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UNIVERSITY OF SOUTHAMPTON

ABSTRACT

FACULTY OF MATHEMATICAL STUDIES

Doctor of Philosophy

HOMOLOGICAL CLASSIFICATION OF MONOIDS
By

Akbar Golchin

We deal in this thesis with what is generally referred to as homological classifica-
tion of monoids by properties of their acts. We have the following hierarchy of
properties arranged in strictly decreasing order of strength such that a given act

may or may not possesss.
free = projective = strongly flat = condition(P) = flat =

weakly flat = principally weakly flat = torsion free

Many papers have appeared describing classes of monoids over which various of

the above distinct properties coincide either for all acts or for all acts of a certain

type.

There are monoids such that exact descriptions of their class have not yet been

determined, although partial results may be known.

In this work the classification of monoids by condition (P) of (weakly) flat (cyclic)
right acts, condition (E), properties of principal ideals, generators and regular acts
has been considered. Also by introducing new conditions (Pg), (Pf), and (P g)

we classify some monoids by these conditions.
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Introduction

For many years, a fruitful area of research in semigroup theory has been the
investigation of properties of acts over monoids. A great deal of work has so far
been done in what is generally referred to as homological classification of monoids,
investigating the conditions on monoids which make the following generally distinct

properties of acts, arranged in strictly decreasing order of strength, coincide:
free = projective = strongly flat = property (P)= flat =

weakly flat = principally weakly flat = torsion free.

Monoids for which flatness and weak flatness of acts coincide were considered
by Bulman-Fleming and McDowell (see [5]), although the exact description of
these monoids is not known at the moment. But in contrast, monoids over which
all weakly flat or flat cyclic right acts are strongly flat are exactly the right nil
monoids (i.e. monoids in which some power of each non-identity element is a right
zero element). Similarly, monoids over which all cyclic right acts having property
(P) are strongly flat, are known to be exactly the aperiodic monoids (i.e. monoids
in which, for each element z, there exists some n € N such that 2”1 = z"). But

the general description of this class of monoids is still unknown.

In 1981, Ulrich Knauer and Mario Petrich characterized monoids for which all
torsion free right acts are free or projective. They gave a necessary condition for
a monoid S such that all torsion free right S-acts be strongly flat. They also

characterized monoids for which all right acts are free, projective or strongly flat.

Condition (P) appeared as part of Stenstrom’s definition [34] of what we now call

strong flatness. Normak [31] considered condition (P) on its own. He [31] also
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showed that condition (P) lies strictly between flatness and strong flatness, that
for a monoid S, all right S-acts have property (P) if and only if S is a group, and
that all right S-acts having property (P) are free if and only if S = {1}.

In 1992, Bulman-Fleming [1] proved that for a monoid S, if all flat right S-acts sat-
isfy condition (P), then E(S) = {1}. (E(S) as usual denotes the set of idempotent

elements of S.) He posed the question of whether the converse is true.

Liu and Yang [40] (1994) gave an example settling in the negative the question
referred to in the previous paragraph. Liu also proved that if S is right reversible
and if all flat cyclic right S-acts satisfy condition (P), then E(S) C {0,1}. He
showed that, under the additional hypothesis that S is left PP (i.e., all principal
left ideals of S are projective), all flat cyclic right S-acts satisfy condition (P) if
and only if S is either a right cancellative monoid, or a right cancellative monoid
with zero adjoined. Assuming existence of a regular left S-act, Liu showed that
the condition E(S) = {1} is necessary and sufficient for all flat cyclic right S-acts
to satisfy condition (P).

In (1995), Bulman-Fleming and Normak [7] showed that, over left PP monoids S,
every flat cyclic right S-act satisfles condition (P) if and only if every element of
S is either right cancellative or right zero (This generalizes a result in [39].) In [§],
the same authors presented more-or-less complete results on flatness properties of

monocyclic acts (i.e. acts of the form S/p(s,t) where s,t € S.)

There are still however monoids for which the exact descriptions of their class
have not yet been determined. In particular monoids for which all (weakly) flat
(cyclic) right acts satisfy condition (P). To date the only definitive results have

been found when restricting attention to certain classes of monoids.

In this work we investigate the classification of monoids by properties of their
acts and we begin in chapter 1 with some definitions and results. In chapter 2,
we extend the results of classification of monoids by condition (P) of (weakly)
flat (cyclic) right acts such that many of the main results of recent papers on
this subject will appear as corollaries. We also extend the flatness property of
(cyclic) acts of monoids of the form S = G U I to flatness of I'-acts where I is
an ideal of S. In chapter 3, we consider left PSF monoids and we extend some of
the results in [7] and [40]. In chapter 4, by introducing new conditions (Pg) and

(Pf). We show these conditions can be placed between condition (P) and weak
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flatness in the above sequence and then a classification of some monoids by these
conditions and also condition (E) are considered. Characterizations of monoids
by properties of generators and regular acts are considered in chapters 5 and 6

respectively. There are also examples and counter-examples throughout chapters

where necessary.



Chapter 1

1. Basic definition and results

In this chapter some basic definitions and results are presented. Reference will be
made to these throughout this thesis. Although there are other definitions and

results presented in every chapter where necessary.

Definition 1.1. By a groupoid (S,-) we shall mean a non-empty set S on which

a binary operation (-) is defined. We shall say that (S,-) is a semigroup if (-) is
associative, or

(Va,y,z€8) (z-y)-z=z-(y-2).

We shall write (z - y) simply as zy and usually refer to the semigroup operation

as multiplication. If S has the additional property that,

(Ve,y € S) zy = yz,

we shall say that it is a commutative semigroup. If there exists an element 1 of S
such that

(Ve €S) zl=1z =z,

we say that 1 is an identity (element) of S and that S is a semigroup with identity,
or monoid. A semigroup S has at most one such element. If S has no identity
element it is very easy indeed to adjoin an extra element 1 to the set S. Then if

we define
(Vs € §5) ls=sl=s,
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and
11 =1,

S U {1} becomes a semigroup with identity element 1. We shall consistently use

the notation S with the following meaning:

gl — S if S has an identity element
| SU{1l} otherwise.

St is called the semigroup obtained from S by adjoining an identity if necessary.

If a semigroup S with at least two elements contains an element 0 such that
(Vz € S) 20=0z=0,

we say 0 is a zero (element) of S and that S is a semigroup with zero. Also there

can be at most one such element. If S has no zero element, then again it is easy

to adjoin an extra element 0 to the set S. Then we define
(Vs €S) 0s=s0=0,

and
00 =0,

making S U {0} into a semigroup with zero element 0. Continuing the analogy

with the case of the identity element, we write

g0 _ S if S has a zero element
| SU{0} otherwise.

and refer to S as the semigroup obtained from S by adjoining a zero if necessary.

Note that by adjoining a zero to a semigroup we may lose some essential property
of the semigroup. Therefore, we cannot simply reduce the study of semigroups to
that of monoids with zero. For example, if we adjoin a zero element to a semigroup

which is a group, we obtain a semigroup which is not a group.

Definition 1.2. A semigroup S with zero is called null semigroup if the product

of any two elements is zero. It is called a nil semigroup if for every a € S there

exists n € N such that a” is zero.

Definition 1.3. If a semigroup S has the property that

(Va€ S)aS =S5 and Sa=S
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we call it a group.

If G is a group, then G° = G U {0} is a semigroup. A semigroup formed in this

way 1s called a 0 — group, or group — with — zero.

Definition 1.4. A non-empty subset T of a semigroup S is called a subsemigroup

if it is closed with respect to multiplication, that is if
(Ve,y €eT) zyeT

S is a subsemigroup of itself, and if S has an identity or a zero, then {0} and {1}
are also subsemigroups of S. In general if S has an idempotent, that is to say, an

element e for which e? = e, then {e} is a subsemigroup of S.

A subsemigroup of S which is a group with respect to the multiplication inherited

from S will be called a subgroup of S.

It can be seen that a non-empty subset T of S is a subgroup of S if and only if

VaeT) aT=TandTa=T

Definition 1.5. A non-empty subset I of a semigroup S is called a left tdeal if
SI C I, a right ideal if IS C I, and a (two — sided)ideal if it is both a left

and a right ideal. It is obvious that every ideal (whether one- or two-sided) is a

subsemigroup, but the converse is not true. S is an ideal of itself and if S has a
zero element, then {0} is also an ideal of S. An ideal I of S is called proper if
{0y cICS.

Definition 1.6. If a is an element of a semigroup S, the smallest left ideal con-

taining a is SaU{a}, which we may conveniently write as S'a, and which we shall

call the principal left ideal generated by a. Similarly, the smallest right ideal con-

taining @ is aS U {a} which we write as aS! and we call the principal right ideal

generated by a.

Definition 1.7. S is called a right principal ideal monoid if all right ideals of S

are principal.

Definition 1.8. A monoid S is called left [right] reversible if any two principal
right [left] ideals of S intersect.




Definition 1.9. Let ¥ be a non-empty subset of a partially ordered set (X, <).

An element a of Y is called minimal if there is no element of ¥ that is strictly less

than a, that is to say, if
VyeY)y<a=y=a
An element b of Y is called minimum if

(VyeY)b<uy.

Definition 1.10. Let S be a semigroup and e, f € S be idempotents. We shall
write e < f if ef = fe = e. It is obvious that < is a partial order relation on the
set E of idempotents of S. Notice that if S has an identity element 1 then e <1
for every e € E, and that if it has a zero element 0 then 0 < e for every ¢ € E.

An idempotent is called primitive if it is non-zero and is minimal in the set of

non-zero idempotents (with respect to the order just described).

Definition 1.11. A semigroup without zero is called simple if it has no proper

ideals. A semigroup S with zero is called 0-simple if
(i) {0} and S are its only ideals;

(i) 52 # {0},

If S is a semigroup without zero, then we say that S is completely simple if S is

simple and if it contains a primitive idempotent.

A semigroup will be called completely 0-simple if it is O-simple and has a primitive

idempotent.

Definition 1.12. An element a of semigroup S is called regular if there exists

a' € S such that aa'a = a. The semigroup S is called (Von Neumann) regular if

all its elements are regular.

A semigroup S is called an inverse semigroup if every a in S possesses a unique

inverse, i.e. if there exists a unique element a~! in S such that

Definition 1.13. A semigroup S is completely reqular if every a € S lies in a

subgroup of S.



Definition 1.14. A Clifford semigroup is defined as a completely regular semi-

group S in which, for all z,y € S

(z ™ )(yy™") = (yy~ " )(zz™h).

Definition 1.15. If S and T are semigroups, then the cartesian product S x T

becomes a semigroup if we define
(s,t)(s',t") = (s, tt').

we refer to this semigroup as the direct product of S and T.

Definition 1.16. By a band we mean a semigroup S in which every element

is idempotent. If for every a,b,c € S, abe = ach (abc = bac), then S is a
left [right] normal band. Tf abca = acba, then it is a normal band. If aba =
ab (aba = ba), then S is a left [right] regular band. If ab = a (ab = b), then it is a
left [right] zero band. S is called rectangular band if aba = a. Tt is a semilattice if

ab = ba and finally S is a trivial band if a = b.

Definition 1.17. Let S be a semigroup. An equivalence £ on S is defined by the

rule that a £ b if and only if a and b generate the same principal left ideal, that
is, if and only if Sta = S'b.

Similarly, we define the equivalence R by the rule that a R b if and only if aS! =
bS*.

We refer to £ and R as Green's equivalences. It is shown in [20] that £ is a right
congruence and R is a left congruence. The join £V R is also important and we
denote it by D.

Theorem 1.18 [19]. The following statements about a semigroup S are equiva-

lent:
(1) S s an inverse semigroup.
(2) S s reqular and idempotent elements commute.

(8) Each L-class and each R-class of S contains a unique tdempotent.
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(4) Each principal left ideal and each principal right ideal of S contains a unique

idempotent generator.

Proposition 1.19 [19]. Let S be an inverse semigroup with semilattice of idem-
potents E. Then

(1) (a)~! =a for every a in S.

(2) et = e for every e in E.

(8) (ab)=t =b"1a=! for every a,b € S.

(4) aea™ € E,a"'ea € E for every a in S and every e in E.

(5) a R bif and only if aa™! =bb~'; a L b if and only if a='a = b~1b.

(6) Ife,f € E, thene D f in S if and only if there exists a in S such that
aa™l =e,a7la = f.

Definition 1.20. Let S be a semigroup. An element c¢ is called central if ¢s = sc

for every s € S. The set of central elements forms a subsemigroup of S, called the

centre of S.

Definition 1.21. Let S be a monoid. An element a € S is called right [left]

invertible if there exists a’ € S, such that ad’ =1 [d'a = 1].

Definition 1.22. A semigroup S is called right [left] cancellative if for all a, b,c €
S,ac="bcyieldsa=b[ca=cb=a=1].

Definition 1.23. If ¢ is a mapping from a semigroup (.5, .) into a semigroup (T}, .)

we say that ¢ is morphism (or homomorphism) if

(Vz,y € 5) (zy)¢ = (z6)(y¢).

If (S,.,1s) and (T, .,17) are monoids, with identity elements 15, 17 respectively,

then ¢ will be called a morphism only if we have the additional property
lsé = 11
We refer to S as the domain of ¢, to T as the codomain of ¢, and to the subset
S¢p={s¢|s€5}
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of T as the range of ¢. If ¢ is one-one we shall call it a monomorphism, and if it is

both one-one and onto (bijective) we shall call it an isomorphism. If there exists
an isomorphism ¢ : S — T we say that S and T are isomorphic and write S ~ T.

If ¢ is a homomorphism from S into S we call it an endomorphism of S, and if

it is one-one and onto it is called an automorphism. According to the theory of

categories, a monoid morphism « : § — T is an epimorphism if, for all monoids U

and all morphisms g,v: 7T — U,

af=ay = f=17.

Definition 1.24. Let S be a semigroup. A relation R on the set S is called
left compatible (with the operation on S) if

(Vs,t,a e S) (s,t) € R= (as,at) € R,

and right compatible if

(Vs,t,a € S) (s,t) € R= (sa,ta) € R.
It is called compatible if
(Vs,t,s',t" € S) [(s,t) € Rand (s',¥') € R] = (ss',tt') € R.

A left [right] compatible equivalence is called a left [right] congruence. A compat-

ible equivalence is called a congruence.

Proposition 1.25 [19]. A relation p on a semigroup S is a congruence if and

only of 4t is both left and right congruence.

Definition 1.26. Let S be a monoid with identity element 1 and let X be a non-
empty set. We say that X is a left S-act if there is an action (s,2) — sz from
S x X into X with the properties

(st)a = s(tz) (s,t €S,z € X),
le=z (zeX).

Various alternative names have been used, such as S-system, S-set and S-operand.
Dually, a non-empty set X is a right S-act if there is an action (z,s) — s from
X x S into X such that

z(st) = (zs)t (s,t € S,z € X),
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rl=z (z€X).
Also, if S and T are (not necessarily different) monoids, we say that X is an
(S,T)-bract, if it is a left S-act, a right T-act, and if
(sz)t = s(xt) forallse€ S,teT and z € X.

By X € S—ENSs or X € S — Act we mean, X is a left S-act. The meanings to be
attached to the statements X € ENS—S and X € S—ENS—T are analogous.

Remark. If S is commutative monoid, then there is no distinction between a left

and a right S-act. For if X € S—ENS we may define a right action * of S on X by
zxs=sz (z€X, se€f).
Then certainly z * 1 = z for all z. Also, for all s, € S,
z*(st) =z *(ts) = (ts)x = t(sx) = (x * s) * £.
Indeed we can regard X as an (5, .5)-biact, since for all z € X and s,t € S
(sz)xt =t(sz) = (ts)z = (st)x = s(tz) = s(z * t).

It is clear that any set X whatever can be regarded as a ({1}, {1})-biact, where
{1} is the trivial monoid. It will therefore occasionally be convenient to state and
prove results for (S, T')-biacts, deducing results regarding one-sided acts by taking
either S or T as the trivial monoid. At other times it will be sufficient to consider
the case of a left S-act, since the analogous results for acts of other kinds will be

obvious.

The coproduct in S—Act and Act—S is the disjoint union, and is denoted by [, the
product is the cartesian product with componentwise multiplication by elements

of S, and is denoted by [].

Definition 1.27. Let S be a monoid. A subact of a left S-act X is a subset Y of
X with the property that SY C Y.

Definition 1.28. Let S be a monoid. By a morphism (or S-morphism or S-map)
from a left S-act X into a left S-act ¥ we mean a map ¢ : X — Y with the
property that

(s2)¢ = s(z¢) (s€ S, veX)
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Definition 1.29. Let S be a monoid. A congruence on a left S-act X is an
equivalence on X with the property that, for all z,y € X and all s € S

T pY = 38T p Sy.
The quotient X/p then inherits a left S-act structure by means of the definition
s(zp) = (sz)p

and there is a morphism (read ‘p natural’) p? : X — X/p defined by the rule that
zp? = zp for every z € X.

Definition 1.30. We call a diagram of the form

B
o B8
A—T ¢
commutative if fa = ~, and we shall say in this case that the morphism ~

factors through B. Likewise a diagram of the form

A— T ¢
« )
B s D

is commutative if fa = 6.

Definition 1.31. Let S be a monoid. Then it is clear that the cartesian product
X xY of aleft S-act X and a right T-act Y becomes an (S, T)-biact if we make

the obvious definitions

s(z,y) = (sz,y), (z,y)t = (z,y1).

Let A € T—ENs—S, B € S—ENs—U and C € T—ENS—U. Then by the last
paragraph we may give the A x B the structure of a (T, U)-biact. A (T,U)-map
8 :Ax B — C will be called a bimap if, for all ¢ in A, bin B, and s in 5,

(as,b)3 = (a,sb)p.
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A pair (P,%) consisting of a (T, U)-biact P and a bimap ¢ : A x B — P will be
called a tensor product of A and B over S if for every (T,U)-biact C' and every
bimap 3 : A x B — C there exists a unique (7,U)-map 3 : P — C such that the

diagram

A x B 4 P

Wl

commutes.

Lemma 1.32. If a tensor product of A and B over S exists, then it is unique up

to 1somorphism.

Let us define AQsB to be A x B/, where 7 is the equivalence on A X B generated
by the relation

R = {((as,b),(a,sb)) :a€ A,be B,s€ S }.

We denote a typical element (a,b)T of A ®s B by a ® b and note that by the
definition of 7 we immediately have that as ® b = a ® sb for all ¢ in A4, s in .S and
bin B.

Proposition 1.33 [20]. Let A € T-ENS—S, B € S—ENs—U. Then (A ®s B,71)

s a tensor product of A and B over S.

Definition 1.34. Let S be a monoid . A right S-act A is flat if the functor A® —
(from left S-acts into sets) preserves monomorphisms, or for every monomorphism
¢ : X — Y of left S-acts the induced map 1 ® ¢ : A s X — A ®s Y is one-one.
Dually, a left S-act A is flat if for every monomorphism 1 : X — Y of right S-acts
the induced map 1® ¥ : X ®s A - Y ®g A is one-one.

If the functor A ® — preserves monomorphism of [principal] left ideals of S into S

(considered as a left S-act), then A is called [principally] weakly flat.

A monoid S is called left [right] absolutely flat if all left [right] S-acts are flat and
absolutely flat if it is both left and right absolutely flat.

13



A semigroup S is called left [right] absolutely flat if S! is a left [right] absolutely

flat monoid.

Definition 1.35. Given two morphisms p: B — A and v : C — A, we define a

commutative diagram

p— P .p

gt p

C A
14

to be a pullback diagram if whenever

!

P p B
v I
C A
1%

is commutative there exists a unique ¢ : P' — P, such that the diagram

PI

A

commutes.

Definition 1.36. Given two morphisms «, 3 : A — B, we say that u : K — A is

an equalizer for a and f if au = Bu, and if whenever v’ : K’ — A is such that
au' = fu' there is a unique morphism 7 : K’ — K making the diagram
K'

/X

K A

14



comimutative.

Definition 1.37. Let S be a monoid. We call a right S-act A, equalizer-flat if the
functor A @ — preserves equalizers, and we call it pullback-flat if the functor A @ —

preserves pullbacks.

Definition 1.38. Let S be a monoid. If the functor 4 ® — preserves pullbacks

and equalizers, then A is said to be strongly flat.

Definition 1.39. Let S be a monoid. A right S-act A satisfies condition (P) if
whenever a,a’ € A, u,v € S, and au = da'v, there exists a’' € A and s, t € S such

that a = d"s, o' = d't and su = tv.

Definition 1.40. Let S be a monoid. A right S-act A satisfies condition (E) if
whenever @ € A, u,v € S, and au = av, there exist a’ € 4 and ¢t € S such that

a=da't and tu = tv.

Theorem 1.41 [34, 5.3]. A right S-act A is strongly flat if and only if it satisfies
conditions (P) and (E).

Remark. By the proof of Theorem 1.41, it can be seen that for a monoid S
and a right S-act A, if A is equalizer-flat, then A satisfies condition (E), but
the converse is not true see [31, Example 1.13] and if A is pullback-flat, then A
satisfies condition (P), but the converse is not true see [31, Example 1.14]. Also
by [31, Proposition 2.9] it can be seen that every equalizer-flat S-act is flat and
[31, Corollary 3.7] shows that all pullback-flat S-acts are flat.

Theorem 1.42. Let S be a monoid and A = [[,c; As, a disjoint union of right
S-acts A;. Then A satisfies condition (E) if and only if A; satisfies condition (E)
for alle e I.

Proof. Suppose that A;, i € I satisfies condition (E), and let au = av with a € 4,
u,v € S. Since a € A, then there exists j € I such that a € A;. But A; satisfies
condition (E), and so there exist " € Aj, t € S such that a = 't and tu = tov.
Since A; C A then o” € A and so A satisfies condition (E).

Now, suppose that A satisfies condition (E) and let au = av with u,v € S, a € A;,
¢ € I. Since A; C A, then a € A. But A satisfies condition (F) and so there exist
a" € A, s,t € S such that a = a''t and tu = tv.
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We claim that a” € A;. Otherwise, there exists j € I such that j # 7 and that
a' € A;. Since Aj is a right S-act, then ot € Aj. Consequently, a € A;. But
A;NA; =0 and so a contradiction. Thus a” € A; and so A; satisfies condition

(E) as required. =

Theorem 1.43. Let S be a monoid and A = [],c; Ai, a disjoint union of right
S-acts A;. Then A satisfies condition (P) if and only if A; satisfies condition (P)
for allz € 1.

Proof. Suppose that A4;, ¢« € I satisfies condition (P) and let au = a'v with
a,a’ € A, u,v € S. Since a,a’ € A, then there exist 7,7 € I such that a € A; and
a' € Aj. Since A; and A; are right S-acts, then au € A; and a'v € A;. Since
av = a'v and 4; N A; =0, then 7 = j and so a,d’, € A;. Consequently, au = a'v
implies that there exist s,t € S, a'" € A; such that a = d"s, @' = @t and su = tv.
But A; C A and so a” € A. Thus A satisfies condition (P).

Now suppose that A satisfies condition (P) and let au = d'v with u,v € S,
a,a’ € A;,1 € I. Since A; C A, then a,d’ € A. Consequently, au = a'v implies
that there exist a” € A, s,t € S such that a = a"s, ¢’ = @'t and su = tv.

We claim that a” € A;. Otherwise, there exists 7 € I such that 7 # ¢ € I and
a" € A;. Since A; is a right S-act, then a"s,a""t € A;. Consequently, a,a’ € A;.
But A;NA; = 0 and so a contradiction. Thus a” € A;, and so A; satisfies condition
(P) as required. |

Theorems 1.41, 1.42, and 1.43, clearly give

Corollary 1.44. Let S be a monoid and A = [];c; Ai a disjoint union of right
S-acts A;. Then A s strongly flat if and only if A; is strongly flat for alli € 1.

Definition 1.45. Let S be a monoid. A right S-act A is called torsion free if

as = a's, with a,a’ € A, s € S right cancellable, implies a = o'.

Definition 1.46. Let S be a monoid. A right S-act A is free if A~ [] S for some

non-empty set I, S being considered as a right act.

Definition 1.47.Let S be amonoid. An S-act P is projective if given any diagram
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of S-acts and S-homomorphisms

¢

M N

where ¢ : M — N is an epimorphism, there exists an S-homomorphism ¢ : P — M
such that

P

1s commutative.

Definition 1.48. A monoid S is called left PP if every principal left ideal of S is
projective (as a left S-act). In [21] it is shown that S is left PP if and only if for

every ¢ € S there exists ¢ € S (necessarily idempotent) such that ex = z, and

uzr = vz implies ue = ve, for all u,v € S. The class of left PP monoids is fairly

extensive in that every regular monoid and every right cancellative monoid is left

PP.

Theorem 1.49 [19]. Let p,o be equivalences on a set S [congruence on a semi-

group S/. Then (a,b) € p V o if and only if, for some n € N, there exist elements

T1,22,...,Ton—1 € S such that

(G,,.Tl) € pa(:Cla:CZ) S U,($2,{E3) € p?""($2n-—lab) co.

Note that in Theorem 1.49, p V o is the join of p and o. For more information
see [19, p. 28].

Definition 1.50. Let S be a monoid. A right S-act A is cyclic if there exists
a € A such that A = aS.

Theorem 1.51. Let S be a monoid and let p be a right congruence on S. Then

S/p 1s cyclic, and every cyclic right S-act aS s isomorphic to S/p for some right

congruence p on S.
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Proof. Since 1 € S, then 1p € S/p and so for every s € S, sp = (1p)s. Thus, S/p

is cyclic.
Let aS be a cyclic right S-act. If we define
U p U au = av,

then p is a right congruence on S. If ¢ : aS — S/p is such that as — sp, then ¢

is an isomorphism and so S/p is cyclic.

Remark. If z,y are elements of a monoid S we denote by p(z,y) the smallest
right congruence on .S which identifies these two elements. Every act of the form

S/p(z,y) is called a monocyclic act.

Definition 1.52. Let S be a monoid. A right S-act A is called finitely generated
if there exist ay,as,...,a, € A such that A=a;SUaSU...Ua,S.

Lemma 1.53 Let S be ¢ monoid and A a finitely generated right S-act. If A
satisfies condition (P), then A is a coproduct of cyclic right S-acts.

Proof. Let A be a finitely generated right S-act. Then there exist a1,a9,...,an €
A such that they are generators for A. We can also suppose that n € N is the
smallest such positive number and let I = {1,2,...,n}. Then we claim that
A = [];er @S- Otherwise there exist 7,7 € I such that 1 # j and a;s = a;t for
some s,t € S. Since A satisfies condition (P), then there exist u,v € Sand a” € A
such that a; = a"u,a; = o"v and us = vt. Since @' € A, then there exist k € T
and w € S such that " = arw. Thus a; = a"u = aqrwu, aj = a''v = apwv. It
means that a; and a; are generated by ax, and so the number of generators is less

than n which is a contradiction. [

Lemma 1.54 [7]. Let S be a monoid and let p be a right congruence on S. Then

(1) S/p 1s free if and only if there exist s,t € S such that st = 1 and, for all
u,v €S, u p v if and only if su = tv.

2) S/p is projective if and only if there exists e = e € S such that e p 1, and
p p

u p v implies eu = ev for all u,v € S.

(3) S/p is strongly flat if and only if for all u,v € S with u p v there exists s € S

such that su = sv and s p 1.
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(4) S/p satisfies condition (P) if and only if for all u,v € S with u p v there
exist s,t € .S such that su =tv and s p 1 p t.

(5) S/p s flat of and only if, for any left congruence X on S and any u,v € S,
if u(p V A, then there exist s,t € S with su A tv such that s(p V Au)l
aend t(p V Av)l.

(6) S/p is weakly flat if and only if for all u,v € S with u p v there exist s,t € S
such that su=tv, s(p V Au)l and t(p V Av)l.

(7) S/p is principally weakly flat if and only if whenever u,v,x € S and uz p v,
then u(p V. Az)v.

(8) S/p is torsion-free if and only if whenever u,v,c € S, ¢ is right cancellable,
and uc p ve, then u p v.

Note : In (5) above, Au denotes the left congruence on S defined by z(Au)y if

zu A yu, for z,y,u € S, Av is defined similarly. In (6) and (7), A denotes the

equality relation on S, and in (5), (6) and (7), V denote the join in the lattice of

equivalence relation on S.

Definition 1.55. A right [left] S-act A over a monoid S is called reversible if any

two cyclic sub-S-acts of A intersect.
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Chapter 2

Characterization of Monoids by Condition (P)
of (Cyclic) Right Acts

2.1. Introduction

As it was mentioned in the introduction, most of our attention in this thesis is
directed at the classification of monoids by condition (P) of (weakly) flat (cyclic)
right acts. In this chapter, in section 2.2, we extend some results in [7] and [39] on
monoids for which all flat cyclic right acts satisfy condition (P). It was shown in
[7] that right nil monoids and monoids whose elements are either right cancellative
or right zero have the property that all flat cyclic right acts satisfy condition (P).
Here we extend these results to those monoids whose non right nil elements form
a group (right elementary monoids) and prove that among the periodic monoids
exactly those for which all flat cyclic right acts satisfy condition (P) are right
elementary monoids. We also give a characterization of monoids S with S\ {1}
right group such that all flat cyclic right S-acts satisfy condition (P). There are

some results and also examples of right elementary monoids.

In section 2.3, we extend results of right elementary monoids to certain types of
right subelementary monoid (monoids of the form S = C U N.) Then we give a
feature of monoids for which all flat (cyclic) right acts satisfy condition (P) which
will result in a classification of eventually regular monoids and also many of the

main results of recent papers on this subject.
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Finally, in section 2.4, we show that for monoids § = G U I with G a group and
I an ideal of S, flatness of I'-acts (I! = I U {1}) can be extended to flatness of

S-acts which leads to some results of other papers as corollaries.

2.2. Periodic Monoids over which all Flat Cyclic Right
Acts satisfy Condition (P)

Definition 2.2.1. If S is a semigroup and a € S, then < a >= {a,a?,d*,...}

is a subsemigroup of S and is called the monogenic subsemigroup of S generated
by the element a. The order of a is defined, as the order of the subsemigroup
< a >. A semigroup is called periodic if all its elements are of finite order. A finite

semigroup is necessarily periodic.

Definition 2.2.2. Let S be a semigroup and a € S. If there are repetitions in the
list a,a?,a®,..., then the set {z € N | (y € N) a® = a¥,z # y } is non-empty.

The least element of this set is called the indez of a and is denoted by m. If m
is the index of a, then the set {z € N | a™*% = a™ } is non empty. The least

element of this set is called the period of a and is denoted by r.

Definition 2.2.3. If S is any non-empty set, then the multiplication defined on
S by the rule that

r-y=2x (CL‘,yGS),

is easily seen to be associative. The semigroup (.9, -) is called a left zero semigroup.

Rught zero semigroup is defined analogously. A left-zero semigroup with a 1 ad-

joined will be called a left — zero monoid. Thus for a monoid S, an element 0 € S

is called a left zero if 0.5 = {0}, or analogously right zero or two-sided zero.

Definition 2.2.4. An element = of a monoid S is called right nil if 2 # 1 and
there exists n € N, such that 2™ is right-zero. If every z € S, z # 1 is right nil,

then S is called a right nil monoid.

A monoid S is called right elementary if S = G U N where G is a group and N

is the set of all right nil elements of S. Notice that we include the case when N is
empty. If N is not empty, then by Lemma 2.2.10, below we will see that N is an
ideal of S. Notice also that G is a subgroup of S.

From Definitions 2.2.3, and 2.2.4 it can be seen that if a monoid S is right zero,

then it is right nil, but the converse is not true as the following examples show.
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Example 2.2.5. Let S be a right zero semigroup. Let s € S and let T, be a

nil semigroup of index n, generated by as with zero element s, where n, € N.
(So, Ts = {as,a?,...,a™ L a% =s}.) UT =U (Ts : s € S) U {1}, where for
u,v € S, u#v, T,T, = {v}, then T is a right nil monoid which is not right zero.

Example 2.26.If S =< z,y |22 =zy = 2 = yz = y> > U {1}, then S is a right
nil monoid but it is not right zero.

10 . . .

a€R;yU 0 1 , then S i1s a right nil

Example 2.2.7. If § = {(8 g)
Notice that monoids in Examples 2.2.6, and 2.2.7, are also null.

monoid which is not right zero.

Lemma 2.2.8 [7]. Let S be any monoid, such that every flat monocyclic right
S-act satisfies condition (P). Then every e € E(S)\ {1} is a right-zero element
of S.

Note : It is clear then if all flat cyclic right S-acts satisfy condition (P), then
every e € E(S)\ {1} is right-zero, but the converse is false (see [40] comments
after Lemma 4.1). If we restrict attention to monocyclic acts, then the converse is
true (see [8], Theorem 4.3). Clearly then monoids for which every e € E(S)\ {1}
is right zero play an important role in this theory and will be considered further

1 section 2.3.

Lemma 2.2.9 [7]. Let S be any monoid and let p be any right congruence on S
such that S/p is weakly flat. If e and f are right zero elements of S and e p f,
then e = f.

Lemma 2.2.10. Let S be a monoid. Let S = GUN with G a subgroup (and hence
a submonoid) of S and N the set of all right nil elements of S. Then GNN =0
and N s either empty or an ideal of S.

Proof. At first we show that GN N = 0. If N =0 or G = 0, then we are done.
Suppose that N # 0, G # 0. Let z € GN N. Since ¢ € N, then z # 1 and so
there exists k € IN such that z* is right zero. Since z € G, then z* € G and so

zFt1 = ¥ implies that z = 1 which is a contradiction.

Now we show that either N is empty or N is an ideal of S. Suppose that N # {§
and let v € N, u € S. Then there are two cases:
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Case 1. u € G. Then uv € N. Otherwise, uv € G and since u € G, then u=! € G

which means v = w™!(uv) € G. This is a contradiction. Similarly, it can be seen
that vu € N.

Case 2. u € N. Then uv € N. Otherwise uv € G which means that (uv)™! € G
and (uv) 1(uv) = 1. Since v € N, then there exists m € N such that v™ is right
zero. Let k € N be the smallest positive integer such that v* is right zero. Then

for every | < k, v! is not right zero.

If £ =1, then v is right zero and so [(uv) lu]v = 1 implies that v = 1 which is a
contradiction. If v is not right zero, then 1 < k or 0 < k—1. Then (uv) Y(uv) =1

— k-1 k k k—1

implies that [(uv)~lulvk or v¥ = v¥~1. Since v* is right zero, then v*~! is

right zero and so a contradiction. Thus N is an ideal of S as required. n

Note : If S is a monoid and v € S, then (Au) denotes the left congruence on S
defined by z(Au)y if and only if zu = yu.

Lemma 2.2.11. Let S = G U N be a right elementary monoid and let z(Au)y
with x € N, y € G. Then u 1s right zero.

1

Proof. We have zu = yu and so y~'zu = u with r = y~'2 € N. Hence there

exists n € N such that r™ is right zero and so u = r™u is also right zero. m

Lemma 2.2.12. Let S = G U N be a right elementary monoid and let p be a right
congruence on S such that S/p is weakly flat. If there exist x € G, y € N with

z py, then S/p s projective.

Proof. Since S/p is weakly flat and z p y, then there exist s,t € S such that
sz =ty and s(p V Az)l(p V Ay)t. Given that z € G then in fact s p 1. Since
y € N then sz = ty € N and so s € N. Hence there exists n € N such that

S'I’L

is right zero. Since s p 1, then s™ p 1. Now if u,v € S are such that v p v
then s™u p u p v p s"v. Since s™ is right zero, then s™u and s"v are also right
zero. So by Lemma 2.2.9, s™u = s™v. Since s™ is right zero, then it is idempotent.

Therefore, by Lemma 1.54 (2), S/p is projective. [

Theorem 2.2.13. Let S = G U N be a right elementary monoid and let p be a
right congruence on S such that S/p is weakly flat. Then S/p satisfies condition

(P).
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Proof. First note that if z,y € S are such that z € G, y € N and = p y, then
by Lemma 2.2.12, S/p is projective and so satisfies condition (P). Consequently,
we can assume from now on that such an z,y do not occur in S. Suppose that
u,v € S with u p v. Since S/p is weakly flat, then there exist s, € S such that
su=tv, s(p V Au)l and t(p V Av)l. We need only consider two cases as follows:

Case 1. u,v € G. Notice that su p u and tv p v and so s p 1. In a similar way,
t p 1 and so S/p satisfies condition (P).

Case 2. u,v € N. We show that there exists z € S with zu = su and = p 1. Now

there exist s1,...80,_1 € 5

S = Sg p Sl(Au)32 o828 P 82i+1(Au)82i+2 e Szn_l(Au)SQn = 1.

If any of the elements sg,...,s3,—1 € N then let j be such that s; € N and
s; € G for all ¢ such that j < ¢ < 2n. Then we must have s;(Au)sj;q and so
u is right zero, by Lemma 2.2.11. In this case we can put z = 1. Otherwise,

80y++.,82n—1 € G. In this case let

— -1 -1 . -1
T = 8508y "82...89, 1524 ---89, 1"

Notice that

-1
S9i—1(Au)sg; = u = 83, ;52iU.

Consequently, ) X X
TU =8098] S2...85;_152i..+S95_152nU
_ -1 -1 . -1
= 5081 82...89; 152¢.--S9,_352n—2U
_ -1
= 5081 Sa2Uu
= su
Also,
-1
$2i P S2i41 = S2iSg;11 P L,
and hence
e =1 1 -1 -1 -1 -1 -1
T =808y 8283 «..89; 152i..:Sg_ 1 P 52853 «..89, 152¢..+89, 1

-1
P 52n—2389p5_1
pl
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In a similar way, there exists y € S with yv = tv and y p 1 and so the result

follows. -
Notice that if the monoid $ is a group, then we have the following theorem.

Theorem 2.2.14 [31]. Let S be a monoid. Then all right S-acts have property
(P) of and only if S is a group.

Bulman-Fleming and Normak in [7] showed that if S = C' U Z where C is the set
of all right cancellative elements of S and Z is the set of all right zero elements
of S, then S is a left PP monoid and every weakly flat cyclic right S-act satisfies
condition (P). Thus the converse of Theorem 2.2.13, is not true in general, but it

is true if S is aperiodic monoid. We show this in the next theorem.

Theorem 2.2.15. Let S be a periodic monoid. If all flat cyclic right S-acts satisfy
condition (P), then S is right elementary.

Proof. Let N be the set of all right nil elements of S. Let 1 # z € S and suppose
that for every n € N, 2™ £ 1, then we show that there exists & € N such that
z* is right zero. Since S is periodic, then by [20, Proposition 1.2.3], there exists
k € N such that z* is an idempotent. Since z* # 1, then by Lemma 2.2.8, z* is

right zero and so z € N.

Let G = {z € S :3dIn € N, 2" = 1}. Let z,y € G and suppose, by way of
contradiction, that zy ¢ G, then z # 1 and y # 1. By the first part, (zy)* is right
zero for some k € N. Moreover we can assume that k is the smallest such element
of N. But there exists n,m € N with 2™ = y™ = 1 (notice that n,m > 1) and,

using the convention that (2y)° = 1, we see that

(zy)* " = (2y)ty™ e,

1

and so (zy)*~! is right zero, a contradiction as required. Hence G is a subsemi-

group of S and it is straightforward then to note that zG = Gz = G forallz € G

and so G is a group. [

Remark. Notice that in the first paragraph of the proof of Theorem 2.2.15, z* is
the identity element of the kernel of the subsemigroup generated by z.

From Theorem 2.2.15, we have the following corollary.
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Corollary 2.2.16. Let S be a periodic monoid such that for every x #1 € S and
every n € N, o™ # 1. If all flat cyclic right S-acts satisfy condition (P), then S
18 right nl.

From Theorems 2.2.13, and 2.2.15, we have the following theorem.

Theorem 2.2.17. If S is a periodic monoid, then the following are equivalent:
(1) S is right elementary.

(2) All weakly flat cyclic right S-acts satisfy condition (P).

(3) All flat cyclic right S-acts satisfy condition (P).

Corollary 2.2.18. Since every finite monoid 1s periodic, then every finite monoid
satisfies Theorem 2.2.17.

By Theorem 2.2.13, we saw that monoids S with the structure S = N U G, have
the property that all weakly flat cyclic right S-acts satisfy condition (P). But this
structure of monoids does not imply condition (P) of all (weakly) flat right acts,
as Example 2.2.21, below demonstrates. At first we see the following theorems

which will be needed in this example and later.

Theorem 2.2.19 [31]. For any monoid S the following statements are equivalent:

(1) All left S-acts are equalizer-flat.

(2) All left S-acts have property (E).

(8) All cyclic left S-acts have property (E).
(4) All cyclic left S-acts are strongly flat.
(5) S = {1} or S ={0,1}.

Theorem 2.2.20 [31]. Every equalizer-flat S-act 1s flat.

Example 2.2.21. Let S = {0,1}. Then S = {0,1} = {0} U {1} in which {0} is
right nil and {1} is a group. If A = {z,y,2 | 20 = y0 = 20 = z } then by Theorems
2.2.19, and 2.2.20, A is flat. But it does not satisfy condition (P). Otherwise,
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z0 = y0 implies that there exist a” € A, s, € § such that z = a"s, y = a''t and
s0 = t0. Since the only case is z = z1, then o” = z. Consequently, y = zt. Then
either ¢ = 0 and so 20 = z # y which is a contradictionorf =l andsozl =z # y

which is also a contradiction.
Here are some examples of monoids of the form S = G U N.

Example 2.2.22. Let (X, *) and (Y, 0) be semigroups and let S = X UY. If for
z, y €S,

oy = 4 TXY ifr,ye X
y= zoy ifz,yeY

Ty=yr =1y ifze X, yey,
then S is a semigroup. In particular X can be a group and Y a right nil semigroup.

For example: Let § = {0,1,2,3} with table

| 0 1 2 3
0] 000O
1,012 3
2 |0 20 2
3103 21

If G ={1,3}, N = {0,2}, then G is a group, N is a right nil semigroup and
S=GUN.

Example 2.2.23. Let (X, *), (Y, 0) be semigroups and suppose that ¥ has a zero
element. Let S=X UY. Ifforz,y € S,

= 4 T*Y fz,ye X
v= rzoy ifzr,ycY
ry=yx =0 fzeX, yevt.

Then S is a semigroup and also 0 is a zero element of S. In particular X can be
a group and Y a right nil semigroup.

For example: Let S = {0,s,1 | s? =1} with table

| 01 s
010 00
1 1 0 1 s
s | 0 s 1

If G = {1,s}, N = {0}, then G is a group, N is a right zero semigroup and
S=GUN.
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a,beR,a#

Example 2.2.24. Let § = {(Z (1)>

. a 0
a,bE]R}. IfG_{(b 1)

0} and N = {(2 (1)> Ib € ]R}, then G is a group, IV is a right zero semigroup

and S =G U N.

Now by Lemma 2.2.12, and Theorem 2.2.13, we prove the following theorem.

Theorem 2.2.25. If S is a right nil monoid, then every weakly flat cyclic right
S-act 1s projective.

Proof. Let p be a right congruence on S such that S/p is weakly flat. If there
exists an element £ € S such that z is right nil and that = p 1, then by Lemma
2.2.12, S/p is projective. Thus we can assume from now on that such an element
does not occur in S. Now let w,v € S. Then by Lemma 1.54 (2), it is sufficient
to show that there exists €2 = e¢ € S such that e p 1 and u p v implies that
eu = ev. Since S/p is weakly flat, then there exist s,t € S such that su = tv, and
s(p V Au)l(p V Av)t. Since S = {1} U N where N is a right nil semigroup, then
there are two cases that can arise:

Case l.u=v=1 Ife=1,thenlpland lu=1v.

Case 2. u,v € N. Then by case 2 of Theorem 2.2.13, either u is right zero and
so su = u, or there exists z € G such that su = zu. Since G = {1}, then in the
latter case again su = w. Similarly, tv = v. Thusu = su = tv = v and again e = 1
satisfies our condition. u

Definition 2.2.26. A monoid S is called aperiodic if for every x € S there exists
n € N such that 2"t = z™.

Lemma 2.2.27 [1]. For any monoid S the following statements are equivalent:

(1) Every finitely generated right S-act which satisfies condition (P) is strongly
flat.

(2) Every cyclic right S-act which satisfies condition (P) is strongly flat.
(3) Every cyclic right S-act of the form S/p(z,1) is strongly flat.
(4) S is aperiodic.

Lemma 2.2.28. Let S be a monoid such that every e € E(S)\ {1} us right zero.
If S is aperiodic, then S is right nil.

Proof. Let z # 1 € S. Since S is aperiodic, then there exists n € N such that
z™tl = gn. It is easy to see by induction that for every k € N, z"t% = 27,
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Thus k£ = n implies that 22" = 2" and so z" is an idempotent. We claim that
™ # 1, otherwise, 2™+ = 2™ implies that zz™ = 2" and so z1 = 1 which is a
contradiction. Thus by assumption z™ is right zero and so « is right nil as required.

Corollary 2.2.29. Let S be a monoid. If every flat cyclic right S-act is strongly
flat, then S s right nil.

Proof. Suppose that every flat cyclic right S-act is strongly flat. Then every
cyclic right S-act which satisfies condition (P) is strongly flat and so by Lemma
2.2.27, S is aperiodic. on the other hand by Lemma 2.2.8, every ¢ € E(S)\ {1} is
right zero and so by Lemma 2.2.28, S is right nil as required. [

From Theorem 2.2.25, and Corollary 2.2.29, the following theorem of [7] can be
deduced.

Theorem 2.2.30. If S is a monoid, then the following are equivalent:

(1) S is right nil.

(2) Every weakly flat cyclic right S-act 1s projective.

