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This thesis is concerned with certain types of weak singularity in general relativity
for which some geometrical concepts remain well defined at the singularity.

We review the use of holonomy to analvse quasi-regular singularities. We intro-
duce a class of curvature singularities which we call idealised cosmic strings which
may provide more general models for cosmic strings than quasi-regular singulari-
ties. We analyse these singularities using methods of holonomy and examine the
curvature and geometry in their neighbourhoods.

In order to do this we prove a number of results about the behaviour and
divergence of tensors in parallelly propagated frames and in pairs of frames related
by bounded transformations. Making use of path-ordered exponentials of curvature
we give conditions under which we prove that certain elements of holonomy exist
even for a curvature singularity. We then present a 2 + 2 formalism suited to
analysing idealised cosmic strings and show how the geometry of the full connection
is related to the geometry of a connection which we call the projected connection.
We also apply these results to prove the existence of certain intrinsic and extrinsic
holonomy groups which we define.

In addition we prove a number of results about conformal singularities and in
particular that the 4-cone is not conformally regular and we examine the effect of
conformal transformations on extrinsic curvature.

Finally we prove that coordinates may be found in which a metric has block

diagonal form.
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Introduction

[4

In this thesis we discuss certain “weak” singularities in general relativity from
a geometrical viewpoint.

General relativity is described in terms of the differential geometry of a pair
(M, g) where M is a manifold and ¢ is a Lorentzian metric. (M, g) are assumed
to be smooth, or at least C2, and g is assumed to be non-singular everywhere on
M. This makes it difficult to talk about a space-time being “singular” or “having
a singularity”.

The most familiar example of a singularity occurs in the Schwarzschild black
hole solution. Here the curvature experienced along any timelike curve which crosses
the event horizon grows unbounded within a finite proper time. We would like to say
that the endpoint of the curve has hit a “singularity”, a place perhaps of “infinite
curvature”, but of course this endpoint cannot be part of the manifold and it is
more profitable to think of a singularity as a boundary or “edge” to space-time.

It used to be thought that singularities were an artefact of spherical symmetry
and unlikely to occur in physically realistic situations, but theorems due to Penrose
and Hawking [HE] show that singularities are in fact a generic feature of space-time.
However these theorems do not give any information about the nature of these
singularities and it is thus important to investigate singularities more carefully.

The Schwarzschild singularity is an example of a “strong curvature singularity”
but there also exist certain types of “weak” singularity. For example a quasi-
regular singularity is one where all the components of the Riemann tensor have well
defined limits in any frame parallelly propagated along any C' curve ending at the

singularity. Thus an observer would not notice anything unusual as they approached



it. An intermediate singularity. on the other hand. is one for which there exists a
non-parallelly propagated frame along a curve ending at the singularity in which the
components of the Riemann tensor have well defined limits, despite the fact that in
a parallelly propagated frame the curvature is badly behaved. Thus in particular.
curvature scalars will be well behaved along such a curve.

So the behaviour of singularities can be subtle. Many examples of singularities
can be constructed with unusual behaviours and there is no entirely satisfactory
definition of a singularity. Maybe we would like to say that these weak singularities
are somehow unphysical, but we are still interested in a mathematical way of han-
dling them, maybe to “factor them out” of our investigations. However we shall see
how weak singularities, and quasi-regular ones in particular, can be used as models
for cosmic strings, thus here weak singularities have a direct physical interpretation.

Cosmic strings are thin tubes of “false vacuum” which arise from attempts to
apply Grand Unified Theories to the early universe. They are usually modelled as
2-dimensional timelike worldsheets using weak field theory on a fixed background.
These worldsheets turn out to be minimal and can bend on small length scales and
form closed loops. Because of this, they have been proposed as a mechanism for
the formation of structure and galaxies in the early universe.

However if we wish to take into account gravitational effects, it is necessary to
solve the full coupled equations for a cosmic string. In the axisymmetric case this

results in a space-time which outside the string (very nearly) has metric
ds* = —dt? + dr* + A?r?df* + dz? 0<6<2n A#1L

This metric is called the 4-cone and is the simplest example of a quasi-regular
singularity.
We start in chapter 1 by reviewing and consolidating the necessary background

material on singularities and quasi-regular singularities. We review how the 4-cone,



and more generally how elementary quasi-regular singularities may be considered to
be totally geodesic, despite not having a well defined normal metric. We review how
holonomy may be used to study singularities. A frame parallelly propagated round
a closed loop and back to its starting point undergoes a Lorentz transformation: if
the loop is homotopic to a point, then this transformation will tend to the identity
as the loop shrinks to a point, however if the loop encircles a singularity, then the
transformation will not in general tend to the identity, rather it will tend to an
element of a so-called singular holonomy group, and these groups will tell us about
the structure of the singularity.

We review how quasi-regular singularities give rise to well defined singular holon-
omy groups. In the case of 2-dimensional timelike singularities (of which the 4-cone
is an example), these groups will consist of rotations through multiples of a fixed
angle 2m(1 — A) with the singularity as axis and, subject to mild conditions, be
conserved along the singularity. This leads to the result that 2-dimensional quasi-
regular singularities may be considered to be totally geodesic.

It turns out that 2-dimensional timelike quasi-regular singularities may provide
suitable models for cosmic strings. In particular the conservation of holonomy leads
to these singularities having the light bending properties we would expect of a
cosmic string. The fact that they are totally geodesic means that they are minimal,
which is consistent with the weak field approach, however requiring them to be
totally geodesic is a stronger condition and suggests that cosmic strings are really
quite inflexible objects. It is of interest to see whether they can nonetheless bend
or form closed loops on small length scales. However a relationship can be derived
between the size of loops which can form and the curvature of the ambient space-
time [CEV]. In particular a cosmic string cannot bend on length scales smaller than

the cosmological length scale. This remains true even if we model cosmic strings,



not with quasi-regular singularities, but with a regular space-time where a region
of high curvature is confined to a narrow tube.

Now a construction of a circular cosmic string of arbitrarily small radius is given
in [FIU]. The construction is complicated and it is not obvious that, in a range of
cases, it gives rise to a curvature singularify. This is shown in [UHIM], which de-
scribes a class of curvature singularities such as this one which are proposed as
models for cosmic strings. The claim is made that singularities in this class are
nonetheless totally geodesic. However the definition of this class is not particu-
larly rigorous and a number of unnatural restrictive assumptions are made. We
analyse this discussion in section 4.1, where we correct a number of claims, make
the discussion more rigorous, and point out some results missing in the original
discussion.

We then go on in section 4.2 to define a new class of “weak” curvature singulari-
ties using a more natural set of assumptions, which we call idealised cosmic strings.
These are somehow worse than quasi-regular ones but remain weak enough so that
certain concepts of differential geometry remain well defined at these singularities.
The idea is that a space-time with such a singularity admits a preferred foliation of
spacelike 2-surfaces normal to the singularity, each of which has a quasi-regular sin-
gularity in the induced 2-metric, while the singularity itself has a perfectly regular
Lorentzian 2-metric. Thus the éingularity has a well defined dimension and intrinsic
geometry. Despite this, the singularity will in general be a curvature singularity.
Because of this, they may be able to bend on smaller length scales, though they
may have unexpected light bending properties. Some idealised cosmic strings may
however be considered to be totally geodesic.

In chapter 5 we describe a 242 formalism which is naturally suited to analysing

idealised cosmic strings. In particular, we introduce a new connection called the



projected connection which contains some, but not all, of the geometrical informa-
tion of the full space-time connection, and discuss the properties of the projected
connection and its curvature, and show how thev relate to the properties of the
full space-time connection and curvature. We then apply methods of holonomyv to
study idealised cosmic strings.

However the full holonomy groups will not in general exist for a curvature sin-
gularity. We therefore define the intrinsic holonomy groups, generated by parallelly
propagating frames along loops restricted to lie in the preferred spacelike 2-surfaces
with respect to the projected connection, and the extrinsic holonomy groups, gen-
erated by parallelly propagating frames along loops restricted to lie in the preferred
spacelike 2-surfaces with respect to the full connection. We exhibit conditions under
which the intrinsic holonomy groups exist and are conjugate to the extrinsic holon-
omy groups. Thus we use the projected connection as a means of proving results
about the full connection. We then exhibit conditions under which the intrinsic and
extrinsic holonomy groups are conserved along the singularity.

Chapter 2 is concerned with developing the tools necessary for this. In section
2.1, we show how the result of parallelly propagating a basis along a curve may be
expressed as a path-ordered exponential of an integral of the connection. In section
2.2 we define an w-frame to be a basis parallelly propagated along a curve with
respect to a connection w and prove a number of results about the behaviour of
tensors in such frames. In particular we show how the rate of divergence of a tensor
may be well defined, so that statements like “the curvature diverges as 1/r” make
sense. The point of this is that in order to examine the behaviour of the curvature
and other tensors along a curve terminating at a singularity, it is not meaningful to
examine the components of these tensors in a coordinate basis, since these are not

covariant. Rather it is necessary to examine the components of these tensors in a



basis parallelly propagated along the curve. We shall also need to express holonomy
in terms of path-ordered exponentials of integrals of the connection.

Now we wish to relate the behaviours of the projected and full connections.
Therefore in section 2.3, we define an equivalence relation on connections w ~ @
if the Lorentz transformation relating any' w-frame with any w-frame has a well
defined limit along a curve terminating at a singularity. We prove that if w ~ T,
then the components of a tensor will be bounded in an w-frame if and only if they
are bounded in a @-frame, and that if they diverge, then thev will diverge at the
same rate in both frames. We also prove that a curve has finite b-length with respect
to w if and only if it has finite b-length with respect to @. Now w, & are not tensors,
but the connection difference ¢ = T — w is a tensor and we demonstrate conditions
on ¢ which yield w ~ @.

In section 2.4, we use the first and second Cartan equations to examine the
difference in torsions and curvatures of two connections for which w ~ @.

In section 2.5, we show how holonomy may also be expressed as a path-ordered
exponential of an integral of the curvature and prove conditions under which certain
elements of holonomy exist even for a curvature singularity. We make use of this in
chapter 3 to prove the existence of the intrinsic holonomy groups.

In chapter 6, after introducing a form of the Gauss-Codazzi-Ricci equations
which relate the curvature of the projected connection with the curvature of the
full connection, we examine the various components of the curvature of an idealised
cosmic string and show which components converge and which diverge. We also
give conditions under which the string can be said to be totally geodesic and discuss
some consequences of this. In section 6.3 we give some examples of idealised cosmic
strings and examine their behaviours. In section 6.4 we give a proof that a metric

may be block diagonalised, that is, coordinates may be chosen such that the metric



has form

g- 0
g -
0 gl

where g+, gl are 2 X 2 metrics on orthogonal families of 2-surfaces. Such a coordinate
system would be a very natural one in which to discuss idealised cosmic strings.

Chapter 3 is concerned with a different kind of “weak” singularity. A conformal
singularity is one which may be removed by applyving a conformal transformation
g — Qg to a space-time (M, g). In other words, if (M, g) is singular but (14, Q2g)
is regular, (M, g) contains a conformal singularity, and this singularity can in some
sense be said to be mathematically tractable. However we wish to avoid mapping
the singularity away to infinity and we use the results of chapter 2 to examine
conditions under which curves b-incomplete with respect to g are mapped to curves
b-incomplete with respect to g and vice versa. We briefly discuss the consequences
of this for the Weyl Curvature Hypothesis.

In section 3.3 we describe the conformal Cartan connection, which is a con-
nection, not on a space-time, but on the bundle of conformal connections on a
space-time (M, g), which includes all the connections of all metrics conformally
related to g. We use this connection to prove that any vacuum space-time with
non-trivial singular holonomy cannot be conformally regular, and in particular that
the 4-cone cannot be conformally regular. We give a simpler proof of this in section

In section 3.5 we examine the effect of conformal transformations on the extrin-
sic curvatures of a submanifold. We prove that a conformal transformation of the
metric can always make the trace of the extrinsic curvature, known as the mean
curvature, zero, but that the trace free part of the extrinsic curvature, known as

the umbilical curvature, is a conformal invariant.



1.1 Singular incompleteness

Chapter 1

Singularities and quasi-regular singularities

1.1 Singular incompleteness

Let (M, g) be a space-time. Since, as we discussed in the introduction, singu-
larities are not part of the space-time, we have to describé their properties in terms
of the non-singular (M, g). We wish to examine whether (M, g) is “complete” or
whether it admits some kind of “singular boundary” ([ES], [HE] and [TCE}).

Suppose g is positive definite. Then if M is (path) connected, any two distinct
points a,b € M can be connected by a C* curve 7 : [0,1] — M such that v(0) = a
and v(1) = b, and any such curve will have a strictly positive and finite length.
Define d(a,b) to be the infimum of the lengths of all such curves from a to b. Then
(M,d) is a metric space. A sequence (z,) in M is a Cauchy sequence if given
£ >0 3N, such that

d(z,,z,) <

n?

VYn,m > N._.

(&)

A metric space is complete if all Cauchy sequences converge to points of the space.
If all Cauchy sequences in (M, g) converge to points of M, then (1/, g) is said to be
Cauchy complete or m-complete.

m-incompleteness corresponds to the idea that there are points missing from
M, or that there exists € > 0 and a C! parametrised curve v : [0,e) — M such
that any infinite sequence of points of /m v with parameter values accumulating at
¢ is Cauchy incomplete. In other words, v cannot be extended any further (in the
direction of increasing parameter value) despite having finite length. We think of ~

as having “reached the edge of the manifold”.



1.1 Singular incompleteness
This leads to the idea of geodesic completeness or g-completeness. A manifold
1s g-complete if all geodesics extend to infinite parameter value in both directions.
For a positive definite metric, g- and m-completeness are equivalent [KN], and
no curve of finite length can ever leave the manifold. For a metric of Lorentzian
signature, m-completeness does not make sense: there is no obvious. natural positive
definite metric on (M, g). g-completeness does however make sense. Recall that
an afﬁﬁely parametrised geodesic is a C? curve v : s = ~v(s) € M with u' =
dvi(s)/ds and w'V,ui = 0. u' remains one of timelike; null or spacelike for all
parameter values. If a geodesic cannot be extended beyond a finite parameter
value in a given direction then it is incomplete, and if it is incomplete in one affine
parameter, then it is incomplete in all affine parameters. For a timelike geodesic.
proper time is an affine parameter. Assuming our manifold to be time orientable, an
incomplete timelike geodesic can be future incomplete, past incomplete, or both.
A physical object travelling along such a geodesic will leave the manifold in a
finite proper time, or will have entered the manifold a finite proper time ago, or
both. Proper distance along spacelike geodesics is an affine parameter, but the
physical significance of spacelike geodesic incompleteness is less clear. Null geodesic
incompleteness is probably important given that light is assumed to travel along null
geodesics, however in this case the meaning of an affine parameter is not clear. It is
important though to distinguish between the three types of geodesic incompleteness
since examples can be constructed which exhibit any one of the three, but not the
other two.
g-completeness is not however enough for a Lorentzian manifold. Geroch [G]
gives an example of a space-time which is geodesically complete despite the existence
of inextendible curves of bounded acceleration on which only a finite proper time
elapses to the future of any point. In other words, a rocket-ship with only a finite

amount of fuel could traverse such a curve in finite proper time. Going further we



1.2 Singular boundaries

can call a space-time (M, g) timelike incomplete if there exists an inextendible C

timelike curve of bounded acceleration—not necessarily a geodesic—which is future
or past incomplete, i.e. which continues to the future or the past for a finite proper
time.

We can also consider b-completeness. Given a C? curve v+ s +— v(s) through

r € M, let (e;) be a basis for the tangent space T, at z. Now parallelly propagate

(e;) along v to give a basis for T

L5y for each s. We can express the tangent vector

V of v in terms of this basis

Then define u = [ (>, ViV)1/2dt. wu is called a generalised affine parameter (g.a.p.)
along v and depends on the point z and the frame (e;) at z. It can be shown that
if a curve cannot be extended beyond finite parameter value in one g.a.p., then this
holds for all g.a.p. and we say the curve is incomplete with respect to g.a.p. If there
are no such curves in M, then (M, g) is b-complete. We note that if v above is a
geodesic then u is an affine parameter, thus b-completeness implies g-completeness,
but the converse is not true unless g is positive definite.

b-completeness may be too strong a requirement and we could say that a space-
time is singularity free if it is non-spacelike b-complete. In particular timelike b-

completeness is equivalent to timelike completeness as defined above.

1.2 Singular boundaries

Corresponding to a space-time (M, g) which is incomplete with respect to some
definition, we have a class C of inextendible incomplete parametrised curves. We
will assume each curve starts at a point of M and so is inextendibly incomplete in
one direction only. We would like to know whether two curves v,,7, € C have the
same, or distinct, “singular endpoints”. So we want an equivalence relation ~ on

C such that v, ~ =, means =, and 7, end at the same “singular points” according

10



1.2 Singular boundaries
to some suitable definition. This allows us to form the quotient space C/ ~, the
elements of which are the distinct equivalence classes of ~, so each point of C/ ~
represents a different singular point. Then given a topology on C. we obtain a
topology for the singularity.

More generally we would like a map
9:M — M

where M is a manifold and § : M — Im# is a diffeomorphism such that the
closure of Im#@ in M is M, and such that OM = M — Im#@ somehow represents
the singularity. This makes clear the notion of a singular boundary. We emphasize
though, that given a topology on OM, the differential structure of M is highly
non-unique.

One construction is the b-boundary. Here we define a positive definite metric
e, not on (M, g), but on LM, the bundle of orthonormal frames on M. Above each
point z € M, there is a fibre 7-1(z) consisting of all orthonormal frames at z and

diffeomorphic to the Lorentz group L where
. LM — M.

It turns out that (LM, e) is m-complete if and only if (M, g) is b-complete ([ST1]).
We can extend 7 to a map 7 on LM, the Cauchy completion of LM. Then we can

form the quotient M of LM by %: M is a topological space with
M=MuUoM

where M is homeomorphic to M and dM is our singular boundary. However in
general M will not be Hausdorff and will not have the structure of a manifold. In
fact, if z € OM, 7 '(z) will be homeomorphic to the manifold L/G where G is

some subgroup of L defined up to conjugacy, and 7 '(z) may turn out to be just

11



1.3 Classification of singularities
one point. Moreover in the & = 1 (closed) Robinson-Walker space-time, points of
the past singularity are identified with points of the future singularity. It is also
hard to compute the b-boundary.

Another construction is the c-boundary. Here we take C to be all b-incomplete

timelike (or possibly non-spacelike) C? curves. Then
C=CTuUcC~

where C+ is the class of future incomplete curves and C- the class of past incomplete
curves. If v,,7v, € Ct then v, ~ v, <= I-(v,) = I (%) and if v;,7, € C~ then
Yo~ <= It(v,) = I7(v,) where I=(v) (or I+()) is the set of points in M
connected to any point of Im~ by a future (or past) oriented C* timelike curve.

This expresses the concept that for two curves to terminate at the same point
they must remain in causal contact until they reach their endpoints: the causal
structure is a very natural property of the space-time. As defined, the c-boundary
is equivalent to the construction of TIPs and TIFs given by [GKP], except that
their boundary also includes points at infinity.

There are problems, however, in how to identify points of C+/ ~ with points of
C~/ ~, and there may be cases where we would like to say v, ~ 7,, but where there

are obstructions preventing 7, and v, from being in causal contact.

1.3 Classification of singularities

We now consider what goes wrong at a singularity. An incomplete curve v € C
could arise simply because our manifold is not “big” enough, that is, it does not
contain a whole space-time. Suppose that the space-time (M, g) is C? and that there
exists a C7 isometry of (M, g) into a C7 space-time (M', g') for some ¢ < p such that
there exists an extension of 7 into the interior of A" — M. If the Riemann tensor of

(M, g") is C (where r < g—for example, if (M', g’) is C? then the Riemann tensor

12



1.3 Classification of singularities
will be C?) then (M',¢’) is a C" extension of (M, g) and ~ is said to terminate at
a C" reqular boundary point.

Alternatively, suppose we pick r € Im~ and a frame (e;) at r and parallelly
propagate this frame to the endpoint of v. Let v : s — ~v(s) and s < 5,. We can
then examine the behaviour of the Riemann tensor in this frame as s — S9. 7Y 18
said to terminate at a C” (or Cr~) curvature singularity if there is a component
of curvature R’ . which does not have a C° (or C°-) limit as s — s,. Here
; denotes covariant differentiation and u,,...,u, are vector fields defined along ~.
This expresses the idea that the curvature “blows up” at a curvature singularity,
and if this happens it follows that v cannot terminate at a C” regular boundary
point—otherwise the curvature would have a well behaved limit along .

We can also look at the behaviour of curvature scalars along v. A curvature
scalar is a polynomial scalar field constructed from g,; and R*', . . If such a
field does not have a C° (or C°~) limit as s — s, then ~ is said to terminate at a C”
(or Cr) scalar singularity. These are easier to test for, as scalars are the same in
all coordinate systems and we need not worry about parallelly propagating a frame
along v. A C7 scalar singularity will be a C" curvature singularity, but the converse
need not be true.

However it is possible for the curvature along v to be perfectly well behaved as
s — s, without v terminating at a regular boundary point. v is said to terminate at
a Cr (or C) quasi-regular singularity if all components R,;'.,, . have C° (or C°)
limits as s — s,. The idea is that locally nothing goes wrong with the curvature.
The singularity has a global nature and is somehow a topological “defect” of the
space-time.

The prototype quasi-regular singularity is the conical singularity

ds? = —dt? +dr? + A?2r2df* +dz? 0 < 0 < 27.

13



1.3 Classification of singularities

If we set § = Af we obtain
ds? = —dt2 +dr? + r2df? +dz? 0 <0 < 2rAd

which is locally isometric to Minkowski space. thus this metric is locallv flat and
its Riemann tensor vanishes. However for A = 1 there is a quasi-regular singularity
which we can think of as the r = 0 2-plane. In fact for A < 1 the metric can
be obtained by taking Minkowski space, removing the wedge 274 < § < 27, and
identifying the edges of this wedge. This metric is named by analogy with the
2-metric

ds? = dr? + A*r2df? 0 < 8 < 27

which is the metric of a cone. Again the metric has a quasi-regular singularity at
r = 0, which corresponds to the vertex of the cone. It has an angular deficit of
27(1 — A). The singularity causes geodesics to focus for A < 1, and to diverge for
A>1

The 4-cone is an example of a “primeval” quasi-regular singularity, in that
it has existed for all values of ¢. It is also, in ways to be made more precise
later, an example of a 2-dimensional timelike quasi-regular singularity. However,
examples can be constructed of timelike and spacelike quasi-regular singularities
with dimensions 0 to 3.

The fact that locally nothing goes wrong with a quasi-regular singularity can

be made precise with Clarke’s local extension theorem [CT73]:

Theorem 1.3.1. Let v be a C* curve ending at a C° (or C°) quasi-regular sin-
gularity. Then there exists an open U O Im such that (U, g;;) has a C° extension

(U', g') in which v has a regular endpoint.

The point is that we cannot extend the whole of (M, g), only an open neigh-

bourhood of 7.
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1.4 Elementary quasi-reqular singularities
For example, in the case of the 4-cone suppose 4 < 1 and consider the C! curve
v(u) = (ty,u,0,,2,) on which » — 0 as u — 0. Here M = R* — {r = 0} and the
coordinate # can be chosen so that 0 < 0, < 2. Then U ={z € M : 0 <8 < 27} is
an open neighbourhood of I'm ~ which is isometric to a portion of Minkowski space
{z € M :0 <8 < 2rA}, though M itself does not admit a regular (i.e. at least C?)
extension.
For future reference we note that the 4-cone can be expressed in Cartesian
coordinates x = rcosf, y = rsinf as

22+ A2y 2zy(1 — A2
(2 y)d2+ :Eyg )

(v + Arw?)
T - 7
1:2 -+ y2 .'L'." -+ y2

ds? = —dt* + —dy? + dz*.
Y2

CCZ

1.4 Elementary quasi-regular singularities

Given a space-time (M, g) which has a non-trivial group of isometries, there is
an easy method due to Ellis and Schmidt [ES] (see also [V87]) which generates a
space-time (M', ¢') with quasi-regular singularities. An elementary quasi-regular
singularity is a singularity generated in this way. Not all quasi-regular singularities
are elementary.

We proceed as follows. Take a non-trivial discrete subgroup G of the group of
isometries of (M, g) and form the fixed point set ' ={z € M : gz =z Vg e G}.
Delete F from M to give (M — F,g), on which G acts with no fixed points. Now
identify points of (M — F, g) related by G, thus forming the quotient space (M, ).
Finally we may need to delete some points of M to give (M, ¢') in order to make
the resulting space Hausdorff: in particular this may be necessary if a sequence of
points (z,) of M — F related by G have an accumulation point in the fixed point

set F. For example, consider Minkowski space in Cartesian coordinates

ds? = —dt? + dz? + dy® + d2?

15



1.4 Elementary quasi-reqular singularities

and the group of isometries

. {<i> . (Cosh(n/\) sinh(m\)) (t) ez

sinh(nA) cosh(n\) ) M

for some constant A # 0. The fixed point set is the 2-plane
F={t=0,z =0}
Now let S+, §- be the null 3-surfaces
St ={t=1z} S—={t=—z}.

Given z € S* (or S-), the set of points Gz lies entirely in S+ (or S—) and has an
accumulation point in F. The quotient space will not be Hausdorff. In order to
obtain a Hausdorff space we need to delete the points in the quotient space which
correspond to S+, S-.

We will be interested in cases where F is 2-dimensional and timelike in (M, g)
and G has one generator, an isometry f : M — M such that f+g = g. It is helpful
to insert an additional step in the above procedure. Given (M — F, g) we pass to the
universal covering space (M, §), lift f to f : M — M, and then form the quotient
space (M, §) by identifying points of (M, §) related by f. We may still need to
delete points of M to give (M',g'). However the lift of f to f is not unique in that
there will exist a family {f,} of isometries of (M,§), each one of which projects
down to f, and we can use any one of the {f,} to give (M, §), each one in general
giving a different quotient space.

For example, in the case of the 4-cone, we start with Minkowski space
ds? = —dt? + dr? + r2df* +dz* 0<60 < 2m.

We then remove the r = 0 2-plane and unwrap the resulting space-time to get its
universal covering space: this has the same metric but now —oo < # < co. Any
isometry

f:0—0+«
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1.4 Elementary quasi-reqular singularities
acts on this space with no fixed points and will project down to an isometry of
(M, g) with fixed point set {r = 0}. The space (M'.g') will have a quasi-regular
singularity unless o = £27. In particular o = 2k for k € Z — {—1.1} will result in
a so-called “covering space singularity”, although the corresponding f is the identity
on (M, g).

An important property of the fixed point set £ of an isometry f of a space-time
(M, g) is that it is a totally geodesic submanifold of M. Given z € M and v € T, M,
construct the unique affinely parametrised geodesic v, (s)-in M such that v,(0) =z
and +, has tangent u at z. This will exist for s € [0,¢) for some ¢ > 0 where =
depends on z and u. Then a submanifold S of M is totally geodesic if given z € S
and u € T, S, Je > 0 such that v,(s) € S Vs € [0,£). In other words, a geodesic
of M initially tangent to S will remain in S.

If S is non-null (as defined in section 3.5), given z € S and u € T, S we can also
construct ¥,(s) as above, except that we choose 7,(s) to be a geodesic of S (using

the metric induced on S) rather than of M. ~

i

(s) and 7,(s) will always coincide if
S is totally geodesic.

Given the isometry f: M — M, we define its derivation at a point x € M by

D,f:T,M =T yM:uw %f(“/u(s))
5=0

In other words, given z € M and u € T, M, then f will map a C* curve through z
with tangent u at z to a C* curve through f(z) with tangent D, f(u) at f(z).

Now let 2 € F so f(z) = z and define DF = {u € T,M : D, f(u) = u}, the
fixed point set of the derived map.

From [V87] we have (though we present a slightly simplified version of the proof)



1.4 Elementary quasi-reqular singularities

Theorem 1.4.1. DF =T,F and F is totally geodesic.

Proof. Suppose u € T, F and let x,(s) be some curve in F' through z with tangent
wat z. This lies in F'so f(x,(s)) = x,(s). The tangent of x,(s) at z is mapped to
itself. Hence D, f(u) =w and u € DF.

Conversely suppose u € DF and consider v,(s). f(7.(3)) = 7p_sw(5) = 7.(5)
since f is an isometry and maps geodesics to geodesics. Hence v,(s) lies in F' and
we T, F. Hence DF =T, F.

Now if z € F and u € T,F, by the above ~,(s) lies in F and hence F is totally
geodesic. O

For x € F', the tangent space 1), M becomes degenerate when we identify points
under f. Tangent directions of 7, M — DF become identified, which could not
happen if z were a regular point of the new space-time. Somehow there are “not
enough directions” at z. However T, F' remains well defined and thus we can regard
F as totally geodesic even after making the identifications. In this sense, elementary
quasi-regular singularities are totally geodesic.

We shall say a space-time (M, §) has a locally elementary quasi-regular singular-
ity if it can be expressed as § = ¢+ ¢ where (M, g) has an elementary quasi-regular
singularity and, for every C* curve v of finite b-length terminating at the elemen-
tary quasi-regular singularity, given an open UU D Im~ such that (U, g;;) has an
extension (U7, ¢') in which v has a regular endpoint € U’, and given a coordinate

patch V' 2 z, then in V
€; =0, gy =0, g;u—0 as U — U

where u is b-length measured along v with supremum u,. In particular if g is the

4-cone we shall call (M, §) locally conical.
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1.5 Cosmac strings
It can be shown that a locally elementary quasi-regular singularity is still quasi-
regular, though it may not be elementary. Not all quasi-regular singularities are

necessarily locally elementary.

1.5 Cosmic strings

Cosmic strings are objects which arise in a natural way in attempts to apply
Grand Unified Theories to the early universe ([V92] and references therein, [I}). Such
attempts are tentative but they suggest that the spontaneous symmetry breaking
of a gauge field may result in topologically trapped regioﬁs of false vacuum. Specif-
ically, as the universe cools below a critical temperature Ty, the potential V(o)
associated with a gauge field ¢ may develop more than one minimum. ¢ will gener-
ally assume one of these minima at each point, however causally disjoint regions of
space may settle into different minima. Boundaries between these regions may be
unable to assume a minimum value and will form narrow regions of false vacuum,
or “topological defects” of the gauge field. 2-dimensional defects are called cosmic
strings. They would be very thin objects, with almost all the field confined to a
tube about 103 Planck units across. Though there is no observational evidence for
their existence, they should have observational consequences such as gravitational
lensing and they may also provide a mechanism for the formation of galaxies and
other large scale structure in the early universe.

If we wish to study cosmic strings in general relativity, one approach is to look
at weak field theory on a fixed background (M, ¢) and to represent a thin cosmic
string by a 2-dimensional worldsheet S. Given z, € S, we can find a coordinate
patch U of S such that z, € U and a coordinate patch V' of M such that /' C V. Let
U have coordinates (u,v) and let the corresponding coordinates in V' be (z*(u,v)).

It turns out that the behaviour of U is given by the Nambu action

:—QTN// ——F”F /2 dudv
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1.5 Cosmic strings

where £ 1s the linear density of the string and

. dzidxy  dz’dxt

L VU S

T du dv du dv’

If Xt =dx'/du, YJ =dz//dv then (X! Y7) is a basis of TS for each z € U and

1 1 o o
SFIFy = 500, (XY = X0V (XHY = XIY)
= g(X, X)g(Y.Y) — g(X.Y)g(X,Y)

which is the determinant of the metric induced on S by restricting g to S. Thus

|
A ://(——FifF,)l/‘z dudy
v 2 !

measures the surface area of U. Requiring [ to be extremal for all z, € S gives the
condition that S must be a minimal surface in the space-time [Ch]. Also S can be

given energy-momentum tensor densities 77 = T/+/—g
To0 =T33 = 2mué,

where J, and J, are tangent to S and ¢, is a 2-dimensional delta function with
support on S. We require V, 7% = 0 but this merely gives the condition that S
should be minimal again.

However this approach ignores the gravitational effects of the string. We cannot,
though, necessarily expect to solve Einstein’s equations for a delta function valued
energy-momentum tensor. Solving the full coupled equations for the metric and
gauge field in the axisymmetric case results in a space-time which is (very nearly)

locally flat and conical outside the string. Thus the 4-cone
ds® = —dt? + dr? + A’r2df* + dz* where A = 1/(1 + 4u)

can be used as an idealised model of a thin cosmic string. For a real string 1 — A =

10-5, where we recall that the 4-cone has angular deficit 27(1 — A).
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1.5 Cosmac strings

The 4-cone can be regarded as being the limit of a sequence of space-times with
a source consisting of stressed filaments lying along a tube parallel to the z-axis. In
the limit that the diameter of the tube tends to zero, the energy—moméntum tensor
becomes 7% = 7,3 = 27pud, as above. However there appear to be problems with
trying to model singularities with distributional valued curvature and in taking a
singular space-time to be the limit of non-singular ones ([GT}]).

We will show later that 2-dimensional timelike quasi-regular singularities may
provide suitable idealised models of cosmic strings in a curved space-time. In par-
ticular, they can be given the same energy-momentum tensor as the 4-cone. We
will also show that they are totally geodesic. This implies that they are minimal
which is consistent with the Nambu action. Requiring them to be totally geodesic
is a stronger condition and suggests that cosmic strings are really quite inflexible
objects. It is of interest to see whether they can nonetheless bend or form closed
loops on small length scales. However a relationship can be derived between the
size of loops which can form and the curvature of the ambient space-time [CEV].
In particular a cosmic string cannot bend on length scales smaller than the cosmo-
logical length scale. This remains true even if we model cosmic strings, not with
quasi-regular singularities, but with a regular space-time where a region of high
curvature is confined to a narrow tube.

One way out of this would be to try to find a class of “weak” curvature sin-
gularities, somehow worse than quasi-regular ones but which remain weak enough
to have nice properties, to model cosmic strings. We propose to describe such a
class. These singularities may still be totally geodesic, though they may appear
to bend on small length scales. In fact it could be said that cosmic strings never
bend: they only bend the space around them. In particular we note a construction

of a circular cosmic string given in [FIU] which turns out, in a range of cases, to
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1.6 Holonomy of quasi-reqular singularities
be a totally geodesic curvature singularity, as shown—though perhaps not entirely
satisfactorily—in [UHIM].

We note that there exist metrics describing two cosmic strings moving relative
to each other, as well as metrics describing an arbitrary number of non-parallel
cosmic strings moving relative to each other [LG]. A metric describing a spinning
cosmic string

ds® = —(dt +4Jdh)* + dr? + A*r2df? + dz?,

where J is a constant, is given in [M]. Like the conical metric, this metric describes
a vacuum space-time with a quasi-regular singularity at r = 0. An interesting
feature for J # 0 is the presence of closed timelike curves. There also exist metrics
describing global cosmic strings, which arise from the breaking of a global gauge

symmetry, and superconducting cosmic strings [R].

1.6 Holonomy of quasi-regular singularities

Let (M, g) be a space-time and let € M. A frame at z is a basis (e;) of
T,M. 1t is pseudo-orthonormal if g(e,, e;) = n,; where n,, = diag(—1,1,1,1). In the
following we will take all frames to be oriented, time-oriented pseudo-orthonormal
frames.

Let v be a C* curve
v:0,1] = M v(0) ==z

and let (e;) be a frame at x. Define ¢,(s) by parallelly propagating each e, along
to v(s). Then (e,(s)) will still be pseudo-orthonormal because parallel propagation
preserves the inner product. In particular, if v(0) = (1) then v is a closed loop
and (e;(0)) and (e;(1)) will be defined at the same point z € M but will in general

be different. There will be a Lorentz transformation L? such that

e,(1) = Lie;(0).
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1.6 Holonomy of quasi-reqular singularities
L} is called an element of holonomy generated by the closed loop v ([V92] and
[V90], see also [N]).

More generally we consider the frame bundle (LM, 7) where
T LM — M

and each fibre 7-!(z) consists of all (oriented time-oriented pseudo-orthonormal)
frames at z. The oriented, time-oriented Lorentz group L7 acts on each fibre
transitively and freely (the identity is the only element of L which fixes any point
of 7=1(z) ) and in fact each fibre is homeomorphic to LT . This makes LM a principal
fibre bundle.

Given the closed loop v and a frame (e,) at v(0) we can lift v to a curve 7 in
LM such that

¥:[0,1] = LM s> (v(s), (e;(s)))

where e,(s) is obtained by parallelly propagating e, round v to v(s). % is called a
horizontal lift of . Thus 7(0) and ¥(1) are points on the same fibre related by some
g € LT. If v is homotopic to z, then as v shrinks to z, g will tend to the identity.

Holonomy is a useful tool in the study of singularities. Loosely speaking, as
a loop encircling a singularity shrinks to a point on the singularity, the holonomy
generated will not in general tend to the identity, rather it will tend to an element
of a so-called singular holonomy group, and these groups will tell us about the
structure of the singularity.

Let x : (0,1] — M be a C* curve of finite b-length terminating at a quasi-regular
singularity. Pick a frame (e,;) at (1) and lift s to give & : (0,1] — LM by parallelly
propagating (e;) along x. Define the loop space €2, of k to be the set of all C'! maps
of the form (see diagram 1.6.1) v : [0,1] x (0,1] — M : (s,u) = (s, u) = 7,(s) such

that

(a) ¥(0,u) = v(1,u) = x(u)
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1.6 Holonomy of quasi-reqular singularities
(b) the b-length of v,, measured in the frame %(u) parallelly propagated round
Y. — Oasu— 0.
We call the elements of Q) lassos. If we lift v, to 7, by parallelly propagating
R(u) round ~,, (b) is equivalent to
(b)" the b-length of ¥, I(7,) — 0 asu — 0

which is independent of the initial choice of frame (e;). 7,(0) and 7,(1) are frames

defined at the same point of M but will in general be different so for some L(7,) € Lt

Diagram 1.6.1

We will say that 7 satisfies the area condition if the area of 7([0, 1], [u,, u,]) — 0

as u,, u,; — 0 where we measure area with respect to the positive definite metric on

LM used to construct the b-boundary.

