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Abstract 

Prograph [Cox and Pietrzykowski 1988] provides a sophisticated 

application builder, together with a visual programming language, supported 

by a powerful program development enviroimient. The programming language 

uses an object-oriented model for data abstraction and the logic is based on a 

dataflow model of computation, specified graphically. 

Graphical dataflow gives programmers a clear view of the potential for 

exploitation of concurrency and so the Prograph language appears to give 

some leverage for the programming of parallel or distributed systems. 

However parallel scheduling of operations based solely on the dataflow 

dependencies might result in the incorrect execution of programs in a 

distributed environment. 

This thesis investigates the issues to be addressed to develop a distributed 

version of Prograph. A first issue is that of a programming model for 

Distributed Prograph and a second issue is that of the design of mechanisms 

to implement the model. The need for a static analysis to support the 

implementation of the model is justified. 

The proposed analysis is divided into three logical parts: a type inference, an 

effect inference and an effect synthesis. Suitable representations for the type 

and effect information are presented. The inference algorithms are described 

and the implementation of the analysis tool and test results are discussed. 
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INTRODUCTION 

1 Introduction 

This chapter presents the motivations to undertake this research in its first 

section. The second section sets the goals for this research. Major previous 

works related to this research are presented in the third section. The reader 

can find an overview of this thesis in the fourth section. The last section 

reviews the expected contributions of this work. 

1.1. Motivations 

1.1.1. Distributed Systems 

The evolution of computing since its inception in the 1940's has not been 

limited to the progress, however impressive that progress may be, of the 

hardware. The evolution has also been that of the applications and of the 

tools to develop these applications. Over the years the certitude has also 

grown that improvements in the hardware technology are not the only way 

towards greater performance and functionality. This goal can also be 

achieved by exploiting several computers to perform a common task, where 

the meaning of common task is left open at this stage. 

In [Bal, Steiner and Tanenbaum 1989], the following definition is given: 

"A distributed computing system consists of multiple autonomous 

processors that do not share primary memory but cooperate by sending 

messages over a communication network." 

This definition encompasses a broad spectrum of systems ranging from 

coupW systems such as distributed memory parallel machines to 

loosely coupled systems such as remote computers connected by a Wide-

Area Network. 

The variety of hardware configurations reflects the variety of classes of 

distributed applications. 

1.1.2 Distributed Programming 

Distribution results in an added complexity for program development, as 

distributed applications have to deal with communication between activities, 

concurrency and synchronisation. If the benefits of distribution are to be 

realised, it is necessary to be able to develop applications with a reasonable 
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level of productivity. The design and implementation of distributed 

applications can be facilitated by three different factors: a programming 

model, tools to implement the application and other tools to test it. 

Considerable work has been undertaken to develop models for distributed 

systems. The role of the model is to present the programmer with useful 

abstractions to deal with the different dimensions of distributed 

programming and to make the reasoning about applications tractable. A good 

model strikes a good compromise between the ease with which the 

programmer understands it and the efficiency with which it can be 

implemented. 

Tools are also available to assist the user to write and to test programs. An 

example of a programming tool for distributed applications is the interface 

compiler. Such a compiler generates the templates for the application code 

and some low-level code for the networking operations from an interface 

specified using an interface definition language. The task of the programmer 

may also be alleviated by reusing software contained in libraries of 

procedures or classes. 

The behaviour of a distributed application is potentially more difficult to 

understand than that of a sequential application. Tools have been developed 

to ease the task of distributed application testing and debugging and to 

monitor the execution of distributed programs. Some of these tools rely on a 

visual representation of the computation to help the user understand its 

behaviour. 

1.1.3 Prograph 

Prograph is a graphical programming environment and language which grew 

out of the work of Pietrzykowski and Cox on graphical languages for 

functional programming, but has evolved considerably since then, and is 

currently marketed as a general-purpose programming language and 

programming environment. 

The programming language uses an object-oriented model for data 

abstraction and the logic is based on a dataflow model of computation, 

specified graphically. 
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The application builder consists of an extensive set of classes (AppZzcaHoM 

BwzMmg CZasseg or ABC's) which provide a framework with which to build 

applications. ABC editors let the user create and modify ABC objects 

without leaving the familiar WZMP (Windows, fcoMS, Menus, Pomfgr) paradigm. 

The enviroim:ient also provides an interpreter with substantial interactive 

debugging and editing facilities. Data values can be checked, edited and 

copied at run-time. Several evaluation modes are available: animate, single 

step, trace. It is possible to roll execution forward and backward, set 

breakpoints and monitor the computation stack. 

The combination of the application builder and the interpreter makes 

possible an incremental style of programming. 

1.1.4 Static analysis 

Static analysis aims at obtaining information about the behaviour of a 

program without actually executing the program. Instead, the analysis makes 

use of the language semantics to derive information from the program source. 

The information serves two different purposes: verification and optimisation. 

The analysis may verify program properties such as type correctness, 

termination or, in the context of concurrent programming, deadlock freedom. 

Optimisation refers to the improvement of the execution of a program. 

Improvements are not only concerned with execution speed as memory usage 

is also relevant. As the degree of abstraction offered by programming 

languages increases steadily, the requirement for optimisation becomes more 

stringent. In [Field and Harrison 1988] p.445, it is argued that optimisation is 

"an essential component of any viable implementation of a functional 

language". Information about different properties allows different types of 

optimisations: 

" In the context of functional languages, stncfngsg analysis checks whether 

the values of the arguments passed to a function can be computed now or 

if their evaluation must be delayed. 

» Information about the lifetime of data objects is useful to improve the 

management of memory. 
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1.2 Objectives 

It is believed that a distributed version of the Prograph language. Distributed 

PrograpA, would give some leverage for the programming of distributed 

systems. Three features of the language support this view: 

* Visual Dataflow allows the programmer to represent parallelism in a 

more natural way than text-based languages, because textual 

representations are, by their very nature, sequential. 

« Object-orientation provides the user with powerful encapsulation and 

abstraction mechanisms that are essential as the size and the complexity 

of applications grow. Such facilities may provide a good mechanism for 

encapsulating parallelism constructs in the same way that they already 

provide for the design of user-interfaces. 

* The Prograph development environment greatly contributes to the ease 

of use that users report. 

The target architecture for Distributed Prograph is that of several 

workstations cormected by a local area network. 

Distributed Prograph is aimed at using distributed systems for parallel 

programming where the main motivation is to speed-up application through 

the use of several computing resources. 

The original sequential model should be extended to support distribution 

while retaining its simplicity. Some of the features of the language might not 

lend themselves easily to the development of a distributed version and so 

distribution mechanisms which would maintain the current semantics of the 

language might be difficult to implement and/or highly inefficient. 

One of the main goals of this work is to develop a static analysis to support 

distribution in Prograph to alleviate these difficulties. The analysis is focused 

on the effect properties of operations; that is, how the arguments of an 

operation or some global variables are accessed or modified during the 

execution of this operation. The information gathered by the analysis is to be 

used to elaborate a distribution strategy which both respects the semantics of 

the model and, at the same time, ensures a reasonable level of efficiency. 
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The static analysis comprises two components: a type inference mechanism 

and an effect inference and synthesis mechanism. Although type information 

is not directly relevant to distribution, knowledge of the values' types is 

relevant to the analysis as it will be shown that in Prograph types and side-

effects are not completely orthogonal. 

1.3 Related Work 

This work is concerned with three different research areas: distributed 

programming languages, type inference and effect analysis. The following 

subsections give a summary of the work undertaken in these areas. The 

discussion of the related work is expanded in the appropriate chapters of 

this thesis. 

1.3.1 Distributed programming languages 

Languages for distributed programming have attracted considerable research 

interest. Given Prograph's ancestry and its object-oriented nature, two classes 

of distributed languages should be investigated in particular. 

* Prograph was at its begirmings thought of as a visual functional 

language, and distributed programming languages or enviroimients based 

on functional languages should provide useful information on how to 

proceed with the design of Distributed Prograph. 

» Prograph also presents some similarities with Smalltalk and the work 

undertaken to develop distributed versions of Smalltalk and other object-

oriented languages is of interest to this work. 

1.3.2 Type Inference 

Type inference is a form of static analysis whose purpose is to compute the 

type of all expressions occurring in a program in the absence of type 

declarations from the programmer. Type inference has been investigated for 

languages belonging to various paradigms: procedural, functional and object-

oriented and the type information inferred can be used for various purposes 

including establishing type correctness and allowing some code 

optimisations. 
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Kaplan and Ullman [Kaplan and Ullman 1980] devised an algorithm for the 

inference of the types of the program variables for an abstract imperative 

language. 

Milner's work [Milner 1978] on the ML type system led to a successful type 

inference algorithm which is efficient and supports a flexible type system. ML 

combines both interactivity and strong typing. Milner's type checking system 

has been incorporated in other functional languages. 

The dynamic nature of Smalltalk's type system greatly contributes to the 

flexibility of the language. However, being able to obtain type information 

statically offers several benefits, an important one is the ability to anticipate 

run-time binding errors. Suzuki [Suzuki 1981] proposed an inference 

algorithm for Smalltalk drawing heavily on Milner's experience. More recently, 

Palsberg and Schwartzbach [Palsberg and Schwartzbach 1991] developed an 

original type theory for object-oriented languages and presented an inference 

algorithm for a Smalltalk-like language. 

1.3.3 Effect analysis 

Effect analysis is another important form of static analysis which has been 

applied to procedural and functional languages in a variety of contexts. 

Two statements in a program can be connected by a coMfm/ depeWencg, which 

means that one statement must be executed before the other one or by a dafa 

dependence which means that one statement reads some data and the other 

modifies it. Control dependencies can be detected by control flow analysis 

and the detection of data dependencies relies on the results of an effect 

analysis. Automatic parallelisation and a range of compile-time 

optimisations rely on dependency analysis. 

The task of a parallelising compiler is to partition a computation into smaller 

subcomputations that can be executed in parallel. The parallel schedule must 

respect the data dependencies existing between the subcomputations. The 

Miprac parallelising compiler converts C, FORTRAN or Scheme programs into 

an intermediate language which can be analysed [Chow and Harrison 1992]. 

The analysis gathers information about program properties such as side-

effects but also object lifetime, data dependence and unordered accesses. 
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Functional languages offer a higher degree of abstraction than their imperative 

counterparts. However, functional languages are usually less efficient than 

imperative ones. For the sake of efficiency, some functional languages have 

been augmented with a limited number of imperative constructs. Several 

effect analyses have been proposed [Wright 1993] to extend Milner's type 

discipline to be able to type the newly added imperative constructs. 

In the context of software engineering, effect analysis has been used to select 

test data [Rapps and Weyuker 1982] or for program sZicmg [Horwitz, Reps 

and Binkley 1988]. Program slicing means extracting from a program source 

the statements that are necessary to understand a certain property of the 

program, for example, the computation of the return value of a procedure. 

1.4 Overview of the thesis 

This thesis is divided into eight chapters. The content of each chapter is now 

presented: 

« The Prograph language and development environment bring together 

several advanced features such as visual programming, dataflow and 

object-orientation. Each of these features has considerable implications 

for the programmer and the implementer; the aim of Chapter 2 is to give 

an appreciation of the language in a manner which is relevant to this 

research. Details of the language implementation that are relevant for the 

static analysis are explained. 

• Numerous programming models have been proposed and several of 

these models and their language implementations are described and 

discussed in the third chapter. The benefits of this review are twofold; 

firstly, the requirements of distributed programming are presented in a 

pragmatic manner through several case studies, and secondly the 

Distributed Prograph model is explained in the context of other 

distributed programming models. Chapter 3 also discusses the expected 

benefits of a distributed version of Prograph. 

» Chapter 4 looks at the design issues that have to be tackled in the 

implementation of the Distributed Prograph model. Distributed Object 

Based Systems have attracted considerable research interest over the last 

two decades and the state-of-the-art has progressed quite steadily. 
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Chapter 4 presents the aspects of this accumulated experience that are 

relevant to the implementation of Distributed Prograph. State and 

behaviour consistency is of particular interest to this research and are 

discussed in depth. As stated in the thesis title, this research work has 

been mainly concerned with static analysis; the question of the purpose 

and motivation for the proposed analysis is addressed at the end of 

chapter 4. 

* Chapter 5 begins with a comparison of the different approaches to 

typing in programming languages in general and object-oriented languages 

in particular. Various attempts at type inference are compared, the points 

of comparison being that of the language to which the inference is 

applied, the purpose of the inference and the representation chosen for 

the type information. The type inference for Prograph is presented along 

similar lines. 

* Chapter 6 is devoted to effect inference and synthesis. Previous work 

undertaken in the field of effect analysis is reviewed. Effect inference is 

concerned with the szgMafwrg of operations and the effect inference 

algorithm that derives the effect signature is described. The effect 

synthesis combines the effect signature of an operation with its context, 

to produce an approximation of the effects induced by the execution of 

an operation. 

» Chapter 7 highlights significant aspects of the implementation of the 

analysis. The analysis is illustrated by several commented examples. The 

applicability of the analysis is also discussed. The last part of chapter 7 

makes suggestion on how the results of the analysis can be used. 

* Chapter 8 concludes the thesis with a discussion of its contributions 

and the future work that could be undertaken. 

1.6 Contributions 

The contributions of this work are: 

« A type inference mechanism for Prograph is proposed. 

* A prototype of the type inference system is implemented in Prograph. 



INTRODUCTION 

* Building on the experience of type inference, an effect inference 

mechanism is proposed. 

* A prototype effect inference is implemented. 

* A synthesis algorithm is proposed and implemented. 



PROGRAPH FEATURES 

Prograph features 

Prograph is a comparatively new language and embodies some of the latest 

trends in programming language and environment design. 

The history of Prograph is presented in the first section of this chapter. In the 

second section, the features of the language and of its interpreter are 

reviewed. It is also necessary to give some explanations about the techniques 

used to implement the language in order to understand better the analysis 

described in the following chapters. The third section explains that both 

applications and application development tools are built from a set of 

AppZicah'oM BwzWmg C/ogges (ABC's), which allows for the easy customisation 

of applications and development tools. The last section of this chapter is 

devoted to the facilities provided by the current version of Prograph for 

distributed programming. 

2.1 Prograph history 

Prograph originated at Acadia University around 1983. The first 

implementation of the language, in Pascal, was due to Pietrzykowski 

[Matwin and Pietrzykowski 1985]. The impetus for the development of 

Prograph was to better understand applications written in the functional 

language PP [Backus 1978]. The name "Prograph " was obtained by analogy to 

the word "program ", where the suffix '"-gram " meaning ' writing'" was changed 

to "-graph" meaning " drawing " [Cox 1996]. A compiler was also developed 

[Cox and Mulligan 1985]. 

About 1985, a second experimental implementation of the language was built 

in Prolog by Pietrzykowski and Cox at the Technical University of Nova 

Scotia. An editor, interpreter and debugger were also developed [Cox and 

Pietrzykowski 1985]. 

Experiments with the first version of the language highlighted the need for 

redefined language constructs and for a data abstraction mechanism. The i f 

- t :hen - e l s e - constructs of the original language were replaced by a 

Prolog-like case structure with success/failure as the trigger, the iterative 

construct w h i l e - do also disappeared and the list and loop armotations 

were introduced to express iteration. Object-orientation was introduced in 

10 
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1987 as the mechanism for modularisation and data abstraction. The 

language which resulted from these modifications, described in [Cox and 

Pietrzykowski 1988], has known no major alteration since then. 

Commercial development of the language and of the environment associated 

with it began in 1986 at T/ie GuMAam SuM Systems Lz'miW company in 1986 

and commercial exploitation has been pursued by the successive instances of 

the company: TG5, Pmgrap/i fMfgmaWoMaZ and now Pzckrms Inc. 

The first commercial version of Prograph for the Macintosh was released in 

1989 and comprised an editor/interpreter (written in C) and a development 

environment with a small library of System CZasses. The System Classes were 

special classes whose behaviour was implemented in C and which could be 

manipulated using special editors also written in C. 1990 saw the 

introduction of a compiler for generating standalone applications. 

The release of the Cross PZaf/orm EnuzmMmmf (CPX) version of the language in 

1993 marked an important evolution of the development environment. 

Prograph CPX was designed to exploit the code reuse and component-based 

approach associated to object-oriented programming to a larger extent than 

the previous versions of Prograph. Prograph CPX (whose current version is 

1.4) ships with a large library of AppZzcafz'oM BwzZdmg CZasses and a sizeable 

part of the application editor is now implemented in Prograph in the form of 

AppZicah'oM BuzMmg Edikrs. 

The modular architecture of the current version of Prograph has allowed the 

development of components by third-party developers. Application 

development tools have been built on top of Prograph CPX. For example, 

Entrada!, released in 1995, is targeted at the construction of client/server 

applications, including Internet based client/server applications. 

In order to broaden its appeal and realise the benefits of cross platform 

portability, Prograph is being reimplemented for the Windows95 platform 

and a preliminary version has already been made available to developers at 

the time of this writing. 

11 
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2.2 Language features 

2.2.1 Introductory example 

The introductory example presented in this subsection is taken from [Cox 

and Smedley 1996]. Note that Prograph is an object-oriented language, hence 

the term method is used to refer to entities known as procedures in standard 

programming languages. 

1:1 ca l l s o r t M i l a i i u m e i 

-5-

^ q u i c k s o r t ^ 

r 

# 

PT' 

Fig. 2.1: c a l l s o r t method 

Fig. 2.1 shows the details of the method c a l l s o r t , a dataflow diagram in 

which three opera (ions are connected sequentially by lines called A 

datalink transmits data from an output of an operation, represented by a 

small icon called a roof on the bottom of the operation, to the inputs of other 

operations, represented by terminal icons on the tops of operations. The first 

operation in this diagram, ask , is a pnMz'(me that calls system-supplied code 

to produce a dialogue requesting input from the user. Note that the icon for a 

primitive is distinguished from other operation icons by the white line along 

its bottom edge. When a s k has been executed, the data input by the user 

flows down the datalink to the operation q u i c k s o r t , invoking the method 

q u i c k s o r t . This method expects to receive a list, which it sorts as 

explained below, outputting the sorted list, which flows down the datalink to 

the show primitive. The show produces a dialogue displaying the sorted list. 

Fig. 2.2 shows a Prograph implementation of the well known algorithm 

q u i c k s o r t for sorting a list into ascending order. 
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1:2 quicksort 

#detach-1^ 

^quicksor t ^ ^quicksor t % 

^a t t ach -1 ^ 

i P i m 2:2 quicksort 

Fig. 2.2: A q u i c k s o r t method 

The method quicksort consists of two cases, represented by the dataAow 

diagrams as shown in fig. 2.2. The first case, shown in the window entitled 

1:2 quicksort, implements the recursive case of the algorithm, while the 

second implements the base case. In general, a method consists of a sequence 

of cases. The bars at the top and bottom of cases are special operations 

called the mpuf bar and output bar respectively. The input bar is always the 

first operation executed, and copies the values of parameters from the 

terminals of the calling operation to the input bar roots. Similarly, if the case 

executes to conclusion, the output bar is the last operation executed, copying 

the values on its terminals to the roots of the calling operation. 

In the first case of q u i c k s o r t , the first operation to be executed is a 

match, W , a special operation which tests to see if the incoming data 

is the empty list. The icon attached to the right end of the match is a Next 
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Case on s u c c e s s coMfroZ, which is triggered by success of the match, 

immediately terminating the execution of the first case and initiating 

execution of the second. If this happens, the empty list is simply passed 

through as the output of the second case, and execution of q u i c k s o r t 

finishes, producing the empty list. 

In the first case of quicksort, if the input list is not empty, the control on 

the m a t c h operation in the first case is not triggered, and the first case is 

executed to completion. The operation to be executed immediately after the 

match is the primitive d e t a c h - 1 which outputs the first element of the list 

and the remainder of the list on its left and right roots respectively. 

The next operation to be executed, , is an example of a of 

which there are several kinds in Prograph, determined by visual annotations. 

First, the three-dimensional nature of the icon, common to aU multiplexes, 

indicates that the operation > will be applied repeatedly. Second, the list 

annotation o a on the right-hand terminal indicates that a list is expected as 

data, one element of which will be consumed by each execution of the 

operation. Execution of this multiplex, therefore, uses ^ to compare the first 

element of the original list with each of the other elements. Finally the special 

roots and indicate that this particular multiplex is a parfzhoM, which 

divides the list arriving on the list armotated terminal into two lists; items for 

which the embedded operation succeeds and those for which it fails. These 

two lists appear on the and roots respectively. 

The lists produced by the partition multiplex are sorted by recursive calls to 

the quicksort method. The final sorted list is then assembled using the 

two primitive operations attach - 1, which constructs a new list by 

attaching an element to the left end of a list, and ( j o i n ) , which 

concatenates two lists. 

The execution mechanism of Prograph is data-driven dataflow. That is, an 

operation executes when all its input data is available. In practice, a linear 

execution order for the operations in a case is predetermined by topologically 

sorting the directed acyclic graph of operations and datalinks, subject to 
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certain constraints. For example, an operation with a control should be 

executed as early as possible. 

The pure dataflow model prohibits alteration of data objects; if a data object 

is to be modified, a copy of it is made instead. However, application of the 

strict dataflow principles would result in performance costs when complex 

data structures are involved. For the sake of efficiency, Prograph implements 

a modified version of dataflow principles. type data objects are 

copied but instances of classes are modified "in place". Memory management 

is automatic in Prograph and data which is no longer used is automatically 

garbage-collected. 

In the example shown in fig. 2.2, the method q u i c k s o r t has only one input 

and one output, and therefore does not show how the terminals of an 

operation are matched with the roots on the input bar of a case of the 

method it invokes. These terminals and roots must be of equal number, and 

are matched from left to right. A similar relationship exists between the roots 

of an operation and the terminals of the output bar in a case of a method 

invoked by the operation. 

One important kind of operation not illustrated in the above example is the 

ZocaZ operation. A local operation is one that does not call a separately 

defined method such as q u i c k s o r t . Instead, it contains its own sequence 

of cases, called a local method. It is therefore analogous to a parametrised 

b e g i n - e n d block in a standard procedural language. 

Compute Value^ 

Fig. 2.3 : A call to a local method 

As mentioned earlier, Prograph is an object-oriented language and therefore 

provides facilities for defining new datatypes as classes. The methods in the 

above example, called unmergaZ deal with simple data rather than 

instances of classes, and therefore do not belong to any class. It is important 

to note, however, that classes also contain methods, that several classes may 

have methods of the same name, and that an operation may invoke different 

methods at different times during execution. 
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Ezkrmzf mgfhodg are calls to the operating system. Fig. 2.4 shows the pictorial 

representation for an operation calling an external method: 

HOpenResFile 

Fig. 2.4: A call to an e x t e r n a l method 

However, application code seldom uses external methods directly. The 

functionality of the external methods is provided either by the primitive 

methods or by the Application Building Classes. 

2.2.2 Control of execution 

The example presented in section 2.2.1 shows that controls and annotations 

may affect the flow of control and data. 

Conceptually the computation is driven by the availability of data. When all 

the input values of an operation are available, the operation can be executed. 

The execution produces a succeed execution message and the results are 

output on the roots of the operation, alternatively it produces a f a i l 

execution message. 

A control is the combination of an execution message and of an action. The 

range of possible actions is explained: 
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Control name Description Symbol ( f a i l 

execution 

message). 

Next Case When a Next Case control is activated, 

the flow of control is transferred to the 

next case of the method beinR called. 

F a i l When a F a i l control is actived in the 

case of a method, the operation that 

called that method produces a f a i l 

execution message. 

1® 

Continue The combination of a succeed execution 

message with a Continue action is 

semantically equivalent to no control, 

C o n t i n u e w i th a fail e x e c u t i o n 

message ignores the failure of the 

operation to which the control is attached 

13 

Terminate The Terminate control is used to 

control the iterations of the calling 

operation. When a Terminate control is 

activated in the case of a method, the 

remainder of the case is skipped and the 

iterations of the operation that called the 

method interrupted. 

m 

Finish The Finish control is also used to 

control the iterations of the calling 

operation. When a Finish control is 

activated in the case of a method, the 

remainder of the case is executed but the 

iterations of the operations that called the 

method are interrupted. 
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A l i s t annotated terminal indicates that the argument on this terminal will 

be a list and that the operation should be applied to every element of the list 

until the end of the list is reached or a control is activated. 

A l o o p annotation creates a cycle whereby the value coming out of a root is 

fed back into a terminal until the iterations are completed or interrupted. 

Fig. 2.5.a: l i s t terminals Fig. 2.5.b: l o o p terminals 

The behaviour of an operation can also be modified by a mw/hpfez 

annotation: 

« A r e p e a t annotated operation executes repeatedly until a 

T e r m i n a t e or F i n i s h control is activated in one of the cases of the 

method called by this operation (see fig. 2.6.a). 

» A partition operation converts a predicate operation into a filter 

names % 
0 + 

Fig. 2.6.a: A r e p e a t operation Fig. 2.6.b: A p a r t i t i o n operation 

The execution of a computation can be controlled by using an mjecf terminal 

and the c a l l primitive. An inject terminal allows the naming of an operation 

at run time: 

Fig. 2.7: A Set operation with an inject terminal 
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In fig.2.7 the rightmost terminal of the operation is an inject terminal. The 

name of the Se t operation is given at run time. 

A distinguished primitive, c a l l , calls the method whose name is passed as 

argument. 

2.2.3 Object-orientation 

2.2.3.1 Terms and definitions 

Wegner [Wegner 1987] distinguishes three generic features for object-oriented 

systems: object, cZass and 

* An object encapsulates both state and the operations to manipulate 

that state. Objects are instances of classes. 

» A class is an abstract template describing the internal state and the 

behaviour of its instances. 

# Inheritance is a mechanism for code reuse; a subclass inherits the 

behaviour and state of its parent class. The subclass extends the 

behaviour of its superclasses by oogrrWmg the inherited methods or by 

new methods. 

Da (a requires that the state of objects is accessed only through the 

operations of the objects. Although this is not systematic, object-oriented 

languages often enforce data abstraction. 

2.2.3.2 Prograph class system 

The Prograph class system supports single inheritance, where each class 

inherits from at most one class. "At most" is significant in the sense that the 

Prograph class hierarchy is "a forest of trees" and not a tree as in 

Smalltalk [LaLonde and Pugh 1990] in which all classes inherit from the 

Objec t : class. 
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THE BARNYARD 
SIMULATION 
CLASSES 

Barnyard Diary Entry Animalr-^^ 

Horse 

Black Angus Guernsey Duck Chicken 

r ' . J 7 . _ _ r 7 

Fig. 2.8: Class icons and inheritance trees. 

The collection of classes shown in fig. 2.8 contains two single classes 

Barnyard and DiaryEntry as well as an inheritance tree with the class 

Animal at its root. 

2.2.3.3 Object state and behaviour 

Unlike Smalltalk, Prograph has not adopted "the everything is an object" 

philosophy. In Prograph, the data flowing along the arcs of the dataflow 

graph can be a value of a Prograph primitive type, or, it can be an object 

whose type is the class of the object. 

Prograph provides the following primitive datatypes: b o o l e a n , e x t e r n a l , 

i n t e g e r , l i s t , none , n u l l , r e a l , s t r i n g or u n d e f i n e d . Most type 

names are self-explanatory, e x t e r n a l is the type of operating system data 

structures, none is the type of a distinguished value NONE which is passed 

to an operation when the matching terminal is not connected. NONE is 

suppressed from the list constructed on the list root of a multiplex operation, 

undefined is the type of another distinguished value, UNDEFINED, which 

is used when a computation is rolled forward during debugging. 

It is important to note that Prograph does not view classes as objects and 

that classes are not first-class values (classes are first class values in 

Smalltalk). Each class supports two sets of attributes, the cfass affnbwkg and 
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the instance attributes. Each attribute can be inherited from a superclass or 

de/mgd in the class. The value of a class attribute is shared by all the 

instances of the class while the value of an instance attribute is private to 

each instance. 

Contrary to the principles of data abstraction, the values of all the attributes 

can be accessed or modified using default G e t or S e t operations 

respectively (see fig. 2.9). 

The name of a Get operation is that of the attribute whose value must be 

returned. The arity of the Get operation is fbced: one terminal and two roots; 

the leftmost root returns the value flowing into the terminal and the second 

root returns the value of the attribute. 

n 
€ Name/ 

Smith 
z — 

Fig. 2.9: Get and Set operations 

Likewise, the name of a Set operation is that of the attribute whose value is 

to be modified; its arity is two terminals and one root, the new value of the 

attribute flows into the second terminal of the operation, the value on the 

root of the Set operation is the value flowing into the leftmost terminal. 

The state of a class consists of the values of the class attributes and of the 

default values of the instance attributes defined by the class. Get and Set 

operations may be used to access the state of classes, however a class cannot 

be passed as argument to a Get or Set operation. Instead a string whose 

value is the name of the class is passed to the operation. Thus the semantics 

of a Get or a Set operation depends on the type of the value flowing on the 

terminal of the Get operation or the leftmost terminal of the Set operation. 

A default zMzhWz'safzoM or Init operation is provided for each class. The 

default Init operation has the same name as the class from which a new 

object is instantiated. A new instance comes with the default attribute values 

defined for its class. The Init operation may take as optional argument a 

list of (attribute name, attribute value) pairs to overwrite the default values 
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or set new class attribute values at instantiation time. Fig. 2.10 shows the 

creation of a new instance of the class Person with the value "01 05 96" 

for the attribute DOB. 

((DOB -01 05 96-)) 

% P e r s o n ^ 

Fig. 2.10: Instance creation 

It is possible to override the behaviour of the default initialisation operation 

by defining a custom initialisation method which is added to the class. 

The behaviour of the instances of a class is implemented by a set of class 

methods. Simpk class methods are methods of arbitrary arity. It is sometimes 

necessary to extend the behaviour of the default Get or S e t operations by 

defining custom Get or Set methods. The methods must have the same arity 

as the corresponding operations. A Get or a Set method may have a name 

which does not correspond to any attribute in the class. A virtual attribute is 

thus defined. 

The definition of a class is presented using a visual form. Different symbols 

are used to distinguish instance attributes from class attributes and inherited 

Attribute Symbol 

C l a s s a t t r i b u t e , 

inherited 

C l a s s a t t r i b u t e , 

defined by the class 

o 

Instance a t t r ibute , 

inherited 

Instance a t t r ibute , 

defined by the class 

? 

Fig. 2.11 shows the attribute window of the class Student , all the attributes 

of the class are listed in this window. 
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V Student 

^ First Name "Adrian" 

^ Surname "Smith" 

^ Sex "M" 

T DOB " 1 - 1 - 7 7 " 

? Registration number 6234 

Tutor "Dr Miner" 

\J\ 

Fig. 2.11: The attribute window of the class Student 

In fig. 2.11, all the attributes of the Student class are instance attributes (if 

Student had class attributes, these attributes would be displayed above 

the horizontal line in the window). The attributes First Name, Surname, 

Sex and DOB of the Student class are inherited from a superclass, whereas 

the attributes Registration number and Tutor are defined by the 

Student class. 

The method window of a class definition displays the methods defined by 

this class (inherited methods are not displayed). Different symbols are used 

Method type Symbol 

I n i t method # 
Get method 

Set method <@ 

Simple method 

The window of fig. 2.12 lists the methods of the Student class. 
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Student 
<<>> 

Custom init ial isation method. 

Age 

A v i r tua l at t r ibute is defined 

addToClass 

Simple Class method. 

details 

Simple Class method. 

Fig. 2.12: The method window of the class Student. 

There exists a set of simple methods not attached to any class, called 

wMmersaZ methods. 

Prograph is a dynamically typed language. In dynamically typed languages, 

the information is not associated with variables but with values. This means 

that the same variable can store successive values of different types. 

2.2.3.4 Polymorphism 

In their survey devoted to data abstraction and polymorphism, Cardelli and 

Wegner [Cardelli and Wegner 1985] distinguish four kinds of polymorphism: 

# Overlouding is a facility which allows the reuse of the same name for 

different behaviours. For example in C, the + primitive (addition) is 

overloaded as there exist two implementations of the addition, one to 

add integer values and a second one to add real values. Likewise, some 

of the primitive methods are overloaded in Prograph (e.g. the < relational 

primitive method). Overloading is not supported for universal methods in 

Prograph as the universal methods share a single name space with the 

primitive operations and thus a universal method and a primitive may 

not have the same name. But different classes can define methods with 

the same name. 
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* CoerczoM is an implicit type conversion. An example would be the 

computation of 5.3 + 4. The integer value 4 is coerced into the real value 

4.0 to be added to the real value 5.3. Prograph coerces the arguments of 

the arithmetic and relational operators. 

• Inclusion polymorphism is a consequence of inheritance. Each method 

defined for a class is also appfzcabk to its subclasses (unless the method is 

redefined by a subclass). 

# Pammgfnc pofymorpAfsM can be defined as the property of a function to 

accept arguments of a potentially infinite number of types. Functions 

exhibiting parametric polymorphism are termed gengnc functions. One 

example of a generic function is the computation of the length of a list, 

where the element type of the list is arbitrary. 

A fifth type of polymorphism is often mentioned and should be added to the 

list: 

# Da (a poZyfMorpkiSTM refers to the ability of the same variable to hold 

successive values of different types. 

In Prograph, at run-time, an operation calls a method and failure to bind the 

operation to a method results in a run-time error. The binding depends on the 

type of reference used by the calling operation, the type of its arguments and 

the method case in which the calling operation appears. 

Prograph offers four types of references: 

. The first type of reference is a unmersaZ reference (shown in fig. 2.13.a). 

The operation is associated with a universal, a primitive or an external 

method. 

% Registration^ 

a 

Fig. 2.13.a: A universal reference 

# The second type is a data-determined reference, which has the 

semantics of a message send in Smalltalk. In the object model, objects 

communicate by sending messages to each other. Upon receipt of 

message by an object, the method binding mechanism looks up all the 
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methods with the same name as the message selector and despatches the 

method applicable to the class of the receiver object, that is, the method 

that the class of the receiver defines or inherits. In the Prograph dataflow 

object-oriented model, the receiver is the object flowing in the leftmost 

terminal of the operation. If there exists no method applicable to the class 

of the receiver, a universal method or a primitive method may be called. 

Fig. 2.13.b shows that a data-determined reference consists of the / 

character followed by the name of the method to be called 

^ / d e t a i l s ^ 

Fig. 2.13.b: A data-determined reference 

" The third type is an gxpficzf reference. The operation name consists of 

both a class name and a method name separated by the / character (see 

fig. 2.13.b). Explicit reference leaves no ambiguity about which method 

will be called at run-time. 

% Student/details % 

Fig. 2.13.C: An explicit reference 

* The fourth type is a coMkxWekrmmed reference. The method called is 

the method applicable to the class of the method containing the 

operation. It is thus impossible to name operations with a context-based 

reference in one of the cases of a universal method. A context-determined 

reference can be super annotated. The method called is that applicable to 

the superclass of the class of the method containing the operation. A 

data-determined reference consists of two / characters followed by the 

name of the method to be called (see fig. 2.13.d). Fig. 2.13.e shows the 

representation of the super annotation. 

%//details 

Fig. 2.13.d: A context-determined reference 
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Fig. 2.13.e: A context-determined reference with a super annotation 

2.2.4 Persistents 

Prograph provides pgrszskMk. Persistents are named elements which can hold 

any value. Two operations are available on persistents, a Ge t operation 

reads the value of the persistent and a S e t operation modifies the value of 

the persistent (see fig. 2.14). 

^ S t u d e n t L i s t ^ 
'W'  Student List 

Fig. 2.14: Persistent Get and Se t . 

Persistence allows data values to have extent beyond a single execution of a 

program. 

2.2.5 The language editor & interpreter 

A visual editor allows the programmer to manipulate the visual components 

making up the Prograph language. Navigation through nested dataflow 

diagrams is possible through selecting and clicking on the elements to be 

inspected. Documenting applications is facilitated by a hypertext facility 

which combines explanation about primitives, user-written comments on 

classes, methods and variables. A search facility allows the user to find all 

the occurrences of a given operation or attribute in the code. 

The interpreter fully exploits the visual paradigm to make the behaviour of 

programs easy to understand. A wide range of features is supported to assist 

the programmer during the debugging phase: breakpoints, roll backward and 

roll forward and four execution modes. The programmer can visually monitor 

how the execution of the code progresses by setting the interpreter in the trace 

or animate execution mode, in which operations on the graph are highlighted 

in a different colour after they have been executed. The interpreter offers a 

high degree of that is, the ability to inspect and edit the data 
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objects taking part in a computation. The stack of the computation currently 

executed is also available for inspection in a visual form. 

Debugging is facilitated by the exhaustive error reporting provided by the 

interpreter. Run-time error messages include invalid argument type, out-of-

range values, stack overflow, activation of a Next Case control in the last 

case of a method, no control attached to a failed operation, no method can 

be despatched or the named attribute does not exist in the argument class 

and wrong operation arity. 

Execution and editing are tightly integrated. When an error occurs at run-

time, the execution is suspended at the faulty program point, the case 

containing the offending operation is opened for inspection and the 

interpreter suggests a possible solution to the programmer (e.g. add an 

attribute or a method to the receiver's class). Execution can be resumed after 

the faulty value or code has been edited. 

Prograph encourages a development methodology whereby the programmer 

can develop and test an application using the support tools available in the 

editor/interpreter environment and then use the compiler to generate a stand 

alone version of the application. 

2.2.6 Implementation overview 

Although references are seldom manipulated directly by programs, they 

underpin the implementation of the language. 

All method arguments and return values are passed by reference. The use of 

references has several benefits: 

# It allows data polymorphism, since structures do not store values but 

references to values. 

* Values can be shared. The existence of several references to the same 

value is called value aZiosmg. 

The implementation of data values can be described using C structures. All 

data object structures have three fields in common: 

. The t y p e field contains an integer value which identifies the type of 

the value (dynamic typing). 
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. The s a v e field is used when cycles in data linkage need to be detected. 

. The u s e field keeps track of the number of times a value is referenced. 

This reference count is used by the garbage collector. 

This basic structure is extended with the necessary fields to represent 

different data objects. Boolean values are implemented by adding an extra 

field, called value, which stores 0 when the boolean value is False and 1 

when it is True. The declaration in C of the boolean structure would be: 

typedef struct 
{ 

Int2 type; 

Nat2 save; 

Nat2 use; 

Bool value; 

}CS_boolean, *C_boolean; 

The representation of instances requires the addition of two fields to the 

basic structure. A s i z e field records the number of slots in the instance. The 

C_ob] e c t field points to an array of references, the size of which is kept in 

the s i z e field. The field c l a s s is a reference to the class from which the 

object has been instantiated. The other references are to the values of the 

instance (but not class) attributes. The definition of an instance structure 

would be: 

kypedef st:ruct 

{ 

Int2 type; 

Nat4 save; 

Nat:4 use; 

Nat2 size; 

Handle class; 

C_obiect* atkrs[]; 

} *C_instance 

In Prograph, classes are not first class values and the structure underlying 

their implementation differs slightly from those used to construct data 

objects; it does not make sense for example to record a use count as class 

structures are not garbage collected. A class structure is too complex to be 
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usefully explained in detail but an outline is given now. A class structure 

points to: 

* the name of the class. 

• an array of references to attribute descriptor structures. An attribute 

descriptor points to the name of the attribute; a f l a g s field carries other 

information about the attribute: class or instance attribute, inherited or 

defined for the class. 

• an array of references to the values of the class attributes. 

• an array of references to the default values of the instance attributes. 

# an array of references to the methods supported by the class. 

# the structure of its parent, sibling and children classes. 

2.3 Application deveiopment 

2.3.1 Structure of applications 

The current version of I'rograph is available only for the Apple Macintosh. 

The traditional area of strength of the Macintosh applications lies in user-

centred, eugMf-drmen applications, where the construction of the user-

interface usually makes up a sizeable part of the application. 

The requirements of this class of applications are reflected in the structure of 

Prograph programs. These are built as an event-processing loop: events are 

inserted in an event stream and during each iteration of the loop the event-

handler gets the next event from the event stream and despatches it to the 

application component that can respond to it. The way an application 

component should respond to an event is described by a hehuviour. A 

behaviour associates the name of a method or primitive with input gpecz/zgrs. 

When an event is despatched, the behaviour associated with the event is 

executed by the commander. 

The code for an application, or proyecf in Prograph terminology, is divided 

into secfzoMS. A section consists of sets of classes, universal methods and 

persistents. Sections have no significance for the semantics of the language. 

They merely facilitate the modular development of applications and the 

sharing of code between projects. 
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The BwzZdmg CZagges (ABCs) form a collection of reusable classes 

from which the programmer creates and customises the components of an 

application. These components are concerned with: 

. User interface building with classes such as Window, Menu and 

Button. 

* Document management with classes for file handling. Datafile 

primitives offer low-level support for operations on indexed files. 

« Utilities, with classes and methods to manage printing, clipboards and 

system resources. 

* Application behaviour, with a collection of related classes such as 

E v e n t H a n d l e r , Commander, Task and B e h a v i o u r and their 

associated methods. 

The application is structured as an object containment hierarchy (see fig. 