(3) Every weakly flat cyclic right S-act is strongly flat.
(4) Every flat cyclic right S-act is projective.

(5) Every flat cyclic right S-act is strongly flat.

Now from Theorem 2.2.30, and Corollary 2.2.16, we have.

Corollary 2.2.31. If S is a periodic monoid such that for every z € S\ {1} and
every n € N, o™ # 1, then the following statements are equivalent:

(1) S s right nil.

(2) Every weakly flat cyclic right S-act is projective.
(3) Every weakly flat cyclic right S-act is strongly flat.
(4) Every flat cyclic Tight S-act is projective.

(5) Every flat cyclic right S-act is strongly flat.

(6) Every flat cyclic right S-act satisfies condition (P).

Now by using Theorem 2.2.30, we give a characterization of which monoids have
the property that all torsion free right acts are strongly flat.
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Proposition 2.2.32 [29]. Let S be a monoid. If all torsion free right S-acts are
strongly flat, then S 1s right cancellative.

Theorem 2.2.33. Let S be a monoid. Then all torsion free right S-acts are
strongly flat if and only if S = {1}.

Proof. Suppose that all torsion free right S-acts are strongly flat. Then all
weakly flat right S-acts are strongly flat and so all weakly flat cyclic right S-acts
are strongly flat. Thus by Theorem 2.2.30, S is right nil and so for every z € 5,
there exists k¥ € N such that z¥*! = z*. But by Proposition 2.2.32, S is right
cancellative and so zF+1 = 2% implies that = = 1.

If S = {1}, then all right S-acts are strongly flat and so all torsion free right S-acts
are strongly flat. [

Here we give a characterization by property of index of elements of monoids S =
G U N, where G is a group, N is right nil and a* # 1 for every 1 # a € S and
k € N. In Lemma 2.2.34, K, is the kernel of the subsemigroup of S generated by
acs.

Lemma 2.2.34. Let S be a monoid such that every e € E(S)\ {1} is right zero.
Let1 # a € S with index m > 1. If for all k € N, a* # 1, then K, = {a™} where

a™ 1s right zero.

Proof. Since the identity element a™* 7, of the group

3ot 7a’m+7‘_1}7

is an idempotent different from 1, then by assumption it is right zero. Thus for
every 0 <¢ < r—1,

am+iam+z — am—{—z‘ (1)
On the other hand for every 0 <7 <r —1,
am+iam+z — am—{—i' (2)

Then (1), (2) imply that
a™tt = Mt (0<:<r—1).

Consequently, K, = {a™}. Then a™ = o™~ implies that a™ is right zero as
required. [

Corollary 2.2.35. Let S be a monoid such that every e € E(S)\ {1} is right zero.

Let 1 # a € S with indez m and suppose that for all k € N, aF £ 1. If m > 1,
then a 1s not right zero.
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Proof. Since m € N is the smallest positive integer such that «™ is right zero
and also m > 1, then for every j such that 1 < j < m —1, @’ is not right zero and
so a is not right zero. [

Corollary 2.2.36. Let S be ¢ monoid such that every e € E(S)\ {1} is right zero.

Let 1 # a € S with index m and suppose that for all k € N, a* # 1. Then a is
right zero if and only if m = 1.

Proof. If a is right zero, then a? = a and so m = 1.
If m =1, then by Lemma 2.2.34, K, has the only element a which is right zero.m

Theorem 2.2.37. Let S = G U N be a monoid and let m be the index of the
element a #1 in S. If for everya# 1 in S, m > 1, then S is a group.

Proof. Suppose that for every 1 # a € S, m > 1. Then we claim that N = {.
Otherwise, let a € N. Since N is an ideal of S, then for every k € N, a* € N and
so a* # 1. Also by Theorem 2.2.13, and Lemma 2.2.8, every ¢ € E(S)\ {1} is
right zero. Thus by Corollary 2.2.35, a is not right zero. This means that N does
not have any right zero element which is a contradiction. Thus S = G is a group
as required. [

Corollary 2.2.38. Let S = G U N be a monoid, m be the index of the element

a #1in S and suppose that for all k € N, a* # 1. Then for every a # 1 in S,
m > 1 if and only of S s a group.

Proof. If for every a # 1 in S, m > 1, then by Theorem 2.2.37, S is a group.

Suppose that S is a group. Then for every @ # 1 in S, m > 1. Otherwise, by
Corollary 2.2.36, a is right zero and so ¢®* = a implies that a = 1 which is a
contradiction. |

From Theorem 2.2.15, and Corollary 2.2.38, we have

Corollary 2.2.39. Let S be a periodic monoid such that all flat cyclic right S-acts

satisfy condition (P). Let m be the index of the element a # 1 in S and suppose
that for all k € N, a* # 1. Then for everya#11in S, m > 1 if and only if S is a

group.

By what follows we give a characterization of monoids S with S\ {1} right group
such that all flat cyclic right S-acts satisfy condition (P).

Definition 2.2.40. A semigroup S is called right simple if R = S x S and
left simple if L =S5 x S.
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Lemma 2.2.41 [19, p. 38]. Let a and b be elements of a semigroup S. Then

a L bif and only if there exist x,y € S such that xa = b, yb=a. Also a R b if
and only if there exist u,v € S such that au = b, bv = a.

Definition 2.2.42. A semigroup S that is right simple and left cancellative is
called a right group.

Lemma 2.2.43 [19, p. 54]. A semigroup S is a right group if and only if S ~
G X Z where G s a group and Z s a right zero semigroup.

If G and Z are as in Lemma 2.2.43, then we have the following theorem

Theorem 2.2.44. Let the semigroup S be a right group. Then all flat cyclic right
Sl-acts satisfy condition (P) if and only if St is right zero.

Proof. Suppose that S is a right group and that all flat cyclic right S'-acts satisfy
condition (P). Then by Lemma 2.2.43, S ~ G x Z where G is a group and Z is a
right zero semigroup. Let 1’ be the identity element of G and let e € Z. Then

(1',e)% = (I',e)(1,e) = (1'1", ee) = (1', ee).

Since e is right-zero, then ee = e and so (1',e)? = (1',e). Thus (1',¢) is an
idempotent element of G x Z. Consequently, S has an idempotent element and
so S! has an idempotent element different from 1. Let f € E(S')\ {1}. Then by
Lemma 2.2.8, f is right zero. Now let b € S. Then (f,b) € S x S. Since S is right
simple, then R =5 x S, and so (f,b) € R or f R b. Thus by Lemma 2.2.41, there
exist u,v € S such that fu = b, bv = f. Then we have

fo=f(fu) = (Fflu= fPu= fu=0b

If a € S, then
ab = a(fb) = (af)b = fb=b,

and so b is right zero. Consequently, S! is a right zero monoid as required.

If S is right zero, then by Theorem 2.2.17, all flat cyclic right S!-acts satisfy
condition (P). L
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2.3. Monoids over which all Flat Cyclic Right Acts satisfy
Condition (P)

In this section we extend the results from section 2.2, to certain types of right
subelementary monoid. Then we give a characterization of monoids for which every
e € E(S)\ {1} is right zero and use this to give a characterization of eventually
regular, regular and inverse monoids for which all flat (cyclic) right acts satisfy
condition (P). We also use this characterization to deduce some of the main results
from the literature. Finally, we give a characterization of monoids for which every
e € E(S)\ {1} is right zero such that all cyclic right acts are weakly flat, from
which the main result [Theorem 2.1] of [39] will be deduced as a corollary.

Definition 2.3.1. If S is a monoid, then an element x € S is called eventually
regular if there exists n € N such that z™ is regular. S is called eventually regular
if all its elements are eventually regular. Clearly regular monoids and periodic
monoids are eventually regular. On the other hand, a subset of a monoid which
contains no eventually regular elements will be called reqular — free subset. Notice
that regular-free semigroups are equivalent to idempotent free semigroups and
so must consist of elements of infinite order.

Remark. There are eventually regular monoids which are not regular as the fol-
lowing examples demonstrate.

Example 2.3.2. If S = {0,1,¢, f,a} with table

1 0 e f a
1 1 0 e f a
0 0 00 0O
e e 0 e a a
f f 0 0 f O
a a 0 0 a 0

then 1,¢, f,0,a are eventually regular but a is not regular.

Example 2.3.3. If S = {0, 1, a} with table

1
0

a

SR QY N
oo oo
oo vl

then 0,1,a? are regular but a is not regular. It can be seen that a = 1 - a and
0-a=a-a,but 0-1# a-1 and so S is not a left PP monoid. Hence, this example
also shows that eventually regular monoids are not left PP in general. But as we
know regular monoids are left PP.

Definition 2.3.4. A semigroup S is called group — bound if for every a € S there
exists n € N such that a™ 1s a member of some subgroup of 5.
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Note : It is clear that group-bound semigroups are eventually regular.

Definition 2.3.5. A monoid S is called right subelementary if S = C U N where
C' is the set of all right cancellative elements of S and N is the set of all right nil
elements of S. Notice that we include the case when N is empty and that C is a
submonoid of S.

In section 2.2, by Theorem 2.2.13, we showed that if S is right elementary, then
all weakly flat cyclic right S-acts satisfy condition (P). Moreover by Theorem
2.2.15 we showed that, among periodic monoids S those for which all flat cyclic
right S-acts satisfy condition (P) are right elementary. In this section we extend
Theorem 2.2.13, by considering right subelementary monoids.

Lemma 2.3.6. Let S = C' U N be a monoid such that C 1s the set of right can-
cellative elements of S and N 1is the set of right nil elements of S. Then CNN = ()
and N 1s either empty or an ideal of S.

Proof. At first we show that if a,b € C, then ab € C'. Suppose that c(ab) = d(ab),
for ¢,d € S. Then (ca)b = (da)b. Since b € C, then ca = da and ¢ € C implies
that ¢ = d. Thus ab € C as required.

We claim that C N N = §. Otherwise let 1 #a € C N N. Since a € C, then from
the previous paragraph for every n € N it follows that a™ € C. Also there exists
k € N such that a**! = ¢*. Consequently, a* € C implies that @ = 1 which is a
contradiction.

Now we show that either IV is empty or N is an ideal of S. If N = (), then we are

done. Suppose then that N # § andlet a € S, 1 # b € N. Then ba € N, otherwise
let z,y € S and suppose that b = yb. Then z(ba) = y(ba). Since ba € C, then
z = y and so b € C' which is a contradiction.

Also ab € N. Otherwise, notice that ab # 1 since if ab = 1 and n € N was such
that ™ is right zero and no such smaller n has this property, then for n > 1 we
have

b = ab® = (ab)b" T = b,

giving a contradiction, and for n = 1, b = ab = 1, another contradiction.

Since ba € N, then there exists n € N with (ba)™ a right zero and n the smallest
such positive integer. Hence, (ba)"*! = (ba)™ and so

(ab)™*? = a(ba)* b = a(ba)"b = (ab)™*?. (1)

Then (1), and ab € C imply that ab = 1 which is a contradiction. Hence, ab € N
and so N is an ideal of S as required. [

We aim to consider cyclic acts over a right subelementary monoid but first we
need a few technical lemmas.
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Lemma 2.3.7. Let S = C U N be a right subelementary monoid. Suppose that p

is a right congruence on S such that S/p is weakly flat.

1.

2.

If z € C,y € N are such that x p y, then S/p is projective.

If z,y € C, then z p y if and only if there exist s,t € S with sx = ty and
splpt.

If S/p is not projective and a,b € C are such thata p 1 p b, then there exists
s, t € C withs plptand sab = tha.

If S/p is not projective and a,b € C and ¢,z € S are such that a p b(Az)c,
then there exists s,t € C with s p 1 p t and saz = tex (1.e. sa(Ax)tc).

If S/p 1is not projective and if there exist sy, 83,t1,t2 € C and a,b,c € S
such that sy p 1 pty, s2 p 1 pty and such that sya = t1b, 320 = tac, then
there exist s,t € C with s p 1 p t and sa = te.

Proof.

1.

We know that there exist s,t € S such that sz = ty and such that s(p Vv
Az)l(p V Ay)t. Given that « € C, then in fact s p 1. Since y € N, then
sz =ty € N and so s € N. Otherwise sz € C and consequently sz € C NN
which is a contradiction. Hence there exists n € N such that s™ is right zero.
But then s™ p 1.

Now let u,v € S be such that u p v. Then s™u p u p v p s"v. Since s"u and

s™v are right zero, then by Lemma 2.2.9, s"u = s™v and the result follows
from Lemma 1.54 (2).

. Suppose that = p y. Since S/p is weakly flat, then there exist s,t € S such

that sz = ty and such that s(p V Az)l(p V Ay)t. But z,y € C means that
Az =A, Ay =A and so s p 1 p t as required.

The converse is straightforward.

Since a p 1, then ab p b. Also b p 1 implies that ba p a and so ab p ba (p 1).
Then from (2), there exist s,t € S such that s p 1 p t and sab = tba. Finally,
s,t € C. Otherwise by (1), S/p is projective which is a contradiction.

Since a p b, then by (2), there exist s,¢t € C with sa = thand s p 1 p t.
Therefore, sax = tbz = tczx. Finally, s,t € C by (1).

Notice that, t; p s2 p 1 and so from (3), there exist s',t' € C with s’ p 1 p ¢t/
and s's9t; = t't1s9. Hence

5’8281(1 = SISQtlb = t’t182b = tltltzc.
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Now put s = s's9s1 and t = t't,t,. n

Note : If 5 is a right subelementary monoid, then from Lemma 1.54,(2) if S/p
is projective, then either p = A or there exists ¢2 = ¢ € N such that e p 1 € C.
Hence if p # A, then the converse of (1) above is true for right subelementary
monoids.

Lemma 2.3.8. Let S = C U N be a right subelementary monoid and suppose that
in addition, Ya € C, Yb & N, b € Sab. Let p be a right congruence on S such that
S/p is weakly flat but not projective and let u,v € N. Then u p v if and only if
there emist v,y € C withz p 1 p y and zu = yv. Moreover, p|y C L.

Proof. Let u p v. Then there exist s,t € S with s(p V Au)l(p V Av)t and
su = tv. Hence we have

s =350 p to(Au)sy p...sp p tp(Au)spyr =1 ()
for some s;,t; € S.

We show that there exist a,b € C with a p 1 p b and asu = bu and we do this by
considering two cases:

Case 1. All the s;,t; € C. First,if n +1 =0, then s =1 and so put « = b = 1.
Otherwise, n + 1 > 1 and we use an inductive argument on n. If n +1 = 1, then
we have

s =sp p to(Au)l.

From Lemma 2.3.7 (4), there exist a,b € C with a p 1 p b and asu = asou = bu
as required.

Now, suppose that n +1 > 1. Then by Lemma 2.3.7 (4), there exist ag,bp € C
such that ag p 1 p by and that

agSU = agSpu = bys1u.
Since

$1pt1. . 8p pta(Dw)spyr =1

is a sequence with a length less than n+1, then by induction, there exist a1,b; € C
with a1 p 1 p by and a3s7u = byu. Thus we have

apsu = agSou = bosiu, and aisju = bhu
and the result follows from Lemma 2.3.7 (5)
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Case 2. At least one of the s; or t; € N. Since s,4+1 = 1 € C, then working
backwards from the right hand end of (*) we see that there are two possibilities
that can arise:

a. s; p t; for some ¢ with s; € N and ¢; € C. This case is impossible, since we
are assuming that S/p is not projective.

b. ti(Au)s;y; for some ¢ with ¢; € N and s;41 € C. In this case, since u €
Ssi+1u, then there exists r € S with v = rs;;1u = rt;u and since rt; € N,
then there exists k € N such that (rt;)* is right zero. But u = rt;u implies
that v = (rt;)¥u. Consequently, u is right zero and so we can take a = b = 1.

In a similar way, there exists ¢,d € C with ¢ p 1 p d and ctv = dv.

Now by Lemma 2.3.7 (3), there exist g,h € C with ¢ p 1 p h and gac = hca.
Consequently, on putting x = heb, y = gad we have

zu = (heb)u = heasu = gacsu = gactv = (gad)v = yv

and = = (heb) p 1 p (gad) =y as required.

Conversely, if z p 1 p y and zu = yv, then u p zu = yv p v as required.

Suppose that (u,v) € p|n. Then by the previous part, there exist z,y € C with
z plpyand zu = yv. Notice also that by assumption, there exist z,w € S such
that v = zzu, v = wyv. Hence u = zzu = zyv and v = wyv = wzu and so by
Lemma 2.2.41, (u,v) € L as claimed. [
Corollary 2.3.9. Let S = G U N be a right elementary monoid and suppose that

p 18 a right congruence on S such that S/p s weakly flat but not projective. Then
pCL.

Proof. Let (u,v) € p. Since S/p in not projective, then there are two cases:
Case 1. u,v € N. Then by Lemma 2.3.8, (u,v) € L.

Case 2. u,v € G. Then by Lemma 2.3.7 (2), there exist s, € S with su = tv and
s plpt. Since S/p is not projective, then s, € G and so we have uv = (s~ !t)v,
v = (t71s)u and again (u,v) € L. Thus p C £ as required. |

Corollary 2.3.10. Let S be a right nil monoid and p a right congruence on S. If
S/p 1s weakly flat, then S/p is projective.

Proof. If p = A, then S/p = S is clearly projective. Thus we suppose that p # A
and that S/p is not projective. Then there exist u,v € S such that v # v and
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u p v. Then by Lemma 2.3.8, there exist z,y € C = {1} such that x p 1 p y
and zu = yv. Thus u = v which is a contradiction. Hence, S/p is projective as
required. [

Lemma 2.3.11. Let S be a monoid and suppose that N is a right nil ideal of S.
Then u € N s regular if and only if u is right zero.

Proof. Let u € N be regular. Then there exists w € S such that wwu = u or
(uw)u = u. Since N is an ideal of S, then uw € N. Let € = uw. Then there exists
k € N such that e* is right zero. But it can be seen by induction that for every
n € N, e" = ¢ and so e* = e is right zero. Since eu = u, then u is also right zero.

If u € N is right zero, then for every w € S,uwu = u, and so u is regular. [

Theorem 2.3.12. Let S = C U N be a right subelementary monoid and suppose
that in addition, Ya € C, Yb € N, b € Sab. Let p be a right congruence on S such
that S/p 1s weakly flat. Suppose that u € N, v € S and suppose that u 1s right
zero. Then u p v if and only if either u = v or there exists a right zero e € S such
that € p 1 and that u = ev.

Proof. Let u p v with u right zero and v € S. Then there are two cases that can
arise:

Case 1. v € C. Then by Lemma 2.3.7 (1), S/p is projective and so there exists
€2 = c¢ € S such that e p 1 and eu = ev. Since u € N and v € C, then u # v and
so e # 1. Otherwise, eu = ev implies that v = v which is a contradiction. Thus
1 # e € N. Since e is regular, then by Lemma 2.3.11, e is right zero. Since u is
right zero, then u = eu = ev

Case 2. v € N. If §/p is projective, then there exists €2 = e¢ € S such that e p 1
and eu = ev. If e =1, then v = v, otherwise as in case 1 u = ev, where ¢ is right
zero. If S/p is not projective, then by Lemma 2.3.8, there exist z,y € C such that
z plpyand zu =yv. Sincey € C, v € N, then by assumption there exists z € §
such that v = zyv. Since u is right zero, then v = zzu and so u = zau = zyv = v.

Now suppose that the given condition holds. If u = v, then it is obvious that
u p v. If there exists e € S such that e is right zero with € p 1 and u = ev, then
u=-evpu. n

Remark. By Lemma 2.2.9, we saw that for a monoid S and a right congruence p on
S, if S/pis weakly flat and if e, f € S are right zeroand e p f, then e = f. But from
case (2) of Theorem 2.3.12, it can be seen that for a right subelementary monoid
S and with the property mentioned in this theorem if p is a right congruence on
S such that S/p is weakly flat but not projective and if e, f € S are such that e is
right zero but not necessarily f and e p f, then e = f.

From Lemma 2.3.11, and Theorem 2.3.12, we have
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Corollary 2.3.13. Let S = C U N be a right subelementary monoid and suppose
that in addition, Ya € C, Yb € N, b € Sab. Let p be a right congruence on S such
that S/p is weakly flat. If u € N,v € S are such that u is regular and u p v, then
either uw = v or there exists a regular element e € N such that u = ev.

We can now deduce one of our main theorems in this section:

Theorem 2.3.14. Let S = C U N be a right subelementary monoid and suppose
that in addition, Ya € C,b € N, b € Sab. Let p be a right congruence on S such
that S/p is weakly flat. Then S/p satisfies condition (P).

Proof. Let u p v. If u,v € C, then by Lemma 2.3.7 (2), there exist s,¢ € S such
that su =tvand s p1lpt.

If ue C,v € N, then by Lemma 2.3.7 (1), S/p is projective and therefore satisfies
condition (P).

Thus we need only consider the case where u,v € N. Moreover, we can assume
that S/p is not projective. The result then follows by Lemma 2.3.8. [

It is fairly clear that if C' is a group, then the condition “b € Sab” is satisfied and
so we deduce as a corollary, Theorem 2.2.13.

The following is an example of this type of monoid.

a O
a,bEZ}. IfC_{<b 1)

0} and Z = {((b) ?) Ib € Z}. Then C is a cancellative monoid, Z is a right

zero semigroup and S = C U Z. Also for every a € C,b € Z,b = ab € Sab.

Example 2.3.15. Let S = {(a 0) a,beZ,a#

b 1

One obvious question that arises here is, “Is the condition, b € Sab necessary for
such a monoid to have the property that all weakly flat cyclic acts satisfy property
(P)?”. Certainly if the element a € C has finite order, then a must be invertible
and so the condition will be satisfied. Hence this property will be true for periodic
monoids. In fact in this case, the right cancellative monoid C' will be a (periodic)

group.

The converse of Theorem 2.3.14, is not true. In [9, Proposition 3.1}, Bulman-
Fleming and Kilp showed that the monoid S given by the presentation

S=<z,y|zy=2=yx>U{l}

was such that every weakly flat S-act satisfies condition (P) but it contains ele-
ments that are neither cancellative nor nil.
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However, let us examine the question of which monoids have the property that all
their flat cyclic right acts satisfy condition (P).

Theorem 2.3.16. Let S be @ monoid. Then every e € E(S)\ {1} is right zero
if and only if S = G U N U F where G is group, N contains all the right nil
elements of S and F 1s the set of all reqular-free elements of S. Moreover, N U F
18 @ maximal 1deal of S.

Proof. Let S = G U N U F be a disjoint union of a group, a right nil set and a
regular-free set and let e € E(S)\ {1}. Since e is regular, then ¢ ¢ F. Also ¢ ¢ G
otherwise, €2 = e implies that e = 1 which is a contradiction. Thus e € N and so
there exists n € IN such that e is right zero. But ¢ = ¢™ and so e is right zero as
required. [

Now suppose that every e € E(S) \ {1} is right zero and let « € S. Then either
z is eventually regular or z is regular-free. If z is eventually regular, then there
exist n € N, z' € § such that 2"z'z™ = 2™. Since 2"z’ is idempotent, then either
z™z' =1 and so x is right invertible or 2™z’ # 1 and so by assumption it is right
zero. Consequently, " = z"a'z™ implies that =™ is right zero giving that z is
right nil. f G = {2z € S| 3y € 5, ay = 1}, then it is easy to see that G is closed
and so it is a group. If N is the set of all right nil elements of S and F the set of

all regular-free elements of S, then S = G U N U F as required.

Now we show that I = N U F is a maximal ideal of S. At first we show that
I =N U Fisanideal. Let ¢ € S and y € I. Then there are two cases that can
arise:

Case 1. z € G,y € I. Then zy,yz € I. Otherwise, zy,yz € G. Since z € G,
then 27! € G and so y = 7 !(ay),y = (yz)z~! € G which is a contradiction.

Case 2. z,y € I. Then there are two possibilities as follows:

a. f ¢ € F,y € I, then 2y € I. Otherwise, zy € G. Then there exists z € G
such that (zy)z = 1 or #(yz) = 1. Consequently, z(yz)z = x giving that
z is regular which is a contradiction. Similarly if yz € G, then there exists
w € G such that w(yz) = 1 or (wy)z = 1. Thus z(wy)z = z, which implies
that z is regular and again a contradiction.

b. If z,y € N. Then zy € I. Otherwise, zy € G. Since z € N, then there
exist n € N such that 2™ is right zero and no smaller n has this property.
Then z™t! = 2™ and so we have "ty = z™y or z™(zy) = 2"~ 1(zy) which
implies that ™ = 2®~!. Since z" is right zero, then z"~! is also right zero
and so a contradiction.

Hence, I is an ideal of .S.
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Now suppose that J is an ideal of S such that I C J C S. Then there exists
z € J such that © ¢ I. Thus 2 € G and so 27! € G implies that 1 = zz~! € J.
Consequently, J = S and so I is a maximal ideal of S as required. [

Remark. Notice that in the previous theorem, F' is closed under the taking of
powers and that for this type of monoid, the condition that F' is a regular-free
subset closed under the taking of powers is equivalent to the condition that it
is an idempotent-free subset closed under the taking of powers. It is unknown
whether G U N is a submonoid of S.

Notice also that we could view S as C U N U F' where C is right cancellative, N is
as before and F' is the subset of F which contains no right cancellative elements.

Ifz€S, ae NUF', then az € N U F', otherwise ax is right cancellative. Now
if ba = ca for b,c € S, then (ba)x = (ca)z or b(az) = c(az) and so b = ¢. Thus a
is right cancellative which is a contradiction. Thus N U F' is a right ideal of S.

Now the question that arises here is "Is N U F' also a left ideal?”.

If in the previous theorem S is commutative and z € S, b € N, then there exists
k € N such that b* is right zero. Since (zb)* = 2Fb*¥ = b*, then (zb)* is right
zero and so xb is right nil. Since S is commutative, then bz = zb. Consequently,

zb, bz € N and so N is an ideal of S.
From Lemma 2.2.8, and Theorem 2.3.16, we have

Corollary 2.3.17. Let S be a monoid. If all flat monocyclic right S-acts satisfy
condition (P), then S is a disjoint union of a group, a right nil set and a regular-
free set.

Note : It is known that the converse to this corollary is false. For example Bulman-
Fleming and Kilp in [9, Proposition 3.4] showed that if § =< 2,y | 2y = 2? =
yr > U{l} and p = p(z,z?) V p(1,y?), then S is a commutative monoid and
S ={z" | neN}U{y" | n € N} U{1}, where z"y™ = y™z" = 2" and so
every 1 # 2 € S is regular-free. Also S/p is a flat cyclic right S-act, but it does
not satisfy condition (P). See also Theorem 3.3, of this paper or comment after
Lemma 4.1, of [40].

Theorem 2.3.18 [8]. Let S be a monoid. Then the following are equivalent:

(1) All weakly flat monocyclic acts S/p(s,t) satisfy condition (P).
(2) All flat monocyclic acts S/p(s,t) satisfy condition (P).

(8) Every e € E(S)\ {1} is right zero.

Now from Theorem 2.3.16, and Theorem 2.3.18, we have
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Theorem 2.3.19. Let S be any monoid. Then the following are equivalent:

(1) All weakly flat monocyclic acts S/p(s,t) satisfy condition (P).
(2) All flat monocyclic acts S/p(s,t) satisfy condition (P).
(3) Every e € E(S)\ {1} is right zero.

(4) S =G UN UF, where G is a group, N is a right nil set and F is a regular-free
set.

Lemma 2.3.20. Let S be ¢ monoid. Then S is left PP and every e € E(S)\ {1}
18 right zero if and only of S 1s right subelementary and every element in the right
nil part 1s right zero.

Proof. Suppose that S is left PP and every e € E(S)\ {1} is right zero. By
Theorem 2.3.16 and notice after S = C U N U F'. Also for every x € S there
exists ¢2 = ¢ € S such that ¢ = ex and for every a,b € S, ax = bz implies
that ae = be. If e = 1, then ¢ = b and so z is right cancellative. Otherwise by
assumption e is right zero and so ¢ = ez implies that z is right zero. Thus F' =
and N is right zero as required.

If S is a right subelementary monoid such that every element in the right nil part
is right zero, then it is obvious that every e € E(S)\ {1} is right zero. It is also
easy to see that for every z € S there exists ¢2 = ¢ € S such that z = ex and
ar = bz implies that ae = be, and so S is left PP. [

Corollary 2.3.21. Let S be @ monoid. Then S 1s left PP and all flat cyclic right
S-acts satisfy condition (P) if and only of S us right subelementary and moreover
every element in the right nil part s right zero.

Proof. Suppose that S is left PP and all flat cyclic right S-acts satisfy condition
(P). Then By Lemma 2.2.8 every e € E(S) \ {1} is right zero and so by Lemma
2.3.20, S = C U Z, where C is right cancellative and Z is right zero.

If S =C U Z, where C is right cancellative and Z is right zero, then by Lemma
2.3.20, S is left PP. Also Va € C,Vb € Z, b € Sab and so by Theorem 2.3.14, all
weakly flat cyclic right S-acts satisfy condition (P). [

Now from Corollary 2.3.21, we can deduce the following theorem.

Theorem 2.3.22 [7]. Let S be a monoid. Then the following statements are
equivalent:

(1) S =C U Z is right subelementary and every element in Z is right zero.
(2) S is left PP and all weakly flat cyclic right S-acts satisfy condition (P).
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(3) S is left PP and all flat cyclic right S-acts satisfy condition (P).

Now we give a characterization of eventually regular monoids by condition (P) of
cyclic right acts. There are also some results that will arise.

Theorem 2.3.23. Let S be an eventually regular monoid. Then every e € E(S)\
{1} 1s right zero if and only if S is right elementary.

Proof. Suppose that every e € E(S)\ {1} is right zero. Then by Theorem 2.3.16,
S =G U N UF. Since S is eventually regular, then F = ) and so S = G U N is
a right elementary monoid.

Let the monoid S = G U N be right elementary and let e € E(S)\ {1}. Then
e € N and so there exists n € N such that e” is right zero. But €™ = ¢, and so e
right zero as required. n

Corollary 2.3.24. Let S be an eventually reqular monoid. Then all flat cyclic
right S-acts satisfy condition (P) if and only if every e € E(S)\ {1} is right zero.

Proof. If every e € E(5)\ {1} is right zero, then by Theorem 2.3.23, S is right
elementary and so by Theorem 2.2.13, all weakly flat cyclic right S-acts satisfy
condition (P).

The converse is true by Lemma 2.2.8. |

Now from Theorem 2.2.13, Corollary 2.3.24, and Theorem 2.3.23, we can deduce
the following extension to Theorem 2.2.17.

Theorem 2.3.25. If S s an eventually regular monoid, then the following are
equivalent:

(1) S = G U N 1s right elementary.

(2) All weakly flat cyclic right S-acts satisfy condition (P).

(3) All flat cyclic right S-acts satisfy condition (P).

(4) Every e € E(S)\ {1} is right zero.

Lemma 2.3.26. Let S be a regular monoid. Then every e € E(S)\ {1} is right

zero if and only if S is right elementary and moreover every element in the right
nil part 18 right zero.

Proof. If every e € E(S)\ {1} is right zero, then by Theorem 2.3.23, S is right
elementary. Let z be a right nil element. Since x is regular, then there exists
z' € S such that ¢ = zz'z. If zz' = e, then e is an idempotent. Also e # 1,
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otherwise « is right invertible which is a contradiction. Thus e is right zero and
so = ex is right zero as required.

The converse is obvious. .
From Theorem 2.3.25, and Lemma 2.3.26, the following Theorem can be concluded.

Theorem 2.3.27. Let S be a monoid. Then the following are equivalent:

(1) S is regular and all weakly flat cyclic right S-acts satisfy condition (P).
(2) S s reqular and all flat cyclic right S-acts satisfy condition (P).

(8) S is regular and every e € E(S)\ {1} is right zero.

(4) S s right elementary and every element in the right nil part is right zero.
We can now give an alternative proof of the main Theorem in [7].

Theorem 2.3.28. For any monoid S the following statements are equivalent:

(1) S is right nil.

(2) Every weakly flat cyclic right S-act is projective.
(8) Every weakly flat cyclic right S-act is strongly flat.
(4) Every flat cyclic right S-act s projective.

(5) Every flat cyclic right S-act is strongly flat.

Proof. Note that (2) = (4) = (5) are obvious, as is (2) = (3) = (5).
(1) = (2)If p=A, then S/p = S is clearly projective. Otherwise, by Lemma
2.3.8, if S/p is not projective, then p = A giving a contradiction. (5) = (1) is
proved as follows.

By Corollary 2.3.17, S = G U N U F. Since every flat cyclic right S-act is strongly
flat, then every cyclic right S-act which satisfies condition (P) is strongly flat and
so by Lemma 2.2.27, every element of S is aperiodic. Hence, F = () and G = {1}
as required. [

Corollary 2.3.29. Let S be an inverse monoid. Then all flat cyclic right S-acts
satusfy condition (P) if and only if S is a group or a 0-group.

Proof. Suppose that all flat cyclic right S-acts satisfy condition (P). Since S is
regular, then by Theorem 2.3.27, S = G U Z where G is a group and Z is the set
of all right zero elements of S. If Z = ), then S is a group. Otherwise let a € Z.
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Then for every b € Z, ab = b, ba = a. But a,b are idempotents and since S is an
inverse monoid, then ab = ba. Consequently, a« = b and so Z has only one element
which is zero.

If S is group or 0-group, then by Theorem 2.3.25, all flat cyclic right S-acts satisfy
condition (P). |

From Theorem 2.3.25, and Corollary 2.3.29, we have the following theorem.

Theorem 2.3.30. Let S be an inverse monoid. Then the following statements are
equivalent:

(1) All weakly flat cyclic right S-acts satisfy condition (P).
(2) All flat cyclic right S-acts satisfy condition (P).

(3) S is a group or a 0-group.

The following is clear.

Lemma 2.3.31. Let S be a monoid. If for every xz,y € S, vy = 1 implies that
z =y =1, then S does not have any right invertible element different from the
identity.

Theorem 2.3.32. Let S be an eventually reqular monoid such that for every x,y €
S, xy = 1 tmplies that x =y = 1. Then all flat cyclic right S-acts satisfy condition
(P) if and only if S is right nil.

Proof. If all flat cyclic right S-acts satisfy condition (P), then by Theorem 2.3.25,
S = G U N where G is a group and N is the set of all right nil elements of S. But
by Lemma 2.3.31, G = {1} and so S = {1} U N is right nil as required.

If S is right nil, then by Theorem 2.3.25, all flat cyclic right S-acts satisfy condition
(P). |

From Theorem 2.3.32 we have.

Corollary 2.3.33. Let S be an cventually reqular semigroup and let ST = SU{1}.
If all flat cyclic right S'-acts satisfy condition (P), then every element in S is
right nil.

Theorem 2.3.34. Let S be a regular monoid such that for every xz,y € S, zy =1
implies that ¢ = y = 1. Then all flat cyclic right S-acts satisfy condition (P) if
and only if S is right zero.

Proof. If all flat cyclic right S-acts satisfy condition (P), then by Theorem 2.3.27,
S = G U Z where G is a group and Z is the set of all right zero elements of S.
But by Lemma 2.3.31, G = {1} and so S = {1} U Z is right zero as required.
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If S is right zero, then by Theorem 2.3.27, all flat cyclic right S-acts satisfy con-
dition (P). ]

From Theorem 2.3.34 we have.

Corollary 2.3.35. Let S be a regular semigroup and let S* = S U {1}. If all flat
cyclic Tight S*-acts satisfy condition (P), then every element in S is right zero.

Theorem 2.3.36. Let S be an inverse monoid such that for everyz,y € S, zy =1
implies that x = y = 1. Then all flat cyclic right S-acts satisfy condition (P) if
and only if S = {1} or S ={0,1}.

Proof. Suppose that all flat cyclic right S-acts satisfy condition (P). Then by
Corollary 2.3.29, S is a group or a 0-group. Consequently by Lemma 2.3.31,

S ={1} or S ={0,1} as required.

The converse is obvious by Corollary 2.3.29. [

Lemma 2.3.37 [19, p. 63]. Let S be a semigroup. If S is completely 0-simple,
then it 1s regqular.

From Theorem 2.3.34, and Lemma 2.3.37, we have

Corollary 2.3.38. Let S be a completely 0-simple semigroup. Then all flat cyclic
right S'-acts satisfy condition (P) if and only if S 1s right zero.

Now we consider right reversible monoids for which all flat cyclic right S-acts
satisfy condition (P).

Theorem 2.3.39 [39]. Let S be a right reversible monoid. If all flat cyclic right
S-acts satisfy condition (P), then either E(S) = {1} or E(S) ={0,1}.

Lemma 2.3.40. Let S be a right reversible monoid. If all flat cyclic right S-acts
satisfy condition (P), then either S = C U F or S = C U N U F where C is
right cancellative, N contains all nil elements of S and F s the set of regular-free
elements of S.

Proof. If all flat cyclic right S-acts satisfy condition (P), then by the remark
after Theorem 2.3.16, S = C U N U F. By Theorem 2.3.39, either E(S) = {1} or
E(S)={0,1}.

If E(S) = {1}, then N = 0. Otherwise let 1 # = € N. Then there exists n € N
such that z™ is right zero. Therefore 2™ is an idempotent and so 2™ = 1. If n =1,
then = 1 giving a contradiction. Thus n > 1 and if ax = bz for a,b € S, then
(az)z™ ! = (bz)z" ! or az™ = bz™ which implies that ¢ = b and so z is right
cancellative, which is also a contradiction.
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Now suppose that E(S) = {0,1}, and let + € N. Then there exists n € N such
that ™ 1s an idempotent and so by the previous paragraph, 2™ # 1. Thus 2 = 0
or z is nil as required. [

Corollary 2.3.41. Let S be a right reversible monoid. Then S is left PP and all
flat cyclic right S-acts satisfy condition (P) if and only if S =C or S = C U {0}

where C' 1s right cancellative.

Proof. Let S be left PP and all flat cyclic right S-acts satisfy condition (P).
Then by Corollary 2.3.21, and Theorem 2.3.39, either S = C or S = C' U Z where
C' is right cancellative and Z is right zero. If € Z, then by Lemma 2.3.40, there
exists n € N such that z® = 0. But z is an idempotent and so z = z® = 0.
Consequently, either S = C or S = C U {0} as required.

If S is right cancellative or S = C U {0} where C is right cancellative, then by
Theorem 2.3.22, S is left PP and all weakly flat cyclic right S-acts satisfy condition
(P). ]

Now we have the following corollary.

Corollary 2.3.42. If S is a right reversible monoid, then the following are equiv-
alent:

(1) S 1s left PP and all weakly flat cyclic right S-acts satisfy condition (P).
(2) S is left PP and all flat cyclic right S-acts satisfy condition (P).
(3) S =C or S=CU{0} where C 1s right cancellative.

Corollary 2.3.43. Let S be an idempotent monoid. Then all flat cyclic right
S-acts satisfy condition (P), if and only if S us right zero.

Proof. Since S is left PP, then by Theorem 2.3.22, S = C' U Z where C is right
cancellative and Z is right zero. But for every z € C, z? = z implies that = = 1
and so S is right zero as required.

The converse is obvious by Theorem 2.3.22. [ ]
Corollary 2.3.44. Let S be a monoid. Then S is an idempotent, right reversible

monotd and all flat cyclic right S-acts satisfy condition (P) if and only if either
S ={1} or S ={0,1}.

Proof. Since S is an idempotent monoid, then it is left PP and so by Corollary
2.3.42, either S is right cancellative or S = C U {0}, where C' is right cancellative.
But for every z € C, z? = z implies that = 1 and so either S = {1} or § = {0, 1}
as required.
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The converse is obvious. [

If we consider monoids for which all flat right S-acts satisfy condition (P), then
we have the following results.

Theorem 2.3.45 [1]. Let S be a monoid. If all flat right S-acts satisfy condition
(P), then |E(S)| = 1.

Theorem 2.3.46. Let S be a monoid. If all flat right S-acts satisfy condition
(P), then S = G U F where G is a group and F is a regular-free subsemigroup.
Moreover, F' 15 a mazimal ideal of S.

Proof. If all flat right S-acts satisfy condition (P), then all flat cyclic right S-acts
satisfy condition (P), and so by Theorem 2.3.16, S = G U N U F where G is a
group, N is the set of all right nil elements of S and F' is the set of all regular-
free elements of S. On the other hand by Theorem 2.3.45, |E(S)] = 1, and so
N = 0. Thus S = G U F as required. Also for z € S,y € F, zy € F. Otherwise,
xy € G and so there exists z € G such that z(zy) = 1. Consequently, y(zz)y =y
and so y is regular which is a contradiction. If yz € G, then there exists w € G
such that (yz)w = 1. Therefore y(zw)y = y and so y is regular which is again a
contradiction. Thus F' is an ideal of S. It is easy to see that F' is maximal. n

Remark. Bulman-Fleming and Kilp in [9] showed that if S =< z¢,21,z2,... |
Tig1T; = T; = Ti%Tigp1, ¢ = 0,1,... > U{1l}, then S ={z;" |t >0, n > 1} U {1}
and z;"z;™ = z;" if i < j, and equal to 2;"T™ if i = j. Thus S is a disjoint union
of a group and a regular-free subsemigroup. Also they showed that there exists
a proper right ideal J of S such that the Rees factor S/J is flat but it does not
satisfy condition (P). Hence, the converse of Theorem 2.3.46, is not true.

By Theorem 2.2.17, and Theorem 2.3.14, we saw that for right elementary monoids
and also right subelementary monoids S = C U N such that Ya € C, Vb ¢
N, b € Sab, all weakly flat cyclic right S-acts satisfy condition (P). But it is not
necessarily true for these monoids that all flat right acts satisfy condition (P), as
the following example demonstrates.

Example 2.3.47. Let S = {0,1}. Then S = {1} U {0} where {1} is a group
and {0} is a right zero semigroup which is an ideal of S. If A = {z,y,2 | 20 =
y0 = 20 = z,21 = z,yl = y,21 = z}, then by Theorem 2.2.19, A is a flat right
S-act. Since A is not a coproduct of cyclic S-acts, then by Lemma 1.53, it does
not satisfy condition (P).

This example also shows that there are monoids S which are disjoint union of
a group and an ideal, but there exists a flat right S-act which does not satisfy
condition (P).

Hence, to show that the converse of Theorem 2.3.46 is true more details of the
structure of the regular-free part of S will be needed.
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But if we restrict our attention to eventually regular monoids, then we have the
following result.

Corollary 2.3.48. Let S be an eventually reqular monoid. Then all flat right
S-acts satisfy condition (P) if and only if S is a group.

Proof. If all flat right S-acts satisfy condition (P), then by Theorem 2.3.46,
S = G U F where G is a group and F is regular-free. Since S is eventually
regular, then F' = () and so S = G is a group.

If S is a group, then by Theorem 2.2.14, all right S-acts satisfy condition (P) and
so all flat right S-acts satisfy condition (P). |

Notice that in Theorem 2.3.46, we could view S as C U F' where C is right
cancellative and F' is the subset of F' which contains no right cancellative elements.
In this case if z € S,y € F', then yx € F'. Otherwise ay = by, a,b € S, implies
that (ay)z = (by)z or a(yz) = b(yz). Since yz € C, then a = b and so y is right
cancellative which is a contradiction. Therefore, F' is a right ideal of S.

If F' =0, then S is right cancellative. In this case by what follows we show that
all weakly flat right S-acts satisfy condition (P).

Lemma 2.3.49 [5]. Let S be a monoid. Then a right S-act A is weakly flat
if and only if A is principally weakly flat and for all left ideals I and J of S,
AINAJ =A(InNJ).

Remark. If I = Sz, J = Sy with z,y € S, then z € Sz, y € Sy. Thus for a right
S-act A with a,a’ € A, ax € AI, a'y € AJ. If A is weakly flat and az = o'y, then
ar = a'y € AINAJ and so by Lemma 2.3.49, there exists a" € 4 and z € Sz NSy
such that axz = a'y = a"z.

Lemma 2.3.50. Let S be a right cancellative monoid. Then all weakly flat right
S-acts satisfy condition (P).

Proof. Let A be a weakly flat right S-act and let az = bz for a,b € A and
z € S. Then by Lemma 2.3.49, there exists ¢ € A and z € Sz N Sy such
that ax = by = a''z. Then there exist s,t € S such that z = sz = ty. Thus
ar = a'"z = a'"sx and by = a"'z = a''ty. Since A is torsion free and z,y are right
cancellative, then a = a"s and b = a"'t. Since sz = ty, then A satisfies condition
(P) as required. ]

Lemma 2.3.51. Let S be a left PP monoid. If all flat right S-acts satisfy condi-
tion (P), then S is right cancellative.

Proof. If all flat right S-acts satisfy condition (P), then all flat cyclic right S-acts
satisfy condition (P) and so by Corollary 2.3.21, S = C U Z where C is right
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cancellative and Z is right zero. But by Theorem 2.3.46, Z = () and so S = C is
right cancellative as required. [

Since right cancellative monoids are left PP, then from Lemma 2.3.50, and Lemma,
2.3.51, we can deduce the main Theorem in [4].

Theorem 2.3.52. Let S be any monoid. Then the following statements are equiv-
alent:

(1) S s right cancellative.
(2) S is left PP and every weakly flat right S-act satisfies condition (P).
(3) S is left PP and every flat right S-act satisfies condition (P).

Remark. If S = N is the set of natural numbers, then (5,.) is a monoid. Also
S ={1} UN\ {1} and F = N\ {1} is an ideal of S which is regular-free and is
generated by prime numbers. Thus F is an infinitely generated ideal of S. Since
S is cancellative, then by Lemma 2.3.50, all flat right S-acts satisfy condition (P).
Hence, there are monoids S such that S = G U F and that all flat right S-acts
satisfy condition (P), but F is not finitely generated.

