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In this thesis we describe research work that was carried out on the problem of 

turbine blade f lm cooling in a supersonic environment. Also we consider a numerical 

investigation of heat transfer effects on the wall of a turbine blade when the main flow 

is subsonic. In both cases the How is considered to be irrotational, incompressible and 

time independent. 

In chapter two we review previous research work that was carried out in order 

to understand and improve the e&ciency of the 61m cooling method. 

In chapter three turbo-jet engines are considered. Their working cycle and the 

existing methods for cooling their various components are described. 

Chapter four deals with the supersonic case of film cooling. It is an extension 

of work performed by Fitt et al (1985). This is described at the beginning of the 

chapter together with a discussion of results produced &om the subsonic case. Then 

the supersonic problem is stated together with the analytical and numerical methods 

used and an extensive discussion on the results produced is also provided. 

The heat transfer problem for a subsonic main How is stated in chapter 6ve. The 

numerical schemes used to solve the equations are discussed, together with the results 

obtained. 

Finally, chapter six provides an overall discussion on both problems, the results 

produced and various suggestions for further future work on both cases. 
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CHAPTER 1 
INTRODUCTION 

1.1. INTRODUCTION 

The protection of solid surfaces exposed to high temperatures is a problem 

that has been investigated thoroughly for many decades. In many cases the high-

temperature environments are gaseous. A particularly interesting problem concerns 

the case where the surfaces which need protection are components of aircraft turbo-

jet engines. Many methods have been used for this but one of the most elective is 

film coohng. 

In film cooling air is passed from the engine compressor to the turbine blades and 

injected into the main stream through slots. Such secondary air has a lower tempera-

ture than the free stream and is used not only for cooling the turbine disks and blades, 

but also to seal any turbine cavities and other internal components from hot gases. 

This process of maintaining an acceptable temperature in the turbine is very critical 

due to the fact that higher pressures, temperatures and rotation rates are needed in 

order to increase the efhciency of an engine. Thus it is imperative for engineers to 

have an accurate way to predict sealing requirements in order to achieve minimum 

fuel consumption and better designed long lasting engines and engine components. 

The present work deals with the prediction of the mass Eow of the injected 

secondary air in a supersonic environment. It is based on previous work carried 

out by Fitt et al (1985) for a subsonic main stream. Furthermore, the problem of 

heat transfer in a subsonic flow and the calculation of the temperature of the wall 

downstream of the slot, when the injected flow has formed a thin 61m above the sohd 



surface has also been considered. 

The second chapter of this thesis describes research work performed dnring the 

previous decades. Some theoretical models for Elm cooling are mentioned, together 

with experimental work. Numerical investigations in both supersonic and subsonic 

environments are also discussed. 

The third chapter considers the turbo-jet engine. Since the scope of this thesis is 

not to investigate completely a jet engine, it has been decided to provide only infor-

mation that will be beneficial to the reader and help him/her to become familiarized 

with the problems that we have looked into. The various parts of the engine, the way 

it operates and also the different types of turbo-jet engines that have been developed 

during the years are mentioned here. Finally, diEerent ways of protecting the turbine 

and its components are also considered. The chapter finishes with a section about the 

techniques of convection cooling, impingement coohng, transpiration and Glm cooling. 

More emphasis, of course, has been given to the last method, since this is the one 

that has been looked at to more detail in the later chapters. 

In chapter four the work carried out by Fitt et al (1985) is extended. The subsonic 

problem, together with the formulation of the model and the numerical scheme used to 

solve it are discussed. A summary of the results obtained from the above investigation 

is also stated. The main part of this chapter consists of the research work performed 

for the supersonic case. All the theoretical work, the construction of the model, the 

diEerent methods used to solve the problem ajid the results produced are discussed. 

Chapter five deals with the heat transfer problem. A description of the problem 

and numerical schemes used together with the calculations are stated. Also the results 

from the model are analyzed and useful conclusions are drawn. 

Finally, chapter six contains all the conclusions from both problems and sugges-

tions are given to the reader for further research in areas that were not touched upon 

by the present, or previous investigations. 



