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This thesis is concerned with certain types of weak singularity in general relativity

for which some geometrical concepts remain well defined at the singularity.

We review the use of holonomy to analyse quasi-regular singularities. We intro-

duce a class of curvature singularities which we call idealised cosmic strings which

may provide more general models for cosmic strings than quasi-regular singulari-

ties. We analyse these singularities using methods of holonomy and examine the

curvature and geometry in their neighbourhoods.

In order to do this we prove a number of results about the behaviour and

divergence of tensors in parallelly propagated frames and in pairs of frames related

by bounded transformations. Making use of path-ordered exponentials of curvature

we give conditions under which we prove that certain elements of holonomy exist

even for a curvature singularity. We then present a 2 + 2 formalism suited to

analysing idealised cosmic strings and show how the geometry of the full connection

is related to the geometry of a connection which we call the projected connection.

We also apply these results to prove the existence of certain intrinsic and extrinsic

holonomy groups which we define.

In addition we prove a number of results about conformal singularities and in

particular that the 4-cone is not conformally regular and we examine the effect of

conformal transformations on extrinsic curvature.

Finally we prove that coordinates may be found in which a metric has block

diagonal form.
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Introduction

In this thesis we discuss certain "weak" singularities in general relativity from

a geometrical viewpoint.

General relativity is described in terms of the differential geometry of a pair

(M, g) where M is a manifold and g is a Lorentzian metric. (M, g) are assumed

to be smooth, or at least C2, and g is assumed to be non-singular everywhere on

M. This makes it difficult to talk about a space-time being "singular" or "having

a singularity".

The most familiar example of a singularity occurs in the Schwarzschild black

hole solution. Here the curvature experienced along any timelike curve which crosses

the event horizon grows unbounded within a finite proper time. We would like to say

that the endpoint of the curve has hit a "singularity", a place perhaps of "infinite

curvature", but of course this endpoint cannot be part of the manifold and it is

more profitable to think of a singularity as a boundary or "edge" to space-time.

It used to be thought that singularities were an artefact of spherical symmetry

and unlikely to occur in physically realistic situations, but theorems due to Penrose

and Hawking [HE] show that singularities are in fact a generic feature of space-time.

However these theorems do not give any information about the nature of these

singularities and it is thus important to investigate singularities more carefully.

The Schwarzschild singularity is an example of a "strong curvature singularity"

but there also exist certain types of "weak" singularity. For example a quasi-

regular singularity is one where all the components of the Riemann tensor have well

defined limits in any frame parallelly propagated along any C1 curve ending at the

singularity. Thus an observer would not notice anything unusual as they approached



it. An intermediate singularity, on the other hand, is one for which there exists a

non-parallelly propagated frame along a curve ending at the singularity in which the

components of the Riemann tensor have well defined limits, despite the fact that in

a parallelly propagated frame the curvature is badly behaved. Thus in particular,

curvature scalars will be well behaved along such a curve.

So the behaviour of singularities can be subtle. Many examples of singularities

can be constructed with unusual behaviours and there is no entirely satisfactory

definition of a singularity. Maybe we would like to say that these weak singularities

are somehow unphysical, but we are still interested in a mathematical way of han-

dling them, maybe to "factor them out" of our investigations. However we shall see

how weak singularities, and quasi-regular ones in particular, can be used as models

for cosmic strings, thus here weak singularities have a direct physical interpretation.

Cosmic strings are thin tubes of "false vacuum" which arise from attempts to

apply Grand Unified Theories to the early universe. They are usually modelled as

2-dimensional timelike worldsheets using weak field theory on a fixed background.

These worldsheets turn out to be minimal and can bend on small length scales and

form closed loops. Because of this, they have been proposed as a mechanism for

the formation of structure and galaxies in the early universe.

However if we wish to take into account gravitational effects, it is necessary to

solve the full coupled equations for a cosmic string. In the axisymmetric case this

results in a space-time which outside the string (very nearly) has metric

ds2 = -dt2 + dr2 + A2r2d62 + dz2 0 < 9 < 2TT A ^ 1.

This metric is called the J^-cone and is the simplest example of a quasi-regular

singularity.

We start in chapter 1 by reviewing and consolidating the necessary background

material on singularities and quasi-regular singularities. We review how the 4-cone,



and more generally how elementary quasi-regular singularities may be considered to

be totally geodesic, despite not having a well defined normal metric. We review how

holonomy may be used to study singularities. A frame parallelly propagated round

a closed loop and back to its starting point undergoes a Lorentz transformation: if

the loop is homotopic to a point, then this transformation will tend to the identity

as the loop shrinks to a point, however if the loop encircles a singularity, then the

transformation will not in general tend to the identity, rather it will tend to an

element of a so-called singular holonomy group, and these groups will tell us about

the structure of the singularity.

We review how quasi-regular singularities give rise to well defined singular holon-

omy groups. In the case of 2-dimensional timelike singularities (of which the 4-cone

is an example), these groups will consist of rotations through multiples of a fixed

angle 2TT(1 — A) with the singularity as axis and, subject to mild conditions, be

conserved along the singularity. This leads to the result that 2-dimensional quasi-

regular singularities may be considered to be totally geodesic.

It turns out that 2-dimensional timelike quasi-regular singularities may provide

suitable models for cosmic strings. In particular the conservation of holonomy leads

to these singularities having the light bending properties we would expect of a

cosmic string. The fact that they are totally geodesic means that they are minimal,

which is consistent with the weak field approach, however requiring them to be

totally geodesic is a stronger condition and suggests that cosmic strings are really

quite inflexible objects. It is of interest to see whether they can nonetheless bend

or form closed loops on small length scales. However a relationship can be derived

between the size of loops which can form and the curvature of the ambient space-

time [CEV]. In particular a cosmic string cannot bend on length scales smaller than

the cosmological length scale. This remains true even if we model cosmic strings,



not with quasi-regular singularities, but with a regular space-time where a region

of high curvature is confined to a narrow tube.

Now a construction of a circular cosmic string of arbitrarily small radius is given

in [FIUj. The construction is complicated and it is not obvious that, in a range of

cases, it gives rise to a curvature singularity. This is shown in [UHIM], which de-

scribes a class of curvature singularities such as this one which are proposed as

models for cosmic strings. The claim is made that singularities in this class are

nonetheless totally geodesic. However the definition of this class is not particu-

larly rigorous and a number of unnatural restrictive assumptions are made. We

analyse this discussion in section 4.1, where we correct a number of claims, make

the discussion more rigorous, and point out some results missing in the original

discussion.

We then go on in section 4.2 to define a new class of "weak" curvature singulari-

ties using a more natural set of assumptions, which we call idealised cosmic strings.

These are somehow worse than quasi-regular ones but remain weak enough so that

certain concepts of differential geometry remain well defined at these singularities.

The idea is that a space-time with such a singularity admits a preferred foliation of

spacelike 2-surfaces normal to the singularity, each of which has a quasi-regular sin-

gularity in the induced 2-metric, while the singularity itself has a perfectly regular

Lorentzian 2-metric. Thus the singularity has a well denned dimension and intrinsic

geometry. Despite this, the singularity will in general be a curvature singularity.

Because of this, they may be able to bend on smaller length scales, though they

may have unexpected light bending properties. Some idealised cosmic strings may

however be considered to be totally geodesic.

In chapter 5 we describe a 2 + 2 formalism which is naturally suited to analysing

idealised cosmic strings. In particular, we introduce a new connection called the



projected connection which contains some, but not all, of the geometrical informa-

tion of the full space-time connection, and discuss the properties of the projected

connection and its curvature, and show how they relate to the properties of the

full space-time connection and curvature. We then apply methods of holonomy to

study idealised cosmic strings.

However the full holonomy groups will not in general exist for a curvature sin-

gularity. We therefore define the intrinsic holonomy groups, generated by parallelly

propagating frames along loops restricted to lie in the preferred spacelike 2-surfaces

with respect to the projected connection, and the extrinsic holonomy groups, gen-

erated by parallelly propagating frames along loops restricted to lie in the preferred

spacelike 2-surfaces with respect to the full connection. We exhibit conditions under

which the intrinsic holonomy groups exist and are conjugate to the extrinsic holon-

omy groups. Thus we use the projected connection as a means of proving results

about the full connection. We then exhibit conditions under which the intrinsic and

extrinsic holonomy groups are conserved along the singularity.

Chapter 2 is concerned with developing the tools necessary for this. In section

2.1, we show how the result of parallelly propagating a basis along a curve may be

expressed as a path-ordered exponential of an integral of the connection. In section

2.2 we define an UJ-frame to be a basis parallelly propagated along a curve with

respect to a connection u and prove a number of results about the behaviour of

tensors in such frames. In particular we show how the rate of divergence of a tensor

may be well defined, so that statements like "the curvature diverges as 1/r" make

sense. The point of this is that in order to examine the behaviour of the curvature

and other tensors along a curve terminating at a singularity, it is not meaningful to

examine the components of these tensors in a coordinate basis, since these are not

covariant. Rather it is necessary to examine the components of these tensors in a



basis parallelly propagated along the curve. We shall also need to express holonomy

in terms of path-ordered exponentials of integrals of the connection.

Now we wish to relate the behaviours of the projected and full connections.

Therefore in section 2.3. we define an equivalence relation on connections LU ~ uJ

if the Lorentz transformation relating any u;-frame with any aJ-frame has a well

defined limit along a curve terminating at a singularity. We prove that if a; ~ uJ,

then the components of a tensor will be bounded in an u;-frame if and only if they

are bounded in a cJ-frame, and that if they diverge, then they will diverge at the

same rate in both frames. We also prove that a curve has finite b-length with respect

to to if and only if it has finite b-length with respect to U. Now cu. U are not tensors,

but the connection difference a = U — LU is a tensor and we demonstrate conditions

on a which yield u ~ uJ.

In section 2.4, we use the first and second Cartan equations to examine the

difference in torsions and curvatures of two connections for which to ~ UJ.

In section 2.5, we show how holonomy may also be expressed as a path-ordered

exponential of an integral of the curvature and prove conditions under which certain

elements of holonomy exist even for a curvature singularity. We make use of this in

chapter 5 to prove the existence of the intrinsic holonomy groups.

In chapter 6, after introducing a form of the Gauss-Codazzi-Ricci equations

which relate the curvature of the projected connection with the curvature of the

full connection, we examine the various components of the curvature of an idealised

cosmic string and show which components converge and which diverge. We also

give conditions under which the string can be said to be totally geodesic and discuss

some consequences of this. In section 6.3 we give some examples of idealised cosmic

strings and examine their behaviours. In section 6.4 we give a proof that a metric

may be block diagonalised, that is, coordinates may be chosen such that the metric



has form

where g^. #11 are 2x2 metrics on orthogonal families of 2-surfaces. Such a coordinate

system would be a very natural one in which to discuss idealised cosmic strings.

Chapter 3 is concerned with a different kind of "weak" singularity. A conformal

singularity is one which may be removed by applying a conformal transformation

g i-> Q2g to a space-time (M.g). In other words, if (M.g) is singular but (M.Q.2g)

is regular, (M, g) contains a conformal singularity, and this singularity can in some

sense be said to be mathematically tractable. However we wish to avoid mapping

the singularity away to infinity and we use the results of chapter 2 to examine

conditions under which curves b-incomplete with respect to g are mapped to curves

b-incomplete with respect to g~ and vice versa. We briefly discuss the consequences

of this for the Weyl Curvature Hypothesis.

In section 3.3 we describe the conformal Cartan connection, which is a con-

nection, not on a space-time, but on the bundle of conformal connections on a

space-time (M.g), which includes all the connections of all metrics conformally

related to g. We use this connection to prove that any vacuum space-time with

non-trivial singular holonomy cannot be conformally regular, and in particular that

the 4-cone cannot be conformally regular. We give a simpler proof of this in section

3.4.

In section 3.5 we examine the effect of conformal transformations on the extrin-

sic curvatures of a submanifold. We prove that a conformal transformation of the

metric can always make the trace of the extrinsic curvature, known as the mean

curvature, zero, but that the trace free part of the extrinsic curvature, known as

the umbilical curvature, is a conformal invariant.



1.1 Singular incompleteness

Chapter 1

Singularities and quasi-regular singularities

1.1 Singular incompleteness

Let (M, g) be a space-time. Since, as we discussed in the introduction, singu-

larities are not part of the space-time, we have to describe their properties in terms

of the non-singular (M.g). We wish to examine whether (M.g) is "complete" or

whether it admits some kind of "singular boundary" ([ES], [HE] and [TCE]).

Suppose g is positive definite. Then if M is (path) connected, any two distinct

points a, b £ M can be connected by a C1 curve 7 : [0,1] —> M such that 7(0) = a

and 7(1) = b, and any such curve will have a strictly positive and finite length.

Define d(a, b) to be the infimum of the lengths of all such curves from a to b. Then

(M, d) is a metric space. A sequence (xn) in M is a Cauchy sequence if given

c > 0 3NS such that

d(xn,xm) < e Vn, m > Ns.

A metric space is complete if all Cauchy sequences converge to points of the space.

If all Cauchy sequences in (M, g) converge to points of M, then [M. g) is said to be

Cauchy complete or m-complete.

m-incompleteness corresponds to the idea that there are points missing from

M, or that there exists e > 0 and a C1 parametrised curve 7 : [0,c) —> M such

that any infinite sequence of points of Im 7 with parameter values accumulating at

e is Cauchy incomplete. In other words, 7 cannot be extended any further (in the

direction of increasing parameter value) despite having finite length. We think of 7

as having "reached the edge of the manifold".



1.1 Singular 'incompleteness

This leads to the idea of geodesic completeness or g-com/pleteness. A manifold

is g-complete if all geodesies extend to infinite parameter value in both directions.

For a positive definite metric, g- and m-completeness are equivalent [KX], and

no curve of finite length can ever leave the manifold. For a metric of Lorentzian

signature, m-completeness does not make sense: there is no obvious, natural positive

definite metric on (M,g). g-completeness does however make sense. Recall that

an affinely parametrised geodesic is a C2 curve 7 : s >->• j(s) € M with u> =

djl(s)/ds and ulV^ = 0. ul remains one of timelike; null or spacelike for all

parameter values. If a geodesic cannot be extended beyond a finite parameter

value in a given direction then it is incomplete, and if it is incomplete in one affine

parameter, then it is incomplete in all affine parameters. For a timelike geodesic,

proper time is an affine parameter. Assuming our manifold to be time orientable, an

incomplete timelike geodesic can be future incomplete, past incomplete, or both.

A physical object travelling along such a geodesic will leave the manifold in a

finite proper time, or will have entered the manifold a finite proper time ago, or

both. Proper distance along spacelike geodesies is an affine parameter, but the

physical significance of spacelike geodesic incompleteness is less clear. Null geodesic

incompleteness is probably important given that light is assumed to travel along null

geodesies, however in this case the meaning of an affine parameter is not clear. It is

important though to distinguish between the three types of geodesic incompleteness

since examples can be constructed which exhibit any one of the three, but not the

other two.

g-completeness is not however enough for a Lorentzian manifold. Geroch [G]

gives an example of a space-time which is geodesically complete despite the existence

of inextendible curves of bounded acceleration on which only a finite proper time

elapses to the future of any point. In other words, a rocket-ship with only a finite

amount of fuel could traverse such a curve in finite proper time. Going further we



1.2 Singular boundaries

can call a space-time (M,g) timelike incomplete if there exists an inextendible Cl

timelike curve of bounded acceleration—not necessarily a geodesic—which is future

or past incomplete, i.e. which continues to the future or the past for a finite proper

time.

We can also consider b-completeness. Given a C1 curve 7 : s H> 7(5) through

x £ M, let (e2) be a basis for the tangent space Tx at x. Now parallelly propagate

(e;) along 7 to give a basis for T (s) for each s. We can express the tangent vector

V of 7 in terms of this basis

V = V>(s)et.

Then define u = Jx(^2l VlVi)1/'1 dt. u is called a generalised affine parameter (g.a.p.)

along 7 and depends on the point x and the frame (e:) at x. It can be shown that

if a curve cannot be extended beyond finite parameter value in one g.a.p., then this

holds for all g.a.p. and we say the curve is incomplete with respect to g.a.p. If there

are no such curves in M, then (M,g) is b-complete. We note that if 7 above is a

geodesic then u is an affine parameter, thus b-completeness implies g-completeness,

but the converse is not true unless g is positive definite.

b-completeness may be too strong a requirement and we could say that a space-

time is singularity free if it is non-spacelike b-complete. In particular timelike b-

completeness is equivalent to timelike completeness as denned above.

1.2 Singular boundaries

Corresponding to a space-time (M, g) which is incomplete with respect to some

definition, we have a class C of inextendible incomplete parametrised curves. We

will assume each curve starts at a point of M and so is inextendibly incomplete in

one direction only. We would like to know whether two curves j x , 72 € C have the

same, or distinct, "singular endpoints". So we want an equivalence relation ~ on

C such that -/1 ~ 72 means ~(x and 72 end at the same "singular points'' according

10



1.2 Singular boundaries

to some suitable definition. This allows us to form the quotient space C/ ~, the

elements of which are the distinct equivalence classes of ~, so each point of C/ ~

represents a different singular point. Then given a topology on C. we obtain a

topology for the singularity.

More generally we would like a map

where M is a manifold and 6 : M —> ImO is a diffeomorphism such that the

closure of Im 9 in M is M, and such that dM = M — Ira 9 somehow represents

the singularity. This makes clear the notion of a singular boundary. We emphasize

though, that given a topology on dM, the differential structure of M is highly

non-unique.

One construction is the b-boundary. Here we define a positive definite metric

e, not on (M,g), but on LM, the bundle of orthonormal frames on M. Above each

point x € M, there is a fibre ir-1(x) consisting of all orthonormal frames at x and

diffeomorphic to the Lorentz group L where

7T : LM -> M.

It turns out that {LM, e) is m-complete if and only if (M,g) is b-complete ([S71]).

We can extend TT to a map TT on LM, the Cauchy completion of LM. Then we can

form the quotient M of LM by TT: M is a topological space with

M = M U dM

where M is homeomorphic to M and dM is our singular boundary. However in

general M will not be Hausdorff and will not have the structure of a manifold. In

fact, if x G dM, ~W~l(x) will be homeomorphic to the manifold L/'G where G is

some subgroup of L defined up to conjugacy. and W~1(x) may turn out to be just

11



1.3 Classification of singularities

one point. Moreover in the k = 1 (closed) Robinson-Walker space-time, points of

the past singularity are identified with points of the future singularity. It is also

hard to compute the b-boundary.

Another construction is the c-boundary. Here we take C to be all b-incomplete

timelike (or possibly non-spacelike) C1 curves. Then

C = C+UC~

where C+ is the class of future incomplete curves and C~ the class of past incomplete

curves. If 71;72 G C+ then 7 : ~ 7., <̂ =̂ - I'ili) = -^(72) a Rd if 7i,72 £ C~ then

7i ~ 72 ^ ^ ^+(7i) — 1^(7-2) w n e re I~(j) (or /+(7)) is the set of points in M

connected to any point of Imj by a future (or past) oriented C1 timelike curve.

This expresses the concept that for two curves to terminate at the same point

they must remain in causal contact until they reach their endpoints: the causal

structure is a very natural property of the space-time. As defined, the c-boundary

is equivalent to the construction of TIPs and TIFs given by [GKP], except that

their boundary also includes points at infinity.

There are problems, however, in how to identify points of C+/ ~ with points of

C~/ ~, and there may be cases where we would like to say j 1 ~ j 2 , but where there

are obstructions preventing ~/1 and 72 from being in causal contact.

1.3 Classification of singularities

We now consider what goes wrong at a singularity. An incomplete curve 7 e C

could arise simply because our manifold is not "big" enough, that is, it does not

contain a whole space-time. Suppose that the space-time (M, g) is C'p and that there

exists a Cq isometry of (M, g) into a Cq space-time (M1, g') for some q < p such that

there exists an extension of 7 into the interior of M' — M. If the Riemann tensor of

(M'.g1) is Cr (where r < q—for example, if (M'.g1) is C2 then the Riemann tensor

12



1.3 Classification of singularities

will be C°) then (M'.g1) is a CT extension of (M,g) and 7 is said to terminate at

a C r regular boundary point.

Alternatively, suppose we pick x e Irn"/ and a frame (e,) at .r and parallelly

propagate this frame to the endpoint of 7. Let 7 : s i-> 7(5) and s < s0. We can

then examine the behaviour of the Riemann tensor in this frame as s —> s0. 7 is

said to terminate at a Cr (or Cr~) curvature singularity if there is a component

of curvature Rijk
l.Ui,^Ur. which does not have a C° (or C°~) limit as s —> s0. Here

; denotes covariant differentiation and ux,..., ur are vector fields defined along 7.

This expresses the idea that the curvature "blows up'1 at a curvature singularity,

and if this happens it follows that 7 cannot terminate at a CT regular boundary

point—otherwise the curvature would have a well behaved limit along 7.

We can also look at the behaviour of curvature scalars along 7. A curvature

scalar is a polynomial scalar field constructed from gi0 and Rijk
l
:ui_,_Ur.- If such a

field does not have a C° (or C°~) limit as s —> s0 then 7 is said to terminate at a Cr

(or CT~) scalar singularity. These are easier to test for, as scalars are the same in

all coordinate systems and we need not worry about parallelly propagating a frame

along 7. A Cr scalar singularity will be a Cr curvature singularity, but the converse

need not be true.

However it is possible for the curvature along 7 to be perfectly well behaved as

s —» s0 without 7 terminating at a regular boundary point. 7 is said to terminate at

a Cr (or Cr~) quasi-regular singularity if all components Rljk'.Ul,,,Uj, have C° (or C°~)

limits as s —>• s0. The idea is that locally nothing goes wrong with the curvature.

The singularity has a global nature and is somehow a topological "defect" of the

space-time.

The prototype quasi-regular singularity is the conical singularity

ds2 = -dt2 + dr2 + A2r2d92 + dz2 0 < 6 < 2TT.

13



1.3 Classification of singularities

If we set 9 = A9 we obtain

ds2 = -dt2 + dr2 + r2d92 + dz2 0 < 9 < 2nA

which is locally isometric to Minkowski space, thus this metric is locally fiat and

its Riemann tensor vanishes. However for A ^ 1 there is a quasi-regular singularity

which we can think of as the r = 0 2-plane. In fact for A < 1 the metric can

be obtained by taking Minkowski space, removing the wedge 2-KA < 9 < 2TX. and

identifying the edges of this wedge. This metric is named by analogy with the

2-metric

ds2 = dr2 + A2r2d92 0 < 9 < 2TT

which is the metric of a cone. Again the metric has a quasi-regular singularity at

r = 0, which corresponds to the vertex of the cone. It has an angular deficit of

2TT(1 — A). The singularity causes geodesies to focus for A < 1, and to diverge for

,4> 1.

The 4-cone is an example of a "primeval'' quasi-regular singularity, in that

it has existed for all values of t. It is also, in ways to be made more precise

later, an example of a 2-dimensional timelike quasi-regular singularity. However,

examples can be constructed of timelike and spacelike quasi-regular singularities

with dimensions 0 to 3.

The fact that locally nothing goes wrong with a quasi-regular singularity can

be made precise with Clarke's local extension theorem [C73]:

Theorem 1.3.1. Let 7 be a C1 curve ending at a C° (or C°~) quasi-regular sin-

gularity. Then there exists an open U D Imj such that (U, glv) has a C° extension

([/', g') in which 7 has a regular endpoint.

The point is that we cannot extend the whole of {M,g), only an open neigh-

bourhood of 7.

14



1.4 Elementary quasi-regular singularities

For example, in the case of the 4-cone suppose A < 1 and consider the C1 curve

7(a) = (to,u,60,zQ) on which r —> 0 as u —> 0. Here M = R4 — {r = 0} and the

coordinate 9 can be chosen so that 0 < 90 < 2?r. Then U = {x G M : 0 < 9 < 2TT} is

an open neighbourhood of Ira 7 which is isometric to a portion of Minkowski space

{x G M : 0 < 9 < 2TTA}, though M itself does not admit a regular (i.e. at least C°)

extension.

For future reference we note that the 4-cone can be expressed in Cartesian

coordinates x = r cos 9. y = r sin 9 as

O2 + A2yt) 2xy(l - A2) (y2 + A2x2)
ds2 = -dt2 + —dx2 + — 4 —t-dxdy + ^ — ~dy2 + dz2.

x2 + y2 x2 + y2 x2 + y2

1.4 Elementary quasi-regular singularities

Given a space-time (M, g) which has a non-trivial group of isometries, there is

an easy method due to Ellis and Schmidt [ES] (see also [V87]) which generates a

space-time (M',g') with quasi-regular singularities. An elementary quasi-regular

singularity is a singularity generated in this way. Not all quasi-regular singularities

are elementary.

We proceed as follows. Take a non-trivial discrete subgroup G of the group of

isometries of (M,g) and form the fixed point set F = {x e M : gx = x V# e G}.

Delete F from M to give (M — F.g), on which G acts with no fixed points. Now

identify points of (M — F,g) related by G, thus forming the quotient space (M.g).

Finally we may need to delete some points of M to give (M',g') in order to make

the resulting space Hausdorff: in particular this may be necessary if a sequence of

points (xn) of M — F related by G have an accumulation point in the fixed point

set F. For example, consider Minkowski space in Cartesian coordinates

ds2 = -dt2 + dx2 + dy2 + dz2
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1.4 Elementary quasi-regular singularities

and the group of isometries

ft\ /cosh(nA) sinh(nA)\ , t ,

KxJ Vsinh(nA) cosh(nA) / KxJ

for some constant A ̂  0. The fixed point set is the 2-plane

F = {t = 0,'x = 0}.

Now let S+, S~ be the null 3-surfaces

Given x G S+ (or S~), the set of points Gx lies entirely in S^ (or S~) and has an

accumulation point in F. The quotient space will not be Hausdorff. In order to

obtain a Hausdorff space we need to delete the points in the quotient space which

correspond to 5*+, S~.

We will be interested in cases where F is 2-dimensional and timelike in (A/, g)

and G has one generator, an isometry / : M -¥ M such that f*g = g. It is helpful

to insert an additional step in the above procedure. Given (M — F, g) we pass to the

universal covering space (M,g), lift / to / : M —> M, and then form the quotient

space {M.g) by identifying points of (M,g) related by / . We may still need to

delete points of M to give (M'.g1). However the lift of / to / is not unique in that

there will exist a family {/;} of isometries of (M,g). each one of which projects

down to / , and we can use any one of the {/,} to give (M,g), each one in general

giving a different quotient space.

For example, in the case of the 4-cone, we start with Minkowski space

ds2 = -dt2 + dr2 + r2d92 + dz2 0 < 9 < 2TT.

We then remove the r = 0 2-plane and unwrap the resulting space-time to get its

universal covering space: this has the same metric but now — oo < 9 < oo. Any

isometry

/ : 9 K> 9 + a

16



1.4 Elementary quasi-regular singularities

acts on this space with no fixed points and will project down to an isometry of

(M,g) with fixed point set {r = 0}. The space (M'.g1) will have a quasi-regular

singularity unless a = ±2n. In particular a — 2ki\ for k G Z — { —1,1} will result in

a so-called "covering space singularity", although the corresponding / is the identity

on{M,g).

An important property of the fixed point set F of an isometry / of a space-time

(M, g) is that it is a totally geodesic submanifold of M. Given x G M and u G TXM,

construct the unique affinely parametrised geodesic 7u(s)in M such that 7u(0) = x

and 7U has tangent u at x. This will exist for s G [0,e) for some s > 0 where s

depends on x and u. Then a submanifold 5 of M is totally geodesic if given x G S

and u G TXS. 3e > 0 such that 7u(s) G 5 Vs G [O.t). In other words, a geodesic

of M initially tangent to 5 will remain in S.

If S is non-null (as defined in section 3.5), given x G 5* and u G TXS we can also

construct ju(s) as above, except that we choose 7u(s) to be a geodesic of S (using

the metric induced on S) rather than of M. 7u(s) and 7u(s) will always coincide if

S is totally geodesic.

Given the isometry / : M —> M, we define its derivation at a point x G M by

In other words, given x G M and u G T^M, then / will map a C1 curve through x

with tangent u a t i to a C1 curve through f(x) with tangent Dxf(u) at / (z) .

Now let x G F so /(x) = x and define DF = {u e TXM : DJ(u) = u}, the

fixed point set of the derived map.

From [V87] we have (though we present a slightly simplified version of the proof)



1.4 Elementary quasi-regular singularities

Theorem 1.4.1. DF = TXF and F is totally geodesic.

Proof. Suppose u G TXF and let KU(S) be some curve in F through x with tangent

u at x. This lies in F so f(nu(s)) = KU(S). The tangent of KU(S) at x is mapped to

itself. Hence Dxf(u) = u and u G DF.

Conversely suppose u G DF and consider 7u(s). /(7U(S)) = 7D I/(U)(S) — 7u(5)

since / is an isometry and maps geodesies to geodesies. Hence 7u(s) lies in F and

u G TXF. Hence D F = TXF.

Now if x G F and u G T^F, by the above 7u(s) lies in F and hence F is totally

geodesic. •

For x G F, the tangent space T^M becomes degenerate when we identify points

under / . Tangent directions of TXM — DF become identified, which could not

happen if x were a regular point of the new space-time. Somehow there are "not

enough directions" at x. However TXF remains well defined and thus we can regard

F as totally geodesic even after making the identifications. In this sense, elementary

quasi-regular singularities are totally geodesic.

We shall say a space-time (M, g) has a locally elementary quasi-regular singular-

ity if it can be expressed as g = g + e where (M, g) has an elementary quasi-regular

singularity and, for every C1 curve 7 of finite b-length terminating at the elemen-

tary quasi-regular singularity, given an open U D /TO 7 such that (U, g^) has an

extension (U',g!) in which 7 has a regular endpoint x G U', and given a coordinate

patch V 3 x, then in V

ziJ - > 0, eijik - ) • 0, etjM -^0 a s u ->• u0

where u is b-length measured along 7 with supremum u0. In particular if g is the

4-cone we shall call (M.g) locally conical.
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1.5 Cosmic strings

It can be shown that a locally elementary quasi-regular singularity is still quasi-

regular, though it may not be elementary. Not all quasi-regular singularities are

necessarily locally elementary.

1.5 Cosmic strings

Cosmic strings are objects which arise in a natural way in attempts to apply

Grand Unified Theories to the early universe ([V92] and references therein, [I]). Such

attempts are tentative but they suggest that the spontaneous symmetry breaking

of a gauge field may result in topologically trapped regions of false vacuum. Specif-

ically, as the universe cools below a critical temperature To, the potential VT(q>)

associated with a gauge field (f> may develop more than one minimum. d> will gener-

ally assume one of these minima at each point, however causally disjoint regions of

space may settle into different minima. Boundaries between these regions may be

unable to assume a minimum value and will form narrow regions of false vacuum,

or "topological defects" of the gauge field. 2-dimensional defects are called cosmic

strings. They would be very thin objects, with almost all the field confined to a

tube about 103 Planck units across. Though there is no observational evidence for

their existence, they should have observational consequences such as gravitational

lensing and they may also provide a mechanism for the formation of galaxies and

other large scale structure in the early universe.

If we wish to study cosmic strings in general relativity, one approach is to look

at weak field theory on a fixed background (M, g) and to represent a thin cosmic

string by a 2-dimensional worldsheet S. Given x0 G S, we can find a coordinate

patch U of S such that x0 6 U and a coordinate patch V of M such that U C V. Let

U have coordinates (u,v) and let the corresponding coordinates in V be (x{(u, v)).

It turns out that the behaviour of U is given by the Nambu action

= -2TT// / I {-l-F^F^y/2 dudv
J J U Z,
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1.5 Cosmic strings

where JJL is the linear density of the string and

dxl dx3 dx3 dx1

du dv du dv

If X' = dxlfdu, Y3 = dx3/dv then (X\ YrJ) is a basis of TXS for each x E U and

1 1
l3 glk9jl(XY XY%XY - X'Yk)

= g(X, X)g(Y, Y) - g(X, Y)g(X, Y)

which is the determinant of the metric induced on S by restricting g to 5. Thus

measures the surface area of U. Requiring / to be extremal for all x0 G S gives the

condition that S must be a minimal surface in the space-time [Ch]. Also S can be

given energy-momentum tensor densities 77 = r^l\J~9

%° = V = 27T/i52

where d0 and d3 are tangent to S and 52 is a 2-dimensional delta function with

support on 5. We require V^T '̂ = 0 but this merely gives the condition that S

should be minimal again.

However this approach ignores the gravitational effects of the string. We cannot,

though, necessarily expect to solve Einstein's equations for a delta function valued

energy-momentum tensor. Solving the full coupled equations for the metric and

gauge field in the axisymmetric case results in a space-time which is (very nearly)

locally flat and conical outside the string. Thus the 4-cone

ds2 = -dt2 + dr2 + A2r2d62 + dz2 where .4 =

can be used as an idealised model of a thin cosmic string. For a real string 1 — A

10~6, where we recall that the 4-cone has angular deficit 2TT(1 — .4).
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1.5 Cosmic strings

The 4-cone can be regarded as being the limit of a sequence of space-times with

a source consisting of stressed filaments lying along a tube parallel to the z-axis. In

the limit that the diameter of the tube tends to zero, the energy-momentum tensor

becomes To° = 7~3
3 = 2ix^b2 as above. However there appear to be problems with

trying to model singularities with distributional valued curvature and in taking a

singular space-time to be the limit of non-singular ones ([GT]).

We will show later that 2-dimensional timelike quasi-regular singularities may

provide suitable idealised models of cosmic strings in a curved space-time. In par-

ticular, they can be given the same energy-momentum tensor as the 4-cone. We

will also show that they are totally geodesic. This implies that they are minimal

which is consistent with the Nambu action. Requiring them to be totally geodesic

is a stronger condition and suggests that cosmic strings are really quite inflexible

objects. It is of interest to see whether they can nonetheless bend or form closed

loops on small length scales. However a relationship can be derived between the

size of loops which can form and the curvature of the ambient space-time [CEV].

In particular a cosmic string cannot bend on length scales smaller than the cosmo-

logical length scale. This remains true even if we model cosmic strings, not with

quasi-regular singularities, but with a regular space-time where a region of high

curvature is confined to a narrow tube.

One way out of this would be to try to find a class of "weak" curvature sin-

gularities, somehow worse than quasi-regular ones but which remain weak enough

to have nice properties, to model cosmic strings. We propose to describe such a

class. These singularities may still be totally geodesic, though they may appear

to bend on small length scales. In fact it could be said that cosmic strings never

bend: they only bend the space around them. In particular we note a construction

of a circular cosmic string given in [FIU] which turns out, in a range of cases, to
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1.6 Holonomy of quasi-regular singularities

be a totally geodesic curvature singularity, as shown—though perhaps not entirely

satisfactorily—in [UHIM].

We note that there exist metrics describing two cosmic strings moving relative

to each other, as well as metrics describing an arbitrary number of non-parallel

cosmic strings moving relative to each other [LG]. A metric describing a spinning

cosmic string

ds2 = -{dt + AJdOf + dr2 + A2r2d62 + dz2,

where J is a constant, is given in [M]. Like the conical metric, this metric describes

a vacuum space-time with a quasi-regular singularity at r = 0. An interesting-

feature for J ^ 0 is the presence of closed timelike curves. There also exist metrics

describing global cosmic strings, which arise from the breaking of a global gauge

symmetry, and superconducting cosmic strings [R].

1.6 Holonomy of quasi-regular singularities

Let (M, g) be a space-time and let x £ M. A frame at x is a basis (ej of

TXM. It is pseudo-orthonormal if g(ei,ej) = 77̂  where 77̂  = diag( —1,1.1,1). In the

following we will take all frames to be oriented, time-oriented pseudo-orthonormal

frames.

Let 7 be a C1 curve

7 : [0, 1] -» M 7(0) = x

and let (ej be a frame at x. Define et(s) by parallelly propagating each e, along 7

to 7(s). Then (e,(s)) will still be pseudo-orthonormal because parallel propagation

preserves the inner product. In particular, if 7(0) = 7(1) then 7 is a closed loop

and (ej(0)) and (e^l)) will be defined at the same point x G M but will in general

be different. There will be a Lorentz transformation LI such that
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1.6 Holonomy of quasi-regular singularities

L\ is called an element of holonomy generated by the closed loop 7 ([V92] and

[V90], see also [N]).

More generally we consider the frame bundle (LM, TT) where

7T : LM -> M

and each fibre ir-l(x) consists of all (oriented time-oriented pseudo-orthonormal)

frames at x. The oriented, time-oriented Lorentz group L^_ acts on each fibre

transitively and freely (the identity is the only element of L"> which fixes any point

of 7T"1 (x) ) and in fact each fibre is homeomorphic to Lr . This makes LM a principal

fibre bundle.

