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In various fields of science, such as biology, economics and medicine, scientific data frequently

follow a truncated normal distribution. Measurement of variables in some parts of the popu-

lation present difficulties. Because of the importance of this distribution, many statisticians

have been involved with the estimation of the relevant parameters.

The problem with the estimation of the parameters is that the method of maximum

likelihood gives rise to two equations which cannot be explicitly solved and, further, the

results obtained are not acceptable due to the biases are large. Cox & Hinkley (1974) have

presented an approximation formula based on a Taylor expansion, which can be used to

find the expected value and variance of the maximum likelihood estimators. An alternative

approach for estimating the parameters is by application of Shenton & Bowman's formula

(1977).

In this thesis the method of Shenton & Bowman is extended to the two-parameter case

to give the means, variances and covariances of the maximum likelihood estimators of the

truncated normal distribution simultaneously.

The maximum product spacing method, which is asymptotically as efficient as the max-

imum likelihood and in some cases hyper-efficient, is used for the truncated normal distri-

bution.

Finally, a comparison is made between the above methods and also with the method of

estimation by means of simulation.
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Chapter 0

Notation and preliminary results:

0.1 Introduction and notation

In this chapter we give the preliminary assumptions, notations and intermediate results

needed in later chapters. These results concern the properties of the truncated normal

distribution.

0.1.1 Assumptions:

1. Let X ~7V(^i,a?).

2. Let Y~iV(//2,CT|).

3. Let Z ~ /V(/i3,cr|).

4. Let (X, Y) ~ N2 (//i, ^^l^li P)- Then the conditional distribution of Y given

X = x is
/ /T-

( Y | X = x ) ~ TV ( ̂ 2 + p ( ^ - ) ( x - M l ) , a\(\ - p 2 ) ) .
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5. Let

X

Y

Z

/

\

Mi "

M2

M3

6. Let D = Y — X be the increment, then

X = x) ~ iV - ^ + (p(^) - (x - a 2
2 ( l -

0.1.2 Notation:

Throughout this thesis we shall adopt the following notations.

1. Let fxx = E(X \ a < X <b).

2. Let a2
x = Var(X | a < X < b).

3. L e t fiy = E{Y \a< X < b).

4 . Let a2
y = Var(F \ a < X < b).

5. Let fxc = E(X I -00 < X < c).

6. Let a2
c = Var(X | -00 < X < c).

7. Let (f>(x') and $(x') denote the probability density function (p.d.f.) and the

cumulative distribution function (c.d.f.) of the standard normal distribution.

8. Let a' = 2=2L_ V = ^ S a:' = ^O- and c' =

9. Let ^$ =

10. Let ^0 =

<Tj

11. Let 84, = <f>'(b') - 4>'(a') = a'^(a') - V<j>{V), since <j>'(a') = -a'<f>(a') e tc .

12. Let (V = <j>"{V) - <j>"(a') = ar2(j>(a') - b'24>(b') - <f>(V) + <j>(a').

13. Let V ' = < r ( & ' ) - < T ( a ' ) = a'3(^(a/)
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14. Let T(C') = fgj-. Then

T'(C') = -C'T(C')-T2(C').

T"(C') = -T(C') - C'T'(C') - 2T(C')T'(C').

T'"{C') = -2r'(c') - C'T"(C') - 2r/2(c') - 2r(c')r"(c').

T^ (c') = -3r"(c') - cW'ic1) - 6T'{C')T"(C') - 2T(C')T'"\C'

15. Let t/;{c') = ^ - . Then

"{c') = -V'(c') - cV'(c') - 2^l(c')^(c')/a

= V(c') ((c/2 - 1) + 3c>(C')/V + 2(^(c')

c') = -2il>'(c') - c'ij:"(c') - 2ifj'2(c')/a - 2^"(c')^(c'

In trivariate normal distribution

16. Let Z?i = Y — X and D2 = Z — Y denote two increments.

17. Let 9X = -o"! + pi2cr2, 02 = ~cr2pi2 + cr3/oi3 and A = (^- - ( |^)2).
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0.1.3 Cumulative distribution function of (X | a < X < b)

We want to find F(x \ a < X < b).

Now

rv v v, P(X<x,a<X <b)

n*\a<x<b) = \-{a<x<h)

0 if x < a

^f<x) ifa<x<b
$(6')—$(a/)

1 if x > 6

a < x < b. (0.1)

0.1.4 Cumulative distribution function of [X \ —oo < X < c):

By putting a = —oo and 6 = c in equation (0.1) we can find the cumulative distribution

function of X truncated from the right at c.

F(x | —oo < X < c) = -~—^, —oo < x < c.

0.1.5 Probability density function of (X \ a < X < b):

We want to find f(x \ a < X < b). If we take the first derivative of F(x \ a < X < 6), we

can find f(x \ a < X < b).

f(x\a <X <b) = d (F(x \ a < X < b)) /dx
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if a < x < b

0 otherwise

fx(x) (0.2)

where fx{x) is the conditional marginal p.d.f. of X.

0.1.6 Probability density function of (X | —oo < X < c):

By putting a = —oo and b = c in equation (0.2) we can find the probability density function

of X truncated from the right at c.

f(x, | -oo < X < c) =

0.1.7 Expected value of (X \ a < X < b):

Now we want to find E(X \ a < X < b). We know that

HX = E{X \a<X <b) = f+C° xf(x | a < X < b)dx
J ~OO

= /

J a

So with the change of variable x' = (x — / / l ) / <7i, we have

1 fb> x12

<5$\/27r -'a.'
— — / x e 2

 QX -f- ~ / T=

O$V27T -'a' 0$ Ja' A /2

/27T Jaf

e 2 —
a'2 ,
- 1 +
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Therefore

(0.3)

0.1.8 Expected value of (X \ — oo < X < c):

By putting a = — oo and b = c in equation (0.3) we can find the expected value of X

truncated from the right at c

0.1.9 Expected value of (Y | a < X < b):

We know that

E(Y \a<X <b) = f °° yf(y \ a < X < b)dy
J —oo—oo

/• + OO

— / y I f{x->V \ a < X < b)dxdy
•J ~ CO

rb

x)fx(x | a < X < b)dxdy

= / M2 + p( — )(x — /ii)\ fx(x \ a < X < b)dx
Ja L (Ti J

a ^ —oo
f> r

To check this result we now consider what happens to E(Y \ a < X < b) as b

V —> a' by use of l'Hopital's rule.

Since

(0.4)

a, or

lim -r- = lim
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lim

lim -b'

-a'.

Substituting li from equation (0.5) into equation (0.3) we obtain

E(Y \X = a)= JJ,2 + pa'a2

which is the true regression equation.

0.1.10 Probability density function of (Y \ a < X < b):

Now we want to find f(y \ a < X < b).

fb
f(y \a < X <b) = / / (x , y \ a, < X < b)dx

Ja

P(a<X < b)

Saf(x\y)fY(y)dx
P(a<X < b)

f!f(x\y)dx
= fv(y)

P(a<X

Since we know that

then, by substituting the p.d.f. (x | y) into equation (0.7), we obtain

f(y\a< X < 6 ) =

p(y -
'\ -p2

I - P2

(0.5)

(0.6)

(0.7;

(0.8)
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0.1.11 Variance of (X | a < X < b):

In this subsection we find the variance of X when a < X < b. We know that

Var(X | a < X < b) = E{X2 \ a < X < b) - (E(X | a < X < b)f .

Now we have to find E(X2 \ a < X < b)

E{X2 \a<X <b) = / x2f(x | a < X < b)dx
J — oo

1 fb' , . , 2 ^ 1 . , .
= -=. j [cr\x + iii) e 2 dx

8<f>\/'2'K Ja'
{a\xa + n\ + 2/j1a1x')e~£2~ dx'

x e 2 dx

= / e"V dx' +
27T Ja>

fb' -s!l

Let

W27T Ja'
x'2e 2 dx',

1 rb' r'2
x = y= I x e 2 dx ,

Jo = e 2

The next task is to find JQ , J\ and J2.

Now

e 2 e 2~ dx'

= 1.

(0.9)

(0.10)

(0.11)

(0.12)

(0.13)

(0.14)
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Further,

= -<V<^. (0.15)

By the use of partial integration, we have

•h = —
0<5\/27r Jo!

1

dx'

(0.16)

If we substitute J2, J\ and Jo into equation (0.10) we find

b(X a < X < b) = —- [by + o$) + /u1 H —(—b^)

f8-f\. (0.17)

If we substitute equation (0.3) and equation (0.17) into equation (0.9), then we obtain

!)-(- -if

To check this result, we now consider what happens to Var(X | a < X < b) as b —> a, or

V -4- a' by use of l'Hopital's rule.
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Since

lim -r- = lim

I dWV)-#(a'))

using

. . 1—I . — .

= a'2 - 1, (0.19)

from equation (0.5), and limy_«j/ ( / - ) from equation (0.19) it follows that

Var(X | X = a) = 0 (0.20)

as we expected.

0.1.12 Variance of (X \ -oo < X < c):

By putting a = —oo and b = c in equation (0.18) we can find the second moment of X in

truncation point c

= o*

(0.21)

0.1.13 Variance of (Y | a < X < b):

To find Var(y | a < X < b), we use

Var(y | a < X < 6)

E(Y2 \ a < X < b) is worked out as follows

b) - b)f. (0.22)

b) =
+ OO

a < X < b)dy
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a<X < b)dx) dy

i-b r + oo

/ / V f{y I x)fx(y,x \a < X <b)dxdy
Ja J — oo

On considering

- p2) = Var(F x) = x)f

it follows that

However,

x) =

E(Y2 I x) =
+ 0 0

Therefore we have

y2f(y\x)dy = E(Y2\x)fx(x).

(0.23)

(0.24)

(0.25)

(0.26)

(0.27;

However, by the substitution of E(Y2 \ x) from equation (0.25) into equation (0.27), we have

J+™y2f(y\x)dy = (0.28)

So, if we substitute equation (0.28) into equation (0.23), we obtain

fa (S 2 ( l " P2) + (P2 + P(%)(X - M
E(Y2 \a<X <b) = —^ - ^

fx(x)dx

= * 2 ( l - / > )

(0.29)
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If we let /i = fa(x — [ii)fx(x)dx, then

dx

(0.30)

Similarly, for /2 = /a(^ — Hi)2fx{x)dx, we have

\x~/j.1)
2fx(x)dx

(-<n) 0: d ((x -
27T

= G\ (a'4>(ar) - V<f>{b')

= <r?(^+(5*). (0.31)

Similarly, using integration by parts we obtain I3 and J4, as follows:

\x-fn)3fx(x)dx

f3fy), (0.32)

h = / (x - Hi)4fx(x)dx
J a

= aa
4(V' + 6 ^ + 35$). (0.33)

Now if we substitute /j and I2 from equations (0.30) and (0.31) into equation (0.29) we

obtain

E{Y2 | a < X < b) = o-|(l - p2) + & + 2
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Further substituting equations (0.34) and (0.4) into (0.22) then we find that

J (0.35)

To check this result we now consider what happens to Var(y | a < X < b) as b —> a, or

b' —> a' by use of l'Hopital's rule, using linv^tf \~^) from equation (0.5), and li

from equation (0.19) it follows that

Var(y | A" = a) = CT?(1 - ^ ( - a ' ) - 1))

as we expected.

V

(0.36)

0.1.14 Third moment of (Y \ a < X < b) about the mean:

E[(Y - Nf \a<X <b] = J_

-L
—CO

+ CX)

~ fiy)3f(y I a < X < b)dy

I rb
x, y | a < X < b)dx dy

x)dy)fx(x)dx

3/3 (T2

(0.37;
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Since (Y \ X = x) ~ N[p2, erf (1 — p2)], the first and third central moments of Y \ X

zero, and we will therefore have

3pa2(l-p
2]

= x are

E[(Y - a<X <b] =

+

0"!

<J> J a (Tj

a <J\

3pa2 f
$ Ja

81
fx(x)dx.

r J ' » V c /

Therefore, using 7l5 72 and 73 from equations (0.30), (0.31), and (0.32), we obtain

E[(Y- a < X < b} = p3cr3

(0.38)

(0.39)

Consider now what happens to E[{Y — py)
3 \ a < X < b] as b —> a, or as V —> a'. By the

use of l'Hopital's rule, we have

Since

= lim f

= lim
dV

= lim [6'(3 - b12)]

= a ' (3 -a ' 2 ) . (0.40)

Using limj/-^ (-£-) from equation (0.5), and limfc/-̂ / (^-) from equation (0.19) and lim(,/_«/ (-#̂ -

from equation (0.40) it follows that

E[(Y - Liyf \X = a] = p3a3
2[2a13 + 3{-a')(a'2) - a'(3 - a'2)] = 0 (0.41)

as expected.
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0.1.15 Third moment of (X | a < X < b) about the mean:

Similarly, we can replace pa2 by O\ and obtain the third moment of (X \ a < X < b) as

E[(X - n x f \ a < X
$ 0<J>

(0.42)

0.1.16 Third moment of (X —oo < X < c) about the mean:

By putting a = —oo and b = c in equation (0.42), we can find the third moment of X

truncated from the right at c.

E[(X - ncf | -oo < X < c] = - - 1 ) - + 2-

- l)r(c') + 3c'r2(c') + 2r3(c' (0.43)

0.1.17 Fourth moment of (Y \ a < X < b) about the mean:

E[(Y - fiy)4 | a < X < b] =

- /

— oo

+oo

(

f(y I a < X < b)dy

x

x)dy)fx(x)dx

= x

4(0(72

(T\

0$

X = x] +

X = x} +
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<>•/> \ 4 \ 1 i
-T-) ) \dx
0$ / I

(0.44)

Since (Y \ X = x)

about its mean are zero, and

and

So we have

— p2)], the first and third central moments of Y \ X = x

(0.45)

2)]2E[(Y - V2)4 \ X = x] = 3[a2
2(l - p2)] (0.46)

4 4 -H Jx{x)dx. (0.47)

Using

a <7\

, /2, /3 and /4 from equations (0.30), (0.31), (0.32) and (0.33) respectively, we obtain

E[(Y - pyf | a < X < b] = 3 (To

+ PA(72

(0.48)

Now consider what happens to E[(Y — /<y)
4 | a < X < b] as b —> a, or as b' —> a'. Again,

using l'Hopital's rule,

lim = lim

lim 6'4 - 6b'2 + 3

a'4 - 6 a / 2 + 3. (0.49)
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Consequently, we obtain

2\12E[(Y - py)
4 \ X = a] = 3[a2

2(l - p2)}

as expected.

(0.50)

0.1.18 Fourth moment of (X \ a < X < b) about the mean:

Similarly we can replace pa^ by u\ everywhere except in the first term of the first line of

equation (0.48), where a^ is replaced by o^, to obtain

2

E[(X - pix)
4 | a < X < b] =

I 4
8MII . Sff,. , <5 MI

8$ 8$ (5$

(0.51)

0.1.19 Fourth moment of (X | —oo < X < c) about the mean:

By putting a = — oo and b = c in equation (0.51) we can find the fourth moment of X

truncated from the right at c

E[(X ~ pc)
4 j - o o < X < c] = 3a4 1 -

c'^(c')

+ ( 3 c ' - — 7c

- 6 -

3 C T l
4 ( l - C V ( C ' ) - T 2 ( C ' ) ) 2

o-4[(3c' - c'3)r(c') + (4 - 7c'2)r2(c')

12c'r3(c') - 6 T 4 ( C ' ) ] . (0.52)



Chapter 0 18

0.1.20 Moment generating function of (Y | a < X < b):

In this section we find the moment generating function of Y \ a < X < b.

M y\a<X<b

r+oo
(t) = / e^fiy

J — CO

y+oo ( i-

= / ety[ /
•/-co \ -/a

a < X < b)dy

\
f(y,x\a<X <b)dx)dy

\ t YI X ) 1 G- 1

fb fx(x)\ f+o° ê M2

<5<j>

Ja

P
2ait2 rb

- o
2 /2 t

t+i[<jf(l-

-w)< x
JX [x)dx

*r dx'

'2t)2-(pC2

}dx

0.1.21 Moment generating function of (A* | a < X < b):

53)

In equation (0.53) replacing a2 with a\ and \i2 with fi\ in the exponent of e and pa2 with 0"i

in $(.), we obtain
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0.1.22 Moment generating function of (X | —oo < X < c):

By putting a = —oo and b = c in equation (0.54), we find the moment generating function

of X truncated from the right at c to be

_2+2 ff* / J _ +\

(0.55)

0.1.23 Cumulant generating function and first four cumulants of

{X j - o o < X < c):

In this section we find the cumulant generating function of (X \ — oo < X < c) and its first

four cumulants. As K,X\-^X<X<C (0 = ^n^x\~xKX.<c (f)-> the cumulant generating function of

X truncated at c is, from (0.55),

a2t2

KX\-^<X<C (t) = Hit + - i - + ln$(c' - ait) - ln$(c').

The first cumulant of X is

Kl(X) = <Y1^<X<C (i) | t = 0= E(X) = //i -

which is identical with the moment in section (0.1.7). The second cumulant of X is

«2pO = <Y|̂ <x<c (*) U=o= fi2(X) = Var(X) = ^ [1 + T'(C')] .

The third cumulant of X is

<c (<) | t=o=

The fourth cumulant of X is

^(X) = 4^L<x<c (t) \t=o=

It follows that



Chapter 0 20

By using the formulae for T'(C'), T"(C') and T'"(c') from section (0.1.2) we can see that the

second, third and fourth moments of X are identical with the moments in sections (0.1.12),

(0.1.16) and (0.1.19).

0.1.24 Covariance of (X,Y | a < X < b):

We know that

Cov(X, Y | a < X < b) = E(XY \ a < X < b) -

E(X | a < X < b)E(Y \ a < X < b). (0.56)

Since we know E(X \ a < X < b) and E(Y \ a < X < b)7 we only have to find

E(XY \ a < X < b), and for this we use the following steps

rb

E(XY\a<X<b) = / xyf(x:y)dydx
J — co J a

+oo rb

xy / /(?/, x | a < X < b)dxdy
-co J a

/

b r+oo
/ xyf{y^x)dydx

J —CO

rb r + co

= xyf(y | x)fx{x)dydx
J a J —oo

Ib
axfx(x)(j^yf(y\x)dy)dx

(0.57)

Using equation (0.2), we can calculate —
dx

-, as follows:

Jb
a (x -

x
(x) dx
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1 7 " I " " 1 7 " I

#0

(0.58)

Using equation (0.58) in equation (0.57) we obtain

(0.59)< X < 6) = ^ ^ +
0$ 0$ 0$

Now, substituting equations (0.59), (0.3), (0.4), into equation (0.56), and using assumption

5 of section (0.1.1), we have

_ 12. + - ^ . (0.60)

Similarly, we obtain

- ^ +7- . (0.61)

0.1.25 Expected value of increment:

In this section we derive the mean of increment, D, which is defined by Y — X.

We know that

E(D \a < X <b) = E(Y \ a < X < b) - E(X \ a < X < b)

po"2<5^ r
= H 2 7 [ M l 7 J

= ^ - ^ + ( a i 7 ^ . (0.62)

To check this result we now consider what happens to E(D | a < X < b) as b —>• a,

or b' -^ a' by use of l'Hopital's rule. Using limfc/_)a/ (-f-j from equation (0.5) into equation

(0.62)

E(D\X = a) = ,2 - , 1 +
 {<Tl ^

= ^2 - Mi - «'(o"i - /ocr2) (0.63)

as we expec ted .
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0.1.26 Variance of increment:

In this section we find Var( D \ a < X < b ). Since we know that

Var(7J> | a < X < b) = Var(y | a < X < b) + Var(X \ a < X < b)

- 2Cov(X,Y \a<X <b). (0.64)

Substituting Var(J\" \ a < X < b), Var(F | a < X < b) and Cov(X, Y \ a < X < b)

respectively from equations (0.18), (0.35), (0.60) into equation (0.64) we obtain

Var(/J \a<X <b) = {a1- pu2f (l - A 2 + j - } + ^ ~ a^ + a^1 ' P*^ (° '6 5)

0.2 Conditional distribution of [Y, Z] given X = x:

In this section we have made use of the following Lemma and Theorem.

Lemma 0.1 IfS is a matrix such that

S =

then

where

and

22

- 1
W n W12

W21 W22

fi =w 1 1 -w 1 2 w 2 - 2
1 w;22 * T 12

s,-,1 = w22 - w^w-1 w12.

T h e o r e m 0 . 1 7 / X ~ A r
n ( / / , E ) , andx' = ( x ^ x ^ ) is alxn vector with x ' x =

and x'2 = [xk+\, Xk+2-, • • •, xn], then the marginal distribution 0/X2 is

(x2) =

(0.66)

(0.67)

x1,x2,...,xk\

(0.68)
22
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If we want to find the conditional distribution of x i , given x2 , we have

ti i A /x(x)
/(xi | x2) = _ >'

and

where

X 2 ~ N2(fii (x2 -

(0.69)

(0.70)

hence

Using the Lemma 0.1 and Theorem 0.1, for the partitioning of the covariance matrix of

the following vector and also using the notation described in section (0.1.1), we have

where

(0.71)

X

Y

Z

AT

V

M l "

M2

M3

\

, £

Var(X) Cov(X,Y) Cov(X,Z)

Cov(X, Y) Var(F) Cov(F, Z)

Cov(X,F) Cov(Y,Z) Var(Z)
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and

Then we find the conditional distribution of
Y

Z

Y

Z

fJ-2

fJ-3

X = x is

Pu)

- P12P13)

23 - P12P13)

l - p\2)

(0.72)

0.2.1 Variance of increments in trivariate normal distribution:

As in the case of the bivariate normal distribution we are going to find the variance of each

increment individually.

We know that

Var(Z>i) = V a r ( F - X )

= Var(y) + Var(X) - 2Cov(X, Y)

= G\ + a\ - 2p12ata2. (0.73)

Similarly, we can find the variance of the second increment D2.

Var(Z>2) =

= Var(Z) + Var(F) - 2Cov(F, Z)

= °3 (0.74)

0.2.2 Covariance of increments in trivariate normal distribution:

In this section we find the covariance of D\, D2

Cov(Di,D2) = Cov{Y-X,Z -Y)
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= Cov(y, Z) - Var(F) - Cov(X, Z) + Cov(X, Y)

Ji „ „ „ , „ _ (0 .75)

0.2.3 Correlation between increments in trivariate normal dis-

tribution:

In this section we find the correlation coefficient of increments.

Using equations (0.73), (0.74) and (0.75) into the correlation coefficient of D1, D2 formula,

will have

Cov(DuD2)
P(Di,Di) ~

(0.76)

0.2.4 Correlation coefficient of Di^D^ given X = x:

In this section we will find the correlation between D\ and D2 denoted by P(D1,Lh\x-x)

Let H denote the covariance matrix of D2

X

. Then we can write

H

Var(Z)i) Cov(DuD2) Cov(DuX)

Cov(DuD2) Var(D2) Cov(D2,X)

Cov(DuX) CoviD^X) Vai(X)

Subsequently

Cov(D1:X) = E{DXX) - E(Dl)E(X)

= E[(Y - X)X] - E(Y - X)E(X)

= E(YX) - E(X2) - E{Y)E(X) + [E{X)f
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= E(YX) - E(Y)E(X) - [E(X2) - [E{X)}2\

= Cov(X, Y) - Var(X)

2
= /012O-XCT2 — <71

Similarly,

Cov(JD2,X) = E{D2X) - E{D2)E(X)

= E[(Z-Y)X]-E{Z-Y)E(X)

= E(ZX)-E(YX)-E{Z)E(X) + E{Y)E(X)

= E(ZX) - E(Z)E{X) - [E(YX) - E(Y)E(X)]

= Cov(Z,X)-Cov(Y,X)

= <7i02.

To find the distribution of D2

X

we

H

partition

=
H;2

H as

H12

H 2 2

where

Hn =

H 12 —

(0.77

(0-78)
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and

H 2 2 = [al\.

By the use of Lemma 0.1 and Theorem 0.1 we can write

X

\X=x

w
D1

D2

X=x

a i62

here Un' is the covariance matrix of

Now, using the partition, we have

U —1 T-T T-J T T ~ 1 I T '

11 = -M-ii — ±112±122 " 1 2

Var(Di) Cov(DuD2

Cov(DuD2) Vai(D2)

v a x ( Z ) i ) - ^ COV(DU D2) ~ ete2

Cov(D1,D2)-e192 Vav(D2)-e
2
2

In matrix (0.79) we have

Var(JD1 | X = x) = Var(JD1) - &l,

| X = x) = Var(D2) - &1

and

Kl

Cov(DuD2 \X = x) = Cov(DuD2) -9^.

Therefore, we obtain

p{D1,D2 \X = x) =
Cov(D1,D2 \X = x)

x I X = X = x)

- 0*

(0.79)

(0.80)

(0.81)

(0.82)

(0.83)
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0.2.5 Covariance of Z,Y given a < X < b:

In this section we set out Cov(Z, Y | a < X < 6), for which we can use the following formula

Cov(Z, Y | a < X < b) = E(ZY \ a < X < b)-E{Z \ a < X < b)E(Y \ a < X < b). (0.84)

Now we have to find E(ZY \ a < X <b). Using equation (0.72) and

/•+oo r+oo rb
E(ZY\a<X<b) = zyf{z,y\a<X < b)dxdydz

J —oo J —oo J a

r+oo /*+oo rb

= / / zy f(x,y1z)dxdydz/S$
J —oo J -^>o J a

rb r+co

= / fx{x) yzf(y,z\x)dydzdx/6$
J a J -co

we can write

C o v ( Z , Y\X = x) = E(ZY \X = x ) - E(Z \ X = x)E(Y \ X = x ) ,

that is,

23 - P12P13) = E ( Z Y \ X = X ) -
al

(To

Therefore, we have

r+oo

E(ZY | X = x) = I yzf(y,z | x)dydz =
J —oo

(J3

Substituting fl™ yzf(y,z \ x)dydz from equation (0.87) into equation (0.85) gives

rb

E(ZY \a < X - [cr2a3(p23 - P12P13)

(To (T1^

+ \ P 1

fx{x)dx/8<i

(X ~

O\ O\ Ja,

(0.85)

(0.86)

(To

(0.87)

(0.88)
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Substituting I\ and I2 from equations (0.30), (0.31), we obtain

E(ZY | a < X < b) = [a2a3p23 +

]

Similar to equation (0.4) in trivariate normal distribution, we can write

E(Y I a < X < b) = ^2 -

and

E(Z I a < X < b) = /i3 -

(0.89)

(0.90)

(0.91)

Substituting equations (0.90), (0.91) and (0.85) into equation (0.84) we have

Cov(Z, Y | a < X < b) = G2U3 p23 + P12P13 [~(^Y + y-j • (0-92)

0.2.6 Covariance of Di,D2 given a < X < b:

We know that

Cov(Dl7D2 \a<X< b) = Cov(Y-X,Z -Y \ a < X < b)

= Cov(F, Z | a < X < b) - Cov(X, Z \ a < X < b)

- Var(F | a < X < b) + Cov(X, Y \ a < X < b)

= cr2cr3 P23 + P12P13 — ( 7 - ; + -r~

_2 /-,
G2 \ l "

(0.93)
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Assuming pi3 = P12P23, then we can write

and

C o v ( D i , D2 I a < X < b) = (<r2 — (T1p12)(<J3P23 — ̂ 2) — 0192A.

