a eutectic alloy. Their first model is based on a regular solution model with a
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chemical miscibility gap. It suffered from the deficiency that the solid-solid surface energy is

zero in the sharp interface limit. Their second model contains two parameters to distinguish

the liquid phase and the two solid phases. This model is derived in a thermodynamically

consistent manner which is analogous to the treatment of Wang et. al. [28].
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Chapter 4

Sharp Interface Models of Solute

Trapping

4.1 Introduction

A number of sharp interface solidification models have been developed in an attempt to de-

scribe the trapping phenomena that is observed during rapid solidification. The understanding

of the mechanism of solute trapping is still in its infancy, but it is generally agreed that the

value of the partition coefficient k, which is the measure of solute trapping, increases from its

equilibrium value ke (for ke < 1) to unity as the solidification velocity is increased. Experi-

ments on rapid solidification have also confirmed this behaviour [9, 50, 51, 52, 53]. Although

different solute trapping models seem to suggest different mechanisms by which the solute

trapping occurs, all of them have been successful in predicting this particular velocity depen-

dence of k.

We will describe the principle sharp interface solute trapping models in this chapter, these

are the Stepwise Growth Model, the Continuous Growth Model and the Aperiodic

Stepwise Growth Model, all of which are due to Aziz [9]. The Continuous Growth Model is

considered to be the most successful of the three (and the simplest), as it has shown very good

agreement with experimental data [8, 54]. On the other hand, the Stepwise Growth model

offers a more detailed atomistic description of the solute trapping process, but it fails to fit the

experimental data as well. We will see later that the Continuous Growth Model is actually

equivalent to a special case of the Stepwise Growth Model. The Aperiodic Stepwise Growth

Model is an extension of the Continuous Growth Model in which the partition coefficient k is

allowed to depend on the orientation of the interface.
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All the solute trapping models mentioned above contain a fitting parameter which has the

dimension of velocity, and is identified as the diffusive speed. It is defined as the ratio of the

interface diffusion, Di, to the interatomic spacing, A, a relationship which has been confirmed

by Clancy and co-workers [55, 56] in their non-equilibrium molecular dynamics computer

simulations. The diffusive speed is the lower bound of the values of the solidification velocities

where solute trapping becomes important. At such high velocities, the solute atoms are

trapped by the advancing crystal, which gives them insufficient time to escape back into the

liquid, hence the term solute trapping.

4.2 The solute trapping models.

All three models we discuss here concern a binary alloy with components A and B say, where

A is treated as the solvent and B the solute. The A and B atoms compose a two-phase system,

liquid and solid (crystal), where the two distinct phases are separated by a planar interface

moving with a constant velocity V (V > 0 corresponds to solidification) with respect to the

crystal lattice. The temperature of the interface is T; we denote cs as the mole fraction of B

in the solid adjacent to the interface, and CL as the mole fraction of B in the liquid adjacent

to the interface.

4.2.1 Stepwise Growth Model.

This model assumes a planar solid-liquid interface executing instantaneous periodic jumps of

length A, the period of which is r = X/V, where V is the velocity of the interface. During

each jump, a monolayer of liquid, which contains all the solute atoms, is incorporated into the

crystal lattice. Before the next layer is added, the solute atoms have time to diffuse back into

the liquid during the time interval r. Let cl
L be the concentration of solute in the liquid at the

interface, and cl
s be the concentration of solute in the newly created solid monolayer. Then at

time t = 0, cl
s = cl

L. As t increases to t = r, the value of cl
s(t) decreases as the solute atoms

start to escape from the solid. When the next layer is added at time t = r, the solute atoms

that have not diffused back are assumed to be embedded permanently in the solid. Therefore,

4 ( i = T) = cs (4.1)

The transport of atoms from one phase to another, has been described by Turnbull [57]

using chemical rate theory. In this theory, a solute atom is envisioned to reach an activated

transition state before it can jump across the interface (see Fig. 4.1). The energy acquired
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energy

distance

Figure 4.1: A schematic free energy diagram for a solid-liquid interface [5].

by the solute atom at this stage enables it to exchange places with a solvent atom in the

opposite phase. The flux of solute atoms that escapes the solid monolayer into the liquid (for

0 < t < T) is given by the rate theory as,

J ^ L = /z/A(cMi))(l-c8
i)exp(-Q/JRT), (4.2)

where / is the fraction of the interface sites where a diffusive jump can occur, v is the attempt

frequency (which is on the order of an atomic vibrational frequency), Q is the activation energy

barrier for interdiffusion, T is the temperature of the undercooled interface and R is the gas

constant. The reverse reaction gives the flux of solute from the liquid that is incorporated

into the solid monolayer, i.e.,

-[Q (4-3)

The quantity // is the redistribution potential which is the difference between the actual

chemical potential and the contribution from the ideal mixing entropy, e.g., for A and B in

solid,

-CS,T) - RTln(l - cs),

The quantity A// denotes the difference between the values of fi' in the solid adjacent to the

interface, and its value in the liquid adjacent to the interface. Notice that in both (4.2) and
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(4.3) above, the second and third factors involve the concentrations of B and the concentration

of A, either side of the interface. This reflects the fact that the rate of A — B exchange is

proportional to the concentration of B and A in the corresponding phases [19]. The final

factor in the expressions represent the fraction of attempted interchanges that are successful.

Assuming negligible diffusivity in the bulk solid, conservation of mass requires the following

relationship to hold
cl

s _ (4.4)
dt A

Substituting for JS-^L and JL-^S m (4-4), we arrive at the following differential equation for

(4.5)

where Di = fv\2exp(—Q/RT) and ne = exp[A(/i'A — fi'B)]. In the dilute solution limit, this

is just,

^ ^ kecH (4.6)

where ke is the equilibrium partition coefficient. Note that, for dilute solution,

Ke(T) = exp [A{fiA -HB) + RT hike(T)}/RT.

Also, at equilibrium, A/x^ = 0 = A/x^, giving Ke(T) = ke(T).

Equation (4.6) with the boundary condition cl
s(0) = cl

L has the following solution,

! + (l-fce)exp _ ^ | ) . (4.7)

At time t = r, this is just

cl
s{r) = CS = CL (ke + (1 - ke) exp -

V

which gives,

k(v) = — = ke + (1 - ke) exp(-Vb/V), (4.9)
CL

where the diffusive speed VJJ = D{/\, V = A/r, and cl
L is assumed constant throughout. The

form for k given in (4.9) has the right variation with velocity, i.e., it increases monotonically

from its equilibrium value ke to unity, as the velocity, V, increases.

4.2.2 Continuous Growth Model (CGM).

Continuous growth of solid occurs when the interface is diffuse, i.e., when a large part of

the solid-liquid interface is favourable for the deposition of atoms from the liquid phase. This
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results in a uniform growth of solid, and hence the interface advances uniformly into the liquid.

Under such ideal conditions, a less atomistic approach can be used to model solidification.

Due to the almost uniform growth of solid, it is reasonable to assume a steady state in the

reference frame of the interface implies that dc/dt = 0, where c(z,t) = cl
s(z,t), is the solidus

concentration of the solute. In the reference frame of the crystal lattice, this becomes,

d£ + v ° <4 1 0>
Again, mass conservation requires that dc/dt = (JL^S — JS-^L)/^ where the fluxes are as-

sumed steady. Because dc/dz = (CL — cs)/A, the steady state requirement becomes,

V(cL - cs) = JS^L - JL^S = JD- (4-11)

The left hand side of equation (4.11) is defined as the interdiffusion flux Jp, which is the

physical flux of solute atoms that are diffused away from the crystal lattice. It is the difference

between the flux of solute atoms in the liquid adjacent to the interface, (i.e., c^V), and the

flux of solute atoms that are successfully incorporated into the crystal, (i.e., c$V).

The rate equations (4.2) and (4.3) also apply in this case (with cs replacing cz
s(t) and CL

replaces cL), and they are inserted into equation (4.11) to give,

(CL ~ cs)(V/VD) = cs(l - cL) - KecL{l - cs), (4.12)

which can be solved for the partition coefficient to give,

In the dilute limit, this is just

where, the velocity dependence of k is qualitatively the same as the SGM result. Equation

(4.14) is refered as 'the simple CGM result'.

This result may also be derived from the SGM model if, we assume the monolayers are

added randomly in time, rather than periodically. If we define E to be the event that a given

layer is not covered at time t, but during the next interval dt (where dt is very small), then

the probability that E occurs is given by P(t)dt where,

e-t/r
P(t) = — . (4.15)

(E may be interpreted as the waiting time before the next layer is added. Waiting times are

commonly modelled as an exponential distribution, in this case, with parameter 1/r [58]).
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Figure 4.2: Solidification via lateral motion of (111) step, where the (111) step makes an angle (TT/2 — 9)

with the direction of the interface velocity. The flux of solute atoms escapes laterally across the moving step

[20].

The partition coefficient is obtained by taking the average of k over many r, which gives,

V/VD + ke
k = / Cr{t)P(t)dt =

Jo +
(4.16)

which is the simple CGM result (4.14), where cr(t) = c4
5(t)/c*L (see (4.7)).

4.2.3 Aperiodic Stepwise Growth Model.

This model uses the assumption that the growth of crystal occurs by the lateral motion of (111)

steps (see Fig. 4.2), separated by an interval determined by the velocity and the orientation

of the interface, with the additional assumption that solute atoms may diffuse away along the

normal to the terraces. The trapping along the step edges, which occurs as soon as a layer

is added along the steps, (i.e., at time t = 0), is characterised by CGM and accounted for by

the following equation,

Cr(O) =
[U(9)/UD] + ke (4.17)
[U(6)/UD] + 1 '

where cr(t) is as defined at the end of the last section, U = Fsin6> is the growth velocity of

the steps, Up = Df/Xu is the diffusive speed of solute atoms along the terraces (Df is the

coefficient of interdiffusion along the terraces and \u is the length of each terraces). Before the

next layer is added, solute atoms have time to escape through the terraces, the decay of solute

composition is given by a differential equation similar to (4.6), but with the interdiffusion

coefficient equal to Df, which is its value perpendicular to the terraces, the direction in which
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the solute atoms are escaping. Therefore we have,

Integrating (4.18), using the initial condition given in (4.17), we arrive at the following ex-

pression for Cr(t),

cr(t) = ke + [(& + ke)/(pu + 1)] - keexp(-[D?t/\2}), (4.19)

where j3u = U/UD- For randomly spaced ledges, we apply the same idea we used for random

interval SGM (i.e., equation (4.16)) to get,

where /3W = W/WD = (Vcos6)/WD, with WD = Df/\w and A^ being the height of the

terraces. Again the correct k — V dependence is captured by equation (4.20), namely, k rises

from its equilibrium value, ke, when V small {(3U and (3W small), to unity when V is large (f3u

and (3W large).

4.3 Experimental Results.

In order to investigate the trapping behaviour in non-equilibrium solidification experimentally,

a suitable technique is needed to ensure the growth velocity is sufficiently large for the system

to significantly deviate from equilibrium. The pulsed-laser melting (PLM) technique has

been identified as an ideal technique for such studies. It is capable of establishing re-growth

velocities in the metre-per-second regime. Early studies of non-equilibrium solidification that

employ the PLM technique have met with some difficulties in the calculation of the interface

velocity and the melt duration. The heat flow calculations that were used to estimate the

interface velocity proved to be unreliable due to the uncertainties in the measured laser energy

and pulse duration [59, 60, 61]. In his studies of solute trapping [4, 8, 20], Aziz used the

transient conductance measurement (TCM) technique to measure the interface velocity during

solidification. The TCM technique exploits the change in resistivity of the alloy upon melting

to determine the depth to which a thin-film resistor has been melted. The velocity of the

solid-liquid interface, V, can easily be measured by performing these measurements with

nanosecond resolution.

The implanted impurity distribution and final profiles were determined by Rutherford

Backscattering Spectrometry (RBS). In order to determine the partition coefficient, k, this

final profile is compared with that from a simulated process with a known value of k. The
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value of k that corresponds to the simulated profile that looks closest to the experimentally

observed profile is accepted as the estimated value for k for that particular V.

The redistribution of ion-implanted solutes in the solvent films during solidification is

modelled by simple diffusion and partition simulations with use of a finite element solution

of the diffusion equations. The simulations treat implanted impurity profile and melt depth

as functions of time for each sample. Impurity diffusion was assumed to occur in the liquid

phase but neglected in the solid phase. During solidification, a fraction k of the impurity in the

liquid at the interface, is incorporated into the crystal. The bulk liquid phase diffusion, DL,

and the partition coefficient during solidification were allowed to vary to fit the experimentally

observed solute profile. This way, unique values for Di and k were obtained.

The dependence of the partition coefficient on re-growth velocity is measured by performing

the measurements for several values of the velocity. This is done by altering the thermal

conductivity properties of each sample, which effectively alters the interface velocity.

The first experimental measurement of the partition coefficient k was carried out for Bi in

Si(OOl) by Aziz and co-workers [8] and the result was compared with several solute trapping

models. Although all the models agreed qualitatively with the dependence of k and V observed

in the experiment, the Continuous Growth Model fits the data best for interface speeds of 2 and

14m/s. Subsequent work by Aziz and White [20] demonstrated the orientation dependence of

k at constant V for Bi in Si. This work was carried out to resolve the matter which arose when

measurements of k(V) for Bi in Si(001) and Bi in Si(lll), both of which were well described

by CGM, gave two different values of the diffusive speed VD- These results prompted the

development of the ASGM [62]. It was shown to have an excellent quantitative agreement

with experimental data.

The single fitting parameter of CGM, namely the diffusive speed Vp, was originally esti-

mated as Di/L where DL is the diffusion coefficient in the bulk liquid and L is the interface

width. Experiments performed by Smith, Reitano and Aziz [4] which produced measurements

for both Vj) and DL for dilute concentrations of various solute in Silicon, indicated that the

above estimate suggested that L varies from 6̂ 1 to 400A This casts doubts on the validity of

the estimate, as one would expect the interface width to be independent of the solute species

for dilute solute concentrations. Having realised this implication, they examined correlation

between VD (obtained through fitting k — V data with CGM) and various alloy properties,

for example, equilibrium partition coefficient ke, the diffusivity of the solute in the bulk liquid

Di, the diffusivity of the solute in the solid Ds, and the maximum limit of solubility of the

solute in the solvent. They found a strong correlation between VD and ke but no apparent
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relation between VD and either DL or Ds- This is the first experimental result to relate VD

to a measurable quantity of the alloy. It provides a very useful guideline for finding a better

estimate for Vp.

42



Chapter 5

The sharp interface limit of WBM2

when the solid-liquid interface is

curved

In the near-equilibrium solidification of dilute binary alloys, the interface temperature Tj is

generally obtained from the phase diagram, and its form is given by,

TI = T& + mLcL, (5.1)

where the phase diagram is assumed linear near c « 0 (i.e., concentration of solute in the

alloy is small, see chapter 2), the liquidus slope is given by m i , and CL denotes the liquidus

concentration of solute. This assumption neglects an important equilibrium phenomenon,

known as the 'undercooling' effect, which is a decrease in the interface temperature below the

normal melting point by an amount ATC say. Undercooling arises from two sources, i) the

curvature of the interface - the so-called Gibbs-Thomson effect, ii) the motion of the interface

- kinetic undercooling.

The Gibbs-Thomson effect arises because there is an equilibrium surface energy associated

with the interface. Broadly speaking, a curved interface has a greater surface energy, thus,

the energy of the system is increased by the effect. This increase in energy is balanced by

a decrease in the solid bulk free energy relative to the liquid which results in the interface

temperature being reduced [63]. The amount ATC has been shown to be proportional to the

curvature of the interface and the constant of proportionality involves the surface energy,

i.e.,

ATC = TMTK, (5.2)
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where T is the capillary constant denned as the ratio between the surface energy and the

latent heat, and K, is the curvature of the interface. The relationship in (5.2) is commonly

called the Gibbs-Thomson Relation [12, 63, 64].

The undercooling effect is also observed to occur in a system that deviates from equilib-

rium. In such cases, the undercooling provides the driving force for growth, thus the greater

the undercooling (i.e. the driving force), the greater the growth rate. It is referred to as the

'kinetic undercooling', ATk say, and its magnitude is proportional to the growth rate [63, 29].

In general, AT^ is given by,

ATfc = — , (5.3)
AM

where /IA is the so-called attachment kinetic parameter.

In this chapter, we apply the WBM2 model to a solidification process with a curved

solid-liquid interface. The governing equations are expressed in an appropriate curvilinear

coordinates, and non-dimensionalised with respect to the Is = 5\/vm/RT length scale. In the

sharp interface limit, boundary conditions across the interface are obtained, from which we

find an expression for the interface temperature. This expression is observed to capture both

the Gibbs-Thomson effect and the kinetic undercooling effect.

5.1 The governing equations

We consider the model described in section 3.5.1, where the governing equations are given by,

—F- = - M i — , (5.4)
dt 5<p

^t = V ' M2 (C(1 " C ) V ^ " ) ' ( 5-5 )

where

oc oc

and / and T are given by (3.21) and (3.20). The material is assumed to be of a finite volume,

and situated in the region $~2, where the conditions at the boundary of fi is given by,

d<f> dc d (V 2 c )

dn dn dn

where n is the outward unit normal to this boundary.

= 0,
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V

Figure 5.1: A schematic diagram of the moving curved interface, showing the direction of the coordinates

(r, s) with respect to the Cartesian coordinates.

We introduce the curvilinear coordinates (r, s) local to the moving interface. Specifically,

we let r = 0 represent (f> = 1/2 with r and s coordinates measured normal to and along

4> = 1/2 (see Fig. 5.1), i.e., the liquid phase occupies the region r > 0 and the solid phase

occupies the region r < 0. The coordinate transformation from the Cartesian coordinates to

the curvilinear coordinates are carried out using the the procedure employed by McFadden

et. al. [34], the details of which can be found in Appendix A. We have used tensor calculus to

transform the gradient V and the Laplacian V2 into the new coordinate system {r,s), from

which the following relations are obtained,

= ipTf + ~2 ipss,

and

where tp is an arbitrarily chosen differentiable function, h(r, s) is the Jacobian, det

and is given in [34] as,

h=

Here, K denotes the local curvature of the interface.

