University of Southampton

Static Analysis for Distributed Prograph

by
Benoit Lanaspre
A thesis submitted for the degree of
Doctor of Philosophy

in the

Faculty of Engineering and Applied Science

Department of Electronics and Computer Science

QOctober 1997

Abstract

Prograph [Cox and Pietrzykowski 1988] provides a sophisticated
application builder, together with a visual programming language, supported
by a powerful program development environment. The programming language
uses an object-oriented model for data abstraction and the logic is based on a

dataflow model of computation, specified graphically.

Graphical dataflow gives programmers a clear view of the potential for
exploitation of concurrency and so the Prograph language appears to give
some leverage for the programming of parallel or distributed systems.
However parallel scheduling of operations based solely on the dataflow
dependencies might result in the incorrect execution of programs in a

distributed environment.

This thesis investigates the issues to be addressed to develop a distributed
version of Prograph. A first issue is that of a programming model for
Distributed Prograph and a second issue is that of the design of mechanisms
to implement the model. The need for a static analysis to support the

implementation of the model is justified.

The proposed analysis is divided into three logical parts: a type inference, an
effect inference and an effect synthesis. Suitable representations for the type
and effect information are presented. The inference algorithms are described

and the implementation of the analysis tool and test results are discussed.

Acknowledgements

I would like to thank my supervisor, Hugh Glaser, for proposing and
supervising this research. Hugh Glaser never had too little time to answer my
questions or to discuss theoretical issues and implementation problems. His
constant support helped me retain my motivation throughout the duration of

this work.

Pictorius Inc. generously provided both software and technical support for

this research.

I am also indebted to the University Research Council which paid the tuition

fees for my studies in the department of Electronics and Computer Science.

I wish to express my gratitude to Stuart Maclean who reviewed some of the

chapters of this thesis.

Special thanks are due to Luc Moreau and Danius Michaelides for the fruitful

technical discussions that we had.

My parents deserve a special mention for their continuous and generous
support throughout the years. Without their help, this PhD degree would not

have been possible.

TABLE OF CONTENTS

Contents

1 INtroduction. ... 1
1.1, MotivationS.....cccceiivinniiiiiieeiii e 1
1.1.1. Distributed Systems.........ccocovivviiveireiirinnnns 1

1.1.2 Distributed Programming.........c.coeovennencenee 1

1.1.3 Prograph....ccocoiiiiiiii 2

1.1.4 Static analysis.......ccovvevmniniieninie 3

1.2 ObJECHVES. oottt 4
1.3 Related Workcocooiiiiiiiiiiiiii 5
1.3.1 Distributed programming languages............... 5

1.3.2 Type Inference......ccooovveniniiecvininccn 5

1.3.3 Effect analysis.......cooceniiiiiiiinniiencnen 6

1.4 Overview of the thesisccooviieiiiiiiiii 7
1.6 ContribUtONS ..o.vecvveiiiiiiirici 8
2 Prograph features. ... 10
2.1 Prograph history ... 10
2.2 Language featuresoovvvvivneeinineccn 12
2.2.1 Introductory example.......cccoooiiiininnnen 12

2.2.2 Control of execution.........cocovemiiiiinnnncenn 16

2.2.3 Object-orientation.......ccocooveninieniinnnnn, 19

2.2.3.1 Terms and definitions..........cocoeveiinnnnes 19

2.2.3.2 Prograph class systemc..cocoeniniinin, 19

2.2.3.3 Object state and behaviour......c.c.oeeenn 20

2.2.3.4 PolymorphiSm......ccoovvviiiiiiiiiic 24

2.2.4 PersistentS......coocvviiiiniiii s 27

2.2.5 The language editor & interpreter 27

2.2.6 Implementation OVerview......c..coeieenn. 28

2.3 Application development...........coconennniiinnns 30
2.3.1 Structure of applicationsc.coenieinn 30

2.3.2 Application building tools........ccovininiie 32

2.4 Support for distribution in Prograph.......c..c...c...... 33

TABLE OF CONTENTS

2.5 SUMMATY ccoiiiiiiiiie s 33
3 Distributed Programming models...........cocoonininnnnnne 35
3.1 Classes of Distributed Applications.................... 35
3.2 Distributed Programming models..............cccooe.es 36
3.3 Process Model.......ccooiiiiiiiiiiniiii 37
3.3.1 The process abstraction..........cccocceeeviieninne. 37

3.3.2 Distributed processescoovviriiiinininnn 38

3.3.2.1 Point-to-point communication.................. 38

3.3.2.2 Remote Procedure Call......ccocooovnininnn 38

3.3.3 Implementations of the process model......... 39

3.4 Distributed Objects......cccccomviiiiiiniiiiiie 42
3.4.1 The basic object model.......ccccooevveviininnni. 42

3.4.2 Objects and distribution.......cceeeverineninnnn. 42

3.4.3 Distributed Object Systems.........c.cooovrnnn 44

3.5 Functional parallelism.......cooceooivinniincnnn 48
3.5.1 Functional languages...........c.oovevininiiniinnn 48

3.5.2 Parallel functional models.........ocooeiie 49

3.5.3 Case studies....ccccevviiviiiniininiiii 51

3.6 Dataflow model.......c.cooovii 56
3.6.1 Dataflow computations........ccooocoviinnicnn. 56

3.6.2 Dataflow languagesoooveniiiniinnnnn 59

3.7 A model for Distributed Prographc.co..c... 61
3.7.1 ParalleliSm......ccccoiciiiiniiiiiiciin i 61

3.7.1.1 Potential for parallelismocooooneeinn. 61

3.7.1.2 Expressing the parallelism.............cocooen. 62

3.7.1.3 Benefits and drawbackscocooeenini 63

3.7.2 Communication and synchronisation........... 64

3.7.3 A metaphor....c.cccooiiiiiiiiiiii 64

3.8 SUMIMALY c.oeiiiiiiiiiiiciie et 65
4 Prograph and Distribution........cooiiini 66
4.1 DESIGN ISSUES ...vvovieiiiiiiiirieee et 66
4.1.1 Operation packet........ocooviniiiiiinn, 67

4.1.2 Operation schedulingccocni 69

4.1.3 Remote execution of an operation 70

4.1.4 Reception of the results.........ccoooviiiinnes, 72

TABLE OF CONTENTS

4.1.5 Help to the programmer.........ccoooveviiiinninnne 72
4.2 Implementation ..o 73
4.2.1 The applicative approach........cccccoooiinnnnn. 73
4.2.2 The integrative approach............cccoceeinnenn. 74
4.2.3 The reflexive approach ..o, 74
4.3 Need for analysis......ccccoveriminiiiiiniiii 75
4.3.7 Interferencesoooeoveovevivicrineinees e, 76
4.3.2 Global variablesccccoocininn, 76
4.3.3 Updated values and aliases.............cecoenene. 76
4.3.4 Behaviour maintenance.........o.cooeveeeiivennnnenn, 77
4.4 Aims of the analysis.......cccooiiiiiiiiiii 77
4.5 SUMINATIY ..oooiiiiiiiiieini et 78
Type INference........ccoovvvriiiiiiiiiiciieiceee e 80
5.1 Types in programming languages.........c.coeeeeveveaie 80
5.1.1 Static typing....ccoccovevvviimiiiiiee 81
5.1.2 Dynamic typing.......oovvvvmrmnnnenininienn 83
5.1.3 Bridging the gapccccooeeeiiiiiiniiccie 84
5.2 Issues for type inference.........ccoooeniiiniiiinnnne. 85
5.2.1 Purpose of inferring types.......ccocovvineninnnn. 85
5.2.2 World assumptions.......ccoovneniniennninnn. 86
5.2.3 Type SYStems ..occovvreiiiiiiiiiecces i 86
5.3 Previotus Work ..o 88
5.3.1 Kaplan/Ullmanc.ccoooveimieiiiinneen, 88
5.3.2 Hindley /Milner ..., 90
5.3.3 SUZUKI..eoiviiiiiicc i 92
5.3.4 The EULisp type inference system............... 93
5.3.5 Palsberg and Schwartzbach...........c.c.o. 95
54 Motivations for inferring types in Prograph.......... 99
5.5 OQutline of the type inference system 99
5.5.1 Method-wide analysisccocovviiiniinnn 100
5.5.2 Case-wide analysiS........cocoovveeiinnceniinnnnne 100
5.5.2.1 Initialisation phase.....c.ccoovivninnininnin 101
5.5.2.2 Tterative analysis........ccoooviininniinienen 101
5.5.3 Implementation outlinec.ocoiiinins 102
5.5.4 Properties of the algorithm ... 104

iii

TABLE OF CONTENTS

5.6

5.7

5.8

Prograph Types.......oooveviviiiiiciiiiiiiiiice 105
5.6.1 Class hierarchy..........ccccccoenn. SRR 105
5.6.2 TYPE cvvviriiiiiccc e, 106
5.6.2.1 Single Type.....ccoccoiiiiiiiiiiiiiiiiiii 106
5.6.2.2 String Type....cccovviriiiniiiiiiciciiie 107
5.6.2.3 List Type..ccoooiiiiiiiiiiii 107
5.6.2.4 Union Type ..o, 107
5.6.3 Type dependenciesccccoceeviriiiiiiniininn, 107
5.6.3.1 Input..ccoiiiiiiiiiiiiii 108
5.6.3.2 Element.......cccocciiniiiniiiiiiie e 109
5.6.3.3 LiSt.ecoieoiiiiiiiiiir i 109
5.6.3.4 Union and Intersection..........c.ccecevvennns 109
5.6.4 Operations on types and dependencies.....110
5.6.5 BNF for type expressionsccoeevvevvneenne. 111
Operation Signaturesc.ccoeevviviiiieciieseinn 112
5.7.1 Simple operation........ccccoieniiriininnniinins 112
5.7.1.1 Call with a universal reference................. 112

5.7.1.2 Call with a context determined reference112
5.7.1.3 Call with a data-determined reference....113

5.7.2 Primitive method signatures 114
5.7.3 Get and Set operationscceeeviiiviniininns 115
5.7.4 Instance generatorcoccoveiviiiniiinnnn, 116
5.7.5 Persistent operationscccoeeveevereiiieiinn, 116
5.7.6 Local operationscccccoeeiiiiiniiiiiennn, 116
5.7.7 Constant operationsoccoeveeeiiieiiiennn 116
5.7.8 Match operations...........cocoviiiiviiiiincnins 116
5.7.9 Signature of multiplex operations............... 118
Type inference algorithm. ..., 118
5.8.1 Method wide analysis......cccccccoiiiiiiinnns 119
5.8.2 Case wide analysisccccooviviiiiniiiiinencn 119
5.8.2.1 Initialisation phase........ccoooiin 120
5.8.2.2 Forward Analysis.........cooevninininncinnn 122
5.8.2.3 Backward Analysis.......ccccoiininininis 123
5.8.2.4 Computing NextType ..o 126

5.8.2.5 Computing intra-case type dependencies128

v

TABLE OF CONTENTS

5.8.2.6 Construction of the line for the case........ 129
5.8.3 Synthesis of the method signature.............. 129
5.8.4 Handling recursion..............cooiovniiiiinnnnn. 130
5.9 Examples....cccoiiiiiiiii 132
5.9.1 A simple examplecoooeieiiiiiiiiiis 132
5.9.1.1 Initialisation phase........c.ccooeviiiiinnn, 133
5.9.1.2 Forward analysisccccoevvriiiiiniiinnns 133
5.9.1.3 Backward analysis......cc.cccoeiniininnnnns 134
5.9.1.4 Computation of Dependency 135
5.9.2 A recursive example........cccovirriiniiinn, 135
5.9.2.1 Analysis of the first caseccooveieenns 136
5.9.2.2 Analysis of the second case..........ccc........ 137
5.10 Shortcomings of the type analysis...........c.oceunnn 139
5.10.1 Failure to detect type errors.........c.ccooeeu. 139
5.10.2 Rejection of type correct code........conveen. 142
511 SUMMATY wreevvirieiiieeiie e 143
Effect inference and synthesisccooovininieinn 144
6.1 Purpose of effect analysis......ccocoornniinncnnninns 144
6.2 Related Work ..o 145
6.2.1 Chow and Harrisoncooconvine PR 145
6.2.1.1 Abstract interpretation........c.occooeienin 145
6.2.1.2 Description of the analysis............co.oen. 147
6.2.2 The FX effect system.........ccoeviiivnniiinnnnn 149
6.2.3 Type and effect inference in ML................. 151
6.2.4 Effect analysis for test data selection 152
6.3 Effect inference........ooomiciin, 154

6.3.1 Motivation for effect inference in Prograph154

6.3.2 Qutline of the effect inference mechanism..154

6.3.2.1 Case-wide inference...........ccocevninn 155
6.3.3 Effects in Prograph ..., 155
6.3.3.1 Identity effectsccooviiiiiiniiiiienn 161
6.3.3.2 Effects on class attributes.........cccoeieeninn 161
6.3.3.3 Effects on instance attributes 163
6.3.3.4 Instantiation effectscooviiiini 165
6.3.3.5 Local effectS...oovvrrvieeiiiiiiceieeee 166

TABLE OF CONTENTS

6.4

6.3.3.6 Effects on persistents............cccoeii 167
6.3.3.7 Effects on lists.....ccocoviniiiniiniiininn, 169
6.3.3.8 External effects.........ccoooiiiniiiiinnn 171
6.3.3.9 Effect expressions and variable arity......172
6.3.3.10 Operations on side-effects..........c.......... 173
6.3.4 Inference Algorithm ... 175
6.3.4.1 Case-wide inference...........ccocovvniniennn 175
6.3.4.2 Method....c..ocooeoiiiiiiii 180
6.3.5 Handling recursion........c..cccooeiinnicninn 180
6.3.6 Effect inference example.........cccocoeiin, 181
6.3.6.1 Initialisation phase........cccoevniniinnn 182
6.3.6.2 Composition of the side-effects............... 183
Effect Synthesis......cooccniviiiiiiinii, 187
6.4.1 Outline of the synthesis ... 187
6.4.2 ROULES..cooviiiiiiiiiiiiiitii i 189
6.4.2.1 Class routes......cccovviiiiiiiiiniiiicc 190
6.4.2.2 Input routes.........c.oooiiiiiiii 191
6.4.2.3 Local routes.....cc.occovevmiiiiiiinininn, 191
6.4.2.4 Persistent routes.......coccoovviiivniinninn, 192
6.4.3 State operations........coeveveiieiiiiiiiice 192
6.4.3.1 Class state operationsc.cccoeviennennne. 194
6.4.3.2 Instance state operations.............c.cccoeee. 195
6.4.3.3 Allocation state operations..................... 196
6.4.3.4 Persistent state operations..........c..ocooee. 196
6.4.3.5 List state operations.........cccoooeeiinininn. 197
6.4.5 Synthesis algorithm ..., 197
6.4.5.1 Outline of the algorithm................ooo 197
6.4.5.2 Reduction rules.........c.ccccooiiiinin 201
6.4.5.3 Input reference.........cccococvvinviiniciiininn, 205
6.4.5.4 Class affected data property 205
6.4.5.5 Instance affected data property.............. 206
6.4.5.6 Instantiation side-effect........................... 208
6.4.5.7 Local affected data property.................. 208
6.4.5.8 Persistent affected data property........... 208
6.4.5.9 List affected data property................... 209

Vi

TABLE OF CONTENTS

6.4.6 Synthesis example.........cccoiinn 209
6.4.7 Flow sensitivity........ccoovviiicncnineen. e 217
6.5 SUMMALY .coooiiiiiiiii 221
7 Experimenting with the analysis toolc.. 222
7.1. The analysis tool..........cccociniiiiniiiis 222
7.1.2 Auxiliary data........ccocooiiiiiiiiiiii, 222
7.1.3 Restricted method despatching 224
7.1.4 Results and errors loggingcc.coocoeeinn 224
7.1.5 Caching of intermediate results 226
7.2 Examples...cccooiiiiiiii 226
7.2.1 Type and Effect Inference.............c..oeeennn, 226
7.2.2 A worst case example.......ccooiiiin, 228
7.3 Applicability of the Analysis......cccooevriinieninnn. 233
7.3.1 Speed and memoOry US€.......coocivivieiiiiiinins 233
7.3.2 Handling mutual recursion...........c.coemvnen. 233
7.3.3 Precision of the results...........ooooiiinn. 234
7.4 Interpretation of the synthesis results 236
7.4.1 Access informationcc.ooeeveiiniinicennn, 236
7.4.2 Update information..........cccooeiiniiinnncnn, 237
7.4.3 Alias information...........ccocovveiinninnn, 237
7.5 Exploitation of the results for distribution................ 240
7.5.1 Status qUO ..ocoiiiviiiiiiii e 240
7.5.2 Access to global variables..............coooooin. 240

7.5.3 Access and updates to operation inputs and
global variablescocoooviiii 241
7.6 SUIMIMALY covtiiviiinir et 243
8 CONCIUSION .ccoviiviiiiei e 244
8.1 SUIMIMALY ..ot 244
8.2 Future work......oocoiiiiiiiiiii 245
8.2.1 Integration of the analysis tool 245
8.2.2 Exploitation of the results..............ocoeenn 246
8.3 ContribUtiONS ..ococoviviiiiiiiiiiir i 247
BIbEOGIaphy . ..ot 248

vii

INTRODUCTION

1 Introduction

1.1.

This chapter presents the motivations to undertake this research in its first
section. The second section sets the goals for this research. Major previous
works related to this research are presented in the third section. The reader
can find an overview of this thesis in the fourth section. The last section

reviews the expected contributions of this work.
Motivations
1.1.1. Distributed Systems

The evolution of computing since its inception in the 1940's has not been
limited to the progress, however impressive that progress may be, of the
hardware. The evolution has also been that of the applications and of the
tools to develop these applications. Over the years the certitude has also
grown that improvements in the hardware technology are not the only way
towards greater performance and functionality. This goal can also be
achieved by exploiting several computers to perform a common task, where

the meaning of common task is left open at this stage.
In [Bal, Steiner and Tanenbaum 1989], the following definition is given:

“A distributed computing system consists of multiple autonomous
processors that do not share primary memory but cooperate by sending

messages over a communication network.”

This definition encompasses a broad spectrum of systems ranging from
tightly coupled systems such as distributed memory parallel machines to
loosely coupled systems such as remote computers connected by a Wide-

Area Network.

The variety of hardware configurations reflects the variety of classes of

distributed applications.
1.1.2 Distributed Programming

Distribution results in an added complexity for program development, as
distributed applications have to deal with communication between activities,
concurrency and synchronisation. If the benefits of distribution are to be

realised, it is necessary to be able to develop applications with a reasonable

INTRODUCTION

level of productivity. The design and implementation of distributed
applications can be facilitated by three different factors: a programming

model, tools to implement the application and other tools to test it.

Considerable work has been undertaken to develop models for distributed
systems. The role of the model is to present the programmer with useful
abstractions to deal with the different dimensions of distributed
programming and to make the reasoning about applications tractable. A good
model strikes a good compromise between the ease with which the
programmer understands it and the efficiency with which it can be

implemented.

Tools are also available to assist the user to write and to test programs. An
example of a programming tool for distributed applications is the interface
compiler. Such a compiler generates the templates for the application code
and some low-level code for the networking operations from an interface
specified using an interface definition language. The task of the programmer
may also be alleviated by reusing software contained in libraries of

procedures or classes.

The behaviour of a distributed application is potentially more difficult to
understand than that of a sequential application. Tools have been developed
to ease the task of distributed application testing and debugging and to
monitor the execution of distributed programs. Some of these tools rely on a
visual representation of the computation to help the user understand its

behaviour.
1.1.3 Prograph

Prograph is a graphical programming environment and language which grew
out of the work of Pietrzykowski and Cox on graphical languages for
functional programming, but has evolved considerably since then, and is
currently marketed as a general-purpose programming language and

rogramming environment.
2 &

The programming language uses an object-oriented model for data
abstraction and the logic is based on a dataflow model of computation,

specified graphically.

INTRODUCTION

The application builder consists of an extensive set of classes (Application
Building Classes or ABC's) which provide a framework with which to build
applications. ABC editors let the user create and modify ABC objects
without leaving the familiar WIMP (Windows, Icons, Menus, Pointer) paradigm.

The environment also provides an interpreter with substantial interactive
debugging and editing facilities. Data values can be checked, edited and
copied at run-time. Several evaluation modes are available: animate, single
step, trace. It is possible to roll execution forward and backward, set

breakpoints and monitor the computation stack.

The combination of the application builder and the interpreter makes

possible an incremental style of programming.
1.1.4 Static analysis

Static analysis aims at obtaining information about the behaviour of a
program without actually executing the program. Instead, the analysis makes

use of the language semantics to derive information from the program source.
The information serves two different purposes: verification and optimisation.

The analysis may verify program properties such as type correctness,

termination or, in the context of concurrent programming, deadlock freedom.

Optimisation refers to the improvement of the execution of a program.
Improvements are not only concerned with execution speed as memory usage
is also relevant. As the degree of abstraction offered by programming
languages increases steadily, the requirement for optimisation becomes more
stringent. In [Field and Harrison 1988] p.445, it is argued that optimisation is
"an essential component of any viable implementation of a functional
language". Information about different properties allows different types of
optimisations:

¢ In the context of functional languages, strictness analysis checks whether

the values of the arguments passed to a function can be computed now or

if their evaluation must be delayed.

s Information about the lifetime of data objects is useful to improve the

management of memory.

INTRODUCTION

1.2

Objectives

It is believed that a distributed version of the Prograph language, Distributed
Prograph, would give some leverage for the programming of distributed

systems. Three features of the language support this view:

* Visual Dataflow allows the programmer to represent parallelism in a
more natural way than text-based languages, because textual

representations are, by their very nature, sequential.

¢ Object-orientation provides the user with powerful encapsulation and
abstraction mechanisms that are essential as the size and the complexity
of applications grow. Such facilities may provide a good mechanism for
encapsulating parallelism constructs in the same way that they already

provide for the design of user-interfaces.

* The Prograph development environment greatly contributes to the ease

of use that users report.

The target architecture for Distributed Prograph is that of several

workstations connected by a local area network.

Distributed Prograph is aimed at using distributed systems for parallel
programming where the main motivation is to speed-up application through

the use of several computing resources.

The original sequential model should be extended to support distribution
while retaining its simplicity. Some of the features of the language might not
lend themselves easily to the development of a distributed version and so
distribution mechanisms which would maintain the current semantics of the

language might be difficult to implement and/or highly inefficient.

One of the main goals of this work is to develop a static analysis to support
distribution in Prograph to alleviate these difficulties. The analysis is focused
on the effect properties of operations; that is, how the arguments of an
operation or some global variables are accessed or modified during the
execution of this operation. The information gathered by the analysis is to be
used to elaborate a distribution strategy which both respects the semantics of

the model and, at the same time, ensures a reasonable level of efficiency.

INTRODUCTION

1.3

The static analysis comprises two components: a type inference mechanism
and an effect inference and synthesis mechanism. Although type information
is not directly relevant to distribution, knowledge of the values' types is
relevant to the analysis as it will be shown that in Prograph types and side-

effects are not completely orthogonal.
Related Work

This work is concerned with three different research areas: distributed
programming languages, type inference and effect analysis. The following
subsections give a summary of the work undertaken in these areas. The
discussion of the related work is expanded in the appropriate chapters of

this thesis.
1.3.1 Distributed programming languages

Languages for distributed programming have attracted considerable research
interest. Given Prograph's ancestry and its object-oriented nature, two classes

of distributed languages should be investigated in particular.

» Prograph was at its beginnings thought of as a visual functional
language, and distributed programming languages or environments based
on functional languages should provide useful information on how to

proceed with the design of Distributed Prograph.

e Prograph also presents some similarities with Smalltalk and the work
undertaken to develop distributed versions of Smalltalk and other object-

oriented languages is of interest to this work.

1.3.2 Type Inference

Type inference is a form of static analysis whose purpose is to compute the
type of all expressions occurring in a program in the absence of type
declarations from the programmer. Type inference has been investigated for
languages belonging to various paradigms: procedural, functional and object-
oriented and the type information inferred can be used for various purposes
including establishing type correctness and allowing some code

optimisations.

INTRODUCTION

Kaplan and Ullman [Kaplan and Ullman 1980] devised an algorithm for the

inference of the types of the program variables for an abstract imperative
language.

Milner's work [Milner 1978] on the ML type system led to a successful type
inference algorithm which is efficient and supports a flexible type system. ML
combines both interactivity and strong typing. Milner's type checking system

has been incorporated in other functional languages.

The dynamic nature of Smalltalk's type system greatly contributes to the
flexibility of the language. However, being able to obtain type information
statically offers several benefits, an important one is the ability to anticipate
run-time binding errors. Suzuki [Suzuki 1981] proposed an inference
algorithm for Smalltalk drawing heavily on Milner's experience. More recently,
Palsberg and Schwartzbach [Palsberg and Schwartzbach 1991} developed an
original type theory for object-oriented languages and presented an inference

algorithm for a Smalltalk-like language.
1.3.3 Effect analysis

Effect analysis is another important form of static analysis which has been

applied to procedural and functional languages in a variety of contexts.

Two statements in a program can be connected by a control dependence, which
means that one statement must be executed before the other one or by a data
dependence which means that one statement reads some data and the other
modifies it. Control dependencies can be detected by control flow analysis
and the detection of data dependencies relies on the results of an effect
analysis. Automatic parallelisation and a range of compile-time

optimisations rely on dependency analysis.

The task of a parallelising compiler is to partition a computation into smaller
subcomputations that can be executed in parallel. The parallel schedule must
respect the data dependencies existing between the subcomputations. The
Miprac parallelising compiler converts C, FORTRAN or Scheme programs into
an intermediate language which can be analysed [Chow and Harrison 1992].
The analysis gathers information about program properties such as side-

effects but also object lifetime, data dependence and unordered accesses.

INTRODUCTION

1.4

Functional languages offer a higher degree of abstraction than their imperative
counterparts. However, functional languages are usually less efficient than
imperative ones. For the sake of efficiency, some functional languages have
been augmented with a limited number of imperative constructs. Several
effect analyses have been proposed [Wright 1993] to extend Milner's type

discipline to be able to type the newly added imperative constructs.

In the context of software engineering, effect analysis has been used to select
test data [Rapps and Weyuker 1982] or for program slicing [Horwitz, Reps
and Binkley 1988]. Program slicing means extracting from a program source
the statements that are necessary to understand a certain property of the

program, for example, the computation of the return value of a procedure.
Overview of the thesis

This thesis is divided into eight chapters. The content of each chapter is now

presented:

e The Prograph language and development environment bring together
several advanced features such as visual programming, dataflow and
object-orientation. Each of these features has considerable implications
for the programmer and the implementer; the aim of Chapter 2 is to give
an appreciation of the language in a manner which is relevant to this
research. Details of the language implementation that are relevant for the

static analysis are explained.

e Numerous programming models have been proposed and several of
these models and their language implementations are described and
discussed in the third chapter. The benefits of this review are twofold;
firstly, the requirements of distributed programming are presented in a
pragmatic manner through several case studies, and secondly the
Distributed Prograph model is explained in the context of other
distributed programming models. Chapter 3 also discusses the expected

benefits of a distributed version of Prograph.

 Chapter 4 looks at the design issues that have to be tackled in the
implementation of the Distributed Prograph model. Distributed Object
Based Systems have attracted considerable research interest over the last

two decades and the state-of-the-art has progressed quite steadily.

INTRODUCTION

1.6

Chapter 4 presents the aspects of this accumulated experience that are
relevant to the implementation of Distributed Prograph. State and
behaviour consistency is of particular interest to this research and are
discussed in depth. As stated in the thesis title, this research work has
been mainly concerned with static analysis; the question of the purpose
and motivation for the proposed analysis is addressed at the end of

chapter 4.

e Chapter 5 begins with a comparison of the different approaches to
typing in programming languages in general and object-oriented languages
in particular. Various attempts at type inference are compared, the points
of comparison being that of the language to which the inference is
applied, the purpose of the inference and the representation chosen for
the type information. The type inference for Prograph is presented along

similar lines.

e Chapter 6 is devoted to effect inference and synthesis. Previous work
undertaken in the field of effect analysis is reviewed. Effect inference is
concerned with the effect signature of operations and the effect inference
algorithm that derives the effect signature is described. The effect
synthesis combines the effect signature of an operation with its context,
to produce an approximation of the effects induced by the execution of

an operation.

e Chapter 7 highlights significant aspects of the implementation of the
analysis. The analysis is illustrated by several commented examples. The
applicability of the analysis is also discussed. The last part of chapter 7

makes suggestion on how the results of the analysis can be used.

e Chapter 8 concludes the thesis with a discussion of its contributions

and the future work that could be undertaken.

Contributions

The contributions of this work are:

* A type inference mechanism for Prograph is proposed.

e A prototype of the type inference system is implemented in Prograph.

INTRODUCTION

e Building on the experience of type inference, an effect inference

mechanism is proposed.
e A prototype effect inference is implemented.

e A synthesis algorithm is proposed and implemented.

PROGRAPH FEATURES

2 Prograph features

2.1

Prograph is a comparatively new language and embodies some of the latest

trends in programming language and environment design.

The history of Prograph is presented in the first section of this chapter. In the
second section, the features of the language and of its interpreter are
reviewed. It is also necessary to give some explanations about the techniques
used to implement the language in order to understand better the analysis
described in the following chapters. The third section explains that both
applications and application development tools are built from a set of
Application Building Classes (ABC's), which allows for the easy customisation
of applications and development tools. The last section of this chapter is
devoted to the facilities provided by the current version of Prograph for

distributed programming.
Prograph history

Prograph originated at Acadia University around 1983. The first

implementation of the language, in Pascal, was due to Pietrzykowski

[Matwin and Pietrzykowski 1985]. The impetus for the development of

Prograph was to better understand applications written in the functional

language FP [Backus 1978]. The name "Prograph" was obtained by analogy to

the word "program"”, where the suffix "-gram" meaning "writing" was changed

to "-graph” meaning "drawing" [Cox 1996]. A compiler was also developed .
[Cox and Mulligan 1985].

About 1985, a second experimental implementation of the language was built
in Prolog by Pietrzykowski and Cox at the Technical University of Nova
Scotia. An editor, interpreter and debugger were also developed [Cox and
Pietrzykowski 1985].

Experiments with the first version of the language highlighted the need for
redefined language constructs and for a data abstraction mechanism. The 1 £
- then - else - constructs of the original language were replaced by a
Prolog-like case structure with success/failure as the trigger, the iterative
construct while - do also disappeared and the list and loop annotations

were introduced to express iteration. Object-orientation was introduced in

10

PROGRAPH FEATURES

1987 as the mechanism for modularisation and data abstraction. The
language which resulted from these modifications, described in [Cox and

Pietrzykowski 1988], has known no major alteration since then.

Commercial development of the language and of the environment associated
with it began in 1986 at The Gunkara Sun Systems Limited company in 1986
and commercial exploitation has been pursued by the successive instances of

the company: TGS, Prograph International and now Pictorius Inc.

The first commercial version of Prograph for the Macintosh was released in
1989 and comprised an editor/interpreter (written in C) and a development
environment with a small library of System Classes. The System Classes were
special classes whose behaviour was implemented in C and which could be
manipulated using special editors also written in C. 1990 saw the

introduction of a compiler for generating standalone applications.

The release of the Cross Platform Environment (CPX) version of the language in
1993 marked an important evolution of the development environment.
Prograph CPX was designed to exploit the code reuse and component-based
approach associated to object-oriented programming to a larger extent than
the previous versions of Prograph. Prograph CPX (whose current version is
1.4) ships with a large library of Application Building Classes and a sizeable
part of the application editor is now implemented in Prograph in the form of

Application Building Editors.

The modular architecture of the current version of Prograph has allowed the
development of components by third-party developers. Application
development tools have been built on top of Prograph CPX. For example,
Entrada!, released in 1995, is targeted at the construction of client/server

applications, including Internet based client/server applications.

In order to broaden its appeal and realise the benefits of cross platform
portability, Prograph is being reimplemented for the Windows95 platform
and a preliminary version has already been made available to developers at

the time of this writing.

11

PROGRAPH FEATURES

2.2

Language features
2.2.1 Introductory example

The introductory example presented in this subsection is taken from [Cox
and Smedley 1996]. Note that Prograph is an object-oriented language, hence
the term method is used to refer to entities known as procedures in standard

programming languages.

Fig. 2.1: call sort method

Fig. 2.1 shows the details of the method call sort, a dataflow diagram in
which three operations are connected sequentially by lines called datalinks. A
datalink transmits data from an output of an operation, represented by a
small icon called a root on the bottom of the operation, to the inputs of other
operations, represented by terminal icons on the tops of operations. The first
operation in this diagram, ask, is a primitive that calls system-supplied code
to produce a dialogue requesting input from the user. Note that the icon for a
primitive is distinguished from other operation icons by the white line along
its bottom edge. When ask has been executed, the data input by the user
flows down the datalink to the operation quicksort, invoking the method
quicksort. This method expects to receive a list, which it sorts as
explained below, outputting the sorted list, which flows down the datalink to
the show primitive. The show produces a dialogue displaying the sorted list.
Fig. 2.2 shows a Prograph implementation of the well known algorithm

quicksort for sorting a list into ascending order.

12

PROGRAPH FEATURES

Vlaiiiddese ff/f/f/x’f/ff!f’//ffx{-//f/.d

e i

A S A A A P P

Fig. 2.2: A quicksort method

The method quicksort consists of two cases, represented by the dataflow
diagrams as shown in fig. 2.2. The first case, shown in the window entitled
1:2 quicksort, implements the recursive case of the algorithm, while the
second implements the base case. In general, 2 method consists of a sequence
of cases. The bars at the top and bottom of cases are special operations
called the input bar and output bar respectively. The input bar is always the
first operation executed, and copies the values of parameters from the
terminals of the calling operation to the input bar roots. Similarly, if the case
executes to conclusion, the output bar is the last operation executed, copying

the values on its terminals to the roots of the calling operation.
In the first case of quicksort, the first operation to be executed is a
.

match, O , a special operation which tests to see if the incoming data

is the empty list. The icon attached to the right end of the match is a Next

13

PROGRAPH FEATURES

Case on success control, which is triggered by success of the match,
immediately terminating the execution of the first case and initiating
execution of the second. If this happens, the empty list is simply passed
through as the output of the second case, and execution of quicksort

finishes, producing the empty list.

In the first case of quicksort, if the input list is not empty, the control on
the match operation in the first case is not triggered, and the first case is
executed to completion. The operation to be executed immediately after the
match is the primitive detach-1 which outputs the first element of the list

and the remainder of the list on its left and right roots respectively.

The next operation to be executed, % %3 , is an example of a multiplex, of
which there are several kinds in Prograph, determined by visual annotations.
First, the three-dimensional nature of the icon, common to all multiplexes,
indicates that the operation > will be applied repeatedly. Second, the list
annotation ¢+a on the right-hand terminal indicates that a list is expected as
data, one element of which will be consumed by each execution of the
operation. Execution of this multiplex, therefore, uses > to compare the first
element of the original list with each of the other elements. Finally the special
roots ¢ and ¥ indicate that this particular multiplex is a partition, which
divides the list arriving on the list annotated terminal into two lists; items for
which the embedded operation succeeds and those for which it fails. These

two lists appear on the ¥ and # roots respectively.

The lists produced by the partition multiplex are sorted by recursive calls to
the quicksort method. The final sorted list is then assembled using the
two primitive operations attach-1, which constructs a new list by
attaching an element to the left end of a list, and (join), which

concatenates two lists.

The execution mechanism of Prograph is data-driven dataflow. That is, an
operation executes when all its input data is available. In practice, a linear
execution order for the operations in a case is predetermined by topologically

sorting the directed acyclic graph of operations and datalinks, subject to

14

PROGRAPH FEATURES

certain constraints. For example, an operation with a control should be

executed as early as possible.

The pure dataflow model prohibits alteration of data objects; if a data object
is to be modified, a copy of it is made instead. However, application of the
strict dataflow principles would result in performance costs when complex
data structures are involved. For the sake of efficiency, Prograph implements
a modified version of dataflow principles. Primitive type data objects are
copied but instances of classes are modified "in place”. Memory management
is automatic in Prograph and data which is no longer used is automatically

garbage-collected.

In the example shown in fig. 2.2, the method quicksort has only one input
and one output, and therefore does not show how the terminals of an
operation are matched with the roots on the input bar of a case of the
method it invokes. These terminals and roots must be of equal number, and
are matched from left to right. A similar relationship exists between the roots
of an operation and the terminals of the output bar in a case of a method

invoked by the operation.

One important kind of operation not illustrated in the above example is the
local operation. A local operation is one that does not call a separately
defined method such as quicksort. Instead, it contains its own sequence
of cases, called a local method. It is therefore analogous to a parametrised

begin-end block in a standard procedural language.

]gc-ompute Yalue ﬂ]

Fig. 2.3 : A call to a local method

As mentioned earlier, Prograph is an object-oriented language and therefore
provides facilities for defining new datatypes as classes. The methods in the
above example, called universal methods, deal with simple data rather than
instances of classes, and therefore do not belong to any class. It is important
to note, however, that classes also contain methods, that several classes may
have methods of the same name, and that an operation may invoke different

methods at different times during execution.

15

PROGRAPH FEATURES

External methods are calls to the operating system. Fig. 2.4 shows the pictorial

representation for an operation calling an external method:

Ll

EZnopenkesFile 7]
[#]

Fig. 2.4: A call to an external method

However, application code seldom uses external methods directly. The
functionality of the external methods is provided either by the primitive

methods or by the Application Building Classes.
2.2.2 Control of execution

The example presented in section 2.2.1 shows that controls and annotations

may affect the flow of control and data.

Conceptually the computation is driven by the availability of data. When all
the input values of an operation are available, the operation can be executed.
The execution produces a succeed execution message and the results are
output on the roots of the operation, alternatively it produces a fail

execution message.

A control is the combination of an execution message and of an action. The

range of possible actions is explained:

16

PROGRAPH FEATURES

Control name

Description

Symbol (fail
execution

message).

Next Case

When a Next Case control is activated,
the flow of control is transferred to the

next case of the method being called.

1|

Fail

When a Fail control is actived in the
case of a method, the operation that
called that method produces a fail

execution message.

.

Continue

The combination of a succeed execution
message with a Continue action is
semantically equivalent to no control,
Continue with a fail execution
message ignores the failure of the

operation to which the control is attached

Terminate

The Terminate control is used to
control the iterations of the calling
operation. When a Terminate control is
activated in the case of a method, the
remainder of the case is skipped and the
iterations of the operation that called the

method interrupted.

Finish

The Finish control is also used to
control the iterations of the calling
operation. When a Finish control is
activated in the case of a method, the
remainder of the case is executed but the
iterations of the operations that called the

method are interrupted.

17

PROGRAPH FEATURES

A list annotated terminal indicates that the argument on this terminal will
be a list and that the operation should be applied to every element of the list

until the end of the list is reached or a control is activated.

A loop annotation creates a cycle whereby the value coming out of a root is

fed back into a terminal until the iterations are completed or interrupted.

(%)

Fig. 2.5.a: list terminals Fig. 2.5.b: loop terminals
The behaviour of an operation can also be modified by a multiplex
annotation:

o A repeat annotated operation executes repeatedly until a

Terminate or Finish control is activated in one of the cases of the

method called by this operation (see fig. 2.6.a).

e A partition operation converts a predicate operation into a filter

operation which splits an input list into two result lists (see fig. 2.6.b).

é;‘ collect names Z” @

Fig. 2.6.a: A repeat operation Fig. 2.6.b: A partition operation

The execution of a computation can be controlled by using an inject terminal

and the call primitive. An inject terminal allows the naming of an operation

at run time:

Fig. 2.7: A Set operation with an inject terminal

18

PROGRAPH FEATURES

In fig.2.7 the rightmost terminal of the operation is an inject terminal. The

name of the Set operation is given at run time.

A distinguished primitive, call, calls the method whose name is passed as

argument.
2.2.3 Object-orientation
2.2.3.1 Terms and definitions

Wegner [Wegner 1987] distinguishes three generic features for object-oriented

systems: object, class and inheritance.

o An object encapsulates both state and the operations to manipulate

that state. Objects are instances of classes.

o A class is an abstract template describing the internal state and the

behaviour of its instances.

e Inheritance is a mechanism for code reuse; a subclass inherits the
behaviour and state of its parent class. The subclass extends the
behaviour of its superclasses by overriding the inherited methods or by

defining new methods.

Data abstraction requires that the state of objects is accessed only through the
operations of the objects. Although this is not systematic, object-oriented

languages often enforce data abstraction.
2.2.3.2 Prograph class system

The Prograph class system supports single inheritance, where each class
inherits from at most one class. "At most" is significant in the sense that the
Prograph class hierarchy is “a forest of trees” and not a “tree” as in
Smalltalk [LaLonde and Pugh 1990] in which all classes inherit from the
Object class.

19

PROGRAPH FEATURES

. THE BARNY ARD ,
@} SIMULATION @ i@
CLASSES bt
Barny ard Animall largniry
\»\‘"_ %%—H—
',
) 7| 7T
Aird. 0w Horse
5 ®
Chicken Duck Guernsey Black Angus

Fig. 2.8: Class icons and inheritance trees.

The collection of classes shown in fig. 2.8 contains two single classes
Barnyard and DiaryEntry as well as an inheritance tree with the class

Animal at its root.
2.2.3.3 Object state and behaviour

Unlike Smalltalk, Prograph has not adopted “the everything is an object”
philosophy. In Prograph, the data flowing along the arcs of the dataflow
graph can be a value of a Prograph primitive type, or, it can be an object

whose type is the class of the object.

Prograph provides the following primitive datatypes: boolean, external,
integer, list,none,null, real, string or undefined. Most type
names are self-explanatory. external is the type of operating system data
structures. none is the type of a distinguished value NONE which is passed
to an operation when the matching terminal is not connected. NONE is
suppressed from the list constructed on the list root of a multiplex operation.
undefined is the type of another distinguished value, UNDEFINED, which

is used when a computation is rolled forward during debugging.

It is important to note that Prograph does not view classes as objects and
that classes are not first-class values (classes are first class values in

Smalltalk). Each class supports two sets of attributes, the class attributes and

20

PROGRAPH FEATURES

the instance attributes. Each attribute can be inherited from a superclass or
defined in the class. The value of a class attribute is shared by all the
instances of the class while the value of an instance attribute is private to

each instance.

Contrary to the principles of data abstraction, the values of all the attributes
can be accessed or modified using default Get or Set operations

respectively (see fig. 2.9).

The name of a Get operation is that of the attribute whose value must be
returned. The arity of the Get operation is fixed: one terminal and two roots;
the leftmost root returns the value flowing into the terminal and the second

root returns the value of the attribute.

“Smith”

ZHame

Fig. 2.9: Get and Set operations

Likewise, the name of a Set operation is that of the attribute whose value is
to be modified; its arity is two terminals and one root, the new value of the
attribute flows into the second terminal of the operation, the value on the

root of the Set operation is the value flowing into the leftmost terminal.

The state of a class consists of the values of the class attributes and of the
default values of the instance attributes defined by the class. Get and Set
operations may be used to access the state of classes, however a class cannot
be passed as argument to a Get or Set operation. Instead a string whose
value is the name of the class is passed to the operation. Thus the semantics
of a Get or a Set operation depends on the type of the value flowing on the

terminal of the Get operation or the leftmost terminal of the Set operation.

A default initialisation or Init operation is provided for each class. The
default Init operation has the same name as the class from which a new
object is instantiated. A new instance comes with the default attribute values
defined for its class. The Init operation may take as optional argument a

list of (attribute name, attribute value) pairs to overwrite the default values

21

PROGRAPH FEATURES

or set new class attribute values at instantiation time. Fig. 2.10 shows the
creation of a new instance of the class Person with the value "01 05 96"

for the attribute DOB.