The following theorem is quoted in [V90] and [V92] without the area condition.
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1.6 Holonomy of quasi-regular singularities
Theorem 1.6.1. If 7 satisfies the area condition then L(7,) tends to some well

defined limit L(7) as u — 0.

Suppose that ¥ satisfies the area condition. Note that the b-distance between
7.(0) and 7,(1) tends to zero and so 7,(0) and ¥ (1) are in fact tending to the same
point p on the b-boundary LM — LM, tho;lgh L(%) need not be the identity. The
point is, L] does not in general act freely on T~'(z), where z = T(p), and p will
be a fixed point of L(¥). The subgroup of elements of L1 which fix p is called the
isotropy subgroup G, of p. In fact ¥~'(z) is homeomorphic to the manifold LL/GP
where G, is defined up to conjugacy. Note that G, need not be a normal subgroup
of LT.

If the area condition is satisfied for a particular lift of + obtained from a hori-
zontal lift of x then it will be satisfied for all lifts of v obtained from horizontal lifts
of k. We therefore let

Q2 = {v € Q, | lifts of v obtained from horizontal lifts of
satsify the area condition}.
There is a natural group structure on §2,.. Given v,6 € Q,_ let
6,(25) 0<s<?
(v*6)uls) = {
<s <1

v.(25 = 1)

[ SR

We claim that Q4 is non-empty and a subgroup of 2. Let 7,6 € Q% Given

a frame (e,) at x(0) we see that L(v*8) = L(v)L(§). Thus the set of Lorentz
transformations generated by Q4 and a frame (e,) at x(0) form a group Hx, called
the singular or s-holonomy group. If we start with a different frame (e!) = (Lie;)
then Ho = L-'H-L.

From [V90] we have (see also [C78])
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1.6 Holonomy of quasi-regular singularities
Theorem 1.6.2. Let xk be as above and K a horizontal lift of k. Suppose  termi-

nates at p € LM — LM. Then H, = G,

Note that ® has finite b-length if and only if x has finite b-length, and in this
case 1t follows that ® must have a well defined limit point p. So H. depends only
on p and encodes information about the singularity.

With « as above we know that there exists an open U D I'm x such that (U, g;/)
has an extension (U’,¢’) in which ~ has a regular endpoint z € U’. We say &
terminates at a good quasi-regular singularity if U can be chosen to be “wedge”
shaped rather than “cusp” shaped, or in other words, if U can be chosen so that
the tangent directions at  which point to the interior of U form an open set. Such
a wedge shaped U can be found for most quasi-regular singularities of interest,
however there exist quasi-regular singularities which are accumulation points of a
sequence of quasi-regular singularities for which it is not clear if this can be done.

Now consider the above homeomorphism 7' (z) =~ L! /G,. If p;,p, € L] are
in the same equivalence class then the two frames p, and p, have become identified
at the b-boundary. In other words the tangent space at a point of a quasi-regular
singularity is degenerate. It turns out however that it is degenerate only in directions
which are, in some limiting sense, not tangent to the singularity and that therefore
vectors tangent to a quasi-regular singularity are well defined. This in turn means
that such a singularity has a well defined dimension and induced metric. Specifically,
it can be shown that the elements of H- leave the components of vectors tangent
to a quasi-regular singularity unchanged.

From [V90] we have

Theorem 1.6.3. Let f :[0,1] x (0,1] — M be a C? map such that s, : u— f(s.u)
terminates at a good quasi-regular singularity, thus f(s,0) will be a curve along the

singularity. Let x = &, (though f need not be in {2, ) and K a horizontal lift of k. Let

26



—7—%

1.6 Holonomy of quasi-reqular singularities |
X*(u) be the components of X(u) = f,/(0) in the frame (u) where f,(s) = f(s,u).

Let X0 =lim, , X*(u). ThenVL! € H_, L1 X = X7.

u—0

In the case that the quasi-regular singularity is 2-dimensional and timelike,
which we hope would make it a suitable model for a cosmic string, it follows that the
elements of H-, which preserve vectors tangent to the singularity, must be rotations
with axis tangent to the singularity and it can be shown that H- is generated by
the rotation L(¥). A point of such a singularity will have the same tangent space

as a point of the conical singularity
ds? = —dt? + dr? + A%r2d6? + dz*

where A is determined by L(¥). A could in principle vary over the singularity.
However, the following result, known as the conservation of holonomy, shows that

it does not.

From [V85] we have (see also [V90] and [V92]) (see diagram 1.6.2)

Theorem 1.6.4. Let x, and x, be C! curves terminating at points of a quasi-
regular singularity connected by a curve ¢ : [0,1] — OM where OM 1is the b-

boundary of M. Let v, € 22 and v, € 22 . Suppose there exists a C' homotopy
h:[0,1] x (0,1] x [0,1] = M : (s,u,v) — h,(s,v)
such that

(a) h,(s,0) = (s, u) h,(s,1) =, (s,u)
(b) h,(0,v)=h(1,v)
(c) lim, ok, (s,v) =c(v).

Now let &, be a horizontal lift of ky in LM . Laft h to h by letting h,(0,0) = Ry (u)

and parallelly propagating along s = 0, u = constant and then round the loops
u = constant, v = constant. Also, let &, be a horizontal lift of k,. In general
27
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1.6 Holonomy of quasi-regqular singularities f

% (u) # h,(0,1) but we can choose &, such that lim, %, (u) = lim, ,h,(0,1)

where the right hand limit can be shown to exist. Suppose further that
(d) area h,([0,1],[0.1]) = 0 as u — 0

where the area 1s defined with the positive definite metric on LA used to construct
the b-boundary. In other words, the area of the uw = constant tubes tends to zero.

Then L(7,) = L(%,).

Given kg, Ky, Vg, V1 and ¢, most quasi-regular singularities of interest will admit
a homotopy satisfving (a)—(d). However again there exist Quasi—regular singularities
for which this is not clear. We will call a 2-dimensional quasi-regular singularity good
if in addition to to being good according to our previous definition this homotopy
exists. An example of a good 2-dimensional timelike quasi-regular singularity is the

4-cone

ds? = —dt* + dr? + A?r2d0? + dz2.

hisw)

Diagram 1.6.2
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1.6 Holonomy of quasi-reqular singularities

From [V90] and [V92] we have

Corollary 1.6.5. The singular holonomy groups which arise from a (path con-
nected) good 2-dimensional timelike quasi-regular singularity are all generated by

a rotation through the same angle 5.

Thus these singularities have the same light bending properties as a straight
string.

As we demonstrated in Theorem 1.4.1, the fixed point set of an isometry of
a space-time is totally geodesic and in this way, the elementary quasi-regular sin-
gularity which it gives rise to may be considered to be totally geodesic. We now
show in the following corollary of Theorem 1.6.4 that, in a sense made clear by
the proof, a good 2-dimensional quasi-regular singularity may also be considered
to be totally geodesic ([V90] and [V92]). We note that a (non-null) submanifold S
is totally geodesic if and only if vectors initially tangent to S remain tangent to S

under parallel propagation (Proposition 3.5.5).

Corollary 1.6.6. A good 2-dimensional quasi-regular singularity is totally geo-

desic.

Proof. Let x, y be points on such a singularity connected by a curve ¢ with curves
Ko, K, terminating at x, y respectively as in Theorem 1.6.4. Let K, be a horizontal
lift of x, and let %, be the horizontal lift of x, defined in Theorem 1.6.4 (for choices
of v,, v, and h). This gives us equivalence classes of frames p = lim, ,%,(u),
q = lim,_, %, (u) on the b-boundary of LM. Provided ¢ can be shown to depend
only on p and ¢, ¢ can be defined to be the parallel transport of p along ¢. Let X(0)
be tangent to the singularity at . Pick frames p, € p, ¢, € ¢. Let X (1) be a vector
with the same components in g, as X (0) has in p,. By Theorem 1.6.3 X (0) is fixed
by H. and by Theorem 1.6.4 X(1) is fixed by Hy . Because Hy =G, H. =G,

it follows that X (0), X (1) have the same components in any frame p, € p, ¢, € ¢
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1.6 Holonomy of quasi-reqular singularities
and that X (1) is the well defined parallel transport of X(0) along ¢. By Theorem
1.6.3, X (1) must be tangent to the singularity. Hence the result. dJ

We note that a p-dimensional submanifold S of an n-dimensional manifold
(M, g) has n — p extrinsic curvatures K}, at each point of S and is totally geodesic
if Kf, = 0. This is equivalent to being minimal K = g9 K}; = 0 and totally umbilic

Kl o= K“gl’~ where gy- is the metric induced on S by g.
j J 3 Y g
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2.1 Path-ordered exponentials of the connection

Chapter 2

Path-ordered exponentials and holonomy

2.1 Path-ordered exponentials of the connection

Let M be a (4-dimensional connected Lorentzian) manifold and GL(M) the
principal fibre bundle with structure group GL,(R) such that each fibre 7-!(z)
consists of all bases at  where GL(M) has projection 7 : GL{M) — M. Let w be
a (not necessarily metric) connection on GL(M).

Given a tensor, or matrix, or tensor valued matrix D"ff"““i" it will be useful to

define its (basis dependent) Euclidean norm

0= (- S S
ip
Thus || || is a continuous map onto the non-negative reals. Given a tensor. or

-1

. . J1-dl
matrix, or tensor valued matrix V;,ll_._,“ , it can be shown that

»!

| < HL/LJII iq ® VJl ] i

le(Ui g Vi ]’)

[P

) =

iy

g
l“ s H
i’ ot Y
15 ...7

1ty

where ¢(U, Urde g VJ1 I ) is any contraction of Ui g VJ1 ],/. We note that the

111 zlz

b-length of 7, ,; with respect to the basis (€;) is

o) = [ (X wlso)ui(so)) 2 dsy = [ (s} ds,
Let 2, € M and let v : s — v(s) be a C* curve in M with vy(«) = z, and
tangent u. Pick a basis (e;) of 7, and define (e,(s)) by parallelly propagating (e,)

along v to v(s). Then, expressing components with respect to a reference basis (¢,),
u'Vie, = 0.
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2.1 Path-ordered exponentials of the connection

If e,(s) = Li(s)€,(s) then L{(s) € GL,(R) and
ut(s)0, L (s) + u¥(s)w (s) L (s) =0

where Ve, = Wk €. Thus

dL! .
(s = —ut ()l (5) L1 (5)
and
Li(so) = Lifa) + [ 44(s)Lé(s,) ds,
where A7 = —u*w],. By repeated iteration
Li(sy) = Li(a) + Z / / ). AP (s, )L ) ds,, . ds, + Ri(s,)

m=1"Y<

where the remainder term

/ / A5 (S ) L () dSysy -+ dsy.
Proposition 2.1.1. ||R(s,)|]| — 0 as N — oo.

Proof.

IR < [ [ AL G AR ) I (vl sy - sy

By continuity 3M, M’ > 0 such that [[A!(s)|| < M, [|[LI(s)]] < M’ for s € [, 5,].
Hence

1R (s0)] g/"._./aNMNHM' dsy.,...ds,

1 50 S0
- m/ / MY dsy . ds,

since the region of integration {a < s; < s, | ¢ =1,...,N + 1} may be split into
(N +1)! regions in each one of which the ordering of (s,,...,sy,,) into descending
order of value is different. Hence

/\N+l

N+1
IRl < gy ([ 0s) = Mgy = 08 N = o
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2.1 Path-ordered exponentials of the connection J!

where A = [*" M ds. 0]
Thus

Li(sy) = Li(a) + Z/ AL AP ) s, dsy L),

m=1

Suppressing indices and using matrix notation we have

L(sy) = 2 m‘ / / A(s,) : ds,, ...ds, L{c)

where : : indicates that the expression should be ordered so that terms with a
larger s value precede those with a smaller s value. Without the ordering this would
be the expansion of an exponential function. Instead, expressing components with

respect to the reference basis (¢;), we write

Li(s) = Pexp /s —uk(so)wl (8o) ds, L)

which we call the path-ordered exponential of the connection w along ~.

Proposition 2.1.2. If A! is a matrix valued function defined along ~ then
(a) ||Pexp [ Al(s)ds — 87| < exp [ |AZ(s)| ds — 1

(b) ||[Pexp [ Al(s) ds|| < exp [ | Al(s)]| ds + 1.

Proof. (a)
|| P exp /S” Al(s)ds — 67|

N S0 Sun—1
= |6 + Z/ / AL (). AP (5,) ds, . ds, + RI(s) — 8
m=1"Y% &

l/\

iﬁmfmm«m\mewmm@wau
Sy A N e ]

m=1

=t (s, M dsn - dsy + || R (s0))

since the ordering within the integral is unimportant. Hence
S0 . N 1 S0 . ™ .
1Peo [~ s ds— &l < S — ([T 14llds) + IR (s
& m=1 ' «
— exp/ i |A2(s)l|ds as N — oo
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2.2 w-frames 1

and hence

| P exp/ ) Al(s)ds — 8|} < exp /50 A(s)]| ds — 1.

(b) This is proved in a similar fashion where we note that ||67]] = 2.

2.2 w-frames

Let v be a C? inextendible curve
v:(0,a] = M :s+— y(s) a > 0.

Define an w-frame to be a basis parallelly propagated along v with respect to w.

Suppose a tensor U is defined along . U is C%w-quasi-regular if its components
in an w-frame have C° limits as s — 0. For example, if w is a Levi-Civita connection
and v terminates at a C° quasi-regular singularity then the curvature tensor R,
will be C%-w-quasi-regular.

Now suppose U is defined in a neighbourhood of . Using V to denote the
covariant derivative with respect to w, U is Cr-w-quasi-reqular for r > 1 if the
components of V, ...V, U in an w-frame have C° limits as s — 0 and in addition
U is Cm—1-w-quasi-regular. This is a recursive definition.

If » > 0 and U is Cm-w-quasi-regular with respect to one w-frame, then it will

be with respect to all w-frames since if (e;(s)), (€;(s)) are two w-frames

e.(s) =ale,(s)

for some constant a! € GL,(R). We now prove the following propositions.

Proposition 2.2.1. Ifr > 0 and U, V are C"-w-quasi-regular then so are U +V

and AU where A € R is constant along .

Proof. V is linear. O
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2.2 w-frames I!
Proposition 2.2.2. Ifr > 1 and U is Cr-w-quasi-regular then VU is C™-w-quasi-

regular.

Proof. (V, ...V,

(T8

U = (v,

it

Vo VLU O
Proposition 2.2.3. Ifr > 0 and U, V' are Cr-w-quasi-regular then so is U & V.

Proof. U, V are C°-w-quasi-regular hence sois UQ V. If r > 1 then for 1 < k <r

k—1

V., . V,U@V)=URV, ..V, V+5_ (?) V, - -V,U®V, ..V V
-1
+V, ...V, UV |
each term of which is by definition C%-w-quasi-regular. Hence V, ...V, ('R V) is
C?-w-quasi-regular. O

Proposition 2.2.4. If 1 > 0 and U, V are Cr-w-quasi-regular then so Is any

contraction of U & V.

Proof. Contractions of U @ V are formed by taking the tensor product of U & V

and Kronecker tensors. Now
VI-(S]’? = wﬁé}l_ — wﬁj_él’“ = wf] - (,UZI”] =0
so Kronecker tensors are C7-w-quasi-regular. O
Suppose U is an m-form then for vectors X,,..., X ., recall

dU(X,, .., X)) = (m+ 1) (X, UX,, o, X)) = mU([X, XL X, X))

antisymmetrised over X, ..., X .,

(where the antisymmetrisation includes a factor of 1/n!). In a basis (e;)

au,

g dU (e €iay) = (M+ 1)(8[1'1 U - mUk[ ek )

a0 Ci 19 dant1] 13 g1 112)

where 9,f := e,(f) for a scalar f: M — R and [e;, ;] = cfe,. Thus
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2.2 w-frames ‘

AU, o = (m+ (VL U, L 5+ wﬁmLﬂkm”lmH] + ..+ w[k;ll.,,,ﬂUf:»‘-'lmik
- 'm‘ka[ﬁ,..i,”ﬂ(:flLZ])
= (m + 1)<v[nUx,3,..:,,, 1t mwr’; i U;kp;...z,,,ﬂ} - m[’vk{i;...zi,,,+1Ci@])
= (m + 1)(v[i1LTigmi,,,+1] + mf[flig Ulktiyoinel)
where w has torsion
Tj; = wtkj - wal'ci - Cf]
Thus dU is clearly a tensor.
Now if a tensor W obeys
W, = W
then it can also be treated as an m-form valued tensor W ]1," of valence (Z) Thus

when we say that the m-form valued tensor W’ﬁf:ﬁ” is Cr-w-quasi-regular we shall

mean that the tensor VV:T“,‘:"

v, 18 CT-w-quasi-regular.

Let U;"," be an m-form valued tensor. Since Ufe;,,...,e; e ... ef) is an

m-form we define

dus* =d(Ule, ,...,e. ,ef . . . ek)),

lm+1]1 Jp Jj1? > ap? 11Tt 1

however this expression is basis dependent and not a tensor.

Suppressing form indices we now define the exterior covariant deriwative of U

lek

DUkl . _dUk‘ cq L /\chq (I +4/k‘ /\L-kl

+ U ‘rl)/\wfl+. + U "k/\w

9220

where w* is the 1-form defined by « wk(e;) = w¥ and A acts on the form indices. As

above we can show

DU =V, Ul +mTE Ui

2777+131 Jp [ER R PIORESREIPY | SN [i1i2 = lElia.Tnalin.dp

thus DU is both an (m + 1)-form valued tensor and a tensor of valence (m—é—i-}—l)'

We note that if U is just an m-form then dU = DU. Thus we have proved
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2.2 w-frames
Proposition 2.2.5. If > 1 and U is Cr-w-quasi-regular then DU is CT=1-w-
quasi-regular, provided that the torsion T of w is C™~1-w-quasi-regular (for example

zero).
Now let U be a tensor defined along v : (0,a] — M : s — ~(s). Given an
w-frame and 7 > 0 we write

U=o0(s"") <= the w-frame components of s" U(s) — 0 as s — 0

U=0(s"") <= the w-frame components of s” U(s) are bounded as s — 0.

Whether or not U = o(s~") or U = O(s~") does not depend on the choice of

w-frame but does in general depend on the parameter s.

Theorem 2.2.6. If v : (0,a] — M : s — ~(s) has finite b-length and s,, s, are
two parametrisations of v which both measure b-length and U is a tensor defined
along v then

U=o(s;"") < U=o0(s,"")

and

U=0(s;,"") — U=0(s,7").
First we prove

Lemma 2.2.7. Ifal € GL,(R) then 3m, M > 0 such that Vu* € R
m(y ) 2 < (3w < MY wu)

where @7 = alu’.

Proof. For a,b € R

0<(a—0)?= (a+b)?<(a—b)?2+(a+b)=2(a®+b)

37



2.2 w-frames !

thus

Z atwiajut = Z(aguo + . kalut) < 4Z(aéu°)2 + .o+ (alu?)?

2

= 4((a0)? + ..+ (@) (W0 + .+ 4((a2) + .+ (a2)?)(wP)?

3

<Mt + . 4 utud) = M2 S wiu

where M = 4max,((a?)?...(a%)?)1/2 > 0.
Similarly L = 4max;((b%)?...(6°)2)'/2 > 0 where b] = (a~!)7. O
Now we proceed with the proof of Theorem 2.2.6.
Proof. Let (e,), (€;) be the w-frames along v with respect to which s,, s, are
measured. Thus e, = aféj where a! € GL,(R) is constant along v. Let v : s — ()
have tangent u = ue, = u'¢,. Then

(5 = [ (S wilso)ur ()= ds,

i

sals) = [ (0 @(s0) (s,) dsy

7
where in general s,(s) # s,(s). Also u'e, = u'alé; so 47 = aju’.

By Lemma 2.2.7 3m, M > 0 such that
ms,(s) < s,(s) < Ms,(s).

Let U have components U’ "7 in an w-frame. Now suppose U = o(s,~"). Then

T1..lp

s,7 Ul 71(s(s,)) — D as s, — 0

11 ...1

but

5,7 U7 1(s(s,))| < M7|s,m U2 4(s(s,))]

11..0p

since s(s,) = s(s;). Hence

5,7 Ul1(s(s,)) — 0 as s, — 0

11edp

and U = o(s,™").
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2.2 w-frames

Similarly U = o(s,™") = U = o(s,~") and U = O(s,7) <= U =O0(s,~7). 0O
Thus b-length is a natural parameter along a b-incomplete curve. We will
therefore say a tensor U defined along v is C'~"-w-quasi-regular for r > 0 if ~ has
finite b-length and U = o(s~7) when s is a parametrisation of ~ which measures

b-length with respect to an w-frame.

Proposition 2.2.8. Ifr > 1 and U, V are C-"-w-quasi-regular then so are U + V

and AU where A € R is constant along ~.

Proof. s(U + V) = sU + sV and s(A\U) = \(sU). O

The following lemma will prove to be useful.

Lemma 2.2.9. Let v: (0,a) = M « > 0 be a C! curve of finite b-length, let s
be a parametrisation of -y which measures b-length, let (e;) be the w-frame along ~

with respect to which s is measured, and let v : s — ~(s) have tangent u = u'e,.

Then |

wi(s)] = 1.

Proof. The b-length of v, is

s= [ luitso) | dso
=1 = [Jui(s)]]. O
Finally we prove

Theorem 2.2.10. Let~ : s+ ~(s) be a C? curve with tangent u. Ifu is everywhere
non-zero then an w-frame (e;) can be extended to a neighbourhood of v so that

wf] = 0 on v where w has components W, in (e;).

Proof. For each = 7(s) make a C? choice V, < T, M (where < denotes vector
subspace) such that T,M = T,v&V, (possible since u(s) is C° and non-zero). Thus
V. is 3-dimensional and nowhere tangent to . For each v € V, and each z = v(s),
parallelly propagate (e;) along the unique geodesic through z in the direction of v.
This will extend (e,) to a neighbourhood of v (since V, is C*).
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2.3 Connection difference I

Now for each v € V|
v'Vie, =0
since the geodesic through z in the direction of v can be parametrised to have

tangent v at x. In addition

wVie; =0

and hence Ve, = wfjek =0 at z. Thus wf =0 on 7. U

2.3 Connection difference
Let w, @ be (not necessarily metric) connections on GL(M). w, W are not

tensors on M, however the connection difference

is a tensor on M. .
Let v : s — v(s) be a C* curve in M with v(«) = z, and tangent u. Pick bases
(e;), (g;) of T, M and parallelly propagate them along v to v(s) with respect to w,

W respectively to give (e;(s)), (g,(s)). Set
e(s) = Li(s)e,(s)

where L] € GL,(R) though in general LI(0) # &!. If we extend (e,), (g,) to a
neighbourhood of v and work in the basis (e;) we may define

= ) =T e,
Ve, = wle; Ve, = e;

however since

k — kel Y e = uFi e
utV e, = utwl e, uFVie, = vt e,

the values of utwi,, v*@’, depend only on the values of (e;), (€;) along v and in the

following we shall only need these values. Now in the basis (e;)

u*(s)V, & () = u*(5)Vi(Li(s)e;(5)) = u(s)(9.Li(s) + @ () Li(s)) = O
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2.3 Connection difference I

dL!

=
ds

(8) +ut(s)@ (s)Li(s) =0

and in the basis (e;)

k1

ut(s) Ve (s) = ub(s)wi (s)e,(s) = 0 = u¥(s)w! (s) = 0.

Hence
dL’
ds

(8) +u*(s)al,(s)Li(s) =0
and as before
Li(s) = Pexp /S ~u*(s4)07 (5,) dsy L) = Pexp /a Hut(sy)0d,(s,) dsy L' ()
(2.3.1)
which we can either regard as a matrix equation for L7, in which case everything
must be expressed in the basis (e;), or as a tensor equation, in which case the

components L of €, are now basis dependent.

Now let v be a C? inextendible curve
v: (0, = M :s— 7(s) a>0.

We do not in general know how L!(s) behaves as s — 0.
Theorem 2.3.1. Let (e,(s)), (¢/(s)) be w-frames, let (€,(s)), (€(s)) be W-frames
and let
g,(s) = Li(s)e;(s) e,(s) = L'(s)el(s).
Then lim,_, Li(s) exists and is in GL,(R) <= lim,_,L"(s) exists and is in

GL,(R).

Proof. 3 constant al,b! € GL,(R) such that
el(s) =ale;(s) g.(s) = ble,(s).
Thus

bie,(s) = Li(s)aten(s) = 2(s) = (P (s)aken(s) = Lis) = (b=l (s)ay
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2.8 Connection difference b

and hence lim,_, L(s) exists and is in GL,(R) <= lim,_, L"(s) exists and is in

GL,(R). 0
Thus we define

w~w = LI(0):= lim LI(s) exists and is in GL,(R)

where L (s) may be defined with respect to any choice of w- and D-frame.
Theorem 2.3.2. ~ is an equivalence relation on the set of connections on GL(M).

Proof. Let w be a connection on GL(M) and (e,(s)) an w-frame. Now
e;(s) = 8le,(s)

and lim, 67 = 6. Thus w ~ w.

Let @ be a connection on GL(M) and (g,(s)) an w-frame and suppose w ~ .

Thus if we set
e.(s) = Li(s)e;(s)

then lim,_, L(s) exists and is in GL,(R) but

5—0

and so lim,_,(L-1)(s) exists and is in GL,(R). Thus @ ~ w.
Now let & be a connection on GL(M) and (¢,(s)) an &-frame. Suppose w ~ @

and @ ~ @. If we set

then
6.(s) = L, (s) L (s)en(s).

Since lim,_, fj(s), lim,_, L*(s) both exist and are in GL,(R), lim, , L*(s) exists

and is in GL,(R), where Lt(s) = Zj(s)Lf(s), Thus w ~ @. O
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2.8 Connection difference ’
Let w be a connection on GL(A). If ~ has finite b-length with respect to a
particular w-frame, then it will have finite b-length with respect to all w-frames.
and we say that v has w-finite b-length. In this case the b-length [ of + with respect

to a particular w-frame (e,) is given by

- /:(Zul(s)ul(s))lﬂ ds

1

where v has tangent v = u’e,. Although u in fact depends on the parametrisation
s of v, | does not.

Let & be a another connection on GL(M). ~ need not in general have w-finite
b-length, even if it has w-finite b-length.

Now let (e;) be an w-frame and let (€,) be an T-frame, let 0 =@ —w, and let v

have tangent u = u'e; = w'e,. Thus w(s) = L!(s)u'(s) where &,(s) = L{(s)e,(s).
Theorem 2.3.3. If w ~ @ then
~ has w-finite b-length <= ~ has w-finite b-length.

First we prove

Lemma 2.3.4. Ifw ~ @ then 3M > 0 such that

(Z ur(s)ui(s))? < N[(Z u(s)u(s))'/2.

k3 K3

Proof. Li(s) € GL,(R) and T'(s) € R*, so by Lemma 2.2.7 3M (s) > 0 such that

(o w{shul(s)M? < M{s)(Q_ W (s)w(s))'?

and

M(s) = 4max((LO(s))” + ... + (L¥(s))?)'/* > 0.

Now w ~ @ so lim,_, LI(s) exists and is in GL,(R). Thus M (s) is continuous and

s—0

strictly positive on [a,0]. Therefore set

M = max M(s)

0<s<

where M > 0. n
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2.3 Connection difference

We now prove Theorem 2.3.3.

Proof. Suppose v has W-finite b-length. The b-length of Y|jes) With respect to (e,)

18

1s) = [ (X wlso)us(s)) ds,

1

and with respect to (g;) is

Since w ~ @, IM > 0 such that

I(s) < MI(s)

but lim,_, [(s) < co hence lim,_,[(s) < co and v has w-finite b-length.

Now @ ~ w and thus if v has w-finite b-length, then it has @-finite b-length. [

Proposition 2.3.5. Let U be a tensor defined along ~v. If w ~ @ then U is C%-w-

quasi-regular < U is C°-w-quasi-regular.

Proof. Let U have components U/"7" in (e,) and U:j’ in (e;). Then

11...p

T2 (s) = (L73(s) . (L) LA (s) - L (5)UR 2, (5)

i1y [

where we note that ,(s) = Li(s)e,(s) = &(s) = (L-1)!(s)e!(s). Since w ~ T it

follows that lim, o L?(s) and lim,_,(L~1)!(s) both exist and thus

s—0

- 1.3 . . T .
lim Ul (s) exists <= Lm U ./ (s) exists. O
s— s— ceelp

11.1p

Proposition 2.3.6. Let U be a tensor defined in a neighbourhood of v. If w ~ @
and 7 > 1, and o is C™—l-w-quasi-regular, then U is C"-w-quasi-regular <= U is

Cr-w-quasi-regular.

Proof. Suppose U is Cm-w-quasi-regular. Define

T =VT-0 1<n<r T =U.
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2.3 Connection difference

Working in the basis (e,)

T =, Ty

Koy ook1in.. iy N

=V, T(r=niis

net1ekidy g

J1 (n—l)ljz‘“jq Jq (n—l jl.A.j,l_ll
o T i, T o T
ol (n—1)J1--Jq _ Al (n—1)J1---Jq
Uk,lk“_lT Uen g kyiy.dy e Uk.”‘ipT K1 h1iyeedy_yl

where U has valence (Z)

T = U is C"-w-quasi-regular, so assume inductively that T(»=1 is Cr=r+ly-

quasi-regular for 1 < n < r. Thus VI'>-1), T(-1 and ¢ are all Cr—"-w-quasi-

regular (since o is C"~!-w-quasi-regular), and hence so is 7).

In particular T is C°-w-quasi-regular, and thus by Proposition 2.3.5 T(") ig

CO-w-quasi-regular. Therefore U is C-w-quasi-regular.

Applying the above to o we see that ¢ is C7—1-o-quasi-regular. Since @ ~ w we

have by symmetry that if U is C7-w-quasi-regular, then U is C"-w-quasi-regular.

Proposition 2.3.7. Let U be a tensor defined along 7 : s — ~(s). If w ~ @ and

r > 0 then U is C~"-w-quasi-regular <= U is C~"-w-quasi-regular.

Proof. Suppose U is C-"-w-quasi-regular. Thus v has w-finite b-length (by defini-

tion) and since w ~ @, v has w-finite b-length. Let s,, s, be parametrisations of vy

which measure b-length with respect to (e;), (g;). Then

(5) = [ (D wlso)w(so)) = ds,

ss) = [ (T @) (50) dsi,

By Lemma 2.3.4 3M > 0 such that
85(s) < Ms,(s).

Now let U have components U"7* in (e;). Thus

110y

5,7 Uli1(s(s,)) — O as s, — 0

11001y
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2.8 Connection difference

but

|57 Ujlllj,’ (s(s)l < M™

5,7 UL ()]

11ty

since s(s,) = s(s;). Hence

8,7 Ul 7%(5(s,)) = 0 as s, — 0.

111y

Now let U have components Ujl‘

1.1

in (e;). Since w ~ w, lim,_, L!(s) exists and

s—0 7

szr_U-],'l"'j"(s(sz)) — 0 as s, — 0.

210y

Thus U is C-r-w-quasi-regular.
Now since @ ~ w, by symmetry if U is C-"-w-quasi-regular, then U is C'-"-w-

quasi-regular. d

Corollary 2.3.8. Ifw~wandr < 0orr € N then o is C-w-quasi-regular <= o

is C"--quasi-regular.

Now let L1(0,a) = {f : (0,«) — R| f is integrable}. In the following when we
say Al(s) € L1(0, ) we shall mean that each component A(s) € L1(0, @).

We note that for a function f : (0,a) — R, f(s) = o(s~!) is neither necessary
nor sufficient for f € L'(0,«). For example f(s) = 1/(slogs) & L'(0, ) despite
f(s) = o(s~1). On the other hand f(s) = o(s~") for some r < 1 is sufficient for
f € L*(0, &), though not necessary. For example f(s) = 1/(s(logs)*) € L'(0, a) for
k > 1 despite the fact that f(s) # o(s~7) for r < 1, but f(s) = o(s~1).

Let w, @ be connections on GL(M). Let U be a tensor defined along v with
components UZ;,:‘_ZJ" in an w-frame (e;). Whether or not Uf'l‘_'_'_;z," € L'(0,«) does not

depend on the choice of w-frame but does in general depend on the parameter s.
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2.8 Connection difference
Proposition 2.3.9. Suppose v : (0.a] — M : s +— ~(s) has finite b-length and let

s,. 5, be two parametrisations of v which both measure b-length. Then

D0 (s0) € L0, ) = ULl(s,) € L'(0, o)

1.0y
where s, = o, when s = & and s, = v, when s = o.

Proof. Let (e,), (€,) be the w-frames along v with respect to which s,, s, are mea-
sured. Let U have components U7 J(s,) in (e,). Suppose U2"7"(s,) € LY(0, ).
Then ,
/ UZn(s,) ds, = / Uan(s, z (5,) ds, < 00
2
and so U} "7"(s,)(ds, /ds,)(s,) € L}(0,a,). Now e, = alé; where a] € GL,(R) is

1.1

constant along . Let v : s — ~(s) have tangent u = u'e; = @'¢,. Then u'e, = u'alé,

= [ (s}l ds,
= [ 1w (s) s,

Hence (ds,/ds)(s) = ||ui(s)|] and (ds,/ds)(s) = ||@*(s)|| and thus (ds,/ds,)(s,) =
lui(s,)l|/1|@(s,)||. By Lemma 2.2.7 3m, M > 0 such that

so ¢ = alu* and

mllu

and thus
wlo)l _ds el 1 _ds o 1
u'(s,)|| T dsy mllui(s)|| M T ds, m
from which it follows that
Ultli(s,) € LH0, o).
Similarly
Ul 7(s,) € LM0, a) = UL (s) € L0, 0y). 0

We shall therefore say U is w-integrable if v has w-finite b-length and, given a
parametrisation s of v : (0,a] — M which measures b-length, Ulii(s) € L'(0, ).
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2.3 Connection difference

Proposition 2.3.10. If w ~ @ then U is w-integrable <= U is w-integrable.

1,
Proof. Let U have components U7 z],,' in an w-frame (e,) and components U, " in
Loy

a w-frame (g,). Let €, = Lle,
Suppose U is w-integrable. Then ~ has w-finite b-length. Let s, be a parametri-
sation of v : (0, ;] — M which measures b-length. Then U7’ f’( ) € L0, ).

Since w ~ @, lim,, _, L{(s,) exists and Li(s,) is continuous and bounded on [0, o]

and

Ul (s = (L) (s0) - (L) (s) Do (s0) - L2 (s)UR T (50)

11...0p 1

lies in L1(0, o). Therefore

1 1- &2 —71... lq d
/ U, ]1( 1) ds —/ U (51(s2)) > (s2) dsy < o0
0 11...0p 0 11002 dSQ

and U:::j:(32)(dsl/d82)(sz) € L'(0, o,) where s,(c,) = .

Let s be any parametrisation of v : (0,alpha] — M and let v : s — ~(s) have
tangent u = u'e, = We, Thus v/ = (L-1)!@'. As in the proof of the previous
proposition

(ds,/ds;)(s,) = ||U1(82)H/HT(82)||

and from Lemma 2.3.4 Im, M > 0 such that
m||T (s)|] < [lu'(s,)|| < M)
and hence

sl [Tl sy
P S B S M S ) S M

from which it follows that Uj1 ],,( ,) € LY(0,,). Since w ~ @, v has w-finite b-
length and U is @-integrable. Similarly if U is @-integrable then it is w-integrable.
O
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2.3 Connection difference

Finally we give conditions on ¢ under which w ~ @ holds.

Lemma 2.3.11. Let A’ be a matrix valued function defined along ~. Then

|A2(s)]l € L0, 0) = lsi_I}%PeXp/ Al(s,) ds, exists and is in GL,(R).
Proof. By Proposition 2.1.2
HPexp/ A3(s)ds — 81| < exp/ lAi(s)] ds — 1.

Since

Al(s)|| € L(0, ) it follows that Pexp [ Al(s)ds — & as sy,8, — 0 and

lim,_, Pexp [ Al(s,) ds, exists and is in GL,(R). ' 0

5s—0
It can be shown that A7 : s +— Al(s) satisfies
[A(s)l] € LH(0, @) <= |Al(s)] € L}(0, )

Al(s)| €

where by |47(s)] € L*(0,«) we mean that each component A!(s) obeys
L'(0, «). We define a relation on the set of connections on GL(M). For connections
w,won GL(M) and 0 =W —w
w~ T <=3 a parameterisation s of v (not necessarily measuring b-length)
such that in an w-frame |[uf(s)o? (s)| € L*(0, ).
Whether or not w ~ @ does not depend on the choice of w-frame. Note that s

does not have to measure b-length for w ~ @ to hold, however the tangent u of v

depends on the parametrisation s of .

Proposition 2.3.12.
(a) If w ~ @ then |u*(s)ol,(s)| € L'(0,«) will hold for any parametrisation s of
v.
(b) If w~w then w ~ .

(¢c) ~ is an equivalence relation on the set of connections on GL(M).
Proof. (a) Since w ~ @ there exists a parametrisation s of v : (0,a] — M such that

lu*(s)ol(s)] € L1(0,a). Let s be another parametrisation of v : (0,a] — M. Then

[ wt)or )l ds = [l (s)o7,(s) s = [l (o) ds
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2.3 Connection difference
where v : s + 7v(s) has tangent w and v : s — ~(s') has tangent @. Thus
[k (s ol (s7)| € L0, ).

(b) If w ~ @ then |u*(s)oi;(s)] € L'(0,«) and hence by Lemma 2.3.11 and
equation 2.3.1 w ~ w.

(c) Let s be a parametrisation of « : (O,a] — M. Let w be a connection on
GL(M). Then w ~ w since w —w = 0 and 0 € L{0,). Let @ be a connection
on GL(M) and 0 = @ — w. Suppose w ~ @. Then in an w-frame |u*(s)al,(s)| €
L(0, ), which also holds in a w-frame since by (b) w ~ @. Hence in a @-frame
luk(s)(—cl:(s))| € L*(0,a) and @ ~ w. Now let & be a connection on GL(M),
o' =& —wand ¢’ =& —w. Suppose w ~ & and w ~ @. Then working in a w-frame

ut(s)0",(s)] = [ub(s)o", () + u*(s)ol,(s)|
< [ ()03, ()] + [ ()0, (5)
e L0, @)
by Proposition 2.3.10, since by (b) w ~ @. Hence w ~ &. O

We now define
P={p:TM — TM |for each z = ~(s), p: T,M — T, M is a linear C° map

such that p(v) =v Vv € Ty}
Thus if p € P then p is a tensor of valence (i) In particular P contains the set of
C° projection tensors P, = {p € P |for each z =(s), p: T, M — T,v}. We note
that the identity map 2 € P (where in components 1/ = §7).