(5.6)

(5.7)

zr zs

xr xs
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We use (5.6) and (5.7) to transform the governing equations (5.4) and (5.5) to the (r,s)

coordinate system. Again, we need to express the equations in the local moving reference

frame of the interface, in which case, we find it is appropriate to consider the motion of

the interface along its normal, with normal velocity denoted by Vn. In the asymptotic limit

e/S —> 0 an interfacial layer forms and variations across the layer (with respect to r) dominate

over those along the layer (with respect to s). Thus, for simplicity of presentation, we only

retain the partial r derivatives in which case the governing equations are

or2 h
(5.

and

dr h dr

hr d

h. )

dr2
2hr

h
dc
dr

The equations above are non-dimensionalised with respect to the lg length scale where the

resulting non-dimensional representation of the equations is given below,

K-
m J dr

r-2 ?(-2) ?(u) | _ n (5.10)

where

IH-4

it = JClg , f = r/ls,

and all the other non-dimensional quantities are defined as in section 3.5.1. We have assumed

the interface is thin, i.e. f is small, that hr/h may be approximated as it.

There are two characteristic length scales that are important in this problem. They are,

L = t\ (5.12)

which characterise the transition layer thickness of the phase-field and the solute field in the

interfacial zone respectively [2]. It was noted by Wheeler et. al. [1] (see also, section 3.2) that

the sharp interface limit is equivalent to the limit e —> 0. In our analysis, we will employ the

equivalent limit of e —y 0, with 5 constant, following a similar analysis in [2]. In this limit, the
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ratio le/h reduces to zero because the phase-field, (/>, changes more rapidly from its value in

the liquid to that in the solid, than the solute field c.

5.2 Asymptotic analysis in the limit e/5 —> 0

The asymptotic analysis carried out in this section follows a similar procedure used by Wheeler

et. al. [1, 2] for a planar interface, which we described in chapter 3. In both of their analyses,

it was observed that as e -» 0, an interior layer is formed within the region occupied by the

alloy. Outside the layer, the solute field variable varies while the phase-field variable was found

to be either 0 (when f > 0) or 1 (when f < 0). Significant variations in cf> are only observed

inside the layer. This layer, which represents the interface, is called the 'inner region' and the

region outside is called the 'outer region'. The solutions in the inner region are matched with

solutions in the outer region, thereby, provide a set of 'matching conditions' which gives rise

to a set of boundary conditions across the interface. The matching procedure is described in

detail in section 5.2.3.

5.2.1 The outer region

The solutions in this region are expressed as regular perturbation series in e2 to give,

+O(e4), (5.13)

c - c (0)(r)+g2c^(f) + O(g4). (5.14)

The expansions above are substituted into the governing equations (5.10) and (5.11), where

at leading order in e2, the phase-field equation is given as,

4^(^),c(°))=0, (5.15)

which solves to give 0 = 0 when f > 0 (i.e. in the liquid), and 4> = 1 when f < 0 (i.e. in the

solid). The corresponding leading order equation for the solute field is,

df2 df

df df2 df

where AFA and AFg are defined in section 3.5.1.
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5.2.2 The inner region

The rapid change in (f> in this region suggests that it is characterised by a much smaller length

scale than £,5. Thus we rescale r with e2 and introduce the stretched variable p = e~~2f, The

solutions in this region are denoted by hats and they are expressed as regular expansions in

e2, i.e.,

c =

(5.17)

(5.18)

The expansions are substituted in the governing equations and we obtain the following set of

equations,

= 0, (5.19)

and

dp\

+e2K

- c)
d_

d~p

d2c

dp-n2
f"(0)

- a; dp d? 'dp

(5.20)

(5.21)

The appropriate boundary conditions in this region is given by the following matching condi-

tions,
(

(0,c-|_oo) as p -> +00,

(l,c_oo) as p ^ - 0 0 ,

where c+0O and C-^ are constants representing the solute concentrations in the liquid and

solid phases of the outer region respectively.

Equations (5.19) and (5.20) express the governing equations as regular perturbations in e

where the leading-order equations in e2 are found to be the following,
£ ( o ) ) = o (5.22)

d
(5.23)

Equation (5.23) is integrated twice, and the matching condition (5.21) is applied to give

dp
= 0,

which has solutions that are constants in p, i.e.,

= x(Vn,T,iC).

(5.24)

(5.25)
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The leading order phase field equation (5.22) is solved to give the following leading order

solution,

where ax represents the weighted average of the surface energies of the two components of the

alloy at the interface, its value is given by,

Similarly, at the next order, i.e., O(e2), we obtain the following pair of equations,

dp2

and
d_

d~p 'dp

92c(2) _ 0c(°)

dp2 dp

(5.27)

= 0, (5.28)

The solute equation (5.28) is integrated twice and the matching conditions are applied to give,

(5.29)
dp2

which is integrated once again to give,

dp
- *= T = (5.30)

p=—oo

The first-order equations (5.27) and (5.29) can be rewritten as,

(5.31)

where £ is a linear operator acting on vector 3>(2), where

(5.32)
M2)

21 _ d(2) f (T2) U(°). n(°)) - fP) f (72 ) U(°). r(°) ̂ . "
(5.33)

Notice that C is a self-adjoint operator because the following relationship holds for vectors

\&l and \l/2> whose respective zth entries are suitably differentiable functions ip\ and ipl
2 say,

I, (5.34)
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where the inner product is defined below as,

+ OO

—oo + dp, (5.35)

where, in this case, ^ j = (''PiT 4>f)T a n d ^ 2 = (V1^ V'l)^- Also, after differentiating equations

(5.22) and (5.24) once with respect to p, the resulting homogeneous equations are found to

be of the forms,

dp
= 0, (5.36)

where

Equation (5.36), together with the fact that £ is self-adjoint, leads to the following solvability

condition,

— -£(<£(2)) = 0. (5.37)

The vector £(<|(2)) in (5.37) is replaced with the vector in the right-hand side of equation

(5.31), and after computing the inner product, we arrive at the equation below, which relates

the temperature to the curvature term,

m

(
2 V dp

+00

(5.38)

Proceeding to the next order, we find the O(e4) equation for the solute field, which is given

by,

d_

d~p
xd-x)\~-ic.dp

dpp3 0 , ( , 3 9 )

After being integrated once, applying the matching conditions accordingly, we are left with,

dp7,2
(5.40)

P-—00

Equations (5.25), (5.30), (5.38) and (5.40) are matched with the corresponding solutions

in the outer region; this is explained in detail in the next section.

50



5.2.3 Matched asymptotic analysis

The existence of the outer and inner region implies that there is an overlap domain in which

the inner solutions and the outer solutions are equivalent. The matching principle states that

[65],

Inner representation of the outer expansion = outer representation of the inner expansion.

lim c(f) = lim c(p),
-»0- p->-oo
lim c(f) = lim c(p),

0+ >+

In our notation, this means,

(5.41)

(5.42)

respectively, and similarly for <j>. This principle allows us to find a set of boundary condition

for the solute field across the interface. More precisely, we obtain a set of 'jump conditions' for

c and its derivatives, by matching equations (5.25), (5.30) and (5.40) with the corresponding

equations in the outer region.

The inner representation of the outer expansion of the solute field is derived by first,

expanding the regular expansion for c(f) (given in equation (5.14)) in the outer region, using

a Taylor series, in terms of f — I2p, and then, taking the 'inner limit' of this new expansion.

This is the limit of e2 —> 0 with p fixed (i.e. for example, on the solid side, this is the limit

r —> 0~). Thus, the inner representation of the expansion, on the solid side, is given by

lim c(f) = c(0) (0") + e2 { c^ (0") + p
f->o- [

dr2

Of

+ P

f=0~

df
(5.43)

f=0~.

The inner representation of the expansion in the liquid is obtained similarly, where the limit

e2 —>• 0, with p fixed, is equivalent to the limit r -» 0+ .

Similarly, the outer representation of the inner expansion for c is obtained by taking the

'outer limit' of the inner expansion given in (5.18). This is the limit of e2 —> 0 with r fixed

(i.e. on the solid side, this is the limit p -> —oo). As a result, we arrive at the following outer

representation of the inner solution c (on the solid side),

lim c{p) =
p—¥ — OO

(5.44)

Again, the outer representation of the inner expansion on the liquid side is obtained by taking

the limit p —>• +oo.
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Now, the matching principle (5.41) and (5.42), also implies that the outer limit of the

derivatives of c with respect to p, is equal to the inner limit of the derivatives of c with respect

to p, i.e., on the solid side we have,

dc , dc
lim — = hm —,

/5-»-oo Op f->0~ Op

d2c ,. d2c
hm —9 = lim —o, etc. (5.45)

Similar equations are implied on the liquid side.

We proceed by matching equations (5.43) and (5.44), and their derivatives with respect

to p, from which we find,

p.{°) (n — r^\ — f(°)(r — r\~\ I <\ A(\\
C \P — —OOJ — C yl — U J , yo.Qyj)

(5.47)
dp

dp2

p=—oo

p=—00

dr
f=o-

f=o-

(5.48)

The corresponding equations on the liquid side are also matched to give a similar set of

equations to the above. The outer representation of c'0', dc-2' /dp and d2c'4'/<9p4 on both

sides of the interface are substituted into equations (5.25), (5.30) and (5.40) respectively, to

give the following boundary conditions across the interface,

T,)C), (5.49)

dc

Q2

o c

?=o+
= T

df2

(5.50)

(5.51)
f=o-

where 0+ and 0 represent the limits f tends to zero, from above and below respectively. The

solvability condition (5.38) is matched with the solutions in the outer region to give

'dc]T
2"

dc\
dr\f=0-

), (5-52)

which provides an equation for the interface temperature T in terms of the interface concen-

tration x a n d the dimensionless interface curvature /C. The quantity T is shown in [2] to be

roughly estimated by (a2
B — d\)/2. This value is found to be small and may be approximated

as zero.
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5.3 Interface temperature

Having obtained an equation for the interface temperature, we proceed further by rearranging

the equation to extract an exact expression for T. This is given below as,

T = To

X-
where,

m (XLB + (1 - X)L/

and T is assumed to be zero. Note that, in the dilute solution limit, i.e., the limit x —>• 0,

o"x ~ ®A, a n d TQ is given by the following expansion,

T TM(r T.\_TM
{^B LA)LA) O{X

2). (5.54)

Hence, the dimensional form of the leading order in x of (5-53) is given by,

. (5.55)
LA

For a dilute alloy, a common form for the interface temperature is given by the equation

below (a simplified version of equation (2.9) in chapter 2),

where the first two terms of the (5.56) is obtained from the phase diagram; the second and

third terms are the undercooling terms due to the Gibbs-Thomson effect and the interface

kinetic effect respectively, where F = UA/LA represents the capillary length, and \xA denotes

the dimensional attachment kinetic parameter.

After comparing equation (5.55) and (5.56), we identify the term proportional to it in

(5.55) as the undercooling term due to the Gibbs-Thomson effect, and the term proportional

to Vn as the kinetic undercooling term. Also, the second term in (5.56) is approximated by

the first order term in (5.54), i.e., the term proportional to the interface concentration, x-

The undercooling terms from the (5.55) and (5.56) imply that,

(5.57)

(5.58)

Thus we see that equation (5.58) relates the non-dimensional phase-field parameter m directly

to the material parameters of A, where here we have shown that m is exactly equal to the

non-dimensional attachment kinetic parameter. For the Nickel-Copper alloy, this value turns

out to be approximately 500.
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Chapter 6

Phase diagram for a regular

solution model

A phase diagram (sometimes known as an equilibrium diagram) is one way of relating the

temperature at the solid-liquid interface and the interfacial concentration of solute, while cap-

turing the notion of equilibrium in alloy solidification. It may be thought of as an analogue to

the notion of melting point for the case of a pure material. The phase diagram indicates the

equilibrium compositions, at a given temperature, of the two phases separated by a stationary

interface. The loci of the solid and the liquid compositions as functions of temperature are

called the solidus and liquidus curves respectively. These two curves act as boundaries sep-

arating a region where a single phase exists from the region where two phases co-exist. The

simplest phase diagram of a binary alloy is one that characterizes the solidification of ideal

liquid to ideal solid solutions. Such a phase diagram consists of a liquidus and a solidus curve,

joined together at the points corresponding to the melting points of the pure components to

make up the shape of a convex lens (see Fig. 2.2).

In this section we investigate how phase diagrams may change as each phase of the alloy

deviates from being ideal, by introducing regular solution terms in the free energy functions.

They are constructed from the common tangent conditions obtained from the conditions at

equilibrium.

6.1 The free energy

The corresponding free energy density for a regular solution model may be given by the

following equation,
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/(</>,c) = cfB(</>) + (1 - c)fA(4>) + — [chic + (1 - c) ln(l - c)] + G(<f>)c(l - c), (6.1)

where £?(</>) is the energy of pairwise interactions of the atoms in the solution and is given

by G((f>) = GL + <i>{Gs — GL) as suggested by Wheeler et. al. [1]. It has the value Gs in

the solid (when </> = 1) and GL in the liquid (when cf> = 0). The quantities R, T and vm are

respectively the universal gas constant, the temperature of the system and the molar volume

(assumed constant).

The contribution of the entropy of mixing of a regular solution model to the Helmholtz

free energy density is given by the terms proportional to RT/vm and the term proportional

to G(4>) (the free energy density for the ideal solution may be recovered by setting G((f)) = 0).

For simplicity, we set GL to zero, to give a phase transformation from an ideal liquid solution

to a regular solid solution. The functions / A ( 0 ) and / s (0) assume the form given in (3.2) and

given below as,

- I)2 + ^ ^ V ( 3 - 20), (6.2)

- I)2 + ^ f ^ V ( 3 - 20). (6.3)

To analyse the effect of the regular solution term on the free energies, we plot the free

energy curves against composition for a fixed Gs and vary the temperature. For the purpose

of illustration we have included the plots of the free energy curves for Gs = 2000 Jem"3 where

significant effects are observed (see Fig. 6.1).
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(a)

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
composition of copper, c

(b)

-1200
0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

composition of copper, c

(c)

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
composition of copper, c

Figure 6.1: Free energy curves for solid and liquid of Nickel-Copper alloy, displayed as functions of composition

of Copper at temperatures (a) 1600K, (b) U40K, and (c) 600^ (miscibility gap), with Gs = 2000Jcm"3 and

GL = 0.
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From studying the behaviour of the free energy curves for the solid and liquid of our model,

we notice that for a fixed Gs, while the shape of the liquid curve remains convex, the solid

curve becomes concave at a sufficiently low temperature. We define the critical temperature

Tcrn as the temperature at which the curvature of the solid free energy curve is zero, i.e., its

second and third derivatives are identically zero (Lupis [66]). This condition allows us to find

the following explicit expressions for Tcra and the corresponding concentration ccru',

^ (6.4)

and

ccrit = 0.5. (6.5)

Below the critical temperature, the solid free energy curve becomes a double-well with respect

to c and a miscibility gap is said to occur.

Positive values of Gs suggest positive deviations from ideality of the solid phase. In other

words, like atoms in the solution have a greater affinity for each other. Sufficiently large

values of Gs cause instability in the system when the temperature decreases below the critical

temperature. The region with a miscibility gap that starts to form at this point is a region

where the solid solution segregates into two phases, one rich in A and the other rich in B giving

two solid crystals of two different concentrations, which can exist in a state of equilibrium.

6.2 Common tangent constructions

6.2.1 Classical thermodynamics

Equilibrium in a heterogeneous system (i.e., a system containing more than one phase) is

related to the chemical potential of the components, such that at this state, the chemical

potentials of all the components in the system are equal in all phases (Lupis [66]). So for

a solid-liquid system of a binary alloy with components A and B, we require \iL
A = fiA and

MB = MB •> where fj,A and (j,A are the chemical potentials of A in the liquid and solid respectively.

Similarly for fig and fiB.
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free energy
f

0.2 0.4 0.6
concentration (mole fraction), c

Figure 6.2: Tangents to the energy curves at c = cs and c = CL, when the system is not at equilibrium. The

curves labelled L and 5 are the free energy curves of the liquid and solid phases respectively.
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free energy

1

1

• ^

1 1 1

1 1 1

0.2 0.4 0.6
concentration (mole fraction), c

0.8

Figure 6.3: A common tangent when the system is in equilibrium. The curves labelled L and 5 are the free

energy curves of the liquid and solid phases respectively.

The chemical potential of a component may be obtained through the method of intercept.

For example, for a given concentration, the intercept of the corresponding tangent to the

liquid free energy curve with the /-axis at c = 0, gives /J,A, the intercept with the /-axis at

c = 1 gives \x\. Similarly, the intercepts of the tangent to the solid free energy tangent give

\is
A and ns

B (see Fig. 6.2).

At equilibrium, because \xL
A = [is

A and \x\ = / /§ , the two tangents are coincident (see

Fig. 6.3), forming a common tangent between the two points, (cs,f(l,cs)) and (c£,/(0,cj,))

on the free energy curves, with corresponding concentrations cs and CL which represent the

equilibrium concentrations in the solid and liquid respectively. Denoting the slope of the

common tangent by A we have that,

A = 3.6)

Also,

(6.7)
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Writing F((f>,c) = /(</>, c) — Ac, we arrive at the following common tangent conditions,

s) = F(0,cL), (6.

