
University of Southampton

Static Analysis for Distributed Prograph

by

Benoit Lanaspre
A thesis submitted for the degree of

Doctor of Philosophy

in the

Faculty of Engineering and Applied Science

Department of Electronics and Computer Science

October 1997

Abstract

Prograph [Cox and Pietrzykowski 1988] provides a sophisticated

application builder, together with a visual programming language, supported

by a powerful program development enviroimient. The programming language

uses an object-oriented model for data abstraction and the logic is based on a

dataflow model of computation, specified graphically.

Graphical dataflow gives programmers a clear view of the potential for

exploitation of concurrency and so the Prograph language appears to give

some leverage for the programming of parallel or distributed systems.

However parallel scheduling of operations based solely on the dataflow

dependencies might result in the incorrect execution of programs in a

distributed environment.

This thesis investigates the issues to be addressed to develop a distributed

version of Prograph. A first issue is that of a programming model for

Distributed Prograph and a second issue is that of the design of mechanisms

to implement the model. The need for a static analysis to support the

implementation of the model is justified.

The proposed analysis is divided into three logical parts: a type inference, an

effect inference and an effect synthesis. Suitable representations for the type

and effect information are presented. The inference algorithms are described

and the implementation of the analysis tool and test results are discussed.

Acknowledgements

I would like to thank my supervisor, Hugh Glaser, for proposing and

supervising this research. Hugh Glaser never had too little time to answer my

questions or to discuss theoretical issues and implementation problems. His

constant support helped me retain my motivation throughout the duration of

this work.

Pictorius Inc. generously provided both software and technical support for

this research.

I am also indebted to the University Research Council which paid the tuition

fees for my studies in the department of Electronics and Computer Science.

I wish to express my gratitude to Stuart Maclean who reviewed some of the

chapters of this thesis.

Special thanks are due to Luc Moreau and Danius Michaelides for the fruitful

technical discussions that we had.

My parents deserve a special mention for their continuous and generous

support throughout the years. Without their help, this PhD degree would not

have been possible.

TABLE OF CONTENTS

Contents

Introduction 1

1.1. Motivations 1

1.1.1. Distributed Systems 1

1.1.2 Distributed Programming 1

1.1.3 Prograph 2

1.1.4 Static analysis 3

1.2 Objectives 4

1.3 Related Work 5

1.3.1 Distributed programming languages 5

1.3.2 Type Inference 5

1.3.3 Effect analysis 6

1.4 Overview of the thesis 7

1.6 Contributions 8

Prograph features 10

2.1 Prograph history 10

2.2 Language features 12

2.2.1 Introductory example 12

2.2.2 Control of execution 16

2.2.3 Object-orientation 19

2.2.3.1 Terms and definitions 19

2.2.3.2 Prograph class system 19

2.2.3.3 Object state and behaviour 20

2.2.3.4 Polymorphism 24

2.2.4 Persistents 27

2.2.5 The language editor & interpreter 27

2.2.6 Implementation overview 28

2.3 Application development 30

2.3.1 Structure of applications 30

2.3.2 Application building tools 32

2.4 Support for distribution in Prograph 33

TABLE OF CONTENTS

2.5 Summary 33

Distributed Progtamming models 35

3.1 Classes of Distributed Applications 35

3.2 Distributed Programming models 36

3.3 Process Model 37

3.3.1 The process abstraction 37

3.3.2 Distributed processes 38

3.3.2.1 Point-to-point communication 38

3.3.2.2 Remote Procedure Call 38

3.3.3 Implementations of the process model 39

3.4 Distributed Objects 42

3.4.1 The basic object model 42

3.4.2 Objects and distribution 42

3.4.3 Distributed Object Systems 44

3.5 Functional parallelism 48

3.5.1 Functional languages 48

3.5.2 Parallel functional models 49

3.5.3 Case studies 51

3.6 Dataflow model 56

3.6.1 Dataflow computations 56

3.6.2 Dataflow languages 59

3.7 A model for Distributed Prograph 61

3.7.1 Parallelism 61

3.7.1.1 Potential for parallelism 61

3.7.1.2 Expressing the parallelism 62

3.7.1.3 Benefits and drawbacks 63

3.7.2 Communication and synchronisation 64

3.7.3 A metaphor 64

3.8 Summary 65

Prograph and Distribution 66

4.1 Design issues 66

4.1.1 Operation packet 67

4.1.2 Operation scheduling 69

4.1.3 Remote execution of an operation 70

4.1.4 Reception of the results 72

TABLE OF CONTENTS

4.1.5 Help to the programmer 72

4.2 Implementation 73

4.2.1 The applicative approach 73

4.2.2 The integrative approach 74

4.2.3 The reflexive approach 74

4.3 Need for analysis 75

4.3.1 Interferences 76

4.3.2 Global variables 76

4.3.3 Updated values and aliases 76

4.3.4 Behaviour maintenance 77

4.4 Aims of the analysis 77

4.5 Summary 78

Type Inference 80

5.1 Types in programming languages 8 0

5.1.1 Static typing 81

5.1.2 Dynamic typing 83

5.1.3 Bridging the gap 84

5.2 Issues for type inference 85

5.2.1 Purpose of inferring types 85

5.2.2 World assumptions 86

5.2.3 Type systems 86

5.3 Previous work 88

5.3.1 Kaplan/Ullman 88

5.3.2 Hindley/Milner 90

5.3.3 Suzuki 92

5.3.4 The EULisp type inference system 93

5.3.5 Palsberg and Schwartzbach 95

5.4 Motivations for inferring types In Prograph 99

5.5 Outline of the type inference system 99

5.5.1 Method-wide analysis 100

5.5.2 Case-wide analysis 100

5.5.2.1 Initialisation phase 101

5.5.2.2 Iterative analysis 101

5.5.3 Implementation outline 102

5.5.4 Properties of the algorithm 104

m

TABLE OF CONTENTS

5.6 Prograph Types 105

5.6.1 Class hierarchy 105

5.6.2 Type 106

5.6.2.1 Single Type 106

5.6.2.2 String Type 107

5.6.2.3 List Type 107

5.6.2.4 Union Type 107

5.6.3 Type dependencies 107

5.6.3.1 Input 108

5.6.3.2 Element 109

5.6.3.3 List 109

5.6.3.4 Union and Intersection 109

5.6.4 Operations on types and dependencies 110

5.6.5 BNF for type expressions I l l

5.7 Operation Signatures 112

5.7.1 Simple operation 112

5.7.1.1 Call with a universal reference 112

5.7.1.2 Call with a context determined reference 112

5.7.1.3 Call with a data-determined reference . .113

5.7.2 Primitive method signatures 114

5.7.3 Get and Set operations 115

5.7.4 Instance generator 116

5.7.5 Persistent operations 116

5.7.6 Local operations 116

5.7.7 Constant operations 116

5.7.8 Match operations 116

5.7.9 Signature of multiplex operations 118

5.8 Type inference algorithm 118

5.8.1 Method wide analysis 119

5.8.2 Case wide analysis 119

5.8.2.1 Initialisation phase 120

5.8.2.2 Forward Analysis 122

5.8.2.3 Backward Analysis 123

5.8.2.4 Computing NextType 126

5.8.2.5 Computing intra-case type dependenciesl28

IV

TABLE (3FCCMfn%VTS

5.8.2.6 Construction of the line for the case 129

5.8.3 Synthesis of the method signature 129

5.8.4 Handling recursion 130

5.9 Examples 132

5.9.1 A simple example 132

5.9.1.1 Initialisation phase 133

5.9.1.2 Forward analysis 133

5.9.1.3 Backward analysis 134

5.9.1.4 Computation of Dependency 135

5.9.2 A recursive example 135

5.9.2.1 Analysis of the first case 136

5.9.2.2 Analysis of the second case 137

5.10 Shortcomings of the type analysis 139

5.10.1 Failure to detect type errors 139

5.10.2 Rejection of type correct code 142

5.11 Summary 143

Effect inference and synthesis 144

6.1 Purpose of effect analysis 144

6.2 Related Work 145

6.2.1 Chow and Harrison 145

6.2.1.1 Abstract interpretation 145

6.2.1.2 Description of the analysis 147

6.2.2 The FX effect system 149

6.2.3 Type and effect inference in ML 151

6.2.4 Effect analysis for test data selection 152

6.3 Effect inference 154

6.3.1 Motivation for effect inference in Prographl54

6.3.2 Outline of the effect inference mechanism..154

6.3.2.1 Case-wide inference 155

6.3.3 Effects in Prograph 155

6.3.3.1 Identity effects 161

6.3.3.2 Effects on class attributes 161

6.3.3.3 Effects on instance attributes 163

6.3.3.4 Instantiation effects 165

6.3.3.5 Local effects 166

V

TABLE OF CONTENTS

6.3.3.6 Effects on persistents 167

6.3.3.7 Effects on lists 169

6.3.3.8 External effects 171

6.3.3.9 Effect expressions and variable arity 172

6.3.3.10 Operations on side-effects 173

6.3.4 Inference Algorithm 175

6.3.4.1 Case-wide inference 175

6.3.4.2 Method 180

6.3.5 Handling recursion 180

6.3.6 Effect inference example 181

6.3.6.1 Initialisation phase 182

6.3.6.2 Composition of the side-effects 183

6.4 Effect Synthesis 187

6.4.1 Outline of the synthesis 187

6.4.2 Routes 189

6.4.2.1 Class routes 190

6.4.2.2 Input routes 191

6.4.2.3 Local routes 191

6.4.2.4 Persistent routes 192

6.4.3 State operations 192

6.4.3.1 Class state operations 194

6.4.3.2 Instance state operations 195

6.4.3.3 Allocation state operations 196

6.4.3.4 Persistent state operations 196

6.4.3.5 List state operations 197

6.4.5 Synthesis algorithm 197

6.4.5.1 Outline of the algorithm 197

6.4.5.2 Reduction rules 201

6.4.5.3 Input reference 205

6.4.5.4 Class affected data property 205

6.4.5.5 Instance affected data property 206

6.4.5.6 Instantiation side-effect 208

6.4.5.7 Local affected data property 208

6.4.5.8 Persistent affected data property 208

6.4.5.9 List affected data property 209

VI

TvuBLE(3F(:cRfrE&rrs

6.4.6 Synthesis example 209

6.4.7 Flow sensitivity 217

6.5 Summary 221

7 Experimenting with the analysis tool 222

7.1. The analysis tool 222

7.1.2 Auxiliary data 222

7.1.3 Restricted method despatching 224

7.1.4 Results and errors logging 224

7.1.5 Caching of intermediate results 226

7.2 Examples 226

7.2.1 Type and Effect Inference 226

7.2.2 A worst case example 228

7.3 Applicability of the Analysis 233

7.3.1 Speed and memory use 233

7.3.2 Handling mutual recursion 233

7.3.3 Precision of the results 234

7.4 Interpretation of the synthesis results 236

7.4.1 Access information 236

7.4.2 Update information 237

7.4.3 Alias information 237

7.5 Exploitation of the results for distribution 240

7.5.1 Status quo 240

7.5.2 Access to global variables 240

7.5.3 Access and updates to operation inputs and

global variables 241

7.6 Summary 243

8 Conclusion 244

8.1 Summary 244

8.2 Future work 245

8.2.1 Integration of the analysis tool 245

8.2.2 Exploitation of the results 246

8.3 Contributions 247

Bibliography 248

VII

INTRODUCTION

1 Introduction

This chapter presents the motivations to undertake this research in its first

section. The second section sets the goals for this research. Major previous

works related to this research are presented in the third section. The reader

can find an overview of this thesis in the fourth section. The last section

reviews the expected contributions of this work.

1.1. Motivations

1.1.1. Distributed Systems

The evolution of computing since its inception in the 1940's has not been

limited to the progress, however impressive that progress may be, of the

hardware. The evolution has also been that of the applications and of the

tools to develop these applications. Over the years the certitude has also

grown that improvements in the hardware technology are not the only way

towards greater performance and functionality. This goal can also be

achieved by exploiting several computers to perform a common task, where

the meaning of common task is left open at this stage.

In [Bal, Steiner and Tanenbaum 1989], the following definition is given:

"A distributed computing system consists of multiple autonomous

processors that do not share primary memory but cooperate by sending

messages over a communication network."

This definition encompasses a broad spectrum of systems ranging from

coupW systems such as distributed memory parallel machines to

loosely coupled systems such as remote computers connected by a Wide-

Area Network.

The variety of hardware configurations reflects the variety of classes of

distributed applications.

1.1.2 Distributed Programming

Distribution results in an added complexity for program development, as

distributed applications have to deal with communication between activities,

concurrency and synchronisation. If the benefits of distribution are to be

realised, it is necessary to be able to develop applications with a reasonable

INTRODUCTION

level of productivity. The design and implementation of distributed

applications can be facilitated by three different factors: a programming

model, tools to implement the application and other tools to test it.

Considerable work has been undertaken to develop models for distributed

systems. The role of the model is to present the programmer with useful

abstractions to deal with the different dimensions of distributed

programming and to make the reasoning about applications tractable. A good

model strikes a good compromise between the ease with which the

programmer understands it and the efficiency with which it can be

implemented.

Tools are also available to assist the user to write and to test programs. An

example of a programming tool for distributed applications is the interface

compiler. Such a compiler generates the templates for the application code

and some low-level code for the networking operations from an interface

specified using an interface definition language. The task of the programmer

may also be alleviated by reusing software contained in libraries of

procedures or classes.

The behaviour of a distributed application is potentially more difficult to

understand than that of a sequential application. Tools have been developed

to ease the task of distributed application testing and debugging and to

monitor the execution of distributed programs. Some of these tools rely on a

visual representation of the computation to help the user understand its

behaviour.

1.1.3 Prograph

Prograph is a graphical programming environment and language which grew

out of the work of Pietrzykowski and Cox on graphical languages for

functional programming, but has evolved considerably since then, and is

currently marketed as a general-purpose programming language and

programming environment.

The programming language uses an object-oriented model for data

abstraction and the logic is based on a dataflow model of computation,

specified graphically.

INTRODUCTION

The application builder consists of an extensive set of classes (AppZzcaHoM

BwzMmg CZasseg or ABC's) which provide a framework with which to build

applications. ABC editors let the user create and modify ABC objects

without leaving the familiar WZMP (Windows, fcoMS, Menus, Pomfgr) paradigm.

The enviroim:ient also provides an interpreter with substantial interactive

debugging and editing facilities. Data values can be checked, edited and

copied at run-time. Several evaluation modes are available: animate, single

step, trace. It is possible to roll execution forward and backward, set

breakpoints and monitor the computation stack.

The combination of the application builder and the interpreter makes

possible an incremental style of programming.

1.1.4 Static analysis

Static analysis aims at obtaining information about the behaviour of a

program without actually executing the program. Instead, the analysis makes

use of the language semantics to derive information from the program source.

The information serves two different purposes: verification and optimisation.

The analysis may verify program properties such as type correctness,

termination or, in the context of concurrent programming, deadlock freedom.

Optimisation refers to the improvement of the execution of a program.

Improvements are not only concerned with execution speed as memory usage

is also relevant. As the degree of abstraction offered by programming

languages increases steadily, the requirement for optimisation becomes more

stringent. In [Field and Harrison 1988] p.445, it is argued that optimisation is

"an essential component of any viable implementation of a functional

language". Information about different properties allows different types of

optimisations:

" In the context of functional languages, stncfngsg analysis checks whether

the values of the arguments passed to a function can be computed now or

if their evaluation must be delayed.

» Information about the lifetime of data objects is useful to improve the

management of memory.

INTRODUCTION

1.2 Objectives

It is believed that a distributed version of the Prograph language. Distributed

PrograpA, would give some leverage for the programming of distributed

systems. Three features of the language support this view:

* Visual Dataflow allows the programmer to represent parallelism in a

more natural way than text-based languages, because textual

representations are, by their very nature, sequential.

« Object-orientation provides the user with powerful encapsulation and

abstraction mechanisms that are essential as the size and the complexity

of applications grow. Such facilities may provide a good mechanism for

encapsulating parallelism constructs in the same way that they already

provide for the design of user-interfaces.

* The Prograph development environment greatly contributes to the ease

of use that users report.

The target architecture for Distributed Prograph is that of several

workstations cormected by a local area network.

Distributed Prograph is aimed at using distributed systems for parallel

programming where the main motivation is to speed-up application through

the use of several computing resources.

The original sequential model should be extended to support distribution

while retaining its simplicity. Some of the features of the language might not

lend themselves easily to the development of a distributed version and so

distribution mechanisms which would maintain the current semantics of the

language might be difficult to implement and/or highly inefficient.

One of the main goals of this work is to develop a static analysis to support

distribution in Prograph to alleviate these difficulties. The analysis is focused

on the effect properties of operations; that is, how the arguments of an

operation or some global variables are accessed or modified during the

execution of this operation. The information gathered by the analysis is to be

used to elaborate a distribution strategy which both respects the semantics of

the model and, at the same time, ensures a reasonable level of efficiency.

INTRODUCTION

The static analysis comprises two components: a type inference mechanism

and an effect inference and synthesis mechanism. Although type information

is not directly relevant to distribution, knowledge of the values' types is

relevant to the analysis as it will be shown that in Prograph types and side-

effects are not completely orthogonal.

1.3 Related Work

This work is concerned with three different research areas: distributed

programming languages, type inference and effect analysis. The following

subsections give a summary of the work undertaken in these areas. The

discussion of the related work is expanded in the appropriate chapters of

this thesis.

1.3.1 Distributed programming languages

Languages for distributed programming have attracted considerable research

interest. Given Prograph's ancestry and its object-oriented nature, two classes

of distributed languages should be investigated in particular.

* Prograph was at its begirmings thought of as a visual functional

language, and distributed programming languages or enviroimients based

on functional languages should provide useful information on how to

proceed with the design of Distributed Prograph.

» Prograph also presents some similarities with Smalltalk and the work

undertaken to develop distributed versions of Smalltalk and other object-

oriented languages is of interest to this work.

1.3.2 Type Inference

Type inference is a form of static analysis whose purpose is to compute the

type of all expressions occurring in a program in the absence of type

declarations from the programmer. Type inference has been investigated for

languages belonging to various paradigms: procedural, functional and object-

oriented and the type information inferred can be used for various purposes

including establishing type correctness and allowing some code

optimisations.

INTRODUCTION

Kaplan and Ullman [Kaplan and Ullman 1980] devised an algorithm for the

inference of the types of the program variables for an abstract imperative

language.

Milner's work [Milner 1978] on the ML type system led to a successful type

inference algorithm which is efficient and supports a flexible type system. ML

combines both interactivity and strong typing. Milner's type checking system

has been incorporated in other functional languages.

The dynamic nature of Smalltalk's type system greatly contributes to the

flexibility of the language. However, being able to obtain type information

statically offers several benefits, an important one is the ability to anticipate

run-time binding errors. Suzuki [Suzuki 1981] proposed an inference

algorithm for Smalltalk drawing heavily on Milner's experience. More recently,

Palsberg and Schwartzbach [Palsberg and Schwartzbach 1991] developed an

original type theory for object-oriented languages and presented an inference

algorithm for a Smalltalk-like language.

1.3.3 Effect analysis

Effect analysis is another important form of static analysis which has been

applied to procedural and functional languages in a variety of contexts.

Two statements in a program can be connected by a coMfm/ depeWencg, which

means that one statement must be executed before the other one or by a dafa

dependence which means that one statement reads some data and the other

modifies it. Control dependencies can be detected by control flow analysis

and the detection of data dependencies relies on the results of an effect

analysis. Automatic parallelisation and a range of compile-time

optimisations rely on dependency analysis.

The task of a parallelising compiler is to partition a computation into smaller

subcomputations that can be executed in parallel. The parallel schedule must

respect the data dependencies existing between the subcomputations. The

Miprac parallelising compiler converts C, FORTRAN or Scheme programs into

an intermediate language which can be analysed [Chow and Harrison 1992].

The analysis gathers information about program properties such as side-

effects but also object lifetime, data dependence and unordered accesses.

INTRODUCTION

Functional languages offer a higher degree of abstraction than their imperative

counterparts. However, functional languages are usually less efficient than

imperative ones. For the sake of efficiency, some functional languages have

been augmented with a limited number of imperative constructs. Several

effect analyses have been proposed [Wright 1993] to extend Milner's type

discipline to be able to type the newly added imperative constructs.

In the context of software engineering, effect analysis has been used to select

test data [Rapps and Weyuker 1982] or for program sZicmg [Horwitz, Reps

and Binkley 1988]. Program slicing means extracting from a program source

the statements that are necessary to understand a certain property of the

program, for example, the computation of the return value of a procedure.

1.4 Overview of the thesis

This thesis is divided into eight chapters. The content of each chapter is now

presented:

« The Prograph language and development environment bring together

several advanced features such as visual programming, dataflow and

object-orientation. Each of these features has considerable implications

for the programmer and the implementer; the aim of Chapter 2 is to give

an appreciation of the language in a manner which is relevant to this

research. Details of the language implementation that are relevant for the

static analysis are explained.

• Numerous programming models have been proposed and several of

these models and their language implementations are described and

discussed in the third chapter. The benefits of this review are twofold;

firstly, the requirements of distributed programming are presented in a

pragmatic manner through several case studies, and secondly the

Distributed Prograph model is explained in the context of other

distributed programming models. Chapter 3 also discusses the expected

benefits of a distributed version of Prograph.

» Chapter 4 looks at the design issues that have to be tackled in the

implementation of the Distributed Prograph model. Distributed Object

Based Systems have attracted considerable research interest over the last

two decades and the state-of-the-art has progressed quite steadily.

INTRODUCTION

Chapter 4 presents the aspects of this accumulated experience that are

relevant to the implementation of Distributed Prograph. State and

behaviour consistency is of particular interest to this research and are

discussed in depth. As stated in the thesis title, this research work has

been mainly concerned with static analysis; the question of the purpose

and motivation for the proposed analysis is addressed at the end of

chapter 4.

* Chapter 5 begins with a comparison of the different approaches to

typing in programming languages in general and object-oriented languages

in particular. Various attempts at type inference are compared, the points

of comparison being that of the language to which the inference is

applied, the purpose of the inference and the representation chosen for

the type information. The type inference for Prograph is presented along

similar lines.

* Chapter 6 is devoted to effect inference and synthesis. Previous work

undertaken in the field of effect analysis is reviewed. Effect inference is

concerned with the szgMafwrg of operations and the effect inference

algorithm that derives the effect signature is described. The effect

synthesis combines the effect signature of an operation with its context,

to produce an approximation of the effects induced by the execution of

an operation.

» Chapter 7 highlights significant aspects of the implementation of the

analysis. The analysis is illustrated by several commented examples. The

applicability of the analysis is also discussed. The last part of chapter 7

makes suggestion on how the results of the analysis can be used.

* Chapter 8 concludes the thesis with a discussion of its contributions

and the future work that could be undertaken.

1.6 Contributions

The contributions of this work are:

« A type inference mechanism for Prograph is proposed.

* A prototype of the type inference system is implemented in Prograph.

INTRODUCTION

* Building on the experience of type inference, an effect inference

mechanism is proposed.

* A prototype effect inference is implemented.

* A synthesis algorithm is proposed and implemented.

PROGRAPH FEATURES

Prograph features

Prograph is a comparatively new language and embodies some of the latest

trends in programming language and environment design.

The history of Prograph is presented in the first section of this chapter. In the

second section, the features of the language and of its interpreter are

reviewed. It is also necessary to give some explanations about the techniques

used to implement the language in order to understand better the analysis

described in the following chapters. The third section explains that both

applications and application development tools are built from a set of

AppZicah'oM BwzWmg C/ogges (ABC's), which allows for the easy customisation

of applications and development tools. The last section of this chapter is

devoted to the facilities provided by the current version of Prograph for

distributed programming.

2.1 Prograph history

Prograph originated at Acadia University around 1983. The first

implementation of the language, in Pascal, was due to Pietrzykowski

[Matwin and Pietrzykowski 1985]. The impetus for the development of

Prograph was to better understand applications written in the functional

language PP [Backus 1978]. The name "Prograph " was obtained by analogy to

the word "program ", where the suffix '"-gram " meaning ' writing'" was changed

to "-graph" meaning " drawing " [Cox 1996]. A compiler was also developed

[Cox and Mulligan 1985].

About 1985, a second experimental implementation of the language was built

in Prolog by Pietrzykowski and Cox at the Technical University of Nova

Scotia. An editor, interpreter and debugger were also developed [Cox and

Pietrzykowski 1985].

Experiments with the first version of the language highlighted the need for

redefined language constructs and for a data abstraction mechanism. The i f

- t :hen - e l s e - constructs of the original language were replaced by a

Prolog-like case structure with success/failure as the trigger, the iterative

construct w h i l e - do also disappeared and the list and loop armotations

were introduced to express iteration. Object-orientation was introduced in

10

PROGRAPH FEATURES

1987 as the mechanism for modularisation and data abstraction. The

language which resulted from these modifications, described in [Cox and

Pietrzykowski 1988], has known no major alteration since then.

Commercial development of the language and of the environment associated

with it began in 1986 at T/ie GuMAam SuM Systems Lz'miW company in 1986

and commercial exploitation has been pursued by the successive instances of

the company: TG5, Pmgrap/i fMfgmaWoMaZ and now Pzckrms Inc.

The first commercial version of Prograph for the Macintosh was released in

1989 and comprised an editor/interpreter (written in C) and a development

environment with a small library of System CZasses. The System Classes were

special classes whose behaviour was implemented in C and which could be

manipulated using special editors also written in C. 1990 saw the

introduction of a compiler for generating standalone applications.

The release of the Cross PZaf/orm EnuzmMmmf (CPX) version of the language in

1993 marked an important evolution of the development environment.

Prograph CPX was designed to exploit the code reuse and component-based

approach associated to object-oriented programming to a larger extent than

the previous versions of Prograph. Prograph CPX (whose current version is

1.4) ships with a large library of AppZzcafz'oM BwzZdmg CZasses and a sizeable

part of the application editor is now implemented in Prograph in the form of

AppZicah'oM BuzMmg Edikrs.

The modular architecture of the current version of Prograph has allowed the

development of components by third-party developers. Application

development tools have been built on top of Prograph CPX. For example,

Entrada!, released in 1995, is targeted at the construction of client/server

applications, including Internet based client/server applications.

In order to broaden its appeal and realise the benefits of cross platform

portability, Prograph is being reimplemented for the Windows95 platform

and a preliminary version has already been made available to developers at

the time of this writing.

11

PRCX;RAPH FEATURES

2.2 Language features

2.2.1 Introductory example

The introductory example presented in this subsection is taken from [Cox

and Smedley 1996]. Note that Prograph is an object-oriented language, hence

the term method is used to refer to entities known as procedures in standard

programming languages.

1:1 ca l l s o r t M i l a i i u m e i

-5-

^ q u i c k s o r t ^

r

PT'

Fig. 2.1: c a l l s o r t method

Fig. 2.1 shows the details of the method c a l l s o r t , a dataflow diagram in

which three opera (ions are connected sequentially by lines called A

datalink transmits data from an output of an operation, represented by a

small icon called a roof on the bottom of the operation, to the inputs of other

operations, represented by terminal icons on the tops of operations. The first

operation in this diagram, ask , is a pnMz'(me that calls system-supplied code

to produce a dialogue requesting input from the user. Note that the icon for a

primitive is distinguished from other operation icons by the white line along

its bottom edge. When a s k has been executed, the data input by the user

flows down the datalink to the operation q u i c k s o r t , invoking the method

q u i c k s o r t . This method expects to receive a list, which it sorts as

explained below, outputting the sorted list, which flows down the datalink to

the show primitive. The show produces a dialogue displaying the sorted list.

Fig. 2.2 shows a Prograph implementation of the well known algorithm

q u i c k s o r t for sorting a list into ascending order.

12

PROGRAPH FEATURES

1:2 quicksort

#detach-1^

^quicksor t ^ ^quicksor t %

^a t t ach -1 ^

i P i m 2:2 quicksort

Fig. 2.2: A q u i c k s o r t method

The method quicksort consists of two cases, represented by the dataAow

diagrams as shown in fig. 2.2. The first case, shown in the window entitled

1:2 quicksort, implements the recursive case of the algorithm, while the

second implements the base case. In general, a method consists of a sequence

of cases. The bars at the top and bottom of cases are special operations

called the mpuf bar and output bar respectively. The input bar is always the

first operation executed, and copies the values of parameters from the

terminals of the calling operation to the input bar roots. Similarly, if the case

executes to conclusion, the output bar is the last operation executed, copying

the values on its terminals to the roots of the calling operation.

In the first case of q u i c k s o r t , the first operation to be executed is a

match, W , a special operation which tests to see if the incoming data

is the empty list. The icon attached to the right end of the match is a Next

13

PROGRAPH FEATURES

Case on s u c c e s s coMfroZ, which is triggered by success of the match,

immediately terminating the execution of the first case and initiating

execution of the second. If this happens, the empty list is simply passed

through as the output of the second case, and execution of q u i c k s o r t

finishes, producing the empty list.

In the first case of quicksort, if the input list is not empty, the control on

the m a t c h operation in the first case is not triggered, and the first case is

executed to completion. The operation to be executed immediately after the

match is the primitive d e t a c h - 1 which outputs the first element of the list

and the remainder of the list on its left and right roots respectively.

The next operation to be executed, , is an example of a of

which there are several kinds in Prograph, determined by visual annotations.

First, the three-dimensional nature of the icon, common to aU multiplexes,

indicates that the operation > will be applied repeatedly. Second, the list

annotation o a on the right-hand terminal indicates that a list is expected as

data, one element of which will be consumed by each execution of the

operation. Execution of this multiplex, therefore, uses ^ to compare the first

element of the original list with each of the other elements. Finally the special

roots and indicate that this particular multiplex is a parfzhoM, which

divides the list arriving on the list armotated terminal into two lists; items for

which the embedded operation succeeds and those for which it fails. These

two lists appear on the and roots respectively.

The lists produced by the partition multiplex are sorted by recursive calls to

the quicksort method. The final sorted list is then assembled using the

two primitive operations attach - 1, which constructs a new list by

attaching an element to the left end of a list, and (j o i n) , which

concatenates two lists.

The execution mechanism of Prograph is data-driven dataflow. That is, an

operation executes when all its input data is available. In practice, a linear

execution order for the operations in a case is predetermined by topologically

sorting the directed acyclic graph of operations and datalinks, subject to

14

PROGRAPH FEATURES

certain constraints. For example, an operation with a control should be

executed as early as possible.

The pure dataflow model prohibits alteration of data objects; if a data object

is to be modified, a copy of it is made instead. However, application of the

strict dataflow principles would result in performance costs when complex

data structures are involved. For the sake of efficiency, Prograph implements

a modified version of dataflow principles. type data objects are

copied but instances of classes are modified "in place". Memory management

is automatic in Prograph and data which is no longer used is automatically

garbage-collected.

In the example shown in fig. 2.2, the method q u i c k s o r t has only one input

and one output, and therefore does not show how the terminals of an

operation are matched with the roots on the input bar of a case of the

method it invokes. These terminals and roots must be of equal number, and

are matched from left to right. A similar relationship exists between the roots

of an operation and the terminals of the output bar in a case of a method

invoked by the operation.

One important kind of operation not illustrated in the above example is the

ZocaZ operation. A local operation is one that does not call a separately

defined method such as q u i c k s o r t . Instead, it contains its own sequence

of cases, called a local method. It is therefore analogous to a parametrised

b e g i n - e n d block in a standard procedural language.

Compute Value^

Fig. 2.3 : A call to a local method

As mentioned earlier, Prograph is an object-oriented language and therefore

provides facilities for defining new datatypes as classes. The methods in the

above example, called unmergaZ deal with simple data rather than

instances of classes, and therefore do not belong to any class. It is important

to note, however, that classes also contain methods, that several classes may

have methods of the same name, and that an operation may invoke different

methods at different times during execution.

15

PROGRAPH FEATURES

Ezkrmzf mgfhodg are calls to the operating system. Fig. 2.4 shows the pictorial

representation for an operation calling an external method:

HOpenResFile

Fig. 2.4: A call to an e x t e r n a l method

However, application code seldom uses external methods directly. The

functionality of the external methods is provided either by the primitive

methods or by the Application Building Classes.

2.2.2 Control of execution

The example presented in section 2.2.1 shows that controls and annotations

may affect the flow of control and data.

Conceptually the computation is driven by the availability of data. When all

the input values of an operation are available, the operation can be executed.

The execution produces a succeed execution message and the results are

output on the roots of the operation, alternatively it produces a f a i l

execution message.

A control is the combination of an execution message and of an action. The

range of possible actions is explained:

16

PROGRAPH FEATURES

Control name Description Symbol (f a i l

execution

message).

Next Case When a Next Case control is activated,

the flow of control is transferred to the

next case of the method beinR called.

F a i l When a F a i l control is actived in the

case of a method, the operation that

called that method produces a f a i l

execution message.

1®

Continue The combination of a succeed execution

message with a Continue action is

semantically equivalent to no control,

C o n t i n u e w i th a fail e x e c u t i o n

message ignores the failure of the

operation to which the control is attached

13

Terminate The Terminate control is used to

control the iterations of the calling

operation. When a Terminate control is

activated in the case of a method, the

remainder of the case is skipped and the

iterations of the operation that called the

method interrupted.

m

Finish The Finish control is also used to

control the iterations of the calling

operation. When a Finish control is

activated in the case of a method, the

remainder of the case is executed but the

iterations of the operations that called the

method are interrupted.

17

PROGRAPH FEATURES

A l i s t annotated terminal indicates that the argument on this terminal will

be a list and that the operation should be applied to every element of the list

until the end of the list is reached or a control is activated.

A l o o p annotation creates a cycle whereby the value coming out of a root is

fed back into a terminal until the iterations are completed or interrupted.

Fig. 2.5.a: l i s t terminals Fig. 2.5.b: l o o p terminals

The behaviour of an operation can also be modified by a mw/hpfez

annotation:

« A r e p e a t annotated operation executes repeatedly until a

T e r m i n a t e or F i n i s h control is activated in one of the cases of the

method called by this operation (see fig. 2.6.a).

» A partition operation converts a predicate operation into a filter

names %
0 +

Fig. 2.6.a: A r e p e a t operation Fig. 2.6.b: A p a r t i t i o n operation

The execution of a computation can be controlled by using an mjecf terminal

and the c a l l primitive. An inject terminal allows the naming of an operation

at run time:

Fig. 2.7: A Set operation with an inject terminal

18

PROGRAPH FEATURES

In fig.2.7 the rightmost terminal of the operation is an inject terminal. The

name of the Se t operation is given at run time.

A distinguished primitive, c a l l , calls the method whose name is passed as

argument.

2.2.3 Object-orientation

2.2.3.1 Terms and definitions

Wegner [Wegner 1987] distinguishes three generic features for object-oriented

systems: object, cZass and

* An object encapsulates both state and the operations to manipulate

that state. Objects are instances of classes.

» A class is an abstract template describing the internal state and the

behaviour of its instances.

Inheritance is a mechanism for code reuse; a subclass inherits the

behaviour and state of its parent class. The subclass extends the

behaviour of its superclasses by oogrrWmg the inherited methods or by

new methods.

Da (a requires that the state of objects is accessed only through the

operations of the objects. Although this is not systematic, object-oriented

languages often enforce data abstraction.

2.2.3.2 Prograph class system

The Prograph class system supports single inheritance, where each class

inherits from at most one class. "At most" is significant in the sense that the

Prograph class hierarchy is "a forest of trees" and not a tree as in

Smalltalk [LaLonde and Pugh 1990] in which all classes inherit from the

Objec t : class.

19

PROGRAPH FEATURES

THE BARNYARD
SIMULATION
CLASSES

Barnyard Diary Entry Animalr-^^

Horse

Black Angus Guernsey Duck Chicken

r ' . J 7 . _ _ r 7

Fig. 2.8: Class icons and inheritance trees.

The collection of classes shown in fig. 2.8 contains two single classes

Barnyard and DiaryEntry as well as an inheritance tree with the class

Animal at its root.

2.2.3.3 Object state and behaviour

Unlike Smalltalk, Prograph has not adopted "the everything is an object"

philosophy. In Prograph, the data flowing along the arcs of the dataflow

graph can be a value of a Prograph primitive type, or, it can be an object

whose type is the class of the object.

Prograph provides the following primitive datatypes: b o o l e a n , e x t e r n a l ,

i n t e g e r , l i s t , none , n u l l , r e a l , s t r i n g or u n d e f i n e d . Most type

names are self-explanatory, e x t e r n a l is the type of operating system data

structures, none is the type of a distinguished value NONE which is passed

to an operation when the matching terminal is not connected. NONE is

suppressed from the list constructed on the list root of a multiplex operation,

undefined is the type of another distinguished value, UNDEFINED, which

is used when a computation is rolled forward during debugging.

It is important to note that Prograph does not view classes as objects and

that classes are not first-class values (classes are first class values in

Smalltalk). Each class supports two sets of attributes, the cfass affnbwkg and

20

PROGRAPH FEATURES

the instance attributes. Each attribute can be inherited from a superclass or

de/mgd in the class. The value of a class attribute is shared by all the

instances of the class while the value of an instance attribute is private to

each instance.

Contrary to the principles of data abstraction, the values of all the attributes

can be accessed or modified using default G e t or S e t operations

respectively (see fig. 2.9).

The name of a Get operation is that of the attribute whose value must be

returned. The arity of the Get operation is fbced: one terminal and two roots;

the leftmost root returns the value flowing into the terminal and the second

root returns the value of the attribute.

n
€ Name/

Smith
z —

Fig. 2.9: Get and Set operations

Likewise, the name of a Set operation is that of the attribute whose value is

to be modified; its arity is two terminals and one root, the new value of the

attribute flows into the second terminal of the operation, the value on the

root of the Set operation is the value flowing into the leftmost terminal.

The state of a class consists of the values of the class attributes and of the

default values of the instance attributes defined by the class. Get and Set

operations may be used to access the state of classes, however a class cannot

be passed as argument to a Get or Set operation. Instead a string whose

value is the name of the class is passed to the operation. Thus the semantics

of a Get or a Set operation depends on the type of the value flowing on the

terminal of the Get operation or the leftmost terminal of the Set operation.

A default zMzhWz'safzoM or Init operation is provided for each class. The

default Init operation has the same name as the class from which a new

object is instantiated. A new instance comes with the default attribute values

defined for its class. The Init operation may take as optional argument a

list of (attribute name, attribute value) pairs to overwrite the default values

21

PROGRAPH FEATURES

or set new class attribute values at instantiation time. Fig. 2.10 shows the

creation of a new instance of the class Person with the value "01 05 96"

for the attribute DOB.

((DOB -01 05 96-))

% P e r s o n ^

Fig. 2.10: Instance creation

It is possible to override the behaviour of the default initialisation operation

by defining a custom initialisation method which is added to the class.

The behaviour of the instances of a class is implemented by a set of class

methods. Simpk class methods are methods of arbitrary arity. It is sometimes

necessary to extend the behaviour of the default Get or S e t operations by

defining custom Get or Set methods. The methods must have the same arity

as the corresponding operations. A Get or a Set method may have a name

which does not correspond to any attribute in the class. A virtual attribute is

thus defined.

The definition of a class is presented using a visual form. Different symbols

are used to distinguish instance attributes from class attributes and inherited

Attribute Symbol

C l a s s a t t r i b u t e ,

inherited

C l a s s a t t r i b u t e ,

defined by the class

o

Instance a t t r ibute ,

inherited

Instance a t t r ibute ,

defined by the class

?

Fig. 2.11 shows the attribute window of the class Student , all the attributes

of the class are listed in this window.

22

PROGRAPH FEATURES

V Student

^ First Name "Adrian"

^ Surname "Smith"

^ Sex "M"

T DOB " 1 - 1 - 7 7 "

? Registration number 6234

Tutor "Dr Miner"

\J\

Fig. 2.11: The attribute window of the class Student

In fig. 2.11, all the attributes of the Student class are instance attributes (if

Student had class attributes, these attributes would be displayed above

the horizontal line in the window). The attributes First Name, Surname,

Sex and DOB of the Student class are inherited from a superclass, whereas

the attributes Registration number and Tutor are defined by the

Student class.

The method window of a class definition displays the methods defined by

this class (inherited methods are not displayed). Different symbols are used

Method type Symbol

I n i t method #
Get method

Set method <@

Simple method

The window of fig. 2.12 lists the methods of the Student class.

23

PROGRAPH FEATURES

Student
<<>>

Custom init ial isation method.

Age

A v i r tua l at t r ibute is defined

addToClass

Simple Class method.

details

Simple Class method.

Fig. 2.12: The method window of the class Student.

There exists a set of simple methods not attached to any class, called

wMmersaZ methods.

Prograph is a dynamically typed language. In dynamically typed languages,

the information is not associated with variables but with values. This means

that the same variable can store successive values of different types.

2.2.3.4 Polymorphism

In their survey devoted to data abstraction and polymorphism, Cardelli and

Wegner [Cardelli and Wegner 1985] distinguish four kinds of polymorphism:

Overlouding is a facility which allows the reuse of the same name for

different behaviours. For example in C, the + primitive (addition) is

overloaded as there exist two implementations of the addition, one to

add integer values and a second one to add real values. Likewise, some

of the primitive methods are overloaded in Prograph (e.g. the < relational

primitive method). Overloading is not supported for universal methods in

Prograph as the universal methods share a single name space with the

primitive operations and thus a universal method and a primitive may

not have the same name. But different classes can define methods with

the same name.

24

PROGRAPH FEATURES

* CoerczoM is an implicit type conversion. An example would be the

computation of 5.3 + 4. The integer value 4 is coerced into the real value

4.0 to be added to the real value 5.3. Prograph coerces the arguments of

the arithmetic and relational operators.

• Inclusion polymorphism is a consequence of inheritance. Each method

defined for a class is also appfzcabk to its subclasses (unless the method is

redefined by a subclass).

Pammgfnc pofymorpAfsM can be defined as the property of a function to

accept arguments of a potentially infinite number of types. Functions

exhibiting parametric polymorphism are termed gengnc functions. One

example of a generic function is the computation of the length of a list,

where the element type of the list is arbitrary.

A fifth type of polymorphism is often mentioned and should be added to the

list:

Da (a poZyfMorpkiSTM refers to the ability of the same variable to hold

successive values of different types.

In Prograph, at run-time, an operation calls a method and failure to bind the

operation to a method results in a run-time error. The binding depends on the

type of reference used by the calling operation, the type of its arguments and

the method case in which the calling operation appears.

Prograph offers four types of references:

. The first type of reference is a unmersaZ reference (shown in fig. 2.13.a).

The operation is associated with a universal, a primitive or an external

method.

% Registration^

a

Fig. 2.13.a: A universal reference

The second type is a data-determined reference, which has the

semantics of a message send in Smalltalk. In the object model, objects

communicate by sending messages to each other. Upon receipt of

message by an object, the method binding mechanism looks up all the

25

PROGRAPH FEATURES

methods with the same name as the message selector and despatches the

method applicable to the class of the receiver object, that is, the method

that the class of the receiver defines or inherits. In the Prograph dataflow

object-oriented model, the receiver is the object flowing in the leftmost

terminal of the operation. If there exists no method applicable to the class

of the receiver, a universal method or a primitive method may be called.

Fig. 2.13.b shows that a data-determined reference consists of the /

character followed by the name of the method to be called

^ / d e t a i l s ^

Fig. 2.13.b: A data-determined reference

" The third type is an gxpficzf reference. The operation name consists of

both a class name and a method name separated by the / character (see

fig. 2.13.b). Explicit reference leaves no ambiguity about which method

will be called at run-time.

% Student/details %

Fig. 2.13.C: An explicit reference

* The fourth type is a coMkxWekrmmed reference. The method called is

the method applicable to the class of the method containing the

operation. It is thus impossible to name operations with a context-based

reference in one of the cases of a universal method. A context-determined

reference can be super annotated. The method called is that applicable to

the superclass of the class of the method containing the operation. A

data-determined reference consists of two / characters followed by the

name of the method to be called (see fig. 2.13.d). Fig. 2.13.e shows the

representation of the super annotation.