Cov(D1, £)2 I a < X < 6) = Cov(D1, D2) - 0i02A.

(0.94)

(0.95)

0.2.7 Correlation coefficient of Di,D2 given a < X < b:

In this section we want to find p(D\, D2 \ a < X < b). To do this we use the Cov(Z)1, D2 \ a < X < b).

We also have to find Var(£>i | a < X < b) and Var(£>2 \ a < X < b).

Varp! I a < X < b) = Var(F - X | a < X < b)

= Var(r I a < X < b) + Var(X \ a < X < b)

- 2Cov(F, X I a < X < b)

2 \ $

+

l -

= Var(Z)1

Similarly, we can find

Var(£>2 I a < X < b) = Var(Z - Y \ a < X < b)

Var(Z | a < X < b) + Var(F \ a < X < b)

2Cov(Z, Y | a < X < b)

/

(0.96)
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2 L __
2 V < ^

— 2(T2CT3

• )

al + crl- 2/923O-2O-3 +

Var(£>2) + &2
2A. (0.97)

Therefore we have

p(D1,D2 | a < X
Cov(DuD2 \a<X

a < X < 6)

y/Var(JD1) + 01
2

(0.98)
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Introduction:

1.1 History and background:

Sir Francis Galton (1897) was the first researcher to investigate the singly truncated normal

distribution. He came across this distribution while he was analysing the registered speeds

of American trotting horses. He had extracted data of 5705 appropriate horses, (stallions,

geldings and mares, which are equally efficient trotters ) from Wallace's year book, Vol.

8-12 (1892-1896) ( Sample sizes varied from 982 to 1324 observations each.). These data

consisted of running times of horses that qualified for registration by trotting around a

one-mile course in not more than 2 minutes and 30 seconds while harnessed to a two-

wheeled cart carrying a weight of not less than 150 pounds. Galton added "The object of my

inquiry was to test the suitability of these trotting (and pacing) records for investigations

into the laws of heredity." He was concerned with the estimation of the joint influences

of different ancestors. Thus, he raised the question whether the arithmetical mean of the

speeds was the most appropriate estimate of the mean of the complete distribution. After

going through a troublesome and tedious investigation, as he called it, he concluded "It

would be a strong presumption in the affirmative, if the relative frequency of the various

32
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speeds should correspond approximately by the normal law of frequency, because if they do

so they would fall into line with numerous anthropometric and other measures which have

been often discussed, and which, when treated by methods in which the arithmetic mean was

employed, have yielded results that accord with observed facts." So by connecting the mid

points of a histogram and drawing the normal curve with mean of the observations which

were in the same path he realized that, these data, up to recorded points, followed the normal

distribution ( This method was reasonably satisfactory for Galton's purposes.). Since records

were not usually kept of the slower unsuccessful trotters, their number remained unknown.

In today's terminology, the samples were drawn from singly truncated normal distributions.

To sum up Galton's work, we can say that he assumed the underlying distribution to be

normal. According to Pearson, Galton determined the position of the mode of the full normal

distribution (i.e. // ) by inspection of plotted figures of data. By this method he estimated

the parameters of the complete distribution from the observations of the registered speeds

of American trotting horses.

Pearson (1902) noted that a histogram or a frequency polygon gives us a certain numbers

of values of y and x from which to fit the curve

y = yoe~^^ . (1.1)

At first he suggested finding y0, a and b by the method of least squares or moments.

But he stated that this works be rather tedious and "unmanageable". Later he wrote the

probability density function of the truncated normal distribution in the form

Q-M) 2

y = yoe ^J- . (1.2)

Using the transformation y = eK, equation (1.2) can be written as the form

Y = a'x2 + b'x + c' (1.3)

where a' = - £ , V=£ a n d c' = ln(y0) - £ •
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Now using, the method of moments, Pearson fitted a parabola of the second order esti-

mating a', b', c1 and eventually fj, and a2 for Galton's data. His result was almost identical

with Galton's result. Pearson thought his method considerably improved things.

A number of workers have studied the maximum likelihood estimation of the parameters

of the truncated normal distribution (Cohen, 1950 a, 1957; Raj, 1953; Thompson, 1951) as

applied to quality control in biological and medical studies. Moreover, Cohen (1950 a), with

the aid of standard tables of the areas and ordinates of the normal distribution, found the

asymptotic variances and covariance of the estimators of the singly and doubly truncated

distributions. Votaw, Rafferty and Deemer (VRD) (1950) found the maximum likelihood

estimators for certain parameters of a truncated trivariate normal, and their asymptotic vari-

ances and covariances, when the values of other parameters are known. Raj (1953) discussed

the problem of estimating the parameters of the complete bivariate normal population from

linearly truncated random samples, with a known truncation point. He showed that the

method of moments and the method of maximum likelihood are identical.

The method of moments was considered by Lee (1983) and also by Fisher (1931). More-

over Cohen (1950 b) suggested the method of moments. From 1950-1988 Cohen's publi-

cations were concerned with various aspects of truncated distributions. Cohen (1986) and

Schneider (1989) published books to discuss various aspects of truncated distributions.

1.2 Definition of the truncated normal distribution:

According to Pearson's definition, a frequency distribution, which is normal, but of which

only a portion can be known or observed, is called a truncated normal distribution.
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1.2.1 Singly truncated normal distribution from the right:

As we found in section (0.1.6) the p.d.f. of X truncated at c on the right is

, -oo<X<c. (1.4)

Figure 1.1 shows the p.d.f. of a standard normal distribution truncated from the right at

c = l .

Figure 1.1: p.d.f. of the standard normal distribution truncated from the right

at c = 1

-3 -2

1.2.2 Singly truncated normal distribution from the left:

Using the notation of section (0.1.2) the p.d.f. of X at truncation point c from the left is

/(*)= -J{*£h^ c<X<oc. (1.5)
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1.2.3 Doubly truncated normal distribution:

As we found in section (0.1.5) the p.d.f. of X in truncation points a and b is

^ , a<X<b. (1.6)

1.3 The importance of the subject under study:

In various fields of science, such as biology, psychology, medicine, economics and engineering,

scientific data are frequently observed from a truncated distribution. The measurement

of variables in some parts of the population often presents difficulties in collecting data,

or data are preserved only from a part of the sample space. Such a case obtains when

monitoring children's heights and only those heights below, say, the 3rd centile survive the

initial screening. From these it may be necessary to estimate the parameters of the entire

population from which the children were selected.

Pearson (1902) has examples, "The marks of candidates in a competitive examination,

wherein candidates below a certain grade have been rejected by a preliminary examination,

or are cast out without placing. Or again, the statures of the soldiers in a regiment with a

minimum admissible height."

Schneider (1989) stated that " detection limits are another field in which the truncated

normal distribution is suitable. Quite often instruments measuring data from a normal

population have detection limits; i.e., small values X < a and/or large values X > b are

not observable, and their existence is not even reported by instrument." A second type of

truncation appears when the limits are unknown, but the proportion truncated from the

population is known.

In this thesis we are considering cases in which the truncation points are known.
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1.4 Description of data:

In order to illustrate the methods of estimating the mean and the variance we use two types

of data: empirical and simulated. We find the maximum likelihood (ML) estimates and, the

maximum product spacing (MPS) estimates of the mean and variance for these two types of

data.

1.4.1 Empirical data:

Two sets of data were drawn from the Wessex Growth study on the heights of 1287 school

boys and school girls between 4.5 and 5.5 years of age. In these cases, by selecting the

heights of short children, we find ML and MPS estimates of the mean and variance of the

population from which they were drawn.

1. Data set 1:

The heights of 634 boys were measured. After standardization of the height for

age, we identified those children whose heights were particularly short, in other

words, those children whose standard deviation score (SDS), (x — ^)/<r, did not

exceed its third centile (-1.88), or standards published in (1966). It was found that

12 of them were below the third centile compared with 19 that would have been

expected if /i and a had not changed, and the mean, variance and the standard

deviation of their scores were, respectively, -2.2833, 0.1963 and 0.4627. From these

data, we estimated the mean and variance of the population, using two different

methods. Computer programs are presented in the Appendix.
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2. Data set 2:

A sample of 653 girls was selected and their heights were measured. After stan-

dardizing their heights, nine (compared with 19 expected ) of them did not exceed

the third centile. The mean, variance and the standard deviation of the scores are,

respectively, -2.26, 0.0512 and 0.24. Again we used these data in the programs to

estimate the mean and variance of the population.

1.4.2 Ideal samples:

In this section we construct what we might call the ideal sample in which the observations

are placed at the expected positions of the order statistics from the distribution (much as in

the construction of normal scores from a complete normal distribution ).

Let tji be the ith component of the ideal sample of size n. Then using equation (0.1) from

Chapter 0 we have

From which

where c is the truncation point.

Using the formula, for the standard normal distribution with the various truncation

points c = —1.88, c — — 1, c = 0, c = 1 and c = 3 we construct ideal samples y[ = ?/;, (see

Appendix Program 1) for two different sample sizes 5 and 10 as below:
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Table 1.1: The ideal sample of size 5 and 10 and its

mean, variance and standard deviation

for different truncation points

c

n

yt

y

Var(yi)

sd(i/f)

-1.

5

-2.5752

-2.3257

-2.1694

-2.0530

-1.9591

-2.2165

0.0471

0.2428

88

10

-2.7783

-2.5450

-2.4000

-2.2928

-2.2068

-2.1347

-2.0722

-2.0168

-1.9670

-1.9217

-2.2335

0.0677

0.2742

-

5

-1.9359

-1.6175

-1.4096

-1.2493

-1.1160

-1.4657

0.0832

0.3226

1

10

-2.1856

-1.8980

-1.7139

-1.5744

-1.4602

-1.3624

-1.2761

-1.1984

-1.1273

-1.0615

-1.4858

0.1171

0.3606

C

5

-1.3830

-0.9674

-0.6745

-0.4307

-0.2104

-0.7332

0.1691

0.4597

10

-1.6906

-1.3352

-1.0968

-0.9084

-0.7478

-0.6045

-0.4727

-0.3487

-0.2299

-0.1142

-0.7549

0.2306

0.5062

1

5

-1.0793

-0.5815

-0.2002

0.1532

0.5276

-0.2360

0.3133

0.6258

10

-1.4291

-1.0238

-0.7406

-0.5073

-0.2991

-0.1032

0.0888

0.2824

0.4912

0.7220

-0.2517

0.4214

0.6843

5

-0.9683

-0.4319

-0.0016

0.4282

0.9629

-0.0022

0.4470

0.7475

i

10

-1.3359

-0.9094

-0.6057

-0.3501

-0.1157

0.1418

0.3465

0.6016

0.9043

1.3277

-0.0024

0.6190

0.8293

By using these data we find the ML and MPS estimates of the mean and variance of the

complete normal distribution.

1.4.3 Simulated data:

We took samples from truncated normal distributions, simulations the process R = 10000

times for each sample size and each truncation point. Using these simulations we estimated

E{fi)-, (J{f1)-, E(o2), o-((72), E(ji), cr(/t), E(a2) and cr(a2) and compared these with the theo-

retical expansions derived in Chapter 2 where appropriate.
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For c > / i w e simulated from the normal distribution (using a NAG routine) and rejected

unwanted (i.e. truncated ) values.

For c < ft, we used an exponential envelope function for the random deviate generation,

which gave a more efficient method than initially generating from the normal distribution.



Chapter 2

The one parameter case of maximum

likelihood estimator for the

truncated normal distribution:

2.1 Introduction:

The purpose of this chapter is to describe the Maximum Likelihood (ML) method of esti-

mating separately the mean and variance of a singly truncated normal population from a

sample.

Theoretical results and simulations for the different methods are also presented and

comparisons are made. In section 2.2 the case of estimating the mean, when the variance

is known, is considered. In section 2.3 two methods of solving the log likelihood equation

are described. In section 2.4 the theoretical formulae for E(fi) and Var(/i) based on Cox &

Hinkley's and Shenton & Bowman's methods are derived when a is known. In section 2.8,

we consider the ML estimator of a2 when the mean is known. In section 2.9 the theoretical

formulae for E(cr2) and Var(<r2) based on Cox & Hinkley's and Shenton & Bowman's methods

41
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are derived when // is known. Sections 2.5, 2.6 and 2.10 are concerned with simulation studies

to investigate the properties of jl and b2.

2.2 Likelihood equation when variance is known:

We begin by deriving the likelihood equation for the case where the variance is known.

Suppose X has a normal distribution with mean p, and variance a2 truncated at the point

c, i.e. x < c. Let <t>(x) be as defined in Chapter 0. Then the probability density function of

the singly truncated random variable X is

Suppose a random sample of size n is selected from the population with distribution as in

(2.1). Then the likelihood function is

The natural logarithm of the likelihood function is

^ ^ ^ " ^ 2 _ n i n $ ( £ ^ £ ) . (2.2)

If /i is unknown and CT2 is known, the estimate fi is obtained by solving the following equation:

To simplify the above equation, let d = ^c~^ , c' = ^c~^ and V'(c') = CT^j J

We have
5/(x, fi) _ n (x - ji + V'(c'))

5/1 (T2

which, on being equated to zero, gives

(2.4)

(2.5)
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It is impossible to solve (2.5) algebraically. Therefore two different iterative methods are

used to solve it. These are described in the following section.

No te : We noted that if X ~ iV(0,1); suppose <f>(x) and $(x) are p.d.f. and c.d.f.

of x, then using Abramowitz & Stegun (1965, p. 932) we can write

1 -<j>(x)u(x) ; x > 0

(f>(—x)u(—x) = <f>(x)u(—x) ; x < 0

where u(x) is the continued fraction expansion:

1 1 2 3 4
U ( X ) — . . . .

Theorem 2.1 For a /bed value of a, the function /(x, fi) has a local maximum.

P r o o f : We prove this theorem for the two cases c' > 0 (// —»• — oo) and d < 0 (fi •—> oo),

separately.

Since /(x, /x) is continuous and differentiate, if we show that /(x, fj.) —> — oo as /x —> - c o

and /(x, zj) —> —oo as fj, —> oo, then we conclude that /(x,/x) has a local maximum.

1. For c' > 0 (fi < c):

Consider $(c') = $ ( ^ —^) —> 1 as ytx -^ —oo and YJi=\{xi ~ / " ) 2 -^ oo as /x —* —oo.

Therefore, implies that /(x,/x) —>• —oo as /i —> —oo.

2. For c' < 0 (/z > c):

Using the above note, /(x, //) can be written as

71 71

' 2(T2

Since c > Xi for all i and fj, > c, then (c — a;,-) > 0 and (2/x — c — x t) > 0, therefore

— ^t=1 """! , ^ ^ ^ — __>. _ o o a s „ _). QÔ  Also we know that u(—d) is bounded

and —n.lnu( —c') is constant as /x —> oo.
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Therefore /(x,/i) —> —oo as fi —> oo and the theorem is proved.

Theorem 2.2 The equation (2.5) is satisfied by fi = fi if x = fic where x = YA=I
 xiln and

Proof: Suppose we know that the solution of Jp = 0 is /i = fi and we can solve

equation (2.5) to find the ML estimate.

Also from section (0.1.8) we know that the first moment of X is unique and can be

written as

E(X) =lic = l i - xP(c').

By using the above equation and the fact that equation (2.5) can be written in the form

(i — ip(c') = x,

and using the assumption of the theorem, the above equation can be expressed as

fi-^{c') - /i + il>(c') = 0.

In view of the fact that

fj, - il>(c') - n + V(c') = 0,

it can be seen that (/t = //,) is a solution of equation (2.5). This is equivalent to the method

of moments.

2.3 Methods of solving equation (2.5):

In this section we outline a simple method and the false position method of solving Ĵ - = 0

and use them on the samples described in Chapter 1.
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2.3.1 Simple method:

Let fin be the nth iterate of fi. We find fin+i from equation (2.5) by

fin+1 = x + jp[(c- fin)/a]. (2.6)

To find the ML estimate of fi, we assume an initial value for fi0, say fi0 = x, then find fi\

from (2.6) with n = 0 and continue iteratively.

According to a theorem in numerical analysis ( Jacques & Judd (1957)) for an algorithm

of fJ-n+i = gif^n) to converge on an interval / = [a — A, a + A], it is sufficient for \g'(fi)\ < k,

on the interval where k < 1.

Using the above theorem we can see whether x -\-ij)\{c—fin) / a\ satisfies the above condition

of the theorem or not.

Taking derivative of both sides of equation (2.6) with respect to fi we have ^ ' = 1.

Therefore we cannot certainly say that the method is convergent. It might be convergent or

divergent.

A program has been written in Fortran (see Appendix , Program 2) which finds the value

of fi to a derived accuracy by stopping when the absolute error \fin — fin-\ \ < £, for a suitable

£, say 10~4 or 10~5, specified by the user. This has been used on the data sets described in

Chapter 1 and the results are given below.

2.3.1.1 Estimates of fi in data sets 1 and 2:

1. Using the data set 1 (boys) and letting a = 1 and e = 10~5, fi is estimated on the 70t/l

iteration of (2.6) and is found to be

fi = -0.1266.

2. Using the data set 2 (girls) and letting a = 1 and e = 10~5, jj, is estimated on the 78f/l



Chapter 2 46

iteration of (2.6) and is found to be

p, = 0.0615.

Because the simple method takes a large number of iterations to reach convergence, we try

find a method that converges faster.

2.3.2 False position method:

The false position method is used to solve f(x) = 0 for cases where the derivative of the

function is not readily available or where the evaluation of the second derivative of f(x)

requires considerable computational effort. When the method does converge, its rate of

convergence is not as fast as for the scoring method (used in Chapter 3), but it is considerably

faster than the simple method.

According to Conte (1965), the proper solution of the equation by the False position

method is obtained as follows:

1. Choose two approximations xo and x\ such that f(xo)f(xi) < 0; i.e /(xo) and f(x\)

are of opposite signs.

2. Find another approximation from the following formula

_ WOO - x1f(x0)
f{xi) - f(x0)

3. If \x2 — x\\ < e or \x2 — Xo\ < £ for the prescribed £, ar2 is accepted as the answer. If

not, go to step 4.

4. If f(x2)f(x0) < 0, replace x1 by x2, leave x0 unchanged, and compute the next ap-

proximation from (2.7), otherwise replace x0 by x2, leave x\ unchanged, and compute

the next approximation.
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igurc 2.1: The ialsc position method for solving i(x)=O when f is concave.

47

y=f(x)

Figure 2.2: The false position method for solving f(x)=O, when f is convex.

y=f(x)

The Figures 2.1 and 2.2 show this method of solution for both concave and convex functions.

The NAG routine C05ADF follows the above procedure and can be used to find the root

of the equation

A-s-V-((c-A)/o") = 0. (2.8)

The method is now used on the different samples of Chapter 1. The computer program is

given in Appendix, Program 3.
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2.3.2.1 Estimates of fi in data sets 1 and 2:

1. Using the data set 1 (boys) and letting a = 1 and e = 10~5 we find that the ML

estimate of // is

fi = -0.1266,

after only 11 iteration.

On plotting the likelihood against ^, when a = 1, we get Figure 2.3 (see Appendix

Program 4).

Figure 2.3: likelihood versus \i for data set 1 (boys) (a = 1)

2. Using the data set 2 (girls) and letting a = 1 and e = 10 5 we find that the ML

estimate of /* is

/} = 0.0615,

after 10 iteration.
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2.3.2.2 Estimates of /i for ideal samples of size 5 and 10:

Using the ideal samples of size 5 and 10 and letting a = 1 and e = 10~5, fi is estimated for

various truncation points in Table 2.1.

By running this program for various cases of data we have got that, for e = 10~5 four

decimal places of results are valid.

Table 2.1: The estimate of the ji in ideal samples of size 5 and 10

for different truncation points

c

n

y

A

-1.88

5

-2.2165

0.4709

10

-2.234

0.2940

-1

5

-1.4657

0.3281

10

-1.4858

0.2100

0

5

-0.7332

0.1883

10

-0.7549

0.1227

1

5

-0.2360

0.0836

10

-0.2517

0.0578

3

5

-0.0022

0.0023

10

-0.0024

0.0021

From Table 2.1 we can see that the bias of jj, is positive for all truncation points.

Moreover, the estimate of fj, in sample size 5 in comparison with its counterpart in sample

size 10 is rather high.

We see that these two methods give the same solutions for the data sets. But the first

method for data set 1 takes 71 iterations and for data set 2 takes 78 iterations whereas

second method reaches the same convergence points after at most 12 iterations. In oyher

words the False Position method improves rate of convergence.

2.4 Theoretical results:

The aim of this section is to find the expected value and variance of the maximum likelihood

estimator of \x when a is assumed known. Formulae for these are given in Cox & Hinkley

(1974, p. 310) and Shenton & Bowman (1977, p. 15).
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2.4.1 Cox &: Hinkley method:

In this section we derive the formulae using the following notation.

1. For a single observation x, let S(fi) be the score defined by

dhi f(x,fi)

2. Let S'(II) and S"(fi) be the first and second derivatives of S(fi) with respect to //.

3. Let

sM =

4. Let

5. Let

6. Let

i(fi)

since regularity conditions hold.

7. Let

= Ei-S'Xfi)] = ni(fi). (2.9)

8. Let

Now it is well known that

E[S.(fi)] = E[S(fi)] = 0.
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Before going further we write the following definitions from Bisop, Fienberg and Holland

(1975) and Mann and Wald (1943) about the order relationships and stochastic limit.

Definition 2.1 an = 0(bn) (Read: an is big 0 ofbn) if the ratio \an/bn\ is bounded for large

n; in detail, if there exists a number K and an integer n(K) such that if n exceeds n(K)

then \an\ < K\bn .

Definition 2.2 an = o(bn) (Read: an is little o of bn) if the ratio \an/bn\ converges to zero;

in detail, if for any e > 0, there exists an integer n(e) such that if n exceeds n(s) then

\an\ < s\bn .

Definition 2.3 We write jln = Op[f(n)] (jln is of probability order O[f(n)]) if for each

e > 0 there exists an Ae > 0 such that P(\fin\ < Aef(n)) > 1 — e for all values of n.

Definition 2.4 We write fin = op[f(n)] (jln is of probability order o[f(n)]) if plimn-^, -#V =

0.

Using Taylor's expansion, we can expand the function S.(fi) about fi.

Then, since S.(jl) = 0, we have, from Cox & Hinkley

o = s.(fi) = s.(fi) + (A - ASM + |(A - tfs"{,j) + op(n^). (2.10)

where Op{n~2 ) = rim^^x, P(n,2Jln). Thus, to first order, solution to (2.10) can be written as

Now as ??. —> oo, using the central limit theorem the limiting distribution of i(fi)(jl — fi)\/n

is iV(0, i(/i)). In other words, we have

^ v ^ (2-11
ni(fi) ^(//)

asymptotically.
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Taking expectations through the equation (2.10), we have

E[S(M = E[(ft - riS'Xri] + l-E[{ft - rfS"^)} + 0{n~h ) = 0. (2.12)

Since

E[S.(p)] = 0,

and

Cov(X,F) = E(XY) - E(X)E(Y),

we can write from equation (2.12)

CovVi, S[(/i)] + ̂ [(/i- /i)
2]E[5"( //)] + icov[(/}-/i)

2, S^M+Oin-1) = 0.

(2.13)

If we substitute ft, from (2.11) into Cov[/t, S'(fJ,)], then we have

Covtf, S' A ^

E[S.(ii)S'Xn)]

I *„(,,}

(2.14)

ni(fi)

nE[S(n)S'(l*)}

Now if we square both sides of equation (2.11), and take the expected value, we have

[m(/i)]2

2

.j=i -^K?W I +

[m(//)]2
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as the observations are independent.

Substituting equation (2.9) into equation (2.16), we can write

^ - [m(fi)}2 m(fi)

to first order.

Now we want to find the value of E[S"(fi)].

According to the definition of the probability density function /(rc,/i), we have

(2.16)

/ f(xi,
J — oo

If we differentiate this equation with respect to fi, we obtain

r°° df(xi,fi) f°° dlnf(xi7fi)

J-co dfi l J-vo dfi

Taking the derivative of equation (2.17) with respect to //, we have

°° d2 In f (Xi,fi)

(2.17)

dfi
= 0,

from which we can find the following formula

+
din f(xi,(j,)

d/j,
f(xi,fi)dxi=0. (2.18)

Therefore, we obtain

Again, taking the derivative of both sides of the equation (2.18) with respect to //, we

have

d3In f(xl^
+ 3r

J — c

X
d\nf(Xi,fi) f(xt.ji)dxl

J—c

din f(xi,[j,)
f(xi,fi)dxt = 0. (2.19)
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Therefore, from equation (2.19), we can write

= -3E[S(n)S'(n)] - E[S(fi)f (2.20)

T h e second covariance in equat ion (2.13) is o(n 1), [see Cox & Hinkley (1974), p . 309],

which means t ha t

Jim nCov[(jj, - /i)\ S"([i)] = 0. (2.21)

From equation (2.13) we have

Cov[A, S'X M

Substituting equations (2.14), (2.15), and (2.21) into equation (2.13), we obtain

YO{n~2). (2.23)

In particular, we are interested in deriving the expected value and the variance of the

maximum likelihood estimator of n in the truncated normal case.