(6.9)

6.2.2 Phase-field model

Employing the phase-field model WBM2, we may construct the phase diagram by using the

fact that the solid and liquid phases are separated by a stationary planar interface. The

corresponding steady, one-dimensional solutions of the governing equations, in this case are

- £ 2 ^ 2 + /0 = O, (6.10)

for the phase-field; where z measures distance normal to the interface. After integrating the

solute equation (3.22) twice and employing the far-field conditions (3.24), we have

- S2czz + fc = A, (6.11)

where A is a constant of integration. We rewrite equations (6.10) and (6.11) in the form

(6.12)

52czz + Fc = 0, (6.13)

where F is the function defined in the last section. We require that the solution matches to

the solid and liquid bulk phases and therefore impose the boundary conditions

(</>,c) ->• (l,c<?) a s z ^ - o o , (6.14)

(<(>, c) ->• (0,CL) as z ->• +oo. (6.15)

This is equivalent to requiring a heteroclinic connection between (l,cs) and (0, CL) of the

ordinary differential equations (6.12) and (6.13). We therefore insist that (l ,cs) and (0, CL)

are critical points, i.e., Fc(l,c,s) = Fc(0,ci) = 0 which simply recovers the common tangent

condition in (6.9), derived from the classical results. Note the form of / automatically ensures

s) = i*V(0,cz,) = 0. A first integral of (6.12) and (6.13) gives
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- ( 0 z ) 2 + — (cz)
2 + F = constant, (6.16)

on the heteroclinic orbit connecting (l,cs) and (0,C£,). Thus, because <f>z and cz —>• 0 as z —>

±00, we have F(l,cs) = F(0,CL), the other condition (6.8) for the common tangent construc-

tion.

Note that for an ideal solution, (6.8) and (6.9) can be solved exactly, to give expressions

for the solidus and liquidus concentration, cs and CL, in terms of the interfacial temperature

T. They are,

cs = (exp(AF.) 1)^ 1 ? )

(exp(AFA)-exp(AFB))

cL = csexp(AFB), (6.18)

which implies,

ke = — = L - - (6.19)
CL exp(AFB)

Using a similar common tangent construction, the equilibrium between solid a and solid

b, due to the formation of the miscibility gap in the free energy curve, leads to the following

conditions,

(6.20)

F c(l ) C a) = Fc(l )C6) = 0 (6.21)

where ca and q, are the concentrations of solid a and solid b respectively, at equilibrium.

6.3 Numerical results

We solved numerically the common tangent equations (6.8) and (6.9) for T, cs and c/,, and

equations (6.20) and (6.21) for T, ca and c&. Plots of T versus cs and T versus CL give the

solidus and liquidus curves for the solid-liquid phase transition while plots of T versus ca and

T versus Q, give the curves for the solid-solid phase transition. The two types of curves are

plotted on the same axis for three increasing values of Gs-
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(a) temperature

T

0.2 0.4 0.6 01
composition of Copper, c

1800

1600
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(b) temperature 1000

T 800
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0.2 0.4 0.6 0.8 1

composition of Copper, c

(c) temperature 1000

composition of Copper, c

Figure 6.4: Solidus-liquidus and solidus-solidus phase diagrams for Nickel-Copper alloy, drawn for Gs = (a)

0, (b) 1800 and (c) 2500 J cm"3, GL is assumed to be zero. The bottom most diagram displays the eutectic

point.
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From the plots, we see that when Gs = 0, a lens-shaped diagram is obtained for the

solid-liquid phase transition. For nonzero values of Gs, the liquidus exhibits a minima which

touches the solidus curve. For small values of Gs, this occurs at a concentration close to c = 1.

As Gs increases this concentration moves away from c = 1. The temperature corresponding to

this minima is known as the congruent melting point, a point where the free energy curves of

solid and liquid are tangent to each other (see Fig. 6.1, for T = 1140/C). At this temperature,

the liquid of the alloy solidifies without any change in its composition.

The critical temperature, Tcr,t, defined in (6.4) to be proportional to Gs, is the temperature

corresponding to the maximum point observed in the solid-solid phase diagram. Therefore,

as Gs increases this maximum starts to move upwards, to higher values of T. When Tcru

becomes greater than the congruent melting point, a eutectic point is formed (Fig. 6.4(c)).

At this point, the common tangent to the free energies of solid and liquid is also a common

tangent to the two convex parts of the free energy curve of the solid. The congruent melting

point is now referred to as the eutectic temperature.
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Chapter 7

Numerical Computations of the

Phase-field Model

As we have seen in section 3.5, solute trapping behaviour is observed in the WBM2 theory as

the interface velocity is increased, when the analysis is confined to a particular distinguished

limit. This is the limit e/6 —)• 0 (with 5 fixed), where e and 5 are the phase field and solute

field gradient energy coefficient respectively. A natural question arises as to whether this

limit is required to observe solute trapping and, moreover, whether it is necessary to have a

solute gradient energy (i.e., 5^0), incorporated into the free energy functional for the model.

The numerical analysis carried out in this chapter is aimed at providing an answer to these

questions. For this purpose, the governing equations are nondimensionalised with respect

to the length scale, le, representing the distance over which </> changes, where le = (-J^?-

A quantity A = 8/e is introduced, which is a positive constant and may be set to zero,

consequently excluding the solute gradient energy term from the model.

A numerical code has been written to solve the dimensionless forms of equations (3.4)

and (3.22). Following WBM2, the equations are formulated for a planar solid-liquid interface

moving with a constant speed V. In the frame of reference of the moving interface, the

equations in 1-D are given by,

and

dz
M2c(l-c)4-

- / 4 = 0, (7.1)
dz

d2° " ' " — = 0, (7.2)
dz

where we have assumed steady states in this frame of reference.

Two cases are considered in the numerical calculations:
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(1) when the diffusivity in the solid, Ds, equals the diffusivity in the liquid,

(2) when Ds is not equal to DL-

In the latter case, Ds is distinguished from DL by letting D (which is related to M2 through

equation (3.23)) to be a function of (f> satisfying the conditions D = Ds, dD/d(f> = 0 when

(j> = 1 and D = DL, dD/d(f> = 0 when 0 = 0. The following choice of D(<f>) satisfies all the

conditions and is monotonic in <f>,

D{4>) = (Ds - DL)<p2(3 - DL. (7.3)

7.1 Dimensionless equations

Under the assumption of constant diffusivity throughout the region (—oo,+oo), i.e., M2 is

constant, we nondimensionalise equations (7.1) and (7.2) using le = €^vm/RT as the reference

length and we set 5 — eA where A is a positive constant. Specifically, we introduce the

dimensionless variables z = z/le into the governing equations. The dimensionless equations

are therefore

and
d

dz -c z
dz

- A ;

m dz

,d2c

= 0,

dz2
(-2) _
c ' J c

d2c ~ dc

or equivalently,

- c)
dz

- A 2

dz2 /.(0)

dz

(7.4)

(7.5)

(7.6)

Equation (7.6) is obtained after integrating (7.5) once and applying the following boundary

conditions,
(

(l,Coo), as z -> —oo,

(0,000), as z ->• +00,

where the far-field concentrations C-co and c+oo are assumed equal. The dimensionless inter-

facial velocity is now defined by

(7.7)

Vf =
Vie
D

and the interfacial mobility m has the same definition as in (3.29). The nondimensional

representation of the free energy density (3.30) is used here, where the contribution from the

pure component A is given by,
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with a similar expression for B. The notations fA and fA are the same as those used in

(3.32).

The equations above may be generalised to the case where the diffusivity varies across the

region, by simply replacing D with D(4>) from (7.3). This gives

and

d_
IB

where now
,~. VL

Note that equations (7.10) and (7.11) reduce to (7.4) and (7.6) when we set DS/DL = 1.

7.2 Numerical procedures

The governing equations (7.4) and (7.6), together with boundary conditions given in (7.7)

make up a nonlinear boundary value problem with variables varying on an infinite domain. In

the sharp-interface limit, the solute field forms a boundary layer adjacent to the interface, and

its length scale is characterized by the ratio of the diffusivity to the interface velocity, i.e., D/V

[1]. This length scale is much larger than the characteristic length scale of the phase-field,

which is le. In order to solve for the solute and phase field equations numerically, the region is

truncated to some finite domain of length, Ljq (where N is the number of points), chosen to be

'large' enough so that the boundary condition in the solid bulk phase is applied at z = —LN/2,

and the condition in the liquid bulk phase is applicable at z = LN/2. Because the variation

in the phase-field, 0, occurs on the length scale, le, in the vicinity of the interface, and the

solute c varies on a much larger length scale, which decreases monotonically as the interface

velocity increases [2], problems may arise when solving the governing equations. This is due

to the fact that the difference in the length scale is accentuated when the interface velocity is

small. Thus in order to ensure the far-field boundary conditions for c are met, a much larger

domain is needed. This often causes problem in obtaining 'well-resolved' solutions for both

d> and c.
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/ U(z)--\dz = O. (7.12)
Jz=LN/2 L ^J

We tackle this problem by allowing the uniform interval between each of the evaluation

points to vary with L^. This has the effect of letting the length scale in the numerical code to

change with velocity. We set LN and the scaled interface velocity Ve, to be input parameters

so that everytime Vt changes, Ljv can also be changed. Consequently, for a specific value of

Ve, LJV can be altered until the boundary conditions are satisfied and the program converges

satisfactorily. Because the interval between each evaluation points is defined as, I = L^/N,

increasing L^ alone will make the solution 'less well-resolved' (i.e., I is large). Therefore, in

order to increase the resolution, N can be increased.

Other input parameters include the latent heats of the pure components of the alloy, LA

and LB, their melting temperatures, Tfy and T^, the equilibrium segregation coefficient ke, the

far-field concentration cTO, the diffusivity ratio DS/DL, e and A. The boundary value problem

is solved using a second order Finite Difference Method. Instead of imposing the Dirichlet

boundary conditions in (7.7), Neumann boundary conditions are employed at z — —L^/2 and

z = LJV/2, for both cf> and c. An additional equation is added to the system of equations, to

solve for the extra variable in the problem, namely, the interfacial temperature T. This extra

equation is an integral condition (applied numerically using Simpson's Rule) given below,

rz=-LN/2

z=LN/2

The finite difference discretization of the governing equations is given in appendix C. The

discretized equations and the integral equation make up a system of nonlinear algebraic equa-

tions for the nodal values of <f>, c and the value of T. This system of equations is solved

using subroutine SNSQE, which contains an algorithm for solving N nonlinear equations in

N variables by a modification of the Powell Hybrid Method [67].

After a successful convergence, the program calculates the maximum value of solute con-

centration and computes a value for the partition coefficient k, which we define as k = Coo/cmax,

where cmax is the maximum value of the solute concentration.

Most of the calculations we performed are based on the Nickel-Copper alloy data given

in appendix B. The phase diagram of the Nickel-Copper alloy has been experimentally de-

termined to have the lens shape, and hence the phase transition may be assumed to occur

from an ideal liquid mixture to an ideal solid mixture. Unfortunately, the near-equilibrium

solidification of most alloys cannot be represented by the lens-shaped phase diagram. As we

have shown in chapter 5, the shape of the phase diagram depends on the type of mixtures

(e.g., ideal, regular, subregular, etc.) which exist in the two distinct phases of the solidifying

material. The current model can be extended to non-ideal alloys by adding the term corre-
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sponding to the contribution of the entropy of mixing of components A and B (the case of

a regular solution mixture has been demonstrated in chapter 3), to the free energy density

function.

7.2.1 Initial guesses

The subroutine SNSQE employed in the numerical algorithm contains a procedure for solving

nonlinear functions which uses the Newton's Method. This method requires a good initial

guess in order for the code to converge satisfactorily and produce the required solutions. The

nature of the solidification process itself, which departs from the near equilibrium state as the

solidification velocity is increased, produces solutions that have very different behaviour for

different values of Vt. Therefore, in order to achieve successful convergence of the numerical

code, different initial guesses are needed at low Ve and high Ve. Thus we have used two

different forms of initial guesses corresponding to the two different cases below:

1. At low Ve, the (p and c lie close to the solutions correspond to a stationary interface, and

these are given by [2],

$ = i[ l- tanh(3cr*2)], (7.13)

c = T r , (7.14)
( l ( / X ) )

T = 1700, (7.15)

where,

fc = fc(<P = 0,C = CL)

ln ( C i / ( l - cL)),

a = a /{e^RT/vmj,

RT/vm{ T

with Coo(= cs) and ci correspond to the solidus and liquidus concentrations of the alloy

(obtained from the phase diagram), and T is the corresponding temperature.
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(ii)

x^8

10

F i g u r e 7.1: (i) initial guess for </>, (ii) initial guess for c.
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2. At high Ve, the solutions can be approximated as asymptotic expansions in Vf
 : (de-

scribed in chapter 8), i.e.,

0 = -[l-tanh(3ao*i)], (7.16)

c = Coo + K-V1) , (7.17)

T = To (7.18)

where,

C —— I "TT 1 I (p yo — * ^ T V "T~ -*• CQQ yx.

fc62) = 36(5'B ~ 4 M 1 -

- r \TAIT{AV

d*0 = a*/ (eyjRT0/v,

Both the initial profiles for solutions at low and high Vt are shown in Fig. 7.1.

Notice that at low velocities, the initial guesses depend on the values of the solidus and

liquidus concentrations (and hence ke). Therefore, it is vital that the equilbrium phase diagram

of the alloy is known in order to obtain reasonably accurate solutions at low interface velocities.

7.2.2 Grid resolution

We have described earlier how the size of the domain of computation can affect the conver-

gence of the numerical code and the quality of the computed solutions. As a demonstration,

we computed the solutions for three different values of the domain size, LN, with all other

parameters fixed (see Fig. 7.2 and 7.3). We can see from the solute profiles in Fig. 7.2 that,

although the code converges when the size of LN is too small, the discrete points on the

solution curve are observed to 'oscillate' about the 'actual' solution of the problem. This is

evident from the fact that a very 'rough' and 'jagged' curve is obtained when all the points

are connected by straight lines. This solution clearly does not accurately satisfy the boundary

conditions at the end points (i.e., dc/dz ^ 0 ) . As we increase the size of LN, the solution

curve becomes much smoother and its gradient approaches zero gradually near the edge of

the computational domain (see Fig. 7.2(ii)). On the other hand, the phase-field profiles (see

Fig. 7.3) are generally smooth, with the far-field boundary conditions adequately satisfied at

the end points, for all the three values of Lpj.
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Figure 7.2: The solute profile computed for three different values of LN, LN = 20, LN = 40 and LN = 60.

The values of Ve, and A are fixed in all cases. The figure in (iii) shows that once the appropriate size of the

domain length is achieved (i.e., when the far-field boundary conditions are satisfied, in this case Ljv = 40),

increasing L further will not change the solution in any way.
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Figure 7.3: The phase-field profile produced for three different LN • Although the profiles satisfied the neuman

boundary conditions in the far-field for all three values of LN , the number of evaluation points in the interfacial

region are reduced as Ljv is increased, i.e., reducing the resolution of the solution. In order to improve the

resolution, N has to be increased (while keeping LN fixed).
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Once the correct boundary conditions are satisfied, the solution can be further improved

by increasing the number of mesh points, N, i.e., decreasing the grid size, where the grid size

I is defined as Lpj/N. In order to demonstrate how the solutions improve as we increase N,

we define the area under the solute curve as,

C= I {c(z)-Coo)d~z. (7.19)
Jo

The integral (7.19) was evaluated numerically using the Simpson's Rule, where as N is in-

creased, we can expect C to take the value given below,

C = CNoo-ai/N
2-a2/N

A, (7.20)

where CJV^ is the value of C when N = oo and a\ and a.2 are constants. The terms of orders

I/A?"2 and 1/iV4 are the truncation errors from the finite difference method and the Simpson's

rule respectively. Assuming the term of order 1/iV4 is small, we expect the solutions to be

linear in l/N2.

The value of C for various values of N are tabulated in Table 7.1, where it can be seen

that the computed values of C approaches a fixed number, namely CNX as N is increased.

Assuming Coo ~ C600, we calculated the value of a\ corresponding to N = 50,.. . , 500 using

equation (7.20) (with a.2/NA = 0), and the values of C given in Table 7.1. The average of

the five different values of a,\ obtained from the calculation, namely aav is found to be 0.022.

Equation (7.20) can now be estimated as,

C = Coo - aav/N
2, (7.21)

or equivalent ly,

ln(Coo -C) = -2ln(N)+ln(aav), (7.22)

which is represented by a straight line with slope —2 that intersects the vertical axis at the

point (0, ln(aa^)). This line is drawn against the corresponding numerical data in Fig 7.4, and

the plot shows that all the data points lie approximately on it. This agreement validates the

claim we made in (7.20) and therefore confirms the accuracy of the solutions.
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Number of points, JV

50

100

200

300

400

500

600

C

1.695632 x lO-2

1.696344 x lO-2

1.696460 x 10"2

1.696511 x 10~2

1.696515 x lO-2

1.696532 x lO-2

1.696535 x lO-2

Table 7.1". A table of the values of C for increasing values of the number of mesh points, JV.

- C)

Figure 7.4: The computed values of In (Coo — C) are plotted against ln(JV). The data lies very closely to the

straight line ln(Coo - C) = aav/N
2, where CNao = 1.696535 x 1(T2 and aav = 0.022.
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7.3 Numerical results

The numerical calculations are carried out using the data from the Nickel-Copper alloy (see

Appendix B). The value for the far-field concentration c^ is fixed throughout the calculation.

It is estimated as the solidus concentration of the solute and this is determined using the

common tangent conditions described in chapter 5. For an interface temperature of 1700^,

the solidus concentration is found to be 7.17441 x 10^2, and it corresponds to an the equilibrium

partition coefficient of 0.7965. The value of 6.6 x 10~6J1/'2cm~1/'2 is chosen for e, and this is

also fixed l. All calculations are carried out using N = 200.

