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Many calculations in general relativity are simplified when using a tetrad
formalism. As an important example we have the Newman-Penrose (NP) for-
malism which uses a complex null tetrad as basis for writing all information
corresponding to Einstein’s equations. However, certain physical problems are
best described when the formalism is adapted to the geometry of such physical
situations, i.e, when the basis vectors {(or spinors) are not completely arbitrary
but related to the geometry or physics in some natural way. A well known ex-
ample is the Geroch-Held-Penrose (GHP) formalism which best describes the
geometry of a null 2-surface and which is invariant under the group of spin and
boost transformations.

The GHP formalism is 1deally suited to situations where two null directions
are naturally singled out, but in many physical cases one is faced with only one
preferred null direction. As important examples we have null congruences, null
hypersurfaces or wave fronts and type N spacetimes.

A formalism which is invariant under null rotations is presented. The fun-
damental objects are totally symmetric spinors. From this notation we develop
a formalism based on a single null direction which is covariant under both spin
and boost transformation and null rotations.

Although both formalisms, which we refer to in this thesis as the generalized

NP formalism and the generalized GHP formalism, have many other applications



mainly to do with null congruences and null hypersurfaces they are used in here
as an application to the equivalence problem of type N spacetimes.

The problem of determining weather two given metrics expressed in different
coordinate systems are actually the same metric. 1.e, can be mapped into each
other by a coordinate transformation is the well known equivalence problem of
metrics. The theoretical resolution of this problem was originally provided by
Cartan and later refined by Karlhede who provided the useful Karlhede algorithm
of classifying different Petrov types of spacetimes.

In this thesis we apply the newly developed generalized GHP formalism to
the Karlhede algorithm of Petrov type N spacetimes (vacuum and non vacuum).
[t turns out that such formalism is quite appropriate in this case simplifying
the calculations involved and lowering the number of covariant derivatives of
the curvature tensor one needs to calculate in order to completely classify such
solutions.

In the final chapter we review the work done on the relationship between
curvature and metric. We discuss the relationship of this work to that of Karlhede
and possible ways of using this work and that of Karlhede to improve on the
algorithm of certain Petrov types of Einstein solutions.
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Chapter 1

The Equivalence Problem of
Metrics

1.1 Introduction

Here we review the equivalence problem of metrics and discuss its solution in
detail. The description given in this chapter closely follows that of Karlhede [18]
although an effort is made to explain as clearly as possible the various steps.

We also give an alternative way of looking at the equivalence problem by
working with the frame bundle LA rather than the manifold M, which will be
described in section 3.

In what follows we will use latin letters to denote indices corresponding to
frame components and greek letters to denote indices corresponding to coordinate
componernts. Lower case latin letters will run from 1 to n. Upper case latin letters
will label the parameters of the proper Lorentz group and will therefore run from
1 to zn(n —1). Covariant derivatives will be denoted by a semicolon (;}, partial
derivative by a comma (,) and directional derivative by a bar (|}. The letter n
will be used to denote the dimension of the manifold M.

Let g and § denote two metrics on manifolds M and M. Then g and § are

said to be locally equivalent if, and only if, there is a coordinate transformation
i = #4(2") (1.1.1)

that maps ¢, into §,, .i.e,

2P 0z° . .
g (2°) = -5%8—;9”(37‘5) (1.1.2)

If instead of using a coordinate notation we choose to use a tetrad notation,

the two given tensor fields g and § are given by:

g = nyw @ (1.1.3)



§ =950 @& (1.1.4)

e; will denote n linearly independent vector fields, defined over a region U7 of M

and w' the dual basis of 1-forms defined by :

< €W’ >= 6 (1.1.5)
and n;; is the constant frame metric:

€ €; = i (1.1.6)

Two geometries given by ¢ and § in regions U and [/ respectively are equiva-
lent if, and only if, there is a pointwise identification between points P in U/ and
P in U such that :

9p = 95 (1.L.7)

where g, denotes the metric tensor at P.

We should point out that this study is done locally for regions U and {7 with
local coordinates z# and &* and therefore determines if the spaces are locally
equivalent.

If we consider the case where each manifold A and M has the same constant

frame metric 7;; then from 1.1.3 and 1.1.4 we have that:

W, = o (1.1.8)

h=TRald

implies g, = §p.

However, since there exists a group of linear transformations of w

O = b w (1.1.9)
which leaves n;; invariant:

b iV = o (1.1.10}
and therefore also leaves ¢ pointwise invariant:

§=n;0' 00

= ;b ™ @ b "

= P D wW"

=g
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we cannot say that g, = §; implies w', = L}};

So we have that the 1-forms only need to be equal up to transformations
b'; which leave 7;; invariant to make the metrics equal. The set of all such
transformations &; form a group G which has a continuous subgroup of frame
orientation and time direction preserving transformations, i.e “rotations” of di-
mension @ together with a finite number of discrete transformations, n being
the dimension of M. In particular, when n = 4 and #;; is the Lorentz metric, G
is the six dimensional homogeneous Lorentz group and the continuous subgroup
of “rotations” is the proper Lorentz group L1 and the discrete transformations

are space and time inversions. We can therefore establish the following lemma:

Lemma 1.1.1 Two geometries are equivalent if, and only if, there exists a point-
wise identification P = P for P € U and P € U and a transformation b';,

leaving ni; invariant, such that

= b

Ty

W

Let 2# denote local coordinates in U, €4 the In(n — 1) parameters of the
proper Lorentz group and m the discrete parameters in G. Let wi(z*) repre-
sent some local section of the space of 1-forms and let b (z#,e*, m) represent a

transformation in £}, then any other 1-form can be written:
w' = b (2", e, m)wh(a*) (1.1.11)

So that by varying €* and m one obtains all possible w* with a given frame
metric 7;;.

Using this notation we can write Lemma 1.1.1 in the following manner:
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Lemma 1.1.2 Two geometries are equivalent if, and only if, there exists a rela-

tion
T = g*(a*) (1.1.12)
&t = &P, ) (1.1.13)
= m(m) (1.1.14)
giving:
CHaH, et m) = Wiz, etym) (1.1.15)

Since the number of discrete transformations in G is finite one can then
fix m and solve for each value of m in turn. So that the dependence in m is
straightforward.

In the following section we investigate the simpler case, where one does not
take into account the effect of the group G of all transformations {#';}, i.e., we
consider that the 1-forms w' and &' must be equal rather than equal up to a
transformation b';. Latter on these results are used to solve the real problem of

equivalence.

1.2 Analysis of the Simpler Case

Here we concentrate in solving the simpler problem of determining a pointwise
identification of the regions U and U that will match up the 1-forms w' and &,
not considering a rotation and/or a discrete transformation.

Let w' and @' be two systems of n linearly independent 1-forms, defined on
regions U and U with local coordinates o* and &* respectively (¢, = 1,2,...,n).
We investigate in what circumstances there exists an identification of I/ and U,

given by the relation &* = ##(x"), realising &' = W',

We start by taking the exterior derivative of w* and &'.

: 1, . ' ;
dwt = Eczchwk f\wh : C;:h — —c}lk (1216)
. 1. . . - i =
dw' = §é;eh{‘}k NGt &y = -8 (1.2.17)

where cl), = cf, (2#), &, = &, (&#).
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I) We start by treating the special case where there are n functionally inde-
pendent functions among ¢}, and é,.

Note: n functions fi, fa,..., f» are said to be functionally independent if, and
only if the covectors df1, dfs, ..., df, defined at a point P are linearly independent.
The number of functionally independent components among the f; is equal to
the number of linearly independent vectors among the df;.

Ia) In this special case, we start off by establishing the necessary condition
for wi = &',

If we assume that w* = &, then dw' = d&*, so that from equations 1.2.16
and 1.2.17 we get:

&, =y (1.2.18)
Further differentiation gives:

deiy, = ciy ' (1.2.19)

A&y, = Gy &' (1.2.20)
Then by 1.2.18 we have:

e = Sy (1.2.21)

So that a necessary condition for w' = & is that equations 1.2.18 and 1.2.21
are compatible equations relating £# and x¥.

If we decided to continue differentiation even further we would have:
ey = Chig ™ (1.2.22)
délpy = Shpgm O™ (1.2.23)
From 1.2.21 we obtain:

o = i (1.2.24)

In the special case where one has n functionally independent functions among
the ¢t (&%) n is the maximum number of independent functions on an n dimen-
sional manifold. This because on an n dimensional manifold one can have at
most n linearly independent vectors defined at a point P among the dcjk, (dé}k).
Thus we have that ¢}y, (& } must be functionally dependent on the (&), For
equations 1.2.18 and 1.2.21 to be compatible the Clpy st e the same function

of the ¢}y as &, are of the ¢t Furthermore, all higher order derivative terms,



Chapter 1 8

for exactly the same reason as before, must also be functionally dependent on

the ¢ (& ). For example, C;Hl.m comes from differentiating cjw which in turn is
a function of ¢i;. So that in the end ¢, is a function of only ¢j;. Hence, if
we assume that the functional dependence is the same for ¢}y, and ¢ then all
untwiddled and twiddled higher derivatives will be the same function of ¢}; and
é}k respectively. We conclude that compatibility of 1.2.18 and 1.2.21 guarantees

the compatibility of all higher order derivatives.

Ib) We now proceed to show that compatibility of equations 1.2.18 and
1.2.21 is also a sufficient condition for w' = &'
We start by assuming the compatibility of 1.2.18 and 1.2.21 as relations

between 2# and z* and consider the following set of equations:

déi‘h - dcih — Cih‘l (I:Ji - I'..L)l) = 0 (1,2,25)

t — ! because n

This set must contain n linearly independent equations in @
of the ¢, are functionally independent which means, by definition, that n of the
vectors dcl, are linearly independent. The n independent equations contained in

1.2.25 can he written as:
i@ ~w)=0 (1.2.26)

where A represents some combination of 7,7, & in Cju.- and runs from 1 to n.
Considering 1.2.26 to be a matrix equation with ¢jf an n x n matrix , the linear
mdependence of the vectors c:l’}1 implies that cﬁ‘ forms an n x n matrix of rank n
with inverse. Hence, set 1.2.26 has only the trivial solution &' = w! = 0, which
is the desired result.

We therefore conclude that in the case where there are n functionally indepen-
dent functions among the ¢}, (&, ), compatibility of equations 1.2.18 and 1.2.21
is a necessary and sufficient condition for &' = w'. The set of equations 1.2.18
contains n functionally independent relations which therefore yield a unique co-

ordinate relation ## = #4(z*) giving &' = w'.

IT) We now proceed to analyse the case where there are ng < n functionally

independent components among the cf;k.

I1a)Firstly we establish the necessary conditions for @' = w'. Let &' = «?,

we then proceed as in la) to generate the set of equations:
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s i
Con = Cip
Sy = Chay
= . (1.2.27)
o o
Crilfydprr = Ckffdpan

In case la), the compatibility of the Oth and 1st derivatives guaranteed com-
patibility of all others, in this case we follow exactly the same reasoning to es-
tablish that the set 1.2.27 need only continue to the (p + 1)th derivative, which
is the first derivative functionally dependent on lower derivatives. Therefore, the
compatibility of the set 1.2.27 is a necessary condition for & = w?.

ITb)We now determine the sufficient conditions. We assume that the set
1.2.27 are compatible.

ITbi)Here we consider the case where the total number of functionally inde-
pendent components obtained from all derivatives up to pth order is n. Since
in this case the n functionally independent components are scattered among the
first pth derivatives we take the following set of equations:

&y —defy, = chy (@' - ) =0
Ay — iy = Chym (@™ —w™) =10
= . = . (1.2.28)
déihuldp - dci-wl...:p = Cihuluj,,m (" —w™)=10

This set will contain n linearly independent equations for &' —w' produced by
differentiating the n functionally independent components among the ci, and its
first p derivatives. So that in exactly the same manner as in case (Ib), they give
only the trivial solution &* — w' = 0. Therefore in the case where n functionally
independent components are produced by continued differentiation we have that

compatibility of the set 1.2.27 is a necessary and sufficient condition for &' = w'.



Chapter 1 10

[Ibii) We now analyse the case where continued differentiation never pro-
duces n functionally independent components. In this case, among the set 1.2.28
there will only be k < n linearly independent equations for the » unknown &' —w?,
k being the number of functionally independent components among the c};, and
its first p derivatives. Therefore, at best we will be able to use the set 1.2.28 to
express k of the & — w' as a linear combination of the other n — k. So with a
suitable numbering we have:

ot —wf = b0 — W) (1.2.29)

where A, B etc. run from n —% -+ 1 to n {i.e. k of them), and «, 8 etc. run from
Lton—Fk(i.e. n—Fkof them).

We then want to show that compatibility of the set 1.2.27 makes the (n —
k)™ — w® zero which will then give from 1.2.29 that &* — w* = 0 for ¢ running

from 1 to n. The proof is in 2 stages:

1) We start out by showing how the requirement &% — w® = 0 leads to a set
of first order partial differential equations.

Using local coordinates we have:

W = ajdz* (1.2.30)

di* — a®dz* (1.2.32)

Since the & are linearly independent we have that equations 1.2.32 are
linearly independent in the di*, having n — k linearly independent equations for
n unknown di*. We can then solve for n — & of them as linear combinations of

the other £, With a suitable numbering we obtain:
di® = bdz* + 5 dit (1.2.33)

where once again A, B etc. run from n — k 4+ 1 to n (i.e. &k of them), and o, 3

etc. run from 1 to n — & (i.e. n — & of them).

Q)Then we proceed to study the integrability of equations 1.2.33, i.e. we

want to show that there is a solution of 1.2.33 of the form:

o

% = 2%(a, i) (1.2.34)
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which is compatible with the coordinate relations obtained from equations 1.2.27.

Proof

Let W represent a 2n-dimensjonal space with coordinates {##,2*}. Let
OF = O — w* = &%di* — a%da (1.2.35)

where a, # etc. run from 1 to n — k. Thus, solving 1.2.33 which derives from
1.2.32, 15 equivalent to finding the submanifolds V' C W such that:

@ fy=10 (1.2.36)

where &% |v represents the restriction of w® to V so that &% only acts on vectors
tangent to V. V will only exist (and therefore a solution of 1.2.33 will only
exist) if the vectors X which satisfy:

<O X >=0 (1.2.37)

“knit” together in such a way as to be tangent to some submanifold V.
According to Cartan, the condition for this “knitting” together is that dw™ =
05 A WP, ie. that:

Ao = w) =85 A (&° — W) (1.2.38)

where 83 are arbitrary 1-forms [8]. The exterior derivative must be taken in W
but will be the same as in 1.2.16 and 1.2.17 because w!(&') are independent of
##(3#). We show, using 1.2.16, 1.2.17, 1.2.18 and 1.2.29 that 1.2.38 is indeed
satisfied:

1 .
d@% —w™) = = (F Aet -0 ALY

2

= TAIEF + ) A @ =) + (0 — ) A (B 4 )
= TGP+ A @7 - ) = (B + ) AP — )
2l 40P A @ - )
_(L:JA + w") A (JJ’B _ wﬁ)]
+%c§s [65 (2 + w?) A (& — wP)

—bHOF + WP A (DY — W)

= A -0
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The dimension of V is given by 2n—{(number of constraints in 1.2.36), given
explicitly by:

dm{(V)=2n—(n—k)=n+k (1.2.39)

Furthermore, ¥V will not be unique but there will be an n — & parameter
family of V’s. This arises because the number of orthogonal normal directions
to a given V is 2n- (dimension of V)= 2rn —{n+ k) = n—k, and each orthogonal
normal direction will parametrise a set of V’s. The initial vector X which “knits”
together with the others to form the submanifold may lie at any initial point along
the normal directions.

2

As an illustration of how this works in practice we give the following example:

Example 1.2.1 Let n = 1, k = 0, take the coordinates to be {z,i}withz >
0,& > 0. Take the I-forms to be w = adzx, w = —&dZ.

(Notice that k = 0 because in one dimension we only have cl, which by
antisymmetry must be zero).

So equation 1.2.36 becomes #d% + xdxr = 0, which on integration yields
P2+az2=c or &= f(z,0).

Hence, the solution will be an n + k = 1 dimensional submanifold with
n — k = 1 parameter denoted by c which parametrises different solution sub-
manifolds, exactly as expected. In this case the submanifolds obtained as solution
are concentric circles with the parameter ¢ giving their radius, the radial direction

being the only normal direction,

We now proceed to show that the solution 1.2.34 is compatible with the
coordinate relations that are obtained from the set of equations 1.2.27. To show
this we will reperform the steps that led from 1.2.27 to 1.2.34 using a special

coordinate system.
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We introduce a new coordinate system {z’, %'} such that the & functionally

independent relations among the set 1.2.27 become:

F4 = g4 (1.2.40)
where A runs from n—~A41 to n as before. In other words, we let the functionally
independent components in the set 1.2.27 act as a new coordinate system, which

we are allowed to do because they are functionally independent. Differentiating

we obtain:
d#' = dz'™ (1.2.41)
where
dz't = i’ (1.2.42)
di't = E:’[f‘nb’: (1.2.43)

Let &' = ci%holil...lr . Then

dr't = Cja?)holhmlri W' (1.2.44)
And 34 = é;‘;ho“]mfz so that

At =80, s & (1.2.45)
Comparing 1.2.42 and 1.2.43 with 1.2.44 and 1.2.45 gives:

A = it (1.2.46)

gt = éi?;,holi,..lii (1.2.47)

However from equations 1.2.27 we know that:

Crokollydsi = Chohallydai (1.2.48)
so that
gl =qf (1.2.49)

The di'* are linearly independent because the #4 are functionally indepen-
dent. Thus, equations 1.2.43 and 1.2.42 represent k linearly independent equa-

tions in the n'. Using the same argument as before, we can express some k of
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the & as linear combinations of the other n — k. With a convenient numbering

one then obtains:
= oo + didz'P (1.2.50)
Subtracting 1.2.50 from its untwiddled version and using 1.2.41 we obtain:
o — ot = b — w®) (1.2.51)
Continuing as in 2), we analyse the solution of the equation

O —wr =0 (1.2.52)

If 1.2.52 is indeed satisfied, then by 1.2.51 & —w' = 0 for ¢ running from 1

to n. In the new coordinate system {z’, %'} this equation becomes:
G5 di'” +afdi® — afde’ — agda’® =0 (1.2.53)

From 1.2.50 we have that {&% d#'4} span the cotangent space of M and
hence represent n linearly independent 1-forms. Writing the & in terms of the
coordinates we have:

O* = agdi’® 4 §5dz"® (1.2.54)
It is convenient for us to rewrite this equation as:
0% — agdi” = agda’® (1.2.55)

Since {©0°, 1"} are n linearly independent 1-forms, the terms on the left hand
side of 1.2.55 are linearly independent for different values of «, and so, therefore,
are the terms on the right hand side. This implies that the G¢}§ constitutes a non-

singular matrix. We denote its inverse by (&' )3,1.e.
(&1)5a? = (1.2.56)
Multiplying 1.2.53 by the inverse (a™1)% ¢ we arrive at:
di'" = (a7 1a'5d# 4 da’ 4 (@) e de' (1.2.57)

As before we can show that the integrability condition 1.2.38 is satisfied, this
by virtue of 1.2.51. Therefore, 1.2.57 can be integrated to give:

= ~J'o:(,cfcx fA j_.-.fA) (1258)
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Since we have been working in this special coordinate system in which equa-
tions 1.2.27 have the simple form given by 1.2.40, we can easily see that the
coordinate relations needed to make ©* —w® = 0, given in this coordinate system
by 1.2.58, are compatible with the coordinate relations which arise from 1.2.27,
noticing that to arrive at 1.2.58 we insist that 1.2.40 must be satisfied.

We can now conclude that compatibility of the set 1.2.27 is a necessary and
sufficient condition for there to exist an identification of U/ and U giving & = w'

with:=1,...,n.

Therefore, we have that the n relations #* = ##(z") providing the identifi-
cation of U and U giving &f = w' are obtained from the set 1.2.27 (giving k of
them) together with the integral relations 1.2.34 (giving n — k of them). The
relations 1.2.34 are not unique but depend on n — k constants of integration, so
there are n — k continuous deformations of 1.2.34 which preserve & = w'. There
may also be discrete transformations which are not found in this analysis.

We summarise our analysis in the following theorem:

Theorem 1.2.1 Given 2 sets of n linearly independent 1-forms &' and w' defined
on U and U with local coordinates * and z* respectively, then there exists a
coordinate identification of U and U, given by #* = i#(z"), giving &' = ' if and
only if the equations 1.2.27 are compatible. The (p+ 1)th derivative is the first
one which is functionally dependent on lower derivatives (including the zeroth),
so p+ 1 £ n. The coordinate relations # = i#(z”) depend on n — k constants
of tntegration, where k is the number of functionally independent components in
1.2.27.

We now explain why we have p +1 < n. If the ¢, are constants then their
derivatives will be zero, in this case the differentiation terminates at first order.
Therefore, in order for the process to continue beyond first order the c;k must
contain at least one functionally independent component. Subsequent differen-
tiation must produce at least one new functionally independent component at
each stage for the process to continue. However, in n dimensions there are at
most 7 functionally independent components so by the {n — 1)tk derivative all n
must have been produced, making the nth derivative the first to be dependent

on lower derivatives.
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1.3 The Equivalence Theorem

We have seen that to tackle the problem of determining an identification of two
regions {/ and U given by the coordinate transformations #* = ##(z#) realizing
&' = ', one must have that the set of equations 1.2.27 must be a compatible
set. However, the real problem of equivalence that we proceed to analyse in
this section does not require that &° = w' but only that they are equal up to a
transformation bj of the group G, i.e. &' = b}wj.

Cartan’s [5] procedure for tackling this problem consists of a lengthy and
extensive analysis where the idea is to keep the rotational freedom of the tetrad
such that «' depends not only on the n position coordinates z* but also on
the ®ZL_ rotation parameters ¢*. This analysis is described in detail in [18] .
However, here we choose to follow a different route, one in which the calculations
are made easier by the fact that we choose to work on the frame bundle rather
than the manifold.

We first review some important definitions and results relating to frame bun-
dles, we closely follow references [15] and [14].

We denote the frame bundle by LM. This is defined to be the collection of
points P = (P, (e1)p, ..., (€,)p) where P € M and (e1)p, ..., (e,)p span TpM. The
map 7 : LM — M given by P —— P is the natural projection map. The map
R, : LM — LM gives the bijective correspondence (P,(e1)p,....{en}p) —
(P, hies, ..., hie;), where B € GL(n,R)

Let U be an open set of Af, every frame at P € U can be expressed uniquely in
the form (X, ..., X)) with X; = X*%*e;, X% being a non-singular matrix. So that
if (Xy,...,X,) is a frame at P and h; € GL(n,R) then (¥1,...,¥,) with ¥} = hj;X,-
15 also a frame at P. This shows that there 1s a bijective correspondence between
7 (U) and U x GL(n,R). Let (&%, ...,2") be a local coordinate system in I/ and
take the usual manifold structure of GL(%,R) so that the differentiable structure
of U x GL(n,R) is the manifold structure of the product manifold. Hence, we
can make LM into a differentiable manifold by taking (2*) and (X*) as a local
coordinate system in 71 (/). Notice that if a Lorentz metric g is defined on the
manifold A then we may take A} € EIL where £} is a subgroup of GL(n,R).
In order to be consistent with the notation we will denote any h:; € IZL by b}
The set of elements of LM of the form (P, bie;, ..., b e;) constitute the bundle of
pseudo-orthonormal frames denoted by O M. In this case we have:

n+nn—1) n{n+1)

dimOL M = dimM + dimL} = 5 =— (1.3.59)

Let 0 : R — M be a curve O™ in M with ¢(0) = P. By parallel translation
we define a €™ curve 7(t) = (o(t),e1(t), ..., en(t)) in OLM, where ¢;(2) is the
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parallel translate of e; = ¢;(0) = (€;),(0) = (€i)p along o to o(t). Since roFT =0
we say & 1s a lift of o and since 7 gives a parallel frame we say & 1s a horizontal
curve n O_Tl_ﬁff. Thus a connection on M yields unique horizontal lifts of ¢
curves in M.

We define at each point P € O_T,_M the subspace of vertical vectors V& =
{X5 € TsLM : 7.(X5) = 0}. A connection on OL M is a map H that assigns
to each P € O} M a subspace Hz of T5OL M such that: (Hp is the horizontal

space)

1. Hp contains no non-zero vector belonging to the vertical subspace V5 and
o)y is an isomorphism of Hp onto Tﬂ{p} M, hence Hg 1s n dimensional.

2. (Re)(Hp) = Hﬁg{ﬁ) ; Vg} € GL(n,R)

3. His C*, i.e., for each P € O} M there is a neighbourhood T and a set of

n independent O vector fields Ey, ..., E, on U that give a base for Hy for
every P e T.

Thus a connection on M determines the horizontal subspaces in the tangent
spaces at each point P € OLM. And the projection map = : OLM' — M
induces a surjective linear map 7., : TsOLM —s T, M such that 7.(V5) = 0
and TalHs 1s a injection onto Tﬂys}M. Therefore the inverse #7! is a linear map
of Tﬂ{p-] M onto Hp.

If X5 € Hp we say that X5 is a horizontal vector. Property 1 implies that
for each Yp € TpO.T,_M' there is a unique decomposition:

X5=Xnr+Xv)p (1.3.60)

with (Xy)p € Hp and (Xv)p € V5. Property 3 implies that if X is C* then
X g and Xy are O vector fields. We have:

Vs @ Hp = TpOL M (1.3.61)

Furthermoreif X is a U™ field on U € M then there is a unique C* horizontal
vector field X on U = 7 1{U) with 7, (XF) = AP VP € U. The parallel
translation earlier defined is frame independent in the sense that it is independent
of the starting point for 7. By property 2 if 7 is horizontal (has a horizontal
tangent) then R, 0 @ is also horizontal.

Let H be a connection on OLM and P € OL M. We can define a unique
horizontal vector field E; with =.(E;(P)) = (ei)np) = (&i)ps VP € OlM by
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property 1. The fields Ei,..., E, are global independent horizontal C* vector
fields on LM. Together with the natural vertical vector fields which we shall
denote by El,..., E* with m,(E{P)) = 0 ¥YP € Ol M we obtain a global base
field on OLM.

Consider the dual viewpoint involving differential forms, so that @', ...,

o1, ..., are the dual 1-forms to this base. The @''s are defined by X3 =

T (Xp)m(EP)), X5 € T50L M and are dual to the E's.

The set of T’s are defined by (Xv)p = &(Xp)(El)p, Xp € Tp. Thus a
set of connection 1-forms oo (for 7,7 = 1,...,n) on O_T,_M 1s a set of 1-forms such
that:

1. L?j-w_ form a dual base to E; at all P € OILM.
F

2. T (ReXp) = b @ (Xp)bt VX5 € TpOLM

3. @ are O Vi, j

We define a C® map f : U — OLM by f(P) = (P,(e1)p, ..., (ea)p), P U.
If # o f is the identity on U, then f is called a cross section over U. Let w' be
the dual basis on M and @' the dual basis on OLM and let wt be the connection
1-forms on M and @ the global connection I-forms on Ol M then:

(@ o f)(Xp) = w(Xp) {1.3.62}
(@} 0 [*)(X5) = wj(XPp) (1.3.63)

Therefore the Cartan structural equations (along with the curvature tensor)

can be carried up to global equations on Ol M:

dw' =& A, withw” = —&" (1.3.64)
dot = B, AT+ Ry AT (1.3.65)

We now proceed to reformulate the equivalence problem in terms of {rame
bundles. In section 1.1 we saw that two space-times are equivalent if and only
if there is a potntwise identification i : M — M such that i(P) = P and a
transformation &% € Ll realising wh = b}w{;. Hence by means of the definition
of @', @ and the map R, and by equations 1.3.62, 1.3.63, 1.3.64, 1.3.65,
the equivalence of space-times in terms of frame bundles can be formulated as

follows:
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Two regions of QLM TUg and U with local coordinates T, T and 7,

0,5 u0,p = L,...,n) 1‘especti\£}y, are equivalent if ani only 1f there 1s a
pointwise identification of Ug and {7, given by 1g Ur — ﬁ, realising:

(1.3.66)
s0 that one must have Up = Ry(U), T = T# o Ry and T =T o R,

Hence the equivalence problem carried out in the frame bundle reduces to the
simple problem of section 1.2, so that we can proceed i in the same manner and
1me«at1gate the conditions obtained by requiring that d5' = d and d\.d' = d..
Since & = @ and G, w; = w by equations 1.3.64 and 1.3.63 we have:

Eiﬂd = Ry (1.3.67)

Further differentiation gives:

dRiu E:jkilm o (1.3.68)

=

dﬁiﬂg = Rijgm @™ (1.3.69)

Then by 1.3.67 we have the equality:

Risgm = Rijim (1.3.70)

We wish to express the directional derivative E{jh‘]m in terms of the covariant
derivative Egﬂd;m . Consider the second order covariant tensor V,; which can be

written in the following way:

Vab = oPaPs + Q2Pags + O3GaPy T 4qaGp
= og(eq, p)gles, p) + argleq, plgles, q)
+  azgles.q)g(es, p) + aqg(ea. ¢)gles, ¢)

Py ¢ first order covariant vectors.

So that Vi, is given by:

Vam = Ve, Va
= o19(€2,P) Ve, glen p) + ar19(es, P)Ve, g€, P) + -
= o19(€a, P)§(Ven €5, 0) + crglea, p)gles, Ve, p)
4+ aglen P)g(Vena p) + erg(es, p)glea, Ve p) + ..
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a19(€e, P)Ting(en. p) + arg(ea, p)gles, Ve, p)
arg(ey, P) o, g(en, ) + argles, p)g(€s, Ve p) + ..
alpal—‘?m Pn + aipa.pb;m + 1Py szpn + G’lePa;m

+

Q2Pg F?m Gn + Q2P Gbm + QZQbF:mpn + 02 ¢pPaim
a3qa ' Pr + 03GaPhim + 3Pl g + Q2P0 0im

+ o+ +

el g + Q1GaGom + Qs@l s, Gn + 4G Gaim

il

T (@Papn + C2Patn + @3¢aPn + @4Galn)

I {@1pbpn + @2qePa + a3pgn + XGon)

a3{PaPbim + PoPaim ) + 02 Paltim + GPasm )

a3{qaPbym + Podam ) + @a(GaGsm + G4 Gam)

Lo Van + oy Vin 4 (010aps + coPay + @3¢aPh + @4GaGt)m
b Van T+ Lo Vin + Vagm

I+ + +

One can apply a similar calculation to higher order tensors, so that in the

case of the curvature tensor we write:

+ Fg ft + Rgﬁ( I‘;m + ﬁgﬂd ﬁm (1.3.71)
with
=T v {1.3.72)

1

Equations 1.3.70, 1.3.71 and 1.3.72 together with the assumption that

=i = =i ot
@ =3 and ©; = ; give:
Rijgom = Rijpiim (1.3.73)

Further differentiation of jou;m and ﬁgﬁd;m gives:

dﬁijh';m = Eiﬁdlnm 5-“ . (1374)

dRijjm = Rijtrm, @ (1.3.75}
And

R = Ritom + Rjim Ly

+  Rigm T“j-n + Rijtm Ft;m + Rijiaym ﬁn (1.3.76)
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Hence:
Ea‘jid;ﬂm = Rijigm (1.3.77)

If we continue this process we will obviously get equalities of higher order
covariant derivatives of }:;_ and K. Therefore, by acting in the same way as in the
case of the simpler problem of section 1.2 we have that equivalence on the frame
bundle is governed by the following theorem which is very similar to theorem
1.2.1 of section 1.2 except that we are considering Ol M rather than M. Notice
also that the ¢, ¢l , etc, are replaced by the curvature tensor and its covariant
derivatives. N will denote the dimension of O M.

Theorem 1.3.2 Two regions U and Ur of OLM and O\ M, respectively, are
equivalent if and only if the set

-

ij = -R-;m
= —i
R, Rjn,
= (1.3.78)
R il oy = Rjkh.-i, wdpti

TP =i

is compatible as equations in &, T ;ThTn. The (p+ 1)th derivative is
the first one which is functionally dependent on lower derivatives (including the
zeroth), so p+1 < N. The coordinate relations expressing Tr. T~ as functions
of Th,TH depend on N — k constants of integration, where k is the number
of functionally independent components among Rju ,R{jh’;m , -..,Efjgmw_,m,ﬂ ,
which means that there are N — k continuous deformations of the coordinate

relations which preserve equivalence.

Since HR,-J-H T, ?J in Ol M determine R ,w', w7 in M by means of a function

[ then the above theorem can be translated in M in a very straightforward way:

Theorem 1.3.3 Two regions U and U of M and M respectively, are equivalent
if and only if the set

] _ )
Rqufl - Rj'kh;fl
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= . (1.3.79)

i _ i
Rjkh;l,.‘ip.“ = Rjkh;il..ip+;

is compatible as equations tn &#, T%°;x*, 7. The (p + 1)th derivative is the
first one which is functionally dependent on lower derivatives (including the ze-
roth), so p+ 1 < n. The coordinate relations expressing ¥*,¥°° as functions of
x#, 27 depend on n — k constants of integration, where b is the number of func-
tionally independent components among Rin , Rijigm ...,Riﬂdmm_"%“ , which
means that there are n — k continuous deformations of the coordinate relations

which preserve equivalence.

1.4 Investigating Equivalence in Practice

Here we give the practical procedure for investigating the equivalence of metrics
otherwise known as the Karlhede algorithm. We will assume in what follows
that we are working in an open neighbourhood in which the Petrov type and the

dimension of the various isotropy subgroups remain constant.

1. Choose a constant frame metric 5;; for the tetrad.

o

Calculate the tetrad components Kz of the Riemann tensor in an arbitrary

fixed tetrad with metric #;;.

3. Determine Hg, the subgroup of G (G is the six dimensional homogeneous
Lorentz group) which leaves the R;;; invariant (Note that Ay may contain
discrete transformations since G does).

4. Determine, up to a transformation in Hy, a standard tetrad by requiring
that R;u takes on a special form, called the canonical form. This can

always be performed for R;ju and its covariant derivatives.

5. Determine ng, the number of functionally independent components among
Ry in its canonical form (Note: n functions fi, fo,..., fr are said to be
functionally independent if and only if the vectors dfy, df, ..., df,, are linearly

independent. The number of functionally independent components among
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the fi’s is equal to the number of linearly independent vectors among the

dfi’s).

o

. Calculate Ry, in the standard tetrad.

=

Determine Hy the subgroup of Hy which leaves R;u and R4y, Invariant.

8. Determine among the earlier standard tetrads, up to a transformation in
Hj, a new standard tetrad by stipulating a canonical form for Rijum -

9. Determine ny, the number of functionally independent components among

Ry and Ripm in their canonical forms.

10. If d&im(H;) = dim(Hy) and n, = ng then the procedure terminates. Other-
wise steps 6-9 are repeated for Riumm, , fijmmm > €tc until the stage
is reached whereby dem(H,y,) = dim(H,) and npyy = np in which case the

procedure terminates.
The set {Hy, ng, Ritmmome..m, 1 ¢ = 0,1,...,p + 1, classifies the solution.
The above algorithm provides an invariant classification of each metric g

and ¢’ which are being compared for equivalence. The rest of the procedure
1s as follows.

11. If the two sequences Hy, no; Hy,n;...; Hy, ny for g and ¢’ differ, then so do

the metrics.

12, If the set of simultaneous algebraic equations R:‘ju = Riu, R

=
Rijgm + s Riggimmg.mg, = Rijommg.mg » With the invariants in their
canonical form, admits a coordinate transformation & = #(z2*), ¢ = 1,....n
as a solution then the metrics are equivalent, otherwise they are inequiva-

lent.