((DOB 01 05 96™))

Person

Fig. 2.10: Instance creation

It is possible to override the behaviour of the default initialisation operation

by defining a custom initialisation method which is added to the class.

The behaviour of the instances of a class is implemented by a set of class
methods. Simple class methods are methods of arbitrary arity. It is sometimes
necessary to extend the behaviour of the default Get or Set operations by
defining custom Get or Set methods. The methods must have the same arity
as the corresponding operations. A Get or a Set method may have a name
which does not correspond to any attribute in the class. A virtual attribute is
thus defined.

The definition of a class is presented using a visual form. Different symbols
are used to distinguish instance attributes from class attributes and inherited

attributes from the attributes defined by the class.

Attribute Symbol
Class attribute, &
inherited

Class attribute, {3
defined by the class

Instance attribute, ki
inherited

Instance attribute, W
defined by the class

Fig. 2.11 shows the attribute window of the class Student, all the attributes

of the class are listed in this window.

22

PROGRAPH FEATURES

W First Hame " Adrian”

¥ Surname "Smith”
W Sex "M

¥ poB "-1-77"
% Registration number 6224

Y Tutor "Dr Miller”

Fig. 2.11: The attribute window of the class Student

In fig. 2.11, all the attributes of the Student class are instance attributes (if
student had class attributes, these attributes would be displayed above
the horizontal line in the window). The attributes First Name, Surnane,
sex and DOB of the Student class are inherited from a superclass, whereas
the attributes Registration number and Tutor are defined by the

student class.

The method window of a class definition displays the methods defined by
this class (inherited methods are not displayed). Different symbols are used
to indicate whether a method is an Init, a Get, a Set or a simple method.

Method type Symbol
Init method @}
Get method Rl
Set method @
Simple method

The window of fig. 2.12 lists the methods of the Student class.

23

PROGRAPH FEATURES

(@) L33

Custom initialisation method.
OB Age
& virtual attribute is defined

addTeClass
Simple Class method.

1El] details
Simple Class method.

Fig. 2.12: The method window of the class Student.

There exists a set of simple methods not attached to any class, called

universal methods.

Prograph is a dynamically typed language. In dynamically typed languages,
the information is not associated with variables but with values. This means

that the same variable can store successive values of different types.
2.2.3.4 Polymorphism

In their survey devoted to data abstraction and polymorphism, Cardelli and
Wegner [Cardelli and Wegner 1985] distinguish four kinds of polymorphism:

o Overloading is a facility which allows the reuse of the same name for
different behaviours. For example in C, the + primitive (addition) is
overloaded as there exist two implementations of the addition, one to
add integer values and a second one to add real values. Likewise, some
of the primitive methods are overloaded in Prograph (e.g. the < relational
primitive method). Overloading is not supported for universal methods in
Prograph as the universal methods share a single name space with the
primitive operations and thus a universal method and a primitive may
not have the same name. But different classes can define methods with

the same name.

24

PROGRAPH FEATURES

e Coercion is an implicit type conversion. An example would be the
computation of 5.3 + 4. The integer value 4 is coerced into the real value
4.0 to be added to the real value 5.3. Prograph coerces the arguments of

the arithmetic and relational operators.

o Inclusion polymorphism is a consequence of inheritance. Each method
defined for a class is also applicable to its subclasses (unless the method is

redefined by a subclass).

e Parametric polymorphism can be defined as the property of a function to
accept arguments of a potentially infinite number of types. Functions
exhibiting parametric polymorphism are termed generic functions. One
example of a generic function is the computation of the length of a list,

where the element type of the list is arbitrary.

A fifth type of polymorphism is often mentioned and should be added to the
list:
e Data polymorphism refers to the ability of the same variable to hold

successive values of different types.

In Prograph, at run-time, an operation calls a method and failure to bind the
operation to a method results in a run-time error. The binding depends on the
type of reference used by the calling operation, the type of its arguments and

the method case in which the calling operation appears.
Prograph offers four types of references:

» The first type of reference is a universal reference (shown in fig. 2.13.a).
The operation is associated with a universal, a primitive or an external

method.

Vﬂegistration ﬁ

Fig. 2.13.a: A universal reference

e The second type is a data-determined reference, which has the
semantics of a message send in Smalltalk. In the object model, objects
communicate by sending messages to each other. Upon receipt of a

message by an object, the method binding mechanism looks up all the

25

PROGRAPH FEATURES

methods with the same name as the message selector and despatches the
method applicable to the class of the receiver object, that is, the method
that the class of the receiver defines or inherits. In the Prograph dataflow
object-oriented model, the receiver is the object flowing in the leftmost
terminal of the operation. If there exists no method applicable to the class
of the receiver, a universal method or a primitive method may be called.
Fig. 2.13.b shows that a data-determined reference consists of the /

character followed by the name of the method to be called

. details

Fig. 2.13.b: A data-determined reference

e The third type is an explicit reference. The operation name consists of
both a class name and a method name separated by the / character (see
fig. 2.13.b). Explicit reference leaves no ambiguity about which method

will be called at run-time.

% Student /details ﬁ

Fig. 2.13.c: An explicit reference

e The fourth type is a context-determined reference. The method called is
the method applicable to the class of the method containing the
operation. It is thus impossible to name operations with a context-based
reference in one of the cases of a universal method. A context-determined
reference can be super annotated. The method called is that applicable to
the superclass of the class of the method containing the operation. A
data-determined reference consists of two / characters followed by the
name of the method to be called (see fig. 2.13.d). Fig. 2.13.e shows the

representation of the super annotation.

.1 fdetails

Fig.2.13.d: A context-determined reference

26

PROGRAPH FEATURES

¥ 7 fdetails b+

Fig. 2.13.e: A context-determined reference with a super annotation

2.2.4 Persistents

Prograph provides persistents. Persistents are named elements which can hold
any value. Two operations are available on persistents, a Get operation

reads the value of the persistent and a Set operation modifies the value of

l

f‘% Student List 2

the persistent (see fig. 2.14).

Student List 7

Fig. 2.14: Persistent Get and Set.

Persistence allows data values to have extent beyond a single execution of a

program.
2.2.5 The language editor & interpreter

A visual editor allows the programmer to manipulate the visual components
making up the Prograph language. Navigation through nested dataflow
diagrams is possible through selecting and clicking on the elements to be
inspected. Documenting applications is facilitated by a hypertext facility
which combines explanation about primitives, user-written comments on
classes, methods and variables. A search facility allows the user to find all

the occurrences of a given operation or attribute in the code.

The interpreter fully exploits the visual paradigm to make the behaviour of
programs easy to understand. A wide range of features is supported to assist
the programmer during the debugging phase: breakpoints, roll backward and
roll forward and four execution modes. The programmer can visually monitor
how the execution of the code progresses by setting the interpreter in the trace
or animate execution mode, in which operations on the graph are highlighted
in a different colour after they have been executed. The interpreter offers a

high degree of reactiveness, that is, the ability to inspect and edit the data

27

PROGRAPH FEATURES

objects taking part in a computation. The stack of the computation currently

executed is also available for inspection in a visual form.

Debugging is facilitated by the exhaustive error reporting provided by the
interpreter. Run-time error messages include invalid argument type, out-of-
range values, stack overflow, activation of a Next Case control in the last
case of a method, no control attached to a failed operation, no method can
be despatched or the named attribute does not exist in the argument class

and wrong operation arity.

Execution and editing are tightly integrated. When an error occurs at run-
time, the execution is suspended at the faulty program point, the case
containing the offending operation is opened for inspection and the
interpreter suggests a possible solution to the programmer (e.g. add an
attribute or a method to the receiver's class). Execution can be resumed after

the faulty value or code has been edited.

Prograph encourages a development methodology whereby the programmer
can develop and test an application using the support tools available in the
editor/interpreter environment and then use the compiler to generate a stand

alone version of the application.
2.2.6 Implementation overview

Although references are seldom manipulated directly by programs, they

underpin the implementation of the language.

All method arguments and return values are passed by reference. The use of

references has several benefits:

e Tt allows data polymorphism, since structures do not store values but

references to values.

e Values can be shared. The existence of several references to the same

value is called value aliasing.

The implementation of data values can be described using C structures. All

data object structures have three fields in common:

e The type field contains an integer value which identifies the type of

the value (dynamic typing).

28

PROGRAPH FEATURES

e The save field is used when cycles in data linkage need to be detected.

e The use field keeps track of the number of times a value is referenced.

This reference count is used by the garbage collector.

This basic structure is extended with the necessary fields to represent
different data objects. Boolean values are implemented by adding an extra
field, called value, which stores 0 when the boolean value is False and 1
when it is True. The declaration in C of the boolean structure would be:
typedef struct
{
Int2 type;
Nat2 save;
Nat2 use;
Bool value;

} CS_boolean, *C_boolean;

The representation of instances requires the addition of two fields to the
basic structure. A size field records the number of slots in the instance. The
C_object field points to an array of references, the size of which is kept in
the size field. The field class is a reference to the class from which the
object has been instantiated. The other references are to the values of the
instance (but not class) attributes. The definition of an instance structure
would be:
typedef struct
{
Int2 type;
Nat4 save;
Natd use;
Nat2 size;
Handle class;
C_object* attrs[]};

} *C_instance

In Prograph, classes are not first class values and the structure underlying
their implementation differs slightly from those used to construct data
objects; it does not make sense for example to record a use count as class

structures are not garbage collected. A class structure is too complex to be

29

PROGRAPH FEATURES

2.3

usefully explained in detail but an outline is given now. A class structure

points to:
e the name of the class.

e an array of references to attribute descriptor structures. An attribute
descriptor points to the name of the attribute; a £1lags field carries other
information about the attribute: class or instance attribute, inherited or

defined for the class.
e an array of references to the values of the class attributes.
o an array of references to the default values of the instance attributes.
e an array of references to the methods supported by the class.
e the structure of its parent, sibling and children classes.
Application development
2.3.1 Structure of applications

The current version of Prograph is available only for the Apple Macintosh.
The traditional area of strength of the Macintosh applications lies in user-
centred, event-driven applications, where the construction of the user-

interface usually makes up a sizeable part of the application.

The requirements of this class of applications are reflected in the structure of
Prograph programs. These are built as an event-processing loop: events are
inserted in an event stream and during each iteration of the loop the event-
handler gets the next event from the event stream and despatches it to the
application component that can respond to it. The way an application
component should respond to an event is described by a behaviour. A
behaviour associates the name of a method or primitive with input specifiers.
When an event is despatched, the behaviour associated with the event is

executed by the commander.

The code for an application, or project in Prograph terminology, is divided
into sections. A section consists of sets of classes, universal methods and
persistents. Sections have no significance for the semantics of the language.
They merely facilitate the modular development of applications and the

sharing of code between projects.

30

PROGRAPH FEATURES

The Application Building Classes (ABCs) form a collection of reusable classes
from which the programmer creates and customises the components of an

application. These components are concerned with:

e User interface building with classes such as Window, Menu and

Button.

e Document management with classes for file handling. Datafile

primitives offer low-level support for operations on indexed files.

o Utilities, with classes and methods to manage printing, clipboards and

system resources.

s Application behaviour, with a collection of related classes such as
Event Handler, Commander, Task and Behaviour and their

associated methods.

The application is structured as an object containment hierarchy (see fig.
2.15). An instance of the Application class is at the top of the
containment hierarchy. The attributes of the Application object store the
components making an application (file, menu and windows). Each
component may in turn contain several further components. For example in
fig. 2.15, the Application instance contains an instance of the Desktop

class, which in turn contains an instance of the Menubar class.

31

PROGRAPH FEATURES

l «Application» !
«Clipboard»

————‘ «Commander» !

—"—I«Finder Handler» | «MultiFinder Handler» J

«Modal Handler» !

list of «Deferred Task»'s

undoable «Task»

«Desktop»

|

bt list of «Document»s

«Menubar» l
list of «Menu»s

list of «Screen»s

list of «Window»s

«Printer»

«Utility»

I

Fig. 2.15: The application containment hierarchy

2.3.2 Application building tools

ABC objects can be created and modified in a direct manipulation fashion
using the Application Building Editors (ABE's). Visual components of
applications such as windows and buttons are drawn in a WYSIWYG (What
you see is what you get) fashion. However, editors are not restricted to the
manipulation of visual objects. Behaviours, for example, may also be
specified by typing a method name and choosing the input specifiers from a

pull down menu.

When creating an application component from an ABC, the associated ABE
actually creates a subclass of the ABC. The values required for the
instantiation of the component are recorded as the default values of the
attributes of the ABC subclass.

32

PROGRAPH FEATURES

2.4

25

Support for distribution in Prograph

The current version of Prograph provides simple mechanisms for distributed

programming.

Packing is the transformation of an object into a stream of bytes for storage
on a permanent media or transmission over a network. Unpacking is the

reconstruction of an object from a stream of bytes.

When packing an object, it is meaningless to save references as these
references will have no meaning in another context, so instead the values
pointed at by the references should be packed as well. The to-bytes
primitive in Prograph packs data objects of arbitrary complexity and
produces a map which can be used when unpacking the object. The values of
instance variables are packed with the instance that refers to them. The
primitive from-bytes reconstruct objects from their byte stream

representation and the associated map.

Different communication protocols can be used to transmit packed objects.
Prograph provides a set of primitive methods to wrap up calls to the Apple
Transaction Protocol (ATP), which is one of the protocols supported by the
Appletalk protocol suite [Sidu, Andrews and Oppenheimer 1990]. Other
communications protocols, notably TCP-IP, are supported by add-on

products.
Summary

e Prograph was first conceived as a functional language using a visual

dataflow representation.

e The current version of the language features an object system to provide

data abstraction.

e For efficiency reasons, Prograph does not adhere to the pure dataflow
model. Instead, complex data structures can be modified in place. Values,
in Prograph, are dynamically typed and memory management is

automatic.

» A powerful editing/debugging environment supports the task of the
programmer. Applications can be created from a large collection of

reusable classes.

33

PROGRAPH FEATURES

e Support for distribution is limited in the current version of Prograph.

34

DISTRIBUTED PROGRAMMING MODELS

3 Distributed Programming models

3.1

The term distributed systems encompasses a broad range of hardware

configurations and applications.

A classification for such systems is proposed in the first section of this
chapter. The second section discusses the role of a distributed programming
model. Sections three, four, five and six are devoted to four of these models.

The last section presents a model for Distributed Prograph.
Classes of Distributed Applications

In [Bal, Steiner and Tanenbaum 1989], the reasons for using distributed

systems are put in four different categories:

s Execution speed-up for a single computation can be achieved through
parallelism. Numerical applications are characterised by the regularity of
both their data structures (vectors or matrices) and control structures
(loops). Symbolic programming handles symbolic data such as deduction
rules in expert systems. This data is represented by complex and irregular
data structures. The requirements of symbolic programming have
motivated the development of declarative languages. The higher level of
abstraction provided by these languages, automatic memory management
for example, makes symbolic programming more tractable than with
imperative languages. Intensive numerical or symbolic computations can
be split into smaller granularity computations. Flow modelling and the
implementation of a true-or parallel facility are examples of numerical
and symbolic parallel applications respectively. Parallel applications are
often characterised by a high communication to computation ratio.
Workstations connected by a local area network are establishing
themselves as an alternative to parallel machines and vector processors

to execute such parallel applications.

e The benefits of distribution with respect to fault-tolerance have been
recognised for some time. Fault-tolerance can be provided by purpose-
built distributed hardware. Alternatively, duplication of data and
functions on autonomous machines increases the reliability and

availability of the system. Mechanisms must be devised to ensure the

35

DISTRIBUTED PROGRAMMING MODELS

3.2

consistency of the replicated data and a proper synchronisation of the
replicated activities. The ISIS toolkit [Birman 1993] provides support to

build distributed fault-tolerant applications using normal hardware.

e Resource sharing is possible through the functional specialisation of
parts of the system, known as resource managers or servers. This class of
applications is known as client/server applications. Client/server
applications are usually deployed in multi-user environments.
Heterogeneity is an important issue in the design of client/server
applications. This heterogeneity ranges over hardware, operating systems,
communication protocols and application programming languages.
Client/server applications are progressively replacing mainframe centred
applications within commercial organisations as is reported in the 1996
Datapro client/server survey [BYTE 1996].

e Some applications such as Automatic Teller Machines (ATMs) are
intrinsically distributed. This class of distributed applications emerged as
early as the 1950s with the early developments exemplified by the
SABRE airline reservation system. These systems can be described as
Joosely coupled as they involve wide-area network communication. The
relevance of this class of applications is illustrated by the growing
popularity of the Internet and the other distributed applications it has

spawned such as electronic mail and the World-Wide-Web.
Distributed Programming models

“A distributed programming model is one which enables us to set up and
coordinate activities residing at multiple autonomous machines connected by
a network” [Coulouris, Dollimore and Kindberg 1992]. Programming in the
small refers to the task of describing the individual activities, whereas the

coordination of these activities is referred to as programming in the large.

A distributed programming model should present the programmer with the
necessary abstractions to deal with parallelism, communication and
synchronisation between activities. The level of abstraction supported may

vary considerably from one model to another.

A model may shelter the programmer from the issues arising from

distribution. The opposite view states that a programming model consists of

36

DISTRIBUTED PROGRAMMING MODELS

3.3

a computation model and a coordination model and these two models can be

developed separately [Gelernter and Carriero 1992].

A model is often biased toward a class of applications. The communication
pattern between the activities involved in a parallel computation differs from
that in a client/server application. The requirements of the class of

applications targeted are reflected in the abstractions provided by the model.

There are two approaches to parallelism. The first approach advocates
implicit parallelism where the programmer need not indicate which portions
of the program should be executed in parallel. With explicit parallelism,
language constructs are available to express parallelism within a program.
Mapping is concerned with the assignment of activities to the processing

resources available within the distributed system.

The activities making up a distributed computation need to exchange data by
means of communication over the network. A programming model may
abstract communication to various extents. Some models offer some high-
level views of network operations. At the other end of the spectrum,
communication may be completely hidden from the programmer and dealt

with by the implementation.

The model also deals with synchronisation requirements. Activities are said
to be synchronised if the progress of one is conditional upon an event caused

by the other.
Process Model
3.3.1 The process abstraction

The process model is often implemented by procedural languages. A
procedural language describes a computation as a sequence of instructions
which access and modify data stored in memory. Procedures are groups of
instructions that can be referred to by a name and can be called. Procedural
languages view computations as a set of procedure definitions and a

sequence of procedure calls.

The process is the abstraction of the hardware used to execute a
computation. A process encapsulates the program data, its code as well as

one or more threads of execution. A thread is the abstraction of an activity.

37

DISTRIBUTED PROGRAMMING MODELS

3.3.2 Distributed processes

In the context of distributed programming, processes are seen as units of
concurrency and distribution. Processes do not share state and communicate
by the sole means of message passing. The purpose of a message might be to
transmit data or invoke some behaviour of another process. Point-to-point
communication is the name of the former type of message-passing and Remote
Procedure Call that of the latter.

3.3.2.1 Point-to-point communication

With point-to-point communication, processes exchange unidirectional
messages using communication primitives. Variations are possible depending
on whether the operations are blocking or non-blocking. A send operation is
blocking if it does not return until a corresponding receive operation is
issued. A blocking receive operation does not complete until a message

arrives.

In [Bal, Steiner and Tanenbaum 1989], processes and point-to-point
communication are described as the “basic model”. This suggests that the
model closely reflects the distributed architecture; it can be implemented

efficiently and is widely used for parallel numeric applications.
3.3.2.2 Remote Procedure Call

Remote Procedure Call [Birrel and Nelson 1984] extends the functionality
provided by one-to-one messages as they transmit not only data but also a
reference to a procedure defined in the interface of the callee. RPC builds on
the well-understood notion of a local procedure call. The semantics of a
procedure call implies that the caller remains blocked while the callee is
executing the procedure. A remote procedure call provides a means of
exchanging data and synchronisation between activities and hides the details

of the network operation from the application programmer.

RPC is often chosen to implement client/server applications. In that
particular context, the caller is referred to as the client and the callee as the
server. A server manages some resources on behalf of its clients. The service is

described by an interface.

38

DISTRIBUTED PROGRAMMING MODELS

The RPC model of process interaction restricts the potential for parallelism
between clients and servers. More parallelism can be introduced by allowing
several threads of execution within the client, that is, procedure invocations
can proceed in parallel. At the server level, multiple threads might allow the
server to service requests in parallel. Asynchronous RPC has also been
investigated [Liskov and Shrira 1988]. Both multithreaded code and
asynchronous RPC complicate the programmer's task as they introduce

further synchronisation requirements.
3.3.3 Implementations of the process model

The Occam language implements the Communicating Sequential Processes (CSP)
model [Hoare 1978]. Occam processes are single threaded computations.
They communicate by sending messages through channels. A channel is the
abstraction of an unbuffered, unidirectional data path between two
processes. An input operation reads the value available through the channel
and an output operation writes a value on the channel. Both operations are
blocking, as an input operation must be matched by an output operation.
Processes can be composed using the SEQ, PAR and ALT statements. SEQ
requires the processes to be executed sequentially, PAR in parallel and ALT
provides non-determinism.
CHAN OF INT chan3, chan4:
PAR
INT fred:
SEQ
chan3? fred
fred := fred+l
INT jim:
SEQ
chand ? jim
Jim := Jjim+1
In the above example taken from [Pountain and May 1987], two channels
transmitting integer values are declared, chan3 and chan4, two identical
processes proceed in parallel to read the values from chan3 and chan4 and

increment them by one.

39

DISTRIBUTED PROGRAMMING MODELS

The conceptual simplicity of the CSP model has also made it attractive as a
coordination model to be used with a variety of sequential languages (a list

can be found in [Bal, Steiner and Tanenbaum 1989]).

The conjunction of a conventional programming language such as C or
FORTRAN with a message passing library such as the Parallel Virtual
Machine (PVM) [Sunderam 1990] or the Message Passing Interface (MPI)
[MPI forum 1993] provides an evolutionary approach. These libraries
abstract away the complexities of the networking operations and present to
the user a set of high level communication functions to send and receive data
in a machine independent format.

/* Sending Process */

initsend();

putstring(“The square root of");

putint(2);

putstring("is");

putfloat(1.414)

send("receiver", 4, 99)

The example above shows the use of functions of the PVM libraries from
within a program written in C. A message is constructed and then sent. The
send function takes as arguments the (process name, instance) pair (there
might be several instances of the same process) and the message type. A

message type permits the selective reception of messages.

The Argus language [Liskov 1988] supports RPC as a language construct.
RPC, however, is more often implemented as a run-time support
infrastructure for existing languages. An RPC mechanism is one of the
components of the Open Software Foundation (OSF) Distributed Computing
Environment (DCE) [OSF 1992] (see fig. 3.1).

40

DISTRIBUTED PROGRAMMING MODELS

Distributed File Services

Remote Procedwe Call
and Presatation Serviose

Vhumads

Fig. 3.1: The architecture of the Distributed Computing Environment

The interface between a callee and the callers is described using a special
purpose Interface Definition Language. The following example is taken from
[Shirley, Hu and Magid 1994]:

{

uuid(40554daa-6b3b-11ct-8a42-08002be7a203),

version(1.0)

] interface arithmetic

const unsigned short ARRAY_SIZE =10;
typedef long long_array [ARRAY_SIZE];
void sum_arrays (

[in] long_array a,

[in] long_array b,

[out] long_array c);
int sum_ints ([in] int a, [in] intb));

}

The syntax of the DCE IDL is very close to that of ANSI C. The interface is
identified by a Unique Universal Identifier (UUID), its version number and its

name. This interface defines a constant, an array datatype: long_array

41

DISTRIBUTED PROGRAMMING MODELS

3.4

and two operations, sum_arrays and sum_ints, which compute the sum
of two arrays or of two integers. The interface is compiled by the interface
compiler which generates a skeleton for the implementation of the server and
the low-level distribution code which is transparent for the user. A binding
mechanism, Cell Directory Service (CDS) in DCE terminology, allows servers to
export their reference and client applications to acquire the reference of the

servers they need to invoke.
Distributed Objects
3.4.1 The basic object model

An object encapsulates both state (the attribute variables of the object) and
behaviour (the methods). Objects are instances of classes. Classes serve as
templates that define the implementation of their instances. Inheritance is a
mechanism whereby a subclass inherits the behaviour and the structure of its
superclasses. The primary goal of inheritance is code reuse and sharing.
Objects communicate exclusively by message passing. An object invokes
another object by sending it a message. When the object receives a message, it
determines whether it has a method to respond to the message. The matching
at run-time of an operation name and of the corresponding method is called
dynamic binding. The semantics of object invocation is that the calling object

remains blocked until the invoked object returns.
3.4.2 Objects and distribution

The message passing mode of interaction between objects extends naturally
to distributed programming. Data abstraction is of obvious benefit to
distributed programming because it reduces coupling between the different
parts of a distributed application. Other features of the original object model

require special consideration for distribution.

Inheritance can be difficult to implement in a distributed environment.
Bennett [Bennett 1987] writes: “A major disadvantage of inheritance is the
potentially awkward separation of object behaviour and state”. The cost of
method despatching appears too high. Some models do not support it.
Prototype-based languages [Lieberman 1986] constitute another variation
from the original object model. These languages do not have classes from

which objects can be instantiated, rather objects are created by cloning a

42

DISTRIBUTED PROGRAMMING MODELS

prototype object. Code sharing and reuse is achieved through delegation.
Objects can delegate to one or more ancestors the responsibility for

performing an operation or keeping part of its state.

Object models have different approaches to typing. Dynamically typed
languages give greater flexibility to the programmer. However type errors can
be discovered only at run-time and this might prove particularly
unacceptable in a distributed system. Static typing stresses tighter typing

discipline since type errors are detected at compile time.

Object models also vary in the way objects and activities are related, two

approaches can be distinguished

e In the active object model, activity is associated with the object.
Parallelism in the active object model results from the instantiation of
several active objects. Intra-object parallelism is possible by allowing

several activities to execute in an object.

o In the passive object model, objects and (potentially multithreaded)
processes are distinct entities, the process being responsible for executing
methods of passive objects. Processes are units of parallel execution in

the passive object model.

In all models, message passing is the means for objects to communicate
whether they be in the same address space or separate address spaces.
Synchronous message passing also provides inter-object synchronisation,
although some models allow objects to send messages asynchronously in

order to increase concurrency.

Several mechanisms are available for the internal synchronisation of objects.
For example synchronisation variables such as mutexes can be part of the
internal state of the object or monitor constructs may be available for object

operations.

The requirements of parallel computing led to the development of another
variation of the basic object model, the Actor model [Agha 1990]. Actors
encapsulate state and behaviour as well as activity. Actors communicate by
asynchronously sending messages to other Actor's mailboxes. A mailbox
name uniquely identifies the actor to which the mailbox belongs and it can

also be transmitted in a message. The mailbox queues the messages for its

43

DISTRIBUTED PROGRAMMING MODELS

actor and the messages invoke the actor's behaviour. A behaviour may spawn

new actors with new mailboxes or a successor actor with the same mailbox.

Client/server applications are often deployed in heterogeneous environments
and the good abstraction capabilities of the object model have led to its
widespread acceptance for this class of applications. However, the use of
object-oriented languages for parallel programming has also been the subject

of some interest.
3.4.3 Distributed Object Systems

The systems presented in this subsection illustrate the various design

approaches mentioned in the previous subsection.

Smalltalk is seen as the archetypal object-oriented language. [Bennett 1987]
describes a possible way of distributing the language. The aim of the project
was to retain as much as possible of the original object model, hence the
semantics of Distributed Smalltalk is the same as that of the sequential
language. The implementation provides a message forwarding and reply
service to remote objects. The Smalltalk language and programming
environment offer a high degree of reflection and interactivity. Reflection
means that the representation and execution characteristics of the language
are exposed using the language constructs; these characteristics can be easily
customised. Distributed Smalltalk preserves this design philosophy;
Distributed Smalltalk is largely implemented in Smalltalk and the error
reporting and analysis facilities remain available with distributed

computation.

The Obliq language [Cardelli 1995] is an interpreted prototype-based
language designed for distributed programming. Obliq's object model does
not use delegation on the grounds that the sharing resulting from delegation
causes implementation difficulties in a distributed context. Obliq objects are
self-contained. The attributes and methods of an object are embedded into it.
The fragment of code below shows the definition of an object:
let o=

{x=>3,

inc =>meth(s, y) s.x :=s.x+y; s end,

next =>meth({s) s.inc(1).xend};

44

DISTRIBUTED PROGRAMMING MODELS

An object o is defined with an attribute x and two methods inc and next.
Code reuse is achieved by the cloning operation. The expression:

clone(ayi, .., an)

creates a new object with all the attributes and methods of objects a1 to ap.
Distribution is not transparent in Obliq. A site is the abstraction of an
execution context and it is designated by a name. The execution of a
procedure can be explicitly mapped to a site by the programmer. Obliq
supports lexical binding with identifiers retaining the value to which they
were bound at their first occurrence. In Cardelli's view, lexical scoping
prevents the unpredictable results caused by dynamic scoping in a

distributed environment.

The following example (adapted from Cardelli's paper) explains how
distributed lexical scoping works. The server site registers itself with the
name server (called Namer) under the name of ComputeServer and
exports an exec procedure which, when invoked, executes the closure it
receives as argument:

net_export ("ComputeServer”, Namer, {exec =>meth (s, p)p()end})

At the client site, the ComputeServer object is obtained from the name
server Namer, bound to an identifier computeServer and its exec
method is invoked:
let computeServer =

net_import ("ComputeServer", Namer) ;
var x = 0;

computeServer.exec (proc() x:=x+1 end) ;

As the result of the invocation, the value of x at the client site is 1, even if a
variable x with another value was defined at the server site. Type checking in

Obliq is dynamic.

The designers of the Emerald language [Black et al. 1986] have chosen an
object model which does not support inheritance. They have introduced a
strong typing discipline based on the notion of subtyping. Emerald objects
can have a process attached to them. A monitor construct is available for the
object methods in order to synchronise object invocations. Objects and their

activity can be migrated in Emerald but migration is not completely

45

DISTRIBUTED PROGRAMMING MODELS

transparent to the user. A small set of language primitives allows the

programmer to control mobility:
e locate returns the node where an object resides.
* move relocates an object to another site.
e fix and unfix respectively disable and re-enable object mobility

e refix performs the sequence unfix, move and £ix in an atomic

fashion.

An attached annotation for the object attribute declaration allows the
programmer to describe how objects should be migrated. The values of all the

attached attributes of an object are automatically migrated with the object.

UC++ [Winder, Wei and Roberts 1992] is a parallel object-oriented
programming language based on C++. UC++ relies on active objects to
express the potential for parallel execution. An active keyword allows the
programmer to make the instance of any class an active object. An active
object is executed by a virtual processor. Each virtual processor supports
only one object. Virtual processors are designated by integer values and the
programmer can optionally specify to which processor a new active object
should be allocated, using the keyword on. The fragment of code taken from
[Winder, Wei and Roberts 1992] shows the creation of an active instance of
the class PrimeFilter on the virtual processor 0:

active PrimeFilter two (2, outputObject) on0;

The mapping of virtual processors onto physical processors can be done
automatically by the run-time system or it can be described in a loading file.
The split keyword allows the invocation of the methods of active objects

asynchronously or to spawn a thread within a method of an active object.

Guide [Balter, Lacourte and Riveill 1994] supports inheritance and makes a
clear distinction between subtyping and subclassing. Types are concerned
with the interface and classes with the implementation. The Guide type
system will be described in greater detail in chapter 5. Guide is based on the
passive execution model where objects and processes are orthogonal.
Synchronisation in Guide takes the form of activation conditions attached to

methods. For each method the following set of counters is defined:

46

~ DISTRIBUTED PROGRAMMING MODELS

invoked (m) : number of invocations of method m

e started (m) : number of accepted invocations for m

completed (m): number of completed executions of m
e current (m) = started(m) - completed(m)
e pending (m) = invoked(m) - started(m) .

The activation conditions of a method are expressed as conditions which the
method counters must satisfy in order for the method invocation to proceed.
The following conditions are defined for the activation of the Put and Get
methods of a FixedSizeBuffer object.

Put: (completed(Put)-completed(Get) <size) AND current (Put)=0;

Get: (completed(Put)>completed(Get)) AND current (Get)=0;
The conditions state that:

e Put may proceed if the number of items in the buffer is smaller than the

maximum size of the buffer and no invocation of Put is currently

proceeding.

e Get may proceed if there is at least one item in the buffer and no other

invocation of Get is currently proceeding.

As with other models, considerable effort has been put into offering an
evolutionary path to distributed objects. An Object Request Broker (ORB)
forwards object invocation across separate object contexts. The Object
Management Group (OMG) has worked on the standardisation of a Common
Object Request Broker Architecture (CORBA) [OMG 1996] (see fig. 3.2).
CORBA defines not only the architecture of a request broker but also a series

of associated services such as naming, persistence and transactions.

47

DISTRIBUTED PROGRAMMING MODELS

3.5

(Client) (Object Implementation)

tfic IDL]
Skeleton

IDL
e ocali on Siubs

ORB Core

Fig. 3.2 : Architecture of an Object Request Broker.

The interfaces of these services and that of the application objects are
described using the CORBA Interface Definition Language. The operations
defined in the interface of an object can be invoked by clients or alternatively
the invocation can be constructed through a mechanism called dynamic
invocation. The extra complexity incurred by dynamic invocation is justified
in cases where the invocation parameters (message selector or the arguments
of the invocation) cannot be known at compile time. Application objects can
be implemented using a variety of languages, including non object-oriented

ones.
Functional parallelism
3.5.1 Functional languages

Functional languages along with logic languages are said to be declarative, in
contrast to imperative languages. Declarative languages let the programmer
concentrate on the description of a solution to a problem and do not require
the programmer to describe how the computation should be sequenced or

how memory should be managed.

With the functional model, the function is the abstraction of a computation
and programs are built from function definitions and function applications.
Functions, in that context, are pure mathematical functions. Program state is
passed as an argument to the function and returned by it. State is not

modified as a side-effect of the computation.

Hudak [Hudak 1989] highlights some of the features common to most

functional languages:

48

DISTRIBUTED PROGRAMMING MODELS

e Good support for data abstraction.

» Functions are first class values.

» Use of recursion for looping.

e Equational feel and pattern matching.

The use of pattern matching and of recursion is illustrated by the definition of
factorial in SML:

fun factorial 0=1

| factorial x =x * factorial (x-1);

However, some features may vary considerably from one functional language
to another. For example, efficiency concerns have motivated the addition of a
Jimited number of imperative features to some functional languages, called
impure functional languages. Functional languages may also differ in the way
functions are evaluated. Two strategies can be distinguished: eager and lazy
evaluation. With eager evaluation, all the arguments of a function must be
evaluated before the function can be applied to them. With lazy evaluation,
an argument is evaluated only if its value is needed to compute the value of

the function.

Functional languages offer a high level of abstraction from implementation
details and they appear both more concise and more expressive than their
imperative counterparts. Also, their clear semantics make them amenable to
formal analysis. Functional languages also appear to be well suited for
parallelism because the freedom from side-effects ensures, that, in the

absence of data dependencies, functions can be evaluated in parallel.
3.5.2 Parallel functional models

Steele [Steele 1995] lists several ideas for the development of a parallel
version of LISP and, by extension, of a parallel functional language. The last

idea is mentioned in [Hammond 1994]:

e Completely independent processes: A computation is described as a
set of processes implemented using a sequential functional language and
the processes communicate using some communication facilities such as

channels.

49

DISTRIBUTED PROGRAMMING MODELS

e Processes in a shared address space: A primitive initiates the
evaluation of a piece of code by a new process. Processes execute
concurrently, access and modify the data available in a (virtually) shared

address space. Communication and synchronisation are implicit.

o Futures: The future construct [Kranz, Halstead and Mohr 1989] spawns
the evaluation of a LISP expression in parallel. The computation which
spawned the future need not wait for the return of the value and receives
a future data object which acts as a place holder for the value to return
and is in an unresolved state until the value becomes available. If the value
of the expression is needed and the future is still unresolved, the
evaluation can be forced by touching the future, thus forcing the two tasks

to synchronise.

e Parallel evaluation of arguments. The pcall (parallel call) form
[Halstead 1984] spawns different tasks to evaluate in parallel the

different arguments of a function before applying the function to them.

o The data-parallel model: The application of the same functions to all
the elements of a large regular data structure can be performed in parallel
[Steele and Hillis 1986). This leads to fine-grain parallelism which is best
supported by tightly coupled parallel architectures, particularly SIMD

(single instruction multiple data) architectures.

o Purely functional model: In the idealised functional model [Goldberg
and Hudak 1986], no language constructs are necessary to indicate
parallelism. Communication and synchronisation remain also implicit for
the programmer. This idealised model might lead to a fine grain
parallelism which cannot be exploited efficiently. Annotations have been
introduced to control parallelism, evaluation order and mapping of

expression evaluations to processors [Hudak 1986].

o Algorithmic skeletons [Cole 1989] offer a high level view of the program
structures of a parallel computation. Skeletons capture patterns of
parallelism common to classes of applications; one example of such a

pattern is pipelining.

50

DISTRIBUTED PROGRAMMING MODELS

3.5.3 Case studies

The languages presented below exemplify some of the approaches discussed

in the previous subsection.

Facile [Giacalone, Mishra and Prasad 1989] combines the SML functional
Janguage with a coordination model based on processes and channels.
Processes in Facile are SML computations which communicate and
synchronise themselves using a channel facility. The example below shows
the creation of channels in Facile. Firstly, the user calls the function channel
and gives the type of the channel.

-val chl = channel () : int channel;

val chl = channel : int channel

Then processes communicate using the send and receive functions:
val send: 'achannel * 'a ~->unit

val receive: 'achannel ~> 'a

- send(chl,7);

val it = () :unit

- receive ch2;

valit=8: int

ICSLA [Queinnec and DeRoure 1992], a LISP family language, structures
parallel computations as a collection of processes in a virtually shared
address space. ICSLA expresses concurrency with a breed function.

(breed [thunk ...1)

preed takes an arbitrary number of thunks (a thunk is a function with no
arguments) as its arguments and replaces the current task with the necessary
number of tasks to evaluate the thunks. The remote and placed-remote
functions distribute data and tasks and placed-remote specifies the

processor where the task or data should be sent.

The Connection Machine LISP [Steele and Hillis 1986] extends LISP with
some language constructs tailored to exploit data parallelism inherent in the
Connection Machine SIMD architecture. A xapping data structure is a
combination of an array and a hash table. Operations on the entries of the
xapping can be carried out in parallel. The following xapping maps symbols

to other symbols:

51

DISTRIBUTED PROGRAMMING MODELS

{blue — sky red — apple green — grass}

The o notation indicates that a function must be performed on all the
elements of a xapping in parallel. For example:
ocons ' { blue — sky red — apple green —> grass} ' { blue — seared —

wine green — emerald}

returns:

{ blue — (sky, sea) red — (apple, wine) green — (grass, emerald) }

Alfalfa [Goldberg and Hudak 1986] is an implementation for distributed
memory multiprocessor of the Alfl functional language [Hudak 1984]. Alfl
contains no explicit construct for expressing parallelism and thus Alfalfa can
be seen as an example of a purely functional parallel system. The
implementation of Alfalfa is based on the graph reduction model. The graph

reduction model represents a computation as a directed graph of nodes.

[Fasel and Keller 1986] define a notation in their introduction to graph
reduction. Other notations have been proposed (one example can be found in
[Field and Harrison 1988]) but the intuitive nature of Fasel and Keller's
notation makes it well suited for the purpose of the explanation that follows.

In this notation, a node can be:
e A value which is a leaf node of the graph.

e A primitive operation, represented by an oval node e.g.

/

e A function application, represented by a rectangle node. The example

shown below is a function of two arguments.

4

From

P

The computation is driven by the reduction of the graph, that is by replacing

the evaluable nodes by their value.

52

DISTRIBUTED PROGRAMMING MODELS

The reduction of a primitive node replaces the node by its value. The
reduction of a function application requires the expansion of the function
application node into the graph defining the behaviour of the function. The
graph can then be reduced.

The computation is demand-driven, that is a node is not evaluated until its
value is needed. This property is illustrated in [Fasel and Keller 1986] with
the from function which generates an infinite list of integer values starting

with the value of its argument n (see fig. 3.3):

cons

from

Fig. 3.3: The from function

The cons operator does not require the evaluation of its second argument
and from will be evaluated again when the value n+1 (that is the second

element of the list) is accessed

The interest of the graph reduction model is that nodes may be reduced
independently and potentially in parallel. The example shown in fig. 3.4
taken from the introduction of [Fasel and Keller 1986] highlights the potential

for parallelism in the evaluation of the expression:
(a+b) / (exd) - (cxd)/ (e+f)

In fig. 3.4, the three nodes in grey could be evaluated in parallel, the two
divide nodes could also be evaluated in parallel at a later stage during the

computation.

53

DISTRIBUTED PROGRAMMING MODELS

Fig. 3.4: Graph representation of a functional expression

ParAlfl [Hudak 1986] is another development based on the Alfl language.
ParAlfl provides a notation so that the programmer can control the mapping
of a program onto a target machine architecture. The processors of the target
machine are designed by their PID, which is an integer value. The evaluation

of an expression can be mapped to a processor explicitly. The code:
(f(x) $on 0)+(g(y) Sonl)

maps the evaluation of £(x) on processor 0 and g (y) on processor 1.
¢self is bound to the PID of the currently evaluating processor. It is
possible to designate processors relatively to the current processor. For

example:
(f(x) $on left ($self))+(gly) Sonright($self))

maps the evaluation of £ (x) to the processor on the left of the current
processor and the evaluation of g (y) to the processor on the right of the
current processor (the meaning of left and right depends on the topology of
the target machine). Alfl has a lazy evaluation strategy, however, a special
notation, #, allows the programmer to force the evaluation of an expression.

For example:
£(x,#y,z)

forces the evaluation of y in parallel with the evaluation of £.

54

DISTRIBUTED PROGRAMMING MODELS

Algorithmic skeletons outline a pattern of parallelism without knowledge of
the individual tasks to be carried out in parallel. The Structured Coordination
Language (SCL) [Darlington et al. 1995] is a functional language for
composing procedures written in a sequential language (e.g. FORTRAN). SCL
provides constructs to specify partitioning, data movement and control flow.
Data parallelism constitutes the underlying model for SCL. The built-in o
distributed array type allows operations on its elements to be carried out in

parallel. The following example is taken from [Darlington et al. 1995]:

rotate :: Int — ParArray Int o — ParArray Int &

The function rotate takes as arguments an integer value (called the
distance of rotation), a one dimensional parallel array whose indices are of
integer type and elements of type o and returns a similar array. The code for
rotate:

rotate k A=<<i:=A((i+k) mod SIZE(A)) | i ¢ [1 .. SIZE(A)]>>

In [Rabhi 1993], Haskell serves as both the base and the coordination
language. Higher-order functions control the application of supplied
functions following a pre-established pattern. The higher-order function rp$
captures the pattern of recursively partitioned algorithms:
rp$ ind solve divide combine prob

| ind prob = solve prob

| otherwise = combine prob

(map (rp$ ind solve divide combine)

(divide prob))
with:
e ind prob is a predicate which returns TRUE if the problem prob is
indivisible.
e solve prob is the function which solves an indivisible instance of the
problem prob.

e divide prob partitions the problem prob into subproblems

e combine prob sols combines the solutions sols.

55

DISTRIBUTED PROGRAMMING MODELS

3.6

Datafiow model
3.6.1 Dataflow computations

The dataflow model promotes a view of computation even further removed
from control flow languages than graph reduction. The dataflow model has a
simplified and quite straightforward evaluation regime, and execution is

driven solely by the availability of data.

A dataflow computation can be represented by a dataflow graph. The graph
comprises nodes called operations and arcs representing the flow of data
between operations. The notion of variable does not exist in the dataflow
model. The values are anonymous and side-effects do not exist in the

dataflow model.

