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Many calculations in general relativity are simplified when using a tetrad

formalism. As an important example we have the Newman-Penrose (NP) for-

malism which uses a complex null tetrad as basis for writing all information

corresponding to Einstein's equations. However, certain physical problems are

best described when the formalism is adapted to the geometry of such physical

situations, i.e, when the basis vectors (or spinors) are not completely arbitrary

but related to the geometry or physics in some natural way. A well known ex-

ample is the Geroch-Held-Penrose (GHP) formalism which best describes the

geometry of a null 2-surface and which is invariant under the group of spin and

boost transformations.

The GHP formalism is ideally suited to situations where two null directions

are naturally singled out, but in many physical cases one is faced with only one

preferred null direction. As important examples we have null congruences, null

hypersurfaces or wave fronts and type N spacetimes.

A formalism which is invariant under null rotations is presented. The fun-

damental objects are totally symmetric spinors. From this notation we develop

a formalism based on a single null direction which is covariant under both spin

and boost transformation and null rotations.

Although both formalisms, which we refer to in this thesis as the generalized

NP formalism and the generalized GHP formalism, have many other applications



mainly to do with null congruences and null hypersurfaces they are used in here

as an application to the equivalence problem of type N spacetimes.

The problem of determining weather two given metrics expressed in different

coordinate systems are actually the same metric, i.e, can be mapped into each

other by a coordinate transformation is the well known equivalence problem of

metrics. The theoretical resolution of this problem was originally provided by

Cartan and later refined by Karlhede who provided the useful Karlhede algorithm

of classifying different Petrov types of spacetimes.

In this thesis we apply the newly developed generalized GHP formalism to

the Karlhede algorithm of Petrov type N spacetimes (vacuum and non vacuum).

It turns out that such formalism is quite appropriate in this case simplifying

the calculations involved and lowering the number of covariant derivatives of

the curvature tensor one needs to calculate in order to completely classify such

solutions.

In the final chapter we review the work done on the relationship between

curvature and metric. We discuss the relationship of this work to that of Karlhede

and possible ways of using this work and that of Karlhede to improve on the

algorithm of certain Petrov types of Einstein solutions.
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Chapter 1

Chapter 1

The Equivalence Problem of

Metrics

1.1 Introduction

Here we review the equivalence problem of metrics and discuss its solution in

detail. The description given in this chapter closely follows that of Karlhede [18]

although an effort is made to explain as clearly as possible the various steps.

We also give an alternative way of looking at the equivalence problem by

working with the frame bundle LM rather than the manifold M, which will be

described in section 3.

In what follows we will use latin letters to denote indices corresponding to

frame components and greek letters to denote indices corresponding to coordinate

components. Lower case latin letters will run from 1 to n. Upper case latin letters

will label the parameters of the proper Lorentz group and will therefore run from

1 to \n{n — 1). Covariant derivatives will be denoted by a semicolon (:), partial

derivative by a comma (,) and directional derivative by a bar (|). The letter n

will be used to denote the dimension of the manifold M.

Let g and g denote two metrics on manifolds M and M. Then g and g are

said to be locally equivalent if, and only if, there is a coordinate transformation

z" = ^(x") (1.1.1)

that maps g^ into

If instead of using a coordinate notation we choose to use a tetrad notation,

the two given tensor fields g and g are given by:

g = T]tJu
t®LjJ (1.1.3)
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i®& (1.1.4)

e,- will denote n linearly independent vector fields, defined over a region U of M

and UJ1 the dual basis of 1-forms defined by :

<el,u
3>=Sl

J (1.1.5)

and r)ij is the constant frame metric:

e-i • ej = rjij (1.1.6)

Two geometries given by g and g in regions £/ and U respectively are equiva-

lent if, and only if, there is a pointwise identification between points P in U and

P in U such that :

gp = gp (1.1.7)

where gp denotes the metric tensor at P.

We should point out that this study is done locally for regions U and U with

local coordinates xM and xM and therefore determines if the spaces are locally

equivalent.

If we consider the case where each manifold M and M has the same constant

frame metric rjij then from 1.1.3 and 1.1.4 we have that:

u/p = ^ (1.1.8)

implies gp = gp.

However, since there exists a group of linear transformations of a/

Co1 = VjiJ (1.1.9)

which leaves rjij invariant:

VmTlijVn = Vnm (1.1-10)

and therefore also leaves g pointwise invariant:

g = ijjjW1 ® Co2

rjmnto
m

= 9
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we cannot say that gv = g^ implies UJ\ = Co1-.

So we have that the 1-forms only need to be equal up to transformations

b'j which leave r/ij invariant to make the metrics equal. The set of all such

transformations b'j form a group G which has a continuous subgroup of frame

orientation and time direction preserving transformations, i.e "rotations" of di-

mension "*"~ ' together with a finite number of discrete transformations, n being

the dimension of M. In particular, when n = 4 and T/,J is the Lorentz metric, G

is the six dimensional homogeneous Lorentz group and the continuous subgroup

of "rotations" is the proper Lorentz group C+ and the discrete transformations

are space and time inversions. We can therefore establish the following lemma:

Lemma 1.1.1 Two geometries are equivalent if, and only if, there exists a point-

wise identification P = P for P £ U and P £ U and a transformation b'j,

leaving r/ij invariant, such that

Let x^ denote local coordinates in U, tA the \n(n — 1) parameters of the

proper Lorentz group and m the discrete parameters in G. Let ^Q(.T") repre-

sent some local section of the space of 1-forms and let blAx^,tA,m) represent a

transformation in C\, then any other 1-form can be written:

— oAx , t , m)io0[x j (1.1.11)

So that by varying eA and m one obtains all possible LO1 with a given frame

metric rjij.

Using this notation we can write Lemma 1.1.1 in the following manner:



Chapter 1 6

Lemma 1.1.2 Two geometries are equivalent if, and only if, there exists a rela-

tion

i " = x"(x'i) (1.1.12)

eA = iA{eB,x^ (1.1.13)

m = m(m) (1.1.14)

giving:

Col{i",eA,m) = u / ^ " , eA,m) (1.1.15)

Since the number of discrete transformations in G is finite one can then

fix m and solve for each value of m in turn. So that the dependence in m is

straightforward.

In the following section we investigate the simpler case, where one does not

take into account the effect of the group G of all transformations {blj}, i.e., we

consider that the 1-forms u>1 and Co1 must be equal rather than equal up to a

transformation b'j. Latter on these results are used to solve the real problem of

equivalence.

1.2 Analysis of the Simpler Case

Here we concentrate in solving the simpler problem of determining a pointwise

identification of the regions U and U that will match up the 1-forms to1 and u/,

not considering a rotation and/or a discrete transformation.

Let u>% and Co1 be two systems of n linearly independent 1-forms, defined on

regions U and U with local coordinates xM and xM respectively (i,/j, = 1,2,...,??.).

We investigate in what circumstances there exists an identification of U and £/,

given by the relation xM = 1TM(X"), realising Co1 = uol.

We start by taking the exterior derivative of ul and Co1.

dxJ = l-c\hLOk huh ; c\h = -c\k (1.2.16)

du,* = l-c[hCok A uh ; c\h = -c\k (1.2.17)

where c\h = c^(x"), c%h = c[.fc(i").
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I) We start by treating the special case where there are n functionally inde-

pendent functions among ckh and ckh.

Note: n functions / i , /2,. . . , fn are said to be functionally independent if, and

only if the covectors <i/i, d/2,..., dfn defined at a point P are linearly independent.

The number of functionally independent components among the / ; is equal to

the number of linearly independent vectors among the df{.

la ) In this special case, we start off by establishing the necessary condition

for u/ = CJ1 .

If we assume that u1 = u>1, then dto1 = d£b\ so that from equations 1.2.16

and 1.2.17 we get:

Further differentiation gives:

<fcL = 4 n " ' (i-2-19)

dffkh=ffmul (1.2.20)

Then by 1.2.18 we have:

c\w = 4 , , (1.2.21)

So that a necessary condition for LO% = Co1 is that equations 1.2.18 and 1.2.21

are compatible equations relating x^ and x^.

If we decided to continue differentiation even further we would have:

dcl
m = c'khVm um (1.2.22)

d?W =?kh\im"m (1-2-23)

From 1.2.21 we obtain:

Clkh\lm = C\h\lm (1.2.24)

In the special case where one has n functionally independent functions among

the cl-k(c
l-k) n is the maximum number of independent functions on an n dimen-

sional manifold. This because on an n dimensional manifold one can have at

most n linearly independent vectors defined at a point P among the dc*jk, (dcl
jk).

Thus we have that c'u, (c*-̂ , ) must be functionally dependent on the c^k{cl-k). For

equations 1.2.18 and 1.2.21 to be compatible the cl-ut must be the same function

of the Cjk as cx-w are of the cx-k. Furthermore, all higher order derivative terms,
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for exactly the same reason as before, must also be functionally dependent on

the djk(c'fc). For example, cl-ulm comes from differentiating d-o, which in turn is

a function of d}k. So that in the end cl-^lm is a function of only d-k. Hence, if

we assume that the functional dependence is the same for cx-w and cl-k], then all

untwiddled and twiddled higher derivatives will be the same function of ck and

c':k respectively. We conclude that compatibility of 1.2.18 and 1.2.21 guarantees

the compatibility of all higher order derivatives.

Ib) We now proceed to show that compatibility of equations 1.2.18 and

1.2.21 is also a sufficient condition for to1 = u>\

We start by assuming the compatibility of 1.2.18 and 1.2.21 as relations

between x^ and xM and consider the following set of equations:

d?kh - ddkh = c>m (ul - ul) = 0 (1.2.25)

This set must contain n linearly independent equations in u>1 — u>1 because n

of the c\h are functionally independent which means, by definition, that n of the

vectors dckh are linearly independent. The n independent equations contained in

1.2.25 can be written as:

c$(Col-ul) = 0 (1.2.26)

where A represents some combination of i,j,k in cl-k and runs from 1 to n.

Considering 1.2.26 to be a matrix equation with ci| an n x n matrix , the linear

independence of the vectors Cu implies that cj) forms an n X n matrix of rank n

with inverse. Hence, set 1.2.26 has only the trivial solution to1 — to1 = 0, which

is the desired result.

We therefore conclude that in the case where there are n functionally indepen-

dent functions among the c'-fc(ck), compatibility of equations 1.2.18 and 1.2.21

is a necessary and sufficient condition for Of = LO1. The set of equations 1.2.18

contains n functionally independent relations which therefore yield a unique co-

ordinate relation xM = x^(x") giving Co1 = a/.

II) We now proceed to analyse the case where there are no ^ n functionally

independent components among the c'-k.

IIa)Firstly we establish the necessary conditions for w1 = u>1. Let Co1 = a/,

we then proceed as in la) to generate the set of equations:
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Ckh — Ckh

— ckh\h

(1.2.27)

Ckh\h...ip+1 - Hh\h...lp+1

In case la), the compatibility of the Oth and 1st derivatives guaranteed com-

patibility of all others, in this case we follow exactly the same reasoning to es-

tablish that the set 1.2.27 need only continue to the (p + l)th derivative, which

is the first derivative functionally dependent on lower derivatives. Therefore, the

compatibility of the set 1.2.27 is a necessary condition for ul = to1.

IIb)We now determine the sufficient conditions. We assume that the set

1.2.27 are compatible.

IIbi)Here we consider the case where the total number of functionally inde-

pendent components obtained from all derivatives up to pth. order is n. Since

in this case the n functionally independent components are scattered among the

first pth derivatives we take the following set of equations:

=o

(1.2.28)

This set will contain n linearly independent equations for u>1 —u>* produced by

differentiating the n functionally independent components among the c\h and its

first p derivatives. So that in exactly the same manner as in case (Ib), they give

only the trivial solution Co1 — UJ1 — 0. Therefore in the case where n functionally

independent components are produced by continued differentiation we have that

compatibility of the set 1.2.27 is a necessary and sufficient condition for UJ1 = o>\
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Ilbii) We now analyse the case where continued differentiation never pro-

duces n functionally independent components. In this case, among the set 1.2.28

there will only be k < n linearly independent equations for the n unknown Of — UJ\

k being the number of functionally independent components among the ckh and

its first p derivatives. Therefore, at best we will be able to use the set 1.2.28 to

express k of the OS - w ' as a linear combination of the other n — k. So with a

suitable numbering we have:

uA - uoA = bA{Co° - ua) (1.2.29)

where A, B etc. run from n — k + 1 to n (i.e. k of them), and a, j3 etc. run from

1 to n — k (i.e. n — k of them).

We then want to show that compatibility of the set 1.2.27 makes the (n —

k)Cba — uja zero which will then give from 1.2.29 that Co1 — UJ1 = 0 for i running

from 1 to n. The proof is in 2 stages:

1) We start out by showing how the requirement uja — u>a = 0 leads to a set

of first order partial differential equations.

Using local coordinates we have:

LO° = ayx" (1.2.30)

u)a = a°[dx^ (1.2.31)

which in turn gives the n — k equations:

u!a — LO" = a^dx^ — a^dx11 (1.2.32)

Since the Coa are linearly independent we have that equations 1.2.32 are

linearly independent in the dx^, having n — k linearly independent equations for

n unknown dx^. We can then solve for n — k of them as linear combinations of

the other k. With a suitable numbering we obtain:

dx° = b^dx* + c\dxA (1.2.33)

where once again A,B etc. run from n — k + 1 to n (i.e. k of them), and a,/?

etc. run from 1 to n — k (i.e. n — k of them).

2jThen we proceed to study the integrability of equations 1.2.33, i.e. we

want to show that there is a solution of 1.2.33 of the form:

.ra = ia(.TM,r4) (1.2.34)
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which is compatible with the coordinate relations obtained from equations 1.2.27.

Proof

Let W represent a 2n-dimensional space with coordinates {£^,0^}. Let

£}<* = Co01 - LO01 = a^dx" - a^dx" (1.2.35)

where a,/? etc. run from 1 to n — k. Thus, solving 1.2.33 which derives from

1.2.32, is equivalent to finding the submanifolds V C W such that:

ua\v=0 (1.2.36)

where Co01 \v represents the restriction of uoa to V so that Coa only acts on vectors

tangent to V. V will only exist (and therefore a solution of 1.2.33 will only

exist) if the vectors X which satisfy:

<ua,X>=0 (1.2.37)

"knit" together in such a way as to be tangent to some submanifold V.

According to Cartan, the condition for this "knitting" together is that dd>a =

9% A Co0, i.e. that:

d{Coa - to") = 6% A {u0 - t / ) (1.2.38)

where 9p are arbitrary 1-forms [8]. The exterior derivative must be taken in W

but will be the same as in 1.2.16 and 1.2.17 because w'(a>') are independent of

X"(£"). We show, using 1.2.16, 1.2.17, 1.2.18 and 1.2.29 that 1.2.38 is indeed

satisfied:

d{u,a-u>a) = l-cth{CokACoh-ukAuh)

= -c?u \(Coh + Lok) A (Coh - uoh) + (Cok - iok) A (Coh + ioh)}

= ^ { { C o 0 + uo0) A {uP - uP) - (uP + uP) A {Co0 - uo0))

-{CoA + LOA) A {Co0 - u0)]

-bA{CoB + uB) A

= 6a
0 A {Co0 - LO0)
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The dimension of V is given by 2n—(number of constraints in 1.2.36), given

explicitly by:

dim(V) = In — (n — k) = n -\- k (1.2.39)

Furthermore, V will not be unique but there will be an n — k parameter

family of Vs . This arises because the number of orthogonal normal directions

to a given V is 2ra- (dimension of V)— 2n — (n + k) = n — k, and each orthogonal

normal direction will parametrise a set of Vs . The initial vector X which "knits"

together with the others to form the submanifold may lie at any initial point along

the normal directions.

V

As an illustration of how this works in practice we give the following example:

Example 1.2.1 Let n = 1, k = 0, take the coordinates to be {x,x}withx >

0,x > 0. Take the 1-forms to be u> = xdx, Co = —xdx.

(Notice that k = 0 because in one dimension we only have c\x which by

antisymmetry must be zero).

So equation 1.2.36 becomes xdx + xdx = 0, which on integration yields

x2 + x2 = c or x = f(x,c).

Hence, the solution will be an n + k = 1 dimensional submanifold with

n — k = 1 parameter denoted by c which parametrises different solution suh-

manifolds, exactly as expected. In this case the submanifolds obtained as solution

are concentric circles with the parameter c giving their radius, the radial direction

being the only normal direction.

We now proceed to show that the solution 1.2.34 is compatible with the

coordinate relations that are obtained from the set of equations 1.2.27. To show

this we will reperform the steps that led from 1.2.27 to 1.2.34 using a special

coordinate system.
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We introduce a new coordinate system {x',x'} such that the k functionally

independent relations among the set 1.2.27 become:

x'A = x'A (1.2.40)

where A runs from n — k + 1 to n as before. In other words, we let the functionally

independent components in the set 1.2.27 act as a new coordinate system, which

we are allowed to do because they are functionally independent. Differentiating

we obtain:

(1.2.41)dx'A

where

dx'A

= dx'A

(1.2.42)

\ (1.2.43)

Let x'A = c^lhJi . Then

dx'A = c^.4,,- V (1.2.44)

And x'A = c £ M i J a so that

Comparing 1.2.42 and 1.2.43 with 1.2.44 and 1.2.45 gives:

However from equations 1.2.27 we know that:

ckoho\l1...lxi — ckoho\l1...lxi

so that

The dx'A are linearly independent because the x'A are functionally indepen-

dent. Thus, equations 1.2.43 and 1.2.42 represent k linearly independent equa-

tions in the nCj%. Using the same argument as before, we can express some k of



Chapter 1 14

the uf as linear combinations of the other n — k. With a convenient numbering

one then obtains:

uA = bAua + d^dx'13 (1.2.50)

Subtracting 1.2.50 from its untwiddled version and using 1.2.41 we obtain:

CoA - LOA = bA(ua - LJ°) (1.2.51)

Continuing as in 2), we analyse the solution of the equation

ua-ua = 0 (1.2.52)

If 1.2.52 is indeed satisfied, then by 1.2.51 uf — u/ = 0 for i running from 1

to n. In the new coordinate system {x',x'} this equation becomes:

a'$dx'p + a%dx'B - a'gdx10 - a'£dx'B = 0 (1.2.53)

From 1.2.50 we have that {£ja,dx'A} span the cotangent space of M and

hence represent n linearly independent 1-forms. Writing the Co01 in terms of the

coordinates we have:

Coa = h'^dx"3 + a%dxlB (1.2.54)

It is convenient for us to rewrite this equation as:

Coa - a'gdi'P = a'£dx'B (1.2.55)

Since {tba, x'A} are n linearly independent 1-forms, the terms on the left hand

side of 1.2.55 are linearly independent for different values of a, and so, therefore,

are the terms on the right hand side. This implies that the a'p constitutes a non-

singular matrix. We denote its inverse by (a'"1 )$,i.e.

(a'-1)^? = «? (1.2.56)

Multiplying 1.2.53 by the inverse (a'"1 )^ we arrive at:

dx'1 = -(a1'1 )la%dx'B + dx'1 + (a'"1 )>gdz / B (1.2.57)

As before we can show that the integrability condition 1.2.38 is satisfied, this

by virtue of 1.2.51. Therefore, 1.2.57 can be integrated to give:

x'a = x'a(x'a,x'A,5;'A) (1.2.58)
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Since we have been working in this special coordinate system in which equa-

tions 1.2.27 have the simple form given by 1.2.40, we can easily see that the

coordinate relations needed to make £oa — u)a = 0, given in this coordinate system

by 1.2.58, are compatible with the coordinate relations which arise from 1.2.27,

noticing that to arrive at 1.2.58 we insist that 1.2.40 must be satisfied.

We can now conclude that compatibility of the set 1.2.27 is a necessary and

sufficient condition for there to exist an identification of U and U giving Cf = to1

with i — 1,..., n.

Therefore, we have that the n relations x11 = x^(xu) providing the identifi-

cation of U and U giving Cb1 = UJ' are obtained from the set 1.2.27 (giving k of

them) together with the integral relations 1.2.34 (giving n — k of them). The

relations 1.2.34 are not unique but depend on n — k constants of integration, so

there are n — k continuous deformations of 1.2.34 which preserve Cf = LO\ There

may also be discrete transformations which are not found in this analysis.

We summarise our analysis in the following theorem:

Theorem 1.2.1 Given 2sets ofn linearly independent 1-formsu1 anduj1 defined

on U and U with local coordinates xM and x^ respectively, then there exists a

coordinate identification of U and U, given by x*1 = xti(x"), giving u>1 = to1 if and

only if the equations 1.2.27 are compatible. The [p + l)th derivative is the first

one which is functionally dependent on lower derivatives (including the zeroth),

so p + 1 < n. The coordinate relations x^ = x^(xu) depend on n — k constants

of integration, where k is the number of functionally independent components in

1.2.27.

We now explain why we have p + 1 < n. If the cljk are constants then their

derivatives will be zero, in this case the differentiation terminates at first order.

Therefore, in order for the process to continue beyond first order the c'-fc must

contain at least one functionally independent component. Subsequent differen-

tiation must produce at least one new functionally independent component at

each stage for the process to continue. However, in n dimensions there are at

most n functionally independent components so by the (n — l)th derivative all n

must have been produced, making the nth derivative the first to be dependent

on lower derivatives.
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1.3 The Equivalence Theorem

We have seen that to tackle the problem of determining an identification of two

regions U and U given by the coordinate transformations xM = x^^x^) realizing

uf = UJ\ one must have that the set of equations 1.2.27 must be a compatible

set. However, the real problem of equivalence that we proceed to analyse in

this section does not require that uf — uil but only that they are equal up to a

transformation bl- of the group G, i.e. Cf = fyuK

Cartan's [5] procedure for tackling this problem consists of a lengthy and

extensive analysis where the idea is to keep the rotational freedom of the tetrad

such that u/ depends not only on the n position coordinates x* but also on

the iH"~1) rotation parameters eA. This analysis is described in detail in [18] .

However, here we choose to follow a different route, one in which the calculations

are made easier by the fact that we choose to work on the frame bundle rather

than the manifold.

We first review some important definitions and results relating to frame bun-

dles, we closely follow references [15] and [14].

We denote the frame bundle by LM. This is defined to be the collection of

points P = (P, (ei)p,..., (en)p) where P £ M and (ei)p, •••, (en)p span TpM. The

map 7r : LM —> M given by P —>• P is the natural projection map. The map

Rg : LM —• LM gives the bijective correspondence (P, (ei)p,..., (en)p) —>

(P, /? ,^ - , . . . , / ^ ) , where h) e GL(n,R)

Let U be an open set of M, every frame at P £ U can be expressed uniquely in

the form (X\, ...,Xn) with X{ — Xlkek, Xlk being a non-singular matrix. So that

if (A'x,..., Xn) is a frame at P and h) £ GL(n, R) then {Yu ..., Yn) with 1} = h)X{

is also a frame at P. This shows that there is a bijective correspondence between

n~l (U) and U x GL(n, R). Let (a;1,..., xn) be a local coordinate system in U and

take the usual manifold structure of GL(n, R) so that the differentiate structure

of U X GL(n,R) is the manifold structure of the product manifold. Hence, we

can make LM into a differentiable manifold by taking (xl) and (Xt:>) as a local

coordinate system in TT"1 (U). Notice that if a Lorentz metric g is defined on the

manifold M then we may take h'j £ C\ where C\ is a subgroup of GL(n,R).

In order to be consistent with the notation we will denote any M £ C+ by b1-.

The set of elements of LM of the form (P, b\e{,..., fe^e,-) constitute the bundle of

pseudo-orthonormal frames denoted by O\.M. In this case we have:

lM = dimM + dimC\ = " + " ( w 1 ) = ! ^ ± l l (1.3.59)

Let a : R —> M be a curve C°° in M with <r(0) = P . By parallel translation

we define a C0 0 curve W(t) = (a{t),ei(t),...,en(t)) in O\.M, where e,-(i) is the
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parallel translate of e; = e;(0) = (et-)a(o) = {ei)p along a to cr(t). Since ir o a = a

we say a is a lift of <J and since W gives a parallel frame we say ZF is a horizontal

curve in O+Af. Thus a connection on M yields unique horizontal lifts of C°°

curves in M.

We define at each point P £ 0\M the subspace of vertical vectors Vp- =

{Xp £ T-pLM : 7r*(Xp-) = 0}. A connection on O\M is a map H that assigns

to each P £ O\M a subspace i/p- of TpO\M such that: (i/p- is the horizontal

space)

1. Hp contains no non-zero vector belonging to the vertical subspace Vp- and

K*\H- is an isomorphism of Hp onto Trp.M, hence H-p is n dimensional.

2. (Rg^H-p) = H^(p) ; Vgi € GL(n,R)

3. H is C°°, i.e., for each P G O+M there is a neighbourhood U and a set of

n independent C°° vector fields Ei, ...,En on [/ that give a base for Hp> for

every P £ U.

Thus a connection on M determines the horizontal subspaces in the tangent

spaces at each point P € O\M. And the projection map TT : O+M —> M

induces a surjective linear map TT* : TpO+M —> T,p*.M such that ir^Vp) = 0

and 7r»|ĵ _ is a injection onto T,p-,M. Therefore the inverse TT"1 is a linear map

of T,p<> M onto Hp.

If Xp £ iJp- we say that Xp is a horizontal vector. Property 1 implies that

for each Xp £ TpO+M there is a unique decomposition:

X'p=(XH)p+(Xv)p (1.3.60)

with (XH)P £ ^?p and (AV)p £ Vp-. Property 3 implies that if X is C°° then

.Xtf and Xv are C°° vector fields. We have:

M (1.3.61)

Furthermore if X is a C°° field on (7 £ M then there is a unique C°° horizontal

vector field X on F = TT"1 (£/) with Tr.(Xp) = X<T), VP £ 17. The parallel

translation earlier defined is frame independent in the sense that it is independent

of the starting point for W. By property 2 if a is horizontal (has a horizontal

tangent) then Rg o ~o is also horizontal.

Let if be a connection on O+M and P £ O\M. We can define a unique

horizontal vector field E{ with 7r,(£t-(P)) = (e , - )^ = (e;)p, VP £ O\M by
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property 1. The fields E\,...,En are global independent horizontal C°° vector

fields on LM. Together with the natural vertical vector fields which we shall

denote by E\,...,E% with K*(E\{P)) = 0 VP € 0\M we obtain a global base

field on O\M.

Consider the dual viewpoint involving differential forms, so that u;1, ...,a7™,

u;J,...,uJ^ are the dual 1-forms to this base. The u^'s are defined by X-p- =

ur(Xp)7r.(E,-(P)), Xp G T-pO\M and are dual to the £,-'s.

The set of u5J's are defined by (Xv)-p = a5J(Xp)(.Ej)p, ~XT G T¥. Thus a

set of connection 1-forms ujj (for i,j = 1, ...,n) on O\M is a set of 1-forms such

that:

1'. u?j form a dual base to E) at all P G O].M.

2'. S J ^ . X p - ) = bi^uTiCXpjb* VXp G TpO^M

3'. a?} areC0 0 Vi,j

We define a C ° ° m a p / : [ / —> O^M by f(P) = (P, ( e i )P , . . . , (en)P), P e t / .

If 7r o / is the identity on U, then / is called a cross section over U. Let a;4 be

the dual basis on M and Co1 the dual basis on 0+M and let a;*- be the connection

1-forms on M and ufj the global connection 1-forms on 0+M then:

(ZJ1 o /*)(XF) = ^ " (A 'P ) (1.3.62)

)=uj){Xp) (1.3.63)

Therefore the Cartan structural equations (along with the curvature tensor)

can be carried up to global equations on O+M:

du1 = u3 A u) with u?j = -U3i (1.3.64)

dcJ) = ul
k A ujj" + ifjfc(aJfc A uf (1.3.65)

We now proceed to reformulate the equivalence problem in terms of frame

bundles. In section 1.1 we saw that two space-times are equivalent if and only

if there is a pointwise identification i : M — • M such that i(P) = P and a

transformation bl- G C+ realising Ccp = bl-LO3
P. Hence by means of the definition

of ZJ1, UP3 and the map Rf, and by equations 1.3.62, 1.3.63, 1.3.64, 1.3.65,

the equivalence of space-times in terms of frame bundles can be formulated as

follows:
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Two regions of 0+M UR and U with local coordinates ~xR, ~XR and x^,

x (i,j,fi,a,p = l,...,n) respectively, are equivalent if and only if there is a

pointwise identification of UR and U, given by IR : UR —> U, realising:

so that one must have UR = Rb(U), ~XR = ~x^ o /?;, and x^p =

Hence the equivalence problem carried out in the frame bundle reduces to the

simple problem of section 1.2, so that we can proceed in the same manner and

investigate the conditions obtained by requiring that du = dUJ1 and dS?- = dufj.

Since u = uP and UJ • = up- by equations 1.3.64 and 1.3.65 we have:

%j)d =RtJki (1.3.67)

Further differentiation gives:

dRijki = Rijtd\m & (1.3.68)

dRljfd =%ilAmu3m (1.3.69)

Then by 1.3.67 we have the equality:

Rijld\m — Rijld\m (1.3.70)

We wish to express the directional derivative Riju\m in terms of the covariant

derivative RijH-,m • Consider the second order covariant tensor Vab which can be

written in the following way:

= alg(ea,p)g(eb,p) + a2g{ea,p)g(eb,q)

+ a3g(ea, q)g(eb, p) + a4g{ea, q)g(eb, q)

pa,qa first order covariant vectors.

So that Vab\m is given by:

= alg(ea,p)Vemg{eb,p)

= a1g(ea,p)g(Vemeb,p) + a1g(ea,p)g(eb,

+ aig(eb,p)g{Vemea,p) + alg{eb,p)g{ea,
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#(en,p) + a1g(ea,p)g(eb, V6mp)

5r(en,p) + a1g(eb,p)g(ea, Vemp) + ...

a3qapb-m + a3pbY
n

amqn + a3pbqa;m

aAqaqh-m + a4%r™mgn + a4qbqa.m

+ + gapn + a4qaqn)

qn + a4qbqn)

PbPa;m ) + Oi2(paqb-m

oi3qapb + a4qaqb)-

One can apply a similar calculation to higher order tensors, so that in the

case of the curvature tensor we write:

RijU\m — RijH;m + RtjM ^ im

+ RUM r j m + Rijti r ^ + Rijkt r ; m (1.3.71)

with

u5) = T)ku
k (1.3.72)

Equations 1.3.70, 1.3.71 and 1.3.72 together with the assumption that

cD = uf and <D • = U1- give:

RijM;m = RijU;m (1.3.73)

Further differentiation of Rijki-,m and Riju-,m gives:

dRijU;m = RijH\rm 5 " (1.3.74)

dRiMm =RtM™ w" (1.3.75)

And

RijH\mn — Rijkt;mn + Rtjtd;m 1 ,-„

+ RitH;m TJn + i?,j«;m F ^ + Rijkt;m T;n (1.3.76)
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Hence:

RijU;rrm = Rijfd;mn (1.3.77)

If we continue this process we will obviously get equalities of higher order

covariant derivatives of R and R. Therefore, by acting in the same way as in the

case of the simpler problem of section 1.2 we have that equivalence on the frame

bundle is governed by the following theorem which is very similar to theorem

1.2.1 of section 1.2 except that we are considering 0+M rather than M. Notice

also that the Cjfc,clu;, etc, are replaced by the curvature tensor and its covariant

derivatives. iV will denote the dimension of O+M.