2.4.1.1 Expected value of fi for the truncated normal distribution:

The aim of this section is to find the expected value of the maximum likelihood estimator

of /j, in the distribution given at (2.1). Following the notation introduced in the last section,

we have

and

where

dfi

1

a2

•

-

c'Hc')
i7

2

cWc<)]
dfj,

1

U(c')]

(2.24)

(2.25)

(2.26)
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' = s//(c')|Substituting equation (2.26) into (2.25), and also using 9^ ' = s//(c')|r- we obtain

Since S'(fi) is independent of X and E[S(fi)] = 0, we can write

(2.27)

= 0. (2.28)

Since from Chapter 0, section (0.1.8), we know that

= E(X) = \i-

and S'(JJ,) does not depend on X, we have

= E
X-/J

E(x -

(2.29)

From Chapter 0, section (0.1.16), we have that

= -a3

a
+ 2- (2.30)
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Now

Thus

we

we

can find

obtain

i(fi) = E

1

a

c'ip(c')

a

2n[l
O(n~2)

where

2.4.1.2 Variance of /i for the truncated normal distribution:

(2.31)

(2.32)

(2.33)

The aim of this section is to find the variance of the maximum likelihood estimator of fj, in

the distribution given at (2.1). According to Cox & Hinkley (1974), we know that

+ O(n~3). (2.34)

Using the second derivative of ijj(c') and equation (2.30), it can be shown that third

moment of X

H3(X) = -c rV(c ' ) - (2.35)

From equation (2.34) we can obtain

V(li) =
G*

(2.36)
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Using equation (2.31) for i(fi), we can find the second term of equation (2.34) as

* ) • (2-3 7)n2i(ii) ~ v? \<T[1 + ijj'(c')/cr}4 [1 +

To find the third term of equation (2.34) we have to find /c2o(/«) and /«02 (/•<)•

Now, since S'(fi) is independent of X, we have

= Var[5'(//)] = 0 (2.38)

and

l-. (2.39)
u ~

Therefore, substituting &(//), Kn(/i), K3O(/U), Ko2{p) a n d K2o(/̂ ) respectively from equations

(2.31), (2.28), (2.29), (2.38) and (2.39), we obtain the variance of // as

a 2 1 f 5^ / / 2'

Table 2.2 gives a summary of the values of E(jl) and cr^fi) given in equations (2.32) and (2.40)

for the truncated standard normal distribution with truncation points c = —1.88, —1, 0,1 and

sample sizes n = 5,10, 20, 50,100. Note that, as the value of c increases, the truncated normal

distribution tends to the standard normal distribution (see Program 5 in the Appendix) as

we would expected.
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Table 2.2: The theoretical results for the expected value and

standard deviation of the maximum likelihood estimator of fj,

for different values of n and c,

using the Cox and Hinkley method.

E((i) and <?(jj,) are calculated in 0(n~1).

fX = 0, (7 = 1

n

5

10

20

50

100

c = -1.88

E(fi)

0.435

0.217

0.108

0.043

0.021

a(A)

1.608

1.028

0.685

0.417

0.291

c = - l

E(fi)

0.295

0.147

0.074

0.029

0.015

1.214

0.787

0.529

0.324

0.227

c =

E(jl)

0.165

0.082

0.041

0.016

0.008

= 0

cr(fi)

0.853

0.565

0.386

0.238

0.167

c =

E(jl)

0.074

0.037

0.019

0.007

0.004

= 1

"(ft
0.611

0.416

0.287

0.180

0.126

2.4.2 Shenton & Bowman methods:

The aim of this section is to find the expected value and the variance of the maximum

likelihood estimator /i by using the formulae given in Shenton & Bowman (1977).

Assume we can write
oo

/) — \ A •( f //' V / i ' ! (9 411
' / v J \ I i. / I J 1 \ I

j=o

where the Aj are constants. Then the A3 can be found from

dxi
(2.42)
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as x —> fi[ and (x —> //, where //x is the mean of X. In particular AQ = fi. After expanding

the right hand side of equation (2.41) we take expectation. We obtain

( /,4(AQ3^(X)\
4! V n2 n3 j

2.4.2.1 Expected value of p, for the truncated normal distribution:

From equation (2.5), we have

(T

Taking the derivative of ft with respect to x, we have

(2.43)

(2.44)

2 - ^ . - ^ . ( 2 . 4 5 )

Hence
dp 1 1 , ,
_£. = _ _ = 7 (2.46)

dfj,

so that

Ai = -^- | / i = M = a , , c - u , = ̂ ——
ax i 9^-r^) 1 + z

where

^,'(c') = -cV(c') - ^2(c')/a. (2.48)
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To find A2, we have to take the derivative of p- with respect to x. Hence we find

Therefore

where

(2.49)

(2.50)

- c'V/(c') - 2if>'{c')^(c'

c'2 - f) + 3cV(c')/a + (2.51)

To find A3, we have to take the derivative of %JL with respect to x. We can demonstrate

that

d3ji
Therefore

where

Similarly differentiating -^- with respect to x gives

1 Q

(2.53)

(2.54)

l i e (2.55)

which, after substituting fj, for /i, leads to
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where

Substituting AQ, A2 and fi2(X) ( the second moment of the truncated normal which we

derived in Chapter 0, section (0.1.12)) in equation (2.43), we get

"''"ff.w i,+O(n-2) (2-58)/* + r.fff,,, 12 + O(n)
2n[l + ^'(C')/(TJ2

which is identical to the Cox & Hinkley result derived in section (2.4.1) equation (2.32).

To obtain a more accurate expression for E(fi) , we use ̂ {X) and ̂ (X) (the second and

third moments of the truncated normal derived in Chapter 0, sections (0.1.12) and (0.1.22))

and Ai, A2, A3 and A4 in equation (2.43). We then find the expected value of jj, to be

= n -| ! ^ | <{ ! ^ ^ I v y ' i '. 1-

lltb"3 c') 1

8o-2[i + 0 ' ( C / ) / < J ] 5 J V

2.4.2.2 Variance of /t for the truncated normal distribution:

The aim of this section is to find the variance of the maximum likelihood estimator of fi in

the distribution (2.1), to make a comparison of this method with that of Cox & Hinkley and

to compare the theoretical results in both cases with the simulation results.

According to Shenton & Bowman (1977), we have

n n2 (AtA3 + ^) (2.60)

Using fi2{X) and fXz{X) (the second and third moments of the truncated normal derived in

Chapter 0, sections (0.1.12) and (0.1.22)) and A1, A2, A3 and A4 in equations (2.47), (2.50),

(2.53) and (2.56), we find the variance of jl to be:

2[1
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in which the coefficients of - and \ agree with their counterparts in Cox & Hinkley. A

Fortran program was written to calculate the expected value and the standard deviation of

the maximum likelihood estimator. A listing of the program is given in Appendix Program

6, the results obtained are shown in Table 2.3.

Table 2.3: The theoretical results for the expected value and

standard deviation of the maximum likelihood estimator, of fi

for different values of n and c,

using the Shenton and Bowman methods.

E(fi) is calculated in 0(n~2) and cr(jl) is calculated in C^n"1).

fi = 0, a = 1

n

5

10

20

50

100

c= -1.88

Em
0.531

0.241

0.115

0.044

0.022

1.608

1.028

0.685

0.417

0.291

c =

Em
0.352

0.162

0.077

0.030

0.015

- 1

a(fi)

1.214

0.787

0.529

0.324

0.227

c =

Em
0.192

0.089

0.043

0.017

0.008

= 0

am
0.853

0.565

0.386

0.238

0.167

c =

Em
0.084

0.040

0.019

0.007

0.004

= 1

a(fi)

0.611

0.416

0.287

0.180

0.126

Concentrating in Tables 2.2 and 2.3, we can see that for fixed c, E(p) in Table 2.3 is

bigger than its counterpart in Table 2.2. The reason is that in this table E(jl) is calculated in

O(n~2) whereas in Table 2.2 is in O{n~x). But in both theoretical methods cr(/t) is calculated

in 0{n~l).
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2.5 Simulation to estimate the mean when the vari-

ance is known:

The purpose of this section is to compare the results of a small simulation study with the

theoretical results for E(fi) and cr(fi) to see whether the high order terms of the theoretical

results are negligible or not.

In the study, R = 10000 samples were simulated for each value of the sample size n =

5,10, 20, 50,100 and each value of c shown in Table 2.4. In each case, the mean value of \i

was calculated.

We used the NAG routines G05DDF (0, 1), which generates random numbers from a

standard normal distribution with mean zero and variance one, and G05CCF, which changes

the seed of the random generator for each combination of n and c.

Program 7 (see Appendix ) was used to carry out the calculations. The results are given

in Table 2.4.

Table 2.4: The simulation results of the expected value and

standard deviation of the maximum likelihood estimator,

for different values of n and c when R = 10000

R

10000

n

5

10

20

50

100

c = -1.88

E{p.)

0.537

0.234

0.105

0.038

0.025

1.589

1.062

0.687

0.417

0.290

c =

E{fi)

0.381

0.162

0.084

0.024

0.015

- 1

a(fi)

1.354

0.808

0.536

0.326

0.228

c =

E{fi)

0.199

0.089

0.043

0.016

0.009

= 0

cr(/i)

0.912

0.576

0.387

0.240

0.168

c =

E{p)

0.076

0.036

0.023

0.005

0.005

= 1

a{fi)

0.621

0.416

0.290

0.181

0.126
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The results for simulation, Shenton & Bowman and Cox & Hinkley are almost the same

for different values of n. Moreover all theoretical values lie within 95% confidence interval

obtained for the simulation.

2.6 Distribution of p, when the variance is known:

In this section we investigate the distribution of ft, using Program 7 given in the Appendix,

when sample size n = 100. The number of simulation runs R = 10000. Using the S-

PLUS software, we can obtain the histogram, density, qqnorm and qqline plots for /}. The

descriptions of these plots, from the S-PLUS manual (1993) are as follows:

Application of density:

Density plots are essentially smooth versions of histograms, which provide smooth esti-

mates of population frequency or probability density curves. The kernel method is used to

estimate the density function.

Application of qqnorm and qqline:

To check a hypothesized distribution is normal, use the function qqnorm, for example

a plot from qqnorm that is bent up on the left and bent up on the right. Also the qqline

function gives the highly robust straight line fit, which is not much influenced by outliers in

other words this function fits and plots a line through a normal qqnorm.

To find how close the distribution of fi is to the normal distribution, we used the tests for

skewness and kurtosis, Senedecor and Cochran (1967, p. 86). The assumption of normality

of gi(fi) is accurate for R > 150. Also we know that, in very large samples, the measure of

skewness gi(fi) is defined by
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and the measure of kurtosis defined by

92(jl) = —27TT,

where m2(/t), m3(jl) and rn^fi) are the second, third and fourth moments of /i. Also, if the

sample comes from a normal distribution, with the sample size R, then measures of skewness

and kurtosis are, respectively

and

The section (2.6.f) shows the distribution of ft using plots obtained by the Program 8 (see

Appendix ) and the section (2.6.2) shows the skewness and kurtosis of the distribution of /i.
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2.6.1 Graphs of data when c = —1.88:

Figure 2.4 are based on simulation runs R = 10000 sample of size n = 100.

Figure 2.4: The distribution of //, when c = —1.88

The histogram of MLE of MU when c=-1.88 and n=1OO-

66

The density of MLE of MU when c=-1.88 and n=1OO.

The qqnorm and qqline of MLE of MU when c=-1.88 and n=1OO.

Quantiles of Standard Normal
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2.6.2 Test for skewness and kurtosis:

In this section we give the results of testing the skewness and kurtosis of the distribution of

jl for different truncation points.

Using the above property, the moments, the measures skewness, and kurtosis and the

corresponding z ratios were calculated for the various truncation points and are tabulated

in Table 2.5.

Table 2.5: The moments and measures of skewness

and kurtosis of the distribution of fi

for various truncation points when n = 100

c

m2(jx)

m3(A)
m4(/t)

Pi (A)

92 (A)

zsk

%ku

-1.88

0.0856

0.0075

0.0235

0.3019

0.2135

12.322***

4.366***

-1

0.0490

0.0026

0.0076

0.2430

0.1500

9.918***

3.067**

0

0.0288

0.0010

0.0026

0.2050

0.0979

8.367***

2.002*

1

0.0158

0.0002

0.0007

0.1010

0.0177

4.122***

0.362

3

0.0103

-0.00004

0.0003

-0.0040

-0.0076

-0.163

-0.155

(* p-valne < 0.05, ** 0.05 < p-value < 0.01 and * * * p-value < 0.001 )

From the above table, we observe large values for the skewness and kurtosis of the

distribution of fi for truncation points c < 0 and, as c increases, the values of the test

statistics zsk and z^u decrease. We conclude that, there is significant evidence of both

skewness and kurtosis for c < 0.
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2.7 Conclusion:

Firstly, in Table 2.4 we can see that for each fixed value of c, the E(jl) decrease, as n

increases. This means that the E(jl) has a relationship with the n and c.

Secondly, the comparison of Table 2.3 and Table 2.2, shows that the expected value of the

maximum likelihood estimator ft in Table 2.3 differs noticeably from Table 2.2. This shows

that the second term on the right hand side equation (2.23) is very important. Therefore we

used the Shenton &: Bowman method to evaluate E(ft) up to 0(n~2) which was discussed

in section (2.4.2). The comparison of Table 2.3 with the simulation results Table 2.4 shows

that the expected value and standard deviation of ft for the large sample sizes n = 50 and

n = 100 are almost identical.

Finally, considering Tables 2.2-2.4 all the results obtained for various truncation points

we can make the following comments.

1. In general as we increase the value of the truncation point, we see that the E(jl)

and u(jl) tend to the values for the full normal distribution i.e E(fi) = fi and

cr(fi) = -j^ and this is of course in accordance with our expectations.

2. Since the simulation results, Table 2.4 agreeing with the Shenton & Bowman

results, Table 2.3 we conclude that the higher order terms of equations (2.59) and

(2.61) are negligible.
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2.8 Likelihood equation when mean is known:

In this section, using the probability density function of the singly truncated normal random

variable X given in equation (2.1), we find the maximum likelihood estimator of cr2, when

a is known. Then the likelihood function is

Therefore the derivative of the natural logarithm of the likelihood function with respect to

a2 is

da2 2a2 2a4

Since using x and s2 for computation purposes, and letting c' = ^ - and r(c') = ^14- and

using notation of section 2.2 we split equation (2.62) as:

d/(x,a2) , _ n ns2 + n{x- n)2 nc'rjc')
| + + - 0, (2.63)| ^ + +

which equation (2.63) can be written as:

- a2 + s2 + (x - n)2 + c'a2T(c') = 0. (2.64)

The algebraic solution of equation (2.64) is impossible. Therefore, in the following section

we use the iterative methods to solve it.

Theorem 2.3 For a fixed value of n, the function /(x,<r2) has a local maximum.

Proof: We prove this theorem for the two cases d > 0 and d < 0.

Since Z(x,cr2) is continuous and differentiate, if we show that Z(x, cr2) —* — oo as a —>• 0

and /(x,<72) —> —oo as cr —*• oo, then we conclude that /(x, <r2) has a local maximum.

1. For d > 0 (// < c):

(a) For cr -> 0:
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Consider $(c') = $ ( ^ - ) -> 1 as a -> 0. Also- f ln(<r2) -» -oo and - ± E?=i(£vL)

— oo as cr —> 0. Therefore, implies that /(x,<72) —> —oo as a ~+ 0.

(b) For cr —> oo:

Consider $(c') = $ ( ^ - ) -> 0.5 as <r -> oo. Then -n ln$ (c / ) and - f E L i t ^ ) 2

are constant as cr —> oo. But — ̂ ln(cr2) —> —oo as cr —> oo. Therefore, implies

that /(x, cr2) —»• —oo as cr —> oo.

2. For c' < 0 (// > c):

(a) For o- -»• 0:

Using the note of section (2.2) /(x, cr2) can be written as

/(x,(T2) = - - I n ( 2 7 r ) - - l n ( c r 2 ) - n l n w ( - c ' )

2a2

Since u(-c') is bounded, — n In u(-c') is constant as a —>• 0. We know that

c > a;,- for all i and fJ, > c, then (c — xt) > 0 and (2/x — c — .Tt) > 0, therefore

^ _^ _ o o a s a _ 0_ A l s o _ n ̂ (^2) _ _ o o a s CT _ 0 .

Therefore /(x, cr2) —> — oo as a —»• 0.

(b) For cr —> oo:

Again since u(—c') is bounded — nlnu(—d) is constant. Also c > x% for all ?' and

fi> c, then (c - Xi) > 0 and (2/z - c - x,-) > 0, therefore - ^ r = 1 [ ( c ^ K 2 ^ ^ ) ] i g

constant as cr —> oo. But —-|ln(cr2) —>• —oo as a —> oo. Therefore /(x,cr2) —> —oo

as o" —> oo and the theorem is proved.

2.8.1 False position method:

The false position method which was described in section (2.3.2) is used to calculate a2 from

equation (2.64).
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To find the ML estimate of a, (<r), we run the Fortran program (see Appendix Program

9), to solve the equation (2.64) numerically.

2.8.1.1 Estimates of standard deviation in data sets 1 and 2:

1. Using the data set 1 and letting fi = 0 and e = 10~5, we obtain

a = 1.1250.

2. Using the data set 2 and letting // = 0 and e = 10~5, we obtain

a = 1.0266.

2.8.1.2 Estimates of standard deviation in ideal samples size 5 and 10:

1. Using the ideal sample size 5 and letting ji = 0, when c = —1.88 and e = 10~5, after

14 iteration a is estimated as

a = 0.9657.

2. Using the ideal sample size 10 and letting fi = 0 and c = —1.88, e = 10~5, afterin 15

iteration a is estimated as

a = 1.0009.

On plotting the likelihood against a when /x = 0 and c = —1.88 for ideal samples of

size 5 and 10 we get the Figures 2.5 and 2.6 (see Appendix Program 10).

The estimates of a for different ideal sample sizes, constructed for different truncation points

(see Chapter 1, section (1.4.2)), are given in Table 2.6.
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F i g u r e 2 .5: L ike l ihood ve r sus a for ideal s a m p l e of size 5 (// = 0,c = —1.88)

F i g u r e 2.6: L ike l ihood ve r sus a for ideal s a m p l e of size 10 (/i = 0,c = —1.88)
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Table 2.6: The estimate of a in ideal sample of size 5 and 10

for different truncation points

c

n

y

a

-1.88

5

-2.2165

0.9557

10

-2.234

1.0009

-1

5

-1.4657

0.9797

10

-1.4858

1.0158

0

5

-0.7332

0.9988

10

-0.7549

1.0373

1

5

-0.2360

0.9766

10

-0.2517

1.0258

3

5

-0.0022

0.8662

10

-0.0024

0.9134

As we can see from Table 2.6 the estimate of a in almost every cell is close to the exact

value of <r = 1. Also, for both ideal samples of size 5 and 10, a increases as c increases up

to c = 0. After this point, with increase in c, the value of a decreases.
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2.9 Theoretical results:

The aim of this section is to find the expected value and variance of the maximum likelihood

estimator of a2 when JJL is known. In a similar manner to section (2.4), we derive the formulae

of Cox & Hinkley (1974), and Shenton & Bowman (1977).

2.9.1 Shenton &; Bowman methods:

The aim of this section is to find the expected value and the variance of the maximum

likelihood estimator of a2 by using the formula given in Shenton & Bowman (1977).

According to the factorization theorem given by Hogg & Craig (1970), since X(x, a2) can

be written as the product of ki[t; a2} and A:2(xi,a;2,. . . , i n ) , it follows that T is a sufficient

statistic for a2.

Assuming that
CO

°2 = Y.BAT-^T)YIJ\ , (2.65)
i=o

where

r = £"=i(* '~^2 (2.66)
n

then it follows that

\ = < T 2 (2.67)

for j = 0 , 1 , 2 , Note that a2 -> a2 as T -> /x(T).

2.9.1.1 Expected value of a2 for the truncated normal distribution:

Using the notations of sections (2.2) and (2.8), equation (2.64) can be written as

a2 = T + c'a2T(c'). (2.68)

Since, as T —> [A(T), <J2 —> a2, it can be shown that BQ = a2.
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Using repeated differentiation of the equation (2.68) B\ and B2, can be found. Now,

using the following formulae, we can find the expected value of b2 in the truncated normal

distribution. According to the formula given in Shenton & Bowman (1977), we have

(i2(X - n)2} 1 f B3[fi3(X - fi)2} 3B4[/J2(X - n)2}2]

In equation (2.68), taking the derivative of b2 with respect to T, we have

dT dT

Hence
da2

~df
We then from (2.67) obtain

1 _ ^-T(c>) -L JLTt(cl\
x 2 v c J i 2 v c /

where

Let D — 1 — ̂ T(C') -f —T'(C'), then we can express B\ as

1

. (2.69)

(2.70)

(2.71)

(2.72)

(2.73)

To find i32, we have to take the derivative of Hjr- with respect to T. From (2.71) we find

d2a2 & [C'2T"(C') + C'T'{&) - T(C')}

_ |
3 - (2.74)

Therefore

dT2
4CT2 |1 - | r ( c ' ) + C^T'{C!\

• C'3T"(C') - 2

4:(T2D3 '
(2.75)
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where

T"(c') = -T(C') - C'T'(C') - 2T(C')T'(C). (2.76)

To find -B3, we have to take the derivative of ^ - with respect to T. Hence we can demon-

strate that

_ C'4T"'(C') + 6C'3T"(C') + 3C/2T'(C') - 3C'T(C')
4dT3 8a4 [l - f r(c') + f r'(c')

(2.77)
16cr4 1 — f-r(c') + \T'\C

Therefore

c 'V"(c') + 6C'3T"(C') + 3c'V(c') - 3c'r(c')

3 [C/3T"(C') + c/2r'(c') - C'T(C')

16a4 D5

\2
3 ( C * T " ( C O - 2 ) '

16cr4i}5 l " '

where

/"(c7) = -2r '(c ') - C'T"{C') - 2r/2(c') - 2T(C')T"(C'). (2.79)

Similarly differentiating ^ - with respect to T gives B4i after substituting cr2 for a2. We

find

5[C/3T//(C/) _ 2][2cl4Tl"(c') + 3c/3r//(c/) + 6]

32<76D6

where

T(-) (c') = -3r"(c') - c'r'"(c') - ^'{c'y^c') - 2T(C ' )T '"(C') . (2.81)



Chapter 77

Now we find the second and third moments of the random variable (X — fi)2•

In order to find the second and third moments of (X — /.i)2, it is easiest to find the moment

generating function of ( -^- ) 2 .

First, as defined in general in Chapter 0 (0.54), for variable a < X < 6, we can obtain

M(x^)2(t) = £(e^)2)

(T S

J a

dx

1
zdx

(2.82)

From equation (2.82), as a' —> — oo and b' = c', we get the moment generating function

of the random variable truncated at d as

(2.83)

Note that, for d = oo, M,x-^y(t) is the moment generating function of a X2(l) variate.

Using the Maple software we found the first, second and third derivatives of equation

(2.83) (see Appendix, Program 11), and substituting t = 0 we obtain the first, second and

third moments of the random variable ( -^ - ) 2 about the origin.

So

a

a

a

= 3 - c ' ( 3 + c /2)r(C '),

15 — c'[15 + 5c'2 + c^ri^d)].

(2.85)

(2.86)

Consequently, the moments of (X — fi)2 about its mean are



Chapter 2 78

C'2-C 'T{C')}}

= 2a4 - i;r(c') + C-T'(C>) = 2a4D (2.87)

and

= E [(X - rf - E(X -

= 8<re

- c'(3 + 2c'2 + C'4)T(C') - 3c/2(l + c'2)r2(c') - 2C'3T(C')\ .

-C'3T"(C') + 3c'V(c/) - 3c/r(c/)

1 -

8

C'3T"(C') -6D + 6

8̂
(2.88)

By substituting B2 and ^{X — fi)2 from equations (2.75) and (2.87) into equation (2.69)

we obtain the expected value of a2 up to 0{n~l) as

By substituting fi2(X — fi)2, /i3(X —/i)2, i?3 and _B4 respectively from equations (2.87), (2.88),

(2.78) and (2.80) in second term of equation (2.69), we obtain

E(a2) = a2 + ~
n

\
n2 I 3!

C'3T"(C') + 2D-2

C'4T'"(C') 3 [C'3T"(C') - 2]2 C'3T"(C') - 6D + 6

8

4!

c'4 6]
16a6!)3 32<76D4

64a6/}5
(2.90)

2.9.1.2 Variance of a2 for the truncated normal distribution:

The aim of this section is to find the variance of the maximum likelihood estimator of a2

in the distribution (2.1) to make a comparison of the theoretical results with the simulation
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results.

According to Shenton Sz Bowman (1977), we have

Var(a2) = ^[B2
lPi2(X-fi)

2} + ^[B1B2^(X-^2 + (B1B3+
]^-)i,l(X-fi)

2} + O(n-:i) (2.91)

Substituting ^{X — fi)2, ^{X — n)2 (the second and third moments of (X — /u)2), Bi,

B2, B3 and B4 respectively from equations (2.87), (2.88), (2.73), (2.75), (2.78) and (2.80)

into equation (2.91), we find the variance of <r2 up to O(n~2) . Since

{ ^ + A} (,92,
and

(nn+
Bh,*(X u)2 4 f 5[C'3T"(C') - 2]2 -c«T»>{c>) + 3c'V'(c') - 12 1 1

(5i53 + T)/i2(A - fi) =* | — + — + ^ i p

therefore variance of <r2 becomes

2a4 , ^ f 5 [ c ° T V ) - 2 ] 2 , - ^ r " ( c O + 3^ r " ( cQ-12 , 7

+ O(n~3) (2.94)

A Fortran program was written to calculate the expected value and the variance of

the maximum likelihood estimator of a2 in O(n~l) and O(n~2). Program 12, given in the

Appendix, evaluated results for E(o2) up to order n~l and n~2 and for <r(<3"2) up to order

n~ and n~l. The equations (2.89), (2.90) and (2.94) were used to calculate the results

presented in Table 2.7.
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Table 2.7: The first and second order approximations of

the expected value and standard deviation* of

the maximum likelihood estimator of a2,

for different values of n and c, when /j, = 0

n

5

10

20

50

100

order

first

second

first

second

first

second

first

second

first

second

c = -1.88

E(a2)

1.0146

1.0133

1.0073

1.0070

1.0037

1.0036

1.0015

1.0015

1.0007

1.0007

a(a2)

0.5033

0.5128

0.3559

0.3593

0.2516

0.2528

0.1592

0.1595

0.1125

0.1126

c = -1

E(a2)

1.0164

1.0140

1.0082

1.0076

1.0041

1.0039

1.0016

1.0016

1.0008

1.0008

a(a2)

0.5419

0.5507

0.3832

0.3863

0.2710

0.2721

0.1714

0.1716

0.1212

0.1213

c = 0

E(a2)

1.0000

1.0000

1.0000

1.0000

1.0000

1.0000

1.0000

1.0000

1.0000

1.0000

a(a2)

0.6325

0.6325

0.4472

0.4472

0.3162

0.3162

0.2000

0.2000

0.1414

0.1414

c = 1

E(&2)

0.9598

0.9737

0.9799

0.9834

0.9899

0.9908

0.9960

0.9961

0.9980

0.9980

a(a2)

0.7721

0.7277

0.5459

0.5305

0.3860

0.3806

0.2442

0.2428

0.1726

0.1722

[* In this table first and second are used for the calculation of E(a2) and Var(<r2).