Now suppose that p € P. We define two relations on the set of connections
on GL(M) for which ~ has w-finite b-length. For connections w, @ in this set and
O =W — W

wa, W <= |plol]is w-integrable

w W <= plol is C*-w-quasi-regular.

We note that if p = &/ then w R, W ol; is w-integrable and w =, ¥ <= ol
1s C°-w-quasi-regular.
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2.3 Connection difference

Theorem 2.3.13. [fw = T then w =, D, if w =, W then w ~ T.

Proof. Suppose w = . Then v has w-finite b-length and pioj; is CP-w-quasi-
regular. Let s be a parametrisation of v which measures b-length with respect to

w. Working in the basis (e,) with respect to which s is measured

lim p! (s)o7 (s) exists = |p! (s)oi(s)| € L'(0, o)

s—0 I
and hence w =, .
Now suppose w ~, W. As before v has w-finite b-length. Let s be a parametri-
sation of v which measures b-length with respect to w. Working in the basis (e;)
with respect to which s is measured, Lemma 2.2.9 implies that ||u¢|| =1 and hence

the components of u obey |ui(s)] < 1. Thus
ut (s)ai, ()] = |u*(s)p(s)a}(s)] < [u(s)llp,(s)o7,(s)] < Ip(s)oi(s)] € L0, @)

and hence |u*(s)ci,(s)| € L1(0,a). Therefore w ~ T and w ~ @. O

Theorem 2.3.14. = and =_ are equivalence relations on the set of connections
P P q

on GL(M) for which ~ has finite b-length.

Proof. Let w be a connection on GL(M) for which ~ has finite b-length and let

ag

I

w —w. Then o = 0 and p o, is C%-w-quasi-regular. Thus w =, w.
Let @ be a connection on GL(M) for which v has finite b-length. Suppose

w = T and let 0 =@ — w. Then ploj, is CY-w-quasi-regular. By Theorem 2.3.13

o~

w ~ w and thus —pl o7, is C°-W-quasi-regular. Thus W =, w.

Now let @ be a connection on GL(M) for which v has finite b-length. Suppose
w= Tand T X, w Leto =0 —w, 0 = © —wand 0 = w —w. Then ploj, is
C%-w-quasi-regular and pﬁca’{i is C--quasi-regular. By Theorem 2.3.13 w ~ & and
plka’{i is Co-w-quasi-regular. Now ¢” = ¢’ + ¢ and thus plka”{i is C%w-quasi-regular.
By Theorem 2.3.13 @ ~ @ thus w ~ & and therefore —pia{; is C°-w-quasi-regular

and w %’p w.



2.4 Furst and second Cartan equations
We can show that = is an equivalence relation in a manner similar to the proof

of 2.3.12(c). 0

2.4 First and second Cartan equations
Let z, € M and let U be a neighbourhood of z,. Let (e,) be a C? section

of GL{M) above U (thus for each x € U, (e))|, is a basis of T, M). Let w, T be

€T

connections on GL(M) and let 0 = & — w. w has torsion T* where T* is a 2-form

valued tensor given by the first Cartan equation
TF = de* +w;? A el

. . o Lk
where w? = wke® and (e') are the 1-forms dual to (e;). Similarly & has torsion T

given by

—k .
T :dek+wj‘/\ef

where Jj = ijei. Thus

—k .
T -T’“:UJ’?/\eJ

where o% = g¥e' and hence in the basis (e;)

T Tk =gk
ij i {i7]
In particular if T:, = T;} for example if w and @ both have zero torsion, then

ok =0 and ot = o*.
(2] i ji

w has curvature € where Q0 is a 2-form valued tensor given by the second

Cartan equation

V= dw? +w] Aw?.
Similarly @ has curvature ﬁj given by

U = dw] + W), /\wiC
1 7 v
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2.5 Path-ordered exponentials of the curvature

and thus v
__] . . — — 1 .
O — VW =dol + 7 ANT* — wi AWk
v 7 1 k i k 7

=do? + (o] +w]) A (0F +wh) —w) Awh
=do! + 0/ No* +0) ANwF +wl Ao
i k 7 k i k )
= Dol + ol A ok '
where D 1s the exterior covariant derivative associated with w.

Now let + be a C! inextendible curve
v: (0,0 = M :5— ~(s) a > 0.

From the above we have

Theorem 2.4.1. Let r > 0. Suppose that along v, Q7 is Cr-w-quasi-regular and

- . . _— _ .
o} is Cm+l-w-quasi-regular. If w ~ @ then Q1. is C"-I-quasi-regular.

We note that if v has w-finite b-length then by Theorem 2.3.13 it follows that

if g} is Cr+1-w-quasi-regular for r > 0, then w ~ &.

2.5 Path-ordered exponentials of the curvature

Let w be a connection on GL(M). We have shown how the result of parallelly
propagating a basis along a curve with respect to w may be expressed in terms
of the path-ordered exponential of w. It follows that elements of holonomy may
be expressed in this way. We now show how elements of holonomy may also be
expressed in terms of path-ordered exponentials of the curvature of w.

Let v be a C* map
v [0,1] X [ug, uy] — M (s,u) — v(s,u) = 7,(s)

where v,(0) = v,(1). Thus s — ~,(s) is a closed loop for u, < u < u,. Now pick
a basis e,(0,u,) at v(0,u,) and parallelly propagate it along x(u) = (0,u) to give

e,(0,u) and then along 7,(s) to give e;(s,u). Thus e,(s,u) is a lift of v(s, u).
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2.5 Path-ordered exponentials of the curvature
Since v, 1s a closed loop, e,(0,u) and e,(1,u) are defined at the same point. If

we set

e.(l,u) = Li(u)e;(0,u)
then Li(u) € GL,(R) is the element of holonomy generated by parallelly propagat-
ing e,(0,u) round ~,. From [V83]

() — Liu,) :/ /lLim)szf(x(s,u>,y<s,u)>dsdu (2.5.1)

1.

where w has 2-form valued curvature 2/ and X, Y are the images of 3,, 9, induced
by . (9,, 9, are tangent to [0,1] X [u,,u,] whereas X, Y are tangent to M.) It is
assumed in [V85] that the connection is metric and torsion free, but the proof given
will in fact work for any connection.
By repeated iteration
L ( LJ (ug) + Z/ / / / Li Up) Ok X (Sma1s Ump1)s Y (St Upnsr)
m=1" %

; (‘Y<S°7U2)>Y(52auz)) AS 1 AUy, dsqdu2+RJ(u1)

where the remainder term

/ / / / UN+2 . <X<SN+27 'UN+2>: Y<3N+2> UN+2>)

.. Q’L-N“ (X(527 U2>, Y(82> U’Q)) dSN-i—ZduJVJ,-? Tt d82d11,2

T

J(u,)|] — 0 as N — oco. As before, suppressing indices and

using matrix notation, we have

L(u,) = L(uy)

> 1 Uy 1 Uy 1 .
+ L(u,) Z —,/ / / / CUX (S g1 U ) Y (Smins Uinen)
m=1 T Juy o} wy 0
QU X (s5,15), Y (80, u)) + dspy Aty o dSydu,
where : : indicates that the expression should be ordered so that terms with a

smaller u value precede those with a larger u value. Note that this is the reverse

54



B S T—._

2.5 Path-ordered exponentials of the curvature

of the ordering in the path-ordered exponential of the connection, and that :

denotes u ordering and not s ordering. We write

Uy -1
Li(u,) = Li(uy) P, exp / /0 QN (X (s,u),Y (s, u)) dsdu. (2.5.2)

Since the inner integral is an ordinary integral we can set

which gives

Wilu) = /1 QX (s,u),Y(s,u))ds

L) = Lj(uy)Pexp | W(w) du

.. du is the more usual path-ordered integral, though still ordered

where P exp [

so that terms with a smaller u value precede those with a larger u value.

By swapping u,, u, in equation (2.5.1) we also obtain

wo 1
Li(u,) = Li(uy) P, exp/u /O (X (s,u),Y(s,u))dsdu. (2.5.3)

Let U = Im~.

If ~ is a diffeomorphism then U is a 2-surface with disjoint

boundaries v, and 7, . If however v, is a point then

Li(u,) = P, exp / W (u) du.

Under suitable conditions U will be a 2-surface with boundary v, , however L!(u,)

will depend only on 7, and the choice of basis e,(0,%,) at v(0,u,), but not on the

spanning surface U or its parametrisation.

Now suppose K :

(0,1] — M is a C* curve of finite b-length terminating at a

singularity. Let v € €, (where €, is the loop space defined in section 1.6) so

v:0,1] x (0,1] — M : (s,u) — v(s,u) = v.(s).

As above let e,(1,u) = L!(u)e;(0,u) where a choice of e;(0, 1) is parallelly prop-

agated along x(u) to give ®(u) and then along v, for each u to give a lift e (s, u) of

(L)1 (o) L () = P, exp/ W () du
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2.5 Path-ordered exponentials of the curvature
for 0 < ug,u; < 1. The lift ¥ of v we have chosen will generate a well-defined

element of s-holonomy L7(0) :=lim, _, L(u) if and only if
(L74)7 (ug) L (uy) — 67 as ug,u, — 0

which by Lemma 2.3.11 will hold if VV;(U). € L'(0,1). If k terminates at a quasi-
regular singularity then by Theorem 1.6.2, H- will exist and by Theorem 1.6.1, L?(0)
will exist if 7 satisfies the area condition. However if x terminates at a curvature
singularity we do not in general expect that L7(0) or Hx will exist.
However we now discuss conditions under which L?(0) will exist even if x does
terminate at a curvature singularity. (We do not impose an area condition on 7.)
We shall say that the curves v, : s — v,(s) are parametrised proportional to

b-length if the b-length I(s,u) of | ; measured in the basis (e,(s,u)) obeys
I(s,u) = sl(u)

where [(u) is the b-length of v,, measured in the basis (e;(s,u)). In this case

/Ds | X (sq,u)|| dso = I(s,u) = sl(u) = || X*(s,u)|| = l(u) = 0 as u — 0.

Given any v € . and lift of v, the -, curves can be reparametrised proportional
to b-length. The value of (L=1)](u,)L*(u,), and thus of L7(0) := lim,_o L (u) if it
exists, will not be affected by this reparametrisation.

We now consider the curves «,(u) = 7(s,u). These curves do depend on the
parametrisation of the curves v, and need not in general have finite b-length unless
s = 0 in which case &q(u) = &(u).

We note that (e;(s,u)) will not in general be an w-frame along «, since it is
obtained by first parallelly propagating (e;(0,1)) along s(u) and then parallelly
propagating (e,(0,u)) along 7v,(s) = v(s,u). We define another basis (¢(s,u))

as follows. Let (¢,(0,1)) = (e;(0,1)), parallelly propagate (€,(0,1)) along 7, to
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2.5 Path-ordered exponentials of the curvature
give (€,(s, 1)), and parallelly propagate (¢,(s,1)) along &, to give (&,(s,u)). Thus

(€,(s,u)) will be an w-frame along «_ (see diagram 2.5.1). We define
e.(s,u) =1(s,u)e;(s,u)

where I (s,u) € GL,(R). We note that since ¢,(s,1) = e,(s. 1), I/(s, 1) = &/.

Diagram 2.5.1

We shall say that v is sufficiently reqular with respect to Q! if

(a) the curves v, are parametrised proportional to b-length, and for each s &
10,1], x, has finite b-length, and the b-length A(s) of x, measured in the
basis (€,) is continuous in s, and Y'(s,u) # 0

(b) 3¢ € L1(0,1),% € L*(0,3up,c(o,) A(s)) such that, in the basis (€;), where for
each s € [0, 1], & measures b-length along «, with respect to (&,) such that
i — 0 asu — 0, and (s, %) = [(u) where we regard v as a function of s and
u,

10335, @) 105 7) < () (D)
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2.5 Path-ordered ezponentials of the curvature
Condition (a) imposes constraints on the geometry of v while condition (b)
imposes constraints on the curvature /. In particular condition (b) is certainly
satisfied if there exist ¢ € L(0,1) and ¢ € L'(0,sup ., A(s)) such that, in the
basis (é,),
19 (s, B)I| < @(s) ()
or even

1% (s, )| < (@)

though these are stronger conditions than condition (b).

We might expect that [(u) = O(u), at least if u measures b-length along ,
but it may happen that the ~, loops “crinkle up” as v — 0 and in fact v may be
chosen so that {(u) — 0 arbitrarily slowly. We could, though we shall not, restrict
2, to contain those lassos for which {(u) = O(u) when u measures b-length along &,
though we note that even if u measures b-length along x, it might not do so along
ks for s # 0.

We shall also need the following condition. We shall say that v is well bounded

with respect to w if Ja > 0 such that
172 (s, w) X (s, w)l] < | X7 (s, )|

where X7 are the components of X in the basis (e;).
This condition may seem unduly restrictive but we shall see that it holds in an
important case in section 5.4.

We shall prove the following two theorems.

Theorem 2.5.1. Let ~ be sufficiently regular with respect to Q! and well bounded
with respect to w. Then for each s € [0,1], II(s) := lim,_, ¥ (s, u) exists, and [(s)

1S continuous.
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Theorem 2.5.2. Let v be sufficiently regular with respect to Q! and well bounded
with respect to w. Then LI(0):=lim,_, L!(u) exists.

u—0

We note that this theorem tells us conditions under which lim, , L!(u) exists

w0
but does not tell us its value.

The remainder of this section is devoted to proving Theorems 2.5.1 and 2.5.2.
We will first need to prove a number of intermediate results.

Suppose now that + is sufficiently regular with respect to QJ. For each s € [0, 1],
let @ to be the parametrisation of x, which measures b-length along x, with respect
to () such that 2 — 0 as v — 0 and let A(s) be the b-length of x, measured in
the basis (€;). Since + is sufficiently regular, we make a choice of ¢ € L1(0,1),9¢ €

L1(0,5up, o,y A(s)) such that
1957 (s, W i(s, ) < b(s)0(@)

where Q77 are the components of Qf in the basis (&,).

Now define the function A : (0,1] — R

sup.eqn.q) #(s,u1) o
h(w) = [ (i) da

where we regard @ as a function of s and u.
Lemma 2.5.3.
(a) |2 (s, @)Y (s, )| = 1 where Y has components Y in the basis (€,).
(b) h(u,) — 0 as u; — 0.
Proof. (a) Let the curve &, : i — & (@) have tangent Y. Now 9, = 2%(s, #)d, so

ou ou ou

Y =.(05) = 1.(5=(5,8)9,) = g=(5,0)7.(0.) = 5 (s, )Y

By Lemma 2.2.9, ||V7|| = 1 where ¥ has components Y7 in the basis (¢,). Hence

I3 (s, )Y s, )] = 1.
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2.5 Path-ordered exponentials of the curvature

u i 51 )
@ =a(s,u) = / 1Y (s,u0)|| dug = A(s) —/ Y5, u)|| du,.

Since v is sufficiently regular with respect to Q/, A(s) and Y*(s,u) are continuous
and Y (s,u) # 0. It follows that % = i(s,u) is continuous in s,u and for fixed s,
strictly monotonic in u. Hence u = u(s, ) is also continuous in s, v and for fixed s,
strictly monotonic in u.

It follows from this (and the compactness of [0, 1]) that sup,,; @(s,u;) — 0 as

u, — 0. Now ¥ € L'(0,sup,.,,; A(s)) and hence
SUP,e0.1) #(5,u1)
hu,) = / b(@) dii — 0 as u, — 0, O
0

Given 0 < 55 < s; < land 0 < u, < u, < 1 we now define a map p :

[0,1] X [80,8,] = M : (0,7) — p(o,7) as follows (see diagram 2.5.2)

S="T
5.
K;’U ///” <‘\\E": Ks, 5=Syp
sz, N
s=5 \_51 XS zO
N //’-—}\\ =T s
K¢ o=z ~_ 7
TR )
i,
Sz
% N W= o u=y, © T

<
Sp STES,

Diagram 2.5.2
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V(s + (7 — s0)do,uy) 0<o<]

YTouy — (w4 —u)d(o— 1)) +<o<;
p.(o)=plo.7)=

YT — (7~ 50)4(0 — 3), 1) ;<o <2

V(805 U + (uy, —up)d(c —2)) <o <1

Thus each p, is a closed loop and p,([0,1/4]) lies on ~,.. p.([1/4.1/2]) lies on
k., p.([1/2,3/4]) lies on v, and p_([3/4,1]) lies on x,,. p,, lies entirely on x_ . We
note that the image of the curve 7 — p(0,7) is the fixed point v(s,, 4, ).

We define a basis (é,(c, 7)) at p(a, 7) by setting é;(0, 7) = e,(s,, u, ) and parallelly

propagating €,(0,7) along p. to give é,(o, 7). We set

e,(1,7) = I(7)é,;(0,7)

where (1) € GL,(R). Since the image of p, lies entirely on &, , (é(1,s,)) is
obtained by parallelly propagating (é;(0,s,)) along «,, from &, (u,) to ,, (u,) and
back again to «, (u,), and thus [(s,) = 6.

We now suppose that in addition to being sufficiently regular with respect to
€, ~ is well bounded with respect to w. We therefore make a choice of o > 0 such
that

1105, ) X2 (s, )] < af| X (s, u)
where X7 are the components of X in the basis (e;).

Lemma 2.5.4.

15 (s)]l < expah(ul)/ 12 (s, u) ()2 (s, )0 (s) ds + 1

El

[8052) = &1| < expach(un) [ (w1070 (s, ) [é(s) ds — 1
1)l < exp—an(u) [ G w175 m)l|6(s) ds + 1

S0

Proof. Working in the basis (é;) we have from equation (2.5.2)

s1 1 ~ ~
(I71) (s0)15(s,) = P, exp/ / Q7 (0, ) X*(o, 7)Y o, 7)dodT
sq [}
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where X, Y are the images of 0,. d. induced by p.
Now Zf(so) =67 and

where p(o,7) = v(s(o,7),u(o,7)). Hence

(4(7 — 59) X, 40 X) 0<o <

. (=4, ~—up)Y, X) L<o<d
(X’Y) =

(—=4(r = 5,) X, 4(2 — 0)X) ;o<

(4(u, — u,)Y, 0) s<o<

and s
Zg(sl) =P, exp/ / Qi (o, 7)A(T — 55) X *(0,7)40 X (0, 7) do
S0 8]

1/2

+ Q2 (o,7) — 4(u, — uy)Y*(o,7) X o, 7) do
1/4
3/4

, 3
+ Q2 (0,7) — 4(1 — 54) X*(o, 7)4(2 — )Xo, 7)do
1/2
1
-}—/ Q7 (0, 7)4(uy — uy)Y*(o,7).0dodr
1/2
=P, exp/ / Q7 (0, 1) X (o, 7)Y o, 7)4(u; — uy) dodr

since (X, X)=0and Q/(X,Y) = -Q/(V,X). Now for : <o <

L 1
4 27

1
uzul—(ul—uo)él(a-—zl—):,>du:—4(u1—uo)da s=7=ds=dr

and hence by Proposition 2.1.2

sl < exp [ [ 192 ) X5, )Y (5, 0)] duds + 1.

Since (é;(s,u;)) is obtained by parallelly propagating (e,(s,,u,)) along 7,,,
(é:(s,uy)) = (&;(s,u,)) and for 1 <o < 1,

Qi (s, ) X*(s,w)Y(s,u) = I7(s,u,)(I71)2(s, uy) Qs (5, u) X*(s,u)Y (s, u)
where 7, X, Y have components ;.7 X* YTin the basis (¢,). Hence

155, < exp / / 17 (5, ) (1)1 (5,10, )2z ™ (5, w) X (5, w) V(s ) | 4 1,
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2.5 Path-ordered exponentials of the curvature

Since v is sufficiently regular with respect to 7,
127 (5. )15, 3) < B(5)0()
and hence by Lemma 2.5.3(a)

. 0u
Q%57 (s, 0)

) o (s YT, DU, ) < 12657, ) 5, Y (s, )0 5. 1)

< o(s)().
Therefore
iGN < exp [ (o w1105, )]

w(s,u1) - _ 3
/ 190557 (5, B)Y (5, @) || X (s, ﬁ)||a—?f(s, ) diids + 1.
a{s,un) U

Since ~ is sufficiently regular with respect to 22,

X*(s.@)|| = H(g—l)i<5,ﬁ)yp(5,a)1| < a||yk(5,ﬂ)|| = al(s, 1)

. k. .
where X has components X in the basis (e,). Hence

(el S exp [ (s )05

as,u1) - 8
/ Q257 (5, B) Y (s, a)a—%, D)l|ad(s, ) dids + 1
#(s,ua) U

51 4(s,uy)
Sexpa [ ) IE el [ 60 | dids +1

51 N _ a{s,u1) R B
<expa [ [0 w)le()ds [ w@da

0
Now

a(s.u1)
[ i@y da < blw)

(s,uq)
and hence
sl < expa(u) [ (s, w0 (5, w)0(s) ds + 1

5

From Proposition 2.1.2 we also have

s — sl S ex [ [ N5, X5, 0¥, ) s 1
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2.5 Path-ordered exponentials of the curvature

and so analogously to the above

B(s) = &l < expan(u,) [ (s w105 w)ll6(s) ds = 1.

Now from equation (2.5.3) we have

$n 1 N R
((s)i(s0) = Poexo [ [ 0u2(0,7) X4 (0,7)V (0. 7) dodr
Jsy JO

and so analogously to the above by Proposition 2.1.2

sl < e [ [ 1000 (5,0 X 3.0 Y (s, )] duds = 1
and as before

I < expan(u) [ (s w) ) (s, w)llo(s) ds + 1

%
s

= exp—ah(u) [ 1 u) 100, w)llos) ds + 1.

S

We now use a similar method to prove the next two results.

For0<a<1,0<b<1letp,,:[0,1] = M be the map (see diagram 2.5.3)

+(40a,1) 0<o<
Ya,1—4lo—3)(1-b) ‘<<l
Pa,b<0> = . . s
v(a —4(0c — L)a,b) ;<o <t
(0,0 —4(c—3)(b—1)) ;<o<1

Thus p, , is a closed loop and p, ,([0,1/4]) lies on v,, p,,([1/4,1/2]) lies on «,,
p.,([1/2,3/4]) lies on v,, and p, ,([3/4,1]) lies on x.
We define a basis (e(0)) at p, () by setting e’(0) = ¢,(0.1) and parallelly

propagating e;*(0) along p, , to give e (o).
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2.5 Path-ordered exponentials of the curvature

Diagram 2.5.3

Lemma 2.5.5.

ex*(1) = li(a, b)er*(0).

Proof. €(a,b) is obtained by parallelly propagating e,(0, 1) along p, , from p, ,(0) to
P.5(1/2), and e,(a,b) is obtained by parallelly propagating e;(0,1) along p,, from
5os(1) 10 pos(1/2). Now

é,(a,b) =1(a,b)e,(a,b)

so if we parallelly propagate é,(a,b),e;(a,b) along p,, from p,,(1/2) to p,,(1),
&.(a,b) becomes e>’(1) and e,(a,b) becomes e*(0). Thus
ex?(1) = l(a, b)e?*”(O). O]

Proposition 2.5.6. 3 C° M(s), m(s) > 0 such that

12(s,w)ll < M(s)  [[(7))(s, w)ll < mls).
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2.5 Path-ordered exponentials of the curvature
Proof. Let s, = 0 and u, = 1. Then p, (o) = p, ,, (o) and é(c,s,) = ;" (o).

Hence by Lemma 2.5.5
e.(1,8,) = (51, u4)€,(0, 5,).
Thus £(s,) = I!(s,,u,) and by Lemma 2.5.4
1653wl < expan(d) [ (s, 110, Dllo(s) ds + 3
1(71)2 (1, uo) | < exp —ah(1 )/O 12(s, DI (s, 1| b(s) dis + 3
but since I(s,1) = §! we have
(s u)ll S expf [ (s)ds +3

(1719 (s, uo) || < exp— / " (s)ds +3

where 3 = 4ah(1) is a constant. Hence ||l (s,u)]] < M(s) = exp B [ #(s") ds' + 3
and [|(I=1)](s,u)|| < m(s) =exp—0 [ ¢(s')ds’+3. M(s), m(s) are continuous in s

since ¢ € L1(0,1). O

Proposition 2.5.7. Let T be a tensor with components leli“ in the basis (€;)

and components T7'"'7* in the basis (e,). If there exist ¢' € L'(0,1) and ¢’ €

110y

L1(0,8up,er04; A(s)) such that

T2 (s, @) s, ) < & (s)9'(8)
then there exists x € L'(0,1) such that

1722 (s, )Ji(s, @) < x () ().
Proof

T2 0 (s, i) = (1700 (5,@) ... (171) 3 (5, @)1 (5, 0) .. 1 (s, )T -‘; (s,1)

11000
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hence by Proposition 2.5.6 there exist C° M(s), m(s) > 0 such that

17222 (s s, ) < mls) M (s)7)1 Ty (5, ) (s, )

< m(s)PM(s)eg' () (@)

< x(s)v'(a)

where since M (s), m(s) are continuous, x(s) = m(s)rM(s)1¢'(s) € L(0,1). O

We now prove Theorems 2.5.1 and 2.5.2.
Proof of Theorem 2.5.1. Let s, =0,0<s, <1 and 0 <, < uy < 1. By Lemma
2.5.5
e;t (1) = (s, up)est = (0) e (1) = (s, up)es(0).

Thus if we parallelly propagate e,(0,1) first round p, , from p, , (1) to p, , (0)
(i.e. in the reverse sense) and then round p,, ,, from p, ., (0) to p, . (1), e, (0,1)

undergoes a transformation
ei<0) 1) = lf<31: u1)<l_1)§(31, uo)ek(O, 1)-

However parallelly propagating e,(0,1) in this manner is equivalent to parallelly
propagating e,(0,1) along & from x(1) to x(u,), and then round p,, from p, (0) to
p,, (1), and then back along « from x(u;) to x(1). Hence
(s, 1) (1) (51, ug)e, (0, 1) = £(s,)e,(0,1)
and by Lemma 2.5.4 and Proposition 2.5.6 there exist C° M (s), m(s) > 0 such that
18551, ) (1)1, — 1] = 2(5.) = &

< expah(u) [ 18 0s, )10 (5w 6(s) ds — 1

< exp ah(u,) /051 M(s)m(s)o(s)ds —1

— 0 as ug,u; — 0
where h, ¢ are as above and since M (s), m(s) are continuous, M(s)m(s)o(s) €
L1(0,1). Hence lim

I1(s) exists.

s—0 U1
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2.5 Path-ordered exponentials of the curvature

Now let 0 < 5y <5, <1,u, =1and 0<u, < 1. Again by Lemma 2.5.5

e (1) = Dy up)esnn(0)  esvon(1) = 1i(s,, ug)ess o (0),

2 1

Thus if we parallelly propagate ¢,(0,1) first round p, . from p, , (0) to p, . (1)

and then round p, , from p, (1) to p, . (0) (ie. in the reverse sense), ¢,(0,1)

undergoes a transformation
.(0,1) = (171 (50, u) 145,y e, (0, 1).

However parallelly propagating ¢,(0,1) in this manner is equivalent to parallelly
propagating e,(0,1) along v, from v,(0) to v,(s,), and then round p,, from p, (0)

to p,, (1), and then back along v, from v,(s,) to v,(0). Hence
(l_l)g(sm uo)lf(slz U’O>ek(07 1) = 53(51)6]‘(07 1)

and by Lemma 2.5.4
1(171)7 (5o, )14 (1, we) — 83]| = |2 (s,) — 87|

< expah() [ (s, DI, Dllé(s) ds - 1

0
S1

=expl [ &(s)ds—1

where 8 = 4ah(1) since l(s,1) = 6. Now [I(s) = lim,_, /(s, u) exists so
1) (s0)15(5,) = 63 < excp ,3/ é(s)ds — 1
— 0 as s; — 34

and hence [(s) is continuous. O
Proof of Theorem 2.5.2. Working in the basis (e;), since v is sufficiently regular

with respect to ©, we have

192557 (s, w)lli(s, %) < ¢(s)p()

68



B S T

2.5 Path-ordered exponentials of the curvature
where ¢, v, 4 are as above. By Lemma 2.5.3(a), [|2¢(s, %)Y (s, 2)]| = 1 and

ou U -
(s WY, @), ) < [0 . ) ) o, 80 (5, ) . )
< 119455, )5, )

< ¢(s)(a)

and so by Proposition 2.5.7 there exists x € L*(0, 1) such that, working now in the

12577 (s, @)

basis (e,),
16205, ) o, )Y (3, D5, ) < x(5)()
By Proposition 2.1.2,
N o)) = 81l = 1Puesp [ [ 0 (5,0) X4 5 0)Y 5, ) ddu
< exp / /O 190 (5, ) X (5, 1)V (s, )| dsdu — 1
<exp [ [ 192G ¥ (o, u) 145, ) dsdu — 1
— exp /1 / ']Qk”j(s,u)yl(s,u)||l(u) duds — 1
— exp/ / 190 (5, )Y (s, )1l u))gu(s 7) dids — 1
—exp/ / (s u)gZ(s DY (s, )| 1(uls, 7)) dads — 1

(s,u0)
as,uy)
< exp/ / W) dads — 1
(s,u0)
u{s,uy) _ ~
= exp/ x(s) ds/ Y(a)du —1
0 a{s,ug)

< exp h(u,) /01 x(s)ds —1

— 0 as ug,u; — 0

since by Lemma 2.5.3(b) h(u,) — 0 as u; — 0, where h is as above. O
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3.1 Conformal transformations

Chapter 3

Conformal transformations and conformal singularities

3.1 Conformal transformations
Let (M, g) be a C space-time. A conformal transformation [HE] is a transfor-
mation of the metric

g 7=~

where 2 : M — R is a C~ scalar function which satisfies
Qz) >0 Vrel

Thus 7 is a metric and the space-time (M,7) is said to be conformally related to
(M,g). Note that M itself is unchanged. A conformal transformation preserves
the causal structure of (M, g): u € TM is timelike, null, or spacelike with respect
to ¢ if and only if it satisfies the same property with respect to §. Conversely, if
two metrics g and g have the same causal structure at a point then, at this point,
g = 2g for some 2 > 0.

Thus we have generated a new space-time (M,g) from (M, g). If (M,g) has
unreasonable physical properties we may be able to choose €2 so as to make (M, g)
more physically realistic, for example obey energy conditions or be a vacuum space-
time. If (M, g) is a singular space-time we could require {2 — 1 as we approach the
singularity so that we do not upset the geometry near the singularity. Alternatively
we may be able to choose () to remove a singularity, so that (M, 7) is a non-singular
space-time, in which case the singularity of (A, g) is in some sense mathematically

tractable. We may instead hope merely to simplify a singularity by applying a
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3.1 Conformal transformations
conformal transformation. Alternatively, if (M, g) is a non-singular space-time, we
may be able to choose €2 to generate a new singularity. We emphasize though that
a conformal transformation provides only one functional degree of freedom and as
such is limited in what it can achieve.

Let ¢ have Levi-Civita connection V and let g have Levi-Civita connection V.

Working in a basis field (e,) set

Vie; =Tte, Ve, = Tfjek.
Lemma 3.1.1. Ifo¥ = ffj —I't andw = log €2 then

of = 6w + 5]@8@ — 9,9 0w,

Proof. Since V, V are metric connections we have

where g,; = Q%g,;;. Hence
0=0,9;1 — Fijglk — I 9 (3.1.1)

=1 =1
O = gjkaiQZ -+ 92(81%1: - Fijglk — Fikgjl) (312)
where for a scalar f : M — R, 8, := e,(f). Subtracting (3.1.2) from (3.1.1) gives

0,2
gjk_QT = Uijglk + 095 (3.1.3a)

Now V, V are torsion free so from section 2.4 we know that

By symmetry from (3.1.3a)

.02
G ;22 =0, g+ 0 G (3.1.3b)
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3.1 Conformal transformations

0,822 ! !
gij_(}?— = Ukiglj + ijgil' (3130)
(3.1.3a) + (3.1.3b) — (3.1.3¢) gives
0,02 Q-QE 0,22

— g T ! Lo ! ol Al
ik 02 + Gri Q02 9i; 02 -Uijgzk+0ik9ﬂ‘f‘0jk91i+aﬂgu 4915 — O, 9a

i 1
- zo—ugkl
and so

] 1 0,022 0.Q2 0,22 1
0',{} = 'Q_le(gjl 0? + G 62 — Gy 52 ) = §gkl(gjlaiw +gliajw - gijalw)

and hence

of, = 0f0,w + 0¥ 9w — g;;9M Ow. O

Now working in a coordinate basis, if g, § have Ricci tensors R Rj then

17
R; =R; — (n—-2)V,V,w — g,¢"V,Vw+ (n — 2)(Vw)(V,w)
- (n - 2)gijgkl(vkw)(vlw)
where n is the dimension of M. For n > 3 the Weyl tensor

2
n—1)(n—2)

Cijlcl = Rijkl + )(gj[le]i - gi[le]j) + ( Rgi{kgl]j

2
2
obeys C !t = Cyl.

A conformal transformation varies the length scale of a metric in an isotropic
way: if (e;) is pseudo-orthonormal with respect to g then (Se,) will be pseudo-
orthonormal with respect to §g. The fact that a conformal transformation alters the
Ricci tensor but leaves the Weyl tensor unaltered suggests that in some way the
Ricei tensor measures expansion and contraction, whereas the Weyl tensor measures
shear and distortion.

Let v be an affinely parametrised geodesic with respect to g with tangent u® so

u*V,u/ = 0. In general v will not be a geodesic with respect to § unless «y is null.

It can be shown that

uiVul = uiurdw — g uukgltow
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3.2 Conformal singularities

so the condition for v to be a non-affinely parametrised geodesic with respect to g,

wV,uw = i, will hold if uiu, = 0, in other words if ~ is a null geodesic. or if 9w
1s cotangent to .

If M is 2-dimensional, then for any metric g, (M, g) is conformally flat, and in

fact any two metrics g and g on M will be conformal to each other. For example

consider the 2-cone
ds® = dr? + Ar2db? 0<8<2r.

If r = p4 then
ds* = Q*(p)(dp* + p*db?)

where Q(p) = ApA-1 hence if the 2-cone has metric g then g = Q27 where 7 is the

flat metric.

3.2 Conformal singularities

Let (M, g) be a space-time which is singular by some definition (for example
b-incompleteness or timelike b-incompleteness) and let C be the corresponding class
of singular curves. Suppose that all v € C terminate at genuine singularities rather
than regular boundary points. Given a conformal transformation 8 : g — g = (3¢
where Q(z) > 0 Vz € M, we can form C the class of curves singular in (M,g) by
the same definition. If € can be chosen so that v € C terminate only at regular
boundary points then (M, g) is said to be conformally regular. In other words, a
conformally singular space-time is one whose singular behaviour can be removed by
a conformal transformation.

Suppose we can extend beyond all the regular boundary points of (M, g) simul-
taneously to give a larger space-time (M’ ¢'). Let (M,7) be the closure of (M,7)
in (M',g"). Then M — M will provide some sort of singular boundary for (M, g)

which we hope will depend only on 2 and (M, g). Clearly {2 cannot extend in a C~
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3.2 Conformal singularities
non-zero way onto M — M, otherwise ¢ = Q-7 would be non-singular on 3 — M.
The idea, then, is that the singular behaviour of ¢ is contained in (.
A little more care is needed however. For example let § = Q2g where g is the
conical metric
ds® = —dt? + dr? + A2r2d6® + dz?
and Q = 1/re. Then _
R = —6a(a+ 1)r2e—
R, R’ =xrtet A>0
so R — 0 and ﬁijﬁij — 0 as r = 0 if @ > 1. Furthermore it can be shown that the
Lorentz transformations generated by r = constant loops encircling » = 0 tend to

the identity as the loops shrink to » = 0. Now let
A/(r) = (—\/57', T, 07 O)

so v has tangent

o = (—\/5, 1,0,0) g(u®, us) = —1

so v is a timelike curve parametrised by proper time which is future incomplete.
Because it is a geodesic it has bounded (in fact zero) acceleration. Let 7 be proper
time with respect to g and let 7 be proper time with respect to g. Then —(dr/dr)? =

g(us,ue) = —1 and —(d7/dr)? = g(u2, ue) = Q2g(u®,ue) = —Q2. Hence

€ e ] l-—a ~
?(5)—?(7‘0):—/ Qr)ydr =— T—adr: [<;_1)} —ooase—0if o> 1.

o

If @ > 1, v is not timelike incomplete with respect to g. In particular it cannot
be a timelike incomplete curve of bounded acceleration with respect g. We have
mapped the singularity away to infinity.

More generally we define
S ={v:(0,a] = M|y is C* and inextendible, o > 0}.
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3.2 Conformal singularities
We now work in terms of b-incompleteness. Let C be the class of curves in S b-
incomplete with respect to (M, g) and let C be the class of curves in S b-incomplete
with respect to (M, g). We would like C = C, however we shall see that this may
be too much to ask. Let g, g have metric connections w, @, let v € S, let (e;) be an
w-frame defined along v such that g(e;, e;) = n;;, and let (g;) be an @-frame defined

along ~ such that g(€,,€;) = n,;, where n,; = diag(—1,1,1,1). If we set
ei(s) = Li(s)e;(s)

then L!(s) € GL,(R) and we know by Theorem 2.3.3 that if w ~ © (and thus

lim,_,, L!(s) exists) then v has w-finite b-length if and only if v has @-finite b-

s—0 i

length. Thus if w ~ @ along every § € CUC then C =C.
We now exhibit a sufficient condition for w ~ @ along v. Working in the frame

(e;), set

k
ij

g

.k <7 .
Ve = wi ey Ve, =W €.