The procedure terminates when dim(Hy) = dim(H,) and npypy = n, be-
cause there are no new functionally independent quantities relating to the coordi-
nates ¥ since n,y; = n, and there are no new functionally independent quantities

relating to the group G, i.e, to the parameters ¢* since dim(H,y1) = dim(H,).
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The reason why this procedure tackles the equivalence problem rests on the
use of the canonical form. The equivalence theorem tells us that in order for us
to have &' = bjwj there must exist frames in which the {wo sets of invariants
R, Rijggm,,.. and Rgﬂd ,I;’,,-j;d;m_‘_ etc. are equal, with the actual identification
map being given by the coordinate relation ## = ##(z”) which then gives the
equality. By using the canonical form we are able to pinpoint more precisely,
up to transformations in H,, the frame which will enable these invariants to be
equal, by the identification #* = &#(2").

This algorithm provides plenty of information about the geometry even if the
last step (12) cannot be tackied. In the section that follows we shall see how
steps (1) through (4) are equivalent, for the vacuum case, » = 4 and #,; the
Lorentz metric, to the Petrov classification since the result depends uniquely on
the multiplicities of the principal spinors in the corresponding spinor of the Weyl
tensor. The complete procedure provides a kind of maximally generalised Petrov
classification in the sense that we classify all covariant derivatives of the Riemann
tensor that are necessary to provide a complete classification of the geometry. It
works for non-empty spaces and spaces of arbitrary dimension n and frame metric
ni5. It also works for any geometry, regardless of whether the metric satisfies any
field equations, in a sense it is a purely geometrical classification.

The procedure given by Kalhede is similar to the one first suggested by Brans
[4]. The main difference lies in the fact that Brans first calculates the Riemann
tensor and its covariant derivatives and then determines a canonical form for
them, starting with the highest derivative. In the procedure described above the
process is made simpler since we do this successively starting with the curvature

tensor.

1.5 Canonical Forms for the Weyl Spinor and

its Invariance Group

In this section we restrict ourselves to general relativity, i.e., the case where the
manifold M has dimension 4 and possesses a Lorentz metric. Instead of working
with the tetrad components of the Riemann tensor and considering transforma-
tions in ﬁl of the frame one works with the dyad components of the correspond-
ing Weyvl spinor and considers SL{2, C) transformations. One can do this because

of the following two results [3]:

1) The tetrad components of a tensor in a Newman-Penrose null tetrad are

the same as the dyad components of the equivalent spinor.

2) SL(2,C) transformations of the dyad correspond to proper homogeneous
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Lorentz transformations (L)) of the Newman-Penrose null tetrad.

The dyad {¢g, (!} and the Newman-Penrose null tetrad {I#,n*, m* m*} are
related by the equations:

=K
" = olip (5 (o
n = oy CiTy
=B
m* = ok (3, {1.5.80)

— A=E
M = 04g {{ (o

where ¢y are the connecting quantities which relate spinors to tensors,
otherwise known as the Infeld-Van der Waerden symbols.

The spinor equivalent of the Riemann tensor can be decomposed as follows:

Eapcoapop = VUapp €4p €op +€apécp ¥ apor
+ eapeon Copwp + ecpean Parop
+ A{{eapenc + €ac€np Jeam o
+ eapecp(esp €per + €a0 €pp )}
with
Vaisrp = Yianp) (1.5.81)
and
Papsp = Oumam; = Papsm (1.5.82)

A will represent the Ricci scalar, the Ricel spinor ® 4545 represents the
trace-free Riccl tensor and the Weyl spinor W sgp represents the Weyl spinor.

In the vacuum case, only the Weyl spinor does not vanish. Because the Weyl
spinor is totally symmetric it can be written as a symmetrized product of 1-

spinors, with the multiplicity of these principal spinors determining the Petrov
type {3].

Petrov Type Weyl spinor
I Warep = aPprcdp
I VU ancp = aaapforyp)
D Uarep = qaasfcBp)
11 Wamop = aqaapacPp
N U spop = Qaapocap
0 Yaigon =0
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where a4, 84,74 and 64 represent non-proportional spinors.

All transformations in SL(2,C) can be represented as the product of three
matrices as follows:

A0 10 1 b
(0 1/,\) (a 1) (0 1); Mabec (1.5.83)

The first matrix will be denoted by Ty, the second by T; and the third by T5.
Under transformation Ty the dyad {(#,({!} transforms as:

G — A
G — A (1.5.84)

Under T3 the dyad transforms as

~A4

So

A
- Co

Gt — ¢+ ag (1.5.85)
Under T3 the dyad transforms as:

¢ — G + b

-4

— G (1.5.86)

For an insight into the geometrical interpretation of these transformations one
looks at their affect on the tetrad vectors by using the relations 1.5.80. Hence,
under Ty, letting A = re”, the tetrad transforms as:

# ri

_

n* — rip*
_—
—

m* > m (1.5.87)

Fizia e =20

Thus, we have that T; represents a rotation in the {m,77} plane and a boost

in the {I,n} plane. Therefore, we call T} a spin and boost transformation.

Subject to T, the tetrad transforms as:
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E.U- —_ !}J
n* — n* 4+ am +am” + agl®
mY —s m* + al® _ (1.5.88)
m — m* 4+ gl

Hence, we have that T, represents a rotation about the vector {#. Therefore,

we call T null rotations.

Under T3 the tetrad transforms as

I 4 bt 4 bm* -+ bbn#

r —

n* — n*

m* — m* + bn* (1.5.89)
m —— W+t

So that T3 represents a rotation, but this time about the n# vector. These

transformations are therefore also called null rotations.

We now investigate how the components of the Weyl spinor transform under

these transformations. Using the standard notation [28]:

Uy = 0%0F0%0P¥ snp

U, = 0P PV, pp

¥, = 0P PV pp (1.5.90)
Uy, = o1 PPV gp

¥, = ABELYpp

it is clear that Wg, U,, W,, W5, Uy under 7} transform as follows:

T, — M,

U, — A%

v, — U, (1.5.91)
Uy, — A2,

T, — Ay,

Subject to T they transform:
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¥y — Wy

v, — P, +3¥%,

¥, — T, +280, +7°¥ (1.5.92)
¥, — U3+ 330, + 3370, + Y,

¥, — U, +4a¥, + 63T, +43°7¥, + 7',

Under 75 they transform:

Uo + 400, + 6% 0, + 40°T5 + 'O,

U, + 300, + 3520, + b°0,

U, + 2005 4+ b0, (1.5.93)
U3 + 00,

vy

[ A A

We now concentrate on determining a canonical form for the Weyl spinor and

the corresponding invariance group for each of the Petrov types.
Petrov Type |
For Petrov type I the Weyl spinor has the form:

Vapep = aaPpycdn (1.5.94)

Since the principal spinors are determined only up to a complex scalar factor.
we can arrange that o34 = 1 and choose {a?, 84} as our dyad. In this dyad ¥y
and ¥4 will both be zero as they will involve the contraction of two a's together
and two $34s together respectively. We will denote the contraction as8* by

(a/B3), so that the full set of components of the Weyl spinor are {up to a constant

factor):
Uy = ¥y=0
Uy = 6(a/B)(B/a)(v/a)(§/a) = —6(v/a)(8/a) # 0
Vs = 6{a/B)(B/a)(v/B)8/B) = —6(~/B)(8/B)# 0 (1.5.95)

Ve = 4[(a/BYB/a)(v/a)(6/B) + (af B)(B/a)(v/B) (8] )]
= —4[(v/a)(é/8) + (v/B)(8/a)]
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These equations are obtained taking into consideration that for any two
spinors a43% = —f40, and that the four principal spinors in 1.5.94 are non-
proportional and therefore have a non-zero contraction with each other. Since
W, is a sum of two terms it could possibly be zero.

Firstly we use a T} transformation to obtain:
Uy = Uy = (Trp)/? (1.5.96)

where ¥¥ and ¥¥ represent the untransformed values given in 1.5.95, while
keeping ¥y = ¥, = 0 and leaving ¥V, unchanged. We now apply a transformation
of the form:

( ! 1) (1.5.97)
_1/2 12

so that the components transform as follows:

‘I’l — 0
U — il (1.5.98)
‘1’3 —s 0
1 3
v, — —5‘1’1+§‘I'2
It is clear that ¥q and ¥4 can only be zero if ¥, = -—-g-'lIfl or ¥, = %\I’l

respectively. Let {y/a)(6/8) = X and {v/B8){(§/a) = Y then one can easily
show by means of 1.5.95 and 1.5.96 that this can only be satisfied if X = Y.
On the other hand, from the definition of X and ¥ we have that X =Y implies
that y182 = 726, or:

T1/72 = 61/62 (1.5.99)

However we see that 1.5.99 contradicts the assumption made that v* and
&4 are non-proportional spinors, so that we can conclude that neither ¥y or W,
transforms to zero under transformation 1.5.97. So that now we can use a spin
and boost transformation to make ¥y = W, while keeping ¥; = ¥; = 0 and

leaving ¥, unchanged. So that we obtain as our canonical form for Petrov type
I:
Uo=W,#0, ¥V, =¥3=0 (1.5.100)

where ¥, may or may not be zero.

My means of 1.5.84, 1.5.85 and 1.5.86 we see that the canonical form 1.5.100
fixes the parameters A, a and b to certain discrete values, so that the invariance
group 1s the 1dentity.
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Petrov Type 11
The Petrov type Il Weyl spinor has the form:
Vicp = auapBfern (1.5.101)

We choose as our dyad:

A= ot (1.5.102)
and
A 3%
= T (1.5.103)

so that the dyad components of the Weyl spinor satisfy:
U, Wa# 0, U=V, =0,=0 (1.5.104)

Any swapping over of the basis or mixing of the dyad would change the
zero/non-zero pattern given above. so once again only transformations in 77 will

leave the components invariant. The matrix form of T3 is given by:

A0
( 0 1 ) , A€ecC (1.5.105)

So that, again by 1.5.91 the components 1.5.103 transform in the following

way:
li’g = lIfg N &’3 = /\_2‘113, lA'I;(J = li']_ = LqI";] = 0 (15106)

Invariance requires that A = +1. so that as before the invariance group is the
1dentity.
It is obvious that the canonical form in this case is obtained by fixing ¥3 =1

with all other components zero except W,.
Petrov Type 111

The Petrov type 111 Weyl spinor has the form:
Yapop = apaapocfp (1.5.107)
We choose as our dyad:

o =at (1.5.108)
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and
i 34
{ =5 (1.5.109)

which is a normalized dyad since it satisfies the condition (p4(f! = 1. With this
dyad we can contract the Weyl spinor with at most one {J' for a non zero result,
otherwise we would contract two as giving zero. On the other hand, contracting
with four {{s gives zero since we would be contracting two 3%s. So that in this

basis, the components of the Weyl spinor are given by:
‘1’3%0, ':.[JoleH:lI’z: 4=0 (15110)

We now investigate the SL(2,C) transformations of the dyad which leave
these components invariant. It is clear that any swapping around of the dyad or
any mixing of the dyad would not leave the components invariant, so that only

transformations that preserve this pattern are the ones in Ty given by:

A0
rec 1.5.111
(0 1/,\) A€ ( )

Hence by 1.5.91 the components 1.5.110 transform as follows:
1HD3=,\‘2LII3 . ‘i}ozlifl =li'2= ﬁ’4=0 (15.112)

where W refers to the transformed value. We then have that for the components
to remain invariant A = #£1. Since 1.5.80 relates a tetrad vector to the product
of two dvad vectors, both transformations with A = +1 and A = —1 correspond
to the identity transformation of the tetrad. We then have a zero dimensional
invariance group.

We can obtain the simplest form possible, i.e. the canonical form, by choosing
a special dyvad such that V3 is one and all the other components are zero. In
this case the invariance group, i.e. the group of transformations of the dyad
which leave the canonical form invariant, is the zero dimensional identity group.
Because the invariance group is zero dimensional, this canonical form determines

a finite number of dyads and hence tetrads, actuaily two dyads and one tetrad.

Petrov Type D

For Petrov type D the Weyl spinor has the form:

Vigep = aaapBofp (1.5.113)
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We choose as our dyad:

@ = o (1.5.114)
and

. 54

oA = e (1.5.115)

so that in this case the dvad components of the Weyl spinor have the form:

1112-750, qjg=‘p]=‘l’3=lp4=0 (15.116]

It is easily seen that the transformation:

A0
. Aec 15117
( 0 1/ ) © (15.117)

will leave the pattern of zeros and non-zeros invariant, and that because of the
symmetry between o? and B? in the Weyl spinor, a transformation swapping
them over, i.e.:

0 a
( e o ) , accC (1.5.118)

will also leave the paitern invariant. Any transformation other than 1.5.117 and
1.5.118 will involve mixing the dvad vectors and will therefore alter the pattern
of zeros and non-zeros of 1.5.116. It is easily shown that transformations 1.5.117
and 1.5.118 leave the components of the Weyl spinor unchanged, so that these
two sets of transformations together constitute the invariance group. However

transformation 1.5.118 can be written:

( 0 “):(“ 0 )(”0 1) (1.5.119)
—1/a 0 0 1l/a -1 0

so that the invariance group for tvpe D is made up of the following types of
transformations:

A0 0 1 §
(0 1/)\)’ AeC; (_1 0) (1.5.120)
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And because A 1s complex, the invariance group is a two dimensional subgroup
of 5L(2,C), with the pattern 1.5.116 being the canonical form. Furthermore,
because the invariance group is now two dimensional, the canonical form does

not hmit us to a unique dyad but to an infinite number of dyads.

Petrov Type N

The Petrov type N Weyl spinor has the form

Vaipcp = aaapacap (1.5.121)
We choose as our dyad:

¢ =at (1.5.122)

and {{* an arbitrary spinor satisfving (p4¢* = 1. It is clear that any component

involving a contraction with a? will be zero so that we have:
lI’_»l=]_ B LI'c;:\I’]:‘I’g:lI':_:,:O (15123)

In order to preserve this pattern we cannot consider any transformation of
¢4 that mixes in any ({!. Furthermore we can consider a transformation of (;!
such that we multiply it by 1 or +i and add in any amount of (g, since this
transformation will keep ¥4 = 1. The only transformations of SL(2.C) that

satisfy these conditions are:

ﬂ:(_l_ ?) , a€C (1.5.124)

7]

and

| ]
oy
Hm—

10 |
+i| - , bec 15.1:

on the other hand transformation 1.5.125 can be written:

(o))

so that the following set of transformations constitutes the invariance group for

.126)

14

type N:
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0 :
4! acc: |V ° (1.5.127)
a 1 0 —

which is a two dimensional subgroup of SL(2,C). The canonical form is obviously
given by 1.5.123. Because the invariance group is a two dimensional group the

canonical form limits us not to a unique dyad but to an infinite number of dyads.

These results can be used to refine the upper bound on the number of covari-
ant derivatives which need to be calculated in order to defermine equivalence.
The equivalence theorem sets this upper bound at 10 for a four dimensional space.
For Petrov types I, II and III the invariance group of Wuy is zero dimensional
and therefore cannot change. If there are ng components among the ¥4 which
are functionally independent with respect to the coordinates a#, then only 4 — ng
functionally independent components remain to be generated. At least one new
functionally independent component must be generated per differentiation for
the Karlhede algorithm to continue, so that after at most 4 — nq differentiations

all functionally independent components must have been generated, so we have:
Petrov types 1,11, 11T : p+1<5—ng (1.5.128)

So that at worst we would need to calculate five covariant derivatives for these
Petrov types.

For Petrov types D and N the same argument as above can be applied, the
only difference being that the invariance group starts off at zeroth order with
dimension two and therefore could drop one dimension at each differentsation

down to zero dimensional. Hence we have:
Petrov types Dand N : p+1 <T—nyp (1.5.129)

So that in the worst case we only need to go to the seventh covariant derivative
for these Petrov types.
We should emphasize that the worst possible cases of values five and seven

assume that:

1. The ¥, are constants (i.e. there are no functionally independent compo-

nents).
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2. The dimension of the invariance group and the number of functionally

independent components do not both change on differentiating.

3. At most one new functionally independent component is produced on dif-
ferentiating.

4. The dimension of the invariance group goes down by at most one dimension

on differentiating.

So that in actual calculations it seems highly likely that less derivatives will
be needed. In fact, for all calculations performed to date it has been found
necessary to go to at most the fourth derivative [21].

Note that these upper bounds will apply to non-vacuum as well as vacuum
solutions. From the decomposition of the Riemann spinor 1.5.81 and 1.5.82, we
see that in the non-vacuum case as well as the Weyl spinor one must consider the
Ricci spinor ® 4g4p , which represents the trace-free Riccl tensor. Hence, for the
non-vacuum case any invariance group will have to keep the dyad components of
the Ricci spinor invariant as well as the dyad components of the Weyl spinor, so
that the invariance group will either be of the same dimension as in the vacuum
case or of smaller dimension. This means that the upper bound in the non-
vacuum cases will be the same as in the vacuum cases.

The only case which we have not considered is the conformally flat case,
Petrov type 0, where the Weyl spinor vanishes. We will not, give a proof here, but
by proceeding in a similar manner to that above and considering the dimension
of the invariance group of the Ricci spinor, it can be shown that the upper bound

for this case is also seven [18].
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Chapter 2

A Formalism Invariant Under
Null Rotations

2.1 The Formalism

In this chapter we present a formalism which 1s invariant under null rotations
and which will prove later on o be very useful in the Karlhede classification of
Petrov type N solutions [33}, [31].

As is well known, many calculations in general relativity are simplified by the
use of a tetrad formalism. As an example, we have the Newman-Penrose (NP)
formalism [23] which uses a (complex) null tetrad, {I°,n%, m® m*}. This formal-
ism has a very natural formulation in terms of spinors which i1s not surprising
since the hasis chosen is a null tetrad.

Such tetrad formalisms have particular use if the basis vectors or spinors are
not completely arbitrary but are related to the geometry or physics of the space-
time in some way. Take for example a spacelike 2-surface, where we can choose
a tetrad so that [* and n® point along the outgoing and ingoing null normals of
the 2-surface, and the real and imaginary parts of m® and 7°® are tangent to
the 2-surface.

¢ e

e, 7S
The vremaining gauge freedom in the choice of tetrad is the two dimensional
subgroup of the Lorentz group representing a boost in the directions normal

to the 2-surface and a rotation in the directions tangent to the 2-surface. In
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spinor formulation, one chooses the flagpoles of 0o* and :4 to point along the
directions of the null normals and the remaining gauge freedom (which maintains

the normalization o4¢4 = 1) is:

o* — do?, A — AT A (2.1.1)

where A 1s an arbitrary (nowhere vanishing) complex scalar field. Transformation
2.1.1 is called a spin and boost transformation.

Under transformation 2.1.1 some of the NP spin-coefficients (those of proper
spin and boost weight} are simply rescaled, while other spin-coeflicients trans-
form in a way which involves the derivative of A. These “badly” behaved spin-
coefficients can be combined with the NP differential operators of proper spin
and boost weight, thus obtaining a new formalism in which all quantities sim-
ply rescale under spin and boost transformations. The formalism described 1s
the Geroch-Held-Penrose (GHP) formalism [25] and is particularly useful in the
study of the geometry of spacelike 2-surfaces where the differential operators
and spin-coeflicients have a natural interpretation in terms of the intrinsic and
extrinsic geometry of the 2-surface. The GHP formalism has also proved to be
very useful in the Karlhede classification of Petrov type D solutions since the
invariance group in this case is that of spin and boost transformations. Collins
used the GHP notation to lower the bound from seven to three for vacuum type
D solutions {10] and from seven to six for the non-vacuum case [9}.

The GHP notation is ideal in situations where two null directions are singled
out, however in many physical situations one only has one preferred null direction.
Examples of such cases are null congruences (which often arise in connection with
radiation), null hypersurfaces or wave fronts and Petrov type N space-times. In
this case we may choose the flagpole of 0? to give the specified null vector and

the remaining gauge freedom in the choice of spin basis 1s:

o — o, A — A a0t (2.1.2)

where a is an arbitrary complex scalar field. Note that a null vector may not
determine a unique o, however in the case of type N spacetime o* is unique.
In terms of the null tetrad 2.1.2 becomes:

¢ — 1", m®* — m" +al?,

m* —m +al®, n®* — 0"+ a1 +am® + aul® (2.1.3)
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Such transformations form a two (real) dimensional subgroup of the Lorentz
group representing null rotations about I%.

Now the idea 1s to develop a formalism from the NP formalism that will be in-
variant under the two dimensional group of null rotations. We begin by studying
how the spin coeficients of the NP formalism transform under transformation

2.1.3. We use the same notation used in GHP formalism:

K — K (2.1.4)
o —— 04 ax (2.1.5)
p— p+as (2.1.6)
T— T+ ap+ac+ aars (2.1.7)
B — B+ 70 + ac+ aax (2.1.8)
§— ' —ap—ae— @k (2.1.9)
€ — €+ ax (2.1.10)
¢ — ¢ —aa(e+p)+af —apf+71) -0 —a@x (2.1.11)

& s &+ T2+ p) — a@(2e + p) + @25 + 77) — aT(2¢ + p)—

—8°¢ + ac’ — a@°k — AT — T — abd — aqDa (2.1.12)
o — o' —F(2e+p)+al23 +7)—Tx—-da—aDa (2.1.13)
p— p'— 207 —2a3 — o+ ar’ —ai’k — b7 — aDa (2.1.14)
7 — 7~ 2ae - @k — Da (2.1.15)

We now look for invariants under the group of null rotations. The effect of
a null rotation on a spin coeflicient w is denoted by H(w) as an example we
have H(p) = p + ax. Note also that the spinor invariants with one primed or
unprimed index will be referred to as a 1-invariant while an invariant spinor with

P unprimed indices and Q primed indices will be referred to as a P,(3-mmvariant.

(A) Taking linear combinations of the spin coefficients we get the following

invariants.
p—E€—p—¢€

K — K
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{B) Taking linear combinations of the product of the spin coefficients

(k,0,p, 7,8, 8, ¢,¢) with spinors (04,t4,04,74 ) we have the following cases.

(1) l-invariants.

K4y =kos and K4 = Koy (2.1.16)
The P,Q-invariants are of the following form.

Koy apay.ay = K04 ...04,04 .08 o (2.1.17)

(2) H(o) is a function of o and &, we therefore look for an invariant by taking
linear combinations of the product of the spin coefficients ¢ and x with the spinor
basis, ie, of the form fo + sk with f,s € {04,04,t4,74}. We then insist that
this linear combination be invariant under the effect of a null rotation, ie, that
H(fo +sk)= fo+ sk, .

In this case we find f = F04 and s = FT4 such that our l-invariant is
SAf = 0'5,4; —_ !‘\‘-IAf (2118)

To obtain P,Q-invariants we again take symmetric products with the spinor
basis. As an example we have :

S(A’B’} = 0‘5‘4159 — &T(_,yﬁg) (2119)

(3) H(p) is a function of p and , we look for an invariant of the form fp+ sx
with H(fp + sk} = fp + sk considering f and s to be 1-spinors. In this case we
find f = M’04 and s = Fey4 such that our invariant is :

Rp = poy — Kty (2.1.20)
Again to obtain P,Q-invariants we take f and s to be P,Q-spinors. For example
Riap = po40p — Ko0(aLp) (2.1.21)

(4) H(7) is a function of 7, p,o and s so we look for an invariant of the form
Jr+sc+np+me with H(fr+soc+np+me) = fr+se+np+me. Wefind by
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solving this last 1dentity that f, s, n, and m cannot be 1-spinors and must have at
least one primed and one unprimed index. Thus as an example of a 1,1-invariant
we have:

Tuy = T0404 — POALy — Ot404 + Kigly (2122)

(5) H{3) is a function of 3, ¢, ¢ and &, this case is similar to that of (4), thus
as an example of a 1,1-invariant we have:

BAA’ = ;30;15_,4: - EO_4?At - 51_46,4: + KZI,AIAf [2123)

(6) H(3') is a function of §’, p.¢ and « therefore we look for an invarjant of
the form f3' + sp + ne + ms. By solving the identity H{f#' + sp + ne+m«) =
fB'+ sp+ne+mn we conclude that f, s, n, and m must be spinors with at least
two unprimed indices. Our symmetric 2-spinor is:

B'(ap = Bos0p + (p+ €)opatp — Ktatp (2.1.24)
Since we are considering that 04¢* = 1 we have that 3/ = —a so that one can

write:
Aug = aog0p — (p+ €)oaip + Ktats (2.1.25)

{7) H(e } is a function of € and &, this is the same case as (3) so we have as
a l-invariant and 2-invariant:

EFa=cos—riy (2.1.26)

Eap = o408 — k0(atp (2.1.27)

(8) Finally we have H{¢’') as a function of ¢, ¢, 5, 3,7, p, 0 and . We look for
an invariant of the form fe' + se + n3' + mpB+ pr + gp+ go + hx. By solving the
identity H{fe' + se+n3 + mB+pr+qgp+go+hu) = fe+se+nf' +mB+pr+
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gp + go + hx we conclude that f, s, n, m, p, q, g, and h must be spinors with at

least two unprimed indices and one primed index. Thus our 2,1- invariant is
E'ypy = 04004 + (B4 7)0(ats04 — TLatgda

—~Blo408Ty — (€4 p)o(aip Ta + Ktatply {2.1.28)
Again because we are working with a normalized dyad we can write:

Gapy = Y040B04 — (/3 + T)O(ALB)ﬁA: + TLAtgOa

— 0401y + (p + 6)0(‘4531 Ta — Rialply (2129)

Note that the above invariants need not be symmetric. For example, in case

{6) we have a non-symmetric 2-spinor invariant of the form

B!AB = ﬁrOAOB + poaotp + €140 — Kialp

In future we shall only be working with symmetric invariants for reasons that
will become clear later on. Furthermore all information given in the invariants is
contained in the symmetric part, for example the antisymmetric part of B’ is
p — ¢ and this information is contained in Ry — E4 = (p — €)o4. So that one does
not loose information by taking the symmetrized forms. Hence we write down

all invariants which will be of use to us in future:

K = & (2.1.30)
Ry = poy— kiy (2.1.31)
S¢ = 00y — Kla (2.1.32
Tie = 70404 — posTy — OLaOy + Kialy (2.1.33)
Bay = Po 04 — €0aTy — 01404 + Kialy (2.1.34)
Asp = aoqop — (p+ €)ogatp + Ktatp {2.1.35)
Eys = coq — Kty (2.1.36)
Gapy = 7040804 — (B 4+ 7)o(4aLp 04 + 0Latply
—0040BTy + (p + €)o(atyTa — Kiatply (2.1.37)

It 1s easily seen that all invariants may be obtained from Gapy and T4y

by contracting with the invariant spinors o4 and *. The quantities given in
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equations 2.1.30-2.1.37 are in fact easily obtained from the dyad components of
the spinor analogue of the Ricci rotation coeflicients.

Let (4 = {o%,¢*) be a normalised spinor dyad with dual (%, so that bold
indices denote dyad components. Then if we follow Newman and Penrose [23]
and define Fﬁcc, = CBDVcchg then we have:

K = Tooor (2.1.38)

Ra = Tooae (2.1.39)
Sar = Toepoa (2.1.40)
Taa = Tooaar (2.1.41)
Baa = Toaoar (2.1.42)
Ex = Toaor (2.1.43)
Awxaby = Toasw (2.1.44)
GaBar = lyapar (2.1.45)

Notice that the indices above are all bold. The quantities obtained by setting
a bold index to zero is also Invariant, but setting a bold index to one is not
invariant since this corresponds to contracting with an ¢* which is the direction
that 1s not invartant under null rotations.

We now study the way the NP operators iransform under the group of null
rotations. We take a l-spinor Ay = Ajoa — Aota and consider the transform of
DX, 624, A4 and D’ 4 taking Ay and A to transform in the following way:

)\0 — /\0

)\1 — ,\1 +EA0

(1) Considering the operator D = 045* V 44 we have that D)o and DX,

transform as follows:

D/\g — D/\g

(2) For 6 = 0214 V 44 we have:
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dAg —= 6ho + aD X

dd1 — dA L + aDM +@hAg + XbT + a@Dro + arg DE (2.1.47)
(3) For § = (A5¥V 44 we have:

6’A0 ——p (S’)\@ —|-'{'I_D/\o

8M — M +aDA +86 %+ b T+ T Dis + 3D (2.1.48)
(4) Finally for D' = t47Y ¥V 14 we have:

D’)\o ———— D’/\o + aé')\o + EI_(S}\Q + CEED)\G
D'A\y —s D'M\y +ab'hy +a@8\ +aaDl +aD’X (2.1.49)

+Xo D' + aGé’ dp + arod'@ 4 T8N + TAodT + aq” Do + a@gro DT

We look for invariants under transformation 2.1.2. We take linear combina-
tions of the products of {DXg, DA1.8Xo, 61,8 Ao, 6" A1, D' Ao, D' A} with spinors
{04,0.4,t4,T4 }, products of A\g with {7/, p', &', &', k,a,p,7, B,¢, 5, ¢} and spinors

{04,049, 64,74}

(1) We have that H(DX,) is a function of {DXg, DAy, Ao D@} and that H(7') is
a function of {Da, ', ¢} and k. Therefore, H{DA4) is a function of {DXg, DAy,
Ao€, AoT'} and Agw. As before we look for spinors {, s, n, m and p such that
H(fDXo+ sDM +ndor’ + mAge + phos) = fDAo + DA +nhoT' +mAge+ prok.
We find a symmetric invariant of the form:

D(A )‘B} = (D)\l —+ /\UTI)O_.;OB + (_D)\O -+ 2/\06)0(_4!-3}
— ApKtalp (2.1.50)

(2) H{6X4) is a function of {éAg, 61, DAy, Dho, Aoa D@} and Agéa and H{p')
is a function of {p’,7',3,0,¢,x,6a} and aDa. We therefore look for spinors
fos.n.m,p,q.9,h, z,x such that H{ féAo+ 36X +nDAy +mDAs+prop’+qror’ +
GAol? + R0 + Ao + Thok) = [édg + s6h + nDA + mD Ao + phop’ + ghot’ +
grolF + Rhpo + zhge + xAgx. We find by solving this identity that our symmetric

invariant is:
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5A‘{A ’\B) = (6/\1 + )\op’)ﬁAiOAOB + (—QAUE + D)\[))IA!O(ALB)
- (.D)\l - )\DT,)IAJ a4q05 — (5/\0 - 2)\0ﬂ)5A¢ L(AOB} (2151)

— AODatatg + Aokiataln

(3) H(6'A4) is a function of the set {§'Ag, Do, 8 A1, DAy, Ao@BDa, Mpé'@}. Fur-
thermore, H(c’) can be written as a function of the set {a', 3/, 7', ¢, p, &, 6@, aDa},
H(f#") = function(#, ¢, p, &), H{e) = function(e, ), H(p) = function(e, ) and
H{%) = function(x). Therefore we solve the identity H{fé'ho + s8'A1 + nDAp +
mDA + pAed’ + ghof + ghoT’ + hAge+ zhop + 2Aok) = fE Ao+ 88 +nDAg +
mDA + proo’ + gro + gror’ + hAoe + 2Aop + 2 Aok for spinors f,s,n,m,p,q,g,h,2
and x. We find our symmetri¢ invariant to be:

EAB /\C'] = (1’5}}.1 + /\00”)0‘40300 - (6’/\0 4~ .D/\l 4+ 2)\0‘3' —+ )\DT’)
{(40BOC) + (Dz\o — 2Xoe — /\op)t.(ALBOC} + AgKtatBlc (2.1.52)

(4) Using the same line of thinking as before we have H(AM4) = function(
DI)\D-: D!Als 6AD? 6/\1's 6f)‘01 6’)\1 ’ DAD-. -D/\l's )\U's K"a ei's ;0’3 J’a ﬂ'} Ty ﬁ’, Trs &4, "‘.') and

using a similar process used before we find as our invariant:

D'owag rey = (D'A + Aor')osopocto — (' + Aoo)
04080cTer — (X1 + D' )Xo + 2Xo€” + Xop')i(a0800) 00
+ (DA + 80+ 2208 + dot Vea0B0ogTe + (8Xo  (2.1.53)
— 2Xof = doT)yatBocy oo — (DAg — 2hoe — Aop)

(atBOC)Ier + AaCtatpicBo ~— AoKtalBlolo

We now proceed to determine expressions for operators 2.1.50, 2.1.51, 2.1.52
and 2.1.53 acting on P,Q-spinors. We begin by considering a symmetric 2-spinor

$(am which in terms of the basis spinors can be written as:

¢(AB) = acaop + bf.(AOB] + ctatlp

It is usual to define the components ¢ 5 of the spinor by considering con-

tractions thus one usually writes:
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$o = ¢apot® =c
$1 = dago’® = —1/2b (2.1.54)
¢ = ¢apt P =a

However it turns out that it is more convenient to use a convention where we

write:
$o = ¢agoo®
$1 = —2¢480"° (2.1.55)
¢y = Papct”
Thus we have:
$(amy = $20408 + P10(4tp) + dataln (2.1.56)

We will denote the components obtained using the usual convention 2.1.54
by ¢sp-

Now considering a 1,1-spinor ¢45 we have in our convention:

Pap = $11:040p + Gr00047p + Go1ta0p + doviale (2.1.57)
with

o = oo

9':”01' = “C.’E’OI’

(ﬁ’lo, == ‘—‘¢10] (2.1.58)

¢5’11! = ¢

For a general symmetric P,Q-spinor of type (N, N') using our convention we

write:
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NN
Py Ay Ay, D B O O Lheyy ---bhy)
i

5{‘41...5,4;‘,'5‘4-*:,“...EA:N,) (2.1.59)

The relationship between the two conventions is easily seen to be given by
the following expression:

1NV — (_1)[N+N+t+t’} t'(fv —_ t)‘ (t’)‘(N" _ tr)' NN

L¥ Nt (j\”)! L (2'160)

We recall that any 2-spinor can be written as a sum of products of 1-spinors.
We will consider the symmetric 2-spinor ¢iap = Aapp with A = Ajog + Aota
and g4 = 104 + Hot4. So that we can write:

dap = f1A1040B + (p1ho + por)ogats) + fodotats

and

¢ = ,1-51/\1

$1 = (p1ho+ por1) (2.1.61)
C.f’o = #0/\0

We now proceed to determine D¢ 4m . By applying the Leibniz rule we can
write:

Dicoap = 1/3(AaDprc) + paDiarey + AcDapg
+ ,{LCD[BAA) +,(l_4D(3)\c) + )\BD(AF'»C)) (2.1.62)

By use of equation 2.1.50 and 2.1.61 and in terms of the new convention

equation 2.1.62 becomes:

Dicpag = (Dés— ¢17")ocosop + (Ddy — 2¢o7’ — 2¢¢1)o(coain
+ (P15 + Do — tedg)yctaon + 2¢oktctaty (2.1.63)
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To obtain expressions for P-spinors the process is similar. We now consider
the case where we have a P,Q-spinor. We start out considering a 1,1-spinor ¢ .5 .
Naturally 1n this case we need to know how the new invariant operator I acts on

the complex conjugate of ¢4 say ¢,. To simplify things we define a new operator
DA__;! :

EA’D(AéB} = DA’(A ¢B} (2164)

with

Dy ¢5y = Dua 65 = 94 Diadp = 0aD(a ¥p)

This new invariant operator will be the one we shall work with from here on
and will be referred to as D.