Given the closed loop 7 and a frame (e,) at 7(0) we can lift 7 to a curve 7 in

LM such that

7 : [0,1] -» LiV/ 7 : s - > ( 7 ( s ) , ( e i ( s ) ) )

where et(s) is obtained by parallelly propagating e{ round 7 to 7(s). 7 is called a

horizontal lift of 7. Thus 7(0) and 7(1) are points on the same fibre related by some

g e L t . If 7 is homotopic to x. then as 7 shrinks to 1, 5 will tend to the identity.

Holonomy is a useful tool in the study of singularities. Loosely speaking, as

a loop encircling a singularity shrinks to a point on the singularity, the holonomy

generated will not in general tend to the identity, rather it will tend to an element

of a so-called singular holonomy group, and these groups will tell us about the

structure of the singularity.

Let K : (0,1] —» M be a C1 curve of finite b-length terminating at a quasi-regular

singularity. Pick a frame (et) at K(1) and lift K to give ~K : (0,1] —>• LM by parallelly

propagating (et) along K. Define the loop space QK of K to be the set of all C1 maps

of the form (see diagram 1.6.1) 7 : [0,1] x (0,1] ->• M : (s,u) h-> 7(s , u) = ju(s) such

that

(a) 7(0,u) = 7(l,u) = «(u)
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1.6 Holonomy of quasi-regular singularities

(b) the b-length of j u , measured in the frame ~K(U) parallelly propagated round

7U. —> 0 as u — 0.

We call the elements of Vl^ lassos. If we lift 7U to 7yu by parallelly propagating

K(u) round j u } (b) is equivalent to

(b)' the b-length of T~U, / (7J -> 0 as u -*• 0

which is independent of the initial choice of frame (e j . 7^(0) and 7U(1) are frames

defined at the same point of M but will in general be different so for some L(ju) £ L\_

> j ^ = V

Diagram 1.6.1

We will say that 7 satisfies the area condition if the area of 7QO, 1]. [u0, n j ) -^ 0

as u0, Uj —> 0 where we measure area with respect to the positive definite metric on

LM used to construct the b-boundary.

The following theorem is quoted in [V90] and [V92] without the area condition.
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1.6 Holonomy of quasi-regular singularities

Theorem 1.6.1. If 7 satisfies the area condition then L(yu) tends to some well

defined limit L(j) as a —> 0.

Suppose that 7 satisfies the area condition. Note that the b-distance between

7u(0) and 7tl(l) tends to zero and so 7u(0) and 7n(l) are in fact tending to the same

point p on the b-boundary LM — LM, though £(7) need not be the identity. The

point is, L]
+ does not in general act freely on lx~l(x), where x = W(p), and p will

be a fixed point of L(j). The subgroup of elements of LT which fix p is called the

isotropy subgroup Gp of p. In fact T^~1(X) is homeomorphic to the manifold D+/Gp

where Gp is defined up to conjugacy. Note that Gp need not be a normal subgroup

of L\.

If the area condition is satisfied for a particular lift of 7 obtained from a hori-

zontal lift of K then it will be satisfied for all lifts of 7 obtained from horizontal lifts

of K. We therefore let

£lA = {7 G £2K I lifts of 7 obtained from horizontal lifts of K

satsify the area condition}.

There is a natural group structure on QK. Given 7, 6 G fiK let

(6u(2s) 0 < s < i

^ 7 . ( 2 5 - 1 ) i < s < l .

We claim that QA is non-empty and a subgroup of ttK. Let 7,(5 E QA. Given

a frame (et) at K(0) we see that L(j * 6) = L{~f)L(8). Thus the set of Lorentz

transformations generated by Q.A and a frame (et) at K(0) form a group H-, called

the singular or s-holonomy group. If we start with a different frame (e'.) = {L[e-)

then H-, = L-^H-L.

From [V90] we have (see also [C78])
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1.6 Holonomy of quasi-regular singularities

Theorem 1.6.2. Let K be as above and K a horizontal lift of K. Suppose ~K termi-

nates at p <E LM - LM. Then H- = Gp.

Note that ~R, has finite b-length if and only if K has finite b-length, and in this

case it follows that K must have a well denned limit point p. So H-^ depends only

on p and encodes information about the singularity.

With K as above we know that there exists an open U Z> Im K, such that (U. glv)

has an extension (U'.g1) in which 7 has a regular endpoint x £ U'. We say K

terminates at a good quasi-regular singularity if U can be chosen to be "wedge"

shaped rather than "cusp" shaped, or in other words, if U can be chosen so that

the tangent directions at x which point to the interior of U form an open set. Such

a wedge shaped U can be found for most quasi-regular singularities of interest,

however there exist quasi-regular singularities which are accumulation points of a

sequence of quasi-regular singularities for which it is not clear if this can be done.

Now consider the above homeomorphism W~1(x) ~ L\_/Gp. If Pi,p2 £ L\_ are

in the same equivalence class then the two frames px and p2 have become identified

at the b-boundary. In other words the tangent space at a point of a quasi-regular

singularity is degenerate. It turns out however that it is degenerate only in directions

which are, in some limiting sense, not tangent to the singularity and that therefore

vectors tangent to a quasi-regular singularity are well defined. This in turn means

that such a singularity has a well defined dimension and induced metric. Specifically,

it can be shown that the elements of i7- leave the components of vectors tangent

to a quasi-regular singularity unchanged.

From [V90] we have

Theorem 1.6.3. Let f : [0, l] x (0,1] —>• M be a C1 map such that KS : u ^- f(s. u)

terminates at a good quasi-regular singularity, thus f(s, 0) will be a curve along the

singularity Let K — K0 (though f need not be in Q.J and K a horizontal lift oftz. Let
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1.6 Holonomy of quasi-regular singularities

Xl(u) be the components of X{u) = /u ' (0) in the frame ~K{U) where fu(s) = f(s,u).

Let X1 = l i m _ 0 X^u). Then VLi e H-, L\X^ = XK

In the case that the quasi-regular singularity is 2-dimensional and timelike,

which we hope would make it a suitable model for a cosmic string, it follows that the

elements of H-, which preserve vectors tangent to the singularity, must be rotations

with axis tangent to the singularity and it can be shown that H- is generated by

the rotation £(7). A point of such a singularity will have the same tangent space

as a point of the conical singularity

ds2 = -dt2 + dr2 + A2r2d62 + dz2

where .4 is determined by L(j). A could in principle vary over the singularity.

However, the following result, known as the conservation of holonomy, shows that

it does not.

From [V85] we have (see also [V90] and [V92]) (see diagram 1.6.2)

Theorem 1.6.4. Let K0 and K,1 be Cl curves terminating at points of a quasi-

regular singularity connected by a curve c : [0,1] —> dM where dM is the b-

boundary of M. Let % £ Q,^ and 7X E fM . Suppose there exists a C1 homotopy

h : [0,1] X (0,1] X [0,1] -» M : (s, u, v) H-» hu(s, v)

such that

(a) hu(s, 0) = 7o(s, u) hu(s, 1) - 7 l (s , u)

(b) hu(0,v) = hu(l,v)

(c) \imu^0 hu(s,v) = c(v).

Now let~K0 be a horizontal lift of K0 in LM. Lift h to h by letting hu(0, 0) = ~KO(U)

and parallelly propagating along s = 0, u = constant and then round the loops

u = constant, v = constant. Also, let ~KX be a horizontal lift of KX. In general
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1.6 Holonomy of quasi-regular singularities

TzJ^u) 7̂  hJO.l) but we can choose Jz1 such that, limn_0 Tc^ii) = liml,_0 hu(0, 1)

where the right hand limit can be shown to exist. Suppose further that

(d) area hu{[0,1]. [0.1]) -> 0 as u -> 0

where the area is defined -with the positive definite metric on LM used to construct

the b-boundary. In other words, the area of the u = constant tubes tends to zero.

Then L(j0) - L(/7i)-

Given K0, K1} J0, JX and c. most quasi-regular singularities of interest will admit

a homotopy satisfying (a)-(d). However again there exist quasi-regular singularities

for which this is not clear. We will call a 2-dimensional quasi-regular singularity good

if in addition to to being good according to our previous definition this homotopy

exists. An example of a good 2-dimensional timelike quasi-regular singularity is the

4-cone

ds2 = -dt2 + dr2 + A2r2d62 + dz2.

TT,

Diagram 1.6.2
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1.6 Holonomy of quasi-regular singularities

From [V90] and [V92] we have

Corollary 1.6.5. The singular holonomy groups which arise from a (path con-

nected) good 2-dimensional timelike quasi-regular singularity are all generated by

a rotation through the same angle 8.

Thus these singularities have the same light bending properties as a straight

string.

As we demonstrated in Theorem 1.4.1. the fixed point set of an isometry of

a space-time is totally geodesic and in this way, the elementary quasi-regular sin-

gularity which it gives rise to may be considered to be totally geodesic. W7e now

show in the following corollary of Theorem 1.6.4 that, in a sense made clear by

the proof, a good 2-dimensional quasi-regular singularity' may also be considered

to be totally geodesic ([V90] and [V92]). We note that a (non-null) submanifold S

is totally geodesic if and only if vectors initially tangent to S remain tangent to 5

under parallel propagation (Proposition 3.5.5).

Corollary 1.6.6. A good 2-dimensional quasi-regular singularity is totally geo-

desic.

Proof. Let x, y be points on such a singularity connected by a curve c with curves

K0, KX terminating at x, y respectively as in Theorem 1.6.4. Let Ko be a horizontal

lift of K0 and let ~KX be the horizontal lift of K1 defined in Theorem 1.6.4 (for choices

of 70, 71 and h). This gives us equivalence classes of frames p = limu_0 ~KQ(U).

q = \\m.u_^0~Kx{u) on the b-boundary of LM. Provided q can be shown to depend

only on p and c, q can be defined to be the parallel transport of p along c. Let X(0)

be tangent to the singularity at x. Pick frames p0 E p, qQ E q. Let X(l) be a vector

with the same components in q0 as X(0) has in p0. By Theorem 1.6.3 X(0) is fixed

by H-u and by Theorem 1.6.4 X(l) is fixed by H-^. Because E-o — Gpl H-i = Gq

it follows that X(0), X(l) have the same components in any frame p0 E p, q0 E q
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1.6 Holonomy of quasi-regular singularities

and that X(l) is the well defined parallel transport of X(0) along c. By Theorem

1.6.3, X(l) must be tangent to the singularity. Hence the result. •

We note that a p-dimensional submanifold 5 of an ra-dimensional manifold

(M, g) has n — p extrinsic curvatures K^ at each point of S and is totally geodesic

if K^ — 0. This is equivalent to being minimal if" = g13K^ = 0 and totally umbilic

Kij = K^gjj where gl3 is the metric induced on S by g.
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2.1 Path-ordered exponentials of the connection

Chapter 2

Path-ordered exponentials and holonomy

2.1 Path-ordered exponentials of the connection

Let M be a (4-dimensional connected Lorentzian) manifold and GL{M) the

principal fibre bundle with structure group GL4(R) such that each fibre -n—1(x)

consists of all bases at x where GL(M) has projection TX : GL(M) —>• M. Let ui be

a (not necessarily metric) connection on GL(M).

Given a tensor, or matrix, or tensor valued matrix U^"l'' it will be useful to

define its (basis dependent) Euclidean norm

Thus j| || is a continuous map onto the non-negative reals. Given a tensor, or

matrix, or tensor valued matrix Vz,
1
 v*', it can be shown that

<^ \\Tpl--J<i

S \\°H...ip

where c(U?^^ 0 Vr^';f;'') is any contraction of L^1;;.̂ " 0 l^.'.^''. We note that the

b-length of 7^ si with respect to the basis (et) is

Let x0 G M and let 7 : s 1—> 7(s) be a C1 curve in M with 7(0;) = x0 and

tangent u. Pick a basis (ej of TXn and define (e^s)) by parallelly propagating (ej

along 7 to 7(s). Then, expressing components with respect to a reference basis (e j ,

= 0.
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2.1 Path-ordered exponentials of the connection

If e^s) = L{{s)eJ(s) then L{(s) e GL4(R) and

uk(s)dkb.(s)

where V,e, = uk.e,,. Thus
i j i] ^

= 0

and

IA(s0) = L{(a)

where A\ = —ukcjJ
kl. By repeated iteration

N

where the remainder term

( s i) • • • A^(sN+1)L'.(sN+1)
 dsN+i • • • dsl.

Proposition 2.1.1. ||i?-'(so)|| -> 0 as N -> oo.

Proof.

By continuity 3M, M' > 0 such that

Hence

J a J a

i r

\dsN+1 .. .ds1.

< M, \\Li(s)\\ < M> for s € [a:s0].

MN+lM'dsN+l...dSl
(N + l)\Ja

since the region of integration {a < s{ < s0 \ 1 = 1, . . . , N + 1} may be split into

(N + 1)! regions in each one of which the ordering of (s1; . . . , sN+1) into descending

order of value is different. Hence

M' rsn \ N+l

M ds = M<
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where A = Js" M ds.

Thus

2.1 Path-ordered exponentials of the connection

•

Al(s1)...At'"-i(sm)dsm...ds1L'(a).

Suppressing indices and using matrix notation we have

L(s0) = L(a) + f ] ~ "" dsm . . .

where : : indicates that the expression should be ordered so that terms with a

larger s value precede those with a smaller s value. Without the ordering this would

be the expansion of an exponential function. Instead, expressing components with

respect to the reference basis (e,), we write

IA{s) = Pexp f -u*(s0)<4(s0)ds0L;(o0
Ja

which we call the path-ordered exponential of the connection UJ along 7.

Proposition 2.1.2. If A\ is a matrix valued function defined along 7 then

(a) \\Pexj>f°°Ai(s)dS-6i\\<ex1pf?\\Ai(s)\\ds-l

(b) \ \ P i

Proof, (a)

dsm... ds,

Pexp / A:)(s)ds - 6J\
l

I ex. J ex.

N

rn=lJa J a

1 r-so rs

T~ ...
^ x m\ Ja Ja

since the ordering within the integral is unimportant. Hence

N i

1 l ±̂ , m\||Pexp \\Ri(so)\

exp ds as N oo
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2.2 u;-frames

and hence

|Pexp / A{{s) ds - 8{\\ < exp / | | ^ ( s ) | | ds - 1.
•J a 1 Jet

(b) This is proved in a similar fashion where we note that \\Sj\\ = 2.

2.2 co-frames

Let 7 be a C1 inextendible curve

7 : (0, a] -* M : s H4 7(3) a > 0.

Define an w-frame to be a basis parallelly propagated along 7 with respect to to.

Suppose a tensor U is defined along 7. U is C°-'~u-quasi-regular if its components

in an cj-frame have C° limits as s —> 0. For example, if u; is a Levi-Civita connection

and 7 terminates at a C° quasi-regular singularity then the curvature tensor Rl]k
l

will be C0-cj-quasi-regular.

Now suppose U is defined in a neighbourhood of 7. Using V to denote the

covariant derivative with respect to w, U is CT-ui-quasi-regular for r > 1 if the

components of Vn . . . VV&T in an o;-frame have C° limits as s — 0 and in addition

U is Cr~1-cu-quasi-regular. This is a recursive definition.

If r > 0 and U is Cr-Ct;-quasi-regular with respect to one Co>-frame, then it will

be with respect to all ^'-frames since if (e{(s)). (e^s)) are two cu-frames

for some constant a\ 6 GL4(R). We now prove the following propositions.

Proposition 2.2.1. If r > 0 and U, V are Cr-UJ-quasi-regular then so are U + V

and XU where A e I is constant along 7.

Proof. V is linear. •
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2.2 OJ-frames

Proposition 2.2.2. Ifr > 1 and U is CT -OJ-quasi-regular then VU is CT-l-x- quasi-

regular.

Proof. (Vix . .. VJU = (Vit .. . Vv_i)(Vv[/). D

Proposition 2.2.3. If r > 0 and U, V are CT-UJ-quasi-regular then so is U <g> V.

Proof. U, V are C0-CL;-quasi-regular hence so is U ® V. If r > 1 then for 1 < k < r

= ^ ® vn ... v u y + E (*) v i t. •. v.t/- ® v,I+l... v,,v

each term of which is by definition C°-o;-quasi-regular. Hence V^ .. . Vik (U 0 V) is

C°-u;-quasi-regular. D

Proposition 2.2.4. If r > 0 and U, V are CT'-co-quasi-regular then so is any

contraction of U <8) V.

Proof. Contractions of U 0 V are formed by taking the tensor product of U <g> V

and Kronecker tensors. Now

Vr6
k = uk,6[ - to\.6k = Luk. - uok. = 0

so Kronecker tensors are O-w-quasi-regular. •

Suppose U is an m-form then for vectors X1.. .. . Xm+1 recall

dU{X,,. . .,Xm+1) = (m + 1) (X^jX,,.. .,Xm+1) - mUqX^XtlX,,.. .,Xm+1))

antisymmetrised over Xl .. ., Xm+l

(where the antisymmetrisation includes a factor of l/n!). In a basis (et)

dUn^+i := dU(en,. . . , elmj = (m

where dj := e t(/) for a scalar / : M —»• M and [ei; e3] = ck.ek. Thus
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2.2 UJ-frames

where u has torsion

1 . = LO . . — U) ".. — C. . .

Thus dU is clearly a tensor.

Now if a tensor W obeys

Wkl"f''- • = Wr
kl'"k'', •

then it can also be treated as an m-form valued tensor W-1'"*"' of valence ( ' ). Thus
n---Jr \ p j

when we say that the m-form valued tensor Wn
1'"Ji

q is Cr-a.'-quasi-regular we shall

mean that the tensor W^'X''^ h> is Cr-u;-quasi-regular.

Let Uj^\'fj be an m-form valued tensor. Since U(en,..., e]p, e
ki .. ., ek-<) is an

m-form we define

rITTk^--ki — rKJJlp P Pki Pki\)

however this expression is basis dependent and not a tensor.

Suppressing form indices we now define the exterior covariant derivative of U
rjk1...kq =^jjki...k,, _^ ̂ k l ^

where uik is the 1-form defined bv uik(e-) = uk. and A acts on the form indices. As

above we can show

r k \ ...kn T - 7 r ^ ^ ' i •••k.

thus DU is both an (m + l)-form valued tensor and a tensor of valence ymJp^xJ.

We note that if U is just an m-form then dU = DU. Thus we have proved
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2.2 LJ-frames

Proposition 2.2.5. If r > 1 and U is Cr-u-quasi-regular then DU is Cr~l-uj-

quasi-regular, provided that the torsion T of CJ is C7—1 -u-quasi-regular (for example

zero).

Now let U be a tensor defined along 7 : (0,a] —» M : s 1—> j(s). Given an

cj-frame and r > 0 we write

U = o(s~r) <£=$• the w-frame components of sr U(s) —* 0 as s —> 0

[/ = O(s^r) 4=^ the cj-frame components of sr U(s) are bounded as s —> 0.

Whether or not [7 = o(s~r) or {7 = O(s^r) does not depend on the choice of

w-frame but does in general depend on the parameter s.

Theorem 2.2.6. If 7 : (0,a] —• M : s 1—> 7(s) ias fii:ite b-length and s1, s2 are

two parametrisations of 7 which both measure b-length and U is a tensor defined

along 7 then

and

First we prove

Lemma 2.2.7. If a{ E GL4(R) then 3m, M > 0 such that W G

where uJ — a\ul.

Proof. For a, b G E

0 < (a - 6)2 => (a + b)2 < (a - 6)2 + (a + fe)2 = 2(a2 +
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2.2 to-frames

thus

4((a°)2 + . . . + (a;J)2)(u°)2 + . . . + 4((a°)2 + . . . + (aj;)2)(u

M2(u°u° + ... + u3u3) = M2 Y,u%ul

3 ) 2

where M = 4max,((a«)2... (a^)2)1/2 > 0.

Similarly i = 4max,((6o)2... (6?)2)1/2 > 0 where 6] = (a-1)^'. D

Now we proceed with the proof of Theorem 2.2.6.

Proof. Let (e j , (ej be the a;-frames along 7 with respect to which sx, s2 are

measured. Thus e2 = a]e^ where â  G GL4(M) is constant along 7. Let 7 : s 1—*• 7(5)

have tangent u = ti'ej = tt'e,. Then

o) a {bo

where in general s1(s) 7̂  s2(s). Also u1el = wia3
ie0 so uj = a^ii1.

By Lemma 2.2.7 3m, M > 0 such that

ms1(s) < s2(s) < Ms1(s).

Let U have components U^'^'' in an w-frame. Now suppose U = ©(s!-71). Then

but

since s(s2) = s^s-^). Hence

and U = o(s2~r).
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2.2 to-frames

Similarly U = o(s2-
r) => U = o(s1~

r) and U = O(s!_-*•) 4==> U = O(s2~
r). D

Thus b-length is a natural parameter along a b-incomplete curve. We will

therefore say a tensor U denned along 7 is C~r-u:-quasi-regular for r > 0 if 7 has

finite b-length and U = o(s~T) when s is a parametrisation of 7 which measures

b-length with respect to an cu-frame.

Proposition 2.2.8. If r > 1 and U, V are C~r-to•-quasi-regular then so are U + V

and XU where A C R is constant along 7.

Proof. s(U + V) = sU + sV and s(XU) = X(sU). •

The following lemma will prove to be useful.

Lemma 2.2.9. Let 7 : (0, a] —> M a > 0 be a C1 curve of finite b-length. let s

be a parametrisation 0/7 which measures b-length, let (et) be the to-frame along 7

with respect to which s is measured, and let 7 : s 1—+ 7(s) have tangent u =• vj-e^

Then \\u*(s)\\ = 1.

Proof. The b-length of 7(0 3] is

=*i = \\ui{s)\\. n

Finally we prove

Theorem 2.2.10. Let 7 : s 1—> 7(5) be a C1 curve with tangent u. Ifu is everywhere

non-zero then an co-frame (ej can be extended to a neighbourhood of 7 so that

tok. = 0 on 7 wiiere w has components uk. in (et).

Proo/. For each x = -y(s) make a C1 choice T/ < TXM (where < denotes vector

subspace) such that TXM = TX~/®VX (possible since u(s) is C° and non-zero). Thus

Vx is 3-dimensional and nowhere tangent to 7. For each v e Vx and each x = 7(5),

parallelly propagate (e;) along the unique geodesic through x in the direction of v.

This will extend (ej to a neighbourhood of 7 (since V̂  is C1).
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2.3 Connection difference

Now for each v G Vx

vlV1e] = 0

since the geodesic through x in the direction of v can be parametrised to have

tangent v at x. In addition

ulVleJ = 0

and hence V-e_- = cuk.ek = 0 at x. Thus ujk = 0 on 7. •

2.3 Connection difference

Let u, to be (not necessarily metric) connections on GL(M). uo, to are not

tensors on M, however the connection difference

a = a; — CJ

is a tensor on M.

Let 7 : s 1—> 7(3) be a C1 curve in M with 7(0;) = x0 and tangent u. Pick bases

(e j , (ej of T M and parallelly propagate them along 7 to 7(3) with respect to co,

UJ respectively to give (e^s)), (e^s)). Set

where L̂  G GL4(R) though in general Ll(0) ^ 6f. If we extend (e j , (ej to a

neighbourhood of 7 and work in the basis (e{) we may define

Vfce. = w/.e, Vfcet = co\' e

however since

ukVkez = ukujle] ukVkez = ukuj^e3

the values of ukojJ
kl, u

kZJJ
H depend only on the values of (e j , (e,) along 7 and in the

following we shall only need these values. Now in the basis (ez)

^(s)V fce,(S) = ^(s)V f c(^(S) e j(s)) = uk(s)(dkLl(s) + ̂ Js) L\(s)) = 0
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2.3 Connection difference

ds
(s)+uk(s)uJJ

kl(s)Ll
i(s) = 0

and in the basis (e-)

Hence

uk(s)Vkei(s) = uk(s)ut.(s)ej(s) = 0

dU

= 0.

and as before

D.(s) = Pexp f ~uk(sQ)all(s0)ds0L
l
i(a) = Pexp [ +ufe(s0)o£(s0) ds0 L\{a)

(2.3.1)

which we can either regard as a matrix equation for L{, in which case everything

must be expressed in the basis (ej , or as a tensor equation, in which case the

components L\ of e, are now basis dependent.

Now let 7 be a C1 inextendible curve

7 : (0, a] -> M : s M 7(3) a > 0.

We do not in general know how L\(s) behaves as s —> 0.

Theorem 2.3.1. Let (e^s)), (e^(s)) be co-frames, let (e^s)), (e'.(s)) be cu-frames

and let

Theu lims^0 Lj(s) exists and is in GL4 L'](s) exists and is in

Proof. 3 constant a\,b\ G GL4(R) such that

e\{s) =

Thus

IA(s) = (b^)kL\
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2.3 Connection difference

and hence lims_0Li(s) exists and is in GL4(R) <==» llms_^0 L'i(s) exists and is in

GL4(R). D

Thus we define

UJ ~ UJ <=> LJ(0) := limZ/J(.s) exists and is in GL,

where L^(s) may be defined with respect to any choice of u- and oJ-frame.

Theorem 2.3.2. ~ is an equivalence relation on the set of connections on GL(M).

Proof. Let wbe a connection on GL(M) and (e,(s)) an c^-frame. Now

and lims^0 8f = 8j. Thus cu ~ u.

Let uJ be a connection on GL{M) and (e^s)) an cJ-frame and suppose UJ ~ cJ.

Thus if we set

e^s) = IA{s)ei{s)

then lim,.^ L\{s) exists and is in GL4(K) but

and so lims^0(I/"1)j(s) exists and is in GL4(R). Thus cJ ~ UJ.

Now let d; be a connection on GL(M) and (^(s)) an w-frame. Suppose ui

and cZJ ~ cD. If we set

^(5)= ^ ( ^ . ( s ) e^s) = Lk.(s)ek(s)

then

Since lims^0L^(s), lims_0 L
k.(s) both exist and are in GL4(R), lims^0 Lt

fc(s) exists

and is in GL4(R), where h(s) = V.(s)Lk.(s). Thus w ~ w. D
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2.3 Connection difference

Let w be a connection on GL{M). If 7 has finite b-length with respect to a

particular cu-frame, then it will have finite b-length with respect to all u;-frames.

and we say that 7 has w-finite b-length. In this case the b-length I of 7 with respect

to a particular u;-frame (ej is given by

1= / (Yul(s)ui(s))1/2ds

where 7 has tangent u = u%et. Although u in fact depends on the parametrisation

s of 7, / does not.

Let to be a another connection on GL(M). 7 need not in general have ZJ-finite

b-length, even if it has ̂ '-finite b-length.

Now let (ej be an cj-frame and let (et) be an 57-frame, let a = uJ — LJ, and let 7

have tangent u = ulel = u'e^ Thus uJ(s) = Lj(s)li1(s) where et(s) = Ll(s)ej(s).

Theorem 2.3.3. If to ~ iU then

7 iias Lo-finite b-length •<==> 7 lias UJ-finite b-length.

First we prove

Lemma 2.3.4. If LO ~ cZJ tiiec 3M > 0 sucii tizat

Proof. L{(s) e GL4(K) and lT(s) E E4
: so by Lemma 2.2.7 3M(s) > 0 such that

and

M(s) = 4max((L°(s))2 + . . . + (L^(s))2)1/2 > 0.

Now LO ~ cJ so lims_0 l i (s) exists and is in GL4(E). Thus M(s) is continuous and

strictly positive on [a, 0]. Therefore set

M = max M(s)
0<s<a

where M > 0. •
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2.3 Connection difference

We now prove Theorem 2.3.3.

Proof. Suppose 7 has cJ-finite b-length. The b-length of ^\[as) wi th respect to ( e j

is

'00 = I" (Z<soX

and with respect to (e{) is

Since ui ~ tJ, 3M > 0 such that

l(s) < Ml{s)

but lims_^07(s) < 00 hence Iim5^o l(s) < 00 and 7 has w-finite b-length.

Now u ~ u and thus if 7 has cu-finite b-length, then it has oJ-finite b-length. •

Proposition 2.3.5. Let U be a tensor defined along 7. If to ~ cJ tien [/ is C°-CJ-

quasi-regular <=$• U is C°-LO-quasi-regular.

Proof. Let [/ have components U^']'l'' in (ej and U^'"^' in (e j . Then

where we note that et(s) = Ll(s)eJ(s) => eJ(s) — {L~l)l{s)ei{s). Since OJ ~ cZJ it

follows that lim5^0Li(s) and lim_^0(L~1)i(s) both exist and thus

iliHs) exists 4=» limI7Jl^J"(5) exists. Q

Proposition 2.3.6. Let U be a tensor defined in a neighbourhood ofj. If LU ~ UJ

and r > 1, and a is Cr-l-ui-quasi-regular, then U is CT-to-quasi-regular <4==> U is

CT -U-qu asi-regular.

Proof. Suppose U is Cr-cu-quasi-regular. Define

T(n) = vT^" 1 ' 1 < n < r T{0) = U.
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2.3 Connection difference

Working in the basis (ej

J*(n)ii-i" . . = V J]{n-l)3l---3n

kn kn — i ...kiti ,..ip

0-1 /J1(n-l)^---J'i I ^{n—iyi-'-Jq

where U has valence (q

\p

= U is Cr-w-quasi-regular, so assume inductively that T^"1 ' is Cr-n+1-w-

quasi-regular for 1 < n < r. Thus VTt™"1), T^"1), and <j are all Cr-n-a;-quasi-

regular (since a is O^-w-quasi-regular), and hence so is Tin\

In particular T^ is C°-o;-quasi-regular, and thus by Proposition 2.3.5 T<") is

C°-cZ7-quasi-regular. Therefore U is Cr-oJ-quasi-regular.

Applying the above to a we see that a is Cr^1-cJ-quasi-regular. Since UJ ~ UJ we

have by symmetry that if U is Cr-oJ-quasi-regular, then U is Cr-C(j-quasi-regular. •

Proposition 2.3.7. Let U be a tensor defined along 7 : s >-+ 7(5). If cu ̂  UJ and

r > 0 then £/ is C-r-u;-quasi-re,g-uiar 4=^» t/ is C'r-u7-quasi-reguiar.

Proof. Suppose fvT is C~r-w-quasi-regular. Thus 7 has w-finite b-length (by defini-

tion) and since u ~ w, 7 has oJ-finite b-length. Let sx, s2 be parametrisations of 7

which measure b-length with respect to (et), (e{). Then

SAS) = /
Jo

S2{S) = /
JO

By Lemma 2.3.4 3M > 0 such that

s2(s) < Ms^s).

Now let U have components C//,1.;;̂  in (e j . Thus
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2.3 Connection difference

but

since s{s2) = s ^ ) . Hence

Now let U have components £/Jl'"J'J j n (e.). Since to ~u, lim nL
3(s) exists and

s2
rUn'"Jq(s(s2)) -> 0 as s2 -+ 0.

Thus £/ is C~r-u;-quasi-regular.

Now since cJ ~ UJ, by symmetry if U is C~r-a7-quasi-regular, then C/ is C~T-cu-

quasi-regular. •

Corollary 2.3.8. Ifu> ~ a; acd r < 0 or r 6 N then cr is CT-LU-quasi-regular ̂ ==^ <r

is Cr-uJ-quasi-regular.

Now let L1(0,o;) = {/ : (0,a) —̂  Rj / is integrable}. In the following when we

say A{(s) G L1(0,Q!) we shall mean that each component Al(s) G L1(0, a).

We note that for a function / : (0, a) —> R, /(s) = o(s^1) is neither necessary

nor sufficient for / 6 1^(0, a). For example f(s) = 1/(slogs) ^ L^O, a) despite

/(s) = o(s^1). On the other hand f(s) = o(s~r) for some r < 1 is sufficient for

/ G -^(O. a), though not necessary. For example f(s) = l/(s(log s)k) G 1^(0, a) for

k > 1 despite the fact that f(s) ^ o(s~r) for r < 1, but /(s) = o^"1).

Let w, u; be connections on GL(M). Let [/ be a tensor defined along 7 with

components U-^W'l'' in an w-frame (ej . Whether or not L^1//.̂ * G L>-(0, a) does not

depend on the choice of cu-frame but does in general depend on the parameter s.
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2.3 Connection difference

Proposition 2.3.9. Suppose 7 : (0. a] —* M : s t-> 7(5) has finite b-length and let

s1:s2 be two parametrisations of 7 which both measure b-length. Then

where sx — al when s = a and s, = a0 when s = a.

Proof. Let (e j , (ez) be the ^-frames along 7 with respect to which s1, s, are mea-

sured. Let U have components U^'"l''(s1) in (e j . Suppose U^'"^''^^ G L1(0,o;1).

Then

/ ^H.''i'!{si) ds1 = / C/^1'"/'(s9) (s2) ds2 < 00

and so U^'^(s2)(ds1/ds2)(s2) G L ^ O , ^ ) . Now e7 = â ê - where a] G GL4(R) is

constant along 7. Let 7 : s 1—• 7(s) have tangent u = ulel = ulez. Then ulet = ula\e~3

so uJ = a\ul and

fs

• ' lV / 1 — / I v o / l l ^"'o
Jo

b2\b) — I I a \b0) II Ub0-

Jo

Hence (ds1/ds)(s) = [|txi(s)[j and (ds2/ds)(s) — \\ul{s)\\ and thus (ds1/ds2)(s2) =

||-u'(s2)||/!|'[tI(s2)||. By Lemma 2.2.7 3m, M > 0 such that

and thus
f < ( 2 ) l l < , ^

ds2
l S 2 J - m||^(s2)| | M - ds2

{ 2) - m

from which it follows that

Similarly

We shall therefore say U is u-integrable if 7 has w-finite b-length and. given a

parametrisation s of 7 : (0, a] -^ M which measures b-length, U-^f';(s) G L^O,^).
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2.3 Connection difference

Proposition 2.3.10. If co ~ uj then U is u-integrable ^=> U is ZJ-integrable.

Proof. Let U have components U^'"^ in an cj-frame (ej and components U^'^" in

a u-frame (e j . Let e{ = L\e3.

Suppose U is w-integrable. Then 7 has w-finite b-length. Let s1 be a parametri-

sation of 7 : (0,aJ —> M which measures b-length. Then t//1
1.'/.̂ "(s1) G 1^(0, a j .

Since CJ ~ o7, Iim5i^o L ^ s J exists and - ^ ( s j is continuous and bounded on [0,0^]

and

lies in L^O, a^). Therefore

YT . . ( s j a s , = / U. . s, s, fs2jas2 < 0 0

and U?'"^'(s2)(ds1/ds2)(s2) E D-{f),a2) where s2{a1) = a2.

Let s be any parametrisation of 7 : (0, alpha] —• M and let 7 : s 1—•* 7(5) have

tangent u = ti'ei = u'l~el. Thus •u,-3 = ( L " 1 ) ^ 1 . As in the proof of the previous

proposition

(dsjds2)(s2) = IktaOII/ll^taOH

and from Lemma 2.3.4 3m, M > 0 such that

m||iT(s2)|

and hence

m

from which it follows that U°^"\q{s2) G L^O,^ ) . Since u ~ w, 7 has u7-finite fa-

length and C7 is w-integrable. Similarly if f/ is cJ-integrable then it is w-integrable.

D
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2.3 Connection difference

Finally we give conditions on a under which to ~ to holds.

Lemma 2.3.11. Let A\ be a matrix valued function defined along 7. Then

/•a

| ^ ( s ) | | G L^O, a) => limPexp / ^ ( s 0 ) ds0 exists and is in GL4(R).

Proof. By Proposition 2.1.2

||Pexp I ^ M(s)ds - 8{\\ < exp H f|A^(s)|| ds - 1.

Since ||A](s)|| G Lr{Q,a) it follows that P e x p J^1 Ai(s)ds -> ^ as S Q ^ ! -> 0 and

lim s^0 P exp/ s
a Ai(s0) ds0 exists and is in GL4(R). ' G

It can be shown that A- : s w ^-{(s) satisfies

\\AJ.{s)\\eLl(0,a) 4 = ^ | ^ ( s ) | G L ^ O . a )

where by m ( s ) | G L^O, a) we mean that each component Ai(s) obeys |Ai(s)| G

L^O, a). We define a relation on the set of connections on GL(M). For connections

u, uJ on GL(M) and <r = UJ — LO

to ~ uJ <̂ =̂ » 3 a parameterisation s of 7 (not necessarily measuring b-length)

such that in an w-frame \uk(s)aJ
ki(s)\ G Ll(Q,a).

Whether or not u> ~ uJ does not depend on the choice of w-frame. Note that s

does not have to measure b-length for u> ~ to to hold, however the tangent u of 7

depends on the parametrisation s of 7.

Proposition 2.3.12.

(a) Ifujc^uJ then \uk(s)aJ
ki(s)\ G Ll(0,a) will hold for any parametrisation s of

7-

(b) If UJ ~ cU then u> ~ cJ.

fcj ~ is an equivalence relation on the set of connections on GL(M).

Proof, (a) Since u ~ a; there exists a parametrisation s of 7 : (0, a] —> M such that

ukis)o'L(s)\ G L^O, a). Let s' be another parametrisation of 7 : (0, a] —> M. Then
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2.3 Connection difference

where 7 : s H-> 7(5) has tangent u and 7 : s' i-> 7(s') has tangent it. Thus

|^(s'X(s')l 6^(0, a).