2.15). An instance of the A p p l i c a t i o n class is at the top of the 

containment hierarchy. The attributes of the A p p l i c a t i o n object store the 

components making an application (file, menu and windows). Each 

component may in turn contain several further components. For example in 

fig. 2.15, the A p p l i c a t i o n instance contains an instance of the Desktop 

class, which in turn contains an instance of the Menubar class. 
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*ApplicatKXi» 
Ĉlipboard* 

Ĉursors* 

Ĉommander* 

D̂esktop* 

finder Handier* I *MuldFinder Handler* 

"Modal Handler* 

list of «Dê rred Task»'s 

undoable "Task* 

list of «Document»s 

"Mmubar* 

listof *Menu»s 

list of «(Screen»s 

list of «Window»s 

"Utility* 

Fig. 2.15: The application containment hierarchy 

2.3.2 Application building tools 

ABC objects can be created and modiAed in a direct manipulation fashion 

using the AppficahoM BuzMmg Editors (AEE's). Visual components of 

applications such as windows and buttons are drawn in a WYSIWYG (WMf 

you seg is w/uzf you get) fashion. However, editors are not restricted to the 

manipulation of visual objects. Behaviours, for example, may also be 

specified by typing a method name and choosing the input specifiers from a 

pull down menu. 

When creating an application component from an ABC, the associated ABE 

actually creates a subclass of the ABC. The values required for the 

instantiation of the component are recorded as the default values of the 

attributes of the ABC subclass. 
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2.4 Support for distribution in Prograph 

The current version of Prograph provides simple mechanisms for distributed 

programming. 

Packing is the transformation of an object into a stream of bytes for storage 

on a permanent media or transmission over a network. Unpackmg is the 

reconstruction of an object from a stream of bytes. 

When packing an object, it is meaningless to save references as these 

references will have no meaning in another context, so instead the values 

pointed at by the references should be packed as well. The t o - b y t e s 

primitive in Prograph packs data objects of arbitrary complexity and 

produces a map which can be used when unpacking the object. The values of 

instance variables are packed with the instance that refers to them. The 

primitive from-bytes reconstruct objects from their byte stream 

representation and the associated map. 

Different communication protocols can be used to transmit packed objects. 

Prograph provides a set of primitive methods to wrap up calls to the Appfg 

TmnsacfioM ProfocoZ (ATP), which is one of the protocols supported by the 

AppfekfA; protocol suite [Sidu, Andrews and Oppenheimer 1990]. Other 

communications protocols, notably TCP-IP, are supported by add-on 

products. 

2.5 Summary 

* Prograph was first conceived as a functional language using a visual 

dataflow representation. 

* The current version of the language features an object system to provide 

data abstraction. 

* For efficiency reasons, Prograph does not adhere to the pure dataflow 

model. Instead, complex data structures can be modified in place. Values, 

in Prograph, are dynamically typed and memory management is 

automatic. 

. A powerful editing/debugging environment supports the task of the 

programmer. Applications can be created from a large collection of 

reusable classes. 
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Support for distribution is limited in the current version of Prograph. 
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Distributed Programming models 

The term gyskms encompasses a broad range of hardware 

configurations and applications. 

A classification for such systems is proposed in the first section of this 

chapter. The second section discusses the role of a distributed programming 

model. Sections three, four, five and six are devoted to four of these models. 

The last section presents a model for Distributed Prograph. 

3.1 Classes of Distributed Applications 

In [Bal, Steiner and Tanenbaum 1989], the reasons for using distributed 

systems are put in four different categories: 

» Execution speed-up for a single computation can be achieved through 

parallelism. Numerical applications are characterised by the regularity of 

both their data structures (vectors or matrices) and control structures 

(loops). Symbolic programming handles symbolic data such as deduction 

rules in expert systems. This data is represented by complex and irregular 

data structures. The requirements of symbolic programming have 

motivated the development of declarative languages. The higher level of 

abstraction provided by these languages, automatic memory management 

for example, makes symbolic programming more tractable than with 

imperative languages. Intensive numerical or symbolic computations can 

be split into smaller granularity computations. Flow modelling and the 

implementation of a true-or parallel facility are examples of numerical 

and symbolic parallel applications respectively. Parallel applications are 

often characterised by a high communication to computation ratio. 

Workstations connected by a local area network are establishing 

themselves as an alternative to parallel machines and vector processors 

to execute such parallel applications. 

# The benefits of distribution with respect to fault-tolerance have been 

recognised for some time. Fault-tolerance can be provided by purpose-

built distributed hardware. Alternatively, duplication of data and 

functions on autonomous machines increases the reliability and 

availability of the system. Mechanisms must be devised to ensure the 
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consistency of the replicated data and a proper synchronisation of the 

replicated activities. The ISIS toolkit [Birman 1993] provides support to 

build distributed fault-tolerant applications using normal hardware. 

» Resource sharing is possible through the functional specialisation of 

parts of the system, known as resource managers or senders. This class of 

applications is known as c/zeMf/serugr applications. Client/server 

applications are usually deployed in multi-user environments. 

Heterogeneity is an important issue in the design of client/server 

applications. This heterogeneity ranges over hardware, operating systems, 

communication protocols and application programming languages. 

Client/server applications are progressively replacing mainframe centred 

applications within commercial organisations as is reported in the 1996 

Datapro client/server survey [BYTE 1996]. 

* Some applications such as Automatic Teller Machines (ATMs) are 

intrinsically distributed. This class of distributed applications emerged as 

early as the 1950s with the early developments exemplified by the 

SABRE airline reservation system. These systems can be described as 

loosely coupled as they involve wide-area network communication. The 

relevance of this class of applications is illustrated by the growing 

popularity of the Internet and the other distributed applications it has 

spawned such as electronic mail and the World-Wide-Web. 

3.2 Distributed Programming models 

"A distributed programming model is one which enables us to set up and 

coordinate activities residing at multiple autonomous machines connected by 

a network" [Coulouris, Dollimore and Kindberg 1992]. Programming m (Ag 

gmaZf refers to the task of describing the individual activities, whereas the 

coordination of these activities is referred to as programming m f/K Zarge. 

A distributed programming model should present the programmer with the 

necessary abstractions to deal with parallelism, communication and 

synchronisation between activities. The level of abstraction supported may 

vary considerably from one model to another. 

A model may shelter the programmer from the issues arising from 

distribution. The opposite view states that a programming model consists of 
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a compwfafioM mode/ and a coordmafioM Mioiief and these two models can be 

developed separately [Gelemter and Carriero 1992]. 

A model is often biased toward a class of applications. The communication 

pattern between the activities involved in a parallel computation differs from 

that in a client/server application. The requirements of the class of 

applications targeted are reflected in the abstractions provided by the model. 

There are two approaches to parallelism. The first approach advocates 

mpZzczf parallelism where the programmer need not indicate which portions 

of the program should be executed in parallel. With explicit parallelism, 

language constructs are available to express parallelism within a program. 

MappzMg is concerned with the assignment of activities to the processing 

resources available within the distributed system. 

The activities making up a distributed computation need to exchange data by 

means of communication over the network. A programming model may 

abstract communication to various extents. Some models offer some high-

level views of network operations. At the other end of the spectrum, 

communication may be completely hidden from the programmer and dealt 

with by the implementation. 

The model also deals with synchronisation requirements. Activities are said 

to be gyMc/zroMzged if the progress of one is conditional upon an event caused 

by the other. 

3.3 Process Model 

3.3.1 The process abstraction 

The process model is often implemented by procedural languages. A 

procedural language describes a computation as a sequence of instructions 

which access and modify data stored in memory. Procedures are groups of 

instructions that can be referred to by a name and can be called. Procedural 

languages view computations as a set of procedure definitions and a 

sequence of procedure calls. 

The process is the abstraction of the hardware used to execute a 

computation. A process encapsulates the program data, its code as well as 

one or more threads of execution. A thread is the abstraction of an activity. 
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3.3.2 Distributed processes 

In the context of distributed programming, processes are seen as units of 

concurrency and distribution. Processes do not share state and communicate 

by the sole means of message passing. The purpose of a message might be to 

transmit data or invoke some behaviour of another process. 

commuMicafzoM is the name of the former type of message-passing and Remok 

Procedure Call that of the latter. 

3.3.2.1 Point-to-point communication 

With point-to-point communication, processes exchange unidirectional 

messages using conmiunication primitives. Variations are possible depending 

on whether the operations are blocking or non-blocking. A send operation is 

blocking if it does not return until a corresponding r e c e i v e operation is 

issued. A blocking r e c e i v e operation does not complete until a message 

arrives. 

In [Bal, Steiner and Tanenbaum 1989], processes and point-to-point 

communication are described as the "basic model". This suggests that the 

model closely reflects the distributed architecture; it can be implemented 

efficiently and is widely used for parallel numeric applications. 

3.3.2.2 Remote Procedure Call 

Remote Procedure Call [Birrel and Nelson 1984] extends the functionality 

provided by one-to-one messages as they transmit not only data but also a 

reference to a procedure defined in the interface of the callee. RPC builds on 

the well-understood notion of a local procedure call. The semantics of a 

procedure call implies that the caller remains blocked while the callee is 

executing the procedure. A remote procedure call provides a means of 

exchanging data and synchronisation between activities and hides the details 

of the network operation from the application programmer. 

RPC is often chosen to implement client/server applications. In that 

particular context, the caller is referred to as the cZienf and the callee as the 

server. A server manages some resources on behalf of its clients. The service is 

described by an interface. 
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The RFC model of process interaction restricts the potential for parallelism 

between clients and servers. More parallelism can be introduced by allowing 

several threads of execution within the client, that is, procedure invocations 

can proceed in parallel. At the server level, multiple threads might allow the 

server to service requests in parallel. Asynchronous RFC has also been 

investigated [Liskov and Shrira 1988]. Both multithreaded code and 

asynchronous RFC complicate the programmer's task as they introduce 

further synchronisation requirements. 

3.3.3 Implementations of the process model 

The Occam language implements the CommwMzcafmg Pmcesseg (CSP) 

model [Hoare 1978]. Occam processes are single threaded computations. 

They communicate by sending messages through chaMMgZs. A channel is the 

abstraction of an unbuffered, unidirectional data path between two 

processes. An input operation reads the value available through the channel 

and an output operation writes a value on the channel. Both operations are 

blocking, as an input operation must be matched by an output operation. 

Processes can be composed using the 5EQ, PAR and ALT statements. SEQ 

requires the processes to be executed sequentially, PAR in parallel and ALT 

provides non-determinism. 

CHAN OP INT chan3 , chan4 : 

PAR 

INT f red: 

SEQ 

chan3? fred 

fred : - fred+1 

INT jim: 

SEQ 

chan4 ? j im 

j im : = j im+1 

In the above example taken from [Fountain and May 1987], two channels 

transmitting integer values are declared, chan3 and chan4 , two identical 

processes proceed in parallel to read the values from chan3 and chan4 and 

increment them by one. 
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The conceptual simplicity of the CSP model has also made it attractive as a 

coordination model to be used with a variety of sequential languages (a list 

can be found in [Bal, Steiner and Tanenbaum 1989]). 

The conjunction of a conventional programming language such as C or 

FORTRAN with a message passing library such as the Parallel Virtual 

Machine (PVM) [Sunderam 1990] or the Message Passing Interface (MPI) 

[MPI forum 1993] provides an evolutionary approach. These libraries 

abstract away the complexities of the networking operations and present to 

the user a set of high level communication functions to send and receive data 

in a machine independent format. 

/* Sending Process */ 

initsend(); 

puts bring ("The square root of") ; 

putint(2); 

putstring{"is"); 

putfloat{1. 414) 

send("receiver", 4, 99) 

The example above shows the use of functions of the PVM libraries from 

within a program written in C. A message is constructed and then sent. The 

s e n d function takes as arguments the (process name, instance) pair (there 

might be several instances of the same process) and the message type. A 

message type permits the selective reception of messages. 

The Argus language [Liskov 1988] supports RPC as a language construct. 

RPC; however, is more often implemented as a run-time support 

infrastructure for existing languages. An RPC mechanism is one of the 

components of the Open Software Foundation (OSF) Distributed Computing 

Environment (DCE) [OSF 1992] (see fig. 3.1). 

40 



IDKni%nHJTEDPR{)GRVUVUWINK;&4C%)ELS 

Remote Procediina Call 
arciPKMnlzboiiSeiTicB 

I'lme 

Fig. 3.1: The architecture of the Distributed Computing Environment 

The interface between a callee and the callers is described using a special 

purpose iMkr/acg The following example is taken from 

[Shirley^ Hu and Magid 1994]: 

[ 

uuid(40554daa-6b3b-llcf-8a42-08002be7a203), 

version(1.0) 

] interface arithmetic 

const unsigned short ARRAY_SIZE = 10 ; 

typedef long long_array[ARRAY_SIZE]; 

void sum_arrays ( 

[ln]long_array a, 

[in] long_array b, 

[out]long_array c); 

int sum_ints ( [in] int a, [in] int b) ) ; 

} 

The syntax of the DCE IDL is very close to that of ANSI C. The interface is 

identified by a Unique UMmgrsaZ (ULIZD), its version number and its 

name. This interface defines a constant, an array datatype: l o n g _ a r r a y 
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and two operations, s u m _ a r r a y s and s u m _ i n t s , which compute the sum 

of two arrays or of two integers. The interface is compiled by the interface 

compiler which generates a skeleton for the implementation of the server and 

the low-level distribution code which is transparent for the user. A binding 

mechanism, CeZZ Dirgcfory Seroicg (CDS) in DCE terminology, allows servers to 

export their reference and client applications to acquire the reference of the 

servers they need to invoke. 

3.4 Distributed Objects 

3.4.1 The basic object model 

An object encapsulates both state (the attribute variables of the object) and 

behaviour (the methods). Objects are instances of classes. Classes serve as 

templates that define the implementation of their instances. Inheritance is a 

mechanism whereby a subclass inherits the behaviour and the structure of its 

superclasses. The primary goal of inheritance is code reuse and sharing. 

Objects communicate exclusively by message passing. An object invokes 

another object by sending it a message. When the object receives a message, it 

determines whether it has a method to respond to the message. The matching 

at run-time of an operation name and of the corresponding method is called 

dynamic binding. The semantics of object invocation is that the calling object 

remains blocked until the invoked object returns. 

3.4.2 Objects and distribution 

The message passing mode of interaction between objects extends naturally 

to distributed programming. Data abstraction is of obvious benefit to 

distributed programming because it reduces coupling between the different 

parts of a distributed application. Other features of the original object model 

require special consideration for distribution. 

Inheritance can be difficult to implement in a distributed environment. 

Bennett [Bennett 1987] writes: "A major disadvantage of inheritance is the 

potentially awkward separation of object behaviour and state". The cost of 

method despatching appears too high. Some models do not support it. 

Prototype-based languages [Lieberman 1986] constitute another variation 

from the original object model. These languages do not have classes from 

which objects can be instantiated, rather objects are created by cfoMZMg a 
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object. Code sharing and reuse is achieved through 

Objects can delegate to one or more ancestors the responsibility for 

performing an operation or keeping part of its state. 

Object models have different approaches to typing. Dynamically typed 

languages give greater flexibility to the programmer. However type errors can 

be discovered only at run-time and this might prove particularly 

unacceptable in a distributed system. Static typing stresses tighter typing 

discipline since type errors are detected at compile time. 

Object models also vary in the way objects and activities are related, two 

approaches can be distinguished 

* In the acfmg object modgf, activity is associated with the object. 

Parallelism in the active object model results from the instantiation of 

several active objects. Intra-object parallelism is possible by allowing 

several activities to execute in an object. 

. In the pggsme object modeZ, objects and (potentially multithreaded) 

processes are distinct entities, the process being responsible for executing 

methods of passive objects. Processes are units of parallel execution in 

the passive object model. 

In all models, message passing is the means for objects to communicate 

whether they be in the same address space or separate address spaces. 

Synchronous message passing also provides inter-object synchronisation, 

although some models allow objects to send messages asynchronously in 

order to increase concurrency. 

Several mechanisms are available for the internal synchronisation of objects. 

For example synchronisation variables such as mutexes can be part of the 

internal state of the object or monitor constructs may be available for object 

operations. 

The requirements of parallel computing led to the development of another 

variation of the basic object model, the Actor model [Agha 1990]. Actors 

encapsulate state and behaviour as well as activity. Actors communicate by 

asynchronously sending messages to other Actor's mailboxes. A mailbox 

name uniquely identifies the actor to which the mailbox belongs and it can 

also be transmitted in a message. The mailbox queues the messages for its 
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actor and the messages invoke the actor's behaviour. A behaviour rnay spawn 

new actors with new mailboxes or a successor actor with the same mailbox. 

Client/server applications are often deployed in heterogeneous environments 

and the good abstraction capabilities of the object model have led to its 

widespread acceptance for this class of applications. However, the use of 

object-oriented languages for parallel programming has also been the subject 

of some interest. 

3.4.3 Distributed Object Systems 

The systems presented in this subsection illustrate the various design 

approaches mentioned in the previous subsection. 

Smalltalk is seen as the archetypal object-oriented language. [Bennett 1987] 

describes a possible way of distributing the language. The aim of the project 

was to retain as much as possible of the original object model, hence the 

semantics of Distributed Smalltalk is the same as that of the sequential 

language. The implementation provides a message forwarding and reply 

service to remote objects. The Smalltalk language and programming 

environment offer a high degree of reflection and interactivity. Reflection 

means that the representation and execution characteristics of the language 

are exposed using the language constructs; these characteristics can be easily 

customised. Distributed Smalltalk preserves this design philosophy; 

Distributed Smalltalk is largely implemented in Smalltalk and the error 

reporting and analysis facilities remain available with distributed 

computation. 

The Obliq language [Cardelli 1995] is an interpreted prototype-based 

language designed for distributed programming. Obliq's object model does 

not use delegation on the grounds that the sharing resulting from delegation 

causes implementation difficulties in a distributed context. Obliq objects are 

self-contained. The attributes and methods of an object are embedded into it. 

The fragment of code below shows the definition of an object: 

let o = 

{ X => 3 , 

inc => math(s, y) s .x : = s . x+y; s end, 

next => math(s) s . inc (1) .x end} ; 
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An object o is defined with an attribute x and two methods i n c and n e x t . 

Code reuse is achieved by the cloning operation. The expression: 

clone (ai, an) 

creates a new object with all the attributes and methods of objects a i to a^-

Distribution is not transparent in Obliq. A sz(e is the abstraction of an 

execution context and it is designated by a name. The execution of a 

procedure can be explicitly mapped to a site by the programmer. Obliq 

supports lexical binding with identifiers retaining the value to which they 

were bound at their first occurrence. In Cardelli's view, lexical scoping 

prevents the unpredictable results caused by dynamic scoping in a 

distributed environment. 

The following example (adapted from Cardelli's paper) explains how 

distributed lexical scoping works. The server site registers itself with the 

name server (called Namer) under the name of ComputieServer and 

exports an exec procedure which, when invoked, executes the closure it 

receives as argument: 

net_export("ComputeServer", ATamer, {exec=>meth(s, p) p () end}) 

At the client site, the CompuLeServer object is obtained from the name 

server ]\;amer, bound to an identifier c o m p u t e S e r v e r and its e x e c 

method is invoked: 

let computeServer = 

net_import("ComputeServer", Namer); 

varx=0; 

computeServer.exec(proc() x:=x+lend) ; 

As the result of the invocation, the value of x at the client site is 1, even if a 

variable x with another value was defined at the server site. Type checking in 

ObHq is dynamic. 

The designers of the Emerald language [Black et al. 1986] have chosen an 

object model which does not support inheritance. They have introduced a 

strong typing discipline based on the notion of subtyping. Emerald objects 

can have a process attached to them. A monitor construct is available for the 

object methods in order to synchronise object invocations. Objects and their 

activity can be migrated in Emerald but migration is not completely 
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transparent to the user. A small set of language primitives allows the 

programmer to control mobility: 

* l o c a t e returns the node where an object resides. 

* move relocates an object to another site. 

* f i x and u n f i x respectively disable and re-enable object mobility 

" r e f i x performs the sequence u n f i x , move and f i x in an atomic 

fashion. 

An a t t a c h e d annotation for the object attribute declaration allows the 

programmer to describe how objects should be migrated. The values of all the 

attached attributes of an object are automatically migrated with the object. 

UC++ [Winder, Wei and Roberts 1992] is a parallel object-oriented 

programming language based on C++. UC++ relies on active objects to 

express the potential for parallel execution. An active keyword allows the 

programmer to make the instance of any class an active object. An active 

object is executed by a virtual processor. Each virtual processor supports 

only one object. Virtual processors are designated by integer values and the 

programmer can optionally specify to which processor a new active object 

should be allocated, using the keyword on. The fragment of code taken from 

[Winder, Wei and Roberts 1992] shows the creation of an active instance of 

the class PrimeFilter on the virtual processor 0: 

active PrimeFilter two (2, outputObject) onO; 

The mapping of virtual processors onto physical processors can be done 

automatically by the run-time system or it can be described in a /ik. 

The s p l i t keyword allows the invocation of the methods of active objects 

asynchronously or to spawn a thread within a method of an active object. 

Guide [Baiter, Lacourte and Riveill 1994] supports inheritance and makes a 

clear distinction between subtyping and subclassing. Types are concerned 

with the interface and classes with the implementation. The Guide type 

system will be described in greater detail in chapter 5. Guide is based on the 

passive execution model where objects and processes are orthogonal. 

Synchronisation in Guide takes the form of activation conditions attached to 

methods. For each method the following set of counters is defined: 
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invoked (m) : number of invocations of method m 

s t a r t e d (m) : number of accepted invocations for m 

c o m p l e t e d (m): number of completed executions of m 

c u r r e n t ( i n ) = s t a r t e d ( i n ) - c o m p l e t e d ( m ) 

« pending (m) = invoked(in) - started(m) . 

The activation conditions of a method are expressed as conditions which the 

e 

method counters must satisfy in order for the method invocation to proceed. 

The following conditions are defined for the activation of the Put and Get 

methods of a FixedSizeBuf f er object. 

Pub: (completed(Put:)-complet:ed(Get) <size) ANDcurrent(Pul:)=0; 

Get: (completed(Put)>completed(Get)) AND current(Get)- 0 ; 

The conditions state that: 

• Put may proceed if the number of items in the buffer is smaller than the 

maximum size of the buffer and no invocation of Put is currently 

proceeding. 

• Get may proceed if there is at least one item in the buffer and no other 

invocation of Get is currently proceeding. 

As with other models, considerable effort has been put into offering an 

evolutionary path to distributed objects. An Object Request Broker (ORB) 

forwards object invocation across separate object contexts. The Object 

Management Group (OMG) has worked on the standardisation of a Common 

Object Request Broker Architecture (CORBA) [OMG 1996] (see fig. 3.2). 

CORBA defines not only the architecture of a request broker but also a series 

of associated services such as naming, persistence and transactions. 
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Client Object Implementation 
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ORB Core 

Fig. 3.2 : Architecture of an Object Request Broker. 

The interfaces of these services and that of the application objects are 

described using the CORBA Interface Definition Language. The operations 

defined in the interface of an object can be invoked by clients or alternatively 

the invocation can be constructed through a mechanism called dynamic 

invocation. The extra complexity incurred by dynamic invocation is justified 

in cases where the invocation parameters (message selector or the arguments 

of the invocation) cannot be known at compile time. Application objects can 

be implemented using a variety of languages, including non object-oriented 

ones. 

3.5 Functional parallelism 

3.5.1 Functional languages 

Functional languages along with logic languages are said to be decZamh'%, in 

contrast to imperative languages. Declarative languages let the programmer 

concentrate on the description of a solution to a problem and do not require 

the programmer to describe how the computation should be sequenced or 

how memory should be managed. 

With the functional model, the function is the abstraction of a computation 

and programs are built from function definitions and function applications. 

Functions, in that context, are pure mathematical functions. Program state is 

passed as an argument to the function and returned by it. State is not 

modified as a side-effect of the computation. 

Hudak [Hudak 1989] highlights some of the features common to most 

functional languages: 
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* Good support for data abstraction. 

* Functions are first class values. 

" Use of recursion for looping. 

* Equational feel and pattern matching. 

The use of pattern matching and of recursion is illustrated by the definition of 

factorial in SML: 

fun factorial 0 = 1 

I factorial X = X * factorial (x-1); 

However, some features may vary considerably from one functional language 

to another. For example, efficiency concerns have motivated the addition of a 

limited number of imperative features to some functional languages, called 

zMpwrg functional languages. Functional languages may also differ in the way 

functions are evaluated. Two strategies can be distinguished: eager and fazy 

evaluation. With eager evaluation, all the arguments of a function must be 

evaluated before the function can be applied to them. With lazy evaluation, 

an argument is evaluated only if its value is needed to compute the value of 

the function. 

Functional languages offer a high level of abstraction from implementation 

details and they appear both more concise and more expressive than their 

imperative counterparts. Also, their clear semantics make them amenable to 

formal analysis. Functional languages also appear to be well suited for 

parallelism because the freedom from side-effects ensures, that, in the 

absence of data dependencies, functions can be evaluated in parallel. 

3.5.2 Parallel functional models 

Steele [Steele 1995] lists several ideas for the development of a parallel 

version of LISP and, by extension, of a parallel functional language. The last 

idea is mentioned in [Hammond 1994]: 

» Completely independent processes: A computation is described as a 

set of processes implemented using a sequential functional language and 

the processes communicate using some communication facilities such as 

channels. 

49 



DISTRIBUTED PROGRAMMING MODELS 

# Processes in a shared address space: A primitive initiates the 

evaluation of a piece of code by a new process. Processes execute 

concurrently, access and modify the data available in a (virtually) shared 

address space. Communication and synchronisation are implicit. 

# Futures: The/ufwre construct [Kranz, Halstead and Mohr 1989] spawns 

the evaluation of a LISP expression in parallel. The computation which 

spawned the future need not wait for the return of the value and receives 

a future data object which acts as a place holder for the value to return 

and is in an wMreso/W state until the value becomes available. If the value 

of the expression is needed and the future is still unresolved, the 

evaluation can be forced by (owcAmg the future, thus forcing the two tasks 

to synchronise. 

# Parallel evaluation of arguments. The pcaH (parallel call) form 

[Halstead 1984] spawns different tasks to evaluate in parallel the 

different arguments of a function before applying the function to them. 

. The data-parallel model: The application of the same functions to all 

the elements of a large regular data structure can be performed in parallel 

[Steele and Hillis 1986]. This leads to fine-grain parallelism which is best 

supported by tightly coupled parallel architectures, particularly SIMD 

(single instruction multiple data) architectures. 

# Purely functional model: In the idealised functional model [Goldberg 

and Hudak 1986], no language constructs are necessary to indicate 

parallelism. Communication and synchronisation remain also implicit for 

the programmer. This idealised model might lead to a fine grain 

parallelism which cannot be exploited efficiently. Annotations have been 

introduced to control parallelism, evaluation order and mapping of 

expression evaluations to processors [Hudak 1986]. 

. Algorithmic skeletons [Cole 1989] offer a high level view of the program 

structures of a parallel computation. Skeletons capture patterns of 

parallelism common to classes of applications; one example of such a 

pattern is pipelining. 
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3.5.3 Case studies 

The languages presented below exemplify some of the approaches discussed 

in the previous subsection. 

Facile [Giacalone, Mishra and Prasad 1989] combines the SML functional 

language with a coordination model based on processes and channels. 

Processes in Facile are SML computations which communicate and 

synchronise themselves using a channel facility. The example below shows 

the creation of channels in Facile. Firstly, the user calls the function c h a n n e l 

and gives the type of the channel. 

- val chl = channel {) : ink channel ; 

val chl = channel : int channel 

Then processes communicate using the send and r e c e i v e functions: 

val send: ' a channel * ' a -> unit 

val receive: ' a channel -> ' a 

- send(chl ,7); 

val it = {) : unit 

- receive ch2 ; 

val it = 8 : int 

ICSLA [Queinnec and DeRoure 1992], a LISP family language, structures 

parallel computations as a collection of processes in a virtually shared 

address space. ICSLA expresses concurrency with a breed function. 

(breed [ thunk . . . ]) 

b r e e d takes an arbitrary number of thunks (a thunk is a function with no 

arguments) as its arguments and replaces the current task with the necessary 

number of tasks to evaluate the thunks. The remotie and p l a c e d - r e m o t e 

functions distribute data and tasks and p l a c e d - r e m o t e specifies the 

processor where the task or data should be sent. 

The Connection Machine LISP [Steele and Hi 11 is 1986] extends LISP with 

some language constructs tailored to exploit data parallelism inherent in the 

Connection Machine SIMD architecture. A zapping data structure is a 

combination of an array and a hash table. Operations on the entries of the 

xapping can be carried out in parallel. The following xapping maps symbols 

to other symbols: 
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{blue -> sky red -4 apple green -» grass} 

The a notation indicates that a function must be performed on all the 

elements of a xapping in parallel. For example: 

aeons ' ( blue -> sky red -> apple green -> grass} ' ( blue -> sea red 

wine green —> emerald} 

returns; 

{blue-> (sky, sea) red-> (apple, wine) green-> (grass, emerald)} 

Alfalfa [Goldberg and Hudak 1986] is an implementation for distributed 

memory multiprocessor of the Alfl functional language [Hudak 1984]. Alfl 

contains no explicit construct for expressing parallelism and thus Alfalfa can 

be seen as an example of a purely functional parallel system. The 

implementation of Alfalfa is based on the graph reduction model. The graph 

reduction model represents a computation as a directed graph of nodes. 

[Basel and Keller 1986] define a notation in their introduction to graph 

reduction. Other notations have been proposed (one example can be found in 

[Field and Harrison 1988]) but the intuitive nature of Fasel and Keller's 

notation makes it well suited for the purpose of the explanation that follows. 

In this notation, a node can be: 

* A value which is a leaf node of the graph. 

# A primitive operation, represented by an oval node e.g. 

# A function application, represented by a rectangle node. The example 

shown below is a function of two arguments. 

From 

The computation is driven by the reduchOM of the graph, that is by replacing 

the evaluable nodes by their value. 
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The reduction of a primitive node replaces the node by its value. The 

reduction of a function application requires the expansion of the function 

application node into the graph defining the behaviour of the function. The 

graph can then be reduced. 

The computation is demand-driven^ that is a node is not evaluated until its 

value is needed. This property is illustrated in [Fasel and Keller 1986] with 

the f rom function which generates an infinite list of integer values starting 

with the value of its argument n (see fig. 3.3): 

f r o m 

Fig. 3.3: The f rom function 

The c o n s operator does not require the evaluation of its second argument 

and f r o m will be evaluated again when the value n+1 (that is the second 

element of the list) is accessed 

The interest of the graph reduction model is that nodes may be reduced 

independently and potentially in parallel. The example shown in fig. 3.4 

taken from the introduction of [Fasel and Keller 1986] highlights the potential 

for parallelism in the evaluation of the expression: 

( a + b ) / ( c x d ) - ( c x d ) / ( e + f ) 

In fig. 3.4, the three nodes in grey could be evaluated in parallel, the two 

divide nodes could also be evaluated in parallel at a later stage during the 

computation. 
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Fig. 3.4: Graph representation of a functional expression 

ParAlfl [Hudak 1986] is another development based on the Alfl language. 

ParAlfl provides a notation so that the programmer can control the mapping 

of a program onto a target machine architecture. The processors of the target 

machine are designed by their PID, which is an integer value. The evaluation 

of an expression can be mapped to a processor explicitly. The code: 

(f(x) $onO) + (g(y) $onl) 

maps the evaluation of f (x) on processor 0 and g (y) on processor 1. 

$ s e l f is bound to the PID of the currently evaluating processor. It is 

possible to designate processors relatively to the current processor. For 

example: 

(f(x) $onleft:($self))4-(g(y) $onrighk($self)) 

maps the evaluation of f (x) to the processor on the left of the current 

processor and the evaluation of g (y) to the processor on the right of the 

current processor (the meaning of left and right depends on the topology of 

the target machine). Alfl has a lazy evaluation strategy, however, a special 

notation, #, allows the programmer to force the evaluation of an expression. 

For example: 

f(x,#y,z) 

forces the evaluation of y in parallel with the evaluation of f . 
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Algorithmic skeletons outline a pattern of parallelism without knowledge of 

the individual tasks to be carried out in parallel. The Structured Coordination 

Language (SCL) [Darlington et al. 1995] is a functional language for 

composing procedures written in a sequential language (e.g. FORTRAN). SCL 

provides constructs to specify partitioning^ data movement and control flow. 

Data parallelism constitutes the underlying model for SCL. The built-in a 

distributed array type allows operations on its elements to be carried out in 

parallel. The following example is taken from [Darlington et al. 1995]: 

rotate : : Int -> ParArray Int a ParArray Int a 

The function r o t a t e takes as arguments an integer value (called the 

distance of rotation), a one dimensional parallel array whose indices are of 

integer type and elements of type a and returns a similar array. The code for 

rotate: 

rotate kA=«i:=A((i+k) mod SIZE (A)) |i<- [l..SIZE(A)]» 

In [Rabhi 1993], Haskell serves as both the base and the coordination 

language. Higher-order functions control the application of supplied 

functions following a pre-established pattern. The higher-order function rp$ 

captures the pattern of recursively partitioned algorithms: 

rp$ ind solve divide combine prob 

I ind prob = solve prob 

I otherwise = combine prob 

(map (rp$ ind solve divide combine) 

(divide prob) ) 

with: 

» ind prob is a predicate which re turns TRUE if the problem prob is 

indivisible. 

# solve prob is the function which solves an indivisible instance of the 

problem prob. 

« divide prob partitions the problem prob into subproblems 

» combine prob sols combines the solutions sols. 
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3.6 Dataflow model 

3.6.1 Dataflow computations 

The dataflow model promotes a view of computation even further removed 

from control flow languages than graph reduction. The dataflow model has a 

simplified and quite straightforward evaluation regime, and execution is 

driven solely by the availability of data. 

A dataflow computation can be represented by a dataflow graph. The graph 

comprises nodes called operations and arcs representing the flow of data 

between operations. The notion of variable does not exist in the dataflow 

model. The values are anonymous and side-effects do not exist in the 

dataflow model. 

The dataflow model presented in [Glaser, Hankin and Till 1984] 

distinguishes six types of nodes and a notation for function definition. 

* A p r i m i t i v e node applies the operation to its argument. 

. The copy node duplicates its incoming argument onto two or more 

outgoing arcs. 

# The value node has no input value and outputs a constant value, a 

primitive or a user-defined function represented as a closure. 

. The switch node controls the flow of data according to the boolean 

value flowing into its control input. 
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input value 

The merge node selects which input value is returned as output value. 

c o n t r o l ^ - ^ ^ ^ ^ ^ 

« The a p p l y node applies the function which is passed to it on its 

leftmost input to the argument on the second input (functions of more 

than one argument are partially applied). 

The example shown in fig. 3.5 computes the roots of a quadratic equation of 

the form ax^+bx+c. 
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-b/2a + V ( b 2 - 4 a c ) / 2 a -b/2a - V ( b 2 - 4 a c ) / 2 a 

Fig. 3.5: Data flow graph for the computation of the quadratic roots. 

The interest of the dataflow model is that it is inherently parallel. Operations 

can be seen as fine grain units of parallelism; the execution sequence is 

constrained only by the partial order defined by the data dependencies. 

Communication and synchronisation are implicit. 
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3.6.2 Dataflow languages 

Several dataflow languages have been developed. Id Nouveau [Nikhil, 

Pengali and Arvind 1986] is a recent example. In order to increase their 

expressive power, these languages extend the pure dataflow model with 

procedural and data abstractions, conditional choice and iterations. The fine 

grain parallelism inherent in the dataflow model requires tightly coupled 

parallel machines or specialised hardware to be exploited successfully. 

Several dataflow machine architectures were investigated in the 1970s and a 

survey of dataflow machine architectures can be found in [Treleaven, 

Brownbridge and Hopkins 1982]. However, results have proved 

disappointing and recent research work focuses on hybrid dataflow/Von 

Neuman architectures [Lee and Hurson 1994]. 

SISAL (Streams and Iterations in a Single Assignment Language) [Feo, Cann 

and Oldehoeft 1990] is considered a dataflow language. Although it 

supports variables in a limited form, variables can be assigned only once. 

SISAL is mainly targeted at numerical applications. 

SISAL functions may take several arguments and return several values. The 

control structures of the language if . . . t :hen. . .e lse and the f o r loop are 

higher order functions. SISAL provides a built-in array type and supports 

user-defined types, including records. The statement below defines an array 

of integer type: 

type One_Dim_I = array [integer] ; 

The record type e l e m e n t _ r e c o r d is used for the periodic classification of 

chemical elements: 

type element__record = record [name : array [character] ; 

number : integer; 

weight ; real] 

The following code computes the roots of a quadratic but it is not equivalent 

to the program described by the graph in fig. 3.5 as the function shown below 

tests the sign of the value of the discriminant. 

function quad.roots ( a, b, c : real returns real, real ) 

let 

denom =2.0 * a; 
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discrim : = b*b-4.0*a*c; 

if discrim >=0.0 

then 

-b + sqrt( discrim ) / denom, 

-b-sqrt( discrim) /denom 

else 

-9.99e99,-9.99e99 

end if 

end let 

end function 

SISAL has been implemented on a variety of shared-memory multiprocessors 

with some success [Cann 1992]. A SISAL compiler for distributed memory 

parallel machines and a network of workstations is described in [Freeh and 

Andrews 1995]. 

Dataflow is seen as a possible glue to describe the communication and 

synchronisation patterns between coarse grain activities. Such an approach is 

called Large Grain Dataflow (LGDF) [Babb 1984]. LGDF is a programming 

methodology for the development of parallel programs. The methodology 

goes over successive steps to convert a dataflow graph into a program 

written in an imperative language. 

Several parallel programming environments use visual dataflow as their 

coordination language with nodes corresponding to sequential computations 

and the links of the graph representing dependencies between the activities. 

[Browne et al. 1994] review the benefits of representing parallel programs 

visually: 

. The visual representation exposes large scale program structures and 

allows a natural representation of parallelism in programs. 

* This representation enforces good programming practices as 

programming in the large and programming in the small become distinct 

concerns. 

• Debugging can be carried out in the same framework as programming. 
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Parallex [Alvisi et al. 1992] is a programming environment for parallel 

scientific computing in a distributed system. A Parallex computation is 

described by a dataflow graph whose nodes are coarse grain C or FORTRAN 

computations. There exists no shared data between the nodes. 

3.7 A model for Distributed Prograph 

This last section discusses the choice of a model for Distributed Prograph. 

The model should take into account both the class of applications intended 

for Distributed Prograph and the features of the current version of the 

language. It should also provide the right abstractions to handle parallelism, 

communication and synchronisation. 

Distributed Prograph targets parallel programming in a distributed system. 

The overall goal of parallel programming is to speed-up the execution of an 

application through the use of multiple computing resources. 

Program sequencing is based on the dataflow model. In the sequential version 

of the language, operations are triggered sequentially. The schedule follows 

the partial order defined by the data dependencies. Synchronisation links 

and the controls attached to the operations also affect the flow of control 

(see 2.2.1). 

3.7.1 Parallelism 

3.7.1.1 Potential for parallelism 

Without adding further abstractions to the existing model, parallelism can be 

achieved in two different ways: data parallelism and operation level 

parallelism: 

# Processing of lists (which are a Prograph built-in type) offers some 

potential for data parallelism. This form of parallelism can be 

conveniently called mwZfipkx pamZkHsm. 

. Following the dataflow model, operations with no data dependencies 

are obvious candidates for parallelism and could be fired in parallel. This 

latter form can be called opemtioM paraHeZzsm. 

It appears that other forms of parallelism would be less easy to introduce. 

The conjunction of Prograph with a CSP like model would require the 

addition of a channel abstraction. Parallelism such as promoted by the RPC 
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or Distributed Objects model would impose a more extensive use of names 

than in the current version of the language and the introduction of new 

abstractions such as remote server or remote object. 

3.7.1.2 Expressing the parallelism 

Another question which arises is how to express parallelism. Fig. 3.6 lists the 

possible alternatives: 

Parallelism 

Explicit Implicit 

Rim-time 
detection 

Compile-time 
detection 

Fig. 3.6: Expression of parallelism 

With implicit parallelism: 

* parallelism can be detected at run-time. 

. parallelism can be detected at compile-time by some automatic 

parallelisation tools. The object code is then split into a set of 

subcomputations that can be executed in parallel. 

The first approach is that taken in the design of hardware dataflow machines 

and can be emulated by software. For example the run-time support of the 

Strand_88 language [Foster and Taylor 1990], the Strand Abstract Machine, 

(SAM) mimics the behaviour of a dataflow machine and schedules functions 

for evaluation based on the data dependencies. However, this approach 

leads to fine grain parallelism; the overhead induced by run-time scheduling 

and the cost of communication leads to a highly inefficient implementation on 

a loosely coupled architecture such as that intended for Distributed 

Prograph. 

Automatic parallelisation has been the subject of much research work and 

has been applied to both imperative languages such as FORTRAN and 

functional languages. This option also does not appear viable for Distributed 

Prograph as both the features of the language and the structure of 
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applications would make the automatic parallelisation of Prograph programs 

difficult. Prograph provides dynamic binding and Prograph applications are 

event-driven. Consequently, the execution path of a Prograph application is 

more complex to build than that of control-driven scientific applications to 

which automatic parallelisation techniques are often applied. 

Explicit parallelism requires the programmer to explicitly indicate which 

portions of the code should be executed in parallel. This is the option 

retained for Distributed Prograph. The user has to annotate an operation to 

indicate that it is a candidate for distribution at run-time. 