%//details

Fig. 2.13.d: A context-determined reference

26

PROCRAPH FEATURES

Fig. 2.13.e: A context-determined reference with a super annotation

2.2.4 Persistents

Prograph provides pgrszskMk. Persistents are named elements which can hold

any value. Two operations are available on persistents, a Ge t operation

reads the value of the persistent and a S e t operation modifies the value of

the persistent (see fig. 2.14).

^ S t u d e n t L i s t ^
'W' Student List

Fig. 2.14: Persistent Get and Se t .

Persistence allows data values to have extent beyond a single execution of a

program.

2.2.5 The language editor & interpreter

A visual editor allows the programmer to manipulate the visual components

making up the Prograph language. Navigation through nested dataflow

diagrams is possible through selecting and clicking on the elements to be

inspected. Documenting applications is facilitated by a hypertext facility

which combines explanation about primitives, user-written comments on

classes, methods and variables. A search facility allows the user to find all

the occurrences of a given operation or attribute in the code.

The interpreter fully exploits the visual paradigm to make the behaviour of

programs easy to understand. A wide range of features is supported to assist

the programmer during the debugging phase: breakpoints, roll backward and

roll forward and four execution modes. The programmer can visually monitor

how the execution of the code progresses by setting the interpreter in the trace

or animate execution mode, in which operations on the graph are highlighted

in a different colour after they have been executed. The interpreter offers a

high degree of that is, the ability to inspect and edit the data

27

PROGRAPH FEATURES

objects taking part in a computation. The stack of the computation currently

executed is also available for inspection in a visual form.

Debugging is facilitated by the exhaustive error reporting provided by the

interpreter. Run-time error messages include invalid argument type, out-of-

range values, stack overflow, activation of a Next Case control in the last

case of a method, no control attached to a failed operation, no method can

be despatched or the named attribute does not exist in the argument class

and wrong operation arity.

Execution and editing are tightly integrated. When an error occurs at run-

time, the execution is suspended at the faulty program point, the case

containing the offending operation is opened for inspection and the

interpreter suggests a possible solution to the programmer (e.g. add an

attribute or a method to the receiver's class). Execution can be resumed after

the faulty value or code has been edited.

Prograph encourages a development methodology whereby the programmer

can develop and test an application using the support tools available in the

editor/interpreter environment and then use the compiler to generate a stand

alone version of the application.

2.2.6 Implementation overview

Although references are seldom manipulated directly by programs, they

underpin the implementation of the language.

All method arguments and return values are passed by reference. The use of

references has several benefits:

It allows data polymorphism, since structures do not store values but

references to values.

* Values can be shared. The existence of several references to the same

value is called value aZiosmg.

The implementation of data values can be described using C structures. All

data object structures have three fields in common:

. The t y p e field contains an integer value which identifies the type of

the value (dynamic typing).

28

PROGRAPH FEATURES

. The s a v e field is used when cycles in data linkage need to be detected.

. The u s e field keeps track of the number of times a value is referenced.

This reference count is used by the garbage collector.

This basic structure is extended with the necessary fields to represent

different data objects. Boolean values are implemented by adding an extra

field, called value, which stores 0 when the boolean value is False and 1

when it is True. The declaration in C of the boolean structure would be:

typedef struct
{

Int2 type;

Nat2 save;

Nat2 use;

Bool value;

}CS_boolean, *C_boolean;

The representation of instances requires the addition of two fields to the

basic structure. A s i z e field records the number of slots in the instance. The

C_ob] e c t field points to an array of references, the size of which is kept in

the s i z e field. The field c l a s s is a reference to the class from which the

object has been instantiated. The other references are to the values of the

instance (but not class) attributes. The definition of an instance structure

would be:

kypedef st:ruct

{

Int2 type;

Nat4 save;

Nat:4 use;

Nat2 size;

Handle class;

C_obiect* atkrs[];

} *C_instance

In Prograph, classes are not first class values and the structure underlying

their implementation differs slightly from those used to construct data

objects; it does not make sense for example to record a use count as class

structures are not garbage collected. A class structure is too complex to be

29

PROCRAPH FEATURES

usefully explained in detail but an outline is given now. A class structure

points to:

* the name of the class.

• an array of references to attribute descriptor structures. An attribute

descriptor points to the name of the attribute; a f l a g s field carries other

information about the attribute: class or instance attribute, inherited or

defined for the class.

• an array of references to the values of the class attributes.

• an array of references to the default values of the instance attributes.

an array of references to the methods supported by the class.

the structure of its parent, sibling and children classes.

2.3 Application deveiopment

2.3.1 Structure of applications

The current version of I'rograph is available only for the Apple Macintosh.

The traditional area of strength of the Macintosh applications lies in user-

centred, eugMf-drmen applications, where the construction of the user-

interface usually makes up a sizeable part of the application.

The requirements of this class of applications are reflected in the structure of

Prograph programs. These are built as an event-processing loop: events are

inserted in an event stream and during each iteration of the loop the event-

handler gets the next event from the event stream and despatches it to the

application component that can respond to it. The way an application

component should respond to an event is described by a hehuviour. A

behaviour associates the name of a method or primitive with input gpecz/zgrs.

When an event is despatched, the behaviour associated with the event is

executed by the commander.

The code for an application, or proyecf in Prograph terminology, is divided

into secfzoMS. A section consists of sets of classes, universal methods and

persistents. Sections have no significance for the semantics of the language.

They merely facilitate the modular development of applications and the

sharing of code between projects.

30

PROGRAPH FEATURES

The BwzZdmg CZagges (ABCs) form a collection of reusable classes

from which the programmer creates and customises the components of an

application. These components are concerned with:

. User interface building with classes such as Window, Menu and

Button.

* Document management with classes for file handling. Datafile

primitives offer low-level support for operations on indexed files.

« Utilities, with classes and methods to manage printing, clipboards and

system resources.

* Application behaviour, with a collection of related classes such as

E v e n t H a n d l e r , Commander, Task and B e h a v i o u r and their

associated methods.

The application is structured as an object containment hierarchy (see fig.

2.15). An instance of the A p p l i c a t i o n class is at the top of the

containment hierarchy. The attributes of the A p p l i c a t i o n object store the

components making an application (file, menu and windows). Each

component may in turn contain several further components. For example in

fig. 2.15, the A p p l i c a t i o n instance contains an instance of the Desktop

class, which in turn contains an instance of the Menubar class.

31

PROGRAPH FEATURES

*ApplicatKXi»
Ĉlipboard*

Ĉursors*

Ĉommander*

D̂esktop*

finder Handier* I *MuldFinder Handler*

"Modal Handler*

list of «Dê rred Task»'s

undoable "Task*

list of «Document»s

"Mmubar*

listof *Menu»s

list of «(Screen»s

list of «Window»s

"Utility*

Fig. 2.15: The application containment hierarchy

2.3.2 Application building tools

ABC objects can be created and modiAed in a direct manipulation fashion

using the AppficahoM BuzMmg Editors (AEE's). Visual components of

applications such as windows and buttons are drawn in a WYSIWYG (WMf

you seg is w/uzf you get) fashion. However, editors are not restricted to the

manipulation of visual objects. Behaviours, for example, may also be

specified by typing a method name and choosing the input specifiers from a

pull down menu.

When creating an application component from an ABC, the associated ABE

actually creates a subclass of the ABC. The values required for the

instantiation of the component are recorded as the default values of the

attributes of the ABC subclass.

32

PROGRAPH FEATURES

2.4 Support for distribution in Prograph

The current version of Prograph provides simple mechanisms for distributed

programming.

Packing is the transformation of an object into a stream of bytes for storage

on a permanent media or transmission over a network. Unpackmg is the

reconstruction of an object from a stream of bytes.

When packing an object, it is meaningless to save references as these

references will have no meaning in another context, so instead the values

pointed at by the references should be packed as well. The t o - b y t e s

primitive in Prograph packs data objects of arbitrary complexity and

produces a map which can be used when unpacking the object. The values of

instance variables are packed with the instance that refers to them. The

primitive from-bytes reconstruct objects from their byte stream

representation and the associated map.

Different communication protocols can be used to transmit packed objects.

Prograph provides a set of primitive methods to wrap up calls to the Appfg

TmnsacfioM ProfocoZ (ATP), which is one of the protocols supported by the

AppfekfA; protocol suite [Sidu, Andrews and Oppenheimer 1990]. Other

communications protocols, notably TCP-IP, are supported by add-on

products.

2.5 Summary

* Prograph was first conceived as a functional language using a visual

dataflow representation.

* The current version of the language features an object system to provide

data abstraction.

* For efficiency reasons, Prograph does not adhere to the pure dataflow

model. Instead, complex data structures can be modified in place. Values,

in Prograph, are dynamically typed and memory management is

automatic.

. A powerful editing/debugging environment supports the task of the

programmer. Applications can be created from a large collection of

reusable classes.

33

PROGRAPH FEATURES

Support for distribution is limited in the current version of Prograph.

34

DISTRIBUTED PROGRAMMING MODELS

Distributed Programming models

The term gyskms encompasses a broad range of hardware

configurations and applications.

A classification for such systems is proposed in the first section of this

chapter. The second section discusses the role of a distributed programming

model. Sections three, four, five and six are devoted to four of these models.

The last section presents a model for Distributed Prograph.

3.1 Classes of Distributed Applications

In [Bal, Steiner and Tanenbaum 1989], the reasons for using distributed

systems are put in four different categories:

» Execution speed-up for a single computation can be achieved through

parallelism. Numerical applications are characterised by the regularity of

both their data structures (vectors or matrices) and control structures

(loops). Symbolic programming handles symbolic data such as deduction

rules in expert systems. This data is represented by complex and irregular

data structures. The requirements of symbolic programming have

motivated the development of declarative languages. The higher level of

abstraction provided by these languages, automatic memory management

for example, makes symbolic programming more tractable than with

imperative languages. Intensive numerical or symbolic computations can

be split into smaller granularity computations. Flow modelling and the

implementation of a true-or parallel facility are examples of numerical

and symbolic parallel applications respectively. Parallel applications are

often characterised by a high communication to computation ratio.

Workstations connected by a local area network are establishing

themselves as an alternative to parallel machines and vector processors

to execute such parallel applications.

The benefits of distribution with respect to fault-tolerance have been

recognised for some time. Fault-tolerance can be provided by purpose-

built distributed hardware. Alternatively, duplication of data and

functions on autonomous machines increases the reliability and

availability of the system. Mechanisms must be devised to ensure the

35

DISTRIBUTED PROGRAMMING MODELS

consistency of the replicated data and a proper synchronisation of the

replicated activities. The ISIS toolkit [Birman 1993] provides support to

build distributed fault-tolerant applications using normal hardware.

» Resource sharing is possible through the functional specialisation of

parts of the system, known as resource managers or senders. This class of

applications is known as c/zeMf/serugr applications. Client/server

applications are usually deployed in multi-user environments.

Heterogeneity is an important issue in the design of client/server

applications. This heterogeneity ranges over hardware, operating systems,

communication protocols and application programming languages.

Client/server applications are progressively replacing mainframe centred

applications within commercial organisations as is reported in the 1996

Datapro client/server survey [BYTE 1996].

* Some applications such as Automatic Teller Machines (ATMs) are

intrinsically distributed. This class of distributed applications emerged as

early as the 1950s with the early developments exemplified by the

SABRE airline reservation system. These systems can be described as

loosely coupled as they involve wide-area network communication. The

relevance of this class of applications is illustrated by the growing

popularity of the Internet and the other distributed applications it has

spawned such as electronic mail and the World-Wide-Web.

3.2 Distributed Programming models

"A distributed programming model is one which enables us to set up and

coordinate activities residing at multiple autonomous machines connected by

a network" [Coulouris, Dollimore and Kindberg 1992]. Programming m (Ag

gmaZf refers to the task of describing the individual activities, whereas the

coordination of these activities is referred to as programming m f/K Zarge.

A distributed programming model should present the programmer with the

necessary abstractions to deal with parallelism, communication and

synchronisation between activities. The level of abstraction supported may

vary considerably from one model to another.

A model may shelter the programmer from the issues arising from

distribution. The opposite view states that a programming model consists of

36

DISTRIBUTED PROGRAMMING MODELS

a compwfafioM mode/ and a coordmafioM Mioiief and these two models can be

developed separately [Gelemter and Carriero 1992].

A model is often biased toward a class of applications. The communication

pattern between the activities involved in a parallel computation differs from

that in a client/server application. The requirements of the class of

applications targeted are reflected in the abstractions provided by the model.

There are two approaches to parallelism. The first approach advocates

mpZzczf parallelism where the programmer need not indicate which portions

of the program should be executed in parallel. With explicit parallelism,

language constructs are available to express parallelism within a program.

MappzMg is concerned with the assignment of activities to the processing

resources available within the distributed system.

The activities making up a distributed computation need to exchange data by

means of communication over the network. A programming model may

abstract communication to various extents. Some models offer some high-

level views of network operations. At the other end of the spectrum,

communication may be completely hidden from the programmer and dealt

with by the implementation.

The model also deals with synchronisation requirements. Activities are said

to be gyMc/zroMzged if the progress of one is conditional upon an event caused

by the other.

3.3 Process Model

3.3.1 The process abstraction

The process model is often implemented by procedural languages. A

procedural language describes a computation as a sequence of instructions

which access and modify data stored in memory. Procedures are groups of

instructions that can be referred to by a name and can be called. Procedural

languages view computations as a set of procedure definitions and a

sequence of procedure calls.

The process is the abstraction of the hardware used to execute a

computation. A process encapsulates the program data, its code as well as

one or more threads of execution. A thread is the abstraction of an activity.

37

DISTRIBUTED PROGRAMMING MODELS

3.3.2 Distributed processes

In the context of distributed programming, processes are seen as units of

concurrency and distribution. Processes do not share state and communicate

by the sole means of message passing. The purpose of a message might be to

transmit data or invoke some behaviour of another process.

commuMicafzoM is the name of the former type of message-passing and Remok

Procedure Call that of the latter.

3.3.2.1 Point-to-point communication

With point-to-point communication, processes exchange unidirectional

messages using conmiunication primitives. Variations are possible depending

on whether the operations are blocking or non-blocking. A send operation is

blocking if it does not return until a corresponding r e c e i v e operation is

issued. A blocking r e c e i v e operation does not complete until a message

arrives.

In [Bal, Steiner and Tanenbaum 1989], processes and point-to-point

communication are described as the "basic model". This suggests that the

model closely reflects the distributed architecture; it can be implemented

efficiently and is widely used for parallel numeric applications.

3.3.2.2 Remote Procedure Call

Remote Procedure Call [Birrel and Nelson 1984] extends the functionality

provided by one-to-one messages as they transmit not only data but also a

reference to a procedure defined in the interface of the callee. RPC builds on

the well-understood notion of a local procedure call. The semantics of a

procedure call implies that the caller remains blocked while the callee is

executing the procedure. A remote procedure call provides a means of

exchanging data and synchronisation between activities and hides the details

of the network operation from the application programmer.

RPC is often chosen to implement client/server applications. In that

particular context, the caller is referred to as the cZienf and the callee as the

server. A server manages some resources on behalf of its clients. The service is

described by an interface.

38

DISTRIBUTED PROGRAMMING MODELS

The RFC model of process interaction restricts the potential for parallelism

between clients and servers. More parallelism can be introduced by allowing

several threads of execution within the client, that is, procedure invocations

can proceed in parallel. At the server level, multiple threads might allow the

server to service requests in parallel. Asynchronous RFC has also been

investigated [Liskov and Shrira 1988]. Both multithreaded code and

asynchronous RFC complicate the programmer's task as they introduce

further synchronisation requirements.

3.3.3 Implementations of the process model

The Occam language implements the CommwMzcafmg Pmcesseg (CSP)

model [Hoare 1978]. Occam processes are single threaded computations.

They communicate by sending messages through chaMMgZs. A channel is the

abstraction of an unbuffered, unidirectional data path between two

processes. An input operation reads the value available through the channel

and an output operation writes a value on the channel. Both operations are

blocking, as an input operation must be matched by an output operation.

Processes can be composed using the 5EQ, PAR and ALT statements. SEQ

requires the processes to be executed sequentially, PAR in parallel and ALT

provides non-determinism.

CHAN OP INT chan3 , chan4 :

PAR

INT f red:

SEQ

chan3? fred

fred : - fred+1

INT jim:

SEQ

chan4 ? j im

j im : = j im+1

In the above example taken from [Fountain and May 1987], two channels

transmitting integer values are declared, chan3 and chan4 , two identical

processes proceed in parallel to read the values from chan3 and chan4 and

increment them by one.

39

DISTRIBUTED PROGRAMMING MODELS

The conceptual simplicity of the CSP model has also made it attractive as a

coordination model to be used with a variety of sequential languages (a list

can be found in [Bal, Steiner and Tanenbaum 1989]).

The conjunction of a conventional programming language such as C or

FORTRAN with a message passing library such as the Parallel Virtual

Machine (PVM) [Sunderam 1990] or the Message Passing Interface (MPI)

[MPI forum 1993] provides an evolutionary approach. These libraries

abstract away the complexities of the networking operations and present to

the user a set of high level communication functions to send and receive data

in a machine independent format.

/* Sending Process */

initsend();

puts bring ("The square root of") ;

putint(2);

putstring{"is");

putfloat{1. 414)

send("receiver", 4, 99)

The example above shows the use of functions of the PVM libraries from

within a program written in C. A message is constructed and then sent. The

s e n d function takes as arguments the (process name, instance) pair (there

might be several instances of the same process) and the message type. A

message type permits the selective reception of messages.

The Argus language [Liskov 1988] supports RPC as a language construct.

RPC; however, is more often implemented as a run-time support

infrastructure for existing languages. An RPC mechanism is one of the

components of the Open Software Foundation (OSF) Distributed Computing

Environment (DCE) [OSF 1992] (see fig. 3.1).

40

IDKni%nHJTEDPR{)GRVUVUWINK;&4C%)ELS

Remote Procediina Call
arciPKMnlzboiiSeiTicB

I'lme

Fig. 3.1: The architecture of the Distributed Computing Environment

The interface between a callee and the callers is described using a special

purpose iMkr/acg The following example is taken from

[Shirley^ Hu and Magid 1994]:

[

uuid(40554daa-6b3b-llcf-8a42-08002be7a203),

version(1.0)

] interface arithmetic

const unsigned short ARRAY_SIZE = 10 ;

typedef long long_array[ARRAY_SIZE];

void sum_arrays (

[ln]long_array a,

[in] long_array b,

[out]long_array c);

int sum_ints ([in] int a, [in] int b)) ;

}

The syntax of the DCE IDL is very close to that of ANSI C. The interface is

identified by a Unique UMmgrsaZ (ULIZD), its version number and its

name. This interface defines a constant, an array datatype: l o n g _ a r r a y

41

DISTRIBUTED PROGRAMMING MODELS

and two operations, s u m _ a r r a y s and s u m _ i n t s , which compute the sum

of two arrays or of two integers. The interface is compiled by the interface

compiler which generates a skeleton for the implementation of the server and

the low-level distribution code which is transparent for the user. A binding

mechanism, CeZZ Dirgcfory Seroicg (CDS) in DCE terminology, allows servers to

export their reference and client applications to acquire the reference of the

servers they need to invoke.

3.4 Distributed Objects

3.4.1 The basic object model

An object encapsulates both state (the attribute variables of the object) and

behaviour (the methods). Objects are instances of classes. Classes serve as

templates that define the implementation of their instances. Inheritance is a

mechanism whereby a subclass inherits the behaviour and the structure of its

superclasses. The primary goal of inheritance is code reuse and sharing.

Objects communicate exclusively by message passing. An object invokes

another object by sending it a message. When the object receives a message, it

determines whether it has a method to respond to the message. The matching

at run-time of an operation name and of the corresponding method is called

dynamic binding. The semantics of object invocation is that the calling object

remains blocked until the invoked object returns.

3.4.2 Objects and distribution

The message passing mode of interaction between objects extends naturally

to distributed programming. Data abstraction is of obvious benefit to

distributed programming because it reduces coupling between the different

parts of a distributed application. Other features of the original object model

require special consideration for distribution.

Inheritance can be difficult to implement in a distributed environment.

Bennett [Bennett 1987] writes: "A major disadvantage of inheritance is the

potentially awkward separation of object behaviour and state". The cost of

method despatching appears too high. Some models do not support it.

Prototype-based languages [Lieberman 1986] constitute another variation

from the original object model. These languages do not have classes from

which objects can be instantiated, rather objects are created by cfoMZMg a

42

DISTRIBUTED PROGRAMMING MODELS

object. Code sharing and reuse is achieved through

Objects can delegate to one or more ancestors the responsibility for

performing an operation or keeping part of its state.

Object models have different approaches to typing. Dynamically typed

languages give greater flexibility to the programmer. However type errors can

be discovered only at run-time and this might prove particularly

unacceptable in a distributed system. Static typing stresses tighter typing

discipline since type errors are detected at compile time.

Object models also vary in the way objects and activities are related, two

approaches can be distinguished

* In the acfmg object modgf, activity is associated with the object.

Parallelism in the active object model results from the instantiation of

several active objects. Intra-object parallelism is possible by allowing

several activities to execute in an object.

. In the pggsme object modeZ, objects and (potentially multithreaded)

processes are distinct entities, the process being responsible for executing

methods of passive objects. Processes are units of parallel execution in

the passive object model.

In all models, message passing is the means for objects to communicate

whether they be in the same address space or separate address spaces.

Synchronous message passing also provides inter-object synchronisation,

although some models allow objects to send messages asynchronously in

order to increase concurrency.

Several mechanisms are available for the internal synchronisation of objects.

For example synchronisation variables such as mutexes can be part of the

internal state of the object or monitor constructs may be available for object

operations.

The requirements of parallel computing led to the development of another

variation of the basic object model, the Actor model [Agha 1990]. Actors

encapsulate state and behaviour as well as activity. Actors communicate by

asynchronously sending messages to other Actor's mailboxes. A mailbox

name uniquely identifies the actor to which the mailbox belongs and it can

also be transmitted in a message. The mailbox queues the messages for its

43

DISTRIBUTED PROGRAMMING MODELS

actor and the messages invoke the actor's behaviour. A behaviour rnay spawn

new actors with new mailboxes or a successor actor with the same mailbox.

Client/server applications are often deployed in heterogeneous environments

and the good abstraction capabilities of the object model have led to its

widespread acceptance for this class of applications. However, the use of

object-oriented languages for parallel programming has also been the subject

of some interest.

3.4.3 Distributed Object Systems

The systems presented in this subsection illustrate the various design

approaches mentioned in the previous subsection.

Smalltalk is seen as the archetypal object-oriented language. [Bennett 1987]

describes a possible way of distributing the language. The aim of the project

was to retain as much as possible of the original object model, hence the

semantics of Distributed Smalltalk is the same as that of the sequential

language. The implementation provides a message forwarding and reply

service to remote objects. The Smalltalk language and programming

environment offer a high degree of reflection and interactivity. Reflection

means that the representation and execution characteristics of the language

are exposed using the language constructs; these characteristics can be easily

customised. Distributed Smalltalk preserves this design philosophy;

Distributed Smalltalk is largely implemented in Smalltalk and the error

reporting and analysis facilities remain available with distributed

computation.

The Obliq language [Cardelli 1995] is an interpreted prototype-based

language designed for distributed programming. Obliq's object model does

not use delegation on the grounds that the sharing resulting from delegation

causes implementation difficulties in a distributed context. Obliq objects are

self-contained. The attributes and methods of an object are embedded into it.

The fragment of code below shows the definition of an object:

let o =

{ X => 3 ,

inc => math(s, y) s .x : = s . x+y; s end,

next => math(s) s . inc (1) .x end} ;

44

I)EniW%HjrEDPRC>GFVUVDWINK;&4C%)ELS

An object o is defined with an attribute x and two methods i n c and n e x t .

Code reuse is achieved by the cloning operation. The expression:

clone (ai, an)

creates a new object with all the attributes and methods of objects a i to a^-

Distribution is not transparent in Obliq. A sz(e is the abstraction of an

execution context and it is designated by a name. The execution of a

procedure can be explicitly mapped to a site by the programmer. Obliq

supports lexical binding with identifiers retaining the value to which they

were bound at their first occurrence. In Cardelli's view, lexical scoping

prevents the unpredictable results caused by dynamic scoping in a

distributed environment.

The following example (adapted from Cardelli's paper) explains how

distributed lexical scoping works. The server site registers itself with the

name server (called Namer) under the name of ComputieServer and

exports an exec procedure which, when invoked, executes the closure it

receives as argument:

net_export("ComputeServer", ATamer, {exec=>meth(s, p) p () end})

At the client site, the CompuLeServer object is obtained from the name

server]\;amer, bound to an identifier c o m p u t e S e r v e r and its e x e c

method is invoked:

let computeServer =

net_import("ComputeServer", Namer);

varx=0;

computeServer.exec(proc() x:=x+lend) ;

As the result of the invocation, the value of x at the client site is 1, even if a

variable x with another value was defined at the server site. Type checking in

ObHq is dynamic.

The designers of the Emerald language [Black et al. 1986] have chosen an

object model which does not support inheritance. They have introduced a

strong typing discipline based on the notion of subtyping. Emerald objects

can have a process attached to them. A monitor construct is available for the

object methods in order to synchronise object invocations. Objects and their

activity can be migrated in Emerald but migration is not completely

45

DISTRIBUTED PROGRAMMING MODELS

transparent to the user. A small set of language primitives allows the

programmer to control mobility:

* l o c a t e returns the node where an object resides.

* move relocates an object to another site.

* f i x and u n f i x respectively disable and re-enable object mobility

" r e f i x performs the sequence u n f i x , move and f i x in an atomic

fashion.

An a t t a c h e d annotation for the object attribute declaration allows the

programmer to describe how objects should be migrated. The values of all the

attached attributes of an object are automatically migrated with the object.

UC++ [Winder, Wei and Roberts 1992] is a parallel object-oriented

programming language based on C++. UC++ relies on active objects to

express the potential for parallel execution. An active keyword allows the

programmer to make the instance of any class an active object. An active

object is executed by a virtual processor. Each virtual processor supports

only one object. Virtual processors are designated by integer values and the

programmer can optionally specify to which processor a new active object

should be allocated, using the keyword on. The fragment of code taken from

[Winder, Wei and Roberts 1992] shows the creation of an active instance of

the class PrimeFilter on the virtual processor 0:

active PrimeFilter two (2, outputObject) onO;

The mapping of virtual processors onto physical processors can be done

automatically by the run-time system or it can be described in a /ik.

The s p l i t keyword allows the invocation of the methods of active objects

asynchronously or to spawn a thread within a method of an active object.

Guide [Baiter, Lacourte and Riveill 1994] supports inheritance and makes a

clear distinction between subtyping and subclassing. Types are concerned

with the interface and classes with the implementation. The Guide type

system will be described in greater detail in chapter 5. Guide is based on the

passive execution model where objects and processes are orthogonal.

Synchronisation in Guide takes the form of activation conditions attached to

methods. For each method the following set of counters is defined:

46

DISTRIBUTED PROGRAMMING MODELS

invoked (m) : number of invocations of method m

s t a r t e d (m) : number of accepted invocations for m

c o m p l e t e d (m): number of completed executions of m

c u r r e n t (i n) = s t a r t e d (i n) - c o m p l e t e d (m)

« pending (m) = invoked(in) - started(m) .

The activation conditions of a method are expressed as conditions which the

e

method counters must satisfy in order for the method invocation to proceed.

The following conditions are defined for the activation of the Put and Get

methods of a FixedSizeBuf f er object.

Pub: (completed(Put:)-complet:ed(Get) <size) ANDcurrent(Pul:)=0;

Get: (completed(Put)>completed(Get)) AND current(Get)- 0 ;

The conditions state that:

• Put may proceed if the number of items in the buffer is smaller than the

maximum size of the buffer and no invocation of Put is currently

proceeding.

• Get may proceed if there is at least one item in the buffer and no other

invocation of Get is currently proceeding.

As with other models, considerable effort has been put into offering an

evolutionary path to distributed objects. An Object Request Broker (ORB)

forwards object invocation across separate object contexts. The Object

Management Group (OMG) has worked on the standardisation of a Common

Object Request Broker Architecture (CORBA) [OMG 1996] (see fig. 3.2).

CORBA defines not only the architecture of a request broker but also a series

of associated services such as naming, persistence and transactions.

47

DISTRIBUTED PROGRAMMING MODELS

Client Object Implementation

Dynanic IDL ORB Sfefc IDL Dsnamic Object
itwocaJSon Stobs htraface Skeieton Skeleton Maptn

ORB Core

Fig. 3.2 : Architecture of an Object Request Broker.

The interfaces of these services and that of the application objects are

described using the CORBA Interface Definition Language. The operations

defined in the interface of an object can be invoked by clients or alternatively

the invocation can be constructed through a mechanism called dynamic

invocation. The extra complexity incurred by dynamic invocation is justified

in cases where the invocation parameters (message selector or the arguments

of the invocation) cannot be known at compile time. Application objects can

be implemented using a variety of languages, including non object-oriented

ones.

3.5 Functional parallelism

3.5.1 Functional languages

Functional languages along with logic languages are said to be decZamh'%, in

contrast to imperative languages. Declarative languages let the programmer

concentrate on the description of a solution to a problem and do not require

the programmer to describe how the computation should be sequenced or

how memory should be managed.

With the functional model, the function is the abstraction of a computation

and programs are built from function definitions and function applications.

Functions, in that context, are pure mathematical functions. Program state is

passed as an argument to the function and returned by it. State is not

modified as a side-effect of the computation.

Hudak [Hudak 1989] highlights some of the features common to most

functional languages:

48

IDK^naH%JTE[)PBK)GFUUVDWIkK;&4C%)ELS

* Good support for data abstraction.

* Functions are first class values.

" Use of recursion for looping.

* Equational feel and pattern matching.

The use of pattern matching and of recursion is illustrated by the definition of

factorial in SML:

fun factorial 0 = 1

I factorial X = X * factorial (x-1);

However, some features may vary considerably from one functional language

to another. For example, efficiency concerns have motivated the addition of a

limited number of imperative features to some functional languages, called

zMpwrg functional languages. Functional languages may also differ in the way

functions are evaluated. Two strategies can be distinguished: eager and fazy

evaluation. With eager evaluation, all the arguments of a function must be

evaluated before the function can be applied to them. With lazy evaluation,

an argument is evaluated only if its value is needed to compute the value of

the function.

Functional languages offer a high level of abstraction from implementation

details and they appear both more concise and more expressive than their

imperative counterparts. Also, their clear semantics make them amenable to

formal analysis. Functional languages also appear to be well suited for

parallelism because the freedom from side-effects ensures, that, in the

absence of data dependencies, functions can be evaluated in parallel.

3.5.2 Parallel functional models

Steele [Steele 1995] lists several ideas for the development of a parallel

version of LISP and, by extension, of a parallel functional language. The last

idea is mentioned in [Hammond 1994]:

» Completely independent processes: A computation is described as a

set of processes implemented using a sequential functional language and

the processes communicate using some communication facilities such as

channels.

49

DISTRIBUTED PROGRAMMING MODELS

Processes in a shared address space: A primitive initiates the

evaluation of a piece of code by a new process. Processes execute

concurrently, access and modify the data available in a (virtually) shared

address space. Communication and synchronisation are implicit.

Futures: The/ufwre construct [Kranz, Halstead and Mohr 1989] spawns

the evaluation of a LISP expression in parallel. The computation which

spawned the future need not wait for the return of the value and receives

a future data object which acts as a place holder for the value to return

and is in an wMreso/W state until the value becomes available. If the value

of the expression is needed and the future is still unresolved, the

evaluation can be forced by (owcAmg the future, thus forcing the two tasks

to synchronise.

Parallel evaluation of arguments. The pcaH (parallel call) form

[Halstead 1984] spawns different tasks to evaluate in parallel the

different arguments of a function before applying the function to them.

. The data-parallel model: The application of the same functions to all

the elements of a large regular data structure can be performed in parallel

[Steele and Hillis 1986]. This leads to fine-grain parallelism which is best

supported by tightly coupled parallel architectures, particularly SIMD

(single instruction multiple data) architectures.

Purely functional model: In the idealised functional model [Goldberg

and Hudak 1986], no language constructs are necessary to indicate

parallelism. Communication and synchronisation remain also implicit for

the programmer. This idealised model might lead to a fine grain

parallelism which cannot be exploited efficiently. Annotations have been

introduced to control parallelism, evaluation order and mapping of

expression evaluations to processors [Hudak 1986].

. Algorithmic skeletons [Cole 1989] offer a high level view of the program

structures of a parallel computation. Skeletons capture patterns of

parallelism common to classes of applications; one example of such a

pattern is pipelining.

50

I3Eni%RHJTEDPBK)GRVUVDWIN(;A4C%)ELS

3.5.3 Case studies

The languages presented below exemplify some of the approaches discussed

in the previous subsection.

Facile [Giacalone, Mishra and Prasad 1989] combines the SML functional

language with a coordination model based on processes and channels.

Processes in Facile are SML computations which communicate and

synchronise themselves using a channel facility. The example below shows

the creation of channels in Facile. Firstly, the user calls the function c h a n n e l

and gives the type of the channel.

- val chl = channel {) : ink channel ;

val chl = channel : int channel

Then processes communicate using the send and r e c e i v e functions:

val send: ' a channel * ' a -> unit

val receive: ' a channel -> ' a

- send(chl ,7);

val it = {) : unit

- receive ch2 ;

val it = 8 : int

ICSLA [Queinnec and DeRoure 1992], a LISP family language, structures

parallel computations as a collection of processes in a virtually shared

address space. ICSLA expresses concurrency with a breed function.

(breed [thunk . . .])

b r e e d takes an arbitrary number of thunks (a thunk is a function with no

arguments) as its arguments and replaces the current task with the necessary

number of tasks to evaluate the thunks. The remotie and p l a c e d - r e m o t e

functions distribute data and tasks and p l a c e d - r e m o t e specifies the

processor where the task or data should be sent.

The Connection Machine LISP [Steele and Hi 11 is 1986] extends LISP with

some language constructs tailored to exploit data parallelism inherent in the

Connection Machine SIMD architecture. A zapping data structure is a

combination of an array and a hash table. Operations on the entries of the

xapping can be carried out in parallel. The following xapping maps symbols

to other symbols:

51

I3Eni%nHJTEr)PFK)GfUUVDWIN(;&4C*)ELS

{blue -> sky red -4 apple green -» grass}

The a notation indicates that a function must be performed on all the

elements of a xapping in parallel. For example:

aeons ' (blue -> sky red -> apple green -> grass} ' (blue -> sea red

wine green —> emerald}

returns;

{blue-> (sky, sea) red-> (apple, wine) green-> (grass, emerald)}

Alfalfa [Goldberg and Hudak 1986] is an implementation for distributed

memory multiprocessor of the Alfl functional language [Hudak 1984]. Alfl

contains no explicit construct for expressing parallelism and thus Alfalfa can

be seen as an example of a purely functional parallel system. The

implementation of Alfalfa is based on the graph reduction model. The graph

reduction model represents a computation as a directed graph of nodes.

[Basel and Keller 1986] define a notation in their introduction to graph

reduction. Other notations have been proposed (one example can be found in

[Field and Harrison 1988]) but the intuitive nature of Fasel and Keller's

notation makes it well suited for the purpose of the explanation that follows.

In this notation, a node can be:

* A value which is a leaf node of the graph.

A primitive operation, represented by an oval node e.g.

A function application, represented by a rectangle node. The example

shown below is a function of two arguments.

From

The computation is driven by the reduchOM of the graph, that is by replacing

the evaluable nodes by their value.

52

DISTRIBUTED PROGRAMMING MODELS

The reduction of a primitive node replaces the node by its value. The

reduction of a function application requires the expansion of the function

application node into the graph defining the behaviour of the function. The

graph can then be reduced.

The computation is demand-driven^ that is a node is not evaluated until its

value is needed. This property is illustrated in [Fasel and Keller 1986] with

the f rom function which generates an infinite list of integer values starting

with the value of its argument n (see fig. 3.3):

f r o m

Fig. 3.3: The f rom function

The c o n s operator does not require the evaluation of its second argument

and f r o m will be evaluated again when the value n+1 (that is the second

element of the list) is accessed

The interest of the graph reduction model is that nodes may be reduced

independently and potentially in parallel. The example shown in fig. 3.4

taken from the introduction of [Fasel and Keller 1986] highlights the potential

for parallelism in the evaluation of the expression:

(a + b) / (c x d) - (c x d) / (e + f)

In fig. 3.4, the three nodes in grey could be evaluated in parallel, the two

divide nodes could also be evaluated in parallel at a later stage during the

computation.

53

DISTRIBUTED PROGRAMMING MODELS

Fig. 3.4: Graph representation of a functional expression

ParAlfl [Hudak 1986] is another development based on the Alfl language.

ParAlfl provides a notation so that the programmer can control the mapping

of a program onto a target machine architecture. The processors of the target

machine are designed by their PID, which is an integer value. The evaluation

of an expression can be mapped to a processor explicitly. The code:

(f(x) $onO) + (g(y) $onl)

maps the evaluation of f (x) on processor 0 and g (y) on processor 1.

$ s e l f is bound to the PID of the currently evaluating processor. It is

possible to designate processors relatively to the current processor. For

example:

(f(x) $onleft:($self))4-(g(y) $onrighk($self))

maps the evaluation of f (x) to the processor on the left of the current

processor and the evaluation of g (y) to the processor on the right of the

current processor (the meaning of left and right depends on the topology of

the target machine). Alfl has a lazy evaluation strategy, however, a special

notation, #, allows the programmer to force the evaluation of an expression.

For example:

f(x,#y,z)

forces the evaluation of y in parallel with the evaluation of f .

54

DISTRIBUTED PROGRAMMING MODELS

Algorithmic skeletons outline a pattern of parallelism without knowledge of

the individual tasks to be carried out in parallel. The Structured Coordination

Language (SCL) [Darlington et al. 1995] is a functional language for

composing procedures written in a sequential language (e.g. FORTRAN). SCL

provides constructs to specify partitioning^ data movement and control flow.

Data parallelism constitutes the underlying model for SCL. The built-in a

distributed array type allows operations on its elements to be carried out in

parallel. The following example is taken from [Darlington et al. 1995]:

rotate : : Int -> ParArray Int a ParArray Int a

The function r o t a t e takes as arguments an integer value (called the

distance of rotation), a one dimensional parallel array whose indices are of

integer type and elements of type a and returns a similar array. The code for

rotate:

rotate kA=«i:=A((i+k) mod SIZE (A)) |i<- [l..SIZE(A)]»

In [Rabhi 1993], Haskell serves as both the base and the coordination

language. Higher-order functions control the application of supplied

functions following a pre-established pattern. The higher-order function rp$

captures the pattern of recursively partitioned algorithms:

rp$ ind solve divide combine prob

I ind prob = solve prob

I otherwise = combine prob

(map (rp$ ind solve divide combine)

(divide prob))

with:

» ind prob is a predicate which re turns TRUE if the problem prob is

indivisible.

solve prob is the function which solves an indivisible instance of the

problem prob.

« divide prob partitions the problem prob into subproblems

» combine prob sols combines the solutions sols.

55

DISTRIBUTED PROGRAMMING MODELS

3.6 Dataflow model

3.6.1 Dataflow computations

The dataflow model promotes a view of computation even further removed

from control flow languages than graph reduction. The dataflow model has a

simplified and quite straightforward evaluation regime, and execution is

driven solely by the availability of data.

A dataflow computation can be represented by a dataflow graph. The graph

comprises nodes called operations and arcs representing the flow of data

between operations. The notion of variable does not exist in the dataflow

model. The values are anonymous and side-effects do not exist in the

dataflow model.

The dataflow model presented in [Glaser, Hankin and Till 1984]

distinguishes six types of nodes and a notation for function definition.

* A p r i m i t i v e node applies the operation to its argument.

. The copy node duplicates its incoming argument onto two or more

outgoing arcs.

The value node has no input value and outputs a constant value, a

primitive or a user-defined function represented as a closure.

. The switch node controls the flow of data according to the boolean

value flowing into its control input.

56

DISTRIBUTED PROGRAMMING MODELS

input value

The merge node selects which input value is returned as output value.

c o n t r o l ^ - ^ ^ ^ ^ ^

« The a p p l y node applies the function which is passed to it on its

leftmost input to the argument on the second input (functions of more

than one argument are partially applied).

The example shown in fig. 3.5 computes the roots of a quadratic equation of

the form ax^+bx+c.

57

DISTRIBUTED PROGRAMMING MODELS

-b/2a + V (b 2 - 4 a c) / 2 a -b/2a - V (b 2 - 4 a c) / 2 a

Fig. 3.5: Data flow graph for the computation of the quadratic roots.

The interest of the dataflow model is that it is inherently parallel. Operations

can be seen as fine grain units of parallelism; the execution sequence is

constrained only by the partial order defined by the data dependencies.

Communication and synchronisation are implicit.

58

DISTRIBUTED PROGRAMMING MODELS

3.6.2 Dataflow languages

Several dataflow languages have been developed. Id Nouveau [Nikhil,

Pengali and Arvind 1986] is a recent example. In order to increase their

expressive power, these languages extend the pure dataflow model with

procedural and data abstractions, conditional choice and iterations. The fine

grain parallelism inherent in the dataflow model requires tightly coupled

parallel machines or specialised hardware to be exploited successfully.

Several dataflow machine architectures were investigated in the 1970s and a

survey of dataflow machine architectures can be found in [Treleaven,

Brownbridge and Hopkins 1982]. However, results have proved

disappointing and recent research work focuses on hybrid dataflow/Von

Neuman architectures [Lee and Hurson 1994].

SISAL (Streams and Iterations in a Single Assignment Language) [Feo, Cann

and Oldehoeft 1990] is considered a dataflow language. Although it

supports variables in a limited form, variables can be assigned only once.

SISAL is mainly targeted at numerical applications.

SISAL functions may take several arguments and return several values. The

control structures of the language if . . . t :hen. . .e lse and the f o r loop are

higher order functions. SISAL provides a built-in array type and supports

user-defined types, including records. The statement below defines an array

of integer type:

type One_Dim_I = array [integer] ;

The record type e l e m e n t _ r e c o r d is used for the periodic classification of

chemical elements:

type element__record = record [name : array [character] ;

number : integer;

weight ; real]

The following code computes the roots of a quadratic but it is not equivalent

to the program described by the graph in fig. 3.5 as the function shown below

tests the sign of the value of the discriminant.

function quad.roots (a, b, c : real returns real, real)

let

denom =2.0 * a;

59

I3Kni%KHJTEDPR{)CRVUV0dINK;N4C%)ELS

discrim : = b*b-4.0*a*c;

if discrim >=0.0

then

-b + sqrt(discrim) / denom,

-b-sqrt(discrim) /denom

else

-9.99e99,-9.99e99

end if

end let

end function

SISAL has been implemented on a variety of shared-memory multiprocessors

with some success [Cann 1992]. A SISAL compiler for distributed memory

parallel machines and a network of workstations is described in [Freeh and

Andrews 1995].

Dataflow is seen as a possible glue to describe the communication and

synchronisation patterns between coarse grain activities. Such an approach is

called Large Grain Dataflow (LGDF) [Babb 1984]. LGDF is a programming

methodology for the development of parallel programs. The methodology

goes over successive steps to convert a dataflow graph into a program

written in an imperative language.

Several parallel programming environments use visual dataflow as their

coordination language with nodes corresponding to sequential computations

and the links of the graph representing dependencies between the activities.

[Browne et al. 1994] review the benefits of representing parallel programs

visually:

. The visual representation exposes large scale program structures and

allows a natural representation of parallelism in programs.

* This representation enforces good programming practices as

programming in the large and programming in the small become distinct

concerns.

• Debugging can be carried out in the same framework as programming.

60

IDK%n%KHJTEDPFK)GFUUVDWIN{;h4C%)ELS

Parallex [Alvisi et al. 1992] is a programming environment for parallel

scientific computing in a distributed system. A Parallex computation is

described by a dataflow graph whose nodes are coarse grain C or FORTRAN

computations. There exists no shared data between the nodes.