(b) If w ~ w then \uk(s)a3
ki(s)\ £ ^(O,^) and hence by Lemma 2.3.11 and

equation 2.3.1 UJ ^ uJ.

(c) Let 5 be a parametrisation of 7 : (0, a] —> M. Let w be a connection on

GL(M). Then cu ~ a; since co — cu — 0 and 0 G L^O,^). Let w be a connection

on GL{M) and a = aJ — u. Suppose u ~ uJ. Then in an w-frame |tifc(s)<T^(s)| G

1^(0, a), which also holds in a cU-frame since by (b) u) ~ aJ. Hence in a tJ-frame

|ufc(s)(—<T^(S))| G L^OjQ;) and u; ~ u. Now let w be a connection on GL(M),

a' = LU — uj and a" = Co — to. Suppose to ~ u7 and cJ ~ ui. Then working in a w-frame

by Proposition 2.3.10, since by (b) uo ~ UJ. Hence to ~ Co. D

We now define

V = {p: TM -+ TM |for each x = 7(5), p : T,M -> TXM is a linear C° map

such that p(v) = v Vv G TX7}.

Thus if p G "P then p is a tensor of valence f M. In particular V contains the set of

C° projection tensors Vo = {p G V \ for each x = j(s), p : TXM —>• TX7}. We note

that the identity map J £ ? (where in components i\ = 61).

Now suppose that p G V. We define two relations on the set of connections

on GL(M) for which 7 has cu-finite b-length. For connections LO, UJ in this set and

a = UJ — UJ

is cu-integrable

We note that if pi = 61 then UJ ^P UJ

is C°-o>-quasi-regular.

is C°-o;-quasi-regular.

=> cri, is cu-integrable and u =p a;
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2.3 Connection difference

Theorem 2.3.13. If LO =p LO then UJ ^ p LO, if-UJ %p LO then -LO ~ uj.

Proof. Suppose LO =p LO. Then 7 has w-fmite b-length and pl
ka

J
H is C°-^-quasi-

regular. Let s be a parametrisation of 7 which measures b-length with respect to

UJ. Working in the basis ( e j with respect to which s is measured

limpl
k(s)aJ.(s) exists =» \pl

k(s)aJ.(s)\ G Ll(0.a)

and hence a; ?sp LO.

Now suppose u; « p LO. AS before 7 has w-finite b-length. Let s be a parametri-

sation of 7 which measures b-length with respect to UJ. Working in the basis (et)

with respect to which 5 is measured. Lemma 2.2.9 implies that \\ul\\ = 1 and hence

the components of u obey i/,2 (s) | < 1. Thus

and hence \uk(s)aJ
ki(s)\ G L1^, a). Therefore -JJ ~ ZJ and LU ~ u7. D

T h e o r e m 2.3.14. = p and ~ p are equivalence relations on the set of connections

on GL(M) for which 7 has finite b-length.

Proof. Let LJ be a connection on GL(M) for which 7 has finite b-length and let

a = co — LU. Then a = 0 and p^cr/, is (7°-cj-quasi-regular. Thus u =p LO.

Let u be a connection on GL(M) for which 7 has finite b-length. Suppose

u =puJ and let a = uo — to. Then pl
ka

J
u is C°-w-quasi-regular. By Theorem 2.3.13

to ~ u; and thus —p[o-]
H is C°-oJ-quasi-regular. Thus u; = p w.

Now let w b e a connection on GL(M) for which 7 has finite b-length. Suppose

LO = LO and LO = d;. Let cr = u; - CJ. cr' = UJ - uJ and a" = Co - LO. Then p[ a3
u is

C°-cj-quasi-regular and p'fccr'̂  is C°-cJ-quasi-regular. By Theorem 2.3.13 UJ ~ u; and

P^cr'^ is C°-w-quasi-regular. Now a" = a' + cr and thus pl
kcr"3

H is C°-cj-quasi-regular.

By Theorem 2.3.13 UJ ~ w thus u; ~ a; and therefore —pl
k^u is C°-a;-quasi-regular

and CJ =p LO.
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2.4 First and second Cartan equations

We can show that ^v is an equivalence relation in a manner similar to the proof

of2.3.12(c). •

2.4 First and second Cartan equations

Let xQ G M and let U be a neighbourhood of x0. Let (e,;) be a C2 section

of GL(M) above U (thus for each x G U, (e,)[x. is a basis of TXM). Let UJ, to be

connections on GL(M) and let a = UJ — UJ. to has torsion Tk where Tk is a 2-form

valued tensor given by the first Cartan equation

Tk = dek +ujk AeJ

where ujk = tok.e1 and (e1) are the 1-forms dual to (eA Similarly to has torsion T

given by

Tk = dek + ZJk A ê

where ujk — uk.e\ Thus
3 1-3

Tk - Tk = ok A
3

where crfc = crfc.el and hence in the basis (e,)
3 13 K l /

Tk.-Tk=ak
r

In particular if T** = Tk, for example if to and U both have zero torsion, then

ak = 0 and ak. = ak..

to has curvature Qi where Q? is a 2-form valued tensor given by the second

Cartan equation

9J = dto] +uJ f\uk.
1 1 k i

Similarly uJ has curvature Q, given by

Tf = duJ3 + uj\ A tok

i 1 k i
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2.5 Path-ordered exponentials of the curvature

and thus
QJ. - nj = do-J + uj] A uk - LJJ A ujk

1 1 i k i k i

= da3 +

= daj +

= Do* •+

k
A ak

A a

+

k
i

A(

k

'ak

Ac

J_ , .k^
^ k

a

Acuk

fc
i

where D is the exterior covariant derivative associated with u.

Now let 7 be a C1 inextendible curve

7 : (0, a] —y M : s H-> 7(3) a > 0.

From the above we have

Theorem 2.4.1. Let r > 0. Suppose that along 7. Q] is Cr-o;-quasi-reguJar and

(Tj is Cr+1 -co-quasi-regular. If UJ ~ u7 tiien O. is Cr-ZJ-quasi-regular.

We note that if 7 has cu-finite b-length then by Theorem 2.3.13 it follows that

if o~\ is Cr+1-u;-quasi-regular for r > 0, thenUJ ~ oJ.

2.5 Path-ordered exponentials of the curvature

Let CJ be a connection on GL(M). We have shown how the result of parallelly

propagating a basis along a curve with respect to to may be expressed in terms

of the path-ordered exponential of ui. It follows that elements of holonomy may

be expressed in this way. We now show how elements of holonomy may also be

expressed in terms of path-ordered exponentials of the curvature of UJ.

Let 7 be a C1 map

7 : [0,1] X [u0, u j -^ M : (s, u) •-> 7(s , u) = 7u(s)

where 7u(0) = 7U(1). Thus s H+ 7U(S) is a closed loop for u0 < u < u1. Now pick

a basis e^O.uJ at 7(0, u j and parallelly propagate it along K{U) — 7(0, u) to give

e2(0, -u) and then along 7u(s) to give e,(s, M). Thus et(s. u) is a lift of 7(5. u).
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2.5 Path-ordered exponentials of the curvature

Since j u is a closed loop, e,(0,-u) and e{(l,u) are denned at the same point . If

we set

e,(l,ti) = U.fae^O.u)

then L{(u) € GLA(R) is the element of holonomy generated by parallelly propagat-

ing e^(0,u) round 7u. From [V85]

Ufa) - Ufa) = r [' Uk(u)nk.(X(s,u),Y(s,u)) dsdu (2.5.1)
Jun J0

where :JJ has 2-form valued curvature Vl\ and X, Y are the images of ds, du induced

by 7. (ds, du are tangent to [0,1] X [UQ.U^ whereas X, Y are tangent to M.) It is

assumed in [V85] that the connection is metric and torsion free, but the proof given

will in fact work for any connection.

By repeated iteration

J2 r f ... r f
=1 Jun JO Jun JO

Lifa)ni(X(sm+1,um+1),Y(sm+1,um+1))

y(s2,ii2)) dsm+1dum+1 .. . ds2du2 + BJ.fa)

where the remainder term
/•HI /•! r^N + i /-I

RJfa) = / / / l i
un Jo J uo Jo

.. .Q,lN+1(X(s2,u2),Y(s2,u2)) dsN+2duN+2... ds2du2

can be shown to obey Hi^uJH —*• 0 as N —*• 00. As before, suppressing indices and

using matrix notation, we have

Lfa) = Lfa)

J^ r f r f ••n{X(sm+l,um+1),Y{sm+11um+l))
^z1 ml Jua Jo Jun Jo

. . . Q(X(s2, u2), Y(s2, u2)) : dsm+1dum+l . . . ds2du2

where : : indicates that the expression should be ordered so that terms with a

smaller u value precede those with a larger u value. Note that this is the reverse
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2.5 Path-ordered exponentials of the curvature

of the ordering in the path-ordered exponential of the connection, and that : :

denotes u ordering and not s ordering. We writeg.

fIAiuJ = Ll(uo)PuexV r f nk:{X{s,u),Y{s,u))dsdu. (2.5.2)

Since the inner integral is an ordinary integral we can set

WHu)= [ ni(X(s,u),Y(s,u))ds
Jo

which gives

IA{uJ = L{(uo)Puexp r W*(u)-du
J a,,

where Pu exp JUl . . . du is the more usual path-ordered integral, though still ordered

so that terms with a smaller u value precede those with a larger u value.

By swapping uo,ux in equation (2.5.1) we also obtain

L{(u0) = L>(ti1)Puexp f " [ ttL:(X(s1u),Y(s,u))dsdu. (2.5.3)
Ju1 JO

Let U = Im~/. If 7 is a diffeomorphism then U is a 2-surface with disjoint

boundaries ~/Ua and j U i . If however 7U0 is a point then

L^(«i) = Pu exp / Wt
j(u) du.

J ua

Under suitable conditions U will be a 2-surface with boundary j U i , however Lj^)

will depend only on 7Ui and the choice of basis e^O, u j at 7(0, wj , but not on the

spanning surface U or its parametrisation.

Now suppose K : (0.1] —> M is a Cl curve of finite b-length terminating at a

singularity. Let 7 G fiK (where £lK is the loop space defined in section 1.6) so

7 : [0,1] x (0,1] - > M : (s,u) ^ 7 ( s , u ) = 7u(s).

As above let e t(l, it) = L^^e^O, u) where a choice of ez(0,1) is parallelly prop-

agated along K(U) to give K(U) and then along 7U for each u to give a lift e^s, ti) of

7. Thus

{L-iy,(u0)mUl) = Puexp r W?(u) d̂



2.5 Path-ordered exponentials of the curvature

for 0 < uo,u1 < 1. The lift 7 of 7 we have chosen will generate a well-defined

element of s-holonomy L](Q) := limu^0 L{(u) if and only if

{L-%{uQ)Lk.{u1) -> 8{ as uo,Ul -* 0

which by Lemma 2.3.11 will hold if Wl(u) e Ll{Q. 1). If K terminates at a quasi-

regular singularity then by Theorem 1.6.2, H- will exist and by Theorem 1.6.1, 1^(0)

will exist if 7 satisfies the area condition. However if K terminates at a curvature

singularity we do not in general expect that 14(0) or H- will exist.

However we now discuss conditions under which Ll(0) will exist even if K does

terminate at a curvature singularity. (We do not impose an area condition on 7.)

We shall say that the curves 7, : s H 7U(S) a r e parametrised proportional to

b-length if the b-length l(s,u) of 7n|[CU] measured in the basis (et(s,u)) obeys

l(s, u) = sl{u)

where l(u) is the b-length of j u , measured in the basis (ez(s,u)). In this case

/ JIX^So,^)!! ds0 = l(s,u) = sl(u) => HX^s, w)|| = l(u) -> 0 as u —> 0.
Jo

Given any 7 E £lK and lift of 7, the -yu curves can be reparametrised proportional

to b-length. The value of ( L - 1 ) ^ ^ ) ! * ^ ) , and thus of L{(0) := limu_0 L{(u) if it

exists, will not be affected by this reparametrisation.

We now consider the curves KS{U) = i{s-u)- These curves do depend on the

parametrisation of the curves j u and need not in general have finite b-length unless

s = 0 in which case K,0(U) = K(U).

We note that (e^s^u)) will not in general be an w-frame along KS since it is

obtained by first parallelly propagating (^(0,1)) along K(U) and then parallelly

propagating (et(0,ii)) along ju(s) = 7(s,u). We define another basis (e,(s,u))

as follows. Let (e,(0,l)) = (e t(0,l)), parallelly propagate (^(0,1)) along JX to
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2.5 Path-ordered exponentials of the curvature

give (e ; ( s ; l ) ) . and parallelly propagate (e^s . l ) ) along KS to give (e^(s,u)). Thus

(^(s. i i)) will be an u;-frame along KS (see diagram 2.5.1). We define

ei(s,u) = U.(s,u)ej(s,u)

where l\(s, u) G GL4(R). We note that since e,(s, 1) = et(s. 1), l{(s, 1) = 5/.

Diagram 2.5.1

We shall say that 7 is sufficiently regular with respect to QJ
{ if

(a) the curves j u are parametrised proportional to b-length, and for each s G

[0,1], KS has finite b-length, and the b-length A(s) of KS measured in the

basis (e,) is continuous in s, and Y(s, u) 7̂  0

(b) 3<p G i^^O, 1), ib G L^O.sup^jQ x, A(s)) such that, in the basis (ej , where for

each s G [0,1], u measures b-length along KS with respect to (e:) such that

u —•>• 0 as ti —> 0, and Z(s-, tt) = Z(u) where we regard u as a function of s and
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2.5 Path-ordered exponentials of the curvature

Condition (a) imposes constraints on the geometry of 7 while condition (b)

imposes constraints on the curvature Q,?. In particular condition (b) is certainly

satisfied if there exist d> E L(0,1) and ip e L^C^sup^ a ] A(s)) such that, in the

basis (et),

or even

though these are stronger conditions than condition (b).

We might expect that l(u) = O(u), at least if u measures b-length along K,

but it may happen that the j u loops "crinkle up" as u —• 0 and in fact 7 may be

chosen so that l(u) —»• 0 arbitrarily slowly. We could, though we shall not. restrict

OK to contain those lassos for which l(u) = 0{u) when u measures b-length along K,

though we note that even if u measures b-length along K, it might not do so along

KS for s 7̂  0.

We shall also need the following condition. We shall say that 7 is well bounded

with respect to UJ if 3a > 0 such that

11(1-^(3,^X^^)11 < a\\X^s,u)\\

where X3 are the components of X in the basis (e j .

This condition may seem unduly restrictive but we shall see that it holds in an

important case in section 5.4.

We shall prove the following two theorems.

Theorem 2.5.1. Let 7 be sufficiently regular with respect to ttj and well bounded

with respect to to. Then for each s e [0,1], lj(s) := limu_0 li(s,u) exists, and Pz(s)

is continuous.
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2.5 Path-ordered exponentials of the curvature

Theorem 2.5.2. Let 7 be sufficiently regular with respect to £1? and well bounded

with respect to UJ. Then 1^(0) := Y\mu^QL\{u) exists.

We note that this theorem tells us conditions under which limu_0 L\ in) exists

but does not tell us its value.

The remainder of this section is devoted to proving Theorems 2.5.1 and 2.5.2.

We will first need to prove a number of intermediate results.

Suppose now that 7 is sufficiently regular with respect to Sl\. For each s G [0,1],

let u to be the parametrisation of KS which measures b-length along KS with respect

to (e2) such that u —• 0 as u —* 0 and let A(s) be the b-length of KS measured in

the basis (eQ. Since 7 is sufficiently regular, we make a choice of <p G ^ ( O . l),ip G

L1(0, sup se ro x, A(s)) such that

\\n-kni{s,u)\\l(s,u)<<t>(s)iP(u)

where Q~ku
3 are the components of Qj in the basis (eQ.

Now define the function h : (0,1] —>• R

hijij) = / V)('^) du
Jo

where we regard u as a function of s and u.

L e m m a 2.5.3.

(a) \\^r(s,u)Y~l(s, u)\\ = 1 where Y has components Y~l in the basis ( e j .

(b) h^) —r 0 as u1 -> 0.

Proof, (a) Let the curve KS : u i-> K,S(U) have tangent F . Now 9- = f|(s,ix)9 t l so

9u 9-u <9ti _

du du du

By Lemma 2.2.9, j |y r | | = 1 where Y has components Yl in the basis ( e j . Hence
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2.5 Path-ordered exponentials of the curvature

(b)

Since 7 is sufficiently regular with respect to Q,{, \{s) and Yl(s,u) are continuous

and Y(s.u) ^ 0. It follows that u — u(s,u) is continuous in s.u and for fixed s,

strictly monotonic in u. Hence u = u(s, u) is also continuous in s, u and for fixed s,

strictly monotonic in u.

It follows from this (and the compactness of [0,1]) that supser0e r 0 1 j 0 as

ux —> 0. Now ib (E i 1 (0 , sups6r01, A(s)) and hence

h(ux) = / i>{y) du — 0 as ux —> 0. C
io

Given 0 < s0 < sx < 1 and 0 < u0 < ux < 1 we now define a map p

[0, 1] X [so,sx] —> M : (cr, r ) H^ p(a,r) as follows (see diagram 2.5.2)

Diagram 2.5.2

60



2.5 Path-ordered exponentials of the curvature

pT(a) = p(cr.r) =

i, — un)4(a — 7)) - < a

Thus each pT is a closed loop and pT([0, 1/4]) lies on 7Ui, p r ( [ l /4 , 1/2]) lies on

K,T, p r ( [ l /2 ,3 /4]) lies on j U a , and pT([3/4,1]) lies on KSn. pSn lies entirely on KSU. We

note that the image of the curve r K-> p(0,r) is the fixed point ^(sg.u^.

We define a basis (e^cr, r)) at p(cr, r ) by setting e^O, r) ' = e^So, t i j and parallelly

propagating e t(0.r) along pr to give e^cr, r ) . WTe set

where ^ ( T ) 6 GL4(R). Since the image of pso lies entirely on reSo. (e^l.Sg)) is

obtained by parallelly propagating (^(0, s0)) along «So from ^ ( t i j to KSO(U0) and

back again to K5O('M1). and thus /^(s0) = (5̂ .

We now suppose that in addition to being sufficiently regular with respect to

Q{, 7 is well bounded with respect to u. We therefore make a choice of a > 0 such

that

where Xj are the components of X in the basis (et).

Lemma 2.5.4.

^is, Ul)U(s) ds - 1

|j(^~1)J'(s1) j| < exp — ah(ut) / ||Z-?'(s, tij
^ J s

Proof. Working in the basis (e2) we have from equation (2.5.2)

(l~iy (so)l
k(sx) = PT exp / / fifcil

J(c
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2.5 Path-ordered exponentials of the curvature

where X, Y are the images of da. dT induced by p.

Now li{s0) = 6j and

ds du - ds du
X = —X + ~Y Y = —X + — Y

oa do or or

where p(cr,r) = j(s(a,r),u(a,r)). Hence

({4(r-so)X,4aX) 0 < a < i

f < a < 1
4

and

/ s 0 JO

11/4

1-3/4

'1/2

/•I

3
-
4

+ / nuj (a, r)i(Ul~u0)Y
k (a, r).0dadr

J3/4

= PTexp /
so Jl/4

since fi](X, X) = 0 and Q](X, F) = -Qi(Y, X). Now for ± < a < \,

u = ux — (̂ 41 — tto)4(cr ) =̂ - dw = —4:(u1 — uo)da s = r =^ ds = dr

and hence by Proposition 2.1.2

\\U(Sl)\\ <exp r ri|^^(S,n)XHs,u)F'(S,u)||ciWS + l.

Since (^(s,^!)) is obtained by parallelly propagating (e^So,^)) along '

(^(s,^)) = (e^s,^)) and for i < a < \,

ni]k
l(s, u)Xk(s, u)Yl(s, u) = Zf(s, uJG"1)^(s, u1)fifciA

fi(s, «)X*(s, u)Y!(s, u)

where fi], X, Y have components fi^™, Xs, Yl in the basis (e,). Hence

H^sJH <exp /
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2.5 Path-ordered exponentials of the curvature

Since 7 is sufficiently regular with respect to Qi,

hkTi'j(s.u)\\l(s,u) < <p(s)v(u)

and hence by Lemma 2.5.3(a)

du

<

Therefore

'u(s,u0)

Hs, u)Yl(s, u)\\ \\X'k(s, u)\\ — (s, u) duds + 1.
du

Since 7 is sufficiently regular with respect to flj,

Xk(s:u)\\ = < a\\X (s,u)\\ = al(s,u)

where X has components X in the basis (e:). Hence

< e x P

/
>u(s,un)

^"(s, u)—z(s, u)\\al(s, u) duds + 1

<expa
So u(s,u<i)

< exp a P j|/f (s
7S o

s)ip(u)\\ duds + 1

du + 1.

Now

and hence

u(s.ui)

ib{u) du <
Ju(s,un)

| | ^ ( S l ) | | <expah(Ul) / Wlli
J so

From Proposition 2.1.2 we also have

ds

i ) - # | | <exp \\nkuJ(s,u)Xk(s,iu)Yl(s./u)\\duds - 1
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2.5 Path-ordered exponentials of the curvature

and so analogously to the above

Now from equation (2.5.3) we have

and so analogously to the above by Proposition 2.1.2

\Qkll
J(s, u)Xk(s, u)Yl{s, u)\\ duds + 1

and as before

D

We now use a similar method to prove the next two results.

For 0 < a < 1, 0 < b < 1 let pa,b : [0,1] —> M be the map (see diagram 2.5.3)

0 < a < \f 7(4aa, 1)

7(a-4(«7-i)a,6)

Thus p a 6 is a closed loop and pa?6([0,1/4]) lies on 71; pa6([l/4.1/2]) lies on Kal

pa,6([l/2,3/4]) lies on 7h, and pa,4([3/4,1]) lies on K.

We define a basis {ef{a)) at pa<b{a) by setting e"'b(0) = e^O. 1) and parallelly

propagating e?'6(0) along pafi to give e^'V)-
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2.5 Path-ordered exponentials of the curvature

. _v

L e m m a 2.5.5.

Diagram 2.5.3

Proof. e{{a, b) is obtained by parallelly propagating e^O, 1) along pab from pttb(0) to

pa ? b(l/2), and e t(a,6) is obtained by parallelly propagating e2(0,l) along p a 6 from

Pa,6(l) to po,fc(l/2). Now

so if we parallelly propagate et(a, 6), et(a, 6) along p a b from pa6(l/2) to

e,(a, 6) becomes e"'i>(l) and e^a.b) becomes ê 1 (0). Thus

eo-4(l) = /j(a. 6)ea-6(0).

Proposition 2.5.6. 3 C° M(s),m{s) > 0 such that

| | Z ^ , T O | | < M ( 5 ) \\(l-iy.(3,u)\\<m(s).

D
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2.5 Path-ordered exponentials of the curvature

Proof. Let s0 = 0 and ux = 1. Then pSi(a) = pSl_Uo(a) and efasj = ef'""(>)•

Hence by Lemma 2.5.5

ei(l,s1) = P.{s1,uo)ej(O,s1).

Thus li(sx) — P1(s1,u0) and by Lemma 2.5.4

Ul-^is,, uo)\\ < exp -ah(l) I" \\l>(s,
</ 0

but since lj(s, 1) = b\ we have

Ws, l)U(s) ds + 3

exp[3

where /? = 4ah(l) is a constant. Hence j]Zf (JS, xi) ]j < M(s) = exp/?/Q
s cj>(s') ds' + 3

and JKZ"1)](s, u)\\ < m(s) — exp — /?/Q
s cf)(s') ds' + 3. M(s) , m(s) are continuous in s

since 0 e ^H0-1)- •

Proposition 2.5.7. Let T be a tensor with components Tlx"'l" in the basis (e,)

and components T3^"'^ in the basis (e^. If tiere exist </>' e L1(0,1) and •0' G

L^OjSup^gjg^j A(s)) suci that

\\Thl<(s,u)\\l(s,u)<<f>'(s)<ilj'{u)

then there exists x G Lx(0,1) sucii that

Proof.
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2.5 Path-ordered exponentials of the curvature

hence by Proposition 2.5.6 there exist C° M(s),m(s) > 0 such that

\\Ttt(s,u)\\l(s,u) < m(syM(Sy\\T^j(S,

where since M(s),m(s) are continuous. x(s) — rn(s)pM(s)id>'(s) G L ^ O . l ) . Q

We now prove Theorems 2.5.1 and 2.5.2.

Proof of Theorem 2.5.1. Let s0 = 0, 0 < s1 < 1 and 0 < u0 < u1 < 1. By Lemma

2.5.5

e*i.""(l) =U(Sl,uo)e
Si'u"(0) e ^ ' n i ( l ) = / J ( s 1 ; n J e ^ ^ ^ O ) .

Thus if we parallelly propagate e^O.l) first round pSl>Uo from pSiUo(l) to pSl,Uo(0)

(i.e. in the reverse sense) and then round pSi Ui from pSliUl(0) to pSliUl(l), e^O, 1)

undergoes a transformation

However parallelly propagating e2(0,l) in this manner is equivalent to parallelly

propagating et(0,1) along K from K(1) to ^ ( u j , and then round pSi from pSl(0) to

pSl(l), and then back along K from «;(«!) to K(1). Hence

and by Lemma 2.5.4 and Proposition 2.5.6 there exist C° M(s),m(s) > 0 such that

Jo
/••si

< exp ah^y) I M(s)m(s)6(s) ds — 1

—• 0 a s i i 0 . i ix —> 0

where h,cf> are as above and since M(s),m(s) are continuous, M(s)m(s)(p(s) G

L^O,!). Hence lims_0/?(s) exists.
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2.5 Path-ordered exponentials of the curvature

Now let 0 < s0 < sx < 1, ul = 1 and 0 < u0 < 1. Again by Lemma 2.5.5

Thus if we parallelly propagate e : ( 0 , l ) first round pSuUo from pSuUll{®) to PSl «,,(!)

and then round p.S(l>1J|) from pS ( ) l i 0(l) to pS(1>Uu(0) (i.e. in the reverse sense). e^(0,1)

undergoes a t ransformat ion

e^OA) ^ (l-^is^u^is^uMOA).

However parallelly propagating e^O, 1) in this manner is equivalent to parallelly

propagating ^(0,1) along yx from 7x(0) to 7x(s0), and then round pSi from pSl(0)

to p5i(l), and then back along -fl from 7i(s0) to 7i(0). Hence

and by L e m m a 2.5.4

<expah(l) f ' \\U(s, l)\\\\(l-^(sA)\\cp(s)ds-l

fsl

= exp ;8 / (f>(s) ds — 1

where ,/3 = 4a/i(l) since l\(s, 1) = 8j. Now ^(s) = l im^o li(s.u) exists so

- ^ | | < exp,

and hence l\{s) is continuous. •

Proof of Theorem 2.5.2. Working in the basis (et), since 7 is sufficiently regular

with respect to fl{, we have
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2.5 Path-ordered exponentials of the curvature

where <j),ip,u are as above. By Lemma 2.5.3(a), | |§ f (s , u)Y'(s, u)\\ = 1 and

< \\Q-kIJ(s, u , u)Y'(s, u) \\l(s, u)

< (p(s)yj(u)

and so by Proposition 2.5.7 there exists x

basis (e j ,

,1) such that, working now in the

1u) — (s,

By Proposition 2.1.2,

Ju0 JO

j
J n0 Jo

/ l f
Juo Jo

< exp

< exp

= exp

= exp

= exp

< exp

= exp / x(s)
J

\\nkll3(slU)Xk(s,u)Yl(s,u)\\dsdu-l

\\nk[lJ(s,u)Yl(s,u)\\\\Xk(s,u)\\dsdu- 1

)— (s, u) duds —
du

du — 1/
u(s,uo)

0 as u0, ii t —> 0

since by Lemma 2.5.3(b) /i(/u1) —> 0 as % —> 0, where h is as above. D

69



3.1 Conformal transformations

Chapter 3

Conformal transformations and conformal singularities

3.1 Conformal transformations

Let (M, g) be a Cr space-time. A conformal transformation [HE] is a transfor-

mation of the metric

gh+g = D?g

where Vt : M —> R is a CT scalar function which satisfies

n(x) >o VieM.

Thus ~g is a metric and the space-time (M,g~) is said to be conformally related to

(M.g). Note that M itself is unchanged. A conformal transformation preserves

the causal structure of (M,g): u £ TM is timelike, null, or spacelike with respect

to g if and only if it satisfies the same property with respect to g~. Conversely, if

two metrics g and ~g have the same causal structure at a point then, at this point.

g~ = Q2g for some Vt > 0.

Thus we have generated a new space-time (M.Tj) from (M,g). If (M,g) has

unreasonable physical properties we may be able to choose Vt so as to make (M.~g)

more physically realistic, for example obey energy conditions or be a vacuum space-

time. If (M, g) is a singular space-time we could require Q —>• 1 as we approach the

singularity so that we do not upset the geometry near the singularity. Alternatively

we may be able to choose fi to remove a singularity, so that (M, g~) is a non-singular

space-time, in which case the singularity of (M,g) is in some sense mathematically

tractable. We may instead hope merely to simplify a singularity by applying a
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3.1 Conformal transformations

conformal transformation. Alternatively, if (M, g) is a non-singular space-time, we

may be able to choose Q, to generate a new singularity. We emphasize though that

a conformal transformation provides only one functional degree of freedom and as

such is limited in what it can achieve.

Let g have Levi-Civita connection V and let ~g have Levi-Civita connection V.

Working in a basis field (et) set

Lemma 3.1.1 . Ifak.=T..~ Fk. and LJ = logfi then
13 13 13 »

ok. = 5kdiLj - „.
13 1 3 3 - ~J ~

Proof. Since V. V are metric connections we have

\7i9jk = 0 Vtgjk = 0

where ~gtj = 02(/j ;. Hence

O = digjk-r\:glk-T\kg]l (3.1.1)

where for a scalar / : M —> R, 9,/ := e ;(/). Subtracting (3.1.2) from (3.1.1) gives

0,•!.—-— = o~l. qn, + cr1., o,7 (3.1.3a)

Now V, V are torsion free so from section 2.4 we know that

o~k. = ok...
13 jz

By symmetry from (3.1.3a)

j I . j / O 1 Q L \

(h- = (7 , <7/,- + O -Qki [6.1.60)



(3.1.3a) + (3.1.36) - (3.1.3c) gives

3.1 Conformal transformations

(3.1.3c)

a'.kgu + a'..gkl - al
ki9lj - akjgu

and so

+
i3 (

+

and hence

ak:. = D

Now working in a coordinate basis, if g, ~g have Ricci tensors Rijt Rtj then

R^ =RtJ - (n - 2)V IVJ^ - <^*'VfcV,u; + (n -

where n is the dimension of M. For n > 3 the Weyl tensor

2 2
/ _ 2 x , _ y , , _2^

obeys Cljk< = Ciifc'.

A conformal transformation varies the length scale of a metric in an isotropic

way: if (ej is pseudo-orthonormal with respect to g then (^ej will be pseudo-

orthonormal with respect to ~g. The fact that a conformal transformation alters the

Ricci tensor but leaves the Weyl tensor unaltered suggests that in some way the

Ricci tensor measures expansion and contraction, whereas the Weyl tensor measures

shear and distortion.

Let 7 be an affinely parametrised geodesic with respect to g with tangent u* so

uzV\uj = 0. In general 7 will not be a geodesic with respect to g~ unless 7 is null.

It can be shown that

u'V\uj = 2uJukdkoj — glku
lukgjldluj
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3.2 Conformal singularities

so the condition for 7 to be a non-affinely parametrised geodesic with respect to ~g,

uJV;ixJ' = Xuj, will hold if ulut = 0, in other words if 7 is a null geodesic, or if d^

is cotangent to 7.

If M is 2-dimensional. then for any metric g, (M.g) is conformally flat, and in

fact any two metrics g and ~g on M will be conformal to each other. For example

consider the 2-cone

ds2 = dr2 + A2r2d92 0 < 0 < 2TT.

If r = pA then

where fi(p) = ApA~Y hence if the 2-cone has metric g then g = Q2~g where ~g is the

fiat metric.

3.2 Conformal singularities

Let (M, g) be a space-time which is singular by some definition (for example

b-incompleteness or timelike b-incompleteness) and let C be the corresponding class

of singular curves. Suppose that all 7 G C terminate at genuine singularities rather

than regular boundary points. Given a conformal transformation 9 : g 1—>• g~ = Q2g

where O(x) > 0 Vx € M, we can form C the class of curves singular in {M,~g) by

the same definition. If fl can be chosen so that 7 6 C terminate only at regular

boundary points then (M,g) is said to be conformally regular. In other words, a

conformally singular space-time is one whose singular behaviour can be removed by

a conformal transformation.

Suppose we can extend beyond all the regular boundary points of (M, g~) simul-

taneously to give a larger space-time (M',g'). Let (M,g) be the closure of (M,~g)

in (M',g'). Then M — M will provide some sort of singular boundary for (M,g)

which we hope will depend only on Q, and (M,g). Clearly Q cannot extend in a Cr



3.2 Conformal singularities

non-zero way onto M — M. otherwise g = £l~2g~ would be non-singular on M — M.

The idea, then, is that the singular behaviour of g is contained in fi.

A little more care is needed however. For example let g~ = fl2g where g is the

conical metric

ds2 = -df- + dr2 + A2r2d62 + dz2

and Q = 1/r". Then
R = -6a(a + l)r2a-'2

A > 0R..R" = Ar4"-4

so R —)• 0 and RtjR — > 0 a s r — > 0 i f a > l . Furthermore it can be shown that the

Lorentz transformations generated by r = constant loops encircling r = 0 tend to

the identity as the loops shrink to r = 0. Now let

= (-V2r,r,0,0)

so 7 has tangent

u = (-%/2,1,0,0)

so 7 is a timelike curve parametrised by proper time which is future incomplete.

Because it is a geodesic it has bounded (in fact zero) acceleration. Let r be proper

time with respect to g and let r be proper time with respect to ~g. Then —(dr/dr)2 =

g(ua,ua) = - 1 and -(df/dr)2 = g(ua,ua) = Q2g(ua,ua) = -H 2 . Hence

dr =
- l -a

—> co as e —> 0 if a > 1.
L(a - l ) J ,

If a > 1, 7 is not timelike incomplete with respect to g~. In particular it cannot

be a timelike incomplete curve of bounded acceleration with respect g. We have

mapped the singularity away to infinity.

More generally we define

S = {7 : (0, a] -» MJ7 is C1 and inextendible, a > 0}.
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3.2 Conformal singularities

We now work in terms of b-incompleteness. Let C be the class of curves in S b-

incomplete with respect to (M, g) and let C be the class of curves in S b-incomplete

with respect to (M,g). We would like C = C, however we shall see that this may

be too much to ask. Let g, ~g have metric connections u, ul, let 7 G <S, let (er) be an

cj-frame denned along 7 such that g(e{, e;-) = r]{j, and let (e,) be an aJ-frame denned

along 7 such that g~(ei,'ej) — 77̂ ., where 77̂  = diag( —1,1,1,1). If we set

then L\(s) G GL4(R) and we know by Theorem 2.3.3 that if UJ ~ cJ (and thus

linig^o Li(s) exists) then 7 has w-finite b-length if and only if 7 has uJ-finite fa-

length. Thus if u) ~ oJ along every J G C L J C then C = C.

We now exhibit a sufficient condition for to ~ uJ along 7. Working in the frame

(e ;), set

V.e, = uAe, V.e. = tok.ek.

From Lemma 3.1.1 we have

I 3 ' j IT IIJ I IT

where ak. = uJk. — ujk. and 6 = logQ. Let 7 have tangent u\ Then

yi^fc _ §kuiQ A j ^ ukQ X _ j , J.UuiQ A

and from section 2.3

IA(s) = Pexp J -ul(s0)a
k
3(s0)ds0.

Suppose 7 G C and let 7 : (0, a] —> M be parametrised by b-length measured with

respect to u. Then by Lemma 2.2.9, Wu*]] = 1 and by Lemma 2.3.11, a sufficient

condition for lim s^0 Li(s) to exist, and thus for UJ ~ U, is

5kul{s)dl(f){s) + u*(s)d^(s) - •qii-q
klui(s)di<l>{s) G L 1 ^ , ^
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which will hold if (but maybe not only if) d(j)(s) G Ll(0, a), i.e. if do is u;-integrable.

Note that if do is u;-integrable then tu ~ u and it follows as above that 7 G C and

by Proposition 2.3.10 that dd> is oJ-integrable.

If d(j)(s) G Ll(Q,a), it follows that ul(s)dl(p(s) G Ll(0,a). But ui(s)(9l(p(s) =

dtp/ds and

®(s) = ©(a) - / ui(

and so 0(0) := lims^0 (j)(s) exists. Hence 0,(0) := lims^0O(,s) = exp(0(O)) and

0 < fi(0) < 00. Thus if d<j) is w-integrable then both 0 —> 0 and Q —» 00 as s -> 0

are impossible.

