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In various fields of science, such as biology, economics and medicine, scientific data frequently
follow a truncated normal distribution. Measurement of variables in some parts of the popu-
lation present difficulties. Because of the importance of this distribution, many statisticians
have been involved with the estimation of the relevant parameters.

The problem with the estimation of the parameters is that the method of maximum
likelihood gives rise to two equations which cannot be explicitly solved and, further, the
results obtained are not acceptable due to the biases are large. Cox & Hinkley (1974) have
presented an approximation formula based on a Taylor expansion, which can be used to
find the expected value and variance of the maximum likelihood estimators. An alternative
approach for estimating the parameters is by application of Shenton & Bowman's formula
(1977),

In this thesis the method of Shenton & Bowman is extended to the two-parameter case
to give the means, variances and covariances of the maximum likelihood estimators of the
truncated normal distribution simultaneously.

The maximum product spacing method, which is asymptotically as efficient as the max-

imum likelihood and in some cases hyper-efficient, is used for the truncated normal distri-

bution.

Finally, a comparison is made between the above methods and also with the method of

estimation by means of simulation.
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Chapter 0

Notation and preliminary results:

0.1 Introduction and notation

In this chapter we give the preliminary assumptions, notations and intermediate results
needed in later chapters. These results concern the properties of the truncated normal

distribution.

0.1.1 Assumptions:

1. Let X ~ N(p1,0%).

o

Let V' ~ N{pa,02).
3. Let Z ~ N{ua,o?).

4. Let {X,Y) ~ Nz (p, p2,0%,0%, p). Then the conditional distribution of ¥ given
X==zx1s

(Y 1X =)~ N (52 + o 2)(e = )L = 7).
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5. Let
x | 2
- My o F120102  P130103
Y | ~ N po | 2] preovos o2 P230203
YA 3 130103 P230203 a3

6. Let ) =Y — X be the increment, then
(D| X =2)~N (,&2 —u + (p(z—z) - l) (z — py1),03{1 — ,02)) .
1

0.1.2 Notation:

Throughout this thesis we shall adopt the following notations.

1. Let pp = B(X |a < X < b).

2. Let 02 = Var(X |a < X < b).

3. Let g, = E(Y |a < X < b).

4. Let o = Var(Y | a < X < b).

5. Let p. = E(X | —oo < X < ¢).
6. Let 02 = Var(X | —c0 < X < ¢).

7. Let &{x’) and ®(z') denote the probability density function (p.d.f.) and the
cumulative distribution function (c.d.f.) of the standard normal distribution.
8. Let o' = 28 ¥/ = b—affL ¢’ = 4~ and ¢ = P
9. Let ép = ®(¥) — ®().
10. Let &4 = ¢(¥') — ¢la’).
11. Let 6y = &'(¥) — ¢'(a') = a'd(a’) — ¥ (V), since ¢'{a') = —a'd(a’) etc.
12 Let by = $"(H) — ¢"(a) = 2$() — B26(H) — (b') + 6(a").

13. Let Sm = ¢ (M) = §"(a') = a®(a’)— bO$(¥) = 3a”$(a) = b2a() — (V) + $(<)].
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14. Let 7(¢'} = 49 Then

3
() = =cd7(c) = T*(c).
() = —7() = () = 27 ()T ).
() = =27'() — 7)) — 27() — 2r ()" ().

T(iu} (Cf] — _3Trf(cl) . CJTIII(CI) . GT"(C’)T”(C}) _ 2?‘(6;)1'”’(6].
15. Let #(cf) = 2% Then

P

() = —cp(c) — () o

P() = =) = YY) = 29 (I W(c) o
= () ((¢® = 1) +3B(c) [0 + 2(w(c)/o)?) .

Yr(c) = —2() = () = 247 ) o - 2" (Npl(e) o

,(!‘[t'u] (C;) - -—31;'7'”((?’) . C"’tr-i'm(cf) _ G'II-'.L‘!(C})?;")"!(C’)/J _ 2?‘.’1’((:’)?‘[””((?’)/6.

In trivariate normal distribution
16. Let D, =Y — X and D), = Z — Y denote two increments.

- S -
17. Let 91 = -7y + P1202, 62 = —TM2 + Gzhz and A = (3‘2— — (%)2)
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0.1.3 Cumulative distribution function of (X | a < X < b):

We want to find Flz | a < X < b).

Now

P(X €z,a< X <b)

Flala< X <b) =

Pla < X < b)
0 ifz<a
= | fndggy He<z<d
1 ifz>5b
JZ fx(B)dt — [2 fx(t)dt
o(¥) - O(a')
no_ '
—_= M)_g fr} < x < b. (0_1)
oy

0.1.4 Cumulative distribution function of (X | —oco < X < ¢):
By putting ¢ = —oo and b = ¢ in equation (0.1) we can find the cumulative distribution

function of X truncated from the right at ¢.

_ O(2')
D)’

Flz | ~oc0o< X <¢) —00 <z <

0.1.5 Probability density function of (X |a < X < b):

We want to find f(z | e < X < b). If we take the first derivative of Fi(z | ¢ < X < b), we
can find f(z | e < X < b).

flzla<X <b) = d(F(z|la< X <b)/de
_ J(M)/@
o
¢(@')

a16s
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~my 2
) e ifa<ac<h
0 otherwise
fx(x)
T (0.2)

where fx{z) is the conditional marginal p.d.f. of X.

0.1.6 Probability density function of (X | —00 < X < ¢):

By putting ¢ = —oco and b = ¢ in equation (0.2) we can find the probability density function

of X truncated from the right at ¢.
P

71

flz,| —o < X <) =

0.1.7 Expected value of (X |a < X < b):

Now we want to find E(X | @« < X < b). We know that

+o )
e = E(X |a< X <b) =/ 2f(2]a < X < b)de

—o0

—{z—p)?
b e 2&11
/a. O'](Sq;‘\,.-" 2%
So with the change of variable 2’ = (z — y1)/ o1, we have
E( X X <b L% Je s d
a< X < = f o'+ p)eT T da’
(Xl . A
o Y, 2, m]b‘ .y
= deT T di' +— | —=eT7 dx
de v 2m Ja 0p Jur V2T
—_ ¥ 2 "o '
_ o1 d(e L ) 4 1 (®(H) — ®(a"))
S 21 S ¢
—0 2 a2 ) #1160
— e T —e 2 -+ .
bov' 2w ( do
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Therefore

6
%:ﬂr-?¢‘ (0.3)
P

0.1.8 Expected value of (X | —oo < X < ¢):

By putting @ = —oo and b = ¢ in equation (0.3) we can find the expected value of X

truncated from the right at ¢

pe = 1 —P{c)

= i —o17(d).

0.1.9 Expected value of (Y |a < X < b):

We know that
+oo
%:ﬂYM<X<®=‘/ yflyla< X < b)dy
+ o0 b
= / y/ fle,y | a < X < b)dzdy

b rtoo
= fa f_ yfly | 2)fx(z | a < X < b)dedy

fab [,1-52 —i—p(z_f)(x ‘#])] fx(z]e< X < bz

_ a2y |, _ T10 _

= ur+ﬂg)bn 5 #4

- e _P?‘Sé‘ (0.4)
&

To check this resuli we now consider what happens to E(Y |a < X < b} as b — a, or
b — a' by use of I'Hopital’s rule.

Since

b—af

R
L5
hal
I
&
e
1l
2
————
o 1%
%E%g
s
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= lim

AN )—H))
i

A (H)-B())
BT

= lim—¥

b—u

= —da.

Substituting limy_ (g{—) from equation (0.5) into equation {0.3) we obtain

E(Y | X =a)=py+ pdoy

which is the true regression equation.

0.1.10 Probability density function of (Y |a < X < b):

Now we want to find f(y | ¢ < X < b).

Since we know that

fla<X <) = [ floyla<X <bds
[t f(z,y)da
Pla < X < b)

fa fx 1 9) fr(y)de
Pla < X <b)

fr(y)

fo fl | y)de
Pla < X <b)

1Y =)~ N (4 (P — ) o1 = )

then, by substituting the p.d.f. (z | y) into equation (0.7}, we obtain

flyla<X<b)=

fly)

b ply — p2)

b

(v

VI—pr ot/ g2

) ol

t

a Ply — #2)

VI—p?  oi/1—p2

))

|

(0.5)

(0.6)

—
<
-1

g

(0.8)
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0.1.11 Variance of (X [a < X < b}):

In this subsection we find the variance of X when ¢ < X < b. We know that

Var(X |a <« X <)) = E(X? |la< X <b) - (E(X |a < X < b))’.

Now we have to find F(X?% | a < X < })

Joo
E(X*|la<X <b) = f (e |a< X < b)de
N
= o1 + ez dr
Sov/2n 1 1
- 6¢»\/2_?r/a o3z + pi + 2umona’)e” 7 da’
2 4 ]
= e~ T dz’ +
5@\/27!’ a
4 ’ e~ dz' +
5@\! 27 Ja .
T B AT
re 7 dx'.
5@\/ 2r Jo
Let
Jy = ! g x’ze_%z dz’
2 5@\! 2r Jo . ’
J1 = T d )
L = 5@@ g e 2 de
Jo = -5 dJ,
0o 5([;.‘\/ 2w Jo
The next task is to find Jy , Jy and Js.
Now
J 1 W 212 d , 1 a 2 d
= e 2 dxr — e 2 !
° S 27 J—oo b2 S0 v
= (®(¥) — 0(a")) /b0

= L.

(0.9)

(0.10)

(0.11)
(0.12)

(0.13)

(0.14)
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Further,
J — .i' 1"2;’2
! 5@\!271’ of
— —1’?;2
5@\/2; o
- _ —+#2/2 _ -d?f2
(S.;.\/ 2 (6 ¢ )
= —(¢(¥) — ¢(d")) /b
= —é;/bs.
By the use of partial integration, we have
J, = I‘Z a:"?,-"Qd
: 6¢\/2_7r ¢ )
— z —:L"'Q,n"? )
oQ\/zTT o
_ .* iy d ?
aq,m . )
= (d'¢(a’) - b’é(b") + ¢(b') — ¢(a')) /e

= (5¢( 4 5@) /5q>

If we substitute J, J1 and Jy into equation (0.10) we find

E(X*|la<X <b) =

2;'9510’1

5 5, 46 2 i
6—(w+ o)+ + (—6¢)
i)

2 [ 6 d,
o + ud + o} (6_1-) — 201 (i) .

(0.15)

(0.16)

(0.17)

If we substitute equation (0.3) and equation (0.17) into equation (0.9}, then we obtain

by § 5164\
gl = 0'1"1’#1‘1“71(6@) — 2101 (éi)_(#l_ (;;)

- (-(2) - %)

To check this result, we now consider what happens to Var(X | a < X < b) as b — «a, or

¥ — @ by use of I'Hopital’s rule.

(0.18)
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Since

5, B3y)
: %9\ _ 1 L]
i ( ba ) Jim 1)

B(H(Y)~# ()
ol
A2 {t) ()
ot

— : o_
= (-

= lim
Y

= a? -1, (0.19)
using limy_ (5%) from equation (0.5}, and limy_» (%) from equation (0.19) it follows that
Var{X | X =a)=0 (0.20)

as we expected.

0.1.12 Variance of (X | —o0 < X < ¢):

By putting « = —o0 and b = ¢ in equation (0.18) we can find the second moment of X in

truncation point ¢

0_3 _ O’f (1 _ C’.flf;(cr‘) _ U‘::’)) _ 0‘12 (1 n @;’I(C!)/o)
= oi(l =) = 7)) = i (1 + (). (0.21)

0.1.13 Variance of (Y |a < X < b):

To find Var{Y | a < X < b), we use

Var(Y |a < X <)) = E(Y? |e < X <b) = (BE(Y |a < X < b)), (0.22)

E(Y? | @ < X < b) is worked out as follows

+20
E(Y?|a< X < b) :f vif(y la < X < b)dy

-
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= /+Ooy2 (/bf(x,y |a < X <b)d:c) dy

_ // F o) fx(y. | a < X < b)dedy

L 52 v* | =) fx (2)dady
LY '

On considering
a3(1 = p°) = Var(Y [ 2) = E(Y?|2)-(E(Y |2))
2
= B o) = (i f B - )

1t follows that

E(Y?|x)=0j(1-p") + (#2 + p(2) (i ~ m)) :

a1
However,

B2y = [yt | 2y

S22y fly, =)dy
fx(z)

Therefore we have

f:o v f(y | 2)dy = B(Y? | 2)fx(z).

However, by the substitution of E(Y? | z} from equation {0.25) into equation (0.27

[ vt = (05(1 =)+ (s + o) - m)z) fx(@)

S0, if we substitute equation (0.28) into equation (0.23), we obtain

EY?|la<X <b) =

8 (30— )+ (o + (2w — 1)) fxle)da

b

b
= o3 —p2)+u3+2(pff2)/ (z — ) fx(@)de +
1% @

lo2 b
(2125;) L (= )" fx(2)de.

11

(0.23)

(0.24)

(0.25)

), we have

(0.28)

(0.29)
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If we let Iy = [)(2 — yt1) fx(2)dz, then

—(r—p)?
L Ble—pe T e
v 0'1\/2'—?1'
= —a1((¥) — ¢(a))

= —016,. (0.30)

Similarly, for [; = f:’(x — 11)*fx(z)dx, we have

o= [ e mPixle)d

(—o1) fo{x = m)d (el )
Vx
(—o0) [2d ({2 = ) (-7 )

(=01 f2 (emtemrr2 )
NGE
= a2 (dd(e) — VoY) + B(H) — B(d'))
= 0‘12(5& + 6(1))- (0'31)

Similarly, using integration by parts we obtain I3 and Iy, as follows:

b
Iy = /(:v—#l)fo(iB)da*
= o6y + 36,), (0.32)

b
Iy = / (x — ) fx(x)dz

Now if we substitute I and [, from equations (0.30) and (0.31) into equation (0.29) we

obtain

B la<X <b) = ofil— )+ pd+2 (L2820 (—sy)
016(1)

+ ("’2"3) (c3(84 + 6a)) . (0.34)

oidg
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Further substituting equations (0.34) and (0.4) into (0.22) then we find that

5.\°  p?6,
0! = of (1—(%) +p5:). (0.35)

To check this result we now consider what happens to Var(Y | ¢ < X < b) as b — a, or

¥ — a' by use of "Hopital’s rule. using limy_y %) from equation (0.5 , and limy_y by
g 5._1;, q 5‘[’

from equation (0.19) it follows that

Var(Y | X =a) = o}(1 - p* (=) + p*(a® — 1))

i

ai(1 = p%) (0.36)

as we expected.

0.1.14 Third moment of (Y | a < X < b) about the mean:

+ o
BIY =) la< X <8 = [ (-m)'flyla<X<bidy

= /+Oo(y — PP (/:f(;t,y e < X < b)d;z:) dy

T2y — g P Fly | 2)dy) fx()dz
8o
ff Sx (@) (y - py)? fly | x)dylde
oa
f2 ix @22 Ty — o+ poa (528 + 32)Pf(y | 2)dy)du
oo

= o [ (Bl - 2 X = 2l

T — iy

3p0s( + g_:)E[(Y —p2)’ | X = al+

. é )
3P0 (L + 2P E((Y — pa) | X = o+
(3] 6@

3 3%~ M é_é 3 . -
pas( p -I-(Sq)))}da,. (0.37)
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Since (Y | X = z) ~ N{ua, 52(1 — p?)], the first and third central moments of ¥ | X = x are

zero, and we will therefore have

; ; 3p02(1 —p%) bz —p b
BIY =)t o< X <t = 22EZ2) I 20 p s

342 b o 5
pros fPr— i dens
+ B2 [ ixtayda

g2 fb o — g
- p(‘i: ].5; ( 0'1; I)SJCA’(Q’)(&'C

3030285 Y — 1, .
3pos bg g [P T gy
+ Ku—p%ﬁ(;) | [ x (e
+ 2[3(1—,9 ) + % 1/f (0.33)

Therefore, using I;, I and Is from equations (0.30), 0.31), and (0.3‘2] we obtain

. b ) S
E{(Y = ) la< X < b] = pod [—2(.—*5)3 +3(2) ( - —"5’-] (0.39)
o9 bg b
Consider now what happens to E[(V — 1,)° | a < X < b} as b — a, or as ¥ — «&'. By the

use of I’'Hopital’s rule, we have

Since
5 3(8401)
pD ( 50 ) o ( EE) )
8((,6”!6’!5;15"!&“
= Jlim 20E)_TE)
_ . } _ H2
= hm[¥(3 -7
= d'(3-a"). (0.40)
Using limy _ (%) from equation (0.5), and limy_ (%) from equation (0.19) and limy_, (%‘*;:i)
from equation {0.40) it follows that
BI(Y — ) | X = a] = f03[20% + 3(=d)(a®) — /(3 —a®)] =0 (0.41)

as expected.
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0.1.15 Third moment of (X |a < X < b) about the mean:

Similarly, we can replace pey by o1 and obtain the third moment of (X | a < X < b) as

E(X —p PP la< X <b] =0} [-2(F % ) e (0.42)
b 6<1> be
0.1.16 Third moment of (X | —co < X < ¢) about the mean:
By putting ¢ = —oo and b = ¢ in equation {0.42), we can find the third moment of X
truncated from the right at ¢
" : . P ;dz ; h3 ']
E[(X —p)|-co< X <d = —a?|(c¢?=1) c(:) 3¢ 0(1 Hz’*g&f .
= —ad[(c? — Dr(c'} 4 373 (c) + 273( ). (0.43)
0.1.17 Fourth moment of (Y | ¢ < X < b) about the mean:
BUY =)' la< X <8] = [ (y—m) fly |a< X < b)dy
+e h )
= f_ (4 — py)? (/ flz,yle< X < 5)0512) dy
_ LURRy — p) | 2)dy) fx(@)de
bg
LI @Sy — ) f(y | 2)dylde
= >
R @ISy - et poa (5 ) fly | 2)dy)da
= 5
- 40y =
= o [ (@) (Bl - ) | X = 2l
-- 0 .
dpoy(=E 4 5_¢)E[(1’ ~p2)? | X = 2]+
0‘1 <I>
7oA+ 2P = o) | X = el

1

1203 L PR ) | X = o)
(o2} 5(1)
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Yl LRIV N
pros( p +6®))}da§ (0.44)

1
Since (Y | X = 2) ~ N[uz,03(1 — p?)], the first and third central momentsof ¥ | X = z

about its mean are zero, and
E[(Y =) | X = 2] = o2(1— %) (0.45)

and

BIY — po)' | X = a] = 3[3(1 = ")) (0.46)
So we have

, 4 - 1 g 4 2\2 2 4 gL T Hi 2
E(Y =) la< X <} = —/ 303(1 — p°)" +6p%03(1 — p*)[—— + =" ¢ fx(a)ds
6(1;. o 5(];
+ —plol / (EHL %94 (2)de (0.47)

Using I, Iz, I3 and I, from equations (0.30), (0.31), (0.3‘2] and (0.33) respectively, we obtain
5 55 1\
E((Y —p)' la< X <b] = 3 {03 [1 ~ pz(—"i)z + 92(3%)}}
AV P AW
bt - 4 1R
_ ()i 3(6;“)2] . (0.48)

Now consider what happens to E[(Y — p,)* [a < X < b as b — a, or as b’ — o', Again,

using |"Hopital's rule,

(5‘3'; 3(5Eu.r)
s (5) AN

(d!l’ "‘ﬂ"(a
= lim | —giZes—
Frj— L) —D())
¥
= lim ¥ — 652 +3
b —a!

= a* —6a®+3. (0.49)
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Consequently, we obtain

E[(Y — )" | X = a] = 3[o3(1 — p*)] (0.50)

as expected.

0.1.18 Fourth moment of (X |a < X < b) about the mean:

Similarly we can replace poy by o7 everywhere except 1 the first term of the first line of

equation (0.48), where &3 is replaced by o1, to obtain

- 2
E(X—p)e<X < = S{Jf llh(%)“r(%)l}
4 | o bg by 86 .9, 0u
t 0 [5_ —4 g;)(ggJ+ 2(@) (g)
5,;5 6(51
— 6(5;‘)4 — S(E]Z] X (0.51)

0.1.19 Fourth moment of (X | —c0 < X < ¢) about the mean:

By putting ¢ = ~o00 and b = ¢ in equation (0.51) we can find the fourth moment of X

truncated from the right at ¢

Rt - . of , _culd) P ?
E(X~p) | —0o< X < = 3 (1 o p )

2

+ 0_11 [(Bcf . CIS]M + (4 _ 76;2)2}52((?’)

F ay
L3t 44 7
0y 01

= 30i(l = dr() - r3())*
+ o3¢ — () + (4 = T ()

— 1273y — 67H{(). (0.52)
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0.1.20 Moment generating function of (Y la < X < b):

In this seciion we find the moment generating function of ¥ | a < X < b.

Myjexea (1)

+o0
f eV fly|la <X < bdy

+oo b
f_ e (/ f(y,:r:|a<X<b)d:1:)d

JolU5S € fly | m)dy) fx (e)da
b
o fly | 2)dy)de
5<1>
[m+p[—2)(f—m)lf+ {o3(1-21¢

fo?fx(ﬂf)[ffo?

Ja Fx (@) {23 bz

t
epg( =)

i+ o= /
5<1>

4 1
L et (1-2)R / Pt s
at

o
L teli-2ye f
0 a
1
o
gt B2 3¢ Q){b" — past) —

f

Lttt 248

¥

V2

¢ —H (&= t) 2 ~(p)?]
2w
bi'
-
/a’ AT
®(a’ — poyt)

%(z’—m-zt]? dz’

3(v)

T (0.53)

0.1.21 Moment generating function of (X |a < X < b):

In equation (0.53) replacing o, with o) and u» with g, in the exponent of ¢ and poy with oy

in (.), we obtain

ﬂ'fﬁ’laé\’{b (t) =

i B B(F — ont) =

O’ — o1t)

@(b!) —

Bl (0.54)
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0.1.22 Moment generating function of (X | —o0 < X < ¢):

By putting ¢ = —oco and b = ¢ in equation (0.54), we find the moment generating function

of X truncated from the right at ¢ to be

o Pl — oy .
M) ocxes (1) = ettt '(f@(_c_ﬁﬁ' (0.55)

0.1.23 Cumulant generating function and first four cumulants of
(X ]| —o0o <X <o)

In this section we find the cumulant generating function of (X | —oco < X < ¢) and its first
four cumulants. As Kxjoecxee (1) = In Myjooexee  (t), the cumulant generating function of

X truncated at ¢ is, from (0.55),
o2t
Exposctee (1) =t + T +In®{c' — o1t) ~ In @(<).
The first cumulant of X is
(X)) = Ky sexee (1) li=o= E(X) = i1 — o17(¢)

which is identical with the moment in section (0.1.7). The second cumulant of X is

K2(X) = Ri:\’|—oo<_X<c (t) le=o= p2(X) = Var(X) = o7 {1 + 7'(')] .
The third cumnlant of X is

k£3(X) = k¥ seexee (1) lmo= pa(X) = —a77"(') = —afd" ().
The fourth cumulant of X is

re(X) = K(;;T%A<C () lico= pa(X) = 3p3(X) = of7" ().

It follows that

pa(X) = {7 () + 3[1 + ()}
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By using the formulae for 7'(¢'), 7(¢') and 7(¢') from section (0.1.2) we can see that the
second, third and fourth moments of X are identical with the moments in sections (0.1.12),

(0.1.16) and (0.1.19).

0.1.24 Covariance of (X,Y |a < X < b):

We know that

Cov(X,Y [a<X <b) = E(XY|a<X<h)—
E(X|a<X <BEY |a< X <b). (0.56)

Since we know E(X | ¢ < X < &) and E(Y | a < X < b), we only have to find
E(XY | @ < X < b), and for this we use the following steps

+oo b
E(XYla<X<b) = / / 2y f(z, y)dyde

+eoo b
= / :cy/ fly.z | a < X < b)dzdy

—o0

= /: f+oo 2y fly, ©)dyde

—Cx

boptoo
- fa j;oo ey fly | @) fxi(a)dyde

f2 efx(x) (S22 yf (v | 2)dy) de
dp
S afx(x) (pa+ p(2)(@ — m)) de

= e . (0.57)

fF whx(a) (ﬁ2+p{§f—)(l‘—m )) dz
2

Using equation (0.2), we can calculate , as follows:

fiafx@) (pa + (&) e — ) do
b
12 (2 =+ ) fx (o) (4 o)~ ) de
0
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py + pp (- p(2)
= l)fl‘l' 5 I+ papn
b b4

(e
= P(?)(—Ulécs) -|-p(0—2)012(5¢; + bo) + papie- (0.58)
1 1

Using equation (0.58) in equation (0.57) we obtain

§
B(XY |a< X < b) = _"”;2546 _ P"lﬁ”?‘gﬂﬁ 4 E020e
& d P

Now, substituting equations (0.59), (0.3), (0.4), into equation (0.56), and using assumption

+ po10z + pajia. (0.59)

5 of section (0.1.1), we have

65\ 6
Cov(X,Y |a < X <b)=ppoos [1- 2] +Z]. (0.60)
(Sq, 5@
Similarly, we obtain
s,\° 8
Cov(X,Z la< X <b)=pgoros |1- 2] +2Z]|. (0.61)
53 o

0.1.25 Expected value of increment:

In this section we derive the mean of increment, D, which is defined by ¥ — X.

We know that

ED|la<X <b) = EY |le<X<b)-EX|a<X <)

_ _paebs o poibs
- ;-52 6(1) [!’Ll 6:1) ]
- )
= g — i+ M_ (0.62)

LY

To check this result we now consider what happens to F(D |« < X < b) as b — «,
or  — «' by use of I'Hopital's rule. Using limy_ (%) from equation (0.5) into equation
(0.62)

ED|X=a) = #z-#ﬁﬁgg—ﬁﬁ
= gz =y —ad'(oy — poy) (0.63)

as we expected.
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0.1.26 Variance of increment:

In this section we find Var( D | ¢ < X < b ). Since we know that
Var(D|a < X <b) = Var(Yla <X <b)+ Var(X [a < X < b)
— 2Cov(X,Y |a < X < b). (0.64)
Substituting Var(X | ¢ < X < b), Var(}Y | a < X < b) and Cov(X,Y | ¢ < X < b)

respectively from equations (0.18), (0.35), (0.60} into equation (0.64) we obtain

boys 4 E‘E’-) + 01~ af) +o3(1 - p?).  (0.65)

Var(D | a < X < b) = (01 — poa)? (1 - (6 5
T ¢

0.2 Conditional distribution of [Y, 7] given X = z:

In this section we have made use of the following Lemma and Theorem.

Lemma 0.1 If ¥ is a matriz such that

5 - i Do ’
Y
then .
E_l _ 211 212 _ W]]_ ng
Zn Py Wi Wy
where
T = Wy - W W3l Wi, (0.66)
and
22_21 = W‘2‘2 - W;_le_ll Wis. (067]
Theorem 0.1 If X ~ N,(p, %), and x' = (x4, x5) is a 1 xn vector with Xy =[xy, €2y .. ., 24

and Xb = [Tp1, Tty .- Tnl, then the marginal distribution of xg is
o= (=) L5 (x—p) 2

= (gﬂ)(n—k),’z |222 |1rz‘

9Xo(X2) = g(rr1s Thpay .o Tn) (0.68)
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If we want to find the conditional distribution of X3, given X2, we have

fx(x)
fx1 | x2
(r [ x2) gx(x2)
e—(x—;;)’E"(x—;;){z—(x—;z]'Ez‘Z’[x—g},fz (0.69)
= U J
3 |13
(o [ 7
and
Xy | Xo~ No(py + B1225 (x2 — p2). W), (0.70)
where
W]] = (211 - Z:1222‘21 212)_1
hence

Wl_il - 211 - 21222_21 E"]z

Using the Lemma 0.1 and Theorem 0.1, for the partitioning of the covariance matrix of

the following vector and also using the notation described in section (0.1.1), we have

X H1
Y ~ x’\'rg Ha . h (071)
Z 3
where
Var(X) Cov(X,Y) Cov(X,Z2) o} P120102  P130103
Y= Cov(X,Y) Var(Y) Cov(Y,Z) | =1 proios o3 p230203 | >
Cov(X.Y) Cov(Y,Z2) Var(Z) 130103 pPa3da03 o2
o2 33020
T, = 2 P230203
P230203 0%

M29102

21‘2 = +
Ma3d173
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and

T = [of].
Then we find the conditional distribution of [ | X =« is
A
Y | N fiz + praoa(x — p)/ o 73(1 — pi;) 7203(p23 — p12p3)
X=p = iV2 s .
zZ tha + praoa(x — py)/ oy 0203(p23 — pr2p1a) o3(1 — pia)
0.72)

0.2.1 Variance of increments in trivariate normal distribution:

As in the case of the bivariate normal distribution we are going to find the variance of each
increment, individually.

We know that
Var(Dh) = Var(Y — X)
= Var(Y) + Var(X) — 2Cov(X,Y)
= ai 4 0] — 2p12010,. (0.73)

Similarly, we can find the variance of the second increment D).

Var(D);) = Var(Z -Y)
= Var(Z) + Var(Y) — 2Cov(Y, Z)

= of + 0l - 2p130403. (0.74)

0.2.2 Covariance of increments in trivariate normal distribution:

In this section we find the covariance of Dy, ),

Cov(Dy, Dy) = Cov(Y — X,Z - V)
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= Cov(Y,Z) — Var(Y) — Cov(X, Z) + Cov(X,Y)

= P230203 — 0'3 = Ma0103 + p120173. (0.75)

0.2.3 Correlation between Increments in trivariate normal dis-

tribution:

In this section we find the correlation coefficient of increments.
Using equations (0.73), (0.74) and (0.75) into the correlation coefficient of Dy, D, formula,
will have
_ Cov(Dy, Ds)
 /Var(Dy)y/Var(Dy)
F230293 — 0’% — P130103 + 120107

2 2 2 2 ’
\/0'2 + oy — 29120'10'2\/0'3 + 0§ — 20930203

p(Dl'Eb)

(0.76)

0.2.4 Correlation coefficient of D, D, given X = z:

In this section we will find the correlation between D4y and D, denoted by pip nj,o.y -
Dy

Let H denote the covariance matrix of | D, |. Then we can write

X

Var(D,)  Cov(Dy,Ds) Cov(Dy, X)
H=1 Cov(D:,D;) Var(D;) Cov(D;,X)
Cov(Dh,X) Cov(Dh,X)  Var(X)

Subsequently
Cov(Dy, X) = E(DX)-E(D))E(X)
= E[(Y - X)X] - E(Y - X)E(X)
= E(YX)- E(X?) - E(Y)E(X)+ [E(X))?
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= E(YX) - B(Y)E(X) - [E(X?) - [E(X)]
= Cov(X,Y) — Var(X)
R ——
= o1{p1202 — 1)
= o). (0.77)
Similarly,
Cov(Dy, X) = E(D:X)— E(Dy)E(X)
= E((Z-Y)X])- E(Z - Y)E(X)
= E(2X)- E(YX)— E(Z)E(X)+ E(Y)E(X)
= E(ZX)- E(Z)E(X) - [E(YX) — E(Y)E(X)]
= Cov(Z,X) —~ Cov(Y, X)
= p130103 — praoi oy

= 01(,01303 — P1202}

= oty (0.75)
Dy
To find the distribution of | ), | we partition H as
X
_ | Hn Hi
| Hp He |

where
Var(Dy) Cov(Dy, D)

Cov(Dy, Dy)  Var(Ds)

Hll =
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H’12 = [0191 0192],

and

H;, = [o}].