The dataflow model presented in [Glaser, Hankin and Till 1984]

distinguishes six types of nodes and a notation for function definition.

e A primitive node applies the operation to its argument.

N

e The copy node duplicates its incoming argument onto two or more

e The value node has no input value and outputs a constant value, a

outgoing arcs.

primitive or a user-defined function represented as a closure.

o The switch node controls the flow of data according to the boolean

value flowing into its control input.

56

DISTRIBUTED PROGRAMMING MODELS

input value

control '
W,

e The merge node selects which input value is returned as output value.

control @

e The apply node applies the function which is passed to it on its
leftmost input to the argument on the second input (functions of more

than one argument are partially applied).

The example shown in fig. 3.5 computes the roots of a quadratic equation of

the form ax?+bx+c.

57

DISTRIBUTED PROGRAMMING MODELS

-b/2a +V(b2-4ac)/2a -b/2a - (b2-4ac)/2a

Fig. 3.5: Data flow graph for the computation of the quadratic roots.

The interest of the dataflow model is that it is inherently parallel. Operations
can be seen as fine grain units of parallelism; the execution sequence is
constrained only by the partial order defined by the data dependencies.

Communication and synchronisation are implicit.

58

DISTRIBUTED PROGRAMMING MODELS

3.6.2 Dataflow languages

Several dataflow languages have been developed, Id Nouveau [Nikhil,
Pengali and Arvind 1986] is a recent example. In order to increase their
expressive power, these languages extend the pure dataflow model with
procedural and data abstractions, conditional choice and iterations. The fine
grain parallelism inherent in the dataflow model requires tightly coupled
parallel machines or specialised hardware to be exploited successfully.
Several dataflow machine architectures were investigated in the 1970s and a
survey of dataflow machine architectures can be found in [Treleaven,
Brownbridge and Hopkins 1982]. However, results have proved
disappointing and recent research work focuses on hybrid dataflow/Von

Neuman architectures [Lee and Hurson 1994].

SISAL (Streams and Iterations in a Single Assignment Language) [Feo, Cann
and Oldehoeft 1990] is considered a dataflow language. Although it
supports variables in a limited form, variables can be assigned only once.

SISAL is mainly targeted at numerical applications.

SISAL functions may take several arguments and return several values. The
control structures of the language if..then..else and the for loop are
higher order functions. SISAL provides a built-in array type and supports
user-defined types, including records. The statement below defines an array
of integer type:

type One_Dim_I = array [integer];

The record type element_record is used for the periodic classification of
chemical elements:
type element_record = record [name : array [character];

number : integer;

welght : reall

The following code computes the roots of a quadratic but it is not equivalent
to the program described by the graph in fig. 3.5 as the function shown below
tests the sign of the value of the discriminant.
function quad.roots(a, b, ¢ : real returns real, real)

let

denom=2.0*a;

59

DISTRIBUTED PROGRAMMING MODELS

discrim:=b*b-4.0*a*c;

in
ifdiscrim>=0.0
then
-b + sqgrt{discrim) / denom,
-b - sqrt(discrim) / denom
else
-9.99e99, -9.99e99
end if
end let

end function

SISAL has been implemented on a variety of shared-memory multiprocessors
with some success [Cann 1992]. A SISAL compiler for distributed memory

parallel machines and a network of workstations is described in [Freeh and

Andrews 1995].

Dataflow is seen as a possible glue to describe the communication and
synchronisation patterns between coarse grain activities. Such an approach is
called Large Grain Dataflow (LGDF) [Babb 1984]. LGDF is a programming
methodology for the development of parallel programs. The methodology
goes over successive steps to convert a dataflow graph into a program

written in an imperative language.

Several parallel programming environments use visual dataflow as their
coordination language with nodes corresponding to sequential computations
and the links of the graph representing dependencies between the activities.
[Browne et al. 1994] review the benefits of representing parallel programs

visually:

e The visual representation exposes large scale program structures and

allows a natural representation of parallelism in programs.

o This representation enforces good programming practices as
programming in the large and programming in the small become distinct

concerns.

e Debugging can be carried out in the same framework as programming.

60

DISTRIBUTED PROGRAMMING MODELS

3.7

Parallex [Alvisi et al. 1992] is a programming environment for parallel
scientific computing in a distributed system. A Parallex computation is
described by a dataflow graph whose nodes are coarse grain C or FORTRAN

computations. There exists no shared data between the nodes.
A model for Distributed Prograph

This last section discusses the choice of a model for Distributed Prograph.
The model should take into account both the class of applications intended
for Distributed Prograph and the features of the current version of the
language. It should also provide the right abstractions to handle parallelism,

communication and synchronisation.

Distributed Prograph targets parallel programming in a distributed system.
The overall goal of parallel programming is to speed-up the execution of an

application through the use of multiple computing resources.

Program sequencing is based on the dataflow model. In the sequential version
of the language, operations are triggered sequentially. The schedule follows
the partial order defined by the data dependencies. Synchronisation links
and the controls attached to the operations also affect the flow of control
(see 2.2.1).

3.7.1 Parallelism
3.7.1.1 Potential for parallelism

Without adding further abstractions to the existing model, parallelism can be

achieved in two different ways: data parallelism and operation level

parallelism:

e Processing of lists (which are a Prograph built-in type) offers some
potential for data parallelism. This form of parallelism can be

conveniently called multiplex parallelism.

e Following the dataflow model, operations with no data dependencies
are obvious candidates for parallelism and could be fired in parallel. This

latter form can be called operation parallelism.

It appears that other forms of parallelism would be less easy to introduce.
The conjunction of Prograph with a CSP like model would require the

addition of a channel abstraction. Parallelism such as promoted by the RPC

61

- DISTRIBUTED PROGRAMMING MODELS

or Distributed Objects model would impose a more extensive use of names
than in the current version of the language and the introduction of new

abstractions such as remote server or remote object.
3.7.1.2 Expressing the parallelism

Another question which arises is how to express parallelism. Fig. 3.6 lists the

possible alternatives:

Parallelism
Explicit Implicit
Run-time Compile-time
detection detection

Fig. 3.6: Expression of parallelism
With implicit parallelism:
* parallelism can be detected at run-time.

o parallelism can be detected at compile-time by some automatic
parallelisation tools. The object code is then split into a set of

subcomputations that can be executed in parallel.

The first approach is that taken in the design of hardware dataflow machines
and can be emulated by software. For example the run-time support of the
Strand_88 language [Foster and Taylor 1990}, the Strand Abstract Machine,
(SAM) mimics the behaviour of a dataflow machine and schedules functions
for evaluation based on the data dependencies. However, this approach
leads to fine grain parallelism; the overhead induced by run-time scheduling
and the cost of communication leads to a highly inefficient implementation on
a loosely coupled architecture such as that intended for Distributed

Prograph.

Automatic parallelisation has been the subject of much research work and
has been applied to both imperative languages such as FORTRAN and
functional languages. This option also does not appear viable for Distributed

Prograph as both the features of the language and the structure of

62

DISTRIBUTED PROGRAMMING MODELS

applications would make the automatic parallelisation of Prograph programs
difficult. Prograph provides dynamic binding and Prograph applications are
event-driven. Consequently, the execution path of a Prograph application is
more complex to build than that of control-driven scientific applications to

which automatic parallelisation techniques are often applied.

Explicit parallelism requires the programmer to explicitly indicate which
portions of the code should be executed in parallel. This is the option
retained for Distributed Prograph. The user has to annotate an operation to

indicate that it is a candidate for distribution at run-time.
3.7.1.3 Benefits and drawbacks
This approach offers several benefits:

s The idea of an operation annotation is already familiar to the Prograph
programmer (e.g. multiplex annotation) and should limit the amount of

recoding necessary to distribute existing Prograph code.

e It builds on the recognised strength of visual languages to grasp and

express the potential for parallelism.

e The user's appreciation of issues such as granularity, cost of
communication and side-effect is required to distribute Prograph
operations. Static analysis tools should assist the programmer in those

decisions.

The idea of introducing a notation to indicate parallelism may bear some
resemblance to the concept of future. The benefit of using futures is that
parallelism is not restricted by prematurely blocking a computation by
waiting for the value of the future. The drawback is that it introduces a new
abstraction the programmer has to deal with and that, for efficiency reasons,
futures should probably be implemented as a built-in datatype. Another
difficulty is the use of futures in presence of controls, if the computation
proceeds without waiting for the results of an operation with a control, the

activation of the control may result in wasted computation.

The designers of the Prograph language have consciously hidden pointers and
operations on pointers from the programmer's view to mimic the data-driven

nature of a pure dataflow language. Introducing futures would twist the

63

DISTRIBUTED PROGRAMMING MODELS

design philosophy of Prograph and it appears preferable to retain the original

data-driven semantics of the language at the expense of a gain in parallelism.
The drawbacks of this approach are:

e Tt leads to a specialised model which can only support parallel
applications. Linda according to [Gelernter and Carriero 1992] is an
example of a more universal model, Linda can support message passing
between sibling computations, task pool model of parallelism and RPC-

like interaction between computations.

e Programmers have no control over the allocation of operations
annotated for distribution to remote processors. Precious programmer
insight might be lost and this would result in a less efficient execution of

applications.
3.7.2 Communication and synchronisation

Communication related activities should be carried on completely

transparently to the user.

The current version of Prograph provides a synchronisation facility in the
form of synchros; otherwise synchronisation should only be constrained by

data dependencies.
3.7.3 A metaphor

The Distributed Prograph model can be better understood with the metaphor
of a dataflow machine. In such a machine, parallelism is achieved by having
several functional units executing operations simultaneously. Information
items appear as operation packets and data tokens. Under the control of a
sequencing unit, operation packets are sent to the functional units. An
operation packet consists of an operation code and the operands; the
operations results are returned as data tokens to the sequencing unit. The
Prograph run-time acts as a virtual dataflow machine with a single
sequencing unit and a single control unit. A network of workstations can be
seen as a machine with multiple functional units. Operation packets and
data tokens flow to and from the functional units under the control of the

sequencing unit.

64

DISTRIBUTED PROGRAMMING MODELS

Summary

e Distributed systems encompass a broad range of applications and

hardware platforms.

e Various distributed programming models provide the necessary
abstractions to deal with the requirements of different classes of
distributed applications (i.e. parallel, fault-tolerant, client/server and

wide-area distributed applications).

o With Distributed Prograph, the interest lies in obtaining speed-ups

through parallel execution.

e After reviewing several models, dataflow appears to be the most

straightforward way to extend the Prograph sequential model.

e The Distributed Prograph model requires the programmer to annotate
the operations for distribution. Communication is transparent and
synchronisation constructs are already available in the sequential version

of the language.

65

PROGRAPH AND DISTRIBUTION

4 Prograph and Distribution

4.1

The previous chapter concluded that the dataflow model should be used to
extend the Prograph sequential model into a distributed one. In its first
section, this chapter discusses a range of issues to be considered in the design
of Distributed Prograph. The second section is concerned with the
implementation of the language. The third section of the chapter justifies the
need for a static analysis for Distributed Prograph and the last section sets

the objectives of this analysis.
Design issues

Design issues look at a high-level, functional view of the policies and
mechanisms for distribution. The object of this section is not to commit
Distributed Prograph to a set of policies or mechanisms but rather to review
the range of policies available for its design. The options available will be
better understood if they are presented in the context of the Distributed
Prograph model presented in 3.7.3. ‘

Distributed Prograph aims to execute a single application on a set of
machines. The application is initiated on the user machine. The execution
context on the user machine is called the originator context. Operations
annotated for distribution can then be sent to a remote processor for
execution. The execution context at the remote processor is called the recipient
context. The user machine acts as the sequencing and update unit. It is
responsible for distributing operations initially and all results are ultimately

returned to it.

The various activities involved in the execution of a remote operation fall into

four broad categories:
e Preparation of an operation packet in the originator context.

e Transmission of the packet from the originator context into a recipient

context after selecting a remote processor.
e Execution of an operation in the recipient context.

e Return of the results to the originator context.

66

PROGRAPH AND DISTRIBUTION

Various mechanisms must be designed to support the execution of these
activities. The following subsections discuss possible solutions in close

relation with the features these mechanisms must provide.
4.1.1 Operation packet

The operation packet is the information sent for execution in a recipient
context. This information includes at least the name of the operation along

with its arguments.

Two approaches are possible for the transmission of argument values: proxies

[Decouchant 1986] (see fig. 4.1) and replication.

Context 1 Context 2

invocation
forwarded by
the proxy

invocation
return

Fig. 4.1: Proxy objects

A proxy object acts as a surrogate for an object residing in another execution
context and invocations on the proxy are trapped and are forwarded across
contexts to the remote object. Distribution requires that objects are not only
identified in a local context but also across several contexts. A new naming
scheme must be introduced in order to generate global identifiers. With
modern object-oriented languages, parameters and return values are often
passed by reference. Proxies denote remote references and thus logically
extend the pass-by-reference mechanism to distributed environments. The
possibility to alias objects is preserved. However, forwarding invocations can
prove expensive. To remedy this, several optimisations have been proposed.
Passing arguments by value may provide better performance. Immutable
values, such as integers or booleans, can be passed by value. In [Dollimore,
Miranda and Xu 1991] it is also suggested that objects which are not aliased

can also be passed by value.

67

PROGRAPH AND DISTRIBUTION

An alternative solution is replication. All objects are replicated, packed and
transmitted with the operation packet. Replication reduces the load on the
remote objects and increases concurrency as distributed operations proceed
with their own copies of the objects taking part in the computation. However,
the speed-up gained from replication may be partially or totally offset by the
cost of maintaining consistency between replicas of the same object. Schemes
for the management of replicated data can provide various levels of

consistency between replicas.

Pessimistic replication schemes supporting full consistency can be achieved by
serialising update operations on all the replicas. The GARF system
[Garbinato, Guerraoui and Mazouni 1994] uses a multicast protocol to
update replicas. Full consistency results in significant communication costs.
The purpose of replication in such a context is to provide fault-tolerance
rather than to increase performance. Weaker models of consistency have been
studied. DMEROON [Queinnec 1995] supports causal consistency. In
DMEROON, values can be cached for read operations. Coherency is
monitored by a clock-based algorithm. Write operations are always
performed on the original object and a clock records the number of
modifications that occurred to the object monitored. When a cached object is
accessed, the value of its clock is compared with that of the clock of the
original object; different clock values mean that the cached value is invalid.
Optimistic replication management schemes allow both read and write
operations on replicas. The values of the replicas can then be reconciled at a
later stage or inconsistencies are not important; such a decision depends on

the semantics of the application.

POOM [Kristensen and Low 1995] allows the programmer to specify the

consistency required and the mechanism to manage replicated data.

In Prograph, persistents and class variables can be seen as global variables.
Their value need not be passed as arguments to a method to be accessible in

the cases of the method called by an operation.

Obliq [Cardelli 1995] supports lexical scoping such that a global variable
retains the value to which it was bound in its original context. The

implementation of lexical scoping relies on global identifiers. The free

68

PROGRAPH AND DISTRIBUTION

variables occurring in an object method are described by global identifiers

and their values can be obtained from the context in which they were created.

The distributed version of Smalltalk developed by [Schelvis and Bledoeg
1988] distinguishes between two types of global variables. Home variables
are those whose values are only relevant in their local context (variables
describing the user interface are an example of home variables). The other
variables have values which must be consistent across several execution
contexts. Thus both lexical and dynamic scoping mechanisms can coexist.
This does however require the programmer to declare which variables should

be dynamically scoped and which ones are lexically scoped.

The SOS distributed operating system [Shapiro, Gautron and Mosseri 1989]
provides a migration mechanism for C++ objects. Migratable objects must be
instances of subclasses of the sosObject class. The sosObject class
defines the migration behaviour of all migratable objects. Further, the state of
sosObjects contains a set of prerequisite objects. The prerequisite objects
contain the required information to reconstruct a migrated object in a new
context. One example of prerequisite is the code of the class to which the

migrated object belongs.
4.1.2 Operation scheduling

In Distributed Prograph, once the operation packet has been readied, it is
pooled to be exported for remote execution. In the absence of any mapping
annotation from the programmer, the allocation of a resource to execute an

operation is left to the language run-time support.

Two strategies are possible to export pooled operations. With work sharing,
operation packets are distributed eagerly to remote processors for execution.
In work stealing, idle remote processors steal operation packets from the pool

of other processors.

The two strategies are compared in [Hammond 1994]. Work sharing runs the
risk of distributing operations where there exists no idle processing capacity.
To be efficient, a work sharing algorithm requires accurate load information in
the distributed system. The drawback of work stealing is that it may increase

latency before operations are executed, because they are exported on demand

instead of being exported eagerly.

69

PROGRAPH AND DISTRIBUTION

Another issue is how operation packets are scheduled for execution.
Operation packets can be distributed on a last-in first out (LIFO) basis or on
a first-in-first-out (FIFO) basis. [Hammond 1994] contrasts the effects of the
two scheduling policies. The effect of scheduling operation packets on a LIFO
basis is more like sequential execution whereas FIFO scheduling stimulates
the execution of a greater number of operations in parallel. It must be noted
that these comments are based on the observation of the evaluation of a
recursive function, called nfib, which computes the values of the fibonacci
series and may as such, only reflect the effect of these two scheduling
strategies for the evaluation of the nfib function. Other strategies such as
combining both LIFO and FIFO to control parallelism dynamically are also

possible.
4.1.3 Remote execution of an operation

Classes are the templates from which instances are constructed and describe
the behaviour of these instances. Class information is therefore required to
unpack the instances transmitted with the operation packet and to invoke

the behaviour of its instances.

Bennett [Bennett 1987] reviews a range of possibilities for the design of
Distributed Smalltalk:

o Instances point back to their classes in the context in which they were
instantiated. Method despatching and read and write operations on class
variables require access to information stored in the class description. It
becomes clear that this option would greatly increase the number of

network operations and result in poor performance.

¢ Classes become immutable and can be freely replicated. Reactiveness is
the degree to which objects are easily presented for inspection and
modification. Disallowing class modification would severely restrict the
reactiveness of the system. In the context of Prograph, this would mean
that it would no longer be possible to execute and edit the code

simultaneously, modifications to classes having being disabled.

o Classes are replicated and can be altered. Ensuring compatibility across
contexts can be left to the programmer or it can be supported by a

caching scheme, a distributed database of classes or versioning. Letting

70

PROGRAPH AND DISTRIBUTION

the programmer handle class compatibility problems is not consistent
with the goal of distribution transparency. The distributed database or

caching schemes might be difficult to implement efficiently.

Smalltalk views classes as objects and so class migration can be implemented

using an object migration mechanism [Dollimore, Nascimento and Xu 1992].

In the commercial implementation of Distributed Smalltalk described in
[LaLonde and Pugh 1996], the migration of classes is left to the user and is
decided statically. A distributed application may encompass several object
contexts (or images in Smalltalk terminology) residing over separate machines.
Application classes are grouped into packages, and the user controls the
distribution of packages. Packages can be loaded entirely or as a shadow,

only proxy objects can be created from shadow classes.

In Prograph, upon successful completion, an operation may return some
values or a fail execution message. Return values and execution message
must be returned to the originator context. The execution of the operation
may trigger a run-time error. Run-time errors include invalid type, out-of-
range value and no method can be despatched. Although errors are well
documented, Prograph provides no facility for exception handling and it is
the programmer's responsibility to edit the faulty code fragment and proceed
with or abort the execution of the program. A run-time error during the

execution of a compiled application results in an abnormal termination of the |
execution. In Distributed Prograph, if the execution of a remote operation
produces a fail execution message or triggers a run-time error, the remote
processor should be able to forward the execution message or error type to

the originator of the operation packet and to resume its normal activity.

The execution of the operation might update the values of some global
variables or of its arguments. The modified arguments might not be returned
explicitly by the exported operation to the originator context. The
propagation of updates to operation arguments will depend on the approach
chosen for the passing of arguments. If the arguments are passed as proxy
objects, the update is immediately forwarded to the original object.
Alternatively, an optimistic replication scheme would allow reconciliation in

the originator context to be deferred.

71

PROGRAPH AND DISTRIBUTION

4.1.4 Reception of the results

To retain the data driven semantics of the Prograph language, the execution
of a remote operation will be considered finished when either the results or a
fail execution message or an error message are returned to the originator

context.

To maximise concurrency, the retrieval of the results should be postponed as
long as possible. If when trying to retrieve the results of an operation, these

results are not yet available, two different options can be considered:

e Another remote operation not yet exported may be scheduled for local
execution. This offers the benefit of increased parallelism as the local

processor evaluates an operation while waiting for results to be returned.

e If no other operation is available for local execution, the operations
which have already been exported but whose results are still being

awaited may be executed locally.

The reception of the results may be the right time to reconcile the replicas if

an optimistic replication management scheme has been chosen.
4.1.5 Help to the programmer

The ultimate goal of Distributed Prograph is to allow programmers to build
stand-alone, compiled applications. However, reactiveness is one of the
recognised strengths of the Prograph programming environment as it lets
programmers gain an in-depth understanding of the application they are
developing. A distributed interpreter would give programmers a useful insight
on the behaviour of their application, speed-up provided by distribution and

ratio of local computation to distributed computation.

Prograph provides live editing, where values can be inspected or changed
directly by the user. Various facilities for debugging have been proposed in
different Distributed Smalltalk implementations: remote inspection enabled

but remote editing disabled; full featured remote debugger.

The stack of a Prograph computation can also be inspected and
computations can be rolled forward or backward. It would be challenging to

support this facility in a distributed environment.

72

PROGRAPH AND DISTRIBUTION

4.2 Implementation

[Briot and Guerraroui 1996] distinguish three approaches for object-based
parallel and distributed programming:

* The first approach, called the applicative approach, uses the language to

structure distributed systems.

e The integrative approach extends an existing programming language or
creates a new one with language constructs to deal with concurrency and

distribution.

e The last approach, termed the reflexive approach, makes use of the
reflection, that is the property of a language of being self-descriptive and

modifiable.

These approaches can be looked at from two different perspectives. The first
perspective is that of language design and the second one, which is of interest
to this section, that of implementation techniques. It is worth noting that the
classification is also relevant for the design of distributed languages based on

other paradigms: procedural and functional.
4.2.1 The applicative approach

The applicative approach aims to use the abstraction capabilities of the

language to hide the complexity of the distribution mechanisms.

The applicative approach for procedural languages consists of writing
libraries of procedures to hide the low level details of communication and
providing the necessary abstractions such as threads and synchronisation
variables. Application programs use the data structures and call the
procedures provided by the libraries. The PVM message passing library
[Sunderam 1990] and the DCE environment [OSF 1992] are examples of

library-based systems.

In [Rabhi 1993], skeletons for parallel computations are implemented as

higher order functions written in Haskell.

Object-oriented languages integrate the mechanism for distribution within a
class hierarchy; one example is HP Distributed Smalltalk [Keremitsis and
Fuller 1995] which implements a CORBA-compliant Object Request Broker

within its class hierarchy.

73

PROGRAPH AND DISTRIBUTION

The benefit of the applicative approach is that it exploits the features of an
existing programming language to provide new abstractions for distributed
programming. However, this approach requires the application programmer
to deal with a potentially larger number of concepts than for the development

of sequential applications.

As explained in Chapter 2, Prograph already makes an extended use of this
approach. For example, Prograph applications are described as a

containment hierarchy of Prograph objects.
4.2.2 The integrative approach

The abstractions for distributed programming are integrated within the
language. This solution often requires significant modifications to an existing
language or the design of a new language. The language reflects closely the
distributed programming model and thus has greater expressive power than a
language initially designed for sequential programming.

The designers of the Guide language [Balter, Lacourte and Riveill 1994] have
taken the view that distributed programming justified the design of a new
language.

However, such a choice requires the mobilisation of significant resources to
carry the implementation of an interpreter and/or compiler and associated
run-time support for the language. Acceptance of a new language frequently

presents a significant problem.

The integrative approach seems incompatible with one of the Distributed
Prograph goals, which is to remain as close as possible to the sequential

version of Prograph.
4.2.3 The reflexive approach

A metacircular evaluator is an evaluator where the defining language is the
same as the defined one. Lisp interpreters exploit metacircularity.
Metacircularity is a powerful feature to control and extend the language.
Quasi-Parallel Lisp (QPL) [DeRoure 1990] extends the Lisp language to

integrate abstractions for communication, the stream, and activity, the process.

Reflection in object-oriented systems results from the possibility of defining

the semantics of objects in an object-oriented model through a set of objects

74

PROGRAPH AND DISTRIBUTION

4.3

called meta-objects. This organisation is named a Meta-object-protocol. Meta-
objects can control some features of the object model such as message
sending, method look-up, execution and state accessing. Meta-objects may
also extend and modify resources management such as scheduling and
naming,.

The GARF [Garbinato, Guerraoui and Mazouni 1994] class hierarchy
separates two programming levels. At the functional level, a collection of data
classes describes the logic of the application as if the application was
developed in a centralised, sequential environment. The behavioural level
controls behavioural features related to concurrency, persistence distribution

and fault-tolerance.

The reflexive approach offers the benefit of a great flexibility. Complexity
and potential inefficiency can be seen as shortcomings of reflexive

architectures.

This option does not appear viable for the implementation of Distributed

Prograph as the language presents little reflection.

Briot and Guerraroui see in the development of generic run-time systems for
distributed languages a dual approach to the use of reflection. The
distribution mechanisms are integrated within the run-time support for the
language. This choice is motivated by the search for greater efficiency with
some of the flexibility of the reflexive approach. The requirement for
efficiency becomes more urgent as the functionality and the complexity of the
run-time system increase. The GUM run-time uses PVM to implement a task
pool for the scheduling of distributed tasks. The Chorus Object-Oriented
Layer (COOL) [Lea, Jacquemot and Pillevesse 1993] is a run-time system
upon which distributed object-oriented languages (C++ and Eiffel) can be
built.

The integration of the Prograph interpreter with an existing distribution

infrastructure is an option worth investigating.
Need for analysis

The section on design issues surveyed a range of policies and mechanisms to

implement these policies and to extend the features of Prograph to provide

75

PROGRAPH AND DISTRIBUTION

distributed programming. This section discusses why a static analysis may be

useful to support these mechanisms.
4.3.1 Interferences

In the current version of Prograph, the operations on the dataflow graph are
executed according to a serial schedule of execution and each operation
constitutes an atomic unit of execution. In some cases, the results of a
computation do not depend on the order of execution of the operations;
however the programmer has sometimes to impose a special ordering for the
execution of the operations. This is typically the case when one of the
operations is a Match or calls a method providing I/O functionality. The
concurrent execution of operations might lead to interferences. Interference
occurs when two or more parallel operations read the same data and at least
one of them updates the data. Thus, distributed execution may introduce

further synchronisation requirements.
4.3.2 Global variables

The pure dataflow model is side-effect free and does not provide global
variables. However, Prograph has both side-effects and global variables, in

the form of persistents and class variables.

When a computation is distributed over several execution contexts, it is
necessary to ensure that the global state is kept consistent. The value of a
global variable is the same as if the operation had been executed in its
originator context following a serial schedule of execution. According to the
policy adopted for the management of the global variables, different concerns

must be addressed:

e If consistency is ensured by maintaining a single copy of each global

variable, the cost of the access to this single copy is the main concern.

e If global variables are replicated, consistency of the replicas becomes
the issue and the question of whether the replicated global values in the

recipient context can be trusted.
4.3.3 Updated values and aliases

Operations may induce side-effects on their arguments and/or on some

global state. Preserving the semantics of Prograph requires that the side-

76

PROGRAPH AND DISTRIBUTION

4.4

effects are implemented, including the aliases created by write operations.
The side-effects should be visible when the execution of the remote operation
is considered completed. Once again the choice is between forwarding
operations across execution contexts on a single copy or managing replicas in

different contexts.

The update problem is compounded by the possibility of creating aliases, as
the semantics of Prograph implies that aliases be preserved even across

separate contexts.
4.3.4 Behaviour maintenance

Behaviour maintenance is primarily concerned with the consistency of the
class definitions, that is, of the attributes (not the values of the attributes)
and of the methods, as well as that of the universal methods. This issue
should not be overlooked especially if Distributed Prograph is to be used as a
distributed interpreter. This work does not however tackle the issue of

behaviour maintenance across several contexts.

Behaviour maintenance in Prograph is a problem only in interpreted mode
because class definitions and methods can be manipulated only using the
editor. Therefore it might be more advisable to build support within the
interpreter instead of a general distribution mechanism to be included with all
applications. In addition, updates to arguments and global variables are

more common in programs and therefore a more urgent problem to solve.
Aims of the analysis

The correct execution of operations in parallel is conditioned by the absence
of interference between the operations, the availability of the current values
of the global variables and the implementation of the side-effects induced by
the operations. The development of a static analysis will help to check that
some of the conditions for the correct execution of parallel operations are

met.

The analysis will not tackle the problem of interferences. As a consequence of
aliasing, interference may occur in a stealthy manner, that is the same data
can be accessed via different paths by different operations. Program results
are saved between sessions of the Prograph interpreter. Consequently, aliases

may result from previous executions of the program. Thus it is believed that

77

PROGRAPH AND DISTRIBUTION

4.5

there would extremely difficult to detect aliases by statically analysing
program code and, by extension, to solve the problem of interferences

between operations executed concurrently.

The analysis to be developed will address the issues of access to global
variables and updates to arguments. It aims at characterising the side-effects
induced by a subcomputation. Characterising an effect means identifying
unambiguously its nature (read or write), and the data upon which it
operates (class, persistent value or operation input). The effected data

should be referred to by their symbolic names.
There are several purposes to this effect analysis:

e It will provide the user with some useful information about the
behaviour of operations annotated for distribution. Clearly operations
with a purely functional behaviour are more suited for remote execution
than those which heavily affect their arguments or global variables. Such

feedback might help the user to annotate the program.

e The results produced by the analysis can be exploited to optimise the
distribution mechanisms. Being able to statically anticipate the accesses
and updates to operation arguments and global variables reduces the cost
of keeping the value of global variables consistent and implementing side-
effects. Alternatively, it might be decided that the overhead incurred by
these mechanisms is too high and that operations inducing certain effects
should not be distributed.

It is important to keep a clear separation between the analysis and the
distribution policies so that the analysis does not become biased towards

supporting a particular policy.
Summary
This chapter has discussed the following points:

e A range of issues has to be addressed for the design of Distributed
Prograph. The most important issues are transmission of the operation
arguments and results, the scheduling of operations in parallel and the
maintenance of the global state and behaviour across several separate

contexts.

78

PROGRAPH AND DISTRIBUTION

® Three different approaches can be distinguished for the implementation of
a distributed programming language. However, only the applicative approach

seems to be exploitable for the implementation of Distributed Prograph.

e Static analysis of programs can help in solving the problem of the

consistency of values across several contexts.

79

TYPE INFERENCE

5 Type Inference

5.1

A type inference algorithm constitutes the first component of the analysis
described in this thesis. This chapter details the design of the inference

mechanism after reviewing several type-related issues.

The first section discusses the purpose of types in programming languages
and the different appfoaches to typing, namely static versus dynamic typing.
The second section surveys issues related to the design of a type inference
algorithm. Previous work on type inference is the topic of the third section.
The fourth section exposes the need for type inference as part of the analysis
developed in this work. The inference algorithm is outlined in the fifth
section. The sixth and the seventh sections present a suitable type
representation and the rules to type the different expressions of the
Prograph language. The details of the type inference algorithm are presented
in the eighth section. Type inference is illustrated by two examples in the

ninth section. The tenth section discusses shortcomings of the algorithm.
Types in programming languages

Wegner [Wegner 1986] defines the properties that types should have to
constitute a type system for object-oriented programming languages. By
removing the references to features which are specific to object-oriented
languages (e.g. inheritance), the definition can be extended to cover the
purpose and properties of types in programming languages:

e Application programmer's view: Types partition values into

equivalence classes with common attributes and operations.

e System evolution view: Types are behaviour specifications that may be
composed and incrementally modified to form new behaviour

specifications.

* Type checking view: Types impose syntactic constraints on expressions

so that operators and operands of composite expressions are compatible.

e Verification view: Types determine behavioural invariants that

instances of the type are required to satisfy.

e System programming and security view: Types are a suit of clothes

(armour) that protects raw information (bit strings) from unintended

interpretations.

80

TYPE INFERENCE

* Implementer's view: Types specify a storage mapping for values.

Typing means associating a type with every expression of a program. Two
broad approaches to typing can be distinguished, the static and the dynamic
one. With the static approach, the type is statically associated with all the
variables and expressions of a computation. Dynamic typing distinguishes
itself from static typing in the sense that the type information is available
only at run-time and that types are not bound to variables but to the values

instead.
5.1.1 Static typing

Static typing in procedural languages requires the programmer to declare the
types of the variables and procedures. The correctness of the type

declarations is established by a type checker.

Functional languages such as ML and Miranda are equipped with an implicit
static type system. Implicit typing requires a minimum of type declarations.
Type information is inferred from the local context and type correctness can
be established.

Static knowledge of the types of the values involved in a computation
provides a safety guarantee and enables optimisation. Declaring type
information is also seen as conducive to good software engineering practices:

type declarations serve as partial specifications.

Most procedural languages are monomorphic, and the types of variables,
functions and procedures are invariant, remaining the same throughout the
execution of the program. Such languages may not describe generic
procedures where algorithms are applicable to values of different types. A

procedure to compute the length of a list is an example of generic procedure.

ML-like type systems introduce the concept of type variable. These variables
can be instantiated to different types thus allowing functions to accept

arguments of different types.

Type systems for object-oriented languages often use interfaces as types. All

objects of a given class have their interface described by an abstract type.
An abstract type definition contains:

e The signatures of the methods supported by the class. A method
signature specifies the types of the input and output arguments of a

method.

81

TYPE INFERENCE

¢ The type of the attributes of the instances of the class.

The following example (taken from [Balter, Lacoutre and Riveill 1994])
defines a document description for a computerised library catalogue:
TYPE Document_descr IS8
key: Integer;
title, author: String;
date_borrowed, date_returned: REF Date;
METHOD Init; //set initial values
METHOD Consult; //display information about the
//document
METHOD Get_text: REF Document
// gives access to the text of the
/ /document

END Document_descr.

A Document-descr has a key attribute, title and author attributes
and date_borrowed and date_returned attributes. The methods
defined for the Document_descr abstract type are Init, Consult and
Get_text. The three methods take an object of type Document_descr as
(implicit) argument. The method Get_text returns a reference to a

document (REF Document).

Types can be partially ordered; B is a subtype or is included in A when all the
values of type B are also values of type A. B <A denotes the inclusion of type
B in type A. The inclusion rules for method signatures (A — B denotes a

method signature with an argument type A and a return type B) is:
A' »B'<A-»BiffASA andB' <B

This rule, known as contravariance, states that the type of method myp, is the
subtype of method mg if the argument type of mp, (A ') is more general than
the argument type of ma (A) and the return type of mp (B') is more
specialised than the return type of mg (B).

Abstract type A is the supertype of abstract type B if:

¢ Each method mg defined in the interface of A is matched by a method
mp, of the same name in the interface of B and that the type of my, is the

subtype of the type of method ma.

82

TYPE INFERENCE

e Each attribute of A is defined in B and the type of the attribute of A is
the supertype of that of the attribute of B.

To provide inclusion polymorphism and static typing, the following rules

must be respected:

* The type of the value assigned to a variable is a subtype of the type

declared for that variable.

e A message send is type correct if a method of corresponding type is
defined in the signature of the receiver and the types of the message

arguments conform to the types of the formal method arguments.
There exists no consensus on how class and types should be composed:

» With the concept of Class Type, a class defines a type and by extension
inheritance and subtyping are considered equivalent. The type of a

subclass has to conform to that of its superclass.

¢ It has been argued that subclassing and subtyping are different notions:
subtyping is the sharing of abstract behaviour whereas subclassing is a
mechanism which provides code reuse [LaLonde and Pugh 1991]. Guide
[Balter, Lacoutre and Riveill 1994] separates types which describe the
interface and the classes that implement the type. This approach allows
greater flexibility as two unrelated classes may conform to the same type
and conversely, a subclass does not have to conform to the type of its

superclass.

Parametrisable classes are a feature of several statically typed object-

oriented languages and allow code reuse through parametric polymorphism.

Type systems for statically typed object-oriented languages still attract
considerable research interest. Covariance, unlike contravariance, allows the
programmer to specialise argument types of methods in subclasses;

covariance remains the subject of investigations [Shang 1994].
5.1.2 Dynamic typing

Dynamic type systems bind types not to variables but to values, thus

variables can be polymorphic.

Dynamic typing gives languages a greater flexibility than their statically
typed counterparts, most notably for the implementation of collections of

elements of heteregenous types and the manipulation of these collections.

83

TYPE INFERENCE

Dynamically typed languages are often associated with an interactive and
incremental style of programming appropriate for experimentation and
prototyping. From a language designer point of view, Cardelli [Cardelli 1995]

considers that untyped languages are easier to prototype.

The drawbacks of dynamic typing are, firstly, the possibility of run-time type
errors as type checking can only be performed at run-time and secondly that

it incurs several overheads over static typing:

e Memory overhead: values must carry a type tag attached to them and
their implementation takes more memory space. Also the absence of type
information at compile time may rule out optimisation such as dead code
elimination and the use of machine data types instead of program data
types.

e Performance overhead: the absence of type information prevents
performance oriented optimisations including inlining and use of machine
data types. Run-time type checking induces an extra performance cost. In
[Steenkiste and Hennessy 1987] the cost of type computations for LISP
applications is estimated to increase the execution time by 25%, on

average.
5.1.3 Bridging the gap
It may be considered that the two typing approaches are not antagonistic but

complementary as suggested in [Palsberg and Schwartzbach 1993] p.72.

Providing type information during the prototyping phase places an
unnecessary burden on the programmer and type correctness is not very
important at that early stage. Wegner [Wegner 1987] suggests that dynamic

typing is more appropriate during the development phase.

Type inference aims at computing type information from an untyped
language. The transition is illustrated by the following diagram taken from
[Palsberg and Schwartzbach 1993]:

84

TYPE INFERENCE

5.2

rapid prototyping untyped type inference | typed
B> program B product

design

Fig. 5.1: From untyped to typed program.
Issues for type inference

Type inference has been explored for various language paradigms:
procedural, object-oriented and functional. The approaches investigated may

also vary in:
* purpose;
e world assumption;

° type system;

The remainder of this section discusses these three issues in turn.

5.2.1 Purpose of inferring types

The type information produced may serve several purposes: safety,

optimisation and help to the programumer.

In the context of object-oriented languages, the overriding safety concern is
that method despatching might fail. Type inference will check that the

message send cannot fail at run-time.

Efficiency concerns encompass performance and compactness of the
compiled code. Dynamic binding incurs a run-time overhead. Static
knowledge of the concrete type of the receiver of a message allows the
message to be bound to a method statically, thus eliminating the cost of a
method look-up. The code can be further optimised by inlining methods.
Dynamic binding also has an impact on the size of the compiled executable
as the code for classes that may never be instantiated or methods that may
not be called is included. Type inference may help to detect that a method
cannot be called during the execution of the program so that the dead code can

be removed.

85

TYPE INFERENCE

The information inferred can be fed to analysis and debugging tools. In
connection with the safety concern expressed above, the programmer can be
warned about the likely failure of a message send. Type information feedback
helps the programmer to check that the type of the method is compatible
with the intended use for that method.

5.2.2 World assumptions

A closed-world assumption is that all parts making up an application are
available for analysis and compilation. In object-oriented languages where
code and data are encapsulated in classes, a closed-world assumption thus

requires the set of classes to be known statically.

Under an open-world assumption, a program is divided into separate
modules or libraries that can be analysed and compiled separately. The open-
world assumption, although a more desirable approach to software
engineering, may not be compatible with all the possible purposes for doing
type inference. For example an open-world assumption does not help to
address efficiency concerns because it does not allow the identification of

which code is executed at run-time.

A modular type inference may analyse methods one method at a time. A nor-
modular inference is performed on a whole program at a time and requires a

closed world view.

5.2.3 Type systems

A type system for a programming language defines:
* a set of type expressions;

* operations to manipulate type expressions (e.g. Cartesian product to

describe record type and disjoint sum);

e a set of rules for associating a type with all the expressions of the

programming language.
In his discussion of Type Systems and Polymorphism, Agesen [Agesen 1996]

distinguishes two dimensions to classify type systems: the concrete /abstract
dimension and the general/specific dimension (see fig. 5.2). Discussion of a
type system cannot be divorced from the assumption under which the type

inference operates and the purpose of the inference itself.

86

TYPE INFERENCE

General

A

[Concrete g g Abstract

Specific

Fig. 5.2: Dimensions of type system

The concrete type of an object is the set of classes of which this object can be
an instance. Concrete type inference requires a closed-world view and it is

mainly aimed at optimisation.

Abstract types have already been introduced in 5.1.1, they describe the
external behaviour of an object. Abstract types are useful to prove type

safety and are compatible with an open world view.

In Agesen's view, class types represent a half-way house between concrete
and abstract types. The distinction between concrete and class type can be
illustrated by an example taken from the class hierarchy depicted in fig. 5.3.
The class type Bird encompasses instances of Bird, Chicken and Duck.
The corresponding concrete type would be the set {Bird, Chicken,
Duck}. Under a closed world view, class types can be converted into

concrete types and vice-versa.

Animal
/h?at

Bird

Chicken Duck

Fig. 5.3: A class hierarchy.

General types describe the way a method or an object may be used, that is, all

the possible legal types for the object or method. Specific types describe the

87

TYPE INFERENCE

5.3

use of an object or of a method in the context of a particular application and

assume a closed-world view.
Previous work
5.3.1 Kaplan/Ullman

[Kaplan and Ullman 1980] presented an inference method for an untyped
imperative language for the purpose of compile-time optimisation.

The program is modelled as a flowgraph. A flowgraph is a directed graph
with nodes consisting of one or more assignment statements of the form:

yé—£f (%X ..Xpn)

and the edges following the control flow of the program. The graph starts
from and finishes at a Start-Finish (SF) node. The set of all the program
variables is constructed and a mapping from the set of the program variables
to the set of types is defined. The mapping is refined by successive iterations

of the forward analysis and of the backward analysis over the nodes.

Forward analysis infers the type of the program variables after the execution
of a statement from the types of the program variables before execution of

the statement and the signature of the statement.

Backward analysis infers the type of program variables from the type
information available after the execution of a statement and the signature of

the statement.

e Types are elements of a type lattice (see fig. 5.4) with a top and a
bottom element. A least-upper bound and greatest-lower bound operation

are defined on the lattice.

char

./

Fig. 5.4: Type Lattice

88

TYPE INFERENCE

e Statements' signatures are constructed using T-functions. T°is a function
which takes the types of the arguments x; .. x,, of the statement as its
arguments and returns the best approximation of the type of the return
value of the statement after its execution. T° is used during the iterations
of the forward analysis. Similarly, for each argument x; of the statement,
a function T3 is defined. During the backward passes of the analysis T7 is
applied to the types of the arguments x; .. x,and the type of the return
value y of the statement. Thus T3 provides the best approximation of the
type of x; before assignment from the information available after

assignment.

As an example, consider £1 (x), a simple function which returns the greatest
integer smaller than or equal to x if x is a number, otherwise, if x is a char, x

is translated into lower case.

T0 takes the type of x as argument and returns the type of the return value of
£1 (x). The definition of T° (see fig. 5.5.a) shows if the type of x is real,

the type of the return value will be int (second row of the matrix)

x TO

1 1
real int
int int
char char
0 0

Fig. 5.5.a: Definition of T°

T1 is used during the backward analysis, the leftmost column contains the
current approximation of the type of x, the argument of £1 (x) and the top
row the type of v, the return value of the £1 (x). The intersection of a type

of x and y returns a new approximation of the type of x.