CHAPTER 2 
LITERATURE REVIEW 

2.1. LITERATURE REVIEW ON BOTH PROBLEMS 

Many structural elements of gas turbines, such as nozzle guide vanes (NGVs) 

and turbine disks are subjected to substantial thermal stresses due to very high tem-

peratures in the turbine (often as high as 2000K). These extreme temperatures, in 

combination with high rotational speeds, result in large magnitude stresses on the 

components of the turbine, especially on the blades of the stator. (For a better un-

derstanding of the above engine terms the reader should refer to the next chapter 

and Bgures 3.1 and 3.2, where a diagram of a turbo-jet engine and a turbine are 

presented.) 

An efBcient means of protecting the above components is thus necessary if such 

stresses are to be minimized, and the safety, reliability, efficiency and operating life-

times of gas turbines are to be maximized. Thus, in order to maintain the turbine at 

a moderate temperature the introduction of a protective coolant into the main flow 

must be used. 

The method of film cooling is used extensively in commercial and military ap-

plications, particularly on turbine blades, turbine walls, combustion chambers and 

afterburners. Different methods of film cooling have been developed through the 

years, but the main ones are the injection of coolant through a single slot, arrays of 

slots, or a single array of slots. The holes may be either perpendicular to the main 

Eow, or inclined at an angle. A more thorough investigation into film cooling and 

coohng in general, may be seen in the following chapter, where a simple analysis of 



the structure of the turbine and how it works is carried out. 

Many researchers have been involved in the study of rotating disks, rim seals, 

disk-cavity heat transfer ajid Rim cooling over the past several decades. Much of the 

work has been experimental, but one can also find many theoretical approaches to 

the problem of film cooling and in the investigation of ways to produce techniques to 

improve the effectiveness of the coolant and to reduce the heat transfer along a turbine 

blade. In recent years due to the increase and improvements of computers many 

investigations have been performed by using Computational Fluid Dynamics (CFD) 

packages, or various numerical methods, such as Finite Element Methods (FEM), 

or Finite Difference Methods (PDM). All these contemporary techniques (especially 

CFD methods) have been utilized and proved to be quite successful in predicting 

with accuracy the 61m cooling eEectiveness of various arrangements and to produce 

trustworthy references for further investigation into the di@cult problems of secondary 

flow injection and film cooling. In the following pages a literature review of various 

61m cooling methods and heat transfer problems in the turbine are mentioned. 

Cole and Aroesty (1968) produced a theory for an inviscid Euid injected from 

a slot into a main hyper/supersonic stream. The assumption of continuity of the 

pressure across the dividing streamline created by the main stream and the secondary 

fluid, was assumed. By matching the outer and inner pressure, the shape of the stream 

line was found together with the injectant mass flow and the Aow downstream of the 

slot. A similar technique was used to find the shape of the stream line and to calculate 

the mass flow for the supersonic case that is described in chapter 4. 

Experimental work by Metzger and Fletcher (1971) proved that the technique of 

slot f l m cooling is more effective than hole injection (array of holes), since the space 

between the coolant holes allows the hot stream to penetrate through the coolant and 

reduces the cooling effectiveness. 

Metzger et al (1972) followed a different way to investigate Sim cooling in a sub-

sonic surrounding. They developed a finite difference scheme to predict film cooHng 

and heat transfer downstream from a 2-<limensional slot at 20° angle, where the Euid 

is injected into the main stream. They observed Eow separation at the end of the slot 

and came to the conclusion that the length of the Eow separation occurring down-



stream from the cavity depends on the angle of injection and that for small injection 

angles the separation region is smaller. A good prediction of the downstream tem-

perature and velocity was achieved by their numerical scheme and, finally, the heat 

flow downstream from the slot could be calculated and gave a good agreement when 

compared with experimental data. 

From the theoretical work of Brown et al (1988) the assumption that the pressure 

inside the airfoil was of magnitude < < 1 (where is the thickness ratio of the airfoil) 

was used to formulate the supersonic problem (see chapter 4). They suggested a 

model with typical dimensions for the airfoil: Z (length of the chord) and width 

0(/i). A nonlinear flow in the airfoil is assumed with typical velocities: if = 0(/ i^) , 

u = 0(&^), and z = 0(1), where ^ = 0(/t). The results produced were compared 

with experiments and gave good agreement. 

Another approach to the problem of film cooling in a supersonic main stream was 

followed by O'Connor and Haji-Sheikh (1992).They used CFD methods and showed 

that their approaches were a good approximation to the process of Elm cooling by 

comparing their numerical results with experimental ones. They also showed that the 

cooling effectiveness is very high even a long distance downstream from the slot, due 

to the sepajration between the supersonic main stream and the coolant. 