By the use of Lemma 0.1 and Theorem 0.1 we can write

. Ha —
Dy | lxee~ N ([ '

iz — H2

+ H HS (2 — ), U1_11)

-1 - . . 1
where Uy} is the covariance matrix of |x=z -
2
Now, using the partition, we have

Ul = Hp-H;,HE Hj,
Var(D1)  Cov(Dy, D3)

_ [ 7161 ] [02][c16 o16:]

i Cov(Dy, D) Var( D) 16,
[ - _ 02 -
_ Var(Dy) — 67 Cov(Dy, Ds) — 6,0, | (0.79)
| Cov(D1, Dz) — 0162 Var(D,) — 02
In matrix (0.79) we have
Var(D, | X = z) = Var(Dy) — 63, (0.80)
Var(Dy | X = z) = Var(D,) — 82 (0.81)
and
COV(Dl, Dz ] X = ;JC] = COV(D], DQ) - 3192. (082)

Therefore, we obtain
Cov(D1, Dy | X = )
VVar(D1 | X = x)y/Var(D, | X = z)
Cov(Dy, D) — 6,6,

= . 0.83
\/Var[Dl] — 6% \/Var(Dg) — 62 ( )

P(Dth | XN=z) =
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0.2.5 Covariance of Z,Y given a < X < b:

In this section we set out Cov(Z,Y | a < X < b), for which we can use the following formula
Cov(Z,Y |a< X <b)=E(ZY |a< X <b)—FE(Z|a< X <BEY |a< X <b). (0.84)

Now we have to find E(ZY | a < X < b). Using equation (0.72} and

Foo ptoo b
B(ZY la<X<b) = [ [ [ szl a < X < bydedyd:
+as rtoo b
= j;oo \/; Zy] f(x?ya z)d’tdydz/&b

b +co
fa Fx(z) Lo vz fly, z | @)dydzdz /6o (0.85)

we can write
Cov(iZY{ X =2) = EZY | X=2)-E(Z|X = z)E(Y | X =z},
that is,

0203(p23 — prapia) = E(ZY | X =) — [pa+ .013‘?(-’1‘- ~ g} [p2 + Plz'g‘z“(f- - )}
1 1

(0.86)
Therefore, we have
- - Foe (o) T
E(Z} | X=ux)= f yzfly,z ] x)dydz = 0203(;023—!’12;013)4‘[#3+P13;—('~‘3—H1 )][Fi-2+912;(3”-—#1)]-
—o 1 1
(0.87)
Substituting [*+%° vz f(y, 2 | z)dyd=z from equation (0.87) into equation (0.83) gives
s s b
E(ZY |a < X <b) = [0305(p23 — prap1s) + #2#3]] fx(z)de/s
a b .
+ [!*53:912—3 + ,Uﬂ?lsfglf (@ — ) fx(z)de/de
4 a2l [ @ = ) fe)de . (0.38)
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Substituting f; and I from equations {0.30), (0.31), we obtain

E(ZY | a <X < b) = [0'20'3,023 + )'12#3]
— [#31912— + Haprs—- ]5 /b

+ 0‘20'3,01-2;9135&/5@-
Similar to equation (0.4) in trivariate normal distribution, we can write

E(Y[G<X<b):ﬁtg—%m
o

and

8,
E(Z|a<X<b)=,u3—%.
¢

Substituting equations (0.90), {0.91) and (0.85) into equation (0.84) we have

g b
Cov(Z,Y |a < X < b) = 0203 [st + p12p12 ( (—-— i)} )

0.2.6 Covariance of D, D); given a < X < b:

We know that

Cov(D, Dy |a < X < b) Cov(Y — X, Z-Y |a< X <b)

fl

= Cov(V,Zla< X <b)—Cov(X,Z |a< X <b)
— Var(Y |a < X < b))+ Cov(X,Y |a < X < b)

d, é
= 0303 l,023 + p12p12 (—(i) + 52)]

so’ o
2 o £1295 .2 1204
Ty (1 ( 6(} ) + 6@ )
é 1)
+ pP2o10e (1 (5—@)2 + i) .
® ®

29

(0.89)

(0.90)

(0.91)

(0.92)

(0.93)
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Assuming py3 = p1202s, then we can write
COV(Dl., DQ | a < X— < b) = (0’2 - 0'1912)(0'3923 - 0'-3) - gllggA. (094)

and

COV(D], D2 | a < X < b) = COV(D], Dg) - 9]92A. (095)

0.2.7 Correlation coefficient of Dy, D, given a < X < b:

In this section we want to find p( D1, Ds | ¢ < X < 8). To do this we use the Cov(D;, Do | a < X < b).
We also have to find Var([D | ¢ < X < b) and Var(D; | e < X < b).

Var(D e < X <b) = Var(Y — X |a< X <¥)
= Var(Y |a < X < b)+ Var(X |a < X < b)

— 2Cov(Y, X |a < X < b)
2
= a5 (1 - (Pl2é¢>)2 + 9125&)

ba 3%
5, )
2 _ (P2 | L
+ Ty (]‘ (6{)) + 6@)
by, by
- 2 S D
220102 (]. (6,3) + 6‘1,) .

: 6 8
= 0] + 05 — 2p120102 + (p1202 — 1)’ (—(i)z + ﬁ)

= Var(Dy) + §A. (0.96)
Similarly, we can find

Var(Dy la< X <b) = Var(Z—-Y |e< X <b)
= Var(Z |a< X <b)+Var(Y |a< X < b)
~ 2Cov(Z,Y |a< X < b)

2
= o2{1- (P13‘5¢ ) + Piady
2 ba
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5 ¢
+ o2 (1 _ (:0162695)2 + Plgzétﬂ)
® @

bs.0 b
— 20903 [st + p12013 (—(Ef)z + f/—)}
®

) 6
= 03+ 05 = 2020305 + (p1505 — p1202)’ (_(i)z + f:)

= Var(D;) + 2A. (0.97)

Therefore we have

Cov(Dy, Dz |a < X < b)
/Var(Dy | a < X < b)y/Var(D; [a < X < b)
Cov(Dh, ;) — 010:A
Var(Dy) + 622,/ Var(D,) + 634

p(DI?nga <X <b) =

(0.98)




Chapter 1

Introduction:

1.1 History and background:

Sir Francis Galton {1897) was the first researcher to investigate the singly truncated normal
distribution. He came across this distribution while he was analysing the registered speeds
of American trotting horses. He had extracted data of 3705 appropriate horses, (stallions,
geldings and mares, which are equally efficient trotters ) from Wallace’s year book, Vol.
8-12 (1892-1896) ( Sample sizes varied from 982 to 1324 observations each.). These data
consisted of running times of horses that qualified for registration by trotting around a
one-mile course in not more than 2 minutes and 30 seconds while harnessed to a two-
wheeled cart carrying a weight of not less than 150 pounds. Galton added “The object of my
inquiry was to test the suitability of these trotting (and pacing) records for investigations
into the laws of heredity.” He was concerned with the estimation of the joint influences
of different ancestors. Thus, he raised the question whether the arithmetical mean of the
speeds was the most appropriate estimate of the mean of the complete distribution. After
going through a troublesome and tedious investigation, as he called it, he concluded “It

would be a strong presumption in the affirmative, if the relative frequency of the various

32
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speeds should correspond approximately by the normal law of frequency, because if they do
so they would fall into line with numerous anthropometric and other measures which have
heen often discussed, and which, when treated by methods in which the arithmetic mean was
employed, have yielded results that accord with observed facts.” So by connecting the mid
points of a histogram and drawing the normal curve with mean of the observations which
were In the same path he realized that, these data, up to recorded points, followed the normal
distribution ( This method was reasonably satisfactory for Galton’s purposes.). Since records
were not usually kept of the slower unsnccessful trotters, their number remained unknown.
In today’s terminology, the samples were drawn from singly truncated normal distributions.
To sum up Galton’s work, we can say that he assumed the underlying distribution to be
normal. According to Pearson, Galton determined the position of the mode of the full normal
distribution (i.e. g ) by inspection of plotted figures of data. By this method he estimated
the parameters of the complete distribution from the observations of the registered speeds
of American trotting horses.

Pearson (1902) noted that a histogram or a frequency polygon gives us a certain numbers

of values of y and z from which to fit the curve
y = yoe 1= (1.1)

At first he suggested finding yo, @ and b by the method of least squares or moments.
But he stated that this works be rather tedious and “unmanageable”. Later he wrote the

probability density function of the truncated normal distribution in the form

2

y = :f,.roe,_ixz__‘-,-;éL ) (1.2)

Using the transformation y = e¥, equation (1.2) can be written as the form

Y =d2? +bz+¢ (L3)
where o' = _o‘L?'} V=24 and ' = In(yo) — ’:_i
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Now using, the method of moments, Pearson fitted a parabola of the second order esti-
mating «', ¥, ¢’ and eventually g and ¢? for Galton’s data. His result was almost identical
with Galton’s result. Pearson thought his method considerably improved things.

A number of workers have studied the maximum likelihood estimation of the parameters
of the truncated normal distribution (Cohen, 1950 a, 1957; Raj, 1953; Thompson, 1951) as
applied to quality control in biological and medical studies. Moreover, Cohen (1950 a), with
the aid of standard tables of the areas and ordinates of the normal distribution, found the
asymptotic variances and covariance of the estimators of the singly and doubly truncated
distributions. Votaw, Rafferty and Deemer (VRD) (1950) found the maximum likelihood
estimators for certain parameters of a truncated trivariate normal, and their asymptotic vari-
ances and covariances, when the values of other parameters are known. Raj (1953) discussed
the problem of estimating the parameters of the complete bivariate normal population from
linearly truncated random samples, with a known truncation point. He showed that the
method of moments and the method of maximum likelihood are identical.

The method of moments was considered by Lee (1983) and also by Fisher (1931). More-
over Cohen (1950 b) suggested the method of moments. From 1950-1988 Cohen’s publi-
cations were concerned with various aspects of truncated distributions. Cohen (1986) and

Schneider (1989) published books to discuss various aspects of truncated distributions.

1.2 Definition of the truncated normal distribution:

According to Pearson’s definition, a frequency distribution, which is normal, but of which

only a portion can be known or observed, is called a truncated normal distribution.
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1.2.1 Singly truncated normal distribution from the right:

As we found in section (0.1.6) the p.d.f. of X truncated at ¢ on the right is

_ E5)

f(z) = @, —w<X<a (1.4)

Figure 1.1 shows the p.d.f. of a standard normal distribution truncated from the right at

c:—']..

Figure 1.1: p.d.f. of the standard normal distribution truncated from the right

at c =1

03
[
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[

A
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1.2.2  Singly truncated normal distribution from the left:

Using the notation of section (0.1.2) the p.d.f. of X at truncation point c from the left is

=)
(1 &(E))’

&

fAx)= = c< X < oo. (1.5)
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1.2.3 Doubly truncated normal distribution:

As we found in section (0.1.5) the p.d.f. of X in truncation points ¢ and b is

—, a< X <b (1.6)

1.3 The importance of the subject under study:

In various fields of science, such as hiology, psychology, medicine, economics and engineering,
scientific data are frequently observed from a truncated distribution. The measurement
of variables in some parts of the population often presenis difficulties in collecting data,
or data are preserved only from a part of the sample space. Such a case obtains when
monitoring children’s heights and only those heights below, say, the 3™ centile survive the
initial screening. From these it may be necessary to estimate the parameters of the entire
population from which the children were selected.

Pearson (1902) has examples, “The marks of candidates in a competitive examination,
wherein candidates below a certain grade have been rejected by a preliminary examination,
or are cast out without placing. Or again, the statures of the soldiers in a regiment with a
minimum admissible height.”

Schneider (1989) stated that “ detection limits are another field in which the truncated
normal distribution is suitable. Quite often instruments measuring data from a normal
population have detection limits; i.e., small values X < a and/or large values X > b are
not observable, and their existence is not even reported by instrument.” A second type of
truncation appears when the limits are unknown, but the proportion truncated from the
population is known.

In this thesis we are considering cases in which the truncation points are known.
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1.4 Description of data:

In order to illustrate the methods of estimating the mean and the variance we use two types
of data: empirical and simulated. We find the maximum likelihood (ML) estimates and, the
maximum product spacing (MPS) estimates of the mean and variance for these two types of

data.

1.4.1 Empirical data:

Two sets of data were drawn from the Wessex Growth study on the heights of 1287 school
boys and school girls between 4.5 and 5.5 years of age. In these cases, by selecting the
heights of short children, we find ML and MPS estimates of the mean and variance of the

population from which they were drawn.

1. Data set 1:

The heights of 634 boys were measured. After standardization of the height for
age, we 1dentified those children whose heights were particularly short, in other
words, those children whose standard deviation score (SDS), (z — u)/o, did not
exceed its third centile (-1.88), or standards published in (1966). It was found that
12 of them were below the third centile compared with 19 that would have been
expected if ¢ and o had not changed, and the mean, variance and the standard
deviation of their scores were, respectively, -2.2833, 0.1963 and 0.4627. From these
data, we estimated the mean and variance of the population, using two different

methods. Computer programs are presented 1 the Appendix.
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2. Data set 2:

A sample of 653 girls was selected and their heights were measured. After stan-
dardizing their heights, nine (compared with 19 expected ) of them did not exceed
the third centile. The mean, variance and the standard deviation of the scores are,
respectively, -2.26, 0.0512 and 0.24. Again we used these data in the programs to

estimate the mean and variance of the population.

1.4.2 Ideal samples:

In this section we construct what we might call the ideal sample in which the observations
are placed at the expected posiiions of the order statistics from the distribution (much as in
the construction of normal scores from a complete normal distribution ).

Let y; be the ¢* component of the ideal sample of size n. Then using equation (0.1) from

Chapter 0 we have

_ Oy _ () _

Fly:) = B(¢)  D(E) ntl
From which
[ - | 2 c— i =
yi=@ (n+1¢)( g )>’ (L.7)

where ¢ is the truncation point.
Using the formula, for the standard normal distribution with the various truncation
points ¢ = —1.88, ¢ = —1, ¢ = 0, ¢ = 1 and ¢ = 3 we construct ideal samples y! = y;, (see

Appendix Program 1) for two different sample sizes 5 and 10 as below:
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Table 1.1: The ideal sample of size 5 and 10 and its
mean, variance and standard deviation

for different truncation points

€ -1.88 -1 0 1 3

n 5 10 5 10 5 10 5 10 2 10

-2.5752 | -2.7783 [ -1.9359 | -2.1856 | -1.3830 | -1.6906 | -1.0793 | -1.4291 | -0.9683 | -1.3359
-2.3257 | -2.5450 [ -1.6175 | -1.8980 | -0.9674 | -1.3352 | -0.5815 | -1.0238 | -0.4319 | -0.9004
-2.1694 | -2.4000 | -1.4096 | -1.7139 | -0.6745 | -1.0968 | -0.2002 | -0.7406 | -0.0016 | -0.6057

¥ -2.0630 | -2.2928 | -1.2493 | -1.5744 | -0.4307 | -0.9084 | 0.1532 } -0.5073 | 0.4282 | -0.3501
-1.9591 | -2.2068 | -1.1160 | -1.4602 | -0.2104 | -0.7478 { 0.5276 | -0.2901 { 0.9629 | -0.1157
-2.1347 -1.3624 -0.6045 -0.1032 0.1418

-2.0722 -1.2761 -0.4727 0.0888 0.3465

-2.0168 -1.1984 -0.3487 0.2824 0.60186

-1.9670 -1.1273 -0.2299 0.4912 0.9043

-1.9217 -1.0615 -0.1142 0.7220 1.3277

¥ -2.2165 | -2.2335 | -1.4657 | -1.4858 | -0.7332 | -0.7549 | -0.2360 | -0.2517 | -0.0022 | -0.0024

Var(y;) | 0.0471 | 0.0677 | 0.0832 | 0.1171 | 0.1691 | 0.2308 | 0.3133 | 0.4214 | 0.4470 [ 0.6190

sd(y;) | 0.2428 | 0.2742 | 0.3226 | 0.3606 | 0.4597 [ 0.5082 | 0.6258 | 0.6843 | 0.7475 | 0.8293

By using these data we find the ML and MPS estimates of the mean and variance of the

complete normal distribution.

1.4.3 Simulated data:

We took samples from truncated normal distributions, simulations the process R = 10000
times for each sample size and each truncation point. Using these simulations we estimated
E(i), o(f1), E(6%), a(62), E(i1), o), E(c?) and o(c?) and compared these with the theo-

retical expansions derived in Chapter 2 where appropriate.
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For ¢ > p we simulated from the normal distribution (using a NAG routine) and rejected
unwanted (i.e. truncated ) values.
For ¢ < p we used an exponential envelope function for the random deviate generation,

which gave a more efficient method than initially generating from the normal distribution.



Chapter 2

The one parameter case of maximum
likelihood estimator for the

truncated normal distribution:

2.1 Introduction:

The purpose of this chapter is to describe the Maximum Likelihood (ML) method of esti-
mating separately the mean and variance of a singly truncated normal population from a
sample.

Theoretical results and simulations for the different methods are also presented and
comparisons are made. In section 2.2 the case of estimating the mean, when the variance
is known, is considered. In section 2.3 two methods of solving the log likelihood equation
are described. In section 2.4 the theoretical formulae for E(f) and Var(ji) based on Cox &
Hinkley’s and Shenton & Bowman’s methods are derived when ¢ is known. In section 2.8,
we consider the ML estimator of o when the mean is known. In section 2.9 the theoretical

formulae for £(4?) and Var(4?) based on Cox & Hinkley’s and Shenton & Bowman’s methods

41
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are derived when g is known. Sections 2.5, 2.6 and 2.10 are concerned with simulation studies

to investigate the properties of /i and 2.

2.2 Likelihood equation when variance is known:

We begin by deriving the likelihood equation for the case where the variance is known.
Suppose X has a normal distribution with mean g and variance #? truncated at the point
¢, l.e. ¢ < c. Let ®(x) be as defined in Chapter 0. Then the probability density function of

the singly truncated random variable X is

S N~ N -l R 2.1)
EEAEDS o0()

Suppose a random sample of size n is selected from the population with distribution as in

flo,p) =

{2.1). Then the likelihood function is
1Tt
[®((c — p)/o)]

The natural logarithm of the likelihood function is

L{x, p) = (

2w

Wx, 1) = —-;Z—Tiln(ZTrag) - —Z—%;&)j—n]n@(c;‘u). (2.2)

If 12 is unknown and o? is known, the estimate ji is obtained by solving the following equation:

n L N 1
8_3(81'}@ o= Zi:l(:; i) + ;g((%&)) =0. (2.3)
To simplify the above equation, let ¢ = L”—g‘—‘L, ¢ = (—“—}‘l- and ¥(c) = %ﬁ%'
We have
ox,p) _ni(E8—p+ d*(c’))1 (2.4)

ou o?

which, on being equated to zero, gives

=7+ (&) {2.5)
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It is impossible to solve (2.5} algebraically. Therefore two different iterative methods are
used to solve it. These are described in the following section.
Note: We noted that if X ~ N(0,1); suppose ¢(z) and ®(x) are p.d.f. and c.d.f.

of %, then using Abramowitz & Stegun (1965, p. 932) we can write

B(z) = 1 — ¢{z)u(x) ; x>0
¢(—z)u(—2z} = ¢(z)u(-2) ; r<0

where u(2) is the continued fraction expansion:

Theorem 2.1 For a fired value of o. the function I(x, i) has a local marimum.

Proof: We prove this theorem for the two cases ¢ > 0 (g — —o0) and ¢ < 0 (g — o),
separately.
Since {{x, i) is continuous and differentiable, if we show that {{x, u) — —00 as g — —o0

and I(x, ) — —oc as g — 00, then we conclude that {(x, #) has a local maximum.

1. For ¢ > 0 (p < ¢):
Consider ®(¢') = ®(£—£2) = las g — —oo and 33 (w; —p)? — o0 as p — —oo.
Therefore, implies that {(x, ) — —o0 as g — —oc.

2. For & <0 (g >c)

Using the above note, {(x, ¢) can be written as

l(x,p}) = —%ln(%’]—gln(az]

; Palle— ) (2 — ¢ — )]
202 ’

— nlnu(—¢) -

Since ¢ > a; for all i and p > ¢, then (¢ —x;) > 0 and (2u — ¢ — z;) > 0, therefore

_ el (Zov)]

5 — —oc as gt — oo. Also we know that u(—¢') is bounded

and —nlnu(—¢') is constant as g — oo.
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Therefore l{x, tt) — —o0 as ¢ — oo and the theorem is proved.

Theorem 2.2 The equation (2.5) is satisfied by it = p if & = p. where T = 37, 2;/n and
e = E(X).

Proof: Suppose we know that the solution of g—‘ = 01s ¢ = gt and we can solve
i
equation (2.5) to find the ML estimate.
Also from section (0.1.8) we know that the first moment of X is unique and can be

written as
E(X) = pe = p = ().
By using the above equation and the fact that equation (2.5) can be written in the form
=) =13,

and using the assumption of the theorem, the above equation can be expressed as

B = (&) — o+ () = 0.
In view of the fact that
j— ()~ ot () =0,

it can be seen that (jt = g) is a solution of equation (2.5). This is equivalent to the method

of moments.

2.3 Methods of solving equation (2.5):

In this section we outline a simple method and the false position method of solving % =0

and use them on the samples described in Chapter 1.
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2.3.1 Simple method:

Let s, be the n® iterate of i. We find pi,.4; from equation (2.5) by
fine1 = T+ Pl(c— pa) /o). (2.6)

To find the ML estimate of x, we assume an initial value for g, say go = Z, then find 1
from (2.6) with » = 0 and continue iteratively.

According to a theorem in numerical analysis ( Jacques & Judd (1957)) for an algorithm
of fine1 = g{its) to converge on an interval I = [a — A, o + A], it is sufficient for |¢'(¢)| < k,
on the interval where £ < 1.

Using the above theorem we can see whether 7 +¥[{c— i) /o] satisfies the above condition
of the theorem or not.

Taking derivative of both sides of equation (2.6) with respect to u we have &{%)— = 1.
Therefore we cannot certainly say that the method is convergent. It might be convergent or
divergent,

A program has been written in Fortran (see Appendix , Program 2) which finds the value
of fi to a derived accuracy by stopping when the absolute error |y, — pin | < €, for a suitable
g, say 107 or 107% | specified by the user. This has been used on the data sets described in

Chapter 1 and the results are given below.

2.3.1.1 Estimates of x in data sets 1 and 2:

1. Using the data set 1 (boys} and letting & = 1 and £ = 107,  is estimated on the 70%

iteration of (2.6) and is found to be

fr = —0.1266.

2. Using the data set 2 (girls) and letting ¢ = 1 and ¢ = 107, [ is estimated on the 78%
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iteration of (2.6) and is found to be

it = 0.0615.

Because the simple method takes a large number of iterations to reach convergence, we try

find a method that converges faster.

2.3.2 False position method:

The false position method is used to solve f(z} = 0 for cases where the derivative of the
function is not readily available or where the evaluation of the second derivative of f(z)
requires considerable computational effort. When the method does converge, its rate of
convergence is not as fast as for the scoring method (used in Chapter 3), but it is considerably
faster than the simple method.

According to Conte (1965), the proper solution of the equation by the False position

method 1s ebtained as follows:

1. Choose two approximations zp and wxy such that f{xo)f(z1) < 0; i.e f(xo) and f(zy)

are of opposite signs.

]

Find another approximation from the following formula

— ‘Tﬁf(xl] - ii'-’]f(:l.‘-o)
flay) = flzo)

L3 (27)
3. If |x2 — @1| < € or |2y — xp| < & for the prescribed e, z; is accepted as the answer. If

not, go to step 4.

4. It f(ag)flzo) < 0, replace =y by 2, leave xy unchanged, and compute the next ap-
proximation from (2.7), otherwise replace zo by z2, leave 1 unchanged, and compute

the next approximation.
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igur_c': 2.1: The Ialse position method for solving [(x)=0 when f i3 concave,

¥

/

Figure 2.2: The false positicon method for solving F{x)=0, when [ iz convex.

The Figures 2.1 and 2.2 show this method of solution for both concave and convex functions.

The NAG routine CO5ADF follows the above procedure and can be used to find the root

of the equation
fi— T —P({c—p)/o) =0. (2.8)

The method is now used on the different samples of Chapter 1. The computer program is

given in Appendix, Program 3.
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2.3.2.1 Estimates of p in data sets 1 and 2:

1. Using the data set 1 (boys) and letting ¢ = 1 and ¢ = 10~ we find that the ML
" estimale of g is

i = —0.1266,
after only 11 iteration.
On plotting the likelihood against g, when ¢ = 1, we get Figure 2.3 (see Appendix

Program 4}.

Figure 2.3: likelihood versus g for data set 1 (boys) (¢ =1)
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2. Using the data set 2 (gitls) and letting ¢ = 1 and ¢ = 10~° we find that the ML

estimate of p is

it = 0.0615,

alter 10 iteration.
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2.3.2.2 Estimates of i for ideal samples of size 5 and 10:

Using the ideal samples of size 5 and 10 and letting ¢ = 1 and ¢ = 107, i is estimated for
various truncation points in Table 2.1,
By running this program for various cases of data we have got that, for ¢ = 107 four

decimal places of results are valid.

Table 2.1: The estimate of the u in ideal samples of size 5 and 10

for different truncation points

c -1.88 -1 0 1 3

7| -2.2165 | -2.234 [ -1.4657 | -1.4858 | -0.7332 § -0.7549 | -0.2360 | -0.2517 | -0.0022 | -0.0024

f| 0.4709 | 0.2040 | 0.3281 | 0.2100 | 0.1883 | 0.1227 | 0.0836 | 0.0578 [ 0.0023 | 0.0021

From Table 2.1 we can see that the bias of fi is positive for all truncation points.
Moreover, the estimate of i in sample size 5 in comparison with its counterpart in sample
size 10 is rather high.
We see that these two methods give the same solutions for the data sets. But the first
method for data set 1 takes 71 iterations and for data set 2 takes 78 iterations whereas
second method reaches the same convergence points after at most 12 iterations. In oyher

words the False Position method improves rate of convergence.

2.4 Theoretical results:

The aim of this section is to find the expected value and variance of the maximum likelihood
estimator of ¢ when & is assumed known. Formulae for these are given in Cox & Hinkley

(1974, p. 310) and Shenton & Bowman (1977, p. 15).
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2.4.1 Cox & Hinkley method:

In this section we derive the formulae using the following notation.

1. For a single observation x, let S{g) be the score defined by

() = 6‘ln£iﬁm,,u-).

2. Let S'(t) and 5”(u) be the first and second derivatives of S(p) with respect to p.

3. Let
S = LLE L),
4. Let,
5w = T2 w0,
5. Let
I{g) = [S(w)* = —=5'(p).
G. Let

i(w) = E[S(p)]* = E[-5"(p)],

since regularity conditions hold.

7. Let
() = B[S0 = E[-S'()] = niw) (2.9)

8. Let
wi(n) = E ([S()FIS'(w) + i) -

Now it is well known that

E[S.(p)] = E[S(w)] = 0.
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Before going further we write the following definitions from Bisop, Fienberg and Holland

(1975) and Mann and Wald (1943) about the order relationships and stochastic limit.

Definition 2.1 a, = Q(b,) (Read: a, is big O of b,,) if the ratio |a,/b,| is bounded for large
n; in detail, if there exists a number K and an integer n(K) such thet if n exceeds n(K)

then |an| < K|by|.

Definition 2.2 a, = o(b,) (Read: a, is little 0 of b,) if the ratio |a,/b,| converges to zero;
in detail, if for any ¢ > 0, there exists an integer n(s) such that if n exceeds n(s) then

lan| < €]by.

Definition 2.3 We write ji, = O,[f(n)] (fn is of probebility order O[f(n)]) if for each
¢ > 0 there exists an A, > 0 such that P(|fi,| < A.f(n)) =2 1 — = for all values of n.

Definition 2.4 We write ji, = 0,[f(n)] (i is of probability order o[ f(n)]) if plim . 42 =

fin)
Q.
Using Taylor’s expansion, we can expand the function 5.(ji) about y.
Then, since S.(f) = 0, we have, from Cox & Hinkley
- . " ! L. H -1 ;
0 = S(f) = Su)+ (& — S/ (1) + 5 (B — 0)*S () + Op(n2). (2.10)

where O,(n"3 ) = lim, o, P{n%/i,). Thus, to first order, solution to (2.10) can be written as

W) = ) = 2

\/_

Now as n — oo, using the central limit theorem the limiting distribution of i(x){fi — p)/n

is N(0,%(x)). In other words, we have

=AY
,u—,u—m,(#) ~ N0, —) (2.11)

asymptotically.
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Taking expectations through the equation (2.10), we have

BIS()]) = Bl(— w8 ()] + 5 Bl ~ p)'S"(o)] + Ont) = . (2.12)
Since
E[S(p)] =0,
and

Cov(X,Y) = E(XY) — E(X)E(Y),
we can write from equation (2.12)
()| BLS' (1) 1+ Cov{n, S ()3 El(i— B[S ()1 5 Covl( i, S" ()40 ) = 0.

(2.13)
If we substitute f from (2.11) into Cov[f, S’(1)], then we have

Conl, S/l = oS ()

_ Cov[S.(r), S/(n)]
ni(p)
_ ElS(w)Siu)]
ni(p)
_ nES()S' ()] _ sulse)

i) i) (2:14)

Now if we square both sides of equation (2.11), and take the expected value, we have

E[S.(u))*
[ni(p)]?
E{ymalS(m]}
[ni ()2
E{S[Sim)? +2 g Sili)Si(p)
[ni(g))?
_ =1 E[S;(p)]* +0
[ni(p)]? ’

E(pp—pf =
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as the observations are independent.