Y 1 real int char 0

X
1 1 real real char 0
real real real real 0 0
int int int int 0 0
char char 0 0 char 0
0 0 0 0 0 0

Fig. 5.5.b: Definition of T*

89

TYPE INFERENCE

5.3.2 Hindley/Milner

Milner extended Hindley's type inference algorithm and used it for an ML
type system [Milner 1978]. ML is a functional language with lexical binding
and higher-order functions. Hindley /Milner inference is more concerned with
type safety than with optimisation. It computes the principal types (most
general types) of expressions to rule out run-time type errors. All of the types
of a polymorphic expression are an instance of the principal type of the

expression.

The inference algorithm handles functions one by one. The function is
converted into an expression tree where the leaves of the tree are either

constants or variable accesses.

The function:
let rec length = fun(l) if null (1)

then

else
succ{length(tl(1)))

in..

is converted into the tree shown in fig. 5.6.

if .. then .. else
null 0 succ
1 length
tl
1

Fig. 5.6: Expression tree for length
Type information can be represented as:
* Basic types such as Int or Boolean.

e Type variables, denoted by a Greek letter: «, B, y range over the
complete set of types. A distinction is made between generic and non-

generic type variables. All occurrences of a non generic type variable must

90

TYPE INFERENCE

be instantiated to the same type values. Generic type variables may be
instantiated to different type values. The difference between non-generic
and generic type variables is illustrated by the following example taken
from [Cardelli 1987].

fun (f) pair (£(3)) (f(true)) cannot be typed because the type
of £ which should be of the form o. — B is instantiated to Int — [for the
first application of f and to Boolean —» B for the second application.
The type variable o appears in the type of the fun-bound identifier £
and is therefore non generic and cannot be instantiated to different type

values.

The expression let £ = fun(a) a inpair (£(3)) (f(true))can
be typed. In the type of £ a— o, the &'s are generic and £ can take the

types Int — Int and Boolean — Boolean.

e Function types p — ©. A function type maps the type of the function

argument to the type of the function return value.

All the leaves have a type associated to them. A constant leaf is assigned the
type corresponding to the value of the constant. The type assigned to a

variable access leaf is the type variable of the variable accessed.

The inference mechanism maintains a map called assuniptions from the set of
variables to the set of types. Every time an occurrence of a variable is found,

the set of assumptions is accessed to yield the type of that occurrence.

Inference rules describe how the type of an expression can be deduced from
the types of its subexpressions. The rule for the typing ofan if e thene’
else e" expression states that, if the type of e is boolean, the type of e’ is
1 and the type of e" is 7, then the type of the expression is 1. The rule is

formalised by an expression of the form:

At e: bool Ate’':1 Ate”: 1

At (ifethene' elsee"): 1

where the horizontal bar means inply, the line above the horizontal bar is the
premise and the line below the bar the conclusion. A + e: T means that from

the set of assumptions 2, it can be deduced that the type of eis .

Inference proceeds in a bottom-up fashion from the leaves to the root of the
expression tree. The application of an inference rule yields a set of equalities

on the types of the subexpressions. The equalities are solved by unification

91

TYPE INFERENCE

[Robinson 1965]. Failure to solve the equations means that the function
cannot be typed.

5.3.3 Suzuki

Suzuki [Suzuki 1981] proposed a type inference mechanism for Smalltalk.
The aim of the system was, firstly, to substitute static binding for dynamic
binding and thus improve efficiency and secondly to provide type

information to the programmer.

Suzuki's work draws on the functional approach. Unlike ML, Smalltalk has:
e Dynamic binding
¢ Data polymorphism

These features make some modifications to the Milner's original algorithm
necessary. The modifications concern the representation of types, inference

rules and the constraints on types.
Types can be:
e Basic types: they are sets of classes
e Type variables, denoted by Greek letters.

e Function types are used to describe the signatures of methods. Function
types are of the form: o x B — 7, the types on the left hand side of the
arrow are that of the receiver and the arguments of the method, the type

on the right hand side of the arrow is that of the method return value.

Milner's algorithm solves a set of equalities over type values but with Suzuki's
approach types are sets of types and constraints are expressed as set

inclusions.

The inference rules must also be altered for conditional expressions and more
importantly for function applications. To be able to type message sends (the
linguistic equivalent of function application in ML), Suzuki's algorithm
assumed that all the methods with the matching name can be despatched.
The type of the message send is the union of the types of all the methods that

may be invoked.

Smalltalk allows variables to hold values of different types (data
polymorphism). The implemented algorithm did not attempt to infer the type
of the instance and global variables. Instead, the algorithm took the view that

the type of such variables is the set of all the classes in the system.

92

TYPE INFERENCE

5.3.4 The EULisp type inference system
EULisp [Padget, Nuyens and Bretthauer 1993] belongs to the family of LISP

dialects and features object-orientation. The language unifies the functional
and object-oriented paradigms, providing classes and functions. A generic
function is a function for which several implementations are available. Each
implementation or method is defined with a distinct domain which specifies
the applicability of the method to supplied arguments. Unlike a message
send which despatches the method applicable to the class of the receiver and
ignores the types of the method arguments, the application of a generic
function will despatch a method only if the class of each argument is a
subclass of the corresponding domain class formally declared in the method
definition. The following example, provided by [Kind 1996] declares a
generic function element which returns the i-th element of an ordered
collection.

(defgeneric element (xy))

The methods for the generic function are defined for the different domains.
For a string argument, element is implemented as:

(defmethod element ((x <string>) (1 <integer>))

(string-refxi))

For an argument of the vector class as:
(defmethod element { (x <vector>) (i <integer>))

(vector-ref xi))

For an argument of the list class as:
(defmethod element ((x<list>) (i <integer>))
(if (=10)
{carx)

(element (cdrx) (-1i1))))

Element can be used as any other function.

(defun foo (x)

(element x 1)

)

[Kind and Friedrich 1993] have proposed a type inference mechanism for
EULisp. The type information inferred is used mainly for optimisation during

the compilation of applications.

93

TYPE INFERENCE

The representation for types draws heavily on Milner's work with some
improvements to handle inclusion polymorphism and provide more precise

type information about functions

e Lattice types: A lattice L is constructed over the set of the base types B.
The set of the base types can in turn be defined as the set of the concrete
types augmented with a set of strategic types. The concrete types
correspond to EULisp classes, for example <list>, <vector> or
<string>. Strategic types have been introduced to describe
distinguished values and aim to yield a more precise typing of predicates
and conditional expressions, examples of such types include:
singleton, zero, one. The lattice reflects the subtype relation over
the sets of types. For example, the lattice type <number> is the

sublattice of L whose vertex is the base type <number>.

¢ Type variables: They are used to express type dependencies between
argument types or between argument types and the result type of a
function. The range of a type variable may be restricted, for example,

g<number> denotes a type variable whose upper bound is <number>.

e Generic type schemes embody constraints on the argument and result

types of functions; they contain several lines of the form:
T X T) X T3 = T4

where 11, 12 and 13 are the types of the function arguments and 14 the
type of the function's return value. Using a number of lines, type

dependencies can be expressed more precisely.
Inference is performed in three steps:

o A local inference computes the most-general type of functions. The local
inference starts with a set of initial type constraints on the function’s
parameters, literals, constants and variables. A type scheme must be
available for each function call within the function's body. If a type
scheme is missing, the current analysis is suspended until the missing
scheme has been inferred. The type scheme for a generic function
application contains the lines of the schemes of all the methods that may
be despatched. Solving the constraints by unification yields a scheme for

the function.

94

TYPE INFERENCE

o A global inference aims at deriving concrete type information by

examining all the calls to a given function.

e The local inference is iterated again with feedback from the global

inference.
5.3.5 Palsberg and Schwartzbach

The language of interest for the type inference described in [Palsberg and
Schwartzbach 1991] is a subset of Smalltalk called BOPL (Basic Object
Programming Language). The analysis is applied to programs globally, under
a closed-world assumption. Palsberg and Schwartzbach envision several uses
for the type information inferred: safety, dead code elimination, static

method binding and information to the user.

Types are defined to be sets of classes. Inheritance, parametric
polymorphism and data polymorphism are tackled by some program

fransformations:

e Inheritance is expanded away. Each inherited method or variable is
duplicated in the class which inherits it and all the occurrences of the
pseudovariable super are replaced by self.Ifa method is redefined by
a subclass, the name of the superclass is appended to the name of the
inherited method. Some aspects of the transformation are illustrated by
the example below:
class Rectangle
varl, w
method Base (10,w0)
1:=10;w:=w0;self
method Area ()
1*w
method Scale(s)
l:=1*s; w:=w*s; self
end Rectangle
class Box inherits Rectangle
var h
method Height (h0)
h:=h0
method Volume ()

self.Area()*h

95

TYPE INFERENCE

end
method Scale(s)
super.Scale(s); h:=h*s; self

end Box

The definition of the class Rectangle is left unchanged by the
transformation but the class Box becomes:
class Box
var 1, w, h
method Base (10,w0)
1:=10;w:=w0;self
method Area ()
1*w
method Scale$Rectangle(s)
l:=1%s; w:=w*s; self
method Height (hO0)
h:=h0
method Volume ()
self.Area()*h
method Scale(s)
self.Scale$Rectangle(s); h:=h*s; self

end Box

» To handle parametric polymorphism, methods are duplicated for each
message send in which their name occcurs. This transformation is
illustrated by the following example:
class C
method id(x)
X
end C
((Cnew) .1d(7))+10;
({Cnew) .id(true)) or false
A different version of id is created for the message sends in which id
oceurs.
class C
method idel (x)
X

method 1de2 (x)

96

TYPE INFERENCE

end C
({Cnew) .1d@1(7))+10;

((Cnew).1id@2 (true)) or false

e A copy of the class is created for each instantiation. This
transformation allows a precise treatment of data polymorphism.
class Container
var X
method put (val)
x:=val;
self
method get ()
X
end Container
(Container new) .put(7) .get. () +10;

(Container new) .put (false) .get () or true

The Container class is entirely duplicated and becomes
Container@l and Container@2. The modified program is:
(Container@l new) .put{7).get () +10;

(Container@2 new) .put (false) .get () or true

The expanded program is converted into a frace graph. The nodes of the
graph represent methods and the edges of the graph message sends. A
condition is attached to each edge: the edge will be traversed only if the type
of the receiver contains the class which implements the method represented

by the node to which the edge is leading.

The construction of the graph is illustrated for the following simple program:

class A B class B
method m: e var temp
en methodm: e

{temp :=e)n
method n
temp p
method p
selfp
end A end B

(Anew) m: (B new)

97

TYPE INFERENCE

Ae |A i 2 ma Be lel 40
e [A new e le
called 1 called | Be ftempl Be [selfl
— from f—— from
“main” ma ;I,
1 “main” - 7 P
called called

from o] from

n p
3 mp 5 n B e fselfly
called called
. 1 from

from B
IB 1A newj “main’ mg e [templ

B e [temp:=e]

Fig. 5.7: A Trace graph

In the trace graph of fig. 5.7, the first node corresponds to the execution of
the program. Node 2 represents the invocation of the method m defined in
class A and node 3 represents the invocation of the method m defined in class
B. The condition A e [A new] attached to the edge between node 1 and node
2 expresses the requirement that the class A must be an element of the type of

the expression A new if the method m defined in class A is to be called.
Similarly, the condition B € [A new] attached to the edge between node 1 and

node 3 means that the class B must be an element of the type of the

expression A new if the method m defined in class B is to be called.

A set of constraints is derived from inference rules. Constraints can be of

three different types. Constraints can be:

e Local constraints reflect the semantics of the method body. For the

node 3 on fig. 5.7. The constraints are:

- [templ 2 [ely

- f{temp : = e] 2 [e]p. This constraint and the one above result from the
assignement of the value of the variable e to the variable temp.

-[temp := e] ¢ {B}. This constraint reflects the invocation of the
method n in the body of m defined by class B. It states that the type of
the expression temp: = e must be included in the set of classes defining a

method n (here the singleton {B}).

e Connecting constraints reflects the semantics of message sends. They
embody the matching of the type of the actual and formal arguments of

the method as well as the matching of the return value with the result of

98

TYPE INFERENCE

5.4

5.5

the invoked method's body. For the transition from node 1 to node 3, the

following constraints can be derived:
-[Bnewl ¢ [elp (Constraint on the type of the argument).

-[(Anew)m: (Bnew)]2[(temp:=e) n] (Constraint on the type of the

return value)

e Global constraints state that a path is executable if all the edge
conditions encountered hold. Global constraints are constructed by
traversing all the paths from the main node in the graph. Walking along a
path yields an expression of the form:

K1, K2, o, Kn=>LUC

with K a condition on an edge, L the local constraints of the final node of

the path and C the connecting constraints to reach the final node.

The set of constraints is solved to yield a type for all expressions in the
program or it fails if the program is untypable. The description of an efficient
implementation of the constraint solver can be found in [Oxhej, Palsberg and
Schwartzbach 1992].

Motivations for inferring types in Prograph

The ultimate objective of the analysis described in this thesis is to obtain an
approximation of the side-effects that the execution of an operation
annotated for distribution may induce. Type information will help to reach

this goal because:

e Types and effects are not orthogonal, as instances of primitive
datatypes are immutable (except for list) and knowledge of types is
useful to infer side-effects. Class variables can be reached via the
instances of the class and thus knowing the class to which the instance

belongs gives extra information about class variable accesses or updates.

e The type inference will help to reduce the uncertainty due to the
dynamic binding of operations to methods. A better approximation of the
effects will be possible if the side-effects of the methods that cannot be

despatched are ignored.
Outline of the type inference system

This section outlines the type inference developed for Prograph.

99

TYPE INFERENCE

5.5.1 Method-wide analysis

The inference algorithm proceeds in a modular fashion: it is applied to
individual methods but it operates under a closed-world assumption (it is in
that respect similar to the type inference algorithm for Smalltalk presented in
[Suzuki 1981}).

The method-wide inference reflects the structure of the method to which it is
applied and relies in turn on a sequence of case-wide inferences, one for each
case in the method. The analysis of a case depends on the results obtained
for the previous one. Once the case-wide inferences have finished, the type

information for the whole method can be synthesised.
5.5.2 Case-wide analysis

A case describes some computation using a visual dataflow graph. Such a
representation lends itself easily to analysis and the information necessary
for the inference is attached to the elements of the graph. It is important to
distinguish between the type information attached to the datalinks and that
attached to the operations (or nodes) of the graph.

e Type of values: different datalinks propagate the same value if they are
attached to the same root and so these datalinks should also share the

same type information.

e Type of operations: the type information available for an operation is
described by a signature. A signature consists of one or more lines. A line
is made up of a sequence of input types and a sequence of output types.
Each input and output of the operation is matched by a type expression
which describes the set of classes from which the matching input or
output can be an instance. The expression:

<boolean> X <boolean> X <number> — <boolean> X <number>

<boolean> X <boolean> X <number> — <boolean> X <number:>

could be two lines of the type signature of an operation with three inputs
and two outputs where <boolean> denotes the boolean type and
<number> the type of real and integer values in Prograph. (The range of

valid type expressions will be discussed in section 5.6).

The case-wide inference is divided into two phases: the initialisation phase

and iterative analysis phase.

100

TYPE INFERENCE

5.5.2.1 Initialisation phase

During the set-up phase, the type information attached to the datalinks and

the signatures attached of the operations are initialised.

The type of the datalinks is initialised to the most general type, except for the
datalinks connected to the roots of the input bar, which are initialised

according the results of the analysis of the previous case.

The signatures attached to the operations calling a primitive method are
looked-up or can be built "on the fly" for some operations such as default
Get and Set,Match, Constant and the Init operations. For an
operation calling a user defined method, if the signature of this method has
not been previously inferred, the current analysis is suspended. The missing
signature is inferred independently from the current context; the suspended
analysis may then resume. The analysis is said to be monovariant (the
signature inferred for a method may be used for operations occuring in

different cases).
5.5.2.2 Iterative analysis

The iterative analysis requires three successive passes over the nodes of the
case graph: one forward, one backward and forward a second time. Recall
that the graph of operations and datalinks is sorted into a linear execution
sequence (see 2.2.1). The three passes skip the Input and Output
operations (often refered to as the input and output bars). The forward pass
follows the execution sequence from the first operation after the Input
operation until the last operation before the Output op‘eration, the
backward pass follows the reverse sequence. The purpose of each pass can

now be described:

e The first forward pass infers the types for the outputs of the operation

from the types of its inputs and the signature of the operation.

o The backward pass proceeds against the flow of data. It infers the type
of the inputs of the operation from the type of its outputs and its
signature. It also computes some information useful to type the following

case.

e The second forward pass detects whether the types of the outputs of
the case depend on the types of the inputs of the case.

101

TYPE INFERENCE

A line can then be constructed that summarises the type information gathered

during the case analysis with the input and output types of the case.
5.5.3 Implementation outline

Visual dataflow forcefully exposes program structures and the code for the

inference mechanism provides a good outline of the algorithm.

MethodInarity Mumnber of case List of st of nodes

[E Initia]isg'v’ector 3'1

- make-list

Fig. 5.8: Analysis of a method

Fig. 5.8 shows the analysis applied to a method. On the rightmost input of
the case, the method is passed as a sequence of cases which in turn are
represented as sequences of operations (also called nodes). The sequence of
operations within a case follows their execution order. The local method
InitialiseVector constructs a sequence of input types for the first case
of the method. Most of the processing takes place in the Case Analysis
Jocal method. Each iteration of Case Analysis produces a sequence of
input types for the next case on the left root of the operation and a line to
describe the input and output types of the case analysed on the right root of
the operation. When all the cases have been analysed, their respective lines
are combined in the Combine local method to produce the signature of the

method.

102

TYPE INFERENCE

Input type Yector Case number List of «Nodex»

% Inference /StartCase % i

A
V2 /SetinputType 7
e
333333333333
295 .

% ProcessMiddieNodes @

List of terminal

I f fCaseVectortLine Z) side-effeots.

B e o A e

Mext case «DPLine»
vector

Fig. 5.9: The CaseAnalysis local method

Fig. 5.9 shows the implementation of the caseAnalysis method. The
Inference/StartCase operation performs some housekeeping activities.
The Tnput and Output operations (respectively the first and the last
elements in the sequence of nodes) are removed from the sequence and
SetInputTypes operation sets the input types for the case. The
ProcessMiddleNodes operation executes the different phases of the
analysis on the operations between the Input and Output operations. The
CaseVector+Line operation constructs the line with the input and output
types for the case as well as the sequence of input types for the following

case.

103

TYPE INFERENCE

List of the middle «Nodex's

- fSetSignature

/ﬁ b

L

fccrcr

g /fwdinference ?:]

hﬁg
L=
b
e
£
L8
By
q
-y
9
o
#
=
3
£
5
9
]
3
ceeee

7 fbwdinference

d43333333
7 fDependency
-y 1
34343)
AL T N
z fSide-Effects
es & i

s e

Fig. 5.10: The ProcessMiddleNodes method.

The operations of the case of ProcessMiddleNodes (fig. 5.10) carry out
the different stages of the case wide inference. The SetInitType operation
initialises the type information for the datalinks which are not connected to
the roots of the Input operation. The SetSignature operation constructs
the signature of the operations and the fwdInference and
bwdInference operations perform the forward and backward analysis
over the operations of the case currently analysed. Dependency checks the

existence of a dependency between the input and output types of the case.

The side-Effects operation is concerned with the effect signature of the
operations of the case (effect inference is the subject of the next chapter of

this thesis).
5.5.4 Properties of the algorithm
There are two properties of interest for a type inference algorithm:

e Soundness is the guarantee that if a program has been typed by the

inference algorithm, it cannot fail because of a type error. Soundness is

104

TYPE INFERENCE

paramount when the motivation for type inference is type safety. The
inference algorithm proposed for Prograph may infer a type signature for
methods whose excution would result in a run-time type error. The

algorithm proposed for Prograph also rejects type correct code.

e Completeness is the ability of an inference algorithm to infer the most
general type of an expression. No claim is being made about the

completeness of the type inference algorithm proposed for Prograph.
5.6 Prograph Types
Type inference in Prograph tries to achieve conflicting goals:

e The effect analysis requires concrete type information to describe the
effects induced by a subcomputation. Similarly, in order to reduce the
uncertainty caused by dynamic binding, it is necessary to produce
concrete type information. As in [Suzuki 1981], [Johnson 1986] and
[Palsberg and Schwartzbach 1991], the type of an object is the set of
classes of which the object can be an instance. The notion of subtype and

subset are equivalent.

e A method-wide inference must yield the most general signature. Sets of

classes do not suffice to express all the possible uses of the method, there

might exist dependencies between argument types or between argument

types and return values. Dependencies between argument types often

result from the use of an arithmetic or relational primitive. Dependencies

between the input and output types of methods are often the result of

operations that operate on lists or return one or several of their
arguments. The proposed type system for Prograph allows explicit

description of the dependencies between the input and output types of

methods but not between input types.

5.6.1 Class hierarchy

Prograph distinguishes between Prograph data types and user-defined
classes. It is, for example, not possible to create a subclass of integer.
However, this distinction is not relevant for type inference and both the

Prograph data types and user-defined classes can be considered as classes.

Classes are organised in a lattice (fig. 5.11). It is necessary to introduce a few
extra classes to be able to construct the lattice. The top element of the lattice

is called the Universal class and the bottom element Bottomn. The left

105

TYPE INFERENCE

part of the lattice is fixed and consists of the Prograph data types. The right
part is application dependent and consists of the user defined classes that
are inserted below the UDC (User Defined Class) class. For the purpose
of the effect analysis, it is not necessary to distinguish between the real and
integer types and the two are indistinctively represented by the number

class.
The ordering of the elements of the lattice is based on the isSubclassOf

relation. The lattice respects the Prograph model of single inheritance except

for the Bot tom class which is the subclass of all classes.

tniversal
fmunber string ;tbmcd.%;ne null @ extefmal
Hott om

Fig. 5.11: The class lattice

5.6.2 Type

Types are sets of classes. To facilitate the analysis, these sets should be easy
to describe and to manipulate. A suitable type representation should allow

for parametrised types (e.g. lists).
A type can be one of the following alternatives.
5.6.2.1 Single Type

The type of a data object is the set of possible classes of which this data
object can be an instance. The most trivial set is {a, Bottom} where ais a
class. Such a set is denoted by <a> and is called a single type. However,
because of inheritance in object-oriented languages, it is often necessary to
designate not only a single class but the single class and all its subclasses,

<a+> denotes the sublattice whose vertex is the class a.

106

TYPE INFERENCE

5.6.2.2 String Type

Get and Set operations accept a string as a reference to a class. The value

of the string is potentially useful information to describe effects.

The string type is a specialisation of the single type. A string type also holds
the value of the string. Other type inference approaches often find it
necessary to introduce such ad hoc types (e.g. strategic types in [Kind and
Friedrich 1993]). The main motivation for introducing string types is to type

the inputs of Get and Set operations more precisely.

It would have been possible to include a sublattice under the string
abstract class. The elements of the sublattice would be the names of the user-
defined classes and the ordering would be defined by the subclassing
relation. However, a dynamic solution, where the ordering between two string

values is computed when needed, has been preferred.

As with single types, it is necessary to distinguish between the string and the
"subtypes” of the string. “a™ designates the pair {"a", Bottom} with "a" a
string whose value is a. ”a"“+ designates the set formed by the string "a",
the strings whose values are the names of all the subclasses of a and the

Bottom element.
5.6.2.3 List Type

A list type is by definition the pair {List, Bottom} but it is also
parametrised by the type of the elements of the list object.

(1) denotes a list whose elements have the type 1. Prograph allows lists to

be heterogeneous.
5.6.2.4 Union Type

A single type is not always enough to represent the set of possible classes for
a data object. A union type is the union of an arbitrary number of types.

(11]72] is an example such a set. Union types cannot be nested. The

analysis will not differentiate between heterogeneous lists and the union type

of homogeneous lists, so [(11) | (12)] must be expressed as ([11]12]).
5.6.3 Type dependencies

A type dependency expresses the fact that the output type of a polymorphic
method may depend on one or several of the input types of the method. Type

dependencies appear on the right hand side of a signature line.

107

TYPE INFERENCE

A type dependency can be thought of as a function of the input types. When
the dependency is evaluated, references to the input types are substituted

with the actual types to compute a type for the output.

The evaluation of a type dependency is described by an Evaluate function.

The signature of the Evaluate function is:
Dependency X Type* — Type

From the dependency and the sequence of input types, Evaluate produces

the type of the output value.

The Inverse function of a dependency computes the input types in a
signature line using the value of the dependency, the signature of Inverse
is:

Type X Dependency X Type* — Type*

Inverse takes the type which corresponds to the value of the dependency,
the dependency and the sequence of input types and returns the sequence of

updated input types.

Type dependencies are not only used in the lines of an operation signature.
As will be explained later, they can also be attached to the datalinks of a
case in order to detect whether the type of the output of the case depend on

the type of the inputs of the case.

Five type dependencies are available. They can be composed in order to

express any possible dependency.
5.6.3.1 Input

The input type dependency expresses the most trivial type dependency
between an input and an output. The type of the output is the same as the
type of the designated input numbered from the left. In the line of an
operation signature, Id (1) means that the type of the output is the same as
the type of the first input of the operation. When attached to a datalink,
Td (1) means that the type of the value on this datalink is the type of the

first input of the case.

The input dependency provides the same functionality as Milner's type
variables as shown below:

<Universal+> — Id(1)

is equivalent to the following function type in Milner’s type system:

108

TYPE INFERENCE

o — O

It can also be used to express bounded universal polymorphism:

<a+> —» Id (1)

is equivalent to Kind's qualified type variables in the line:

a<a> 3 a<a>

5.6.3.2 Element

The element dependency returns the type of the element of the list coming
onto the designated input. E (1) means that the type of the output is the
type of the elements of the list on input 1.

For example, the primitive detach-r detaches the rightmost element of its
input list. The element dependency is needed for the type signature of

detach-r.

The line:

(<Universal+>) = E(1)
is equivalent to the following function type in Milner’s type system:

olist =2

5.6.3.3 List

The list dependency designates that the output is a list whose elements have

their type dependent on the type of the inputs.

For example, the primitive method pack can take an input a and returns a
list with a as a single element. List is used in the signature of pack. L ()

denotes the list dependency applied to the type dependency 8.

The line:

<Universal+> — L(1)

is equivalent to the following function type in Milner’s type system:

o— o list
5.6.3.4 Union and Intersection

The union and intersection dependencies, denoted U and I respectively, return

the union or the intersection of several types and type dependencies.

The primitive find-instance takes a list of objects, an attribute name
and a value and returns the index in the list of the first object for which the

named attribute has the required value, the object itself is returned as the

109

TYPE INFERENCE

second output of the primitive. If no object is found, 0 is returned for the
index and NULL for the found object. The type of the second output of
find-instance is described by the dependency:

U(I(E(1) <UDC+>) <null>)
5.6.4 Operations on types and dependencies

To evaluate and invert type dependencies during the iterative analysis, it is
necessary to compute the union (U) and intersection (") of types and/or of

type dependencies
Such computations rely heavily on the predicates ¢ and ?.

c is defined for any pair of types and/or type dependencies. It is equivalent
to set inclusion. However if the intersection of the two type expressions

cannot be computed, ¢ returns FALSE.

Td (1) c <Universal+> = TRUE because whatever type Id (1) is

evaluated to, <Universal+> will include it, by definition.

TId(1) ¢ <number> = FALSE, because the overlap between <number>
and Id (1) cannot be computed, this overlap depends on the type to which
Id (1) is evaluated.

<number> C <none> = FALSE because the two types do not overlap.

A second predicate, ?, is also defined for any pair of types and/or type
dependencies. This predicate returns true when the intersection of two sets

cannot be computed e.g. <number>?E (1) = TRUE.

The use of the union and intersection operations is illustrated by the
following examples:

<boolean> U <number> = [<boolean> | <number>]

<boolean> M <number> = <Bottom>

(<boolean>) U (<number>) = ([<boolean> | <number>])

(<boolean>) M {(<number>) = <Bottom>

Where a is a user defined class:
<a> U <UDC+> = <UDC+>

<a> M <UDC+> = <a>

<a> VU Id{(l) =U(<a>1)

<a>MNId(1l) =I(<a>1)

110

TYPE INFERENCE

5.6.5 BNF for type expressions

The set of valid type expressions is given using the Backus-Naur form (BNF):

SingleType::<a> | <a+>

StringType:: "a" |"a"+

SimpleType: :SingleType|StringType

ListType :: (SimpleType) | (UnionType) | (ListType)

UnionType: : [SimpleType | SimpleType®]
| [ListType | SimpleType®]

n:: Integer

InputDependency :: Id(n)

Element Dependency :: E(n)

UnaryDependency :: InputDependency | ElementDependency

ListDependency : : L(n) | L(Union Dependency) |

L (IntersectionDependency)

UnionDependency :: U(UnaryDependency UnaryDependencyﬂ
| U(UnaryDependency* SimpleType®)

| U(UnaryDependency* ListType)

| U(UnaryDependency® SimpleType® ListType)

| U(IntersectionDependency IntersectionDependency™)

| U(IntersectionDepency’ SimpleType™)

| U(IntersectionDependencyfListType)

| U(IntersectionDepency’ SimpleType® ListType)

| U(UnaryDependency? TntersectionDependency™)

| U(UnaryDependency* IntersectionDepency” SimpleType™)
| U(UnaryDependency® IntersectionDependencyt ListType)

| U(UnaryDependency* TntersectionDepency’ SimpleType?’ ListType)

111

TYPE INFERENCE

5.7

IntersectionDependency :: I (UnaryDependencyt)
1 (UnaryDependency’ SimpleType)
| I{UnaryDependency’ ListType)

Operation Signatures

The outline of the type inference algorithm explained that the analysis of the
cases of a method is divided into two distinct phases: the initialisation phase
and the iterative analysis phase. During the intialisation phase, a signature is
constructed for every operation of the case (except for the Input and
Output operations). This signature depends on the nature of the operation.
The rules to derive the signatures of the operations are given in the following

subsections.
5.7.1 Simple operation

A simple operation can be a call to a primitive or a user-defined method.
Primitives' signatures cannot be inferred, they must be available so that they
can be used to type any operation calling a primitive. The signatures of the

primitive methods are explained in 5.7.2.

In the case of user-defined methods, the signature of the operation will
depend on the sort of reference used (i.e. universal, data-determined, context-

determined or explicit reference).
5.7.1.1 Call with a universal reference

With a universal reference, the signature of the operation is the signature of
the universal method called. If the signature is not available it must be

inferred separately.
5.7.1.2 Call with a context determined reference

An operation with a context determined reference can only be found in the
case of a method defined by a class. The operation calls the method
applicable to the class of the method which contains the operation. The

signature of the applicable method is used as the operation signature.

When the operation with a context determined reference is super annotated,
the signature of the operation is the signature of the method applicable to the

superclass of the class of the method which contains the operation.

112

TYPE INFERENCE

5.7.1.3 Call with a data-determined reference

With a data-determined reference the name of the operation does not suffice
to determine which method is going to be called at run-time. As in [Suzuki
1981] and [Kind and Friedrich 1993], the solution is to construct the
signature of the operation by joining the signatures of all the methods that
may be called by the operation. The set of the methods that may be called
comprises all the simple class methods with the name and arity of the calling
operation and possibly a universal or a primitive method with the name and

the arity of the calling operation.

For each method potentially called, the leftmost input type (that is the type
of the receiver in object-oriented terminology) in each line of the method's
signature must be restricted to the set of classes to which the method is
applicable. Restricting the type of the receiver means computing the
intersection of the type in the line of the method with the set of classes to

which the method is applicable.

This rule is quite simple to understand: if a method is to be called by an
operation, the leftmost input of this operation must be an instance of a class
to which the method is applicable. A parallel can be drawn between this rule
and the edge conditions in [Palsberg and Schwartzbach 1991].

The rule is illustrated with a simple example. The Person class defines a

method called details. The Student class is a subclass of the Person

&0

Person

class.

@

Student

The Student class redefines the details method. An operation calling the

details method occurs in the case of a method:

.1 details

113

TYPE INFERENCE

At this stage of the analysis it is not possible to say whether the details
method defined for the Person class or the details method defined for
the Student class will be called. The signature of the details operation
consists of the combined signatures of the two methods. The signature of the
details method for the Person class is:

<Person+> -

(Note that an instance of the Student class would be a valid argument for

the details method defined for the Person class).

The signature of the details method defined for the Student class is:

<Student> -~

However, when constructing the signature of the details operation, it must be
remembered that the details method defined for the Person class will be
called if the type of the receiver contains the class Person or subclasses or
Person which do not redefine the details method. As the immediate
subclass of Person, the Student class redefines the details method, the
type of the receiver must be <Person>. The details method redefined by
the Student class will be called only if the receiver of the operation has the
type <Student>. The signature of the details operation comprises the
line of the signature of the details method defined for the Person class
(the leftmost type of the line is restricted to <Person>) and the line of the
signature of the details method defined for the Student class (the
leftmost type of the line is restricted to <Student>):
<Person+> M <Person> —»

<Student> M <Student> —»

which is:
<Person> —

<Student> —>
5.7.2 Primitive method signatures

The signatures for the primitive methods are stored in a repository and can
be looked up using the name of the primitive. During the initialisation phase
of the case-wide type inference, the signature of a primitive method is
retrieved from the repository and associated with the operation that may call

the primitive method.

Some primitives have optional inputs or outputs. For example, the primitive

(in) takes a list, a data item and optionally the value of a start index as

114

TYPE INFERENCE

inputs and returns the index of the first occurrence after the start index of the
data item in the list or 0 if the item is not found. The signature of (in)
requires two lines. The first line describes the primitive (in) as a method
with two inputs and one output, the second line describes an operation with

three inputs and one output.

The signature of (in) is:
(<Universal+>) X <Universal+> — <number>

(<Universal+>) X <Universal+> X <number> —» <number>

When the signature of the (in) operation is initialised, the line where the
number of inputs does not match the number of inputs of the calling

operation is discarded.

Other primitives may also have an arbitrary number of inputs or outputs. The
+ (number addition) primitive is a good example. The variable number of
inputs cannot conveniently be represented by multiple lines as the number of
inputs may vary between 2 and 256. A new concept must be introduced, that
of a Varity. A varity term (denoted by ...) in a line means that the left hand
side or the right hand side of the line may be extended by duplicating the

type next to the varity term.

The signature of + is:

<number> X <number> X .. — <number>

When the signature of the + operation is constructed during the initialisation
phase, the varity term must replaced with the required sequence of

<number> types to match the arity of the calling + operation in the case.
5.7.3 Get and Set operations

Attributes are supported by a finite set of classes. Therefore, the name of an
attribute accessed or modified gives a useful indication of the type of the

leftmost argument of the Get or Set operation.

If a default Get or Set operation is called then the type of the receiver
includes all the classes defining or inheriting the attribute and the string types
with values that are the names of these classes. The inference algorithm does

not attempt to keep track of the types of the class and instance variables.

A Get or a Set operation may also have a data-determined reference. The
signature is obtained by joining the signatures of the default and user-defined

methods that may be called. As for a simple operation with a data-

115

TYPE INFERENCE

determined reference, the leftmost type of the lines must be narrowed to the
set of classes (and the names of these classes) to which a user-defined Get

or Set method is applicable.

The signature of a user-defined Get or Set method is inferred

independently.
5.7.4 Instance generator

The signature of an operation instantiating a new object can be constructed
on the fly if a default instance generator is called:
<none> —» <Z>

((<Universal+>)) - <Z>

where Z is the name of the operation. In the second line, the list of lists
corresponds to the optional list of (attribute name, attribute value) pairs that

can be passed to the Init operation.

If a custom instance generator has been defined, its signature has to be

inferred independently.
5.7.5 Persistent operations

Very little type information can be inferred from a persistent Get or a
persistent Set operation as the algorithm does not record the type of
persistent values. In the case of a persistent Set operation, the type of the
input is set to <Universal+>; for a persistent Get, the type of the output

is also set to <Universal+>.
5.7.6 Local operations

The signature of a Local operation is obtained by inferring the signature of
the local method attached to it.

5.7.7 Constant operations

The type signature of a Constant operation is a line with no input and the

type of the constant value as output.
5.7.8 Match operations

A Match operation can have different controls attached to it: NextCase,
Finish, Terminate, Fail and Continue. The control can be triggered
when the match fails, or on the contrary when it succeeds. For the purpose of
the analysis, it would be interesting to keep track of the type that would

trigger the activation of any control. However, this would result in an

116

TYPE INFERENCE

increased complexity. The algorithm keeps track only of the type of the value

that might trigger a NextCase control. This type, called NextType, is a

property of the datalink connected to the terminal of the Match operation.
The rules are:

e If the NextCase control is activated on a failed match, the signature
consists of a single line whose argument type is that of the value that
must be matched and no return type; NextType is set to
<Universal+> for the datalink coming into the Match operation. This

case is illustrated below:

3 . Mext case on failure

The execution will resume at the input operation in the following case if
the value on the incoming datalink of the Match operation is not equal to
5. That is any value other than 5, and by extension a value of any type
(including number) can trigger the control. Therefore NextType is set to
<Universal+>. If the execution is to proceed in the current case, the
value on the datalink must be 5 and the signature of the Match operation
should be:

<number> —

e For a NextCase control activated on a successful match, the signature

constructed for the Match operation is:
<Universal+> —

NextType is set to the type of the value to be matched. In the following

example:

5 Next case on success

NextType would be set to <number>.

This rule becomes slightly more complex when the same value flows into

several Match operations. This situation occurs when the datalinks

connected to the terminals of different Match operations are connected to

the same root. The NextType of the datalinks is set to the union of the

types propagated by the differnt Match operations (this rule is explained in

greater detail in 5.8.2.4).

117

TYPE INFERENCE

5.8

5.7.9 Signature of multiplex operations

The clean separation between an operation and the different multiplex
annotations that can be applied to the terminal and roots of an operation or
the operation itself makes the typing of an annotated operation relatively

easy.

In the case of an operation with list annotated terminals and roots, the type
signature of the unannotated operation can be specialised by converting the
type of list terminals and list roots into list types or list type dependencies.

The transformation is illustrated by the following example:

& 0+}
g

The signature of a is:

<number> X <number> — <number>

The transformation of the signature of a yields for b the signature:

(<number>) X <number> — (<number>)

The typing of a partition annotated operation is slightly more complex. There
exists a dependency between the type of the list being partitioned and the
types of the fail and pass lists.

The signature of a is:

<Universal+> X <Universal+> - <boolean>

it becomes for b:

(<Universal+>) X <Universal+> — L(U(E(1)<¢>)) X L(U(E(1)<0>))
where <g> is a type such that (<¢>) is the empty list type.
Other multiplex annotations do not affect the signature of the operation.
Type inference algorithm

This section explains in greater detail the inference of a method signature. The
first subsection describes the start of the method-wide analysis. Most of the

analysis occurs in the scope of the individual cases of the method and the

118

TYPE INFERENCE

second subsection covers the different steps of the case analysis. The
synthesis of the method signature from the results of the case analyses is then

explained. The last subsection presents the analysis of recursive methods.

5.8.1 Method wide analysis

The inference is applied to one method at a time. It is necessary to be able to
identify precisely the method to which the type analysis must be applied.
Name overloading and the existence of different types of methods (Set,
Get, Simple, Init and Local) requires a combination of three

components to identify a method.

A method identifier identifies a method using the following
ClassName / MethodName / MethodType triplet.

e ClassName is the name of the class to which the method belongs, for a

universal method, the Universal keyword is used instead.

e MethodName is the name of the method, Init methods are designated
by the «» characters. The name of a local method is constructed from the
name of the containing method and the name of the local method (if it has

one).

» MethodType distinguishes among the various method types: Set, Get,
Simple and Local (there is no Init type because custom Init

methods can be distinguished by their name).

The inference mechanism maintains a stack of method identifiers during the
analysis. When the analysis is applied to a method, its method identifier is
pushed onto the stack. The method identifier on the top of the stack
corresponds to the analysis currently active, and all the identifiers occurring
in the stack are those of the methods for which analysis has been suspended.
Upon completion of the analysis of a method, its identifier is popped from
the top of the stack. The stack of method identifiers serves two purposes, it
detects possible rescursion in the method currently analysed and, in case of

failure, helps to localise at which point the inference failed.
5.8.2 Case wide analysis

Most of the computations to infer the type signature of a method take place
in the scope of the individual cases of the method. This subsection describes

in detail the different stages of the case analysis:

¢ The initialisation phase

119

TYPE INFERENCE

e The forward analysis
e The backward analysis
e The computation of the NextType info for the datalinks of the case

e The computation of the type dependencies between the inputs and

outputs of the case.
5.8.2.1 Initialisation phase

During the initialisation phase, the information attached to the datalinks and

the signatures of the nodes are set up.

The information inferred about the value flowing on a datalink or a set of
datalinks is described by a tuple: (Type, NextType, Dependency). The

purpose of each field is now explained:

e The value of Type is an approximation of the type of the data object
on the datalink.

e The value of NextType is the type the data object should have if a

NextCase control is to be activated.

» Dependency keeps track of the dependencies between the types of
the objects on the graph.

During initialisation, seven categories of datalinks can be distinguished. The
first four categories are defined by the possible combination of two
parameters: connection of the datalink to the input bar and connection of the
datalink to the terminal of a Match operation. For the purpose of the
analysis, it has been necessary to introduce three extra categories of
datalinks, the first one is called NotConnectedTerminal and handles
unconnected operation terminals. The second extra category, called
NotConnectedRoot, is required to deal with a root which has no datalink
connected to it. The third extra category is used for the roots of the Input

operation which are not connected.

The rules used to construct the signatures of the operations have been

described in section 5.7.

The table below shows the values of the properties attached to the datalinks

after the initialisation phase:

120

TYPE INFERENCE

Input operation.

Type NextType Dependency
Not connected to Match T NoInfo Id(i)
Connected to Input
Connected to Match T T Id(i)
Connected to Input
Not connected to Match <Universal+> NoInfo _
Not connected to Input
Connected toMatch <Universal+> T -
Not connected to Input
NotConnectedTerminal <none> NoInfo =
NotConnectedRoot <Universal+> NoInfo _
NotConnectedRoot of | T NoInfo -

1, the value of Type for a datalink connected to the input bar can be:

o <Universal+> if the case being analysed is the first case of the

method.

e the NextType of the matching input in the previous case if NextType

is not NoInfo (NoInfo means that there is no information available to

type the next case)

* the Type of the matching input in the previous case otherwise.

17, the NextType of a datalink connected to a Match operation is set during

the construction of the signature of the Match operation (according to the

rules described in 5.7.8).

Id (i) is the Dependency value for a datalink connected to the input bar

where 1 is the position of the input in the sequence of the inputs of the case
(1 is the leftmost input of the case). Id (i) means that the type of the
datalink connected to the input bar is the type of the input of the case.

121

TYPE INFERENCE

5.8.2.2 Forward Analysis

After the initialisation phase, the signature of each operation comprises one
or more lines. The role of the forward analysis is to infer the value of Type
for the outgoing datalinks (i.e the type of the value flowing on the datalink)
from the value of Type for the incoming datalinks and the signature of the

operation.

For each operation of the case (except the input and the output bars),
following the execution order, the forward analysis is performed in two

stages:
» The update of the lines of the signature of the operation

¢ The update of the values of Type for the outgoing datalink of the

operation.

The pairwise intersections of the types of the incoming datalinks, (the values
of Type for the incoming datalinks, 11 and 12 in fig. 5.12) and the matching

input types in the line (t' 1 and 7'2 in fig. 5.12) are computed. If, for one pair,
the intersection yields <Bottom>, the line is disqualified as a whole,
otherwise, the input types in the line slots are replaced by the intersection set
(t1 n1'1 and T3 N 1T' 2 are the two intersection sets in fig. 5.12). This

update is repeated for each of the line of the signature.

r_L 0/ T'] X T'9—1T'3 l / Ty N T X T N T—T'3
Wmassﬂef Cmp ﬁ %classﬂef Cmp %
3 3

Fig. 5.12: Intersection of the incoming types with the input types of the lines.