Theorem 1.3.2 Two regions U and UR of 0\.M and O\M, respectively, are

equivalent if and only if the set

Rjkh —

(1.3.78)

is compatible as equations in .rM, xap;~xR,lfR
p. The (p + \)th derivative is

the first one which is functionally dependent on lower derivatives (including the

zeroth), so p + 1 < N. The coordinate relations expressing xR,x as functions

of ~xR,rx'R depend on N — k constants of integration, where k is the number

of functionally independent components among Rijki , Rijld;m •> ••••,Rijkl;mim2...mp+i ,

which means that there are N — k continuous deformations of the coordinate

relations which preserve equivalence.

Since i?tj« , up, uPj in O\M determine R^u , ui\ utJ in M by means of a function

/ then the above theorem can be translated in M in a very straightforward way:

Theorem 1.3.3 Two regions U and U of M and M respectively, are equivalent

if and only if the set

Ujkh — njkh
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(1.3.79)

is compatible as equations in x^, xap; a;'*, ~xap. The (p + l)th derivative is the

first one which is functionally dependent on lower derivatives (including the ze-

roth), so p + 1 < n. The coordinate relations expressing xfl,x<7p as functions of

xll,xap depend on n — k constants of integration, where k is the number of func-

tionally independent components among Riju , Riju-,m ,-••, RijU\mim1...mpjrl , which

means that there are n — k continuous deformations of the coordinate relations

which preserve equivalence.

1.4 Investigating Equivalence in Practice

Here we give the practical procedure for investigating the equivalence of metrics

otherwise known as the Karlhede algorithm. We will assume in what follows

that we are working in an open neighbourhood in which the Petrov type and the

dimension of the various isotropy subgroups remain constant.

1. Choose a constant frame metric rjij for the tetrad.

2. Calculate the tetrad components Riju of the Riemann tensor in an arbitrary

fixed tetrad with metric 77̂ .

3. Determine Ho, the subgroup of G (G is the six dimensional homogeneous

Lorentz group) which leaves the Rijid invariant (Note that Ho may contain

discrete transformations since G does).

4. Determine, up to a transformation in Ho, a standard tetrad by requiring

that R^u takes on a special form, called the canonical form. This can

always be performed for Riju and its covariant derivatives.

5. Determine no, the number of functionally independent components among

Rijid in its canonical form (Note: n functions /1? /2 , . . . , /„ are said to be

functionally independent if and only if the vectors dfi, df2,..., dfn are linearly

independent. The number of functionally independent components among
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the /j's is equal to the number of linearly independent vectors among the

dfi's).

6. Calculate Rijkl;rr\ m the standard tetrad.

7. Determine H\ the subgroup of HQ which leaves Rijki and Riju;m invariant.

8. Determine among the earlier standard tetrads, up to a transformation in

Hi, a new standard tetrad by stipulating a canonical form for Rijki-r^ •

9. Determine n\, the number of functionally independent components among

Rijid and Rijki]mi in their canonical forms.

10. If dim(Hi) = dim(Ho) and ni = no then the procedure terminates. Other-

wise steps 6-9 are repeated for RijUwma •> Rijtymmzma , etc until the stage

is reached whereby dim(Hp+i) = dim(Hp) and n^i = nv in which case the

procedure terminates.

The set {Hq,nq, RijM;wim2ma...mq }, q = 0,1, ...,p + 1, classifies the solution.

The above algorithm provides an invariant classification of each metric g

and g' which are being compared for equivalence. The rest of the procedure

is as follows.

11. If the two sequences Ho, n0; Hi,ni;...; Hq, nq for g and g' differ, then so do

the metrics.

12. If the set of simultaneous algebraic equations R'^ = Riju , R'ijUm =

RiMm , •••, R'iju;mim2...rrlri = RijU;mm2...mq , wi th t h e invar iants in the i r

canonical form, admits a coordinate transformation x1 = xl(xl), i = 1,..., n

as a solution then the metrics are equivalent, otherwise they are inequiva-

lent.

The procedure terminates when dim^Hp+i) — dim(Hp) and np+i = np be-

cause there are no new functionally independent quantities relating to the coordi-

nates x^- since n^i = np and there are no new functionally independent quantities

relating to the group G, i.e, to the parameters eA since dim(Hp±i) = dim(Hp).
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The reason why this procedure tackles the equivalence problem rests on the

use of the canonical form. The equivalence theorem tells us that in order for us

to have Cox = bl-uji there must exist frames in which the two sets of invariants

RijH i Rijfd;-^,... and Riju , Rijid;m,... etc. are equal, with the actual identification

map being given by the coordinate relation x^ — x^{xv) which then gives the

equality. By using the canonical form we are able to pinpoint more precisely,

up to transformations in Hp, the frame which will enable these invariants to be

equal, by the identification xM = ^(x").

This algorithm provides plenty of information about the geometry even if the

last step (12) cannot be tackled. In the section that follows we shall see how

steps (1) through (4) are equivalent, for the vacuum case, n = 4 and 7/,-j the

Lorentz metric, to the Petrov classification since the result depends uniquely on

the multiplicities of the principal spinors in the corresponding spinor of the Weyl

tensor. The complete procedure provides a kind of maximally generalised Petrov

classification in the sense that we classify all covariant derivatives of the Riemann

tensor that are necessary to provide a complete classification of the geometry. It

works for non-empty spaces and spaces of arbitrary dimension n and frame metric

rjij. It also works for any geometry, regardless of whether the metric satisfies any

field equations, in a sense it is a purely geometrical classification.

The procedure given by Kalhede is similar to the one first suggested by Brans

[4]. The main difference lies in the fact that Brans first calculates the Riemann

tensor and its covariant derivatives and then determines a canonical form for

them, starting with the highest derivative. In the procedure described above the

process is made simpler since we do this successively starting with the curvature

tensor.

1.5 Canonical Forms for the Weyl Spinor and

its Invariance Group

In this section we restrict ourselves to general relativity, i.e., the case where the

manifold M has dimension 4 and possesses a Lorentz metric. Instead of working

with the tetrad components of the Riemann tensor and considering transforma-

tions in C+ of the frame one works with the dyad components of the correspond-

ing Weyl spinor and considers SL(2, C) transformations. One can do this because

of the following two results [3]:

1) The tetrad components of a tensor in a Newman-Penrose null tetrad are

the same as the dyad components of the equivalent spinor.

2) SL(2,C) transformations of the dyad correspond to proper homogeneous
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Lorentz transformations (C+) of the Newman-Penrose null tetrad.

The dyad {CoSCi4} an<^ the Newman-Penrose null tetrad {/^n^yn'^m'*} are
related by the equations:

jfj- _ „»• rA7B

1 ~ aAB So SO'

C
m — a AB Si SO'

where a ^ are the connecting quantities which relate spinors to tensors,

otherwise known as the Infeld-Van der Waerden symbols.

The spinor equivalent of the Riemann tensor can be decomposed as follows:

RABCDABOD = ^ABCD t.A'B' (-OD + eAB ^CD ̂  A'B'OD

+ tABt&D §CDAB + CCDtA'B §ABOD

+ A{(e.4£) tBC + (-AC (-BD )tA'& eC'D

+ tABtCD {tA'D (-BO + ^AO ̂ BD )}

with

^ABCD = V(ABCD) (1.5.81)

and

§ABAB = $(AB)(AB) = § ABAB (1.5.82)

A will represent the Ricci scalar, the Ricci spinor Q.^BAB represents the

trace-free Ricci tensor and the Weyl spinor ^ABOD represents the Weyl spinor.

In the vacuum case, only the \\Teyl spinor does not vanish. Because the Weyl

spinor is totally symmetric it can be written as a symmetrized product of 1-

spinors, with the multiplicity of these principal spinors determining the Petrov

type [3].

Petrov Type

II

D

III

N

0

Weyl

^ABCD

^ABCD

^ABCD

* A B C D

^ABCD

spinor

= &(AaBl3clD)

= a(AaB(3c/3D)
:=1 CX ( A CX. R CX n p ry

: = Cxi A CX fiCxp CX n

= 0
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where OLA^A^A and 6A represent non-proportional spinors.

All transformations in SL(2, C) can be represented as the product of three

matrices as follows:

0 I/A ) { a 1 j \ 0 1

The first matrix will be denoted by T\, the second by T2 and the third by T3.

Under transformation T\ the dyad {CoSCi4} transforms as:

Cî  —> A"1 Ĉ  (1-5.84)

Under T2 the dyad transforms as

a(

Under T3 the dyad transforms as:

Co4 — Co4 +

(1-5.86)

For an insight into the geometrical interpretation of these transformations one

looks at their affect on the tetrad vectors by using the relations 1.5.80. Hence,

under 7\, letting A = re*e, the tetrad transforms as:

e

i" (1.5.87)

Thus, we have that T\ represents a rotation in the {m, ?n} plane and a boost

in the {/,n} plane. Therefore, we call T\ a spin and boost transformation.

Subject to T2 the tetrad transforms as:
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p

mM —> mM 4- al^ (1.5.88)

m —> m11 + aP

Hence, we have that Ti represents a rotation about the vector /M. Therefore,

we call Ti null rotations.

Under T3 the tetrad transforms as

mM —> m^ + bn" (1.5.89)

So that T3 represents a rotation, but this time about the nM vector. These

transformations are therefore also called null rotations.

We now investigate how the components of the Weyl spinor transform under

these transformations. Using the standard notation [28]:

# 0 = OAOBOCODVABCD

$ ! = OAOBOCLD^AB=D

(1.5.90)

it is clear that $07 ^ 1 , ^2, ^3 , ̂ 4 under Ti transform as follows:

(1.5.91)

Subject to T2 they transform:
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(1.5.92)

Under T3 they transform:

(1.5.93)

We now concentrate on determining a canonical form for the Weyl spinor and

the corresponding invariance group for each of the Petrov types.

Petrov Type I

For Petrov type I the Weyl spinor has the form:

(1.5.94)

Since the principal spinors are determined only up to a complex scalar factor,

we can arrange that a^/3'4 = 1 and choose {aA, f3A} as our dyad. In this dyad $0

and V&4 will both be zero as they will involve the contraction of two o-̂ s together

and two f3As together respectively. We will denote the contraction QAI3A by

(a/f3), so that the full set of components of the Weyl spinor are (up to a constant

factor):

= 6(a/(3)(/3/a)(7/a)(6/a) = -6(7/a)(<S/a) + 0

0 (1.5.95)
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These equations are obtained taking into consideration that for any two

spinors Q:A/3A = — A4C*'4, and that the four principal spinors in 1.5.94 are non-

proportional and therefore have a non-zero contraction with each other. Since

W2 is a sum of two terms it could possibly be zero.

Firstly we use a 7\ transformation to obtain:

Wx = W3 = (W?W^)1/2 (1.5.96)

where W" and W3 represent the untransformed values given in 1.5.95, while

keeping Wo = W4 = 0 and leaving W2 unchanged. We now apply a transformation

of the form:

(1.5.97)

so that the components transform as follows:

Wo -

Wx -

W2 —

W3 -

w4 -

-> 8Wa + 6W2

-»• 0
1

_> —\ j>
2

-> 0
1 3

~^ 9 1 8

(1.5.98)

It is clear that Wo and W4 can only be zero if W2 = -§Wi or W2 = |Wi

respectively. Let (7/a)(5//?) = X and (~///3)(8/a) = Y then one can easily

show by means of 1.5.95 and 1.5.96 that this can only be satisfied if X = Y.

On the other hand, from the definition of X and Y we have that X = Y implies

that 71&2 — 72^1 o r :

7i/72 = £i/<52 (1.5.99)

However we see that 1.5.99 contradicts the assumption made that -yA and

SA are non-proportional spinors, so that we can conclude that neither Wo or W4

transforms to zero under transformation 1.5.97. So that now we can use a spin

and boost transformation to make Wo = W4, while keeping Wj = W3 = 0 and

leaving W2 unchanged. So that we obtain as our canonical form for Petrov type

I:

Wo = W4 ± 0 , Wj = W3 = 0 (1.5.100)

where W2 may or may not be zero.

My means of 1.5.84, 1.5.85 and 1.5.86 we see that the canonical form 1.5.100

fixes the parameters A, a and b to certain discrete values, so that the invariance

group is the identity.
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Petrov Type II

The Petrov type II Weyl spinor has the form:

^ABCD = aiAaB(3c7D) (1.5.101)

We choose as our dyad:

Co4 = aA (1.5.102)

and

so that the dyad components of the Weyl spinor satisfy:

$2, ^3 + 0 , * 0 = *1 = *4 = 0 (1.5.104)

Any swapping over of the basis or mixing of the dyad would change the

zero/non-zero pattern given above, so once again only transformations in 2\ will

leave the components invariant. The matrix form of T\ is given by:

o I / A ) ' X€C ( L 5 - 1 0 5 )

So that, again by 1.5.91 the components 1.5.103 transform in the following

way:

<|/2 = iir2 , ^ 3 = A~2^3, $ 0 = $i = * 4 = 0 (1.5.106)

Invariance requires that A = ±1. so that as before the invariance group is the

identity.

It is obvious that the canonical form in this case is obtained by fixing $ 3 = 1

with all other components zero except <52-

Petrov Type III

The Petrov type III Weyl spinor has the form:

^ABCD = ct(AaBacf3D) (1.5.107)

We choose as our dyad:

(£ = aA (1.5.108)



Chapter 1 31

and

<? = ^ (1.5.109)

which is a normalized dyad since it satisfies the condition COACI4 = 1- With this

dyad we can contract the Weyl spinor with at most one (Q for a non zero result,

otherwise we would contract two Q-4S giving zero. On the other hand, contracting

with four (As gives zero since we would be contracting two flAs. So that in this

basis, the components of the Weyl spinor are given by:

$ 3 ^ 0 , *o = $i = *2 = *4 = 0 (1.5.110)

We now investigate the SL(2,C) transformations of the dyad which leave

these components invariant. It is clear that any swapping around of the dyad or

any mixing of the dyad would not leave the components invariant, so that only

transformations that preserve this pattern are the ones in T\ given by:

, A e C (1.5.111)

Hence by 1.5.91 the components 1.5.110 transform as follows:

v|r3 = A~2*3 , * 0 = §! = * 2 = $ 4 = 0 (1.5.112)

where ty refers to the transformed value. We then have that for the components

to remain invariant A = ±1. Since 1.5.80 relates a tetrad vector to the product

of two dyad vectors, both transformations with A = +1 and A = — 1 correspond

to the identity transformation of the tetrad. We then have a zero dimensional

invariance group.

We can obtain the simplest form possible, i.e. the canonical form, by choosing

a special dyad such that ^3 is one and all the other components are zero. In

this case the invariance group, i.e. the group of transformations of the dyad

which leave the canonical form invariant, is the zero dimensional identity group.

Because the invariance group is zero dimensional, this canonical form determines

a finite number of dyads and hence tetrads, actually two dyads and one tetrad.

Petrov Type D

For Petrov type D the Weyl spinor has the form:

=a(AaBl3cfiD) (1.5.113)
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We choose as our dyad:

C0
A = aA (1.5.114)

and

so that in this case the dyad components of the Weyl spinor have the form:

$ 2 ^ 0 , *o = *i = *3 = *4 = 0 (1.5.116)

It is easily seen that the transformation:

will leave the pattern of zeros and non-zeros invariant, and that because of the

symmetry between aA and f3A in the Weyl spinor, a transformation swapping

them over, i.e.:

( " • ) , « € C (1.5.118)

will also leave the pattern invariant. Any transformation other than 1.5.117 and

1.5.118 will involve mixing the dyad vectors and will therefore alter the pattern

of zeros and non-zeros of 1.5.116. It is easily shown that transformations 1.5.117

and 1.5.118 leave the components of the Weyl spinor unchanged, so that these

two sets of transformations together constitute the invariance group. However

transformation 1.5.118 can be written:

so that the invariance group for type D is made up of the following types of

transformations:

A » , A £ C ; ° M (1.5.120)
0 I/A i 1-10/
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And because A is complex, the invariance group is a two dimensional subgroup

of SL(2,C), with the pattern 1.5.116 being the canonical form. Furthermore,

because the invariance group is now two dimensional, the canonical form does

not limit us to a unique dyad but to an infinite number of dyads.

Petrov Type N

The Petrov type N Weyl spinor has the form

^ABCD = aAOtBacCXD (1.5.121)

We choose as our dyad:

Co = aA (1.5.122)

and (A an arbitrary spinor satisfying (,OACI = 1- It is clear that any component

involving a contraction with aA will be zero so that we have:

* 4 = 1 , ^o = *i = *2 = ^3 = 0 (1.5.123)

In order to preserve this pattern we cannot consider any transformation of

(0
A that mixes in any (A. Furthermore we can consider a transformation of (f

such that we multiply it by ±1 or ±z and add in any amount of C54, since this

transformation will keep \&4 = 1. The only transformations of SL(2.C) that

satisfy these conditions are:

1 h ^ (1.5.124)
a 1

and

/ i n \
, beC (1.5.125)

on the other hand transformation 1.5.125 can be written:

so that the following set of transforniations constitutes the invariance group for

type N:
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(1.5.127)

which is a two dimensional subgroup of SL(2, C). The canonical form is obviously

given by 1.5.123. Because the invariance group is a two dimensional group the

canonical form limits us not to a unique dyad but to an infinite number of dyads.

These results can be used to refine the upper bound on the number of covari-

ant derivatives which need to be calculated in order to determine equivalence.

The equivalence theorem sets this upper bound at 10 for a four dimensional space.

For Petrov types I, II and III the invariance group of $ aw is zero dimensional

and therefore cannot change. If there are n0 components among the ^aboi which

are functionally independent with respect to the coordinates xM, then only 4 —??o

functionally independent components remain to be generated. At least one new

functionally independent component must be generated per differentiation for

the Karlhede algorithm to continue, so that after at most 4 — no differentiations

all functionally independent components must have been generated, so we have:

Petrov types I, II, III : p + 1 < 5 - n0 (1.5.128)

So that at worst we would need to calculate five covariant derivatives for these

Petrov types.

For Petrov types D and N the same argument as above can be applied, the

only difference being that the invariance group starts off at zeroth order with

dimension two and therefore could drop one dimension at each differentiation

down to zero dimensional. Hence we have:

Petrov types D and N : p + 1 < 7 - ?r0 (1.5.129)

So that in the worst case we only need to go to the seventh co variant derivative

for these Petrov types.

We should emphasize that the worst possible cases of values five and seven

assume that:

1. The tyabcd are constants (i.e. there are no functionally independent compo-

nents).
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2. The dimension of the invariance group and the number of functionally

independent components do not both change on differentiating.

3. At most one new functionally independent component is produced on dif-

ferentiating.

4. The dimension of the invariance group goes down by at most one dimension

on differentiating.

So that in actual calculations it seems highly likely that less derivatives will

be needed. In fact, for all calculations performed to date it has been found

necessary to go to at most the fourth derivative [21].

Note that these upper bounds will apply to non-vacuum as well as vacuum

solutions. From the decomposition of the Riemann spinor 1.5.81 and 1.5.82, we

see that in the non-vacuum case as well as the Weyl spinor one must consider the

Ricci spinor $ABAB > which represents the trace-free Ricci tensor. Hence, for the

non-vacuum case any invariance group will have to keep the dyad components of

the Ricci spinor invariant as well as the dyad components of the Weyl spinor, so

that the invariance group will either be of the same dimension as in the vacuum

case or of smaller dimension. This means that the upper bound in the non-

vacuum cases will be the same as in the vacuum cases.

The only case which we have not considered is the conformally flat case,

Petrov type 0, where the Weyl spinor vanishes. We will not give a proof here, but

by proceeding in a similar manner to that above and considering the dimension

of the invariance group of the Ricci spinor, it can be shown that the upper bound

for this case is also seven [18].
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Chapter 2

A Formalism Invariant Under

Null Rotations

2.1 The Formalism

In this chapter we present a formalism which is invariant under null rotations

and which will prove later on to be very useful in the Karlhede classification of

Petrov type N solutions [33], [31].

As is well known, many calculations in general relativity are simplified by the

use of a tetrad formalism. As an example, we have the Newman-Penrose (NP)

formalism [23] which uses a (complex) null tetrad, {/a, na,ma^ma}. This formal-

ism has a very natural formulation in terms of spinors which is not surprising

since the basis chosen is a null tetrad.

Such tetrad formalisms have particular use if the basis vectors or spinors are

not completely arbitrary but are related to the geometry or physics of the space-

time in some way. Take for example a spacelike 2-surface, where we can choose

a tetrad so that la and na point along the outgoing and ingoing null normals of

the 2-surface, and the real and imaginary parts of ma and m° are tangent to

the 2-surface.

The remaining gauge freedom in the choice of tetrad is the two dimensional

subgroup of the Lorentz group representing a boost in the directions normal

to the 2-surface and a rotation in the directions tangent to the 2-surface. In
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spinor formulation, one chooses the flagpoles of oA and iA to point along the

directions of the null normals and the remaining gauge freedom (which maintains

the normalization OA tA = 1) is:

oA —>\o A , / — > A " V (2.1.1)

where A is an arbitrary (nowhere vanishing) complex scalar field. Transformation

2.1.1 is called a spin and boost transformation.

Under transformation 2.1.1 some of the NP spin-coefficients (those of proper

spin and boost weight) are simply rescaled, while other spin-coefficients trans-

form in a way which involves the derivative of A. These ubadly" behaved spin-

coefficients can be combined with the NP differential operators of proper spin

and boost weight, thus obtaining a new formalism in which all quantities sim-

ply rescale under spin and boost transformations. The formalism described is

the Geroch-Held-Penrose (GHP) formalism [25] and is particularly useful in the

study of the geometry of spacelike 2-surfaces where the differential operators

and spin-coefficients have a natural interpretation in terms of the intrinsic and

extrinsic geometry of the 2-surface. The GHP formalism has also proved to be

very useful in the Karlhede classification of Petrov type D solutions since the

invariance group in this case is that of spin and boost transformations. Collins

used the GHP notation to lower the bound from seven to three for vacuum type

D solutions [10] and from seven to six for the non-vacuum case [9].

The GHP notation is ideal in situations where two null directions are singled

out, however in many physical situations one only has one preferred null direction.

Examples of such cases are null congruences (which often arise in connection with

radiation), null hypersurfaces or wave fronts and Petrov type N space-times. In

this case we may choose the flagpole of oA to give the specified null vector and

the remaining gauge freedom in the choice of spin basis is:

oA > oA, iA > iA + aoA (2.1.2)

where a is an arbitrary complex scalar field. Note that a null vector may not

determine a unique oA, however in the case of type N spacetime oA is unique.

In terms of the null tetrad 2.1.2 becomes:

la > / ° , ma >ma + ala,

rff —> iff + at, na —• na + anf + ama + aal" (2.1.3)
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Such transformations form a two (real) dimensional subgroup of the Lorentz

group representing null rotations about la.

Now the idea is to develop a formalism from the NP formalism that will be in-

variant under the two dimensional group of null rotations. We begin by studying

how the spin coefficients of the NP formalism transform under transformation

2.1.3. We use the same notation used in GHP formalism:

K —> K (2.1.4)

a—> a + CLK (2.1.5)

p—*p + aK (2.1.6)

(2.1.7)

(2.1.8)

(2.1.9)

e—>e + an (2.1.10)

t' —> e' - aa(e + p) + a/3' - a((3 + r) - aV - aa2K (2.1.11)

K! —> K + a(2e' + p) - aa2(2e + p) + 00(2^' + r') - aa2(2e + p)-

—a3^ + aa' — a^K — Aa — H8~a — aSa — a'aD'a (2.1.12)

a' —> a' - a2(2e + p) + a(2/?' + r') -a^K-Ha- aDa (2.1.13)

p' > p' — 2aae — 2a/3 — a2a + ar' — aa2K — 8a — aDa (2.1.14)

r ' — > T' - Zat - a2K - Da (2.1.15)

We now look for invariants under the group of null rotations. The effect of

a null rotation on a spin coefficient to is denoted by H(u>) as an example we

have H(p) — p -\- an.. Note also that the spinor invariants with one primed or

unprimed index will be referred to as a 1-invariant while an invariant spinor with

P unprimed indices and Q primed indices will be referred to as a P,Q-invariant.

(A) Taking linear combinations of the spin coefficients we get the following

invariants.

p - t — > p - t
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(B) Taking linear combinations of the product of the spin coefficients

(K, <T, p, r, /?,/?', e, e') with spinors (0^4,^,0^,1^) we have the following cases.

(1) 1-invariants.

KA = KOA and KA> = KO^ (2.1.16)

The P,Q-invariants are of the following form.

KA1...AP.AI1...AQ = KOAI ...oApoA,il...oA'Q, (2.1.17)

(2) H(<r) is a function of a and K, we therefore look for an invariant by taking

linear combinations of the product of the spin coefficients a and K with the spinor

basis, ie, of the form fa + SK with / , s £ {0̂ 4, OA> , IA^A }• We then insist that

this linear combination be invariant under the effect of a null rotation, ie, that

H(fa + SK) = fa + SK. .

In this case we find / = =Fo^ and s — ̂ TA' such that our 1-invariant is

SA1 = COA> — KTA' (2.1.18)

To obtain P,Q-invariants we again take symmetric products with the spinor

basis. As an example we have :

S(A'B) = &OA'OB — KLiA~O~B) (2.1.19)

(3) H(/>) is a function of p and K, we look for an invariant of the form fp + SK

with H(fp + SK) = fp + SK considering f and s to be 1-spinors. In this case we

find / = M'oA and 5 = ^IA such that our invariant is :

K(A (2.1.20)

Again to obtain P,Q-invariants we take f and s to be P,Q-spinors. For example

R(AB] = POAOB - KO(AlB) (2.1.21)

(4) H(r) is a function of r, p, a and K SO we look for an invariant of the form

fr + sa + np + m.K with H(fr + sa + np + IJIK) = fr + sa + np + me . We find by
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solving this last identity that f, s, n, and m cannot be 1-spinors and must have at

least one primed and one unprimed index. Thus as an example of a 1,1-invariant

we have:

(2.1.22)

(5) H(/?) is a function of j3, a, e and /c, this case is similar to that of (4), thus

as an example of a 1,1-invariant we have:

BAA — /3OA~OA — COA^A1 — CIAOA' + KIAIA1 (2.1.23)

(6) H(/5') is a function of /3',p.t and K therefore we look for an invariant of

the form f/3' + sp + ne + ma. By solving the identity H(f(3' + sp + ne + ma.) =

f/3' + sp + nt + TUK we conclude that f, s, n, and m must be spinors with at least

two unprimed indices. Our symmetric 2-spinor is:

= !3'oAoB + (p + e)oiAiB) - KtAiB (2.1.24)

Since we are considering that 0.4tA = 1 we have that /?' = —a so that one can

write:

AAB = QoAoB - {p + e)o(ALB) + KLAIB (2.1.25)

(7) H(e ) is a function of e and K, this is the same case as (3) so we have as

a 1-invariant and 2-invariant:

EA = toA - MA (2.1.26)

EAB = toAoB - K.O(ALB) (2.1.27)

(8) Finally we have H(e') as a function of e', e, /?', j3, r, p, a and K. We look for

an invariant of the form ft' -f se + n,<3' + m/? + pr + qp + ĉr + /?,K. By solving the

identity H(fe' + se + n/3' + mj3 + pr + qp + ga + ha) = ft' + se + n/3' + mfi + pr +
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qp + ga + hn we conclude that f, s, n, m, p, q, g, and h must be spinors with at

least two unprimed indices and one primed index. Thus our 2,1- invariant is

'ABA = ^'OAOB'OA + {P + T~)o(AiB}~dAf —

{1'OAOB~IA< - (e + P)O(ALB)TA' + ULAL-BIM (2.1.28)

Again because we are working with a normalized dyad we can write:

GABA = •JOAOBOA' — (/? + r)O(A''B)'OA +

TA' + (p + t)o(Ai-B) ~LA> — KLALB~LA> (2.1.29)

Note that the above invariants need not be symmetric. For example, in case

(6) we have a non-symmetric 2-spinor invariant of the form

AB = P'OAOB + pOAOiB + ^AOB ~ Kt,ALB

In future we shall only be working with symmetric invariants for reasons that

will become clear later on. Furthermore all information given in the invariants is

contained in the symmetric part, for example the antisymmetric part of B1^ is

p — e and this information is contained in RA — EA = {p — Z)OA- SO that one does

not loose information by taking the symmetrized forms. Hence we write down

all invariants which will be of use to us in future:

K = K (2.1.30)

RA = POA — KIA (2.1.31)

SA, = aoAi - KTJV (2 .1 .32)

TAA = TOA'OA ~~ P0A~i-A ~~ &t>A~dA + Kl-A~lA' (2.1.33)

BAA = POAOA' — COATA — oiA~dA' + KXA^A (2.1.34)

AAB = aoAoB - (p +e)o(AiB) + KtAiB (2.1.35)

EA = COA — KLA (2.1.36)

GABA = JOAOBOA' — (/? + T)O(A1B)OA> + CTlA'BOA

-aoAoBTA, + (p + e)o(AiB)TA> - KIALBTA< (2.1.37)

It is easily seen that all invariants may be obtained from GABA and TAA

by contracting with the invariant spinors oA and oA . The quantities given in
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equations 2.1.30-2.1.37 are in fact easily obtained from the dyad components of

the spinor analogue of the Ricci rotation coefficients.

Let (•£_ = (oA,tA) be a normalised spinor dyad with dual (A, so that bold

indices denote dyad components. Then if we follow Newman and Penrose [23]

and define P g c o = C B ^ C C ' C O " then w e n a v e :

K = Toooo' (2.1.38)

RA = TooAo' (2.1.39)

SA> = ToooA' (2.1.40)

TAA> = r00AA' (2.1.41)

BAA> = ro AoA' (2.1.42)

EA = roAoo' (2.1.43)

A{AB) = ro(AB)o' (2.1.44)

(2.1.45)

Notice that the indices above are all bold. The quantities obtained by setting

a bold index to zero is also invariant, but setting a bold index to one is not

invariant since this corresponds to contracting with an iA which is the direction

that is not invariant under null rotations.