Substituting equation (2.9) into equation (2.16), we can write

ni(p) 1 ‘
EG =1 = GitoF = i) (216)

to first order.
Now we want to find the value of E[S"(y)].
According to the definition of the probability density function f(z, x), we have

f Flag,wyde; =1, 1=1,2...n.

If we differentiate this equation with respect to i, we obtain

®© g Liy fh * Jln T, o
/ﬁ, % de; = f_w #J‘”(aﬁw)dm = E[S(u)] = 0. (2.17)

Taking the derivative of equation (2.17) with respect to y, we have

% % ln flai, p o 8[31nf(x:#) f(xg,,u}] dz; -
/—«:o du? d +/ ol o

from which we can find the following formula

o0 §2] 0" In j{zi, i) al “ ‘

Therefore, we obtain

E[-S'(1)) = EIS(0]2

Again, taking the derivative of both sides of the equation (2.18) with respect to g, we

have

o @ ln f( :r,,;a oo 52111)“ rz () Oln flx;, 1)
f T 3]_00 [ g | S e,

N f [31nf(:cnﬁ)] Flai, i) dey = 0. (2.19)
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Therefore, from equation (2.19), we can write
BIS" ()] = —3E[S(u)S' ()] - B[S (2.20)

The second covariance in equation (2.13} is o(n™1), [see Cox & Hinkley (1974}, p. 309],
which means that

Jim nCov([(ft — p)?, §"(1)] = 0. (2.21)
From equation (2.13} we have

Covlin, S'(w)] + $E[(p — w)*1 BIS" ()] + 3Cov[(i — p)*, S"(w)] | O(n2)
E[5!(p)] E[S/()]
(2.22)

APy

Ep—p) =~

Substituting equations (2.14), (2.15), and {2.21) into equation (2.13), we obtain

. _ k1{p) + Kaolpt) -2 .
Elfi —p)=— S EIE +0(n7%). (2.23)

In particular, we are interested in deriving the expected value and the variance of the

maximum likelihood estimator of 4 in the truncated normal cagse.

2.4.1.1 Expected value of i for the truncated normal distribution:

The aim of this section is to find the expected value of the maximum likelihood estimator

of 1+ in the distribution given at (2.1). Following the notation introduced in the last section,

we have
X —pu+{c i
Stwy = LTLE ) (2.24)
and
. 1 (e ]
S'(#) == [—1+ ?gf] , (2.25)
where

oup o o

() dp(e) n [-z,b(c")'
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Substituting equation (2.26) into (2.25), and also using %BEL = @b’(d]% we obtain

S0 - i{_l § 20) +l¢(d)]'}

ol o4

= L)), (2.27)

Since S'() is independent of X and E[S(x)] =0, we can write

(i) = E{S()[S"(w) +i(w)]}
= E[S(u)S"(w)] + 1(0) E[S(p)]
= S E[S()] +i(w) B[S ()]
= 0. (2.28)

Since from Chapter 0, section (0.1.8), we know that
ke = B(X) = jt— ()

and 5'(x) does not depend on X, we have

kao(p) = E [5(#)]3

2

_ EX —p)?

= p

pa(X .

L) (220

From Chapter 0, section (0.1.16), we have that
2 3¢
pa(X) = —c® |(* ~ 1)¢(d) +3c’¢ () +2¢ () . (2.30)

a o? o3
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Now we can find ¢(u),

i) = E[—S’(ﬁa)1=—§s{—1+‘3’¢’(‘3’)+[‘”"")]}

_ éu + (/o] (2.31)
Thus we obtain
E(,ﬁ'.) _ _ Kll(;;)[:(;:‘ﬁg(#) + O(n—z)
P"{c) -2
= O(n
TRy
- @ +0(n"?) (2.32)
where
¥”(c) ‘
blu) = . 2.33
W= S @ foT (25

2.4.1.2 Variance of i for the truncated normal distribution:

The aim of this section is to find the variance of the maximum likelihood estimator of j in

the distribution given at (2.1). According to Cox & Hinkley {1974), we know that

1 20 (1)
ni(p)  n?i(u)
2rz0(p) k02 (pt) — £11 ()] + [K11(#e) + z0(p )
224

Var(j) =

+0(n73). (2.34)

Using the second derivative of ¥{¢’) and equation {2.30), it can be shown that third

moment of X
u3(X) = —a®"(c). (2.35)
From equation (2.34) we can obtain

,,?bﬂ‘z (Cr] wm (C’J

21 + () oP 20l + ¢'(c)/o)?

¥(u) = (2.36)
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Using equation (2.31) for #(y), we can find the second term of equation (2.34) as

20(p) _ L{ W) ad(e) } 9 37
i)~ A+ PR T eV eF | 230
To find the third term of equation {2.34) we have to find #q0(y) and Koa(p).
Now, since S'{yt) is independent of X, we have
koa(pt) = B[S'(p) +i(p))*
= E{S'(p) - E[S'(m)]}?
= Var[S'(p)] =0 (2.38)
and
kalp) = E[S(p)*
= E[-5(p)]
_ L)/ T’igd)/"]‘ (2.39)

Therefore, substituting #(u), #11(g), ®a0{st), xe2(gt) and kzo(y¢) respectively from equations
(2.31), (2.28), (2.29), (2.38) and (2.39), we obtain the variance of {t as

Var(ji) = o 1 { 59p (c’) o ()

AL T (@/e] T w BT pe)fel [+ w(e)/oP

} + O(n3)(2.40)

Table 2.2 gives a summary of the values of F(j) and &(ji) given in equations (2.32) and (2.40)
for the truncated standard normal distribution with truncation points ¢ = —1.88, —1,0,1 and
sample sizes n = 5,10, 20,50, 100. Note that, as the value of ¢ increases, the truncated normal
distribution tends to the standard normal distribution (see Program 5 in the Appendix) as

we would expected.
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Table 2.2: The theoretical results for the expected value and

standard deviation of the maximum likelihood estimator of g

for different values of n and c,

using the Cox and Hinkley method.

E(jt) and o(j:) are calculated in O(n™1).

p=0,0c=1

n c=—1.88 c=—1 c=0 c=

B) | o) | EG@) | o(p) | By | o) | B@) | o(i)
5 | 0.435)1.60810.295 | 1.214 | 0.165 | 0.853 | 0.074 | 0.611
10 [ 0.217 | 1.028 | 0.147 | 0.787 | 0.082 | 0.565 | 0.037 | 0.416
20 | 0.108 | 0.685 | 0.074 | 0.329 [ 0.041 | 0.386 | 0.019 | 0.287
50 | 0.043 | 0.417 | 0.029 | 0.324 | 0.016 | 0.238 | 0.007 | 0.180
100 | 0.021 | 0.291 | 0.015 | 0.227 [ 0.008 { 0.167 | 0.004 | 0.126

2.4.2 Shenton & Bowman methods:

58

The aim of this section is to find the expected value and the variance of the maximum

likelihood estimator y by using the formulae given in Shenton & Bowman (1977).

Assume we can write

=0

=2 AT —m) /!

kl

where the A; are constants. Then the A, can be found from

A;

_ %

~ ow

(2.41)

(2.42)
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as ¥ — py and fi — g, where p] is the mean of X. In particular Ag = g. After expanding

the right hand side of equation (2.41) we take expectation. We obtain

. A _ A -
E(R) = AB(X —~u)°+ E(X — i)' + FEX — )’ +

T
As Ay o
3—f'E(X ~ uy)® + -4,—4E(X — )
A, Ay A,

= Ao+ 5#2(}?] + —3!—;53(X) + EM(X)
Appa(X) | Asps(X)

= Aot 2In + 3ln? *

As (35(X) | pa(X) = 363(X)

_Li_'-( HE: + n3 to
_ o Aue(X) 1 (Agn(X) | 3Aa3(X) S
= Aot E T ) HoeT (243)

2.4.2.1 Expected value of /i for the truncated normal distribution:

From equation (2.5), we have
c— ,u)

i= 3+ (2.44)
o
Taking the derivative of i with respect to T, we have
Ofi (=) O
= =1 g L L, 2.45
oz T T s (2.43)
Hence
it 1 |
— = = \ 2.46
bc = | BiEE T 1T (246)
A
$0 that
dp 1 1
A= =— |i=u= = 2.47
1 OF |M—L¢ 1 — 5‘4”(;—_’5) 1 —I-d."(c']/cr v ( )
L
where

Y(c) = —y(d) — i)/ o. (2.48)
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To lind Ay, we have to take the derivative of g—; with respect to Z. Hence we find

Pi_ R
55~ o1 + ()] oF
Therefore
4 @ |A _ 'c‘,ri‘”(C"]
TR 932 TR g1 4 (e /o]
where

Pi(d) = —o(d) - Y() — 2 ()p(d) /o
= () {(? = 1) +3¢p(c) /o + 20 () o]}

60

(2.49)

(2.50)

(2.51)

To find As, we have to take the derivative of % with respect to . We can demonstrate

that ) ‘
83,& _ -—t,bm(c-;” ) L3 ¢,rf2(t:_;&)
07 o1 + (<) /o]t o[l + () [a]
Therefore
i Y WP )
P T B+ (et o1+ () o5
where

PI(E) = —2(E) = () — 207 o — 207N o

Similarly differentiating ?)3:23_“ with respect to @ gives

Oi W) R o)

= Y e R O TR = Y L T = S VP

which, after substituting g for i, leads to

_ 9 Al COTNN ' Ca Vi Co WP )

A4

B I e IR e o e (e e Ve

(2.52)

(2.53)

(2.54)

(2.55)

(2.56)
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where
P () = =3¢"(c) = Y () = 60( )" () [ o — 2p( " ()] o (2.57)
Substituting Ag, A2 and p2(X) ( the second moment of the truncated normal which we
derived in Chapter 0, section (0.1.12)) in equation (2.43), we get

()

2nfl + ¢'(c)/o]?

which is identical to the Cox & Hinkley result derived in section (2.4.1) equation (2.32).

E(i)) = + O(n?) (2.58)

To obtain a more accurate expression for E(j) , we use pz( X} and gz(X') (the second and
third moments of the truncated normal derived in Chapter 0, sections {0.1.12) and (0.1.22))

and Ay, Az, Ay and Ay in equation (2.43). We then find the expected value of [t to be

. _ ’tli")”(c) i dJ{iv) (cr) _ 13¢H(C;)?me(cr)
E(g) = p+ 2?1[1 + .Q.L,r(cr)/o-]z + { [1 + 1;5"(0")/0’]3 120-[1 + w’(c’]/a]‘l
11'(,5’”3(6’) 3
e e R (259

2.4.2.2 Variance of j for the truncated normal distribution:

The aim of this section is to find the variance of the maximum likelihood estimator of g in
the distribution (2.1), to make a comparison of this method with that of Cox & Hinkley and
to compare the theoretical results in both cases with the simulation results.

According to Shenton & Bowman (1977), we have

A%,Uvz(X)

n

R 1 A2 - .
Var(fe) = t ArAzpa(X) + (4145 + 72)#3()() +0(n™?) (2.60)

Using p2(X) and ga(X) (the second and third moments of the truncated normal derived in
Chapter 0, sections {0.1.12) and (0.1.22)) and A,, Az, As and A4 in equations (2.47), (2.50),
(2.53) and (2.56), we find the variance of /i to be:

\,ral.(,&) 1 { [ 5" ( ) o_d,m(cr]

T @A T A Fee T [ ) /0]3} T O™)261)
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in which the coeflicients of i and fan agree with their counterparts in Cox & Hinkley. A
Fortran program was written to calculate the expected value and the standard deviation of
the maximum likelihood estimator. A listing of the program is given in Appendix Program

6, the results obtained are shown in Table 2.3.

Table 2.3: The theoretical results for the expected value and
standard deviation of the maximum likelihood estimator, of y
for different values of n and ¢,
using the Shenton and Bowman methods.

E(jt) is calculated in O(r~?) and o(j) is calculated in O(n71).

p=0,0c=1

T c= —1.8%8 = —1 c=10 c=1
E(@) | o) | E() | o) | E(2) | o) | E(@t) | o(i2)
5 10531 (1.608 (0.352 | 1.214 | 0.192 | 0.853 | 0.084 | 0.611

10 [ 0.241 | 1.028 | 0.162 | 0.787 [ 0.089 | 0.565 | 0.040 | 0.416 }

20 [ 0.115 | 0.685 | 0.077 | 0.529 | 0.043 | 0.386 | 0.019 | 0.287

50 1 0.044 | 0.417 | 0.030 | 0.324 | 0.017 | 0.238 [ 0.007 | 0.180

100 | 0.022 | 0.291 | 0.015 | 0.227 | 0.008 [ 0.167 | 0.004 | 0.126

Concentrating in Tables 2.2 and 2.3, we can see that for fixed ¢, E{(ji) in Table 2.3 is
bigger than its counterpart in Table 2.2. The reason is that in this table F(j) is calculated in
O{n?) whereas in Table 2.2 is in O(n™!). But in both theoretical methods (i) is calculated
in Q(n1).
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2.5 Simulation to estimate the mean when the vari-

ance is known:

The purpose of this section is to compare the results of a small simulation study with the
theoretical results for £(i) and o(ji) to see whether the high order terms of the theoretical
results are negligible or not.

In the study, R = 10000 samples were simulated for each value of the sample size n =
5,10,20,50, 100 and each value of ¢ shown in Table 2.4, In each case, the mean value of j
was calculated.

We used the NAG routines GOSDDF (0, 1), which generates random numbers from a
standard normal distribution with mean zero and variance one, and GO5CCF, which changes
the seed of the random generator for each combination of » and c.

Program 7 (see Appendix ) was used to carry out the calculations. The results are given

in Table 2.4.

Table 2.4: The simulation results of the expected value and
standard deviation of the maximum likelihood estimator,

for different values of n and ¢ when E = 10000

R n c=—1.88 c= -1 c=0 e=1

E(p) | olp) | E(f) | o) | E(p) | o(@) | E(i) | a(f)
5 [0.537 | 1.589 [ 0.381 | 1.354 | 0.199 | 0.912 | 0.076 | 0.621
10 [ 0.234 | 1.062 | 0.162 | 0.808 | 0.089 | 0.576 | 0.036 | 0.416
10000 | 20 [ 0.105 | 0.687 | 0.084 | 0.536 | 0.043 [ 0.387 | 0.023 | 0.290

50 1 0.038 | 0.417 [ 0.024 | 0.326 | 0.016 | 0.240 | 0.005 | 0.181
100 | 0.025 [ 0.290 | 0.015 | 0.228 | 0.009 | 0.168 | 0.005 | 0.126
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The results for simulation, Shenton & Bowman and Cox & Hinkley are almost the same
for different values of n. Moreover all theoretical values lie within 95% confidence interval

obtained for the simulation.

2.6 Distribution of &t when the variance is known:

In this section we investigate the distribution of /i, using Program 7 given in the Appendix,
when sample size n = 100. The number of simulation runs R = 10000. Using the S-
PLUS software, we can obtain the histogram, density, qqnorm and qqline plots for . The
descriptions of these plots, from the S-PLUS manual (1993) are as follows:

Application of density:

Density plots are essentially smooth versions of histograms, which provide smooth esti-
mates of population frequency or probability density curves. The kernel method 1s used to
estimate the density function.

Application of ggnorm and gqline:

To check a hypothesized distribution is normal, use the function g¢norm, for example
a plot from qqnorm that is bent up on the left and bent up on the right. Also the gqline
function gives the highly robust straight line fit, which is not much influenced by outliers in
other words this function fits and plots a line through a normal qqnorm.

To find how close the distribution of fi is to the normal distribution, we used the tests for
skewness and kurtosis, Senedecor and Cochran (1967, p. 86). The assumption of normality
of ¢1(f1) is accurate for R > 150. Also we know that, in very large samples, the measure of

skewness ¢(f) is defined by
malft)

)
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and the measure of kurtosis defined by

i)
92(,{1) = o
mi()

where ma(it), ma(f) and my(jt) are the second, third and fourth moments of 4. Also, if the
sample comes from a normal distribution, with the sample size B, then measures of skewness

and kurtosis are, respectively
- 6
gi(i) ~ N(0, %
and
24

g2(f2) ~ N, =)-

The section (2.6.1) shows the distribution of f using plots obtained by the Program 8 (see

Appendix ) and the section (2.6.2) shows the skewness and kurtosis of the distribution of j.



-z

Chapter 2

2.6.1 Graphs of data when ¢ = —1.88:

Figure 2.4 are based on simulation runs £ = 10000 sample of size n = 100.

Figure 2.4: The distribution of i, when ¢ = —1.88

The histegram of MLE of MU when c=-1.88 and n=100.
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2.6.2 Test for skewness and kurtosis:

In this section we give the results of testing the skewness and kurtosis of the distribution of
fi for different truncation points.
Using the above property, the moments, the measures skewness, and kurtosis and the

corresponding z ratios were calculated for the various truncation points and are tabulated

i Table 2.5.

Table 2.5: The moments and measures of skewness
and kurtosis of the distribution of 4

for various truncation points when n =100

c —1.88 —1 0 1 3

ma{ji) | 0.0856 | 0.0490 | 0.0288 | 0.0158 | 0.0103

ma{g) | 0.0075 0.0026 { 0.0010 | 0.0002 [ -0.00004
myl{g) | 0.0235 0.0076 | 0.0026 | 0.0007 0.0003

a1(t) 0.3019 0.2430 | 0.2050 [ 0.1010 { -0.0040

g2(jt) 0.2135 0.1500 | 0.0979 | 0.0177 | -0.0076

Zsk 12,322 | 9.918* | 8367 | 4.122** | —0.163

Zhu 4.366™ | 3.067* | 2.002* 0.362 —0.155

{* p-value < 0.05, #x 0.05 < p-value < 0.01 and * * * p-value < 0.001 )

From the above table, we observe large values for the skewness and kurtosis of the
distribution of f for truncation points ¢ < 0 and, as ¢ increases, the values of the test
statistics zg4 and zy, decrease. We conclude that, there is significant evidence of both

skewness and kurtosis for ¢ < 0.
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2.7 Conclusion:

Firstly, in Table 2.4 we can see that for each fixed value of ¢, the E(ji) decrease, as n
increases. This means that the E(jt) has a relationship with the » and .

Secondly, the comparison of Table 2.3 and Table 2.2, shows that the expected value of the
maximum likelihood estimator fi in Table 2.3 differs noticeably from Table 2.2. This shows
that the second term on the right hand side equation (2.23) is very important. Therefore we
used the Shenton & Bowman method to evaluate F(fi) up to O(n~?) which was discussed
in section (2.4.2). The comparison of Table 2.3 with the simulation results Table 2.4 shows
that the expected value and standard deviation of j for the large sample sizes n = 50 and
n = 100 are almost identical.

Finally, considering Tables 2.2-2.4 all the results obtained for various truncation points

we can make the following comments.

1. In general as we increase the value of the truncation point, we see that the E{}i)
and (1) tend to the values for the full normal distribution i.e E{(fi) = p and

"

o(ft) = 2= and this is of course in accordance with our expectations.
7

2. Since the simulation results, Table 2.4 agreeing with the Shenton & Bowman
results, Table 2.3 we conclude that the higher order terms of equations (2.59) and

(2.61) are negligible.
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2.8 Likelihood equation when mean is known:

In this section, using the probability density function of the singly truncated normal random
variable X given in equation (2.1), we find the maximum likelihood estimator of o2, when

it is known. Then the likelihood function is

L( 2] ( 1 = 3_2;1(%—#}2{202
X, 07)= 3 .
27(0’2) [@((C— :“)/0')]11’
Therefore the derivative of the natural logarithm of the likelihood function with respect to

a0

o is
2 n (s — )2 — )=

ol(x,o?%) - Yiglwi —p)? | nle “)@“( E ) (2.62)
o2 20 204 2030(<E)

Since using ¥ and s* for computation purposes, and letting ¢ = =2~ and 7(¢') = g(i)} and

using notation of section 2.2 we split equation (2.62) as:

al(x,o%) n  nst+4na(z—p)? + néT(é)

T=F = T3z - ~ = 0‘) 2‘63
do? | 202 244 262 (263)
which equation (2.63) can be written as:

&+ (E-p)+ () =0. (2.64)

The algebraic solution of equation (2.64) is impossible. Therefore, in the following section

we use the iterative methods to solve it.
Theorem 2.3 For a fizred value of y, the function l(x,0?) has a local mazimum.

Proof: We prove this theorem for the two cases ¢ > 0 and ¢’ < 0.
Since {(x,0%) is continuous and differentiable, if we show that I(x,0%) — —c0 as ¢ — 0

and {(x,0?%) — —00 as ¢ — 00, then we conclude that {(x, o?) has a local maximum.

L. For ¢ >0 (g <e¢):

(a) For ¢ — 0:
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Consider ®(¢') = ®(**) — lasa — 0. Also —21In{o?) — —ocoand —2 7%, (2£)? —
—o0 as o — 0. Therefore, implies that {(x,¢%) — —o00 as ¢ — 0.
(b) For ¢ — co:
Consider ®(c') = P(=2) — 0.5 as ¢ — co. Then —nin®(c’) and —5 1%, (25£)?
are constant as ¢ — oco. But —%In{o?) — —oo as ¢ — oco. Therefore, implies
that I(x,0%) — —00 as ¢ — oc.

2. For ¢ <0 (p>e¢)

(a) For ¢ — O:

Using the note of section (2.2) I(x, 0?) can be written as

l(x,0%) = —%111(21:’) — g-ln(crz) —nu{~-¢)
i l(c = ®:)(2p — ¢ = )]
207 ’

Since u(—¢'} is bounded, —nlnu{—¢') is constant as ¢ — 0. We know that

¢ > x; for all 2 and g > ¢, then (¢ — z;) > 0 and (2¢ — ¢ — 2;) > 0, therefore
T ) 2usa)]

22

— —00 as & — 0. Also —2In(e?) — —o0 as ¢ — 0.
Therefore {(x,0?) — —co0 as o — 0.
(b) For o — oc:

Again since u(—¢’) is bounded —nInu(—c') is constant. Also ¢ > 2, for all 7 and

ft > ¢, then (¢ — ;) > 0 and (24 — ¢ — ;) > 0, therefore —Zﬁl[(f-f;]gﬂ'c'x*” is
constant as ¢ — oo. But ——%ln(oz) — —o0 as o — 00, Therefore I(x,0?) — —o0

as ¢ — 00 and the theorem is proved.

2.8.1 False position method:

The false position method which was described in section (2.3.2) is used to calculate &2 from

equation (2.64).
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To find the ML estimate of o, (&), we run the Fortran program (see Appendix Program

9), to solve the equation (2.64) numerically.

2.8.1.1 Estimates of standard deviation in data sets 1 and 2:

1. Using the data set 1 and letting g = 0 and ¢ = 107°, we obtain

g =1.1250.

2. Using the data set 2 and letting ¢ = 0 and ¢ = 1075, we obtain

a = 1.0266.

2.8.1.2 Estimates of standard deviation in ideal samples size 5 and 10:

1. Using the ideal sample size 5 and letting ¢ = 0, when ¢ = —1.88 and ¢ = 107", after
14 iteration & is estimated as

& = 0.9657.

o

Using the ideal sample size 10 and letting 4 = 0 and ¢ = —1.88, ¢ = 107°, afterin 15

iteration & is estimated as

& = 1.0009.

On plotting the likelihood against o when g = 0 and ¢ = —1.88 for ideal samples of
size 5 and 10 we get the Figures 2.5 and 2.6 (see Appendix Program 10).

The estimates of o for different ideal sample sizes, constructed for different truncation points

(see Chapter 1, section (1.4.2)), are given in Table 2.6.
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Figure 2.5: Likelihood versus ¢ for ideal sample of size 5 (x = 0,¢ = —1.88)
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Figure 2.6: Likelihood versus ¢ for ideal sample of size 10 (¢ = 0,¢ = —1.88)
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Table 2.6: The estimate of ¢ in ideal sample of size 5 and 10
for different truncation points
¢ -1.88 -1
n 5 10 5 10 5 10 5 10 5 10
¥ |-2.2165 | -2.234 | -1.4657 | -1.4858 | -0.7332 | -0.7549 | -0.2360 | -0.2517 | -0.0022 | -0.0024
a | 0.8557 | 1.0009 | 0.9797 | 1.0158 | 0.9988 | 1.0373 | 0.9766 | 1.0258 | 0.8662 | 0.9134

As we can see from Table 2.6 the estimate of ¢ in almost every cell is close to the exact

value of o = 1. Also, for both ideal samples of size 5 and 10, & increases as ¢ increases up

to ¢ = 0. After this point, with increase in ¢, the value of & decreases.
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2.9 Theoretical results:

The aim of this section is to find the expected value and variance of the maximum likelihood

estimator of o when g is known. In a similar manner to section (2.4}, we derive the formulae

of Cox & Hinkley (1974), and Shenton & Bowman (1977).

2.9.1 Shenton & Bowman methods:

The aim of this section 1s to find the expected value and the variance of the maximum
likelihood estimator of o2 by using the formula given in Shenton & Bowman (1977).

According to the factorization theorem given by Hogg & Craig (1970), since L(x, %} can
be written as the product of k«[t; 0% and kz(z1,@2,...,7x), it follows that T is a sufficient
statistic for 2.

Assuming that

6 = Y BT — w(TV/i' (2.65)
=0
where
Tt
then it follows that
D162
BJ' = 9T |T=LL(I),&2=J2 (26?)

for  =0,1,2,.... Note that 82 —» ¢? as T — u(T).

2.9.1.1 Expected value of 57 for the truncated normal distribution:

Using the notations of sections (2.2) and (2.8), equation (2.64) can be written as

=T + &6 (&), (2.68)

Since, as T' — p(T'), 6% — o2, it can be shown that B, = o2
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Using repeated differentiation of the equation (2.68) B; and B, can be found. Now,
using the following formulae, we can find the expected value of &% in the truncated normal

distribution. According to the formula given in Shenton & Bowman (1977), we have

. Bolpo(X —p)?] | 1 | Balus(X — p)%] | 3Ba[palX — p)?]? .
2y _ 2 .
B =+ =+ 3i * 1 oo (269)
In equation (2.68), taking the derivative of 6% with respect to T', we have
J6? 1 Ir(&) dé?
— =14 |7 7. 2.70
T +Cl2T(c)+ 362 ° | T (2.70)
Hence
d5* 1 .
S S (2.71)
aT 1 - g7(&) + F7(&)
We then from (2.67) obtain
1
Bl - o2 3
1 - Sr(c) + S7'(¢)
where
2 f
ey = 91 o ey e, (2.72)
oc!
Let D =1—%r(c) + %T’(C’), then we can express B; as
B =+ (2.73)
1= 5 2.1

To find B;, we have to take the derivative of % with respect to I'. From (2.71) we find

9267 & [r0"(E) + ET(@) - (&)

T : L -3 (2.74)
462 [L — (&) + Er(&)]
Therefore
626.2 C’ [CQTM(C.*) + C"TI(C") - T(Cr)]
Bz = W L-}? —2 = - 3
402 [1 - S7(c) + %'r’(c’)]
2D+ P -2 (2.75)

da2 ’
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where

() = =7 () = () — 27() 7). (2.76)

To find Bs, we have to take the derivative of % with respect to T. Hence we can demon-

strate that

Pt B _6’47’”(6’) + 63 77(&) + 387 7(¢) — 3¢T()
grs Q54 [1 - %T(f!’) + %7;(6,”4
3t (&) + &?r/(&) — (@)’ (2.77)
~ - - ed - 5 -
1664 [1 - %T(c’) + %T"(C")]
Therefore
B = 836‘2 | B CMTm(C) + 6¢ 43 r.r(c!) + 3(:"%’"((:") . 3(3"7‘({:')
2T grs 1=t T g1 D4
3[cPr(e) + () — ()]
' 1604 D5
: _CMT"”(C") +6 3 (Cra n ) . 2)2 (2 78)
gt DA 1604 D5 )
where
() = —27'() — () = 27*() = 27 (yT"(C). (2.79)

‘?ﬁf with respect to T gives By, after substituting o? for &2. We

Similarly differentiating

find
B, 52 | B C"I[C’T(i”)(cf]+4T”"[c']]
YT T e T 1606D5
5[(3!31'”(0") 2][2014 ’”(C’)+3C"3 .ff( r) '|"6]
3208 D5
15[0.'3 H( )_ 2]3
2.80
6405D7 ’ )
where
() = =37"() — () - 67 ()T () — 20() T (). (2.81)
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|

Now we find the second and third moments of the random variable (X — p)%.
In order to find the second and third moments of (X — )2, it is easiest to find the moment
generating function of (£3£)2,

First, as defined in general in Chapter 0 (0.54), for variable ¢ < X < b, we can obtain

Bt

Iy S
o 0'15‘5,\/2_?;

b i

_ (Z)2 (-1 12) d
fa ¢ m,m ’

®(b'\/1 = 2¢ \/1 —9)
VI- 'z'(@(bf — ®(a’))

From equation (2.82), as @’ — —oo and ¥ = ¢/, we get the moment generating function

(2.82)

of the random variable (£2£)? truncated at ¢ as

&(c'/T = 2t)
V1—2t0(c)

Note that, for ¢/ = 00, M x=xy,(t) is the moment generating function of a x*(1) variate.

Using the Maple software we found the first, second and third derivatives of equation
(2.83) (see Appendix, Program 11), and substituting ¢ = 0 we obtain the first, second and

third moments of the random variable (3\—;“‘—)2 about the origin.

So
WA Z e, (2.84)
a
/ X - Moo / 2 ¢ :
(=) =3¢ (3+ %) r(c), (2.85)
,u{;,()i — '&)2 =15 = [15 + 5% + 7 (). (2.86)

Consequently, the moments of (X — g)? about its mean are

(X = p)? = B[(X—p)— B(X~ ,u._]?]z
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= ot {2 —dr(c) [1 + % — CIT(CI)]}

= 20* [1 - 92—1“(0') + ?T'(c')] =20"D (2.87)

and
pa(X =) = E[(X—p)t— BX — ]’

= o° [8 — (3427 M) - 31 + ) () — ‘20’31'(0")] .

3 Y 7 !
_ o6 —cr(c) + 3¢ 7(¢') — 3¢7(<)
= &g ll—i— 3
I3 Y
- 806[1—CT(C)8 6D+6]. (2.88)

By substituting B; and pz{ X — u)? from equations (2.75) and (2.87) into equation (2.69)
we obtain the expected value of 2 up to O(n™') as

gl {0’37‘”((:’) +2D -2

A2y 2
E(6y=0"+ 1D

] + O(n72). (2.89)

n
By substituting pa{ X — )2, us( X — )%, Bs and By respectively from equations {2.87), (2.88),
(2.78) and (2.80) in second term of equation {2.69), we obtain

2 __r3 Hiot 20 —9
a [CT(C)-l— l+

E(6Y) = o2+ =

n 41D?
1 {o? [ () +6 .3 [(Br() — 2] | Pr(e) — 6D +6
n? | 3! Da 2D5 8
3 oM [Cr,},—(iu} (C") + 4,.‘,.-'!-'(0')] B 5 [C’?’T”(c") _ 2] [2647‘”(0") + 30131.:;(0;] + 6]+
4! 160503 3206 D4
15 [¢Rri(c) — 2] - N
7). 2.90
6405 D5 +Om™) (2:90)

2.9.1.2 Variance of #¢ for the truncated normal distribution:

The aim of this section is to find the variance of the maximum likelihood estimator of &2

in the distribution (2.1) to make a comparison of the theoretical results with the simulation
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results.