Similar results were obtained from a numerical study by Rizzetta (1992). He 

used a two-equation turbulence model (/t — s) for the same problem (slot injection 

in a supersonic main stream with a Mach number of 3.7 and a Reynolds number 

5.83x10^). His numerical results were compared with experimental data and good 

agreement between the two investigations was found. 

Finally, Cho and Goldstein (1995) conducted experiments to obtain heat and 

mass transfer coefficients and film cooling effectiveness for a single hole and an array 

of holes. The results for a single slot arrangement showed that the mass transfer 

around the slot is affected by the main flow. When the array of holes was used the 

results obtained were very similar to those from the one hole injection. The cooling 

effectiveness was very high and almost uniform in the direction of the Sow, but not 

in the lateral direction, across the holes. 



The problem of cooling the turbine blade is not the only one that has been under 

constant investigation for the last few decades. Various other parts of the turbine 

also need cooling, thus a lot of research has been cajrried out in order to And ways 

to improve their protection from the high operating temperatures of the turbine. In 

the following pages we review a small fraction of previous research work on various 

turbine components, such as rim seals, NGVs, blade disks and blade tails. 

Ito et al (1971) conducted experiments in order to examine the effectiveness of 

f l m cooling by a row of jets by measuring the mass transfer from the row. The density 

and the pressure of the coolant was greater than the main How and it was found that 

the film cooling effectiveness was affected a great deal by the blade-waU curvature. 

Sinha et al (1991) carried out experimental flow measurements downstream from 

a second row of holes located 40 hole diameters behind a 6rst row. It was found 

that a thicker boundary layer existed above the second row of holes, which caused a 

greater penetration to the main flow. The velocity gradients in the shear layer and 

consequently the turbulence generated were altered, becoming slightly lower. Finally, 

it was found that the temperature of the blade at the free stream, due to the injected 

flow penetration, was lower at the second row of holes which would cause a greater 

pressure gradient on the layer. 

Boyle (1991) compared experimental results of pressure surface and heat transfer 

against numerical results. The comparisons were for different turbine vane and blade 

geometries, with separated and unseparated flow, for a range of Reynolds numbers 

and turbulence intensities. The numerical solution method used was different from 

the conventional boundary layer method, because in the latter the solution domain 

was included in the boundary layer region and marching-type methods were used. In 

the numerical analysis a small fraction of the blade to blade mesh was in the boundary 

layer region and this requires the solution of the whole flow domain to be carried out 

in an iterative way. The results for the surface pressure from the numerical scheme 

showed good agreement with experimental data for many different blades. However, 

a more refined mesh was needed each time there was an abrupt pressure change. 

The numerical method predicted very accurately the heat transfer for various turbine 

blades downstream of the separation and in the turbulent region. 



Daniels et al (1992) conducted experiments to determine the aerodynamic prop-

erties and sealing characteristics of various seals typical of those found on the down-

stream side of a rotor in a gas turbine. By measuring the mass transfer across the 

slots the film cooling effectiveness was determined. Their experimental results were 

in good agreement with those of other scientists. Also, on decreasing the radial gap 

width of the overlapping radial seal, the cooling effectiveness was increased signifi-

cantly. However, the increase of the axial overlap of the seal did not improve the 

situation a lot. 

Dadkhah et al (1992) studied experimentally two rim seals with an external flow 

present. The Srst seal had an overlapping upstream stator and the second had an 

upward stator lip downstream. They found that the interaction of the coolant with 

the main Row had an important inHuence on the effectiveness of the cooling air. On 

the other hand, when the pressure difference across the slot was zero, it gave a high 

estimate of the minimum mass How required to seal the cavity. 

Harasgama and Burton (1992) performed heat transfer experiments and How 

visualization experiments on annular cascade or turbine NGVs with and without hole 

61m cooling. The NGVs were operated at the correct non-dimensional gas turbine 

temperatures, Reynolds number and Mach number. The results indicated that high 

cooling effectiveness can be achieved when the holes are placed along an iso-Mach 

line. Also the Nusselt number (jVt/ = ^ where h is the heat transfer coeSicient, Z 

the NGV chord and & the thermal conductivity of air) is reduced by up to 75% in 

the regions close to the slots, but in other areas the reduction does not exceed 50%. 