Now suppose ¢4p = Asfig and therefore:

Povr = Aoty

$orr = —Aofiy

$r0 = —MEgy (2.1.65)
$1r = My

Again by applying the Leibniz rule and using expressions 2.1.50, 2.1.64 and
2.1.65 and the new convention we find an expression for Deo $4p symmetrized
on all primed and unprimed ndices:

Do ¢ap = (Déiy — 10T — dovT)0400000p + (Dors
— oo™ — 2001€)t(40¢) 00 Bp + (Do
— (f)gD:TI et 2@510;3)0140()5(0?9} + (D(ﬁoor - 2€¢00¢ (2166)

— 2edoo 1400 0Oy + ProF0400Te Ty + dorktatcOo O

+  dooRiL a0 tote + doorkiatcl(p Oc)

For spinors with more primed and unptimed indices the process is similar, so

that we can arrive at a general formula for the invariant operator D.
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Let ¢ be a symmetric spinor of type (N, N') given by 2.1.59 then D¢ a
symmetric spinor of type (N + 1,.V' + 1) 1s defined by:

(qu')t,g = Détapy +(N—Drgrp + (N —tEppap
- (N + 1 - t]2f¢g“1'f.,.1 - (Nr -+ 1- tr)2E¢t_]'f_1 (2167)
~ (N+2-76109pa ~ (N +2~t'VF s

We now study the way the new invariant operators é and 8’ act on P,Q-
spinors. Again we have the problem of determining how these operators act on

a spinor ¢. We therefore define two new operators dxps and &g, :

S(cuaya 9B) = B daya P8y (2.1.68)
and
Saiac 08 = Oadluo bp (2.1.69)
with
baon 6By = Odaca 9B (2.1.70)
dcan 0By = bcaa b {2.1.71)

These will be the invariant operators we shall be working with from here on,
and will be denoted by 8 and &'. We now rewrite expressions 2.1.51 and 2.1.52
as follows:

Sioaa dB = Do daa om

{—{D¢1 + 7'da)040BT 4T

(Do — 2¢00)0(4t8) T 400 + PoktatBl a0y }

{(6d1 + Gop')040804 T —~ (60 — 2B ¢y) (2.1.72)

0(atB) D4 T — PoTLALBOyOC |

I

+ +

M
—I(Cv DA’){.—I OB} + O (5,4-‘)(A ¢’B)
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Saac ¥8 = Tab(ucdp

{—=(Dé1 + T'do)oa0B1c) 04

(D¢o — 2¢0€)o(atBie)Oa + Pokiatplcly }

{(6'd1 + ¢o0’)osopocoy — (§'do + 2¢08') (2.1.73)

0(aLBOC)Oa — Popt{atBOC)Ou |

+ +

Fa%
—D s dricy + 8 wia b0

Notice that 3 acts on ¢ in the same way as D actson ¢ with 7/ — p' ;| € —
Bik-—0ag; D-— 6and3&ctson$inthesamewaya5Dacts on ¢ with
e T E— —F ;R — pand D — 4. Also g" acts on ¢ in the same way
as Dactson g withr' — ' e — -3 ; kK — p; D—»Ea,ndé\’actson?ﬁ

in the same way as D actson g with7™ — 7 ;e — 3 ; R — Fand D — §

Therefore, if ¢ is a symmetric spinor of type (N, N’) given by 2.1.59 then a
symmetric spinor 8¢ of type {N 4+ 1, N’ 4 2) is defined by:

(6¢),y = —(D@)yy +(80)ap-2 + (N —1)odys
+ i\’” t + 1)50;—1 F-1 - (N + 1-— t)26¢t—1 =2
+ (J’VJr - +‘))‘),3 Oy —1¢=2 ‘(J\r+2—f)p ¢’t—2‘£‘—2 (21?4)

- (JJV’ +3-t )O’ Qi1 ¢-3

If ¢ is a symmetric spinor of tvpe (N, N') given by 2.1.59 then a symmetric
spinor 8¢ of type (¥ 4+ 2, N’ + 1) is defined by

(5'(35)w —(DQS)W + (§0)12pa + (N —t+1)pde o
+ (N =t")Thege + (N +2—-1)28¢t201
— (N'4+1—=1)2301950 +(N+3—1)0"d1ap (2.1.75)

— (N'+2—t)p 6tap—

For the invariant operator [Y the process is much the same as before. We

define a new operator which we shall work with from here on:
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D peyas ¢oy = oo D'oyas ¢ (2.1.76)
with
D'y d0) = D'woyas oy (2.1.77)

Simtlarly to the previous cases, this new operator will be denoted by D’.

By rewriting expression 2.1.53, we have:

M

Fal
D'poyas ¢6y = B D' pyadoon — 0 bpya detp
Fal
- Yo b pyadcop + 7o Dpya doip (2.1.78)
So that:
D’ = 3 }3‘ s
(DC)(AB GSC) = Qo D)4 QSCOB) — OCD)A qf)cLB}
~ Yo b'pyas d¢y — o Doy dots (2.1.79)

The operator D’ acts on ¢ in the same way as D with 7/ — &;e —

—éhg—rand D — D

Therefore, if ¢ is a symmetric spinor of type (N, N’} defined by 2.1.59 then
a symmetric spinor D'¢ of type (N + 2, N’ + 2) is defined by:

(D'¢) e —(Dg)y — (69),y — (8'0)y + D'drop
(N -1+ 1)T¢t—1,!’—2_ + (Nf - tr + l)rf.gf)g_g,f_]
(N+2—-1)2010p2 + (N +2-1)28drpp {2.1.80)

- (N +3 - t)}l‘-,(fija,t'_'z - (1’\’”r + 3~ tf)?¢3_2,3_3

+ 4

Hence we have obtained four invariant operators D, 8,8’ and D’. For some
purposes an alternative representation of the new derivative operators in terms

of V and T' is useful. We give these below, where the symbol ) indicates

sy
symmetrisation on all free primed and unprimed indices.
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(D@)AA, . . AvA AL Ay = 2 €onacoAVorda, Ay,
sym

E - _Ef a1
—eD"A"FAAJ_GG'O ¢EA2.-.A'N: - €UAPA’A’1,D‘OO ¢A] "‘ANE’A,2!"-A,N’ (21b1)

(6D)AA, . AABAL. Ay = ) €war€oaVoB OA,. Ay,
sym

E = _E .
—eoaTan, 0B 0" 0RA, A, — €Al A A B0O” GA, AyEA,. Ay, (2.1.82)

(6'¢)ABA, ANAAL Ay = 2 oA 0AVBodA, Ay,
Sy

E . B
—covaTan,Boo dEA, A7, — AT Aa,0B0 OA, AyE A, A, (2.1.83)

(D'$)ABA,..AxA'BA"L. ATy = 9 €oAr€0AVBBIGA, Al
sym

E i o
—coaTAA BB O $EA,. A1y — AT AA BB DA, AxEA, A (2.1.84)
We now concentrate on writing the commutators, Bianchi identities and Ricci
equations in terms of the invariant quantities which constitute our new formalism.

Beforehand we define new quantities @, ¥4, W 5, ¥ 1po , Capcp , Po, P, P45 ,
D4, P yp) . Paap)  Plapa » Prapap) A as follows:

B, = Oy = Ogy = P gy 0 0%07 0P (2.1.85)

By = By = P apap o*oPo7F = ‘I)BEH
and

@Bf = (Dyﬁg - ‘I’()-IB (2186)

A B

— !-‘. —
AB4E = 0 g 14T

Qo = Qo = Pupap o
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and

‘i’(AfB«J = (I)Q-EA:EB - 2@1!5(_4331) + (DgrEAtEB

@1 = @10! = @ABAB oAﬁA EB LB = ‘I’B!-B

and

Pp = $058 — Dyip

B

— u —
Asd BiF = ®ggp F1

D11 = Qapyp ©

and

Ppp = ®11:0p0p — PortpOs — Crropip + Popitpis

r r
D12 = Pupsap ot BT E = Dpsp i
and
Pp4p) = P120B040p — 2011:080( 275y — Qo204 Op

+¢)1O*OBI.4'EB' -+ 2@01#!-36[‘43191 - @DD:LBIAFIB’

Dy = By = Dagam 5’4'58‘ B = i P AP
and

@(AB’] = @20_,403 - 2@1OAJB + @ot-Ai.B

‘1’21; = @ABAVB 5‘4, LA{,BIB' = (I)A.BB I,ALBEB’

and

®upp = Pr040p0p — Poposopip — 29111040808

(2.1.87)

(2.1.88)

{2.1.90)

(2.1.91)
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+®@o1:t4tpop + 2810040875 — Paortatple

— l'_
®o9r = Qupap AP P

and
P apapy = P22040804Tp + P20:040BT4TH
—2®1914(40B) 04 0p + Portatpda sy — 2106405 T4 TE
+4®@ 111045 B a Ty + P2004080(4TE) — 2Po11t4tBOTE)

+DooriatnTals

‘I’D = ‘I’g = LIJABCD OAOBOCOD

'1’1 = II’AECD OAOBOC.',D = 'I’DLD

and

Uy ="T0p — Yop

lDQ = lI-'_,;mD OAOB!.C{.D = LI'CD I-C£

D

and
Yo = Yoocop ~ 2W 0ccip + Poicip
W3 = VUpp 0P = Upep BiCL°

and

W scpy = Yaopocop — 3Wy0(g0ocip) + 3V 0ptctp — Yotpictp

(2.1.92)

(2.1.93)

(2.1.94)

(2.1.96)

(2.1.97)
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‘I’q = lIJABCD LALBLCLD

and
Wiacny = Yi040p0cop — 4¥304050c1p) + 6W2040BtctD)

—4V 00atptetpy + Yotatpictp (2.1.98)
Finally:
A=A (2.1.99)

The task of writing out the commutators in our invariant notation is very
lengthy and can be executed in two ways, both being equally extensive. One
way of going about it, is to calculate all terms, starting from the highest order
term, relating to a particular commutator. For example, if we consider the
commutator §D — D&, then we would start off by determining the term {(§D —
Dé)¢} nransa , taking ¢ to be of type (N, N'}. By use of equations 2.1.67 and
2.1.74 we have;

{(6D - D8)d} iy iy = (6D = Dé)dnnw — T Ddénp
+(Dp' = 67"+ 2¢p" — 287" + 7T )dNan {2.1.100)

+(De' — 67 + 265 + 28T + T ) bnn-v

Notice that the Ricci equations involving terms such as p', 7’ande’, which are
terms that transform “badly ” under null rotations, will go into the construction
of the “new” commutators, which is what happens when one constructs the
GHP from the NP notation. In this last case what happens is that all the Ricci
equations which involve derivatives of spin coefficients which do not scale under
spin and boost transformations are used in the construction of the commutators
written in GHP formalism.

By applying the NP Ricci equations and commutators to expression 2.1.100,
and then using the definitions 2.1.67 and 2.1.74 we get:

{{6D ~Dé&)d}nyonia = (B+T) (D) vpansr + w(D'@)neengor

—o(6'd)npeiry — (€ — T+ 7)) N1 v — Yodnan (2.1.101)
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—Dox rn-rs

To calculate all other lower order terms, the method is just the same, so that

one arrives at the final expression which is symmetric on all primed and unprimed
indices:

(6440 Dpo ~ Duy 80 )P4y ..ana .t

= (Baux 98 Do +04dsp Do + £04 D appe —

—045p8 sp0 —~0u Eabppo +0BE4bpBpo

— - = =~ E :
~0aR48ppc )Pa..a, — (Wap04 040000 (2.1.102)
2A - = - E & - & - - =FF
+2A04, 040504 0p0c 07 )bEs,..4 Nt B¢ 04 ,0BOCOD O

DAy ANDA 3 A g

Notice that in equation 2.1.102 one uses the standard sign convention and

not the one we adopted for convenience a while back.

We will now describe a more general but equally lengthy way of determining
all commutators in our new invariant language. The method we refer to involves
taking the general expression for all NP commutators and translating it into our
new language. Hence, we take equation 3.13 of [23], which gives the commutators
written in NP formalism, and multiply 1t by €xnr; enonr s eov and eppe -

ennt €rone v epn (Vag Veg — Vieg Vg )4, 4,
= {exr eavepnw (Crass Vs —Umasp Vi — e Vs

+Tamay Viw )+ experns €NTraps Vav —Tvaps Vay (2.1.103)
—Tupas Vev +Tnpas Voo ) ¢a..a,,
Putting A = L = K’ = L' = 0 and adding on to each side the following

terms:

E
convloasy ( — e€omeDTnmane 07 dEs. 4,

= _E
~ eomUpp an 07 G avpa,. v, )
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E
—eon I pamp ( — €A FN.-’qOA‘ o 6;55‘,12....4' N

= —B
— €onTara, 00 O° du aypa,.x, )

E
—eonTopan (= €ome Tvanm 0% PEa a

= B
— comlma,pN 07 bu.aypa,.a, )

E
—eonTapar ( — eonr Tnaom 0" GEa. 4,

T _g
— eonlara,po 00 G aypa, .4, )

T E
—eonloapp ( — €omrTmgy v 07 bBa.n

T —
= comlary va 0 Gaavpn, 4, )

= E
—conIwap ( — €ormrTusar 07 dpsa,,

= —E
— eomlrma0a 0 G avpa,.q, )

= E
—conlopaa ( — coneDarynvy 0% dEs. 4,

T _F
— comlrmn,vB 0 baavpa,.a, )

™ E
—econIvpaa (| — cormrDarypy 07 dEsy.2

™ _E
— eomTaey 080" Gaavpay, 4, )

£
+ Wapuv €ap €on €oN 04 O PE g,

= N
+ Waparn €4BE€OMEONOy O $a, P4
1f NS

I

+ Pupvnr conCorr€aps 04,07 G4m0,
= E

+ ®Nmup CoNCoMEABO4, O DE.4,

E
— 2AeMaENBEAB oM EoN 04 0 $E 1,
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We get the general expression for the commutators in the generalized formal-
1sm:

coMerM €oNEeN(VAA' VBB — VBB Vaa)da, Ay,
—egNToaBB (oM T MA,NAOTPEA, ATy,
+eoMTM/A, AND® GA, ANE AL .Aly, )

+eoNTMABB (€oMTNA, 040" FEA,.. A,
+eoNTMAr, 400" DAL AKE A, Ay )
+eonToBaA (oM 'NA, MBOT$EA,. A"yl
+eomIMrar, BNO® SA, ANE A, Ay )
~eonTMBAA (oM TNA,0B 0T SEA,. A",

+E€oN FM*Afl,B’OéErﬁbA:,.‘A wEAL Ay, )
—eonToaBB(con'MA, ANOCSEA,. A1y,
+eoMIMAr, NATE G, ALEAL Ay )
+eonDnvamBcomIMa, a00F PEA,. Ary,
+eoMI M/ 0AG" A, ANEA,. Ay )
+eonlomaralcom'Ma, BNOTOEA, A,
+eoMI M AL, NBO" GA,. AVE A, Ay )
—eonTnBraaleomTMa, BooFdEA, . a1y,
+eomIM A/, 0BT DA, AxE A Ay )

+ W ABMNEA'B €M EON/OA, 0E¢EA2,‘A’N,

+0 A BMN EABCOMEONDA!, 0" A, . AyE AL Ay
+¢’ABN'M*€DN50MGA'B'GA*NéE’éAl CANEIAL ATy,
+BNMA/B €oN-€oM EABOA, O~ BEA,. A’y
+AeoNreoM EAB (EMAENB + ENAEMB)OA, 0 $BA, A1y, =  (2.1.104)
coNToaBB (€oM €GNV MAPA, A,

—eon TMA, NAOT PEA,..A,

—eom DT mrar, ANOT BA, . AyEA, Ay )
—eoN' I MABB (€oM @N VoA PA, . Ay,

~eoM TNA;0A 0  PEA,.. A"y,
—eoNI'Mar, 4000 GAL ANEA, Ay )
—eoNToBaas(com eoNVMBPA, Ay,

~ oM TNA, MBOESEA;..A1,,
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—coMI'M/A/, BINOT BA,..AyE AL Ay )
+eoN-TMBAA (€oM €oN VOB @A, A7,

—eomr [’ NAloBfOEéEAp.“A!N,

—eoNT M A, Bo0" DA, AxBA/, Ay )
+eonloanB(coMeoM VANDA, A1y

—eom ' Ma, ANOFGEA, A1,
—eoMIM/A/, N AT GA, ANE A, Ay )
—eoNI'vaBB(coMeoM VAarPA, . Ay,
—eomT'MA; A0 0" SEA, A,

—eomIM A/, 0a0" DA, ANEAL. A"y )
—eoNTomrara (oMo VBN @A, A1,
—conTMA, BNOEdEA, A,
—eomIMA, NBIE $A, . AxEAr, A", )
+eonInprasa(eoMeoM VBoBA,. A1y,

—eom 'MA, Boo" 0EA, . A,
—eoMI'MrA/, 0BT PA,. ANE AL Aly )

W A BMN €A/Br €M €0NOA, OF PEA, A/,

+% A BMNCAB EOMﬁoNﬁA'l,aE’éA, CANEAL Al
+P®ABNM CONEM 5A'B’5A'1,5E, A, ANE AL A,
+BNMAB CoN-€oMEABOA, OC SEA, . A",

E
+AcoM oN€AB{EMAENB + ENAEMB)OA, 0 PEA,. A’y

By further contractions with os and s and symmetrizing on all indices, and
making use of equations 2.1.38 through 2.1.45 and equations 2.1.81 through
2.1.84 we are able to obtain equation 2.1.102 and all the rest of the commutators
which we write below:

(8'wa bcpe — Bcpe 8 aap )day aya .t
= (0aR4D'posc — 04 R4D'pone + 04 Becb'cas -
—ocApo 8 4ap + 04 Assbope — 04Bapbcpo )

byt o~ (Tapo 0405000y 55 — B apy 00050004 ,0F ) (2.1.105)

- E e - E
ar.aypa 4y — (Paby 000500 04,07 ~ Wapc D4 0p 00 04y 07)
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PEAy.. 4

(D' asr Do — Deo D aan )bay it g
(09 Gapa Do + oG apa Deo + 50 EcD apap +
ocEcoD spap —05Tco 8’448 — 0cTBo 4ap )
- — _ E - = E ;
¢A1~-A’N! —(‘I’AB(; 04 0p 0¢c 04, 0° + Papa Op 0C 0C04, 0 ) (2.1.106)
(T 5. 3% 1 @ - - B
¢p4..4,, — (¥apo 04080004, 0 + Rasp 0B0cTC Dy T )

PAy ANPA 1

(6445 D'ocop ~D'poop 6445 )04yt ot
(39 Tas D'pcop — 05 Bay D'scop
—04A4p D'pcop —op Gaco 8aap + 08Gope barm ) (2.1.107)
bay.a,, +Bapre 0cO0Op oy F Es 4y, +
+W ypop 04080004 O Gay AyBA A 4
It is worth mentioning once more that all of the above expressions are sym-

metric on all primed and unprimed indices and that the standard sign convention

15 used.

We now concentrate on determining the Ricci equations in invariant form.
It is clear that the generalized Ricci equations will only involve the invariants
K, R4, S54,Tay,Bay ,Eq, Aap .Giapa and the invariant operators
Dy, baamy 6EAB}A, s Diapyapy - For example the Ricci equation (4.2a) of [23]
will have the following generalized version:

Doz Ry — 85y & = ReRayos + SpSa0m
—3»‘CA(AB, °op — ""EB'(A op) t R(AEB}EBJ + O(ARB] Fg (2.1.108)

_-"ETB’(A og + P,04050p
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Note that both Dpp R4 and 8'g(py k are 2,1-spinors so that it makes
sense to consider their difference. The calculation leading to equation 2.1.108 1s

a straightforward one.

In fact all generalized Ricci equations can be obtained from the NP Ricci
equations in a straightforward way. All NP spin coefficients in the equations be-
come the corresponding invariant form, for example p in the NP Ricci equation
becomes K4 in the generalized equation, the same occurring in relation to the
differential operators. As for those terms in the NP Ricci equations which trans-
form “badly” under null rotations, they are simply “crossed out” when going
from the NP version to the generalized version since these terms will be “tucked
away” in the invariant operators.

On the other hand one can obtain a general formula giving all Ricci equa-
tions in a similar way one obtained the general formula for the commutators in
generalized notation.

We take the general equation 3.14 of [23] giving the Ricci equations in NP
formalism and multiply each side by ¢greop and substitute non bold indices for

bold indices so that we get:

eerecn(Vaal'seps — VoeTBcaa) = ccn(I'BepB 'FCan
+I'scEp I'rDaA — TBEAA TFCDB — I'BCcEA/TFADB:

—-I'srpB TECAA: — I'BCFBTEDAA + I'BFAA:-TECDB
+I'BcraTEADB) + ¢EF((BCcDC DB A/A (2.1.109)
—FrcacTpasp —'BepploBaa + Tecanlcamn)
+eEFecD€aB UBCcDA + ACEFECD €A'B(€CDEBA

+ecpeca) + ceFecn capPBCB A/

Contracting with o’s and @'s as appropriate and symmetrising on all the

indices gives 2.1.108 and all other Ricci equations, which are displayed below.

DB(B SA’) - 6(B‘A’)B K= RBS(BﬁA.-] + OBS(B_RAr}
"S(A' EB!) og + SEBS(Aragl - I(TB(JQ 55») - I(z‘i(_@g} op (21110)

-3k BB(A 53!] + W405040p

Dgpp Tws — Aapapy K = RsTaya0s + SieTayaos
+5(5 Taya 5 — osTav Epy — KGamya 05 (2.1.111)
“3[\.6‘(‘451(_4: 53] + ‘I’(AOB:, o0 + @(_4, 0p)040B
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8payp Ray — 8 amyp Sy = 0p Taya Ry — ozTaye Ry
+A(Af3} R{AOB) + o(p BA')(A RB) - 35{3« S‘qr} A(AB] (2‘1.112)

+S{A¢§B)(A opy — \I!(Aos)a.ﬁg + ‘I’(_q;.ﬁg) 0408

‘SB’A’B TAO' - DI(AB}{A'B’ SC") = TAH TA’B O¢r -+ TAB -BA’B ¢
_O(BTA}(B EA;Q) - 3SA: GA.BB 50 + S(A!ggg}{,; oB) (2.1.113]

+®(Arg 50) 0408

D' uy48 By — 8'5a Tow = —ocTap Toa + RicGapa 35)
+Gwmyia Reopy — 0p Taya Asey + Tan Bop oo (2.1.114)

'"II’(AB 0C; 04 O —2A040800040p

D' ypap Beo — 84pa Groo = 2Bay Gpep 6¢r
—Bay éB‘C‘B oc + o(CGABM EBJO) — Gapy Teg 00 (2.1.115)

—o(goc® 44p O

84 Eo) — Do Auey = 0cGagp K — Bpa Seog)
—op Ajap Rey — o(c Aap Eg + %m A Egy (2.1.116)
+0(CEA§B)B — @(AOBOC]afy

8 pBa Gepy — D' apyas Acpy = —Gama Asc op) (2.1.117}

+T 44 Gpac op — Gacy Bppop + ¥ apc 01)B4 05

Dgp Gacs — D'(apyae Ecy = Baa Tpoc
+o4 Toys Ay — 2E(4Gpoyp Bay — Gioaya Esog
—ocG apy(p EA’) + W 1500y 040p +5(9‘I’A*)(AOBOC} (2.1.118})

—Aos0R0c040p
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8 ppc Baa — b(maya Asy = —o(aAnc) Aam)
~ByaBogoc + 24 Boyw o) + ocGapia Rey
—0(p GA-‘)(AB RC'] 4- ‘I'(AB 0c)oa0p — B(A'@B‘)(A 0B o) (2.1.119)

~A04 0000408

Finally we concentrate on obtaining the invariant version of the Bianchi iden-
tities. As in the case of the Ricci equations we can obtain the invariant version
of the Bianchi identities in a straightforward way. For example the NP Bianchi
1dentity:

DLIH — 6"1’0 — D@olf + 6‘1’0 = —-3.‘6‘1’2 + (26 + 4[)]‘1’1 - (-—*7‘1’ —+ 4&)‘1’0

—2e@qy — 28D, + B P
has the following invariant version:

34 Doy s ¥y — G485y 5y Yo— oDyt Bo) +0pb44p) B0

= —3xW 45 040p + 2E4 VR T40p + 4R 4V p040p

—4A (4 WoOu40p + 208E4 P4 0p) — 20(8Baya 08y Po (2.1.120)
—204 OBE(A'B 180 + 2004 By 0580 — 2004 Ep P (405

—‘2?(‘4; (I)B«)OAOB - 25(_4; SB ]‘;'(_403) + ?.I{O[AQ’B)(A BB’}

+K®4p)0a0n

Alternatively we can determine a general expression giving all Bianchi iden-
tities written in our new invariant formalism. Multiplying expression 3.19 of [23]

by epn sen,€oap and  expy and substituting non bold indices for bold indices
gives:
kM ELNCEM{VND P ABCL — VD' WABCN) — €KM/€LNEKM
(Vicn®ap D1 — Ve ®apipN) = 3epnekm (FLK(AB
FopnMmpr — Youmasl vk — Nkl ojomp + $NMAB

F'ojukpr) + covnvekm (P aBcL'NkMmp — YancLINnMKkD — PABCN
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Frkmp + YasenTimips) — 2ekmreeN(PmaBn Poykrp: (2.1.121)
—I'masrPoknD — M'kaBNPoymML + T'kaBL PoymnDY)
—erns ekM{T DA BBONM — TLoMa®BO)NK — INDK/(A
®pojLm + Inpma®BoLd + TLemkw®soND — TLkMA
®pcynn — Inmka®roind + Inkma @)L

By contracting with suitable factors of 0 and o and symmetrizing one may

obtain equation 2.1.120 and all other Bianchi identities from expression 2.1.121,

these are written below:
3(0aDpys¥ar) — (4 6p)ps ¥oy) — 2(0cDas ®pp — 0565440 Pc)
+ocDlgapy Poo — 0(c8ugs ) = —6x¥(4p0) G4 Tp)
+9R 4 Wpry 040p — 6445 ¥ 0u0p + 200408CG ) 4m) Poor
+26(5 G 4)(48 0c) Boor — 20c Aup B4 Tpy — 200408 T cya Bmy  (2.1.122)
—26(4 Ty 4 ®roc) + 4E{_4,,9] ®40800) — 4§(Ar<1>3:)(,1 0B0C)
+20(c R4®p) 4 05y — 2004 Sp) ®rapoc) + QO(AOBgc) D 45y

+2}TO(‘405@C}{J¢B) + ‘2!\’0{_4!30} o4 0g

304 Dpys¥acyy —B48' myea Yen ) — 20085 gy Pea

~Diy 545 Bcon)) + 8451 ®ac0p) — Dy a®sep op =

—3KW 4gep) 540 — 6E4Wpcpy 540 + SR4 P acry 04 0p
+4—G*(‘4:9)(A(I)BOCOD) — 4T 14 ®pp 0cop — 20(p By a®pcop (2.1.123)
—205 Taya®Bcon + 24045y ®(a8ocop) + 200408 Sc®pyap)

—2R 4 ®p (a8 0cop + 20pRc®payx Op) + 20pEc®pays Op)

+Kos08®cp 48y

oa4DpyB¥apn — 046 pyBa Yepry +DiypyasPepog



Chapter 2 64

+5f4’AB Popg 0o = _4E(A‘I’BCDE] o405 + R(A‘I’BC‘DE] O40p
+2A(4B ‘I'CDE’] 540p — 20 GA’](AB ®cpog + 2@(_45«){,4 (2.1.124)
® e opogy — 2T 44 @ 0poE + 0(uApc Bppy 4 T

+0(4085c®pryap)

30D 45145 Wo—0(cbamya ¥ + oDy Boo)

—oBbasp ®o) = 46008 Gayuap Po — 46008 T4y a ¥y

— 951055 Baya B + 30005 54y Uiap — 2004 Boya ®pdoy  (21.125)
+26(4 S5 ®oryaom + 2004 Ep ®ap o) — 20408 E (4 B o)

+0405R 4 ¥y — 2Ko5® 445 o)

3(3c D' apyaB Yoy — Bobapya ¥agy ) + 2(0cDas Pope

—0c6448 ®po ) + 0cb i 0 Bro) — 00 Dipap Bo) =

65,495 Gonas o, — 950455 Toya Uy + 65,495 Soy ¥ Lasey
—20cGapa B50o) + 20¢T14 ®rp 60 + 2004AB) Pap0oy  (2.1.126)
+o(a08Tcya B oy — 200408 Beya Bpoy + 2Ra ®p oya0Bo0)
—204Re®cyap B0y — 4E 1 ®p o) 108B00) + 04 S Rorya ocy

_QI\"O(A@BC}(A: o 50}

3(0(c D' 4mya8 ¥epy — Bobamya Yaopy ) + 2(8ups Bepoop
—D'igym oo op) + Day ®pcpo op — 8ap a®aco op
= —65{059 TA’)(A ‘I'BCD) + 66(055 B.»‘l-‘}(A lI'BCD] -+ 35(0 [2):] SAr) ‘I’(AB:‘L))

+2_T_4A« P 0cop — 4?,4_4' ® 5 0c0p +2Bay Pecp 0pBo {2.1.127)

+2T 44 ®pcp 0pB + Ra®pcyapocop — 2004 Es®Penyap 90



Chapter 2 65

—2E 4 ®poyasocop — 2004 Re®cpyap )

34D peyas Topr — Babpoya $ocoy + 088py Peppo

—0gD gy p ®cro = —20(5 Gayus Yopg — 9B Taya Yaepy

+45(5 Baya Wacpn + 2Gaps ®eopp 000 + Tay Bocpo opop (2.1.128)
—2B 4y ®pcp e opog — 204 A ®opyap O0)

To obtain a general expression for the contracted Bianchi identities we mul-
tiply equation (3.20) of [23] by eL N/, €aN, kM and ey and substitute non
bold indices for bold indices so that we have:

SeLNELNEKM EKM VY ABA + eLN(VMNPAKBL/

- VML ®AkBN — VKN ®aMBL + VKL ®AMBN/)

= euN(PAkMNTBK LM ~ PARKMLTBKNM — PAKKNTBMLM
+@ sk TEMNM — PaMMLTBKLK + RaMMLTBKNK

+@ A NTBMLK — BaMKLTBMNK + PakBM TR NLM
—®AkBMTKLNM ~ PaKBKTMNLM + PakBKTMLNM
~®ampMmTrNLK + PaMBMTKLNK + PaMBMTMNLK
~®AMBKIMLNK) — coN(PrLBM T AMNK (2.1.129)
—®xnpMmTamMLk — SkLBK TAMNM + BB KL AMLMY
—®mLM T aKNK + EMNBMTAKLK + PMLBK TAKNM
—®unBrTakim + PakpMIMLNK — PakBM T MNLK
—®akpr/IMLNM + PakB K IMNLM — PaAMBM I KLNK:

+PamBM TRNLE + PamMBr TKINM — PAaMB K T KNLMY)

Equation 2.1.129 gives all contracted Bianchi identities writlen in invariant

formalism, they are:
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Dy ®pp —~ 8(45)a®n — Slugs Bry+ D'agap) o

+35(4 DpyaAop = 264 Go)am Bo + 204G pam) Bo

—2A45 B40p) — 200aTBya Bpy — 2A(am)B(a0B) (2.1.130)
—20(4 Tpya®p) + 2R4Pr)(4 08 + 2R(4 Bp)405

+oaSm Bap) + 04 5B ap — 0aK Bayap) — K®apya Op)

Dy ®psc —84pa®so — Sums Poo) + Dapup Bo)
+3546pcyup A = 2G4 B0y — 2144 Ppp O

+20(4Bpya ooy — 2448 B4 p00) — 0T B4 B o) (2.1.131)
+2R4® 5y a5 00) + Ra®poyaon — 2Eu P o)a0p

+0(4 55 Boyap — K®ag(1p o)

Dy ®pecper — bapa®oe — iy Popo + D'apap Pco

+30(uD'soya s ASoy = ~Tas Bepo oo + 2Bay Bopo

+2B a4 ®5cp 00 — Taa ®oep 00 + RaProyap o) (2.1.132)

+R 4 ®peyusory — 2E4®pap O0)

—2E 4 ®poyaBo0

It is important we make sure that from our invariant equations we are able

to obtain all NP equations. To do so, we take the components of the respective
invariant expression which should give NP equations. Take the Ricci generalized
equation 2.1.108, for example,if we write it out in terms of components we have:

(Dp + 1'% — 5’.‘{.)0_,405-5_,4! + [26R)O{ALB)5Ar + (—H,-‘\',)LAIBIA; =

(p* 4 05 — Bra — &B +€p + pe — BT + Qoo )o40804

+(2-"\‘,E)0(,1 tpyox + (— .‘:,2).5,;:3?,4,
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We see straight away that from equation 2.1.108 we obtain the NP Rica
equation 4.2(a}). In the same way, we get all NP Riccl equations which do not
involve spin coefficients which transform “badly” under null rotations from our

invariant Ricci equations as follows:

Equation 2.1.108 — 4.2a}

Equation 2.1.109 — 4.2b)

Equation 2.1.110 — 4.2a); 4.2b); 4.2¢)

Equation 2.1.111 — 4.2a); 4.2b); 4.2k)

Equation 2.1.112 — 4.2a); 4.2p); 4.2k)+ 4.2¢)

Equation 2.1.113 — 4.2b); 4.2q); 4.2¢)+ 4.2k}

Equation 2.1.114 — 4.23), 4.2d); 4.2p); 4.20); 4.21)+ 4.21}; 4.2¢)+ 4.2k)
Equation 2.1.115 — 4.2a); 4.2d)

Equation 2.1.116 — 4.2b); 4.2¢)

Equation 2.1.117 — 4.2b); 4.2r); 4.2q)+ 4.21}4 4.2f); 4.2k)+ 4.2¢)+ 4.2€)
Equation 2.1.118 — 4.2a); 4. ‘)b) 4.2d); 4.21}; 4.2e)+ 4.2¢)

Equation 2.1.119 — 4.2a):4.2b); 4.2d}; 4.21), 4.2e)+ 4.2k)

The NP Bianchi identities are obtained from the invariant version of the
Bianchi identities in the same way as one obtains the NP Riccl equations from
their respective invariant version. Hence we get all NP Bianchi identities by

taking components of the Bianchi identities written in the invariant formalism.

The case of the commutators is somewhat more complicated since from the
invariant commutators we should obtain all NP Ricci equations which involve
those spin coefficients which transform in a “bad” way under null rotations as
well as the NP commutators.

Lets consider the commutator 6D — D& and let it act on a scalar field ¢.
Then, equation 2.1.100 gives:

{(6D ~ D8&)p}ay = (6D — D8)oer — T Do (2.1.133)

On the other hand, equation 2.1.101 along with definitions 2.1.67, 2.1.74,
2.1.75 and 2.1.80 give:
{(6D — Dé)¢}o = (B +T)NDd)ns1verr + £(D'@)nyampa
—0(88)nvroprr — (e —T+D)(6¢) v — Todnan (2.1.134)

— Py dnm-r —2APN, N
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If we equal the left hand side of equations 2.1.133 and 2.1.134 we get the
NP commutator §D — D§. All other NP commutators are obtained in the same
way. In order to see this we write the following expressions relating to all other

generalized commutators:

[(8'6 — 668} wiamsy = (86— 88)pun + (67 — 67 )bap-v
+(be" = 6P YPnoa + (—p' +7)Donp + {07 -253-77  (2.1.135)

287 b + (P T+ P8 + B0’ — T ) PN

{(8'6 — 68"V} mysvsar = (F— p) (D' B nsamwsr + (8 — (8 ) nyamwsrr
e = B) (8P nr1viz +(—Ta+ By )dnmv (2.1.136)

+{(—Pr + T3)dNan

{(D'D - DD')¢}nsspwsy = (D'D = DD)gnp + (—D'r' + Dr')onaw
+(=D'F + DRy + (70" + 267 + To' 4+ 2e’ ) dnan (2.1.137)

+(T‘ c + ﬁ"l_" + 27 4+ ‘2&’)@;\5@_11 - ?’5’(}51\;_?\; —_ T!(S(f)NN

{(D'D — DD")g}nyapsz = —(€ + €)DD)y msr + (e +7)
(D'@)npa vy — T(8' @) nsonvir — T(6 v vy {2.1.138)

— (U3 + Py )pnany — (Vs + @12 )dnm—rr

{(6D' — D'6)d}npansa = (6D = D'8)dnnp + (—=D'p" —~ 65 )dna v
HD'F — 6F Ypnwore + (=269 = p'p =T + T — 26'Bppan
H—pT - 25T +FT + 203 Vdww-r — R Dpnn + p'Sdn (2.1.139)

+EI‘SF¢NN
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{(6D' ~ D'6)¢}npane = (7 — B~ @)D Pz — (v —7)

(0D npi v + Pondnam +E4¢'NN—1' (2.1.140)

Hence we have that by applying a scalar ¢ to the generalized commutator
2.1.105 we arrive at the NP commutator 6’6 — 66’, while equation 2.1.106 gives
the NP commutator D — DIY. Finally, by applying a (¥ = 0, N’ = 0} spinor
¢ to the mvariant equation 2.1.107 we are able to obtain the NP commutator
80 — D'6. Furthermore, if we let the commutator 2.1.102 act upon a spinor
¢ of type (N = 0, N’ = 1) we manage to obtain the NP Ricci equation (4.2g),
2.1.103 acting on ¢ of type (N =1, N' = 0) gives the NP Ricci equation (4.2m).
The NP Ricci equations (4.2i), (4.2n) and (4.2) are thus obtained by letting the
commutatores 2.1.106, and 2.1.107 act on spinors of type (N = 0, N/ = 1},
(N =1,N=0) and (N =0, N’ = 1) respectively.