We now study the way the NP operators transform under the group of null

rotations. We take a 1-spinor A^ = \\OA — Ao^4 and consider the transform of

, SXA, S'XA and D'XA taking Ao and Ai to transform in the following way:

Ai — • Xi + aX0

(1) Considering the operator D — OAOA''VAA
 w e have that DAo and DX\

transform as follows:

DX0 —> DX0

DXi —> DXi + aDX0 + X0Da (2.1.46)

(2) For 6 = oA~lA'VAA we have:
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SXQ —> 8X0 -\- aDX0

SXj —> 8X1 + aDXi + a8X0 + X08a + aaDX0 + aXQDa (2.1.47)

(3) For 8' = LAOAVA4 we have:

8 Ao —• 8 Ao +

8'X1 —> 8'Xi + aDXi + a8'X0 + X08'a + a2DXQ + aX0Da (2.1.48)

(4) Finally for D' = iAIA' VA 4 we have:

D'X0 —> D'X0 + a8'XQ + a8X0 + aâ DAo

D'Ai —> D'Aa + a^'Ai + a8Xx + aaZ^Ai + aD'A0 (2.1.49)

+ A0-D'a + a'aS'Xo + aX08'a + a"2£A0 + a'Ao â' + aa~2DX0 + aaXQD'a

We look for invariants under transformation 2.1.2. We take linear combina-

tions of the products of {DA0, DX-i, <5A0, <5A1: 6'X0, 6'Ai, D'X0, D'Xi} with spinors

{OA, ~OAI , iA, M' }, products of Ao with {r', //, cr', K', K, <T, p, r, /?, e, /?', e'} and spinors

{0,4,0.4',/.^, 7.4'}

(1) We have that H{DXA) is a function of {DA0, DAi, X0Da} and that if(r ') is

a function of {D~a, r', e} and k. Therefore, H(DXA) is a function of {Z)A0,Z?Ai,

Aoe, AOT'} and XoK. AS before we look for spinors f, s, n, m and p such that

H(fDX0 + sDXi + nX0T' + mXoe + pXon) = fDX0 + sDXt +nXor' + m.X0e

We find a synimetric invariant of the form:

X0T')OAOB + {-DX0

(2.1.50)

(2) H(8XA) is a function of {8X0, 6Al5 DXi, DA0, XQaDa} and Aô cT and H(p')

is a function of {p1, r', /?, cr, e, K, 8a] and aZ)a. We therefore look for spinors

/ , s,n,m,p,q,g,h,z,x such that //(/^Ao + s^Ai + nDAi +?nDAo + pAo/>' + gAor' +

gX0[3 + hXoa + zXot + XXOK) = /^Ao + s8Xx + nDXi + mDX0 + pXop' + qX0T' +

gX0(3 + /;Aocr + ^Aoe + XXOK. We find by solving this identity that our symmetric

invariant is:
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(-2Aoe

X0T')TA,OAOB - {6X0 - 2XQ{3)oA,HAoB) (2.1.51)

(3) H(S'XA) is a function of the set {6'X0, Z>A0,6'Ai, DXX, XoaDa, X06'a}. Fur-

thermore, H(a') can be written as a function of the set {a\ /?', r', e, /?, K, S'a,aDa},

H(fi') = iunction(/?', e, /?, K), i7(e) = function(e,/c), -ff(/9) = function(e,/c) and

H{k) = function(K). Therefore we solve the identity H(fS'X0 + sS'Xi + nDX0 +

+ pXoa' + qXof3' + gXor' + hXot + zXop + XXQK) = f6'X0 + sS'X-^ + nDX0 +

+ pXoa' + qXof3' + gX0T' + /*Aoe + zXop + xXon for spinors f,s,n,m,p,q,g,h,z

and x. We find our symmetric invariant to be:

6'{AB XQ = (<$% + X0a')oAoBoc - (S'X0 + DX1 + 2A0/3' + XOT')

(DX0 - 2Xoe - X0p)i(AiBoo + XOKLALBIC (2.1.52)

(4) Using the same line of thinking as before we have H(AXA) = function^

D'XO,D'XU8XO,8XU 8'XO,8'XUDXO,DXU A o , K ' , e ' , /> ' , a1, P,T,P',T', e,p, a, K) a n d

using a similar process used before we find as our invariant:

D'C{AB Xc) = (D'Xi + XQK')OAOBOCOO — (S'Xi + Xoa')

OAOBOCTQ — {{>Xi + D'X0 + 2Xoe' + X0p'

+ {DX1 + 8'X0 + 2A0/3' + X0T')HAOBOC)TC' + {SX0 (2.1.53)

— 2A0/3 — X0T)L(ALBOC)OC> — {DX0 — 2Aoe — Xop)

We now proceed to determine expressions for operators 2.1.50, 2.1.51, 2.1.52

and 2.1.53 acting on P,Q-spinors. We begin by considering a symmetric 2-spinor

which in terms of the basis spinors can be written as:

<t>(AB) = aoAoB

It is usual to define the components <^>AB OI" the spinor by considering con-

tractions thus one usually writes:
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4>ABOAOB = c

<t>ABOAtB = - 1 / 2 6 (2.1.54)

However it turns out that it is more convenient to use a convention where we

write:

>o = (J>ABOAOB

<f>2 =

Thus we have:

(2.1.55)

(2.1.56)

We will denote the components obtained using the usual convention 2.1.54

b y 4>'AB •

Now considering a 1,1-spinor &AB we have in our convention:

<PAB = (2.1.57)

with

J oo' — roo'

i>'01, = —<f)o\i
(2.1.58)

For a general symmetric P,Q-spinor of type (TV, N') using our convention we

write:
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(PA1..ANA'1,...AN, = l^9t,V °(A1---OAtl-At+1-

—OA t,iA> t/+1---M' Nl) (2.1.59)

The relationship between the two conventions is easily seen to be given by

the following expression:

,,AW _ , ^(jv+A'+t+O t\(N - t)\ (t')l(N'- t')\ m

-r t,r 7y, (TV')!

We recall that any 2-spinor can be written as a sum of products of 1-spinors.

We will consider the symmetric 2-spinor 4>IAB) — ̂ (Al^B) with A^ = \\OA +

and [iA = H\OA + I^O^A- SO that we can write:

<t>(AB) —

and

(2.1.61)

We now proceed to determine D^C4>AB) • By applying the Leibniz rule we can

write:

-f (ICD(B^A) + HAD(B\C) + \BD(AHC)) (2.1.62)

By use of equation 2.1.50 and 2.1.61 and in terms of the new convention

equation 2.1.62 becomes:

D(C<f>AB) =

+ (<f>1K + D<j>Q -±C(j>o)l(ClAOB) +2<t>oKl,ClAl>B (2.1.63)



Chapter 2 47

To obtain expressions for P-spinors the process is similar. We now consider

the case where we have a P,Q-spinor. We start out considering a 1,1-spinor 4>AB •

Naturally in this case we need to know how the new invariant operator D acts on

the complex conjugate of (j>A say <f>A. To simplify things we define a new operator

OA>D{A<f>B) = DA>(A(j)B) (2.1.64)

with

>B)

This new invariant operator will be the one we shall work with from here on

and will be referred to as D.

Now suppose <f>AB = ^AJ^B an<^ therefore:

oo> —

ov = i

= -Ai/J0< (2.1.65)

Again by applying the Leibniz rule and using expressions 2.1.50, 2.1.64 and

2.1.65 and the new convention we find an expression for Dec ^AB symmetrized

on all primed and unprimed indices:

>AB

(2.1.66)

For spinors with more primed and unprimed indices the process is similar, so

that we can arrive at a general formula for the invariant operator D.
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Let <p be a symmetric spinor of type (N,Ar>) given by 2.1.59 then D</> a

symmetric spinor of type (N + 1, .V + 1) is defined by:

u,-! +(N-t)K<t>tj,-1 + (N' - t')7c^_v

- (JV + 1 - t)2e&_lif_i - (iV' + 1 - t')2t<f>t-u-i (2.1.67)

_ (AT + 2 - O T ' C W - I - (N' + 2 - t ')^t-i,f-2

We now study the way the new invariant operators S and 8' act on P,Q-

spinors. Again we have the problem of determining how these operators act on

a spinor <j>. We therefore define two new operators 8A'BA
 a n d 8'A

(2.1.68)

and

&'A'{AC $&) — OA' 8(AC 4>B) (2.1.69)

with

(2.1.70)

&'(CA){A OB) = t>(CA')(A &B) (2.1.71)

These will be the invariant operators we shall be working with from here on,

and will be denoted by 8 and 6'. We now rewrite expressions 2.1.51 and 2.1.52

as follows:

6(OA')(A<I>B) =

j -2/?0o) (2.1.72)

(O8A')(A <PB)
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o> 8'(- oA> 8'(AC

A' + }
+ {(8'fa + (j>oa')oAoBocoA, - (8'<f>0 + 2<t>0/3') (2.1.73)

A

Notice that 8 acts on <̂> in the same way as D acts on <f> with r ' —> p' ; e — •
A ,

(5 ; K —> a ; D —> 8 and 6 acts on <f> in the same way as D acts on <j) with

T' —> a' ; e —y —(5 ; K —> p and D —> 8. Also 8' acts on </> in the same way
_ A

as D acts on <f> with r ' >• cr' ; e —> — (3' ; K >• p ; Z) —> 8 and 6' acts on cj>

in the same way as D acts on cf> with f' —> ~p' ; 1 —> f3 ; 7? —> a7 and D — • <5'

Therefore, if ^ is a symmetric spinor of type (N, N') given by 2.1.59 then a

symmetric spinor 8(f> of type (Ar + 1, A7'' + 2) is defined by:

+ (Ar/ - t'

+ (iV' - / ' + 2)20dt-i.,1-2 - (N + 2 - i)/>>t-2/-2 (2.1.74)

- (JV'+ 3 - *Vo*- i , ^

If © is a symmetric spinor of type (A ,̂ A '̂) given by 2.1.59 then a symmetric

spinor 6'<j> of type (Â  + 2, N' + 1) is defined by

+ (5'o)t-2/-i + ( ^ - t

+ {N'-t')u^2f + (N + 2 - t)2P'fa-2t-i

- {N1 + 1 - t')2io*-2,f-i +(̂ V + 3 - < y ^ / - i (2.1.75)

- (TV' + 2 - tyot-2fi-2

For the invariant operator D' the process is much the same as before. We

define a new operator which we shall work with from here on:
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D'(DO)(AB 4>C) = O(D D'o)(AB <f>C) (2.1.76)

with

D'(DC)(AB <f>O) = D\DC')(AB 4>C) (2.1.77)

Similarly to the previous cases, this new operator will be denoted by D'.

By rewriting expression 2.1.53, we have:

C''B) (2.1.78)

So that:

4>C) — O(C<D'D)(A(J)COB) — 8(C'D)(A<t>C><B)

'D)(AB (f>C) —~L(C>T)D')(A(f>Cl'B) (2.1.79)

The operator D' acts on 4> in the same way as D with r ' —> K'; t —>

- e ' ; K —> T and D — • D'

Therefore, if cj> is a symmetric spinor of type (N,N') defined by 2.1.59 then

a symmetric spinor D'cf) of type (N + 2, N' + 2) is defined by:

+ (N-t + 1 ) T ^ _ 1 I ? _ 2 . + (N' -t'+ l)T<l>t-2t!-l

+ (N + 2 - t)2t'<j>t-2,«-2 +(N' + 2-t')2e'<f>t-2,v-2 (2.1.80)

- (N + 3 - t)K

Hence we have obtained four invariant operators D ,£ ,6 ' and D'. For some

purposes an alternative representation of the new derivative operators in terms

of V and F is useful. We give these below, where the symbol ^ indicates
sym

symmetrisation on all free primed and unprimed indices.
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-eo'A'TAAiOO'0 (2.1.81)

O < (2.1.82)

sj/m

tf, (2.1-83)

sym

'A'vWR<> <f)A1..ANE'A'2,...A'Nl (2.1.84)

We now concentrate on writing the commutators, Bianchi identities and Ricci

equations in terms of the invariant quantities which constitute our new formalism.

Beforehand we define new quantities 3>, VP ,̂ *&AB , *ABC , *&ABCD , ̂ o , &A,

®A>,$(A>B>) ,§A(AB) i®(AB)A ,&(AB){AB) , A as follows:

0 = $ 0 = $0 0 , = (2.1.85)

and

(2.1.86)

2, = $ 0 2 , = OAOBIA'TB'
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(2.1.87)

$ 1 = $10 ' = &ABAB OAOA>OBlB =
AOA>OBlB

and

(2.1.88)

OAOA' LBTB =

and

(2.1.89)

$12' = $ABAB OAlBIA'lB =

and

^ B(AB) = $'12' — $ 02'I B'dA'~°~B'

2$ 01' (2.1.90)

OA'oBlAlB

and

(2.1.91)

$21' = QARAB OA'IALBTB

and
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2®10><'(AOB)I<B ~ $00'
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(2.1.92)

tf> <T> ,A,B-A'-B
$ 2 2 ' = QABA/R t i l t

and

+ $02' 2$ 10'I (A°B)~iA'~iB

(2.1.93)

oAoBocoD (2.1.94)

OAOBOCLD=-«- D

and

(2.1.95)

oAoBiCtD =

and

(2.1.96)

^A.B.C .D D

and

(2.1.97)
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and

[ ) (2.1.98)

Finally:

A = A (2.1.99)

The task of writing out the commutators in our invariant notation is very

lengthy and can be executed in two ways, both being equally extensive. One

way of going about it, is to calculate all terms, starting from the highest order

term, relating to a particular commutator. For example, if we consider the

commutator 6D — D6, then we would start off by determining the term {(6D —

D6)(/>};V+2,A»+3' , taking <j> to be of type (N,N'). By use of equations 2.1.67 and

2.1.74 we have:

{(<5D - D8)cf>}N+W3, = (SD -

+ (Dp' - 6T' + 2ep' - 2/3T' + T'T')4>N^ (2.1.100)

' -8^ + 2W' + 2/?V + rVJ^A,.! -

Notice that the Ricci equations involving terms such as p', r'andcr', which are

terms that transform "badly " under null rotations, will go into the construction

of the "new" commutators, which is what happens when one constructs the

GHP from the NP notation. In this last case what happens is that all the Ricci

equations which involve derivatives of spin coefficients which do not scale under

spin and boost transformations are used in the construction of the commutators

written in GHP formalism.

By applying the NP Ricci equations and commutators to expression 2.1.100,

and then using the definitions 2.1.67 and 2.1.74 we get:

(2.1.101)



Chapter 2 55

To calculate all other lower order terms, the method is just the same, so that

one arrives at the final expression which is symmetric on all primed and unprimed

indices:

(SAAB D B C — ^AA^BBC )4>A1...ANAI
X,...AN,

= (BAA OB>~DBO + OAAA'B D s a + K^A'

— OA' S& fi'ABO — ~OA' EA^BBO + OBEA' 6BBO

-OARA'8BBO )<t>Al...AN, -{^ABOAIOA'OB'OC'OE (2.1.102)

+2AoAl OAOBOA'OB,OC'OE)6EA2...AN, - &BO OA> 1,OBOC'ODOE

<f>A1..ANE>A'2,...AN,

Notice that in equation 2.1.102 one uses the standard sign convention and

not the one we adopted for convenience a while back.

We will now describe a more general but equally lengthy way of determining

all commutators in our new invariant language. The method we refer to involves

taking the general expression for all NP commutators and translating it into our

new language. Hence, we take equation 3.13 of [23], which gives the commutators

written in NP formalism, and multiply it by 6KM ; £AW ; £uv and

(V.44- V'BB ~ V'BB VAA )<t>Ay..AN,

f-LNf-LN1 (TKABB ^MA ~ ^MABB VKA ~ ^KBAA VMB

+ tKM^KWP ^LN^DA'B'B ^AN —^N'A'B'B ^All (2.1.103)

+ TN'B'A'A ^B

Putting K = L = K' = L' = 0 and adding on to each side the following

terms:

AiNA O (f>EA2...A N,

IWA'^A'N O <!)A1...ANE'A!2,...AK,
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O <f>EA2...A N,

° 4>Al...ANElA2,...ANI

O

—E1

O
T=T —E1 i
J- MA^BN O <PA1...ANBA2,..AN/

...AN,

OMA^BO O <f>Ai..ANE'A2l...AN, )

O

( — O <j>EA2...A N,

°

*BA'A ° 4'EA2...A N,

~° <f>A1..ANE'A2l..A'NI

ABMN

ABMN1

4>E...AN,

'OA~<>

OAiO <t>E...AN,

OX O <t>E...A
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We get the general expression for the commutators in the generalized formal-

ism:

ToABB' (eo 'M'TMAj NA'o 4>EA2 ...A<N,

(Co'

O

O

O

!)A1..ANE'A'2,..A'JV' )

oA'o (f>EA2..A>N,

0

O <f>EA2..A'N,

T7»

O <t>A1..ANE'A<2,..A'N,

O <f>A1..ANE'A'2,..A'N, )

iBo'0 4>~EA2..A'N,

! o &EA2..A.'N,

O

O

Oj <?i>A1..ANE'A'2,..A'N»

T M A B B ' (eo-M'

iOA'O <f>EA2...A'N,

— eO 'N (^O' </>AI ..A'N,
1

4>EA2..A'N,

= (2.1.104)
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O ^A1..ANE'A'2,..A'JV/ )

eo'M' ^oN V 0 B ' <f>Ax ..A <N,

'oO <^A1..ANE'A'2,..A'JV, )

0 'A 'B'B (£oM CO'M'V AN' <t>Ai ..A.'N,

J AN' o

N A O

A'B'B (£oM eo'M' V AO' <^AI .. JL'N,

— eo'M'TMAiAO'0

AO

<f»EA2..A'N,

OE </)A1..AArE'A'2,..A'JV,

By further contractions with os and os and symmetrizing on all indices, and

making use of equations 2.1.38 through 2.1.45 and equations 2.1.81 through

2.1.84 we are able to obtain equation 2.1.102 and all the rest of the commutators

which we write below:

i&A'AB ficBO — ScBO 6'A'AB )4>A1...ANA'i,...A N,

= (OARA'VBOBC — OA> RA'D'BC'BC +~OA* BBC 6'OAB —

— OCABC 6'A'AB +OA'AABSCBC — OABA'BSCBO )

4>Al...AN, ~ (*.4'B'C OAOBOCOA'^O0 - &ABA' OCOBOC'OA> ̂  ) (2.1.105)

(j>A1..ANBA'2,...A N, - (&ABA 0COBOO OAl OE - * ABC 0A'0B'Oo OAl OE)
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<j>EA2...MN,

(D'ABMB Dec — Dec D''ABAB )4>A1..ANA1,...AN,

(OBGABA Dca + OBGAB'A Dec + ~o~o Ec^)'ABAB +

OQEC TD'ABAB1 — OB TOO f> AAB — OCTBO &AAB< )

^>Ay.JtN, - (*ABC OAIOB>OC>OAl 0
E + &ABA OBOC'OCOAl OE) (2.1.106)

<t>EAz...AN, - i^AB'O OAOBOC~OA1,O
E +&AAB OBOcOC>OA,^ )

<j>A1..ANDA'2,...AN,

(SAAB ^'BCOD —T^'BOOD SAAB )4>A1...ANAV...AN,

(OB> TAA D'axrc — ~OB BJ^A D'eccc

—OAAAIBI T)'BCOD —ODGBCU SAAB + OBGODC SAAB ) (2.1.107)

~OA'ov'o (j>A1..ANBA'2,...AN,

It is worth mentioning once more that all of the above expressions are sym-

metric on all primed and unprimed indices and that the standard sign convention

is used.

We now concentrate on determining the Ricci equations in invariant form.

It is clear that the generalized Ricci equations will only involve the invariants

K, RA, SAi, TAA , 5.44 , EA, A(AB) I G(AB)A
 a n d the invariant operators

DAM I^A{MB) I &[AB\M '^(AF)(4'») • -^or example the Ricci equation (4.2a) of [23]

will have the following generalized version:

B — KBB(AOB) + R(AEB)~OB + O(ARB)EB (2.1.108)

—~KTB(A OB) +
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Note that both DB'(BRA)
 a nd &'B(BA) k a r e 2,1-spinors so that it makes

sense to consider their difference. The calculation leading to equation 2.1.108 is

a straightforward one.

In fact all generalized Ricci equations can be obtained from the NP Ricci

equations in a straightforward way. All NP spin coefficients in the equations be-

come the corresponding invariant form, for example p in the NP Ricci equation

becomes RA in the generalized equation, the same occurring in relation to the

differential operators. As for those terms in the NP Ricci equations which trans-

form "badly" under null rotations, they are simply "crossed out" when going

from the NP version to the generalized version since these terms will be "tucked

away" in the invariant operators.

On the other hand one can obtain a general formula giving all Ricci equa-

tions in a similar way one obtained the general formula for the commutators in

generalized notation.

We take the general equation 3.14 of [23] giving the Ricci equations in NP

formalism and multiply each side by e^F ̂ OD and substitute non bold indices for

bold indices so that we get:

'B'A'A (2.1.109)

'A + )

Contracting with o's and o's as appropriate and symmetrising on all the

indices gives 2.1.108 and all other Ricci equations, which are displayed below.

S(A,EB>) OB + ZEBS^OB,) - KTB(A oB,) - KA^g^ oB (2.1.110)

3KBB(A OB) +

TA'A — A{AB){A!B) A = R(BTA){A OB) + S(BTA>)(A°B)

A)(A Eg) — KG(A'B)(A°B)
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R(A°B) + d(BBA'){ARB) — 3O(B»SA>) A(AB) (2.1.112)

(AB)(AB Sc) — TAB TAIB °O + TAB BA'B OO

B) (2.1.113)

D (A'B)(AB Rc) — 6 B'BA TCA — —OCTAB TBA> + R(cG'AB](A °B)

+G(A'B')(A RCOB) —~O~(BTA')(AABC) + TAA BgB OC (2.1.114)

BCO — SA'BA GBCO = ^BAA GBCB OC>

BAA GB'CB °C + O^CGAB){A ABO) — GABA TCB ~O~O (2.1.115)

B(BA Ec) — Dsr(£ AAC] = O(CGAB)B K — BB(A SB°C)

AB)EB +2OB>A(ABEC) (2.1.116)

8'B'BA GCDA — D'\A'B)(AB ACD) = —G(A'B)(A ABC°D) (2.1.117)

GB'BC OD — GACA BB'BOD + ^(ABO °D)~°~A'OB'

GACA — ^'{A'B)(AB Ec) = B'AA TB'B OC

OA>) - G(BA')(A

( OB +O(B^A')(AOBOQ (2.1.118)

— A O A OB OC~OA OB
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BBC BA'A — 6(B'A')(A ABC) =

BA'A BBB OC + 2A(AB BC)(B ~OA>) + O(CGAB)(A RB)

(2.1.119)

Finally we concentrate on obtaining the invariant version of the Bianchi iden-

tities. As in the case of the Ricci equations we can obtain the invariant version

of the Bianchi identities in a straightforward way. For example the NP Bianchi

identity:

+ (2e + 4 / J )$ I - (-TT

- 2 e $ o i ' - '

has the following invariant version:

B)

-4A{AB) ^OOA'OB + 2O{BEA)<S>{A>OB) ~ 2O{BBA)(A OB) $ O (2.1.120)

(A,B)Q>o + 2O{ABB)(A

Alternatively we can determine a general expression giving all Bianchi iden-

tities written in our new invariant formalism. Multiplying expression 3.19 of [23]

by (-UN1
 5 £LN 5 tK'Af and CKM a n d substituting non bold indices for bold indices

gives:

= 3eL'N'£K'M'(*LK(AB

Tc)NMD' — *LM(ABrC)NKD' ~ ^NKfABToLMD' + *NM(AB

— *ABCN
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+ - 2eK'M'eLN(rM(ABN'3>C)KL'D' (2.1.121)

~ ri/D'M'(A*BC)N'K' - FN'D'K'(A

By contracting with suitable factors of o and o and symmetrizing one may

obtain equation 2.1.120 and all other Bianchi identities from expression 2.1.121,

these are written below:

(2.1.122)

B)(A — 2O(A> S
B)

2I\O(AiBC) oA>

'B)(BA ^CD) B BA

OA'OB

(2.1.123)

O(A ACDE) — ~O(A &'B)(BA *'CDE)
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OE = —4:E(AtyBCDE) OA'OB + R(A^BCDE) OA'Off

— 2o(B'GA')(AB®CDOE) + 2G(A'B )(A (2.1.124)

BCB ODOE +

DE)(A B')

0(0~D'A'B')(AB) *O

& 3? ^ ~ ~ G ^ 4 TA')(A *B)

BOC>) (2.1.125)

A'B) {A ^BC) ) + 2(OC'D.AA &BBO

A'OB GC)(AB

-2O(CGAB)(A ®BOCI) + 2OCTA_4 $ B B OC> + 2O(AABC) &(A'B>~O~C<) (2.1.126)

+ O(AOBTc)(A

* BCD)

&BCBO O£> — 8

1 TA')(A *BCD) + 6o(c OB BA')(A '

+ 2T>L4' *&BBO OQOD — A.B AA $ BB O OCOJJ -\- 2B' AA ^ BCB OJJOO (2.1.12 t)
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~0{A'6&C'){A ^BCDE)

BCDE) + ^GABA &CDB Oc>OE + TAA &BCBO ODOE (2.1.128)

—2BAA

To obtain a general expression for the contracted Bianchi identities we mul-

tiply equation (3.20) of [23] by ei/N', ^AN, eK'M' a n d ERM and substitute non

bold indices for bold indices so that we have:

* A K K ' N ' T B ' M ' L ' M

'L'M +

- * A M B ' M ' T K ' N ' L ' K + ^AMB'M'TK'L 'N 'K +

'K) — ei/N'(3>KLB'M'rAMNK' (2.1.129)

- ^ K L B ' K ' T A M N M ' +

+ 3>MNB'M'rAKLK' +

+

+

Ecjuation 2.1.129 gives all contracted Bianchi identities written in invariant

formalism, they are:
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(AB)(A B)

-2A{AB) ^(AoB) - 2o[ATB){A $&) ~ 2A(AB)$(AOB) (2.1.130)

'(AB)(AB

{ ) ( ) - 2A{AB) $(A>B>OO) - O(ATB){A $&o) (2.1.131)

+ 2R(A$B)(AB 0(7) + R(A'®BC'){AOB) ~ 2E\A< $ B O )(A0'B)

D'BC){AB' Aoc») = —TAA &BBO °C + 2B'AA &BBC'

+2BAA &BCB OC> — TAA &BCB OO + R(A&BQ{AB ~OO) (2.1.132)

+ R(A &BO )(AB °C) — 2E(A

It is important we make sure that from our invariant equations we are able

to obtain all NP equations. To do so, we take the components of the respective

invariant expression which should give NP equations. Take the Ricci generalized

equation 2.1.108, for example,if we write it out in terms of components we have:

{Dp + T'K — 6'K)OAOB~OAI

(p2 + cr~a — 3KG: — n/3 + ep + pe — Tcr +
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We see straight away that from equation 2.1.108 we obtain the NP Ricci

equation 4.2(a). In the same way, we get all NP Ricci equations which do not

involve spin coefficients which transform "badly" under null rotations from our

invariant Ricci equations as follows:

Equation 2.1.108 —> 4.2a)

Equation 2.1.109 —> 4.2b)

Equation 2.1.110 —* 4.2a); 4.2b); 4.2c)

Equation 2.1.111 —> 4.2a); 4.2b); 4.2k)

Equation 2.1.112 —> 4.2a); 4.2p); 4.2k)+ 4.2c)

Equation 2.1.113 —> 4.2b); 4.2q); 4.2c)+ 4.2k)

Equation 2.1.114 —> 4.2a); 4.2d); 4.2p); 4.2o); 4.2f)+ 4.21); 4.2c)+ 4.2k)

Equation 2.1.115 —> 4.2a); 4.2d)

Equation 2.1.116 —> 4.2b); 4.2e)

Equation 2.1.117 —> 4.2b); 4.2r); 4.2q)+ 4.21)+ 4.2f); 4.2k)+ 4.2c)+ 4.2e)

Equation 2.1.118 —> 4.2a); 4.2b); 4.2d); 4.2f); 4.2e)+ 4.2c)

Equation 2.1.119 —> 4.2a);4.2b); 4.2d); 4.21); 4.2e)+ 4.2k)

The NP Bianchi identities are obtained from the invariant version of the

Bianchi identities in the same way as one obtains the NP Ricci equations from

their respective invariant version. Hence we get all NP Bianchi identities be-

taking components of the Bianchi identities written in the invariant formalism.

The case of the commutators is somewhat more complicated since from the

invariant commutators we should obtain all NP Ricci equations which involve

those spin coefficients which transform in a "bad" way under null rotations as

well as the NP commutators.

Lets consider the commutator 5D — D6 and let it act on a scalar field </>.

Then, equation 2.1.100 gives:

{{6~D - T>6)<j)}22, = (6D - D6)(f>0Q, - T'D^ (2.1.133)

On the other hand, equation 2.1.101 along with definitions 2.1.67, 2.1.74,

2.1.75 and 2.1.80 give:

{{6T> -

~ *2<^V-I,JV (2.1.134)
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If we equal the left hand side of equations 2.1.133 and 2.1.134 we get the

NP commutator SD — D6. All other NP commutators are obtained in the same

way. In order to see this we write the following expressions relating to all other

generalized commutators:

{(S'6 — 66')

^ - l i W +{-p' + ̂ )D<t>N,N + ( p ' r ' - 2 ^ - T y (2.1.135)

+ (pV + p'p1 + (5a1 - jfT'^N-if,

={~p- P)(D'4>)N+2,N>+2< + (/? -

+ {a-0)(6<f>)N+liN+2. + ( - * 3 + * i 2 ' ) ^ ^ - i ' (2.1.136)

{(D'D -

')(f>NAn_v + ( T y + 2eV + TV + 2eK')< v̂-i,A» (2.1.137)

2e/r' ' ' '

{(D'D -

(2.1.138)

+ {-D'p'

{-2t'p' - p'p' - a1 a' + 7cV - 2K'

+ (-p'o> -2a't + K'TI + 2 K ^ ) ^ A W _ V -liD<j>N^ + p'8cj>Nji (2.1.139)

+ <7 6 (
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{(6D1 - T>fS)<f>}N+3tN+4. = (r - j3 - a)(DV)iv+2,A'+2' - (7 - T)

' (2.1.140)

Hence we have that by applying a scalar (f> to the generalized commutator

2.1.105 we arrive at the NP commutator 8'6 — 88', while equation 2.1.106 gives

the NP commutator D'D - DD'. Finally, by applying a (N = 0, N' = 0) spinor

<j> to the invariant equation 2.1.107 we are able to obtain the NP commutator

8D' — D'8. Furthermore, if we let the commutator 2.1.102 act upon a spinor

<f> of type (N = 0, N' = 1) we manage to obtain the NP Ricci equation (4.2g),

2.1.105 acting on <f> of type (N = 1, N' = 0) gives the NP Ricci equation (4.2m).

The NP Ricci equations (4.2i), (4.2n) and (4.2j) are thus obtained by letting the

commutatores 2.1.106, and 2.1.107 act on spinors of type (TV = 0,7V' = 1),

(N = 1, TV' = 0) and (N = 0, TV' = 1) respectively.