Therefore o(a2) is calculated in O(n~2 ) and (^(n."1). ]

As we can see from Table 2.7 the expected value of a2 in almost every cell is very close to

the exact value of a2, but it is interesting that for c < 0 the E(a2) > a2 whereas for c > 0

the E(a2) < a2. It also shows a very important fact that when we choose c = 0, then half of

the normal distribution is considered and the E(a2) is equal to the exact value of the normal

distribution. Considering the standard deviation of a2 we realize that they are related to

the truncation points as well.
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2.9.2 Cox & Hinkley methods:

In this section we derive the formulae for a2 using the method described in section (2.4.1).

For convenience , we set 7 = a2.

1. Let

1 ' I ""Y I — __

2. Let
d In

£(7) = ^7

3. Let

4. Let

5. Let

».(7) = E[S.(l)]2 = Ei-S'ij)} = m(7). (2.95)

6. Let

2.9.2.1 Expected value of 7 for the truncated normal distribution:

The aim of this section is to find the expected value of the maximum likelihood estimator

of 7 in the distribution given at (2.1). We know that the score of 7 for a single observation,

when n = 0, is

x2 - 7 +

_J_ X*_ C'T{C>)

2 7 2 7
2 27
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(2.96)
27

2L

Since we know that £[£(7)] = £[£.(7)] = 0, we can find

E{X2)=1-c
l
1r{cl). (2.97)

To use the Cox & Hinkley formula for the expected value and variance of 7, we have to find

the following expressions.

(2.98)

(2-99)

(2-100)

As in equation (2.20), we can write

E[S(7)f = -3E{S(7)S'(7)] - £[S"(7)]. (2-101)

Therefore, we have to find S'(j) and S"(-y).

Taking the derivative of S^) with respect to 7, we have

( 2 . 1 0 2 )

and taking derivative of £"(7) with respect to 7 we obtain

„„, . 1 3X2 C'3T"(C') 9CI2T'(C') 15C'T(C')

Taking the expected value of S"^), and substituting E(X2) from equation (2.97), we obtain

^{ ^ ) + 9c'T'(c') + C ' 2 T " ( C ' ) ] } • (2-104)
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Now using (2.98) and (2.102), we obtain

= E

1

2 7

—

2

X2 c'2T'(d) 3c'r(c')

(2.105)

^ ' \Using the notation 1 — CT^ ' -\ ^^ = D, as before we have

(2.106)

To find the /Cn(7), we have to find S'(-j) + i("f). From equation (2.97), we obtain

T

= --JX2 - E(X2)]. (2.107'
T

Now using equation (2.99) we obtain

rp ^-[X2 - E(X2)]
2/*i T

27
£ (2.108)

By using a2 = 7, and noting from section (2.9.1) that the second moment of (X — fi)2 about

its mean is

X - nf = Var(X - /x)2 = 27
2 C'T(C') C'2T'(C')

2
(2.109)

we have, when fj, = 0,

Var(X2) = 27
2 1 -

C'T(C') C'2T'(C')

(2.110)
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Substituting Var(X2) from equation (2.110) into equation (2.108), we have

(2.111)

Now we want to find the /C3o(7)- To use equation (2.101) we must find the value oiE[S(j)S'('y)].

E[S(-r)S'(>y)] = E

275

X2 C'2T'(C') 3C'T(C')

7 , C'2JT(C') C'-/T(C')

= ^D (2.112)

Now substituting E[S(-f)S'(-f)} and E[S"(~f)] from equation (2.112) and (2.104) into (2.101),

we obtain

C'T{C>)

_ —\2 + ~ [ - 9 T ( C ' ) + 9cV(c') - C'2T"(C')}

7 3 I 8

(2.113)

Further we find

(2.114)

To find the bias term in the expected value of 7 we have to use the following formula:

^30(7)
6(7) = - 2z2(7)

2.115)

Substituting ^30(7) + ^11(7) and i2(j) from equations (2.114) and (2.106) into equation

(2.115) we obtain

1C'[CI2T"{C') + C'T'(C') - T(C')}
6(7) = (2.116)

L
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Therefore

E(j) = 7 +
7c'[c'V'(c') + cV(c') -

. 7
= 7 + ~n

C'3T"(C') + 2D - 2

4£>2 0(n"2) , (2.117)

which is identical to the formula for E(a2) derived by the Shenton h Bowman's method ,

see equation (2.89) in section (2.9.1.1).

2.9.3 Variance of 7 for the truncated normal distribution:

The aim of this section is to find the variance of the maximum likelihood estimator of 7 in

the distribution given in equation (2.1). According to Cox & Hinkley (1974), we know that

Var(7) =
m\ni

0{n~3) (2.118)

In the expression for 6(7), let C'3T"(C') + C'2T'(C') - C'T(C') = M. Then we have

6(7) =
4D2 (2.119)

Taking the derivative of 6(7) with respect to 7, we have
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Now

dM dc\
del o

[ dc' /4D4

~ = C'3T'"(C') + 4c/2r"(c/) + C'T'(C') -
oc'

(2.120)

(2.121)

and

d(AD2

dc1 AD[CI2T"(C')

ADM

- T{C'

Iff ~ "27"

Substituting these last three expressions into equation (2.120) we obtain

(2.122)

(2.123)

(2.124)r'"(c') - 2c'V'(c') + C'2T\C') - c'r(c')]

According to Cox & Hinkley, the first part of the coefficient of \ in Var(7) is

'^ ^ W ~ 2C'3T"(C') + C'2T'(C') - c'r(c')} + M 2}. (2.125)

To find the second part of the coefficient of ^- in Var(7), we have to find /C2O(T) a n d ^02(7)-

We know that

(2.126)
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and

1

76

T
(2.127)

Hence, on substituting Var(X2) from equation (2.110) into equation (2.127) we obtain

(2.128)( \ 2D

^02(7) = -T-T

Therefore, using equations (2.126), (2.128) and (2.111) we have

1=2 Wv-
Moreover, from equation (2.114) we know that

D_

T3 = 0. (2.129)

M2

647
6 (2.130)

Using equation (2.129), (2.130) and (2.106) we obtain the second term of the coefficient of

4r in Var(7) as

2{«2o(7)«o2(7) " [^n(7)]2} + [«n(7) + «3o(7)]2 72c'2[r(c') - c'r'(c') - c'V'(c')]2

8D4

SDr (2.131)

Substituting equations (2.106), (2.125) and (2.131) into equation (2.118) and again using

7 = cr2, we obtain

2<r4 a4 f5[c'3T"(c')-2]2
 -C'4T'"(C') + 3C'3T"(C')-12 7 \

2D3 2D2

O(n"3) (2.132)
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which is identical to the formula for Var((T2) derived by Shenton & Bowman's method in

equation (2.94) in section (2.9.1.2).

2.10 Simulation to estimate the variance when the

mean is known:

The purpose of this section is to compare the results of a small simulation study with the

theoretical results for E(&2).

In the study, R = 10000 samples were simulated for each value of the sample size n =

5.10, 20, 50,100 and each value of c shown in Table 2.8. The mean value and the standard

deviation of a2 was calculated in each case.

We used the NAG routine G05DDF(0,l), which generates random deviates from a stan-

dard normal distribution, and NAG routine G05CCF which changes the seeds of the random

generator for each combination of n and c.

Program 13 (see Appendix ) was used to compute the expected value and the standard

deviation of the maximum likelihood estimator fa2).
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Table 2.8: The simulation results of the expected value and

standard deviation of the maximum likelihood estimator of a2,

for different values of n and c when R = 10000 and \i = 0

R

10000

n

5

10

20

50

100

c = -

E(cr2)

1.0186

1.0061

1.0040

1.0037

1.0005

-1.88

a(a2)

0.5148

0.3583

0.2554

0.1589

0.1119

c =

E(a2)

1.0179

1.0115

1.0030

1.0015

1.0002

-1

a(a2)

0.5432

0.3840

0.2744

0.1720

0.1214

c =

E{P)

1.0079

0.9963

1.0004

1.0010

1.0005

= 0

<T(<7 2)

0.7016

0.4412

0.3160

0.2014

0.1415

c =

E(°2)

1.0090

0.9835

0.9917

0.9957

0.9988

= 1

a(P)

0.8782

0.5271

0.3792

0.2420

0.1728

2.11 Conclusion:

In this section we compare the simulation results with the theoretical results as a check on

accuracy of the theory and the algebra.

The results given in Tables 2.7 and 2.8, shown that, although the simulation does not give

up to O(?2~3), the expectation of the estimators of the parameters are in agreement with the

Shenton <k Bowman and Cox & Hinkley methods and the sample size increase, the agreement

becomes closer. We also conclude that expressions E(fi), Var(/i), E(a2) and Var(<72) in both

theoretical methods; Shenton & Bowman and Cox & Hinkley are identical. Moreover all

theoretical values lie within 95% confidence interval obtained for the simulation.
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The two parameter case of maximum

likelihood estimator for the

truncated normal distribution:

3.1 Introduction:

In this chapter we consider the Maximum Likelihood method of estimating the parameters /j,

and <72 simultaneously. Results are presented that extend the method of Shenton & Bowman

to the two-parameter case to give the means, variances and covariance of ft and a2.

3.2 Likelihood equation when two parameters are un-

known:

Suppose X has a normal distribution truncated at c, i.e. x < c, and that both the mean \i

and variance a2 are unknown. Then its probability density function and the log likelihood

90
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function for a random sample of n observations are as defined in equations (2.1) and (2.2).

Since both /i and a2 are unknown, the estimates p, and a2 are simultaneous solutions of

the following likelihood equations.

dfi

n
da2

To simplify the equations let

1. /(x, //, a2) = /

2. c ' =

3. c' =

where s2 = J2?=i{xi ~~ x)2jn.

Then we have

dl

(^ - A)2 = n(x - ft)2

dl ,
— = n(x-

da2

The solution of -f̂- = 0 and -Mr = 0 can be written
dfj oaz

2a2

ns2 + n(x — /i)2 nc'ip(c')

2a* 2a3

as

= s2 + (x - jl)2 + c'a^(c').

(3.3)

(3.4)
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The algebraic simultaneous solution of the above equations is impossible, so an iterative

numerical method is required.

We first show that X and s2 are jointly sufficient statistics for /j, and a2.

From a random sample of size n, the likelihood equation can be written as

_ _ a

Therefore, the statistics Y\ = YA=I X? and Y2 = YA=I Xi are jointly sufficient for fi and a2.

Since

x = Y-i
n

and
2_YX- Y2/n

o —
n n

are one-to-one functions of Y\ and Y2, satisfying the requirement of the factorization theorem,

it follows that they are also jointly sufficient for the parameters fi and a2.

Theorem 3.1 The function I has a local maximum.

Proof: We prove this theorem for the two cases d > 0 and d < 0. From Theorems

(2.1) and (2.3) we see what happens for fixed /x or for fixed a.

We need to establish that there does not exist a path in the (}i,a) plane along which /

becomes unbounded.

Since / is continuous and differentiable, if we show that / —> — oo as /j, —> —oo and

/ —> — oo as fi —> oo, then we conclude that / has a local maximum.

1. For d > 0 (ji < c):

In this case / can be written as
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If =± = 7, a constant, then -^YX-ii®- - ^f and - n l n $ ( - + =±) are constant

as ji —> — oo and —| ln(<72) —> — oo as /i —> — oo. Therefore / —> —oo as // —> —oo.

2. For c' < 0 (// > c):

Using the note of section (2.2) / can be written as

/ = - l n ( 2 7 r ) - - l n ( ( T
2 ) - n l n u ( - c / )

If ^- = 7, a constant, and u(—d) is bounded then —n In u ( - c ' ) , ^ ^ ° ^—

and —^5- X^r=i(c ~ ^j) a r e constant as // —> oo. But — ̂ ln(<r2) —> — oo as // —>• oo.

Therefore / —> — oo as /x —>• oo and the theorem is proved.

3.3 Scoring method:

Let 9 = (//,cr2) be the simultaneous solution of equations (3.3) and (3.4) and 6n be the nth

iteration with this method, then 9n+i = 9n + I"1 S, where S is the first derivative of the log

likelihood at 0n, i.e. the score vector, and I is the information matrix.

As Cohen (1986) described "One advantage of this method is that the inverse of the

matrix I, which is computed in each iteration step, can be used as an estimate of the

covariance matrix". It is noted that this method is a modification of the Newton Raphson

method.

3.3.1 Score and information matrix:

In the context of this thesis, let



Chapter 3 94

c
dl

I =
hi hi

hi hi

d2l

For any appropriate starting value 60 of 0, we can find #i = 90 + I x S which is closer to

real solution of equation. This procedure can be continued until two consecutive values are

the same to some given accuracy.

To obtain each element of the information matrix we have the following.

d${d)
T
hi = -

' = 1 -

where

a

hi = ~E(
821 -Z?=1E(Xi - n

da2 - He')

Since from Chapter 0, section (0.1.8), we have E(X) = // — ip(d), we can write

i>(d) [c'rjj{c')/a + c'2 + 1]
hi =

Similarly

2a4

—ntp(c') [d c'2

2a4 = 112-

Now we want to find i??. For this we have

d2l
d(a2)

n



Chapter 3 95

Since we obtained

by taking the derivative of ^V- with respect to a"2, we can find

da2 2<76

Therefore

J22 = —E
d2l —n - /.)2]

<76 2 2<76

Now using Chapter 0, sections (0.1.8) and (0.1.12) we obtain that

E(X - iif = a2 1 -

Therefore we can write

—n na
hi = — +

2(T4

a •m*^
n n nc'ip(c')

2a4

n

2(74 4<75

4(75

4 + c'2 + c'^(c') - 3]

2<r4

c') - 3

- 3

(3.5)

2a4 2<T

We can now write the score vector and information matrix of the parameters as follows:

S =
9L

dl
do2

n[x—fi+xl{c!)]
a2

n
2<T4



Chapter 3 96

3.3.2 Estimation of the mean and variance:

To find the maximum likelihood estimators (i and a2 of the parameters of the population,

we have to find the score vector and information matrix. Since both of them involve </>(c')

and $(c') through ip{c')^ we need to calculate 0(c').

For this, we use Normal routine from the NAG library. The computer program is provided

in Program 14 the Appendix.

This program was tested for two data sets that were introduced in Chapter 1. In these the

heights of children, 3rd centile, were given. We used these data in the program to estimate

the mean and variance of the population by the method of scoring.

There are problems in estimating ji and a2 simultaneously by the method of scoring.

Cohen (1957) stated " Newton's method tends to produce rather slowly converging iter-

ant s during the first few cycles of computation, unless initial approximations are in a close

neighbourhood of the solution. "He mentioned that this difficulty has been recognized and

discussed by Norton (1956). As we cannot guarantee that our starting values are near

enough to the solution, we have tried to evaluate the estimate of the parameters by the

scoring method. But this method failed and we have tried to evaluate them by the other

method.

Using the NAG routine C05NBF, which find a solution of a system of nonlinear equa-

tions by a modification of the Powell hybrid method (1970), to solve equations (3.3) and (3.4)

simultaneously, we obtained the following results for data described in Chapter 1 (see Ap-

pendix Program 15). Moreover, to illustrate our results, we wrote a program using S-PLUS

software, to draw a three dimensional plot of the likelihood against ji and a (see Appendix

Program 16). It should be noted that the Program 15 failed for data set 1 (boys) and we

used the method of gride (used in Chapter 5) to maximize the /. (see Appendix Program

15a). This program stops when |/U;+i — fi{\ < 10~5 and | log(trl-+1) — log(<r,-)| < 10~5.
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3.3.3 Estimates of (//, a) in data sets 1 and 2:

1. Using the data set 1, (boys), we obtain the maximum likelihood estimates

0,<7) = (1.3377,1.2871).

On plotting the loglikelihood against \x [-2, 2] and a [0.1, 2] we get Figure 3.1.

By changing the range of ji and cr to [1, 1.5] and [1, 1.5] we get Figure 3.2.

2. Using the data set 2, with e — 10~5, we obtain after 8 iterations, the maximum

likelihood estimates

(faor) = (-2.1932,0.2767).

In view of the exact values of // and cr, the difference of jl and a from the exact values of ji

and cr in the two-parameter case are high. In particular in the extreme case of truncation

point c = —1.88, the value jl < c whereas in the one-parameter case we obtained jl > c.

3.3.4 Estimates of (/i, a) in the ideal samples sizes 5 and 10:

In this section we find the ML estimates of ji and cr, simultaneously for the ideal samples.

Using the ideal samples of size 5 and 10 and letting e = 10~5, we now obtain estimates

of jl and a for the various truncation points.
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Figure 3.1: Loglikelihood versus fi and a data set 1 (boys) (c = —1.88)

Figure 3.2: Loglikelihood versus /i and a data set 1 (boys) (c = —1.88)
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Table 3.1: The estimate of (/x, <r) in the ideal sample of size

5 and 10 for different truncation points

c

n

y

s

A
b

-1.88

5

-2.2165

0.2170

-2.1126

0.2865

10

-2.234

0.2602

-1.9509

0.4099

-1

5

-1.4657

0.2884

-1.3576

0.3655

10

-1.4858

0.3422

-1.2033

0.5043

0

5

-0.7332

0.4112

-0.6483

0.4809

10

-0.7549

0.4802

-0.5443

0.6242

1

5

-0.2360

0.5597

-0.2056

0.5924

10

-0.2517

0.6492

-0.1681

0.7253

3

5

-0.0022

0.6686

-0.0022

0.6686

10

-0.0024

0.7868

-0.0022

0.7872

1. Using the ideal sample of size 5, when c = 1 with e = 10 5 , after 9 iterations the

following maximum likelihood estimate is obtained:

(£,£) = (-0.2056,0.5924).

2. Using the ideal sample of size 10, when c = 1 with e = 10~5, we obtain after 10

iterations the maximum likelihood estimates:

(/x,«r) = (-0.1681,0.7253).

On plotting the likelihood against fi and a together with the contour plot, we

obtain Figures 3.3 and 3.4 which confirms the calculated values.

Similar to data set 2, we can see that for all the truncation points considered the ML

estimates of /j, in the two-parameter case are less than their counterpart truncation points,

whereas in the one-parameter case they are not. Also, as we see from Table 3.1, the greater

the truncation points the more sensible are the estimates of ji and a. We can see that in

two-parameter case all the values jl < c whereas in the one-parameter case we obtained

A > c for c < 0 and p, < c for c > 0. Therefore we conclude that lack of constraint on fj, and

u in two-parameter case allow the ML estimate of fi be less than c.
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Figure 3.3: Likelihood versus /./, and a for the ideal

sample of size 10 (c = 1)

Figure 3.4: Contour plot of the likelihood versus \i and a for the ideal

sample of size 10 (c = 1)
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3.4 Simulation to estimate mean and variance simul-

taneously:

The purpose of this section is to compare the results of a small simulation study with the

theoretical results for E(jj,), E(cr2), cr(jl), cr(<r2) and p(£i,cr2).

In the study, R = 10000 sample were simulated from a JV(O,1) truncated distribution.

Values of E(jl) , cr(fi), E(a2) , cr(a2) and p(jl,a2) were calculated for each value of the

sample sizes n = 5,10,20,50,100 and each truncation point c = —1.88,-1,0,1,3 and 10.

The results were obtained from the solutions of the likelihood equations using Program 17,

given in the Appendix, they are tabulated in the Tables 3.2 — 3.7.

Table 3.2: The simulation results for the expected value and

standard deviation of ft and <r2 and /?(//, a2),

for different values of n when R = 10000 and c = —1.88

n

5

10

20

50

100

Mean

E{p)

-2.211

-2.198

-2.188

-2.184

-2.182

°"(A)
0.149

0.107

0.076

0.049

0.034

Variance

E(a2)

0.121

0.136

0.147

0.151

0.153

a(a2)

0.132

0.100

0.075

0.047

0.035

/?(/}, a 2 )

-0.345

-0.308

-0.228

-0.217

-0.168

Concentrating on Table 3.2, we see that the value of E(jl) is always less than c and increases

as the sample size n increases, whereas the value of cr(p) decreases. Again by increasing n the
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value of E{(T2) increases and the value <T(<T2) decreases. It seems that the lack of constraint

on [i and a cause that the ML estimate jj, be alwayse less than c.

Table 3.3: The simulation results for the expected value and

standard deviation of jj, and <r2 and p(jl,a2),

for different values of n when R = 10000 and c = — 1

n

5

10

20

50

100

Mean

E(ji)

-1.457

-1.445

-1.433

-1.429

-1.426

a(ji)

0.197

0.141

0.100

0.064

0.046

Variance

E(a2)

0.196

0.222

0.237

0.246

0.249

a(a2)

0.190

0.148

0.110

0.072

0.052

/>(/}, a-2)

-0.320

-0.283

- 0.254

-0.239

-0.209

Table 3.4: For c = 0

n

5

10

20

50

100

Mean

E(tJL)

-0.724

-0.705

-0.697

-0.690

-0.689

a(jt)

0.274

0.199

0.142

0.091

0.064

Variance

£(a 2 )

0.347

0.397

0.426

0.440

0.446

a(<72)

0.298

0.233

0.170

0.112

0.079

p{fi,a2)

-0.257

-0.216

- 0.207

-0.196

-0.178
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Table 3.5: The simulation results for the expected value and

standard deviation of fi and a2 and /?(/}, <r2),

for different values of n when R = 10000 and c= 1

n

5

10

20

50

100

Mean

E(fi)

-0.215

-0.208

-0.202

-0.201

-0.199

a(fi)

0.375

0.268

0.193

0.122

0.087

Variance

E(a2)

0.589

0.674

0.707

0.730

0.736

a(a2)

0.448

0.344

0.250

0.161

0.113

p{fi,a2)

-0.119

-0.108

- 0.076

-0.054

-0.042

Table 3.6: For c = 3

n

5

10

20

50

100

Mean

^E(jj)

0.0039

0.0012

0.0057

0.0014

-0.0016

a{p)

0.452

0.315

0.223

0.141

0.100

Variance

E{a2)

0.818

0.909

0.957

0.982

0.992

a(a2)

0.612

0.440

0.321

0.207

0.144

p(fi,a2)

0.051

0.042

0.029

0.025

0.021
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Table 3.7: The simulation results for the expected value and

standard deviation of jx and b2 and />(/}, <r2),

for different values of n when R = 10000 and c = 10

n

5

10

20

50

100

Mean

£(£)

0.0010

-0.0020

-0.00020

-0.0013

0.0018

a (p.)

0.455

0.317

0.224

0.142

0.100

Variance

E(a2)

0.804

0.903

0.948

0.981

0.989

a(a2)

0.565

0.422

0.307

0.199

0.141

/?(/i,<72)

0.00739

-0.00523

-0.00145

-0.00120

-0.00080

3.4.1 Conclusion:

Figure 3.1 contains a rather flat area so that many points have likelihood almost equal to

the maximum. Figure 3.2 shows a close up of the likelihood around its maximum.

Concentrating on the above tables we can see that E(jl) and E(a2) generally increase

and become closer to the true values as the truncation point c increases.

Note that we include c = 10, representing the complete normal distribution, in order to

check the results of the simulation study.

Using the t statistic, t = PJ^)^1', wJth R - 2 degrees of freedom, we tested the null

hypothesis Ho : p = 0 and found that the tests are significant for all values of n and c (except

c = 10 ) in other words p / 0. We conclude that fi and a2 are dependent in the truncated

case when truncation is present (see Tables 3.2 — 3.7).



Chapter 3 105

3.5 Theoretical results based on expansions in terms

of (x - fic) and (s2 - a2) (Method A):

The aim of this section is to extend the results of the Shenton & Bowman formula to the

joint estimation of the two parameters. To do this, letting T(C') = |vjr and T(C') = |Wp w e

note that (3.1) and (3.2) can be written as

V ; (3.6)
a2 = s2 + (x - fif + C'(T2T(C').

Firstly, we have to prove the following theorem and, secondly, expand the equations (3.6).

Theorem 3.2 The equations (3.6) are satisfied by jl = \i and a2 = a2 if x = fic and s2 = a2,

where x = £™=i xl/n, s2 = Er=i(x* ~ x)2/n, \ic = E{X) and a2 = Var(X) .

Proof: Assume that we have equations (3.6), and the conditions x = fic and

s2 = a2. We want to prove that jx — n and a2 = a2.

The equations (3.6) can be written as

n — (7T(C') = x
^ V ; (3.7)

a2 - (x - ji)2 - c'a2T(c') = s2.

As we know from Chapter 0, sections (0.1.8) and (0.1.12)

fic = jj,- crr(c')

and

ac
2 = a 2 [ l - c ' r ( c ' ) - r 2 ( C ' ) ] -

By the assumption of the theorem, the equations (3.7) can be expressed as

p, - CTT(C') -fi + crr(c') = 0

a2 - (fic - fi)2 - &a2r{&) - a2[l - C'T(C') - T2(C')} = 0.
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If, in equation (3.8), fi — fi and a2 = <x2, then

fi - arid) - fi + O-T(C') = 0
V ^ ^ l j (3.9)

a2 - [fi - (JT(C') - fi]2 - C'(T2T{C') - a2[l - C'T(C') - T2(C')] = 0.

In view of the fact that

fi - CTT(c') - fi + (TT(c') = 0

<72[1 - C'T(C') - T2(c')} ~ G2[l - C'T(C') - T2(c')} = 0,

it can be seen that (/i = fi,cr2 = a2) is a solution of (3.6).