According to Shenton & Bowman (1977), we have
, 2 2 Bi. 2 -3
Var(57 —[Bnuz( )+ — [BleﬁS(X #) H(BiBat =2 )ip( X —p) [+ 0(n™) (291)

Substituting pa(X — )2, pa(X — u)* {the second and third moments of (X — x)?), B,
B;, B3 and B, respectively from equations (2.87), (2.88), (2.73), (2.75), (2.78) and (2.80)

into equation (2.91), we find the variance of 6% up to O(n~?) . Since

Pk 2 P 12 ey — 2 3
B]Bg,ug(X — ,{,5)2 = 0'4{ [ LED)‘i ] J(DS) + ﬁ} (292]
and
B;% 5 CI3TH gy =2 2 —ftyt ) + 3(3"3 " ) — 12 1
(B1Bs + ‘2"):‘1?3(3( —u) =0 { | 8(93 ] + < 203 & + 2D? 2.93)
therefore variance of &% becomes
N 201 5[¢Pr(d) — 2)* (e + 3BT (!) — 12 7
Var#®) = TH+ { O T 2D5 * 3D
+ O(r™?) (2.94)

A Fortran program was written to calculate the expected value and the variance of
the maximum likelihood estimator of ¢% in O(n™') and O(n~?). Program 12, given in the
Appendix, evaluated results for E(52%) up to order n™! and n™? and for ¢(5%) up to order
ns and n!. The equations (2.89), (2.90) and (2.94) were used to calculate the results

presented in Table 2.7.
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Table 2.7: The first and second order approximations of
the expected value and standard deviation* of
the maximum likelihood estimator of o2,

for different values of » and ¢, when p =0

n order c=—1.88 c=—1 ce=20 c=1

E(6?%) | o(&?) | E(6%) | o(6%) | E(6%) | o(d?) | E(6%) | (57

first | 1.0146 | 0.5033 | 1.0164 | 0.5419 | 1.0000 | 0.6325 | 0.9598 | 0.7721

<

second | 1.0133 | 0.5128 | 1.0140 | 0.5507 | 1.0000 | 0.6325 | 0.9737 | 0.7277

10 first | 1.0073 [ 0.3559 | 1.0082 | 0.3832 | 1.0000 | 0.4472 | 0.9799 | 0.5459
second | 1.0070 | 0.3593 [ 1.0076 | 0.3863 | 1.0000 | 0.4472 | 0.9834 | 0.5305

20 first [ 1.0037 | 0.2516 | 1.0041 | 0.2710 | 1.0000 | 0.3162 | 0.9899 | 0.3860

second | 1.0036 | 0.2528 | 1.0039 | 0.2721 | 1.0000 | 0.3162 | 0.9908 | 0.3806

50 first | 1.0015 | 0.1592 | 1.0016 | 0.1714 | 1.0000 | 0.2000 | 0.9960 [ 0.2442

second | 1.0015 | 0.1595 | 1.0016 | 0.1716 | 1.0000 [ 0.2000 | 0.9961 { 0.2428

100 | first | 1.0007 | 0.1125 | 1.0008 | 0.1212 [ 1.0000 | 0.1414 | 0.9980 | 0.1726

second | 1.0007 | 0.1126 | 1.0008 [ 0.1213 | 1.0000 | 0.1414 | 0.9980 | 0.1722

[* In this table first and second are used for the calculation of E{5?) and Var(5?).

Therefore ¢(4?) is calculated in O(n~7 ) and O(n1). ]

As we can see from Table 2.7 the expected value of 5% in almost every cell is very close to
the exact value of o2, but it is interesting that for ¢ < 0 the E(6%) > o2 whereas for ¢ > 0
the F{5?%) < o2 It also shows a very important fact that when we choose ¢ = 0, then half of
the normal distribution is considered and the E(&?) is equal to the exact value of the normal
distribution. Considering the standard deviation of &% we realize that they are related to

the truncation points as well.
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2.9.2 Cox & Hinkley methods:

In this section we derive the formulae for o2 using the method described in section (2.4.1).

For convenience , we set v = o=,

1. Let

S
2. Let

S = DA,
3. Let

I(y) = [8(n)]* = =5'(7).
4. Let
i(y) = B[S = E[-S'(7)).
5. Let
i{y) = E[S.(7)]* = E[-8(7)] = ni(7). (2.95)

6. Let

k(1) = B {ISOI9 () +i(n)PF}.

2.9.2.1 Expected value of 4 for the truncated normal distribution:

The aim of this section is to find the expected value of the maximum likelihood estimator
of ¥ in the distribution given at (2.1). We know that the score of v for a single observation,

when g =0, is

X2 —y+ e /Ar(e/ /A7)
247
1 X?  dr{c)

2y 242 2~

Sy =
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]' Lo ’ ’ K
ﬁ[j\z — o+ dyr{d)). (2.96)

Since we know that E[S(v)] = E[S.(v)] =0, we can find

E(X%) =y - dy7(d). (2.97)

To use the Cox & Hinkley formula for the expected value and variance of 4, we have to find

the following expressions.

i(y) = E[S(y))* = E[-S" (7)), (2.98)
k11{y) = E{[S(MS'(v) + ¢()]}, (2.99)
rao(7) = E{[SOPIS' () +i(3))°) = BIS(P. (2.100)

As in equation (2.20), we can write
E[S()P = =3E[S()S'(7)] = E[S$"(7)]. (2.101)

Therefore, we have to find S'() and S”(¥).
Taking the derivative of S{v) with respect to <, we have

1 X2 () 3 3c7(c)

iy L X2 2.102
and taking derivative of S’(y) with respect to v we obtain
2 "t FZrf i ‘
() = 1 3X2 Pri(d) + 9¢27' () 4 15¢ ’?‘(C). (2.103)

Taking the expected vaiue of S”(7), and substituting E{X?) from equation (2.97), we obtain

BlS"() = = {2 + S 1-0r(e) 0 + c’zr*"(c*‘ﬂ} ' (2104
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Now using (2.98} and (2.102), we obtain

iv) = E[-5(y)]

_ 1 X? () 3d7(¢)

= E l_ 272 + F,;é' + 42 + 42

1 dr(d) () )

= 32 [1 -T2 2T (2.105)

Using the notation 1 — ﬂfzé)— + dzﬂ;i = D), as before we have

i(9) = %, (2.106)
To find the k11(7), we have to find 5'(%) + i(+). From equation (2.97), we obtain
S) +il1) = =X =g ()]
- _%[Xz ~ E(XY)]. (2.107)
Now using equation (2.99) we obtain
kn(y) = E{SIS () + i)}
Bt -
_ _21?\/&1-(}(2). (2.108)

By using ¢? = ~, and noting from section (2.9.1) that the second moment of { X — u)? about

its mean is

' ! J2 it
pa(X — p)? = Var(X — p)? = 29° [1 B CT2(C) +- T—g(c )]
= 272[), (2109)
we have, when p = 0,
! C") CFZT"(C’)
V ; 2 = 2 2 1 — CT(
ar(X*) vy [ > + 5

- 27D, (2.110)
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Substituting Var(X?) from equation (2.110) into equation {2.108), we have

1

Now we want to find the xa9(y). To use equation (2.101) we must find the value of E[.S(4).5(7)].

EIS(S'()] = E{ [3—2(;(2 oy m-(c'))] [% Soaa Bc:;(zc')] }
= gy eme] [ - L1 )
1 ; 2
= —EVM(X )
- "%D (2.112)

Now substituting E[S{+)S'(v)] and E[S”(~v)] from equation (2.112) and (2.104) into (2.101),

we obtain

E[S(F = —3B[S(1)S' ()] - EIS"(7)]

R é“’)]}

= {1 S ) - c'%”(c*n} . 2.113)
Further we find
) + () = g5 lr(€) = 7€) = () (2114)
To find the bias term in the expected value of ¥ we have to use the following formula:

) = - S o)

Substituting £a0{7) + £11(7) and 2(y) from equations (2.114) and (2.106) into equation
(2.115) we obtain

(2.115)

_ ¢l + ¢7(e) — 7))

b(’r) T(C’ CIZ.T-'CI 2
4t — A 4 £

(2.116)



Chapter 2 85

Therefore

"yC’.’[CQT”(C’) + C"T’(_C’) _ T(C’]]

E#) = v+ + O(n™?)
dn {1 _ c’f!;[ + CQT;!C'! ]2
B ¥ () + 2D -2 _2
= 7+ [ 1D + O(n™%), (2.117)

which is identical to the formula for F{5?) derived by the Shenton & Bowman’s method ,

see equation (2.89) in section (2.9.1.1).

2.9.3 Variance of 4 for the truncated normal distribution:

The aim of this section is to find the variance of the maximum likelihcod estimator of 4 in

the distribution given in equation (2.1). According to Cox & Hinkley (1974), we know that

1 2W(y)

ni(y) -~ n*(y)

2[k20(7)ro2(y) — £ (N] + [Fn () + Kae(y))?
2n2i4(~)

Var(4) =

+O(n™) (2.118)

In the expression for b(v), let ¢*7"(¢') + ¢*7'(¢') — '7(¢'} = M. Then we have

M

(1) = 5z (2.119)

Taking the derivative of b() with respect to 4, we have
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o = ot ]
4
2
l( 4D 80 ) qu] /494} (2.120)
Now
M
%l—; = () + 4T () + ¢ - 7{c), (2.121)
A(4D*
(ac, ) — 4D[crz ﬁ( )+C”T!(C’)—’T(C’]]
_ ADM (2.122)
c.f
and
!
?—C = —i‘ (2.123)
el 2y
Substituting these last three expressions into equation (2.120) we obtain
bf( ]= L[*C”T”’(c’) .'3 ”(C +C T’(c’) ( ]‘|‘ M? (7 1.)4)
V= st 8D3" o
According to Cox & Hinkley, the first part of the coefficient of = in Var(¥) is
26}(7) _ 72 My 1 o 3w 2 ! I ’ r2 ;
) EE{D[_C T"() = 257" () + () = I ()] + ME (2.125)

To find the second part of the coefficient of = in Var(%), we have to find xgo(y) and roz(7).
We know that

k20(y) = E{[SHPIS' () +i)]°} = E[S(9))?
= E[-5'(v)]

= ()

D
= — 2.126
o (2126
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and

ro2(7) = E{[SM°S(7) +in))*}
= E[S'(y) +i()]
- F {-—:]’1—3[}(2 — v+ c”yr(c')]}

1 o
- 5E[)&—E(X?)]2

]_ [
= ;Va.r(Xz). (2.127)
Hence, on substituting Var(X?*) from equation (2.110) into equation (2.127} we obtain
2D
koa(7) = ?- (2.128)
Therefore, using equations (2.126), (2.128) and (2.111) we have
D 2D D]’
2{m20(1)k02(7) = [k (N]*} = 2 {%—27—4 - l_',}gl } = 0. (2.129)
Moreover, from equation (2.114) we know that
2
ka0 + s = Gslr(€) = () — P (e)F
2
- M (2.130)
G4+©

Using equation (2.129), (2.130) and (2.106) we obtain the second term of the coefficient of
+ in Var(%) as
2{kan(V)k0z(y) = [0 (V)P} + (611 (y) + k20(V)]? _ ¥*e?[r{e) = 7)) = L]
2e4(v) 8DH
A2 M2
= 131
o (2.131)

Substituting equations (2.106}, {2.125) and (2.131) into equation (2.118) and again using

¥ = a?, we obtain

Var(6?y =

wD DA 205 REYor

+ O™ (2.132)

261 ot {5[6’37”((:’) =217 =) + 3B () — 12 7 }
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which is identical to the formula for Var{é?) derived by Shenton & Bowman's method in

equation (2.94) in section (2.9.1.2).

2.10 Simulation to estimate the variance when the
mean 1s known:

The purpose of this section is to compare the results of a small simulation study with the
theoretical results for E(5?).

In the study, R = 10000 samples were simulated for each value of the sample size n =
5,10,20,50,100 and each value of ¢ shown in Table 2.8. The mean value and the standard
deviation of &% was calculated in each case.

We used the NAG routine GOSDDF(0,1), which generates random deviates from a stan-
dard normal distribution, and NAG routine GOSCCF which changes the seeds of the random
generator for each combination of n and e.

Program 13 (see Appendix ) was used to compute the expected value and the standard

deviation of the maximum likelihood estimator (42).



Chapter 2

Table 2.8: The simulation results of the expected value and

standard deviation of the maximum likelihood estimator of o2,

for different values of n and ¢ when R = 10000 and g =0

R n c=—1.88 c=-—1 c=0 c=1
E(6%) | o(8%) | E(&%) | o(6%) | E(6%) | o(¢?) | E(6?) | o(57)
5 [ 1.0186 | 0.5148 | 1.0179 | 0.5432 | 1.0079 | 0.7016G | 1.0090 | 0.87&2
10 | 1.0061 | 0.3583 | 1.0115 | 0.3840 | 0.9963 | 0.4412 | 0.9835 | 0.5271 |
10000 | 20 | 1.0040 } 0.2554 | 1.0030 | 0.2744 | 1.0004 | 0.3160 | 0.9917 | 0.3792
50 | 1.0037 | 0.1589 | 1.0015 | 0.1720 | 1.0010 | 0.2014 | 0.9957 | 0.2420
100 | 1.0005 | 0.1119 | 1.0002 | 0.1214 | 1.0005 | 0.1415 | 0.9988 | 0.1728

2.11 Conclusion:

In this section we compare the simulation results with the theoretical results as a check on

accuracy of the theory and the algebra.

89

The results given in Tables 2.7 and 2.8, shown that, although the simulation does not give

up to O(n~2), the expectation of the estimators of the parameters are in agreement with the

Shenton & Bowman and Cox & Hinkley methods and the sample size increase, the agreement

hecomes closer. We also conclude that expressions E{#), Var(jt), F(&?) and Var(4?) in both

theoretical methods; Shenton & Bowman and Cox & Hinkley are identical. Moreover all

theoretical values lie within 95% confidence interval obtained for the simulation.
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The two parameter case of maximum
likelihood estimator for the

truncated normal distribution:

3.1 Introduction:

In this chapter we consider the Maximum Likelihood method of estimating the parameters y
and ¢? simultaneously. Results are presented that extend the method of Shenton & Bowman

to the two-parameter case to give the means, variances and covariance of ji and &2,

3.2 Likelihood equation when two parameters are un-

known:

Suppose X has a normal distribution truncated at ¢, i.e. @ < ¢, and that both the mean g

2

and variance g are unknown. Then its probability density function and the log likelihood

90
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function for a random sample of n observations are as defined in equations (2.1) and (2.2).
Since both g and ¢2 are unknown, the estimates /i and ¢? are simultaneous solutions of

the following likelihood equations.

Noypo®) | (e i) | né(F) (3.1)
g et T &2 FO(E) '
Al(x, p,0%) n P (e =2 ng(SR)
— | e = ——— = L1 = (. 3.2
oz Imie=s 557 T 254 * 263 () (5:2)
To simplify the equations let
1. d(x,p,0%) =1
2. = =E
3. & =
oh _ o¢ld)
4. P(c) = TR
Y Fo &
5. (&) = b
6. Ty (2i ~ ) = Ty (21— ) 4 (@ — f) = ns? + n( = 2)?
where 2 = 3% (z; — %)% /n.
Then we have
L @ -9
o T o
gl n 4 ns® + n(z — u)? + ne'p(c)
Jo? 202 204 203
The solution of g—‘! =0 and % = 0 can be written as
Iz
g =3+ (@), (3.3)

6% = s* + (2 — p1)? + dav(@). (3.4)
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The algebraic simultaneous solution of the above equations is impossible, so an iterative
numerical method is required.
We first show that X and s? are jointly sufficient statistics for g and o2.

From a random sample of size n, the likelihood equation can be written as

) —1 &, e n Varaip ST
Liz,p,0°) =exp %szé‘i';z:"i_"_;_n]n 2ra2d{ )| -
i=1 =1

20 T

Therefore, the statistics Y1 = 37, X? and ¥> = 3%, X; are jointly sufficient for u and oZ.

Since
_ Y
Xx=2=
n

and

& = Yi - Yi/n _ ?:1(X£—X)2

n n

are one-to-one functions of Y7 and Y3, satisfying the requirement of the factorization theorem,

it follows that they are also jointly sufficient for the parameters p and o=
Theorem 3.1 The function | has a local marimum.

Proof: We prove this theorem for the two cases ¢ > 0 and ¢ < 0. From Theorems
(2.1) and (2.3) we see what happens for fixed u or for fixed ¢.
We need to establish that there does not exist a path in the (i, ) plane along which {
becomes unbounded.
Since [ is continuous and differentiable, if we show that | — —o0 as ¢ — —oo and

[ - —oo as ¢t — oo, then we conclude that / has a local maximum.

l. Forc¢' >0 (u < ¢):

In this case ! can be written as

| = —Eln(2ﬂ)—gln(02]

2
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q|e

2 _plne(S 4+ ZE,
O' [2) [22

l\.lln—t

- 726

If = = 4, a constant, then =137 (& — £) and —nln ®(£ 4+ ) are constant

as g — —oo and —2In(c?) — —o0 as g — —oo. Therefore I — —o0 as g — —o0.

For d <0 (g > c¢):

Using the note of section (2.2) [ can be written as

[ = _g In(27) — g-]n(o—?) — nlnu(—c)

Le—a)eta) po
+ ! - —,}Z(C-—xi).
202 e

If & = 4, a constant, and u(—¢’} is bounded then —nlnu(-c), Lz (omllern)

202

iovon . _z 2 _
and -4 "7, (¢ — x;) are constant as g — oo, But —%In(c?) — —oo as p — oo,

Therefore [ = —o¢ as g — o0 and the theorem is proved.

3.3 Scoring method:

Let § = (1, 0?) be the simultaneous solution of equations (3.3) and (3.4) and 4, be the n*

iteration with this method, then 8,1 = 8, + I7'S, where § is the first derivative of the log

likelihood at ., 1.e. the score vector, and I is the information matrix.

As Cohen (1986) described “One advantage of this method is that the inverse of the

matrix I,

which is computed in each iteration step, can be used as an estimate of the

covariance matrix”. It is noted that this method is a modification of the Newton Raphson

method.

3.3.1

Score and information matrix:

In the context of this thesis, let
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0.2

kA
S=| *

a |’

2

S ~E(ZF) —B(:5%)
Iy I

_._E(
For any appropriate starting value 8, of 8, we can find 8; = 8, + IS which is closer to

W) E(aaz}z )

real solution of equation. This procedure can be continued until two consecutive values are

the sarme to some given accuracy.

To obtain each element of the information matrix we have the following.
0?1 n ()
Ih=-E(—)=—=|1-
1 (a;ei’) o2 [ o |

where

o) _ e | lw c’Jr'

Ay o o
i ~SRLE(X; ) on | ,09(c)
T2 = ﬁE(a,uacr? - ot T o ot l do? — 9l )l

Since from Chapter 0, section (0.1.8), we have F(X) = u — ('), we can write

e = —nip(c) [¢p(c) /o + ? + 1]

204
Similarly
Pl () [9() o+ + 1]
Iy = — = = I,.
21 E( 30'28#) I 12
Now we want to find I5,. For this we have
* n EE(a - p)? N ndo 0 1”%]

N2 204 o 2 Jo?
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Since we obtained
W) _ ()

do2 942

1+ + ()],

by taking the derivative of ‘f){Tfl with respect to ¢, we can find

o4 e

[l 4+ + () —- 4] .

do?2 208
Therefore
0?1 —n  EEL (X —p)] nc’o' z,fﬂ cJ) ,
fe= b [3(02)21 T 20 o e |+ i) -3,

Now using Chapter 0, sections (0.1.8) and (0.1.12) we obtain that

E(X -p)?=0d* ll — @l : (3.5)
Therefore we can write
— 2 L (e
In = oot [“C 1)) VD [ 4 (e - 3
nn ndp(e) o

T gl T i 4§ 4+ ’2+c¢(c)—3]
_ o [l [ o+ P +1]
B 20 i

n 1y

204 2¢

We can now write the score vector and information matrix of the parameters as follows:

a8 nE—t- ()]

_ By . o2

5= a || n[PEE-wPH i)
32 oA
n{1-¢u(d fawd)folz} —ra{ Y| d() ot 21|
2ot
I= -m,f(a)[da;,(c')fc+c'2+1] " o [ =iy u(d) fotdP41]

204 200 T35 20t
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3.3.2 Estimation of the mean and variance:

To find the maximum likelihood estimators # and &? of the parameters of the population,
we have to find the score vector and information matrix. Since both of them involve ¢{c¢')
and ®(c’') through ('), we need to calculate ¥(c’).

For this, we use Normal routine from the NAG library. The computer program is provided
in Program 14 the Appendix.

This program was tested for two data sets that were introduced in Chapter 1. In these the
heights of children, 3" centile, were given. We used these data in the program to estimate
the mean and variance of the population by the method of scoring.

There are problems in estimating & and &2 simultaneously by the method of scoring.
Cohen (1957) stated “ Newton’s method tends to produce rather slowly converging iter-
ants during the first few cycles of computation, unless initial approximations are in a close
neighbourhood of the solution. "He mentioned that this difficulty has been recognized and
discussed by Norton (1956). As we cannot guarantee that our starting values are near
enough to the solution, we have iried to evaluate the estimate of the parameiers hy the
scoring method. But this method failed and we have tried to evaluate them by the other
method.

Using the NAG routine CO5NBF, which find a solution of a system of nonlinear equa-
tions by a modification of the Powell hybrid method (1970), to solve equations (3.3) and (3.4)
simultaneously, we obtained the following results for data described in Chapter 1 (see Ap-
pendix Program 15). Moreover, to illustrate our results, we wrote a program using S-PLUS
software, to draw a three dimensional plot of the likelihood against i and o (see Appendix
Program 16). It should be noted that the Program 15 failed for data set 1 (boys) and we
used the method of gride (used in Chapter 5) to maximize the [. (see Appendix Program

15a). This program stops when |p;41 — p:] < 107 and |log(ei1;) — log(o;)] < 1075.
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3.3.3 Estimates of (y, 0) in data sets 1 and 2:

1. Using the data set 1, (boys), we obtain the maximum likelihood estimates
(fr,6) = {1.3377,1.2871).

On plotting the loglikelihood against p [-2, 2] and o [0.1, 2] we get Figure 3.1.

By changing the range of 4 and o to [1, 1.5] and [1, 1.5] we get Figure 3.2.

2. Using the data set 2, with ¢ = 10=°, we obtain after 8 iterations, the maximum
likelihood estimates

(i1, ) = (—2.1932,0.2767).

In view of the exact values of i and o, the difference of /i and & from the exact values of g
and o in the two-parameter case are high. In particular in the extreme case of truncation

point ¢ = —1.88, the value i < ¢ whereas in the one-parameter case we obtained g > .

3.3.4 Estimates of (y, ¢) in the ideal samples sizes 5 and 10:

In this section we find the ML estimates of ¢ and &, simultaneously for the ideal samples.
Using the ideal samples of size 5 and 10 and letting ¢ = 10™°, we now obtain estimates

of /i and & for the various truncation points.
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Figure 3.1: Loglikelihood versus ¢ and o data set 1 (boys) (¢ = —1.88)

jogikefinood
SopyEp0e0nt0 0

AN \\\\\\‘t{{\\\\\
- 0 \\‘E\\\\\\\\\\\\\\

4

Py

-2

Figure 3.2: Loglikelihood versus p and ¢ data set 1 (boys) (¢ = —1.88)
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Table 3.1: The estimate of (x, o) in the ideal sample of size
5 and 10 for different truncation points

< -1.88 -1

n 5 10 5 10 5 10 3 10 5 10

g {-2.2165 | -2.234 | -1.4657 | -1.4858 { -0.7332 | -0.7549 | -0.2360 | -0.2517 | -0.0022 | -0.0024
g 1 0.2170 | 0.2602 | 0.2884 | 0.3422 | 0.4112 | 0.4802 | 0.5597 | 0.6492 | 0.6686 | 0.7268
A -2.1126 | -1.9509 | -1.3576 | -1.2033 | -0.6483 | -0.5443 | -0.2056 | -0.1681 | -0.0022 | -0.0022
g | 0.2865 | 0.4099 | 0.3655 | 0.5043 | 0.4809 | 0.6242 | 0.5924 | 0.7253 | 0.6686 | 0.7872

1. Using the ideal sample of size 5, when ¢ = 1 with £ = 107, after 9 iterations the

following maximum likelihood estimate is obtained:

(f,8) = (—0.2056,0.5924).

2. Using the ideal sample of size 10, when ¢ = 1 with ¢ = 1073, we obtain after 10

iterations the maximum likelihood estimates:

(i1,6) = (—0.1681, 0.7253).

On plotting the likelihood against u and & together with the contour plot, we

obtain Figures 3.3 and 3.4 which confirms the calculated values.

Similar to data set 2, we can see that for all the truncation points considered the ML

estimates of g in the two-parameter case are less than their counterpart truncation points,

whereas in the one-parameter case they are not. Also, as we see from Table 3.1, the greater

the truncation points the more sensible are the estimates of ;& and @. We can see that in

two-parameter case all the values g < ¢ whereas in the one-parameter case we obtained

fi > ¢ for ¢ < 0 and f < ¢ for ¢ > 0. Therefore we conclude that lack of constraint on s and

@ in two-parameter case allow the ML estimate of x be less than c.
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Figure 3.3: Likelihood versus ; and o for the ideal

sample of size 10 (c= 1)

Hielinond

Figure 3.4: Contour plot of the likelihood versus y and ¢ for the ideal

sample of size 10 (¢ = 1)
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3.4 Simulation to estimate mean and variance simul-

taneously:

The purpose of this section is to compare the results of a small simulation study with the
theoretical results for E(g), E(6?), a(fi), o(62) and p(j2, 6?).

In the study, R = 10000 sample were simulated from a N(0,1) truncated distribution.
Values of E(4) , o(ft), E(6%) , o(5%) and p(ji,5%) were calculated for each value of the
sample sizes n = 5,10,20,50,100 and each truncation point ¢ = —1.88,—-1,0,1,3 and 10.
The results were obtained from the solutions of the likelihood equations using Program 17,

given in the Appendix, they are tabulated in the Tables 3.2 — 3.7.

Table 3.2: The simulation results for the expected value and
standard deviation of i and 3% and p(g, &%),

for different values of » when R = 10000 and ¢ = —1.88

n Mean Variance p(fr,6?)

Ei) | o) | B(6Y) | o(e?)

5 1-2.211 1 0.149 | 0.121 | 0.132 | -0.345

10 | -2.198 | 0.107 | 0.136 | 0.100 | -0.308

20 | -2.188 1 0.076 | 0.147 } 0.075 | -0.228

50 |-2.184 | 0.049 | 0.151 | 0.047 | -0.217

100 | -2.182 | 0.034 | 0.153 | 0.035 | -0.168

Concentrating on Table 3.2, we see that the value of E(ji) is always less than ¢ and increases

as the sample size n increases, whereas the value of o(ji) decreases. Again by increasing n the
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value of E(5?) increases and the value o(6%) decreases. It seems that the lack of constraint

on g and ¢ cause that the ML estimate /i be alwayse less than ¢,

Table 3.3: The simulation results for the expected value and
standard deviation of ;& and 4? and p(f,5?),

for different values of » when B = 10000 and ¢ = —1

n Mean Variance o, 0%)
E(a) | o(p) | E(6%) | 0(6?)

5 |-1.457 | 0,197 | 0.196 | 0.190 | -0.320

10 | -1.445 | 0.141 | 0.222 | 0.148 | -0.283

20 | -1.433 | 0.100 | 0.237 [ 0.110 | - 0.254

50 |-1.429 | 0.064 { 0.246 | 0,072 | -0.239
100 § -1.426 | 0.046 | 0.249 | 0.052 [ -0.209

Table 3.4: For c=10

n Mean Variance olfe, 5%
E(f) | o() | E(5%) | o(8?)
5 | -0.724 1 0.274 1 0.347 | 0.298 | -0.257

10 [ -0.705 | 0.199 | 0.397 | 0.233 | -0.216

20 | -0.697 | 0.142 | 0.426 | 0.170 | - 0.207

50 |-0.690 | 0.091 | 0.440 | 0.112 | -0.196

100 | -0.689 | 0.064 | 0.446 | 0.079 | -0.178
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Table 3.5: The simulation results for the expected value and

standard deviation of & and &% and p{, %),

for different values of n» when R = 10000 and c=1

n Mean Variance plf, &%)
E(p) | o(f) | E(8%) | 0(57)

5 |[-0.215 | 0.375 | 0.589 | 0.448 0.119
10 | -0.208 | 0.268 | 0.674 | 0.344 | -0.108
20 |-0.202 | 0.193 | 0.707 | 0.250 | - 0.076
50 | -0.201 [ 0.122 | 0.730 | 0.161 | -0.054
100 [ -0.199 | 0.087 | 0.736 | 0.113 | -0.042

Table 3.6: For ¢c=3
n Mean Variance o, 6%)
B3 | o) | E6Y | o)

D 0.0039 | 0.452 | 0.818 | 0.612 | 0.051
10 [ 0.0012 | 0.315 1 0.909 | 0.440 | 0.042
20 | 0.0057 |0.223 | 0.957 [ 0.321 | 0.029
50 | 0.0014 | 0.141 | 0.982 | 0.207 | 0.025
100 | -0.0016 | 0.100 | 0.992 | 0.144 | 0.021
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n Mean Variance pljt, %)
E(p) | olp) | E(6%) | 0(67)
5 0.0010 § 0.455 | 0.804 | 0.565 | 0.00739
10 | -0.0020 |} 0.317 [ 0.903 | 0.422 | -0.00523 |
20 | -0.00020 | 0,224 | 0.948 | 0.307 ! -0.00145
50 | -0.0013 [ 0.142 | 0.981 | 0.199 | -0.00120
100 | 0.0018 | 0.100 [ 0.989 | 0.141 | -0.00030
3.4.1 Conclusion:

standard deviation of i and &% and p(j, &%),

for different values of n when E = 10000 and ¢ = 10

Table 3.7: The simulation results for the expected value and

104

Figure 3.1 contains a rather flat area so that many points have likelihood almost equal to

the maximum, Figure 3.2 shows a close up of the likelihood around its maximum.