From Lemma 3.1.1 we have
ot = 0£0;0 + 050, — n;;m* 0,0
where of, = wfj —wk and ¢ =log Q. Let v have tangent u'. Then
uiafj = (5]’?ui8i<,z5 + u*0;¢0 — nyn*uio;¢
and from section 2.3
Li(s) = Pexp /Sa —u(8,)0% (8o) dso-

Suppose v € C and let v : (0, — M be parametrised by b-length measured with
respect to w. Then by Lemma 2.2.9, ||uf|| = 1 and by Lemma 2.3.11, a sufficient

condition for lim, ,, LI(s) to exist, and thus for w ~ @, is

s—0

Sut(5)0,0(s) + uk(s)0;6(s) — nyn*ui(s)0ié(s) € L1(0, @)
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3.2 Conformal singularities
which will hold if (but maybe not only if) dé(s) € L1(0, @), i.e. if d¢ is w-integrable.
Note that if do is w-integrable then w ~ @ and it follows as above that v € C and
by Proposition 2.3.10 that d¢ is W-integrable.

If dp(s) € LY(0, ), it follows that u'(s)0;¢(s) € L'(0,a). But ui(s)d,p(s) =
d¢/ds and '
o(8) =ola) = [ ui(s)0,8(s,) ds,

and so ¢(0) := lim,_, ¢(s) exists. Hence Q(0) := lim, ,, Q2(s) = exp(¢(0)) and
0 < Q(0) < co. Thus if d¢ is w-integrable then both 2 — 0 and Q — 0o as s — 0
are impossible.

Suppose instead that v € C. Since g = Q-27 and logQ-! = —logQ = —¢ it
follows by symmetry that if v € C and d¢ is T-integrable then @ ~ w, v € C and
d¢ is w-integrable. Again, in this case, both 2 — 0 and 2 —» oo as s — 0 are

impossible.

Now suppose v € S where v need not necessarily be parametrised by b-length.

9(Q%;, Qr;) = Q2g(e,,€,) = 7(8,, 8;) = n;; therefore Qe; = le; for some I € Lt and

where I (s) € L and by Q(s) we mean Q(v(s)). For el

Tij = lflﬁ-mz = |ingll = Hlflémzﬂ < Wf”“léH”nsz = [1Z[]* [l
S 1< P =1 < )
Thus

1 1
L = ——||l > —
1L = g I = g
and so if (s) — 0 as s — 0 (or more generally there does not exist m > 0 such
that m < Q(s)) then L? will be unbounded as s — 0. Conversely, if L’ is bounded

as s — 0 then there exists m > 0 such that m < §(s) and in particular Q(s) — 0

is impossible.
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3.2 Conformal singularities

Again by symmetry
L) = QUsHIE) ()] = Q(s)

and so if Q(s) — oo as s — 0 (or more generally there does not exist M > 0 such
that Q(s) < M) then (L-1)! will be unbounded as s — 0. Conversely, if (L-1) is
bounded as s — 0 then there exists M > 0 such that Q(s) < M and in particular
0 — oo is impossible.

Thus in particular if @ — 0 or Q = oo along § € C UC then w ~ T cannot hold
along ¢.

From the proofs of Lemma 2.3.4 and Theorem 2.3.3 we see that if L!(s) is
bounded as s — 0 and v € C, then v € C. This is true even if lim,_,, L{(s) does not
exist. Unfortunately, if L?(s) is unbounded as s — 0 and v € C, it may still be the
case that v € C. By symmetry, if (L=1)!(s) is bounded as s — 0 and v € C then
v € C. Again, if (L-')!(s) is unbounded as s — 0 and v € C, it may still be the
case that v € C. Hence Q — 0 or 2 — oo may be possible along § € CNC.

We now restrict our attention to timelike curves. We note that a timelike curve
is b-incomplete if and only if it is timelike incomplete and has bounded acceleration.

Let

Sy ={v:(0,a] = M|y is C" inextendible and timelike, o > 0}

where we recall that a curve is timelike with respect to (M, g) if and only if it is
timelike with respect to (M, g). Let C, be the class of curves in S; b-incomplete with
respect to (M, g) and let C, be the class of curves in S, b-incomplete with respect to
(M,7g). S, will include curves which extend to infinity, i.e. curves which fail to be
b-incomplete with respect to one or both of (M, g) and (M, 7). The c-boundaries
formed from S, for (M, g) and (M, 7) will include points “at infinity” and, since they
are conformally invariant, will in fact be identical. Alternatively the c-boundary
formed from C, for (M,7) will correspond to M — M, after perhaps identifying
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3.2 Conformal singularities
points of the c-boundary. For example, if M — A is a timelike hypersurface in 3/,
then each point of M — M will correspond to two distinct points of the c-boundary,
one on each side.

Let v € C, and let v : 7+ ~(7) be parametrised with respect to proper time
measured with respect to g. Then the prop'er time elapsed along 7, ,, with respect
to g is

() = [ (=glln) ) 2 dn = [ (-2 (w)g(u(n), u(n) > dn
= [ 0(n)dr,
where v : 7+ ~(7) has tangent u and since  is parametrised with respect to proper
time, g(u,u) = —1. Therefore v € C, = Q(r) € L'(0, ) (though Q(r) € L(0, a)
may not be sufficient to ensure that v has bounded acceleration with respect to
7). Similarly if v € C, then v € C, = Q-1(7) € L'(0,@) where 7 measures proper
time along v with respect to § and 7(«) = @ (though Q-1(7) € L*(0,@) may not
be sufficient to ensure that v has bounded acceleration with respect to g).

Similar conditions will apply to spacelike curves.

Now suppose that a tensor U is defined and C° on the regular space-time (M, 7).
Since every v € C terminates at a point of A — M, it follows that U will be Co-
@-quasi-regular along any v € C. If we pick z € M — M and a coordinate patch
W which contains z then the coordinate components of U in the coordinate system
defined by W will behave in a C° way, even at . They will also behave in a C° way
in the coordinate system defined by the coordinate patch W N M in the singular
space-time (M, g). Thus for v € CNC there will exist a coordinate patch W, which ~
eventually enters without leaving such that the coordinate components of U behave
in a C° way along . Despite this, U may not be C%w-quasi-regular along +.

For example, take the Weyl tensor C. This is conformally invariant, that is,

the Weyl tensors of (M, g) and (M, 7g) are the same. C will be perfectly regular (at
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3.2 Conformal singularities
least C°) on the whole of M and therefore C°-T-quasi-regular along any v € C. As
above, given v € C N C there will exist a coordinate patch W, which v eventually
enters without leaving such that the coordinate components of C' behave in a C?°
way along . Of course, C' may not be C%-w-quasi-regular.

However, if the Weyl tensor is everywhere zero on M, then it will be C%w-
quasi-regular along any ~ € C.

Let v € CNC and let C have components Cy,,! in an w-frame (e;) defined along
v and components Cy;! in an @-frame (g;) defined along v. (This is a change of
notation from section 3.1.) Let €, = L{ej. Then as above L] = élf where I/ € L;
and

Cil = (L“l)z'(L*l)iﬁ'(L*l)z'Lf,éi,j/k,l'

1]

and
L) (L) (L4 L] = 2l ()7 ()L |

[ 7 k

= QI

>
and hence if 2 — oo along v we would in general expect C;,! to diverge (though
there may be cases where it does not) and therefore to fail to be C%-w-quasi-regular
along ~.

More generally if @ — 0 or Q — oo along v then L] or (L-')! will fail to be
bounded and tensors which are C%-w-quasi-regular may not be C°-@-quasi-regular,
and tensors which are C°-w-quasi-regular may not be C°-w-quasi-regular. Of course,
if w ~ @ then a tensor will be C%w-quasi-regular if and only if it is C°-w-quasi-
regular.

Conformal singularities have been studied in the context of cosmological models
([T] and references therein). Specifically, a physical space-time (M, g) is related to

an unphysical space-time (M',g) where M C M’ by

g =g
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3.2 Conformal singularities
wherethe boundary of the closure M of M in M’ is a smooth spacelike hypersurface
S in 0M',g) and Q : M — R obeys @ > 0 in M and Q = 0 on ¥. We note that if
7 = (g as in our previous definition then € = Q-L.

Ve note that since 2 — 0 and hence Q — oo along any § € CUC, w ~ @
canna hold and (L-1)! will be unbounded and as above, the Weyl tensor will not
in gereral be CO-w-quasi-regular. Furthermore, unless Q — 0 sufficiently slowly, so
that ((§(s)) € L'(0, ) for § € C, in general C ¢ C, in other words curves incomplete
with espect to (M, g) may not terminate a point of X.

The following additional assumptions are made in [GW]

(I M has a smooth cosmic time function 7 and Q = Q(T)
(2 M is the open submanifold of M’ where T > 0
(3 M’ is regular on an open interval about 7" =0
(4 Q(0) =0, Qis C° at T = 0 and C* and positive on an open interval (0, ]
where b > 0.
(52 QU/Q —ocoasT — 0
(5b QO /()2 =1 <1asT — 0+.

Condiion (5b) is dropped in [GCW] since it follows from the others.

Yis called an isotropic singularity and can be shown to be a curvature singu-
larityof (M, g). If (M, g) contains an irrotational perfect fluid source, then under
certair additional assumptions, a number of results can be proved, in particular
that I has zero extrinsic curvature in (M,g) and that the limiting curvature near
the siigularity in (M, g) is determined by the intrinsic geometry of ¥.

Adifferent set of assumptions are made in [Ne93a] and [Ne93b]. Instead of (1)-
(5b) dove, ) is taken to be C> on M and VQ # 0,Q = 0 on . If (M, g) contains
a perkct fluid which obeys an equation of state, then a number of results can be

provet«. For example, the fluid will be irrotational. With some extra differentiability
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3.2 Conformal singularities
assumptions, it can be shown that the electric part of the Weyl tensor is zero on X
if and only if (M, g) is a Friedman-Robertson-Walker cosmology.

The interest in this comes from the Weyl Curvature Hypothesis ([T]). This is
the hypothesis that, in a suitably defined way, the Weyl curvature vanishes at an
initial cosmological singularity. The motivation for this comes from speculations
about quantum gravity, but it is of interest to see what consequences it would
have in classical general relativity. We can make sense of the Weyl Curvature
Hypothesis in the setting of a conformal singularity: we simply demand that the
Weyl tensor be C° on M and zero on ¥. Thus under the conditions described above,
the Weyl Curvature Hypothesis gives rise uniquely to a Friedman-Robertson-Walker
cosmology, which is spatially homogeneous and isotropic, and in fact conformally
flat. Thus the Weyl Curvature Hypothesis, which may arise due to purely local
quantum gravitational considerations, may give rise to the large scale homogeneity
and isotropy of the universe

However the above assumes that it is reasonable to suppose that a cosmological
singularity is a conformal one. We might hope, since the Weyl tensor is regular
at a conformal singularity, that if the Weyl tensor is suitably well behaved near a
singularity, then it must be a conformal singularity. However we shall see that this
is not the case. The conical singularity has zero curvature and therefore must have
zero Weyl tensor, and yet we shall show that it cannot be a conformal singular-
ity. The conical singularity is an example of a 2-dimensional timelike quasi-regular
singularity, but it may be possible to find 3-dimensional spacelike quasi-regular
singularities which cannot be conformally regularised. We could also conformally
transform such singularities to obtain curvature singularities. However we note
that such a singularity would still locally be a conformal singularity in the following

sense: given an incomplete curve v which terminates at a singularity conformal to
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3.3 Conformal Cartan connection
a quasi-regular singularity. there will exist a neighbourhood U of ~ such (U,~) is

conformally regular.

3.3 Conformal Cartan connection
Let (M, g,) be a space-time and let C be the class of metrics on M conformal

to g,, that is,
g€ C < 3I0: M — Rsuch that Q(z) >0 Vz € M and g = Q%g,.

A conformal frame (c;) at x € M is a basis of T, M which is oriented, time-oriented
and pseudo-orthonormal with respect to some g € C' ([S77] and [FS]).
By analogy with LM the frame bundle of (M, g,), we form CM the conformal

frame bundle of (M,C). This has projection
7:CM — M

where each fibre 7=1(x) consists of all conformal frames at z. Thus (¢;) € CM will
be pseudo-orthonormal with respect to some g € C and orthogonal with respect to

all g € C. C'M is a principal fibre bundle with structure group
Ct =R¥ x LT ={C} : C}C'ny, = O’n;; some Q2 > 0}

soif C! € CT then C? = QLI for some Q >0 and L? € Lt.

CM is a principal sub-bundle of GL(M) where GL(M) is the principal bundle
with projection p : GL(M) — M for which at each z € M, p~!(z) consists of all
bases for T, M. G L(M) has structure group GL,(R) where dim M = n.

Working in coordinates (x#) we now prove a result implied but not proved in

[FS].
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3.3 Conformal Cartan connection
Proposition 3.3.1. Let V* be a connection on GL(M) and let ¢ € C. Then V*
will be a connection on CM <= V~,g,, = —2f,g,, for some f, € T-M.
Proof. Let (¢;) € 7=t(z) for some z € M, let v : s — ~v(s) be a C! curve through z

with tangent u*, and use V= to parallelly propagate (¢;) along v so
urV*yet = 0.
Hence
u*V*Agwcfc; = cfc;uAV*AgW + cfg“,,u*\—/*Ac;’ + c]”,gu,,u’\v*kc‘i‘
= c?c;u*V*AgW.
(c;) will remain in C'M under parallel propagation by V= if and only if g(c,,¢;) =
n,; for some Q : s — Q(s) defined along v such that €2 > 0 which will hold if and

only if

U/\V*,\guucfc;’ = 'UAV*/\QUL']' = (UAV*AQ)%
and hence (c¢;) will remain in CM under parallel propagation by V* if and only if
Cétc;u/\v*/\guu = (UAV*/\Q)UL']' — U’Av*)\guu = (U)\V*/\Q)g”y.

Thus (¢;) will remain in CM under parallel propagation by V~ in any direction if
and only if

v*z\guu = (V*AQz)guu

for some 2, : U, — R+ defined on a neighbourhood U, of z. This will hold, and V*

will be a connection on CM, if and only if
V*\9., = —2f.g,, for some f, € T*M. 0

A connection V* on CM is a called a conformal connection. The metric con-
nection of any g € C will be a conformal connection, though in general not all

conformal connections will be metric connections. Given V* and g € C we obtain
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3.8 Conformal Cartan connection
the pair (g,,, f\) defined by V-,g,, = —2f,g,,. This undergoes a gauge transfor-
mation

(guu7f/\) = (egoguw fr—0,0)

as we pick different metrics in C. V* will on}y be a metric connection if 3¢ : 1/ — R
such that f, — d,¢ = 0 or in other words f = d¢. In this case V- e>g =
—2(f\ — 0,0)g., = 0.
Now let
P2, = 4 8 — 0,09 ],
Note that ij depends on f, but not on which g € C we pick. Also, f, = ;f{, so

that we may recover f, from a knowledge of fﬁjy. Then
*A  _— TA A
F wy - Fuu + fuu

where [ is the metric connection of g and f, is induced by I'* and g. Thus a pair
(9., fr) characterises I'* and at a point x € M, if we fix g € C, there is a 1-1 map
between conformal connections at z and f € T*M. Note that since f:y 1s symmetric
and I is torsion free, conformal connections are torsion free.

We now define a new bundle on M called P! the first prolongation of C'M. Let
7 now be the projection 7 : Pt — M. If r € 7—1(x) then r = (z,¢;,I'*) where ¢, is
a conformal frame at x and I'* is some conformal connection defined at z.

We define a bundle chart over an open U C M, using greek space-time indices
and latin frame indices. Choose coordinates (z#) on U, g € C, and a smooth section
(e;) of CM such that g(e, e;) = n,. Let 't be the metric connection of g with

respect to (e;). Then define a chart

6:77(U)—->UxH

(z,c¢,, ") = (z»,C¥, f;) CreCl, [, eR"
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3.3 Conformal Cartan connection
where ¢, = Cte,, and f = f;e/ along with ¢ determine I'* where (e') is dual to (e;)

and R** is the vector space dual to R¢. Hence Vo € M
mHz) = H={(Ch f):Cte 1, f € R }.

For s = (C*, f;) € H. t = (D h;) € H we define a product under which H is
closed

st = (CEDL f, + b (C7)).
The following result is implicitly assumed, but not proved, in [FS].
Proposition 3.3.2. H is a group under the product (s,t) — st.

Proof. Let s = (C*, f;) € H, t = (D* h;) € H, and v = (E*,g9;) € H. Then
(styu = (CADL, f, + b (C=)) (B, )
= (CEDLEP. f, + RO}, + g, (D)P(CY)

l J

= (CEDL B, + (b + 9, (D)) (C))

m- i l
= s(tu)

and so the product is associative. e = (d%,0) is the identity since
(85,0)(CH, ) = (CH, £,) = (C*, £,)(4,0)
and (C¥, f;) has inverse ((C1)%, —f,C!) since
(CHINC)E=1C) = (85,1, = £.CL(C)7) = (81,0)
(C)E =FCD(CE £,) = (85, =£,C) + F,CL) = (8%,0).
Hence H is a group. O

An action of H on the fibres of P! can be chosen to make P! a principal fibre

bundle. We define the action of t = (D¥, h;) € H on 7 = (z,¢;,I'*) € 7~1(z) by
t:(z#, s) — (z#, st)

where in our bundle chart r has coordinates (2#,s) and s = (C%, f;) € H.
The following result is also implicitly assumed, but not proved, in [FS].
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3.8 Conformal Cartan connection

Proposition 3.3.3. The action t: (z#,s) — (z#, st) is coordinate independent.

Proof. The action ¢; = D¥c, depends only on ¢ and r and is thus coordinate inde-
pendent. Now ¢; = C¥e, and DFc, = D*Cle, = C! D¥e, and hence in coordinates
Ck— CFDL.

Now let h = h;ct where (c?) is dual to (c,). Thus A € T*M depends only on r.

['* is determined by the pair (g, f) for some f € 7M. The action

(9, f) = (g, f+h)

determines a new conformal connection T'* uniquely since if ¢' € C, I'* is determined
by the pair (¢’, f — do) for some ¢ : U, — R where U, is a neighbourhood of z, and

in this case the above action gives

(g, f —do) = (9", f —dd+h) = (g, (] +h) — do)

which also determines T'*. Now ¢, = Ckey, so ¢* = (Ct)kel and h = h =
h(C~*)Le; and hence in coordinates f; = f; + A (C1)L. O
It can also be shown that the action ¢ : (z#, s) — (z*#, st) is free and transitive.
We can now look at connections on P'. Given a curve z = z()\) in M and
u = (z4,¢,I'*) € 77 '(z,) for some z, = x(),), a connection on P' will tell us
how to parallelly propagate u along xz. In particular it will tell us, not just how to
parallelly propagate (c;), but how to parallelly propagate T'=.
Now let

A%y = R*ij - R*nij/(% —2)

1]

where I'* has Ricci tensor R*,. will in general only be

; and Ricci scalar R+, A=

J
defined at a point z; € M if I'* is defined in a neighbourhood of z,, but not if I'*
is only defined along z. However, if z()\) has tangent v?, viA*; can be shown to
depend only on the value of I'* along z and it can be shown that there exists a

unique connection I' on P! called the conformal Cartan connection ([S] and [FS])
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3.8 Conformal Cartan connection
which parallelly propagates I'* so as to ensure v'A*,; = 0 along z, where 2(\) has
tangent v’, and which parallelly propagates (¢;) to coincide with the way ['* would
have parallelly propagated (c;).

We note that for a connection I'* defined in a neighbourhood of a point z;, € M,
A=, = A+, and that A~ = 0 <= R*ij = 0. Recall that R* = R*; and

R*.. = R*,! where

ij iy

Rt =00 — 9T+ 4T+ [=m _[* [xm _ cm]l
ik J ik im Jk im ik i3

) mk

k . . 1 k — — ;
where ¢ are the structure coefficients of (e;) and satisfy cke, = [e;, e;] = Oie; = Oje,

where 0; = e/'0,. Since I' is torsion free, k= e — ijl In a coordinate basis

If u(A) = (z(A),¢;(A), I'(N)) has been parallelly propagated along z = z(A) by

I' then
dz*/d\ = ffC]’Fe‘kf (3.3.1)
§ECker vV, Cn =0 (3.3.2)
ErCr AR = 0. (3.3.3)

(3.3.1) defines &/ to be the components of the tangent to z = z(\) in the frame
(c;). (3.3.2) ensures (c;) is parallelly propagated by I'*. (3.3.3) defines I'* by the
condition v*A*,; = 0. These conditions are all coordinate independent.

Let u have coordinates (z#(A), C¥(A), b;())). In terms of our bundle chart (3.3.2)

» Y5
becomes

dCifdN = — (T, + bi,)CEEmC!. (3.3.2a)

After much manipulation it can be shown that, if ['* is defined in a neighbourhood
of z,

b

1
A=A+ (n=2)0b; — (n—2)b, I — (n—2)§bmb$

) k)
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3.3 Conformal Cartan connection
where A, = R,; — Rn;;/(2n — 2) and the metric connection I' of g has Ricci tensor

R,; and Ricct scalar K. Hence
i Ax* T 1 i m ¢ il m
VAT =0t A + (0 = 2)v0b; — (n = 2)vb, I — (n —2)u §bmbij

which depends only on the value of I'* aloﬁg z. Hence if n = dimM > 2, (3.3.3)

becomes

. .
db/dX = (b1, + §bjbgk — Ly)Ci g™ (3.3.3a)

where L;; = A,;/(n —2). If however n = 2 then

A = A..

iJ ij

and we cannot impose any conditions on A*,;. The Riemann tensor of I'* will have
only one independent component and if we impose R* = 0 instead it can be shown
that
% m 1
0;bt = —bmT!  — §R

which does not have a unique solution.

Therefore, for the remainder of the section, we shall assume that n > 2.

We note that if a connection I'* is defined in the neighbourhood of z and R*;; =0
along z, then it follows that A = 0 and v*A*;; = 0. Thus I'* will be parallel along
x with respect to I'. For example if (M, g) is a vacuum space-time for some g € C,
then the metric connection I' of g will be parallel along any C* curve in M with
respect to T.

We can now consider holonomy in P'. For example let o : [0,1] — M be a
closed loop with z = a(0). Let ¢ € C. Then we can use I' to parallelly propagate
u = (z,¢;,T|,) round a where ¢, is some conformal frame at z and I' is the metric
connection of g. This results in the unique I'* defined on « for which T*(z) =T,

and v#A*,, = 0 where o has tangent v#. In general I'*(1) # I'*(0) however if
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3.3 Conformal Cartan connection
R,, =0 on o then I'* =T  on « and the parallel transport of u = (z,¢;,I'|,) round
«is u' = (z.d;,T'|,) where d, is the parallel transport of ¢; round « under I.

Now let v : [0,1]2 — M be a C* map where ~, : s — ~(s.t) is a closed loop.
Pick u € 7=1(v(0,1)) and use T to parallelly propagate u along  : t + (0.t
and then round =, for each value of . As before we obtain elements of holonomy
h:[0,1] — H where h is C°. In particular, if ~, is a point, h(0) = e where e is the
identity of H.

Let (M, g,) be a space-time and let g, generate the conformal class of metrics
C. Let v :[0,1] x (0,1] = M be a C* map as above except that now 0 < ¢ < 1.
Suppose that for each s € [0,1], s, : (0,1] — M : t — ~(s,t) terminates at a singular
boundary point. We want to know if ¢ € C for which ¢ can be extended in a C*
way onto some M where M C M and such that lim, ,,v(s,t) =z, € M — M, that
is, each x, terminates at the same z, € M — M.

Suppose that such a g exists. Then g generates the conformal class of metrics
Cr all of whose members are regular on M. If we take all ¢’ € Cx to be restricted to
M, Cp C C however not all metrics in C will be in Cp. If we define T' on PY(M, Cy),
the first prolongation of the conformal frame bundle C M (Cy) defined with respect
to Cg, the map h : (0,1] — H defined above will be such that lim,_, h(t) = e.

We can also define I on P1(M,C), the first prolongation of the conformal frame
bundle CM(C) defined with respect to C. The point is, we can examine the holon-
omy of I' on PY(M,C) purely in terms of (M,g,) and the conformal class C it
generates even if there is no metric in C which can be extended in a C? way onto a

larger M as above. However if g does exist we have
Proposition 3.3.4. P'(M,Cy) = PY(M,C).

Proof. The principal bundle GL(M) is defined on M without reference to any

metric, and C(M,Cp) and C(M,C) are both principal sub-bundles of GL(M). The
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3.3 Conformal Cartan connection
action of CT on these bundles is defined by this inclusion and by CT < GL,(R).
However C'(M,Cg) C C(M, C) and because the action of C7 is transitive C'(M,Cp) =
C(M,C).

Hence the conformal frames and connections defined at each point of M/ are the
same for Cp and C. As sets P!(M,Cy) and P(M,C) are the same. By construction
Jdg, € Cr C C which gives a bundle chart on both P'(M,Cp) and P'(M,C) in
which the action of H is the same. However we have shown that the action of H is
coordinate independent and hence PY(M,Cp) = P*(M,C). 0

Hence if ¢ exists, the map h : (0,1] — H defined for P'(M,C) will obey
lim,_,, h(t) = e. It follows that if lim,_, A(t) # e the above g cannot be found.

In particular if (M, g,) is a vacuum space-time with metric connection [y, then
it follows from above that I will parallelly propagate u = (c¢;,Iy|,, () round 7,
to u' = (d;,I'y|,,0)) Where (c,) is some conformal frame at +,(0) and I'; parallelly
propagates (c;) round v, to (d;). Thus if 'y has non-trivial singular holonomy on «
then lim, ,, A(t) # e and there does not exist g € C with respect to which each «,
terminates at the same regular boundary point.

We note that if the x, are future timelike incomplete and share the same past
light cone (or are past timelike incomplete and share the same future light cone)
and dg € C with respect to which each x, terminates at a regular boundary point
then each x, will terminate at the same regular boundary point.

As an example let (M, g,) be the conical metric
ds? = —dt*> + dr* + A?r2df? + dz? r#0

where M = R* — {r = 0}. Let C be the conformal class generated by g,. Consider
a closed loop a : [0,1] = M. Pick u = (z,¢,'|,) € P! where z = «(0), ¢
is some conformal frame at z, and [' is the metric connection of g,. We have

shown that the conformal Cartan connection will parallelly propagate v round o
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3.4 The 4-cone is not conformally regular
to u' = (z,d;,T'|,) where d, is the parallel transport of ¢, under I Now pick
coordinates on a neighbourhood U of a and use g, to give a bundle chart over
U. Then u = (z#,C¥,0) and v = (xll,C{DJ‘f,O) where D¥ is a rotation through
27k(1 — A) where k € Z.

Now let v : [0,1] x (0,1] — M be as above. Pick u = (7(0,1),C*,0) where
C* € (1. Parallelly propagate u along x : t — 7,(0) with respect to T to give
u = u(t). Then u(t) = (v(0,t),Ck(t),0) by the above since (M, g,) has R,, =0,
where C*(2) is the parallel transport of C* under I'. Hence h(t) = (D¥(t),0) where
Dk(t) is a rotation through 27k(t)(1 — A) k¥ € Z. By continuity, k(t) must be
constant. If v encircles r = 0 then k £ 0, and if A & Z, it follows that lim,_,, h(t) # e
and that therefore A/ admits no conformal boundary for which there exists a loop
encircling » = 0 homotopic to a point on the boundary. In particular if A & Z,

there does not exist a space-time (M,g) with
M =R I =g

for any C? Q: M — R with Q(z) > 0 Vz € M. M supplies a singular boundary for

M which is consistent with the c-boundary.

3.4 The 4-cone is not conformally regular

We used the conformal Cartan connection in the previous section to prove that,
for A € Z, the 4-cone is not conformally regular. We now present a more elementary
proof that for A < 1, the 4-cone is not conformally regular. This proof depends
on the Lorentzian signature of the metric of the 4-cone and would fail if the metric
were positive definite. The proof works because conformal transformations preserve
the null cone structure of a space-time.

Given cylindrical polar coordinates (¢, 7,6, z) on the manifold R* — {r = 0} and

the Minkowski metric

ds? = —dt? + dr? + r2df? + dz*? 0<8<2m
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3.4 The 4-cone is not conformally reqular
recall that for A < 1 we may obtain the 4-cone by removing the wedge {7 — /2 <

§ <+ a2} to give
ds® = —dt? + dr? + r2df? + dz* —T+a/2<0<1—af2

and identifying {§ = —7 + /2} with {# =7 — /2} where 0 < A =1— /27 < 1

(l.e. 0 < a < 2m). Let (M, g) be the resulting space-time.

Theorem 3.4.1. There does not exist a conformal transformation of the 4-cone
space-time (M, g) for A < 1 which maps timelike incomplete curves terminating
at singular boundary points to timelike incomplete curves terminating at regular

boundary points.

Proof. In the following we shall work in Cartesian coordinates (¢t,z = rcosf,y =

rsin 6, z) with respect to which the metric is
ds? = —dt? + dz? + dy? + dz? —T+a/2<0<71—a2.
Define the curves
v (8) = (ty + s,a — scos(a/4), ssin{a/4),0)

v_(s) = (to + s,a — scos(a/4), —ssin(a/4),0)

(see diagram 3.4.1). Then
v, (s) = (1, — cos(a/4),sin(e/4),0) g(v,,7,) = =1 + cos*(a/4) +sin’(a/4) = 0

v (s) = (1, ~cos(a/4), —sin(a/4),0) g(v ,v )= —1+cos?(a/4)+sin’(a/4) = 0.

Since ., 7. are straight lines in this coordinate system it follows that v, v_ are

null geodesics.
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3.4 The 4-cone 1s not conformally reqular

Diagram 3.4.1

Now ~v,(0) = (t5,a,0,0) = v_(0) and when s = 2acos(a/4), a — scos(a/4) =
a —2acos?(a/4) = —acos(a/2) and ssin(a/4) = 2acos(a/4)sin(w/4) = asin(a/2)

v.(2acos(a/4)) = (t, + 2acos(a/4), —acos(/2), asin(w/2),0)
~v_(2acos(a/4)) = (t, + 2acos(a/4), —acos(w/2), —asin(a/2),0).

However when (z,y) = (—acos(a/2),asin(a/2)), § = 7—«/2 and when (z,y) =

(—acos(w/2), —asin(a/2)), § = —7 + «/2. Hence

v, (2acos(a/4)) = v_(2acos(a/4)).

Thus we have found a pair of null geodesics v, and _ which meet at two
distinct points.
Let 6,(u) = (u,eu,0,0) for u > 0. Then & (u) = (1,£,0,0) and g(&,8!) =

—14¢? and so ¢, is a future pointing timelike curve for 0 < £ < 1. From the above,
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3.4 The 4-cone is not conformally reqular
for each point §,(u) there are a pair of null geodesics v (s), v*(s) which meet at

the distinct points 6,(u) and &,(u) where
6o(u) = (u + 2zucos(a/4), —sucos(e/2), Leusin(a/2),0).

Now 6;(u) = (1 4+ 2ecos(a/4), —¢ cos(a/2),'j:£ sin(a/2),0) and
g(6,6:) = =1 — de cos(a/4) — 4e? cos?(ar/4) + £2(cos?(r/2) + sin’(«/2))
= —1+¢e? — decos(a/4) — 4e? cos?(a/4)
<—=14+¢€*<0
since 0 < o < 27 = 0 < /4 < /2 = 0 < cos(a/4) < 1. Hence 6, is a future
pointing timelike curve for 0 < z < 1.

As u — 0 the components of &, (u), 8,(u) tend to (0,0,0,0). It follows that ¢,
6, are timelike incomplete curves terminating at singular boundary points and that
furthermore I+(6,) = I+(6,) i.e. 6;, 6, have the same future light cone.

Now suppose Q0 : M — R such that 6,, 6, are timelike incomplete curves
terminating at regular boundary points in the space-time (M,g) where 7 = Q2g
and Q(z) > 0 Vz € M. Let (M,g) be an extension of (M,7) such that &, &,
terminate at interior points of M.

Since [+(6,) = I*(6,), 6, and 6, must terminate at the same regular boundary
point z, € M — M. Now there must exist a convex normal neighbourhood U 3 z,
[HE] such that for any points z,,z, € U there will be exactly one geodesic between

x, and z, lying entirely within U.

Now Y v will still be null geodesics with respect to (M, 7) and
v4(s) = (u+ s,eu — scos(a/4), ssin(a/4),0)
0 < s < 2eucos(a/4)
v (s) = (u + s,eu — scos(w/4), —ssin(a/4),0)
and hence as u — 0 the components of v*(s), v*(s) also tend to (0,0,0,0). It

follows that v+, y* lie in I-(6,) = I~(6,) and the points of 4, v* must tend to
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3.5 Minemal and totally geodesic submanifolds
r,. Hence 36 > 0 such that v°, +° lie entirely in U and meet at distinct points
73 (0) =+ (0) and ! (226 cos(av/4)) = v* (256 cos(er/4)).

This is a contradiction and hence a suitable 2 : M — R cannot exist. ]

3.5 Minimal and totally geodesic submanifolds
Let S be a smooth p-dimensional submanifold of a smooth n-dimensional man-

ifold M. Let M have metric g. For z € S let
(T, ={uveT,M:glu,v)=0 Yvel,S}

hence (7,5)+ is the (n — p)-dimensional vector space of all vectors normal to S at
T.

If g is Lorentzian, so that in a pseudo-orthonormal basis g,; = diag(—1,1,...,1),
then S is spacelike at x € S if all u € T,S are spacelike, S is timeltke at z € S if
all w € (T,S)* are spacelike, and S is null at z € S if it is neither spacelike nor

timelike. In the following we shall assume that S is not null so
T M=T,S&(T,S)*.

If p=n—1 then S is a hypersurface and (T,5)* is 1-dimensional. If we can make

a smooth choice of non-zero normal for all z € S, then S is orientably imbedded.
For general p, at least in an open neighbourhood of some z, € S, let (e;) be

a smooth (but not necessarily pseudo-orthonormal) basis field on M adapted to S

in the sense that Vo € M, (e,,...,e,) span T,S and (e,.;,...,e,) span (1,5)*.

P
In the following we shall take early lower case indices {a,b,c,...} to run through
1,...,p; early upper case indices { A, B,C, ...} to run through p+1,...,n; and late

lower case indices {7, 7, %, ...} to run through 1,...,n. For example if w = u +v for

we T, S, ve (T,5)" and z € S, then we may write wie, = u°e, + vie,.
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3.5 Mimamal and totally geodesic submanifolds

For x € S we define maps

mT,M—=T.S utv—u
}Vu eT,S,ve (l.9)*
7, T.M—(T.S)* u+ve—wv

Thus 7, 7, are linear projections from T, M onto 1S, (T,S)* respectively and

given u € T, S, v € (T,S)+
m(u)=u my(v) =0 7, (u)=0 m, (v)=nr.

Since 7, 7, are linear we may write

T w e plw
Vwi € T,M
T w = plw
and hence
8 it=a,j=05b 68 1=4,j=B8B
p=35" ﬁz{
0 otherwise 0 otherwise.

We now define projected metrics
g“ij = pfpégkz ng’j = ﬁfﬁégkl

SO
Gy 1=a,]=0b gap =4, j=B
gl,. = 1
1y

0 otherwise 0 otherwise.

In particular if u,,u, € T, S then
gy, uy) = gljuiud = gl utul = g utul = g(u,, u,)

and so gll is the intrinsic metric on S induced from ¢ by the embedding of S in M.

Similarly for v,, v, € (T,S)+
g+ (v, v2) = g(vy, ).
Now since (e,) L (e,) it follows that g,z = ¢, = 0 and
9= 9,6 ® € =guet Qe+ gipe’ ®el =gl +g*

where (e*) are dual to (e;).
Using g to raise and lower indices we now prove
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3.5 Mwnimal and totally geodesic submanifolds

Proposition 3.5.1. ¢ll/ =p! and ¢+, = p/.

Proof. Let w € T,S. Then gliu' = gl g*u’ = gl ,g"u* = g,,g%us = djus = /.
Now let v € (1,S)+. Then gllvt = gl g*v = gl ,g%v* = 0. Hence gl! = p! and
similarly ¢+ = 7. O
Since ¢ = &7 it follows that & = p! +]5£.
Let z € S and let u,,u, be vector fields on .S in a neighbourhood of z. Then if

(M, g) has Levi-Civita connection V,
vu1u2 = (vu1u2>” + (V'MUZ)L

where we write (V, u,)ll = 7 (V, u,) and (V,, u,)* = 7,(V, u,). It can be shown
that (V, u,)l = D, u, where D is the Levi-Civita connection of (S, gl), and that

(V,, uy)* depends only on the values of u, and u, at . Thus

Vit = D, uy + K(ug, uy)

U

where

K:T,SxT,S— (T,9)*: (uy,uy) — (V, uy)*.

K is called the second fundamental form of S ([CDD] and [Ch]) and can be shown
to obey
K(uy,uy) = K(uy, u,) Uy, Uy € T,S.

K measures the extent to which a vector initially tangent to S fails to remain
tangent to S under parallel propagation by V in S.

Since K is linear we may write

K(u,u,) = KSuubeo U, Uy €T,

12

where K¢ are known as the estrinsic curvatures of S. We can extend K to a map
K:T.MxTM—T.Mby
{Kc; 1=a,j=bk=C
K* = ¢
’ 0 otherwise
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3.5 Minamal and totally geodesic submanifolds
which makes K into a tensor which obeys Kfj = K*.

N3

S also has mean curvatures
k — i Ik
K*=g"K}

S50

g*KSe k=C
Kk:{ :

0 otherwise

and umbilical curvatures

=Kt — Kl /p

SO

ﬁ_{Ki_K%Mﬂ7i=mj:@k:C
ij

0 otherwise.
Now gini’“j = K* and

gilt = g Kt — Krgigl,; /p= K* — K*p/p =0

and hence K* is the trace of Kfj and lfj is the trace-free part of Kf]
S is totally geodesic at © € S if KE[, = 0, minimal at z € S if K*|, =0, and

totally umbilical at x € Sif IE|, =0
Proposition 3.5.2. Ki’“j =0 < K*=0 and ij = 0.