E x p a n s i o n of E q u a t i o n s : Using the extension of Shenton & Bowman's results we

can expand each equation of (3.6) in the following way

fi = A0O + Alo(x-fic)/V. + A01{s2-a2
c)/l\ +

A20(x - fic)
2/2\ + A02(s

2 - ac
2)2/2! +

A n ( S - / / c ) ( 3 2 - ( 7 c
2 ) / l ! l ! + --- (3 .11 )

a n d

a2 = B00 + Bw(x- fic)l1! + B01(s
2 - a2)/1!+

B20(x - /Uc)2/2! + B02(s
2 - a2

c)
2/2\ +

Bn(x-fic)(s
2-a2)/V.V. + ---. (3.12)

This expansion can be continued in a similar manner. For our present estimation purposes

we have given the expansion of fi and a2 ( equations (3.11) and (3.12)) only up to the second

term. Then it follows that we must have
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= gprp

R D ocr I
D. -Dio — ~fr~ l(i'=A

7 D do2 I

8. -Don =

9- -6o2 J

f I(«=MC =̂<T2) etc.

According to Theorem 3.2, if a; —>• /̂ c and s2 —> cr̂ , then /i —*• // and <r2 —> CT2. Therefore

from equations (3.11) and (3.12) it can be concluded that AOo = ^ and i?oo = v2•

By taking the first and second partial derivatives of each equation and using Theorem

3.2, we can find the remaining coefficients.

3.5.1 Preliminary calculation:

In this section we calculate some of the expressions which we will need later on.

3.5.1.1 Calculation of |f-:

Let

Taking the partial derivative of & with respect to s2 we obtain

d{c-p)
1

)8s2 ~ djl
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1 8" * d ^ (3.14)

3.5.1.2 Calculation of g-:

Similarly, taking partial derivative of c! with respect to x we obtain

dx L bdx 2<r2 dxv K ' '

3.5.2 Calculation of A\Q and i?io:

Now, taking the partial derivative of the first equation in (3.6) with respect to x, we have

djl ^ [ ( ( ^ 2 ) 1 / ' 2 T ( ^ / ) ]
T73 = 1 H ?r:
OT ax

(3.16)

which , on replacing |r- from equation (3.15) writing T'(C') for ^g ' , gives

i^f + lM^lf- (3l7)

Substituting /« from first equation (3.6) into second equation, we obtain

a 2 = s2 + (c- X)CTT(C'). (3.18)

Again, substituting CTT(C') from first equation (3.6) into equation (3.18), we obtain

a2 = s2 + (c-x){il-x). (3.19)

Taking the partial derivative of the equation (3.19) with respect to x, we have

2x-c-fl. (3.20)
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Equations (3.17) and (3.20) can be written as

/ - r\d^ 4- do2

^ I ox ox

> dx • L -ia j ox -1 (^K t)"\\

The simultaneous solution of equation (3.21), gives

and

dp = 1-(2X-C-P)[?T'(C')-T(C')}/2&

[ jdx ~ E

where

E = 1 + T'(C') -(X- C)[C'T'(C') - T(C')]/2(T. (3.24)

Now, according to Theorem 3.2, as x —> \ic and s2 —*• a2, then p —>• // and a —> cr. Therefore

we can find

and

where

E = 1 + r'C^) + [c'r'(c') - r{c')}[c' + r(c')}/2. (3.27)

3.5.3 Calculation of AOi and BOi:

Now, taking the partial derivative of the first equation in (3.6) with respect to s2, we have

dp d[(a2y/2T(c')]
d72
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which , with replacing | | - from equation (3.14) and T'(C') for dT^a> gives

Taking the partial derivative of the equation (3.19) with respect to s2, we have

Solving the (3.29) and (3.30) simultaneously

gives
dfi &T'(&) -

and

(3.32)

where £" is as defined in equation (3.24). Now, using Theorem 3.2 as s2 —> cr̂ , then <r —> cr,

we find

A0l =

and

» 2 • _ = i±^i (,.34)

where _E is as denned in equation (3.27).

3.5.4 Calculation of A2o and -B20:

In this section we are going to calculate A2o and B20. Taking partial derivative of equations

(3.21) with respect to x, we obtain

4- T'(r'W&lL 4. \ST'{S)-T(3) 1,92a2 __ T"(C') /9£ , ^ a ^
2a ]2

(3.35)
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Solving the equations (3.35) simultaneously, we find

d2fi _
~dx^~

and

(y
4CJ2 \ Ox ox

da \dx 2a dx

C'T'(C')-T(C') da2

4<T3 l dx }

Now, using Theorem 3.2 we find

A™ = 4* \ ' V ) (A™ + YaB™ I + [cV(c/) " T(C')] Aw - l

and

B20 = - 2 ( 1 - ^fc')Um + —

or in terms of c', r(c /), r'(c'), T"(C'),

1

2aE2

•')-r(c')}[r(c') + T'(c')(c' + 2T(c'))]2}

{[C'T'(C') - T(C')][2T'(C') - T(C'){C'T'(C') - T(C'

and

B20 = ^

[c' + T'(C')}[CV(C') - r(c')][r(c') + T'(C')(C' + 2r(c'))]2/4}

4 {[1 + T(C')][2T'(C') - T(C>)(C>T'(C') - r(c')))}

(3.36)

(3.37;

(3.38)

(3.39)
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3.5.5 Calculation of An? and

In this section we calculate A02 and B02- Taking the partial derivatives of equations (3.29)

and (3.30) with respect to s2 we obtain

_L r'(r'
_ T"(S)

2a

- 0

dU_ , SL§SLV _L
d£ < 2ads? <

.(§zLv

Solving the equations (3.40) simultaneously,

i f T"(C') ( dp

a \8s2 " i

and

(x - c) ' dp
W2

c'r'(c')-r(c') da2

4a3 l ds2 '

c'r'jc') - T(C') dada 2

4a3 v 9s2

By Theorem 3.2 we therefore can find

^, = - ^ \ r'V) U i + £B01\ + ~[c'r\c') - r(c')]B2
m

and

Bno = —- Am + ~B01 4 C T 2 '

Equivalently, in terms of c', T(C'), T'(C'), T"(C'), we have

T{C')]2 + [C'T'(C') -

and

"(C')[C' + r(CQ]3 + [C'T'(C') - r(CQ][c/

T'{C'))

(3.40)

(3.41)

(3.42)

(3.43)

(3.44)
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3.5.6 Calculation of An and Bn:

In this section we are going to calculate An and B\\. Taking the derivatives of equations

(3.21) with respect to s2 we obtain

*/\l 92A 1 \Sr'
d£dx

&» PS*
ds^dx ds^dx

2a

9# •

"I 9 2<T 2

B^dx
T"

S

(&) 1 dp. 1
a V9*
T\S)-T(S) d,

4&3 d

2 do2

2(T dx

P da2

Solving the equations (3.45) simultaneously,

fdfi cf
ds2dx ~ crE \ds2 + 2<r ds2 ) [ftt + 2& dx

and

ds2dx E{ O- \ds2 2a ds2 j \dx 2a dx

+

4cr3 \ds2 dx J ds2

By Theorem 3.2, therefore we can find

and

(3 45)
V • ;

\ 2&E ) \2a2ds2 dx + ds2 l '

d2a2 _ I \{X-C)T"{&) (dp. &_da2\(dfii & dar

ds2 J

c r (c j T{C ) \ I 1 \ .
I ti + A01 I (3.48)

7 £>oi ^10 + 7 T - D I O (

Za J \ la J

)} I + r'(c')
01 10 E 01 ' ( }

l a J E 0 1 1 0 E
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Expressions in terms of c', T(C'), T'(C'), T"(C'), are

- [c'r'(c') - T(C')

and

- [c'r'(c') - r(c'

To make sure that our calculations are correct, An and B\\ were obtained by the alternative

method of differentiation firstly with respect to s2.

3.5.7 Calculation of E(p):

In this section we derive E(fi). Taking the expectation of both sides of equation (3.11) and

letting x —>• fj,c, s
2 —> a2, fi —> JJ, and a2 —> cr2, we have

/xc)
2/2! + AO2E(s2 -

AUE(X - fic)(s
2 - a2

c

A02£(s2 - ac
2)2/2 + AUE{X - fic)(s

2 - *2
C)} + • • • , (3.51)

since E(X — jic) = 0.
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3.5.7.1 Calculation of E(s2 - a2):

Define the bias b(s2) = E(s2 - a2) = E(s2) - a2. Since

s2 = ^i=^Xi~x> (3.52)
n

and we know that

n - \

we obtain

n n n

The bias term is

b(s2) = E{s2)-o2
c = n-^-o2

c-o
2
c = -\ol

(3.54)

n
a2

= { 1 + T'(C')1}. (3.55)

n

3.5.7.2 Calculation of E(X - /ic)
2:

From Chapter 0, sections (0.1.23) and (0.1.12)

H2(X) = a2{l-T(c')[c' + T(c')}}

= <T2{[1 + r'(c')]}. (3.56)

Also we have the following conditions



Chapter 3 116

Therefore, we have

E(X -? .. ^2

3.5.7.3 Calculation of E{s2 - a2)2:

We can write

E{s2-a2
cf = E{[s2-E{s2)] + [E{s2)-a2

c]}2

= Var(s2) + 2b(s2)E[s2 - E{s2)} + b2(s2)

= Var(5
2) + b2(s2).

It is well-known ( Kendall & Stuart (1952), p. 233 ) that

,_, x, x +

\ n — I ) n

then

n n — 1

Var(5
2) = n - 1

Tl Tl( Tl — 1 )

Substituting equations (3.55) and (3.61) into equation (3.59) we obtain

E(s2-a2
c)

2 = -[(n-lf

2n - 1
T'(c')]2

where from Chapter 0, sections (1.1.16) and (0.1.23) fourth moment of

HA{X) = 3a4(l - C'T(C') - T2(C'))2

+ a4[{3c> - C'3)T{C') + (4 - 7C'2)T2(C')

- 12C'T3(C') - 6r4(c')]

(3.58)

(3.59)

(3.60)

(3.61)

(3.62)

(3.63)
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3.5.7.4 Calculation of E(X - JJ,C){S2 - a2) :

In order to obtain E(X — ̂ c){s2 — cr2) we use the following Lemma

Lemma 3.1 For {a,-}" and {bi}™ sequences of real numbers,

r (3-64)
2 = 1 2 = 1 2 = 1 2=1 jz£i

Let j/j = Xj — /J.C and y = x — /ic and the yt-'s are independent random variables. In the

following argument use equation (3.52) and apply Lemma 3.1.

E(X - fic)(s
2 - <r2

c) = E[X-ftc]s2

^ ± i ( ± y f - nf)]
i=l 2 = 1

= —\nn3(X) + n(n — I) ̂ (X) ^2(X) — n2fj,3(X)}
n2

— — [nfl3(X) + n{n ~ ^-)lil(X)lJ.2{X) — fl3{X)]

n — 1 n — 1 r i

= ^~r^{X) = ^—i -aV(c') • (3-65)
n / n 2 L J

Now the first moment of the variable X about its mean is zero and

fi3{X) = 3
 2 . (3.66)

Hence, using ^3(X) from Chapter 0, section (0.1.23), we find

E(X - fic){s2 - <jc
2) = — — ^ ^ — ^ T—^—.

= —— 2
 T • (3-67)

n 2
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Substituting E(s2 - a2), E(X - //c)2, E(s2 - a2)2 and £ (X - fj,c)(s
2 - a2) from equations

(3.55), (3.56), (3.62) and (3.65) into equation (3.51), we obtain

(3.68)
+ 0(n-2)

— ^ n~ \ v 2

-An<7T//(c/

- A)l)/^2

--A0 1)[l

)} + 0(n-

+ Ac')} +

-2)-

,4(X)- / ,
2(X)] + A11^(X)}

^f [r///(c') + 2[l + r'(c')]2]

3.5.8 Calculation of E(&2):

In this section we derive the theoretical formula for E(&2). Taking the expectation of both

sides of equation (3.12) and letting x —> fic and s2 —> a2 so that /«—>•// and a2 —> a2, we

have

E(a2) =

B20E(X - fic)
2/2l + B02E(s2 - a2

c)
2/2\

B1XE{X - fic)(s
2 - • • •. (3.69)

Setting .Boo = cr2 and substituting E(s2-a2), E(X-/2C)2, E(s2-a2)2 and E(X-/ic)(s
2-a2)

from equations (3.55), (3.56), (3.62) and (3.65) into equation (3.69), we obtain

(3.70)

E(*2) = a2 + ±

+ 0(n-2)

= (j2 + V
- 5uar"

{(¥

{(^
(C)}

L - B01)

+ 0{n~2

2(X) + $

1 + r'(c')

)•

] + ^ [ T ' " ( C ' ) + 2[1 + T'(C')]2]

3.5.9 Calculation of Var(/x):

In this section we find the variance of /}, by using the formula

Var(/i) = (3.71)
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Using £(£) , E{s2 - a2), E(X - //c)2, £(s 2 - <rc
2)2 and E{X ~ ^c){s2 - a2) from equations

(3.68), (3.55), (3.56), (3.62) and (3.65) we find the variance of fi up to O ^ " 1 ) ,

Var(A) = i{Aloli2(X) +

+ 0(n-2)

= $ {Alo[l + T'(C

- 2AWA01<7T"(C>)

A2
01 M

')] + Al

} + 0(n

X) —

Ar'"(c

U2(X)]

') + 2[l+ T'

hoAol^(X)}

(c')]2}
(3.72)

3.5.10 Calculation of Var(<72):

In this section we derive the variance of a2. For this we are using the formula

Var(a2) = E(a2 - a2
cf - [E(a2 - a2)]2. (3.73)

Using E(a2), E(s2 - a2), E(X - //c)2, E(s2 - a2)2 and E(X - fic)(s
2 - o2

c) from equations

(3.70), (3.55), (3.56), (3.62) and (3.65), we find the variance of a2 up to O ^ 1 ) ,

Var 'a2) = H^c
+ 0(n-2

= £{#i
- 2B10f

)

?oicn

^ ) + B2
01

H r'(c')] .̂ o 2 i [ r ' "

0(n"2).

V) + 2

)] + 2BwB01fi3

[1 + r'(c')]2]
(3.74)

3.5.11 Calculation of Cov(/},<72):

In this section we derive the covariance of fi and a2. For this we use the formula

Cov(/i,a2) = E{[(ii-(ic)-E({JL-vc)][(*2-<r2c)-E(*2-°2c)]}- (3-75)

Equations (3.68), (3.70), (3.55), (3.56), (3.62) and (3.65) give expressions for £(/!), E(a2),

E(s2 — a2), E(X — fic)
2, E(s2 — a2)2 and E(X — fJ,c){s2 — cr2) the covariance of (j, and a2 up
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to O(n x), namely

Cov(/i, a2) = \ {AwBWfJ.2(X) + Aoî Boi

= ^ {AWBW[1 + T'(C')} + A01B0i[Tr
(3.76)

To compare the theoretical results of E(jl), cr(/x), E(cr2) , cr(<5"2) and p(jj,,cr2) with the

simulation study, we use a computer program (see Appendix Program 19 ) to calculate the

expected values for different sample sizes n = 5,10, 20, 50,100 and different truncation points

c = —1.88, —1, 0,1, 3,10. The results are presented in Tables 3.8 — 3.13.

Table 3.8: The theoretical results for the expected value and

standard deviation of fi and <r2 and p(fi,cr2),

for different values of n when c = —1.88,

using Shenton &z. Bowman methods, fi = 0, a = 1

n

5

10

20

50

100

Mean

E(fi)

35.07

17.54

8.77

3.51

1.75

11.58

8.19

5.79

3.66

2.59

Variance

E(a*)

2261.23

1131.11

566.06

227.02

114.01

4.55

3.21

2.27

1.44

1.02

/)(/i,5-2)

0.99

0.99

0.99

0.99

0.99
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Table 3.9: The theoretical results for the expected value and

standard deviation of jj, and a2 and /?(/}, a2),

for different values of n when c = — 1,

using Shenton &; Bowman methods, fj, — 0, <r = 1

n

5

10

20

50

100

Mean

£(£)

9.62

4.81

2.40

0.96

0.48

5.52

3.91

2.76

1.74

1.23

Variance

E(a2)

252.76

126.88

63.94

26.18

13.59

a(a2)

2.99

2.11

1.49

0.94

0.67

p(fi:a
2)

0.98

0.98

0.98

0.98

0.98

Table 3.10: For c = 0

n

5

10

20

50

100

Mean

E(fi)

1.83

0.91

0.46

0.18

0.091

2.10

1.49

1.05

0.66

0.47

Variance

E{P)

14.54

7.77

4.39

2.35

1.68

O-(<72)

1.80

1.27

0.90

0.57

0.40

p(fi,cr2)

0.93

0.93

0.93

0.93

0.93

Comparing Tables 3.8-3.10 with 3.2-3.4 we notice that for small values of n the bias is large

while for increasing n the bias is reduced. This may be due to the fact that our Taylor
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expansions provide us with good approximations when n is large, but, when n is small,

converge rather slowly so that obtain good accuracy we require more terms in the Cox &

Hinkley and Shenton & Bowman expansions.

Table 3.11: The theoretical results for the expected value and

standard deviation of fi and <r2 and /9(/i,<72),

for different values of n when c = 1,

using Shenton & Bowman methods, ji = 0, a = 1

n

5

10

20

50

100

Mean

£(£)

0.34

0.17

0.084

0.033

0.017

a(fi)

0.81

0.57

0.40

0.26

0.18

Variance

E{°2)

1.54

1.27

1.13

1.05

1.02

a(a2)

0.22

0.78

0.55

0.35

0.25

p(fi,cr2)

0.72

0.72

0.72

0.72

0.72

Table 3.12: For c = 3

n

5

10

20

50

100

Mean

E{fi)

0.016

0.0079

0.0039

0.0016

0.00079

0.45

0.32

0.23

0.14

0.10

Variance

0.85

0.92

0.96

0.98

0.99

a(a2)

0.66

0.46

0.33

0.21

0.15

p(fi, <T2)

0.033

0.033

0.033

0.033

0.033
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Table 3.13: The theoreticals results for the expected value and

standard deviation of p and a2 and />(/}, <r2),

for different values of n when c = 10,

using Shenton & Bowman methods, // = 0, a = 1

n

5

10

20

50

100

Mean

E{P)

0.38 x 10-19

0.19 x 10"19

0.94 x lO-20

0.38 x lO-20

0.19 x lO-20

<7(/i)

0.45

0.32

0.22

0.14

0.10

Variance

E(a2)

0.80

0.90

0.95

0.98

0.99

a(a2)

0.63

0.45

0.32

0.20

0.14

p(p,a2)

0.55 x lO-20

0.55 x lO-20

0.55 x lO-20

0.55 x 10-20

0.55 x 10-20

3.5.12 Conclusion:

The Figure 3.5 shows a plot of E (calculated in equation 3.27) against c, from which we see

that E is a monotonic increasing function of c. E becomes small when c < 0 and approaches

1 as c —> oo. From the Figure 3.5 we see that the bias in p and a2 may will be large for

c < 0 and possibly for some positive values (Program 20 which plot the E against c is given

in Appendix ).

The expected values of p and a2, given in equations (3.68) and (3.70), involve A and B

terms (defined in section (3.5.2)) whose denominators are functions of E defined in equation

(3.27). Consequently, E should have an important bearing on the biasedness of p and a2.

As noted, the amount of bias is large for small values of c. The smaller the value of c,

the larger is the difference between the values in the two tables 3.2 and 3.8. For large c
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Figure 3.5: The plot of E against the truncation point c

for example, when c — 3 the Tables 3.6 and 3.12 have almost identical values. For c = 10,

Tables 3.7 and 3.13 show that the two methods provide identical values for E(fi), cr(jl) and

-E(o"2), and that the values for <j(a2) are very close. Furthermore, for the same value of c,

Table 3.7 shows that the simulated values are quite close to the theoretical ones. Hence,

for small values of c, to obtain better approximations of the theoretical results expansion to

further terms is needed, which requires the evaluation of A30, A03i i330, B03 etc.
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3.6 Theoretical results based on expansions in terms

of (x — fic) and (s — <rc) (Method B):

An alternative approach is the expansion of jl and a based on (x — //c) and (s — ac). Its

difference from Method A is that in Method B, (x — fic) and (s — ac) are of the same dimension

whereas in Method A, (x — /ic) and (s2 — a2) are not. For the joint estimation of the two

parameters \i and a, we extend the results of Shenton & Bowman formula as following:

E x p a n s i o n of E q u a t i o n s : Using the extension of Shenton & Bowman's results, we

can expand the equations (3.6) in the following way.

Assume that

ft = A'oo + A'w{x-f

A'20(x - ^ c ) 2 / 2 ! + A'02(s - ac)
2/2l +

A'11{x-fic)(s-<Tc)/V.V. + --- (3.77)

and

a =

B'11(x-vc)(s-(Tc)/m\ + ---. (3.71

We need to know

1. A' = ^ \(s_ s_a)

2. A' = ^- 1/=-.. ^

3. A'2O =

4- A'O2 =
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l — &{>•
H ~~ dxds

DI do I

l
7 D / OCT I

-°01 gs |

O TDI _ 92O-

°- -°20 ~ 9(̂ )2

02 d(s)2 \(x—(*c,&=<Tc) i

10. B^ = g Q \(S=ficiS=(7(j e tc .

According to Theorem 3.2 as x —> fic and s —> ac, then ft —> pi and <r —» cr. Therefore

from the equations (3.77) and (3.78), it can be concluded that A'oo = Aoo = pi and B'oo = a.

By taking the first and second partial derivatives of each equation and using Theorem

3.2, we can find the remaining coefficients.

3.6.1 Preliminary calculation:

In this section we calculate some of the expressions which we will need later on.

3.6.1.1 Calculation of f-:
as

Let

c' = (c - fi)^-1. (3.79)

Taking the partial derivative of & with respect to s we obtain

dc' d(c—jl) dfi^_x da~x da,

ds dpi ds da ds

_i du _2, N da
= [-a L- a {c-n)—\. (3.80)
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3.6.1.2 Calculation of f̂ -:
OX

Similarly, taking the partial derivative of c' with respect to x we obtain

dc' i

3.6.2 Calculation of A'l0 and -Bj0
:

Now taking the partial derivative of the first equation in (3.6) with respect to x, we have

dp, da , , (9r(c')

9 3 5

^ ^ f (3.82)
dx dc! dx

which , on replacing ^ - from equation (3.81) and T'(C') for g-r-, gives

[l + r ' ( c ' ) ] | | + [ cV(c ' ) -T (c ' ) ] | | = l. (3.83)

Taking the partial derivative of the equation (3.19) with respect to x, we have

(x-c)^ + 2a^- = 2x-c-fi. (3.84)
dx ox

Solving the (3.83) and (3.84) simultaneously

gives

dfi 2a-(2x-c-fi)[c'r'(c')-T(c')}
—— = T.

dx 2aE

and

(o.ooj

T{C)}

dx 2aE '
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Now, according to Theorem 3.2, as x —> \ic and s —> crc, then fi —> \i and b —>• <7.

Therefore we find

^ _ l + [cy(c')-T(c')][c'
10 ~ 9x ' (*="<••=<*) - E

= Aw (3.87)

and

{ ( ) T'(C')]+T'(C')[C' + T(C')]} BW

l0 = ^ \(^c,s=,c) = 2 l = ^ ( 3 ' 8 8 )

3.6.3 Calculation of A'Q1 and B'^:

Now, taking the partial derivative of the first equation in (3.6) with respect to s, we have

95 9c' 95

which , on replacing ^- from equation (3.80) and T'(C') for dT^p , gives

[1 + r ' ( c ' ) ] | ^ + [aV(c') - T(C')]^- = 0. (3.90)

Taking the partial derivative of the equation (3.19) with respect to 5, we have

-b(T(c') + c')^ + 2b^- = 2s. (3.91)
os os

Solving (3.90) and (3.91) simultaneously gives

9A = 5[cV(cQ - T(C>)}

ds bE

and
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4 (3.93)
ds aE

where ii1 is as denned in equation (3.24).

Now, using Theorem 3.2, as x —> fic and s —>• <rc, then ft -+ p and <r —> <r, we find

_ ĉ u. _\c_
01 ~ ds > (*=*=•'•=") - E

= 2<r[l+ T ' (C ' ) ] 1 / 2 A O I (3.94)

and

B1 - —

where £ is as denned in equation (3.27).

3.6.4 Calculation of A!
2i} and B^:

In this section we calculate A'2O and B'2O. Taking the partial derivatives of equations (3.83)

and (3.84) with respect to x, we obtain

[c'r'(c') - r(*)]ff = ^ [ f + c'§]2
 g

g [ § ( § ) » ]

Solving the equations (3.96) simultaneously, we find

(3.97;

and

a2a _ 2[1 + r-(cQ][l - j - (f) '] -
Ox2 2uE

(3.98)
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Now, using Theorem 3.2,

{r"(c')[A'w + c'B'wr - [c'r'(c')

and

"(c')[c' + r(c')][A'
w

or, in terms of c', T^C'), T'(C') and r"(d),

r"(c')[l + r'{c')f + [c'r'(c') -

and

B'2O =

n Tp2

{2T'V)W

A'1O - (B'wf}} (3.99)

- A'w - (B'wf]} (3.100)

r'(c')) + r'{c'){c'

T?

3.6.5 Calculation of y4/O2 and B'm'

In this section we calculate A'O2 and _BQ2. Taking the partial derivatives of equations (3.90)

and (3.91) with respect to s we obtain

-a(r(c>) + &)*& = 2[1 - (§)*].
(3.101)

Solving the equations (3.101) simultaneously, gives

and

(3.102)

a lds
(3.103)
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Using Theorem 3.2 we can find

<2 = -^ {r"(c')(A'm + c'B'01f - [c'r'(c') - r(c'))[l - ( i ^

and

(3.104)

B'O2 = {2[1 + r'(c')][l - (B'01f ) + r"(c')[c' + r(c')](A'ol + c'B'01f} (3.105)

or, expressed in c', T(C'), T'(C') and T"(C'),

A}2 — - [c'r'(c') - r(c')}
[1 + r'(c')f

and

5 ° 2 = 2aE V
±

r'(c')f

E2

3.6.6 Calculation of A'n and B'n:

To calculate A'lx and B'u we take the derivatives of equations (3.83) and (3.84) with respect

to s and obtain

c'§][§ + a'f ]

*) + ?)& + 2°£Sr = - f - 2 f §•
(3.106)

Solving the equations (3.106) simultaneously, gives

d2jl 1

dsdx 2r"(c') ^t + c'—
dx dx ds ds

ds dx
(3.107;

and

d2a
dsdx

H

r

1

+ r'

1 -
I
;c')i

c rM =')

ds dx

dx
\dfi
[ds +

,,dcr

^ ds

(3.108)
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Using Theorem 3.2, we find

R' U (3 1 0Q"l

and

(3.110)

Rewriting, in terms of c', T(C'), T'(C') and r"(cf), we have

[c'r'(c') - r(c')}[r(

[ C V ( C ' ) - T ( C ' ) ] 2 [ 1

and

rV)]3/2[cV(c')-r(c')]

To make sure that our calculations are correct, A'n and B'n were calculated by the alternative

method of differentiating firstly with respect to s.