Finally, by increasing the blowing rate of the Him cooling gas, or reducing the coolant 

temperature, the heat transfer to the end wall was reduced significantly. 

Chew et al (1994) conducted a CFD investigation into a slot injection model 

with a subsonic main stream, finding that their results were in good agreement with 

experimental measurements. 

McMilhn and Lau (1994) performed experimental investigations to study the 

distribution of the local heat transfer coefficient in the internal cooling area near the 

tail of a turbine blade. Mass transfer measurements were conducted in a test channel 

which had arrays of holes at the bottom wall and whose inner regions were exposed 

7 



to naphthalene, in order to obtain a uniform temperature. An analogy between heat 

transfer and mass transfer was used to calculate the distribution of the local heat 

transfer coefficient for the surface of the channel. The experimental results showed 

that the local heat/mass transfer coefficients were higher than the corresponding local 

wall heat/mass transfer coefficients. In experiments with side wall flow injection, a 

small part of the injection flow turned back and exited from the holes, which reduced 

the cooling mass flow in the channel. Thus it was found that the amount of cooling 

air coming out from the test surface had to be increased in order to compensate for 

the lateral mass flow loss and to cool the blade efficiently. 

Finally, Amono et al (1994) performed a numerical study for the estimation of 

the temperature in a rotating disk and in the cavities between the nozzle and blade 

disk. This study was conducted to understand better the heat transfer at the rotating 

disks aad the turbulence region in the gas turbine, by using computational methods 

and finite volume techniques. The Navier-Stokes (N/S) equations together with the 

modelled energy equation for incompressible fluids were used. In order to calculate 

the turbulent stresses the turbulence model K — 6 was used. Also the technique 

of "segregation" was used where each part of the solution domain was computed 

separately. The results obtained showed the interaction of the injected secondary 

flow and the main gas flow in the form of temperature distributions (contours) and 

velocity vectors through the disk. It was shown that the "segregation" method waa 

an efficient method to use since it used smaller meshes, i.e. fewer grid points, which 

required less CPU time and storage. Finally, the computational method used could 

be easily adapted to calculate optimum cooling conditions for any rotating blade disks 

in a turbine. 

The problem of determining the optimum mass flow needed for efficient Elm 

cooling of a turbine blade in a sub/supersonic domain and of heat transfer in the 

presence of film cooling are two closely related existing problems. The literature 

which is available for both problems is really vast and it would have been impossible 

to include it all, or a large part of it, in this thesis. Thus only a small number of 

previous published research work has been discussed. 



CHAPTER 3 
THE TURBO-JET ENGINE AND 
THE PROCESS OF COOLING 
TURBINE COMPONENTS 

3.1. INTRODUCTION 

The mechanical arrangement of a turbo-jet engine is relatively simple, for it 

consists only of two main rotating parts (a compressor and a turbine) one or more 

combustion chambers and an exhaust system. Figure 3.1 shows a typical turbo-jet 

engine. 

air intake combustion 

chambers 
exhaust 

compressor 
turbine 

FIGURE 3.1. A typical turbo-jet engine 



In a commonly used turbo-jet engine air enters the inlet and it is compressed 

as it passes through a number of blade rows which are stationary and rotating. The 

collection of rotating blades is referred to as the rotor and the arrangement of station-

ary blades as the stator. After the air is compressed, it leaves the compressor section 

and enters the combustion chambers where fuel is injected through nozzles into the 

compressed air and the resulting fuel-air mixture is burned. It has been found that 

only 25% of the compressed air is used for combustion. The remainder bypasses the 

fuel nozzles and mixes downstream of the combustion section with the mainstream 

gases in order to cool these hot gases before entering the turbine. The mixture, at 

a very high temperature, expands in the turbine and a small part of it is driven to 

the exhaust of the engine, where it is discharged to the atmosphere. In this way the 

exhaust system provides the gas momentum required to produce the thrust to move 

the aircraft. The remaining air is used by the turbine to extract shaft energy and 

drive the compressor. 

In the following sections we discuss briefly the various components of a turbo-jet 

engine together with the working cycle of a typical engine and the methods of pro-

tecting the turbine from the hot operating gases. The reader is referred to Kerrebrock 

(1977) and to the book pubhshed by the Rolls-Royce Co. (1966) for further details. 