3.7 A model for Distributed Prograph

This last section discusses the choice of a model for Distributed Prograph.

The model should take into account both the class of applications intended

for Distributed Prograph and the features of the current version of the

language. It should also provide the right abstractions to handle parallelism,

communication and synchronisation.

Distributed Prograph targets parallel programming in a distributed system.

The overall goal of parallel programming is to speed-up the execution of an

application through the use of multiple computing resources.

Program sequencing is based on the dataflow model. In the sequential version

of the language, operations are triggered sequentially. The schedule follows

the partial order defined by the data dependencies. Synchronisation links

and the controls attached to the operations also affect the flow of control

(see 2.2.1).

3.7.1 Parallelism

3.7.1.1 Potential for parallelism

Without adding further abstractions to the existing model, parallelism can be

achieved in two different ways: data parallelism and operation level

parallelism:

Processing of lists (which are a Prograph built-in type) offers some

potential for data parallelism. This form of parallelism can be

conveniently called mwZfipkx pamZkHsm.

. Following the dataflow model, operations with no data dependencies

are obvious candidates for parallelism and could be fired in parallel. This

latter form can be called opemtioM paraHeZzsm.

It appears that other forms of parallelism would be less easy to introduce.

The conjunction of Prograph with a CSP like model would require the

addition of a channel abstraction. Parallelism such as promoted by the RPC

61

DISTRIBUTED PROGRAMMING MODELS

or Distributed Objects model would impose a more extensive use of names

than in the current version of the language and the introduction of new

abstractions such as remote server or remote object.

3.7.1.2 Expressing the parallelism

Another question which arises is how to express parallelism. Fig. 3.6 lists the

possible alternatives:

Parallelism

Explicit Implicit

Rim-time
detection

Compile-time
detection

Fig. 3.6: Expression of parallelism

With implicit parallelism:

* parallelism can be detected at run-time.

. parallelism can be detected at compile-time by some automatic

parallelisation tools. The object code is then split into a set of

subcomputations that can be executed in parallel.

The first approach is that taken in the design of hardware dataflow machines

and can be emulated by software. For example the run-time support of the

Strand_88 language [Foster and Taylor 1990], the Strand Abstract Machine,

(SAM) mimics the behaviour of a dataflow machine and schedules functions

for evaluation based on the data dependencies. However, this approach

leads to fine grain parallelism; the overhead induced by run-time scheduling

and the cost of communication leads to a highly inefficient implementation on

a loosely coupled architecture such as that intended for Distributed

Prograph.

Automatic parallelisation has been the subject of much research work and

has been applied to both imperative languages such as FORTRAN and

functional languages. This option also does not appear viable for Distributed

Prograph as both the features of the language and the structure of

62

DISTRIBUTED PROGRAMMING MODELS

applications would make the automatic parallelisation of Prograph programs

difficult. Prograph provides dynamic binding and Prograph applications are

event-driven. Consequently, the execution path of a Prograph application is

more complex to build than that of control-driven scientific applications to

which automatic parallelisation techniques are often applied.

Explicit parallelism requires the programmer to explicitly indicate which

portions of the code should be executed in parallel. This is the option

retained for Distributed Prograph. The user has to annotate an operation to

indicate that it is a candidate for distribution at run-time.

3.7.1.3 Benefits and drawbacks

This approach offers several benefits:

. The idea of an operation annotation is already familiar to the Prograph

programmer (e.g. multiplex annotation) and should limit the amount of

recoding necessary to distribute existing Prograph code.

* It builds on the recognised strength of visual languages to grasp and

express the potential for parallelism.

. The user's appreciation of issues such as granularity, cost of

communication and side-effect is required to distribute Prograph

operations. Static analysis tools should assist the programmer in those

decisions.

The idea of introducing a notation to indicate parallelism may bear some

resemblance to the concept of future. The benefit of using futures is that

parallelism is not restricted by prematurely blocking a computation by

waiting for the value of the future. The drawback is that it introduces a new

abstraction the programmer has to deal with and that, for efficiency reasons,

futures should probably be implemented as a built-in datatype. Another

difficulty is the use of futures in presence of controls, if the computation

proceeds without waiting for the results of an operation with a control, the

activation of the control may result in wasted computation.

The designers of the Prograph language have consciously hidden pointers and

operations on pointers from the programmer's view to mimic the data-driven

nature of a pure dataflow language. Introducing futures would twist the

63

IDEnn%KKJTEDPFK}GEUUVDdIN{;A4C%)ELS

design philosophy of Pmgraph and it appears preferable to retain the original

data-driven semantics of the language at the expense of a gain in parallelism.

The drawbacks of this approach are:

It leads to a specialised model which can only support parallel

applications. Linda according to [Gelemter and Carriero 1992] is an

example of a more universal model, Linda can support message passing

between sibling computations, task pool model of parallelism and RPC-

Uke interaction between computations.

» Programmers have no control over the allocation of operations

annotated for distribution to remote processors. Precious programmer

insight might be lost and this would result in a less efficient execution of

applications.

3.7.2 Communication and synchronisation

Communication related activities should be carried on completely

transparently to the user.

The current version of Prograph provides a synchronisation facility in the

form of synchros; otherwise synchronisation should only be constrained by

data dependencies.

3.7.3 A metaphor

The Distributed Prograph model can be better understood with the metaphor

of a dataflow machine. In such a machine, parallelism is achieved by having

several functional units executing operations simultaneously. Information

items appear as operation packets and data tokens. Under the control of a

sequencing unit, operation packets are sent to the functional units. An

operation packet consists of an operation code and the operands; the

operations results are returned as data tokens to the sequencing unit. The

Prograph run-time acts as a virtual dataflow machine with a single

sequencing unit and a single control unit. A network of workstations can be

seen as a machine with multiple functional units. Operation packets and

data tokens flow to and from the functional units under the control of the

sequencing unit.

64

IDn̂ n&n%JTEI)PFK)GEVUVDWmNK;&4C%)ELS

3.8 Summary

* Distributed systems encompass a broad range of applications and

hardware platforms.

» Various distributed programming models provide the necessary

abstractions to deal with the requirements of different classes of

distributed applications (i.e. parallel, fault-tolerant, client/server and

wide-area distributed applications).

« With Distributed Prograph, the interest lies in obtaining speed-ups

through parallel execution.

" After reviewing several models, dataflow appears to be the most

straightforward way to extend the Prograph sequential model.

» The Distributed Prograph model requires the programmer to annotate

the operations for distribution. Communication is transparent and

synchronisation constructs are already available in the sequential version

of the language.

65

PROGRAPH AND DISTRIBUTION

4 Prograph and Distribution

The previous chapter concluded that the dataflow model should be used to

extend the Prograph sequential model into a distributed one. In its first

section, this chapter discusses a range of issues to be considered in the design

of Distributed Prograph. The second section is concerned with the

implementation of the language. The third section of the chapter justifies the

need for a static analysis for Distributed Prograph and the last section sets

the objectives of this analysis.

4.1 Design issues

Design issues look at a high-level, functional view of the policies and

mechanisms for distribution. The object of this section is not to commit

Distributed Prograph to a set of policies or mechanisms but rather to review

the range of policies available for its design. The options available wiU be

better understood if they are presented in the context of the Distributed

Prograph model presented in 3.7.3.

Distributed Prograph aims to execute a single application on a set of

machines. The application is initiated on the user machine. The execution

context on the user machine is called the Operations

annotated for distribution can then be sent to a remote processor for

execution. The execution context at the remote processor is called the rgcipimt

coMkxf. The user machine acts as the sequencing and update unit. It is

responsible for distributing operations initially and all results are ultimately

returned to it.

The various activities involved in the execution of a remote operation fall into

four broad categories:

Preparation of an operation packet in the originator context.

Transmission of the packet from the originator context into a recipient

context after selecting a remote processor.

Execution of an operation in the recipient context.

« Return of the results to the originator context.

66

PROGRAPH AND DISTRIBUTION

Various mechanisms must be designed to support the execution of these

activities. The following subsections discuss possible solutions in close

relation with the features these mechanisms must provide.

4.1.1 Operation packet

The operation packet is the information sent for execution in a recipient

context. This information includes at least the name of the operation along

with its arguments.

Two approaches are possible for the transmission of argument values: proxies

[Decouchant 1986] (see fig. 4.1) and replication.

Context 1 Context 2

o b i e a m i # ^

r
invocation
forwarded by
the proxy

irtyoqasioii invocation
return

Fig. 4.1: Proxy objects

A proxy object acts as a for an object residing in another execution

context and invocations on the proxy are trapped and are forwarded across

contexts to the remote object. Distribution requires that objects are not only

identified in a local context but also across several contexts. A new naming

scheme must be introduced in order to generate global identifiers. With

modem object-oriented languages, parameters and return values are often

passed by reference. Proxies denote remote references and thus logically

extend the pass-by-reference mechanism to distributed environments. The

possibility to alias objects is preserved. However, forwarding invocations can

prove expensive. To remedy this, several optimisations have been proposed.

Passing arguments by value may provide better performance. Immutable

values, such as integers or booleans, can be passed by value. In [Dollimore,

Miranda and Xu 1991] it is also suggested that objects which are not aliased

can also be passed by value.

67

PROGRAPH AND DISTRIBUTION

An alternative solution is replication. All objects are replicated, packed and

transmitted with the operation packet. Replication reduces the load on the

remote objects and increases concurrency as distributed operations proceed

with their own copies of the objects taking part in the computation. However,

the speed-up gained from replication may be partially or totally offset by the

cost of maintaining consistency between replicas of the same object. Schemes

for the management of replicated data can provide various levels of

consistency between replicas.

Pesgzmistic replication schemes supporting full consistency can be achieved by

serialising update operations on all the replicas. The GARF system

[Carbinato, Guerraoui and Mazouni 1994] uses a multicast protocol to

update replicas. Full consistency results in significant communication costs.

The purpose of replication in such a context is to provide fault-tolerance

rather than to increase performance. Weaker models of consistency have been

studied. DMEROON [Queinnec 1995] supports causal consistency. In

DMEROON, values can be cached for read operations. Coherency is

monitored by a clock-based algorithm. Write operations are always

performed on the original object and a clock records the number of

modifications that occurred to the object monitored. When a cached object is

accessed, the value of its clock is compared with that of the clock of the

original object; different clock values mean that the cached value is invalid.

OpHmzsh'c replication management schemes allow both read and write

operations on replicas. The values of the replicas can then be recoMciZed at a

later stage or inconsistencies are not important; such a decision depends on

the semantics of the application.

POOM [Kristensen and Low 1995] allows the programmer to specify the

consistency required and the mechanism to manage replicated data.

In Prograph, persistents and class variables can be seen as global variables.

Their value need not be passed as arguments to a method to be accessible in

the cases of the method called by an operation.

Obliq [Cardelli 1995] supports gcopmg such that a global variable

retains the value to which it was bound in its original context. The

implementation of lexical scoping relies on global identifiers. The free

68

MK>GRAfHAJ^DI%STRnHJTK%N

variables occurring in an object method are described by global identifiers

and their values can be obtained from the context in which they were created.

The distributed version of Smalltalk developed by [Schelvis and Bledoeg

1988] distinguishes between two types of global variables. Homg variables

are those whose values are only relevant in their local context (variables

describing the user interface are an example of home variables). The other

variables have values which must be consistent across several execution

contexts. Thus both lexical and dynamic scoping mechanisms can coexist.

This does however require the programmer to declare which variables should

be dynamically scoped and which ones are lexically scoped.

The SOS distributed operating system [Shapiro, Gautron and Mosseri 1989]

provides a migration mechanism for C++ objects. Migratable objects must be

instances of subclasses of the s o s O b j e c t class. The s o s O b j e c t class

defines the migration behaviour of all migratable objects. Further, the state of

sosObjects contains a set of objects. The prerequisite objects

contain the required information to reconstruct a migrated object in a new

context. One example of prerequisite is the code of the class to which the

migrated object belongs.

4.1.2 Operation scheduling

In Distributed Prograph, once the operation packet has been readied, it is

pooled to be exported for remote execution. In the absence of any mapping

annotation from the programmer, the allocation of a resource to execute an

operation is left to the language run-time support.

Two strategies are possible to export pooled operations. With wort

operation packets are distributed eagerly to remote processors for execution.

In worA: gkafmg, idle remote processors steal operation packets from the pool

of other processors.

The two strategies are compared in [Hammond 1994]. Work sharing runs the

risk of distributing operations where there exists no idle processing capacity.

To be efficient, a work sharing algorithm requires accurate load information in

the distributed system. The drawback of work stealing is that it may increase

latency before operations are executed, because they are exported on demand

instead of being exported eagerly.

69

PROGRAPH AND DISTRIBUTION

Another issue is how operation packets are scheduled for execution.

Operation packets can be distributed on a last-in first out (LIFO) basis or on

a first-in-first-out (FIFO) basis. [Hammond 1994] contrasts the effects of the

two scheduling policies. The effect of scheduling operation packets on a LIFO

basis is more like sequential execution whereas FIFO scheduling stimulates

the execution of a greater number of operations in parallel. It must be noted

that these comments are based on the observation of the evaluation of a

recursive function, called nf ib , which computes the values of the fibonacci

series and may as such, only reflect the effect of these two scheduling

strategies for the evaluation of the nf i b function. Other strategies such as

combining both LIFO and FIFO to control parallelism dynamically are also

possible.

4.1.3 Remote execution of an operation

Classes are the templates from which instances are constructed and describe

the behaviour of these instances. Class information is therefore required to

unpack the instances transmitted with the operation packet and to invoke

the behaviour of its instances.

Bennett [Bennett 1987] reviews a range of possibilities for the design of

Distributed Smalltalk:

. Instances point back to their classes in the context in which they were

instantiated. Method despatching and read and write operations on class

variables require access to information stored in the class description. It

becomes clear that this option would greatly increase the number of

network operations and result in poor performance.

• Classes become immutable and can be freely replicated. Reactiveness is

the degree to which objects are easily presented for inspection and

modification. Disallowing class modification would severely restrict the

reactiveness of the system. In the context of Prograph, this would mean

that it would no longer be possible to execute and edit the code

simultaneously, modifications to classes having being disabled.

Classes are replicated and can be altered. Ensuring compatibility across

contexts can be left to the programmer or it can be supported by a

caching scheme, a distributed database of classes or versioning. Letting

70

PROGfUlPH/J^DCHSTMBtrrKDN

the programmer handle class compatibility problems is not consistent

with the goal of distribution transparency. The distributed database or

caching schemes might be difficult to implement efficiently.

Smalltalk views classes as objects and so class migration can be implemented

using an object migration mechanism [DoUimore, Nascimento and Xu 1992].

In the commercial implementation of Distributed Smalltalk described in

[LaLonde and Pugh 1996], the migration of classes is left to the user and is

decided statically. A distributed apphcation may encompass several object

contexts (or zmaggg in Smalltalk terminology) residing over separate machines.

Application classes are grouped into packages, and the user controls the

distribution of packages. Packages can be loaded entirely or as a

only proxy objects can be created from shadow classes.

In Prograph, upon successful completion, an operation may return some

values or a f a i l execution message. Return values and execution message

must be returned to the originator context. The execution of the operation

may trigger a run-time error. Run-time errors include invalid type, out-of-

range value and no method can be despatched. Although errors are well

documented, Prograph provides no facility for exception handling and it is

the programmer's responsibility to edit the faulty code fragment and proceed

with or abort the execution of the program. A run-time error during the

execution of a compiled application results in an abnormal termination of the

execution. In Distributed Prograph, if the execution of a remote operation

produces a f a i l execution message or triggers a run-time error, the remote

processor should be able to forward the execution message or error type to

the originator of the operation packet and to resume its normal activity.

The execution of the operation might update the values of some global

variables or of its arguments. The modified arguments might not be returned

explicitly by the exported operation to the originator context. The

propagation of updates to operation arguments will depend on the approach

chosen for the passing of arguments. If the arguments are passed as proxy

objects, the update is immediately forwarded to the original object.

Alternatively, an optimistic replication scheme would allow recoMczh'afzoM in

the originator context to be deferred.

71

PROGRAPH AND DISTRIBUTION

4.1.4 Reception of the results

To retain the data driven semantics of the Prograph language, the execution

of a remote operation will be considered finished when either the results or a

f a i l execution message or an error message are returned to the originator

context.

To maximise concurrency, the retrieval of the results should be postponed as

long as possible. If when trying to retrieve the results of an operation, these

results are not yet available, two different options can be considered:

« Another remote operation not yet exported may be scheduled for local

execution. This offers the benefit of increased parallelism as the local

processor evaluates an operation while waiting for results to be returned.

If no other operation is available for local execution, the operations

which have already been exported but whose results are still being

awaited may be executed locally.

The reception of the results may be the right time to reconcile the replicas if

an optimistic replication management scheme has been chosen.

4.1.5 Help to the programmer

The ultimate goal of Distributed Prograph is to allow programmers to build

stand-alone, compiled applications. However, reactiveness is one of the

recognised strengths of the Prograph programming environment as it lets

programmers gain an in-depth understanding of the appUcation they are

developing. A distributed interpreter would give programmers a useful insight

on the behaviour of their application, speed-up provided by distribution and

ratio of local computation to distributed computation.

Prograph provides live editing, where values can be inspected or changed

directly by the user. Various facilities for debugging have been proposed in

different Distributed Smalltalk implementations: remote inspection enabled

but remote editing disabled; full featured remote debugger.

The stack of a Prograph computation can also be inspected and

computations can be rolled forward or backward. It would be challenging to

support this facility in a distributed environment.

72

4.2 Implementation

[Briot and Guerraroui 1996] distinguish three approaches for object-based

parallel and distributed programming:

* The first approach, called the appficatme approach, uses the language to

structure distributed systems.

* The mkgrafme approach extends an existing programming language or

creates a new one with language constructs to deal with concurrency and

distribution.

* The last approach, termed the approach, makes use of the

reflection, that is the property of a language of being self-descriptive and

modifiable.

These approaches can be looked at from two different perspectives. The first

perspective is that of language design and the second one, which is of interest

to this section, that of implementation techniques. It is worth noting that the

classification is also relevant for the design of distributed languages based on

other paradigms: procedural and functional.

4.2.1 The applicative approach

The applicative approach aims to use the abstraction capabilities of the

language to hide the complexity of the distribution mechanisms.

The applicative approach for procedural languages consists of writing

libraries of procedures to hide the low level details of communication and

providing the necessary abstractions such as threads and synchronisation

variables. Application programs use the data structures and call the

procedures provided by the libraries. The PVM message passing library

[Sunderam 1990] and the DCE environment [OSF 1992] are examples of

library-based systems.

In [Rabhi 1993], skeletons for parallel computations are implemented as

higher order functions written in Haskell.

Object-oriented languages integrate the mechanism for distribution within a

class hierarchy; one example is HP Distributed Smalltalk [Keremitsis and

Fuller 1995] which implements a CORBA-compliant Object Request Broker

within its class hierarchy.

73

PROGRAPH AND DISTRIBUTION

The benefit of the applicative approach is that it exploits the features of an

existing programming language to provide new abstractions for distributed

programming. However, this approach requires the application programmer

to deal with a potentially larger number of concepts than for the development

of sequential applications.

As explained in Chapter 2, Prograph already makes an extended use of this

approach. For example, Prograph applications are described as a

containment hierarchy of Prograph objects.

4.2.2 The integrative approach

The abstractions for distributed programming are integrated within the

language. This solution often requires significant modifications to an existing

language or the design of a new language. The language reflects closely the

distributed programming model and thus has greater expressive power than a

language initially designed for sequential programming.

The designers of the Guide language [Baiter, Lacourte and Riveill 1994] have

taken the view that distributed programming justified the design of a new

language.

However, such a choice requires the mobilisation of significant resources to

carry the implementation of an interpreter and/or compiler and associated

run-time support for the language. Acceptance of a new language frequently

presents a significant problem.

The integrative approach seems incompatible with one of the Distributed

Prograph goals, which is to remain as close as possible to the sequential

version of Prograph.

4.2.3 The reflexive approach

A mefaczrcw/ar evaluator is an evaluator where the defining language is the

same as the defined one. Lisp interpreters exploit metacircularity.

Metacircularity is a powerful feature to control and extend the language.

Quasi-Parallel Lisp (QPL) [DeRoure 1990] extends the Lisp language to

integrate abstractions for communication, the sfream, and activity, the process.

Reflection in object-oriented systems results from the possibility of defining

the semantics of objects in an object-oriented model through a set of objects

74

PROGRAPH AND DISTRIBUTION

called This organisation is named a Meta-

objects can control some features of the object model such as message

sending, method look-up, execution and state accessing. Meta-objects may

also extend and modify resources management such as scheduling and

naming.

The CARF [Garbinato, Guerraoui and Mazouni 1994] class hierarchy

separates two programming levels. At the functional level, a collection of data

cZasses describes the logic of the application as if the application was

developed in a centralised, sequential environment. The behavioural level

controls behavioural features related to concurrency, persistence distribution

and fault-tolerance.

The reflexive approach offers the benefit of a great flexibility. Complexity

and potential inefficiency can be seen as shortcomings of reflexive

architectures.

This option does not appear viable for the implementation of Distributed

Prograph as the language presents little reflection.

Briot and Guerraroui see in the development of generic run-time systems for

distributed languages a dual approach to the use of reflection. The

distribution mechanisms are integrated within the run-time support for the

language. This choice is motivated by the search for greater efficiency with

some of the flexibility of the reflexive approach. The requirement for

efficiency becomes more urgent as the functionality and the complexity of the

run-time system increase. The GUM run-time uses PVM to implement a task

pool for the scheduling of distributed tasks. The Chorus Object-Oriented

Layer (COOL) [Lea, Jacquemot and Pillevesse 1993] is a run-time system

upon which distributed object-oriented languages (C++ and Eiffel) can be

built.

The integration of the Prograph interpreter with an existing distribution

infrastructure is an option worth investigating.

4.3 Need for analysis

The section, on design issues surveyed a range of policies and mechanisms to

implement these policies and to extend the features of Prograph to provide

75

PROGRAPH AND DISTRIBUTION

distributed programming. This section discusses why a static analysis may be

useful to support these mechanisms.

4.3.1 Interferences

In the current version of Prograph, the operations on the dataflow graph are

executed according to a serial schedule of execution and each operation

constitutes an atomic unit of execution. In some cases, the results of a

computation do not depend on the order of execution of the operations;

however the programmer has sometimes to impose a special ordering for the

execution of the operations. This is typically the case when one of the

operations is a Match or calls a method providing I / O functionality. The

concurrent execution of operations might lead to interferences. Interference

occurs when two or more parallel operations read the same data and at least

one of them updates the data. Thus, distributed execution may introduce

further synchronisation requirements.

4.3.2 Global variables

The pure dataflow model is side-effect free and does not provide global

variables. However, Prograph has both side-effects and global variables, in

the form of persistents and class variables.

When a computation is distributed over several execution contexts, it is

necessary to ensure that the global state is kept consistent. The value of a

global variable is the same as if the operation had been executed in its

originator context following a serial schedule of execution. According to the

policy adopted for the management of the global variables, different concerns

must be addressed:

" If consistency is ensured by maintaining a single copy of each global

variable, the cost of the access to this single copy is the main concern.

« If global variables are replicated, consistency of the replicas becomes

the issue and the question of whether the replicated global values in the

recipient context can be trusted.

4.3.3 Updated values and aliases

Operations may induce side-effects on their arguments and /or on some

global state. Preserving the semantics of Prograph requires that the side-

76

PROGRAPH AND DISTRIBUTION

effects are implemented, including the aliases created by write operations.

The side-effects should be visible when the execution of the remote operation

is considered completed. Once again the choice is between forwarding

operations across execution contexts on a single copy or managing replicas in

different contexts.

The update problem is compounded by the possibility of creating aliases, as

the semantics of Prograph implies that aliases be preserved even across

separate contexts.

4.3.4 Behaviour maintenance

Behaviour maintenance is primarily concerned with the consistency of the

class definitions, that is, of the attributes (not the values of the attributes)

and of the methods, as well as that of the universal methods. This issue

should not be overlooked especially if Distributed Prograph is to be used as a

distributed interpreter. This work does not however tackle the issue of

behaviour maintenance across several contexts.

Behaviour maintenance in Prograph is a problem only in interpreted mode

because class definitions and methods can be manipulated only using the

editor. Therefore it might be more advisable to build support within the

interpreter instead of a general distribution mechanism to be included with all

applications. In addition, updates to arguments and global variables are

more common in programs and therefore a more urgent problem to solve.

4.4 Alms of the analysis

The correct execution of operations in parallel is conditioned by the absence

of interference between the operations, the availability of the current values

of the global variables and the implementation of the side-effects induced by

the operations. The development of a static analysis will help to check that

some of the conditions for the correct execution of parallel operations are

met.

The analysis will not tackle the problem of interferences. As a consequence of

aliasing, interference may occur in a gka/f/zy manner, that is the same data

can be accessed via different paths by different operations. Program results

are saved between sessions of the Prograph interpreter. Consequently, aliases

may result from previous executions of the program. Thus it is believed that

77

PROGRAPH AND DISTRIBUTION

there would extremely difficult to detect aliases by statically analysing

program code and, by extension, to solve the problem of interferences

between operations executed concurrently.

The analysis to be developed will address the issues of access to global

variables and updates to arguments. It aims at characterising the side-effects

induced by a subcomputation. Characterising an effect means identifying

unambiguously its nature (read or write), and the data upon which it

operates (class, persistent value or operation input). The effected data

should be referred to by their symbolic names.

There are several purposes to this effect analysis:

* It will provide the user with some useful information about the

behaviour of operations annotated for distribution. Clearly operations

with a purely functional behaviour are more suited for remote execution

than those which heavily affect their arguments or global variables. Such

feedback might help the user to annotate the program.

« The results produced by the analysis can be exploited to optimise the

distribution mechanisms. Being able to statically anticipate the accesses

and updates to operation arguments and global variables reduces the cost

of keeping the value of global variables consistent and implementing side-

effects. Alternatively, it might be decided that the overhead incurred by

these mechanisms is too high and that operations inducing certain effects

should not be distributed.

It is important to keep a clear separation between the analysis and the

distribution policies so that the analysis does not become biased towards

supporting a particular policy.

4.5 Summary

This chapter has discussed the following points:

* A range of issues has to be addressed for the design of Distributed

Prograph. The most important issues are transmission of the operation

arguments and results, the scheduling of operations in parallel and the

maintenance of the global state and behaviour across several separate

contexts.

78

PR{)GFVlPH/U%D[%STIUBirrKDN

* Three different approaches can be distinguished for the implementation of

a distributed programming language. However, only the applicative approach

seems to be exploitable for the implementation of Distributed Prograph.

» Static analysis of programs can help in solving the problem of the

consistency of values across several contexts.

79

TYPE INFERENCE

Type Inference

A type inference algorithm constitutes the first component of the analysis

described in this thesis. This chapter details the design of the inference

mechanism after reviewing several type-related issues.

The first section discusses the purpose of types in programming languages

and the different approaches to typing, namely static versus dynamic typing.

The second section surveys issues related to the design of a type inference

algorithm. Previous work on type inference is the topic of the third section.

The fourth section exposes the need for type inference as part of the analysis

developed in this work. The inference algorithm is outlined in the fifth

section. The sixth and the seventh sections present a suitable type

representation and the rules to type the different expressions of the

Prograph language. The details of the type inference algorithm are presented

in the eighth section. Type inference is illustrated by two examples in the

ninth section. The tenth section discusses shortcomings of the algorithm.

5.1 Types In programming languages

Wegner [Wegner 1986] defines the properties that types should have to

constitute a type system for object-oriented programming languages. By

removing the references to features which are specific to object-oriented

languages (e.g. inheritance), the definition can be extended to cover the

purpose and properties of types in programming languages:

* Application programmer's view: Types partition values into

equivalence classes with common attributes and operations.

* System evolution view: Types are behaviour specifications that may be

composed and incrementally modified to form new behaviour

specifications.

* Type checking view: Types impose syntactic constraints on expressions

so that operators and operands of composite expressions are compatible.

" Verification view: Types determine behavioural invariants that

instances of the type are required to satisfy.

* System programming and security view: Types are a suit of clothes

(armour) that protects raw information (bit strings) from unintended

interpretations.

80

TYPE INFERENCE

* Implementer's view: Types specify a storage mapping for values.

Typing means associating a type with every expression of a program. Two

broad approaches to typing can be distinguished, the static and the dynamic

one. With the static approach, the type is statically associated with all the

variables and expressions of a computation. Dynamic typing distinguishes

itself from static typing in the sense that the type information is available

only at run-time and that types are not bound to variables but to the values

instead.

5.1.1 Static typing

Static typing in procedural languages requires the programmer to declare the

types of the variables and procedures. The correctness of the type

declarations is established by a (ype cAackgr.

Functional languages such as ML and Miranda are equipped with an

static type system. Implicit typing requires a minimum of type declarations.

Type information is inferred from the local context and type correctness can

be established.

Static knowledge of the types of the values involved in a computation

provides a safety guarantee and enables optimisation. Declaring type

information is also seen as conducive to good software engineering practices:

type declarations serve as partial specifications.

Most procedural languages are moMomorp/iic, and the types of variables,

functions and procedures are invariant, remaining the same throughout the

execution of the program. Such languages may not describe generic

procedures where algorithms are applicable to values of different types. A

procedure to compute the length of a list is an example of generic procedure.

ML-like type systems introduce the concept of type variable. These variables

can be instantiated to different types thus allowing functions to accept

arguments of different types.

Type systems for object-oriented languages often use interfaces as types. AH

objects of a given class have their interface described by an abstract fypg.

An abstract type definition contains:

* The signatures of the methods supported by the class. A method

signature specifies the types of the input and output arguments of a

method.

81

TYPE INFERENCE

" The type of the attributes of the instances of the class.

The following example (taken from [Baiter, Lacoutre and Riveill 1994])

deHnes a document description for a computerised library catalogue:

TYPE Document_descr IS

key: Integer;

title, author: String;

date_borrowed, date_returned: REFDate;

METHOD I n i t; //set initial values

METHOD Consult; / /display information about the

//document

METBOD Get_text: REF Document

/ / gives access to the text of the

//document

END Document_descr.

A Document-descr has a k e y attribute, tzitle and author a t t r ibutes

and da t:e_borrowed and date_returned a t t r ibutes. The m e t h o d s

defined for the Document_descr abstract type are Init, Consult and

Get_text. The three methods take an object of type Document_descr as

(implicit) argument. The method Get_text returns a reference to a

document (REF Document).

Types can be partially ordered; B is a swtfypg or is mcZWed in A when aU the

values of type B are also values of type A. B < A denotes the inclusion of type

B in type A. The inclusion rules for method signatures (A —> B denotes a

method signature with an argument type A and a return type B) is:

A' B' < A-^ B iff A < A' and B ' < B

This rule, known as states that the type of method mb is the

subtype of method ma if the argument type of m^ (A') is more general than

the argument type of m^ (A) and the return type of m^ (B ') is more

specialised than the return type of m^ (B).

Abstract type A is the supertype of abstract type B if:

* Each method m^ defined in the interface of A is matched by a method

mb of the same name in the interface of B and that the type of mb is the

subtype of the type of method mg.

82

TYPE INFERENCE

• Each attribute of A is defined in B and the type of the attribute of A is

the supertype of that of the attribute of B.

To provide inclusion polymorphism and static typing, the following rules

must be respected:

The type of the value assigned to a variable is a subtype of the type

declared for that variable.

« A message send is type correct if a method of corresponding type is

defined in the signature of the receiver and the types of the message

arguments conform to the types of the formal method arguments.

There exists no consensus on how class and types should be composed:

* With the concept of Ckss Type, a class defines a type and by extension

inheritance and subtyping are considered equivalent. The type of a

subclass has to conform to that of its superclass.

* It has been argued that subclassing and subtyping are different notions:

subtyping is the sharing of abstract behaviour whereas subclassing is a

mechanism which provides code reuse [LaLonde and Pugh 1991]. Guide

[Baiter, Lacoutre and Riveill 1994] separates types which describe the

interface and the classes that implement the type. This approach allows

greater flexibility as two unrelated classes may conform to the same type

and conversely, a subclass does not have to conform to the type of its

superclass.

Parametrisable classes are a feature of several statically typed object-

oriented languages and allow code reuse through parametric polymorphism.

Type systems for statically typed object-oriented languages still attract

considerable research interest. ComrzaMce, unlike contravariance, allows the

programmer to specialise argument types of methods in subclasses;

covariance remains the subject of investigations [Shang 1994].

5.1.2 Dynamic typing

Dynamic type systems bind types not to variables but to values, thus

variables can be polymorphic.

Dynamic typing gives languages a greater flexibility than their statically

typed counterparts, most notably for the implementation of collections of

elements of heteregenous types and the manipulation of these collections.

83

TYPE INFERENCE

Dynamically typed languages are often associated with an interactive and

incremental style of programming appropriate for experimentation and

prototyping. From a language designer point of view^ Cardelli [Cardelli 1995]

considers that imtyped languages are easier to prototype.

The drawbacks of dynamic typing are, firstly, the possibility of run-time type

errors as type checking can only be performed at run-time and secondly that

it incurs several overheads over static typing:

* Memory overhead: values must carry a type tag attached to them and

their implementation takes more memory space. Also the absence of type

information at compile time may rule out optimisation such as dead code

elimination and the use of machine data types instead of program data

types.

Performance overhead: the absence of type information prevents

performance oriented optimisations including inlining and use of machine

data types. Run-time type checking induces an extra performance cost. In

[Steenkiste and Heimessy 1987] the cost of type computations for LISP

applications is estimated to increase the execution time by 25%, on

average.

5.1.3 Bridging the gap

It may be considered that the two typing approaches are not antagonistic but

complementary as suggested in [Palsberg and Schwartzbach 1993] p.72.

Providing type information during the prototyping phase places an

unnecessary burden on the programmer and type correctness is not very

important at that early stage. Wegner [Wegner 1987] suggests that dynamic

typing is more appropriate during the development phase.

Type inference aims at computing type information from an untyped

language. The transition is illustrated by the following diagram taken from

[Palsberg and Schwartzbach 1993]:

84

TYPE INFERENCE

untyped
program

typed
product design

rapid prototyping type inference

Fig. 5.1: From untyped to typed program.

5.2 Issues for type inference

Type inference has been explored for various language paradigms:

procedural, object-oriented and functional. The approaches investigated may

also vary in:

* purpose;

* world assumption;

* type system;

The remainder of this section discusses these three issues in turn.

5.2.1 Purpose of inferring types

The type information produced may serve several purposes: safety,

optimisation and help to the programmer.

In the context of object-oriented languages, the overriding safety concern is

that method despatching might fail. Type inference will check that the

message send cannot fail at run-time.

Efficiency concerns encompass performance and compactness of the

compiled code. Dynamic binding incurs a run-time overhead. Static

knowledge of the concrete type of the receiver of a message allows the

message to be bound to a method statically, thus eliminating the cost of a

method look-up. The code can be further optimised by m/zMZMg methods.

Dynamic binding also has an impact on the size of the compiled executable

as the code for classes that may never be instantiated or methods that may

not be called is included. Type inference may help to detect that a method

caimot be called during the execution of the program so that the dead can

be removed.

85

TYPE INFERENCE

The information inferred can be fed to analysis and debugging tools. In

connection with the safety concern expressed above, the programmer can be

warned about the likely failure of a message send. Type information feedback

helps the programmer to check that the type of the method is compatible

with the intended use for that method.

5.2.2 World assumptions

A cfosed-worM assumption is that all parts making up an application are

available for analysis and compilation. In object-oriented languages where

code and data are encapsulated in classes, a closed-world assumption thus

requires the set of classes to be known statically.

Under an opeM-worW assumption, a program is divided into separate

modules or libraries that can be analysed and compiled separately. The opew-

world assumption, although a more desirable approach to software

engineering, may not be compatible with all the possible purposes for doing

type inference. For example an open-world assumption does not help to

address efficiency concerns because it does not allow the identification of

which code is executed at run-time.

A modw/ar type inference may analyse methods one method at a time. A MOM-

fModwZar inference is performed on a whole program at a time and requires a

closed world view.

5.2.3 Type systems

A type system for a programming language defines:

a set of type expressions;

" operations to manipulate type expressions (e.g. Carkszan pmducf to

describe record type and dzsyozMf swm);

a set of rules for associating a type with all the expressions of the

programming language.

In his discussion of Typg Sygkms and PofymorpAzsfM, Agesen [Agesen 1996]

distinguishes two dimensions to classify type systems: the concrete/abstract

dimension and the general/specific dimension (see fig. 5.2). Discussion of a

type system cannot be divorced from the assumption under which the type

inference operates and the purpose of the inference itself.

86

TYPE INFERENCE

General

Concrete Abstract

Specific

Fig. 5.2: Dimensions of type system

The coMcrgk h/pg of an object is the set of classes of which this object can be

an instance. Concrete type inference requires a closed-world view and it is

mainly aimed at optimisation.

Absfracf (ypgg have already been introduced in 5.1.1, they describe the

external behaviour of an object. Abstract types are useful to prove type

safety and are compatible with an open world view.

In Agesen's view, class types represent a half-way house between concrete

and abstract types. The distinction between concrete and class type can be

illustrated by an example taken from the class hierarchy depicted in fig. 5.3.

The class type Bird encompasses instances of Bird, Chicken and Duck.

The corresponding concrete type would be the set {Bird, Chicken,

Duck} . Under a closed world view, class types can be converted into

concrete types and vice-versa.

Animal

Bird
Dog Cat

Chicken Duck

Fig. 5.3: A class hierarchy.

Gerngm/ h/pes describe the way a method or an object may be used, that is, all

the possible legal types for the object or method. 5pecz/:c fypes describe the

87

TYPE INFERENCE

use of an object or of a method in the context of a particular application and

assume a closed-world view.

5.3 Previous work

5.3.1 Kaplan/Ullman

[Kaplan and Ullman 1980] presented an inference method for an untyped

imperative language for the purpose of compile-time optimisation.

The program is modelled as a /Zowgrap/i. A flowgraph is a directed graph

with nodes consisting of one or more assignment statements of the form:

y<-f (xi ..JCn)

and the edges following the control flow of the program. The graph starts

from and finishes at a (SF) node. The set of all the program

variables is constructed and a mapping from the set of the program variables

to the set of types is defined. The mapping is refined by successive iterations

of the ybrward amfysis and of the WcAward aMa/ysis over the nodes.

Forward analysis infers the type of the program variables after the execution

of a statement from the types of the program variables before execution of

the statement and the signature of the statement.

Backward analysis infers the type of program variables from the type

information available after the execution of a statement and the signature of

the statement.

* Types are elements of a type lattice (see fig. 5.4) with a top and a

bottom element. A Zeasf-wppgr bowwd and bowW operation

are defined on the lattice.

real

Fig. 5.4: Type Lattice

TYPE INFERENCE

Statements' signatures are constructed using T-^nchOMs. T° is a function

which takes the types of the arguments ... of the statement as its

arguments and returns the best approximation of the type of the return

value of the statement after its execution. T° is used during the iterations

of the forward analysis. Similarly, for each argument Xj of the statement,

a function Ti is defined. During the backward passes of the analysis is

applied to the types of the arguments x^... x^ and the type of the return

value y of the statement. Thus provides the best approximation of the

type of Xj before assignment from the information available after

assignment.

As an example, consider f l (x) ,a simple function which returns the greatest

integer smaller than or equal to x if x is a number, otherwise, if x is a char, x

is translated into lower case.

TO takes the type of x as argument and returns the type of the return value of

f l (x) . The definition of 7° (see fig. 5.5.a) shows if the type of x is r e a l .

X ipO

1 1

real int

int int

char char

0 0

Fig. 5.5.a: Definition of T°

is used during the backward analysis, the leftmost column contains the

current approximation of the type of x, the argument of f 1 (x) and the top

row the type of y, the return value of the f 1 (x) . The intersection of a type

of X and y returns a new approximation of the type of x.

y

X

1 real int char 0

1 1 real real char 0

real real real real 0 0

int int int int 0 0

char char 0 0 char 0

0 0 0 0 0 0

Fig. 5.5.b: Definition of

89

TYPE INFERENCE

5.3.2 Hindley/Milner

Milner extended Hindley's type inference algorithm and used it for an ML

type system [Milner 1978]. ML is a functional language with lexical binding

and higher-order functions. Hindley/Milner inference is more concerned with

type safety than with optimisation. It computes the pnMcipaZ types (most

general types) of expressions to rule out run-time type errors. All of the types

of a polymorphic expression are an instance of the principal type of the

expression.

The inference algorithm handles functions one by one. The function is

converted into an expression tree where the leaves of the tree are either

constants or variable accesses.

The function:

let rec length = fun {1) if null {1)

then

0

else

succ(length(tl(1)))

in...

is converted into the tree shown in fig. 5.6.

if ... then ... else

null succ

length

tl

Fig. 5.6: Expression tree for l e n g t h

Type information can be represented as:

* Basic types such as Int or Boolean.

* Type variables, denoted by a Greek letter: a , p, y range over the

complete set of types. A distinction is made between geMgnc and MOM-

geMgnc type variables. All occurrences of a non generic type variable must

90

TYPE INFERENCE

be instantiated to the same type values. Generic type variables may be

instantiated to different type values. The difference between non-generic

and g;eneric typei/ariabdes is illustrated by thcfcdlcrwitig exeumple taken

from [CardeUi 1987].

fun (f) pair(f (3)) (f (true)) cannot be typed because the type

of f which should be of the form a -> |3 is instantiated to Ink P for the

first application of f and to Boolean —> (3 for the second application.

The type variable a appears in the type of the fun-bound identifier f

and is therefore non generic and cannot be instantiated to different type

values.

The expression let f = fun (a) a in pair (f (3)) (f {true)) can

be typed. In the type of f a -> a, the a s are generic and f can take the

types Int Ink and Boolean Boolean.

* Function types p o. A function type maps the type of the function

argument to the type of the function return value.

All the leaves have a type associated to them. A constant leaf is assigned the

type corresponding to the value of the constant. The type assigned to a

variable access leaf is the type variable of the variable accessed.

The inference mechanism maintains a map called assutnptions from the set of

variables to the set of types. Every time an occurrence of a variable is found,

the set of assumptions is accessed to yield the type of that occurrence.

Inference rules describe how the type of an expression can be deduced from

the types of its subexpressions. The rule for the typing of an i f e t h e n e '

e l s e e" expression states that, if the type of e is boolean, the type of e is

X and the type of e" is x, then the type of the expression is t . The rule is

formalised by an expression of the form:

AI-e:bool At-e': i : AHe":i:

AH (ifethene' elsee"):!:

where the horizontal bar means zmpfy, the line above the horizontal bar is the

premise and the line below the bar the conclusion. A t- e. t means that from,

the set of assumptions A, it can be deduced that the type of e is T.

Inference proceeds in a bottom-up fashion from the leaves to the root of the

expression tree. The application of an inference rule yields a set of equalities

on the types of the subexpressions. The equalities are solved by UMz/icahon

91

TYPE INFERENCE

[Robinson 1965]. Failure to solve the equations means that the function

cannot be typed.

5.3.3 Suzuki

Suzuki [Suzuki 1981] proposed a type inference mechanism for Smalltalk.

The aim of the system was, firstly, to substitute static binding for dynamic

binding and thus improve efficiency and secondly to provide type

information to the programmer.

Suzuki's work draws on the functional approach. Unlike ML, Smalltalk has:

" Dynamic binding

* Data polymorphism

These features make some modifications to the Milner's original algorithm

necessary. The modifications concern the representation of types, inference

rules and the constraints on types.

Types can be:

* Basic types: they are sets of classes

« Type variables, denoted by Greek letters.

* Function types are used to describe the signatures of methods. Function

types are of the form: a x p y, the types on the left hand side of the

arrow are that of the receiver and the arguments of the method, the type

on the right hand side of the arrow is that of the method return value.

Milner's algorithm solves a set of equalities over type values but with Suzuki's

approach types are sets of types and constraints are expressed as set

inclusions.

The inference rules must also be altered for conditional expressions and more

importantly for function applications. To be able to type message sends (the

linguistic equivalent of function application in ML), Suzuki's algorithm

assumed that all the methods with the matching name can be despatched.