Because all invariants of our new formalism are symmetric on all primed and
unprimed indices we can write all equations, i.e , commutators, Ricci equations
and Bianchi identities in compact notation so that no indices appear. These are
given below in compact notation.

Commutators

(6D -Dé)¢=(B+ A)D¢+ KD'¢p — S§'¢
—~(E-FE+R)6¢—Wy(¢-0) —2A(¢ 0) — Pga(d- ) (2.1.141)

(8'6 — 666 = (R— R\D'¢ + (B — A)8'¢ + (A — B)6g
(=3 + 12)(¢ - 0) + (¥s ~ Bo1)($ - 0) (2.1.142)

(D'D - DD')¢ = (G + G)Dé+ (E+ E)D'¢
—Tbp— T8¢ — (®yp + ¥3)(¢- 0) — (P19 + Wa) (¢ - 7) (2.1.143)

(D' —D'8§)¢p = (T — B-A)D'¢ — (G - G)b¢
+®s3(¢ - 0) + Wa( - 5) (2.1.144)
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where (¢-0) is the (N —1, N')-spinor @4 sva .., o* and @5 is the (N, N'—
1)-SpInot @4 ava i pr ¥~ and if the contraction is not possible then these

terms are set to zero.

Ricci Equations

DR—-&§K = R*+SS-3KA- KB+ RE+RE~KT

+%, (2.1.145)
DS—-6K = SR+SR-SE+3SE-KT-KA-3KB
+%, (2.1.146)
DI -D'K = RT+ST+TE-TE-KG-3KG+ ¥,
+®qy (2.1.147)
SR-6S = TR-TR+AR+BR-35A+SB -V,
+ &y (2.1.148)
8T -D'S = TT+TB-TA-35G+ SG + &g (2.1.149)
D'R—6§T = ~-TT+RG+RG-TA+TB-¥,-2A (2.1.150)
D'B-6G = 2BG —BG+ GA-GT — ®» (2.1.151)
8’'E-DA = KG—-—B5—AR-AE+2AE+ EB—®,  (2.1.152)
DB-6F = —-ARG+S4+BR-BE-EFA+ W, (2.1.153)
§5G—-D'A = -AG+GT —-GB+ %3 (2.1.154)
DG —-D'E = BT+ AT -2EG — EG - GE + ¥, + &,
—A (2.1.155)
§B—-86A = —AA-BB+2AB+GR—-GR+ ¥, ~ ®,;,
_A (2.1.156)

Bianchi identities

D¥, — Wy ~D®Pyr + 8P = —3K¥, + 2EW, + 4RP, — 44,
+2A®0y + 2B®oy — 2EPo — 2R B0y — 25, + 2K P
+RK ®ox (2.1.157)

3(D‘I’2 - 6‘1’1) - 2(:[)@11‘I - 6@10!) + D@D - 6‘1’01! = —61('1’3
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+9RP, — AW, 4+ 2G B, + 2G By — 2401 — 2T B/
2T ® o + 4AP 1 — 4RP11 + 2RP 1y — 25y + SPoy (2.1.158)
+2K By + 2K By

3(DW; — 6%,) — 2(8P11 — D®yy) + 6Py — DPoy = -3K Ty
—6EW; + 6RT, + 4GPy — 4T 811 — 2B oy — 2T Py (2.1.159)
+2A® 50 + 25B 1y — 2RBgy + 2RP 5y + 2EBq1 + K Py

DU, — W, + D'Byy — 6By = —4ET, + RU, + 240, — 2G By
+2G By — 2T ®21 + 24851 + SPoo (2.1.160)

D;'I'D - 6‘1’1 + D@sz - 6@011' - 4G‘I’0 - 4T"I'1 - 23‘1’1 + 35‘1’2
—2B®oy + 25®11 + 2E®op — 2EPgy + RPoy — 2Ky (2.1.161)

3(D'W, — 6W,) + 2(DPqy — 6P ,10) + 6Ppx — D'®gyr = 6GT,
—9TW, + 65F; — 2G®Boy + 2T P11 + 2AP 0y + T Poor (2.1.162)
2T @0 + 2RP 1y — 2RB1y — AEB 5 + 2591 — 2K By

D@gg: — 6@21r —n 6’@12: + D’@”’i + BDFA = "’T@lgr + 2.8@]?
+2T Py — Ty + RPyy + RPoy — 2EB oy — 2EB oy (2.1.163)

3(D'T, — §Ts) + 2(8'Pyy — D'®y10) + DPoy — 5By = —6TT,
+6BWs 4+ 35W, + 2T @,y — 4B® 1y + 2BPy + 278,y (2.1.164)
+R®sy — 2E®B9y — 2EP 9y ~ 2RP,0

D"I';g - 6‘1‘4 + 6’@22- - Df@nr = ‘—26"1’3 - T‘I’,; + 4.8‘1’4 + 2G@21r
+T®2p — 2B®yy — 2AP,y (2.1.165)
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Contracted Bianchi identities

D&,y — 8§81y — 6Py + D'®y + 3DA = 2GBg + 2GPo — 24P,
—QT@m- - 22@1@ - QT‘:blo: + 23‘1’11: + 2?@11-' + ?@02! (21166)
—1—5@201 - F‘I‘]g: - I\’@zl:

DQI?" - 6@11! - 6’¢02! + DF(I)OI' + 36A = ‘)G@DI’ - QT@n! + 2?@021
—QAq:’Dgr - T‘i’ogf + 2R‘1’12! 4- ﬁ@]zf - QEQ'}Q: + S‘I’g]f (2.1.167)
—I\r@mr

D@zgf - 6@21-‘ — 6@12»‘ + DF‘I'H! —+‘ 3DfA = —T(ﬁ]gf + 28@1?
+2T®51 — TPy + BBy + R®yy — 2E®50 — 2E By (2.1.168)

Note that to obtain an expression with indices from one in the compact form
one multiplies the terms in the sumn by appropriate factors of o’s and @'s to make
every term in the sum a spinor of the same type (so that the indices balance)

and then symmetrise over the primed and unprimed indices.

2.2 The Geometrical Interpretation

Here we will discuss how the invariant formalism we have just described arises
naturally when describing the geometry of general null congruences [27] and of
null hypersurfaces [7]. However in describing some of the geometry it is often the
direction of the flagpole of 04 rather than o4 itself which is of significance. For
this reason we do not give a full description of the geometry here, but will do
so 1n chapter 3 when we also introduce a generalization of the formalism which
permits one to consider rescalings of o4 by a complex scalar field A as well as
null rotations.

A null congruence C may be specified by giving a (nowhere vanishing} null
vector field £* whose integral curves form the congruence. If the curves are given
by 2 = 2%(u,y!, %, y®) with ¢ = %—“:, and if f is a smooth function defined
along the curves, then:
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or _ of oe
du  dze Ju

Since €* is nowhere vanishing we may assume that v 1s chosen so that {* 1s

=V, = Df

future pointing. We associate to the vector £2 a spinor field o* with flagpole
o454 equal to (2. Note that o is not unique but is defined up to o* — eo4.
The condition that the congruence be geodetic (i.e. each curve is a geodesic)

1s that
Vol x £
which is equivalent to
Do* x o
and hence

K=x=o04D0"=0 (2.2.169)

The condition that u is an affine parameter is that V€ = 0 which is equivalent
to D(* = 0. So that in addition to 2.2.169 one must have

e+Ee=nD* =0 (2.2.170)

In the present formalism (using the compact notation) equations 2.2.169 and

2.2.170 are equivalent to the single equation
E+E=0 (2.2.171)

Also it may be shown that the flag planes of o are parallely propagated if
# =0 and € — € = 0 (see §7.1 of Volume 2, Penrose and Rindler 1984 for details
of this and much else referred to in this section). In the present formalism this
is just the condition:

E-E=0 (2.2.172)

Finally the condition that o* is parallelly propagated along the congruence

is Do = 0 and is equivalent to:
E=0 (2.2.173)

If one now considers a connecting vector ¢* for the congruence then this must
satisfy:

Dg* = PV, (PR7.1.29)
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(i.e. equation 7.1.29 of Penrose & Rindler 1984). Contracting this equation
with o4 gives:

o? Dgay =04Tsp QAH

which may be written out in full as:

Dgorr = qoo(€ + 7€) — g1’ ® — ok (2.2.174)
Dgov = qorle —— p) — 100 — Qoo (T + 7) (2.2.175)
DQ’mr = Qw!(E — € — ﬁ) -— Q(nfa"- qUor(F + ?T’) (22176)

These equations reduce to (PR7.1.37-38) if one makes the simplifying assump-
tion that e = 7 = 0.

These three equations can be written in our notation as

D(g.0) = T{(g.0).5) + (E — E — R)(g.0) — 5(¢.3) (2.2.177)
More generally

Dg = G((q.0).3) + G({q.0).5) + Alq.0) + A(q.5) + B(¢.5) + B{(g.0)(2.2.178)

is equivalent to (PR7.1.37-39) again without having to make the simplifving
assumption that e = 7 = 0.
By taking second derivatives of the connecting vector in the £* direction one

obtains the equation

Dt = ¢*V, (D) + Ry gt (PR7.2.1)
If one makes the assumption that the congruence is geodetic and the dyad is

parallelly propagated along the curves (so that « = ¢ = 7 = 0) then one obtains
the equations:

DP = p2+03+¢?0
Do = (p+p)o+¥s
DT = Tp—i-?a’-{-‘]?] +(I)01
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The above equations are much more complicated without the above simpli-
fying assumption. However the general case has a simple form in the present

formalism and is given by:
DI =TR+ TS+ %, + &y (2.2.179)

Note that because of the use of the compact notation 2.2.179 is equivalent
to three scalar equations.

We end by translating some conditions relating to null hypersurfaces into the
new formalism. [t is easily shown that ¢, is hypersurface orthogonal if x = 0 and

p = p. These conditions are equivalent to:
R-R=0 (2.2.180)

which is also the condition that C is geodetic and twist free. ¢, satisfies the
stronger condition that it is equal to a gradient if in addition e = —2 and 7 =

& + /3. In the present notation these conditions are equivalent to:
T'=A+B (2.2.181)

It also transpires that the components of A, R, S, T, A and B are in fact
just the components of the generalized connection introduced on a null hypersur-
face by Datitcourt [T} and that the curvature expressions appearing in the Ricci
and commutator equations are those which arise naturally as the intrinsic and
extrinsic curvatures of the null hypersurface (which are not unique but are only
defined up to null rotations). The above formalism therefore provides a natural
description of the 3 + 1 decomposition of the Einstein equations in the case of a
null slicing. The details of this will be given in chapter 3.
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Chapter 3

A Formalism Invariant Under

Null Rotations and Rescaling

3.1 The Compacted Formalism

Certain physical problems in general relativity are often best described by using
a formalism adapted to the geometry of the particular situation. For example
the Geroch-Held-Penrose (GHP) formalism [25] best describes the geometry of
a spacelike 2-surface & where one can choose €% and n® to point along the null
normals of & and the real and imaginary parts of m® are tangent to S. The
remaining gauge freedom in the choice of tetrad is the two dimensional subgroup
of the Lorentz group representing a boost in the normal directions and a rotation

1 the tangential directions. In terms of spinors this is equivalent to the rescaling:
o — do? D W (3.1.1)

The GHP formalism works with those Ricci rotation coefficients which simply
rescale under 3.1.1 and combines the others with directional derivatives to form
new operators , which also just rescale under 3.1.1.

In chapter 2 we introduced a formalism in which the generalized spin coefli-
cients and differential operators transform in a simple way under a null rotation.
We have seen that such formalism uses spinors formed from the Ricci rotation
coefhicients whose components transform covariantly under null rotations, and
four new differential operators which are formed from the directional derivatives
and the remaining Ricci rotation coefficients which transform “badly” under null
rotations. These operators act on totally symmetric spinors and produce totally
symrmetric spinors (of higher valence) and when applied to a spinor whose compo-
nents transform covariantly under null rotations produce one whose components

also transform covariantly.
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In this chapter we develop a formalism which only depends upon the choice
of a single null direction, ¢¢. If we choose the flagpole of the spinor o to point
in this null direction then o4 is determined up to rescalings 0® — Ao where )
is a complex nowhere vanishing scalar field (and the magnitude as well as the
direction of £* is fixed if we require |A| = 1). The other spinor in the spin frame is
arbitrary so for convenience we normalise it so that 04¢? = 1, although it would

not be hard to generalize the formalism to allow o4:4

= x as one has in the
compactified spin coefficient formalism. Thus specifying a single null direction is

equivalent to specifying a spin frame up to the gauge freedom:

ot — \o? P S (3.1.2)

We will use the null rotation invariant formalism as our starting point, so

that we first check how the generalized spin coefficients fransform under 3.1.2:

K — MK (3.1.3)
Sy — NSy (3.1.4)
Ry — X)Ry (3.1.5)
Tay — MTay (3.1.6)

hence. K, S, R,T are well behaved under transformation 3.1.2 while B, F, A
and ' are not.

The quantities K, S, R, T have weight, which we will denote by {p,q} and
which is defined such that p = p+ N and q = ¢ + N’ where {p,q} is the GHP
weight defined in [25], given by:

K : {3,1)
S : {3,0)
R: {2,1}
T : {2,0}

A simple calculation shows that the null rotation invariant differential op-
erators D, 8,8, D', do not produce objects with a well defined spin and boost
weight when acting on a totally symmetric spin and boost weighted spinor field.
Just as in the GHP case, we can then combine the generalized spin coefficients

A, B,G and FE which transform badly under 3.1.2 to produce new derivative
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operators P, d,8,P which have a proper spin and boost weight.Notice that we
use the notation boldface to distinguish for example @ and 8.

The new P operator acts on a totally symmetric (N, N')-spinor qul‘__ANA;,“A,w
of weight {p,q} to produce a (N + 1, N' + 1)-spinor of type {p + 2,q + 2} and
is given by:

(PO any.. Ay aa Ay = (D@)ag..ava,.. Ay
- (p - N)E(AtﬁAl.‘AN)(A]JMANr EA’) (31'7)
- (q- N’)O(A ¢,41.‘..4N){.41,,..AN; E

Since every term in the above expression is a totally symmetric spinor the
order of the indicies does not matter and we may use the compact notation that

we introduced before in chapter 2. Thus equation 3.1.7 becomes:
bp =Dop— (p— N)E¢p—(q— N)Eo (3.1.8)
In a similar way we may define the operator @ which acts on a type (N, N')-

spinor of weight {p,q} to produce a type (N + 1, N' + 2)-spinor of weight {p +
2,q -+ 1}. In compact notation d¢ is given by:

dp=6¢—(p—N)Bop—{(q- N)A¢ (3.1.9}
The operator & acts on a type (N, N')-spinor of weight {p,q} to produce a

type (N + 2, N' + 1}-spinor of weight {p +1,q+ 2}. In compact notation &¢ is
given by:

Top=6¢p—~(p—-N)Ad - (q— N')Be¢ (3.1.10)
Finally we may define the operator which acts on a type (N, N'}-spinor of

weight {p,q} to produce a type (N + 2, N’ + 2)-spinor of weight {p +1,q+ 1}.
In compact notation P'¢p is given by:

Pé=D'é—(p—- N)Gé - (q— N)To (3.1.11)

We next note that the null rotation ivariant curvature spinors have proper

weight {p, q} given by:
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Dy
(o1 )
(@02'}44’.9'
(®10)B
(®11/)88
(P12 )Bap
(q’ZO')AB
(®21/) 88
(P22:) ap4p
W
(W1)a
(¥2)4p
(¥3)amc
(®4) ascp
A

{2,2}
2,1}
{2,0}
{1,2}
{11}
{1,0}
{0,2}
{0,1}
10,0}
{4,0}
{3,0}
{2,0}
{1,0}
{0,0}
{0,0}
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(3.1.12)
(3.1.13)
(3.1.14)
(3.1.15)
(3.1.16)
(3.1.17)
(3.1.18)
(3.1.19)
(3.1.20)
(3.1.21)
(3.1.22)
(3.1.23)
(3.1.24)
(3.1.25)
(3.1.26)

We are now in a position to translate all relative equations into this new for-

malism. We begin by considering the commutators. If we take the commutators

written in the null rotation invariant formalism then the calculation to obtain

the commutators in the new formalism is similar to the calculation performed

in obtaining the GHP commutators from the NP commutators.

Let us take

the generalized NP commutator (VD — DD')¢. We consider ¢ to be of type
(N, N') and have weight {p,q}. We want to calculate (PP’ — P'P)¢, with the use

of definition 3.1.8 and 3.1.11 such calculation is straightforward and gives:

(P —PP)¢ = (D'D ~ DD')é + (p — N)(DG — D'E + 2EB + GE

+GEY + (q— N)DG - D'E 4+ EG +2EG + EG)D'¢

—(E+E)D'¢— (G+G)D¢

(3.1.27)

If we substitute in equation 3.1.27 the generalized NP commutator 2.1.143

and the Riccl equation 2.1.155, and again making use of definition 3.1.8 and

3.1.11 we obtain:
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(PP—PP)p = —{TI+ T8 + (p— N){(¥, + &1 — A)
+(q - N’)(“i’-z + @1 — Ao+ (Parr + F3)(P - 0) (3.1.28)

— (@12 + T5)(¢ - 0)

In the same way one obtains all the rest of the commutators in this new

formalism:

(b9 - 8b)¢p = (RO + S& — KV — (p— N)(¥y) — (q - N')(Bar)} &

+(2A + ¥2)( - 0) + Lo2(¢ - ) (3.1.29)

(80 ~ 83} = {(R-R)V + (p— N)(¥; — B1y — A)
~(q = N) (W2 — 11 — A)}¢ — (¥3 = o) (¢ 0) (3.1.30)

—(®12 — U3)(¢ - ?)

(Vg —3V)p = {-TV — (p ~ N)(¥;) — (g — N')(®212)}¢

— By (- 0) — Wy(¢p - 0) (3.1.31)

(b3 — 8P)¢p = {RF + 59 - KV — (q - N')(®)

—(p — N)(®10)}0 + (2A + ¥,) (¢ - 5) + B0 (- 0) (3.1.32)

(V& - 3V)p = (-TV +(p—~ N)(®;) + (q - N)(®)} &
— Py (p-T) — ¥u(d-0) (3.1.33)
We now write the Ricci equations in this new formalism. Guided by the GHP
example we start considering the expression PR — PR, Note that both terms

are (2,1)-spinors of weight {4,3} so it makes sense to consider their difference.

An explicit calculation shows that

(pR)ABAf — (6’1\’),434 = R[‘.;RB)ﬁAr + SA“?(AOB) — TO(BTA)A
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+¢DDJO.4OBEAJ [3134)

which may be written in the compact notation as

PR—G'K =R+ S5~ KT + ¥ (3.1.35)

The other Ricci equations are similarly found to be:

PS-8K = RS-RS-RKT+ ¥, (3.1.36)
Pr -VK = RI+TS+ T, + &g (3.1.37)
ar-v's = T+ &gy (3.1.38)
PR-8T = -TT —¥,-2A (3.1.39)
JR-3S = (R-RT - ¥, +d (3.1.40)

Note that one can take the complex conjugate of these equations but there
are no primed versions since such equations would nvolve derivatives of spin

coefficients which transform badly under the null rotation part of 3.1.2.

Finally we consider the Bianchi identities which in the compact notation take

the form:

P¥, — FV, — PPy + By = 4RP, — 3R ¥, — 2RPyys

—25@101 + 'ZI‘L‘iﬁp -+ FQD‘Z' (3141)

pw, — 3"1’3 - 3’@011 + p’@oof + 2PA = 3R, - 2K T, — QTQGP

+2T‘I’10r + ‘.ZR‘I’]]r —+ —S_"I’()gf (3142)

PO, - IV, — PByy, + 3Py — 20A = 2RV, — KU,

—2R®y + K Ps (3.1.43)

‘1’4 - 3“1’3 - 3"1’21- + b’@ggr = R‘I’4 - QTi)glr + E‘I’gg: (3144)
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p"I‘g — 6‘1'4 — pr@gl! + 3,@221 = —T'I'4 =+ T@ggf

D"I’g - 6‘1’3 - 3@211 + p@gg: -+ 2PA = S‘I"; - 2T'I'3 + R@ggt

P¥, — 3, - Vdy + FBgy — 20A =25¥; — 3TV, — 2RP,,

+2T(I)11r + T‘I’gzr

F‘I’o - 6‘1’1 - 3@01»‘ -+ p@ggi = 35‘1’2 - 4T‘I’1

—Qk@]_? + 25@]]’ + EQO'Z'

The contracted Bianchi identities are given by:

P&, + DEQUO-‘ — 3Py — 3’@01: 4+ 3PA = 2R®q;

—I—Zﬁiut — QT@(Jp — 2T¢101 - F@lgt — .K@gp + .5"1’20: 4 F@ozr

p@mf + p’@m! - 3@11! - 6’@02» + 3JA = 2R@12! + E‘l’]g!

+2T@0212T@11r -— I\-Qn: + S@zlr

V®,) + PPy — Py ~ 3B + 3PA = RPyy + RPo

—T®, — T8y

0
[

(3.1.45)

(3.1.46)

(3.1.47)

(3.1.48)

(3.1.49)

(3.1.50)

(3.1.51)

We now proceed to show that from the new equations written in our new

formalism we can obtain all generalized NP equations. It is easily seen that all

generalized NP Bianchi identities are obtained from equations 3.1.41 through

3.1.51. The same can be said for those Riccl equations which involve null rota-

tion invariant terms which have proper spin and hoost weight. The case of the

commutators and Ricel equations involving terms which do not scale, is not as

straightforward. Let us take, for example, the commutator 3.1.28, and let it act

on a spinor of type (N, N') and weight {p = N,q = N’'}. Then, by equation

3.1.27 we have:
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(PP — PP )¢ = (D'D — DD')¢ — (E + E)¢ —~ (G + G)Do

If we now equate the right hand side of the equation written above and the
right hand side of commutator 3.1.28 we have:
(D'D-DD')¢ = (E+ E)D'¢ + (G + G)D¢gp —Tép — T8¢
B + U3)(¢ - 0) + (Bry + T3)(¢ - D)
Furthermore, if we let commutator 3.1.28 act on a spinor ¢ of type (N, N’)
and weight {p = N +1,q = N'}, equation 3.1.27 gives:
(PP —-PP)¢p = (D'D -~ DD')¢p + (DG - D'E +2EB + GE + GE)¢
~(E+E)¢—~(G+G)Do

If we now equate the right hand side of the equation written above and the

right hand side of commutator 3.1.28 we get:

(D'D -DD')¢+ (DG -DE+2EB+GE +GE)p— (E+E)¢
(G +G)Dé=-T(6¢p—Be)—T(8¢— Ag)+ (¥, 4 1 — Ao

—(®21 + ¥3)(P - 0) — (P12 + T3)(¢p - 7)

Substituting the generalized NP commutator 2.1.143 in the above equation
gives the equation :

DG-D'E=-2EG-GE+GE+TB+ AT+ ¥, + &, - A

which is the generalized NP Ricci equation 2.1.155.

To obtain all the rest of the generalized NP commutators and non scaling
generalized NP Ricci equations from our “new” equations the process is exactly
the same. If we let the commutator 3.1.29 act on a spinor ¢ of type (N, N')
and weight {p = N,q = N’} then we obtain the generalized NP commutator
(D& - 6D)¢, while 3.1.30 gives the commutator {§8" — §'6)¢, and commutators
3.1.31, 3.1.32 and 3.1.33 give the generalized NP commutators (D'6§ — §1)¢,
(D& — 8D and (D'8 — §'D)¢ respectively.
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Furthermore, if we let commutator 3.1.29 act on a spinor of type (¥, N} and
weight {p = N +1,q = N} we obtain the generalized NP Ricci equation 2.1.144
while commutators 3.1.30, 3.1.31 and 3.1.32 give the Ricci equations 2.1.147,
2.1.145 and 2.1.143 respectively. Finally, letting commutator 3.1.31 act on a
spinor of type (N, N’) and weight {p = N,q = N’ + 1} gives the Ricci equation
2.1.142.

Thus we have therefore shown that our equations are equivalent to the Ein-

stein equations.

3.2 Relationship to the Penrose operators

In a paper on the geometry of impulsive gravitational waves Penrose [24] intro-
duces differential operators a4, d44 and P which act within a null hypersurface
A and act upon weighted scalar and spinor fields. Let n¢, . Ny C, he a (N, N')-
spinor of weight {p,q}. Then J,4 NGy Cn Gy, isa (N 4 1, N' 4 1)-spinor of
weight {p + 2, q} which is defined by

- . B—
58 Oaya NC..ONG.. O, = 040 OB V4B 6. CN Gy Ty,

-(p035{3 Vinaop + quOBVB(_q [2:3) )?}'cl‘__CNq”_gN, (3.2.52)

Contracting the above expression with 3437 gives

0 = groane,..ong..c,, (3.2.53)

So that expression 3.2.52 is well defined when & = 0. In the context of null
hypersurfaces, this expresses the condition that the direction of the flag pole of
04 (and not its extent) is paralelly propagated along the null geodesic generators
of N.

The operators that we have defined are more general since they make no
assumptions about the choice of 04. Furthermore in order to be able to introduce
a compact index free notation our operators act on totally symmetric spinors and
produce totally symmetric spinors. However in situations where o4 is chosen so
that & is zero, our operators are closely related to those of Penrose. Since both
sets of operators obey the Leibnitz property it is enough to give the relationship
between the operators when acting on scalars and spinors with a single index.

We give below the relationship between the operators when o Do =k =0

{1} For a scalar field
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(Pn)ax
(0n)aem
(3%?)1134

= (Pn)osds
= Opduan

= O(B_gﬂ.):‘l’ n

(ii) For a (1,0)-spinor field

(D'-'?)ABA
(31) aBap
(0'n) apca

(111} For a (0,

(P1) asp
(n)aspo

(8'n) 4Bam

= (Py)opTe
= Bpdyans

= (5,4*(‘4 ne )OC)

1)-spinor field

= oa(Py4)op

)

= (Faanp )00

= O(Bg.q)(,f neg

)

35

(3.2.54)
(3.2.55)
(3.2.56)

(3.2.57)
(3.2.58)
(3.2.59)

(3.2.60)
(3.2.61)
(3.2.62)

The relationship between the various definitions for edth and thorn can be

seen more easily if we introduce the auxiliary differential operator D4gyp which

15 defined by:

Dapap Mcy..onl.0, = 0404 VBB 116;..0nC..C,,

~(Po4 Vg 04 + q04VBB B4 Vg .onc..0,,

(3.2.63)

In terms of this operator the standard definitions of edth and thorn are given

by:

o, = ABTA
o, = ABpt
£, = AB
o, = A B

~B
0" Dapap 7c,..0n0..0,,
-B
7 Dapap 7?6'1_,,,C-‘NC‘;..,C-‘N,
—B
0" Dapap NC..CnG .. Oy,

B
T Dapap Ncr..on.0,

(3.2.64
(3.2.65
(3.2.66
(3.2.67)

LR e
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On the other hand our new derivative operators are given hy:

(Pn)ac..opac,..0y = Z 0%3% Dapup NG Cn G- C, (3.2.68)
sym

(On)acy..oyapory .0ty = > P Pusap na,. NG, (3.2.69)
sym

(0n)aps..cvac, .oy = ; o Dagaw 1c,.. NGy O, (3.2.70)

(P'n)amy..oxamo .y = 2 Daan C;..ONCL-.CY, (3.2.71)
sym

Where Z indicates symmetrisation over all primed and unprimed indices.

sym
Finally in the case that & = 0 the Penrose derivative operators are given by:

0484 Pney o, = 0%3% Dapsp 101 Cn GO, (3.2.72)
_ B
4¥: 3.4*},4 fc..onccy, = 0 DAHAB) NG...CnCL.. Oy, (3.2.73)
08O ya 1. OGO, = 3° Diagar 7o NGy Oy (3.2.74)

3.3 Geometrical Interpretation

In this section we analyse the geometrical significance, in the context of null
hypersurfaces, of the new invariant quantities we have constructed. We start by
giving a brief résumé on results concerning null hypersurfaces. Much of what
follows can be found in [29] and [7].

In what follows we shall adopt the convention that Greek indices run from 0
to n and latin indices from 1 to n, with n = 4, unless otherwise indicated. Partial
derivatives will be denoted by comma, covariant derivative in M by a semicolon
and in a null hypersurface A" by a colon.

In M, a one parameter family of null hypersurfaces foliating M is given by

the equation ¢(2*) = p ,where p is the parameter ]abelling the hypersurfaces and

Lk, g'3 I ,d’ & [
oo 9z

the one-parameter family of null hypersurfaces has induced upon it a degenerate

@ satisfies ¢ = 0 and g.s is the metric tensor on A, Each member of
metric tensor h.g of rank 2 and signature (0 —1 —1).

We will let z* be a coordinate system for M while ‘2® will denote coordinates
of a null hypersurface A embeddedin M. % = B*('z%). If we have an embedding
B : N — M then the connecting quantities BZ are defined to be B2 = B% and

are used as projection operators, so that we have x* = B®(’z®). For example
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if w, is a covariant vector of M, then BZw, = 'w, are the components of the
projection of w, into A in the coordinates of A/. On the other hand if 'v* is a
contravariant vector in A/, then B%'v* = v are the components of ‘v, considered
as a vector of A, in the coordinates of Af.

In order to project contravariant vector fields of M into A or to form a vector
field in M corresponding to a covariant vector field in A, we must first rig N
This means that we must define a direction at each point of M which does not
lie in A" In practice, this is done by defining a contravariant vector field in M,
which nowhere lies in V. )

The covariant normal to A is given by a%ﬁ" and f* g“ﬁ% represents a
tangent vector field to the congruence of null geodesics generating A/. Note that
the scaling of #* depends upon the family of hypersurfaces not simply on A" We

choose (£%,n%, m®,7m*) to be a basis for M such that:

Gap = QC(O‘R{J)} - 2??1{aﬁg} (3375)

lon™ = —m m* =1 (3.3.76)

with all other inner products zero.

This null tetrad is not uniquely defined by 3.3.75 and 3.3.76. The remaining
freedom in the choice of tetrad that preserves the generator direction of £* is

given by transformations:

& — Ae°
n® — A™'n® — Dm® - Dm* + ADD¢ (3.3.77)

m® — eE(m* - ADI)

with A, E real , A > 0 and D complex and all are functions of z.

Such transformations form a subgroup of the Lorentz group which splits into

three subgroups characterized by:

(a) D = 4—1 =0 which corresponds to an ordinary rotation of m®, m®.
{b) E = D = 0 which corresponds to a scaling transformation.
(c}) £ =4 -1 =0 which corresponds to a null rotation about {°.

The condition ¢% « £* = ¢*{, = 0 is the necessary and sufficient condition

that any null vector ¢® lie in A”. Therefore n® transvects . Furthermore,
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under 3.3.77 n® transforms into any vector field with the same time orientation
as n* and not parallel to {*. Therefore n® is the most general null vector field
transvecting A", By taking n® to be the rigging field and ¢, to be the covariant
normal, we are able to form the projection operators BY, B, B3 and C§ which

satisfy:
BfB% =6p, Bjl, = Bin" =0, B =65 —n{s, CF=n0 (3.3.78)

By projecting the null tetrad spanning M 1in 1ts contravariant and covariant
forms into A we obtain the contravariant 7% = (£*,m®,m*) and the covariant
T. = (ny,ms,M,) triads which span M. These triads in hypersurface coordi-
nates are given by T® = BT = (€, m*,7"*) and T, = BT, = (n,,m,m,)

respectively. The scale product between triad members are given by:
*n, = —mm, =1 (3.3.79)

and all other inner products zero.

The covariant metric tensor of A, indiced by its embedding in M is given by:
"9as = B Gog (3.3.80)

with BSY = B2Bf. Hence by 3.3.78 we have:
"Gop = =My = g, 0 =0 (3.3.81)

So that 'g,, possesses a single eigendirection of eigenvalue zero, {*. Further-
more ’g,, is a degenerate metric, of rank 2, and therefore cannot he inverted to

ad

. . . b ;
give a contravariant metric 'g* such that '¢* g5, = &f. However, we can introduce

a substitute contravariant metric given by:
'g" = B¢ = _2mimd (3.3.82)

where ‘g™ is the projection of ¢ in . g™ and 'g_, satisfy:
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rgacfgb_f;gcj = rgab
‘Pn., = 0 (3.3.83)

"9 e = &=L

Under transformation 3.3.77, the triad transforms as follows:

e — AP
m® — eE(m® — D)

ng — Aln,— Dm, - Dm, (3.3.84)
m, — eFm,

where A, D and FE are now functions of ‘z" and p. The covariant metric ‘g, is
invariant under 3.3.84, however this is not the case for g™, which is invariant

only under the subgroup of 3.3.84 given by D = 0.

The Lie derivative of a tensor field in A is defined as the components in A
of the Lie derivative of the corresponding tensor field in M. Therefore, for any
tensor fleld 'T%; in A and any contravariant vector field v* in M we define:

£1T% = BT £,Be4 T, (3.3.85)
e f

If v* lies in N, i.e, if v® = B2 then the Lie derivative of T™; can be
calculated using definition 3.3.85 or in the usual way.

Denote the connections on A and A respectively by I';, and T}, then the
covariant derivative with respect to 'T'y, of any tensor field ‘T of M is given

by:
T =T%, BY (3.3.86)

Suppose that we have some arbitrary vector field ‘o™ = B2'v® in M which lies
in M. From 3.3.86 we obtain:

Bg, = By, — BS'TS, + BITS, (3.3.87)
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If we take '3 and T}, to be both symmetric and remembering the definition
of Bf we get:

By, = B (3.3.88)

Furthermore equations 3.3.86 and 3.3.87 give:

00 = %4+ Tyl (3.3.89)
Ngp = na‘b-—Tﬁbnd (3.3.90)
Mgy = ma,b—Tgbmd {3.3.91)
m®y = m®y+ Thym? {3.3.92)

We now concentrate on obtaining an intrinsic connection for A". For the
purpose of a geometrical interpretation we choose the intrinsic, symmetric, non-

metric connection introduced by Daiitcourt [7]:

t =

The = 597 (Ghee + ' 9eep = 'G1e) + 109 (3.3.93)

ot

k

By embedding T, onto M and using equations 3.3.81 and 3.3.82 a straight-
forward calculation shows:

Ty = By T, + BaBS. + B gy (3.3.94)

We see that the connection T}, in A is determined by the metric of M and
the rigging field n*.
Using equation 1.3.90 and Daiitcourt’s connection 3.3.93 we obtain:

Nah = NYay (3.3.95)

Unfortunately 3.3.94 does not give ‘T explicitly in terms of I'},. However,

remembering that ¢, «x ¢, and writing:

ly = e, (3.3.96)

where p is an arbitrary scalar function.
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then a straightforward calculation using 3.3.85, 3.3.75, 3.3.76, 3.3.80, 3.3.82
and 3.3.96 shows that:

1 L
Bcb N~ = ;«E!ngob — Py — ey (3.3.91)

=

So that if we substitute 3.3.97 in 3.3.94 we get:
e afy ra o pa 1 o pr
Ty = B! Th, + BaBy, + 50 £5gbe — p (1) (3.3.98)

With the help of equation 3.3.98 we can now proceed to calculate the intrinsic
curvature of A”. Using Datitcourt’s connection 3.3.93 along with equations 3.3.89
through 3.3.92 and equation 3.3.95 we obtain:

E o= 2Pmg (3.3.99)
€—F = MU' (3.3.100)
p = Mgy {3.3.101)
o = Pmbmy = f“mbm[a,b] (3.3.102)
a—3 = m'W'Ma = MmO My (3.3.103)
L' 4atB) = mltng = m o, (3.3.104)
! P =7 = mmina = mmingy 3.3.105
3 Iz [a]

where k,¢,p,0,a, 3,7, o' are the well known NP spin coefficients.