7.3.1 Solutions when DS/DL = 1.

The solutions of the phase-field problem are first computed for a non-zero value of A. This is

done for increasing values of the nondimensional speed Ve, with constant diffusivity throughout

the domain, (i.e., D$/DL = 1). The results are depicted in Fig. 7.5(i) and 7.5(ii). It can

be clearly seen from the plots that the code has successfully produced solutions with much

of the qualitative behaviour expected of rapid solidification. In Fig. 7.5(i), the maximum

value of the concentration, c, decreases with increasing value of V"e, resulting in a decrease of

the degree of segregation between the solid and liquid, i.e, solute trapping occurs. We also

observe a monotonic reduction in the characteristic length scale of the solute field as V€ gets

larger. On the other hand, the characteristic length scale of the phase-field remains almost

constant for all values of Ve (Fig. 7.5(ii)).

lrThe behaviour of the solutions are similar for all values of e. The size of e determines the thickness of the

interface (see section 7.4 later)
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Figure 7.5: (i) The solute profile computed for different values of the dimensionless velocity Vt, (ii) the

corresponding phase-field profiles for the three different values of the dimensionless velocities are shown here to

be indistinguishable. The diffusivity is assumed equal in both phases and distance has been nondimensionalised

with respect to le. The material parameters are those of Nickel-Copper alloy given in appendix B and the values

of 5 and e are fixed at 3.3 x 10"5J1/2cm"1/2 and 6.6 x 10~6J1/2cnr1/2 (i.e., A = 5) respectively.
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F i g u r e 7.6: (i) The solute profile computed for different values of the dimensionless velocity Ve, where

diffusivity is equal in both phases. Distance has been nondimensionalised with respect to lc. The material

parameters are those of Nickel-Copper alloy given in appendix B. The value of e is 6.6 x 10~6J1//2cm~1^2

and A is fixed at 0. (ii) The solute profiles for A = 5 and A = 0 are compared for increasing values of the

dimensionless velocity Vc.
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Figure 7.8: The solute profiles for A = 5 and A = 0 are compared for increasing values of the dimensionless

velocity Ve.
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In order to investigate whether or not solute trapping occurs as a result of the inclusion

of the solute gradient energy term in the free energy functional of the model, we repeat the

calculations above for the case when A is identically zero, i.e., excluding the solute gradient

energy term. For the three increasing values of Ve we considered, i.e., Ve = 0.1,0.3, and

0.6 (with the domain length LN of 180, 80 and respectively), the solutions (shown in Fig.

7.6(i)) exhibit a similar trend to the solutions obtained in the previous case. Regardless of the

absence of the solute gradient energy term, the degree of segregation decreases monotonically

as Vt is reduced. This suggests that the solute gradient energy term is not a prerequisite

to solute trapping. The results also show a decrease in the characteristic length scale of the

solute field as Ve increases.

We go on to compare the solutions in the two cases A = 0 and A / 0 , for a much larger

value of Ve, and it is found that the solute profile when <5 / 0 becomes very similar to the

profile when 6 = 0 (see Fig. 7.6(ii)). In other words, the degree of segregation becomes

increasingly independent of 8, as Ve becomes large. Thus we can see that in the high Ve

regime, the term propotional to the velocity in the solute equation (see (7.6)) dominates the

equation causing a minimal effect from the solute gradient term.

7.3.2 Solutions when DS/DL / 1

In real situations, the diffusivity in the solid phase is normally very small compared to that in

the liquid. Typically, Ds is four orders of magnitude smaller than D^. It is therefore natural

to explore the changes in the solutions as the the ratio of the diffusivities, Ds/Di, approaches

zero. We perform the computations using the same values of e and CQO as before. The solute

profiles for three different values of D$/DL are shown in Fig. 7.7, from which we can see that

as the value of DS/DL approaches zero, there is a reduction in the maximum value of solute

concentration. At the same time, the i-coordinate at which the maxima occurs, becomes more

positive.

In Fig. 7.8 we compute the solute profiles with DS/DL = 0, for two different values of

Ve, and compare the two cases A = 0 and A / 0. Again, solute trapping is observed with

decreasing dependence on 5 as Ve is increased.

79



Model

WBM1

WBM2

(Wheeler et. al.'s

formulation)

WBM2

(our formulation)

length scale

h

U

limit (s)

IJ(D/V) ->• 0

none

dimensionless velocity

V = le/(D/V)

V5 = kKD/V)

Ve = le/(D/V)

solute trapping?

no

yes

yes

Table 7.2: A summary of the results from the analyses of the WBM model.

7.4 The determining factor of solute trapping

In section 7.1, we nondimensionalised the governing equations using the length scale le, which

is the length scale over which cf> changes. This is also the length scale used in the WBM1 model

[1], where, in the limit le/(D/V) -» 0, the model was unable to capture the solute trapping

phenomena. In the generalisation of the WBM1 model, i.e., Wheeler et. al.'s formulation of

the WBM2 model, another length scale was introduced, namely, lg. This is the length scale

associated with the solute field, c. In the limit le/lg —>• 0, the model succesfully predicts solute

trapping when the interface velocity is large. The observations above raise the question of

whether the relative sizes of D/V and, either lg or le, determine solute trapping,

a question which we will try to answer shortly.

In order to get a clear picture of the relationship between the different length scales and

solute trapping, we summarise the results from the three different formulations of the WBM

model, in Table 7.2, which shows that the three phase-field formulations share one thing in

common, namely, all the dimensionless velocities are defined as the ratio of, either lt or ls,

to D/V. The quantity D/V is in fact, the diffusive length scale of the solute field. Thus, in

our formulation for example, when the dimensionless velocity, Ve is large, this implies that

D/V is 'small' compared to le. Therefore, we identify the solute trapping phenomena, as

the behaviour that results from D/V being comparable or smaller than the length, with

which the interface velocity is scaled. This explains why solute trapping behaviour is captured

in Wheeler et. al.'s formulation of the WBM2 model, and not in their earlier formulation,

i.e., the WBM1 model. The sharp interface limit that was taken in their first analysis, i.e.,

the limit le/(D/V) —> 0, is equivalent to insisting the D/V is larger than le. On the other

hand, in the generalised version, the sharp interface limit, le/lg —>• 0 (with 1$ fixed), was taken
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independent of D/V. Therefore, solute trapping is observed when Vg is large.

The explanation above mainly concerns the technicalities involved in the nondimension-

alisation of the interface velocity. In order to relate the technical aspect to physics, we need

to take a closer look at l£ and lg, and investigate their relationship with the thickness of the

interface.

In section 3.2, the interface thickness is shown to be characterised by li, where li is given

by

^ (7.23)

This may be written as,

h = ~ , (7-24)
6cr

where <5\4£ = /

h = ̂ - , (7-25)

where &AS = crA/{5y/RT/vm). Thus, we see that, both l€ and lg, are directly proportional

to the interface thickness l{. Hence, we conclude, that solute trapping occurs when D/V

becomes comparable or smaller than the characteristic thickness of the interface.

It is important to note that, we managed to arrive at the conclusion above, because the

phase-field model prescribes a finite thickness to the interface. This is not possible in the

CGM, or any of the solute trapping model described in chapter 4, because they are based

on a sharp interface formulation of solidification. The assumption made in the models,

that the interface has negligible thickness, prevents a direct relation between the physical

length associated with the solute field, and the interface thickness.

7.5 Partition coefficient and diffusive speed

The partition coefficient k, which is defined here as the ratio of the far-field concentration to

the maximum concentration of solute, is a parameter used for measuring the degree of solute

trapping in rapid solidification. The solutions obtained through the numerical calculations

provide a range of values of k for different values of Vt. The observed dependence of k on Ve

agrees qualitatively with existing solute trapping models, in that its values increases to unity

as Ve gets larger. This is evident from the marked decrease in the maximum concentration of

solute (see Fig. 7.6(i)) as Ve increases.

However, many of the existing solute trapping models contain another parameter, namely

the diffusive speed Vp, which does not appear explicitly in the WBM2 model. In most
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experiments on solute trapping, for example in [4, 8], the value of the diffusive speed is

obtained by fitting a suitable solute trapping model to the experimental data, where Vb is

treated as a fitting parameter. We will use a similar method to derive a value for the diffusive

speed from the numerical values for k(Ve), and the procedure is described in the following

section.

7.5.1 The diffusive speed

In order to demonstrate how VD is calculated from the numerical solutions we have obtained,

a set of values for k are computed for various values of the dimensionless velocity Ve. We again

use the data of the nickel copper alloy in appendix B, where e is given as 3.3 x 10~6J1/2cm~1/2,

and ke is chosen to be 0.7965 which corresponds to a solidus concentration of 7.17441 x 10~2

and temperature of 1700-RT. The diffusivity ratio DS/DL is fixed at 0.5.

A similar procedure as carried out with the experimental results is employed here onwards,

i.e, the set of numerical k values is treated in the same way as the experimental k values.

Thereby, we performed a Least Squares Fitting of the numerical k values with a suitable

solute trapping model, which in this case is the Continuous Growth Model (CGM). The CGM

is given below where the fitting parameter in this case is the nondimensional value of VD,

namely VD = Vole/D,

I , *.+?/?!>. (7.26)
1 + V./Vc

In least squares method, the value of VD for which CGM fits the numerical data best, is the

value for which the following sum of squares, Q, is at its minimum
N

Q = Y,(ki ~ ~kl)\ (7.27)
i=l

where iV is the number of evaluation points, ki is the numerical value of k corresponds to the

i-th. value of V"e i.e. Fe
z, and kl is the value of k evaluated from (7.26) at V*. This is the sum

of squares of the residuals between the two sets of k values. Q achieves its minimum value

when its first derivative with respect to VD (or 1/VD) is identically zero. Hence, the best fit

value of VD satisfies the following equation,

(ki - kl) = 0, (7.28)

where here, we have differentiated Q with respect to 1/VD for simplicity.

The numerical k values and the fitted k values from CGM are plotted in Fig. 7.9, in which

the two sets of data are observed to be almost indistinguishable. The numerical k values are
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Figure 7.9: The numerical approximation of the partition coefficient k is plotted for various values of the

dimensionless velocity Ve. The smooth curve represents the results from least square fitting, with the best-fit

value for VD = 0.5525. The diffusivity ratio DS/DL is fixed at 0.5. The value of e is 3.3 x 10~6J1/2cm~1/2,

which is the corresponding value for a Nickel-Copper alloy. The equilibrium segregation coefficient ke is 0.7965

which corresponds to a solidus concentration of 7.17441 x 10~2 and temperature of 1700.RT.

shown to be close to the equilibrium value of 0.7965 for small Ve, and as Ve increases, k rises

to unity. The best-fit value for VD is found to be 0.5525 which corresponds to a dimensional

value of 0.73m/s. Considering how good the numerical values of the partition coefficient for

the WBM2 fits the CGM model, it is fair to suggest that the two models have similar physical

attributes. This idea will be explored in detail later in section 8.5.

7.5.2 Dependence of VD on ke, Ds/DL and e

We use the least squares fitting method described above to compute VD for various values

of ke, DS/DL and e and extract a value for the dimensional diffusive speed by using the

relationship,

VD =

The calculations are performed separately for each of the three parameters, (i.e., ke,

and e), keeping two of the parameters fixed while varying the third. The quantities

and e are altered without making any changes to the other material parameters. On the other

hand, ke is varied by changing the values of the melting temperature and the latent heat of the
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B component of the alloy, namely T^ and LB, according to the relationship ke — exp(—

where AFB = (LB/{RT/vm))(T - T^)/T^. This is equivalent to computing a series of

values of VD corresponding to several component yl-based alloys (in our case, these are the

Nickel-based alloys).

The values of the dimensional VD are plotted against each of the three quantities ke,

Ds/DL and e in Fig. 7.10. In the first diagram, VD is plotted against ke in which VD is

observed to decrease with ke (ke < 1). This inverse correlation is consistent with experimental

observation made by Smith et. al. [4]. Because VD is the value that scales the interface

velocity, V, (i.e., V has to be large compared to Vp in order to attain solute trapping), the

result above suggests that if the solute partitioning at equilibrium is small (ke close to unity)

(i.e., the liquidus concentration of the solute is almost equal to the solidus concentration),

solute trapping can occur at lower values of V. In Fig. 7.10(ii), VD exhibits an approximately

linear increase with the diffusivity ratio DS/DL-, suggesting trapping of solute occurs more

readily when, either Ds is small, i.e., limited diffusion in the solid phase, or Dj_, is large, i.e.,

complete diffusion in the liquid phase.

The last plot in Fig. 7.10 is ln(Vb) against ln(e) where the values of ln(Vo) are observed to

decrease linearly with ln(e). A straight line of slope —2 is drawn against the data to show that

almost all the data points lie near this line. We therefore deduce the following relationship

for VD and e,

= -21n(e)+ln(C0) ,

or equivalently,

VD = Cxe~\ (7.29)

where Co and C\ are constants, i.e., VD is inversely proportional to e2. But from (7.23), e2 is

shown to be directly proportional to the interface width Zj, implying that VD is also inversely

proportional to Zj. This relationship agrees with the basic hypothesis of CGM that claims

VD = Di/li, where Di is the interface diffusion.
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Figure 7.10: (i) A plot of the dimensional diffusive speed VD against the equilibrium segregation coefficient

ke. The diffusivity ratio is assumed to be zero, and the value of e is fixed at 3.3 x 10~6J1^2crn~1/'2, which is the

corresponding value for a nickel-copper alloy (see appendix B). (ii) A plot of the dimensional diffusive speed

VD against the diffusivity ratio DS/DL. The values of kr and e are fixed at 0.7925 and 3.3 x 10~6J1/2cm~1/2

respectively, (iii) A plot of ln(VD) against ln(f), a straight line of slope —2 is drawn against the data showing

them lying very close to this line. The value of ke is fixed at 0.7965.
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7.6 Interfacial temperature

The interface temperature appears as an eigenvalue of the governing equations of the WBM2

model. Its value is found numerically along side the phase field and the solute field. For the

nickel-copper alloy data, three sets of values are obtained numerically for the temperature,

these are for A = 0, A = 10 and A = 100. The three sets of results are plotted in Fig.

7.11(i) where the values are shown to depend weakly on A at low interface velocities, this

dependence slowly diminishes as Ve is increased. At high velocities, there is a sharp decline

in the temperature, exhibiting the so-called kinetic undercooling at the interface.

A measure for the undercooling of the melt adjacent to the interface is provided by the

interfacial temperature T. Results from sharp interface models (see chapter 2) show that

the temperature at the interface may be formulated as a function of the interface velocity

V. For dilute alloys, this function is given by (2.9), which is applicable for a process where

solute drag is limited. More generally, for dilute alloys with a fixed solid composition, CQO, the

undercooling function has been derived to be,

rp rp , mLCoo (I -k + aln(k/ke)\ V
T = TM H : — : , (7.30)

k \ 1 — ke J n
e

where TM is the pure (solvent) melting point, rn^ is the slope of the liquidus, and fj. is the

interface kinetic coefficient for the pure solvent. The value of the parameter a depends on

whether or not 'solute drag' effect is included, it is equal to k when solute drag is neglected

and equal to unity when solute drag is included. This expression was deduced by Aziz and

Boettinger [68] from the consideration of the effective free energy difference between liquid

and solid during solidification, using Turnbull's collision-limited growth model [69] and the

Continuous Growth Model [19].

We compare the numerical values for the interface temperature corresponding to A = 0,

with the sharp interface prediction given in (7.30), by plotting the two results in Fig. 7.11 (ii).

For both cases, with and without solute drag, the numerical solution agrees very well with

the sharp interface result. The agreement is observed to get better as the interface velocity

increases.
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Figure 7.11: (i) The temperature profile is plotted for A = 0,10 and 100, which corresponds to 5 =

0, 3.3 x 10~5 and 3.3 x 10~4 Jll/2cm~1/2 respectively, (ii) The numerical solution for the interfacial temperature

is compared with the sharp-interface predictions, with and without solute drag.
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Chapter 8

The high solidification velocity

limit with S/e constant

The numerical calculations in chapter 7 indicated that the WBM2 model has successfully

captured the solute trapping behaviour, irrespective of the value of the solute gradient energy

coefficient 5. Moreover, the solution for the solute field with S nonzero, approaches the solution

when 5 — 0, as V€ is increased. This result provides a useful indication of the weak influence

the solute gradient energy term has on the model when the interface velocity is large.

In order to investigate the trapping phenomenon further, it is appropriate to perform an

asymptotic analysis of the governing equations in the large Ve regime. This is carried out

below for both cases when DS/DL = 1 and when DS/DL ^ 1- The asymptotic expressions

for the partition coefficient k in both cases, are compared with the large V/VD asymptotic

expansion of the partition coefficient from the CGM, from which, expressions for the diffusive

speed VJJ are established. The values of Vp obtained from the more realistic expression where

DS/DL ~ 0 are compared with the experimental values obtained by Smith et. al [4], and very

good agreement is found.

8.1 Asymptotic analysis for Ve —>• oo

We will first explore the form of the solutions when the diffusivity ratio, DS/DL, is equal to

unity. We proceed by expanding the solution as a regular perturbation series in V~l,

cf> = </^(z) + V~l^l\~z) + O(V~2), (8.1)

c = c^(z) + V-lc^{~z) + 0(V72), (8.2)



as Ve —> oo. Substituting these expansions into (7.4) and (7.6) gives, at leading order,

o, (8.3)
fh dz

and

= C o
(8.4)

The quantity m is shown in chapter 5 to be related to the dimensional interface kinetic

coefficient of A, HA, by

LAD •

For the Ni-Cu alloy, this value turns out to be rather large compared to typical values of

Ve. Under this assumption, we infer that it is quite acceptable to assume Vt/fh is small and

therefore assume the second term in (8.3) is negligible. In which case, the equation (8.3) has

the solution,

</>(°)(5) = i [ l - t anh(3a*z) ] , (8.5)

where

d* = a*

with

when

40 )

This latter condition is met when

/ ( I , Coo) =7(0,000). (8.6)

Solving for T from (8.6) gives the temperature when free energy curves of the solid and

liquid intersect, i.e., solid and liquid phases have the same free energy density. Denoting this

temperature by To we find,

C^LB + (1 - Coo)!,A
1

1 + (1 - COO)LA/T^'

It is a simple matter to generalise the above, to the case when Ve/rh is not small where,

in this case, the temperature is given by

rj-i rp ' ^ ~ ^

fnD [COQLB/T^ + (1 — COOJLA
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In the dilute limit, i.e., when c^ « 0, To « T^ and CT* « a A , (8.8) may approximated as

A V

Notice that the extra term in the temperature equation (8.8) is in fact the kinetic undercooling-

term, which is a non-equilibrium effect. Thus, by neglecting the term Ve/m, we are in fact

neglecting the non-equilibrium effect on the temperature caused by the high interface velocity.