The purpose of the second stage is to update the value of Type for the
outgoing datalinks of the operation.

Each line propagates a new type for each outgoing datalink of the operation.
If an output slot in a line contains a type dependency, the type to be
propagated is the result of the evaluation of the type dependency, otherwise
it is the type stored in the output slot of the line.

Eventually, the updated value of Type for each outgoing datalink is the
union of the types propagated by the different lines for that datalink.

122

TYPE INFERENCE

Fig. 5.13 illustrates the most trivial case, a signature with a single line whose

output slot contains a type. 13is replaced with '3 in fig. 5.13.

1 12
TINTIXT) N T>T3

%Elass&ef Cmp f/%

'3

Fig. 5.13 Propagation of the output types.
If after update, the signature of the the operation shown in fig. 5.12 was:
T4 N T X 12 N T2 — 81 (81 is a type dependency).

13, the updated value of Type for the outgoing datalink of the operation

would be:

Evaluate(d1, (11 N1'1.12N1'2))

To illustrate the most general case, if after its update the signature of the
operation shown in fig. 5.12 comprised the two following lines:

TLNT 1aXT2NT' 25 > 01a

TINT 1pXT2NT' 2b—T'3b
1'3, the updated value of Type for the outgoing datalink of the operation
would be the union of the value of the type dependency 814 and the type
T3p:

Evaluate (8{a, (T1NT 1a, 12NT23))1VUT' 3D

In summary, at the end of the forward analysis, the value of Type for each
datalink of the case has been updated once, except for the datalinks

connected to the input bar.
5.8.2.3 Backward Analysis

The role of backward analysis is to infer the value of Type on the input
datalinks from the values of Type on the output datalinks and the signature
of the operation. The likely presence of type dependencies in the output slots
of the signature lines makes the backward analysis more complex than the

forward analysis.

For each operation of the case (except the input and the output bars),
following the reverse execution order, the backward analysis is performed in

two stages:

e The update of the lines of the signature of the operation

123

TYPE INFERENCE

e The update of the value of Type for the incoming datalinks of the

operation.

Each line in the signature is updated as follows. In each line, each output slot

contains either a type or a type dependency.

If the output slot of the line contains a type, the intersection of that type with
the type of the matching outgoing datalink is computed and becomes the type
stored in the output slot of the line (this is similar in principle to the first
stage of the forward analysis, except that the slots whose types are being

updated are now on the right hand side of the line).

If the output slot of the line contains a type dependency, the pairwise
intersection of the last computed value of the type dependency
(Evaluate (81, (t'1, T'2, T'3)) in fig. 5.14) and the type of the
corresponding datalink (t4 in fig. 5.14) must be computed and the

intersection becomes the new value of the type dependency (t'4 in fig. 5.14).

As with forward analysis, an intersection producing a <Bottom> result

disqualifies the entire line.

0 B AP

 choose ‘C'IX‘C'2X’C‘3—)51

T4
T'4¢- Evaluate(dy,(1'1,1'2,1'3) N1y

(11, 1"9,7T"3) < Inverse(t' 4,81, (T'{,1'2,1'3))

Fig. 5.14: Update of the line of the signature of the operation

The next step in the update of each line is to obtain the revised input types of

the line.

If the output slots of the line contain only types, the input types of the line

are left unmodified.

If the output slots of the lines contain type dependencies, the change in the
value of the type dependencies (1'4 is the new value of dependecy 91 in fig.

5.14) must be reflected in the input types of the line. The application of the

Inverse function to a dependency produces an updated sequence of input
types for the line ((1"1, t"2, t©"3) in fig. 5.14). If the same line has several

output slots containing type dependencies, the same number of sequences of

124

TYPE INFERENCE

updated input types will be produced. The sequences are combined into one
by computing the union of the matching elements of the sequences. The
following example summarises the update of the lines of the signature of an
operation during the backward analysis. A line contains two types
dependencies 81 and &):

T X192 XT3 81 %82

The inversion of 81 produces the sequence of input types (t"1.1,71"1.2,
11.3) and the inversion of 8) produces the sequence of input types (1"2.1,
1"2.2,1"2.3), the two sequences are combined to construct the updated line:

T'1UT 1 XT'12UT'22X1T13UT"2.3- 81 X8

After all the lines of the signature of the operation have been updated, the

changes must be propagated to Type values of the incoming datalinks of the

operation.
Tq 9 LT3 THZATZ/
TN T
T 1Ny 303
& L " o " 5
.choose T 17712273701 TV XTI X Ty > 8
T4 4

Fig. 5.15 a&b: Propagation of the types on the input datalinks.

If the signature of the operation contains several lines, the matching input
types of the lines are combined using the union operator to produce a

sequence of update types for the incoming datalinks of the operation.

In order to understand how the types on the incoming datalinks of the
operation should be updated, it must be remembered that all the datalinks
connected to the same root share the same Type value. The update input
types are propagated upward by computing, for each datalink, the
intersection of the current type of the datalink (t1 to 13 in fig 5.15.a) and the
matching update input type (1" 1 to 1" 3 in fig. 5.15.b).

The need to compute the intersection to propagate types upward is

illustrated by the example in fig. 5.16.

125

TYPE INFERENCE

Fig. 5.16: Type incorrect code fragment.

The fragment of code shown in fig. 5.16 is not type-correct. During the
forward analysis, 11 is set to <Universal+>. If the backward analysis
processes the and operation first, 11 will become <Boolean>. When
processing the + operation, the analysis must propagate the information that
the + operation requires an input of type <number>. The intersection of

<number> and <boolean> produces <Bottom> and the analysis fails.

In summary, the backward analysis updates the value of Type for all the

datalinks except for those connected to the Output operation.

The combined effect of the forward and backward analyses is that the value
of Type for each datalink of the case has been updated at least once
(moreover, the value of Type of all the datalinks of the case that are
connected to neither the roots of the Input operation nor the terminals of
the Output operation has been updated twice). The optimal number of
passes to yield an approximation of the types is likely to depend on the
topology of the dataflow graph. The Kaplan and Ullman algorithm [Kaplan
and Ullman 1980] reiterates forward and backward passes until a fixed
point is reached; the drawback of this approach is its computational cost.
The approach chosen for Prograph favours a lesser computational cost at the

expense of the precision of the analysis.
5.8.2.4 Computing NextType

The purpose of NextType is to gather type information about the input
values of a case (cf. 5.7.8). There may exist a correlation between the type of
the inputs of a method and the sequence of cases visited during its execution.
The operation to which the NextCase control is attached may not be
directly connected to the input bar. It is therefore necessary to compute the

value of NextType for all the datalinks on the graph.

126

TYPE INFERENCE

The value of NextType can be a type or a NoInfo token. The value of
NextType for each datalink is computed during the backward pass of the
case analysis. The procedure described below is applied to all the operations

(except the input and output bars) on the dataflow graph of the case.

In each line of the signature of the operation, each output slot contains either

a type or a type dependency.
If the slot contains a type, no further action is necessary.

If the slot contains a type dependency and the value of NextType for the
matching outgoing datalink is NoInfo, no further action is required.
Otherwise, the type dependency is inverted with the value of NextType for
the outgoing datalink to produce an update sequence for the NextType
values of the incoming datalinks. Each element of the update sequence is
either a type or a NoInfo token. If several update sequences are produced
by the same and/or different lines of the signature of the operation, they are
combined by performing the union of their matching elements (a NoInfo

token acts as a neutral element for the union).

As for the explanation of the backward analysis, it is important to remember
that all the datalinks connected to the same root share the same NextType
value. The types (or NoInfo tokens) in the combined update sequence are
propagated upward by computing for each datalink the union of the value of
NextType with the value of the matching element of the sequence. The need
to compute the union to update the value NextType is illustrated by the

example in fig. 5.17

R e P e R et e

NextType= [<number>]"v"]

Fig. 5.17: Union of NextType values

In the example shown, the computation will resume in the following case if
the input is the integer value 5 or is the string "V". Thus, the NextType
value for the two datalinks connected to the input must be the union type of

the string "v" and number, [<number> |"V"].

127

TYPE INFERENCE

5.8.2.5 Computing intra-case type dependencies

The purpose of the last property attached to the datalinks of the graph, the
Dependency property, is to record dependencies between the input types
and the output types of the case being analysed. The value of Dependency

is computed during a second forward pass over the nodes of the case.

The procedure described below is applied to all the operations of the case

(except the Input and Output operations) following the execution order.

In each line of the signature of the operation, each output slot contains either

a type or a type dependency.

If the output slot contains a type, this type becomes the value of

Dependency for the matching outgoing datalinks.

If the output slot contains a type dependency, this dependency must be
composed. Composing a data dependency means that all references to
operation inputs that occur in the dependency are replaced with the value of
Dependency for the corresponding incoming datalink. If all the referenced
Dependency values are types, the substitution will logically yield a type,
otherwise it yields a composed type dependency. The result of the
substitution becomes the value of Dependency for the matching outgoing
datalink.

The computation of the Dependency value is illustrated by the following
example (fig. 5.18). 81, 62 and 83 are the Dependency properties attached

to the three datalinks of the graph.

Wrirsrs R b i

.,
AL ST A A A LA S A A A ATV s

Fig. 5.18: Computation of the Dependency property
The signature constructed for pack during the initialisation phase is:
<Universal+> X <Universal+> = L(U(1 2))

81 is Id (1) and 83 is <boolean>. When 83 is computed, the reference to
the input 1 and 2 in the output type dependency of pack are substituted
with the values of 81 and 87 and the value obtained for 83 is:

128

TYPE INFERENCE

L(U(1 <boolean>))

When the signature of an operation comprises more than one line, the type
dependencies are composed line by line and the value of Dependency for
each outgoing datalink of the operation is obtained by performing the union

of the composed dependencies.

The computation of the type dependencies across the case is the last pass

over the dataflow graph before the case analysis completes.
5.8.2.6 Construction of the line for the case

Once all the passes have been carried out, a line can be constructed to

describe the input and output types of the case.

The Type values for the datalinks connected to the Input operation become

the input types of the case.

The Dependency values (whether a type or a type dependency) for the
datalinks connected to the Output operation are used directly to describe

the types of the outputs in the case line.

It is also necessary to construct the sequence of input types for the following
case. This sequence is constructed by examining the values of NextType and
Type for the datalinks connected to the roots of the Input operation of the
case currently analysed. For each root of the Input operation, two cases can
be distinguished, either the NextType value is NoInfo or the NextType

value is a type.

e If the NextType value for the datalink(s) connected to the root is a

type, the NextType value is used in the sequence for the next case.

e Otherwise, when NextType is NoInfo, the Type value of the
datalink(s) connected to the root is used in the sequence For a root of the
Input operation with no datalink connected to it (a

NotConnectedRoot, see 5.8.2.1), the NextType value isNoInfo.
5.8.3 Synthesis of the method signature

The signature of the method is obtained by combining the lines produced by
the analysis of the cases of the method into a single line. Each slot of the
combined line contains the union of the corresponding types and type

dependencies from the various lines.

129

TYPE INFERENCE

5.8.4 Handling recursion

Recursion in Prograph may occur in different guises. Most simply, a universal
method is recursive if it is called again directly or indirectly by an operation

in one of its cases.

A more subtle form of a recursion is the consequence of Prograph object-
orientation. An operation with a data-determined reference may appear in
one of the cases of a method and have the same name as the method. The
type of the receiver of the operation will determine whether the method is

recursive or not.

ﬁhodeless_ Handler ﬁ

}Modal Handler ﬁ
[a] "

A A A A A A A Il

Fig. 5.20: Potentially recursive method.

In the example shown in fig. 5.20 (taken from the Application Building
Classes), the method Close is in practice not recursive because the objects
stored in the Modeless Handler and Modal Handler attributes are not
instances of the Commander class. It is a common programming practice in
Prograph to call, in one of the cases of a method, operations with the same
name as the enclosing method to apply them to the objects stored in the

attributes of the method receiver.

The detection of a recursive pattern in the analysis (that is, trying to apply
the type analysis to the same method twice) is the primary motivation to
keep track of the order in which the nested analyses are applied using a stack
of method identifiers (see 5.8.1). Before starting the analysis of a method, the
inference mechanism checks whether its method identifier is already on the

stack of method identifiers. If this is the case, recursion has been detected. It

130

TYPE INFERENCE

can be direct recursion (if the matching method identifier is on the top of the
stack or if it is separated from the top only by local methods' identifiers) or
mutual recursion (several identifiers, other than local method identifiers,

occur between the matching identifier and the top of the stack).

Instead of analysing it again, a dummy signature for the operation making the
recursive call is constructed. The approximation used to construct the

dummy signature is based on the following observations:

e If the method returns a value, the termination clause will have to be
implemented as a separate case in which no recursive call occurs. Typing
this case provides a first approximation of the signature of the method.
Furthermore for a non-tail recursive method, the signature of the
operation occuring between the recursive call and the Output operation
helps to refine the approximation of the signature of the recursive
method.

e A recursive method with no return value can be implemented with a
single case. Recursion must be stopped by a control attached to an
operation which checks that some conditions are met. The operation with
the control must occur before the recursive call in the execution sequence,
otherwise recursion will be infinite. The signature of the operation with
the check provides an approximation of the input types of the recursive
method.

e As in the example shown above, the apparent recursion does not result
in a recursive program and the relevant type information to construct the
operation signature comes from the signatures of the other methods that

may be called.

The dummy signature for the recursive method has all its input and output
types set to <recursive>.<recursive> is a pseudo type and acts as a
neutral element for both type union and type intersection (<recursive> N
a=a and <recursive> U a = a, with a being any type or type
dependency). This reflects the intuition that the dummy signature carries no
useful information and that it should interfere as little as possible with the

inference:

e Type unions and intersections are computed during the case analysis
and <recursive> should allow the analysis to obtain information from

the context in which the recursive call occurs.

131

TYPE INFERENCE

5.9

» Type unions are computed to construct the signature of a method from
the results of the analyses of its cases. For a tail recursive method the

relevant type information comes from the case with no recursive call.
Examples
5.9.1 A simple example

This example shows how type inference is applied to the method IsEven?.
IsEven? has a single case, it takes an integer as input and returns TRUE if

the integer is even, FALSE otherwise.

Method : IsEven?

Fig. 5.21: The isEven? method

The following subsections describe the different phases of the type inference,
where the properties of the datalinks are printed on the graph using the tuple
format defined in 5.8.2.1, that is (Type, NextType, Dependency) and
the operation signatures are printed next to the operations to which they are
attached.

132

TYPE INFERENCE

5.9.1.1 Initialisation phase

Method : IsEven?

Fig. 5.22.a: The signatures of the nodes have been set.

During the set-up phase, a signature is associated with each operation on the
dataflow graph, except for the Input and Output operations (fig. 5.22.a).
The Type value for all the datalinks is set to <Universal+>, the
NextType value for all the datalinks is NoInfo, the Dependency value
for LINK1 is Td (1) and it is not specified for the other datalinks of the

case.

5.9.1.2 Forward analysis

Kirierirssr e /.-’/// L

i
(<boolean>,NoInfo, -~} é
5
-

)
B e o g et e o
Meathod: IsEven?

Fig. 5.22.b: After the forward analysis.

During the forward analysis LINK1 remains unchanged and LINK2 has type
<number>. Since the signature of the operation idiv has only one line
(which is compatible with the type on LINK2), LINK3 must have the type

133

TYPE INFERENCE

<number>. The intersection of the types on LINK3 and LINK4 with the
input types of the = signature yields <number> for both inputs of the =
operation. The Type value for LINK5 becomes <boolean>. The Type

value for LINK1 remains <Universal+>.

5.9.1.3 Backward analysis

Method: IsEven?

Fig. 5.22.c: After the backward analysis

During the subsequent backward analysis little changes. The signature of the

idiv operation, however, implies that the Type value for LINK1 is

<number>.

There is no Match operation in the case of the IsEven method, and the

NextType values are left unchanged by the backward analysis.

134

TYPE INFERENCE

5.9.1.4 Computation of Dependency

Method : IsEven?

Fig. 5.22.d: After the computation of Dependency

None of the operations of the case has a signature with a type dependency,

as a result the Dependency value for all the datalinks except LINK1 is a
type.

The signature of the method can now be constructed. The input type is the
Type value for LINKL and the output type is the Dependency value for
LINK5. The signature is:

<number> = <boolean>
5.9.2 A recursive example

The method Factorial (see fig 5.23) computes the factorial of a positive

integer.

e / L b T P

o x|

e et] B AR A AR o AL ISPR,)

Fig. 5.23.a&b: Cases of the Factorial method.

135

TYPE INFERENCE

5.9.2.1 Analysis of the first case

ZANIT

{<Universal+>, <Universal+>, Id (1))

<number> —

i — <number>

(<Universal+>,NoInfo, -}

Fig. 5.24.a: After the initialisation phase

It must be noted that after the initialisation phase, the value of NextType

for LINK1 is set to <Universal+> because LINKL1 is connected to the

terminal of a Match operation with a NextCase control activated on

failure.

<number> -

1 — <number>

{<number>, NoInfo,-)

TANIT

o o e A L

(<Universal+>,<Universal+>,Id(1))

i — <number>

(<number>, NoInfo,-)

ZANIT

B e i et L

Fig. 5 24.b and c: Forward and backward analyses

The value of Type for LINK2 is updated during the forward analysis and

the value of Type for LINK1 is updated during the backward analysis.

136

TYPE INFERENCE

1 — <number>

(<number>, NolInfo,<number>)

ZANIT

e e e ettt D

Fig. 5.24.d: Computation of the dependencies

After the computation of the dependencies, the line for the first case can be
constructed:

<number> —» <number>

and the type of the input of the next case is the value of NextType for
LINK1, (<Universal+>).

5.9.2.2 Analysis of the second case

LINK1

(<Universal+>{NoInfo, Id(1)))

CANIT

<recursive> — <recursive>
LINK4 ;

(<Universal+>,NoInfo, ~)

<number> — <number>

SMNIT

(<Universal+>,NoInfo, -)

£ e e L 2]

Fig, 5.25.a: After the initialisation phase

During the initialisation phase, the inference algorithm tries to construct the
signature of the Factorial operation. However, the method identifier of
the method currently analysed is Universal/Factorial/Simple,

recursion is detected and the signature constructed for the operation is:

<recursive> - <recursive>

137

TYPE INFERENCE

BZO’ﬁAZO&??U’x?ZZ’AZ&??Z//ZV @

LINK1 77
-1

(<number>, NoInfo, ~)

<number> - <number>

{<Universal+>|NoInfo,Id{1))}

CANIT

<number> - <recursive>
LINK4 '

{<Universal+>,NolInfo, -)

<number> — <number>

{<number>,NoInfo, -)

GANIT

B e e P o e e A

Fig. 5.25.b: After the forward analysis

After the forward analysis, the Type values of LINK3, LINK4 and LINK5
have been updated. The left-hand side of the signature of the Factorial
operation has been updated as well.

Wf/;j/ AR I A P

LINK1 5
-1

(<number>, NoInfo, -)

>
{<number>, NoInfo, Id(1)})) <number> — <number

ZMNIT

<number> -~ <number:>
LINK4 2

(<number>,NoInfo, ~)

<number> — <number>

(<number>, NoInfo, -)

GANIT

| A LA, A

Fig. 5.25.c: After the backward analysis

After the backward analysis, the Type value shared by LINK1 and LINK2
and the right-hand side of the signature of Factorial are updated.

138

TYPE INFERENCE

5.10

K ﬁ.r’ o o

LINK1

< > <
(<nunmber>,NoInfo,Id(1)}) number> — <number>

(<number>, NoInfo, <number>)

1 < — <number>|
LINK4 @Faﬁtnnalz number> umb
1

(<number>,NoInfo, <number>)

ZANIT
ANIT

<number> — <number>

(<number>,NoInfo, <number>)

SMNIT

£ F A TR, il

Fig. 5.25.d: Computation of the dependency.

There is no operation whose signature contains a type dependency.
Therefore, for all the datalinks not connected to the input bar, the

Dependency value is a type.
The line for the second case can be constructed:
<number> — <number>

The signature for the whole method is constructed by combining the lines of
the two cases. The line for the first case is:

<number> — <number>

The line for the second case is also:

<number> — <number>

and the combined line is:

<number> U <number> — <number> U <number>
which is:
<number> — <number>

Shortcomings of the type analysis

In subsection 5.5.4, it is stated that the type inference algorithm might fail to
detect type errors and might also reject type correct code. These two

situations are illustrated by concrete examples.
5.10.1 Failure to detect type errors

The type representation chosen for the analysis does not permit the

expression of type dependencies between the inputs of an operation. A

139

TYPE INFERENCE

partial solution to this problem is to have a signature with several lines, a line
for each valid combination of input types. The signature of the < primitive

(shown below) is a good example.

The signature of the < primitive is:
<number> X <number> —<boolean>
<number> X <number> —>

W v y<boolean>

W s W 3

However, during the forward and backward analyses, the type dependency
embodied by the use of several lines is lost as the type of the inputs is the
union of the matching input types of the lines. The loss of information is
shown with the following (somewhat contrived) example. The relational
operator is wrapped in a local method (fig. 5.26.a) and an invalid pair of

arguments is passed to the local method (fig. 5.26.b).

| A ot At 0O
"Hello world!™ e

<

s
o o o o B A | T

Fig. 5.26.a: < wrapped in a local method Fig. 5.26.b: Invalid arguments

The signature inferred for the local method is:

[<number>|“”] X [<number> | “”] — <boolean>

which is compatible with the pair of argument types. However the evaluation
of this fragment of code should fail because the two arguments are of
incomparable types. In the current version of Prograph, four primitives have

dependencies between their input types: <, 2, < and >.

The combination of the lines of the different cases of a method into a single
line for the method signature has the same consequences as the combination

of the lines of a primitive.

The example shown in fig. 5.27 is taken from the code of the Application
Building Classes. A local Get Value is defined with three cases (see fig.
5.27.a, b and ¢). The Get Value operation can only call a class method

because there exists no Get Value primitive or universal method.

140

TYPE INFERENCE

Kz L s)
NULL |x]
£ iy e

Fig. 5.27.a: First case of Get Value.

The line for case 1 is <null> — Id (1)

| Tl % o el
~ /Get Yalue M.
(X N

"

Errsdsts o A pai]

Fig. 5.27.b: Second case of Get Value.
The line for case 2 is:
([w]w]) = (<Universal+>)

[...1...] is the textual representation of a union type which is too large to be

printed (this is because many classes define a Get Value method).

Ko e A A

{7 /Get Yalue Z

A A o, s

Fig. 5.27.c: Third case of Get Value.

The line for case 3 is:
[w.]..] = <Universal+>.

The union type is a subset of the <UDC+> type (which means that the input
of the third case has to be an instance of a user-defined class). Since it does
not affect the explanation and to make it easier to understand, the line for
case 3 is replaced with:

<UDC+> —» <Universal+>

The combination of the three lines produces a signature for the method with

the line:

141

TYPE INFERENCE

[<null>| ([..]..]) |<UDC+>] — <Universal+>

During the passes of the inference, as a consequence of the misuse of the Get
value local method, the line may be specialised to:

<null> — (<Universal+>)

This line does not correspond to a valid execution of the local method. The
error comes from the fact that the input types of the three lines and the
output types are disjoint. Generally, o U o’ — B U B’ is equivalent to the two

lines oo — B and o — B’ if one of the following conditions is met:
«B=p
egcao andfc P’
e caand B B

However, checking the equivalence between the combined line and the
sequence of lines from which the line has been obtained would be an
expensive computation. Therefore a cruder approximation is used to combine

the lines of the cases of the method.

Loss of information also occurs as the result of the approximation used for
the signature of the primitives used to test the type of objects at run-time. For
example 1ist? (shown in the second case of Get Value above) succeeds
and optionally returns TRUE if its input is a list, otherwise it fails or returns

FALSE.

The signature of 1ist? is:
<Universal+> - <boolean>

<Universal+>-—>

This signature does not keep track of the fact that an input type which is not
a subset of (<Universal+>) will cause the operation to fail. When the
primitive is encountered with a NextCase on failure control or NextCase
on success control attached to it, the value of NextType for its input

datalink will be set to <Universal+> in both cases.
5.10.2 Rejection of type correct code

The rule to construct the signature of a Match operation might lead to the
rejection of type correct code. This is because the rule requires that for a
Match operation with a NextCase on failure control, the Type value can

only be the type of the value to be matched. The following code is not very

142

TYPE INFERENCE

5.11

useful because the NextCase control will always be activated, it is however

correct:

K O o

S

s
Hello l X l

U S

5 [x]

Fig. 5.28: Rejected type-correct code.

The signature of the Match string operation is:

“Hello” —»

and that of the Match integer operation is:

<number> —

During the backward pass of the case analysis, the intersection of the input
types of the two signatures must be computed because the same value is
flowing into the two operations. The result is the <Bottom> type which
causes the failure of the analysis. The analysis reports as a type error, code

that, if executed, is likely to present a program error.
Summary

» Type inference is the ability to infer type information in the absence of
type declaration. Type inference has been notably applied to object-

oriented and functional languages.

* The purpose of type inference in Prograph is to reduce the uncertainty
caused by dynamic binding and to gather some information for the effect

analysis.

* A type is the set of classes of which a value can be an instance. A type

dependency expresses a type as a function of another type.

* A method signature consists of one or more lines. A line describes the

input and output types of an operation.

* The inference algorithm is applied to a method at a time. A method-
wide inference can be decomposed into a sequence of case-wide

inferences.

143

EFFECT INFERENCE AND SYNTHESIS

6 Effect inference and synthesis

6.1

The purpose of the effect analysis is to describe how the execution of an
operation annotated for distribution may affect the arguments of this
operation and global variables. The effect analysis proposed for Prograph
proceeds in two steps: effect inference and effect synthesis. Effect inference is
tightly integrated with type inference and produces a description of the
effects of individual methods. Effect synthesis interprets the effect

information available for an operation annotated for distribution.

This chapter is divided into four sections. The first section discusses the
different motivations for undertaking effect analysis. The second section
reviews some of the work undertaken in the field of effect analysis. The third
section is devoted to the effect inference and fourth section covers effect

synthesis in Prograph.
Purpose of effect analysis

Research work has focused on procedure-oriented and functional languages

and information about effects serves several purposes.
Effect information is useful in several contexts:

e Optimising compilers rely on the results of effect analysis to perform
various optimisations. Examples of optimisations include: constant
propagation, the compiler can perform a significant amount of
precomputation by propagating the constants through the program,
constant folding, the compiler replaces operations with constant operands
with their computed value. Effect information also provides knowledge
about the lifetime of data objects and allows a more efficient management
of memory such as the stack allocation of data objects instead of heap

allocation.

o Parallelising compilers also exploit effect information [Bacon, Graham
and Sharp 1994]. Effect analysis produces the set of the locations read
and written by different subcomputations and the dependency analysis
can detect dependencies by computing the intersection of the different
sets. Knowledge of dependencies allows the parallelising compiler to

partition and schedule computations into sets of concurrent tasks.

144

EFFECT INFERENCE AND SYNTHESIS

6.2

* The selection of test data for a program is another example of use of

effect information [Rapps and Weyuker 1982]

* The maintenance and evolution of large software systems require tools
that automate the production of documentation about the system. Effect
information is useful to check that the software system evolves in a

consistent way [Ryder 1989].
Related Work

This section reviews several research areas. These examples have been chosen
to illustrate the various purposes of effect analysis, the techniques used and

the languages to which it is applied.
6.2.1 Chow and Harrison

The analysis proposed in [Chow and Harrison 1992] is part of a multilingual
parallelising compiler, the Miprac system. The aim of the analysis is to gather

information on:
* side-effects
* data dependencies
* object lifetime
¢ unordered accesses

The analysis applies abstract interpretation to whole programs converted into
MIL, an intermediate language used by the Miprac compiler. MIL provides
three kinds of values: integers, locations and closures. Locations are
initialised by a create operation, accessed by a read operation and
modified by a write operation. Parallelism is expressed by a cobegin
construct. cobegin spawns different processes to evaluate the expressions
passed to it as arguments. The processes execute in a shared memory space.
Before describing in further details the analysis, it is helpful to give some

explanation of abstract interpretation.
6.2.1.1 Abstract interpretation

Abstraction interpretation [Cousot and Cousot 1977] is the evaluation of a
program based on an abstract semantics. The abstract semantics defines an

evaluation function for all the expressions of the language. The standard

145

EFFECT INFERENCE AND SYNTHESIS

semantics domains are mapped into corresponding abstract domains. The
purpose of abstract interpretation is that the abstract semantics makes the
evaluation of programs more efficient than the evaluation based on the
standard semantics, yet precise enough to record the information of interest

to a particular analysis.

The rule of signs for the multiplication is the archetypal example of abstract
interpretation. The set Z of the integers is mapped onto the set z#={plus,
minus, zero}. An abstraction function abs,: z — zZ¥ is defined:

absy (x) =plus if x>0
=minus 1f x<0
=zero if x=0
The abstract version of +, denoted by ** may be expressed as:
«#(plus, minus)= +# (minus, plus) =minus
+#{(plus, plus) = +# (minus, minus) = plus
»#(a, zero)= «#(zero, a)= zero.
The sign of the product of two integers is obtained while avoiding the cost of
the multiplication.

Safeness of an abstract interpretation requires that for all elements of the
concrete domain, the abstractions of the results of the concrete function
applied to concrete domain elements are in the result set of the abstract
function applied to the abstractions of concrete domain elements. This
requirement is best illustrated by the fig. 6.1 (taken from [Field and Harrison
1988]) for the rule of signs:

7x7. N > Y

abszxz absz

ZHXZH -
" Z#

Fig. 6.1 Safeness of the rule of signs

146

EFFECT INFERENCE AND SYNTHESIS

The rule of signs is safe if absy o * ¢ *# 0 absyxy

Field and Harrison consider that the difficulty for an analysis based on
abstract interpretation is to find abstract domains which provide useful
information about a property of the program being analysed while
guaranteeing safeness. A further problem in choosing the abstract domain is
that the more complex the domain, the more computationaly intensive is the
algorithm.

6.2.1.2 Description of the analysis

Chow and Harrison's analysis is developed in two steps. Firstly, an analysis
is proposed for the concrete semantic domains. As a second step the concrete
domains are abstracted and the safeness of the abstract interpretation is
established. The remainder of this subsection gives an overview of the

analysis in the concrete domains.

The execution of the program is described by a transition system. Each
expression is labelled, lambda expressions are uniquely identified by

procedure labels and cobegin branches by cobegin branch labels.

Procedure strings are sequences of procedure and cobegin branch labels. A
function call is denoted by od (d for down) and a function return by o (u
for up), where o is the procedure label of the function. Similarly entering a
cobegin branch is denoted by nd and exiting by nU. Procedure strings capture
the procedural/concurrency movement along the program execution. The use

of the procedure strings is illustrated in fig. 6.2:

147

EFFECT INFERENCE AND SYNTHESIS

€
cobegin
a
™ 4 ny
i i
mldfdl.> call f call g <|' n,9g9
nldfdfu n2dgdgu

(m13£d£un; 4 n,dgdgun,)

Fig. 6.2: An example of procedure strings

The graph in fig. 6.2 illustrates the spawning of two cobegin branches 11 and
12, N1 calls the function £ and 17 the function g. After £ and g return, the

two cobegin branches merge.

The transition system models the evaluation of the program by recording a
configuration for each program point; a configuration comprises the
description of the processes currently active and that of the shared store. A
procedure string is part of the process description. The birth date of a variable
is the procedure string attached to the expression which created the variable.

The birth date of a variable is saved with the variable identifier in the store.

Program properties are derived from the manipulation of procedure strings.
The following example shows how procedure strings are used to check
whether a variable outlives the evaluation of the function that created it (the
rule shown below is only applicable to a sequential program, a more general
rule which handles cobegin branches is also presented in [Chow and Harrison
1992]).

The procedure B creates the object L with a birthdate pp,. L is referenced by
expression r with a procedure string py. The analysis computes the net
procedural movement between the creation of L and the program point where

it is referenced:

* 0', p,, subtracted from py is then computed.

148

EFFECT INFERENCE AND SYNTHESIS

* Net (8'), the net movement of the string 6" is computed, that is, all

matching pairs of the form od ol are removed from €',

If the net movement of 8' contains the term Y, it can be inferred that the
procedure B returns before L is referenced. In other words, the variable L

outlives the procedure which created it.

The object lifetime property can be illustrated by a simple example. A
function a calls a function B, B calls the function v and inside y the object L is
created. v and B return before L is referenced. The birthdate of L, pp, is:
adBdyd and py is: adpdydyuBU. and Net (pr-pp) = YUBYU. From the
analysis, it appears that L cannot be allocated on the stack frame of the

procedure B and ybut the space for L can be freed after the return of o.
6.2.2 The FX effect system

The FX programming language [Gifford et al. 1987] is a functional language
with imperative constructs. FX is targeted at parallel programming and in
that context obtaining effect information would be useful to schedule
expressions in parallel. [Lucassen and Gifford 1988] proposed a
polymorphic effect system to infer the type and effects of expressions in a
subset of FX called MFX (mini FX).

MFX is based on the higher-order kinded lambda calculus. The language
distinguishes between ordinary lambda abstractions and polymorphic
lambda abstractions. Interaction with the store is possible through the NEW
operation which creates a new location, GET which accesses a location and

SET which updates a location.

Inference proceeds in a modular and bottom-up fashion deriving information
about the type and effects of expressions using inference rules. The type and
effects are tightly integrated in expression descriptions. These descriptions are

constructed from three basic kinds: regions, effects and types.

A region is the abstraction of a store area. A region expression can be:
* a region variable
® a region constant

e the union of one or more regions

149

EFFECT INFERENCE AND SYNTHESIS

The analysis distinguishes among three different effects, namely allocation,

read and write effects. Effect expressions can be one of the following:
* An effect variable.

* (ALLOC Region) is the effect corresponding to the allocation of a

memory reference.
e (READ Region) indicates an access to a memory location.
° (WRITE Region) corresponds to the update to a store location.
e (MAXEFF Effect*) constructs the union of zero or more effects.
e PURE denotes the absence of effects.

Type expressions can be one of the following alternatives:
e A type variable.

» The type of ordinary lambda abstraction is described by (SUBR
(Type) Effect Type), where (Type) is the list of argument types,
the second Type, the return type and Effect is the latent effect of the

lambda abstraction.

e (POLY (DVAR:Kind) Effect Type) describes the type of
polymorphic abstractions. The (DVAR:Kind) term is the list of
description variables in the description of the abstraction, thus reflecting

the polymorphic nature of the abstraction.
e The type expression for location is (REF Region Type).

One example given in [Lucassen and Gifford 1988] describes the type and
effect signature of the function twice. The function twice takes a function
of a single argument and composes that function with itself. The signature of

twice is:
twice: (POLY (t:TYPE e:EFFECT) PURE (SUBR(SUBR: (t) e t) PURE (SUBR
(t)yet)))

The signature indicates that twice is a polymorphic abstraction. The
signature contains a type variable t and an effect variable e, the
polymorphic abstraction takes a function as its input and returns a function

and the composition of the function induces no effect.

150

EFFECT INFERENCE AND SYNTHESIS

6.2.3 Type and effect inference in ML

Milner's original type inference algorithm can be applied to a purely
functional subset of ML; however, efficiency concerns have motivated the
addition of imperative constructs to the functional core of the language. The
language provides reference cells and three operators are available to handle
these cells: the ref operator applied to a value creates a reference cell with
that value, the ! operator accesses the content of a cell and the := operator

updates the content of a cell.

Unfortunately, the extension of Milner's type system to a version of ML with
imperative constructs is not trivial. The availability of references complicates
the generalisation of type variables. The following example illustrates the
difficulty:

letx=ref(fun(a)=a) inx:= (fun(n) =n+1); (ix) true
Applying Milner's type discipline, the type of x is 0.—0 when the reference is
created, with o generic and a is instantiated to Int and to Boolean
successively. However, the evaluation of the expression above causes a type

error: (!x) true tries to add 1 to true.

The typing rule for the let expressions does not reflect the sharing implied by
references. The well typing of expressions requires that reference cells have

only one type.

Various solutions have been proposed to control the generalisation of type
variables in the presence of reference cells and a good survey of the various

approaches can be found in [Wright 1993].

The solution advocated by [Wright 1991] is to approximate the allocation
effects of an expression, that is the set of reference cells that may be allocated
as a result of the evaluation of the expression. The type effect of an expression
is the set of type variables that appear in the allocation effects of that

expression. Type variables occurring in a type effect may not be generalised.

With the expression shown above, the bound expression ref (fun(a)=a)

has type ref and effect {0}, thus the type variable o cannot be generalised.

[Talpin and Jouvelot 1994] have developed a type and effect analysis to

control the generalisation of type variables. The representation of types of

151

EFFECT INFERENCE AND SYNTHESIS

effects follows that of [Lucassen and Gifford 1988]. The effect information is
taken account of by the inference rules to decide whether a type variable can

be safely generalised or not.
6.2.4 Effect analysis for test data selection

The work done by Rapps and Weyuker [Rapps and Weyuker 1982]
illustrates how effect analysis can be used in the field of software testing. The
effectiveness of program testing strongly depends on selecting a set of test
inputs representative of the entire input domain. The selection of test data
may be based on code coverage, one coverage measure is branch coverage (the
number of branches traversed during the testing). Programs have a potentially
very large number of execution paths and a realistic testing strategy can only
test a limited number of paths. The results of the effect analysis are used to
check that the input test data will cause the tested programs to cover

program paths that satisfy a chosen path selection criterion.

The analysis is applied globally to programs specified in an intermediate
level imperative language. The language is equipped with the following

statement types:
e Start statement: start
e Input statement: read x1 .. xpn
e Assignment statement: y:=£ (x1 .. xp)

e Output statement: print e] .. epn

¢ Unconditional transfer statement: gotom

o Conditional transfer statement:

if p(xq]..xp) thengotom
e Halt statement: stop

All program statements are labelled with an integer label. These labels define
a total ordering on the statements. A block is a sequence of statements such
that if the first statement is executed, all the statements in the block are
executed. The program is represented as a graph whose nodes are labelled
blocks. The edges of the graph result from transfer statements between blocks

of instructions. A path is a sequence of nodes such that there is an edge

152

EFFECT INFERENCE AND SYNTHESIS

between each pair of successive nodes. An example is shown in fig. 6.3
(taken from [Rapps and Weyuker 1982]).

read x, y
start
. read x, Yy
if y<0 then goto 6
. pow:= vy
. goto 7 pow:=y e pow:=-Yy
. pow = =~y]
z:=1
if pow=0 then goto 12
zZ:=2%X
10. pow:=pow-1
11. goto 8
12. if v20 then goto 14
13. z:=1/2
14. answer:=z+1
15. print answer
16. stop

W oo ~1O0Uix W)

©

Z:i=Z*%X <
pow:=pow-1

z:=1/z

yv20

<:>answer:=z+1
print answer

Fig. 6.3: A program and its corresponding graph.

The dataflow analysis classifies each variable occurrence as a definitional
occurrence (called def), a computation-use occurrence (c-use) or predicate-use

occurrence (p-1ise).
The def/use information is attached to the nodes and the edges of the
program graph:
¢ Def and c-use sets are associated with each node. In the example, the c-
use set for node 2 is {y) and its def set is {pow}.
e A p-use set is associated with each edge of the graph. For example, the

edge (1,2) has the p-set {y}.

The analysis masks local def and local c-use. A definition of a variable is a
local one, if all the computation-use occurrences of the variable appear in the
same block as the definition of the variable. A local c-use is a c-use of a

variable defined in the same block.

153

EFFECT INFERENCE AND SYNTHESIS

6.3

Nine different path selection criteria are defined, two examples are given

below:

* A set P of complete paths of the graph G meets the all-nodes criterion if

every node of G is included in P.

e A set P meets the all-p-uses criterion, if for every node of the graph and
for every variable defined at the node, P includes a path from the variable

definition to all the edges whose p-use set contains the given variable.

An ordering relation can be constructed over the criteria. Criterion c1 includes
criterion ¢ if a set P of complete paths that satisfies ¢] also satisfies ¢2. The
inclusion is strict if ¢7 is satisfied but not ¢1. If ¢ is included in ¢1, then ¢2 is

said to be weaker than cj.

The effect information is used to verify that a set of test data meets the test

criteria selected by the user.
Effect inference

This section explains how the effects of a method can be inferred. Effects in
Prograph are discussed. The inference is outlined and a suitable
representation for effect information is discussed. The inference algorithm is

described in greater detail and is illustrated by an example.
6.3.1 Motivation for effect inference in Prograph

The purpose of the effect inference in Prograph is to be able to describe how a
method when called by an operation may affect its arguments and some
global variables. This information is recorded in the type signature of the
method.

6.3.2 Qutline of the effect inference mechanism

Similarly to the effect inference systems of MFX and ML presented in the
previous section, the effect inference proposed for Prograph proceeds in a
modular fashion, that is the effect inference is applied to a method at a time
and not to an application as a whole. Information about types and effects is
tightly integrated. For the sake of clarity, type and effect inferences are
treated in two different chapters in this thesis; however, the two inferences
proceed together. As for the type inference, the effect inference is broken into

a sequence of case wide inferences.

154

EFFECT INFERENCE AND SYNTHESIS

6.3.2.1 Case-wide inference

The effect inference distinguishes between the effect properties of the data
objects called affected data properties and the properties of the operations,
called side-effects.

Affected data properties are attached to the datalinks of the case being
analysed. The purpose of these affected data properties is to summarise the
sequence of side-effects necessary to obtain the value flowing on each

datalink of the case.

A side-effect describes the way an operation accesses or updates its

arguments or some global variables.

The effect signature of an operation is integrated with its type signature. For
this purpose the lines comprising the signature will store some side-effects.

The following notation is used for a line with type and side-effects:
T1 XT3 —> 13 X1T4 /*SE* /01 X0

The term /*SE*/ separates the type information on its left and the side-
effects on its right, 61 and 67 are two side-effects.

The affected data properties of the datalinks and the effect signature of the
operations are constructed during the initialisation phase along with the type
properties and the type signature. The effect signatures of primitive
operations cannot be inferred, they must be available in a signature

repository.

Type inference requires three successive passes over the operations of the
case. Effect inference is performed as a fourth pass over the graph. It
proceeds from the first operation after the Input operation until the last one
before the output operation, following the execution order defined for the
case. The purpose of this forward pass is to compose the side-effects of the

operations of the case.
6.3.3 Effects in Prograph

This section discusses a representation of effect information in Prograph.
Like the various works presented in the first section of this chapter, the effect

representation should distinguish between read and write side-effects.

155

EFFECT INFERENCE AND SYNTHESIS

Fig. 6.4: A read side-effect

In fig. 6.4 the Get operation accesses the value of the instance attribute
Surnane from the instance flowing on LINK1 (or possibly the default value
of the class whose name is passed as a input to the Get operation). A read

side-effect, ¢, is used to describe the access performed by the operation.

The value flowing on LINK1 is called the argument of side-effect ¢ and the
value flowing on LINK3 is said to be the result of side-effect ¢. Side-effect ¢
records that its argument is passed through the first terminal of the Get
operation with a reference to this terminal (a reference is an integer value).
Side-effect ¢ must also record that its result is propagated through the
second root of the Get operation with a reference to that root. A complete

definition of the information required to describe 6 will be given below.

TANIT
ZMNIT

% Surname

CHNIT

Fig. 6.5: A write side-effect

In fig. 6.5, the Set operation updates the value of the attribute Surname of
a class or an instance (depending on the value on LINK1) with the value
flowing on LINK2 and the result is passed to LINK3. The update performed
by the Set operation is described by a write side-effect, ¢'.