Furthermore, the NP operators D, é,4’ can be expressed as:

D = v, (3.3.106)
& = m*V, (3.3.107)
¥ = m°v, (3.3.108)

Hence, D, 6,8 are the intrinsic operators and x, ¢ — %, p, o, (a — ), %(T' +

a + ), Y(p' ~ 7') are projected into N in a straightforward manner since by

definition we have:
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P = f"’lﬁmmg
e—t = molPri,,
p = faﬁﬁma;g
g = €"mﬁmmﬁ = f“mﬁm[a“q
a—F = mTWTMag = MmO R g
1 _ .
s +a+d) = W0 = M nag
T
S =7) = T mPrag = mom npg

We construct the Riemann tensor from the Dalitcourt connection T';, as
follows:

"R’ =Ty, - T, +TLT; ~TLTS, (3.3.109)

In addition to {* being hypersurface orthogonal we will consider it to also be
a gradient so that, under this condition, the non-vanishing components of the
curvature of the null hypersurface A" can be calculated using equations 3.3.81,
3.3.82, 3.3.93, 1.3.99 through 1.3.108 and equation 3.3.109. They are:

Mt Ry Tty = Dp —7° — 07 (3.3.110)
ML Rop g = D7 — 27(p + € —¢) (3.3.111)

1
m Ml Ry, Yy = §'p — 65 + 2o(a + o) + ST +T+7)

5B+ a+7) (3.3.112)

OmPm Ry iy = —D(@+ o) — 6{e =€) + p(e — €) — oo + &)

+He—B)(@+a) + %(ﬂ +a+T) e F) - %ﬁ(ﬁ +a-7) (3.3.113)

TR M Ry, Ty = D(@ + o) — 6 (e —€) — p(@ + o) + o(a + o)
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He-@ +a)+(BF+atr)c7) - oA +5+7) (3.3.114)

membm® Ry, ‘g = 2(a + @)@+ o) — 8@+ /) — §(a + @)

(¢ =7 )=+ 570 ~F) (3.3.115)
ot R g Sy = _%ﬁ[3+ a4 7) (3.3.116)
T R, T4 = -;;-E(E +a+7') (3.3.117)
MOTTR R g = %&(}f’ - (3.3.118)

We now suppose the null hypersurface A is spanned by a set of spacelike
surfaces. Such that if {* is the gradient of a function constant on each surface of

this set then:

Aa+@) @+a )-8 (@E+a)—{a+a)— (p’—ﬁ’)(ewz)+%ﬁ(p’—-,’6’)(3.3.119)

is the Gaussian curvature of this set {7].

We have seen that o8 is tangent to the null generators of A/, so that any
tangent vector to A has the form v* = &40 + 0¥ | where £ is a (1,0)-
spinor field of weight {0,—1}. Then the components of Dv®, év® and §v® may
be obtained from the components of b¢, 8¢ and &¢. However if one contracts
v® = v™ with G4 one obtains ¢* = v G4 which is a (1,0)-spinor field of
weight {2, —1}. Note that ¢* = no® where 5 = v°i, is the component of v*
in the m® direction. If one then applies the commutator 8@ — '@ to ¢, using
equation 3.1.30 and noting that R = R since £° is hypersurface orthogonal, one

obtains a totally symmetric (4, 3)-spinor.
{(Ty — P10 — A)+ {2 — By — A} (3.3.120)

If one now makes some choice for 14 then one can calculate the components

of this spinor and one finds for example that

.
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(88 — 80)p) 5 = M T M TR Rabot 1 {3.3.121)

which is just proportional to the sectional curvature in the m A 7@ direction.
Suppose now that ¢4 is chosen so that the real and imaginary parts of m® are
tangent to a spacelike two surface & and applies the commutator of the GHP
operators J and & to the weight {1,—1} scalar field n = ¢, then one obtains

(03 — J3)n =Ry (3.3.122)
where R is the Gaussian curvature of S [27] given by:
R = (C-"U" — lIJ2 el ppl + (I)nr —1— A) ‘|" (ﬁg - 62 - W + @ur -|- i"\) (33123)

Thus the new commutator involves the projection of the spacetime curvature
into & rather than the curvature of the projected connection as 1s the case with
the GHP formalism. This is not surprising when one considers that the induced
connection depends upon the choice of ¢# in a non-trivial way, since 'T';, depends
on the rigging field n®, and hence the curvature of the connection does not trans-
form at all nicely under null rotations. On the other hand our new formalism has
been designed so that the components transform covariantly under null rotations.
Indeed the difference hetween the projection of the spacetime curvature and the
curvature of the projected connection consists of spin coefficients which trans-
form badly. This explains why our commutators appear somewhat simpler than
the GHP commutators since the terms that transform badly under null rotations
have been incorporated into our differential operators. Of course a price must be
paid in the correspondingly more complicated definitions of the new operators.
Hence we have that the GHP commutator d3° — 3’9 gives the projected
curvature of A into S, while our new commutator 33 — @& gives the projected

curvature of M into N.



Chapter 4 95

Chapter 4

The Karlhede Classification of
Type N Vacuum Solutions

In this chapter we apply the invariant formalism developed in the last chapter to
the Karlhede classification of vacuum type N Einstein solutions. This approach
arises from the fact that in the case of vacuum type N solutions the invariance
group H? is the group of null rotations and we have seen that the new formalism
is invariant under such transformations.

In a recent paper by Collins {6] the upper bound for vacuum type N was
reduced to six. Collin’s approach makes use of the NP formalism to express the
dvad components of the Weyl spinor and its derivatives. However, the use of
this notation is not as productive as might be desired since terms which are not
invariant under null rotations appear in the Karlhede algorithm.

In another paper by Collins, d'Inverno and Vickers [10], the bound for vacuum
type D solutions was reduced from seven to three. An important aspect of this
approach is the use of the GHP formalism. Vacuum Type D space-times have
a Weyl spinor which admits spin and boost transformations as its invariance
group and the GHP spin coefficients and operators are covariant under this same
group. It then turns out that at all orders of covariant differentiation the dyad
components of the Weyl spinor and its derivatives can be expressed completely
in terms of GHP notation which makes the classification process easier.

It thus seems natural, as in the type D case, to use a formalism which is
invariant under null rotations in order to simplify the classification process, and

hopefully be able to reduce the bound.

4.1 The Procedure

The equivalence problem investigates whether two given metrics ¢ and § ex-

pressed in different coordinate systems 2 and &, are equal under a coordinate



Chapter ¢ 96

transformation. Because there are transformations b of the proper Lorentz group
which leave the metric invariant what we should investigate is whether there is
a coordinate transformation giving ¢ = bg, so that the metrics are given up to
transformations of the proper Lorentz group which leave them invariant.

We have seen that to solve this problem we need to find the relationship
7% = 7%(2") and é* = ¢4(eB, z*) where ¢? represents the parameters of b that
are compatible with the system of equations 1.3.78. We have also seen that we
need only calculate up to the (p + 1)th derivative of the curvature, p being the
order at which no new functional information, relating to the coordinates or to
the frame, is obtained.

The Karlhede algorithm, provides a way of classifying metrics in a way that
will simplify the procedure for solving the equivalence problem. What one does
mn practice is calculate the successive covariant derivatives starting from the Oth
order, and at each stage ¢ of differentiation determine the invariance group {the
group which leaves the components invariant) and hence a frame, up to trans-
formations in the invariance group, that will provide the simplest form possible
of the components - the canonical form. Se that at each stage ¢, one is left
with two pieces of information, information concerning the frame dim(H,) {the
dimension of the invariance group H; at step ¢) and information regarding the
coordinates n, {number of functionally independent components). The proce-
dure stops when we no longer obtain new information regarding either the frame
or the coordinates, i.e, when dim(Hyy1) = dim(H,) and ngyq = ny.

The idea in what follows is to consider particular linear combinations of the
components of the curvature and its successive covariant derivatives with these
linear combinations being constructed in such a way that one can obtain, sys-
tematically, all the components from these linear combinations. In fact for con-
venience what we will work with, at each stage ¢ of differentiation, will be linear
combinations of the spinor basis (0*,¢*) and the spinor components of V9.
For example, considering the first derivative instead of applying the Karlhede
procedure to the terms:

‘IJABC'D,EB OA OBOG OD OEOE"

P ABCDER D'zl OBOC ODOE.{E

@A&Z‘DEB G‘AI OB OC OD t.El.E

q'AECD,EE’ OAOBOCLDLELE (411)

kI'ABCDEB 0‘4 OB LC I,D I.ELE'
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Y ancpem 0B P EF

U DED LA LB LC LDLELE

we apply the same procedure to the terms:

U anmm o 020 0P oF o

W gD e 04 0P 0% 0P of

Y inrnER 01oB 0% o?

W ipepep 07070 (4.1.2)
Wipcpey 070
W smcpER ©

Y spcpER

Obviously the information one obtains from the classification of set 4.1.2 is
not the same as the information one obtains from set 4.1.1, since the invariance
group which leaves set 4.1.2 invariant may or may not leave set 4.1.1 invariant
or vice versa. In the case of type N solutions which is the case we will be
considering, the set 4.1.2 is invariant under null rotations as we shall see in the
following sections, however set 4.1.1 is not invariant under such transformations.
We can see that the canonical forms of the terms in set 4.1.2 must contain
the same coordinate functional information as that of the canonical forms of
the terms in set 4.1.1, since these are simply linear combinations and one can
obtain all terms of set 4.1.1 from the terms in set 4.1.2 and vice-versa. To
obtain the canonical forms of set 4.1.2 one mus{ determine the invariance group
at each stage ¢ of differentiation, i.e, the group of transformations which leaves
the linear comhinations invariant at each step of differentiation. We will denote
the dimension of this group by H, to distinguish it from the invariance group
H; of the components. Then we must fix the frame as much as possible up to
transformations in the invariance group and calculate these linear combinations
in that frame, which will then give us the required canonical forms. We follow
this procedure at each step ¢ of differentiation.

So that, like in the Karlhede algorithm which works with components, if
H,y1 = H, and n,41 = n, then the procedure stops since no new information

arises from higher derivatives.
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In effect what we are trying to solve, is not the simultaneous system of equa-

tions:

(4.1.3)

lI’abc:i;e;e’l..,epe'p = lI'abcu’:eqe’l‘.‘epe‘P

lpa.bai‘.ele’lmepﬂe’p“ - lpabaf;qe’l...ep+le’p+l

but the system:

Tapcp = ¥ABCD

YABCDE,E, = WABCD{EE

(4.1.4)

W ABCDE,E . .EE, = YABCDEE,.EFE,

W ABCD:E,\E" . EpnFyyy = WABCDEE' . Epy By,

which 1s not exactly the same. In the first case we require that there exist
frames, up to rotational freedom in the equivalence problem, in which the set

Wotd 3 Wanetee -.. are equal, the identification map being given by the coordinate

relation & = ##(2") which gives equality. In the second case we require that -

there exist frames up to rotational freedom in which the set ¥ ancp, YABCD EE/
. are equal, the jdentification map being given by %* = %#(x").

It is clear that if there exist frames in which the set Vo7 , ¥opatew --. are equal,
then in that same frame, the set WapcD, Y ABCD.EE-.. are also equal and vice
versa because of the way terms in set 4.1.2 are constructed from those of set
4.1.1. However, the group of transformations giving the rotational freedom in the
frame for set 4.1.2 may not leave the terms in set 4.1.1 invariant. So the fact that
the system of simultaneous equations 4.1.4 is solvable does not imply equivalence

since ¢4 = é4(ef, x#) does not imply é4 = é4(cP, 2¥). However, Xx* = X#(x*) does
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imply & = ##{z"), so that if after a certain stage of differentiation set 4.1.2 does
not produce new functional information concerning the coordinates that implies
that after that same stage set 4.1.1 does not produce new coordinate information
either. However, it is possible that the invariance group of the components H,
may not be fixed at this stage and may change with further derivatives so that
one must check this detail if one wants to determine the upper bound on the
order of covariant differentiation. ‘

We consider the case of Petrov type N solutions. Here, what one does
is, instead of taking the canonical forms at each stage ¢ of differentiation of
the Weyl spinor {Wapet ..., ‘I’me,“.ap,,,e;ﬂ }, one takes linear combinations of
the components of the gth derivative of the Weyl spinor at each stage of co-
variant differentiation {¥sBcD, ..., ‘I'Jau_:,C];);]g;l]5;:1__‘EPH]:-;;H”1 } in such a way that
one can obiain in a systematic way all corresponding components from these
linear combinations and the invariance group is fixed at all orders of differ-
entiation. So that all one obtains from this set is coordinate functional in-
formation. Notice that if ny, = n, then the procedure of classification of
{®¥aspcD, - ¥ ABCDEE; ) S } stops at p+ 1 so that after the stage p+1
we do not obtain any new coordinate information from this set, furthermore this

implies that after this same stage we do not obtain any new coordinate functional

information from {Wuw 5 .- ll!mq_‘tp“e-w , 'qu"_ep”gpn ,---}. The reason be-
hind these conclusions being that one can extract the set { WU, ...,
Varder.epre,,, +--} from the set {¥aBcD, ..., ABCDIE,E,..E,u By, > ) and

vice versa systematically. In a sense we are separating the frame information from
the coordinate information. However, after all coordinate information has been
extracted from set {¥ancD, ..., ‘I'ABCD;E;E’IWEPHE;,“ } one must then check if
the terms
lI'abcd;el.“eP“e‘pH s Wabader..cpyr > €bC are invariant under nuli rotations and if not one
must calculate higher order derivatives until the frame is fixed, thus obtaining
the bound on differentiation.

We have seen in chapter 1 that the Weyl spinor of a Petrov type N spacetime
has the form:

ng=lI’1=‘IJ2=‘I’3=O;‘I'4=lI‘§£O (415)

which is preserved under the invariance group H, of null rotations 2.1.2,

The generalized GHP formalism involves invariants which are symmetric
spinors rather than scalars. So that if one is to apply this formalism to the classi-
fication procedure, instead of considering the terms W4, ¥y, ¥,, W3, ¥, and the re-

spective invariance group of null rotations we consider the spinors Wy, ¥y, ¥4, ¥3,
¥, defined by:
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U, = Uagp 0?0P00? (4.1.6)

(T)a = Wapp 0PcC0P (4.1.7)

(To)ag = Wamep o%0° (4.1.8)
(¥a)ape = Yamp o (4.1.9)
(T)ancp = Yamp (4.1.10)

and the group that leaves these terms invariant.
The Weyl spinor for vacuum type N in this notation has the general form

given by:

Wy =(T1)s=(¥)ap = (¥s)ape =0

(®4)ascp = Wosopocop (4.1.11)

Notice that 4.1.11 is invarian{ under the four (real) parameter group of
transformations 3.1.2.

[t is however convenient to use the simplest form (canonical form) possible
in order to simplify the calculations and hence the classification procedure. By
taking a suitable dvad as basis we may scale ¥ to one and obtain the following

canonical form for the Petrov type N Weyl spinor:

Vo= (¥1)s=(Tr)ap = (¥3)upe =0

(¥s)amcp = oa0Bocop (4.1.12)

Notice that now the dimension of the mvariance group Hg 1s two, the mmvarn-
ance group being the two (real) parameter group of null rotations 2.1.2.
In the generalized GHP formalism, the Bianchi identities in vacuum under

condition 4.1.12 become:

p.-i’(A lI!BCDEj = R{A‘IJBCDE] 5‘4{ (4113]
3(_419}(‘4 IIJBCDE] = lI'(BC-‘DE TA)[!y Op) (4.1.14)
Sy = 0 (4.1.15)

K =0 (4.1.16]
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Which in compact notation 1s given by:

PP, = RY¥,
ae, = TV,
S =0
K =10

101

(4.1.17)
(4.1.18)
(4.1.19)
(4.1.20)

Using the fact that W, is a spin and boost weighted object of weight {0,0},

and that D’(Erp](gp (OAOBOCOD]) = 5’9(;_:;;' (OAOBOcOD)) = 5{9;::)(3 (OAOBOCOD)]
= Dpyg{os0pocop)) = 0 we have (by definition of the generalized GHP opera-

tors ¥, &, 8, p):

Vypap Yoper, = 4ocopoporGapa Op
Oyus Yeper = 4A(aBocopopop o
O upya VYBopy = 409 Bayaopocopor
PuaVsepm = 4E40BocoporOu

Or in compact form

Po, = 4G%,
3%, = 4BV,
Jv, = 4AT,
b, = 4E¥,

Comparing with the Bianchi identities gives:

Ry = 4F4
Tax = 4Bag

The Ricci equations become:

W

(4.1.25)
(4.1.26)
(4.1.27)
(4.1.28)

(4.1.29)
(4.1.30)
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P44 Rp
Pax Tep
Famya Bo
dasp Tho

I’EAfB)(AB Rey — 84y Tem

R(ARB)ﬁA!

5 Taya Rp) — Taa Rpop

Ts4 Trp 0o

—Ta4 Tpp oc

With their compact form being given by:

PR = R®

pPI" = RT

drR = TR-TR

ar = T
VYR-3T = -IT

Finally we write the commutators:

(Par Vacwo —VYecmo Pas)da.ay, = (0cT 14 Osmo

+50T14 Yooy )oa.a N

(Pag s — O8O Pan Yéa..ay = 08Ra0apo da.i

{(Oaap TBoo — oo Oasp )ba.a, = (RiOu

—Ra04)Vpopo day.ay,

(P agap Jcop — 8cop Pasap )ba.a, =

—_— K
—0pT44 YVecpo d4,..4

Which in compact notation become:

(4.1.31)
(4.1.32)
{4.1.33)
(4.1.34)
(4.1.35)

(4.1.36)
(4.1.37)
(4.1.38)
(4.1.39)
(4.1.40)

(4.1.41)

(4.1.42)

(4.1.43)

(4.1.44)
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(bY —PY)p = (Td+ T8 )¢ (4.1.45)

(bg — 8b)p = RIP (4.1.46)
(68 -3¢ = (R-R\Po (4.1.47)
(Y -8P)p = —TPo {4.1.48)

Note that the GHP vacuum field equations contain the same information as
Einstein’s vacuum field equations [27] and therefore the same is also true for the
equations given above since they are complete in the sense that all such GHP

identities can be obtained from them.

4.2 First Covariant Derivative

We now proceed to calculate the first covariant derivative of ¥agsp which we
will denote by (V®)appre . It follows from the Bianchi identities in spinor
form e W pcppp = 0 that the first covariant derivative of the Weyl spinor is
symmetric on all primed and unprimed indices so that it makes sense to apply
the generalized GHP notation.

The calculation leading to the general expression giving the dyad components

of the first covariant derivative is given in :

(VW) ugr = {Yadisr ~ #l0gpp Yy + (20 — 4)T01sp ¥,

+(4 haet ,(I]Foof_fi lI’!_H.] (4249)

with ¢ € {0.1,2,3,4}.

Now, in the same way that we obtained the general equation giving, for
example, all the Bianchi identities in generalized formalism from the general
equation giving the Bianchi identities in NP formalism, we are able to obtain
a general expression giving all terms relating to the first covariant derivative
written in generalized notation from 4.2.49. Let (4 = {o*, ¢} be a normalized
spinor dyad with dual (4 so that bold indices represent dyad terms, for example
AA = As(a Is a scalar and not a spinor.

In order to write 4.2.49 in terms of the invariant formalism we first introduce

some notation. Let V¥ with zero to five unprimed indices, be defined by:

(V'I’).qp oy A = \I'A] oy Ay A 0':ll . 0'4(?'1) (4250)

e
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Then in the invariant formalism, equation 4.2.49 becomes:

0Ans (V) A, AFF = ) _{(®a,.Ay ) FFoay, — NTaA, A, FP®A, Ay,
sym

+(2N — H)Foa, PP A, Ay, T4 — N)TooFF }¥A, A yAn,, (4.2.51)

with ¥ € {0,1,2,3,4} and where Z indicates symmetrization on all free primed
sym
and unprimed indices,

We can now obtain from 4.2.51 all non-zero terms relating to the first order

derivative written in generalized formalism:

ot (V) aanarp 00) = 406 Gpyra 04,0404 04
= Vpoyas Tanan (4.2.52)
O (V‘I')A:AQAGF}(F' oGy = 0@ TF’)(FOAI 04,04, 04,)
= dory Yi4nmian (4.2.53)
0r0ga, V) g poaei,;y = A(Fa, 04,04,04,04)0p
= Opra ¥ (4.2.54)
op O(F(V‘I')AlA?AgAq} = R(FOAl 04,04, 0_44]5}7! (4255)
= PpirW4a4.4,) {4.2.56)

And in compact notation we have:

(V®) = 4G =PV, (4.2.57)
(V). 0 = 4A =80, (4.2.58)
(VI)-5 = 4BU,+4T®, = 9%, +4T¥, = 5T¥, (4.2.59)

(V®)-0-5 = 4E¥,+ 4RV, = bW, + 4R¥, = 5RP, (4.2.60)

.

e -
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Where we recall that in the compact notation a dot denotes a contraction
and that one may have to multiply terms by suitable factors of 04 and 34 and
then symmetrize to obtain expressions such that the indices balance.

It is important to note that equations 4.2.57 through 4.2.60 form an inverted
hierarchical system. Since £ = 0 the only functional information in F is given
by €. Again since ¢ vanishes and ¢ is known from 4.2.60, the only new functional
information m B is given by f. Since p = 4¢ and ¢ is known the only new
functional information in A is given by «. Finally since v = 44 and all the
other terms are known the new functional information in G is given by 4. Thus
equations 4.2.57 through 4.2.60 encode all the functional information at first
order.

It is clear that the terms obtained at first order are invariant under null ro-
tations so that the dimension of the invariance group H; remains 2. We must
consider the possibility of their being at least one functionally independent com-

ponent among these terms and hence proceed with the algorithm.

4.3 Second Covariant Derivative

The calculation leading to the second covariant derivative which we will denote
by (V2W) apcpmspe 18 similar to the one performed to obtain the first covariant
derivative,

The general expression giving the dyad components of the second covariant

derivative is calculated in {10] and is as follows:

(vzq’)nf’:gg‘ = [(vqj)#ﬁ]@g = 1l 119y (V) ny g
(21— 3)l10gg (VW)pr + (5 — )T 00gg (V) a1y p (4.3.61)
—T{f:]:gmg (V\I’)wr + ff‘()'g’g (V'I’)m.-

with g € {0,1,2,3,4,5}.

In terms of the invariant formalism one obtains:

‘f_)AJOAN"_l(VE‘I’)AJ_“AJ\,FIGG! = Z{[(VW)A].,.ANF'];GG!EA'OAN+1

sym
—NTa, 4,66 (V¥)a, Ay, FOa + (2N = 5)T A 0ca
(V¥ A, An P04 + (5 — NTooga (V®)a, Ay, FOar (4.3.62)

—Tracc(VE)a, Ay0an, + TrocG(VE)A, AvA OAy, )
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In the vacuum case at all orders of covariant differentiation of the Weyl spinor,
we only need to consider the symmetric parts since only these terms are alge-
braically independent [1]. One then obtains all symmetric non-zero terms corre-
sponding to the second covariant derivative of ¥, from expression 4.3.62, which

in compact notation are given by:

(VI¥) = PP, (4.3.63)
(VW) - 5=3P¥,+ (VU )T + V&P, (4.3.64)
(VW) .5.-5=989, (4.3.65)
(VW) . 0= PO, + 5PFW, + 5(P'¥,)T (4.3.66)

(VW) -0-5=DbPT, +80W, +550¥, + 5PP¥, + 5(0' V)T

+57T + RP'¥, + RPU, (4.3.67)
| (VW) .0 5.5 =D0W, + 58PV, + 5(8 V)R (4.3.68)
f
|

(V2®)-0-0= 5300, + 20(3¥,)° (4.3.69)

(V2®)-0-0-7= 5PV, + 5P, + 5(8W ) (PW ) + 40(8F,)(PP )(4.3.70)

(VP0).-0-0-5-0 = 5bPW, + 20(bW,)? (4.3.71)

Notice that all the above equations can be obtained from equation 4.3.63
by contraction with omicrons, and as at first order form an inverted hierarchi~
cal system. These second covariant derivative terms encode the same functional

information as the second covariant derivative terms obtained by Collins [6] and

..
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one can obtain the expressions above by translating Collins’ terms into gener-
alized NP language (for example: p becomes R) and leaving out all terms that
transform badly under null rotations. Again we obtain objects that are invariant
under null rotations so that the dimension of Hs 1s two. By considering equations
4.1.25 through 4.1.28, we see that equations 4.3.63 through 4.3.71 tell us that
the potentially new functionally independent information can only come from
the following sixteen terms:

pp¥,, Py¥,, PFV¥, PPT,,
vyr¥, Pav, PVi®, PPY,

ave, 8a%v, 98IV, YT,
apy, 3Jav, gIv, IPY,

It is easily seem that the commutators limits the number of functionally
independent terms to ten, which are obviously given by:

PP¥, POV, DIV, DYT,,
vYov, Pav, PPY,

0%, 99T,

33w,

And by means of 4.2.57 through 4.2.60 and the Ricci equations, we are left
with:

pg'¥, PV, PIL,,
Yaw, VPP, J§av, (4.3.72)

as our possibly functionaily independent terms.

Unfortunately we are unable to relate these invariants to the invariants ob-
tained at first order of covariant differentiation, because the Bianchi identities do
not relate P¥, and 3P, to ¥, R and T. In fact the terms P'®, and 8P, does
not even feature in the Bianchi identities. As a result, and unlike {he vacuum
type D case where these identities are used to relate higher order derivatives of
¥, to lower order derivatives of ¥y and hence limit the number of functional
information obtained at each step, here we must consider the possibility of there
existing at least one new functionally independent term among the invariants

given by 4.3.72. We must therefore continue the Karlhede algorithm.

%,
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4.4 Higher order derivatives

The calculation of third, fourth,..., etc covariant derivatives of the Weyl spinor
is lengthy but straightforward and can be seen as an extension of the calculation
performed for lower order derivatives.

Lets consider the calculation of the dyad component terms of the third deriva-
tive of ¥, which will be denoted by (V3¥),psnr and is defined as follows:

=F = =H -
(VPW)ypigrn = Vancprcomn [P ECETEREL 658, €7E,  (4.4.73)

where there are g ff"s in square brackets and g € {0,1,2,3,4,5}.

Expression 4.4.73 can be rewritten in the following way:

(vsqj)ﬂf’:gg’;h&‘ = (‘IJABC-‘D.PF':GG;HH [5?5?55555?]3? ggzg):HH fffg

—([EAEBECERERNET €5FS ) am € ER W amompirc (4.4.74)

taking into account that there are u £'s in square brackets we have:

: —=F =G
(v3lp)yf';gg’:hﬁ = [(vzlp)ﬂ-f’;ggf };hh' - ﬂfﬂhhf [6?55556?]&?5_{! fgf
A B¢C ¢DeF1gF (G
Vapcprror — (5 — )0 (€€ &3 &5 ]Eﬁ £ & ¥ apen e
=F - =7 =F =G -
=& pronre ffff!fff?ﬁfﬁffg Vigprrea — fgm ffﬁfffffffﬁf, &y (4.4.75)
- , =P
Vamnrpao  — Egu E1EPECERE] €L €5V apcprmico
In expression 4.4.75 there are ;¢ — 1 in the first square brackets and u in the
second square bracket.

The general term ¢£,;, can be expressed in terms of the spin coefficients Top

in the following way:
Eme = Epamn €7 = Erapue EFE = Tpun €5 (4.4.76)

substituting 4.4.76 in 4.4.75 we get the general expression giving the dyad

components of the third covariant derivative of the curvature:

e
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(.Vsll’)pf’:gg’;hh’ = [(vzlp)uf’;gg' Jiwe — #l11n (vzq’)u—l;gg'

+(26 = 5)ul1om (VW) + (5 — ) oom (VW) 1 frgy

+T e (V) argg = Tpasion (V20 i (4.4.77)

+om (V2 )uping = Lamr (V) upi0g
| +T§r’0'h‘h (vzq’)nf’:gl’ - Tg’l’h’h (VQQ')M’;QO’

In the same manner as before we arrive at the general expression giving the

[ g gving
| generalized terms of the third covariant derivative:

[ Third Covariant Derivative

04044, (VW) 4, ayrconl = ) (V) A FGG |11 0A0A L,
sym

—NTa, 4, HH(V*®) 4, A5, . FGG Tar + (2N — 5)T 4, oHH/

e T

(V) A, Ay FGG OA + (53— N)Toonu V) A, . Ay, FGG DA/
—Trara(V'¥®)A, ANGG 0Ay,, + [FoHH (4.4.78) ’ :i)
(V¥)A, AyAGG 0Anyy — LGAy, HE(V®)A, A, FG OAr |
+lGorH AV W)A, A AL, 604 — LoaHE(V?T)A, A TG oAy,

T~ 2
Hleomu(V ' P)a, AFGa oay,,

To calculate the expression giving the dyad components of the fourth covari-
ant derivative of the curvature (V39), ¢ o0 ppmm  we follow the same process as

before. By definition we have:
(vqlp)ﬂﬁ;gg‘;hﬁ;m = ‘IJABC-'QFF':G’G’;HH;MA:' [E:f?éf&f&f]

—F =G zH MM ~
ffrfgcfgw féhr E,ﬂf{m (4.4.79)

where there are u 6{“3 and u € {0,1,2,3,4,5} in square brackets.

Same as before expression 4.4.79 can be rewritten in the following way:

—F o= =l
(VA pogimiemm = (Y apcprp.co.He [ffﬁf{ff?f?]@ {figf EHEL Yoans

~;— ,




Chapter 4 110

M — ([EAPECERErIE, €08 €HEN Ve €M EL (4.4.80)

¥ spcprp.coHE
taking into account that there are g £'s in square brackets we get:

(v4lp)uf’;gsf;hff;m = [(vsw)ﬂf’;gg’;hh' mmt — F"giq;MM [556555&?]

Ei 6533 ENEN EMEY U apprmcomm  — (5 1)Eame (EPETET EF]

£ T TN MEN U mmcasr — o CAEPECEDEFEOTS

U apcormcoti — oy EAEPECEDETEL TS CHED (4.4.81)
Y sgeormco R — Efm erefeler Effﬁ el En U apcn,reGo i

el EABECERET TN Eh Wamnrmcomr  — Comme ECEPECERENEL €

Y sponrrcaHp

Same as before there are ¢ —1 in the first square brackets and p in the second

square bracket in expression 4.4.81. So that by substituting 4.4.76 in 4.4.81
we have our general equation:
(V) upapttimnt = [V Cupigginie Lt~ 0 1t (V2O pragine
+(2 = 5)ul0mnt (V2 )upigpine + (5 = 1) Lovmm (VU wt prggste
+T pomm (V28 arggime — T o (V23U ) g (4.4.82)
T g0mm (V') upigginr = it (V20 upioginn

+T gomtm (V3U) ypggiie — Dginen (VU ) uprgor

From equation 4.4.82 we obtain the generalized expression given below:

Fourth Covariant Derivative

— 4
A OAN,, (V'¥)A, A FGGHEMM

=3 [(V’¥)a, AP GGHE | (M OAOAL,,
sym

e
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—NTa, A, MM(V¥) A, A, FGGHH DA
+(2N = 5)T 5, 0mm (V) A, Ay, FGGHHE Tar
+(5 = N)Toomm/ (V> ¥) A, . A v, FFGGHH DA
—Tramm(V*¥)a, A GGHH 0A,,
+TroMM(VP®) A, A A GG HE 0A .,
—TGay MMA(V°P)A, A FGHH OA

+T oMM (VP W) A, A F Ay, GHE OA/

T 3
—Teamm(V'¥)a, A FGHH OA,,,

+TaomM(VP¥)A, A FGAHH OAy,,
—Tua, v (V>®)a, A, FGGH DA
+THoMM (Vo) A, Ay, FGGH TA/
—TraMmM{V¥)a, AFGGH AL,

T 3
+lEoMmM(V ')A, A F'GGHA OAy,,

Obvicusly the dyad components are determined by:

£ O Ty (ME VT

where there are u {f‘fs and p € {0,1,2,3,4,5} in square brackets.

(VU prggititimmtons = VasoprmcoHmanane  [EAEPETEDET]

111

(4.4.83)

JE————

Finally we determine the expressions relating to the fifth covariant derivative

of the curvature which can be obtained following the same process as before.

(4.4.84)

In the same way as before, equation 4.4.84 leads to the following equality:

: BgC¢D
(vsw)uf’;gg’:hff:ﬂmfmd = [(VJ‘D)uﬁ:Qg’;hﬁ;wﬂ Jinmt — F‘-éiq;NN (5 €c &a 6?]
—F =G y=H =M NN A
C o e, e, N, Vampmaoaramr — (5— 1)
: —F =G geH A=M NN o
[BeCERerNE, €CF, ¢FE, ENE.y ENE . Y amnrr camrame N
e SR L
5 £
{‘[, | :“/ .

..
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*Eim EEPECERENES Ef EMEM U ppon o

—Ly o el e7 ﬁffff €Ty M Y gmop oA

Tt EEPECEDET T T LT EMEY Wancnrmicormame

—€f E2ePeled éfgl;: 5?3? Eg 6&"@5 U s5cp FPiGa; HEP MM

‘Ef‘r;m grefetel 5?5? 5?33 EHEMEN U spep o coHm MM
—H =M

M B oC oD FFF 670
— o P ECETETE L SE HE Y arcn oo MM

M A¢BpCeD ¢ FFF +G7C (HTH oM
~E ot ERETECETETE L ES T, EF E EMW apep o mama

By substituting 4.4.76 in equation 4.4.85 we obtain the general expression

giving the dyad components:

(vslp)ﬂf’; g hitmmtid = [(v4ll’)nf’;gg‘;h?f;nw ];n‘n’ — Ll 11nm

(v‘lw)p—lf’;w;hff;m + (2¢ = 5) il 100 (V4q’)uf‘;gg’:hh';mnf

+{5 — )l oonn (v4q')u+1f';gg';hﬁ;m + T!’D’n’n (v‘;\p]pl’;gg’;hﬂ;wﬁ

~Tpromn (V') siggititimmt 4+ Loomt (V) upigiptiznmt
—D i (V4‘I’);aj*;0g';hw;m + Fg"[)’n’n (v4q’]pf';gg:hﬂ;m
~Tgrrmwn (V') gttt + Chowr (V) priggst bt
=Dt (V) upiggiomtimmt + Cpoormn (V) uprgg vt
—Thrnm (v4'1’)af;gg;m';nm + o (V4‘I’)pf;gg’;hw;1nf
—Lontrre (V') upggiiieont + Dmtormm (V) piggihieimr
~Trormn (V) piggitimor

Fifth Covariant Derivative

e 5
A 0A N, (V'W)A, A FGGHHMMNN =

= 3 {l(V'®)A,. AyFGGHEMM) NNOACA vy
sym

b
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(4.4.85)

(4.4.86)

e e T = Tr———
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—NT A, 4,NN(V'®) A, A, FFGGHEMM T/
+(2N = 5)T a,oNNAV*®) A, A 4, F'GGHEMM 0Ar
+(5 = N)TooNn(V )4, Ay, FGGHHMM DA/
—TraNN(V¥)a, A GGHHMM %Ay,
FroNN(V T) A, Ay AGGHHMM 0Ay,,
—LGAN NNV )4, A FeHEMM A
+PGoNNAV*®) A, _ANFA v, GHHEMM Jar
~Teann(V¥®)a, A FGHHMM 0Ay,,
+TGoNN(V WA, AyFGAHHMM 0Ay.,
—Taa,NN(VW) s, Ay, FGGHMM T4/
+THoNNAV'¥) A, Ay, FGGHMM: OA:
—THANN(V'¥)A, A FGGHMM CAy,,
+THeNN (V) A, A FGGHAMM: AL,
~Tma,NN( VW) 4, A, FGGHHM DA
+TMoNNAV W) A, Ay, FFGGHHM: DA
~TmanN(V®) A, AP GGHHEM OAx,,

™ 4
I MoNnN (VW) A, A FGGHEMA A,

4.5 Reducing the upper bound

113

(4.4.87)

Here we analyse the upper bound on the order of covariant differentiation of
the Weyl spinor required in the Karlhede classification. We apply the Karthede
algorithm to the invariants obtained in the previous section.