We proceed to find the next order term in the asymptotic solution for the solute concen-

tration, and we obtain the following,

( / c W 0 ) , C o o )+; c
( > ( 0 ) , C o o ) ) ,

with 0(°) = i [ l -tanh(3o-p)], where o*Q = o/(e^RTQ/vm). Writing (8.10) explicitly, we have

c(1) = y C o o ( l - C o o)a*(a|0 - a2
A0)[l - tanh2(3a0^)]2[tanh(3a0^) + P], (8.11)

where

V = -TTTn rn-T-J (8-1 2)

and,

Note that the form obtained for c^1' here is a quintic in tanh(3o"gi) (an asymmetric function),

and it reduces to sech4(3<7oi) when P ^> tanh(3o-Qz) (a symmetric function). This observation

suggests a transition in the profile of c^1', from asymmetric to symmetric, as P is increased.

The plot of c^1' for increasing values of P shown in Fig. 8.1 confirms this prediction. For small

values of P, the profile has a local maximum and a local minimum. As we increase the value

of P, the profile becomes symmetric about z = zmax, where zmax is the z coordinate of the

local maximum of c^\ At this point, the local minimum disappears, at the same time, zmax

becomes less negative and approaches zero.

We are now able to proceed to find the corresponding asymptotic expression for the par-

tition coefficient k. This involves determining an estimate for the maximum concentration,

which will be calculated from the asymptotic expression derived for c above. It is discussed

in detail in the following section.
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Figure 8.1: The c(1) profiles for values of v ranging from -0.53 to —36.63. These values correspond to values

of e of 1.98 x 10"6, 3.3 xlO"6, 6.6 x 10~6 and 1.65 x 10"5J1/2cm"1/2 respectively.

8.1.1 Partition coefficient and solute trapping

In order to establish an asymptotic expansion for k in V~l, we need to calculate the maximum

value of the solute concentration c, and therefore, a detailed analysis of the form of c is required.

It is simple to see that, to OiV'1), c attains its maximum when c ^ is at its largest. Hence,

we differentiate c ^ once with respect to z, in order to analyse its turning points, i.e., the

z-coordinate for which dc/dz = 0. It follows from this analysis that the 5-coordinate at which

the maximum/minimum of c'1' occurs can be obtained by solving the following quadratic in

tanh(3<7gi:):

= 0.
0

The solutions to (8.13) are given by the following equation,

2 4 _r— v
25 5 '

which gives two values for z,

3a;
tanh - l

and

= z+ = Tal
tanh ,

' 2
— v —

5

' 2
— z/

, 5

4
25'

4 „ r
— v1 + -
25 5

(8.13)

5.14)

3.15)

5.16)
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Solutions (8.15) and (8.16) exist only when the modulus of the right hand side of equation

(8.14) is less than unity. Therefore, in order to investigate which of the two roots exists, we

expanding the square root in (8.14) for the two cases, |£>|> 1 and |z>|< 1, and obtain the

following expansions for tanh(3aoi),

(1) the case |i>|> 1,

or as —>• o o . (8.17)

64'

(2) the case \v\< 1,

tanh(3<7gz) =
5 " ^ 25 "

or

_ 2 ~ _ 2x75-2
5 25

as \v\ 3.18)

We see that when |£|< 1, both roots exist. On the other hand, when \v\> 1, the modulus of

the second expansion in (8.17) may become greater than unity, when \v\ is large enough. The

critical value of \u\, i.e., the value that corresponds to |tanh(3<7o-z)|= 1 , |^c|
 say5 may easily

be calculated from (8.13) to be unity. Therefore we infer that when |z>j> 1, only Z- exists.

The two roots Z- and z+, determine the z coordinate of the turning points of c^\ Let

us now refer to the profiles in Fig. 8.1, where d1^ is plotted for increasing values of \v\. The

plot indicates that, for \i>\= 0.53 (which is less than \vc\), the two roots correspond to a local

m a x i m u m and a local minimum. It also shows that the root corresponding to the local

maximum (zmax say) is more negative than the root corresponding to the local minimum

(denoted as zmin). Now, assuming v is negative1, equations (8.15) and (8.16) imply

where we have assumed tanh(3CTo-?) « 3<TgZ. We then infer that ĉ 1) has a local maxima at

and a local minimum at

lrThis is true when the surface energy of the B component of the alloy is less than that of the A component

(i.e., aB < a A)
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Thus, the concentration profile has a local maximum for all values of \u\, and the z coordinate

of the maximum is given by (8.15).

It appears that the maximum value of c^, i.e., c^l\zrnax) = cmax, is very dependent on

the magnitude of D, and because the partition coefficient, k, depends on the maximum value

of the concentration (i.e., cLL), we also expect k to depend on v. In fact, it can be shown

that v is directly related to the equilibrium partition coefficient, ke. In order to see this

more clearly, we refer to equation (6.19), where for ideal solutions,

ke = exp( -AF B 0 ) , (8-19)

which implies that,

. (8.20)

Now, in the dilute alloy limit, i.e., the limit when the mole fraction of the B component of

the alloy is very small compared to that of A, CQQ « 0 and To ^ Tfy, which gives,

6(CT|0 - a

ln(l/fce)
r 2 T

- aA0)

thus, \u\ has a specific value for each alloy. Equation (8.21) indicates that large values of \v\

correspond to small values of ke. A rough estimate for cWiax in this case, is given by,

27 9 9 9

2

where we have aproximated tanh(3o-g-S) as \v~~l•

Equation (8.21) also shows that the case \u\ small, corresponds to ke ss 1. In such a case,

from the first expansion in (8.18) that tanh(3crgimax) « ~ 5 > it follows that

27
r(i) = l i r (8.23)

5 5 25

Having obtained the value for the maximum concentration, the partition coefficient may

be derived as follows,

k = -^- (8.24)

2). (8.25)

We see from this expression that as Ve increases, k increases to unity, in other words solute

trapping occurs. This result can be confirmed from the profiles of c for increasing values
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Figure 8.2: The profiles of the asymptotic solutions for c given in equation (8.2), with c(1) given by (8.11),

Terms of O(Ve) and smaller are ignored. The profiles are are drawn for Ve = 10, 50 and 100. The value of v

corresponds to that of the Nickel-Copper alloy, which is —1.46.

of Ve, depicted in Fig. (8.2). The plots show a decrease in the maximum value of c as Ve

increases, exhibiting solute trapping. It is also important to note that, to first order in Ve, k

is independent of 8. This result is in agreement with the numerical results, from which it is

implied that the solute gradient energy is not needed in the model, in order for it to

capture the trapping phenomenon.
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8.1.2 Diffusive speed

Prom the Continuous Growth Model (CGM) (see section (4.2.2)), the dilute limit of the

partition coefficient is given by equation (4.14) and can be written as an asymptotic expansion

in VD/V,

2). (8.26)
v

It is possible to obtain an expression for the diffusive speed VQ as a function of the equilibrium

partition coefficient ke, and the diffusivity Z?, if we assumed (8.26) is equal to (8.24), in which

case, the following relation holds,

The quantity

I Cmax \

denotes the dilute limit of
Coo

3.27)

Large i>, small ke

Now, for large \v\, we have

9.
= -d*0(AFB0-AFA0)+O(D-z). 3.28)

In the dilute limit, To « Tfy and c^ « 0, therefore, the expansion in (8.28) can be approxi-

mated as,

+ O{D~2). (8.29)

Substituting (8.29) into (8.27) we obtain the following expression for the diffusive speed,

9DaAln(l/ke) , „,_„.
VD = - (8.30)

4 J£(l-jfce) v ; '

Ignoring terms of O(v~2) and smaller, we write (8.30) in terms of the dimensional quantities,

this is,
_ 9 DaAln{l/ke)

From (7.23),
a A 1

(8.31)
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Figure 8.3: The dependence of the asymptotic approximation of VD on ke

which, after substitution into (8.31) gives,

3£>ln(l/fce

8 L(l -ke
5.32)

This equation shows a direct relation between VD and both the diffusion coefficient and

the interface thickness, and it differs from the basic hypothesis of CGM, namely VD ~ D/li,

by a factor which is a function of ke. We use this final expression to produce a plot of VD

against ke (see figure (8.3)). It shows an inverse correlation between VD and ke, when ke is

small. This observation agrees with the experiment results obtained by Smith et. al. [4],

where the prediction they made is based on alloys that have values of ke ranging from 0.0007

to 0.3.
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Small z>, ke « 1

In this case, we have,

) \ Q r ,/^ <* _ 1

\ COO ) *

The diffusive speed, VD, is then given by,

_ 9
D 4

(8.34)

where we can see that, to leading order in D, a singularity exists at ke = 1.

The singularity is caused by the definition we have used for ke (see equation (8.19)), which

is derived using the common tangent construction, and restricted to alloys with the idealised

phase diagram. This definition implies that AFBO — 0 whenever ke = 1, which in turn

suggests that the interface temperature is equal to Tj^, the melting temperature of the B

component of the alloy (i.e., the solute). In other words, for the ideal solution case, this

corresponds to the solidification of pure B, which is not applicable in the dilute limit we have

taken (i.e., the limit c —> 0, where c is the mole fraction of B in the alloy). It clearly shows

that the ideal solution model is not capable for estimating VD for /ce « 1. A more adequate

model would require the the addition of non-ideal mixing entropy terms in the corresponding

free energy density function, an example of which, is given in chapter 6, where the regular

solution formulation of the WBM2 model is described.

In summary, the derivation of equation (8.32) is a breakthrough in the development of

the theory of solute trapping. The equation, not only confirms the experimental prediction,

it also provides an explicit form for the diffusive speed VD, which, to date, remains as a

fitting parameter. The direct relationship between the diffusive speed, VD, and the material

parameters, will enable us to provide an estimate of VD, for any alloy systems in which the

value is not available. Because equation (8.32) only applies for small values of ke, a better

estimate, which would hold for a wider range of ke, is clearly needed. Such an estimate may

be obtained by considering the phase-field formulation for non-ideal solutions.

8.1.3 Extension to cases ke > 1 and V€ < 0.

In this section, the earlier analyses of the partition coefficient and the diffusive speed in the

large V6 limit, is extended to the two cases, i) ke > 1 and, ii) Ve < 0, which are discussed

separately below. We will only consider the case where \v\ is large in the following analyses,

i.e., we ignore the region where ke ~ 1.
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Figure 8.4: The ideal solution phase diagram for an alloy whose equilibrium segregation coefficient ke is

greater than 1.

The case ke > 1.

Throughout the analysis of the WBM2 model, we have mainly assumed the equilibrium seg-

regation coefficient ke is less than unity. There are cases in which the alloys have ke > 1.

These are the cases where the melting point of the B component of the alloy (i.e., the solute)

is higher than the melting point of the A component (i.e., the solvent). The idealised phase

diagram for such a system is given in Fig. 8.4.

The asymptotic results can easily be extended to this case, where the only significant

difference is that Tj^ < T^. It will result in a change in the signs of AF^o and

which in turns changes the sign of c^L, i.e., Ch)ax* = -ohLx where c^L* is the new value of

chiax (see definition of Cm'ax in (8.22)). This causes the asymptotic expansion for the partition

coefficient k to differ slightly from the case ke < 1, it is now given by,

k = i -

= 1 +

Coo

„(!)

(8.35)

which shows that as Ve —>• oo, k approaches unity from above, i.e., solute trapping.
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Figure 8.5: The diffusive speed VD, is plotted against ke, where ke is greater than 1.

Because AFBO changes sign, so will the exponent of the earlier definition of ke derived

from common tangent construction (see equation (6.19)), giving the following new expression

for it,

ke =

3
VD = 77-

Consequently, a corresponding expression (for ke S> 1) can be derived for the diffusive speed

VD, which is,
3 ninfiO

(8.36)8k(ke-l)'

This new form for VD is plotted against ke in Fig. 8.5 and it displays exactly the same

correlation as in the previous case with ke < 1, i.e., VD decreases with ke. (Note that

expression (8.36) is only valid for ke 3> 1. The same singularity is found at ke = 1 because of

the same argument given for the case ke < 1 earlier). With this evidence, we conclude that

the solute trapping results obtained, is applicable for both cases ke < 1 and ke > 1.

The case Vt < 0

This refers to a melting process, in which the solid-liquid interface advances into the solid.

The expected ideal solution phase diagram for this process is shown in Fig. 8.6, where, for

dilute alloys, the interface temperature lies close to the melting temperature of B. We can see

from the phase diagram that cs > CL, which implies ke > 1. Thus, we can expect to obtain

similar forms for k and VD as in the last case.

Minor changes are needed in the formulation of the problem in order to account for the

melting process. The change in the direction of the interface requires Ve to be replaced
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Figure 8.6: The ideal solution phase diagram for an alloy undergoing a melting process.

with —Ve. Also, from the phase diagram it is straightforward to see that the two melting

temperatures have changed roles. For dilute alloys, the process occurs at the lower end of the

temperature scale, i.e., near T^. To alter the current model, we simply replace Tj$-, whenever

it appears, with T^.

Having worked through the asymptotic analysis again, applying all the required changes,

we indeed find the same expressions for k and Vb as for the case ke > 1. This shows that the

two cases are equivalent when applied to the dilute limit. It also implies that solute trapping

during melting occurs in a similar manner as we see in a solidification process.
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8.2 Varying diffusivity

We can extend the analysis, as before in (7.10) and (7.11), where the diffusivity is allowed to

be different in each phase. The analysis leads to the same leading order solutions (8.3) and

(8.4). At O(Ve) we obtain

(8.37)

which, after the substitution of 4>(°> gives,

27
c(1) = — Coo(l - C o o ) ^ ^ ^ - a\0)(l - tanh2(3aoi))2(tanh(3(7oz) + v)

x \- (^ - l ) (2 - tanh(3^5) + tanh3(3^5)) + l] . (8.38)
L4 \DL ) J

8.2.1 Partition coefficient

We repeat the calculations in section (8.1.1) and find that the turning points of c^ are

solutions of a quintic equation in tanh(3(7gi), which will be referred as P5 and is given below

as,

p5 -1 £ -

5 I ^ / u
- 3 ( ^ - 1 ) 1 tanh(3<To£)

(8.39)
2

(Note that, when Ds/Di = 1, this equation is reduced to (8.13)). Therefore we expect c ^

to have at most five turning points, which are either local minimas or maximas. Again, for

real values of zmax (or zmin), the modulus of tanh(3croi) has to be less then unity. In order

to investigate the zeros of (8.39) in this range, we plot the polynomial against tanh(3(7o5) for

different values of DS/DL. From the plots shown in Fig. 8.7 , we can see that the trend we

found in the case DS/DL = 1 is repeated for the case when DS/DL < 1, i.e., when |z>|< 1, two

zeros (corresponding to two turning points) exist and as \v\ becomes greater than unity, one

of the turning point disappears. The single turning point that remains, is found to become

more positive as DS/DL is reduced.
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We go on further to plot the profiles of c'1) for different values of Ds/DL in Fig. (8.8(i)).

The profiles confirm the observations we predicted above where we can see that the persistent

turning point turns out to be a local maximum.

The profiles of c for increasing Ve in Fig. 8.8(ii) showed that solute trapping persists for

Ds/Di < 1. The profiles are plotted using the Nickel-Copper alloy data with e = 3.3 x

10~"6J1/2cm~1/2, where we see that for these values, the z-coordinate of cmax is shifted from

z = 0 by a small value, say z, i.e., zmax = z where z satisfies (8.39). Expanding tanh(3(ToimQX)

about z = 0 we have,

which, after substituting in the homogeneous equation

we can approximate z as,

3 (DslDL-\\
2 \Ds/DL+l) (8.40)

~T~ \DS/DL+IJ\

For simplicity, we will restrict the remaining analysis to the case \v\ large, i.e., ke is small and

less than unity, in which case,

The approximate value for 2 gives,

3 ( (DS/DL-1= 3 (
32 1

( (

32 1 \DS/DL + 1
8 (Ds/DL-1+ 3 U P"1

3.42)

Assuming tanh(3o"o^) is small, where its estimate is given by the expression (8.42) above, an

approximation for the maximum concentration Cmax can be found. This is,

27

T - a2
A0)

Dr Dr

B.43)

where, we only retain the terms proportional to tanh(3o-Qz) and larger. After substituting for

tanh(35"o^) i n (8-43), we have

c{AL = -jC00{l-cco)ol{o2
BQ-~o\f))D ( ^ f + 1 ) - ^ ( DS/DL + 1 O{v-1) .(8.44)

103



(i)

-4

DS/DL = 1 — _
DS/DL = 1/2 o
Ds/DL = 0 +

0.15

0.14

0.13

0.12

(ii) c 0.11

0.1

0.09

0.08

0.07

_ DS/DL ± 1

-

-

uimiuaiiuuwiimwwtrri^

i

o
o

o

o

o

o
o

o

o
o /

o /

*>o

o
o
o
o

o
<>
o
o
o
oo

<>

\
fftH-

1= 50
= 10 o -
= 100 +

-

-

—

-4 -3 -2 -1

Figure 8.8: (i) The asymptotic solution for the solute field for different values of DS/DL- (ii)The profiles of

the asymptotic solution for c when DS/DL ^ 1 exhibit solute trapping as Ve increases.

104

L



The relationship (8.24) applies here for the partition coefficient, with ohmx given by (8.44),

where we see the same trapping behaviour is produced.