3.7.1.3 Benefits and drawbacks 

This approach offers several benefits: 

. The idea of an operation annotation is already familiar to the Prograph 

programmer (e.g. multiplex annotation) and should limit the amount of 

recoding necessary to distribute existing Prograph code. 

* It builds on the recognised strength of visual languages to grasp and 

express the potential for parallelism. 

. The user's appreciation of issues such as granularity, cost of 

communication and side-effect is required to distribute Prograph 

operations. Static analysis tools should assist the programmer in those 

decisions. 

The idea of introducing a notation to indicate parallelism may bear some 

resemblance to the concept of future. The benefit of using futures is that 

parallelism is not restricted by prematurely blocking a computation by 

waiting for the value of the future. The drawback is that it introduces a new 

abstraction the programmer has to deal with and that, for efficiency reasons, 

futures should probably be implemented as a built-in datatype. Another 

difficulty is the use of futures in presence of controls, if the computation 

proceeds without waiting for the results of an operation with a control, the 

activation of the control may result in wasted computation. 

The designers of the Prograph language have consciously hidden pointers and 

operations on pointers from the programmer's view to mimic the data-driven 

nature of a pure dataflow language. Introducing futures would twist the 
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design philosophy of Pmgraph and it appears preferable to retain the original 

data-driven semantics of the language at the expense of a gain in parallelism. 

The drawbacks of this approach are: 

# It leads to a specialised model which can only support parallel 

applications. Linda according to [Gelemter and Carriero 1992] is an 

example of a more universal model, Linda can support message passing 

between sibling computations, task pool model of parallelism and RPC-

Uke interaction between computations. 

» Programmers have no control over the allocation of operations 

annotated for distribution to remote processors. Precious programmer 

insight might be lost and this would result in a less efficient execution of 

applications. 

3.7.2 Communication and synchronisation 

Communication related activities should be carried on completely 

transparently to the user. 

The current version of Prograph provides a synchronisation facility in the 

form of synchros; otherwise synchronisation should only be constrained by 

data dependencies. 

3.7.3 A metaphor 

The Distributed Prograph model can be better understood with the metaphor 

of a dataflow machine. In such a machine, parallelism is achieved by having 

several functional units executing operations simultaneously. Information 

items appear as operation packets and data tokens. Under the control of a 

sequencing unit, operation packets are sent to the functional units. An 

operation packet consists of an operation code and the operands; the 

operations results are returned as data tokens to the sequencing unit. The 

Prograph run-time acts as a virtual dataflow machine with a single 

sequencing unit and a single control unit. A network of workstations can be 

seen as a machine with multiple functional units. Operation packets and 

data tokens flow to and from the functional units under the control of the 

sequencing unit. 
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3.8 Summary 

* Distributed systems encompass a broad range of applications and 

hardware platforms. 

» Various distributed programming models provide the necessary 

abstractions to deal with the requirements of different classes of 

distributed applications (i.e. parallel, fault-tolerant, client/server and 

wide-area distributed applications). 

« With Distributed Prograph, the interest lies in obtaining speed-ups 

through parallel execution. 

" After reviewing several models, dataflow appears to be the most 

straightforward way to extend the Prograph sequential model. 

» The Distributed Prograph model requires the programmer to annotate 

the operations for distribution. Communication is transparent and 

synchronisation constructs are already available in the sequential version 

of the language. 
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4 Prograph and Distribution 

The previous chapter concluded that the dataflow model should be used to 

extend the Prograph sequential model into a distributed one. In its first 

section, this chapter discusses a range of issues to be considered in the design 

of Distributed Prograph. The second section is concerned with the 

implementation of the language. The third section of the chapter justifies the 

need for a static analysis for Distributed Prograph and the last section sets 

the objectives of this analysis. 

4.1 Design issues 

Design issues look at a high-level, functional view of the policies and 

mechanisms for distribution. The object of this section is not to commit 

Distributed Prograph to a set of policies or mechanisms but rather to review 

the range of policies available for its design. The options available wiU be 

better understood if they are presented in the context of the Distributed 

Prograph model presented in 3.7.3. 

Distributed Prograph aims to execute a single application on a set of 

machines. The application is initiated on the user machine. The execution 

context on the user machine is called the Operations 

annotated for distribution can then be sent to a remote processor for 

execution. The execution context at the remote processor is called the rgcipimt 

coMkxf. The user machine acts as the sequencing and update unit. It is 

responsible for distributing operations initially and all results are ultimately 

returned to it. 

The various activities involved in the execution of a remote operation fall into 

four broad categories: 

# Preparation of an operation packet in the originator context. 

# Transmission of the packet from the originator context into a recipient 

context after selecting a remote processor. 

# Execution of an operation in the recipient context. 

« Return of the results to the originator context. 
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Various mechanisms must be designed to support the execution of these 

activities. The following subsections discuss possible solutions in close 

relation with the features these mechanisms must provide. 

4.1.1 Operation packet 

The operation packet is the information sent for execution in a recipient 

context. This information includes at least the name of the operation along 

with its arguments. 

Two approaches are possible for the transmission of argument values: proxies 

[Decouchant 1986] (see fig. 4.1) and replication. 

Context 1 Context 2 

o b i e a m i # ^ 

r 
invocation 
forwarded by 
the proxy 

irtyoqasioii invocation 
return 

Fig. 4.1: Proxy objects 

A proxy object acts as a for an object residing in another execution 

context and invocations on the proxy are trapped and are forwarded across 

contexts to the remote object. Distribution requires that objects are not only 

identified in a local context but also across several contexts. A new naming 

scheme must be introduced in order to generate global identifiers. With 

modem object-oriented languages, parameters and return values are often 

passed by reference. Proxies denote remote references and thus logically 

extend the pass-by-reference mechanism to distributed environments. The 

possibility to alias objects is preserved. However, forwarding invocations can 

prove expensive. To remedy this, several optimisations have been proposed. 

Passing arguments by value may provide better performance. Immutable 

values, such as integers or booleans, can be passed by value. In [Dollimore, 

Miranda and Xu 1991] it is also suggested that objects which are not aliased 

can also be passed by value. 
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An alternative solution is replication. All objects are replicated, packed and 

transmitted with the operation packet. Replication reduces the load on the 

remote objects and increases concurrency as distributed operations proceed 

with their own copies of the objects taking part in the computation. However, 

the speed-up gained from replication may be partially or totally offset by the 

cost of maintaining consistency between replicas of the same object. Schemes 

for the management of replicated data can provide various levels of 

consistency between replicas. 

Pesgzmistic replication schemes supporting full consistency can be achieved by 

serialising update operations on all the replicas. The GARF system 

[Carbinato, Guerraoui and Mazouni 1994] uses a multicast protocol to 

update replicas. Full consistency results in significant communication costs. 

The purpose of replication in such a context is to provide fault-tolerance 

rather than to increase performance. Weaker models of consistency have been 

studied. DMEROON [Queinnec 1995] supports causal consistency. In 

DMEROON, values can be cached for read operations. Coherency is 

monitored by a clock-based algorithm. Write operations are always 

performed on the original object and a clock records the number of 

modifications that occurred to the object monitored. When a cached object is 

accessed, the value of its clock is compared with that of the clock of the 

original object; different clock values mean that the cached value is invalid. 

OpHmzsh'c replication management schemes allow both read and write 

operations on replicas. The values of the replicas can then be recoMciZed at a 

later stage or inconsistencies are not important; such a decision depends on 

the semantics of the application. 

POOM [Kristensen and Low 1995] allows the programmer to specify the 

consistency required and the mechanism to manage replicated data. 

In Prograph, persistents and class variables can be seen as global variables. 

Their value need not be passed as arguments to a method to be accessible in 

the cases of the method called by an operation. 

Obliq [Cardelli 1995] supports gcopmg such that a global variable 

retains the value to which it was bound in its original context. The 

implementation of lexical scoping relies on global identifiers. The free 
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variables occurring in an object method are described by global identifiers 

and their values can be obtained from the context in which they were created. 

The distributed version of Smalltalk developed by [Schelvis and Bledoeg 

1988] distinguishes between two types of global variables. Homg variables 

are those whose values are only relevant in their local context (variables 

describing the user interface are an example of home variables). The other 

variables have values which must be consistent across several execution 

contexts. Thus both lexical and dynamic scoping mechanisms can coexist. 

This does however require the programmer to declare which variables should 

be dynamically scoped and which ones are lexically scoped. 

The SOS distributed operating system [Shapiro, Gautron and Mosseri 1989] 

provides a migration mechanism for C++ objects. Migratable objects must be 

instances of subclasses of the s o s O b j e c t class. The s o s O b j e c t class 

defines the migration behaviour of all migratable objects. Further, the state of 

sosObjects contains a set of objects. The prerequisite objects 

contain the required information to reconstruct a migrated object in a new 

context. One example of prerequisite is the code of the class to which the 

migrated object belongs. 

4.1.2 Operation scheduling 

In Distributed Prograph, once the operation packet has been readied, it is 

pooled to be exported for remote execution. In the absence of any mapping 

annotation from the programmer, the allocation of a resource to execute an 

operation is left to the language run-time support. 

Two strategies are possible to export pooled operations. With wort 

operation packets are distributed eagerly to remote processors for execution. 

In worA: gkafmg, idle remote processors steal operation packets from the pool 

of other processors. 

The two strategies are compared in [Hammond 1994]. Work sharing runs the 

risk of distributing operations where there exists no idle processing capacity. 

To be efficient, a work sharing algorithm requires accurate load information in 

the distributed system. The drawback of work stealing is that it may increase 

latency before operations are executed, because they are exported on demand 

instead of being exported eagerly. 
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Another issue is how operation packets are scheduled for execution. 

Operation packets can be distributed on a last-in first out (LIFO) basis or on 

a first-in-first-out (FIFO) basis. [Hammond 1994] contrasts the effects of the 

two scheduling policies. The effect of scheduling operation packets on a LIFO 

basis is more like sequential execution whereas FIFO scheduling stimulates 

the execution of a greater number of operations in parallel. It must be noted 

that these comments are based on the observation of the evaluation of a 

recursive function, called nf ib , which computes the values of the fibonacci 

series and may as such, only reflect the effect of these two scheduling 

strategies for the evaluation of the nf i b function. Other strategies such as 

combining both LIFO and FIFO to control parallelism dynamically are also 

possible. 

4.1.3 Remote execution of an operation 

Classes are the templates from which instances are constructed and describe 

the behaviour of these instances. Class information is therefore required to 

unpack the instances transmitted with the operation packet and to invoke 

the behaviour of its instances. 

Bennett [Bennett 1987] reviews a range of possibilities for the design of 

Distributed Smalltalk: 

. Instances point back to their classes in the context in which they were 

instantiated. Method despatching and read and write operations on class 

variables require access to information stored in the class description. It 

becomes clear that this option would greatly increase the number of 

network operations and result in poor performance. 

• Classes become immutable and can be freely replicated. Reactiveness is 

the degree to which objects are easily presented for inspection and 

modification. Disallowing class modification would severely restrict the 

reactiveness of the system. In the context of Prograph, this would mean 

that it would no longer be possible to execute and edit the code 

simultaneously, modifications to classes having being disabled. 

# Classes are replicated and can be altered. Ensuring compatibility across 

contexts can be left to the programmer or it can be supported by a 

caching scheme, a distributed database of classes or versioning. Letting 
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the programmer handle class compatibility problems is not consistent 

with the goal of distribution transparency. The distributed database or 

caching schemes might be difficult to implement efficiently. 

Smalltalk views classes as objects and so class migration can be implemented 

using an object migration mechanism [DoUimore, Nascimento and Xu 1992]. 

In the commercial implementation of Distributed Smalltalk described in 

[LaLonde and Pugh 1996], the migration of classes is left to the user and is 

decided statically. A distributed apphcation may encompass several object 

contexts (or zmaggg in Smalltalk terminology) residing over separate machines. 

Application classes are grouped into packages, and the user controls the 

distribution of packages. Packages can be loaded entirely or as a 

only proxy objects can be created from shadow classes. 

In Prograph, upon successful completion, an operation may return some 

values or a f a i l execution message. Return values and execution message 

must be returned to the originator context. The execution of the operation 

may trigger a run-time error. Run-time errors include invalid type, out-of-

range value and no method can be despatched. Although errors are well 

documented, Prograph provides no facility for exception handling and it is 

the programmer's responsibility to edit the faulty code fragment and proceed 

with or abort the execution of the program. A run-time error during the 

execution of a compiled application results in an abnormal termination of the 

execution. In Distributed Prograph, if the execution of a remote operation 

produces a f a i l execution message or triggers a run-time error, the remote 

processor should be able to forward the execution message or error type to 

the originator of the operation packet and to resume its normal activity. 

The execution of the operation might update the values of some global 

variables or of its arguments. The modified arguments might not be returned 

explicitly by the exported operation to the originator context. The 

propagation of updates to operation arguments will depend on the approach 

chosen for the passing of arguments. If the arguments are passed as proxy 

objects, the update is immediately forwarded to the original object. 

Alternatively, an optimistic replication scheme would allow recoMczh'afzoM in 

the originator context to be deferred. 
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4.1.4 Reception of the results 

To retain the data driven semantics of the Prograph language, the execution 

of a remote operation will be considered finished when either the results or a 

f a i l execution message or an error message are returned to the originator 

context. 

To maximise concurrency, the retrieval of the results should be postponed as 

long as possible. If when trying to retrieve the results of an operation, these 

results are not yet available, two different options can be considered: 

« Another remote operation not yet exported may be scheduled for local 

execution. This offers the benefit of increased parallelism as the local 

processor evaluates an operation while waiting for results to be returned. 

# If no other operation is available for local execution, the operations 

which have already been exported but whose results are still being 

awaited may be executed locally. 

The reception of the results may be the right time to reconcile the replicas if 

an optimistic replication management scheme has been chosen. 

4.1.5 Help to the programmer 

The ultimate goal of Distributed Prograph is to allow programmers to build 

stand-alone, compiled applications. However, reactiveness is one of the 

recognised strengths of the Prograph programming environment as it lets 

programmers gain an in-depth understanding of the appUcation they are 

developing. A distributed interpreter would give programmers a useful insight 

on the behaviour of their application, speed-up provided by distribution and 

ratio of local computation to distributed computation. 

Prograph provides live editing, where values can be inspected or changed 

directly by the user. Various facilities for debugging have been proposed in 

different Distributed Smalltalk implementations: remote inspection enabled 

but remote editing disabled; full featured remote debugger. 

The stack of a Prograph computation can also be inspected and 

computations can be rolled forward or backward. It would be challenging to 

support this facility in a distributed environment. 
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[Briot and Guerraroui 1996] distinguish three approaches for object-based 

parallel and distributed programming: 

* The first approach, called the appficatme approach, uses the language to 

structure distributed systems. 

* The mkgrafme approach extends an existing programming language or 

creates a new one with language constructs to deal with concurrency and 

distribution. 

* The last approach, termed the approach, makes use of the 

reflection, that is the property of a language of being self-descriptive and 

modifiable. 

These approaches can be looked at from two different perspectives. The first 

perspective is that of language design and the second one, which is of interest 

to this section, that of implementation techniques. It is worth noting that the 

classification is also relevant for the design of distributed languages based on 

other paradigms: procedural and functional. 

4.2.1 The applicative approach 

The applicative approach aims to use the abstraction capabilities of the 

language to hide the complexity of the distribution mechanisms. 

The applicative approach for procedural languages consists of writing 

libraries of procedures to hide the low level details of communication and 

providing the necessary abstractions such as threads and synchronisation 

variables. Application programs use the data structures and call the 

procedures provided by the libraries. The PVM message passing library 

[Sunderam 1990] and the DCE environment [OSF 1992] are examples of 

library-based systems. 

In [Rabhi 1993], skeletons for parallel computations are implemented as 

higher order functions written in Haskell. 

Object-oriented languages integrate the mechanism for distribution within a 

class hierarchy; one example is HP Distributed Smalltalk [Keremitsis and 

Fuller 1995] which implements a CORBA-compliant Object Request Broker 

within its class hierarchy. 

73 



PROGRAPH AND DISTRIBUTION 

The benefit of the applicative approach is that it exploits the features of an 

existing programming language to provide new abstractions for distributed 

programming. However, this approach requires the application programmer 

to deal with a potentially larger number of concepts than for the development 

of sequential applications. 

As explained in Chapter 2, Prograph already makes an extended use of this 

approach. For example, Prograph applications are described as a 

containment hierarchy of Prograph objects. 

4.2.2 The integrative approach 

The abstractions for distributed programming are integrated within the 

language. This solution often requires significant modifications to an existing 

language or the design of a new language. The language reflects closely the 

distributed programming model and thus has greater expressive power than a 

language initially designed for sequential programming. 

The designers of the Guide language [Baiter, Lacourte and Riveill 1994] have 

taken the view that distributed programming justified the design of a new 

language. 

However, such a choice requires the mobilisation of significant resources to 

carry the implementation of an interpreter and/or compiler and associated 

run-time support for the language. Acceptance of a new language frequently 

presents a significant problem. 

The integrative approach seems incompatible with one of the Distributed 

Prograph goals, which is to remain as close as possible to the sequential 

version of Prograph. 

4.2.3 The reflexive approach 

A mefaczrcw/ar evaluator is an evaluator where the defining language is the 

same as the defined one. Lisp interpreters exploit metacircularity. 

Metacircularity is a powerful feature to control and extend the language. 

Quasi-Parallel Lisp (QPL) [DeRoure 1990] extends the Lisp language to 

integrate abstractions for communication, the sfream, and activity, the process. 

Reflection in object-oriented systems results from the possibility of defining 

the semantics of objects in an object-oriented model through a set of objects 
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called This organisation is named a Meta-

objects can control some features of the object model such as message 

sending, method look-up, execution and state accessing. Meta-objects may 

also extend and modify resources management such as scheduling and 

naming. 

The CARF [Garbinato, Guerraoui and Mazouni 1994] class hierarchy 

separates two programming levels. At the functional level, a collection of data 

cZasses describes the logic of the application as if the application was 

developed in a centralised, sequential environment. The behavioural level 

controls behavioural features related to concurrency, persistence distribution 

and fault-tolerance. 

The reflexive approach offers the benefit of a great flexibility. Complexity 

and potential inefficiency can be seen as shortcomings of reflexive 

architectures. 

This option does not appear viable for the implementation of Distributed 

Prograph as the language presents little reflection. 

Briot and Guerraroui see in the development of generic run-time systems for 

distributed languages a dual approach to the use of reflection. The 

distribution mechanisms are integrated within the run-time support for the 

language. This choice is motivated by the search for greater efficiency with 

some of the flexibility of the reflexive approach. The requirement for 

efficiency becomes more urgent as the functionality and the complexity of the 

run-time system increase. The GUM run-time uses PVM to implement a task 

pool for the scheduling of distributed tasks. The Chorus Object-Oriented 

Layer (COOL) [Lea, Jacquemot and Pillevesse 1993] is a run-time system 

upon which distributed object-oriented languages (C++ and Eiffel) can be 

built. 

The integration of the Prograph interpreter with an existing distribution 

infrastructure is an option worth investigating. 

4.3 Need for analysis 

The section, on design issues surveyed a range of policies and mechanisms to 

implement these policies and to extend the features of Prograph to provide 
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distributed programming. This section discusses why a static analysis may be 

useful to support these mechanisms. 

4.3.1 Interferences 

In the current version of Prograph, the operations on the dataflow graph are 

executed according to a serial schedule of execution and each operation 

constitutes an atomic unit of execution. In some cases, the results of a 

computation do not depend on the order of execution of the operations; 

however the programmer has sometimes to impose a special ordering for the 

execution of the operations. This is typically the case when one of the 

operations is a Match or calls a method providing I / O functionality. The 

concurrent execution of operations might lead to interferences. Interference 

occurs when two or more parallel operations read the same data and at least 

one of them updates the data. Thus, distributed execution may introduce 

further synchronisation requirements. 

4.3.2 Global variables 

The pure dataflow model is side-effect free and does not provide global 

variables. However, Prograph has both side-effects and global variables, in 

the form of persistents and class variables. 

When a computation is distributed over several execution contexts, it is 

necessary to ensure that the global state is kept consistent. The value of a 

global variable is the same as if the operation had been executed in its 

originator context following a serial schedule of execution. According to the 

policy adopted for the management of the global variables, different concerns 

must be addressed: 

" If consistency is ensured by maintaining a single copy of each global 

variable, the cost of the access to this single copy is the main concern. 

« If global variables are replicated, consistency of the replicas becomes 

the issue and the question of whether the replicated global values in the 

recipient context can be trusted. 

4.3.3 Updated values and aliases 

Operations may induce side-effects on their arguments and /or on some 

global state. Preserving the semantics of Prograph requires that the side-
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effects are implemented, including the aliases created by write operations. 

The side-effects should be visible when the execution of the remote operation 

is considered completed. Once again the choice is between forwarding 

operations across execution contexts on a single copy or managing replicas in 

different contexts. 

The update problem is compounded by the possibility of creating aliases, as 

the semantics of Prograph implies that aliases be preserved even across 

separate contexts. 

4.3.4 Behaviour maintenance 

Behaviour maintenance is primarily concerned with the consistency of the 

class definitions, that is, of the attributes (not the values of the attributes) 

and of the methods, as well as that of the universal methods. This issue 

should not be overlooked especially if Distributed Prograph is to be used as a 

distributed interpreter. This work does not however tackle the issue of 

behaviour maintenance across several contexts. 

Behaviour maintenance in Prograph is a problem only in interpreted mode 

because class definitions and methods can be manipulated only using the 

editor. Therefore it might be more advisable to build support within the 

interpreter instead of a general distribution mechanism to be included with all 

applications. In addition, updates to arguments and global variables are 

more common in programs and therefore a more urgent problem to solve. 

4.4 Alms of the analysis 

The correct execution of operations in parallel is conditioned by the absence 

of interference between the operations, the availability of the current values 

of the global variables and the implementation of the side-effects induced by 

the operations. The development of a static analysis will help to check that 

some of the conditions for the correct execution of parallel operations are 

met. 

The analysis will not tackle the problem of interferences. As a consequence of 

aliasing, interference may occur in a gka/f/zy manner, that is the same data 

can be accessed via different paths by different operations. Program results 

are saved between sessions of the Prograph interpreter. Consequently, aliases 

may result from previous executions of the program. Thus it is believed that 
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there would extremely difficult to detect aliases by statically analysing 

program code and, by extension, to solve the problem of interferences 

between operations executed concurrently. 

The analysis to be developed will address the issues of access to global 

variables and updates to arguments. It aims at characterising the side-effects 

induced by a subcomputation. Characterising an effect means identifying 

unambiguously its nature (read or write), and the data upon which it 

operates (class, persistent value or operation input). The effected data 

should be referred to by their symbolic names. 

There are several purposes to this effect analysis: 

* It will provide the user with some useful information about the 

behaviour of operations annotated for distribution. Clearly operations 

with a purely functional behaviour are more suited for remote execution 

than those which heavily affect their arguments or global variables. Such 

feedback might help the user to annotate the program. 

« The results produced by the analysis can be exploited to optimise the 

distribution mechanisms. Being able to statically anticipate the accesses 

and updates to operation arguments and global variables reduces the cost 

of keeping the value of global variables consistent and implementing side-

effects. Alternatively, it might be decided that the overhead incurred by 

these mechanisms is too high and that operations inducing certain effects 

should not be distributed. 

It is important to keep a clear separation between the analysis and the 

distribution policies so that the analysis does not become biased towards 

supporting a particular policy. 

4.5 Summary 

This chapter has discussed the following points: 

* A range of issues has to be addressed for the design of Distributed 

Prograph. The most important issues are transmission of the operation 

arguments and results, the scheduling of operations in parallel and the 

maintenance of the global state and behaviour across several separate 

contexts. 
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* Three different approaches can be distinguished for the implementation of 

a distributed programming language. However, only the applicative approach 

seems to be exploitable for the implementation of Distributed Prograph. 

» Static analysis of programs can help in solving the problem of the 

consistency of values across several contexts. 
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Type Inference 

A type inference algorithm constitutes the first component of the analysis 

described in this thesis. This chapter details the design of the inference 

mechanism after reviewing several type-related issues. 

The first section discusses the purpose of types in programming languages 

and the different approaches to typing, namely static versus dynamic typing. 

The second section surveys issues related to the design of a type inference 

algorithm. Previous work on type inference is the topic of the third section. 

The fourth section exposes the need for type inference as part of the analysis 

developed in this work. The inference algorithm is outlined in the fifth 

section. The sixth and the seventh sections present a suitable type 

representation and the rules to type the different expressions of the 

Prograph language. The details of the type inference algorithm are presented 

in the eighth section. Type inference is illustrated by two examples in the 

ninth section. The tenth section discusses shortcomings of the algorithm. 

5.1 Types In programming languages 

Wegner [Wegner 1986] defines the properties that types should have to 

constitute a type system for object-oriented programming languages. By 

removing the references to features which are specific to object-oriented 

languages (e.g. inheritance), the definition can be extended to cover the 

purpose and properties of types in programming languages: 

* Application programmer's view: Types partition values into 

equivalence classes with common attributes and operations. 

* System evolution view: Types are behaviour specifications that may be 

composed and incrementally modified to form new behaviour 

specifications. 

* Type checking view: Types impose syntactic constraints on expressions 

so that operators and operands of composite expressions are compatible. 

" Verification view: Types determine behavioural invariants that 

instances of the type are required to satisfy. 

* System programming and security view: Types are a suit of clothes 

(armour) that protects raw information (bit strings) from unintended 

interpretations. 
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* Implementer's view: Types specify a storage mapping for values. 

Typing means associating a type with every expression of a program. Two 

broad approaches to typing can be distinguished, the static and the dynamic 

one. With the static approach, the type is statically associated with all the 

variables and expressions of a computation. Dynamic typing distinguishes 

itself from static typing in the sense that the type information is available 

only at run-time and that types are not bound to variables but to the values 

instead. 

5.1.1 Static typing 

Static typing in procedural languages requires the programmer to declare the 

types of the variables and procedures. The correctness of the type 

declarations is established by a (ype cAackgr. 

Functional languages such as ML and Miranda are equipped with an 

static type system. Implicit typing requires a minimum of type declarations. 

Type information is inferred from the local context and type correctness can 

be established. 

Static knowledge of the types of the values involved in a computation 

provides a safety guarantee and enables optimisation. Declaring type 

information is also seen as conducive to good software engineering practices: 

type declarations serve as partial specifications. 

Most procedural languages are moMomorp/iic, and the types of variables, 

functions and procedures are invariant, remaining the same throughout the 

execution of the program. Such languages may not describe generic 

procedures where algorithms are applicable to values of different types. A 

procedure to compute the length of a list is an example of generic procedure. 

ML-like type systems introduce the concept of type variable. These variables 

can be instantiated to different types thus allowing functions to accept 

arguments of different types. 

Type systems for object-oriented languages often use interfaces as types. AH 

objects of a given class have their interface described by an abstract fypg. 

An abstract type definition contains: 

* The signatures of the methods supported by the class. A method 

signature specifies the types of the input and output arguments of a 

method. 
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" The type of the attributes of the instances of the class. 

The following example (taken from [Baiter, Lacoutre and Riveill 1994]) 

deHnes a document description for a computerised library catalogue: 

TYPE Document_descr IS 

key: Integer; 

title, author: String; 

date_borrowed, date_returned: REFDate; 

METHOD I n i t; //set initial values 

METHOD Consult; / /display information about the 

//document 

METBOD Get_text: REF Document 

/ / gives access to the text of the 

//document 

END Document_descr. 

A Document-descr has a k e y attribute, tzitle and author a t t r ibutes 

and da t:e_borrowed and date_returned a t t r ibutes. The m e t h o d s 

defined for the Document_descr abstract type are Init, Consult and 

Get_text. The three methods take an object of type Document_descr as 

(implicit) argument. The method Get_text returns a reference to a 

document (REF Document). 

Types can be partially ordered; B is a swtfypg or is mcZWed in A when aU the 

values of type B are also values of type A. B < A denotes the inclusion of type 

B in type A. The inclusion rules for method signatures (A —> B denotes a 

method signature with an argument type A and a return type B) is: 

A' B' < A-^ B iff A < A' and B ' < B 

This rule, known as states that the type of method mb is the 

subtype of method ma if the argument type of m^ (A') is more general than 

the argument type of m^ (A) and the return type of m^ (B ' ) is more 

specialised than the return type of m^ (B). 

Abstract type A is the supertype of abstract type B if: 

* Each method m^ defined in the interface of A is matched by a method 

mb of the same name in the interface of B and that the type of mb is the 

subtype of the type of method mg. 
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• Each attribute of A is defined in B and the type of the attribute of A is 

the supertype of that of the attribute of B. 

To provide inclusion polymorphism and static typing, the following rules 

must be respected: 

# The type of the value assigned to a variable is a subtype of the type 

declared for that variable. 

« A message send is type correct if a method of corresponding type is 

defined in the signature of the receiver and the types of the message 

arguments conform to the types of the formal method arguments. 

There exists no consensus on how class and types should be composed: 

* With the concept of Ckss Type, a class defines a type and by extension 

inheritance and subtyping are considered equivalent. The type of a 

subclass has to conform to that of its superclass. 

* It has been argued that subclassing and subtyping are different notions: 

subtyping is the sharing of abstract behaviour whereas subclassing is a 

mechanism which provides code reuse [LaLonde and Pugh 1991]. Guide 

[Baiter, Lacoutre and Riveill 1994] separates types which describe the 

interface and the classes that implement the type. This approach allows 

greater flexibility as two unrelated classes may conform to the same type 

and conversely, a subclass does not have to conform to the type of its 

superclass. 

Parametrisable classes are a feature of several statically typed object-

oriented languages and allow code reuse through parametric polymorphism. 

Type systems for statically typed object-oriented languages still attract 

considerable research interest. ComrzaMce, unlike contravariance, allows the 

programmer to specialise argument types of methods in subclasses; 

covariance remains the subject of investigations [Shang 1994]. 

5.1.2 Dynamic typing 

Dynamic type systems bind types not to variables but to values, thus 

variables can be polymorphic. 

Dynamic typing gives languages a greater flexibility than their statically 

typed counterparts, most notably for the implementation of collections of 

elements of heteregenous types and the manipulation of these collections. 
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Dynamically typed languages are often associated with an interactive and 

incremental style of programming appropriate for experimentation and 

prototyping. From a language designer point of view^ Cardelli [Cardelli 1995] 

considers that imtyped languages are easier to prototype. 

The drawbacks of dynamic typing are, firstly, the possibility of run-time type 

errors as type checking can only be performed at run-time and secondly that 

it incurs several overheads over static typing: 

* Memory overhead: values must carry a type tag attached to them and 

their implementation takes more memory space. Also the absence of type 

information at compile time may rule out optimisation such as dead code 

elimination and the use of machine data types instead of program data 

types. 

# Performance overhead: the absence of type information prevents 

performance oriented optimisations including inlining and use of machine 

data types. Run-time type checking induces an extra performance cost. In 

[Steenkiste and Heimessy 1987] the cost of type computations for LISP 

applications is estimated to increase the execution time by 25%, on 

average. 

5.1.3 Bridging the gap 

It may be considered that the two typing approaches are not antagonistic but 

complementary as suggested in [Palsberg and Schwartzbach 1993] p.72. 

Providing type information during the prototyping phase places an 

unnecessary burden on the programmer and type correctness is not very 

important at that early stage. Wegner [Wegner 1987] suggests that dynamic 

typing is more appropriate during the development phase. 

Type inference aims at computing type information from an untyped 

language. The transition is illustrated by the following diagram taken from 

[Palsberg and Schwartzbach 1993]: 
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untyped 
program 

typed 
product design 

rapid prototyping type inference 

Fig. 5.1: From untyped to typed program. 

5.2 Issues for type inference 

Type inference has been explored for various language paradigms: 

procedural, object-oriented and functional. The approaches investigated may 

also vary in: 

* purpose; 

* world assumption; 

* type system; 

The remainder of this section discusses these three issues in turn. 

5.2.1 Purpose of inferring types 

The type information produced may serve several purposes: safety, 

optimisation and help to the programmer. 

In the context of object-oriented languages, the overriding safety concern is 

that method despatching might fail. Type inference will check that the 

message send cannot fail at run-time. 

Efficiency concerns encompass performance and compactness of the 

compiled code. Dynamic binding incurs a run-time overhead. Static 

knowledge of the concrete type of the receiver of a message allows the 

message to be bound to a method statically, thus eliminating the cost of a 

method look-up. The code can be further optimised by m/zMZMg methods. 

Dynamic binding also has an impact on the size of the compiled executable 

as the code for classes that may never be instantiated or methods that may 

not be called is included. Type inference may help to detect that a method 

caimot be called during the execution of the program so that the dead can 

be removed. 
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The information inferred can be fed to analysis and debugging tools. In 

connection with the safety concern expressed above, the programmer can be 

warned about the likely failure of a message send. Type information feedback 

helps the programmer to check that the type of the method is compatible 

with the intended use for that method. 

5.2.2 World assumptions 

A cfosed-worM assumption is that all parts making up an application are 

available for analysis and compilation. In object-oriented languages where 

code and data are encapsulated in classes, a closed-world assumption thus 

requires the set of classes to be known statically. 

Under an opeM-worW assumption, a program is divided into separate 

modules or libraries that can be analysed and compiled separately. The opew-

world assumption, although a more desirable approach to software 

engineering, may not be compatible with all the possible purposes for doing 

type inference. For example an open-world assumption does not help to 

address efficiency concerns because it does not allow the identification of 

which code is executed at run-time. 

A modw/ar type inference may analyse methods one method at a time. A MOM-

fModwZar inference is performed on a whole program at a time and requires a 

closed world view. 

5.2.3 Type systems 

A type system for a programming language defines: 

# a set of type expressions; 

" operations to manipulate type expressions (e.g. Carkszan pmducf to 

describe record type and dzsyozMf swm); 

# a set of rules for associating a type with all the expressions of the 

programming language. 

In his discussion of Typg Sygkms and PofymorpAzsfM, Agesen [Agesen 1996] 

distinguishes two dimensions to classify type systems: the concrete/abstract 

dimension and the general/specific dimension (see fig. 5.2). Discussion of a 

type system cannot be divorced from the assumption under which the type 

inference operates and the purpose of the inference itself. 
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General 

Concrete Abstract 

Specific 

Fig. 5.2: Dimensions of type system 

The coMcrgk h/pg of an object is the set of classes of which this object can be 

an instance. Concrete type inference requires a closed-world view and it is 

mainly aimed at optimisation. 

Absfracf (ypgg have already been introduced in 5.1.1, they describe the 

external behaviour of an object. Abstract types are useful to prove type 

safety and are compatible with an open world view. 

In Agesen's view, class types represent a half-way house between concrete 

and abstract types. The distinction between concrete and class type can be 

illustrated by an example taken from the class hierarchy depicted in fig. 5.3. 

The class type Bird encompasses instances of Bird, Chicken and Duck. 

The corresponding concrete type would be the set {Bird, Chicken, 

Duck} . Under a closed world view, class types can be converted into 

concrete types and vice-versa. 

Animal 

Bird 
Dog Cat 

Chicken Duck 

Fig. 5.3: A class hierarchy. 

Gerngm/ h/pes describe the way a method or an object may be used, that is, all 

the possible legal types for the object or method. 5pecz/:c fypes describe the 
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use of an object or of a method in the context of a particular application and 

assume a closed-world view. 

5.3 Previous work 

5.3.1 Kaplan/Ullman 

[Kaplan and Ullman 1980] presented an inference method for an untyped 

imperative language for the purpose of compile-time optimisation. 

The program is modelled as a /Zowgrap/i. A flowgraph is a directed graph 

with nodes consisting of one or more assignment statements of the form: 

y<-f (xi ..JCn) 

and the edges following the control flow of the program. The graph starts 

from and finishes at a (SF) node. The set of all the program 

variables is constructed and a mapping from the set of the program variables 

to the set of types is defined. The mapping is refined by successive iterations 

of the ybrward amfysis and of the WcAward aMa/ysis over the nodes. 

Forward analysis infers the type of the program variables after the execution 

of a statement from the types of the program variables before execution of 

the statement and the signature of the statement. 

Backward analysis infers the type of program variables from the type 

information available after the execution of a statement and the signature of 

the statement. 

* Types are elements of a type lattice (see fig. 5.4) with a top and a 

bottom element. A Zeasf-wppgr bowwd and bowW operation 

are defined on the lattice. 

real 

Fig. 5.4: Type Lattice 
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# Statements' signatures are constructed using T-^nchOMs. T° is a function 

which takes the types of the arguments ... of the statement as its 

arguments and returns the best approximation of the type of the return 

value of the statement after its execution. T° is used during the iterations 

of the forward analysis. Similarly, for each argument Xj of the statement, 

a function Ti is defined. During the backward passes of the analysis is 

applied to the types of the arguments x^... x^ and the type of the return 

value y of the statement. Thus provides the best approximation of the 

type of Xj before assignment from the information available after 

assignment. 

As an example, consider f l (x) ,a simple function which returns the greatest 

integer smaller than or equal to x if x is a number, otherwise, if x is a char, x 

is translated into lower case. 

TO takes the type of x as argument and returns the type of the return value of 

f l (x ) . The definition of 7° (see fig. 5.5.a) shows if the type of x is r e a l . 

X ipO 

1 1 

real int 

int int 

char char 

0 0 

Fig. 5.5.a: Definition of T° 

is used during the backward analysis, the leftmost column contains the 

current approximation of the type of x, the argument of f 1 (x) and the top 

row the type of y, the return value of the f 1 (x) . The intersection of a type 

of X and y returns a new approximation of the type of x. 

y 

X 

1 real int char 0 

1 1 real real char 0 

real real real real 0 0 

int int int int 0 0 

char char 0 0 char 0 

0 0 0 0 0 0 

Fig. 5.5.b: Definition of 
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5.3.2 Hindley/Milner 

Milner extended Hindley's type inference algorithm and used it for an ML 

type system [Milner 1978]. ML is a functional language with lexical binding 

and higher-order functions. Hindley/Milner inference is more concerned with 

type safety than with optimisation. It computes the pnMcipaZ types (most 

general types) of expressions to rule out run-time type errors. All of the types 

of a polymorphic expression are an instance of the principal type of the 

expression. 

The inference algorithm handles functions one by one. The function is 

converted into an expression tree where the leaves of the tree are either 

constants or variable accesses. 

The function: 

let rec length = fun {1) if null {1) 

then 

0 

else 

succ(length(tl(1))) 

in... 

is converted into the tree shown in fig. 5.6. 

if ... then ... else 

null succ 

length 

tl 

Fig. 5.6: Expression tree for l e n g t h 

Type information can be represented as: 

* Basic types such as Int or Boolean. 

* Type variables, denoted by a Greek letter: a , p, y range over the 

complete set of types. A distinction is made between geMgnc and MOM-

geMgnc type variables. All occurrences of a non generic type variable must 
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be instantiated to the same type values. Generic type variables may be 

instantiated to different type values. The difference between non-generic 

and g;eneric typei/ariabdes is illustrated by thcfcdlcrwitig exeumple taken 

from [CardeUi 1987]. 

fun (f) pair(f (3) ) (f (true) ) cannot be typed because the type 

of f which should be of the form a -> |3 is instantiated to Ink P for the 

first application of f and to Boolean —> (3 for the second application. 

The type variable a appears in the type of the fun-bound identifier f 

and is therefore non generic and cannot be instantiated to different type 

values. 

The expression let f = fun (a) a in pair ( f ( 3 ) ) ( f {true) ) can 

be typed. In the type of f a -> a, the a s are generic and f can take the 

types Int Ink and Boolean Boolean. 

* Function types p o. A function type maps the type of the function 

argument to the type of the function return value. 

All the leaves have a type associated to them. A constant leaf is assigned the 

type corresponding to the value of the constant. The type assigned to a 

variable access leaf is the type variable of the variable accessed. 

The inference mechanism maintains a map called assutnptions from the set of 

variables to the set of types. Every time an occurrence of a variable is found, 

the set of assumptions is accessed to yield the type of that occurrence. 

Inference rules describe how the type of an expression can be deduced from 

the types of its subexpressions. The rule for the typing of an i f e t h e n e ' 

e l s e e" expression states that, if the type of e is boolean, the type of e is 

X and the type of e" is x, then the type of the expression is t . The rule is 

formalised by an expression of the form: 

AI-e:bool At-e': i : AHe":i: 

AH (ifethene' elsee"):!: 

where the horizontal bar means zmpfy, the line above the horizontal bar is the 

premise and the line below the bar the conclusion. A t- e. t means that from, 

the set of assumptions A, it can be deduced that the type of e is T. 

Inference proceeds in a bottom-up fashion from the leaves to the root of the 

expression tree. The application of an inference rule yields a set of equalities 

on the types of the subexpressions. The equalities are solved by UMz/icahon 
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[Robinson 1965]. Failure to solve the equations means that the function 

cannot be typed. 

5.3.3 Suzuki 

Suzuki [Suzuki 1981] proposed a type inference mechanism for Smalltalk. 

The aim of the system was, firstly, to substitute static binding for dynamic 

binding and thus improve efficiency and secondly to provide type 

information to the programmer. 

Suzuki's work draws on the functional approach. Unlike ML, Smalltalk has: 

" Dynamic binding 

* Data polymorphism 

These features make some modifications to the Milner's original algorithm 

necessary. The modifications concern the representation of types, inference 

rules and the constraints on types. 