3.6.7 Calculation of E(fi):

In this section we derive E(fi). Taking the expectation of both sides of equation (3.77) and

letting x —> He, s —> <rc, fi —> fi and a —> a, we have
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A'20E(X - fic)
2/2l + A'02E(s - ac)

2/2l +

A[1E{X-fic)(s-<rc)/lll\ + ---

fi + {A'01[E(s - ac)} + A'20E(X - fic)
2/2+

A'02E(s - ac)
2/2 + A ' n £ ( X - fic)(s - ac)}

since E(X — fic) = 0.

3.6.7.1 Calculation of E(s - ac)
2:

It is well-known ( Kendall & Stuart (1952, p. 233) ) that up to O(n~l

Now the bias in s is in 0{n~~l) (see the next section). Therefore

E(s - ac)
2 = ^W -fiW 2

Substituting

we obtain

(3.111)

and fi4(X) from equations (3.56) and (3.63) into equation (3.113),

3.6.7.2 Calculation of E(s - <rc):

We know that

Var(s) = E(s2) - [E(s)}2. (3.115)

Substituting Var(s) and E(s2) from equations (3.112) and (3.54) into equation (3.115) we

obtain

E(s) = (3.116)
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On expanding E(s), we find

E(s) =
8n

Since, in this case, ac = Jfi2(X), we have

1
E(s-ac) = -

8nJfjL2(X)

8n[l +

3.6.7.3 Calculation of E(X - (ic){s - <rc)

From Kendall & Stuart (1952, p. 233), up to

Cov(X,s) =
2nJfi2(X)

Therefore, we can find

E(X - - <rc) =

From the results in Chapter 0, section (0.1.23), we have

E(X - fjLc)(s - ac) = ^ " ^
2 r'(c')

0{n - 2 -

(3.117)

(3.118)

(3.119)

(3.120)

(3.121)

Substituting E(s - ac) from (3.118), E(X - nc)
2 from (3.58), E(s - crc)

2 from ( 3.114) and

E(X — /^c){s — <JC) from ( 3.121) into equation (3.111), we obtain

E(n) = g I M

(3.122)
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3.6.8 Calculation of E(a):

In this section we derive the theoretical formula for E(a). Take the expectation of both

sides of equation (3.78) and let x —> //c, s —>• <rc, jj, —> // and <r —>• cr. Then setting B'oo = a

and using E(s - crc) from (3.118), E(X - fic)
2 from (3.58), E(s - CTC)2 from (3.114) and

E(X — fJ-c)(s — crc) from ( 3.121), we obtain

(3.123)

3.6.9 Calculation of Var(/i):

In this section we find the variance of fi. To do this using the formula:

Vax(/i) = - [£(£ - (3.124)

Taking E(/i) from (3.122), E(s - ac) from (3.118), E(X - /ic)
2 from (3.58), E(s - <rc)

2 from

(3.114) and E(X — /JLC)(S — crc) from ( 3.121), we find the variance of /t, up to O(n~l).

(3.125)

Using the relationships between A'1O and Aio from equation (3.87) and between A'O1 and AQI

from equation (3.94) it can be shown that formula for Var(/i) in equation (3.125) (Method

B) is identical with that given in equation (3.72) (Method A).
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3.6.10 Calculation of Var(a):

In this section we derive the variance of <r, through the formula

Var(o-) = E{a - acf - [E(a - ac)}
2. (3.126)

Using E(cr) from (3.123), E(s - ac) from (3.118), E(X - //c)
2 from (3.58), E(s - ac)

2 from

( 3.114) and E(X — fic){s — cc) from (3.121), we find the variance of a up to Oin'1)

(3.127)

3.6.11 Calculation of Cov(/},cr):

To derive the covariance of ft, and a, we apply the formula

Cov(/i,<7) =

Using E(fi) from (3.122), E(a) from (3.123), E(s-ac) from (3.118), E(X- JJ,C)2 from (3.58),

E(s — crc)
2 from ( 3.114) and E(X — fxc)(s — o'c) from (3.121) , we obtain the following form

for covariance of ft and a, up to 0{n~1):

+ [-

l

|A loi? lo^2(^

2y/l+r'(c')

*> ] \ 0

r'(c')] + ^
d) 1 + 0

W(A)-^(A)]

^1F1 O{T"'(C')+2[1+T'(C')]2}

4[1+T'(C')]

(n~2)

(3.129)

To compare the theoretical results of E((i), <j{fi), E(a) , <J[CT) and p(fi,a) with the

results from a simulation study, we use a computer program (see Appendix Program 21 )

to calculate the expected values for sample sizes n = 5,10,20,50,100 and truncation points

c = -1.88,-1,0,1,3,10.
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Table 3.14: The theoretical results for the expected value and

standard deviation of jx and a and p(jl7a
2),

for different values of n when c = —1.88,

using Shenton & Bowman's method, fj, = 0, a = 1

n

5

10

20

50

100

E(fi)

781.06

390.53

195.26

78.11

39.05

11.58

8.19

5.79

3.66

2.59

E(a)

5.11

3.06

2.02

1.41

1.21

a{a)

2.27

1.61

1.13

0.71

0.51

p{£i,a)

0.71

0.71

0.71

0.71

0.71

E(^)

31.26

11.95

5.35

2.49

1.72

Table 3.15: For c = - 1

n

5

10

20

50

100

E(fji)

109.93

54.96

27.48

10.99

5.49

5.52

3.91

2.76

1.74

1.23

E(a)

2.31

1.65

1.32

1.13

1.06

a{a)

1.49

1.06

0.75

0.47

0.33

0.59

0.59

0.59

0.59

0.59

E(a2)

7.56

3.58

2.30

1.50

1.23
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Table 3.16: The theoretical results for the expected value and

standard deviation of fi and <r and p(/i,<j2),

for different values of n when c = 0,

using Shenton &c Bowman methods, fj, = 0, u = 1

n

5

10

20

50

100

9.35

4.67

2.33

0.93

0.46

CT(/})

2.10

1.49

1.05

0.66

0.47

E(&)

1.22

1.11

1.05

1.02

1.01

a(a)

0.89

0.63

0.45

0.28

0.20

p(fi,a)

0.44

0.44

0.44

0.44

0.44

E{P)

2.28

1.63

1.31

1.12

1.06

Table 3.17: For c = 1

n

5

10

20

50

100

E(d)

0.74

0.37

0.19

0.074

0.037

CT(/2)

0.81

0.57

0.40

0.26

0.18

E(a)

0.96

0.98

0.99

0.99

0.99

a(a)

0.55

0.39

0.27

0.17

0.12

p{fi,a)

0.35

0.35

0.35

0.35

0.35

E(a2)

1.22

1.11

1.05

1.00

0.99

Comparing Tables 3.14- 3.16 with 3.2-3.4 shows that their disparities are high for small

values of n and c. It is possibly due to slow convergence of underlying Taylor expansions.
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Table 3.18: The theoretical results for the expected value and

standard deviation of fi and <r and p(jl7cr2),

for different values of n when c = 3,

using Shenton & Bowman methods, p = 0, a = 1

n

5

10

20

50

100

E(A)

0.016

0.0080

0.0040

0.0016

0.00080

a{ft)

0.45

0.32

0.23

0.14

0.10

E(a)

0.87

0.93

0.97

0.99

0.99

0.32

0.23

0.16

0.10

0.073

0.032

0.032

0.032

0.032

0.032

E(a*)

0.86

0.92

0.97

0.99

99

Table 3.19: For c = 10

n

5

10

20

50

100

E(fi)

0.38 x 10-19

0.19 x 10~19

0.94 x lO-20

0.38 x lO-20

0.19 x lO-20

0.45

0.32

0.22

0.14

0.10

E(a)

0.85

0.92

0.96

0.98

0.99

a(a)

0.32

0.22

0.16

0.10

0.071

p(fi,a)

0.54 x lO-20

0.54 x lO-20

0.54 x lO-20

0.54 x lO-20

0.54 x lO-20

E{P)

0.82

0.89

0.95

0.97

0.98
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3.6.12 Conclusion:

In comparison of Tables 3.14-3.19 related to the results of expansion method B with the

Tables 3.8-3.13 in method A we can say that the E(jl) in method A is less than E(fi) in

method B. Moreover the comparing of the E(cr2) with its counterpart we can say that E(cr2)

in method B is less than method A.

In comparison Tables 3.2-3.7 with Tables 3.8-3.13 (Method A) and Tables 3.14-3.19

(Method B) we can see that for c < 3 the E(jl) in simulation has a significant difference with

its counterpart in methods A and B. But by increasing the truncation points c and sample

size n, the values of E(ji), cr(fi) and E(a2) are approximately the same for the simulation

method and methods A and B.

This can be explained as follows.

(a) The /t, a2 and a expansion were performed only up to second term.

(b) The values of E(fi), Var(/T), E(cr2), Var(<r2), E(a), Var(<r), Cov(/i, a) and Cov(/},<72)

are calculated up to O^"1). But, by increasing the truncation points c and sample size n

these differences disappear.

In equations (3.122) and (3.123), giving the expected values of fi and a respectively, we

see that the denominators of the coefficients A1 and B' terms, are all functions of the term

E defined in section (3.5.2). Consequently, E should have an important bearing on the

biasedness, the theoretical results for fi and a that we have derived.
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The one parameter case of maximum

product spacing estimator for the

truncated normal distribution:

4.1 Introduction:

The method of maximum likelihood estimation offers estimators which are sufficient , con-

sistent and efficient, rendering it one of the best methods of parameter estimation. Cheng

& Amin (1982) suggested the maximum product spacing (MPS) method for some distribu-

tions, such as the uniform, lognormal etc. They pointed out that the main properties of

MPS estimation are:

1. "MPS estimation gives consistent estimation under more general conditions than

ML estimation. In particular it gives consistent estimators when the underlying

distribution is J-shaped (parameter is shifted origin to the right in lognormal,

Weibull and gamma distribution), a situation were ML estimation is bound to

141
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fail.

2. MPS estimators are asymptotically normal and asymptotically are as efficient as

ML estimators. In some situations ML estimates are known to exist that are

"hyper-efficient" (in the sense of having variance less than the usual order n~l)

e.g. the maximum likelihood estimator of 9 in the uniform distribution over (0,0).

MPS estimators are then also hyper-efficient. In J-shaped distributions, where ML

estimation breaks down, MPS estimation still gives efficient estimators."

They suggested that the MPS method can be applied to any continuous univariate distribu-

tion with density function f(x, 0) and cumulative distribution function F(x, 9) (It is assumed

that f(x,9) is strictly positive in the interval (01,02)). They showed that, if 9 is the true

parameter value and yi < y2 < ... < yn is an ordered sample of size n drawn from the

density function f(x, 9), by using the transformation Z{ = F(yi, 0), i = 0,1, . . . , n + 1, where

y0 = a1 and yn+i = &2, and maximizing the geometric mean of the spacings

) , - } ^ (4.1)

or its equivalent

H = (n + I)"1 ln(G), (4.2)

where

Di = zi-zi-1 = jy' f(y,9)dy; i = 1,2,..., n + 1, (4.3)

the MPS estimator can be found. Thus the formal definition of MPS is

Definition 4.1 The estimator, 0, which maximizes the geometric mean G or its equivalent

H = ln(G); is called the MPS estimator of 0.
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Two years later Ranneby (1984) showed that if the distribution function F(x, 6) is not too

"heavy-tailed", and MPS estimator is 9, y/n(0—9) convergences to a normal distribution with

mean zero and a variance which is given by the lower bound in the Cramer-Rao inequality.

They showed that, in some situations, the MPS method gives consistent estimates but the

ML method does not. Also by the simulation, they demonstrated that the MPS estimate

converges faster than ML estimate. To find the rules for choosing between the MPS estimate

and the ML estimate when they are asymptotically equivalent, one needs to know more about

the small sample properties which are discussed in Ranneby (1984).

4.2 Estimation of \i when <J is known:

In this section, we estimate // by the MPS method , for the truncated normal distribution

when <J is known. We then compare ft with ft, found in section (2.2).

From Chapter 2, equation (2.1) we know that

Putting f(x. fj.) from equation (4.4) into equation (4.3) we have, for j/o, J/i, • • •, yn+i

rvi
Di = zl-zt_1= f(y,fj,)dy; i = 1, 2,. . . , n + 1

Jyi-i

° \ (4-5)

where ?/0, j / l 5 . . . , yn+1 are the order statistics of sample x0, x1,.. ., xn+i, and $(j/o),

are their corresponding cumulative distribution functions.

Therefore

ln(A) = HH^—^) - fr^""1 1*)] - l n $ ( ^ ^ ) . (4.6)
a a a
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Hence, from (4.1) and (4.2),

H = ln(G) = (n + I)"1 {ln(U^Dt)}
n+1

i=l

Taking the derivative of H with respect to /A, we obtain

|

The algebraic solution of equation (4.8) is impossible, so it has to be found numerically. For

this we use the NAG routine C05AGF in our program (see Appendix Program 22).

Theorem 4.1 The MPS estimator (jl) is asymptotically a sufficient, consistent and efficient

estimator of fi.

Proof: Consider

ln(A0 = li

= ln[/(y,-,,

where

R(yi, yl-1, /i) = In

Therefore, substituting In (A) into if we obtain

n+1

8 = 1

n+1

(n + I)"1 {£[ ln/( j / t , / i ) + ln(yt - y^ ) + i?(j,x-, y^ , //)]}. (4.10)
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Since, R(jji, ?/,-_i , fx) is dependent on //, using the proof of Cheng & Amin (1982), MPS and ML

estimation are asymptotically equal and have the same asymptotic sufficiency, consistency

and efficiency properties.

It can be shown that for n = 1 and n = 2 the MPS estimator \i approaches the sample

mean x as c —> oo.

Theorem 4.2 Let Xj,X2,.. .Xn be identically and independently distributed random vari-

ables with p.d.f. f(x,fi), and let the transformation (j> be one-to-one. Then a MPS estimate

is invariant under one-to-one transformation cf>.

Proof: Suppose fi, is a MPS estimate of [x, we now prove that <f>(fx) is a MPS estimate

of <f>(n).

Let us set fx* = <f>(fx), hence // = c^"1 (//*). Then

Let if(^) = H(cj)-1 (ft*)) = H*(n*). It follows that

max[H(fi)] = max[F(/f*)]. (4.11)

If we assume that a MPS estimate exists, then the term on the left-hand side of equation

(4.11) attains its maximum at jx. It follows then that the right-hand side attains its maximum

at //*, where (x* = (/>(£/•)• Therefore 4>{fi) is a MPS estimate of <f>(fx).

4.2.1 The MPS estimator of mean in data sets 1 and 2:

1. Consider the data set 1 and let <r = 1 and e = 10~5, where e is the maximum of

the absolute value of the difference between the iterated value and the solution of the

equation. Then we find that the MPS estimate of fi is

p. = -0.4248.
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Let HP = —. On plotting H and HP against a certain range of values /i in [-2, 2],

we get Figures 4.1 and 4.2 (see Appendix Program 23). We are plotting HP against c

to see that HP = 0 when H is maximum.

2. Using the data set 2 and letting a = 1 and e = 10~5, we find that the MPS estimate

of n is

jx = -0.2032.

When we compare the MPS estimator with the ML estimator, we can see that for the

two data sets of Chapter 1, the difference between the MPS estimate and the exact

value (fi = 0) is bigger than corresponding difference for the ML estimate.

4.2.2 The MPS estimator of the mean in ideal samples:

In this section we prove that the MPS estimators of ji for the ideal samples are zero and also

plot H and HP against different values of [i.

Theorem 4.3 In ideal samples, for every truncation point c the MPS estimator p, is zero.

Proof: From Chapter 1 we know that, for ?/,• a variable of ideal sample,

and hence
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Figure 4.1: / / versus fi for data set 1 (boys) (a — 1)

Figure 4.2: HP versus // for data set 1 (boys) (a = 1)



Chapter 4 148

Now, with the application of the formula (4.12), consider

a

7-^. (4.13)

Using (4.13), it follows that

Consequently, /i = 0 maximizes if, and the theorem is proved.

For the ideal sample of size 5 the plot of H and HP against a certain range of values fi

[-2, 2] are shown in Figures 4.3 and 4.4.

4.3 Simulation study to estimate the mean when the

variance is known:

In order to compare the expected value, standard deviation and variance of the MPS esti-

mator with those of the ML estimator we embark upon a simulation study.

4.3.1 The simulation study:

The Program 24, given in the Appendix, has been written to calculate E(}1), Var(/i) and

cr(/i), for the number of iterations R = 10000 and different sample sizes n = 5, 10, 20, 50 and

100. In this program we use the NAG routine G05DDF(0,l) to generate random deviates

from the normal distribution with mean zero and variance one and also use the Program 22



Chapter 4 149

Figure 4.3: H versus fi for the ideal sample of size 5 (c = —1.88, o = 1)

Figure 4.4: HP versus ji for the ideal sample of size 5 (c = —1.88, a = 1)
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as a subroutine to solve the equation (4.8). The results are given, for values of c = —1.88,

- 1 , 0, 1,3 and 10, in Tables 4.1.

Table 4.1: The simulation results for the

MPS estimate of /i, for different values of

n and c when \x = 0, a = 1

n

5

10

20

50

100

c= -1.88

E{P)
0.051

-0.051

-0.061

-0.043

-0.036

a(jl)

1.57

0.96

0.66

0.40

0.28

Var(/t)

2.46

0.92

0.44

0.16

0.078

c = -1

E(fl)

0.037

-0.046

-0.041

-0.031

-0.021

1.13

0.73

0.50

0.32

0.22

Var(/i)

1.28

0.53

0.25

0.10

0.048

Table 4.1: Continued

n

5

10

20

50

100

c = 0

E{fi)
-0.0021

-0.040

-0.034

-0.018

-0.016

a(fj,)

0.80

0.54

0.37

0.23

0.16

Var(/i)

0.64

0.29

0.14

0.053

0.025

c = 1

-0.0083

-0.0023

-0.018

-0.0098

-0.0067

0.59

0.40

0.28

0.18

0.13

Var(/2)

0.35

0.16

0.078

0.032

0.016
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Table 4.1: Continued

n

5

10

20

50

100

c = 3

E(jk)

0.0066

-0.0049

-0.0038

-0.0020

-0.0020

0.45

0.32

0.22

0.14

0.10

Var(/2)

0.20

0.10

0.050

0.020

0.010

<

E{p)

-0.0047

-0.0017

-0.0027

-0.0011

-0.00030

:= 10

a(fi)

0.44

0.31

0.22

0.14

0.10

Var(/2)

0.18

0.097

0.049

0.020

0.010

The results in the extended Table 4.1 show that, for each truncation point, the value of

Var(/x) decreases as n increases, as is to be expected. Moreover, it can be seen that, as the

truncation point c increases, so Var(/2) decreases. But the comparison of E(jl) and a(p.) from

Table 4.1 with the corresponding values of E(jl) and u(jx) from Table 2.3 shows that E(jl) is

closer to the exact value of fi(— 0) than E(jl), for example for n = 5 and c = —1.88 we have

E(p, = 0.051). Also, we can see that for almost every truncation point, <r(ji) is less than

cr(fji), for example for n = 5 and c = —1.88 we have cr(jl) = 1.57 whereas for cr(//) = 1.589.

Therefore we conclude that the MPS estimator is better than the ML estimator.

4.3.2 Simulation study using the rejection method:

In practical situations we are sometimes dealing with the extreme left tail of the standard

normal. For example, if we need n = 9 random deviates from the truncated normal, with

truncation point c = —1.88, since this point represent the 3rd centile, we have to generate

about 300 random deviates from the normal distribution, the method of generating random

number which we have used so far, is then time consuming. Can we find a more efficient

method? In this section, we investigate the rejection method more efficient than generating
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from the normal distribution. We find E(p,), Var(/i) and 0"(/x), for the rejected method and

demonstrate the relative speeds of the two methods. Morgan (1984) expressed "If it were

possible to choose h(x) to be of a roughly similar shape to f(x) and then to envelop f(x) by

h(x), we would obtain the desired scatter of points under f(x) by first obtaining a scatter

of points under h(x) but not under f(x).v By using Morgan (1984) and Gallagher (1993),

we try to find an envelope function g(x) for the density f(x, //).

From Chapter 2, equation (2.1) we know that

f(xu) = lSLL --oo<x<c (4 14)
J V ' r I _*.( c—u \ i — — V • /

By setting // = 0, u = 1 and knowing the shape of the density, we guess that the envelope

function can be of the form

g(x) = deax ; - o o < x < c (4.15)

where d and a are constants, to be determined.

Let the envelope satisfy the following equations

M ; " W (4.16)
. f'(c)=gl(c).

Then

a = -c (4.17)

and

£
(=> 9

(4.18)
V2TT$(C)

Having found a and d, we can write

6 2 , (4.19)

We now prove the following Theorem.
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Theorem 4.4 For all value of c < 0, every value of x, — oo < x < c < 0, we have

g(x) > f(x). (4.20)

Proof: From (4.14) and (4.19) with // = 0, <r = 1, we have

e _

f(X)
Now y + ^ — ex can be written as | (x — c)2, which is positive for all x and all c. Therefore

we have

4 T 4 > 1, -oo < x < c (4.22)

which proves the theorem.

Now we define h(x) = kg(x) such that /J(X) is a density function over —oo < x < c < 0.

To find the normalising constant fc, we require

/i(x)dx = 1. (4.23)

Hence we find k = — ce^t \[2TT§{C) which, on substitution into the equation h{x) = kg(x),

gives

h(x) = -cea^ , -oo < x < c < 0. (4.24)

4.3.3 Simulating data from h(x):

Now we have to simulate data from the density function h(x). To do this we first have

to generate a random variable Ri from the uniform (0,1) distribution. The cumulative

distribution function H(x) can be written as

H{x) = P(X < x)

= fX h(t)dt

= e 0 2 - ^ , (4.25)
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which satisfies 0 < H(x) < 1. Therefore, by inversion of the equation

we can find

x = c- -
c

(4.26)

(4.27)

To select the random deviate x from f(x), we generate another random variable R^ from

the uniform distribution and then accept a; if i?2 < ()•

This process continues up to the required sample size. Using the above method we

calculate E(fi), v(fi) and Var(/i) for R = 10000 iterations and truncation points c = —1.88

and c = —1 and sample sizes n = 5, 10, 20, 50 and 100 (see Appendix Program 24). If we

now combine the above results with those of Table 4.1 for c = —1.88 and c = — 1, we obtain

Table 4.2 for R = 20000.

Table 4.2: The simulation results for the MPS estimator of

fi, for different values of n and c

when ji = 0, a = 1

n

5

10

20

50

100

E

0.

-0

-0

-0

-0

c

065

.055

.057

.043

.035

=

1

0

0

0

0

(A)
.56

.96

.65

.40

.28

IS

Var(/t)

2.44

0.92

0.43

0.16

0.081

E(fi)

0.033

-0.041

-0.045

-0.033

-0.021

c =

*(

1.

0.

0.

0.

0.

: -1

~\

14

74

50

32

22

Var(/i)

1.30

0.55

0.25

0.10

0.048
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4.3.3.1 The comparison of the speeds of the two methods:

Generating R = 10000 random deviates from the truncated normal with truncation point

c = —1.88 and calculating their mean, variance and standard deviation by the first method

takes 58 seconds of CPU time. The rejection method is much faster, taking only 6 seconds.

The calculations were performed using Fortran Programs 25 and 26 given in the Appendix.

4.4 Relationship between E(fi), sample size and trun-

cation point:

In this section we investigate the relationship of E(fi) with the sample size n and truncation

point c.

Our approach is to fit a regression model, of E(p) on n and c.

We have to find E(fi,) for different values of c and n. The values have been obtained and

are shown in Table 4.3. Also in Figure 4.5 we plot the E(fl) against c for different values of

n.
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Table 4.3: The simulated expected value of Jl, found from

R = 100000 simulation runs, for different values

of n and c when // = 0, a = 1

c

-2

-1.75

-1.5

-1.25

-1

-0.75

-0.5

-0.25

0

0.25

0.5

0.75

1

1.25

1.5

1.75

2

2.25

2.5

2.75

3

-B(A)
n = 10

-0.057

-0.053

-0.054

-0.050

-0.045

-0.045

-0.043

-0.036

-0.033

-0.033

-0.029

-0.023

-0.022

-0.019

-0.016

-0.012

-0.010

-0.009

-0.007

-0.005

-0.003

n = 15

-0.072

-0.065

-0.061

-0.056

-0.054

-0.048

-0.043

-0.040

-0.035

-0.030

-0.027

-0.025

-0.021

-0.019

-0.017

•0.011

-0.009

-0.007

-0.004

-0.003

-0.001

n = 20

-0.069

-0.066

-0.058

-0.054

-0.052

-0.045

-0.041

-0.035

-0.034

-0.028

-0.025

-0.024

-0.018

-0.016

-0.014

-0.011

-0.010

-0.006

-0.005

-0.003

-0.003

n = 25

-0.067

-0.061

-0.055

-0.052

-0.049

-0.042

-0.038

-0.035

-0.030

• 0.029

-0.024

-0.021

-0.017

-0.015

-0.013

-0.011

-0.008

-0.007

-0.005

-0.002

-0.003

n = 30

-0.062

-0.059

-0.051

-0.048

-0.044

-0.041

-0.035

-0.033

-0.029

-0.026

-0.021

-0.017

-0.017

-0.013

-0.011

-0.011

-0.007

-0.006

-0.005

-0.003

-0.002

The following plot shows that, for sample sizes n = 10,15,20,25 and 30, as the truncation

point c increases then E(jj.) —> //(= 0). In Table 4.3, since the differences of E(jj,) from zero

are significant and p, is consistent then an appropriate model for E(fi) can be written as

E(Ji) = 1
n' , 2 i / z v 0{n ~3] (4.28)

Our approach is to choose two values of n and obtain two different equations. Then, by the

simultaneous solution of the two sets of equations, we find the corresponding gi(c) and ̂ (c)

(see Appendix Program 27). By choosing two values of n it is possible to solve (4.28) with

the simulated mean of ft for E{jl). The values of n = 10 and n = 20 were chosen since as not
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Figure 4.5: The plot of E{fi) against c for different n

—r~
2

to give so small a value that cause E(jl) become large nor too large a value that it become

so small. Therefore g\(c) and ^(c) which calculated for n = 10 and n = 20, are shown in

Table 4.4.
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Table 4.4: The estimated g\(c) and ^(c) for

different values of c which n = 10 and n = 20

c

-2.00

-1.75

-1.50

-1.25

-1.00

-0.75

-0.50

n = 10, n - 20

-2.19

-2.11

-1.78

-1.66

-1.63

-1.35

-1.21

92(c)

16.20

15.80

12.40

11.60

11.80

9.00

7.80

c

-0.25

0.00

0.25

0.50

0.75

1.00

1.25

n = 10, n = 20

9i(c)

-1.04

-1.03

-0.79

-0.71

-0.73

-0.50

-0.45

92{c)

6.80

7.0

4.60

4.20

5.00

2.80

2.60

c

1.50

1.75

2.00

2.25

2.50

2.75

3.00

n = 10, n = 20

9&)

-0.40

-0.32

-0.30

-0.15

-0.13

-0.07

-0.09

92{c)

2.40

2.00

2.00

0.60

0.60

0.20

0.60

The plots of <7i(c) and ^(c) against c are shown in Figures 4.6 and Figure 4.7.