Because all invariants of our new formalism are symmetric on all primed and

unprimed indices we can write all equations, i.e , commutators, Ricci equations

and Bianchi identities in compact notation so that no indices appear. These are

given below in compact notation.

Commutators

(SB - D6)<f> = {B + A)T><j> + KB'4> - S6'<j>

-{E -~E + 71)66 - * 2 ( < £ • o) -2A(<j>-o) - $ 0 2 ' ( ^ - o ) (2.1.141)

(6'6 - 66')<j> = (R- R)T>'<f> + (B - A)6'<j> + (A- B)6<f>

°) (2.1.142)

(D'D - DD' )^ = (G + G)D<f) + (E + E)~D'(f>

-T8cj> - T8'<i> - ( $ 2 1 , + *3)(^> • o) - (*1 2 ' + * 3 ) ( ^ • o) (2.1.143)

{6D1 - T>'6)<j> = [T-B- A)T)'4> - (G -

<(c/>-o) + * 4 ( ^ - o ) (2.1.144)
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where (cf)-o) is the (N-1, N'yspinov 4>AIANA, t_A, OAN and cj>-o is the (N, N'-

l)-spinor <f>Ai ANA, t A, / o
A N', and if the contraction is not possible then these

terms are set to zero.

Ricci Equations

T>R-6'K = R2 + SS-3KA-KB + RE + RE-KT

+*o (2.1.145)

DS-6K = SR + SR~- SE + 3SE - KT - K~A-3KB

+*o (2.1.146)

DT-D'/i = RT + ST + TE-T~E-KG-3KG + V1

+$or (2.1.147)

6R-6'S = TR-TR+A~R + BR-3SA + SB~-Vl

+$oi' (2.1.148)

6T-D'S = TT + TB-T~A-3SG + SG + $o2> (2.1.149)

B'R-6'T = -TT + RG + RG-TA + TB~-y2-2k (2.1.150)

B'B-6G = 2BG-BG + G~A-GT-$12> (2.1.151)

6'E-BA = ~KG - B~S - AR - AE + 2AE + E~B - $10, (2.1.152)

DB-6E = -KG +SA + B~R-BE~-EA~+&1 (2.1.153)

6'G-D'A = -AG + GT -GB + ̂ 3 (2.1.154)

D G - D ' E = BT + AT - 2EG - EG-G'E + 1&2 +§iv

- A (2.1.155)

8'B-8A = -AA~-B~B + 2AB + GR~-GR + W2-§1V

-A (2.1.156)

Bianchi identities

3A'*2 ! a 0

y + 2A'$n .

(2.1.157;

i' = -6A'*3
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+9i?*2 - 6A*j + 2G*0 + 2G*0 - 2A*ov - 2T*Oi'

-2T*io' + 4A*10' - 45*n' + 25*n' - 25*2o' + 5*02< (2.1.158)

+2iT*i2' + 2/i * 2 1 '

3(D* 3 - 6*2) - 2

- 6 5 * 3

6*20' -

(2.1.159)

(2.1.160)

(2.1.161)

(2.1.162)

22, - 5*21' - £'*i2'

+ 2T*21' - T*21'

3 D ' A = - i 2 +

2' - 2^*22' (2.1.163)

+65*3 + 35*4 + 2T*12' -

+72*22' - 25*22' - 25*22' - 25*22'

(2.1.164)

D '* 3 - 6*4 + 6'*22' - D'*21' = -2G* 3 - T*4 + 4 5 * 4 + 2G*2i'

+ T * 2 2 ' - 2 5 * 2 2 ' - 2A*22' (2.1.165)
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Contracted Bianchi identities

' $ o + 3DA = 2G$0

J ' (2.1.166)

(2.1.167)

3D'A = - i 2 12

, (2.1.168)

Note that to obtain an expression with indices from one in the compact form

one multiplies the terms in the sum by appropriate factors of o's and o's to make

every term in the sum a spinor of the same type (so that the indices balance)

and then symmetrise over the primed and unprimed indices.

2.2 The Geometrical Interpretation

Here we will discuss how the invariant formalism we have just described arises

naturally when describing the geometry of general null congruences [27] and of

null hypersurfaces [7]. However in describing some of the geometry it is often the

direction of the flagpole of OA rather than OA itself which is of significance. For

this reason we do not give a full description of the geometry here, but will do

so in chapter 3 when we also introduce a generalization of the formalism which

permits one to consider rescalings of OA by a complex scalar field A as well as

null rotations.

A null congruence C may be specified by giving a (nowhere vanishing) null

vector field Ca whose integral curves form the congruence. If the curves are given

by ,xa = .T°(u,y1, y2, y3) with £a = ^ - , and if / is a smooth function defined

along the curves, then:



Chapter 2 73

o — o Q — t v a j — I-* J
Oil OXa OU

Since £a is nowhere vanishing we may assume that u is chosen so that £a is

future pointing. We associate to the vector £a a spinor field oA with flagpole

oAoA equal to £a. Note that oA is not unique but is defined up to oA —> eieoA.

The condition that the congruence be geodetic (i.e. each curve is a geodesic)

is that

which is equivalent to

DoA oc oA

and hence

K = K = oADoA = 0 (2.2.169)

The condition that u is an affine parameter is that V^£ = 0 which is equivalent

to DCa = 0. So that in addition to 2.2.169 one must have

e + e = naD£a = 0 (2.2.170)

In the present formalism (using the compact notation) equations 2.2.169 and

2.2.170 are equivalent to the single equation

£ + £ = 0 (2.2.171)

Also it may be shown that the flag planes of oA are parallely propagated if

K = 0 and e — I = 0 (see §7.1 of Volume 2, Penrose and Rindler 1984 for details

of this and much else referred to in this section). In the present formalism this

is just the condition:

E-~E = 0 (2.2.172)

Finally the condition that oA is parallelly propagated along the congruence

is DoA = 0 and is equivalent to:

E = Q (2.2.173)

If one now considers a connecting vector qa for the congruence then this niust

satisfy:

Dqa = qbVbt (PR7.1.29)
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(i.e. equation 7.1.29 of Penrose k, Rindler 1984). Contracting this equation

with OA gives:

oADqAA = oA> TAB q*3

which may be written out in full as:

' = <7oo'(e + e) — 9oi'« - <7io'« (2.2.174)

Dqov = qov{e-e-p)-qio>(T-qooi(T + 7f) (2.2.175)

Dqw = qw{e-e--p) - qova-qoo'iT+Tr) (2.2.176)

These equations reduce to (PR7.1.37-38) if one makes the simplifying assump-

tion that e = 7T = 0.

These three equations can be written in our notation as

D(q.o) = T((q.o).o) + (E-E- R)(q.o) - S(q.o) (2.2.177)

More generally

Bq = G((q.o).o) + G((q.o).o) + A(q.o) + A(q.o) + B(q.o) + B{q.o)(2.2.178)

is equivalent to (PR7.1.37-39) again without having to make the simplifying

assumption that e = ~K = 0.

By taking second derivatives of the connecting vector in the £a direction one

obtains the equation

D2qd = qaVa(Dld) + Rabc
dtqHc (PR7.2.1)

If one makes the assumption that the congruence is geodetic and the dyad is

parallelly propagated along the curves (so that n = e = it = 0) then one obtains

the equations:

Dp = p2 + aa + $ 0

Da = (p + p)a + $0

DT = rp + ra + tfx
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The above equations are much more complicated without the above simpli-

fying assumption. However the general case has a simple form in the present

formalism and is given by:

DT = TR + TS + * i + $01 (2.2.179)

Note that because of the use of the compact notation 2.2.179 is equivalent

to three scalar equations.

We end by translating some conditions relating to null hypersurfaces into the

new formalism. It is easily shown that £a is hypersurface orthogonal if n = 0 and

p = ~p. These conditions are equivalent to:

R-~R = 0 (2.2.180)

which is also the condition that C is geodetic and twist free. £a satisfies the

stronger condition that it is equal to a gradient if in addition e = — e and r =

a + [3. In the present notation these conditions are equivalent to:

T = A~+B (2.2.181)

It also transpires that the components of K, R, S, T, A and B are in fact

just the components of the generalized connection introduced on a null hypersur-

face by Dautcourt [7] and that the curvature expressions appearing in the Ricci

and commutator equations are those which arise naturally as the intrinsic and

extrinsic curvatures of the null hypersurface (which are not unique but are only

defined up to null rotations). The above formalism therefore provides a natural

description of the 3 + 1 decomposition of the Einstein equations in the case of a

null slicing. The details of this will be given in chapter 3.
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Chapter 3

A Formalism Invariant Under

Null Rotations and Rescaling

3.1 The Compacted Formalism

Certain physical problems in general relativity are often best described by using

a formalism adapted to the geometry of the particular situation. For example

the Geroch-Held-Penrose (GHP) formalism [25] best describes the geometry of

a spacelike 2-surface <S where one can choose ia and na to point along the null

normals of S and the real and imaginary parts of ma are tangent to S. The

remaining gauge freedom in the choice of tetrad is the two dimensional subgroup

of the Lorentz group representing a boost in the normal directions and a rotation

in the tangential directions. In terms of spinors this is equivalent to the rescaling:

oA->\oA LA -> A~V (3.1.1)

The GHP formalism works with those Ricci rotation coefficients which simply

rescale under 3.1.1 and combines the others with directional derivatives to form

new operators , which also just rescale under 3.1.1.

In chapter 2 we introduced a formalism in which the generalized spin coeffi-

cients and differential operators transform in a simple way under a null rotation.

We have seen that such formalism uses spinors formed from the Ricci rotation

coefficients whose components transform covariantly under null rotations, and

four new differential operators which are formed from the directional derivatives

and the remaining Ricci rotation coefficients which transform "badly" under null

rotations. These operators act on totally symmetric spinors and produce totally

symmetric spinors (of higher valence) and when applied to a spinor whose compo-

nents transform covariantly under null rotations produce one whose components

also transform covariantly.
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In this chapter we develop a formalism which only depends upon the choice

of a single null direction, I". If we choose the flagpole of the spinor oA to point

in this null direction then oA is determined up to rescalings oA —+ \oA where A

is a complex nowhere vanishing scalar field (and the magnitude as well as the

direction of £a is fixed if we require | A| = 1). The other spinor in the spin frame is

arbitrary so for convenience we normalise it so that oAtA = 1, although it would

not be hard to generalize the formalism to allow oAiA = X a s o n e n a s m the

compactified spin coefficient formalism. Thus specifying a single null direction is

equivalent to specifying a spin frame up to the gauge freedom:

oA -> XoA LA - • A"1 tA + aoA (3.1.2)

We will use the null rotation invariant formalism as our starting point, so

that we first check how the generalized spin coefficients transform under 3.1.2:

K -> A3A/i (3.1.3)

SA> -> ^3SA> (3.1.4)

RA -> A 2 ! ^ (3.1.5)

TAX - A 2 r ^ (3.1.6)

hence, K,S,R,T are well behaved under transformation 3.1.2 while B,E,A

and G are not.

The quantities K,S,R,T have weight, which we will denote by {p,q} and

which is denned such that p = p + N and q = q + N' where {p, q) is the GHP

weight defined in [25], given by:

K : {3,1}

S : {3,0}

R : {2,1}

T : {2,0}

A simple calculation shows that the null rotation invariant differential op-

erators T),6,6', D', do not produce objects with a well denned spin and boost

weight when acting on a totally symmetric spin and boost weighted spinor field.

Just as in the GHP case, we can then combine the generalized spin coefficients

A,B,G and E which transform badly under 3.1.2 to produce new derivative
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operators P,d,d',P' which have a proper spin and boost weight.Notice that we

use the notation boldface to distinguish for example d and d.

The new P operator acts on a totally symmetric (N, A^-spinor 4>AX...ANA,...& ,

of weight {p, q} to produce a (N + 1, N' + l)-spinor of type {p + 2, q + 2} and

is given by:

= (J)4>)AA1...ANA1,...ANI

- (p - N)E{Acj>Ai..AN){AII...AN, OA) (3.1.7)

- (q-A^' )o(

Since every term in the above expression is a totally symmetric spinor the

order of the indicies does not matter and we may use the compact notation that

we introduced before in chapter 2. Thus equation 3.1.7 becomes:

= 'D(f}-(p-N)E(f>-(q-N')'E(f> (3.1.8)

In a similar way we may define the operator d which acts on a type (A/', A'T')-

spinor of weight {p, q} to produce a type (N + 1, N' + 2)-spinor of weight {p +

2, q + 1}. In compact notation d(f) is given by:

dcf> = 6(j> - (p - N)B<j) - (q - N')~A(I> (3.1.9)

The operator & acts on a type (A ,̂ A^')-spinor of weight {p,q} to produce a

type (N -\-2, N' -\- l)-spinor of weight {p + 1, q + 2}. In compact notation d'4> is

given by:

= ~8(f>-(p-N)A(t>-{q-N')~B<p (3.1.10)

Finally we may define the operator which acts on a type (N, Ar')-spinor of

weight {p, q} to produce a type (N + 2, N' + 2)-spinor of weight {p + 1, q + 1}.

In compact notation P'4> is given by:

P'(f> = B'4>-(p-N)G(f>-{q-N')G(f> (3.1.11)

We next note that the null rotation invariant curvature spinors have proper

weight {p,q} given by:
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$00'

{$02')A'B

22') ABAB

# 0

{2,2}

{2,1}

{2,0}

{1,2}

{1,1}

{1,0}

{0,2}

{0,0}

{4,0}

{3,0}

{2,0}

{1,0}

{0,0}

{0,0}

(3.1.12)

(3.1.13)

(3.1.14)

(3.1.15)

(3.1.16)

(3.1.17)

(3.1.18)

(3.1.19)

(3.1.20)

(3.1.21)

(3.1.22)

(3.1.23)

(3.1.24)

(3.1.25)

(3.1.26)

WTe are now in a position to translate all relative equations into this new for-

malism. We begin by considering the commutators. If we take the commutators

written in the null rotation invariant formalism then the calculation to obtain

the commutators in the new formalism is similar to the calculation performed

in obtaining the GHP commutators from the NP commutators. Let us take

the generalized NP commutator (D'D — DD')</>. We consider (f> to be of type

(Ar, :V) and have weight {p, q}. We want to calculate {PV — I>'I>)</>, with the use

of definition 3.1.8 and 3.1.11 such calculation is straightforward and gives:

'p _ W)<f> = (D'D ')<£ + (p - N){DG - D'E + 2EB + GE

+GE)<t> + (q - N')(T>G - T>'E + EG + 2EG + EG)B' (3.1.27)

-(E '<l> - {G + G)T><f>

If we substitute in equation 3.1.27 the generalized NP commutator 2.1.143

and the Ricci equation 2.1.155, and again making use of definition 3.1.8 and

3.1.11 we obtain:
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(P'P - W)<f> = -{Td + Td' + (p - N)(V2 + ®U' - A)

+ (q - N')(92 + $n> - A)}0 + (*2r + *3)(</> • o) (3.1.28)

In the same way one obtains all the rest of the commutators in this new

formalism:

{W - dV)q> = {Rd+ Sd' - KV - (p - iV)(*x) - (q - N')(90V)}<f)

o) + $02,(^-o) (3.1.29)

- &d)<f> = {(R - ~R)V + (p - A^)(*2 - * „ - - A)

- (q - Ar')(*2 - $ii' - A)}0 - (*3 - *2i')(0 • o) (3.1.30)

- (q - ^v')(*i

(3.1.31)

(W - &P)(p = {R& + ~Sd - ~KV - (q - Ar')

- ( p - A0($io')}</> + (2A + *2)(c/> • o) + $2O'(</> • o) (3.1.32)

= {-TV + (p

*4(^-o) (3.1.33)

We now write the Ricci equations in this new formalism. Guided by the GHP

example we start considering the expression Pi? — V'K. Note that both terms

are (2, l)-spinors of weight {4,3} so it makes sense to consider their difference.

An explicit calculation shows that

{PR)ABA - (d'K)ABA = R(.\RB)OA< + SA<S(AOB) ~ I<O(BTA)A
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+&o0,oAoBoA, (3.1.34)

which may be written in the compact notation as

PR - d'K = R2 + 5 5 - ~KT + $0 0 ' (3.1.35)

The other Ricci equations are similarly found to be:

PS-dK = RS-~RS-KT + V0 (3.1.36)

VT-VK = RT + TS + * ! + $ov (3.1.37)

dT-PS = T2 + $02, (3.1.38)

VR-d'T = -rT-*2-2A (3.1.39)

dR-d'S = (R - 7?)T - * ! + $oi- (3.1.40)

Note that one can take the complex conjugate of these equations but there

are no primed versions since such equations would involve derivatives of spin

coefficients which transform badly under the null rotation part of 3.1.2.

Finally we consider the Bianchi identities which in the compact notation take

the form:

- 2 5 $ 1 0 ' + 2/v $ n , + 7T$o2' (3.1.41)

(3.1.42)

- 2d'A = 2i?*3 - A'*4

(3.1.43)

1' + 5$ 2 2 ' (3.1.44)
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- #*4 - £'$2i' + #'$22< = - r * 4 + r $ 2 2 ' (3.1.45)

- #$21' + £$22' + 2P'A = 5*4 - 2 T * 3 + #$22' (3.1.46)

- # * 2 - P'$oi' + #'$02' - 2#A = 2 5 * 3 - 3T* 2 -

' (3.1.47)

o - # * i - 5*oi' + P$02' = 35*2 -

' + 25*n»+!R*o2' (3.1.48)

The contracted Bianchi identities are given by:

1, + 3PA = a i

' (3.1.49)

(3.1.50)

= i?$22' + ^$22'

(3.1.51)

We now proceed to show that from the new equations written in our new

formalism we can obtain all generalized NP equations. It is easily seen that all

generalized NP Bianchi identities are obtained from equations 3.1.41 through

3.1.51. The same can be said for those Ricci equations which involve null rota-

tion invariant terms which have proper spin and boost weight. The case of the

commutators and Ricci equations involving terms which do not scale, is not as

straightforward. Let us take, for example, the commutator 3.1.28, and let it act

on a spinor of type (N,N') and weight {p = TV, q = N'}. Then, by equation

3.1.27 we have:
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(P'P - W)<f> = (D'D - D D > - (£ + £)<^ - (G

If we now equate the right hand side of the equation written above and the

right hand side of commutator 3.1.28 we have:

( D ' D - D D ' ) ^ =(E + £)DV> + (G + G)Ucj> - T6cj> - T6'<f>

O) +($i2' + *

Furthermore, if we let commutator 3.1.28 act on a spinor <f> °f type (JV, N')

and weight {p = N + l , q = N'}, equation 3.1.27 gives:

(P'P - W)<f> = (D'D - D D > + (DG - T)'E + 2EB + GE + GE)</>

-(E + E)cf> - {G

If we now equate the right hand side of the equation written above and the

right hand side of commutator 3.1.28 we get:

(D'D - DD')<^ + (DG - WE + 2EB + GE + GE)^ - (E

-{G + G)D<? = -T{6<f) - B<f>) - T{6'(j> - Ac))) + (*2 + $ n

O) -

Substituting the generalized NP commutator 2.1.143 in the above equation

gives the equation :

DG - WE = -2EG -GE + GE~ + TB + AT + V2 + * „ , - A

which is the generalized NP Ricci equation 2.1.155.

To obtain all the rest of the generalized NP commutators and non scaling

generalized NP Ricci equations from our "new" equations the process is exactly

the same. If we let the commutator 3.1.29 act on a spinor <f> of type (N,N')

and weight {p = N, q = N'} then we obtain the generalized NP commutator

(D6 — 6D)<f>, while 3.1.30 gives the commutator (66' — 6'6)<f>, and commutators

3.1.31, 3.1.32 and 3.1.33 give the generalized NP commutators (W6 — 6W)<f>,

[B61 - 6'W)(j) and (W6' - 6'B)(f> respectively.
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Furthermore, if we let commutator 3.1.29 act on a spinor of type (JV, N') and

weight {p = N + 1, q = iV} we obtain the generalized NP Ricci equation 2.1.144

while commutators 3.1.30, 3.1.31 and 3.1.32 give the Ricci equations 2.1.147,

2.1.145 and 2.1.143 respectively. Finally, letting commutator 3.1.31 act on a

spinor of type (JV, N') and weight {p = JV, q = N' + 1} gives the Ricci equation

2.1.142.

Thus we have therefore shown that our equations are equivalent to the Ein-

stein equations.

3.2 Relationship to the Penrose operators

In a paper on the geometry of impulsive gravitational waves Penrose [24] intro-

duces differential operators dA>A > &AA a n d P which act within a null hypersurface

Af and act upon weighted scalar and spinor fields. Let T/CI...CWC...C" be a (iV, N')-

spinor of weight {p,q}. Then 6AA VCi...cNa...C , 1S a (-W + 1,-/V' + l)-spinor of

weight {p -+- 2, q} which is defined by

A)A'VC1...CNC'r..C'NI OO ~0CN

oBo-(poBo{B'S7A,)AOB + qoAoB^B(Jt OB) )r]c1...cNc1...aN, (3.2.52)

Contracting the above expression with ~oA'oB gives

0 = qKOAT]Cl...cNcv..c'NI (3.2.53)

So that expression 3.2.52 is well defined when K = 0. In the context of null

hypersurfaces, this expresses the condition that the direction of the flag pole of

oA (and not its extent) is paralelly propagated along the null geodesic generators

of A/".

The operators that we have defined are more general since they make no

assumptions about the choice of oA. Furthermore in order to be able to introduce

a compact index free notation our operators act on totally symmetric spinors and

produce totally symmetric spinors. However in situations where oA is chosen so

that K is zero, our operators are closely related to those of Penrose. Since both

sets of operators obey the Leibnitz property it is enough to give the relationship

between the operators when acting on scalars and spinors with a single index.

We give below the relationship between the operators when oBDOB = k = 0

(i) For a scalar field
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(d'r])ABA = O(BdA)A V

(3-2.54)

(3.2.55)

(3.2.56)

(ii) For a (l,0)-spinor field

= O(BdA')(AVB)

(3.2.57)

(3.2.58)

(3.2.59)

(iii) For a (0, l)-spinor field

oA{Pr]{A,)oB)

(dA(AVB)oo)

9 VB)

(3.2.60)

(3.2.61)

(3.2.62)

The relationship between the various definitions for edth and thorn can be

seen more easily if we introduce the auxiliary differential operator 'VABAB which

is defined by:

Vc\...cNcr..cNI = OAOA^BB Vc1...cNc1...eN,

VBB oA + qoAVBB oA,)i]c1...cNoi...aNl (3.2.63)

In terms of this operator the standard definitions of edth and thorn are given

by:

dvci...cNc1...a

dr,Cl...
N,

cNc-1...c'

= iAoBl*oBV

= tAoBTA'7BV

= LALBTA'OB

Vc1...cNa1...ofl,

VC1...CNC1..CKI

(3.2.64)

(3.2.65)

(3.2.66)

(3-2.67)
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On the other hand our new derivative operators are given by:

(d'r])ABO1..

(^'V)ABO1...C

..CNA'OI

•NA'BC i

.CNA>C>!

NA'BO i.

...cv

...cv

...cv

. .C"N /

sym

sym

/ J

sym

= £

0 O /^AB^B- VC\.••CNav..aN,

o VABAB Vc1...cNc1...aN,

T^ABAB 1]Cl...CNCr.-C'N>

(3.2.68)

(3.2.69)

(3.2.70)

(3.2.71)
sym

Where ^ indicates symmetrisation over all primed and unprimed indices.
sym

Finally in the case that A; = 0 the Penrose derivative operators are given by:

oAoA>i>ric1...cNo1...c'N, = OBOBT>ABAB'
 rnCl...cNc"v..c'N, (3.2.72)

VC1...CNC1...C
I
N, (3.2.73)

Vc1...cNc1...cN, (3.2.74)

3.3 Geometrical Interpretation

In this section we analyse the geometrical significance, in the context of null

hypersurfaces, of the new invariant quantities we have constructed. We start by

giving a brief resume on results concerning null hypersurfaces. Much of what

follows can be found in [29] and [7].

In what follows we shall adopt the convention that Greek indices run from 0

to n and latin indices from 1 to ?7, with n = 4, unless otherwise indicated. Partial

derivatives will be denoted by comma, covariant derivative in M by a semicolon

and in a null hypersurface M by a colon.

In M, a one parameter family of null hypersurfaces foliating M is given by

the equation (j)(xa) = p ,where p is the parameter labelling the hypersurfaces and

(j> satisfies ga>3''-0r~§gr = 0 a n d 9ap is the metric tensor on M. Each member of

the one-parameter family of null hypersurfaces has induced upon it a degenerate

metric tensor hap of rank 2 and signature (0 — 1 — 1).

We will let xa be a coordinate system for M while 'xa will denote coordinates

of a null hypersurface Af embedded in M. xa = Ba('xa). If we have an embedding

B : AT > M then the connecting quantities B" are defined to be B" = Ba
a and

are used as projection operators, so that we have xa = Ba('xa). For example
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if wa is a covariant vector of M, then B"wa = 'wa are the components of the

projection of wa into M in the coordinates of Af. On the other hand if 'va is a

contravariant vector in Af, then B®'va = 'va are the components of 'va, considered

as a vector of M, in the coordinates of M.

In order to project contravariant vector fields of M into Af or to form a vector

field in M corresponding to a covariant vector field in Af, we must first rig Af.

This means that we must define a direction at each point of M which does not

lie in Af In practice, this is done by defining a contravariant vector field in M,

which nowhere lies in Af.

The covariant normal to Af is given by ^ - and £a oc ga^ ^ - represents a

tangent vector field to the congruence of null geodesies generating Af. Note that

the scaling of ta depends upon the family of hypersurfaces not simply on A/".We

choose (£a, na, ma, m01) to be a basis for M such that:

9a/3 = 2C{anp) - 2m ( a m 5 ) (3.3.75)

£Qna = —mQrna = 1 (3.3.76)

with all other inner products zero.

This null tetrad is not uniquely defined by 3.3.75 and 3.3.76. The remaining

freedom in the choice of tetrad that preserves the generator direction of £a is

given by transformations:

na —> A-1 na - Dma - ~Dnf + ADDt (3.3.77)

la)ma —> elE{ma - A~Dl)

with A, E real , A > 0 and D complex and all are functions of xa.

Such transformations form a subgroup of the Lorentz group which splits into

three subgroups characterized by:

(a) D = A — 1 = 0 which corresponds to an ordinary rotation of ma,rna.

(b) E — D = 0 which corresponds to a scaling transformation.

(c) E = .4 — 1 = 0 which corresponds to a null rotation about £a.

The condition qa oc £a => qafa = 0 is the necessary and sufficient condition

that any null vector qa lie in .V. Therefore na transvects Af. Furthermore,
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under 3.3.77 na transforms into any vector field with the same time orientation

as na and not parallel to £Q. Therefore na is the most general null vector field

transvecting Af. By taking na to be the rigging field and £a to be the covariant

normal, we are able to form the projection operators B", B^-, Bp and Cp which

satisfy:

B%Ba
a = 6a

b, B:£a=Bya = 0, Ba
p=8%-na£0, C$ = na£p (3.3.78)

By projecting the null tetrad spanning M in its contravariant and covariant

forms into AJ we obtain the contravariant T° = (£a, ma, m") and the covariant

Ta = (na,mairna) triads which span Af. These triads in hypersurface coordi-

nates are given by Ta = Ba
aT

a = (£a, ma
1m

a) and Ta = B°Ta = (na,marna)

respectively. The scale product between triad members are given by:

tna = -mama = 1 (3.3.79)

and all other inner products zero.

The covariant metric tensor of ,V, indiced by its embedding in M is given by:

'gah = B$gaf} (3.3.80)

with B°f = B%Bl. Hence by 3.3.78 we have:

'gab = -m{amb) =* 'gjc = 0 (3.3.81)

So that 'gab possesses a single eigendirection of eigenvalue zero, la. Further-

more ''<7a6 is a degenerate metric, of rank 2, and therefore cannot be inverted to

give a contravariant metric 'gah such that 'gacgbc = &l- However, we can introduce

a substitute contravariant metric given by:

'g
ab = B%gaP = -2?n{amb) (3.3.82)

where 'ga is the projection of gaf3 in Af. 'ga and 'gab satisfy:
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= '9ab
A'g

Anc = 0 (3.3.83)

'gac'gbc

Under transformation 3.3.77. the triad transforms as follows:

t -
ma -

na —

ma —

-> At
-> eiE{ma -

-> A'1 na -

-> eiEma

Dt)

Dma — Dma (3.3.84)

where A, D and E are now functions of 'xa and p. The covariant metric 'g^ is

invariant under 3.3.84, however this is not the case for 'ga , which is invariant

only under the subgroup of 3.3.84 given by D = 0.

The Lie derivative of a tensor field in M is defined as the components in M

of the Lie derivative of the corresponding tensor field in M. Therefore, for any

tensor field 'T°"l in M and any contravariant vector field va in M we define:

'l rpa... r>a.../3 n n»~ / Irpt...
v 1 ^ - &ab •tvt>ef3 1 / (3.3.85J

If va lies in Ar, i.e, if va = B?ve then the Lie derivative of 'Ta"h can be

calculated using definition 3.3.85 or in the usual way.

Denote the connections on M and Af respectively by F ^ and T^c, then the

covariant derivative with respect to T£. of any tensor field 'Ta"p of M is given

by:

'T%c = T:^ B2 (3.3.86)

Suppose that we have some arbitrary vector field 'va = B"'ve in M which lies

in Af. From 3.3.86 we obtain:

(3.3.87)
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If we take F ^ and T£c to be both symmetric and remembering the definition

of B° we get:

K, = Bfa (3.3.88)

Furthermore equations 3.3.86 and 3.3.87 give:

t:b = £\b + 'Ta
bd£

d (3.3.89)

na:b = nap-'Td
ahnd (3.3.90)

ma:b = ma,b - 'Td
abmd (3.3.91)

ma..b = m\b + 'Ta
bdm

d (3.3.92)

We now concentrate on obtaining an intrinsic connection for J\f. For the

purpose of a geometrical interpretation we choose the intrinsic, symmetric, non-

metric connection introduced by Dautcourt [7]:

' I t = \'9ae('gbe,c + '9c* - K e ) + ^ ( M (3.3.93)

By embedding 'Ya
hc onto M and using equations 3.3.81 and 3.3.82 a straight-

forward calculation shows:

^ + BIBS, + B& fn ( f t7) (3.3.94)

We see that the connection T£c in Af is determined by the metric of M and

the rigging field na.