The value flowing on LINK2 is called the update value of the side-effect ¢
Side-effect ¢' contains a reference to the first terminal of the operation as its
argument, a reference to the second terminal as its update value and a

reference to the root of the operation to pass its result.

156

EFFECT INFERENCE AND SYNTHESIS

Some side-effects do not return a result (e.g. write side-effects on

persistents), such side-effects are called terminal side-effects.

During the case-wide effect inference, the side-effects of the operations are
composed. Composition proceeds by applying the side-effects of the different

operations of the case.

Applying a side-effect means substituting the references to operation inputs

contained in the side-effect with:
- a reference to an input of the case

- an affected data property if the argument or the update value of the
side-effect is itself the result of a side-effect.

After substitution of the input references, the side-effect selects the outputs
of the operation through which it passes its result (in fig. 6.4, the read side-
effect propagates its result through the second root of the Get operation)
and propagates affected data properties through these outputs.

Composition and side-effect application are now described with two simple

examples and are explained in greater detail in section 6.3.4.

N e o i e rd

Fig. 6.6: Composition of side-effects

The Get persistent operation shown in fig. 6.6 extracts the value of the
persistent Pers and this is described by the side-effect 61 in the signature of
the Get persistent operation. When side-effect 61 is applied, it propagates
the affected data property €1 on LINK1 to show that the value on LINK1

was extracted from the persistent Pers.

The Get operation extracts the value of the attribute Surname from its

argument and this is described by the side-effect 62 in the signature of the

157

EFFECT INFERENCE AND SYNTHESIS

Get operation. When ¢2 is applied, the reference to the argument input
(input 1) is replaced by the affected data property €1 propagated by side-
effect 1. Thus side-effects 01 and 62 have been composed.

Surname 203

ZANIT

Fig. 6.7: Side-effect applied to an input of the case

In the second example shown in fig. 6.7, the argument of side-effect 63 is
passed as an input to the case. When the side-effect 63 is applied, the
reference to the input of the Get operation is replaced with a reference to the

input of the case.

The different effect analyses presented in section 6.2 relied on low level

representation of effects:

- the MFX system represents an effect as a READ or a WRITE operation on a

region;
- in ML, effects can be a Get or a Set operation on a cell;

- in [Chow and Harrison 1992] as well as [Rapps and Weyuker 1982], an

effect can be a read operation or a write operation on a variable.

The effect representation chosen for Prograph classifies effects in different
effect categories. An effect category defines a set of side-effects and the

affected data properties that result from the application of these side-effects.

All the effect categories are listed in the table below with an explanation
about their purpose as well as the set of side-effects and affected data
properties they define. It must be noted that when a category defines a
terminal side-effect, it does not need to define the corresponding affected
data property: a terminal side-effect when applied does not propagate an

affected data property.

158

EFFECT INFERENCE AND SYNTHESIS

Effect
Category

Purpose

Defines

Identity

This category describes the
propagation of a data object

without modification.

identity side-effect

identity affected data property

Class

This category describes the effects
induced by a Get or a Set operation

on a class attribute.

class read side-effect
class read affected data property
class write side-effect

class read affected data property

Instance

This category describes the effects
induced by a Get or a Set operation

on a class attribute.

instance read side-effect

instance read affected data
property V

instance write side-effect

instance write affected data

property

Instantiation

This category records the access to
the value of class variables and/or
default value of instance attributes
when an instance of a user-defined

class is created.

instantiation side-effect (terminal)

Local

This category indicates that a data
object has been created in the scope

of the current case.

local affected data property

Persistent

This category describes the effects
induced by a Get or a Set operation

on a persistent.

persistent read side-effect
persistent read affected data

property

persistent write side-effect

(terminal side-effect)

List

This category describes the effects
induced by primitive operations

manipulating lists.

list read side-effect
list read affected data property
list write side-effect

list write affected data property

External

This category describes effects on

external data structures.

external side-effect (terminal)

159

EFFECT INFERENCE AND SYNTHESIS

The side-effects and the affected data properties record information using

the relevant combination of the following data items:

Item Name Value Purpose
Argument integer/ An integer value is a reference to the input of
affected the operation which passes the argument of
data the side-effect. 0 indicates that the side-effect
property operates on a global variable (e.g. a
persistent).

When the side-effect is applied, the reference
is replaced with one of the following:

- an integer reference to an input of the case

- an affected data property if the argument of
the side-effect is the result of a previous

side-effect.

ArgumentType Type This item records the type of the data item

passed as argument to the side-effect.

Action Read/Write This item distinguishes between a read and a

write side-effect.

Data string This item records some textual data to

describe the side-effect.

UpdateValue integer/ An integer value is a reference to the input of
affected the operation which passes the update value
data of the side-effect. When the side-effect is
property applied, the reference to the operation input

is replaced with one of the following:

- an integer reference to an input of the case

- an affected data property if the update
value of the side-effect is the result of a

previous side-effect.

Next a list of This itern lists the outputs of the operation
integers through which the results of the side-effect
are propagated. For a terminal side-effect,

the value of Next is an empty list.

160

EFFECT INFERENCE AND SYNTHESIS

A textual representation is used so that side-effect and affected data
property expressions can be easily parsed and printed. All expressions are of
the form Prefix (Item; Item) ..), with the prefix used to encode the

action and the category of the effect and the tuple containing the items

relevant for a particular category of effects.
6.3.3.1 Identity effects

The most trivial side-effect is the identity side-effect, which means that the
operation's output is the same as the one on the input. The identity side-

effect records the following pieces of information:

Item name Value Explanation

Argument integer This is a reference to the input of the operation

which passes the argument of the side-effect.

ArgumentType The identity side-effect does not record the
type of its argument.

Action Read An identity side-effect is a read side-effect. -

Data The identity side-effect does not record any

textual data.

UpdateValue 0 The identity side-effect is a read side-effect and

read side-effects do not take update values.

Next sequence of integers | This is a reference to the outputs of the

operations which propagate the result of the

side-effect,

The textual representation for an identity side-effect is:
- IDE (Argument Next)

IDE is a short notation for IDEntity. The corresponding affected data

property is represented with:
-IDE (Argument)
6.3.3.2 Effects on class attributes

Reading or writing a class attribute produces a class side-effect. The

following information is recorded to describe a class side-effect:

161

EFFECT INFERENCE AND SYNTHESIS

Item name Value Explanation

Argument 1 The argument of a class side-effect flows into

the first terminal of the Get or set operation.

ArgumentType Prograph type This is the type of the data item passed as
argument of the side-effect. This information

will be used during the effect synthesis.

Action Read/Write A class side-effect can be a read or a write

side-effect.

Data string value This is the name of the class attribute whose

value is accessed or modified.

UpdateValue 0 for a read side-| A read side-effect takes no update value, hence

effect/ 2 for a write | 0/the update value for a write side-effect

side-effect flows into the second terminal of the set
operation.
Next (2) for a read side-| The result of a read side-effect flows out from

effect/(1) for a| thesecond root of the Get operation/the result

write side-effect of the write side-effect flows from the first root

of the Set operation.

A class read side-effect is represented with:
- CAR (Argument Data Next)

CA is a short notation for Class Attribute and the R stands for Read. The

corresponding affected data property is represented with:

- CAR (Argument Data)

The ArgumentType field is not printed in the effect representation.
A class write side-effect is represented with:

- CAW (Argument Data UpdateValue Next)

and the corresponding affected data property is represented with:

- CAW (Argument Data UpdateValue)

respectively. W stands for Write.

162

EFFECT INFERENCE AND SYNTHESIS

If studentList is the name of a class attribute, the effect signature of the

signature of the Get operation shown below:

}

/Studentlist]

is:
IDE(1 (1)) XCAR(1l "StudentList" (2))

For the Set operation shown below:

*Studentlist

T

CAW (1 "StudentList" 2 (1))

the effect signature is:

6.3.3.3 Effects on instance attributes

Reading or writing an instance attribute is described with an instance side-
effect. The information recorded to describe an instance side-effect is

explained in the table below:

163

EFFECT INFERENCE AND SYNTHESIS

Item name Value Purpose
Argument 1 The argument of a class side-effect flows into
the first terminal of the Get or Set operation.
ArgumentType Prograph type This is the type of the data item passed as
argument to the side-effect. This information
will be used during the effect synthesis.
Action Read/Write An instance side-effect can be a read or a write
side-effect.
Data string value This is the name of the instance attribute
whose value is accessed or modified.
UpdateValue 0 for read side-| A read side-effect takes no update value, hence
effect/ 2 for write-| 0/the update value for a write side-effect
side -effect flows into the second terminal of the set
operation.
Next (2) for a read side-| The result of a read side-effect flows out from

effect/(1) for a

write side-effect

the second root of the Get operation/the result
of the write side-effect flows from the first root

of the Set operation.

Representations of side-effects and affected data properties on instance

attributes are one of the following:

- OAR (Argument Data Next) (read side effect)

- OAR (Argument Next)

- OAW (Argument Data UpdateValue Next) (write side-effect)

- OAW (Argument Data UpdateValue).

OA stands for Object Attribute.

If surname is the name of an instance attribute, the effect signature of the

Get operation shown below:

is:

S Surname

[

164

EFFECT INFERENCE AND SYNTHESIS

IDE(1 (1)) XOAR(1l "Surname" (2))

For the Set operation shown below:

Surname

the effect signature is:
OAW (1 "Surname" 2 (1))
6.3.3.4 Instantiation effects

Creating a new instance of a class also induces a side-effect. If the class of
the new instance has class variables, the new instance will point to these
variables and the instance variables will point to the default values defined
for the class. The purpose of the instantiation side-effect is not to record the
allocation of a new object but the access to the values of class variables

and/or the default values of instance attributes. An instantiation side-effect

is terminal.

Item name Value Purpose

Argument 0 An instantiation side-effect does not take an
argument.

ArgumentType This item is not relevant.

Action Read An instantiation effect is a read effect because
it accesses information contained in the class
to which the new instance belongs.

Data string value This is the name of the class to which the new
instance belongs.

UpdateValue 0 An instantiation side-effect is a read side-
effect: it does not have an update value.

Next O An instantiation side-effect is a terminal side-
effect: it does not propagate an affected data
property.

An Init operation taking a list of (attribute name, value) pairs on its input
and is considered equivalent to an operation with an inject terminal. From a
language point of view, such an Init operation should be considered to be

an Init operation with several inject terminals, one for each pair in the list

165

EFFECT INFERENCE AND SYNTHESIS

of (attribute name, value) pairs. But from the point of view of the effect
inference, this approximation does not make any difference because the effect
inference cannot built the effect signature of an operation with an inject

terminal.

The instantiation side-effect is printed as:
-ALR (Data ())

AL stands for Allocation.

The effect signature of the operation shown below:

Student 2

is:
ALR("Student" ())
6.3.3.5 Local effects

Some data objects come into existence in the scope of the current case as the
return value of a Constant, Init or primitive operation. However, there
exists no side-effect to record the creation of data object (the purpose of the
instantiation side-effect is only to record that the values of class attributes

and/or the default values of instance attributes have been accessed).

Instead, a local affected data property can be created to indicate that a value
on a datalink has come into existence in the scope of the current case. This
affected data property is created only if a side-effect refers to the datalink to
which the affected data property should be attached. In fig. 6.8, the write
side-effect refers to the datalink connected to the root of the Constant

operation.

(2)

{Mext)

Fig. 6.8: Local affected data property

166

EFFECT INFERENCE AND SYNTHESIS

A local effect-data property is created and attached to the link connected to

the root of the Constant operation and contains the following items of

information:

Item name Value Purpose

Argument 0 The value 0 indicates that the data item
"appeared” on the datalink to which the
affected data property is attached.

ArgumentType This item is not relevant.

Action Read A local affected data property is a read
affected data property.

Data string This is a value which is constructed to identify
the link to which the affected data property is
attached.

UpdateValue 0 A local affected data property is a read
property : it does not have an update value.

A local affected data property is printed as:
NEW ("##")

"##" is printed instead of the Data item because the value of Data would

be rather difficult to interpret.
6.3.3.6 Effects on persistents

A persistent side-effect results from the execution of a persistent Get or a

persistent Set operation.

167

EFFECT INFERENCE AND SYNTHESIS

Item name Value Purpose

Argument 0 A persistent side- effect does not take an
argument.

ArgumentType This is not relevant.

Action Read/Write A persistent side-effect can be a read or a

write side-effect,

Data string This is the name of the persistent whose value

is accessed or set.

UpdateValue 0 for read side-{ A persistent read side-effect does not take an
effect/ 1 for write | update value/ the update value of a persistent
side-effect write side-effect flows into the first terminal of

the Set persistent operation.

Next (1) for read side| The result of the read side-effect is propagated
effect/ () for write] on the first root of the persistent Get
side-effect operation/ a persistent write side-effect is a

terminal side-effect : it does not propagate a

result.

Side-effects on persistents and their matching affected data properties are

represented by one of the following expressions:
- PER (Data Next) (read side-effect)
- PER (Data)

- PEW(Data UpdateValue Next) (there is no write persistent affected
data property)

PE stands for Persistent.

The effect signature for the Get persistent operation shown below:

% Pers {f{,’

PER("Pers™ (1))

is:

The effect signature for the Set persistent operation shown below:

168

EFFECT INFERENCE AND SYNTHESIS

is:

Pers

PEW("Pers" 1 ())

6.3.3.7 Effects on lists

Effects on lists must be handled with special care. The difficulty of describing

the effects induced by primitive operations on lists is compounded by the

existence of a list annotation for the roots and terminals of operations.

Item name Value Purpose

Argument integer This is a reference to the input of the list
primitive operation which passes the argument
of the side-effect.

ArgumentType A list side-effect does not record the type of its

Action Read/Write #gisngide-effect can be a read or a write side-

effect.

Data This item is not relevant.

UpdateValue 0 for a read side-| A list read side-effect takes no update
effect)/ integer| value/reference to the input of the list
value for a write-{ primitive operation which passes the update of
effect the side-effect.

Next list of integers This item lists the outputs of the list primitive

operation through which the results of the

side-effect are propagated.

The representations for affected data properties and side-effects on lists are:

-LIR(Argument ()) (list read side-effect)

- LIR(Argument)

-LIW(Argument UpdateValue ()) (list write side-effect)

-LIW(Argument UpdateValue)

LT is the short notation for LIst.

169

EFFECT INFERENCE AND SYNTHESIS

The schematic in fig. 6.9 shows an example of the the internal working of the

attach-r primitive.

Fig. 6.9: Internal behaviour of attach-r.

The references contained in the slots of list A are put in the first two slots of
the newly created list C, reference B is put in the third slot of C. The effect

signature of the attach-r primitive operation contains two side-effects:

» A list read side-effect: the extraction of the references stored in A can
be described as a read side-effect with list A as its argument and list C as

its result.

e An identity side-effect: the insertion of the references in list C is
described using an approximation: list C can be identified with each of

the values to which it points.
The effect signature of attach-r is:
LIR(1 (1)) XIDE(2 (1))
The only primitive method to cause a write side-effect on a list is the set-

nth! primitive:

set-nth!

The signature of set-nth! is:
LIW(12 (1))

The effect signature of an operation with a 1ist annotated terminal may
have to be modified. If a side-effect has a reference to an input with a list
annotation, the reference to this input must replaced by a list read affected
data property. The argument of this affected data property is the original
reference to the operation input. This substitution reflects the fact that the
Argument or the UpdatevValue of the side-effect has been extracted from

the list flowing into input. In the operation shown below:

170

EFFECT INFERENCE AND SYNTHESIS

Mame
[P

the leftmost terminal is annotated, so the reference to input 1 in the
Argument of the side-effect must be replaced by a list read affected data

property. The original effect signature of the Get operation is:
OAW (1l "Name" 2 (1))
The effect signature becomes:
OAW(LIR (1) "Name" 2 (1))

A list annotation on a root has no consequences for the effect signature of the

operation.
6.3.3.8 External effects

External side-effects are used for the effect signature of the operations for

which an effect signature cannot be inferred.

Item name Value Purpose

Argument 0 An external side-effect does not take an
argument.

ArgunentType This item is not relevant.

Action This item is not relevant.

Data This item is not relevant.

UpdateValue 0 This item is not relevant.

Next list of integers An external side-effect is a terminal side-effect:
it does not propagate an affected data
property,

No effect signature can be inferred for an operation that calls an external
method. This decision is justified by the fact that a precise description of the
side-effects induced by an external method would require a knowledge of the
behaviour of all system calls defined for the Macintosh operating system. The
inference mechanism takes the conservative view that the execution of any

external method induces an external side-effect.

171

EFFECT INFERENCE AND SYNTHESIS

Also, the effect signature of an operation with an inject terminal cannot be

known statically.

External side-effects are printed as:
EXT(())

6.3.3.9 Effect expressions and variable arity

Primitive methods may be called with variable numbers of terminals or
variable numbers of roots. The signatures of all primitive methods are stored
in a signature repository and they can be retrieved during the initialisation
phase of the type and effect inference to construct the signatures of the

operations that call primitive methods.

The same notation (...) is used for varity terms in the effect part as in the
type part of the primitive signature. Two cases can be distinguished: the
primitive method may be called with a variable number of terminals or with a

variable number of roots.

e If the primitive has a variable number of terminals, the varity term
appears at the top level of the effect signature and can be substituted
with a side-effect. The substituted side-effect is the same as the one on
the left of the varity term except for the value of its argument which is
incremented by one for each extra terminal. The expansion rule is

illustrated by the following example.

The signature of the primitive at tach-r in the signature repository is:

(<Universal+>) X <Universal+>X..— L(U(E(1) 2..)) /*SE*/LIR(1

|

attach-r

(1)) XIDE(2 (1)) x..

Fig. 6.10: The attach-r primitive

If attach-r is called by an operation with three terminals (see fig. 6.10),
the signature computed for the operation during the initialisation phase

will be:

172

EFFECT INFERENCE AND SYNTHESIS

(<Universal+>) X <Universal+> X <Universal+>-y L(U(E(1) 2 3))

/*SE*/LIR(1 (1)) XIDE(2 (1)) X IDE(3 (1))

* In the case of a primitive method with a variable number of roots, the
varity term may appear in the Next information item of the side-effect
because Next refers to the outputs of the operation. When constructing
the signature of the operation calling the primitive method, the varity term
is substituted with the sequence of the indices of the extra roots. The
primitive detach-r can be called with a variable number of outputs. Its
formal signature is:

(<Universal+>) = L(U{(E(1) <@>)) XE(1) X ../*SE*/LIR(1 (12..))

Fig. 6.11: The detach-r primitive

The signature constructed for detach-r with three outputs (fig. 6.11) is:

(<Universal+>)— L(U(E(1) <@>)) XE(1) XE(1)/*SE*/LIR(1 (12 3))
6.3.3.10 Operations on side-effects

As will be shown in the following subsections, the effect inference mechanism
combines side-effects to eliminate duplicate information. This simplification

is possible when some conditions are met.
Two affected data properties are equal if

- they belong to the same category of effects
and:

- the values of all their information items are equal
Affected data property €1 overlaps affected data property ¢ if
- Argument of €1 is equal to €2 or Argument of €] overlaps &)
Similarly, two side-effects are equal if:

- they belong to the same category of effects

and:

173

EFFECT INFERENCE AND SYNTHESIS

- the values of all their information items are equal.
Two side-effects complement each other if:

- they belong to the same category
and:

- the values of all their information items are equal except for the Next

information item.
Side effect 01 overlaps side-effect o7 if:

— 07 is a terminal side-effect

and:

— €2 being the affected data property obtained by truncating the Next

information from the side-effect 67, the argument of 67 overlaps €.

Depending on the relation existing between a pair of side-effects (equality,
complementarity, overlap or none of these), their combination will yield a

different result. The results are presented in the following table:

Relation between o1 Result of the

and 62 combination of 61 and
02

01 equals 62 (o1)

o1 complements 67 (6'1) (0'1 is equal to o1

except for Next which
contains the references
held in Next of 61 and
Next of 62)

o1 overlaps 62 (o1)

o1 is overlapped by (02)
G2
No relation between (61 62)
61 and 672

The possible relations between side-effects are illustrated by the following
matrix. Each relation is read from the side-effect in the row to the side-effect

in the column.

174

EFFECT INFERENCE AND SYNTHESIS

PER("Pers"” JOAR (PER("Pers") |OAR(1 "Surname” [OAR(1 "Surname"
() "Surname" (1)) (1)) (2))

PER("Pers" ()) |isequal is overlapped by |no relation no relation

OAR (PER ("Pers") joverlaps is equal no relation no relation

"Surname" (1))

OAR (1 "Surname" |no relation |no relation is equal complements

(1))

OAR (1 "Surname” no relation [no relation complements is equal

(2))

6.3.4 Inference Algorithm

Like the type inference to which it is tightly integrated, the effect inference is

applied to the successive cases of the method analysed.
6.3.4.1 Case-wide inference
The case-wide effect inference is divided into three stages:

e Initialisation of the affected data properties attached to the datalinks
of the case and the effect signatures of the operations (at the same time

as their type signatures).

* The composition of the side-effects of the case by a single forward pass
over the operations of the case (after the three passes required by the

type inference).
* The construction of the effect part of the line for the case.

The effect information attached to the datalinks of the case consists of a
(possibly empty) list of affected data properties. As for the type
information, all datalinks connected to the same root share the same list of
affected data properties. For the initialisation of the affected data
properties, two types of links are distinguished: those connected to the roots
of the Input operation and those not connected. The effect information

attached to the datalinks after initialisation is presented in the table below:

175

EFFECT INFERENCE AND SYNTHESIS

Link Effect property after initialisation

Connected to the input bar (IDE(n)), integer n is the position
in the sequence of inputs of the
case of the input to which the
datalink is connected (1 is the

rank of the leftmost input)

Not connected to the input bar () (empty list)

The identity affected data properties attached to the links connected to the
inputs indicate that the values flowing on these links are those of the inputs

of the case.

Type and effect signatures of the operations of the case are constructed
during the initialisation phase before the three passes of the effect inference

(see section 5.5).

The forward pass of the effect inference iterates the composition routine over
the operations of the case following their execution order. A list of terminal
side-effects is maintained as the effect inference proceeds along the graph of
the case. For each operation, the composition routine can be divided into

three steps:

* During the first step, it is checked that the inputs of the operation for
which there exist affected data properties are referenced by at least one
side-effect of the operation. This reference may be in the Argument or in
the UpdateValue information item of the side-effect. If there exists no
reference to the input, the effect information will be lost because it is not
propagated down the graph. To avoid this loss, any affected data
property which is not referenced must be converted into a terminal side-

effect and added to the list maintained by the inference mechanism.

Fig. 6.12: Unpropagated affected data property

176

EFFECT INFERENCE AND SYNTHESIS

In the example of fig. 6.12, the primitive test-one? has no side-effect
and the affected data property € must be converted into a terminal side-
effect.

 The side-effects of the operation are applied during the second step.
Applying a side-effect means substituting the references to inputs with
the affected data properties for the matching inputs. If the signature of
the operation comprises several lines, the side-effects contained in the

different lines are combined in order to eliminate duplication.

If there is no affected data property on the referenced input a local
affected data property is created. For example, in fig. 6.13, as there is no
affected data property attached to the input referenced by the
UpdateValue item of the side-effect, a local affected data property

must be ¢created.

) (2

GHextZ] OAW (1 "Next" 2 (1))

Fig. 6.13: Reference to a local value.
After application, the side-effect of the Set operation becomes:

OAW (€ "Next" NEW("##") (1))

If there are several affected data properties attached to a referenced
datalink, the side-effect which refers to this input is duplicated so that
there as many side-effects as there are affected data properties. In fig.
6.14, the Argument of the side-effect refers to a datalink with three
properties, the side-effect is duplicated twice so that three side-effects

can be applied to the three affected data properties.

(162 3) (2)

GHext 7 OAW(1 "Next" 2 (1))

Fig, 6.14: Side-effect applied to several affected data properties

177

EFFECT INFERENCE AND SYNTHESIS

After application the three side-effects become:
OAW (€] "Next" NEW{ "##") (1))
OAW (€2 "Next" NEW("##") (1))
OAW (€3 "Next" NEW("##") (1))

Likewise, if the Updatevalue of a side-effect refers to a datalink to
which several affected data properties are attached, the side-effect is
duplicated to match the number of affected data properties on the

referenced datalink.

If the affected data property for a matching input is an identity affected
data property, the input reference is not substituted with the identity
affected data property but with the Argument of the affected data
property. For example, if for the side-effect OAR (1 "Surname” (2)),
the affected data property for the first input of the operation is IDE(2),
the substitution of the reference to input 1 will produce OAR (2
"Surname" (2)) instead of OAR(IDE(2) "Surname" 2). This rule

is designed to keep side-effect expressions simple.

When the substituted input reference is the Argument of a class or an
instance side-effect, the type of the referenced datalink becomes the

ArgumentType of the side-effect.

In the case of a composed side-effect, the Argument or the
UpdateValue of the side-effect may be an affected data property
which records its ArgumentType. The update needs to propagate the
ArgumentType through to the affected data properties whose
ArgumentType is the type of the referenced datalink. For the composed

side-effect:

OAW (OAW (OAW (1 "Surname” NEW("##")) "Name" NEW("##")) "DOB"
NEW("##") (1)) .

The type of the value flowing into the first input of the operation to which
the side-effect is attached is <Student>. The ArgumentType of
OAW(1 "Surname" NEW("##")) is updated to <Student>. The type
of the value to which the affected data property OAW (1 "Surname
NEW ("##")) is attached is also <Student> so the ArgumentType of
the affected data property:

178

EFFECT INFERENCE AND SYNTHESIS

OAW (OAW (1 "Surname" NEW ("##")) "Name" NEW ("##"))

must also be updated to <Student>. The same reasoning applies to the
side-effect itself and the ArgumentType of the side-effect must be
updated to <Student>.

But for the side-effect OAR (OAR (1 "Father") "Profession” (1))
only the ArgumentType of OAR (1 "Father") can be updated. The
explanation is that OAR (1 "Father") is the affected data property of
the value of the attribute Father of the instance coming onto the first
input of the operation and there is no dependency between the type of an
object (the instance on the first input of the operation) and the type of the
value of an attribute of that object (the value of the Father attribute).
Consequently, the ArgumentType of OAR(OAR(1 "Father")

"Profession" (1)) cannot be updated.

* The third step consists of propagating the affected data properties
resulting from the application of the side-effects of the operation.
Terminal side-effects are added to the list of terminal side-effects. The
Next item of non-terminal side-effects refers to the outgoing datalinks to
which an affected data property must be attached. If the output is not
connected, the side-effect is converted into a terminal side-effect and
added to the list. If the output is connected, the affected data property to
be attached to it is obtained by truncating the Next information item of
the side-effect (fig. 6.15).

@4, 2

“Next7] OAW (¢ "Next" NEW(##) (1))
) € < OAW(e "Next' NEW(##))

Fig. 6.15: Propagation of an affected data property

¢, the affected data property of the outgoing link of the Set operation

results from the truncation of the side-effect of the operation.

The identity side-effect distinguishes itself in the way it propagates its
affected data properties. If the Argument of the identity side-effect is
an affected data property, this Argument is propagated in place of an

179

EFFECT INFERENCE AND SYNTHESIS

identity affected data property itself. For example, the side-effect
IDE(PER("Pers") (1)) will propagate the PER ("Pers") affected
data property on the first output of the operation but the side-effect
IDE (1 (1)) would propagate the property IDE (1). This rule aims at

keeping affected data property expressions as simple as possible.

When the bottom boundary of the case graph is reached, the relevant
information comprises the list of terminal side-effects and the affected data

properties attached to the datalinks connected to the output operation.

All the affected data properties attached to an output datalink are converted
into side-effects. The conversion of an affected data property into a side-
effect requires that the value of each information item of the affected data
property becomes the value of the corresponding information item of the new
side-effect. The value of Next for the new side-effect is the list of the
references of the outputs of the case to which the property is attached.

© €

| AL A AP, A et

Fig. 6.16: Affected data properties reaching the output operation.

In fig. 6.16, € is converted into a side-effect with the value (1) for the Next
field and €' with a side-effect with a Next field of (2).

Since the same affected data properties may be propagated along different
datalinks in the case it is likely that some of the side-effects gathered at the
bottom of the case and some terminal side-effects will either overlap, be
equal or complement each other and they are combined to eliminate

duplication.
6.3.4.2 Method

The effects inferred for each case are in turn combined to obtain the method

effect signature.
6.3.5 Handling recursion

The handling of the recursion follows the approach taken for the type

inference and described in 5.8.7.

180

EFFECT INFERENCE AND SYNTHESIS

The dummy signature of an operation making a recursive call comprises no
side-effect. Effect inference applied to a recursive method will be illustrated

by an example in chapter 7.

6.3.6 Effect inference example

A A LA LA TSI P LI SIS,

gPerg Operation a

TANIT
ZANIT

Q numericAttr ﬁoveration b

£ANIT

3 numericAiir ﬁ%eration c

Helle operation d

PANIT
1

& Objinst¥ar Zoperation o

9MNIT

Frrrersdss P e

Fig. 6.17: Example of effect inference

The example in fig. 6.17 has been designed to illustrate the effect inference
and does not correspond to any useful code. To understand the code better,

it is necessary to describe a subset of the class hierarchy (fig. 6.18).

transObj

subClass? subClass

subClass3 subClass4 subTrivial subEssai

Fig. 6.18: Test class hierarchy

The class transObij defines numericAttr as a class attribute and

ObjInstVar as an instance attribute.

181

EFFECT INFERENCE AND SYNTHESIS

6.3.6.1 Initialisation phase

The effect analysis proceeds in two phases. During the set-up phase, the type
and effect signatures of the operations on the graph are constructed. The

effect signatures of the operations are shown in fig. 6.19

A o e o e A o o
PER("Pers* (1))

(IDE(1}))

TANIT

IDE(1 (1)) X KA M
CAR(1 "NumericAttr"* (2)) /“u'gericﬁ'ttr ﬁ

Hello

PANIT

{

GMNIT

OAW(1l "ObjInstvar® 2 (1)) @Bbjlnst?ar%

9UNIT

0

frirss e I A

Fig. 6.19: After the initialisation phase

Class and instance side-effects record an ArgumentType value. This
information is not shown in the textual representation of these side-effects, it

is given in the table below:

Operation | Effect category/ | ArgumentType
action

b Class/ [“transObj”+|<transObj+>]
Write

c Class/ [“transObj”+|<transObj+>]
Write

e Class/ [“transObj"+|<transObj+>]
Write

182

EFFECT INFERENCE AND SYNTHESIS

6.3.6.2 Composition of the side-effects

During the second step of the effect inference, the side-effects of the
operations are composed during a forward pass over the case. The
composition routine proceeds with three steps for each operation of the case

following the execution order:

® Check that all the affected data properties attached to the incoming
datalinks of the operation are referenced by the side-effects of the

operation.
* Apply the side-effects of the operation.

* Propagate the affected data properties resulting from the application of
the side-effects on the outgoing datalinks of the operation or add a side-

effect to the list of terminal side-effects.

The inference starts with an empty list of terminal side-effects. The different

steps of the composition routine are now detailed for each operation:

e The effect signature of Operation a contains one side-effect
PER ("Pers"” (1)). As the operation has no input the first and second
step of the composition routine can be ignored. The affected data
property PER ("Pers") is constructed and propagated onto LINK2 of

the case. No terminal side-effect is added to the list.

e The signature of Operation b contains one side-effect CAW (1
"numericAttr” 2 (1)). Both LINK1 and LINK2 have one affected
data property attached to them and the side-effect has references to the
two inputs to which the datalinks are connected. The side-effect is
applied:

- The reference to input 1 is replaced with the affected data property
attached to LINKI.

- The reference to input 2 is replaced with the affected data property
attached to LINK2.

- The ArgumentType of the side-effect is replaced with the type of
LINK1.

After its application, the side-effect becomes:

183

EFFECT INFERENCE AND SYNTHESIS

CAW (1 "numericAttr” PER("Persg") (1))

The affected data property CAW (1 "numericAttr" PER("Pers"))
is propagated on LINK3. No terminal side-effect is added to the list.

* The signature of Operation ¢ contains two side-effects, IDE (1
(1)) and CAR (1 "numericAttr" (2)).LINK3 has an affected data
property attached to it but the input to which LINK3 is connected is
referenced by both side-effects.

The identity side-effect is applied:

- The reference to input 1 is replaced with the affected data property
attached to LINK3.

After its application, the identity side-effect becomes:
IDE (CAW (1 "numericAttr" PER("Pers™) (1))
The class read side-effect is applied:

- The reference to input 1 is replaced with the affected data property
attached to LINK3.

- The ArgumentType of the side-effect is replaced with the type of
LINK3.

The applied side-effect is:

CAR(CAW (1l "numericAttr" PER("Pers")) (2))

There is no link connected to the first root of the Get operation, so the
affected data property to be propagated by the identity side-effect is

converted into a terminal side-effect:

CAW (1 "numericAttr" PER("Pers") ())

This terminal side-effect is added to the list of terminal side-effects.

The applied class read side-effect propagates the following affected data
property on LINK4:

CAR(CAW (1 "numericAttr" PER("Pers")))

No terminal side-effect is added to the list.

184

EFFECT INFERENCE AND SYNTHESIS

e The signature of Operation d contains no side-effect and the
operation has no input, so the three steps of the composition routine can

be ignored. No terminal side-effect is added to the list.

e The signature of Operation e contains one side-effect OAW (1
"ObjInstvar" 2 (1)). There is an affected data property attached to
LINK4 and none attached to LINK5. The side-effect of the operation has
a reference to the two inputs to which LINK4 and LINKS5 are connected.

The instance write side-effect is applied:

- The reference to input 1 is replaced with the affected data property
attached to LINK4.

- There is no affected data property attached to LINK5, so a local
affected data property NEW (" ##") is created and attached to LINKS5

and replaces the reference to input 2 in the side-effect expression.
The applied side-effect is:

OAR(CAR(CAW (1 "numericAttr" PER{"Pers"))) "ObjInstVar"
New ("#4#") (1))

The side-effect propagates on LINK6 the following affected data
property:
OAR(CAR(CAW(1l "numericAttr" PER("Pers"))) "ObjInstVar"

New ("##"))

No terminal side-effect is added to the list.

185

EFFECT INFERENCE AND SYNTHESIS

CAW(1 "NumericAttr® PER(*Pers") (1)) @numericﬁﬂrﬁ

(CAW(1 "NumericAttr" PER("Pers“}))

CANTT

IDE(CAW(1l "NumericAttr" PER("Pers") (1}) X ynumerwﬁttrﬁ

CAR (CAW(1 "NumericAttr" PER("Pers")) “NumericAttr" (2)
Hello
(CAR(CAW{1 "NumericAttr" PER("Pers")) "NumericAttr"}) S o
% % (New ("##))
OAW (CAR (CAW (1 "NumericAttr" PER("Pers")) "NumericAttxr") v
"ObjInstvVar" New("##") (1)) ’%Dbjlnsﬂ'arﬁ

(OAW{CAR (CAW (1 "NumericAttr" PER("Pers"))
*NumericAttr") "ObjInstVar" New{"##")))

9¥NIT

£ A A T A

Fig. 6.20: After the composition of the side-effects

When the analysis reaches the bottom of the graph, the list of terminal side-
effects contains one terminal side-effect (added by the identity side-effect of

Operation c):
(CAW (1 "numericAttr® PER("Pers") ()))

The affected data property attached to LINK6 must be converted into a
side-effect. Since LINK6 is attached to the only output of the case, the value

of Next property for the converted side-effectis (1):

OAW(CAR(CAW (1l "numericAttr" PER("Pers")) "numericAttr")

"ObjInstVar" NEW(“##”) (1))

The terminal side-effect is overlapped by the side-effect converted from the
affected data property of LINK6 and can therefore be safely discarded.

The effect signature constructed for the method consists of the side-effect

converted from the property of LINK6.

186

EFFECT INFERENCE AND SYNTHESIS

6.4

Effect Synthesis

The aim of the synthesis is to produce an approximation of the accesses and
updates to the operation inputs and global variables that the execution of an
operation annotated for distribution would induce. Using Palsberg and
Schwartzbach’s words [Palsberg and Schwartzbach 1991], the effect
synthesis must tell the whole truth but may not tell nothing but the truth. This
means that the approximation produced by the effect synthesis must be able
to detect all the accesses and updates that may occur at run-time but it may

also predict accesses and updates that will not occur at run-time.
6.4.1 Outline of the synthesis

The effect synthesis is only applied to the operations that have been

annotated for distribution. The synthesis proceeds in three stages:

e Type inference is carried out in the case in which the operation

annotated for distribution occurs.

e Effect inference is initiated on the case. During the forward pass of the
effect inference, when the composition routine processes an operation
annotated for distribution, all the side-effects of this operation are
duplicated before being applied. The composition routine is applied as
described in 6.3.6.2 to the original set of side-effects so that the effect

inference can proceed.

For the side-effects in the duplicate set, only their ArgumentTypes are
updated (if required) but not their Argument or UpdateValue. The
reason for doing so is that the synthesis must be applied only to the side-
effects belonging the annotated operation and not to the side-effects
composed with the side-effects of the operations occurring earlier in the

case.
e The duplicate side-effects of the annotated operation are synthesised.
The information produced by the synthesis addresses two issues:

e Access to the global variables during the execution of an operation

annotated for distribution.

» The analysis must record the updates performed on the arguments of

the operation and on the global variables. An update on an argument or a

187

EFFECT INFERENCE AND SYNTHESIS

global variable may result from the composition of side-effects. In the case
of nested structures, a structure is extracted from its containing structure
and this can be seen as a read side-effect. However, if the extracted value
is modified by another operation, the effective result will be viewed as an
update of both the extracted and the containing structures. Although the
update may not concern a slot of the containing structure, the
modification is considered to affect it, by composition. The argument to
justify this view is that the value of the containing structure is the graph
whose highest vertex is the structure and that any modification to the

graph is a modification of the value of the containing structure.

Fig. 6.21: Composition of effects.

Fig. 6.21 shows the example of a persistent which contains an instance of
a class, the value of the persistent is read and the instance is modified.
The execution of these two operations shown in fig. 6.21 leads to an

update on the persistent as well as on the instance.

The concept of route is introduced to describe how a data object has
become available in the case(s) of the method called by the operation

annotated for distribution. The route of a value is the highest vertex of the

graph followed to access the data.

188

EFFECT INFERENCE AND SYNTHESIS

a
~Father

b
ZF:rofessi.on ﬂ
[=]

o

Fig. 6.22: The route of a value

Fig. 6.22 shows the case of a method, in this case the value of ¢ has been

reached via the input argument a, thus a possible route for the value is an

input route.

A state operation describes an access or an update to a data structure

(e.g. a class, a persistent, an instance or a list).

6.4.2 Routes

A value becomes available in the cases of the method called by an operation

annotated for distribution in different ways. Each possible way defines a

category of routes:

Route category

Description

Local The value has been reached through a value instantiated
locally.

pPersistent | The value has been reached through a persistent value.

Class The value has been reached through the value of a class
attribute or the default value of an instance attribute.

Input The value has been reached through the value of an input

of the case.

Beyond its category, a route is described with two information items:

* Data is an integer or a string.

189

EFFECT INFERENCE AND SYNTHESIS

e Depth is an integer value which keeps track of the number of

indirections necessary to reach the current value from the root of the
graph.
The use of the Depth field is illustrated in fig. 6.23:

A A, //f S

Route = Input 1 with depth =0

Route = Input 1 with depth = 1

‘/‘:‘f:Prufegsion ﬁ
(n

Route = Input 1 with depth = 2

Fig. 6.23: Depth of a route

6.4.2.1 Class routes

A class route indicates that a data object has become accessible through a

class. The textual representation for a class route is:
c (Data Depth)

A route of depth zero represents the class itself. A value extracted from a
class structure (either the value of a class attribute or the default value of an
instance attribute) has a route of depth 1. The Data value of a class route is
the name of a class and the notation "a"+ means the class a and all the
subclasses of a. In the example shown in fig. 6.24, numericAttr is the

name of a class attribute.

L e 7~
V(1 0)
ynumeric Attr ﬁ
)
CV("TransObj"+ 1)

Fig. 6.24: A class route.

190

EFFECT INFERENCE AND SYNTHESIS

6.4.2.2 Input routes

An input route indicates that a data object has been passed as an argument
to the operation annotated for distribution to be accessible in the case(s) of
the method called by this operation. The textual representation for an input

route 1s:
1V (Data Depth)

A route of depth 0 represents the value of the case input itself. The Data
value of an input route is an integer which refers to an input of the operation

annotated for distribution.

R e e et

V(1 0)

Y 0bjinstYar 7]
[0]
V(1 1)

Fig. 6.25: Input routes

With the example shown in fig. 6.25, ObjInstVar is the name of an
instance attribute. The input route on the outgoing datalink of the operation
is one possible route for that value (the set of possible routes for that value

will depend on the type of the input of the Get operation).
6.4.2.3 Local routes

A local route indicates that a data object has become accessible in the case(s)
of the method called by the operation annotated for distribution through an
object created during the execution of the called method. The textual

representation for a local route is:
NGRS Depth)

A local route of depth zero represents the newly created data object. The
Data value of a local route is a string identifier built to identify the local

route uniquely in the context of the current application.

191

EFFECT INFERENCE AND SYNTHESIS

LN ("##" 0)
P Jinst¥ar Z
IN("##" 0)

Fig. 6.26: Local routes

With the example shown in fig. 6.26, the local route on the outgoing datalink

of the operation is one possible route for that value.
6.4.2.4 Persistent routes

A persistent route indicates that a data object has become accessible in the
case(s) of the method called by the annotated operation through a persistent.

The textual representation for a persistent route is:
PV {Data Depth)

A persistent route of depth zero represents the persistent and the value
extracted from the persistent has depth of 1. The Data value for a persistent
route is the name of the persistent through which the value has become
available (see fig.6.27).

pV("Pers" 1)

Fig. 6.27: A persistent route.

6.4.3 State operations

The concept of side-effect used for the effect inference and the concept of

state operation seem to overlap but they do not entirely:

e A side-effect describes how an operation accesses or updates its inputs
or some global variables to produce an output value. However, the
information provided by a side-effect leaves some ambiguity about which
data structure is accessed or updated. In the case of a side-effect on a

persistent there is no ambiguity, the information recorded by the side-

192

EFFECT INFERENCE AND SYNTHESIS

effect gives away which data structure is going to be accessed. An
instance read or write side-effect is more ambiguous and depending on
the ArgumentType of the side-effect, the operation will update either

an instance structure or a class structure.

e The purpose of a state operation is to record an access or an update to
a data structure. Whereas the focus of a side-effect was to describe how
the access or the update was carried out (e.g. persistent read side-effect,
instance write side-effect), a state operation is concerned with which
data structure is accessed or updated. The correspondence between side-
effects and state operation may seem one to one, for example, a
persistent side-effect maps to a state operation. However, this is not the
case for an instance side-effect which can be mapped to either a state

operation on a class structure or a state operation on an instance

structure.

Five categories of state operations are available, reflecting different ways of

accessing or updating data structures in Prograph. External data structures

can also be accessed or updated but they have not been included in the list

because the effect synthesis does not consider them:

State operation

Purpose

Class state operation

Record the access or the update of the value
of a class attribute or the default value of an

instance attribute.

Instance state operation

Record the access or the update of the value

of an instance attributes.

Allocation state operation

Record the creation of an instance of a class.

Persistent state operation

Record the access or the update of a

persistent value.

List state operation

Record the access or the update of the value

of a list element.

A state operation can be an access or an update state operation. Like a read

side-effect, an access state operation has an argument and, like a write side-

effect, an update state operation has both an argument and an update value.

193

EFFECT INFERENCE AND SYNTHESIS

All state operations are described using the relevant combination of the

following data items:

Information item

Purpose

Action

Distinguish between an access or update state

operation.

Data

Record some textual information such as the

name of an attribute or of a persistent.