Suppose instead that 7 G C. Since g = O~'2g~ and logQ"1 = — logfi = —© it

follows by symmetry that if 7 6 C and G(0 is U-integrable then cu ~ LU, 7 e C and

d0 is cu-integrable. Again, in this case, both 0 —> 0 and Q —> 00 as s —> 0 are

impossible.

Now suppose 7 G 5 where 7 need not necessarily be parametrised by b-length.

ijOej) = O2g(ei,ej) = ( / ( e^ ) = 77̂  therefore fi^ = ^e j for some Zf e Lt and

where Z (̂s) e L]" and by O(s) we mean ^(7(5)). For l{ G

IKII =

Thus

= \\H\\2\M

and so if O,(s) —> 0 as s —>• 0 (or more generally there does not exist m > 0 such

that m < O(s)) then L\ will be unbounded as s —̂  0. Conversely, if Z/J is bounded

as s —» 0 then there exists m > 0 such that m < O(s) and in particular O(s) —> 0

is impossible.
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3.2 Conformal singularities

Again by symmetry

\\{L-i)>(s)\\ = n(s)\\(l-i)>(s)\\ > Cl(s)

and so if Q(s) —> oo as s —> 0 (or more generally there does not exist M > 0 such

that Q(s) < M) then (I/"1); will be unbounded as s —>• 0. Conversely, if (I/-1) is

bounded as s —>• 0 then there exists M > 0 such that Q(s) < M and in particular

Q —> oo is impossible.

Thus in particular if Q, —> 0 or fi —)• CXD along d e C U C then u; ~ uJ cannot hold

along 5.

From the proofs of Lemma 2.3.4 and Theorem 2.3.3 we see that if Lj(s) is

bounded as s —> 0 and 7 G C, then 7 6 C. This is true even if lims^0 L\ (s) does not

exist. Unfortunately, if Lj(s) is unbounded as s —> 0 and 7 G C, it may still be the

case that 7 G C . By symmetry, if (L-1);^) is bounded as s —> 0 and 7 G C then

7 G C. Again, if (L-1)J
l(s) is unbounded as s —> 0 and 7 G C, it may still be the

case that 7 G C Hence f2 —>• 0 or Q —> 00 may be possible along 5 G C fl C.

We now restrict our attention to timelike curves. We note that a timelike curve

is b-incomplete if and only if it is timelike incomplete and has bounded acceleration.

Let

So = {7 : (0, a] —> M\j is C1 inextendible and timelike, a > 0}

where we recall that a curve is timelike with respect to (M, g) if and only if it is

timelike with respect to (M, #). Let Co be the class of curves in <S0 b-incomplete with

respect to (M, g) and let Co be the class of curves in So b-incomplete with respect to

(M,g~). So will include curves which extend to infinity, i.e. curves which fail to be

b-incomplete with respect to one or both of (M,g) and (M,~g). The c-boundaries

formed from So for (M, g) and (M, ~g) will include points "at infinity" and, since they

are conformally invariant, will in fact be identical. Alternatively the c-boundary

formed from Co for (M,~g) will correspond to M — M, after perhaps identifying
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3.2 Conformal singularities

points of the c-boundary. For example, if M — M is a timelike hypersurface in M.

then each point of M — M will correspond to two distinct points of the c-boundary,

one on each side.

Let 7 E Co and let 7 : r h-» 7(r) be parametrised with respect to proper time

measured with respect to g. Then the proper time elapsed along j , a s) with respect

to ~g is

T(T) = j\-g(u{rQ), u{rQ))Y12 dr0 = j\-^{ro)g{u(rQ), u(r0)))^ dr0

= J°Q(T0)dT0

where 7 : r i-> 7(7-) has tangent u and since 7 is parametrised with respect to proper

time. g(u.u) = - 1 . Therefore 7 G Co =>• fi(r) G L^O.a) (though Q(r) G L^O^)

may not be sufficient to ensure that 7 has bounded acceleration with respect to

~g). Similarly if 7 G Co then 7 G Co =4> fi"1^) e i^O,^) where f measures proper

time along 7 with respect to ~g and r(a) = a (though Q,-1^) G Ll(0,a) may not

be sufficient to ensure that 7 has bounded acceleration with respect to g).

Similar conditions will apply to spacelike curves.

Now suppose that a tensor U is defined and C° on the regular space-time (M, ~g).

Since every 7 G C terminates at a point of M — M, it follows that U will be C°-

aJ-quasi-regular along any 7 G C. If we pick x G M — M and a coordinate patch

W which contains x then the coordinate components of U in the coordinate system

defined by W will behave in a C° way, even at x. They will also behave in a C° way

in the coordinate system defined by the coordinate patch W n M in the singular

space-time (M, g). Thus for 7 G CflC there will exist a coordinate patch W7 which 7

eventually enters without leaving such that the coordinate components of U behave

in a C° way along 7. Despite this, U may not be C°-c<j-quasi-regular along 7.

For example, take the Weyl tensor C. This is conformally invariant, that is,

the Weyl tensors of (M,g) and (M,~g) are the same. C will be perfectly regular (at
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least C°) on the whole of M and therefore C°-uJ-quasi-regular along any 7 £ C. As

above, given 7 G C D C there will exist a coordinate patch W7 which 7 eventually

enters without leaving such that the coordinate components of C behave in a C°

way along 7. Of course, C may not be C°-a>-quasi-r.egular.

However, if the Weyl tensor is everywhere zero on M, then it will be C°-cu-

quasi-regular along any 7 G C

Let 7 G C DC and let C have components Cijfc' in an cu-frame (et) defined along

7 and components Cijk
l in an tJ-frame (e;) defined along 7. (This is a change of

notation from section 3.1.) Let ex = L\e}. Then as above L\ = ̂ l\ where l\ £ L^

and

C 1 — ^ T - i V z' r — 1 \ i ' ( T -i\k' T 1 ~n 1'
<^iik — \ L )i \ L )j \ L )k J-'i^i'j'k'

and

and hence if Q —> 00 along 7 we would in general expect Cijk
l to diverge (though

there may be cases where it does not) and therefore to fail to be C°-cj-quasi-regular

along 7.

More generally if Q —>• 0 or fi —> 00 along 7 then L{ or (i"1)^ w m fail to be

bounded and tensors which are C°-w-quasi-regular may not be C°-aJ-quasi-regular,

and tensors which are C°-aJ-quasi-regular may not be C°-a>-quasi-regular. Of course,

if to ~ u; then a tensor will be C°-w-quasi-regular if and only if it is C°-a7-quasi-

regular.

Conformal singularities have been studied in the context of cosmological models

([T] and references therein). Specifically, a physical space-time (M,g) is related to

an unphysical space-time (M'\~g) where M C M' by
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3.2 Conformal singularities

wherethe boundary of the closure M of M in M' is a smooth spacelike hypersurface

E in \M',g) and Q : M -> M obeys Q > 0 in M and fi = 0 on E. We note that if

g = Qg as in our previous definition then Q = Q"1.

Ve note that since f2 —> 0 and hence Q, —>• oo along any ( 5 G C U C , w ~ w

cannc hold and (I/"1); will be unbounded and as above, the Weyl tensor will not

in gereral be C°-w-quasi-regular. Furthermore, unless Q —>• 0 sufficiently slowly, so

that £(<5(s)) G I/^O, a) for 5 £ C, in general C <£ C, in other words curves incomplete

with Espect to (M,g) may not terminate a point of S.

Tie following additional assumptions are made in [GW]

(1 M has a smooth cosmic time function T and Q, = O(T)

(2 M is the open submanifold of M' where T > 0

(3 M' is regular on an open interval about T = 0

(4 Q(0) = 0, Q is C° at T = 0 and C3 and positive on an open interval (0,6]

where b > 0.

(5a O'/O -» oo as T ->• 0

(5b Qfi"/(n')2 -> / < 1 as T ->• 0+.

Condiion (5b) is dropped in [GCW] since it follows from the others.

Eis called an isotropic singularity and can be shown to be a curvature singu-

larityof (M,g). If (M,g) contains an irrotational perfect fluid source, then under

certait additional assumptions, a number of results can be proved, in particular

that 1 has zero extrinsic curvature in (M, ~g) and that the limiting curvature near

the siigularity in (M,g) is determined by the intrinsic geometry of S.

Adifferent set of assumptions are made in [Ne93a] and [Ne93b]. Instead of (1)-

(5b) gbove, £1 is taken to be C°° on M and VQ, ^ 0, Q, = 0 on S. If (M, g) contains

a perfect fluid which obeys an equation of state, then a number of results can be

prove*. For example, the fluid will be irrotational. With some extra differentiability
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assumptions, it can be shown that the electric part of the Weyl tensor is zero on E

if and only if (M, g) is a Friedman-Robertson-Walker cosmology.

The interest in this comes from the Weyl Curvature Hypothesis ([T]). This is

the hypothesis that, in a suitably defined way. the Weyl curvature vanishes at an

initial cosmological singularity. The motivation for this comes from speculations

about quantum gravity, but it is of interest to see what consequences it would

have in classical general relativity. We can make sense of the Weyl Curvature

Hypothesis in the setting of a conformal singularity: we simply demand that the

Weyl tensor be C° on M and zero on S. Thus under the conditions described above,

the Weyl Curvature Hypothesis gives rise uniquely to a Friedman-Robertson-Walker

cosmology, which is spatially homogeneous and isotropic, and in fact conformally

flat. Thus the Weyl Curvature Hypothesis, which may arise due to purely local

quantum gravitational considerations, may give rise to the large scale homogeneity

and isotropy of the universe

However the above assumes that it is reasonable to suppose that a cosmological

singularity is a conformal one. We might hope, since the Weyl tensor is regular

at a conformal singularity, that if the Weyl tensor is suitably well behaved near a

singularity, then it must be a conformal singularity. However we shall see that this

is not the case. The conical singularity has zero curvature and therefore must have

zero Weyl tensor, and yet we shall show that it cannot be a conformal singular-

ity. The conical singularity is an example of a 2-dimensional timelike quasi-regular

singularity, but it may be possible to find 3-dimensional spacelike quasi-regular

singularities which cannot be conformally regularised. We could also conformally

transform such singularities to obtain curvature singularities. However we note

that such a singularity would still locally be a conformal singularity in the following

sense: given an incomplete curve 7 which terminates at a singularity conformal to
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3.3 Conformal Cartan connection

a quasi-regular singularity, there will exist a neighbourhood U of 7 such (U, 7) is

conformally regular.

3.3 Conformal Cartan connection

Let (M,g0) be a space-time and let C be the class of metrics on M conformal

to g0, that is,

g EC 4=^- 3tt : M ->• R such that Q(x) > 0 V i £ M and g = Q2g0.

A conformal frame (ct) at x £ M is a basis oiTxM which is oriented, time-oriented

and pseudo-orthonormal with respect to some g £ C ([S77] and [FS]).

By analogy with LM the frame bundle of (M,g0), we form CM the conformal

frame bundle of (M,C). This has projection

7T : CM -» M

where each fibre TT-^X) consists of all conformal frames at x. Thus (c,) £ CM will

be pseudo-orthonormal with respect to some g £ C and orthogonal with respect to

all g £ C. CM is a principal fibre bundle with structure group

Cl = R+ xLl = { q : C\C\j]kl = n2^ some O > 0}

so if C\ £ C^ then C\ = QL\ for some Q > 0 and L̂  £ Lt.

CM is a principal sub-bundle of GL(M) where GL(M) is the principal bundle

with projection p : GL(M) —> M for which at each x £ M, p^x(x) consists of all

bases for TXM. GL(M) has structure group GLn(R) where dimM = n.

Working in coordinates (x^) we now prove a result implied but not proved in

[FS].
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3.3 Conformal Cartan connection

Proposition 3.3.1. Let V* be a connection on GL(M) and let g E C. Then V*

will be a connection on CM <=$• V*A^V = —2fxg/xu for some fx E T'M.

Proof. Let (cj E TT"1^) for some x E M, let 7 : s 1—> j(s) be a C1 curve through x

with tangent ux, and use V* to parallelly propagate (c{) along 7 so

Hence

(c;) will remain in CM under parallel propagation by V* if and only if g(ct,Cj) —

Qr]^ for some Q. : s f-> Q(s) defined along 7 such that fi > 0 which will hold if and

only if

and hence (cj will remain in CM under parallel propagation by V* if and only if

Thus (cj will remain in CM under parallel propagation by V* in any direction if

and only if

V ' J V = ( V * A n j ^

for some flx : Ux —> M+ defined on a neighbourhood Ux of x. This will hold, and V*

will be a connection on CM, if and only if

V*A<^ = - 2 / A V for some fx e T'M. •

A connection V* on CM is a called a conformal connection. The metric con-

nection of any g E C will be a conformal connection, though in general not all

conformal connections will be metric connections. Given V* and g E C we obtain
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3.3 Conformal Cart an connection

the pair (gM,,,/A) defined by V*A(/M^ = —2fxgliV. This undergoes a gauge transfor-

mation

as we pick different metrics in C. V* will only be a metric connection if 3© : M —> R

such that fx — dxd> = 0 or in other words / = d(j). In this case ^*xe
20gliu =

Now let

fx =Sxfl/ + SxL-gltvg
xPfp.

N o t e t h a t fx d e p e n d s on fx b u t not on which g £ C we pick. Also. fx = ^

t h a t we m a y recover fx from a knowledge of fx. T h e n

Xp b u

where T is the metric connection of g and fx is induced by F* and ^. Thus a pair

{g^: fx) characterises T* and at a point x E A/, if we fix g £ C. there is a 1-1 map

between conformal connections at x and f £ T*M. Note that since fx is symmetric

and F is torsion free, conformal connections are torsion free.

We now define a new bundle on M called P1 the first prolongation of CM. Let

7T now be the projection ir : P1 —> M. If r £ TT-1(X) then r = (x^c^T*) where c, is

a conformal frame at x and F* is some conformal connection defined at x.

We define a bundle chart over an open U C M, using greek space-time indices

and latin frame indices. Choose coordinates (x^) on £/, # £ C, and a smooth section

(ej of CM such that g(el,ej) — 77̂ . Let F*. be the metric connection of (/ with

respect to (e j . Then define a chart

9 : n-^U) -+U x H

(x, ci: P ) ^ (*", C*, /,) C* £ Ct, / , £
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3.3 Conform,al Cartan connection

where c, = C;
fcefc, and / = f^ along with g determine F* where (e*) is dual to (e;)

and R4* is the vector space dual to R4. Hence Vx G M

TT-HX) ~ H = {(c*, fj) : Cf G Ct, / ^ r } .

For s = (C*. ,/j) £ H. t = (D'y, h}) G H we define a product under which H is

closed

The following result is implicitly assumed, but not proved, in [FS].

P r o p o s i t i o n 3 . 3 . 2 . H is a group under the product (s,t) i-> st.

Proof. Let s = (C*. /,•) E H,t = {D*,hj) G H, and u = (E^g:) G if. T h e n

= s(tu)

and so the product is associative, e = (<5*,0) is the identity since

(5*. 0)(C7*,/,) = (C*>/,) = (C*./,)(<?*, 0)

and (C*,/,-) has inverse ((C^1)", -/jCj.) since

Hence i7 is a group. D

An action of H on the fibres of P1 can be chosen to make P 1 a principal fibre

bundle. We define the action of t = (Z)fc. /î ) G F on r = (x, ci; F*) G TT-^X) by

i : ( ^ , s) i->- (xM,st)

where in our bundle chart r has coordinates (x^, s) and s = (C*, fj) G if.

The following result is also implicitly assumed, but not proved, in [FS].
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3.3 Conformal Cartan connection

Proposi t ion 3.3.3. The action t : (x^.s) i-» (x^.st) is coordinate independent.

Proof. The action c{ i-> Dkck depends only on t and r and is thus coordinate inde-

pendent. Now c, = Ckek and Dkck = DkC\e, = C\Dke, and hence in coordinates
L l i K i K i k l k i L

Ck !->• CkDl.

Now let h = ^c* where (c') is dual to (cj. Thus /i £ T*M depends only on r.

F* is determined by the pair (g, f) for some / e T*M. The action

determines a new conformal connection f * uniquely since if g' e C, F* is determined

by the pair (g1, f — d4>) for some <i> : L^ —> K. where f/̂ . is a neighbourhood of x, and

in this case the above action gives

which also determines F*. Now ĉ  = C^ej. so ck = (C"1)^* and /i = h,cl =

h^C^y.ej and hence in coordinates / , i-)- /^ + h^C'1)1.. D

It can also be shown that the action £ : (a;'1, s) f-̂  (x^, si) is free and transitive.

We can now look at connections on P1. Given a curve x = x(X) in M and

u = (XQ.C^F*) G TT-^XQ) for some x0 = x(A0), a connection on P1 will tell us

how to parallelly propagate u along x. In particular it will tell us, not just how to

parallelly propagate (ct), but how to parallelly propagate F*.

Now let

A"z] = R*tJ - R*r]lJ/(2n - 2)

where F* has Ricci tensor R*^ and Ricci scalar R*. A*- will in general only be

defined at a point x1 £ M if F* is defined in a neighbourhood of xx, but not if F*

is only defined along x. However, if x(X) has tangent v\ viA*ij can be shown to

depend only on the value of F* along x and it can be shown that there exists a

unique connection F on P1 called the conformal Cartan connection ([S] and [FS])
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which parallelly propagates F* so as to ensure VKA*^ = 0 along x, where x(X) has

tangent v\ and which parallelly propagates (c;) to coincide with the way F* would

have parallelly propagated (cz).

We note that for a connection F* defined in a neighbourhood of a point xx G M,

A*t] = A*3i and that A*tj = 0 «=» R*h] = 0. Recall that R* = R*t
l and

R*tj = R*Uj
l where

R* i = a.r*' - ar" , + r". r*- - r*'. r*™ - cm.v*1,
'J^ jk J ik irn jk jm ik ij mk

where ck. are the structure coefficients of (e.) and satisfy ck.eh = [e,, e.| = 9,e, — 3,e,

where 3,- = ef9,,. Since T is torsion free, ck = Ffc. — F*.. In a coordinate basis

c*. = 0.

If «(A) = (x(A), Cj(A), F*(A)) has been parallelly propagated along x = x(A) by

F then

&Ck.ei*k (3.3.1)

^V%C- = 0 (3.3.2)

eq^y. = 0. (3.3.3)

(3.3.1) defines £•* to be the components of the tangent to x = rr(A) in the frame

(Cj). (3.3.2) ensures (ct) is parallelly propagated by F*. (3.3.3) defines F* by the

condition viA*ij = 0. These conditions are all coordinate independent.

Let u have coordinates (^(A), Ck(X), 6-(A)). In terms of our bundle chart (3.3.2)

becomes

dc'/dx = -rn, + b\,)ck trc\. (3.3.2a)

After much manipulation it can be shown that, if F* is defined in a neighbourhood

of x,

A*tj = Al3 + (n - 2)dlb] - (n - 2)6mF- - (n - 2)\bmb™
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3.3 Conformal Cartan connection

where A{j = R{j — Rr]ij/(2n — 2) and the metric connection F of g has Ricci tensor

Rtj and Ricci scalar R. Hence

viA*tj = vlAV] + {n- 2ydlb] - (n - 2)vlbmY™ - (n - 2)^-f tm6^

which depends only on the value of F* along x. Hence if n = dimM > 2, (3.3.3)

becomes

dbJdX = (6,T^ + ^6» f c - L « ) < ^ m (3.3.3a)

where L{j = A^jin — 2). If however n = 2 then

4* — A
ij ij

and we cannot impose any conditions on A*^. The Riemann tensor of F* will have

only one independent component and if we impose R* = 0 instead it can be shown

that

dib
i = -bmTl, - - R

which does not have a unique solution.

Therefore, for the remainder of the section, we shall assume that n > 2.

We note that if a connection F* is defined in the neighbourhood of x and R*^ = 0

along x, then it follows that A*tj = 0 and viA*ij = 0. Thus F* will be parallel along

x with respect to F. For example if (M,g) is a vacuum space-time for some g G C,

then the metric connection F of g will be parallel along any C1 curve in M with

respect to F.

We can now consider holonomy in P1. For example let a : [0,1] —> M be a

closed loop with x = a(0). Let g 6 C. Then we can use F to parallelly propagate

u — (a;,^, F^) round a where ct is some conformal frame at x and F is the metric

connection of g. This results in the unique F* defined on a for which T*(x) = T\x

and v^A* — 0 where a has tangent v^. In general F*(l) ^ F*(0) however if
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Rilv = 0 on a then F* = F on a and the parallel transport of u = (x, ct, Y\x) round

a is u' = (x. di: F|T) where dl is the parallel transport of ci round a under F.

Now let 7 : [0.1]2 —> M be a Cl map where j t : s \—> ~'{s.t) is a closed loop.

Pick u E 7r~1(7(0,1)) and use F to parallelly propagate u along K : t i->- 7(0. t)

and then round j t for each value of t. As before we obtain elements of holonomy

h : [0,1] —> H where h is C°. In particular, if j0 is a point. h(0) = e where e is the

identity of H.

Fet (M, gQ) be a space-time and let gQ generate the eonformal class of metrics

C. Fet 7 : [0,1] x (0,1] —> M be a C1 map as above except that now 0 < t < 1.

Suppose that for each s E [0.1], KS : (0,1] —> M : t 1—> 7(5. t) terminates at a singular

boundary point. We want to know if 3g E C for which g can be extended in a C"2

way onto some M where M C M and such that lim^o 7(s, t) = x0 E M — M, that

is, each KS terminates at the same x0 E M — M.

Suppose that such a g exists. Then g generates the conformal class of metrics

CR all of whose members are regular on M. If we take all g' E CR to be restricted to

M, CRC.C however not all metrics in C will be in CR. If we define F on P1(M,CR),

the first prolongation of the conformal frame bundle CM(CR) defined with respect

to CR, the map h : (0,1] —)• H defined above will be such that limt_,0 h{t) = e.

We can also define F on P1(M,C), the first prolongation of the conformal frame

bundle CM{C) defined with respect to C. The point is, we can examine the holon-

omy of F on P1(M,C) purely in terms of (M,g0) and the conformal class C it

generates even if there is no metric in C which can be extended in a C2 way onto a

larger M as above. However if g does exist we have

Proposition 3.3.4. Pl(M,CR) = Pl(M,C).

Proof. The principal bundle GL{M) is defined on M without reference to any

metric, and C(M,CR) and C{M,C) are both principal sub-bundles ofGL(M). The
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action of C t on these bundles is defined by this inclusion and by C^ < GLn(R).

However C(M, CR) C C(M. C) and because the action of CT is transitive C(M, CR) =

C{M,C).

Hence the conformal frames and connections defined at each point of M are the

same for CR and C. As sets P1(M,CR) and PL(M,C) are the same. By construction

3g0 & CR C C which gives a bundle chart on both P1(M,CR) and Pl(M.C) in

which the action of H is the same. However we have shown that the action of H is

coordinate independent and hence P1(M,CR) = Pl{M,C). •

Hence if g exists, the map h : (0,1] -» H defined for P1(M.C) will obey

limt^0 h(t) — e. It follows that if limt^0 h(t) ^ e the above g cannot be found.

In particular if (M, g0) is a vacuum space-time with metric connection Fo, then

it follows from above that T will parallelly propagate u = (ct, ro|7t(o)) round j t

to u' = (dj,ro|7i(o)) where (cj is some conformal frame at 7t(0) and Fo parallelly

propagates (cj round j t to (cQ. Thus if Fo has non-trivial singular holonomy on 7

then Iim4_>o/i(t) ^ e and there does not exist g e C with respect to which each KS

terminates at the same regular boundary point.

We note that if the KS are future timelike incomplete and share the same past

light cone (or are past timelike incomplete and share the same future light cone)

and 3g G C with respect to which each KS terminates at a regular boundary point

then each KS will terminate at the same regular boundary point.

As an example let (M,g0) be the conical metric

ds2 = -df- + dr2 + A2r2d62 + dz2 r ^ 0

where M = R4 — {r = 0}. Let C be the conformal class generated by g0. Consider

a closed loop a : [0,1] —> M. Pick u = (x,^,!?]^,) € P1 where x = a(0), c{

is some conformal frame at x, and F is the metric connection of g0. We have

shown that the conformal Cartan connection will parallelly propagate u round a
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3.4 The 4-cone is not conformally regular

to u' = (x, (ij.rij.) where dl is the parallel transport of ct under Y. Now pick

coordinates on a neighbourhood U of a and use g0 to give a bundle chart over

U. Then u — (x^,Ck,0) and u' = (xf',CfDk,0) where Dk is a rotation through

2TT£;(1 - .4) where /c G Z.

Now let 7 : [0,1] x (0.1] -» M be as above. Pick u = (7(0, l),Cf,0) where

Ck G Cj\ Parallelly propagate u along K : t 4 7t(0) with respect to Y to give

u = u(i). Then n(t) = (7(0, t), Ck(t), 0) by the above since (M,#o) has R^ = 0,

where Ck{t) is the parallel transport of Ck under Y. Hence h(t) = (Dk{t), 0) where

Dk(t) is a rotation through 2i:k(t)(l — A) k £ Z. By continuity. &(£) must be

constant. If 7 encircles r = 0 then /c ^ 0, and if .4 0 Z, it follows that l i m ^ h(t) ^ e

and that therefore M admits no conformal boundary for which there exists a loop

encircling r = 0 homotopic to a point on the boundary. In particular if A 0 Z,

there does not exist a space-time (M,g) with

M = W g{M = Q2g

for any C2 O : M —> R with Q(x) > 0 Vrc G M. M supplies a singular boundary for

M which is consistent with the c-boundary.

3.4 The 4-cone is not conformally regular

We used the conformal Cartan connection in the previous section to prove that,

for A ^ Z, the 4-cone is not conformally regular. We now present a more elementary

proof that for A < 1, the 4-cone is not conformally regular. This proof depends

on the Lorentzian signature of the metric of the 4-cone and would fail if the metric

were positive definite. The proof works because conformal transformations preserve

the null cone structure of a space-time.

Given cylindrical polar coordinates (t, r, 9, z) on the manifold R4 — {r = 0} and

the Minkowski metric

ds2 = -dt2 + dr2 + r2d92 + dz2 0 < 9 < 2TT
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3.4 The 4'Cone is not conformally regular

recall that for A < 1 we may obtain the 4-cone by removing the wedge {TT — a/2 <

9 < 7T + a/2} to give

ds2 = -dt2 + dr2 + r2d92 + dz2 - TT + a/2 < 9 < TT - a/2

and identifying {9 = — TT + a/2} with {9 = TT — a/2} where 0 < A = 1 — a/2vr < 1

(i.e. 0 < a < 2TT). Let (M,g) be the resulting space-time.

Theorem 3.4.1. There does not exist a conformal transformation of the 4-cone

space-time (M, g) for A < 1 vviici maps timelike incomplete curves terminating

at singular boundary points to timelike incomplete curves terminating at regular

boundary points.

Proof. In t h e fo l lowing we sha l l w o r k in C a r t e s i a n c o o r d i n a t e s (t,x = rcos9,y =

r s i n ( 9 , z ) w i t h r e s p e c t t o w h i c h t h e m e t r i c is

ds2 = -dt2 + dx2 + dy2 + dz2 - TT + a/2 < 9 < vr - a/2.

Define the curves

7+(s) = (t0 + s, a — scos(a/4), ssin(a/4), 0)

7_(s) = (t0 + s, a — s cos(a/4), —ssin(a/4), 0)

(see diagram 3.4.1). Then

y+(s) = ( l , -cos(a/4),sin(a/4),0) g{l'+rf+) = - 1 + cos2(a/4) + sin2(a/4) = 0

y'_(s) = ( l , - cos (a /4) , - s in (a /4) ,0 ) g{i_rf_) = - 1 + cos2(a/4)+sin2(a/4) = 0.

Since j + , 7_ are straight lines in this coordinate system it follows that j + , j _ are

null geodesies.
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3.4 The 4-cone is not conformally regular

Diagram 3.4-1

Now 7+(0) = (io,a, 0,0) = 7_(0) and when s = 2acos(a/4), a — scos(a/4) =

a — 2a cos2(a/4) = —acos(a:/2) and ssin(a/4) = 2acos(o;/4) sin(o;/4) = asin(a/2)

so

7+(2acos(a/4)) = (t0 + 2acos(a/4), —acos(a/2), asin(a/2), 0)

7_(2acos(a/4)) = (t0 + 2acos(a/4), —acos(a/2), —asin(a/2), 0).

However when (x,y) = (—acos(a/2), asin(a/2)), 9 = Tv — a/2 and when (x,y) =

(—acos(a/2), —asin(a/2)), 9 = —vr + a/2. Hence

7+(2acos(a/4)) = 7_(2acos(a/4)).

Thus we have found a pair of null geodesies -y+ and j _ which meet at two

distinct points.

Let S^u) = (u,eu,0,0) for u > 0. Then 6[(u) = (l,e,0,0) and s-(<5;,<5;) =

— 1 +e 2 and so 8X is a future pointing timelike curve for 0 < e < 1. From the above,
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3.4 The 4~cone is not conformally regular

for each point S^u) there are a pair of null geodesies 7"(s), 7"(s) which meet at

the distinct points ^(u) and 82(u) where

62(u) = (u + 2£ucos(a/4),-£ucos(a/2),±£us'm(a/2),0).

Now 6'2(u) = (1+ 2£cos(a/4).-£cos(o;/2),±esin(a/2),0) and

g(5'9,6'2) = - 1 -4ecos(a/4) - Ae2 cos2(a/4) + £2(cos2(a/2) + sin2(a/2))

= - 1 + e2 - 4e cos(a/4) - 4e2 cos2(cv/4)

< -1 + e2 < 0

since 0 < a < 2 7 r = > 0 < a/4 < TT/2 =4> 0 < cos(a/4) < 1. Hence 82 is a future

pointing timelike curve for 0 < e < 1.

As •u —*• 0 the components of S^u), 82(u) tend to (0.0.0,0). It follows that 8l}

82 are timelike incomplete curves terminating at singular boundary points and that

furthermore /+(<51) = I+{82) i.e. 8tl 82 have the same future light cone.

Now suppose 3d : M —> R such that <51; <52 are timelike incomplete curves

terminating at regular boundary points in the space-time (M,g~) where ~g = Q?g

and Q,(x) > 0 Vx E M. Let (M,~g) be an extension of (M,lj) such that 8X. 82

terminate at interior points of M.

Since I+(81) = I+(82), 8X and 82 must terminate at the same regular boundary

point x0 G M — M. Now there must exist a convex normal neighbourhood U 3 x0

[HE] such that for any points x1, x2 G f/ there will be exactly one geodesic between

xl and s2 lying entirely within U.

Now 7U, 7^ will still be null geodesies with respect to (M,~g) and

7u(s) = (ti + s, eti — scos(a/4), ssin(a/4), 0) ĵ
lo < s < 2eucos(a/4)

7"(s) = (u + s,e-u — scos(o;/4), —ssin(a/4), 0) I

and hence as u —> 0 the components of 7 u (s) , 7^(s) also tend to (0,0,0,0). It

follows that 7", 7^ lie in I~{81) = I~{82) and the points of 7" 7^ must tend to
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3.5 Minimal and totally geodesic submanifolds

x0. Hence 35 > 0 such that 7*. js_ lie entirely in U and meet at distinct points

7* (0) = 7* (0) and 7* (2e<5cos(o;/4)) = 7* (2e<5cos(a/4)).

This is a contradiction and hence a suitable Q : M —> M. cannot exist. •

3.5 Minimal and totally geodesic subnianifolds

Let S be a smooth p-dimensional submanifold of a smooth n-dimensional man-

ifold M. Let M have metric g. For x G S let

(T.S)1- = {uE TXM : g(u, v) = 0 Vt» G TXS}

hence (^S)1- is the (n — p)-dimensional vector space of all vectors normal to S at

x.

If g is Lorentzian, so that in a pseudo-orthonormal basis g- = diag( —1,1 , . . . , 1),

then S is spacelike at x G S if all u G T .̂5 are spacelike, 5 is timelike at x G 5 if

all ii G (TXS)± are spacelike, and 5 is null at x G 5 if it is neither spacelike nor

timelike. In the following we shall assume that S is not null so

If p = n — 1 then S is a hypersurface and (^S)1- is 1-dimensional. If we can make

a smooth choice of non-zero normal for all i G S , then S is onentably imbedded.

For general p, at least in an open neighbourhood of some x0 G 5, let (ej be

a smooth (but not necessarily pseudo-orthonormal) basis field on M adapted to 5

in the sense that Vx G M, (e1,...,ep) span TXS and (ep+1,. .. , en) span (T^S)-1-.

In the following we shall take early lower case indices {a, b, c,...} to run through

1,. . . ,p; early upper case indices {A, B,C,. ..} to run through p + 1,. . . , n; and late

lower case indices {i, j , k,...} to run through 1 , . . . . n. For example if w = u + v for

u G TXS, v G (TXS)A- and a; G 5, then we may write w1el = uaea + vAeA.
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For x £ S we define maps

TTS! : TXM - TXS

3.5 Minimal and totally geodesic submanifolds

•VueTxs,ve (Tx

TT^-.TtM-tiTsSy-.u + v ^ v .

Thus 7r,|, 7Tj_ are linear projections from TXM onto TXS, (TxS)j- respectively and

g i v e n u£TxS,v

= 0

Since Try. TT± are linear we may write

7T|| : W3 K->

and hence

We now define projected metrics

so

^ 0 otherwise

In particular if u1:u2 G TXS then

G
7Tj : wJ

( 8b i = a, j = b

°i = \ Pi
{0 otherwise 0 otherwise.

9±
ij=Pk

iP
l
j9ki

9 A B i = A , j =

0 otherwise.

and so gW is the intrinsic metric on 5 induced from g by the embedding of S in M.

Similarly for v1,v2 G (^S)1-

Now since (ea) _L (eA) it follows that gaB = g ,̂, = 0 and

where (e1) are dual to (ej .

Using g to raise and lower indices we now prove
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Propos i t ion 3.5.1. gW\ — pi and gL{ = pi-

Proof. Let u G TXS. Then g^\ul = g'Alkg
k'ul = 9llab9b:>ua — 9ab9b3uCL = ^iu<l — uJ•

Now let v G (TXS)±. Then gW\vl = g^,kg
k]v = g\lbg

bjva = 0. Hence #H; = pi and

similarly ^x] = Pi- D

Since 5/ = 6j it follows that 6/ = pi +pi-

Let x G 5 and let ul, u2 be vector fields on S in a neighbourhood of x. Then if

(M,g) has Levi-Civita connection V,

where we write (VUiii2)H = KJVUIU2) and {'^Uiu2)-
L = vr_L(VUiu2). It can be shown

that (VUiit2)H = DUiu2 where L> is the Levi-Civita connection of (5, #11), and that

( V u i u 2 ) x depends only on the values of ux and u2 at x. Thus

where

K:TxSx TXS ^ ( r , 5 ) x : (u l su2) ^ (VUiu2)x.

i^ is called the second fundamental form of 5 ([CDD] and [Ch]) and can be shown

to obey

K[ul,u2) = K(u2, u^) u1,u2ETxS.

K measures the extent to which a vector initially tangent to 5 fails to remain

tangent to 5 under parallel propagation by V in 5.

Since K is linear we may write

K(ui. u0) = Kc
lu

auher ii,, u0 G TLS

where KC
L are known as the extrinsic curvatures of 5. We can extend K to a map

ab c

K : TXM x TXM -+ TXM by

f Kc
h i = a, j = 6, k = C

Kk. = \ ab

y 0 otherwise
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3.5 Minimal and totally geodesic submanifolds

which makes Kk. into a tensor which obeys Kk. = Kk.

S also has mean curvatures

Kk = gl] Kk.

so

*- 0 otherwise

and umbilical curvatures

p _ j^k _

so

^ 0 otherwise.
Now g^Kk. = Kk and

qlUk. = q^Kk. — Kkqijq^--/p = Kk — Kkp/p = 0

and hence Kk is the trace of Kk. and lk. is the trace-free part of Kk..

S is totally geodesic at x £ S if î fc.\x = 0, minimal at x £ 5 if Kk\x = 0, and

totally umbilical at x £ 5 if lk.\x = 0.

Proposition 3.5.2. Kk = 0 4=^ iTfc = 0 and Z* = 0.

Proof. Suppose Kk = 0. Then Kk = g^Kk = 0 and lk = Kk - Kkg^l]/p = 0.

Conversely suppose Kk = 0 and lk. = Kk. — KkgWi3jp = 0. Then Kk. = 0. •

[Ch] gives a slightly different condition for a p-dimensional manifold S to be

totally umbilical at x £ 5, namely that

Kk. = A ô11,-. some A £ ( i ^ M .

However this condition is equivalent to our previous definition since
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3.5 Minimal and totally geodesic submanifolds

Proposition 3.5.3. At x £ S, K* = Xkg^, for some A G (TxSy 4=> lk = 0.

Proof. Let x e S . Suppose K* = A^H^ for some A G (TXS)L. Then ATfc = g'iR* =

Xkg^g^J = Xkp hence Xk = Kk/p and lk. = Kk. — KkgWXJjp = Rkg^ij/p — Rkg^ij/p =

0.