Proof. Suppose Kfj = (0. Then K* = giiKZ_kj = 0 and ij = Kfj — Kkgl /p = 0.
Conversely suppose K* =0 and If, = K} — K¥gl,./p=0. Then Kt =0. O
[Ch] gives a slightly different condition for a p-dimensional manifold S to be

totally umbilical at x € S, namely that
KE = Mgl some A € (T, 5)*.

However this condition is equivalent to our previous definition since
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3.5 Minimal and totally geodesic submanifolds

Proposition 3.5.3. Atz € 5, K = Mgl for some A € (T,5)t = It =0.
Proof. Let x € S. Suppose K = Mgl for some A € (T,5)*+. Then K* = g”'K;. =
Abgirgl, . = Afp hence A¢ = K*/p and ij = Kfj —K¥gl/p = K*gl /p—K*gll, /p =
0.

Conversely if lfj = 0 then K= Kkgll./p = Xegl, where ¥ = K*/p. O

Recall that for z € S and u € T,5 there exists a unique geodesic v,(s) in M
such that 7,(0) = z, v/ (0) = w and v*V,u/ = 0, and a unique intrinsic geodesic
7.(s) in S such that 4,(0) = z, ¥ (0) = v and w'D,u/ = 0.

Proposition 3.5.4. v, =7, Ve € S,u €T, S — Kfj = 0.

Proof.
wVa = uV uw = (urV u )l + (ueV u)*t

=wurD, u’ + KJ ucub
ab
and hence

wVa) =u'Dw < K =0. O

Proposition 3.5.5. A vector initially tangent to S remains tangent to S under

parallel propagation by V along any curve lying in § <= ij = 0.

Proof. Let § be a curve lying in S with tangent u and let 6 pass through z € S.

Let v € T, S. At x,
utV v° = urD vt + K utv® = u*D v° Yur,v* e T, S,z €S

<::>Kfj:0. O

We note that in our adapted basis
Kac;ec - K<ea7 eb) = (VE,,eb>J— = wfbec

where V, e, = wte, and therefore K¢ = w®.
i ig ab ab
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3.5 Minimal and totally geodesic submanifolds

Now consider a conformal transformation 8 : g — g = Q2¢g where O : M — R
and Q(z) > 0 Vz € M. If g 1s Lorentzian, whether S is spacelike or timelike is
preserved under # and in any case, for z € S, T, S and (71,S)+ remain invariant
under ¢ and (e;) will continue to be an adapted basis. Since g, = Q?g,; we have

g7 = 2¢¥ and

—|] _{gij l:a,]:b ~{ngab ’i:CL,jZZ) . 5 |
7, = = — 02y
0 otherwise 0 otherwise
Now by Lemma 3.1.1
@y, =ws, + 00,0+ 0670,0 — 9,g°POpd
=W, — guy“Pop¢
where ¢ = log 2. Hence
Facb = KaCl; - gabgCDaD(b'
Now since
—c . ) . - _
.K,‘c:{Kab i=a,j=b k=C K@:{Kgb i=a,j=bk=C
) ) .
0 otherwise 0 otherwise
it follows that
_k , _
K, =K - gl g+*0,0 (3.5.1)

which in fact is a fully covariant expression which will hold in any basis. Hence

—k S I ,
= gL]Kij = a—ggl](KZ — g"ingklal@)
§7a 1 k Lkl
=K = Q—Q(K — pgtEo,d) (3.5.2)

and

1 .
= K5 = l9710,6 — o5 (K = pgtH8,6)22gl, /p

=K} — K*gl;/p—gl;g*%0,6 + g',;9** 0,
=1 =1

k
1 iy°
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3.5 Minimal and totally geodesic submanifolds

From (3.5.2) we can see that given K* on S and a choice of Q on S we can

choose the normal derivatives g% d,¢ to yield any value of K In particular we

can set 2 = 1 on S and choose the normal derivatives so as to make S minimal
with respect to g i.e. K=o

Now if K* = K= =0 then g*0,0 =0 S0 J,¢, and hence J,{2, must be cotangent

to S. In this case from (3.5.1) we get
K =K*
ij i7

and thus if a conformal transformation makes S minimal but not totally geodesic
then no conformal transformation can make S totally geodesic.

Finally from (3.5.3) we see that [¥ is a conformal invariant and there will exist
a conformal transformation which makes S totally geodesic if and only if lfj =0,

ie. if S is totally umbilical.
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4.1 A 3+ 1 analysis of an wdealised cosmic string

Chapter 4

Weak singularities and idealised cosmic strings

4.1 A 3+ 1 analysis of an idealised cosmic string

We have seen how 2-dimensional timelike quasi-regular singularities may provide
suitable idealised models of cosmic strings. We have expléined however that cosmic
strings modelled in this way are really quite inflexible objects, unable to bend or
to form closed loops on length scales smaller than the cosmological length scale.
This is a problem for example if cosmic strings are to provide a mechanism for the
formation of structure in the early universe. We therefore propose to describe a
class of “weak” curvature singularities, somehow worse than quasi-regular ones but
which remain weak enough to have nice properties and in particular to have the
properties we would expect of a cosmic string. The fact that they are curvature
singularities may however permit them to bend and form closed loops on small
length scales.

A construction of a circular cosmic string of arbitrarily small radius is given
in [FIU]. The construction is complicated and it is not obvious that, in a range
of cases, it gives rise to a curvature singularity. This is shown in [UHIM], which
describes a class of curvature singularities such as this one which are proposed as
models for cosmic strings. The claim is made that singularities in this class are
nonetheless totally geodesic. However the definition of this class is not particularly
rigorous and a number of restrictive assumptions are made. After discussing this
paper, we will present a more rigorous formulation of these ideas which we will then

study in subsequent chapters using methods of holonomy.
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4.1 A 3+ 1 analysis of an idealised cosmic string

We now discuss the formulation given in [UHIM] (see also [I]). In this paper
an idealised cosmic string is defined to be a timelike 2-space S whose points are
“conical singularities of the space-time”. Space-time geodesics “orthogonal” to the
string S at each point p € S sweep out a spacelike 2-space S, which is required to
have “conical structure” at the single poiﬁt p where it intersects S. In principle
the angular deficit could vary over S, but will be constant, it is claimed, if the
space-time Is vacuum or obeys energy conditions.

There are a number of problems with this formulation. How can a singularity
be a timelike 2-space, how can points of S be conical singularities of the space-time,
what does it mean for a 2-space to have conical structure, and how can space-time
geodesics be orthogonal to S7

The paper claims to show that, provided the Ricci tensor is bounded near
S, and the Weyl tensor has a sufficiently weak singularity, the string S is totally
geodesic. In fact the argument presented in the paper does not make use of these
assumptions about the curvature. Instead it shows that, provided the lapse function
of a certain foliation of 3-dimensional hypersurfaces is C? at the string in a rather
artificial quasi-Cartesian coordinate system, the string is totally geodesic (in a sense
discussed below), from which it follows that the Ricci tensor need not be bounded
and may in fact diverge.

The paper proceeds as follows. Given an intrinsic geodesic L, of S, which is
taken to be either timelike or spacelike, the aim is to show that “as a locus of conical
singularities of the four metric” it is in fact a geodesic of the space-time. This is
done by showing that the magnitude of the acceleration of a sequence of curves
which tend to L, tends to zero. A coordinate system is defined as follows. L, is
parametrised by proper time (or proper distance), and at each point of L,, L, is
defined to be the intrinsic geodesic of S orthogonal to L, parametrised by proper

distance (or proper time). This gives (¢, z) coordinates on S in a neighbourhood of
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4.1 A 3+ 1 analysis of an idealised cosmic string
L,. Gaussian polar coordinates (p, ) are now defined on each spacelike 2-surface
S, with origin on S and an arbitrary choice of polar axis varying “smoothly” over
S (despite the fact that in general it is not possible to attach a unique differential

structure to a singularity). Thus p measures proper distance and the paper claims

that at points of L,, the space-time metric is
ds? = —dt? + dz? 4+ dp* + A?p*d?

for a suitable choice of ¢. We interpret this as meaning that sufficiently close to L,,

the space-time metric is
ds? = —dt* + dz* + dp* + A*p*d¢® + €,;dr*dz)
if L, is timelike (and
ds? = dt? — dz? + dp* + A?p*d¢® + €,;dx dx)

if L, is spacelike) where £, — 0 in a suitable way as p — 0 and A = A(t,2). If
£ — 0 too quickly then the string S will turn out to be a quasi-regular singularity.
We discuss the behaviour of €;; below.

The paper then defines quasi-Cartesian coordinates by
r=rcos¢ y=rsing r=[(Ap)*
and claims that the metricon S, N L, for p € L, is

ds? = r=2%(dz? + dy?)

where § = 1 — A. Again we interpret this as meaning that sufficiently close to L,,

the space-time metric is

ds? = —dt* + dz? + r~2(dz? + dy?) + ¢,,dx'dz’
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4.1 A 3+ 1 analysis of an idealised cosmic string

if L, is timelike (and
ds? = dt* — dz* + r=%(da? + dy?) + =,,dx'dz/

if L, is spacelike) where =, — 0 as 7 — 0 in a manner discussed below. We shall also
need to assume that the metric has inverse diag(iFl, +1, 720, r28) 425 where 2/t — ()
as r — 0 in a manner discussed below. The paper claims that this conformally flat
form gives a clear cut meaning to the concept of angles at the vertex, despite the
fact that for A < 1, the conformal factor is undefined at the vertex.

The paper now performs a 3 + 1 split by taking hypersurfaces of the form
¢t = constant. Now 0§, = t'9; where t* = ¢i. We decompose ¢ into components

normal and tangent to the hypersurfaces by
tt=eNn*+ N*

where n* is the unit normal to the hypersurfaces chosen to make NV positive, ¢ = n'n,
and ' is tangent to the hypersurfaces. NV is called the lapse and N* is called the
shift. Note that ¢ = —1 if L, is timelike and ¢ = 1 if L, is spacelike. We now
let latin indices range over {¢,z,z,y} and greek indices over {z,z,y} and use 0 to
denote t. By construction 8, are tangent to the hypersurfaces. Thus N9, = N¢J,
and N° = 0 and since n,N* = 0 we also have n, = 0.

It can be shown that
oo = eN? + NoN, Jog = Ny g =e¢/N*? ¢°? = —e NP /N?

from which it follows that N — 1, N¥ — 0 and N; — 0 as 7 — 0. We also have
N°=0and N, = N'g,, = N°g,, = N*N, — O as r — 0.
We now let A be the intrinsic metric of the hypersurfaces induced by the space-

time metric g so h,y = g,5. Thus g,; can be entirely expressed in terms of NV, N
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4.1 A 3+ 1 analysis of an idealised cosmic string
and h,;. We can now discuss the behaviour of e,;,£'% terms in the metric. Now

£,.8'"W — 0 asr — 0 and we have

co=e(N2—14+NoN,  z,=0N, £0=z(1/N>—1) =99 =_z\N3/N?,

[t is implicit in the paper that the derivatives of N, N, along with the derivatives
of the spatial terms ¢_;,¢’*¢ tend to zero as v — 0. We discuss the behaviour of NV
below.

The paper defines u; = Nv; where v; = ¢°. Now u' = Ng* so

0

uw =¢/N u* = —eNP/N

but since ni = (N* —#*)/N
n® =—-1/N n® = N/N

and hence u* = —en’. Thus u* is a unit normal to the hypersurfaces. The integral
curves of u* have acceleration

k' =uV u
where, working in quasi-Cartesian coordinates, in can be shown that

K. = —51\[—1;\/’1- + ...

1

where we use ... to denote terms which tend to zero as r — 0 provided that
Ne — 0 sufficiently fast, or in other words provided that g% — 0 sufficiently fast.
This expression differs from the one given in the paper.

The paper claims that the integral curves of u* are “parallel” to L,. Certainly
in quasi-Cartesian coordinates u* and 9, coincide at r = 0 and if w* is C! at r =0,
there will be a unique integral curve through w* at r = 0 and the integral curves of
ut will tend to L, as r — 0. In other words we require N — 1, N9 — 0 in a C! way
as r — 0.
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4.1 A 3+ 1 analysis of an wdealised cosmic string

The acceleration x* has magnitude
K= KK, = —IQ(Q)+T2§(I<&2 + R+ KP4
T y z
The paper claims that x* “lies in the (x,y) plane at the conical vertex”. In fact
KO =60V ut = NTluwViu' = N~V (uiu,) =0
kA 2 7 1

and so x' is tangent to the hypersurfaces and is spacelike. Furthermore s, =
—eN='Ny+...,k.=—eN"IN_+...and so ky, 5, — 0 asr — 0.

If the string were a regular part of the space-time, é necessary and sufficient
condition for L, to be a space-time geodesic, and therefore for the string to be totally
geodesic, would be k — 0 as » — 0 (since ' is spacelike). Since « is a covariant
measure of the acceleration of curves tending to L,, it makes sense to require x — 0
as r — 0 in order for the string to be considered to be totally geodesic even though
1t is not a regular part of the space-time.

In quasi-Cartesian coordinates the condition x — 0 becomes
7‘25(52 + IQZ) —0asr—0.
Thus letting upper case indices range over {z,y}
Kk — 0 < Kk, =0(r ) where { <6

and so k, could in principle diverge. The paper makes the stronger assumption
however that k, is bounded and that k, — k¢, as 7 — 0, where in general x¢, # 0.

The paper now makes the assumption that NV is C? at r = 0. It follows from this
that K, = —eN-IN, + ... — —eN, as 7 — 0, and thus that the above assumption
K, — K¢, as 7 — 0 for some k¢, automatically holds. Hence the string is totally
geodesic.

The dynamical components of the Riemann tensor obey

RocOﬁO = "EuKaB + KQiKZ? + K/(Q}B) + K:QK',B
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4.1 A 341 analysis of an 1dealised cosmic string
where : is the covariant derivative of 3-metric A induced on the hypersurfaces. K,

1s the extrinsic curvature of the hvpersurfaces defined by
K(X)Y) = (X'V Y)u, ¥ hypersurface tangent .X.Y’
(thus K(X,Y) is the normal component of V (Y') and
LK 3 =vw0 K, ;+ K 0w+ K, Jdzu.

The paper also assumes that K is regular at 7 = 0. Certainly if K ;is C* at
r = 0 then

RQOGO = K’(a;,’fi) + ..

which is (almost) the expression given in the paper and where we now use ... to

denote terms which do not diverge as » — 0. Hence
Roogo = (NN () s+ . =eNTN N, —eNTIN g+ .= —eNTIN 5+ ..
since NV, ,3 = N,. Now

Nus =N =T, N,=~T, N, +...

since N is C?, where I' is the connection of h. Neglecting the ¢,; and ¢!, terms we

can show that

We note that 9,6 = 9,6 = 0 but that if 9.6 3 0 then

Fz = f;y = —er™% log T<616) Fw; = fiz - f‘y = Fi’y - logr(asé)-

TT T yz

These terms do not diverge as fast as O(r—1) and we will ignore them. Other

components are negligible. We can now show that

Noap =017k 26,5 + K5 53704 — K5,3°0,45) + - ..
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4.1 A 341 analysis of an idealised cosmic string

where (z?) are the quasi-Cartesian coordinates. Hence
Rop0 = —eN7Vor=2(ke 4205 + K a6, — K&, 2%045) + ...

This expression differs slightly from the one given in the paper. Thus in quasi-
Cartesian coordinates R, 5, = O(r—1!). In addition we can show that Rop0 18
bounded as r — 0ifa=zor § =z

The paper does not explicitly give an expression for R, 5., however we may
obtain one as follows. Given a particular L, which passes through L,, we define
a new set of quasi-Cartesian coordinates (¢,z’,2',y’) based on L, as follows. For
each point of L, let L/ be the intrinsic geodesic of S orthogonal to L, parametrised
by proper time. Thus we obtain (#,2’) coordinates which coincide with (¢, z) co-
ordinates along L, and L,. We now define =’ = z,y = y to give (¢, 2, z,y)
coordinates.

Hence working in (¢, 2/, z’,y') coordinates
Ryigy =eNCIT18r=2(kG0 298, 5 + kG gz 6, 0 — kD 296 0p) + . ..

where N(') is the lapse obtained by performing a 3 + 1 split by taking hypersur-
faces of the form z’ = constant, (), is the limit as » — 0 of the components of
the acceleration of the integral curves of the unit normals to the 2z = constant
hypersurfaces, and upper case indices {A’, B’,...} range over {z’,y'}. As before
NE) — 1 as r — 0 and we assume that N0 is C? at r = 0. Again we can also
show that R, .5 is bounded as r — 0if o/ = ¢ or ' = t' where {a’, ',...} range
over {#',z’,y'}. Now along any curve which terminates at the point of S where L,
and L intersect

R'L]kl :Riljlk/ll +..-

from which it follows that R,,5, = O(r~!) and R is bounded as r — 0 if =0

azf3z

or §=0.
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4.1 A 341 analysis of an idealised cosmic string

The remaining nine components of the Riemann tensor are determined by the
Gauss-Codazzi equations. Their behaviour is not essential to what follows. however
we claim that it can be shown that R, = O(r=*) at worst and, if K ;is C'* or

C'-, the other eight components are O(r29-1) at worst.

We now look at the Ricci tensor
R’; = Rik]'k = Rik]lgu

S50

Ry = Ry 9™ = Ry0.97° + Rocopg? + ...

where we assume that the off-diagonal components of g* tend to zero sufficiently
fast. From above we know that R,_,. is bounded as 7 — 0 so
Roy = (Rogos + Royoy )72 + ...
= —eN7Ir272(Ke o + KT — K, — KO,y + ROY + RS Y — KE,.Z — KS,U) + ...
=0+...
and hence R, is bounded as 7 — 0. Similarly R, is bounded as 7 — 0, though the
paper does not say so.
The paper does not give an expression for R,,, however we claim that Ry, =

O(r2-1) at worst.

Now
Rip = Raupig™ = Raope9™ + Ra.p.9°° + &
where £,5 = Rycppg©P = O(r=%) at worst since R, ,, = O(r~*) at worst. Hence
R,z = 1\% — eN“Ur2 (ke 20,5 + KS 5216, — K5, 20,4 5)
+ [\;:6)2 ENE=1r=2(kl2) 226, 5 + K gatd,, — KD 20 45)
+&up+ ...

but N, N — 1 as > — 0 and so

R,p=0(r"" 25<’$8D + )+t
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4.1 A 3+ 1 analysis of an wdealised cosmic string
which differs from the expression given in the paper by the sign of k', and the
presence of the (possibly divergent) &, term. Since x°, + (), need not be zero,
and £,5 may diverge, there is no need for R, ; to be bounded, contrary to the
implication of the paper.

Recall that

k= Rk =10(K2 + K+ ..
T y

2

obeys k — 0 as r — 0 and that the string is therefore totally geodesic. For a real
string however § = 10-% and for r < e~1/5, 728 &~ 1 and so for very small values of r,
K~ (K2 + &5) and the string appears to be curved.

We should really examine the components of the Riemann tensor in a parallelly
propagated basis rather than in the rather unphysical quasi-Cartesian coordinate

system. Instead we consider Cartesian coordinates
T = pcoso Y = psin ¢

where we recall that with respect to Gaussian polar coordinates (p, @) the metric

close to L, is

ds? = —dt? + dz* + dp* + A?p?d¢® + £, dzida’.

Since r = (Ap)* we have
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A = (824 /0zd) = A% p? 3< BlA+T (1_A)ig/‘4)
4 = (Jx- ) = Axpx~

(1— A)ij/A 2 +q2/A

where 7 = 1/A.
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4.1 A 3+ 1 analysis of an idealised cosmic string

Hence working in Cartesian coordinates
. — \ALB — 26—1
Riop0 = /\;\/\[;R.-mm =O(r )

Similarly R;.5. = O(r?-1) and Rz = O(r*-'). Provided that 6 =1 — 4 > 0.
no component of the Riemann or Ricci tensor will diverge faster than O(r**~1). In
particular if 6 > ; then all components will in fact be bounded. We also note that
O(r#-1) = O(pr2).

This is consistent with the claim in the paper that the “Weyl curvature goes as
r26-1 after converting to the physical components”.

As we have discussed, the above results are obtained by performing a 3 + 1
analysis in quasi-Cartesian coordinates and making the assumption that the lapse
function NV is C? in quasi-Cartesian coordinates. The paper does not perform a
similar analysis in Cartesian coordinates, though it would perhaps be more natural
to do so.

We therefore repeat the 3 + 1 analysis in Cartesian coordinates. For simplicity,
we shall use indices without tildes to denote Cartesians, thus (t,z,z,y) are now
Cartesian coordinates.

The ¢ = constant hypersurfaces and the ¢* = 6! vector are unchanged. Therefore

the lapse function [V, given by
tt =eNn' 4+ N*
remains unchanged. As before
K, = —eN"'N,+ terms which —0Oasr—0
and N — 1 asr — 0. Again sy, k. — 0 as r — 0. However

Kk=kKK —0asr —=0 < Kk, —0asr —0
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4.1 A 341 analysis of an wdealised cosmic string
and therefore the string will be totally geodesic if and only if the simpler condition
x; — 0 as r — 0 holds for everv choice of L,. If k;, — 0 as 7 — 0, then N, — 0 as
r — 0.

We now assume that N is C? at r = 0. This implies that lim,_, .V, exists but

70 4
does not necessarily imply that .V, — 0 as 7 — 0. In other words the string need
not be totally geodesic.

Hence

N =1+ 0(p* + 2?)

and as before

RAOBO == _g.L/V_l.L/V;‘qB + “ee

where
N;AB = O(Constam) —+ O((,O2 + Zz>%)if13'

Neglecting €, terms in g (and the corresponding terms in g~—!) we can show

c
AB:<

r 1—A%HO(p™).

Again 0,4 = 9,A =0 but if 9,4 # 0 then

T—: FC FC

AB'" Az’ :B

(0, 4)O(constant)

and so we can ignore these components with other components also being negligible.
It now follows that

RAOBO —_ ...

In other words R ,,g, is bounded as r — 0. Similarly R,.5. is bounded as
r — 0. In particular, if NV is C? in both Cartesian and quasi-Cartesian coordinates,
it must follow that R,,5, and R,.5. are bounded as r — 0.

As an example consider the dynamic cone

ds? = —dt? + dz? + dp* + A%(t, z)p*do?
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4.2 A new definttion of an idealised cosmic string
and let x = pcoso, y = psin¢g. Then N = 1 is C? in both Cartesian and quasi-

Cartesian coordinates, and R,,g, and R, 5. are bounded as r — 0. However

Rigcos Rape. = O(p7h)

and so in fact we still have a curvature singularity.

In summary, the string is considered to be totally geodesic if a sequence of
timelike (or spacelike) curves normal to a foliation of 3-dimensional hypersurfaces
have spacelike accelerations whose magnitude tends to-zero as they approach a
timelike (or spacelike) intrinsic geodesic of the string. In particular this is shown to
occur if the lapse function of the hypersurfaces N is C? in a rather artificial quasi-
Cartesian coordinate system. This is the key assumption. The paper makes the
assumption that in this coordinate system the components x¢, KO of the accelerations
of the normal curves are bounded. when in fact this is a consequence of NV being C?
at the string (and in fact the magnitude of the spacelike accelerations of the normal
curves could still tend to zero even if x2, K? were not bounded).

The paper deduces that some components of the curvature may diverge near the
string, though it does not analyse all the components. The paper claims to show
that the string is totally geodesic if the Riccl tensor is bounded and the Weyl tensor
has a sufficiently weak singularity, however it makes no use of these assumptions

and it turns out that the Ricci tensor may in fact diverge.

4.2 A new definition of an idealised cosmic string

We now present an alternative definition of a class of “weak” curvature singu-
larities which, despite being curvature singularities, remain weak enough to have
the properties we would expect of a cosmic string. We will therefore think of them

as “idealised cosmic strings”.
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4.2 A new definition of an idealised cosmic string
We shall say that a Cr space-time (M, ¢) contains an idealised cosmic string

(see diagram 4.2.1) if there exists a € map
®:(0,1) x (0,1) x (0,1] x S* — M

such that ¢ is a diffeomorphism onto U = Im ¢ where we parametrise S! by 6 :

[0,27] — St and A(0) = §(27) so
G (t.z.r,0) — o(t,z,r,0)

and

a) S,.(r,0) = ¢(t,z,r,0) is a spacelike 2-surface

(a) S
(b) 0, is timelike and 8, is spacelike
(¢) 91 ger — Oasr —0

(d) ¢,.4(r) = &(t,z,7,0) is a geodesic of the space-time with r measuring b-

length

and also, if gl is the metric induced on the tangent bundle S =TS, by ¢ and g+

is the metric induced on the normal bundle 7' = (T'S,,)* by g, then

(e) 7 =0 1s a good quasi-regular singularity of (.5,,,¢l) in the sense that every
C* curve of finite b-length lying in S,. on which » — 0 terminates at the
same good quasi-regular singularity (well defined since gll is positive definite)

(f) there exists an isometry ¢ of (U, T, g*) into some (U, T, §*) and U, = U —U
is a 2-manifold which corresponds to r = 0 in the sense that all curves on
a given S,, on which r — 0 terminate at the same point of U,, curves on
different S,, on which r — 0 terminate at different points of Uy, and each
point of U, is the termination point for some curve on some S,, on which
r— 0

(g) g+ is C° on U, but gt|,., G|, are both Cr, and g*|,, is a Lorentzian
metric with 8, timelike and 9, spacelike.
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4.2 A new definition of an idealised cosmic string

¢&ozos,(r)

M\s

ko 2o 33" )

Diagram 4.2.1

Thus U is foliated by a family of spacelike 2-surfaces {S,,} each of which has a
quasi-regular singularity at 7 = 0 with respect to gll. These spacelike 2-surfaces are
ruled by space-time geodesics (condition (d)) which we think of as being normal to
the singularity at » = 0 (condition (c)).

We think of U, as the string. U, can be considered to be a timelike 2-surface with
Cr intrinsic metric lim,_, g+, despite the fact that it will in general be a curvature
singularity of the space-time. Provided that lim,_, g+ is unique, the string has a
well defined intrinsic geometry. However we do not require lim,_,, 8,g+,lim,_, 92g+
to exist.

U, provides a C° singular boundary for (U, g). The isometry ¢ in condition
(f) is not however required to be unique and therefore U, does not provide a C~
singular boundary for » > 0. If the string were a regular part of the space-time

then the {S,,} 2-surfaces would be regular and unique. It can also be shown that

116



4.2 A new definition of an idealised cosmic string
if the string were a regular part of the space-time, the extrinsic curvature of the
{S,.} 2-surfaces would vanish at r = 0 (where we define the extrinsic curvature of
a non-null submanifold in section 2.5) The method of proof is to define Cartesian

coordinates in terms of our geodesic polar coordinates
z =rcosf y =rsinf

and show that at z = 0, y = 0 the Levi-Civita connection obeys I'0 = 0 where
a,be{z,y} and D € {t, z}.
We conjecture that even in the singular case, the {S,.} 2-surfaces are unique.

The simplest example of an idealised cosmic string is perhaps the dynamic cone
ds? = —dt? + dr? + AX(t, z)r2d0* + d2? 0< 6 <2m.

We discuss this and other examples of idealised cosmic strings in more detail in
section 6.3.

It would also be possible to form an atlas A of maps like ¢ and to separate A
into distinct cosmic strings.

We also note that a space-time which contains an idealised cosmic string need
not necessarily obey the energy conditions or be a vacuum space-time.

We will study the geometrical properties of these singularities in the next two

chapters.
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5.1 Parallelising torsion

Chapter 5

Intrinsic and extrinsic holonomy

5.1 Parallelising torsion

Let (M, g) be a space-time. Recall that GL(M) is the bundle of all bases on M
and LM the bundle of all frames on M where a frame is én oriented, time-oriented
pseudo-orthonormal basis. Let w be a connection on GL(M). w is metric if Vg =0

where w induces covariant derivative V.

Proposition 5.1.1. Vg = 0 <= a pseudo-orthonormal basis remains pseudo-

orthonormal under parallel propagation by w.

This implies that a connection on GL(M) for which Vg = 0 can be regarded
as a connection on LM, and conversely a connection on LM, which can also be
regarded as a connection on GL(M), satisfies Vg = 0.

Of all the connections on LM, or equivalently metric connections on GL{M),
there exists a unique torsion free connection, called the Levi-Civita connection.

Now define a connection @ on LM by choosing a C? field (e;) of frames on M,

or at least on an open U C M, and setting

in this frame where @iej = J)fjek. (e,) is parallel in the sense that given any point
and any vector X at that point Xi@iej = 0. From Proposition 5.1.1 Vg = 0 and
thus @ is a metric connection. Now let v be a C* curve with tangent v from a € M
to b € M. Since ui@iej = 0, the result of parallelly propagating (e;) along v from

a to bis (e;)|, and is thus independent of the path taken from a to b. Furthermore
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5.1 Parallelising torsion
if a and b coincide, so v is a closed loop, (e;)|, = (e;)], and the holonomy generated

by any closed loop will be trivial. @ has zero curvature

0 = do) + O] NG =0

but in general non-zero torsion

Tle,e,) =V, — Ve, —le,e]] = —le,e)].

1 g 3

We note however that @ depends on the choice of (e;) and is thus non-unique.

Proposition 5.1.2. Let U be a simplv connected open set in M and w a connection
on L(U) such that Q) = 0. Then the result of parallelly propagating a frame between

any two points is path independent.
Proof. Let a,b € U and let v, 6 be C' curves in U from a to b. Parametrise v, 6
such that v(0) = 6(0) = a and (1) = 6(1) = b. Define a closed loop

v(2s) 0<s<

ISEE

p@[O,l]—»U:SH{

6(2—2s) r<s<1.

Since U is simply connected there exists a C! homotopy
p:[0,1] x [0,1] = U : (s,u) — p,(s)

such that p,(0) = p,(1) and Im p, is a single point. Let (e;) be a frame at a. The

holonomy generated by parallelly propagating (e,) round p, is
1 1
Li(1)=P, exp/ / (X (s,u),Y(s,u)) dsdu
0 0

where X, Y are the images of 8,, 8, induced by p. Since Q! =0, L{(1) = 6! and it
follows that the parallel propagates of (e;) along v and 6§ are equal. d0

If parallel propagation with respect to a connection w on LM is path indepen-
dent then we may choose a point z, € M and, provided M is (path) connected.
pick a frame (e,) at x, and parallelly propagate (e;) to all other points of M. This
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5.2 Projected connection
will result in a parallel frame: the parallel propagate of (e;)|, along a C! curve from
a € M tob € M will be the same as the parallel propagate of (e,)|, from a to z; to
b, i.e. (e;)l,.

If U is a simply connected open set in M and w a Levi-Civita connection on

L(U) with Q/ = 0 it follows that we can construct a parallel frame (e;) in which

T(e,e,)=—[e,e]=0.

1) g ) g

Hence (e;) is a coordinate basis and g = diag(—1,1,1,1) is the Minkowski metric

on U.

5.2 Projected connection

Suppose that Vo € M U_, V, are subspaces of T, M such that
TM=Ue6V, dnmU, =dimV, =2

where U_, V_ are chosen in a C? way but are not necessarily surface forming. We
may define tangent bundles U, V such that U has fibres {U,},cs, V has fibres
{V.}.cn and choose a C? basis field (e;) = (ey,e;,€,,€;5) on M adapted to U and
V in the sense that Vo € M e,, e, span U, and e,, e, span V,. In the following we
shall therefore take early lower case indices {a,b,c,...} to run through 2,3; early
upper case indices {4, B,C,...} to run through 0,1; and late lower case indices
{2,7,k,...} to run through 0,1,2,3. For example if w = u+v foru € U,,v € V,
and z € M then we may write wie, = ute, + vie,.

For p,q € N, let T:(Uz), T:(Vz) be the vector spaces of tensors defined by

ToU,) =A{Ukt : Ur x ... x Urx U, X .. x U, = R | U2+ is multilinear}
T R . A ay...ap
g copies D copies
Ts(V,) = {Vi'a X VXV XL x V= RV is multilinear ).
g copies p copies
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5.2 Projected connection

We can now define maps Vp,qg € N
DY U, x To(U,) — T«(U,) DV, V, x TV,) — T(V,)

by making a C? choice of coefficients wle  w¥C and setting

U — Ue v — ve
DY,e, = w"* e, DV jep = w"< e

where we extend DV, DV, in a bilinear way and require them to obey a Leibnitz

property and also require
XDV, f=X(f) YDV, f=Y(f) VC'f M —-=R X eU,Y eV, ze M.

Because of these properties we call DY_, DV, tangential connections even though
they are not actually connections on a principal fibre bundle unless U, V' are surface
forming. Thus if v : s +— ~y(s) is a C! curve in M through v(«) with tangent X(s)
everywhere tangent to U then given u(a) € U,(,), X*DY,u* = 0 uniquely defines
the parallel propagation of u® along v such that u*(s) remains tangent to U. DU,
can only parallelly propagate vectors in U and only in directions tangent to U.
Similarly DV, can only parallelly propagate vectors in V' and only in directions
tangent to V.

We can also define non-tangential connections DU, DV_ by making a C* choice

of coeflicients wYe,, wV¢, and setting
aB

HU — 5 Uc nv _. Ve
DY e, = wYe e, DY ep = w7 ec

where we extend ﬁUA, Eva as above though again they are not connections on a
principal fibre bundle unless V', U respectively are surface forming. DV, can only
parallelly propagate vectors in U but only in directions tangent to V' and Dva can

only parallelly propagate vectors in V' but only in directions tangent to U.
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5.2 Projected connection
We can put these together to give
Lo Dv.Vid i=a

VU [Jbroby —

T ay...ay

DU [Ubibs 5 —q
B,...B,
DU Ubiby = A vviVAll--Apl -
Lby o=
A &

DV, Vil = Al
Thus VV is a connection on GL(U), the principal fibre bundle of 2-bases tangent to
U and VV is a connection on GL(V'), the principal fibre bundle of 2-bases tangent to
V. VU can parallelly propagate vectors in U in any direction and VV can parallelly
propagate vectors in V in any direction.
Finally we define a connection V on GL{M) by
o { VVle, i1=ua
Ve, =
VVe, 1=A
which we extend as above. V is a well defined connection since if ¢, = /\fej is

another adapted basis so A%, \* =0 we have
Ve, = V(Ae,) = A Ve, +6,VA = X Ve, +¢,VUA = VU (\e,) = VVe,

where A® is a scalar. Similarly Ve, = VVE,. V has the property that a vector
initially tangent to U or V will remain tangent to U or V under parallel propagation
by V. We can thus also consider the restriction of V to GL(U, V), the principal
fibre bundle of 4-bases adapted to U and V. GL(U,V) is a sub-bundle of GL(M)
and has the structure group GL,(R) X GL,(R) which is a subgroup of GL,(R), the
structure group of GL(M).

Now define projections
p:ITM—-TU v+v—u p:TM—->TV:u+v—v YueU,veV, zec M

These are linear so we write p : w/ — plw? and p : w’ — plw* where

pj:{ég i=aj="b ﬁj:{éf i=Aj=B

0 otherwise 0 otherwise.
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5.2 Projected connection

Let TPQ(TIJV[) be the vector space of tensors of valence <;> at x € M. We can say
To(U,), To(V,) < T2(T,M) (where < denotes vector subspace) in the sense that if

UeTi(T,M)
p

UeTiU,) = U= o

z 7.0

7by...b, — S— S y —
{Ul Ly =Gy, =4y, 0 = b, = b

0 otherwise

VeTdV,) «= V=

11001y

{L;’if;;;f;f iy =A,...,i,=A,j=B,....j, =B,
0 otherwise.
For p,q € N we define the following maps on T;(TIJV[)

Trrdieda N kp s .
Ty Wi — P Dl .pfq Wk

11 ...i,,

. J1.-.dq =~k ~kl, ~ ~iq 11...1,1
Ty Wi e PPl .pfq Wi

Proposition 5.2.1.

€T

(a) IfW € TE(TIM') for p,q € N then 7, W € T:(U ) and m, W € T;(VI)

(b) my acts as the identity on T?(U

z

) and T, acts as the identity on T;(VI)
(c) myTa(V,) = m,T3(U,) =0

Proof. p,p%,,p%,pt =0, pb = ¢?, and pf = 65. O
Now let V be some (not necessarily metric) connection on GL(M). Since my,

7y are linear we can define connections V¥ on GL(U) and VV on GL(V) as follows:

given X e T M, ze M, p,ge N
VU U =7,V U UeTIj(UI) VVV =m,V,V VET;(V;)

where as above T%(U,),Te(V,) < T(T,M). We can then put these together as

above to form a new connection V which we shall call the projected connection of

. VVe, 1=a
Ve, =
VVe, 1=A4

V defined by

and extended in the usual way. V is a well defined connection on GL(M) since if
e, = /\Zej is another adapted basis so AZ, A} = 0 we have just as above Ve, = VVe,,
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5.2 Projected connection
Vé, = VVé,. In general however V # V. As above V has the property that a
vector initially tangent to U or V will remain tangent to U or V under parallel

propagation by V. We may also define

DU = VU DUA = VU, Dva . vA%

a a

DY,=V",.

a

Suppose that V, VY V¥V and V have connection coefficients u/f], wYe, w’ and

w* . Then
7
U —_ — k — G
VU e, =V, e = Typwie, = w;e,

and thus w¥¢ = we . Similarly wV = wS . Hence

. wee, jJ=0b ; .

Ve, = >0, =w,=0, W,=w,, W,=wl.

\C )
woee. j=DB

It Dv,, DY,, DY ,, DV, have connection coefficients w¥¢,, w¥,, wV<,, wV¢, then

ab’

1t also follows that

Ue — ¢ oUc — ¢ Ve — ,,C o gVC — ,C
Wiy =Way Wiap=Wa Wap~=Wip W, p~%p
Now let g be a metric on M and define
U V.
9" = gluxw 9" = glvuy-

Thus Vo € M, g¥ € T2(U,), g¥ € T?(V,) where as above we set TP(U,), T?(V,) <

2 T

To(T,M).
Proposition 5.2.2. ¢Y =m,g, g¥ =1y 9g.