Types can be: 

* Basic types: they are sets of classes 

« Type variables, denoted by Greek letters. 

* Function types are used to describe the signatures of methods. Function 

types are of the form: a x p y, the types on the left hand side of the 

arrow are that of the receiver and the arguments of the method, the type 

on the right hand side of the arrow is that of the method return value. 

Milner's algorithm solves a set of equalities over type values but with Suzuki's 

approach types are sets of types and constraints are expressed as set 

inclusions. 

The inference rules must also be altered for conditional expressions and more 

importantly for function applications. To be able to type message sends (the 

linguistic equivalent of function application in ML), Suzuki's algorithm 

assumed that all the methods with the matching name can be despatched. 

The type of the message send is the union of the types of all the methods that 

may be invoked. 

Smalltalk allows variables to hold values of different types (data 

polymorphism). The implemented algorithm did not attempt to infer the type 

of the instance and global variables. Instead, the algorithm took the view that 

the type of such variables is the set of all the classes in the system. 
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5.3.4 The EULisp type inference system 

EULisp [Padget, Nuyens and Bretthauer 1993] belongs to the family of LISP 

dialects and features object-orientation. The language unifies the functional 

and object-oriented paradigms, providing classes and functions. A geMgrzc 

^Mch'oM is a function for which several implementations are available. Each 

implementation or mefkod is defined with a distinct domain which specifies 

the applicability of the method to supplied arguments. Unlike a message 

send which despatches the method applicable to the class of the receiver and 

ignores the types of the method arguments, the application of a generic 

function will despatch a method only if the class of each argument is a 

subclass of the corresponding domain class formally declared in the method 

definition. The following example, provided by [Kind 1996] declares a 

generic function element which returns the i-th element of an ordered 

collection. 

(defgeneric element (xy)) 

The methods for the generic function are defined for the different domains. 

For a string argument, element is implemented as: 

(defmethod element ((x<string>) (i <integer>) ) 

(string-ref x i)) 

For an argument of the vector class as: 

{defmethod element ((x<vector>) ( i <integer>) ) 

(vector-ref x i) ) 

For an argument of the list class as: 

(defmethod element ((x<list>) (i <integer>) ) 

(if (= i 0) 

(car x) 

(element (cdr x) (-i1) ) ) ) 

Element can be used as any other function. 

(defun foo (x) 

(element x1) 

• . . ) 

[Kind and Friedrich 1993] have proposed a type inference mechanism for 

EULisp. The type information inferred is used mainly for optimisation during 

the compilation of applications. 
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The representation for types draws heavily on Milner's work with some 

improvements to handle inclusion polymorphism and provide more precise 

type information about functions 

# Lattice types: A lattice L is constructed over the set of the basg types B. 

The set of the base types can in turn be defined as the set of the concrete 

types augmented with a set of sfrafegic types. The concrete types 

correspond to EULisp classes, for example < l i s t : > , < v e c t o r > or 

< s b r i n g > . Strategic types have been introduced to describe 

distinguished values and aim to yield a more precise typing of predicates 

and conditional expressions, examples of such types include: 

s i n g l e t o n , z e r o , one. The lattice reflects the subtype relation over 

the sets of types. For example, the lattice type < n u m b e r > is the 

sublattice of L whose vertex is the base type <nmnber>. 

# Type variables: They are used to express type dependencies between 

argument types or between argument types and the result type of a 

function. The range of a type variable may be restricted, for example, 

g<nuinber> denotes a type variable whose upper bound is <number>. 

# Generic type schemes embody constraints on the argument and result 

types of functions; they contain several lines of the form: 

X T2 X TS ^4 

where %!, T2 and Tg are the types of the function arguments and 14 the 

type of the function's return value. Using a number of lines, type 

dependencies can be expressed more precisely. 

Inference is performed in three steps: 

# A local inference computes the most-general type of functions. The local 

inference starts with a set of initial type constraints on the function's 

parameters, literals, constants and variables. A type scheme must be 

available for each function call within the function s body. If a type 

scheme is missing, the current analysis is suspended until the missing 

scheme has been inferred. The type scheme for a generic function 

application contains the lines of the schemes of all the methods that may 

be despatched. Solving the constraints by unification yields a scheme for 

the function. 
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» A global inference aims at deriving concrete type information by 

examining all the calls to a given function. 

. The local inference is iterated again with feedback from the global 

inference. 

5.3.5 Palsberg and Schwartzbach 

The language of interest for the type inference described in [Palsberg and 

Schwartzbach 1991] is a subset of Smalltalk called BOPL (Basic Object 

Programming Language). The analysis is applied to programs globally, under 

a closed-world assumption. Palsberg and Schwartzbach envision several uses 

for the type information inferred: safety, dead code elimination, static 

method binding and information to the user. 

Types are defined to be sets of classes. Inheritance, parametric 

polymorphism and data polymorphism are tackled by some program 

transformations: 

# Inheritance is expanded away. Each inherited method or variable is 

duplicated in the class which inherits it and all the occurrences of the 

pseudovariable s u p e r are replaced by s e l f . If a method is redefined by 

a subclass, the name of the superclass is appended to the name of the 

inherited method. Some aspects of the transformation are illustrated by 

the example below: 

class Rectangle 

var 1, w 

method Base (10, wO ) 

1;=10;w:=wO;self 

method Area () 

l*w 

method Scale (s) 

1 ; = 1 * S ; w ; = w * S ; self 

end Rectangle 

class Box inherits Rectangle 

var h 

method Height (hO) 

h: =hO 

method Volume () 

self.Area()*h 
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end 

amthodScale(s) 

super.Scale(s) ; h:=h*s; self 

endBox 

The definition of the class Rectangle is left unchanged by the 

transformation but the class Box becomes: 

class Box 

h 

method Base (10, wO ) 

1:=10;w:=wO;self 

method Area () 

l*w 

method Scale$Rectangle (s) 

l:=l*s;w:=w*s;self 

method Height (hO) 

h:=hO 

method Volume () 

self.Area()*h 

method Scale ( s ) 

self.Scale$Rectangle(s); h:=h*s; self 

end Box 

# To handle parametric polymorphism, methods are duplicated for each 

message send in which their name occcurs. This transformation is 

illustrated by the following example: 

classc 

method id (x) 

X 

endC 

{ (C new) .id{7) )+10; 

( (C new) .id(true)) or false 

A different version of id is created for the message sends in which id 

occurs. 

classC 

method id@l (x) 

X 

method id@2 (x) 
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X 

andC 

((Cn#*).id@l(7))+10; 

( (Cnew).id@2(true)) or false 

# A copy of the class is created for each instantiation. This 

transformation allows a precise treatment of data polymorphism. 

class Container 

var X 

method put (val) 

x: = val; 

self 

method get () 

X 

and Container 

(Container new) .put(7).get. ()+10; 

(Container new) .put (false) .get () or true 

The Container class is entirely duplicated and becomes 

Container@l and Container@2. The modified program is: 

(Container01 new) .put(7).get()+10; 

(Container@2 new) .put(false).get() or true 

The expanded program is converted into a (race grap/i. The nodes of the 

graph represent methods and the edges of the graph message sends. A 

condition is attached to each edge: the edge will be traversed only if the type 

of the receiver contains the class which implements the method represented 

by the node to which the edge is leading. 

The construction of the graph is illustrated for the following simple program: 

class A classB 

method m: e var temp 

e n method m : e 

(temp := e) n 

method n 

temp p 

methodp 

selfp 

end A end B 

(A new) m: (B new) 
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AelAna^ 
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from > 
n 

— 

B t. (A newt 
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7 P 
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B e [selfli 

: e I tempi 

B G |temp:=el 

Fig. 5.7: A Trace graph 

In the trace graph of fig. 5.7, the first node corresponds to the execution of 

the program. Node 2 represents the invocation of the method m defined in 

class A and node 3 represents the invocation of the method m defined in class 

B. The condition Ae |A new| attached to the edge between node 1 and node 

2 expresses the requirement that the class A must be an element of the type of 

the expression A new if the method m d e f i n e d in c l a s s A i s to b e called. 

Similarly, the condition B e |A nevi attached to the edge between node 1 and 

node 3 means that the class B must be an element of the type of the 

expression A new if the m e t h o d m defined in class B is to be called. 

A set of constraints is derived from inference rules. Constraints can be of 

three different types. Constraints can be: 

" Local constraints reflect the semantics of the method body. For the 

node 3 on fig. 5.7. The constraints are: 

- [tempi 2 |el2 

- Ikemp : = e | a lek This constraint and the one above result from the 

assignement of the value of the variable e to the variable temp. 

_ Ibemp : = e | c {B} . This constraint reflects the invocation of the 

method n in the body of m defined by class B. It states that the type of 

the expression bemp: = e must be included in the set of classes defining a 

method n (here the singleton {B}). 

* Connecting constraints reflects the semantics of message sends. They 

embody the matching of the type of the actual and formal arguments of 

the method as well as the matching of the return value with the result of 
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the invoked method's body. For the transition from node 1 to node 3, the 

following constraints can be derived: 

|B newl c |e|2 (Constraint on the type of the argument). 

-1 (A new) m: (B new) | 2 |( kemp :=e) n | (Constraint on the type of the 

return value) 

# Global constraints state that a path is executable if all the edge 

conditions encountered hold. Global constraints are constructed by 

traversing all the paths from the main node in the graph. Walking along a 

path yields an expression of the form: 

Ki, K2, ..., Kn=*LUC 

with K a condition on an edge, L the local constraints of the final node of 

the path and C the connecting constraints to reach the final node. 

The set of constraints is solved to yield a type for all expressions in the 

program or it fails if the program is untypable. The description of an efficient 

implementation of the constraint solver can be found in [Oxhej, Palsberg and 

Schwartzbach 1992]. 

5.4 Motivations for Inferring types in Prograph 

The ultimate objective of the analysis described in this thesis is to obtain an 

approximation of the side-effects that the execution of an operation 

annotated for distribution may induce. Type information wiU help to reach 

this goal because: 

. Types and effects are not orthogonal, as instances of primitive 

datatypes are immutable (except for list) and knowledge of types is 

useful to infer side-effects. Class variables can be reached via the 

instances of the class and thus knowing the class to which the instance 

belongs gives extra information about class variable accesses or updates. 

. The type inference will help to reduce the uncertainty due to the 

dynamic binding of operations to methods. A better approximation of the 

effects will be possible if the side-effects of the methods that cannot be 

despatched are ignored. 

5.5 Outline of the type Inference system 

This section outlines the type inference developed for Prograph. 
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5.5.1 Method-wide analysis 

The inference algorithm proceeds in a modular fashion: it is applied to 

individual methods but it operates under a closed-world assumption (it is in 

that respect similar to the type inference algorithm for Smalltalk presented in 

[Suzuki 1981]). 

The method-wide inference reflects the structure of the method to which it is 

applied and relies in turn on a sequence of case-wide inferences, one for each 

case in the method. The analysis of a case depends on the results obtained 

for the previous one. Once the case-wide inferences have finished, the type 

information for the whole method can be synthesised. 

5.5.2 Case-wide analysis 

A case describes some computation using a visual dataflow graph. Such a 

representation lends itself easily to analysis and the information necessary 

for the inference is attached to the elements of the graph. It is important to 

distinguish between the type information attached to the datalinks and that 

attached to the operations (or nodes) of the graph. 

. Type of values: different datalinks propagate the same value if they are 

attached to the same root and so these datalinks should also share the 

same type information. 

. Type of operations: the type information available for an operation is 

described by a signature. A szgMafwre consists of one or more /zMgs. A line 

is made up of a sequence of input types and a sequence of output types. 

Each input and output of the operation is matched by a type expression 

which describes the set of classes from which the matching input or 

output can be an instance. The expression: 

<boolean> X <boolean> X <nuinber> -4 <boolean> x <nuinber> 

<boolean> x <boolean> X <nuraber> —> <boolean> X <number> 

could be two lines of the type signature of an operation with three inputs 

and two outputs where < boo l e a n > denotes the boolean type and 

d u m b e r > the type of real and integer values in Prograph. (The range of 

valid type expressions will be discussed in section 5.6). 

The case-wide inference is divided into two phases: the initialisation phase 

and iterative analysis phase. 
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5.5.2.1 Initialisation phase 

During the set-up phase, the type information attached to the datalinks and 

the signatures attached of the operations are initialised. 

The type of the datalinks is initialised to the most general type, except for the 

datalinks connected to the roots of the input bar, which are initialised 

according the results of the analysis of the previous case. 

The signatures attached to the operations calling a primitive method are 

looked-up or can be built "on the fly" for some operations such as default 

G e t and S e t , M a t c h , C o n s t z a n b and the I n i t operations. For an 

operation calling a user defined method, if the signature of this method has 

not been previously inferred, the current analysis is suspended. The missing 

signature is inferred independently from the current context; the suspended 

analysis may then resume. The analysis is said to be monovuriant (the 

signature inferred for a method may be used for operations occuring in 

different cases). 

5.5.2.2 Iterative analysis 

The iterative analysis requires three successive passes over the nodes of the 

case graph: one forward, one backward and forward a second time. Recall 

that the graph of operations and datalinks is sorted into a linear execution 

sequence (see 2.2.1). The three passes skip the I n p u t and O u t p u t 

operations (often refered to as the input and output bars). The forward pass 

follows the execution sequence from the first operation after the I n p u t 

operation until the last operation before the O u t p u t operation, the 

backward pass follows the reverse sequence. The purpose of each pass can 

now be described: 

# The first forward pass infers the types for the outputs of the operation 

from the types of its inputs and the signature of the operation. 

» The backward pass proceeds against the flow of data. It infers the type 

of the inputs of the operation from the type of its outputs and its 

signature. It also computes some information useful to type the following 

case. 

* The second forward pass detects whether the types of the outputs of 

the case depend on the types of the inputs of the case. 
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A line can then be constructed that summarises the type information gathered 

during the case analysis with the input and output types of the case. 

5.5.3 Implementation outline 

Visual dataflow forcefully exposes program structures and the code for the 

inference mechanism provides a good outline of the algorithm. 

Number of case List of l ist of nodes Method Inarity 

c InitialiseVector: 

1 7 % , . 
^make-Mst^ _ 

dC a= 
Case Analysis 

« DPLine » list 

Combine 

«DPSignature» 

Fig. 5.8: Analysis of a method 

Fig. 5.8 shows the analysis applied to a method. On the rightmost input of 

the case, the method is passed as a sequence of cases which in turn are 

represented as sequences of operations (also called nodes). The sequence of 

operations within a case follows their execution order. The local method 

InitialiseVecbor constructs a sequence of input types for the first case 

of the method. Most of the processing takes place in the Case Analysis 

local method. Each iteration of Case Analysis produces a sequence of 

input types for the next case on the left root of the operation and a line to 

describe the input and output types of the case analysed on the right root of 

the operation. When all the cases have been analysed, their respective lines 

are combined in the Combine local method to produce the signature of the 

method. 
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Input type Vector Case number List of «Node» 

Inference/StartCase % 

^ /Set Input T^pe% 

^detach _ 

% , c e s s M i d d 1 e H o d e s ^ 

% / /CaseVector+Line % 
M   

detach r ^ 
0 

List of terminal 
side-effects. 

Next case 
vector 

«DPLine» 

Fig. 5.9: The CaseAnalysis local method 

Fig. 5.9 shows the implementation of the C a s e A n a l y s i s method. The 

I n f e r e n c e / S k a r t C a s e operation performs some housekeeping activities. 

The I n p u t and Output operations (respectively the first and the last 

elements in the sequence of nodes) are removed from the sequence and 

S e t l n p u t T y p e s operation sets the input types for the case. The 

P r o c e s s M i d d l e N o d e s operation executes the different phases of the 

analysis on the operations between the input and Output operations. The 

CaseVector+Line operation constructs the line with the input and output 

types for the case as well as the sequence of input types for the following 

case. 
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List of the middle «Node»'s 

{^/SetlnitTgp*; 
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Fig. 5.10: The ProcessMiddleNodes method. 

The operations of the case of ProcessMiddleNodes (fig. 5.10) carry out 

the different stages of the case wide inference. The SeblnitType operation 

initialises the type information for the datalinks which are not connected to 

the roots of the Input: operation. The SebSignature operation constructs 

the signature of the operations and the fwdinference and 

bwdinf erence operations perform the forward and backward analysis 

over the operations of the case currently analysed. Dependency checks the 

existence of a dependency between the input and output types of the case. 

The Side-Effects operation is concerned with the effect signature of the 

operations of the case (effect inference is the subject of the next chapter of 

this thesis). 

5.5.4 Properties of the algorithm 

There are two properties of interest for a type inference algorithm: 

* SouMdness is the guarantee that if a program has been typed by the 

inference algorithm, it carmot fail because of a type error. Soundness is 
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paramount when the motivation for type inference is type safety. The 

inference algorithm proposed for Prograph may infer a type signature for 

methods whose excution would result in a run-time type error. The 

algorithm proposed for Prograph also rejects type correct code. 

« Comp/ekMess is the ability of an inference algorithm to infer the most 

general type of an expression. No claim is being made about the 

completeness of the type inference algorithm proposed for Prograph. 

5.6 Prograph Types 

Type inference in Prograph tries to achieve conflicting goals: 

. The effect analysis requires concrete type information to describe the 

effects induced by a subcomputation. Similarly, in order to reduce the 

uncertainty caused by dynamic binding, it is necessary to produce 

concrete type information. As in [Suzuki 1981], [Johnson 1986] and 

[Palsberg and Schwartzbach 1991], the type of an object is the set of 

classes of which the object can be an instance. The notion of subtype and 

subset are equivalent. 

» A method-wide inference must yield the most general signature. Sets of 

classes do not suffice to express all the possible uses of the method, there 

might exist dependencies between argument types or between argument 

types and return values. Dependencies between argument types often 

result from the use of an arithmetic or relational primitive. Dependencies 

between the input and output types of methods are often the result of 

operations that operate on lists or return one or several of their 

arguments. The proposed type system for Prograph allows explicit 

description of the dependencies between the input and output types of 

methods but not between input types. 

5.6.1 Class hierarchy 

Prograph distinguishes between Prograph data types and user-defined 

classes. It is, for example, not possible to create a subclass of i n t e g e r . 

However, this distinction is not relevant for type inference and both the 

Prograph data types and user-defined classes can be considered as classes. 

Classes are organised in a lattice (fig. 5.11). It is necessary to introduce a few 

extra classes to be able to construct the lattice. The top element of the lattice 

is called the U n i v e r s a l class and the bottom element Bot tom. The left 
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part of the lattice is fixed and consists of the Prograph data types. The right 

part is application dependent and consists of the user defined classes that 

are inserted below the UDC (User Defined Class) class. For the purpose 

of the effect analysis, it is not necessary to distinguish between the real and 

integer types and the two are indistinctively represented by the number 

class. 

The ordering of the elements of the lattice is based on the 

relation. The lattice respects the Prograph model of single inheritance except 

for the Bottom class which is the subclass of all classes. 

nuirfcer string boolean tiotc mill 0 extcingl 

Bottom 

Fig. 5.11: The class lattice 

5.6.2 Type 

Types are sets of classes. To facilitate the analysis, these sets should be easy 

to describe and to manipulate. A suitable type representation should allow 

for parametrised types (e.g. lists). 

A type can be one of the following alternatives. 

5.6.2.1 Single Type 

The type of a data object is the set of possible classes of which this data 

object can be an instance. The most trivial set is {a, Bottom} where a is a 

class. Such a set is denoted by <a> and is called a smgfe fypg. However, 

because of inheritance in object-oriented languages, it is often necessary to 

designate not only a single class but the single class and all its subclasses, 

<a+> denotes the sublattice whose vertex is the class a. 
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5.6.2.2 String Type 

Get and Set operations accept a string as a reference to a class. The value 

of the string is potentially useful information to describe effects. 

The sMmg fypg is a specialisation of the single type. A string type also holds 

the value of the string. Other type inference approaches often find it 

necessary to introduce such ad hoc types (e.g. strategic types in [Kind and 

Friedrich 1993]). The main motivation for introducing string types is to type 

the inputs of Get and Set operations more precisely. 

It would have been possible to include a sublattice under the s t r i n g 

abstract class. The elements of the sublattice would be the names of the user-

defined classes and the ordering would be defined by the subclassing 

relation. However, a dynamic solution, where the ordering between two string 

values is computed when needed, has been preferred. 

As with single types, it is necessary to distinguish between the string and the 

"subtypes" of the string, "a" designates the pair {"a". Bottom) with "a" a 

string whose value is a. " a " + designates the set formed by the string "a" , 

the strings whose values are the names of all the subclasses of a and the 

Bottom element. 

5.6.2.3 List Type 

A Zzsf (ypg is by definition the pair {List, Bottom} but it is also 

parametrised by the type of the elements of the list object. 

(T) denotes a list whose elements have the type %. Prograph allows lists to 

be heterogeneous. 

5.6.2.4 Union Type 

A single type is not always enough to represent the set of possible classes for 

a data object. A WMZOM (ypg is the union of an arbitrary number of types. 

[ %! I T2] is an example such a set. Union types cannot be nested. The 

analysis will not differentiate between heterogeneous lists and the union type 

of homogeneous lists, so [ ( t i ) | (12) 1 must be expressed as ( [T] | T2] ). 

5.6.3 Type dependencies 

A (ype depgndeMcy expresses the fact that the output type of a polymorphic 

method may depend on one or several of the input types of the method. Type 

dependencies appear on the right hand side of a signature line. 
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A type dependency can be thought of as a function of the input types. When 

the dependency is evaluated, references to the input types are substituted 

with the actual types to compute a type for the output. 

The evaluation of a type dependency is described by an Evaluate function. 

The signature of the Evaluate function is: 

Dependency X Type* —>Type 

From the dependency and the sequence of input types, Evaluatie produces 

the type of the output value. 

The Inverse function of a dependency computes the input types in a 

signature line using the value of the dependency, the signature of inverse 

is: 

Type X Dependency X Type* —> Type* 

I n v e r s e takes the type which corresponds to the value of the dependency, 

the dependency and the sequence of input types and returns the sequence of 

updated input types. 

Type dependencies are not only used in the lines of an operation signature. 

As will be explained later, they can also be attached to the datalinks of a 

case in order to detect whether the type of the output of the case depend on 

the type of the inputs of the case. 

Five type dependencies are available. They can be composed in order to 

express any possible dependency. 

5.6.3.1 Input 

The zMpuf type dependency expresses the most trivial type dependency 

between an input and an output. The type of the output is the same as the 

type of the designated input numbered from the left. In the line of an 

operation signature. Id (1) means that the type of the output is the same as 

the type of the first input of the operation. When attached to a datalink. 

Id (1) means that the type of the value on this datalink is the type of the 

first input of the case. 

The input dependency provides the same functionality as Milner's type 

variables as shown below: 

<Universal+> —> Id(l) 

is equivalent to the following function type in Milner's type system: 
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a -> a 

It can also be used to express bounded universal polymorphism: 

<a+> —> Id (1) 

is equivalent to Kind's qualified type variables in the line: 
a<a> a<a> 

5.6.3.2 Element 

The efgwgMf dependency returns the type of the element of the list coming 

onto the designated input. E (1) means that the type of the output is the 

type of the elements of the list on input 1. 

For example, the primitive d e t a c h - r detaches the rightmost element of its 

input list. The element dependency is needed for the type signature of 

d e t a c h - r . 

The line: 

{<Universal+>) —> E(1) 

is equivalent to the following function type in Milner s type system. 

a l i s t —> a 

5.6.3.3 List 

The Zzgf dependency designates that the output is a list whose elements have 

their type dependent on the type of the inputs. 

For example^ the primitive method pack can take an input a and returns a 

list with a as a single element. List is used in the signature of pack. L (6) 

denotes the list dependency applied to the type dependency 5. 

The line: 

<Universal + > —> L (1) 

is equivalent to the following function type in Milner's type system: 

a a l i s t 

5.6.3.4 Union and Intersection 

The wMz'oM and mfersecfzoM dependencies, denoted U and I respectively, return 

the union or the intersection of several types and type dependencies. 

The primitive f i n d - i n s t a n c e takes a list of objects, an attribute name 

and a value and returns the index in the list of the first object for which the 

named attribute has the required value, the object itself is returned as the 
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second output of the primitive. If no object is found, 0 is returned for the 

index and NULL for the found object. The type of the second output of 

f i n d - i n s t a n c e is described by the dependency: 

U(I(E(1) <UDC4->) <null>) 

5.6.4 Operations on types and dependencies 

To evaluate and invert type dependencies during the iterative analysis, it is 

necessary to compute the union (u) and intersection (n) of types and/or of 

type dependencies 

Such computations rely heavily on the predicates c aiid ?. 

c is defined for any pair of types and/or type dependencies. It is equivalent 

to set inclusion. However if the intersection of the two type expressions 

cannot be computed, c returns FALSE. 

I d (1) C <Universal + > = TRUE because whatever type I d (1) is 

evaluated to, <Universal+> will include it, by definition. 

Id(l) c <number> = FALSE, because the overlap between <number> 

and Id (1) cannot be computed, this overlap depends on the type to which 

Id (1) is evaluated. 

<number> c <none> = FALSE because the two types do not overlap. 

A second predicate, ?, is also defined for any pair of types and/or type 

dependencies. This predicate returns true when the intersection of two sets 

cannot be computed e.g. <number>?E (1) = TRUE. 

The use of the union and intersection operations is illustrated by the 

following examples: 

<boolean>u<number>= [<boolean> | <number>] 

<boolean> n <number> = <Bottom> 

(<boolean>) u (<nuinber>) = ( [<boolean> | <nimber>] ) 

(<boolean>) n {<number>) =<Bottom> 

Where a is a user defined class: 

<a>u <UDC+> = <UDC+> 

<a> n <UDC+> = <a> 

<a> u Id(l) =U(<a> 1) 

<a> n Id (1) = I (<a> 1) 
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5.6.5 BNF for type expressions 

The set of valid type expressions is given using the Backus-Naur form (BNF): 

SingleType;:<a> | <a+> 

StringType:: "a" |"a"+ 

SimpleType::SingleType|StringType 

ListType:: (SimpleType) | (UnionType)| (LisbType) 

UnionType:: [SimpleType | SimpleType+] 

I [ListType I SimpleType"*"] 

n: : Integer 

InputDependency : : Id(n) 

Element Dependency : : E(n) 

UnaryDependency::InputDependency| ElementDependency 

ListDependency ; ; L(n) | L (Union Dependency) | 

L(IntersectionDependency) 

UnionDependency : : U(UnaryDependency UnaryDependency+) 

I U(UnaryDependency+SimpleType+) 

I U(UnaryDependencyListType) 

I U (UnaryDependencySimpleType"*" ListType) 

I U ( I n t e r s e c t i o n D e p e n d e n c y IntersectionDependency) 

I U(IntersectionDepency"*" SimpleType"'") 

I U (IntersectionDependency"*"ListType) 

I U {IntersectionDepency"'" SimpleType"*" ListType) 

I U(UnaryDependency+ IntersectionDependency+) 

I U(UnaryDependency+ IntersectionDepency+ SimpleType+) 

I U(UnaryDependency''' IntersectionDependency'^' ListType) 

I U(UnaryDependencyIntersectionDepency'*' SimpleType''' ListType) 
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IntersectionDependency : : I (UnaryDependency"^) 

I I (UnaryDependency'^ SimpleType) 

I I (UnaryDependency''" ListType) 

5.7 Operation Signatures 

The outline of the type inference algorithm explained that the analysis of the 

cases of a method is divided into two distinct phases: the initialisation phase 

and the iterative analysis phase. During the intialisation phase, a signature is 

constructed for every operation of the case (except for the Input and 

Output operations). This signature depends on the nature of the operation. 

The rules to derive the signatures of the operations are given in the following 

subsections. 

5.7.1 Simple operation 

A simple operation can be a call to a primitive or a user-defined method. 

Primitives' signatures cannot be inferred, they must be available so that they 

can be used to type any operation calling a primitive. The signatures of the 

primitive methods are explained in 5.7.2. 

In the case of user-defined methods, the signature of the operation will 

depend on the sort of reference used (i.e. WMZDersa/, coMkxf-

dgknmzMgff or reference). 

5.7.1.1 Call with a universal reference 

With a universal reference, the signature of the operation is the signature of 

the universal method called. If the signature is not available it must be 

inferred separately. 

5.7.1.2 Call with a context determined reference 

An operation with a context determined reference can only be found in the 

case of a method defined by a class. The operation calls the method 

applicable to the class of the method which contains the operation. The 

signature of the applicable method is used as the operation signature. 

When the operation with a context determined reference is super annotated, 

the signature of the operation is the signature of the method applicable to the 

superclass of the class of the method which contains the operation. 
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5.7.1.3 Call with a data-determined reference 

With a data-determined reference the name of the operation does not suffice 

to determine which method is going to be called at run-time. As in [Suzuki 

1981] and [Kind and Friedrich 1993], the solution is to construct the 

signature of the operation by joining the signatures of all the methods that 

may be called by the operation. The set of the methods that may be called 

comprises all the simple class methods with the name and arity of the calling 

operation and possibly a universal or a primitive method with the name and 

the arity of the calling operation. 

For each method potentially called, the leftmost input type (that is the type 

of the recgiyer in object-oriented terminology) in each line of the method's 

signature must be restricted to the set of classes to which the method is 

applicable. Restricting the type of the receiver means computing the 

intersection of the type in the line of the method with the set of classes to 

which the method is applicable. 

This rule is quite simple to understand: if a method is to be called by an 

operation, the leftmost input of this operation must be an instance of a class 

to which the method is applicable. A parallel can be drawn between this rule 

and the edge conditions in [Palsberg and Schwartzbach 1991]. 

The rule is illustrated with a simple example. The Person class defines a 

method called d e t a i l s . The S t u d e n t class is a subclass of the P e r s o n 

class. 

Person 

Student 

The S t u d e n t class redefines the d e t a i l s method. An operation calling the 

d e t a i l s method occurs in the case of a method: 

f/ w  
/details 
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At this stage of the analysis it is not possible to say whether the details 

method defined for the Person class or the details method defined for 

the Student class will be called. The signature of the details operation 

consists of the combined signatures of the two methods. The signature of the 

details method for the Person class is: 

<Person+> —> 

(Note that an instance of the Student class would be a valid argument for 

the details method defined for the Person class). 

The signature of the d e t a i l s method defined for the Student class is: 

<Student> —> 

However, when constructing the signature of the details operation, it must be 

remembered that the d e t a i I s method defined for the Person class will be 

called if the type of the receiver contains the class Person or subclasses or 

Person which do not redefine the d e t a i l s method. As the immediate 

subclass of Person, the Student class redefines the d e t a i l s method, the 

type of the receiver must be <Person>. The d e t a i l s method redefined by 

the Student class will be called only if the receiver of the operation has the 

type <Student>. The signature of the d e t a i l s operation comprises the 

line of the signature of the d e t a i l s method defined for the P e r s o n class 

(the leftmost type of the line is restricted to <Person>) and the line of the 

signature of the d e t a i l s method defined for the S t u d e n t class (the 

leftmost type of the line is restricted to <Student>): 

<Person+> n <Person> —» 

<Student> Pi <Student> —> 

which is: 

<Person> —> 

<5tudent:> —> 

5.7.2 Primitive method signatures 

The signatures for the primitive methods are stored in a repository and can 

be looked up using the name of the primitive. During the initialisation phase 

of the case-wide type inference, the signature of a primitive method is 

retrieved from the repository and associated with the operation that may call 

the primitive method. 

Some primitives have optional inputs or outputs. For example, the primitive 

(in) takes a list, a data item and optionally the value of a start index as 
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inputs and returns the index of the first occurrence after the start index of the 

data item in the list or 0 if the item is not found. The signature of ( i n ) 

requires two lines. The first line describes the primitive ( i n ) as a method 

with two inputs and one output, the second line describes an operation with 

three inputs and one output. 

The signature of ( in) is: 

(<Universal+>) X <Universal+> —> <number> 

(<Universal+>) X <Universal+> X <niimber> —> <number> 

When the signature of the ( in ) operation is initialised, the line where the 

number of inputs does not match the number of inputs of the calling 

operation is discarded. 

Other primitives may also have an arbitrary number of inputs or outputs. The 

+ (number addition) primitive is a good example. The variable number of 

inputs cannot conveniently be represented by multiple lines as the number of 

inputs may vary between 2 and 256. A new concept must be introduced, that 

of a Vgrzfy. A varity term (denoted by ...) in a line means that the left hand 

side or the right hand side of the line may be extended by duplicating the 

type next to the varity term. 

The signature of + is: 

<nuinber> x <number> x... —> <niimber> 

When the signature of the + operation is constructed during the initialisation 

phase, the varity term must replaced with the required sequence of 

<number> types to match the arity of the calling + operation in the case. 

5.7.3 Get and Seb operations 

Attributes are supported by a finite set of classes. Therefore, the name of an 

attribute accessed or modified gives a useful indication of the type of the 

leftmost argument of the Get or Set: operation. 

If a default Get: or Set: operation is called then the type of the receiver 

includes all the classes defining or inheriting the attribute and the string types 

with values that are the names of these classes. The inference algorithm does 

not attempt to keep track of the types of the class and instance variables. 

A Get: or a Set: operation may also have a data-determined reference. The 

signature is obtained by joining the signatures of the default and user-defined 

methods that may be called. As for a simple operation with a data-
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determined reference, the leftmost type of the lines must be narrowed to the 

set of classes (and the names of these classes) to which a user-defined Get 

or Set method is applicable. 

The signature of a user-defined G e t or S e t method is inferred 

independently. 

5.7.4 Instance generator 

The signature of an operation instantiating a new object can be constructed 

on the fly if a default instance generator is called: 

<none> —> <Z> 

((<Universal+>)) —> <Z> 

where Z is the name of the operation. In the second line, the list of lists 

corresponds to the optional list of (attribute name, attribute value) pairs that 

can be passed to the Init operation. 

If a custom instance generator has been defined, its signature has to be 

inferred independently. 

5.7.5 Persistent operations 

Very little type information can be inferred from a persistent Get or a 

persistent Set operation as the algorithm does not record the type of 

persistent values. In the case of a persistent Set operation, the type of the 

input is set to <Universal+>; for a persistent Get, the type of the output 

is also set to <Universal+>. 

5.7.6 Local operations 

The signature of a Local operation is obtained by inferring the signature of 

the local method attached to it. 

5.7.7 Constant operations 

The type signature of a Constant operation is a line with no input and the 

type of the constant value as output. 

5.7.8 Match operations 

A Match operation can have different controls attached to it: NextCase , 

F i n i s h , Terminate , F a i l and Continue. The control can be triggered 

when the match fails, or on the contrary when it succeeds. For the purpose of 

the analysis, it would be interesting to keep track of the type that would 

trigger the activation of any control. However, this would result in an 
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increased complexity. The algorithm keeps track only of the type of the value 

that might trigger a NexbCase control. This type, called NextType, is a 

property of the datalink connected to the terminal of the Mabch operation. 

The rules are: 

" If the NexbCase control is activated on a failed match, the signature 

consists of a single line whose argument type is that of the value that 

must be matched and no return type; Next:Type is set to 

<Universal+> for the datalink coming into the Match operation. This 

case is illustrated below: 

A 
Next case on failure 

The execution will resume at the input operation in the following case if 

the value on the incoming datalink of the Match operation is not equal to 

5. That is any value other than 5, and by extension a value of any type 

(including number) can trigger the control. Therefore NextType is set to 

<Universal+>. If the execution is to proceed in the current case, the 

value on the datalink must be 5 and the signature of the Match operation 

should be: 

<number> —> 

* For a NextCase control activated on a successful match, the signature 

constructed for the Match operation is: 

<Universal+> 

NextType is set to the type of the value to be matched. In the following 

example: 

5 V Next case on success 

NextType would be set to <nuinber> . 

This rule becomes slightly more complex when the same value flows into 

several Match operations. This situation occurs when the datalinks 

connected to the terminals of different Match operations are connected to 

the same root. The NextType of the datalinks is set to the union of the 

types propagated by the diffemt Match operations (this rule is explained in 

greater detail in 5.8.2.4). 
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5.8 

5.7.9 Signature of multiplex operations 

The clean separation between an operation and the different multiplex 

aimotations that can be applied to the terminal and roots of an operation or 

the operation itself makes the typing of an annotated operation relatively 

easy. 

In the case of an operation with list annotated terminals and roots, the type 

signature of the unannotated operation can be specialised by converting the 

type of list terminals and list roots into list types or list type dependencies. 

The transformation is illustrated by the following example: 

(a) 
0 0 

(b) 

The signature of a is: 

<nuinber> X <number> —> <nimtber> 

The transformation of the signature of a yields for b the signature: 

(<nuinber>) X <number> (<nuinber>) 

The typing of a partition annotated operation is slightly more complex. There 

exists a dependency between the type of the list being partitioned and the 

types of the and pass lists. 

(a) (b) 

The signature of a is: 

<Universal+> X<Universal+> •<boolean> 

it becomes for b: 

(<Universal+>) X<Universal+> —>L(U(E(1)<0>)) XL(U{E(1)<0>)) 

where <0> is a type such that (<0>) is the empty list type. 

Other multiplex annotations do not affect the signature of the operation. 

Type inference algorithm 

This section explains in greater detail the inference of a method signature. The 

first subsection describes the start of the method-wide analysis. Most of the 

analysis occurs in the scope of the individual cases of the method and the 
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second subsection covers the different steps of the case analysis. The 

synthesis of the method signature from the results of the case analyses is then 

explained. The last subsection presents the analysis of recursive methods. 

5.8.1 Method wide analysis 

The inference is applied to one method at a time. It is necessary to be able to 

identify precisely the method to which the type analysis must be applied. 

Name overloading and the existence of different types of methods (Set, 

Get, Simple, Inib and Local) requires a combination of three 

components to identify a method. 

A wzgfAod zdeMfz/zgr identifies a method using the following 

C f a s s N a m g / M e f A o d T y p g triplet. 

* CZassName is the name of the class to which the method belongs, for a 

universal method, the Universa l keyword is used instead. 

« is the name of the method, I n i b methods are designated 

by the «» characters. The name of a local method is constructed from the 

name of the containing method and the name of the local method (if it has 

one). 

* distinguishes among the various method types: Set , Get, 

S i m p l e and L o c a l (there is no I n i t type because custom I n i t 

methods can be distinguished by their name). 

The inference mechanism maintains a stack of method identifiers during the 

analysis. When the analysis is applied to a method, its method identifier is 

pushed onto the stack. The method identifier on the top of the stack 

corresponds to the analysis currently active, and all the identifiers occurring 

in the stack are those of the methods for which analysis has been suspended. 

Upon completion of the analysis of a method, its identifier is popped from 

the top of the stack. The stack of method identifiers serves two purposes, it 

detects possible rescursion in the method currently analysed and, in case of 

failure, helps to localise at which point the inference failed. 

5.8.2 Case wide analysis 

Most of the computations to infer the type signature of a method take place 

in the scope of the individual cases of the method. This subsection describes 

in detail the different stages of the case analysis: 

" The initialisation phase 
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" The forward analysis 

* The backward analysis 

• The computation of the Next Type info for the datalinks of the case 

# The computation of the type dependencies between the inputs and 

outputs of the case. 

5.8.2.1 Initialisation phase 

During the initialisation phase, the information attached to the datalinks and 

the signatures of the nodes are set up. 

The information inferred about the value flowing on a datalink or a set of 

datalinks is described by a tuple: (Type, Next:Type, Dependency). The 

purpose of each field is now explained: 

# The value of Type is an approximation of the type of the data object 

on the datalink. 

» The value of NextiType is the type the data object should have if a 

NextzCase control is to be activated. 

» Dependency keeps track of the dependencies between the types of 

the objects on the graph. 

During initialisation, seven categories of datalinks can be distinguished. The 

first four categories are defined by the possible combination of two 

parameters: connection of the datalink to the input bar and connection of the 

datalink to the terminal of a Match operation. For the purpose of the 

analysis, it has been necessary to introduce three extra categories of 

datalinks, the first one is called Not:Connect:edTerminal and handles 

unconnected operation terminals. The second extra category, called 

NobConnectedRoot, is required to deal with a root which has no datalink 

connected to it. The third extra category is used for the roots of the Input 

operation which are not connected. 

The rules used to construct the signatures of the operations have been 

described in section 5.7. 

The table below shows the values of the properties attached to the datalinks 

after the initialisation phase: 
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Type NextType Dependency 

Not connected to M a t c h 

Connected to i n p u t 

X N o I n f o I d ( i ) 

Connected to M a t c h 

Connected to input 

X X' I d ( i ) 

Not connected to M a t c h 

Not connected to input 

< U n i v e r s a l + > N o I n f o 

Connected to M a t c h 

Not connected to i n p u t 

< U n i v e r s a l + > f -

N o t C o n n e c t e d T e r m i n a l < n o n e > N o l n f o 

N o t C o n n e c t e d R o o t < U n i v e r s a l + > N o I n f o 

N o t C o n n e c t e d R o o t o f 

I n p u t o p e r a t i o n . 

X N o l n f o -

T, the value of Type for a datalink connected to the input bar can be: 

* < U n i v e r s a l + > if the case being analysed is the first case of the 

method. 

* the NextType of the matching input in the previous case if NexbType 

is not No I n f o (No I n f o means that there is no information available to 

type the next case) 

* the Type of the matching input in the previous case otherwise. 