3.1.1. T h e C o m p r e s s o r 

The compressor, or diffuser, and the turbine are the two parts of the jet engine 

that consist of rows of rotating blades (rotor) and stationary ones (stator) to accelerate 

and diffuse the air. 

The compressor controls the pressure ratio of the engine (especially at low Mach 

numbers) thus has a dominant influence on the gas turbine engine. It is one of the 

most diSicult parts of the engine to design and develop, since it involves complex 

aerodynamics, design and testing. All of these are time-consuming and expensive 

procedures, thus in the last decade it has received extended emphasis at both research 

and development levels. 

As the air enters the engine, it is diffused and compressed together with the fuel 

at high pressure and in large quantities it passes to the combustion chambers. 
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There are two types of compressors: axial and radial flow respectively. In the 

former the air passes parallel to the rotational axis of the engine, through a number 

of blade rows that are alternately rotating and stationary. Most modern engines use 

this particular compressor configuration. 

Early gas turbine engines used a radial compressor. The air is turned radially 

outwards by the rotating blade row near the centre. As the air Hows out of the rotor, 

it acquires a tangential velocity component and is compressed. A scroll, or radial 

difFuser collects the compressed air and feeds it back to the combustion chambers. 

Centrifugal (radial) compressors were used in early jet engines and nowadays for 

automotive applications. 

3.1.2. T h e C o m b u s t i o n C h a m b e r ( s ) 

After the compressed air leaves the compressor section, it enters the combustion 

section, where the mixture of the compressed air and fuel is burned. Typically the 

ratio of air to kerosene fuel (by weight) is 60:1. However, as it is already mentioned, 

only 25% of the air is used to support combustion. The remaining is used to reduce 

the temperature of the hot gases entering the turbine, or to protect the turbine 

components. 

In order for the fuel to be burned efRciently a 8ame tube, called a combustion 

liner, is used to monitor the airflow distribution in the chamber. The resulting heat 

accelerates the expanded air in such a way that it creates a smooth stream of heated 

gas. The whole process of combustion must be achieved with minimum pressure 

loss and with maximum heat release. Under these conditions the mixture can reach 

temperatures of up to 1500°C. 

3.1.3. T h e T u r b i n e 

Everything that has been mentioned about the compressor applies equally well to 

the turbine, but two factors make the major differences between the turbine and the 

compressor. Firstly, the high gas temperature and pressure cause material problems 

to the turbine components that are much more serious than those in the compres-

sor. However, the high temperature leads to lower tangential Mach numbers for the 
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turbine blades compared with the compressor blades of the same size, which causes 

fewer aerodynamic problems. Secondly, though the pressure drops in the turbine it in-

creases in the compressor. This pressure decrease thins the boundary layer, reducing 

separation problems and making the aerodynamic design less critical. 

The turbine is the second rotating part of a jet engine. It provides the power for 

driving the compressor. It consists of a row of nozzle guide vanes, air seals, a rotor 

and a stator; figure 3.2, shows the cross-section of the turbine as the air from the 

compressor enters the turbine (normal to the air flow). 

The nozzle vanes are used to turn the expanded gas flow around the axis of 

the engine and at the same time to drop the pressure and the temperature in the 

turbine while raising the Mach number. In this way the turbine is able to provide the 

power and the energy for driving the compressor, (which is 75% of the combustion 

energy) and 25% represents the kinetic energy of the exhaust which provides the 

thrust. Finally, the air seals provide the internal cooling of the turbine. 

air f rom compresso r 

nozzle vanes" 

rotor 

air seals 

air f rom 

compressor turbine disk 

F I G U R E 3.2. T h e c ross - sec t ion of a t u r b i n e 
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3.1.4. T h e E x h a u s t S y s t e m 

The turbo-jet engine has an exhaust system which passes the discharged gases 

from the turbine to the atmosphere at high velocity and pressure. In this way the 

required thrust to move the aircraft is produced. 

The exhaust can influence the performance of the engine, since the design of 

the exhaust system affects the turbine entry temperature, the mass flow of the air 

entering and exiting the exhaust and the velocity and pressure of the outcoming jet. 

3 .1.5. T h e A f t e r b u r n e r 

Many jet engines have an additional component at the end of the turbine: the 

afterburner. 