Let J be a proper right ideal of a monoid S. If z,y, z are symbols not belonging

to S, define
A(T) = ({z,y} x (S\ ) U({z} x J),
and define a right S-action on A(J) by

(z,u)s = {(:v,us) ifus ¢ T

(z,us) ifuseJ
o= {00 HuiE5
(z,u)s = (z,us).

A(J) is a right S-act and we have

Proposition 2.3.53 [1]. Let J be a proper right ideal of a monoid S. Then A(J)
satisfies condition (E), but fails to satisfy condition (P).

Proposition 2.3.54 [1]. Let J be a proper right ideal of @ monoid S. Then A(J)
is a flat right S-act if and only if j € Jj for every j € J.

Propositions 2.3.53, and 2.3.54, give

Corollary 2.3.55. Let S be a monoid. If all flat right S-acts satisfy condition
(P), then for every proper right ideal J of S there exists j € J\ Jj.
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Liu Zhongkui and Yang Yongbao in [40] gave the following result:

Proposition 2.3.56. The following conditions on a monoid S are equivalent:

(1) For every proper right ideal J of S there exists j € J\ Jj.

(2) For every infinite sequence (zg,21,...) with x; = 412, ¢ = 0,1,...,2; € S,
there exists a positive integer n such that xp, = Tp4q = ... = 1.

What we can say at this stage is that, if in Theorem 2.3.46, F' is countably infinitely
generated and zg, 1, 2,,... are generators, then the property that z; = z;417;,
: =1,2,... cannot occur. Otherwise, by Corollary 2.3.55, and Proposition 2.3.56,
there exists a positive integer n such that 2, = 2,47 = ... = 1 and so F is finitely
generated which is a contradiction.

Also if F' is countably infinitely generated and (zg,z1,...) are generators, then
the property that for every z; there exists z; such that «; = z;z; cannot occur.
Otherwise, if J = |J;2, z:S, then for j € J there exists ¢ such that j = z;s and
s € §. Then by assumption there exists £ € IN such that z; = zpz; and so
J = zrxis = xj € Jj. Hence by Corollary 2.3.55, .J is not a proper ideal and so
J = S5. Thus there exists [ € N and s € § such that 1 = z;s. Then by assumption
there exists m € N such that z,,2; = z; and so 1 = z;8 = z,,7;5. Since z;s = 1,
then 1 = z,,1 = 2,, and so 1 € F. But F is an ideal of § and so F = S which 1s
a contradiction.

The following Theorem appeared as one of the main results in [26] . Now by using
Theorem 2.3.46, we give an alternative proof of this theorem as follows:

Theorem 2.3.57. Let S be a monoid. Then all flat right S-acts are strongly flat
if and only if S = {1}.

Proof. If all flat right S-acts are strongly flat, then all flat right S-acts satisfy
condition (P) and so by Theorem 2.3.46, S = G U F where G is a group and F is
a regular-free subsemigroup. Since all flat right S-acts are strongly flat, then all
flat cyclic right S-acts are strongly flat and so by Theorem 2.3.28, S is right nil.
Thus F = () and G = {1}. Consequently, S = {1} as required.

If S = {1}, then it is clear that all right S-acts and so, all flat right S-acts are
strongly flat. =

Corollary 2.3.58. Let S be a monoid. Then all flat right S-acts are projective if
and only if S = {1}.

Corollary 2.3.59. Let S be a monoid. Then all flat right S-acts are free if and
only 1s S = {1}.

By what follows we extend the main result of [39]
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Theorem 2.3.60 [13]. For an arbitrary monoid S the following are equivalent:

(1) All right S-acts are weakly flat.
(2) All finitely generated right S-acts are weakly flat.
(8) All cyclic right S-acts are weakly flat.

(4) S is a regular monoid and for any x,y € S there is an element z € Sz N Sy
such that (z,2) € p(z,y).

Lemma 2.3.61. If S 1s a monoid such that for every x,y € S there exists z €
Sz N Sy, then S has at most one right zero element which is also a left zero.

Proof. Suppose that z,y € S are right zero. Then by assumption there exists
z € SexN Sy. But Sz ={z}, Sy={y} andsoz =2z=y.

If z € S is right zero and z € S, then by assumption there exists w € Szz N Sz
and so there exist s,t € S such that w = szz =tz or (sz)z = tz. Since z is right
zero, then (sz)z = tz implies that zz = z and so z is left zero as required. ]

Corollary 2.3.62. If S is a right reversible monoid, then S has at most one right
zero element.

Theorem 2.3.63. Let S be a monoid such that every e € E(S)\ {1} 1s right zero.
Then all cyclic right S-acts are weakly flat of and only if S is a group or a O-group.

Proof. Suppose that all cyclic right S-acts are weakly flat. Then by Theorem
2.3.60, S is regular and for all z,y € S there exists z € Sz N Sy such that
(z,2) € p(z,y). Thus by Theorem 2.3.27, S is right elementary and the right nil
part is right zero. But by Lemma 2.3.61, S has at most one right zero element
which 1s also left zero and so S is either a group or a 0-group.

Conversely, suppose that S is a group or a 0-group and let z,y € S. If y = 0, then
z=y € SzNSy. If y+#0, then notice that z = z = 2zy~ly € Sz N Sy. In both
cases (z,z) € p(z,y). Since S is regular, then by Theorem 2.3.60, all cyclic right
S-acts are weakly flat. u

Now we have [39, Theorem 2.1] as a corollary of Theorem 2.3.63.

Corollary 2.3.64. Let S be a monoid. Then all cyclic right S-acts satisfy condi-
tion (P) if and only if S is a group or a 0-group.

Proof. If all cyclic right S-acts satisfy condition (P), then they are all weakly flat.
Also, all flat cyclic right S-acts will then satisfy condition (P) and so by Lemma
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2.2.8, every e € E(S)\ {1} is right zero. Hence by Theorem 2.3.63 S is a group or
a O-group.

Let S be a group or a 0-group and suppose that u p v for u,v € S and a right
congruence p on S. Then there are two cases as follows:

Casel. u=v=0.lfs=t=1,thensplptandsu="tv.

Case 2. At least u # 0 or v # 0. For example if v # 0, then u p v implies that
uv™l pl. ffs=1,t=wuv"!, then s p 1 ptand su = tv. |

Corollary 2.3.65. Let S be a monotd. Then all right S-acts satisfy condition (P)
iof and only of S 18 a group.

Proof. If all right S-acts satisfy condition (P), then all cyclic right S-acts satisfy
condition (P) and so by Corollary 2.3.64, S is a group or a 0-group. But by
Theorem 2.3.45, |E(S)| =1 and so S is a group.

The converse is obvious. [

From Theorem 2.3.60, Theorem 2.3.63, and Corollary 2.3.64, we have

Corollary 2.3.66. For any monoid S the following statements are equivalent:

(1) All right S-acts are weakly flat and every e € E(S)\ {1} is right zero.

(2) All finitely generated right S-acts are weakly flat and every e € E(S)\ {1} s
right zero.

(3) All cyclic right S-acts are weakly flat and every e € E(S)\ {1} is right zero.
(4) All cyclic right S-acts are flat and every e € E(S)\ {1} 1s right zero.

(5) All cyclic right S-acts satisfy condition (P).

(6) S s a group or a 0-group.

From Theorem 2.3.60, and Theorem 2.3.63, the following corollary can be deduced.

Corollary 2.3.67. Let S be a null semigroup and let S = S U {1}. Then all
cyclic right S'-acts are weakly flat if and only if S* = {0,1}.

Proof. If all cyclic right S'-acts are weakly flat, then by Theorem 2.3.60, S is
regular and so for every * € S there exists ' € S1 such that = zz'z. If ' =1,
then zx = z, but 2z =0 and so z = 0. If 2’ # 1, then za' = 0 and so z = 0.

If ST = {0,1}, then by Theorem 2.3.63, all cyclic right S'-acts are weakly flat. m
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We can also deduce the following corollary of [39]

Corollary 2.3.68. Let S be @ monoid. Then all cyclic right S-acts are strongly
flat of and only of S = {1} or S =1{0,1}.

Proof. If all cyclic right S-acts are strongly flat, then all cyclic right S-acts satisfy

condition (P) and so by Corollary 2.3.64, either S = G or § = G U {0} where G
is a group.

On the other hand all flat cyclic right S-acts are strongly flat and so by Theorem
2.3.28, S is right nil and so G = {1}. Otherwise, let 1 # z € G. Then there exists
n € N such that ™ is right zero and so z™T! = 2™ implies that x = 1 which is a
contradiction.

If S={1} v.S=1{0,1}, then it is obvious that all cyclic right S-acts are strongly
flat. ]

From Theorem 2.3.30, and Corollary 2.3.66, we have

Corollary 2.3.69. Let S be an inverse monoid. Then the following statements
are equivalent:

(1) All right S-acts are weakly flat and every e € E(S)\ {1} us right zero.

(2) All finitely generated right S-acts are weakly flat and every e € E(S)\ {1} s
right zero.

(8) All cyclic right S-acts are weakly flat and every e € E(S)\ {1} is right zero.
(4) All cyclic right S-acts are flat and every e € E(S)\ {1} is right zero.

(5) All cyclic right S-acts satisfy condition (P).

(6) All weakly flat cyclic right S-acts satisfy condition (P).

(7) All flat cyclic right S-acts satisfy condition (P).

(8) S is a group or a 0-group.

o4



2.4. Flatness on Ideal Extensions

In section 2.3, we saw that monoids S with a structure of the form § = G U N
where G is a group and N is right nil have the property that all weakly flat cyclic
right S-acts satisfy condition (P). Also monoids for which all flat (cyclic) right
acts satisfy condition (P) have the structure of the form S = G U I with G a group
and I an ideal of S. Moreover, in some cases the investigation of the flatness of
D-acts (I' = I'U{1}) is much easier than that of S-acts. So it seems that it
is reasonable to consider monoids of this structure and see whether it is possible
to extend the flatness of (cyclic) I'-acts to the flatness of (cyclic) S-acts. So we
will try in this section to show this, either in general or for a certain classes of
monoids. We also show that for monoids with some extra condition, flatness of
(cyclic) I'-acts can be deduced from the flatness of S-acts. There are also some
corollaries that will arise. In what follows we suppose that S = G U I is a monoid
with G a group, I an ideal of S and I' = I U {1}. It is also clear that any S-act
is an I'-act. We first of all show that (weak) flatness and also condition (P) of all
right S-acts can be deduced from the corresponding property of right I'-acts.

Lemma 2.4.1. Let A be a right S-act and X a left S-act. Leta,d' € A, z,2' € X
and suppose that a@z = d' Rz’ in ARsX. Then either a®@z =o' @2’ mm A9 X
or there exists g € G with d’ = ag, gz’ = x.

Proof. Sincca®x =da' @ 2’ in A ®g X, there is a scheme over S

a = a138
s1x = ti1xo

a1ty = azss
S2xy = tax3

Gpn—1Tn—1 = AnSn '
, SnTn = tnx
antn = a

in which z; € X and s;,t; € §. Moreover, we can assume that this scheme has
minimal length. Suppose first of all that the scheme has length 1. In other words,

we have

a = ai sy '
, slw:tlx
a1t1 =a

There are several cases: if both s1,#; € I', then the scheme is over I' and so
a®@z=ad 2 in ARn X as required; if s; € I,#; € GG then the scheme

a = (arty)(ty s1)

7! =1.z'
((thl).l = a' ( ! Sl)w v

is over I'! and again the result follows; a similar construction worksif s; € G, ¢ € I;
finally if s1,%1 € G, not both = 1. In this case, we set ¢ = s7't; and note that

ag =d, gz = .
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Suppose now that the scheme has length > 2 and suppose that s; € G for some
2 <1 < n—1. Consider the part of the scheme

Gi—oti—2 = Aj—_184_1 Si—1Ti—1 = ti—125
a;j—1ti—1 = a;8; 8iT; = T4
a;t; = Qj418i41 Sik1Tit+1 = Lit1Tit2.

This can be replaced by the shorter scheme

a;—2ti—2 = Aj—18;—1 $ic1Tim1 = ti_18; tiTiy1
-1
ai—1(tim18] 1) = Gip18i41 Si+1Tit+1 = Lip1Ti42
giving a contradiction on the minimality of the original scheme.

If s, € G then again, the part of the scheme

On—2tn—2 = Ap—18n—1
Sp-1Tn—-1 =tp-1Tn
Gp—1tp—1 = GnSn f
, SpTp = t,T
antn = a

can be replaced with the shorter scheme

Up—2tpn_2 = p_18n_1

—1 !
1 ' Sp—1Tpn—-1 = (tn—-lsn tn)x
an—-l(tn—ISn tn) =4a

and again we get a contradiction. Hence we see that s; & G for ¢ > 2.
In a similar way, we can deduce that ¢; € G for: < n — 1.

If s; € G, then the first two lines of the scheme

a = a8 s1T7 = tyzo
(lltl = a9289 S99 = t2$3
can be replaced by
a=(ays1).1 Lo = (s]'t)zy
(a181)(s7 1) = azss S99 = tox3

where s7't; ¢ G since t; ¢ G. A similar construction can be made if ¢, € G
and so we see that the original scheme can be replaced by one over I' and so
a®@z=ad z' iIn ARn X as required. [

Theorem 2.4.2. Let S be as above and let f : X — Y be a left S-monomorphism
and A a right S-act. If 1@ f : A@n X — A®n Y is one-to-one then so is
1®f:A®5X——>A®5Y.
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Proof. Suppose that a ® f(z) = ¢’ ® f(2') in A ®s Y. By Lemma 2.4.1, either
a® f(z) =ad' ® f(2') in AQn Y or there exists ¢ € G with d' = ag,gf(a') = f().
In this latter case, gr' =z andsoa@r=a®gr' =ag® 2’ =ad' @ 2' in A ®s X
as required. In the former case, a @z =a' ® 2’ in A®n X and hencein A @5 X
as required. [

Theorem 2.4.3. If A is a right S-act and if A is (weakly) flat as a right I'-act
then it s (weakly) flat as a right S-act.

Proof. The result for the flatness case follows directly from Theorem 2.4.2.

Suppose then that A is weakly flat as an I'-act and let J be a left ideal of S.
Notice that either J = S or J is an ideal of I'. Suppose that a,a’ € 4, j,5' € J
and a® 7 = d ®@j'in A®s S. If J = S then clearly there is nothing to do.
Otherwise, we see that A @5 J — A @g I' is one-to-one by Theorem 2.4.2. Now
it is easy to see that a ® j = o' ® 7' in A ®s I' and hence in A ®g J as required.m

Corollary 2.4.4. If all right I'-acts are (weakly) flat, then all right S-acts are
(weakly) flat.

Proof. Suppose that all right I'-acts are (weakly) flat and let A be a right S-act.
Since A is a right I'-act, then by assumption it is a (weakly) flat right I'-act.
Consequently, by Theorem 2.4.3, A is a (weakly) flat right S-act. =

Theorem 2.4.5. Let A be a right S-act. If A satisfies condition (P) as a right
I'-act, then it satisfies condition (P) as a Tight S-act.

Proof. Suppose that A satisfies condition (P) as a right I'-act and let au = a'v,
a,a’ € A, u,v € S. Since S = G U I, then there are two cases as follows:

Case 1. At least one of u or v belongs to G. If for example u € G, then au = a'v
implies that a = a'vu™!. Since ' = 'l and (vu™!')u = 1v, then A satisfies

condition (P).

Case 2. u,v € I. Then u,v € I'. Since A satisfies condition (P) as a right I'-act,
then au = a'v implies that there exist o'’ € A, s,t € I' such that a = a"s, @’ = a''t
and su = tv. But s,t € S and so A satisfies condition (P) as a right S-act. =

Corollary 2.4.6. If all right I'-acts satisfy condition (P), then all right S-acts
satisfy condition (P).

Proof. Suppose that all right I'-acts satisfy condition (P) and let A be a right
S-act. Since A is a right I'-act, then by assumption it satisfies condition (P) as a
right I'-act. Consequently, by Theorem 2.4.5, A satisfies condition (P) as a right
S-act. [
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Now we show for monoids of the form S = G U I where G is a group and I
is an ideal that condition (P) of all cyclic right S-acts can be deduced from the
condition (P) of all cyclic right I'-acts. First of all we need the following lemma.

Lemma 2.4.7. Let S be a monoid and I an ideal of S. Let p be a right congruence

on S and let py = {(a,b) € p | a,b € I'}. Then p1 is a right congruence on I'
(I =T1U{1}).

Proof. It is obvious that p; is an equivalence relation on I'. Let (a,b) € p1, = €
I'. Since (a,b) € p and p is a right congruence on S, then (a,b)z = (ax,bz) € p.
Since I is an ideal, then az,bz € I' and so (a,b)z = (az,bzx) € p1. [

Lemma 2.4.8. Let S = G U I be a monoid such that G is a group and I is an
ideal of S. Let p be a right congruence on S and py as in Lemma 2.4.7. If I'/py
satisfies condition (P) as an I'-act, then S/p satisfies condition (P) as an S-act.

Proof. Let u p v with u,v € S, then there are two cases that can arise:

Case 1. At least one of u or v belongs to G. For example if u € G, then 1 p vu™!
and (vu ™Y u =1v. f s=wvu™!, t =1, thensplptandsu=tv.

Case 2. u,v € I C I'. Then u p v implies that u p; v. Since I'/p; satisfies
condition (P), then there exist s,t € I' C S such that s p; 1 p; t and su = tv.
Since p; = p|n, then s p 1 p t. ]

Theorem 2.4.9. Let S = G U I be a monoid such that G is a group and I is
an ideal of S. If all cyclic right I'-acts satisfy condition (P), then all cyclic right
S-acts satisfy condition (P).

Proof. Let S/p be a cyclic right S-act for a right congruence p on S. Then I'/p;
is a cyclic right I'-act where p; is the right congruence on I' as in Lemma 2.4.7,
and so by assumption I'/p; satisfies condition (P) on I'. Then by Lemma 2.4.8,
S/ p satisfies condition (P) on S. [

Corollary 2.4.10. Let S = GU{0} be a monoid such that G is a group. Then all
cyclic Tight S-acts satisfy condition (P).

Proof. If I' = {0,1}, then by Theorem 2.2.19, all cyclic right I'-acts are strongly
flat and so all cyclic right I'-acts satisfy condition (P). Thus by Theorem 2.4.9,
all cyclic right S-acts satisfy condition (P). (]

By the following theorem it can be seen that for monoids with the structure men-
tioned above and with the property that Vg € G,Vz € I, gr = z, if p 1s a right
congruence on S and p; the right congruence on I' as in Lemma 2.4.7, then S/p
satisfies condition (P) if and only if I'/p; satisfies condition (P).
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Lemma 2.4.11. Let S = G U I be a monoid such that G is a group, I is an ideal
of S and Vg € G,Vz € I, gx = x. Let p be a right congruence on S and p; as in
Lemma 2.4.7. If S/p satisfies condition (P), then I'/py satisfies condition (P).

Proof. Let u py v for u,v € I'. If at least one of u or v is 1, for example if v = 1,
then w p; 1. If s =1, t = u, then s,t € I', s p1 1 p1 t and su = tv. Now we
suppose that u,v € I. Then u p v and so there exist s,t € S suchthat s p1 pt
and su = tv. Now there are three cases that can arise:

Case 1. s,t € I C I'. Then s py 1 p; t and su = tv.

Case 2. s € G,t € I. Then su = tv implies that v = (s71¢)v. Since I is an
ideal, then s~!t € I C I'. On the other hand s p 1 implies that s~ p 1 and so
s oprtp 1. =1, ¢ =571, then s’ p; 1 py ' and s'u = t'v.

Case 3. s,t € G. Then su = tvimpliesthat u = v. If s’ =¢ =1, thens' p; 1 p1 ¥/
and s'u = t'v. ]

From Lemma 2.4.8, and Lemma 2.4.11, we have

Theorem 2.4.12. Let S = G U I be a monoid such that G 1s a group, I is an
ideal of S and Vg € G,Vx € I, gr = z. Let p be a right congruence on S and py
as in Lemma 2.4.7. Then S/p satisfies condition (P) if and only if I'/py satisfies
condition (P).

By what follows we show for monoids with the structure given in Theorem 2.4.12,
and with the extra property that Vg € G,Vx € I, g = z, that condition (P) of all
cyclic right S-acts implies condition (P) of all cyclic right I'-acts. As a result for
these monoids all cyclic right I'-acts satisfy condition (P) if and only if all cyclic
right S-acts satisfy condition (P).

Lemma 2.4.13. Let S = G U I be a monoid such that G is a group, I is an
ideal of S and Vg € G,¥z € I, xg = z. Let py be a right congruence on I'. If
pr ={(a,b) € p1 | a,b € I}. Then p= prUlg is a right congruence on S.

Proof. It is obvious that p is an equivalence relation on S. Let (a,b) € p, s € S.
Then either (a,b) € pr or (a,b) € 1.

If (a,b) € pr, then (a,b) € p; and so a,b € I. Then there are two cases as follows:

Case 1. s € I C I'. Then (a,b)s = (as,bs) € p;. But as,bs € I and so
(a,b)s € pr C p.

Case 2. s € G. Then (a,b)s = (as,bs) = (a,b) € p;r C p.

If (a,b) € 1g, then a = b € G and so (a,b)s = (a,a)s = (as,as) € p. Thus p is a
right congruence on S as required. [
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Theorem 2.4.14. Let S = G U I be a monoid such that G is a group, I is an
ideal of S and Vg € G,Vz € I, g = . Let p1 be a right congruence on I' and p
the right congruence on S as in Lemma 2.4.13. If S/p satisfies condition (P) on
S, then I'/py satisfies condition (P) on I.

Proof. Let u p1 v for u,v € I'. Then there are four cases that can arise:

Case 1. u,v € I. Then u p; v implies that u p v. Since S/p satisfies condition
(P), then there exist s,¢ € S such that s p 1 p ¢t and su = tv. Since s p 1 and
1 € G, then by definition of p, s = 1. Similarly, + = 1. Consequently, v = v. If
s'=t =1, then s’ p; 1 p; ¢ and s'u = t'v.

Case2. uc€l,v=1 Thenup; 1. lfs=1,t =u,thens,t € I' andsos p; 1 py t.
Also su = tv.

Case 3. u=1,v € I. Tt is similar to case 2.
Case 4. u=v=1. If s=t=1, then s p; 1 p; t and su = tv. [
Theorem 2.4.15. Let S = G U I be a monoid such that G is a group, I is an

ideal of S and Vg € G,¥Vx € I, xg = x. If all cyclic right S-acts satisfy condition
(P), then all cyclic right I'-acts satisfy condition (P).

Proof. Let py be a right congruence on I'. Then by Lemma 2.4.13, p = pyUlg is
a right congruence on S and so by assumption S/p satisfies condition (P). Then
by Theorem 2.4.14, I' /p; satisfies condition (P) on I'. m

Now from Theorem 2.4.9, and Theorem 2.4.15, we have the following
Theorem 2.4.16. Let S = G U I be a monoid such that G is a group, I is an ideal

of S and Vg € G,N¥x € I, xg = x. Then all cyclic right I'-acts satisfy condition
(P) iof and only if all cyclic right S-acts satisfy condition (P).

Here we show for monoids of the form S = G U I where G is a group and [ is an
ideal that weak flatness of cyclic right S-acts can also be deduced from the weak
flatness of cyclic right I'-acts.

Lemma 2.4.17. Let S = G U I be a monoid such that G is a group and I is an
ideal of S. Let p be a Tight congruence on S and py the right congruence on I' as
in Lemma 2.4.7. If I'/p1 1s a weakly flat right I'-act, then S/p is a weakly flat
right S-act.

Proof. Let u p v with u,v € S. Then there are two cases that can arise:

Case 1. u,v € I C I'. Then u p; v and so there exist s, € I' such that
s(pr V. Au)l(pr V Av)t and su = tv. Since s(p1 V Au)l, then there exist
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81,82,...,82,—1 € I' such that
s p1 s1(Au)sz p1 83 ... s2p—1(Au)l.
Then by definition of p;, we have
s psi(Au)sy p s3...52n—1(Au)l or s(p V Au)l.
Similarly, t(p V Av)l.

Case 2. At least one of u or v belongs to G, for example if u € G, then vu™! p 1
and (vu™')u = lv. If s = vu™1,t = 1, then s p 1(Au)l or s(p V Au)l. Also
t(p V Av)l and su = to. =

Theorem 2.4.18. Let S = G U I be a monoid such that G is a group and I is
an ideal of S. If all cyclic right I'-acts are weakly flat, then all cyclic right S-acts
are weakly flat.

Proof. Let S/p be a cyclic right S-act for a right congruence p on S. Let p; be
the right congruence on I' as in Lemma 2.4.7, then I'/p; is a cyclic right I'-act
and so by assumption it is weakly flat. Then by Lemma 2.4.17, S/p is weakly flat.

By the following it can be seen that for monoids with the structure mentioned in
Theorem 2.4.18, and with the extra property that Vg € G,V € I, gz = z, if p
is a right congruence on S and p; the right congruence on I' as in Lemma 2.4.7,
then S/p is weakly flat if and only if I'/p; is weakly flat. It can also be seen that
for these monoids, if all weakly flat cyclic right I'-acts satisfy condition (P), then
all weakly flat cyclic right S-acts satisfy condition (P).

Theorem 2.4.19. Let S = G U I be a monoid such that G is a group, I is an
tdeal of S and Vg € G,¥z € I, gz = x. Let p be a right congruence on S and py
the right congruence on I' as in Lemma 2.4.7. If S/p is weakly flat, then I'/py 1is
weakly flat.

Proof. Let u p; v with u,v € I'. If at least one of u or v is 1, for example if
v=1,thenu p; 1. If s =1,¢t = u, then su=1tv and s(p1 V Au)l(py V Al).

Suppose then that w,v € I. Since u p; v, then u p v and so there exist s,t € S
such that s(p V Au)l(p V Av)t and su = tv

If s,t € G, then su = tv implies that u = v. Thus lu = lv and 1(p1 V Au)l(p1 V
Av)l.

Now we show that if s € I, then either s(p1 V Au)l or there exists s' € I C I*
such that s'u = su, s’ p; 1 and so s'(p1 V Au)l.
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Since s(p V Au)l, then there exist s1,$2,...,52,—1 € S such that

S p Sl(AU)Sz oo S2n—2 P Szn_l(AU)Szn = 1.

If s; € Iforevery 1 <i¢<2n—1,thens; € I' andso s(p1 V Au)l.

Suppose then that there exists 1 < ¢ < 2n — 1 such that s; € G and that ¢ is the
smallest such numbers. Then for every j < ¢, s; € I. Now there are two cases as

follows:

Case 1.

Case 2.

(b)

¢ = 1. Then s p s; implies that ss; 7! p 1. Since ss;~! € I, then
88171 p1 1. Also s; 7! € G implies that s; "'u = v and so

su = s(s; 'u) = (s51 Hu.
If 57! = s, then su = s'u and s' p; 1.

2 <1 <2n —1. Then either s; p sit+1 or s;(Au)s;qq.

If s;(Au)sit1, then s;_, p s;. Since s; € G, s;—1 € I, then 8,15, €

I and s;_1s;7! p 1. Thus s;_15;"! p; 1. Also s;7! € G implies that

Sl‘_l

u = u and so
(Si—l Si_l)u = si_l(si_lu) = §;-1U.
Since s;—2(Au)s;—y, then

Si_oU = S;_q1U = (si_lsi—l)u or si_z(Au)si_lsi'l,

and so
s p si(Au)sy. .. si_z(Au)si_lsi_l p1 1(Au)l.

Since s,81,82,...,8-2,5_18; } € I, then
5 p1 s1(Au)sy ... s o(Au)si—15; 1 py 1(Au)l or s(p; V Au)l.
If 5; p Si41, then s;_1(Au)s; or s;—1u = s;u. Also s; € G implies that
s;u = u and s0 s;—ju = s;u = u or $;—1(Au)l. Then we have
S P S1y.-y8ic2 p si—1(Au)l,
such that s,s1,32,...,5,-1 € I, and so
S p181...8i—2 p1 si—1(Au)l or s(p1 V Au)l.
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Similarly, if ¢ € I, then ¢(p V Awv)l implies that either t(p1 V Av)l or there
exists ¢’ € I' such that t'(p; V Av)l and t'v = tv. Now if s, € I, then we are
done.

If s € I, t € G, then tv = v. Since s € I, then either s(p; V Au)l and so
su = tv = v or there exists s’ € I C I' such that s'u = su = tv = v and
s'(p1 V Au)l. Since 1(p; V Av)l, then we are done. Similarlyif s€ G,t €. =

Now from Lemma 2.4.17, and Theorem 2.4.19, we have

Theorem 2.4.20. Let S = G U I be a monoid such that G is a group, I is an
ideal of S and Vg € G,Vx € I, gz = z. Let p be a right congruence on S and let

p1 be the right congruence on I' as in Lemma 2.4.7. Then S/p is weakly flat if
and only if I'/py is weakly flat.

Theorem 2.4.21. Let S = G U I be a monoid such that G is a group, I 1s an
ideal of S and Vg € G,Vz € I, gz = x. If all weakly flat cyclic right I'-acts satisfy
condition (P), then all weakly flat cyclic right S-acts satisfy condition (P).

Proof. Let p be a right congruence on S and p; the right congruence on I' as in
Lemma 2.4.7. Suppose that S/p is a weakly flat right S-act. Then by Theorem
2.4.19, I' / p; is a weakly flat cyclic right I'-act and so by assumption I'/p; satisfies
condition (P) on I'. Then by Lemma 2.4.8, S/p satisfies condition (P) on S. =

Corollary 2.4.22. Let S = GUN be a monoid such that G s a group, N s right
nil and Vg € G,Vx € N, gx = z, then all weakly flat cyclic right S-acts satisfy
condition (P).

Proof. By Theorem 2.3.28, all weakly flat cyclic right N!-acts satisfy condition
(P) and so by Theorem 2.4.21, all weakly flat cyclic right S-acts satisfy condition
(P). |

Corollary 2.4.23. Let S = GUZ be a monoid such that G 13 a group and Z s the
set of all right zero elements of S. Then all weakly flat cyclic right S-acts satisfy
condition (P).

Proof. Since Vg € G,Vz € Z, g = x and also Z is right nil, then by Corollary
2.4.22, all weakly flat cyclic right S-acts satisfy condition (P). |

By the following it can be seen that for monoids with the structure mentioned
above and with the property that V¢ € G,Va € I, g = z, weak flatness of all
cyclic right S-acts implies weak flatness of all cyclic right I'-acts. Consequently,
for this types of monoid all cyclic right S-acts are weakly flat if and only if all
cyclic right I'-acts are weakly flat.

Lemma 2.4.24. Let S = G U I be a monoid such that G 1s a group, I is an ideal
of S and Vg € G,Yx € I, xg = x. Let py be a right congruence on I' and let p be
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the right congruence on S as in Lemma 2.4.13. If s(p V Au)l for s,u € I', then
s(p1 V Au)l.

Proof. If s =1, then 1 p; 1(Au)l or 1(p; V Au)l. Thus we suppose that s # 1.
Then u # 1, otherwise s(p V Al)l or s p 1 and so by definition of p, s = 1 which
is a contradiction. Hence, we suppose that s(p V Au)l and that s,u € I. Then
there exist s1,89,...,82,-1 € 5 such that

s psi(Au)sy ... san—1(Au)l. ()
We claim that s; € I for 1 < ¢ <2n — 1, and so
s p1 s1(Au)sy ... s2p—1(Au)l or s(p1 V Au)l.

Otherwise, there exists 1 <2 < 2n — 1 such that s; € G. We can suppose that the
sequence (%) is of minimal length and also we define s9,, = 1. Then there are two
cases that can arise:

Case 1. ¢ = 2k for 1 < k < n—1. Then s; p sit+1 and so 3; = s;4+1. Thus
Si—1(Au)s; = siy1(Au)siyz or $;—1(Au)s;+2 and so we have the shorter sequence

s ps1(Au)sy...8i1(Au)Siza p Sig3...S2n—1(Au)l,
which is a contradiction.

Case 2. i =2k —1for 1 <k <n. Then s;(Au)sit1. If k =1, then i =1 and so
s1 € G. Since s p 31, then by definition of p, s = s1 € G which is a contradiction.
Thus we can suppose that 2 < k < n. Since s;_1 p s;, then s, = s;. But
si—2(Au)s;—1 and so s;—z(Au)s;y1. Consequently, we have the shorter sequence

S p Sl(Au)Sz e Si_Q(AU)Si+1 P Si4+2-.. 32n_1(Au)1,
which is also a contradiction. ]

Theorem 2.4.25. Let S = G U I be a monoid such that G 13 a group, I is an
ideal of S and Vg € G,Vz € I, zg = x. Let p1 be a right congruence on I' and p
the right congruence on S as in Lemma 2.4.13. If S/p is weakly flat, then I'/p;
15 weakly flat.

Proof. Let u p; v for u,v € I''. Then there are four cases that can arise:
Case 1. u=v=1.If s =t =1, then s(p1 V Au)l, t(p1 V Av)l and su = tv.

Case 2. u € I,v =1. Thenwu p; 1. f s =1,t = u, then s(p; V Au)l, and
su =tv. Also u p; 1(Au)l or t(p1 V Au)l.

Case 3. u = 1,v € [ is similar to case 2.
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Case 4. u,v € I. Then u p v and so by assumption there exist s,t € S such that
s(p V Au)l, t(p V Av)l and su = tv. Now there are four possibilities as follows:

(a) s,t € I CI'. Then by Lemma 2.4.24, s(p1 V Au)l, and t(p; V Av)l.
(b) s € G,t € I. Again by Lemma 2.4.24, ¢t(p; V Av)l and from su = tv we
have u = s™tv. If ' = 1,¢ = 571, then s'(py V Au)l and s'u = t'v.

Now we show that t'(p1 V Awv)l. Since s(p V Au)l, then there exist
81,82, ...,82n—1 € S such that

S p 81(AU,)82 p S3... Sgn_l(AU)l. (*)
Then u = s~ 'tv implies that
s p sy (AsT ) sq p s3...s9m_1 (As™w)l,

or
s p s1,818 1t (Av) 528 1t,89 p 83,...,89p—187 1 (Av) s

Since s € G, then s p s; implies that 1 p s157! and so t p sy57 1. Also for
every 2 <1 < 2n —2,if s; p s;11, then s;871t p s;1157 !t and so we have

tpsisTiH (Av) s9s7M p szsTHE. L san_18T 1t (Av) 5T
Since t € I, then s;571t € I for every 1 <i < 2n — 1, and so we have
t ;1 sls_lt(Av)323_1t...32n_13_1t(Av)3_1t or t(py V Av)sTlt.
But t(p1 V Av)l and so s71t(py V Av)l. Thust'(p1 V Av)l as required.
(¢c) s € I,t € G is similar to part (b).
(d) s,t € G. Then in sequence () the following possibilities can arise:

1. s; € G for every 2 < ¢ < 2n — 2 such that s; p s;41. Then s = s1,s81u =
82U, 82 = 83,...,82n,—1u = u and SO su = u.

2. There exists 2 <1 < 2n — 2 such that s; p s;41 and s; € I. We can suppose
that i is the smallest one and so s; € G for every j < ¢ such that s; p s;41.
Thus s; = s;41 for every j < ¢, such that s; p s;41. Also s = s; and so

s p s1(Au)sy ... (Au)s;,
implies that su = s;u. Since

si p si1(Au). .. s2n—1(Au)l,
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then s;(p V Au)l, and s;,u € I implies then by Lemma 2.4.24, that

si(p1 V. Au)l.

Similarly it can be seen that either tv = v, or there exists ¢; € I' such that

tv = t;v and tj(p1 V Av)l and so we are done. [
Theorem 2.4.26. Let S = G U I be a monoid such that G is a group, I is an

ideal of S and ¥g € G,VNx € I, xg = z. If all cyclic right S-acts are weakly flat,
then all cyclic Tight I'-acts are weakly flat.

Proof. Let I'/p; be a cyclic right I'-act for a right congruence p; on I'. Let
p be the right congruence on S as in Lemma 2.4.13. Then by assumption S/p is
weakly flat and so by Theorem 2.4.25, I' /p; is weakly flat. [

From Theorem 2.4.18, and Theorem 2.4.26, we have

Theorem 2.4.27. Let S = G U I be a monoid such that G is a group, I is an
ideal of S and Vg € G,¥z € I, 2g = z. Then all cyclic right S-acts are weakly
flat if and only if all cyclic right I'-acts are weakly flat.

Now in a similar way we show for monoids S = G U I with G a group and I an
ideal, flatness of all cyclic right I'-acts implies flatness of all cyclic right S-acts.
First of all we need some technical lemmas.

Lemma 2.4.28. Let S be a monoid and A a left congruence on S. If x(Au)y and
u A v with z,y,u,v € S, then z(Av)y.

Proof. Suppose that (Au)y and that u A v. Then yu A yv, xu A zv and zu A yu.
Thus zv A zu A yu A yv and so zv A yv or z(Av) y as required. [

Lemma 2.4.29. Let S be a monoid and let p, A be right and left congruences
on S respectively. Let uw A v with u,v € S. If a(p V Au)y with z,y € S, then

z(p V Av)y.

Proof. Let z(p V Au)y, then there exist z1,22,...,22,—1 € S such that
z pxi(Au)eg ... zan—1{Au)y.

Since z;(Au)zit1,t =1,3,...,2n—1 and v A v, then by Lemma 2.4.28, z;(A\v)ziy1,
t=1,3,...,2n — 1 and so

zpa1(Av)zy ... zap—1(Av)y or z(p V vy
as required. .

Lemma 2.4.30. Let S be a monoid and let p, \ be right and left congruences on
S respectively. If t(p V Asu)l with s,t,u € S, then ts(p V Au)s.
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Proof. Let t(p V Asu)l. Then there exist t;,q,...,t2,—1 € S such that

tpti(Asu)ty ... tap_1(Asu)l.

Then
tpty, tisu A tasu,...,tan—18u A su,
and so
ts p tis(Au)tas. .. tap_1s(Au)s or ts(p V Au)s,
as required. [

Corollary 2.4.31. Let S be a monoid and let p, A be right and left congruences on
S respectwely. If s(p V Au)l and t(p V Asu)l with s,t,u € S, then ts(p V Au)l.

Proof. Since t(p V Asu)l, then by Lemma 2.4.30, ts(p V Au)s. But by assumption
s(p V Au)l and so ts(p V Au)l as required. ]

Similar to Lemma 2.4.7 we have the following lemma.

Lemma 2.4.32. Let S = G U I be a monoid such that G is a group and I 15 an
ideal of S. Let X\ be a left congruences on S. If \1 = {(a,b) € X\ | a,b € I'}, then
A1 is a left congruence on I' (I' =T U {1}).

Lemma 2.4.33. Let S = G U I be a monoid such that G is a group and I 1s an
ideal of S. Let p, A be right and left congruences on S respectively. If for u,v € S
there exist uy, Uz, ..., Uan—1 €5 such that u p uy A ug... ugp—1 A v and that this
sequence 18 of minimal length (n > 2), then u; € I for 2 << 2n — 2.

Proof. Suppose that there exists 2 <1 < 2n — 2 such that u; € G. Then either
1=2kforl<k<n—-—lori=2k—-1for2<k<n-1.

1

In the former case since usg p Uzk+1, then 1 p uggiquzr™ and so

-1
U2k—1 P U2k41U2Kk  U2k-1-

Also uggp_1 A ugk implies that uop 1tk uok—1 A uggai. Hence,

Ugk—1 P U2k4+1U2k " U2k—1 A UZk+1-
Since uggk+1 A Ugky2, then

-1

U2k—1 P U2k4-1U2k ~ U2k42 A U2k+2,

need to note that we define us, = v. Thus the sequence
U p Uy A U2 ... U2k A U2k P U2k+1 /\ U2k+2 .- U2n—~1 Av
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can be replaced by the shorter sequence

-1
U P UL AU Uy P UDkp1U2k  U2k—1 A U2k42 - - UZn—1 A U,
which 1s a contradiction.

In the latter case, then wop—1 A ugg implies

-1
Ugk—2 A Ugk—2U2k—1 ~ U2k.

Also ugk—2 p uzk—1 implies that usg guor—17'p 1 and 50 Ugk—ousk_1 U2k p U2k-

Since ugk p Uzk41, then
A -1
Ugk—2 A Ugk—2U2k—1 “U2k P U2k+1-
Hence, the sequence
U p Uy A U ... U2k—2 P U2k—1 A U2k P U2k+1 A U2k+2 ... U2n—1 A v,

can be replaced by the shorter sequence

-1
U P UL A UL UZR—2 N U2k—2U2k—1 U2k P U2k+1 A U2k42 ... Un—1 A U,
which is also a contradiction. [

Lemma 2.4.34. Let S = G U I be a monoid such that G is a group and I is
an ideal of S. Let p,\ be right and left congruences on S respectively, and let
U P UL AU U2p—1 AU with u, Uy, ..., Usp—1 € S. If n > 2, and either u; € G
or ugn—1 € G, then the sequence u p uy X ug...Uzn—1 A v can be replaced either
by

upu A uuy "ty pus.. . Ugn_q A v,

or
-1
U P U AU...Usp—g A U2p_2U2p—1 U PV A D,

respectively.

Proof. First of all we suppose that u; € G. Then u p u; implies that uu; ! p 1

and so uu; ‘ug p us. Also uy A up implies that 1 A u; " lus and so u A uuy ~lus.

Since ug p ug, then
upu A\ uug tuy p UG ... Uzp—1 AV, (1)
as required.
If ugpn—1 € G, then usn_2 p uzn—1 implies that usp_gu2,—171 p 1 and so
Uzn—2Usn—1 10 p V.
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Also ugn 1 A v implies that 1 X usp,—1tv and so
Uzn—2 A U2p—2Uzn—1 ‘0,
Since %g5,—-3 A Ug,—2, then
UP UL AU Uzpeg A Usp—2Uzn—1 0 p VU A D, (2)
as required [

Corollary 2.4.35. If in Lemma 2.4.34, the sequence u p ug A uy...uzp—1 A U 18
of minimal length (n > 2), then uu; ™!

-1
Uy, Ugp—2Uzn—1 0 € L.

Proof. By Lemma 2.4.33, u; € I for 2 < ¢ < 2n — 2, and s0 us,usn—o € I. Since
I is an ideal of S, then wu; ~'ug, usp_2uzn—1 v € I as required. ]

Lemma 2.4.36. Let S = G U I be a monoid such that G is a group and I is
an ideal of S. Let p, A be right and left congruences on S respectively such that
upug Ao with wy,ug,v € S, If uy € G, then the sequence u p uy A v can be
replaced by u p u A uuy " 'v pv A w.

Proof. Since u; € G, then u p vy implies that uu; ™! p 1 and so uu; ~tv p v. Also
u1 A v implies that 1 A u; 7w and so u A uu;~tv. Hence,

upuluu o po Ao

as required. [

Theorem 2.4.37. Let S = G U I be a monoid with G a group and I an ideal
of S. Let p be a right congruence on S and py the right congruence on I' as in
Lemma 2.4.7. If I'/py is flat, then S/p is flat.

Proof. Let A be a left congruence on S and Ay the left congruence on I' as in
Lemma 2.4.32. Let u(p V A)v with u,v € S. Then there exist u1,us,...,uzp—1 € S
such that

UPUL AU .. Ugp—2 P U2p—1 A V.

Suppose first of all that the sequence above has length n = 1. Then we have
u p uy A v. Now there are three cases that can arise as follows:

Case 1. u,v € I. Then there are two possibilities for u;:
1. uy € I'. Since u,v € I C I', then u p; us A1 voru(p; V A1)v. Since I'/p;
is flat, then there exist s,t € I' C S such that su A; tv, s(p1 V Aju)l and
t(pr V M)l . Thus su X tv, s(p V Au)l and t(p V Av)l.
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2. 1+ u; € G. Then by Lemma 2.4.36, the sequence u p u; A v can be replaced
by the sequence
upuduu; v pv Ao,

Since u € I, then uu;~'v € I and so we have
upru A uug o pp v Ay voru(pr VoA .

Then as in part 1, there exist s,¢ € I' C S such that su A tv, s(p V Au)l

and t(p V Av)l.
Case 2. u € G. Then u p vy implies that 1 p uyu=?!. If s = u;u™?!, + = 1, then

su=(uiu Hu=1u; A v=tv.
Also 1(p V Av)l and
s=uut p1(du)lors(p V \u)l.
Case 3. v € G. If u € G, then by case 2, we are done. Thus we assume that
u ¢ G. Now there are two possibilities as follows:
1. uy € I. Since u € I, then
u p1 ur A ug or u(pr Vo Ap)uq,

and so there exist s,t € I' C § such that su A tus, s(p V Au)l and
t(p V Auz)l. Since u; A v, then tu; A tv and so su A tv. Also by Lemma
2.4.29,t(p V Adv)l.

2. u; € G. Then u; A v implies that 1 X\ u;7'v and so u A\ wu; " tv. If s =

1, t = uu; ™!, then
su=u X (uu; "o = to.

Also 1(p V Au)l and u p uy implies that uuy ™! p 1 and so
t=wuuy; ™t p1(dv)lort(p V \v)l.
Now we suppose that the sequence
UPpUL AU .. U1 A, (%)

is of minimal length n > 2. Then by Lemma 2.4.33, u; € I for 2 < ¢ < 2n — 2.
Now there are four cases that can arise as follows:

Case A. u,v € I. Then we consider the following possibilities:
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1. ui,u2n—1 € I. Then
U PL UL AL U ..Uz AL D Or u(pr V Aq),
and so there exist s,t € I' C S such that su A tv, s(p V Au)l and t(p V \v)l.