At first order the terms obtained are given by V', &, @, P acting on ¥, which
are all invariant under null rotations. In order for the algorithm to continue these
terms must be non-constant, since otherwise the algorithm would stop at second

order because W, = 1. This can also be seen by leoking at the components

since these terms being constants would then require that R, T, A, and G to have

e




Chapter 4 114

constant components, i.e., p, 7, a, and 4 would have to be constants. If we apply
the NP Ricci equations [23] to these constants, we get

p=7=a=0 (4.5.88)

and Collins [6] has proved that when 4.5.88 is satisfied the upper bound is two.
Hence, we consider the case when at least one functionally independent term is
obtained at first order and thus continue the procedure.

We have already seen that at second order the invariance group remains the
group of null rotations but we must take into consideration the possibility of
there being at least one new functionally independent term amongst the terms
obtained at this order so that the procedure continues to third order.

All non-vanishing terms relating to the third derivative are obtained from
(V3®,) = P’3II'4 by contraction with omicrons, so that the two dimensional
group of null rotations remains as the invariance group Hs. However, we are
again unable to rule out the possibility of obtaining new functionally independent
information at this order of differentiation. So the Karlhede algorithm must
continue to fourth order.

At fourth order the situation is much similar to third order, with all non-
vanishing terms obtained from (V1¥,) = P4®, in exactly the same way. And
for exactly the same reason as hefore, the algorithm continues to fifth order.

At fifth order things work out much the same, with all terms being given
by (VW) = P W, and its successive contractions with omicrons, so that the
dimension of Hj is two.

At most the algorithm will produce four functionally independent terms
among the set {(V"W,),...,(V"W¥,)0-....0-5-....0}. Hence, since the invariance
group remains the group of null rotations at each step of the algorithm we con-
clude that in the worst possible case when only one functionally independent
term is obtained at each stage, it would be necessary to calculate five covariant
derivatives before we obtain no new functional information and the algorithm
terminates. This however, as discussed before, gives just information concerning
the coordinates obtained in the Karlhede classification of the solution. We can
say, that as of the fourth derivative, one does not obtain new coordinate func-
tional information from the components of the successive covariant derivatives
of the Weyl spinor, However, we must check if by the fifth order the invariance
group relating to the components is fixed, otherwise one might need to calculate
further derivatives.

According to Collins work [6], at first order of differentiation the terms ob-
tained are given by:

o m——
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(D)4 = p Ci
(DV¥)spr = 4 C2
(DW)g =7 C3
(DT)syr = 4r Ca

which 1s precisely what one expects.

Under null rotations these spin coeflicients transform as follows:

p — p {4.5.89)
a — a4+ Zﬁp (4.5.90)
Fo—s T4ap (4.5.91)
¥y — v+aa+ z‘d'r + Za‘p (4.5.92)

He then goes on to determine the invariance group. In order to simplify the
procedure he considers various distinct cases which he denotes by Class [, Class
I1, Class Ila, Class IIb, Class I1la, Class IIIb. Let us review the results obtained
for each of these cases:

Class I p#£ 0

By 4.5.91 we have that 7 can always be set to zero by taking ¢ = —Z which
then fixes the frame completely.

Class II: p=0,7 =0

The only transformation remaining 1s v — v+ aa. There are two subclasses
to consider:

Class ITa: a # 0

In this case one can set v = 0 by taking ¢ = —2 which then fixes the frame
completely.

Class ITb: a =0

..

VR
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Here none of the spin coeflicients can be transformed at all so the frame

cannot be fixed any further, i.e, the invariance group remains two dimensional.

Class IIL: p=0,7# 0

The only transformation remaining is ¥ — 4 + («a + $@r) so that two cases

are considered:

Class Illa: |a| # 2|7|

Here we are able to fix a and therefore the frame completely [6].

Class IIIb: |a] = 3|7|

In this case the frame is fixed up to a one dimensional invariance group [6].

At second order of covariant differentiation the terms obtained by Collins are

[6]):
(DZQ)SO’;IO' = 2p2
(D*W)s0r110 = 2p7
(DQ‘I’]Sl*;m' = 2p7
2 3, 1_
(D lI;)-‘lD’;OU' - DP + Zp —_ pr
2 ‘. 1_
(D)oo = 6'p + Tap — ZTP
2 3 _ _
(D ‘D]‘lo’;ﬂl’ = 6,0 4 sz —op+ TP
(D*T)aparr = D'p + 3yp + 4ot —5p + 77
3 1
(D*W)syger = Dr + ridd 7o + ZT?

(Dz‘lj)gﬂr;op = 5’1‘ -+ 7’}’1‘ — J'_/p + ’T?

3 —
(Dz\l})‘u,;m, =67 4+ ZTz — /\p + 7o

.

C5

Cé

C7

C8

C9

Clo

C11

C13

Cl4
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(D*WVgyrqp = D7 +Try —Tp+ 77 C15
(Dle!)E,O:;go» =4Da — 57p + Sap — op C16
(D*W 5oy = 46’ — 5% + 200% + aT C17

(D*W)sor01r = 46 — Bup + Bra — 4@ + 497 C18
(D?W)s50rq1 = 4D'a — Svp + 200y — dafi + 47 C19
{(D*®)sy000 = 4Dy — 577 + 5yp — 4aT + By C20
(D?*W)sypr = 48"y — 5AT + 200y — daf + 47 €21
(D?®)syrpp = 46y — Bur + 597 — daX + 4@ 22
(D*W)s1ray = 4Dy — B5ur + 209° ~ 40T + 497 C23

which again i1s what we expected. We then look at the invariance group which
leaves all terms in C5 through C23 invariant. We have seen that for classes [, [1a
and Illa the frame is completely fixed at first order. So that one looks at what

happens in the other cases:
Class IIb: p=0,7=0,a =0

On substituting g = 0,7 = 0, @ = 0 into equations (2.4d), (2.4m) and (2.4p)
of [23] one has that only D'y is non-zero. Under null rotations the NP derivative
D' transforms as:

D — (D + a8 + @b + agD)

It is seen from equation 4.5.92 that v remains unchanged under the group of

null rotations so that one has:

D'y ~—— (D' +a¥ +ab+ aaD)y = D'y

e
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using the fact that Dy = é4 = §’y = 0. Hence we have that D'y remains
unchanged under the group of null rotations so that at second order the two
dimensional invariance group remains.

Collins [6] goes on to show that at third and higher orders of differentiation,
in this case, the only non vanishing component will be the highest labelled one
and will contain as potentially new functional independent information only a
term of the form DY D'DV...v. He then goes on to prove by induction that, using
a shorthand notation, D"+ is invariant under the two dimensional group of null
rotations, for any n.

If one takes D'"™) 4 to be invariant under null rotations, then under this
group D"~ will transform as follows:

D'y — (D' + ab' + @b + aaD) D' 5

= D"y +a6' D' 5 1 76DV g + a@D D"V 4 C24

By taking the NP commutators:

(D'D—-DDY¢ =[(v+5)D + :lf(p +7) D ~ (747 - (T+7)bl¢  C25

(6D — D'8)¢ = [—FD+§(T-—E)D’+X5’+(# — v+ 7)é]¢ C26

and the complex conjugate of C26. it is seen that the NP derivative operators
D, 6 and &' can be moved through a line of £ to the right. Hence, from the fact
that Dy = &y = &'y = 0, equation C24 becomes:

D"y — D"y

Therefore, we have shown that if D" v is unchanged under null rotations
then so is D'"+. Furthermore, we have seen that D'+ is unchanged under null ro-
tations so that one has by induction that D™~ is unchanged for any n. Therefore,

the two dimensional mvarance group remains at all orders of differentiation.
Class IIlb: p = 0,7 # 0,[a] = 3{7|

From equations C5 through €23, one has that the potentially new functional

independent information at second order is given by x, A, ¢ and v together with

.
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the NP derivatives of the first order spin coefficients a, 7 and 4. Collins [6] then
looks at how these terms transform under null rotations and uses, for convenience,
the transformation of I¥7 to further restrict the frame at second order. It is seen
that one can fix the frame completely in this case. We will omit the calculations

here since they are extensive and are explained in detail in [6].

We have then seen that in all cases except one, by second order of differentia-
tion the frame is fixed. In the other remaining case the invariance group remains
the two dimensional group of null rotations at all orders of differentiation. We
can then conclude that by fourth order of differentiation the Karlhede classifi-
cation of the solution does not produce new functional information, concerning

either coordinates or frame, so that bound is reduced to five.




Chapter 5 120

Chapter 5

The Karlhede Classification of
Type N Non-Vacuum Solutions

We have shown in chapter 4 that by applying the generalized GHP formalism
to the Karlhede classification of Petrov type N vacuum solutions one can reduce
the upper bound to five covariant derivatives.

In this chapter we analyse the problem of reducing the upper bound on covari-
ant differentiation for non-vacuum type N solutions. We apply the same method
used in the vacuum case, i.e, we attempt to write all derivative terms in terms
of the gereralized GHP formalism.

The Karlhede algorithm for classifying metrics also applies to the non-vacuum
situation. However in the non-vacuum case, unlike the vacuum situation, we must
consider the contribution of the Ricci spinor and the Ricci scalar as well as their
successive covariant derivatives, since they no longer vanish.

The situation where one could potentially have a bound of seven, fortunately,
only occurs In very non-generic cases. For this situation to occur all of the

following conditions must be satisfied [18]:
(1) The Wey! and Ricci spinor and Ricci scalar (A) must all be constants.
(2) The invariance group at zeroth order Hy must have dimension two.

(3) The dimension of the invariance group and the number of functionally

independent compeonents must not both change on differentiating.

(4) We must produce at most one new functionally independent component

on differentiating.

The Ricci spinor has the following symmetries:

Qapyyp = ‘1)(,431(_4:9) (5.0.1)

.
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So that we are left with six independent components given by:
boy = OA OBEA, 53 b sBaE
@01! = AOBEAJ IB (DA_BAJB
‘I’ogr = OAl OBEA, EB' @ABA’B
@11! = OALBBA’EB' Q)ABA‘B' (502)
Dy = ot Bt b ipyp
(1)224 = !-A LBEA, EB q)ABAB’

(I)OD"
Doy
(I)O'Z’
@11’
P12
@2?

D10
b
3T

q’o = lI’1 = ‘I’Q = lI’3 = 0 11'4 :71: 0 (503)

We investigate how the Ricei spinor transforms under null rotations:

LT L]

LU

For type N vacuum spacetimes the canonical form for the Weyl spinor is:

with the invariance group being the group of null rotations which acts on the ' ‘

dyad according to 2.1.2. |

Do .
Dg1r + aPoor

oo + 2aBoy + a* Do

G110 + @001 + a®1or + auPoor '
B19r + 2a®1y + 2 B1pr + TB0y + 20700y + a*aPoy |
oo + 2aPyys + 20Pyo + 40Ty + 2a’TPyo + T2 Doy (5.0.4)

+ad@t ®oy + a* 0 + a*@ oy

B0 + @Poor

oo + 20®10 + T Pog

By + a®oy + 200110 + 20aP 1y + T Porr + a7 Pooyr

As in the type N vacuum case, we make use of the generalized GHP formalism

of chapter 3 so that instead of considering ¥’s and ®’s we work with W¥’s and

P’s. It is irrelevant whether one uses A or A since A 1s a scalar so that A = A.

The Weyl spinor in the generalized GHP notation is defined by 4.1.6 through
4.1.10. We proceed to define the Ricci spinor in generalized GHP notation:

..
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Py = Bapap 0%0” Y7k
(B3 )y = Papep 0"0"°
(Boy)ap = ®uipsp 0*0®
(®11)as = Papsp 0567 (5.0.5)
(B12)aep = Papup O°
(®2y)amar = Pupsp

so that for condition (2) to he satisfied one must have:

(1) apy = (Pr2)are = (Borlaps = (Poo)ag = (P11r)as
== ((I)IO')A = (q)Dl’]A’ = (I)Dgr =0 and ((1)22’)445.4’5 7£ 0 (506)

and condition (1) requires that W 4gop , P agyp have constant components and
A to be constant.

Since A is a spin and boost weighted quantity of weight {0,0} then by con-
dition (1) we have:

PA=PA=PA=bA=0 (5.0.7)

l We now need to specify the Bianchi identities, Ricci equations and commuta-

tors for this particular case. The Bianchi identities give the following equalities:

K =20 (5.0.8)
3‘1’4 - 6{@22: = T‘I’q - T@ggr (509)
P,y S®,y+ R®o (5.0.10)
P, R®, + 5%, (5.0.11)

While the contracted Bianchi identities give:
PP,y = (R+ R)P,or (5.0.12)

By subtracting equation 5.0.12 from equation 1.0.10 we obtain:
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SW, — RPoy =10

The Ricci equations are given by:

JR-8'S =

; PR =
| PS5 =
pr =

ar-vs =

PR-PT =

(bV - P'D)o
(b3 — aP)¢
(88’ — 89)0
(P& - 3P)o

(R—R)T
R*+ 55
S(R + R)
RT + ST
T2
—TT —2A

And finally the Commutators become:

= (TO+T8 +pA+qA)d
= (RI+58)

= ((R-R)V -pA+qA)d
- TV

Ricci spinor and the Ricci scalar

which can be found in {1] and which states:

f G
VA VE - VE Yaran

N

(5.0.14)
(5.0.15
(5.0.16
(5.0.17
(5.0.18
(5.0.19

R L S S S

—
14

=
MR O
[
Ry

R T
(LI

S

—

S

=0
[
[ e
S o

| ]
WX

5.1 First covariant derivative of the Weyl and

We now calculate the first covariant derivative of the Weyl and Ricci spinor and
Ricci scalar. Our intention is to express all derivatives in terms of the generalized
GHP formalism, however this notation deals only with totally symmetric quan-
tities which causes a problem since in the non vacuum case one must consider

the non symmetric terms as well. We therefore, make use of an important result

Lemma 5.1.1 The set of nth derivatives V* R contains the following terms:

i) The totally symmetrised spinor nth derivatives of the Weyl spinor
. y sy P Yyt sp
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(i) The totally symmetrised spinor nth derivatives of the Ricct spinor
Vi VE.vieny
(iii}) The totally symmetrised spinor nth derivatives of the Ricci scalar

(A o G)
v VeV A

(tv}) For n > 1, the totally symmetrised (n — 1)th derivative of the ‘curl’
Zarcey  of the Ricei spinor

A B qd =
VEA Vg..Vg ‘:'HI}\'I,)
where = is defined to be either side of the Bianchi identities:

ViVarn = VaPcnsa

[ —

(v) Forn > 2, the d 'Alemberiian of all quantities in V' R, i.e.
VAVAQ i

where () is a member of V"2 R.

Therefore at first order of differentiation we need to calculate all totally sym-
metric terms relating to the first covariant derivative of the Weyl and Ricci spinor |
and Ricci scalar and the zeroth derivative of the curl. We start off by determining ]
the general expressions that give the dyad components of such derivatives since
the generalized terms follow immediately.

The expressions giving the covariant derivative up to fifth order of the Weyl
spinor are given in chapter 4. The method used to calculate the terms relating

to the Riccl spinor is very similar to the way one calculates the derivative of

the Weyl spinor. (V®),..s Will represent the dyad components of the covariant
derivative of the Ricci spinor where u gives the number of unprimed dyad vectors

that are £{’s and 1 represents the number of primed dyad vectors that are Ef, 's.
We can then write:
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(VO)pee = Oapammn [E68EL Ty |EEE
= (Dupap CMPENEY Jew — (E2EPELEY Voo Danam
_!_B
= (P e — &l EPELE, Bupan — (2 — p) (5.1.24)

._.A" ._.B' _Ar _B:
&?;ee’ 56850:' {b‘ (I'ABA’B' - V'Ep 1o Ef{f{b} ‘I)ABA'B’
=4 B
—(2 =)y e ffiffw P 1pap
where there are p £#’s and ' Ef‘: in square brackets with g € {0,1,2} while
¥ € {0,1,2}.

If we substitute expression 4.4.76 which gives the relationship between the

term &5, and the spin coefficients o we arrive at the general expression for
. the dyad components:
(V@) e = (‘I’,u.e/ );ee’ — il e Q{,u——l)ll + (2p — 2)F10&e' D
+(2 - ﬂ)rogeg <D(p.+l}if - u'fl»lfe;e &I’#[;;_l) + (21‘/; - 2)f1’0’e’e (I>W (5125)

+(2 = v)Tvoee Puvsn

with g € {0,1,2} and v € {0,1,2}.

Then the invariant formalism equation becomes:

OAys1OA e (VR)A, AyAn, A EE =) Pa, aya, ALEE
OAns OA iy — NTA A ER®A, Ay, 40, A0, OAry,

+(2N = 2)loA, EE P A, Ay, Ar A BE DAYy,

+H2 = N)TooBE®PA, Ay, A Ay, DA,
~NTa Ay BERA, L AvAL Ary,y CAy

+(2N" = 2)T A 0B ERA, AvAY, Ay, OAx,

+2 = N loomE®A, . AvA Ay, OAx,,

N e {0,1,2}, N e€{0,1,2}.

e
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The calculation with respect to the Ricci scalar 1s very straightforward and
the dyad component expression is simply given by:

(VA)er = (A)ew (5.1.27)

With the generalized formula being:

(VA)EE = (A)EE (5.1.28)

Finally we need to calculate the 0th derivative of the curl =, i.e, the curl itself.
= is given by either side of the Bianchi identities, so that the dyad component

equation is given in [23]:

VP oty — 3o Tey™ y — ot TP 4 (5.1.29)

It is clear from chapter 2 that in generalized notation these terms hecome:

eLNE€KM{VND Y aBCL — VLDV aBCN)
— Jen(VikaBloynmp — YimasloNk D
— ¥Ung@sl'oimp + ¥nmaslojLkp) (5.1.30)
! + eon{(VascLlI'NkMp — YaBcLI'NMKD

— YacenT'ikmMmp + YareNTLMKD)

We are now able to determine from expressions 4.2.51, 5.1.26, 5.1.28 and
5.1.30 all terms relating to VR, they are:

(VD) = P, (5.1.31)

| (V&).0 = 3'W, (5.1.32)
| (V®) 5 = 9%, +4T¥, (5.1.33)
’ (V®)-0-5 = bW, + 4RV, (5.1.34)
(V®) = Pdy, (5.1.35)

| (VB)-0 = 8By + 2T (5.1.36)
(V®) 5 = 8®oy+2T P2 (5.1.37)

b
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(V®)-0-0 = PPoy + 2RP,y
(V®)-0-0 = Sy
(V®)-5-5 = S®un
(VA) = PA
(VA5 = JA
(VA)- o = JA
! (VA)-0-5 = PA
| = = 09, -TVv,
=8 = b¥,— RY,

5.2 Second Covariant Derivative

the terms that we need to calculate at this order are :

(1v) the symmetric first order covariant derivative of the carl

(v) the d’Alembertian of ¥, ®, andA.

have:

(V2®)isp = Oamaprnrr [EPEEELES C5EL ENEN
= (Pupamen EAEPELEy E5E, )y
— (EAEPELE €PED ).ir O anumim

= [(V®)wlsr — uél EPTLE, P, ® apap.em

e
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(5.1.38)
(5.1.39)
(5.1.40)
(5.1.41)
(5.1.42)
(5.1.43)
(5.1.44)
(5.1.45)
(5.1.46)

Notice that since we are considering the worst possible case where all terms
at zeroth order are constants and since A is a scalar of weight {0,0} then all
terms arising from the derivative of A are zero. And all terms are invariant under

null rotations so that the dimension of the invariance group H; remains two.

We proceed to calculate all terms relating to the second covariant derivative ,

(1) the symmetric second order covariant derivative of the Weyl spinor
{31) the symmetric second order covariant derivative of the Ricci spinor

(iii) the symmetric second order covariant derivative of the Ricci scalar

The calculation relating to the second derivative of ® whose dyad components
we will denote by (V2®),.;s is very similar to that of the first derivative. We

(5.2.47)
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—A =B ,p=F

- (3- ﬁ*)Eéj‘;m £!>B§a’ &y {eEge’ ® 4pap.ED
A =B ,gzE

— V& 4p P E7E L QupapED

=& =B pzF
- 3=V, df f:fz?‘fb’ §ffef D spapiER

where there are ¢ primed £{'’s and v unprimed Ef: in square brackets with
i€ {0,1,2,3} while » € {0,1,2,3}.

Therefore, the dyad components of the second derivative of ® can be obtained
from the general expression given below:

(V2®) sy = [(V®)w liyp — 11155 (V) uay + (2 — 3)Tr055 (V)
+(3 = 1)To0s7 (V@) (ur1yy — #Trwrss (V) o) (5.2.48)

+2v = 3Ty P + (3 = ¥ \To0prs (V@) )

with ¢ € {0,1,2,3} and ¢ € {0,1,2,3}.
Translating equation 5.2.48 into generalized formalism gives:
OA w11 0A (VPR Ay Apar Ay B = D (VB)A, Ayar,. A, FF
OAN410A gy — NTA A FP(VR)As Any AL AL, DA,
+(2N = 3 00A, FF(V®) A, Ay Ay A FEF Bary,,
+(3 ~ N)Toorr(V®)A, . A A Ay Bar,, (5.2.49)
—~N'Ta,a,FF(VE)A, AyAry Ay OAny

(2N = 3)Ta 0P F(VR)A, AxAL Ay, OAys

+(3 —_ AI,)FO’O’F’F(VQ)AI "'ANAII"“AFN’-I.-I OAN—{»I

with N € {0,1,2,3} and N’ € {0,1,2,3}.

The calculation of the second covariant derivative of A is also straightforward,
we write:
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(V*Mwiyr = Asmre (€58 1ETES
= (A E5E2 gy — (€8T )yp Mg
= [(VA)wlgp — 185 4 € Aiem (5.2.50)
—(1 = p)&§ 4p €0 Aew ~ V'Ep 7 €8 Agp
—(1-— V’]EOE: L feEA;EB
So that if we substitute expression 4.4.76 which gives the relationship between

the term {fhh, and the spin coefficients ' we get the general expression for

! the dyad components:
| (VW) wisr = (VD) w sy — 8l (VA) ey + 2 — Dlo1sp (VA)w
| ‘|‘(1 - ,{L]I‘ngfl (VA)(p+1)ff - v’ﬁq;f,f(VA)ﬂ(v_l); (5251)

| +(2v" = Vo (VA + (1 = V) To0ps (VA) iy

. mw——————

with ¢ € {0,1} and ¢ € {0,1}.

With the direct translation into invarant language given below: : I

OANHﬁA:N,H,(VQA)A,.‘ANAfl,..A'N,FF’ = Z[(VZA)AI..ANAf,f.A.A*N: JFp
OANs+1 OA ey — NTA A FP (VA) A, An AL LAY, DAYy,

+H(2N = 1)Toa, FF(VA) A, Any Ary Ay FF OAr,

{1 — Nl oorr(VA)A, Axp A0 Ay 04, (5.2.52)
-N ’fAr] AL FF(VA)A, A A,y OAny,

F(2N' = )T A 0P F(VA) A, AyAsy Ay, OBy,

+(1 = N\ Toor (VA A AnAly A, Ay

with N € {0,1} and N’ € {0,1}.

The covariant derivative of the curl can be obtained as follows:
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(Sasca E1EPES fa' Jiee
— (EAEPECE er Sancn

(S Jiew Fffl eerfb ff.: Ea’ S ARCA

(3 — 1) 80N S amca (5.2.53)
— VT AP S aroa

I _A’ —_—
- (1 -V )60’;35‘ 5;465{5:&4’

As before ¢ and v’ represent the number of unprimed £{’s and primed ?14:
there are among £A¢F¢° and E:. respectively. Furthermore p € {0,1,2} and
v’ € {0,1}.
With the help of 4.4.76 we obtain the expression giving the dyad components:
(V) wiee = [Sw i — il 11ee Egumyy + (2¢t — 3) 1000 Zps ‘

+(3 = )T 00ee Zgus1)y — V' Trvee Sty + (20" = DT 1prere S (5.2.54) ‘
i

+(1 — )T ororere (1)
The generalized expression follows immediately: L

OAns10A , (VE)A, AnAn A ER = [Ea, ANA A B

OAny:1 OA iy — NT A AEREA, Ay, AL LAY, OAry,

H(2N = 2)L0A, EE'EA,. Ani Al Alys Ay

+(3 = NTooERBA, Ap, A A, OAr,, (3.2.55)
—N'Tar, A1 BESA,. AyAu Ay CAvn

+(2N' = 1)T s, 0B EEA, . AyAs. A, Oy,

+(1 - FU'OEE'—'A;[ A.NA 1t ‘AFN’+1 OAN+1

with N € {0,1,2,3} and N’ € {0,1}.

We now concentrate on determining the d’Alembertian of ¥ , & , and A
which is given by VE Vg Wanp , VE Viep Oupys ,andVEE Vg A respec-
tively. The d’Alembertian will sometimes be denoted by the symbol O. The

|
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dyad components of the first derivative Veg Vipop = Vapcpes are obtained
as follows:
: B - —F
Ve = Vapepps 606 ECEDVEEEy = (Wanep E267E5ED ) mm EFEL
—F
— (2P €S €l mm EFE. W apop (5.2.56)

Obviously we can use the same idea to obtain the dyad components of the
d'Alembertian VE® Vg ¥ 50p which is given by:

VY Ve Vit = Uapepmw F (268 EDIEEES (580
(Vapcnep EAEPECEREEE] VPP 38, (5.2

—_p EE
(EAEBECEREEEE Y™ 65T W ancnem

[}
13
e
=1
R——

By working out the derivatives in curly brackets in equation 5.2.57 we get:

VIV Uy = (V) [ — i [686CEPVEEED W sponim
— (4= e [EBECER1EFED W apenem
— B (AP ECEDIEE U anp (5.2.

—=F"ed
[ ePECE7 15 apcpEm

- ge’

[y
S
[y
|# 2]
S

where in the first square brackets there are {zt — 1) £f!'s, in the second square
brackets there are (¢ + 1) &’s and in the third and fourth square hrackets there
are p &'s and pu € {0,1,2,3,4}. Equation 5.2.58 can be rewritten as:

VIV Uy = (V) e g e
= e g % [P ECER)EEES W ancppm
— (4= ) g e (PECERIEPE] W apcrmm (5.2
— €8 T EAEBECEPIE] Wancpmp

—=E
- fe’ Hred 69669,6’ [6;5?5565]65"@4&&5‘3

o
S
w
ow

o

By substituting 4.4.76 in  5.2.59 we arrive at:
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VE Ve Uy = (V) e iy € €°°
— Ty M Ef e (PR 1EPED W apcom
— (4= W) Toigg €5 7 [PECEDVEEEL Wapnem  (5.2.60)
— Tegy 687 [e2ePECEDIEL W amcnem

= iy FE ‘e [pApB pC DV pE
— Tovgy € € 5 [E767E0 €165 VY ancp Em

which finally gives the general expression for the dyad components of the
d’Alembertian:

Ve V..,

i

{[(vq’)mee‘ ];99' - :”Pllgg’ ll}(a—ll;ee’ + (21‘ - 4)F109d q’u;&?‘
~ (4= )l o0gg ¥ (ut1)ier — Looge ¥ (pup1)iee
— Tegy Yuoe + Leogy Ve (5.2.61)

i re-’l‘g’g ‘I"p;dfl" + Te"()"g’g lp,u;e]! }598 eg’e'
We can clearly see from equation 5.2.61 that:
VeV U, = {(V) vy Je 69 (5.2.62)

So that in generalized formalism equation 5.2.62 translates into:

- o2 EE
OA 41 0a;, (VW) A, A EE

= (0Ay,,0a,, (V*¥)a, a ERGG )eSFEF (5.2.63)
= (V¥)a, . AnpA
with ¥ € {0,1,2,3,4}.

The method of calculating the dyad components of the d’Alembertian of @5y
is the same as that of ¥y, in equation 5.2.57 we substitute ¥, by &, and

contract with the adequate number of £ and Z:,' ’s, e

& : A 2F pTE e 7€
VAV Oy = Ouapapep T8 (€1¢PELT, EFES1ELES
A~ p=E o504 e_el

= (®apapiEn 5::‘5?5(;* &y 5Efef ) {eép (5.2.64)

k]

T —_ ER -
— (EAEPTLEN FED ) 6lp®aman ko
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where there are ¢ ¢§'’s and o/ 225 in square brackets with p € {0, 1,2}
and ' € {0,1,2}.

The calculations as of this point are exactly the same as in the case of the
d’Alembertian of ¥, so that it is not worth repeating all the same details. Hence,
if one works out equation 5.2.64 in the same way as before we arrive at the dyad

expression:
V¥ Voo Dy = {(VO) uriewgy Fe* e (5.2.65)

The generalized version being:

— 9 EE’
0A N4 0AL (V R)A, . AyAs,..AYEE

— LA nds
= (0,047, (V?®)A, A yA,, A EEGG € ¢S T (5.2.66)

2
= (v @)Al WAN_*_IA'”MA'N:_“:

with N € {0,1,2} and N’ ¢ {0,1,2}.

The case of the d’Alembertian of A is treated similarly. The calculation of
Ve Vo A follows the same path as that of the d'Alembertian of ¥ and ® we will
omit the details since these can be reproduced very easily. The dyad expression

is written below:
V Ve A = {(VA)sergy Je%e¥ {5.2.67)

The generalized version becomes:

- EE’ — :
oAloA],(VzA]EE, = (o4, oAl,(VgA)EE;GGf)e

(V*A)a,ar, (5.2.68)

GEeG*E’

Il

By Lemma 5.1.1 these are all the quantities we need to calculate so that the

terms obtained at second order of differentiation are:
V¥ = PPW¥, and all possible contractions with omicrons

V?® = PP'®,, and all possible contractions with omicrons
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VZA = PP'A and all possible contractions with omicrons

VE = P'E and all possible contractions with omicrons

O, = V¥ . 0.5 and all possible contractions with omicrons
O®,0 = V2® - 0- 7 and all possible contractions with omicrons

OA = V2A - 0-5 and all possible contractions with omicrons

5.3 Higher Derivatives

The calculation of third, fourth, ..., etc covariant derivative of the Riemann
spinor is lengthy but straightforward and can be viewed as an extension of the
calculation done at first and second order. By Lemma 5.1.1 we see that the terms

we need to calculate at each order of differentiation are as follows:

Third Covariant Derivative:

VW, V3@, , VA, V2B, O(VE,), O(VE,y), O(VA),
O(Z) + repeated terms

Fourth Covariant Derivative:

Viw,, Vid,,, VA, V3B, O(V2¥,),
O(V3@y), O(V?A), DO(Y,), O0(®x), DO(A) O(VE)+
repeated terms

Fifth Covariant Derivative:

VW, , V5D, , VPA, VIE, O(V3D,),
O(V3®,), O(VEA), D(V3E), 0O(VE,), OO(VEyy), OO(VA)
OO0(Z)+ repeated terms

The calculations relating to higher derivatives of ® and A can be seen as an
extension of the previous calculations. For example, we can write (V3®),,.,» in
the same manner as is done in 5.2.47, ® 4pyp.pp.re becomes ® spsp.Ep.Fr.ca
and in square brackets we will have g unprimed £’s and v’ primed Z;‘: 'swith g €
{0,1,2,3,4} and ¢’ € {0,1,2,3,4}. The fourth derivative of ® is obtained in the
same way and so on for higher derivatives. The same occurs in the case of higher
derivatives of A, for example we write (V3A),,.,s in the same way as 5.2.51,

A.gprp 18 substituted by Agprp,ge  and one then has in square hrackets p

e
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number of unprimed £#’s and »' number of primed Ef‘: 's with ¢ € {0,1,2} and
v' € {0,1,2}. Needless to say that the same works for further derivatives of =.