T', the NextType of a datalink connected to a Match operation is set during 

the construction of the signature of the Match operation (according to the 

rules described in 5.7.8). 

Id ( i ) is the Dependency value for a datalink connected to the input bar 

where i is the position of the input in the sequence of the inputs of the case 

(1 is the leftmost input of the case). I d ( i ) means that the type of the 

datalink connected to the input bar is the type of the input of the case. 
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5.8.2.2 Forward Anzilysis 

After the initialisation phase, the signature of each operation comprises one 

or more lines. The role of the forward analysis is to infer the value of Type 

for the outgoing datalinks (i.e the type of the value flowing on the datalink) 

from the value of Type for the incoming datalinks and the signature of the 

operation. 

For each operation of the case (except the input and the output bars), 

following the execution order, the forward analysis is performed in two 

stages: 

* The update of the lines of the signature of the operation 

# The update of the values of Type for the outgoing datalink of the 

operation. 

The pairwise intersections of the types of the incoming datalinks, (the values 

of Type for the incoming datalinks, and T2 fig- 5.12) and the matching 

input types in the line (%' i and T'2 in fig. 5.12) are computed. If, for one pair, 

the intersection yields <Bottom>, the line is as a whole, 

otherwise, the input types in the line slots are replaced by the intersection set 

(%! n T' 1 and T2 f 2 are the two intersection sets in fig. 5.12). This 

update is repeated for each of the line of the signature. 

' t l 
i 

^ClassRef Cmp^ 
c r 

^3 

1 1:2 / 
A 

^ClassRef Cmp^ 
3 

1:3 

Fig. 5.12: Intersection of the incoming types with the input types of the lines. 

The purpose of the second stage is to update the value of Type for the 

outgoing datalinks of the operation. 

Each line propagates a new type for each outgoing datalink of the operation. 

If an output slot in a line contains a type dependency, the type to be 

propagated is the result of the evaluation of the type dependency, otherwise 

it is the type stored in the output slot of the line. 

Eventually, the updated value of Type for each outgoing datalink is the 

union of the types propagated by the different lines for that datalink. 
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Fig. 5.13 illustrates the most trivial case, a signature with a single line whose 

output slot contains a type. 1:3is replaced with in fig. 5.13. 

:z 
^ C k s s R e f 

n T'̂ x Tg n T'2->t'3 

^3 

Fig. 5.13 Propagation of the output types. 

If after update, the signature of the the operation shown in fig. 5.12 was: 

T1 n T'l X 1:2 t'2 -> (81 is a type dependency). 

T' g, the updated value of Type for the outgoing datalink of the operation 

would be: 

Evaluate (81, 

To illustrate the most general case, if after its update the signature of the 

operation shown in fig. 5.12 comprised the two following lines: 

T i n T ' i a X T 2 ^ ' [ ' 2 a - ^ 5 l a 

Ti n T' lb X 1:2 n T' 2b ' 3b 

T' 2̂  the updated value of Type for the outgoing datalink of the operation 

would be the union of the value of the type dependency 5ia and the type 

i:'3b: 

Evaluat:e(8ia, CCI At' ia''':2'̂ i:'2a) 

In summary, at the end of the forward analysis, the value of Type for each 

datalink of the case has been updated once, except for the datalinks 

connected to the input bar. 

5.8.2.3 Backward Analysis 

The role of backward analysis is to infer the value of T y p e on the input 

datalinks from the values of Type on the output datalinks and the signature 

of the operation. The likely presence of type dependencies in the output slots 

of the signature lines makes the backward analysis more complex than the 

forward analysis. 

For each operation of the case (except the input and the output bars), 

following the reverse execution order, the backward analysis is performed in 

two stages: 

» The update of the lines of the signature of the operation 
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* The update of the value of Type for the incoming datalinks of the 

operation. 

Each line in the signature is updated as follows. In each line^ each output slot 

contains either a type or a type dependency. 

If the output slot of the line contains a type, the intersection of that type with 

the type of the matching outgoing datalink is computed and becomes the type 

stored in the output slot of the line (this is similar in principle to the first 

stage of the forward analysis, except that the slots whose types are being 

updated are now on the right hand side of the line). 

If the output slot of the line contains a type dependency, the pairwise 

intersection of the last computed value of the type dependency 

(Evaluate (61, (t'l, i:'2, T'3)) in fig. 5.14) and the type of the 

corresponding datalink (14 in fig. 5.14) must be computed and the 

intersection becomes the new value of the type dependency (i:'4 in fig. 5.14). 

As with forward analysis, an intersection producing a <Bot:tom> result 

disqualifies the entire line. 

ohooseg^'l><'^'2X': '3 81 

T ' Evaluate(6), (t' ], t' t' 3)) A 

(T"t"2' "̂ "3) Inverse(T'4, 5;, (%' t'3)) 

Fig. 5.14: Update of the line of the signature of the operation 

The next step in the update of each line is to obtain the revised input types of 

the line. 

If the output slots of the line contain only types, the input types of the line 

are left unmodified. 

If the output slots of the lines contain type dependencies, the change in the 

value of the type dependencies (t'4 is the new value of dependecy 81 in fig. 

5.14) must be reflected in the input types of the line. The application of the 

I n v e r s e function to a dependency produces an updated sequence of input 

types for the line ( ( t " %, T"2, i:"3) in fig. 5.14). If the same line has several 

output slots containing type dependencies, the same number of sequences of 
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updated input types will be produced. The sequences are combined into one 

by computing the union of the matching elements of the sequences. The 

following example summarises the update of the lines of the signature of an 

operation during the backward analysis. A line contains two types 

dependencies 5% and 

T'l X T'2 X T'3 -» 6% X §2 

The inversion of 8% produces the sequence of input types (%" 1.1/1" 1.2, 

T" 1 3) and the inversion of 82 produces the sequence of input types (t"2.1, 

T:" 2.2/ " 2.3) / the two sequences are combined to construct the updated line: 

T'l.l UT"2.1 XT"i.2Ui:"2.2XT"L3 ui;"2.3 81 X82 

After all the lines of the signature of the operation have been updated, the 

changes must be propagated to Type values of the incoming datalinks of the 

operation. 

T") n i l 

^Choose 61 

Fig. 5.15 a&b: Propagation of the types on the input datalinks. 

If the signature of the operation contains several lines, the matching input 

types of the lines are combined using the union operator to produce a 

sequence of update types for the incoming datalinks of the operation. 

In order to understand how the types on the incoming datalinks of the 

operation should be updated, it must be remembered that all the datalinks 

connected to the same root share the same Type value. The update input 

types are propagated upward by computing, for each datalink, the 

intersection of the current type of the datalink (%! to Tg in fig 5.15.a) and the 

matching update input type (T" 1 to T" 3 in fig. 5.15.b). 

The need to compute the intersection to propagate types upward is 

illustrated by the example in fig. 5.16. 
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and% 

Fig. 5.16: Type incorrect code fragment. 

The fragment of code shown in fig. 5.16 is not type-correct. During the 

forward analysis, Ti is set to < U n i v e r s a l + > . If the backward analysis 

processes the and operation first, will become <Boolean>. When 

processing the + operation, the analysis must propagate the information that 

the + operation requires an input of type <number>. The intersection of 

<number> and <boolean> produces <Bottom> and the analysis fails. 

In summary, the backward analysis updates the value of Type for all the 

datalinks except for those connected to the Outpu t operation. 

The combined effect of the forward and backward analyses is that the value 

of Type for each datalink of the case has been updated at least once 

(moreover, the value of Type of all the datalinks of the case that are 

connected to neither the roots of the Input operation nor the terminals of 

the Output operation has been updated twice). The optimal number of 

passes to yield an approximation of the types is likely to depend on the 

topology of the dataflow graph. The Kaplan and UUman algorithm [Kaplan 

and Ullman 1980) reiterates forward and backward passes until a fixed 

point is reached; the drawback of this approach is its computational cost. 

The approach chosen for Prograph favours a lesser computational cost at the 

expense of the precision of the analysis. 

5.8.2.4 Computing NextType 

The purpose of NextType is to gather type information about the input 

values of a case (cf. 5.7.8). There may exist a correlation between the type of 

the inputs of a method and the sequence of cases visited during its execution. 

The operation to which the N e x t C a s e control is attached may not be 

directly connected to the input bar. It is therefore necessary to compute the 

value of NextType for all the datalinks on the graph. 
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The value of NextType can be a type or a Nolnfo token. The value of 

NexbType for each datalink is computed during the backward pass of the 

case analysis. The procedure described below is applied to all the operations 

(except the input and output bars) on the dataflow graph of the case. 

In each line of the signature of the operation, each output slot contains either 

a type or a type dependency. 

If the slot contains a type, no further action is necessary. 

If the slot contains a type dependency and the value of NextType for the 

matching outgoing datalink is Nolnfo, no further action is required. 

Otherwise, the type dependency is inverted with the value of NextType for 

the outgoing datalink to produce an update sequence for the NextType 

values of the incoming datalinks. Each element of the update sequence is 

either a type or a Nolnfo token. If several update sequences are produced 

by the same and/or different lines of the signature of the operation, they are 

combined by performing the union of their matching elements (a Nolnfo 

token acts as a neutral element for the union). 

As for the explanation of the backward analysis, it is important to remember 

that all the datalinks connected to the same root share the same NextType 

value. The types (or Nolnfo tokens) in the combined update sequence are 

propagated upward by computing for each datalink the union of the value of 

NextType with the value of the matching element of the sequence. The need 

to compute the union to update the value NextType is illustrated by the 

example in fig. 5.17 

NexCType= (<nuinber>)"V" A 
5 ^ V ^ 

Fig. 5.17: Union of NextType values 

In the example shown, the computation will resume in the following case if 

the input is the integer value 5 or is the string "V". Thus, the NextType 

value for the two datalinks connected to the input must be the union type of 

the string " V and number, [ <nuinber> | "V" ]. 
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5.8.2.5 Computing intra-case type dependencies 

The purpose of the last property attached to the datalinks of the graph, the 

Dependency property, is to record dependencies between the input types 

and the output types of the case being analysed. The value of Dependency 

is computed during a second forward pass over the nodes of the case. 

The procedure described below is applied to all the operations of the case 

(except the I n p u t and Output operations) following the execution order. 

In each line of the signature of the operation, each output slot contains either 

a type or a type dependency. 

If the output slot contains a type, this type becomes the value of 

Dependency for the matching outgoing datalinks. 

If the output slot contains a type dependency, this dependency must be 

composed. Composing a data dependency means that all references to 

operation inputs that occur in the dependency are replaced with the value of 

Dependency for the corresponding incoming datalink. If all the referenced 

Dependency values are types, the substitution will logically yield a type, 

otherwise it yields a composed type dependency. The result of the 

substitution becomes the value of Dependency for the matching outgoing 

datalink. 

The computation of the Dependency value is illustrated by the following 

example (fig. 5.18). 5%, 82 aiid 83 are the Dependency properties attached 

to the three datalinks of the graph. 

5 

pack 
" -9— 

% 
TRUE 

3 " 

Fig. 5.18: Computation of the Dependency property 

The signature constructed for pack during the initialisation phase is: 

<Universal+> X <Universal+> —> L (U (1 2) ) 

81 is I d (1) and 82 is <boo lean> . When 83 is computed, the reference to 

the input 1 and 2 in the output type dependency of p a c k are substituted 

with the values of 81 and 82 and the value obtained for 83 is: 
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L(U(1<boolean>)) 

When the signature of an operation comprises more than one line, the type 

dependencies are composed line by line and the value of Dependency for 

each outgoing datalink of the operation is obtained by performing the union 

of the composed dependencies. 

The computation of the type dependencies across the case is the last pass 

over the dataflow graph before the case analysis completes. 

5.8.2.6 Construction of the line for the case 

Once all the passes have been carried out, a line can be constructed to 

describe the input and output types of the case. 

The Type values for the datalinks connected to the Input operation become 

the input types of the case. 

The Dependency values (whether a type or a type dependency) for the 

datalinks connected to the Output operation are used directly to describe 

the types of the outputs in the case line. 

It is also necessary to construct the sequence of input types for the following 

case. This sequence is constructed by examining the values of NextType and 

Type for the datalinks connected to the roots of the Input operation of the 

case currently analysed. For each root of the Input operation, two cases can 

be distinguished, either the NextType value is Nolnfo or the NextType 

value is a type. 

» If the NextType value for the datalink(s) connected to the root is a 

type, the NextType value is used in the sequence for the next case. 

* Otherwise, when NextType is No Info, the Type value of the 

datalink(s) connected to the root is used in the sequence For a root of the 

I n p u t operat ion with no datalink connected to it (a 

NotConnectedRoot, see 5.8.2.1), the NextType value is Nolnfo. 

5.8.3 Synthesis of the method signature 

The signature of the method is obtained by combining the lines produced by 

the analysis of the cases of the method into a single line. Each slot of the 

combined line contains the union of the corresponding types and type 

dependencies from the various lines. 
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5.8.4 Handling recursion 

Recursion in Prograph may occur in different guises. Most simply, a universal 

method is recursive if it is called again directly or indirectly by an operation 

in one of its cases. 

A more subtle form of a recursion is the consequence of Prograph object-

orientation. An operation with a data-determined reference may appear in 

one of the cases of a method and have the same name as the method. The 

type of the receiver of the operation will determine whether the method is 

recursive or not. 

1 % 1:1 C o m m o n d e r / C l o s e g l % 

^Modeless Handler^ 

%Moda1 Handier^ 

^ / C l o s e d 

Fig. 5.20: Potentially recursive method. 

In the example shown in fig. 5.20 (taken from the Application Building 

Classes), the method Close is in practice not recursive because the objects 

stored in the Modeless Handler and Modal Handler at tr ibutes are no t 

instances of the Commander class. It is a common programming practice in 

Prograph to call, in one of the cases of a method, operations with the same 

name as the enclosing method to apply them to the objects stored in the 

attributes of the method receiver. 

The detection of a recursive pattern in the analysis (that is, trying to apply 

the type analysis to the same method twice) is the primary motivation to 

keep track of the order in which the nested analyses are applied using a stack 

of method identifiers (see 5.8.1). Before starting the analysis of a method, the 

inference mechanism checks whether its method identifier is already on the 

stack of method identifiers. If this is the case, recursion has been detected. It 
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can be direct recursion (if the matching method identifier is on the top of the 

stack or if it is separated from the top only by local methods' identifiers) or 

mutual recursion (several identifiers, other than local method identifiers, 

occur between the matching identifier and the top of the stack). 

Instead of analysing it again, a dummy signature for the operation making the 

recursive call is constructed. The approximation used to construct the 

dummy signature is based on the following observations: 

* If the method returns a value, the termination clause will have to be 

implemented as a separate case in which no recursive call occurs. Typing 

this case provides a first approximation of the signature of the method. 

Furthermore for a non-tail recursive method, the signature of the 

operation occuring between the recursive call and the Outpu t operation 

helps to refine the approximation of the signature of the recursive 

method. 

* A recursive method with no return value can be implemented with a 

single case. Recursion must be stopped by a control attached to an 

operation which checks that some conditions are met. The operation with 

the control must occur before the recursive call in the execution sequence, 

otherwise recursion will be infinite. The signature of the operation with 

the check provides an approximation of the input types of the recursive 

method. 

* As in the example shown above, the apparent recursion does not result 

in a recursive program and the relevant type information to construct the 

operation signature comes from the signatures of the other methods that 

may be called. 

The dummy signature for the recursive method has all its input and output 

types set to < r e c u r s i v e > . <recursive> is a pseudo type and acts as a 

neutral element for both type union and type intersection ( < r e c u r s i v e > 

a = a and < r e c u r s i v e > v a = a , with a being any type or type 

dependency). This reflects the intuition that the dummy signature carries no 

useful information and that it should interfere as little as possible with the 

inference: 

* Type unions and intersections are computed during the case analysis 

and < r e c u r s i v e > should allow the analysis to obtain information from 

the context in which the recursive call occurs. 
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» Type unions are computed to construct the signature of a method from 

the results of the analyses of its cases. For a tail recursive method the 

relevant type information comes from the case with no recursive call. 

5.9 Examples 

5.9.1 A simple example 

This example shows how type inference is applied to the method I s Even?. 

i sEven? has a single case, it takes an integer as input and returns TRUE if 

the integer is even, FALSE otherwise. 

Method: IsEven? 

Fig. 5.21: The i sEven? method 

The following subsections describe the different phases of the type inference, 

where the properties of the datalinks are printed on the graph using the tuple 

format defined in 5.8.2.1, that is (Type, NexbType, Dependency) and 

the operation signatures are printed next to the operations to which they are 

attached. 
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5.9.1.1 Initialisation phase 

(<Universal+>,NoInfo,Id{l)) 

<number > x <number> -» <number > x <number> K M i V % 
0 0 

2 —> <ntiinber> 
LiNKa—n— 

iQt f<Universal-t->,NQln£o, -) 

{<Universal+>,NoInfo,-) O —> <nuinber> 
w _ o 

(<aniversal+>,NoInfo, -) 
<Universal+> x <Universal+> —> <booleem> % 

0 
{<universal+>,NoInfo,-) 

Method: IsEven? 

Fig. 5.22.a: The signatures of the nodes have been set. 

During the set-up phase, a signature is associated with each operation on the 

dataflow graph, except for the Input and Output, operations (fig. 5.22.a). 

The Type value for all the datalinks is set to < U n i v e r s a l + >, the 

NextType value for all the datalinks is N o l n f o , the Dependency value 

for LINKI is Id (1) and it is not specified for the other datalinks of the 

case. 

5.9.1.2 Forward analysis 

(<Universal+>,NoInfo,Id(l)) m ™ 
2 -4 <nuniber> 

ILINK2—n— 
gy A ' (<number>,NoInfo, -) 

:number> X <number> —> <number> x <nuinber> ^idiY ̂  
O O"̂  

(<number>,NoInfo, - 0 -> <nmnber> 

<nuitiber> x <number> —><boolean> ^ 

n 

-g-
(<number>,NoInfo,-

(<boolean>,NoInfo,-) 

Method: IsEven? 

Fig. 5.22.b: After the forward analysis. 

During the forward analysis LINKI remains unchanged and LINK2 has type 

<number>. Since the signature of the operation i d i v has only one line 

(which is compatible with the type on LINK2), LINK3 must have the type 
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<number>. The intersection of the types on LINK3 and LINK4 with the 

input types of the = signature yields <number> for both inputs of the = 

operation. The Type value for LINKS becomes < b o o l e a n > . The Type 

value for LINKl remains <Unive r sa l+> . 

5.9.1.3 Backward analysis 

(<number>,NoInfo,Id(l)) 5 — 
^ 2 —> <number> 

^(<nuiDber>,Nolnfo, -) yy .T • . T- ̂  
<nuitiber> x <number> —> <number> x <number> 

0 p 
(<number>,NoInfo,-) a Q <niJItlber> 

(<number>,NoInfo,-) 
<number> x <number> —> <boolean> 

z I<boolean>,Nolnfo,- I 

Method: IsEven? 

Fig. 5.22.C: After the backward analysis 

During the subsequent backward analysis little changes. The signature of the 

i d i v operation, however, implies that the Type value for LINKl is 

<nmnber>. 

There is no Match operation in the case of the i s E v e n method, and the 

Next:Type values are left unchanged by the backward analysis. 
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5.9.1.4 Computation of Dependency 

(<number>,NoInfo,Id(l)) 
2 

Lim^ ft 
<number> 

<number> x <number> —> <number> x <number> ^idiw ̂  

"O—9 
s 

{<niimber>, Nolnfo, <number>) a 

(<number>, Nolnfo, <number>) 

<number> x <nuinber> —> <boolean> ^ 

0 
n g c z r 

<nuinber> 

(<number>,Nolnfo,<number>) 

(<boolean>,Nolnfo,<boolean>) 

Method: IsEven? 

Fig. 5.22.d: After the computation of Dependency 

None of the operations of the case has a signature with a type dependency,^ 

as a result the Dependency value for all the datalinks except LINKl is a 

type. 

The signature of the method can now be constructed. The input type is the 

Type value for LINKI and the output type is the Dependency value for 

LINKS. The signature is: 

<number> —> <boolean> 

5.9.2 A recursive example 

The method F a c t o r i a l (see fig 5.23) computes the factorial of a positive 

integer. 

i ^ i 
TT 

^Fac to r i a l l ^ 

e 3 

Fig. 5.23.a&b: Cases of the F a c t o r i a l method. 
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5.9.2.1 Analysis of the first case 

(<Universal+>,<Universal+>,Id(1)) 

JL 
0 IX <munber> -4 

I —)<number> 

(<Universal+>,NoInfo,-} 

Fig. 5.24.a: After the initialisation phase 

It must be noted that after the initialisation phase, the value of NextType 

for LINKl is set to < U n i v e r s a l + > because LINKI is connected to the 

terminal of a M a t c h operation with a N e x t C a s e control activated on 

failure. 

(<Universal+>,<Universal+>,Id(l)) 

0 X <nuinber> 

I —> <number> 
3— 
{<number>, Nolnfo,-) 

(<number>,<Universal+>,Id(l)) 

0 X <number> —> 

1 
i r 

<number> 

(<number>, Nolnfo,-) 

Fig. 5 24.b and c: Forward and backward analyses 

The value of Type for LINK2 is updated during the forward analysis and 

the value of Type for LINKl is updated during the backward analysis. 
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(<number>,<Universal+>,Id(1)) 

<number> —> 

j —> <number> 

9— 
;<number>, Noinf0,<number>) 

Fig. 5.24.d: Computation of the dependencies 

After the computation of the dependencies, the line for the first case can be 

constructed: 

<niimber> —> <number> 

and the type of the input of the next case is the value of Nex tType for 

LINKl, (<Universal+>) . 

5.9.2.2 Analysis of the second case 

(<Universal+> 

LINKl 

NoInfo,Id(l))) 
^ d u m b e r > —> <number> 

0 
(<U^dversal+>,NoInfo,-) 

LINK4 ^Fae to r i a l ^ <recursive> —> <recursive> 

-9 

(<Universal+>,NoInfo,-) 

<nuinber> —> <nuinber> 

g (<Univer5al+>,NoInfo,-) 

Fig, 5.25.a: After the initialisation phase 

During the initialisation phase, the inference algorithm tries to construct the 

signature of the F a c b o r i a l operation. However, the method identifier of 

the method currently analysed is U n i v e r s a l / F a c t z o r i a l / S i m p l e , 

recursion is detected and the signature constructed for the operation is: 

< r e c u r s i v e > —> < r e c u r s i v e > 
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(<Universal+> 

LINKl 

Nolnfo,ld(l))) 

y nB . ̂  
•̂"1 ̂  <n\ixnber> 

^ 0 
<nuinber> 

(<number>,NoInfo,-) 

^ F a o t o r j a i ^ <nimber> 
3 

—> <recursive> 

*k*(<Universal+>,NoInfo,-) 

<number> —> <nuinber> 

(<number>,NoInfo,-) 

Fig. 5.25.b: After the forward analysis 

After the forward analysis, the Type values of LINK3, LINK4 and LINKS 

have been updated. The left-hand side of the signature of the F a c t o r i a l 

operation has been updated as well. 

LINKl 

<number>,t^Info,Id(l))) <nuinber> 
O 

<number> 

(<number>,NoInEo,-) 

^ F a c t o r i a i ̂  <nwnber> -> <nmnber> 

(<number>,NoInfo, -) 

<nimber> —> <number> 

(<number>,Nolnfo,-) 

Fig. 5.25.C: After the backward analysis 

After the backward analysis, the Type value shared by LINKl and LINK2 

and the right-hand side of the signature of F a c t o r i a l are updated. 
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LDMl 
(<number>,toInfo,Id(l))) 

^ <number> 
0 

<nuinber> 

(<number>,NoInfo,<number>) 

LINK4 
:̂ Factoria1 ̂  <number > <number> 

(dumber >, Noinf o, <nuinber>) 

<nuinber> —> <nuinber> 

(<number>,NoInfo,<number>) 

Fig. 5.25.d: Computation of the dependency. 

There is no operation whose signature contains a type dependency. 

Therefore, for all the datalinks not connected to the input bar, the 

Dependency value is a type. 

The line for the second case can be constructed; 

<nuinber> —> <nuinber> 

The signature for the whole method is constructed by combining the lines of 

the two cases. The line for the first case is: 

<number> —> <number> 

The line for the second case is also: 

<numiber> —> <nuinber> 

and the combined line is: 

<number> U <number> —> <number> U <number> 

which is: 

<number> —> <number> 

5.10 Shortcomings of the type analysis 

In subsection 5.5.4, it is stated that the type inference algorithm might fail to 

detect type errors and might also reject type correct code. These two 

situations are illustrated by concrete examples. 

5.10.1 Failure to detect type errors 

The type representation chosen for the analysis does not permi t the 

expression of type dependencies between the inputs of an operation. A 
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partial solution to this problem is to have a signature with several lines, a line 

for each valid combination of input types. The signature of the < primitive 

(shown below) is a good example. 

The signature of the < primitive is: 

<number> X <number> -T><boolean> 

<number> x <number> 

""X""^<boolean> 

However, during the forward and backward analyses, the type dependency 

embodied by the use of several lines is lost as the type of the inputs is the 

union of the matching input types of the lines. The loss of information is 

shown with the following (somewhat contrived) example. The relational 

operator is wrapped in a local method (fig. 5.26.a) and an invalid pair of 

arguments is passed to the local method (fig. 5.26.b). 

i p 
0 

Hello vo r ld ! 

Wrapped 

Fig. 5.26.a: < wrapped in a local method Fig. 5.26.b: Invalid arguments 

The signature inferred for the local method is: 

[<number>I""] x [<number> | ""] -><boolean> 

which is compatible with the pair of argument types. However the evaluation 

of this fragment of code should fail because the two arguments are of 

incomparable types. In the current version of Prograph, four primitives have 

dependencies between their input types: <, >, < and >. 

The combination of the lines of the different cases of a method into a single 

line for the method signature has the same consequences as the combination 

of the lines of a primitive. 

The example shown in fig. 5.27 is taken from the code of the Application 

Building Classes. A local Get: V a l u e is defined with three cases (see fig. 

5.27.a, b and c). The Get V a l u e operation can only call a class method 

because there exists no Get Value primitive or universal method. 
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< 

K 
< 

NULL X 
\ 

Fig. 5.27.a: First case of G e t V a l u e . 

The line for case 1 is < n u l l > —> I d ( 1 ) 

dC—1= 
^ / G e t V a l u ^ 

C"" 

Fig. 5.27.b: Second case of G e t V a l u e . 

The line for case 2 is: 

( [ _ ^ . ] ) - ) ( < U n i v e r s a l + > ) 

[... I...] is the textual representation of a union type which is too large to be 

printed (this is because many classes define a Get Va lue method). 

^ / G e t y a l w ^ 

Fig. 5.27.C; Third case of G e t V a l u e . 

The line for case 3 is: 

< U n i v e r s a l + > . 

The union type is a subset of the < U D C + > type (which means that the input 

of the third case has to be an instance of a user-defined class). Since it does 

not affect the explanation and to make it easier to understand, the line for 

case 3 is replaced with: 

<UDC+> —> <Universal+> 

The combination of the three lines produces a signature for the method with 

the line: 
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[<null>| |<UDC+>] <Universal+> 

During the passes of the inference, as a consequence of the misuse of the Get 

V a l u e local method, the line may be specialised to: 

<null> —> (<Universal+>) 

This line does not correspond to a valid execution of the local method. The 

error comes from the fact that the input types of the three lines and the 

output types are disjoint. Generally, a u a ' p u p' is equivalent to the two 

lines a —> p and a ' p' if one of the following conditions is met: 

" P = P' 

* a c a ' and p e p ' 

• a ' c: a and p' c p 

However, checking the equivalence between the combined line and the 

sequence of lines from which the line has been obtained would be an 

expensive computation. Therefore a cruder approximation is used to combine 

the lines of the cases of the method. 

Loss of information also occurs as the result of the approximation used for 

the signature of the primitives used to test the type of objects at run-time. For 

example l i s t ? (shown in the second case of G e t V a l u e above) succeeds 

and optionally returns TRUE if its input is a list, otherwise it fails or returns 

FALSE. 

The signature of l i s t ? is: 

<Universal+> —> <boolean> 

<Universal+>—> 

This signature does not keep track of the fact that an input type which is not 

a subset of ( < U n i v e r s a l + >) will cause the operation to fail. When the 

primitive is encountered with a N e x t C a s e on failure control or N e x t C a s e 

on success control attached to it, the value of N e x t T y p e for its input 

datalink will be set to < U n i v e r s a l + > in both cases. 

5.10.2 Rejection of type correct code 

The rule to construct the signature of a Match operation might lead to the 

rejection of type correct code. This is because the rule requires that for a 

Match operation with a N e x t C a s e on failure control, the Type value can 

only be the type of the value to be matched. The following code is not very 
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useful because the NextCase control will always be activated, it is however 

correct: 

c 

N 

c 

Hello X 

5 
5 X 

Fig. 5.28: Rejected type-correct code. 

The signature of the M a t c h string operation is: 

"Hello" —» 

and that of the Match integer operation is: 

<number> —> 

During the backward pass of the case analysis, the intersection of the input 

types of the two signatures must be computed because the same value is 

flowing into the two operations. The result is the < B o t t o m > type which 

causes the failure of the analysis. The analysis reports as a type error, code 

that, if executed, is likely to present a program error. 

5.11 Summary 

• Type inference is the ability to infer type information in the absence of 

type declaration. Type inference has been notably applied to object-

oriented and functional languages. 

• The purpose of type inference in Frograph is to reduce the uncertainty 

caused by dynamic binding and to gather some information for the effect 

analysis. 

• A type is the set of classes of which a value can be an instance. A type 

dependency expresses a type as a function of another type. 

• A method signature consists of one or more lines. A line describes the 

input and output types of an operation. 

• The inference algorithm is applied to a method at a time. A method-

wide inference can be decomposed into a sequence of case-wide 

inferences. 
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Effect inference and synthesis 

The purpose of the effect analysis is to describe how the execution of an 

operation annotated for distribution may affect the arguments of this 

operation and global variables. The effect analysis proposed for Prograph 

proceeds in two steps: effect inference and effect synthesis. Effect inference is 

tightly integrated with type inference and produces a description of the 

effects of individual methods. Effect synthesis interprets the effect 

information available for an operation annotated for distribution. 

This chapter is divided into four sections. The first section discusses the 

different motivations for undertaking effect analysis. The second section 

reviews some of the work undertaken in the field of effect analysis. The third 

section is devoted to the effect inference and fourth section covers effect 

synthesis in Prograph. 

6.1 Purpose of effect analysis 

Research work has focused on procedure-oriented and functional languages 

and information about effects serves several purposes. 

Effect information is useful in several contexts: 

* Optimising compilers rely on the results of effect analysis to perform 

various optimisations. Examples of optimisations include: coMsfanf 

propagafzoM, the compiler can perform a significant amount of 

precomputation by propagating the constants through the program, 

coMSfaMf/bWmg, the compiler replaces operations with constant operands 

with their computed value. Effect information also provides knowledge 

about the lifetime of data objects and allows a more efficient management 

of memory such as the stack allocation of data objects instead of heap 

allocation. 

* Parallelising compilers also exploit effect information [Bacon, Graham 

and Sharp 1994]. Effect analysis produces the set of the locations read 

and written by different subcomputations and the dependency analysis 

can detect dependencies by computing the intersection of the different 

sets. Knowledge of dependencies allows the parallelising compiler to 

partition and schedule computations into sets of concurrent tasks. 
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" The selection of test data for a program is another example of use of 

effect information [Rapps and Weyuker 1982] 

* The maintenance and evolution of large software systems require tools 

that automate the production of documentation about the system. Effect 

information is useful to check that the software system evolves in a 

consistent way [Ryder 1989]. 

6.2 Related Work 

This section reviews several research areas. These examples have been chosen 

to illustrate the various purposes of effect analysis, the techniques used and 

the languages to which it is applied. 

6.2.1 Chow and Harrison 

The analysis proposed in [Chow and Harrison 1992] is part of a multilingual 

parallelising compiler, the Miprac system. The aim of the analysis is to gather 

information on: 

" side-effects 

* data dependencies 

" object lifetime 

" unordered accesses 

The analysis applies absfracf mkrprgfaHoM to whole programs converted into 

MIL, an intermediate language used by the Miprac compiler. MIL provides 

three kinds of values: integers, locations and closures. Locations are 

initialised by a c r e a t e operation, accessed by a r e a d operation and 

modified by a w r i t e operation. Parallelism is expressed by a c o b e g i n 

construct, c o b e g i n spawns different processes to evaluate the expressions 

passed to it as arguments. The processes execute in a shared memory space. 

Before describing in further details the analysis, it is helpful to give some 

explanation of abstract interpretation. 

6.2.1.1 Abstract interpretation 

Abstraction interpretation [Cousot and Cousot 1977] is the evaluation of a 

program based on an abstract semaMh'cs. The abstract semantics defines an 

evaluation function for all the expressions of the language. The standard 
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semantics domains are mapped into corresponding abstract domains. The 

purpose of abstract interpretation is that the abstract semantics makes the 

evaluation of programs more efficient than the evaluation based on the 

standard semantics, yet precise enough to record the information of interest 

to a particular analysis. 

The rule of signs for the multiplication is the archetypal example of abstract 

interpretation. The set Z of the integers is mapped onto the set Z*={plus, 

minus, zero}. A n abstraction funct ion absz : Z Z* is def ined: 

absz(x) =plusifx>0 

= minus if x<0 

= zero if x=0 

The abstract version of denoted b y * * may be expressed as: 

* # (plus , minus) = * # (minus, plus) = minus 

*# (plus, plus) = *# (minus , minus) = plus 

*#(a, zero)=*#(zero, a)=zero. 

The sign of the product of two integers is obtained while avoiding the cost of 

the multiplication. 

Safeness of an abstract interpretation requires that for all elements of the 

concrete domain, the abstractions of the results of the concrete function 

applied to concrete domain elements are in the result set of the abstract 

function applied to the abstractions of concrete domain elements. This 

requirement is best illustrated by the fig. 6.1 (taken from [Field and Harrison 

1988]) for the rule of signs: 

7,x7 * Z 

abszxz absz 

Z#xZ# 
1 r 

Z#xZ# 
*# 

Fig. 6.1 Safeness of the rule of signs 
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The rule of signs is safe if absz o * c *# o abs^xz 

Field and Harrison consider that the difficulty for an analysis based on 

abstract interpretation is to find abstract domains which provide useful 

information about a property of the program being analysed while 

guaranteeing safeness. A further problem in choosing the abstract domain is 

that the more complex the domain, the more computationaly intensive is the 

algorithm, 

6.2.1.2 Description of the analysis 

Chow and Harrison's analysis is developed in two steps. Firstly, an analysis 

is proposed for the concrete semantic domains. As a second step the concrete 

domains are abstracted and the safeness of the abstract interpretation is 

established. The remainder of this subsection gives an overview of the 

analysis in the concrete domains. 

The execution of the program is described by a transition system. Each 

expression is labelled, lambda expressions are uniquely identified by 

procgdurg Zabe/s and cobegin branches by cobggzM brgMc/z kbeZs. 

Procedwrg are sequences of procedure and cobegin branch labels. A 

function call is denoted by (d for down) and a function return by (u 

for up), where a is the procedure label of the function. Similarly entering a 

cobegin branch is denoted by and exiting by T|^. Procedure strings capture 

the procedural/concurrency movement along the program execution. The use 

of the procedure strings is illustrated in fig. 6.2: 
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1 
cobegin 

n i dgd# call f call g e ^2^9^ 

^2dgdgU 

O CnidfdfU^^ui^gdgdgU^gU) 

Fig. 6.2: An example of procedure strings 

The graph in fig. 6.2 illustrates the spawning of two cobegin branches T| i and 

T12, 111 calls the function f and T|2 the function g. After f and g return, the 

two cobegin branches merge. 

The transition system models the evaluation of the program by recording a 

configuration for each program point; a configuration comprises the 

description of the processes currently active and that of the shared store. A 

procedure string is part of the process description. The Wrfk dak of a variable 

is the procedure string attached to the expression which created the variable. 

The birth date of a variable is saved with the variable identifier in the store. 

Program properties are derived from the manipulation of procedure strings. 

The following example shows how procedure strings are used to check 

whether a variable outlives the evaluation of the function that created it (the 

rule shown below is only applicable to a sequential program, a more general 

rule which handles cobegin branches is also presented in [Chow and Harrison 

1992]). 

The procedure p creates the object L with a birthdate pb- L is referenced by 

expression r with a procedure string pr - The analysis computes the net 

procedural movement between the creation of L and the program point where 

it is referenced: 

" 8'/ Pb subtracted from pr is then computed. 
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" Net (8' ), the net movement of the string 8' is computed, that is, all 

matching pairs of the form are removed from 8'. 

If the net movement of 8' contains the term it can be inferred that the 

procedure p returns before L is referenced. In other words, the variable L 

outlives the procedure p which created it. 

The object lifetime property can be illustrated by a simple example. A 

function a calls a function p, p calls the function y and inside y the object L is 

created, y and p return before L is referenced. The birthdate of L, pb, is: 

c^dpdyd and p r is: and Net: ( P r - P b ) = y"P^. From the 

analysis, it appears that L cannot be allocated on the stack frame of the 

procedure P and y but the space for L can be freed after the return of a. 

6.2.2 The FX effect system 

The FX programming language [Gifford et al. 1987] is a functional language 

with imperative constructs. FX is targeted at parallel programming and in 

that context obtaining effect information would be useful to schedule 

expressions in parallel. [Lucassen and Gifford 1988] proposed a 

polymorphic effect system to infer the type and effects of expressions in a 

subset of FX called MFX (mini FX). 

MFX is based on the higher-order kzwded lambda calculus. The language 

distinguishes between ordinary lambda abstractions and polymorphic 

lambda abstractions. Interaction with the store is possible through the NEW 

operation which creates a new location, GET which accesses a location and 

SET which updates a location. 

Inference proceeds in a modular and bottom-up fashion deriving information 

about the type and effects of expressions using inference rules. The type and 

effects are tightly integrated in expression dggcriphOMS. These descriptions are 

constructed from three basic h Ws: and fypes. 

A region is the abstraction of a store area. A region expression can be: 

* a region variable 

" a region constant 

" the union of one or more regions 
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The analysis distinguishes among three different effects, namely a/ZocafioM, 

reoff and zonk effects. Effect expressions can be one of the following: 

" An effect variable. 

* (ALLOC Region) is the effect corresponding to the allocation of a 

memory reference. 

" (READ Region) indicates an access to a memory location. 

* (WRITE Region) corresponds to the update to a store location. 

* (MAXEFF Effect*) constructs the union of zero or more effects. 

" PURE denotes the absence of effects. 

Type expressions can be one of the following alternatives: 

* A type variable. 

» The type of ordinary lambda abstraction is described by (SUBR 

(Type) Effect Type), where (Type) is the list of argument types, 

the second Type, the return type and Effect is the latent effect of the 

lambda abstraction. 

* ( POLY ( DVAR : Kind) E f f e c t Type ) describes the type of 

polymorphic abstractions. The (DVAR : Kind) term is the list of 

description variables in the description of the abstraction, thus reflecting 

the polymorphic nature of the abstraction. 

* The type expression for location is (REF Region Type). 

One example given in [Lucassen and Gifford 1988] describes the type and 

effect signature of the function twice . The function t w i c e takes a function 

of a single argument and composes that function with itself. The signature of 

t w i c e i& 

twice: (POLY (t:TYPEe:EFFECT) PURE (SUBR (SUBR: (t) et) PURE (SUBR 

(t)et)n 

The signature indicates that t w i c e is a polymorphic abstraction. The 

signature contains a type variable t and an effect variable e , the 

polymorphic abstraction takes a function as its input and returns a function 

and the composition of the function induces no effect. 
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6.2.3 Type and effect inference in ML 

Milner's original type inference algorithm can be applied to a purely 

functional subset of ML; however, efficiency concerns have motivated the 

addition of imperative constructs to the functional core of the language. The 

language provides cgfZs and three operators are available to handle 

these cells: the r e f operator applied to a value creates a reference cell with 

that value, the ! operator accesses the content of a cell and the := operator 

updates the content of a cell. 

Unfortunately, the extension of Milner's type system to a version of ML with 

imperative constructs is not trivial. The availability of references complicates 

the generalisation of type variables. The following example illustrates the 

difficulty: 

l e t x = r e f ( f u n ( a ) = a ) i n x : = ( f u n ( n ) = n + l ) ; ( ! x ) t r u e 

Applying Milner's type discipline, the type of x is a -»a when the reference is 

created, with a generic and a is instantiated to Ink and to Boolean 

successively. However, the evaluation of the expression above causes a type 

e r r o r : ( ! x ) true t r i e s t o a d d 1 t o true. 

The typing rule for the let expressions does not reflect the sharing implied by 

references. The well typing of expressions requires that reference cells have 

only one type. 

Various solutions have been proposed to control the generalisation of type 

variables in the presence of reference cells and a good survey of the various 

approaches can be found in [Wright 1993]. 

The solution advocated by [Wright 1991] is to approximate the aHocaHom 

of an expression, that is the set of reference cells that may be allocated 

as a result of the evaluation of the expression. The fypg of an expression 

is the set of type variables that appear in the allocation effects of that 

expression. Type variables occurring in a type effect may not be generalised. 