Proof. Let z € M. By Proposition 5.2.1, 7,9 € T?(U, ). Now let u,,u, € U,. Then

(Tug) (U, uy) = pfpé_gkluliugj = gt Py = glyar (U, ug).

Thus 7,9 = g¥ and similarly 7, g = g". O
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5.2 Projected connection
We say that VU is metric if VVgV = 0, and that VY is metric if VVg¥ = 0.
Similarly we can say that DV, DU, DV, DV are metric if DUgV = 0, DUgU =0,
DVg" =0, DVg" = 0.
We note that VVgl = 0 (or VVg" = 0) if and only if a pseudo-orthonormal
2-basis of U, (or V}) for any =z € M remains pseudo-orthonormal under parallel
propagation by V¥ (or V). Similar properties hold for DU, DV, DV, DV,

Now let V be metric. Then for X e T .M, z € M

VU9V = TV x Ty oy = p;pivx(pfpégkﬂ
= p.piPiP' Y x G + PLPIP 9 Y x P + DLPIP 9 Y kDt
= P}9uV x P + P9V x Pt
= pguX (W, Pt —w” pl) + P g X (W) pr—w! pt)

= Xmgaz(wfnb - wrr:lbpln) - Xmgkb@fk —wr pk)

ma ma n

= X’”(Qacw,ﬁb - Qwafm)

and thus in general V¥ is not metric even if V is.
If however U, 1 V, for some x € M, then at this point, in our (not necessarily

pseudo-orthonormal) adapted basis (e,), we have g,5 = g4, = 0 and
9=, Ve =g,e* Qe + g et ®e? =g" +g".

Theorem 5.2.3. IfU, 1V, for some z € M and V Is metric at this point then so

are V, VU, and VV, as well as DU, DV, DV, DV

Proof. Let X € T M. From the above we have
Vg% = Xm(Qacw,ib - gcz)w,ia) =0

but g, = 9o, = 0 and thus VV is metric. Similarly VV is metric as are DY, Dv.

13‘/, DY . Furthermore

ﬁg :v‘gU+§7gv :ngU+vvgv =0
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5.2 Projected connection
and hence V is metric. O

Since V is a connection on GL(M) we may consider its torsion 7.

Theorem 5.2.4. IfV is the Levi-Civita connection of g and U, L V_ Vx € M then
either (a) T # 0 and V is not the Levi-Civita connection of any metric or (b) T =0

and V= V.

Proof. By Theorem 5.2.3, Vg = 0. If T = 0 it follows that V must be the unique
Levi-Civita connection of g and that V = V. If however T # 0 then V cannot be
the Levi-Civita connection of any metric. | O
We can also consider the curvature ﬁj of V. In fact, using the Cartan equations,
we can consider the torsion and curvature of any connection defined on GL(M), or
on any sub-bundle of GL(M). The Cartan equations do not in general make sense
however for V¥ and V7, defined on GL(U) and GL(V), or for DY, DY, DV, DV,

Recall that a connection V on GL(M) has torsion

T(e- e,) =Ve —V.ie —

1Y Y7 177 77t [6 e}'

1) g

DV, DV do not have meaningful torsions; in the expression DY ,e, — DV, e, —le,, €],

for example, DV, is undefined. Similarly VY, VV do not have meaningful torsions;
in the expression VU, e, — VU, e, — [e4,¢,], for example, VY, e, is undefined.

For x € M we may however define the torsions TV, TV of DY, DV as the maps
TV .U, xU, - T, M: (e, e,)— DY,e, — DY,e, — [e,, €]

TV :V,x V, = T,M : (ey,e5) — DV e — DVge, — [eAaeB]

though in general [e,,e,] € U, [es,ep] & V unless (e,), (e,) are surface forming.
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5.2 Projected connection
Now suppose V is the Levi-Civita connection of g. Then
V,e,— Ve, — e, e] =0
= 1y V., e — Ty V. e, —Tyle, e =0
= DY.e, — DYe, — myle,, e,] = 0

= my(DY,e, — DYye, — [e,,8,]) = 0

= ;7Y (e,,e,) = 0.
[fU, LV, for some z € M then at this point DVgV = 0 and 7, TV = 0 and similarly
DVgV =0 and 7, TV = 0. We claim that this is sufficient to characterise DV, DV

at z. In other words, even if (e,), (e,) are not surface forming we have

Theorem 5.2.5. If U, 1L V, for some x € M then there exist unique tangential
connections DY on U, and DV on V, such that at x, DVgY = 0, m;TV = 0 and

DVg"V =0, 7, TV = 0.
This follows from

Theorem 5.2.6.

(a) Let DY, DU be tangential connections on U defined by DY, e, = wUe¢ e,

DY.e, = wY¢ e, with torsions TV, TV. If DVg¥V = 0, DVg” = 0 and
TV = 7, TV at some z € M, then at this point DV = DV.
(b) Let DY, DY be tangential connections on V' defined by DY sep = wY 9 ec,

DY sep = wY€ ec with torsions TV, TY. If DYg¥ =0, D/g" =0 and

TV = m,T) at some x € M, then at this point DY = DY.

Proof. At x e M

DUagch - Dgagch == 0

1

U vd U vd U U Ud AU vd U —
= 0,9%. —w/d g% —wl? g¥y — 0,9Y, +wl¢ g +w]e g%, =0

la 2 ac

= oY% gV, +o g¥, =0 (5.2.1)
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5.2 Projected connection

where oV¢ = wV¢ —wVUe . By cycling a, b, ¢ we have
ab 2 ab 1 ab EA )

¥ g%+ 0l gV =0 (5.2.2)
=0V 9% — 049" = 0. (5.2.3)

Now since

T (e,, ) — Ty T (e,,,) =0

= 1, (DY e, — DVse, —le,,e,] — DY e, + DYe, +e,,e,]) =0

Uce . Uc —
= Wyl T Wiy = U

Ue Uc
=0, =0 4,

and gY,, = gY,, it follows if we add (5.2.1), (5.2.2) and (5.2.3) that

Ud AU .
o7 9% 4 = 0.

: U ; _si Ue — Ue — U U —
Since gY|y .y is non-singular we get o¥¢, = 0 and thus w¥¢, = wl¢ . Hence DV =

O

DY and similarly DY = D).
For z € M, the curvature { of a connection V on GL(M) is defined by

~ ~ ~ ~ ~

QV(X,Y)e, = VxVye,— VyVye, — Vixye, VXY €T, M.

z

We can thus define the curvatures €7, ﬁj of V, V (where V need not be metric).
We may also define the curvatures QUb, QVE of VU, VV by putting VU, VV in the

above expression
QUE(X,Y)e,=VUsVVe, = VU, VY e, = VY xviea vX,Y e T.M

QVE(X,Y)ey =VVy Ve, = VY V¥V ey = Vi vies VX, Y € .M

from which we get second Cartan equations

QUb — dwa +wa /\ch QVB — deB +(UVB /\C(JVC
a a c a A A C A
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5.2 Projected connection
where QU - T M XT,M — THU,) : (X,Y) = QU (X, Y ) and QVE : T M x T, M —
THV,) : (X,Y) = QVE(X,Y).

1

We now consider the curvature ﬁj of V. Recall that wf = GZ = 0. Now
O = dw” + @ AT+ 0% ATC
but for X, Y € T, M
(d#)(X,Y) = X(@" (V) = Y (@ (X)) = D (X, V]) = 0
and hence ﬁaB = 0. Similarly QZ = 0. Furthermore |
O =do + AT + T, AT =d + AT
0, =do® + 0P AT, + T A TS = do® + w8 AT

but since EZ = wY and wlj = w¥E it follows that Q_Z = QU and ﬁj =QVE.

Since EZ = w’ and Ei = w? we also have
Q= ﬁz +wl AwC (5.2.4a)
QF = Q) +wB Aws (5.2.4b)

from which in section 6.1 we will derive the Gauss-Codazzi-Ricci equations for {U, }
and {V,} respectively.

Finally the curvature WU of DV will be well defined and given by
WUZeb(X, Y) = DUxDUYea - DUyDUXea - DU[X’y]ea VX, Y E Uz

only if [X,Y] € U, VX,Y € U,, or in other words only if (e,) is surface forming at

x, in which case the curvature W‘/ﬁ of DV will also be well defined and given by
ﬁ/vﬁeB(Xa Y)= DVXDVYeA - DVYDVXQA - DV[X,Y]eA VXY eU.,.

Similarly DV, DU will have well defined curvatures WVE, WUZ only if [X,Y] eV,
VX,Y € V,, or in other words only if (e,) is surface forming at .

129



5.8 Fxtrinsic curvature

5.3 Extrinsic curvature
As before, let (M, g) be a space-time, let T.M = U, &V, Vo € M for a C?
choice of U,, V, such that dim U, = dim V|, = 2, and let (e;) be an adapted basis
fleld. In the following we shall also assume that U, LV, Vz € M. Let V be the
Levi-Civita connection of g and V the pro_‘jected connection of V. Thus V, V are

connections on GL(M) which satisfy Vg = 0. Vg = 0. Furthermore

Let V be a connection on GL(M) with curvature Qi and let leu = f?ijkmgml

where Rm-kl = Qi(ei, e;). Of the following identities

R =—Ru (5.3.1)
f?ijkz = —Riﬂk (5-3-2>
R{ijk}l =0 Rijkl = Rkh]‘ ﬁ[iéjk]lm =0 (5.3.3)

(5.3.1) holds for any V, (5.3.2) holds if and only if Vg = 0, and (5.3.3) does not in
general hold unless V has torsion T = 0. It follows therefore that the curvature QL
of V obeys (5.3.1), (5.3.2) and (5.3.3) but that the curvature ﬁi of ¥V only obeys
(5.3.1) and (5.3.2).

Given x € M we now define the second fundamental forms KV, KV of U_, V,
with respect to V, and the associated second fundamental forms AV, AV of U,
V., with respect to V as follows: given C' vector fields X, X' Y,Y" defined in a
neighbourhood of z such that X, X' are tangent to U and Y,Y" are tangent to V'

we set

KV (X, X)) — 1, (VX" KV (YY) — 7, (V,Y")

AV (X,)Y) = 1 (V) AV (VX)) — 71y, (Ve X).
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5.3 Extrinsic curvature

Proposition 5.3.1. KV(X, X")|,, KV(Y,Y")|,, AV(X,Y)|,, and AV(Y, X)|, de-

r

pend only on the values of X, X', YY" at z.

Proof. At z,
KV(X,X') = (m, VX' = pX*V, X" = pl(Xk0, X" + Xhw! X')
= X*F0, (1 X") + Xtw; pl X"
= Xewl X
which depends only on the values of X, X’ at  and not on the values of X, X’ at
any other points. Similarly for KV (Y,V"), AV(X,Y), and AV(Y, X). O

Thus in fact
KV:U xU,—V, KV:V. xV, —U,
AV U xV, = U, AV V. x U, =V,
and furthermore KV, KV, AV, AV are linear maps for which we may write

KY(e,,e,) = KUS,,GC KV(eqe5) = KV¢ pe

AB”¢
AU<ea) 63) = ‘AUZBGC AV<6A7 eb) - Avibec

where KVC  KVe  are called the eztrinsic curvatures of U, V.
Now
U — — k — ,,C
K (eaa eb) - 7rV(vea eb) - WV(wabek) = Watc

Uc — ,C . Ve = ¢ Ue — ¢ Ve — ,C ;
and thus KV¢ = w¢ and similarly KVe , = w , AVe  =we,, AV = wq,. Since

Vg=0and g,5 = g4 = 0 we also have that
Ve = 0.05c — wibgzc - wicgbl = ‘“WfbgDc - wffcgdb =0
= KYCgpc + A% g4 =0 (5.3.4a)
and thus KV, AV may be determined from each other. Similarly

K4 s+ AV R gps =0 (5.3.4b)
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5.8 Extrinsic curvature

Now if X, X' €U, and VY’ € V, then
VX' =7,V X' + 7.V X' =DV X'+ KV(X, X")

VY =,V V47,V Y = AVX Y)+ DV, YV
and similarly |
VX =AY, X)+ DV, X
VoY =DV, V' + KV(Y,Y").
More generally V can be reconstructed from a knowledge of the projected connection

Vand KV, KV, AV, AV sinceif W = X+Y, W' = X'+Y' € T.M where X, X' € U,
and Y)Y’ € V, then

VW' =71V (X' +Y) + 1y Vi (X' +Y7)
=g VX + 71y VY + 1V ) Y + 10 Vi3 XY
=V X + VY + a1,V Y + 7,V Y + 7,V X' +7,V, X'
= VW + AV (X, Y+ KV(Y,Y) + KV(X,X') + AV(Y, X"). (5.3.5)
Similarly, as we will show in section 6.1, the curvature Q! of V can be partly
reconstructed from a knowledge of the curvature ﬁj of V and KV, KV, AV, AV

using equations (5.2.4a) and (5.2.4b).

In our adapted basis, since V has torsion Ti’; =0, we have

— C —,,€ _ 0 _ -0 = uvc __ vc __ AC
O_Tab_wab wba Cab K ab K ba Cab

where [e,, e.] = cfe,. Hence
777 1)
UC — KUC s O —
K ab K ba Cab - O

and thus KV is symmetric at = if and only if U, is surface forming. Similarly, KV

is symmetric at z if and only if V, is surface forming.

132



5.8 Extrinsic curvature
We say that U, is totally geodesic if KV = 0 at z, and that V, is totally geodesic

if KV =0 at z.
We can also consider the second fundamental forms FU, K of U,, V. with

respect to V and the associated second fundamental forms ZU, A of U,, V. with

respect to V. However if x € M, X € U, Y e V,and W € T, M then

VX eU, VyYev,

U ==V —U

from which it follows that K = K = A = A = 0. Thus U,, V. are totally
geodesic with respect to V.

If for some z € M, KV = KV = 0, it follows from (5.3.4) that AV = AV = 0.
Hence

B — b —
wia“wm—o

and, at this point, V = V. Now the torsion TZ of V satisfies

__k: . _
T =0 —@* —cF =wk —wk —ck =0
ij i ji i i i i

from which it also follows that

c - ,,C _,,C L L —
c” = w wt =0 C ‘8 Wha 0

c —
ab ab ba AB w

and hence U_, V, are both surface forming.
We now specialise to the case where U, is spacelike and V, is timelike, and we

shall use S, to denote U, and 7T, to denote V,. Thus
T M=S 6T, YrelM.

We shall take (e;) to be an adapted frame, where we recall that a frame is an
oriented, time-oriented pseudo-orthonormal basis. Let L(S), L(T) be the principal
fibre bundles of 2-frames tangent to S, T respectively, where S, T are the tangent
bundles U, V, and let L(S,T) be the principal fibre bundle of adapted frames.
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5.8 Extrinsic curvature

Thus L(S), L(T), L(S,T) have structure groups SO(2), L1(2), L1(2) x SO(2)
respectively.

We further assume that Vo € M, S, is surface forming, so that (M, g) is foliated

into a set S of spacelike 2-surfaces which are everywhere tangent to S. Given z € M

however, T, need not be surface forming. We denote
m=1y To=m,  gl=gY gt=g"

Vi=VvV Vi=vV DI=DV Di=DV

Klh=KY K+=KV Al = AV AL = AV,
Given a particular 2-surface S; € S we may form the tangent bundle T'S; =
Sls, of Sy and the normal tangent bundle (7'S,)t = Tls, of S,. Thus Dl is a
connection on the principal fibre bundle L(S|g ) of 2-frames tangent to S|g, and

D+ is a connection on the principal fibre bundle L(T|5, ) of 2-frames tangent to

T|s,. Given z € S;, D! has torsion
Th:S, xS, —T,M:(e,e)— Dl e, —Dle, —le,e)]

but since S, is a surface mT'l = T'l so that in fact
Proposition 5.3.2. DIl is the Levi-Civita connection of (Sy, gl).

Proof. Digl =0 and Tl = 0. J
DIl is also called the intrinsic connection of (Sy, g!) since it is uniquely deter-
mined by (S,, g!l). D+ does not have a well defined torsion and despite the fact that
Dtgt =0, Dt is not in general uniquely determined by g+.
Since S, is a surface, DIl has well defined curvature Wit = ﬁz and D+ has well
defined curvature W48 = ﬁi. We recall however that requiring Dtgt = 0 and
WLB = 0 would not uniquely fix D'; instead we obtain D* from the projected

connection V of the Levi-Civita connection V of (M, g).
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5.4 Conjugacy of the intrinsic and extrinsic holonomy
Since ' = K’ =0and A' = A" = 0 it follows that S, 1s totally geodesic with
respect to V.

Finally we note that if
7 = {tensor fields Tf:f’}.;-’bqu, q € N}

then the connection on this bundle

Vit —71: Ta‘zf’}.;;‘b« — YV, TCbib, p,geN

Ap+17 ay...aq

is called the Van der Waerden-Bortolotti connection.

5.4 Conjugacy of the intrinsic and extrinsic holonomy

Let (M, g) be a space-time. Let x : (0,1] — M : u — «(u) be a C? curve of finite
b-length terminating at a singularity and let ® be a lift of ¥ terminating at a point p
of the b-boundary of M. If x terminates at a quasi-regular singularity, then we know
from section 1.6 that the s-holonomy group H- will exist, and consist of rotations
through multiples of a fixed angle about the singularity. There is no guarantee
however that H- will exist for a curvature singularity. A different singular holonomy
group G, is defined in [C78]. G, is homeomorphic to the isotropy subgroups at p
and thus always exists, and contains H. when it exists. For a general curvature
singularity however G, = L' and thus G, does not tell us much about the structure
of a curvature singularity.

We suppose instead that the space-time is foliated by a set S of spacelike 2-
surfaces. Given z € M, let S, = T,S, T, = (T,S)* where S € S is the 2-surface

which passes through z. Thus
TM=S &T,.

As before let gll, g+ be the metrics induced on S,, T, by g, let w be the Levi-Civita
connection, let W be the projected connection defined with respect to {S,},c, and
{T,}.cm> and let 0 =@ — w be the connection difference.
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5.4 Conjugacy of the intrinsic and extrinsic holonomy

We also suppose that « lies on a particular spacelike 2-surface S € S and has
w-finite (but not necessarily w-finite) b-length. Recall that the elements of H- are
generated by parallelly propagating %(1) round the elements of the loop space of
lassos €2, as described in sections 1.6 and 2.5. We will define a subgroup Q.(S) of
(). whose elements, subject to certain constraints on the extrinsic curvature of S
and on the space-time curvature, will give rise to well defined elements of holonomy,
even though x may terminate at a curvature singularity.

First let 0+(S) be the loop space of lassos contained in 2, and restricted to lie
in the 2-surface S. Let v € Q*+(S). Measuring lengths with respect to the positive
definite metric gl, we shall say that the curves v,(s) = v(s,u) are parametrised
proportional to length if they obey I(s,u) = sl(u) where [(s,u), [(u) are the lengths

of Vuliou) Vulpoa) respectively, and we shall say that v is regular if

(1) the curves v,(s) = v(s,u) are parametrised proportional to length
(ii) the lengths A(s) of the curves ,(u) = (s, u) are finite and continuous in s

(iil) Y(s,u) # 0 where Y = ~,(d,).

We note that length measured with respect to the positive definite metric gl
coincides with b-length measured in an adapted frame parallelly propagated with
respect to the projected connection V.

‘We now define

Q.(S) = {y € QF(S)|v is regular}.
Proposition 5.4.1. Q_(S) is a group.

Proof. Given 7,6 € Q,.(S) let

Uy ()t (u))s _ ls(w)

(v*0),(s) = () 0=5< Lo

,-)/ u - ((l,y(u)+lﬁ(u))s . lh-(u)) Is{u) < P < 1
Tl T L/ Lo+ = ° =

where 7, has length [ (u) and 6, has length [;(u). Then Q,_(S) is a group under
this operation. O
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5.4 Congugacy of the intrinsic and extrinsic holonomy

Now given a bundle on S, a connection @ on this bundle, and a lift ¥ of &
obtained in this bundle using &, we define H(.S, @) to be, if it exists, the s-holonomy
group obtained by parallelly propagating ®(u) with respect to & in the usual way
along the elements of 2, (S). Let ¥ be another lift of x obtained using & and let
K(u) = (&,(u)) and ®'(u) = (€/(u)). Then é;‘(u) = LJé (u) for some constant L! and
in this case we recall that H (S, o) = L-1H-(S,@)L.

In particular, let § and & be lifts of k obtained using & and w respectively in
the bundle LM. If it exists, we call H-(S,@) an intrinsic holonomy group, since
it measures the holonomy of the projected connection on loops restricted to lie on
S and, if it exists, we call H.(S,w) an eztrinsic holonomy group, since it measures
the holonomy of the full space-time connection on loops restricted to lie on S.

Our strategy is to consider a class of singularities for which although the full
s-holonomy groups may not exist, the extrinsic holonomy groups exist for suitable
choices of spacelike 2-surfaces. We will do this by proving the existence of the
intrinsic holonomy groups for this class of singularities, and showing that the ex-
trinsic holonomy groups must be conjugate to the intrinsic holonomy groups and
thus must exist. In the next section we will discuss conditions under which these
extrinsic holonomy groups are conserved along the singularity.

We therefore now assume that (M, g) contains an idealised cosmic string as
in section 4.2 and that the foliation S described above is chosen to consist of the
preferred spacelike 2-surfaces {S,.}. Let S € S and let x: (0,1} — S : u — x(u) be
a C1 curve of finite length terminating at 7 = 0.

Let v € Q.(S) and let 5 be a lift of x obtained using the full connection w in the
frame bundle LM. Let (e,(s,u)) be obtained by parallelly propagating &(u) along
the closed loops v,(s) = v(s,u) with respect to w and let (é,(s,u)) be obtained by

parallelly propagating (e;(s,1)) along &,(u) = v(s,u) with respect to w.
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5.4 Conjugacy of the intrinsic and extrinsic holonomy
Measuring length with respect to gil, let the closed loops v,(s) = (s, u) have
length I{u) and let the curves x (u) = v(s,u) have length A(s). We shall say that

the 2-surface S is regular with respect to v if

(a) 3¢ € L1(0,1),v € L*(0.sup,p, A(s)) such that in the frame (¢,), where
for each s € [0,1], 4 measures length along k, with respect to the positive
definite metric gl such that 4 — 0 as v — 0, and [(s, %) = I(u) where we

regard u as a function of s and u, the space-time curvature obeys
Qa6 (5, W) |I(s,a) < p(s)w(a)
(b) 3M > 0 such that, in the frame (€,), the extrinsic curvature Kl of S obeys

|KI2| < M.

We note that condition (a) is certainly satisfied if 3¢ € L'(0,1) and ¢ €

L1(0,5up,¢jo,) A(s)) such that, in the frame (€,),
Q2567 (s, W)l < &(s)v(w)

or even
1€2:56° (s, D) < ¥(@)

though these are stronger conditions than condition (a). We also note that condition
(a) involves only one independent component ;= of the twenty independent
components of the space-time curvature.

We also note that (€;) will not in general be an adapted frame so the correct
projections need to be applied to K”g and Q,;50.

We shall say that the 2-surface S is regular with respect to x if Q,_(5) is non-
empty and S is regular with respect to every v € Q_(S).

We recall the equivalence relation ~ defined on connections in section 2.3. Let
(2.(0,1)) = (e;(0,1)) and parallelly propagate (€;(0, 1)) with respect to the projected
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5.4 Congugacy of the intrinsic and extrinsic holonomy
connection first along v, (s) = ~(s,u) and then along x (u) = ~(s,u) to obtain

(€,(s,u)) (sce diagram 5.4.1). Set

€(s,u) = M(s,u)é,(s,u)

Diagram 5.4.1

Lemma 5.4.2. If S is regular with respect to v € Q_(S) then w ~ @ along each

() = 7(s,u) and 3Ag, A, > 0 such that [M(s,)] < Ay, [(-Di(s,u)] < Ayl

Proof. We express components in the frame (€;). Let p: TM — TM be defined by
pl = gl’. Since & lies on S, p(v) = v Vv € Ty. Therefore p € P where P is defined
in 2.3. Now

jgl —
P95

{Kllfb i=a k=b1=D

Ald - d=a, k=B,l=d
and since 3M > 0 such that K2 < M , it follows by Theorem 2.3.13 that w ~ @

along ,. Furthermore from equation (2.3.1)

mi

M(s,u) = Pexp/ —Y*(s,u0)07, (5, up) duy Pexp/ — X (s, 1)0t (34,1)dsy
1 0
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5.4 Congugacy of the intrinsic and extrinsic holonomy
and since Y*gy}, = Y*pt'ol,, and Xo! = Xmp™'g! ~we have
v ma m m'

10 (s, )|  exp [V, w0) IM duty exp [ [[X¥(s,, 1| d,
’ 1 0

S

< exp/ M diu, exp sup || X*(sq, 1)|| ds,
1 0 s0€[0,s]
<A

for some A, > 0. Similarly

JA2 (s, w)l] < A

for some A, > 0. O

A consequence of S being regular with respect to v € Q_(S) is that x and
each x, have both w-finite and @w-finite b-lengths. In this case we claim that the
b-lengths I(u) of v,(s) = v(s,u) obey I(u) — 0 as v — 0 with respect to w if and
only if they do so with respect to @, and thus Q,(S), whose elements are required
to obey [{u) — 0 as u — 0, is well defined. We note however that each =, is
parametrised proportional to length measured with respect to ¢!, and not b-length
measured with respect to w.

We can now state the conditions under which the intrinsic holonomy groups

exist.

Theorem 5.4.3. Let & be a lift of x in the adapted frame bundle L(TS, (T'S)*)
and suppose that S is regular with respect to x. Then the intrinsic holonomy group

H_(S,V) exists.

Before we prove this theorem, we need to establish some preliminary results.
Given a lift ¥ of k in the adapted frame bundle L(T'S, (T'S)+L), if each v € ,.(S5)
were sufficiently regular with respect to the curvature _Qj of the projected connection
@ in the sense of section 2.5, Theorem 5.4.3 would follow immediately from Theo-
rems 2.5.1 and 2.5.2. It turns out however that in order to brove Theorem 5.4.3,
we need only consider the behaviour of the sectional curvature of the projected
connection, which we define as follows.
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5.4 Conjugacy of the intrinsic and extrinsic holonomy

~ . 2]
Let @ be a connection on LV with curvature Q. The sectional curvature Q
of & with respect to S is

lelj = gHZlgH [n(zmnij

and thus in an adapted frame

0 otherwise.

Given z € S, the more usual definition of this sectional curvature is
Si =X Y)/|XAY

where [ X AY |2 = (X, AY,)(X*AY7) and X, Y are chosen to span S, (and are thus
non-zero). It can be shown that S7 s independent of the choice of vectors spanning

S_. Thus if X, Y span S, we have
27 ~ -
Q(XY) = (X Y) = S|X AV

and so we may regard both Silf and S7 as the sectional curvature of & with respect
to S.

Now let v € Q,.(5), let  be a lift of x obtained using @, and let (e;(s,u))
be obtained by parallelly propagating %(u) along the closed loops v, (s) = (s, u)
with respect to @. As before let x (u) = v(s,u) and define (&,(s,u)) by parallelly
propagating (e,(s,1)) along x, with respect to & to give (é;(s,u)). We also let

X =4.(8,),Y = ~,(3,) and set
e;(l,u) = L{(u)ej((),u)

and

e(s,u) =1(s,u)e,(s,u).

We shall say that v is sufficiently reqular with respect to Qf if
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5.4 Congugacy of the intrinsic and extrinsic holonomy

(a) the curves v, are parametrised proportional to b-length, and for each s €

[0,1], s, has finite b-length, and the b-length A(s) of x, measured in the
frame (€,) is continuous in s, and Y (s,u) £ 0

(b) 3¢ € L'(0,1),w € LY(0.sup, ¢ A(s)) such that in the frame (¢,), where for

each s € [0, 1], & measures b-length along «, with respect to (€,) such that

@ — 0asu — 0, and I(s,u) = [(u) where we regard u as a function of s and

U,

192 (5, ) 15, &) < S(s)ib(i0)

This definition is identical to the one given in section 2.5 except that in condition
(a) we measure b-length with respect to @ and in condition (b) we refer to the
sectional curvature éf rather than to the full curvature.

Recall from section 2.5 that ~ is well bounded with respect to @ if Ja > 0 such
that

1072 (s, ) X2 (s, w) ] < af| X7 (s, )]

where X7 are the components of X in the frame (e,).

With these definitions we can state the following theorems.

27
Theorem 5.4.4. Let v be sufficiently regular with respect to §2. and well bounded

I!(s,u) exists, and lJ(s) is

u—0 "2

with respect to w. Then for each s € [0,1], lim

continuous.

~J
Theorem 5.4.5. Let v be sufficiently regular with respect to {1 and well bounded

with respect to &@. Then LI(0) := lim,_, L!(u) exists.

u—0

The proofs of these theorems are exactly analogous the the proofs of Theorems
=7
2.5.1 and 2.5.2. We now apply these theorems to the sectional curvature 2 of the

projected connection o.
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5.4 Congugacy of the inirinsic and extrinsic holonomy

Proposition 5.4.6. Each v € Q,(S) is well bounded with respect to @.

Proof. Let v € Q.(S) and let X = ~,(9,). Let (e;) be a (not necessarily adapted)
frame at v(0,1). Using the projected connection @, parallelly propagate (e,) along
x to k(u) and round 7, to v(s,u) to give (e;(s,u)). Let (€,(0,1)) = (e,(0,1)) and
parallelly propagate (€;) round v, to v,(s) and then along x, to ~v(s,u) to give
(e;(s,u)). Set

&, (s,u) = 1(s,u)e, (s, u).

Now pick a an adapted frame (e!) at v(0,1). Usin~g @, parallelly propagate
(e/) along x to x(u) and then round v, to v(s,u) to give (e/(s,u)). Let (&(0,1)) =
(e/(0,1)) and parallelly propagate (é') round v, to 7,(s) and then along &, to v(s, u)
to give (€/(s,u)). Define

€s.u) = Ael(s u)

where M (s,u) € L1 . Since (€}), (€/) remain adapted under parallel propagation by
@ we have AB \® = 0.
Now X = X'e¢/ = X'o(A-1)*¢/ where X has components X" in the frame (e’).

Since g(e!, e;.) =g(e, é;.) =17,; and 7 lies on a spacelike 2-surface
g(X, X) = (X7?)? 4+ (X72) = (Xr=(A7)2)2 4+ (X (A)2)?

a

and hence

X7 = X (A=,

Now

e'(0,1) = &(0,1) = ale;(0,1) = a’é,(0,1)

for some constant al € LT and so
+

el(s,u) = ale,(s,u) e(s,u) = ale;(s,u).
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5.4 Conjgugacy of the intrinsic and extrinsic holonomy

Hence X = X'e, = Xi(a—l){-'e; so X7 = X¢*(a~!)l and X = X’e, = Xi(I7!)]e, =
‘X'z'<l—l>g<a~1>1;é;€ s0 XA} :Xl(l—l){(a—l)f. Therefore
XD = X ) e el

< [ el

= XAl = X7 el = 15X a=) e |
< X el = o]l X7]
where a = ||(a=1)7||||al|| > 0 is constant. O

Lemma 5.4.7. Suppose that S is regular with respect to k. Then each v € Q,(S)

=7
is sufficiently regular with respect to {1 .

Proof. Let v € Q.(S). We show that conditions (a)—(c) in the definition of whether
~ is sufficiently regular with respect to ﬁj hold.

~ is regular by the definition of Q,_(.S) and we recall that b-length measured with
respect to @ in an adapted frame coincides with b-length measured with respect to
gll. Therefore condition (a) holds.

Let (€;) be a basis parallelly propagated with respect to the full connection w
first along 7v,(s) = v(s,u) and then along each s, (u) = v(s,u). Since S is regular
with respect to v 3¢ € L1(0,1),% € L'(0,sup,,; A(s)) such that, working in the
basis (€;).

1920 P (s, w)[|I(s, 0) < o(s)9(@)

where [(s,a) = [(u) is the length of the closed loop 7v,(s) = (s, u), 4 measures

length along x,, and A(s) is the length of s, measuring all lengths with respect to

gl

Referring forward to equation (6.1.8)

Qupep = ﬁabCD + g”ef(AHZcAHgD - ‘AHZCAHiD)
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5.4 Congugacy of the intrinsic and extrinsic holonomy
hence
105, 8) < ([P + gl AT LAV [+ [l oAl AV [ (s, @5, 5)
S Qe P (s, )15, w) + Mol(s, u)
for some M, > 0 since 3M > 0 such that, in the basis (&), [|KI5(s,u)|] < M.
Hence ‘

1200”1205, @) < ¢, (s)o(a)

for some ¢, € L1(0,1).
Now set €,(0,1) = €,(0,1) and parallelly propagate €, with respect to the pro-

jected connection, first along ~, and then along &,, to give €,(s,u). Set
(s, u) = M(s,u)é;(s,u).

Then by Lemma 5.4.2, X (s,u) and (A=1)!(s,u) can both be bounded by constants.

Working now in the basis (g,) it follows that
19250115, ) < da(s)b(@).

In other words we have converted an integral bound on §2,,.,P measured in an
w-frame into an integral bound on (1,2 measured in a @-frame.

Now ﬁf = QZ = 0 and the sectional curvature —ﬁj of the projected connection
has components €,,.? and §,,.¢. We therefore need to examine the behaviour of
Q.

Since (S, g!) has a quasi-regular singularity at r = 0, it follows that the Ricci
scalar of (S, gll) has a well defined limit R, along x,. Now a curve of finite length
terminating at 7 = 0 can be constructed oscillating between x,, and «,, on which

the Ricci scalar must have a well defined limit of both R, and R,,. Hence the Ricci

scalar has the same limit along all x,. Now since (5, gll) has only one independent
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5.4 Conjugacy of the intrinsic and extrinsic holonomy
component of curvature §,,.¢ and the frames in which this can be expressed are all

related by rotations, it follows that 334, > 0 such that

192,45, 0)|] < M,.

abe

Hence 3¢, € L1(0,1) such that in the frame (g,)

10, (s, @) |15, 1) < oy(s)w(i)

ijk

and condition (b) is satisfied. O

We can now prove Theorem 5.4.3.

Proof of Theorem 5.4.3. & is a lift of k in the adapted frame bundle and S is
regular with respect to x. Then each v € Q_(S) is sufficiently regular with respect
to ﬁj by Lemma 5.4.7 and well bounded with respect to @ by Proposition 5.4.6.

Define (s, u) by parallelly propagating '(u) along ~v,(s) = ~v(s, u) with respect
to @ and set

g,(1,u) = L(u)e,(0,u).

Then by Theorem 5.4.5

L(0) == lim L (u)

u—0

exists. Hence the intrinsic holonomy group H= (S, V) exists. O
We note that this theorem just tells us that the intrinsic holonomy groups exist

but do not tell us their value. However

Theorem 5.4.8. Let K be a lift of k in the adapted frame bundle L(T'S,(T'S)*))
and let S be regular with respect to . Then the elements of the intrinsic holonomy
group H.(S,V) act on the bundle L(TS) of 2-frames tangent to S as rotations

through 2k6,, k € Z for some 6,.

Proof. This follows from the results of section 1.6. D
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5.4 Conjugacy of the intrinsic and extrinsic holonomy

We do not know however how the elements of H. (S, V) defined in Theorem
5.4.3 act on L((TS)*). In certain cases they may act on L((T'S)*) as the identity
and indeed this might seem likely given that the normal metric is regular. However
these elements of holonomy are calculated by parallelly propagating a 2-frame in
the normal bundle in directions tangent to the tangent bundle. In other words the
holonomy group H..(S,D') obtained by parallelly propagating a lift k% of & in
the normal bundle L((T'S)+) with respect to the connection D+ induced by V on
L((TS)*) depends on both gt and gi. Thus we cannot conclude that H_. (S, D+) =
{82},

We have shown that H. (S, @) exists for a lift &' of x obtained using @ in the
adapted frame bundle L(T'S,(TS)t). It follows that the intrinsic holonomy group
H_(S,w) exists, and is conjugate to H- (S,w), for a lift § of x obtained using @ in
the full frame bundle LM, since ®(u) = L&'(u) for a constant L € L] and hence
H-=L"'H.L.

Now let & be a lift of k obtained using w. We will now show that the extrinsic
holonomy group H:(S,w) is conjugate to the intrinsic holonomy group H:(S,w),

and thus also exists. In particular if K is suitably chosen then
H.(S,w) = H(S,©).

Let v : (s,u) — v(s,u) € Q.(S) where each v, : s — v(s,u) is a closed loop.
Let (e,(0,1)) € LM be a frame at (1) and let (¢;(0,1)) € L(TS,(TS)*) be an
adapted frame at x(1). Parallelly propagate (e;(0,1)), (€,(0,1)) with respect to
w, w, first along ~ to give (e;(0,u)), (2,(0,u)), and then along v, for fixed u to
give (e,(s,u)), (€,(s,u)). Thus (e;(s,u)) will remain in the frame bundle LM and
(e.(s,u)) will remain in the adapted frame bundle L(T'S,(TS)*). In the following

we shall denote the pair of vectors in (€;) tangent to T'S by (€,) and the pair of
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5.4 Congugacy of the intrinsic and extrinsic holonomy
vectors in (;) tangent to (T'S)t by (g,). We note that in general (e;) will not be
an adapted frame.

Thus we may write

e,(s.u) = L(s,u)e (s, u)

where L!(s,u) € L1 though in general L1(0,1) % &/. If we let X(s,u) be the tangent
of v, : s — 7,(s) and Y(u) be the tangent of x : u — x(u) then bv equation 2.3.1,

expressing components in the frame (g;), we have along s
Li(0,u) = Pexp /ul Y (1y)03, (0, ug) dug L*(0,1) (5.4.1)
and along v, for fixed u
Li(l,u) = Pe\cp/ —X!(s,u)od (s,u)ds L¥(0, u). (5.4.2)
Proposition 5.4.9. If S is regular with respect to x then
Li(0,0) := lim Li(0,u)

exists and is non-singular.
Proof. By Lemma 5.4.2, w ~ @ along «(u) = ko(u). O

Proposition 5.4.10. If S is regular with respect to x then
Li(1,0) := lim Li(1,u)

exists and is equal to L1(0,0).