8.2.2 Diffusive speed

We now look for an expression for the diffusive speed, VD, by using the same method used in
( i )

section (8.1.2). In the dilute limit, the form for ^f^ is given below,

( Cjnax \

V Coo )

9
8

After substituting this

obtain the following

D

_
OA n e

"(DS

[W
expression into (8

dimensional form for

9
8

aADLln(l/ke)
e2 (1 - ICe)

\(

{

2 7 ) ,

VD,

Ds

DL

\
)

and

1 l)' J

3
16

f(Ds/DL-
\ DS/DL +

ignoring terms

3 ((Ds/D

I)2

1

of

L ~

16 \ .DS/.DL -

j ic

- 1 ) 2 \ 1

v ^ )

) and smaller, we

After substituting cr^/e2 with 1/(6^), equation (8.45) becomes

3 DL

16 - ke

£>s \ 3 (DS/DL-1)2'
1 16 1 £>5/Z?L + 1

5.46)

where (8.46) relates VD directly to the material parameters of the alloy.

We now have a more realistic form for VD, which exhibits the dependence of the diffusive

speed on both the diffusivity in the solid bulk phase and the diffusivity in the liquid bulk

phase. We note that, when both diffusion constants are equal, the expression reduces to

(8.32). It is also interesting to note that, when the ratio DS/DL « 0, this final expression

becomes,

VD =
39 DL

256 k (1 - ke)

In order to see how well (8.47) approximates experimental data, we plot the VD — ke data

obtained from (8.47) and compare it with experimental values of VD given in reference [4]

(see Table 8.1). The form in (8.47) is plotted for four different values of the interface width

h, h = 3.46 x 1(T7,1 x 1(T7,6.2 x 1(T8 and 1.0 x 10"~8cm in Fig. 8.9. The first value of

li is obtained by taking an average of the five different values of k that correspond to the

experimental data in Table 8.1, where li is calculated using Aziz's approximation, which is

li « DL/VD and DL is assumed to be 1.5 x 10""4cm2s~1 [54]. A physically reasonable value

for li should be between 1 x 10~7 and 1 x 10~8cm [70], the third value that we choose above

is a more specific figure for Zj which was suggested by Kittl et. al. [54].

We see from Fig. 8.9 that a good agreement between (8.47) and experimental results is

obtained when li is 6.2 x 10~8, where the solid line represented by this value lies close to

105



Alloy

Si-Bi

Si-In

Si-Ga

Si-Sn

Si-Ge

0.0007

0.004

0.008

0.016

0.3

VD (experiment) (rn/s)

32

57

22

17

1.0

Table 8.1: A table of experimentally determined values of the diffusive speeds VD and the corresponding

equilibrium partition coefficient ke for various Silicon-based alloys.

most of the experimental data (represented in the plot by dots). The plot emphasizes the

significance of the ke dependence of VD- Furthermore, the fact that the asymptotic result

and the experiment data agree best for a value of k which is within the physically reasonable

range, confirms the accuracy of our asymptotic approximation of VD-

Note that the basic hypothesis of CGM states that VJJ « Di/X, where Dt is the diffusion

coefficient across the interface and A is the interatomic distance. The common approximation

that Di « DL and A RS ZJ is quite inaccurate as suggested by Cahn, Hillig and Sears [72]. Thus,

Aziz's approximation of VD should be corrected by some factor II say, in order to account for

the error in the approximations of Di and A. Our result suggests that this factor should be,

n = A
16 (1 - ke) DL

1 ] _ 1 f(Ds/DL-ir
16 I DS/DL + 1

(8.48)

where it allows VD to depend on ke, capturing the correct dependence observed in experiments.

It also shows how VD relates to the ratio of the diffusion coefficients, namely Ds/D^, which

has not yet been determined succesfully in experiments.
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Figure 8.9: The values of the dimensional diffusive speed calculated from the functional form in (8.47) which

corresponds to that of Silicon alloys are compared with the experimental values.

8.3 Comparing the asymptotic solutions with numerical so-

lutions

The asymptotic analysis of the WBM2 model is one way of determining the reliability of the

numerical calculations of the model. The results we have obtained so far are very encour-

aging, in that much of the behaviour of the solutions predicted in the numerical analysis is

also observed in the asymptotic analysis. One important feature that was captured in the

numerical calculation of the solute concentration is the trapping phenomena at high Ve, which

is independent of the solute gradient energy coefficient, S. This behaviour is confirmed in

the asymptotic analysis from the form of the partition coefficient k, which rises to one as Ve

increases, and, to first order of V£, k is independent of 5. Both analyses are also able to pro-

vide values for the diffusive speed Vp which show an inverse correlation with the equilibrium

partition coefficient ke, a trend that is also observed in experiments.

The agreements we have established between the two analyses are mostly qualitative. It

is important to also obtain quantitative agreements in order to ascertain the range of values

of Ve for which the asymptotic approximations are valid. Such information can be acquired

by comparing the numerical solutions with the regular expansions for cf>, c and k in Vfl.
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A comparison of the solutions from the asymptotic and numerical calculations is shown in

Fig. 8.10 and Fig. 8.11, where, they are observed to agree quantitatively. They contain the

profiles of c and cf> respectively, from the two calculations. An increasingly good agreement is

observed for the c profiles in Fig. 8.10 between the asymptotic and the numerical solutions

as Ve gets large. The agreement is observed for both case DS/DL = 1 and DS/DL = 0. The

<fi profiles for both calculations are observed to be almost exactly the same, and this is found

for all values of Ve.

The partition coefficients are given in Fig. 8.13 (shown here as a plot of ln(l — k) against

\n(Ve)) to determine how similar the solute trapping measurements are between the two cal-

culations. The numerical values of k are observed to approach the solid line reprsenting its

asymptotic approximation, as V"e gets large. A good quantitative agreement is obtained for

Ve > 30 (equivalent to V > 40m/s). Although the asymptotic solution for c fails to capture

the more detailed feature of the solute profile (see Fig. 8.10), for example, the small oscil-

latory behaviour of the solution near z = 0, it does not affect the maximum value of the

concentration, which results in a good quantitative agreement between the values of k for the

two calculations in the large Ve range.

We have also compared, in Fig 8.12, the VD — ke data of the Nickel based alloys with the

values calculated from (8.47), where we have assumed lt to be 4.9 x 10~8cm. Both calculations

produce values of VD with the same qualitative behaviour with respect to ke, where it decreases

as A:e increases to unity. A better quantitative agreement is achieved between the two sets of

results when 0.1 < ke < 1, which is the range where the numerical code performs at its best.

This is also the range where the ke value is approaching the value corresponding to the Nickel-

Copper alloy. Because the numerical calculations of VD are performed using artificial data for

the alloys, we expect the results to be more reliable as ke approaches the value corresponding

to the real alloy.
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Figure 8.10: The asymptotic solutions for c are compared with the numerical solutions for three different

values of Ve .The solutions above are computed for DS/DL = 1, the result is similar for the case DS/DL = 0.
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Figure 8.11: The asymptotic phase-field profile compared with the corresponding numerical profile for the
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Figure 8.12: The asymptotic approximation for Vb for the Nickel-based alloy, plotted against the corre-

sponding numerical values. The interface thickness is assumed to be 4.9 x 10~8cm.

110

i



0

-1

-2

-3

-4
- k)

-5

-6

-7

-8

-9
-1

-1

-2

-3

-4

-5
- k)

-7

-8

-9

-10

asymptotic
numerical
(A = 5)
numerical
(A = 0)

0 1

asymptotic
numerical o
(A = 5)
numerical _̂_
(A = 0)

Ds/DL = 0

0 1 2 3 4 5 6 7-1

Figure 8.13: The asymptotic form for ln(l — k) (plotted against ln(V£)) is compared with the corresponding

numerical values for DS/DL = 1 and DS/DL = 0.

I l l
•7 j



8.4 The relationship between Continuous Growth Model and

the WBM model

The numerical and the asymptotic analyses of the WBM2 model have both successfully pro-

vided predictions of the solute trapping phenomenon. We have also seen numerous similarities

between the trapping behaviour predicted by WBM2 model and that of the CGM (see Fig.

7.9). Moreover, when the high Ve expansions of the partition coefficient from the two models

are compared, we were able to extract a functional form for the diffusive speed VD which de-

pends on the equilibrium segregation ke in the same way as predicted in experiments. These

results provide strong indications that the two models share the same physical features.

The WBM2 model describes the solid-liquid interface as a thin transition layer with a

finite thickness. This description fits that of a diffuse interface which we have described in

chapter 2. This particular type of interface favors a continuous transition from the liquid to

solid due to the continuous change in the thermodynamic properties of the layers of atoms

within the interfacial zone [5]. It is therefore reasonable to expect the growth mechanism of

the alloy modelled by WBM2, to resemble that of a continuous growth. Inevitably, some, if

not all of the ensuing phenomena, characterised by a continuous growth should be predicted

by the model. Thus we may expect a similarity between the predictions of solute trapping in

WBM2 model and that of the CGM. The similarities can be seen more clearly in the definition

of the interdiffusion flux of the two models.

In CGM, the interdiffusion flux, JD, is defined as the difference between the forward flux

of solute, i.e., the flux of solute from the liquid into the solid, and the reverse flux, i.e, the

flux of solute from the solid back into the liquid. Therefore, adopting the same notation as in

Chapter 4, we have,

JD = JS-^L — JL->S,

= [Di/X][cs(l-cL)-KecL{l-cs)l (8.49)

where, A is the interatomic distance and ne — exp[— (A/J,'B — A^'A) / RT]. The chemical poten-

tials A[j,'A and A//B, the interface diffusion D{ and other constants are defined in chapter 4.

Assuming the exponent in the definition of ne is small, and for dilute alloys we can find a c*

such that c*(l — c*)(l — ne) « cs(l — ci) — K£CL{1 — cs), (8.49) can be approximated as,

JD = j c * ( l - c*)(A//B - Afi'A)/RT. (8.50)

L
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The conservation of solute in the system gives rise to the following equation,

dc {JL^S - JS->L) JD

at A A ( 8 5 1 )

In the WBM2 model, the conservation of solute is achieved by postulating the following

equation for the solute field,

dc „ 2 KO\

where M2 is related to the diffusion coefficient by D = M2RTjvm, and the free energy

functional ^ is denned by equation (3.1). In this model, the interdiffusion flux is proportional

to the term 'V(5J-/5c) [1]. This term is identically equal to V/c (assuming S = 0), which is

the gradient of chemical potential of the alloy. In 1-D, (8.52) becomes

Comparing (8.51) and (8.53), we are able to identify the interdiffusion flux of the WBM2

model as,

( f ) ^ [ f ] (8.54)
for one dimensional steady state fluxes.

Now, across a sharp interface, V/c can be approximated as,

( ) £ ' , (8-55)

where E' is a constant and,

[fAfL =fA(solid) -fA(liquid).

The quantity fA and /# are the actual chemical potentials of A and B respectively, minus the

contribution from the ideal mixing entropy. This is in fact the exact definition of fi'A and /j,'B,

i.e., JA — fJ.'A and /# = n'B, which gives,

[fA]s
L = V/4, (8.56)

[ /B] ! = V/4. (8.57)

On substituting (8.56) and (8.57) into (8.55), we obtain the following approximation for (8.54),

Dv
J*D « -^[C(1-C)(VLI'B-VI2'A)/RT}+E (8.58)

« JD + E, (8.59)

where E= 2f*c(l-c)E'.
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So we see that Jp is almost identical to Jp if E = 0. The constant E depends on the

concentration c, which, if we recall the nondimensionalisation of the governing equation we

did earlier, this term is equal to dc/dz (see governing equation (7.6)). In the limit Ve —> oo,

this term is found to appear in the first order equation as dc^ /dz, but because the leading

order concentration is a constant, this term is identically zero. Therefore, in the limit the

interface velocity V —>• oo, we deduce that

J*D = JD- (8-60)

In sections 7.1.2 and 7.2.2, we made an important assumption that the high velocity limit

of the partition coefficient k from CGM is identically equal to the asymptotic expansion of

k in the high Ve limit from the WBM2 model. The relationship given by (8.60) offers a

justification for this assumption. The interdiffusion flux determines the amount of solute

atoms that successfully escape the advancing solid front. Indirectly, for a particular interface

velocity, it offers a measure of the solute atoms that are trapped in the solid. Thus, it

determines the extent of trapping at that velocity. The fact that the interdiffusion fluxes from

the two models are almost identically equal in the high interface velocity limit (8.60), suggests

that their forms for the partition coefficient are also equal.

Notice that the interdiffusion flux is dependent on the free energy density function /(</>, c).

It may be possible to obtain a similar relationship between CGM and other phase-field models

that adopt a different choice of /(</>, c), by conducting a similar investigation as above.
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Chapter 9

Summary and future work

The analyses carried out in the previous chapters have dealt with a variety of aspects of

the rapid solidification process, specifically the mechanisms that govern solute trapping. The

results we obtained have explained several issues regarding the process, that have arisen in

previous works on the subject. They also offer improvements to previous results which, in

general, contribute to a further understanding of the process.

In this concluding chapter, we produce a summary of the results and discuss their signifi-

cance in the development of the theories of rapid solidification. We also discuss a number of

areas where the analysis can be extended and improved.

9.1 Summary and discussion of the results on solute trapping

In this section, we present the summary of the results obtained on solute trapping. Each

result is outlined and discussed separately below.

9.1.1 The independence of solute trapping on 6

In their first model for the solidification of a binary alloy [1], Wheeler et. al. recovered a

corresponding sharp interface problem in the limit of the ratio le = e^fvm/RT to D/V, tends

to zero, which failed to capture the solute trapping phenomenon. They modified this model

in [2] by adding the gradient energy term for the solute field in the free energy functional. In

a similar limit e = l£/l$ —> 0 (with the solute gradient energy coefficient, 5, constant), where

Is = 8^Jvrn/RT: solute trapping was predicted for large solidification velocities. However, it

is not clear from this new model, whether the observed solute trapping behaviour is due to

the solute energy gradient, or whether it is an outcome of the particular distinguished limit

they considered.

115



In both the numerical and asymptotic analyses, we determined that the solute gradient

energy term is not needed for solute trapping. The numerical profiles of the solute fields,

computed with 8 = 0, show a marked decrease in the maximum concentration of solute as the

velocity is increased, i.e., solute trapping. A similar observation is found with the asymptotic

solution for the solute field in the high Ve limit, where the first two terms in the expansions

are independent of 8.

The result above is obtained from both analyses by considering the limit Ve —> oo with

A = 8/e fixed, where Ve = Vle/D = le/(D/V). This corresponds to allowing the diffusive

length scale associated with the solute field, namely D/V, to be smaller than the length with

which the velocity is scaled, denoted by le, for large V. This is precluded in the original model

[1] because the limit le/(D/V) -» 0 , with the interface velocity, V fixed, implies D/V is

large compared to le. In the second WBM model [2], the non-dimensional interface velocity is

scaled as Vg = lg/{D /V), where lg is identified as the characteristic length scale of the solute

field. The limit le/lg —> 0 in this case, is taken independent of the interface velocity. As a

result, trapping of solute is observed when Vg is not small. Therefore, we identify the trapping

phenomena as a result of D/V being comparable or smaller than the characteristic length

scales of either the phase-field, or the solute field. Now, in the case when 8 = 0, the only

interfacial length scale is le and so trapping occurs when Ve = l£/[D/V] is not small.

Both of these lengths are shown in the analysis (see section 7.4) to be proportional to the

characteristic thickness of the interface, i.e., li, thus solute trapping can be said to occur

when the physical length scale of the solute field is comparable or smaller than

the interface width. This proved to be an advantage of the WBM2 model (a phase-field

model) over Aziz's solute trapping models, which are sharp interface models. Because the

phase-field model allows the solid-liquid interface to have a measurable thickness, we are able

to form a direct relationship between, the relative sizes of the diffusive length scale D/V and

the interface thickness, and the solute trapping process. Naturally, a concern arises when

applying continuum models to a description of the length scale associated with the interface

width , which is comparable to atomic dimensions. We have not addressed this issue here.

9.1.2 The partition coefficient

In our analyses, the partition coefficient, which is the parameter used as a measure for solute

trapping, is defined by the following equation,

far — field concentration
k = the maximum concentration of solute
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The dependence of k on the interface velocity as observed in experiments, is well captured

numerically and asymptotically. The numerical values of k are shown to increase from its

equilibrium value ke (whenever ke < 1) to unity, as the interface velocity increases. The

asymptotic representation of k also shows an increase to unity as Ve —> oo (whenever ke < 1).

The quantitative dependence of k on the velocity is shown in the numerical analysis (see

Fig. 7.9) to be closely approximated by the form of k given by CGM, i.e.,

= ke + V/VD

i + v/vD •

The similarity has allowed us to extract values for the diffusive speed VD from the numerical

values of k using least squares fitting. We also managed to obtain an explicit form for VD

from the comparison of the asymptotic expansion for k and the CGM, in the high interface

velocity limit.

9.1.3 Correlation between the diffusive speed and the material parameters

The values for the diffusive speed are obtained numerically using the procedure mentioned

earlier, for a number of different material parameters of the alloy. These are the equilibrium

partition coefficient ke, the diffusivity ratio, DS/DL, and the interface width, l{. The corre-

lation between the numerical values of VD and two of the parameters (ke and li) agree with

experimental observations, where we find VD to be inversely correlated with both, ke and li.

We also observed that VD is directly proportional to D$/D^.

These results are later confirmed by the explicit functional form obtained for VD in the

asymptotic analysis. This form is given by,

= 3 £>Lln(l/fce) \\Ds 1 3
D 16 U (l-ke) \[DL^ \ 16

(DS/DL - If (9.1)
Ds/DL

where it differs from the conventional approximation for VD, i-e., Dijli by a factor of II, where

IT is given by,
3 ln(l/fce) \DS

~ 16(1 -fee) H^Z J " 16
(Ds/DL -

DS/DL + 1 J J "
The quantity IT is identified as a factor to correct the assumptions made in the conventional

approximation, that D{ « DL and A w li, where Di and A are the interface diffusivity and the

interatomic distance respectively.