2. u1 € G or uzp—1 € G. Then by Lemma 2.4.34, and Corollary 2.4.35, the
sequence (%) can be replaced either by sequence (1) or sequence (2) in Lemma
2.4.34, which in both cases all elements are in I and so in a similar way as

in part 1 of this case we are done.

Case B.u € G,v € I. If ugp,—1 € G, then by Lemma 2.4.34, and Corollary 2.4.35,
the sequence (x) can be replaced by the sequence

UPUL AU, .. Usp—3 AW POV AD,

with w,v € I. Thus we can suppose without losse of generality, that us,—1 € I.
Then we have the sequence

Uy P U3 ... Up—2 P U2n—1 A U,

with ug,us,...,u2n,—1,v € I and so by [case A, 1] there exist s';t € S such that
s'ug A tv, 8'(p V Auz)l and t(p V Av)l. If 8 = wyju™?, then

s"u = (uju U = u; A ug,

and so

s's"u = s"uy X s'ug A tvor (s's")u A to.

Since s'(p V Auz)l and s"u X ug, then by Lemma 2.4.29, s'(p V As"u)l. Since
u p uy, then 1 p uyu~! and so

s" =uuT p1(Au)lor s"(p V Au)l.

Since s"(p V Au)l and s'(p V As"u)l, then by Corollary 2.4.31, s's"(p vV Au)l.
If s's" = s, then su A tv, s(p V Au)l and t(p V Av)l.

Case C.u ¢ I,v € G. If u; € G, then by Lemma 2.4.34, and Corollary 2.4.35,
the sequence
UpuUL AU .. U1 A,

can be replaced by the sequence
upu A w P U3 ... U2p—1 )\U,
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such that w € I and so we can consider the sequence
VPV AUy .. U3 P W AU,
with u,w,us € I. Now in the sequence
Udn—1 P U2p—2...U2 A U3 P W A U, (%)

either ugp,—1 € G (in which case we have a situation as in case B) or ug,—1 € [
(in which case we have a situation as in case A) there exist s,¢ € S such that
tugn—1 A su, t(p V Augn—1)l and s(p V Au)l. Since v A us,—1, then tv A tus,—;
and so su A tv. Also by Lemma 2.4.29, t(p V Augp—1)1 implies that t(p V Av)l.

If uy; € I, then we consider the sequence
U2pn—1 P U2n—-2...U2Q A Uy pu A u,

which has the same situation as the sequence (%) and so by the same argument
there exist s, € S such that su A tv, s(p V Au)l and t(p V Av)l.

Case D. u,v € G. If we consider the sequence
U2 pUS ... U2pn—2 P U2n—1 A v,

then us € I,v € G and so by case C, there exist s',t € S such that s'u; A tv,
s'(p V Auz)l and t(p V Av)l. If 8" = wyu™?!, then by the same argument as with
case B, it can be seen that su A tv, s(p V Au)l and t(p V Av)l where s = s's".

Theorem 2.4.38. Let S = G U I be a monoid such that G is a group and I is an
ideal of S. If all cyclic right I'-acts are flat then all cyclic right S-acts are flat.

Proof. Let S/p be a cyclic right S-act for a right congruence p on S and let py
be the right congruence on I' as in Lemma 2.4.7. Then by assumption I'/p; is
flat and so by Theorem 2.4.37, S/p is flat. |

As we saw for monoids of the form § = G U I and with the property that
Vg € G,Vz € I, gx = z, if all weakly flat cyclic right I'-acts satisfy condition (P),
then all weakly flat cyclic right S-acts satisfy condition (P). Now for this type of
monoid we first of all show that if p is a right congruence on S and p; the right
congruence on I' as in Lemma 2.4.7, then S/p is flat if and only if I'/p; is flat.
Then by using this property and results from the last two parts we show that if
all flat cyclic right I'-acts satisfy condition (P), then all flat cyclic right S-acts
satisfy condition (P). Moreover, if all weakly flat cyclic right I'-acts are flat, then
all weakly flat cyclic right S-acts are flat.
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Lemma 2.4.39. Let S = G U I be a monoid such that G is a group, I is an
ideal of S and Vg € G,Vx € I, gx = z. Let \' be a left congruence on I' and let
Ar=A{(a,b) e N |a,beI}. If X\ =A;Ulg, then X is a left congruence on S.

Proof. It is obvious that A is an equivalence relation on S. Let (z,y) € A\,s € S.
Then either (z,y) € 1g or (z,y) € As.

If (z,y) € 1g, then z = y and so s(z,y) = s(z,z) = (sx,sz) € A.

If (z,y) € Az, then (z,y) € A and z,y € I. Now there are two cases that can
arise:

Case 1. s € I C I'. Then s(z,y) = (sz,sy) € \'. But sz,sy € I and so.
s(z,y) = (sz,sy) € Ay C A,

Case 2. s € G. Then s(z,y) = (sz,sy) = (z,y) € Ay T A\ |

Lemma 2.4.40. Let S = G U I be a monoid such that G is a group, I is an ideal
of S and Vg € G,Vx € I, gr = x. Let p be a right congruence on S and py the
right congruence on I' as in Lemma 2.4.7. Let A1 be a left congruence on I and
A the left congruence on S as in Lemma 2.4.39. Ift(p V Au)l for t,u € I', then
t{p1 V Au)l.

Proof. Let t(p V Au)lfort,u € I'. If t =1, then 1 p; 1(Alu)l or 1(p; V Mu)l.
Thus from now on we suppose that ¢t € I.

Let t(p V Au)lfort € I,u € I'. Then there exist t1,t2,...,t2n,—1 € S such that

1 P t1()\u)t2 o ton—o P tgn_l(Au)l. (*)

Then either n = 1 or n > 2. At first we suppose that n = 1. Then we have
t p t1(Au)l. Since u € I', then there are two cases as follows:

Case 1. u € I. Then there are two possibilities for ¢; as follows:

1. t; € I. Since t € I, then t py t; and t;(Au)l implies that tju A u. Since
tiu,u € I, then tju A w or #1(Alw)l. Thust py ti(Atu)l or t(py vV Alu)l.

2. t; € G. Then t p t; implies that t£;7! p 1. Since t € I, then tt;, "' € [ C I'!
and so tt; ! p; 1. Since ;7! € G, then by assumption t; “'u = u and so
tt;7lu = tu. But tu € I and so tt; 7 1u A tu or tt; 71 (Au)t. Hence,

t p1 t(Nudtt ! pr 1A u)l or t(pr VM)l

Case 2. u=1. Thent pt; A 1. But#; A 1 impliesthat {{ =1 andsot p; 1 Al 1
ort(p1 V A)1.
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Now we suppose that the sequence () is of minimal length n > 2. If ¢; € [ for
1<:<2n -1, then

t P1 tl()\lu)tg .. .tgn_g P1 tzn_l(/\lu)l or t(pl Y /\1U)1

Suppose that there exists ¢ such that 1 < i < 2n — 1 and that t; € G. Then as
before there are two cases that can arise:

Case A. u € I. Then there are two possibilities for 7 as follows:
1 < 2n — 1. We can assume that 7 is the smallest number such that

G. Then for every j < 4, t; € I and either 2 =2k, 1 <k <n-—1, or
2k+1,1<k<n—1.

1. 2
t

2

<
€
If i = 2k, then t,_1 (Au)t; or ti—yu A t;u = v and so t;_; (Au)l. Consequently,

i P tl()\u)tz e ti-—Z P t,_l(/\u)l

Sincet; € I, 1 <35 <¢—1, then
tpr ti(Multa .. tig pr tici( M)l or t(pyr VvV Atu)l.
Ifi =2k+1for 1 < k<n-—1,thent;_, pt; implies that ¢;_1#,7! p 1. Since
t;71 € G, then ¢;_1t; tu =t;_yu or t;—1t; "1 (Au)t;—1. But #;_o(Au)t;_; and
SO ti_z()\u)ti_lti_l. Consequently,
tpti(Au)ty .. .ti_g(/\u)ti_lt,-"l p 1(Au)l.
Since t; € [ for 1 <7 <2 —2, and also t;_1t;71 € I, then
t p1 tl(/\lu)tQ .. .t,;g(/\lu)ti_lti_l p1 1(/\1u)1 or t(py V /\1u)1.
2. i =1. Then t p t; implies that t£; 71 p 1. Since t; 7! € G, then tt; " lu = tu
and so tt;71(Au)t. Then t,#t;~! € I implies that (M u)tt; 7!, and so

t o1 tN W)t T pp 1N W)L or t(pr vV Alu)l
p p p

Case B. u = 1. Then Au = A and so we have the sequence
t 1% tl A t2 ...tgn_z 1% tgn_l Al
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Then by definition of A, t3,—1 = 1. Also as [case A, 1] we can suppose that 7 is
the smallest number such that ¢, € G. If i = 2n — 1, then #1,t5,...,t2,_2 € I and
SO

2 P1 tl /\1 tz . .th_Q L1 t2n—1 /\1 1or t(pl V /\1)1

Thus we suppose that 1 <7 < 2n — 2. Then the following possibilities can arise:
1.t Aip1, 1 =2k—1, 1<k <n-—1. Then t; = t;4+; and so
tici pti Atigr p tiyo,
implies that t;—1 p t;+2 Consequently, we have the shorter sequence
tpti Ao ticy ptiga Atigs...tan—2 ptan—1 A1,

which is a contradiction on the minimality of (x). (Note, if - = 2n — 3, then
we define t3, = 1).

2. t; ptiz1, t =2k, 1 <k <n-—1. Then t;_1 X t; implies that ¢;_; = ¢; and
SO
ticg pticy =t ptipr orti—g ptiys.

As a result we have the shorter sequence

tptl /\tz...t,‘_z pti+1 /\ti+2...t2n_2 pl A 1,

and again a contradiction on the minimality of (*). (Note, if ¢ = 2, then we
define tg = 1).

Thusif u =1,thent; ¢ G,1<i<2n—1,and so t(p; V Alu)l

as required. [

Lemma 2.4.41. Let S = G U I be a monoid such that G is a group, I is an ideal
of S and Vg € G,Nx € I, gr = x. Let p be a right congruence on S and py the
right congruence on I' as in Lemma 2.4.7. Let A! be a left congruence on I' and
A the left congruence on S as in Lemma 2.4.39. If for u,1 # v € I' there ewist
s,t € S such that su A tv, s(p V Au)l and t(p V Av)l, then there exist s,t € I'
such that su Al tv, s(p1 V Mu)l, and t(p1 V Alw)l.

Proof. Suppose that there exist s,t € S such that su A tv, s(p V Au)l and
t(p V Av)l. Since tv € I and su A tv, then su € I. Now there are two cases that
can arise:

Case 1. u = 1. Then s X tv, s € I and there are two possibilities as follows:

1. t € G. Then s A v. Since s,v € I, then s A! v. Also 1(p1 V A1)l and by
Lemma 2.4.40, s(p1 V Au)l.
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2. t € I. Since s,t,u,v € I', then by Lemma 2.4.40, s(p; V Awu)l and
t(pr V AMv)l. Also tv € I, and so s A tv implies that s A\ tv.

Case 2. u € I. Then su,tv € I and so su A! tv. Now there are four possibilities
as follows:

1. s,t € I. Since u,v € I C I', then by Lemma 2.4.40, s(p1 V Au)l and
t(pr V Ao)L

2. s,t € G. Then su A' tv implies that u A! v. Then 1(p; V Au)l and
1(,01 \% )\1’0)1.

3. s € G,t € I. Then su A! tv implies that v A! tv. Since t,v € I C I', then
by Lemma 2.4.40, t(p; V Alv)l. Also 1(p1 V AMu)l.

4. s € I,t € G. Then su \! tv implies that su A v. Since s,u € I C I', then
again by Lemma 2.4.40, s(p; V A'u)l. Also 1(p1 vV Alv)l. u
Theorem 2.4.42. Let S = G U I be a monoid such that G is a group, I is an

wdeal of S and Vg € G,¥x € I, gx = x. Let p be a right congruence on S and p1
the right congruence on I* as in Lemma 2.4.7. If S/p is flat, then I'/p; is flat.

Proof. Let A! be a left congruences on I' and A the left congruence on S as
in Lemma 2.4.39. Suppose that u(pi V Al)v for u,v € I'. Then there exist
Uy, Ug, ..., Uzn—1 € I' such that

wpr ug A ug . g1 A . ()
We can suppose that the sequence (%) is of minimal length. Therefore if there

exists 1 <12 < 2n — 1 such that u; = 1, then ¢ is unique. Otherwise let ;7 be such

that « < j and that u; = uj; = 1. Then there are four possibilities for u; and u; as
follows:

L. ui p1 wig1, Uj p1 wj+1. Then wi—q A uy py ujgq.
2. u; p1 Uit1, uj A ujp1. Then ujmg AY wjpq.
3. ug A wiyr, uj A ujgr. Then uiq prouy A ujg.
4. u; M ouiyr, vy pr ujgpr. Then wimg p1 ujqa.

Thus in every case mentioned above we have a shorter sequence which is a con-
tradiction on the minimality of the length of the sequence (*).

Now either v € I or v = 1. At first we suppose that v € I. Then there are two
cases that can arise:
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Case 1. u; € I for every 1 <7 < 2n — 1. Then
wpur AUz...uzp—1 Avoru(p V Av.
Since S/p is flat, then there exist s,z € S such that su A tv, s(p V Au)l and
t(p V Av)l and so by Lemma 2.4.41, there exist s',¢' € I' such that s'u \! t'v,
s'(p1 V AMu)l and t'(p1 V Alo)l.
Case 2. There exists 1 < ¢ < 2n — 1, such that u; = 1. Then either ¢ = 2k,
(k=1,2,....n—=1)ort =2k -1, (k=1,2,...,n). In the former case we have
1 = u; p1 u;41 and by uniqueness, in the sequence
U p1 U )\1 U2 ...U;—1 /\1 Uj—1,
uj € I for every 1 < j <i—1 and so by case 1, there exist s,¢ € I' such that
su Al tus_1, s(pr V. AMu)l and t(pr V Alu;—q)1. Since t(p; V. Alu;—1)1, then
there exist t1,%2,...,tam—1 € I' such that
t P1 tl()\lu,'_l)tz e tgm_l(/\lui_l)l.
Consequently,

tui—y p1 tiioy, ti(Nuioa)ta, tauicy p1 tattict, .. tamm1(Mui1)l, (1)

or
tui—y p1 tiuicg ANttt o tamotuimg A g, (2)
Since
1 P1 Ui41 )\1 Ui42.. - U2n—1 )\1 v,
then

Uj—1 P1 UjH1U;—1, uH_l()\ll) Ui42y. - ,uzn_l(/\ll) v.

But u;—1 A' 1 and so by Lemma 2.4.28, we have

1 1
Ui—1 P1 ui—i-lui*laui'l'l(/\ Uz’—l) ui+27---7u2n—1(/\ uz'—1) v
or
. . . PLTE . . A\ . 3)
Ui—1 P1 Uip1Ui—1 UjpoUi—1 - - U2n—1Us—1 VU;—1. (

Since u;—; A' 1, then vu;—; M v. Consequently from (2),(3) we have

tui_y p1 truioy AL ot o tame1tion AN W1 1 Uip1Uisg - Ugn—1ui—g AL 0.

(4)
But u;—y € I, and so in sequence (4) tpui—1,uipui—1 € I, k = 1,2,...,2m —
1,1 =1,2,...,2n — 1 — 1. Hence by case 1 there exist s',t' € I' such that
s'(tui—1) A t'v, s'(pr V. Atui—1)l and ¢'(py V. Av)l. Since su A tu;_y, then
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s'su Al s'tu;—q1. Consequently, (s's)u A\' #'v. Since su A! tu;_y, then by Lemma
2.4.29, s'(p1 V AMsu)l. But s(p1 V Mu)l and so by Corollary 2.4.31, s's(p; V Alu)l.

Ife=2k—-1,(k=1,2,...,n), then 1 A' u;4; and either u € I or u = 1. In case
u € I, by considering the sequence

1 1
VPV AT U1 ... Uig AL 1py Ujmg...ug pru X u

we are encountered the previous case with u replaced by v and so we can proceed
as before. Thus we suppose that « = 1. Then there are two possibilities as follows:

1. ¢ =2n —1. Then 1 X! v (note that we can define uz, = v). Since v A! v,
then if s = v, t = 1, we have su A! tv and £(p; V A'w)l. Since v A! 1, then
v(AMu)l and so v p1 v(Mu)l or v(p; V Alu)l. Consequently, s(p; V AMu)l.

2. ¢ <2n — 3. Then u;11,Ujt2,...,Usn—1 € I and so the sequence

. ) 1
Ui41 P1 Uig2 .. U2pn—2 P1 U2n—1 Ao,

has the same format as the sequence in case 1. Consequently, there exist
s,t € I' such that suipq1 Al tv, s(p1 V Muiyq)l and t(p1 V Alw)l. But
v =1 A! u;4q and so by Lemma 2.4.29, s(p; V Mu)l. Also su = s1 Al suipq
and consequently su \! tv.
If v =1, then
u p1 Uy A oug . iugnog AL,

and either v = 1 or u € I. In the former case if s = t = 1, then su ! tv,
s(pr V Mu)l and t(py V Mo)l. In the latter case if we consider the sequence

1p1 1)\1 Uan—1..-U2 )\1 Uy P U/\l u,

then by case 2 (with u replaced by 1 and v replaced by u) there exist s,t € I'
such that t1 A su, t(p1 V A'1)1 and s(p1 V Alu)l. n

From Theorem 2.4.37, and Theorem 2.4.42, we have

Theorem 2.4.43. Let S = G U I be a monoid such that G is a group, I is an
ideal of S and Vg € G,¥Yz € I, gv = x. Let p be a right congruence on S and
p1 the right congruence on I' as in Lemma 2.4.7. Then S/p is flat if and only if

I'/py is flat.

Theorem 2.4.44. Let S = G U I be a monoid such that G is a group, I is an
ideal of S and ¥g € G,Vx € I, gx = z. If all flat cyclic right I'-acts satisfy
condition (P), then all flat cyclic right S-acts satisfy condition (P).
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Proof. Let p be a right congruence on S such that S/p is flat. Then by Theorem
2.4.42, I'/p; is flat and so by assumption I'/p; satisfies condition (P). Conse-
quently, by Lemma 2.4.8, S/p satisfies condition (P) on S. n

Theorem 2.4.45. Let S = G U I be a monoid such that G is a group, I is an
ideal of S and Vg € G,Vz € I, gz = z. If all weakly flat cyclic right I'-acts are
flat, then all weakly flat cyclic right S-acts are flat.

Proof. Let p be a right congruence on S such that S/p is weakly flat. Then by
Theorem 2.4.19, I'/p; is weakly flat (p; is the right congruence on I' as in Lemma
2.4.7) and so by assumption I'/p; is flat. Consequently, by Theorem 2.4.37, S/p
is flat. [

Here we show for monoids § = G U I with the property that Vg € G,Vz € I, gz =
rg = z, flatness of all cyclic right S-acts implies flatness of all cyclic right I'-acts.
Consequently, for this types of monoid all cyclic right S-acts are flat if and only if
all cyclic right I'-acts are flat. First of all we need the following technical lemma.

Lemma 2.4.46. Let S = G U I be a monoid such that G is a group, I is an ideal
of S and Vg € G,Nz € I, gv = xg = x. Let p1, \' be right and left congruences on
I' respectively and let p,\ be the right and left congruences on S as in Lemmas

2.4.13, 2.4.39. If s(p V Au)l for s,u € I', then s(p1 V Mu)l.

Proof. Let s(p V Au)l. If s =1, then 1 p; 1(AMu)l or 1(p1 V Alw)l. Thus we
suppose that s # 1. Then there exist s1,2,...,52,—~1 € S such that

S p 31()\u)32 .. 82n—2 P 52n_1(/\u)1. (*)
If u =1, then we have
S pP s A 82 ...82n—2 P S2n—1 Al

Since s2,—1 A 1, then by definition of A, szp—1 = 1. Thus s3,-2 p 1 and so by
definition of p, s2,—2 = 1. By continuing this procedure we get s p 1 and so s =1
which is a contradiction. Thus from now on we suppose that s,u € I. Also we can
suppose that the sequence (x) is of minimal length. If n = 0, then s = 1 which
is a contradiction (note that we define s = s and sy, = 1). Thusn > 1 and so
there are two cases that can arise:

Case 1. n = 1. Then we have s p s1(Au)l. Since s € I, then by definition of p,
s1 € I and so syu € I. Since s;(Au)l, then sju A v and so sju Al u or sq(Alu)l.
Consequently, s p1 s1(Au)l or s(p; V Alu)l.

Case 2. n > 2. Since the sequence (%) is of minimal length, then by Lemma
2.4.33,s; ¢ [for2 <:<2n—2. Also s p s1, San—2 P S2n—1 and $, S2p—g € I imply
that s, s2,_1 € I. Consequently,

s p1 31(/\1u)52 ... 82n—2 P1 32n_1()\1u)1 or s(p; vV Au)l,
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as required. n
From the proof of Lemma 2.4.46, the following result can be deduced.

Corollary 2.4.47. Let S = G U I be a monoid such that G is a group, I is an ideal
of S and Vg € G,Vx € I,gx = xg = z. Let p and X be as in Lemma 2.4.46 and let
s,u € I. If there exist 51,89,...83n—1 € S such that s p s1(Au)s2...s2,—1(Au)l
and this sequence is of minimal lengthn > 2, then s; € I, i =1,2,...,2n — 1.

Theorem 2.4.48. Let S = G U I be a monoid such that G is a group, I is an
ideal of S and Vg € G,Vx € I, gx = xg = x. Let p1 be a right congruence on I'
and p the right congruence on S as in Lemma 2.4.13. If S/p is flat, then I'/py s

flat.

Proof. Let M be a left congruence on I' and let A be the left congruence on S as
in Lemma 2.4.39. Let u(p1 V A')v for u,v € I'. Then there are four cases that
can arise:

Case 1. u=v=1.If s =t =1, then su A! tv, s(p1 V Mu)l and t(p; VvV Alv)l.

Case 2. u € [,u =1. Then u(p; V A1, If s = 1,¢t = u, then su=u A' u =+tv
and s = 1(p1 V A'w)l. Since u(pr V A1, then t(p; V M 1)1

Case 3. u=1,v € I. Tt is similar to case 2.
Case 4. u,v € I. Then there exist uy, ug,...usn—1 € I' such that

w pr Uy AL ug .. Usp_2 P1 Uzn_1 Al v,
We can suppose that this sequence is of minimal length. If n = 0, then v = v and
so s =t = 1 imply that su A! tv, s(p1 V Mu)l and t(p; vV Alw)l. Thus we
suppose that n > 1. Then there are two possibilities as follows:

(a) ui,uzpn—1 € I. If n =1, then uqy = ugp—1 € T andsou pus Avoru(p V M.
Suppose then that n > 2. Since I' = {1} U I with {1} a group and I an
ideal of I' and also p1, A! are right and left congruences on I' respectively,
then by Lemma 2.4.33, u; € I, ¢ = 2,3,...,2n — 2. Consequently,

Upur AUz ... Uzp—1 AvOru(p V Ao.
Since S/p is flat, then u(p V A)v implies that there exist s,t € S such that

su Atv, s(p V Au)l and t(p V Av)1l. Now we have the following possibilities:

1. s,t € I. Then by Lemma 2.4.46, s(p1 V A'u)l and t(p; V A'v)1. Since
su,tv € I, then su A\! tv.
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2. s € G,t € I. Then su A tv implies that u X\ tv. Since u,tv € I C I,
then u A! tv. Also 1(p1 V Alu)l and by Lemma 2.4.46, t(p; V Alv)l.

3. s € l,teG. It is similar to part 2.

4. s,t € G. Then by assumption su = u,tv = v and so su A tv implies
that v A v. Since u,v € I, then u A! v. If s/ = ¢ =1, then s'u A\ t'v,
s'(p1 V Mu)l and t'(p; vV Alw)l.

(b) u1 =1 or ugp—1 = 1. Then we have the following possibilities :
1. u3p—1 = 1. Then we have
u py Uy A g . Ugp—o p1 1 AL o,
If we consider the sequence
U p1 Uy DTN TP pr 1 A1,
then by case 2, there exist s,t € I' such that su A! t1, s(p; V AMu)l
and t(p; V A'1)1. Since 1 A! v, then t1 A tv and so su Al tv. Also by
Lemma 2.4.29, t(py V A'1)1 implies that t(p; V Alw)l.
2. u; = 1. Then we have
U p1 1 )\1 Ug ... UIp—1 )\1 V. (*)
If n =1, then uy = uzp—1 = 1 and so by [(b), 1] we are done. Suppose
that n > 2. If ug,—; = 1, again by [(b), 1] we are done. Hence, we
assume that ugzn,—1 € I. Since the sequence (%) is of minimal length
n > 2, then by Lemma 2.4.33, u; € I, ¢+ = 2,3,...,2n — 2. Also by
Lemma 2.4.34, the sequence (%) can be replaced by the sequence
upy u A uug p1 us ... Usn—1 A 0.

Since u, utiy, U3, ..., Usp~1,v € I, then

UPpUAUUL pUS... Uzp—1 AV OT u(p V A)v.

Now we can argue as in part (a). m

Theorem 2.4.49. Let S = G U I be a monoid such that G is a group, I is an

ideal of S and Vg € G,Vx € I, gr = xg = z. If all cyclic right S-acts are flat,
then all cyclic right I'-acts are flat.
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Proof. Let I'/p; be a cyclic right I'-act for a right congruence p; on I'. Let p
be the right congruence on S as in Lemma 2.4.13. Then by assumption S/p is flat
and so by Theorem 2.4.48, I' /p; is flat. n

From Theorem 2.4.38, and Theorem 2.4.49, the following theorem can be deduced.
Theorem 2.4.50. Let S = G U I be a monoid such that G is a group, I is an

ideal of S and Vg € G,Vx € I, gx = xzg = z. Then all cyclic right S-acts are flat
if and only if all cyclic right I'-acts are flat.

By what follows we suppose that p; is a right congruence on S; a submonoid of a
monoid § and that p = p1Ul(s\s,) is a right congruence on S. Then we show that
(weak) flatness and condition (P) of S/p can be deduced from the corresponding
property of S1/p1.

Lemma 2.4.51. Let S be a monoid and S1 a submonoid of S. Let A be a left
congruence on S. If \y = M|s,, then Ay 1s a left congruence on S;.

Proof. It is obvious that A; is an equivalence relation on S;. Let a Ay b and let
s € S1. Then a A b and so sa A sb. Since S7 is a submonoid, then sa, sb € S; and
so sa A1 sb. Thus A; is a left congruence on 57 as required. n

Theorem 2.4.52. Let S be @ monoid and let S1 be a submonoid of S. Let py be
a Tight congruence on Sy such that p = p1 Ul(s\g,) 18 a right congruence on S. If
S1/p1 s flat, then S/p is flat.

Proof. Suppose that S;/p; is flat. To show that S/p is flat by Lemma 1.54 (5),
it is sufficient to show that for every u,v € S and any left congruence A on S,
if u(p V A)v, then there exist s,t € S such that su A tv, s(p V Au)l and
t(p V Av)l. Let u(p V A)v with u,v € S. Then by Theorem 1.49, there exist
UL, Uy .., Uzp—1 € S such that

UPpUL AU PUS...UIp—1 A V. (1)
We can suppose that the sequence (1) is of minimal length n. Also if n > 2, then

for every ¢ such that u; p u;4+; it follows that w; # u;41. Otherwise, if £ is such
that uy p ugs1 and ug = ug+1, then we have the shorter sequence

UPUL AU PUS .. Uk—2 P Uk—1 A Uk42 P Uk43 -.-U2p—2 P U2p—1 A U,

which is a contradiction on the minimality of n. Thus, if n > 2, then us; p1 w2j41,
1<j<n-—1,andso usg,us,...,Uzpn—1 € 1.

Now in sequence (1), there are two cases for u as follows:
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Case 1. u € S5;. Then u p; u; and so u; € S1. Let Ay = Alg, be the left
congruence on Sp as in Lemma 2.4.51. If n > 2, then uq,us3,...,us,—1 € S and
SO

U pr Ul A U P1 U3 ... Uzp—-2 P1 U2n-1 A Uzp—1
which means u(p1 V Augp—1. f n =1, then u p; u; A v. Thus u py w1 A\ uy

and so u(py V Ar)uy. Consequently, if n > 1, then u(p1 V Ai)ugn—1.

Since S1/p1 is flat, then there exist s,¢ € S} C S such that su Ay tugn—y, s(p1 V
Aru)l and t(py V. Aiuzn—1)l. Thus su A tuz,—; and since us,—; A v, then
tuzn—1 A tv. Consequently, su A tv. Since s(p; V Aju)l, then it easily follows
that s(p V Au)l. Similarly it can be seen that t(p V Auzn—1)1. But ugp—1 A v
and so by Lemma 2.4.29, t(p V Av)l as required.

Case 2. u ¢ S;. Then u p u; implies that v = u; € S\ S;. Now there are two
possibilities as follows:

1.n=1 Thenu Av. If s =t =1, then su A tv, s(p V du)l and t(p V Av)l.

2. n> 2. Then

U/\UQPU3...U2n_1 /\v,

from which we have the sequence

U2pn—1 P U2pn—2...U3 P U3 A u,

with uo,—1 € S1. Thus by case 1, there exist s, € 5 such that tus,—1 A su,
t(p V Auzn-1)1, s(p V Au)l. Since uzn—1 A v, then tug,—1 A tv. Consequently,
su A tv. Also by Lemma 2.4.29, t(p V Av)l. m

Theorem 2.4.53. Let S be a monoid and let S1 be a submonoid of S. Let py be
a right congruence on Sy such that p = p1 Ul(s\s,) 8 a right congruence on S. If
S1/p1 18 weakly flat, then S/p is weakly flat.

Proof. Let u p v with u,v € S. Then there are two cases that can arise:

Case 1. u p; v. Then u,v € S; and so by assumption there exist s,t € S; € S
such that s(p; V Au)l, t(p1 V Av)l and su = tv. Since p; C p, then it easily
follows that s(p V Au)l and t(p V Awv)l.

Case 2. (u,v) € 1(s\5,)- Thenu =v. If s =t =1, then s(p V Au)l,t(p V Av)l
and su = tv.

Thus S/p is weakly flat as required. n
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Theorem 2.4.54 Let S be a monoid and let Sy be a submonoid of S. Let p1 be
a right congruence on S such that p = p1 Ul(s\s,) 18 a right congruence on S. If
Si/p1 satisfies condition (P), then S/p satisfies condition (P).

Proof. Let u p v with u,v € S§. Then there are two cases that can arise:

Case 1. u p; v. Then u,v € §7 and so by assumption there exist s,t € S; C S
such that s p1 1 p1 t and su = tv. Since p1 C p, then s p 1 p t.

Case 2. (u,v) € I(s\s,)- Thenu=wv. If s =t=1,thensp1 ptand su=tv. m
We present two simple examples of monoids which satisfy the previous theorems.

Example 2.4.55 Let S = {1,¢, f} such that ¢, f are right zero. Let S; = {1,¢}.
Then 5 is a submonoid of S. If

P1 = {(17 1)7(67 6)7(671)7(176)}
then p; is a right congruence on S1. If p = p1 U 1(s\s,), then
p={(1,1),(e,¢e),(f, f)(1,€), (e, 1)}.

It can be seen that p is a right congruence on S. Also it is easy to see that S7/p1
and consequently S/p satisfies condition (P).

Example 2.4.56 Let G be a group and N a right nil semigroup. Let S =G U N
such that Vg € G,Yn € N, gn = ng = n. Then S is a monoid and G is a
submonoid of S. If p; is a right congruence on G, then it is easy to see that
p = p1 U1y is a right congruence on S. Since G is a group, then all acts (and
in particular G/p;) satisfy condition (P). Also it is easy to see that S/p satisfies
condition (P). For example if S = {0,1,2,3} with table

| 01 2 3
00000
110123
2 102 0 2
3003 21

then $; = {1,3} is a group, N = {0,2} is a right nil semigroup and S = G U N.
If

P1 = {(17 1)a (3a 3)’ (17 3)7 (37 1)}7
then pq is a right congruence on S;. Thus

p=p1Uls=1{(0,0),(1,1),(2,2),(3,3),(1,3),(3, 1)},

is a right congruence on S and so S1/p1, S/p satisfy condition (P).

Notice that in Examples 2.4.55, 2.4.56, since S1/p; and S/p satisfy condition (P),
then they are flat and also weakly flat.
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Chapter 3

Characterization of Monoids by Properties of
Principal Ideals

3.1. Introduction

In this chapter we turn our attention to the classification of monoids by properties

of their principal left ideals which are in fact left acts.

We start in section 3.2, with a definition and then we give a characterization of
monoids for which all principal left ideals are strongly flat or satisfy condition (E).
Also we give a necessary and sufficient condition for right subelementary monoids,
and monoids § = T where T is a null semigroup, such that all principal left ideals

be strongly flat or satisfy condition (P).

A characterization of left PSF monoids by condition (P) of (weakly) flat right acts
is given in section 3.3. In section 3.4, we characterize some classes of left PSF
monoids by condition (P) of (weakly) flat cyclic right acts and also left PSF

monoids for which all (weakly) flat cyclic right acts are projective or strongly flat.

Finally, by imposing some conditions on a monoid S with |E(S)| = 1, we show
that all right S-acts satisfy condition (P).
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3.2. Left PSF Monoids

Definition 3.2.1. Let S be a monoid. An element u € § is called right sem:

cancellative if whenever su = tu with s,¢ € S there exists r € S such that v = ru

and sr = tr. A monoid is called right semi cancellative (RSC) if all its elements

are right semi cancellative.

Clearly every right cancellative monoid is a right semi cancellative, but there are
right semi cancellative monoids which are not right cancellative as the following

example demonstrates.

Example 3.2.2. Let S = {1,e, f} with table

Then S is right semi cancellative, but 1f = ff and 1 # f. Therefore S is not right
cancellative. Note that in this example S is regular. It can be seen that every
regular monoid is right semi cancellative and so there are examples of monoids

which are right semi cancellative but not right cancellative.

which is not right cancellative is an example of monoids mentioned above.

Lemma 3.2.3. Let S be a monoid and Sz a cyclic left S-act. Then Sz satisfies

condition (E), if and only if for sz =tz with s,t € S there exists r € S such that

z = rz and sr = tr.

Proof. Necessity. Suppose that Sz satisfies condition (£) and let sz = tx. Then
there exist y € Sz, v € S such that ¢ = vy and sv = tv. Since y € Sz, then there

exists s’ € S such that y = s’z and so ¢ = vy = vs'z.
If r =vs', then z = ra and sv = tv implies that svs' = tvs' or sr = tr.
Sufficiency. Let sa = ta for a € Sz, s,t € S. Since a € Sz, then there exists
s1 € S such that a = s;z and so sa = ta implies that

s(s1z) = t(s12) or (ss1)z = (ts1)z.

Then by assumption, there exists r € S such that ¢ = rz and (ss1)r = (tsy)r. If
s' = s1r, then

s’z = (syr)z = s1(rz) = s1z = q,
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and

ss' = s(s17) = (881)r = (ts1)r = t(s1r) = ts'.
Thus, Sz satisfies condition (E). [

Now from Definition 3.2.1, and Lemma 3.2.3, we have

Corollary 3.2.4. Let S be @ monoid. If u € S, then the cyclic left S-act Su

satisfies condition (E), if and only if u 1s right sems cancellative. Hence S is right

sems cancellative if and only if every principal left ideal satisfies condition (E).

Lemma 3.2.5. Let S be a monoid and Sz a cyclic left S-act. Then Sz is strongly
flat if and only if for sz =tz with s,t € S there exists r € S such that x = rz and

sr = tr.

Necessity. Since strongly flat implies condition (E), then this follows by Lemma
3.2.3.

Sufficiency. By Lemma 3.2.3, it is sufficient to show that Sz satisfies condition
(P). Let sa = ta' for a,a’ € Sz and s,t € S. Then there exist s;,t; € S such that

a = s1z, a =11z and so sa = ta’ implies that
s(s1z) = t(tyz) or (ss1)x = (ttq)e.
Then, by assumption there exists r € S such that z = rz and
(8s1)r = (tty)r or s(sir) = t(t17).
If s;r = s’ and t1r = t/, then
s'z = (sir)z = s1(rz) = s12 = a.
t'e = (t1r)z = t1(rz) = tiz = d'.

Also
ss' = s(s1r) = (ss1)r = (tt1)r = t(tyr) = tt'.

Thus, Sz satisfies condition (P) as required. n

From Lemma 3.2.3, and Lemma 3.2.5, we have
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Corollary 3.2.6. Let S be a monoid. If a cyclic right S-act Sz satisfies condition
(E) then it satisfies condition (P) and so it is strongly flat.

Remark. The converse of Corollary 3.2.6, is not true as the following example

demonstrates.

Example 3.2.7. Let S = {0,5,1 | s2 =1} and let A = {z,a | sa = a,0a = sz =
0z = z}. Then A is a left S-act and A ~ S/p for p = {(1,s),(s,1)} Ulg and so A
is a cyclic left S-act.

Now we show that A satisfies condition (P). It is enough to show that S/p satisfies
condition (P). Suppose that u pv. If u = v, thenput s’ =t =1,sothat s' p1pt
and us' = ut'. Otherwise if u = s,v =1, then put s’ = s, =1sothat s' p1 pt
and ss’ =1 =1¢'. So A satisfies condition (P).

We claim that A does not satisfy condition (£). Otherwise, la = sa implies that
there exist a' € A, t € S such that a = ta" and that 1 = st. But either a = la

or a = sa and so @' = a and either t =1 or t = s.

Ift =1, then 1t = 1 # s = st and so we have a contradiction. If ¢ = s, then
1t = s # 1 = st and again we have a contradiction. Thus A satisfies condition
(P), but it does not satisfy condition (E).

By Proposition 2.3.53, it can be seen that condition (E) does not imply condition

(P) in general. Also see the following example.

Example 3.2.8. Let S = {0,1} and let A = {2,y,z | 0z = 0y = 0z = 2,1z =
z,1y = y,1z = z}. Then by Theorem 2.2.19, A satisfies condition (E). Since A is

not a coproduct of cyclic S-acts, then by Lemma 1.53, it does not satisfy condition

(P).

By the following lemma we extend a part of Lemma 3.2.3.

Lemma 3.2.9. Let S be a monoid. If a cyclic left S-act Sz has the property that
whenever s(syz) = t(s12) for s,81,t € S, there exzists r € S such that s;x = r(s,x)

and sr = tr, then Sz satisfies condition (E).

Proof. By Lemma 3.2.3, It is sufficient to show that if sz = tz with s,¢ € S, then

there exists r € S such that = re and sr = tr. Since sz = tz, then s(1z) = ¢(1z)
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and so by assumption there exists r € S such that r(1z) = (1z) or ra = z and

sr = tr. [ ]

Remark. The converse of Lemma 3.2.9 is not true, as the following example

demonstrates.

Example 3.2.10. Let S = {0,1,2,3} with table

| 01 2 3
0] 000 O
110123
2 [0 2 0 2
3103 21

Then S1 = S is a cyclic left S-act which by Lemma 3.2.3, satisfies condition (E).
Note also that S = G U N with G = {1,3} a group and N = {0,2} a null
semigroup. We claim that S1 does not satisfy the condition mentioned above.

Otherwise,

2.(2-1)=0-(2-1),

implies that there exists r € S such that 7(2-1)=2-1 and that 2-r =0-r = 0.

Then on the one hand either r = 1 or » = 3, but on the other hand r =0 or r = 2.

Corollary 3.2.11. Let S be a monoid. If a cyclic left S-act Sz has the property
that whenever s,s1,t € S and s(siz) = t(s1z), there exists r € S such that

r(s12) = syz and sr = tr, then Sz is strongly flat.

Proof. By Lemma 3.2.9, Sz satisfies condition (E). Since Sz is cyclic, then by
Corollary 3.2.6, it satisfies condition (P), and so Sz is strongly flat. [

Remark. The converse of Corollary 3.2.11, is not true. For example, if S =
{0,1,2,3} is the monoid with the table as in Example 3.2.10, then S1 = S satisfies
condition (E) and so it is strongly flat. But as we saw in this example S1 does

not satisfy the condition mentioned in corollary 3.2.11.
From Lemma 3.2.5, and Definition 3.2.1, we have

Corollary 3.2.12. Let S be a monoid. If u € S, then the cyclic left S-act Su

18 strongly flat of and only if u is right semi cancellative. Hence S s right sems

cancellative if and only if every principal left ideal of S s strongly flat.
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Definition 3.2.13. A monoid S is called left PSF if every principal left ideal of
S is strongly flat.

Lemma 3.2.14. Let S be an eventually regular monoid. Then there exists a power

of every element which is right semi cancellative.

Proof. Let S be an eventually regular monoid and let £ € S. Then there exists
n € N such that 2™ is regular and so there exists ' € S such that z™a'2™ = z™. Let
sz™ = tz™ with s,t € §. If r = 2"z, then ra™ = z"z'2™ = z". Also sz™ = ta"
implies that se™z' = ta™a2’ or sr = tr. Thus z™ is right semi cancellative as

required. [ ]

Corollary 3.2.15. If S is a regular monoid, then every principal left ideal of S s

strongly flat.

Proof. Let x € S. Since S is regular, then in Lemma 3.2.14, n = 1 and so = 1s
right semi cancellative. Hence, by Corollary 3.2.12, every principal left ideal of S
is strongly flat. [

In the following we characterize monoids S = C' U T where C is right cancellative
and T is a null semigroup such that all principal left ideals are strongly flat, and
use this to give a characterization of monoids S = T! with T' a null semigroup

such that all principal left ideals are strongly flat or satisfy condition (P).

Lemma 3.2.16. Let S = C U T be a monoid with all elements in C right can-
cellative and T a null semigroup. Then S is RSC if and only if T = {0}.

Proof. Suppose that S is right semi cancellative and let ¢ € T. Then zz = 0z = 0.
Since z is right semi cancellative, then there exists r € § such that z = ra and
zr =0r = 0. If r € C, then zr = Or 1mplies that = = 0, otherwise * = rz = 0.
Consequently, 7' = {0}.

Now suppose that § = C U {0} and let su = tu with s,t,u € S. Then we show
that there exists r € S such that v = ru and sr = tr. If u =0, then r = 0 implies
that v = ru and that sr = tr. If u € C, then su = tu implies that s =¢. If r =1,
then u = ru and sr = tr. Thus every element of S is right semi cancellative as

required. [

From Corollary 3.2.12, and Lemma 3.2.16, we have
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Corollary 3.2.17. Let S = C U T be a monoid with elements in C right cancella-
tiwwe and T' a null semigroup. Then S s left PSF if and only if T = {0}.

It is obvious that if S = G U T where G is a group and T a null semigroup,

then every element of G is a right cancellative element of S and so from Corollary
3.2.17, we have

Corollary 3.2.18. Let S = G U T where G 1s a group and T a null semigroup.
Then S s left PSF if and only if S =G U {0}.

If in Corollary 3.2.18, we put G = {1}, then we deduce the following corollary.

Corollary 3.2.19. Let T be any null semigroup and let S = T'. Then all principal
left ideals of S are strongly flat if and only i«f S = {0,1}.

Now by using Corollary 3.2.19, and the following theorem we give a characteriza-
tion of monoids S = T? with T a null semigroup such that all principal left ideals

satisfy condition (P).

Theorem 3.2.20 [1]. Let T be any null semigroup and let S = T'. Then every
right (left) S-act which satisfies condition (P) is strongly flat.

Theorem 3.2.21. Let T be any null semigroup and let S = T'. Then all principal
left ideals of S satisfy condition (P) if and only of S = {0,1}.

Proof. Suppose that every principal left ideal of the monoid S = T! satisfies
condition (P). Since every principal left ideal is a left S-act, then by Theorem
3.2.20, it is strongly flat. Consequently, by Corollary 3.2.19, S = {0,1}.

If S = {0,1}, then by Corollary 3.2.19, all principal left ideals are strongly flat
and so all principal left ideals satisfy condition (P). [

Now we consider right subelementary monoids for which all principal right ideals

are strongly flat.

Lemma 3.2.22. Let S = C U N be a right subelementary monoid. Then z € N

18 Tight semi cancellative if and only if x is right zero.

Proof. Let x € N be right semi cancellative. Since z is right nil, then there exists

n € N such that z*t! = 2" is right zero. We can suppose that n is the smallest
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such positive number. Then either n =1 orn > 1. If n = 1, then z? = z and so

x 1s right zero.

Suppose that n > 1. Then n — 1 > 0 and so we have 2%z = 2" 'z. Then by
assumption there exists r € S such that ¢ = rz and z"r = 2" 1r. If » € C, then

" = g™ ! is right zero which is a contradiction. Thus r € N and so there exists

x
k € N such that r* is right zero. But by induction it can be seen that for every

k€ N, z = r*z and so z is right zero as required.

Now let @ € N be right zero and let sz = tz with s,t € S. If we put r = x, then

x = rz and sr = tr. Thus z is right semi cancellative as required. [

Theorem 3.2.23. Let S = C U N be a right subelementary monoid. Then S is
left PSF if and only if every € N 1is right zero.

Proof. If S is left PSF, then by Corollary 3.2.12, every element of S is right semi
cancellative and so by Lemma 3.2.22, every element in the right nil part is right

Z€ro.

Suppose that every element in N is right zero and let € S. If x € C, then it is
obvious that = is right semi cancellative. If x € N, then z is right zero and so by
Lemma 3.2.22, z is right semi cancellative. Thus every element of S is right semi
cancellative and so by Corollary 3.2.12, S is left PSF. [

From Theorem 2.3.22, and Theorem 3.2.23, the following corollary can be deduced.