The type of the message send is the union of the types of all the methods that

may be invoked.

Smalltalk allows variables to hold values of different types (data

polymorphism). The implemented algorithm did not attempt to infer the type

of the instance and global variables. Instead, the algorithm took the view that

the type of such variables is the set of all the classes in the system.

92

TrVTPEINTTEKEI\K:i;

5.3.4 The EULisp type inference system

EULisp [Padget, Nuyens and Bretthauer 1993] belongs to the family of LISP

dialects and features object-orientation. The language unifies the functional

and object-oriented paradigms, providing classes and functions. A geMgrzc

^Mch'oM is a function for which several implementations are available. Each

implementation or mefkod is defined with a distinct domain which specifies

the applicability of the method to supplied arguments. Unlike a message

send which despatches the method applicable to the class of the receiver and

ignores the types of the method arguments, the application of a generic

function will despatch a method only if the class of each argument is a

subclass of the corresponding domain class formally declared in the method

definition. The following example, provided by [Kind 1996] declares a

generic function element which returns the i-th element of an ordered

collection.

(defgeneric element (xy))

The methods for the generic function are defined for the different domains.

For a string argument, element is implemented as:

(defmethod element ((x<string>) (i <integer>))

(string-ref x i))

For an argument of the vector class as:

{defmethod element ((x<vector>) (i <integer>))

(vector-ref x i))

For an argument of the list class as:

(defmethod element ((x<list>) (i <integer>))

(if (= i 0)

(car x)

(element (cdr x) (-i1))))

Element can be used as any other function.

(defun foo (x)

(element x1)

• . .)

[Kind and Friedrich 1993] have proposed a type inference mechanism for

EULisp. The type information inferred is used mainly for optimisation during

the compilation of applications.

93

TYPE INFERENCE

The representation for types draws heavily on Milner's work with some

improvements to handle inclusion polymorphism and provide more precise

type information about functions

Lattice types: A lattice L is constructed over the set of the basg types B.

The set of the base types can in turn be defined as the set of the concrete

types augmented with a set of sfrafegic types. The concrete types

correspond to EULisp classes, for example < l i s t : > , < v e c t o r > or

< s b r i n g > . Strategic types have been introduced to describe

distinguished values and aim to yield a more precise typing of predicates

and conditional expressions, examples of such types include:

s i n g l e t o n , z e r o , one. The lattice reflects the subtype relation over

the sets of types. For example, the lattice type < n u m b e r > is the

sublattice of L whose vertex is the base type <nmnber>.

Type variables: They are used to express type dependencies between

argument types or between argument types and the result type of a

function. The range of a type variable may be restricted, for example,

g<nuinber> denotes a type variable whose upper bound is <number>.

Generic type schemes embody constraints on the argument and result

types of functions; they contain several lines of the form:

X T2 X TS ^4

where %!, T2 and Tg are the types of the function arguments and 14 the

type of the function's return value. Using a number of lines, type

dependencies can be expressed more precisely.

Inference is performed in three steps:

A local inference computes the most-general type of functions. The local

inference starts with a set of initial type constraints on the function's

parameters, literals, constants and variables. A type scheme must be

available for each function call within the function s body. If a type

scheme is missing, the current analysis is suspended until the missing

scheme has been inferred. The type scheme for a generic function

application contains the lines of the schemes of all the methods that may

be despatched. Solving the constraints by unification yields a scheme for

the function.

94

TYPE INFERENCE

» A global inference aims at deriving concrete type information by

examining all the calls to a given function.

. The local inference is iterated again with feedback from the global

inference.

5.3.5 Palsberg and Schwartzbach

The language of interest for the type inference described in [Palsberg and

Schwartzbach 1991] is a subset of Smalltalk called BOPL (Basic Object

Programming Language). The analysis is applied to programs globally, under

a closed-world assumption. Palsberg and Schwartzbach envision several uses

for the type information inferred: safety, dead code elimination, static

method binding and information to the user.

Types are defined to be sets of classes. Inheritance, parametric

polymorphism and data polymorphism are tackled by some program

transformations:

Inheritance is expanded away. Each inherited method or variable is

duplicated in the class which inherits it and all the occurrences of the

pseudovariable s u p e r are replaced by s e l f . If a method is redefined by

a subclass, the name of the superclass is appended to the name of the

inherited method. Some aspects of the transformation are illustrated by

the example below:

class Rectangle

var 1, w

method Base (10, wO)

1;=10;w:=wO;self

method Area ()

l*w

method Scale (s)

1 ; = 1 * S ; w ; = w * S ; self

end Rectangle

class Box inherits Rectangle

var h

method Height (hO)

h: =hO

method Volume ()

self.Area()*h

95

TYPE INFERENCE

end

amthodScale(s)

super.Scale(s) ; h:=h*s; self

endBox

The definition of the class Rectangle is left unchanged by the

transformation but the class Box becomes:

class Box

h

method Base (10, wO)

1:=10;w:=wO;self

method Area ()

l*w

method Scale$Rectangle (s)

l:=l*s;w:=w*s;self

method Height (hO)

h:=hO

method Volume ()

self.Area()*h

method Scale (s)

self.Scale$Rectangle(s); h:=h*s; self

end Box

To handle parametric polymorphism, methods are duplicated for each

message send in which their name occcurs. This transformation is

illustrated by the following example:

classc

method id (x)

X

endC

{ (C new) .id{7))+10;

((C new) .id(true)) or false

A different version of id is created for the message sends in which id

occurs.

classC

method id@l (x)

X

method id@2 (x)

96

TYPE INFERENCE

X

andC

((Cn#*).id@l(7))+10;

((Cnew).id@2(true)) or false

A copy of the class is created for each instantiation. This

transformation allows a precise treatment of data polymorphism.

class Container

var X

method put (val)

x: = val;

self

method get ()

X

and Container

(Container new) .put(7).get. ()+10;

(Container new) .put (false) .get () or true

The Container class is entirely duplicated and becomes

Container@l and Container@2. The modified program is:

(Container01 new) .put(7).get()+10;

(Container@2 new) .put(false).get() or true

The expanded program is converted into a (race grap/i. The nodes of the

graph represent methods and the edges of the graph message sends. A

condition is attached to each edge: the edge will be traversed only if the type

of the receiver contains the class which implements the method represented

by the node to which the edge is leading.

The construction of the graph is illustrated for the following simple program:

class A classB

method m: e var temp

e n method m : e

(temp := e) n

method n

temp p

methodp

selfp

end A end B

(A new) m: (B new)

97

TYPE INFERENCE

AelAna^
2 m ^

BE leli
4 n

called BE leli called

from from from from
"main" m ^

B e (tempi B e (seUy

1 "main' 6 p
called
from >
n

—

B t. (A newt

3 mg 5 n
called called called

from from from
"main" mg

J

7 P
called
from

B e [selfli

: e I tempi

B G |temp:=el

Fig. 5.7: A Trace graph

In the trace graph of fig. 5.7, the first node corresponds to the execution of

the program. Node 2 represents the invocation of the method m defined in

class A and node 3 represents the invocation of the method m defined in class

B. The condition Ae |A new| attached to the edge between node 1 and node

2 expresses the requirement that the class A must be an element of the type of

the expression A new if the method m d e f i n e d in c l a s s A i s to b e called.

Similarly, the condition B e |A nevi attached to the edge between node 1 and

node 3 means that the class B must be an element of the type of the

expression A new if the m e t h o d m defined in class B is to be called.

A set of constraints is derived from inference rules. Constraints can be of

three different types. Constraints can be:

" Local constraints reflect the semantics of the method body. For the

node 3 on fig. 5.7. The constraints are:

- [tempi 2 |el2

- Ikemp : = e | a lek This constraint and the one above result from the

assignement of the value of the variable e to the variable temp.

_ Ibemp : = e | c {B} . This constraint reflects the invocation of the

method n in the body of m defined by class B. It states that the type of

the expression bemp: = e must be included in the set of classes defining a

method n (here the singleton {B}).

* Connecting constraints reflects the semantics of message sends. They

embody the matching of the type of the actual and formal arguments of

the method as well as the matching of the return value with the result of

98

TYPE INFERENCE

the invoked method's body. For the transition from node 1 to node 3, the

following constraints can be derived:

|B newl c |e|2 (Constraint on the type of the argument).

-1 (A new) m: (B new) | 2 |(kemp :=e) n | (Constraint on the type of the

return value)

Global constraints state that a path is executable if all the edge

conditions encountered hold. Global constraints are constructed by

traversing all the paths from the main node in the graph. Walking along a

path yields an expression of the form:

Ki, K2, ..., Kn=*LUC

with K a condition on an edge, L the local constraints of the final node of

the path and C the connecting constraints to reach the final node.

The set of constraints is solved to yield a type for all expressions in the

program or it fails if the program is untypable. The description of an efficient

implementation of the constraint solver can be found in [Oxhej, Palsberg and

Schwartzbach 1992].

5.4 Motivations for Inferring types in Prograph

The ultimate objective of the analysis described in this thesis is to obtain an

approximation of the side-effects that the execution of an operation

annotated for distribution may induce. Type information wiU help to reach

this goal because:

. Types and effects are not orthogonal, as instances of primitive

datatypes are immutable (except for list) and knowledge of types is

useful to infer side-effects. Class variables can be reached via the

instances of the class and thus knowing the class to which the instance

belongs gives extra information about class variable accesses or updates.

. The type inference will help to reduce the uncertainty due to the

dynamic binding of operations to methods. A better approximation of the

effects will be possible if the side-effects of the methods that cannot be

despatched are ignored.

5.5 Outline of the type Inference system

This section outlines the type inference developed for Prograph.

99

TYPE INFERENCE

5.5.1 Method-wide analysis

The inference algorithm proceeds in a modular fashion: it is applied to

individual methods but it operates under a closed-world assumption (it is in

that respect similar to the type inference algorithm for Smalltalk presented in

[Suzuki 1981]).

The method-wide inference reflects the structure of the method to which it is

applied and relies in turn on a sequence of case-wide inferences, one for each

case in the method. The analysis of a case depends on the results obtained

for the previous one. Once the case-wide inferences have finished, the type

information for the whole method can be synthesised.

5.5.2 Case-wide analysis

A case describes some computation using a visual dataflow graph. Such a

representation lends itself easily to analysis and the information necessary

for the inference is attached to the elements of the graph. It is important to

distinguish between the type information attached to the datalinks and that

attached to the operations (or nodes) of the graph.

. Type of values: different datalinks propagate the same value if they are

attached to the same root and so these datalinks should also share the

same type information.

. Type of operations: the type information available for an operation is

described by a signature. A szgMafwre consists of one or more /zMgs. A line

is made up of a sequence of input types and a sequence of output types.

Each input and output of the operation is matched by a type expression

which describes the set of classes from which the matching input or

output can be an instance. The expression:

<boolean> X <boolean> X <nuinber> -4 <boolean> x <nuinber>

<boolean> x <boolean> X <nuraber> —> <boolean> X <number>

could be two lines of the type signature of an operation with three inputs

and two outputs where < boo l e a n > denotes the boolean type and

d u m b e r > the type of real and integer values in Prograph. (The range of

valid type expressions will be discussed in section 5.6).

The case-wide inference is divided into two phases: the initialisation phase

and iterative analysis phase.

100

TYPE INFERENCE

5.5.2.1 Initialisation phase

During the set-up phase, the type information attached to the datalinks and

the signatures attached of the operations are initialised.

The type of the datalinks is initialised to the most general type, except for the

datalinks connected to the roots of the input bar, which are initialised

according the results of the analysis of the previous case.

The signatures attached to the operations calling a primitive method are

looked-up or can be built "on the fly" for some operations such as default

G e t and S e t , M a t c h , C o n s t z a n b and the I n i t operations. For an

operation calling a user defined method, if the signature of this method has

not been previously inferred, the current analysis is suspended. The missing

signature is inferred independently from the current context; the suspended

analysis may then resume. The analysis is said to be monovuriant (the

signature inferred for a method may be used for operations occuring in

different cases).

5.5.2.2 Iterative analysis

The iterative analysis requires three successive passes over the nodes of the

case graph: one forward, one backward and forward a second time. Recall

that the graph of operations and datalinks is sorted into a linear execution

sequence (see 2.2.1). The three passes skip the I n p u t and O u t p u t

operations (often refered to as the input and output bars). The forward pass

follows the execution sequence from the first operation after the I n p u t

operation until the last operation before the O u t p u t operation, the

backward pass follows the reverse sequence. The purpose of each pass can

now be described:

The first forward pass infers the types for the outputs of the operation

from the types of its inputs and the signature of the operation.

» The backward pass proceeds against the flow of data. It infers the type

of the inputs of the operation from the type of its outputs and its

signature. It also computes some information useful to type the following

case.

* The second forward pass detects whether the types of the outputs of

the case depend on the types of the inputs of the case.

101

TYPE INFERENCE

A line can then be constructed that summarises the type information gathered

during the case analysis with the input and output types of the case.

5.5.3 Implementation outline

Visual dataflow forcefully exposes program structures and the code for the

inference mechanism provides a good outline of the algorithm.

Number of case List of l ist of nodes Method Inarity

c InitialiseVector:

1 7 % , .
^make-Mst^ _

dC a=
Case Analysis

« DPLine » list

Combine

«DPSignature»

Fig. 5.8: Analysis of a method

Fig. 5.8 shows the analysis applied to a method. On the rightmost input of

the case, the method is passed as a sequence of cases which in turn are

represented as sequences of operations (also called nodes). The sequence of

operations within a case follows their execution order. The local method

InitialiseVecbor constructs a sequence of input types for the first case

of the method. Most of the processing takes place in the Case Analysis

local method. Each iteration of Case Analysis produces a sequence of

input types for the next case on the left root of the operation and a line to

describe the input and output types of the case analysed on the right root of

the operation. When all the cases have been analysed, their respective lines

are combined in the Combine local method to produce the signature of the

method.

102

TYPE INFERENCE

Input type Vector Case number List of «Node»

Inference/StartCase %

^ /Set Input T^pe%

^detach _

% , c e s s M i d d 1 e H o d e s ^

% / /CaseVector+Line %
M

detach r ^
0

List of terminal
side-effects.

Next case
vector

«DPLine»

Fig. 5.9: The CaseAnalysis local method

Fig. 5.9 shows the implementation of the C a s e A n a l y s i s method. The

I n f e r e n c e / S k a r t C a s e operation performs some housekeeping activities.

The I n p u t and Output operations (respectively the first and the last

elements in the sequence of nodes) are removed from the sequence and

S e t l n p u t T y p e s operation sets the input types for the case. The

P r o c e s s M i d d l e N o d e s operation executes the different phases of the

analysis on the operations between the input and Output operations. The

CaseVector+Line operation constructs the line with the input and output

types for the case as well as the sequence of input types for the following

case.

103

TYPE INFERENCE

List of the middle «Node»'s

{^/SetlnitTgp*;
/SetSiqnature %jpt

Debug/refresh Cursor y

reverse^

% /bvd Infer e m c e ^ E

(y /PepemdMcy

/fvd Inference 'dK

O
.f:4)

%/Side EiFfects#
O'O \k

Fig. 5.10: The ProcessMiddleNodes method.

The operations of the case of ProcessMiddleNodes (fig. 5.10) carry out

the different stages of the case wide inference. The SeblnitType operation

initialises the type information for the datalinks which are not connected to

the roots of the Input: operation. The SebSignature operation constructs

the signature of the operations and the fwdinference and

bwdinf erence operations perform the forward and backward analysis

over the operations of the case currently analysed. Dependency checks the

existence of a dependency between the input and output types of the case.

The Side-Effects operation is concerned with the effect signature of the

operations of the case (effect inference is the subject of the next chapter of

this thesis).

5.5.4 Properties of the algorithm

There are two properties of interest for a type inference algorithm:

* SouMdness is the guarantee that if a program has been typed by the

inference algorithm, it carmot fail because of a type error. Soundness is

104

TYPE INFERENCE

paramount when the motivation for type inference is type safety. The

inference algorithm proposed for Prograph may infer a type signature for

methods whose excution would result in a run-time type error. The

algorithm proposed for Prograph also rejects type correct code.

« Comp/ekMess is the ability of an inference algorithm to infer the most

general type of an expression. No claim is being made about the

completeness of the type inference algorithm proposed for Prograph.

5.6 Prograph Types

Type inference in Prograph tries to achieve conflicting goals:

. The effect analysis requires concrete type information to describe the

effects induced by a subcomputation. Similarly, in order to reduce the

uncertainty caused by dynamic binding, it is necessary to produce

concrete type information. As in [Suzuki 1981], [Johnson 1986] and

[Palsberg and Schwartzbach 1991], the type of an object is the set of

classes of which the object can be an instance. The notion of subtype and

subset are equivalent.

» A method-wide inference must yield the most general signature. Sets of

classes do not suffice to express all the possible uses of the method, there

might exist dependencies between argument types or between argument

types and return values. Dependencies between argument types often

result from the use of an arithmetic or relational primitive. Dependencies

between the input and output types of methods are often the result of

operations that operate on lists or return one or several of their

arguments. The proposed type system for Prograph allows explicit

description of the dependencies between the input and output types of

methods but not between input types.

5.6.1 Class hierarchy

Prograph distinguishes between Prograph data types and user-defined

classes. It is, for example, not possible to create a subclass of i n t e g e r .

However, this distinction is not relevant for type inference and both the

Prograph data types and user-defined classes can be considered as classes.

Classes are organised in a lattice (fig. 5.11). It is necessary to introduce a few

extra classes to be able to construct the lattice. The top element of the lattice

is called the U n i v e r s a l class and the bottom element Bot tom. The left

105

TYPE INFERENCE

part of the lattice is fixed and consists of the Prograph data types. The right

part is application dependent and consists of the user defined classes that

are inserted below the UDC (User Defined Class) class. For the purpose

of the effect analysis, it is not necessary to distinguish between the real and

integer types and the two are indistinctively represented by the number

class.

The ordering of the elements of the lattice is based on the

relation. The lattice respects the Prograph model of single inheritance except

for the Bottom class which is the subclass of all classes.

nuirfcer string boolean tiotc mill 0 extcingl

Bottom

Fig. 5.11: The class lattice

5.6.2 Type

Types are sets of classes. To facilitate the analysis, these sets should be easy

to describe and to manipulate. A suitable type representation should allow

for parametrised types (e.g. lists).

A type can be one of the following alternatives.

5.6.2.1 Single Type

The type of a data object is the set of possible classes of which this data

object can be an instance. The most trivial set is {a, Bottom} where a is a

class. Such a set is denoted by <a> and is called a smgfe fypg. However,

because of inheritance in object-oriented languages, it is often necessary to

designate not only a single class but the single class and all its subclasses,

<a+> denotes the sublattice whose vertex is the class a.

106

TYPE INFERENCE

5.6.2.2 String Type

Get and Set operations accept a string as a reference to a class. The value

of the string is potentially useful information to describe effects.

The sMmg fypg is a specialisation of the single type. A string type also holds

the value of the string. Other type inference approaches often find it

necessary to introduce such ad hoc types (e.g. strategic types in [Kind and

Friedrich 1993]). The main motivation for introducing string types is to type

the inputs of Get and Set operations more precisely.

It would have been possible to include a sublattice under the s t r i n g

abstract class. The elements of the sublattice would be the names of the user-

defined classes and the ordering would be defined by the subclassing

relation. However, a dynamic solution, where the ordering between two string

values is computed when needed, has been preferred.

As with single types, it is necessary to distinguish between the string and the

"subtypes" of the string, "a" designates the pair {"a". Bottom) with "a" a

string whose value is a. " a " + designates the set formed by the string "a" ,

the strings whose values are the names of all the subclasses of a and the

Bottom element.

5.6.2.3 List Type

A Zzsf (ypg is by definition the pair {List, Bottom} but it is also

parametrised by the type of the elements of the list object.

(T) denotes a list whose elements have the type %. Prograph allows lists to

be heterogeneous.

5.6.2.4 Union Type

A single type is not always enough to represent the set of possible classes for

a data object. A WMZOM (ypg is the union of an arbitrary number of types.

[%! I T2] is an example such a set. Union types cannot be nested. The

analysis will not differentiate between heterogeneous lists and the union type

of homogeneous lists, so [(t i) | (12) 1 must be expressed as ([T] | T2]).

5.6.3 Type dependencies

A (ype depgndeMcy expresses the fact that the output type of a polymorphic

method may depend on one or several of the input types of the method. Type

dependencies appear on the right hand side of a signature line.

107

TYPE INFERENCE

A type dependency can be thought of as a function of the input types. When

the dependency is evaluated, references to the input types are substituted

with the actual types to compute a type for the output.

The evaluation of a type dependency is described by an Evaluate function.

The signature of the Evaluate function is:

Dependency X Type* —>Type

From the dependency and the sequence of input types, Evaluatie produces

the type of the output value.

The Inverse function of a dependency computes the input types in a

signature line using the value of the dependency, the signature of inverse

is:

Type X Dependency X Type* —> Type*

I n v e r s e takes the type which corresponds to the value of the dependency,

the dependency and the sequence of input types and returns the sequence of

updated input types.

Type dependencies are not only used in the lines of an operation signature.

As will be explained later, they can also be attached to the datalinks of a

case in order to detect whether the type of the output of the case depend on

the type of the inputs of the case.

Five type dependencies are available. They can be composed in order to

express any possible dependency.

5.6.3.1 Input

The zMpuf type dependency expresses the most trivial type dependency

between an input and an output. The type of the output is the same as the

type of the designated input numbered from the left. In the line of an

operation signature. Id (1) means that the type of the output is the same as

the type of the first input of the operation. When attached to a datalink.

Id (1) means that the type of the value on this datalink is the type of the

first input of the case.

The input dependency provides the same functionality as Milner's type

variables as shown below:

<Universal+> —> Id(l)

is equivalent to the following function type in Milner's type system:

108

TYPE INFERENCE

a -> a

It can also be used to express bounded universal polymorphism:

<a+> —> Id (1)

is equivalent to Kind's qualified type variables in the line:
a<a> a<a>

5.6.3.2 Element

The efgwgMf dependency returns the type of the element of the list coming

onto the designated input. E (1) means that the type of the output is the

type of the elements of the list on input 1.

For example, the primitive d e t a c h - r detaches the rightmost element of its

input list. The element dependency is needed for the type signature of

d e t a c h - r .

The line:

{<Universal+>) —> E(1)

is equivalent to the following function type in Milner s type system.

a l i s t —> a

5.6.3.3 List

The Zzgf dependency designates that the output is a list whose elements have

their type dependent on the type of the inputs.

For example^ the primitive method pack can take an input a and returns a

list with a as a single element. List is used in the signature of pack. L (6)

denotes the list dependency applied to the type dependency 5.

The line:

<Universal + > —> L (1)

is equivalent to the following function type in Milner's type system:

a a l i s t

5.6.3.4 Union and Intersection

The wMz'oM and mfersecfzoM dependencies, denoted U and I respectively, return

the union or the intersection of several types and type dependencies.

The primitive f i n d - i n s t a n c e takes a list of objects, an attribute name

and a value and returns the index in the list of the first object for which the

named attribute has the required value, the object itself is returned as the

109

TYPE INFERENCE

second output of the primitive. If no object is found, 0 is returned for the

index and NULL for the found object. The type of the second output of

f i n d - i n s t a n c e is described by the dependency:

U(I(E(1) <UDC4->) <null>)

5.6.4 Operations on types and dependencies

To evaluate and invert type dependencies during the iterative analysis, it is

necessary to compute the union (u) and intersection (n) of types and/or of

type dependencies

Such computations rely heavily on the predicates c aiid ?.

c is defined for any pair of types and/or type dependencies. It is equivalent

to set inclusion. However if the intersection of the two type expressions

cannot be computed, c returns FALSE.

I d (1) C <Universal + > = TRUE because whatever type I d (1) is

evaluated to, <Universal+> will include it, by definition.

Id(l) c <number> = FALSE, because the overlap between <number>

and Id (1) cannot be computed, this overlap depends on the type to which

Id (1) is evaluated.

<number> c <none> = FALSE because the two types do not overlap.

A second predicate, ?, is also defined for any pair of types and/or type

dependencies. This predicate returns true when the intersection of two sets

cannot be computed e.g. <number>?E (1) = TRUE.

The use of the union and intersection operations is illustrated by the

following examples:

<boolean>u<number>= [<boolean> | <number>]

<boolean> n <number> = <Bottom>

(<boolean>) u (<nuinber>) = ([<boolean> | <nimber>])

(<boolean>) n {<number>) =<Bottom>

Where a is a user defined class:

<a>u <UDC+> = <UDC+>

<a> n <UDC+> = <a>

<a> u Id(l) =U(<a> 1)

<a> n Id (1) = I (<a> 1)

110

TYPE INFERENCE

5.6.5 BNF for type expressions

The set of valid type expressions is given using the Backus-Naur form (BNF):

SingleType;:<a> | <a+>

StringType:: "a" |"a"+

SimpleType::SingleType|StringType

ListType:: (SimpleType) | (UnionType)| (LisbType)

UnionType:: [SimpleType | SimpleType+]

I [ListType I SimpleType"*"]

n: : Integer

InputDependency : : Id(n)

Element Dependency : : E(n)

UnaryDependency::InputDependency| ElementDependency

ListDependency ; ; L(n) | L (Union Dependency) |

L(IntersectionDependency)

UnionDependency : : U(UnaryDependency UnaryDependency+)

I U(UnaryDependency+SimpleType+)

I U(UnaryDependencyListType)

I U (UnaryDependencySimpleType"*" ListType)

I U (I n t e r s e c t i o n D e p e n d e n c y IntersectionDependency)

I U(IntersectionDepency"*" SimpleType"'")

I U (IntersectionDependency"*"ListType)

I U {IntersectionDepency"'" SimpleType"*" ListType)

I U(UnaryDependency+ IntersectionDependency+)

I U(UnaryDependency+ IntersectionDepency+ SimpleType+)

I U(UnaryDependency''' IntersectionDependency'^' ListType)

I U(UnaryDependencyIntersectionDepency'*' SimpleType''' ListType)

111

TYPE INFERENCE

IntersectionDependency : : I (UnaryDependency"^)

I I (UnaryDependency'^ SimpleType)

I I (UnaryDependency''" ListType)

5.7 Operation Signatures

The outline of the type inference algorithm explained that the analysis of the

cases of a method is divided into two distinct phases: the initialisation phase

and the iterative analysis phase. During the intialisation phase, a signature is

constructed for every operation of the case (except for the Input and

Output operations). This signature depends on the nature of the operation.

The rules to derive the signatures of the operations are given in the following

subsections.

5.7.1 Simple operation

A simple operation can be a call to a primitive or a user-defined method.

Primitives' signatures cannot be inferred, they must be available so that they

can be used to type any operation calling a primitive. The signatures of the

primitive methods are explained in 5.7.2.

In the case of user-defined methods, the signature of the operation will

depend on the sort of reference used (i.e. WMZDersa/, coMkxf-

dgknmzMgff or reference).

5.7.1.1 Call with a universal reference

With a universal reference, the signature of the operation is the signature of

the universal method called. If the signature is not available it must be

inferred separately.

5.7.1.2 Call with a context determined reference

An operation with a context determined reference can only be found in the

case of a method defined by a class. The operation calls the method

applicable to the class of the method which contains the operation. The

signature of the applicable method is used as the operation signature.

When the operation with a context determined reference is super annotated,

the signature of the operation is the signature of the method applicable to the

superclass of the class of the method which contains the operation.

112

I I T E INFERENCE

5.7.1.3 Call with a data-determined reference

With a data-determined reference the name of the operation does not suffice

to determine which method is going to be called at run-time. As in [Suzuki

1981] and [Kind and Friedrich 1993], the solution is to construct the

signature of the operation by joining the signatures of all the methods that

may be called by the operation. The set of the methods that may be called

comprises all the simple class methods with the name and arity of the calling

operation and possibly a universal or a primitive method with the name and

the arity of the calling operation.

For each method potentially called, the leftmost input type (that is the type

of the recgiyer in object-oriented terminology) in each line of the method's

signature must be restricted to the set of classes to which the method is

applicable. Restricting the type of the receiver means computing the

intersection of the type in the line of the method with the set of classes to

which the method is applicable.

This rule is quite simple to understand: if a method is to be called by an

operation, the leftmost input of this operation must be an instance of a class

to which the method is applicable. A parallel can be drawn between this rule

and the edge conditions in [Palsberg and Schwartzbach 1991].

The rule is illustrated with a simple example. The Person class defines a

method called d e t a i l s . The S t u d e n t class is a subclass of the P e r s o n

class.

Person

Student

The S t u d e n t class redefines the d e t a i l s method. An operation calling the

d e t a i l s method occurs in the case of a method:

f/ w
/details

113

TYPE INFERENCE

At this stage of the analysis it is not possible to say whether the details

method defined for the Person class or the details method defined for

the Student class will be called. The signature of the details operation

consists of the combined signatures of the two methods. The signature of the

details method for the Person class is:

<Person+> —>

(Note that an instance of the Student class would be a valid argument for

the details method defined for the Person class).

The signature of the d e t a i l s method defined for the Student class is:

<Student> —>

However, when constructing the signature of the details operation, it must be

remembered that the d e t a i I s method defined for the Person class will be

called if the type of the receiver contains the class Person or subclasses or

Person which do not redefine the d e t a i l s method. As the immediate

subclass of Person, the Student class redefines the d e t a i l s method, the

type of the receiver must be <Person>. The d e t a i l s method redefined by

the Student class will be called only if the receiver of the operation has the

type <Student>. The signature of the d e t a i l s operation comprises the

line of the signature of the d e t a i l s method defined for the P e r s o n class

(the leftmost type of the line is restricted to <Person>) and the line of the

signature of the d e t a i l s method defined for the S t u d e n t class (the

leftmost type of the line is restricted to <Student>):

<Person+> n <Person> —»

<Student> Pi <Student> —>

which is:

<Person> —>

<5tudent:> —>

5.7.2 Primitive method signatures

The signatures for the primitive methods are stored in a repository and can

be looked up using the name of the primitive. During the initialisation phase

of the case-wide type inference, the signature of a primitive method is

retrieved from the repository and associated with the operation that may call

the primitive method.

Some primitives have optional inputs or outputs. For example, the primitive

(in) takes a list, a data item and optionally the value of a start index as

114

TYPE INFERENCE

inputs and returns the index of the first occurrence after the start index of the

data item in the list or 0 if the item is not found. The signature of (i n)

requires two lines. The first line describes the primitive (i n) as a method

with two inputs and one output, the second line describes an operation with

three inputs and one output.

The signature of (in) is:

(<Universal+>) X <Universal+> —> <number>

(<Universal+>) X <Universal+> X <niimber> —> <number>

When the signature of the (in) operation is initialised, the line where the

number of inputs does not match the number of inputs of the calling

operation is discarded.

Other primitives may also have an arbitrary number of inputs or outputs. The

+ (number addition) primitive is a good example. The variable number of

inputs cannot conveniently be represented by multiple lines as the number of

inputs may vary between 2 and 256. A new concept must be introduced, that

of a Vgrzfy. A varity term (denoted by ...) in a line means that the left hand

side or the right hand side of the line may be extended by duplicating the

type next to the varity term.

The signature of + is:

<nuinber> x <number> x... —> <niimber>

When the signature of the + operation is constructed during the initialisation

phase, the varity term must replaced with the required sequence of

<number> types to match the arity of the calling + operation in the case.

5.7.3 Get and Seb operations

Attributes are supported by a finite set of classes. Therefore, the name of an

attribute accessed or modified gives a useful indication of the type of the

leftmost argument of the Get or Set: operation.

If a default Get: or Set: operation is called then the type of the receiver

includes all the classes defining or inheriting the attribute and the string types

with values that are the names of these classes. The inference algorithm does

not attempt to keep track of the types of the class and instance variables.

A Get: or a Set: operation may also have a data-determined reference. The

signature is obtained by joining the signatures of the default and user-defined

methods that may be called. As for a simple operation with a data-

115

TYPE INFERENCE

determined reference, the leftmost type of the lines must be narrowed to the

set of classes (and the names of these classes) to which a user-defined Get

or Set method is applicable.

The signature of a user-defined G e t or S e t method is inferred

independently.

5.7.4 Instance generator

The signature of an operation instantiating a new object can be constructed

on the fly if a default instance generator is called:

<none> —> <Z>

((<Universal+>)) —> <Z>

where Z is the name of the operation. In the second line, the list of lists

corresponds to the optional list of (attribute name, attribute value) pairs that

can be passed to the Init operation.

If a custom instance generator has been defined, its signature has to be

inferred independently.

5.7.5 Persistent operations

Very little type information can be inferred from a persistent Get or a

persistent Set operation as the algorithm does not record the type of

persistent values. In the case of a persistent Set operation, the type of the

input is set to <Universal+>; for a persistent Get, the type of the output

is also set to <Universal+>.

5.7.6 Local operations

The signature of a Local operation is obtained by inferring the signature of

the local method attached to it.

5.7.7 Constant operations

The type signature of a Constant operation is a line with no input and the

type of the constant value as output.

5.7.8 Match operations

A Match operation can have different controls attached to it: NextCase ,

F i n i s h , Terminate , F a i l and Continue. The control can be triggered

when the match fails, or on the contrary when it succeeds. For the purpose of

the analysis, it would be interesting to keep track of the type that would

trigger the activation of any control. However, this would result in an

116

TYPE INFERENCE

increased complexity. The algorithm keeps track only of the type of the value

that might trigger a NexbCase control. This type, called NextType, is a

property of the datalink connected to the terminal of the Mabch operation.

The rules are:

" If the NexbCase control is activated on a failed match, the signature

consists of a single line whose argument type is that of the value that

must be matched and no return type; Next:Type is set to

<Universal+> for the datalink coming into the Match operation. This

case is illustrated below:

A
Next case on failure

The execution will resume at the input operation in the following case if

the value on the incoming datalink of the Match operation is not equal to

5. That is any value other than 5, and by extension a value of any type

(including number) can trigger the control. Therefore NextType is set to

<Universal+>. If the execution is to proceed in the current case, the

value on the datalink must be 5 and the signature of the Match operation

should be:

<number> —>

* For a NextCase control activated on a successful match, the signature

constructed for the Match operation is:

<Universal+>

NextType is set to the type of the value to be matched. In the following

example:

5 V Next case on success

NextType would be set to <nuinber> .

This rule becomes slightly more complex when the same value flows into

several Match operations. This situation occurs when the datalinks

connected to the terminals of different Match operations are connected to

the same root. The NextType of the datalinks is set to the union of the

types propagated by the diffemt Match operations (this rule is explained in

greater detail in 5.8.2.4).

117

TYPE INFERENCE

5.8

5.7.9 Signature of multiplex operations

The clean separation between an operation and the different multiplex

aimotations that can be applied to the terminal and roots of an operation or

the operation itself makes the typing of an annotated operation relatively

easy.

In the case of an operation with list annotated terminals and roots, the type

signature of the unannotated operation can be specialised by converting the

type of list terminals and list roots into list types or list type dependencies.

The transformation is illustrated by the following example:

(a)
0 0

(b)

The signature of a is:

<nuinber> X <number> —> <nimtber>

The transformation of the signature of a yields for b the signature:

(<nuinber>) X <number> (<nuinber>)

The typing of a partition annotated operation is slightly more complex. There

exists a dependency between the type of the list being partitioned and the

types of the and pass lists.

(a) (b)

The signature of a is:

<Universal+> X<Universal+> •<boolean>

it becomes for b:

(<Universal+>) X<Universal+> —>L(U(E(1)<0>)) XL(U{E(1)<0>))

where <0> is a type such that (<0>) is the empty list type.

Other multiplex annotations do not affect the signature of the operation.

Type inference algorithm

This section explains in greater detail the inference of a method signature. The

first subsection describes the start of the method-wide analysis. Most of the

analysis occurs in the scope of the individual cases of the method and the

118

TYPE INFERENCE

second subsection covers the different steps of the case analysis. The

synthesis of the method signature from the results of the case analyses is then

explained. The last subsection presents the analysis of recursive methods.

5.8.1 Method wide analysis

The inference is applied to one method at a time. It is necessary to be able to

identify precisely the method to which the type analysis must be applied.

Name overloading and the existence of different types of methods (Set,

Get, Simple, Inib and Local) requires a combination of three

components to identify a method.

A wzgfAod zdeMfz/zgr identifies a method using the following

C f a s s N a m g / M e f A o d T y p g triplet.

* CZassName is the name of the class to which the method belongs, for a

universal method, the Universa l keyword is used instead.

« is the name of the method, I n i b methods are designated

by the «» characters. The name of a local method is constructed from the

name of the containing method and the name of the local method (if it has

one).

* distinguishes among the various method types: Set , Get,

S i m p l e and L o c a l (there is no I n i t type because custom I n i t

methods can be distinguished by their name).

The inference mechanism maintains a stack of method identifiers during the

analysis. When the analysis is applied to a method, its method identifier is

pushed onto the stack. The method identifier on the top of the stack

corresponds to the analysis currently active, and all the identifiers occurring

in the stack are those of the methods for which analysis has been suspended.

Upon completion of the analysis of a method, its identifier is popped from

the top of the stack. The stack of method identifiers serves two purposes, it

detects possible rescursion in the method currently analysed and, in case of

failure, helps to localise at which point the inference failed.

5.8.2 Case wide analysis

Most of the computations to infer the type signature of a method take place

in the scope of the individual cases of the method. This subsection describes

in detail the different stages of the case analysis:

" The initialisation phase

119

TYPE INFERENCE

" The forward analysis

* The backward analysis

• The computation of the Next Type info for the datalinks of the case

The computation of the type dependencies between the inputs and

outputs of the case.

5.8.2.1 Initialisation phase

During the initialisation phase, the information attached to the datalinks and

the signatures of the nodes are set up.

The information inferred about the value flowing on a datalink or a set of

datalinks is described by a tuple: (Type, Next:Type, Dependency). The

purpose of each field is now explained:

The value of Type is an approximation of the type of the data object

on the datalink.

» The value of NextiType is the type the data object should have if a

NextzCase control is to be activated.

» Dependency keeps track of the dependencies between the types of

the objects on the graph.

During initialisation, seven categories of datalinks can be distinguished. The

first four categories are defined by the possible combination of two

parameters: connection of the datalink to the input bar and connection of the

datalink to the terminal of a Match operation. For the purpose of the

analysis, it has been necessary to introduce three extra categories of

datalinks, the first one is called Not:Connect:edTerminal and handles

unconnected operation terminals. The second extra category, called

NobConnectedRoot, is required to deal with a root which has no datalink

connected to it. The third extra category is used for the roots of the Input

operation which are not connected.

The rules used to construct the signatures of the operations have been

described in section 5.7.

The table below shows the values of the properties attached to the datalinks

after the initialisation phase:

120

TYPE INFERENCE

Type NextType Dependency

Not connected to M a t c h

Connected to i n p u t

X N o I n f o I d (i)

Connected to M a t c h

Connected to input

X X' I d (i)

Not connected to M a t c h

Not connected to input

< U n i v e r s a l + > N o I n f o

Connected to M a t c h

Not connected to i n p u t

< U n i v e r s a l + > f -

N o t C o n n e c t e d T e r m i n a l < n o n e > N o l n f o

N o t C o n n e c t e d R o o t < U n i v e r s a l + > N o I n f o

N o t C o n n e c t e d R o o t o f

I n p u t o p e r a t i o n .

X N o l n f o -

T, the value of Type for a datalink connected to the input bar can be:

* < U n i v e r s a l + > if the case being analysed is the first case of the

method.

* the NextType of the matching input in the previous case if NexbType

is not No I n f o (No I n f o means that there is no information available to

type the next case)

* the Type of the matching input in the previous case otherwise.

T', the NextType of a datalink connected to a Match operation is set during

the construction of the signature of the Match operation (according to the

rules described in 5.7.8).

Id (i) is the Dependency value for a datalink connected to the input bar

where i is the position of the input in the sequence of the inputs of the case

(1 is the leftmost input of the case). I d (i) means that the type of the

datalink connected to the input bar is the type of the input of the case.

121

TYPE INFERENCE

5.8.2.2 Forward Anzilysis

After the initialisation phase, the signature of each operation comprises one

or more lines. The role of the forward analysis is to infer the value of Type

for the outgoing datalinks (i.e the type of the value flowing on the datalink)

from the value of Type for the incoming datalinks and the signature of the

operation.

For each operation of the case (except the input and the output bars),

following the execution order, the forward analysis is performed in two

stages:

* The update of the lines of the signature of the operation

The update of the values of Type for the outgoing datalink of the

operation.

The pairwise intersections of the types of the incoming datalinks, (the values

of Type for the incoming datalinks, and T2 fig- 5.12) and the matching

input types in the line (%' i and T'2 in fig. 5.12) are computed. If, for one pair,

the intersection yields <Bottom>, the line is as a whole,

otherwise, the input types in the line slots are replaced by the intersection set

(%! n T' 1 and T2 f 2 are the two intersection sets in fig. 5.12). This

update is repeated for each of the line of the signature.

' t l
i

^ClassRef Cmp^
c r

^3

1 1:2 /
A

^ClassRef Cmp^
3

1:3

Fig. 5.12: Intersection of the incoming types with the input types of the lines.

The purpose of the second stage is to update the value of Type for the

outgoing datalinks of the operation.

Each line propagates a new type for each outgoing datalink of the operation.

If an output slot in a line contains a type dependency, the type to be

propagated is the result of the evaluation of the type dependency, otherwise

it is the type stored in the output slot of the line.

Eventually, the updated value of Type for each outgoing datalink is the

union of the types propagated by the different lines for that datalink.

122

TYPE INFERENCE

Fig. 5.13 illustrates the most trivial case, a signature with a single line whose

output slot contains a type. 1:3is replaced with in fig. 5.13.

:z
^ C k s s R e f

n T'̂ x Tg n T'2->t'3

^3

Fig. 5.13 Propagation of the output types.

If after update, the signature of the the operation shown in fig. 5.12 was:

T1 n T'l X 1:2 t'2 -> (81 is a type dependency).

T' g, the updated value of Type for the outgoing datalink of the operation

would be:

Evaluate (81,

To illustrate the most general case, if after its update the signature of the

operation shown in fig. 5.12 comprised the two following lines:

T i n T ' i a X T 2 ^ ' [' 2 a - ^ 5 l a

Ti n T' lb X 1:2 n T' 2b ' 3b

T' 2̂ the updated value of Type for the outgoing datalink of the operation

would be the union of the value of the type dependency 5ia and the type

i:'3b:

Evaluat:e(8ia, CCI At' ia''':2'̂ i:'2a)

In summary, at the end of the forward analysis, the value of Type for each

datalink of the case has been updated once, except for the datalinks

connected to the input bar.

5.8.2.3 Backward Analysis

The role of backward analysis is to infer the value of T y p e on the input

datalinks from the values of Type on the output datalinks and the signature

of the operation. The likely presence of type dependencies in the output slots

of the signature lines makes the backward analysis more complex than the

forward analysis.

For each operation of the case (except the input and the output bars),

following the reverse execution order, the backward analysis is performed in

two stages:

» The update of the lines of the signature of the operation

123

TYPE INFERENCE

* The update of the value of Type for the incoming datalinks of the

operation.

Each line in the signature is updated as follows. In each line^ each output slot

contains either a type or a type dependency.

If the output slot of the line contains a type, the intersection of that type with

the type of the matching outgoing datalink is computed and becomes the type

stored in the output slot of the line (this is similar in principle to the first

stage of the forward analysis, except that the slots whose types are being

updated are now on the right hand side of the line).

If the output slot of the line contains a type dependency, the pairwise

intersection of the last computed value of the type dependency

(Evaluate (61, (t'l, i:'2, T'3)) in fig. 5.14) and the type of the

corresponding datalink (14 in fig. 5.14) must be computed and the

intersection becomes the new value of the type dependency (i:'4 in fig. 5.14).

As with forward analysis, an intersection producing a <Bot:tom> result

disqualifies the entire line.

ohooseg^'l><'^'2X': '3 81

T ' Evaluate(6), (t'], t' t' 3)) A

(T"t"2' "̂ "3) Inverse(T'4, 5;, (%' t'3))

Fig. 5.14: Update of the line of the signature of the operation

The next step in the update of each line is to obtain the revised input types of

the line.