Conversely if lk. = 0 then Kfc = Kkg^lJ/p = A^H^ where Afc = Kfc/p. D

Recall that for x G 5 and u G ̂ 5 there exists a unique geodesic 7u(s) in M

such that 7u(0) = x, 7'(0) = u and ti'V'̂ u-7' = 0, and a unique intrinsic geodesic

7u(s) in 5 such that 7u(0) = x, j'u(0) = u and ulDtu
} = 0.

Proposition 3.5.4. j u = -yu Vx G 5, ti G ̂ 5 <̂ => ^ = 0.

Proof.
u'V^P = u aV a i i J = (u°Vau

J')H + (itaVa-u-7)J-

= uaD u] + K\uaub

and hence

Proposition 3.5.5. A vector initially tangent to S remains tangent to S under

parallel propagation by V along any curve lying in S 4=> Kk. = 0.

Proof. Let 6 be a curve lying in 5 with tangent u and let 6 pass through x G 5.

Let v G T^S. At x,

uaVav
b = uaDav

b + Kabu
avb = uaDav

b \/ua, vb G TXS, x E S

«=» fC* = 0 . •

We note that in our adapted basis

where V..e.- = uik.eh and therefore KC
L = cuc

L.
e t J f) ^ ab ao
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3.5 Minimal and totally geodesic submanifolds

Now consider a conformal transformation 6 : g >—̂  ~g = Q2g where Q : M — R

and 0,{x) > 0 Vx G M. If g is Lorentzian, whether S is spacelike or timelike is

preserved under 6 and in any case, for x G 5, T^S and (T..^)-1- remain invariant

under (9 and (ej will continue to be an adapted basis. Since ^ . = fi2^^ we have

g-v = Q-igiJ and

/ 5 y i = a7j=b <9S-gab % = a, j = b

{0 otherwise 10 otherwise

Now by Lemma 3.1.1

where 6 = logfi. Hence

Now since

0 otherwise ° ^ 0 otherwise

it follows that

X (3.5.1)

which in fact is a fully covariant expression which will hold in any basis. Hence

(3.5.2)

and
.=TCk.-Kkg\Jp

?.j tj 3 ij i r

= Kk.. -

(3.5.3)
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3.5 Minimal and totally geodesic submanifolds

From (3.5.2) we can see that given Kk on S and a choice of Q on 5 we can

choose the normal derivatives g^kl0l6 to yield any value of K . In particular we

can set fi = 1 on 5 and choose the normal derivatives so as to make 5 minimal

with respect to ~g i.e. K = 0.

Now if Kk = K = 0 then g-^d,® = 0 so 5;<j. and hence dtQ, must be cotangent

to S. In this case from (3.5.1) we get

Tt. = Kk.

and thus if a conformal transformation makes S minimal but not totally geodesic

then no conformal transformation can make S totally geodesic.

Finallv from (3.5.3) we see that lk. is a conformal invariant and there will exist

a conformal transformation which makes 5 totally geodesic if and only if lk. = 0,

i.e. if 5 is totally umbilical.
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4-1 A 3 + 1 analysts of an idealised cosmic string

Chapter 4

Weak singularities and idealised cosmic strings

4.1 A 3 + 1 analysis of an idealised cosmic string

We have seen how 2-dimensional timelike quasi-regular singularities may provide

suitable idealised models of cosmic strings. We have explained however that cosmic

strings modelled in this way are really quite inflexible objects, unable to bend or

to form closed loops on length scales smaller than the cosmological length scale.

This is a problem for example if cosmic strings are to provide a mechanism for the

formation of structure in the early universe. We therefore propose to describe a

class of "weak" curvature singularities, somehow worse than quasi-regular ones but

which remain weak enough to have nice properties and in particular to have the

properties we would expect of a cosmic string. The fact that they are curvature

singularities may however permit them to bend and form closed loops on small

length scales.

A construction of a circular cosmic string of arbitrarily small radius is given

in [FIU]. The construction is complicated and it is not obvious that, in a range

of cases, it gives rise to a curvature singularity. This is shown in [UHIM], which

describes a class of curvature singularities such as this one which are proposed as

models for cosmic strings. The claim is made that singularities in this class are

nonetheless totally geodesic. However the definition of this class is not particularly

rigorous and a number of restrictive assumptions are made. After discussing this

paper, we will present a more rigorous formulation of these ideas which we will then

study in subsequent chapters using methods of holonomy.
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4-1 A 3 + 1 analysis of an idealised cosmic string

We now discuss the formulation given in [UHIM] (see also [I]). In this paper

an idealised cosmic string is defined to be a timelike 2-space S whose points are

"conical singularities of the space-time". Space-time geodesies "orthogonal" to the

string 5 at each point p G S sweep out a spacelike 2-space Sp which is required to

have "conical structure" at the single point p where it intersects S. In principle

the angular deficit could vary over 5, but will be constant, it is claimed, if the

space-time is vacuum or obeys energy conditions.

There are a number of problems with this formulation. How can a singularity

be a timelike 2-space, how can points of S be conical singularities of the space-time,

what does it mean for a 2-space to have conical structure, and how can space-time

geodesies be orthogonal to 5?

The paper claims to show that, provided the Ricci tensor is bounded near

5, and the Weyl tensor has a sufficiently weak singularity, the string S is totally

geodesic. In fact the argument presented in the paper does not make use of these

assumptions about the curvature. Instead it shows that, provided the lapse function

of a certain foliation of 3-dimensional hypersurfaces is C2 at the string in a rather

artificial quasi-Cartesian coordinate system, the string is totally geodesic (in a sense

discussed below), from which it follows that the Ricci tensor need not be bounded

and may in fact diverge.

The paper proceeds as follows. Given an intrinsic geodesic Lt of S, which is

taken to be either timelike or spacelike, the aim is to show that "as a locus of conical

singularities of the four metric" it is in fact a geodesic of the space-time. This is

done by showing that the magnitude of the acceleration of a sequence of curves

which tend to Lt tends to zero. A coordinate system is defined as follows. Lt is

parametrised by proper time (or proper distance), and at each point of Lt, L, is

defined to be the intrinsic geodesic of S orthogonal to Lt parametrised by proper

distance (or proper time). This gives (t,z) coordinates on 5 in a neighbourhood of
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4-1 A 3 + 1 analysis of an idealised cosmic string

Lt. Gaussian polar coordinates (p,d>) are now defined on each spacelike 2-surface

Sp with origin on 5 and an arbitrary choice of polar axis varying "smoothly" over

5 (despite the fact that in general it is not possible to attach a unique differential

structure to a singularity). Thus p measures proper distance and the paper claims

that at points of Lt, the space-time metric is

ds2 = -dt2 + dz2 + dp2 + A2p2dcp2

for a suitable choice of d>. We interpret this as meaning that sufficiently close to Lt,

the space-time metric is

ds2 = -dt2 + dz2 + dp2 + A2p2dcf)2 + i^dx'dx^

if Lt is timelike (and

ds2 = dt2 - dz2 + dp2 + A2p2d(j)2 + erJdxldx^

if Lt is spacelike) where i- —+ 0 in a suitable way as p —•> 0 and A = A(t,z). If

i —> 0 too quickly then the string S will turn out to be a quasi-regular singularity.

We discuss the behaviour of e- below.

The paper then defines quasi-Cartesian coordinates by

x = r cos (f> y = r sin </> r = (Ap) i

and claims that the metric on Sp f) Lt for p E Lt is

ds2 = r~26(dx2 + dy2)

where 5 — 1 — A. Again we interpret this as meaning that sufficiently close to Lt,

the space-time metric is

ds2 = -dt2 + dz2 + r-2S(dx2 + dy2) + eX]dxldx^
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4-1 A 3 + 1 analysis of an idealised cosmic string

if Lt is timelike (and

ds2 = dt2 - dz2 + r~26(dx2 + dy2) + st]dxldx^

if Lt is spacelike) where sr] —- 0 as r —<• 0 in a manner discussed below. We shall also

need to assume that the metric has inverse diag(+"l. ±1, r26. r2S)+£llJ where ellJ — 0

as r —' 0 in a manner discussed below. The paper claims that this conformally flat

form gives a clear cut meaning to the concept of angles at the vertex, despite the

fact that for A < 1, the conformal factor is undefined at the vertex.

The paper now performs a 3 + 1 split by taking hypersurfaces of the form

t = constant. Now dt = tldl where tl = <5j. We decompose t1 into components

normal and tangent to the hypersurfaces by

V = eNn1 + Nl

where nl is the unit normal to the hypersurfaces chosen to make N positive, e = nlnl

and Nl is tangent to the hypersurfaces. N is called the lapse and Nl is called the

shift. Note that e = — 1 if Lt is timelike and e = 1 if Lt is spacelike. We now

let latin indices range over {t,z,x,y} and greek indices over {z,x,y} and use 0 to

denote t. By construction da are tangent to the hypersurfaces. Thus N1dl = Nada

and JV° = 0 and since niN
i = 0 we also have na = 0.

It can be shown that

g00 = eN2 + N"Na gog = Np g00 = e/N2 g™ = -eN^/N2

from which it follows that N —> 1, N? —•> 0 and iVs —> 0 as r —> 0. WTe also have

N° = 0 and VVO = N*gM = A^«5a0 = NaNa - • 0 as r -> 0.

We now let h be the intrinsic metric of the hypersurfaces induced by the space-

time metric g so ha(j = ga/3. Thus gtJ can be entirely expressed in terms of JV, iV1
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4-1 A 3 + 1 analysis of an idealised cosmic string

and haj3. We can now discuss the behaviour of £ t ] , £ ' y t e rms in the metric. Now

s.j.s'13 —> 0 as r — 0 and we have

' 0 0 NaNa £03 = N3 s'00 = s(l/N2 - 1)

It is implicit in the paper that the derivatives of N',N{ along with the derivatives

of the spatial terms ea3,e
la3 tend to zero as r —* 0. We discuss the behaviour of N

below.

The paper defines ul = Nvi where vi — 6°. Now ul —Ngi0 so

u° = s/N ua = -eNP

but since nl = (N1 — P)/N

n° = -\/N na = Na/N

and hence ul — —en1. Thus ul is a unit normal to the hypersurfaces. The integral

curves of ul have acceleration

where, working in quasi-Cartesian coordinates, in can be shown that

where we use . . . to denote terms which tend to zero as r —> 0 provided that

Na —+ 0 sufficiently fast, or in other words provided that g013 —+ 0 sufficiently fast.

This expression differs from the one given in the paper.

The paper claims that the integral curves of u1 are "parallel"' to Lt. Certainly

in quasi-Cartesian coordinates u1 and dt coincide at r = 0 and if ul is C1 at r = 0,

there will be a unique integral curve through ul at r = 0 and the integral curves of

ul will tend to Lt as r —*• 0. In other words we require N —+ 1, N0 —> 0 in a C1 way

as r —> 0.
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4-1 A 3 + 1 analysis of an idealised cosmic string

The acceleration Kl has magnitude

K = K1K1 = — K2 + r2S(K2 + K2) + K,2 + . . .
1 0 ^ x y' z

The paper claims that K% "lies in the (x,y) plane at the conical vertex". In fact

Nj ^ j NuVjiy^Ui) = 0

and so K1 is tangent to the hypersurfaces and is spacelike. Furthermore K,0 =

-sN-KN^ + . . . , KZ = ~eN-xNz + ... and so K0, KZ -+ 0 as r -^ 0.

If the string were a regular part of the space-time, a necessary and sufficient

condition for Lt to be a space-time geodesic, and therefore for the string to be totally

geodesic, would be K —> 0 as r —> 0 (since KZ is spacelike). Since K is a covariant

measure of the acceleration of curves tending to Lt, it makes sense to require K —> 0

as r —y 0 in order for the string to be considered to be totally geodesic even though

it is not a regular part of the space-time.

In quasi-Cartesian coordinates the condition K —> 0 becomes

r28(K2 + K2) —• 0 a s r - • 0.

Thus letting upper case indices range over {x. y}

K -> 0 <=> KA = O(r'c) where ( < 8

and so KA could in principle diverge. The paper makes the stronger assumption

however that K,A is bounded and that KA —> Ke
A as r —>• 0, where in general Ke

A ^ 0.

The paper now makes the assumption that N is C2 at r = 0. It follows from this

that ^ = —eN~lN1 + ...—> — ciVi as r —> 0, and thus that the above assumption

KA —> Ke
A as r —> 0 for some Ke

A automatically holds. Hence the string is totally

geodesic.

The dynamical components of the Riemann tensor obey
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4-1 A 3 + 1 analysis of an idealised cosmic string

where ; is the covariant derivative of 3-metric h induced on the hypersurfaces. KaJ

is the extrinsic curvature of the hypersurfaces defined by

K{X, Y) = {Xl"s7lY
J)u] V hypersurface tangent A". Y

(thus K(X,Y) is the normal component of VXY) and

£J<ag = u%Kai3 + Kl3dau> + Kaid3u\

The paper also assumes that Ka0 is regular at r = 0. Certainly if Ka3 is C1 at

r — 0 then

R — K -4-

which is (almost) the expression given in the paper and where we now use . . . to

denote t e rms which do not diverge as r —> 0. Hence

since N.a0 = N.Pa. Now

since N is C2, where F is the connection of h. Neglecting the sXJ and e'.. terms we

can show that

r* = -6r~2x r =TX = -6r~2y T° = 6r~2x
xx xy yx ^ yy

r = -6r~2y Ty =TV = -6r~2x V = br~2y.
yy J xy yx xx ^

We note that dx6 = dy6 = 0 but that if dz5 ^ 0 then
y

r = F = -er-Mlogr(^(5) T = T = T" =TV =logr(9_<5).
xx yy a \ z j xz :x yz zy o \ . /

These terms do not diverge as fast as O^-1) and we will ignore them. Other

components are negligible. We can now show that

N;AB =
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4-1 A 3 + 1 analysis of an idealised cosmic string

where (xl) are the quasi-Cartesian coordinates. Hence

This expression differs slightly from the one given in the paper. Thus in quasi-

Cartesian coordinates RA0BQ = (^(r"1). In addition we can show that RaO0O is

bounded as r —-> 0 if a = z or (3 = z.

The paper does not explicitly give an expression for RAzBz, however we may

obtain one as follows. Given a particular Lz which passes through Lt, we define

a new set of quasi-Cartesian coordinates (£', z', x', y') based on Lz as follows. For

each point of Lz, let L' be the intrinsic geodesic of S orthogonal to Lz parametrised

by proper time. Thus we obtain (t'.z1) coordinates which coincide with (t,z) co-

ordinates along Lt and L,. We now define x' = x,y' = y to give (£', z', x', y')

coordinates.

Hence working in (£', z', x'. y') coordinates

RA,Z,B,Z, = eM*')-i6r-*(KWAlx*'6c,BI + K^B,X^5C,A, - ^')c,x"8A,B,) + ...

where Niz"> is the lapse obtained by performing a 3 + 1 split by taking hypersur-

faces of the form z' = constant, K{-Z'\ is the limit as r —+ 0 of the components of

the acceleration of the integral curves of the unit normals to the z' = constant

hypersurfaces, and upper case indices {A',B',...} range over {x',y'}. As before

N(z') _, i a s r _¥ o and we assume that N^ls> is C2 at r — 0. Again we can also

show that Ra,z,p,z, is bounded as r —•> 0 if a' = V or /?' = V where {a', /? ' , . . .} range

over { i ' , x ' , y ' } . Now along any curve which terminates at the point of S where Lt

and Lz intersect

Rijkl = Ri'j'k'V + • • •

from which it follows that RAzBz = O(r~l) and Raz0z is bounded as r —• 0 if a = 0

or 8 = 0.
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4-1 A 3 + 1 analysis of an, idealised cosmic string

The remaining nine components of the Riemann tensor are determined by the

Gauss-Codazzi equations. Their behaviour is not essential to what follows, however

we claim that it can be shown that Rxyxy = O(r~46) at worst and. if Ka3 is C1 or

C1™. the other eight components are O(r26-1) at worst.

We now look at the Ricci tensor

so
C> D kl D r,zz I D nCD I

where we assume that the off-diagonal components of gkl tend to zero sufficiently

fast. From above we know that ROzO. is bounded as r —̂  0 so

= — eN~lr26~2{Ke
xx + Ke

xx — Ke
xx — ne

yy + Ke
yy + Ke

yy — Ke
xx — Ke

yy) + . . .

= 0 + . . .

and hence Roo is bounded as r —> 0. Similarly Rzz is bounded as r —> 0, though the

paper does not say so.

The paper does not give an expression for ROa, however we claim that ROa =

O(r2S~l) at worst.

Now

where £AB = RACBD9CD = O(r~26) at worst since Rxyxy = O{r~AS) at worst. Hence

R.AB = ^-~ sN-l6r-2{^Axlbw + Ke
Bx*8lA - K\rbAB)

7V

+ CAB + • • •

but iV, 7V(--) —> 1 as xa -^ 0 and so

RAB =
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which differs from the expression given in the paper by the sign of K{Z]
D and the

presence of the (possibly divergent) E,AB term. Since Ke
 A + «;(;> 4 need not be zero,

and £>AB may diverge, there is no need for RAB to be bounded, contrary to the

implication of the paper.

Recall that

— I — \ X "T y)

obeys K —> 0 as r —> 0 and that the string is therefore totally geodesic. For a real

string however 8 ~ 10~6 and for r < e~lls, r2S ~ 1 and so for very small values of r,

K Ri (K2 + K2) and the string appears to be curved.

We should really examine the components of the Riemann tensor in a parallelly

propagated basis rather than in the rather unphysical quasi-Cartesian coordinate

system. Instead we consider Cartesian coordinates

x = p cos (p y — P sin (p

where we recall that with respect to Gaussian polar coordinates (p. o) the metric

close to Lt is

ds2 = -dt2 + dz2 + dp2 + A2p2d(f)2 + ir]dx'dxK

Since r = (Ap)i we have

and hence for A G {x, y}, A £ {x, y}

( x2/A + y2 {1-A)xy/A\
\j = (dxA/dxA) = Aip^~3

\{1-A)xy/A x2 + y2/A J

= O(r<)

where r\ = I/A.
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4-1 A 3 + 1 analysis of an 'idealised cosmic string

Hence working in Cartesian coordinates
'•m

RAOBO =

Similarly RA:BZ = Oir25-1) and RAB = O(r26-1). Provided that 5 - 1 - .4 > 0.

no component of the Riemann or Ricci tensor will diverge faster than O(r2S~l). In

particular if 5 > ^ then all components will in fact be bounded. We also note that

OfV2-5"1) = O(p"--').

This is consistent with the claim in the paper that the "Weyl curvature goes as

r26'1 after converting to the physical components".

As we have discussed, the above results are obtained by performing a 3 + 1

analysis in quasi-Cartesian coordinates and making the assumption that the lapse

function N is C2 in quasi-Cartesian coordinates. The paper does not perform a

similar analysis in Cartesian coordinates, though it would perhaps be more natural

to do so.

We therefore repeat the 3 + 1 analysis in Cartesian coordinates. For simplicity,

we shall use indices without tildes to denote Cartesians, thus [t. z. x, y) are now

Cartesian coordinates.

The t = constant hypersurfaces and the P = 6l
Q vector are unchanged. Therefore

the lapse function N, given by

p = eNn1 + Nl

remains unchanged. As before

K% = —cN~1Ni + terms which —> 0 as r —> 0

and N —• 1 as r —> 0. Again «„,«;_ ^ O a s r - ^ 0 . However

«; = «;•«:' - » 0 as r - » 0 •£=> K,,• — 0 as r —> 0
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4-1 A 3 + 1 analysis of an idealised cosmic string

and therefore the string will be totally geodesic if and only if the simpler condition

K,1 — 0 as r —r 0 holds for every choice of Lt. If K, —> 0 as r —>• 0. then Nt - * 0 a s

r — 0.

We now assume that N is C2 at r = 0. This implies that limr_0 JV; exists but

does not necessarily imply that N{ —> 0 as r —> 0. In other words the string need

not be totally geodesic.

Hence

and as before

where

KAB = O(constant)

Neglecting ix3 terms in g (and the corresponding terms in g~l) we can show

Again dxA = dyA = O but if dzA ^ 0 then

F" , F , r = (3,A)O(constant)

and so we can ignore these components with other components also being negligible.

It now follows that

In other words RA0B0 is bounded as r —+ 0. Similarly RAzBz is bounded as

r —y 0. In particular, if N is C2 in both Cartesian and quasi-Cartesian coordinates,

it must follow that RAQB0 and RA.Bz are bounded as r —» 0.

As an example consider the dynamic cone

ds2 = -dt2 + dz2 + dp2 + A2(t, z)p2d62
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4.2 A new definition of an idealised cosmic string

and let x = p cos cp, y = psmcf). Then N = 1 is C2 in both Cartesian and quasi-

Cartesian coordinates, and RA0B0 and RAzBz are bounded as r —•> 0. However

and so in fact we still have a curvature singularity.

In summary, the string is considered to be totally geodesic if a sequence of

timelike (or spaceiike) curves normal to a foliation of 3-dimensional hypersurfaces

have spaceiike accelerations whose magnitude tends to zero as they approach a

timelike (or spaceiike) intrinsic geodesic of the string. In particular this is shown to

occur if the lapse function of the hypersurfaces N is C2 in a rather artificial quasi-

Cartesian coordinate system. This is the key assumption. The paper makes the

assumption that in this coordinate system the components K" , Ke of the accelerations

of the normal curves are bounded, when in fact this is a consequence of N being C2

at the string (and in fact the magnitude of the spaceiike accelerations of the normal

curves could still tend to zero even if Ke, Ke were not bounded).

The paper deduces that some components of the curvature may diverge near the

string, though it does not analyse all the components. The paper claims to show

that the string is totally geodesic if the Ricci tensor is bounded and the Weyl tensor

has a sufficiently weak singularity, however it makes no use of these assumptions

and it turns out that the Ricci tensor may in fact diverge.

4.2 A new definition of an idealised cosmic string

We now present an alternative definition of a class of "weak" curvature singu-

larities which, despite being curvature singularities, remain weak enough to have

the properties we would expect of a cosmic string. We will therefore think of them

as "idealised cosmic strings".
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Jh2 A new definition of an idealised cosmic string

We shall say that a Cr space-time (M, g) contains an idealised cosmic string

(see diagram 4.2.1) if there exists a Cr map

6 : (0, 1) X (0,1) X (0, l J x S 1 ^ M

such that 6 is a diffeomorphism onto U = Im <p where we parametrise S1 by 9 :

[0. 2TT] — S1 and (9(0) = 9(2-) so

(p: [t.z.r,9) i-*. (j)(t,z,r,e)

and

(a) St,(r, 9) = (/>(£, z, r, #) is a spacelike 2-surface

(b) dt is timelike and dz is spacelike

(c) gtr,9zr -+ 0 as r -+ 0

(d) 4>tzg(r) = <j)(t,z,r,9) is a geodesic of the space-time with r measuring b-

length

and also, if gW is the metric induced on the tangent bundle S = TStz by g and <?x

is the metric induced on the normal bundle T = (TStz)
L by g, then

(e) r = 0 is a good quasi-regular singularity of (Stz,gW) in the sense that every

C1 curve of finite b-length lying in Stz on which r —> 0 terminates at the

same good quasi-regular singularity (well defined since gW is positive definite)

(f) there exists an isometry ip of (U, T, gL) into some (U, T, g1) and Uo = U — U

is a 2-manifold which corresponds to r = 0 in the sense that all curves on

a given St, on which r —• 0 terminate at the same point of C/o, curves on

different Stz on which r —* 0 terminate at different points of L*o, and each

point of Uo is the termination point for some curve on some St, on which

r —> 0

(g) 5X is C° on [70 but 5-L|£/n, ^
x|r>o a r e both Cr, and ^xj[/(, is a Lorentzian

metric with 9t timelike and d, spacelike.
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4-2 A new definition of an idealised cosmic string

Diagram 4-2.1

Thus U is foliated by a family of spacelike 2-surfaces {Stz} each of which has a

quasi-regular singularity at r = 0 with respect to #11. These spacelike 2-surfaces are

ruled by space-time geodesies (condition (d)) which we think of as being normal to

the singularity at r = 0 (condition (c)).

We think of Uo as the string. Uo can be considered to be a timelike 2-surface with

Cr intrinsic metric limr_¥0 g-1, despite the fact that it will in general be a curvature

singularity of the space-time. Provided that limr^0 g
1- is unique, the string has a

well defined intrinsic geometry. However we do not require limr_>0 drg
J-, limr_0 d^g1-

to exist.

Uo provides a C° singular boundary for (U,g). The isometry ip m condition

(f) is not however required to be unique and therefore Uo does not provide a CT

singular boundary for r > 0. If the string were a regular part of the space-time

then the {Stz} 2-surfaces would be regular and unique. It can also be shown that
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4.2 A new definition of an idealised cosmic string

if the string were a regular part of the space-time, the extrinsic curvature of the

{Sj,} 2-surfaces would vanish at r = 0 (where we define the extrinsic curvature of

a non-null submanifold in section 2.5) The method of proof is to define Cartesian

coordinates in terms of our geodesic polar coordinates

x = r cos 9 y — T sin 9

and show that at x = 0, y = 0 the Levi-Civita connection obevs FD, = 0 where
' a ab

a,b G {x, y} and D £ {t, z}.

We conjecture that even in the singular case, the {Stz} 2-surfaces are unique.

The simplest example of an idealised cosmic string is perhaps the dynamic cone

ds2 = -dt2 + dr2 + A2(t, z)r2d62 + dz2 0 < 9 < 2ir.

We discuss this and other examples of idealised cosmic strings in more detail in

section 6.3.

It would also be possible to form an atlas A of maps like (j) and to separate A

into distinct cosmic strings.

We also note that a space-time which contains an idealised cosmic string need

not necessarily obey the energy conditions or be a vacuum space-time.

We will study the geometrical properties of these singularities in the next two

chapters.
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5.1 Parallelising torsion

Chapter 5

Intrinsic and extrinsic holonomy

5.1 Parallelising torsion

Let (M.g) be a space-time. Recall that GL(M) is the bundle of all bases on M

and LM the bundle of all frames on M where a frame is an oriented, time-oriented

pseudo-orthonormal basis. Let UJ be a connection on GL(M). ui is metric if Vg = 0

where UJ induces covariant derivative V.

Proposition 5.1.1. \7g = 0 <̂ =y- a pseudo-orthonormal basis remains pseudo-

orthonormal under parallel propagation by to.

This implies that a connection on GL(M) for which Vg = 0 can be regarded

as a connection on LM, and conversely a connection on LM, which can also be

regarded as a connection on GL(M), satisfies Vg = 0.

Of all the connections on LM, or equivalently metric connections on GL(M),

there exists a unique torsion free connection, called the Levi-Civita connection.

Now define a connection to on LM by choosing a C2 field (ez) of frames on M,

or at least on an open U C M, and setting

Cbk. = 0

in this frame where V 1ej = L)k.ek. (e2) is parallel in the sense that given any point

and any vector X at that point Xi'V1eJ = 0. From Proposition 5.1.1 Vg = 0 and

thus UJ is a metric connection. Now let 7 be a C1 curve with tangent u1 from a £ M

to b G M. Since ui'Viej = 0, the result of parallelly propagating (ej along 7 from

a to 6 is ( e j ^ and is thus independent of the path taken from a to b. Furthermore
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5.1 Parallelising torsion

if a and /; coincide, so 7 is a closed loop, (e t ) j a = (ei)\b and the holonomy generated

by any closed loop will be trivial, Co has zero curva ture

iV = dCoJ + &, A uk = 0

but in general non-zero torsion

T(e>, ej) = V ^ . - V^e, - [e,, e3] = -[e, : ; e j .

We note however that a) depends on the choice of (e j and is thus non-unique.

Proposition 5.1.2. Let U be a simply connected open set in M and UJ a connection

on L(U) such that Q? — 0. Then the result of parallelly propagating a frame between

any two points is path independent.

Proof. Let a,i G U and let 7, 8 be C1 curves in U from a to b. Parametrise 7, 6

such that 7(0) = (5(0) = a and 7(1) = 6(1) = b. Define a closed loop

f 7(2s) 0 < s < i

- 2 s )
P l : [0,1] -» ?7 : s ^

Since f/ is simply connected there exists a C1 homotopy

p : [ 0 , l ] X {0,1} ->U:(s,u)^pu(s)

such that pu(0) = pu(l) and Imp0 is a single point. Let (et) be a frame at a. The

holonomy generated by parallelly propagating (ez) round px is

L>.(1) = Puexp f I W(X(s,u),Y(s,u))dsdu
1 Jo Jo x

where X, Y are the images of ds, du induced by p. Since Qj = 0, L\{1) = 6j and it

follows that the parallel propagates of (ej along 7 and 5 are equal. •

If parallel propagation with respect to a connection UJ on LM is path indepen-

dent then we may choose a point x0 E M and, provided M is (path) connected,

pick a frame (es) at x0 and parallelly propagate (ej to all other points of M. This
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5.2 Projected connection

will result in a parallel frame: the parallel propagate of (ei)\a along a C1 curve from

a G M to b G M will be the same as the parallel propagate of ( e ^ ^ from a to x0 to

b, i.e. (eJIfc.

If U is a simply connected open set in M and to a Levi-Civita connection on

L(U) with !T̂  = 0 it follows that we can construct a parallel frame (e^) in which

Hence ( e j is a coordinate basis and g = diag( —1,1,1,1) is the Minkowski metric

on U.

5.2 Projected connection

Suppose that Vx G M Ux, Vx are subspaces of TXM such that

TXM = UX®VZ dim Ux = dim Vx = 2

where Ux, Vx are chosen in a C2 way but are not necessarily surface forming. We

may define tangent bundles U, V such that U has fibres {Ux}xeM, V has fibres

{Vx}x€M and choose a C2 basis field ( e j = (e0, e1; e2, e3) on M adapted to [/ and

y in the sense that Vx £ M e2, e3 span Ux and e0, e : span Vx. In the following we

shall therefore take early lower case indices {a,b,c,...} to run through 2,3; early

upper case indices {A, B,C,...} to run through 0,1; and late lower case indices

{i,j, k,...} to run through 0,1. 2, 3. For example if w = u + v for u G £/., u G Vx

and x G M then we may write wiei = uaea + vAeA.

For p, q G N, let Tq(Ux), Tq(Vx) be the vector spaces of tensors defined by

T"(U ) = Wb^-b" :U*x...xU*xU x . . . X Ux -> E f/61 •• -^ is multilinear}
P a l - - - a j ) x x ^ J <X\...av

 J

q copies V copies

T*(K) = « 1 : : J : Vx* X . . . x y ; x y , x . . . x K - K I <:: :f ; is multilinear}.

q copies P copies
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5.2 Projected connection

W e c a n n o w d e f i n e m a p s V p , g G N

D\ : Ux x T;{UX) - T;(UX) DV
A : K x T;(K) - T;(K)

by making a C1 choice of coefficients wUc
ab, wvc

AB and setting

D\eb = wulbee Dv
AeB = wvc

ABec

where we extend Du
a, D

v
 A in a bilinear way and require them to obey a Leibnitz

property and also require

XaDuJ = X{f) YADv
Af = Y(f) VC1 f:M->R,X€Ux,Ye Vx,xe M.

Because of these properties we call Du
a, D

v
A tangential connections even though

they are not actually connections on a principal fibre bundle unless U, V are surface

forming. Thus if -y : s i—> 7(5) is a C1 curve in M through 7(0;) with tangent X(s)

everywhere tangent to U then given ub(a) G U7^, XaDu
au

b = 0 uniquely defines

the parallel propagation of ub along 7 such that ub(s) remains tangent to U. Du
a

can only parallelly propagate vectors in U and only in directions tangent to U.

Similarly Dv
A can only parallelly propagate vectors in V and only in directions

tangent to V.

We can also define non-tangential connections Du
A, Dv

a by making a C1 choice

of coefficients vJUc
Ab, wv<^B and setting

f)U p _ n7,Uc p f)V p — ~7,VC p
U Aeb — W

 Ab
ec U aeB — W

 aB
eC

where we extend Du
A, Dv

a as above though again they are not connections on a

principal fibre bundle unless V, U respectively are surface forming. Du
A can only

parallelly propagate vectors in U but only in directions tangent to V and Dv
a can

only parallelly propagate vectors in V but only in directions tangent to U.
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5.2 Projected connection

We can put these together to give

{ Du
aU

bl--b'' I = a ( f)V yBi-.-B,, j = a

Du
AUbl•••b'' i = A * i- P i ^ v yBl...Bq ^ __ ^

Thus Vu is a connection on GL(U), the principal fibre bundle of 2-bases tangent to

U and V y is a connection on GL(V), the principal fibre bundle of 2-bases tangent to

V. Vu can parallelly propagate vectors in U in any direction and V y can parallelly

propagate vectors in V in any direction.

Finally we define a connection V on GL(M) by

% = a
Ve = <

1 \WeA ^ = A

which we extend as above. V is a well defined connection since if ei = X\e] is

another adapted basis so XB, Xb = 0 we have

where Â  is a scalar. Similarly VeA = VveA. V has the property that a vector

initially tangent to U or V will remain tangent to U or V under parallel propagation

by V. We can thus also consider the restriction of V to GL(U,V), the principal

fibre bundle of 4-bases adapted to U and V. GL(U, V) is a sub-bundle of GL(M)

and has the structure group GL2(R) x GL2(R) which is a subgroup of GL4(R), the

structure group of GL(M).

Now define projections

p : TM -+TU :u + v H+ U p : TM -> TV : u + v i-» v Vu e Ux,v eVx,x e M.

These are linear so we write p : w3' i—> pjwi and p : w3 i—+ p\wl where

I 0 otherwise *> 0 otherwise.
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5.2 Projected connection

Let Tq{TxM) be the vector space of tensors of valence ( ' ) at x 6 M. We can say

Tq(Ux), Tq{Vx) < Tq(TxM) (where < denotes vector subspace) in the sense that if

UeTq(TxM)

( Ubi---b'i L = a,,... , iv = av,jx = b,,... . j = b
p V XI li...lp

{0 otherwise

VAI...AJ h = ^ j , . . . , ip = Ap,j1 = B1,...,jq = Bq

0 otherwise.
For p, q 6 N we define the following maps on Tq(TxM)

TTV -
v

Proposition 5.2.1.

(a) IfWG Tq(TxM) for p , ? G N then -KVW £ T*{UX) and ixvW G Tq(Vx)

(b) TTU acts as the identity on Tq(Ux) and TTV acts as the identity on Tq(Vx).

(c) 7ruT
q(Vx)=7rvT

q(Ux) = Q

Proof. pf,pl
A,p^,pi = 0,pb

a = 6b
a, and pB

A = Sf. D

Now let V be some (not necessarily metric) connection on GL(M). Since TT ,̂

TTV are linear we can define connections Vu on GL(U) and V y on GL(V) as follows:

given X e TXM, x e M, p, q G N

U = iruVxU UeTq(Ux) Vv
xV = 7vvWxV VeTq(Vx)

V

where as above Tq(Ux),T
q(Vx) < Tq{TxM). We can then put these together as

above to form a new connection V which we shall call the projected connection of

V defined by
( Vuea % = a

V^eA i = A

and extended in the usual way. V is a well defined connection on GL(M) since if

ez = XJ
ieJ is another adapted basis so A&, Â  = 0 we have just as above Vea = V17^,
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5.2 Projected connection

Ve^ = X7veA. In general however V / V, As above V has the property that a

vector initially tangent to U or V will remain tangent to U or V under parallel

propagation by V. We may also define

A-

Suppose that V, Vu. Wv and V have connection coefficients w*\, ojUc
ib, uvc

zB and

. Then

and thus uiUc
L = LUC

L. Similarly ujvc
n = ujc

n. Hence
ib ib J iB iB

=6ec j = b
=> toc

h = uJc_ = 0 , uJc. = toc
h, uJc

R = ouc
R.

_ • r-, ib i-B ' ib ib' iB iB

fBec j = B

If Du
a, Du

A, Dv
A, Dv

a have connection coefficients wUc
ab, wUc

ib- wv%, ^vc
aB

 t n e n

it also follows that

Uc , ,c n7,Uc , ,c , , ,VC , ,C o7ivc / i c

ab ab Ab Ab AB AB aB aB

Now let g be a metric on M and define

^ := g\u*u gv •=

Thus Vx e M, 5U G T°(UX), gv G T2
0(V'J where as above we set

Proposition 5.2.2. ^^ = ^vg, gv = TTV9-

Proo/. Let x G M. By Proposition 5.2.1, TT̂ y G T°{UX). Now let i ^ , ^ G C/x. Then

Thus TTvg = gu and similarly %vg = gv. •

124



5.2 Projected connection

We say that Vu is metric if Vugu = 0, and that V v is metric if Vvgv = 0.

Similarly we can say that Du, Du. Dv, Dv are metric if Dugu = 0, Dugu = 0.

Dvgv = 0, I? V = 0.