In the expression for VD above, the interface width li appears as a parameter, thus, in order

to compare the explicit form for VD with experimental results, a specific value for the interface

width had to be chosen. This is resolved by plotting the asymptotic form corresponding to

several different, physically plausible values of li, against the experimental data. For the
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Silicon alloys in Table 8.1, we found the experimental VD data are best approximated by the

asymptotic approximation that corresponds to k = 6.2 x 10~8cm. This value is within the

proposed range of reasonable values for the interface width of Silicon [54, 70].

The explicit expression for VD provides an estimate for its value which is useful in predicting

microstructural development in solidification [71]. Our estimate is clearly an improvement to

the conventional method, in that the interface width is the same for all the Silicon

alloys, which is expected in this case as all the alloys are dilute. In the conventional method

however, because the interface width is inferred from the equation lj = DL/VD, its value was

found to be different for all the Silicon alloys in Table 8.1. Its value varies by over an order

of magnitude, which is quite unacceptable [4, 71].

Another advantage of the form we derived above is that it relates VD to the readily

measurable quantities of the solvent (in this case, Silicon). This provides a means

of estimating the value of the parameter VD for alloy systems in which the value cannot

be measured. None of the solute trapping models to date is capable in providing a direct

relationship between VD and the material parameters. The only experimental result that

has been able to predict an inverse correlation between VD and the equilibrium partition

coefficient, ke, is due to Smith et. al. [4]. The expression we obtained in (9.1), extends their

prediction by providing a more specific dependence of VD on ke, where the values calculated

using the functional (9.1) are shown to agree both qualitatively and quantitatively with

the results of Smith et. al. Furthermore, the functional form gives a direct relationship

between VD with the diffusivities in the bulk phases, i.e., Ds and DL. Experimental analyses

carried out by Smith et. al. [4] were unable to predict any correlation between VD and either

of these parameters.

9.1.4 The cases ke > 1 and Ve < 0

The analyses we did in section 8.1.3 shows that solute trapping is also observed for the cases

ke > 1 and Ve < 0. The resulting form for VD shows exactly the same trend with ke and

other material parameters as in the previous case. The similarity in the results suggest that

there exists some symmetry between the trapping behaviour of solute in cases with ke < 1

and ke > 1, and in the cases Ve > 0 (solidification) and Vf < 0 (melting). Obviously, more

analysis needs to be done to determine the limits in which the symmetric relationship is valid.
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9.1.5 The relationship between phase-field models and the CGM

In section 8.4, we have shown that in the dilute limit of the alloy, the interdiffusion fluxes from

the two models are in fact almost exactly equal. Because the interdiffusion flux determines

the extent of trapping, this result implies that the partition coefficient is also equal in this

limit. Consequently, this observation validates the earlier assumption that

Jim A;(asymptotic) = lim fc(CGM). (9.2)
V/V

It is perhaps not surprising that (9.2) is true because we have already observed an over-

whelming similarity between the solute trapping calculations of WBM2 model in the numerical

analysis, and the trapping behaviour described in CGM. Moreover, the explicit form for Vb

derived at the end of the asymptotic analysis shows all the expected features predicted in

experiments (where the VQ values are obtained from the least squares fitting of the CGM to

the experimental data).

9.2 Kinetic undercooling effect

In rapid solidification, the interface temperature is commonly observed to decrease beyond

the normal melting point of the material. This reduction in the temperature is ascribed to

the kinetic undercooling effect. The effect is successfully captured by the WBM2 model as

we have shown in sections 7.6 and 8.1. The numerical calculations of the temperature are

compared with the corresponding sharp interface predictions where very good agreement is

found. The kinetic undercooling is featured in the asymptotic analysis of the model, as a first

order term in the high V£ expansion.

In the sharp interface limit of the WBM2 model with a curved interface, carried out in

chapter 5, the kinetic undercooling term is obtained as part of the equation for the interface

temperature. This expression led to a direct relationship between the phase-field parameter

m, which is the non-dimensional representation of the mobility of the phase-field, to the

dimensional interface attachment kinetic of the solvent /.IA, and other materials parameters of

A. This relationship is given by,

LAD '

where a A, LA and T^ are the surface tension, latent heat and melting temperature of the

solvent A respectively, and D is the diffusion coefficient. In the studies of non-equilibrium

solidification, the kinetic undercooling term is commonly expressed as a term inversely pro-

portional to m.
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Because the treatment of solute trapping is carried out using the Nickel-Copper alloy,

where the value of fh is relatively large compared to the non-dimensional velocity Ve, the

kinetic undercooling term (which is proportional to V£/rh) is neglected in the asymptotic

analysis, and the interface temperature is assumed constant. The addition of the term will

involve a small change in the leading order solution of the solute field, subsequently, a small

change in the solute trapping results is also expected.

9.3 Future work

Because of the limited studies on rapid solidification using the phase-field model, there is a

lot of scope for further development of this area of research. The topics we propose below are

just a few of the possible areas that could be explored, and further expansions of the analyses

can be made.

9.3.1 The stability of the planar interface during rapid solidification

The sharp interface limit of the curved interface model in chapter 5 provides a starting point

for further analyses on the stability of the planar interface during rapid solidification. This

involves an investigation in the ensuing so-called morphological stability. The work can be

built on the work of Mullins and Sekerka [10] (for a sharp interface model of a binary alloy),

and Braun, McFadden and Coriell [73] (for a phase-field model of a pure material).

Unlike the present isothermal phase-field model of a binary alloy, morphological instabil-

ity takes place in a temperature gradient and may result from undercooled liquid adjacent to

the interface. Therefore the WBM2 model may need to be extended to the non-isothermal

situation. A thermodynamically consistent phase-field model is based upon an entropy func-

tional [28], a methodology that can be extended to an alloy. Alternatively, a simpler heuristic

method may be adopted, that is to append a modified heat equation of the form

where cp is the heat capacity , 7 is the thermal conductivity and p is the density of the alloy.

9.3.2 Solute trapping treatments using curved interface and regular solu-

tion formulations of the WBM2 model

The extension of our analyses on the rapid solidification process to the formulations suggested

in chapters 5 and 6, which accounts for a curved interface and the regular solutions, is quite
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straightforward. The only addition to the formulations are the two parameters /C and G

which correspond to the interface curvature and the energy of pair-wise interaction of the

solute atoms. These are the quantities that represent the physical effects included in the

formulation. The study of the effects of these additional parameters on the analyses will

throw more light on the mechanisms of rapid solidification in more general circumstances.

Specifically, we could examine the dependence of the partition coefficient and the diffusive

speed on G, and the possibility of deriving a suitable form for the diffusive speed, VD, in terms

of the equilibrium partition coefficient, ke, in the limit ke -» 1. We have shown in chapter 8

that the ideal solution phase-field model is incapable of determining the values of VD for this

range of ke values (see section 8.1.2).

9.3.3 The interface diffusivity

In Aziz's sharp interface theories, the interface diffusivity D{ is the main factor that determines

the value of the diffusive speed. The basic hypothesis of CGM states that Di is related to the

diffusive speed through the equation

where A is the inter-atomic distance. It has not been possible to measure Di directly through

experiments, therefore it is common practice to estimate its value by DL, the diffusivity of the

bulk liquid [4]. The explicit form we obtained for VD has allowed us to provide a correction

to this estimate, which gives the following new estimate for Di,

where all the parameters are described in section 8.2.2.

However, in our current analyses, we included the effect of varying the diffusivity across

the interfacial region, by insisting that the diffusivity D to be a function of <j>. The form for

D in this case is given by,

where Ds and DL are the diffusion coefficients in the solid and liquid bulk phases respectively.

This particular choice of D((p) satisfies the conditions D = Ds, dD/dcfi = 0 when 4> = 1 and

dD/d(f> — 0 when </> = 0, and it is monotonic in <p. It is therefore possible to relate Dl given

in (9.3), to some average of D{4>) over the interfacial region [70], for example,

rtf> where c=cmaxrt

/ (9-4)
where 0=0+00
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The feasibility of equation (9.4) has not yet been verified. However, it offers a starting

point from which the idea may be expanded. Success in this direction could provide a ratio-

nalisation of the relationship between the phase-field model and the microscopic properties of

the interface.

9.3.4 Solute trapping treatments using other phase-field models

It would be possible to generalise the results of our analysis to other phase-field models that

adopt a different form of the free energy density function. This supposition can be confirmed

by carrying out the analyses on, for example, the phase-field model of Caginalp [12] (extended

to binary alloys). His choice of the free energy density function is the following Helmholtz

free energy density (for pure materials),

/ ( ^ T ) = -^(</>2-l)2-2T</>, (9.5)

where a is a dimensionless constant. Notice that this form is similar to the free energy

density suggested by Kobayashi, in that it comprises two parts, the symmetric part (the first

term in (9.5) which has the symmetric double-well form), and an asymmetric part (the term

proportional to temperature).

9.4 Conclusion

The analyses carried out in this thesis have produced numerous insights into the rapid so-

lidification process and, more specifically, the solute trapping phenomenon. Not only have

we managed to use the WBM2 model to predict the trapping behaviour that agrees with

experimental observations, we also succeeded in producing the numerical values for the par-

tition coefficient which displays solute trapping phenomena. Moreover, the functional form

we have obtained for the diffusive speed, provides an exact dependence of the diffusive speed

on material parameters like the equilibrium partition coefficient, the diffusivity ratio and the

interface width of the alloy. This is the first solute trapping theory that is able to produce

such an explicit relationship. It extends an earlier theory of Aziz, which predicts an inverse

correlation between the diffusive speed and the equilibrium partition coefficient. A lack of

experimental data for the diffusive speed means this finding is very important as it will help

to predict the values for the diffusive speed of alloys where experimental data is not available.

Our analyses have managed to resolve an important issue that arose in an earlier work

by Wheeler, Bottinger and McFadden [1, 2], since our numerical results shows that solute
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trapping captured by the WBM2 model is not a result of the inclusion of the solute gradient

energy term in the free energy functional of the model. Instead, it is found to result from the

diffusive length scale of the solute field becoming comparable to the thickness of the interface,

when the interface velocity is sufficiently large. This issue brings us to the problem of applying

a continuum model at length scales comparable to atomic dimensions. Further studies are

required to ascertain the possible effects such description of the length scale might have on

solute trapping.

Having found some evidence that the solute trapping behaviour modelled by the CGM is

equivalent to the behaviour predicted by the WBM2 model, we are in the position to make the

same generalisation to other types of phase-field models. A further generalisation to consider,

is to extend the result to the 't her mo dynamically consistent' phase-field models in which an

entropy functional is adopted.

We have produced several different formulations of the WBM2 model to include a curved

solid-liquid interface, and the consideration of regular solutions in the solid-liquid transfor-

mation. These formulations should provide suitable models to assist further work on solute

trapping.

Another important physical effect successfully observed in the analyses is the kinetic un-

dercooling effect. This effect is one of the main characteristics of rapid solidification processes.

An extension of the current model to the non-isothermal process will be needed in order to

analyse the effect in greater detail.
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Appendix A

Transforming the cartesian

coordinates into the curvilinear

coordinates

In the new coordinates (r, s), the tangent vector and the normal vector to the point (X(s, t),Y(s, t))

on the curve cf> = 1/2 are (X',Y') and (Y',—X') respectively, and the normal velocity is

Vn = Y'Xt — X'Yt, where the prime denotes the derivative with respect to arclength and time

derivative is denoted by the subscript t. Therefore, the Cartesian coordinates are transformed

into the new coordinate as follows (see Figure 5.1),

x(r,s,t) = X(s,t)+rY'(s,t), (A.I)

y{r,s,t) = Y{s,t)-rX'(s,t), (A.2)

and hence,

xr = Y'(s,t), (A.3)

yr = -X'(s,t), (A.4)

xs = X'{s,t)+rY"{Sjt), (A.5)

ys = Y'(s,t)-rX"(s,t). (A.6)

Following McFadden et. al. [34], the local curvature to the interface is given by

K = X'Y" - Y'X", (A.7)

so that the Jacobian is given by,
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= xrys - xsyr (A.8)

= l+rK(s). (A.9)

Having obtained an expression for the local curvature K, we can now derive an expression for

the square of the element of the differential arclength for the orthogonal coordinates (r, s).

This is given by

dS2 = dr2 + h2ds2, (A.10)

thus, if we denote gap to be the metric tensor of the (r, s) coordinate system, then we have

1 0

0 h2

as,

dS = f/apdxadx , a, j3 = 1 or 2,

where dx} = d.r and dx* = ds.

The equivalent expressions for the gradient V and the divergence V2 in the (r, s) coordinate

are obtained using tensor calculus [74, 75], where, in tensor forms they are given as follows,

V'V = (V>) ;a , (A.13)

where ip(r, s) is an arbitrary differentiable function. Expanding the right-hand side of equation

(A.12), we have

,' 1 0 \ ( 1pr

0 l/h2 ]\ips

1
- -r^ipsS, (A-14)

where f and s are the unit vectors in the r and s directions respectively. Similarly, we expand

the right-hand side of equation (A.13) to obtain an equivalent expression for the divergence,

where F^7 are the Christoffel symbols. Variational methods lead us to the following nonzero

values of the Christoffel symbols,

r 1 — hh r 2 — r 2 — ' ' r r 2 — 'l-'
1 2 2 — n n r i L 1 2 — L 2 1 — ~J~i V 2 2 — ~j~i
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which are substituted into (A.15) to give,

Equations (A. 14) and (A. 16) provide the appropriate expressions for V and V2 in the curvi-

linear coordinate (r, s).
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Appendix B

The Nickel-Copper alloy data

TM{K)

L(J/cm3)

1um(cm3/mole)
2cr(J/cm2)

3D(cm2/s)

e(J/cm)1/2

W(J/cm3)

P(T)

M1(cm3/Js)

4M2(cm5/Js)

Nickel

Classical parameters

1728

2350

7.0

3.7 x 10^5

10'5

Phase-field materials parameters

3.3 x 10~6

8.9 x 103

4.9 x 108

5.7 x 10~9

Copper

1358

1725

7.8

2.8 x 10'5

10"5

3.3 x 10~6

5.1 x 103

TM

4.9 x 108

5.7 x 10"9

A table of the classical and phase-field parameters for the Nickel-Copper alloy, taken from

WBM1 [1]. The material parameters used in this thesis are the same as those in both the

WBM1 and the WBM2 model.

'We have used an average value of 7.4 for the alloy because our model does not deal with volume changes.
2Estimated from a = 0.7L(«m/JVo)Sf, see Coriell and Turnbull [76]; No is Avogadro's number.
3Typical liquid diffusion coefficient.
4At T* = (Tj& + T$)/2 = 1543K.
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Appendix C

Finite difference discretization

The governing equations (for 0 < DS/DL < 1) (7.10) and (7.11) may be formulated as three

second order nonlinear differential equations for variables (f>, c and 7 say, where 7 is defined

as,
2 g /(-2> + /(°}. (C.I)

Therefore, the governing equations are reduced to,

Cl2(f) Vtd(j)

+ m dz
rjf ~

e(c-cOQ) = 0, (C.3)^: + (D(4>) + l) + Ve(ccOQ)
dz dz

^ 2 ) l ° ) ] = 0, (C.4)

where the corresponding boundary conditions are,

? = ̂  = ?=CK (C.5)
dz dz dz

The domain length L^ is divided into N — 1 equally spaced intervals, where N is the

number of points at which the functions <j>, c and 7 are evaluated. Each of these points is

denned as,

Xi = il, i = 1 , . . . , iV,

where I = LN/(N — 1), the interval length. Correspondingly, the nodal values of 0, c and 7

are denned as 4>i = <fi(xi), Ci = c(xi) and ji = 7(2:1). These values form a vector U whose

entries are ordered as follows (with subscript i denoting the ith entry),

Ui = &, (C.6)

U2 + 1 = a, (C.7)

U l + 2 = 7. (C.8)

128



The last entry of U, namely U3JV+1, is defined to be the temperature T.

The derivatives are discretised using the Central Difference Approximation [77] to give,

fa-\di „ „, „, , <o)21,

Ci+1 " C

21

7i+i " "

2fa-
P

2cl +

P

U,+3

•Ci-l

u f c + ;

21
U

- U
21

j — X

i+3

i - 3

- 2Uj + Uij_3

P

- 2Uj + Uj_i

^ - ™- „ „ (cio)

rfi - c ^ - - - - ' ^ - i i )

U C ,• M . + i '-""I " I - «—J. — I *->1-\-A * " - " 7 I ^ 1 — 1 / ^ -.,-,•,

"2i ~ 21

These derivatives are inserted into equations (C.2), (C.3) and (C.4) to form 3iV nonlinear

equations in cf>, c, 7 and their derivatives. These nonlinear equations another vector V, where,

+ l)ci + ^(ci-Coo). (C15)

Vl+2 = 7i + A4--(/ i-2)(^,c i) + /W(^,ci)), (C.16)

(C.17)

where Vj is the i-th component of the vector V. The extra equation for the temperature,

i.e.. (7.12) is included in the formulation as the last entry of V, and it is discretised using the

Simpson's Rule to give,
I l=N

V37v+i = - ^ (<fc+i + 40, + 0i_i) .
6 i=i

Note that the boundary conditions will be imposed on the first three entries of V, and on

V37v_2, V3AT__I and V37V. The entries of V provide 3iV + 1 nonlinear equations for the 3AT + 1

variables, namely fa, Ci, ji, i = 1 , . . . , N, and T.

Boundary conditions

The far-field conditions are applied at the two ends of the domain, namely we imposed con-

ditions at z = -00 at —LN/2 and conditions at z — +00 at LJV/2.

(1) At -LN/2:
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giving,

4

The conditions above are substituted into the first three entries of V respectively to give

the first three nonlinear equations of the system.

(2) At LN/2:

We have similar conditions as above, i.e.,

<$ = 4 = 7f = o.