If the output slots of the line contain only types, the input types of the line

are left unmodified.

If the output slots of the lines contain type dependencies, the change in the

value of the type dependencies (t'4 is the new value of dependecy 81 in fig.

5.14) must be reflected in the input types of the line. The application of the

I n v e r s e function to a dependency produces an updated sequence of input

types for the line ((t " %, T"2, i:"3) in fig. 5.14). If the same line has several

output slots containing type dependencies, the same number of sequences of

124

TYPE INFERENCE

updated input types will be produced. The sequences are combined into one

by computing the union of the matching elements of the sequences. The

following example summarises the update of the lines of the signature of an

operation during the backward analysis. A line contains two types

dependencies 5% and

T'l X T'2 X T'3 -» 6% X §2

The inversion of 8% produces the sequence of input types (%" 1.1/1" 1.2,

T" 1 3) and the inversion of 82 produces the sequence of input types (t"2.1,

T:" 2.2/ " 2.3) / the two sequences are combined to construct the updated line:

T'l.l UT"2.1 XT"i.2Ui:"2.2XT"L3 ui;"2.3 81 X82

After all the lines of the signature of the operation have been updated, the

changes must be propagated to Type values of the incoming datalinks of the

operation.

T") n i l

^Choose 61

Fig. 5.15 a&b: Propagation of the types on the input datalinks.

If the signature of the operation contains several lines, the matching input

types of the lines are combined using the union operator to produce a

sequence of update types for the incoming datalinks of the operation.

In order to understand how the types on the incoming datalinks of the

operation should be updated, it must be remembered that all the datalinks

connected to the same root share the same Type value. The update input

types are propagated upward by computing, for each datalink, the

intersection of the current type of the datalink (%! to Tg in fig 5.15.a) and the

matching update input type (T" 1 to T" 3 in fig. 5.15.b).

The need to compute the intersection to propagate types upward is

illustrated by the example in fig. 5.16.

125

TYPE INFERENCE

and%

Fig. 5.16: Type incorrect code fragment.

The fragment of code shown in fig. 5.16 is not type-correct. During the

forward analysis, Ti is set to < U n i v e r s a l + > . If the backward analysis

processes the and operation first, will become <Boolean>. When

processing the + operation, the analysis must propagate the information that

the + operation requires an input of type <number>. The intersection of

<number> and <boolean> produces <Bottom> and the analysis fails.

In summary, the backward analysis updates the value of Type for all the

datalinks except for those connected to the Outpu t operation.

The combined effect of the forward and backward analyses is that the value

of Type for each datalink of the case has been updated at least once

(moreover, the value of Type of all the datalinks of the case that are

connected to neither the roots of the Input operation nor the terminals of

the Output operation has been updated twice). The optimal number of

passes to yield an approximation of the types is likely to depend on the

topology of the dataflow graph. The Kaplan and UUman algorithm [Kaplan

and Ullman 1980) reiterates forward and backward passes until a fixed

point is reached; the drawback of this approach is its computational cost.

The approach chosen for Prograph favours a lesser computational cost at the

expense of the precision of the analysis.

5.8.2.4 Computing NextType

The purpose of NextType is to gather type information about the input

values of a case (cf. 5.7.8). There may exist a correlation between the type of

the inputs of a method and the sequence of cases visited during its execution.

The operation to which the N e x t C a s e control is attached may not be

directly connected to the input bar. It is therefore necessary to compute the

value of NextType for all the datalinks on the graph.

126

TYPE INFERENCE

The value of NextType can be a type or a Nolnfo token. The value of

NexbType for each datalink is computed during the backward pass of the

case analysis. The procedure described below is applied to all the operations

(except the input and output bars) on the dataflow graph of the case.

In each line of the signature of the operation, each output slot contains either

a type or a type dependency.

If the slot contains a type, no further action is necessary.

If the slot contains a type dependency and the value of NextType for the

matching outgoing datalink is Nolnfo, no further action is required.

Otherwise, the type dependency is inverted with the value of NextType for

the outgoing datalink to produce an update sequence for the NextType

values of the incoming datalinks. Each element of the update sequence is

either a type or a Nolnfo token. If several update sequences are produced

by the same and/or different lines of the signature of the operation, they are

combined by performing the union of their matching elements (a Nolnfo

token acts as a neutral element for the union).

As for the explanation of the backward analysis, it is important to remember

that all the datalinks connected to the same root share the same NextType

value. The types (or Nolnfo tokens) in the combined update sequence are

propagated upward by computing for each datalink the union of the value of

NextType with the value of the matching element of the sequence. The need

to compute the union to update the value NextType is illustrated by the

example in fig. 5.17

NexCType= (<nuinber>)"V" A
5 ^ V ^

Fig. 5.17: Union of NextType values

In the example shown, the computation will resume in the following case if

the input is the integer value 5 or is the string "V". Thus, the NextType

value for the two datalinks connected to the input must be the union type of

the string " V and number, [<nuinber> | "V"].

127

TYPE INFERENCE

5.8.2.5 Computing intra-case type dependencies

The purpose of the last property attached to the datalinks of the graph, the

Dependency property, is to record dependencies between the input types

and the output types of the case being analysed. The value of Dependency

is computed during a second forward pass over the nodes of the case.

The procedure described below is applied to all the operations of the case

(except the I n p u t and Output operations) following the execution order.

In each line of the signature of the operation, each output slot contains either

a type or a type dependency.

If the output slot contains a type, this type becomes the value of

Dependency for the matching outgoing datalinks.

If the output slot contains a type dependency, this dependency must be

composed. Composing a data dependency means that all references to

operation inputs that occur in the dependency are replaced with the value of

Dependency for the corresponding incoming datalink. If all the referenced

Dependency values are types, the substitution will logically yield a type,

otherwise it yields a composed type dependency. The result of the

substitution becomes the value of Dependency for the matching outgoing

datalink.

The computation of the Dependency value is illustrated by the following

example (fig. 5.18). 5%, 82 aiid 83 are the Dependency properties attached

to the three datalinks of the graph.

5

pack
" -9—

%
TRUE

3 "

Fig. 5.18: Computation of the Dependency property

The signature constructed for pack during the initialisation phase is:

<Universal+> X <Universal+> —> L (U (1 2))

81 is I d (1) and 82 is <boo lean> . When 83 is computed, the reference to

the input 1 and 2 in the output type dependency of p a c k are substituted

with the values of 81 and 82 and the value obtained for 83 is:

128

TYPE INFERENCE

L(U(1<boolean>))

When the signature of an operation comprises more than one line, the type

dependencies are composed line by line and the value of Dependency for

each outgoing datalink of the operation is obtained by performing the union

of the composed dependencies.

The computation of the type dependencies across the case is the last pass

over the dataflow graph before the case analysis completes.

5.8.2.6 Construction of the line for the case

Once all the passes have been carried out, a line can be constructed to

describe the input and output types of the case.

The Type values for the datalinks connected to the Input operation become

the input types of the case.

The Dependency values (whether a type or a type dependency) for the

datalinks connected to the Output operation are used directly to describe

the types of the outputs in the case line.

It is also necessary to construct the sequence of input types for the following

case. This sequence is constructed by examining the values of NextType and

Type for the datalinks connected to the roots of the Input operation of the

case currently analysed. For each root of the Input operation, two cases can

be distinguished, either the NextType value is Nolnfo or the NextType

value is a type.

» If the NextType value for the datalink(s) connected to the root is a

type, the NextType value is used in the sequence for the next case.

* Otherwise, when NextType is No Info, the Type value of the

datalink(s) connected to the root is used in the sequence For a root of the

I n p u t operat ion with no datalink connected to it (a

NotConnectedRoot, see 5.8.2.1), the NextType value is Nolnfo.

5.8.3 Synthesis of the method signature

The signature of the method is obtained by combining the lines produced by

the analysis of the cases of the method into a single line. Each slot of the

combined line contains the union of the corresponding types and type

dependencies from the various lines.

129

TYPE INFERENCE

5.8.4 Handling recursion

Recursion in Prograph may occur in different guises. Most simply, a universal

method is recursive if it is called again directly or indirectly by an operation

in one of its cases.

A more subtle form of a recursion is the consequence of Prograph object-

orientation. An operation with a data-determined reference may appear in

one of the cases of a method and have the same name as the method. The

type of the receiver of the operation will determine whether the method is

recursive or not.

1 % 1:1 C o m m o n d e r / C l o s e g l %

^Modeless Handler^

%Moda1 Handier^

^ / C l o s e d

Fig. 5.20: Potentially recursive method.

In the example shown in fig. 5.20 (taken from the Application Building

Classes), the method Close is in practice not recursive because the objects

stored in the Modeless Handler and Modal Handler at tr ibutes are no t

instances of the Commander class. It is a common programming practice in

Prograph to call, in one of the cases of a method, operations with the same

name as the enclosing method to apply them to the objects stored in the

attributes of the method receiver.

The detection of a recursive pattern in the analysis (that is, trying to apply

the type analysis to the same method twice) is the primary motivation to

keep track of the order in which the nested analyses are applied using a stack

of method identifiers (see 5.8.1). Before starting the analysis of a method, the

inference mechanism checks whether its method identifier is already on the

stack of method identifiers. If this is the case, recursion has been detected. It

130

TYPE INFERENCE

can be direct recursion (if the matching method identifier is on the top of the

stack or if it is separated from the top only by local methods' identifiers) or

mutual recursion (several identifiers, other than local method identifiers,

occur between the matching identifier and the top of the stack).

Instead of analysing it again, a dummy signature for the operation making the

recursive call is constructed. The approximation used to construct the

dummy signature is based on the following observations:

* If the method returns a value, the termination clause will have to be

implemented as a separate case in which no recursive call occurs. Typing

this case provides a first approximation of the signature of the method.

Furthermore for a non-tail recursive method, the signature of the

operation occuring between the recursive call and the Outpu t operation

helps to refine the approximation of the signature of the recursive

method.

* A recursive method with no return value can be implemented with a

single case. Recursion must be stopped by a control attached to an

operation which checks that some conditions are met. The operation with

the control must occur before the recursive call in the execution sequence,

otherwise recursion will be infinite. The signature of the operation with

the check provides an approximation of the input types of the recursive

method.

* As in the example shown above, the apparent recursion does not result

in a recursive program and the relevant type information to construct the

operation signature comes from the signatures of the other methods that

may be called.

The dummy signature for the recursive method has all its input and output

types set to < r e c u r s i v e > . <recursive> is a pseudo type and acts as a

neutral element for both type union and type intersection (< r e c u r s i v e >

a = a and < r e c u r s i v e > v a = a , with a being any type or type

dependency). This reflects the intuition that the dummy signature carries no

useful information and that it should interfere as little as possible with the

inference:

* Type unions and intersections are computed during the case analysis

and < r e c u r s i v e > should allow the analysis to obtain information from

the context in which the recursive call occurs.

131

TYPE INFERENCE

» Type unions are computed to construct the signature of a method from

the results of the analyses of its cases. For a tail recursive method the

relevant type information comes from the case with no recursive call.

5.9 Examples

5.9.1 A simple example

This example shows how type inference is applied to the method I s Even?.

i sEven? has a single case, it takes an integer as input and returns TRUE if

the integer is even, FALSE otherwise.

Method: IsEven?

Fig. 5.21: The i sEven? method

The following subsections describe the different phases of the type inference,

where the properties of the datalinks are printed on the graph using the tuple

format defined in 5.8.2.1, that is (Type, NexbType, Dependency) and

the operation signatures are printed next to the operations to which they are

attached.

132

TYPE INFERENCE

5.9.1.1 Initialisation phase

(<Universal+>,NoInfo,Id{l))

<number > x <number> -» <number > x <number> K M i V %
0 0

2 —> <ntiinber>
LiNKa—n—

iQt f<Universal-t->,NQln£o, -)

{<Universal+>,NoInfo,-) O —> <nuinber>
w _ o

(<aniversal+>,NoInfo, -)
<Universal+> x <Universal+> —> <booleem> %

0
{<universal+>,NoInfo,-)

Method: IsEven?

Fig. 5.22.a: The signatures of the nodes have been set.

During the set-up phase, a signature is associated with each operation on the

dataflow graph, except for the Input and Output, operations (fig. 5.22.a).

The Type value for all the datalinks is set to < U n i v e r s a l + >, the

NextType value for all the datalinks is N o l n f o , the Dependency value

for LINKI is Id (1) and it is not specified for the other datalinks of the

case.

5.9.1.2 Forward analysis

(<Universal+>,NoInfo,Id(l)) m ™
2 -4 <nuniber>

ILINK2—n—
gy A ' (<number>,NoInfo, -)

:number> X <number> —> <number> x <nuinber> ^idiY ̂
O O"̂

(<number>,NoInfo, - 0 -> <nmnber>

<nuitiber> x <number> —><boolean> ^

n

-g-
(<number>,NoInfo,-

(<boolean>,NoInfo,-)

Method: IsEven?

Fig. 5.22.b: After the forward analysis.

During the forward analysis LINKI remains unchanged and LINK2 has type

<number>. Since the signature of the operation i d i v has only one line

(which is compatible with the type on LINK2), LINK3 must have the type

133

TYPE INFERENCE

<number>. The intersection of the types on LINK3 and LINK4 with the

input types of the = signature yields <number> for both inputs of the =

operation. The Type value for LINKS becomes < b o o l e a n > . The Type

value for LINKl remains <Unive r sa l+> .

5.9.1.3 Backward analysis

(<number>,NoInfo,Id(l)) 5 —
^ 2 —> <number>

^(<nuiDber>,Nolnfo, -) yy .T • . T- ̂
<nuitiber> x <number> —> <number> x <number>

0 p
(<number>,NoInfo,-) a Q <niJItlber>

(<number>,NoInfo,-)
<number> x <number> —> <boolean>

z I<boolean>,Nolnfo,- I

Method: IsEven?

Fig. 5.22.C: After the backward analysis

During the subsequent backward analysis little changes. The signature of the

i d i v operation, however, implies that the Type value for LINKl is

<nmnber>.

There is no Match operation in the case of the i s E v e n method, and the

Next:Type values are left unchanged by the backward analysis.

134

TYPE INFERENCE

5.9.1.4 Computation of Dependency

(<number>,NoInfo,Id(l))
2

Lim^ ft
<number>

<number> x <number> —> <number> x <number> ^idiw ̂

"O—9
s

{<niimber>, Nolnfo, <number>) a

(<number>, Nolnfo, <number>)

<number> x <nuinber> —> <boolean> ^

0
n g c z r

<nuinber>

(<number>,Nolnfo,<number>)

(<boolean>,Nolnfo,<boolean>)

Method: IsEven?

Fig. 5.22.d: After the computation of Dependency

None of the operations of the case has a signature with a type dependency,^

as a result the Dependency value for all the datalinks except LINKl is a

type.

The signature of the method can now be constructed. The input type is the

Type value for LINKI and the output type is the Dependency value for

LINKS. The signature is:

<number> —> <boolean>

5.9.2 A recursive example

The method F a c t o r i a l (see fig 5.23) computes the factorial of a positive

integer.

i ^ i
TT

^Fac to r i a l l ^

e 3

Fig. 5.23.a&b: Cases of the F a c t o r i a l method.

135

TYPE INFERENCE

5.9.2.1 Analysis of the first case

(<Universal+>,<Universal+>,Id(1))

JL
0 IX <munber> -4

I —)<number>

(<Universal+>,NoInfo,-}

Fig. 5.24.a: After the initialisation phase

It must be noted that after the initialisation phase, the value of NextType

for LINKl is set to < U n i v e r s a l + > because LINKI is connected to the

terminal of a M a t c h operation with a N e x t C a s e control activated on

failure.

(<Universal+>,<Universal+>,Id(l))

0 X <nuinber>

I —> <number>
3—
{<number>, Nolnfo,-)

(<number>,<Universal+>,Id(l))

0 X <number> —>

1
i r

<number>

(<number>, Nolnfo,-)

Fig. 5 24.b and c: Forward and backward analyses

The value of Type for LINK2 is updated during the forward analysis and

the value of Type for LINKl is updated during the backward analysis.

136

TYPE INFERENCE

(<number>,<Universal+>,Id(1))

<number> —>

j —> <number>

9—
;<number>, Noinf0,<number>)

Fig. 5.24.d: Computation of the dependencies

After the computation of the dependencies, the line for the first case can be

constructed:

<niimber> —> <number>

and the type of the input of the next case is the value of Nex tType for

LINKl, (<Universal+>) .

5.9.2.2 Analysis of the second case

(<Universal+>

LINKl

NoInfo,Id(l)))
^ d u m b e r > —> <number>

0
(<U^dversal+>,NoInfo,-)

LINK4 ^Fae to r i a l ^ <recursive> —> <recursive>

-9

(<Universal+>,NoInfo,-)

<nuinber> —> <nuinber>

g (<Univer5al+>,NoInfo,-)

Fig, 5.25.a: After the initialisation phase

During the initialisation phase, the inference algorithm tries to construct the

signature of the F a c b o r i a l operation. However, the method identifier of

the method currently analysed is U n i v e r s a l / F a c t z o r i a l / S i m p l e ,

recursion is detected and the signature constructed for the operation is:

< r e c u r s i v e > —> < r e c u r s i v e >

137

TYPE INFERENCE

(<Universal+>

LINKl

Nolnfo,ld(l)))

y nB . ̂
•̂"1 ̂ <n\ixnber>

^ 0
<nuinber>

(<number>,NoInfo,-)

^ F a o t o r j a i ^ <nimber>
3

—> <recursive>

k(<Universal+>,NoInfo,-)

<number> —> <nuinber>

(<number>,NoInfo,-)

Fig. 5.25.b: After the forward analysis

After the forward analysis, the Type values of LINK3, LINK4 and LINKS

have been updated. The left-hand side of the signature of the F a c t o r i a l

operation has been updated as well.

LINKl

<number>,t^Info,Id(l))) <nuinber>
O

<number>

(<number>,NoInEo,-)

^ F a c t o r i a i ̂ <nwnber> -> <nmnber>

(<number>,NoInfo, -)

<nimber> —> <number>

(<number>,Nolnfo,-)

Fig. 5.25.C: After the backward analysis

After the backward analysis, the Type value shared by LINKl and LINK2

and the right-hand side of the signature of F a c t o r i a l are updated.

138

TYPE INFERENCE

LDMl
(<number>,toInfo,Id(l)))

^ <number>
0

<nuinber>

(<number>,NoInfo,<number>)

LINK4
:̂ Factoria1 ̂ <number > <number>

(dumber >, Noinf o, <nuinber>)

<nuinber> —> <nuinber>

(<number>,NoInfo,<number>)

Fig. 5.25.d: Computation of the dependency.

There is no operation whose signature contains a type dependency.

Therefore, for all the datalinks not connected to the input bar, the

Dependency value is a type.

The line for the second case can be constructed;

<nuinber> —> <nuinber>

The signature for the whole method is constructed by combining the lines of

the two cases. The line for the first case is:

<number> —> <number>

The line for the second case is also:

<numiber> —> <nuinber>

and the combined line is:

<number> U <number> —> <number> U <number>

which is:

<number> —> <number>

5.10 Shortcomings of the type analysis

In subsection 5.5.4, it is stated that the type inference algorithm might fail to

detect type errors and might also reject type correct code. These two

situations are illustrated by concrete examples.

5.10.1 Failure to detect type errors

The type representation chosen for the analysis does not permi t the

expression of type dependencies between the inputs of an operation. A

139

TYPE INFERENCE

partial solution to this problem is to have a signature with several lines, a line

for each valid combination of input types. The signature of the < primitive

(shown below) is a good example.

The signature of the < primitive is:

<number> X <number> -T><boolean>

<number> x <number>

""X""^<boolean>

However, during the forward and backward analyses, the type dependency

embodied by the use of several lines is lost as the type of the inputs is the

union of the matching input types of the lines. The loss of information is

shown with the following (somewhat contrived) example. The relational

operator is wrapped in a local method (fig. 5.26.a) and an invalid pair of

arguments is passed to the local method (fig. 5.26.b).

i p
0

Hello vo r ld !

Wrapped

Fig. 5.26.a: < wrapped in a local method Fig. 5.26.b: Invalid arguments

The signature inferred for the local method is:

[<number>I""] x [<number> | ""] -><boolean>

which is compatible with the pair of argument types. However the evaluation

of this fragment of code should fail because the two arguments are of

incomparable types. In the current version of Prograph, four primitives have

dependencies between their input types: <, >, < and >.

The combination of the lines of the different cases of a method into a single

line for the method signature has the same consequences as the combination

of the lines of a primitive.

The example shown in fig. 5.27 is taken from the code of the Application

Building Classes. A local Get: V a l u e is defined with three cases (see fig.

5.27.a, b and c). The Get V a l u e operation can only call a class method

because there exists no Get Value primitive or universal method.

140

TYPE INFERENCE

<

K
<

NULL X
\

Fig. 5.27.a: First case of G e t V a l u e .

The line for case 1 is < n u l l > —> I d (1)

dC—1=
^ / G e t V a l u ^

C""

Fig. 5.27.b: Second case of G e t V a l u e .

The line for case 2 is:

([_ ^ .]) -) (< U n i v e r s a l + >)

[... I...] is the textual representation of a union type which is too large to be

printed (this is because many classes define a Get Va lue method).

^ / G e t y a l w ^

Fig. 5.27.C; Third case of G e t V a l u e .

The line for case 3 is:

< U n i v e r s a l + > .

The union type is a subset of the < U D C + > type (which means that the input

of the third case has to be an instance of a user-defined class). Since it does

not affect the explanation and to make it easier to understand, the line for

case 3 is replaced with:

<UDC+> —> <Universal+>

The combination of the three lines produces a signature for the method with

the line:

141

TYPE INFERENCE

[<null>| |<UDC+>] <Universal+>

During the passes of the inference, as a consequence of the misuse of the Get

V a l u e local method, the line may be specialised to:

<null> —> (<Universal+>)

This line does not correspond to a valid execution of the local method. The

error comes from the fact that the input types of the three lines and the

output types are disjoint. Generally, a u a ' p u p' is equivalent to the two

lines a —> p and a ' p' if one of the following conditions is met:

" P = P'

* a c a ' and p e p '

• a ' c: a and p' c p

However, checking the equivalence between the combined line and the

sequence of lines from which the line has been obtained would be an

expensive computation. Therefore a cruder approximation is used to combine

the lines of the cases of the method.

Loss of information also occurs as the result of the approximation used for

the signature of the primitives used to test the type of objects at run-time. For

example l i s t ? (shown in the second case of G e t V a l u e above) succeeds

and optionally returns TRUE if its input is a list, otherwise it fails or returns

FALSE.

The signature of l i s t ? is:

<Universal+> —> <boolean>

<Universal+>—>

This signature does not keep track of the fact that an input type which is not

a subset of (< U n i v e r s a l + >) will cause the operation to fail. When the

primitive is encountered with a N e x t C a s e on failure control or N e x t C a s e

on success control attached to it, the value of N e x t T y p e for its input

datalink will be set to < U n i v e r s a l + > in both cases.

5.10.2 Rejection of type correct code

The rule to construct the signature of a Match operation might lead to the

rejection of type correct code. This is because the rule requires that for a

Match operation with a N e x t C a s e on failure control, the Type value can

only be the type of the value to be matched. The following code is not very

142

TYPE INFERENCE

useful because the NextCase control will always be activated, it is however

correct:

c

N

c

Hello X

5
5 X

Fig. 5.28: Rejected type-correct code.

The signature of the M a t c h string operation is:

"Hello" —»

and that of the Match integer operation is:

<number> —>

During the backward pass of the case analysis, the intersection of the input

types of the two signatures must be computed because the same value is

flowing into the two operations. The result is the < B o t t o m > type which

causes the failure of the analysis. The analysis reports as a type error, code

that, if executed, is likely to present a program error.

5.11 Summary

• Type inference is the ability to infer type information in the absence of

type declaration. Type inference has been notably applied to object-

oriented and functional languages.

• The purpose of type inference in Frograph is to reduce the uncertainty

caused by dynamic binding and to gather some information for the effect

analysis.

• A type is the set of classes of which a value can be an instance. A type

dependency expresses a type as a function of another type.

• A method signature consists of one or more lines. A line describes the

input and output types of an operation.

• The inference algorithm is applied to a method at a time. A method-

wide inference can be decomposed into a sequence of case-wide

inferences.

143

Effect inference and synthesis

The purpose of the effect analysis is to describe how the execution of an

operation annotated for distribution may affect the arguments of this

operation and global variables. The effect analysis proposed for Prograph

proceeds in two steps: effect inference and effect synthesis. Effect inference is

tightly integrated with type inference and produces a description of the

effects of individual methods. Effect synthesis interprets the effect

information available for an operation annotated for distribution.

This chapter is divided into four sections. The first section discusses the

different motivations for undertaking effect analysis. The second section

reviews some of the work undertaken in the field of effect analysis. The third

section is devoted to the effect inference and fourth section covers effect

synthesis in Prograph.

6.1 Purpose of effect analysis

Research work has focused on procedure-oriented and functional languages

and information about effects serves several purposes.

Effect information is useful in several contexts:

* Optimising compilers rely on the results of effect analysis to perform

various optimisations. Examples of optimisations include: coMsfanf

propagafzoM, the compiler can perform a significant amount of

precomputation by propagating the constants through the program,

coMSfaMf/bWmg, the compiler replaces operations with constant operands

with their computed value. Effect information also provides knowledge

about the lifetime of data objects and allows a more efficient management

of memory such as the stack allocation of data objects instead of heap

allocation.

* Parallelising compilers also exploit effect information [Bacon, Graham

and Sharp 1994]. Effect analysis produces the set of the locations read

and written by different subcomputations and the dependency analysis

can detect dependencies by computing the intersection of the different

sets. Knowledge of dependencies allows the parallelising compiler to

partition and schedule computations into sets of concurrent tasks.

144

" The selection of test data for a program is another example of use of

effect information [Rapps and Weyuker 1982]

* The maintenance and evolution of large software systems require tools

that automate the production of documentation about the system. Effect

information is useful to check that the software system evolves in a

consistent way [Ryder 1989].

6.2 Related Work

This section reviews several research areas. These examples have been chosen

to illustrate the various purposes of effect analysis, the techniques used and

the languages to which it is applied.

6.2.1 Chow and Harrison

The analysis proposed in [Chow and Harrison 1992] is part of a multilingual

parallelising compiler, the Miprac system. The aim of the analysis is to gather

information on:

" side-effects

* data dependencies

" object lifetime

" unordered accesses

The analysis applies absfracf mkrprgfaHoM to whole programs converted into

MIL, an intermediate language used by the Miprac compiler. MIL provides

three kinds of values: integers, locations and closures. Locations are

initialised by a c r e a t e operation, accessed by a r e a d operation and

modified by a w r i t e operation. Parallelism is expressed by a c o b e g i n

construct, c o b e g i n spawns different processes to evaluate the expressions

passed to it as arguments. The processes execute in a shared memory space.

Before describing in further details the analysis, it is helpful to give some

explanation of abstract interpretation.

6.2.1.1 Abstract interpretation

Abstraction interpretation [Cousot and Cousot 1977] is the evaluation of a

program based on an abstract semaMh'cs. The abstract semantics defines an

evaluation function for all the expressions of the language. The standard

145

semantics domains are mapped into corresponding abstract domains. The

purpose of abstract interpretation is that the abstract semantics makes the

evaluation of programs more efficient than the evaluation based on the

standard semantics, yet precise enough to record the information of interest

to a particular analysis.

The rule of signs for the multiplication is the archetypal example of abstract

interpretation. The set Z of the integers is mapped onto the set Z*={plus,

minus, zero}. A n abstraction funct ion absz : Z Z* is def ined:

absz(x) =plusifx>0

= minus if x<0

= zero if x=0

The abstract version of denoted b y * * may be expressed as:

* # (plus , minus) = * # (minus, plus) = minus

*# (plus, plus) = *# (minus , minus) = plus

#(a, zero)=#(zero, a)=zero.

The sign of the product of two integers is obtained while avoiding the cost of

the multiplication.

Safeness of an abstract interpretation requires that for all elements of the

concrete domain, the abstractions of the results of the concrete function

applied to concrete domain elements are in the result set of the abstract

function applied to the abstractions of concrete domain elements. This

requirement is best illustrated by the fig. 6.1 (taken from [Field and Harrison

1988]) for the rule of signs:

7,x7 * Z

abszxz absz

Z#xZ#
1 r

Z#xZ#
*#

Fig. 6.1 Safeness of the rule of signs

146

EFFECT INTEREhK3EAfM)SY%ni3B%S

The rule of signs is safe if absz o * c *# o abs^xz

Field and Harrison consider that the difficulty for an analysis based on

abstract interpretation is to find abstract domains which provide useful

information about a property of the program being analysed while

guaranteeing safeness. A further problem in choosing the abstract domain is

that the more complex the domain, the more computationaly intensive is the

algorithm,

6.2.1.2 Description of the analysis

Chow and Harrison's analysis is developed in two steps. Firstly, an analysis

is proposed for the concrete semantic domains. As a second step the concrete

domains are abstracted and the safeness of the abstract interpretation is

established. The remainder of this subsection gives an overview of the

analysis in the concrete domains.

The execution of the program is described by a transition system. Each

expression is labelled, lambda expressions are uniquely identified by

procgdurg Zabe/s and cobegin branches by cobggzM brgMc/z kbeZs.

Procedwrg are sequences of procedure and cobegin branch labels. A

function call is denoted by (d for down) and a function return by (u

for up), where a is the procedure label of the function. Similarly entering a

cobegin branch is denoted by and exiting by T|^. Procedure strings capture

the procedural/concurrency movement along the program execution. The use

of the procedure strings is illustrated in fig. 6.2:

147

E#FBCTrNFERBNCEVUyDS%Tfn3B%S

1
cobegin

n i dgd# call f call g e ^2^9^

^2dgdgU

O CnidfdfU^^ui^gdgdgU^gU)

Fig. 6.2: An example of procedure strings

The graph in fig. 6.2 illustrates the spawning of two cobegin branches T| i and

T12, 111 calls the function f and T|2 the function g. After f and g return, the

two cobegin branches merge.

The transition system models the evaluation of the program by recording a

configuration for each program point; a configuration comprises the

description of the processes currently active and that of the shared store. A

procedure string is part of the process description. The Wrfk dak of a variable

is the procedure string attached to the expression which created the variable.

The birth date of a variable is saved with the variable identifier in the store.

Program properties are derived from the manipulation of procedure strings.

The following example shows how procedure strings are used to check

whether a variable outlives the evaluation of the function that created it (the

rule shown below is only applicable to a sequential program, a more general

rule which handles cobegin branches is also presented in [Chow and Harrison

1992]).

The procedure p creates the object L with a birthdate pb- L is referenced by

expression r with a procedure string pr - The analysis computes the net

procedural movement between the creation of L and the program point where

it is referenced:

" 8'/ Pb subtracted from pr is then computed.

148

" Net (8'), the net movement of the string 8' is computed, that is, all

matching pairs of the form are removed from 8'.

If the net movement of 8' contains the term it can be inferred that the

procedure p returns before L is referenced. In other words, the variable L

outlives the procedure p which created it.

The object lifetime property can be illustrated by a simple example. A

function a calls a function p, p calls the function y and inside y the object L is

created, y and p return before L is referenced. The birthdate of L, pb, is:

c^dpdyd and p r is: and Net: (P r - P b) = y"P^. From the

analysis, it appears that L cannot be allocated on the stack frame of the

procedure P and y but the space for L can be freed after the return of a.

6.2.2 The FX effect system

The FX programming language [Gifford et al. 1987] is a functional language

with imperative constructs. FX is targeted at parallel programming and in

that context obtaining effect information would be useful to schedule

expressions in parallel. [Lucassen and Gifford 1988] proposed a

polymorphic effect system to infer the type and effects of expressions in a

subset of FX called MFX (mini FX).

MFX is based on the higher-order kzwded lambda calculus. The language

distinguishes between ordinary lambda abstractions and polymorphic

lambda abstractions. Interaction with the store is possible through the NEW

operation which creates a new location, GET which accesses a location and

SET which updates a location.

Inference proceeds in a modular and bottom-up fashion deriving information

about the type and effects of expressions using inference rules. The type and

effects are tightly integrated in expression dggcriphOMS. These descriptions are

constructed from three basic h Ws: and fypes.

A region is the abstraction of a store area. A region expression can be:

* a region variable

" a region constant

" the union of one or more regions

149

The analysis distinguishes among three different effects, namely a/ZocafioM,

reoff and zonk effects. Effect expressions can be one of the following:

" An effect variable.

* (ALLOC Region) is the effect corresponding to the allocation of a

memory reference.

" (READ Region) indicates an access to a memory location.

* (WRITE Region) corresponds to the update to a store location.

* (MAXEFF Effect*) constructs the union of zero or more effects.

" PURE denotes the absence of effects.

Type expressions can be one of the following alternatives:

* A type variable.

» The type of ordinary lambda abstraction is described by (SUBR

(Type) Effect Type), where (Type) is the list of argument types,

the second Type, the return type and Effect is the latent effect of the

lambda abstraction.

* (POLY (DVAR : Kind) E f f e c t Type) describes the type of

polymorphic abstractions. The (DVAR : Kind) term is the list of

description variables in the description of the abstraction, thus reflecting

the polymorphic nature of the abstraction.

* The type expression for location is (REF Region Type).

One example given in [Lucassen and Gifford 1988] describes the type and

effect signature of the function twice . The function t w i c e takes a function

of a single argument and composes that function with itself. The signature of

t w i c e i&

twice: (POLY (t:TYPEe:EFFECT) PURE (SUBR (SUBR: (t) et) PURE (SUBR

(t)et)n

The signature indicates that t w i c e is a polymorphic abstraction. The

signature contains a type variable t and an effect variable e , the

polymorphic abstraction takes a function as its input and returns a function

and the composition of the function induces no effect.

150

6.2.3 Type and effect inference in ML

Milner's original type inference algorithm can be applied to a purely

functional subset of ML; however, efficiency concerns have motivated the

addition of imperative constructs to the functional core of the language. The

language provides cgfZs and three operators are available to handle

these cells: the r e f operator applied to a value creates a reference cell with

that value, the ! operator accesses the content of a cell and the := operator

updates the content of a cell.

Unfortunately, the extension of Milner's type system to a version of ML with

imperative constructs is not trivial. The availability of references complicates

the generalisation of type variables. The following example illustrates the

difficulty:

l e t x = r e f (f u n (a) = a) i n x : = (f u n (n) = n + l) ; (! x) t r u e

Applying Milner's type discipline, the type of x is a -»a when the reference is

created, with a generic and a is instantiated to Ink and to Boolean

successively. However, the evaluation of the expression above causes a type

e r r o r : (! x) true t r i e s t o a d d 1 t o true.

The typing rule for the let expressions does not reflect the sharing implied by

references. The well typing of expressions requires that reference cells have

only one type.

Various solutions have been proposed to control the generalisation of type

variables in the presence of reference cells and a good survey of the various

approaches can be found in [Wright 1993].

The solution advocated by [Wright 1991] is to approximate the aHocaHom

of an expression, that is the set of reference cells that may be allocated

as a result of the evaluation of the expression. The fypg of an expression

is the set of type variables that appear in the allocation effects of that

expression. Type variables occurring in a type effect may not be generalised.

With the expression shown above, the bound expression r e f (f u n (a) =a)

has type r e f and effect |a), thus the type variable a cannot be generalised.

[Talpin and Jouvelot 1994] have developed a type and effect analysis to

control the generalisation of type variables. The representation of types of

151

EFFBCTINFEKBNCE/U^DS%TfniK%S

effects follows that of [Lucassen and Gifford 1988]. The effect information is

taken account of by the inference rules to decide whether a type variable can

be safely generalised or not.

6.2.4 Effect analysis for test data selection

The work done by Rapps and Weyuker [Rapps and Weyuker 1982]

illustrates how effect analysis can be used in the field of software testing. The

effectiveness of program testing strongly depends on selecting a set of test

inputs representative of the entire input domain. The selection of test data

may be based on code coverage,^ one coverage measure is broMc/i coverage (the

number of branches traversed during the testing). Programs have a potentially

very large number of execution paths and a realistic testing strategy can only

test a limited number of paths. The results of the effect analysis are used to

check that the input test data will cause the tested programs to cover

program paths that satisfy a chosen path selection criterion.

The analysis is applied globally to programs specified in an intermediate

level imperative language. The language is equipped with the following

statement types:

" Start statement: s t a r t

" Input statement: r e a d xi . . .

" Assignment statement: y : = f (xi. . . x^)

* Output statement: p r i n t e i . . .

* Unconditional transfer statement: goto m

* Conditional transfer statement:

if p (xi ... Xn.) then goto m

* Halt statement: stop

All program statements are labelled with an integer label. These labels define

a total ordering on the statements. A bZocA; is a sequence of statements such

that if the first statement is executed, all the statements in the block are

executed. The program is represented as a graph whose nodes are labelled

blocks. The edges of the graph result from transfer statements between blocks

of instructions. A path is a sequence of nodes such that there is an edge

152

EFFBCTENFEKBNCE/U^DS%Tfn3B%S

between each pair of successive nodes. An example is shown in fig. 6.3

(taken from [Rapps and Weyuker 1982]).

read x, y
1.
2 .
3 .
4 .
5 .
6 .
7 .
8.
9 .
10.
11.
12.

13 .
14 .
15 .
16.

start
read x, y
if y<0 then goto 6
pow:= y
goto 7 pow:=y
pow :- -y
z : =1
if pow=0 then goto 12
z : =z*x
pow:=pow-l
goto 8
if y>0 then goto 14
z:=l/z
answer:=z+l
print answer
stop

ow=0

pow#0

pow:=-y

z : =z*x
pow:-pow-1

y^O

(9)answer:=z+l
print answer

Fig. 6.3: A program and its corresponding graph.

The dataflow analysis classifies each variable occurrence as a definitional

occurrence (called a computation-use occurrence (c-wse) or predicate-use

occurrence (p-wse).

The def /use information is attached to the nodes and the edges of the

program graph:

* Def and c-use sets are associated with each node. In the example, the c-

use set for node 2 is {y} and its def set is {pow).

* A p-use set is associated with each edge of the graph. For example, the

edge (1,2) has the p-set {y}.

The analysis masks local def and local c-use. A definition of a variable is a

local one, if all the computation-use occurrences of the variable appear in the

same block as the definition of the variable. A local c-use is a c-use of a

variable defined in the same block.

153

E#FBCTrNFERBNCE/U%DE%Tfn3B%S

Nine different path selection criteria are defined, two examples are given

below:

* A set P of complete paths of the graph G meets the aZZ-Modes criterion if

every node of G is included in P.

* A set P meets the aZZ-p-wggg criterion, if for every node of the graph and

for every variable defined at the node, P includes a path from the variable

definition to all the edges whose p-use set contains the given variable.

An ordering relation can be constructed over the criteria. Criterion ci includes

criterion C2 if a set P of complete paths that satisfies ci also satisfies C2. The

inclusion is strict if C2 is satisfied but not c^. If C2 is included in ci, then C2 is

said to be weaker than c^.

The effect information is used to verify that a set of test data meets the test

criteria selected by the user.

6.3 Effect inference

This section explains how the effects of a method can be inferred. Effects in

Prograph are discussed. The inference is outlined and a suitable

representation for effect information is discussed. The inference algorithm is

described in greater detail and is illustrated by an example.

6.3.1 Motivation for effect inference in Prograph

The purpose of the effect inference in Prograph is to be able to describe how a

method when called by an operation may affect its arguments and some

global variables. This information is recorded in the (ypg szgMafure of the

method.

6.3.2 Outline of the effect inference mechanism

Similarly to the effect inference systems of MFX and ML presented in the

previous section, the effect inference proposed for Prograph proceeds in a

modular fashion, that is the effect inference is applied to a method at a time

and not to an application as a whole. Information about types and effects is

tightly integrated. For the sake of clarity, type and effect inferences are

treated in two different chapters in this thesis; however, the two inferences

proceed together. As for the type inference, the effect inference is broken into

a sequence of case wide inferences.

154

EFFDCTENFE&BNCE/U^DS%Tfn{K%S

6.3.2.1 Case-wide inference

The effect inference distinguishes between the effect properties of the data

objects called data properhes and the properties of the operations,

called swfg-^ck.

Affected data properties are attached to the datalinks of the case being

analysed. The purpose of these affected data properties is to summarise the

sequence of side-effects necessary to obtain the value flowing on each

datalink of the case.

A side-effect describes the way an operation accesses or updates its

arguments or some global variables.

The sigwzfwre of an operation is integrated with its type signature. For

this purpose the lines comprising the signature will store some side-effects.

The following notation is used for a line with type and side-effects:

Tl X T2 1:3 X 1:4 /*SE*/G1 X 02

The term/*SE*/ separates the type information on its left and the side-

effects on its right, 0% and 02 are two side-effects.

The affected data properties of the datalinks and the effect signature of the

operations are constructed during the initialisation phase along with the type

properties and the type signature. The effect signatures of primitive

operations cannot be inferred, they must be available in a signature

repository.

Type inference requires three successive passes over the operations of the

case. Effect inference is performed as a fourth pass over the graph. It

proceeds from the first operation after the Input operation until the last one

before the output operation, following the execution order defined for the

case. The purpose of this forward pass is to compose the side-effects of the

operations of the case.

6.3.3 Effects in Prograph

This section discusses a representation of effect information in Prograph.

Like the various works presented in the first section of this chapter, the effect

representation should distinguish between read and write side-effects.

155

EFFECTENTERfhKniAtnDSYtnTOKMS

TT

Fig. 6.4: A read side-effect

In fig. 6.4 the Get: operation accesses the value of the instance attribute

Surname from the instance flowing on LINKl (or possibly the default value

of the class whose name is passed as a input to the Get operation). A read

side-effect, o, is used to describe the access performed by the operation.

The value flowing on LINK 1 is called the grgumenf of side-effect o and the

value flowing on LINK3 is said to be the resw/f of side-effect o. Side-effect a

records that its argument is passed through the first terminal of the Get

operation with a reference to this terminal (a reference is an integer value).

Side-effect o must also record that its result is propagated through the

second root of the Get operation with a reference to that root. A complete

definition of the information required to describe c will be given below.

% Surname

Fig. 6.5: A write side-effect

In fig. 6.5, the Set operation updates the value of the attribute Surname of

a class or an instance (depending on the value on LINKI) with the value

flowing on LINK2 and the result is passed to LINK3. The update performed

by the Set operation is described by a write side-effect, o'.

The value flowing on LINK2 is called the wpdak mZwe of the side-effect o'.

Side-effect c' contains a reference to the first terminal of the operation as its

argument, a reference to the second terminal as its update value and a

reference to the root of the operation to pass its result.

156

EFTECn?D^FERI&JCEv\N%)SYTfrHI%%S

Some side-effects do not return a result (e.g. write side-effects on

persistents), such side-effects are called krmzMa/ side-effects.

During the case-wide effect inference, the side-effects of the operations are

composed. Composition proceeds by appZymg the side-effects of the different

operations of the case.

Applying a side-effect means substituting the references to operation inputs

contained in the side-effect with:

- a reference to an input of the case

- an affected data property if the argument or the update value of the

side-effect is itself the result of a side-effect.

After substitution of the input references, the side-effect selects the outputs

of the operation through which it passes its result (in fig. 6.4, the read side-

effect propagates its result through the second root of the Get operation)

and propagates affected data properties through these outputs.

Composition and side-effect application are now described with two simple

examples and are explained in greater detail in section 6.3.4.

]^SurnaiiM

Fig. 6.6: Composition of side-effects

The Get persistent operation shown in fig. 6.6 extracts the value of the

persistent Pers and this is described by the side-effect a i in the signature of

the Get persistent operation. When side-effect is applied, it propagates

the affected data property ei on LINKI to show that the value on LINKI

was extracted from the persistent Pers.