Proof. By equation (5.4.2)

Li(1,u) = Pexp/ (s,u)o? (s,u)ds L*(0,u)
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5.4 Conjugacy of the intrinsic and extrinsic holonomy
Now 7, is parametrised by length so in the frame (g,) we have || X (s, u)|| = {{v) — 0
as v — 0 where v, has length [(u). Since S is regular with respect to «, 33 > 0
such that, by Lemma 5.4.2, [[KIZ]| < M in the frame (g;). Hence

1401 (E)5(0,) = 82 < exp [ [1X!(s, )l (5. )] ds — 1

1

<exp | luyMds—1

By Proposition 5.4.9 lim,_, L7(0, u) exists and hence lim,_, L{(1,u) = L(0,0) O

Finally we can prove the existence of the extrinsic holonomy groups.

Theorem 5.4.11. Let S be regular with respect to k. Then the extrinsic holonomy
groups H.(S, V) exist and are conjugate to the intrinsic holonomy groups H=(S, V)

for lifts kK, ® of k obtained by w, .

Proof. Let v € 2,.(S) and let the frames (e;), (g;) be as above. Let
e.(1,u) = Ai(u)e,(0,u) &1, u) = A (u)g(0,u),

By Theorem 5.4.3 we know that H-(S,@) exists where ¥ is the lift of x obtained
by @ such that (1) = (g,(0,1)). Thus qj(O) = lm,_, Zf(u) € H(S,®) and hence
must exist. Now

e.(1,u) = Li(1,u)e,(1,u) = L(1, u)A, (u)e,(0,u)

—k

= LI(1,u) A, (w) (L) (1, u)e, (0, u)er
= A(u) = (L) (1, u) A, (u)L(1,u).
Hence by Proposition 5.4.10

A3(0) = lim A2(u) = (L=1)3(1,0)A, (0)LY(1,0)

u—0

exists. U
In particular by an appropriate choice of L7(0, 1) we can arrange for L(1,0) = §?
and in this case 47(0) = ZZ(O)
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5.5 Conservation of holonomy
We shall present some examples of idealised cosmic strings in section 6.3. Tt will
turn out that in each of our examples the intrinsic and extrinsic holonomy groups

exist.

5.5 Conservation of holonomy

Let (M, g) contain an idealised cosmic string as described in section 4.2 and
let {S,,} be the foliation of preferred spacelike 2-surfaces. Let k be a b-incomplete
curve lying in a particular S,, and terminating at the singularity {r = 0}.

Now we know from section 1.6 that if {r = 0} is a quési—regular singularity, the
s-holonomy groups H: exist for lifts & of k, and are conserved along the singularity
in a sense defined by Theorem 1.6.3. For a general idealised cosmic string, the full
s-holonomy groups will not in general exist. We proved however in the previous
section that if S, is regular with respect to «, the intrinsic and extrinsic holonomy
groups H-(S,., V), H.(S,,,V) exist for lifts &, & of k by the projected connection
V and the full connection V respectively. In this section, we investigate conditions

under which these groups are conserved along the singularity.

Suppose there exists a C! map (see diagram 5.5.1)
o (5,0,0) > o5, 0,0) £ 0,1] % (0,1] x [0,1] — M

such that

(a) k,(u) = p(0,u,v) is a curve of finite b-length lying in a preferred spacelike
2-surface S, and terminating at r =0

(b) S, is regular with respect to &,

(©) v.(s,u) = p(s,u,v) € Q, (S,).
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5.5 Conservation of holonomy
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Diagram 5.5.1

Hence each k, and v, lies entirely in the preferred 2-surface S,. Since S, is
regular with respect k,, w ~ W along k, and x, has finite b-length with respect
to w if and only if it has finite b-length with respect to @, so condition (a) is well

defined. p provides a homotopy from v, to 7.

By condition (b) and the previous section we know that the intrinsic holonomy
groups Hx, (S,, V), Hz (S,,V) exist for lifts %y, %, of ky, #, in the adapted frame
bundle L(S,T) by V. Hence the extrinsic holonomy groups H; (S,, V), H; (S,, V)
must also exist for lifts Ky, &, of ko, k; in the full frame bundle LM by V.

We shall exhibit conditions under which
HEO(SM_V—) = HE1<SI’V)

and hence H; (S,, V), H; (S, V) are conjugate.
Let €,(0,1,0) be an adapted frame at p(0,1,0). Using the projected connection
V, parallelly propagate €,(0,1,0) along , to give €,(0,u,0), parallelly propagate

151



5.5 Conservation of holonomy

£,(0,u4,0) up A, (v) = p(0,u,v) to give €,(0,u,v), and parallelly propagate €,(0, u,v)
round the closed loop v, ,(s) = p(s,u,v) to give g,(s,u,v) (see diagram 5.5.1).

Now let €,(0,1,0) =€,(0,1,0). Again using the projected connection V, paral-
lelly propagate é,(0,1,0) up A, (v) = p(0,1,v) to give &,(0, 1, v), parallelly propagate
é,(0,1,v) along &, to give é,(0,u,v), and pﬁrallelly propagate é€,(0,u,v) round the
closed loop v, .(s) = p(s,u,v) to give é,(s,u,v) (see diagram 5.5.1).

Set

g,(1,u,v) = L (u,v)€,(0,u,v) -

7

é,(1,u,v) = L7(u,v)é;(0,u,v).

We also set

,(0,u,v) = o (u,v)é;(0,u,v)

so that

€,(s,u,v) = oI (u,v)é;(s, u,v).

Defining

we have by equation 2.5.2
1 1
Li(u,1) = L7 (u,0)P, exp/ / Q™ (8, v) X*(s,v) 2 (s,v) dsdv (5.5.1)
] 0

where we express components in the frame €, and _Qj is the curvature of V. Note
that X, Z are tangent to the tubes p,(s,v) = p(s,u,v) and X, Y are tangent to the
2-surfaces S,. Note too that Z is not necessarily orthogonal to S, .

Hence .
é;(l,u,1) = (a—l)g(u, 1)e,(1,u,1)

= (a71)(u, 1)L§ (u,1)e,(0,u,1)
= (a™')(u, 1)L§ (u,1)ad (u, 1)€,(0,u,1)
= Li(u,1)é,(0,u,1)
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5.5 Conservation of holonomy
and hence

Li(u, 1) = (a=")*(u, 1)L} (v, 1)edd (u, 1) = Li(u, 1)

since the structure group SO(2) x L1(2) of L(S,T) is abelian. Now af(u,0) = ¢/
and so we also have

Ei (u,0) = LI(u,0)

and from equation (5.5.1)
N R 1o
Li(u,1) = L7 (u,0)P, exp/ / Q™ (5,v) X (s,v) Z (s, v) dsdv
0 0

where again we express components in the frame €.
Now we know by conditions (a)—(c) above and Theorem 5.4.3 that the elements
of holonomy

L£2(0,0) := lim L (u, 0)

L7(0,1) := lim L7 (u, 1)

u—0
generated by parallelly propagating é,(0,1,0), €,(0,1,1) round y,, v, in the usual

way both exist and that
Li(0,0) € H, (S, V) L(0,1) € H,,(5,,V)

where Ry, /&, are the lifts €,(0,4,0), €,(0,u,1) of k,, &,.

Thus 1t follows that

1 1
el =P, exp/ / Q. (5,0) X5 (s,v) 24 (s, v) dsdv (5.5.
0 0

t

a

no
g

must exist, where we express components in the frame &,. We want to show that,
under suitable conditions, j}f(0,0) = ﬁf(O, 1), or in other words that ¢/ — &7 as
u — 0.

The components in equation (5.5.2) are expressed in the frame €, but we would

rather measure them in a frame parallelly propagated along curves terminating at

153




5.5 Conservation of holonomy
the singularity. We therefore let &,((1,0) = 2,{0,1,0) and use V to parallelly
propagate €;(0,1,0) up A, (v) = p(0,,v) to give &,(0,1,v), parallelly propagate
€,(0.1,v) round the closed loops 7, (s = p(s,u,v) to give €,(s, 1,v), and parallelly
propagate &,(s,1,v) along &, (u) = ps,u,v) to give é(s,u,v). Thus (s, u,v) is
parallel along the b-incomplete curvesk, | ‘which terminate at the singularity (see
diagram 5.5.1).

Set,
ei(s,u,v) = 1(s,u,v)é,(s,u,v).
Now €,(0,1,v) = é,(0,1,v) and so by :onditions (a)-(c) above and Theorem 5.4.4

(along with Proposition 5.4.6 and Lenma 5.4.7) we have that
B(s,v) = lim U(s,u,v)

exists and is continuous in s—thoughwe do not know whether it is continuous in

v. Now
€, (s, u,v) = od(u,v)é,(s,u,v = a{(u,v)(l—l)j(s, u,v)é, (s, u,v).

Hence expressing components in the fame e,

1 1
s =Poesp [ [0 (s,u0)a7 ()i (u, )17 (5,0, 0)

Qi (5, u,) X5(s,u,0) Z (s, u,v) dsdv

so by Proposition 2.1.2

1 1
let =8l < exo [ [ (s ) G0 )l (s ) (52, 0)1
<l|§a5;5($, U, U>Zb($7 u, U) H + Hﬁaéij<$> u, ’U) H HZB(Sv u, U) H)
N X*(s,u,v) || ddv — 1 (5.5.3)
where we recall that €,,€,,é, are tangnt to S =TS, and €,,é,, €, are tangent to

T = (TS,)*.
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5.5 Conservation of holonomy

Now

X3, 0) | = 07205, 0) Xo(s,w,0)]) < (1), ,0)]

é

| X (s, u,v)]

where X* are the components of X in the frame é,. Since each v, ,(s) = p(s, u,v)

is parametrised proportional to b-length we have from section 2.5
1X(s, u,0)]] = Uu,v)

where each closed loop v, , has b-length {(u,v) measured in the frame é,.
Now we know that {(u,v) — 0 as u — 0 (by the definition of the loop spaces
Q,.(S,)), but we do not know whether {(u,v) is bounded. We also know from

section 2.5 that there exist M (v), m(v) > 0 such that
[(s,0) < M@ 1E2(5,0,0) < m(w)]

but again we do not know if M (v), m(v) are bounded. We also do not know whether
the b-length A(v) of each x, is bounded. Therefore in order to get £} — &7 as u — 0,
we shall need to put bounds on a number of quantities.

We shall therefore say that the homotopy p is well behaved if, expressing com-

ponents in the frame é,, there exist M,, M,, My, M,, m,, My, M, > 0 such that

(a) 19,7 (s, u.v) 2% (s, u,v)|| < M,
(b “ﬁaBi](S:uvU)“ < ﬂ/[2

(d) |l(s,v)]| € M, and ||(I-1)!(s,v)|| < m, where {!(s,v) := lim,_, l!(s,u,v)

)
)
(©) 122(s,u,0)] < M,
)
e) l(u,v) < M,

)

(
(

As u — 0, the tubes p,(s,v) shrink to a curve on the singularity parametrised

£) AMv) < M,

by v. Since the singularity is normal to the S, 2-surfaces, we expect Z° — 0 as
u — 0. This is not enough however since ), may diverge. This is the motivation
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5.5 Conservation of holonomy
for condition (a). Condition (b) is a bound on eight independent components of
the curvature. Condition (c) is a somewhat unsatisfactory bound, since it has
no immediate geometrical interpretation. We note that the components of the 2-
frame (€,) parallelly propagated along #, , may diverge in a reference 2-frame (€',)
which covers the singularity. This is depenaent on the components w¢ which, not
being a tensor, are hard to interpret. Conditions (d)—(f) place bounds on (s, v),
(I=1Y!(s,v), l(u,v) and A(v).

Now we may relate condition (a) to the full space-time curvature. Referring

forward to equations (6.1.1) and (6.1.8)
Qppea = ﬁabcd + QLEF(KHEEKHIQ - K”;,ECKHSD

Quron = Qusop + gl (Alle AT — Ale_Al7 )

and we note that there exists M, > 0 such that ||K15 (s,u,v)|| < M,. Now if there
exists M > 0 such that M, < M we may rephrase condition (a) in terms of Q,.¢

We may also relate condition (b) to the space-time curvature. Referring forward

to equation (6.1.3) and (6.1.4)
QQBCd - ﬁchd + KLEBE(g||CeK]!fd - g]ide[{[tfc)

Qavep = Qapop + K”L,Ee(gLCEKLZD - gLDEKLeAc)'

Thus we may rephrase condition (b) in terms of §2 5., and €2 ,,-p provided that we
can similarly find a uniform bound for both K10 and K+¢ .. Note that if the string
were regular part of the space-time, K44 = — 0 as u — 0 would be sufficient for the

string to be totally geodesic.
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5.5 Conservation of holonomy
Now all the above components are measured in the frame é, parallelly propa-
gated with respect to . Let e be a frame parallelly propagated with respect to w

along the same curves as e,. Let
(s, uv) =& (s,u, v)e;(s, u,v).

In order to obtain uniform bounds similar to (a)-(e) above when measuring com-

ponents in the frame e/ it would be necessary to find bounds &;,£, > 0 such that

1€ (s, 0)| <& (€715, u, )] <&

We claim that this is possible, if KIl, K+ can be uniformly bounded as described

above.

Lemma 5.5.1. If p is well behaved then 3N, n > 0 such that
leZ(w, o) <N [[le)(uw,v)[| <n

Proof. Define

¢:[0,1] x [0,v5] — M : (0,7) — ¢(o,T)

by (see diagram 5.5.2)

p(0,1,407) 0§0§i

p(0,1— (1= wdo—1),7) t<o<l
¢.(0) = ¢(o,7) =

p(0,ug, 7 —4(0 — 3)7) 1<o <l

p(0,uy +4(0 = 2)(1 —u,),0) 2<o <1

Thus each ¢, is a closed loop and ¢_([0,1/4]) lies on A, (v) = p(0,1,v), ¢, ([1/4,1/2])
lies on &, (u) = p(0,u,7), ¢,([1/2,3/4]) lies on A, (v) = p(0, u,,v), and ¢.([3/4,1])

lies on k4(u) = p(0,u,0).



5.5 Conservation of holonomy

A

Since é;(0, ug, v,) is obtained by parallelly propagating é,(0,1,0) along ¢, from

Diagram 5.5.2

o =0to o =1/2, and €/(0,u,,v,) is obtained by parallelly propagating €,;(0,1,0)

along ¢, from o =1to o =1/2, and
,(0,1,0) = ¢,(0,1,0)

it follows that the element of holonomy obtained by parallelly propagating é,(0, 1, 0)

round ¢, from o =0 to o =11is o (u,,v,). Thus by equation 2.5.2
vg 1 . ~ ~
o (g, vy) = P, exp/ / Q7 (o, 1) X*(o, 7)Y o, 7)dodr
0 0

where X = ¢.(8,), Y = ¢,(8,) and components are expressed in the frame e, (o, 7)

obtained by parallelly propagating é,(0,1,0) round ¢,. Now

X—auY+avZ Y_auy (%Z
2" T3 = T
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5.5 Conservation of holonomy

and
(477,407) 0<o< s
. (=4(1-w)Y,Z) <0<
(z\rY) = )
(=47Z,(3~40)Z) <o <3
(4(1 — u,)Y,0) c<o <1
and hence

o (ug, vy) = P, exp /Ovn /1:2 Qi (0, 7) (=41 —u ) Y*(0,7) 70, 7) dodr.
Now for 1/4 <o <1/2,u=1—4(1 —u,)(c —1/4) and v = 7 s0
du = —4(1 — u,)do dv =dr
and hence
03 (g, 1) = P, exp / /1 03,0, u, ) Y0, w, ) Z4(0, u, v) dudv

where components are measured in the frame e,. However e, coincides with é. along

Kk, from x,(1) to x,(u,) for 0 < v < v,. Hence by Proposition 2.1.2, in the frame é,

e, )l < exp [ [ V20,1, 0) [T (0, ,0) 2200, w, )|
+ HﬁaBij(Oa U, U)H”ZB(Oa u, U)H) dudv +1

and parametrising &, by b-length measured with respect to é, gives
e (g, )| < exp/ / M, + M, M, dudv + 1
0 M)

where 4 measures b-length along x, and s, has b-length A(v). A(v) is bounded

hence

lod(u,v)|] < N

and similarly

(et (u,v)| <m0

for some N,n > 0. (0

Hence we have



5.5 Conservation of holonomy

Theorem 5.5.2. If p is well behaved then

£3(0,0) = L(0,1).

Proof. By applying Lemma 5.5.1 and conditions (a)—(e) above to equation 5.5.3 we

get €7 = &7 as desired. ‘ O

Corollary 5.5.3. Let &,, &, be lifts of k,, x, in the adapted frame bundle L(S,T)

by w. If p is well behaved then the intrinsic holonomy groups obey
H. (S,,V)=H; (S,,V).

Proof. This follows by Theorem 5.5.2 and the fact that the structure group of

L(S,T)* is abelian. O

Corollary 5.5.4. Let K,, &, be lifts of k,, k, in LM by w. If p is well behaved

then the extrinsic holonomy groups H; (S,,V) and H; (S,,V) are conjugate.

Proof. This follows from Theorem 5.4.11 and Corollary 5.5.3. 0

Unlike in section 1.6, it does not follow from the conservation of holonomy
that the singularity is totally geodesic. In fact in section 6.3 we will present an
example of an idealised cosmic string which is not totally geodesic despite having
conserved holonomy, as well as examples of idealised cosmic strings which do not

have conserved holonomy.
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6.1 Equations of Gauss, Codazzi and Ricci

Chapter 6

A 2+ 2 singular formulation

6.1 Equations of Gauss, Codazzi and Ricci

Let (M, g) be a space-time. As in section 5.3, suppose that T M = S, & T,
Vr € M for a C? choice of S, T, such that S, is spaéehke, T is timelike, and
dim S, = dim7T, = 2. Suppose that S, L T, Vz € M. Unlike in section 5.3
however, we do not require S, to be surface forming. Let (e,) be a C? adapted basis
field.

Recall that we have projections
) T:(TZ,.M) — T}j(Sx) T T;(TIJW) — T;(TI) Vre M, pgeN
so in particular
TS, + T, =S, 7S5 +1, =1, Ve € M.

As before, given x € M, we use 7, 7, to project the components of quantities
of geometrical interest onto S,, T,. In this way we obtain g¢ll, g+, where gl is the
metric induced by g on S, and g+ is the metric induced by g on 7,. Given the

Levi-Civita connection V of g we also obtain the projected connection V. Defining

Ve, =wke, Ve, :ijek
we recall that .
wh j=a k=
ot = B — / —
W,=quws j=Ak=B
0 otherwise.
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6.1 Equations of Gauss, Codazzi and Ricci
The second fundamental forms K, K+ and associated second fundamental forms

Al AL are defined as before so that

e — ¢ le — ¢ le — /¢ ALC — ,,C
K ab — “ab K 4B — “Yag A o8 — YoB A ap Wy

We have seen how, using equation (5.3.5), V can be reconstructed from a knowl-
edge of the projected connection V and K, K+, Al, A+, We will now show how
the curvature Q! of V can be reconstructed from a knowledge of the curvature Q—j
of Vand K, K+, Al AL using the Gauss-Codazzi-Ricci equations.

The Gauss-Codazzi-Ricci equations are usually given in a 3 + 1 form, where
they are expressed in terms of quantities defined with respect to a 3-dimensional
spacelike submanifold. In [Ch] the Gauss-Codazzi-Ricci equations are expressed
in terms of quantities defined with respect to an n-dimensional submanifold of an
m-~dimensional manifold. In our case we give the Gauss-Codazzi-Ricci equations
for the two families of 2-dimensional tangent spaces {S, } and {7}, where we recall
that {S,}, {T.} need not be surface forming. Unlike other approaches, we express
the Gauss and Ricci equations directly in terms of the projected connection.

We will use this 242 formulation in the next section to examine the behaviour of
the space-time curvature in the vicinity of an idealised cosmic string. This approach
should prove more natural than the 3 4+ 1 approach discussed in section 4.1.

Working in the adapted basis (e;), recall the equations (5.2.4a)
Qb = ﬁz +wl Awt

C

and (5.2.4b)

where we recall that ﬁz is the curvature of the connection V! on the bundle L(S)

and ﬁj is the curvature of the connection V< on the bundle L(T). We note that
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6.1 Equations of Gauss, Codazzi and Ricci

From (5.2.4a)
Qs = Qs+ wifp A = Qe+ Al KIE — AL K
By equation (5.3.4a), Alt = —gppgiKIF so
Qupe® = Qs = gprg® (KL KIE — K17 KIE)

and hence

Qupet = Do + g 5 (KIEKIF — KIEKIF ) (6.1.1)

which is the Gauss equation for {S,}. We note that if S; is a 2-surface tangent to
S, Vz € S,, then €,,.¢ is the curvature of the Levi-Civita connection of (S, gl).

Similarly we obtain from (5.2.4b)
Qipep = Qapep + gl (KHe K+, — Kb (K ) (6.1.2)

which is the Gauss equation for {7, }. We note that if Tj is a 2-surface tangent to
T, ¥z € T,, then Q, 5. is the curvature of the Levi-Civita connection of (T, g+).
From (5.2.4a)

d
Qch

O 4 d B
Q5. +wi, Awg,
ey d Alld LE _ Ld NE
- Q‘IBC —‘{_rlnaE[/1 Bec K BE[< ac

= Qchd + gEngeKergEchfK’LgG - K.LréE]{ch

and hence

Qchd = Qchd + gchﬂdelpr ~ G4e L;EKHQEC

= Qupoy + K+ (gl KWE — gl KIZ). (6.1.3)

Similarly we obtain from (5.2.4b)

Qusen = Qusep + K”ﬁ(.gJ_CEKL;D - gLDEKLZC)' (6.1.4)
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6.1 Equations of Gauss, Codazzi and Ricci
However the geometrical significance of Q ., and 4, is not immediately clear
and it is more helpful to calculate Q 5. ¢ and Q,,-? directly. From the second

Cartan equation

D - D D k — D _ D __ i, D D,k _ ,,D, k
Qabc - (dwc )ab + (wk A “’c>ab - 8awbé abwac CapVic + WekYhe WirYae

where [e;,e;] = c¢*e,. Now V has torsion TF = wh — w* — ¢t =0 so
] 17 1] Jj (%]
Q.2 = Bawblz — ﬁbwfc - wzbwi —wEwl +we WP + wlf;wé’c

ab Ec ba ec
D e D, E _ ,,D,,e _ D E
+ waewbc + u’aEwbc wbewac wbEwac
=9, KD + wb KIE e KID — e KIP
a be aF be ab ec ac be
—B,KIP — P KIE 4 e KID e KID _ 9KIE ALD
ac bE ac ba ec be ae [ab] Ec

= V.K12 ~ V,KI2 — 212 ALD (6.1.5)

which is the Codazzi equation for {S,}. If S, is surface forming at € M then at

this point K”[b;b] = 0. K”[’i] is said to measure the anholonomicity of S,. Similarly

b

we obtain

Qapct = —V—AKLTBC - VBKJ-‘ic - QKL[EAB]A“:C (6.1.6)

which is the Codazzi equation for {7, }. If T, is surface forming at z € M then at

this point KL[EAB] =0 and KLFAB] measures the anholonomicity of 7T,.

From (5.2.4a)

Qup.t = gABcd + ‘Ufw A Wgc
= Tyt 4 K4, ALE M ALE
= Q5% - QEngEALieALgC + nggdeAlgeALfC
and hence
Qaped = Lypea + gL pp(ATE ALE — ALE ALF ) (6.1.7)
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6.1 Equations of Gauss, Codazzi and Ricci
which is the Ricci equation for {T.}. If T, is a 2-surface tangent to T, Vz € T,
then €,5.7 is the curvature of the connection induced by V on the bundle L(S|;, ).

Similarly we obtain from (5.2.4b)
Quvep = Qupep + g‘]ef(""chAHZD o ‘4|IZCAH£D) (6.1.8)

which is the Ricci equation for {S,}. If S, is a 2-surface tangent to S, Vz € S, then
Q0P is the curvature of the connection induced by ¥ on the bundle L(T|;, ).

We recall that Q.0 = Qayieq) = Qaas and Qg = 0. From these symmetries,
Qupeas S24pep €ach account for one component of €2,,,; Q2,,.7, Q,p-¢ each account
for four components of §2,;,; and Q¢ p, Q45,4 together account for one component
of €2, making for a total of eleven components. The remaining nine components

of €2, can be obtained from Q,z.,. We note that
QchD + QBcaD + QcaBD =0= Q‘ca.BD = —QchD + QcBaD

so that in fact €, may be obtained from components of the form 2 5. ,. We also
recall that Q_,., = ﬁ[ab][cd] but that in general Q,.;, # Q,,., and _Q[abc]d # 0.

We now calculate Q_g.p from the second Cartan equation.

QchD = (dch)aB + (ka A wf)aB

D,k

— 9 D _ D _ i ,,D D,k __
aa“‘)Bc 8Bwac canic+wakac WerWeae

=0,wl — 9wl —we WP +we, WP —wf Wl 4wk WP
Be ac Ba ec

aB ec aB  Ec Ba  Ec
D, e D E _ ,.,D e __ D | E
+ waeuuBc + waEch C'L/Be('dac wBEudac

_ 9 ALD D ALE _ ,,E ALD _ ,.e ALD
—aa‘/{ Bc_’_u)aE‘/_l Be u')aB“4 Eec wac[1 Be

= 02— WEKIE 4 K10 4w KD+ AYE AR — Al I
__ T ALD _ T | D ALE ALD __ Alle D
- va‘A Be vBI(I@C +44 Ba‘_l Ec AAHaBKHec
and hence

Qupep = QLDE(vaALf;C + ALgaALgc) + g”ce(vBA”ZD + A”iBA”;D). (6.1.9)
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6.2 Curvature of an idealised cosmic string

The Ricci tensor R;; of V can be obtained from (2,;,' by

R,

J

— k — E
- sz] - Qieje + Q7E]

and so

R, = Qaebe -+ ‘QaEbE RAB - QAeBE -+ QAEBE
Ra.B = QaeBe + QaEBE RAb = QAebe -+ QAEbE

where I2,; = R,;. Similarly the Ricci tensor P—ij of V can be obtained from ﬁi]-kl by

Rij = ﬁikjk = Qieje + QiEjE

and so

Ebzﬁ ¢ -R—AB:Q—AEBE
EaB == ﬁaEBE _R-Ab = ﬁAebe

where in general R, # —Rﬁ. We note that if S, is a 2-surface tangent to S, Vx € S,
then R,, is the Ricci tensor of the Levi-Civita connection of (S,, g!l). Similarly if T},
is a 2-surface tangent to T, Vx € Ty, then R 5 is the Ricci tensor of the Levi-Civita
connection of (7,, g+).

Finally we note that although we have given the above equations in an adapted
basis, they are in fact all fully covariant if the correct projections are introduced,

so that for example K¢ is replaced by g||2gffgg¢fK||fj.

6.2 Curvature of an idealised cosmic string

In the previous section we presented the Gauss-Codazzi-Ricci equations which
express the curvature of a space-time (M,g) in terms of the curvature of the
projected connection and the extrinsic curvatures of two normal families of 2-
dimensional tangent spaces. We now discuss the behaviour of these extrinsic curva-
tures and, using the Gauss-Codazzi-Ricci equations, the behaviour of the space-time
curvature near an idealised cosmic string, as formulated in section 4.2.
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6.2 Curvature of an idealised cosmic string
Let (M, g) be a space-time containing an idealised cosmic string U C M with
preferred spacelike 2-surfaces {S,.}. For each z € U, let S, = (T'S,.), and T, =
(T'S,.)+. Let the Levi-Civita connection w have curvature €/ and let the projected
connection @ have curvature ﬁj For each =z € U, let gll be the metric induced on
S, and g+ the metric induced on 77,.
For each z € U, let K, K+ be the extrinsic curvatures of S,, 7,. Working in
an adapted frame, recall

Alld = gt ppgled KIE

ALD _— 1ED 1
A‘Ab—g“ﬂ,g K+,

Let x be a curve lying in a particular S, and terminating at {r =0}. fw ~ @
along x, then by Theorem 2.3.3, x will have w-finite b-length if and only if it has
w-finite b-length. We note that b-length measured along « in an adapted frame
parallelly propagated with respect to @ will coincide with length measured with
respect to the intrinsic positive definite metric gl

Because the connection difference ¢ = @ — w satisfies

K'2 i=b j=D

gl*ol, =0l = wii —w, = Al i=B,7=d
0 otherwise

it follows by Theorem 2.3.13 that w ~ @ along & if KD is C-w-quasi-regular (or
C°-T-quasi-regular) along &, that is, if the components K!IZ expressed in a frame
parallelly propagated along « with respect to w (or @) have C° limits (or in fact are
merely bounded).

By Lemma 5.4.2, w ~ @ along & will also hold if .S,, is regular with respect to
k, though this is a stronger condition. In particular if S,_ is regular with respect to
x then KD will be bounded in an w-frame along x.

We now give an interpretation of the extrinsic curvature K+¢ _ of the normal

spaces T,.
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6.2 Curvature of an idealised cosmic string

We saw in Corollary 1.6.6 that a good 2-dimensional quasi-regular singularity
may be considered to be totally geodesic. In section 4.1 we saw how a more general
type of singularity was considered in [UHIM]| to be totally geodesic if a sequence
of timelike (or spacelike) curves normal to a foliation of 3-dimensional hyperfaces
had spacelike accelerations whose magnitﬁde tended to zero as they approached
a timelike (or spacelike) intrinsic geodesic of the singularity. In particular this
occurred if the lapse function of the hyperfaces, essentially the normal metric, was
C? in a rather artificial quasi-Cartesian coordinate system at r = 0. Now in our
2+ 2 approach, the 2-dimensional normal spaces {7, } can be considered to become
tangent to the singularity as r — 0, and therefore it would be more natural to
take the extrinsic curvatures K+¢ of the normal spaces {T,} and to consider the
limits of their components in a frame parallelly propagated onto the singularity
with respect to w.

We shall therefore say that an idealised cosmic string is weakly totally geodesic
at p € U, (where U, occurs in the definition of an idealised cosmic string) if the
components K+d - — 0 in an w-frame as 7 — 0 along any curve of finite b-length
terminating at p € U, and lying in a preferred spacelike 2-surface, and strongly
totally geodesic at p € U, if the components K+%  — 0 in an w-frame as 7 — 0
along any curve of finite b-length terminating at p € U, (but not necessarily lying
in a preferred spacelike 2-surface).

Certainly, if the string were a regular part of the space-time, the string would
be totally geodesic if and only if it were weakly totally geodesic, and it would be
weakly totally geodesic if and only if it were strongly totally geodesic. We note that
if the preferred spacelike 2-surfaces are unique, then so are the normal spaces {7}, }.

We will see in the next section an example of an idealised cosmic string for

which K+¢_ = 0 in an w-frame (example 6.3.2) and an example of an idealised
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6.2 Curvature of an idealised cosmic string
cosmic string for which K44 — oo in an w-frame (example 6.3.3 with n = 1). In
fact, in the first case the string is strongly totally geodesic.

On the other hand, all the examples in the next section have K2 bounded in
an w-frame.

We now examine the curvature near an idealised cosmic string. Suppose that s
has w-finite b-length.

Counsider equation (6.1.1) (the Gauss equation for {S,})
Qusea = Qapea + QLEF(KH,IECKHZZ - KHZ,ECKHf:d)-

Q504 18 the curvature of the 2-space (S,,, g!). If x has W-finite b-length, it terminates
at a quasi-regular singularity of (S,,, g!l) and thus §2,,., will be C*-w-quasi-regular.
Now if KIID is C°-w-quasi-regular then w ~ @ as discussed above (and x will indeed
have W-finite b-length). Thus KD will be C°-w-quasi-regular and hence the com-

ponents ., will also be C°-@-quasi-regular and since w ~ @, €2 ,., will in fact be

abe

CY-w-quasi-regular. Since an w-frame will not in general be adapted to S,,, when

we write (Q_,., we refer to the tensor

abe
Qpeq i= 9”29”{;9”59”291']'u :

In other words, if K2 is C°-w-quasi-regular then §2,,.4, which represents one inde-
pendent component of the space-time curvature, will have a C° limit when measured
in a frame parallelly propagated along x with respect to w.

Certainly if S,, is regular with respect to « then Q_,_, will be C°-w-quasi-regular
(or at least bounded in an w-frame).

Now consider equation (6.1.2) (the Gauss equation for {7}, })

Qupep = Q—AJBCD + gﬂef(KLZCKléD - KLEBCKLfAD)'

Q4 gcp will be the curvature of gt if the normal spaces T, are surface forming.
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6.2 Curvature of an idealised cosmic string

Recall that in the definition of an idealised cosmic string given in section 4.2,
there exists an isometry ¥ of (U, T, g*) into (U, T, §+) where U € M, T = {T.}, e
and U, = U — U can be considered to be the string. The string has intrinsic metric

Gty - In the coordinate chart
b (tyz,r,0) — &(t, z,7,0)

which occurs in the definition, lim,_,¢%,, = §*,.|y,- Now we require both gt|,,
and g*|,., to be at least C?, however we do not require lim,_, d,g*,,, lim,_, 9%g*,,
to exist.

Nonetheless, if we choose a reference 2-frame (é,) on U in a C? manner, ev-
erywhere tangent to T, even at r = 0, then expressing components in this frame,

lim, 4 Q,4p0p will coincide with the curvature of (U, §+|y,) (at least if the normal
spaces T, are surface forming).

Let (e,) be a 2-frame tangent to the normal spaces T, and parallelly propagated
along x with respect to @. The components of (e,) in the reference 2-frame (&)
may not have well defined limits as r — 0, since (€,) is not parallel along x. If
the components of (e,) in the reference 2-frame (€,) do have well defined limits as
r — 0 (and maybe also if the normal spaces T, are surface forming) then Q ,pcp will
be C%-w-quasi-regular. In this case, if K+¢ , is C°-©-quasi-regular, then by equation
(6.1.2), Q,pep will be CO-W-quasi-regular, and if KD is C°-w-quasi-regular then as

before w ~ w and 2, 5-p Wwill be C%-w-quasi-regular. Again, since an w-frame will

not in general be adapted to S, , when we write 2, 5o, We refer to the tensor
Qupep = QLZQLEQLZQUDQ@M

Q.pop represents one independent component of the space-time curvature. The

examples in the next section all have Q,, ,, Q.50p zero or bounded in an w-frame.
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6.2 Curvature of an idealised cosmic string

Now consider the Ricci equation (6.1.8) for {S,}

Qusep = Qapep + QHef<AHZcA”£D

— Alle_Als Y,

We used this equation in Lemma 5.4.7 on the way to proving Theorem 5.4.11,
namely that if S,. is regular with respect. to k, then the intrinsic and extrinsic
holonomy groups H-(S, V), H.(S, V) exist for lifts &, & of x obtained by =, w. In
this case we recall that, since S,, is regular with respect to «, €2, can be bounded
by an integrable function and K!Z can be bounded by a constant, in a way made
precise in section 5.4.

In other words, €2,,.p may diverge in an w-frame along « but, in order for the
intrinsic and extrinsic holonomy groups to exist, cannot diverge too quickly (in a

way made precise in section 5.4).

The Ricci equation (6.1.7) for {7} gives

Q4pea = ﬁABccz + QLEF(ALchLgd - ALgc-’Hi(J

but of course 2,5.0 = Qeusn-

Qucps Qag.q together represent only one independent component of the space-
time curvature.

The examples in the next section all in fact have Q2 ,~p zero or bounded in an
w-frame.

Now consider equations (6.1.3) and (6.1.4)
Qchd - —Qchd + KLeBE';(cheK”aEd - g”deK”aEc)

Qypep = ﬁAbCD + KHi(QLCEKL;D - gLDE‘[{LZc)'

Recall that the intrinsic and extrinsic holonomy groups, if they exist, are conserved
along the singularity if Q,5.,, Q4cp are bounded in a ©-frame along curves of

w-finite b-length which lie in the preferred spacelike 2-surfaces and terminate at
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6.2 Curvature of an i1dealised cosmic string
r =0 (along with some other geometrical constraints). Again, if Kb K1 have
bounded components in an w-frame along x, then w ~ @ along x and ;... Q2 0p
will have bounded components both in a w-frame and in an w-frame along x.
Together, Q_ 5.4, Q4op refer to eight independent components of the space-time
curvature.
These components may also be obtained from the Codazzi equations (6.1.5) and

(6.1.6) for {S,} and {7, }

a

D _ 7 KD 7 KID WE D
Q be - VGB ‘Ibc - ka]ac 2'[([[0,17]"-1 Ec

Qupet = VKb = VK = 2Kk, Al

Hence Q,,.P will be C%w-quasi-regular along « if KD is C'-w-quasi-regular (so in
particular w ~ @ and KIIP will be C'-W-quasi-regular, img will be C°-Z-quasi-
regularand hence C9-w-quasi-regular), and K+2 is C°-w-quasi-regular. Similarly
Q4 pc? will be CO-w-quasi-regular along « if K15 is C-w-quasi-regular (and hence
w~ @), and K+¢ is Ct-w-quasi-regular (and hence as before K+¢  will be C'-&-
quasi-regular, VAK“}BC will be C-w-quasi-regularand hence C°-w-quasi-regular).

[n particular if K15, K+ —are Cl-w-quasi-regular then Q,p.4, Qascp, Q. seas
Qop Will all be Co-w-quasi-regular, and the intrinsic and extrinsic holonomy
groups, if they exist, will be conserved along the singularity (subject to some addi-
tional geometrical constraints on the homotopy p defined in section 5.5).

We shall see that examples 6.3.2 and 6.3.3 have curvatures with components
of the form Q,5., = O(1/r) for non-constant A in which case their intrinsic and

extrinsic holonomy groups are not conserved.

Finally from equation (6.1.9)

QU.BCD = ngE(vaAngc -+ AALI;a‘AL?C) + che<vBA”ZD + ‘4‘153‘4“;D>
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6.2 Curvature of an idealised cosmic string
which accounts for ten independent components of the space-time curvature, in-
cluding Q.00 = Qepas

Apart from Q,,-p, we have made no particular assumptions about these com-
ponents and they would appear to be free to diverge. We shall see that in example
6.3.2, these components are bounded in an‘ w-frame, but in example 6.3.3, some of
these components diverge as logr for n =2 and (logr)/r for n = 1.