Concentrating on the above tables we can see that E(i) and E(d?%) generally increase

and become closer to the true values as the truncation point ¢ increases.

Note that we include ¢ = 10, representing the complete normal distribution, in order to

check the results of the simulation study.

Using the ¢ statistic, t = £ f;’a;;,}; 2) with B — 2 degrees of freedom, we tested the null
= Hy

hypothesis Hy : p = 0 and found that the tests are significant for all values of n and ¢ (except

¢ =10 ) in other words p # 0. We conclude that g and &2 are dependent in the truncated

case when truncation is present (see Tables 3.2 — 3.7).
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3.5 Theoretical results based on expansions in terms
of (z — p.) and (s* — %) (Method A):

The alm of this section is to extend the results of the Shenton & Bowman formula to the
joint estimation of the two parameters. To do this, letting 7(¢') = (I,—[% and 7(&) = %, we

note that (3.1) and (3.2) can be written as
=T+ or()
f ( (3.6)
62 = 824+ (T - p)? +&64().
Firstly, we have to prove the following theorem and, secondly, expand the equations {3.6).
Theorem 8.2 The equations (3.6) are satisfied by it = p and 6% = 02 if T = p, and s* = o2,

where T =30 aifn, sE =30 (v, —2)*/n, g, = E(X) and 02 = Var(X) .

Proof: Assume that we have equations (3.6), and the conditions ¥ = u, and

2

s* = 2. We want to prove that i = ¢ and &% = o2

The equations (3.6) can be written as

{ -7 =7 )
62— (2 — p)* —&5%7(¥) = ¢,
As we know from Chapter 0, sections (0.1.8) and (0.1.12)
fre = p—o7(c)
and
ol = ol = d7(c) - 7).

By the assumption of the theorem, the equations (3.7) can be expressed as

{ fi—or(d)—pt+or(d) = (3.8)

(e = i) = #7() = 0?1 = 1) — 7] = 0,
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If, in equation (3.8), fi = 4 and 6% = ¢?, then

p—or(c)—p+eor(d)=0

(3.9)
o —p—or(d) — p]? = dor(d) — a1 - (') — r3()] = 0.
In view of the fact that
l
—or(d)—~u+or(cd)=10
p—or(d)—y (¢) (3.10)
o1 — () — 7)) — 0?1l — 7 () — T2()] = 0,
i it can be seen that (4 = p,6% = o?) is a solution of (3.6).
[ . . .
' Expansion of Equations: Using the extension of Shenton & Bowman’s results we
can expand each equation of (3.6) in the following way
,(’:-‘, = Ap+ Am(i—? — p‘,c)/ll + Am(&z — 0'3)/11 +
Ago(@ — pe)? /2! + Agals® — a2)?/2! +
Anl@ — p)(s? — a3/ + - (3.11)
and
&% = B+ Bio(Z — o) /11 + By (s* — a3)/11 +
Bzo(.’f? — J,{-{C)2/2I + 302(32 - ('}'62)2/2T +
Bz — p (s —aB) 1N 4 -, (3.12)

This expansion can be continued in a similar manner. For our present estimation purposes
we have given the expansion of ji and &% ( equations (3.11) and (3.12)) only up to the second

term. Then it follows that we must have

]_‘ Algz %

BT | (F=p=2=02) s

— i
2. Ap = % |(£:;;¢,.9?:cr§) s
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3. Az 36[‘1)2 [{f:;&c,.@:O’%) *
4. Agy = grgz"j% l(2=pe,#=02) »
5. An = 3227‘:2 (= sit=a2) >
6. By = 3;, |(z= =pe,P=02)
7. By = % |(f=,uc,s2=0§) s

2
8. BZO = (?(2:2 |(J,—,u.c,s?“02) )
9. BOZ = 58{%')7 I{a‘;:nc‘szzog) B

2252
10. Bu = ;:ET:}? |(:Z'=;z¢,s?=a£] etc.

According to Theorem 3.2, if # — g, and s*> — o2, then i — p and §% — 0%, Therefore
from equations (3.11) and (3.12) it can bhe concluded that Agy = g and Bgp = o2,
By taking the first and second partial derivatives of each equation and using Theorem

3.2, we can find the remaining coeflicients.

3.5.1 Preliminary calculation:

In this section we calculate some of the expressions which we will need later on.

3.5.1.1

Let

= (c— (62" (3.13)

Taking the partial derivative of & with respect to s? we obtain

_8_91 _ (C_:U) djt -1/2 a(&*) 1 9a? .
92~ 9p 0 A i P i L
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. dp 1 s
— (a2 YR Leaan-gpry e Y0
(1) = = 56 (e~ o
~ aF A2
I L (3.14)

G Os? 262 0s27
3.5.1.2 Calculation of %g—:

Similarly, taking partial derivative of ¢ with respect to Z we obtain

o¢ . 19p & 95
7 5o o) (319)

3.5.2 Calculation of 4;, and Bjo:

Now, taking the partial derivative of the first equation in (3.6) with respect to &, we have

i AN r(&)]
% 1+ oz
AeH? 952 n ar(e) ;dg

e i i o e COG (3.16)

which , on replacing % from equation (3.15) writing 7'(¢') for —af_ogl—, gives

[+ @

éf?_f(

() AL
’(CJ]%‘; =1. (3.17)

ey —
20
Substituting f from first equation (3.6) into second equation, we obtain
6% = st 4 (c— 3)or(&). (3.18)
Again, substituting 67(¢&) from first equation (3.6) into equation (3.18), we obtain

62 =5+ (e —T)(fr — ). (3.19)

Taking the partial derivative of the equation (3.19) with respect to Z, we have

(F—¢)m——+—=—=2x—c— ji (3.20)
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Equations (3.17) and (3.20} can be written as

[1 + Tr(ﬁr)]a_i‘ + [__ﬂiﬂd_]ag% L, (3 21)
(F-o)R+2 =22—c~j '
The simultaneous solution of equation (3.21), gives
~ {93 o AN[ALA AN (A :
9z E
and
02 = 9m oaA ey
ao; _c—%+ (2% ¢ o+ (e )], (3.23)
az E
where
E=1+7"(&)— (z—o)[&7'(&) - 1(&)]/26. (3.24)

Now, according to Theorem 3.2, as # — y. and s — o2, then g — g and & — o. Therefore

we can find

Ay %ﬁ' oty = 1 [¢() — T(g)][cf +2r(c)]/2 (3.25)
and
B = 07 sy = DTN 42 (4.25)
where
E=1+7()+ () — r() + r()]/2. (3.27)

3.5.3 Calculation of 45 and By;:

Now, taking the partial derivative of the first equation in (3.6) with respect to s?, we have

I ()

ds2 Os2
R 95 Br(E) 9 N
= 00)2 )t ad)@'["g)m (3.28)
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which | with replacing 88 from equation (3.14) and 7/(¢&') for jﬂ)— gives
op  dr'(e) —1(¢),05°
0s? + [ 25 ]533

Taking the partial derivative of the equation (3.19) with respect to s?, we have

1+ 7(¢)) 2= =0. (3.29)

_ o 06t
(@ =cgat 5z
Solving the (3.29) and (3.30) simultaneously

=1 (3.30)

gives
o &r'(e) — (&)
£ = _ 3.31
ds? 26 (3:31)
and
A‘z A
96* 14 7'(¢) (3.32)

Hs? I

where F is as defined in equation {3. 24). Now, using Theorem 3.2 as s — o2, then & — o,

we find
B aﬁ () - 7(c) .
Aor = 55 lempes=t) = 5 (3.33)
and
d5° 1+ /()
BGI = W 1(.7::;;:&:03) = T (334)

where F is as defined in equation (3.27).

3.5.4 Calculation of 4,5, and Bsg:

In this section we are going to calculate Az and Byy. Taking partial derivative of equations
(3.21) with respect to Z, we obtain

| ” i Fr#) =¥ 52 (&) ’r. 52

{ (L r(@)5E + (28 = PO (3 4 L) 4 ST (A

. 820‘2 ) 280 O% az (3‘35)
{i—c)gﬁ—”+3—?~=2(l—%§).
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Solving the equations (3.35) simuitaneously, we find
o1 (0 @8N | L (082 O
@#5{7(0)(%+%E + [€7(¢) — 7(&)] 1\ Fr —1-5:%——1

and

@) fei @ e\ @) (&) 060, ]
(@ C)l p (Of+§§3£) + (52 (3:37)

Now, using Theorem 3.2 we find

1 1o 4 4 ’ LSRN I 1
AZO = E {fr-’ (C) (A]o + %BIO) + [C T (C) — T(C )] (EB% + Al(] - 1)} (338)

and

—[7'() — T(C')]Bfo] } , (3.39)

Ay = o E3 {41’ 31— fr(c)(c + 7( ))]2

+ [@r(cy = r(e)lr() + (e I}
5 Ez{[c (¢) = T(N2r(d) = T()T() — (N}

and

BZIJ

LN (N = 7N+ )
[ + 7' (][ () = 7(N][r () + 7{) + 2?(c')]]2/4}
AL+ 2r ) - (@)~ 7))

+ o+

& umRant
8
o
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3.5.5 Calculation of Ay, and By,:

In this section we calculate Agy; and Byg. Taking the partial derivatives of equations (3.29)

and (3.30) with respect to s* we obtain

n. P dr’c’—¢€ _ e 7 a2 V2 | @)V =2) ;o .
{ 1+ @l + [FRERE = S (B ) TG,
(2 =~ )t + 5 = 0.
Solving the equations (3.40) simultaneously,
Pp 1@y (op ¥ 862\ ¥r(E) - (&) 857,
s E{ 5 \9s2 T2z, T 162 (557 (3-41)
and
26 (z—c) [7"(@&) (6n & 962\° &r(@) —r(&),067
== — + === 3.42
d(s2)? E { 7 \oe2 T2559) T 452 (852 e (342)
By Theorem 3.2 we therefore can find
1 He Cr ’ 1 £t Iy 2 .
Agy = oF (') { Am + %Bm + Z{f[c (') — 7()] By (3.43)

and
, 2
Boz = % {[c’ + 7(')] [T”(c"] (/—101 + ;—JB[)]) + Zé,—z[c"r"(c’) — T(C')]Bgll } . (3.44)

Equivalently, in terms of ¢, 7(c'), 7'(¢'}, 77(¢'), we have

TN + (NP 4 [eT(e) = T(H]IL + ()]

Agp =
o 453 B3

and

Tl + 7P + [7() = (D]l + 7 (][ + (]
102 F3

BOZ -
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3.5.6 Calculation of 4;; and By;:

In this section we are going to calculate Ay; and By;. Taking the derivatives of equations

(3.21) with respect to s? we obtain

[+ @l + (P B = 8 (B + 55) (F + 55+
7 —r(&
2U)or(E) oF o (3.45)
252
(z ‘—")aszaz c%é‘{= gsg
Solving the equations (3.45) simultaneously,
O _ e ) { Oft é_ a6* ps & 08°
05207 GE 332 25 0s? 5‘9; 2% 87
c’r’(c’ - ’?‘(C) 1 96 952 (),u ,
" ( ) (902 8s? 0z 032 (3.46)
and
Pot L ((@eer@) (G0, ¥ 0P (91 ¢ 05
ds20F B bos ds? 20 0s? or 2& 0%
(2 — o)[&'r'(&) — T(&)] [ D6° 0&* i -
- 15% e gs ) T @5a (347)
By Theorem 3.2, therefore we can find
An = (e) Ao + C—Bm Ao + —C‘—Bw
cf 20
!
(£ (L g e ) o
and
oAt / I s !
B, = Tl )[cE+ 7(c')] (Am + 5‘0—801) (Am + 5;_810) (3.49)
' TN ' 1 el _
R ) i PR E S L CI P 350

102 F E
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Expressions in terms of ¢, 7(¢'), 7'(¢'), 7%(c’), are

All

and

_|.

1 ¥ N ! I ’
4o E> {27 + ()1 = 7 () + 7()]

[¢7() — (N1 + ' ())r () + () + 27 ()]}
i [ (€) — (@)}

C +T( r) B M
CEZE B + () = TN + ()
(7Y = (N1 + T (ONE) + 7' () + 2 ()]}

]' ! f_r ! !
s AL+ () = ()

To make sure that our calculations are correct, Ay, and By; were obtained by the alternative

method of differentiation firstly with respect to s2.

3.5.7 Calculation of E(fi):

In this section we derive E{#). Taking the expectation of both sides of equation (3.11) and

letting 2 — pe, 57

E(@)

since E(X — p.)

— ol i —pand 6?2 >0

= 0.

2 we have

Ago + ApE(X — p) /11 + Ap E(s* — a2} /1! +

ApE(X — pc)? /2! + AnE(s* — o2)? /20 +

AnE(X = p)(s* = 6B)/11 + -

it {An[E(s? — o))+ AwB(X — p)?/2+

AE(s? — 6)?/2 + AnB(X — pc)(s® — o)} + -+, (3.51)
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3.5.7.1 Calculation of E(s% — ¢2):
Define the bias b(s?) = E(s* — 02) = E(s?) — 2. Since

§2 = e (T _3‘_’)2’
n

and we know that

E[Z?:l (X‘i B ‘}Z)2

n—1

] = 0? = Var(X),

we obtain

The bias term is

n—1 1
of—o‘f=~—o‘2
£

b(s?) = E(s*)-ocol=

[

- L - T @)

= T,

3.5.7.2 Calculation of E(X — u.)%
From Chapter 0, sections {0.1.23) and (0.1.12)

pa(X) = {1 = () + ()]}

= oML+ 7]}

Also we have the following conditions

_ #2(){)_

p2(X) .

115

(3.52)

(3.53)

(3.54)

(3.55)

(3.56)
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Therefore, we have

= Z{1+ ) (3.58)

3.5.7.3 Calculation of E(s? — %)%

C

We can write

g
o
(%]
[
Q
b
e
Il

E{[s* = E(s*)] + [E(s*) - o7]}?
= Var(s?) + 2b(s*)E[s* — E(s%)] + *(s?)
= Var(s?) + b*(s%). (3.59)

It is well-known { Kendall & Stuart (1952), p. 233 ) that

N Y (Y 2%
Var (z::l (:‘ﬂz :C) ) = !‘»4(A) + 2“2(A) (360)
n—1 n n—1
then
182 A Y
‘V‘ar(sz) — (n 1) ['LC;I(X) _ (n’ 3)”2(‘-& )] . (3.61)
7 n n(n —1)
Substituting equations (3.553) and (3.61) into equation (3.59) we obtain
1 . 9 <r
B(s"—ol)' = —(n—1u(X) = (n" = 5n + 3)p3(X)]
_ 4 (?‘1 — 1)2 e ot 2n —1
= o { —S—T"(¢) + e TET O T,(C,)]Q} . (3.62)

where from Chapter 0, sections (1.1.16) and (0.1.23) fourth moment of X,
(X)) = 31 = () - 7))
+ o3¢ = () + (4 = 7))
— 12d73() — 674 ()]

= () +3[1 + ()} (3.63)
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3.5.7.4 Calculation of F(X — ;.)(s? —¢?):
In order to obtain E{X — g.)(s*> — 02) we use the following Lemma,

Lemma 3.1 For {a;}} and {b;}7 sequences of real numbers,
Zm [Zb]ﬂZaib +ZZab (3.64)
i=1 j#i
Let i = ©; — p. and § = & — p, and the y;’s are independent random variables. In the

following argument use equation (3.52) and apply Lemma 3.1.

E(X —p)(s* =08 = E[_’—,u]:;z2

- E[Zyz Z 2 — ng?)]
= LB+ YT v - o)

=1 i#j

= ZJ\; + Z >t — (')

=1 3]
= ;}5[”#3()() +n{n — D (X)pa( X) — nPua( X))

= niz[nﬁ@(X) +n(n — 1];::1(X) 2 X) — Pis(X)]

n—1

= 3
n? al

(] (3.65)

Now the first moment of the variable X abonut its mean is zero and

o Pis(A

a(X) = 7 (3.66)
Hence, using p13(X) from Chapter 0, section (0.1.23), we find
_ —_ 3[f A2 / Po2f 37 0
B(X = p)(s* = 0?) = (n — 1)o®[(c 1)1'(;]4—3(:1‘ () + 27 (c]]
_ 30
_ = Dorid) (3.67)

2
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Substituting E{s? — o2), E(X — u.)?, E(s* — ¢?)? and E(X — pu.)(s* — o?) from equations
(3.55), (3.56), (3.62) and (3.65) into equation (3.51), we obtain

B(p) = g+ 1{(% — Ap)pa(X) + 22 [a(X) — p3(X)] + Anpa( X))
+ O(n™?)
i = {( 4 — AL+ ()] + &) + 201+ ()]

—AHO'TH(C’)} -+ ()(':"L;2 ]

(3.68)

3.5.8 Calculation of E(6?%):

In this section we derive the theoretical formula for E(&?). Taking the expectation of both

sides of equation (3.12) and letting # — g, and s> — o2 so that & — g and &% — 0%, we

by

have
E{6*) = Boo+ BioE(X — p)/11 + B E(s? — o2)/1! +
BQUE(X — ‘[55)2/2! + BUQE(.SE — 0'3)2/2' +
BuE(X — p)(s* —ab)/1 + - (3.69)

Setting Boo = ¢? and substituting F(s2—o?), E(X —u.)%, E(s*—0%)? and F(X —u.)(s*~0?)
from equations (3.55), (3.56), (3.62) and (3.65) into equation (3.69), we obtain

| B(6?) = o+ 1 {(8 — Bo)pa(X) + B [pa(X) — p3(X)] + Brups(X)}
' + O(n7?)

| : (3.70)
| = o+ Z{(& — Boy)[1 +7()] + B () + 21 + ()
i — Bnot"id)} + O(n7?).
3.5.9 Calculation of Var():
; In this section we find the variance of fi, by using the formula
Varli) = B( - pe)? — [B(3 — o)l (3.71)
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Using E{a), E(s* — 02), E(X — p.)?, E(s* — 0?)? and E(X — u.)(s* — o?) from equations
(3.68), (3.55), (3.56), (3.62) and (3.65) we find the variance of ft up to O(n1),

Var(fi) = 7 w 1 ATop2(X) + AG; [ra(X) = p3(X)] + 2410401 p3( X)) }
+ O(n™?
") | | (3.72)
= S A{ALIL + ()] + A [ () + 2[1 + ()]
— 24104m0o7 ()} + O(n72).
3.5.10 Calculation of Var(5?):
In this section we derive the variance of &2, For this we are using the formula
Var(6?) = E(6* —o%)? - [E(6* — b))% (3.73)

Using F(6?), E(s? — o), E(X — p.)?, E(s* -~ 0%)? and E(X — p.)(s* — o2) from equations
(3.70), (3.55), (3.56), (3.62) and (3.65), we find the variance of &% up to O(n™)

Var(6%) = - {Bloua(X) + B [1a(X) — p3(X)] + 2B10Borus(X)}
Ofn=2

* 2(?1 ) (3.74)

= B[+ ()] + By[r(¢) + 21 + 7()]

- 2810.8010’?’”( r)} + O _2)
3.5.11 Calculation of Cov(ji,5?):
In this section we derive the covariance of f and &2. For this we use the formula

Cov(f,6°) = B{[(i— po) — E(ft — p)|[(6% — o7) — E(6* = a0)]}. (3.75)

Equations (3.68), (3.70), (3.55), (3.56), (3.62) and (3.65) give expressions for E{j), F{5?),
E(s?2—a?), B(X — i.)%, E(s* —02)? and E(X — p.)(s* — 0?) the covariance of ji and &% up
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to O(n™"), namely

Cov(j, &%) i {AiﬂBw#E(X) + Ao1Bor [pa( X) — #g(x)]
+  (A10Bo + AnBro)ps(X)} + O(n?)
% {AlﬂBIO[l + T’(Cr)] + ADIBGI ['Tm(C’) + 2[1 -+ TJ[C!]]Q]}

- (AloBm + AmBm)G'T”(C’)} + O(n_z)-

(3.76)

fl

To compare the theoretical results of E(g), o(@t), E{6?) , (%) and p{f,5°) with the
simulation study, we use a computer program (see Appendix Program 19 ) to calculate the
expected values for different sample sizes n = 5,10, 20, 50, 100 and different truncation points

¢= —1.88,—1,0,1,3,10. The results are presented in Tables 3.8 — 3.13.

Table 3.8: The theoretical results for the expected value and
standard deviation of i and &% and p(, %),
for different values of n when ¢ = —1.88,

using Shenton & Bowman methods, 1 =0, c =1

" Mean Variance p(ft,5%)

E(g) | ofp) | E(6%) | o(6?)

5 | 35.07 §11.58 | 2261.23 | 4.55 0.99

10 | 17.54 | 8.19 | 1131.11 | 3.21 0.99
20 | 897 | 5.79 | 566.06 | 2.27 0.99

50 | 3.51 } 3.66 | 227.02 | 1.44 0.99

100 | 1.75 | 2.59 | 114.01 1.02 0.99
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Table 3.9: The theoretical results for the expected value and
standard deviation of 2 and &2 and p(j,6?),
for different values of n when ¢ = -1,

using Shenton & Bowman methods, u =0, o =1

n Mean Variance plft, &%)

E3) | o(p) | E(6?) | 2(6?)

5 9.62 | 5.52 | 252.76 | 2.99 0.98
10 | 4.81 } 3.91 | 126.88 | 2.11 0.98

20 | 240 | 2.76 § 63,94 | 1.49 (.98
50 | 096 | 1.74 | 26.18 | 0.94 0.98
100 [ 0.48 | 1.23 [ 13.539 | 0.67 0.98

Table 3.10: For c =10

n Mean Variance p(fe, &%)
() | o) | E@Y) [ o(6?)

5 1.83 | 2.10 | 14.54 | 1.80 0.93

10 | 091 | 149 | 7.77 1.27 0.93
20 | 0.46 | 1.O5 | 4.39 | 0.90 0.93
50 | 0.18 | 0.66 | 2.35 | 0.57 0.93

100 | 0.091 | 0.47 | 1.68 0.40 0.93

Comparing Tables 3.8-3.10 with 3.2-3.4 we notice that for small values of n the bias is large

while for increasing n the bias is reduced. This may be due to the fact that our Taylor
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expansions provide us with good approximations when n is large, but, when n is small,
converge rather slowly so that obtain good accuracy we require more terms in the Cox &

Hinkley and Shenton & Bowman expansions.

Table 3.11: The theoretical results for the expected value and
standard deviation of fi and 5% and p(#, 62),
for different values of » when ¢ =1,

using Shenton & Bowman methods, u =0, 0 =1

n Mean Variance plft,5%)
E(p) | o(i) )] E(6?) | o(a?)
0.34 | 0.81 1.54 0.22 0.72

A

10 | 0.17 | 0.57 | 1.27 | 0.78 0.72

20 [0.084 | 0.40 | 1.13 | .55 0.72
50 [0.033 026 | 1.05 | 0.35 0.72

100 | 0.017 | 0.18 | 1.02 0.25 0.72

Table 3.12: For c =3

n Mean Variance plfi, 62)
E(g) |a(p) | B(6Y) | o(67)
0.016 0.45 | 0.85 0.66 0.033
10 { 00079 ) 0.32 | 0.92 0.46 0.033
20 | 0.0039 | 0.23 [ 0.96 0.33 0.033
50 1 0.0016 | 0.14 [ 0.98 0.21 0.033
100 | 6.00079 [ 0.10 | 0.99 0.15 0.033

fu ]
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Table 3.13: The theoreticals results for the expected value and
standard deviation of i and 4% and p(ji, 6?),
for different values of n when ¢ = 10,

using Shenton & Bowman methods, py =0, c =1

n Mean Variance p(ft, &%)

E(j) a(fr) | E(8%) | a(57)

5 1038 x 1071 | 0.45 | 0.80 | 0.63 [0.55 x 10720

10 10.19x 1071 | 0.32 ] 090 | 045 |0.55 x 10729 |

20 | 0.94x 10720 | 0.22 | 095 | 0.32 |0.55 x 1072
50 {0.38x1072° | 0.14 | 0.98 | 0.20 | 0.55 x 107
100 | 0.19 x 10720 | 0.10 [ 0.99 | 0.14 | 0.55 x 10720

3.5.12 Conclusion:

The Figure 3.5 shows a plot of E (calculated in equation 3.27) against ¢, from which we see
that F is a monotonic increasing function of ¢. F becomes small when ¢ < 0 and approaches
1 as ¢ — oo. From the Figure 3.5 we see that the bias in i and &% may will be large for
¢ £ 0 and possibly for some positive values (Program 20 which plot the E against c is given
in Appendix ).

The expected values of jt and &2, given in equations (3.68) and (3.70), involve A and B
terms (defined in section (3.5.2)) whose denominators are functions of £ defined in equation
(3.27). Consequently, E should have an important bearing on the hiasedness of i and &7

As noted, the amount of bias is large for small values of c. The smaller the value of ¢,

the larger is the difference between the values in the two tables 3.2 and 3.8. For large c
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Figure 3.5: The plot of £ against the truncation point ¢

10

08

0.6

02

0.0

for example, when ¢ = 3 the Tables 3.6 and 3.12 have almost identical values. For ¢ = 10,
Tables 3.7 and 3.13 show that the two methods provide identical values for FE(jt), o(i) and
E(6?), and that the values for o(&?) are very close. Furthermore, for the same value of ¢,
Table 3.7 shows that the simulated values are quite close to the theoretical ones. Hence,
for small values of ¢, to obtain better approximations of the theoretical results expansion to

further terms is needed, which requires the evaluation of Asp, Aoz, Bag, Bos etc.



Chapter 3 125

3.6 Theoretical results based on expansions in terms
of (Z — u.) and (s — o.) (Method B):

An alternative approach is the expansion of i and & based on (% — p.) and (s — o.). Its

difference from Method A is that in Method B, (Z— g.) and (s—0a,) are of the same dimension

2

whereas in Method A, (z — g.) and (s% — o2

) are not. For the joint estimation of the two
parameters i and o, we extend the results of Shenton & Bowman formula as following:
Expansion of Equations: Using the extension of Shenton & Bowman’s results, we
can expand the equations (3.6) in the following way.

Assume that

s
i

Apo(Z — p)? /20 + Apls — 00)? /2! +
AL(E — p(s — o) /11 - (3.77)

and

& = Bly+ Bio(z — p)/1' + By (s — o )/11 +
Béo(f - #c)z/g! + B:Jz(s - 0_6)2/2! +

Bl (g —pMs—o) /114 .. (3.78)

We need to know

i
L. Al = Z lz=ses=cc) »

t o O
2. A(ll - Ez_ |(i=,uc,s=crc) )

I

2
3. A'FZD = ﬁ I{f:#c‘s:a,_-] 1

40 P
. "162 - E’@‘;LT |(f=f-ic|3=o'c) t

e
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£

ETT |(:Z'=;-ec,3=0c) ’

6. Bjo = z

ar |[:E=_uc,s=ac) »
7. Bl =% |
- Po1 T 3y HE=pes=o) s

#2s
8. BED = ﬁ |(f=_uc,s=gc) 4

62A
9. 862 = 3(3;’2 |(a’:=,ue,s=cr¢] 1

10. Bjy = Z& |(3mposmay etC.

According to Theorem 3.2 as z — y. and s — o, then &t — g and & — 0. Therefore
from the equations {3.77) and (3.78}, it can be concluded that Aj, = A = ¢ and B, = 0.
By taking the first and second partial derivatives of each equation and using Theorem

3.2, we can find the remaining coefficients.

3.6.1 Preliminary calculation:
In this section we calculate some of the expressions which we will need later on.
3.6.1.1 Calculation of £-:

Let

& =(c— ). (3.79)

Taking the partial derivative of ¢ with respect to s we obtain

8¢ Be—p) O, 06T 06

gs _  0p 9s 5% 95
= [—&*1%%—&-2('::—@%. (3.80)
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3.6.1.2 Calculation of %%:

Similarly, taking the partial derivative of ¢ with respect to & we obtain

8 (00 05
35 = 0 (B:E—I—Cé)i:)' (3.81)

3.6.2 Calculation of A|; and Bj;:

Now taking the partial derivative of the first equation in (3.6) with respect to &, we have

o ds ., L, Or(&
Friie 1+5&;T(c)—|—a 57

95 . 9r(&) o

_ 90 pad 3.82
SN PR P T (3.82)
which ., on replacing % from equation (3.81) and 7'(¢&') for ag;‘] , glves
[+ PN 4 [ - @] = . (3.53)
Taking the partial derivative of the equation (3.19) with respect to &, we have
(:ﬁ—-c)%—l—?&% =2 —~c— . (3.84)
Solving the (3.83) and (3.84) simultaneously
gives
o fom o AN (A
?_f.:t _2-(2k-c ,{::)Icr (&) — ()] (3.85)
oz 26F
and
60_c~m+(2x—cjp)[1+f(c)]. (3.86)

Eran 2% E
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Now, according to Theorem 3.2, as & — . and s — o, then & — p and &6 — o.

Therefore we find

1+ [d7'() — 7()][¢ + 27()]/2
E
= ;410 (387)

ot
A;O = % |(f=uc,s=0c) =

and

g =+ (D) + (e + ()]} Bio

B;D = % |(5'=#c,3=0c) - 2E - Der

(3.88)

3.6.3 Calculation of A}, and B,:

Now, taking the partial derivative of the first equation in (3.6) with respect to s, we have

dp 00, Or(¥)
s = g T
06 dT(¢) o
= -— —_— .89
A A P (3.59)
which , on replacing %%— from equation (3.80) and 7'(¢') for Jaa_’ gives
) o OG '
1+ 7'(¢ )] + [¢'r (&) —r(&)]= s = 0. (3.90)
Taking the partial derivative of the equation (3.19) with respect to s, we have
il
— L — = 9s. 3.91
S(r(&) + &9 42557 = 26 (3.91)
Solving (3.90) and (3.91) simultaneously gives
Yy LN L) — ot )
%:_S[CT(C)A ()] (3.92)

Js GE

and
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95 _ s[1+7(@)]

3.93
5 Y (3.93)

where E is as defined in equation (3.24).

Now, using Theorem 3.2, as 8 — i, and s — o., then &t — p and & — o, we find
; 0# ['T'(¢) = (L + ()]
Ao = |(x pes=or) T T E
= 201 + 7'(N)' Am (3.94)
and
, dé (14 7())*?

By = 33 |(9-‘—.uc =) = - F (3.93)

where £ is as defined in equation (3.27).