The d'Alembertian of the covariant derivative of ¥, dyad components being
denoted by V¢ Voo Vs U, , is determined as follows:

V4 Voo (Vip Varg ) = Campripn 57 [€26BECEPEE T, ¢BED
= (Vinnmn E2EBETEDENTN €8S VPP 65T, (5.3.69)

: =F E .. e =€
—(EAEBECER T 58 VEP €580 VanonrriEm

By working out the derivatives in curly brackets in equation 5.3.69 as one
does when going from equation 5.2.57 to equation 5.2.58 and proceeding as we
do when rewriting equation 5.2.58, we get from equation 5.3.69 the following
expression:

V4 Ve (Vip W) = (VPO ppiee Loy €°€°°
—FP  p=E
~ by € (P ECER 16T E L EFE S W apepmpiem
A _ge g¢ 1pBoC D1 FFF pEZE
—(4 - #)Eo;gj e [Eb 65 Ed ]ff 5}-‘ ge ge’ lI’-‘iH:ﬂFF;EE’
14 =F = Lrd
—E g €T AP ERNE L 5T, VaponrpiEn (5.3.70)
F e gef -E
~E gy €7 (2P ECERVETEPEL Vs pmem
E  _ge g€ [pApBsC oD o FFF FE
Corr €7 G €S ENNEf €4 € VaronppiED
=& ge g [cAeBeCeD FFFP E
Eogg €€ (667 ECEF )6 €0 62 Y apcnrm ER
with ¢ € {0,1,2,3,4}.
So that by using once again 4.4.76, equation 5.3.70 becomes:
v Ves (vff’ ‘IJ;A) = {[(vzq’)u:ﬁ’;e&' ];9'9’
— 1116 (V28 uayiyee F (200 — )T 1059 (V20) 4 fpiee
+(4 = )l o0gy (V) ur1yismmee — Trge (V2 poree

+Ff093’ (vzll})mlf’:ed - Tf’l'g’g (vzlp)p;m';ee' (5.3.71)

gf—_
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+Tf'ﬂ‘9’g (vij)#;ﬂ’:eﬁ’ - relgg’ [VQ‘IJ)va;gé
+le0gy (V28 ppite — Tovgy (V) ppier

FTeogy (V) upperr }egeede,
which gives:
Ve Ve (Vip W) = {(VP0) s ppreengy Jee® (5.3.72)

The d’Alembertian of higher derivatives of ¥ is treated similarly, so that
the calculations relating to the d’Alembertian of V?¥ and V3U are lengthy but
straightforward as in the case of the d’Alembertian of VW. We can then write:

VY Ve (Vi Vi 0,) = {(V2) e spmecisy 1 (5.3.73)
VOV (Ve Vi V1 ) = {(VA )iy Je e (5.3.74)
The process applied in the calculation of the d’Alembertian of higher deriva-

tives of ¥ can be applied in the same way to determine the d’Alembertian of

higher derivatives of ® and A so that we can obtain rather easily the following
equalities:

VNV (Vi Pus ) = {(V?®wrispieiar Je5 €77 (5.3.75)
Ve Voo (Ve Vip Qs ) = {(v3¢))u¢/:ff’;hff:ee';gg’ pe” e (5.3.76)

Ve Ve (Vi Vit Vi B ) = {(VAO) g pmpieeroy Je €7 (5.3.77)

with ¢ € {0,1,2} and v € {0,1,2}

Ve Ve (Vip A) = {(V?A)fpeesgr €€ (5.3.78)
T Voo (Vine Vi A) = {(V2A) s priveerag €€ (5.3.79)
Ve Ve (Ve Vi Vg A) = {{VPA) s pspiiersgy €67 (5.3.80)

We now address the calculation of the d’Alembertian of =. We want to

determine the dyad components represented by V¥ V o Z 4z , we write:

.
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V Ver Zapor = Samowien " (1P TN 1EEEL €58

~(Zascun CAEPECT, EFEL VPP €5Ty (5.3.81)

—(EAEPECEY €FEL )PP 65T
where there are g € {0,1,2,3} {#’s and ' € {0,1} 3‘14: 's in square brackets.
Working out the derivatives in curly brackets'in equation 5.3.81 we obtain:

V Voo Zpr = (V) wee [ — ™ [€PECELEPE, Zapomiom

—(3 — &5 [6PECT L 1EFEL Zaponp

—v T AP ECIEEEL S amcnem
—(1 = V)8 [62€PECIEEEL Samcoaiim (5.3.82)
—¢B (eABECEL B Zancaep

=B ed

—E (AP ECE e S apoaem

Using equation 4.4.76, equation 5.3.82 becomes:

VY Ve S = [(VE)wsor Jur €
—uT kt rA ge e [+BrCFX 1 EZF =

il gy &L € e T [E0 €06, 1657 € Samon D
+(3— )T e’“f"egecg’e'[ B C_'q’] Egs— _

H)L otgy k & & €y e £ Sapcw BB
= sy A ' —=F -
U Trrugg € & ¢ e (EAPEOVEFED 2 anoy em (5.3.83)
=1 =4 ] —F

+(1 = v )Towy € € e 7 62626016 FE S S apon mm
Loy e [¢2¢8CE fa: ]Eea ZABCA ;EB

Tvgy € el [6AEPECEN 1P Z apca i

So that we arrive at the following expression:

Ved vee’ Ew/ = {{(VE)M;ee' ]:gg’ - n“rllgg' E(#—llr/;eé

+(21 = 3)T 1059 Sparier + (3 — )T 00 Eut 1) riee
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_yfflrlrngE_u(p_l)!;ee’ + (21}" — 1)?1’0’_0’95;1.!/;&6"
H1 — V) Tovgg Sus1)see — Lergy Sroer (5.3.84)

+leogy Spwite = LevggSuer

—_— — f
+leogoSuner e e’

The calculation of the d’Alembertian of higher derivatives of = can be seen
as an extension of the one performed above, so that it 1s unnecessary to go
through all the details since these can be reproduced very easily. We then have

the following identities:

ve Ve VipZw = {(VSE)W;ff‘:eé;gg’ }6ge€g,e' (5.3.85)

Ve Vs Vie Vip Zr = {(V'E)wssipiserior 677 (5.3.86)

We now look at how to obtain the d’Alembertian applied twice to derivatives
of ¥, ®,A and =. Lets take for example OOV, we write as usual:

. EE - -

VU VI Vg = Uagonpr 7y (AP ECEDNENE ELEL
=E .. =¢ . =P Tl (ETE -
8 e5ln = (Va7 gy [€APECeRIEN T, LR P EL )EP  (5.3.87)

— =P L i=f p=E .. —¢ ‘
E5€p — (€760 €7 €167 € ehERelE Y™ ExEp Vapcnm T gy
Working out the derivatives in round brackets in equation 5.3.87 we get:

VI Ve VIV 0 = (V20 gy 1

— b (€PEC DN, EL P, Wancnrm T gy

—(4 = w)E (P ECER e Ty hER EFES Vapenpr T

P (AR L EEES Vaponmr T g

85 (AP ORI ELEL EPEL Vapnrr ED (5.3.88)

AP RN E L LT Ve T g
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=1 e . ~F =B .

~ TR (AP ECERVTEL CLEPED Wapenmp T g

Bl [eAePeCeR N el ERTL Vamonre T pp

e F o i=f .

(AP eCERNET T ehEh PV amonrm T g
which can be written as follows:
VEVaw VIV 10 W = (VW) ppipitier Jgg € T e67¢
e o —F f=f m<E .
—pEf e e (P EC R L L €FE Waponre T
e ) =F = =K .

—(4 = )y T (PPN T LT EPE Wamonre T g

_5? 9,696 9"—’ [644556 62?]5;1 EFEPEEEer ‘I’AB:‘,DFP FF .

_F’ e _f! _Ev :
L © 6 € DN hER e Yamnr T (5.3.89)
_¢H  ge g€ ki ApB C D1 FEF 71 E‘Ell, FP

Crgr €€ € enr (836 € €7 167 € Ep &€ Y anonrm 5D

- e e W — —F FF
~Ergg & emp (62ePEC RN EHEEE, Yamenmm T

e e P = =E .

—EF oy AP T NEEE L R e Vamene T g

y22 e g [pApB 0 +F it :
—& g PN e EE Varenr T
By using 4.4.76, equation 5.3.89 becomes:

V* Ve VI Vip U = [(V2) s ppstsee Jog €7 e f e es

~pTargy (V2O gy g L+ (2= W15y (V2 T e
+H4 = i To0gg (VD) 7 e =T (VO0),0, " e

T g0sg (V8),0p 7 9 —T iy (VPU), o 7T e#e8?

Troge( VW), 0 e e (5.3.90)

k¢ H 'k AgBpC TF 21 +ETE P
—Thigy €784 eS¢ fﬁﬂFfaqu £ E&D{fff, §p§f§e ¥ oo re g B8

al Kt oH ge gé _h A¢BpC oD oFEF 7! (EFE S P
—Dpugge™ & € /e Jffh’iﬂ'&a & 6 Ea '5;' fffﬁgffef ¥ a5cp e / ER

e
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S ! S el
—Tergy (V) ,0p 0t € ? + ooy (V). 1o

= I R i f g
~Torgg(V3O), 67 4 Toog (VPT) 4, e ed

el sel

We consider the following equalities:

Thy Hef e e?? M eAeBECEPEr T ERePEL Wancnrrtr ©

= T & M Uyppy 7 4 Thog (e Wy pn

= —[higy Eé"ég‘?eg’gehfeh’f’ W i1 see (5.3.91)
+Thogr 6777 M I 1o pp e

= —-Fhlggl 6“63,6’6&} fh,fr'ljmffr;ohf;eer + I‘hggg; €% €g’elihf Eh!f,‘l’p;ff:;lh;;e&;
If we substitute 5.3.91 in 5.3.90 we arrive at:

V4 Vo VI Vg, = [(V‘?’lll Vi ifihisee g ¥ e et

—ul11gg (V3‘11)(u_1);ff,;w;ed M I ese g€

+(2p — 4)T10gg (VSIIJ);;;H';,&H " M K I e e
+(4 = #0005 (V) 1y pptee €7 € €67
T h10r (V) o €€ €67
+T s04¢ (VBKI’)”;U,;&H oo Ml (I eve de
—Fm,g,g(v?ﬂlf)m,;hﬁ » chf KT g2 ge

+f{f’0"g‘g(v3lI')mﬂf:hH o SIS o

~Thigy (VW) gpionioe €/ " e (5.3.92)
+Thegy (VU ugpianee €9 €T e

~Trrgg (V30 ) g itaree € €L e
Fh'ﬂ‘g’g(vgq')m)'f‘:hl';eé ' ¢oe 9

—Leigy (V3KD)R;”,;W;G€, eI gt et e

e
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gy (V3U), pirae €7 e

_Te’l’g’g(v:sqi)“;fﬁ;w o ehf Eh’ 7 9° E£.r'e’

'I"Te’ﬂ’g'g(vsq})mﬂr;hh;;e]r Ehf ehr‘ffege Eg’e'
So that one arrives at:
Ve Vo VIV W, = {(V) ppitrseesgy ¥ e e8¢ (5.3.93)

To calculate the d’Alembertian applied twice to higher derivatives of ¥ we

follow the same method as before, we then obtain:
Ve Voo VI V5 Vi Wy = {(V20) i f it eesgr J€7 €77 679 (5.3.94)

As for the calculation leading to the d’Alembertian applied twice to &, A, =
and higher derivatives of these, one proceeds in the same way as in the case of

¥ so that we have:

V4 Ve VT8 = {(V 'O spitrrseergy J€7 T 69 (5.3.95)

V"’é Veg fo vaky ‘I)‘u; = {[vsq))m/;kk';fﬂ;hfd;ee';gg }ehfeh’f'egeeg’e’ (5396)

VYV VIV 0 A = {(VAA) it gy S ¥ T €906 (5.3.97)
VI Voo VIV 15 Vi A = {(VPA sty 17 € €568 (5.3.98)
V"’é v@g \7” V”, E:ﬂ/ = {(vd‘?_)w/;ff:;hﬁ;ee«;gg }ehf €H‘f, €% Eg’e’ (5399)

We can then write all expressions giving higher derivatives in generalized
formalism. Below we write the dvad component expressions followed by the

generalized version.

Third Covariant Derivative of ®4,

(vaq’)w;gsf = [(vzq’);w’];gg’ - !‘Fllgg‘(vzq))(p—l)u
+(21 — )T h009 (V2®) s + (4 — 1) 0059 (V2®) 1y

=0T 111gg (V@) (may + (20 — )T 109 (V)0 (5.3.100)

[
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+(4 = )To0gg (V2®)ry
with g € {0,1,2,3,4} and ' € {0,1,2,3,4}.

OA 1 OA s (VO R)A, AnAr. AWGG = D (VIB)A, AyAr, A GG
OAns: OA7grry = VT8, 8,66 (VPP)A, Ay AL A, TAry,,

+(2N = 3)Toa,cG (V> ®) A, AxyiAly Ay GG OAry,, .

+(4 — NTwee (Vi®)a, CAngi Al Al DAty {5.3.101)
—NTa,aL,GG(V®)A, AxAry Ay, OAxg

+(2N' - 4)-fA;,nfG-G(V2‘I’)A, ANAL Al OAxy,y

(4 — NMTo0aa(V®)a, . AvAy A, CAya

with ¥V € {0,1,2,34} and N’ € {0,1,2,3,4}.

Third Covariant Derivative of A

(v3A)W;99' = [(VSA)LU’];QQ' - F‘FIIQQ'(VA)(u—l)U
+(2p = 2)To199 (VA)wr + (2 = )T 0009 (VA (us2i
~ V' Trrgg (VA w1y + (20 = 2)Tonrgg (VA) (5.3.102)

(2 ~ v\ Toogg (vzl’\)p{uﬂ)

with g € {0,1,2} and »'{0,1,2}.

- 3 3

A w41 O (VM)A An A aGG =D [(VPA) s, ajan.an g
OA w41 OA iy = NT A A,GG (VPA) AL Ayys AL, AL, DAYy,

+(2N = 2)Ta,Ga{V A) A, Ay A7 A GG BA yry

+(2 = N)loocaAV>A)A, Ay Al Ay PAry, {5.3.103)

+1/

T 2
_N FA;,A;,G'G(V A)A]..ANA'a:...A’N:*“ OA.N+1
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+(2f\f" - 2)TA;,0'G'G(VEA)A1 CANAY Al OB

+(2 = Nlovaa(VA)a, Avary A, Ay

with N € {0,1,2} and N’ € {0,1,2}.

Second Covariant Derivative of 2

(V2)wnsr = (V2w sz — 1T (VO
+(2p — 4)C104p (DZ)p + (4 = )T 0077 (VE) i)
—L’quffrf(vz)w(,;_]) 4+ (231’Jr - Q)Fpoqxf Em/ (53104)

+(2 e .V’)FOIOI‘}I'J{ (VE)p{y%I}
with ¢ € {0,1,2,3,4} and ' € {0,1,2}.

OAna1 OA i (VPE) AL AnAr Ay FE = ) _(VE)A, AnAs . ALy FF
OAn41OA iy — NTA A FF(VE) Ay AnAl, AL, DAy,

+(2N — 4)Toa, PR (VEIA, Ay Ay A FF DAY,

+(4 - }V)PODFF'(VE)AI_..AN“A’l,_”A*N, EA'N’H' (5.3.105)
—NTa, A, FF(VE) A, AyAr Al OAns

+2N = 2T a1, 0P F(VE) AL AvAr A,y Ay

+(2 - NI)FO'D'F'F(VE)AI "“A‘NA’I“"A‘N'J—I OAN+1

with N € {0,1,2,3,4} and N’ ¢ {0,1,2}.

d’Alembertian of V¥,
Ve Ve (Vip W) = {(VP) s spie 00 Jesee?? (5.3.106)

with ¢ € {0,1,2,3,4}.

EE/

—_ 2
0an40A,,, (VW) A Aya, A EE
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= (0an,.41,,, (V' ®)A, AxA, A EEGG ) GBS (5.3.107)
= (VW) A, Ans AL A,

with N € {0,1,2,4,5} and N'{0,1}.
d’Alembertian of V&,
Ve Voo (Vg5 Br ) = UV wrssiceay e (5.3.108)
with ¢ € {0,1,2} and V' € {0,1,2}.
- EF
OA.N+1 OATN'-I-I’ (VSQ)AI “..A.NA‘:”“-.A’N;EE'
= (OANHﬁArN,H,(V3¢')A1..ANA;,.,A*N,EE!G@ ) GESF (5.3.109)
= (V2®)A, . AnpAL AL,
with N € {0,1,2,3} and N’ € {0,1,2,3}.
d’Alembertian of VA
Vel Ve [vff’ﬁ) = {(VSA);H*:_ee’:gg‘ }Egeegre' (5'3'110)
- EE'
OAN-i-l O'A":Nf{.j’ (VSA)Al “'-A'NA’H“A,N"EE'
= (0a541 747, (VPA) AL ANAY Ay EEGG! ) CESE (6.3.111)
= (VPA) A, ApiAL AL,
with ¥ € {0,1} and N’ € {0,1}.
d’Alembertian of =
Ve Voo (S ) = {(V2®)ieeigy 1ee7” (5.3.112)

with g € {0,1,2,3} and » € {0.1}.
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EE

— Qo
OAN+1OA (v H)Al...ANA’l:,..A.’NJEE’

!
JUESY

. 2= GE G'E -
= (OANHOA'N,H,(V E)A;-AnAl,. A EEGG ) €€ {5.3.113)

I
= (V' E)ar.ApnAl.AL,

with N € {0,1,2,3} and N' € {0,1}.
Fourth Covariant Derivative of &,y

(V)i = [(V°®) i — #T 1w V@)t
+(2¢ — 5)Trow (V3®)wr + (5 = i) Toohr (D°®) (up1yw
—Urllllhrh (VE'(I))”(,;_I) ‘l‘ (2V - 5)?1:0:}1:}1 (VS(D)W (5.3.114)

+(5 — v)Toown (V2®) 1)
with p € {0,1,2,3,4,5} and ' € {0,1,2,3,4,5}.

OA w11 OA iy (V)AL AnA b BE =D [(V'®) . A an, sy Lo
OAns10A g,y — NT A 4,66 (Vi®)4, AnsiAl AL DA

+(2N = 5)C0a, HE (V> ®) A, Ay, A%y Al HE OAr .,

+(5 — N) oo (V*®)a, . AysiAly Ay OAry,,, (5.3.115)
—NTa a BH(V R) A, AxAty Ay, OAxy,

+(2N' = 5)T A 0B H(V®)A . AvAY Al OAns,

+(5 ~ N'Toomn(V ®)A, AxAr, Ay, OAy,,

with N € {0,1,2,3,4,5} and »' € {0,1,2,3,4,5}.

Fourth Covariant Derivative of A

(VW = (VN Jiw = 1T (V20) oy

+(2p — 3)T10mr (V@) + (3~ ) Toomrr (V3A) sy
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v Taien (V3A) ooy + (20 = 3)Tvomn (V3A) (5.3.116)

+(3 — »)Toown (VPA) sy
with ¢ € {0,1,2,3} and v € {0,1,2,3}.

OA s OA (VA A, A yar A HR = ) [(VPA)A, Ayar,.an, JHE
OAns108 ey — VT 8,60 (VPA) A, AvaAL.AL, BAry,

+(2N = 3)Toa, HE (VP A) Az Ay  Ary A HE AT,

+(3 — Moo (V3A) 4, A Al Al OAL, (5.3.117)
—NTara HH(VIA) A, AvAY Al Ay

+(2N" = 3)T A, oH(VPA)A, A yAY Ay OBnss

+(3 — N)Toonm(VA)A, . AxA% Ay, OAxg,

with N € {0,1,2,3} and N’ ¢ {0,1,2,3}.

Third Covariant Derivative of &

(V)i = (V) w |y — #1109 (V2®)(uayw
+{2p — 8) 100 (V*E) + (5 — ) 00g¢ (V) oty
—Vflflthg (VZE){J(,}__I) + (2!}’" - 3)-]:_‘]-'0:9.@ (sz)‘u; (53118)

+(3 — V!)Tho'ofg'g (vzs)p(r/+1
with p € {0,1,2,3,4,5} and v/ € {0,1,2,3).

- — KY
0A 1128 e, (VOE) AL AyAL A GG = D _[(V’E)a, Avan.any, lee
OA N1 OA iy — VT8, 4,GG (VPE)A, Ayy AL AL, TAY

+(2N = 50, GGV E) Ay Ans1 Al Ay GG BAL, )

+(5 - N)FUUGG'(VZE)AI ..AN+1A’1.|...A.’N: EA’N"-H’ (53119)
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- =
_NrrA;!A;!G,G(V '_')AEIA--ANA"QF---A’NL{.H OA N

— -
+(2N' = 3)T a1, 06/G(V'E) A, AnAr Ay OAri

+(3 = N To0aG(VIE) A, AvAl Al PAxs

with N € {0,1,2,3,4,5} and N'€{0,1,2,3}.

d’Alembertian of V¥,
VYoo (Ve Viyp ¥y) = (VA0 sprimitieesar € e’¢ (5.3.120)

with # € {0,1,2,3,4}.

EE'

4
0An 0AY,, ,(V W)A, AyA'. A EE

= (OAN+15A'N1+1:(VS‘I')AI'"ANA;:--'A"N-'EE’GG' )EGEEG!E' (5.3.121)

— 4
- (v ‘D)Al .‘.AN.{..;[A.';’.‘A'}V_,_'_”

with N € {0,1,2,3,4,5,6} and N’ € {0,1,2}.

d’Alembertian of VP
Vef' vag (thf ij (I)W ) = (V*@)M”M;egw T EQJ"3r [5.3.122)

with g € {0,1,2} and »'{0,1,2}.

EE

4
OAne: 04, (V'®)a, Ayar, A BB

f
Nt

- E G'E ;
= (0An AL, (V'B)A, A vA,. Ay EEGGE )T (5.3.123)

. 4
- (V ‘I!)Al “-AN+1A;; "'A’N'+1'

with N € {0,1,2,3,4} and N’ € {0,1,2,3,4}.
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d’Alembertian of VA

Ve Ve (Vi Vyp A) = { (VA gecesag J€€7°

EE

4
OAns1 04l (VA A Agary A ER

)eGEeG’E’

- —3
= (0An4i0ar,, (V' A)A ANAY A ERGG

i
= (V'A)A, . A Al Al

with ¥ € {0,1,2} and N’ € {0,1,2}.

d’Alembertian of VE
V¥ Voo (V5 B = (Vo wnipreriar €€

with ¢ € {0,1,2,3} and ' € {0,1}.

EE

— B
0Aws1 0N, (V' E) A, AnAL A ED

= (0AN4. 0A, “,(V?’A)A: Ayl A EEGG JeGESE

_ 3=
= {V -—-)A_l ‘..AN+1A'1;"'A’N!+1"

with ¥ € {0,1,2,3,4} and N’ € {0,1,2}.

d’Alembertian of OW,
v Ve vif VigWe= {(V4q’#)a:ff’;hff e o }EM e 7 e

with ¢ € {0,1,2,3,4}.

EE/
— 4
OA.N.}]OATN,_'J,(V W)A-lu.ANA‘]!»»A.,NIEE,

_ GE G'E
= (OAN_HOAfN,H,(VSA)Al..ANA;,“A'N,EE'GG* JeGECE

—_ 4
- (v ‘I,)Al "'AN"IA;"“ATN"-I-I'

148

(5.3.124)

(5.3.125)

(5.3.126)

(5.3.127)

(5.3.128)

(5.3.129)
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with N € {0,1,2,3,4,5} and N’ € {0,1}.

d’Alembertian of O®,,
VE Ve VTV 0 = (VIO ity e e 7 (5.3.130)

p€4{0,1,2} and v € {0,1,2}.

EE

- 4
0An. 0Ar, AV ®)A, AyAr,. A WEE

'
Ntg1f

= (0,74, (VPA)A . AvAs, A EBGG )T (5.3.131)

= (V'¥)A,. AnsiAL A

Niy

with N € {0,1,2,3} and N’ € {0,1,2,3}.

d’Alembertian of OA

V‘"’ Vae' fo ij:A = {(v‘lA);_fp;h}g;eg;ggr }ehféh’f’egeeg’e’ (5.3.132)
- EE'

OAnOAL, |, (VAA)A, . AvAr, . AEE

= (0AnyPAr,, (VA)4, AnAs, Ay EBGG )€ e T (5.3.133)

= (V4A)A1 ~Anp Al AL

with N € {0,1} and N’ € {0,1}.

Fifth Covariant Derivative of ®,,

(V) usie = (VP Liv — 1Ti10 (VI0) 1y
i +(2t ~ 6)l10i (VA®) s + (6 — p)To0i (V@) g1y
—U-I?m;t-,i('\_;‘l@)“(p;_]} + (21/ e G}Tlrofg{(vq@)w (53134)

{6 — U]rfo*o'i'i (V" (I’)MW-H)

with ¢ € {0,1,2,3,4,5,6} and +* € {0,1,2,3,4,5,6}.
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OA N 4108y, (VPB)A, Apar, Andl = D [(VP®)a, A ar, ar, [

O w4104y — NTA AV ®) A, Ay, AL A, Tary,,

+(2N = 6)Toatr (V' ®) A, Ay A7 A IT DALy,

+(6 — N)Toor1A{V*®) A, . Any A% Al OAL L, (5.3.135)
—NTaa 11V ®) A, AyAs. Ay OAny

+(2N' = 6)T AL 011V ®)A, . AxAL. Ay, OAnas

+(6 — N )Too11(V'®)A, . AvAy. Ay, OAxy

with N € {0,1,2,3,4,5,6} and N’ € {0,1,2,3,4,5,6}.

Fifth Covariant Derivative of A

(VPN wrir = (VW) v — D000 (VA (e
+(2p = 9)T10iw (VA ) + (4 — p)To0ii (D*A) (ugr)w
—V-flflfé’i(v4A)g[t/—1] + (21/ — 4)-1.-\-1!0r"i1‘(v41\)w (53136)

+(4 — V)Tgvg:g'f{(v41\)#(;;+1)
with g € {0,1,2,3,4} and ' € {0,1,2,3,4}.

OA N1 OA s (VIM) AL A A ATl = D (VPA) AL LA A AryIT

OB Ny Ay = NTa, AT (VA )AL A AL AL, TAY,

+(2N — 90110 (VIA) Ay Ay Ary Ay IT TAry,,

+{4 — N)Toort (VA A, A w Ay Ay, DA 4y (5.3.137)
—N'Tar,a, 11UV M)A, AnAr. A,y %Ans

+(2N' — 4)-fA’1,0’I'](V4A)A,..,ANAPZ,,‘.A’N,“, OA y o

+(4 — NToor1{V*A)A, AxAr,. Ay, OAxy,

with N € {0,1,2,3,4} and N’ ¢ {0,1,2,3,4}.
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Fourth Covariant Derivative of =

(V') = (V°E)w L — pTuamn (V) (uayw
+(2p ~ 6)T10m (V°Z)r + (6 — 1) Toon (V°E) 1w
—V?l!lxhrh{va_:.)p(y_l} -l' (21/} - 6)?1!0!}1?}1 (V?’E)W (53138)

+(4 - V’)Fofgfh.!h (VSE)‘L{M_H)
with ¢ € {0,1,2,3,4,5,6} and +' € {0,1,2,3,4}.

08111 OA G (VIE)Ar Ay aHE = 2 (VB A, avan.an L
OB N1 OA e — DT A, 8,66V B) A Ay yiAr, AL, TAry,

+(2N — 6)Toa, HE(V°E) Ay Any A%y Al HE OAr g,

+(6 — N)LooHH (V> E) Ay Apsi Ay Al OA uyy (5.3.139)
—N'Tara HH(V'E)A; . AxA Ay OAns,

- a
+(2N' = Gl 4 oHH(V E) A, AnAry Ay OAnys !

+{4 — N Toomm(V°E)A,. AxAry. Ay, OBna

with N € {0,1,2,3,4,5,6} and N' ¢ {0,1,2,3,4},

d’Alembertian of V3%,
V4 Voo (Viw Vi Vip U,) = (V) spintriceag 1E5€7°¢ (5.3.140)

with g € {0,1,2,3,4}.

EE’

— 5
OAys:0ar, (VWA AyA, AER

= (OAN+,5A'N,+1,(vsq’)Al...ANA'I,...A'N.EE*GG' JeGEGE (5.3.141)

s
=(V W), Ay, 1AL Al

with p € {0,1,2,3,4,5,6,7} and v € {0,1,2,3}.
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d’Alembertian of V3®,,
Ve Voo (Vite Vi V g5 ®220) = (V) rspopribcesag 1677 (5.3.142)

with ¢ € {0,1,2,} and ' € {0,1,2}.

EE

5
0A N, 04, (V'R)a, Ayar, A EE

r
Nl+1!

= (0Any.0ar,, (VP®)A, .A4AL AL EBGG )& €T (5.3.143)

r
Ni41f

5
=(V ‘I')AlmANHA'y--Afw“!

with N € {0,1,2,3,4,5} and N’ € {0,1,2,3,4,5}.

d’Alembertian of VA

Ved vag (ka- v;,}g Vﬂ, A) = {(Vs/\);ﬁ;;m;w;e&«;gg« }Egeeg'e’ (53]44)
_ EE

0ansi0aL,,  (VPA)A, . AxAr,. A0 EE

= (0Ans: 08, (VP A)Ar Anay,. Ay BBGG: YO (5.3.145)

— 5
=(V A)Al.‘AN“A;,..A;w“,

with N € {0,1,2,3} and N’ & {0,1,2,3}.

d’Alembertian of V2=
VY Vo (Vi Vip Zw ) = {(V* ) wnssib ooy 1€ ' (5.3.146)

with g € {0,1,2,3} and »'{0,1}.

EE’

0A . 0Ar, (V'E)A, . AyAr A LEE

!
JHENY

= (OAN+1EA!NJ.,.1:(V4E)A1“ANA;;"A"NJEE'GG' )eGEEG»‘Er (53147)

- S
- (v H)A1..AN+1A;,‘.‘A‘}W+1,
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with N € {0,1,2,3,4,5} and N’ € {0,1,2,3}.

d’Alembertian of V¥,

153

V Voo (VY p Vi U = {(VP0) i s seesoe Y€ €€ e? 9 (5.3.148)

with g € {0,1,2,3,4}.

EFE

OAy,, 0ar, (VPE)A AjAr,. A EE

3\” +1f

GEEG*E’

= (0Aw4.0a,,, (VIU)A, ANAL, Ay EEGG )€

!
Nig1?

= (V5'I’ )A] -'-AN-H A;, "Aj'\rq.lf

with N € {0,1,2,3,4,5,6} and N’ {0,1,2}.

d’Alembertian of OV &,,

VY Vo (VI V15 Vide Bpar = {(V®)wrprissitrseesss Jee7C

with g € {0,1,2} and /{0, 1,2}.

EE’

L)
OAyy, 0ar, (V°®JA, Ayar, A LEE

!
Mg

’ f
= (0An,, 041, (VoB)A, . AuAl. A EBGG )eGEGE

’
N4

— 5
- (v @)Al .A‘AN+1A.;,.‘.A3\”+1,

with N € {0,1,2,3,4} and N’ € {0,1,2,3,4}.

d’Alembertian of OVA

VY Ve VIV g & = (VN asssitice gy e

EE

5
Ay 0Ar,  (VPA)A, AjAY, A EE

’
Nit1f

= (0AnOAL,, (VPA)A, ANAL,. Ay EEGG )eGESE

'
N4

(5.3.149)

(5.3.150)

(5.3.151)

(5.3.152)

(5.3.153)
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— 5
= (VPA)A, AynAL A,

with N € {0,1,2} and N’ € {0,1,2}.

d’Alembertian of 0=

VY Ve VIV 12 = UV D) anspeegy e " 9867 (5.3.154)
- 4o EE
08w 0AL, (V'E)A Auar, A EE
_ — G'E’ -
= (OAN+1OA'N,+1,(v4:')A-1MANAZ;HAFN-'EE'GG’ )eGEe (5.3.155)

= i=
= (V '-')Al »‘AN+1A'1,‘-AA'}W+N

with N € {0,1,2,3,4} and N’ € {0,1,2}.

Thus we are able to write down all terms relating to the third, fourth and
fifth derivative:

Third Derivative

VW = D'3‘I'4 and all possible contractions with omicrons
Vi@ = I"'3<I)22: and all possible contractions with omicrons
VA =P°A and all possible contractions with omicrons

VIE = p”

Z and all possible contractions with omicrons
OVW® = V3W,.0:5 and all possible contractions with omicrons

OV® = V3®,y - 0-8 and all possible contractions with omicrons

OVA = V3A -0-5 and all possible contractions with omicrons

a

)]

= V?Z.0-7 and all possible contractions with omicrons
Fourth Derivative

V¥ = V', and all possible contractions with omicrons
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Vid = P'4‘I'gga and all possible contractions with omicrons

V4A = P*A and all possible contractions with omicrons

V4= = P°E and all possible contractions with omicrons

OV?W¥ = V*®,.0-7 and all possible contractions with omicrons
OVi® = V*®,» - 0-7 and all possible contractions with omicrons
OV?® = V*W, -0-7 and all possible contractions with omicrons
DV?® = V*®,, - 0-7 and all possible contractions with omicrons
OV?A = V*'A .05 and all possible contractions with omicrons
OVE = V32 .0-7 and all possible contractions with omicrons

00w = V*®,-0-0-3-5 and all possible contractions with omicrons
00® = V4P, -0-0-5-6 and all possible contractions with omicrons

DOA =V*A-0.0-3-7 and all possible contractions with omicrons
Fifth Derivative

Vig = P’5‘I'4 and all possible contractions with omicrons

Vi@ = P ®,, and all possible contractions with omicrons

V5A =P A and all possible contractions with omicrons

VIZ =P'Z and all possible contractions with omicrons

OV = V¥ - 0.5 and all possible contractions with omicrons
OV3® = V® - 0.5 and all possible contractions with omicrons
OV3A = V%A - 0.3 and all possible contractions with omicrons
OV?E = V12 .0-7 and all possible contractions with omicrons
O0OVE = V¥ -0-0-5-5 and all possible contractions with omicrons
O0OV® = V°®4y - 0-0-5-7 and all possible contractions with omicrons
ODOVA =V°A-0-0-7-7 and all possible contractions with emicrons

O0E = V*2-0:0-7-6 and all possible contractions with omicrons
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5.4 Lowering the Bound

We now proceed to analyse the upper bound on the order of covariant differenti-
ation of the Riemann spinor required in the Karlhede algorithm for non-vacuum
type N solutions.

As in the vacuum case we apply the Karlhede algorithm to the invariants
obtained in the previous sections since these are simply linear combinations of
the symmetric components of the Weyl, Ricci spinor and Ricci scalar and its
successive covariant derivatives.

We have seen that the situation when one can have a Karlhede bound of
seven arises when the dimension of Hjy is two and when the Weyl and Ricci
spinor and Ricei scalar are all constants. At first order of differentiation we see
that all terms obtained are invariant under null rotations so that the dimension
of H; remains two, however we must consider the possibility of there being at
least one new functionally independent term amongst the terms obtained at this
order so that the procedure confinues to second order. Furthermore, we have
seen that at each step of differentiation all terms calculated are invariant under
the group of null rotations so that the dimension of the invariance group H,
remains two, so that if we consider the worst possible situation, ie, that only one
functionally independent term is obtained at each step then by fifth order one
has obtained all four independent terms which is the maximum number one can
obtain in a four dimensional space. As in the vacuum case this gives us only
information concerning the coordinates so that we can conclude that as of the
fourth derivative one does not get any more functional information with respect
to the coordinates.

We now need to check that as of the fifth order the invariance group with
respect to the components does not change otherwise we might need to calculate
more derivatives for the same reason explained in the previous chapter. We recall
that at zeroth order of covariant differentiation we have the terms ®,,/, ¥4 and
A which we are considering to be constants. At first order of differentiation
we obtain as our potentially new functional information p,e, ¢, a, 8, 7,4 which

transforms as follows:

— (5.4.156)
g — ¢ (5.4.157)
€ — € (5.4.158)
a — a+ap+ae (5.4.159)
g — Ptaoc+ac {5.4.160)
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T — THap+ac (5.4.161)
¥y — y+4ag(e+p)+aataf+r)+aic (5.4.162)

We consider three distinct cases:
I p=c=¢c=a=F=7=0

In this case we are left with the transformation ¥ — +, 1n which case 1t
follows that the two dimensional invariance group of null rotations remains at

first order.
II: p=0o=¢e=a=10

Here we are left with the following transformations: v — v, 3 — 5,
7 — 7. So that one cannot fix the frame any further, thus the group of null

rotations remains as the invariance group at first order.
IIT: p=c=¢=0;lal=|34+7|

One is left with the iransformations v — v+ (e +@)a, § — 8.7 — 7
and o — a. We can therefore use the first of such transformations to fix the
frame further so that the invariance group is at first order one dimensional.

In all other cases it is easily seen that one can fix the frame completely so
that the invariance group becomes zero dimensional.

We now analyse what ocurrs at second order of differentiation, for this effect
we use equations 4.3.62, 5.2.48, 5.2.51, 5.2.54, 5.2.62, 5.2.65, 5.2.67. We take

each of the separate cases considered abave:
I: p=oc=¢e=a=0F=1=0

One has as our new potential functional information D+, 6+, é'y, D’y which
transform as:

D'y — (D4 aé' +@b+ aaD)y (5.4.163)
§y — (6+aD)y (5.4.164)
8 — (& +aD)y (5.4.165)
Dy — Dy (5.4.166)

From the NP Ricci equations (4.2}, (4.2r) and (4.20) one has 6y =0, 8y =0
and Dy = —A so that we consider the following cases:
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Ta: A=10

So that we have év = &y = &’y = 0 which leaves us with the transformation
D~y — Dy, We can then show using the NP commutators and following the
same argument as that used by Collins [6] and which was applied in the previous
chapter to the vacuum case that the two dimensional invariance group remains

at all orders of differentiation.

Ib: A0
In this case we can use the transformation D'y — (D' + a@D)~ to fix the
frame completely. So that we have a zero dimensional invariance group at second

order.
II: p=0c=¢c=a=0

We get the following potentially new functional information: Dy, év, 8y, D',
DB, 683,68, D8, Dr,ér,8r, V7, %, ), p and v. Using a similar argument to that
of Collins [6] and that used in the previous chapter we are able to fix the frame

completely giving at second order a zero dimensional invariance group.
IIT: p=oc=€c=0;|a| = |8+ 7]

We have as our potentially new functional information: Dy, by, 6"y, D'y, DB,
8§3,8'3,D'3, D7, 67,8'r, D7, Da, DVa,ba, a7, A\, p and v. Applying the same
argument as Collins [6] and explained in chapter 4 we are able to fix the frame

up to a zero dimension invariance group.