Corollary 3.2.24. Let S = C U N be a right subelementary monoid. Then S is
left PSFE if and only of S 1s left PP.
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3.3. Characterization of Left PSF Monoids by Condition
(P) of Right Acts

In this section we give a characterization of left PSF monoids by condition (P)
of (weakly) flat right acts and also properties of proper right ideals. Throughout

this section and section 3.4, by a proper ideal we mean an ideal J of S such that

J48S.

Theorem 3.3.1. Let S = C U N U F' be a left PSF monoid where C is right can-
cellative, N 1s the set of all right nil elements of S, and F' is the set of all reqular-
free elements of S which are not right cancellative. Then for all z € N U F',

either x is right zero or there exists r € F' such that * = rz and r # z.

Proof. Let x € N U F'. Then z is not right cancellative and so there exist a,b € S
such that az = bz and a # b. Since S is left PSF, then by Corollary 3.2.12, z
is right semi cancellative and so there exists r € S with # = rz and ar = br. If
r € C, then a = b, which is a contradiction. Thusr € N U F'. If r € N, then rF

k

is a right zero for some k € N. Now z = r*z and so z is right zero.

Hence, if z is not right zero, then r € F'. Also, r # z for otherwise, z = z? is

idempotent and so is in N and hence is a right zero which is a contradiction. =
By Theorem 3.3.1, and Theorem 2.3.16

Corollary 3.3.2. Let S be a left PSF monoid. If all flat cyclic right S-acts satisfy
condition (P), then S = C U N U F' where C is right cancellative, N is the set of
all right nil elements of S, and F' 1s the set of all regular-free elements of S which

are not right cancellative. Moreover, for all x € N U F', either = is right zero or

there exists v € F' such that x = rz and r # .

Corollary 3.3.3. If in Theorem 3.3.1, F' = (), then every element in N is right

ZETO.

Corollary 3.3.4. Let S be a monoid. Then S is left PSF and right subelementary

if and only if every element of S is either right cancellative or right zero. Subse-

quently, for such a monoid, all (weakly) flat cyclic right S-acts satisfy condition

(P).

Lemma 3.3.5. Let S be a left PSF monoid. Then for each xq € S with z¢ not

93



right cancellative, there exists a sequence (g, T1,...), Ti = Tip12; and x; not right

cancellative, © = 0,1,.. ..

Proof. If z is not right cancellative, then there exists a,b € S with azy = bz
and a # b. But by Corollary 3.2.12, z, is right semi cancellative and so there
exists 1 € S with 29 = 2129 and azy = bzy. Since a # b, then z; is not right

cancellative. Continuing in this fashion we generate the required sequence.

Lemma 3.3.6. Let S be any monoid. If S is right cancellative, then for every
proper right ideal J of S there exists j € J \ Jj.

Proof. Suppose that S is right cancellative and let J be a proper right ideal of
S. If for every y € J, 7 € Jj, then let j € J. Hence there exists « € J such that
g = xj. Since j is right cancellative, then z = 1. Thus 1 € J and so J = § which

1s a contradiction. u

Theorem 3.3.7. Let S be a left PSF monoid. Then S is right cancellative if and
only if for every proper right ideal J of S there exists j € J\ Jj.

Proof. If S is right cancellative, then by Lemma 3.3.6, for every proper right ideal
J of S there exists j € J\ Jj.

Now suppose that for every proper right ideal J of S there exists j € J \ Jj.
Then we claim that S is right cancellative. Otherwise there exists ¢ € S which is
not right cancellative and so by Lemma 3.3.5, there exists a sequence (zg, z1,...),

x; = r;417; and z; is not right cancellative, ¢ = 0,1,.. ..

Let J = Jioy ziS. Then J is a right ideal of S. Also J # S, otherwise 1 € J and
so there exists ¢ € S such that 1 = x;z for some z;. Thus z; is right invertible

and so it is right cancellative which is a contradiction. Consequently, J is a proper

right ideal of S.

Now let 7 € J. Then there exists s € § such that j = z;s for some x;. Since
T; = Ti417;, then 7 = z;412;8 = ;417 and so j € Jj which by assumption is a

contradiction. Thus S is right cancellative as required. [

Lemma 3.3.8. Let S be any monowd. If S 1s right cancellative, then for every

infinite sequence (zo,21,...) with x; = i1z, ¢ = 0,1,..., there exists n € N

such that x, = Tpy1 = ... = 1.
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Proof. Suppose that S is a right cancellative monoid and let (z¢,zy,...) be an
infinite sequence with z; = z;412;, « = 0,1,.... Then by cancelling z; we have

l=2;47,0=0,1..., andson = 1. [ |

Theorem 3.3.9. Let S be a left PSF monoid. Then S 1s right cancellative if and

only if for every infinite sequence (zg,x1,...) with z; = z;412;, 1 =0,1,..., there

exists n € N such that v, = tpp1 = ... = 1.

Proof. If S is right cancellative, then by Lemma 3.3.8, for every infinite sequence

(zo,z1,...) with @; = z;4124, ¢ = 0,1,..., there exists n € N such that z, =
T4l = ... = 1

Now suppose that for every infinite sequence (zg,z1,...) with z; = z;412;, 1 =
0,1,..., there exists n € N such that z, = 2,41 = ... = 1. Then § is right

cancellative. Otherwise there exists zo € S which is not right cancellative and so

by Lemma 3.3.5, there exists a sequence (zo,21,...), ; = z;y12; and z; is not

right cancellative 1 = 0,1,.... But by assumption there exists n € N such that
Tp = Tpy1 = ... = 1and so z, = 1. Consequently, z,, is a right cancellative which
is a contradiction. ]

From Theorem 3.3.7, and Theorem 3.3.9, we have

Theorem 3.3.10. Let S be a left PSF monoid. Then the following conditions

are equivalent:

(1) S s right cancellative.
(2) For every proper right ideal J of S there exists j € J\ Jj.

(3) For every infinite sequence (29, 1,...) with ; = zip1x;, z; € S, 1=10,1,...

there exists n € N such that , = Tpy1 =... = 1.
From Corollary 2.3.55, and Theorem 3.3.10, we have

Corollary 3.3.11. Let S be a left PSF monoid. If all flat right S-acts satisfy

condition (P), then for every infinite sequence (o, x1,...) with &; = i1z, &; €

S,1=0,1,..., there exists n € N such that ,, = xp41 = ... = 1.

Theorem 3.3.12. let S be a left PSF monoid. Then all flat right S-acts satisfy
condition (P) if and only if S is right cancellative.
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Proof. Suppose that all flat right S-acts satisfy condition (P). Then by Theorem
2.3.46, and the subsequent note, S = C U F' where C is right cancellative and F”
is the set of regular-free elements of S that are not right cancellative. We claim
that F' = 0, otherwise let =y € F'. Then by Theorem 3.3.1, there exists z; € F'
with 9 = 2129 and 21 # 7. In a similar way, there exists 7o € F' with 21 = 291
and z2 # z;. Continuing in this fashion we get an infinite sequence (zg,z1,...)
with z; = 2,412, @; € F' and z; # 7,41, 1 = 0,1,.... Then by Corollary 3.3.11,
there exists n € N such that z,, = z,41 = ... = 1, which is a contradiction. Thus

S = C is a right cancellative monoid as required.
The converse is true by Lemma 2.3.50. [

It is clear that if S is a right cancellative monoid, then it is right semi cancellative.
By Example 3.3.2, we saw that there are right semi cancellative monoids which

are not right cancellative, but from Corollary 3.2.12, and Theorem 3.3.12, we have

Corollary 3.3.13. Let S be a monoid such that all flat right S-acts satisfy con-
dition (P). If S 1s right semi cancellative, then S is right cancellative.

From Lemma 2.3.50, Theorem 3.3.10, Corollary 2.3.55, and Theorem 3.3.12, we

have

Theorem 3.3.14. Let S be a left PSF monoid. Then the following statements

are equivalent:

(1) S us right cancellative.

(2) All weakly flat right S-acts satisfy condition (P).

(8) All flat right S-acts satisfy condition (P).

(4) For every proper right ideal J of S there exists j € J\ Jj.

(5) For every infinite sequence (zo,21,...) with x; = z412;, 1 = 0,1..., there

erists n € N such that p, = pp1 = ... = 1.

From Theorem 3.3.14, the following theorem which is an extension to Theorem
2.3.52, in that left PP monoids are left PSF can be deduced.
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Theorem 3.3.15. Let S be any monoid. Then the following statements are equiv-
alent:

(1) S 1s right cancellative.

(2) S 1s left PP and all weakly flat Tight S-acts satisfy condition (P).

(8) S 1s left PP and all flat right S-acts satisfy condition (P).

(4) S is left PSF and all weakly flat Tight S-acts satisfy condition (P).

(5) S is left PSF and all flat right S-acts satisfy condition (P).

(6) S is left PSF and for every proper right ideal J of S there exists j € J\ Jj.

(7) S s left PSF and for every infinite sequence (xg,x1,...) with &; = 412,
t=0,1,..., there exzists n € N such that z, = xp41 =... = 1.
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3.4. Characterization of Left PSF Monoids by Condition
(P) of Cyclic Right Acts

In this section we characterize some classes of left P.SF monoids by condition (P)
of (weakly) flat cyclic right acts and also properties of proper right ideals. We
also characterize left PSF monoids for which all (weakly) flat cyclic right acts are
projective or strongly flat. Finally, we show that for some classes of monoids S, if
|E(S)| =1, then all right S-acts satisfy condition (P).

Lemma 3.4.1. Let S be a monoid. If for every proper right ideal J of S with
|J| > 1 there exists 7 € J\ Jj , then for every infinite sequence (xo,21,...) with
T; = Tip1%4, 0 = 0,1..., there exists n € NU {0} with z,, € E(S5).

Proof. Suppose that (z¢,zy,...) is an infinite sequence with z; = x4 24, 1 =
0,1,... and suppose that z; ¢ E(S), i =0,1,.... Then J = |J;2, ;S is a right
ideal and also |J| > 1. Otherwise, J = | Jio, #:5 = {;} and so z;2; = x;. Thus z;
is an idempotent which is a contradiction. Also J is a proper ideal, otherwise J = .S
and so 1 = z;s for some 7 > 0 and s € S. Then 1 = z;8 = z;412;8 = x;41 and so
x;41 is an idempotent which is also a contradiction. Thus J is a proper right ideal
with |J| > 1 and so by assumption there exists j € J\Jj. But for every j € J there
exists ¢ > 0 and s € § such that j = a;s. Then j = 28 = z;412;8 = €415 € JJ

which by assumption is a contradiction. [}

Lemma 3.4.2. Let S be a left PSF monoid. If for every infinite sequence (xo,
T1,...) with z; = ziqp12q, ¢ = 0,1,..., there exusts n € N U {0} with z, € E(S5),
then for every x € S, either x 1s Tight cancellative or there exists e € E(S)\ {1}

such that z = ex.

Proof. Let x € S. If z is not right cancellative, then by Lemma 3.3.5, there
exists an infinite sequence (z = zg,z1,...) with ; = z;,412; and z; not right
cancellative, 2 = 0,1,.... Thus by assumption there exists n € N U {0} such that
z, = e € E(S). Since z, is not right cancellative, then e # 1. Also 2,1 = T,2p 1

implies that z,-; = ex,—1 and so we have
Er — €Xy — ET1Ty) — €X2T1Tyg = ... = €ETp—-1Tp-2...L1LQ = Tp-1Lp—-2...TL1T0 —

Tpn—2Tp—-3...L1T9p = ... =T3Tg = Tp = T.
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Lemma 3.4.3. Let S be a monoid. Then,

1. S is left PSF;

2. for every infinite sequence (xo,21,...) with z; = w412, ¢ = 0,1,..., there
ezists n € N U {0} with z, € E(S);

3. all flat cyclic right S-acts satisfy condition (P);
of and only if S 1s right subelementary with the right nil elements all right zero.

Proof. Let S be aleft PSF monoid with the properties mentioned above. Then by
Lemma 3.4.2, every z € S is either right cancellative or there exists e € E(S)\ {1}
such that ¢ = ex. By Lemma 2.2.8, e is right zero and so in this case z is right

Zero.

If S is right subelementary where the right nil elements are right zero, then by
Theorem 2.3.22, S is left PSF and all flat cyclic right S-acts satisfy condition
(P). Also for every infinite sequence (zg,z1,...) with ; = 2412, ¢ = 0,1...,
either z; 1s right zero and so it is an idempotent or z; is right cancellative and

then z; = z;412; implies that ;41 = 1 and so z;4; is an idempotent. [ ]

Corollary 3.4.4. Let S be a monoid. Then,

1. S s left PSF;

2. for every infinite sequence (zo,21,...) with ¢; = Tip124, ¢ = 0,1,..., there

exists n € N U {0} with z,, € E(S);

°2

3. all weakly flat cyclic right S-acts satisfy condition (P);
if and only if S 1s right subelementary with the right nil elements all right zero.

Proof. Let S be a left PSF monoid with properties mentioned above. Since all
weakly flat cyclic right S-acts satisfy condition (P), then all flat cyclic right S-acts
satisfy condition (P) and so by Lemma 3.4.3, S is right subelementary with right

nil elements all right zero.

If S is right subelementary with right nil elements all right zero, then by Theorem
2.3.22, S is left PSF and all weakly flat cyclic right S-acts satisfy condition (P).
Also by Lemma. 3.4.3, S satisfies the other property mentioned. u
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The

following theorem generalizes Theorem 2.3.22.

Theorem 3.4.5. Let S be a monoid. Then the following are equivalent:

1

IS

S

D

~

. S 18 right subelementary with the right nil elements all right zero.

. S 18 right subelementary and left PSF.

.S 15 left PSF, for any infinite sequence (g, x1,...) with ; = 24124, ¢ =
0,1,..., there exists n € NU{0} with x,, € E(S) and every weakly flat cyclic
right S-act satisfies condition (P).

S s left PSF, for any infinite sequence (o, 21,...) with ; = x41%;, t =
0,1,..., there ezists n € NU {0} with 2, € E(S) and every flat cyclic right
S-act satisfies condition (P).

S s left PSF, for any infinite sequence (g, 21,...) with ; = x4134, ¢ =
0,1,..., there ezists n € N U {0} with @, € E(S) and every e € E(S)\ {1}

18 Tight zero.

. S is left PP and every weakly flat cyclic right S-act satisfies condition (P).
. S 1s left PP and every flat cyclic right S-act satisfies condition (P).

Proof. (1),(2) are equivalent by Corollary 3.3.4. (1),(6), and (7) are equivalent
by Theorem 2.3.22. (1),(3), and (4) are equivalent by Lemma 3.4.3, and Corollary
3.4.4. By Lemma 2.2.8, (4) = (5). Finally, by Lemma 3.4.2, (5) = (1). u

Now by using previous lemmas and also the following lemma we can deduce a
characterization of right reversible left PSF monoids by condition (P) of flat
cyclic right acts.

Proposition 3.4.6 [9]. Let S be a monoid and let J be a right tdeal of S. Then

1. S/J has property (P) if and only if J = S and S is right reversible, or

7] =1.

2. S/J 1s flat (or equivalently, weakly flat) if and only if S s right reversible

and §j € Jj for allj € J.
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Lemma 3.4.7. Let S be a right reversible monoid. If S s left PSFEF and all
flat cyclic right S-acts satisfy condition (P), then for every infinite sequence
(zo,21,...) with x; = ;412,71 =0,1..., there exists n € NU{0} with z, € E(S).

Proof. Suppose that there exists an infinite sequence (z¢,z1,...) with z; =
Tip12, but z; ¢ E(S), © = 0,1,..., and suppose that J = J;=,z;S. Then by
the same argument as in the proof of Lemma 3.4.1, it can be seen that J is a
proper right ideal with |J| > 1 and also j € Jj for every j € J. Consequently,
by Proposition 3.4.6 (2), S/J is flat and so by assumption S/J satisfies condition
(P). Since J is a proper right ideal, then J # S and so by Proposition 3.4.6 (1),

[J| = 1 which is a contradiction. [

Corollary 3.4.8. Let S be a right reversible monoid. Then S s left PSF and all
flat cyclic right S-acts satisfy condition (P) if and only if S =C or S = C U {0}

where C' 1s right cancellative.

Proof. By Lemma 3.4.7, and Lemma 3.4.3, S = C' U Z where C is right cancella-
tive and Z is right zero. On the other hand S has at most two idempotents and
so either S = C or S = C U {0} as required.

The converse is obvious. [
The following, extends part of [40. Theorem 4.3] to the non right reversible case.

Theorem 3.4.9. Let S be a left PSE monoid. Then for every proper right ideal
J of S with |J| > 1 there exists j € J\ Jj if and only if S =C or S = C U{0}

where C' 15 right cancellative.

Suppose that S = C or § = C U {0} where C is right cancellative and suppose
that J is a proper right ideal of S with |J| > 1. Then 1 ¢ J and so there exists
z € J such that * # 1 and @ # 0. If for every j € J, j € Jj, then z € J, and so
there exists y € J such that ¢ = yz. Since z is right cancellative, then y = 1 and

so 1 € J which is a contradiction.

Suppose that for every proper right ideal J of S with |J| > 1 there exists j € J\ JJ
and let 0 # 29 € S. Then we claim that z¢ is right cancellative. Otherwise, by
Lemma 3.3.5, there exists an infinite sequence (z¢,21,...), with z; = 2,4 2,, and

z; not right cancellative, e =0,1....
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Now let J = |J;2,#;S. Then J is a right ideal of S. Also |J| > 1, otherwise
J = z0S = {x0} and so x¢ is left zero. Suppose that I is the set of all left
zero elements of S, then [ is a right ideal of S and every e € I is an idempotent.
Consequently, for every e € I, e = ee € Ie and so by assumption |I| = 1. Hence, z¢
is the only left zero element of S. Now let z,y € S. Then (z2¢)y = 2(zoy) = zx0.
Thus zz¢ is left zero and so by uniqueness of xg, zxg = 2. Therefore z¢ is right
zero and so a zero which is a contradiction. Hence, |J| > 1. J is also a proper
ideal, otherwise 1 € J and so there exist z; € J,s € S such that 1 = z;s. Thus ;

is right invertible and so it is right cancellative which is a contradiction.

Now by assumption there exists 7 € J \ Jj. But j € J implies that there exist
x; € J,s € Ssuchthat j = z;s. Since x; = x;412;, then j = z,412;8 = ;417 € J7,
and so a contradiction. Thus every element different from zero is right cancellative

as required. [
From Corollary 2.3.42, Corollary 3.4.8, and Theorem 3.4.9, we have

Theorem 3.4.10. If S is a right reversible monoid, then the following statements

are equivalent:
1. S=C or S =CU{0} where C is a right cancellative.
9. S is left PSF and all weakly flat cyclic right S-acts satisfy condition (P).
3. S is left PSF and all flat cyclic right S-acts satisfy condition (P).

4. S 1s left PSF and for every proper right ideal J of S with |J| > 1 there
exists 3 € J\ JJ.

5. S is left PP and all weakly flat cyclic might S-acts satisfy condition (P).
6. S is left PP and all flat cyclic right S-acts satisfy condition (P).

In the following we give a characterization of left PSF periodic monoids by con-
dition (P) of (weakly) flat cyclic right acts and use this to characterize left PSF

monoids for which all (weakly) flat cyclic right acts are projective or strongly flat.

Lemma 3.4.11. Let S be a periodic monoid such that every principal left ideal of
S 13 strongly flat. Then all flat cyclic right S-acts satisfy condition (P) if and only
if S =G U Z where G is a group and Z 1is the set of all right zero elements of S.
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Proof. If all flat cyclic right S-acts satisfy condition (P), then by Theorem 2.2.15,
S = G U N where G is a group and N is the set of all right nil elements of S.
Thus S is right subelementary and so by Theorem 3.2.23, every element in the
right nil part is right zero.

The converse is true by Theorem 2.3.22. [
Since every left PP monoid is left PSF', then we have

Corollary 3.4.12. Let S be a periodic monoid which 18 also left PP. Then all
flat cyclic right S-acts satisfy condition (P) if and only if S = G U Z where G 1s
a group and Z 1is the set of all right zero elements of S.

Theorem 3.4.13. Let S be a periodic monoid. Then the following statements are

equivalent:

(1) S =G U Z where G is a group and Z is the set of all right zero elements of S.
(2) S is left PSF and every weakly flat cyclic right S-act satisfies condition (P).
(3) S is left PSF and every flat cyclic right S-act satisfies condition (P).

Proof. The implication (2) = (3) is obvious and by Lemma 3.4.11, (3) = (1).
Finally, by Theorem 2.2.13, and Theorem 3.2.23, (1) = (2). [

Liu in [40, Proposition 4.2] showed that for a right reversible monoid S, if all flat
cyclic right S-acts satisfy condition (P), then for every proper right ideal J of
S with |J| > 1 there exists j € J\ Jj. The following example shows that S is
right reversible is a necessary condition in Liu’s Proposition 4.2. Also from this

example it can be seen that Liu’s Proposition 4.2 cannot be extended to the left
PSF monoids.

Example 3.4.14. Let S = G U Z be a monoid where G is a group and Z is the
set of all right zero elements of S with |Z] > 1. Let x,y € Z such that = # y.
Then Sz, Sy are principal left ideals and {z} = Sz, {y} = Sy. Thus Sz NSy =10
and so S is not right reversible. Let J be a proper right ideal of S with |J| > 1.
Then J C Z, otherwise if there exists € J such that x € G, then 1 = zz™! € J
and so J = S which is a contradiction. By Theorem 3.4.13, S is left PSF and all
flat cyclic right S-acts satisfy condition (P), but for every e € J, e = ee € Je.
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Now by using Theorem 3.4.13, we give a characterization of left PSF monoids
for which all (weakly) flat cyclic right acts are strongly flat or projective and use
this to give a characterization of right reversible left PSF monoids for which all

(weakly) flat cyclic right acts are strongly flat or projective .

Lemma 3.4.15. Let S be a left PSF monoid. Then all flat cyclic right S-acts
are strongly flat of and only if S is right zero.

Proof. Suppose that all flat cyclic right S-acts are strongly flat. Then all cyclic
right S-acts which satisfy condition (P) are strongly flat and so by Lemma 2.2.27,
S is aperiodic. Thus every element of S is of finite order and so S is periodic.
Consequently, by Theorem 3.4.13, S = G U Z. If z € G, then there exists n € N
such that "1 = z™. Then by cancelling z”, * = 1 and so S is right zero as

required.

If S is right zero, then by Theorem 2.3.28, all flat cyclic right S-acts are strongly
flat. [

Corollary 3.4.16. Let S be a left PSF monoid. Then all flat cyclic right S-acts

are projective if and only if S s right zero.

Proof. Suppose that all flat cyclic right S-acts are projective. Then all flat cyclic
right S-acts are strongly flat and so by Lemma 3.4.15, S is right zero.

If S is right zero, then by Theorem 2.3.28, all flat cyclic right S-acts are projective.

|
From Lemma 3.4.15, Corollary 3.4.16, and Theorem 2.3.28, we have

Theorem 3.4.17. Let S be a left PSF monoid. Then the following statements

are equivalent:

(1) S is right zero.
(2) All weakly flat cyclic right S-acts are strongly flat.
(3) All weakly flat cyclic right S-acts are projective.

(4) All flat cyclic right S-acts are strongly flat.
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(5) All flat cyclic Tight S-acts are projective.

Corollary 3.4.18. Let S be a right reversible left PSF monoid. Then all flat
cyclic Tight S-acts are strongly flat if and only if either S = {1} or S = {0,1}.

Proof. Let S be a right reversible left PSF monoid and suppose that all flat
cyclic right S-acts are strongly flat. Then by Lemma 3.4.15, S is right zero. On

the other hand by Theorem 2.3.39, S has at most two idempotents. Consequently,
either S = {1} or § = {0,1}.

The converse is obvious. .

Since for S = {1} or § = {0,1} all cyclic right S-acts are projective, then from
Corollary 3.4.18, we have

Corollary 3.4.19. Let S be a right reversible left PSF monoid. Then all flat
cyclic Tight S-acts are strongly flat of and only if all cyclic right S-acts are projec-

tive.

Bulman-Fleming in [1] showed that for a monoid S if all flat right S-acts satisfy
condition (P), then |E(S)| = 1. He also posed the following question.

Problem. Is the condition |E(S)| = 1 also sufficient for every flat right S-act to
satisfy condition (P) ?

By the following example [40] it can be seen that the answer is negative. Then we

show it is positive for some classes of monoids.

Example 3.4.20. For (i = 1,2...), consider partial mappings f; over R,

1

1—1 1< x
filz) = i—l—}-%(a:—i—{—l) 1— 1<z <y
x x<i—1.

Then it is easy to see that f;, 2 = 1,2,..., have the property f;fiv1 = fix1fi = fis
using the usual composition of partial mappings. Thus for: > j, fif; = f;fi = f;.

Consider the monoid

S={fr]i=12.., n=12..1U{1).
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Where, 1 : R — R is the identity map. It is easy to see that S is commutative
and that for z € ( — 1,17),

ff(x):z‘—1+2in(;c—z‘+1).

Thus f7* is not idempotent, s = 1,2..., n =1,2..., and so |[E(S)| = 1. Obviously
there exists an infinite sequence (f1, f2,...) with f; = fixafi, ¢ = 1,2...1n S.
Since f; # 1 for every ¢, then by Proposition 2.3.56, there exists a proper right
ideal J of S such that j € Jj for every j € J. Consequently, by Corollary 2.3.55,
there exists a flat right S-act which does not satisfy condition (P)

Theorem 3.4.21. Let S be a right reversible left PSFEF monoid such that all flat
cyclic right S-acts satisfy condition (P). Then all flat right S-acts satisfy condition
(P) if and only if |[E(S)| = 1.

Proof. Suppose that S is a right reversible left PSF monoid such that all flat
cyclic right S-acts satisfy condition (P) and let |E(S)| = 1. Then by Theorem
3.4.10, either S = C' or S = CU{0} where C is right cancellative. Since |E(S)| = 1,
then S = C and so by Theorem 3.3.12, all flat right S-acts satisfy condition (P).

If all flat right S-acts satisfy condition (P), then by Theorem 2.3.45, |[E(S)| = 1.m
From Theorem 3.3.14, and Theorem 3.4.21, we have

Corollary 3.4.22. Let S be a right reversible left PSF monoid. Then all weakly
flat right S-acts satisfy condition (P) if and only if oll flat cyclic right S-acts
satisfy condition (P) and |E(S)| = 1.

Here is another class of monoids S for which |E(S)| = 1 implies that all flat right
S-acts satisfy condition (P).

Theorem 3.4.23. Let S be a left PP monoid. Then all flat right S-acts satisfy
condition (P), if and only if |[E(S)| = 1.

Proof. Let S be a left PP monoid with |E(S)] = 1 and let z € S. Then there
exists €2 = e € S such that ex = z and ax = bz implies that ae = be. Since
|E(S)| = 1, then z is right cancellative and so by Theorem 3.3.12, all flat right
S-acts satisfy condition (P).

If all flat right S-acts satisfy condition (P), then by Theorem 2.3.45, |[E(S)| = 1.m
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We also show that for an eventually regular monoid S, |E(S)| = 1 is sufficient that
all flat right S-acts satisfy condition (P).

Theorem 3.4.24. Let S be an eventually regular monoid. Then all flat right
S-acts satisfy condition (P) if and only if |E(S)| = 1.

Proof. Let S be an eventually regular monoid with |E(S)| = 1 and let z € S.
Then there exists n € N such that 2™ is regular and so there exists z' € S such
that z"z'2™ = 2™. Since "z’ is an idempotent element, then 2"z’ = 1. Thus z is
right invertible and so it is right cancellative. Consequently, S is right cancellative

and so by Theorem 3.3.15, all flat right S-acts satisfy condition (P).

The converse is true by Theorem 2.3.45. u
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Chapter 4

(Pg) Conditions

4.1. Introduction

In this chapter we first of all introduce conditions (P g), (Pf) and (Pg). Then by
considering the relation between these conditions and flatness, we show that for
a given act (P) = (Pg) = (Pp) = weakly flat, but the converses are not true.
Also we show that condition (Pg) implies condition (P g) and again the converse

1s not true.

Then we characterize certain types of monoids which have the property that all
their (cyclic) acts satisfy one of these conditions and also monoids for which all

these distinct properties coincide. We consider various corollaries of these results.

Finally, we present a characterization of some classes of monoids by condition (E)
of (weakly) flat right acts and also monoids for which all right acts having (E)
satisfy conditions (Pg), and (Pp).
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4.2. Condition (P g)

In this section at first we introduce condition P;. Then we give a necessary
condition for cyclic acts of a monoid to satisfy this condition. For monoids with
central idempotents, we characterize cyclic acts with condition P;y. The result
is an analogue of those in Lemma 1.54. Also a necessary condition for monoids
with central idempotents such that all their acts having P, i be strongly flat are
given next. A characterization of left PP monoids with central idempotents such
that all their acts having P; i satisfy condition (P) is given afterwards. Then we
give a classification by condition (P g) of cyclic right acts of an inverse monoid S

La. Also for inverse monoids

with the property that for every a € S, aa™! = a~
of this type we show weak flatness of cyclic acts implies condition (P; ). Finally,
we give a characterization of eventually regular monoids with central idempotents
by condition (P) of cyclic right acts having condition (P; g). There are also some

corollaries that will arise.

Definition 4.2.1. Let S be a monoid. A right S-act A satisfies condition (P g)

if whenever a,a’ € A, u,v € S and au = a'v, there exist a" € A, s,t,e? =e € §

such that ae = a''se, a'e = a''te, and su = tv.
b )

Remark. It is obvious that condition (P) implies condition (P; z), but the con-
verse is not true. For example if S = {0,1} and A = {z,y,z | 20 = y0 = 20 =
z, lx = x, 1y = y}, then A satisfies condition (P; g). Since A is not a coproduct of
cyclic S-acts, then by Lemma 1.53, A does not satisfy condition (P). If S is a right

cancellative monoid or |E(S)| = 1, then conditions (P; ;) and (P) are equivalent.

Now we give a characterization of monoids with central idempotents by condition

(P, ) of cyclic acts.

Lemma 4.2.2. Let S be a monoid and p a right congruence on S. If S/p satisfies

condition (Pyg), then for all u,v € S with u p v there exist s,t,e? = e € S such
that su = tv and se p e p te.

Proof. Let S/p satisfies condition (Pyg) and let u p v for u,v € S. Then
up = vp or (1p)u = (1p)v. If 1p = x, then zu = zv and so there exist ¢’ € S/p,
s1,t1,e2 = e € Ssuchthat ze = a’s1e, e = a”"tye and s;u = tyv. Since a” € S/p,

then there exists s’ € S such that s'p = @’ and so ze = a" s1e implies that
ep = (1p)e = (s'p)sie = (s's1e)p or e p s's1e.
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Similarly, ze = a''t1e implies that e p s'tje. If s's; = s and s'ty = ¢, then
se p e pte. On the other hand syu = t;v implies that s'sju = s'tjv or su = tv

and so the result follows. ]

Lemma 4.2.3. Let S be a monoid with central idempotents and let p be a right

congruence on S. If for all u,v € S with u p v there exist s,t,€2 = e € S such

that se p e p te and su = tv, then S/p satisfies condition (P g).

Proof. Suppose that for every u,v € S with u p v there exist s,t,e? = ¢ € S such
that su = tv and se p e p te. Let Au = A'v for A, A’ € S/p and u,v € S. Then
there exist a,a’ € S such that, A = ap, A’ = a'p and so we have

Au = A'v = (ap)u = (a'p)v = (au)p = (a'v)p = au p a'v.

Then by assumption there exist si,#;,¢? = e € S such that s;au = t;a'v and
s1e peptie. If s5a = s and t1a’ = ¢, then su = tv. Since s1e p e, then syea p ea.
But idempotents are central and so sjae p ae or (1 p)sjae = (aple. If 1p = A",

then A”(s1a)e = Ae or A"se = Ae. Similarly, A"te = A'e. and so S/p satisfies

condition (P ) as required. |
From Lemma 4.2.2, and Lemma 4.2.3, we have

Theorem 4.2.4. Let S be a monoid with central idempotents and let p be a right

congruence on S. Then S/p satisfies condition (Pyg) of and only if for allu,v € S

with u p v there exist s,t,e? = ¢ € S such that se p e p te and su = tv.

Theorem 4.2.5. Let S be a monoid with central idempotents and let p be a right

congruence on S. Then S/p satisfies condition (P g) if and only if for allu,v € S
with u p v there exist s,t,e2 = e € S such that s(p V Ae)l(p V Ae)t and su = tv.

Proof. Suppose that S/p satisfies condition (P, g) and let u p v. Then by Theorem
4.2.4, there exists s1,t1,€? = e € S such that sje p e p tye and s;u = t;v. Then
sie pe(Ae)l,alsotie pe(Ae)l. If sie = s, tie =t, then s p e(Ae)l, or s(p V Ae)l.
Similarly, t(p V Ae)l. Also syu = tyv implies that e(s;u) = e(t1v) or (esy)u =

(et;)v. But idempotents are centraland so (sje)u = (t1e)v. Consequently, su = tv.

Now suppose that for u,v € S with u p v there exist s,t,e? = e € S such that
s(p V Ae)l(p V Ae)t and su = tv. Since s(p V Ae)l, then by Lemma 1.49,

there exist s1,82,...,82n—1 € S such that

s p si(Ae)sy p s3...s2n—1(Ae)l.
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Then we have
Se p sie, S1€ = $2€, S2€ P S3€,...,82,—1€ = €,

which implies that se p e. Similarly, t(p V Ae)l implies that te p e. Since su = tv,
then by Theorem 4.2.4, S/p satisfies condition (P; ). ]

From Theorem 4.2.4, and Theorem 4.2.5, we have

Corollary 4.2.6. Let S be a monoid with central idempotents. Then for all u,v €

S with u p v there exist s,t,¢? = ¢ € S such that se p e p te and su = tv if and
only if there exist s,t,e? = e € S such that s(p V Ae)l(p V Ae)t and su = tv.

If  and y are elements of a monoid S we shall denote by p(z,y) the smallest right
congruence on S which identifies these two elements. It is well known that, for

u,v € 5, (u,v) € p(z,y) if and only if either u = v or else there exist
81582y rve s SnyZ1s22seeeyZn, W1 W2y ., Wy €8

such that
U = 2181

Wi181 = 2282
and {z;,w;} = {z,y} for each i.

WpSpy = U

Lemma 4.2.7. Let S be a monoid with central idempotents. Let x,e> =e € S be
such that ex = x. Then the right S-act S/p(z,e) satisfies condition (P g).

Proof. By Theorem 4.2.4, 1t is sufficient to show that for u,v € § with u p v
there exist s,t, f2 = f € S such that sf p f p tf and su = tv (p denotes p(z,€)).
Let u pv. fu=v,then s =t =1and f = 1. Otherwise, there exist

81,82, vy Sy 21522, ey Zn, W1, Wo, ..., Wy €5,

such that
U = 2181

w181 = 2282

and {z;,w;} = {z,e}. (1)

WpSp =V
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From (1) it can be seen that there exist m,m' € N such that 2™u = ™ v. Now
we show by induction that for every £ € N, z*e p e¢. Since 2 p ¢ and ze = z,
then ze p e. Thus for k = 1 it is satisfied. Suppose that z*e p e, £ € N. Then

Tk

ex p ex. Since ex = z, then 2**1 p . But z p e and so z*¥1 p e. Consequently,
z¥*le p e. Therefore, z™e p e and 2™ e pe. If 2™ =5, 2™ =t and f = e, then

se p e p te and su = tv.
|
Notice : From Lemma 4.2.7, it can be seen that if S is a left PP monoid with

central idempotents, then for every z € S there exists €2 = e¢ € S such that
S/p(z,e) satisfies condition (P g).

Lemma 4.2.8. Let S be a monoid with central idempotents. If e, f € E(S) are
such that ef = e, then the right S-act S/p(e, f) satisfies condition (P ).

Proof. Since idempotents are central, then fe = e. Consequently, by Lemma
4.2.7, S/p(e, f) satisfies condition (P g) as required. ]

Lemma 4.2.9. Let S be a monoid with central idempotents. If all cyclic right S-
acts which satisfy condition (P g) satisfy condition (P), then every e € E(S)\ {1}

18 ZE€T0.

Proof. Let e € E(S)\ {1} and let z € S. Since e{ex) = ez, then by Lemma 4.2.7,
S/p(ex, e) satisfies condition (P; i) and so by assumption it satisfies condition (P).
Thus by Lemma 1.54 (4), ez p e implies that there exist s,t € S such that sex = te

and s p 1 pt. Since s p 1, then either s = 1 or else there exist
Slyerny Sny Zlyeeey Zny Wiy, Wy €9,
such that
S = 2Z181

W181 = 2982
and {z;,w;} = {ex,e}.

WpSp = 1
We claim that s = 1. Otherwise, since either w, = e or w, = ex, then it follows
that either 1 = wps, = €s, or 1 = exs, and so in both cases, 1 € ¢S. Thus there

exists ¢’ € S such that 1 = es’ and so

e=cl =e(es') =e’s' =es' =1,
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which is a contradiction. Similarly, ¢ = 1 and so for every z € S, ez = e. But

idempotents are central and so ze = ez = e. Consequently, every e € E(S)\ {1}

is zero as required. [

Theorem 4.2.10. Let S be a monoid with central idempotents. If all cyclic right
S-acts which satisfy condition (Pyg) are strongly flat, then S 1s nil.

Proof. Since every cyclic right S-act which satisfies condition (P; g) is strongly
flat, then every cyclic right S-act which satisfies condition (P) is also strongly flat.
Thus by Lemma 2.2.27, S is aperiodic and so for every z € S there exists n € N
such that z"*! = 2. Now we show by induction that for every k € N z"tF = 27,

Since ™! = z™, then for k =1 it is satisfied. Suppose that z?** = z™. Then

:L,n—i—k—i—l —

Thus ™" = 2™ or (2")? = 2" and so z" is idempotent. Now if x # 1, then
™ # 1. Otherwise, 2" %! = z™ implies that £ = 1 which is a contradiction. Hence,

z" € E(S)\ {1} and so by Lemma 4.2.9, z" is zero or z is nil as required.

By Theorem 2.3.28, we saw that for right nil monoids, all weakly flat cyclic acts
are projective, thus from Theorem 4.2.10, it can be deduced that for monoids with
central idempotents, If all cyclic right acts having (P g) are strongly flat, then all
weakly flat cyclic right acts are projective and so all (weakly) flat cyclic right acts
are strongly flat.

That (Pyg) is a non trivial property of acts follows from:

Theorem 4.2.11. Let the monoid S be a semilattice. Then all right S-acts satisfy

condition (Pig).

Proof. Let A be a right S-act and let au = ¢'v for a,a’ € A, u,v € §. Since

u? = u, then au = a'v implies that au = au? = d'vu. Also d'u = d'u? = da'uu.

Since S is a semilattice, then vu = uv and so A satisfies (P g). ]

Now we show for left PP monoids with central idempotents weak flatness of cyclic

acts implies condition (P g).
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Lemma 4.2.12. Let S be a left PP monoid with E(S) a semilattice. Let p be a
right congruence on S. If S/p is weakly flat, then for every u,v € S with u p v
there exist s,t, ¢ = e such that su = tv and s(p V Ae)l(p V Ae)t.

Proof. Suppose that u p v. Since S/p is weakly flat, then by Lemma 1.54 (6),
there exist s, € S such that s(p V Au)l(p V Av)t and su = tv. Since s(p V Au)l,
then by Lemma 1.49, there exist r;,s; € S, i = 1,2,...,2n such that

s psi(Au)ry p sa...ren1 p San(Au)ry, = 1.

Also t(p V Aw)l implies that there exist s},r}, ¢ =1,2,...,2m such that
S (AOI p sh Ty p S (A0)h = 1.

Since the above sequences are not of minimal length so we can extend the length
of these sequences. Thus we can suppose that the above sequences are of the same
length 2n. Then s;(Au)r;, implies that s;u = ryu, ¢ = 1,2,...,2n. Since S is
left PP, then there exists e? = e; € S such that e;u = v and s;u = r;u implies
that s;e; = rje; or s;(Aey)ri, ¢ = 1,2,...,2n. By the same argument there exists
e2 = ey € S such that e3v = v and slv = rlv implies that sie; = rie; or si(Aez)ri,
1 = 1,2,...,2n. Since s;e; = rjeq, ¢t = 1,2,...,2n, then s;ejeq = rie1eg, 1 =
1,2,...,2n. Also slege; = rieger, 1 = 1,2,...,2n. Since idempotents commute,
then ejeq = eze;. If e = e1ea = eqeq, then sje = rie, ste =rle, 1 =1,2,...,2n.
Consequently, s;(Ae)r; and si(Ae)ri ¢ =1,2,...,2n. Thus

s p s1, s1(Ae)ry, r1p s2, S2(Ae)ra, ..., Tan—1 p S2n, S2n(Ae)l,

and

Hence by Lemma 1.49, s(p V Ae)l and ¢(p V Ae)l as required n

Corollary 4.2.13. Let S be a left PP monoid with central idempotents and let
p be a right congruence on S. If S/p s weakly flat, then S/p satisfies condition

(Prg).

Proof. Since idempotents are central, then by Lemma 4.2.12, for every u,v € §
with u p v there exist s,t,e? = e € S such that s(p V Ae)l(p V Ae)t and su = tv.
Thus by Theorem 4.2.5, S/p satisfies condition (P g). n
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Corollary 4.2.14. If S 1s a right cancellative monoid, then all weakly flat cyclic
right S-act satisfies condition (P).

Proof. If S is right cancellative, then it is left PP and also |E(S)| = 1. Thus S
is a left PP monoid with central idempotents and so by Corollary 4.2.13, every
weakly flat cyclic right S-act satisfies condition (P; g). But in this case conditions
(P) and (P ) are coincide and so every weakly flat cyclic right S-act satisfies

condition (P) as required. u

Lemma 4.2.15 [19]. If S is a Clifford semigroup, then it is reqular and every

idempotent 18 central.

Since every regular monoid is left PP, then from Corollary 4.2.13, and Lemma
4.2.15, we have

Corollary 4.2.16. Let S be a Clifford monoid, then all weakly flat cyclic right
S-act satisfies condition (Pig).

Now from Corollary 4.2.13, we can characterize left PP monoids with central

idempotents for which all cyclic right acts having (P, g) satisfy condition (P).

Theorem 4.2.17. Let S be a left PP monoid with central idempotents. Then all
cyclic right S-acts having (Pyg) satisfy condition (P) if and only if S = C U {0}

where C 1s right cancellative.

Proof. Suppose that all cyclic right S-acts having (P; ) satisfy condition (P).
Since by Corollary 4.2.13, every weakly flat cyclic right S-act satisfies condition
(P1g), then all weakly flat cyclic right S-act satisfy condition (P) and so by
Theorem 2.3.22, S = C' U Z is right subelementary with elements in the right nil
part all right zero. But idempotents are central, thus every right zero element is

a left zero and so a zero. Consequently, S = C U {0}.

If S = C UJ{0}, then by Corollary 2.3.64, all cyclic right S-acts satisfy condition
(P) and so all cyclic right S-acts having (P g) satisfy condition (P) as required.

Now by considering inverse monoids S with the property that for every a €

-1

S, aa™! = a~'a we give a classification by condition (P;g) of cyclic right S-

acts. Also from Theorem 4.2.19 below it can be seen that for inverse monoids with
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the property mentioned above all weakly flat cyclic right acts satisfy condition

(Pig)

By Exercise 2 of [19, p. 125], if S is a regular semigroup such that for every a € S
and every o' € V(a), aa’ = d'a then S is a Clifford semigroup and so by Lemma

4.2.15, idempotents of S are central. Thus by Theorem 4.2.5, we have

Theorem 4.2.18. Let S be an inverse monoid such that for everya € S, aa™! =
ala. Let p be a right congruence on S. Then S/p satisfies condition (Pig) if and
only if for all u,v € S with u p v there exist 5,t,e? = e € S such that su = tv and
s(p V Ae)l(p V Aelt.

From Corollary 4.2.13, and comment before Theorem 4.2.18, we have

Theorem 4.2.19. Let S be an inverse monoid such that for everya € S, aa™! =

a la. Then all weakly flat cyclic right S-acts satisfy condition (Pyg).

In the following we give a characterization of eventually regular monoids with

central idempotents by condition (P) of cyclic right acts having condition (P g).

Lemma 4.2.20. Let S = G U N be a right elementary monoid. Then idempotents

are central if and only if N 1s nil.

Proof. Suppose that S is a right elementary monoid with central idempotents.
Let e € N be right zero and let * € S. Then ze = e. Since idempotents are
central, then ze = ex = e and so e is zero. Thus every element of N is nil as

required.

Suppose that S = G U N is a right elementary monoid such that N is nil. Then
E(S)={0,1} and so every idempotent is central. [

Theorem 4.2.21. Let S be an eventually regular monoid with central idempotents.
If all cyclic right S-acts having (Pyg) satisfy condition (P), then S =G U N is a

right elementary monoid with elements in N all nal.

Proof. Let S be an eventually regular monoid with central idempotents. If
all cyclic right S-acts having (P, ) satisfy condition (P), then by Lemma 4.2.9,
every e € E(S)\ {1} is right zero. Thus by Theorem 2.3.23, S = G U N is a right
elementary monoid. But by assumption idempotents are central and so by Lemma

4.2.20, N is nil as required. [
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From Theorem 2.3.25, and Theorem 4.2.21 we have the following corollary.

Corollary 4.2.22. Let S be an eventually regular monoid with central idempo-
tents. If all cyclic right S-acts having (P g) satisfy condition (P), then all (weakly)
flat cyclic right S-acts satisfy condition (P).