3.6.4 Calculation of A}, and B,

In this section we calculate A}, and Bj;. Taking the partial derivatives of equations {3.83)

and (3.84) with respect to ¥, we obtain

o 1o (3.96)

(m—ca“+2 352 =201 - & (£

ioan] R - Y, 1 F 6 (&) 1 5 O
{ [1+T(c)]—l‘i+[c"r’c)—f[c]]ﬁz—(l—g—ii+cf§]2

Solving the equations (3.96) simultaneously, we find

g 7! [J“ %]2 — [¢'7'(& [l - -3? - a_ }
az? &E
(3.97)
and
25 214+t -2 (£ - EHZE) (B pl)2
9zr 25 E '

{3.98)
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Now, using Theorem 3.2,

Al = ;15 {7 Ao+ ¢Bigl® — [¢'7'(c) — ()1 — Al — (Bio)]} (3.99)

and
By = 5 E ——{7"()e + ([ Alg + ¢ Bio]* + 2[1 + T()][1 — Ajp — (Bio)?]}  (3.100)

or, in terms of ¢/, 7(¢’), 7'(¢') and 77(¢'),

Ay = 5o (1O PP 4 [E7() = (@)1 + () + TN + 7]

+ TN o 4 (@) - rteie + 20 - LT
and
Bl = BETEN oo g (@i + (0] - )L+ 7)) 4 7 + ()]}
L+ 1o s st L4 7()]
- BT 4 (@) - @i+ ey + LA

3.6.5 Calculation of A}, and Bj,:

In this section we calculate Af, and B],. Taking the partial derivatives of equations (3.90)

and (3.91) with respect to s we obtain

[1 + 7 ("-’ ]8(312 £ [ér ( ) — T( !)]8[ = ﬂil[j% + craa]Z (3 101)
—(r(&) + &)+ 2685 =21 — (&7,
Solving the equations (3.101) simultaneously, gives
p 1 i .00 1 s . 95,
= " (&) — {1 - (— 3.102
i - L@ e @) @ - G e

and

o6 1 0_& e (e )0_# 07,
3(3)2—20E{2[1+-r( O = (5,01 = )= Tl e ]} (3.103)
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Using Theorem 3.2 we can find
! 1 et ; .
ADQ = E {’T (C )(‘461 + C‘B‘Sl)z _ [CFT (Cf) . T(Cf)][l _ (BBI)Z]} (3104)
and

Bl = o= {21 4 7L~ (Bo )]+ () + () Ay +By)?}  (3.105)

or, expressed in ¢, 7(c'), 7'(¢') and 7"(¢'),

dy = p AT TR ey e | - BTN

and

A U ) L+ ()P] , () + ()P
By = BTN LR e ),

3.6.6 Calculation of A}, and Bj;:

To calculate A, and Bj, we take the derivatives of equations (3.83) and (3.84) with respect

to s and obtain

Bt 8sor a 1oz Bz il Ds s (3 106)

—o(r(e) + ) E 426 Es = L 22 %

{ 1+ ()2 + [07(#) - ()| 2 = T (% + 2 B)(E + %
bz oz "

solving the equations (3.106) simultaneously, gives

2!\ ~ - A -
d K — 1 {27”(8) |:(9}.£ + A,@] [0,{; L A,aﬂ']

050 2%k 8z " “z)|9s T os
st At oy (98 05 05 -
+ [CT(C)_T(C)][(?.S—I_Q@S@:E]} (3.107)
and
&5 1 [ T (0a 06010k 06
dsdz _2&}_37{ o(r(€)+8)—5 l@£+cf};ﬁ] [3‘§+Cas

+ [1+7(@)] [—A (3.108)
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Using Theorem 3.2, we find

f ]' M } } ! ! J !
A = % E {2"" (¢ )[A:n +c Bm][Am + Bm]
+ [d7() = 7()][Ag + 2B1o Bol} (3.109)
and
f 1 n ! } ! ! ! ! F !
B, = S5 {T (C)[CI‘FT(C )][A01+CBDI][A10+CBIO]
— [1+ (&) [A"m + 2B1,By]} - (3.110)

Rewriting, in terms of ¢, 7(¢'), 7/(¢) and 7"(¢'), we have

1+ ()

A TN farmee 4 (0]
~ [d7(e) = ([ ()1 + () + () + (D}
[¢r(€) = (I ]
20 B2
and
{32
By = TN e 4 ooy

LN+ ) + T + ()]
1+ P(PALT) = 7))

+ 20 F?

To make sure that our calculations are correct, A}, and Bj, were calculated by the alternative

method of differentiating firstly with respect to s.

3.6.7 Calculation of E(ji):

In this section we derive F(ji). Taking the expectation of both sides of equation (3.77) and

letting 2 — pte, 8 = 0, t — p and & — o, we have

B(p) = A+ ApB(X — p) /1 + Ay E(s — 0.) /1! +
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AW B(X = p)2/ 20+ AL E(s — 0.)? /2! +
ALE(X — po)(s — o )/11 4+ -
= p+ {Ay[E(s — o) + A E(X — p)?/2+
A E(s — a2+ ALE(X — po)(s — o)+, (3.111)

since E(X — u.) =0.

3.6.7.1 Calculation of E(s - ¢.)%:

It is well-known ( Kendall & Stuart (1952, p. 233) ) that up to O(n™1)

_ (X)) — i3 X)

;
Var(s) T X) (3.112)
Now the bias in s is in O(n™!) (see the next section). Therefore
CY o a2V
E(s—c) = palX) = 15(X) + O(n7?). (3.113)

dnpa(X)
Substituting po(X) and wa(X) from equations (3.56) and (3.63) into equation (3.113),

we obtain

2 TN 421+ ()]
E(s —oe)” = 4nl1 + 7(¢")]

+0(n7?). (3.114)

3.6.7.2 Calculation of E(s — o.):

We know that
Var(s) = E(s*) — [E(s)]* (3.115)

Substituting Var(s) and E(s?) from equations (3.112) and (3.54) into equation (3.115) we

ohtain
1/2

L@ =3 (X) — pal(X)
Ela) = dnps(X)

(3.116)
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On expanding F(s), we find
pa(X)

1 - -2
BE(s) = /p2(X) + m (—3#2(3) - #z(X)) + O(n™). (3.117)

Since, in this case, o, = {/p2(X), we have

s$—a = ——1 3y #4(X)) n=°
Bl 2 8n\/;TX) (3;; (X)+ p2(X) O

__o{m"e) + 6L+ () i
- 8n[l + 7(¢)]3/2 +0(n™). (3.118)

3.6.7.3 Calculation of E(X — u.)(s —0,) :
From Kendall & Stuart (1952, p. 233), up to O(n™1),

Cov(X,s) = — LX) (3.119)

20/ p12( X))

Therefore, we can find

E(X —p)(s—0) = _pslX) +0(n™?). (3.120)

2ny/ pa(X)

From the results in Chapter 0, section (0.1.23), we have
—a?r"()
271\/r'(0’]
Substituting E(s — ¢,) from (3.118), E(X — y.)? from (3.58), E(s — o.)? from ( 3.114) and

E(X — p.)(s — 0.) from ( 3.121) into equation (3.111), we obtain

E(X = p)(s —00) = + O(n7%). (3.121)

E(f) = p+y {h%ﬂ“(ﬂ*’?ﬂ%{-’f)! + Hun(®

814 (X)
Ao les{ X) =2 X)] Ay ea(X) -2
e~ A (3.122)

— 2 ) _ AP +6(1+7 () A1+ ()]
= A { Ro[1+7(c)]% + 2
A [P+ 2(1+7()?) AL ()

-2
+ 8{1+'r‘(c"}] - zm} + O(n )
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3.6.8 Calculation of E(5):

In this section we derive the theoretical formula for E(5). Take the expectation of both
sides of equation (3.78) and let T — p., s = 6, f — p and 6 — o. Then setting By, = o
and using E(s — o.) from (3.118), E(X — p.)? from (3.58), E(s — 0.)? from (3.114) and
E{(X — u.)(s — o.) from ( 3.121), we obtain

E(5) = o._i_%{_ﬁ’n[m()fiﬁré(x)] + Bﬁop;[x}

85 (%)
Bialia(X)=A(X)_ | Bluse(X) } O(n-2
i a0 T ot ) 7O (3.123)
_ 2 | _ Byl H6(4(@)?) | Bolltr(e)]
= o+ + 7
& 8al+7()]

B[ 4+20+7 () B, -2
+ 2 S[1+7()] bWy vy + O(n=2).

3.6.9 Calculation of Var(ji):
In this section we find the variance of 4. To do this using the formula:
Var(ii) = BE(fi—puc)’ - [E(g — p)*. (3.124)

Taking E(j) from (3.122), E(s — o,) from (3.118), E(X — u.)? from (3.58), F(s — o.)* from
(3.114) and E(X — p.)(s - 0.) from ( 3.121), we find the variance of g, up to O(n™*}.

- Y ¥ P j
Var(i) = %{(A’io)%tz(XH (ol 500) Aw\/fl.zﬁn }+O(n 2)
¥ 7N, fO2 LA A 2 [147( )2 foAL
= _17;{( 10)2[1 +r (C. )] + (A% 4 4([1]+T’([d;]‘ ey Aq\o/‘lloir’((c’]) } (3'125)

+ O(n72).

Using the relationships between A, and Ajq from equation (3.87) and between Aj; and Ap
from equation (3.94) it can be shown that formula for Var(%) in equation {3.125) (Method
B) is identical with that given in equation (3.72) (Method A).
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3.6.10 Calculation of Var(s):
In this section we derive the variance of &, through the formula
Var(6) = FE(6—o0.)—[E(6—c.)] (3.126)

Using E(&) from (3.123), E(s — o.) from (3.118), E(X — g,)? from (3.58), E(s — ¢.)? from
(3.114) and E(X — u.)(s — 0,) from (3.121), we find the variance of & up to O(rn1)

Var(®) = 1{(Bio)m(X) + GallatNadon Bl |y o)

_ y (e (B {21+ (]2 BloBy ()
= ;II{(B]D)Z[I + T"(L")] + B ] - Vo } (3.127)

+ O(n7?).

3.6.11 Calculation of Cov(j,d):

To derive the covariance of ji and &, we apply the formula

Covl(it,) = E{l(i—po) — EGi— w6 —00) = B — o]}, (3.128)

Using E(jt) from (3.122), E(4) from (3.123), E(s—¢,) from (3.118), E(X — 1.)? from (3.58),
E(s — 0.)? from ( 3.114) and E(X — u.)(s — o) from (3.121} , we obtain the following form

for covariance of fi and &, up to O(n™1);

i

Cov(f,5) L{ A4 Bioug(X) + ZnilisC03(X)
+ [0 By A5 Bl ) (X} }+O(n )

2¢/1(X)

! 1A LBt )+ 21+ ()]
s {AoBloll + /()] + APelr iy

(4080 + 40 Bl (¢) | -2
24/147(c) }1—O(n )

(3.129)

To compare the theoretical results of E(a), o(g), E(&) , o(d) and p(f, &) with the
results from a simulation study, we use a computer program (see Appendix Program 21 )
to calculate the expected values for sample sizes n = 5, 10, 20,50, 100 and truncation points

c=-1.88,-1,0,1,3,10.
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Table 3.14: The theoretical results for the expected value and
standard deviation of & and & and p(j, 6?),
for different values of n when ¢ = —1.88,

using Shenton & Bowman’s method, ¢t =0, ¢ =1

n | EG) | o) || EG) | o(®) | o(i0) | E(6?)
) T81.06 {1 11.58 | 5.11 | 2.27 0.71 31.26

10 || 390.53 | 8.19 || 3.06 | 1.61 0.71 11.95

20 || 195.26 | 5.79 | 2.02 | 1.13 0.71 5.35

50 | 78.11 | 3.66 (| 1.41 [ 0.71 0.71 2.49

100 || 39.05 | 2.59 || 1.21 | 0.51 0.71 1.72

Table 3.15: For ¢ = —1

n | B | o) | E@) | o) || oti ) | E(6Y)
5 109.93 | 5.52 || 2.31 | 1.49 0.59 7.56
10 54,96 | 3.91 1.65 | 1.06 0.59 3.58

20 || 27.48 | 2.76 || 1.32 | 0.75 0.59 2.30

50 1099 [ 1.74 || 1.13 | 0.47 0.59 1.50
100 f[ 5.49 {1.23 || 1.06 | 0.33 0.59 1.23
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Table 3.16: The theoretical results for the expected value and
standard deviation of & and ¢ and p(ji, 5?),
for different values of » when ¢ =0,

using Shenton & Bowman methods, u =0, 0 =1

n || EG) | o(i) | EG) | o(5) | oli,0) || E(52)
5 9.35 | 2.10 1.22 | 0.89 0.44 2.28

10 || 4.67 | 1.49 || 1.11 | 0.63 0.44 1.63

20 4| 2.33 | 1.05 || 1.05 | 0.45 0.44 1.31

50 || 0.93 | 0.66 || 1.02 | 0.28 0.44 1.12

100 | 046 | 047 || 1.01 [ 0.20 0.44 1.06

Table 3.17: For c =1

n || B(@) | o(f) || E(S) | o(8) || pli,6) | B(5?)
5 || 074 1081 | 096 | 0.55 || 0.35 | 1.22
10 || 0.37 | 0.57 || 0.98 [ 039 [ 035 [ 1.11
20 | 0.19 | 0.40 | 0.99 | 0.27 || 035 || 1.05
50 [10.074 | 0.26 || 0.99 | 017 || 0.35 || 1.00

100 || 0.037 | 0.18 [} 0.99 | 0.12 0.35 0.99

Comparing Tables 3.14- 3.16 with 3.2-3.4 shows that their disparities are high for small

values of n and ¢. It is possibly due to slow convergence of underlying Taylor expansions.
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Table 3.18: The theoretical results for the expected value and

standard deviation of s and & and p(j,5?),

for different values of n when ¢ = 3,

using Shenton & Bowman methods, ¢ =0, 6 = 1

n | E(@) |olp) || E(&)| o(d) || (i, 6) || E(&°)

5 0.016 | 0.45 || 0.87 | 0.32 | 0.032 0.86

10 [ 0.0080 | 0.32 || 0.93 | 0.23 [ 0.032 0.92

20 0.0040 | 0.23 || 0.97 | 0.16 0.032 0.97

50 || 0.0016 | 0.14 || 0.99 | 0.10 || 0.032 0.99

100 || 0.00080 | 0.10 || 0.99 | 0.073 || 0.032 99

Table 3.19: For ¢ =10

n E(p) o(f) | B(5) | 2(5) pli &) || E(6%)
5 0.38 x 107 | 0.45 [ 0.85 | 0.32 |[ 0.54 x 10~2° 0.82
10 |[0.19 x107° | 0.32 | 0.92 | 0.22 |[ 0.54 x 10720 0.89
20 || 0.94 x 1072 | 0.22 || 0.96 | 0.16 [ 0.54 x 1072 || 0.95
50 | 0.38 x 1072° | 0.14 || 0.98 | 0.10 [ 0.54 x 10720 || 0.97
100 || 0.19 x 10=2° | 0.10 | 0.99 | 0.071 || 0.54 x 10~%° 0.98
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3.6.12 Conclusion:

In comparison of Tables 3.14-3.19 related to the results of expansion method B with the
Tables 3.8-3.13 in method A we can say that the E(z) in method A is less than E(ji) in
method B. Moreover the comparing of the E(5?) with its counterpart we can say that E(5?)
in method B 1s less than method A.

In comparison Tables 3.2-3.7 with Tables 3.8-3.13 {Method A) and Tables 3.14-3.19
(Method B) we can see that for ¢ < 3 the E(f) in simulation has a significant difference with
its counterpart in methods A and B. But by increasing the truncation points ¢ and sample
size n, the values of E(t), o(fi) and E(6?) are approximately the same for the simulation
method and methods A and B.

This can be explained as follows.

{a) The /i, 5% and & expansion were performed only up to second term.

(b) The values of E{ji), Var(i), E(6%), Var(6?), E(&), Var(é), Cov(g,5) and Cov({ji,&?)
are calculated up to O(n~'}. But, by increasing the truncation points ¢ and sample size n
these differences disappear.

In equations (3.122} and (3.123}, giving the expected values of i and & respectively, we
see that the denominators of the coefficients A’ and B’ terms, are all functions of the term
E defined in section (3.5.2). Consequently, £ should have an important bearing on the

biasedness, the theoretical results for ft and & that we have derived.
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The one parameter case of maximum
product spacing estimator for the

truncated normal distribution:

4.1 Introduction:

The method of maximum likelihood estimation offers estimators which are sufficient , con-
sistent and efficient, rendering it one of the best methods of parameter estimation. Cheng
& Amin (1982) suggested the maximum product spacing (MPS) method for some distribu-
tions, such as the uniform, lognormal etc. They pointed out that the main properties of

MPS estimation are:

1. “MPS estimation gives consistent estimation under more general conditions than
ML estimation. In particular 1t gives consistent estimators when the underlying
distribution is J-shaped (parameter is shifted origin to the right in lognormal,

Weibull and gamma distribution), a situation were ML estimation is hound to

141
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fail.

2. MPS estimators are asymptotically normal and asymptotically are as efficient as
ML estimators. In some situations ML estimates are known to exist that are
“hyper-efficient” (in the sense of having variance less than the usual order n™)
e.g. the maximum likelihood estimator of # in the uniform distribution over {0, 8).
MPS estimators are then also hyper-efficient. In J-shaped distributions, where ML

estimation breaks down, MPS estimation still gives efficient estimators.”

They suggested that the MPS method can be applied to any continuous univariate distribu-
tion with density function f(z,8) and cumulative distribution function ¥ (x,#) (It is assumed
that f(x,8) is strictly positive in the interval (a;,a2)). They showed that, if € is the true
parameter value and y; < y2 < ... < ¥, is an ordered sample of size n drawn from the
density function f(x,8), by using the transformation z; = F(y;,#). 7 =0,1,...,n+ 1, where

Yo = ¢ and y,41 = ap, and maximizing the geometric mean of the spacings

G = (I} D} (4.1)
ot its equivalent
H={(n+1)"In(®), (4.2)
where
Di =z — 74 =/:‘ Fu.8)dy;  i=1,2,.. . n+1, (4.3)

the MPS estimator can be found. Thus the formal definition of MPS is

Definition 4.1 The estimator, §, which mazimizes the geometric mean G or its equivalent

H =1n(G), is called the MPS estimator of 8.
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Two years later Ranneby (1984) showed that if the distribution function F(z, #) is not too
“heavy-tailed”, and MPS estimator is 4§, \/n(§—8) convergences to a normal distribution with
mean zero and a variance which is given by the lower bound in the Cramer-Rao inequality.
They showed that, in some situations, the MPS method gives consistent estimates but the
ML method does not. Also by the simulation, they demonstrated that the MPS estimate
converges faster than ML estimate. To find the rules for choosing between the MPS estimate
and the ML estimate when they are asymptotically equivalent, one needs to know more about

the small sample properties which are discussed in Ranneby (1984).

4.2 Estimation of © when ¢ is known:

In this section, we estimate i by the MPS method , for the truncated normal distribution
when o is known. We then compare ji with /i found in section (2.2).

From Chapter 2, equation (2.1) we know that

¢(2)

fle,p) = SO(E) (4.4)

Putting f(x,g) from equation (4.4) into equation (4.3) we have, for yo, 41, .-+, ¥n1

i
Dy = zi—z, = Ffly, p)dy; t=1,2,...,n+1
Yi—1
- o) wes G
T o) O(E) __/oo ET
O(Ust) — P L=tz

= B(==) 2

where yo, ¥1, . - . » Yny1 are the order statistics of sample zg, @1, ..., Zny1, and D{y0), (1), ..., Plyns1)

are their corresponding cumulative distribution functions.

Therefore

C— [

In(D;) = In[®(¥ - Ve Ry_ @(y‘"lo“”)]—lncp( ). (4.6)
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Hence, from (4.1) and (4.2),

=In{G) = (n+1)"{In(II D:)}
nt+1

= (n+41)" {Zln(D)}

n+l

n+n{§)n o%-@&ﬂ;”m_me;ﬁ. (4.7)

Taking the derivative of H with respect to p, we obtain

ol - W) - g ) PR
5;_ C-" {Z[ E;&)_@('U&—;‘p]]}+g@(c_;r&)- (4.8)

The algebraic solution of equation (4.8) is impossible, so it has to be found numerically. For

this we use the NAG routine CO5AGF in our program (see Appendix Program 22),

Theorem 4.1 The MPS estimator (i) is asymptotically a sufficient, consistent and efficient

estimator of p.
Proof: Consider

(D) = ll[ fly.udyl  i=1,2...n41,

= In[f{yi, £) (g — yia )] + Blyis yia , 1)
= In fly, p) + In(yi — yis ) + Ry, viaa , ) (4.9)

where
o[ (EH-) — ‘I’(&'—;l)]}
(v: — yi @(2=2)] ]

Therefore, substituting In(D;) into H we obtain

Ry ttia, i) = 1n{

H=In(G) (n+ 1) H{In(II4 D)}

n+1

= (n4+ 17! {; in(D;)}

n+1

= (n+ D7D Mo fly,n) +1n(y — v ) + Ry yin, 0)]}. (4.10)

=1
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Since, R(y;, yi—1 , 1) i1s dependent on g, using the proof of Cheng & Amin {1982), MPS and ML
estimation are asymptotically equal and have the same asymptotic sufficiency, consistency

and efficiency properties.

It can be shown that for n = 1 and n = 2 the MPS estimator j approaches the sample

mean & as ¢ — o<,

Theorem 4.2 Let X1, Xs,... X, be identically and independently distributed random vari-
ables with p.d.f. f(z, ), and let the transformation ¢ be one-to-one. Then a MPS estimate

1s tnvariant under one-to-one transformation ¢.

Proof: Suppose fi is a MPS estimate of x, we now prove that ¢(f) is a MPS estimate

of ¢(p).
Let us set u* = ¢(x), hence pp = ¢~ (¢*). Then

H(p) = H{¢™ ("))
Let H{p) = H(¢ (p*)) = H*(p*). It follows that
max[H ()] = max[H"(u")}. (4.11)

If we assume that a MPS estimate exists, then the ferm on the left-hand side of equation
(4.11) attains its maximum at . It follows then that the right-hand side attains its maximum

at p*, where u* = ¢(jt). Therefore ¢(j) is a MPS estimate of ¢{u).

4.2.1 The MPS estimator of mean in data sets 1 and 2:

1. Consider the data set 1 and let ¢ = 1 and ¢ = 107°, where ¢ is the maximum of
the absolute value of the difference hetween the iterated value and the solution of the

equation. Then we find that the MPS estimate of p is

i = —0.4248,
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Let HP = % On plotting H and HP against a certain range of values p in [-2, 2],
we get Figures 4.1 and 4.2 (see Appendix Program 23). We are plotting H P against ¢

to see that HP = 0 when H is maximum.

1o

Using the data set 2 and letting ¢ = 1 and ¢ = 107°, we find that the MPS estimate
of g 1s

= —0.2032.

When we compare the MPS estimator with the ML estimator, we can see that for the
two data sets of Chapter 1, the difference between the MPS estimate and the exact

value {¢# = 0) is bigger than corresponding difference for the ML estimate.

4.2.2 The MPS estimator of the mean in ideal samples:

In this section we prove that the MPS estimators of i for the ideal samples are zero and also

plot H and HP against different values of 4.
Theorem 4.3 In ideal samples, for every truncation point ¢ the MPS estimator fi is zero.

Proof: From Chapter 1 we know that, for y; a variable of ideal sample,

Fly;) = ((;E&)) nilﬁ

and hence

p(Eh) = a2 (4.12)
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Figure 4.1: /{ versus pu for data set 1 (boys) (¢ =1)
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Figure 4.2: HP versus p for data set 1 (boys) (¢ =1}
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Now, with the application of the formula (4.12), consider

S may - e BT
) ;(;)W a”)“¢(@;ﬁ)+“'+¢(%—;‘—”)—¢(%’";—”>1
e e )
%ﬁi@‘ (4.13)
Using (4.13), it follows that
oH Wop(at) g (R

—a‘; =i = n+1J{Z <1>(9—"*— (e 1_“)]}—I— ( )

Consequently, & = 0 maximizes H, and the theorem is proved.
Yor the ideal sample of size 5 the plot of H and H P against a certain range of values u

[-2, 2] are shown in Figures 4.3 and 4.4,

4.3 Simulation study to estimate the mean when the

variance 1s known:

In order to compare the expected value, standard deviation and variance of the MPS esti-

mator with those of the ML estimator we embark upon a simulation study.

4.3.1 The simulation study:

The Program 24, given in the Appendix, has been written to calculate F(j), Var(j) and
o(p}, for the number of iterations & = 10000 and different sample sizes n = 5, 10, 20, 50 and
100. In this program we use the NAG routine GO5DDF(0,1) to generate random deviates

from the normal distribution with mean zere and variance one and also use the Program 22
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i

Figure 4.3: H versus g for the ideal sample of size 5 (¢ = —1.88, ¢ = 1)
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as a subroutine to solve the equation (4.8). The results are given, for values of ¢ = —1.88,

—1,0, 1,3 and 10, in Tables 4.1.

Table 4.1: The simulation results for the
MPS estimate of g, for different values of

n and ¢ when ¢ =0,0=1

n ¢=—1.88 c=~1
E(i) | o(@) | Var(g) | E(g) | o(f) | Var(f)
5 | 0051 | 1.57 | 2.46 | 0.037 | 1.13 | 1.28

10 [ -0.051 | 0.96 0.92 | -0.046 | 0.73 0.53

20 | -0.061 | 0.66 0.44 | -0.041 | 0.50 0.25

50 | -0.043 | 0.40 0.16 | -0.031( 0.32 0.10

100 | -0.036 | 0.28 | 0.078 | -0.021 3 0.22 [ 0.048

Table 4.1: Continued

! T ce=10 c=1
E(f) |o(@) | Var(iy | E(s) | o(i)) | Var(i)

5 | -0.0021 | 0.80 0.64 | -0.0083 | 0.59 0.35

10 | -0.040 | 0.54 0.29  -0.0023 | 0.40 0.16

20 | -0.034 | 0.37 G.14 -0.018 | 0.28 | 0.078

| 50 | -0.018 | 0.23 | 0.053 [ -0.00958 | 0.18 | 0.032

‘ 100} -0.016 | 0.16 | 0,025 | -0.0067 | 0.13 [ 0.016
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Table 4.1: Continued

n c=3 c= 10
E(@) | oG | Var(@) | E(@) | o) | Var(p)
5 0.0066 | 0.45 0.20 -0.0047 | 0.44 0.18

10 | -0.0049 | 0.32 0.10 -0.0017 | 0.31 | 0.097

20 | -0.0038 | 0.22 | 0.050 [ -0.0027 | 0.22 | 0.049

50 | -0.0020 | 0.14 | 0.020 | -0.0011 } 0.14 | 0.020

100 § -0.0020 | 0.10 | 0.010 | -0.0003G | 0.10 | 0.010

The results in the extended Table 4.1 show that, for each truncation point, the value of
Var(ji) decreases as n Increases, as is to be expected. Moreover, it can be seen that, as the
truncation point ¢ increases, so Var(ji) decreases. But the comparison of E(z) and o(f) from
Table 4.1 with the corresponding values of F() and o(ji) from Table 2.3 shows that E(j) is
closer to the exact value of u(= 0) than F(j), for example for n =5 and ¢ = —1.88 we have
E(i = 0.051). Also, we can see that for almost every truncation point, o(jt) is less than
o(ft), for example for n = 5 and ¢ = —1.88 we have ¢(ji) = 1.57 whereas for o{g) = 1.589.

Therefore we conclude that the MPS estimator is better than the ML estimator.

4.3.2 Simulation study using the rejection method:

In practical situations we are sometimes dealing with the extreme left tail of the standard
normal. For example, if we need n = 9 random deviates from the truncated normal, with
truncation point ¢ = —1.88, since this point represent the 3" centile, we have to generate
about 300 random deviates from the normal distribution, the method of generating random
number which we have used so far, is then time consuming. Can we find a more efficient

method? In this section, we investigate the rejection method more efficient than generating
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from the normal distribution. We find E(ji), Var(z) and o(ji), for the rejected method and
demonstrate the relative speeds of the two methods. Morgan (1984) expressed “If it were
possible to choose k{x) to be of a roughly similar shape to f(x) and then to envelop f(z) by
h(z), we would obtain the desired scatter of points under f(z) by first obtaining a scatter
of points under A{z) but not under f(z).” By using Morgan (1984) and Gallagher (1993),
we try to find an envelope function g(x) for the density f{«x, u).

From Chapter 2, equation (2.1) we know that

o)
o) TEETES (4'14)

o4

Flz,p) =

By setting g = 0, ¢ = 1 and knowing the shape of the density, we guess that the envelope

function can be of the form
glz) = de™ i—oo <x < {4.15)

where d and a are constants, to be determined.

Let the envelope satisty the following equations

{ i) = ofc) 10
f'le) =g'(c).
Then
4= —c (4.17)
and
d=—SI__ (4.18)
V27 ®(c)
Having found e and d, we can write
e%_“
glz) = Vst (4.19)

We now prove the foliowing Theorem.
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Theorem 4.4 For all value of ¢ <0, every value of x, —oco <o £ ¢ <0, we have

gz} = flz). (4.20)
Proof:  From (4.14) and (4.19) with g = 0, 6 = 1, we have

% _ St frmr (4.21)

™ 1

Now 72 + 127 — cz can be written as 3(z — ¢)?, which is positive for all  and all ¢. Therefore

we have

which proves the theorem.
Now we define h(2) = kg(z) such that h(x) is a density function over —oc <z < ¢ < 0.

To find the normalising constant &, we require

f h(z)de = 1. (4.23)

—0

Hence we find & = —ce¥ V27 ®(c) which, on substitution into the equation h(z) = kg(x),

gives

hiz) = —ce® ¥ o<z << (4.24)

4.3.3 Simulating data from A(x):

Now we have to simulate data from the density function h(z). To do this we first have
to generate a random variable R; from the uniform (0,1) distribution. The cumulative

distribution function H{x) can be written as

H{z) = P(X <x)

= (4.25)
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which satisfies 0 < H(x} < L. Therefore, by inversion of the equation
Ry = e (4.26)
we can find
1
T=e— - In(Ry). (4.27)

To select the random deviate z from f(z), we generate another random variable Ry from
the uniform distribution and then accept z if Ry < g%l.

This process continues up to the required sample size. Using the above method we
calculate E{j), o(f) and Var(ji) for £ = 10000 iterations and truncation points ¢ = —1.88
and ¢ = —1 and sample sizes n = 5, 10, 20, 50 and 100 (see Appendix Program 24). If we

now combine the above results with those of Table 4.1 for ¢ = —1.88 and ¢ = —1, we ohtain

Table 4.2 for R = 20000.