As mentioned before, only 25% or so of the air is used to support combustion, 

thus there is sufficient oxygen in the turbine exhaust to support additional burning. 

An afterburner is simply a large pipe placed near to the rear of the engine. Fuel 

is injected from a row of fuel nozzles, called spray bars, into the front area of the 

afterburner and is ignited. This heat expands the exhaust, providing an increase in 

the exhaust velocity and consequently in the thrust. Afterburning can more than 

double the thrust of a gas turbine engine, but with an increase in fuel consumption. 

The jet engine uses the basic principles of propulsion. Jet propulsion is a practical 

application of Newton's third law of motion which states that 'for every force acting 

OR a /Aere w dR In aerodynamic terms, the %ody' 

is the atmospheric air which is accelerated as it passes through the engine. The force 

required to give this acceleration has an equal and opposite effect on the apparatus 

producing the acceleration. 

A jet engine produces thrust in a similar way to the propeller/engine combination 

but whilst the latter gives a small acceleration to a large weight of air, the former 

gives a large acceleration to a small weight of air. 
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3.2. THE OPERATION OF A JET ENGINE 

The turbo-jet engine operates on the 'working cycle' that is described in the book 

published by the Rolls-Royce Co. (1966) and will also be discussed in this section. 

The engine draws air from the atmosphere and after compressing and heating 

it the energy and momentum given to the air forces it out of the propelling nozzle 

at velocities that can reach up to 1400 mph. On its way through the engine the 

air gives up some of its energy and momentum to drive the turbine that powers 

the compressor. The working cycle of the turbine engine consists of four continuous 

processes: induction, compression, combustion and exhaust. This continuous cycle 

gives a smoother running engine and enables more energy to be released for a given 

engine size. The working cycle of the gas turbine engine is an example of a Carnot 

cycle and is represented in figure 3.3. 

pressure 
expans ion 

c n m b u s n o n 

compression ambient air 

v o l u m e 

F I G U R E 3.3. T h e working cycle of a turbo—jet engine 

At point A the air at atmospheric pressure enters the engine. Along the line 

AB the pressure and the temperature are increased and at the same time its volume 

is decreased. In the compression process the pressure can be increased up to about 

229 N/m^. At the same time the velocity falls to under 160 m/sec., whereas the 

temperature goes up to about 300°C. During combustion, line BC, fuel is added to 

the air and burnt. This increases the volume and temperature of the air considerably. 
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The temperature increases to about QOO'̂ C and the velocity drops shghtly. There is a 

small loss of pressure in the combustion chambers, indicated by the slope of the Hue 

BC. From C to D the gases expand through the turbine and exit the engine from the 

exhaust, back to atmosphere. In the expansion stage the pressure drops abruptly to 

less than 90 N/m^. The temperature also falls, but the velocity and volume of the 

gases are increased considerably. During this part of the cycle some of the energy of 

the expanding gases is turned into mechanical power by the turbine and the remainder 

is discharged to the atmosphere, providing the propulsive jet. Finally, the exhaust 

gases return to atmospheric pressure, illustrated by the isobaric line DA. 

3.3. DIFFERENT TYPES OF TURBO-JET ENGINE 

For a number of decades variations of the gas turbine jet engine have been de-

veloped. Each type haa its own characteristics and uses. Nevertheless, the general 

concepts and the design remain the same. In this section we will state, briefly, some 

characteristics and advantages and disadvantages of each engine. For a more detail 

discussion the reader is referred to Kerrebrock (1977). 

3.3.1. T h e R a m j e t Eng ine 

The ramjet engine is the simplest of all, because it consists only of a diffuser 

(compressor), a combustion chamber and an exhaust nozzle. The design of the ramjet 

has made it suitable for supersonic aircrafts, because air can enter the compressor in 

hypersonic How and can be diffused to supersonic speed before it is driven to the 

combustion chambers where fuel is added to the air. Thus the mixture can exit the 

engine at supersonic speed. Due to high temperatures developed in the engine the 

walls of the combustion chambers must always be kept much cooler than the main 

8ow temperature by introducing a layer of cool air next to them. Thus the relatively 

high temperature allows operations at high flight Mach numbers. 