The second derivatives are therefore given by,

f>zz» =

(C.22)

AT _ 2^l{N-i) - IN)

Similarly, these conditions are substituted into the last three entries of V.
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Appendix D

Fortran program PDE1.F

#define NOPTS 201

#define NODE 3

program main

c

c program to compute 1-d p.f. solutions for solute trapping

c modified from bif2.f for solving algebraic nonlinear equations

c

parameter ( npts = NOPTS, neq = N0DE*npts +1 ,

iwork = 3*neq, lwa = (3*neq**2 + 13*neq)/2 )

common /b/ delx, fswitch, mswitch, mprint

common /c/ eps,dsiga,dsigb,xla,xlb,v,xm,vmax

common /d/ temp,xke,cinf, tma, tmb

common /e/ del, dd

dimension y(neq),f(neq),fp(neq,neq),

ivl(neq),fvl(neq),alfr(neq),alfi(neq),

z(neq.neq),vl(neq),v2(neq)

complex eig(neq),cmax

dimension work(iwork),wa(lwa)

external fen

c

c read in data

open(4,file='pdel.dat',status=Junknown')

read(4,*)

read(4,*) ncont

read(4,*)

read(4,*) eps, dsiga, dsigb, xla, xlb,v

read(4,*)

read(4,*) xke, tt, xm, tma, tmb

read(4,*)

read(4,*) mswitch.fswitch, xlen, del, vmax

read(4,*)

read(4,*) dd

c

c compute delx, the length of the interval

delx = xlen/float(npts -1)
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gas = 8.314

vm = 7.4

rtvm = gas*tt/vm

dfa = xla*(tt - tma)/(tma*rtvm)

dfb = xlb*(tt - tmb)/(tmb*rtvm)

cs = (exp(dfa) - 1.O)/(exp(dfa) - exp(dfb))

cinf = cs

cl = cs*exp(dfb)

c

if(v .eq. 0.0) cinf = cl

c

tO = (cinf*xlb + (1.0-cinf)*xla)/(cinf*xlb/tmb

+ (1.0-cinf)*xla/tma)

rtOvm = gas*tO/vm

sigaO = dsiga/(eps*sqrt(rtOvm))

sigbO = dsigb/(eps*sqrt(rtOvm))

sigstaO = sqrt(cinf*sigbO**2 + (1.0-cinf)*siga0**2)

write(*,*) 'cinf, sigaO, sigbO, sigstaO = ',

cinf, sigaO, sigbO, sigstaO

c

c set the initial guesses Yphi, c and \gamma as y(l), y(2) and y(3)

c respectively.

temp = tO

write(*,*) 'exact solution'

xold = -xlen/2.0

c

if (v .gt. vmax) then

c

c initial guess for velocity greater than vmax

do i = 1, npts

x = xold + (i-l)*delx

11 = NODE*(i - 1) + 1

12 = il + 1

13 = i2 + 1

y(il) = 0.5*( 1.0 - tanh( 3.0*sigsta0*(x) ) )

cl = -cinf*(1.0-cinf)*((dd - l)*y(il)**2*(3 -2.0*y(il)) + 1.0)

*(1.0-(tanh(3.O*sigstaO*(x))

**2))*fcfun(y(il),cinf)

y(i2) = cinf + cl/v

y(i3) = fcfun(y(il),y(i2))

end do

elseif (v .ge. 0.0 .and. v .le. vmax) then

c

c initial guess for velocity less than or equal to vmax

do i=l, npts

c

x = xold + (i-l)*delx

il = NODE*(i-l) + 1
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12 = il + 1

13 = i2 + 1

xll = O.5*(N0PTS-l)*delx

y(il) = 0.5*(1.0-tanh(3.0*sigsta0*(x)))

c

delfa_dl = xla*(temp/tma - 1.0)/rt0vm

delfb_dl = xlb*(temp/tmb -1.0)/rt0vm

ddl = delfa_dl - delfb_dl

delf = (sigaO**2 - sigbO**2)*y(il)**2*(l.0-y(il))**2

delf = 18.0*delf + ddl*y(il)**2*(3.0 - 2.0*y(il))

delf = delf + fcfun(O.O,cl)

y(i2) = 1.0/(1.0 + exp(-delf))

y(i3) = fcfun(y(il),y(i2))

c

end do

end if

c

c set initial temperature to tt

y(neq) = temp

c

c to use previous solutions as initial guess, set ncont > 0

if (ncont .ne. 0) call readin(y)

write(6,*)

write(6,*)

write(6,*)

write(6,1300) eps, siga, sigb, delfa, delfb,

ncont,mswitch,fswitch

1300 format(5x,J eps = ',lel2.4,5x,' siga = J,lel2.4/,

* 5x,' sigb = ',lel2.4,5x,' delfa = J,lel2.4/,

* 5x,' delfb = ;,lel2.4/,

* 5x,' ncont = ', il2,5x,'mswitch = ', il2/,

* 5x,'fswitch= J,lel2.4/)

c

write(6,*) ' starting guess....'

call output(y)

c

c set parameters for snsq

iopt = 2

tol = 1.0e-9

nprint = 1

mprint = 1

c

write(6,*) ' '

write(6,*) ' calling snsqe '

write(6,*) ' '
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c call snsqe using implicit jacobian

c

call snsqe(fen,hjaco,iopt,neq,y,f,tol,nprint,info,

wa,lwa)

c

write(6,*) ' '

write(6,*) ' (is info = 1?) info = ',info

write(6,*) ' '

c

call fcn(neq,y,f,info)

c

call output(y)

c

ynorm = O.OeO

do 300 k=l,neq

300 ynorm = ynorm + y(k)**2

ynorm = sqrt(ynorm)

write(6,*) ' '

write(6,*) '============================================ >

write(6,*) ' a2 , y(l), ynorm: '

write(6,*) a2, y(l), ynorm

call resave(y)

c

call gnu(y)

c

end
c====================================================================

subroutine output(y)

c====================================================================

c This subroutine writes out the solutions at any stage it is called.

c y(l) = \phi, y(2) = c, y(3) = \gamma, y(neq) = temp

c

parameter ( npts = NOPTS, neq = N0DE*npts + 1)

dimension y(*)

c

c compute max and min of c

c

cmin = 1.0

cmax =0.0

c

do k=l, npts

c

c = y(NODE*(k-l) + NODE-1)

if (c.gt.cmax) cmax = c

if (c.It.cmin) cmin = c

c

end do

c

write(6,*)
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do 10 k= 1, npts

write(6,;("k, phi, c: '',i3,2x,Ipel3.5,2x,Ipel3.5,2x,lpel3.5)')

k ,y(N0DE*(k - 1)+ 1), y(N0DE*(k-l) + 2),

y(N0DE*(k-l) + 3)

10 continue

c

write(6,*)

write(6,*) 'temperature =', y(neq)

write(6,*) 'cmin,cmax,k = '

wr it e(6,*) cmin,cmax,cmin/cmax

c

return

end
f — — — — — — - — — — - - — — — — — — _ • — — _ _ — • — — — — ^ » _ — — - — — . — _ — — — — — . — . — — — • _ _ _ — — — — _ . — — — — — _ . _ _ - _ - _ _ _ . • _ • _ . • _ — — — — . — — - _

subroutine readin(y)
————• — — — —————————— ———* * — — ~ — ~ ~ ^ i ~ ~ ~ —:rs ^ ~ ~ ~ ~ ~ — * ~ ~** ~ ~ ~ *~ ~ ~" ~~ ̂ ^ ^ ^ ^ ^ • ^ y — —-——-—————-——-—-r-——;-^- —

c

c This subroutine reads in the solution vector y(*) from the file fort.8.

c It is normally used to read in the solutions from the previous run and

c use them as the current initial guesses.

c

parameter ( npts = NOPTS, neq = NODE*npts+l)

common /b/ delx, fswitch, mswitch, mprint

common /c/ eps,dsiga,dsigb,xla,xlb,v,xm,vmax

dimension y(*)

c

do j=l,neq

read(8,*) jdum,y(j)

end do

c

return

end

subroutine resave(y)

c This subroutine store the vector y(*) in the file fort.9. It is

c normally use to store the current solutions for use as initial guesses

c in the following run.

c

parameter ( npts = NOPTS, neq = NODE*npts+l)

common /b/ delx, fswitch, mswitch, mprint

common /c/ eps,dsiga,dsigb,xla,xlb,v,xm,vmax

dimension y(*)

do 10 j=l,neq

10 write(9,*) j,y(j)

c

return

end
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subroutine gnu(y)

c This subroutine writes out the solutions in the file pdel.out for plotting,

c

parameter ( npts = NOPTS, neq = NODE*npts+l)

common /b/ delx, fswitch, mswitch, mprint

common /c/ eps, dsiga, dsigb, xla, xlb,v,xm,vmax

dimension y(*)

c

open(10, file = 'pdel.out', status = 'unknown')

c

write(10,100) eps, siga, sigb, xla, xlb, vd, xm, tma.tmb

, cinf, delta

100 format('#',lx,el3.5,lx,el3.5,lx,el3.5)

c

write(10,'("# temp = ",el3.5)') y(neq)

c

xlen = delx*float(npts - 1)

do 10 k=l,npts

cl = v*(y((k-l)*N0DE + 2) - cinf)

write(10,'(lx,Ipel3.5,2x,Ipel3.5,2x,Ipel3.5,2x,Ipel3.5,

2x,lpel3.5,2x,lpel3.5)')

((k-l)*delx - xlen/2.0), y((k-l)*NODE + 1), y((k-l)*NODE + 2),

y((k-l)*NODE + 3 ) , cl

10 continue

c

close(lO)

c

return

c

end

subroutine fcn(neq,y,yp,info)

c Subroutine required by snsqe.

c It defines the equations to be solved.

c

common /b/ delx, fswitch, mswitch, mprint

common /c/ eps, dsiga, dsigb, xla, xlb, v, xm,vmax

common /d/ temp, xke, cinf, tma, tmb

common /e/ del.dd

dimension y(neq),yp(neq), a(4), t(24), s(3)

complex r(3)

c

c neqpts is the no of points where equation is solved

c neq is neqpts + 1 - the extra for int constraint

c

neqpts = neq - 1
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c set temperature - which is the extra degree of freedom

c

temp = y(neq)

c

if(iflag.eq.O) then

write(*,*) 'current guess:'

call output(y)

end if

c

c set b.c.s at x = -xlen/2 (neumann)

c

ipt = 1

11 = NODE*(ipt - 1) + 1

ilpl = il + NODE

ilml = ilpl

c

c compute phi at neighbouring points

c

phipl = y(ilpl)

phi = y(il)

phiml = y(ilml)

c

derivll = (phipl - phiml)/(2.0*delx)

derivl2 = 2.0*( phipl - phi )/(delx**2)

c

c compute (dd-l)phi~2(3-2phi)

c

phidum = (dd-1.0)*phi**2*(3.0 - 2.0*phi)

c

12 = il + 1

i2pl = i2 + NODE

i2ml = i2pl

c compute c at neighbouring points

c

cpl = y(i2pl)

c = y(i2)

cml = y(i2ml)

c

deriv21 = (cpl - cml)/(2.0*delx)

deriv22 = 2.0*(cpl - c)/(delx**2)

c

13 = i2 + 1

i3pl = i3 + NODE

i3ml = i3pl

c

c compute mu at neighbouring points

c

xmupl = y(i3pl)

xmu = y(i3)

xmuml = y(i3ml)
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c

c compute mu'

c

deriv31 = (xmupl - xmuml)/(2.0*delx)

c

yp(il) = derivl2 + v*derivll/xm + func(y(il),y(i2),1)

yp(i2) = c*(1.0-c)*(phidum + 1.0)*deriv31

+ func(y(il),y(i2),2)

yp(i3) = y(i3) + del**2*deriv22 - fcfun(y(il),

c

c set b.c.s at x = xlen/2 (neumann)

c

ipt = neqpts/NODE

11 = NODE*(ipt - 1) + 1

ilml = il - NODE

ilpl = ilml

c

c compute phi at neighbouring points

c

phipl = y(ilpl)

phi = y(il)

phiml = y(ilml)

c

derivll = (y(ilpl) - y(ilml))/(2.0*delx)

derivl2 = 2.0*( y(ilml) - y(il) )/(delx**2)

12 = il + 1

i2ml = i2 - NODE

i2pl = i2ml

c

c comput c at neighbouring points

c

cpl = y(i2pl)

c = y(i2)

cml = y(i2ml)

deriv21 = (cpl - cml)/(2.0*delx)

deriv22 = 2.0*(cpl - c)/(delx**2)

c

13 = i2 + 1

i3ml = i3 - NODE

i3pl = i3ml

c

c compute xmu at neighbouring points

c

xmupl = y(i3pl)

xmu = y(i3)

xmuml = y(i3ml)

c

deriv31 = (xmupl - xmuml)/(2.0*delx)
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yp(il) = derivl2 + v*derivll/xm + func(y(il),y(i2),1)

yp(i2) = c*(1.0-c)*(phidum + I)*deriv31

+ func(y(il),y(i2),2)

yp(i3) = y(i3) + del**2*deriv22 - fcfun(y(il),y(i2))

c

c Special case, v=0.0, c= c_L at +\infty

c

if(v .eq. 0.0) then

xmupl = xmuml

yp(i2) = c - cinf

endif

c

c set interior points

c

do ipt = 2, neqpts/NODE - 1

c

c set pointer to neighbouring points and compute second

c derivs

c

11 = NODE*(ipt - 1) + 1

ilml = il - NODE

ilpl = il + NODE

derivl2 = ( y(ilpl) - 2.0*y(il) + y(ilml) )/(delx**2)

derivll = (y(ilpl) - y(ilml))/(2.0*delx)

c

c compute phi at neighbouring points

c

phipl = y(ilpl)

phi = y(il)

phiml = y(ilml)

c

c compute (dd-l)phi~2(3-2phi)

c

phidum = (dd-1.0)*phi**2*(3.0 - 2.0*phi)

12 = il + 1

i2ml = i2 - NODE

i2pl = i2 + NODE

c

c compute c at neighbouring points

c

cpl = y(i2pl)

c = y(i2)

cml = y(i2ml)

deriv21 = (cpl - cml)/(2.0*delx)

deriv22 = (cpl -2.0*c + cml)/(delx**2)

c

13 = i2 + 1
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i3pl = i3 + NODE

i3ml = i3 - NODE

c

c compute mu at neighbouring points

c

xmupl = y(i3pl)

xmu = y(i3)

xmuml = y(i3ml)

c

c compute mu'

c

deriv31 = (xmupl - xmuml)/(2.0*delx)

c

c compute equations

c

yp(il) = derivl2 + func(y(il),y(i2),1)

yp(il) = yp(il) + v*derivll/xm

yp(i2) = c*(1.0-c)*(phidum + I)*deriv31

(phidum + I)*deriv21 + func(y(il),y(i2),2)

yp(i3) = y(i3) + del**2*deriv22 - fcfun(y(il),y(i2)

c

end do

c

c last equation is that \int (phi - 1/2) = 0

c use Simpson's Rule to evaluate this

c

xint =0.0

do ipt = 2, neqpts/NODE - 1,2

il = NODE*(ipt -1) + 1

ilml = il - NODE

ilpl = il + NODE

c

xint = xint + y(ilml) + 4.0*y(il) + y(ilpl)

c

end do

c

xint = delx*xint/3.0

xint = xint - 0.5*(N0PTS - l)*delx

c

yp(neq) = xint

c

c compute residual

c

resid = O.OeO

do 100 j=l,neq

100 resid = resid + yp(j)**2

resid = sqrt(resid)
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if (mprint.eq.l) write(6,*) ' resid = ',resid

c

return

end

c

c========================================================

real function func(xphi,c,ieqn)

C —— —.—_______ ________________ ________—-—___ _____ _____ _________

c

common /c/ eps,dsiga,dsigb,xla,xlb,v,xm,vmax

common /d/ temp, xke, cinf, tma, tmb

c

fm2a(x) = -72.0*siga_dl**2*x*(x-1.0)*(x-0.5)

fm2b(x) = -72.0*sigb_dl**2*x*(x-1.0)*(x-0.5)

c

fOa(x) = -6.0*delfa*x*(1.0-x)

fOb(x) = -6.0*delfb*x*(1.0-x)

c

rtvm = 8.314*temp/7.4

delfa = xla*(temp/tma - 1.0)/rtvm

delfb = xlb*(temp/tmb - 1.0)/rtvm

siga_dl = dsiga/(eps*sqrt(rtvm))

sigb_dl = dsigb/(eps*sqrt(rtvm))

c

c gives nonlinearity of the equation

c

if(ieqn.eq.1) then

c

c phi equation

c

fm2 = (1.0 - c)*fm2a(xphi) + c*fm2b(xphi)

fO = (1.0 - c)*fOa(xphi) + c*fOb(xphi)

func = fm2 + fO

c

else if(ieqn.eq.2) then

c

c c equation

c

func = v*(c-cinf)

c

end if

c

return

end

real function fcfun(xphi,c)

c========================================================

c

common /c/ eps, dsiga, dsigb, xla, xlb, v, xm.vmax

common /d/ temp, xke, cinf, tma, tmb

c
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fm2a(x) = 18.0*siga_dl**2*x**2*(1.0-x)**2

fOa(x) = delfa*x**2*(3.0-2.0*x)

fm2b(x) = 18.0*sigb_dl**2*x**2*(1.0-x)**2

fOb(x) = delfb*x**2*(3.0-2.0*x)

rtvm = 8.314*temp/7.4

delfa = xla*(temp/tma - 1.0)/rtvm

delfb = xlb*(temp/tmb - 1.0)/rtvm

siga_dl = dsiga/(eps*sqrt(rtvm))

sigb_dl = dsigb/(eps*sqrt(rtvm))

fa = fm2a(xphi) + fOa(xphi)

fb = fm2b(xphi) + fOb(xphi)

fcfun = log(c/(1.0-c)) + fb - fa

return

end
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