By looking at Figure 4.6 we can see that all the values of gi(c) are negative and gi(c) —> 0

as c increases. But in Figure 4.7 all the values of ^(c) are positive and g2(c) —> 0 as c

increases. Therefore we choose models g\{c) = —a\e~^c and gi{p) — ct2^~^lC • Note that

these functions have the multiplicative error terms. Now, we are interested to find the

functions g\(c) and ^(c) in terms of c.

Applying the logarithm transformation and linear regression model by the help of Minitab

software the following models are obtained:

/ \ r\ o o o —0.658c

gi{c) = —O.ooze

where the corresponding t—ratios of the coefficients —0.832 and —0.658 are —2.90 and

— 16.47. Similarly,

g2(c) = 5.3122e-°-755c
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Figure 4.6: The plot of gx{c) against c

Figure 4.7: The plot of g2(c) against c
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where the corresponding t—ratios of the coefficients 5.3122 and —0.755 are 17.44 and —12.60.

Substituting the estimated gi(c) and ^(c) functions into equation (4.28) we obtain

„,„. -0.832e-°-658c 5.3122e-a755c . , 3 ,
E(fi) = n + + + On"3).

n n2

To compare E(fi) calculated from the model together with the E(jl) calculated from the

simulation, we plot them in Figure 4.8.



Chapter 4 161

Figure 4.8: The plot of E(jl) and the model E(p,) against c
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4.5 Relationship between Var(/i) and sample size and

truncation point:

In this section we investigate the relationship of Var(/i) with sample size n and truncation

point c.

To find the appropriate regression model, we have to find Var(/i) for different values of c

and n. The values have been obtained and are shown in Table 4.5 and Figure 4.9.

Table 4.5: The variance of //, by simulation

for different values of n and c when ji = 0, a = 1

and simulation run R = 100000

c

-2

-1.75

-1.50

-1.25

-1.00

-0.75

•0.50

-0.25

0.00

0.25

0.50

0.75

1.00

1.25

1.50

1.75

2.00

2.25

2.50

2.75

3.00

Var(«

n = 10

0.985

0.862

0.746

0.633

0.546

0.462

0.397

0.334

0.284

0.239

0.207

0.179

0.157

0.141

0.127

0.117

0.110

0.105

0.103

0.102

0.101

n = 15

0.615

0.535

0.463

0.403

0.343

0.296

0.252

0.215

0.185

0.159

0.137

0.117

0.104

0.093

0.084

0.078

0.073

0.070

0.068

0.067

0.067

n = 20

0.450

0.391

0.338

0.294

0.253

0.217

0.187

0.161

0.136

0.117

0.101

0.089

0.078

0.070

0.063

0.058

0.055

0.053

0.051

0.050

0.050

n = 25

0.351

0.308

0.269

0.233

0.199

0.172

0.148

0.126

0.109

0.093

0.081

0.070

0.062

0.055

0.051

0.046

0.044

0.042

0.041

0.040

0.040

n = 30

0.293

0.258

0.224

0.191

0.165

0.143

0.123

0.105

0.090

0.078

0.068

0.059

0.052

0.046

0.042

0.039

0.037

0.035

0.034

0.033

0.033

Since [i is consistent then Var(/i) can be written as

Var(/i) = -gi{c) + —r̂ 2(c) +
n n2 (4.29)
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Figure 4.9: The plot of Var(/2) against c for different n

\

\

n

n=2S
n=3O

^ — — _ _

- - _

Since we know that /x and /i are asymptotically equivalent Cheng & Amin (1982), it follows

that Var(/i) = Var(/x) to ©(n""1). Hence gi(c) = a+J,d\ ia and equation (4.29) can be written

as

Var(/i) = -
n nc

(4.30)

As in section 4.4 by choosing two values of n it is possible to solve equation (4.30) with

the simulated variance Var(/i) the Var(/i). Similar to section 4.4 the values of n = 10 and

n = 20 were chosen.

The calculated ^(c) and gz(c) are shown in Table 4.6 (see Appendix Program 28).
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Table 4.6: The estimated g2(c) and g3{c) for

different values of c when n — 10 and n = 20

c

-2.00

-1.75

-1.50

-1.25

-1.00

-0.75

-0.50

n = 10, n = 20

02(c)

-0.92

-3.32

-4.40

-1.89

-2.41

-2.57

-1.30

93(c)

119.06

128.88

121.73

71.57

68.74

55.53

38.31

c

-0.25

0.00

0.25

0.50

0.75

1.00

1.25

n = 10, n = 20

92(c)

-0.29

-1.55

-1.22

-1.09

-0.37

-0.90

-0.72

03(c)

17.41

24.42

14.98

12.58

3.15

8.18

6.47

c

1.50

1.75

2.00

2.25

2.50

2.75

3.00

n = 10, n = 20

S2(c)

-0.46

-0.64

-0.51

-0.46

-0.20

-0.30

0.06

2.71

4.50

3.14

2.64

0.55

1.42

-0.70

The plots of g2(c) and gz(c) against c are shown in Figures 4.10 and Figure 4.11.

By looking at Figure 4.10, we can see that all the values of g2(c) except for c = 3 are

negative and as c increases ^(c) —> 0. But in Figure 4.11 all the values of g^c) except c = 3

are positive and as c increases g3(c) —> 0.

To obtain smoother curves of g2(c) and g^{c) against c we use three-point moving averages,

which whose plots are shown in Figures 4.12 and 4.13. The former is not very smooth but

smooth enough to suggest a formula of the form g2(c) = — ao,e~^c . Similarly we take

g3(c) = <x4e-/3lC .

Now, we are interested in finding the functions g2(c) and gs{c) in terms of c.

Applying the logarithm transformation and linear regression model by the help of Minitab

software the following models are obtained:

g2{c) = - 1 . -0.530c
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Figure 4.10: The plot of g2(c) against c

Figure 4.11: The plot of #3(c) against c
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Figure 4.12: The three-point smooth plot of g2(c) against c

Figure 4.13: The three-point smooth plot of gz{c) against c
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where the corresponding t—ratios of the parameter estimators —1.18 and —0.530 are 1.99

and —6.42,

and

03 (c) = 19. be"W7c

where the corresponding t—ratios of coefficients 19.5 and —1.07 are 31.17 and —16.66.

From these equations, we can estimate ^(c) and gz(c) for any values of c.

Substituting the estimated g2(c) and gz(c) in equation (4.30) we obtain

1
Var(/i) = —

la

-0.527c

n

We can easily evaluate Var(/2) for different values of n and c. To compare Var(/i) calculated

from the model together with the Var(/i) calculated from the simulation, we plot them in

Figure 4.14.

Figures 4.8 and 4.14 shows that these models are reliable and we can easily find E(fl)

and Var(/i) for various values of n and c.

4.6 Distribution of p, when the variance is known:

We investigate the distribution of p, when the truncation point is c = —1.88. This truncation

point is chosen because it is seen that in many investigations involving children's growth

the third percentile of the distribution is important. Also this point is the worst case of

truncation points. Using the Program 7, for various values of n = 5,10,20,50 and 100, we

have constructed R = 10000 observations of fi. By use of the S-PLUS software, we have

plotted the histogram, density plot, qqnorm and qqline of fi. If the sample comes from a

normal distribution, with sample size R, the sample estimate of the coefficient of skewness

gi(p) is given by
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Figure 4.14: The plot of Var(//) and the model Var(/J) against c

n=10 Observed
n=10 Model

~ ~ _

n=20 Observed
n=20 Model

— _

n=30 Observed
n=30 Model

— - — — ..

L
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is asymptotically
6

The assumption of normality of g\{fi) is accurate for R > 150. (Snedecor & Cochran (1967),

p. 68) Also we know that, in very large samples from the normal distribution, the measure

of kurtosis §2(/t) defined as

02
m4(fi)

has asymptotically a normal distribution such that

where m2(/i), rn3(jl) and m4(/i) are the second, third and fourth moments of /L

4.6.1 Description of data when n = 5:

The histogram, density, qqnorm and qqline of fi are shown in Figure 4.15.

Figure 4.15: The distribution of /i, when variance is known and n=5

From this we can see that the distribution is not close to the normal.
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In this set of data, the calculated value gi(fi) = 2.16258 is over 88 times its standard

deviation (s.d = 0.02449) from zero, and the positive skewness is confirmed. The second,

third and fourth moments of jl are m2(jl) = 2.4059, m3(/i) = 8.0704, m4(/i) = 75.6026 and

the measure for kurtosis g2(jl) = 10.0614.

Since #2(A) — 10.0614 is over 205 times its standard deviation (s.d = 0.04898), the large

kurtosis of this distribution is confirmed.
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4.6.2 Description of data when n = 20:

As we increase the number of observations to n = 20, we can draw the various plots of

p. in Figure 4.16

Figure 4.16: The distribution of fi, when variance is known and n=20

s
s
s -

1«=» den3 l t y of r\/l LI

In this case m2(jl) = 0.419485, m3(j2) = 1.20869, m4(/i) = 0.7281, the measure of skewness

gi(fl) = 0.7681 (s.d = 0.02449) and the measure for kurtosis g2{jl) = 1.1375 (s.d = 0.04898).

Therefore the skewness and large kurtosis are again confirmed.
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4.6.3 Description of data when n — 100:

Finally, for n = 100 observations, the various plots of \i are shown in Figure 4.17.

Figure 4.17: The distribution of /}, when variance is known and n=100

In this case m2(p-) = 0.07927, m3(/i) = 0.006680, m4(/i) = 0.2993, the measure of skewness

gt(Ji) = 1.4347 (s.d = 0.02449) and the measure for kurtosis g2(Jt) = 0.20864 (s. d = 0.04898);

therefore the skewness and kurtosis are confirmed.

These Figures show that even in case n = 100, although the shapes are very close to the

normal distribution, but its measure of skewness and kurtosis are still significantly high.

4.7 The comparison of the different estimators of fi:

In this section we compare the estimators of fi based on the ML and MPS methods with

the exact value of [i. Since MSE is a good criteria for the comparison of two estimator we

used them in Tables 4.7-4.10. By using the results of the simulation study of the maximum
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likelihood estimator, the theoretical results of Chapter 2 and the results of the simulation

study of the maximum spacing methods, described in this chapter, we have produced Tables

4.7-4.10.

Table 4.7: The comparison of the ML and MPS estimators of //

for c = —1.88 and different values of n

n

5

10

20

50

100

A
Sim.mean

0.53

0.23

0.10

0.040

0.025

A
Sim.var

2.52

1.13

0.47

0.17

0.084

A
MSE

2.81

1.18

0.48

0.18

0.085

A
Theory mean

0.53

0.24

0.11

0.044

0.020

A
Theory var.

2.59

1.06

0.47

0.17

0.084

A
Sim.mean

0.053

-0.051

-0.061

-0.043

-0.036

A
Sim.var

2.46

0.96

0.44

0.16

0.078

A
MSE

2.47

0.96

0.44

0.16

0.081

Table 4.8: The comparison of the ML and MPS estimators of

for c = — 1 and different values of n

n

5

10

20

50

100

A
Sim.mean

0.38

0.16

0.084

0.024

0.015

A
Sim.var

1.83

0.65

0.29

0.11

0.052

A
MSE

1.98

0.68

0.29

0.11

0.052

A
Theory mean

0.35

0.16

0.077

0.030

0.015

A
Theory var.

1.47

0.63

0.26

0.10

0.050

A
Sim.mean

0.014

-0.046

-0.041

-0.031

-0.021

A
Sim.var

1.28

0.53

0.25

0.10

0.048

A
MSE

1.29

0.53

0.26

0.10

0.048
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Table 4.9: The comparison of the ML and MPS estimators of

for c = 0 and different values of n

n

5

10

20

50

100

A
Sim.mean

0.20

0.089

0.043

0.016

0.0087

A
Sim.var

0.83

0.33

0.15

0.058

0.028

A
MSE

0.87

0.34

0.15

0.058

0.028

A
Theory mean

0.19

0.089

0.043

0.017

0.0083

A
Theory var.

0.73

0.32

0.15

0.056

0.028

A
Sim.mean

-0.0021

-0.040

-0.034

-0.0023

-0.016

A
Sim.var

0.64

0.29

0.14

0.053

0.025

A
MSE

0.64

0.29

0.14

0.054

0.027

Table 4.10: The comparison of the ML and MPS estimators of /i

for c = 1 and different values of n

n

5

10

20

50

100

A
Sim.mean

0.076

0.036

0.023

0.0054

0.0046

A
Sim.var

0.39

0.17

0.084

0.033

0.016

A
MSE

0.39

0.17

0.084

0.033

0.016

A
Theory mean

0.084

0.040

0.019

0.0075

0.0037

A
Theory var.

0.37

0.17

0.083

0.032

0.016

A
Sim.mean

-0.083

-0.0023

-0.021

-0.0098

-0.0067

A
Sim.var

0.35

0.16

0.078

0.032

0.016

A
MSE

0.35

0.16

0.079

0.032

0.016

From Tables 4.7 — 4.10 we can see that, as n increases the variances of jj, and A, become

identical, and also they are equivalent to the theoretical variance of jl. Moreover, we can see

that the MSE of A is less than that of A for all sample sizes. Therefore the MPS estimator

is more efficient than the ML estimator.
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4.8 Estimation of <r when /J is known:

We now estimate a by the MPS estimator a when \i is known and then compare a with a.

Taking the derivative of H in equation (4.7) with respect to a2 we obtain

Ayt -
2 r 3 $ ( ^ ) ' l ' j

The algebraic solution of Jp- = 0 gives 5", but it is impossible to solve this equation an-

alytically. Therefore to find the MPS estimator, a, we use the NAG routine C05AGF, in

Program 29, to get the solution iteratively.

Theorem 4.5 The MPS estimator (a) is asymptotically sufficient, consistent and efficient

estimator of a.

Proof: By the definition of integration, ln(D;) can be written as

ln(A) = l n [ T f(y,(r)dy] ; i = 1,2,..., n + 1
Jyi-i

,-, cr)(yi - y{_t)} + R(yiy y{_x , a)

,a) + \n(yi-yi.1) + R{yi,yi-1,a). (4.32)

where

^ , a) = In \ ^ > ^ ^
{ y t - y l - . i f

Since, R(yi, yt-_i, <r) is dependent on a, using the proof of Cheng & Amin (1982), the

MPS and ML estimators are asymptotically equal and have the same asymptotic sufficiency,

consistency and efficiency properties.

Theorem 4.6 Let Xi,X2,.. .Xn be identically and independently distributed random vari-

ables with p.d.f. /(X,<T), and let the transformation <f> be one-to-one. Then a MPS estimate

is invariant under one-to-one transformation </>.

Proof: The proof is similar to Theorem 4.2 ( therefore <̂ (<r) is a MPS estimator of

#7)).
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4.8.1 The MPS estimate of a in data sets 1 and 2:

1. Using the data set 1 and letting fj, = 0 and e = 10~5, we find that the MPS estimate

of a is

a = 1.1366.

On plotting H and HP against a certain range of a [0.1, 3], we get Figures 4.18 and

4.19 (see Appendix Program 30).

2. Using the data set 2 and letting fi = 0 and e = 10~5, we find that the MPS estimate

of a is

a = 1.0320.

4.8.2 The MPS estimate of a in the ideal sample:

In this section we prove that the MPS estimate of o~, for the ideal sample is one. We also

plot the H and HP against different values of a.

Theorem 4.7 In ideal samples, for every truncation point c the MPS estimator a is one.

Proof: From Chapter 1, section (1.4.2) we know that

F(yt) = | ^ y = ^ y -

Hence

§{Vl ~ M) = —-—$(^—^). (4.33)

a n + 1 a
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Figure 4.18: H versus a for data set 1 (boys) (/j, = 0)

Figure 4.19: HP versus a for data set 1 (boys) (// = 0)
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Now, applying formula (4.33), consider

^ ^ 1 = (n + 1

)
a a

a a

Using the above equation, it follows that

^ (y.- - / / ) ^ ( ^ - ) - (y,--i - A * ) ^ 1 8 ^ ) (c -
)

Consequently, a = 1 maximizes if, and the theorem is proved.

4.9 Simulation study to estimate the variance when

the mean is known:

In order to compare the expected value, standard deviation and the variance of the MPS

estimate of a with the ML estimator, we embark upon a simulation study.

4.9.1 The simulation study:

The Program 31 given in Appendix, was written to calculate E(a2), Var(<r2) and a(a2) for

the R — 10000 iterations and sample sizes n = 5, 10, 20, 50 and 100. In this program we use

NAG routine G05DDF(0,l) to generate random deviates from the normal distribution with
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mean zero and variance one, and use the Program 29 as a subroutine to solve the equation

7p- = 0. The numerical results are tabulated in the Table 4.11.

Table 4.11: The simulation results for the

MPS estimator <r2, for different values of n

and c, when pi = 0, a = 1

n

5

10

20

50

100

c = -1.88

E&)

1.193

1.179

1.113

1.051

1.028

0.799

0.535

0.350

0.170

0.116

Var(a2)

0.638

0.287

0.129

0.029

0.013

c = - 1

£(a 2 )

1.205

1.117

1.147

1.042

1.034

a(a2)

0.797

0.472

0.364

0.180

0.126

Var(V2)

0.636

0.223

0.132

0.032

0.016
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Table 4.11: Continued

n

5

10

20

50

100

c = 0

£(ff~2)

1.398

1.248

1.142

1.073

1.045

a{a2)

0.897

0.554

0.364

0.216

0.148

Var^ 2 )

0.804

0.306

0.132

0.047

0.022

c = 1

1.677

1.406

1.233

1.116

1.066

a(a2)

1.135

0.710

0.449

0.266

0.182

Var(CT2)

1.2886

0.504

0.202

0.071

0.033

Table 4.11: Continued

n

5

10

20

50

100

c = 3

E(a2)

1.812

1.429

1.230

1.103

1.067

a(a2)

1.648

0.865

0.484

0.243

0.158

Varf^2)

2.717

0.748

0.235

0.059

0.025

c = 10

E(a2)

1.199

1.184

1.137

1.095

1.064

a(a2)

0.807

0.538

0.357

0.219

0.151

VarO"2)

0.652

0.290

0.127

0.048

0.023

From the Table 4.11 which extended, we can see that for each truncation point c, when the

sample size n is increased, all the values of a(a2) and Var(<72) decrease. We can also see that

for all values of c, the bias of a2 is rather high. To study the bias further, we concentrate

on the values c = —1.88 and c = 3. We find the biases of other functions of a.

Running the Program 31 for these two values of the truncation point, with R = 1000

and with a = 1, a = 2 and a = 3 calculated four functions of (a), to see which function has
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the smallest yM-. The functions are a, a2, 4 and -A- and the results are tabulated in Tables

4.12 and 4.13.

Table 4.12: The bias of different functions of

the MPS estimator <r, for different values of a

when n = 5, c = -1.88 and R = 1000

a

a2

I
a

1

CT = 1

Mean

0.964

1.369

0.9510

0.989

Exact

1

1

1

1

1101
Ho)

0.964

1.369

0.9510

0.989

a = 2

Mean

2.191

5.092

0.519

0.279

Exact

2

4

0.5

0.25

tW)
1.095

1.0273

1.038

1.116

a = 3

Mean

3.285

11.990

0.332

0.122

Exact

3

9

0.333

0.111

/(•?)
Her)

1.095

1.332

0.996

1.099

Table 4.13: For c = 3

a

a2

1
o

J_

a = 1

Mean

1.235

1.870

1.034

1.437

Exact

1

1

1

1

/(*)
Ho)

1.235

1.870

1.034

1.437

a = 2

Mean

2.557

7.302

0.463

0.260

Exact

2

4

0.5

0.25

f(°)
Ho)

1.278

1.825

0.926

1.040

a = 3

Mean

3.693

15.230

0.325

0.144

Exact

3

9

0.333

0.111

Ho)
Ho)

1.231

1.692

0.975

1.297

Concentrating on Table 4.13 for c = 3, we can see that jQ of a2 is more than jH- of its

counterpart, a, whereas jH- of 4 is less than that of its counterpart, i . We also see in the
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fourth, seventh and tenth columns of Table 4.13, that for each value of a, jH- > 1, except

for the function 4- with a — 2, a = 3.

Since, according to Theorem 4.6, a is invariant and for /(<r) = j , we can see jH- ?a 1.

Therefore we suggest that to have a less bias in our estimator, we prefer to estimate ^.

4.10 Relationship between E(a2) and sample size and

truncation point:

In this section we investigate the relationship of E(a2) with sample size n and truncation

point c.

To find an appropriate regression model, we have to find E(cr2) for different values of c

and n. Since we are interested to see what happens to E(a2) a s c - > oo, we calculate E(a2)

for values of c up to c = 10 inclusive. The values have been obtained and are shown in Table

4.14. By looking at Figure 4.20 we can see that the bias of a2 reduces with increasing the

sample size n, and decreases as the sample size n increases.
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Table 4.14: The expected value of a2, by simulation

for different values of n and c when \i = 0, a = 1

and simulation run R = 100000

c

-2

-1.75

-1.5

•1.25

-1

-0.75

-0.5

-0.25

0

0.25

0 . 5

0.75

1

1.25

1.5

1.75

2

2.25

2 . 5

2.75

3

3.25

3.50

3.75

4.00

£(CT~2)

n = 10

1.150

1.113

1.094

1.109

1.170

1.180

1.185

1.218

1.244

1.270

1.301

1.341

1.397

1.455

1.513

1.565

1.598

1.616

1.616

1.619

1.600

1.587

1.577

1.568

1.558

n = 15

1.134

1.102

1.065

1.051

1.070

1.098

1.120

1.143

1.181

1.201

1.225

1.252

1.397

1.335

1.375

1.406

1.425

1.436

1.432

1.428

1.418

1.408

1.405

1.397

1.393

n = 20

1.118

1.104

1.069

1.042

1.041

1.059

1.080

1.103

1.148

1.162

1.182

1.206

1.290

1.265

1.296

1.320

1.334

1.338

1.337

1.329

1.325

1.316

1.315

1.311

1.308

n = 25

1.099

1.099

1.075

1.045

1.032

1.042

1.057

1.076

1.124

1.136

1.155

1.175

1.233

1.225

1.247

1.269

1.275

1.279

1.276

1.271

1.269

1.264

1.261

1.256

1.259

n = 30

1.082

1.089

1.078

1.052

1.030

1.032

1.042

1.059

1.109

1.119

1.135

1.149

1.197

1.194

1.215

1.229

1.239

1.237

1.236

1.233

1.229

1.226

1.225

1.222

1.221

c

4.25

4.50

4.75

5.00

5.25

5.50

5.75

6.00

6.25

6.50

6.75

7.00

7.25

7.50

7.75

8.00

8.25

8.50

8.75

9.00

9.25

9.50

9.75

10.00

B(o"2)

n = 10

1.557

1.549

1.552

1.548

1.543

1.544

1.548

1.545

1.550

1.551

1.545

1.547

1.547

1.553

1.546

1.548

1.547

1.548

1.545

1.543

1.545

1.545

1.548

1.549

n = 15

1.392

1.389

1.393

1.390

1.390

1.388

1.392

1.388

1.391

1.386

1.389

1.392

1.391

1.386

1.387

1.388

1.390

1.393

1.389

1.387

1.391

1.387

1.389

1.389

n = 20

1.309

1.309

1.309

1.309

1.307

1.308

1.308

1.306

1.307

1.307

1.307

1.309

1.308

1.308

1.312

1.307

1.307

1.308

1.308

1.307

1.306

1.306

1.307

1.307

n = 25

1.255

1.258

1.256

1.255

1.258

1.255

1.256

1.258

1.254

1.258

1.257

1.257

1.257

1.257

1.257

1.256

1.256

1.256

1.258

1.255

1.259

1.257

1.257

1.257

n = 30

1.221

1.222

1.220

1.221

1.222

1.220

1.221

1.224

1.222

1.222

1.219

1.222

1.221

1.221

1.222

1.220

1.219

1.220

1.224

1.222

1.222

1.222

1.220

1.221

The following plot shows that, for sample sizes n = 10,15, 20, 25, 30, 50 and 100 as the trun-

cation point c increases, then E(a2) —» k , a constant. Since the differences of values E{a2)

in Table 4.14 are substantially different from one and a2 is consistent. Then appropriate

model for E{o2) can be written as

E(a2) = a2 + l O(n~3). (4.34)
n nz

If we use two different values of n, we obtain two different equations. Then by simultaneous

solution of the equations, we find their corresponding g\(c) and ^(c) . In this section similar
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Figure 4.20: The plot of E(a2) against c for different n

— I —
o

— I —
6

to section 4.4 we choose n = fO and n = 20. Then the calculated g\{c) and g2(c) are plotted

against c in Figure 4.21.

By looking at Figure 4.21 we can see that all the values of g\{c) are positive and, as c

increases, gi(c) approaches to the constant k fa 6. But in Figure 4.22 most of the values

of #2(c) are positive and, as c increases, ^(c) approaches to the constant A; ~ —11. Now,

we are interested to find the functions gi(c) and ^(c) in terms of c. From the Figures 4.21,

and 4.22 we guess that the models should follow the a5ce~° + /35. Note that the error term

in this model is additive. Using a Macro in GLIM 4 software (see Appendix Program 33),

Ekholm & Green (1993), which used numerical derivatives for fitting nonlinear models and

assumes normality of error terms, by fitting the model and entering the c2, c3 etc terms in
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Figure 4.21: The plot of gi(c) against c

Figure 4.22: The plot of ^(c) against c
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the model we found the following models

gt(c) = (1.345c2 + 2.814c)e"c + 5.829

where the corresponding t—ratios of the coefficients 1.345, 2.814 and 5.829 are 6.23, 7.14 and

28.85.