Using equation 1.3.90 and Dautcourt's connection 3.3.93 we obtain:

na-.b = n[a,5] (3.3.95)

Unfortunately 3.3.94 does not give T£c explicitly in terms of F ^ . However,

remembering that £a oc <f>yCt and writing:

£a = epcf><a (3.3.96)

where p is an arbitrary scalar function.
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then a straightforward calculation using 3.3.85, 3.3.75, 3.3.76, 3.3.80, 3.3.82

and 3.3.96 shows that:

^£'n9cb - /3,(C«6) - n[Cjb] (3.3.97)

So that if we substitute 3.3.97 in 3.3.94 we get:

'VI = B^ T%, + B*aB?fi + \t£'ngbc - P,{cnb) (3.3.98)

With the help of equation 3.3.98 we can now proceed to calculate the intrinsic

curvature of «V. Using Daiitcourt's connection 3.3.93 along with equations 3.3.89

through 3.3.92 and equation 3.3.95 we obtain:

k = £albma:b (3.3.99)

e-e = matma:b (3.3.100)

p = tmhma:b (3.3.101)

a = £ambma:b = tmhm[a$ (3.3.102)

Q — (3 = mamhma.b = mambrn^ (3.3.103)

( r = malbna:b=rna£bn[aM (3.3.104)

= mambna:b =n?mbn[a,b] (3.3.105)

where k, e, p, a, a, (3, r', p' are the well known NP spin coefficients.

Furthermore, the NP operators D,6,6' can be expressed as:

D = f V B (3.3.106)

6 = ???aVa (3.3.107)

6' = maVa (3.3.108)

Hence, D,S,6' are the intrinsic operators and K, e — e, /?, a, (a — j3), | ( r ' +

a + /?), |(/)' — ~fi) are projected into Af in a straightforward manner since by

definition we have:
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k = r^m^p

e-e = ma£(ima,/3

p = tm0ma..p

a = trnPrn^ = £ampm[aA

a — f3 = mam ma:0 = ma?7r m ^

1-{T' + a + ~P) = rrT^n^ = ma£^n[aA

-(p1 - -p) = rnaml3na:p = rffmPn^

We construct the Riemann tensor from the Dautcourt connection T£c as

follows:

'Rate* = 'lt,a - T ^ + Ti'Ti - Tl'Tlc (3-3.109)

In addition to £a being hypersurface orthogonal we will consider it to also be

a gradient so that, under this condition, the non-vanishing components of the

curvature of the null hypersurface J\f can be calculated using equations 3.3.81,

3.3.82, 3.3.93, 1.3.99 through 1.3.108 and equation 3.3.109. They are:

ma£b£cRabc
dmd = Dp-f-aa (3.3.110)

m a £ b £ c R a b c
d m d = D c r - 2 a ( p + 6-6) (3.3.111)

mamh£cRabc
 dmd = 6'p -8a + 2a{a + a') + ^w{P + a + T1)

( a + T') (3.3.112)

£a??26?7?.ci?,ofc
 dmd = -D(a + a') - S(e - e) + /o(e - e) - a(a + a')

^ ^ a-r/) (3.3.113)

ci?A dmd = D(a' + a) - 6'{e - e) - ^(a7 + a) + a(a + a')
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+ ( e - e ) ( o / + Q) + ( ^ + Q + r ' ) ( e - e ) - -a(f3 + a + r') (3.3.114)

Jnam mcRabc rnd = 2 ( Q + ~a)(7x + a') — 5'(a + a') — S(a -\- 7>?)

--p1) (3.3.115)

tmhmcRabc
dmd = -]-p(/3 + a + T') (3.3.116)

eambmcRabc
dmd = -\a((3 + a + T') (3.3.117;

?77amf)mcRabc
dmd = -atf - p') (3.3.118)

We now suppose the null hypersurface Af is spanned by a set of spacelike

surfaces. Such that if £a is the gradient of a function constant on each surface of

this set then:

is the Gaussian curvature of this set [7].

We have seen that oAoA' is tangent to the null generators of Af, so that any

tangent vector to Af has the form va = (A~oA' + oA£A' , where £ is a (1,0)-

spinor field of weight {0, —1}. Then the components of Dva, 6va and 8'va may

be obtained from the components of I>£, d( and &£,. However if one contracts

va = vA^ with ~ox one obtains (f)A = vAA o^ which is a (l,0)-spinor field of

weight {2 , -1} . Note that cpA = i)oA where r\ = vama is the component of va

in the m° direction. If one then applies the commutator dd' — d'd to cf>A using

equation 3.1.30 and noting that R = R since £a is hypersurface orthogonal, one

obtains a totally symmetric (4, 3)-spinor.

*„, - A) + (#2 - $„, - A)}0 (3.3.120)

If one now makes some choice for iA then one can calculate the components

of this spinor and one finds for example that
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{{3d' - &d)cf))A3, = mambmcmdRabai rj (3.3.121)

which is just proportional to the sectional curvature in the m A m direction.

Suppose now that iA is chosen so that the real and imaginary parts of ma are

tangent to a spacelike two surface S and applies the commutator of the GHP

operators d and d' to the weight {1,-1} scalar field rj = 4>ALA then one obtains

{dd' - &d)r, = 1lr, (3.3.122)

where TZ is the Gaussian curvature of S [27] given by:

-R = [aa' - $ 2 - pp' + $ii ' + A) + (orf - *2 - Jp + $ii ' + A) (3.3.123)

Thus the new commutator involves the projection of the spacetime curvature

into S rather than the curvature of the projected connection as is the case with

the GHP formalism. This is not surprising when one considers that the induced

connection depends upon the choice of iA in a non-trivial way, since T£c depends

on the rigging field na, and hence the curvature of the connection does not trans-

form at all nicely under null rotations. On the other hand our new formalism has

been designed so that the components transform covariantly under null rotations.

Indeed the difference between the projection of the spacetime curvature and the

curvature of the projected connection consists of spin coefficients which trans-

form badly. This explains why our commutators appear somewhat simpler than

the GHP commutators since the terms that transform badly under null rotations

have been incorporated into our differential operators. Of course a price must be

paid in the correspondingly more complicated definitions of the new operators.

Hence we have that the GHP commutator dd' — d'd gives the projected

curvature of A' into S, while our new commutator dd' — d'd gives the projected

curvature of M into AT.
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Chapter 4

The Karlhede Classification of

Type N Vacuum Solutions

In this chapter we apply the invariant formalism developed in the last chapter to

the Karlhede classification of vacuum type N Einstein solutions. This approach

arises from the fact that in the case of vacuum type N solutions the invariance

group H° is the group of null rotations and we have seen that the new formalism

is invariant under such transformations.

In a recent paper by Collins [6] the upper bound for vacuum type N was

reduced to six. Collin's approach makes use of the NP formalism to express the

dyad components of the Weyl spinor and its derivatives. However, the use of

this notation is not as productive as might be desired since terms which are not

invariant under null rotations appear in the Karlhede algorithm.

In another paper by Collins, d'Inverno and Vickers [10], the bound for vacuum

type D solutions was reduced from seven to three. An important aspect of this

approach is the use of the GHP formalism. Vacuum Type D space-times have

a Weyl spinor which admits spin and boost transformations as its invariance

group and the GHP spin coefficients and operators are covariant under this same

group. It then turns out that at all orders of covariant differentiation the dyad

components of the Weyl spinor and its derivatives can be expressed completely

in terms of GHP notation which makes the classification process easier.

It thus seems natural, as in the type D case, to use a formalism which is

invariant under null rotations in order to simplify the classification process, and

hopefully be able to reduce the bound.

4.1 The Procedure

The equivalence problem investigates whether two given metrics g and g ex-

pressed in different coordinate systems xQ and xa, are equal under a coordinate
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transformation. Because there are transformations b of the proper Lorentz group

which leave the metric invariant what we should investigate is whether there is

a coordinate transformation giving g = bg, so that the metrics are given up to

transformations of the proper Lorentz group which leave them invariant.

We have seen that to solve this problem we need to find the relationship

xa = xa(x@) and eA = eA(eB,x^) where eA represents the parameters of b that

are compatible with the system of equations 1.3.78. We have also seen that we

need only calculate up to the (p + l)th derivative of the curvature, p being the

order at which no new functional information, relating to the coordinates or to

the frame, is obtained.

The Karlhede algorithm, provides a way of classifying metrics in a way that

will simplify the procedure for solving the equivalence problem. What one does

in practice is calculate the successive covariant derivatives starting from the Oth

order, and at each stage q of differentiation determine the invariance group (the

group which leaves the components invariant) and hence a frame, up to trans-

formations in the invariance group, that will provide the simplest form possible

of the components - the canonical form. So that at each stage q, one is left

with two pieces of information, information concerning the frame dim(Hq) (the

dimension of the invariance group Hq at step q) and information regarding the

coordinates nq (number of functionally independent components). The proce-

dure stops when we no longer obtain new information regarding either the frame

or the coordinates, i.e, when dirn(Hq+i) = dim(Hq) and nq+i — nq.

The idea, in what follows is to consider particular linear combinations of the

components of the curvature and its successive covariant derivatives with these

linear combinations being constructed in such a way that one can obtain, sys-

tematically, all the components from these linear combinations. In fact for con-

venience what we will work with, at each stage q of differentiation, will be linear

combinations of the spinor basis (oA,iA) and the spinor components of V9vI/.

For example, considering the first derivative instead of applying the Karlhede

procedure to the terms:

^ B OAOBOCODOEOB

OAOBOCODOELE

OAOBOCODlEtE

OAOBOCLDLELE (4.1.1)

\T/ n
A

n
B , c , D , E , E

*.ABCD,EB O O t i i i
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\Ti ^A ,B C ,D E ,E
^ABOD,EB O t t I I I

,T, AB C D ,E ,E

we apply the same procedure to the terms:

oAoBocoDoEoE

OAOBOCODOE

*ABCD,EB OAOBOCOD

OAOBOC (4.1.2)

OAOB

*&ABOD,EB

Obviously the information one obtains from the classification of set 4.1.2 is

not the same as the information one obtains from set 4.1.1, since the invariance

group which leaves set 4.1.2 invariant may or may not leave set 4.1.1 invariant

or vice versa. In the case of type N solutions which is the case we will be

considering, the set 4.1.2 is invariant under null rotations as we shall see in the

following sections, however set 4.1.1 is not invariant under such transformations.

We can see that the canonical forms of the terms in set 4.1.2 must contain

the same coordinate functional information as that of the canonical forms of

the terms in set 4.1.1, since these are simply linear combinations and one can

obtain all terms of set 4.1.1 from the terms in set 4.1.2 and vice-versa. To

obtain the canonical forms of set 4.1.2 one must determine the invariance group

at each stage q of differentiation, i.e, the group of transformations which leaves

the linear combinations invariant at each step of differentiation. We will denote

the dimension of this group by H? to distinguish it from the invariance group

Hq of the components. Then we must fix the frame as much as possible up to

transformations in the invariance group and calculate these linear combinations

in that frame, which will then give us the required canonical forms. We follow

this procedure at each step q of differentiation.

So that, like in the Karlhede algorithm which works with components, if

Hg+1 = H? and ??g+i = nq then the procedure stops since no new information

arises from higher derivatives.
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In effect what we are trying to solve, is not the simultaneous system of equa-

tions:

(4.1.3)

^*a6d;eie'i...ep+ie'p+i

but the system:

$ABCD =

iEjE'j = *ABCD;EE'

(4.1.4)

*ABCD;E1E' I . . .EPE'P = ^ABCDiEjE' j ...EPE'P

*ABCD;E1E'1 . . .Ep+1E'p+i = *ABCD;E1E'1...Ep+1E'p+i

which is not exactly the same. In the first case we require that there exist

frames, up to rotational freedom in the equivalence problem, in which the set

^akd , tyababee/ ••• are equal, the identification map being given by the coordinate

relation x^ — xu(x1') which gives equality. In the second case we require that

there exist frames up to rotational freedom in which the set $ABCD, ^ABCD;EE'

... are equal, the identification map being given by xM = xM(xi/).

It is clear that if there exist frames in which the set ̂ abcd , ̂ a^a^ ••• are equal,

then in that same frame, the set ̂ ABCDi ^ABCD;EE'-- a r e also equal and vice

versa because of the way terms in set 4.1.2 are constructed from those of set

4.1.1. However, the group of transformations giving the rotational freedom in the

frame for set 4.1.2 may not leave the terms in set 4.1.1 invariant. So the fact that

the system of simultaneous equations 4.1.4 is solvable does not imply equivalence

since lA = e'4(es,xA') does not imply eA = eA(eB, xM). However, xM = x'^x1') does



Chapter 4 99

imply x^ = 5M(rcI/), so that if after a certain stage of differentiation set 4.1.2 does

not produce new functional information concerning the coordinates that implies

that after that same stage set 4.1.1 does not produce new coordinate information

either. However, it is possible that the invariance group of the components Hq

may not be fixed at this stage and may change with further derivatives so that

one must check this detail if one wants to determine the upper bound on the

order of covariant differentiation.

We consider the case of Petrov type N solutions. Here, what one does

is, instead of taking the canonical forms at each stage q of differentiation of

the Weyl spinor {^>abcd , •••, ̂ abcd^e1...ep+1e' }•, o n e takes linear combinations of

the components of the gth derivative of the Weyl spinor at each stage of co-

variant differentiation {^ABCD, •••, *ABCD;E1E'1...EP+1E;+1 } in such a way that

one can obtain in a systematic way all corresponding components from these

linear combinations and the invariance group is fixed at all orders of differ-

entiation. So that all one obtains from this set is coordinate functional in-

formation. Notice that if rip+j = np then the procedure of classification of

{*ABCD, - , *ABCD;E1E;...EP+1E;+1 } stops at p + 1 so that after the stage p+ 1

we do not obtain any new coordinate information from this set, furthermore this

implies that after this same stage we do not obtain any new coordinate functional

information from {*aicd,...,^a6a4ei..^+ie/p+i , *akri;e1...eH.2ep+2 ,•••}• The reason be-

hind these conclusions being that one can extract the set { f a y ,...,

^abaie1...ep+1e'p+1 ,•••} from the set {*ABCD, • ••, ̂ ABCDjEjEi...EP+1E^+1 , •••} and

vice versa systematically. In a sense we are separating the frame information from

the coordinate information. However, after all coordinate information has been

extracted from set {*ABCD, •••, *ABCD;E1E'1...EP+1E', 1 } one must then check if

the terms

^abcd;e1...ep+iel ? ^abcd;ei...ep+2 ) e^c a r e invariant under null rotations and if not one

must calculate higher order derivatives until the frame is fixed, thus obtaining

the bound on differentiation.

We have seen in chapter 1 that the Weyl spinor of a Petrov type N spacetime

has the form:

\S0 = * ! = ^ 2 = *3 = 0 ; * 4 = $ ^ 0 (4.1.5)

which is preserved under the invariance group HQ of null rotations 2.1.2.

The generalized GHP formalism involves invariants which are symmetric

spinors rather than scalars. So that if one is to apply this formalism to the classi-

fication procedure, instead of considering the terms ^0 , \&i, \&2, ̂ 3 , ̂ 4 and the re-

spective invariance group of null rotations we consider the spinors ^ 0 , * i , \£2, ̂ 3 ,

\p4 defined by:
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OAOBOCOD (4.1.6)

oBocoD (4.1.7)

OCOD (4.1.8)

OD (4.1.9)

= $ABCD (4.1.10)

and the group that leaves these terms invariant.

The Weyl spinor for vacuum type N in this notation has the general form

given by:

= 0

(4.1.11)

Notice that 4.1.11 is invariant under the four (real) parameter group of

transformations 3.1.2.

It is however convenient to use the simplest form (canonical form) possible

in order to simplify the calculations and hence the classification procedure. By

taking a suitable dyad as basis we may scale $ to one and obtain the following

canonical form for the Petrov type N Weyl spinor:

= 0

= OAOBOCOD (4.1.12)

Notice that now the dimension of the invariance group H o is two, the invari-

ance group being the two (real) parameter group of null rotations 2.1.2.

In the generalized GHP formalism, the Bianchi identities in vacuum under

condition 4.1.12 become:

^A'(A^BCDB) = R(A^BCDE) OA, (4.1.13)

) = ty{BCDE TA)(AOB) (4.1.14)

SA, = 0 (4.1.15)

K = 0 (4.1.16)
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Which in compact notation is given by:

(4.1.17)

(4.1.18)

S = 0 - _ (4.1.19)

K = 0 (4.1.20)

Using the fact that Sl/4 is a spin and boost weighted object of weight {0,0},

and that D'(EIP)(EF {OA<>BOCOD)) = &B(EF {OAOBOCOD)) = 8(BP)(E (OAOBOCOD))

— ̂ E'(E (OAOBOCOD) ) = 0 we have (by definition of the generalized GHP opera-

tors V, &, d, V):

^A'B'(AB ^CDEF) = 4:O(CODOEOFG'AB)A Off (4.1.21)

€kf iTr A A r\ r\ r\ r\ — (A 1 r)<r)\

(AfB)(A ^BCDE) — ^^(P &A)(A OBOC°DOE) 1̂ 4.1.IS)

• BCDE] — ^&(AOBOCODOE)°A' (^.i..Z^j

Or in compact form

Comparing with the Bianchi identities gives:

(4.1.25)

(4.1.26)

(4.1.27)

(4.1.28)

RA = 4EA (4.1.29)

TAX = \BAA (4.1.30)

The Ricci equations become:
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(4.1.31)

^AA TBB = R(ATB){BOA>) (4.1.32)

9(AB')(A RB) = O(B>TA')(ARB) —Tjyt RBOB (4.1.33)

9AAB TBO = TAATBBOQ (4.1.34)
TCB - -TJ^TBBOC (4.1.35)

With their compact form being given by:

Pi? = i?2 (4.1.36)

VT = RT (4.1.37)

dR = TR-T~R (4.1.38)

dT = T2 (4.1.39)

VR-d'T = -TT (4.1.40)

Finally we write the commutators:

(PAA P'BCBO — ~&BCBO ̂ AA )4IA1...AN, = {ocTAA &BBO

dBBO -dBBO i>
A4)<pAl...AN, = OBRA< dABO <f>Ai...A N, (4.1.42)

9'BCO —9'BOC 9AAB )<f>A1...AN, = {

RA'OA)VBCBC' 4>A~AN, (4.1.43)

O^ABAB 9COD —

(t>A!..jiNl (4.1.44)

Which in compact notation become:
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(W - W)<f> = {Td+Td')cf) (4.1.45)

{W-dV)cj> = ~Rd<j) (4.1.46)

(dd'-dld)4> = (R-R)V'<f> (4.1.47)

(Vd-&&)</> = -TV<f> (4.1.48)

Note that the GHP vacuum field equations contain the same information as

Einstein's vacuum field equations [27] and therefore the same is also true for the

equations given above since they are complete in the sense that all such GHP

identities can be obtained from them.

4.2 First Covariant Derivative

We now proceed to calculate the first covariant derivative of ^ABCD which we

will denote by (V\P).ABCDFP • It follows from the Bianchi identities in spinor

form eAF\I>,ABOD,FF = 0 that the first covariant derivative of the Weyl spinor is

symmetric on all primed and unprimed indices so that it makes sense to apply

the generalized GHP notation.

The calculation leading to the general expression giving the dyad components

of the first covariant derivative is given in :

+ (4 - //)r00// *H- I (4.2.49)

with fj, e {0,1,2,3,4}.

Now, in the same way that we obtained the general equation giving, for

example, all the Bianchi identities in generalized formalism from the general

equation giving the Bianchi identities in NP formalism, we are able to obtain

a general expression giving all terms relating to the first covariant derivative

written in generalized notation from 4.2.49. Let (^ = {OA
:L

A} be a normalized

spinor dyad with dual (^ so that bold indices represent dyad terms, for example

-̂ A = ^AC'A. is a scalar and not a spinor.

In order to write 4.2.49 in terms of the invariant formalism we first introduce

some notation. Let V\&, with zero to five unprimed indices, be defined by:

(4.2.50)
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Then in the invariant formalism, equation 4.2.49 becomes:

sym

+ (2N - 4)roAlFF'*A2..AJV+1 + (4 - iV)r00FF'}*A1..AJVAN+1 (4.2.51)

with Ar £ {0,1,2,3,4} and where ^ indicates symmetrization on all free primed
sym

and unprimed indices.

We can now obtain from 4.2.51 all non-zero terms relating to the first order

derivative written in generalized formalism:

And in compact notation we have:

(4.2.52)

(4.2.53)

= d'P{FAl VAIASAA) (4.2.54)

(4.2.55)

(4.2.56)

(V*) = 4G = P'V4 (4.2.57)

o = 4A = d'V4 (4.2.58)

o = 45*4 + 4 r* 4 = 5*4 + 4 r* 4 = 5T*4 (4.2.59)

(V*)-o-o = 4E*4 + 4i?*4 = P*4 + 4i?*4 = 5,R*4 (4.2.60)



Chapter 4 105

Where we recall that in the compact notation a dot denotes a contraction

and that one may have to multiply terms by suitable factors of OA and ~o^ and

then symmetrize to obtain expressions such that the indices balance.

It is important to note that equations 4.2.57 through 4.2.60 form an inverted

hierarchical system. Since K ~ 0 the only functional information in E is given

by e. Again since a vanishes and e is known from 4.2.60, the only new functional

information in B is given by /?. Since p = 4e and e is known the only new

functional information in A is given by a. Finally since T = 4/3 and all the

other terms are known the new functional information in G is given by 7. Thus

equations 4.2.57 through 4.2.60 encode all the functional information at first

order.

It is clear that the terms obtained at first order are invariant under null ro-

tations so that the dimension of the invariance group H2 remains 2. We must

consider the possibility of their being at least one functionally independent com-

ponent among these terms and hence proceed with the algorithm.

4.3 Second Covariant Derivative

The calculation leading to the second covariant derivative which we will denote

by (^72*&)ABCDFGFQ , is similar to the one performed to obtain the first covariant

derivative.

The general expression giving the dyad components of the second covariant

derivative is calculated in [10] and is as follows:

+ (2/i - 5)T1Ogsf ( V t f ) ^ + (5 - ^)TOOgg,(V^)ifJ+1)f (4.3.61)

-Tf'Vg'g (V*),0 ' + Tf,0,g,g ( V * ) ^

with fi <E {0,1,2,3,4,5}.

In terms of the invariant formalism one obtains:

OA'OAJV+1(V
2*)Al...AivF'GG' = ^ { [ ^ ^ W . A ^ F ' ];GG'°A'°AN+1

..AN+1F<OA' + (2JV - 5)rAloGG'

(5 - A0r0oGG'(V*)Al..AN+1F'OA' (4.3.62)

J..ANA' °AAr+1 }
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In the vacuum case at all orders of covariant differentiation of the Weyl spinor,

we only need to consider the symmetric parts since only these terms are alge-

braically independent [1]. One then obtains all symmetric non-zero terms corre-

sponding to the second covariant derivative of *&4 from expression 4.3.62, which

in compact notation are given by:

(V2*) = P'W4 (4.3.63)

(V2*) • o = d'P'^4 + (W4)T + V'&^4 (4.3.64)

(4.3.65)

(V2*) • o = dPV4 + 5V'dV4 + 5(P'*4)r (4.3.66)

( V 2 * ) -o-o =

+5TT + WV4 + RW4 (4.3.67)

(V 2*) -o-o-o = Pd'V4 + 5d'PV4 + 5(d'V4)R (4.3.68)

(V 2 *) -o-o = 5ddV4T + 20(d#4)2 (4.3.69)

( V 2 * ) •o-o-o= 5P'

(V 2 *) -o-o-o-o^ 5PI>*4 + 20(I>*4)
2 (4.3.71)

Notice that all the above equations can be obtained from equation 4.3.63

by contraction with omicrons, and as at first order form an inverted hierarchi-

cal system. These second covariant derivative terms encode the same functional

information as the second covariant derivative terms obtained by Collins [6] and



Chapter 4 107

one can obtain the expressions above by translating Collins' terms into gener-

alized NP language (for example: p becomes R) and leaving out all terms that

transform badly under null rotations. Again we obtain objects that are invariant

under null rotations so that the dimension of H3 is two. By considering equations

4.1.25 through 4.1.28, we see that equations 4.3.63 through 4.3.71 tell us that

the potentially new functionally independent information can only come from

the following sixteen terms:

It is easily seem that the commutators limits the number of functionally

independent terms to ten, which are obviously given by:

And by means of 4.2.57 through 4.2.60 and the Ricci equations, we are left

with:

(4.3.72)

as our possibly functionally independent terms.

Unfortunately we are unable to relate these invariants to the invariants ob-

tained at first order of covariant differentiation, because the Bianchi identities do

not relate P / * 4 and d'^4 to * 4 , R and T. In fact the terms P ' * 4 and d'^4 does

not even feature in the Bianchi identities. As a result, and unlike the vacuum

type D case where these identities are used to relate higher order derivatives of

$2 to lower order derivatives of $ 2 and hence limit the number of functional

information obtained at each step, here we must consider the possibility of there

existing at least one new functionally independent term among the invariants

given by 4.3.72. We must therefore continue the Karlhede algorithm.
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4.4 Higher order derivatives

The calculation of third, fourth,..., etc covariant derivatives of the Weyl spinor

is lengthy but straightforward and can be seen as an extension of the calculation

performed for lower order derivatives.

Lets consider the calculation of the dyad component terms of the third deriva-

tive of $, which will be denoted by (V 3 ^) , , / '^ ;^ and is denned as follows:

( V = VABCD,FP:GO;HH K/' Qg tg> Qh Qh' (4 .4 .Qf K / ' Qg

where there are fi ^'s in square brackets and /i G {0 ,1 ,2 ,3 ,4 ,5} .

Expression 4.4.73 can be rewritten in the following way:

* )n,f';gg';hh! = (W,ABCD,FP:GQ;HH
VcF (GT° c

th

(4.4. < 4)

taking into account that there are fi £^'s in square brackets we have:

^ABC:D,FP;GG - (5 -

f

(4-4-75)

V ABCD,FF>;GO

In expression 4.4.75 there are /t — 1 in the first square brackets and /j in the

second square bracket.

The general term (J-^ can be expressed in terms of the spin coefficients Tafxd

in the following way:

cF <-J kt
e (4.4./6)

Substituting 4.4.76 in 4.4.75 we get the general expression giving the dyad

components of the third covariant derivative of the curvature:



Chapter 4 109

+ (2/x - 5)^riofc« (V2*)^;flfl- + (5 -

w/, ( V 2 $ ) ^ w - Tf,vh,h (V2$)^/;flg- (4.4.77)

- Tg,vh,h

In the same manner as before we arrive at the general expression giving the

generalized terms of the third covariant derivative:

Third Covariant Derivative

sym

-ATAlA2HH<(V2*)A3...Ajv+lF,GG'OA< + (2N - 5)rAloHH<

+rF'0'H'H (4.4.78)

°A
N+1

To calculate the expression giving the dyad components of the fourth covari-

ant derivative of the curvature (V3^r)M//;gs»;«1/;rrarf we follow the same process as

before. By definition we have:

,T, teA cB cC cD cF~\
= ^ABCD,FP:OO;HH;MM [Qa Q> ^c Qd €f \

where there are \i £A's and \i G {0,1,2,3,4,5} in square brackets.

Same as before expression 4.4.79 can be rewritten in the following way

/,T,

= (VABCD.FP:GQ;HH
cD cFXeF cG~c& tHT^
Crf ?/ J?/ ' ^3 ^3' *h £ h'
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Q4a Qb £c Qd 4/ J4/' 45 ?a< 4 4ft' liMM Cm 4m< (4.4.80)Qd 4/ J4/

.ABCD,FP:GO:HH

taking into account that there are // £^ s in square brackets we get:

fV74iT^ l7Y73\Tr\ 1 ,,f-4 \cB tC cD (F]
( V xl>)flf;ag>;kh!;mrrt = [ ( V V )nf';g£/;hH \;rrmi ~ Kl;MM IU S c Q 4 / J

Qh £h> 4 m 4rrf VABCD,FP;GO;HB ~ ('5 ~ I^Ko-MM IQb 4C

4/' 4fl 4S' 4ft 4^' 4m 4m- ^ABCD,FP;GO]HHI - 4/';mm; 4a 4& 4C 4,i 4/

^ABCD,FF;GO:HH ~ 4s;TOrf 4a 4& 4C 4d 4/ 4/' 45' 4ft 4w (4.4.81)

V ABCD,FP;GO;HH ~ C,g>;mrt 4a 4& 4C 4d 4 / 4 / ' 45 4ft 4ft' ^ ABCD,FF;GQ;HH

(H (AcBcC cDcFjFjH1 ,T> T-9" {A CB (C eD (FT*1 CH
~^h;rmi 4a 4& 4c 4a1 4 / 4 / ' 4ft' WAB0D,FP;GO;HH ~ t,h!;rmrl 4 a 4fc 4C 4rf 4 / 4 / ' 4ft

Same as before there are // — 1 in the first square brackets and fi in the second

square bracket in expression 4.4.81. So that by substituting 4.4.76 in 4.4.81

we have our general equation:

H ];rmrt ~ f^Umrri ( V

(5 - /̂ FoOrwrf ( V 3 $ )

+Tf0,m,m (V3^),a';9^hM -TflVn,m(W3^)^,^.M (4.4.82)

( V ^r)^/';S3';ftft' — Fftin^r ( V 1

From equation 4.4.82 we obtain the generalized expression given below:

Fourth Covariant Derivative

= J2 [ ( V 3 * ) A 1 . . . A N F ' G G ' H H ' ] ; M M ' O A ' O A A , + 1
sym
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+ ( 2 i V - 5 ) r A l +

+ (5 - AOrooMM'(V3*)A1...AAr+1F'GG'HH'OA'

OA' (4.4.83)

°AN+1

Finally we determine the expressions relating to the fifth covariant derivative

of the curvature wThich can be obtained following the same process as before.

Obviously the dyad components are determined by:

rrmi;nrr! = * ABCD,FP:GQ;HH';MM;NN> [t,a Kb Kc K~d K*J}

Km W W Kn' (4.4.64)

where there are fi Ct s an<^ A4 ̂  {0̂  1, 2,3,4, 5} in square brackets.