With the expression shown above, the bound expression r e f ( f u n (a) =a) 

has type r e f and effect |a), thus the type variable a cannot be generalised. 

[Talpin and Jouvelot 1994] have developed a type and effect analysis to 

control the generalisation of type variables. The representation of types of 
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effects follows that of [Lucassen and Gifford 1988]. The effect information is 

taken account of by the inference rules to decide whether a type variable can 

be safely generalised or not. 

6.2.4 Effect analysis for test data selection 

The work done by Rapps and Weyuker [Rapps and Weyuker 1982] 

illustrates how effect analysis can be used in the field of software testing. The 

effectiveness of program testing strongly depends on selecting a set of test 

inputs representative of the entire input domain. The selection of test data 

may be based on code coverage,^ one coverage measure is broMc/i coverage (the 

number of branches traversed during the testing). Programs have a potentially 

very large number of execution paths and a realistic testing strategy can only 

test a limited number of paths. The results of the effect analysis are used to 

check that the input test data will cause the tested programs to cover 

program paths that satisfy a chosen path selection criterion. 

The analysis is applied globally to programs specified in an intermediate 

level imperative language. The language is equipped with the following 

statement types: 

" Start statement: s t a r t 

" Input statement: r e a d xi . . . 

" Assignment statement: y : = f (xi. . . x^) 

* Output statement: p r i n t e i . . . 

* Unconditional transfer statement: goto m 

* Conditional transfer statement: 

if p (xi ... Xn.) then goto m 

* Halt statement: stop 

All program statements are labelled with an integer label. These labels define 

a total ordering on the statements. A bZocA; is a sequence of statements such 

that if the first statement is executed, all the statements in the block are 

executed. The program is represented as a graph whose nodes are labelled 

blocks. The edges of the graph result from transfer statements between blocks 

of instructions. A path is a sequence of nodes such that there is an edge 
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between each pair of successive nodes. An example is shown in fig. 6.3 

(taken from [Rapps and Weyuker 1982]). 

read x, y 
1. 
2 . 
3 . 
4 . 
5 . 
6 . 
7 . 
8. 
9 . 
10. 
11. 
12. 

13 . 
14 . 
15 . 
16. 

start 
read x, y 
if y<0 then goto 6 
pow:= y 
goto 7 pow:=y 
pow :- -y 
z : =1 
if pow=0 then goto 12 
z : =z*x 
pow:=pow-l 
goto 8 
if y>0 then goto 14 
z:=l/z 
answer:=z+l 
print answer 
stop 

ow=0 

pow#0 

pow:=-y 

z : =z*x 
pow:-pow-1 

y^O 

( 9)answer:=z+l 
print answer 

Fig. 6.3: A program and its corresponding graph. 

The dataflow analysis classifies each variable occurrence as a definitional 

occurrence (called a computation-use occurrence (c-wse) or predicate-use 

occurrence (p-wse). 

The def /use information is attached to the nodes and the edges of the 

program graph: 

* Def and c-use sets are associated with each node. In the example, the c-

use set for node 2 is {y} and its def set is {pow). 

* A p-use set is associated with each edge of the graph. For example, the 

edge (1,2) has the p-set {y}. 

The analysis masks local def and local c-use. A definition of a variable is a 

local one, if all the computation-use occurrences of the variable appear in the 

same block as the definition of the variable. A local c-use is a c-use of a 

variable defined in the same block. 
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Nine different path selection criteria are defined, two examples are given 

below: 

* A set P of complete paths of the graph G meets the aZZ-Modes criterion if 

every node of G is included in P. 

* A set P meets the aZZ-p-wggg criterion, if for every node of the graph and 

for every variable defined at the node, P includes a path from the variable 

definition to all the edges whose p-use set contains the given variable. 

An ordering relation can be constructed over the criteria. Criterion ci includes 

criterion C2 if a set P of complete paths that satisfies ci also satisfies C2. The 

inclusion is strict if C2 is satisfied but not c^. If C2 is included in ci, then C2 is 

said to be weaker than c^. 

The effect information is used to verify that a set of test data meets the test 

criteria selected by the user. 

6.3 Effect inference 

This section explains how the effects of a method can be inferred. Effects in 

Prograph are discussed. The inference is outlined and a suitable 

representation for effect information is discussed. The inference algorithm is 

described in greater detail and is illustrated by an example. 

6.3.1 Motivation for effect inference in Prograph 

The purpose of the effect inference in Prograph is to be able to describe how a 

method when called by an operation may affect its arguments and some 

global variables. This information is recorded in the (ypg szgMafure of the 

method. 

6.3.2 Outline of the effect inference mechanism 

Similarly to the effect inference systems of MFX and ML presented in the 

previous section, the effect inference proposed for Prograph proceeds in a 

modular fashion, that is the effect inference is applied to a method at a time 

and not to an application as a whole. Information about types and effects is 

tightly integrated. For the sake of clarity, type and effect inferences are 

treated in two different chapters in this thesis; however, the two inferences 

proceed together. As for the type inference, the effect inference is broken into 

a sequence of case wide inferences. 
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6.3.2.1 Case-wide inference 

The effect inference distinguishes between the effect properties of the data 

objects called data properhes and the properties of the operations, 

called swfg-^ck. 

Affected data properties are attached to the datalinks of the case being 

analysed. The purpose of these affected data properties is to summarise the 

sequence of side-effects necessary to obtain the value flowing on each 

datalink of the case. 

A side-effect describes the way an operation accesses or updates its 

arguments or some global variables. 

The sigwzfwre of an operation is integrated with its type signature. For 

this purpose the lines comprising the signature will store some side-effects. 

The following notation is used for a line with type and side-effects: 

Tl X T2 1:3 X 1:4 /*SE*/G1 X 02 

The term/*SE*/ separates the type information on its left and the side-

effects on its right, 0% and 02 are two side-effects. 

The affected data properties of the datalinks and the effect signature of the 

operations are constructed during the initialisation phase along with the type 

properties and the type signature. The effect signatures of primitive 

operations cannot be inferred, they must be available in a signature 

repository. 

Type inference requires three successive passes over the operations of the 

case. Effect inference is performed as a fourth pass over the graph. It 

proceeds from the first operation after the Input operation until the last one 

before the output operation, following the execution order defined for the 

case. The purpose of this forward pass is to compose the side-effects of the 

operations of the case. 

6.3.3 Effects in Prograph 

This section discusses a representation of effect information in Prograph. 

Like the various works presented in the first section of this chapter, the effect 

representation should distinguish between read and write side-effects. 
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TT 

Fig. 6.4: A read side-effect 

In fig. 6.4 the Get: operation accesses the value of the instance attribute 

Surname from the instance flowing on LINKl (or possibly the default value 

of the class whose name is passed as a input to the Get operation). A read 

side-effect, o, is used to describe the access performed by the operation. 

The value flowing on LINK 1 is called the grgumenf of side-effect o and the 

value flowing on LINK3 is said to be the resw/f of side-effect o. Side-effect a 

records that its argument is passed through the first terminal of the Get 

operation with a reference to this terminal (a reference is an integer value). 

Side-effect o must also record that its result is propagated through the 

second root of the Get operation with a reference to that root. A complete 

definition of the information required to describe c will be given below. 

% Surname 

Fig. 6.5: A write side-effect 

In fig. 6.5, the Set operation updates the value of the attribute Surname of 

a class or an instance (depending on the value on LINKI) with the value 

flowing on LINK2 and the result is passed to LINK3. The update performed 

by the Set operation is described by a write side-effect, o'. 

The value flowing on LINK2 is called the wpdak mZwe of the side-effect o'. 

Side-effect c' contains a reference to the first terminal of the operation as its 

argument, a reference to the second terminal as its update value and a 

reference to the root of the operation to pass its result. 
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Some side-effects do not return a result (e.g. write side-effects on 

persistents), such side-effects are called krmzMa/ side-effects. 

During the case-wide effect inference, the side-effects of the operations are 

composed. Composition proceeds by appZymg the side-effects of the different 

operations of the case. 

Applying a side-effect means substituting the references to operation inputs 

contained in the side-effect with: 

- a reference to an input of the case 

- an affected data property if the argument or the update value of the 

side-effect is itself the result of a side-effect. 

After substitution of the input references, the side-effect selects the outputs 

of the operation through which it passes its result (in fig. 6.4, the read side-

effect propagates its result through the second root of the Get operation) 

and propagates affected data properties through these outputs. 

Composition and side-effect application are now described with two simple 

examples and are explained in greater detail in section 6.3.4. 

]^SurnaiiM 

Fig. 6.6: Composition of side-effects 

The Get persistent operation shown in fig. 6.6 extracts the value of the 

persistent Pers and this is described by the side-effect a i in the signature of 

the Get persistent operation. When side-effect is applied, it propagates 

the affected data property ei on LINKI to show that the value on LINKI 

was extracted from the persistent Pers. 

The Get operation extracts the value of the attribute Surname from its 

argument and this is described by the side-effect G2 in the signature of the 
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Get operation. When 02 is applied^ the reference to the argument input 

(input 1) is replaced by the affected data property 6% propagated by side-

effect 0%. Thus side-effects o i and 02 have been composed. 

F-K< 

H 

I 
M 

^Surname^(^3 

Fig. 6.7: Side-effect applied to an input of the case 

In the second example shown in fig. 6.7, the argument of side-effect 03 is 

passed as an input to the case. When the side-effect 03 is applied, the 

reference to the input of the Get operation is replaced with a reference to the 

input of the case. 

The different effect analyses presented in section 6.2 relied on low level 

representation of effects: 

- the MFX system represents an effect as a READ or a WRITE operation on a 

region; 

- in ML, effects can be a Get or a Set operation on a cell; 

- in [Chow and Harrison 1992] as well as [Rapps and Weyuker 1982], an 

effect can be a read operation or a write operation on a variable. 

The effect representation chosen for Prograph classifies effects in different 

categories. An effect category defines a set of side-effects and the 

affected data properties that result from the application of these side-effects. 

All the effect categories are listed in the table below with an explanation 

about their purpose as well as the set of side-effects and affected data 

properties they define. It must be noted that when a category defines a 

terminal side-effect, it does not need to define the corresponding affected 

data property: a terminal side-effect when applied does not propagate an 

affected data property. 
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Effect 

Category 

Purpose Defines 

Identity This ca t egory desc r ibes the 

p ropaga t ion of a da ta object 

without modification. 

identity side-effect 

identity affected data property 

Class This category describes the effects 

induced by a Get or a Set operation 

on a class attribute. 

class read side-effect 

class read affected data property 

class write side-effect 

class read affected data property 

Instance This category describes the effects 

induced by a Get or a Set operation 

on a class attribute. 

instance read side-effect 

ins tance read af fec ted da ta 

property 

instance write side-effect 

ins tance wr i te affected data 

property 

Instantiation This category records the access to 

the value of class variables a n d / o r 

default value of instance attributes 

when an instance of a user-defined 

class is created. 

instantiation side-effect (terminal) 

Local This category indicates that a data 

object has been created in the scope 

of the current case. 

local affected data property 

Persistent This category describes the effects 

induced by a Get: or a set: operation 

on a persistent. 

persistent read side-effect 

persistent read affected data 

property 

p e r s i s t e n t wr i t e s ide -e f f ec t 

(terminal side-effect) 

This category describes the effects 

induced by primitive operations 

manipulating lists. 

list read side-effect 

list read affected data property 

list write side-effect 

list write affected data property 

External This category describes effects on 

external data structures. 

external side-effect (terminal) 
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The side-effects and the affected data properties record information using 

the relevant combination of the following data items: 

Item Name Value Purpose 

Argument integer/ 

affected 

property 

An integer value is a reference to the input of 

the operation which passes the argument of 

the side-effect. 0 indicates that the side-effect 

operates on a global variable (e.g. a 

persistent). 

When the side-effect is applied, the reference 

is replaced with one of the following: 

- an integer reference to an input of the case 

- an affected data property if the argument of 

the side-effect is the result of a previous 

side-effect. 

ArgumentType Type This item records the type of the data item 

passed as argument to the side-effect. 

A c t i o n Read/Write This item distinguishes between a read and a 

write side-effect. 

D a t a string This item records some textual data to 

describe the side-effect. 

U p d a t e V a l u e integer/ 

affected 

data 

property 

An integer value is a reference to the input of 

the operation which passes the update value 

of the side-effect. When the side-effect is 

applied, the reference to the operation input 

is replaced with one of the following; 

- an integer reference to an input of the case 

- an affected data property if the update 

value of the side-effect is the result of a 

previous side-effect. 

Next a list of 

integers 

This item lists the outputs of the operation 

through which the results of the side-effect 

are propagated. For a terminal side-effect, 

_̂ e2alue_ofNexk̂  
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A textual representation is used so that side-effect and affected data 

property expressions can be easily parsed and printed. All expressions are of 

the form Prefix (Ibemi Item2 ...), with the prefix used to encode the 

action and the category of the effect and the tuple containing the items 

relevant for a particular category of effects. 

6.3.3.1 Identity effects 

The most trivial side-effect is the zdeMh'fy side-effect, which means that the 

operation's output is the same as the one on the input. The identity side-

effect records the following pieces o information: 

Item name Value Explanation 

A r g u m e n t integer This is a reference to the input of the operation 

which passes the argument of the side-effect. 

A r g u m e n t T y p e The identity side-effect does not record the 

type of its argument. 

A c t i o n Read An identity side-effect is a read side-effect. 

D a t a The identity side-effect does not record any 

textual data. 

U p d a t e V a l u e 0 The identity side-effect is a read side-effect and 

read side-effects do not take update values. 

N e x t sequence of integers This is a reference to the outputs of the 

operations which propagate the result of the 

side-effect. 

The textual representation for an identity side-effect is: 

- IDE (Argument Next:) 

IDE is a short notation for IDEntity. The corresponding affected data 

property is represented with: 

-IDE(Argument) 

6.3.3.2 Effects on class attributes 

Reading or writing a class attribute produces a class side-effect. The 

following information is recorded to describe a class side-effect: 
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I t em n a m e Value Explanation 

A r g u m e n t 1 The argument of a class side-effect flows into 

the first terminal of the Get or Set operation. 

ArgumentType Prograph type This is the type of the data item passed as 

argument of the side-effect. This information 

will be used during the effect synthesis. 

A c t i o n Read/Wri te A class side-effect can be a read or a write 

side-effect. 

D a t a string value This is the name of the class attribute whose 

value is accessed or modified. 

U p d a t e V a l u e 0 for a read side-

effect/ 2 for a write 

side-effect 

A read side-effect takes no update value, hence 

0 / t h e update value for a write side-effect 

flows into the second terminal of the S e t 

operation. 

Next (2) for a read side-

e f f e c t / ( l ) for a 

write side-effect 

The result of a read side-effect flows out from 

the second root of the Get operation/the result 

of the write side-effect flows from the first root 

of the Set operation. 

A class read side-effect is represented with: 

- CAR (Argument: Data Next) 

CA is a short notation for Class Attribute and the R stands for Read. The 

corresponding affected data property is represented with: 

- CAR (Argument Data) 

The ArgumentType field is not printed in the effect representation. 

A class write side-effect is represented with: 

- CAW (Argument Data UpdateValue Next) 

and the corresponding affected data property is represented with: 

- CAW (Argument Data U p d a t e V a l u e ) 

respectively. W stands for Write. 
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If S b u d e n t L i s b is the name of a class attribute, the effect signature of the 

signature of the Get operation shown below: 

TT 
is: 

IDE(l(l))xCAR(l"SkudentLisk" (2)) 

For the Set operation shown below: 

^ StudMtList ^ 

the effect signature is: 

CAW(l"StudentList"2 (1) ) 

6.3.3.3 Effects on instance attributes 

Reading or writing an instance attribute is described with an instance side-

effect. The information recorded to describe an instance side-effect is 

explained in the table below: 
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Item name Value Purpose 

A r g u m e n t 1 The argument of a class side-effect flows into 

the first terminal of the Get or Set operation. 

A r g u m e n t T y p e Prograph type This is the type of the data item passed as 

argument to the side-effect. This information 

will be used during the effect synthesis. 

A c t i o n Read/Wri te An instance side-effect can be a read or a write 

side-effect. 

D a t a string value This is the name of the instance attribute 

whose value is accessed or modified. 

U p d a t e V a l u e 0 for read side-

effect/ 2 for write-

side -effect 

A read side-effect takes no update value, hence 

0 / t h e update value for a write side-effect 

flows into the second terminal of the S e t 

operation. 

N e x t (2) for a read side-

e f f e c t / ( l ) for a 

write side-effect 

The result of a read side-effect flows out from 

the second root of the Get operation/the result 

of the write side-effect flows from the first root 

of the Set operation. 

Representations of side-effects and affected data properties on instance 

attributes are one of the following: 

- OAR (Argument Data Next) (read side effect) 

- OAR (Argument Next) 

- OAW (Argument Data UpdateValue Next) (write side-effect) 

- C A W ( A r g u m e n t D a t a U p d a t e V a l u e ) . 

OA stands for Object Attribute. 

If Surname is the name of an instance attribute, the effect signature of the 

Get operation shown below: 

i 
) Surname 

is: 
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I I ) E ( 1 ( 1 ) ) X CX&R(1 " S u r n a i n e " ( 2 ) ) 

For the Set: operation shown below: 

1 1 
% Surname 

the effect signature is: 

OAW ( 1 " S u r n a m e " 2 ( 1 ) ) 

6.3.3.4 Instantiation effects 

Creating a new instance of a class also induces a side-effect. If the class of 

the new instance has class variables, the new instance will point to these 

variables and the instance variables will point to the default values defined 

for the class. The purpose of the side-effect is not to record the 

allocation of a new object but the access to the values of class variables 

and/or the default values of instance attributes. An instantiation side-effect 

is terminal. 

Item n a m e Value Purpose 

Argument 0 An instantiation side-effect does not take an 

argument. 

A r g u m e n t i y p e This item is not relevant. 

A c t i o n Read An instantiation effect is a read effect because 

it accesses information contained in the class 

to which the new instance belongs. 

Data string value This is the name of the class to which the new 

instance belongs. 

UpdateValue 0 An instantiation side-effect is a read side-

effect: it does not have an update value. 

N e x t 0 An instantiation side-effect is a terminal side-

effect: it does not propagate an affected data 

property. 

An Init operation taking a list of (attribute name, value) pairs on its input 

and is considered equivalent to an operation with an inject terminal. From a 

language point of view, such an Init operation should be considered to be 

an I nit operation with several inject terminals, one for each pair in the list 
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of (attribute name, value) pairs. But from the point of view of the effect 

inference, this approximation does not make any difference because the effect 

inference caimot built the effect signature of an operation with an inject 

terminal. 

The instantiation side-effect is printed as: 

-ALR(Data()) 

AL stands for Allocation. 

The effect signature of the operation shown below: 

is: 

6.3.3.5 Local effects 

ALR("Student" ()) 

Some data objects come into existence in the scope of the current case as the 

return value of a Constant, Init or primitive operation. However, there 

exists no side-effect to record the creation of data object (the purpose of the 

instantiation side-effect is only to record that the values of class attributes 

and/or the default values of instance attributes have been accessed). 

Instead, a focaZ affected data property can be created to indicate that a value 

on a datalink has come into existence in the scope of the current case. This 

affected data property is created only if a side-effect refers to the datalink to 

which the affected data property should be attached. In fig. 6.8, the write 

side-effect refers to the datalink connected to the root of the Constant 

operation. 

f N e x t ^ 

Fig. 6.8: Local affected data property 
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A local effect-data property is created and attached to the link connected to 

the root of the C o n s t a n t operation and contains the following items of 

information: 

Item name Value Purpose 

A r g u m e n t 0 The value 0 indicates that the data item 

"appeared" on the datalink to which the 

affected data property is attached. 

A r g u m e n t T y p e This item is not relevant. 

A c t i o n Read A local affected data property is a read 

affected data property. 

D a t a string This is a value which is constructed to identify 

the link to which the affected data property is 

attached. 

U p d a t e V a l u e 0 A local affected data property is a read 

property: it does not have an update value. 

A local affected data property is printed as: 

NEW("##") 

" ##" is printed instead of the Data item because the value of Data would 

be rather difficult to interpret. 

6.3.3.6 Effects on persistents 

A persistent side-effect results from the execution of a persistent Get or a 

persistent Set operation. 
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Item name Value Purpose 

A r g u m e n t 0 A persistent side- effect does not take an 

argument. 

A r g u m e n t T y p e This is not relevant. 

A c t i o n Read/Wri te A persistent side-effect can be a read or a 

write side-effect. 

D a t a String This is the name of the persistent whose value 

is accessed or set. 

U p d a t e V a l u e 0 for read side-

effect / 1 for write 

side-effect 

A persistent read side-effect does not take an 

update value/ the update value of a persistent 

write side-effect flows into the first terminal of 

the Set persistent operation. 

N e x t (1) for read side 

effect/ ( ) for write 

side-effect 

The result of the read side-effect is propagated 

on the first root of the persis tent G e t 

operat ion/ a persistent write side-effect is a 

terminal side-effect : it does not propagate a 

result. 

Side-effects on persistents and their matching affected data properties are 

represented by one of the following expressions: 

- PER (Data Next) (read side-effect) 

- PER(Data) 

- PEW (Data UpdateValue Next) (there is no write persistent affected 

data property) 

PE stands for Persistent. 

The effect signature for the Get persistent operation shown below: 

T 

is: 

PER("Pers" (1 ) ) 

The effect signature for the Set persistent operation shown below: 
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is: 

PEW("Pers"l()) 

6.3.3.7 Effects on lists 

Effects on lists must be handled with special care. The difficulty of describing 

the effects induced by primitive operations on lists is compounded by the 

Item name Value Purpose 

A r g u m e n t integer This is a reference to the input of the list 

primitive operation which passes the argument 

of the side-effect. 

ArgumentType A list side-effect does not record the type of its 

A c t i o n Read/Write *glW$Ak-effect can be a read or a write side-

effect. 

D a t a This item is not relevant. 

U p d a t e V a l u e 0 for a read side-

e f fec t ) / integer 

value for a write-

effect 

A list read side-effect takes no update 

value/reference to the input of the list 

primitive operation which passes the update of 

the side-effect. 

N e x t list of integers This item lists the outputs of the list primitive 

operation through which the results of the 

side-effect are propagated. 

The representations for affected data properties and side-effects on lists are: 

- LIR (Argument () ) (list read side-effect) 

- L I R ( A r g u m e n t ) 

- LIW (Argument UpdateValue () ) (list write side-effect) 

- L I W ( A r g u m e n t U p d a t e V a l u e ) 

LI is the short notation for List 
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The schematic in fig. 6.9 shows an example of the the internal working of the 

a t t a c h - r primitive. 

Fig. 6.9: Internal behaviour of abbach - r . 

The references contained in the slots of list A are put in the first two slots of 

the newly created list C, reference B is put in the third slot of C. The effect 

signature of the a t b a c h - r primitive operation contains two side-effects: 

* A list read side-effect: the extraction of the references stored in A can 

be described as a read side-effect with list A as its argument and list C as 

its result. 

" An identity side-effect: the insertion of the references in list c is 

described using an approximation: list C can be identified with each of 

the values to which it points. 

The effect signature of attach-r is: 

LIR(1(1))XIDE(2 ( D ) 

The only primitive method to cause a write side-effect on a list is the s e t -

n t h ! primitive: 

j?,, , ,6..,, 
^ s e t - n t h ! ^ 

f 
The signature of s e t - n t h ! is: 

LlWd 2(1) ) 

The effect signature of an operation with a list annotated terminal may 

have to be modified. If a side-effect has a reference to an input with a list 

annotation^ the reference to this input must replaced by a list read affected 

data property. The argument of this affected data property is the original 

reference to the operation input. This substitution reflects the fact that the 

Argument or the UpdateValue of the side-effect has been extracted from 

the list flowing into input. In the operation shown below: 
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J ̂N a m e ^ 
O'O 

the leftmost terminal is amiotated, so the reference to input 1 in the 

Argument of the side-effect must be replaced by a list read affected data 

property. The original effect signature of the Get operation is: 

0AW(1 "Name" 2(1)) 

The effect signature becomes: 

0AW(LIR(1) "Name" 2 (1)) 

A list annotation on a root has no consequences for the effect signature of the 

operation. 

6.3.3.8 External effects 

side-effects are used for the effect signature of the operations for 

Item name Value Purpose 

Argument 0 An external side-effect does not take an 

argument. 

ArgumentType This item is not relevant. 

A c t i o n This item is not relevant. 

D a t a This item is not relevant. 

U p d a t e V a l u e 0 This item is not relevant. 

Next list of integers An external side-effect is a terminal side-effect: 

it does not propagate an affected data 

property. 

No effect signature can be inferred for an operation that calls an external 

method. This decision is justified by the fact that a precise description of the 

side-effects induced by an external method would require a knowledge of the 

behaviour of all system calls defined for the Macintosh operating system. The 

inference mechanism takes the conservative view that the execution of any 

external method induces an external side-effect. 
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Also, the effect signature of an operation with an inject terminal cannot be 

known statically. 

External side-effects are printed as: 

EXT(()) 

6.3.3.9 Effect expressions and variable arity 

Primitive methods may be called with variable numbers of terminals or 

variable numbers of roots. The signatures of all primitive methods are stored 

in a signature repository and they can be retrieved during the initialisation 

phase of the type and effect inference to construct the signatures of the 

operations that call primitive methods. 

The same notation (...) is used for varity terms in the effect part as in the 

type part of the primitive signature. Two cases can be distinguished: the 

primitive method may be called with a variable number of terminals or with a 

variable number of roots. 

* If the primitive has a variable number of terminals, the varity term 

appears at the top level of the effect signature and can be substituted 

with a side-effect. The substituted side-effect is the same as the one on 

the left of the varity term except for the value of its argument which is 

incremented by one for each extra terminal. The expansion rule is 

illustrated by the following example. 

The signature of the primitive a k b a c h - r in the signature repository is: 

(<Universal+>)x<Universal+>X...->L(U(E(l) 2...)) /*SE*/LIR(1 

(1) ) X IDE(2 (1) ) X... 

^attach-r ̂  

Fig. 6.10: The a t t a c h - r primitive 

If a b t a c h - r is called by an operation with three terminals (see fig. 6.10), 

the signature computed for the operation during the initialisation phase 

will be: 
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(<Universal+>) x<Universal+>x<Universal+>-)L(U(E(l) 2 3)) 

/*SE*/LIR(1 (1))XIDE(2 (1))XIDE(3 (1)) 

" In the case of a primitive method with a variable number of roots, the 

varity term may appear in the Next information item of the side-effect 

because Next refers to the outputs of the operation. When constructing 

the signature of the operation calling the primitive method, the varity term 

is substituted with the sequence of the indices of the extra roots. The 

primitive detach-r can be called with a variable number of outputs. Its 

formal signature is: 

(<Universal+>) ->L(U(E(1) <0>) ) XE(1) X.../*SE*/LIR(1 (1 2 ...) ) 

c 
^^detach-r^^ 

o o 

Fig. 6.11: The d e t a c h - r primitive 

The signature constructed for d e t a c h - r with three outputs (fig. 6.11) is: 

(<Universal+>)->L(U(E(l) <0>) ) XE(1) XE(1) /*SE*/LIR(1 (123)) 

6.3.3.10 Operations on side-effects 

As will be shown in the following subsections, the effect inference mechanism 

combines side-effects to eliminate duplicate information. This simplification 

is possible when some conditions are met. 

Two affected data properties are equal if 

- they belong to the same category of effects 

and: 

- the values of all their information items are equal 

Affected data property oogr/aps affected data property e2 if 

- Argument of 6% is equal to 62 or Argument of 6% overlaps E2 

Similarly, two side-effects are equal if: 

- they belong to the same category of effects 

and: 
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- the values of all their information items are equal. 

Two side-effects complement each other if: 

- they belong to the same category 

and: 

- the values of all their information items are equal except for the Nex t 

information item. 

Side effect o i overlaps side-effect 02 if: 

- (72 is a terminal side-effect 

and: 

- e'2 being the affected data property obtained by truncating the Next: 

information from the side-effect 02, the argument of 01 overlaps e'2. 

Depending on the relation existing between a pair of side-effects (equality, 

complementarity, overlap or none of these), their combination will yield a 

Relation between o i 

and G2 

R e s u l t of t h e 

combination of and 

G2 

equals 02 ((̂ 1) 

CI complements 02 (o'l) (o'l is equal to a i 

except for Next which 

contains the references 

held in Next of a n d 

Next: of o2) 

01 overlaps C2 (Gl) 

CI is overlapped by 

02 

(G2) 

No relation between 

G1 a n d G2 

(a i 02) 

The possible relations between side-effects are illustrated by the following 

matrix. Each relation is read from the side-effect in the row to the side-effect 

in the column. 
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PER("Pers" 

( ) ) 

OAR(PER("Pers") 

"Surname" (1) ) 

0AR(1 "Surname" 

(1) ) 

OAR(1 "Surname" 

(2) ) 

PER(-Pers" ( ) ) is equal is overlapped by no relation no relation 

OAR(PER{''Pers") 

"Surname" (1)) 

overlaps is equal no relation no relation 

OAR {1 "Surname" 

(1) ) 

no relation no relation is equal complements 

OAR (1 " Surname" 

(2) ) 

no relation no relation oomplements is equal 

6.3.4 Inference Algorithm 

Like the type inference to which it is tightly integrated, the effect inference is 

applied to the successive cases of the method analysed. 

6.3.4.1 Case-wide inference 

The case-wide effect inference is divided into three stages: 

" Initialisation of the affected data properties attached to the datalinks 

of the case and the effect signatures of the operations (at the same time 

as their type signatures). 

* The composition of the side-effects of the case by a single forward pass 

over the operations of the case (after the three passes required by the 

type inference). 

* The construction of the effect part of the line for the case. 

The effect information attached to the datalinks of the case consists of a 

(possibly empty) list of affected data properties. As for the type 

information, all datalinks connected to the same root share the same list of 

affected data properties. For the initialisation of the affected data 

properties, two types of links are distinguished: those connected to the roots 

of the Input operation and those not connected. The effect information 

attached to the datalinks after initialisation is presented in the table below: 
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Link Effect property after initialisation 

Cormected to the input bar (IDE (n)), integer n is the position 

in the sequence of inputs of the 

case of the input to which the 

datalink is connected (1 is the 

rank of the leftmost input) 

Not connected to the input bar 0 (empty list) 

The identity affected data properties attached to the links connected to the 

inputs indicate that the values flowing on these links are those of the inputs 

of the case. 

Type and effect signatures of the operations of the case are constructed 

during the initialisation phase before the three passes of the effect inference 

(see section 5.5). 

The forward pass of the effect inference iterates the composition routine over 

the operations of the case following their execution order. A list of terminal 

side-effects is maintained as the effect inference proceeds along the graph of 

the case. For each operation, the composition routine can be divided into 

three steps: 

" During the first step, it is checked that the inputs of the operation for 

which there exist affected data properties are referenced by at least one 

side-effect of the operation. This reference may be in the Argument or in 

the Update Va lue information item of the side-effect. If there exists no 

reference to the input, the effect information will be lost because it is not 

propagated down the graph. To avoid this loss, any affected data 

property which is not referenced must be converted into a terminal side-

effect and added to the list maintained by the inference mechanism. 

V test-one 

Fig. 6.12: Unpropagated affected data property 
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In the example of fig. 6.12, the primitive t e s t - o n e ? has no side-effect 

and the affected data property e must be converted into a terminal side-

effect. 

" The side-effects of the operation are applied during the second step. 

Applying a side-effect means substituting the references to inputs with 

the affected data properties for the matching inputs. If the signature of 

the operation comprises several lines, the side-effects contained in the 

different lines are combined in order to eliminate duplication. 

If there is no affected data property on the referenced input a local 

affected data property is created. For example, in fig. 6.13, as there is no 

affected data property attached to the input referenced by the 

U p d a t e V a l u e item of the side-effect, a local affected data property 

must be created. 

Next^ OAW(1 "Next" 

Fig. 6.13: Reference to a local value. 

After application, the side-effect of the Se t operation becomes: 

OAW(e''Next"NEW(''##") (1 ) ) 

If there are several affected data properties attached to a referenced 

datalink, the side-effect which refers to this input is duplicated so that 

there as many side-effects as there are affected data properties. In fig. 

6.14, the Argument of the side-effect refers to a datalink with three 

properties, the side-effect is duplicated twice so that three side-effects 

can be applied to the three affected data properties. 

(^1 ̂ 2 G]) 

<^Next^OAW(1 "Next" 2 

Fig, 6.14: Side-effect applied to several affected data properties 
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After application the three side-effects become: 

OAW(ei''Nexk''NEW(''##') (1)) 

0AW(e2"Next"NEW("##") (1)) 

0AW(e3"Next"NEW(''##'') (1)) 

Likewise, if the UpdateValue of a side-effect refers to a datalink to 

which several affected data properties are attached, the side-effect is 

duplicated to match the number of affected data properties on the 

referenced datalink. 

If the affected data property for a matching input is an identity affected 

data property, the input reference is not substituted with the identity 

affected data property but with the Argument of the affected data 

property. For example, if for the side-effect OAR (1 " Surname" (2) ), 

the affected data property for the first input of the operation is IDE (2), 

the substitution of the reference to input 1 will produce OAR (2 

"Surname" (2)) instead of OAR(IDE (2 ) "Surname"2). This ru le 

is designed to keep side-effect expressions simple. 

When the substituted input reference is the Argument of a class or an 

instance side-effect, the type of the referenced datalink becomes the 

ArgumentType of the side-effect. 

In the case of a composed side-effect, the Argument or the 

UpdateValue of the side-effect may be an affected data property 

which records its ArgumentType. The update needs to propagate the 

ArgumentType through to the affected data properties whose 

ArgumentType is the type of the referenced datalink. For the composed 

side-effect: 

OAW(OAW(OAW(1 " Surname" NEW("##")) "Name" NEW("##")) " DOB" 

NEWC**" ) (1) ) . 

The type of the value flowing into the first input of the operation to which 

the s ide-effect is a t t ached is <Student>. The ArgumentType of 

OAW (1 " Surname" NEW ( " # # " ) ) is updated to <Student>. The type 

of the value to which the affected data property OAW (1 "Surname 

NEW ( " # # " ) ) is attached is also <Student> so the ArgumentType of 

the affected data property: 

178 



EFFECT INFERENCE AND SYNTHESIS 

0AW(0AW(1 "Surname" NEW( "##") ) "Name" NEW( "##") ) 

must also be updated to <Sbudenb>. The same reasoning applies to the 

side-effect itself and the Argument Type of the side-effect must be 

updated to <St:udent:>. 

But for the s ide-effect 0AR(0AR(1 "Father") "Profession" (1) ) 

only the ArgumentType of OAR (1 " Father") can be updated. The 

explanation is that OAR {1 " Father") is the affected data property of 

the value of the attribute Father of the instance coming onto the first 

input of the operation and there is no dependency between the type of an 

object (the instance on the first input of the operation) and the type of the 

value of an attribute of that object (the value of the Father attribute). 

C o n s e q u e n t l y , t h e A r g u m e n t T y p e of OAR ( OAR (1 "Father") 

"Profession" (1)) cannot be updated. 

* The third step consists of propagating the affected data properties 

resulting from the application of the side-effects of the operation. 

Terminal side-effects are added to the list of terminal side-effects. The 

Next item of non-terminal side-effects refers to the outgoing datalinks to 

which an affected data property must be attached. If the output is not 

connected, the side-effect is converted into a terminal side-effect and 

added to the list. If the output is connected, the affected data property to 

be attached to it is obtained by truncating the Next information item of 

the side-effect (fig. 6.15). 

(e) 
(2) 
= 0 — 

<^Next^OAW(e "Next" NEW(##) (1) ) 

(e') 
e' <-OAW(e "Next" NEW(##) ) 

Fig. 6.15: Propagation of an affected data property 

e', the affected data property of the outgoing link of the Se t operation 

results from the truncation of the side-effect of the operation. 

The identity side-effect distinguishes itself in the way it propagates its 

affected data properties. If the Argument of the identity side-effect is 

an affected data property, this Argument is propagated in place of an 
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identity affected data property itself. For example, the side-effect 

lDE(PER("Pers") (1)) will propagate the PER ("Pers") affected 

data property on the first output of the operation but the side-effect 

IDE (1 (1) ) would propagate the property IDE (1). This rule aims at 

keeping affected data property expressions as simple as possible. 

When the bottom boundary of the case graph is reached, the relevant 

information comprises the list of terminal side-effects and the affected data 

properties attached to the datalinks connected to the output operation. 

All the affected data properties attached to an output datalink are converted 

into side-effects. The conversion of an affected data property into a side-

effect requires that the value of each information item of the affected data 

property becomes the value of the corresponding information item of the new 

side-effect. The value of Next for the new side-effect is the list of the 

references of the outputs of the case to which the property is attached. 

Fig. 6.16: Affected data properties reaching the output operation. 

In fig. 6.16, e is converted into a side-effect with the value (1) for the Next 

field and e' with a side-effect with a Next field of (2). 

Since the same affected data properties may be propagated along different 

datalinks in the case it is likely that some of the side-effects gathered at the 

bottom of the case and some terminal side-effects will either overlap, be 

equal or complement each other and they are combined to eliminate 

duplication. 

6.3.4.2 Method 

The effects inferred for each case are in turn combined to obtain the method 

effect signature. 

6.3.5 Handling recursion 

The handling of the recursion follows the approach taken for the type 

inference and described in 5.8.7. 
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The dummy signature of an operation making a recursive call comprises no 

side-effect. Effect inference applied to a recursive method will be illustrated 

by an example in chapter 7. 

6.3.6 Effect inference example 

€ P ® r S ^Operation a 

4 numeric % » ion b 

^numerioAttr 0^ )peration c 

HC'llO Operation d 

— 0 — 

^ObjliKtVar ̂Operation € 

Fig. 6.17: Example of effect inference 

The example in fig. 6.17 has been designed to illustrate the effect inference 

and does not correspond to any useful code. To understand the code better, 

it is necessary to describe a subset of the class hierarchy (fig. 6.18). 

transObj 

subClass2 subclass 

subClassS subClass4 subTrivial subEssai 

Fig. 6.18: Test class hierarchy 

The class kransObj defines numericAbkr as a class attribute and 

Ob] instVar as an instance attribute. 

181 



6.3.6.1 Initialisation phase 

The effect analysis proceeds in two phases. During the set-up phase, the type 

and effect signatures of the operations on the graph are constructed. The 

effect signatures of the operations are shown in fig. 6.19 

PER("Pars" (1)) 

^ P e r s % 
p 6" 

(IDE(1)) g H 

,A 
CAWd "NumericAtkr" 2 )) ̂ numeric % 

a  

t) 

IDE(1 (1) ) X y, ? ' ; L''' ';X| 
CARd "NumericAttr" 

HeMo 

OAW(i "obj instvar" 2 (1)) %Objlnstyar 

Fig. 6.19: After the initialisation phase 

Class and instance side-effects record an Argument Type value. This 

information is not shown in the textual representation of these side-effects, it 

is given in the table below: 

Operation Effect category/ 

action 

ArgumentType 

b Class/ 

Write 

["transObj"+|<transObj +>] 

c Class/ 

Write 

["transObj"+|<transObj +>] 

e Class/ 

Write 

["transObj"+|<transObj+>] 
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6.3.6.2 Composition of the side-effects 

During the second step of the effect inference, the side-effects of the 

operations are composed during a forward pass over the case. The 

composition routine proceeds with three steps for each operation of the case 

following the execution order: 

* Check that all the affected data properties attached to the incoming 

datalinks of the operation are referenced by the side-effects of the 

operation. 

* Apply the side-effects of the operation. 

* Propagate the affected data properties resulting from the application of 

the side-effects on the outgoing datalinks of the operation or add a side-

effect to the list of terminal side-effects. 

The inference starts with an empty list of terminal side-effects. The different 

steps of the composition routine are now detailed for each operation: 

« The effect signature of Operation a contains one side-effect 

PER (" Pers" (1) ). As the operation has no input the first and second 

step of the composition routine can be ignored. The affected data 

property PER (" Pers") is constructed and propagated onto LINK2 of 

the case. No terminal side-effect is added to the list. 

« The signature of Operation b contains one side-effect CAW(1 

"numericAttr" 2 (1) ) . Both LINKl and LINK2 have one affected 

data property attached to them and the side-effect has references to the 

two inputs to which the datalinks are connected. The side-effect is 

applied: 

- The reference to input 1 is replaced with the affected data property 

attached to LINKl. 

- The reference to input 2 is replaced with the affected data property 

attached to LINK2. 

- The Argument:Type of the side-effect is replaced with the type of 

LINKl. 

After its application, the side-effect becomes: 
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CAW(1 "numericAttr" PER("Pers") (1)) 

The affected data property CAW{1 "numericAttr" PER ( "Pers" ) ) 

is propagated on LINK3. No terminal side-effect is added to the list. 

" The signature of Operation c contains two side-effects^ IDE(1 

(1 ) ) a n d CAR (1 " numericAttr" (2 ) ). LINK3 h a s a n a f fec ted d a t a 

property attached to it but the input to which LINK3 is connected is 

referenced by both side-effects. 

The identity side-effect is applied: 

- The reference to input 1 is replaced with the affected data property 

a t t ached to LINK3. 