A disadvantage of the ramjet engine is that the pressure ratio is limited by Aight 

speed and diffuser performance. This means that a ramjet engine cannot develop 

static thrust (cannot accelerate a vehicle from a standing position). Furthermore, it is 

very difRcult to design an eiBcient diffuser, due to the presence of shocks (unavoidable 
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in supersonic operation). Thus the development of a large supersonic diifuser with 

performance is difRcult and at present extensive experimental work and testing are 

still being conducted. 

3.3.2. T h e T u r b o f a n Eng ine 

The turbofaji engine can increase the thrust e@ciency of the engine, for a given 

fuel-consumption rate, by increasing the air Eow. This is achieved by introducing 

a second turbine downstream from the main compressor-drive turbine. With the 

generated power a fan is used to extract energy from the main hot How, thus reducing 

the velocity and the temperature of the exiting gases. This energy is supplied by 

the fan to a secondary How to bypass the combustion chamber and the turbine and 

mix with the mainstream flow before the two Hows are discharged through a common 

exhaust system to the atmosphere. A turbofan can also be modiHed to include an 

afterburner. 

Since the speed of the expanded gases is lower than of those of the other engines, 

the turbofan can achieve a reduction in noise. Finally, the decrease in the temperature 

of the hot gases before the exhaust nozzle means that the discharged jet of air is less 

detectable to infrared scanning, that is possibly why turbofan engines are widely used 

in high-performance military aircrafts. 

3 .3.3. T h e T u r b o p r o p a n d T u r b o s ha f t engine 

A turboprop engine produces a small amount of jet thrust in comparison to 

the shaft power that it can develop. The largest amount of the hot gases from the 

combustion chambers is extracted by the turbine to use it to provide shaft power to 

turn a propeller situated in the front section of the engine. The turbine is mechanically 

independent of the gas generator rotor components; this arrangement is called a 

free-turbine conAguration and has the advantage of flexibility in meeting a range of 

performance requirements. This dexibihty comes as a result of the variation of the 

pitch of the propeller. By changing the pitch the efficiency (defined as the ratio of 

the propulsive to the supplied power) can be maintained at a constant level over a 

large speed range. 
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The main disadvantage of the turboprop is that at higher subsonic Mach numbers 

(above 0.5) its performance deteriorates and the engine becomes very noisy. This is 

because at high speeds the velocity of the propeller tips become supersonic and com-

pressibility effects reduce the engine e&ciency. However, high speeds may be achieved 

if propellers with many blades turn slowly. Another disadvantage of the turboprop 

is that it is heavy due to the additional weight of the mechanical components of the 

propeller. 

Since the generated thrust from the exiting gases is low a turboprop engine can 

only be used for small aircrafts of some special purpose, i.e. petrol aircrafts, or for 

long Sights where high speeds are not essential. 

A turboshaft engine may be deAned as a gas turbine engine that is used to provide 

only shaft power. It is very similar to a turboprop engine, except that it incorporates 

a free turbine that is independent of any compressor stage. Hot gases are expanded 

to a lower pressure in the turbine, providing greater shaft power and little exhaust 

velocity. A turboshaft engine is ideal for helicopters and also electric utilities that 

have to meet peak power load demands. 

3.4. THE COOLING OF THE TURBINE 

Although the concept of the jet engine is simple, complex thermodynamic and 

aerodynamic problems may occur which can destroy the whole engine. They result 

from the high operating temperatures, (typically 900°C-1000°C), of the combustion 

chambers and turbine, the effects of varying flows across the compressor and turbine 

blades, and the design of the exhaust system through which the gaaes are ejected to 

form the propulsive jet. 

High turbine inlet temperatures have great advantages for the turbine engines 

of aircraft, since they produce higher thrust. Thus they can increase the power and 

the efficiency of the whole turbine. Nevertheless, these high gas temperatures that 

exist in the turbine may cause serious structural problems, even to high-temperature 

resisting materials. These problems and the necessity to provide high efficiency at 

high temperatures have led engineers to investigate possible solutions for protecting 
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the turbine. Studies of the cooling of the turbine and its parts were Brst performed in 

the late 1940s and the research continued in the 1950s, as indicated by Oates (1985). 

Around 1960 turbine cooling was first introduced in commercial aircraft engines. Since 

then higher operating temperatures have been used, making the process of cooling 

even more important. 