We note that X?ugu = 0 (or Vv'gv = 0) if and only if a pseudo-orthonormal

2-basis of Ux (or V'x) for any x G A/ remains pseudo-orthonormal under parallel

propagation by V6' (or Vv) . Similar properties hold for Du, L>6:. D v . D l / .

Now let V be metric. Then for X £ TXM. x G M

= Vyiv'lV1^ x9ki + VyiV^ki^ xVl
3

= pigalX
m(ujl pn - wn y ) + p1 gkbX

m(tuk pn - 'JJ71 pk)

— A Qni(LO — iO p ) — A Qi.h(Cu — 'OJ p )

Ym( n , ,C n , ,C \
\jaL- mb JOO rna-'

and thus in general V u is not metric even if V is.

If however Ux _L Vx for some x G M, then at this point, in our (not necessarily

pseudo-orthonormal) adapted basis (ej , we have gaB = gAb = 0 and

g = g^e1 g> &i = gabe
a ® eb + gABeA ® eB = gu + gv.

Theorem 5.2.3. IfUx JL V'x for some x G iV/ and V is metric at this point then so

are V, V u , a^d V y , as well as Du, Du, Dv, Dv.

Proof. Let X G TXM. From the above we have

<7aC = gCb = 0 and thus Vu is metric. Similarly V v is metric as are Du. Du

Dv, Dv. Furthermore

Vg = Vgu + Vgv = Vugu + Vv gv = 0
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5.2 Projected connection

and hence V is metric. •

Since V is a connection on GL(M) we may consider its torsion T.

Theorem 5.2.4. IfV is the Levi-Civita connection of g and Ux _L Vx \/x (E M then

either (a) T ^ 0 and V is not the Levi-Civita connection of any metric or (b) T = 0

and V = V.

Proof. By Theorem 5.2.3, Vg = 0. If T = 0 it follows that V must be the unique

Levi-Civita connection of g and that V = V. If however T ^ 0 then V cannot be

the Levi-Civita connection of any metric. •

We can also consider the curvature f2. of V. In fact, using the Cartan equations,

we can consider the torsion and curvature of any connection defined on GL(M), or

on any sub-bundle of GL(M). The Cartan equations do not in general make sense

however for Vu and Vv, defined on GL(U) and GL(V), or for Du, Du, Dv, Dv.

Recall that a connection V on GL(M) has torsion

Tie e ) = V e — V e — [e- el

Du, Dv do not have meaningful torsions; in the expression Du
Aeb — Du

beA — [eA, eb],

for example, Du
b is undefined. Similarly Vu, V y do not have meaningful torsions;

in the expression V*7
Aeb — Vc/

6eA — [eA, eb], for example, V^^e^ is undefined.

For x <E M we may however define the torsions Tu, Tv of D17, D y as the maps

Tu:UxxUx-+ TXM : (eo, efc) ^ £)^ae6 - D V a - K , efc]

T y : K x ^ - TXM : (eA, eB) ^ Dv
AeB - ^ B e A - [eA! eB]

though in general [ea, e6] ^ f/, [eA, eB] ^ F unless (eo), (eA) are surface forming.
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5.2 Projected connection

Now suppose V is the Levi-Civita connection of g. Then

V a e 6 - V6e a-[eo ,e6] = 0

=> 7r(/Ve,,.e6 - 7rf/Ve/ea - -Kv[ea, eb] = 0

=>Du
aeb-D

u
bea-iru[ea,eb] = 0

If t/x _L Vx for some x E M then at this point Dugu = 0 and TT^T^ = 0 and similarly

Dvgv = 0 and TTVTV = 0. We claim that this is sufficient to characterise Du, Dv

at x. In other words, even if (ea), (e^) are not surface forming we have

Theorem 5.2.5. If Ux _L Vx for some x E M then there exist unique tangential

connections Du on Ux and Dv on Vx such that at x, Dugu = 0, vr^T17 = 0 and

Dvgv = 0, TTVTV = 0.

This follows from

Theorem 5.2.6.

(a) Let Du, D^ be tangential connections on U defined by D^aeb = w^c
bec!

Duaeb = w%c
abec with torsions T", T%. If D"gu = 0, D%gu = 0 and

TTcrTu = KuTu at some x E M, then at this point D^ = D^.

(b) Let D^, D^ be tangential connections on V defined by D^AeB = w^c
AB

ea

Dv
2AeB = w™ABec with torsions T?, T^. If D^gv = 0, D^gv = 0 and

TtyT^ = 7rvT2
v at some x E M, then at this point D^ = D^.

Proof. At x E M

Du
iag

u
bc - Du

2a9\c = 0

d9u
bd = 0

dc
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5.2 Projected connection

where aUc, = wUc
L — wUc,. Bv cvcling a, b, c we have

at 2 aft 1 aft - O ) )

aUd gu, + aUd qu , = 0 (5.2.2)
bcJ da baJ cd V /

Now since

=* ^ ( D ^ e , - D2
u

fcea - [ea, efc] - D«aeb + Df 6ea + [ea, efc]) = 0

^ W2 [ab] ~ Wl [at] = U

aft ba

and gu
ab = gu

ba it follows if we add (5.2.1), (5.2.2) and (5.2.3) that

aUd
abg

u
dc = 0.

Since qu
 Tr^TT is non-singular we get aUc

L = 0 and thus wUc
L = w^c

L. Hence Du —
^ u x u ° ° a f t 1 a t 2 aft 1

'U and similarly D^ = D^. D

For x G M, the curvature O] of a connection V on GL(M) is defined by

We can thus define the curvatures fi], fi^ of V, V (where V need not be metric).

We may also define the curvatures QUb
a, VtVB

A of V y , Wv by putting V17, V y in the

above expression

, Y)eb = V%V%ea - V\V"xea - W[XtY]ea VX, Y G TXM

— Vv X7V p — X7V X7V p — X7V e
— V Xv YeA V y V XeA V [X,Y]eA

from which we get second Cartan equations

= duUb + cvUb A LOUC nVB = duVB + UJVB A OJVC
A

a c a A A C A
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5.2 Projected connection

where ttUb
a : TXM x TXM -> T'(UX) : (X, F) H-> nub

a(X, Y) and ft™ . ̂ M x r ^ ¥ _^

We now consider the curvature QJ of V. Recall that uJB = UJb = 0. Now
i a A

UB = fioJB + ZoB A aJc + UJB A w c

a a c a C a

but for x, r e 2; M

(cfcjf )(x,y) = x(sjf (y)) - y(s;f (X)) - sjf ([x, y]) = o

and hence fl = 0 . Similarlv Q., = 0. Furthermore

H6 = dulb + cJ6 A aJc + ut A aJc = daJb + aJ6 A LJC

a a c a C a a c a

UB
A = duJB. + ZJB A EJC, + w ^ A cl;^ = daJ^ + a;^ A uJc

A
A si c A (-> A A O .A

but since a;6 = a;176 and cĴ  = CJV-B it follows that H* = QUb and H^ = fi^^.
a a A A a a A A

Since cJ6 = u)h and oĴ  = o;f we also have
a a A A

ftfc = H* + aA A wc (5.2.4a)

fif = nB
A + uB A UJ\ (5.2.46)

A A c A K '

from which in section 6.1 we will derive the Gauss-Codazzi-Ricci equations for {Ux}

and {Vx} respectively.

Finally the curvature WUb of Du will be well defined and given by

W^aeb(X, Y) = Du
xD\ea - D\Du

xea - D°[XiY]ea VX, Y eUx

only if [X, Y] £ Ux VX, Y £ Ux, or in other words only if ( e j is surface forming at

x, in which case the curvature WVB of Dv will also be well defined and given by

WVBeB(X, Y) = Dv
xD

v
YeA - Dv

YDv
xeA - Dv

[x<Y]eA VX, Y G Ux.

Similarly Dv, £>u will have well defined curvatures WVB
A, WUb

a only if [X, Y] e Vx

VX, y € 14, or in other words only if (eA) is surface forming at x.
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5.3 Extrinsic curvature

5.3 Extrinsic curvature

As before, let (M.g) be a space-time, let TXM = Ux © Vx Vx G M for a C2

choice of Ux, Vx such that dim Ut = dimV .̂ = 2. and let (ej be an adapted basis

field. In the following we shall also assume that Ux _1_ Vx Vx G M. Let V be the

Levi-Civita connection of g and V the projected connection of V. Thus V, V are

connections on GL(M) which satisfy Vg = 0. Vg = 0. Furthermore

—6 , ,b —,B , ,B 7~;B —b n
Lu — Lu UJ — \JJ Lu — LU — \J.

a a A A a A

Let V be a connection on GL(M) with curvature Cll and let Rljkl = Rljk
mgmi

where Rijk
l — ̂ l

k{
eii ej)- Of the following identities

Rijki = -Rijlk (5-3.2)

R[ijk]i = o Rijki = Rkuj ^[iRjk]im — o (5.3.3)

(5.3.1) holds for any V, (5.3.2) holds if and only if Vg = 0, and (5.3.3) does not in

general hold unless V has torsion T = 0. It follows therefore that the curvature Q,lk

of V obeys (5.3.1), (5.3.2) and (5.3.3) but that the curvature Qk of V only obeys

(5.3.1) and (5.3.2).

Given x G M we now define the second fundamental forms Ku, Kv of Ux, Vx

with respect to V, and the associated second fundamental forms Au, Av of Ux,

Vx with respect to V as follows: given C1 vector fields X,X',Y,Y' denned in a

neighbourhood of x such that X, X' are tangent to U and Y, Y' are tangent to V

we set

Ku : {X,X') ^ 7rv(VxX') Kv : (Y,Y') ^ n^VyY')

A" : (X,Y) -> TT^V^F) .4^ : (Y, X) - , vr^V^Y).
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5.3 Extrinsic curvature

Proposition 5.3.1. KU(X,X')\X, Kv(Y,Y')\x; AU(X,Y)\X, and AV(Y,X)\X de-

pend only on the values of X, X', Y, Y' at x.

Proof. At x,

KU(X,X>) = ^v^xX'y=vlXkVkX-=f>l{XkdkX
n + Xk^klX'1)

which depends only on the values of X, X' at x and not on the values of X, X' at

any other points. Similarly for Kv (Y, Y'), Au (X, Y), and Av (Y, X). D

Thus in fact

Ku:UxxUx^ Vx Kv : Vx x Vx -> Ux

Au : Ux x Vx ->UX Av : Vx x Ux - Vx

and furthermore Ku, Kv, Au, Av are linear maps for which we may write

K"{ea, eb) = KVfcc Kv(eA, eB) = Kv^ec

Au(ea, eB) = A"lBec A^eA, eb) = Av°bec

where Kuc KVc are called the extrinsic curvatures of Ux, Vx.

Now

Ku(ea, eb) = 7rv(Ve.e6) = vrv(^efc) = ^ e c

and thus Kuc
u = uc

u and similarly KVc
AO = ioc

ta, AUc„ = cuc
B, AVC

A, = LOC... Since
ab ab •> AB AB' aB aB' Ab Ab

= 0 and gaB = gAb = 0 we also have that

= dagbC - ul
abglc - ul

aCgbl = -^D
abgDC - ^d

aCgdb = 0

=> KUD
abgDC + AUd

aCgdb = 0 (5.3.4a)

and thus Ku, Au may be determined from each other. Similarly

Q (5.3.46)
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5.3 Extrinsic curvature

Now if X, X1 G Ux and Y, Y' G Vx then

VXX' = 7TfJVxX' + xvVxX' = DU
XX' + KU(X,X')

VXY = TTL;VXY + TTVVXY = AU(X, Y) + Dv
XY

and similarly

VyX = AV(Y,X)+DUyX

Y' = DV
YY' + KV(Y,Y').VYY' =

More generally V can be reconstructed from a knowledge of the projected connection

V and Ku, Kv', Au, Av, since if W = X+Y, W = X'+Y' G TXM where X, X' G Ux

and Y, Y' G Vx then

VWW> = 7TV VW{X> + Y') + irvVw{X' + Y')

Y' + TTVV{X+Y)X'

= VWW + AU(X, Y') + KV{Y, Y1) + KU(X, X') + AV(Y, X'). (5.3.5)

Similarly, as we will show in section 6.1, the curvature Qj of V can be partly

reconstructed from a knowledge of the curvature Q. of V and Ku, Kv, Au, Av

using equations (5.2.4a) and (5.2.46).

In our adapted basis, since V has torsion Tk. = 0, we have

0 = Tc c c _ cc = Kuc __ Kuc __ cc
ab ab ba ab ab ba ab

where fe-.e-l = ck e,,. Hence

Kuc = Kuc ^ ^ cc=0
ab ba ab

and thus Ku is symmetric at x if and only if Ux is surface forming. Similarly, Kv

is symmetric at x if and only if Vx is surface forming.
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5.3 Extrinsic curvature

We say that Ux is totally geodesic if Ku = 0 at x, and that Vx is totally geodesic

if Kv = 0 at x.

We can also consider the second fundamental forms K , K oi Uxl Vx with

respect to V and the associated second fundamental forms A , A of Ux, Vx with

respect to V. However if x G M, X eUx,Y eVx and VF G TXM then

VWX G £/, V W F G K

from which it follows that K = K = A = A = 0 : Thus Ux, Vx are totally

geodesic with respect to V.

If for some x G M, Ku = Kv = 0, it follows from (5.3.4) that ^ = Av = 0.

Hence

UjB = uJb = 0

and, at this point, V = V. Now the torsion T.. of V satisfies

Tk. = LOk. - LOk. - Ck. = LJk. - LOk. - Ck. = 0
1] T.] Jl I] I] ]1 tj

from which it also follows that

cc = uc - tu'r = 0 cc. „ = wc. „ - UJ% . = 0
ab ab ba AB AB BA

and hence Ux, Vx are both surface forming.

We now specialise to the case where Ux is spacelike and Vx is timelike, and we

shall use Sx to denote Ux, and Tx to denote Vx. Thus

TXM = SX®TX Vx G M.

We shall take (et) to be an adapted frame, where we recall that a frame is an

oriented, time-oriented pseudo-orthonormal basis. Let L(S), L(T) be the principal

fibre bundles of 2-frames tangent to S, T respectively, where S, T are the tangent

bundles U, V7 and let L(S,T) be the principal fibre bundle of adapted frames.
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5.3 Extrinsic curvature

Thus L(S), L(T), L(S,T) have structure groups 50(2), L\{2), L\{2) x SO(2)

respectively.

We further assume that Vx £ M, Sx is surface forming, so that (M, g) is foliated

into a set S of spacelike 2-surfaces which are everywhere tangent to S. Given x G M

however, Tx need not be surface forming. We denote

7rf[ = 7ru -KL = TTV gW = gu gL = gv

V« =

JTII =KU KL = Kv A" = Au Ax = Av.

Given a particular 2-surface 50 6 S we may form the tangent bundle T50 =

S'|Sn of SQ and the normal tangent bundle (TSQ)1- = T\Sa of So. Thus DH is a

connection on the principal fibre bundle L(S\So) of 2-frames tangent to S\Sa and

DL is a connection on the principal fibre bundle L(T|5o) of 2-frames tangent to

Tj5o. Given i G 50, DH has torsion

Til :SxxSx-+ TXM : (ea, eb) » DWaeb - £ 1 ^ - [ea, eb]

but since So is a surface vrjiTH = TH so that in fact

Proposi t ion 5.3.2. Z)H is the Levi-Civita connection of (S0,gW).

Proof. DWgW = 0 and T" = 0 . •

DW is also called the intrinsic connection of (So, g^) since it is uniquely deter-

mined by (So, gW). DL does not have a well defined torsion and despite the fact that

D±g± = 0, D1- is not in general uniquely determined by g1-.

Since Sn is a surface, DW has well defined curvature W^b — Q and D1- has well
D

defined curvature VFX^ = Q . We recall however that requiring D±gx = 0 and

WLB = 0 would not uniquely fix DL] instead we obtain Dx from the projected

connection V of the Levi-Civita connection V of (M,g).

134



o.Jf. Conjugacy of the intrinsic and extrinsic holonomy

Since K = K = 0 and A = A = 0 it follows that 50 is totally geodesic with

respect to V.

Finally we note that if

r = {tensor fields TCb*-b*\p,q E N}

then the connection on this bundle

W : T - > T : T C f c l - 5 " ^ Va TCb^-h" p , q E N
ai...av

 ai>+i ai...av FIT.

is called the Van der Waerden-Bortolotti connection.

5.4 Conjugacy of the intrinsic and extrinsic holonomy

Let (M, g) be a space-time. Let K : (0,1] -> M : u H K(U) be a C1 curve of finite

b-length terminating at a singularity and let 7c be a lift of K terminating at a point p

of the b-boundary of M. If K terminates at a quasi-regular singularity, then we know

from section 1.6 that the s-holonomy group H-^ will exist, and consist of rotations

through multiples of a fixed angle about the singularity. There is no guarantee

however that H- will exist for a curvature singularity. A different singular holonomy

group Gp is defined in [C78]. Gp is homeomorphic to the isotropy subgroups at p

and thus always exists, and contains if- when it exists. For a general curvature

singularity however Gp = LT and thus Gp does not tell us much about the structure

of a curvature singularity.

We suppose instead that the space-time is foliated by a set S of spacelike 2-

surfaces. Given x G M, let 5 , = TXS, Tx = (T^S)-1 where S E S is the 2-surface

which passes through x. Thus

TXM = SX@TX.

As before let g^,g± be the metrics induced on SX,TX by g, let ui be the Levi-Civita

connection, let uJ be the projected connection defined with respect to {Sx}x€M and

{Tx}xeM, and let a = cZ7 — ui be the connection difference.
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5.4 Conjugacy of the intrinsic and extrinsic holonomy

We also suppose that K lies on a particular spacelike 2-surface S £ S and has

ZU-finite (but not necessarily cu-fmite) b-length. Recall that the elements of H- are

generated by parallelly propagating 75(1) round the elements of the loop space of

lassos Q,K as described in sections 1.6 and 2.5. We will define a subgroup VLK{S) of

VlK whose elements, subject to certain constraints on the extrinsic curvature of S

and on the space-time curvature, will give rise to well defined elements of holonomy,

even though K may terminate at a curvature singularity.

First let £l+(S) be the loop space of lassos contained in QK and restricted to lie

in the 2-surface S. Let 7 £ Q,+ (S). Measuring lengths with respect to the positive

definite metric gW, we shall say that the curves ju(s) = j(s,u) are parametrised

proportional to length if they obey l(s, u) = sl{u) where l(s, u), l(u) are the lengths

°f 7j[o,n]j7-J[o,i] respectively, and we shall say that 7 is regular if

(i) the curves 7u(s) = j(s,u) are parametrised proportional to length

(ii) the lengths X(s) of the curves KS(U) = 7(5, u) are finite and continuous in s

(iii) Y(s, u) ^ 0 where Y = 7,(3,).

We note that length measured with respect to the positive definite metric gW

coincides with b-length measured in an adapted frame parallelly propagated with

respect to the projected connection V.

We now define

QK(S) = {7 G fi+(5)|7 is regular}.

Proposition 5.4.1. Q,K(S) is a group.

Proof. Given 7, 5 e flK(5) let

{
f(l^(u) + h(u))s _ h(ul\ h(u)

y"V iT(u) l-,(v.)> ^(u)+h(

where /yu has length l^(u) and 6U has length I6(u). Then QK(S) is a group under

this operation. D
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5-4 Conjugacy of the intrinsic and extrinsic holonomy

Now given a bundle on 5, a connection u on this bundle, and a lift X of K,

obtained in this bundle using Co, we define H-(S, Co) to be, if it exists, the s-holonomy

group obtained by parallelly propagating K(u) with respect to Co in the usual way

along the elements of QK(S). Let ~K be another lift of K obtained using Co and let

7t(u) = (e-i{u)) and ~K'(U) = (e'(u)). Then e[(u) = Lie^u) for some constant L\ and

in this case we recall that H-,(S,Co) = L~1H~(S,'Co)L.

In particular, let K and k be lifts of K, obtained using to and to respectively in

the bundle LM. If it exists, we call H-(S,uJ) an intrinsic holonomy group, since

it measures the holonomy of the projected connection on loops restricted to lie on

S and, if it exists, we call Hk(S,u) an extrinsic holonomy group, since it measures

the holonomy of the full space-time connection on loops restricted to lie on S.

Our strategy is to consider a class of singularities for which although the full

s-holonomy groups may not exist, the extrinsic holonomy groups exist for suitable

choices of spacelike 2-surfaces. We will do this by proving the existence of the

intrinsic holonomy groups for this class of singularities, and showing that the ex-

trinsic holonomy groups must be conjugate to the intrinsic holonomy groups and

thus must exist. In the next section we will discuss conditions under which these

extrinsic holonomy groups are conserved along the singularity.

We therefore now assume that (M, g) contains an idealised cosmic string as

in section 4.2 and that the foliation S described above is chosen to consist of the

preferred spacelike 2-surfaces {5 t.}. Let S £ S and let K : (0,1] —•» S : u i—+ K(U) be

a C1 curve of finite length terminating at r = 0.

Let 7 £ QK(S) and let k be a lift of K obtained using the full connection u in the

frame bundle LM. Let (e^s,^)) be obtained by parallelly propagating k(u) along

the closed loops ju(s) = j(s,u) with respect to UJ and let (ez(s,u)) be obtained by

parallelly propagating (et(s, 1)) along KS(U) = j(s,u) with respect to UJ.
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5.4 Conjugacy of the intrinsic and extrinsic holonomy

Measuring length with respect to g^, let the closed loops 7U(S) = l{s,u) have

length l(u) and let the curves KS(U) = j(s,v.) have length A(s). We shall say that

the 2-surface S is regular with respect to 7 if

(a) 36 E LY(0. l),ib E LL(0. sup jgr0a, A(s)) such that in the frame ( e j , where

for each s E [0,1], u measures length along KS with respect to the positive

definite metric g\\ such that u —+ 0 as u —> 0, and l(s,u) = /(tx) where we

regard u as a function of s and u, the space-time curvature obeys

(b) 3M > 0 such that, in the frame (e^), the extrinsic curvature i P of 5 obeys

We note that condition (a) is certainly satisfied if 36 6 L^O, 1) and ip E

Ll(0, sup5er0 2] A(s)) such that, in the frame (e j ,

or even

Il^c6(s^)||<^(^)

though these are stronger conditions than condition (a). We also note that condition

(a) involves only one independent component fia^c^ OI> the twenty independent

components of the space-time curvature.

We also note that (e;) will not in general be an adapted frame so the correct

projections need to be applied to K{^?-b and Q^ic^•

We shall say that the 2-surface 5 is regular with respect to K if £lK(S) is non-

empty and 5 is regular with respect to every 7 E Q,K(S).

We recall the equivalence relation ~ denned on connections in section 2.3. Let

(e^O, 1)) = (e;(0,1)) and parallelly propagate (e^O, 1)) with respect to the projected

138



5.4 Conjugacy of the intrinsic and extrinsic holonomy

connection first along 7^-s) = j(s.u) and then along KS(U) = 7(5. u) to obtain

(e^Sjii)) (see diagram 5.4.1). Set

Diagram 5.4-1

Lemma 5.4.2. If S is regular with respect to 7 £ QK(S) then u> ~ cU along each

KS{U) = 7(s, M) and 3A0, A: > 0 suci that ||A;(s, -u)|| < A1; | | (A-1)^^, u)\\ < Ax.

Proof. We express components in the frame (e t). Let p : TM —• TM be defined by

pi = gIR. Since K lies on 5, p(f) = v Vv £ T7. Therefore p £ "P where P is defined

in 2.3. Now

p>.al.k = •

and since 3M > 0 such that KWD
k < M , it follows by Theorem 2.3.13 that to ~

along K5. Furthermore from equation (2.3.1)

cs
7j

kl{s, u0) du0 P exp / — X m ( s 0 , l)cr^ (s 0 ,1 ) <is0
Jo rni
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5.4 Conjugacy of the intrinsic and extrinsic holonomy

and since Ykai, = Ykpk'ai,, and Xmal . = Xmpm'al ,. we have

\\\]{s,u)\\ < e x p [U \\Yk(s,u0)\\Mdu0 e x p f \\Xk(s0,l)\\Mds0
Ji Jo

< exp / M du0 exp / sup
Ji Jo Soe[o,s]

<A0

for some Ao > 0. Similarly

for some X1 > 0. D

A consequence of S being regular with respect to 7 G ^ ( 5 ) is that «; and

each KS have both cj-fmite and uJ-finite b-lengths. In this case we claim that the

b-lengths l(u) of ju(s) = j(s,u) obey l(u) —-*• 0 as u —> 0 with respect to w if and

only if they do so with respect to uJ, and thus QK(S), whose elements are required

to obey l(u) —> 0 as u —+ 0, is well defined. We note however that each 7U is

parametrised proportional to length measured with respect to gll, and not b-length

measured with respect to ui.

We can now state the conditions under which the intrinsic holonomy groups

exist.

Theorem 5.4.3. Let K' be a lift of K in the adapted frame bundle L(TS, (TS)-1)

and suppose that S is regular with respect to K. Then the intrinsic holonomy group

H-, (S, V) exists.

Before we prove this theorem, we need to establish some preliminary results.

Given a lift ~K! of K in the adapted frame bundle L(TS, (TS)1-), if each 7 £ £lK(S)

were sufficiently regular with respect to the curvature Q. of the projected connection

uJ in the sense of section 2.5, Theorem 5.4.3 would follow immediately from Theo-

rems 2.5.1 and 2.5.2. It turns out however that in order to prove Theorem 5.4.3,

we need only consider the behaviour of the sectional curvature of the projected

connection, which we define as follows.
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5.4 Conjugacy of the intrinsic and extrinsic holonomy

Let Co be a connection on LM with curvature QJ
{. The sectional curvature fi

of Co with respect to 5 is

~ kli y y. J i ram

and thus in an adapted frame

10 otherwise.

Given x E S, the more usual definition of this sectional curvature is

# = 9J(X.Y)/\X AY\\
I 2 \ ' / / I II

where \\X AF| |2 = (XlAYJ)(X
l AYJ) and X, Y are chosen to span Sx (and are thus

non-zero). It can be shown that S{ is independent of the choice of vectors spanning

Sx. Thus if. X, Y span 5̂ . we have

and so we may regard both Qj and S? as the sectional curvature of u with respect

to S.

Now let 7 G f2K(5), let K be a lift of K obtained using u, and let (e^s,^))

be obtained by parallelly propagating K(u) along the closed loops ju(s) = j(s,u)

with respect to -a). As before let KS(U) = 7(5,1/.) and define (e^s,^)) by parallelly

propagating (et(s, 1)) along KS with respect to w to give (e^s.u)). We also let

X = ^(ds),Y = 7*(3U) and set

and

We shall say that 7 is sufficiently regular with respect to Q? if
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5.4 Conjugacy 0} the intrinsic and extrinsic holonomy

(a) the curves ~/u are parametrised proportional to b-length, and for each s G

[0,1], K,X has finite b-length. and the b-length A(s) of KS measured in the

frame (e;) is continuous in s. and Y{s. u) ^ 0

(b) 3<p G -^(O. l),w G Ll(0. sup36r0 jj A(s)) such that in the frame (e j , where for

each s G [0,1], u measures b-length along KS with respect to (ej such that

u —y 0 as u —y 0. and l(s, u) = l(u) where we regard u as a function of s and

u,

W^kii3(s,u)\\l(s,u) < (t>(s)t/;(u)

This definition is identical to the one given in section 2.5 except that in condition

(a) we measure b-length with respect to u and in condition (b) we refer to the

sectional curvature &{ rather than to the full curvature.

Recall from section 2.5 that 7 is well bounded with respect to UJ if 3a > 0 such

that

j|(/-1)^(s,n)Xl(s,ii)j| < a\\XJ(s,u)\\

where X3 are the components of X in the frame (e,).

With these definitions we can state the following theorems.

Theorem 5.4.4. Let 7 be sufficiently regular with respect to Q{ and well bounded

with respect to u. Then for each s G [0,1], limu^0 /^(s, u) exists, and lj(s) is

continuous.

Theorem 5.4.5. Let 7 be sufficiently regular with respect to Q. and well bounded

with respect to u. Then Li(0) := lim^o L\{u) exists.

The proofs of these theorems are exactly analogous the the proofs of Theorems

2.5.1 and 2.5.2. We now apply these theorems to the sectional curvature fl of the

projected connection UJ.
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5.4 Conjugacy of the intrinsic and extrinsic holonomy

Proposition 5.4.6. Each 7 £ ^ ( 5 ) is well bounded with respect to UJ.

Proof. Let 7 £ QK{S) and let A' = 7:«(<9J- Let (e;) be a (not necessarily adapted)

frame at 7(0, 1). Using the projected connection uJ, parallelly propagate (ej along

K to K(U) and round -<u to j(s.u) to give (e,(s,-u,)). Let (e t(0,l)) = (e;(0,1)) and

parallelly propagate (ej round jx to 7^5) and then along KS to 7(5. u) to give

( e ^ s , ^ ) . Set

e^SjU) — lJ
{(s, u)e-{s. u ) .

Now pick a an adapted frame (e') at 7(0,1). Using u>, parallelly propagate

(e') along K to K(U) and then round j u to 7(5, u) to give (e'.(s.u)). Let (e^(0,1)) =

(e'(0,1)) and parallelly propagate (e') round 7j to ^y1(s) and then along KS to 7(5, u)

to give (e'.(s.u)). Define

e'.(s.u) = Xje'.(s.u)

where Aj(s.ii) £ LT _ Since (e'); (e') remain adapted under parallel propagation by

U we have XB. Ah, = 0.

Now X = X'ae' = X'a(\~1)be[ where X has components X'1 in the frame (e1.).

Since y(e', e'.) = <?(e', e'.) = rŷ  and 7 lies on a spacelike 2-surface

g(X,X) = (X'2)2 + (X'^Y = (X">(\-i)D* + (A--(A-)3)2

and hence

Now

e'.(0,l) = e'.(0

for some constant aj £ U and so

e'.(s,u) = ale^
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5.4 Conjugacy of the intrinsic and extrinsic holonomy

Hence X = I ' e , = X^a^e'. so X'* = X^a"1);' and X = Xlet = X'(l-l)ieJ =

so X'^A"1)* = X^Z"1)^"1)*- Therefore

where a = ||(a—1)^ || ||a] || > 0 is constant. •

Lemma 5.4.7. Suppose that S is regular with respect to K. Then each 7 G ^ ( 5 )

is sufficiently regular with respect to Q..

Proof. Let 7 G $\(5). We show that conditions (a)-(c) in the definition of whether

7 is sufficiently regular with respect to Q. hold.

7 is regular by the definition of QK(S) and we recall that b-length measured with

respect to UJ in an adapted frame coincides with b-length measured with respect to

gll. Therefore condition (a) holds.

Let (et) be a basis parallelly propagated with respect to the full connection CJ

first along J1(s) = ~f(s,u) and then along each KS(U) = j(s,u). Since 5 is regular

with respect to 7 3$ G Ll(0, l),-0 G L^O, sup56[0)1] A(s)) such that, working in the

basis (eQ.

where l(s,u) = Z(tt) is the length of the closed loop 7u(s) = 7(s.ii). it measures

length along KS, and A(s) is the length of KS, measuring all lengths with respect to

5".

Referring forward to equation (6.1.8)

144



5.4 Conjugacy of the intrinsic and extrinsic holonomy

hence

for some Mo > 0 since 3M > 0 such that, in the basis (e j , [|î TH (̂s, ^) jj < M.

Hence

for some cj)1 €: .L1 (0,1).

Now set e,(0,1) = et(0,1) and parallelly propagate ez with respect to the pro-

jected connection, first along 7 : and then along KS, to give ~ei(s,u). Set

ez(s,u) = \l(s, 11)^(3,11).

Then by Lemma 5.4.2, XJi(s,u) and (A~1)i(s,u) can both be bounded by constants.

Working now in the basis (e{) it follows that

\\nabC
D\\l(s,u)<<f>2(s)i;(u).

In other words we have converted an integral bound on SlabC
D measured in an

cj-frame into an integral bound on QabC
D measured in a a7-frame.

Q b JLJ

Now Q, = Q = 0 and the sectional curvature Q,. of the projected connection

has components QabC
D and £labc

d. We therefore need to examine the behaviour of

O d

Since (S,gW) has a quasi-regular singularity at r = 0, it follows that the Ricci

scalar of (S,gW) has a well defined limit Rs along KS. NOW a curve of finite length

terminating at r = 0 can be constructed oscillating between KSI and KS2 on which

the Ricci scalar must have a well defined limit of both Rs and RS2. Hence the Ricci

scalar has the same limit along all KS. NOW since (S,gW) has only one independent
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5.4 Conjugacy of the intrinsic and extrinsic holonomy

component of curvature flabc
d and the frames in which this can be expressed are all

related by rotations, it follows that 3MX > 0 such that

ab/ (s.u)

Hence 3<p3 £ L^O, 1) such that in the frame (ex)

\\f}ljk
l{s,u)\\l(s,u) < 03{S)VJ{U)

and condition (b) is satisfied. •

We can now prove Theorem 5.4.3.

Proof of Theorem 5.4-3. ~K! is a lift of K in the adapted frame bundle and 5 is

regular with respect to K. Then each 7 £ SlK(S) is sufficiently regular with respect

to Q. by Lemma 5.4.7 and well bounded with respect to cJ by Proposition 5.4.6.

Define e{(s, u) by parallelly propagating K'(u) along 7u(s) = 7(5, u) with respect

to UJ and set

ei(\,u) = U{u)ej(Q,u).

Then by Theorem 5.4.5

DVQ) := Mm LUu)

exists. Hence the intrinsic holonomy group H^(S,V) exists. •

We note that this theorem just tells us that the intrinsic holonomy groups exist

but do not tell us their value. However

Theorem 5.4.8. Let K' be a lift of K in the adapted frame bundle L(TS, (TS)-1))

and let S be regular with respect to K. Then the elements of the intrinsic holonomy

group H-, (S, V) act on the bundle L(TS) of 2-frames tangent to S as rotations

through 2k9Q, k £ Z for some 90.

Proof. This follows from the results of section 1.6. •
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5-4- Conjugacy of the intrinsic and extrinsic holonomy

We do not know however how the elements of H-%, (5, V) defined in Theorem

5.4.3 act on L((T5)1). In certain cases they may act on L((T5)-L) as the identity

and indeed this might seem likely given that the normal metric is regular. However

these elements of holonomy are calculated by parallelly propagating a 2-frame in

the normal bundle in directions tangent to the tangent bundle. In other words the

holonomy group HK±(S. Dx) obtained by parallelly propagating a lift KL of K in

the normal bundle L((T5)-L) with respect to the connection DL induced by V on

L((TS')-1-) depends on both g1 and gil. Thus we cannot conclude that HKJ_(S, Dx) =

We have shown that H-,(S.LJ) exists for a lift ~K! of K obtained using uJ in the

adapted frame bundle L(TS,(TS)L). It follows that the intrinsic holonomy group

H-(S,uJ) exists, and is conjugate to H-,(S,uJ), for a lift 7c of K obtained using uJ in

the full frame bundle LM, since K(IA) = LR'{u) for a constant L E D+ and hence

H- = L~1H-,L.

Now let K be a lift of K obtained using to. We will now show that the extrinsic

holonomy group HR(S,<JJ) is conjugate to the intrinsic holonomy group H-(S,u),

and thus also exists. In particular if k is suitably chosen then

Let 7 : (s.u) t—> j(s,u) (E QK(S) where each j u : s i—> j(s,u) is a closed loop.

Let (e t(0,l)) e LM be a frame at K(1) and let (^(0,1)) G L(TS,(TSy) be an

adapted frame at /c(l). Parallelly propagate (6,(0,1)), (et(0,1)) with respect to

u, uj, first along K to give (e^O,^)), (e^O,^)), and then along 7U for fixed u to

give (e^Sjtt)), (e%(s,u)). Thus (e^s.u)) will remain in the frame bundle LM and

(e^Sj-u)) will remain in the adapted frame bundle L^S^TS)1). In the following

we shall denote the pair of vectors in (ej tangent to TS by (ea) and the pair of
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5.4 Conjugacy of the intrinsic and extrinsic holonomy

vectors in (ez) tangent to (TS)- by (eA). We note tha t in general (e{) will not be

an adap ted frame.

Thus we may write

et(s. u) = LJ
{(s, u)ej(s, u)

where L\{s, u) G U though in general L\(0, 1) ̂  b\. If we let X(s, u) be the tangent

of 7U : s i—y 7u(s) and Y(u) be the tangent of K : u i—> /•c(ti) then by equation 2.3.1.

expressing components in the frame (ej , we have along «;

[Yl(uo)(xfk(0,uo)duoL
k.(0,l) (5.4.1)

and along j u for fixed u

IA(l,u) = Pexp f -Xl(s,u)afk(s,u)dsLL:(0:u). (5.4.2)

Proposition 5.4.9. If S is regular with respect to K then

exists and is non-singular.