Table 4.2: The simulation results for the MPS estimator of
i, for different values of n and ¢

when p =0, ¢ =1

] c=—1.88 c=—1
E(p) | o(p) | Var(

-~
=
=
2
T
o —
-
=¥}
=
T
o

¢

5 | 0.065 | 1.56 2.44 0.033 | 1.14 1.30

10 [-0.055 [ 0.96 [ 092 |-0.041 [ 0.74 | 0.55

20 | -0.057 | 0.65 | 0.43 |[-0.045 | 0.50 0.25

50 |-0.043 | 0.40 0.16 1-0.033 | 0.32 0.10

100 | -0.035 [ 0.28 | 0.081 |-0.021 | 0.22 | 0.048
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4.3.3.1 The comparison of the speeds of the two methods:

Generating B = 10000 random deviates from the truncated normal with truncation point
¢ = —1.88 and calculating their mean, variance and standard deviation by the first method
takes 58 seconds of CPU time. The rejection method is much faster, taking only 6 seconds.

The calculations were performed using Fortran Programs 25 and 26 given in the Appendix.

4.4 Relationship between E(ji), sample size and trun-
cation point:

In this section we investigate the relationship of E(z) with the sample size n» and truncation
peint c.

Our approach is to fit a regression model, of E(ji) on n and .
We have to find EU}] for different values of ¢ and n. The values have been obtained and

are shown in Table 4.3. Also in Figure 4.5 we plot the F({) against ¢ for different values of

1.
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Table 4.3: The simulated expected value of j, found from
R = 100000 simulation runs, for different values

of n and ¢ when pu=0,0=1

e E(f)
n =10 n=15|‘n=20|n=‘25 n =30
-2 -0.057 -0.072 -0.06% -0.0687 -0.082
-1.75 -0.053 -0.065 -0.0¢68 -0.061 -0.059
-1.5 ({54 -0.061 -0.058 -0.0565% -0.051
-1.25 -0, 0540 -0.056 -0.054 -0,052 -0.045
-1 -0.045 -0.054 -0.052 -.049 -0.044
-0.75 ~0.045 -0.048 -0.045 -0.042 -0.041
-0.5 -0.043 -0.043 -0.041 -0.038 -0035
-0.25% -0.026 -0.040 -0.035 -0.035 -0.033
o -0.023 -0.035 -0.034 0,030 -0.023
0.25 -0.033 -0.030 -0.028 -0028 -0.026
0.5 -0.029 -0.027 -0.02% -0.024 S0.021
LI -0.023 -0.025 -0.024 -0.021 0T
1 L0022 -G.021 -0.018& 0T -0017
125 L0019 0,019 -(.016 -0.018 -0.013
1.5 -0.016 -0h017 -01d -0.013 -0,011
1.75 -0.012 -0.011 -0.081 -0.011 -0.011
2 -0.010 -0.003 =601 -0.004 -0.007
2.25 -0.008 -0 007 -0.008 ~0.007 -0.006
2.5 -0.007 -0.004 -6.005 -0.605 -0.00%
278 -0,005 -0.003 -0.003 -0.002 -0,003
3 003 -0.001 -0.003 -0.003 -0.002

The following plot shows that, for sample sizes n = 10,15,20,25 and 30, as the truncation

point ¢ increases then E(ji) — p(= 0). In Table 4.3, since the differences of E(j) from zero

are significant and s is consistent then an appropriate model for F{f) can be written as
‘ 1 | s
E(p) = p+ —gile) + —gale) + O(n™). (4.28)

Our approach is to choose two values of n and obtain two different equations. Then, by the
simultaneous solution of the two sets of equations, we find the corresponding gT[Tc) and g;(-é)
(see Appendix Program 27). By choosing two values of n it is possible to solve (4.28) with

the simulated mean of j for £{jt). The values of n = 10 and n = 20 were chosen since as not
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Figure 4.5: The plot of E(ji) against ¢ for different n
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to give so small a value that cause E(ji) become large nor too large a value that it become

so small. Therefore g;(c) and gz(c) which calculated for n = 10 and n = 20, are shown in

Table 4.4.
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Table 4.4: The estimated g:(T:) and g;(::) for

different values of ¢ which » = 10 and n = 20

c n=10,n =20 ¢ n=10,n = 20 ¢ n=10,n =20

—— —— —

gi(e) | alo) g1(c) | g:(e) gile) | 9o

-2.00 | -2.19 7 16.20 -0.25 | -1.04 6.30 1.50 | -0.40 2.40

-1.75 | -2.11 15.80 0.00 | -1.03 7.0 1.75 | -0.32 2.00

-1.50 | -1.78 | 12,40 0.25 [ -0.79 4.60 2.00 | -0.30 2.00

-1.25 | -1.66 § 11.60 0.50 | -0.71 4.20 2.25 ] -0.15 0.60

-1.00 | -1.63 | 11.80 0.75 | -0.73 5.00 2.50 | -0.13 0.60

-0.75 | -1.35 9.00 1.00 | -0.50 2.80 2.75 | -0.07 0.20

-0.50 | -1.21 7.80 1.25 | -0.45 2.60 3.00 | -0.09 0.60

— ———

The plots of ¢;1(c) and g2(c) against ¢ are shown in Figures 4.6 and Figure 4.7.

By looking at Figure 4.6 we can see that all the values of g?(dc:) are negative and gﬁ?) - 0
as ¢ mcreases. But in Figure 4.7 all the values of g;(_ca:) are peositive and g;((;,) — 0 as ¢
increases. Therefore we choose models g;(¢) = —a;e™° and g2(c) = aze™®°. Note that
these functions have the multiplicative error terms. Now, we are interested to find the
functions ¢;(c} and gz(¢) in terms of c.

Applying the logarithm transformation and linear regression model by the help of Minitab

software the following models are obtained:
g1{e) = —0.832¢7065%¢

where the corresponding t—ratios of the coefficients —0.832 and —0.658 are -2.90 and
—16.47. Similarly,
ga(c) = 5.3122¢7 0755
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Figure 4.6: The plot of g:(_E:) against ¢
Figure 4.7: The plot of g;(é) against ¢
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where the corresponding t—ratios of the coefficients 5.3122 and —0.755 are 17.44 and —12.60.
Substituting the estimated g,(¢) and g2(c) functions into equation (4.28) we obtain

N -—0.8326_0'65SC 5.31226'_0‘7550 .
E(jii) = p+ - -+ = +O0(n™%).

r—

To compare E(ji) calculated from the model together with the E(ji) calculated from the

simulation, we plot them in Figure 4.8.
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Figure 4.8: The plot of E(j) and the model E(ji) against c
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4.5 Relationship between Var(s) and sample size and
truncation point:

In this section we investigate the relationship of Var(g) with sample size n and truncation
point ¢,

To find the appropriate regression model, we have to find Var(jz) for different values of ¢

and n. The values have been obtained and are shown in Table 4.5 and Figure 4.9.

Table 4.5: The variance of j, by simulation
for different values of » and ¢ when p =0, 0 =1

and simulation run R = 100000

¢ Var(g)
ﬂ=10rn=15[n=201n=25 n =30
-2 0,985 0.815 0.450 0351 0.293
-1.75 0.862 0.535 .281 0,308 3,258
-1.50 0.746 0463 0.338 0265 0,224
-1.25 0.523 0.403 0,294 0.223 0,181
-1.00 0.546 0.343 0.253 0.19% 0.185

-0.75 0.462 0.298 0217 0.172 0.143
0,50 G.397 0.252 0.187 0.148 0.133

-0.25 0334 0.21% 0.i61 0.126 0.105
0.00 0.284 0.185 0.138 0.103 0.090
0.25 0,239 0.158 0117 0093 3.078
G50 0.207 0,137 0101 0.081 0.068
0.75 0.179 0.117 0.039 0.070 0059
1.00 157 0.104 a.o7e 0.082 0.052
1.25 0.141 0.093 0.070 0.055 0.046
1.50 0,327 0.084 0.063 0.051 0.042
1.75 0.117 0.078 056 046 0.038

2.00 0.110 0.072 0085 D044 0.037
2.25 0.105 0.070 0.053 0.042 0.035

250 0.103 0068 0.051 0,041 0034
275 0.102 0.067 0.050 0,044 0.033
3.00 0.101 0.067 0.050 0.040 0.033

Since fi is consistent then Var(fi) can be written as

Var(i) = ~a1(e) + ~502(6) + 500(c) + O(n ™). (1.29)
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Figure 4.9: The plot of Vé;‘-(;l) against ¢ for different n
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Since we know that & and & are asymptotically equivalent Cheng & Amin (1982), it follows

that Var(jt}) = Var(ji) to O(n~'). Hence g1(c} = W and equation (4.29) can be written
as
Var(ji) = ! o + ! (e} + ! () +O(n™?) (4.30)
e (Yo 292 393 ‘ :

As in section 4.4 by choosing two values of n it is possible to solve equation (4.30) with
the simulated variance \fa}(;}) the Var(jt). Similar to section 4.4 the values of n = 10 and
n = 20 were chosen.

The calculated g;(-éj and gg(::) are shown in Table 4.6 (see Appendix Program 28).
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Table 4.6: The estimated g5(c) and gs(c) for

different values of ¢ when n =10 and » = 20

¢ n=10,n=20 ¢ n=10,n =20 ¢ n=10n=20

ga(c) ga(c) g2(c) ga(e) ga(c) g3lc)
-2.00 | -0.92 1 119.06 §| -0.25 | -0.29 | 17.41 1.50 | -0.46 2.71

-1.75 [ -3.32 | 128.88 || 0.00 | -1.55 | 24.42 1.75 | -0.64 4.50

-1.50 | -4.40 | 121.73 || 0.25 | -1.22 | 14.98 2.00 | -0.51 3.14

-1.25 | -1.89 | TL.57 0.50 | -1.09 | 12.53 2.25 | -0.46 2.64

-1.00 | -2.41 | 63.74 0.75 | -0.37 3.15 2.50 | -0.20 0.55

-0.75 | -2.57 | 55.53 1.00 | -0.90 2.18 2.75 | -0.30 1.42

-0.50 | -1.30 | 38.31 1.25 | -0.72 6.47 3.00 [ 0.06 -0.70

The plots of g;i-é) and ¢3(c) against ¢ are shown in Figures 4.10 and Figure 4.11.

By looking at Figure 4.10, we can see that all the values of g:[::) excepl for ¢ = 3 are

negative and as ¢ increases ga(¢) — 0. But in Figure 4.11 all the values of g3(¢} except ¢ =3
are positive and as ¢ increases g;f;:) — 0.

To obtain smoother curves of g;(T:) and g;(é) against ¢ we use three-point moving averages,
which whose plots are shown in Figures 4.12 and 4.13. The former is not very smooth but
smooth enough to suggest a formula of the form ¢y(¢) = —aze™°. Similarly we take
galc) = age e,

Now, we are interested in finding the functions ¢2(¢) and gs(¢) in terms of ¢.

Applying the logarithm transformation and linear regression model by the help of Minitab

software the following models are obtained:

galc) = —1.18¢ 70830
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Figure 4.10: The plot of ¢.(c) against ¢
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Figure 4.12: The three-point smooth plot of ¢;(c) against ¢
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Figure 4.13: The three-point smooth plot of g;(_é) against ¢
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where the corresponding {—ratios of the parameter estimators —1.18 and —0.530 are 1.99
and —6.42,
and

gs(c) = 19.5¢7197¢

where the corresponding f—ratios of coefficients 19.5 and —1.07 are 31.17 and —16.66.
From these equations, we can estimate gs(c) and gs(c) for any values of c.
Substituting the estimated ¢,(¢) and ¢3(c) in equation (4.30) we obtain
Var(jt) = % [1—;—?’52—0’]5] + niz [—0.968—0.52%] + % [12.96—1-0&] +0n™).
We can easily evaluate Var(j) for different values of n and ¢. To compare Var{jt) calculated
from the model together with the Vé.?(}l) calculated from the simulation, we plot them in
Figure 4.14.

Figures 4.8 and 4.14 shows that these models are reliable and we can easily find E(ji)

and Var(i) for various values of n and .

4.6 Distribution of i when the variance is known:

We investigate the distribution of & when the truncation point is ¢ = —1.88. This truncation
point is chosen because it is seen that in many investigations involving children’s growth
the third percentile of the distribution i1s important. Also this point is the worst case of
truncation points. Using the Program 7, for various values of n = 5,10,20,50 and 100, we
have constructed R = 10000 observations of fi. By use of the S-PLUS software, we have
plotted the histogram, density plot, ggnorm and qgline of &. If the sample comes from a

normal distribution, with sample size K, the sample estimate of the coefficient of skewness

G1(ft) is given by
ms(f)

a(it)= ali) :—-—-—mz(ﬁ)
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Figure 4.14: The plot of Vzi}f,&) and the model Var(ji) against ¢
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1s asymptotically

2)

7

The assumption of normality of ¢;(ji) is accurate for R > 150. (Snedecor & Cochran {1967),

gl(?&) ~ N(Oa

p. 68) Also we know that, in very large samples from the normal distribution, the measure

of kurtosis ¢g(ji) defined as
m4(

)

=N

92(:&) =

m3(

=
R

has asymptotically a normal distribution such that

24

92(.&) ~ N(U:' E)a

where m,{ji), ms(@) and my(jk) are the second, third and fourth moments of f.

4.6.1 Description of data when n = 5:

The histogram, density, qqnorm and qqline of ji are shown in Figure 4.15.

Figure 4.15: The distribution of &, when variance is known and n=5

\

From this we can see that the distribution is not close to the normal.
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In this set of data, the calculated value g;(ft) = 2.16258 is over 88 times its standard
deviation (s.d = 0.02449) from zero, and the positive skewness is confirmed. The second,
third and fourth moments of i are my(ji) = 2.4059, ma(4) = 8.0704, my(i) = 75.6026 and
the measure for kurtosis ¢2(jt) = 10.0614.

Since ¢2(fi) = 10.0614 is over 205 times its standard deviation (s.d = 0.04898), the large

kurtosis of this distribution ts confirmed.
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4.6.2 Description of data when n = 20:

As we Increase the number of observations to n = 20, we can draw the various plots of

f in Figure 4.16
Figure 4.16: The distribution of ji, when variance is known and n=20
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In this case ma(fi) = 0.419485, ma(fi) = 1.20869, my(jt) = 0.7281, the measure of skewness
qi1(ft) = 0.7681 (s.d = 0.02449) and the measure for kurtosis gz(f) = 1.1375 (s.d = 0.04898).

Therefore the skewness and large kurtosis are again confirmed.
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4.6.3 Description of data when n = 100:
Finally, for n = 100 observations, the various plots of ji are shown in Figure 4.17.

Figure 4.17: The distribution of ji, when variance is known and n=100
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In this case m,(jt) = 0.07927, ma(a) = 0.006680, my(f) = 0.2993, the measure of skewness
q(jt) = 1.4347 (s.d = 0.02449)} and the measure for kurtosis g;(jz) = 0.20864 (s.d = 0.04898);
therefore the skewness and kurtosis are confirmed.

These Figures show that even in case n = 100, although the shapes are very close to the

normal distribution, but its measure of skewness and kurtosis are still significantly high.

4.7 The comparison of the different estimators of u:

In this section we compare the estimators of g based on the ML and MPS methods with
the exact value of u. Since MSE is a good criteria for the comparison of two estimator we

used them in Tables 4.7-4.10. By using the results of the simulation study of the maximum
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likelihood estimator, the theoretical results of Chapter 2 and the results of the simulation

study of the maximum spacing methods, described in this chapter, we have produced Tables

4.7-4.10.

Table 4.7: The comparison of the ML and MPS estimators of

for ¢ = —1.88 and different values of n
i f J f f fi fh i
n | Sim.mean | Sim.var | MSE || Theory mean | Theory var. || Sim.mean | Sim.var | MSE
5 0.53 2.52 2.81 0.53 2.59 8.053 2.46 2,47
10 0.23 1.13 1.18 0.24 1.06 -0.051 0.96 0.96
20 .10 0.47 0.48 0.11 0.47 -0.061 0.44 0.44
50 0.040 0.17 0.18 0.044 0.17 -0.043 0.16 0.16
100 0.025 0.034 | 0.085 0.020 0.084 -0.036 0.078 [ 0.081
Table 4.8: The comparison of the ML and MPS estimators of ;
for ¢ = —1 and different values of n
f fi f i i i f f
n | Sim.mean | Sim.var | MSE || Theory mean | Theory var. || Sim.mean | Sim.var | MSE
5 0.38 1.83 1.98 0.35 1.47 0.014 1.28 1.29
10 0.16 0.65 0.68 0.16 0.63 -0.046 0.53 0.53
20 0.084 0.29 (0.29 0.077 0.26 -0.041 (.25 0.26
50 0.024 0.11 0.11 0.030 .10 -0.031 0.10 0.10
100 0.015 0.052 1§ 0.052 0.015 0.050 -0.021 0.043 | 0.043
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Table 4.9: The comparison of the ML and MPS estimators of y

for ¢ = 0 and different values of n

f i I fi i it f #
n | Sim.mean | Sim.var | MSE || Theory mean | Theory var. || Sim.mean | Sim.var | M5E
5 0.20 0.83 0.87 0.19 0.73 -0.0021 0.64 0.64
10 0.089 0.33 0.34 0.089 0.32 -0.040 0.29 0.29
20 0.043 0.15 0.15 0.043 0.15 -00.034 0.14 0.14
50 0.016 0.058 | 0.058 0.017 0.056 -0.0023 0.053 | 0.054
100 0.0087 0.028 | 0.028 0.0083 0.028 -0.016 0.025 | 0.027

Table 4.10: The comparison of the ML and MPS estimators of p

for ¢ = 1 and different values of n

fi i ft Iz f I Iz I
n | Sim.mean | Sim.var | MSE (| Theory mean | Theory var. || Sim.mean | Sim.var | MSE
5 0.076 0.39 0.39 0.084 0.37 -0.083 0.35 0.35
10 0.036 0.17 0.17 0.040 0.17 -0.0023 0.16 0.16
20 0.023 0.084 | 0.084 0.019 0.083 -0.021 0.078 | 0.079
50 0.0054 0.033 | 0.033 0.0075 0.032 -0.0098 0.032 | 0.032
100 0.0046 0.016 | 0.016 0.0037 0.016 -0.0067 0.016 | 0.016

From Tables 4.7 — 4.10 we can see that, as n increases the variances of i and fi, become
identical, and also they are equivalent to the theoretical variance of 1. Moreover, we can see
that the MSE of ji is less than that of i for all sample sizes. Therefore the MPS estimator

1s more efficient than the ML estimator.
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4.8 Estimation of ¢ when u is known:

We now estimate o by the MPS estimator & when p is known and then compare & with 4.

Taking the derivative of H in equation (4.7) with respect to ¢? we obtain

aH ntl Y — (;5 iy iy — qf) Yi1—i -
A {Z( meE) — ;!__l_ﬁ) (%= )]}+( 3)6(_# ) (4.31)

507 " IPmA D) & B(est) - (AL ) (=)
The algebraic solution of 24 = 0 gives &, but it is impossible to solve this equation an-

alytically. Therefore to find the MPS estimator, &, we use the NAG routine C'O05AGF, in

Program 29, to get the solution iteratively.

Theorem 4.5 The MPS estimator () is asymptotically sufficient, consistent and efficient

estimator of o.
Proof: By the definition of integration, In(I);) can be written as

In(L;) = Inf ! fly, o)dy] 0=1,2,...,n+1

Wi=1
In{f(ys, oW yi — yir )| + R(yi, via,0)
= ln f(yi, o) + In(yi — yia ) + Ry, ¥ia , 0). (4.32)

where

R(yi yia o) = ln{a[@(%;—“) — Q=2 ]]} '

(ya = Yi )[95(3%&')]
Since, R{y;,¥i-,c) is dependent on o, using the proof of Cheng & Amin (1982), the

MPS and ML estimators are asymptotically equal and have the same asymptotic sufficiency,

consistency and efficiency properties.
Theorem 4.6 Let X, X,,... X, be identically and independently distributed random vari-
ables with p.d.f. f(z,a), and let the transformation ¢ be one-to-one. Then a MPS estimate

is tnvariant under one-to-one transformation ¢.

Proof: The proof is similar to Theorem 4.2 ( therefore ¢(&) is a MPS estimator of
¢(a)).
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4.8.1 The MPS estimate of o in data sets 1 and 2:
1. Using the data set 1 and letting # = 0 and ¢ = 107%, we find that the MPS estimate
of o is
a=1.1366.

On plotting H and HP against a certain range of o [0.1, 3], we get Figures 4.18 and
4.19 (see Appendix Program 30).

2. Using the data set 2 and letting 4 = 0 and ¢ = 107°, we find that the MPS estimate

of & is

! 4.8.2 The MPS estimate of ¢ in the ideal sample:

In this section we prove that the MPS estimate of ¢, for the ideal sample is one. We also

plot the H and H P against different values of o.
Theorem 4.7 In ideal samples, for every truncation point ¢ the MPS estimator & is one,

Proof: From Chapter 1, section (1.4.2) we know that

' N G B
| Flod = gy = nyn
|r Hence
| .
yi— 1 g C—f
o(F ) = ——0(—"), (4.33)
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Figure 4.18: H versus o for data set 1 (boys) (x = 0)
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Now, applying formula (4.33), consider

rhl (o _ _ iyl nl o gi—p | — i
Z[ n)aﬁq()?—y’:—_j) (ya(;__;:))q&(y‘_] _ (n+1)§[(y' p)e(22) ((_3:) 20 K S )]
= n( -I:,ul) [(yl - )u')(;b ) - (UO -
+ (Forr - mqs(ﬁ"iﬂ;‘ﬁ) ~ (yn mqa(‘“’”—;ﬁn

. on+l _ Ynt1 — fh _oag Yo T H
= —@(%)[(ynﬂ ,u)(f)(——g ) — (yo — )& - )]

(n+1)(c— #)fﬁ(‘“‘%“)_

(<)
Using the above equation, it follows that
oH T (g = p)o(5) — (g — p)d(2=E5) | (e — w)d(<F)
e L =10.
do? lo=s 2(n + 1){Z fb(a“—;’“‘— — O(#=t=) b+ 20(=£)

Consequently, &§ = 1 maximizes H, and the theorem is proved.

4.9 Simulation study to estimate the variance when
the mean is known:

In order to compare the expected value, standard deviation and the variance of the MPS

estimate of ¢ with the ML estimator, we embark upon a simulation study.

4.9.1 The simulation study:

The Program 31 given in Appendix, was written to calculate E'(ofz), Va.r(r;:zj and 0'(0:2) for
the B = 10000 iterations and sample sizes n = 5, 10, 20, 50 and 100. In this program we use

NAG routine GO5DDF(0,1) to generate random deviates from the normal distribution with
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mean zero and variance one, and use the Program 29 as a subroutine to solve the equation

% = 0. The numerical results are tabulated in the Table 4.11.

Table 4,11: The simulation results for the

MPS estimator o2, for different values of n

and ¢, when =0, 6 =1

n e=—1.88 c=-1
E(0?) | a(a?) | Var(a?) | E(c?) | o(c2) | Var(c?)
5] 1.193 | 0.799 0.638 1.205 | 0.797 0.636
10 1.179 | 0.535 0.287 1.117 | 0.472 0.223
20 1.113 | 0.350 0.129 1.147 | 0.364 0.132
50 1.051 | 0.170 0.029 1.042 | 0.180 0.032
100 | 1.028 | 0.116 0.013 1.034 | 0.126 0.016
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Table 4.11: Continued

1 c=0 c=1

B(0?) | o(o?) | Var(e?) | E(o?) | olo?) | Var(s?)

5 1.398 | 0.897 | 0.304 1.677 | 1.135 | 1.2886

10 | 1.248 | 9.554 | 0.306 1406 | 0.710 | 0.504

20 | 1.142 | 0.364 | 0.132 1.233 | 0.449 [ 0.202

50 | 1.073 | 0.216 | 0.047 1.116 ; 0.266 | 0.071

100 | 1.045 | 0.148 | 0.022 1.066 | 0.182 0.033

Table 4.11: Continued

E(a?) | o(o?) | Var(a?) | E(o?) | o(a?) | Var(s?)

5 1.812 | 1.648 | 2.717 1.199 | 0.807 | 0.632

10 | 1.429 | 0.865 | 0.T48 1.184 | 0.538 | 0.290

20 | 1.230 | 0.484 | 0.235 1.137 | 0.357 0.127

50 | 1.103 | 0.243 { 0.059 1.095 | 0.219 0.048

100 | 1.067 | 0.158 } 0.025 1.064 | 0.151 0.023

From the Table 4.11 which extended, we can see that for each truncation point ¢, when the
sample size 1 is increased, all the values of o(02) and Var(¢?) decrease. We can also see that
for all values of ¢, the bias of ¢2 is rather high. To study the bias further, we concentrate
on the values ¢ = —1.88 and ¢ = 3. We find the biases of other functions of &.

Running the Program 31 for these two values of the truncation point, with B = 1000

and with ¢ = 1, ¢ = 2 and ¢ = 3 calculated four functions of (), to see which function has
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the smallest %2—}] The functions are &, o2, 1 and -;12— and the results are tabulated in Tables

4,12 and 4.13.

Table 4.12: The bias of different functions of
the MPS estimator o, for different values of &

when n =5, ¢ = ~1.88 and R = 1000

f(&) o= o=2 a =
Mean | Exact ﬁj}) Mean | Exact j:(z Mean | Exact i;%})—
o 0.964 1 0.964 | 2,191 2 1.095 3.285 3 1.095

?

1.369 1 1.369 | 5.092 4 1.0273 1 11.990 9 1.332'

L]

% 0.9510 1 0.9510 | 0.519 0.5 1.038 | 0.332 | 0.333 | 0.996
%«2 0.989 1 0.989 | 0.279 | 0.25 1.116 | 0.122 | 0.111 § 1.099
Table 4.13: For ¢ =3

g(F) o= o=2 o=3
Mean | Exact ﬁi] Mean | Exact %% Mean | Exact ?{Z))
a 1.235 i 1.235 | 2.557 2 1.278 | 3.693 3 1.231
o2 1.870 1 1.870 | 7.302 4 1.825 | 15,230 9 1.692 '
% 1.034 1 1.034 | 0.463 a.5 4.926 | 0.325 | 0.333 { 0.975
(%2 1.437 1 1.437 | 0.260 | 0.25 | 1.040 | 0.144 | 0.111 | 1.297

Concentrating on Table 4.13 for ¢ = 3, we can see that % of o2 is more than % of its

counterpart, &, whereas % of 1 is less than that of its counterpart, {—32— We also see in the
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fourth, seventh and tenth columns of Table 4.13, that for each value of &, % > 1, except
for the function ;— witho =2, 0 =3.

Since, according to Theorem 4.6, & is invariant and for f(&) = £, we can see J;E—Z)l ~ |

Therefore we suggest that to have a less bias in our estimator, we prefer to estimate %

4.10 Relationship between E(0?) and sample size and
truncation point:

In this section we investigate the relationship of E(c2) with sample size n and truncation
point c.

To find an appropriate regression model, we have to find E'(-;:?) for different values of ¢
and n. Since we are interested to see what happens to E(c?) as ¢ — oo, we calculate E?oi'z)
for values of ¢ up to ¢ = 10 inclusive. The values have been obtained and are shown in Table
4.14. By looking at Figure 4.20 we can see that the bias of o2 reduces with increasing the

sample size n, and decreases as the sample size n increases.
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Table 4.14: The expected value of o2, by simulation
for different values of n and ¢ when p =0, 0 =1

and simulation run R = 100000

e B{o2) ¢ B(s?)
=10 n=15|n=201n=25 no=30 n=10I—n=15|ﬂ=20|n=25 w =30
-2 1.150 1.134 1.118 1.099 1.062 4.25 1.557 1.392 1.309 1.2585 1.221
-1.75 1.112 1.102 1.104 1.069 1.08% 4.50 1.54% 1.283 1.309 1.258 1.222
-1.8 1.094 1.065 1.063 1.075 1.078 4.75 1,552 1.393 1.309 1.256 1.2240
-1.2% 1.108 1.651 1.042 1.045 1.052 E5.00 1.545 1.380 1.309 1.255 1.221
-1 1.170 1.070 1.041 1.022 1.020 5.25 1.543 1,290 1.307 1.25& 1.222
-0.75 1.150 1.098 1.059 1.042 1.032 5.50 1.544 1.388 1.308 1.255 1.220
-0.5 1.185 1.120 1.080 1.057 1.042 575 1.548 1.332 1.308 1.256 1.221
-0.25 1.238 1.143 1.103 1.076 1.052 6.00 1.545 1.388 1.308 1.258 1224
g 1.244 1.181 1,148 1.124 1.108 §.25 1.550 1.391 1.307 1.254 1.222
0.25 1.270 1.201 1.182 1.136 1.11% 5,50 1.551 1.23¢ 1.307 1.258 1.222
0.5 1.301 1.22% 1.182 1.155 1.135 6.75 1.545% 1.259 1.307 1.257 1219
075 1.341 1.25% 1,208 1.175 1.14% ¥.00 1.547 1.292 1.309 1.257 1.222
1 1.387 3,387 1.290 1.233 1.147 T.25 1.547 1,321 1.308 1.257 1.221
1.25 1.455 1.335 1.265 1.225 1.194 7.50 1.553 1.286 1.308 1.257 1.221
1.5 1.51% 1.375 1,206 1.247 1.215 775 1.546 1.387 1.312 1.257 1.222
1.75 1.565% 1.406 1.320 1.269 1.229 £.00 1.543 1.388 1.307 1.256 1.220
2 1.598 1.425 1.324 1.275 1.233 B25 1.547 1.380 1.207 1.256 1.219
2.25 1.61¢ 1.436 1.333 1.279 1.237 &.50 1.543 1.363 1.308 1.25¢ 1.220
2.5 1.616 1.432 1.337 1.276 1.236 E.75 1.545 1.365 1.30& 1.25& 1.224
2.75 1.€18 1.423 1.329 1.271 1.233 &.00 1.543 1.367 1.307 1.255 1.222
3 1.600 1.4148 1.325 1.269 1.229 9.25 1.545 1.361 1.306 1.259 1,222
3.25 1.587 1.408 1.318 1.264 1.226 950 1.545 1.3587 1.308 1,257 1.222
3.50 1.577 1.405 1.215 1.26) 1.225 9.75 1.545% 1.389 1.307 1.257 1.220
3.73 1.568 1.387 1.311 1.256 1.222 10.00 1.54% 1.289 1.307 1.257 1.221

4.00 1.558 1.393 1.308 1.259 1.221

The following plot shows that, for sample sizes n = 10,15, 20,25, 30, 50 and 100 as the trun-
cation point ¢ increases, then E(o:?) — k , a constant. Since the differences of values E{o?)
in Table 4.14 are substantially different from one and &2 is consistent. Then appropriate

model for E(c?) can be written as
- 1 1
E(c?) =0 + —gi(e) + —gale) + O(n™3). (4.34)

If we use two different values of n, we obtain two different equations. Then by simultaneous

solution of the equations, we find their corresponding g’l-(jz) and g;_(-:ﬂ) In this section similar
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r—

Figure 4.20: The plot of E(s?) against ¢ for different n
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to section 4.4 we choose n = 10 and n = 20. Then the calculated g,]._(_(,:] and g;(z:) are plotted
against ¢ in Figure 4.21.