The Get operation extracts the value of the attribute Surname from its

argument and this is described by the side-effect G2 in the signature of the

157

EfFECTENFERBNCE/UNDS%Tfn^e%S

Get operation. When 02 is applied^ the reference to the argument input

(input 1) is replaced by the affected data property 6% propagated by side-

effect 0%. Thus side-effects o i and 02 have been composed.

F-K<

H

I
M

^Surname^(^3

Fig. 6.7: Side-effect applied to an input of the case

In the second example shown in fig. 6.7, the argument of side-effect 03 is

passed as an input to the case. When the side-effect 03 is applied, the

reference to the input of the Get operation is replaced with a reference to the

input of the case.

The different effect analyses presented in section 6.2 relied on low level

representation of effects:

- the MFX system represents an effect as a READ or a WRITE operation on a

region;

- in ML, effects can be a Get or a Set operation on a cell;

- in [Chow and Harrison 1992] as well as [Rapps and Weyuker 1982], an

effect can be a read operation or a write operation on a variable.

The effect representation chosen for Prograph classifies effects in different

categories. An effect category defines a set of side-effects and the

affected data properties that result from the application of these side-effects.

All the effect categories are listed in the table below with an explanation

about their purpose as well as the set of side-effects and affected data

properties they define. It must be noted that when a category defines a

terminal side-effect, it does not need to define the corresponding affected

data property: a terminal side-effect when applied does not propagate an

affected data property.

158

EFFECT IN#EREhK^A^n)SY%nHB%S

Effect

Category

Purpose Defines

Identity This ca t egory desc r ibes the

p ropaga t ion of a da ta object

without modification.

identity side-effect

identity affected data property

Class This category describes the effects

induced by a Get or a Set operation

on a class attribute.

class read side-effect

class read affected data property

class write side-effect

class read affected data property

Instance This category describes the effects

induced by a Get or a Set operation

on a class attribute.

instance read side-effect

ins tance read af fec ted da ta

property

instance write side-effect

ins tance wr i te affected data

property

Instantiation This category records the access to

the value of class variables a n d / o r

default value of instance attributes

when an instance of a user-defined

class is created.

instantiation side-effect (terminal)

Local This category indicates that a data

object has been created in the scope

of the current case.

local affected data property

Persistent This category describes the effects

induced by a Get: or a set: operation

on a persistent.

persistent read side-effect

persistent read affected data

property

p e r s i s t e n t wr i t e s ide -e f f ec t

(terminal side-effect)

This category describes the effects

induced by primitive operations

manipulating lists.

list read side-effect

list read affected data property

list write side-effect

list write affected data property

External This category describes effects on

external data structures.

external side-effect (terminal)

159

The side-effects and the affected data properties record information using

the relevant combination of the following data items:

Item Name Value Purpose

Argument integer/

affected

property

An integer value is a reference to the input of

the operation which passes the argument of

the side-effect. 0 indicates that the side-effect

operates on a global variable (e.g. a

persistent).

When the side-effect is applied, the reference

is replaced with one of the following:

- an integer reference to an input of the case

- an affected data property if the argument of

the side-effect is the result of a previous

side-effect.

ArgumentType Type This item records the type of the data item

passed as argument to the side-effect.

A c t i o n Read/Write This item distinguishes between a read and a

write side-effect.

D a t a string This item records some textual data to

describe the side-effect.

U p d a t e V a l u e integer/

affected

data

property

An integer value is a reference to the input of

the operation which passes the update value

of the side-effect. When the side-effect is

applied, the reference to the operation input

is replaced with one of the following;

- an integer reference to an input of the case

- an affected data property if the update

value of the side-effect is the result of a

previous side-effect.

Next a list of

integers

This item lists the outputs of the operation

through which the results of the side-effect

are propagated. For a terminal side-effect,

_̂ e2alue_ofNexk̂

160

A textual representation is used so that side-effect and affected data

property expressions can be easily parsed and printed. All expressions are of

the form Prefix (Ibemi Item2 ...), with the prefix used to encode the

action and the category of the effect and the tuple containing the items

relevant for a particular category of effects.

6.3.3.1 Identity effects

The most trivial side-effect is the zdeMh'fy side-effect, which means that the

operation's output is the same as the one on the input. The identity side-

effect records the following pieces o information:

Item name Value Explanation

A r g u m e n t integer This is a reference to the input of the operation

which passes the argument of the side-effect.

A r g u m e n t T y p e The identity side-effect does not record the

type of its argument.

A c t i o n Read An identity side-effect is a read side-effect.

D a t a The identity side-effect does not record any

textual data.

U p d a t e V a l u e 0 The identity side-effect is a read side-effect and

read side-effects do not take update values.

N e x t sequence of integers This is a reference to the outputs of the

operations which propagate the result of the

side-effect.

The textual representation for an identity side-effect is:

- IDE (Argument Next:)

IDE is a short notation for IDEntity. The corresponding affected data

property is represented with:

-IDE(Argument)

6.3.3.2 Effects on class attributes

Reading or writing a class attribute produces a class side-effect. The

following information is recorded to describe a class side-effect:

161

EfFBCTENFEKBNCE/U^DS%TfniB%S

I t em n a m e Value Explanation

A r g u m e n t 1 The argument of a class side-effect flows into

the first terminal of the Get or Set operation.

ArgumentType Prograph type This is the type of the data item passed as

argument of the side-effect. This information

will be used during the effect synthesis.

A c t i o n Read/Wri te A class side-effect can be a read or a write

side-effect.

D a t a string value This is the name of the class attribute whose

value is accessed or modified.

U p d a t e V a l u e 0 for a read side-

effect/ 2 for a write

side-effect

A read side-effect takes no update value, hence

0 / t h e update value for a write side-effect

flows into the second terminal of the S e t

operation.

Next (2) for a read side-

e f f e c t / (l) for a

write side-effect

The result of a read side-effect flows out from

the second root of the Get operation/the result

of the write side-effect flows from the first root

of the Set operation.

A class read side-effect is represented with:

- CAR (Argument: Data Next)

CA is a short notation for Class Attribute and the R stands for Read. The

corresponding affected data property is represented with:

- CAR (Argument Data)

The ArgumentType field is not printed in the effect representation.

A class write side-effect is represented with:

- CAW (Argument Data UpdateValue Next)

and the corresponding affected data property is represented with:

- CAW (Argument Data U p d a t e V a l u e)

respectively. W stands for Write.

162

EFFECT INTERE%Kn;AfM)SYtn30%%S

If S b u d e n t L i s b is the name of a class attribute, the effect signature of the

signature of the Get operation shown below:

TT
is:

IDE(l(l))xCAR(l"SkudentLisk" (2))

For the Set operation shown below:

^ StudMtList ^

the effect signature is:

CAW(l"StudentList"2 (1))

6.3.3.3 Effects on instance attributes

Reading or writing an instance attribute is described with an instance side-

effect. The information recorded to describe an instance side-effect is

explained in the table below:

163

Item name Value Purpose

A r g u m e n t 1 The argument of a class side-effect flows into

the first terminal of the Get or Set operation.

A r g u m e n t T y p e Prograph type This is the type of the data item passed as

argument to the side-effect. This information

will be used during the effect synthesis.

A c t i o n Read/Wri te An instance side-effect can be a read or a write

side-effect.

D a t a string value This is the name of the instance attribute

whose value is accessed or modified.

U p d a t e V a l u e 0 for read side-

effect/ 2 for write-

side -effect

A read side-effect takes no update value, hence

0 / t h e update value for a write side-effect

flows into the second terminal of the S e t

operation.

N e x t (2) for a read side-

e f f e c t / (l) for a

write side-effect

The result of a read side-effect flows out from

the second root of the Get operation/the result

of the write side-effect flows from the first root

of the Set operation.

Representations of side-effects and affected data properties on instance

attributes are one of the following:

- OAR (Argument Data Next) (read side effect)

- OAR (Argument Next)

- OAW (Argument Data UpdateValue Next) (write side-effect)

- C A W (A r g u m e n t D a t a U p d a t e V a l u e) .

OA stands for Object Attribute.

If Surname is the name of an instance attribute, the effect signature of the

Get operation shown below:

i
) Surname

is:

164

EFFECT INFERENCE AND SYNTHESIS

I I) E (1 (1)) X CX&R(1 " S u r n a i n e " (2))

For the Set: operation shown below:

1 1
% Surname

the effect signature is:

OAW (1 " S u r n a m e " 2 (1))

6.3.3.4 Instantiation effects

Creating a new instance of a class also induces a side-effect. If the class of

the new instance has class variables, the new instance will point to these

variables and the instance variables will point to the default values defined

for the class. The purpose of the side-effect is not to record the

allocation of a new object but the access to the values of class variables

and/or the default values of instance attributes. An instantiation side-effect

is terminal.

Item n a m e Value Purpose

Argument 0 An instantiation side-effect does not take an

argument.

A r g u m e n t i y p e This item is not relevant.

A c t i o n Read An instantiation effect is a read effect because

it accesses information contained in the class

to which the new instance belongs.

Data string value This is the name of the class to which the new

instance belongs.

UpdateValue 0 An instantiation side-effect is a read side-

effect: it does not have an update value.

N e x t 0 An instantiation side-effect is a terminal side-

effect: it does not propagate an affected data

property.

An Init operation taking a list of (attribute name, value) pairs on its input

and is considered equivalent to an operation with an inject terminal. From a

language point of view, such an Init operation should be considered to be

an I nit operation with several inject terminals, one for each pair in the list

165

of (attribute name, value) pairs. But from the point of view of the effect

inference, this approximation does not make any difference because the effect

inference caimot built the effect signature of an operation with an inject

terminal.

The instantiation side-effect is printed as:

-ALR(Data())

AL stands for Allocation.

The effect signature of the operation shown below:

is:

6.3.3.5 Local effects

ALR("Student" ())

Some data objects come into existence in the scope of the current case as the

return value of a Constant, Init or primitive operation. However, there

exists no side-effect to record the creation of data object (the purpose of the

instantiation side-effect is only to record that the values of class attributes

and/or the default values of instance attributes have been accessed).

Instead, a focaZ affected data property can be created to indicate that a value

on a datalink has come into existence in the scope of the current case. This

affected data property is created only if a side-effect refers to the datalink to

which the affected data property should be attached. In fig. 6.8, the write

side-effect refers to the datalink connected to the root of the Constant

operation.

f N e x t ^

Fig. 6.8: Local affected data property

166

EFFBCTENFEKBNCEvU^DS%Tfn3B%S

A local effect-data property is created and attached to the link connected to

the root of the C o n s t a n t operation and contains the following items of

information:

Item name Value Purpose

A r g u m e n t 0 The value 0 indicates that the data item

"appeared" on the datalink to which the

affected data property is attached.

A r g u m e n t T y p e This item is not relevant.

A c t i o n Read A local affected data property is a read

affected data property.

D a t a string This is a value which is constructed to identify

the link to which the affected data property is

attached.

U p d a t e V a l u e 0 A local affected data property is a read

property: it does not have an update value.

A local affected data property is printed as:

NEW("##")

" ##" is printed instead of the Data item because the value of Data would

be rather difficult to interpret.

6.3.3.6 Effects on persistents

A persistent side-effect results from the execution of a persistent Get or a

persistent Set operation.

167

Item name Value Purpose

A r g u m e n t 0 A persistent side- effect does not take an

argument.

A r g u m e n t T y p e This is not relevant.

A c t i o n Read/Wri te A persistent side-effect can be a read or a

write side-effect.

D a t a String This is the name of the persistent whose value

is accessed or set.

U p d a t e V a l u e 0 for read side-

effect / 1 for write

side-effect

A persistent read side-effect does not take an

update value/ the update value of a persistent

write side-effect flows into the first terminal of

the Set persistent operation.

N e x t (1) for read side

effect/ () for write

side-effect

The result of the read side-effect is propagated

on the first root of the persis tent G e t

operat ion/ a persistent write side-effect is a

terminal side-effect : it does not propagate a

result.

Side-effects on persistents and their matching affected data properties are

represented by one of the following expressions:

- PER (Data Next) (read side-effect)

- PER(Data)

- PEW (Data UpdateValue Next) (there is no write persistent affected

data property)

PE stands for Persistent.

The effect signature for the Get persistent operation shown below:

T

is:

PER("Pers" (1))

The effect signature for the Set persistent operation shown below:

168

is:

PEW("Pers"l())

6.3.3.7 Effects on lists

Effects on lists must be handled with special care. The difficulty of describing

the effects induced by primitive operations on lists is compounded by the

Item name Value Purpose

A r g u m e n t integer This is a reference to the input of the list

primitive operation which passes the argument

of the side-effect.

ArgumentType A list side-effect does not record the type of its

A c t i o n Read/Write *glW$Ak-effect can be a read or a write side-

effect.

D a t a This item is not relevant.

U p d a t e V a l u e 0 for a read side-

e f fec t) / integer

value for a write-

effect

A list read side-effect takes no update

value/reference to the input of the list

primitive operation which passes the update of

the side-effect.

N e x t list of integers This item lists the outputs of the list primitive

operation through which the results of the

side-effect are propagated.

The representations for affected data properties and side-effects on lists are:

- LIR (Argument ()) (list read side-effect)

- L I R (A r g u m e n t)

- LIW (Argument UpdateValue ()) (list write side-effect)

- L I W (A r g u m e n t U p d a t e V a l u e)

LI is the short notation for List

169

EfFECTrNFEKBNCE/U^DS%TfniK%S

The schematic in fig. 6.9 shows an example of the the internal working of the

a t t a c h - r primitive.

Fig. 6.9: Internal behaviour of abbach - r .

The references contained in the slots of list A are put in the first two slots of

the newly created list C, reference B is put in the third slot of C. The effect

signature of the a t b a c h - r primitive operation contains two side-effects:

* A list read side-effect: the extraction of the references stored in A can

be described as a read side-effect with list A as its argument and list C as

its result.

" An identity side-effect: the insertion of the references in list c is

described using an approximation: list C can be identified with each of

the values to which it points.

The effect signature of attach-r is:

LIR(1(1))XIDE(2 (D)

The only primitive method to cause a write side-effect on a list is the s e t -

n t h ! primitive:

j?,, , ,6..,,
^ s e t - n t h ! ^

f
The signature of s e t - n t h ! is:

LlWd 2(1))

The effect signature of an operation with a list annotated terminal may

have to be modified. If a side-effect has a reference to an input with a list

annotation^ the reference to this input must replaced by a list read affected

data property. The argument of this affected data property is the original

reference to the operation input. This substitution reflects the fact that the

Argument or the UpdateValue of the side-effect has been extracted from

the list flowing into input. In the operation shown below:

170

EFFECT INTERE%K3SA^n3SYtn3n%%S

J ̂N a m e ^
O'O

the leftmost terminal is amiotated, so the reference to input 1 in the

Argument of the side-effect must be replaced by a list read affected data

property. The original effect signature of the Get operation is:

0AW(1 "Name" 2(1))

The effect signature becomes:

0AW(LIR(1) "Name" 2 (1))

A list annotation on a root has no consequences for the effect signature of the

operation.

6.3.3.8 External effects

side-effects are used for the effect signature of the operations for

Item name Value Purpose

Argument 0 An external side-effect does not take an

argument.

ArgumentType This item is not relevant.

A c t i o n This item is not relevant.

D a t a This item is not relevant.

U p d a t e V a l u e 0 This item is not relevant.

Next list of integers An external side-effect is a terminal side-effect:

it does not propagate an affected data

property.

No effect signature can be inferred for an operation that calls an external

method. This decision is justified by the fact that a precise description of the

side-effects induced by an external method would require a knowledge of the

behaviour of all system calls defined for the Macintosh operating system. The

inference mechanism takes the conservative view that the execution of any

external method induces an external side-effect.

171

Also, the effect signature of an operation with an inject terminal cannot be

known statically.

External side-effects are printed as:

EXT(())

6.3.3.9 Effect expressions and variable arity

Primitive methods may be called with variable numbers of terminals or

variable numbers of roots. The signatures of all primitive methods are stored

in a signature repository and they can be retrieved during the initialisation

phase of the type and effect inference to construct the signatures of the

operations that call primitive methods.

The same notation (...) is used for varity terms in the effect part as in the

type part of the primitive signature. Two cases can be distinguished: the

primitive method may be called with a variable number of terminals or with a

variable number of roots.

* If the primitive has a variable number of terminals, the varity term

appears at the top level of the effect signature and can be substituted

with a side-effect. The substituted side-effect is the same as the one on

the left of the varity term except for the value of its argument which is

incremented by one for each extra terminal. The expansion rule is

illustrated by the following example.

The signature of the primitive a k b a c h - r in the signature repository is:

(<Universal+>)x<Universal+>X...->L(U(E(l) 2...)) /*SE*/LIR(1

(1)) X IDE(2 (1)) X...

^attach-r ̂

Fig. 6.10: The a t t a c h - r primitive

If a b t a c h - r is called by an operation with three terminals (see fig. 6.10),

the signature computed for the operation during the initialisation phase

will be:

172

(<Universal+>) x<Universal+>x<Universal+>-)L(U(E(l) 2 3))

/*SE*/LIR(1 (1))XIDE(2 (1))XIDE(3 (1))

" In the case of a primitive method with a variable number of roots, the

varity term may appear in the Next information item of the side-effect

because Next refers to the outputs of the operation. When constructing

the signature of the operation calling the primitive method, the varity term

is substituted with the sequence of the indices of the extra roots. The

primitive detach-r can be called with a variable number of outputs. Its

formal signature is:

(<Universal+>) ->L(U(E(1) <0>)) XE(1) X.../*SE*/LIR(1 (1 2 ...))

c
^^detach-r^^

o o

Fig. 6.11: The d e t a c h - r primitive

The signature constructed for d e t a c h - r with three outputs (fig. 6.11) is:

(<Universal+>)->L(U(E(l) <0>)) XE(1) XE(1) /*SE*/LIR(1 (123))

6.3.3.10 Operations on side-effects

As will be shown in the following subsections, the effect inference mechanism

combines side-effects to eliminate duplicate information. This simplification

is possible when some conditions are met.

Two affected data properties are equal if

- they belong to the same category of effects

and:

- the values of all their information items are equal

Affected data property oogr/aps affected data property e2 if

- Argument of 6% is equal to 62 or Argument of 6% overlaps E2

Similarly, two side-effects are equal if:

- they belong to the same category of effects

and:

173

EFFECTINTERE&K33AfM)SYtni%%%S

- the values of all their information items are equal.

Two side-effects complement each other if:

- they belong to the same category

and:

- the values of all their information items are equal except for the Nex t

information item.

Side effect o i overlaps side-effect 02 if:

- (72 is a terminal side-effect

and:

- e'2 being the affected data property obtained by truncating the Next:

information from the side-effect 02, the argument of 01 overlaps e'2.

Depending on the relation existing between a pair of side-effects (equality,

complementarity, overlap or none of these), their combination will yield a

Relation between o i

and G2

R e s u l t of t h e

combination of and

G2

equals 02 ((̂ 1)

CI complements 02 (o'l) (o'l is equal to a i

except for Next which

contains the references

held in Next of a n d

Next: of o2)

01 overlaps C2 (Gl)

CI is overlapped by

02

(G2)

No relation between

G1 a n d G2

(a i 02)

The possible relations between side-effects are illustrated by the following

matrix. Each relation is read from the side-effect in the row to the side-effect

in the column.

174

PER("Pers"

())

OAR(PER("Pers")

"Surname" (1))

0AR(1 "Surname"

(1))

OAR(1 "Surname"

(2))

PER(-Pers" ()) is equal is overlapped by no relation no relation

OAR(PER{''Pers")

"Surname" (1))

overlaps is equal no relation no relation

OAR {1 "Surname"

(1))

no relation no relation is equal complements

OAR (1 " Surname"

(2))

no relation no relation oomplements is equal

6.3.4 Inference Algorithm

Like the type inference to which it is tightly integrated, the effect inference is

applied to the successive cases of the method analysed.

6.3.4.1 Case-wide inference

The case-wide effect inference is divided into three stages:

" Initialisation of the affected data properties attached to the datalinks

of the case and the effect signatures of the operations (at the same time

as their type signatures).

* The composition of the side-effects of the case by a single forward pass

over the operations of the case (after the three passes required by the

type inference).

* The construction of the effect part of the line for the case.

The effect information attached to the datalinks of the case consists of a

(possibly empty) list of affected data properties. As for the type

information, all datalinks connected to the same root share the same list of

affected data properties. For the initialisation of the affected data

properties, two types of links are distinguished: those connected to the roots

of the Input operation and those not connected. The effect information

attached to the datalinks after initialisation is presented in the table below:

175

EFFECT INTERE%K3EAf#)SY&niIK%S

Link Effect property after initialisation

Cormected to the input bar (IDE (n)), integer n is the position

in the sequence of inputs of the

case of the input to which the

datalink is connected (1 is the

rank of the leftmost input)

Not connected to the input bar 0 (empty list)

The identity affected data properties attached to the links connected to the

inputs indicate that the values flowing on these links are those of the inputs

of the case.

Type and effect signatures of the operations of the case are constructed

during the initialisation phase before the three passes of the effect inference

(see section 5.5).

The forward pass of the effect inference iterates the composition routine over

the operations of the case following their execution order. A list of terminal

side-effects is maintained as the effect inference proceeds along the graph of

the case. For each operation, the composition routine can be divided into

three steps:

" During the first step, it is checked that the inputs of the operation for

which there exist affected data properties are referenced by at least one

side-effect of the operation. This reference may be in the Argument or in

the Update Va lue information item of the side-effect. If there exists no

reference to the input, the effect information will be lost because it is not

propagated down the graph. To avoid this loss, any affected data

property which is not referenced must be converted into a terminal side-

effect and added to the list maintained by the inference mechanism.

V test-one

Fig. 6.12: Unpropagated affected data property

176

EFFECT INFERENCE AND SYNTHESIS

In the example of fig. 6.12, the primitive t e s t - o n e ? has no side-effect

and the affected data property e must be converted into a terminal side-

effect.

" The side-effects of the operation are applied during the second step.

Applying a side-effect means substituting the references to inputs with

the affected data properties for the matching inputs. If the signature of

the operation comprises several lines, the side-effects contained in the

different lines are combined in order to eliminate duplication.

If there is no affected data property on the referenced input a local

affected data property is created. For example, in fig. 6.13, as there is no

affected data property attached to the input referenced by the

U p d a t e V a l u e item of the side-effect, a local affected data property

must be created.

Next^ OAW(1 "Next"

Fig. 6.13: Reference to a local value.

After application, the side-effect of the Se t operation becomes:

OAW(e''Next"NEW(''##") (1))

If there are several affected data properties attached to a referenced

datalink, the side-effect which refers to this input is duplicated so that

there as many side-effects as there are affected data properties. In fig.

6.14, the Argument of the side-effect refers to a datalink with three

properties, the side-effect is duplicated twice so that three side-effects

can be applied to the three affected data properties.

(^1 ̂ 2 G])

<^Next^OAW(1 "Next" 2

Fig, 6.14: Side-effect applied to several affected data properties

177

After application the three side-effects become:

OAW(ei''Nexk''NEW(''##') (1))

0AW(e2"Next"NEW("##") (1))

0AW(e3"Next"NEW(''##'') (1))

Likewise, if the UpdateValue of a side-effect refers to a datalink to

which several affected data properties are attached, the side-effect is

duplicated to match the number of affected data properties on the

referenced datalink.

If the affected data property for a matching input is an identity affected

data property, the input reference is not substituted with the identity

affected data property but with the Argument of the affected data

property. For example, if for the side-effect OAR (1 " Surname" (2)),

the affected data property for the first input of the operation is IDE (2),

the substitution of the reference to input 1 will produce OAR (2

"Surname" (2)) instead of OAR(IDE (2) "Surname"2). This ru le

is designed to keep side-effect expressions simple.

When the substituted input reference is the Argument of a class or an

instance side-effect, the type of the referenced datalink becomes the

ArgumentType of the side-effect.

In the case of a composed side-effect, the Argument or the

UpdateValue of the side-effect may be an affected data property

which records its ArgumentType. The update needs to propagate the

ArgumentType through to the affected data properties whose

ArgumentType is the type of the referenced datalink. For the composed

side-effect:

OAW(OAW(OAW(1 " Surname" NEW("##")) "Name" NEW("##")) " DOB"

NEWC**") (1)) .

The type of the value flowing into the first input of the operation to which

the s ide-effect is a t t ached is <Student>. The ArgumentType of

OAW (1 " Surname" NEW (" # # ")) is updated to <Student>. The type

of the value to which the affected data property OAW (1 "Surname

NEW (" # # ")) is attached is also <Student> so the ArgumentType of

the affected data property:

178

EFFECT INFERENCE AND SYNTHESIS

0AW(0AW(1 "Surname" NEW("##")) "Name" NEW("##"))

must also be updated to <Sbudenb>. The same reasoning applies to the

side-effect itself and the Argument Type of the side-effect must be

updated to <St:udent:>.

But for the s ide-effect 0AR(0AR(1 "Father") "Profession" (1))

only the ArgumentType of OAR (1 " Father") can be updated. The

explanation is that OAR {1 " Father") is the affected data property of

the value of the attribute Father of the instance coming onto the first

input of the operation and there is no dependency between the type of an

object (the instance on the first input of the operation) and the type of the

value of an attribute of that object (the value of the Father attribute).

C o n s e q u e n t l y , t h e A r g u m e n t T y p e of OAR (OAR (1 "Father")

"Profession" (1)) cannot be updated.

* The third step consists of propagating the affected data properties

resulting from the application of the side-effects of the operation.

Terminal side-effects are added to the list of terminal side-effects. The

Next item of non-terminal side-effects refers to the outgoing datalinks to

which an affected data property must be attached. If the output is not

connected, the side-effect is converted into a terminal side-effect and

added to the list. If the output is connected, the affected data property to

be attached to it is obtained by truncating the Next information item of

the side-effect (fig. 6.15).

(e)
(2)
= 0 —

<^Next^OAW(e "Next" NEW(##) (1))

(e')
e' <-OAW(e "Next" NEW(##))

Fig. 6.15: Propagation of an affected data property

e', the affected data property of the outgoing link of the Se t operation

results from the truncation of the side-effect of the operation.

The identity side-effect distinguishes itself in the way it propagates its

affected data properties. If the Argument of the identity side-effect is

an affected data property, this Argument is propagated in place of an

179

EFFBCTCNFEKBNCE/U^DS^TfnaKaS

identity affected data property itself. For example, the side-effect

lDE(PER("Pers") (1)) will propagate the PER ("Pers") affected

data property on the first output of the operation but the side-effect

IDE (1 (1)) would propagate the property IDE (1). This rule aims at

keeping affected data property expressions as simple as possible.

When the bottom boundary of the case graph is reached, the relevant

information comprises the list of terminal side-effects and the affected data

properties attached to the datalinks connected to the output operation.

All the affected data properties attached to an output datalink are converted

into side-effects. The conversion of an affected data property into a side-

effect requires that the value of each information item of the affected data

property becomes the value of the corresponding information item of the new

side-effect. The value of Next for the new side-effect is the list of the

references of the outputs of the case to which the property is attached.

Fig. 6.16: Affected data properties reaching the output operation.

In fig. 6.16, e is converted into a side-effect with the value (1) for the Next

field and e' with a side-effect with a Next field of (2).

Since the same affected data properties may be propagated along different

datalinks in the case it is likely that some of the side-effects gathered at the

bottom of the case and some terminal side-effects will either overlap, be

equal or complement each other and they are combined to eliminate

duplication.

6.3.4.2 Method

The effects inferred for each case are in turn combined to obtain the method

effect signature.

6.3.5 Handling recursion

The handling of the recursion follows the approach taken for the type

inference and described in 5.8.7.

180

E#FBCTCNFEKBNCE/UyDS%Tfn3B%S

The dummy signature of an operation making a recursive call comprises no

side-effect. Effect inference applied to a recursive method will be illustrated

by an example in chapter 7.

6.3.6 Effect inference example

€ P ® r S ^Operation a

4 numeric % » ion b

^numerioAttr 0^)peration c

HC'llO Operation d

— 0 —

^ObjliKtVar ̂Operation €

Fig. 6.17: Example of effect inference

The example in fig. 6.17 has been designed to illustrate the effect inference

and does not correspond to any useful code. To understand the code better,

it is necessary to describe a subset of the class hierarchy (fig. 6.18).

transObj

subClass2 subclass

subClassS subClass4 subTrivial subEssai

Fig. 6.18: Test class hierarchy

The class kransObj defines numericAbkr as a class attribute and

Ob] instVar as an instance attribute.

181

6.3.6.1 Initialisation phase

The effect analysis proceeds in two phases. During the set-up phase, the type

and effect signatures of the operations on the graph are constructed. The

effect signatures of the operations are shown in fig. 6.19

PER("Pars" (1))

^ P e r s %
p 6"

(IDE(1)) g H

,A
CAWd "NumericAtkr" 2)) ̂ numeric %

a

t)

IDE(1 (1)) X y, ? ' ; L''' ';X|
CARd "NumericAttr"

HeMo

OAW(i "obj instvar" 2 (1)) %Objlnstyar

Fig. 6.19: After the initialisation phase

Class and instance side-effects record an Argument Type value. This

information is not shown in the textual representation of these side-effects, it

is given in the table below:

Operation Effect category/

action

ArgumentType

b Class/

Write

["transObj"+|<transObj +>]

c Class/

Write

["transObj"+|<transObj +>]

e Class/

Write

["transObj"+|<transObj+>]

182

6.3.6.2 Composition of the side-effects

During the second step of the effect inference, the side-effects of the

operations are composed during a forward pass over the case. The

composition routine proceeds with three steps for each operation of the case

following the execution order:

* Check that all the affected data properties attached to the incoming

datalinks of the operation are referenced by the side-effects of the

operation.

* Apply the side-effects of the operation.

* Propagate the affected data properties resulting from the application of

the side-effects on the outgoing datalinks of the operation or add a side-

effect to the list of terminal side-effects.

The inference starts with an empty list of terminal side-effects. The different

steps of the composition routine are now detailed for each operation:

« The effect signature of Operation a contains one side-effect

PER (" Pers" (1)). As the operation has no input the first and second

step of the composition routine can be ignored. The affected data

property PER (" Pers") is constructed and propagated onto LINK2 of

the case. No terminal side-effect is added to the list.

« The signature of Operation b contains one side-effect CAW(1

"numericAttr" 2 (1)) . Both LINKl and LINK2 have one affected

data property attached to them and the side-effect has references to the

two inputs to which the datalinks are connected. The side-effect is

applied:

- The reference to input 1 is replaced with the affected data property

attached to LINKl.

- The reference to input 2 is replaced with the affected data property

attached to LINK2.

- The Argument:Type of the side-effect is replaced with the type of

LINKl.

After its application, the side-effect becomes:

183

E#FBCTINFERBNCE/U%DS%Tfn3B%S

CAW(1 "numericAttr" PER("Pers") (1))

The affected data property CAW{1 "numericAttr" PER ("Pers"))

is propagated on LINK3. No terminal side-effect is added to the list.

" The signature of Operation c contains two side-effects^ IDE(1

(1)) a n d CAR (1 " numericAttr" (2)). LINK3 h a s a n a f fec ted d a t a

property attached to it but the input to which LINK3 is connected is

referenced by both side-effects.

The identity side-effect is applied:

- The reference to input 1 is replaced with the affected data property

a t t ached to LINK3.

After its application, the identity side-effect becomes:

IDE(CAW{1"numericAttr" PER("Pers")(1))

The class read side-effect is applied:

- The reference to input 1 is replaced with the affected data property

attached to LINK3.

- The ArgumentType of the side-effect is replaced with the type of

LINK3.

The applied side-effect is:

CAR(CAW(1"numericAttr" PER("Pers")) (2))

There is no link connected to the first root of the Get operation, so the

affected data property to be propagated by the identity side-effect is

converted into a terminal side-effect:

CAW(1 "numericAttr" PER("Pers") ())

This terminal side-effect is added to the list of terminal side-effects.

The applied class read side-effect propagates the following affected data

p r o p e r t y on LINK4:

CAR (CAW(1 "numericAttr" PER("Pers")))

No terminal side-effect is added to the list.

184

* The signature of Operation d contains no side-effect and the

operation has no input, so the three steps of the composition routine can

be ignored. No terminal side-effect is added to the list.

* The signature of Operation e contains one side-effect OAW (1

" Ob] instVar " 2 (1)). There is an affected data property attached to

LINK4 and none attached to LINKS. The side-effect of the operation has

a reference to the two inputs to which LINK4 and LINKS are connected.

The instance write side-effect is applied:

- The reference to input 1 is replaced with the affected data property

a t t ached to LINK4.

- There is no affected data property attached to LINKS, so a local

affected data property NEW (" # # ") is created and attached to LINKS

and replaces the reference to input 2 in the side-effect expression.

The applied side-effect is:

OAR(CAR(CAW(1"numericAtkr" PER("Pers"))) "ObjInstVar"

New("##") (1))

The side-effect propagates on LINK6 the following affected data

property:

OAR(CAR(CAW(1"numericAttr" PER("Pers"))) "Ob]InstVar"

New("##"))

No terminal side-effect is added to the list.

185

E#FECTINFEKBNCE/U^D<%Tfn^B%S

PERCPers" (1))

(IDEtl))

CAWd "NumericAttr" PERC'Pers") (1)) <^iiMmerieMtr ̂

(PER("Pers"))

• ^

(CAWd "NumericAttr" PER {"Pers")))

]$numericXHr%
^ ' Q ' '

CAR (CAWd "NumericAttr" PERC'Pers")) "NumericAttr" (2)

IDE (C A W d ''NumericAttr" PER("Pers ") d)) x f.. • • ̂ &

(CAR(CAW(1 "NumericAttr" PER("Pers")) "NumericAttr"))

i s

HeMo
9 —

OAW(CAR(CAWd "NumericAttr' PER("Pers")) 'NumericAt^')() r.
"ObjInstVar" New('##") (1)) ^Objimstyar^

(New('•##"))

Z

"9"
(0AW(CAR(CAW(1 "NumericAttr" PER("Pers"))
"NumericAttr")"ObjInstVar" New{"##"))}

Fig. 6.20: After the composition of the side-effects

When the analysis reaches the bottom of the graph, the list of terminal side-

effects contains one terminal side-effect (added by the identity side-effect of

Operation c):

(CAW{1 "numericAttr" PERC'Pers") ()))

The affected data property attached to LINK6 must be converted into a

side-effect. Since LINKS is attached to the only output of the case, the value

of Next property for the converted side-effect is (1):

OAW(CAR(CAW(1"numericAktr" PER("Pers")) "numericAttr")

"ObjInstVar"NEW("##'') (1))

The terminal side-effect is overlapped by the side-effect converted from the

affected data property of LINK6 and can therefore be safely discarded.

The effect signature constructed for the method consists of the side-effect

converted from the property of LINK6.

186

EFFECT IN?ERE%K33A^%)SYtnTn%%S

6.4 Effect Synthesis

The aim of the synthesis is to produce an approximation of the accesses and

updates to the operation inputs and global variables that the execution of an

operation annotated for distribution would induce. Using Palsberg and

Schwartzbach's words [Palsberg and Schwartzbach 1991], the effect

synthesis must teU fAg wAok but may not tell MOf/oMg This

means that the approximation produced by the effect synthesis must be able

to detect all the accesses and updates that may occur at run-time but it may

also predict accesses and updates that wiU not occur at run-time.

6.4.1 Outline of the synthesis

The effect synthesis is only applied to the operations that have been

annotated for distribution. The synthesis proceeds in three stages:

" Type inference is carried out in the case in which the operation

annotated for distribution occurs.

" Effect inference is initiated on the case. During the forward pass of the

effect inference, when the composition routine processes an operation

annotated for distribution, all the side-effects of this operation are

duplicated before being applied. The composition routine is applied as

described in 6.3.6.2 to the original set of side-effects so that the effect

inference can proceed.

For the side-effects in the duplicate set, only their ArgumenkTypes are

updated (if required) but not their Argument or UpdateValue. The

reason for doing so is that the synthesis must be applied only to the side-

effects belonging the annotated operation and not to the side-effects

composed with the side-effects of the operations occurring earlier in the

case.

" The duplicate side-effects of the annotated operation are synthesised.

The information produced by the synthesis addresses two issues:

« Access to the global variables during the execution of an operation

annotated for distribution.

* The analysis must record the updates performed on the arguments of

the operation and on the global variables. An update on an argument or a

187

E#FBCTINFERBNCE/U%DS%Tfn3K%S

global variable may result from the composih'oM of side-effects. In the case

of nested structures, a structure is extracted from its containing structure

and this can be seen as a read side-effect. However, if the extracted value

is modified by another operation, the effective result will be viewed as an

update of both the extracted and the containing structures. Although the

update may not concern a slot of the containing structure, the

modification is considered to affect it, by composition. The argument to

justify this view is that the value of the containing structure is the graph

whose highest vertex is the structure and that any modification to the

graph is a modification of the value of the containing structure.

; Attrm%

Fig. 6.21: Composition of effects.

Fig. 6.21 shows the example of a persistent which contains an instance of

a class, the value of the persistent is read and the instance is modified.

The execution of these two operations shown in fig. 6.21 leads to an

update on the persistent as well as on the instance.

The concept of rowfe is introduced to describe how a data object has

become available in the case(s) of the method called by the operation

annotated for distribution. The route of a value is the highest vertex of the

graph followed to access the data.

188

l%Fa^er^

%/ V/
J% Profession %

Fig. 6.22: The route of a value

Fig. 6.22 shows the case of a method, in this case the value of c has been

reached via the input argument a, thus a possible route for the value is an

input route.

A state operation describes an access or an update to a data structure

(e.g. a class, a persistent, an instance or a Ust).

6.4.2 Routes

A value becomes available in the cases of the method called by an operation

annotated for distribution in different ways. Each possible way defines a

Route category Description

Local The value has been reached through a value instantiated

locally.

Persistent The value has been reached through a persistent value.

Class The value has been reached through the value of a class

attribute or the default value of an instance attribute.

Input The value has been reached through the value of an input

of the case.

Beyond its category, a route is described with two information items:

" Data is an integer or a string.

189

EFFECT INTER2&K35AfM)SY&n3Q%%S

» D e p t h is an integer value which keeps track of the number of

indirections necessary to reach the current value from the root of the

graph.

The use of the Depth field is illustrated in 5g. 6.23:

Route = Input 1 with depth = 0

H' "A'
Route = Input 1 with depth = 1

Route = Input I with depth = 2

Fig. 6.23: Depth of a route

6.4.2.1 Class routes

A class route indicates that a data object has become accessible through a

class. The textual representation for a class route is:

cV (Data Depth)

A route of depth zero represents the class itself. A value extracted from a

class structure (either the value of a class attribute or the default value of an

instance attribute) has a route of depth 1. The Data value of a class route is

the name of a class and the notation " a" + means the class a and all the

subclasses of a. In the example shown in fig. 6.24, numericAttr is the

name of a class attribute.

f

c

p

iV(i 0)

^numeric Attr ^
3

cV("TransObj"+ 1)

Fig. 6.24: A class route.

190

EFFECT

6.4.2.2 Input routes

An input route indicates that a data object has been passed as an argument

to the operation annotated for distribution to be accessible in the case(s) of

the method called by this operation. The textual representation for an input

route is:

iV (Data Depth)

A route of depth 0 represents the value of the case input itself. The Data

value of an input route is an integer which refers to an input of the operation

annotated for distribution.

iV(i 0)

rA

iVa 1)

Fig. 6.25: Input routes

With the example shown in fig. 6.25, Obj instVar is the name of an

instance attribute. The input route on the outgoing datalink of the operation

is one possible route for that value (the set of possible routes for that value

will depend on the type of the input of the Get operation).

6.4.2.3 Local routes

A local route indicates that a data object has become accessible in the case(s)

of the method called by the operation annotated for distribution through an

object created during the execution of the called method. The textual

representation for a local route is:

LV("##" Depth)

A local route of depth zero represents the newly created data object. The

Data value of a local route is a string identifier built to identify the local

route uniquely in the context of the current application.

191

<0transObT^

LV("##" 0)

rA,

I LV("##" 0)

Fig. 6.26: Local routes

With the example shown in Ag. 6.26, the local route on the outgoing datalink

of the operation is one possible route for that value.

6.4.2.4 Persistent routes

A persistent route indicates that a data object has become accessible in the

case(s) of the method called by the annotated operation through a persistent.

The textual representation for a persistent route is:

pv (Daka Depth)

A persistent route of depth zero represents the persistent and the value

extracted from the persistent has depth of 1. The Daba value for a persistent

route is the name of the persistent through which the value has become

available (see fig.6.27).

^ P e r s ^

pVCPers" 1)

Fig. 6.27: A persistent route.

6.4.3 State operations

The concept of side-effect used for the effect inference and the concept of

state operation seem to overlap but they do not entirely:

" A side-effect describes how an operation accesses or updates its inputs

or some global variables to produce an output value. However, the

information provided by a side-effect leaves some ambiguity about which

data structure is accessed or updated. In the case of a side-effect on a

persistent there is no ambiguity, the information recorded by the side-

192

EFEECTINFEKBNCE/U^DS%TfniB%S

effect gives away which data structure is going to be accessed. An

instance read or write side-effect is more ambiguous and depending on

the ArgumentType of the side-effect, the operation will update either

an instance structure or a class structure.

" The purpose of a state operation is to record an access or an update to

a data structure. Whereas the focus of a side-effect was to describe how

the access or the update was carried out (e.g. persistent read side-effect,

instance write side-effect), a state operation is concerned with which

data structure is accessed or updated. The correspondence between side-

effects and state operation may seem one to one, for example, a

persistent side-effect maps to a state operation. However, this is not the

case for an instance side-effect which can be mapped to either a state

operation on a class structure or a state operation on an instance

structure.

Five categories of state operations are available, reflecting different ways of

accessing or updating data structures in Prograph. External data structures

can also be accessed or updated but they have not been included in the list

State operation Purpose

Class state operation Record the access or the update of the value

of a class attribute or the default value of an

instance attribute.

Instance state operation Record the access or the update of the value

of an instance attributes.

Allocation state operation Record the creation of an instance of a class.

Persistent state operation Record the access or the update of a

persistent value.

List state operation Record the access or the update of the value

of a list element.

A state operation can be an access or an update state operation. Like a read

side-effect, an access state operation has an argument and, like a write side-

effect, an update state operation has both an argument and an update value.

193

E#FBCTINFERBNCE/U%D<%Tfn3B%S

All state operations are described using the relevant combination of the

InfcMMiiatioriitern Purpose

Action Distinguish between an access or update state

operation.

Data Record some textual information such as the

name of an attribute or of a persistent.

Argument Store the route of the argument of the state

operation in order to know how the data

structure which is accessed or modified has

become available in the case(s) of the method

called by the annotated operation.

UpdateValue Store the route of the update value of the

state operation in order to know how the data

structure which is accessed or modified has

become available in the case(s) of the method

called by the annotated operation.

6.4.3.1 Class state operations

Information item Value Explanation

Action Access/

Update

Data String The name of the attribute accessed or

updated

Argument Class route Classes can be reached globally. The route

of a class state operation is always a class

route whose Data value is the name of a

class and Depth is zero.

UpdateValue Any route The depth for a class route or a persistent

must be > 1 because the value must be

extracted from the class structure or the

persistent before being passed as update

value to the state operation.

194

A class route is needed as Argument because different classes may define

an attribute with the same name. The information provided by Data is not

sufficient to know which class data structure will be accessed or updated.

The textual representations for class state operations are:

C_access (Data Argument)

C_update (Data Argument UpdateValue)

Information item Value Explanation

Action Access/

Update

Data String The name of the attribute accessed or

updated.

Argument Any route The depth for a class route or a persistent

must be k 1 because the value must be

extracted from the class structure of the

persistent before being passed as update

value to the state operation.

UpdateValue Any route The depth for a class route or a persistent

must be > 1 because the value must be

extracted from the class structure or the

persistent before being passed as update

value to the state operation.

The textual representations for instance state operations are:

I_access (Data Argument)

I__update (Data Argument UpdateValue)

195

6.4.3.3 Allocation state operations

Information item Value Explanation

Action Access

Data String The name of the class to which the new

instance belongs.