In the same way as before, equation 4.4.84 leads to the following equality:

7F cGJ0 fHjff tMJM tNjW ,T;

4/ ' Kg Kg' Kh Khf Km Krri Kn W W.ABCD,FF;GO;HH;MM

rcB cC cD <rFi7F cGT^ tBT^ tMjM cNJ1^ ,T;

1Kb KcKd KflKf'KgKg' KhKh' KmKm> KnKn' y
• f
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— Qf';nrt Qa £b Sc Qd 4/ 4S 4g> Qm W *ABCD,FF;GG:HH;MM

~45;raV Qa 4b 4c 4d 4/ 4/ ' 4^ 4/i 4/i' 4m 4m' ^ABCD,FF;0O;HH;MM

~4(/;nrf 4a 4b 4c Kd 4/ 4/ ' 45 th th! 4m 4nf ^ABCD,FP;(X3;HH;MM (4.4.85)

cH tAfBfCeDtFjF' .GJOJH1
 MjM v

— t.h;nn! 4a 4b 4c 4d 4/ 4/ ' Qg 45 ' 4/i' 4m 4 ^ *ABCD,FP;GGI;HH;MM

jH1 cA tBtCcD cFTF cGJ& (H CMTM ,T,
~4/i';nrf 4a 4b 4c 4d 4/ 4/ ' 45 4<̂  4ft 4m Qml ^ABCD.FP;GQ>HH';MM

tM cAcBcC cD cFJF cGJ0 cHJ^17Af iTr
Km;rxrt 4a 4b 4c 4d 4/ 4 / ' 4S Kg' th th' 4m- WABCD,FF;GQ;HB;MM

cD
4C CA CO Cu Cu C? C CG c tn c CM 1T1

— t,rrt;nrt 4a 4b 4c 4d 4 / 4 / ' 4 5 4 5 ' 4ft 4ft' 4m *ABCD,FP;QQ;HH;MM

By substituting 4.4.76 in equation 4.4.85 we obtain the general expression

giving the dyad components:

( V '^)t1f'-g^-hhl;mtri;nri = [(V $)nf;gg>;hh!;mn1 } . n r i

{V4xl>)lj,-lf;ggi;hh!;mrt + (2(1 ~ 5)(iT'Wnri (XJA^)nf;gg';hh!;mnt

+ (5 — (l)Toonri (V ^)fJ.+ lf'-gg'-hhl;rrmi + ^f'O'n'n ( V ^)^V-gg1-hH;rmri

— Tf'l'n'n (V ^)lA>;gg';hH;mrri + T̂ OTlrf ( V l5)/I/';lj';Wi?;raJrf (4.4.86)

V ty)pf'-flgi;hH;mrrl + Tp'O'n'n ( V )̂iij';ggl:hH;rmH

— ̂ g'Vn'n (V '̂)M/';50';ftft';mmf + r̂ Onrf ( V ^)Aj/';5g';lft';mm'

(V )lifi-gff--fih';mrrl + IWn'n ( V

— Tft'i'n'n (V ^)f1f-gg';h0';mni + ^mOnn! ( V

— ̂ ralnrt (V )̂fj.f;gg';W;0rri + F^ 'n ' i i ( V

- r ^ j i r f n (V ty)nf;gtf;hH\rra'

Fifth Covariant Derivative

OA'OAN+1(V * ) A 1 . . . A J V F ' G G ' H H ' M M ' N N ' =

sym
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-ATAIA2NN'(V4t)A3...AJf+1F'GG'HH'MM'OA'

(5 - A'')rooNN'(V4$)A1..AN+1F'GG'HH'MM'OA'

T F ' A ' N ' N ( V 4 * ) A ! ...AJVGG'HH'MM'OAN+j

°AN+1 (4.4.87)

4.5 Reducing the upper bound

Here we analyse the upper bound on the order of covariant differentiation of

the Weyl spinor required in the Karlhede classification. We apply the Karlhede

algorithm to the invariants obtained in the previous section.

At first order the terms obtained are given by P', d\ d, V acting on * 4 which

are all invariant under null rotations. In order for the algorithm to continue these

terms must be non-constant, since otherwise the algorithm would stop at second

order because ^4 = 1. This can also be seen by looking at the components

since these terms being constants would then require that R,T, A, and G to have
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constant components, i.e., />, r, a, and 7 would have to be constants. If we apply

the NP Ricci equations [23] to these constants, we get

p = T = a = 0 (4.5.88)

and Collins [6] has proved that when 4.5.88 is satisfied the upper bound is two.

Hence, we consider the case when at least one functionally independent term is

obtained at first order and thus continue the procedure.

We have already seen that at second order the invariance group remains the

group of null rotations but we must take into consideration the possibility of

there being at least one new functionally independent term amongst the terms

obtained at this order so that the procedure continues to third order.

All non-vanishing terms relating to the third derivative are obtained from

(V3\P4) = P' ^ 4 by contraction with omicrons, so that the two dimensional

group of null rotations remains as the invariance group H3. However, we are

again unable to rule out the possibility of obtaining new functionally independent

information at this order of differentiation. So the Karlhede algorithm must

continue to fourth order.

At fourth order the situation is much similar to third order, with all non-

vanishing terms obtained from (V4\P4) = V ty4 in exactly the same way. And

for exactly the same reason as before, the algorithm continues to fifth order.

At fifth order things work out much the same, with all terms being given

by (V5\P4) = P7 *&4 and its successive contractions with omicrons, so that the

dimension of H5 is two.

At most the algorithm will produce four functionally independent terms

among the set {(V"\&4),..., (V"\&4)-o-...-o-o-...-o}. Hence, since the invariance

group remains the group of null rotations at each step of the algorithm we con-

clude that in the worst possible case when only one functionally independent

term is obtained at each stage, it would be necessary to calculate five covariant

derivatives before we obtain no new functional information and the algorithm

terminates. This however, as discussed before, gives just information concerning

the coordinates obtained in the Karlhede classification of the solution. We can

say, that as of the fourth derivative, one does not obtain new coordinate func-

tional information from the components of the successive covariant derivatives

of the Weyl spinor. However, we must check if by the fifth order the invariance

group relating to the components is fixed, otherwise one might need to calculate

further derivatives.

According to Collins work [6], at first order of differentiation the terms ob-

tained are given by:
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Cl

0J = 4a C2

= r C3

V = AT C4

which is precisely what one expects.

Under null rotations these spin coefficients transform as follows:

(4.5.89)

(4.5.90)

(4.5.91)

(4.5.92)

He then goes on to determine the invariance group. In order to simplify the

procedure he considers various distinct cases which he denotes by Class I, Class

II, Class Ha, Class lib, Class Ilia, Class Illb. Let us review the results obtained

for each of these cases:

Class I: p ^ 0

By 4.5.91 we have that r can always be set to zero by taking a = —- which

then fixes the frame completely.

Class II: p = 0, r = 0

The only transformation remaining is 7 —> 7 +act. There are two subclasses

to consider:

Class Ha: a / 0

In this case one can set 7 = 0 by taking a = — ̂  which then fixes the frame

completely.

Class l ib: o = 0

p -

a —
T —

7 -

- • P

—> a -

—* T H

-»• 7 H

5
V-ap
- ap

5
- aa + -ar

5
+ -aap
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Here none of the spin coefficients can be transformed at all so the frame

cannot be fixed any further, i.e, the invariance group remains two dimensional.

Class III: p = 0,r ^ 0

The only transformation remaining is 7 —> 7 + (aa + far) so that two cases

are considered:

Class Ilia: \a\ / | |r |

Here we are able to fix a and therefore the frame completely [6].

Class Illb: Q = .\T4 l

In this case the frame is fixed up to a one dimensional invariance group [6].

At second order of covariant differentiation the terms obtained by Collins are

[6]:

C5

C6

,W> = 2pr C7

C8

(D2$)40,;W = 6'p + lap - -Tp C9

-Tp-ap + Tp CIO

^p + rr Cll

3 1

+ -TP-Wp + -TT 12

= 6'T + 7JT-17P + T7 C13

(D2$>)41,0V = 6T +-T2 -Jp + ra C14
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av = D'T + 7 T 7 - 7 7 / J + T7 C15

= 4Da-5jrp + 5ap - a"p C16

4<5'a - 5 - + 20a2 + a r C17

4cm + 47p C18

(D2V)S(y.,lv = AD'a - 5up + 20«7 - Aaji + AT-f C19

(^2*)5i';oo' = 4-D7 - 5TTT + 57/> - 4mf + p 7 C20

(D2#)5i';io' = 46'7 - 5Ar + 20a7 - 4a/I + 7T C21

(D2tf )si';oi' = 4<57 - 5/xr + 57r - 4aA + 4 7 a C22

(£>2^)51/;11- = 4£>'7 - hvr + 2O72 - Aav + 477 C23

which again is what we expected. We then look at the invariance group which

leaves all terms in C5 through C23 invariant. We have seen that for classes I, Ha

and Ilia the frame is completely fixed at first order. So that one looks at what

happens in the other cases:

Class l ib: /3 = 0,r = 0,a = 0

On substituting /? = 0,r = 0,a = 0 into equations (2.4d), (2.4m) and (2.4p)

of [23] one has that only D'7 is non-zero. Under null rotations the NP derivative

D' transforms as:

D' —> (D' + aS' + a6 + aaD)

It is seen from equation 4.5.92 that 7 remains unchanged under the group of

null rotations so that one has:

D'<y —> (D' + a8' + aS
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using the fact that D^ = 67 = 8'f = 0. Hence we have that D'^j remains

unchanged under the group of null rotations so that at second order the two

dimensional invariance group remains.

Collins [6] goes on to show that at third and higher orders of differentiation,

in this case, the only non vanishing component will be the highest labelled one

and will contain as potentially new functional independent information only a

term of the form D'D'D'...^. He then goes on to prove by induction that, using

a shorthand notation, D'n~/ is invariant under the two dimensional group of null

rotations, for any n.

If one takes D''™"1' 7 to be invariant under null rotations, then under this

group D'nj will transform as follows:

Din
1 —> (D1 + a6' +a6 + aaD)D'{n~X) 7

= D'n1 + a6'D'{n-l) 7 + a8Dl(n'l) 7 + aaDD'^ 7 C24

By taking the NP commutators:

(D'D - DD')<f> = [(7 + 7)D + -(p + p)D' - (r + w)6' - (r + Tr)S]<f> C25
4

(6D' - D'S)(j> = [-VD + - ( r - a)D' + A<5' + (/z - 7 + j)6]<j> C26

and the complex conjugate of C26, it is seen that the NP derivative operators

D} 8 and S' can be moved through a line of D' to the right. Hence, from the fact

that D7 = 67 = 6'-y = 0, equation C24 becomes:

V 7 —> V 7

Therefore, wTe have shown that if D'^n~ 7 is unchanged under null rotations

then so is D'nj. Furthermore, we have seen that D'j is unchanged under null ro-

tations so that one has by induction that D'nj is unchanged for any n. Therefore,

the two dimensional invariance group remains at all orders of differentiation.

Class I l l b : p = 0, r ^ 0, \a\ = | | T |

From equations C5 through C23, one has that the potentially new functional

independent information at second order is given by 7r, A, ̂  and v together with
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the NP derivatives of the first order spin coefficients a,T and 7. Collins [6] then

looks at how these terms transform under null rotations and uses, for convenience,

the transformation of D'T to further restrict the frame at second order. It is seen

that one can fix the frame completely in this case. We will omit the calculations

here since they are extensive and are explained in detail in [6].

We have then seen that in all cases except one, by second order of differentia-

tion the frame is fixed. In the other remaining case the invariance group remains

the twTo dimensional group of null rotations at all orders of differentiation. We

can then conclude that by fourth order of differentiation the Karlhede classifi-

cation of the solution does not produce new functional information, concerning

either coordinates or frame, so that bound is reduced to five.
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Chapter 5

The Karlhede Classification of

Type N Non-Vacuum Solutions

We have shown in chapter 4 that by applying the generalized GHP formalism

to the Karlhede classification of Petrov type N vacuum solutions one can reduce

the upper bound to five covariant derivatives.

In this chapter we analyse the problem of reducing the upper bound on covari-

ant differentiation for non-vacuum type N solutions. We apply the same method

used in the vacuum case, i.e, we attempt to write all derivative terms in terms

of the gereralized GHP formalism.

The Karlhede algorithm for classifying metrics also applies to the non-vacuum

situation. However in the non-vacuum case, unlike the vacuum situation, we must

consider the contribution of the Ricci spinor and the Ricci scalar as well as their

successive covariant derivatives, since they no longer vanish.

The situation where one could potentially have a bound of seven, fortunately,

only occurs in very non-generic cases. For this situation to occur all of the

following conditions must be satisfied [18]:

(1) The Weyl and Ricci spinor and Ricci scalar (A) must all be constants.

(2) The invariance group at zeroth order Ho must have dimension two.

(3) The dimension of the invariance group and the number of functionally

independent components must not both change on differentiating.

(4) We must produce at most one new functionally independent component

on differentiating.

The Ricci spinor has the following symmetries:

$ABAB = ${AB)(AB) (5.0.1)
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So that we are left with six independent components given by:

$00' = oAoBdA'dB^ABAB

$ o r = OAOBOA'TB'$ABAB

$02' = oAoB7A'lB'$ABAB

$n, = oALBoA'TB$ABAg (5.0.2)

$ j 2 ' = OALBTA'lB' § ABAB*

$22' = AB i ' 4 ' r i ?

For type N vacuum spacetimes the canonical form for the Weyl spinor is:

$ 0 = * 1 = $ 2 = $ 3 = o $ 4 ^ 0 (5.0.3)

with the invariance group being the group of null rotations which acts on the

dyad according to 2.1.2.

We investigate how the Ricci spinor transforms under null rotations:

$00' -

$01' -

$02' —

$11' -

$12' -

$22' —

$10' -

$20' -

$21' —

-> $00'

-> $01/

-> $02'

-> $ n ,

-> $ 1 2 ,

-> $22'

+

+
+
+
+

+aa2$

-» $10'

-» $20'

- * • $ 2 i /

+
+
+

a$oo'

2a$oi'

a$oi' -

2 a $ n /

2a$21 ,

or + a

a$oo<

2a $io'

a$20' -

+ a $oo'

ha$io' +

+ a2$io'

+ 2a$12/

2 $20' + a

+ a2 $oo'

f 2 a $ i r -

aa$oo'

+ G$02' +

+ 4aa$n/

2a2$00 '

4- 2aa$10'

2aa$

+ 2a:

+ a2$

or -t- a awoo'

02' (5.0.4)

oi' -r " " ̂ oo'

As in the type N vacuum case, we make use of the generalized GHP formalism

of chapter 3 so that instead of considering $'s and $'s we work with it 's and

$'s. It is irrelevant whether one uses A or A since A is a scalar so that A = A.

The Weyl spinor in the generalized GHP notation is defined by 4.1.6 through

4.1.10. We proceed to define the Ricci spinor in generalized GHP notation:
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(

( $

( $ r

$22'

$00'

02') A'B

>W)AA

2')AAB

)ABAB

= &ABAB

= &ABAB

= &ABAB

= $ABAB

— $ABAB

= &ABAB

oAoBoA>oB

oAoBoB

oAoB

oBoB

oB

(5.0.5)

so that for condition (2) to be satisfied one must have:

ABA = {$12>) A.4B =

= (*io')i4 = (*oi'U = *oc = 0 and ($22<)ABAB + 0 (5.0.6)

and condition (1) requires that \&ABOD ,$ABAB' have constant components and

A to be constant.

Since A is a spin and boost weighted quantity of weight {0,0} then by con-

dition (1) we have:

I/A = PA = I^A = PA = 0 (5.0.7)

We now need to specify the Bianchi identities, Ricci equations and commuta-

tors for this particular case. The Bianchi identities give the following equalities:

K = 0 (5.0.8)

T ' (5.0.9)

' (5.0.10)

' (5.0.11)

While the contracted Bianchi identities give:

P$2 2 ' = (R + ~R)$2v (5.0.12)

By subtracting equation 5.0.12 from equation 1.0.10 we obtain:
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5*4 - R$22> = 0 (5.0.13)

The Ricci equations are given by:

dR-d'S = (R-R)T (5.0.14)

Pi? = R2 + S~S (5.0.15)

VS = S{R + R) (5.0.16)

VT = RT + ST (5.0.17)

dT-V'S = T2 (5.0.18)

VR-VT = -TT-2K (5.0.19)

And finally the Commutators become:

= (Td + T& + pA + qA)<£ (5.0.20)

(W-dP)<f> = (Rd+Sd')(p (5.0.21)

{d&-&d)(f} = ( ( f l - i ^ - p A + q A ^ (5.0.22)

(5.0.23)

5.1 First covariant derivative of the Weyl and

Ricci spinor and the Ricci scalar

We now calculate the first covariant derivative of the Weyl and Ricci spinor and

Ricci scalar. Our intention is to express all derivatives in terms of the generalized

GHP formalism, however this notation deals only with totally symmetric quan-

tities which causes a problem since in the non vacuum case one must consider

the non symmetric terms as well. We therefore, make use of an important result

which can be found in [1] and which states:

Lemma 5.1.1 The set of nth derivatives Vni? contains the following terms:

(i) The totally symmetrised spinor nth derivatives of the Weyl spinor

V ( 4 V B . . .V G
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(ii) The totally symmetrised spinor nth derivatives of the Ricci spinor

(A B ••" G HK)

(in) The totally symmetrised spinor nth derivatives of the Ricci scalar

B vGf)
B - v q

(iv) For n > 1, £fte totally symmetrised (n — l)£/i derivative of the 'curl'

Z-ABCA of the Ricci spinor

where E, is defined to be either side of the Bianchi identities:

(v) For n>2, the d'Alembertian of all quantities in Vn~2 R, i.e.

where Q is a member of Vn~2 R.

Therefore at first order of differentiation we need to calculate all totally sym-

metric terms relating to the first covariant derivative of the Weyl and Ricci spinor

and Ricci scalar and the zeroth derivative of the curl. We start off by determining

the general expressions that give the dyad components of such derivatives since

the generalized terms follow immediately.

The expressions giving the covariant derivative up to fifth order of the Weyl

spinor are given in chapter 4. The method used to calculate the terms relating

to the Ricci spinor is very similar to the way one calculates the derivative of

the Weyl spinor. ( V ^ ) ^ ^ will represent the dyad components of the covariant

derivative of the Ricci spinor where fi gives the number of unprimed dyad vectors

that are £j*'s and z/ represents the number of primed dyad vectors that are £v 's.

We can then write:
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-^1
1

;e(,^'^$^B' ~(2-/i) (5.1.24)

(A tBJA'jB' A' B'

where there are [i ̂ ' s and v' t,v in square brackets with /j, G {0,1,2} while

i/e {0,1,2}.

If we substitute expression 4.4.76 which gives the relationship between the

term ££w and the spin coefficients Fat^ we arrive at the general expression for

the dyad components:

+ (2 - /z)IW$(H-iy - "Tl'lVe$,C-l) + (2U' - 2)ri'0'e'e$^ (5.1.25)

+ ( 2 - f)To'O'e-e

with / /€ {0,1,2} and i/' € {0,1,2}.

Then the invariant formalism equation becomes:

+ (2N - 2 ) r 0 A 1 E + 1 v N + 1

+ (2 - ,V)r00EE<*A1..A*+1A'1,..AV oAv#+i# (5.1.26)

+ (2Ar' - 2

+ (2 - Ar'

N € {0,1,2}, A '̂G {0,1,2}.
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The calculation with respect to the Ricci scalar is very straightforward and

the dyad component expression is simply given by:

(VA);ee, = (A);ee, (5.1.27)

With the generalized formula being:

( V A ) E E ' = (A);EE' (5.1.28)

Finally we need to calculate the Oth derivative of the curl E, i.e, the curl itself.

E is given by either side of the Bianchi identities, so that the dyad component

equation is given in [23]:

vp
d,$abcp - 3^Mab r c ) ^ , - yaahq>rp

r
T

d, (5.1.29)

It is clear from chapter 2 that in generalized notation these terms become:

+ ^NM(ABrC)LKD') (5.1.30)

+

We are now able to determine from expressions 4.2.51, 5.1.26, 5.1.28 and

5.1.30 all terms relating to Vi?, they are:

(V*) = P '* 4 (5.1.31)

(5.1.32)

(5.1.33)

(5.1.34)

= P'$22, (5.1.35)

(5.1.36)

' (5.1.37)
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' (5.1.38)

(5.1.39)

(5.1.40)

(VA) = P'A (5.1.41)

(VA)-o = ^ A (5.1.42)

(VA)-o = #A (5.1.43)

( V A ) - o - o = PA (5.1.44)

(5.1.45)

(5.1.46)

Notice that since we are considering the worst possible case where all terms

at zeroth order are constants and since A is a scalar of weight {0,0} then all

terms arising from the derivative of A are zero. And all terms are invariant under

null rotations so that the dimension of the invariance group Hi remains two.

5.2 Second Covariant Derivative

We proceed to calculate all terms relating to the second covariant derivative ,

the terms that we need to calculate at this order are :

(i) the symmetric second order covariant derivative of the Weyl spinor

(ii) the symmetric second order covariant derivative of the Ricci spinor

(iii) the symmetric second order covariant derivative of the Ricci scalar

(iv) the symmetric first order covariant derivative of the curl

(v) the d'Alembertian of ty, $, and A.

The calculation relating to the second derivative of $ whose dyad components

we will denote by (^2<&)tu/;ff is very similar to that of the first derivative. We

have:

I*. tAcBT^-fB (ETE \

} ft.
);ff *ABAB';EB

t t f t Z ? B (5.2.47)
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4 cB-zA! -ZB cEyE -
) -Jf'^b 4a' ?6' Se W ^Aa4flr;EE7

•AcBTB tETE {

- (3 - I / ' )^, .j;,£a£b£v £e£e' $ABAB>;EB

—A!—A!

where there are fi primed ^j s and v unprimed (v in square brackets with

H e {0,1,2,3} while i/'€ {0,1,2,3}.

Therefore, the dyad components of the second derivative of $ can be obtained

from the general expression given below:

+ (3 - n)Tooff (VS^+xy - vfvvfif (V$) M J / _ 1 } (5.2.48)

0'/'/
$^ + (3 - ^)rw/

with (i e {0,1,2,3} and i/'€ {0,1,2,3}.

Translating equation 5.2.48 into generalized formalism gives:

+ (2iV - 3)r0A1FF'(V$)A2.A.v+1A'1,.AVFF' OAV+1,

+ (3 - A0rOoFF'(V$)Al...AAf+lAv...Av OA^,,^, (5.2.49)

+ (27V' - 3)rA'i/0'F'F(V*)Al..AjvA'2,..A'JV,+1.

+ (3 - ^')ro'O'

w ith iVG {0,1,2,3} and N1 G {0,1, 2,3}.

The calculation of the second covariant derivative of A is also straightforward,
we write:
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].ff-rt?.Jft*^EB (5-2.50)

- ( 1 l^ l l f

So that if we substitute expression 4.4.76 which gives the relationship between

the term Cf-hH an<^ the s P m coefficients Fa^ we get the general expression for

the dyad components:

+(1 - fi)rooff (VA)(H.X)I/ - i / T n w l V A ) ^ ) , (5.2.51)

with // G {0,1} and v' e {0,1}.

With the direct translation into invariant language given below:

1 J V ^ A ) A l . . A f , A ' 1 , . . . A V , ];FF'

O A N + 1 O A ' N , + 1 , - A f r ( V A )

+ (2A r - l ) r 0 A 1 F + 1 v N+1

+ (1 - iV)rOoFF'(VA)Al..AjV+1Av..Av °A>NI+1, (5-2.52)

+ (2N' - i , 2 V + 1 +

+ (1 - Ar')rO'o'F'F(VA)Al...AArA,i;..Av+i oAjv+1

with N e {0,1} and iV' € {0,1}.

The covariant derivative of the curl can be obtained as follows:
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t cA C& (C c
— {—ABCA So S6 Sc W

CA (B(CJA —
>l;ee'S6 Sc So' -ABOA

(5.2.53)
i-pA' CACBCC-

~ v Kv-^^aKbKc—ABCA

~ I 1 - v )?O';ee'Sa Q> Sc -ABCA

As before fi and f' represent the number of unprimed £^'s and primed £v
At

there are among i^ifi^ a n ^ ^o' respectively. Furthermore ji G {0,1,2} and

z / e { o , i } .

With the help of 4.4.76 we obtain the expression giving the dyad components:

(Vi=,)^y;e(J = [jr,^ ];ee/ — [iT-iied ^(n-iy + (2(1 —

+ (3 — //)r00ee'"(/ j+iy — * /Ti'l'e'e"/i(i/-l)' + (2^ ' — ̂ Fi'O'e'e —^ (5.2.54)

+ (1 — V )To'O'ee

The generalized expression follows immediately:

+ (2N - 2)roAlEE'2A2..AJV+1A'1,..AV OAV,+1,

+(3 - A0rOoEE'2Al..Aw+1A'1,..Av oA'NI+ll (5.2.55)

A; ,E 'E2A ] . .A^A ' 3 , . .AV + 1 , OAJV+1

with iV e {0,1,2,3} and A ^ ' G { 0 , 1 } .

We now concentrate on determining the d'Alembertian of \& , $ , and A

which is given by VEE VEB ^ABOD , V££? VEB <&ABAB , andVE£7 VEB A respec-

tively. The d'Alembertian will sometimes be denoted by the symbol • . The
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dyad components of the first derivative V' EB ^ABCD = ^ABCD,EB
 a r e obtained

as follows:

[Qa C(, Cc Cd JCe Ce' = K* ABCD Ca Cfc C,c C,d );EB Ce ^

-[ta(bt,c£d];EB £,fle> ̂ ABCD (5.2.56)

Obviously we can use the same idea to obtain the dyad components of the

d'Alembertian VEE V'EB ̂ ABCD which is given by:

= WABCD,EB [Qa £b L Q J^e Ce- QEZB

^ B C cD cET^ \;EE ce J6* /- o -

By working out the derivatives in curly brackets in equation 5.2.57 we get:

V
e

- ( 4 -

- 4 ? e '
- 4^;ee/

) \ J Vee!

JweC J

n)^ [,

[4a 4b 4c

[ ^ ^ ^

ibicCf

6 ]4e' V

L f̂c 4 C 4c

VABCD,EB

{ J4 e

\BCD,1

f

ABOU^EB

.2.58)

where in the first square brackets there are (ft — 1) {^'s, in the second square

brackets there are (/< + 1) ̂ ' s and in the third and fourth square brackets there

are \i £j4's and \x G {0,1,2,3,4}. Equation 5.2.58 can be rewritten as:

,9^ (5.2.59)

ge aV r rA tB ®
e L4 44 C

4c
tAcB cC cDlc

?6 4 4d J4e

By substituting 4.4.76 in 5.2.59 we arrive at:
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- (4 - / i ) r o w e* (5-2.60)

which finally gives the general expression for the dyad components of the

d'Alembertian:

- (4 - fi)T00g^ - FOODS'

(5.2.61)

We can clearly see from equation 5.2.61 that:

(5.2.62)

So that in generalized formalism equation 5.2.62 translates into:

# ( V
2 * ) A l ..

G E e G ' E ')eGEe (5.2.63)

with iV € {0,1,2,3,4}.

The method of calculating the dyad components of the d'Alembertian of $22'

is the same as that of \J/4, in equation 5.2.57 we substitute ^ 4 by $22' and

contract with the adequate number of £^ and £a, 's, ie:

-e -
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where there are \x £^'s and v' £ r 's in square brackets with [i G {0,1, 2}

and v1 6 {0,1,2}.

The calculations as of this point are exactly the same as in the case of the

d'Alembertian of <]/, so that it is not worth repeating all the same details. Hence,

if one works out equation 5.2.64 in the same way as before we arrive at the dyad

expression:

}e3e^ (5.2.65)

The generalized version being:

+ 1 : V eGEeG 'E ' (5.2.66)

= (V 2 $)A 1 . .A W + ] A;, . . .AV + 1 ,

with N € {0,1,2} and N'e {0,1,2}.

The case of the d'Alembertian of A is treated similarly. The calculation of

Vee/ V ^ A follows the same path as that of the d'Alembertian of ^ and $ we will

omit the details since these can be reproduced very easily. The dyad expression

is written below:

Ve£/ V ^ A = {(VA).^ }e9ee9'e' (5.2.67)

The generalized version becomes:

<5A, OA , V A ETC' = O A , O A , v

= (V2A)AlAV (5.2.68)

By Lemma 5.1.1 these are all the quantities we need to calculate so that the

terms obtained at second order of differentiation are:

V2\P = P'Î Vl/4 and all possible contractions with omicrons

V 2 $ = I>'P'$22' and all possible contractions with omicrons
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V2A = P'P'A and all possible contractions with omicrons

V S = P'S and all possible contractions with omicrons

• \p4 = V2\P • o • o and all possible contractions with omicrons

• $22' = V 2 $ • o • o and all possible contractions with omicrons

• A = V2A • o • o and all possible contractions with omicrons

5.3 Higher Derivatives

The calculation of third, fourth, ..., etc covariant derivative of the Riemann

spinor is lengthy but straightforward and can be viewed as an extension of the

calculation done at first and second order. By Lemma 5.1.1 we see that the terms

we need to calculate at each order of differentiation are as follows:

Third Covariant Derivative:

2,, V3A , V 2 S , n ( V * 4 ) , n (V$ 2 2 , ) , n(VA) ,
• (2) + repeated terms

Fourth Covariant Derivative:

,, V4A , V 3 3 ,

• (V2$22,), °(V2A), n o ^ ) , nn($22,), nn(A) n(VS)+
repeated terms

Fifth Covariant Derivative:

, V 5 $ 2 2 , , V5A, V 4 3 ,

' ) , ° (V 3 A), D(V2S), • • ( V * 4 ) , • • ( V * 2 2 / ) , D D ( V A )

• • ( S ) + repeated terms

The calculations relating to higher derivatives of $ and A can be seen as an

extension of the previous calculations. For example, we can write ( V 3 ^ ) ^ ; ^ in

the same manner as is done in 5.2.47, $ABAB;EE\FF becomes $ABAB-,EB;FF\GQ
At

and in square brackets we will have fi unprimed £^'s and v' primed £v 's with \i G

{0,1,2,3,4} and ̂ '€{0 ,1 ,2 ,3 ,4} . The fourth derivative of $ is obtained in the

same way and so on for higher derivatives. The same occurs in the case of higher

derivatives of A, for example we write (V3A),uy;s5- in the same way as 5.2.51,

A;££7;FP is substituted by ^•;BB\FF;oa and one then has in square brackets /J,
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number of unprimed £^'s and v' number of primed £ r 's with n £ {0,1,2} and

v' £ {0,1,2}. Needless to say that the same works for further derivatives of E.

The d'Alembertian of the covariant derivative of *]/, dyad components being

denoted by Vee( V ^ V/_/» ̂ abcd , is determined as follows:

Wee/V7 (\n ,T, \ iTr \EE \CA CB CC f£h cF~cF C~E~CE

V V ^ (Vff Wabcrf ) = V ABCD,FF;EE [<ta 46 Cc Q J?/ ">/' ̂ e W

= (WABCD,FF;EB ?0 ?f, ?c Q ?/ ?/ ' ?e O J ^£^£7 (5.3.69)

( cAcBtC cDfF-pF (E7E \\EE re 7^ ,T,

By working out the derivatives in curly brackets in equation 5.3.69 as one

does when going from equation 5.2.57 to equation 5.2.58 and proceeding as we

do when rewriting equation 5.2.58, we get from equation 5.3.69 the following

expression:

/ B (5.3.10)

T-f7 ^ge ̂ de'\ cA cB cC CDT cF cE7& XT,
~€f';ga' £ e L?a ?6 ?c £d J?/ ̂ e ?e' *ABCD,FF;EB

cE ge Je' \cA cB cC /-Dl tFJ-^ J 5 ' ,T,
Ce;^ £ £ l?a £b L U \£J ?/ ' ?e' ̂ ABCD,FP;EB

~CE .geJt'icAcBcCcDicF-FcEtf.
£>e-,g<! e 6 [?« ?6 <;c W J O ? / ' C ^ABCD,FP;EB

With /*£ {0,1 ,2 ,3 ,4} .