Argument

Store the route of the argument of the state
operation in order to know how the data
structure which is accessed or modified has
become available in the case(s) of the method

called by the annotated operation.

UpdateValue

Store the route of the update value of the
state operation in order to know how the data
structure which is accessed or modified has
become available in the case(s) of the method

called by the annotated operation.

6.4.3.1 Class state operations

Information item | Value Explanation
Action Access/
Update

Data String The name of the attribute accessed or
updated

Argument Class route | Classes can be reached globally. The route
of a class state operation is always a class
route whose Data value is the name of a
class and Depth is zero.

UpdateValue | Any route The depth for a class route or a persistent

must be = 1 because the value must be
extracted from the class structure or the

persistent before being passed as update

value to the state operation.

194

EFFECT INFERENCE AND SYNTHESIS

A class route is needed as Argument because different classes may define

an attribute with the same name. The information provided by Data is not

sufficient to know which class data structure will be accessed or updated.

The textual representations for class state operations are:

C_access (Data Argument)

C_update(Data Argument UpdateValue)

6.4.3.2 Instance state operations

Information item | Value Explanation
Action Access/
Update

Data String The name of the attribute accessed or
updated.

Argument Any route The depth for a class route or a persistent
must be = 1 because the value must be
extracted from the class structure of the
persistent before being passed as update
value to the state operation.

UpdateValue | Any route The depth for a class route or a persistent

must be = 1 because the value must be
extracted from the class structure or the

persistent before being passed as update

value to the state operation.

The textual representations for instance state operations are:

I_access (Data Argument)

I_update(Data Argument UpdateValue)

195

EFFECT INFERENCE AND SYNTHESIS

6.4.3.3 Allocation state operations

Information item | Value Explanation

Action Access

Data String The name of the class to which the new
instance belongs.

Argument - Not relevant

UpdateValue |- Not relevant

The textual representation for allocation state operations is:

Alloc (Data)

6.4.3.4 Persistent state operations

Information item | Value Explanation
Action Access/
Update
Data String The name of the persistent accessed or
updated.
Argument - Not relevant.
UpdateValue | Any route The depth for a class route or a persistent

must be > 1 because the value must be
extracted from the class structure or the
persistent before being passed as update

value to the persistent state operation.

A persistent state operation does not use Argument because the name of

the persistent stored in Data is enough to know which persistent will be

accessed or updated.

The textual representations for persistent state operations are:

P_access (Data)

P_update (Data UpdateValue)

196

EFFECT INFERENCE AND SYNTHESIS

6.4.3.5 List state operations

Information item | Value Explanation
Action Access/
Update

Data - Not relevant.

Argument Any route The depth for a class route or a persistent
must be > 1 because the value must be
extracted from the class structure of the
persistent before being passed as argument
to the list state operation.

UpdateValue | Any route The depth for a class route or a persistent

must be > 1 because the value must be
extracted from the class structure or the

persistent before being passed as update

value to the list state operation.

The textual representations for list state operations are:

I_access (Argument)

L_update (Argument UpdateValue)

6.4.5 Synthesis algorithm

The synthesis is applied to all the side-effects of the operation annotated for

distribution to produce a list of state operations.

6.4.5.1 Outline of the algorithm

A function called Synthesise is iteratively applied to the side-effects of

the operation annotated for distribution. The list of state operations by one

iteration of Synthesise is passed as the input list of state operations for

the next iteration of the function as shown in fig. 6.28.

197

EFFECT INFERENCE AND SYNTHESIS

List of
«Side~-Effects»

(9
LLL) ":
g f5ynthesise Zﬂ
O ¥

b

List of
<« State Operations

Fig. 6.28: Synthesis of the side-effects of an annotated operation
The type signature of the Synthesise function is:

(Side-~-Effect + Affected Data Property + Integer) X State Operation* —

Route* X State Operation*

The behaviour of the Synthesise function is best understood by looking at
its implementation in Prograph (see fig. 6.29 a, b and c). Fig. 6.29.a and b

show the synthesis of an input reference:

List of
Input Index <« State Operations
K f'/’ S ch.f’//’ e

0 »]
B e e ottt A

List of List of
% Route s «State Operations

Fig. 6.29.a: Synthesis of an input reference other than 0

198

EFFECT INFERENCE AND SYNTHESIS

List of
Input Index «State Operation»

0
T o o A o e A |
List of List of
« Routex «State Operation»

Fig. 6.29.b: Synthesis of a 0 input reference.

List of
« Gide-Effect |« Affected Data»» «State-Operation»
e

FReduce

Frirsdddss ?f/ff/ff VA T R

List of List of
«Routes « State~-Operations

Fig. 6.29.c: Synthesise defined for a side-effect or an affected data
property.
Synthesise takes a side-effect (or an affected data property) and a list of

state operations as its arguments and proceeds in two steps:

* The Flatten operation produces a list representation of the side-
effect or affected data property passed as argument to the Synthesise

function.

* The Reduce operation is applied iteratively to the elements of the list

representation of the side-effect.

The side-effect (or affected data property) to be synthesised may have a
recursive data structure as Argument or UpdateValue. Recursion occurs

when the Argument or the UpdateValue of the side-effect is an affected

199

EFFECT INFERENCE AND SYNTHESIS

data property and the Argument of this affected data property is itself an
affected data property (as the result of the composition of side-effects). The

following side-effect has a recursive Argument:

OAR (OAR({PER("Info") "Father") "Surname") (1})

because the Argument of the side-effect is the instance read affected data
property OAR(PER("Info") "Father") and the Argument of this
affected data property is the persistent read affected data property
PER("Info").

The following side-effect has a recursive UpdateValue:

OAW (1 "Surname" OAR(PER("Father") "Surname") (1))

A side-effect is expanded into a list following the path of its Argument
information item. If along the path an UpdateValue is a recursive affected
data property, it is left untouched as it will be expanded at a later stage
during the synthesis. The flattening is illustrated by the following example.
The side-effect:

CAR (CAW (1 "numericAttr" PER("Pers")) "numericAttr" (1))
is expanded into a list as follows:
The side-effect becomes the first element of a list:

(CAR(CAW({1 "numericAttr" PER("Pers")) "numericAttr” (1)))

The argument of the side-effect (underlined in the expression above) is copied

and put at the front of the list:

(CAW(Ll "numericAttr" PER("Pers")) CAR{CAW(]1l "numericAttr"”
PER("Pers")) "numericAttr” (1)))

Again, the Argument of the first element of the list (underlined in the
expression above) is copied and becomes the head of the list:

(1 CAW(1l "numericAttr” PER("Perg")) CAR(CAW(1l "numericAttr"
PER("Pers")) "numericAttr” (1)))

The reference to input 1 becomes the head of the list and the recursion stops.
The recursive flattening of a side-effect or an affected data property into a

list stops when the first element is a reference to an input of the operation

200

EFFECT INFERENCE AND SYNTHESIS

annotated for distribution or the value 0. 0 is the implicit value of Argument
for an affected data property or a side-effect which takes no argument (a
persistent read affected data property or a local affected data property are

two examples of affected data properties taking no argument).

The overall effect of Flatten is to convert a representation of side-effects
based on a partial order into a total order. The consequences of this

conversion will be discussed in 6.4.7.

The iterations of the Reduce function over the list of effects yield a list of
routes and an updated list of state operations. The type signature of

Reduce is:
(Side-Effect +Affected Data + Integer) X Route* X State Operation* —
Route* X State Operation*

The Reduce function takes three arguments:

* The side-effect (or the affected data property or the input reference)

currently being reduced.

e The list of route values to which the previous element in the list has
been reduced. These routes are called the parameter routes of the Reduce

function.
¢ The list of state operations maintained by the synthesis algorithm.

The semantics of the Reduce function depends on the category of the side-
effect or of the affected data property to which it is applied. The return

values of the Reduce function are:

* A list of route values, called the return routes of Reduce. If the Reduce
is applied to a side-effect (which always corresponds to the last iteration
of Reduce), it is not relevant to compute a list of route values and an

empty list is returned instead.

 The list of state operations to which new state operations may have

been appended.
6.4.5.2 Reduction rules

The reduction rules describe how the Reduce function updates the list of

state operations and computes a set of return routes from the input reference

201

EFFECT INFERENCE AND SYNTHESIS

(or the affected data property or the side-effect) currently being reduced, the

list of parameter routes and the current list of state operations.

The purpose of the analysis developed in this work, and in particular of the
effect synthesis which is the last stage of the analysis, is to provide
information about effects to the distribution mechanism. The proposed
analysis has been developed with as much independence as possible from the
actual distribution mechanisms. The stage has now been reached however
where some assumptions have to be made about the facilities available for

distributed programming.

The effect synthesis takes the view that the distribution mechanism for
Distributed Prograph will be built upon the facilities provided by the current
version of Prograph. These facilities include a to-bytes primitive to pack
values for transmission. to-bytes recursively flattens data of any
complexity (instances of primitive data types or instances of classes) into a
sequence of bytes and it also produces a class translation map to reconstruct
the flattened data. It must be noted that the values of the class variables are
not packed with the instances of the class. The flattened data and
translation map may be transmitted over the network. Primitives have been
written so that several communication protocols may be used from within the

Prograph development environment.

The potential effects must be handled in different ways depending on the
category to which they belong. The following matrix shows which effects are
important. The columns distinguish between the structures affected and the

rows between the action of the effect.

List Instance | Class Persistent
Access X X
Update X X X X

... means that the effect requires no special action and X means that the effect

must be dealt with properly.

Extracting a value from a list or an instance structure (but not the default
value of an instance attribute) does not require special action because the

value referenced by the slot of the instance or that of the list has been packed

202

EFFECT INFERENCE AND SYNTHESIS

(by the to-bytes primitive) with the instance or the list and transmitted
with it. Therefore, it is not necessary for the synthesis to record accesses on

instance and list structures.

If a persistent value or a class variable is accessed during the execution of a
remote operation, the value obtained may be out of date. The meaning of X in
the above matrix is that the current facility is not enough to ensure the

correctness of the execution and that this facility should be extended.

For all four categories of data structures it is important that all update state
operations are properly recorded as the current facilities provide no

mechanism to propagate updates across execution contexts.

Effects on external data structures have been omitted from the matrix above
because the effect inference does not address external side-effects (see
6.3.3.8). If an external side-effect occurs in the effect signature of an
operation annotated for distribution, the remote execution of this operation

should be ruled out.

The reduction rules in the following sections specify how the Reduce
function operates when applied to an affected data property or a side-effect

of a given category.

* Reduce may create state operations to be added to the list of state

operations.

e Reduce produces a set of return routes (When applied to a side-effect,

the set of return routes is not relevant).

When a new state operation is created, the reduction rule specifies what the
values of Action, Data, Argument and UpdatevValue for the new state

operation should be.

The reduction rule also specifies how the Reduce function computes a set of
return routes. When the Reduce function is applied to a read affected data,
the reduction rules require that the list of state operations is searched to find
a matching update state operation. The intuition behind searching a matching
state update is that a structure might be updated and then accessed during
the execution of the method called by the operation annotated for

distribution. This situation is illustrated by the following example:

203

EFFECT INFERENCE AND SYNTHESIS

()
nBUmeric .Mtr'
&

[

} numericAttr %
|
d

Fig. 6.30: Matching state-operations

The example in fig. 6.30 shows that the value of the attribute numericAttr
is set. At a later stage, the value of the attribute numericAttr is accessed.
When a matching update state operation is found, its UpdateValue route (
the route of value b in the example above) should be element of the set of
return routes produced by the reduction of the read affected data property

(the routes of value d).

The following subsections define the reduction rules for the different elements
that may occur in the flattened representation of an affected data property

or a side-effect:
* Input reference/ identity side-effect
¢ Class affected data property/ side-effect
e Instance affected data property/ side-effect
» Instantiation side-effect
 Local affected data property
e Persistent affected data property/ side-effect.

Remembering that the reduction rule for a side effect is a simplified version of
the reduction rule for the affected data property of the same effect category,
the reduction rules will be explained for the affected data properties of the

different categories, when applicable.

204

EFFECT INFERENCE AND SYNTHESIS

6.4.5.3 Input reference

An input reference is an integer value and represents one of the inputs of the
case(s) of the method called by the operation annotated for distribution.

The reduction rule for an input reference proceeds as follows:
* No state-operation is added to the list of state operations.

e An input route (1V(Data Depth)) is created and returned as the set
of return routes. The Data value of the route is the integer value of the

input reference and its Depth is zero.
6.4.5.4 Class affected data property

The rule considers a read affected data property first and a write affected

data property afterwards.

A class affected data property indicates that the value of a class attribute
has been accessed or updated. The ArgumentType of the affected data
property includes single types and/or string types. A single type is itself a
set of classes and a string type is set of string values, some of these string
values are class names. A class is referenced by the ArgumentType if at least

one of the following two conditions is met:
e this class is an element of a single type included in the ArgumentType

e the name of this class is in a string type included in the

ArgumentType.

In the set of classes referenced in the ArgumentType, another set of classes
can be distinguished: the classes with no superclass referenced in the
ArgumentType. These classes are called the upper bounds of the
ArgumentType (using the inheritance relation as a partial ordering on the

set of classes referenced by the ArgumentType).
The reduction rule for a read affected data property proceeds as follows:

e For each upper bound class in the ArgumentType of the affected
data property, a new class route (C\/ (Data Depth)) and a new class
access state operation (C_access (Data Argument)) are created. The
value of Data for the class route is the name of the class referenced and

its Depth is zero (the notation introduced in 6.4.3.1 may be used to

205

EFFECT INFERENCE AND SYNTHESIS

include the classes referenced implicitly). The value of Data for the class
access state operation is the name of the attribute accessed and its

Argument is the class route.

e All the new class routes have their depth increased by one before being
returned by Reduce as the set of return routes. The list of state
operations is searched to find class update state operations with
Argument routes matching one of the Argument routes of the newly
created class access state operations. If matching update state operations

are found, their UpdateValue routes are added to the list of return

routes.

Unlike a class read affected data property, a class write affected data

property has an UpdateValue which can be an input reference or an

affected data property. The reduction of a class write affected data property

proceeds as follows:

¢ A set of UpdateValue routes and an updated list of state operations
are computed by applying the Synthesise function to the
UpdateValue of the class write affected data property and to the
current list of state operations. For each upper bound class in the
ArgumentType of the affected data property, a new class route
(C\/ (Data Depth)) is constructed. The Depth of each class route is
zero and its Data value the name of the class referenced. The Cartesian
product of the set of class routes and of the set of the UpdatevValue
routes is computed. For each pair in the product set a class update state
operation (C_update(Data Argument UpdateValue)) is created
with the class route as its Argument and the UpdateValue route as its
UpdateValue. The Data value is the name of the attribute updated.

e The Reduce function passes its list of parameter routes unchanged as

its return routes.

6.4.5.5 Instance affected data property

The rule for this category of affected data properties is the most complex of

all the rules. This complexity results from the use in Prograph of strings as

reference to classes.

206

EFFECT INFERENCE AND SYNTHESIS

The same affected data property may be reduced to a set of both class and
instance state operations depending on the ArgumentType of the affected
data property. The ArgumentType is divided into two subsets: a subset
including the string types and a subset including the single types.

If the subset including the string types is not empty, this affected data
property indicates that class structures may be accessed or updated. The
property must be reduced to a set of class state operations in similar fashion
to the reduction of class affected data properties described in 6.4.5.4. (the
single types included in the ArgumentType are discarded before applying

the reduction rule for the class affected data properties).

If the subset of ArgumentType including the single types is not empty,

instance structures may be accessed or updated.
The rule for the reduction of an instance read affected data property is:

e Reduce does not add any state operation to its list of state operations
because, as explained in 6.4.5.2, the effect synthesis should not record

access on instances.

o All the parameter routes have their depth increased by one before being
returned by Reduce as the set of return routes. The list of state
operations is searched to find instance update state operations with
Argument routes matching one of the parameter routes. If matching
instance update state operations are found, their UpdateValue routes

are added to the list or return routes.
The reduction of a write instance affected data property requires that:

e its UpdateValue is synthesised to produce a set of UpdateValue
routes and an updated list of state operations. The Cartesian product of
the set of parameter routes and of the set of Updatevalue routes is
computed. For each pair in the product set an instance update state
operation (I_update (Data Argument UpdateValue)) is created
with the parameter route as its Argument and the UpdateValue route
as its Updatevalue. The Data value of the state operation is the name

of the instance attribute whose value has been updated.

e the parameter routes are returned as the return routes of Reduce.

207

EFFECT INFERENCE AND SYNTHESIS

6.4.5.6 Instantiation side-effect

An instantiation effect is a terminal side-effect with no Argument and
therefore is always flattened into a list with a single element. The reduction of

an instantiation side-effect requires that:

* an allocation state operation (Alloc (Data)) is added to the list of
state operations. The Data value of the allocation side-effect is the name

of the class to which the new instance belongs.
6.4.5.7 Local affected data property
The reduction of a local affected data property proceeds with the following
steps:
» No state operation is created.
o A local route is created (LV (Data Depth)). The Depth of the route is
zero and its Data value is the Data value of the local affected data
property.
6.4.5.8 Persistent affected data property

The reduction of a read persistent affected data property proceeds with the

following steps:

¢ A persistent access state operation is created (P_access (Data)).
The Data value for this persistent access state operation is the name of

the persistent.

e A persistent route (PV (Data Depth)) is created to be passed as a
return route, its Data value is the name of the persistent and its depth is
one. The list of state operations is searched to find persistent update
state operations with Data matching the Data of the new persistent
access state operation. If matching persistent update state operations are

found, their UpdatevValue routes are added to the list of return routes.

There exists no write persistent affected data property, as a persistent write

side-effect is a terminal side-effect.
The reduction of persistent write side-effect proceeds as follows:

e the Updatevalue of the persistent write side-effect is synthesised to

produce a set of UpdateValue routes and an updated list of state

208

EFFECT INFERENCE AND SYNTHESIS

operations. For each UpdateValue route, a persistent update state
operation is created (P_update (Data UpdateValue)) with as Data
value the name of the persistent and as UpdateValue the

UpdateValue route.
6.4.5.9 List affected data property
The reduction of a read list affected data property proceeds as follows:

* No state operation is created because, as explained in 6.4.5.2, the effect

synthesis should not record access on lists.

e The parameter routes of Reduce are passed unmodified as its return
routes. The list of state operations is searched to find list update state
operations with Argument routes matching one of the input routes. If
matching list update state operations are found, their Updatevalue

routes are added to the list of return routes.

The decision not to increase the depth of the parameter routes before
returning them as return routes is explained by the fact that the analysis does
not distinguish between a list and the individual elements of that list (see
6.3.3.7).

The reduction of a write list affected data property proceeds as follows:

e The UpdateValue of the list write affected data property is
synthesised to produce a set of UpdateValue routes and an updated
list of state operations. The Cartesian product of the set of parameter
routes and that of UpdateValue routes is computed. For each pair in
the product set a list update state operation (L_update (Argument
UpdateValue)) is created and added to the list with the parameter
route as its Argument and the UpdateValue route as its

UpdateValue.

¢ The parameter routes of Reduce are passed unmodified as return

routes.
6.4.6 Synthesis example

The effect synthesis explained below builds on the example presented in
6.3.9.

209

EFFECT INFERENCE AND SYNTHESIS

U o o o o L AT

V fmodStrattr] [ZDemoc 7

AT P AL AP, i i)

Fig. 6.31: Operation annotated for distribution

The operation Demo is annotated for distribution (see fig. 6.31) and calls the
universal method whose implementation is shown in fig. 6.32. The e symbol
appended to the name of the operation indicates that this operation is

annotated for distribution.

i LA A A LA LA A A

@ numerichAttr ﬂ

3 numericAtir ﬁ
o

Hello

% Objinst¥ar 7]

A A ol A o 2t o s

Fig. 6.32: Example of effect synthesis

210

EFFECT INFERENCE AND SYNTHESIS

The synthesis of the side-effects of the Demo operation proceeds as follows:

* The initialisation phase constructs the type and effect signatures of the
operations and sets the type and affected data properties of the

datalinks in the case in which the Demo operation occurs (see fig. 6.31).

* Type inference is carried out on the case. Fig. 6.33 shows the type
information attached to the datalinks and the signatures of the

operations after the case-wide type inference.

e The side-effect composition routine is applied to the operations of the
case. When the composition routine reaches the Demo operation, the
operation's side-effects are duplicated. The effect signature of Demoee
comprises a single side-effect (02 in fig. 6.33):

OAW (CAR (CAW (1 "numericAttr" PER("Pers")) "numericAttr")

"ObjInstVar" NEW("##") (1)) .

The ArgumentType of the composed affected data properties in the
duplicate side-effect must be updated with the type of the datalink
connected to the terminal of the operation Demoe. The type of this

datalink is <transObj>.

At A

{<transObj>}fNoInfo =i ransObj>)

g <transObj>—
o~ [“transObj”+|<transObj+>]
/*SE*/GZ
V. fmodStrattr] [pemoca 7]

<transQbj+>->1/*SE*/

CAW(1l "stringAttr" ([<transObj+>|"transObj'|+],NoInfo, [<transObj+>|"transObj"+]
INEW("##") (1))

{<transObj>,NoInfoj<transObi>)
s e i A

Fig. 6.33: After the type inference

This type is propagated to the ArgumentType of the affected data

property:
CAW(]1 "numericAttr" PER("Pers"))

211

EFFECT INFERENCE AND SYNTHESIS

and propagated to the ArgumentType of the affected data property:

CAR (CAW (1 "numericAttr" PER("Pers")) "numericAttr")

However, the ArgumentType of the side-effect itself is not updated.
This is because the Argument of the side-effect is the result of a Get
operation on the numericAttr attribute and the type of the second
output of a Get operation does not depend on the type of the input of

this Get operation.

The first step of the synthesis is to flatten the side-effect into a list

representation:

(1 CAW (1 "numericAttr” PER("Pers")) CAR(CAW (1l “numericAttr"”
PER("Pers")) "numericAttr") OAW(CAR(CAW(1l "numericAttr"
PER("Pers")) "numericAttr") "ObjInstVar" NEW("##") (1)))

The Reduce function is applied to the four elements of the list. The synthesis
starts with an empty set of state operations. The result of each reduction is

presented in a table with the following entries:
- the input reference, affected data property or side-effect being reduced

- the ArgumentType of the affected data property or side-effect being

reduced
- the list of parameter routes
- the current list of state operations

- the Updatevalue input reference or affected data property (only
relevant when a write affected data property or a write side-effect is

being reduced)

- the list of Updatevalue routes produced by the synthesis of the
UpdateValue input reference or affected data property (only relevant
when a write affected data property or a write side-effect is being

reduced)

- the list of state operations after the synthesis of the Updatevalue
input reference or affected data property (only relevant when a write

affected data property or a write side-effect is being reduced)

- the list of return routes

212

EFFECT INFERENCE AND SYNTHESIS

- the list of state operations after the reduction.

The Reduce function is applied to the input reference 1:

- no state operation is added to the list of state operations.

- An input route is returned

Reduced input

reference

1

Parameter

routes

()

List of state

operations

()

Return routes

(TV (1 0))

Updated list
of state

operations

CAW(1l "numericAttr" PER("Pers")) is reduced. The reduction

proceeds in two steps:

- The UpdateValue of the affected data property must be synthesised
first. The Synthesise function is applied to the PER ("Pers")
affected data property and the current list of state operations. The

synthesis adds a persistent access state operation to the list of state

operations and returns a single persistent route as the set of

UpdateValue routes.

- A class update state operation is created. The Argument of the class

update affected data property is a class route of depth zero. The Data

value of the class route corresponds to the classes referenced in the

ArgumentType of the affected data property:

C_update ("numericAttr" cV ("transObj" 0) P\/("Pers" 1))

- The parameter routes of Reduce are passed as return routes.

213

EFFECT INFERENCE AND SYNTHESIS

Reduced affected
data property

CAW(1l "numericAttr" PER("Pers"))

ArgumentType
of the affected
data property

<transObj>

Parameter

routes

(IV(10))

List of state

operations

()

UpdateValue

PER("Pers")

List of
UpdateValue

routes

(PV("Pers" 1))

List of state
operations after
synthesis of
UpdateValue

(P_access ("Pers"))

Return routes

(TN (1 0))

Updated list of

state operations

(P_access ("Pers") C_update ("numericAttr"

cV (" transObj " 0) PV ("Pers” 1)))

The affected data property CAR(CAW(1l "numericAttzr"

PER{"Pers")) "numericAttr") is reduced.

The reduction rule requires that a state operation is created:

C_access ("numericAttr" CV("transObj" 0))

When computing the return routes for the current affected data property,

the Reduce function finds a matching update state operation:

C_update(”numericAttr"CV("transObj" O)PV(“Pers"l))

The UpdateValue of this matching state operation must be included in

the set of return routes computed by Reduce.

214

EFFECT INFERENCE AND SYNTHESIS

Reduced affected
data property

CAR(CAW (1 "numericAttr" PER("Pers"))

"numericAttr")

ArgumentType
of the affected
data property

<transObj>

Parameter (1V(10))

routes

List of state (P_access ("Pers") C_update ("numericAttr®
operations cV("transObj" 0) PV("Pers" 1)))

Return routes (cy transObi" 1) pV("Pers" 1))

Updated list (P_access("Pers") C_update ("numerichAttr"”
of state cV("transObj” 0) PV("Pers" 1))

operations C_access ("numericAttr’ ¢V ("transObj” 0))

The side-effect OAW (CAR (CAW (1 "numericAttr" PER("Pers"))
"numericAttr") "ObjInstVar" NEW("##") (1))) is reduced.

The first step in the reduction is the synthesis of the UpdatevValue of
the side-effect, NEW ("#4#). The synthesis adds no state operation to
the list of state operation and returns a local route as the set of

UpdateValue routes:
LV ("##° 0)

The ArgumentType of the side-effect s
[<transObj+>]|”transObj"+], that is the Argument of the side-
effect can be either an instance or a string referring to a class.
Consequently, Reduce must create both class and instance state

operations.

The class state operation ignores the parameter routes of Reduce,
instead a class route is created to be the Argument of a class update
state operation:

C_update ("ObjInstVar" v ("transObj®*+ 0) Y ("#%" 0))

Two instance update state operations are added to the list of operations,

one for each route in the set of parameter routes of Reduce:

I_update("ObjInstVar" py ("Pers" 1) LN (%0 0))

215

EFFECT INFERENCE AND SYNTHESIS

I_update("ObjInstVar" cV("transObi" 1) IN ("##" 0))

Reduced side- OAW (CAR (CAW (1 "numericAttr" PER("Pers"))
effect. "numericAttr") "ObjInstVar"” NEW("##") (1)))
ArgumentType | [<transObj+>]"transObj"+]

of the affected
data property

Parameter

routes

(cV("transobj" 1) PV ("Pers” 1))

List of state

(P_access("Pers") C_update{"numericAttr"

operations cV("transObi" 0) PV("Pers® 1))
C_access (" nuwnericAttr" cv ("transObij" 0))
UpdateValue |NEW("##")
List of LV ("##" 0)
UpdateValue
routes

List of state
operations after
synthesis of
UpdateValue

(P_access ("Pers") C_update ("numericAttr”
C\/("transObj™ 0) P\/("Pers" 1))

C_access ("numericAttr” CV("transObj" 0))

Return routes

Not relevant

Updated list of

state operations

(P_access{"Pers") C_update("numericAttr"
eV transObj® 0) PV ("Pers" 1))

C_update ("ObjInstvar" cv ("transObj"+ 0) TN (##
0))) I_update("ObjInstVar" eV ("transObj" 1)
L\/(g4 0)) I_update ("ObjInstVar" PV ("Pers® 1)
LN (" ##" 0))

The result of the synthesis is a list of state-operations:

P_access ("Pers")

C_update ("numericAttr"® C\/("transObi" 0) py ("Pers" 1))

C_access ("numericAttr” CV("transObj" 0))

C_update ("ObjInstVar" v transObj"+ 0) L\/(“#E0))

I_update("ObjInstVar" eV transObj” 1) V(" ##7 0))

I_update ("ObjInstVar" PV ("Pers” 1) L\/(T 0))

216

EFFECT INFERENCE AND SYNTHESIS

6.4.7 Flow sensitivity

When a write affected data property or a write side-effect is reduced, the
Argument of the affected data property or side-effect must have been
synthesised before its UpdatevValue. For example, if an operation
annotated for distribution called the method case the case of which is shown
in fig. 6.34, the effect signature of this annotated operation would be:

OAW (CAR (1 "ObjectAttr") "ObjInstVar" PER("Info") ())
During the execution of the method called by the operation annotated for
distribution, the Get persistent operation is executed just after the Input

operation.

ObjectAttr cccco Info %
[2]

< Objlnst¥ar 7]
(]

e i AL

Fig. 6.34: Flow information
The side-effect is flattened into the following list:

(1 CAR(1 "ObjectAttr") OAW(CAR(1 "ObjectAttr") "ObjInstVar"

PER("Info") ()))

The synthesis is executed in three steps. The reduction of the input reference

is described in the table below:

217

EFFECT INFERENCE AND SYNTHESIS

Reduced input

reference

Parameter

routes

List of state

operations

Return routes

(IV(10))

Updated list of

state operations

()

The affected data

roperty CAR (1 "ObjectAttr") is then reduced:

Reduced affected
data property

CAR(1l "ObjectAttr")

ArgumentType
of the affected
data property

<transObj+>

Parameter

routes

(TN (10))

List of state

operations

Return routes

(CV("transObj"+l))

Updated list of

state operations

(C_access("ObjectAttr"CV("transObj"+O)))

The side-effect OAW (CAR (1 "ObjectAttr") "ObjInstVar" PER{"Info") ())

is now reduced:

218

EFFECT INFERENCE AND SYNTHESIS

Reduced side-
effect.

OAW (CAR (1 "ObjectAttr") "ObjInstVar" PER("Info")
{())

ArgumentType | [<transObj+>]|“transObj”+]
of the affected
data property

Parameter (cV("transObj"+ 1))

routes

List of state (C_access ("ObjectAttr" ¢V ("transobi "+ 0)))
operations

UpdateValue PER("Info")

List of PV ("Info" 1)

UpdateValue

routes

List of state (C_access ("ObjectAttr” CV("transObj "+ 0))

operations after | P_access("Info"))
synthesis of
UpdateValue

Return routes Not relevant

Updated list of (C_access ("ObjectAttr” CV("transObj "+ 0))
state operations P_access ("Info") C_update("ObjInstvar"”
C\/("transObj"+ 0) pv ("Info" 1))
I_update("ObjInstVar" cV ("transObj "+ 1)

PV ("Info" 1)))

Although the Get persistent operation is executed before the Get class
attribute (ObjectAttr) operation, the state operation describing the access
performed by the persistent Get operation is going to be recorded after the
state operation recording the access to the value of the class attribute. The
P_access ("Pers") was recorded too late with respect to the state
operation C_access ("ObjectAttr” cV("transObj"+ 0)) . The
recording of the persistent state operation was delayed because the
PER("Info") affected data property was the update value of the
OAW (CAR(1 "ObjectAttr") "ObjInstVar" PER("Info") ()) side-

effect.

219

EFFECT INFERENCE AND SYNTHESIS

One of the claimed properties of the effect synthesis is that it can detect
locally created aliases. Such a situation occurs when an object is passed as
the update value of a write side-effect and it is subsequently extracted by a
read side-effect in one of the cases of the method called by the operation

annotated for distribution.

The example above shows that the representation chosen for the side-effects
results in loss of information about the execution order of the operations.

There are two possible consequences:

e A write state operation is recorded too early. A local alias might be
detected even if this alias cannot be created at run-time. As a result of
finding a matching state operation, the Reduce function applied to a
read affected data property will return an extra route which might
become the argument of another state operation at a latter stage during
the effect synthesis. The consequence of recording a write state operation
too early is that the synthesis will record some unnecessary state
operations, however the approximation remains safe because the set of
state operations is a superset of the possible accesses or updates that
may take place when the operation annotated for distribution is

executed.

e A write state operation is recorded too late. The consequence of this is
that the effect synthesis might fail to detect the creation of a local alias
during the execution of the operation annotated for distribution and
consequently fail to detect a way an operation annotated for distribution

may access or update an input value or a global variable at run-time.

A possible solution to this shortcoming would be to force the synthesis to
record write state operations as early as possible. This would entail the
following modification to the representation of side-effects: all write side-
effects must be terminal ones. The modified effect signatures are shown in the

table below:

220

EFFECT INFERENCE AND SYNTHESIS

Operation Side-effect Current signature Modified Signature

éﬁtﬁdenﬂ_&;stﬂ Class write | CAW(1 "StudentList” 2 | CAW(1 "StudentList" 2
side-effect (1)) ()) XIDE(L (1))
Instance OAW(1 "Surname" 2 (1)) | OAW(1l "Surname" 2 (1))
write side- X IDE(1 (1))
effect
List write LIW(L12 (1)) LIW(12 (1)) XIDE(1
side-effect (1))

With only terminal write side-effects, there would exist no write affected
data property and the recording of write state operations would not be
delayed because some write affected data property is composed in the
update value of a write affected data property or a write side-effect.
Moreover, the list of side-effects of the operation annotated for distribution

could be sorted so that the write side-effects appear first in the list.
Summary

¢ The effect inference proceeds together with the type inference to gather

information about the effects of a method.

o Effect information encompasses affected data properties which
describe how data values are obtained and side-effects which are kept
with the type information in the lines making up the signature of a
method.

» Different categories of side-effects are for the different data structures

that can be affected. A side-effect also has an action (read or write).

e Effect synthesis computes an approximation of the effects of the

execution of an operation in a particular execution context.

e A state operation is the abstraction of an effect for the effect synthesis.

A Route is the abstraction of a data value.

* The effect synthesis reduces the side-effects of an operation in a

particular context into a list of state operations.

221

EXPERIMENTING WITH THE ANALYSIS TOOL

7 Experimenting with the analysis tool

7.1.

The analysis described in chapter 5 and chapter 6 has been implemented.
This chapter covers both the implementation of the analysis tool and the

experimentation with it.

The first section of this chapter highlights some of the implementation details
of the analysis. The next section looks at a complex example to describe the
behaviour of the analysis. The third section comments on the applicability of
the analysis and suggests some improvements. The fourth section explains
how the results of the analysis can be interpreted. The last section suggests

some ways of exploiting these results to support distribution.
The analysis tool

Since the access to the code of the implementation of Prograph is not
available, it has not been possible to integrate the analysis with the
interpreter. The analysis is run as a separate application within the
interpreter. This section highlights some of the aspects of the implementation

of the analysis tool.

The analysis is triggered by selecting an item on a pull-down menu and typing
the method identifier of the method to be analysed. The code of the method
to be analysed is stored in a file, a utility program (provided by Pictorius
Inc.) extracts the code from the file and converts it into a form which is

amenable to analysis.
7.1.2 Auxiliary data

The construction of type expressions, operations on type expressions and
computation of operation signatures requires the construction of the set of
superclasses or subclasses of a given class and the look-up of all the methods
or all the attributes with the same name. In order to speed up these

operations, the information has been organised in the form of indexed files:

e The class hierarchy is stored in a file and a class description consists of
a (class name, class identifier) pair. Class identifiers are sequences of
integers constructed in such a way that by comparing two class identifiers

it can be easily worked out whether a class is a superclass of another.

222

EXPERIMENTING WITH THE ANALYSIS TOOL

Each class description is indexed by both its class identifier and its class
name, allowing the look-up of a class name from the class identifier and

vice-versa.

e Attribute information is stored in a separate indexed file. The name of
the attribute is used as a key and the associated data consists of two
lists. The first list contains the identifiers of the classes that define (but
not the classes that inherit) the attribute as a class attribute and the
second list contains the identifiers of the classes that define (but not

inherit) the attribute as an instance attribute.

e [Suzuki 1981] proposed the idea of a look-up table to mimic the
behaviour of Smalltalk's method look-up mechanism within the analysis.
The table used for Prograph maps a method name to three lists of class
identifiers. The first list contains the identifiers of the classes that define
a simple method with the same name. The second and third lists are the
lists of the identifiers of the classes that define Get and Set methods
respectively. During the initialisation phase of a case-wide type and
effect inference, the signatures of the operations of the case are set. To
construct the signature of a simple, Get or Set operation with a data-
determined reference, the inference mechanism looks up a method by
name and method type (i.e. Set, Get or simple) and finds out the
identifiers of the classes that (re)define a method with the required name
and method type. To build the signature of an Init operation, the
inference mechanism checks whether a custom initialisation method is

defined for the class.

e The signatures of the primitives are stored in a repository and are
indexed by the primitive name. The repository itself is constructed from
the primitive signature files. These text files contain the textual
representation of all the signatures of the primitive methods of a given
category (e.g. list primitive methods, math primitive methods). The
content of the signature files is parsed to construct the signatures put in

the repository.

223

EXPERIMENTING WITH THE ANALYSIS TOOL

7.1.3 Restricted method despatching

During the course of execution the analysis may prompt the user, if an
operation name is heavily overloaded, to discard the classes whose methods
cannot be despatched. This can be seen as equivalent to requiring the user to
annotate the type of methods' receivers and therefore incompatible with the
idea of type inference. However, the information provided by the
programmer is not stored and thus is of a less permanent nature than a type
annotation and the analysis might become intractable without this user
feedback.

7.1.4 Results and errors logging

The analysis proceeds until it is completed or it fails. Failures are most likely
to occur during the type inference either during the setting of the operation
signatures or during the forward and backward passes of the inference. In
case of a failure, the analysis reports at what stage of the analysis the failure
has occurred (i.e. initialisation phase, forward or backward analysis) and the

location the faulty operation in the code currently analysed.
The proceeding of the analysis is monitored by recording:
e The start of an inference and the value of the system clock at the time.

¢ The end of an inference and the corresponding value of the system clock
(the only purpose for the values of the system clock is to measure the time

taken by the analysis to complete).
¢ The signature produced by the inference.

¢ The restrictions by the user to the set of classes to which the receiver of

an operation with a data determined reference can belong.

Indentation is used to indicate the nesting of the inferences. This information
is displayed in a textual form on the screen upon the successful completion of
the analysis. The template for the displayed information is shown below:
Start Inference for My:T_Startyg

Start Inference for Mp: T_Startp

Finish Inference for Mp: T_Finishp

Signature for Mp: Sigp

Start Inference for Me: T_Starte

224

EXPERIMENTING WITH THE ANALYSIS TOOL

Receiver of operation reduced toC1, C2
Start Inference for Mg: T_Startg
Finish Inference for Mg: T_Finishg
Signature for Mg: Sigg
Start Inference for Meg: T_Starte
Finish Inference for Mg: T_Finishe
Signature for Mg: Sige

Finish Inference for Ma: T_Finishe

Signature for Me: Sige

Finish Inference forMg: T_Finishg

Signature for Mg: Siga

However, in order to make it more readily understandable, the execution of
an analysis can also be represented by a tree (which is drawn manually). The
nodes of the tree correspond to inferences applied to methods and the links
represent dependencies between the results of inferences. Special nodes are
also inserted in the graph to indicate the points of the analysis at which the
set of classes of an operation receiver has been restricted by the programmer.
The successive inferences are carried out in a top-to-bottom, left-to-right
order. The graphical equivalent to the analysis log shown above is shown in

fig. 7.1:

Restriction of the receiver
of foo

Mg

Fig. 7.1: Graphical interpretation of an analysis log.

Downward transitions (the transition from node 1 to node 2 in fig. 7.1, for
example) occur during the signature set-up phase of the inference. If a
signature is missing and no recursion is detected, the current inference is

suspended and the missing signature is inferred.

225

EXPERIMENTING WITH THE ANALYSIS TOOL

7.2

7.1.5 Caching of intermediate results

Intermediate results are cached to speed up the inference. Cached

information includes:

e Signatures of default Get and Set operations. The same Get and Set
operations often occur in separate cases of a method. Caching their
signature instead of building them on the fly for each occurrence of the

same operation speeds up the analysis.
* The signatures of all the methods, class-based as well as universal.

The cache consists of a list of (method identifier, signature) pairs. For the
signatures of default Get and Set operations, the ClassName component of

the method identifier is Universal.

Computing the signature of an operation with a data-determined reference is
expensive and the computed signatures are obvious candidates for caching.
However, the inferred signatures are not cached because the user may restrict
the type of the receiver in a given case of a method and the signature, while
valid in the context of that particular case may be invalid in the context of

another case.

Dynamic binding means that signatures may become invalid when some code
is edited. It would be particularly difficult to keep track of which signatures
should be invalidated when code is modified. The analysis takes the
conservative view that the cached signatures are valid only for the duration
of a session of the analysis program and all the cached information is

discarded when exiting the analysis program.
Examples
7.2.1 Type and Effect Inference

The method chosen as the first example of the type and effect inference is a
universal method called IsPrimitive? (fig. 7.2) and is used to check
whether a method identifier is a reference to a primitive. IsPrimitive?
calls the Key Parse universal method whose role is to break up a method
identifier into its three separate components (i.e. ClassName, MethodName
and MethodType). If the MethodType is Simple, IsPrimitive? looks for

226

EXPERIMENTING WITH THE ANALYSIS TOOL

the method name in the list of the primitives' names stored in the

Primitive persistent.

Signature key
A P T

2
% Key Parse %
g e .

- {3}
Unwgrsal :]_?_CJ cee
L=

[

Primitives -

Signature key
T L e

FALSE

B A P T B e e e)
TRUE | F ALSE TRUE | FALSE

Fig. 7.2.a: First case of IsPrimitive? Fig. 7.2.b: Second case.

The information logged during the analysis is shown below:
##START ANALYSIS OF::Universal/Is Primitive?/Simple
2:31:49 pm

##START ANALYSIS OF :Universal/Key Parse/Simple

2:31:51pm

##FINISH ANALYSIS OF :Universal/Key Parse/Simple
2:31:53 pm

The signature is:

WH WM kN kNN

##FINISH ANALYSIS OF :Universal/Is Primitive?/Simple
2:31:56 pm

The signature is:

“=<boolean>

/*SE*/PER("Primitives" ())

227

EXPERIMENTING WITH THE ANALYSIS TOOL

From the signature inferred, it can be said that the method Is Primitive?
takes a string as argument and returns a boolean value. Is Primitive?

also induces a read side-effect on a persistent named Primitives.

7.2.2 A worst case example

The code to be analysed is part of the implementation of the effect inference
algorithm. Each category of side-effect and affected data property is

implemented as a separate class (fig. 7.3).

Effect Info

/ \

Affected-Data Side-Effect

NN 7 IR

CAD OAD IAD LAD NAD PAD ASE CSE OSE ESE ISE LSE PSE

Fig. 7.3: The Effect Info class hierarchy

Each class defines a to-string method which produces a textual
representation of the side-effect or affected data property passed as
argument to the method. Each class also defines a format method to

produce a formatting string for the textual representation of the effect.

The to-string method calls the version of format defined for its class
and substitutes the formatting items in the formatting string with a textual
representation of the values of each of the fields of the side-effect or affected
data property. The to-string method defined for the class OAD is shown
in fig. 7.4

Kt e ﬂ%’ﬂﬁ?%// o e
< OaD»

/ fFormat 7
"

Format

« Affected-Datax

AT A AT IAATES
Affected Data textual representation

Fig. 7.4.a: OAD/to-string/Simple

228

EXPERIMENTING WITH THE ANALYSIS TOOL

Format « &ffected-Datax
o ottt e

Format « Affected-Data»
et T e

EUpdate\{glu‘e %
I w]

2 Argument

% £ to-—tring %

Fead Attribute Write Attribute

Affected Data Property Affected Data property

Fig. 7.4.b&c: Cases of the local of OAD/to-string/Simple

Although, the code for to-string is not extremely complex, producing a
type and effect signature is complicated by the facts that affected data
properties are recursive data structures and that the to~string name is

heavily overloaded (36 classes implement a to-string method).