Argument — Not relevant

UpdateValue Not relevant

The textual representation for allocation state operations is:

Alloc(Data)

6.4.3.4 Persistent state operations

Information item Value Explanation

Action Access/

Update

Data String The name of the persistent accessed or

updated.

Argument — Not relevant.

UpdateValue Any route The depth for a class route or a persistent

must be > 1 because the value must be

extracted from the class structure or the

persistent before being passed as update

value to the persistent state operation.

A persistent state operation does not use Argument: because the name of

the persistent stored in Da ta is enough to know which persistent will be

accessed or updated.

The textual representations for persistent state operations are:

P„access(Data)

P_update (Data UpdateValue)

196

6.4.3.5 List state operations

Information item Value Explanation

Action Access/

Update

Data - Not relevant.

Argument Any route The depth for a class route or a persistent

must be > 1 because the value must be

extracted from the class structure of the

persistent before being passed as argument

to the list state operation.

UpdateValue Any route The depth for a class route or a persistent

must be > 1 because the value must be

extracted from the class structure or the

persistent before being passed as update

value to the list state operation.

are: The textual representations for list state operations

L_access(Argument)

L_update (Argument UpdateValue)

6.4.5 Synthesis algorithm

The synthesis is applied to all the side-effects of the operation annotated for

distribution to produce a list of state operations.

6.4.5.1 Outline of the algorithm

A function called Synbhesise is iteratively applied to the side-effects of

the operation annotated for distribution. The list of state operations by one

iteration of Synthesise is passed as the input list of state operations for

the next iteration of the function as shown in fig. 6.28.

197

E#FBCTINFERBNCE/U%D(%TfnfB%S

List of
« Side-Effect»

()

%/Sgmthesise
CO

List of
«State Operations

Fig. 6.28: Synthesis of the side-effects of an annotated operation

The type signature of the S y n k h e s i s e function is:

(Side-Effect + Affected Data Property + Integer) x State Operation* —>

Route* X State Operation*

The behaviour of the Syntzhesise function is best understood by looking at

its implementation in Prograph (see fig. 6.29 a, b and c). Fig. 6.29.a and b

show the synthesis of an input reference:

List of
Input Index « State Operation »

^Input j ioute ^

'' H
[pack^

List of List of
« Route » « State Operation »

Fig. 6.29.a: Synthesis of an input reference other than 0

198

EfFBCTINFERENCE/U%DS%Tfn^&%S

List of
Input Index « State Operation »

()

List of
« Route»

List of
« State Operation »

Fig. 6.29.b: Synthesis of a 0 input reference.

List of
« Side-Effect »|« Affected Data » « State-Operation »

()

/Reduce

List of
« Route »

% x w a
List of
« State-Operation »

Fig. 6.29.C: S y n t h e s i s e defined for a side-effect or an affected data

property.

S y n b h e s i s e takes a side-effect (or an affected data property) and a list of

state operations as its arguments and proceeds in two steps:

* The F l a t t e n operation produces a list representation of the side-

effect or affected data property passed as argument to the S y n t h e s i s e

function.

* The Reduce operation is applied iteratively to the elements of the list

representation of the side-effect.

The side-effect (or affected data property) to be synthesised may have a

recursive data structure as Argument or UpdateValue. Recursion occurs

when the Argument or the UpdateValue of the side-effect is an affected

199

EFFBCTINFEKBNCEvU^DS%TfniB%S

data property and the Argument of this affected data property is itself an

affected data property (as the result of the composition of side-effects). The

following side-effect has a recursive Argument::

OAR(OAR(PER("Info'') "Father") "Surname") (1))

because the Argument of the side-effect is the instance read affected data

property OAR (PER (" I n f o ") "Father") and the Argument of this

affected data property is the persistent read affected data property

PER("Info").

The following side-effect has a recursive UpdateValue:

OAW (1 "Surname" OAR(PER("Father") "Surname") (1))

A side-effect is expanded into a list following the path of its Argument

information item. If along the path an UpdateValue is a recursive affected

data property, it is left untouched as it will be expanded at a later stage

during the synthesis. The flattening is illustrated by the following example.

The side-effect:

CAR(CAW{1"numericAttr" PER("Pers")) "numericAttr" {!))

is expanded into a list as follows:

The side-effect becomes the first element of a list:

(CAR(CAW(1"numericAttr" PER("Pers")) "numericAttr" (1)))

The argument of the side-effect (underlined in the expression above) is copied

and put at the front of the Hst:

(CAW(1_ "numericAttr" PER (" Per s ")) CAR{CAW{1 "numericAttr"

PER{"Pers")) "numericAttr" (1)))

Again, the Argument of the first element of the list (underlined in the

expression above) is copied and becomes the head of the list:

(1 CAW(1 "numericAttr" PER("Pers")) CAR(CAW(1 "numericAttr"

PER("Pers")) "numericAttr" (1)))

The reference to input 1 becomes the head of the list and the recursion stops.

The recursive flattening of a side-effect or an affected data property into a

list stops when the first element is a reference to an input of the operation

200

EFFECT

annotated for distribution or the value 0. 0 is the implicit value of Argument:
for an affected data property or a side-effect which takes no argument (a
persistent read affected data property or a local affected data property are
two examples of affected data properties taking no argument).

The overall effect of F lat ten is to convert a representation of side-effects
based on a partial order into a total order. The consequences of this
conversion will be discussed in 6.4.7.

The iterations of the Reduce function over the list of effects yield a list of
routes and an updated list of state operations. The type signature of

Reduce i&

(Side-Effect + Affected Data + Integer) x Route* x State Operation* —>

Route* X State Operation*

The Reduce function takes three arguments:

* The side-effect (or the affected data property or the input reference)

currently being reduced.

* The list of route values to which the previous element in the list has
been reduced. These routes are called the pammgkr rowfes of the Reduce
function.

* The list of state operations maintained by the synthesis algorithm.

The semantics of the Reduce function depends on the category of the side-
effect or of the affected data property to which it is applied. The return
values of the Reduce function are:

* A list of route values, called the rgfum rowks of Reduce. If the Reduce
is applied to a side-effect (which always corresponds to the last iteration
of Reduce), it is not relevant to compute a list of route values and an
empty list is returned instead.

" The list of state operations to which new state operations may have
been appended.

6.4.5.2 Reduction rules

The reduction rules describe how the Reduce function updates the list of
state operations and computes a set of return routes from the input reference

201

EFFECTIN?EREKK33AfM)SY%nitB%S

(or the affected data property or the side-effect) currently being reduced, the
list of parameter routes and the current list of state operations.

The purpose of the analysis developed in this work, and in particular of the
effect synthesis which is the last stage of the analysis, is to provide
information about effects to the distribution mechanism. The proposed
analysis has been developed with as much independence as possible from the
actual distribution mechanisms. The stage has now been reached however
where some assumptions have to be made about the facilities available for
distributed programming.

The effect synthesis takes the view that the distribution mechanism for
Distributed Prograph will be built upon the facilities provided by the current
version of Prograph. These facilities include a to-bytes primitive to pack
values for transmission, t o - b y t e s recursively flattens data of any
complexity (instances of primitive data types or instances of classes) into a
sequence of bytes and it also produces a cZass fraMsZafioM map to reconstruct
the flattened data. It must be noted that the values of the class variables are
not packed with the instances of the class. The flattened data and
translation map may be transmitted over the network. Primitives have been
written so that several communication protocols may be used from within the
Prograph development environment.

The potential effects must be handled in different ways depending on the

category to which they belong. The following matrix shows which effects are

important. The columns distinguish between the structures affected and the

rows between the action of the effect.

L i s t Instance C l a s s Persistent

A c c e s s X X

Update X X X X

... means that the effect requires no special action and X means that the effect

must be dealt with properly.

Extracting a value from a list or an instance structure (but not the default
value of an instance attribute) does not require special action because the
value referenced by the slot of the instance or that of the list has been packed

202

E2FDCTENFEKENCE/U%DE%Tfn3K%S

(by the to-bytes primitive) with the instance or the list and transmitted
with it. Therefore, it is not necessary for the synthesis to record accesses on
instance and list structures.

If a persistent value or a class variable is accessed during the execution of a

remote operation, the value obtained may be out of date. The meaning of X in
the above matrix is that the current facility is not enough to ensure the
correctness of the execution and that this facility should be extended.

For all four categories of data structures it is important that all update state
operations are properly recorded as the current facilities provide no
mechanism to propagate updates across execution contexts.

Effects on external data structures have been omitted from the matrix above
because the effect inference does not address external side-effects (see
6.3.3.8). If an external side-effect occurs in the effect signature of an
operation armotated for distribution, the remote execution of this operation
should be ruled out.

The reduction rules in the following sections specify how the Reduce

function operates when applied to an affected data property or a side-effect

of a given category.

* Reduce may create state operations to be added to the list of state

operations.

" Reduce produces a set of return routes (when applied to a side-effect,

the set of return routes is not relevant).

When a new state operation is created, the reduction rule specifies what the
values of Action, Data, Argument and UpdateValue for the new state
operation should be.

The reduction rule also specifies how the Reduce function computes a set of
return routes. When the Reduce function is applied to a read affected data,
the reduction rules require that the list of state operations is searched to find
a makAzMg update state operation. The intuition behind searching a matching
state update is that a structure might be updated and then accessed during
the execution of the method called by the operation annotated for
distribution. This situation is illustrated by the following example:

203

EFFBCTENFEKBNCE/U^DS%TfniB%S

Pers;
"0""

J3.
numeric Attr^

I •" - w
numeric Attrx

V

Fig. 6.30: Matching state-operations

The example in Hg. 6.30 shows that the value of the attribute numericAtbr
is set. At a later stage, the value of the attribute nmnericAbbr is accessed.
When a matching update state operation is found, its UpdateValue route (
the route of value b in the example above) should be element of the set of
return routes produced by the reduction of the read affected data property
(the routes of value d).

The following subsections define the reduction rules for the different elements

that may occur in the flattened representation of an affected data property

or a side-effect:

» Input reference/ identity side-effect

* Class affected data property/ side-effect

* Instance affected data property/ side-effect

* Instantiation side-effect

* Local affected data property

* Persistent affected data property/ side-effect.

Remembering that the reduction rule for a side effect is a simplified version of
the reduction rule for the affected data property of the same effect category,
the reduction rules will be explained for the affected data properties of the
different categories, when applicable.

204

E2FECTrNFEKBNCE/U%DE%Tfn{K%S

6.4.5.3 Input reference

An input reference is an integer value and represents one of the inputs of the

case(s) of the method called by the operation annotated for distribution.

The reduction rule for an input reference proceeds as follows:

* No state-operation is added to the list of state operations.

* An input route (iV (Data Depth)) is created and returned as the set

of return routes. The Data value of the route is the integer value of the

input reference and its Depth is zero.

6.4.5.4 Class affected data property

The rule considers a read affected data property first and a write affected

data property afterwards.

A class affected data property indicates that the value of a class attribute

has been accessed or updated. The ArgumentType of the affected data

property includes single types and/or string types. A single type is itself a

set of classes and a string type is set of string values, some of these string

values are class names. A class is by the ArgumentType if at least

one of the following two conditions is met:

* this class is an element of a single type included in the ArgumentType

* the name of this class is in a string type included in the

ArgumentType.

In the set of classes referenced in the ArgumentType, another set of classes

can be distinguished: the classes with no superclass referenced in the

A r g u m e n t T y p e . These classes are called the upper bownds of the

ArgumentType (using the inheritance relation as a partial ordering on the

set of classes referenced by the ArgumentType).

The reduction rule for a read affected data property proceeds as follows:

» For each upper bound class in the ArgumentType of the affected

data property, a new class route (cV (Data Depth)) and a new class

access state operation (C_access (Data Argument)) are created. The

value of Data for the class route is the name of the class referenced and

its Depth is zero (the notation introduced in 6.4.3.1 may be used to

205

EFFECT

include the classes referenced implicitly). The value of Data for the class

access state operation is the name of the attribute accessed and its

Argument is the class route.

" All the new class routes have their depth increased by one before being
returned by Reduce as the set of return routes. The list of state
operations is searched to find class update state operations with
Argument routes matching one of the Argument routes of the newly
created class access state operations. If matching update state operations
are found, their UpdateValue routes are added to the list of return
routes.

Unlike a class read affected data property, a class write affected data

property has an UpdateValue which can be an input reference or an

affected data property. The reduction of a class write affected data property

proceeds as follows:

* A set of UpdateValue routes and an updated list of state operations
are computed by applying the Synthes i se function to the
UpdateValue of the class write affected data property and to the
current list of state operations. For each upper bound class in the
ArgumentType of the affected data property, a new class route
(cV (Data Depth)) is constructed. The Depth of each class route is
zero and its Data value the name of the class referenced. The Cartesian
product of the set of class routes and of the set of the UpdateValue
routes is computed. For each pair in the product set a class update state
operation (C_update (Data Argument UpdateValue)) is created
with the class route as its Argument and the UpdateValue route as its
UpdateValue. The Data value is the name of the attribute updated.

* The Reduce function passes its list of parameter routes unchanged as

its return routes.

6.4.5.5 Instance affected data property

The rule for this category of affected data properties is the most complex of

all the rules. This complexity results from the use in Prograph of strings as

reference to classes.

206

E#FBCTrNFERENCEVUyDS%TfntB%S

The same affected data property may be reduced to a set of both class and
instance state operations depending on the ArgumentType of the affected
data property. The ArgumentType is divided into two subsets: a subset
including the string types and a subset including the single types.

If the subset including the string types is not empty, this affected data
property indicates that class structures may be accessed or updated. The
property must be reduced to a set of class state operations in similar fashion
to the reduction of class affected data properties described in 6.4.5.4. (the
single types included in the ArgumentType are discarded before applying
the reduction rule for the class affected data properties).

If the subset of ArgumentType including the single types is not empty,

instance structures may be accessed or updated.

The rule for the reduction of an instance read affected data property is:

* Reduce does not add any state operation to its list of state operations
because, as explained in 6.4.5.2, the effect synthesis should not record
access on instances.

» All the parameter routes have their depth increased by one before being
returned by Reduce as the set of return routes. The list of state
operations is searched to find instance update state operations with
Argument routes matching one of the parameter routes. If matching
instance update state operations are found, their UpdateValue routes
are added to the list or return routes.

The reduction of a write instance affected data property requires that:

* its UpdateValue is synthesised to produce a set of UpdateValue
routes and an updated list of state operations. The Cartesian product of
the set of parameter routes and of the set of UpdabeValue routes is
computed. For each pair in the product set an instance update state
operation (l_update (Data Argument UpdateValue)) is created
with the parameter route as its Argument and the UpdateValue route
as its UpdateValue. The Data value of the state operation is the name
of the instance attribute whose value has been updated.

* the parameter routes are returned as the return routes of Reduce.

207

E#FBCTrNFEKBNCE/U^DS%Tfn3B%S

6.4.5.6 Instantiation side-effect

An instantiation effect is a terminal side-effect with no Argument and
therefore is always flattened into a list with a single element. The reduction of
an instantiation side-effect requires that:

* an allocation state operation (A l loc (Da t a)) is added to the list of

state operations. The Data value of the allocation side-effect is the name
of the class to which the new instance belongs.

6.4.5.7 Local affected data property

The reduction of a local affected data property proceeds with the following

steps:

* No state operation is created.

" A local route is created (bV (Data Depth)). The Depth of the route is
zero and its Data value is the Data value of the local affected data
property.

6.4.5.8 Persistent affected data property

The reduction of a read persistent affected data property proceeds with the

following steps:

* A persistent access state operation is created (P_access (Data)).

The Data value for this persistent access state operation is the name of

the persistent.

* A persistent route (p V (Data Depth)) is created to be passed as a

return route, its Data value is the name of the persistent and its depth is

one. The list of state operations is searched to find persistent update

state operations with Data matching the Data of the new persistent

access state operation. If matching persistent update state operations are

found, their UpdateValue routes are added to the list of return routes.

There exists no write persistent affected data property, as a persistent write

side-effect is a terminal side-effect.

The reduction of persistent write side-effect proceeds as follows:

« the UpdateValue of the persistent write side-effect is synthesised to

produce a set of UpdateValue routes and an updated list of state

208

EFFECTIN%%REhK3;AfM)SY%nHe%S

operations. For each UpdateValue route, a persistent update state

operation is created (P_update (Data UpdateValue)) with as Data

value the name of the persistent and as U p d a t e V a l u e the

UpdateValue route.

6.4.5.9 List affected data property

The reduction of a read list affected data property proceeds as follows:

* No state operation is created because, as explained in 6.4.5.2, the effect

synthesis should not record access on lists.

* The parameter routes of Reduce are passed unmodified as its return
routes. The list of state operations is searched to find list update state
operations with Argument routes matching one of the input routes. If
matching list update state operations are found, their UpdateValue
routes are added to the list of return routes.

The decision not to increase the depth of the parameter routes before

returning them as return routes is explained by the fact that the analysis does

not distinguish between a list and the individual elements of that list (see

6.3.3.7).

The reduction of a write list affected data property proceeds as follows:

* The U p d a t e V a l u e of the list write affected data property is
synthesised to produce a set of UpdateValue routes and an updated
list of state operations. The Cartesian product of the set of parameter
routes and that of UpdateValue routes is computed. For each pair in
the product set a list update state operation (L_update (Argument
UpdateValue)) is created and added to the list with the parameter
route as its A r g u m e n t and the U p d a t e V a l u e route as its
UpdateValue.

* The parameter routes of Reduce are passed unmodified as return

routes.

6.4.6 Synthesis example

The effect synthesis explained below builds on the example presented in

6.3.9.

209

ErFECTINTERE%K3A^K)SYtnTn2%S

<^trans6bj^

^ /modMr Xttr ̂ ^Dempw

Fig. 6.31: Operation annotated for distribution

The operation Demo is annotated for distribution (see fig. 6.31) and calls the
universal method whose implementation is shown in fig. 6.32. The symbol
appended to the name of the operation indicates that this operation is
annotated for distribution.

^ P e r s ^

4
-y 'yji

numeric Attrx
a

2
. . J . . , . J H J U V » . .

.numeric Attr %

Hen*
— o —

/ / 'V. '9... . ^
^pbjliKtyar %

Fig. 6.32: Example of effect synthesis

210

The synthesis of the side-eHects of the Demo operation proceeds as follows:

" The initialisation phase constructs the type and effect signatures of the
operations and sets the type and affected data properties of the
dataUnks in the case in which the Demo operation occurs (see fig. 6.31).

" Type inference is carried out on the case. Fig. 6.33 shows the type

information attached to the datalinks and the signatures of the

operations after the case-wide type inference.

* The side-effect composition routine is applied to the operations of the
case. When the composition routine reaches the Demo operation, the
operation's side-effects are duplicated. The effect signature of Demo<»
comprises a single side-effect (02 in fig. 6.33):

0AW(CAR(CAW(1"numericAttr"PER("Pers")) "numericAktr")

"ObjInstVar"NEW("##") (D).

The Argument Type of the composed affected data properties in the

duplicate side-effect must be updated with the type of the datalink

connected to the terminal of the operation Demo^. The type of this

datalink is <transObi >.

(<t:ransObj> ^olnfo^^^ttrems0b]>) .
^ <t:ransOb]:

["transObj"+|<transObj +>]
/*SE*/Op

i
<transObj +>-41/*SE*/
CAW(1 "stringAttr"
NEWC**") (1))

(< transObj >,IsioInfo

[<transObj +>|"transObj"

<transObj>)

+] ,NoInfo, [<t:ransObj+> | "transObj" +]

Fig. 6.33: After the type inference

This type is propagated to the Argument Type of the affected data

property:

CAW{1 "numericAttr" PER("Pers"))

211

and propagated to the ArgumenbType of the affected data property:

CAR(CAW(1"numericAttr" PER("Pers")) "numericAttr")

However, the ArgumentType of the side-effect itself is not updated.
This is because the Argument of the side-effect is the result of a Get
operation on the numericAttr attribute and the type of the second
output of a Get operation does not depend on the type of the input of
this Get operation.

The first step of the synthesis is to flatten the side-effect into a list

representation:

(1 CAW(1 "numericAttr" PER("Pers")) CAR(CAW(1 "numericAttr"

PER (" Pers")) " numericAttr ") OAW{CAR{CAW(1 "numericAttr"

PER("Pers")) "numericAttr") "ObjInstVar" NEW("##") (1)))

The Reduce function is applied to the four elements of the list. The synthesis
starts with an empty set of state operations. The result of each reduction is
presented in a table with the following entries:

- the input reference, affected data property or side-effect being reduced

- the ArgumentType of the affected data property or side-effect being

reduced

- the list of parameter routes

- the current list of state operations

- the Update Value input reference or affected data property (only

relevant when a write affected data property or a write side-effect is

being reduced)

- the list of UpdateValue routes produced by the synthesis of the

UpdateValue input reference or affected data property (only relevant

when a write affected data property or a write side-effect is being

reduced)

- the list of state operations after the synthesis of the UpdateValue

input reference or affected data property (only relevant when a write

affected data property or a write side-effect is being reduced)

- the list of return routes

212

EfFECTIN?EKENCE/U%DS%TfntR%S

- the list of state operations after the reduction.

The Reduce function is applied to the input reference 1:

- no state operation is added to the list of state operations.

Reduced input

reference
1

Parameter ()

routes

List of state ()

operations

Return routes (i V (i o))

Upd&kdlbt

of state

()

operations

CAW(1 " n u m e r i c A t t r " PER("Pers")) is reduced. The reduction

proceeds in two steps:

- The UpdateValue of the affected data property must be synthesised

first. The S y n t h e s i s e function is applied to the PER(" P e r s ")

affected data property and the current list of state operations. The

synthesis adds a persistent access state operation to the list of state

operations and returns a single persistent route as the set of

UpdakeValue routes.

- A class update state operation is created. The Argument of the class

update affected data property is a class route of depth zero. The Data

value of the class route corresponds to the classes referenced in the

ArgumenkType of the affected data property:

C_update("numericAttr" cV{"transObj" 0) pV("Pers" 1))

- The parameter routes of Reduce are passed as return routes.

213

EfFBCTINFEKBNCE/U%DS%Tfn3K%S

Reduced affected
data property

CAW(1 "numericAttr" PER("Pers"))

ArgumentType

of the affected
data property

<transOb]>

Parameter

routes

(iV(lO))

List of state
operations

()

UpdateValue PER("Pers")

List of

UpdateValue

routes

(pV("Pers" 1))

L^fof^ak
operations after
synthesis of
UpdateValue

{P_access("Pers"))

Return routes (iV(i 0))

Updated list of
state operations

(P_access("Pers") C_update("numericAttr"

cV("transObj" 0) pV("Pers" 1)))

The affected data property C A R (CAW (1 " n u m e r i c A t k r "

PER (" Pers ")) "numericAkbr") is reduced.

The reduction rule requires that a state operation is created:

C_access("numericAttr" cV("transObj" 0))

When computing the return routes for the current affected data property,
the Reduce function finds a matching update state operation:

C__update ("numericAttr" Ca/{" transObj " 0) pV (" Pers" 1))

The UpdateValue of this matching state operation must be included in

the set of return routes computed by Reduce.

214

E#FDCTINFERBNCE/UyDS%?fn3K%S

Reduced affected

data property
CAR(CAW(1"numericAttr" PER("Pers"))

"numericAttr")

ArgumentType

of the affected
data property

<:transOb]>

Parameter
routes

(W(10))

L^tof^ak

operations
(P_access("Pers") C_update("numericAttr"

cV{"transObi" 0) pV("Pers" 1)))

Return routes (cV("transObj" 1) pV("Pers" 1))

Updated list
of state
operations

(P_access("Pers") C_update("numericAttr"

cV("transObj" 0) pV("Pers" 1))

C access("numericAttr" cV ("transObj" 0))

The side-effect 0AW(CAR(CAW(1 "numericAttr" PER("Pers''))

"numericAtkr") "Ob] InstzVar" NEW("##") (1))) is reduced.

The first step in the reduction is the synthesis of the Update Value of

the side-effect, NEW ("##"). The synthesis adds no state operation to

the list of state operation and returns a local route as the set of

UpdateValue routes:

T h e A r g u m e n t T y p e of the s i d e - e f f e c t is

[<transOb] +> | "transObj " +], that is the Argument of the side-

effect can be either an instance or a string referring to a class.

Consequently, Reduce must create both class and instance state

operations.

The class state operation ignores the parameter routes of Reduce,

instead a class route is created to be the Argument of a class update

state operation:

C_update ("Obj InstVar" cV (" transObj " + 0) L'V("##" 0))

Two instance update state operations are added to the list of operations,
one for each route in the set of parameter routes of Reduce:

I_update("ObjInstVar" pV("Pers" 1) lV{"##" 0))

215

I_update ("ObjInstVar" cV (" transObj " 1) LV{"##" 0))

Reduced side-

effect.

0AW(CAR(CAW(1"numericAttr" PER("Pers"))

"numericAttr") "ObjInstVar"NEW("##") (1)))

ArgumentType

of the affected
data property

[<transObj+>1"transObj"+]

Parameter
routes

{cV{"transObj" 1) pV("Pers" 1))

List of state

operations

(P_access("Pers") C_update("numericAttr"

cV("transObj" 0) PV("Pers" 1))

C access{"numericAttr" cV{"transObj" 0))

UpdateValue NEW("##")

List of
UpdateValue

routes

LV("##"0)

List of state
operations after
synthesis of
UpdateValue

(P__access (" Pers") C_update ("numericAttr"

cV("transObj" 0) pV("Pers" 1))

C_access("numericAttr" cV("transObj" 0))

Return routes Not relevant

Updated list of
state operations

(P_access("Pers") C_update("numericAttr"

cV{"transObj" 0) pV{"Pers" 1))

C_update("ObjInstVar" cV{"transObj"+0) LV(##

0))) I_update("ObjInstVar" cV("transObj" 1)

LV("##" 0)) I__update (" Obj InstVar" pV (" Pers " 1)

bV("##" 0))

The result of the synthesis is a list of state-operations:

P_access("Pers")

C_update("numericAttr" cV("transObj" 0) PV("Pers" 1))

C_access("numericAtkr"cV("transObi"0))

C_update{"ObjInstVar" cV("transObj"+0) lV("##" 0))

I_update("Ob]Inst:Var" cV("t:ransObj" 1) L^C'**" 0))

I_update("ObjInstVar" pV("Pers"1) LV{"##" 0))

216

EFFBCTINFEKBNCE/U^DS%Tfn3B%S

6.4.7 Flow sensitivity

When a write affected data property or a write side-effect is reduced, the
Argument of the affected data property or side-effect must have been
synthesised before its UpdabeValue. For example, if an operation
annotated for distribution called the method case the case of which is shown
in fig. 6.34, the effect signature of this annotated operation would be:

0AW(CAR(1 "ObjectAttr") "ObjInstVar" PER("Info") ())

During the execution of the method called by the operation annotated for

distribution, the Get persistent operation is executed just after the Input

operation.

Object (c c Info ̂

^Objlnstya^

Fig. 6.34: Flow information

The side-effect is flattened into the following list:

(1CAR(1"ObjectAttr") 0AW(CAR(1"ObjectAttr") "ObjInsbVar"

PER("Info") ()))

The synthesis is executed in three steps. The reduction of the input reference
is described in the table below:

217

E#FBCTCNFERENCE/UND(%TfniB%S

Reduced input
reference

1

Parameter
routes

()

List of state
operations

()

Return routes (i V (i 0))

Updated list of

state operations

()

The affected data property CAR (1 " Obj ecbAttr") is then reduced:

Reduced affected
data property

CAR(1 "ObjectAttr")

A r g u m e n t T y p e

of the affected
data property

<t:ransOb] +>

Parameter

routes

(iV(lO))

List of state
operations

0

Return routes (cV("transObj"+ 1))

Updated list of
state operations

{C_access{"ObjectAttr" cV("transObj"+ 0)))

The side-effect OAW(CAR(1 "ObjectAttr") "ObjInstVar" PER{"Info'

is now reduced:

218

EFFBCTINFEKBNCEvU^DE%TfniB%S

Reduced side-
effect.

OAW(CAR(l"ObjectAtkr") "ObjInstVar" PER("Info")

())

ArgumentType

of the affected
data property

[<transObj+>|"transObj"+]

Parameter

routes

(cV("transObj"+ 1))

List of state

operations

(C_access ("ObjectAttr" cV("transObj " + 0)))

UpdateValue PER("Info")

List of

UpdateValue

routes

pV("Info" 1)

List of state
operations after
synthesis of
UpdateValue

(C_access ("ObjectAttr" cV("transObj "+ 0))

P_access("Info"))

Return routes Not relevant

Updakdl^tof
state operations

(C_access {"ObjectAttr" c V (" t r a n s O b j "+ 0))

P_access{"Info") C_update("ObjInstVar"

c V (" t r a n s O b j " + 0) p V (" I n f o " 1))

I_update("ObjInstVar" c V (" t r a n s O b j " + 1)

p V (" I n f o " 1)))

Although the Get persistent operation is executed before the Get class
attribute (ObjectAttr) operation, the state operation describing the access
performed by the persistent Get operation is going to be recorded after the
state operation recording the access to the value of the class attribute. The
P_access ("Pers") was recorded (oo Zak with respect to the state
o p e r a t i o n C , _ a c c e s s (" O b] e c t A t t r " cV (" t r a n s O b j " + 0)) . T h e

recording of the persistent state operation was delayed because the
PER("Info") affected data property was the update value of the
0AW(CAR(1 "Ob] ectAttr") "ObjInstVar" PER("Info") ()) side-
effect.

219

EfFECTINFERBNCE/U%DS%Tfnae%S

One of the claimed properties of the effect synthesis is that it can detect
locally created aliases. Such a situation occurs when an object is passed as
the update value of a write side-effect and it is subsequently extracted by a
read side-effect in one of the cases of the method called by the operation
annotated for distribution.

The example above shows that the representation chosen for the side-effects

results in loss of information about the execution order of the operations.

There are two possible consequences:

* A write state operation is recorded too early. A local alias might be
detected even if this alias cannot be created at run-time. As a result of
finding a matching state operation, the Reduce function applied to a
read affected data property will return an extra route which might
become the argument of another state operation at a latter stage during
the effect synthesis. The consequence of recording a write state operation
too early is that the synthesis will record some unnecessary state
operations, however the approximation remains safe because the set of
state operations is a superset of the possible accesses or updates that
may take place when the operation annotated for distribution is
executed.

* A write state operation is recorded too late. The consequence of this is
that the effect synthesis might fail to detect the creation of a local alias
during the execution of the operation annotated for distribution and
consequently fail to detect a way an operation annotated for distribution
may access or update an input value or a global variable at run-time.

A possible solution to this shortcoming would be to force the synthesis to
record write state operations as early as possible. This would entail the
following modification to the representation of side-effects: all write side-
effects must be terminal ones. The modified effect signatures are shown in the
table below:

220

Operation Side-effect Current signature Modified Signature

A A.
^StudentLis^ Class write

side-effect

CAW(1 " StudentList" 2

U))

C A W d "StudentList" 2

()) X:LDE(1 (1))

19
^ S u r m a m e ^ Instance

write side-

effect

OAW (1 " Surname "2 (1)) OAW (1 " Surname "2 (1))

XIDE(1 (1))

I X E
^set-nth!^

List write

side-effect

LIW(12(1)) LIW(12(1))XIDE(1

(1))

With only terminal write side-effects, there would exist no write affected
data property and the recording of write state operations would not be
delayed because some write affected data property is composed in the
update value of a write affected data property or a write side-effect.
Moreover, the list of side-effects of the operation annotated for distribution
could be sorted so that the write side-effects appear first in the list.

6.5 Summary

* The effect inference proceeds together with the type inference to gather

information about the effects of a method.

* Effect information encompasses affected data properties which
describe how data values are obtained and side-effects which are kept
with the type information in the lines making up the signature of a
method.

* Different categories of side-effects are for the different data structures
that can be affected. A side-effect also has an action (read or write).

« Effect synthesis computes an approximation of the effects of the
execution of an operation in a particular execution context.

* A state operation is the abstraction of an effect for the effect synthesis.
A Route is the abstraction of a data value.

" The effect synthesis reduces the side-effects of an operation in a
particular context into a list of state operations.

221

Experimenting with the analysis tool

The analysis described in chapter 5 and chapter 6 has been implemented.
This chapter covers both the implementation of the analysis tool and the

experimentation with it.

The Arst section of this chapter highlights some of the implementation details
of the analysis. The next section looks at a complex example to describe the
behaviour of the analysis. The third section comments on the applicability of
the analysis and suggests some improvements. The fourth section explains
how the results of the analysis can be interpreted. The last section suggests
some ways of exploiting these results to support distribution.

7.1. The analysis tool

Since the access to the code of the implementation of Prograph is not

available, it has not been possible to integrate the analysis with the

interpreter. The analysis is run as a separate application within the

interpreter. This section highlights some of the aspects of the implementation

of the analysis tool.

The analysis is triggered by selecting an item on a pull-down menu and typing
the method identifier of the method to be analysed. The code of the method
to be analysed is stored in a file, a utility program (provided by Pictorius
Inc.) extracts the code from the file and converts it into a form which is
amenable to analysis.

7.1.2 Auxiliary data

The construction of type expressions, operations on type expressions and
computation of operation signatures requires the construction of the set of
superclasses or subclasses of a given class and the look-up of all the methods
or all the attributes with the same name. In order to speed up these
operations, the information has been organised in the form of indexed files:

* The class hierarchy is stored in a file and a class description consists of
a (class name, class identifier) pair. Class identifiers are sequences of
integers constructed in such a way that by comparing two class identifiers
it can be easily worked out whether a class is a superclass of another.

222

Each class description is indexed by both its class identifier and its class
name,̂ allowing the look-up of a class name from the class identifier and
vice-versa.

* Attribute information is stored in a separate indexed file. The name of
the attribute is used as a key and the associated data consists of two
lists. The first list contains the identifiers of the classes that define (but
not the classes that inherit) the attribute as a class attribute and the
second list contains the identifiers of the classes that define (but not
inherit) the attribute as an instance attribute.

* [Suzuki 1981] proposed the idea of a look-up table to mimic the
behaviour of Smalltalk's method look-up mechanism within the analysis.
The table used for Prograph maps a method name to three lists of class
identifiers. The first list contains the identifiers of the classes that define
a simple method with the same name. The second and third lists are the
lists of the identifiers of the classes that define Get and Set methods
respectively. During the initialisation phase of a case-wide type and
effect inference, the signatures of the operations of the case are set. To
construct the signature of a simple. Get or Set operation with a data-
determined reference, the inference mechanism looks up a method by
name and method type (i.e. Set, Get or simple) and finds out the
identifiers of the classes that (re)define a method with the required name
and method type. To build the signature of an I nit operation, the
inference mechanism checks whether a custom initialisation method is
defined for the class.

* The signatures of the primitives are stored in a repository and are
indexed by the primitive name. The repository itself is constructed from
the primitive signature files. These text files contain the textual
representation of all the signatures of the primitive methods of a given
category (e.g. list primitive methods, math primitive methods). The
content of the signature files is parsed to construct the signatures put in
the repository.

223

7.1.3 Restricted method despatching

During the course of execution the analysis may prompt the user, if an
operation name is heavily overloaded, to discard the classes whose methods
cannot be despatched. This can be seen as equivalent to requiring the user to
annotate the type of methods' receivers and therefore incompatible with the
idea of type inference. However, the information provided by the
programmer is not stored and thus is of a less permanent nature than a type
annotation and the analysis might become intractable without this user
feedback.

7.1.4 Results and errors logging

The analysis proceeds until it is completed or it fails. Failures are most likely
to occur during the type inference either during the setting of the operation
signatures or during the forward and backward passes of the inference. In
case of a failure, the analysis reports at what stage of the analysis the failure
has occurred (i.e. initialisation phase, forward or backward analysis) and the
location the faulty operation in the code currently analysed.

The proceeding of the analysis is monitored by recording:

* The start of an inference and the value of the system clock at the time.

* The end of an inference and the corresponding value of the system clock
(the only purpose for the values of the system clock is to measure the time
taken by the analysis to complete).

* The signature produced by the inference.

* The restrictions by the user to the set of classes to which the receiver of
an operation with a data determined reference can belong.

Indentation is used to indicate the nesting of the inferences. This information
is displayed in a textual form on the screen upon the successful completion of
the analysis. The template for the displayed information is shown below:
start Inference for Ma : T_Starta

Start Inference for My: T_Startb

Finish Inference for M^: T_Finishb

Signature for My: Sigb

Start Inference for Mg : T_Startc

224

I%{PERIVH3^TINCVfni3T13EjVNL\LYS%;TCXDL

Receiver of operation reduced to Ci, C2

Start Inference for T_Startd

Finish Inference for T_Finishd

Signature for Sig^

Start Inference for Me : T_Starte

Finish Inference for Me : T_Finishe

Signature for Me: Sige

Finish Inference for : T_Finishc

Signature forMc: Sig^

Finish Inference for Ma; T_Finisha

Signature for Ma: Sig^

However, in order to make it more readily understandable, the execution of
an analysis can also be represented by a tree (which is drawn manually). The
nodes of the tree correspond to inferences applied to methods and the links
represent dependencies between the results of inferences. Special nodes are
also inserted in the graph to indicate the points of the analysis at which the
set of classes of an operation receiver has been restricted by the programmer.
The successive inferences are carried out in a top-to-bottom, left-to-right
order. The graphical equivalent to the analysis log shown above is shown in
fig. 7.1:

1

2 V

»b #
Restriction of the receiver
of foo

4
5

Md #

Fig. 7.1: Graphical interpretation of an analysis log.

Downward transitions (the transition from node 1 to node 2 in fig. 7.1, for
example) occur during the signature set-up phase of the inference. If a
signature is missing and no recursion is detected, the current inference is
suspended and the missing signature is inferred.

225

IIKPERIWa%^TDNK;V/nT3TliE,&NUlLYSE)TCXDL

7.1.5 Caching of intermediate results

Intermediate results are cached to speed up the inference. Cached
information includes:

* Signatures of default Get and Set operations. The same Get and Set
operations often occur in separate cases of a method. Caching their
signature instead of building them on the fly for each occurrence of the
same operation speeds up the analysis.

* The signatures of all the methods, class-based as well as universal.

The cache consists of a list of (method identifier, signature) pairs. For the
signatures of default Get and Set operations, the C/assName component of
the method identifier is Universal.

Computing the signature of an operation with a data-determined reference is
expensive and the computed signatures are obvious candidates for caching.
However, the inferred signatures are not cached because the user may restrict
the type of the receiver in a given case of a method and the signature, while
valid in the context of that particular case may be invalid in the context of
another case.

Dynamic binding means that signatures may become invalid when some code
is edited. It would be particularly difficult to keep track of which signatures
should be invalidated when code is modified. The analysis takes the
conservative view that the cached signatures are valid only for the duration
of a session of the analysis program and all the cached information is
discarded when exiting the analysis program.

7.2 Examples

7.2.1 Type and Effect Inference

The method chosen as the first example of the type and effect inference is a
universal method called IsPrimitive? (fig. 7.2) and is used to check
whether a method identifier is a reference to a primitive. IsPrimitive?
calls the Key Parse universal method whose role is to break up a method
identifier into its three separate components (i.e. C/assName, Mef/zodName
and MefAodType). If the MefAodType is simple, IsPrimitive? looks for

226

the method name in the list of the primitives' names stored in the

P r i m i t i v e p e r s i s t e n t .

Signature key

.a:
Universal

CCr cc, Simple

TRUE I FALSE

Signature key

FALSE

TRUE I FALSE

Fig. 7.2.a: First case of isPrimitive? Fig. 7.2.b: Second case.

The information logged during the analysis is shown below:

##START ANALYSIS OF : Universal/ Is Primitive?/Simple

2:31:49 pm

##START ANALYSIS OF :Universal/Key Parse/Simple

2:31:51 pm

##FINISH ANALYSIS OF:Universal/Key Parse/Simple

2:31:53pm

The signature is:

##FINISH ANALYSIS OF:Universal/Is Primitive?/Simple

2:31:56 pm

The signature is :

""=<boolean>

/*SE*/PER("Primitives" ())

227

From the signature inferred, it can be said that the method Is Primitive?
takes a string as argument and returns a boolean value. Is Primitive?
also induces a read side-effect on a persistent named Primitives.

7.2.2 A worst case example

The code to be analysed is part of the implementation of the effect inference
algorithm. Each category of side-effect and affected data property is
implemented as a separate class (fig. 7.3).

Effect Info

Affected-Data Side-Effect

^ / /
CAD OAD IAD LAD NAD PAD ASE CSE OSE ESE ISE LSE PSE

Fig. 7.3: The Effect Info class hierarchy

Each class defines a t o - s t r i n g method which produces a textual
representation of the side-effect or affected data property passed as
argument to the method. Each class also defines a format method to
produce a formatting string for the textual representation of the effect.

The to-string method calls the version of format defined for its class
and substitutes the formatting items in the formatting string with a textual
representation of the values of each of the fields of the side-effect or affected
data property. The to-string method defined for the class OAD is shown
in fig. 7.4

«OAD»

« Affected-Data »

Format

Affected Data textual representation

Fig. 7.4.a: OAD/to-string/Simple

228

Format « Affected-Data »

TRUE vf

Data%

Aroument ^

/ t o s t r i n g %

^format

Read Attr ibute
Affected Data Property

Format « Affected-Data »

Data^

\ ^

9. .0.. ?

^/to-string0

^ format

Vr i t e Attr ibute
Affected Data property

Fig. 7.4.b&c: Cases of the local of OAD/to-string/Simple

Although, the code for bo-string is not extremely complex, producing a

type and effect signature is complicated by the facts that affected data

properties are recursive data structures and that the to - s tr ing name is

heavily overloaded (36 classes implement a t o - s t r i n g method).

The graph shown in fig. 7.5 shows the progress of the analysis of the t o -

sbring method. The points of the analysis at which the set of classes of an

operation receiver has been restricted by the programmer are also indicated.

To simplify the diagram, the subtrees corresponding to the inferences of the

signatures of the various Format methods have been omitted.

229

] % t P E R I k H 3 V T I N G V f n i 3 T n H E v U N U V L Y S B T C X 3 L

OAD/to-string/Simple

Local of
OAD/to-string/Simple

OAD/Format/Simple

Restriction of the receiver
of to-string.

NAD/to-string/Simple^
4

Varity/to-string/Simple

IAD/ Forma t / S imp 1 e

IAD/to-string/Simple

Restriction of the receiver
of to-string.

PAD/Format/Simple

LAD/to-string/Simple

LAD/Format/Simple

PAD/to-string/Simple

Local of
PAD/to-string/Simple

Restriction of the receiver
of to-string.

Local of
LAD/to-string/Simple

Restriction of the receiver
of to-string.

CAD/to-string/Simple

CAD/Format/Simple Local of
CAD/to-string/Simple

Fig. 7.5: Tree representation of the analysis of O A D / k o - s t r i n g / S i m p l e

The signature inferred by the analysis tool is:

[<Side-Ef fect+> | <Ef fected Data+> | <Ef feet I n f o] =" "

The type signature says that the argument of O A D / t o - s t r i n g / p l a i n is
an instance of E f f e c t I n f o or one of its subclasses and a string is returned.

230

The effect signature contains no less than 72 side-effects and it would convey

little to print all the expressions here.

A few comments can be made on the behaviour of the analysis:

• Although the complexity of the different to-string methods is

roughly equivalent^ the numbers of side-effects inferred for the different

methods vary considerably as shown by the figures below:

method identifier Number of side-effects

OAD/to-skring/Simple 72

IAD/to-string/Simple 23

PAD/to-string/Simple 22

LAD/to-skring/Simple 9

CAD/t:o-string/Simple 4

By examining the tree representation of the analysis, one can see there is a

correlation between the depth in the tree at which the inference is carried

out and the number of side-effects inferred. The implementation of to-

string defined for the CAD class is almost the same as the one defined

for the OAD class but when trying to infer a signature for CAD/to-

string/Simple, the inference mechanism detects the mutual recursion

as soon as to-string is applied to the values extracted from the

Argument and UpdateValue attribute of the instance of CAD. The

reduction in the growth of the number of side-effects observed for

IAD / to-string/Simple is due to the fact that for an instance of

IAD, only the value of the Argument attribute is printed.