So that by using once again 4.4.76, equation 5.3.70 becomes:

+ (4 - ( ) / M m

V 2 f ) w l / , ; e ^ - I > 1 V 3 (V2^)M;/0, ;ee, (5.3.71)
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which gives:

* } e " ^ (5.3.72)

The d'Alembertian of higher derivatives of $ is treated similarly, so that

the calculations relating to the d'Alembertian of V 2 ^ and V 3 $ are lengthy but

straightforward as in the case of the d'Alembertian of V\&. We can then write:

(5.3.73)

(5.3.74)

The process applied in the calculation of the d'Alembertian of higher deriva-

tives of \& can be applied in the same way to determine the d'Alembertian of

higher derivatives of $ and A so that we can obtain rather easily the following

equalities:

(5.3.75)

, Vff $ ^ ) = {(V^)^,Jf,hH,e,,g!f }taee^' (5.3.76)

4 }6^ee^' (5.3.77)

with (i e {0,1,2} and v' € {0,1,2}

^e^' (5.3.78)

( A) = {(V2A) ; / / ;^ ;ee, ;^ }esee5'e' (5.3.79)

Vff A) = {(V2A);//,;W,;W;e£,.5S, }e9ee^ (5.3.80)

We now address the calculation of the d'Alembertian of E. We want to

determine the dyad components represented by V66' Vee/ 'Eobai , we write:
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Xjee! V7 " " \EE [(A(B (CTA' ] fETE te Te'
V V ^ / ̂ obcd = ^ABCA;EB [fa ffe fc fa' J4e W ffiftf

-{^ABOA;EB fa f& fc fa' fe fe- ) ?£;?£? (5.3.81)

/ tA cB tC^-4' cE7E\;EE tt 7e'
~ U a S6 Sc Sa' Se Se' J ?£?£»

where there are \i G {0,1,2,3} f^'s and v' G {0,1} fr 's in square brackets.

Working out the derivatives in curly brackets in equation 5.3.81 we obtain:

Wee'V7 — _ r / V 7 T r \ ];e<? ,,tA;ee! r (B cC~?A'itEjE1 ~

(o \cA^ uBcCJA')cE7E —
- ( 3 - /0?0 if 6 Cc fa' Jfe fe- -ABCA ;EB

ITA'^ \cAtBcC\tE-cE' ~
-~V f 1' If a S6 fc Jfe f e' ^ABCA ;EB

-(1 - ^)To^ i&*Zcm^ABcA;EB (5.3.82)

~fe If a f6 fc fa' Jfe' ^ABCA;EE

yE-ed \tAcBtC-cA'T.cE'=
~Ke If a f& fc fa' Jfe ̂ ABCA ;EB

Using equation 4.4.76, equation 5.3.82 becomes:

3A ;EE

+ (3 - /i)r0W ̂ it^^'iiffXMrC ;

-v 1 wg'gt t,k, e
y ey [t,a £b £c J ê fe, =,,4BCA;EB (5.3.83)

ktcE^ge rde'\tAcB fC7-4'17^—
e W C Kk e £ [fa ?6 fc fa' Jfe' =-AWA;EB

ckJt'7E>\azJz'\tAcBtC-cA'-\tE'^
et'g'g £ fk> e e [fa ?6 fc fa' Jfe -^ifiC^ ;EB

So that we arrive at the following expression:

^ ) ^ ^ ^ ].gg> — fl y

^ ^ ^ e 1 + (3 — ^ i ) ^ ^ E( / J+1) ly ; ee.
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— V )Fo'O'5'5^^H-l)';ee' — rei5g< .=.^;0e' (5.3.84)

e

The calculation of the d'Alembertian of higher derivatives of E can be seen

as an extension of the one performed above, so that it is unnecessary to go

through all the details since these can be reproduced very easily. We then have

the following identities:

(5.3.85)

(5.3.86)

We now look at how to obtain the d'Alembertian applied twice to derivatives

of \&, $, A and 3. Lets take for example ••*&, we write as usual:

V " Vy/, * ^ = Vuxavp .EB

w f U £ ) i E E (5-3-87

(\tAcB (C tD-\ cFJF
 eJjf tE~EE \\EE (e 7e' ,T, ;FF

Working out the derivatives in round brackets in equation 5.3.87 we get:

0 [£b ̂ c Q J?/ C/' C F ? F ? O VAB3DFP

tAtBtC tD\7F

.EB

£fc £c €d Uf^F^pCe £e' ^ABCD,FF ' .EE (5.3.88)

\FF
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-QP 14 a 4b 4c 4d J4/ 4/ ' 4 F 4 £ 4e* ^ABCD,FP .EB

4a ?6 Cc 4d J4/ 4/ ' ?FCP 4e' ^ ABCD,FF .EB

fj xJ, ;FF
4/ 4/' 4 F 4 F 4e ^ABCD,FP .EB

which can be written as follows:

4C ?d J4/ 4/< 4 F 4 P 4e 4e- ^ABCD,FP .EB

[4b 4C u J4/ 4/' 4 F 4 P 4e 4^ ^ABCD,FF .EB

4/ ;35, ey ^ [4a 4b 4C 4d J4/< 4 F 4 F 4 £ 4e- ^ ^ S C Q F F

P f ' ^ ;FF

cge ^e1 / i / , r f yl^B CC CDl cF~cF jf cE~EE ,T, ;FF
6 e e 6HF [? 4fc 4c 4d J4/ 4/ ' 4 p 4e 4^ ^ABCD,FP .EB

F E ;FP
a 4b C,c 4rf J4/ 4 / ' 4p4e 4e- * ABCD,FF .EB

fFjPcfjf'j0^, ;FF
4/ 4/' C.FtpZe' *ABCD,FP .EB

ge g'e'rcAfBcCtD]eF7F ffjf6 e L?a <b Sc So* J4/</ ' ^F^P

By using 4.4.76, equation 5.3.89 becomes:

V * V * V " V / , tf „

v 3vi / ) ( M_ 1 ) ; / / ,
; / / ^ ^ ^ + (2/x -

+ (4 - 3 ; / / ' **

(5.3.90)

,EB
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We consider the following equalities:

If we substitute 5.3.91 in 5.3.90 we arrive at:

+ (4 -

h! f'ge de'

-V 1 ^ ('V3^1! M h'f ge cfe'

P,EB

f &

(5.3.91)

(5.3.92)
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e e

So that one arrives at:

(5.3.93)

To calculate the d'Alembertian applied twice to higher derivatives of $ we

follow the same method as before, we then obtain:

(5.3.94)

As for the calculation leading to the d'Alembertian applied twice to $, A,EZ

and higher derivatives of these, one proceeds in the same way as in the case of

\P so that we have:

}thfeh's't9et9'e' (5.3.95)

^ ; ^ } ̂  e"7' ̂  C5'6' (5.3.96)

e^'^'e^^'6' (5.3.97)

Je^e^'^'e^e5'6' (5.3.98)

l e ^ e ^ ' e ^ e ^ ' (5.3.99)

We can then write all expressions giving higher derivatives in generalized

formalism. Below we write the dyad component expressions followed by the

generalized version.

Third Covariant Derivative of $22'

+ (4 -

(2v - 4 ) r i W a (V2$)Mi, (5.3.100)
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w th. fi e {0,1,2,3,4} and v' G {0,1,2,3,4}.

+ ( 2 i V ' - ; +

+ (4 - A^')r0'O'G'G(V2$)Al..AAA'1/..AV+1 °A

with iV G {0,1,2,34} and N' G {0,1,2,3,4}.

Third Covariant Derivative of A

with n G {0,1,2} and I / ' { 0 , 1 , 2 } .

+ (2iV - 3)r0A1GG'(V2$)A2..AN+1A'1,...AvGG' OA'W,+1,

+ (4 - iV)rooGG'(V2*)A1.AN+1A'1,Av °A'W/+1, (5.3.101)

(2 - ( )

(5.3.102)

l .G G ,

+ (2N - 2)r0A1GG'(V2A)A2..AN+1A'1,.AV/GG' °A'N,+1,

+(2 - 7V)rOoGG'(V2A)Al..AN+1A1,Av, oA,NI+il (5.3.103)
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+ (2JV' - 2)rA'i,o'G'G(V2A)Al...ANA'2,..Av+1' °AN+1

+ (2 - A^')ro'O'G'G(V2A)Al..ANA'1,...A'N,+] °AN+1

with Ne {0,1,2} and N'e {0,1,2}.

Second Covariant Derivative of S

(4 -

i / ' - 2 ) r 1 W / ' / ^ (5.3.104)

with // G {0,1,2,3,4} and i / € {0,1,2}.

+ (2Ar - 4)r0A1FF'(VS)A2..AN+1A'1,..A'N/FF' OA>N,+1,

+(4 - A0rOOFF'(V3)Al...Ajv+lAv...Av oA,NI+i, (5.3.105)

- iVTA;,A; ,F 'F(V2)A l , .ANA' 3 , . .AV,^. °A W + 1

+ (2 - JV')ro'O'F'F(VS)A1.-ANA'1,.-AV+i

with iV G {0,1,2,3,4} and ^V'e {0,1,2}.

d 'Alembert ian of V\&4

. ^ W6' (5.3.106)

with/x G {0,1,2,3,4}.

EE'
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S 'E ' (5.3.107)

with Ne {0,1,2,4,5} and iV'{0,l}.

d'Alembertian of

- ^ ; ^ }e*6^' (5.3.108)

wi th / /€ {0,1,2} and i/ '€ {0,1,2}.

rf,xi,(V
3$)Al..AwA'l(..AvEE'

;,..AVEE-GG- ) eGEe
G E e G ' E ' (5.3.109)

with N G {0,1,2, 3} and N1 € {0,1,2,3}.

d'Alembertian of VA

A) = {(V3A);//,,,,g, K e ^ ' (5.3.110)

, t l, (V
3A) A, _A»A',.-AV

= (V3A)A l . .A J V + 1A' i , . .A' i v / + i ,

withiV€ {0,1} and N' e {0,1}.

d'Alembertian of S

)M,;e,;5, }e-e^' (5.3.112)

with/i€ {0,1,2,3} and i/'e {0,1}.
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w i t h i V G { 0 , 1 , 2 , 3 } a n d N'€ {0,1}.

Fourth Covariant Derivative of

e G E e G ' E ' (5.3.113)

(5 -

(5.3.114)

with/x € {0,1 ,2 ,3 ,4 ,5} and i / '£ {0 ,1 ,2 ,3 ,4 ,5} .

+ (2A^ - 5)r0A1HH'(V3$)A2..AJV+1A'1,..AvHH'

+ (5 - iV)ro0HH'(V3$)A1..Aw+1A'1,..AV °A'W/+

+ (2iV' - 5)rA ' i /0'H'H(V3$)A1..AwA'2,..AV+1, °A

+ (5 - JV')ro'0'H'H(V3$)A1 .A,AV . .Av,+1 oAri+

with Â  G {0,1,2, 3,4, 5} and v1 G {0 ,1 ,2 ,3 ,4 ,5} .

Fourth Covariant Derivative of A

(5.3.115)

+ (2/x - (3 -
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-!) + (2u - 3)Tvo>h>h ( V 3 A ) ^ (5.3.116)

with fj, € {0,1,2,3} and u' G {0,1,2,3}.

+ (2iV' - i/

+ (3 - jV/)r0'0'H'H(V3A)A1..A;vAV..Av+

with Â  G {0,1,2,3} and N' G {0,1,2,3}.

Third Covariant Derivative of 2

with n G {0,1,2,3,4,5} and i/G {0,1,2,3}.

, ] ;HH'

+ (3 - iV)rOoHH'(V3A)Al._Aw+1A'1,..A'JV# OAV+1, (5.3.117)

(5 - ( )

( ) - 3 ) r 1 W 9 (V 2 H)^ (5.3.118)

+ (3 — V>)To'(V r ) ^

5 Z N 1 v 1;GG'

22)OAN+1OA>N,+1, - iVrAlA2GG'(V22)A3...Ajv+1A'i,..A'N, OAv+1-

+ (2iV - 5)r0A1G&(V23)A2..Aw+,AV...AvGG' °A'N,+1,

+ (5 - iV)rooGG'(V2S)Al . .AN+lAv . .AV °A'NI+1, (5-3.119)



Chapter 5 147

+ {2N' - 3)rA'i/o'G'G(V2S)Al..ANA'2,..A'JV,+1,

+ (3 - iV/)ro'O'G'G(V23)A1..ANA'1,..AV-+1 OA

with N G {0,1,2,3,4,5} and N' G {0,1,2,3}.

d'Alembertian of

Ve (VW Vff *M) = (V 4 *)« / f ; W ; r f a t f e ^ e ^ (5.3.120)

{0,1,2,3,4}.

G E e G ' E ' (5.3.121)

with TV e {0,1,2,3,4,5,6} and iV' G {0,1,2}.

d 'Alembert ian of V2$22'

; / /, ;^ ;e^ ;5s( e^e^6' (5.3.122)

with (i G {0,1,2} and ^'{0,1,2}.

)eG EeG 'E ' (5.3.123)

with N G {0,1,2,3,4} and TV' G {0,1,2,3,4}.
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d'Alembertian of V2A

);// ' ;W/;e^ K 6^' (5.3.124)

TTTT'

,+1, (V4 A) A l ._ANAV..AVEE'

' E ' (5.3.125)

= (V4A)Al .AN+1A' i / .A' Jv ;+ l ,

with N G {0,1,2} and N' G {0,1,2}.

d'Alembertian of VS

V * V ^ ( V / f - ^ = ( V 3 ~ V ; / / < ; e e W <*<?* (5.3.126)

with fi G {0,1,2,3} and i/' € {0,1}.

_3__. EE'
0A.V+! % + ] , (V a ) A l ...A,,AV. A'N,EE'

= (OA J V + 1 OA W I , (V 3 A) A I . .A J V A' I , . .A V ,EE 'GG' )eG EeG 'E ' (5.3.127)

= (V 3 2) A I . .A N + 1 A' I , . .A ' J V / + I ,

with JVe {0,1,2,3,4} and N'e {0,1,2}.

d'Alembertian of

{ ( M ) « / f ; f c t f , e , ^ } e « e ^ ' e ^ e ^ ' (5.3.128)

with ji G {0,1,2,3,4}.

EE'
OA'N,+1,(V W) A l . .A N A 1 , .A ' N ,EE '

(5.3.129)
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with N G {0,1,2,3,4,5} and N' G {0,1}.

d 'Alembertian of

^ ;W^;Sfl, J e ^ e ^ V ^ ^ (5.3.130)

G {0,1,2} and i/' G {0,1,2}.

^ 4 * ^ E E '
,+1,(V * ) A l ..A^AV-A'^EE'

with iVe {0,1,2,3} and N' € {0,1,2,3}.

d'Alembertian of DA

E E '

with Ar G {0,1} and JV' G {0,1}.

Fifth Covariant Derivative of <&22'

with /i G {0,1,2,3,4,5,6} and ;/ G {0,1,2,3,4,5,6}.

(5.3.131)

A = {(V4A) ;^ ;hW;rf^ } £ W £ W V e ^ (5.3.132)

(5.3.133)

+ (6 - (

^ ) + ( 2 i / - 6 ) r l W i ( V 4 $ ) ^ / (5.3.134)
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+(2N - 6)T0AlUl ( V 4 $ ) A 2 . . A W + 1 A V . . A N , I I ' ° A V + 1 .

+ (6 - iV)rOoll'(V4$)A1..Aw+1A1,AV OA'W,+1, (5.3.135)

' - 6)rA'i,0'I'l(V4$)A1.AJVA2,.AV+1,

+ (6 - iV')r0W

with Â  € {0 ,1 ,2 ,3 ,4 ,5 ,6} and N' G {0 ,1 ,2 ,3 ,4 ,5 ,6} .

Fifth Covariant Derivative of A

(4 -

(5.3.136)

w/ith /x G {0,1,2,3,4} and i/' G {0,1 ,2 ,3 ,4}.

+{2N - 4)r0A1ii' ( V 4 A ) A 2 . . A W + 1 A 1 , . . A ' ^ H ' °A>N,+1,

+(4 - ^)r O oII ' (V 4 A) A l . .A N + 1 A' 1 , .Av OA>N,+1, (5.3.137)

+ (2N' - i , +

+ (4 - iV')roWI'l(V4A)A1..ANA1,..A'N,+1 OAN

with Â  e {0,1,2,3,4} and JV' € {0,1 ,2 ,3 ,4}.
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Fourth Covariant Derivative of S

V3E)^ + (6 -

(V3 S ) ^ ) + (2i/ - 6 ) r l w ^ (V3H)^ (5.3.138)

with ^ e {0 ,1 ,2 ,3 ,4 ,5 ,6} and v' € {0 ,1 ,2 ,3 ,4} .

+(4 - A0TWH'H(V 3 S) A I . .A J V A V . .AV + 1 °AN+1

with JV G {0,1,2,3,4,5,6} and N' € {0,1,2,3,4}.

d'Alembertian of V 3* 4

+ (2iV - 6)roAlHH'(V3S)A2..AK+1A'1,..AvHH' ^ ' ^ + 1 *

+ (6 - A0rOoHH'(V3S)Al..A,,+1Av...Av °A>N,+1, (5.3.139)

A^H'H(V33)A1...ANA'3,..A'w/+1' °AN+1

/;W;rfag» }esees'e' (5.3.140)

with // G {0,1,2,3,4}.

( V 5 — E E '

+ ^ + I ; V ) e G E e G ' E ' (5.3.141)

= (V5*)Al..Ajv+1A'i,..A'JV,+i,

with ft G {0 ,1 ,2 ,3 ,4 ,5 ,6 ,7} and i /G {0,1,2,3}.
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d'Alembertian of

.^rt }<*e" (5.3.142)

with ;uG {0,1,2,} and 1/G {0,1,2}.

_ «, EE'
OAN+1OA'N,+1I(

W
 * ) A 1 . . A N A ' 1 , . . A V E E '

)eGEeG'E' (5.3.143)

with JVG {0,1,2,3 ,4 ,5} and iV'G {0,1,2, 3 ,4,5}.

d'Alembertian of V3A

E E '

with N e {0,1,2,3} and N' G {0,1,2,3}.

d'Alembertian of V23

4 E E '

B ) A

(5.3.144)

eG EeG 'E ' (5.3.145)

) ^ ; / / ^ , , ^ ^ e " (5.3.146)

with /x G {0,1,2,3} and z/{0,l}.
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with TV G {0,1,2,3,4, 5} and N' G {0,1,2, 3}.

d'Alembertian of

( V / f Vfc*^ = {(V5^)wW;//,^.ee,.^ } e v ^ e V ^ (5.3.148)

with // G {0,1,2,3,4}.

7T (X7$iD\ E E '
O A N + 1 O A V / + I ; ( V *) A l . .A K A' 1 ( .A' K ,EE'

with iV G {0,1,2,3,4,5,6} and N' G {0,1,2}.

d 'Alembert ian of DV$2 2 '

l .

e G E e G ' E

with JVG {0,1,2,3,4} and N' G {0,1,2, 3,4}.

d 'Alembert ian of DVA

EE'

^ Wi«,;flflr }e^c»'e' (5.3.150)

with /i G {0,1,2} and J / ' { 0 , 1 , 2 } .

, ( v 5 -^ EE'

eG EeG 'E ' (5.3.151)

A = {(V^) ;^ ; / / ' ; ^ -^ ;^ }eflees'e' (5.3.152)

)eG EeG 'E ' (5.3.153)
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with N € {0,1,2} and W G { 0 , 1 , 2 } .

d'Alembert ian of (US

(5.3.154)

E E '

)eG E6G 'E ' (5.3.155)

with N € {0,1,2,3,4} and # ' € { 0 , 1 , 2 } .

Thus we are able to write down all terms relating to the third, fourth and

fifth derivative:

Third Derivative

V3\J/ = !>' i£4 and all possible contractions with omicrons

V3<& = V $22' and all possible contractions with omicrons

V3A = P7 A and all possible contractions with omicrons

V 2 2 = P' S and all possible contractions with omicrons

• V $ = V 3 ^ 4 -o-o and all possible contractions with omicrons

DV$ = V3$22' " o • o and all possible contractions with omicrons

• VA = V3A • o • o and all possible contractions with omicrons

• 2 = V 2 2 • o • o and all possible contractions with omicrons

Fourth Derivative

V4\& = P' ^4 and all possible contractions with omicrons
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V4<& = P' $22' and all possible contractions with omicrons

V4A = V* A and all possible contractions with omicrons

V3H = V S and all possible contractions with omicrons

• V 2 $ = V 4 * 4 • o • o and all possible contractions with omicrons

• V 2 $ = V43?22' • o • o and all possible contractions with omicrons

• V 2 $ = V4\P4 • o • o and all possible contractions with omicrons

DV 2$ = V4$22; -o-o and all possible contractions with omicrons

• V2A = V4A • o • o and all possible contractions with omicrons

• V S = V3H • o -o and all possible contractions with omicrons

• • f = V4l$r4 • o • o -o -o and all possible contractions with omicrons

• D$ = V4$22' • o • o -o • o and all possible contractions with omicrons

• • A = V4A • o • o • o • o and all possible contractions with omicrons

Fifth Derivative

V5\P = P' \P4 and all possible contractions with omicrons

V 5 $ = V' $22' and all possible contractions with omicrons

V5A = V A and all possible contractions with omicrons

V 4 2 = V S and all possible contractions with omicrons

• V 3 ^ = Vs\£ • o • o and all possible contractions with omicrons

• V 3 $ = V5<& • o • o and all possible contractions with omicrons

• V3A = V5A • o • o and all possible contractions with omicrons

• V 2 3 = V 4S • o • o and all possible contractions with omicrons

• • V f = V5\P • o • o • o • o and all possible contractions with omicrons

• DV$ = V5$22' • o • o -o • o and all possible contractions with omicrons

• • V A = V5A • o • o • o • o and all possible contractions with omicrons

• DS = V 4 2 • o • o • o • o and all possible contractions with omicrons
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5.4 Lowering the Bound

We now proceed to analyse the upper bound on the order of covariant differenti-

ation of the Riemann spinor required in the Karlhede algorithm for non-vacuum

type N solutions.

As in the vacuum case we apply the Karlhede algorithm to the invariants

obtained in the previous sections since these are simply linear combinations of

the symmetric components of the Weyl, Ricci spinor and Ricci scalar and its

successive covariant derivatives.

We have seen that the situation when one can have a Karlhede bound of

seven arises when the dimension of Ho is two and when the Weyl and Ricci

spinor and Ricci scalar are all constants. At first order of differentiation we see

that all terms obtained are invariant under null rotations so that the dimension

of Hi remains two, however we must consider the possibility of there being at

least one new functionally independent term amongst the terms obtained at this

order so that the procedure continues to second order. Furthermore, we have

seen that at each step of differentiation all terms calculated are invariant under

the group of null rotations so that the dimension of the invariance group Hq

remains two, so that if we consider the worst possible situation, ie, that only one

functionally independent term is obtained at each step then by fifth order one

has obtained all four independent terms which is the maximum number one can

obtain in a four dimensional space. As in the vacuum case this gives us only

information concerning the coordinates so that we can conclude that as of the

fourth derivative one does not get any more functional information with respect

to the coordinates.

We now need to check that as of the fifth order the invariance group with

respect to the components does not change otherwise we might need to calculate

more derivatives for the same reason explained in the previous chapter. We recall

that at zeroth order of covariant differentiation we have the terms $22',^4 and

A which we are considering to be constants. At first order of differentiation

we obtain as our potentially new functional information p, <r, e, a, /3, r, 7 which

transforms as follows:

(5.4.156)

(5.4.157)

(5.4.158)

(5.4.159)

(5.4.160)

p -
a —

t —

Q —

8 _

-»• P
—> a

—»• e

—> a -

^ /?H

V ap-\

h acr -

- ae

(- at
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r —> T + ap + aa (5.4.161)

7 —> 7 + aa(e +/o) + aa + a(/3 + T) + aV (5.4.162)

We consider three distinct cases:

In this case we are left with the transformation 7 —> 7, in which case it

follows that the two dimensional invariance group of null rotations remains at

first order.

II: /o = cr = e = a = 0

Here we are left with the following transformations: 7 —> 7, j3 —> /?,

r —> r. So that one cannot fix the frame any further, thus the group of null

rotations remains as the invariance group at first order.

I l l : p = a = e =

One is left with the transformations 7 —>• 7 + (a + a)a, f3 • /?, r —»• r

and Q — • o. We can therefore use the first of such transformations to fix the

frame further so that the invariance group is at first order one dimensional.

In all other cases it is easily seen that one can fix the frame completely so

that the invariance group becomes zero dimensional.

We now analyse what ocurrs at second order of differentiation, for this effect

we use equations 4.3.62, 5.2.48, 5.2.51, 5.2.54, 5.2.62, 5.2.65, 5.2.67. We take

each of the separate cases considered above:

One has as our new potential functional information D7, £7, £'7, D'7 which

transform as:

£>'7 —> (D' + aS' + a8 + aaD)-y (5.4.163)

67 —> (8 + aD)j (5.4.164)

8' — • (8' + aD)-/ (5.4.165)

—> D~j (5.4.166)

From the NP Ricci equations (4.2f), (4.2r) and (4.2o) one has 67 = 0, 6'-j = 0

and Dj = — A so that we consider the following cases:
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la: A = 0

So that we have 67 = 67 = S'j = 0 which leaves us with the transformation

D~f —>• Dj. We can then show using the NP commutators and following the

same argument as that used by Collins [6] and which was applied in the previous

chapter to the vacuum case that the two dimensional invariance group remains

at all orders of differentiation.

Ib: A / 0

In this case we can use the transformation D'j —> (D' + aaD)-y to fix the

frame completely. So that we have a zero dimensional invariance group at second

order.

I I : p = a = e = a = 0

We get the following potentially new functional information: D7, £7, 5'j, D'j,

D/3, 8f3} S'f3, D'j3, DT, 6T, 8'T, D'T, TT, A, \i and v. Using a similar argument to that

of Collins [6] and that used in the previous chapter we are able to fix the frame

completely giving at second order a zero dimensional invariance group.

I l l : p = a = e = 0; \a\ = \P + T\

We have as our potentially new functional information: D-y, £7, #'7, -D'7, D/3,

8f3,6'f3,D'f3,DT,ST,S'T,D'T, Da,D'a,5a,8'a,TT,\, (i and v. Applying the same

argument as Collins [6] and explained in chapter 4 we are able to fix the frame

up to a zero dimension invariance group.

We have thus proved that as of the second order of covariant differentiation

the dimension of the invariance group remains unchanged. Hence in this case

we only need to calculate five covariant derivatives to classify the non vacuum

solution completely. We have then proved that in the case where condition (1)

and (2) hold and the potential bound is seven the actual bound is at worst five.

If we relax condition (1) and maintain all others and consider that ^Al^22'

and A might not all be constants then one has a potential bound of six in the

worst possible case. It is quite easily seen that the analysis is just the same as

that done for the case of $4, $22' a n d A being constants. However in this case

one must consider the possibility of having potentially new coordinate functional

information at zeroth order so that the bound is then four.

If we relax condition (2) and take the dimension of the invariance group at

zeroth order to be one then we have the following conditions: $Oo' = $01' =

$02' = $12' = $10' = $20' = 0 and $12< ^ 0,$2i ' ^ 0,$2 2 ' ^ 0,$12 ' = $21'. In

this particular situation we can have a potential bound of six if we consider that
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not all non zero terms at zeroth order are constants. We must then go through

the process of calculating the general expressions giving the successive covariant

derivatives of $i2 ' and $2i ' along with the d'Alembertian of such terms. This

work shall not be included here.

It is easily seen that in all other cases the potential bound would not be

greater than five. Hence we conclude that the Karlhede bound for type N non

vacuum solutions is at most six.

For some time no spacetime was known to require more than the third deriva-

tive which led many people to believe that the true upper bound was in fact three.

Koutras [21], however, has come up with a solution where one needs to calculate

the fourth derivative to complete its classification, the solution being the confor-

mally flat pure radiation field found by Wils (1989). Whether the upper bound

of five is the true upper bound remains to be seen since, up till now, no solution

requiring five derivatives has been found.
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Chapter 6

Curvature and Metric In

General Relativity

6.1 Introduction

In this chapter we discuss the problem of determining the metric tensor from

the curvature tensor, the ways in which one can approach this problem (mainly

that developed by Hall [22],[19], [13]) and the possibility of using this method to

lower the bounds on covariant differentiation in the Karlhede algorithm.

In order to solve the problem of determining the components of the metric

tensor from the components of the curvature tensor one assumes that the curva-

ture tensor is given over some coordinate domain of the manifold M. Recently

Edgarfll] derived a simple sufficient condition for a given connection to be de-

rived from a metric and applied an algebraic procedure for calculating the metric

from the curvature.

A method of determination of the metric tensor from the curvature tensor was

also proposed by Ihrig [16], [17] and was actively developed by Halford, Mclntosh

[12] and Hall [22], [19], [13]. In contrast to the Cartan-Karlhede [5], [18] method

of classifying the geometry of a space-time which uses the tetrad components of

the curvature tensor and its successive covariant derivatives, the methods men-

tioned work with the coordinate components of the curvature and one assumes

that either the connection or a finite number of the covariant derivatives of the

curvature are known.
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6.2 Determining the Metric from the Curva-

ture

Here we describe Hall's method of determining the metric from the curvature and

we closely follow [22], [19], [13]. We adopt Greek indices to denote coordinate

components and latin indices to denote tetrad components. Also we use the

notation < > to denote linear span.

Let U be some coordinate domain of the space-time M, let p £ U and let

RapyS denote the coordinate components in U of the curvature tensor. We sup-

pose Rap^s is non zero at p. To find which Lorentz metrics other than the given

metric g can be compatible with this curvature tensor one first notes the alge-

braic necessity that any other possible metric g' must preserve the symmetries

of the Riemann tensor at p, mainly:

= 0 (6.2.1)

Hence, the first step is the solution of the algebraic problem expressed in

6.2.1, within the space time (M,g), using the original metric g to raise and lower

indices, etc. The curvature components RapyS = SW-^W may be used to define

a linear map 1Z from the six dimensional vector space of all contravariant bivec-

tors at p denoted by J7P(M) to the six dimensional vector space of all covariant

bivectors at p denoted by S7*(M) in the usual way, i.e,

(6.2.2)

with n{F^) = Ra^s F* =Fap.

Hence, by equation 6.2.1 we can write:

g l a ^ g l 0 ^ = 0

which in turn gives:

<4^% + < 4 F \ = 0 (6.2.3)
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So that equation 6.2.1 is equivalent to:

g'u&F" ft) = 0 (6-2.4)

for all bivectors Fap in the range space of 1Z. Hence, the generality of the solution

of 6.2.4 for g' depends on the rank of the curvature defined as the dimension of

the range space of 7£, or equivalently, as the rank of a 6 x 6 matrix arising when

the curvature components are written in block index form.