Proof. By Lemma 5.4.2, tu ~ u7 along K(-U) = K0('
lt)-

Proposition 5.4.10. If S is regular with respect to K then

LJ(1,O) :=\imLJ.(l,u)
1 u—»0 2

exists and is equal to Li (0,0).

Proof. By equation (5.4.2)

IA(l,u) = Pexp / -Xl(s,u)aj (s,u)dsLL:(0,u)
Jo
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5.4 Conjugacy of the intrinsic and extrinsic holonomy

Now j u is parametrised by length so in the frame ( e j we have \\X(s, u)\\ = l(u) — 0

as u —> 0 where j u has length l(u). Since S is regular with respect to K, 3M > 0

such that, by Lemma 5.4.2, ||-ftHÎ J| < M in the frame (e{). Hence

)!(0,u) - 6{\\ < exp / " \\X'is,u)\\\\ak(S,u)\\ ds - 1

< exp /" l(u)Mds- 1

-> 0 as u —' 0.

By Proposition 5.4.9 limu_0 L\{Q, u) exists and hence limu_0 L\{1, u) = L](0,0) D

Finally we can prove the existence of the extrinsic holonomy groups.

Theorem 5.4.11. Let S be regular with respect to K. Then the extrinsic holonomy

groups Hk(S, V) exist and are conjugate to the intrinsic holonomy groups H-(S, V)

for lifts K, K of K obtained by to, uJ.

Proof. Let 7 G QK(S) and let the frames (e j , (e,) be as above. Let

ei(l,u) = Ai(u)ej(0,u) e^l.u) =H\{u)eJ{Q,u).

By Theorem 5.4.3 we know that H-(S,uJ) exists where K is the lift of K obtained

by u such that re(l) = (^(0,1)). Thus A~J.(0) := ]imu_0A~J.(u) G H^(S,uJ) and hence

must exist. Now

e{(l,u) = IAil^eji^u) = D.(l,u)Ak.{u)ek(0,u)

= D.(l,u)Ak.(u)(L-%(l,u)el(O,u)cr

^A>(u) = (L-i)i(l,u)Ak
l(u)L'i(l,u).

Hence by Proposition 5.4.10

A{(0) :=UmAf(«) = (^^(M^^LKl.O)

exists. D

In particular by an appropriate choice of L](0,1) we can arrange for 14(1, 0) = 6\

and in this case A{(0) = A^(0).
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5.5 Conservation of holonomy

We shall present some examples of idealised cosmic strings in section 6.3. It will

turn out that in each of our examples the intrinsic and extrinsic holonomy groups

exist.

5.5 Conservation of holonomy

Let (M,g) contain an idealised cosmic string as described in section 4.2 and

let {5 tz} be the foliation of preferred spacelike 2-surfaces. Let K be a b-incomplete

curve lying in a particular Stz and terminating at the singularity {r = 0}.

Now we know from section 1.6 that if {r = 0} is a quasi-regular singularity, the

s-holonomy groups Hk exist for lifts k of K, and are conserved along the singularity

in a sense denned by Theorem 1.6.3. For a general idealised cosmic string, the full

s-holonomy groups will not in general exist. We proved however in the previous

section that if Stz is regular with respect to K, the intrinsic and extrinsic holonomy

groups HTC(Stz,'V), Hf.(Stz,S7) exist for lifts ~K, k of K by the projected connection

V and the full connection V respectively. In this section, we investigate conditions

under which these groups are conserved along the singularity.

Suppose there exists a C1 map (see diagram 5.5.1)

p : (s, u, v) h-> p(s7 u, v) : [0, 1] X (0,1] X [0,1] —• M

such that

(a) nv(u) = p(0,u,v) is a curve of finite b-length lying in a preferred spacelike

2-surface Sv and terminating at r = 0

(b) Sv is regular with respect to KV

(c) lv(Sju) = P(s,u,v)enKjsv).
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5.5 Conservation of holonomy

Diagram 5.5.1

Hence each KV and j v lies entirely in the preferred 2-surface Sv. Since Sv is

regular with respect KV, LO ~ uJ along KV and K,V has finite b-length with respect

to ui if and only if it has finite b-length with respect to UJ, so condition (a) is well

defined, p provides a homotopy from 70 to /y1.

By condition (b) and the previous section we know that the intrinsic holonomy

groups H-zo(S0, V), H^S-L, V) exist for lifts 7c0, Tq of K0, KX in the adapted frame

bundle L(S, T) by V. Hence the extrinsic holonomy groups Hza(S0, V), Hki(S1, V)

must also exist for lifts k0, kl of K0, KX in the full frame bundle LM by V.

We shall exhibit conditions under which

and hence Hko{S0,^7), H^^S-^j'V) are conjugate.

Let e,(0,1, 0) be an adapted frame at p(0,1, 0). Using the projected connection

V, parallelly propagate e t(0,l,0) along KO to give ez(0,u,0), parallelly propagate
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5.5 Conservation of holonomy

e{(Q,u, 0) up Xu(v) = p(Q,u,v) to give e^O, u, v), and parallelly propagate e^O, u.v)

round the closed loop jViU(s) = p(s,u,v) to give e{(s,u,v) (see diagram 5.5.1).

Now let 6^(0,1,0) = e t(0,1,0). Again using the projected connection V, paral-

lelly propagate e,(0,1,0) up X1(v) = p(0, l,v) to give ez(0,1, v), parallelly propagate

ez(0, l,v) along KV to give ^ ( 0 , ^ , ^ ) , and parallelly propagate ^(0,14,11) round the

closed loop jVtU(s) — p(s,u,v) to give e^s^u^v) (see diagram 5.5.1).

Set

We also set

e^O, 14, v) = aj(u, v)ej(0, it, v)

so that

et(s, u, -u) = a;̂ (i4, v)ij(s, u, v).

Defining

x = P t(aj Y = P,(du) z = P,(dv)

we have by equation 2.5.2

f'f
/o Jo

QkH
m{s,v)Xk(s,v)Zl{s,v)dsdv (5.5.1)

where we express components in the frame ei and Q. is the curvature of V. Note

that X, Z are tangent to the tubes pu(s, v) = p(s, u, v) and X, Y are tangent to the

2-surfaces Sv. Note too that Z is not necessarily orthogonal to Sv.

Hence

( ) ( ^ ( ) ( )

= (a-^iu, l)L){u, l)a'k(u, l)e((0, u, 1)

= IA(u, 1)^.(0,^,1)
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5.5 Conservation of holonow,y

and hence

LHu. 1) = (a.-l)k{u, l)Ll (u, l)aJ,(u, 1) = LJ(u, 1)

since the structure group SO(2) x LT (2) of L(S,T) is abelian. Now al(u,0) = b\

and so we also have

LJ.(u:0) = LJ.(u,0)

and from equation (5.5.1)

f1 f1 —
U(u, 1) = LJ

m(ti,0)Pl, exp / / nkU
m(s,v)Xk(s,v)Zl(s,v)dsdv

where again we express components in the frame et.

Now we know by conditions (a)-(c) above and Theorem 5.4.3 that the elements

of holonomy

IA(O,O) := l im#(i i ,0)

generated by parallelly propagating ^(0,1,0), ^(0,1,1) round 70, 7X in the usual

way both exist and that

where k0, K1 are the lifts ez(0, u, 0), et(0, u. 1) of K0, K,1.

Thus it follows that

f1 f1 —
1 Jo Jo kh

must exist, where we express components in the frame ez. We want to show that,

under suitable conditions, 14(0,0) = 14(0,1), or in other words that e\ —> b\ as

u -+ 0.

The components in equation (5.5.2) are expressed in the frame et but we would

rather measure them in a frame parallelly propagated along curves terminating at
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5.5 Conservation of holononiy

the singularity. We therefore let e;((, 1,0) = e t ( 0 , l , 0 ) and use V to parallelly

p ropaga t e ^ ( 0 , 1 , 0 ) up X1(v) = p(0,.,v) to give e~2(0,l,v). parallelly propaga te

e ;(0. 1. v) round the closed loops %,iU(s = p(s1 u, v) to give e,(.s, 1, v), and parallelly

propagate e^s.l.v) along KV S(U) = ps,u,v) to give et(s, u,v). Thus e^s.u.v) is

parallel along the b-incomplete curvesKVS which terminate at the singularity (see

diagram 5.5.1).

Set

^(s,u,v) = i(s,u, v)et{s, u,v).

Now e2(0, l.v) = e^O.l.v) and so by :onditions (a)-(c) above and Theorem 5.4.4

(along with Proposition 5.4.6 and Lenma 5.4.7) we have that

lUs, v) := lim iHs, u, v)
1 u—*0 l

exists and is continuous in s—though we do not know whether it is continuous in

v. Now

e2(s, u, v) = aj(u, v)eJ(s, u.v = ai^u, v)(l~1)k(s. u. v)ek(s. u, v).

Hence expressing components in the fame er

fl f1

flj.f^s.u, >)X~k(s, u, v)Z'(s, u, v) dsdv

so by Proposition 2.1.2

[ £J — 5J < exp / / UJ (s.u,

\\X~k(s,u,v)\\didv-l (5.5.3)

where we recall that ea, ea, ea are tangnt to 5 = TSV and eA, e4, eA are tangent to

T = (TSvy.

154



5.5 Conservation of holonomy

Now

\\X'a(s,u.v)\\ = \\(l-1Y.(s,u,v)X£(s,u,v)\\ < j | ( / - 1 )^ ( s ,u , t ' ) | | j |A^(s ,7^7 ; ) j |

where X'k are the components of X in the frame e,:. Since each j v u(s) = p(s,u,v)

is pa ramet r i sed propor t ional to b-length we have from section 2.5

\\X£(s,u.v)\\ = l(u,v)

where each closed loop yv u has b-length l(u, v) measured in the frame ez.

Now we know that l(u,v) —>• 0 as u —> 0 (by the definition of the loop spaces

riKi(Sv)), but we do not know whether l(u,v) is bounded. We also know from

section 2.5 that there exist M(v),m(v) > 0 such that

\\li(s,u,v)<M(v)\\ \\(l-i)i(s,u,v)<m(v)\\

but again we do not know if M(v), m(y) are bounded. We also do not know whether

the b-length \{v) of each KV is bounded. Therefore in order to get e\ —* 6f as u —> 0,

we shall need to put bounds on a number of quantities.

W7e shall therefore say that the homotopy p is well behaved if, expressing com-

ponents in the frame et. there exist M1: M2, M3, M4,m4l Ms, M6 > 0 such that

(a) \\nabl^s,u,v)Z%s.u)v)\\<Ml

(b) \\p.aBi>{s,u,v)\\<M2

(c) \\Z*{s,u,v)\\<M3

(d) \ \ l \ { s , v ) \ \ < M4 a n d H ^ i ' M I I < m 4 w h e r e l{(s,v) := l i m _ 0 l{(s,u, v)

( e ) l(u,v)<M5

(f) X(v) < M6.

As u —> 0, the tubes pu(s, v) shrink to a curve on the singularity parametrised

by v. Since the singularity is normal to the Sv 2-surfaces, we expect Zh —> 0 as

u —+ 0. This is not enough however since QabC
D may diverge. This is the motivation
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5.5 Conservation of holonomy

for condition (a). Condition (b) is a bound on eight independent components of

the curvature. Condition (c) is a somewhat unsatisfactory bound, since it has

no immediate geometrical interpretation. We note that the components of the 2-

frame (eA) parallelly propagated along nv s may diverge in a reference 2-frame (e' )

which covers the singularity. This is dependent on the components LOC which, not

being a tensor, are hard to interpret. Conditions (d)-(f) place bounds on l{(s,v),

(l~x)i(s,v), l(u,v) and X(v).

Now we may relate condition (a) to the full space-time curvature. Referring

forward to equations (6.1.1) and (6.1.8)

and we note that there exists Mv > 0 such that J|i^!l^fc(s,ti, v)\\ < Mv. Now if there

exists M > 0 such that Mv < M we may rephrase condition (a) in terms of Slabc
d

and nabC°.

We may also relate condition (b) to the space-time curvature. Referring forward

to equation (6.1.3) and (6.1.4)

A
 be\9 GE^ AD 9 DE1^ AC) •

Thus we may rephrase condition (b) in terms of £laBcd and QAbCD provided that we

can similarly find a uniform bound for both K^^b and KLd
AB. Note that if the string

were regular part of the space-time, KLd —• 0 as u —» 0 would be sufficient for the

string to be totally geodesic.
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5.5 Conservation of holonorny

Now all the above components are measured in the frame ei parallelly propa-

gated with respect to uJ. Let e' be a frame parallelly propagated with respect to JJ

along the same curves as e,. Let

e,(s. u, v) = £J(s, u. v)e'.{s. u, v).

In order to obtain uniform bounds similar to (a)-(e) above when measuring com-

ponents in the frame e' it would be necessary to find bounds £0,^ > 0 such that

We claim that this is possible, if /\~H. KL can be uniformly bounded as described

above.

Lemma 5.5.1. If p is well behaved then 3N,n > 0 such that

Proof. Define

: [0 ,1] x[O,vo]-+M

by (see diagram 5.5.2)

p(0, l,4crr) 0 < a < ±

p ( O , l - ( l - u o ) 4 ( a - i ) , r ) \ < o < \

p(O,uo,r-4(a-i)r) \ < a < f

Thus each cf)T is a closed loop and 0T([0,1/4]) lies on X^v) = p(0,1, v), 0T([l /4,1/2])

lies on KT(U) = p{0,u,r), 0 T ( [ 1 / 2 , 3 / 4 ] ) lies on AU(i(u) = p(0,uo,-u), and 0 r([3/4, l])

lies on «;0(tt) = p(0, it, 0).
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5.5 Conservation of holonomy

- LTV

• U .

Diagram 5.5.2

Since ^(0, ito,i;o) is obtained by parallelly propagating e,(0,1, 0) along cf)vo from

a = 0 to a = 1/2, and ei(0,uo,t;o) is obtained by parallelly propagating e{(0,1,0)

along cj)Vo from a = 1 to a = 1/2, and

^(0,1,0) = ^(0,1,0)

it follows that the element of holonomy obtained by parallelly propagating e t(0,1, 0)

round <f)Vo from a = 0 to a = 1 is aJ
2(u0,v0). Thus by equation 2.5.2

,r)Y'(cT,r)d(TdT

where X = (^(c^), Y = 4>t(dT) and components are expressed in the frame e t(c,r)

obtained by parallelly propagating ^(0,1,0) round (f)T. Now
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5.5 Conservation of holonomy

and

(X.Y) =

0 < a < i
— 4

{-4(l-uo)Y,Z) \<ci<\

[-4rZ,(3-4a)Z) \ < a < \

{ (4(1 - uo)Y.,0) f < a < 1.

and hence

= PTexp f° /' "

Now for 1/4 < a < 1/2, it = 1 - 4(1 - uo)(cr - 1/4) and v = r so

= —4(1 — uQ)da dv = d

and hence

= ^ exp , u, '(0. ti, v) dudv

where components are measured in the frame e,. However e, coincides with e{ along

KV from KV(1) to KV(U0) for 0 < v < v0. Hence by Proposition 2.1.2, in the frame el

| |^K,i;0)| | <exp r I" \\Y^0,u,v)\\(Wnabl^0: u,v)Zb(0:u,v)\\
Jo Ji

+ \\naBli(O,u,v)\\\\ZB(O,u,v)\\)dudv + l

and parametrising KV by b-length measured with respect to et gives

\aJ(u0,vQ)\\ < exp
1 '

M2MZ dudv
/o JA(«)

where u measures b-length along KV and KV has b-length \(v). X(v) is bounded

hence

and similarly

for some N, n > 0.

Hence we have

< n

D
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5.5 Conservation of holonomy

Theorem 5.5.2. If p is well behaved then

^(0 ,0) = #(0 ,1) .

Proof. By applying Lemma 5.5.1 and conditions (a)-(e) above to equation 5.5.3 we

get e\ = 6j as desired. •

Corollary 5.5.3. Let KOl ~KX be lifts of K0, K1 in the adapted frame bundle L(S,T)

by u. If p is well behaved then the intrinsic holonomy groups obey

Proof. This follows by Theorem 5.5.2 and the fact that the structure group of

L(5,T)± is abelian. •

Corollary 5.5.4. Let k0, kx be lifts of K0, KX in LM by LU. If p is well behaved

then the extrinsic holonomy groups Hko(S0, V) and i?Si(51 ; V) are conjugate.

Proof. This follows from Theorem 5.4.11 and Corollary 5.5.3. •

Unlike in section 1.6, it does not follow from the conservation of holonomy

that the singularity is totally geodesic. In fact in section 6.3 we will present an

example of an idealised cosmic string which is not totally geodesic despite having

conserved holonomy, as well as examples of idealised cosmic strings which do not

have conserved holonomy.
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6.1 Equations of Gauss, Codazzi and Ricci

Chapter 6

A 2 + 2 singular formulation

6.1 Equations of Gauss, Codazzi and Ricci

Let (M,g) be a space-time. As in section 5.3. suppose that TXM = Sx Q Tx

Vx E M for a C2 choice of Sx, Tx such that Sx is spacelike, Tx is timelike, and

dim Sx = dimTj. = 2. Suppose that iSx _L Tx Vx G M. Unlike in section 5.3

however, we do not require Sx to be surface forming. Let (ez) be a C2 adapted basis

field.

Recall that we have projections

•T<(TtM)

so in particular

Vx G M, p,q

TT,, : 5 , Sx Tx Vx G M.

As before, given x G M, we use TTy, vr± to project the components of quantities

of geometrical interest onto Sx, Tx. In this way we obtain gW, gx, where g\\ is the

metric induced by g on Sx and g1- is the metric induced by g on Tx. Given the

Levi-Civita connection V of g we also obtain the projected connection V. Defining

Vze = -Luk.ek V,e, =

we recall that

nk —U!. . =

uh j = a, k = b

ujfA 3 = A , k = B

0 otherwise.
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6.1 Equations of Gauss, Codazzi and Ricd

The second fundamental forms KK K1- and associated second fundamental forms

.4'!, A1- are defined as before so that

ab ab AB AB aB aB Ab Ab

We have seen how. using equation (5.3.5), V can be reconstructed from a knowl-

edge of the projected connection V and K^, K1, AH, Ax. We will now show how

the curvature flj of V can be reconstructed from a knowledge of the curvature Ô

of V and KW, K1-, AW, AL using the Gauss-Codazzi-Ricci equations.

The Gauss-Codazzi-Ricci equations are usually given in a 3 + 1 form, where

they are expressed in terms of quantities defined with respect to a 3-dimensional

spacelike submanifold. In [Ch] the Gauss-Codazzi-Ricci equations are expressed

in terms of quantities denned with respect to an n-dimensional submanifold of an

m-dimensional manifold. In our case we give the Gauss-Codazzi-Ricci equations

for the two families of 2-dimensional tangent spaces {Sx} and {Tx}, where we recall

that {Sx}, {Tx} need not be surface forming. Unlike other approaches, we express

the Gauss and Ricci equations directly in terms of the projected connection.

We will use this 2+2 formulation in the next section to examine the behaviour of

the space-time curvature in the vicinity of an idealised cosmic string. This approach

should prove more natural than the 3 + 1 approach discussed in section 4.1.

Working in the adapted basis (ej , recall the equations (5.2.4a)

and (5.2.46)

A

W here we recall that £1 is the curvature of the connection VI! on the bundle L(S)

and fi is the curvature of the connection V 1 on the bundle L{T). We note that

rf = rf = o.
a A
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6.1 Equations of Gauss, Codazzi and Ricci

From (5.2.4a)

= nabc
d + ud

P A wf = nabc
d + Md

rK\\f MK
aoc aE be aoc aE be bE ac

By equation (5.3.4a). AWd
E = -gEFgdeKWF

ae so

Qabcd = Qabc
d - gEFgde(KWF

aoc abc 31,t J V ae

and hence

which is the Gauss equation for {5^.}. We note that if So is a 2-surface tangent to

Sx Vx G So, then fia6c
d is the curvature of the Levi-Civita connection of (S0,gW).

Similarly we obtain from (5.2.46)

VABCD = ^ABCD + 9hf(K±e
ACK^BD - K^BCK^AD) (6.1.2)

which is the Gauss equation for {Tx}. We note that if To is a 2-surface tangent to

Tx \fx 6 To, then QABC
D is the curvature of the Levi-Civita connection of {T0,g

L).

From (5.2.4a)

d T) d

and hence

Similarly we obtain from (5.2.46)
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6.1 Equations of Gauss, Codazzi and Ricci

However the geometrical significance of QaBcd and QAbCo ls n ° t immediately clear

and it is more helpful to calculate QaBc
d and VLAbC

D directly. From the second

Cartan equation

nabc
D = (d0JD)ab + (U? A Lo'k)ab = dauD. - dbUJD - C\UJD + LJD

LUJk; - UJ»UJk
aoc \ c / ao v fc c / ao a be ° ac ab ic ak be bk ac

where fev, eA = ck.eh. Now V has torsion Tk. — cok. — tuh. — ck_ — 0 so

O D f) , }D £) , ,D , ,e , ,D , yE i ,D _\_ , ,e , ,D j _ , ,E , ,D

be ac

+ LUK^ u)\K tu i f ?
be aE be ab ec ac be

O»KWE + cof KWD + uf K
bE ac ba ec be ae

f h , A i (6.1.5)
be ac [ab] Ec y '

which is the Codazzi equation for {>$:t.}. If Sx is surface forming at x £ M then at

this point KW^ = 0. KW^ j s sa[^ to measure the anholonomicity of Sx. Similarly

we obtain

(6.1.6)

which is the Codazzi equation for {Tx}. If Tx is surface forming at x G M then at

this point KLe,. „. — 0 and KL<rAtl, measures the anholonomicity of T .
\AB\ [An\

From (5.2.4a)

nABc
d = nABc

d + ujd
AE A UJE

BC

and hence

(6.1.7)
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6.1 Equations of Gauss, Codazzi and Rica

which is the Ricci equation for {Tx}. If To is a 2-surface tangent to Tx Vx e To

then QABc
d is the curvature of the connection induced by V on the bundle L(S\Ta).

Similarly we obtain from (5.2.46)

VabCD = VabCD + 9KM^cA^bD - A*1CA\\{D) (6.1.8)

which is the Ricci equation for {Sx}. If So is a 2-surface tangent to Sx Vx G So then

QabC
D is the curvature of the connection induced by V on the bundle L(T|S o) .

We recall that Q,abcd = ^l[ab][cd] = QCdab a n d ^[abC]d = Q- From these symmetries.

Qabcd, ^ABCD each account for one component of filjH; Qabc
D, SlABC

d each account

for four components of flijkl; and fia6CD, QABcd together account for one component

of Q^f.1, making for a total of eleven components. The remaining nine components

of Q,ljkl can be obtained from £laBcD. We note that

^•aBcD + ^-BcaD + '^caBD = 0 ^ ^caBD = ~~^aBcD + ^cBaD

so that in fact £labCD may be obtained from components of the form QaBcD- We also

recall that Qabcd = fyo6]M but that in general Qabcd ^ flcdab and Q[abc]d ̂  0.

We now calculate QaBcD from the second Cartan equation.

ac aB ic ak Be Bk ac

,D , ,e , ,D _j_ , ,e , ,D , ,E , ,D _i_ , ,E , ,D

ae Be aE Be Be ac BE ac

+uPAR uM cv AR
Be aE Be aB Ec ac Be

OJK +u% K^ +UJ% W + A n A W
ae BE ac Ba ec Be ae Ba Ec

A M
Ba Ec a

and hence

c + gU^sA^o + AW{BM'JD). (6.1.9)
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6.2 Curvature of an idealised cosmic string

The Ricci tensor R{j of V can be obtained from Q,ijk
l by

and so

where i?- = RJt. Similarly the Ricci tensor RtJ of V can be obtained from 0ijfe' by

7? — f) fc_f) e_|_r) £

and so

RaB
 = ^ a £ B -"-A 6 = ^Aefc6

where in general Rtj =fi RJ%. We note that if So is a 2-surface tangent to Sx \/x 6 50,

then i?ab is the Ricci tensor of the Levi-Civita connection of (So, gW). Similarly if To

is a 2-surface tangent to Tx \/x £ To, then i?AB is the Ricci tensor of the Levi-Civita

connection of (T^g-1).

Finally we note that although we have given the above equations in an adapted

basis, they are in fact all fully covariant if the correct projections are introduced,

so that for example K^b is replaced by g

6.2 Curvature of an idealised cosmic string

In the previous section we presented the Gauss-Codazzi-Ricci equations which

express the curvature of a space-time (M, g) in terms of the curvature of the

projected connection and the extrinsic curvatures of two normal families of 2-

dimensional tangent spaces. We now discuss the behaviour of these extrinsic curva-

tures and, using the Gauss-Codazzi-Ricci equations, the behaviour of the space-time

curvature near an idealised cosmic string, as formulated in section 4.2.
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6.2 Curvature of an idealised cosmic string

Let (M, g) be a space-time containing an idealised cosmic string U C M with

preferred spacelike 2-surfaces {5t_}. For each x £ U. let St = (TSt_)x and Tr =

(TSf,)-1. Let the Levi-Civita connection u> have curvature Qj and let the projected

connection uJ have curvature fi.. For each x £ U, let gll be the metric induced on

Sx and g± the metric induced on Tx.

For each x 6 U, let Al, A'^ be the extrinsic curvatures of Sx, Tx. Working in

an adapted frame, recall

Let K be a curve lying in a particular Stz and terminating at {r = 0}. If ui ~ TH

along K, then by Theorem 2.3.3, K will have cj-finite b-length if and only if it has

u7-finite b-length. We note that b-length measured along K in an adapted frame

parallelly propagated with respect to uJ will coincide with length measured with

respect to the intrinsic positive definite metric gW.

Because the connection difference a = UJ — ui satisfies

0 otherwise

it follows by Theorem 2.3.13 that CJ ~ UJ along K if K^b is C°-u;-quasi-regular (or

C°-u7-quasi-regular) along K, that is, if the components K^^ expressed in a frame

parallelly propagated along K with respect to u> (or ul) have C° limits (or in fact are

merely bounded).

By Lemma 5.4.2, UJ ~ u along K will also hold if Stz is regular with respect to

K, though this is a stronger condition. In particular if Stz is regular with respect to

K then K\\v will be bounded in an w-frame along K.
ab

We now give an interpretation of the extrinsic curvature KLd
AB of the normal

spaces Tx.
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6.2 Curvature of an idealised cosmic string

We saw in Corollary 1.6.6 that a good 2-dimensional quasi-regular singularity

may be considered to be totally geodesic. In section 4.1 we saw how a more general

type of singularity was considered in [UHIM] to be totally geodesic if a sequence

of timelike (or spacelike) curves normal to a foliation of 3-dimensional hyperfaces

had spacelike accelerations whose magnitude tended to zero as they approached

a timelike (or spacelike) intrinsic geodesic of the singularity. In particular this

occurred if the lapse function of the hyperfaces, essentially the normal metric, was

C2 in a rather artificial quasi-Cartesian coordinate system at r = 0. Now in our

2 + 2 approach, the 2-dimensional normal spaces {Tx} can be considered to become

tangent to the singularity as r —* 0, and therefore it would be more natural to

take the extrinsic curvatures KLd
AB of the normal spaces {Tx} and to consider the

limits of their components in a frame parallelly propagated onto the singularity

with respect to UJ.

We shall therefore say that an idealised cosmic string is weakly totally geodesic

at p £ Uo (where Uo occurs in the definition of an idealised cosmic string) if the

components K±d
AB —> 0 in an o;-frame as r —> 0 along any curve of finite b-length

terminating at p £ Uo and lying in a preferred spacelike 2-surface, and strongly

totally geodesic at p £ Uo if the components KLd
AB —> 0 in an w-frame as r —» 0

along any curve of finite b-length terminating at p £ Uo (but not necessarily lying

in a preferred spacelike 2-surface).

Certainly, if the string were a regular part of the space-time, the string would

be totally geodesic if and only if it were weakly totally geodesic, and it would be

weakly totally geodesic if and only if it were strongly totally geodesic. We note that

if the preferred spacelike 2-surfaces are unique, then so are the normal spaces {Tx}.

We will see in the next section an example of an idealised cosmic string for

which KLd
AB = 0 in an cu-frame (example 6.3.2) and an example of an idealised
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6.2 Curvature of an idealised cosmic string

cosmic string for which K±d
A -* co in an cu-frame (example 6.3.3 with n = 1). In

fact, in the first case the string is strongly totally geodesic.

On the other hand, all the examples in the next section have K^D bounded in
r ab

an oi-frame.

We now examine the curvature near an idealised cosmic string. Suppose that K

has a>-fmite b-length.

Consider equation (6.1.1) (the Gauss equation for {Sx})

Q — O +fli (J(\\E m\F _ K \ )

Qabcd is the curvature of the 2-space (Stz,gW). If K has cJ-finite b-length, it terminates

at a quasi-regular singularity of (St,,g^) and thus Qabcd will be C°-uJ-quasi-regular.

Now if K^D is C°-u;-quasi-regular then to ~ ZJ as discussed above (and K will indeed

have uJ-finite b-length). Thus K^° will be C°-aJ-quasi-regular and hence the com-

ponents £lahcd will also be C°-o7-quasi-regular and since to ̂  UJ, Qabcd will in fact be

C°-o;-quasi-regular. Since an w-frame will not in general be adapted to Stz, when

we write Qabcd we refer to the tensor

In other words, if K^D is C°-a;-quasi-regular then Qabcd, which represents one inde-

pendent component of the space-time curvature, will have a C° limit when measured

in a frame parallelly propagated along K with respect to LO.

Certainly if Stz is regular with respect to K then Qabcd will be C°-cj-quasi-regular

(or at least bounded in an w-frame).

Now consider equation (6.1.2) (the Gauss equation for {Tx})

^LABCD — *LABCD + 9"ef{n
 A C

n BD A BC A AD''

£1ABCD will be the curvature of gL if the normal spaces Tx are surface forming.
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6.2 Curvature of an idealised cosmic string

Recall that in the definition of an idealised cosmic string given in section 4.2,

there exists an isometry ib of (U, T, gL) into (U, f. g1-) where U C M, T = {Tx}xeMl

and Uo = U — U can be considered to be the string. The string has intrinsic metric

gL\un- In the coordinate chart

<f> : (t,z,r,9) H-+ (f)(t,z,r,9)

which occurs in the definition, liva.r_0 g
±^ = gL^\Uo- Now we require both g^\Uo

and g±\T>0 to be at least C2, however we do not require rimr_0 drg
±

fll/, limr^0 d
2gL ^v

to exist.

Nonetheless, if we choose a reference 2-frame (eA) on U in a C2 manner, ev-

erywhere tangent to T, even at r — 0, then expressing components in this frame,

limr^0 QABCD
 wiH coincide with the curvature of iU0lg

L\u0) (a^ least if the normal

spaces Tx are surface forming).

Let (eA) be a 2-frame tangent to the normal spaces Tx and parallelly propagated

along K with respect to To. The components of (eA) in the reference 2-frame (eA)

may not have well defined limits as r —> 0, since (eA) is not parallel along K. If

the components of (eA) in the reference 2-frame (eA) do have well defined limits as

r —> 0 (and maybe also if the normal spaces Tx are surface forming) then SIABCD
 w i ^

be C°-cU-quasi-regular. In this case, if KLd
AB is C°-cJ-quasi-regular, then by equation

(6.1.2), Q.ABCD
 w n l be C°-<U-quasi-regular, and if KW®b is C°-w-quasi-regular then as

before UJ ~ to and QABCD
 wiU be C°-cj-quasi-regular. Again, since an w-frame will

not in general be adapted to Stzl when we write QABCD
 w e refer to the tensor

O •— n-i-i n^-i nJ-k n^1 O
^ABCD • - 9 A3 B9 C9 D^ijkl-

£lABCD represents one independent component of the space-time curvature. The

examples in the next section all have Qabcd, QABCD
 z e r o o r bounded in an w-frame.
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6.2 Curvature of an idealised cosmic string

Now consider the Ricci equation (6.1.8) for {Sx}

9 hnn = Q ,nn + oil A 4"e 411/ - 4il 4"/ )
^-abCD iLabCD ' U ef\'^- aC bD bC aD > '

We used this equation in Lemma 5.4.7 on the way to proving Theorem 5.4.11.

namely that if Stz is regular with respect to K, then the intrinsic and extrinsic

holonomy groups H-(S, V), Hk(S, V) exist for lifts ~K, k of K obtained by uJ, UJ. In

this case we recall that, since St, is regular with respect to K, QabCD can be bounded

by an integrable function and K^D
L can be bounded bv a constant, in a wav made

J ° ab

precise in section 5.4.

In other words, QabCD may diverge in an tj-frame along K but, in order for the

intrinsic and extrinsic holonomy groups to exist, cannot diverge too quickly (in a

way made precise in section 5.4).

The Ricci equation (6.1.7) for {Tx} gives

but of course SlABcd =

^abCDt ^ABcd together represent only one independent component of the space-

time curvature.

The examples in the next section all in fact have flabCD z e r o o r bounded in an

cj-frame.

Now consider equations (6.1.3) and (6.1.4)

o — Q + KLe fall K^E — a|!

:'LaBcd ~" " a B c d ' XV BE^" ce ad "

^LAbCD — *LAbCD + A
 be\9 CBK

 AD ~ 9 DE1^ AC)'

Recall that the intrinsic and extrinsic holonomy groups, if they exist, are conserved

along the singularity if QaBcd, £lAbCD a r e bounded in a cJ-frame along curves of

cJ-fmite b-length which lie in the preferred spacelike 2-surfaces and terminate at
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6.2 Curvature of an idealised cosmic string

r = 0 (along with some other geometrical constraints). Again, if K'^b, KLd have

bounded components in an ^'-frame along K. then u; ~ uJ along K and QaBcd. QAbco

will have bounded components both in a u7-frame and in an u;-frame along K.

Together. QaBcd. QAbC.D refer to eight independent components of the space-time

curvature.

These components may also be obtained from the Codazzi equations (6.1.5) and

(6.1.6) for {Sx} and {Tx}

Q

L d _ O T S ^ e A \ \ d

Hence fiafcc
£l will be C°-u-'-quasi-regular along K if K!lf6 is C^-w-quasi-regular (so in

particular u> ~ UJ and i^"D, will be C^-uJ-quasi-regular. VQJ-("IÎ  will be C°-o7-quasi-

regularand hence C-w-quasi-regular), and K-1^ is C°-cj-quasi-regular. Similarly

flABC
d will be C°-U/'-quasi-regular along K if K^^b is C°-w-quasi-regular (and hence

ui ~ aJ), and K±d is C^w-quasi-regular (and hence as before Kxd
AB will be C -̂aJ-

quasi-regular, VAK±d
BC will be C°-tU-quasi-regularand hence C0-^'-quasi-regular).

In particular if A'11^, K1-d
AB are C^tu-quasi-regular then £laBcd, QAbCD> ^aBcd?

QAbCD will all be C°-u;-quasi-regular, and the intrinsic and extrinsic holonomy

groups, if they exist, will be conserved along the singularity (subject to some addi-

tional geometrical constraints on the homotopy p defined in section 5.5).

We shall see that examples 6.3.2 and 6.3.3 have curvatures with components

of the form OoBcd = O(l / r) for non-constant 4̂ in which case their intrinsic and

extrinsic holonomy groups are not conserved.

Finally from equation (6.1.9)
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6.2 Curvature of an idealised cosmic string

which accounts for ten independent components of the space-time curvature, in-

cluding nabCD = nCDab.

Apart from f2a6CD, w e a a v e made no particular assumptions about these com-

ponents and they would appear to be free to diverge. We shall see that in example

6.3.2, these components are bounded in an cu-frame, but in example 6.3.3, some of

these components diverge as logr for n = 2 and (log r)/r for n = 1.

Now if K^bl K1-d
AB are C^-eu-quasi-regular along K, it follows as above that

u ~ to and VaA-L^c, VBAH^ are C°-u;-quasi-regular along K, and hence that QaBcD

is C°-u;-quasi-regular along K.

In fact, HQABCD '1S C0-^-quasi-regular, and K^®, K±d are C^-w-quasi-regular,

it follows that all components of the space-time curvature are C°-u;-quasi-regular,

and K in fact terminates at a quasi-regular singularity.

Finally we discuss the components of the Levi-Civita connection UJ of an ide-

alised cosmic string in an adapted frame. Let x £ U. UJC
L, LOC

IO are the Levi-Civita

connections of (5^,^11), (Tx,g
L) respectively, and exist uniquely by Theorem 5.2.5,

even if Sx, Tx are not surface forming (though in the case of an idealised cosmic

string, Sr is surface forming). toD. — K^D., ujd
n = A^d„ are the extrinsic curvatures

° ' x °' ab ab' a.B aB

of Sx and cjd = KLd , UJ1? = Axl] are the extrinsic curvatures of Tx. The only

components of to without an immediate geometrical interpretation are cu^B and ujd
Ab.