After its application, the identity side-effect becomes: 

IDE(CAW{1"numericAttr" PER("Pers")(1)) 

The class read side-effect is applied: 

- The reference to input 1 is replaced with the affected data property 

attached to LINK3. 

- The ArgumentType of the side-effect is replaced with the type of 

LINK3. 

The applied side-effect is: 

CAR(CAW(1"numericAttr" PER("Pers")) (2)) 

There is no link connected to the first root of the Get operation, so the 

affected data property to be propagated by the identity side-effect is 

converted into a terminal side-effect: 

CAW(1 "numericAttr" PER("Pers") ()) 

This terminal side-effect is added to the list of terminal side-effects. 

The applied class read side-effect propagates the following affected data 

p r o p e r t y on LINK4: 

CAR (CAW(1 "numericAttr" PER("Pers"))) 

No terminal side-effect is added to the list. 
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* The signature of Operation d contains no side-effect and the 

operation has no input, so the three steps of the composition routine can 

be ignored. No terminal side-effect is added to the list. 

* The signature of Operation e contains one side-effect OAW (1 

" Ob] instVar " 2 (1) ). There is an affected data property attached to 

LINK4 and none attached to LINKS. The side-effect of the operation has 

a reference to the two inputs to which LINK4 and LINKS are connected. 

The instance write side-effect is applied: 

- The reference to input 1 is replaced with the affected data property 

a t t ached to LINK4. 

- There is no affected data property attached to LINKS, so a local 

affected data property NEW ( " # # " ) is created and attached to LINKS 

and replaces the reference to input 2 in the side-effect expression. 

The applied side-effect is: 

OAR(CAR(CAW(1"numericAtkr" PER("Pers"))) "ObjInstVar" 

New("##") (1)) 

The side-effect propagates on LINK6 the following affected data 

property: 

OAR(CAR(CAW(1"numericAttr" PER("Pers"))) "Ob]InstVar" 

New("##")) 

No terminal side-effect is added to the list. 
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PERCPers" (1)) 

(IDEtl)) 

CAWd "NumericAttr" PERC'Pers") (1)) <^iiMmerieMtr ̂  

(PER("Pers")) 

• ^ 

(CAWd "NumericAttr" PER {"Pers")) ) 

]$numericXHr% 
^ ' Q ' ' 

CAR (CAWd "NumericAttr" PERC'Pers")) "NumericAttr" (2) 

IDE ( C A W d ''NumericAttr" PER("Pers ") d ) ) x f.. • • ̂  & 

(CAR(CAW(1 "NumericAttr" PER("Pers")) "NumericAttr")) 

i s 

HeMo 
9 — 

OAW(CAR(CAWd "NumericAttr' PER("Pers") ) 'NumericAt^')() r. 
"ObjInstVar" New('##") (1)) ^Objimstyar^ 

(New( '•##") ) 

Z 

"9" 
(0AW(CAR(CAW(1 "NumericAttr" PER("Pers")) 
"NumericAttr")"ObjInstVar" New{"##"))} 

Fig. 6.20: After the composition of the side-effects 

When the analysis reaches the bottom of the graph, the list of terminal side-

effects contains one terminal side-effect (added by the identity side-effect of 

Operation c): 

(CAW{1 "numericAttr" PERC'Pers") ())) 

The affected data property attached to LINK6 must be converted into a 

side-effect. Since LINKS is attached to the only output of the case, the value 

of Next property for the converted side-effect is (1): 

OAW(CAR(CAW(1"numericAktr" PER("Pers")) "numericAttr") 

"ObjInstVar"NEW("##'') (1)) 

The terminal side-effect is overlapped by the side-effect converted from the 

affected data property of LINK6 and can therefore be safely discarded. 

The effect signature constructed for the method consists of the side-effect 

converted from the property of LINK6. 
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6.4 Effect Synthesis 

The aim of the synthesis is to produce an approximation of the accesses and 

updates to the operation inputs and global variables that the execution of an 

operation annotated for distribution would induce. Using Palsberg and 

Schwartzbach's words [Palsberg and Schwartzbach 1991], the effect 

synthesis must teU fAg wAok but may not tell MOf/oMg This 

means that the approximation produced by the effect synthesis must be able 

to detect all the accesses and updates that may occur at run-time but it may 

also predict accesses and updates that wiU not occur at run-time. 

6.4.1 Outline of the synthesis 

The effect synthesis is only applied to the operations that have been 

annotated for distribution. The synthesis proceeds in three stages: 

" Type inference is carried out in the case in which the operation 

annotated for distribution occurs. 

" Effect inference is initiated on the case. During the forward pass of the 

effect inference, when the composition routine processes an operation 

annotated for distribution, all the side-effects of this operation are 

duplicated before being applied. The composition routine is applied as 

described in 6.3.6.2 to the original set of side-effects so that the effect 

inference can proceed. 

For the side-effects in the duplicate set, only their ArgumenkTypes are 

updated (if required) but not their Argument or UpdateValue. The 

reason for doing so is that the synthesis must be applied only to the side-

effects belonging the annotated operation and not to the side-effects 

composed with the side-effects of the operations occurring earlier in the 

case. 

" The duplicate side-effects of the annotated operation are synthesised. 

The information produced by the synthesis addresses two issues: 

« Access to the global variables during the execution of an operation 

annotated for distribution. 

* The analysis must record the updates performed on the arguments of 

the operation and on the global variables. An update on an argument or a 
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global variable may result from the composih'oM of side-effects. In the case 

of nested structures, a structure is extracted from its containing structure 

and this can be seen as a read side-effect. However, if the extracted value 

is modified by another operation, the effective result will be viewed as an 

update of both the extracted and the containing structures. Although the 

update may not concern a slot of the containing structure, the 

modification is considered to affect it, by composition. The argument to 

justify this view is that the value of the containing structure is the graph 

whose highest vertex is the structure and that any modification to the 

graph is a modification of the value of the containing structure. 

; Attrm% 

Fig. 6.21: Composition of effects. 

Fig. 6.21 shows the example of a persistent which contains an instance of 

a class, the value of the persistent is read and the instance is modified. 

The execution of these two operations shown in fig. 6.21 leads to an 

update on the persistent as well as on the instance. 

The concept of rowfe is introduced to describe how a data object has 

become available in the case(s) of the method called by the operation 

annotated for distribution. The route of a value is the highest vertex of the 

graph followed to access the data. 
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%/ V/ 
J% Profession % 

Fig. 6.22: The route of a value 

Fig. 6.22 shows the case of a method, in this case the value of c has been 

reached via the input argument a, thus a possible route for the value is an 

input route. 

A state operation describes an access or an update to a data structure 

(e.g. a class, a persistent, an instance or a Ust). 

6.4.2 Routes 

A value becomes available in the cases of the method called by an operation 

annotated for distribution in different ways. Each possible way defines a 

Route category Description 

Local The value has been reached through a value instantiated 

locally. 

Persistent The value has been reached through a persistent value. 

Class The value has been reached through the value of a class 

attribute or the default value of an instance attribute. 

Input The value has been reached through the value of an input 

of the case. 

Beyond its category, a route is described with two information items: 

" Data is an integer or a string. 
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» D e p t h is an integer value which keeps track of the number of 

indirections necessary to reach the current value from the root of the 

graph. 

The use of the Depth field is illustrated in 5g. 6.23: 

Route = Input 1 with depth = 0 

H' "A' 
Route = Input 1 with depth = 1 

Route = Input I with depth = 2 

Fig. 6.23: Depth of a route 

6.4.2.1 Class routes 

A class route indicates that a data object has become accessible through a 

class. The textual representation for a class route is: 

cV (Data Depth) 

A route of depth zero represents the class itself. A value extracted from a 

class structure (either the value of a class attribute or the default value of an 

instance attribute) has a route of depth 1. The Data value of a class route is 

the name of a class and the notation " a" + means the class a and all the 

subclasses of a. In the example shown in fig. 6.24, numericAttr is the 

name of a class attribute. 

f 

c 

p 

iV(i 0) 

^numeric Attr ^ 
3 

cV("TransObj"+ 1) 

Fig. 6.24: A class route. 
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6.4.2.2 Input routes 

An input route indicates that a data object has been passed as an argument 

to the operation annotated for distribution to be accessible in the case(s) of 

the method called by this operation. The textual representation for an input 

route is: 

iV (Data Depth) 

A route of depth 0 represents the value of the case input itself. The Data 

value of an input route is an integer which refers to an input of the operation 

annotated for distribution. 

iV(i 0) 

rA 

iVa 1) 

Fig. 6.25: Input routes 

With the example shown in fig. 6.25, Obj instVar is the name of an 

instance attribute. The input route on the outgoing datalink of the operation 

is one possible route for that value (the set of possible routes for that value 

will depend on the type of the input of the Get operation). 

6.4.2.3 Local routes 

A local route indicates that a data object has become accessible in the case(s) 

of the method called by the operation annotated for distribution through an 

object created during the execution of the called method. The textual 

representation for a local route is: 

LV("##" Depth) 

A local route of depth zero represents the newly created data object. The 

Data value of a local route is a string identifier built to identify the local 

route uniquely in the context of the current application. 
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LV("##" 0) 

rA, 

I LV("##" 0) 

Fig. 6.26: Local routes 

With the example shown in Ag. 6.26, the local route on the outgoing datalink 

of the operation is one possible route for that value. 

6.4.2.4 Persistent routes 

A persistent route indicates that a data object has become accessible in the 

case(s) of the method called by the annotated operation through a persistent. 

The textual representation for a persistent route is: 

pv (Daka Depth) 

A persistent route of depth zero represents the persistent and the value 

extracted from the persistent has depth of 1. The Daba value for a persistent 

route is the name of the persistent through which the value has become 

available (see fig.6.27). 

^ P e r s ^ 

pVCPers" 1) 

Fig. 6.27: A persistent route. 

6.4.3 State operations 

The concept of side-effect used for the effect inference and the concept of 

state operation seem to overlap but they do not entirely: 

" A side-effect describes how an operation accesses or updates its inputs 

or some global variables to produce an output value. However, the 

information provided by a side-effect leaves some ambiguity about which 

data structure is accessed or updated. In the case of a side-effect on a 

persistent there is no ambiguity, the information recorded by the side-
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effect gives away which data structure is going to be accessed. An 

instance read or write side-effect is more ambiguous and depending on 

the ArgumentType of the side-effect, the operation will update either 

an instance structure or a class structure. 

" The purpose of a state operation is to record an access or an update to 

a data structure. Whereas the focus of a side-effect was to describe how 

the access or the update was carried out (e.g. persistent read side-effect, 

instance write side-effect), a state operation is concerned with which 

data structure is accessed or updated. The correspondence between side-

effects and state operation may seem one to one, for example, a 

persistent side-effect maps to a state operation. However, this is not the 

case for an instance side-effect which can be mapped to either a state 

operation on a class structure or a state operation on an instance 

structure. 

Five categories of state operations are available, reflecting different ways of 

accessing or updating data structures in Prograph. External data structures 

can also be accessed or updated but they have not been included in the list 

State operation Purpose 

Class state operation Record the access or the update of the value 

of a class attribute or the default value of an 

instance attribute. 

Instance state operation Record the access or the update of the value 

of an instance attributes. 

Allocation state operation Record the creation of an instance of a class. 

Persistent state operation Record the access or the update of a 

persistent value. 

List state operation Record the access or the update of the value 

of a list element. 

A state operation can be an access or an update state operation. Like a read 

side-effect, an access state operation has an argument and, like a write side-

effect, an update state operation has both an argument and an update value. 
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All state operations are described using the relevant combination of the 

InfcMMiiatioriitern Purpose 

Action Distinguish between an access or update state 

operation. 

Data Record some textual information such as the 

name of an attribute or of a persistent. 

Argument Store the route of the argument of the state 

operation in order to know how the data 

structure which is accessed or modified has 

become available in the case(s) of the method 

called by the annotated operation. 

UpdateValue Store the route of the update value of the 

state operation in order to know how the data 

structure which is accessed or modified has 

become available in the case(s) of the method 

called by the annotated operation. 

6.4.3.1 Class state operations 

Information item Value Explanation 

Action Access/ 

Update 

Data String The name of the attribute accessed or 

updated 

Argument Class route Classes can be reached globally. The route 

of a class state operation is always a class 

route whose Data value is the name of a 

class and Depth is zero. 

UpdateValue Any route The depth for a class route or a persistent 

must be > 1 because the value must be 

extracted from the class structure or the 

persistent before being passed as update 

value to the state operation. 
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A class route is needed as Argument because different classes may define 

an attribute with the same name. The information provided by Data is not 

sufficient to know which class data structure will be accessed or updated. 

The textual representations for class state operations are: 

C_access (Data Argument) 

C_update (Data Argument UpdateValue) 

Information item Value Explanation 

Action Access/ 

Update 

Data String The name of the attribute accessed or 

updated. 

Argument Any route The depth for a class route or a persistent 

must be k 1 because the value must be 

extracted from the class structure of the 

persistent before being passed as update 

value to the state operation. 

UpdateValue Any route The depth for a class route or a persistent 

must be > 1 because the value must be 

extracted from the class structure or the 

persistent before being passed as update 

value to the state operation. 

The textual representations for instance state operations are: 

I_access (Data Argument) 

I__update (Data Argument UpdateValue) 
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6.4.3.3 Allocation state operations 

Information item Value Explanation 

Action Access 

Data String The name of the class to which the new 

instance belongs. 

Argument — Not relevant 

UpdateValue Not relevant 

The textual representation for allocation state operations is: 

Alloc(Data) 

6.4.3.4 Persistent state operations 

Information item Value Explanation 

Action Access/ 

Update 

Data String The name of the persistent accessed or 

updated. 

Argument — Not relevant. 

UpdateValue Any route The depth for a class route or a persistent 

must be > 1 because the value must be 

extracted from the class structure or the 

persistent before being passed as update 

value to the persistent state operation. 

A persistent state operation does not use Argument: because the name of 

the persistent stored in Da ta is enough to know which persistent will be 

accessed or updated. 

The textual representations for persistent state operations are: 

P„access(Data) 

P_update (Data UpdateValue) 
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6.4.3.5 List state operations 

Information item Value Explanation 

Action Access/ 

Update 

Data - Not relevant. 

Argument Any route The depth for a class route or a persistent 

must be > 1 because the value must be 

extracted from the class structure of the 

persistent before being passed as argument 

to the list state operation. 

UpdateValue Any route The depth for a class route or a persistent 

must be > 1 because the value must be 

extracted from the class structure or the 

persistent before being passed as update 

value to the list state operation. 

are: The textual representations for list state operations 

L_access(Argument) 

L_update (Argument UpdateValue) 

6.4.5 Synthesis algorithm 

The synthesis is applied to all the side-effects of the operation annotated for 

distribution to produce a list of state operations. 

6.4.5.1 Outline of the algorithm 

A function called Synbhesise is iteratively applied to the side-effects of 

the operation annotated for distribution. The list of state operations by one 

iteration of Synthesise is passed as the input list of state operations for 

the next iteration of the function as shown in fig. 6.28. 
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List of 
« Side-Effect» 

( ) 

%/Sgmthesise 
CO 

List of 
«State Operations 

Fig. 6.28: Synthesis of the side-effects of an annotated operation 

The type signature of the S y n k h e s i s e function is: 

(Side-Effect + Affected Data Property + Integer) x State Operation* —> 

Route* X State Operation* 

The behaviour of the Syntzhesise function is best understood by looking at 

its implementation in Prograph (see fig. 6.29 a, b and c). Fig. 6.29.a and b 

show the synthesis of an input reference: 

List of 
Input Index « State Operation » 

^Input j ioute ^ 

'' H 
[pack^ 

List of List of 
« Route » « State Operation » 

Fig. 6.29.a: Synthesis of an input reference other than 0 
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List of 
Input Index « State Operation » 

() 

List of 
« Route» 

List of 
« State Operation » 

Fig. 6.29.b: Synthesis of a 0 input reference. 

List of 
« Side-Effect »|« Affected Data » « State-Operation » 

() 

/Reduce 

List of 
« Route » 

% x w a 
List of 
« State-Operation » 

Fig. 6.29.C: S y n t h e s i s e defined for a side-effect or an affected data 

property. 

S y n b h e s i s e takes a side-effect (or an affected data property) and a list of 

state operations as its arguments and proceeds in two steps: 

* The F l a t t e n operation produces a list representation of the side-

effect or affected data property passed as argument to the S y n t h e s i s e 

function. 

* The Reduce operation is applied iteratively to the elements of the list 

representation of the side-effect. 

The side-effect (or affected data property) to be synthesised may have a 

recursive data structure as Argument or UpdateValue. Recursion occurs 

when the Argument or the UpdateValue of the side-effect is an affected 
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data property and the Argument of this affected data property is itself an 

affected data property (as the result of the composition of side-effects). The 

following side-effect has a recursive Argument:: 

OAR(OAR(PER("Info'') "Father") "Surname") (1)) 

because the Argument of the side-effect is the instance read affected data 

property OAR (PER ( " I n f o " ) "Father") and the Argument of this 

affected data property is the persistent read affected data property 

PER("Info"). 

The following side-effect has a recursive UpdateValue: 

OAW (1 "Surname" OAR(PER("Father") "Surname") (1) ) 

A side-effect is expanded into a list following the path of its Argument 

information item. If along the path an UpdateValue is a recursive affected 

data property, it is left untouched as it will be expanded at a later stage 

during the synthesis. The flattening is illustrated by the following example. 

The side-effect: 

CAR(CAW{1"numericAttr" PER("Pers")) "numericAttr" {!)) 

is expanded into a list as follows: 

The side-effect becomes the first element of a list: 

(CAR(CAW(1"numericAttr" PER("Pers")) "numericAttr" (1))) 

The argument of the side-effect (underlined in the expression above) is copied 

and put at the front of the Hst: 

(CAW(1_ "numericAttr" PER ( " Per s " ) ) CAR{CAW{1 "numericAttr" 

PER{"Pers")) "numericAttr" (1))) 

Again, the Argument of the first element of the list (underlined in the 

expression above) is copied and becomes the head of the list: 

(1 CAW(1 "numericAttr" PER("Pers")) CAR(CAW(1 "numericAttr" 

PER("Pers")) "numericAttr" (1))) 

The reference to input 1 becomes the head of the list and the recursion stops. 

The recursive flattening of a side-effect or an affected data property into a 

list stops when the first element is a reference to an input of the operation 
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annotated for distribution or the value 0. 0 is the implicit value of Argument: 
for an affected data property or a side-effect which takes no argument (a 
persistent read affected data property or a local affected data property are 
two examples of affected data properties taking no argument). 

The overall effect of F lat ten is to convert a representation of side-effects 
based on a partial order into a total order. The consequences of this 
conversion will be discussed in 6.4.7. 

The iterations of the Reduce function over the list of effects yield a list of 
routes and an updated list of state operations. The type signature of 

Reduce i& 

(Side-Effect + Affected Data + Integer) x Route* x State Operation* —> 

Route* X State Operation* 

The Reduce function takes three arguments: 

* The side-effect (or the affected data property or the input reference) 

currently being reduced. 

* The list of route values to which the previous element in the list has 
been reduced. These routes are called the pammgkr rowfes of the Reduce 
function. 

* The list of state operations maintained by the synthesis algorithm. 

The semantics of the Reduce function depends on the category of the side-
effect or of the affected data property to which it is applied. The return 
values of the Reduce function are: 

* A list of route values, called the rgfum rowks of Reduce. If the Reduce 
is applied to a side-effect (which always corresponds to the last iteration 
of Reduce), it is not relevant to compute a list of route values and an 
empty list is returned instead. 

" The list of state operations to which new state operations may have 
been appended. 

6.4.5.2 Reduction rules 

The reduction rules describe how the Reduce function updates the list of 
state operations and computes a set of return routes from the input reference 
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(or the affected data property or the side-effect) currently being reduced, the 
list of parameter routes and the current list of state operations. 

The purpose of the analysis developed in this work, and in particular of the 
effect synthesis which is the last stage of the analysis, is to provide 
information about effects to the distribution mechanism. The proposed 
analysis has been developed with as much independence as possible from the 
actual distribution mechanisms. The stage has now been reached however 
where some assumptions have to be made about the facilities available for 
distributed programming. 

The effect synthesis takes the view that the distribution mechanism for 
Distributed Prograph will be built upon the facilities provided by the current 
version of Prograph. These facilities include a to-bytes primitive to pack 
values for transmission, t o - b y t e s recursively flattens data of any 
complexity (instances of primitive data types or instances of classes) into a 
sequence of bytes and it also produces a cZass fraMsZafioM map to reconstruct 
the flattened data. It must be noted that the values of the class variables are 
not packed with the instances of the class. The flattened data and 
translation map may be transmitted over the network. Primitives have been 
written so that several communication protocols may be used from within the 
Prograph development environment. 

The potential effects must be handled in different ways depending on the 

category to which they belong. The following matrix shows which effects are 

important. The columns distinguish between the structures affected and the 

rows between the action of the effect. 

L i s t Instance C l a s s Persistent 

A c c e s s X X 

Update X X X X 

... means that the effect requires no special action and X means that the effect 

must be dealt with properly. 

Extracting a value from a list or an instance structure (but not the default 
value of an instance attribute) does not require special action because the 
value referenced by the slot of the instance or that of the list has been packed 
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(by the to-bytes primitive) with the instance or the list and transmitted 
with it. Therefore, it is not necessary for the synthesis to record accesses on 
instance and list structures. 

If a persistent value or a class variable is accessed during the execution of a 

remote operation, the value obtained may be out of date. The meaning of X in 
the above matrix is that the current facility is not enough to ensure the 
correctness of the execution and that this facility should be extended. 

For all four categories of data structures it is important that all update state 
operations are properly recorded as the current facilities provide no 
mechanism to propagate updates across execution contexts. 

Effects on external data structures have been omitted from the matrix above 
because the effect inference does not address external side-effects (see 
6.3.3.8). If an external side-effect occurs in the effect signature of an 
operation armotated for distribution, the remote execution of this operation 
should be ruled out. 

The reduction rules in the following sections specify how the Reduce 

function operates when applied to an affected data property or a side-effect 

of a given category. 

* Reduce may create state operations to be added to the list of state 

operations. 

" Reduce produces a set of return routes (when applied to a side-effect, 

the set of return routes is not relevant). 

When a new state operation is created, the reduction rule specifies what the 
values of Action, Data, Argument and UpdateValue for the new state 
operation should be. 

The reduction rule also specifies how the Reduce function computes a set of 
return routes. When the Reduce function is applied to a read affected data, 
the reduction rules require that the list of state operations is searched to find 
a makAzMg update state operation. The intuition behind searching a matching 
state update is that a structure might be updated and then accessed during 
the execution of the method called by the operation annotated for 
distribution. This situation is illustrated by the following example: 
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Pers; 
"0"" 

J3. 
numeric Attr^ 

I •" - w 
numeric Attrx 

V 

Fig. 6.30: Matching state-operations 

The example in Hg. 6.30 shows that the value of the attribute numericAtbr 
is set. At a later stage, the value of the attribute nmnericAbbr is accessed. 
When a matching update state operation is found, its UpdateValue route ( 
the route of value b in the example above) should be element of the set of 
return routes produced by the reduction of the read affected data property 
(the routes of value d). 

The following subsections define the reduction rules for the different elements 

that may occur in the flattened representation of an affected data property 

or a side-effect: 

» Input reference/ identity side-effect 

* Class affected data property/ side-effect 

* Instance affected data property/ side-effect 

* Instantiation side-effect 

* Local affected data property 

* Persistent affected data property/ side-effect. 

Remembering that the reduction rule for a side effect is a simplified version of 
the reduction rule for the affected data property of the same effect category, 
the reduction rules will be explained for the affected data properties of the 
different categories, when applicable. 
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6.4.5.3 Input reference 

An input reference is an integer value and represents one of the inputs of the 

case(s) of the method called by the operation annotated for distribution. 

The reduction rule for an input reference proceeds as follows: 

* No state-operation is added to the list of state operations. 

* An input route (iV (Data Depth)) is created and returned as the set 

of return routes. The Data value of the route is the integer value of the 

input reference and its Depth is zero. 

6.4.5.4 Class affected data property 

The rule considers a read affected data property first and a write affected 

data property afterwards. 

A class affected data property indicates that the value of a class attribute 

has been accessed or updated. The ArgumentType of the affected data 

property includes single types and/or string types. A single type is itself a 

set of classes and a string type is set of string values, some of these string 

values are class names. A class is by the ArgumentType if at least 

one of the following two conditions is met: 

* this class is an element of a single type included in the ArgumentType 

* the name of this class is in a string type included in the 

ArgumentType. 

In the set of classes referenced in the ArgumentType, another set of classes 

can be distinguished: the classes with no superclass referenced in the 

A r g u m e n t T y p e . These classes are called the upper bownds of the 

ArgumentType (using the inheritance relation as a partial ordering on the 

set of classes referenced by the ArgumentType). 

The reduction rule for a read affected data property proceeds as follows: 

» For each upper bound class in the ArgumentType of the affected 

data property, a new class route (cV (Data Depth)) and a new class 

access state operation (C_access (Data Argument)) are created. The 

value of Data for the class route is the name of the class referenced and 

its Depth is zero (the notation introduced in 6.4.3.1 may be used to 
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include the classes referenced implicitly). The value of Data for the class 

access state operation is the name of the attribute accessed and its 

Argument is the class route. 

" All the new class routes have their depth increased by one before being 
returned by Reduce as the set of return routes. The list of state 
operations is searched to find class update state operations with 
Argument routes matching one of the Argument routes of the newly 
created class access state operations. If matching update state operations 
are found, their UpdateValue routes are added to the list of return 
routes. 

Unlike a class read affected data property, a class write affected data 

property has an UpdateValue which can be an input reference or an 

affected data property. The reduction of a class write affected data property 

proceeds as follows: 

* A set of UpdateValue routes and an updated list of state operations 
are computed by applying the Synthes i se function to the 
UpdateValue of the class write affected data property and to the 
current list of state operations. For each upper bound class in the 
ArgumentType of the affected data property, a new class route 
(cV (Data Depth)) is constructed. The Depth of each class route is 
zero and its Data value the name of the class referenced. The Cartesian 
product of the set of class routes and of the set of the UpdateValue 
routes is computed. For each pair in the product set a class update state 
operation (C_update (Data Argument UpdateValue ) ) is created 
with the class route as its Argument and the UpdateValue route as its 
UpdateValue. The Data value is the name of the attribute updated. 

* The Reduce function passes its list of parameter routes unchanged as 

its return routes. 

6.4.5.5 Instance affected data property 

The rule for this category of affected data properties is the most complex of 

all the rules. This complexity results from the use in Prograph of strings as 

reference to classes. 
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The same affected data property may be reduced to a set of both class and 
instance state operations depending on the ArgumentType of the affected 
data property. The ArgumentType is divided into two subsets: a subset 
including the string types and a subset including the single types. 

If the subset including the string types is not empty, this affected data 
property indicates that class structures may be accessed or updated. The 
property must be reduced to a set of class state operations in similar fashion 
to the reduction of class affected data properties described in 6.4.5.4. (the 
single types included in the ArgumentType are discarded before applying 
the reduction rule for the class affected data properties). 

If the subset of ArgumentType including the single types is not empty, 

instance structures may be accessed or updated. 

The rule for the reduction of an instance read affected data property is: 

* Reduce does not add any state operation to its list of state operations 
because, as explained in 6.4.5.2, the effect synthesis should not record 
access on instances. 

» All the parameter routes have their depth increased by one before being 
returned by Reduce as the set of return routes. The list of state 
operations is searched to find instance update state operations with 
Argument routes matching one of the parameter routes. If matching 
instance update state operations are found, their UpdateValue routes 
are added to the list or return routes. 

The reduction of a write instance affected data property requires that: 

* its UpdateValue is synthesised to produce a set of UpdateValue 
routes and an updated list of state operations. The Cartesian product of 
the set of parameter routes and of the set of UpdabeValue routes is 
computed. For each pair in the product set an instance update state 
operation (l_update (Data Argument UpdateValue) ) is created 
with the parameter route as its Argument and the UpdateValue route 
as its UpdateValue. The Data value of the state operation is the name 
of the instance attribute whose value has been updated. 

* the parameter routes are returned as the return routes of Reduce. 
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6.4.5.6 Instantiation side-effect 

An instantiation effect is a terminal side-effect with no Argument and 
therefore is always flattened into a list with a single element. The reduction of 
an instantiation side-effect requires that: 

* an allocation state operation (A l loc (Da t a ) ) is added to the list of 

state operations. The Data value of the allocation side-effect is the name 
of the class to which the new instance belongs. 

6.4.5.7 Local affected data property 

The reduction of a local affected data property proceeds with the following 

steps: 

* No state operation is created. 

" A local route is created (bV (Data Depth)). The Depth of the route is 
zero and its Data value is the Data value of the local affected data 
property. 

6.4.5.8 Persistent affected data property 

The reduction of a read persistent affected data property proceeds with the 

following steps: 

* A persistent access state operation is created (P_access (Data)). 

The Data value for this persistent access state operation is the name of 

the persistent. 

* A persistent route ( p V (Data Depth)) is created to be passed as a 

return route, its Data value is the name of the persistent and its depth is 

one. The list of state operations is searched to find persistent update 

state operations with Data matching the Data of the new persistent 

access state operation. If matching persistent update state operations are 

found, their UpdateValue routes are added to the list of return routes. 

There exists no write persistent affected data property, as a persistent write 

side-effect is a terminal side-effect. 

The reduction of persistent write side-effect proceeds as follows: 

« the UpdateValue of the persistent write side-effect is synthesised to 

produce a set of UpdateValue routes and an updated list of state 
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operations. For each UpdateValue route, a persistent update state 

operation is created (P_update (Data UpdateValue)) with as Data 

value the name of the persistent and as U p d a t e V a l u e the 

UpdateValue route. 

6.4.5.9 List affected data property 

The reduction of a read list affected data property proceeds as follows: 

* No state operation is created because, as explained in 6.4.5.2, the effect 

synthesis should not record access on lists. 

* The parameter routes of Reduce are passed unmodified as its return 
routes. The list of state operations is searched to find list update state 
operations with Argument routes matching one of the input routes. If 
matching list update state operations are found, their UpdateValue 
routes are added to the list of return routes. 

The decision not to increase the depth of the parameter routes before 

returning them as return routes is explained by the fact that the analysis does 

not distinguish between a list and the individual elements of that list (see 

6.3.3.7). 

The reduction of a write list affected data property proceeds as follows: 

* The U p d a t e V a l u e of the list write affected data property is 
synthesised to produce a set of UpdateValue routes and an updated 
list of state operations. The Cartesian product of the set of parameter 
routes and that of UpdateValue routes is computed. For each pair in 
the product set a list update state operation (L_update (Argument 
UpdateValue ) ) is created and added to the list with the parameter 
route as its A r g u m e n t and the U p d a t e V a l u e route as its 
UpdateValue. 

* The parameter routes of Reduce are passed unmodified as return 

routes. 

6.4.6 Synthesis example 

The effect synthesis explained below builds on the example presented in 

6.3.9. 
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<^trans6bj^ 

^ /modMr Xttr ̂  ^Dempw 

Fig. 6.31: Operation annotated for distribution 

The operation Demo is annotated for distribution (see fig. 6.31) and calls the 
universal method whose implementation is shown in fig. 6.32. The symbol 
appended to the name of the operation indicates that this operation is 
annotated for distribution. 

^ P e r s ^ 

4 
-y 'yji 

numeric Attrx 
a  

2 
. . J . . , . J H J U V » . . 

.numeric Attr % 

Hen* 
— o — 

/ / 'V. ' . . . .9... . ^  
^pbjliKtyar % 

Fig. 6.32: Example of effect synthesis 
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The synthesis of the side-eHects of the Demo operation proceeds as follows: 

" The initialisation phase constructs the type and effect signatures of the 
operations and sets the type and affected data properties of the 
dataUnks in the case in which the Demo operation occurs (see fig. 6.31). 

" Type inference is carried out on the case. Fig. 6.33 shows the type 

information attached to the datalinks and the signatures of the 

operations after the case-wide type inference. 

* The side-effect composition routine is applied to the operations of the 
case. When the composition routine reaches the Demo operation, the 
operation's side-effects are duplicated. The effect signature of Demo<» 
comprises a single side-effect (02 in fig. 6.33): 

0AW(CAR(CAW(1"numericAttr"PER("Pers")) "numericAktr") 

"ObjInstVar"NEW("##") (D). 

The Argument Type of the composed affected data properties in the 

duplicate side-effect must be updated with the type of the datalink 

connected to the terminal of the operation Demo^. The type of this 

datalink is <transObi >. 

(<t:ransObj> ^olnfo^^^ttrems0b]>) . 
^ <t:ransOb]: 

["transObj"+|<transObj +>] 
/*SE*/Op 

i 
<transObj +>-41/*SE*/ 
CAW(1 "stringAttr" 
NEWC**") (1)) 

(< transObj >,IsioInfo 

[<transObj +>|"transObj" 

<transObj>) 

+ ] ,NoInfo, [<t:ransObj+> | "transObj" + ] 

Fig. 6.33: After the type inference 

This type is propagated to the Argument Type of the affected data 

property: 

CAW{1 "numericAttr" PER("Pers")) 
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and propagated to the ArgumenbType of the affected data property: 

CAR(CAW(1"numericAttr" PER("Pers")) "numericAttr") 

However, the ArgumentType of the side-effect itself is not updated. 
This is because the Argument of the side-effect is the result of a Get 
operation on the numericAttr attribute and the type of the second 
output of a Get operation does not depend on the type of the input of 
this Get operation. 

The first step of the synthesis is to flatten the side-effect into a list 

representation: 

(1 CAW(1 "numericAttr" PER("Pers")) CAR(CAW(1 "numericAttr" 

PER ( " Pers") ) " numericAttr " ) OAW{CAR{CAW(1 "numericAttr" 

PER("Pers")) "numericAttr") "ObjInstVar" NEW("##") (1))) 

The Reduce function is applied to the four elements of the list. The synthesis 
starts with an empty set of state operations. The result of each reduction is 
presented in a table with the following entries: 

- the input reference, affected data property or side-effect being reduced 

- the ArgumentType of the affected data property or side-effect being 

reduced 

- the list of parameter routes 

- the current list of state operations 

- the Update Value input reference or affected data property (only 

relevant when a write affected data property or a write side-effect is 

being reduced) 

- the list of UpdateValue routes produced by the synthesis of the 

UpdateValue input reference or affected data property (only relevant 

when a write affected data property or a write side-effect is being 

reduced) 

- the list of state operations after the synthesis of the UpdateValue 

input reference or affected data property (only relevant when a write 

affected data property or a write side-effect is being reduced) 

- the list of return routes 

212 



EfFECTIN?EKENCE/U%DS%TfntR%S 

- the list of state operations after the reduction. 

The Reduce function is applied to the input reference 1: 

- no state operation is added to the list of state operations. 

Reduced input 

reference 
1 

Parameter () 

routes 

List of state () 

operations 

Return routes ( i V ( i o ) ) 

Upd&kdlbt 

of state 

() 

operations 

CAW(1 " n u m e r i c A t t r " PER("Pers") ) is reduced. The reduction 

proceeds in two steps: 

- The UpdateValue of the affected data property must be synthesised 

first. The S y n t h e s i s e function is applied to the PER( " P e r s " ) 

affected data property and the current list of state operations. The 

synthesis adds a persistent access state operation to the list of state 

operations and returns a single persistent route as the set of 

UpdakeValue routes. 

- A class update state operation is created. The Argument of the class 

update affected data property is a class route of depth zero. The Data 

value of the class route corresponds to the classes referenced in the 

ArgumenkType of the affected data property: 

C_update("numericAttr" cV{"transObj" 0) pV("Pers" 1)) 

- The parameter routes of Reduce are passed as return routes. 
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Reduced affected 
data property 

CAW(1 "numericAttr" PER("Pers")) 

ArgumentType 

of the affected 
data property 

<transOb]> 

Parameter 

routes 

( iV(lO)) 

List of state 
operations 

( ) 

UpdateValue PER("Pers") 

List of 

UpdateValue 

routes 

(pV("Pers" 1) ) 

L^fof^ak 
operations after 
synthesis of 
UpdateValue 

{P_access("Pers")) 

Return routes (iV(i 0)) 

Updated list of 
state operations 

(P_access("Pers") C_update("numericAttr" 

cV("transObj" 0) pV("Pers" 1) ) ) 

The affected data property C A R (CAW ( 1 " n u m e r i c A t k r " 

PER (" Pers ") ) "numericAkbr") is reduced. 

The reduction rule requires that a state operation is created: 

C_access("numericAttr" cV("transObj" 0 ) ) 

When computing the return routes for the current affected data property, 
the Reduce function finds a matching update state operation: 

C__update ("numericAttr" Ca/{" transObj " 0) pV (" Pers" 1) ) 

The UpdateValue of this matching state operation must be included in 

the set of return routes computed by Reduce. 
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Reduced affected 

data property 
CAR(CAW(1"numericAttr" PER("Pers")) 

"numericAttr") 

ArgumentType 

of the affected 
data property 

<:transOb]> 

Parameter 
routes 

(W(10)) 

L^tof^ak 

operations 
(P_access("Pers") C_update("numericAttr" 

cV{"transObi" 0) pV("Pers" 1) ) ) 

Return routes (cV("transObj" 1) pV("Pers" 1)) 

Updated list 
of state 
operations 

(P_access("Pers") C_update("numericAttr" 

cV("transObj" 0) pV("Pers" 1)) 

C access("numericAttr" cV ("transObj" 0)) 

The side-effect 0AW(CAR(CAW(1 "numericAttr" PER("Pers'') ) 

"numericAtkr") "Ob] InstzVar" NEW("##") (1))) is reduced. 

The first step in the reduction is the synthesis of the Update Value of 

the side-effect, NEW ("##"). The synthesis adds no state operation to 

the list of state operation and returns a local route as the set of 

UpdateValue routes: 

T h e A r g u m e n t T y p e of the s i d e - e f f e c t is 

[<transOb] +> | "transObj " + ], that is the Argument of the side-

effect can be either an instance or a string referring to a class. 

Consequently, Reduce must create both class and instance state 

operations. 

The class state operation ignores the parameter routes of Reduce, 

instead a class route is created to be the Argument of a class update 

state operation: 

C_update ("Obj InstVar" cV (" transObj " + 0) L'V( "##" 0)) 

Two instance update state operations are added to the list of operations, 
one for each route in the set of parameter routes of Reduce: 

I_update("ObjInstVar" pV("Pers" 1) lV{"##" 0)) 
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I_update ("ObjInstVar" cV (" transObj " 1) LV{"##" 0) ) 

Reduced side-

effect. 

0AW(CAR(CAW(1"numericAttr" PER("Pers")) 

"numericAttr") "ObjInstVar"NEW("##") (1))) 

ArgumentType 

of the affected 
data property 

[<transObj+>1"transObj"+] 

Parameter 
routes 

{cV{"transObj" 1) pV("Pers" 1)) 

List of state 

operations 

(P_access("Pers") C_update("numericAttr" 

cV("transObj" 0) PV("Pers" 1) ) 

C access{"numericAttr" cV{"transObj" 0)) 

UpdateValue NEW("##") 

List of 
UpdateValue 

routes 

LV("##"0) 

List of state 
operations after 
synthesis of 
UpdateValue 

(P__access (" Pers") C_update ("numericAttr" 

cV("transObj" 0) pV("Pers" 1) ) 

C_access("numericAttr" cV("transObj" 0) ) 

Return routes Not relevant 

Updated list of 
state operations 

(P_access("Pers") C_update("numericAttr" 

cV{"transObj" 0) pV{"Pers" 1) ) 

C_update("ObjInstVar" cV{"transObj"+0) LV(## 

0))) I_update("ObjInstVar" cV("transObj" 1) 

LV("##" 0)) I__update (" Obj InstVar" pV (" Pers " 1) 

bV("##" 0)) 

The result of the synthesis is a list of state-operations: 

P_access("Pers") 

C_update("numericAttr" cV("transObj" 0) PV("Pers" 1) ) 

C_access("numericAtkr"cV("transObi"0)) 

C_update{"ObjInstVar" cV("transObj"+0 ) lV("##" 0)) 

I_update("Ob]Inst:Var" cV("t:ransObj" 1) L^C'**" 0)) 

I_update("ObjInstVar" pV("Pers"1) LV{"##" 0)) 
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6.4.7 Flow sensitivity 

When a write affected data property or a write side-effect is reduced, the 
Argument of the affected data property or side-effect must have been 
synthesised before its UpdabeValue. For example, if an operation 
annotated for distribution called the method case the case of which is shown 
in fig. 6.34, the effect signature of this annotated operation would be: 

0AW(CAR(1 "ObjectAttr") "ObjInstVar" PER("Info") ( )) 

During the execution of the method called by the operation annotated for 

distribution, the Get persistent operation is executed just after the Input 

operation. 