Review of Bivectors

We now give a succinct review on some definitions and properties relating to

bivectors.

The dual of a skew symmetric second order tensor, i.e, bivector F, denoted

by F is defined by:

£00= VoW F* (6-2-5)

/ = ? / a W ^ (6.2.6)

where T]apys is the Levi-Civita tensor.

A non-zero bivector F is said to be simple or decomposable if and only if there

exists a non zero vector v such that Fapv^ = 0. If F is a simple bivector, then it

is possible to find vectors r and s such that F = r A s. If we also have an inner

product we may choose r and s such that r • s = 0. The two dimensional space

spanned by r and s is called the blade of F.

A non zero bivector is called null if and only if there exists a non zero vector

v such that Fapv^ =Fap v@ = 0 otherwise F is non — null. Every null bivector

is therefore simple. Notice also that if F is simple then F is also simple with

F having a blade orthogonal to that of F. Furthermore the dual of every null

bivector is also null.

Any non-null bivector F can be written as:

F = Ai/ A n + X2z A y

with Xi = A2 and Ai, A2 £ R and where (n, /, y, z) is a null tetrad.

If X\ ^ 0 and A2 ̂  0 then F is a non — simple bivector. If Xi = 0 or A2 = 0

then F is a simple non-null bivector. The rank of a non-null bivector F is an

even number (see for example [26]).

In order to determine all metrics g'a/3 which satisfy equation 6.2.1 we need to

establish some results which can be found in [22], [19], [13].
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Theorem 6.2.1 If at p £ M, F is a simple bivector whose blade is spanned

by the vectors r and s and if X is a symmetric second order tensor, then the

following two conditions are equivalent:

(i) Xl{aF^p) =0

(ii) the vectors r and s are eigenvectors of X with equal eigenvalues

Proof

Since F is a simple bivector whose blade is spanned by the vectors r and s

then we can write:

F = r A s

or in terms of coordinate components we have:

X is a symmetric tensor so that we can write:

which can then be written as:

s1ra) = 0

or equivalently:

r^XyaSp + r~<Xypsa = s~*Xiar3 + s1X1pra (6.2.7)

If we define:

r 7 X 7 a = ua (6.2.8)

s^X^ = ta (6.2.9)
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then equation 6.2.7 becomes:

uasp + upsa = tarp + tpra (6.2.10)

By contracting both sides of equation 6.2.10 with g^a we arrive at:

uas
a = tar

a (6.2.11)

It is always possible to choose a basis whereby i7^ = rasp — sarp with

rasa = 0, so let us suppose that (r,s) constitute such a basis. We then contract

equation 6.2.10 with sa and use equation 6.2.11 and obtain:

f3up = tQrpsa -tar
asp (6.2.12)

where f3 = sas
a.

We choose s to be a vector in the blade which is not null so that 8 ^ 0.

Notice that we cannot have the situation where both s and r are both null since

that would imply r <x s since rasa = 0 and therefore F — 0.

If we now multiply equation 6.2.10 by ,6 and use 6.2.12 we have:

uasp = tpra (6.2.13)

If we now multiply equation 6.2.13 by ?̂ 7 we get:

r^Ua — u-tra = 0 (6.2.14)

Hence, u oc r in any basis. We can then write u = ar for some a g R .

On the other hand if we multiply 6.2.13 by s1 we arrive at:

tas~( — t^sa = 0 (6.2.15)

By equation 6.2.15 we conclude that t = Xs for some A e R . Furthermore

by equation 6.2.13 we have:

araSf3 = \spra (6.2.16)
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So that a = X.

By theorem 6.2.1 it turns out that if a simple bivector F lies in the range

of 71, so that F satisfies 6.2.4, then all members of TPM lying in the 2-space

denned by the blade of F at p are eigenvectors of g' with respect to g at p with

the same eigenvalue, i.e:

g'apk
0 = Xka = ag^k13 Wk e<r,s>, A, a G R (6.2.17)

Theorem 6.2.2 If at p € M, F is a non-simple bivector and X a symmetric

second order tensor then with the notation established above the following two

conditions are equivalent:

(i) A'7 ( a JF> = 0

(ii) The null vectors I and n are eigenvectors of X with equal eigenvalues and

the spacelike vectors y and z are eigenvectors of X with equal eigenvalues

Proof

Any non-simple bivector F can be written :

FQp = al[an0] + f3z[ayp] (6.2.18)

with a, f3 G R and a ^ 0, (3 ^ 0.

The fact that F can be written as in 6.2.18 gives the following identities:

rFrf = alp (6.2.19)

naFaP = -anp (6.2.20)

yaFaP = (3z0 (6.2.21)

zaFaP = -/3yp (6.2.22)

We first prove tha t (i) =̂> (ii).

If we contrac t (i) with l@ we have:
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XyJ
pF~<0 + XlPl'?F\ = 0 (6.2.23)

By 6.2.19 we have that equation 6.2.23 gives:

(6.2.24)

Similarly, by contracting (i) with n13, yl3 and z13 in turn and using equations

6.2.20, 6.2.21 and 6.2.22 gives:

(6.2.25)

(6.2.26)

(6.2.27)

By 6.2.24 we can write:

p-yF^a = opa with p1 = X^pf

Hence, since / satisfies 6.2.19 and is unique then:

p7 = 7/7 for some 7 6 R

Therefore:

A V " = 7Z'Y (6.2.28)

Similarly we have:

A^n ' 3 = <5n7 for some 6 6 R (6.2.29)

Since A is a symmetric second order tensor we can write:
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XaP = Xpa (6.2.30)

By contracting both sides of 6.2.30 with la and np we have:

[let ~v \ (3 /•-*'/ "V / 3 \ /"c o Q1 "\

I £ vV & /3 ) 77. ^ t ( . A /JQ, 7 7 . ) I D . Z . O i l

Which in turn, by 6.2.28 and 6.2.29, gives:

fl0n
p = 8lana (6.2.32)

Hence, we have that the eigenvalues 7, 8 are equal, i.e:

7 = 8 (6.2.33)

We now make use of the complex null tetrad (/, n, ra, m) where:

(yQ + iza) (6.2.34)

V2
rna = ~(ya - iza) (6.2.35)

and

m°ma = mama = lala = nana = 0 (6.2.36)

rnarnQ — —lana = 1 (6.2.37)

The bivector F written in this base takes the form:

Fafs — al[arifl + i(3m{am$ with a,/? G R (6.2.38)

Equation 6.2.38 gives the following identities:

(6.2.39)

maFQl3 = i 13 nip (6.2.40)



Chapter 6 168

with /3 e R.

By contracting (i) with rrfi and rnP in turn we obtain:

rrC (6.2.41)

uC (6.2.42)

Hence, equation 6.2.39 gives:

p-yF2 = —i/3pa with p7 = X^mP

And since m is the only complex null vector satisfying 6.2.39 we have:

So that finally:

X^pm13 = Cim-y with t\ G R (6.2.43)

Similarly, equations 6.2.40 and 6.2.42 give:

X-yprn13 = e2m7 with e2 € R (6.2.44)

By the fact that X is a symmetric tensor one has:

tx = e2 = e and e G R (6.2.45)

So that:

A^(?n / 3 + mP) = e(ma + ma) (6.2.46)

which, by definitions 6.2.34 and 6.2.35, in turn gives:

" (6.2.47)
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Similarly:

Xtf {mp - m0) = e(m7 - m7) (6.2.48)

gives:

p = tZl (6.2.49)

So that we have proved (i)=> (ii).

We now proceed to prove (ii)=£> (i)

Equations 6.2.28, 6.2.29, 6.2.33, 6.2.47 and 6.2.49 imply that:

a(Xia(Pn0 - nVp) + X10(Pna - nVa)) = 0 (6.2.50)

/3(Xia(y^zp - z~<y0) + X^(y~<za - z>ya)) = 0 (6.2.51)

If we add equations 6.2.50 and 6.2.51 we obtain the desired result, i.e:

T h e met r ic tensor g at p is related to the t e t r ad vectors (l,n,y,z) by the

completeness relation:

gap = -2l{an0) + yay(i + zQzp (6.2.52)

If the conditions and statements in theorem 6.1.2 hold then it follows that:

g'a/3 = -SAi/^n^) + \2{yayp + zaz0) with \ u A2 e R (6.2.53)

Thus, the only eigenvectors admitted by g' lie either in the 2-space spanned

by / and n or that spanned by y and z, unless Ax = A2 = A in which case

the completeness relation shows that g'ap = \ga0. It follows that if this trivial

solution is not to be the only solution of the equation g''piaF
u'^ = 0, the only

bivectors which may satisfy this equation must be linear combinations of l[an^

and y[aZfl. This is a consequence of the previous two theorems since any other

bivectors satisfying this equation would give rise to eigenvectors of g' outside the

blades of the 2-forms l[an^ and y[a~0\-
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Theorem 6.2.3 The following cases occur:

(i) If the range of 1Z is spanned by a single (necessarily simple) bivector F

(1Z is of rank one), then there exists </>, fi,v, A £ R such that:

9'ai3 = 4>9c,p + fiuaup + 2uu(aVjS) + Xvavp (6.2.54)

where u and v span the 2-space orthogonal to the 2-space represented by F.

(ii) If the range of TZ has dimension two or three (rank two or three) and if

the members of this range have a common eigenvector w with zero eigenvalue (so

that the range of TZ consists only of simple bivectors and determines w to within

a multiplicative factor) then there exists </>, A £ R such that:

9 ' ap = 4>gc<p + XiVcW/3 (6.2.55)

(Hi) if the range oflZ is spanned by the simple bivectors l[anp] andy[az^ (rank

two), then there exists <f>, A £ R such that:

9'a/3 = 4>9af3 + 2A/(anja) =(</> + A)#o/3 - \(yaUt3 + zazp) (6.2.56)

(iv) In all other cases there exists <f> £ R such that:

9'op = $9*f3 (6.2.57)

Proof

We start by proving (i). Lets start by supposing that F^ is spacelike so that

we can write Fa/3 = yazp — zayp. Then, by theorem 6.2.1 we have Xapz0 = aza

and XapyP = aya. Considering the null tetrad (l,n,y,z) and since Xag is a

symmetric tensor, then taking the symmetric products of the tetrad members

gives:

XaP = a^Jp + a2nanp + a3(lan.p + njp) + a(yayp + zazp) (6.2.58)

with 0:1,02,0:3,0 £ R-

Using the completeness relation 6.2.52 equation 6.2.58 becomes:
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Xap = agaj3 + a-tljp + a2nan.p + (a3 + a)(/a"/3 + njp) (6.2.59)

with (f> = a,v = a + a3 , y, = a l 5 A = a2 . Obviously we have u — I and v = n.

We now take i ^ to be timelike so that we can write Fap = lanp — nalp.

Fap = lQn/3 — nalp. By theorem 6.2.1 we then have Xapl^ = ala and Xapn13 =

ana. Considering the null tetrad (l,n,y,z) and since Xap is a symmetric tensor

we can write:

Xap = -a(lanp + na;,j) + a.\{yazp + zayp) + a2yayp + azzazp (6.2.60)

with Qi,a2,Q'3,oc G R.

Substituting the completeness relation 6.2.52 into equation 6.2.60 gives:

Xap = agap + ax{yazp + zayp) + (a2 - a)yayp + a3zazp (6.2.61)

with <j) = a, v = Qi, fi = Q'2 — a, A = a 3 — a, u = y, v = z.

Finally we consider the null case, i.e, Fap = lQyp — yalp. Then by theorem

6.2.1 we have Xapl@ — f3la and Xapy^ = j3ya. Considering the null tetrad

(/, ??., y, z) and the symmetry of Xap we write:

Xap = -a(lanp + njp) + ayay0 + ar{lazp + zjp) + a2zazp

+a3lQlp (6.2.62)

with ai,a2,as,a (E R.

Substituting the completeness relation 6.2.52 into equation 6.2.62 gives:

Xap = agQp + Qi(lazp + zjp) + (a2 - a)zQzp + azljp (6.2.63)

with (f> = a, v = Qi, fi = Q-3, A = a2 — a, u = /, v = s.

We now proceed to prove (ii). Let w = I and consider the case of dimension

two. Let B denote the subspace of bivector space spanned by the curvature

2-forms. There are two cases to consider:
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(1) B =< l[ayp],y[az^ >

By theorem 6.2.1 we have:

XQpla = el/3, XQ@ya = q/^, Xapza

which then gives:

Xap = -al{anp) + ayayp + azazp + a^Jp (6.2.64)

By the relation 6.2.52, equation 6.2.64 then becomes:

Xap = agaP + OLXlalfi (6.2.65)

with <j> — a, Ai = A, w = /.

(2) B =< l[aZ0\,y[aZ0i >

This case works out the same as in case (1) so that the result obtained is

given by 6.2.65.

We now consider the case w = / and dimension three, which leaves us with

the case:

B =< l[oyp]J[aZ0\,y[aZ0l >

This case also produces, as before, the result 6.2.65.

Notice that for w = n the process is similar to the case w = / with:

XaP = agaP + axUaUf} (6.2.66)

We now choose w = y and consider the case of dimension two. Again there

are three cases to consider.

(1) B =< l[anfl,l[aZfl >

By theorem 6.1.1 we have:
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Xapla = alp, Xapn° = anp, Xapza = azp

which gives:

Xap = -al(anp) + azazp

So that by substituting the completeness relation 6.2.52 in the above equation

one arrives at the following result:

Xap = agap + (a1 - a)yayp (6.2.67)

with w = y, cf> = a, X = a-i — a.

The following cases also give result 6.2.67.

(2)B = < l[anp],n[azp] >

(3)B =< l[azpl,n[azp] >

For the case iv = y and dimension three we must consider:

B =< l[azp],ri[azp],l[anp] >

This case also gives the result 6.2.52.

Note that for w = z the process is similar to the case w — y with:

Xap = agap + (a! - a)zaz0 (6.2.68)

We now proceed to prove (iii), so that one considers:

B = < l[anp],y[azp] >

Theorem 6.1.1 gives the identities:

Xapla = llp,Xopna = -ynp,Xapya = fJ-yp,Xapza = \xzp

This falls into the situation of theorem 6.2.1 so that one can write:
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Xa/3 = -yl(aTip) + fi(yay/3 + zazp)

The relation 6.2.52 then gives:

Xap = ngap + (2fi + i)l(anp) (6.2.69)

with (j> = ji and 2A = 2/i + 7

Finally we prove case (iv). Notice that all two dimensional cases have been

already considered. We have only to study the remaining cases where the dimen-

sion is greater or equal to three. So that we write:

B =< l[an01,y[azfi,l[ay0\ >

Theorem 6.2.1 gives the following identities:

Xa0l
a = 7//3, XaPna = -ynp, Xa0y

a = 7 ^ , XaPza = <yz0

So that one then writes:

Using the completeness relation we get:

Xa0 = jgaP (6.2.70)

It is quite easy to see that all other remaining cases are similar.

We now establish two other important results that can be found in [13].

Theorem 6.2.4 The folloiuing equation:

Rapys ks = 0 (6.2.71)

has two independent solutions for k if the conditions of theorem, 6.2.3(i) hold

(for example k = u and k = v), one independent solution (for example k = w)

if the conditions of theorem 6.2.3(ii) hold and no non-trivial solutions otherwise.
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Proof

We start by showing that

RafrsF'<s = Fa
p MF16 e npM

is equivalent to

Bf^sX^X8 = Fafs VX\XS € TPM

This can be shown in a few simple steps:

The last step being possible because of the antisymmetry R"^ = —Rap6y

By theorem 6.2.3 (i) the vectors u and v span the 2-space orthogonal to the

blade of F, F being necessarily^ simple so that one can write Fap = rasp — sarp

and uQra = uas
a = var

a = vas
a = 0. Furthermore, Fapua = Fapva = 0

So that one then has:

uaR
a

fhSXlXs
2 = Fa,3Ua = 0 (6.2.72)

which in turn implies:

UaR"^ = 0 (6.2.73)

this because 6.2.72 holds for any X\,X2 € TPM.

Similarly we have:

vaR
a(^ = 0 (6.2.74)

If the conditions of theorem 6.2.3 (ii) hold we easily see that:

waR
af^ X?X5

2 = Fapwa = 0 (6.2.75)

wQRa^6 = 0 (6.2.76)
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Theorem 6.2.5 / / the curvature tensor is given over a spacetime M and if

at each point p £ M the components Ral^s satisfy the conditions of theorem

6.2.3(iv), the metric on M is determined to within a constant conformal factor.

Proof

We start by writing down the Bianchi identities in any coordinate domain in

M for the original metric g and another possible metric g' = 4>g, where <f> is a

smooth real valued function on M. Covariant derivatives with respect to g' and

g will be denoted by a stroke (Ra ̂ g ) a nd a semi colon (Rapys-,6 ) respectively.

The contracted Bianchi identities with respect to g' is given by:

R°ma + 2 % ^ = 0 (6.2.77)

The contracted Bianchi identities with respect to g is given by:

R°^.a + 2Rpm = 0 (6.2.78)

By 6.2.77 and 6.2.78 we have:

= 0 (6.2.79)

The Christoffel symbols with respect to g and g' will be denoted by VjL and

, respectively and the following result can be found in [13]:

y TV p a — n (a' -X- n1 n' \

h ~~~ P~i (h ~ n \9 8/3\y ' g N/3 9 lh\s )

1 '~ ' ~'-<t>'agpy) (6.2.80)

with

1
•-lgoS

gaS + fow gaS - fow gaS]
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where comma denotes a partial derivative

Subtraction of the two equations in 6.2.79 and the substitution of 6.2.80

together with some contractions and simplifications leads to:

RoM ^ = 0 (6.2.81)

with all raising and lowering of indices done with respect to g. By theorem

6.2.4 equation 6.2.81 has no non-trivial solutions at p £ M so that (f>'5 = 0 =>

<p = constant at p £ M. This together with the connectedness of M completes

the proof.

It is well known that if two metrics g and g' on a manifold M (n > 4) are

conformally related they give rise to the same Weyl tensor components Cap^s

in each coordinate system. The previous theorems show that in all cases except

type N the converse of this result is, in principle, possible. Let us see why this

is.

It is clear that the algebraic consequences of equation 6.2.1 relied only on

the symmetries of the Riemann tensor and, as such, apply to the Weyl tensor

also, since if g' is compatible with the components CapySt equation 6.2.1 holds

with the curvature components replaced by them.

However, the rank of the Weyl tensor is further restricted by the trace free

condition C1 ^Q — 0. Thus, the rank of the Petrov type I Weyl tensor is four or

six, for Petrov type D and II the rank is always six, for type III the rank is four

and for type N the rank is always two.

Thus, by theorems 6.2.3 and 6.2.5 we have that if the metric is vacuum of

Petrov type I, II, D or III then it is determined to within a constant conformal

factor. However, if the Petrov type is N then the Weyl tensor has rank 2 and

satisfies case (ii) of theorem 6.2.3 where w is the common, fourfold repeated

principal null direction.

Now suppose that the curvature components Ra^ and their first covariant

derivatives Ra^;M are given over some coordinate domain. We will investigate

the restrictions this imposes on the metric in the Petrov type N vacuum case

since we have already established that in all other vacuum cases the curvature

determines the metric to within a constant conformal factor.

By theorem 6.2.3(ii), we have that the subspace of bivector space B, in the

type N vacuum case, is spanned by two linearly independent bivectors F\ and F2

with common eigenvector w having zero eigenvalue. Hence, we have:
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waR
a^ X1XS

2 = Fa
0wa = 0 VXX, X2 € TPM (6.2.82)

which then gives:

i»aR
afhs = 0 (6-2.83)

Furthermore, if the components of the first covariant derivative are given, we

then have the following equality:

g'vcR"/™* +9'rfR>1<nS;» = 0 (6.2.84)

which in turn gives:

g'vaR"™* X^X^+g'^R^^ X1XS
2X» = 0 VXi,X2,X3 € TPM(6.2.85)

Equation 6.2.85 then provides the equality:

9'^P^ + 9'^P"a = 0 (6.2.86)

If ioaR
apyS;u = 0 then waR

a^u X^X^X^ — 0 is equivalent to the following

identity:

wQPQp = 0 (6.2.87)

Hence, we have P £< Fi,F2 >, i.e, any bivector obtained from Ra^u is

a linear combination of bivectors obtained from Rap^s , so that no new linearly

independent bivectors are obtained.

If on the other hand wQRa^;iy ^ 0 then two linearly independent simple

bivectors Pi and P2 are obtained from Ra^.^ . Then by theorem 6.2.1 new

eigenvectors of g'ap are obtained. Hence, by applying the same method as that

of theorem 6.2.3(iv) one obtains g'ap = 4>gaf3 with <f> = constant.

So, if waR
a frfov ^ 0 at each point of U G M, then sufficient extra eigenvectors

of any alternative metric g' are generated to ensure that g' is conformally related

to g on U G M.

Now, suppose waR
afrfav = 0 on U C M, then:
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WaR0^ = 0 ̂  WwIVfrs + waR
a^,u = 0 => u v , i ? Q ^ = 0 (6.2.88)

So that u;Q is a recurrent vector, i.e, w^^ = wapv, p called the recurrence

vector actually if w is a non zero recurrent vector field then it can be locally

scaled so that wa^u oc wawu. A null recurrent vector field w on U may be locally

scaled to be covariantly constant (wa;i/ = 0) if and only if Ra&$ wa = 0 on M.

Therefore, by the uniqueness of the independent solutions of kaR
a^ = 0

(k = w for type N) we have that w is a recurrent vector. Since w is null it can

be scaled to be covariantly constant on U with respect to g if U is contractable.

Thus, in the case of vacuum Petrov type N, the prescription of RQ(^ and

Ra(hfi\v on U uniquely determines g up to a constant conformal factor unless the

recurrent vector field w is (proportional to) a covariantly constant vector field,

this being the case of pp waves.

Therefore, in the vacuum case, if the Petrov type is I, II, D or III then the

metric is determined to within a constant conformal factor by the curvature. If

the Petrov type is N, the rank of the curvature is two. However, apart from one

special case, the covariant derivative of the curvature will introduce two extra

bivectors which satisfy 6.2.3 and one has, in effect, a rank four situation with the

metric determined to within a conformal factor. The special case is where the

curvature tensor is complex recurrent and the resulting spacetimes are vacuum

pp waves.

The conclusion is that the specification of the components Rap^s and Ra^s;il

in vacuum determines the metric up to a constant conformal factor except when

g and g' are pp wave metrics on some open subset of M.

6.3 Relationship to the Karlhede Algorithm

We shall call the number of covariant derivatives of the curvature one needs to

calculate in order for the metric to be determined up to a constant conformal

factor Hall's bound which will be denoted by njj. We have seen that njj —

0 for vacuum type I, II, D and III and nn = 1 for vacuum type N except

in the case of pp waves. It then seems that Hall's bound is much lower than

Karlhede's bound for classifying a spacetime. It would be of interest to investigate

whether there is some relationship between njj and Karlhede's bound since both

Hall's method and Karlhede's algorithm concern the way the curvature and its

successive covariant derivatives determine the geometry of spacetime. The major

difficulty, as we shall see, comes from the fact that Hall's method works with

the coordinate components of the curvature and its derivatives while Karlhede's

algorithm uses the tetrad components of the same.
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We consider the simpler cases of Petrov types I and II where the invariance

group is the group of dimension zero [18] and the rank of the curvature is six

[20].

Now, let (j> : M —>M be a diffeomorphism, i.e, a smooth bijective map with

a smooth inverse. Then 4>* '• TPM —• T^ M is the induced map of tangent

vectors and <f>* : T*M —>• T i ^ M is the induced map of cotangent vectors. The

coordinate representation of the map (f> : M —>M is given by x = ̂ ( i a ) where

x° are local coordinates around p G M and x are local coordinates around

<f>(p) € M .

Let us consider R and R written in coordinate systems x° and x respectively.

Suppose there exists a diffeomorphism <f> : M —>M giving x = (j)^(xa) with the

induced map being given by 4>* : TPM —> T^pj M so that -^- = ^>*(^-),i.e

-^r = %3-T^T so that one can then write:
dx dx d&

dxp dxa dxT dx^
~Z^ ^0 ^ ^S

 KIX"-H (6.3.89)

dx dx O x Q x

Let e(a) = e"-j^r € TPM and e(a) = ea -In- G T^ M be the canonical tetrads

and let £{a)
= (f)'(e(a))i i-e e a = ^ref- Then by taking the tetrad components of

afas with respect to e(aj and e.{a)-> equation 6.3.89 gives:

x

which in turn gives:

TJ p a• T• ^ p

itaboi — eatbectdJri

Thus, it is certainly true that if the coordinate components of R and R are

equal then there exists tetrads in which the components of R and R expressed

in those tetrads are equal.

We now investigate whether the existence of a diffeomorphism <f> : M —>M

such that Rabai = 4>{Rabcd ) in some fixed canonical frame, implies that R= 6,{R),

i.e equation 6.3.89.

Let the canonical frame for R and R be e^ and e(0) respectively with £(Q) =

<^*(e(a)). If we then take the dual bases e and e'a' so that e^ x = 0*(e'a^) we

can then write:
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r"' n^a ̂ >b ~c ~d ^ a ^ 6 ~c <^d

Rabcd e
a
e/3e'/eS = eae0e-yeS Rabat

which in turn gives:

dx^ achf b dxT
 cdx^dp dxP dx° dxT d

Ox Q x Ox
x

The difficulty lies in the fact that the existence of a diffeomorphism 4> :

M —>M giving Rabcd = ^{Rabcd ) writh R and R given in the canonical bases

e(a) and e(o) respectively does not always imply that C(a)
= 4'*(e(a)) so that one

cannot conclude that:

Rabcd = 4>{Rabcd ) =>R=

Hence, the important issue one needs to solve is the following:

In what circumstances does the existence of a diffeomorphism (f> : M —>M

giving Rabcd - (f>(Rabcd ) realise:

R=

It would be worth investigating whether the vacuum Einstein equations relat-

ing to the simpler cases of Petrov types I and II solutions, where the invariance

group is zero dimensional and the rank is six, give any information on this ques-

tion.

We outline a possible way of tackling this problem. We consider the case of a

vacuum spacetime of Petrov type I or II. Let xa be a fixed coordinate system and

consider two curvature tensors R and R with coordinate components R°P^ and

R -ys respectively. Let e(a) = e°a^|r and e(a)= e agjr be the canonical tetrads

of R and R with dual covectors e^0' = ea
adxa and e = eQ dxa. Then consider

the tetrad components of R and R with respect to their canonical tetrads given

by:

Rabcd = ea
ae

b^ce
6
dR

af3
lS (6.3.90)

i f cd = e ' e ^ e j £" 75 (6.3.91)

We now suppose that:
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K*^ = Ra\d (6.3.92)

And we investigate what restrictions equality 6.3.92 imposes on the coor-

dinate components Ra^\$ and R 7 j . We start by considering the following

conjecture:

Conjecture 6.3.1 In a vacuum spacetime of Petrov type I and II if expression

6.3.92 is satisfied one also has i?a/3
7s = R 75

If this conjecture is true then we could consider the further conjecture:

Conjecture 6.3.2 In a vacuum spacetime of Petrov type I or II the metric is

determined (up to a constant conformal factor) by the tetrad components of the

curvature and hence the Karlhede bound is one.

Although at the moment we are not able to prove conjecture 6.3.2, mainly

because of the difficulty in proving conjecture 6.3.1, we suggest a possible method

of proof. We start by grouping the indices in pairs so that we are able to write:

i t 7£

R 7c5

nab
ft cd

R cd

r>A

- KB

~A
=RB

- RA

~A
=RB

We may regard the above as 6 x 6 matrices which take the form [30]:

«t=( P Q)
\-Q P )

where P and Q are 3 x 3 symmetric trace-free matrices. We denote the compo-

nents of P and Q by Pj, Q), p), Q3, P j , Q}, p] and Q^ respectively.

~ A
Let ^ = P + i.Q then we have that the equality RQ =R& is equivalent

to having S&lj =i$J. These results will be useful in the proof of the following

conjecture:
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ab
Conjecture 6.3.3 Rab^ = R cd

where T]apLaL®v = n^

i.e: For Petrov type I and II spacetimes, the tetrad components of the curvature

are the same if and only if the coordinate components are related by a Lorentz

transformation.

The conjecture follows from the fact that \Pj and i£j must be conjugate

since they have the same eigenvectors and eigenvalues because ^ =i&j [2]. One

then needs to show that the transformation on the bivectors factors into a skew

product of Lorentz transformations.

Alternatively one can consider the Weyl spinor ^ ABOD • Since the components

of the Weyl curvature with respect to the canonical tetrad agree then we must

have $ABCD =^>ABOD • Hence $ABCD ^AB too =$>ABCD ^AB^O^D- But the

coordinate components of the Weyl tensor are given by (the real part of) CafH —

a^ a$B o-c° o-f0
 ^ABCD ZAIB (-CD • While:

Cc/JyS =cr
a Cp CT-y

*/u D D CC1 T)T)

Thus the difference in Ca$-$ and Cafhfi arises from a different choice of Van

der Waerden symbol. It then remains to show that different choices of such

symbol are (with suitable labelling) related by Lorentz transformations which

gives the result.

Conjecture 6.3.3 suggests the following conjecture:

a6 ~

Conjecture 6.3.4 R^^ = R cd & gaP = CL%Lu
p 9^ where

and C is a constant conformal factor.

If 9a/3 satisfies g^aR^-ys = 0 t n e n 9a/3 = L£Lp g^ satisfies g^aRp^ = 0 where

R^s = L"LpL°Ll Rp^ and hence gap satisfies gt(aR
a^s = 0- On the other hand

Hall [22] has shown that for a type I or II vacuum spacetime the only solution

of this last equation, up to a constant conformal factor , is gap • Hence we must

have gap = Cga0 =

Finally the last step would be to prove the following conjecture:
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Conjecture 6.3.5 Let 9a0— L^L^g^ be the metric of a Petrov type I or II

vacuum spacetime then g^ is also the metric of that vacuum spacetime if and

only if L^ = <j)^a and L1^ = <f>"p for some local diffeomorphism cf>' : M —»• M.

i.e 4> is a coordinate transformation.

In other words Conjecture 6.3.4 is saying that the only transformations of the

form 9a/3= L^L^g^ which maps vacuum solutions to vacuum solutions are those

generated by coordinate transformations so that gap is simply gap in a different

coordinate system.

To prove the above conjecture one would use the vacuum Einstein equations

corresponding to Petrov types I and II in turn.

Notice that conjecture 6.3.4 implies conjecture 6.3.2. Hence one would be

able to lower the bound on the Karlhede algorithm in the special case of vacuum

type I and II spacetimes from five to one.

This would then show that Petrov type I and II metrics with the same tetrad

components must be conformally related metrics possibly given in different co-

ordinates.

One could use a similar scheme to analyse all other cases, however the more

complicated nature of Petrov types III, D and N spacetimes even in the vacuum

case, might lead to great difficulties.
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