Lemma 4.2.23. Let S = G U N be a right elementary monoid with elements in
N all nil. Then all cyclic right S-acts satisfy condition (P g).

Proof. Suppose that S = G U N is a right elementary monoid with elements in
N all nil and let S/p be a cyclic right S-act for a right congruence p on S. We
show that S/p satisfies condition (P ). Since by Lemma 4.2.20, idempotents are
central, then it is sufficient to show that S/p satisfies Lemma 4.2.3.

Let u p v with u,v € §. If at least one of « or v belongs to G (for example let
u € G) then vu™! p 1. If s = vu~!,t = 1, and e = 1, then se p ¢ p te and
su = tv. Suppose then that u,v € N. Since N is nil, then S has a zero element.

If s=t=¢e=0, then se p e p te and su = tv. [

Notice that the above lemma shows also that condition (P;g) is a non trivial

property of acts.

Corollary 4.2.24. Let S be an eventually regular monoid with central idempo-

tents. Then all cyclic right S-acts having (Pig) satisfy condition (P) uof and only
if S =G or S=GU{0} where G 1s a group.

Proof. Suppose that all cyclic right S-acts having (P; i) satisfy condition (P).
Then by Theorem 4.2.21, S = G U N is aright elementary monoid with elements in
N all nil. Consequently, by Lemma 4.2.23, all cyclic right S-acts satisfy condition
(Py ) and so by assumption all cyclic right S-acts satisfy condition (P). Hence,
by Corollary 2.3.64, S = G or S = G U {0} where G is a group.

If S =G or §=GU{0}, then by Corollary 2.3.64, all cyclic right S-acts satisfy
condition (P) and so all cyclic right S-acts having (P; i) satisfy condition (P) as

required. [ |
From Corollary 4.2.24, and Corollary 2.3.64, we have

Theorem 4.2.25. Let S be an eventually reqular monoid with central idempotents.

Then the following statements are equivalent:
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(1) All cyclic right S-acts having (P1g) satisfy condition (P).
(2) All cyclic right S-acts satisfy condition (P).
(8) S =G or S=GU{0} where G is a group.

Remark. By Lemma 4.2.9, for a monoid S with central idempotents if all cyclic
right S-acts having ( Py g) satisfy condition (P), then every e € E(S)\ {1} is zero.
Thus by Theorem 2.3.16, S = G U N U F where G is a group, N is the set of all

right nil elements of S and F' is the set of all regular free elements of S.
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4.3. Conditions (Py), (Pg)

In this section we first of all introduce new conditions (Pg) and (Pf). Then we give
necessary condition for cyclic right acts of a monoid to satisfy these conditions.
A classification of some classes of monoids by conditions (Pg) and (Pf) of cyclic
right acts will be given next. By considering the relation between conditions (Pg),

(Pf), condition (P) and weak flatness we show that for a given act
condition (P) = condition (Pg) = condition (Pp) = weakly flat

but the converses are not true. Then we show for some classes of monoids the
converse of the above statements are true. There are also some corollaries that

will arise.

Definition 4.3.1. Let S be a monoid. A right S-act A satisfies condition (Pg) if

whenever a,a’ € A,u,v € S and au = a'v there exist a” € 4 and s,t,e? =e € S

such that ae = d"’se, a’'e = d''te, eu = u, ev = v and su = tv.

Definition 4.3.2. Let S be a monoid. A right S-act A satisfies condition (Py) if

whenever a,a’ € A, u,v € S and au = a'v there exist a" € A and s,t,e? = ¢, f? =

€ S such that eu = u, fv =12, ae =a'se, a' f = ad'"tf and su = tv.
b ) M

Remark. From definition of (P};) and (Pg) it can be seen that condition (Pg)
implies condition (Pf), but the converse is not true as the following example

demonstrates:

Example 4.3.3. Let S = {1,¢, f} with table

Then S is a monoid. If

A=zS={z,y|leze=af =ye=yf =y, 2zl ==z,yl =y},

then A is a right S-act. We show that A satisfies condition (Pf;). By definition

it is sufficient to show that for au = da'v with a,a’ € A, u,v € S there exist

a' € A, st e’ =€, " =¢'" €S such that

" ! 1N " 1 ! 1"
ae' =ad'se', a'e’ =d'te", e'u=u, v =0 and su = tv.
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Hre=zf, thena" =2, ¢ =¢, " =f, s=t=c.
If ze =yl, thend’ =z, ¢ =¢, " =1
If ze =ye,thend’ =2, ¢ =€, ¢ =¢, s =t =1.
Ifre=yf, thend' =z, ¢/ =¢, " =f, s=t=c.
fzf=yl,thend' =z, e =f ¢" =1, s=1, t=f.
fzf =vye,thenad'" =z, e =f, " =¢, s=t=f.
Ifef=yf,thena'" =z, ¢ =f, ' =f s=t=
If yl =ye,thend' =y, e =1, ¢ =¢, s=¢, t =1.
Ifyl=yf,thena'" =y, ¢ =1, " =1, s=t=f.

'

If ye=yf,thenad”" =y, ¢’ =¢, " =1

Therefore, A satisfles condition (Pj). But A does not satisfy condition (Pg).
Otherwise for ze = zf there exist a” € A4, s,t,¢'> = ¢' € § such that

ze! =d"se', xe' =d"te!, e =¢, ¢'f = f and se = tf.
Ife' =e, thenef =e# f. lf ¢ = f, then fe = f #e. Thuse’ =1, and so
ze! =zl =z and a"se' = a"s1 = d"s.
If a" =y, then for every s € S a''s = ys =y # z.
If " = z, then the only possibility is s = ¢t = 1. But in this case
se=le=e# f=1f =tv,
which is a contradiction. [

Lemma 4.3.4 [7]. If ¢ and [ are idempotents of a monoid S such that ef = e,
then the right S-act S/p(e, f) s flat.

Remark. From example 4.3.3, it can be seen that A ~ S/p(e, f). Since ef = e,
then by Lemma 4.3.4, S/p(e, f) is flat, and so A is flat. But as we saw A does not
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satisfy condition (Pg). Hence, S/p(e, f) does not satisfy condition (Pg) and so it
can be deduced that Lemma 4.3.4, is not true for condition (Pg). This example
also shows that (weak) flatness of acts does not imply condition (Pg) not only in

general but also for monocyclic acts.

By the following theorem it can be seen that for right zero monoids condition (P};)

implies condition (Pg).

Theorem 4.3.5. Let S be a right zero monoid. Then a right S-act A satisfies
condition (Pg) if and only if it satisfies condition (Pg).

Proof. If A satisfies condition (Pg), then it is obvious that A satisfies condition
(Pp).

Suppose that A satisfies condition (P};) and let au = a'v for u,v € S, a,d' € A.
If at least one of u or v is 1 (for example if u = 1) then a = a'v. f ¢ =d/, s =0
and t = 1, then a = a"s, @' = d'1 = d't, and su = tv. Thus A satisfies condition
(P) and so it satisfies condition (Pg).

Now suppose that u # 1,v # 1. Since A satisfies condition (P), then au = a'v
implies that there exist s,t,e? = e,f%2 = f € S, a" € A such that ae = a'se,

adf=ad'tf, eu=u, fo =v and su = tv. Now there are two cases that can arise.

Case 1. ¢ = f = 1. Then a = a"s, o' = a"t and su = tv. Thus A satisfies

condition (P) and so A satisfies condition (Pg).

Case 2. At least one of e or f different from 1 (for example let e # 1) then e is
right zero and so a'f = a"tf implies that o' fe = a''tfe or a’e = a''te. Since v is

right zero, then ev = v and so A satisfies condition (Pg) as required. |

Lemma 4.3.6. Let S be a monoid and p a right congruence on S.

1. If S/p satisfies condition (Pg), then for all u,v € S with u p v there exist

s,t,e2 =e€ S such that s pe pt, eu =u, ev =v and su = tv.

2. If S/p satisfies condition (Pf), then for all u,v € S with u p v there exist

s, t,e2=e, f2=fcSsuchthatspe,tpf, eu=u, fo=2v and su = tv.
Proof.
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1. Let uw pv. If a = 1p, then au = av and so there exist a” € S/p, ', t', 2 =

e € S such that ae = a''s'e, ae = a''t'e, eu = u, ev = v and s'u = t'v. Then

a" = xp for some z € S, and so ae = a"s’e implies that (1 p)e = (z p)s’e or

(e)p = (zs'e)p. Thus e p xs'e. Similarly, ae = a''t'e implies that e p xt'e.
Also we have

sleu = s'u = t'y = t'ev,
which implies that (zs'e)u = (zt'e)v. If zs'e = s, at'e =t, thenspept

and su = tv.

2. Let u p v. If a = 1p, then au = av and so there exist a’ € S/p, ', t',e? =
e, f2 = f € S such that ae = a"s'e, af = a"t'f, eu = u, fv = v and
s'u = t'v. Then &' = zp for some ¢ € S and so ae = a”s’e implies that
(1 p)e =(z p)s'e or (e)p = (zs'e)p. Thuse p zs'e. Also af = a"t'f implies
that (f)p = (zt'f)p or f p at'f. Since eu = u, fv = v, then

! ! ! !
seu =su=tv=tfo,

which implies that (zs'e)u = (zt' f)v. lf es'e = s, at'f =t,thenspe, t p f

and su = tv. [
Remark. Notice that we also have

1. If S/p satisfies condition (Pg), then for all u,v € S with u p v, there exist
s,t,e? = e € S such that se p e p te,eu = u,ev = v and su = tv.

2. If S/p satisfies condition (Pf), then for all u,v € S with u p v, there exist
s,t,e? =e,f2=f e Ssuchthat sepe, tf p f, eu =u, fv =v and
su = tv.

As we know in conditions (Pg), (Pp),if e =1, f =1, then condition (P) follows.

Also in this case Lemma 4.3.6 is equivalent to the one for condition (P).

Lemma 4.3.7. Let S be a monoid and let p be a right congruence on S. Then
for all u,v € S with u p v, there exist s,t,e? = e, f2 = f € S such that

se pe, tf pf, eu=u, fo =1, and su = tv if and only if there exist s,t,e? =
e, f2 = f € S such that s(p V Ae)l, t(p V Af)], eu =u, fo=v, and su = tv.
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Proof. Suppose for u,v € S with u p v there exist s1,t1,¢? = ¢, f2 = f € S such
that sje pe, t1f p f, eu = u, fv = v and s;u = tyv. If sje = s, t1f = ¢, then
spe, tpf. Alsosju=t;vimplies that s;(eu) = t;(fv) or (s;e)u = (¢; f)v and
s0 su = tv. Since e = ¢, then e(Ae)l. Thus s p e(Ae)l or s(p V Ae)l. Similarly,
t(p V Af)1 as required.

Now suppose that for u,v € § with u p v, there exist s,t,e? = ¢, f>2 = f € S such
that s(p V Ae)l, t(p V Af)L, eu = u, fv = v and su = tv. Since s(p V Ae)l,
then by Lemma 1.49, there exist r1,72,...,72,_1 € S such that

s pri(Ae)ry...ren_1(Ae)l,
and so se p e. Similarly, t(p V Af)1 implies that tf p f as required. [
If in Lemma 4.3.7, e = f, then we have

Corollary 4.3.8. Let S be a monoid and p a right congruence on S. If for all

u,v € S with u p v there exist s,t,e?> = ¢ € S such that se p e pte, eu =u, ev =
v, su = tv, then there exist s,t,e* = e € S such that s(p V Ae)l(p V Ae)t, eu =

u, ev = v, su = tv.
From Lemma 4.3.6, Lemma 4.3.7, and Corollary 4.3.8, we have

Corollary 4.3.9. Let S be a monoid and p a right congruence on S.

1. If S/p satisfies condition (Pf), then for all u,v € S with u p v, there exist
s,te? = e, f2 = f € Ssuchthat s(p V Ae)l, t(p V AN, eu=u, fv=
v, su = 1v.

2. If S/p satisfies condition (Pg), then for all u,v € S with u p v there exist
s,t,e? = e € Ssuchthat s(p V Ae)l(p V Ae)t, eu = u, ev = v, su = tv.

Now by using Corollary 4.3.9 (1), we show that condition (Pj;) implies weak flat-

ness of cyclic acts.

Theorem 4.3.10. Let S be a monoid and p a right congruence on S. If S/p
satisfies condition (Pf), then S/p is weakly flat.

Proof. We show that S/p satisfies Lemma 1.54 (6) . Let u p v with u,v € S.
Since S/ p satisfies condition (Py), then by Corollary 4.3.9 (1), there exist s,t,¢? =
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e, f2 = f € S, suchthat s(p V Ae)l(p V Af)t, eu = u, fv = v and su = tv.
Since s(p V Ae)l, then by Theorem 1.49, there exist s;,r; € S, 7 =1,2,...,2n
such that

s p si1(Ae)ry p sy...Tan—1 p S2n(Ae€)ra, = 1.

Then we have

S p 81, S1€ =Tr1€e, 1 P 82, S2€6 =T2€,...,T2p—-1 P S2n, S2n€ = €.

By multiplying both sides of equation s;e = rje by u we have s;eu = rjeu, 1 =

1,2,...,2n. Since eu = u, then s;u = rju, 1 = 1,2,...,2n and so we have
S P S1, S1U =Tr1U, 71 P S2, S2U = ToU, ..., T2p—1 P S2n, S2oU = U,
which is equivalent to
s p s1(Au)ry p sa(Au)ry ... ren—1 p san(Au)l.

Thus by Lemma 1.49, s(p V Au)l. By the same argument it can be seen that
t(p V Aw)l. Since su = tv, then by Lemma 1.54 (6), S/p is weakly flat as

required. [

Here we introduce some classes of monoids for which conditions (1), (2) of Lemma

4.3.6, imply conditions (P ), (Pg) respectively.

Lemma 4.3.11. Let S be a left PP monoid and p a right congruence on S. If for
w,v €S with u p v, there exist s,t,e? = e, f? = f € S suchthatspe, t p f, eu =
u, fv=rv and su = tv, then S/p satisfies condition (Pf).

Proof. Let zu = yv for @, y € S/p, u, v € S. Then & = ap, y = bp for
some a, b € S. Thus (ap)u = (bp)v and so (au)p = (bv)p or au p bv. Then
by assumption there exist s', ', e = ¢, f'* = f' € S such that e'au = au,
flov = bv, s p e, t' p f and s'au = t'bv. Since S is left PP, then there
exists €2 = e € S such that eu = u and e'au = au implies that e'aec = ae.
Consequently, (ae)p = (e'ae)p. Also s'p €' implies that s'ae p e'ae. Thus we have
(ae)p = (s'ae)p or (ap)e = (1p)s'ae. Similarly, there exists f* = f € S such that
Fo= v, (bf)p = (F81)p or (bp)f = (Lp)t'bf.

If s'a=s, t'b=1tand 1p = d", then (ap)e = (1p)s’ae implies that ze = a"’se and
(bp)f = (1p)t'bf implies that yf = a"tf. Also s'au = t'bv implies that su = tv.

Since eu = u, fv = v, then S/p satisfies condition (P},) as required. u
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Corollary 4.3.12. Let S be a left PP monoid and p a right congruence on S. If
S/p s weakly flat, then it satisfies condition (Pf).

Proof. By Lemma 4.3.11, it is sufficient to show that for every u,v € S with
u p v, there exist s,t,e? = ¢, f2 = f &€ Ssuchthat s pe, t p f, eu =u, fo =10

and su = tv.

Let u p v. Since S/p is weakly flat, then by Lemma 1.54 (6), there exist s',¢' € S
such that s'u = t'v and s'(p V Au)l(p V Awv)t'. Since s'(p V Au)l, then by

Theorem 1.49, there exist s{,s,,...,s5,_; € § such that
s' p s (Au)sy p sy ... 85, 1(Au)l. (1)

Since S is left PP, then there exists 2 = ¢ € S such that eu = v and s‘u = s’ | u
7 t+1%

i=1,3,...,2n — 1, implies that sle = s} ;e. Consequently, (1) implies that
s' p sy, sje=she, shpSh, ..., S0, 1€ =€, (2)

and so s’e p e. Similarly, there exists f2 = f € S such that fo = vandt'(p V Av)l
implies that ¢t'f p f. If s'e = s, t'f = t, then s p e and t p f. Also s'u = t'v
implies that s'(eu) = ¢'(fv) or (s'e)u = (¢ f)v. Thus su = tv and so S/p satisfies

condition (P}) as required. [
From Lemma 4.3.6, and Lemma 4.3.11, we have

Theorem 4.3.13. Let S be a left PP monoid and p a right congruence on S.
Then S/p satisfies condition (Py) if and only iof for every u,v € S with u p v,
there exist s,t,e2 = e, f2 = f € S such that s pe, t p f, eu = u, fv = v and

su = tv.

Remark. Every idempotent monoid, regular monoid, and right cancellative

monoid satisfies Theorem 4.3.13.

Lemma 4.3.14. Let S be a right zero monoid and p a right congruence on S. If

for every u,v € S with u p v there exist s,t,e? =e € S such that s pe pt, eu =
u, ev = v and su = tv, then S/p satisfies condition (Pg).

Proof. Since S is right zero, then S is left PP. Since S satisfies Lemma 4.3.11,
(e = f), then S/p satisfies (Py). But by Theorem 4.3.5, condition (Pj;) implies
condition (Pg) and so S/p satisfies condition (Pg) as required. |
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Now from Lemma 4.3.14, and Lemma 4.3.6 (1), we have

Theorem 4.3.15. Let S be a right zero monoid and p a right congruence on S.
Then S/p satisfies condition (Pg) if and only if for every u,v € S with u p v,

there exist s,t,e2 =e € S such that s pe pt, eu=1u, ev =v and su = tv.

Theorem 4.3.16. Let S be a commutative monoid and p a congruence on S. If

S/p satisfies condition (Pg), then for every congruence A on S and every u,v € S
with u(p V A, there exist t,t',€? = e € S with tu A t'v such that t(p V Aeu)l,
and t'(p V Aev)l.

Proof. If u(p V A)v, then there exist wy,ws,...,wzn—1 € S, such that

U P W AWy PUW...Wap—2 P Wan—1 A 0.

Thus
U p Wy, Wy pW3, Wg PWs,...,W2n—-2 pP W2p-1,

and

W1 A Wa, W3 A Wyy...,Wan—1 A U.

Since S/p satisfies condition (Pg) and u p wy, then by Corollary 4.3.9 (2), there
exist s,s1,e5 = eg € S such that s(p V Aeg)l(p V Aeg)si, su = sqwy, egu = u and
= ¢; € 9 such that

silp V Ae)l(p V Aei)sit1, SiWi = Sip1Wig1, CW; = W4, €Wit] = Wit]. Since

eqwy = wy. Alsofori =2,4,...,2n—2, there exist s;, S;y1, €7
su = sqwi and wy A wy implies that s;wy A sywa, then su A s;wy. Consequently,
S25U A S981we. But S is commutative and so spsu A s189wso. Since spwo = S3ws,
then s1s89we = 8183w3 and so $9su A s1s3ws3. On the other hand w3 A w4 implies
that s1s3ws A s1s3wy. Consequently, sosu A s183wy and hence s4825u A $48153W4.
Since S is commutative, then s45183w4 = $18384wy4. But sqwy = ssws implies that
$18384W4 = 515385ws and so S4828u A $18385ws. By continuing this procedure we
have

S9m—2 .. .84528U X 818385 ...82n_382n—1Wan—1-
Since wg,_1 A v, then
S$183 ...82n—-1W2n—1 A 8183 ...829/,—-10.

Consequently,

S92 ... 84525U A 8153 ...82,—1V.
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If t = 59p-2...54828, t' = 8183...82n—1, then tu A t'v. Now we show that t(p V
Aeu)l. Since s(p V Aeg)l, then there exist tg1,%02,...,t02m—1 € S such that

s p to1(Aeg)toz ... tozm—2 P tozm—1(Aeo)tozm = 1.

Also si(p V Ae;)l,i=2,4,...,2n—2, implies that there exist t;1,%:2,...,ti2k,—1 €
S such that

3; p tin(Aei)tia p tis.. . tigk,—2 p tizk;~1(Aei)tior, =1, 1 =2,4,...,2n -2

Since we can extend the length of the above sequences, then we can suppose that

all these sequences are of the same length 2m. Since S is commutative and

s ptor, 82 ptar,...,S82n—2 P tan—21,
then
883 ...82n—2 P to1ta1...t2n—21-
From
to1(Aeg)toz, ta1(Ae)tan, ... tan—21(Aean_2)tan_22,
we have

to1€o = to2€0, t21€2 = t22€2,...,tan—21€2n—2 = t2n_22€2n—2.
Since S is commutative, then by multiplying both sides of these equalities we have

to1to1 ... tan—21€0€2 ... €2n—2 = fo2t22 ... Tan—22€0€2 ... €2 2.

Also

to2 p tos, taz p te3,...,t2n—22 p t2p_23,

implies that

to2t22 ... tan—22 P toste3...t2n—23.

By continuing this procedure we have

882 ...S2n—2 p Toita1...t2n—21
to1t21 ... t2n—21€0€2 ... €2n—2 = toalo2 ... tapn—22€0€2 ... €212
toztaz ... tan—22 p tostaz ... ton_23
toam—1t22m—1-+-t2n—-22m—1€0€2 - .. €2n—2 = To2ml22m - . . T2n—22m€o€2 ... E2n—2
— €pC2...€92p-2.
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If e = epea...eon—2, and t; = toito;...tan_9i, 2 = 1,2,...,2m — 1, then the

previous equations become
tpty, hhe =1tze, tg pts, t3e =tge,.. ., tam—1€ = €,
and so
tpty, tieu = taeu, ty p t3, tzeu = tgeu,. .., tapm_16u = eu. (%)

Since tjeu = t;yjeu implies that ¢;(Aeu)titi, ¢ = 1, 3, ..., 2m — 3, and also

tom—1eu = eu implies that to,,—1(Aeu)l, then
tpti(Aeulty pts...tam—2 p tam—1(Aeu)l,
and so t(p V Aeu)l. Since
si(p V Aeg)l, s3(p V Aez)l, ..., 80n—1(p V Aeg,_2)1,
then by the same argument it can be seen that t'(p V Aev)l. ]

Corollary 4.3.17. Let S be a commutative monoid and p a right congruence on
S. If S/p satisfies condition (Pg), then for every left congruence A on S and
every u,v € S with u(p V Av, there exist t,t',e? = e € S with tu A t'v such that
t(p V Xeu)l, and t'(p V Aev)l.

Proof. Suppose that S/p satisfies condition (Pg) and let u(p V Mo with u,v € S
and X a left congruence on S. Then by Theorem 4.3.16, there exist ¢,#',¢2 = e € S
with tu A t'v such that t(p V Aeu)l, and t'(p V Aev)l. Then there exist ty,
ty,...,tan—1 € S such that

t p tl(Aeu)tz “e tgn_z P t2n_1(Aeu)1.

But for 7 = 1,3,...,2n — 1, t;(Aeu)t;y; implies that t;eu = t;;1eu and so
tieu A tip1eu or t;(Aeu)tit1. Consequently,

t P tl()\eu)tz e tgn_g p tgn_l(/\eu)l,
and so t(p V Aeu)l. Similarly, t'(p V Aev)l. n

Although we know that condition (P) implies flatness of acts, but as a corollary

of Corollary 4.3.17, we have.
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Corollary 4.3.18. Let S be a commutative monoid with |[E(S)| = 1 and let p be
a Tight congruence on S. If S/p satisfies condition (P), then it is flat.

Proof. Suppose that S/p satisfies condition (P) and let u(p V A)v with u,v € S
and A aleft congruence on S. Then S/ p satisfies condition (Pg) and so by Corollary
4.3.17, there exist s,t,e? = ¢ € S such that su A tv and s(p V Aeu)l(p V Alev)t.
Since |E(S)| = 1, then s(p V Au)l(p V Av)t and so by Lemma 1.54 (5), S/p is

flat as required. =

Corollary 4.3.19. Let S be a commutative monoid and p a right congruence on
S. If S/p satisfies condition (Pg), then for every u,v € S with u p v there ezist
s,t,e?2 = e € S such that su=tv, and s(p V Aeu)l(p V Aev)t.

Proof. If u p v, then u(p V A)v and so by Theorem 4.3.16, there exist s,t,e* =
e € S such that su A tv, and s(p V Aeu)l{p V Aev)t. Since su A tv implies
that su = tv, then the result follows. [

Remark. If in Corollary 4.3.19, |[E(S)| = 1, then we have Lemma 1.54 (6). Also
in this case conditions (Pg), (P) are the same and so condition (P) implies weak

flatness of cyclic acts.

Remark. By definition of conditions (P, g) and (Pg) it can be seen that if a right
S-act satisfies condition (Pg), then it satisfies condition (P g), but the converse

is not true as the following example demonstrates.

Example 4.3.20. Let S = {0,1,2} with the multiplication table

o = O

o OO0
N~ O
O N O

If p = {(0,0),(1,1),(2,2),(2,0),(0,2)}, then p is a right congruence on S. Since S
is commutative, then idempotents are central. We show that S/p satisfies condition
(P1g), but it does not satisfy condition (Pg). By Theorem 4.2.5 and Corollary
4.3.9 (2), it is sufficient to show that for every u,v € S with u p v, there exist
s,t,e? = e € S such that s(p V Ae)l(p V Ae)t and su = tv, but eu # v or ev # v.

We suppose first of all that u =2, v =0. If e = 1, then s(p V Ae)l(p V Ae)tis
equivalent to s p 1 p t. Thus, by definitionof p, s=t=1. But1-2=2,1-0=0
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and so su # tv. Consequently, S/p does not satisfy conditions (P, g) and (Pg).
Thus e = 0.

Now we consider the following cases:

1. s=t=0. Then0-2=0-0. Since 0 p 2 and 2-0 = 1-0 implies that 2(A0)1,
then 0(p V A0)1l. Also 1-0 = 0- 0 implies that 1(A0)0. Since 1 p 1, then
1(p V A0)0. Consequently, 0(p V A0)1(p V A0)0 and 0-2 =0-0. But
0-2=0+2.

2. s=0,t=1. Then 0-2=1-0. Since 0 p 2 and 2(A0)1, then 0(p VvV A0)1L.
Also 1-0=1-0 implies that 1(A0)1. Since 1 p 1, then 1(p vV AO0)1. Thus,
0(p V AD)I(p V AD)Land 0-2=0-1. But 0-2=0# 2.

3. s=0,t=2. Since 2-0=1-0, then 2(A0)1, but 0 p 2 and so 0(p V A0)L.
Since 1 -0 = 2 -0, then 1(A0)2, but 1 p 1 and so 1(p V A0)2. Thus,
0(p V A0)1(p V A0)2and 0-2=2-0. But 0-2=10 # 2.

4. s =2,t=0. Then2-2=0-0. Since 2 p0and 0-0 = 1-0, then 2(p v A0)I.
Also 1 p1land1-0 =0-0imply that 1(p V A0)0. Thus2(p vV A0)1(p V A0)O
and2-2=0-0. But 0-2=0=# 2.

5. s=t=2. Then2-0=2-2. Since2 p0and 0-0=1-0, then 2(p v A0)L.
Also 1-0 =20 implies that 1(A0)2, but 1 p 1 and so 1(p vV A0)2. Thus,
2p V A0)L(p V A0)2and2-0=2-2. But 0-2 =0 % 2.

s=1,t=0. Then1-2=2#0-0=0. Thus S/p does not satisfy conditions
(PlE)v (PE)

s=t=1. Then1-2=2%#1-0=0. Thus S/p does not satisfy conditions
(P1g), (PE).

8. If s =1,t =2. Then1-2 =2+ 2.0 = 0. Thus S/p does not satisfy
conditions (P g), (Pg).

If v =0 and v = 2, then argument is the same.

If u = v, then it is sufficient to take s =t = e = 1. n
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By the following theorems it can be seen that for some monoids Condition (Pf)

implies condition (P; ).

Theorem 4.3.21. Let S be o monoid with E(S) a semilattice. If a right S-act A
satisfies condition (Py), then it satisfies condition (P g).

Proof. Suppose that A satisfles condition (Pf) and let au = d'v, for a,d' €
A, u,v € S. Then there exist s,t,¢2 = ¢, f2 = f € S, a” € A such that ae = a''se,
af=dtf, eu =u, fv =v, su =tv. Consequently, aef = a"sef, d' fe = o't fe.
If e =ef = fe, then

e = (ef)ef) = c(fe)f = e(ef)f = *f* =ef =,

Thus €' is an idempotent. Also ae’ = a”’se/, a'e’ = a''te’. Since su = tv, then A

satisfies condition (Pj i) as required. [

Theorem 4.3.22. Let S be a monoid such that E(S)\ {1} is a right zero band.
If a right S-act A satisfies condition (Pg), then it satisfies condition (P ).

Proof. Suppose that A satisfies condition (Pf), and let au = a'v, for a,a’ €
A, u,v € S. Then there exist s,t,e2 = ¢, f2 = f € S, a" € A such that ae = a' se,

af=d'tf, eu =u, fv="v, su =tv. Now, there are two cases that can arise:

Case 1. e = f = 1. Then a = a"s, @' = a''t, su = tv and so A satisfies condition

(Pig).

Case 2. At least one of e or f different from 1 (for example let e # 1) then o' f =
a"tf implies that o' fe = a"tfe. But by assumption fe = e and so a'e = a''te.

Thus A satisfies condition (P i) as required. [

From Theorem 4.3.22, we can deduce that if S is a monoid with every e € E(S5)\{1}
right zero, then condition (P};) implies condition (P g).

Although by Theorem 4.3.10, we showed that condition (P};) implies weak flatness
of cyclic acts, but the main purpose of this theorem was to show the similarity
between conditions (Pg), (Pf) and weak flatness of acts in this case. Now we

show that conditions (Pg), (Pg) imply weak flatness of acts in general.

Lemma 4.3.23 [5]. Let S be a monoid and A a right S-act. Then A is weakly
flat if and only of for every z,y € S and a,a’ € A, ax = da'y implies that there
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erist T1,%2,...,Tn € {z,y},a1,a2,...,a, € A and uy,v1,...,Un, v, € S such that
T = U1y aul = asvq
V11 = UT9 aoUg = A3V
!
UnTn =Y AUy = a Up

Theorem 4.3.24. Let S be a monoid and A a right S-act. If A satisfies condition
(Pg), then A is weakly flat.

Proof. Suppose that A satisfies condition (P};) and let au = a'v for a,a’ € A and
u,v € S. Then there exist s,¢,¢2 = ¢, f2 = f € S and a” € A such that ae = a’ se,

a'f=d'tf, eu =u, fv =v and su = tv. Then we have

(se)u = s(eu) = su =tv = t(fv) = (tf)v,

and so
u = eu
(se)u = (tf) v
seju = (tf)v
J(tf) =d'f
fo=w
Thus, by Lemma 4.3.23, A is weakly flat. u

Remark. The converse of Theorem 4.3.24, is not true, as the following example

demonstrates:

Example 4.3.25. Let S = {0,1,¢,a} with table

l 0 1 e a
0 0 0 0 O
1 0 1 e a
e 0 e e 0
a 0 a a 0

If J =eS ={0,e}, then J is arightideal of S. Also 0 € JO = {0}, e € Je = {0, ¢}.
Thus by Proposition 2.3.54, A(J) is a flat right S-act and so it is a weakly flat
right S-act.

Now we show that A(J) does not satisfy condition (Pj;). Otherwise, (z,a)a =
(y,a)a implies that there exist s,¢, f2 = f, g2 =g € S, a” € A(J) such that

(z,a)f =d"sf, (y,a)g = a"tg, fa =a, ga = a, sa = ta.
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Since 1 is the only idempotent such that la = a, then f = ¢ = 1 and so (z,a) =
a’s, {y,a) = a''t. But

(z,a) = (z,a)l = (z,a)e = (z,1)a,

and so either o’ ) or a” = (z,1). On the other hand for every ¢t € S,

= (z,a
(z,a)t # (y,a), (z,1)t # (y,a) which is a contradiction.
Since condition (Pg) implies condition (P ), then we have

Corollary 4.3.26. Let S be a monoid and A a right S-act. If A satisfies condition
(Pg), then it 1s weakly flat.

Remark. By Example 4.3.25, it can also be seen that weak flatness of acts does
not imply condition (Pg) in general. Also by considering the monoid S and the
right S-act A in Example 4.3.3, it can be seen that since A satisfies condition (Pp,),
then by Theorem 4.3.24, it is weakly flat, but A does not satisfy condition (Pg).

Now we give some conditions for a monoid S such that every weakly flat right
S-act satisfies conditions (Pp), and (Pg).

Lemma 4.3.27 [5]. Let S be a left PP monoid. A right S-act A is principally
weakly flat if and only if for every a,a’ € A and ¢ € S, ax = da'z wmplies that

there exists €2 = e € S such that ex = z and ae = d'e.

Lemma 4.3.28. Let S be a left PP monoid and A a right S-act. If A 1s weakly
flat, then A satisfies condition (Pg).

Proof. Suppose that az = o'y for a,a’ € A and z,y € S. Then by Lemma 2.3.49,
and remark after there exist ¢’ € A, and z € Sz N Sy, such that, ar = d'y = ¢ 2.

Since ax = a"z and z € Sz, then there exists s € S, such that z = sz and
ar = a"(sz) = (a"s)z.

Also, there exists t € S, such that z =ty and
a'y = d"(ty) = (a"t)y.

By Lemma 4.3.27, there exist e,e’ € S such that ez = z, ¢'y = y and ae =

(a"s)e, a'e' = (a't)e’. Since z = sz = ty, then A satisfies condition (Pp). n
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From Theorem 4.3.24, and Lemma 4.3.28, we have

Theorem 4.3.29. Let S be a left PP monoid and A a right S-act. Then A s
weakly flat of and only if A satisfies condition (Pp).

Since regular monoids and right cancellative monoids are left PP, then we have

Corollary 4.3.30. Let S be a regular or right cancellative monoid. Then a right
S-act A is weakly flat if and only if A satisfies condition (Py).

Corollary 4.3.31. Let S be a right cancellative monoid. Then a right S-act A s
weakly flat if and only if A satisfies condition (P).

Proof. Let S be right cancellative and A a right S-act. Then by Corollary 4.3.30,
A is weakly flat if and only if A satisfies condition (Pp). But for right cancellative
monoids, conditions (P) and (P};) are equivalent. Thus, A is weakly flat if and
only if A satisfies condition (P). m

Remark. By Example 4.3.3, it can be seen that S is a left PP monoid and 4 is
a weakly flat right S-act, but A does not satisfy condition (Pg). Therefore, the
condition that a monoid S is left PP is not sufficient that every weakly flat right
S-act satisfies condition (Pg). But from Theorem 4.3.5, and Lemma 4.3.28, we

have

Corollary 4.3.32. Let S be a right zero monoid and A a right S-act. Then A is
weakly flat if and only if A satisfies condition (Pg).

Proof. Let A be a weakly flat right S-act. Since S is right zero, then it is left
PP, and so by Lemma 4.3.28, A satisfies condition (Pf;). But by Theorem 4.3.5,
every right S-act which satisfies condition (P}) satisfies condition (Pg). Thus A

satisfies condition (Pg) as required.
If A satisfies condition (Pg), then by Corollary 4.3.26, it is weakly flat. [
Now we consider conditions (P), (Pg) and (P},) and relations between them.

Lemma 4.3.33. Let S be a monoid and A a right S-act. If for a,a’ € A, u,v €S
with au = a'v, there exist s,t,¢? = e, f2 = f € S, a' € A such that a = a"se, o' =

a'tf, euw =u, fv=v and su=tv, then A satisfies condition (Pf).
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Proof. Let au = d'v, then by assumption there exist s,t,e? = e, f? = f €
S a" € A such that a = a'se, ¢’ = d"tf, eu = u, fv = v and su = tv. Then

2

ae = a"se* = a'se, and similarly ' f = a"tf. Thus A satisfies condition (P};) as

required. [

Corollary 4.3.34. Let S be a monoid and A a right S-act. If fora,d' € A, u,v €

S with au = a'v, there exist s,t,e? = e € S, a" € A such that a = a"se, o' =

a'te, eu =wu, ev =v and su = tv, then A satisfies condition (Pg).

Lemma 4.3.35. Let S be a monoid and A a right S-act. Then A satisfies con-
dition (P) if and only if for a,a’ € A, u,v € S with au = a'v, there exist
a’ € A, s,t,e? =e,f2 = f €8S such that a = a"se, a' = a"tf, eu =u, fv =2

and su = tv.

Proof. If A satisfies condition (P), then for au = a'v with a,d’ € A and u,v € §
there exist s,t € S and a” € A such that « = d"s, ¢’ = "t and su = to. If

e = f=1,then a=a"se, ' =d"tf, eu =u, fv =v and su = to.

Now suppose that for a,a’ € A, u,v € S with au = a'v there exist s,t,¢? = ¢, f? =
f e S anda" € A such that a = a"se, o' = a'"tf, eu =u, fo=vand su=tv. If

s' =seand t' =1f, then a = a"s’ and o’ = d''t' also
s'u=(se)u = s(eu) = su = tv = t(fv) = (tf)v = t'v.
Thus, A satisfies condition (P). ™

By the same argument as in Lemma 4.3.35, we have

Corollary 4.3.36. Let S be a monoid and A a right S-act. Then A satisfies
condition (P) of and only if for a,a’ € A, u,v € S with au = a'v there ewist

s,t,e? = e € S, d' € A such that a = d"se, o' = a''te, eu = u, ev = v and

su = tv.

Now from Lemma 4.3.33, Corollary 4.3.34, Lemma 4.3.35, and Corollary 4.3.36,
it can be deduced that condition (P) implies conditions (Pg) and (Pf). Since
condition (Pg) implies condition (Pp) and by Theorem 4.3.24, condition (Pf)
implies weak flatness, then we have the following hierarchy of properties arranged

in strictly decreasing order of strength:
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free = projective = strongly flat = condition (P) = condition (Pg) =

condition (Pg) = weakly flat = principally weakly flat = torsion free

As we saw condition (P) implies conditions (Pg), and (Pf), but the converses are

not true as the following example demonstrates:

Example 4.3.37. Let S = {0,1} and A = {z,y,2 | z0 = y0 = 20 = z}. Since A is
not a coproduct of cyclic S-acts, then by Lemma 1.53, it does not satisfy condition
(P). We show that A satisfies condition (Pg). It is sufficient to show that if

au = a'v for a,a’ € A and u,v € S, then there exist a"" € 4 and s,t,e? =c¢ € §

such that ae = a”se, d'e = a''te, eu = u, ev = v and su = tv.

If 20 = 40, then put ¢ =0, ¢ = 2 and s,t € S.

If 20 = 20, then put e =0, ¢ =z and s,t € S.

If yO = 20, then put e =0, a" =z and s,t € S.

If a0 = 21 for a € {z,y,z}, thenpute=1,a" =a,s=1and t =0.

Since condition (Pg) implies condition (P} ), then Example 4.3.37, shows also that
condition (Pf) does not imply condition (P) in general.

Now we show that for some classes of monoids the converses are true in general or

for cyclic acts.

Lemma 4.3.38. Let S be a monoid such that every e € E(S)\ {1} is right zero
and let p be a right congruence on S. Then S/p satisfies condition (Pg) if and
only if S/p satisfies condition (P).

Proof. If S/p satisfies condition (P), then as we saw S/ p satisfies conditions (Pg)
and (Pg).

Suppose that S/p satisfies condition (Pg) and let u p v for u,v € S. Then by
the remark after Lemma 4.3.6, there exist s,t,e? = ¢, f2 = f € S such that

spe, tpf, eu=u, fo=vand su=tv.
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Now there are four cases that can arise as follows:

Case 1. ¢ = f = 1. Then s p 1 p t and su = tv. Thus by Lemma 1.54 (4), S/p

satisfies condition (P).

Case 2. ¢ =1, f # 1. Then by assumption [ is right zero and so fv = v implies
that v is right zero. Thus su = tv = v = 1v. Since s p 1 p 1, then S/p satisfies
condition (P).

Case 3. e # 1, f = 1. It is similar to case 2.

Case 4. ¢ £ 1, f # 1. Then e, f are right zero and so lu = su = tv = lv. Since
1 p 1, then S/p satisfies condition (P). m

Since condition (Pg) implies condition (P}), then we have

Corollary 4.3.39. Let S be a monoid such that every e € E(S)\ {1} is right zero
and let p be a right congruence on S. Then S/p satisfies condition (Pg) if and
only if S/p satisfies condition (P).

From Lemma 4.3.38, and Corollary 4.3.39, we have

Theorem 4.3.40. Let S be a monoid such that every e € E(S)\ {1} is right zero

and let p be a right congruence on S. Then the following statements are equivalent:

(1) S/p satisfies condition (P).
(2) S/p satisfies condition (Pg).
(3) S/p satisfies condition (Ppg).

Corollary 4.3.41. Let S be a monoid. Then all cyclic right S-acts satisfy condi-
tion (P) if and only if every e € E(S)\ {1} 1s right zero and all cyclic right S-acts
satisfy condition (Ppg).

Proof. If all cyclic right S-acts satisfy condition (P), then all flat cyclic right
S-acts satisfy condition (P) and so by Lemma 2.2.8, every e € S\ {1} is right
zero. Also all cyclic right S-acts satisfy conditions (Pg), (Pg). The converse is
true by Theorem 4.3.40. =
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Remark. In Example 4.3.37, every ¢ € E(S) \ {1} is right zero, and A is a right
S-act which is not cyclic. A satisfies conditions (P ), and (Pg), but it does not
satisfy condition (P). Hence, by this example it can be seen that for a monoid S,
the condition that every e € E(S)\ {1} is right zero is not generally sufficient that
conditions (Pg) and (P}) imply condition (P).

As we know for a right zero monoid, all flat cyclic right acts satisfy condition (P).
By Example 4.3.37, it can also be seen that A is a right S-act which is not cyclic
and also it does not satisfy condition (P). But by Theorem 2.2.19, A is flat. Thus
this example shows that for right zero monoids flatness of acts does not imply

condition (P) in general.

Example 4.3.37, shows also that for a right zero monoid, conditions (Pg) and (Pf)

do not imply condition (P) in general.
From Lemma 4.3.38, and theorem 2.2.8, we have

Corollary 4.3.42. Let S be a left PP monoid. Then all weakly flat cyclic right
S-acts satisfy condition (P) if and only if every e € E(S)\ {1} is right zero.

Proof. If every e € E(S)\ {1} is right zero, then by Lemma 4.3.38, every cyclic
right S-act which satisfies condition (Pf), satisfies condition (P). On the other
hand by Corollary 4.3.29, every weakly flat right S-act satisfies condition (Pg).
Thus every weakly flat cyclic right S-act satisfies condition (P).

The converse is obvious by Theorem 2.2.8. [ |

Theorem 4.3.43. Let S be a left PP monoid. Then the following statements are

equivalent:

(1) Every e € E(S)\ {1} us right zero.

(2) All weakly flat cyclic right S-acts satisfy condition (P).
(8) All cyclic right S-acts having (Pg) satisfy condition (P).
(4) All flat cyclic right S-acts satisfy condition (P).

(5) S is right subelementary and every element in the right nil part s right zero.
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Proof. (1),(5) are equivalent by Lemma 2.3.20.

(2),(4),(5) are equivalent by Theorem 2.3.22.

By Theorem 4.3.24, (2) = (3).

By Lemma 4.3.28, (3) = (2).

Thus (2), (3) are equivalent. L]

Now by using Theorem 4.3.40, we can give some classes of monoids for which all

cyclic right acts having (Py) are projective or satisfy condition (P).

Corollary 4.3.44. Let S be a monoid such that all flat monocyclic right S-acts
satisfy condition (P). Then a cyclic right S-act satisfies condition (Pp) if and
only if it satisfies condition (P).

Proof. If all flat monocyclic right S-acts satisfy condition (P), then by Lemma
2.2.8, every e € E(S)\ {1} is right zero. Consequently, by Theorem 4.3.40, condi-
tions (Pg) and (P) are equivalent for cyclic right acts. ]

From Corollary 4.3.44, it can be deduced that:

Corollary 4.3.45. Let S be a monowd. If all flat monocyclic right S-acts satisfy
condition (P), then all cyclic right S-acts having (Py) satisfy condition (P).

Corollary 4.3.46. Let S = C U N be a right subelementary monoid. Then a
cyclic right S-act satisfies condition (Py,) iof and only if it satisfies condition (P).

Proof. Since every e € S\ {1} is right zero, then it is obvious by Theorem 4.3.40.

|
In particular for a right nil monoid we have

Corollary 4.3.47. Let S be a right nil monoid. Then a cyclic right S-act satisfies

condition (Pf) if and only if it is projective.

Proof. If a cyclic right S-act satisfies condition (P};), then it is weakly flat, and
so by Theorem 2.2.25, 1t is projective.
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The converse is obvious. ]

Now by using Corollary 4.3.36, we can give an alternative proof that condition

(P) implies flatness of acts.

Lemma 4.3.48 [3]. Let S be a monoid. Let A€ Act— S, a,a’ € A, B¢ S — Act
and b,b' € B. Then a®b = a' @V in AQB if and only if there exist ay,...,a, € A,
bay...,bn € B, 51,...,5n, t1,...,t, € S such that

a = a1 81
Slb = tlbg

a1t1 = a92S82
soby = t2b3

azty = asts
Spby = 1,0

!
antn = a

Theorem 4.3.49. Let S be a monoid. If a right S-act A satisfies condition (P),
then it 1s flat.