Object ( c c Info ̂ 

^Objlnstya^ 

Fig. 6.34: Flow information 

The side-effect is flattened into the following list: 

(1CAR(1"ObjectAttr") 0AW(CAR(1"ObjectAttr") "ObjInsbVar" 

PER("Info") ())) 

The synthesis is executed in three steps. The reduction of the input reference 
is described in the table below: 
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Reduced input 
reference 

1 

Parameter 
routes 

() 

List of state 
operations 

() 

Return routes ( i V ( i 0 ) ) 

Updated list of 

state operations 

() 

The affected data property CAR (1 " Obj ecbAttr") is then reduced: 

Reduced affected 
data property 

CAR(1 "ObjectAttr") 

A r g u m e n t T y p e 

of the affected 
data property 

<t:ransOb] +> 

Parameter 

routes 

(iV(lO)) 

List of state 
operations 

0 

Return routes (cV("transObj"+ 1) ) 

Updated list of 
state operations 

{C_access{"ObjectAttr" cV( "transObj"+ 0) ) ) 

The side-effect OAW(CAR(1 "ObjectAttr" ) "ObjInstVar" PER{"Info' 

is now reduced: 
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Reduced side-
effect. 

OAW(CAR(l"ObjectAtkr") "ObjInstVar" PER("Info") 

( )) 

ArgumentType 

of the affected 
data property 

[<transObj+>|"transObj"+] 

Parameter 

routes 

(cV("transObj"+ 1) ) 

List of state 

operations 

(C_access ("ObjectAttr" cV( "transObj " + 0) ) ) 

UpdateValue PER("Info") 

List of 

UpdateValue 

routes 

pV("Info" 1) 

List of state 
operations after 
synthesis of 
UpdateValue 

(C_access ("ObjectAttr" cV("transObj "+ 0) ) 

P_access("Info")) 

Return routes Not relevant 

Updakdl^tof 
state operations 

(C_access {"ObjectAttr" c V ( " t r a n s O b j "+ 0) ) 

P_access{"Info") C_update("ObjInstVar" 

c V ( " t r a n s O b j " + 0 ) p V ( " I n f o " 1) ) 

I_update("ObjInstVar" c V ( " t r a n s O b j " + 1 ) 

p V ( " I n f o " 1 ) ) ) 

Although the Get persistent operation is executed before the Get class 
attribute (ObjectAttr) operation, the state operation describing the access 
performed by the persistent Get operation is going to be recorded after the 
state operation recording the access to the value of the class attribute. The 
P_access ( "Pers" ) was recorded (oo Zak with respect to the state 
o p e r a t i o n C , _ a c c e s s ( " O b ] e c t A t t r " cV ( " t r a n s O b j " + 0 ) ) . T h e 

recording of the persistent state operation was delayed because the 
PER( "Info" ) affected data property was the update value of the 
0AW(CAR(1 "Ob] ectAttr") "ObjInstVar" PER("Info") ( )) side-
effect. 
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One of the claimed properties of the effect synthesis is that it can detect 
locally created aliases. Such a situation occurs when an object is passed as 
the update value of a write side-effect and it is subsequently extracted by a 
read side-effect in one of the cases of the method called by the operation 
annotated for distribution. 

The example above shows that the representation chosen for the side-effects 

results in loss of information about the execution order of the operations. 

There are two possible consequences: 

* A write state operation is recorded too early. A local alias might be 
detected even if this alias cannot be created at run-time. As a result of 
finding a matching state operation, the Reduce function applied to a 
read affected data property will return an extra route which might 
become the argument of another state operation at a latter stage during 
the effect synthesis. The consequence of recording a write state operation 
too early is that the synthesis will record some unnecessary state 
operations, however the approximation remains safe because the set of 
state operations is a superset of the possible accesses or updates that 
may take place when the operation annotated for distribution is 
executed. 

* A write state operation is recorded too late. The consequence of this is 
that the effect synthesis might fail to detect the creation of a local alias 
during the execution of the operation annotated for distribution and 
consequently fail to detect a way an operation annotated for distribution 
may access or update an input value or a global variable at run-time. 

A possible solution to this shortcoming would be to force the synthesis to 
record write state operations as early as possible. This would entail the 
following modification to the representation of side-effects: all write side-
effects must be terminal ones. The modified effect signatures are shown in the 
table below: 
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Operation Side-effect Current signature Modified Signature 

A A. 
^StudentLis^ Class write 

side-effect 

CAW(1 " StudentList" 2 

U)) 

C A W d "StudentList" 2 

()) X:LDE(1 (1)) 

19 
^ S u r m a m e ^ Instance 

write side-

effect 

OAW (1 " Surname "2 (1) ) OAW (1 " Surname "2 (1) ) 

XIDE(1 (1)) 

I X E 
^set-nth!^ 

List write 

side-effect 

LIW(12(1)) LIW(12(1))XIDE(1 

(1) ) 

With only terminal write side-effects, there would exist no write affected 
data property and the recording of write state operations would not be 
delayed because some write affected data property is composed in the 
update value of a write affected data property or a write side-effect. 
Moreover, the list of side-effects of the operation annotated for distribution 
could be sorted so that the write side-effects appear first in the list. 

6.5 Summary 

* The effect inference proceeds together with the type inference to gather 

information about the effects of a method. 

* Effect information encompasses affected data properties which 
describe how data values are obtained and side-effects which are kept 
with the type information in the lines making up the signature of a 
method. 

* Different categories of side-effects are for the different data structures 
that can be affected. A side-effect also has an action (read or write). 

« Effect synthesis computes an approximation of the effects of the 
execution of an operation in a particular execution context. 

* A state operation is the abstraction of an effect for the effect synthesis. 
A Route is the abstraction of a data value. 

" The effect synthesis reduces the side-effects of an operation in a 
particular context into a list of state operations. 
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Experimenting with the analysis tool 

The analysis described in chapter 5 and chapter 6 has been implemented. 
This chapter covers both the implementation of the analysis tool and the 

experimentation with it. 

The Arst section of this chapter highlights some of the implementation details 
of the analysis. The next section looks at a complex example to describe the 
behaviour of the analysis. The third section comments on the applicability of 
the analysis and suggests some improvements. The fourth section explains 
how the results of the analysis can be interpreted. The last section suggests 
some ways of exploiting these results to support distribution. 

7.1. The analysis tool 

Since the access to the code of the implementation of Prograph is not 

available, it has not been possible to integrate the analysis with the 

interpreter. The analysis is run as a separate application within the 

interpreter. This section highlights some of the aspects of the implementation 

of the analysis tool. 

The analysis is triggered by selecting an item on a pull-down menu and typing 
the method identifier of the method to be analysed. The code of the method 
to be analysed is stored in a file, a utility program (provided by Pictorius 
Inc.) extracts the code from the file and converts it into a form which is 
amenable to analysis. 

7.1.2 Auxiliary data 

The construction of type expressions, operations on type expressions and 
computation of operation signatures requires the construction of the set of 
superclasses or subclasses of a given class and the look-up of all the methods 
or all the attributes with the same name. In order to speed up these 
operations, the information has been organised in the form of indexed files: 

* The class hierarchy is stored in a file and a class description consists of 
a (class name, class identifier) pair. Class identifiers are sequences of 
integers constructed in such a way that by comparing two class identifiers 
it can be easily worked out whether a class is a superclass of another. 
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Each class description is indexed by both its class identifier and its class 
name,̂  allowing the look-up of a class name from the class identifier and 
vice-versa. 

* Attribute information is stored in a separate indexed file. The name of 
the attribute is used as a key and the associated data consists of two 
lists. The first list contains the identifiers of the classes that define (but 
not the classes that inherit) the attribute as a class attribute and the 
second list contains the identifiers of the classes that define (but not 
inherit) the attribute as an instance attribute. 

* [Suzuki 1981] proposed the idea of a look-up table to mimic the 
behaviour of Smalltalk's method look-up mechanism within the analysis. 
The table used for Prograph maps a method name to three lists of class 
identifiers. The first list contains the identifiers of the classes that define 
a simple method with the same name. The second and third lists are the 
lists of the identifiers of the classes that define Get and Set methods 
respectively. During the initialisation phase of a case-wide type and 
effect inference, the signatures of the operations of the case are set. To 
construct the signature of a simple. Get or Set operation with a data-
determined reference, the inference mechanism looks up a method by 
name and method type (i.e. Set, Get or simple) and finds out the 
identifiers of the classes that (re)define a method with the required name 
and method type. To build the signature of an I nit operation, the 
inference mechanism checks whether a custom initialisation method is 
defined for the class. 

* The signatures of the primitives are stored in a repository and are 
indexed by the primitive name. The repository itself is constructed from 
the primitive signature files. These text files contain the textual 
representation of all the signatures of the primitive methods of a given 
category (e.g. list primitive methods, math primitive methods). The 
content of the signature files is parsed to construct the signatures put in 
the repository. 
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7.1.3 Restricted method despatching 

During the course of execution the analysis may prompt the user, if an 
operation name is heavily overloaded, to discard the classes whose methods 
cannot be despatched. This can be seen as equivalent to requiring the user to 
annotate the type of methods' receivers and therefore incompatible with the 
idea of type inference. However, the information provided by the 
programmer is not stored and thus is of a less permanent nature than a type 
annotation and the analysis might become intractable without this user 
feedback. 

7.1.4 Results and errors logging 

The analysis proceeds until it is completed or it fails. Failures are most likely 
to occur during the type inference either during the setting of the operation 
signatures or during the forward and backward passes of the inference. In 
case of a failure, the analysis reports at what stage of the analysis the failure 
has occurred (i.e. initialisation phase, forward or backward analysis) and the 
location the faulty operation in the code currently analysed. 

The proceeding of the analysis is monitored by recording: 

* The start of an inference and the value of the system clock at the time. 

* The end of an inference and the corresponding value of the system clock 
(the only purpose for the values of the system clock is to measure the time 
taken by the analysis to complete). 

* The signature produced by the inference. 

* The restrictions by the user to the set of classes to which the receiver of 
an operation with a data determined reference can belong. 

Indentation is used to indicate the nesting of the inferences. This information 
is displayed in a textual form on the screen upon the successful completion of 
the analysis. The template for the displayed information is shown below: 
start Inference for Ma : T_Starta 

Start Inference for My: T_Startb 

Finish Inference for M^: T_Finishb 

Signature for My: Sigb 

Start Inference for Mg : T_Startc 
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Receiver of operation reduced to Ci, C2 

Start Inference for T_Startd 

Finish Inference for T_Finishd 

Signature for Sig^ 

Start Inference for Me : T_Starte 

Finish Inference for Me : T_Finishe 

Signature for Me: Sige 

Finish Inference for : T_Finishc 

Signature forMc: Sig^ 

Finish Inference for Ma; T_Finisha 

Signature for Ma: Sig^ 

However, in order to make it more readily understandable, the execution of 
an analysis can also be represented by a tree (which is drawn manually). The 
nodes of the tree correspond to inferences applied to methods and the links 
represent dependencies between the results of inferences. Special nodes are 
also inserted in the graph to indicate the points of the analysis at which the 
set of classes of an operation receiver has been restricted by the programmer. 
The successive inferences are carried out in a top-to-bottom, left-to-right 
order. The graphical equivalent to the analysis log shown above is shown in 
fig. 7.1: 

1 

2 V 

»b # 
Restriction of the receiver 
of foo 

4 
5 

Md # 

Fig. 7.1: Graphical interpretation of an analysis log. 

Downward transitions (the transition from node 1 to node 2 in fig. 7.1, for 
example) occur during the signature set-up phase of the inference. If a 
signature is missing and no recursion is detected, the current inference is 
suspended and the missing signature is inferred. 
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7.1.5 Caching of intermediate results 

Intermediate results are cached to speed up the inference. Cached 
information includes: 

* Signatures of default Get and Set operations. The same Get and Set 
operations often occur in separate cases of a method. Caching their 
signature instead of building them on the fly for each occurrence of the 
same operation speeds up the analysis. 

* The signatures of all the methods, class-based as well as universal. 

The cache consists of a list of (method identifier, signature) pairs. For the 
signatures of default Get and Set operations, the C/assName component of 
the method identifier is Universal. 

Computing the signature of an operation with a data-determined reference is 
expensive and the computed signatures are obvious candidates for caching. 
However, the inferred signatures are not cached because the user may restrict 
the type of the receiver in a given case of a method and the signature, while 
valid in the context of that particular case may be invalid in the context of 
another case. 

Dynamic binding means that signatures may become invalid when some code 
is edited. It would be particularly difficult to keep track of which signatures 
should be invalidated when code is modified. The analysis takes the 
conservative view that the cached signatures are valid only for the duration 
of a session of the analysis program and all the cached information is 
discarded when exiting the analysis program. 

7.2 Examples 

7.2.1 Type and Effect Inference 

The method chosen as the first example of the type and effect inference is a 
universal method called IsPrimitive? (fig. 7.2) and is used to check 
whether a method identifier is a reference to a primitive. IsPrimitive? 
calls the Key Parse universal method whose role is to break up a method 
identifier into its three separate components (i.e. C/assName, Mef/zodName 
and MefAodType). If the MefAodType is simple, IsPrimitive? looks for 
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the method name in the list of the primitives' names stored in the 

P r i m i t i v e p e r s i s t e n t . 

Signature key 

.a: 
Universal 

CCr cc, Simple 

TRUE I FALSE 

Signature key 

FALSE 

TRUE I FALSE 

Fig. 7.2.a: First case of isPrimitive? Fig. 7.2.b: Second case. 

The information logged during the analysis is shown below: 

##START ANALYSIS OF : Universal/ Is Primitive?/Simple 

2:31:49 pm 

##START ANALYSIS OF :Universal/Key Parse/Simple 

2:31:51 pm 

##FINISH ANALYSIS OF:Universal/Key Parse/Simple 

2:31:53pm 

The signature is: 

##FINISH ANALYSIS OF:Universal/Is Primitive?/Simple 

2:31:56 pm 

The signature is : 

""=<boolean> 

/*SE*/PER("Primitives" ()) 
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From the signature inferred, it can be said that the method Is Primitive? 
takes a string as argument and returns a boolean value. Is Primitive? 
also induces a read side-effect on a persistent named Primitives. 

7.2.2 A worst case example 

The code to be analysed is part of the implementation of the effect inference 
algorithm. Each category of side-effect and affected data property is 
implemented as a separate class (fig. 7.3). 

Effect Info 

Affected-Data Side-Effect 

^ / / 
CAD OAD IAD LAD NAD PAD ASE CSE OSE ESE ISE LSE PSE 

Fig. 7.3: The Effect Info class hierarchy 

Each class defines a t o - s t r i n g method which produces a textual 
representation of the side-effect or affected data property passed as 
argument to the method. Each class also defines a format method to 
produce a formatting string for the textual representation of the effect. 

The to-string method calls the version of format defined for its class 
and substitutes the formatting items in the formatting string with a textual 
representation of the values of each of the fields of the side-effect or affected 
data property. The to-string method defined for the class OAD is shown 
in fig. 7.4 

«OAD» 

« Affected-Data » 

Format 

Affected Data textual representation 

Fig. 7.4.a: OAD/to-string/Simple 
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Format « Affected-Data » 

TRUE vf 

Data% 

Aroument ^ 

/ t o s t r i n g % 

^format 

Read Attr ibute 
Affected Data Property 

Format « Affected-Data » 

Data^ 

\ ^ 

9. .0.. ? 

^/to-string0 

^ format 

Vr i t e Attr ibute 
Affected Data property 

Fig. 7.4.b&c: Cases of the local of OAD/to-string/Simple 

Although, the code for bo-string is not extremely complex, producing a 

type and effect signature is complicated by the facts that affected data 

properties are recursive data structures and that the to - s tr ing name is 

heavily overloaded (36 classes implement a t o - s t r i n g method). 

The graph shown in fig. 7.5 shows the progress of the analysis of the t o -

sbring method. The points of the analysis at which the set of classes of an 

operation receiver has been restricted by the programmer are also indicated. 

To simplify the diagram, the subtrees corresponding to the inferences of the 

signatures of the various Format methods have been omitted. 
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OAD/to-string/Simple 

Local of 
OAD/to-string/Simple 

OAD/Format/Simple 

Restriction of the receiver 
of to-string. 

NAD/to-string/Simple^ 
4 

Varity/to-string/Simple 

IAD/ Forma t / S imp 1 e 

IAD/to-string/Simple 

Restriction of the receiver 
of to-string. 

PAD/Format/Simple 

LAD/to-string/Simple 

LAD/Format/Simple 

PAD/to-string/Simple 

Local of 
PAD/to-string/Simple 

Restriction of the receiver 
of to-string. 

Local of 
LAD/to-string/Simple 

Restriction of the receiver 
of to-string. 

CAD/to-string/Simple 

CAD/Format/Simple Local of 
CAD/to-string/Simple 

Fig. 7.5: Tree representation of the analysis of O A D / k o - s t r i n g / S i m p l e 

The signature inferred by the analysis tool is: 

[<Side-Ef fect+> | <Ef fected Data+> | <Ef feet I n f o ] =" " 

The type signature says that the argument of O A D / t o - s t r i n g / p l a i n is 
an instance of E f f e c t I n f o or one of its subclasses and a string is returned. 
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The effect signature contains no less than 72 side-effects and it would convey 

little to print all the expressions here. 

A few comments can be made on the behaviour of the analysis: 

• Although the complexity of the different to-string methods is 

roughly equivalent^ the numbers of side-effects inferred for the different 

methods vary considerably as shown by the figures below: 

method identifier Number of side-effects 

OAD/to-skring/Simple 72 

IAD/to-string/Simple 23 

PAD/to-string/Simple 22 

LAD/to-skring/Simple 9 

CAD/t:o-string/Simple 4 

By examining the tree representation of the analysis, one can see there is a 

correlation between the depth in the tree at which the inference is carried 

out and the number of side-effects inferred. The implementation of to-

string defined for the CAD class is almost the same as the one defined 

for the OAD class but when trying to infer a signature for CAD/to-

string/Simple, the inference mechanism detects the mutual recursion 

as soon as to-string is applied to the values extracted from the 

Argument and UpdateValue attribute of the instance of CAD. The 

reduction in the growth of the number of side-effects observed for 

IAD / to-string/Simple is due to the fact that for an instance of 

IAD, only the value of the Argument attribute is printed. 

* The expansion occurs when the instance attributes Argument or 

UpdateValue are extracted from the Arst argument of the to-string 

method. The side-effect signature of LAD/to-string/Simple induced 

by the reading of the Argument and UpdateValue attributes are 

composed with those inferred for CAD/to-string/Simple as shown 

below: 

Side-effects for CAD/to-string/Simple: 

0AR(1 "Flags" ( )) * 
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0AR(1 "UpdateValue" { ))* 

0AR{1 "Argument" ( ) ) * 

OAR(l"Data" ()) 

Side-effects for LAD/ko-string/Simple: 

0AR(1 "Flags" ( )) * 

0AR(0AR(1 

0AR(0AR(1 

QAE (0^.(1. 

0AR(0AR(1 

Update Value." 

Update Value," 

UpdateValue." 

.Up.da.t.eVal.ue" 

"Flags" ( ) ) * 

"UpdateValue" ( ) ) * 

"Argument" ( ) ) * 

"Data" ())* 

OAR(OAR(1"Argument") "Flags" ( ))* 

OAR (OAR (1 " Argument") "UpdateValue" ( ))* 

OAR (OAR (1 " Argument" ) "Argument" ( ))* 

OAR (OAR(1 "Argument") "Data" ( )) 

The I's (underlined with dots) in the side-effects of CAD / t o -

string/Simple are replaced by the read UpdateValue and 

Argument instance affected data properties (underlined with dots) in 

the side-effect signature of LAD/to-string/Simple. 

In the signature of OAD/to-string/Simple, side-effects have five 

levels of nesting as in: 

0AR(0AR(0AR(0AR(0AR(1"Argument") "Argument") "UpdateValue") 

"Argument") "Data" ( )) 

# The analysis of the to-string method takes approximately 30 min 

to complete (interpreted on a Centris 610). It is instructive to look at how 

this time is spent. Whereas it takes about 0.3 % of the total analysis time 

to reach the bottom of the analysis graph (node 16), the upward 

transition from node 6 to node 3 takes about a third of the total analysis 

time. Although the logging of the analysis steps does not allow the break 

down of the cost of the different stages in the upward transition, clearly 

combining the lines of the different cases of a method is very expensive, 

especially the elimination of the redundant side-effects. 
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7.3 Applicability of the Analysis 

7.3.1 Speed and memory use 

The examples of section 7.2 (and in particular the example presented in 

7.2.3) show the execution of the analysis may consume considerable 

computing resources, both in time and memory. 

The analysis has been implemented in Prograph. Using Prograph to 

implement the complex algorithms required by the analysis demonstrates the 

expressiveness of the language and has allowed much flexibility to 

experiment and test during development. However, running the analysis as 

an interpreted application is expensive in terms of performance. The current 

implementation of the analysis executes at speeds which exclude the use of 

the analysis in a routine way which is transparent to the user. This handicap 

must be taken into account when integrating the analysis tool in the 

application development environment for Distributed Prograph. 

For the usability of the analysis, it is important that it is reasonably robust (it 

must not crash) and either completes or fails within a reasonable time. The 

analysis algorithm has no built-in "circuit-breaker" but such functionality 

could be provided by taking into account the depth of the analysis graph. 

The deeper the graph becomes, the more likely it is that the analysis program 

will abort by reaching the limit of the available memory resources or that the 

time needed to obtain a result will become unacceptable. The circuit-breaker 

should report that the depth limit has been reached and fail the analysis. 

The Prograph interpreter and editor also need to perform method and 

attribute look-ups as well as class hierarchy searches and probably maintain 

internally some data for the same purpose as the auxiliary data described in 

7.1.2. Accessing the internal data maintained by the interpreter and using the 

associated operations to manipulate this data may be a more efficient 

solution than defining ad-hoc auxiliary data and operations to query the 

data. 

7.3.2 Handling mutual recursion 

The example presented in 7.2.2 shows how mutual recursion complicates the 

analysis. Two approaches are possible: 
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* Take the view that mutually recursive methods cannot be analysed and 

fail the analysis every time mutual recursion is detected. However, the 

way mutual recursion is detected is crude and it is likely that mutual 

recursion will be detected in situations where it does not occur at run-

time. Overloading method and attribute names corresponds to well 

established object-oriented programming practices so mutual recursion 

may often be detected. Thus, this option might prove unnecessarily 

restrictive. 

* Leave the programmer to give indications about the actual control flow 

of the method by restricting the receiver of operations with a data-

determined reference. This option requires the programmer to have an in-

depth knowledge of the code and goes against the principle of data 

abstraction. Taken to the extreme, this solution raises the question of the 

splitting of the tasks between the analysis and the programmer. As the 

degree of interaction required from the programmer increases, the benefits 

drawn from the analysis become less obvious. 

7.3.3 Precision of the results 

The design of the analysis always requires a balance to be struck between the 

accuracy and the speed of the analysis. 

Some design decisions have been made and explained in the previous 

chapters, trading precision for speed: 

* Case-wide type inference is carried out in two passes (forward and 

backward, the third pass is concerned only with type dependencies). 

* The combination of the lines of the relational primitives. 

* The combination of the lines of the different cases of the same method. 

" In the case of mutual recursion, the signatures of the methods whose 

identifiers occur between two identical method identifiers are considered 

valid and are reused when they should be discarded 

On the other hand, other decisions have leant toward precision at the 

expense of speed: 

* The case in which the operation annotated for distribution appears is 

analysed before the side-effects of the annotated operation are 
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synthesised. The expected benefits are that the type information inferred 

for the arguments of the operation armotated for distribution will help to 

narrow the approximation produced by the effect synthesis. 

Other solutions have been implemented or propositions can be made to 

improve the precision of the analysis: 

* The user is prompted to restrict the type of a receiver of an operation 

with a data-determined reference when this operation has a heavily 

overloaded name. 

" The task of the effect synthesis is greatly complicated by the fact that 

the argument of a Geb or a Set operation can be either an instance of a 

class or a string the value of which is the name of a class. The type of the 

operation argument does not matter when the attribute accessed or 

modified is a class attribute and the synthesis describes the effect 

induced by the Get or Set operation with the same state operation (a 

class state operation). But if an instance attribute is accessed or 

updated, the effect induced by the Get or Set operation will depend on 

the type of the argument and must be described by two different state 

operations. Passing a class reference to a Get or Set operation to obtain 

or modify the default value of an instance attribute is a very conunon 

practice in the Application Building Editors. However, this construct is 

less relevant for actual application code. Ideally, there should be two 

pairs of Get and Set operations in Prograph for different types of 

arguments: the Get and Set operations which take an instance as 

argument and the Get and Set operations which take a string as 

argument. Instead, the analysis could assume that a program is not going 

to access or modify default instance attribute values. The typing rules for 

Get and Set operations would have to be modified so that a string type 

is no longer a legal type for the first input of a Get or Set operation 

when this operation involves an instance attribute. No other changes 

would have to be made to the rest of the analysis. 
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7.4 Interpretation of the synthesis results 

The results of the effect synthesis can be used to derive information about the 

effects induced by the execution of an operation annotated for distribution. 

The information of interest falls into four categories: 

* Access to a global variable 

* Update of a global variable 

* Update of an operation argument 

* Creation of an alias. 

The information can be organised in a hierarchy (fig. 7.6). 

Information 

Access Update 

Global 
Variable 

OpemffoM Global 
Variable 

Operation 
Argument 

Alias 

Fig. 7.6: Effect information hierarchy 

Access fo (ZM OpemfioM appears for the sake of completeness, 

however this information is not recorded as explained in subsection 6.4.5.2. 

Afzas is below both Updak a GZobaZ yariab/e and Lfpdak am OpgrafzoM 

ArgwmeMf as the creation of an alias may result from a write state operation. 

Information can be extracted by interpreting the state operations produced 

by the synthesis. 

7.4.1 Access information 

An access to a global variable occurs during the execution of an operation 

annotated for distribution if the list of state operations produced by the 

synthesis of the side-effects of the annotated operation contains: 

" A persistent access state operation (P_access (Data)) 
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* A class access state operation (C_access (Data Argument)) 

® An allocation state operation (Alloc (Data)) 

7.4.2 Update information 

An update to an input occurs when the list of the state operations produced 

by the synthesis of the side-effects of an operation annotated for distribution 

contains: 

* A n instance update state operation (l_update (Data Argument 

UpdateValue)) where the argument route is an input route (iV (Data 

Depth)). 

* A list update state operation (L_update (Argument 

UpdateValue)) whose argument route is an input route (iV (Data 

Depth)X 

An update to a global variable is characterised by the presence in the list of 

state operations of: 

* A class update state operation ( c_update (Data Argument 

UpdateValue)). 

* A persistent update state operation ( P _ u p d a t e ( D a t a 

UpdateValue)^ 

« A n instance update state operation (I_update (Data Argument 

UpdateValue)) where the argument route is a class route (cV (Data 

Depth)) or a persistent route (pV(Data Depth)). 

" A list update state operation ( L _ u p d a t e ( A r g u m e n t 

UpdateValue)) whose argument route is a class route (cV (Data 

Depth)) or a persistent route (pV (Data Depth)). 

7.4.3 Alias information 

Creating an alias means that, as the result of an update, an object is 

potentially referenced more than once. 

The purpose of the UpdateValue route of an update state operation is to 

describe how the data object that will be pointed to after the update 

described by the state operation became available in the cases of the method 

called by the operation annotated for distribution. Examining the 
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U p d a t e V a l u e route of an update state operation can provide useful 

information: 

" An input UpdateValue route with a depth greater than or equal to 

one indicates the creation of an alias. This is because the object described 

by the route has been extracted from an input of the current case and, as 

a result of the update state operation^ the extracted object is referenced 

at least twice. It is referenced once by the structure from which it was 

extracted and a second time by the structure that points to it after the 

update. 

I S InstVar^ 

b 

^ r s : 

Fig. 7.7: Aliasing of an attribute value. 

In fig. 7.7, after the execution of the persistent Set: operation, b is 

pointed to by at least two structures: the persistent structure Pers and 

the structure from which b was extracted. 

# An input UpdateValue route of depth zero may also indicate the 

creation of an alias because of two reasons. The first one is the reduction 

of read effects on lists. The reduction rule for a list affected data 

property requires that the Reduce function does not increment the depth 

of its parameter routes before passing them as return routes. A route with 

a depth of zero may describe an object extracted from a list passed as an 

argument to the current case. The second reason is that an input route of 

depth zero may also describe an object which was passed as an argument 

to the operation annotated for distribution. At the same time, this 

argument object may already be referenced outside the cases of the 

method called by the operation annotated for distribution (although there 

might be no other reference to the argument object, the analysis cannot 

rule out the creation of an alias). 

238 



detach r%% 
"̂ -TT 

(^ObjliKtVar % 

T d 

Fig. 7.8: Aliasing of the element of a list 

In Hg. 7.8,̂  the value c is described by an input route of depth zero. After 

the Set operation, the value c is pointed to by both the list b and the 

instance a or the class whose name is the value of string a. 

* A persistent or a class UpdateValue route shows that the object has 

been extracted from a persistent or a class structure before its reference is 

given to another structure during an update. Therefore, the object is now 

referenced at least twice. 

^ P e r s ^ 

numeric Attr% 
M  

Fig. 7.9: Aliasing of a global variable. 

In fig. 7.9 after the Get operation, the value extracted from the persistent 

Pers is referenced by both the persistent Pers and the instance a or the 

class whose name is the value of the string a. 

* Objects created locally can also be aliased. The detection of these 

aliases requires a scan of the entire list of the state operations to find 

write state operations whose UpdateValue fields store identical 

local routes. 

In the implementation of several distributed object-oriented languages, 

immutable data cannot be referenced across different object contexts. 

Instead, the immutable data objects are duplicated before being moved to 

another context. The consequence is that aliases to inunutable data objects 
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are always local. In Prograph, instances of primitive datatypes (with the 

exception of the l i s t datatype) are immutable. It would be possible to 

extend the current effect inference mechanism so that the type of the 

UpdabeValue slots of the effects is recorded. 

7.5 Exploitation of the results for distribution 

In the Distributed Prograph model, an operation annoted for distribution is 

exported from the originator context into a recipient context where it is 

executed. This section discusses three possible mechanisms for distribution 

and how these mechanisms can exploit the results of the effect synthesis. 

7.5.1 Status quo 

The first option uses the current facilities provided by Prograph (see section 

2.4). The table in 6.4.5.2 shows that only accesses to instances and lists can 

be carried out using the distribution mechanism currently available in 

Prograph. 

An operation annotated for distribution can be executed remotely only if the 

synthesis of the side-effects of this operation produces an empty list of state 

operations. 

7.5.2 Access to global variables 

The current distribution mechanism could be extended so that it becomes 

possible to send the value of global variables (i.e. persistents, class attributes 

and default values of instance attributes) from the originator context into the 

recipient context. It is assumed that, as in the current version of Prograph, 

these values can be transmitted in their full extent across contexts. 

An operation annotated for distribution can be executed remotely if the list 

of state operations produced by the synthesis of the side-effects of the 

annotated operation contains only: 

" access state operations (class access and persistent access state 

operations) 

* allocation state operations (the instantiation of an object is considered 

as an access of the class attribute values and default instance attribute 

values of the class from which the object is instantiated) 
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* instance and list update state operations (l_update (Data 

Argument UpdateValue) and L_update (Argument 

UpdateValue) respectively) where both Argument and 

UpdateValue are local routes. This rule means that only objects created 

in the recipient context can be updated and that the update must not 

create an alias to an object located in the originator context. 

The access state operations are used to determine which classes and which 

persistent values should be updated in the recipient context: 

* for each class access state operation (c_access (Data Argument)), 

for all the classes referenced in the Argument of the state operation, the 

attribute named by the Data value of the state operation must have its 

value updated in the recipient context; 

* for each persistent access state operation(P_access (Data)), the 

value of the persistent named by the Data value of the state operation 

must be updated in the recipient context; 

* for each allocation state operation (Alloc (Data)), all the attributes 

of the class named by the Data value of the state operation must have 

their values updated in the recipient context. 

7.5.3 Access and updates to operation inputs and global variables 

A third option would be to design a mechanism which supports both 

accesses and updates to global variables and the arguments of an operation 

executed remotely. The mechanism should also provide global object 

identifiers so that replicas can be reconciled in the originator context after the 

remote execution of the operation annotated for distribution. 

The result of the effect analysis could be used to decide which: 

" Global variables must be updated in the recipient context as explained 

in the previous subsection. 

* Inputs and global variables must be updated in the originator context, 

once the operation has been executed remotely. 

The list of state operations produced by the synthesis of the side-effects of 

the operation annotated for distribution can be exploited in the following 

way: 
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* For each persistent update state operation (P_updat:e (Data 

Argument: UpdateValue)) the persistent named by the Data value of 

the state operation must have its value updated in the originator context 

after the execution of the operation annotated for distribution. However,^ 

the effect synthesis may pessimistically predict an update to a persistent 

value and this update may not occur at execution time. The value of the 

persistent must be updated in the recipient context before the execution 

of the exported operation. If, contrary to the prediction of the effect 

synthesis, the value of the persistent is not updated during the remote 

execution of the operation annotated for distribution, the net effect of the 

state-operation will be to cause a round trip of the persistent value from 

the originator context, through the recipient context and back to the 

originator context. 

* For each class update state operation (C_update (Data Argument 

UpdateValue)), for all the classes referenced in the Argument of the 

state operation, the attribute named by the Data value of the state 

operation must have its value updated in the originator context after the 

execution of the operation annotated for distribution. For the same 

reasons as for a persistent value, the value(s) of the attribute(s) 

designated by the Data value and the Argument route of the class 

update state operation must be updated in the recipient context before 

the execution of the remote operation. 

* For each list and ins tance u p d a t e s tate opera t ion 

(L_update(Argument UpdateValue) and I_update(Data 

Argument UpdateValue) respectively) with an input route as 

Argument, the value of the input of the operation armotated for 

distribution must be updated after the execution of the operation. Unlike 

classes whose attribute values can be updated individually, the update of 

an argument requires the complete argument to be sent back to the 

originator context. 

" For each list and instance update state operation where Argument is a 

persis tent route or class route (pV (Data Depth) or cV (Data Depth) 

respectively), the persistent or the class referenced by the persistent or the 

class route must be updated. The update of a persistent is performed as 
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for a persistent update state operation. To explain how the update of the 

class should be performed, it must be noted that if a class route is passed 

as Argument to an instance or list update state operation, a class 

attribute or a default instance attribute must have been accessed 

beforehand in the case(s) of the method called by the operation 

annotated for distribution. This access is recorded with a class access 

state operation by the effect synthesis and the Argument route of this 

class access state operation refers to the same classes as the Argument 

route of the list or instance update state operation. Consequently, for 

each class access state operation ( C _ a c c e s s {Data A r g u m e n t ) ) with 

an Argument which refers to the same classes as the Argument route 

of the list update or instance update state operation, all the classes 

referenced in the Argument of the class access state operation, must 

have the value of their attribute named by the Data value of the class 

access state operation updated in the originator context after the 

execution of the operation annotated for distribution. A more efficient 

solution would be to have class routes to record not only the class from 

which a value was extracted but also the name of the attribute from 

which this value was extracted; it would be no longer necessary to search 

the list of class access state operations. 

7.6 Summary 

* The analysis tool is implemented as a separate application within the 

interpreter. 

* Some examples show that the analysis deals imperfectly with heavily 

overloaded methods and recursion, in particular mutual recursion. 

* Useful information (access or update of a global variable, update of a 

operation argument, creation of an alias) can be extracted from the effect 

synthesis results and exploited by the distribution mechanisms. 
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8 Conclusion 

The last chapter of this thesis is divided into three sections. 

The first section summarises the content of this thesis; the second section 

suggests how this research could be taken further. The last section reviews the 

contributions of this work. 

8.1 Summary 

This thesis has discussed the use of Prograph as a language for distributed 

programming. The ambition of Distributed Prograph is to extend the 

productivity that the current version of Prograph already offers for user-

interface design and symbolic programming to distributed programming. 

The dataflow model has been found to be a good model to express the 

potential for parallelism in Distributed Prograph. Operations in the case of a 

method are units of parallelism and distribution. However,^ the programmer 

keeps control of distribution with an annotation to indicate which operations 

should be distributed. The model hides from the programmer communication 

and distribution mechanisms. 

Object-orientation presents some challenges for the implementation of the 

model notably that of state and behaviour consistency across several 

execution contexts. Behaviour consistency is the requirement that objects 

exhibit the same behaviour in different contexts. 

An analysis has been developed to provide an approximation of the effects 

the execution of an operation might induce. 

Types and effects are not orthogonal issues in Prograph. Instances of 

primitive data types cannot be updated, but for reasons of efficiency, 

instances of user-defined classes can be updated in place. Type information 

is useful to find more about effects and type inference is the first stage of the 

analysis. Object-orientation makes type inference more difficult than for 

other language paradigms because of dynamic binding, inheritance and data 

polymorphism. The purpose of inference is to reduce the uncertainty due to 

dynamic binding and to use type information for the effect analysis. The type 

inference algorithm designed and implemented for Prograph can be applied in 
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a modular fashion to separate methods. The type system handles 

dependency between input and return types as well as variable arity but it 

has been decided not to tackle low-level operating structures (externals in 

Prograph terminology). The algorithm can type methods which exhibit a small 

level of polymorphism but calls to heavily overloaded methods can be 

handled only with some user assistance. 

The effect inference extends the type inference algorithm to produce a type 

and effect signature for the methods. The choice of a representation for effect 

information is based on a study of the different effects a computation may 

have in Prograph and some trade-off between the precision and the 

tractability of the analysis. 

Effect synthesis is the last stage of the analysis and uses the type and effect 

information gathered by the inferences to produce an approximation of how 

an operation annotated for distribution would access and update its 

arguments and global variables during its execution. 

The purpose of the information produced by the analysis is twofold: it may 

assist the programmer in selecting the operations for distribution and could 

also be exploited for distributing the operations. 

8.2 Future work 

8.2.1 Integration of the analysis tool 

The prototype developed in this work is implemented as an application 

executing within the interpreter, which requires the user to switch between the 

execution of the analysis and the interpreter. A better integration might make 

the tool more intuitive to use, in particular in the two following situations: 

" When the type inference fails, it would be nice to be able to display the 

case in which the failure has occurred and highlight the operation for 

which the inference has failed. 

* When typing an operation calling a heavily overloaded method, the 

analysis prompts the user to restrict the type of the receiver. It would be 

easier for the user to do it if the operation was highlighted on the screen. 

A good integration also requires the choice of a notation to indicate 

parallelism. The interpreter/editor environment must be modified so that the 
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operations can be annotated. In the current version of Prograph, operations 

can be annotated by selecting an item on the Controls pull-down menu of the 

interpreter / editor and it appears natural to add the new notation to the 

current list of items available in this menu. 

The speed and the user involvement required precludes the application of the 

analysis transparently to the user. Instead the analysis should be triggered by 

selecting a case and an item from a pull-down menu (the menu of the 

interpreter would be a good candidate to insert the new item). 

The last issue to be addressed is that of the storage of the analysis results. 

The current prototype displays the results of the effect synthesis in a textual 

form and then discards them, they should be saved so that they can be 

further exploited. 

8.2.2 Exploitation of the results 

The way the results of the effect analysis will be exploited depends on three 

different factors: 

* The purpose of the information: the interest may lie in either correctness 

or performance. Correctness is concerned with the access to global 

variables, modifications of global variables and of operation arguments 

and dependencies between operations (this latter aspect is not addressed 

by the analysis). Performance is concerned with the ratio of computation 

over communication. 

* The features of the distribution mechanisms have an impact on what 

operations can be safely executed remotely. For example, if the 

distribution mechanisms provide global object identifiers then aliasing 

should not be a problem. The features also have an impact on the 

evaluation of the performance as some of them may be less costly than 

others. 

* User control: the results of the analysis can be used as a warning for the 

user who can then decide whether the operation should be distributed or 

not, whatever the consequences of this decision may be (the operation 

may not be executed correctly). The results of the analysis may be used 

by the compiler or the run-time support to decide whether the operation 

should be exported or not. 
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8.3 Contributions 

An extension of the underlying model of sequential Progtaph for parallel 

programming is discussed and compared to other models for distributed 

programming. 

The current implementation of Prograph has been presented and other 

distributed language designs have been reviewed with the emphasis being put 

on the details that are relevant for the design of Distributed Prograph. The 

benefits the implementation could draw from effect information are 

discussed. 

The analysis is broken into three stages: 

* type inference which computes the types of the inputs and outputs of a 

method, 

* effect inference which computes a description of the effects of a method 

* effect synthesis which produces an approximation of the effects of an 

operation in a particular context. 

Effect analysis has been widely applied to both imperative and functional 

languages but not to object-oriented languages. 

The design of the type and effect inferences and the effect synthesis, together 

with the prototype implementations provide a good basis for future practical 

tools. 
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ACM Cof^rgMce on Lisp and/wMĉ zoMa/ programmmg, pp. 279-297. 

[Steele 1995] Steele, G.L Jr (1995). Parallelism in Lisp. Lisp Pointers, vol. 8, 
n°2, pp.1-14. 

[Steenkiste and Hennesssy 1987] Steenkiste, P. and Hermessy, J. (1987). Tags 
and Type Checking in Lisp: Hardware and Software approaches. Procegdmgs 
q/'fAg Cof^rgMcg on ArcAikcfuraZ ybr PmgyammzMg^ 
Opgratmg Syskms (ASPLOS), pp. 

[Sunderam 1990] Sunderam, V.S. (1990). PVM: A Framework for Parallel 
Distributed Computing, CoMcwrrgMcy; Pracficg 6 EzpgngMcg,vol. 2, n° 4, pp. 
315-339. 

[Suzuki 1981] Suzuki N. (1981). Inferring types in Smalltalk. Co/̂ fgMCg Rgcord 
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