Now if KI5, K+d —are Cl-w-quasi-regular along k, it follows as above that
w ~ w and vaAigc, VBA”ZD are C%w-quasi-regular along «, and hence that 5.,
is C%w-quasi-regular along .

In fact, if Q50 p is CO-w-quasi-regular, and Kb K+ are Cl-w-quasi-regular,
it follows that all components of the space-time curvature are C%-w-quasi-regular,
and k in fact terminates at a quasi-regular singularity.

Finally we discuss the components of the Levi-Civita connection w of an ide-
alised cosmic string in an adapted frame. Let z € U. w¢,, wq, are the Levi-Civita
connections of (S, gl), (T, g+ ) respectively, and exist uniquely by Theorem 5.2.5,

even if S,, T, are not surface forming (though in the case of an idealised cosmic

string, S

x

is surface forming). w? = KI5 wi = Ald_ are the extrinsic curvatures
of 5, and wié = K+¢  wD = ALD are the extrinsic curvatures of T.. The only
components of w without an immediate geometrical interpretation are w?, and w<,.
wb_ is used to parallelly propagate vectors normal to S, in directions tangent to
S,., and for example determines the holonomy obtained by parallelly propagating
a normal 2-frame (e,) round a closed loop in S,,. In order to prove the existence
of the intrinsic and extrinsic holonomy groups in section 5.4, we avoided the use of

wbP and made use of the curvature {,,cp instead. In fact we can use the second

Cartan equation to express {,,cp in terms of Wb,

re) D __ D D
Qpc? =0,wl —ow

__ e D D,,E __,,D,,E
abvC aC Cabwec t W pw Wy g

aE"bC bE aC
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6.3 Examples
where the structure coefficients cf. are given by le;,e;] = ctey. Since S, is surface
forming, ¢& = 0 and if 7, is surface forming, ¢ , = 0.

wd, can be used to parallelly propagate vectors tangent to S,. in directions

normal to S,,, and for example can be used to parallelly propagate a 2-frame (e,)

tz9

tangent to S,, along a curve “parallel” to the singularity. However we would not

expect (e,) to have a well defined parallel propagate along such a curve as r — 0.

6.3 Examples
We now present some examples of idealised cosmic strings. Our first example

is the 4-cone

ds? = —dt? + dr? + A%r?d6* + dz? (6.3.1)

where (¢,7,0,z) are cylindrical polar coordinates defined on M = R* — {r = 0},
0 <0 < 2r, and A is a constant. The 4-cone has a good 2-dimensional timelike
quasi-regular singularity at » = 0 in the sense of chapter 1 and we may therefore
apply the theorems of section 1.6 to it. It is locally flat with curvature everywhere
Zero.

We may also think of the 4-cone as an idealised cosmic string. The space-time
can be foliated by t = constant, z = constant spacelike 2-surfaces given in our

coordinate system by
S,,(r,0) = {(t,r,0,2) | t, z constant}
ruled by space-time geodesics
bro. (1) = (t,7,0,2).
Each S,, has induced metric

ds? = dr? + A2r2d0?
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6.3 Fxamples
and thus each (S5,.,gl) is a 2-cone with a good quasi-regular singularity at r = 0.

The singularity can be considered to be a timelike 2-surface with intrinsic metric
ds? = —dt? + dz*

and since g,. = ¢,, = 0, the S, surfaces can be considered to be normal to the
singularity.

Nonetheless, we are more interested in idealised cosmic strings which have cur-
vature singulérities and to which the theorems of section 1.6 cannot be applied.

Our second example is the dynamic cone. This has metric
ds? = —dt? + dr? + A*(t, z)r?df? + dz? (6.3.2)

where as before (¢, 7,6, z) are cylindrical polar coordinates defined on M = Rt —{r =
0} and 0 < # < 27. The dynamic cone is similar to the 4-cone except that the
angular deficit 2 (1— A) varies as a function of ¢ and z. Unlike the 4-cone, which has
a quasi-regular singularity at 7 = 0, the dynamic cone has a curvature singularity
at 7 = 0 for non-constant A.

The dynamic cone space-time can be foliated by the same spacelike 2-surfaces
S,.(r,0) = {(t,r,0,2) | t, z constant }.
Each S,, has induced metric
ds? = dr? + A%ridf?

where A is constant on S,,. Thus each (S,,, gll) is a 2-cone with a good quasi-regular
singularity at r = 0. The singularity can be considered to be a timelike 2-surface
with intrinsic metric

ds? = —dt? + dz*

and since g,, = g,, = 0, the S,, surfaces can be considered to be normal to the

singularity.




6.5 Framples

We now make a choice of adapted (pseudo-orthonormal) frame
(ei) = <6t7 €rs o5 e’:) = (at: a

with respect to which the metric has components 71, = diag(—1,1,1,1) and the

Levi-Civita connection has components

wh = (9,4)/A wi, =(0.4)/A .

= (0, 4)/4 w; =—(9.4)/A

Wo=1/r w =-1/r

06

with all other components being zero. Now since V, e, = w! e, = 0 it follows that

the S,. surfaces are ruled by space-time geodesics
Gue.(r) = (t, 7,0, 2).

Thus the dynamic cone satisfies all the conditions required of an idealised cosmic
string as given in section 4.2.

With respect to (e;) the projected connection has components

wo=1/r w, =-1/r

or 66

with other components being zero.

Let x be a curve of W-finite b-length lying in a particular S,, and terminating at
r = 0. We would like to examine the behaviour of certain tensors in frames parallelly
propagated along «, but the adapted frame (e;) is not necessarily parallel along x
with respect to either w or @. However V, e, = @' e, = 0 where lower case indices
range over {r,0} and upper case indices range over {¢,z} and so (e,) = (e, e,) Is

parallel with respect to @ along k. If (g,) is an adapted @-frame along x and

5
e, =le,
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6.3 Fxamples
it follows that [/ is a rotation about e,, e, and is therefore bounded. In other words,
the adapted frame (e,) is related to an adapted frame parallellv propagated along
x with respect to & by a bounded transformation.

We now examine the extrinsic curvatures K'l, K+ of the dvnamic cone. KD =
wP and thus

ab

[{H;g = wé() = (atA)/fl KH;Q = w; = —(82‘4)/‘—'l

4

with other components zero. Hence the components of Kl in the frame (e,) are
constant on any .S,, surface and therefore bounded by our above comments in any

w-frame along k. Since the connection difference 0 = W — w obeys
e = gk
K 17 g iglj

it follows by Theorem 2.3.13 that w ~ @ along « and the components of K will be
bounded in any w-frame along « and « will in fact have w-finite b-length.
The tangent spaces T = (T'S,,)+ normal to the S,  2-surfaces are surface form-

ing, being tangent to the timelike 2-surfaces given in our coordinate system by
S.e(t,z) ={(t,r,0,z) | 7,0 constant}.

They have extrinsic curvature KL which with respect to (e;) have components
K+d_ =wd, =0. The dynamic cone is therefore (strongly) totally geodesic in the
sense of section 6.2. This is consistent with the fact that V  ep = w’ e, = 0 and
therefore the 2-frame (e,) = (e,,e,) remains tangent to the S, 2-surfaces under
parallel propagation by w along any curve lying in an S,, 2-surface. We note also
that d,g;; = 0 which, if {r = 0} were a regular part of the space-time, would also
imply that {r = 0} was totally geodesic.

Let t,, z, be constants and consider the 4-cone
ds? = —dt? + dr? + A%(t,, z,)7?df* + d=?

177



6.3 Fxamples
which coincides with the dynamic cone on the spacelike 2-surface S, .. We can

choose an adapted frame for this 4-cone

1
5) = (8,686 = (0,0, ———0,.0.
<6L> <€ y €5 Eg €~> ( /14<t0720) 2 )

which coincides with (e;) on S, .. With respect to (&) the 4-cone has Levi-Civita
connection
wl =1/r wr, = —1/r
from which it follows that @ and @ also coincide on S, . . Hence the two connections
generate the same holonomy on loops restricted to lie in S, . . Thus given a lift % of
k in the adapted frame bundle L(S,T) where S =71'S,,, T = (TS,,)*, the intrinsic
holonomy group defined in section 5.4 is given by
H(S..,V)={L € L (4) |L acts on L(S) as a rotation through 2mn(1 — A),
n € Z; and on L(T) as the identity}.
In other words, the elements of s-holonomy generated using the projected connection
on lassos restricted to lie in a particular S,, are rotations through multiples of
27(1 — A(t, z)) with the singularity as the axis.
We now examine the curvature of the dynamic cone. With respect to (e;) the

Riemann tensor has components
Qg1 = _(BSA)/A Quprg = —(0.0,A) /A (5o = '(afAVA
Qugrg = —(0,A) /AT Qo9 = —(0.A)/Ar
with other independent components being zero. In particular

5, =0, =0("")  5,4,0.A#0.

z0r

Since the adapted frame (e,) is related to a @-frame along x by a bounded transfor-
mation, and since w ~ @ along « it follows by Proposition 2.3.7 that in an w-frame

along x some of the components of the form 5., obey

Qupos = O(u~)  8,A,8.A#0
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6.3 Examples
where u measures b-length along x such that u — 0 as r — 0. Hence {r =0} is a
curvature singularity for non-constant A.

The Ricci tensor R,; = R, ;* has components
R, = _<&f24>/'X R.=-(0.04)/4 R, = “(634)/4

Ryy = (0,4)/4 — (0.4)/4

R, = —(8,A)/Ar R, =—(8,A)/Ar

T

with other components being zero. Thus for non-constant A the space-time is not
vacuum and the Riccl tensor is singular. It can also be shown that for non-constant
A the Weyl tensor is also singular.

The loop space Q,.(S,.) defined in section 5.4 is non-empty. In particular, it
contains the map

v (s,u) — (t,7 =u,0 = 27s, 2)

working in (¢,7,0,z) coordinates, where ¢,z are constant. The 2-surface S, is
regular with respect to «, as we now show.

First of all we note that Q,,., = 0. We also recall that the components K12
of the extrinsic curvature of the S,, are bounded in an w-frame along any curve
of w-finite b-length terminating at » = 0. In fact, since the components of Kl are
constant in the adapted frame (e,), and (e;) is related to any adapted @W-frame by a
rotation, it follows that we may find a uniform bound for K required for S, to be
regular with respect to each v € Q,_(.S). Therefore S,, is regular with respect to &.

We saw above that the intrinsic holonomy groups exist. Since S,, is regular
with respect to k, the existence of the intrinsic holonomy groups (though not the
fact that they act on L(T) as the identity for lifts of « in the adapted frame bundle
L(S,T)) and the extrinsic holonomy groups also follows from Theorem 5.4.11.

Nonetheless the most notable feature of the dynamic cone is that, for non-
constant A, the extrinsic holonomy is not conserved. It follows that given ~, €
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Q,..(S), 71 € 2,,(5,) which generate non-trivial elements of holonomy, we cannot

Ko

find a well behaved homotopy p from v, to v,. This is because there exist compo-
nents of the curvature of the form €, 5., for which in an w-frame along curves of

w-finite b-length lying in the spacelike 2-surfaces
Qchd = O(“’—l)

where u measures b-length such that v — 0 as 7 — 0. Hence condition (b) in the
definition of well behaved fails to be satisfied.

Our third example has metric
ds* = —Q2(r)dt* + dr? + A2(t, 2)r2d6? + Q2 (r)dz? (6.3.3)

where as before (¢, 7,6, z) are cylindrical polar coordinates defined on M = Rt —{r =

0} and 0 < 0 < 27. This space-time can be foliated by the same spacelike 2-surfaces
S,.(r,0) ={(t,7,0,2) | t, z constant}
where again the S,, surfaces have induced metric
ds? = dr? + A%r2d6>.

Provided lim,_,Q(r) = 1, the singularity at {r = 0} can be considered to be a

timelike 2-surface with intrinsic metric
ds? = —dt? + dz?

and, since g, = g,, = 0, normal to the S,, 2-surfaces.
We now let

Q(r) =1+ r"(logr) n=12

and choose an adapted frame

1 1 1
<8i) = (€t787" 697 ez) - (ﬁaﬂa‘,‘y Z'(T’—Z_j;:ag, 582)
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With respect to (e;) the Levi-Civita connection has components

1 1
wfr = _2Q2 T”‘l<n(]og 7‘) + 1) wr, = —_—QQZ r”'l(n(log T‘) -+ 1)
ST — L ,n—l( (1 . >_+_1> r — L n—l( <1 >_+_1
wl, = =g (nllogr AW” =5’ ogr )

wio=—(8,A)/AN W = —(9,A)JAQ W’ = (8, A)JAQ w:, = —(0.A)/AQ

24

w =1/r w, =-—1/r

or 66
with other components zero.
As before Ve, = w! e, = 0 and so the S, 2-surfaces are ruled by space-time
geodesics ¢, (r) = (¢, 7,6, z). Thus this example satisfies the conditions required of
an 1dealised cosmic string.

The projected connection has components

wo=1/r w,=-1/r

or 09

with other components zero.

Let k be a curve of W-finite b-length lying in a particular S,, and terminating
at 7 = 0. As before, because V, eg = @ e, = 0, where again lower case indices
range over {r,#} and upper case indices range over {t,z}, (e,) = (e,, e.) is parallel

with respect to @ along k. Hence if (g;) is an adapted w-frame along x and
e, = le;

it follows that I is a rotation about e,, e, and is therefore bounded. Hence the
adapted frame (e;) is related to an adapted frame parallelly propagated along &
with respect to ¥ by a bounded transformation.

We now examine the extrinsic curvatures Kll, K+. The extrinsic curvature K

of the S,, surfaces has components with respect to (e;)

_K'”tge = w; = —(8,:‘4)//-19 K“gg = _(83‘4)/"49

[
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with other components zero. It follows that the components of Kl remain bounded
in a W-frame along x and w ~ @. Hence s has w-finite b-length and the components
of K remain bounded in an w-frame along .

The tangent spaces normal to the S,, 2-surfaces have extrinsic curvature K+

the components of which are

1 -
Kt =w = —ﬁr”‘l(n(log r)+1) K+ =wl =———r*""n{logr)+1)

with respect to (e,).

Now if n. = 1 then K+7 K+7 — oo asr — 0 and hence the components of
K+ with respect to (€;) diverge as r — 0, and we therefore have an example of an
idealised cosmic string which cannot be said to be totally geodesic.

If on the other hand n = 2 then K*7, K+ — 0 as r — 0, and hence the
components of K1 with respect to an w-frame tend to zero as r — 0, and the
singularity is (weakly) totally geodesic.

Thus the extrinsic curvatures of the tangent spaces normal to the S,, 2-surfaces,
measured in a frame parallelly propagated towards the singularity with respect to
w, diverge if n = 1 but tend to zero if n = 2. This arises because if n =1, Q(r) has
a C° limit as r — 0, but fails to have a C! limit. If n = 2, Q(r) has both a C° and
a C! limit as r — 0, but fails to have a C? limit.

We now examine the Riemann tensor in the frame (e,), recalling that the trans-

7

formation between (e,) and an w-frame remains bounded as r — 0. If n =2

QtTtr >~ Qt9t6' = 10g7" er:r = sz?zé) == lOgT

Qtere >~ _(atA>/‘4T Q39T€ i —(a:‘4>/‘4T

with other independent components zero or bounded as r — 0. Hence even if A =1

this space-time is singular . If A is constant, then no component of the €2, diverges
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faster than logr, where r measures b-length along the radial geodesics ¢,,_(r). It A
is not constant however, some components of Q,;,, diverge as 1/r.

Ifn=1 Q4 ~ —0.,., >~ (logr)/2r, whether or not A is constant, and in this
case we recall that the singularity is not totally geodesic.

We note that again. whether n =1 or n =2, Q.cp = 0. Since the components
KI5 of the extrinsic curvature of the S,. are bounded in an w-frame along any
curve of w-finite b-length terminating at » = 0, it follows exactly as in the case of
the dynamic cone that we may find a uniform bound for Kl required for .S, to be
regular with respect to each v € Q_(S) and therefore S,, is regular with respect to
x. Hence by Theorem 5.4.11, the intrinsic and extrinsic holonomy groups exist.

We now show that, as with the dynamic cone, the intrinsic holonomy groups
exist and, for lifts of x by @ in the adapted frame bundle, consist of rotations
through multiples of 27 (1 — A(t, z)) with the singularity as the axis.

Let t,, z, be constants and consider the 4-cone
ds? = —dt? + dr? + A%(ty, z,)7?d6? + dz?

with adapted frame

1
e.)=1(6,,6,,6y,¢.)=1(0,0,, ———=0,,0.
< 1) ( ty “ry 28 ~) ( ty ,‘4<to720) [ ~)
with respect to which the Levi-Civita connection is
W =1/ @r, =-—1/r.
On the S, . 2-surface we have
1 i . L
etzﬁet e, =ée, €y = €4 € = 0%

Hence in the adapted frame (e,)

W =1/r @y, =—-1/r
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and in fact © and @ coincide on S, . and the two connections generate the same
holonomy.

Again, for non-constant A the intrinsic and extrinsic holonomy groups are not
conserved along the singularitv. For n = 2 the curvature has components of the
form Q,5., = O(r~') and we will not be able to find well behaved homotopies
connecting lassos in different spacelike 2-surfaces.

For A = 1 we see that the intrinsic and extrinsic holonomy groups are conserved.
This holds even for » = 1 which is not totally geodesic. Thus we have an example
of a singularity which has conserved holonomy but which is not totally geodesic.

Hence, in the case of an idealised cosmic string, conservation of holonomy nei-
ther implies nor is implied by the string being totally geodesic.

The examples we have looked at might lead us to conjecture that an idealised
cosmic string whose curvature is weaker than 1/r, where r measures b-length along
any curve of finite b-length terminating at the singularity, has conserved intrinsic
and extrinsic holonomies. However by Corollary 5.5.4, we in fact require curvature
components of the form Q, 5.5, Q4cp to be bounded in an w-frame along curves
of w-finite b-length terminating at » = 0 and lying in the preferred spacelike 2-
surfaces, in order for the intrinsic and extrinsic holonomies to be conserved. This
suggests that there may exist examples of idealised cosmic strings with curvature

weaker than 1/r for which the intrinsic and extrinsic holonomies are not conserved.

6.4 Block diagonalisation
In this section we consider the following problem: given a 4-dimensional pseudo-

Riemannian manifold (M, g), we ask if it is possible to find a C> atlas for M such

184



6.4 Block diagonalisation

that in each chart () = (20, z', 22, 2%) the metric is block diagonal

Joo Go1 O 0
Jo G110 0
0 0 g Gos
0 o0 Gs2  Jas
where gp, = 9oz = g12 = 913 = 0 and gog = go1 = G30 = ¢35, = O.

If (M, g) admits such an atlas, it has the very nice property that given z € M,
there exists a neighbourhood U of z which can be foliated by two orthogonal families
of 2-surfaces. Conversely, if a neighbourhood U of z € M can be foliated by two
orthogonal families of 2-surfaces, we can choose coordinates (x°, z') on one member
of one of the families and (z2,z°) on each member of the other family, giving
coordinates (z*) = (2° 2%, 2%, z%) on U in which the metric is block diagonal.

Let (z*) be a coordinate system. The metric may not be block diagonal in this
coordinate system, howﬁ*ever it may be possible find a change of coordinates y* =
y*(27) such that in this new coordinate system, the metric is block diagonal. Such a
change of coordinates would set four independent components of the metric to zero.
Since M is 4-dimensional, y* = y*(z7) involves four functions and it would therefore
seem likely, on function counting grounds, that such a change of coordinates is
possible.

Such a change of coordinates would eliminate some of the gauge freedom of
the metric. It would also provide a convenient coordinate system in which to do
calculations. In particular, the two orthogonal families of 2-surfaces provided by
this coordinate system would have well defined intrinsic geometries and it would
be possible to express the properties of (M, g) in terms of the intrinsic geometrical
properties of the 2-surfaces and their extrinsic curvatures.

Now a space-time which contains an idealised cosmic string as described in

section 4.2 has a preferred foliation {S,, } of spacelike 2-surfaces which are considered
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to be normal to the singularitv. In the definition we gave of an idealised cosmic
string, we required that the S,. 2-surfaces be ruled by radial space-time geodesics,
in the hope that this would make them unique. The 2-dimensional tangent spaces
{T,} normal to the S,. 2-surfaces will not in general however be surface forming.
The question arises whether it would be ‘possible to choose a different foliation
of spacelike 2-surfaces S/ , which could also be considered to be normal to the
singularity, such that the tangent spaces normal to the spacelike 2-surfaces form a
foliation of timelike 2-surfaces S’ . Given such a foliation it would be possible to
choose coordinates (z¢) in which 9,9, were tangent to S’, and d,,d, were tangent
to S'_. In this coordinate system, the metric would be block diagonal

(5 o)
g=
0 gl
where g+ would be the metric induced on S’, and gl would be the metric induced
on S .

This would be a very natural coordinate system in which to describe an idealised
cosmic string. Since the S’  2-surfaces have well defined intrinsic geometries and are
normal to the preferred spacelike 2-surfaces S/ , it may be more natural to define
the intrinsic geometry of the string as a suitably defined limit of these geometries.

We first consider a related problem.

Theorem 6.4.1. Let (M, g) be a smooth 3-dimensional Riemannian manifold.
Then there exists a C*> atlas for M such that in each chart the metric is diagonal

1le.

911 0 0
g = 0 gp O G2 = G153 = Go3 = 0.
0 0 s

It would be sufficient to prove that given a chart (z*) = (2!, 22,2%) in a neigh-

bourhood of z, € M, there exists a change of coordinates y* = y¥(z*) such that

o Oy" 9yl Vo
gzj e axk 81_1 gkl — O Z/ ?éj/
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Since this gives three differential equations in three functions (y',y?,y?) it is plau-
sible that a solution exists. However such a solution would not be unique: given
a solution (y*) then (f*(y")) will also be a solution for any monotone functions
(fr.f2, f?), and it is in general difficult to prove existence theorems for differential
equations without a unique solution.

A proof of Theorem 6.4.1 is given in [DY] and we give a slightly simplified
version.

Proof of Theorem 6.4.1. Let (2,,8,,€,) be an orthonormal frame of vector fields
in a neighbourhood of z, € M and let (&',w?,@°) be the corresponding dual frame
of 1-forms, which will also be orthonormal. We want to find a coordinate system
(x',z2,2%) in a neighbourhood of z, such that (9,..0,.,8,s) are orthogonal (but
not necessarily orthonormal). Hence we want to find an orthonormal dual frame
(w!, w2, w?) such that

w' = fidg!
for some coordinate system (z*) and scalars f¢, where we do not sum over the index

i. Now by Frobenius’ theorem (see [DY])
wt= fidrt <= w'Adw' =0

where again we do not sum over the index 7. Hence we want to show that there

exists a unique solution to the three equations
WA dwt =0 i=1,2,3

where we suspend the summation convention on hatted indices. Setting w* = a'l’
where a] € SO(3) we have

17 1k —
a'w’ Ad(a,@®) =0
where we solve for at. Hence
a@w A (9T AT +aid*) =0
7 k k

187



6.4 Block diagonalisation

where 0,a! := €,(al). Using the first Cartan equation

dU"'—i-w;/\wf:()

we have o ) )
0=a@ AN(0aw AT +a T AT))
J k k {
=aT A (Qa D AT +aT AT T
2 k k mli
— a1 i i A T A TR
=a' (04, +a W AT AD
where @' = @, @* and T, , is a scalar. Hence

ar Gay, + a; a 5 = 0. (6.4.1)

We will show that these three quasi-linear first order partial differential equations
for a’ have a unique solution. We will require that at z, € M, a! = ¢! ie. (w)],, =
(@*)],,. Certainly given a solution a: of (6.4.1) we can set @), = (W,

Since al € SO(3), at = exp(a:) where o € L(SO(3)). Thus o) will be a 3 x 3
antisymmetric matrix and al, al, a? will parametrise a;’.. Hence a;ﬂ = 5; + oz;’. 4+
Since ai(z,) = ¢!, near z, o will be “small” and we linearise equation (6.4.1) in
terms of oz;’. to give

0= 6@(81041]) + lower order terms (6.4.2)

where the lower order terms contain no derivatives. In other words we have simply

omitted terms which would have made (6.4.2) non-linear. This gives
0,0t — 050 = lower order terms

0,02 — 9, = lower order terms
0,3 ~ 9,a? = lower order terms

which we rearrange to give

0,2 = lower order terms
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Oqaé = lower order terms

d;al = lower order terms

which is in diagonal hyperbolic form, which we define below (see also [DY]). Since the
linearisation of (6.4.1) is diagonal hyperbolic, it follows that there exists a smooth

solution to (6.4.1) (by Theorems 1.4 and 1.5 quoted in [DY] and Proposition 2.1

proved in [DY]). 0
Let k,n € N. A vector v = (uy,...,u,) of functions u, = u,(z,,...,x,) for
v+ =1,...,k is said to satisfy a first order partial differential equation in diagonal

hyperbolic form if
Apuy+ fluy, ... u,) =0 i=1,...,n

for a smooth function f linear in u,,...,u,.

We now attempt to apply the same technique to prove that a 4-dimensional
Lorentzian metric can be block diagonalised. Let (M, g) be a space-time and let
T, € M. Let u,v be a pair of 1-forms which span a 2-dimensional subspace N <

T;U M. If u' v are a pair of 1-forms which also span N then
uAv= fu AV

for some constant f. In particular if u,v and w, v’ are both orthonormal then
uAV=u Av.

We therefore want to find a dual orthonormal basis (w?) and coordinates (z*) in
a neighbourhood of z, such that w?, w! span the same 2-space as dz°, dz! and w?, w?
span the same 2-space as dz?, dz3. This would ensure that the 2-space spanned by
dz°, dz' is orthogonal to the 2-space spanned by dz?,dz® and that the metric is

block diagonal. Thus we want

wiAw! = fdx* A dz? 1,7=0,10r2,3
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for some scalar f (which is different for 7,7 = 0,1 and 4,5 = 2,3). By Frobenius’

theorem

Jzt, f such that w' Aw? = fdxt A dxd 1,y =0,1or23
e d(w AW ) AW =0 i,5,k=0,1,00r0,1,10r 2,3,2 0or 2,3,3

and hence we wish to show that there exists a solution to the four equations
dw’ AW Awt =0

dwt AN Awtr =0
dw?* Aw* Aw® =0
dwP ANw? Aw? =0

which we write as
dw' Aw Awi =0 1,7 =0,1or1,00r2,30r3,2

where again we suspend the summation convention on hatted indices.

As before let (g,) be an orthonormal frame of vector fields in a neighbourhood
of z,, let (@") be the corresponding dual frame of 1-forms, and let wi = a;ZUj where
a' € L1(4). Hence

0=d(a@*) A (i) A (el &™)

= (0,0, NT* + ai T ATE D) A (aiT) A (0] TT)

where as before we use the first Cartan equation dw® + @ A v =0, =w, 0
where @, is a scalar, and J,a! :=€,(a}). Hence
(8,0} + a:@? Jaiad W AT AT AT =0
and therefore
8[naia§afn] + aiwfknafafn] =0 1,7 =0,10or 1,0 or 2,3 or 3,2 (6.4.3)
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which gives us four quasi-linear first order partial differential equations for a]. As
before we require that (L;(I()) = 0! so that (W), = @),

Since a! € L1 (4), a! = exp(c) where o € L(L](4)) and
0 o 8
a 0 ‘ a b

B8 —a 0 ¢

v —b —c 0
where «, 0,7, a, b, c parametrise a;. As before CL;. = (5; + oz;_ + ... and we linearise
(6.4.3) in terms of o to give
6[516{718,104% + lower order terms (6.4.4)

where again lower order terms contain no derivatives. This gives

d,af — 9,02 = lower order terms

d,a) — 0l = lower order terms

2
Opcx

2 — 0,02 = lower order terms

0,02 — 8,2 = lower order terms

and hence

0,7 — 0,0 = lower order terms
0,0 — 0,a = lower order terms
—0,a — 9,0 = lower order terms
~0,b — 0,y = lower order terms.

Unfortunately these equations are not diagonal hyperbolic and the technique used

in the proof of Theorem 6.4.1 does not appear to work in this case.
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6.4 Block diagonalisation

Now we note that there does not exist a unique solution for (w?) = (a]ijf)
since w?, wt and w?, w3 are free to move in their corresponding co-planes. aY} has six
degrees of freedom, whereas we have only four equations. It may be for this reason

that the above method does not work. However

0 « 0 O cosh'e sinh o 0 0

« 0 0 0 sinho cosh o 0 0
eXp prad

0 0 0 ¢ 0 0 cosc sinc

0 0 —c 0 0 0 —sinc cosc

which are precisely the transformations which preserve w? A w! and w? A w3. Curi-
ously, «, c are absent from the four linearised equations (6.4.4) which involve only
the four unknowns 3, +,a,b.

An alternative approach is to work directly in terms of the 2-forms F' = w*® Aw?
since these characterise the 2-dimensional subspaces of T*M uniquely.

A 2-form F' characterises a 2-dimensional subspace of 7*M provided that it is

simple i.e. F'=u A v for some 1-forms u, v. F'is simple if and only if
FAF=0. (6.4.5)

F will characterise a 2-dimensional timelike subspace of T*M if F' = u A v for 1-
forms u, v such that g(u,u) =1, g(v,v) = —1 so in addition to equation (6.4.5) we
have

FAxF =%l (6.4.6)

where in an orthonormal frame *F; = e, ¥ and (*1),;,, = £, The 2-form *F

ijk
dual to F will characterise a 2-dimensional subspace of T*M if «+F' A ' = 0 and
*[' AN F'= — %1 but these just give equations (6.4.5) and (6.4.6). It turns out that
*xF is orthogonal to F.

Now in order for £'| xF" to be surface forming, Frobenius’ theorem gives us

(¢dx F)AF =0 (6.4.7)
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6.4 Block diagonalisation

(+dF) A «F =0 (6.4.8)

Thus we wish to show that there exists a solution to the four equations (6.4.5)-
(6.4.8).

Working in an orthonormal frame, equation (6.4.5) gives
1 g
~F o x =0
2 Y
and equation (6.4.6) gives
1 g 1 g
iFijF” =-3 * Fyx B9 o= —1.
Choosing a timelike vector field 7% we define
] ] 1 i Lkl
E, = F,T7 B, =xF,T7 = gsijleﬂF

and hence
F” = QE[IYWJ] + EijlekBl.

1

Now the first Frobenius equation (6.4.7) may be written
divFAF=0

or

JANEF =0

where J = div F'. We now work with respect to the 3-geometry of the hypersurfaces
to which T is normal. E,, B, are both tangent to the hypersurfaces and so we
represent them as 3-vectors E, B. We note that the hypersurfaces have positive
definite metric. We use ~ to denote differentiation along 7% If we write J =

div F = (,oj) then in terms of E, B, p and j we have

pB+7x E=0
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6.4 Block diagonalisation
and hence

(6.4.9)
(VxB-E).B=0 (6.4.10)
Similarly the second Frobenius equation (6.4.8) may be written
(NBE+(VxE-B) xB=0 (6.4.11)
(VxE-B).E=0 (6.4.12)
Equation (6.4.5) implies the constraint equation
E.B=0 (6.4.13)
and equation (6.4.6) implies the constraint equation
B*—E?=—1= E>~B*>=1, (6.4.14)

Now we note that (6.4.10) + (6.4.12) gives

—

(¥ x B).B + (¥ x E).E = (E.B)

so the condition that the constraint equation (6.4.13) propagates in the 7" direction
1s that

(Vx B).B=—(VxE)E. (6.4.15)
Now let

SO



6.4 Block diagonalisation

and similarly

but by equation (6.4.14), E2 — B? =1 so we may write
FE = cosh o ‘B = sinh «. (6.4.16)
Substituting into (6.4.15) gives
sinh® @bV x b= —cosh®’ @&V x &
and hence

(T x o)’
o = tanh™ {E—QX—Q} . (6.4.17)

Thus we can calculate £ and B in terms of &and b in such a way that the constraint
equations (6.4.13) and (6.4.14) are satisfied for all t. In particular we can choose

suitable initial data on the initial data hypersurface ¢ = 0 such that in at least in

some open neighbourhood

—,

(—&.(V x &) /(b.(V x b)) > 0.
If we now look at equation (6.4.9) in terms of F, B, €, and b we get
V.E=VEé&+EV.E
VxB=VBxb+BVxb

— Ee+ Eé

-

and hence

EB((V.&)b+ (V xb)x &)+ B(VE.&)b+ E(VBx b) x é— E&¢x é— E?¢x &=0.

Now € x €= 0 so if we divide by E? and take the cross product with € we get

(Ex &) x = (e8)e— (68)e= —¢
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6.4 Block diagonalisation
(since 6.6 =1 = £.&=0) and

B - - 1 = =
(VE).e)b x & — —E—((VB X b) X &) X €.

. B . . o o
Fm - ((VAF+ (VxB)x ) x - 2
Substituting for £ and B from equations (6.4.16) and (6.4.17) gives

€ = a function of &, b and spatial derivatives. (6.4.18)

Similarly from equation (6.4.11) we get

b = a function of & b and spatial derivatives. (6.4.19)
Let k,n € N. A vector u = (uy,...,u,) of functions v, = wu,(t,z,,...,z,)
for © = 1,ldots, k is sald to satisfy a first order partial differential equation of

Kovalevskaya type ([EgSh]) if

with initial data

for a function f analytic in a neighbourhood of ¢ = 0, x = 0 and functions ¢, ¥
analytic in a neighbourhood of z = 0.

Equations (6.4.18) and (6.4.19) are first order partial differential equation of
Kovalevskaya type. It follows by the Cauchy-Kovalevskaya theorem ([EgSh]) that,
at least in an open neighbourhood of a point on the initial data hypersurface, we
can find a solution of these equations. Thus in this neighbourhood we can find € and
b which together with equations (6.4.16) and (6.4.17) give E and B which satisfy
the Frobenius equations (6.4.9), (6.4.11) and the constraint equations (6.4.13) and

(6.4.14). This leaves equations (6.4.10) and (6.4.12) to be satisfied but
(6.4.9) x B = (6.4.10)  (6.4.11) x E = (6.4.12)

and so in fact (6.4.10) and (6.4.12) are satisfied.
Hence, at least in the analytic case, we can find coordinates in a neighbourhood

of any x € M such that the metric has block diagonal form.
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Conclusions and further work

We have in this thesis been looking at certain types of weak singularity in
general relativity. These are singularities which can in some sense be said to be
mathematically tractable and can be given some kind of geometrical structure.

We started by reviewing quasi-regular singularities. In particular we saw how
2-dimensional timelike quasi-regular singularities may be used to model cosmic
strings. These are more usually modelled using weak field theory, in which they
may bend on small length scales and form small loops, however this approach ig-
nores the gravitational effects of the string, which for example give rise to its light
bending properties. On the other hand using methods of holonomy we saw how
2-dimensional timelike quasi-regular singularities may be considered to be totally
geodesic. In addition it may also be shown that cosmic strings modelled in this way
are really quite inflexible objects, unable to bend on length scales smaller than the
cosmological length scale.

We therefore introduced a class of curvature singularities, more general than
quasi-regular singularities, which have some of the properties we would expect of
a cosmic string. We called the members of this class idealised cosmic strings. A
space-time with such a singularity admits a foliation of spacelike 2-surfaces, each of
which has a quasi-regular singularity in the induced metric. The singularity itself
has a perfectly regular Lorentzian 2-metric, despite the fact that it is in general a
curvature singularity.

We introduced a 2 + 2 formalism suited to these idealised cosmic strings and

proceeded to analyse them using methods of holonomy. Now in general the singular
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holonomy groups will not exist for a curvature singularity, but we exhibited in sec-
tion 2.5 certain stringent conditions under which elements of singular holonomy will
exist for a curvature singularity. By using this along with a bound on the extrinsic
curvature of the spacelike 2-surfaces and an integral bound on certain components
of the curvature we were able to prove the existence of certain intrinsic and extrin-
sic holonomy groups, obtained by parallelly propagating frames with respect to the
projected and full connections on loops restricted to lie in the preferred spacelike 2-
surfaces. By placing further conditions on the curvature we were able to show when
these groups are conserved along the singularity. We also examined the behaviour
of the curvature near the singularity and showed that, even with these bounds, the
curvature can diverge.

There is clearly scope to tune the definition of an idealised cosmic string. We
chose the spacelike 2-surfaces to be ruled by radial geodesics so that they would
be regular if the string were a regular part of the space-time, and in the hope of
making them unique. It would be worth asking under what circumstances these
2-surfaces are in fact unique, and whether this matters. The frame approach we
used in chapters 5 and 6 to analyse these idealised cosmic strings sits uneasily with
the coordinate based definition we gave of an idealised cosmic string in chapter 4.
A better relationship could be found between the two.

Now we proved in section 6.4 that, at least in the analytic case, coordinates may
be found in the neighbourhood of a peint in which the metric has block diagonal
form. It would be worth trying to prove this in the smooth case. The question also
arises whether a different foliation of spacelike 2-surfaces could be chosen normal to
an idealised cosmic string such that the normal tangent spaces were surface forming.
These normal surfaces would have a well defined intrinsic geometry and it would

seem more natural to describe the geometry of the singularity as a suitable limit
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of these geometries. We need to be careful, however, to define the properties of a
singularity purely in terms of the properties of the space-time itself.

The most obvious question to ask about idealised cosmic strings is whether
they can bend on small length scales. It may be the case that thev can do so
while remaining totally geodesic. Because of the way they would need to deform
the geometry near the string to do this, it would be of interest to measure the
spanning area of a cosmic string loop and to investigate the volume element near
the singularity. It would also be worth trying to find more examples of idealised
cosmic strings, in particular ones which were not rotationally symmetric, and ones
which appeared to form closed loops. A spinning or rotating cosmic string loop
would have an interesting causal structure.

We also discussed conformal singularities in chapter 3, which are a different kind
of “weak” singularity. It would also be possible to consider singularities conformal

to quasi-regular singularities, or conformal to idealised cosmic strings.
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