Proof. Let B C B’ be an inclusion of left S-acts and let a @b =a¢' @b in A® B'.
Then by Lemma 4.3.48, there exist elements by,b9,...,b, € B' ay,a2,...,a, € A
and s1,82,...,8n, t1,t2,...,t, € S such that

a = a181 Slb:tle
a1t1 = 49389 82b2 = t2b3
antn = d Spbn = t,b

We prove by induction on n that a@b = d' @' in A® B. Let n = 1, then we have

a = a1 81
Slb = tl b’
altl = Cll
Since b,b' € B, then we are done. Suppose that the assumption hold for every
k < n. Since ajty = azs2, and A satisfies condition (P), then by Corollary 4.3.36,
there exist u,v,e?2 = e € S and a" € A such that a; = a'ue, ay = a''ve, et; = t1,

esy = s9 and ut; = vsz. Thus we have
a=ays; = (a"ue)s; = a"(uesy). (1)

140



Since s1b = t1by and et; = ¢, then
(ue)sib = (ue)t1by = u(ety )by = ut1bs. (2)

Also esy = s9 and uty = vsy imply that uty = vsy = ves,. Consequently, (uty)by =

(vesg)by. Since spby = t2b3, then ve(sqobe) = ve(tabs). Thus from (2) we have
(uesy )b = ut1by = vesyby = (vety)bs. (3)
Since asts = azss, then
(a"ve)ty = agsz or a''(vety) = asss. (4)

Now, from (1), (3) and (4) we have the following

a=a"(uesy) (uesy)b = (vety)bs
a”(vetg) = asgsS3 8363 = t3Z)4
ntn = d Spbn = t,b

with the number of equalities less than n and so by induction a @ b = o’ @ V' in

A @ B. Thus A is flat as required. [
The converse of Theorem 4.3.49 is not true as the following example demonstrates.

Example 4.3.50. Let S be a monoid with 1 # ¢? = ¢ € S. Let z,y, 2 be symbols
not belonging to S and let

M={(z,s)]|s€S,s#es}U{(y,s)|s€S,s#estU{(z,3)]s€ S, es=s}.
Define an action of S on M by:
(u, 8)t = {(u,st) if st # est

(z,st) otherwise, for u € {z,y},

(z,8)t = (z,st), forallte S,

Then M becomes a right S-act with two generators (z,1) and (y,1). By [26,
Theorem 2.1] M is flat. Now let S be the monoid as in Example 4.3.3. Then M =
{(z,1),(z, /H} U{(y,1),(y, f)} U{(z,e)} is flat. But M does not satisfy condition
(P). Otherwise, since (z,1)e = (y,1)e = (2, e), then there exist o’ € M, s,t € S
such that (z,1) = ¢"s and (y,1) = @'t. By definition the only case for (z,1) is
(z,1) = (z,1)1 and so a" = (z,1). But in this case for every t € S, (y,1) # (z, 1)t,

which is a contradiction.

141



4.4. Monoids over which all Acts satisfy Conditions
(Pg) and (Pg)

In this section we classify monoids for which all (monocyclic) right acts satisfy
condition (Py), right zero monoids for which all (monocyclic) right acts satisfy
condition (Pg) and also we show that for right inverse monoids all right acts
satisfy condition (Pp). Moreover, we give a classification of left PP monoids S
for which every monocyclic right S-act of the form S/p(z,z?), satisfies condition

(Pg). There are also some corollaries that will arise.

Lemma 4.4.1 [1]. Let S be a monoid. Let p < q be non-negative integers, and

z,8,t €S. Then s p(zP,z?) t if and only if s =1 or s = 2Pu, t = zPv, z™u = 2™

for some u,v € S and non-negative integers m,n with m = n(mod g — p).

Theorem 4.4.2. Let S be a monoid, x € S and let p < g be non-negative integers.

If S/p(a?,x?) satisfies condition (Py), then zP = z? or aP s regular.

Proof. If 2P = 27, then we are done. Suppose that =P # x9. Since zP p 29, then
by the remark after Lemma 4.3.6, there exist s,t,¢2 = e, f2 = f € S such that

ex? = 2P, fz? =2 sepe, tf p f and saP = tz?.
Since se p e and tf p f, then by Lemma 4.4.1, there exist u,v,u’, v’ € S such that
se = e or se = zPu, e = z2Pv.

tf = fortf=aPu, f=aP.

Now, if se = ¢, then tf # f. Otherwise, se = e implies that
(se)xP = ea? or s(ex?) = (ex?).
Since ex? = zP, then szP = zP. Also tf = f implies that
L) = f(a9) or t(fa?) = (fa?).
Since fz? = 9, then tz? = 29. But szP = t2?, and so we would have

P = saP =ta? = 29,
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which is a contradiction. Thus tf # f and as a result, tf = zPu', f = zPv'.
Since se = e, then sex? = ex? or s(eaP) = exP. But 2P = ex?, and so sz? = zP.

Consequently,
2P = szP =tz? =1(f2?) = (tf)2? = 2Pu'z? = 2P(u'297P)2?,
giving aP regular. If se # e, then se = zPu, e = zPv. Consequently,
2P = ex? = xPva?,
and again z? is regular. n

Corollary 4.4.3. Let S be a monoid and z € S. If S/p(z,z?) satisfies condition
(Pg), then « is reqular.

Proof. By Theorem 4.4.2, # = z? or z is regular. If 2 = 22, then it is obvious

that = is regular. [

Corollary 4.4.4. Let S be a monoid, x € S and p < ¢ be non-negative integers.

If S/p(af,x?) satisfies condition (Pg), then zP = x? or a2 1is regular.

From Corollary 4.4.4, we have

Corollary 4.4.5. Let S be a monoid and p a right congruence on S, if S/p(x,z?)

satisfies condition (Pg), then z 18 regular.

Proposition 4.4.6 [5]. Let S be a regular monoid. Then a right S-act A is weakly

flat if and only if for every z,y € S and a € A, if ar = ay, then there exists
z € Sz N Sy such that ax = ay = az.

Note : In the following theorem p(z,y) is the smallest right congruence on S which

identifies these two elements.

Theorem 4.4.7. Let S be a monoid. Then all monocyclic right S-acts satisfy

condition (Pg) if and only if S s regular and for every xz,y € S there exists an
element z € St N Sy such that (z,z) € p(z,y).

Proof. Suppose that all monocyclic right S-acts satisfy condition (Pf) and let
x € S. Then S/p(z,z?) satisfies condition (P}) and so by Corollary 4.4.3, z is

regular.
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Let p = p(z,y) and put @ = 1p. Then clearly, az = ay. Since S/p(x,y) satisfies
(Pg), then by Theorem 4.3.24, it is weakly flat. Consequently, by Proposition
4.4.6, ar = ay implies that there exists z € SN Sy such that az = ay = az. Then
ax = az implies that (1 p)z = (1 p)z or z p z, and so (z,2) € p(z,y).

Suppose that S is regular and that for every z,y € S there exists an element
z € Sz N Sy such that (z,z) € p(z,y). Then by Theorem 2.3.60, all right S-acts
are weakly flat. But by Corollary 4.3.30, every weakly flat right S-act satisfies
condition (Pf) and so all right S-acts satisfy condition (Pj). ]

Remark. By the following example it can be seen that in Theorem 4.4.7, regularity

of a monoid S is not sufficient that all monocyclic right S-acts satisfy condition

(Pg)-

Example 4.4.8. Let S = {1,¢, f} with table

Then S is regular. If A = {a,b | ae = af = be = bf = b,al = a}, then A = aS ~
S/p(e, f) is a monocyclic right S-act. We claim that A does not satisfy condition
(Pf). Otherwise, for ae = af there exist a” € A s,t, e’ = ¢, f'* = f' € S such
that e'e = e, f'f = f, ae’ = d"se', af’ = a'"tf" and se = tf. But for every
s,t € 5, se =e# f=tf which is a contradiction.

ince oes not satisfy condition , then A also does not satisfy condition
Si Ad t satisf diti Pp), then A also d t satisfy diti
(Pg), and so this example shows that regularity of a monoid S is not sufficient

that all monocyclic right S-acts satisfy condition (Pg). [

Notice that in Example 4.4.8, (e, f) € p(e, f), but SeN Sf = § and so there is no
element z € Se N Sf with (e,z) € p(e, f).

Since every regular monoid is left PP, then from Theorem 4.3.28, and Theorem

4.4.7, we can now deduce the following extension to Theorem 2.3.60.

Theorem 4.4.9. For any monoid S, the following are equivalent:

(1) All right S-acts are weakly flat.
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(2) All finitely generated right S-acts are weakly flat.
(8) All cyclic right S-acts are weakly flat.

(4) All right S-acts satisfy condition (Pj).

(5) All monocyclic right S-acts satisfy condition (Pf)

(6) S is regular monoid and for every x,y € S there is an element z € Sz N Sy
such that (z,z) € p(z,y).

Lemma 4.4.10. Let S be a right zero monoiwd. Then all monocyclic right S-acts
satisfy condition (Pf) if and only if S = {1} or S = {0,1}.

Proof. Suppose that all monocyclic right S-acts satisfy condition (Pp). If S =
{1}, then we are done. Otherwise, by Theorem 4.4.7, for every z,y € S, there
exists z € Sz N Sy such that (z,2) € p(z,y). If x # 1, y # 1, then z,y are right
zero and so Sz = {z}, Sy = {y}. Thus z € Sz N Sy implies that ¢ = y = =
and so S has just one right zero element which is also left zero and so a zero.

Consequently, S = {1,0} as required.
The converse is true by Theorem 4.4.7. [
From Theorem 4.4.9, Lemma 4.4.10, and Theorem 4.3.5, we have

Corollary 4.4.11. If S is a right zero monoud, then the following are equivalent:

(1) All right S-acts are weakly flat.

(2) All finitely generated right S-acts are weakly flat.
(3) All cyclic right S-acts are weakly flat.

(4) All right S-acts satisfy condition (Pp).

(5) All monocyclic right S-acts satisfy condition (Pj).
(6) All right S-acts satisfy condition (Pg).

(7) All monocyclic right S-acts satisfy condition (Pg).
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(8) S ={1} or S =1{1,0}.
Since (Pg) implies (P};), then from Theorem 4.4.7, we have.

Theorem 4.4.12. Let S be a monoid. If all monocyclic right S-acts satisfy con-

dition (Pg), then S is regular and for every z,y € S there exists an element
z € Sz N Sy such that (v,z) € p(z,y).

Remark. By Example 4.3.3, it can be seen that S = {1, ¢, f} is regular and for
every z,y € S there exists z € Sz N Sy such that (z,2) € p(z,y) and A = {z,y |
ze =zf =y,2l = z,ye = yf =y} ~ S/p(e, f), satisfies condition (Pj), but it

does not satisfy condition (Pg). Thus the converse of Theorem 4.4.12, is not true.

By Corollary 4.4.3, we saw that if S/p(z,z?) satisfies condition (P},), then z is
regular. Now, by the following lemma we show that for left PP monoids the

converse is also true.

Lemma 4.4.13. Let S be a left PP monoid. If z € S is regular, then S/p(z,2?)
satisfies condition (Pp).

Proof. By Lemma 4.3.11, it is sufficient to show that for every u,v € S with
u p v, there exist s,t,e? = ¢, f2 = f € Ssuchthat spe, tp f, eu =u, fo="0
and su = tv. Let u p v. By Lemma 4.4.1, either u = v or there exist s',t' € §
such that v = 2s’, v = 2t and 2™s' = 2"t' for some non-negative integers m,n

with m = n(mod 1).

If u=v, then s =t = e = 1. Suppose that u # v. Since z is regular, then there

exists ' € § such that 22’z = z. Then u = zs' implies that v = (zz'x)s’. If

? = e and u = exzs’ = eu. Similarly, it can be seen that v = ev.

Since 2™s' = "¢/, then 2™t = "¢ or 2™ (2s') = 2"(2t') and so 2™u = 2"v

zz' = e, then e

or t™Meu = z"ev.

Now we show that for every k& > 0, z*¢ p e. Since e p e, then for k = 0, it
is satisfied. Let k > 1. At first we show by induction that = p z*+!. Since
z p 2%, then for k = 1, it is satisfied. If z p 2% for k > 1, then 22 p 2! and so

z p a2 p bt Thus zz' p %12’ or zz’ p z¥z2’ and so e p zFe.

If s=z™e, t =2"e,thenspept, eu =u, ev =v and su = tv as required. =
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Now, from Lemma 4.4.13, and Corollary 4.4.3, we have

Theorem 4.4.14. Let S be a left PP monoid and x € S. Then S/p(x,2?) satisfies
condition (Pr) if and only iof z is regular.

Proposition 4.4.15 [1]. Let S be a monoid and z € S. Then S/p(x,z?) is flat if

and only of © 1s a reqular element of S.

From Corollary 4.4.3, Lemma 4.4.13, and Proposition 4.4.15, we have

Corollary 4.4.16. For any monoid S the following statements are equivalent:

(1) S is regular.
(2) Every monocyclic right S-act of the form S/p(x,2?), is flat.

(8) Every monocyclic right S-act of the form S/p(x,x?), satisfies condition
(Pg)-
Now we give a class of monoids for which all right acts satisfy condition (Pp,).

Definition 4.4.17. An orthodoz semigroup is defined as a regular semigroup in

which idempotents form a subsemigroup.

The class of orthodox semigroups thus includes both the class of inverse semigroups

and the class of bands.

Definition 4.4.18. A semigroup S (with zero) is called a right inverse semigroup

(with zero) if every (nonnull) principal left ideal of S has a unique idempotent gen-
erator. A left inverse semigroup is defined dually. Right [left] inverse semigroups
are also called L-unipotent [R-unipotent]. It can be shown that such semigroups

are orthodox.

Theorem 4.4.19 [36]. The following conditions on a reqular semigroup S with

zero are equivalent:
(1) S is a Tight inverse semigroup.

(2) fef =ef for any two nonzero idempotents e, f of S.
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(8) eSN fS =efS (= feS) for any two nonzero idempotents e, f of S.
(4) if ' and o' are inverses of the nonzero element a of S, then a'a = a"a.

(5) For any nonzero idempotent ¢ of S the set F, (of inverses of €) is a right

zero subsemigroup of S.

(6) Let € = e and = be nonzero elements of S and z' an inverse of x. Then

x € Se implies that ' € €S.

Theorem 4.4.20. Let S be a left inverse monoid. Then every right S-act satisfies
condition (Pg).

Proof. Suppose that A is a right S-act and let au = o'v with a,d' € A, u,v € S.

Since S is regular, then there exist u',v’ € S such that u = wu'u, v = vv'v. If

2
2=¢, ¢ =¢,u=cuandv=cv. Then we have

uu' = e, vv' = €', then e
ae = auv’ = a(uvu'u)u' = (au)(v'uu') = (a'v)(u'uu')
= a'(vv'v)(u'uu') = d'v(v'v)(Wun') = au(v'v)(u'uu')

= a(uu'u)(v'v)(uv'uu') = au(u'vw)(v'v)(v vu')

= a'v(u'uv'vu )uu'
a'e' = d'vv' = d (v’ = d'v(v'vv') = au(v'vo’)
= a(uu'u)(v'vv") = au(u'u)(v'vv") = a'v(u' v Yoo’

If s = v'uv'vu', t = «'uv’ and o” = a'v, then ae = a"se, and a'¢’ = a''te’. Since

u'u and v'v are idempotents and by assumption (efe = ef), then

su = (v'uwv'vu'yu = (u'u)(v'v)(u'u)

= (v'u)(v'v) = (v'uwv')v = tv.
Thus, A satisfies condition (Pf) as required. [

Definition 4.4.21. A semigroup S is called left [right] generalized inverse, if it is

regular and E(S) forms a left [right] normal band, or equivalently, S is regular

and

zef =afe [efr = fex] zefy = afey
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forall z,y € S, e, f € E(S).

Corollary 4.4.22. Let S be a monoid. If S 1s inverse or left generalized inverse,
then S 1s regular and for idempotents e, f € S, fef = fe. Thus by the same

argument as Theorem 4.4.20, it can be seen that every right S-act A satisfies
condition (P).

Since condition (Pf) implies weak flatness of acts, then from Theorem 4.4.20 we

have

Corollary 4.4.23. Left inverse monoids are right absolutely weakly flat.
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4.5. Flatness and Conditions (Pg), (Pg)

In this section we consider the relationship between flatness of acts, monoids and
conditions { Pg) and (Pg). We show that these conditions do not generally coincide

with flatness of acts, but for some classes of monoids they do.

By Example 4.3.3, and the remark after Lemma 4.3.4, it can be seen that flatness

of acts does not imply condition (Pg). Also see the following example:

Example 4.5.1. Let S = {0,1,¢,a} with table

o 0O = O
OO O CoIC
L D - Ol

o DO 0o O
o 0o o Ol

If J = {0,e}, then J is a right ideal of S. Since 0 € Jy and e € J., then by
Proposition 2.3.54,

A(J) = {z,y} x{1,a} U{z} x{0,e} ={(z,1),(2,0),(y,1), (y,a),(2,0), (2, €)}
is a flat right S-act. We claim that A(J) does not satisfy condition (Pg). Otherwise
(y, Ve = (z,a)a = (2, ¢),

implies that there exist s, ¢, et=¢ eS8, de A(J) such that
ee=ce, cla=a, (y,1)e' =da"se' and (z,a)e’ = da''te’.
Since ea = e # a, and also 0a = 0 # a, then ¢’ = 1. Thus
(y, 1)1 =a"sl =d"s and (z,a)l = a"t1 = d"t.

Since (y,1) can be written just as (y,1)1, then a” = (y,1) and s = 1. But for
every t € 9, (z,a)l # (y,1)t, which is a contradiction.

By Example 4.3.25, it can also be seen that flatness of acts does not imply condition
(P}). Now we show that condition (Pg) also does not imply flatness of acts. First
of all we see that if E is a left [right] normal band, then it is a strong semilattice
of left zero [right zero] bands i.e. E = ¢(I'; R; ¢q,5) where T’ is a semilattice, each
R, (v € ') is a left [right] zero band, E' = U,er R+, and the maps ¢4, 3 : Ro — Rg
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(o > p) are the structure maps. We shall say E has constant structure maps if

$o,p is a constant function whenever a > § (a, 8 € T'). It can be proved that E

has constant structure maps if and only if

(Ve,f,g € E)efg =ef or efg = feg),

and in case E is right normal band

(Vevf’g € E)(efg = fg or 6fg = Ggf)

Theorem 4.5.2 [6]. If S is a right absolutely flat left generalized inverse sems-

group, then E(S) has constant structure maps.

Suppose that condition (Pf) implies flatness of acts and let S be a left gen-
eralized inverse monoid. Then by Corollary 4.4.22, every right S-act satisfies
condition (Pf). Consequently, every right S-act is flat and so S is a right ab-
solutely flat left generalized inverse monoid. Thus by Theorem 4.5.2, E(S) has
constant structure maps, and so by the argument before Theorem 4.5.2, for every
e, f,g € E(S), efg=cf or efg = feg.

Now, if we consider the monoid S with the following table

Example 4.5.3. Let S = {1,a,b,c,d} with table

1 a b ¢ d
1 1 a b ¢ d
a a a a a a
b b d b b d
c c a ¢ ¢ a
d d d d d d

then S is a left generalized inverse monoid such that every element is idempotent.

But ¢bd = a # ¢ = ¢b, and bed = d # a = cbd, which is a contradiction.

Now we give some conditions for a monoid such that flatness and condition (Pf)

coincide.

Lemma 4.5.4 [5]. Let S be a monoid. Each of the following conditions implies
that every weakly flat S-act is flat.

(1) S is weakly left absolutely flat.
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(2) S is left PP and its idempotents form a right reqular band.

Remark. If S is a right zero monoid, then it is left PP and also for every z,y €
E(S) =S, zyz = yz. Thus S = E(S) is a right regular band.

By Lemma 4.5.4, and Theorem 4.3.29, we have the following theorems

Theorem 4.5.5. Let S be a left PP monoid in which idempotents form a right
reqular band. Then a right S-act A is flat if and only if 1t satisfies condition (Pj;).

Also from Lemma 4.5.5, and Lemma 4.3.29, we have

Lemma 4.5.6 [5]. Let S be any monoid. If S is left PP, and for all u,v € E(S5)
there exists z € uS NvS such that (z,u) € Or(u,v), then every weakly flat right
S-act s flat.

Theorem 4.5.7. Let S be a left PP monoid such that for all u,v € E(S), there
exists z € uS NS such that (z,u) € 0r(u,v) and let A be a right S-act. Then A
is flat of and only if it satisfies condition (Pg).

Note : For u,v € S, 01 (u,v) [#r(u,v)] is the smallest left [right] congruence on S

containing (u,v).
The following monoids satisfy condition (2) of Lemma 4.5.4.
1. Commutative PP monoids (characterized in [21]).

2. Right PP monoids with central idempotents (characterized in [14]) (This

includes all left cancellative monoids. For more information see [4].
3. S' where S is any left generalized inverse semigroup (see [37]).

Thus, for monoids mentioned in 1, 2 and 3, an act A is flat if and only if it satisfies
condition (Py).

From Corollary 4.3.32, and remark after Lemma 4.5.4, we can deduce the following

corollary.

Corollary 4.5.8. Let S be a right zero monoid. Then every flat right S-act sat-
isfies condition (Pg).
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4.6. Characterization of Monoids by Condition (E)

Recently many authors have paid attention to characterization of monoids by
condition (P). In previous chapters we also considered characterization of monoids
by conditions (P), (Pf), (Pg) and in case (P), monoids for which all flat (cyclic)
right S-acts satisfy condition (P). This is because a more convenient property
between flatness and strong flatness under the aspect of homological classification
seems to be condition (P). There are also some papers in which classification of
monoids by condition (E) has been considered. For example, Liu in [38] considered
characterization of monoids over which all left S-acts satisfying condition (FE)
are flat. Such monoids are exactly the regular ones. In this section we try to
characterize some classes of monoids for which flatness of acts implies condition
(E), monoids for which all (cyclic) acts satisfy condition (E), and finally, monoids
for which all acts having property (E) satisfy conditions (Pf). There are some

corollaries that will arise.

First of all we show that weak flatness of acts and also conditions (Pg) and (Py,)

do not imply condition (E). See the following example:

Example 4.6.1. Let S =< 2,y | 2y = yz = y,2? = 2,y = y*, 2% = y? > U{1}
with table

NSORSEER I

< W R
NSRS s B ]
¢ e w e
QQM Qw QQM Qw @w

and let A = {a,b| az = ay = ay? = bz = by = by? = a,al = a,bl = b}. Then
A is a right S-act which i1s not cyclic. We have bz = by and the only case for b is
b= bl. But

le=zx#1ly=y.
Thus, A does not satisfy condition (E). Now we show that A satisfies condition
(Pg). Let au = a'v for a,a’ € A and u,v € S. Then we show that there exist
s,t,e2 = e € S and @ € A such that eu = u, ev = v, ae = a'se, a'e = a'"te and

su = tv.
If b.?Z:by, thene:x, 3:,7;/2, t:y2> a”:b.
It bxzayz,thene:m, 3:y27 t:yQa a' =b.
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If b = by?, thene =z, s=t=y?, o' =b.

If boa =ax,thene=2z, s=t=1, a' =b.

If bz = ay, thene =z, s =t =y?%, o' =b.

by =ay?, thene=12z, s=t=y, a' =0

If by =by?, thene=2a, s=t=y, a' =b.
Ifby=az,thene=z, s=t=1y? da' =0

If by =ay,thene=xz, s=t=1, d' =b.

If ay? =by?, thene=1, s=y, t =1, @' =b.

If ay? =az, thene=12, s=1, t =y?%, d" =a.

If ay? = ay,thene=1, s=1, t =y, a" = a.

If by? = az, thene =2z, s=1, t = y?, o' =b.

If by? =ay,thene=2x, s=1, t=y, a’' =b.

If azr =ay, thene=2, s=y, t=1, " = a.

If bz =al, z € {z,y,y?°}, thene=1, s =1, t =2z, a" =b.
If az =al, z € {z,y,y*},thene=1, s=1, t =z, a" = a.

Thus A satisfies condition (Pg), and so A satisfies condition (Pf). Consequently,
by Theorem 4.3.24, A is weakly flat, but A does not satisfy condition (F).

Remark. From Example 4.6.1, it can also be seen that A does not satisfy condition
(P). Otherwise, bx = by implies that there exist v € A, s,t € S such that
b=1"0"s,b="0"t and sz = ty. Since the only case is b = b1, then s = ¢t = 1. But
lz # ly which is a contradiction. Notice that monoid S in the previous example

is not right nil.

Notice also that if S # {1} is a group, then every right S-act satisfies condition
(P) and so every right S-act is flat. Let A = {a} such that Vs € S, as = a, then
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A is a right S-act and so it is flat. We claim that A does not satisfy condition
(E). Otherwise, au = av for u,v € S such that v # v, and so there exists s € S
such that ¢ = as and su = sv. Then su = sv implies that v = v which is a
contradiction. Thus this example shows that for groups, flatness of acts does not
imply condition (E) in general. But by what follows we show that for right zero

monoids weak flatness of acts implies condition (E).

Lemma 4.6.2. Let S be a monoid. If all flat cyclic right S-acts satisfy condition
(E), then S is right nil

Proof. Suppose that all flat cyclic right S-acts satisfy condition (E), Then by
Corollary 3.2.6, all flat cyclic right S-acts are strongly flat and so by Theorem
2.3.28, S 1s right nil. L

Corollary 4.6.3. Let S be a monoid. If all flat cyclic right S-acts satisfy condition
(E), then every e € E(S)\ {1} is right zero.

Proof. Suppose that all flat cyclic right S-acts satisfy condition (£). Then by
Lemma 4.6.2, S is right nil. Let ¢ € E(S)\ {1}, then there exists k¥ € N such that
e*t1 = eF is right zero. Since e = €2, then by induction it can be seen that for

k:

everyn € N, e® = e and so e e 1s right zero. [

From Lemma 4.6.2, it can be seen that if all flat right acts satisfy condition (E),
then S is right nil, but we do not know if the converse is true. By what follows

we show that the converse is true if we consider left PP monoids.

Lemma 4.6.4. Let S be o left PP monoid. Then S is right nil if and only if S s

right zero.

Proof. If S is right zero, then it is obvious that .S is right nil.

Suppose that S is right nil and let z € S. Since S is left PP, then there exists
e? = ¢ € S such that ez = z, and for every a,b € S, ax = bz implies that ae = be.
If e =1, then z is right cancellative, otherwise as we saw in the proof of Corollary

4.6.3, e is right zero and so z is right zero.

Now we show that the only cancellative element is 1. Let 2 € S be cancellative.

Since S is right nil, then there exists n € N such that z™t! = 2™. Then by
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cancelling 2™, * = 1 as required. Consequently, every element different from 1 is

right zero as required. u

Lemma 4.6.5. Let S be a left PP monoid. If all flat cyclic right S-acts satisfy
condition (F), then S is right zero.

Proof. If all flat cyclic right S-acts satisfy condition (E), then, by Lemma 4.6.2,
S is right nil. But S is left PP and so by Lemma 4.6.4, S is right zero. [

From Lemma 4.6.5, we have

Corollary 4.6.6. Let S be a left PP monoid. If all flat right S-acts satisfy con-
dition (E), then S s right zero.

Lemma 4.6.7. Let S be a right zero monoid. Then all weakly flat right S-acts
satisfy condition (E).

Proof. Suppose that A is a weakly flat right S-act and let au = av for a €
A, u,v € S. Since § is left PP, then by Theorem 4.3.29, A satisfies condition
(P};). Thus there exist a” € A, s,t,e? =, f? = f € S such that ae = a"se, af =

a’tf, eu =u, fv =v and su = tv.
Now there are three cases as follow:
Case 1. u =v =1. Then a = ¢l and 1u = 1v.

Case 2. u =1, v # 1. Then a = av. Since v # 1, then v is right zero, and so

v? = v. Consequently, a = av and vl = v? = vv.

Case 3. u # 1, v # 1. Then u,v are right zero, and so su = tv implies that

u = v. Consequently, a = al and 1u = 1v.
Thus, A satisfies condition (E) as required. [
From Lemma 4.6.7, we have.

Corollary 4.6.8. Let S be a right zero monoid. Then all flat right S-acts satisfy
condition (E).

From Corollary 4.6.6, and Corollary 4.6.8, we have the following corollary
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Corollary 4.6.9. Let S be a left PP monoid. Then all flat right S-acts satisfy
condition (E) of and only if S is right zero.

Now from Lemma 4.6.4, Lemma 4.6.7, Corollary 3.2.6, Corollary 4.6.9, and The-

orem 2.3.28, the following theorem can be deduced.

Theorem 4.6.10. Let S be a left PP monoid. then the following statements are

equivalent:

(1) All weakly flat right S-acts satisfy condition (E).
(2) All flat Tight S-acts satisfy condition (E).

(3) All weakly flat cyclic right S-acts are strongly flat.
(4) All flat cyclic right S-acts are strongly flat.

(5) All weakly flat cyclic Tight S-acts are projective.
(6) All flat cyclic right S-acts are projective.

(7) S s right nil.

(8) S is right zero.

Remark. Since every regular monoid and every idempotent monoid is left PP,

then regular monoids and idempotent monoids satisfy Theorem 4.6.10.

From Lemma 4.6.5, Lemma 4.6.7, and since every right zero monoid is left PP,

we have

Theorem 4.6.11. For any monoid S the following statements are equivalent:

(1) S is right zero.
(2) S s left PP and every weakly flat cyclic right S-act satisfies condition (E).

(3) S 1s left PP and every flat cyclic right S-act satisfies condition (E).

Lemma 4.6.12. Let S be a monoid such that |E(S)| = 1. If all flat cyclic right
S-acts satisfy condition (E), then S = {1}.
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Proof. If all flat cyclic right S-acts satisfy condition (E), then by Lemma 4.6.2,
S is right nil. Thus for every o € S there exists k € N such that z¥*1 = z*. But
z* is an idempotent, and so ¥ = 1. Consequently, z = 1 as required. n
Corollary 4.6.13. Let S be a monoid such that |[E(S)| = 1. Then all flat right
S-acts satisfy condition (E) if and only +f S = {1}.

Proof. If all flat right S-acts satisfy condition (E), then all flat cyclic right S-acts
satisfy condition (F) and so by Lemma 4.6.12, S = {1}.

If S = {1}, then all right S-acts satisfy condition (E), and so all flat right S-acts
satisfy condition (E). =

If a monoid S is right cancellative, then for every idempotent e, e?

that e = 1, and so |E(S)| = 1. Thus by Corollary 4.6.13, we have

= e implies

Corollary 4.6.14. Let S be a right cancellative monoid. Then all flat right S-acts

satisfy condition (E) if and only of S = {1}.

By considering right reversible monoids for which all flat cyclic right acts satisfy

condition (E), we have the following results:

Theorem 4.6.15. Let S be a right reversible monoid. Then all flat cyclic right

S-acts satisfy condition (E), if and only if either S = {1} or S =T where T s

a nil semigroup.

Proof. Suppose that all flat cyclic right S-acts satisfy condition (E). Then by
Lemma 4.6.2, S is right nil. Also by Corollary 3.2.6, all flat cyclic right S-acts
satisfy condition (P). Thus by Theorem 2.3.39, either E(S) = {1} or E(S) =
{0,1}. If E(S) = {1}, then by Lemma 4.6.12, S = {1}. Suppose that E(S) =
{0,1}. Since S is right nil, then for every 1 # « € S there exists k € N such that

25+l = ¥ is right zero and so z* k

is an idempotent. If z*¥ = 1, then z*+! =z
implies that = 1 which is a contradiction. Consequently, z¥ = 0 and so z is nil

as required.

If § = {1}, then all cyclic right S-acts are strongly flat and so all flat cyclic right
S-acts satisfy condition (E). If S = T! such that T is a nil semigroup, then by
Theorem 2.3.28, all flat cyclic right S-acts are strongly flat and so all flat cyclic
right S-acts satisfy condition (E). ]
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From Corollary 3.2.6 and Theorem 4.6.15 we have.

Corollary 4.6.16. Let S be a right reversible monoid. Then all flat cyclic right
S-acts are strongly flat if and only if either S = {1} or S = T where T is a nil

SemIgroup.

Corollary 4.6.17. Let S be a monoid that s a right reversible band. Then oll flat
cyclic right S-acts satisfy condition (E) if and only if S = {1} or S = {0,1}.

Proof. Suppose that all flat cyclic right S-acts satisfy condition (E£). Then by
Theorem 4.6.15, either S = {1} or S = T! where T is a nil semigroup. If S = {1},
then we are done. Otherwise let 1 # = € S. Then there exists £ € N such that

z¥ = 0. Since S is a band, then for every n € N, 2" = 2. Thus ¢ = z¥ = 0 and

so S ={0,1}.

If either S = {1} or S = {0, 1}, then by Corollary 4.6.16, all flat cyclic right S-acts
are strongly flat and so all flat cyclic right S-acts satisfy condition (E). n

Now by using Lemma 4.6.2, and results from previous chapters we give a charac-

terization of monoids for which all cyclic right acts satisfy condition (E).

Theorem 4.6.18. Let S be a monoid. Then all cyclic right S-acts satisfy condi-
tion (E) if and only of S = {1} or S = {0,1}.

Proof. Suppose that all cyclic right S-acts satisfy condition (£). Then all flat
cyclic right S-acts satisfy condition (E£) and so by Lemma 4.6.2, S is right nil. Also
by Corollary 3.2.6, all cyclic right S-acts satisfy condition (P). Thus by Theorem
2.3.64,S =G or S =GU{0} where G is a group. Let 1 # x € G. Since S is right
nil, then there exists £ € N such that z**! = z*. But 2% € G and so z**! = ¢*
implies that & = 1 which is a contradiction. Thus G = {1}.

If S = {1} or S = {0,1}, then it is easy to see that all cyclic right S-acts are
strongly flat and so all cyclic right S-acts satisfy condition (E). u

From Theorem 4.6.18 we have.

Corollary 4.6.19. Let S be @« monoid. Then all cyclic right S-acts are strongly
flat if and only if S = {1} or S ={0,1}.

From Theorem 4.6.18, and Corollary 4.6.19, the following theorem can be deduced.
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Theorem 4.6.20. For a monoid S the following statements are equivalent:

(1) All right S-acts satisfy condition (E).
(2) All cyclic right S-acts satisfy condition (E).
(3) All cyclic right S-acts are strongly flat.

(4)S={1} or S ={0,1}.

By Lemma 4.6.2, it can be seen that for a monoid S if all flat right acts satisfy

condition (E), then S is right nil. Now questions that arise here are as follows:

Is the condition S is right nil also sufficient for all flat right S-acts to satisfy
condition (E) ?

Is there a right nil monoid S and a right S-act A which is flat but does not satisfy
condition (E) ?

Normak in [31, Example 1.13] showed that condition (E) does not imply flatness.
Then Liu in [38] gave a characterization of monoids over which all left acts satis-
fying condition (E) are flat. Now by regarding conditions (F), (Pg), (Py), and
Corollary 3.2.6, it can be seen that for a monoid 5, if a cyclic right S-act satisfies
condition (E), then it satisfies condition (P), and so it satisfies conditions (Pg),
and (Pp). But by the following example it can be seen that condition (E) does
not imply conditions (Pg) and (Py) in general. Then we give a characterization

of monoids over which all right S-acts satisfying condition (E) satisfy condition

(Pg)-
Example 4.6.21. Let S ={0,1,¢e,a} with table

s N O R = e

oo O OoOC
©® O = O
O DO D OO
o O Y Oole

If J = {0,a}, then J = aS is a proper right ideal of S. By Proposition 2.3.53, A(.J)
satisfies condition (E). Now we show that A(J) does not satisfy conditions (Pg),
and (Pp). Suppose that A(J) satisfies condition (P}). Since (z,1)0 = (y,€)a,
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then there exist s,¢, e/ = ¢', ¢'> = ¢" € S and a” € A such that

"=a"te", €0=0, ¢'a =a and s0 = ta.

(z,1)e' = d"se', (y,e)e
Since ea = 0 # a, then e"” # e. Thus e’ =1 and so (y,e)l = a"'t. Since for every
s €5, s0 =0, then we need to choose t € S such that ta = 0. Thus either t = 0
ort = a. If t = 0, then for every a" € A(J), a"0 = (2,0) # (y,e) and so we
have a contradiction. If ¢ = a, then for every o’ € A(J), either a"a = (2,0) or
a"a = (z,a) which in both cases a"a # (y,e) and again we have a contradiction.
A(J) also does not satisfy condition (Pg). Otherwise it will satisfy condition (Py)

which is a contradiction.
By [38], we have the following proposition:

Proposition 4.6.22. For any monoid S the following conditions are equivalent:

(1) S is regular monoid.

(2) All right S-acts satisfying condition (E) are flat.

(8) All right S-acts satisfying condition (E) are weakly flat.

(4) All right S-acts satisfying condition (E) are principally weakly flat.
(5) All right S-acts are principally weakly flat.

Since by Corollary 4.3.30, for regular monoids weak flatness of acts implies condi-

tion (Pf), then from Proposition 4.6.22, we have

Theorem 4.6.23. For any monoid S the following conditions are equivalent:

(1) S s a reqular monoid.

(2) All right S-acts satisfying condition (E) are flat.

(3) All right S-acts satisfying condition (E) are weakly flat.

(4) All right S-acts satisfying condition (E) are principally weakly flat.

(5) All right S-acts are principally weakly flat.
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(6) All right S-acts satisfying condition (E) satisfy condition (Pg).
By Theorem 4.6.23, and Proposition 2.3.53, we have

Corollary 4.6.24. Let S be a regular monoid. If J is a proper right ideal of S,
then A(J) satisfies condition (Pp).

Remark. If S is a regular monoid and J a proper right ideal of S, then by
Proposition 2.3.53, A(J) does not satisfy condition (P). But by Corollary 4.6.24,
A(J) satisfies condition (Pf). Therefore, A(J) can be considered as an example
of acts which satisfies condition (Py;), but does not satisfy condition (P).

Corollary 4.6.25. If S is a right zero monoid, then all right S-acts satisfying
condition (E) satisfy condition (Pg).

Proof. Since every right zero monoid is regular, then by Theorem 4.6.23, all right
S-acts satisfying condition (E) satisfy condition (Pg). But by Theorem 4.3.5,
condition (Pf) implies condition (Pg) and so all right S-acts satisfying condition
(E) satisfy condition (Pg) as required. |

If all right S-acts satisfying condition (E) satisfy condition (Pg), then all right
S-acts satisfying condition (E) satisfy condition (P} ) and so by Theorem 4.6.23,

S is regular, but that S is right zero is unknown.

The following is another example of monoids for which conditions (Pg) and (Py;)

do not imply condition (E).

Example 4.6.26. Let S = {0,1,s | s> =1} and let A = {z,a | as = a, a0 = zs =
20 = z, al =a, z1 = z}. Then A is a right S-act and also it satisfies condition
(P). Consequently, A satisfies conditions (Pg) and (Pf). But A does not satisfy
condition (E). Otherwise, as = al implies that there exist t € S and a” € A such

that @ = @'t and ts = t1. Since either a = as or a = al, then either t = s or t = 1.

If t =1, then ts = t1 implies that s = 1 which is a contradiction. If t = s, then
s=t=1tl =ts =ss8 = 1.

which is a also a contradiction.
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Chapter 5

Characterization of Monoids by Properties of
Generators

5.1. Introduction

In the previous chapters we investigated properties of acts over monoids and we
gave some classification of monoids by these properties. Although there are several
papers which investigate various properties of acts of monoids, among them gen-
erators, there seems to be very little known. In this chapter, by using the property
of coretractions we try to characterize some classes of monoids by properties of

generators.

5.2. Characterization by Properties of Generators

Definition 5.2.1. Let S be a monoid. An S-act Gg is called a generator for
an S-act Ag if for every pair of homomorphisms (o # ), a : As — Bg and
B : As — Bg, there exists a homomorphism f : Gg — Ag in Act-S such that

af #pf.

An S-act Gg is called a generator in Act-S if for every As € Act-S and every
pair of homomorphisms (o # 3), a : As — Bs and 8 : As — Bg there exists a
homomorphism f : Gs — Ag in Act-S such that of # 3f.

Lemma 5.2.2. Let S be a monoid. Then S 1s a generator in Act-S.

Proof. Let a : As — Bs and f: Ag — Bgs be homomorphisms such that « # (.
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Then there exists a € Ag such that a(a) # B(a). Let f: S — Ag be such that
f(s) = as for every s € S. Then f is a homomorphism and f(1) = a. Thus we

have
(af)(1) = a(f(1)) = a(a) # Bla) = B(f(1)) = (BF)(1),

and so by Definition 5.2.1, S is a generator. u

Definition 5.2.3. A homomorphism 6 : As — Bg is called a coretraction if there

1s a homomorphism ' : Bg — Ag such that 6’8 = 14. We shall say that Ag is a

retract of Bg in this case.

Definition 5.2.4. Let S be a monoid. Let U be a right S-act and let {4; | ¢ € I'}
be a family of right S-acts. Let {¢; € Hom(U,A;) | 1 € I, U € Act—S} be a
family of monomorphisms. Then there exist Ag € Act-S and {u; € Hom(A;, As) |
uip; = uj¢;, t,5 € I} such that for every Bs € Act-S and every family {f; €
Hom(A;,Bs) | fi¢i = fj¢j, 1,7 € I} there exists a unique f € Hom(Ag, Bs)

which makes commutative the following diagrams in Act-S.

Pi

U

f is called the amalgamated coproduct of A;,¢ € I with respect to U and is denoted

by (H?E[ A;,u;). This amalgamated coproduct is also called a multiple pushout.

If we consider the family of diagrams in Act-S

Bg

where all 7; are surjective, ¢ € I, Pg € Act-S and {p; € Hom(Ps, A;) | mipi =
7jp;,t,J € I} suchthat for any Bs € Act-S and every family {g; € Hom(Bs, 4;) |
Tigi = mjgj,t,J € I} there exists a unique ¢ € Hom(Bg, Ps) which makes
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these diagrams commutative, then g will be called coamalgamated product or
multiple pullback of the A;, 1 € I with respect to V and will be denoted by

HierAi‘

Lemma 5.2.5 [23]. Let A;, ¢ € I be a family of right S-acts, one of which 1s
a generator in Act-S and let P = ], Ai be a coamalgamated product. Then

[1icryAi is also a generator in Act-S.

Lemma 5.2.6 [23]. Let m; : A; — V be a family of surjective homomorphisms in
Act-S. Consider

Ps = {(as)ier € [ Ai | milai) = m5(a;),7,j € I}
tel

and let p;, © € I be the restriction to Ps of the canonical projection from [[,c; A
Then (Ps,(pi)ier) is isomorphic to the coamalgamated product [, . A

Lemma 5.2.7 [23]. For any monoid S we have,

(1) ST] 4s is a generator for any As € Act-S.

(2) If moreover, S has a left zero 0, then Ag is a retract of S]] As with retraction
being the second projection p; and coretraction defined by a — (0,a) for a € As.

Now by using Lemma 5.2.7, we give a characterization of monoids S with a left
zero by condition (E) of generators which will extend the characterization of these

monoids by equalizer-flatness of generators.

Lemma 5.2.8. Let S be a monoid, and As a retract of Bs. If Bg satisfies con-
dition (E), then Ag satisfies condition (E).

Proof. Let au = av for a € As and u,v € S. Since Ag is retract of Bg, then

there are homomorphisms
0: As — Bsand §' : Bg — Ag
such that 6/ = 1,4. Then

B(au) = 6(av) or (8(a))u = (8(a))v. (*)
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Since 6(a) € Bg, u,v € S, and Bg satisfies condition (F), then (*) implies that
there exist V" € Bg and t € S, such that 6(a) = bt and tu = tv. Since 6(a) = b'"t,
then

0'(6(a)) = 6'("t) = (8'(6"))t,

or

9'8(a) = (' (H"))t = a = (8'(")t.

If " =0'(b") € Ag, then o' € Ag, and @ = a''t. Since tu = tv, then Ag satisfies

condition (E) as required. |

Lemma 5.2.9. Let S be a monoid with a left zero. Then all generators in Act-S
satisfy condition (E) if and only if all right S-acts satisfy condition (E).

Proof. Let Ag be an S-act. Since every generator in Act-S satisfies condition
(E), then by Lemma 5.2.7 (1), S]] As also satisfies condition (E). By Lemma
5.2.7 (2), As is a retract of S|[ As and so by Lemma 5.2.8, Ag satisfies condition

(E).
The converse is obvious. ]

Now from Lemma 5.2.9, and Theorem 2.2.19, we can deduce the following exten-
sion of [23, Corollary 3.7].

Theorem 5.2.10. If S s a monoid with a left zero 0, then the following conditions

are equivalent:

1) All generators in Act-S satisfy condition (E).
2) All right S-acts satisfy condition (E).

3) All generators in Act-S are equalizer-flat.

4) All right S-acts are equalizer-flat.

5) All cyclic Tight S-acts satisfy condition (E).
6) All cyclic right S-acts are strongly flat.

7) S = {1} or S ={0,1}.
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By using the following theorem we give a characterization of monoids by condition
(P) of generators and use this to characterize aperiodic monoids for which all

generators are free, projective, pullback-flat and satisfy condition (P).

Theorem 5.2.11 [23]. The following conditions on a monoid S are equivalent:

1) All generators in Act-S are free.

2) All generators in Act-S are projective.

3) All generators in Act-S are pullback-flat.

4) All generators in Act-S satisfy condition (P).
5) S is a group.

Theorem 2.2.14, and Lemma 5.2.11, give

Theorem 5.2.12. The following conditions on a monoid S are equivalent:

1) All generators in Act-S satisfy condition (P).
2) All right S-acts satisfy condition (P).
3) S is a group.