The graph shown in fig. 7.5 shows the progress of the analysis of the to-
string method. The points of the analysis at which the set of classes of an
operation receiver has been restricted by the programmer are also indicated.
To simplify the diagram, the subtrees corresponding to the inferences of the

signatures of the various Format methods have been omitted.

229

EXPERIMENTING WITH THE ANALYSIS TOOL

OAD/to-string/Simple

3 Local of
OAD/to-~string/Simple
OAD/Format/Sinple

Restriction of the receiver
of to-string

NAD/to-string/Simple
IAD/to-string/Simple

Varity/to-string/Simple Restriction of the receiver

of to-string
IAD/Format/Simple

PAD/to~-string/Simple

PAD/Format/Simple
PAD/to-string/Simple

Restriction of the receiver

11 of to-string

LAD/to-string/Simple

13 Local of

. LAD/to-string/Simple
LAD/Format/Simple

Restriction of the receiver
14 of to-string.

CAD/to-string/Simple

15

CAD/Format/Simple Local of
CAD/to-string/Simple

Fig. 7.5: Tree representation of the analysis of OAD/to-string/Simple
The signature inferred by the analysis tool is:
[<Side-Effect+>|<Effected Data+>|<Effect Info>]=""

The type signature says that the argument of OAD/to-string/plain is

an instance of Ef fect Info or one of its subclasses and a string is returned.

230

EXPERIMENTING WITH THE ANALYSIS TOOL

The effect signature contains no less than 72 side-effects and it would convey

little to print all the expressions here.
A few comments can be made on the behaviour of the analysis:

¢ Although the complexity of the different to-string methods is
roughly equivalent, the numbers of side-effects inferred for the different

methods vary considerably as shown by the figures below:

method identifier Number of side-effects
OAD/to-string/Simple 72
IAD/to-string/Simple 23
PAD/to-string/Simple 22
LAD/to-string/Simple 9
CAD/to~string/Simple 4

By examining the tree representation of the analysis, one can see there is a
correlation between the depth in the tree at which the inference is carried
out and the number of side-effects inferred. The implementation of to-
string defined for the CAD class is almost the same as the one defined
for the OAD class but when trying to infer a signature for CAD/to-
string/Simple, the inference mechanism detects the mutual recursion
as soon as to-string is applied to the values extracted from the
Argument and UpdateValue attribute of the instance of CAD. The
reduction in the growth of the number of side-effects observed for
IAD/to-string/Simple is due to the fact that for an instance of
IAD, only the value of the Argument attribute is printed.

e The expansion occurs when the instance attributes Argument or
UpdateValue are extracted from the first argument of the to-string
method. The side-effect signature of LAD/to-string/Simple induced
by the reading of the Argument and UpdateValue attributes are
composed with those inferred for CAD/to-string/Simple as shown

below:

Side-effects for CAD/to-string/Simple:
OAR(1 "Flags" ())*

231

EXPERIMENTING WITH THE ANALYSIS TOOL

OAR (1 "UpdateValue" {))*
OAR(1 "Argument" ())*

OAR (1 "Data" ())

Side-effects for LAD/to-string/Simple:

OAR(1 "Flags" ())*
OAR (QAR(1."Updatevalue") "Flags" ())*

OAR (OAR(1."UpdateValue'") "UpdatevValue" ())*

OAR (OAR(1 "UpdateValue") "Argument" (})*

OAR (QAR(1."UpdateValue”) "Data" ())*

The 1's (underlined with dots) in the side-effects of CAD/to-
string/Simple are replaced by the read UpdateValue and
Argument instance affected data properties (underlined with dots) in

the side-effect signature of LAD/to~-string/Simple.

In the signature of OAD/to-string/Simple, side-effects have five
levels of nesting as in:
OAR (OAR (OAR {OAR (OAR (1 "Argument") "Argument”) "UpdatevValue")

*Argument") "Data" ())

¢ The analysis of the to-string method takes approximately 30 min
to complete (interpreted on a Centris 610). It is instructive to look at how
this time is spent. Whereas it takes about 0.3 % of the total analysis time
to reach the bottom of the analysis graph (node 16), the upward
transition from node 6 to node 3 takes about a third of the total analysis
time. Although the logging of the analysis steps does not allow the break
down of the cost of the different stages in the upward transition, clearly
combining the lines of the different cases of a method is very expensive,

especially the elimination of the redundant side-effects.

232

EXPERIMENTING WITH THE ANALYSIS TOOL

7.3

Applicability of the Analysis
7.3.1 Speed and memory use

The examples of section 7.2 (and in particular the example presented in
7.2.3) show the execution of the analysis may consume considerable

computing resources, both in time and memory.

The analysis has been implemented in Prograph. Using Prograph to
implement the complex algorithms required by the analysis demonstrates the
expressiveness of the language and has allowed much flexibility to
experiment and test during development. However, running the analysis as
an interpreted application is expensive in terms of performance. The current
implementation of the analysis executes at speeds which exclude the use of
the analysis in a routine way which is transparent to the user. This handicap
must be taken into account when integrating the analysis tool in the

application development environment for Distributed Prograph.

For the usability of the analysis, it is important that it is reasonably robust (it
must not crash) and either completes or fails within a reasonable time. The
analysis algorithm has no built-in "circuit-breaker" but such functionality
could be provided by taking into account the depth of the analysis graph.
The deeper the graph becomes, the more likely it is that the analysis program
will abort by reaching the limit of the available memory resources or that the
time needed to obtain a result will become unacceptable. The circuit-breaker

should report that the depth limit has been reached and fail the analysis.

The Prograph interpreter and editor also need to perform method and
attribute look-ups as well as class hierarchy searches and probably maintain
internally some data for the same purpose as the auxiliary data described in
7.1.2. Accessing the internal data maintained by the interpreter and using the
associated operations to manipulate this data may be a more efficient
solution than defining ad-hoc auxiliary data and operations to query the

data.
7.3.2 Handling mutual recursion

The example presented in 7.2.2 shows how mutual recursion complicates the

analysis. Two approaches are possible:

233

EXPERIMENTING WITH THE ANALYSIS TOOL

e Take the view that mutually recursive methods cannot be analysed and
fail the analysis every time mutual recursion is detected. However, the
way mutual recursion is detected is crude and it is likely that mutual
recursion will be detected in situations where it does not occur at run-
time. Overloading method and attribute names corresponds to well
established object-oriented programming practices so mutual recursion
may often be detected. Thus, this option might prove unnecessarily

restrictive.

e Leave the programmer to give indications about the actual control flow
of the method by restricting the receiver of operations with a data-
determined reference. This option requires the programmer to have an in-
depth knowledge of the code and goes against the principle of data
abstraction. Taken to the extreme, this solution raises the question of the
splitting of the tasks between the analysis and the programmer. As the
degree of interaction required from the programmer increases, the benefits

drawn from the analysis become less obvious.
7.3.3 Precision of the results

The design of the analysis always requires a balance to be struck between the

accuracy and the speed of the analysis.

Some design decisions have been made and explained in the previous -

chapters, trading precision for speed:

* Case-wide type inference is carried out in two passes (forward and

backward, the third pass is concerned only with type dependencies).
* The combination of the lines of the relational primitives.
¢ The combination of the lines of the different cases of the same method.

*» In the case of mutual recursion, the signatures of the methods whose
identifiers occur between two identical method identifiers are considered

valid and are reused when they should be discarded

On the other hand, other decisions have leant toward precision at the

expense of speed:

* The case in which the operation annotated for distribution appears is

analysed before the side-effects of the annotated operation are

234

EXPERIMENTING WITH THE ANALYSIS TOOL

synthesised. The expected benefits are that the type information inferred
for the arguments of the operation annotated for distribution will help to

narrow the approximation produced by the effect synthesis.

Other solutions have been implemented or propositions can be made to

improve the precision of the analysis:

* The user is prompted to restrict the type of a receiver of an operation
with a data-determined reference when this operation has a heavily

overloaded name.

e The task of the effect synthesis is greatly complicated by the fact that
the argument of a Get or a Set operation can be either an instance of a
class or a string the value of which is the name of a class. The type of the
operation argument does not matter when the attribute accessed or
modified is a class attribute and the synthesis describes the effect
induced by the Get or Set operation with the same state operation (a
class state operation). But if an instance attribute is accessed or
updated, the effect induced by the Get or Set operation will depend on
the type of the argument and must be described by two different state
operations. Passing a class reference to a Get or Set operation to obtain
or modify the default value of an instance attribute is a very common
practice in the Application Building Editors. However, this construct is
less relevant for actual application code. Ideally, there should be two
pairs of Get and Set operations in Prograph for different types of
arguments: the Get and Set operations which take an instance as
argument and the Get and Set operations which take a string as
argument. Instead, the analysis could assume that a program is not going
to access or modify default instance attribute values. The typing rules for
Get and Set operations would have to be modified so that a string type
is no longer a legal type for the first input of a Get or Set operation
when this operation involves an instance attribute. No other changes

would have to be made to the rest of the analysis.

235

EXPERIMENTING WITH THE ANALYSIS TOOL

7.4

Iinterpretation of the synthesis results

The results of the effect synthesis can be used to derive information about the
effects induced by the execution of an operation annotated for distribution.

The information of interest falls into four categories:
* Access to a global variable
 Update of a global variable
e Update of an operation argument
* Creation of an alias.

The information can be organised in a hierarchy (fig. 7.6).

Information
Access Update
Global Ope;ation Global Operation
Variable Argument Variable Argument
Alias

Fig. 7.6: Effect information hierarchy

Access to an Operation Argument appears for the sake of completeness,
however this information is not recorded as explained in subsection 6.4.5.2.
Alias is below both Update of a Global Variable and Update of an Operation

Argument as the creation of an alias may result from a write state operation.

Information can be extracted by interpreting the state operations produced

by the synthesis.
7.4.1 Access information

An access to a global variable occurs during the execution of an operation
annotated for distribution if the list of state operations produced by the

synthesis of the side-effects of the annotated operation contains:

e A persistent access state operation (P_access (Data))

236

EXPERIMENTING WITH THE ANALYSIS TOOL

e A class access state operation (C_access (Data Argument))
¢ An allocation state operation (Alloc (Data))
7.4.2 Update information

An update to an input occurs when the list of the state operations produced
by the synthesis of the side-effects of an operation annotated for distribution

contains:

s An instance update state operation (I_update(Data Argument
Updatevalue)) where the argument route is an input route (IV (Data
Depth)).

e A list update state operation (L_update (Argument

UpdateValue)) whose argument route is an input route (1V (Data

Depth)).

An update to a global variable is characterised by the presence in the list of

state operations of:

e A class update state operation (C_update (Data Argument
P P

UpdateValue)).

e A persistent update state operation (P_update (Data

UpdateValue)).

e An instance update state operation (I_update (Data Argument
UpdatevValue)) where the argument route is a class route (cV (pata

Depth)) or a persistent route (PV (Data Depth)).

e A list update state operation (L_update (Argument
UpdateValue)) whose argument route is a class route (cV(pata

Depth)) or a persistent route (PV (Data Depth)).
7.4.3 Alias information

Creating an alias means that, as the result of an update, an object is

potentially referenced more than once.

The purpose of the UpdateValue route of an update state operation is to
describe how the data object that will be pointed to after the update
described by the state operation became available in the cases of the method

called by the operation annotated for distribution. Examining the

237

EXPERIMENTING WITH THE ANALYSIS TOOL

UpdateValue route of an update state operation can provide useful

information:

* An input UpdateValue route with a depth greater than or equal to
one indicates the creation of an alias. This is because the object described
by the route has been extracted from an input of the current case and, as
a result of the update state operation, the extracted object is referenced
at least twice. It is referenced once by the structure from which it was
extracted and a second time by the structure that points to it after the

update.

o L o A A 3 A A A A

a

Y Objlnst¥ar 7]

e

b

Fig. 7.7: Aliasing of an attribute value.

In fig. 7.7, after the execution of the persistent Set operation, b is
pointed to by at least two structures: the persistent structure Pers and

the structure from which b was extracted.

* An input UpdateValue route of depth zero may also indicate the
creation of an alias because of two reasons. The first one is the reduction
of read effects on lists. The reduction rule for a list affected data
property requires that the Reduce function does not increment the depth
of its parameter routes before passing them as return routes. A route with
a depth of zero may describe an object extracted from a list passed as an
argument to the current case. The second reason is that an input route of
depth zero may also describe an object which was passed as an argument
to the operation annotated for distribution. At the same time, this
argument object may already be referenced outside the cases of the
method called by the operation annotated for distribution (although there
might be no other reference to the argument object, the analysis cannot

rule out the creation of an alias).

238

EXPERIMENTING WITH THE ANALYSIS TOOL

< Objinst¥ar 7]

d
e L e At e

Fig. 7.8: Aliasing of the element of a list

In fig. 7.8, the value c is described by an input route of depth zero. After
the Set operation, the value ¢ is pointed to by both the list b and the

instance a or the class whose name is the value of string a.

¢ A persistent or a class UpdateValue route shows that the object has
been extracted from a persistent or a class structure before its reference is
given to another structure during an update. Therefore, the object is now

referenced at least twice.

N o e L e R

. @

‘e/{:numeric Attr ﬁ b
o

Fig. 7.9: Aliasing of a global variable.

In fig. 7.9 after the Get operation, the value extracted from the persistent
Pers is referenced by both the persistent Pers and the instance a or the

class whose name is the value of the string a.

* Objects created locally can also be aliased. The detection of these
aliases requires a scan of the entire list of the state operations to find
write state operations whose UpdateValue fields store identical

local routes.

In the implementation of several distributed object-oriented languages,

immutable data cannot be referenced across different object contexts.

Instead, the immutable data objects are duplicated before being moved to

another context. The consequence is that aliases to immutable data objects

239

EXPERIMENTING WITH THE ANALYSIS TOOL

are always local. In Prograph, instances of primitive datatypes (with the
exception of the 1ist datatype) are immutable. It would be possible to
extend the current effect inference mechanism so that the type of the

UpdateValue slots of the effects is recorded.
7.5 Exploitation of the resuits for distribution

In the Distributed Prograph model, an operation annoted for distribution is
exported from the originator context into a recipient context where it is
executed. This section discusses three possible mechanisms for distribution

and how these mechanisms can exploit the results of the effect synthesis.

7.5.1 Status quo

The first option uses the current facilities provided by Prograph (see section
2.4). The table in 6.4.5.2 shows that only accesses to instances and lists can
be carried out using the distribution mechanism currently available in

Prograph.

An operation annotated for distribution can be executed remotely only if the
synthesis of the side-effects of this operation produces an empty list of state

operations.
7.5.2 Access to global variables

The current distribution mechanism could be extended so that it becomes
possible to send the value of global variables (i.e. persistents, class attributes
and default values of instance attributes) from the originator context into the
recipient context. It is assumed that, as in the current version of Prograph,

these values can be transmitted in their full extent across contexts.

An operation annotated for distribution can be executed remotely if the list
of state operations produced by the synthesis of the side-effects of the

annotated operation contains only:

® access state operations (class access and persistent access state

operations)

* allocation state operations (the instantiation of an object is considered
as an access of the class attribute values and default instance attribute

values of the class from which the object is instantiated)

240

EXPERIMENTING WITH THE ANALYSIS TOOL

e instance and list update state operations (I_update (Data
Argument UpdatevValue) and L_update (Argument
UpdateValue) respectively) where both Argument and
UpdateValue are local routes. This rule means that only objects created
in the recipient context can be updated and that the update must not

create an alias to an object located in the originator context.

The access state operations are used to determine which classes and which

persistent values should be updated in the recipient context:

e for each class access state operation (C_access (Data Argument)),
for all the classes referenced in the Argument of the state operation, the
attribute named by the Data value of the state operation must have its

value updated in the recipient context;

 for each persistent access state operation(P_access (Data)), the
value of the persistent named by the Data value of the state operation

must be updated in the recipient context;

e for each allocation state operation (Alloc (Data)), all the attributes
of the class named by the Data value of the state operation must have

their values updated in the recipient context.
7.5.3 Access and updates to operation inputs and global variables

A third option would be to design a mechanism which supports both
accesses and updates to global variables and the arguments of an operation
executed remotely. The mechanism should also provide global object
identifiers so that replicas can be reconciled in the originator context after the

remote execution of the operation annotated for distribution.
The result of the effect analysis could be used to decide which:

e Global variables must be updated in the recipient context as explained

in the previous subsection.

e Inputs and global variables must be updated in the originator context,

once the operation has been executed remotely.

The list of state operations produced by the synthesis of the side-effects of
the operation annotated for distribution can be exploited in the following

way:

241

EXPERIMENTING WITH THE ANALYSIS TOOL

e For each persistent update state operation (P_update (Data
Argument UpdateValue)) the persistent named by the Data value of
the state operation must have its value updated in the originator context
after the execution of the operation annotated for distribution. However,
the effect synthesis may pessimistically predict an update to a persistent
value and this update may not occur at execution time. The value of the
persistent must be updated in the recipient context before the execution
of the exported operation. If, contrary to the prediction of the effect
synthesis, the value of the persistent is not updated during the remote
execution of the operation annotated for distribution, the net effect of the
state-operation will be to cause a round trip of the persistent value from
the originator context, through the recipient context and back to the

originator context.

e For each class update state operation (C_update (Data Argument
UpdateValue)), for all the classes referenced in the Argument of the
state operation, the attribute named by the Data value of the state
operation must have its value updated in the originator context after the
execution of the operation annotated for distribution. For the same
reasons as for a persistent value, the value(s) of the attribute(s)
designated by the Data value and the Argument route of the class
update state operation must be updated in the recipient context before

the execution of the remote operation.

e For each list and instance update state operation
(L_update (Argument UpdateValue) and I_update (Data
Argument UpdateValue) respectively) with an input route as
Argument, the value of the input of the operation annotated for
distribution must be updated after the execution of the operation. Unlike
classes whose attribute values can be updated individually, the update of
an argument requires the complete argument to be sent back to the

originator context.

¢ For each list and instance update state operation where Argument is a
persistent route or class route (PV (Data Depth) or CV (Data Depth)
respectively), the persistent or the class referenced by the persistent or the

class route must be updated. The update of a persistent is performed as

242

EXPERIMENTING WITH THE ANALYSIS TOOL

for a persistent update state operation. To explain how the update of the
class should be performed, it must be noted that if a class route is passed
as Argument to an instance or list update state operation, a class
attribute or a default instance attribute must have been accessed
beforehand in the case(s) of the method called by the operation
annotated for distribution. This access is recorded with a class access
state operation by the effect synthesis and the Argument route of this
class access state operation refers to the same classes as the Argument
route of the list or instance update state operation. Consequently, for
each class access state operation (C_access (Data Argument)) with
an Argument which refers to the same classes as the Argument route
of the list update or instance update state operation, all the classes
referenced in the Argument of the class access state operation, must
have the value of their attribute named by the Data value of the class
access state operation updated in the originator context after the
execution of the operation annotated for distribution. A more efficient
solution would be to have class routes to record not only the class from
which a value was extracted but also the name of the attribute from
which this value was extracted; it would be no longer necessary to search

the list of class access state operations.
7.6 Summary

* The analysis tool is implemented as a separate application within the

interpreter.

¢ Some examples show that the analysis deals imperfectly with heavily

overloaded methods and recursion, in particular mutual recursion.

* Useful information (access or update of a global variable, update of a
operation argument, creation of an alias) can be extracted from the effect

synthesis results and exploited by the distribution mechanisms.

243

CONCLUSION

8 Conclusion

8.1

The last chapter of this thesis is divided into three sections.

The first section summarises the content of this thesis; the second section
suggests how this research could be taken further. The last section reviews the

contributions of this work.
Summary

This thesis has discussed the use of Prograph as a language for distributed
programming. The ambition of Distributed Prograph is to extend the
productivity that the current version of Prograph already offers for user-

interface design and symbolic programming to distributed programming.

The dataflow model has been found to be a good model to express the
potential for parallelism in Distributed Prograph. Operations in the case of a
method are units of parallelism and distribution. However, the programmer
keeps control of distribution with an annotation to indicate which operations
should be distributed. The model hides from the programmer communication

and distribution mechanisms.

Object-orientation presents some challenges for the implementation of the
model notably that of state and behaviour consistency across several
execution contexts. Behaviour consistency is the requirement that objects

exhibit the same behaviour in different contexts.

An analysis has been developed to provide an approximation of the effects

the execution of an operation might induce.

Types and effects are not orthogonal issues in Prograph. Instances of
primitive data types cannot be updated, but for reasons of efficiency,
instances of user-defined classes can be updated in place. Type information
is useful to find more about effects and type inference is the first stage of the
analysis. Object-orientation makes type inference more difficult than for
other language paradigms because of dynamic binding, inheritance and data
polymorphism. The purpose of inference is to reduce the uncertainty due to
dynamic binding and to use type information for the effect analysis. The type

inference algorithm designed and implemented for Prograph can be applied in

244

CONCLUSION

8.2

a modular fashion to separate methods. The type system handles
dependency between input and return types as well as variable arity but it
has been decided not to tackle low-level operating structures (externals in
Prograph terminology). The algorithm can type methods which exhibit a small
level of polymorphism but calls to heavily overloaded methods can be

handled only with some user assistance.

The effect inference extends the type inference algorithm to produce a type
and effect signature for the methods. The choice of a representation for effect
information is based on a study of the different effects a computation may
have in Prograph and some trade-off between the precision and the

tractability of the analysis.

Effect synthesis is the last stage of the analysis and uses the type and effect
information gathered by the inferences to produce an approximation of how
an operation annotated for distribution would access and update its

arguments and global variables during its execution.

The purpose of the information produced by the analysis is twofold: it may
assist the programmer in selecting the operations for distribution and could

also be exploited for distributing the operations.
Future work
8.2.1 Integration of the analysis tool

The prototype developed in this work is implemented as an application
executing within the interpreter, which requires the user to switch between the
execution of the analysis and the interpreter. A better integration might make

the tool more intuitive to use, in particular in the two following situations:

* When the type inference fails, it would be nice to be able to display the
case in which the failure has occurred and highlight the operation for

which the inference has failed.

* When typing an operation calling a heavily overloaded method, the
analysis prompts the user to restrict the type of the receiver. It would be

easier for the user to do it if the operation was highlighted on the screen.

A good integration also requires the choice of a notation to indicate

parallelism. The interpreter/editor environment must be modified so that the

245

CONCLUSION

operations can be annotated. In the current version of Prograph, operations
can be annotated by selecting an item on the Controls pull-down menu of the
interpreter/editor and it appears natural to add the new notation to the

current list of items available in this menu.

The speed and the user involvement required precludes the application of the
analysis transparently to the user. Instead the analysis should be triggered by
selecting a case and an item from a pull-down menu (the Info menu of the

interpreter would be a good candidate to insert the new item).

The last issue to be addressed is that of the storage of the analysis results.
The current prototype displays the results of the effect synthesis in a textual
form and then discards them, they should be saved so that they can be
further exploited.

8.2.2 Exploitation of the results

The way the results of the effect analysis will be exploited depends on three

different factors:

e The purpose of the information: the interest may lie in either correctness
or performance. Correctness is concerned with the access to global
variables, modifications of global variables and of operation arguments
and dependencies between operations (this latter aspect is not addressed
by the analysis). Performance is concerned with the ratio of computation

over communication.

» The features of the distribution mechanisms have an impact on what
operations can be safely executed remotely. For example, if the
distribution mechanisms provide global object identifiers then aliasing
should not be a problem. The features also have an impact on the
evaluation of the performance as some of them may be less costly than

others.

* User control: the results of the analysis can be used as a warning for the
user who can then decide whether the operation should be distributed or
not, whatever the consequences of this decision may be (the operation
may not be executed correctly). The results of the analysis may be used
by the compiler or the run-time support to decide whether the operation

should be exported or not.

246

CONCLUSION

8.3

Contributions

An extension of the underlying model of sequential Prograph for parallel
programming is discussed and compared to other models for distributed
programming.

The current implementation of Prograph has been presented and other
distributed language designs have been reviewed with the emphasis being put
on the details that are relevant for the design of Distributed Prograph. The
benefits the implementation could draw from effect information are

discussed.
The analysis is broken into three stages:

¢ type inference which computes the types of the inputs and outputs of a

method,
¢ effect inference which computes a description of the effects of a method

e effect synthesis which produces an approximation of the effects of an

operation in a particular context.

Effect analysis has been widely applied to both imperative and functional

languages but not to object-oriented languages.

The design of the type and effect inferences and the effect synthesis, together
with the prototype implementations provide a good basis for future practical

tools.

247

BIBLIOGRAPHY

Bibliography

[Agesen 1996] Agesen, O. (1996). Concrete Type Inference: Delivering Object-
Oriented Applications. SMLI TR-96-52, Sun Microsystems Laboratories.

[Agha 1990] Agha,G. (1990). Concurrent Object-Oriented Programming.
Communications of the ACM, vol. 33 n°9, pp. 125-141.

[Alvisi et al. 1992] Alvisi, L., Amoroso, O., Babaoglu, O., Baronio, A.,
Davoli, R. and Giachini, L.A. (1992). Parallel Scientific Computing in
Distributed Systems: The Paralex Approach. Technical Report UBLCS-92-2,
Laboratory for Computer Science, University of Bologna.

[Babb 1984] Babb, R.G. (1984). Parallel Processing with Large-Grain Data
Flow Techniques. Computer, vol 17, n°6., pp. 55-61.

[Backus 1978] Backus, J. (1978). Can programming be liberated from the von
Neumann style? Communications of the ACM, vol. 21 n°8, pp. 613-641.

[Bacon, Graham and Sharp 1994] Bacon, D.F., Graham, S.L. and Sharp, O.].
(1994). Compiler Transformations for High Performance Computing. ACM
Computing Surveys, vol. 26, n° 4, pp. 345-420.

[Bal, Steiner and Tanenbaum 1989] Bal, H.E., Steiner, J.G. and Tanenbaum
AS. (1989). Programming Languages for Distributed Computing Systems.
ACM Computing Surveys, vol. 21, n° 3, pp. 262-313.

[Balter, Lacourte and Riveill 1994] Balter, R.., Lacourte, S., and Riveill, M.
The Guide language. The Computer Journal, vol. 37 n°6, pp. 519-530.

[Bennett 1987] Bennett, J.K. (1987). The Design and Implementation of
Distributed Smalltalk. Proceedings of the Conference on Object-Oriented
Programming Systems, Languages and Applications (OOPSLA '87). Special Issue
of ACM SIGPLAN Notices, vol. 22, pp. 318-30.

[Birman 1993] Birman, K. (1993). The Process Group Approach to Reliable
Distributed Computing, Communications of the ACM, vol. 36 n°12, pp. 36-53.

[Birrel and Nelson 1984] Birrel, A.D. and Nelson B.J. (1984). Implementing
Remote Procedure Calls. ACM Transactions on Computer Systems, vol. 2, n°1

pp. 39-59.

[Black et al. 1986] Black, A., Hutchinson, N., Jul, E., and Levy, H. Object
Structure in the Emerald System. Proceedings of the Conference on Object-
Oriented Programming Systems, Languages and Applications (OOPSLA '86).
Special Issue of ACM SIGPLAN Notices, vol. 21, pp. 78-86.

[Briot and Guerraoui 1996]. Briot, J.P. and Guerraoui, R. (1996). A
classification of Various Approaches for Object-Based Parallel and
Distributed Programming. Technical Report no 96-01, Dept. of Information
Science, University of Tokyo.

[Browne et al. 1994] Browne, J.C., Dongarra, J. J., Hyder, S.I., Moore, K. and
Newton, P. (1994).Visual Programming and Parallel Computing. Technical
Report CS-94-229,University of Tennessee

[BYTE 1996] BYTE (1996). Datapro Report, Wanted: Client/Server
Expertise. BYTE, vol. 21, n°11 p.42

248

BIBLIOGRAPHY

[Cann 1992]Cann, D. (1992). Retire Fortran? A debate rekindled.
Communications of the ACM, vol. 35, n°8 pp.81-89.

[Cardelli 1987] Cardelli, L. (1987). Basic Polymorphic Typechecking. Science
of Computer programming, vol. 8 pp.147-171.

[Cardelli 1995] Cardelli, L (1995). A Language with Distributed Scope.
Proceedings of the 22nd ACM SIGPLAN-SIGACT Symposium on Principles of
Programming Languages (POPL’95), January 1995, pp.286-297.

[Cardelli and Wegner 1985] Cardelli, L. and Wegner, P. (1985). On
understanding Types, Data Abstraction and Polymorphism. ACM Computing
Surveys, vol. 17, n° 4, pp. 471-522.

[Chow and Harrison 1992] Chow J.H. and Harrison W.L. (1992) Compile-
Time Analysis of Parallel Programs that Share Memory. Proceedings of the
Nineteenth Annual ACM SIGPLAN-SIGACT Symposium on Principles of
Programming Languages (POPL 1992), pp.130-141.

[Cole 1989] Cole, M. (1989). Algorithmic Skeletons: Structured Management of
Parallel Computation. Pitman/MIT Press.

[Coulouris, Dollimore and Kindberg 1992] Coulouris, G., Dollimore, J. and
Kindberg, T. (1992). Distributed Systems: Concepts and Design- Edition2 draft
material. Addison-Wesley.

[Cousot and Cousot 1977] Cousot, P. and Cousot, R. Abstract
interpretation, a unified lattice model for static analysis of programs by
construction of approximation of fixpoints. Proceedings of the Fourth Annual
ACM SIGPLAN-SIGACT Symposium on Principles of Programming
Languages(POPL 1977), pp. 238-252.

[Cox 1996] Cox, P.T. (1996). Private communication.

[Cox and Mulligan 1985] Cox, P.T. and Mulligan, L]. (1985). Compiling the
graphical functional language PROGRAPH. Proceedings of ACM Symposium on
Small Systems, pp.34-41.

[Cox and Pietrzykowski 1985] Cox, P.T and Pietrzykowski, T. (1985).
Advanced programming aids in PROGRAPH. Proceedings of ACM Sympos. on
Small Systems, pp.27-33.

[Cox and Pietrzykowski 1988] Cox, P.T. and Pietrzykowski, T (1988). Using
a pictorial representation to combine dataflow and object-orientation in a
language-independent programming mechanism. Proceedings of the
International Computer Science Conference 88, pp. 695-704.

[Cox and Smedley 1996] Cox, P.T. and Smedley, T.J. (1996). A Visual
Language for the Design of Structured Graphical Objects. Proceedings of the
IEEE Symposium on Visual Languages (VL '96), pp. 296-303,

[Darlington et al. 1995] Darlington, J. Gou, Y. To, HW. and Yang J. (1995).
Skeletons for Structured Parallel Composition. Proceedings of the 15th ACM
SIGPLAN Symposium onPrinciples and Practice of Parallel Programming
SIGPLAN Notices, vol.30, n°8, pp.19-28.

[Decouchant 1986]. Decouchant, D 1986. Design of a Distributed Object
Manager for Smalltalk_80 System. Proceedings of the Conference on Object-
Oriented Programming Systems, Languages and Applications (OOPSLA '86).
Special Issue of ACM SIGPLAN Notices, vol.21, pp. 444-452.

249

BIBLIOGRAPHY

[DeRoure 1990] DeRoure, D.C. (1990). Experience with Lisp and Distributed
Systems. CSTR 90-21.Department of Electronics and Computer Science,
University of Southampton.

[Dollimore, Miranda and Xu 1991] Dollimore,J., Miranda, E. and Xu, W.
(1991). The Design of a System for Distributing Shared Objects. The Computer
Journal, vol. 34, n°6, pp. 514-521.

[Dollimore, Nascimento and Xu 1992] Dollimore, J., Nascimento, C. and Xu,
W. (1992). Fine Grained Object Migration: Model, Mechanisms and
Experience. QMW CSL Report Number 571

[Fasel and Keller 1986] Fasel,].H. and Keller, RM. (1986). Introduction of the
proceedings of the Santa Fe Graph Reduction Workshop, Lecture Notes in
Computer Science n° 279 Springer-Verlag.

[Feo, Cann and Oldehoeft 1990] Feo,]J.T., Cann D.C. and Oldehoeft, R.R.
(1990). A Report on the Sisal Language Project. Journal of Parallel and
Distributed Computing, vol. 10 n°4 pp. 349-366.

[Field and Harrison 1988] Field, A.]. and Harrison P.G. (1988). Functional
Programming. Addison-Wesley.

[Foster and Taylor 1990] Foster, 1. and Taylor S. (1990). Strand: New Concepts
in Parallel Programming. Prentice Hall, Englewood Cliffs.

[Freeh and Andrews 1995] Freeh, V.W. and Andrews, G.R.(1995). fsc: A
Sisal Compiler for Both Distributed- and Shared-Memory Machines. TR 95-
01 University of Arizona.

[Garbinato, Guerraoui and Mazouni 1994] Garbinato B., Guerraoui R. and
Mazouni K.: Distributed Programming in Garf. Object Based Distributed
Programming, Lecture Notes in Computer Science n° 961, pp. 225-239,
Springer Verlag.

[Gelernter and Carriero 1992] Gelernter, D., Carriero, N. (1992).
Coordination Languages and their Significance. Communications of the ACM,
vol. 35, n° 2, pp. 97-107.

[Giacalone, Mishra and Prasad 1989] Giacalone, A., Mishra, P., and Prasad,
S. (1989). Facile: A Symmetric Integration of Concurrent and Functional
Programming. Proceedings of the 1989 TAPSOFT Conference, Lecture Notes in
Computer Science n° 352, pp. 184 -209, Springer-Verlag.

[Gifford et al. 1987]. Gifford, D.K., Jouvelot, P., Lucassen,].M. and Sheldon,
M.A. (1987). FX-87 Reference Manual. MIT/LCS/TR-407, MIT Laboratory for
Computer Science.

[Glaser, Hankin and Till 1984] Glaser, H-W.,Hankin, T.L. and Til, D.(1984).
Principles of functional programming. Prentice Hall International.

[Goldberg and Hudak 1986] Goldberg, B. and Hudak, P. (1986). Alfalfa:
Distributed graph reduction on a hypercube multiprocessor. Proceedings of the
Santa Fe Graph Reduction Workshop, Lecture Notes in Computer Science n°
279, pp- 94 -113, Springer-Verlag.

[Halstead 1984] Halstead, R.H. (1984). Implementation of MultiLisp: Lisp
on a multiprocessor. Proceedings of the ACM Conference on Lisp and functional
programming pp. 9-17.

250

BIBLIOGRAPHY

[Hammond1994] Hammond, K. (1994). Parallel Functional Programming: An
Introduction (invited paper). Proceedings of the First International Symposium
on Parallel Symbolic Computation (PASCO’94).

[Hammond et al. 1995] Hammond, K., Matson,].S. Jr., Partridge A.S., Peyton
Jones S.L., Trinder P.W (1995). GUM: a portable parallel implementation of
Haskell. Proceedings of the Workshop on the Implementation of Functional
Languages 95, pp. 259-280.

[Harrison 1989] Harrison W.L. (1989). The interprocedural Analysis and
Automatic Parallelization of Scheme Programs. Lisp and Symbolic
Computation, vol. 2, n° 3/4, pp. 179-396.

[Hoare 1978] Hoare, C.A.W. (1978). Communicating sequential processes.
Communications of the ACM, vol. 21, n° 8, pp. 666-677.

[Horwitz, Reps and Binkley 1988] Horwitz, S. Reps, T. and Binkley, D.
(1988). Interprocedural slicing using dependen graphs. Proceedings of the
SIGPLAN'88 Conference on Programming Language Design and Implementation.
Special Issue of ACM SIGPLAN Notices, vol. 22, pp.35-46.

[Hudak 1984] Hudak, P. (1984). ALFL Reference Manual and Programmer's
Guide. Research Report YALEU/DCS/RR-322, Yale University.

[Hudak 1986] Hudak, P. (1986). Para-functional programming. Computer,
vol. 19 n°8, pp. 60-71

[Hudak 1989] Hudak, P. (1989). Functional Programming Languages.
Computing Surveys, vol. 21 n° 3, pp. 360 -411.

[Johnson 1986] Johnson R.E (1986). Type-Checking Smalltalk. Proceedings of
the Conference on Object-Oriented Programming Systems, Languages and
Applications (OOPSLA '87). Special Issue of ACM SIGPLAN Notices, vol. 21,
pp. 318-330.

[Kaplan and Ullman 1980] Kaplan, M. and Ullman, J.D. (1980). A Scheme
for the automatic inference of variable types. Journal of the ACM, vol. 27,n° 1,
pp. 128-145.

[Keremitsis and Fuller 1995] Keremitsis E. and Ian J. Fuller, 1.J (1995) HP
Distributed Smalltalk: A Tool for Developing Distributed Applications,
Hewlett-Packard Journal, vol. 46 n°2, pp. 85-92.

[Kind 1996]. Kind A. (1996). Private communication.

[Kind and Friedrich 1993] Kind, A. and Friedrich, H. (1993). A practical
approach to type inference for EULisp. Lisp and Symbolic Computation, vol. 6,
n® 1/2, pp. 159-176.

[Kranz, Halstead and Mohr 1989] Kranz D.A., Halstead R.H. and Mohr
E.(1989). Mult-T: A high-performance parallel Lisp. Proceedings of the
SIGPLAN'89 Conference on Programming Language Design and Implementation.
Special Issue of ACM SIGPLAN Notices, vol. 24, pp. 81-90.

[Kristensen and Low 1995]. Kristensen A. and Low C. (1995). Problem-
Oriented Object Memory: Customizing Consistency. Proceedings of the
Conference on Object-Oriented Programming Systems, Languages and Applications
(OOPSLA '95). Special Issue of ACM SIGPLAN Notices, vol. 30, pp. 399-413.

251

BIBLIOGRAPHY

[LaLonde and Pugh 1990] Lalonde W.R. and Pugh J.R. (1990). Inside
Smalltalk. Prentice Hall International.

[LaLonde and Pugh 1991] Lalonde, W. and Pugh, J.(1991).Subclassing =
Subtyping # Is-a. Journal of Object-Oriented Programming, vol. 3, n°5 pp. 57-
62.

[LaLonde and Pugh 1996] Lalonde, W. and Pugh, J. (1996). Preparing to use
the distributed facilty in IBM Smalltalk. Journal of Object-Oriented
Programming, vol. 3, n° 5 pp. 44-48.

[Lea, Jacquemot and Pillevesse 1993] Lea, R.., Jacquemot, C. and Pillevesse,
E. (1993). COOL: System Support for Distributed Programming.
Communications of the ACM, vol. 36, n° 9, pp. 37-45

[Lee and Hurson 1994] Lee, B. and Hurson, A.R. (1994). Dataflow
Architectures and Multithreading. Computer, vol. 27, No. 8, pp. 27-39.

[Lieberman 1986]. Lieberman, H. (1986). Using Prototypical Objects to
Implement Shared Behaviour in Object-Oriented Languages. Proceedings of the
Conference on Object-Oriented Programming Systems, Languages and Applications
(OOPSLA '86). Special Issue of ACM SIGPLAN Notices, vol. 21 pp.214-223.

[Liskov 1988] Liskov, B. (1988). Distributed programming in Argus.
Communications of the ACM, vol. 31, n°3, pp. 300-312.

[Liskov and Shrira 1988] Liskov, B. and Shrira, L. (1988). Promises:
Linguistic Support for Efficient Asynchronous Procedure Calls in Distribute
Systems. Proceedings of the SIGPLAN'88 Conference on Programming Language
Design and Implementation. Special Issue of ACM SIGPLAN Notices, vol. 23,
pp. 260-267.

[Lucassen and Gifford 1988] Lucassen, J.M. and Gifford D.K. (1988).
Polymorphic effect systems. Proceedings of the 15th ACM SIGPLAN-SIGACT
Symposium on Principles of Programming Languages (POPL'88), pp. 47-57.

[Matwin and Pietrzykowski 1985]. Matwin, S. and Pietrzykowski, T. (1985).
Prograph: a preliminary report. Computer Language, vol. 10, n° 2, pp.91-126.

[Milner 1978] Milner, R.. (1978). A theory of type polymorphism in
programming. Journal of Computer and Systems Science, vol. 17, pp. 348-375.

[MPT forum 1993] Message Passing Interface Forum (1993). MPI: Message
Passing Interface. Proceedings of the Supercomputing ‘93 Conference, pp. 878~
883

[Nikhil, Pengali and Arvind 1986] Nikhil, R.S., Pingali, K. and Arvind (1986).
Id nouveau. GSG Memo 265, MIT Laboratory for Computer Science.

[OMG 1996]. The Object Management Group (1996). The Common Object
Request Broker: Architecture and Specification. OMG Technical Document
PTC/96-03-04.

[OSF 1992} The Open Software Foundation (1992). The OSF™ Distributed
Computing Environment. OSF-DCE-PD-1090-4 White Paper

[Oxhej, Palsberg and Schwartzbach 1992] Oxhej, N., Palsberg,]J. and
Schwartzbach, M. (1992). Making Type Inference Practical. Proceedings of the
Sixth European Conference on Object-Oriented Programming (ECOOP '92).
Lecture Notes in Computer Science n° 615, pp. 329-349, Springer-Verlag.

252

BIBLIOGRAPHY

[Snyder 1991] Snyder, A. (1991). Modelling the C++ object model: an
application of an abstract object model. Proceedings of the Fifth European
Conference on Object-Oriented Programming (ECOOP '91), Lecture Notes in
Computer Science n° 512, pp. 1-20, Springer-Verlag.

[Steele and Hillis 1986] Steele, G.L. Jr. and Hillis, W. D. (1986). Connection
Machine Lisp : Fine-grained parallel symbolic processing. Proceedings of the
ACM Conference on Lisp and functional programming, pp. 279-297.

[Steele 1995] Steele, G.L Jr (1995). Parallelism in Lisp. Lisp Pointers, vol. 8,
n°2, pp.1-14.

[Steenkiste and Hennesssy 1987] Steenkiste, P. and Hennessy, J. (1987). Tags
and Type Checking in Lisp: Hardware and Software approaches. Proceedings
of the Second Conference on Architectural Support for Programming Languages and
Operating Systems (ASPLOS), pp.

[Sunderam 1990] Sunderam, V.S. (1990). PVM: A Framework for Parallel
Distributed Computing, Concurrency: Practice & Experience,vol. 2, n° 4, pp.
315-339.

[Suzuki 1981] Suzuki N. (1981). Inferring types in Smalltalk. Conference Record
of the Eighth Annual ACM Symposium on Principles of Programming Languages,
pp. 187-99.

[Talpin and Jouvelot 1994] Talpin, J-P. and Jouvelot,P. (1994). The Type and
Effect Discipline. Information and Computation, n° 111, pp. 245-296

[Trealeven, Brownbridge and Hopkins 1982] Trealeven, P., Brownbridge, D.
and Hopkins, R.(1982). Data-driven and demand-driven computer
architecture. Computing Surveys, vol. 14, n° 1, pp.93-143.

[Wegner 1986] Wegner, P. (1986). Classification in Object-Oriented Systems.
ACM SIGPLAN Notices, vol. 21 n°10, pp.173-182.

[Wegner 1987] Wegner, P (1987). Dimensions of Object-Based Language
Design. Proceedings of the Conference on Object-Oriented Programming Systems,
Languages and Applications (OOPSLA '87). Special Issue of ACM SIGPLAN
Notices, vol. 22, pp. 168-182.

[Winder, Wei and Roberts 1992] Winder, R.., Wei, M. and Roberts, G. (1992).
UC++: An Active Object Model for Parallel C++. Research Note RN/92/115,
Department of Computer Science, University College London, 1992.

[Wright 1991] Wright, A.K. (1991). Typing references by effect inference.
Proceedings of the European Symposium on Programming (ESOP '91), Lecture
Notes in Computer Science, n°® 582, pp. 473-491, Springer-Verlag.

[Wright 1993] Wright, A K. (1993). Polymorphism for Imperative Languages
without Imperative Types. Rice University Technical Report TR93-200.

254