We have thus proved that as of the second order of covariant differentiation
the dimension of the invariance group remains unchanged. Hence in this case
we only need to calculate five covariant derivatives to classify the non vacuum
solution completely. We have then proved that in the case where condition (1)
and (2) hold and the potential bound is seven the actual bound is at worst five.

If we relax condition (1) and maintain all others and consider that W4, ®o0
and A might not all be constants then one has a potential bound of six in the
worst possible case. It Is quite easily seen that the analysis is just the same as
that done for the case of ¥, @;50 and A being constants. However in this case
one must consider the possibility of having potentially new coordinate functional
information at zeroth order so that the bound is then four.

If we relax condition (2} and take the dimension of the invariance group at
zeroth order to be one then we have the following conditions: ®py = $gpr =
Qoxr = 1o = P10 = Py = 0 and P19 # 0, Py # 0,9, 3’5 0,®13 = ®9y.. In

this particular situation we can have a potential bound of six if we consider that

h——
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not all non zero terms at zeroth order are constants. We must then go through
the process of calculating the general expressions giving the successive covariant
derivatives of ®,2 and @,y along with the d’Alembertian of such terms. This
work shall not be included here.

[t is easily seen that in all other cases the potential bound would not be
greater than five. Hence we conclude that the Karthede bound for type N non
vacuum solutions is at most six.

For some time no spacetime was known to require more than the third deriva-
tive which led many people to believe that the true upper bound was in fact three.
Koutras [21], however, has come up with a solution where one needs to calculate
the fourth derivative to complete its classification, the solution being the confor-
mally flat pure radiation field found by Wils {1989). Whether the upper bound
of five is the true upper bound remains to be seen since, up till now, no solution

requiring five derivatives has been found.
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Chapter 6

Curvature and Metric In

General Relativity

6.1 Introduction

In this chapter we discuss the problem of determining the metric tensor from
the curvature tensor, the ways in which one can approach this problem (mainly
that developed by Hall [22],[19], [13]) and the possibility of using this method to
lower the bounds on covariant differentiation in the Karlhede algorithm.

In order to solve the problem of determining the components of the metric
tensor from the components of the curvature tensor one assumes that the curva-
ture tensor i1s given over some coordinate domain of the manifold M. Recently
Edgar[11] derived a simple sufficient condition for a given connection to he de-
rived from a metric and applied an algebraic procedure for calculating the metric
from the curvature.

A method of determination of the metric tensor from the curvature tensor was
also proposed by IThrig [16}, [17] and was actively developed by Halford, McIntosh
[12] and Hall [22], [19], [13]. In contrast to the Cartan-Karlhede [5], [18] method
of classifying the geometry of a space-time which uses the tetrad components of
the curvature tensor and its successive covariant derivatives, the methods men-
tioned work with the coordinate components of the curvature and one assumes
that either the connection or a finite number of the covariant derivatives of the

curvature are known.
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6.2 Determining the Metric from the Curva-

ture

Here we describe Hall’s method of determining the metric from the curvature and
we closely follow [22], [19], [13]. We adopt Greek indices to denote coordinate
components and latin indices to denote tetrad components. Also we use the
notation <> to denote linear span.

Let U/ be some coordinate domain of the space-time M, let p € U/ and let
R* 34 denote the coordinate components in U of the curvature tensor. We sup-
pose R*z.s is non zero at p. To find which Lorentz metrics other than the given
metric ¢ can be compatible with this curvature tensor one first notes the alge-
braic necessity that any other possible metric ¢ must preserve the symmetries

of the Riemann tensor at p, mainly:

Gua B s =0 (62.1)

Hence, the first step is the solution of the algebraic problem expressed in
6.2.1, within the space time (M, ¢), using the original metric ¢ to raise and lower
indices, etc. The curvature components Rogs = gou B*sys may be used to define
a linear map R from the six dimensional vector space of all contravariant bivec-
tors at p denoted by ,(M) to the six dimensional vector space of all covariant
bivectors at p denoted by £2;(M) in the usual way, i.e,

R: QM) — QM)
F¥ s R (6.2.2)

with R(F®) = Ryps F* =F 5.

Hence, by equation 6.2.1 we can write:
gLaRyﬁ'pﬁ FT& +gLﬁR”ma Fﬁ =0
which in turn gives:

G F s+ g F a=0 (6.2.3)
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So that equation 6.2.1 is equivalent to:

GuF 5 =0 (6.2.4)

for all bivectors E‘ag in the range space of K. Hence, the generality of the solution
of 6.2.4 for ¢’ depends on the rank of the curvature defined as the dimension of
the range space of R, or equivalently, as the rank of a 6 x 6 matrix arising when
the curvature components are written in block index form.

Review of Bivectors

We now give a succinct review on some definitions and properties relating to
bivectors.
The dual of a skew symmetric second order tensor, i.e, bivector F', denoted

by F is defined by:

Fop = Nops F™ (6.2.5)
« off
e e (6.2.6)

where 7,65 is the Levi-Civita tensor.

A non-zero bivector F is said to be simple or decomposable if and only if there
exists a non zero vector v such that Fsv?® = 0. If F is a simple bivector, then it
is possible to find vectors r and s such that # = r A s. If we also have an inner
product we may choose r and s such that 7 - s = 0. The two dimensional space
spanned by r and s is called the blade of F'.

A non zero bivector is called null if and only if there exists a non zero vector
v such that Fosv® =1}'Qg v? = 0 otherwise F is non — null. Every null bivector
is therefore simple. Notice also that if F' is simple then F is also simple with
ﬁ‘ having a blade orthogonal to that of F. Furthermore the dual of every null
bivector is also nuil.

Any non-null bivector F' can be written as:
F=MAn+XdzAy

with Ay = Az and A1, A2 € R and where (n,1,y,2) is a null tetrad.

If Ay #0 and A; # 0 then F is a non — simple bivector. If \; =0 or A, =0
then F is a simple non-null bivector. The rank of a non-null bivector F is an
even number (see for example [26]).

In order to determine all metrics g, which satisfy equation 6.2.1 we need to
establish some results which can be found in [22], {19], [13].
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Theorem 6.2.1 If at p € M, F is a simple bivector whose blade is spanned
by the vectors v and s and if X is a symmelric second order tensor, then the

following two conditions are equivalent:

(i) Xy uF7p =0
(#) the vectors r and s are eigenvectors of X with equal eigenvalues

Proof

Since F is a simple bivector whose blade is spanned by the vectors » and s

then we can write:
F=rAas
or in terms of coordinate components we have:
Fog = 71488 — sarp
X is a symmetric tensor so that we can write:
XoF]+ X pF) =0
which can then be written as:
Xoya(rsg —s"rg) + Xog(r¥s, — 87r,) =0

or equivalently:

P X osg 7 X psa = " XN arg + 87 X gy (6.2.7)

If we define:
" Xoa = Ug (6.2.8)
(6.2.9)

87X = ta
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then equation 6.2.7 becomes:

Uadp + Ugse = Lalp + 1570 (6.2.10)

By contracting both sides of equation 6.2.10 with ¢°* we arrive at:

Ups® = 1,1 (6.2.11)

It is always possible to choose a basis whereby Fis = r,sg — s,rs with
%8, = 0, 50 let us suppose that (r,s) constitute such a basis. We then contract
equation 6.2.10 with s* and use equation 6.2.11 and obtain:

Prg = torps® —tar%sg (6.2.12)
where 3 = s,5°.

We choose s to be a vector in the blade which is not null so that g # 0.
Notice that we cannot have the situation where both s and r are both null since
that would imply r o¢ s since r®s, = 0 and therefore F' = 0.

If we now multiply equation 6.2.10 by /7 and use 6.2.12 we have:

UaSg = tg74 (6.2.13)

If we now multiply equation 6.2.13 by r., we get:

Tyllq — UaTq = 0 (6.2.14)

Hence, u o< v 1n any basis. We can then write u = ar for some o € R.

On the other hand if we multiply 6.2.13 by s., we arrive at:

toSy — tyse = 0 (6.2.15)

By equation 6.2.15 we conclude that ¢ = As for some A € R . Furthermore
by equation 6.2.13 we have:

QTo 83 = ASgry (6.2.16)
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So that a = A,

By theorem 6.2.1 it turns out that if a simple bivector F lies in the range
of R, so that F satisfies 6.2.4, then all members of T,M lying in the 2-space
defined by the blade of F at p are eigenvectors of ¢’ with respect to ¢ at p with
the same eigenvalue, i.e:

Gogk® = Mo = 0gus  Ykhe<r,s>, A,a€R (6.2.17)

Theorem 6.2.2 If at p € M, F is a non-simple bivector and X a symmetric
second order tensor then with the notation established above the following two

conditions are equivalent:

(i) XyaF3 =0
(i} The null vectors! and n are eigenvectors of X with equal eigenvalues and

the spacelike vectors y and z are eigenvectors of X with equal eigenvalues

Proof

Any non-simple bivector I’ can be wriften :
Fop = Ct’f[ong] + 6z[ayg] (6.2.18)

with o, €Rand o #0,8 # 0.
The fact that F' can be written as in 6.2.18 gives the following identities:

I¥Fog = olg (6.2.19)
n®F,3 = —ang (6.2.20)
y* Fag = Bzg (6.2.21)
% Fap = —Pyg (6.2.22)

We first prove that (1) = (ii}.

If we contract (i) with I# we have:
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XoolPF g+ X plPF7y =0 (6.2.:

]
L
[N}
et

By 6.2.19 we have that equation 6.2.23 gives:

X gPFYy = aX,, 1" (6.2.24)

Similarly, by contracting (i) with n, y® and z° in turn and using equations
6.2.20, 6.2.21 and 6.2.22 gives:

X gnPF7, = —aX,, (6.2.25)
Xpy?Fry = X 2" (6.2.26)
X p2PFY, = —BX 4" (6.2.27)

By 6.2.24 we can write:
pyFe = aps with p, = X 518
Hence, since ! satisfies 6.2.19 and is unique then:
py = ¥l for somey € R
Therefore:
X plP =+l {6.2.28)
Similarly we have:

X pn? = én., for some § € R

——
=)
o
i
L)

el

Since X is a symmetric second order tensor we can write:
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Xog = Xpo (6.2.30)
By contracting both sides of 6.2.30 with {* and ng we have:

(19 X o5 )n® = 19(X g n®) (6.2.31)
Which in turn, by 6.2.28 and 6.2.29, gives:

ylgn? = 61%n, (6.2.32)
Hence, we have that the eigenvalues 4, § are equal, 1.e:

v=46 (6.2.33)

We now make use of the complex null tetrad (I, n,m,77) where:

1
m® = —=(y* + 12% 6.2.34
ﬁ(y ) ( )
Y = e (y® — i2%) (6.2.35)
M= — - .2,
72
and
mms, =T M = 1%l, =11, =0 (6.2.36)
meimy = —1%n, =1 (6.2.37)

The bivector F' written in this base takes the form:
Fop = al[anﬁ] + iﬂm.[aﬁm with o, ¢ R {6.2.38)
Equation 6.2.38 gives the following identities:

moFog = —1fimg (6.2.39)

m* P = ifmg (6.2.40)
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with 3 € R.

By contracting (i) with m? and 7 in turn we obtain:

X gmPFY, = if X om" (6.2.41)

X FY, =iX 7" (6.2.42)
Hence, equation 6.2.39 gives:

poF} = —iBp with p, = X,gm”
And since m is the only complex null vector satisfying 6.2.39 we have:

Py = €111,
So that finally:

XpmP =¢m, withe, €R (6.2.43)
Similarly, equations 6.2.40 and 6.2.42 give:

X, g = e;m, with e; € R (6.2.44)

By the fact that X is a symmetric tensor one has:

ee=¢;=cand ¢ € R (6.2.45)
So that:
Xog(m? + ) = e(my + Ta) (6.2.46)

which, by definitions 6.2.34 and 6.2.35, in turn gives:

Xpy? = ey, (6.2.47)
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Sunilarly:

Xog(m? —~ ) = e(m,, — ,) (6.2.48)
gives:

X.,52° = ez, (6.2.49)

So that we have proved (i)= (ii).
We now proceed to prove (ii)= (i)

Equations 6.2.28, 6.2.29, 6.2.33, 6.2.47 and 6.2.49 imply that:

a(Xya(Mng —n"lg) + X"y —n"l,)} =0 (6.2.50)

B(X0(5720 = 2745) + Xop (4720 ~ 29a)) = 0 (6.2.51)
If we add equations 6.2.50 and 6.2.51 we obtain the desired result, i.e:

X:?(a F?ﬁ] =0
L

The metric tensor g at p is related to the tetrad vectors {I,n,y,z) by the
completeness relation:

9op = — 2oy + Yolis + ZaZs (6.2.52)
If the conditions and statements in theorem 6.1.2 hold then it follows that:
g’aﬁ = —2Xlang + A2(yays + z023) with A, A €R (6.2.53)

Thus, the only eigenvectors admitted by ¢’ lie either in the 2-space spanned
by I and n or that spanned by y and z, unless A\; = Ay = A in which case
the completeness relation shows that ¢’ ;s = Agas. It follows that if this trivial
solution is not to be the only solution of the equation 95 = 0, the only
bivectors which may satisfy this equation must be linear combinations of {,ng
and yp,2g. This is a consequence of the previous two theorems since any other
hivectors satisfying this equation would give rise to eigenvectors of ¢’ outside the

blades of the 2-forms {[,ng and y.=3.
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Theorem 6.2.3 The following cases occur:
(1) If the range of R is spanned by a single (necessarily simple) bivector F
(R is of rank one), then there exists ¢, p, v, A € R such that:

op = Gap + pratip + 2vu(avg + Avavg (6.2.54)

where u and v span the 2-space orthogonal to the 2-space represented by F.

(i) If the range of R has dimension two or three (rank two or three) and if
the members of this range have a common eigenvector w with zero eigenvalue (so
that the range of R consists only of simple bivectors and determines w to within

a multiplicative factor) then there exists ¢, A € R such thai:

9'op = BGos + AMwatwp (6.2.55)

(iii) if the range of R is spanned by the simple bivectors l,ng and y,zg (rank
two), then there exists ¢, A € R such that:

gfaﬁ = Pgop T 2/\3(0?1,@) = (¢ + Mgap — Myoys + 2a2p) (6.2.56)

(iv) In all other cases there exists ¢ € R such that:

9o = $9ap (6.2.57)

Proof

We start by proving (i). Lets start by supposing that F,5 is spacelike so that
we can write o3 = y,2z3 — za¥s. Then, by theorem 6.2.1 we have X 32° = az,
and Xc,ﬁyﬁ = ay,. Considering the null tetrad (I,n,y,z) and since X, 3 1s a
symmetric tensor, then taking the symmetric products of the tetrad members

gives:

Nog = onlolg + aananp + aa(long + nalp) + alyays + ze28) (6.2.58)

with o, as, a3, € R.

Using the completeness relation 6.2.52 equation 6.2.58 becomes:




Chapter 6 171

Xog = agag + arlpls + aongng + (as + @)(lansg + nalp) (6.2.59)

with ¢ = a,v = a + a3, ¢ = a1, A = a3. Obviously we have u = { and v = n.

We now take F,s to be timelike so that we can write Fog = lng — nals.
F.s = lang — n,ls. By theorem 6.2.1 we then have X plf = al, and X gn® =
ang. Considering the null tetrad (I, n,y, z) and since X,p is a symmetric tensor

we can write:

Xop = —allang + nalp) + ar{yaze + 20ys) + Cayays + 03242 (6.2.60)

with g, o, O, &0 € R.

Substituting the completeness relation 6.2.52 into equation 6.2.60 gives:

Nog = agap + 01{lyozp + za¥s) + (@2 — @)y ys + Q32025 (6.2.61)

with¢=a,v=a,t=ay—a,A=as—a,u=y,v=2z.

Finally we consider the null case, i.e, F3 = loys — ¥olp- Then by theorem
6.2.1 we have X 4l% = pl, and X 33° = Py, Considering the null tetrad
(I,n,y,z) and the symmetry of X 5 we write:

Xog = —allang + nalp) + avays + a1(lozs + 2ala) + a22425

+aslals (6.2.62)

with Oy, g, Q3 O € R.

Substituting the completeness relation 6.2.52 into equation 6.2.62 gives:

Nog = 0¢ap + 1oz + 2ada) + (a2 — @)zazp + aslois (6.2.63)

with¢ =a,v=a,pg=azrA=a,—a,u=1v==:.

We now proceed to prove (11). Let w = [ and consider the case of dimension
two. Let B denote the subspace of bivector space spanned by the curvature

2-forms. There are two cases to consider:
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(1) B =<la¥g, Yiaza >

By theorem 6.2.1 we have:

Xopl® = elg, Xogy®™ = eyp, Xop2® = €2

which then gives:

Xop = —alang + ayayp + o2.25 + bl (6.2.64)

By the relation 6.2.52, equation 6.2.64 then becomes:

.YQJ@ = Gf.pa + a;fafg (6.2.65)

with ¢ =a, A\ = A, w=1L
(2) B =<liazg,ya2g >

This case works out the same as in case (1) so that the result obtained is
given by 6.2.65.

We now consider the case w = [ and dimension three, which leaves us with

the case:
B =<lpuyg, llzg, Yatg >
This case also produces, as before, the result 6.2.65.

Notice that for w = n the process is similar to the case w = { with:

XNop = Qgop + a1nang (6.2.66)

We now choose w = y and consider the case of dimension two. Again there
are three cases to consider.

{1) B =< 1[0??-31.,2'[023] >

By theorem 6.1.1 we have:
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Xopl® = alg, Xopn® = ang, Xog2® = azg

which gives:

Xap = —alianp + azazp + alayp

So that by substituting the completeness relation 6.2.52 in the above equation

one arrives at the following result:

Xop = agop + (01 — @)Yays (6.2.67)

withw=y,¢=a,XA =0 —a.

The following cases also give result 6.2.67.

(2)B =< ljang, nazg >

(3)B =< .23, n[o2q >

For the case w = y and dimension three we must consider:
B =<l zg,nazg) lang >

This case also gives the result 6.2.52,

Note that for w = z the process is similar to the case w = y with:

Xog = agop + (01 — @)2423 {6.2.68)
We now proceed to prove (iil), so that one considers:

B =<li.ng,Y2q >
Theorem 6.1.1 gives the identities:

Xopl® = ylg, Xopn® = ynpg, Xopy® = pyp, Xop2® = pzp

This falls into the situation of theorem 6.2.1 so that one can write:
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Xog = Ylang + 1(yays + 202g)
The relation 6.2.52 then gives:
Xop = tgos + (21 + ¥)lanp) (6.2.69)

with ¢ = p and 22X =2u+~

Finally we prove case (iv). Notice that all two dimensional cases have been
already considered. We have only to study the remaining cases where the dimen-
sion is greater or equal to three. So that we write:

B =<lung, vazg, layg >
Theorem 6.2.1 gives the following 1dentities:

Nagl® = 7lg, Xopn® = mp, Xasy® = yys, Xopz™ = 725
So that one then writes:

Xag = =7lang + YWays + Y2azs
Using the completeness relation we get:

Xog = Y908

—
=)
i
=
=

p—

It is quite easy to see that all other remaining cases are similar.

We now establish two other important results that can be found in {13].

Theorem 6.2.4 The following equation:
Rops K0 =0 (6.2.71)

has two independent solutions for k if the conditions of theorem 6.2.3(7) hold
(for example k = u and k =v), one independent solution (for example k = w)

if the conditions of theorem 6.2.3(it) hold and no non-trivial solutions otherwise.
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Proof

We start by showing that
Regs F* = F3 YF® ¢ Q.M
is equivalent to
Rops X"X° = Fop ¥XV, X° ¢ T,M
This can be shown in a few simple steps:
Rps F™* = R XV X9 = %RGW (XY ~ X°YT™)
= R X7Y*

The last step being possible because of the antisymmetry R¥ps = — R gsy

By theorem 6.2.3 (i) the vectors u and v span the 2-space orthogonal to the
blade of F, F’ being necessarily simple so that one can write F%5 = r®s3 — 5%

and u,r® = ua$® = v,1* = v,8% = 0. Furthermore, Fosu, = Fv, =0

So that one then has:

g R s XTXE = Fohuy =0 ' (6.2.72)
which in turn implies:

Ug B g =0 (6.2.73)

this because 6.2.72 holds for any X;, X, € T, M.

Similarly we have:
Ve R%as =0 (6.2.74)

If the conditions of theorem 6.2.3 (ii} hold we easily see that:

wo R% g5 X7 XE = Fosw, = 0 (6.2.75)
wa % =0 (6.2.76)
®
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Theorem 6.2.5 [f the curvature tensor is given over a spacetime M and if
at each point p € M the components R.3s satisfy the conditions of theorem

6.2.3(iv), the metric on M s determined fo within @ constant conformal factor.

Proof

We start by writing down the Bianchi identities in any coordinate domain in
M for the original metric g and another possible metric ¢ = ¢g, where ¢ is a
smooth real valued function on M. Covariant derivatives with respect to ¢’ and

¢ will be denoted by a stroke (R*s40 ) and a semi colon (R*s44¢ ) respectively.

The contracted Bianchi identities with respect to ¢’ is given by:

12
|
-1
o

R°pge +2Bgqq =0 {6.2.
The contracted Bianchi identities with respect to ¢ is given by:

Rs60 +2Rgyg =0 (6.2.78)
By 6.2.77 and 6.2.78 we have:

Rs50 + 2Rgy9 = R0 + 2Ry =0 (6.2.79)

The Christoffel symbols with respect to ¢ and ¢’ will be denoted by I'y, and
I3, respectively and the following result can be found in [13]:

t

o & 1 o f f
Pg, =T, -T =§9" 955y + 9 543 — 9 55 )

1
= 596‘1 (685 + ¢.585 ~ ¢%gsy) (6.2.80)

with

|
§¢ Y9 (gsp by + B9sam + Gsx D5 + BIs4s — oy Dls — PGpis )

1 - o o o 1 - £r
= 567 (8495 + 0685 — 679 ) + 507 (S9sm 9°° + dgsp 9% — G945 9°°)
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where comma denotes a partial derivative

Subtraction of the two equations in 6.2.79 and the substitution of 6.2.80

together with some contractions and simplifications leads to:
Rops ¢° = (6.2.81)

with all raising and lowering of indices done with respect to g. By theorem
6.2.4 equation 6.2.81 has no non-trivial solutions at p € M so that ¢* = 0 =
é = constant at p € M. This together with the connectedness of M completes
the proof.

It is well known that if two metrics ¢ and ¢’ on a manifold M (n > 4) are
conformally related they give rise to the same Weyl tensor components C'gys
in each coordinate system. The previous theorems show that in all cases except
type N the converse of this result is, in principle, possible. Let us see why this
is.

It is clear that the algebraic consequences of equation 6.2.1 relied only on
the symmetries of the Riemann tensor and, as such, apply to the Weyl tensor
also, since if ¢’ is compatible with the components (%4, equation 6.2.1 holds
with the curvature components replaced by them.

However, the rank of the Weyl tensor is further restricted by the irace free
condition C7gs = 0. Thus, the rank of the Petrov type I Weyl tensor is four or
six, for Petrov tvpe D and II the rank is always six, for type III the rank is four
and for type N the rank is always two.

Thus, by theorems 6.2.3 and 6.2.5 we have that if the metric is vacuum of
Petrov type I, Il, D or III then it is determined to within a constant conformal
factor. However, if the Petrov type is N then the Weyl {ensor has rank 2 and
satisfies case (ii) of theorem 6.2.3 where w is the common, fourfold repeated
principal null direction.

Now suppose that the curvature components R*s¢ and their first covariant
derivatives R* 3., are given over some coordinate domain. We will investigate
the restrictions this imposes on the metric in the Petrov type N vacuum case
since we have already established that in all other vacuwun cases the curvature
determines the metric to within a constant conformal factor.

By theorem 6.2.3(31), we have that the subspace of bivector space B. in the
type N vacuum case, is spanned by two linearly independent bivectors Iy and F;

with common eigenvector w having zero eigenvalue. Hence, we have:




Chapter 6 178

Wo R ps XTX5 = Fopw, =0 VX, X, € T,M (6.2.82)
which then gives:
wWe 3 =10 (6.2.83)

Furthermore, if the components of the first covariant derivative are given, we

then have the following equality:
9 a o + 9 g R s =0 (6.2.84)
which in turn gives:
7 o R s XIXEXE4g 5 R e XY XIXE = 0 VX3, Xo, X5 € T,M(6.2.85)
Equation 6.2.85 then provides the equality:
9 uPrpt g P =0 (6.2.86)

If woRss, = 0 then woR%ps, X7 XEXY = 0 is equivalent to the following
identity:

waP%s =0 (6.2.87)

Hence, we have P €< Fy, F;, >, 1.e, any bivector obtained from R®gs, is
a linear combination of bivectors obtained from R%ss, so that no new linearly
independent bivectors are obtained.

If on the other hand w,BR%ss, # 0 then two linearly independent simple
bivectors P, and P, are obtained from R%zs,. Then by theorem 6.2.1 new
eigenvectors of ¢’ ; are obtained. Hence, by applying the same method as that
of theorem 6.2.3(iv) one obtains ¢’ 5 = dg.s with ¢ = constant.

So, if we R 345, # 0 at each point of U € M, then sufficient extra eigenvectors
of any alternative metric ¢’ are generated to ensure that ¢’ is conformally related
togon U € M.

Now, suppose w,ftps, = 0 on U C M, then:
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?.UQRQW =0 < IUQWRQM + waR"”M;y =0= wm,,R“M =0 (6.2.88)

So that w, 18 a recurrent vector, i.e, wy, = wWup,, p called the recurrence
vector actually if w 1s a non zero recurrent vector field then it can be locally
scaled so that wg, & waw,. A null recurrent vector field w on U may be locally
scaled to be covariantly constant (w., = 0) if and only if R*gsw, =0 on M.

Therefore, by the uniqueness of the independent solutions of &k, R = 0
(k = w for type N) we have that w is a recurrent vector. Since w is nuil it can
be scaled to be covariantly constant on {J with respect to g if I/ 1s contractable.

Thus, in the case of vacuum Petrov type N, the prescription of K%z and
R% g4, on U uniquely determines g up to a constant conformal factor unless the
recurrent vector field w is (proportional to) a covariantly constant vector field,
this being the case of pp waves.

Therefore, in the vacuum case, if the Petrov type is I, II, D or III then the
metric is determined to within a constant conformal factor by the curvature. If
the Petrov type is N, the rank of the curvature is iwo. However, apart from one
special case, the covariant derivative of the curvature will introduce two extra
bivectors which satisfy 6.2.3 and one has, in effect, a rank four situation with the
metric determined to within a conformal factor. The special case is where the
curvature tensor is complex recurrent and the resulting spacetimes are vacuum
pp waves.

The conclusion is that the specification of the components £%gy and R*gyy
in vacuum determines the metric up to a constant conformal factor except when

g and ¢’ are pp wave metrics on some open subset of A,

6.3 Relationship to the Karlhede Algorithm

We shall call the number of covariant derivatives of the curvature one needs to
calculate in order for the metric to be determined up to a constant conformal
factor Hall’s bound which will be denoted by ny. We have seen that ny =
0 for vacuum type I, II, D and IIl and ng = 1 for vacnum type N except
in the case of pp waves. It then seems that Hall’s bound is much lower than
Karlhede’s bound for classifying a spacetime. It would be of interest to investigate
whether there is some relationship between ngy and Karlhede’s bound since both
Hall’s method and Karlhede’s algorithm concern the way the curvature and its
successive covariant derivatives determine the geometry of spacetime. The major
difficulty, as we shall see, comes from the fact that Hall’s method works with
the coordinate components of the curvature and its derivatives while Karlhede’s

algorithm uses the tetrad components of the same.
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We consider the simpler cases of Petrov types I and Il where the invariance
group is the group of dimension zero [18] and the rank of the curvature is six
[20].

Now, let ¢ : M —sMbea diffeomorphism, 1., a smooth bijective map with
a smooth inverse. Then ¢, : T,M — Ty M is the induced map of tangent
vectors and ¢* : T; M — T3 M is the induced map of cotangent vectors. The
coordinate representation of the map ¢ : M —Mis given by 7= #?(z*) where
z® are local coordinates around p € M and re are local coordinates around
$(p) €M.

Let us consider R and R written in coordinate systems z* and T respectively.
Suppose there exists a diffeomorphism ¢ : A/ —M giving 7= ¢°(2*) with the
induced map being given by ¢. : T,M —— Ty, M so that fa- = ¢. {af,, ),1.e
2 528 3 _

T = e g S0 that one can then write:
o ar?

?2 dx? O0z¢ Ox7 Oz
o = 8-’3 83;'8327 a

— Rory (6.3.89)

Let e(q = e¥52% € T,M and e[a}_e —.,r_r € Tyy M be the canonical tetrads

and let e(a)— b. (e ), 1. e = g;s 3, Then by taking the tetrad components of

R.s¢ and RQM with respect to e, and e{a}, equation 6.3.89 gives:
~omBeynd  OTP ~a 027 8 O27 ~v 2P w8

Raps €,6,¢,64= e O B G €c =25 €a Boomu

ES dz

which in turn gives:
= e BT —
R = efegeleqRopry = Roped

Thus, it is certainly true that if the coordinate components of _?% and R are
equal then there exists tetrads in which the components of R and R expressed

in those tetrads are equal.

We now Investigate whether the existence of a diffeornorphism ¢ : M —>ﬂ}
such that }V%abd = ¢{ Ru ) in some fixed canonical frame, implies that ?{= S R),
1.e equation 6.3.89,

Let the canonical frame for R and R be €(a) and ey, respectively with €=
@.(€(q)- 1If we then take the dual bases E(a) and e so that ,é,g(tl}z ¢“(e§f’) we
can then write:
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LT PN Y N RNY: SN, W NPT,

Ragx,ie ege es=€ g€ €5 Rupg

which in turn gives:

.02 , Oz _dz¢ _ 0zf da° 027 63:”
abed

—= €, = €l ~7Cr ¢ poTp
97 "9 o7 T " e 8707 3%

Raps =

The difficulty lies in the fact that the existence of a diffeormorphism ¢ :
M — M giving Raw = ¢(Buw ) with E and R given in the canonical bases
E(GJ and ¢, respectively does not always imply that E(a)= P.{€(s)) so that one
cannot conclude that:

Ratet = $(Raat ) = R= ¢u(R)

Hence, the important issue one needs to solve is the following:

In what circumstances does the eristence of a diffeomorphism ¢ : M —M
9iving Ropd = S Rapa ) Teclise:

R= ¢.(R)

It would be worth investigating whether the vacuum Einstein equations relat-
ing to the simpler cases of Petrov types I and Il solutions, where the invariance
group is zero dimensional and the rank is six, give any information on this ques-
tiom.

We outline a possible way of tackling this problem. We consider the case of a
vacuum spacetime of Petrov type I or II. Let 2 be a fixed coordinate system and

consider two curvature tensors R and IN% with coordinate components R**.; and
A\..-O‘ﬁ R ~

R 45 respectively. Let ¢q = e“agf;— and e(,= i ‘16‘3,"' be the canonical tetrads
of R and F{ with dual covectors el® = e, %da® and e( = €, *dz®. Then consider

the tetrad components of R and R with respect to their canonical tetrads given

Ry = €lelelelRY . (6.3.90)
~ b ~a~b~'}'~r5 ‘\«aﬁ
B o= SOOERT . (6.3.91)

We now suppose that:
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~ab

Ry =R (6.3.92)

And we investigate what restrictions equality 6.3.92 imposes on the coor-
~af . .
dinate components R*.s and R .s. We start by considering the following

conjecture:

Conjecture 6.3.1 In a vacuum spacetime of Petrov type I and Il if expression

wcxﬁ

6.3.92 is satisfied one also has R¥ s = R
If this conjecture 1s true then we could consider the further conjecture:

Conjecture 6.3.2 In a vacuum spacetime of Petrov type I or Il the metric is
determined {up to a constant conformal factor} by the tetrad components of the
curvature and hence the Karlhede bound is one.

Although at the moment we are not able to prove conjecture 6.3.2, mainly
because of the difficulty in proving conjecture 6.3.1, we suggest a possible method
of proof. We start by grouping the indices in pairs so that we are able to write:

A
R¥ s = Ry
rvcrﬁ ~ A
R ~F =RB
R®4 = Rf
R o =RB

We may regard the above as 6 x 6 matrices which take the form [30]:

A | P Q
RB‘(—@P)

where P and @ are 3 x 3 symmetric trace-free matrices. We denote the compo-

i ) ~i ~ i i r~ i Ve
nents of P and ¢} by Pl Q}, P, Q_?-, P%, Q:, P; and Qj- respectively.

NA.
Let ¥ = P +:Q then we have that the equality RA =Rp is equivalent
to having W =;Iv!; These results will be useful in the proof of the following

conjecture:
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Conjecture 6.3.3 R*, = }%ade & RP s = LﬁL‘ELﬁLgEWW

where nog L2 LE =

1.e: For Petrov type I and I spacetimes, the tetrad components of the curvature
are the same if and only if the coordinate components are related by a Lorentz
transformation.

The conjecture follows from the fact that W% and 'i'; must be conjugate

since they have the same eigenvectors and eigenvalues because ¥ =:i:; [2]. One
then needs to show that the transformation on the bivectors factors into a skew
product of Lorentz transformations.

Alternatively one can consider the Weyl spinor ¥ 450p . Since the components
of the Weyl curvature with respect to the canonical tetrad agree then we must
have ¥ yg-p :{I;ABQD . Hence Yapp €4 ¢cop :"IjA.BCD cxp €c€p. But the
coordinate components of the Weyl tensor are given by (the real part of) Cogs =
o4 {TE‘B afc PP W snep €xp €op . While:

Caﬁ}ﬁ =7, 65 0., s Vapp €4p €0D

~Ad ~BB ~CC ~DD
=0, Oz 0, Vamcp €ap €0D

Thus the difference in C,p¢ and 5‘03,),5 arises from a different choice of Van
der Waerden symbol. It then remains to show that different choices of such

symbol are (with suitable labelling) related by Lorentz transformations which
gives the result.

Conjecture 6.3.3 suggests the following conjecture:

~~ b

Conjecture 6.3.4 R¥®, = B 4 & gog = CLELY gw where nagL"Lﬁ =
and C is a constant conformal factor.

Ifjag satisfies gdaﬁﬁ},}ﬁ = 0 then g3 = L“Lﬁ o Satisfies g J((QR}GM = 0 where
1%,6.}5 = L?LEL" RW and hence g, satisfies § Ge(o Rﬁ),ﬁs = (. On the other hand
Hall [22] has shown that for a type I or II vacuum spacetime the only solution
of this last equation, up to a constant conformal factor , is g,g. Hence we must
have gog = Cgop = CLLLY Ew-

Finally the last step would be to prove the following conjecture:
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Conjecture 6.3.5 Let §a3= LELGgm be the metric of a Petrov type I or II
vacuum spacetime then §W s also the metric of that vacuum spacetime if and
only if Lt = ¢, and L} = ¢% for some local diffeomorphism ¢': M — M.

i.e ¢ is a coordinate transformation.

In other words Conjecture 6.3.4 is saying that the only transformations of the
form Ea,g: Lt LY g,, which maps vacuum solutions to vacuum solutions are those
generated by coordinate transformations so that 50,3 is simply gz in a different
coordinate system.

To prove the above conjecture one would use the vacuum Einstein equations
corresponding to Petrov types I and II in turn.

Notice that conjecture 6.3.4 implies conjecture 6.3.2. Hence one would be
able to lower the bound on the Karlhede algorithm in the special case of vacuum
type I and II spacetimes from five to one.

This would then show that Petrov type I and Il metrics with the same tetrad
components must be conformally related metrics possibly given in different co-
ordinates.

One could use a similar scheme to analyse all other cases, however the more
complicated nature of Petrov types [II, D and N spacetimes even in the vacuum
case, might lead to great difficulties.
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