Further

g2(c) = (-5.492c2 - 9.961c)e~c - 10.20

where the corresponding t—ratios of the coefficients —5.492, —9.961 and —10.20 are —6.49,

—6.48 and —12.97. (see Appendix Programs 32 and 33). We also, checked the residual plots,

and they confirmed the validity of the models.

Now, using these equations we can estimate g\(c) and ̂ (c) for any values of c.

Substituting the estimated gi(c) and g2(c) into equation (4.34) we obtain

E(a2) = a 2 + -{(1.345c2+ 2.814c)e~c+5.829J

+ \ {(-5.492c2 - 9.961c)e"c - 10.20) + 0(n~3).

To compare E(a2) calculated from the model together with the E(a2), calculated from

the simulation, we plot them in Figure 4.23.

Figures 4.23 shows that if we shift c to +0.75 the values of E(cr2) approach to the observe

values E(a2), as the sample size n increases. We conclude that these models are reliable and

we can easily find E(a2) for various values of n and c.

4.11 Relationship between Var(<j2) and sample size

and truncation point:

In this section we investigate the relationship of Var(cr2) with sample size n and truncation

point c.
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Figure 4.23: The plot of E(a2) against c for different n

n=10 Observed
n=10 Model

/

n=20 Observed
• n=20 Model

n=30 Observed
n=30 Model n=100 Observed

n=100 Model
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To find the appropriate regression model, we have to find Var(<72) for different values of c

and n. Since we are interested to see what happens to Var(cr2) as c —» oo we have calculated

Var(cr2) for values of c up to c = 10 inclusive. The values have been obtained and are shown

in Table 4.15 and Figure 4.24.
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Table 4.15: The variance of <r2, by simulation

for different values of n and c when /x = 0, a = 1

and simulation run R = 100000

c

-2

-1.75

-1.5

-1.25

-1

-0.75

-0.5

-0.25

0

0.25

0.5

0.75

1

1.25

1.5

1.75

2

2.25

2.5

2.75

3

3.25

3.50

3.75

4.00

Var(<r2)

n = 10

0.213

0.187

0.195

0.203

0.215

0.222

0.249

0.281

0.309

0.350

0.400

0.442

0.498

0.535

0.570

0.614

0.632

0.651

0.653

0.627

0.610

0.590

0.564

0.549

0.525

n = 15

0.110

0.093

0.097

0.112

0.126

0.133

0.148

0.165

0.185

0.211

0.239

0.265

0.292

0.318

0.335

0.346

0.355

0.352

0.341

0.330

0.312

0.296

0.289

0.275

0.271

n = 20

0.081

0.072

0.068

0.076

0.086

0.094

0.103

0.115

0.132

0.149

0.168

0.185

0.206

0.218

0.232

0.237

0.237

0.233

0.222

0.212

0.201

0.189

0.183

0.180

0.174

n = 25

0.063

0,060

0.056

0.059

0.066

0.072

0.079

0.087

0.101

0.113

0.128

0.143

0.158

0.168

0.176

0.179

0.175

0.169

0.160

0.152

0.144

0.138

0.134

0.131

0.130

n = 30

0.052

0.051

0.048

0.049

0.053

0.059

0.063

0.071

0.082

0.091

0.104

0.115

0.126

0.135

0.141

0.141

0.139

0.132

0.125

0.118

0.112

0.107

0.104

0.103

0.101

c

4.25

4.50

4.75

5.00

5.25

5.50

5.75

6.00

6.25

6.50

6.75

7.00

7.25

7.50

7.75

8.00

8.25

8.50

8.75

9.00

9.25

9.50

9.75

10.00

Var(<T~2)

n = 10

0.514

0.503

0.498

0.488

0.486

0.484

0.484

0.482

0.482

0.486

0.483

0.485

0.481

0.489

0.481

0.485

0.482

0.481

0.481

0.479

0.480

0.484

0.485

0.484

n = 15

0.264

0.262

0.263

0.259

0.259

0.259

0.260

0.259

0.260

0.259

0.259

0.260

0.259

0.257

0.259

0.257

0.260

0.261

0.260

0.256

0.258

0.255

0.257

0.260

n = 20

0.175

0.172

0.173

0.171

0.172

0.171

0.171

0.171

0.171

0.171

0.172

0.173

0.171

0.171

0.173

0.171

0.173

0.171

0.172

0.171

0.171

0.171

0.171

0.170

n = 25

0.128

0.128

0.127

0.125

0.126

0.127

0.126

0.127

0.126

0.128

0.127

0.126

0.128

0.126

0.128

0.126

0.127

0.126

0.126

0.126

0.128

0.126

0.128

0.126

n = 30

0.100

0.100

0.099

0.100

0.100

0.100

0.099

0.100

0.100

0.099

0.098

0.100

0.100

0.099

0.100

0.100

0.100

0.100

0.100

0.100

0.100

0.100

0.099

0.099

Let us assume that Var(a2) can be written as

1

n2 0(n ~4[

Since we know that a2 and a2 are asymptotically equivalent, therefore Var(a2)

for O(n^1). Hence gi(c) = ^ - , and equation (4.35) can be written as

n
If!
D

1

n2

1

n3

(4.35)

Var(<r2)

(4.36)
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Figure 4.24: The plot of Var(cr2) against c for different n
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Similar to section 4.4 choosing n = 10 and n = 20. We find the corresponding gi{c) and

(/3(c) and plot them against c in Figures 4.25 and 4.26.

By looking at Figure 4.25, we can see that almost all the values of ^(c) are positive and

that gi(c) increases as c increases. It has a maximum point at c = 3, then ^(c) decreases

as c increases and we can say g?,{c) —>~ 27 as c —> oo. But in Figure 4.26, g^{c) has two

obvious local maxima and one minimum in its domain. Also gz(c) —>~ —30 as c —> oo.

Now we find the functions 52(c) and gz(c) in terms of c. Again we use similar procedure

of section 4.10 for entering the c, c2 etc terms in the model.

Using the GLIM 4 software we have found the following models

92 (c) = (7.279c2 + 15.7lc)e"c + 26.31
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Figure 4.25: The plot of g2(c) against c

Figure 4.26: The plot of gz(c) against c
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where the corresponding t—ratios of coefficients 7.279, 15.71 and 26.31 are 8.109, 9.632 and

31.49. We also, checked the residual plot, and they confirmed the validity of the models.

Further

g3(c) = (1.207c5 + 6.234c4 + 17.90c3 - 45.04c)e"c - 42.21

where the corresponding t—ratios of the coefficients 1.207, 6.234, 17.90, —45.04 and —42.21

are 1.91, 3.76, 2.65, 5.12 and 6.17.

Now, using these equations we can find g2(c) and gs{c) for any values of c.

Substituting the ̂ (c) and gz{c) in equation (4.36) we obtain

Var(cr~2) = -
n

2(74

D

+ -^ [(7.279c2 + 15.71c)e"c + 26.3l]

+ — [(1.207c5 + 6.234c4 + 17.90c3 - 45.04c)e~c - 42.2l] + O(n~4).
ni L J

To compare Var(<r2) calculated from the model together with the Var(cr2) calculated from

the simulation, we plot them in Figure 4.27.

Figure 4.27 shows that if we shift c to i^5- the value of Var(cr2) approach to the observe

value Var(cr2), as the sample size n increases. We conclude that these models are reliable

and we can easily find Var(<r2) for various values of n and c.

4.12 The comparison of the different estimators of a2:

In this section we compare the two estimators of a2 based on the MLE and the MPS methods

with the theoretical results for MLE, and the exact value of a2.

By using the results of the simulation study for the maximum likelihood estimator, the



H

Chapter 4 193

Figure 4.27: The plot of Var(<72) and Var(cr2) against c for different n
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n=20 Model

n=30 Observed
• n=30 Model

/

n=100 Observed
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theoretical results of Chapter 2 and the results of the simulation study for the maximum

spacing methods, described in this chapter, we obtained Tables 4.16—4.19.

Table 4.16: The comparison of the MLE and the MPS estimators

of <T2 for c = —1.88 and different values of n

n

5

10

20

50

100

a2

Sim.mean

1.019

1.006

1.004

1.004

1.001

a2

Sim.var.

0.497

0.188

0.078

0.028

0.013

a2

MSE

0.497

0.188

0.078

0.028

0.0131

a2

Theory mean

1.092

1.026

1.008

1.002

1.001

a2

Theory var.

0.497

0.188

0.078

0.028

0.013

a2

Sim.mean

1.320

1.138

1.118

1.051

1.028

a2

Sim.var.

0.856

0.194

0.079

0.028

0.013

a2

MSE

0.958

0.213

0.093

0.030

0.014

Table 4.17: The comparison of the MLE and the MPS estimators

of a2 for c = — 1 and different values of n

n

5

10

20

50

100

<72

Sim.mean

1.018

1.011

1.003

1.001

1.000

a2

Sim.var.

0.295

0.147

0.075

0.030

0.015

a2

MSE

0.295

0.147

0.075

0.030

0.015

a2

Theory mean

1.012

1.007

1.004

1.002

1.001

a2

Theory var.

0.32

0.153

0.075

0.030

0.015

o2

Sim.mean

1.548

1.117

1.042

1.038

1.034

o2

Sim.var.

0.462

0.222

0.088

0.032

0.015

a2

MSE

0.762

0.0235

0.089

0.033

0.016
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Table 4.18: The comparison of the MLE and the MPS estimators

of a2 for c = 0 and different values of n

n

5

10

20

50

100

a2

Sim.mean

1.008

0.996

1.000

1.001

1.000

a2

Sim.var.

0.492

0.195

0.100

0.041

0.020

a2

MSE

0.492

0.195

0.100

0.041

0.020

a2

Theory mean

1.000

1.000

1.000

1.000

1.000

a2

Theory var.

0.400

0.200

0.100

0.040

0.020

a2

Sim.mean

1.397

1.248

1.142

1.073

1.045

a2

Sim.var.

0.778

0.310

0.124

0.044

0.021

a2

MSE

0.936

0.371

0.144

0.049

0.023

Table 4.19: The comparison of the MLE and the MPS estimators

of a2 for c — \ and different values of n

n

5

10

20

50

100

<72

Sim.mean

1.009

0.983

0.992

0.996

0.999

a2

Sim.var.

0.771

0.278

0.144

0.058

0.030

a2

MSE

0.771

0.278

0.144

0.058

0.030

a2

Theory mean

0.977

0.984

0.990

0.996

0.998

a2

Theory var.

0.532

0.282

0.145

0.059

0.030

a2

Sim.mean

1.677

1.406

1.233

1.116

1.066

<7~2

Sim.var.

1.240

0.484

0.201

0.067

0.031

a2

MSE

1.690

0.648

0.255

0.080

0.035
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4.13 Conclusion:

Comparing the estimated value of a2 from the two estimation methods, we see that in Table

4.16 for n = 5 and c = —1.88, the MPS method has a mean value of a2 = 1.320, while the

MLE method has a mean a2 = 1.019. We can see also that a(a2) for the MPS method is

bigger in almost every cell than the c((72) from the MLE method.

Comparing the variances for ML estimator (0.497) with the MPS method (0.856), show

that the variance of ML estimator is high, but by increasing the sample size n, for example

n = 100, the variances of a2 and a2 become the same. Therefore we can conclude that

the variance of MPS estimator is asymptotically equivalent to the variance of ML estimator

for estimating the variance of the distribution. We can make similar comparisons for other

values of c in Tables 4.16-4.19. As we see from Tables 4.16-4.19 the larger the truncation

points, the closer the variance of two estimators. Moreover, for large values of n these two

estimators are almost identical, which is in line with Theorem 4.5.
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The two parameter case of maximum

product spacing in the truncated

normal distribution:

5.1 Introduction:

The purpose of this chapter is to describe the maximum product spacing method of estimat-

ing the parameters of a distribution, simultaneously. The application of maximum product

spacing in the truncated normal distribution with both parameters unknown is considered.

Further, a simulation study is curried out to investigate the expected value and variance of

the MPS estimators of the parameters.

5.2 Estimation of \i and a when both are unknown:

In this section, we are going to find the MPS estimator (/}, a) of ( fj,, a) for the truncated

normal distribution when the mean and variance are both unknown, and also to make a

197
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comparison with (/t, a). Taking the derivative of H in equation (4.7) with respect to /j, and

<T2, we obtain

dH 1 n+l «=*•) - < K ^ ) (5.1)

and

'n+1 ?*-) - (y.--i -

The simultaneous solution of the equations

(5.3)

or

&

= 0.
(5.4;

with respect to \L and cr gives (//, cr).

The algebraic solution of equation (5.4) is impossible. Therefore we use the NAG routine

C05NBF in Program 34 given in Appendix to solve it iteratively.

5.2.1 The MPS estimator of (//, a) in data sets 1 and 2:

1. Using the data set 1 and e = 10~5, we find that the MPS estimates of (/x, a) is

(p., a) = (0.0603,1.1079).

2. Using the data set 2 and e = 10~5, we find that the MPS estimates of (ft, a) is

(/2,<r) = (-0.0158,1.0396).

The ML estimates for data set 1 is (p,a) = (1.3377,1.2871) and for data set 2 is (fi,cr) =

(—2.1932,0.2767). When we compare the MPS estimates (/}, a) with the ML estimates (/},

<T), we see that in the two data sets, the difference of the MPS estimates from the true values

(fj, — 0, a = 1) are less than their counterparts in the ML estimates.
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5.2.2 The MPS estimator of (//, a) in ideal samples:

In this section we prove a desirable property of the MPS estimator, namely that it gives the

correct answer for an ideal sample. Also we plot H against different values of \i and a (see

Appendix Program 35).

Theorem 5.1 In ideal samples, for every truncation point c the MPS estimator (/t, a) is

(0,1).

Proof: In Chapter 4, Theorem 4.3 and Theorem 4.7 as we proved for ideal samples,

(n
(5.5)

and

^ (y,-

i1

( }

Therefore, using equations (5.5) and (5.6), it follows

m

da2
| (c-A)0(^) _ n

Consequently, (/i,5") = (0,1) maximizes H, and the theorem is proved. To see the obtained

results are in agreement with the corresponding graphs, we draw the following graphs in case

c = —1.88 against ji [-0.1, 0.1] and a [0.94, 1.02] which is shown in Figures 5.1.
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Figure 5.1: H versus // and a for ideal sample when

n = 5 and c = —1.88

5.3 Simulation to estimate the mean and variance si-

multaneously

The purpose of this section is to compare the MPS estimate of a simulation study with

the ML estimate. Several attempts were made to calculate E(£L), E(a2), cr{fi) and cr(<r2)

for simulation run R = 10000, truncation points c = —1.88,-1,0,1 and sample sizes n =

5, 10, 20, 50,100 through a simulation study.

At first, we used NAG routine C05NBF to solve the equations (5.3). This program failed

in a number of cases for some data sets, (see Appendix Program 36). It seems that the
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routine is very sensitive to the starting value. To tackle this sensitivity problem we wrote a

subroutine to find the local maximum approximately using a grid search and having found

this we used it as starting value to start the simulation. Again this program failed for some

data sets. At this point we embarked upon a new method to maximize equation 4.7, H. The

logic of this method is to find the maximum of if, in a certain boundary of (j, [-1, 1] and

log(cr) [-1, 1]. The proceture is as follow:

1. find the maximum of if, if the two coordinates of the maximum are within the

range, then shrink the range, and find the maximum again.

2. If one of the coordinates of the maximum point H is on the boundary, then shift

the boundary, and find the maximum.

3. Stop the program, if two successive coordinates of the maximum point H are the

same to some accuracy significant figures (see Appendix Programs 37 and 38).

This program also failed in a number of cases.

To investigate the problem further, we choose one example of each case for the truncation

point e = 1.

1. For the random deviates of size n = 5, -1.59912, -0.88362, -0.757980, -0.658480

and -0.468060, we obtain jl = -0.8828 and a = 0.5700. The value of H at this

point is -1.9948.

Plotting the contour of H against a range of values of fi [-1, 1] and a [0.1, 1]

we get Figure 5.2, which shows the same values for the maximum of H, and its

coordinates [i and a. As we can see this Figure fails to show the maximum point

of /f.

2. However for random deviates of size n = 5, -1.89937, -0.55113, 0.039112, 0.33803

and 0.80620, the program fails to give maximize of H.
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Figure 5.2: The contour plot of H versus fj, and a when H has maximum
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Plotting the contour of H against two ranges of values fi [-1, 2] and [40, 100] and

a [0.1, 2] and [5, 10] we obtain Figure 5.3, which shows the same behaviour of H,

jj, and a.

Finally, we use NAG routine E04CCF, simplex method to find the maximum of H. The

simplex in two dimensions is a triangle which by providing the starting value, we specify the

first vertex of the simplex and the remaining vertices are generated by the routine (NAG

Manual, 1993)( see Program 39 in Appendix).

Running the Program 39 for the two data sets mentioned above confirmed the results

of Programs 37 and 38. Therefore we conclude that we failed to find the maximum point

of function H for some data sets. Hence, obtaining E(ji), E(a2), <?(ji) and &(a2) for the

simulation study are impossible.

5.4 Conclusion:

In this section we compare the MPS estimator with MLE by three means.

1. For data set 1 the MPS estimator (£, a) = (0.0603,1.1079) where in MLE (p., a) =

(1.3377,1.2871), but for data set 2 the MPS estimator (/}, a) = (-0.0158,1.0396)

where as in MLE method (ft, a) = (-2.1932,0.2767).

2. For the ideal sample, the MPS estimator (ft, a) = (0,1) whereas in MLE for

sample size 5 is (/2,<J) = (—2.1126,0.2865) and for sample size 10 is (/x,<r) =

(-1.9509,0.4099).

3. For simulation study; the MPS estimator for some data sets cannot be found ,

whereas in MLE method we have got the results for all cases.

Concentrating in these examples we see that the MPS estimators are closer to the exact

value of n and a than MLE. Therefore we conclude that although for the MPS method,
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Figure 5.3: The contour plot of H versus /x and a



Chapter 5 205

simulation failed for some data sets, the MPS method results are more sensible than MLE.



Chapter 6

Modified score functions of the

maximum likelihood estimators:

6.1 Introduction and notation:

We know that for the parameter 9 the asymptotic bias of the maximum likelihood estimator

9 can be written as

n nz

where bi(9) and b2(9) are the first and second order terms of b(6).

The basis of the present chapter is the idea that the bias in 9 can be reduced by intro-

ducing a small bias into the score function, Firth (1993).

By employing the notation and methods of McCullagh (1987) for log likelihood derivatives

and their null cumulants, the derivatives are denoted by

ftW = §, Sr,W = g ^ - , (6.2)

and so on, where 9 = (01,. . . , 9P) is the parameter vector. The joint null cumulants are

Kr,s = n~l E{SrSs}, KrAt = n"1 E{SrSsSt} and KTjSt = n~x E{SrSst}. (6.3)

206
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If 8 is a solution of score function Sr(8) = 0, we define a modified score function S*(8) such

that

S*r(8) = Sr(8) + Ar(8). (6.4)

The solution of S*(8) = 0 gives a modified estimator 8* of 8 whose its bias is less than the

bias of 8. According to Firth (1993), in matrix notation, the vector A(8) should be such that

E [A(8)} = -i(6)b1(e)/n + O(n-5 ). (6.5)

Therefore, in equation (6.4), Ar(8) can be substituted by the A^ (8) = -z(0)&i(0)/re or

A(°> (8) = -I(8)b1(8)/n, where 1(8) = -Srs(8) and i(6) = E[-Srs(8)} are called the observed

and expected information matrices respectively. The first part of the bias term can be written

as

b[(8) = -Kr-V'u(KaAu + Ksfu )/2, (6.6)

where Kr's denoted the inverse of the Fisher information matrix KTyS.

Finally, the application of these modifications removes the O(n~l) bias term. In other

words, in equation (6.4) substituting either A^ (8) or A^ (8) for Ar(9) removes the O(n~l)

terms of the equation (6.1).

6.2 The modified score function of fi in the truncated

normal distribution, when a2 is known:

In this section, using the above explanation, we derived the modified estimator fj,* of // in

the truncated normal distribution.

Using the score function of Chapter 2 and the notations, of this chapter, for r = s = t = 1,

we have

SM = ̂  = , (6.7)
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and

Therefore we obtain

(6-9)

X - u + il>(c?)) -n

n
E{X-

n3

na6

n2

(T6

= ~MX)
(6.10)

n
fV'(c')/cr]. (6.11)
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Now, using the equation (6.6) and MX) = —cr2?/)"(c') from section (0.1.23), we can find the

<j MX) + 0 /2

MX) (6.13)

which is identical with

and (6.12) we obtain

Now, the modified score function can be found as

n
a2

or

in Chapter 2. Substituting i(/x) and &i(//) from equations (6.11)

(6.14)

(6.15)

— . (6.16)

Now, we expect the solution of the equation (6.16), \i* of /i, to have a smaller bias than jl.

This would be an interesting problem to study in the future.

6.3 The modified score function of the a2 in the trun-

cated normal distribution, when fi is known:

In this section again using the a2 = 7, we find the modified estimate 7* of 7.

Using the score function and information matrix of Chapter 2 (equation 2.62) with the

notation defined in this chapter for // = 0, we have

„ , ^ dl n

2Y

r 2
Jj-^ - 7 + C'JT(C')
n

(6.17)
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Since we want to find ^(7), and also we know that E[S\(j)] = 0, we obtain

E
n

= 7-c/7r(c/).

Since we know that i(j) = £[1(7)] = E[—Sn(^)], we have to obtain

1 T™ -r2 C'2T'(C') 3C'T(C')

2 777 47 2 47 2

Using equation (6.17), into E[—Sn(~f)] we obtain

.. , n
27

2

c'2

+ y
n D

Now, let us find ^1,11(7) and /«i,i,i(7). From equation (6.3) we have

1

n

n

n

n rVar

^ - 7 + W )
Y V n

n

D

and

- 7

87e

(6.18)

(6.19)

(6.20)

(6.21)

(6.22)

Since finding the third moment of ( ̂ 1
n ' ) is cumbersome, we use the formula (2.20) in

Chapter 2. Therefore we have to obtain Km(7)

1
n

n
, 1 3

n\ - + —
E i

+ 873 87'
(6.23)
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Using the equation (6.23) we obtain

«in(7) = ^ {2 + ^ [-9T(C') + c'2r"(c') + 9C'T'(C')] j . (6.24)

Now, we have

A [1 _ C'T(C') C'2T'(C')] _

\ 12 + ̂  [-9r(c') + c'2r"{c') + 9cV(c')] | . (6.25)

To find the K1'1 we have

K1 1 = — . (6.26)

27
2

Therefore

/e1-1 = % . (6.27)

Substituting AC1I11? KI,I,I and /c1'1 from equations (6.21), (6.25) and (6.27) into equation (6.6)

we obtain 61(7)

-YC' \C'2T"(C') 4- C'T'(C') — rfc'11

2

which is identical with the 6(7) in Chapter 2.

Using the ^(7) and 61(7) from equations (6.20) and (6.28) into equation (6.5) we obtain

1

( ' •

(7) ( )

c'frCcM - dr'(d) - C'2T"(C')}4 ^
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Now the modified score function in terms of expected information is

SKi) = ' (7)

n
272

V^« ^,2

- 7
C'[T{C') - C'T'(C') -

8 7 [ 1 - C'T(C') 1 caT"(d)

and in terms of observed information is

n

ln
xx] 3C'T(C /) + C'2T'(C') - 2 7

(6.30)

C'[T(C') - c'r'(c') - c'V'(c')]
c > 2 ' r"(c' ) 12

2 J

. (6.31)
47[1 - ^

We expect the solution of the equation (6.30) or (6.31), 7* of 7 to have a smaller bias than

7. This also could be an interesting problem to study in the future.



Chapter 7

Summary and recommendations for

further research:

7.1 Summary of the work:

The work in this thesis concerns the truncated normal distribution. Specifically we consider

the singly truncated normal from the right and its parameter estimation. In Chapter 2, we

use the maximum likelihood method to estimate one parameter when the other is known.

For both actual data and simulated data, we work out the estimates of the parameters. Two

theoretical methods, those of Cox & Hinkley and Shenton & Bowman, are investigated and

found the E(£L), Var(/z), E(a2) and Var(<r2) to give identical results. Our simulated estimates

are compared with the theoretical methods and the results are almost the same.

In Chapter 3, we estimate two parameters of the distribution simultaneously. Moreover,

we extend the Shenton & Bowman formula for the two parameters. We make a comparison

between theory and simulation and finds that they give identical results.

We see that the maximum product spacing method for the one parameter case in Chapter

4, is asymptotically as efficient as the maximum likelihood method. We consider a model
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of the variance in terms of the truncation point and the sample size. The distribution and

moments of the estimators (i and ft have been determined.

In Chapter 5, by the method of maximum product spacing, we consider the simulta-

neous estimation the two parameters of the truncated normal distribution and we make a

comparison with the maximum likelihood method.

7.2 Recommendations for further research:

There are various possible areas of further research that evaluate for this work. We list them

as follows:

1. In Chapter 2, we have shown that the ML estimate of /i exists. It would be

worthwhile to prove theoretically that it is unique.

2. In Chapter 4, we investigate the distribution of p, when a is known. Further

research could be done to investigate the distribution of a2 when /j, is known.

3. In Chapter 5, in the simulation to estimate the mean and variance simultaneously

the computer program fails for some samples, in other words the routine C05NBF

fails to converge. Further research, especially in modifying the NAG routine

C05NBF could be done to produce a better routine for solving the nonlinear

equations. It would be useful if the recommended routine incorporate of the choice

of a suitable starting value for the iterations that would lead to convergence.

4. In Chapter 6, we found the modified score functions of //, Si(fi) and 7, S^d).

Further research could be done to find the properties of ji* and 7*.



Appendix

The diskette contained all the programs is available in the following address.

(a) M.Tazhibi, Faculty of Health, Isfahan University of Medical Sciences, Hezar Gerib

Street, Isfahan, Iran.

(b) Mr B. J. R. Bailey, Faculty of Mathematical Studies, University of Southampton,

Highfield, SO17 1BJ, U.K.
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