* The expansion occurs when the instance attributes Argument or

UpdateValue are extracted from the Arst argument of the to-string

method. The side-effect signature of LAD/to-string/Simple induced

by the reading of the Argument and UpdateValue attributes are

composed with those inferred for CAD/to-string/Simple as shown

below:

Side-effects for CAD/to-string/Simple:

0AR(1 "Flags" ()) *

231

0AR(1 "UpdateValue" {))*

0AR{1 "Argument" ()) *

OAR(l"Data" ())

Side-effects for LAD/ko-string/Simple:

0AR(1 "Flags" ()) *

0AR(0AR(1

0AR(0AR(1

QAE (0^.(1.

0AR(0AR(1

Update Value."

Update Value,"

UpdateValue."

.Up.da.t.eVal.ue"

"Flags" ()) *

"UpdateValue" ()) *

"Argument" ()) *

"Data" ())*

OAR(OAR(1"Argument") "Flags" ())*

OAR (OAR (1 " Argument") "UpdateValue" ())*

OAR (OAR (1 " Argument") "Argument" ())*

OAR (OAR(1 "Argument") "Data" ())

The I's (underlined with dots) in the side-effects of CAD / t o -

string/Simple are replaced by the read UpdateValue and

Argument instance affected data properties (underlined with dots) in

the side-effect signature of LAD/to-string/Simple.

In the signature of OAD/to-string/Simple, side-effects have five

levels of nesting as in:

0AR(0AR(0AR(0AR(0AR(1"Argument") "Argument") "UpdateValue")

"Argument") "Data" ())

The analysis of the to-string method takes approximately 30 min

to complete (interpreted on a Centris 610). It is instructive to look at how

this time is spent. Whereas it takes about 0.3 % of the total analysis time

to reach the bottom of the analysis graph (node 16), the upward

transition from node 6 to node 3 takes about a third of the total analysis

time. Although the logging of the analysis steps does not allow the break

down of the cost of the different stages in the upward transition, clearly

combining the lines of the different cases of a method is very expensive,

especially the elimination of the redundant side-effects.

232

7.3 Applicability of the Analysis

7.3.1 Speed and memory use

The examples of section 7.2 (and in particular the example presented in

7.2.3) show the execution of the analysis may consume considerable

computing resources, both in time and memory.

The analysis has been implemented in Prograph. Using Prograph to

implement the complex algorithms required by the analysis demonstrates the

expressiveness of the language and has allowed much flexibility to

experiment and test during development. However, running the analysis as

an interpreted application is expensive in terms of performance. The current

implementation of the analysis executes at speeds which exclude the use of

the analysis in a routine way which is transparent to the user. This handicap

must be taken into account when integrating the analysis tool in the

application development environment for Distributed Prograph.

For the usability of the analysis, it is important that it is reasonably robust (it

must not crash) and either completes or fails within a reasonable time. The

analysis algorithm has no built-in "circuit-breaker" but such functionality

could be provided by taking into account the depth of the analysis graph.

The deeper the graph becomes, the more likely it is that the analysis program

will abort by reaching the limit of the available memory resources or that the

time needed to obtain a result will become unacceptable. The circuit-breaker

should report that the depth limit has been reached and fail the analysis.

The Prograph interpreter and editor also need to perform method and

attribute look-ups as well as class hierarchy searches and probably maintain

internally some data for the same purpose as the auxiliary data described in

7.1.2. Accessing the internal data maintained by the interpreter and using the

associated operations to manipulate this data may be a more efficient

solution than defining ad-hoc auxiliary data and operations to query the

data.

7.3.2 Handling mutual recursion

The example presented in 7.2.2 shows how mutual recursion complicates the

analysis. Two approaches are possible:

233

* Take the view that mutually recursive methods cannot be analysed and

fail the analysis every time mutual recursion is detected. However, the

way mutual recursion is detected is crude and it is likely that mutual

recursion will be detected in situations where it does not occur at run-

time. Overloading method and attribute names corresponds to well

established object-oriented programming practices so mutual recursion

may often be detected. Thus, this option might prove unnecessarily

restrictive.

* Leave the programmer to give indications about the actual control flow

of the method by restricting the receiver of operations with a data-

determined reference. This option requires the programmer to have an in-

depth knowledge of the code and goes against the principle of data

abstraction. Taken to the extreme, this solution raises the question of the

splitting of the tasks between the analysis and the programmer. As the

degree of interaction required from the programmer increases, the benefits

drawn from the analysis become less obvious.

7.3.3 Precision of the results

The design of the analysis always requires a balance to be struck between the

accuracy and the speed of the analysis.

Some design decisions have been made and explained in the previous

chapters, trading precision for speed:

* Case-wide type inference is carried out in two passes (forward and

backward, the third pass is concerned only with type dependencies).

* The combination of the lines of the relational primitives.

* The combination of the lines of the different cases of the same method.

" In the case of mutual recursion, the signatures of the methods whose

identifiers occur between two identical method identifiers are considered

valid and are reused when they should be discarded

On the other hand, other decisions have leant toward precision at the

expense of speed:

* The case in which the operation annotated for distribution appears is

analysed before the side-effects of the annotated operation are

234

synthesised. The expected benefits are that the type information inferred

for the arguments of the operation armotated for distribution will help to

narrow the approximation produced by the effect synthesis.

Other solutions have been implemented or propositions can be made to

improve the precision of the analysis:

* The user is prompted to restrict the type of a receiver of an operation

with a data-determined reference when this operation has a heavily

overloaded name.

" The task of the effect synthesis is greatly complicated by the fact that

the argument of a Geb or a Set operation can be either an instance of a

class or a string the value of which is the name of a class. The type of the

operation argument does not matter when the attribute accessed or

modified is a class attribute and the synthesis describes the effect

induced by the Get or Set operation with the same state operation (a

class state operation). But if an instance attribute is accessed or

updated, the effect induced by the Get or Set operation will depend on

the type of the argument and must be described by two different state

operations. Passing a class reference to a Get or Set operation to obtain

or modify the default value of an instance attribute is a very conunon

practice in the Application Building Editors. However, this construct is

less relevant for actual application code. Ideally, there should be two

pairs of Get and Set operations in Prograph for different types of

arguments: the Get and Set operations which take an instance as

argument and the Get and Set operations which take a string as

argument. Instead, the analysis could assume that a program is not going

to access or modify default instance attribute values. The typing rules for

Get and Set operations would have to be modified so that a string type

is no longer a legal type for the first input of a Get or Set operation

when this operation involves an instance attribute. No other changes

would have to be made to the rest of the analysis.

235

7.4 Interpretation of the synthesis results

The results of the effect synthesis can be used to derive information about the

effects induced by the execution of an operation annotated for distribution.

The information of interest falls into four categories:

* Access to a global variable

* Update of a global variable

* Update of an operation argument

* Creation of an alias.

The information can be organised in a hierarchy (fig. 7.6).

Information

Access Update

Global
Variable

OpemffoM Global
Variable

Operation
Argument

Alias

Fig. 7.6: Effect information hierarchy

Access fo (ZM OpemfioM appears for the sake of completeness,

however this information is not recorded as explained in subsection 6.4.5.2.

Afzas is below both Updak a GZobaZ yariab/e and Lfpdak am OpgrafzoM

ArgwmeMf as the creation of an alias may result from a write state operation.

Information can be extracted by interpreting the state operations produced

by the synthesis.

7.4.1 Access information

An access to a global variable occurs during the execution of an operation

annotated for distribution if the list of state operations produced by the

synthesis of the side-effects of the annotated operation contains:

" A persistent access state operation (P_access (Data))

236

* A class access state operation (C_access (Data Argument))

® An allocation state operation (Alloc (Data))

7.4.2 Update information

An update to an input occurs when the list of the state operations produced

by the synthesis of the side-effects of an operation annotated for distribution

contains:

* A n instance update state operation (l_update (Data Argument

UpdateValue)) where the argument route is an input route (iV (Data

Depth)).

* A list update state operation (L_update (Argument

UpdateValue)) whose argument route is an input route (iV (Data

Depth)X

An update to a global variable is characterised by the presence in the list of

state operations of:

* A class update state operation (c_update (Data Argument

UpdateValue)).

* A persistent update state operation (P _ u p d a t e (D a t a

UpdateValue)^

« A n instance update state operation (I_update (Data Argument

UpdateValue)) where the argument route is a class route (cV (Data

Depth)) or a persistent route (pV(Data Depth)).

" A list update state operation (L _ u p d a t e (A r g u m e n t

UpdateValue)) whose argument route is a class route (cV (Data

Depth)) or a persistent route (pV (Data Depth)).

7.4.3 Alias information

Creating an alias means that, as the result of an update, an object is

potentially referenced more than once.

The purpose of the UpdateValue route of an update state operation is to

describe how the data object that will be pointed to after the update

described by the state operation became available in the cases of the method

called by the operation annotated for distribution. Examining the

237

U p d a t e V a l u e route of an update state operation can provide useful

information:

" An input UpdateValue route with a depth greater than or equal to

one indicates the creation of an alias. This is because the object described

by the route has been extracted from an input of the current case and, as

a result of the update state operation^ the extracted object is referenced

at least twice. It is referenced once by the structure from which it was

extracted and a second time by the structure that points to it after the

update.

I S InstVar^

b

^ r s :

Fig. 7.7: Aliasing of an attribute value.

In fig. 7.7, after the execution of the persistent Set: operation, b is

pointed to by at least two structures: the persistent structure Pers and

the structure from which b was extracted.

An input UpdateValue route of depth zero may also indicate the

creation of an alias because of two reasons. The first one is the reduction

of read effects on lists. The reduction rule for a list affected data

property requires that the Reduce function does not increment the depth

of its parameter routes before passing them as return routes. A route with

a depth of zero may describe an object extracted from a list passed as an

argument to the current case. The second reason is that an input route of

depth zero may also describe an object which was passed as an argument

to the operation annotated for distribution. At the same time, this

argument object may already be referenced outside the cases of the

method called by the operation annotated for distribution (although there

might be no other reference to the argument object, the analysis cannot

rule out the creation of an alias).

238

detach r%%
"̂ -TT

(^ObjliKtVar %

T d

Fig. 7.8: Aliasing of the element of a list

In Hg. 7.8,̂ the value c is described by an input route of depth zero. After

the Set operation, the value c is pointed to by both the list b and the

instance a or the class whose name is the value of string a.

* A persistent or a class UpdateValue route shows that the object has

been extracted from a persistent or a class structure before its reference is

given to another structure during an update. Therefore, the object is now

referenced at least twice.

^ P e r s ^

numeric Attr%
M

Fig. 7.9: Aliasing of a global variable.

In fig. 7.9 after the Get operation, the value extracted from the persistent

Pers is referenced by both the persistent Pers and the instance a or the

class whose name is the value of the string a.

* Objects created locally can also be aliased. The detection of these

aliases requires a scan of the entire list of the state operations to find

write state operations whose UpdateValue fields store identical

local routes.

In the implementation of several distributed object-oriented languages,

immutable data cannot be referenced across different object contexts.

Instead, the immutable data objects are duplicated before being moved to

another context. The consequence is that aliases to inunutable data objects

239

I^tPERDvHO^TDyGVfniiTliEv^NUVLYSBTCXDL

are always local. In Prograph, instances of primitive datatypes (with the

exception of the l i s t datatype) are immutable. It would be possible to

extend the current effect inference mechanism so that the type of the

UpdabeValue slots of the effects is recorded.

7.5 Exploitation of the results for distribution

In the Distributed Prograph model, an operation annoted for distribution is

exported from the originator context into a recipient context where it is

executed. This section discusses three possible mechanisms for distribution

and how these mechanisms can exploit the results of the effect synthesis.

7.5.1 Status quo

The first option uses the current facilities provided by Prograph (see section

2.4). The table in 6.4.5.2 shows that only accesses to instances and lists can

be carried out using the distribution mechanism currently available in

Prograph.

An operation annotated for distribution can be executed remotely only if the

synthesis of the side-effects of this operation produces an empty list of state

operations.

7.5.2 Access to global variables

The current distribution mechanism could be extended so that it becomes

possible to send the value of global variables (i.e. persistents, class attributes

and default values of instance attributes) from the originator context into the

recipient context. It is assumed that, as in the current version of Prograph,

these values can be transmitted in their full extent across contexts.

An operation annotated for distribution can be executed remotely if the list

of state operations produced by the synthesis of the side-effects of the

annotated operation contains only:

" access state operations (class access and persistent access state

operations)

* allocation state operations (the instantiation of an object is considered

as an access of the class attribute values and default instance attribute

values of the class from which the object is instantiated)

240

* instance and list update state operations (l_update (Data

Argument UpdateValue) and L_update (Argument

UpdateValue) respectively) where both Argument and

UpdateValue are local routes. This rule means that only objects created

in the recipient context can be updated and that the update must not

create an alias to an object located in the originator context.

The access state operations are used to determine which classes and which

persistent values should be updated in the recipient context:

* for each class access state operation (c_access (Data Argument)),

for all the classes referenced in the Argument of the state operation, the

attribute named by the Data value of the state operation must have its

value updated in the recipient context;

* for each persistent access state operation(P_access (Data)), the

value of the persistent named by the Data value of the state operation

must be updated in the recipient context;

* for each allocation state operation (Alloc (Data)), all the attributes

of the class named by the Data value of the state operation must have

their values updated in the recipient context.

7.5.3 Access and updates to operation inputs and global variables

A third option would be to design a mechanism which supports both

accesses and updates to global variables and the arguments of an operation

executed remotely. The mechanism should also provide global object

identifiers so that replicas can be reconciled in the originator context after the

remote execution of the operation annotated for distribution.

The result of the effect analysis could be used to decide which:

" Global variables must be updated in the recipient context as explained

in the previous subsection.

* Inputs and global variables must be updated in the originator context,

once the operation has been executed remotely.

The list of state operations produced by the synthesis of the side-effects of

the operation annotated for distribution can be exploited in the following

way:

241

* For each persistent update state operation (P_updat:e (Data

Argument: UpdateValue)) the persistent named by the Data value of

the state operation must have its value updated in the originator context

after the execution of the operation annotated for distribution. However,^

the effect synthesis may pessimistically predict an update to a persistent

value and this update may not occur at execution time. The value of the

persistent must be updated in the recipient context before the execution

of the exported operation. If, contrary to the prediction of the effect

synthesis, the value of the persistent is not updated during the remote

execution of the operation annotated for distribution, the net effect of the

state-operation will be to cause a round trip of the persistent value from

the originator context, through the recipient context and back to the

originator context.

* For each class update state operation (C_update (Data Argument

UpdateValue)), for all the classes referenced in the Argument of the

state operation, the attribute named by the Data value of the state

operation must have its value updated in the originator context after the

execution of the operation annotated for distribution. For the same

reasons as for a persistent value, the value(s) of the attribute(s)

designated by the Data value and the Argument route of the class

update state operation must be updated in the recipient context before

the execution of the remote operation.

* For each list and ins tance u p d a t e s tate opera t ion

(L_update(Argument UpdateValue) and I_update(Data

Argument UpdateValue) respectively) with an input route as

Argument, the value of the input of the operation armotated for

distribution must be updated after the execution of the operation. Unlike

classes whose attribute values can be updated individually, the update of

an argument requires the complete argument to be sent back to the

originator context.

" For each list and instance update state operation where Argument is a

persis tent route or class route (pV (Data Depth) or cV (Data Depth)

respectively), the persistent or the class referenced by the persistent or the

class route must be updated. The update of a persistent is performed as

242

for a persistent update state operation. To explain how the update of the

class should be performed, it must be noted that if a class route is passed

as Argument to an instance or list update state operation, a class

attribute or a default instance attribute must have been accessed

beforehand in the case(s) of the method called by the operation

annotated for distribution. This access is recorded with a class access

state operation by the effect synthesis and the Argument route of this

class access state operation refers to the same classes as the Argument

route of the list or instance update state operation. Consequently, for

each class access state operation (C _ a c c e s s {Data A r g u m e n t)) with

an Argument which refers to the same classes as the Argument route

of the list update or instance update state operation, all the classes

referenced in the Argument of the class access state operation, must

have the value of their attribute named by the Data value of the class

access state operation updated in the originator context after the

execution of the operation annotated for distribution. A more efficient

solution would be to have class routes to record not only the class from

which a value was extracted but also the name of the attribute from

which this value was extracted; it would be no longer necessary to search

the list of class access state operations.

7.6 Summary

* The analysis tool is implemented as a separate application within the

interpreter.

* Some examples show that the analysis deals imperfectly with heavily

overloaded methods and recursion, in particular mutual recursion.

* Useful information (access or update of a global variable, update of a

operation argument, creation of an alias) can be extracted from the effect

synthesis results and exploited by the distribution mechanisms.

243

CONCLUSION

8 Conclusion

The last chapter of this thesis is divided into three sections.

The first section summarises the content of this thesis; the second section

suggests how this research could be taken further. The last section reviews the

contributions of this work.

8.1 Summary

This thesis has discussed the use of Prograph as a language for distributed

programming. The ambition of Distributed Prograph is to extend the

productivity that the current version of Prograph already offers for user-

interface design and symbolic programming to distributed programming.

The dataflow model has been found to be a good model to express the

potential for parallelism in Distributed Prograph. Operations in the case of a

method are units of parallelism and distribution. However,^ the programmer

keeps control of distribution with an annotation to indicate which operations

should be distributed. The model hides from the programmer communication

and distribution mechanisms.

Object-orientation presents some challenges for the implementation of the

model notably that of state and behaviour consistency across several

execution contexts. Behaviour consistency is the requirement that objects

exhibit the same behaviour in different contexts.

An analysis has been developed to provide an approximation of the effects

the execution of an operation might induce.

Types and effects are not orthogonal issues in Prograph. Instances of

primitive data types cannot be updated, but for reasons of efficiency,

instances of user-defined classes can be updated in place. Type information

is useful to find more about effects and type inference is the first stage of the

analysis. Object-orientation makes type inference more difficult than for

other language paradigms because of dynamic binding, inheritance and data

polymorphism. The purpose of inference is to reduce the uncertainty due to

dynamic binding and to use type information for the effect analysis. The type

inference algorithm designed and implemented for Prograph can be applied in

244

CONCLUSION

a modular fashion to separate methods. The type system handles

dependency between input and return types as well as variable arity but it

has been decided not to tackle low-level operating structures (externals in

Prograph terminology). The algorithm can type methods which exhibit a small

level of polymorphism but calls to heavily overloaded methods can be

handled only with some user assistance.

The effect inference extends the type inference algorithm to produce a type

and effect signature for the methods. The choice of a representation for effect

information is based on a study of the different effects a computation may

have in Prograph and some trade-off between the precision and the

tractability of the analysis.

Effect synthesis is the last stage of the analysis and uses the type and effect

information gathered by the inferences to produce an approximation of how

an operation annotated for distribution would access and update its

arguments and global variables during its execution.

The purpose of the information produced by the analysis is twofold: it may

assist the programmer in selecting the operations for distribution and could

also be exploited for distributing the operations.

8.2 Future work

8.2.1 Integration of the analysis tool

The prototype developed in this work is implemented as an application

executing within the interpreter, which requires the user to switch between the

execution of the analysis and the interpreter. A better integration might make

the tool more intuitive to use, in particular in the two following situations:

" When the type inference fails, it would be nice to be able to display the

case in which the failure has occurred and highlight the operation for

which the inference has failed.

* When typing an operation calling a heavily overloaded method, the

analysis prompts the user to restrict the type of the receiver. It would be

easier for the user to do it if the operation was highlighted on the screen.

A good integration also requires the choice of a notation to indicate

parallelism. The interpreter/editor environment must be modified so that the

245

CONCLUSION

operations can be annotated. In the current version of Prograph, operations

can be annotated by selecting an item on the Controls pull-down menu of the

interpreter / editor and it appears natural to add the new notation to the

current list of items available in this menu.

The speed and the user involvement required precludes the application of the

analysis transparently to the user. Instead the analysis should be triggered by

selecting a case and an item from a pull-down menu (the menu of the

interpreter would be a good candidate to insert the new item).

The last issue to be addressed is that of the storage of the analysis results.

The current prototype displays the results of the effect synthesis in a textual

form and then discards them, they should be saved so that they can be

further exploited.

8.2.2 Exploitation of the results

The way the results of the effect analysis will be exploited depends on three

different factors:

* The purpose of the information: the interest may lie in either correctness

or performance. Correctness is concerned with the access to global

variables, modifications of global variables and of operation arguments

and dependencies between operations (this latter aspect is not addressed

by the analysis). Performance is concerned with the ratio of computation

over communication.

* The features of the distribution mechanisms have an impact on what

operations can be safely executed remotely. For example, if the

distribution mechanisms provide global object identifiers then aliasing

should not be a problem. The features also have an impact on the

evaluation of the performance as some of them may be less costly than

others.

* User control: the results of the analysis can be used as a warning for the

user who can then decide whether the operation should be distributed or

not, whatever the consequences of this decision may be (the operation

may not be executed correctly). The results of the analysis may be used

by the compiler or the run-time support to decide whether the operation

should be exported or not.

246

CONCLUSION

8.3 Contributions

An extension of the underlying model of sequential Progtaph for parallel

programming is discussed and compared to other models for distributed

programming.

The current implementation of Prograph has been presented and other

distributed language designs have been reviewed with the emphasis being put

on the details that are relevant for the design of Distributed Prograph. The

benefits the implementation could draw from effect information are

discussed.

The analysis is broken into three stages:

* type inference which computes the types of the inputs and outputs of a

method,

* effect inference which computes a description of the effects of a method

* effect synthesis which produces an approximation of the effects of an

operation in a particular context.

Effect analysis has been widely applied to both imperative and functional

languages but not to object-oriented languages.

The design of the type and effect inferences and the effect synthesis, together

with the prototype implementations provide a good basis for future practical

tools.

247

BIBLIOGRAPHY

Bibliography
[Agesen 1996] Agesen, O. (1996). Concrete Type Inference: Delivering Object-
Oriented Applications. SMLI TR-96-52, Sun Microsystems Laboratories.

[Agha 1990] Agha^C. (1990). Concurrent Object-Oriented Programming.
CommuMzcah'oMS q/'fAg ACM, vol. 33 n°9, pp. 125-141.

[Alvisi et al. 1992] Alvisi, L., Amoroso, O., Babaoglu, O., Baronio, A.,
Davoli, R. and Giachini, L A. (1992). Parallel Scientihc Computing in
Distributed Systems: The Paralex Approach. Tgc/inzca/ Reporf LfBLC5-92-2,
Laboratory for Computer Science, University of Bologna.

[Babb 1984] Babb, R.G. (1984). Parallel Processing with Large-Grain Data
Row Techniques. Compwkr, vol 17, n°6., pp. 55-61.

[Backus 1978] Backus, J. (1978). Can programming be liberated from the von
Neumaim style? CommuMzcafzoMs ACM, vol. 21 n°8, pp. 613-641.

[Bacon, Graham and Sharp 1994] Bacon, D.F., Graham, S.L. and Sharp, O.J.
(1994). Compiler Transformations for High Performance Computing. ACM
Compwh'nĝ Swroeyg, vol. 26, n° 4, pp. 345-420.

[Bal, Steiner and Tanenbaum 1989] Bal, H.E., Steiner, J.G. and Tanenbaum
A.S. (1989). Programming Languages for Distributed Computing Systems.
ACM CoMpwfmg Swrreys, vol. 21, n° 3, pp. 262-313.

[Baiter, Lacourte and Riveill 1994] Baiter, R.., Lacourte, S., and Riveill, M.
The Guide language. Tkg Compwkr /owmaZ, vol. 37 n°6, pp. 519-530.

[Bennett 1987] Bennett, J.K. (1987). The Design and Implementation of
Distributed Smalltalk. q/ (Ae CoM/ergnce on Objgcf-OngMW

Syskms, LzMgwggs App/zcahons (OOP5LA '87). SpgczaZ fsswg
q/'ACM SIGPLAN Nofzcgs, vol. 22, pp. 318-30.

[Birman 1993] Birman, K. (1993). The Process Group Approach to Reliable
Distributed Computing, CommuMzcafzoMS c^f/ig ACM, vol. 36 n°12, pp. 36-53.

[Birrel and Nelson 1984] Birrel, A.D. and Nelson B.J. (1984). Implementing
Remote Procedure Calls. ACM TraMsacfzoMS OM Compz^kr Syskms, vol. 2, n°l
pp. 39-59.

[Black et al. 1986] Black, A., Hutchinson, N., Jul, E., and Levy, H. Object
Structure in the Emerald System. ProcggdzMgs (/zg CoM/grgMcg OM Objgcf-
Orz'gMfgd PrograzzzmzMg Systems, Langz/ag^gs azẑ f AppfzcafzoMs (OOPSLA '86).
SpeczaZ Zssẑ g q/̂ ACM SfGPLANNo^zcgs, vol. 21, pp. 78-86.

[Briot and Guerraoui 1996]. Briot, J.P. and Guerraoui, R. (1996). A
classification of Various Approaches for Object-Based Parallel and
Distributed Programming. Tgc^zizca/ Rgporf MO 96-01, Dept. of Information
Science, University of Tokyo.

[Browne gf aZ. 1994] Browne, J.C., Dongarra, J. J., Hyder, S.I., Moore, K. and
Newton, P. (1994).Visual Programming and Parallel Computing. Tgĉ MzcaZ
Rgporf C5-94-229,University of Tennessee

[BYTE 1996] BYTE (1996). Datapro Report, Wanted: Client/Server
Expertise. BYTE, vol. 21, n°ll p.42

248

BIBLIOGRAPHY

[Cann 1992]Cann, D. (1992). Retire Fortran? A debate rekindled.
CommwMzcafioMs tkf ACM, vol. 35, n°8 pp.81-89.

[Cardelli 1987] Cardelli, L. (1987). Basic Polymorphic Typechecking. Scz'gMCg
Compwkr programmiMg, vol. 8 pp.147-171.

[Cardelli 1995] Cardelli, L (1995). A Language with Distributed Scope.
Proceedings of the 22nd ACM SIGPLAN-SIGACT Symposium on Principles of
Programmmg (POPL'^S), January 1995, pp.286-297.

[Cardelli and Wegner 1985] Cardelli, L. and Wegner, P. (1985). On
understanding Types, Data Abstraction and Polymorphism. ACM Computing
Swr^gyg, vol. 17, n° 4, pp. 471-522.

[Chow and Harrison 1992] Chow J.H. and Harrison W.L. (1992) Compile-
Time Analysis of Parallel Programs that Share Memory. Procggdmgs c/ fAe
NmgkgMf/i AMMUgZ ACM SIGPLAN-SIGACT Symposium OM PnMczp/gs
PmgrammzMg (POPL 1992), pp.130-141.

[Cole 1989] Cole, M. (1989). AZgon̂ /zmzc SWeWs; Struc^urg^^ ManaggrngMf
Parallel Computation. Pitman/MIT Press.

[Coulouris, Dollimore and Kindberg 1992] Coulouris, G., DolUmore, J. and
Kindberg, T. (1992). DzgfnbwW Syskms; CoMcgpk amd Dgsz^- Edzfioni
material. Addison-Wesley.

[Cousot and Cousot 1977] Cousot, P. and Cousot, R. Abstract
interpretation, a unified lattice model for static analysis of programs by
construction of approximation of fixpoints. PmcggdzMgs f/ig FowrfA AfiMwaZ
ACM SfGPLAN-SIGACT Sympogiwm OM PnMczpZgs o/ ProgrammzMg
LaMgwa^gsfPOPL 1977), pp. 238-252.

[Cox 1996] Cox, P.T. (1996). Pnmfg coMfMUMzcafzoM.

[Cox and Mulligan 1985] Cox, P.T. and Mulligan, LJ. (1985). Compiling the
graphical functional language PROGRAPH. Pmcggdmgs q/̂ ACM Symposzwm o»
SmaZZ Syskms, pp.34-41.

[Cox and Pietrzykowski 1985] Cox, P.T and Pietrzykowski, T. (1985).
Advanced programming aids in PRCX3RAPH. Pmcggdmgs q/ACM Syrnpos. on
SmafZ Sysfgms, pp.27-33.

[Cox and Pietrzykowski 1988] Cox, P.T. and Pietrzykowski, T (1988). Using
a pictorial representation to combine dataflow and object-orientation in a
language-independent programming mechanism. Pmcggdmgs (Ag
iMkmaffOMaZ Compufgr ScigMcg Cof^rgMcg 88, pp. 695-704.

[Cox and Smedley 1996] Cox, P.T. and Smedley, T.J. (1996). A Visual
Language for the Design of Structured Graphical Objects. Pmcggdm^s q/ (hg
IEEE SymposzwTM OM yzswaZ EaMguaggs (FL '96), pp. 296-303,

[Darlington et al. 1995] Darlington, J. Gou, Y. To, H.W. and Yang J. (1995).
Skeletons for Structured Parallel Composition. Pmcggdmgg (/%g ACM
SIGPLAN Symposium OMPriMczpZgs and Prach'cg q/" ParaZ/gZ ProgrammzM^
SIGPiAN Nofzcgs, vol.30, n°8, pp.19-28.

[Decouchant 1986]. Decouchant, D 1986. Design of a Distributed Object
Manager for Smalltalk_80 System. ProcggdZwgs q/ fZzg CoM/grgMCg on Ob/gcZ-
On'gMZgd Proĝ rammzMg SysZgms, Languaggs and AppZicaZions (OOPSLA '86).
SpgcZaZ IssMg q/̂ ACM SIGPLAN NoZZcgs, vol.21, pp. 444-452.

249

BIBLIOGRAPHY

[DeRoure 1990] DeRoure, D C. (1990). Experience with Lisp and Distributed
Systems. CSTR 90-21 .Department of Electronics and Computer Science,
University of Southampton.

[Dollimore, Miranda and Xu 1991] DollimoreJ., Miranda, E. and Xu, W.
(1991). The Design of a System for Distributing Shared Objects. TAg
Journal, vol. 34, n°6, pp. 514-521.

[Dollimore, Nascimento and Xu 1992] Dollimore, J., Nascimento, C. and Xu,
W. (1992). Fine Grained Object Migration: Model, Mechanisms and
Experience. QMW CSL Reporf Number 571

[Fasel and Keller 1986] Easel, J.H. and Keller, R.M. (1986). ZmfrndwcfioM
procggdmgs fAe Sawfa fe Grap/i Lecture Notes in
Computer Science n° 279 Springer-Verlag.

[Feo, Cann and Oldehoeft 1990] Feo, J.T., Cann D C. and Oldehoeft, R.R.
(1990). A Report on the Sisal Language Project, /owma/ Pam/ZeZ awff
D;s(nbwW Compufmg, vol. 10 n°4 pp. 349-366.

[Field and Harrison 1988] Field, A.}, and Harrison P.G. (1988). fwMcfzoMaZ
Addison-Wesley.

[Foster and Taylor 1990] Foster, I. and Taylor S. (1990). 5frand.' New CoMcepfs
ZM Para/ZeZ ProgrammzMg. Prentice Hall, Englewood Cliffs.

[Freeh and Andrews 1995] Freeh, V.W. and Andrews, G.R.(1995). fsc: A
Sisal Compiler for Both Distributed- and Shared-Memory Machines. TR 95-
01 University of Arizona.

[Garbinato, Guerraoui and Mazouni 1994] Garbinato B., Guerraoui R. and
Mazouni K.: Distributed Programming in Garf. Ob/gcf Based Dzsfribwfed
ProgramfMZMg, Lecture Notes in Computer Science n° 961, pp. 225-239,
Springer Verlag.

[Gelernter and Carriero 1992] Gelernter, D., Carriero, N. (1992).
Coordination Languages and their Significance. CommwMzcafzoMS (Ag ACM,
vol. 35, n° 2, pp. 97-107.

[Giacalone, Mishra and Prasad 1989] Giacalone, A., Mishra, P., and Prasad,
S. (1989). Facile: A Symmetric Integration of Concurrent and Functional
Programming. Pmceedrngs 3989 TAP50FT Lecture Notes in
Computer Science n° 352, pp. 184 -209, Springer-Verlag.

[Gifford et al. 1987]. Gifford, D.K., Jouvelot, P., Lucassen, J.M. and Sheldon,
M.A. (1987). FX-87 Reference Manual. MIT/LCS/rR-407, MIT Laboratory for
Computer Science.

[Glaser, Hankin and Till 1984] Glaser, H.W.,Hankin, T.L. and Til, D.(1984).
PrzMczpfes pmgranzmzMg. Prentice Hall International.

[Goldberg and Hudak 1986] Goldberg, B. and Hudak, P. (1986). Alfalfa:
Distributed graph reduction on a hypercube multiprocessor. ProcegdzMgg f/zg
Sam (a fe Grap/z Rgdẑ cfzow Wor/cskop, Lecture Notes in Computer Science n°
279, pp. 94 -113, Springer-Verlag.

[Halstead 1984] Halstead, R.H. (1984). Implementation of MultiLisp: Lisp
on a multiprocessor. ProceedzMgs t/ze ACM Coz^rgMcg on Lz'sp and /wMcfzomaZ
pmgrazMZMZMg pp. 9-17.

250

BIBLIOGRAPHY

[Hammondl994] Hammond, K. (1994). Parallel Functional Programming; An
Introduction (invited paper). fhg fzrsf ZMfernahoMaZ Symposzwm
on Parallel Symbolic Computation (PASCO'94).

[Hammond et al. 1995] Hammond, K., Matson, J.S. %r.. Partridge A.S., Peyton
Jones S.L., Trinder P.W (1995). GUM: a portable parallel implementation of
Haskel l . Proceedings of the Workshop on the Implementation of Functional
LzMgwaggs '95, pp. 259-280.

[Harrison 1989] Harrison W.L. (1989). The interprocedural Analysis and
Automatic Parallelization of Scheme Programs. Lisp Symbo/ic
CompwfgfzoM, vol. 2, n° 3/4, pp. 179-396.

[Hoare 1978] Hoare, C.A.W. (1978). Communicating sequential processes.
CommwMZCafzOMs ACM, vol. 21, n° 8, pp. 666-677.

[Horwitz, Reps and Binkley 1988] Horwitz, S. Reps, T. and Binkley, D.
(1988). Interprocedural slicing using dependen graphs. Procegdmgs f/ig
SfGPLAN'88 CoT^reMCg OM Dgszgn and fmp/gmgnfafzoM.
Special Issue of ACM. SIGPLAN Notices, vol. 22, pp.35-46.

[Hudak 1984] Hudak, P. (1984). ALFL Reference Manual and Programmer's
Guide. RgsazrcA Rgporf YAl,EU/DCS/RR-322, Yale University.

[Hudak 1986] Hudak, P. (1986). Para-functional programming. CoMpwkr,
vol. 19 n°8, pp. 60-71

[Hudak 1989] Hudak, P. (1989). Functional Programming Languages.
Compwfmg Surveys, vol. 21 n° 3, pp. 360 -411.

[Johnson 1986] Johnson R.E (1986). Type-Checking Smalltalk. ProcgadzMgs
f/fg Cof^rgMcg Obyecf-OngMW Programmm^ Syskms, LaMgwgggs awd
App/zcafzoMS (OOPSLA '87). SpgciaZ fsswg ACM SZGPLAN Noficgs, vol. 21,
pp. 318-330.

[Kaplan and Ullman 1980] Kaplan, M. and Ullman, J.D. (1980). A Scheme
for the automatic inference of variable types. /owmaZ q^ ACM, vol. 27, n° 1,
pp. 128-145.

[Keremitsis and Fuller 1995] Keremitsis E. and Ian J. Fuller, I.J (1995) HP
Distributed Smalltalk: A Tool for Developing Distributed Applications,
HgwZgM-PacAard /oumaf, vol. 46 n°2, pp. 85-92.

[Kind 1996]. Kind A. (1996). Primfg commuMz'caHoM.

[Kind and Friedrich 1993] Kind, A. and Friedrich, H. (1993). A practical
approach to type inference for EULisp. Lisp afW Symbo/ic Compufahon, vol. 6,
n° 1/2, pp. 159-176.

[Kranz, Halstead and Mohr 1989] Kranz D.A., Halstead R.H. and Mohr
E.(1989). Mult-T: A high-performance parallel Lisp. Procggdmgs q/̂ (Ag
SfGPLA7V59 CoM/grgMcg OM Progyammmg^ Lamguaĝ e Dggig?i and I/MpZgmgM̂ â zoM.
SpgczaZ fsswg q/'ACM S7GPIAN NoWcgs, vol. 24, pp. 81-90.

[Kristensen and Low 1995]. Kristensen A. and Low C. (1995). Problem-
Oriented Object Memory: Customizing Consistency. Procggdmgs q/̂ (fzg
Cof^rgMcg OM Otygcf-OngMW SysfgMS, and AppZicafioMs
(OOPSLA '95). SpeciaZ fsswg q/'ACM 5ZGPLAN Nofzcgs, vol. 30, pp. 399-413.

251

BIBLIOGRAPHY

[LaLonde and Pugh 1990] Lalonde W.R. and Pugh J R. (1990). Zmsidg
Smalltalk. Prentice Hall International.

[LaLonde and Pugh 1991] LaLonde, W. and Pugh, J.(1991).Subclassing #
Subtyping Is-a. /owrnaZ Objgcf-Onen W vol. 3, n° 5 pp. 57-
62.

[LaLonde and Pugh 1996] Lalonde, W. and Pugh, J. (1996). Preparing to use
the distributed facilty in IBM Smalltalk, /owrma/ Ob;gcf-Orz6MW

vol. 3̂ n° 5 pp. 44-48.

[Lea, Jacquemot and Pillevesse 1993] Lea, R.., Jacquemot, C. and Pillevesse,
E. (1993). COOL: System Support for Distributed Programming.
CoTMMMMZcafzoMg o/" fAg ACM, vol. 36, n° 9, pp. 37-45

[Lee and Hurson 1994] Lee, B. and Hurson, A.R. (1994). Dataflow
Architectures and Multithreading. Computer, vol. 27, No. 8, pp. 27-39.

[Lieberman 1986]. Lieberman, H. (1986). Using Prototypical Objects to
Implement Shared Behaviour in Object-Oriented Languages. Proceedings of the
Cof^rgMcg on Ob/gcf-OngMW Sygfems, Lamgwaggs AppZzcafzoMS
(OOP5LA '86/ Spgcigf Bsug ACM SfGPLAN Notices, vol. 21 pp.214-223.

[Liskov 1988] Liskov, B. (1988). Distributed programming in Argus.
Com/MMMZcafioMS f/zg ACM, vol. 31, n°3, pp. 300-312.

[Liskov and Shrira 1988] Liskov, B. and Shrira, L. (1988). Promises:
Linguistic Support for Efficient Asynchronous Procedure Calls in Distribute
Systems. ProcggdzMĝ s 5IGPLAN'88 Cof^rgncg OM Programmmg
Design and Implementation. Special Issue of ACM SIGPLAN Notices, vol. 23,
pp. 260-267.

[Lucassen and Gifford 1988] Lucassen, J.M. and Gifford D.K. (1988).
Polymorphic effect systems. Procgĝ fzMgs q/ f/zg ACM SIGPLAN-SfGACT
Symposmm OM Pn'mczpZes Pm âmzMZMg LaMgz/aggs (POPL '88), pp. 47-57.

[Matwin and Pietrzykowski 1985]. Matwin, S. and Pietrzykowski, T. (1985).
Prograph: a preliminary report. Compz^kr LaMgz/agg, vol. 10, n° 2, pp.91-126.

[Milner 1978] Milner, R.. (1978). A theory of type polymorphism in
programming. /oẑ nzaZ q/CompzYfgr and Sysfgms Sczgrncg, vol. 17, pp. 348-375.

[MPI forum 1993] Message Passing Interface Forum (1993). MPI: Message
Passing Interface. Pmcgĝ fzMgg f/zg Szzpgrcozfzpz/fzMg '93 Coz^rgMcg, pp. 878-
883

[Nikhil, Pengali and Arvind 1986] Nikhil, R.S., Pingali, K. and Arvind (1986).
Id nouveau. G5G Mgmo 265, MIT Laboratory for Computer Science.

[OMG 1996]. The Object Management Group (1996). The Common Object
Request Broker: Architecture and Specification. OMG Tgc/zzzzcaf Docz/mgM(
PrC/96-03-04.

[OSF 1992] The Open Software Foundation (1992). The OSF^" Distributed
Computing Environment. 05f-DCE-PD-1090-4 WTzz'k Papgr

[Oxhej, Palsberg and Schwartzbach 1992] Oxhej, N., Palsberg, J. and
Schwartzbach, M. (1992). Making Type Inference Practical. Pmcggdznĝ s q/ f/zg
5z%̂ /z Ez/ropeaM Coz^rgMcg on Ob;ecf-OneMW ProgrammzMg (ECOOP '92).
Lecture Notes in Computer Science n° 615, pp. 329-349, Springer-Verlag.

252

BIBLIOGRAPHY

[Snyder 1991] Snyder, A. (1991). Modelling the C++ object model: an
application of an abstract object model. Europgan
Cof^rgMCg OM Obygcf-OnenW Progfammmg (ECOOP '91), Lecture Notes in
Computer Science n" 512, pp. 1-20, Springer-Verlag.

[Steele and Hillis 1986] Steele, G.L. fr. and Hillis, W. D. (1986). Connection
Machine Lisp : Fine-grained parallel symbolic processing. Proceedings of the
ACM Cof^rgMce on Lisp and/wMĉ zoMa/ programmmg, pp. 279-297.

[Steele 1995] Steele, G.L Jr (1995). Parallelism in Lisp. Lisp Pointers, vol. 8,
n°2, pp.1-14.

[Steenkiste and Hennesssy 1987] Steenkiste, P. and Hermessy, J. (1987). Tags
and Type Checking in Lisp: Hardware and Software approaches. Procegdmgs
q/'fAg Cof^rgMcg on ArcAikcfuraZ ybr PmgyammzMg^
Opgratmg Syskms (ASPLOS), pp.

[Sunderam 1990] Sunderam, V.S. (1990). PVM: A Framework for Parallel
Distributed Computing, CoMcwrrgMcy; Pracficg 6 EzpgngMcg,vol. 2, n° 4, pp.
315-339.

[Suzuki 1981] Suzuki N. (1981). Inferring types in Smalltalk. Co/̂ fgMCg Rgcord
f/ig Ezĝ Af/i AMMwaZ ACM Sympogmm OM PnMczpks Programmmg Lzmgwaggs,

pp. 187-99.

[Talpin and Jouvelot 1994] Talpin, J-P. and }ouvelot,P. (1994). The Type and
Effect Discipline. CompwfaHoM, n° 111, pp. 245-296

[Trealeven, Brownbridge and Hopkins 1982] Trealeven, P., Brownbridge, D.
and Hopkins, R.(1982). Data-driven and demand-driven computer
architecture. CompuHng Swrogys, vol. 14, n° 1, pp.93-143.

[Wegner 1986] Wegner, P. (1986). Classification in Object-Oriented Systems.
ACM 5ZGPLAN Noficgs, vol. 21 n°10, pp.173-182.

[Wegner 1987] Wegner, P (1987). Dimensions of Object-Based Language
Design. Pmcggdmgs fAg CoM r̂gwcg on Ob/gcf-OrigMW Programmmg Syskms,
Lang^uaggs awtf AppfzcaHoos (00P5LA '87). 5;7gczaZ Jsswg q/" ACM SfGPLAN
No^icgs, vol. 22, pp. 168-182.

[Winder, Wei and Roberts 1992] Winder, R.., Wei, M. and Roberts, G. (1992).
UC++: An Active Object Model for Parallel C++. Rgggarc/i No(g RN/92/115,
Department of Computer Science, University College London, 1992.

[Wright 1991] Wright, A.K. (1991). Typing references by effect inference.
Pmcggffmgs f/zg EwropgaM Symposmm on Programmmg (ESOP '91), Lecture
Notes in Computer Science, n° 582, pp. 473-491, Springer-Verlag.

[Wright 1993] Wright, A.K. (1993). Polymorphism for Imperative Languages
without Imperative Types. Rzcg LfMmgrszfy TgcAmzcaZ Rgporf TR93-200.

254