UJD is used to parallelly propagate vectors normal to Stz in directions tangent to

Stz. and for example determines the holonomy obtained by parallelly propagating

a normal 2-frame (eA) round a closed loop in Stz. In order to prove the existence

of the intrinsic and extrinsic holonomy groups in section 5.4, we avoided the use of

u^B and made use of the curvature QabCD instead. In fact we can use the second

Cartan equation to express £labCD in terms of >^

D f) , ,D Fl , ,D ~e , ,D \ , ,D , ,E , ,D , ,E

173



6.3 Examples

where the structure coefficients ck. are given bv [e,, e-1 = ck.e,.. Since SL is surface

forming, c^b = 0 and if Tx is surface forming, c'lAB = 0.

uid
Ab can be used to parallelly propagate vectors tangent to St, in directions

normal to Stz, and for example can be used to parallelly propagate a 2-frame (ea)

tangent to Stz along a curve "parallel" to the singularity. However we would not

expect (ea) to have a well defined parallel propagate along such a curve as r —> 0.

6.3 Examples

We now present some examples of idealised cosmic strings. Our first example

is the l^-cone

ds2 = -dt2 + dr2 + A2r2d92 + dz2 (6.3.1)

where (t,r,9,z) are cylindrical polar coordinates defined on M = R4 — {r = 0},

0 < 9 < 2TT, and A is a constant. The 4-cone has a good 2-dimensional timelike

quasi-regular singularity at r = 0 in the sense of chapter 1 and we may therefore

apply the theorems of section 1.6 to it. It is locally flat with curvature everywhere

zero.

We may also think of the 4-cone as an idealised cosmic string. The space-time

can be foliated by t = constant, z = constant spacelike 2-surfaces given in our

coordinate system by

Stz(.ry9) = {(i) r)^)z) I *i z constant}

ruled by space-time geodesies

Each Stz has induced metric

ds2 = dr2 + A2r2d92
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6.3 Examples

and thus each (Stz,gW) is a 2-cone with a good quasi-regular singularity at r = 0.

The singularity can be considered to be a timelike 2-surface with intrinsic metric

ds2 = -dt2 + dz2

and since gtT = gzr = 0, the Stz surfaces can be considered to be normal to the

singularity.

Nonetheless, we are more interested in idealised cosmic strings which have cur-

vature singularities and to which the theorems of section 1.6 cannot be applied.

Our second example is the dynamic cone. This has metric

ds2 = -dt2 + dr2 + A2(t, z)r2d62 + dz2 (6.3.2)

where as before (t, r, 9, z) are cylindrical polar coordinates defined on M = M4 — {r =

0} and 0 < 9 < 2TT. The dynamic cone is similar to the 4-cone except that the

angular deficit 2TT(1 — A) varies as a function of t and z. Unlike the 4-cone, which has

a quasi-regular singularity at r = 0, the dynamic cone has a curvature singularity

at r = 0 for non-constant A.

The dynamic cone space-time can be foliated by the same spacelike 2-surfaces

Siz(r,6) — {(t,r,9, z) \ t,z c o n s t a n t } .

Each Su has induced metric

ds2 = dr2 + A2r2d92

where A is constant on Stz. Thus each (Stz, gW) is a 2-cone with a good quasi-regular

singularity at r = 0. The singularity can be considered to be a timelike 2-surface

with intrinsic metric

ds2 = -dt2 + dz2

and since gtT = gZT = 0, the Stz surfaces can be considered to be normal to the

singularity.
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We now make a choice of adapted (pseudo-orthonormal) frame

(e?;) = (et,er,eg,ez) = (dt:dT, do,dz).

with respect to which the metric has components r\- = diag( —1, 1, 1, 1) and the

Levi-Civita connection has components

with all other components being zero. Now since Vere r = ul
r ez = 0 it follows that

the St. surfaces are ruled by space-time geodesies

Thus the dynamic cone satisfies all the conditions required of an idealised cosmic

string as given in section 4.2.

With respect to (ej the projected connection has components

with other components being zero.

Let K be a curve of cU-finite b-length lying in a particular Stz and terminating at

r = 0. We would like to examine the behaviour of certain tensors in frames parallelly

propagated along K, but the adapted frame (ez) is not necessarily parallel along K

with respect to either ui or UJ. However VCoeB = ^l
aBez — 0 where lower case indices

range over {r, 9} and upper case indices range over {t, z} and so (e4) = (e t,e,) is

parallel with respect to Zu along K. If (ej is an adapted a7-frame along K and
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it follows that l\ is a rotation about et, e, and is therefore bounded. In other words,

the adapted frame (e,) is related to an adapted frame parallelly propagated along

AC with respect to 7c by a bounded transformation.

We now examine the extrinsic curvatures KK K1- of the dvnamic cone. K^D =

JD
L and thus

ab
KKe = <e = {9tA)/A W* = u;. = -(^.4)/.4

with other components zero. Hence the components of if 11 in the frame (et) are

constant on any St, surface and therefore bounded by our above comments in any

cJ-frame along K. Since the connection difference a = to — to obeys

it follows by Theorem 2.3.13 that u ~ uJ along K and the components of i P will be

bounded in any aj-frame along K and K will in fact have ^'-finite b-length.

The tangent spaces T = (TStz)
x normal to the Stz 2-surfaces are surface form-

ing, being tangent to the timelike 2-surfaces given in our coordinate system by

Sr8(t, z) = {(£, r, 9, z) \r,9 c o n s t a n t } .

They have extrinsic curvature KL which with respect to (et) have components

KLd
AB = u)d

AB = 0. The dynamic cone is therefore (strongly) totally geodesic in the

sense of section 6.2. This is consistent with the fact that Ve 4eB = I-^1
AB&1 = 0 and

therefore the 2-frame (eA) — (et,e.) remains tangent to the ST0 2-surfaces under

parallel propagation by ui along any curve lying in an SrB 2-surface. We note also

that degl} = 0 which, if {r = 0} were a regular part of the space-time, would also

imply that {r = 0} was totally geodesic.

Let t0, z0 be constants and consider the 4-cone

ds2 = -dt2 + dr2 + A2(t0: zo)r
2d92 + dz2
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which coincides with the dynamic cone on the spacelike 2-surface Stii.u. We can

choose an adapted frame for this 4-cone

(e,:) = (et, er, eg,ez) = (dt, dr, — -<99, dz)
A{to,zo)

which coincides with (e;) on Stii.it. With respect to (ej the 4-cone has Levi-Civita

connection

from which it follows that eJ and a) also coincide on StnZi). Hence the two connections

generate the same holonomy on loops restricted to lie in SUiZii. Thus given a lift 7c of

K in the adapted frame bundle L(S,T) where S = TStz, T = (TStz)
x, the intrinsic

holonomy group defined in section 5.4 is given by

H-(St.,V) = {L E L1
+(4) \L acts on L(S) as a rotation through 27rn(l - A),

n e Z; and on L(T) as the identity}.

In other words, the elements of s-holonomy generated using the projected connection

on lassos restricted to lie in a particular Stz are rotations through multiples of

2TT(1 — A(t, z)) with the singularity as the axis.

We now examine the curvature of the dynamic cone. With respect to (ej the

Riemann tensor has components

nmg = -(d2
tA)/A nzgte = -(dzdtA)/A QzBze = -(d2

zA)/A

nt6re = -{dtA)/Ar nzSr0 = -(dzA)/Ar

with other independent components being zero. In particular

ntg/ = ttzer° = O{r-') dtA,d._A^Q-

Since the adapted frame (et) is related to a uJ-frame along K by a bounded transfor-

mation, and since to ~ LJ along K it follows by Proposition 2.3.7 that in an w-frame

along K some of the components of the form £laBcd obey

naBcd =
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where u measures b-length along K such that u — 0 as r —> 0. Hence {r = 0} is a

curvature singularity for non-constant A.

The Ricci tensor R- — Rlkj
k has components

Rtz = -(dzdtA)/A Rzz = -(d

R9B = {dtA)/A-{dzA)/A

Rtr = -(dtA)/Ar Rzr = -(dzA)/Ar

with other components being zero. Thus for non-constant A the space-time is not

vacuum and the Ricci tensor is singular. It can also be shown that for non-constant

A the Weyl tensor is also singular.

The loop space QK(St.) defined in section 5.4 is non-empty. In particular, it

contains the map

7 : (s, u) H-> (£, r = u, 9 = 2TTS, Z)

working in (£, r, 9, z) coordinates, where t. z are constant. The 2-surface Stz is

regular with respect to K, as we now show.

First of all we note that QabCD = 0. We also recall that the components K''^

of the extrinsic curvature of the Stz are bounded in an cj-frame along any curve

of w-finite b-length terminating at r = 0. In fact, since the components of KW are

constant in the adapted frame (ej , and (e{) is related to any adapted w-frame by a

rotation, it follows that we may find a uniform bound for K^ required for St: to be

regular with respect to each 7 £ Q,K(S). Therefore Stz is regular with respect to K.

We saw above that the intrinsic holonomy groups exist. Since Stz is regular

with respect to K. the existence of the intrinsic holonomy groups (though not the

fact that they act on L(T) as the identity for lifts of K in the adapted frame bundle

L(S,T)) and the extrinsic holonomy groups also follows from Theorem 5.4.11.

Nonetheless the most notable feature of the dynamic cone is that, for non-

constant A, the extrinsic holonomy is not conserved. It follows that given j0 G
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QKti(S0),
 ry1 G r2Ki(5x) which generate non-trivial elements of holonomy, we cannot

find a well behaved homotopy p from 70 to ry1. This is because there exist compo-

nents of the curvature of the form QaBcd for which in an cj-frame along curves of

uj-Hmte b-length lying in the spacelike 2-surfaces

where u measures b-length such that u —>• 0 as r —• 0. Hence condition (b) in the

definition of well behaved fails to be satisfied.

Our third example has metric

ds2 = -9?{r)dt2 + dr2 + A2(t, z)r2d62 + Q2(r)dz2 (6.3.3)

where as before (t, r, 9, z) are cylindrical polar coordinates denned on M = K.4 — {r =

0} and 0 < 9 < 2TT. This space-time can be foliated by the same spacelike 2-surfaces

Stz(r, 8) — {(£, r, 6, z) \ t,z c o n s t a n t }

where again the Stz surfaces have induced metric

ds2 = dr2 + A2r2d92.

Provided limr^0 Q(r) = 1, the singularity at {r = 0} can be considered to be a

timelike 2-surface with intrinsic metric

ds2 = -dt2 + dz2

and, since gtT = gzr = 0, normal to the Stz 2-surfaces.

We now let

fi2(r) = l + rn(logr) n = l,2

and choose an adapted frame

(e,) = (et, er, ee, ez) = (—dt, dr, dB, -dz).
\l A{t,z)r \l
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With respect to (e:) the Levi-Civita connection has components

I X l ) 1) H O ) 1)) + 1) utt

with other components zero.

As before VCi er = w*rer = 0 and so the 5 t , 2-surfaces are ruled by space-time

geodesies cpt9\r) = (t, r. 9, z). Thus this example satisfies the conditions required of

an idealised cosmic string.

The projected connection has components

with other components zero.

Let K be a curve of cJ-fmite b-length lying in a particular Stz and terminating

at r = 0. As before, because VeaeB = ^ B e , = 0, where again lower case indices

range over {r, 9} and upper case indices range over {t,z}, (eA) = (et,ez) is parallel

with respect to ZJ along K. Hence if (e2) is an adapted cJ-frame along K and

it follows that l{ is a rotation about et,ez and is therefore bounded. Hence the

adapted frame (ej is related to an adapted frame parallelly propagated along K

with respect to K by a bounded transformation.

We now examine the extrinsic curvatures KW, K±. The extrinsic curvature K.W

of the St, surfaces has components with respect to (et)

K^, = u>l, = -(dtA)/AQ K^gg = -(d3A)/AQ
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with other components zero. It follows that the components of A" 11 remain bounded

in a uT-frame along K and LU ~ uJ. Hence K has o;-finite b-length and the components

of AH I remain bounded in an cj-frame along K.

The tangent spaces normal to the Stz 2-surfaces have extrinsic curvature K1-

the components of which are

K \ i ( ( l ) ) K ^ ( ( \ ) )K\ u;t r ( n ( l o g r ) + 1 ) K [ z ^ r(n(\ogr) + 1)

with respect to (e j .

Now if n = 1 then KLr ,K±r_ —>• oo as r —•» 0 and hence the components of

K1- with respect to (er) diverge as r -> 0, and we therefore have an example of an

idealised cosmic string which cannot be said to be totally geodesic.

If on the other hand n = 2 then K±T
tVK±r_ —> 0 as r —> 0, and hence the

components of K1- with respect to an cj-frame tend to zero as r —> 0, and the

singularity is (weakly) totally geodesic.

Thus the extrinsic curvatures of the tangent spaces normal to the Stz 2-surfaces,

measured in a frame parallelly propagated towards the singularity with respect to

ui, diverge if n — 1 but tend to zero if n = 2. This arises because if n = 1, fi(r) has

a C° limit as r —> 0, but fails to have a C1 limit. If n = 2, f^(r) has both a C° and

a C1 limit as r —>• 0, but fails to have a C2 limit.

We now examine the Riemann tensor in the frame (e j . recalling that the trans-

formation between (et) and an w-frame remains bounded as r —- 0. If n = 2

fitrir ~ Slmg ~ logr fiZ7.zr ~ QzSze ~ - l o g r

with other independent components zero or bounded as r —> 0. Hence even if .4 = 1

this space-time is singular . If A is constant, then no component of the £ll]ki diverges
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faster than logr. where r measures b-length along the radial geodesies 0tg.(r). If .4

is not constant however, some components of Qljkl diverge as 1/r.

If n = 1, £ltetg — — QzOzo — (l°gr)/2T", whether or not A is constant, and in this

case we recall that the singularity is not totally geodesic.

We note that again, whether n = 1 or n = 2, QabCD = 0. Since the components

K^D, of the extrinsic curvature of the 5, are bounded in an ^-frame along anv
ab l~ o ^

curve of w-fmite b-length terminating at r = 0, it follows exactly as in the case of

the dynamic cone that we may find a uniform bound for K^ required for St, to be

regular with respect to each 7 6 QK(S) and therefore Stz is regular with respect to

K. Hence by Theorem 5.4.11, the intrinsic and extrinsic holonomy groups exist.

We now show that, as with the dynamic cone, the intrinsic holonomy groups

exist and, for lifts of K by UJ in the adapted frame bundle, consist of rotations

through multiples of 2TT(1 — A(t,z)) with the singularity as the axis.

Let t0, z0 be constants and consider the 4-cone

ds2 = -dt2 + dr2 + A2(t0, zo)r
2d92 + dz2

with adap ted frame

(e t) = ( e t , e r , e f l , e j = (dt,dr,— rda,dz)

A.{t0, Zo)

with respect to which the Levi-Civita connection is

On the StaZa 2-surface we have

1
e r = er ee = eg ez = —ez

Hence in the adapted frame (ej
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6.4 Block diagonalisation

and in fact Co and u7 coincide on SUt,n and the two connections generate the same

holonomy.

Again, for non-constant A the intrinsic and extrinsic holonomy groups are not

conserved along the singularity. For n = 2 the curvature has components of the

form flaBcd = Oij-1) and we will not be able to find well behaved homotopies

connecting lassos in different spacelike 2-surfaces.

For A = 1 we see that the intrinsic and extrinsic holonomy groups are conserved.

This holds even for n = 1 which is not totally geodesic. Thus we have an example

of a singularity which has conserved holonomy but which is not totally geodesic.

Hence, in the case of an idealised cosmic string, conservation of holonomy nei-

ther implies nor is implied by the string being totally geodesic.

The examples we have looked at might lead us to conjecture that an idealised

cosmic string whose curvature is weaker than l/r , where r measures b-length along

any curve of finite b-length terminating at the singularity, has conserved intrinsic

and extrinsic holonomies. However by Corollary 5.5.4, we in fact require curvature

components of the form QaBcd,flAbcD to be bounded in an u;-frame along curves

of cj-finite b-length terminating at r = 0 and lying in the preferred spacelike 2-

surfaces, in order for the intrinsic and extrinsic holonomies to be conserved. This

suggests that there may exist examples of idealised cosmic strings with curvature

weaker than l / r for which the intrinsic and extrinsic holonomies are not conserved.

6.4 Block diagonalisation

In this section we consider the following problem: given a 4-dimensional pseudo-

Riemannian manifold (M, g), we ask if it is possible to find a C°° atlas for M such
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6.4 Block diagonahsation

that in each chart (x1) = (x°, xl, x2, x3) the metric is block diagonal

<7oo 0oi 0 0 \

<7io 9n ° °

0 0 g22 g23

V 0 0 g32 g33j

where g02 = g03 = gl2 = gl3 = 0 and g20 = g21 = g30 - g31 = 0.

If (M, g) admits such an atlas, it has the very nice property that given x G M.

there exists a neighbourhood U of x which can be foliated by two orthogonal families

of 2-surfaces. Conversely, if a neighbourhood U of x £ M can be foliated by two

orthogonal families of 2-surfaces, we can choose coordinates (x°, xl) on one member

of one of the families and (x2,x3) on each member of the other family, giving

coordinates (xl) = (x°, x1, x2, x3) on U in which the metric is block diagonal.

Let (xl) be a coordinate system. The metric may not be block diagonal in this

coordinate system, however it may be possible find a change of coordinates yz =

if(xJ) such that in this new coordinate system, the metric is block diagonal. Such a

change of coordinates would set four independent components of the metric to zero.

Since M is 4-dimensional, y% = y%{xJ) involves four functions and it would therefore

seem likely, on function counting grounds, that such a change of coordinates is

possible.

Such a change of coordinates would eliminate some of the gauge freedom of

the metric. It would also provide a convenient coordinate system in which to do

calculations. In particular, the two orthogonal families of 2-surfaces provided by

this coordinate system would have well denned intrinsic geometries and it would

be possible to express the properties of (M, g) in terms of the intrinsic geometrical

properties of the 2-surfaces and their extrinsic curvatures.

Now a space-time which contains an idealised cosmic string as described in

section 4.2 has a preferred foliation {Stz} of spacelike 2-surfaces which are considered
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6.4 Block diagonalisation

to be normal to the singularity. In the definition we gave of an idealised cosmic

string, we required that the 5t_ 2-surfaces be ruled by radial space-time geodesies,

in the hope that this would make them unique. The 2-dimensional tangent spaces

{Tx} normal to the Stz 2-surfaces will not in general however be surface forming.

The question arises whether it would be possible to choose a different foliation

of spacelike 2-surfaces S' , which could also be considered to be normal to the

singularity, such that the tangent spaces normal to the spacelike 2-surfaces form a

foliation of timelike 2-surfaces S' . Given such a foliation it would be possible to

choose coordinates (xl) in which do,d1 were tangent to S'rg and d2,d3 were tangent

to S't . In this coordinate system, the metric would be block diagonal

where q-1 would be the metric induced on 5' and oil would be the metric induced

on 5;,.

This would be a very natural coordinate system in which to describe an idealised

cosmic string. Since the S' 2-surfaces have well defined intrinsic geometries and are

normal to the preferred spacelike 2-surfaces S'u, it may be more natural to define

the intrinsic geometry of the string as a suitably defined limit of these geometries.

We first consider a related problem.

Theorem 6.4.1. Let (M,g) be a smooth 3-dimensional Riemannian manifold.

Then there exists a C°° atlas for M such that in each chart the metric is diagonal

i.e.
n 0 0 \

9 = 0 g22 0 012 = 013 = <?23 = 0 .

V 0 0 g3j
It would be sufficient to prove that given a chart (V) = (a:1, x2, x3) in a neig]

bourhood of x0 6 M, there exists a change of coordinates y1' = if {xk) such that

dy1' dyJ'
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6.4 Block diagonalisation

Since this gives three differential equations in three functions (ySy2,^3) it is plau-

sible that a solution exists. However such a solution would not be unique: given

a solution (;</*') then (fl'(y*)) will also be a solution for any monotone functions

(f1. f2, / 3 ) . and it is in general difficult to prove existence theorems for differential

equations without a unique solution.

A proof of Theorem 6.4.1 is given in [DY] and we give a slightly simplified

version.

Proof of Theorem 6.4-1. Let {lil,'e.2l~e3) be an orthonormal frame of vector fields

in a neighbourhood of x0 (E M and let (to1 ,UJ2,uJ3) be the corresponding dual frame

of 1-forms. which will also be orthonormal. We want to find a coordinate system

(x1. x2. x3) in a neighbourhood of x0 such that (dxl. cK, dx3) are orthogonal (but

not necessarily orthonormal). Hence we want to find an orthonormal dual frame

(U1,UJ2,UJ3) such t h a t

^ = fldxl

for some coordinate system (a;1) and scalars f\ where we do not sum over the index

i. Now by Frobenius' theorem (see [DY])

CJ* = f*dxl < = > to1 A dco1 = 0

where again we do not sum over the index i. Hence we want to show that there

exists a unique solution to the three equations

where we suspend the summation convention on hatted indices. Setting UJ1 = alJJJ3

where aJ
2 G SO (3) we have

a}.uJJ A d(a}jUk) = 0

where we solve for a1.. Hence

a\uJJ A (d[a}kuJl A uJk + al
kdtok) — 0
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6.4 Block diagonalisation

where d,al := e ;(aj). Using the first Cartan equation

duT + a;1 A u>j = 0
j

we have
0 = duJ3 A (d^ZO1 Aw ' + al

kZol A Uk)

= a}lu3 A (<9,a?u;' A u7fc + aju;' A UJk ,ulm)
j v L k k ml '

= a1 (d,a\ + a1 LU™,)UJ3 AuJ1 AuJk

j v l k m hi'

where to\ = uJ) .Uk and UP, is a scalar. Hence
3 kj kj

d).dla*,. + di a] . 0 7 ™ = 0 . (6.4.1)
[j ' fc] m [j kl] v 7

We will show that these three quasi-linear first order partial differential equations

for a1, have a unique solution. We will require that at x0 € M, a\ = 6i i.e. (c^OL, =

(uJl)\xo. Certainly given a solution a1, of (6.4.1) we can set (uf)\Xn — (LJ1)\X().

Since a\ G 5O(3). a1 = exp(a') where a\ G L(5O(3)). Thus a\ will be a 3 x 3

antisymmetric matrix and a*, a j , a^ will parametrise a1. Hence a1 = 61. + a1 + . . . .

Since al.(x0) = 5l, near x0 a1 will be "small" and we linearise equation (6.4.1) in

terms of a1 to give

0 = <5.\(<9,O!* ) + lower order terms (6.4.2)

where the lower order terms contain no derivatives. In other words we have simply

omitted terms which would have made (6.4.2) non-linear. This gives

d2<y.\ — d3a>l = lower order terms

<93â  — dxa
2

3 = lower order terms

d^^ — 32o;J = lower order terms

which we rearrange to give

dxa
2

2 = lower order terms
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6.4 Block diayonalisation

d2
al = lower order terms

d3al = lower order terms

which is in diagonal hyperbolic form, which we define below (see also [DY]). Since the

linearisation of (6.4.1) is diagonal hyperbolic, it follows that there exists a smooth

solution to (6.4.1) (by Theorems 1.4 and 1.5 quoted in [DY] and Proposition 2.1

proved in [DY]). •

Let fc,n £ N. A vector u = (ux,..., uk) of functions u{ — ul(x1,. .. , xn) for

i = 1, . . . . A; is said to satisfy a first order partial differential equation in diagonal

hyperbolic form if

9XiUi + f{u^...,uk) = 0 i = l,...,n

for a smooth function / linear in u1,. . . , uk.

We now attempt to apply the same technique to prove that a 4-dimensional

Lorentzian metric can be block diagonalised. Let (M, g) be a space-time and let

xQ G M. Let u, v be a pair of 1-forms which span a 2-dimensional subspace N <

T* M. If u', v' are a pair of 1-forms which also span N then

u Av = fu' A v'

for some constant / . In particular if u,v and u',v' are both orthonormal then

u A v = u' A v'.

We therefore want to find a dual orthonormal basis (LJ1) and coordinates (x1) in

a neighbourhood of x0 such that to0, LJ1 span the same 2-space as dx°, dx1 and LU2, C<J3

span the same 2-space as dx2,dx3. This would ensure that the 2-space spanned by

dx°,dx1 is orthogonal to the 2-space spanned by dx2,dx3 and that the metric is

block diagonal. Thus we want

to1 A ujj = fdx1 A dx] i, j = 0,1 or 2. 3
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6.4 Block diagonalisation

f o r s o m e s c a l a r / ( w h i c h i s d i f f e r e n t f o r i,j = 0 . 1 a n d i.j — 2 , 3 ) . B y F r o b e n i u s '

t h e o r e m

3xl. f s u c h t h a t uol A to3 = fdx1 A dxi i,j = 0, 1 o r 2 , 3

< = > C / ( C J ' A J J ) ACJ^ = 0 i:j,k = 0 , 1 , 0 or 0, 1,1 or 2 , 3 , 2 or 2 , 3 , 3

and hence we wish to show tha t there exists a solution to the four equat ions

dco° A u° A ul = 0

do;1 A LU° A w1 = 0

which we write as

duS1 A ̂  A uP = 0 i. j = 0, 1 or 1, 0 or 2, 3 or 3, 2

where again we suspend the summation convention on hatted indices.

As before let (ej be an orthonormal frame of vector fields in a neighbourhood

of x0, let {to1) be the corresponding dual frame of 1-forms, and let u>1 = azcJJ where

a) ^ ^+(4)- Hence)

0 = d(a\u}k) A (a]UJl) A (& UJm)

= (dna\u)n AUJh + alUP1 A UJk UF) A (a]UJl) A (aJ UJm)

where as before we use the first Cartan equation duP + UP. A UJ1 = 0, UP. = ZZT ,cJfc

where UJl
k. is a scalar, and dna

l := e n ( a0 . Hence

(5na! + alU}p )ala] uTAcJ f cAaJ iAa7m = 0
v n k p kn' I m

and therefore

9[naJa"!aJ
ml + a'UP!, a)a], = 0 i , j = 0 ,1 or 1,0 or 2 , 3 or 3,2 (6.4.3)

[n k I m\ p [kn I m\ ' J ' ' ' ' V /
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which gives us four quasi-linear first order partial differential equations for a\. As

before we require that al.(x0) = 6i so that (u1)\T = (aJ')L .

Since a' £ ^1(4), a1 = exp(ai.) where a1 6 L(L^(4)) and

/ 0 a 5 7

a 0 a 6

(3 - a 0 c

T -^ - c o

where a, (3, 7, a, 6, c parametrise a1. As before a1 = 6i + a1 + . . . and we linearise

(6.4.3) in terms of a\ to give

6l8j d^a], + lower order terms (6.4.4)
[I m n k] v '

where again lower order terms contain no derivatives. This gives

d2a°3 — d3a° = lower order terms

d2ot\ — d3a
l = lower order terms

d0a
2

x — d-^a2 = lower order terms

<90â  — c^cr* = lower order terms

and hence

<927 — d3j3 = lower order terms

d2b — d3a = lower order terms

—doa — dli8 = lower order terms

—dQb — 9X7 = lower order terms.

Unfortunately these equations are not diagonal hyperbolic and the technique used

in the proof of Theorem 6.4.1 does not appear to work in this case.
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Now we note that there does not exist a unique solution for (UJ1) = (allUJ)

since u;0.^1 and -UI2..UJ3 are free to move in their corresponding co-planes. a\ has six

degrees of freedom, whereas we have only four equations. It may be for this reason

that the above method does not work. However

/ 0 a 0 0 \ /cosha sinh a 0 0 \

exp
a 0 0 0

0 0 0 c

\() 0 - c Oj

sinh a cosh a 0 0

0 0 cos c sin c

V 0 0 — sin c cose/

wThich are precisely the transformations which preserve LO° A cu1 and a;2 A co3. Curi-

ously, a, c are absent from the four linearised equations (6.4.4) which involve only

the four unknowns /?, 7, a. b.

An alternative approach is to work directly in terms of the 2-forms F = u;1 A u;J

since these characterise the 2-dimensional subspaces of T*M uniquely.

A 2-form F characterises a 2-dimensional subspace of T*M provided that it is

simple i.e. F = u A v for some 1-forms u, v. F is simple if and only if

F AF = 0. (6.4.5)

F will characterise a 2-dimensional timelike subspace of T*M if F = u A v for 1-

forms u, v such that g(u,u) = 1, e/(t>,t;) = —1 so in addition to equation (6.4.5) we

have

FA*F = *l (6.4.6)

where in an orthonormal frame *Fi: = ^eijklF
kl and (*l)ij-w = £Ijfc(. The 2-form *F

dual to F will characterise a 2-dimensional subspace of T*M if *F A *F = 0 and

*_F A f = - * 1 but these just give equations (6.4.5) and (6.4.6). It turns out that

*F is orthogonal to F.

Now in order for F, *F to be surface forming, Frobenius' theorem gives us

(*d * F) A F = 0

192

(6.4.:
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(*dF) A *F = 0 (6.4.8)

Thus we wish to show that there exists a solution to the four equations (6.4.5)-

(6.4.8).

Working in an orthonormal frame, equation (6.4.5) gives

and equation (6.4.6) gives

Choosing a timelike vector field Tl we define

1

and hence

Now the first Frobenius equation (6.4.7) may be written

div F A F = 0

or

J AF = 0

where J = div F. We now work with respect to the 3-geometry of the hypersurfaces

to which Tl is normal. Et, B1 are both tangent to the hypersurfaces and so we

represent them as 3-vectors E, B. We note that the hypersurfaces have positive

definite metric. We use ' to denote differentiation along T\ If we write J =

div F = (p.j) then in terms of E, B, p and j we have

pB + j x E = 0
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and hence

(V.E)B + (V x B - E) x E = 0 (6.4.9)

(V x B - E).B = 0. (6.4.10)

Similarly the second Frobenius equation (6.4.8) may be written

( V i ) l + ( V x i - 5 ) X j B = 0 (6.4.11)

(VxE-B).E = Q (6.4.12)

Equation (6.4.5) implies the constraint equation

E.B = 0 (6.4.13)

and equation (6.4.6) implies the constraint equation

B2-E2 = - 1 =» E2 - B2 = 1. (6.4.14)

Now we note that (6.4.10) + (6.4.12) gives

(V x B).B + (V x E).E = (J5.5)

so the condition that the constraint equation (6.4.13) propagates in the Tl direction

is that

(VxB).5 = -(Vx£)I (6.4.15)

Now let

E = Ee B = Bb

where e, b are unit 3-vectors. Then

V x B = (VB x b) + BV x b

so

J3.V x B - B2b.V x b
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and similarly

E.V x E = E2e.V x e

but by equation (6.4.14), E2 — B2 = 1 so we may write

E = cosh a -B = sinh a. (6.4.16)

Substituting into (6.4.15) gives

sinh" a b. V x 6 = — cosh a e. V X e*

and hence

f//(5X^}>V (6.4.17)/5
b.(V x 6)

Thus we can calculate E and 5 in terms of e'and b in such a way that the constraint

equations (6.4.13) and (6.4.14) are satisfied for all t. In particular we can choose

suitable initial data on the initial data hypersurface £ = 0 such that in at least in

some open neighbourhood

(-e.(V x e))/(6.(V x b)) > 0.

If we now look at equation (6.4.9) in terms of E, B, e, and b we get

V.E = VE.e + EV.e

E = Ee + E'e

and hence

)b + (V x b) x e) + 5 ( V £ . e ] 6 + £ ( V B x 6 ) x e - E e x e-E2ex e = 0.

Now e X e = 0 so if we divide by i?2 and take the cross p roduc t wi th e we get

(e*X e} X e = (e.e)e — (e.e)e = —e
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(since e.e — 1 => e.e = 0) and

B B 1

e = ((V.e> + (V x 6) x e) x e ((V£).e)6 x e - - ( ( V B x b) x e) x e.

Substituting for £? and B from equations (6.4.16) and (6.4.17) gives

e = a function of e*, 6 and spatial derivatives. (6.4.18)

Similarly from equation (6.4.11) we get

b = a function of e, b and spatial derivatives. (6.4.19)

Let k,n £ N. A vector u — (u1:... , uk) of functions uz = ui(t,x1,... ,xn)

for i = l,ldots,k is said to satisfy a first order partial differential equation of

Kovalevskaya type ([EgSh]) if

dtu = f(t, xx.. . . , xn, dXlu. . . . . dXn u)

with initial data

u ( 0 , x 1 , . . . , x n ) = 4>{xl: . . . , x n ) d t u ( Q , x 1 : . . . , x n ) = T b { x l . . . . . x n )

for a function / analytic in a neighbourhood of t = 0, x = 0 and functions <p. z/;

analytic in a neighbourhood of x = 0.

Equations (6.4.18) and (6.4.19) are first order partial differential equation of

Kovalevskaya type. It follows by the Cauchy-Kovalevskaya theorem ([EgSh]) that,

at least in an open neighbourhood of a point on the initial data hypersurface, we

can find a solution of these equations. Thus in this neighbourhood we can find e*and

b which together with equations (6.4.16) and (6.4.17) give E and B which satisfy

the Frobenius equations (6.4.9), (6.4.11) and the constraint equations (6.4.13) and

(6.4.14). This leaves equations (6.4.10) and (6.4.12) to be satisfied but

(6.4.9) x B % (6.4.10) (6.4.11) x E => (6.4.12)

and so in fact (6.4.10) and (6.4.12) are satisfied.

Hence, at least in the analytic case, we can find coordinates in a neighbourhood

of any x E M such that the metric has block diagonal form.
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Conclusions and further work

We have in this thesis been looking at certain types of weak singularity in

general relativity. These are singularities which can in some sense be said to be

mathematically tractable and can be given some kind of geometrical structure.

We started by reviewing quasi-regular singularities. In particular we saw how

2-dimensional timelike quasi-regular singularities may be used to model cosmic

strings. These are more usually modelled using weak field theory, in which they

may bend on small length scales and form small loops, however this approach ig-

nores the gravitational effects of the string, which for example give rise to its light

bending properties. On the other hand using methods of holonomy we saw how

2-dimensional timelike quasi-regular singularities may be considered to be totally

geodesic. In addition it may also be shown that cosmic strings modelled in this way

are really quite inflexible objects, unable to bend on length scales smaller than the

cosmological length scale.

WTe therefore introduced a class of curvature singularities, more general than

quasi-regular singularities, which have some of the properties we would expect of

a cosmic string. We called the members of this class idealised cosmic strings. A

space-time with such a singularity admits a foliation of spacelike 2-surfaces, each of

which has a quasi-regular singularity in the induced metric. The singularity itself

has a perfectly regular Lorentzian 2-metric, despite the fact that it is in general a

curvature singularity.

We introduced a 2 + 2 formalism suited to these idealised cosmic strings and

proceeded to analyse them using methods of holonomy. Now in general the singular
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holonomy groups will not exist for a curvature singularity, but we exhibited in sec-

tion 2.5 certain stringent conditions under which elements of singular holonomy will

exist for a curvature singularity. By using this along with a bound on the extrinsic

curvature of the spacelike 2-surfaces and an integral bound on certain components

of the curvature we were able to prove the existence of certain intrinsic and extrin-

sic holonomy groups, obtained by parallelly propagating frames with respect to the

projected and full connections on loops restricted to lie in the preferred spacelike 2-

surfaces. By placing further conditions on the curvature we were able to show when

these groups are conserved along the singularity. We also examined the behaviour

of the curvature near the singularity and showed that, even with these bounds, the

curvature can diverge.

There is clearly scope to tune the definition of an idealised cosmic string. We

chose the spacelike 2-surfaces to be ruled by radial geodesies so that they would

be regular if the string were a regular part of the space-time, and in the hope of

making them unique. It would be worth asking under what circumstances these

2-surfaces are in fact unique, and whether this matters. The frame approach we

used in chapters 5 and 6 to analyse these idealised cosmic strings sits uneasily with

the coordinate based definition we gave of an idealised cosmic string in chapter 4.

A better relationship could be found between the two.

Now we proved in section 6.4 that, at least in the analytic case, coordinates may

be found in the neighbourhood of a point in which the metric has block diagonal

form. It would be worth trying to prove this in the smooth case. The question also

arises whether a different foliation of spacelike 2-surfaces could be chosen normal to

an idealised cosmic string such that the normal tangent spaces were surface forming.

These normal surfaces would have a well defined intrinsic geometry and it would

seem more natural to describe the geometry of the singularity as a suitable limit
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of these geometries. We need to be careful, however, to define the properties of a

singularity purely in terms of the properties of the space-time itself.

The most obvious question to ask about idealised cosmic strings is whether

they can bend on small length scales. It may be the case that they can do so

while remaining totally geodesic. Because of the way they would need to deform

the geometry near the string to do this, it would be of interest to measure the

spanning area of a cosmic string loop and to investigate the volume element near

the singularity. It would also be worth trying to find more examples of idealised

cosmic strings, in particular ones which were not rotationally symmetric, and ones

which appeared to form closed loops. A spinning or rotating cosmic string loop

would have an interesting causal structure.

We also discussed conformal singularities in chapter 3, which are a different kind

of "weak" singularity. It would also be possible to consider singularities conformal

to quasi-regular singularities, or conformal to idealised cosmic strings.
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