Lemma 5.2.13. Let S be an aperiodic monoid. Then all generators in Act-S
satisfy condition (P) if and only if S = {1}.

Proof. Suppose that all generators in Act-S satisfy condition (P). Then by
Theorem 5.2.12, S i1s a group. On the other hand for every z € S, there exists
n € N such that 2"*! = z™. Thus by cancelling z", z = 1, and so S = {1} as

required.
The converse is obvious. m

Corollary 5.2.14. Let S be an aperiodic monoid. Then all generators in Act-S
satisfy condition (P) if and only if all right S-acts are free.

Proof. If all generators satisfy condition (P), then by Lemma 5.2.13, S = {1}.
Therefore all right S-acts are free.
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The converse is obvious. [
Now from Theorem 5.2.11, Lemma 5.2.13, and Corollary 5.2.14, we have

Theorem 5.2.15. For an aperiodic monoid S the following conditions are equiv-

alent:

(1) All generators in Act-S are free.

(2) All right S-acts are free.

(3) All generators in Act-S are projective.

(4) All right S-acts are projective.

(5) All generators in Act-S are pullback-flat.

(6) All right S-acts are pullback-flat.

(7) All generators in Act-S satisfy condition (P).
(8) All right S-acts satisfy condition (P).

(9) S ={1}.

From Theorem 5.2.10, and Theorem 5.2.11, the following corollary can
be deduced.

Corollary 5.2.16. Let S be a monoid with a left zero. Then the following are

equivalent:

(1) All generators in Act-S are strongly flat.

(2) All right S-acts are strongly flat.

(3) S ={1}.

Kilp in [23] (Lemma 5.2.19, below) showed that for monoids S with a left zero,
all generators in Act-S are weakly flat if and only if all right S-acts are weakly
flat. By the following lemmas we show that for monoids S with a left zero, all

generators in Act-S satisfy condition (Pf) if and only if all right S-acts satisfy
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condition (Pg). Then by using this we show that among monoids S with a left
zero, those for which all generators in Act-S are weakly flat and those for which
all generators in Act-S satisfy condition (P};) are regular monoids S in which for

every z,y € S there is an element z € Sz N Sy such that (z,2) € p(z,y).

Lemma 5.2.17. Let S be a monoid and As a retract of Bs. If Bs satisfies
condition (Pf), then As satisfies condition (Pg).

Proof. Let au = a'v for a,a’ € Ag, u,v € S. Since Ag is a retract of Bg, then
there are homomorphisms 6 : Ag — Bg and ' : Bgs — Ag such that 6’6 = 14.

Then we have

B(au) = 6(a'v) or (8(a))u = (0(a’))v. (*)

Since 6(a),8(a') € Bs and Bg satisfies condition (Py;), then (*) implies that there
exist s,t,e? =e, f? = f € S, b € Bs such that

8(a) = b'"se, 8(a') = b"tf, eu =u, fv=ovand su = tv.
Then
0'6(a) = 6'(b'se) = (6'6")se and §'6(a’) = 6'(b"tf) = (6’6" )tf.

If 6'(b") = d", then a" € As and a = a''se, a’ = d"tf. Since eu = u, fv =v and

su = tv, then Ag satisfies condition (Py) as required. ]

Lemma 5.2.18. Let S be ¢ monoid with a left zero. Then all generators in Act-S
satisfy condition (Pg) of and only if all right S-acts satisfy condition (Pf).

Proof. Suppose that all generators in Act-S satisfy condition (Py) and let A be a
right S-act. Then by Lemma 5.2.7 (1), S]] A satisfies condition (Pf). By Lemma
5.2.7 (2), A is a retract of S]] A and so by Lemma 5.2.17, A satisfies condition

(Pg)-

If all right S-acts satisfy condition (Pf), then it is obvious that all generators in
Act-S satisfy condition (Py,). [

Lemma 5.2.19 [23]. Let S be a monoid with a left zero. If all generators in Act-S
are flat or weakly flat, then all right S-acts have this property.

Now from Lemma 5.2.18, Lemma 5.2.19, and Theorem 4.4.9, we have
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Theorem 5.2.20. Let S be a monoid with a left zero. Then the following condi-

tions are equivalent:

(1) All generators in Act-S are weakly flat.

(2) All right S-acts are weakly flat.

(3) All finstely generated right S-acts are weakly flat.
(4) All cyclic right S-acts are weakly flat.

(5) All generators in Act-S satisfy condition (Pp).
(6) All Tight S-acts satisfy condition (Py,).

(7) All monocyclic right S-acts satisfy condition (Pg).

(8) S is regular monoid and for every x,y € S there s an element z € Sz N Sy
such that (z,z) € p(z,y).

From Theorem 4.5.5, Theorem 5.2.19, and Theorem 5.2.20, we have

Theorem 5.2.21. Let S be a left PP monoid with a left zero and idempotents

form a right reqular band. Then the following conditions are equivalent:

(1) All generators in Act-S are weakly flat.

(2) All right S-acts are weakly flat.

(3) All finstely generated right S-acts are weakly flat.
(4) All cyclic right S-acts are weakly flat.

(5) All generators in Act-S satisfy condition (Pp).
(6) All right S-acts satisfy condition (Pg).

(7) All monocyclic Tight S-acts satisfy condition (Py).
(8) All generators in Act-S are flat.

(9) All right S-acts are flat.
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(10) S is regular and for every x,y € S there is an element z € Sz N Sy such that
(z,2) € p(z,y).

Remark. If S is a left PP monoid with a left zero and for all u,v € E(S) there
exists z € uS NS such that (z,u) € O1(y,4), then by Theorem 4.5.7, we have the

same results as in Theorem 5.2.21.

Now similar to condition (Pj;) for monoids S with a left zero we show that if all

generators in Act-S satisfy condition (Pg), then all right S-acts satisfy condition
(Pg).

Lemma 5.2.22. Let S be a monoid and As a retract of Bs. If Bgs satisfies
condition (Pg), then Ag satisfies condition (Pg).

Proof. Let au = a'v for a,a’ € Ag, u,v € §. Since Ag is a retract of Bg, then
there are homomorphisms 6 : As — Bg and ¢ : Bs — Ag such that 66 = 14.

Then we have

6(au) = 6(a'v) or (8(a))u = (6(a'))v. ()

Since 6(a), 6(a') € Bs and Bg satisfies condition (Pg), then (%) implies that there
exist s,t,e? = e € S, V' € Bs such that

8(a) =b"se, 8(a') = b"te, eu = u, ev = v and su = tv.
Then
6'6(a) = 0'(b"se) = (6'(b"))se and 0'6(a") = 6'(b"te) = (8'(b"))te.

If 6'(b") = a", then a” € Ag and so a = a"se, @' = a’te. Since eu = u,ev = v

and su = tv, then Ag satisfies condition (Pg) as required. [

Lemma 5.2.23. Let S be a monoid with a left zero. Then all generators in Act-S
satisfy condition (Pg) of and only if all right S-acts satisfy condition (Pg).

Proof. Suppose that all generators in Act-S satisfy condition (Pg) and let A be
a right S-act. Then by Lemma 5.2.7 (1), S]] 4 is a generator and so it satisfies
condition (Pg). By Lemma 5.2.7 (2), A is a retract of S]] A and so by Lemma
5.2.22, A satisfies condition (Pg) as required.

If all right S-acts satisfy condition (Pg), then it is obvious that all generators in
Act-S satisfy condition (Pg). |
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In the following we show that the retract of every injective act is also injective and
use this to show that for a monoid S the injectivity of all generators in Act-S are

sufficient for the injectivity of all right S-acts.

Definition 5.2.24. Let S be a monoid. An S-act A is injective if given any

diagram of S-acts and S-homomorphisms

M ¢ N

where ¢ : N — M is a monomorphism, there exists an S-homomorphism ¢ : M —

A such that
A

M—2

1s commutative.

Lemma 5.2.25. Let S be a monoid and let the right S-act A be a retract of the
right S-act B. If B 1s injective, then A 18 injective.

Proof. Since A is a retract of B, then there are homomorphisms 6 : A — B and
6" : B — A such that ' = 14. Suppose that v : N - Aand ¢ : N —- M

are homomorphism and injection (monomorphism) respectively as in the following

diagram:
B
6| |6
e A
7 0
M ¢ N




Since 6y : N — B, is a homomorphism and B is injective, then there exists

homomorphism +' : M — B, such that v'¢ = 6. Then we have
8'(v'¢) = 6'(6¢) or (64" )¢ = (6'0).

If v=20'%", then v¢ = 14% = 1, and so A is injective as required. [

Theorem 5.2.26. Let S be a monoid. Then all generators in Act-S are injective
if and only if all right S-acts are injective.

Proof. Suppose that all generators in Act-S are injective and let A be a right
S-act. Then by Lemma 5.2.2, S is injective and so by [33, Theorem 2] S contains
a left zero. Also by Lemma 5.2.7 (1), ST] A is a generator and so by assumption
STI A is injective. Then by Lemma 5.2.7 (2), and Lemma 5.2.25, A is injective.

The converse is obvious. ]

In the above we saw that for a monoid S and a right S-act A if A is injective or
satisfles conditions (E), (Pf), and (Pg), then the retract of A is also injective or
satisfies these conditions. Now we show that this is also true for the retract of

every right S-act A which is projective, strongly flat or satisfies condition (P).

Lemma 5.2.27. Let S be a monoid, and As a retract of Bs. If Bs satisfies
condition (P), then Ag satisfies condition (P).

Proof. Let au = a'v for a,a’ € A and u,v € S. Since Ag is a retract of Bg, then
there are homomorphisms 8 : As — Bg and ' : Bs — Ag, such that, /6 = 14.
Then

f(au) = b(a'v) = (8(a))u = (6(a’))v.

Since Bg satisfles condition (P) and 6(a),0(a’) € Bg, then there exist s,t €
S and b € Bg, such that 8(a) = b"s, 6(a’) = "t and su = tv. Then

0'(6(a)) = 8'(b"s) and 6'(6(a")) = 8'(b"t),

or

6'6(a) = (6'(b"))s and 6'8(a’) = (6" (0" ))t.

Let 6¢'(b") = a". Since §'6 = 14, then a = a’s, @’ = a""t and su = tv. Thus, Ag

satisfies condition (P) as required. ]
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Lemmas 5.2.8, and 5.2.27, give

Corollary 5.2.28. Let S be a monoid and As a retract of Bg. If Bg s strongly
flat, then Ag 1s strongly flat.

Lemma 5.2.29. Let S be a monoid, and let the right S-act P be a retract of the
right S-act P'. If P' 1s projective, then P is projective.

Proof. Since P is a retract of P’, then there exist homomorphisms 6 : P — P’
and ¢ : P — P, such that '8 = 1p. Suppose that p: P — A" and g: A — A",

are homomorphism and epimorphism respectively as in the following diagram:

Pl
6l ¢
¢’ P
¢ P
A q A"

Since P’ is projective and pf' : P' — A" is a homomorphism, then there exists

homomorphism ¢' such that
q¢' =pb : P' — A" (1)
Then from (1) we have
(¢¢")6 = (p8")6 or ¢(¢'0) = p(6'9). (2)

If $ =¢'60: P — A, then (2) implies that ¢é = plp = p. Thus, P is projective as
required. -
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Chapter 6

Characterization of Monoids by Properties of
Regular Acts

6.1. Introduction

In this chapter we investigate the characterization of monoids by properties of
regular acts. Although people like Kilp, Knauer, and Hach have investigated the
relation between regular acts and various concepts concerning projectivity and
injectivity, there are still however a number of open problems. We continue this
investigation by considering the problem of when all right acts having (P), (Pg),
and (Pf) are regular or when all (weakly) flat acts are regular and answer these
questions either in general or for certain classes of monoids. We start in section 6.2,
with basic definitions and results. In sections 6.3, and 6.4, we consider monoids
for which all right acts having (P) are regular and monoids for which all (weakly)
flat right acts are regular. Finally, in section 6.5, we give a characterization of
monoids with every e € E(S)\ {1} right zero and also left PP monoids such that

all right acts having (Pg) and (P};) are regular. There are also some other results.
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6.2. Basic definitions and results

Definition 6.2.1. A right S-act A is called regular if for any a € A there exists a

homomorphism f : aS — S such that af(a) = a.

We note that if the monoid S is Von Neumann regular, that is, to every s € §
there exists an element s’ € S such that ss's = s, then the morphism f : sS — S
defined by f(sz) = s'sz,z € S, satisfies sf(s) = ss's = s.

The regularity of S-acts is an extension of Von Neumann regularity. A monoid S,
however, which is a regular S-act need not be Von Neumann regular, for example,
the semigroup N of all natural numbers is not Von Neumann regular, but for each
k € N the morphism f : kN — IN defined by f(kn) = f(k)n = l.n, satisfies
kf(k) = k and hence N is a regular N-act.

Also if S is a right cancellative monoid, then S is a regular left S-act without

being a regular monoid.

Definition 6.2.2. A monoid S is called semiperfect if all cyclic strongly flat acts

are projective. Examples are monoids which satisfy the minimum condition for

principal right ideals [15].

Proposition 6.2.3 [35]. A right S-act A is regular if and only if all cyclic subacts

of A are projective.

Corollary 6.2.4. Let S be a monoid and A a cyclic right S-act. If A is regular,

then A s projective.

Proof. Since A is regular, then by Proposition 6.2.3, all cyclic subacts of A are

projective. But A is a subact of itself and so A is projective as required. [

Theorem 6.2.5 [22]. If all strongly flat S-acts are regular, then S is a semiperfect
PP monoid.

Proposition 6.2.6 [22]. If A is a regular right S-act and B is a subact of A, then
B 1s a regular act. If A;, @ € I are regular right S-acts, then [{,c; A is a regular
right S-act.

Theorem 6.2.7 [22]. Let S be a monoid. Then the following conditions on S are

equivalent:
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(1) All free right S-acts are regular.

(2) All projective generators in Act-S are regular.
(3) All projective right S-acts are regular.

(4) S is a right PP monoid.

Proposition 6.2.8 [5]. Let S be a regular monoid. Then a right S-act A is weakly

flat if and only iof for every a € A and z,y € S, of ax = ay, then there exists
z € Sz N Sy such that az = ay = az.

Theorem 6.2.9 [27]. Let S be a monoid. Then all strongly flat cyclic right S-acts

are projective if and only if

(FPy): For all (infinite) chains (go,q1,-..) with ¢igi—1 = ¢i,q¢; € S, 1 = 1,2,...,
there exists m € N such that ¢mqi = gm, ¢t =0,1,....

(FPy): For any set M of idempotents of S with the property:

“for e1,€2,...s€n, f1,f2, s fm € M there exists f € M such that
ferez...eqn = ffifa... fm” the subsemigroup of S generated by M
contains a left zero of M.

Theorem 6.2.10 [7]. Let S be a monoid. Then all cyclic right S-acts having (P)
are projective if and only if S 1s aperiodic and S satisfies F Py and FP;.
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6.3. Monoids over which all Right Acts having (P) are
Regular

In this section by considering the relation between regularity and condition (P) of
acts, we classify idempotent monoids, right nil monoids and monoids S for which
either E(S)\ {1} is a right zero band or E(S)\ {1} is a left zero band such that all
right acts having (P) are regular. Then a classification of monoids for which either
every e € E(S)\ {1} is right zero or every e € E(S)\ {1} is left zero will arise as
a result. It can also be seen that among idempotent monoids S, those for which
all their right S-acts having (P) are regular, and those for which all strongly flat
right S-acts are regular, coincide with monoids for which all strongly flat cyclic

right S-acts are projective.

Theorem 6.3.1. Let S be a monoid. If all right S-acts having (P) are regular,
then S 1s right PP and all cyclic Tight S-acts having (P) are projective. If S is
right PP and all cyclic right S-acts having (P) are projective, then all finitely

generated right S-acts having (P) are reqular.

Proof. Suppose that all right S-acts having (P) are regular. Then all cyclic right
S-acts having (P) are regular. Thus by Corollary 6.2.4, all cyclic right S-acts
having (P) are projective. Since all right S-acts having (P) are regular, then all
strongly flat right S-acts are regular, and so by Theorem 6.2.5, S is right PP

monoid.

Now, let S be right PP and suppose that all cyclic right S-acts having (P) are
projective. Let A be a finitely generated right S-act and suppose that A satisfies
condition (P). Then by Lemma 1.53, A is a coproduct of cyclic right S-acts
A, 0 € T (A = [];e; Ais Ai = a;5.) Since A satisfies condition (P), then by
Theorem 1.43, A4;, ¢ € I satisfies condition (P) and so by assumption A;, ¢ € I
is projective. Since S is right PP, then by Theorem 6.2.7, A4;, ¢ € I is regular.
Consequently, by proposition 6.2.6, A is regular. n

Lemma 6.3.2. Let S be an idempotent monoid and A a right S-act. If A satisfies
condition (P), then every cyclic subact of A satisfies condition (P).

Proof. Let aS be a cyclic right subact of A for some a € A. Let (as1)u = (asg)v
for s1,s2,u,v,€ S. Then a(syu) = a(syv). Since A satisfies condition (P), then

there exist a'’ € A, s,t € S such that a = a"s, ¢ = a"t and s(s1u) = t(s2v).
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? = s, then

Consequently, (ss1)u = (ts3)v and as; = a''ssq. Since s
asy = a"ss; = a''s*s; = (a"s)(s31).
Also a = a''t implies that

asy = a''tsy = a"t?s2 = (a"t)(ts2).

Since a = a''s = a''t, then as; = a(ss1) and as2 = a(tsz). But a € S and so aS

satisfies condition (P) as required. n

Lemma 6.3.3. Let S be an idempotent monoid and A a right S-act. If A satisfies
condition (E), then every cyclic subact of A satisfies condition (E).

Proof. Let aS be a cyclic right subact of A and let (as)u = (as)v for s,u,v € S.
Then a(su) = a(sv). Since A satisfies condition (E), then there exist «” € A, t € S
such that a = ot and #(su) = #(sv). Since t = 2, then,

a=a"t=ad"t? = (d't)t = at.

Consequently,
as = (at)s = a(ts).

Since a € aS and (ts)u = (ts)v, then aS satisfies condition (E) as required. [
From Lemma 6.3.2, and Lemma 6.3.3, we have

Corollary 6.3.4. Let S be an idempotent monoid and A a right S-act. If A 1s
strongly flat, then every cyclic subact of A 1s strongly flat.

Theorem 6.3.5. Let S be an idempotent monoid. Then all right S-acts having
(P) are regular iof and only if S satisfies FPy and FPs.

Proof. If all right S-acts having (P) are regular, then all cyclic right S-acts having
(P) are regular. Thus by Corollary 6.2.4, all cyclic right S-acts having (P) are
projective and so by Theorem 6.2.10, S is aperiodic and S satisfies F Py and FPs.

Now suppose that S satisfies FP; and FP,. To show that all right S-acts having
(P) are regular it is sufficient by Proposition 6.2.3, to show that all cyclic right
subacts of every right S-act having (P) are projective. Let A be a right S-act
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and suppose that A satisfies condition (P). Then by Lemma 6.3.2, every cyclic
right subact of A satisfies condition (P). Since S is an idempotent monoid, then
S is aperiodic. Also by assumption S satisfies FP; and FP,. Thus by Theorem
6.2.10, all cyclic right S-acts having (P) are projective. Consequently, all cyclic

right subacts of A are projective as required. [

Theorem 6.3.6. Let S be an idempotent monoid. Then all strongly flat right
S-acts are regular if and only if S satisfies FP; and FP,.

Proof. If all strongly flat right S-acts are regular, then all strongly flat cyclic right
S-acts are regular. Thus by Corollary 6.2.4, all strongly flat cyclic right S-acts are
projective and so by Theorem 6.2.9, S satisfies F'P; and FPs.

Now suppose that S satisfies F'Pj, F'/P, and let A be an strongly flat right S-act.
Then by Corollary 6.3.4, all cyclic subacts of A are strongly flat. But by Theorem
6.2.9, all strongly flat cyclic right S-acts are projective. Consequently, all cyclic

subacts of A are projective and so by Proposition 6.2.3, A is regular. [ |
From Theorem 6.3.5, Theorem 6.3.6, and Theorem 6.2.10, we have

Theorem 6.3.7. For an idempotent monoid S the following statements are equiv-

alent:

(1) All right S-acts having (P) are regular.

(2) All strongly flat right S-acts are regular.

(8) All cyclic right S-acts having (P) are projective
(4) S satisfies FPy and FP;.

Now we turn our attention to other class of monoids for which all right acts having

(P) are regular.

Lemma 6.3.8. Let S be a right PP monoid. If S is aperiodic, then for every
z € S\ {1}, there exists e € E(S)\ {1} such that ze = z.

Proof. Let « € S\ {1}. Since S is aperiodic, then there exists ¥ € N such that
g™t = z". If z is left cancellative, then z"t! = z™ implies that * = 1 which

is a contradiction. Since S is right PP, then there exists e? = ¢ € S such that
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xze = z, and for every a,b € S, xa = zb implies that ea = eb. We claim that e # 1.

Otherwise, a = b and so z is left cancellative which is a contradiction. [

Lemma 6.3.9. Let S be a monowd. Then S 18 right nil and right PP if and only
if S 18 right zero.

Proof. Suppose that S is right nil and let 2 € S\ {1}. Since S is aperiodic, then
by Lemma 6.3.8, there exists e € E(S)\ {1} such that ze = 2. Since S is right nil,
then there exists k € N such that ef™! = e* = e is right zero. Thus z = ze = e is

right zero as required.
The converse is obvious. [

Corollary 6.3.10. Let S be a right nil monoid. Then all free right S-acts are
reqular if and only if S is right zero.

Proof. If all free right S-acts are regular, then by Theorem 6.2.7, S is right PP.
Consequently, by Lemma 6.3.9, S is right zero.

If S is right zero, then S is right PP and so by Theorem 6.2.7, all free right S-acts

are regular. |

Theorem 6.3.11. Let S be a right nil monoid. Then all right S-acts having (P)

are regular if and only of S s right zero.

Proof. Suppose that all right S-acts having (P) are regular. Then all free right
S-acts are regular and so by Corollary 6.3.10, S is right zero.

Now let S be right zero. Then by Theorem 2.3.28, all flat cyclic right S-acts are
projective. Consequently, all cyclic right S-acts having (P) are projective and
so by Theorem 6.2.10, S is aperiodic and S satisfies FF/P; and FP,. Since S is
an idempotent monoid, then by Theorem 6.3.7, all right S-acts having (P) are

regular. [

Corollary 6.3.12. Let S be a right nil monoid. Then all strongly flat right S-acts

are reqular if and only if S is right zero.

Proof. Suppose that all strongly flat right S-acts are regular. Then all free right
S-acts are regular and so by Corollary 6.3.10, S is right zero.
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If S is right zero, then by Theorem 6.3.11, all right S-acts having (P) are regular
and so all strongly flat right S-acts are regular. ]

From Theorem 6.2.7, Lemma 6.3.9, Corollary 6.3.10, Theorem 6.3.11, and Corol-
lary 6.3.12, the following Theorem can be deduced.

Theorem 6.3.13. Let S be a right nil monoid. Then the following conditions on

S are equivalent:

(1) All free right S-acts are regular.

(2) All projective generators in Act-S are regular.
(3) All projective right S-acts are reqular.

(4) All strongly flat right S-acts are regular.

(5) All right S-acts having (P) are regular.

(6) S is a right PP monoid.

(7) S 1s right zero.

Corollary 6.3.14. Let S be a right nil monoid. If all right S-acts having (P) are
regular, then all weakly flat cyclic right S-acts are regular.

Proof. Since S 1s right nil, then by Theorem 2.3.28, all weakly flat cyclic right S-
acts are projective. But by Theorem 6.3.13, all projective right S-acts are regular

and so all weakly flat cyclic right S-acts are regular as required.

Now we give a characterization of monoids for which either E(S)\ {1} is a right
zero band or E(S)\ {1} is a left zero band such that all right S-acts having (P)

are regular.

Lemma 6.3.15. Let S be a monoid. If all right S-acts having (P) are regular,
then S 1s right PP, aperiodic and S satisfies FP; and FP;.

Proof. If all right S-acts having (P) are regular, then by Theorem 6.3.1, S is
right PP and all cyclic right S-acts having (P) are projective. Thus by Theorem
6.2.10, S is aperiodic and § satisfies F'P, and FP;. n
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Lemma 6.3.16. Let S be a monoid such that either E(S)\ {1} is a right zero
band or E(S)\ {1} 1s a left zero band. Then all right S-acts having (P) are regular
if and only 1f S 1s right PP, aperiodic and S satisfies FP; and FP,.

Proof. If all right S-acts having (P) are regular, then by Lemma 6.3.15, S is right
PP, aperiodic and satisfies F'P; and FP;.

Now suppose that S is right PP, aperiodic and satisfies FP; and FP,. At first
we show that S is an idempotent monoid. Let © € S. Then either ¢ = 1 or by
Lemma 6.3.8, there exists e € E(S) \ {1} such that ze = z. If z =1, then z is an
idempotent. Suppose then that = # 1. Since S is aperiodic, then by Lemma 2.2.27,
S/p(z,1) is strongly flat. Since S satisfies FP; and F P, then by Theorem 6.2.9,
S/p(z,1) is projective. Therefore by Lemma 1.54 (2), there exists f2 = f € S
such that f p 1 and z p 1 implies that fo = f1 = f. If f =1, then * = 1 which s
a contradiction. Thus f # 1. Since x p 1, then z% p 1 and so, by Lemma 1.54 (2),
fz? = f. Consequently,

fz? = f = frle = fe = (fz)(ze) = fe = (fz)z = fe = fz* = fe.

Thus f = fe and so zfe = zf. Since ze = z, then zef = zf. Consequently,
zef = zfe.

If E(S)\ {1} is right zero band, then ef = f, fe = e, and so we have
xf =zef = zfe = re.
If E(S)\ {1} is left zero band, then ef = e, fe = f, and so we have
re =zef =zfe =af.
Thus in both cases, ze = zf. Now we have
fr=f=afr=of > afef =aff =2f = (¢f) = of,

and so xf i1s an idempotent. Since z = ze = zf, then z is also an idempotent.

Thus S is an idempotent monoid.

Since S satisfies F'P; and F P,, then by Theorem 6.3.5, all right S-acts having (P)

are regular. [
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Corollary 6.3.17. Let S be a monoid such that E(S)\{1} is right [left] zero band.
Then all right S-acts having (P) are regular if and only +«f S is right [left] zero.

Proof. Suppose that all right S-acts having (P) are regular. Since E(S)\ {1} is
a right [left] zero band, then by the proof of Lemma 6.3.16, S is an idempotent
monoid. Thus E(S) =S and so by assumption S is right [left] zero.

If S is right zero, then by Theorem 6.3.11, all right S-acts having (P) are regular.
If S is left zero, then S satisfies FP; and F'P,. Also S is an idempotent monoid.
Thus by Theorem 6.3.5, all right S-acts having (P) are regular. [

Now from Lemma 6.3.16, and Corollary 6.3.17, we have

Theorem 6.3.18. Let S be a monoid such that E(S)\ {1} is right [left] zero band.

Then the following statements are equivalent:

(1) All right S-acts having (P) are regular.
(2) S 1s right PP, aperiodic and S satisfies FP, and FP;.
(3) S is right [left] zero.

Corollary 6.3.19. Let S be a monoid such that every e € E(S)\ {1} is right [left]
zero. Then all right S-acts having (P) are regular if and only if S is right [left]

ZETO.

Proof. Since every e € E(S)\ {1} is right [left] zero, then E(S)\ {1} is right [left]

zero band and so the result follows from Corollary 6.3.17. n
From Corollary 6.3.19, we have

Corollary 6.3.20. Let S be a monoid such that all right S-acts having (P) are
reqular. If every e € E(S)\ {1} is right [left] zero, then every x € S\ {1} is right
[left] zero.

Corollary 6.3.21. Let S be a monoid such that |E(S)| = 1. Then all right S-acts
having (P) are regular of and only if S = {1}.

Proof. Suppose that all right S-acts having (P) are regular. Then by Lemma
6.3.15, S is right PP, aperiodic and S satisfies F'/P; and F P,. Since S is aperiodic,
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then for every z € S there exists n € N such that z"*! = z".  Since 2" is
idempotent, then by assumption z® = 1 and so z"t! = 2" implies that 2 = 1.
Consequently, S = {1}.

If S = {1}, then all cyclic right S-acts are projective. Consequently, all cyclic
subacts of every right S-act are projective. Thus by Proposition 6.2.3, all right

S-acts are regular and hence all right S-acts having (P) are regular as required. m
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6.4. Monoids over which all (Weakly) Flat Right Acts are
Regular

In this section by using some results from the previous section, we give a charac-
terization of monoids for which all (weakly) flat right S-acts are regular. We also
show that this class of monoids and the class of monoids S for which every cyclic

subact of every (weakly) flat right S-act is strongly flat coincide.

Lemma 6.4.1. Let S be a right zero monoid and A a weakly flat right S-act. If
ar = ay fora € A and z,y € S\ {1}, then = = y.

Proof. Let ar = ay for a € A and z,y € S\ {1}. Since S is right zero, then
S is regular and so by Proposition 6.2.8, there exists z € Sz N Sy such that
ar = ay = az. Then there exist s,t € S such that z = sz = ty. Since z,y are

right zero, then @ = sz = ty = y as required. [

Lemma 6.4.2. Let S be a right zero monoid. If A is a weakly flat right S-act,
then every cyclic subact of A satisfies condition (P).

Proof. Suppose that aS is a cyclic subact of A and let (as)u = (at)v for s,t,u,v, €

S, (a € A). Then a(su) = a(tv). Now there are four cases that can arise:

Case 1. w,v € S\ {1}. Since S is right zero, then su = u,tv = v and so

2

a(su) = a(tv) implies that au = av. Then by Lemma 6.4.1, u = v. Consequently,

su = tv. Since as = (a)s, at = (a)t and a € a§, then aS satisfies condition (P).

Case 2. u = 1,v € S\ {1}. Then we have a(sl) = a(tv). Since v is right zero,

then tv = v and so as = av. Now there are two possibilities as follows:

(a) s € S\ {1}. Then by Lemma 6.4.1, as = av implies that s = v. Thus

su = tv, as = (a)s and at = (a)t.
(b) s =1. Then (a)l = av and so a = (a)v, at = (a)t, vl =v = to.
Thus a$ satisfies condition (P).
Case 3. v =1,u € S\ {1}. It is similar to case 2.

Case 4. v = v = 1. Then (as)l = (at)l. Now there are four possibilities that can

arise:
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(a) s,t € S\ {1}. Then by Lemma 6.4.1, as = at implies that s = ¢ and so

as = (a)s, at = (a)t, sl =s =1t =11

(b) s =1,t € S\ {1}. Then (¢)1 = (at)l and so

a=at = (a)t, at = (a)t, t1 =t1.

(c) t=1,s € S\ {1}. It is similar to part (b).
(d) s=t=1. Then ¢l =al andso a =al, 1.1 = 1.1.
Therefore, aS satisfies condition (P) as required. ]

Lemma 6.4.3. Let S be a right zero monoid. If A is a weakly flat right S-act,
then every cyclic subact of A satisfies condition (E).

Proof. Suppose that aS is a cyclic subact of A and let (as)u = (as)v. Then there

are four cases that can arise:

Case 1. u,v € S\ {1}. Then as the same in case 1 of Lemma 6.4.2, v = v. Thus

as = (a)s and su = sv.

Case 2. u = 1,v € S\ {1}. Then (as)l = (as)v implies that as = a(sv) = av.

Now there are two possibilities as follows:
(a) s € S\ {1l}. Then as = av implies that s = v, and so

as = (a)s, sl =s=v=sv.

(b) s=1. Then a = av and so a = (a)v, vl = vv
Case 3. v =1,u € S\ {1}. It is similar to case 2.
Case 4. u = v = 1. Then (as)l = (as)l and so as = (a)s, s1 = sl.
Therefore, aS satisfies condition (E) as required. [

From Lemma 6.4.2, and Lemma 6.4.3, we have the following theorem.
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Theorem 6.4.4. Let S be a right zero monoid. If A 1s a weakly flat right S-act,
then every cyclic subact of A 1s strongly flat.

Theorem 6.4.5. Let S be a right zero monotd. Then every weakly flat right S-act

18 regular.

Proof. Suppose that S is a right zero monoid and let A be a weakly flat right
S-act. Then by Theorem 6.4.4, every cyclic subact of A is strongly flat. Thus
every cyclic subact of A satisfies condition (P) and so by Theorem 6.3.18, every
cyclic subact of A is regular. Consequently, by Corollary 6.2.4, every cyclic subact
of A is projective, and so by Proposition 6.2.3, A is regular. [

Lemma 6.4.6. Let S be a monoid. If every cyclic subact of every (weakly) flat
right S-act satisfy condition (P), then every e € E(S)\ {1} is right zero.

Proof. If every cyclic subact of every (weakly) flat right S-act satisfies condition
(P), Then every cyclic subact of every (weakly) flat cyclic right S-act satisfies
condition (P) and so every (weakly) flat cyclic right S-act satisfies condition (P).
Consequently, by Lemma 2.2.8, every e € E(S)\ {1} is right zero. [

Lemma 6.4.7. Let S be a monoid. If every cyclic subact of every (weakly) flat
right S-act is strongly flat, then every (weakly) flat right S-act is regular.

Proof. Suppose that every cyclic subact of every (weakly) flat right S-act is
strongly flat. Then every cyclic subact of every (weakly) flat cyclic right S-act is
strongly flat. Consequently, every (weakly) flat cyclic right S-act is strongly flat
and so by Theorem 2.3.28, all (weakly) flat cyclic right S-acts are projective.

Since every cyclic subact of every (weakly) flat right S-act is strongly flat, then
every cyclic subact of every (weakly) flat right S-act is (weakly) flat and so it is
projective. Thus by Theorem 6.2.3, all (weakly) flat right S-act are regular as

required. -

Lemma 6.4.8. Let S be a monoid. If every cyclic subact of every (weakly) flat
right S-act 1s strongly flat, then S is right zero.

Proof. Suppose that every cyclic subact of every (weakly) flat right S-act is
strongly flat. Then every cyclic subact of every (weakly) flat right S-act satisfies
condition (P) and so by Lemma 6.4.6, every e € E(S)\ {1} is right zero.
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Also by Lemma 6.4.7, all (weakly) flat right S-act are regular and so all right
S-acts having (P) are regular. Consequently, by Corollary 6.3.19, S is right zero.

]
From Theorem 6.4.4, and Lemma 6.4.8, we have

Theorem 6.4.9. Let S be a monoid. Then all cyclic subacts of every (weakly) flat
right S-acts are strongly flat of and only if S s right zero.

Theorem 6.4.10. Let S be @ monoid. Then all (weakly) flat right S-acts are
regular if and only if S 1s right zero.

Proof. Suppose that all (weakly) flat right S-acts are regular. Then all (weakly)
flat cyclic right S-acts are regular and so by Corollary 6.2.4, all (weakly) flat
cyclic right S-acts are projective. Thus all (weakly) flat cyclic right S-acts satisfy
condition (P). Consequently, by Lemma 2.2.8, every e € E(S) \ {1} is right
zero. On the other hand all right S-acts having (P) are regular. Consequently, by
Corollary 6.3.19, S is right zero.

Now let S be a right zero monoid. Then by Lemma 6.4.4, all cyclic subacts of
every (weakly) flat right S-act are strongly flat. Thus all cyclic subacts of every
(weakly) flat cyclic right S-act are strongly flat, and so every (weakly) flat cyclic
right S-act is strongly flat. Since S is right nil, then every (weakly) flat cyclic right
S-act is projective. Since every cyclic subact of every (weakly) flat right S-act is
strongly flat, then every cyclic subact of every (weakly) flat right S-act is (weakly)
flat and so every cyclic subact every (weakly) flat right S-act is projective. Thus
by Proposition 6.2.3, every (weakly) flat right S-act is regular. [
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6.5. Monoids over which all Right Acts having (Pg), (Pg)

are Regular

In this section we classify monoids S with every e € E(S)\ {1} right zero, such that
all right S-acts having (Pf), (Pg) are regular. It can be seen that these classes of
monoids and the class of monoids with every e € F(5)\ {1} right zero such that all
right S-acts having (P) are regular coincide with the classes of monoids mentioned
in section 6.4. We also classify left PP monoids for which all right S-acts having

(Pp), (Pg) are regular. There are also some other results.

Theorem 6.5.1. Let S be a monoid such that every e € E(S)\ {1} is right zero.
Then all right S-acts having (Py) are regular if and only of S 1s right zero.

Proof. Let S be a monoid such that every e € E(S)\ {1} is right zero and that all
right S-acts having (P},) are regular. Then all right S-acts having (P) are regular
and so by Corollary 6.3.19, S is right zero.

Now suppose that S is right zero and let A be a right S-act which satisfies condition
(Pg). To show that A is regular it is sufficient by Proposition 6.2.3, to show that
all cyclic subacts of A are projective. Since A satisfies condition (P}), then by
Theorem 4.3.24, A is weakly flat. Thus by Lemma 6.4.2, every cyclic subact of
A satisfies condition (P) and so every cyclic subact of A is flat. Since S is right
nil, then by Theorem 2.3.28, all flat cyclic right S-acts are projective. Thus every

cyclic subact of A is projective as required. n

Since condition (P) implies condition (Pg) and condition (Pg) implies weak flat-

ness of acts, then from Theorem 6.5.1, we have the following corollary.

Corollary 6.5.2. Let S be a monoid such that every e € E(S)\ {1} is right zero.
Then all right S-acts having (Pg) are regular if and only if S 1s right zero.

From Corollary 6.3.20, Theorem 6.4.9, Theorem 6.4.10, Theorem 6.5.1, and Corol-
lary 6.5.2, the following theorem can be deduced.

Theorem 6.5.3. Let S be a monoid. Then the following statements are equivalent:

(1) All weakly flat right S-acts are regular.

(2) All flat right S-acts are regular.
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(3) All cyclic subact of every weakly flat right S-act are strongly flat.

(4) All cyclic subact of every flat Tight S-act are strongly flat.

(5) All right S-acts having (P}) are regular and every e € E(S)\ {1} us right zero.
(6) All right S-acts having (Pg) are reqular and every e € E(S)\ {1} is right zero.
(7) All right S-acts having (P) are reqular and every e € E(S)\ {1} is right zero.
(8) S is right zero.

Corollary 6.5.4. If S s a right zero monoid, then all cyclic right S-acts having

(Pf) are projective.

Proof. Since S is right zero, then all right S-acts having (Pj;) are regular. Thus
all cyclic right S-acts having (Pp) are regular and so by Corollary 6.2.4, all cyclic
right S-acts having (Pf) are projective. m

Since Pg = Pp,, then the following corollary can be deduced.

Corollary 6.5.5. Let S be a monoid. If S is right zero, then all cyclic right S-acts
having (Pg) are projective.

Now we give a characterization of left PP monoids for which all right acts having

(Pg), (Pg) are regular.

Lemma 6.5.6. Let S be a monoid. Then S 1s left PP and all right S-acts having
(Pp) are regular iof and only if S is right zero.

Proof. Suppose that S is left PP and all right S-acts having (Pj) are regular.
Then all cyclic right S-acts having (P ) are regular and so by Corollary 6.2.4, all
cyclic right S-acts having (Pj) are projective. Consequently, all cyclic right S-acts
having (Pp) satisfy condition (P) and so by Theorem 4.3.43, every e € E(S)\ {1}
is right zero. Thus by Theorem 6.5.3, S is right zero.

If S is right zero, then it is obvious that § is left PP and also by Theorem 6.5.3,
all right S-acts having (Pj},) are regular. |

Since condition ( Pg) implies condition (P} ), then from Lemma 6.5.6, and Theorem

6.5.3, we can deduce the following corollary.
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Corollary 6.5.7. Let S be a monoid. Then S 1s left PP and all right S-acts
having (Pg) are reqular if and only if S is right zero.

Now from Lemma 6.5.6, and Corollary 6.5.7, we have.

Theorem 6.5.8. Let S be a left PP monoid. Then the follounng statements are

equivalent:

(1) All right S-acts having (Pg) are regular.
(2) All right S-acts having (PE) are regular.
(3) S is right zero.

By the following theorems it can be seen that for semilattice monoids every cyclic
subact of every act which satisfies conditions (Pg), (Pf) also satisfies these con-

ditions respectively.

Theorem 6.5.9. Let the monoid S be a semilattice and let A be a right S-act. If
A satisfies condition (Pp), then every cyclic subact of A satisfies condition (Pp).

Proof. Let aS, a € A be a cyclic subact of A and let (as)u = (at)v, s,t,u,v € S.
Since as,at € A and A satisfies condition (Pf), then there exist s1,t1, el =
e, f'* = f €58, a" € A such that (as)e’ = a"si€, (at)f' = a"t1f', e'u = u,
f'v = v and s;u = t;v. Then we have

ase’ = d"spe' = (ase'u = (a"s1€')u = (as)e'u =
a"s1%e'u = (as)u = (a"sie')s1u = (ase')siu. (1)
Also
atf' =d"ti f = (atf' v = (a"t1f v = (at)f'v=(a"t;*f v = (at)v =
(a"t:2 f' Y = (a"ty f)tre = (0"t f)s1u = (a"ty f)s12(e'u) = (a"s1€') f' (trs1 )u =
(a"s1€)f't1(s1u) = (a"s1e') it (t1v) = (a”s1e )t 2 (flv) =
(a"s1e)t1v = (ase' Ytyv. (2)

Now if e = u, f = v, then eu = wu = u, fv = vv = v and (1),(2) imply
that (as)e = (ase')s1e and (at)f = (ase')t1f respectively. Since ase’ € aS and

siu = tyv, then aS satisfies condition (Py,) as required. ™
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Theorem 6.5.10. Let the monoid S be a semilattice and let A be a right S-act. If
A satisfies condition (Pg), then every cyclic subact of A satisfies condition (Pg).

Proof. Let aS, a € A be a cyclic subact of A and let (as)u = (at)v, s,t,u,v € S.
Then a(su) = a(tv). Since A satisfies condition (Pg), then there exist s,#,e? =
e € S, o € A such that ae = a"s1e, ae = d''tie, esu = su, etv = tv and

s1(su) = t1(tv). Then we have
ae = a"s1e = aes = (a'"s1e)s = (as)e =

a'(s18)e = a"(s1%s5)e? = (a"s1e)(s18)e = (ae)(sy s)e,

and

ae = a''tie = aet = (a"t1e)t = (at)e =
a'(t1t)e = a”(t12t)e2 = (d'"t1e)(t1t)e = (ae)(t1t)e.

Thus (as)e = (ae)(s15)e and (at)e = (ae)(t1t)e. Since ae € aS,eu = u,ev = v and

s1(su) = t1(tv) implies that (s18)u = (t1t)v, then the result follows. [
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Further Work

In chapter 2, we showed that if a monoid S is such that all flat cyclic right S-acts
satisfy condition (P), then it has a structure of the form S = G U N U F. This has
proved useful in that some of the main results in the literature can be deduced as
fairly simple consequences of this structure. However, it is clear that more details
of the structure of the regular-free part will be needed if a full classification of

these monoids is to follow from these techniques.

Also in this chapter we showed that for a right subelementary monoid $ = C U N,
if Ya € C,Vb € N, b € Sab, then every weakly flat cyclic right S-act satisfies
condition (P). Now the question that arises is “Is the condition b € Sab necessary
for such a monoid to have the property that all weakly flat cyclic right acts satisfy
condition (P) ?”.

In section 4 of this chapter we also showed that for some monoids of the form
S = G U I with G a group and I an ideal of S and with some extra condition,
if all (weakly) flat cyclic right I'-acts satisfy condition (P), then all (weakly) flat
cyclic right S-acts satisfy condition (P). Now the question is “ Can we remove

the conditions on S and also remove the cyclic condition ?”

In chapter 3, by Lemma 3.4.2, we showed that if S is a left P.SF monoid and for
every sequence (&g, 1,...) with z; = 2,412, 7 = 1,2,... there exists n € N such
that z, i1s an 1dempotent, then for every z € S either z is right cancellative or
there exists e € E(S5)\ {1} such that = ez. Now the question that arises here is
“ Given a left PSF monoid with the property that for every sequence (zg, z1,...),
T; = Tip1%i, ¢ = 1,2,..., does it follow that there exists n € N such that z,

is an idempotent ?” If so, then Theorem 2.3.22 can be extended to one for left
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PSF monoids. Another question that can be posed here is “ Consider a left PSF
monoid S with the property that for every sequence (z¢,z1,...) with z; = ;412;,
1 = 1,2,..., there exists n € N such that z, is idempotent. Is this equivalent
to S being a left PP monoid ?” By Lemma 3.4.2, we saw that if z is not right
cancellative, then there exists e € E(S) \ {1} such that ez = z. Now if for every
a,b € S such that az = bz we can deduce that ae = be, then S will be a left PP

monoid.

In chapter 4, we investigated conditions (Pg) and (Pg). Although we had some
interesting results, there are still however a number of open problems and in par-
ticular the problem of when weak flatness of acts implies these conditions. In
section 6 of this chapter we characterized left PP monoids by condition (E) of
(weakly) flat (cyclic) right acts and we showed in this case that monoid are right
zero. Also we showed that if all flat cyclic right acts satisfy condition (E), then S

is right nil. Now the question is “ Is the converse true 7”

In chapter 6, we gave a characterization of certain classes of monoids by regularity
of acts having condition (P). But the exact description of monoids by regularity

of acts having (P) remains unknown.

Finally, the exact descriptions of the following classes of monoids are also unknown.
{S | every right S — act having (P) is projective}

{S | every right S — act having (P) ts strongly flat}

{S | every weakly flat right S — act is flat}

{S | every right S — act is flat}.
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