By looking at Figure 4.21 we can see that all the values of gﬁ?) are positive and, as ¢
increases, g:(_é) approaches to the constant £ = 6. But in Figure 4.22 most of the values
of g;(_f;) are positive and, as ¢ increases, grg_(_(;) approaches to the constant & =~ —11. Now,
we are interested to find the functions ¢1(¢) and ¢2(¢) in terms of ¢. From the Figures 4.21,
and 4.22 we guess that the models should follow the azce™ + 5. Note that the error term
in this model is additive. Using a Macro in GLIM 4 software (see Appendix Program 33),

Ekholm & Green (1993), which used numerical derivatives for fitting nonlinear models and

assumes normality of error terms. by fitting the model and entering the ¢?, ¢® etc terms in
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Figure 4.21: The plot of g,(c) against ¢

Figure 4.22: The plot of g;(é') against ¢
g = -

g
|




Chapter 4 186

the model we found the following models
gi1(e) = (1.345¢% + 2.814¢)e™ +5.829

where the corresponding ¢—ratios of the coefficients 1.345, 2.814 and 5.829 are 6.23, 7.14 and
28.85,
Further

ga(c) = (—5.492¢* — 9.961c)e™ — 10.20

where the corresponding ¢—ratios of the coefficients —5.492, —9.961 and —10.20 are —6.49,
—6.48 and —12.97. (see Appendix Programs 32 and 33). We also, checked the residual plots,
and they confirmed the validity of the models.

Now, using these equations we can estimate ¢;(c) and g2(c) for any values of c.

Substituting the estimated ¢,(¢) and g;{¢) into equation (4.34) we obtain
- i
E(e?) = o+ —{(1.345¢" + 2.814c)e™ +5.829}
n

1 9 v ¢ p -3
+ n—z{(—5.492c ~9.961c)e™ — 1020} + O(n™?).

To compare E(z?) calculated from the model together with the E(o2), calculated from
the simulation, we plot them in Figure 4.23.

Figures 4.23 shows that if we shift ¢ to +0.75 the values of £(o?} approach to the observe

values E(g?), as the sample size n increases. We conclude that these models are reliable and

we can easily find E(g?) for various values of n and .

4.11 Relationship between Var(c;z) and sample size
and truncation point:

In this section we investigate the relationship of Var(c?) with sample size n and truncation

point ¢.
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Pigure 4.23: The plot of E(s2) against ¢ for different »
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To find the appropriate regression model, we have to find Var(s2) for different values of ¢
and n. Since we are interested to see what happens to Var(c?) as ¢ — oo we have calculated
Var(r;z) for values of ¢ up to ¢ = 10 inclusive. The values have been obtained and are shown

in Table 4.15 and Figure 4.24.
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Table 4.15: The variance of ¢2, by simulation
for different values of n and ¢ when g =0, 0 =1

and simulation run R = 100000

c Var( o2} ¢ Var(o2)
n=10 n=15|n=‘20|n=25 n =230 n=10 ﬂ=15|_n.=20 I;n:QSJn:BD
-2 0,213 G110 0.081 {.063 Q.052 4,25 0.514 0.264 0.175 0,128 0100
-1.7% 0187 D093 D072 006D 0051 4.50 0,503 0,262 0172 0,128 G.100
-1.5 . 185 0.097 D0.0B8 0.056 0.04E 4,75 0,465 0,263 0,173 0.127 0.099
-1.25 0,203 d.112 0.076 0059 a.049 .00 0458 0.259 a.171 0,125 0.100
-1 .215 00126 0086 066 053 5.25 {.486 {.259 0.172 0,126 0.100
-0.75 Q.22 0.133 0.024 0.072 0.089 5.50 0464 0,259 Q171 0.127 .100
-0.5 0,249 0,145 0.103 0.079 0.063 5.7h 0,454 0. 260 0.171 0,126 0.099
-0.25 0,261 0,165 0,115 G087 0071 B.00 0,482 0,259 G171 0,127 0100
[} 0.309 0,185 0,132 0,101 0062 6.25 0.482 0.260 0,171 0126 0,100
0.25 {0,250 0,211 0.149 0,113 0.031 .50 0.486 0.25% 0.171 0128 0.099
0.5 $H.400 0.239 {.168 G128 0.104 £.75 0.483 0.259 0,172 0.127 0.0898
075 0.442 {.268% 0,185 0143 3115 T.00 {.4585 {.260 0173 0,126 0.100
1 455 G252 o.208 158 128 7.25 r451 0.259 &.171 0128 6100
1.25 0,535 0.2156 0.21E 2.168 4,135 T.50 0.459 0257 0.171 0.128 0,009
1.5 0570 {.335 0,232 0176 0141 T.7h 0.4581 0,259 0.173 128 0100
1.75 0.514 0,348 0,237 0179 0,141 8.00 0.485% Q.257 0,171 0126 0.100
E 0,622 0355 0.237 a.175 0,139 5.25 (.4582 0.260 0173 0,127 0,100
.25 {.651 {.352 3.233 0168 0132 3.50 0.4581 0261 0.171 4,126 [0 Ri s ]
2.5 .653 0.341 0,222 [0 1] 0125 B.73 {.451 {.260 0172 0126 0100
275 0.827 0,330 0,212 0,152 0.118 9.00 0,478 0,256 0.171 0,126 0.100
3 a.B810 0,312 Q.20] 0,144 4.112 2.2h 0.480 0.258 0.171 0,128 0100
3.25 0,580 0,286 01885 {.138 0107 9,50 484 0,255 0,171 126 0100
3.50 0. 584 0.289 0,183 0134 0,104 975 0,485 0,257 0171 D125 0.099
3.75 0.54% 0,275 180 {131 4,103 1000 .484 O 260 0.17a {128 0. freg
4,00 0.525 0,271 0174 .130 G.101
Let us assume that Var(e?) can be written as
Var{o2) = lgr (e} + igg(c) + lgr (e)+O(n). (4.35)
n’? n2 n37°

Since we know that 42 and o2 are asymptotically equivalent, therefore Var(o?) = Var(5?)

for O(n71). Hence g1(c} = %} and equation (4.35) can be written as

~ 1 |20% 1 1
Va,r(r:rz) = ; —%— + EQZ(C) + Egg(C) + O('n_4) (4.36)
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Figure 4.24: The plot of Var(¢?) against ¢ for different n
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Similar to section 4.4 choosing n = 10 and n = 20. We find the corresponding ¢2(c) and
g;(_c;) and plot them against ¢ in Figures 4.25 and 4.26.

By looking at Figure 4.25, we can see that almost all the values of g;a:) are positive and
that g;(-;") increases as ¢ increases. It has a maximum point at ¢ = 3, then g;('c) decreases
as ¢ increases and we can say g;f;:] —2a3 27 as ¢ — oo. But in Figure 4.286, gﬁt_(ﬁz] has two
obvious local maxima and one minimum in its domain. Also g;(_E‘) —r2 —30 as ¢ — oo.

Now we find the functions g2(c) and ¢z(¢) in terms of ¢. Again we use similar procedure

of section 4.10 for entering the ¢, ¢? etc terms in the model.

Using the GLIM 4 software we have found the following models

ga(c) = (7.279¢* + 15.T1c)e™ + 26.31
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Figure 4.25: The plot of g(c) against ¢
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Figure 4.26: The plot of ¢3(c) against ¢
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where the corresponding t—ratios of coefficients 7.279, 15.71 and 26.31 are 8.109, 9.632 and
31.49. We also, checked the residual plot, and they confirmed the validity of the models.

Further
g3(c) = (1.207¢% 4 6.234¢* + 17.90¢° - 45.04c)e™ — 42.21

where the corresponding t—ratios of the coefficients 1.207, 6.234, 17.90, —45.04 and —42.21
are 1.91, 3.76, 2.65, 5.12 and 6.17.
Now, using these equations we can find g»(c) and ga(c) for any values of c.
Substituting the g2(c) and ga(¢) in equation (4.36) we obtain
~ 1 [20*
Var(o?) = " l?]
+ n% [(7.279¢% 4 15.71c)e™ + 26.31

+ -1-3 [(1.207c5 + 6.234¢* 4+ 17.90¢> — 45.04c)e™ — 42.21] + O{n™).
o

To compare Var{z?) calculated from the model together with the Var(c?) calculated from

the simulation, we plot them in Figure 4.27.

Figure 4.27 shows that if we shift ¢ to 22 the value of Var(o?) approach to the observe

value Var((;z], as the sample size n increases. We conclude that these models are reliable

and we can easily find Var({o?) for various values of n and c.

4.12 The comparison of the different estimators of o*:

In this section we compare the two estimators of ¢ based on the MLE and the MPS methods
with the theoretical resulis for MLE, and the exact value of o2,

By using the results of the simulation study for the maximum likelihood estimator, the
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Figure 4.27: The plot of Var(s?) and Var(o?) against ¢ for different n
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theoretical results of Chapter 2 and the results of the simulation study for the maximum

spacing methods, described in this chapter, we obtained Tables 4.16—4.19.

Table 4.16: The comparison of the MLE and the MPS estimators

of ¢* for ¢ = —1.88 and different values of n

&2 52 &2 &2 &2 a? a? a?
n | Sim.mean | Sim.var. | MSE | Theory mnean | Theory var. || Sim.mean | Sim.var. | MSE
5 1.019 0.497 0.497 1.092 0,497 1.320 0.856 0.958
i0 1.606 0.188 0.188 1.026 0.188 1.138 0.194 0.213
20 1.004 0.078 0.078 1.008 0.078 1.118 0.079 .093
50 1.004 0.028 0.028 1.0602 0.028 1.051 0.028 0.030
100 1.001 0.013 0.0131 1.001 0.013 1.028 0.013 0.014

Table 4.17: The comparison of the MLE and the MPS estimators
of o2 for ¢ = —1 and different values of n

2 &2 &2 &2 &2 o2 o? o2
7 | Sim.mean | Sim.var, | MSE || Theory mean | Theory var, || Sim.mean | Sim.var. | MSE
3 1.018 0.295 0.295 1.012 ¢.32 1.548 0.462 0.762
10 1.011 0.147 0.147 1.007 0.153 1.117 0.222 0.0235
20 1.003 0.075 0.075 1.004 0.075 1.042 0.088 0.089
50 1.001 0.030 0.030 1.002 0.030 1.038 0.032 0.033
100 1.000 0.015 0.015 1.001 0.015 1.034 0.015 0.016
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Table 4.18: The comparison of the MLE and the MPS estimators

of o2 for ¢ = 0 and different values of n

195

&2 &2 &2 a2 &* o a2 a?
n | Sim.mean | Sim.var. | MSE !} Theory mean | Theory var. |[ Sim.mean | Sim.var. | MSE
> 1.008 0.492 0.492 1.000 0.400 1.397 0.778 0.936
10 0.996 0.195 0.195 1.000 0.200 1.248 0.310 0371
20 1.000 £.100 0.100 1.000 0.100 1.142 0.124 0.144
50 1.001 0.041 0.041 1.000 0.040 1.673 0.044 0.049
100 1.000 0.020 0.020 1.000 0.020 1.045 0.021 0.023

Table 4.19: The comparison of the MLE and the MPS estimators
of % for ¢ = 1 and different values of n

&2 & &2 &2 &2 o o2 a?
n | Sim.mean | Sim.var. | MSE || Theory mean | Theory var. || Sim.mean | Sim.var. | MSE
5 1.009 0.771 0.771 0.977 0.532 1.677 1.2490 1.690
10 0.983 0.278 0.278 0.934 0.282 1.406 0.484 (.648
20 0.992 0.144 0.144 0.990 0.145 1.233 0.201 0.255
50 0.996 0.058 0.058 0.996 0.059 1.116 0.067 0.030
100 0.999 ¢.030 0.030 0.998 0.030 1.066 0.031 0.035
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4.13 Conclusion:

Comparing the estimated value of ¢ from the two estimation methods, we see that in Table
4.16 for n = 5 and ¢ = —1.88, the MPS method has a mean value of o2 = 1.320, while the
MLE method has a mean 42 = 1.019. We can see also that o(o2) for the MPS method is
bigger in almost every cell than the ¢{67) from the MLE method.

Comparing the variances for ML estimator (0.497) with the MPS method (0.856), show
that the variance of ML estimator is high, but by increasing the sample size n, for example
n = 100, the variances of o2 and & become the same. Therefore we can conclude that
the variance of MPS estimator is asymptotically equivalent to the variance of ML estimator
for estimating the variance of the distribution. We can make similar comparisons for other
values of ¢ in Tables 4.16-4.19. As we see from Tables 4.16-4.19 the larger the truncation
points, the closer the variance of two estimators. Moreover, for large values of n these two

estimators are almost identical, which is in line with Theorem 4.5.
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The two parameter case of maximum
product spacing in the truncated

normal distribution:

5.1 Introduction:

The purpose of this chapter is to describe the maximum product spacing method of estimat-
ing the parameters of a distribution, simultaneously. The application of maximum product
spacing in the truncated normal distribution with both parameters unknown is considered.
Further, a simulation study is curried out to investigate the expected value and variance of

the MPS estimators of the parameters.

5.2 Estimation of 1 and ¢ when both are unknown:

In this section, we are going to find the MPS estimator (f, &) of ( p, o) for the truncated

normal distribution when the mean and variance are both unknown, and also to make a

197



Chapter 5 198

comparison with (fi, &). Taking the derivative of H in equation (4.7) with respect to x and

a?, we obtain

L[] de)), e
T TP l@(%——“) ETE=s) | AT >y
and
OH 1 & [ — w)(83) — (yia — plo(B=5) (¢ — (=)
907 = T3+ ) {Z [ B(4) - (s H T ey O
The simultaneous solution of the equations
LIS
Z (5.3)
=0

or

. 1 n+l1 45(2’:—;‘}_95(“_«&) + é(c_;'g) =10
o{nt1) i=1 d)(!i;—-“)—d){ 9:‘—;‘1‘} O'CD(C—;‘E) - (5 4)
1 ntl [ly&—#)@‘(g:d)—(wq ~) =) ]} + (e=d528) g '

_208(71+1J i=1 q,(yi'—i-*)_@(yi—]_i‘) 20‘3@{6—_&)
T e s

with respect to ¢ and ¢ gives (fi, &).
The algebraic solution of equation (5.4) is impossible. Therefore we use the NAG routine

CO5SNBF in Program 34 given in Appendix to solve it iteratively.

5.2.1 The MPS estimator of (u, ¢) in data sets 1 and 2:

1. Using the data set | and ¢ = 107°, we find that the MPS estimates of (g, o) is
(ft,&) = (0.0603,1.1079}.

2. Using the data set 2 and ¢ = 107°, we find that the MPS estimates of (g, o) is
(fi, &) = (—0.0158,1.0396).

The ML estimates for data set 1 is (z,6) = (1.3377,1.2871) and for data set 2 is (j1,5) =
(—2.1932,0.2767). When we compare the MPS estimates (ji, &) with the ML estimates {/,
7), we see that in the two data sets, the difference of the MPS estimates from the true values

(¢ =0, 0 = 1) are less than their counterparts in the ML estimates.
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5.2.2 The MPS estimator of (y, ¢) in ideal samples:

In this section we prove a desirable property of the MPS estimator, namely that it gives the
correct answer for an ideal sample. Also we plot H against different values of i and o (see

Appendix Program 35).

Theorem 5.1 In ideal samples, for every truncation point ¢ the MPS estimator {ji,&) ts

(0,1).

Proof: In Chapter 4, Theorem 4.3 and Theorem 4.7 as we proved for ideal samples,

nt1 ¢(Hﬂ,) _ qﬁ(ya;-r:») nt1 @ Koy qs(&k 1—#)
e =~ = (n+1) = ]
) e DY E
(n + @5(%“—) < =
=) (5.5)
and
LS E L Y o (HEVLESRITELE )
=1 (8Z) — () =1 (<)
(n + 1)(0 — #)o(*F) -
z . 5.6
(=) >
Therefore, using equations (5.5) and (5.6), it follows
H = bl [ ST g Himl=R)
C:;_“ l.ll:ff-,a':ﬂ' - (v1+]) {2 +1[(1>(_l__”)_d>(y' 1— .u ]} + U' (5 "";)
: w1 LI = as(”*-‘ k) o i '
% == = 2(n+1 {Z " [{% - Q{u)y‘(}(&‘:ﬁ—l 7 ]} + : ;;)E’(c_*a)) = 0.

Consequently, (f,5) = (0,1) maximizes H, and the theorem is proved. To see the obtained
results are in agreement with the corresponding graphs, we draw the following graphs in case

¢ = —1.88 against g [-0.1, 0.1] and o [0.94, 1.02] which is shown in Figures 5.1.
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Figure 5.1: H versus p and o for ideal sample when

n=2>5and ¢c= —1.88

| 7981791 1T

5.3 Simulation to estimate the mean and variance si-
multaneously

The purpose of this section is to compare the MPS estimate of a simulation study with
the ML estimate. Several attempts were made to calculate (), E(a?). o(fi) and o{c?)

for simulation run £ = 10000, truncation points ¢ = —1.88,—1,0,1 and sample sizes n
5,10,20,50, 100 through a simulation study.

At first, we used NAG routine CO5NBF to solve the equations (5.3). This program failed

in a number of cases for some data sets. (see Appendix Program 36}. It seems that the
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routine is very sensitive to the starting value. To tackle this sensitivity problem we wrote a
subroutine to find the local maximum approximately using a grid search and having found
this we used it as starting value to start the simulation. Again this program failed for some
data sets. At this point we embarked upon a new method to maxirmize equation 4.7, #. The
logic of this method is to find the maximum of H, in a certain boundary of g [-1, 1] and

log(o) [-1, 1]. The proceture is as follow:

1. find the maximum of H, if the two coordinates of the maximum are within the

range, then shrink the range, and find the maximum again.

o

If one of the coordinates of the maximum point H is on the boundary, then shift

the boundary, and find the maximurm.

3. Stop the program, if two successive coordinates of the maximum point H are the

same to some accuracy significant figures (see Appendix Programs 37 and 38).

This program also failed in a number of cases.
To investigate the problem further, we choose one example of each case for the truncation

point ¢ = 1.

L. For the random deviates of size n = 5, —1.59912, —0.88362, —0.757980, —0.658480
and —0.463060, we obtain & = —0.8828 and & = 0.5700. The value of H at this
point is —1.9948,

Plotting the contour of H against a range of values of g [-1, 1] and & {0.1, 1]

we get Figure 5.2, which shows the same values for the maximum of H, and its

coordinates & and &. As we can see this Figure fails to show the maximum point

of H.

2. However for random deviates of sizen = 5, —1.89937, —0.55113, 0.039112, 0.33803

and 0.80620, the program fails to give maximize of H.
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Figure 5.2: The contour plot of # versus g and ¢ when H has maximum
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Plotting the contour of H against two ranges of values x [-1, 2] and [40, 100) and
o [0.1, 2] and [5, 10] we obtain Figure 5.3, which shows the same behaviour of H,

it and &.

Finally, we use NAG routine E04CCF, simplex method to find the maximum of H. The
simplex in two dimensions is a triangle which by providing the starting value, we specify the
first vertex of the simplex and the remaining vertices are generated by the routine (NAG
Manual, 1993}{ see Program 39 in Appendix).

Running the Program 39 for the two data sets mentioned above confirmed the results
of Programs 37 and 38. Therefore we conclude that we failed to find the maximum point
of function H for some data sets. Hence, obtaining E(jt), E(c?), o{jt) and o(c?) for the

simulation study are impossible.

5.4 Conclusion:

In this section we compare the MPS estimator with MLE by three means.

1. For data set 1 the MPS estimator (f, &) = (0.0603,1.1079) where in MLE (f,5) =
(1.3377,1.2871), but for data set 2 the MPS estimator (fi, &) = (—0.0158,1.0396)
where as in MLE method (,6) = (—2.1932,0.2767).

S

For the ideal sample, the MPS estimator (%,&) = (0,1) whereas in MLE for
sample size 5 is (f,6) = (—2.1126,0.2865) and for sample size 10 is {{i,5) =
(—1.9509,0.4099).

3. For simulation study; the MPS estimator for some data. sets cannot be found ,

whereas 1n MLE method we have got the results for all cases.

Concentrating in these examples we see that the MPS estimators are closer to the exact

value of u and ¢ than MLE. Therefore we conclude that although for the MPS method,
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simulation failed for some data sets, the MPS method results are more sensible than MLE.




Chapter 6

Modified score functions of the

maximum likelihood estimators:

6.1 Introduction and notation:

We know that for the parameter 8 the asymptotic bias of the maximum likelihood estimator

8 can be written as

:%9)+%+--- (6.1)

b(8)
where b;(8) and b,(8) are the first and second order terms of b(8).
The basis of the present chapter i1s the idea that the bias in § can be reduced by intro-
ducing a small bias into the score function, Firth (1993).
By employing the notation and methods of McCullagh {(1987) for log likelihood derivatives

and their null cumulants, the derivatives are denoted by

ol 5%
S, (8) = 0 5,:(0) = FTIETIR (6.2)
and so on, where # = (8,...,07) is the parameter vector. The joint null cumulants are
f'\:-;-?s = n_l E{SrSS}g "‘*‘:r‘s‘t = n_l E{SriS'gSt} and .K:-,-’st = n'_l E{S—;-sz}. (63)
2086
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If § is a solution of score funciion S,(#) = 0, we define a modified score function 57(8) such

that
S*(8) = S.(8) + A, (9). (6.4)

The solution of S*(#) = 0 gives a modified estimator §* of § whose its bias is less than the

bias of . According to Firth (1993}, in matrix notation, the vector A(#) should be such that
E[A(8)] = —1(0)bh1(8)/n + O(n7?). (6.5)

Therefore, in equation (6.4), A.(f) can be substituted by the A®(8) = —i(0)b,(8}/n or
A () = —~I(8)b(8)/n, where I(§) = —5,5(8) and i(§) = E[—S,5(8)] are called the observed
and expected information matrices respectively. The first part of the bias term can he written

as
B(0) = —k™ k"™ (Kggn + Ko }/2, (6.6)

where £ denoted the inverse of the Fisher information matrix «,;.
Finally, the application of these modifications removes the O(n™1) bias term. In other
words, in equation (6.4) substituting either A (9) or A9 (8) for A,(¢) removes the O(n~")

terms of the equation (6.1).

6.2 The modified score function of i in the truncated
normal distribution, when o2 is known:

In this section, using the above explanation, we derived the modified estimator g* of 4 in
the truncated normal distribution.
Using the score function of Chapter 2 and the notations, of this chapter,forr = s =1t =1,

we have

_ O _n(@—pty(d))

0-2

, (6.7)
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!_
Suli) = 5 = T2+ Vo), (69
fia(p) = %E[Sl(#)su(#)] (6.9)
n{X —pu+P(d)). —n
SR P CRRLLS)
— *n[l + %br(d)/J]E[X — + Tf’(cr)]

fiaa(pe) = :—13[5'1(#)]3

1 n .o ml®
= ;E{;j[k—#'ﬂb(c)l}
= - )
= e D )

n -

= —sha(X)

- #ch) (6.10)

and

onlp) = i) = —BISH0) = —Fl=Sulu)

= SE{ S+ 9/}
_ %p + () /o). (6.11)

Therefore we obtain

a2

£ p) = ETEI (6.12)
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Now, using the equation (6.6) and u3(X) = —o%p”(¢') from section (0.1.23), we can find the
bi(p)

| 2 uslX)
hlw) = _{[wa(c’)/a]} [ = +°] &

_ pa(X) __ ¥e)
201 + (/a2 2L+ ()] o2’

which is identical with &(x) in Chapter 2. Substituting ¢(x) and b,(x) from equations (6.11)

(6.13)

and {6.12) we obtain

Ha(X) O(n3). (6.14)

E[Ai(n)) = 20901 + gi(e)fa]

Now, the modified score function can he found as

Si(p) = Sie) + AP (w)
#a(X)

n o "y )
= ;5[1:__#-'-&‘(6 ]] + 20_4[1 -I'-'l’irJ"(C!)/O']" (6.10)
12 " Cf

Now, we expect the solution of the equation (6.16), u* of g, to have a smaller bias than f.

This would be an interesting problem to study in the future.

6.3 The modified score function of the ¢? in the trun-
cated normal distribution, when u is known:

In this section again using the ¢% =+, we find the modified estimate v* of 7.
Using the score function and information matrix of Chapter 2 {equation 2.62) with the

notation defined in this chapter for ¢ = 0, we have

o ol n P a? .
.51(7)_5—2—72 ——;——’}‘—I—c*y’r(c] . (6.17)
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Since we want to find i{-y), and also we know that E[S;(%)] = 0, we obtain

E [Z-%—)g-] = = y7(c). (6.18)

Since we know that i(y) = E[I(v)] = E[—511(7)], we have to obtain

, 3! n |1 nx: o () 3T
Suf =5 =535~ 5 - (2 )4 (2 4 (6.19)
Ayt 242 |2 ny 4y 4y
Using equation (6.17), into £[—S11(7)] we obtain
, n ¢ ., | =D
iy) = 57 ll - ET(C )+ 57 (¢ )] =57 (6.20)

Now, let us find &111(7) and &111(7). From equation (6.3) we have
1

sialy) = "T;E[Sl('f)sll(’f)l

_ L { [_& (Z? X g C@T(cr))] {—_n (Z? X2, () +dyrie) - 27)1}

n 2472 n ~3 n 4
_ooont o (XY
N _2?17'5\& ( n )
D .
= _:{3 (6.21)
and
L 3
ra(y) = —ES(y)]
_ 1 n 21 )(3.2 ‘ ' ;
= nE[%{z ( " 4+ cyr(c)
. n? ST X? ,
= 876#3 ( " . (6.22)

Since finding the third moment of (g) is cumbersorme, we use the formula (2.20) in

Chapter 2. Therefore we have to obtain #111(+)

K-ul(’]’) = ;E[Slll(’y)]

1 1 3 (S X? FPr(d) 9 () 15dT()
= =F R N 1 L] : 9
[n ( F ( n ) TTEe T ey (6:23)
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Using the equation (6.23) we obtain

1 !
kin(y) = = {2 + % [—91‘(0’) + ) + 9(:’1"((:’)]} . (6.24)
Now, we have
k1,11(v) = =3kin(y) — kmy)
3 dr(d) ()
% {2 + % [—91'((;") + CQTFF(C‘) + 90’1”(3—')]} . (625)
To find the «!! we have
D
.“61’1 = ﬁ (626)
Therefore
242 .
= 6.27
. (6.27)

Substituting 1,1, £1,11 and &' from equations (6.21), (6.25) and (6.27) into equation (6.6)
we obtain b;(v)

7e [Pr() + () = 7()

b .
M
= 15 (6.28)

which is identical with the b(7) in Chapter 2.
Using the () and b (v) from equations (6.20) and (6.28) into equation {6.5) we obtain

—itn ™ + ot

C"[T(C’) _ C"T"(C") _ CQT”(CI)] 1

= — On72). 6.29
8"}‘[1 _ c-"rz!c'! + cf 1'2!3’! ] + ( ) ( )

ElAi(v)]
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Now the modified score function in terms of expected information is

Sitr) = Si(v)+ AP ()

o Zre ) = er(e) — A |
2 2
and in terms of observed information is
Si(v) = S+ A7)
n "l , ,
= 53 [Z—lnL—‘r+C’YT(C)] +

Sl + 3d7(c) + *r () — 29| [r(d) = 7'(c) — V()] (6.31)

ny 4 4y[1 — ﬂfzﬁ + @ﬁl]) ' '

We expect the solution of the equation (6.30) or (6.31), v* of 7 to have a smaller bias than

4. This also could be an interesting problem to study in the future.




Chapter 7

Summary and recommendations for

further research:

7.1 Summary of the work:

The work in this thesis concerns the truncated normal distribution. Specifically we consider
the singly truncated normal from the right and its parameter estimation. In Chapter 2, we
use the maximum likelihood method to estimate one parameter when the other is known.
For both actual data and simulated data, we work out the estimates of the parameters. Two
theoretical methods, those of Cox & Hinkley and Shenton & Bowman, are investigated and
found the E(fi), Var(jt), F(&?) and Var(5?) to give identical results. Our simulated estimates
are compared with the theoretical methods and the results are almost the same.

In Chapter 3, we estimate two parameters of the distribution simultaneously. Moreover,
we extend the Shenten & Bowman formula for the two parameters. We make a comparison
between theory and simulation and finds that they give identical results.

We see that the maximum product spacing method for the one parameter case in Chapter

4, 1s asymptotically as efficient as the maximum likelihood method. We consider a model

213
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of the variance in terms of the truncation point and the sample size. The distribution and
moments of the estimators & and f have been determined.

In Chapter 5, by the method of maximum product spacing, we consider the simulta-
neous estimation the two parameters of the truncated normal distribution and we make a

comparison with the maximum likelihood method.

7.2 Recommendations for further research:

There are various possible areas of further research that evaluate for this work. We list them

as follows:

1. In Chapter 2, we have shown that the ML estimate of p exists. It would be

worthwhile to prove theoretically that 1t 1s unique.

2. In Chapter 4, we investigate the distribution of g when ¢ is known. Further

research could be done to investigate the distribution of o2 when it 15 known,

3. In Chapter 5, in the simulation to estimate the mean and vartance simultaneously
the computer program fails for some samples, in other words the routine COS5NBF
falls to converge. Further research, especially in modifying the NAG routine
CO5NBF could be done to produce a better routine for solving the nonlinear
equations. It would be useful if the recommended routine incorporate of the choice

of a suitable starting value for the iterations that would lead to convergence.

4. In Chapter 6, we found the modified score functions of s, S7(x) and v, Sy(7v).
Further research could be done to find the properties of g™ and ~*.




Appendix

The diskette contained all the programs is available in the following address.

(a) M.Tazhibi, Faculty of Health, Isfahan University of Medical Sciences, Hezar Gerib
Street, Isfahan, Iran.

(b) Mr B. J. R. Bailey, Faculty of Mathematical Studies, University of Southampton,
Highfield, 5017 1BJ, UK.
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