Usually, during the cooling process a part of the discharged compressor flow is 

used as coolant fluid. This large quantity of flow reduces some of the advantages 

of using high turbine temperatures. The air used for cooling reduces the capability 

of the turbine to drive the compressor because of the lower temperature at which it 

enters the turbine, which means that there are pressure losses. Also the cooling air 

mixes with the main stream air of the turbine and aerodynamic losses are caused. 

The gas losses associated with the coohng are: profile losses (due to viscous shear 

on the blade surfaces), secondary flow losses, losses due to the vorticity of the main 

stream and the viscous effects as the gas passes the blade tips (the boundary layer 

increases) which affects the engine e@ciency, and losses due to air leakage past the 

blade tips. 

The leakage in the turbines is more critical than that happening in the com-

pressors due to the pressure difference across a blade row. In the case of estimating 

secondary losses, the existing methods are still under development. The proRle losses 

in the turbine can be caused either by the local supersonic boundary layer losses (shock 

waves), or by an adverse pressure gradient (when the pressure gradient changes from 

a low to a high pressure): the pressure increases rapidly and the boundary layer 

thickens (since the boundary layer Euid is decelerated), the flow in the layer stops 

following the direction of the surface, separates, and the transition happens eazlier 

on the suction surface. These effects described above are important. Therefore, a 

lot of work has been done in this area in order to minimize them by minimizing the 

quantity of the cooling air, whilst at the same time retaining the cooling effectiveness 

at the required levels. If an efficient way of cooling the blades and the other parts 

of the turbine is provided then higher operating temperatures may be used, which 

means more power and efhciency. 

Although many methods have been suggested for cooling the turbine, only direct 
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air cooling has been su5ciently successful. With this method air, which is cooler 

than the operating hot gases, passes from the compressor and is introduced into the 

turbine blades. As the air enters the turbine, it also cools the turbine disc and the 

nozzle vanes. From the air seals the cooler air is carried outwards at high pressure, 

across the turbine, to the exhaust gas How, which is at low pressure, and prevents the 

hot gases from flowing inwards into other primary components of the engine. 

The cooling air can also be used in the following ways singly, or in combination, 

(see figure 3.4). 

(a) 

turbine 

F I G U R E 3.4. D i a g r a m of an a i r - coo led t u r b i n e blade 

wi th t h r e e different t ypes of cooling: ( a ) i m p i n g e m e n t , 

(b) convect ion and (c) film cooling 

Convec t ion cooling: cooling air flows inside the turbine vane, or blade passes 

through complex paths and geometries and exits through the blade tip, or through 

holes in the trailing edge. This form of cooling is limited to blades and vanes in the 

area where the gas temperature is not that high. Also, convection can be used only 

when the cooling effectiveness levels are about 0.5, Oates (1985). This is due to the 

fact that the supphed air pressure is hmited and if better coohng is required then a 

higher pressure supply must be used. 
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I m p i n g e m e n t cooling: is a form of convection cooling accomplished by di-

recting cooling air against the inside surface of the airfoil through small, internal, 

high-velocity air jets. Impingement cooling is concentrated at critical sections of the 

turbine, such as the leading edges of the vanes and the blades. 

T r a n s p i r a t i o n cooling: the coolant enters the main stream from a porous sur-

face. It is a quite effective method, since it can protect the wall from heat transfer 

effects by injecting the cooling air exactly where the heat transfer is higher. Neverthe-

less, it is difficult to introduce this air with such a fine distribution, since sometimes 

the holes of the porous media may be blocked, or clogged, which could lead to inad-

equate cooling. Thus, in practice transpiration cooling is not very effective. 

F i lm cooling: is the process in which a layer of cooling air is introduced to the 

main flow, by a slot or an array of holes inclined, or perpendicular, to the free stream, 

and it produces a thin layer which shields the area downstream of the slot from the 

hot gases. It can be used for most of the turbine components, but mainly it is used 

for the blades and vanes. 

The cooling air mixes with the main flow in the boundary layer and it reduces 

the temperature downstream of the slot and at the same time it decreases the heat 

transfer along the wall of the blade. Owing to the considerable mixing of the main 

hot gases and the secondary flow, the method of film cooling does not apply for a long 

distance downstream from the slot. However, of all the above methods, film cooling 

is considered the most effective way to protect the turbine and its components and 

the least demanding method as far as airflow is concerned. More information on all 

the methods of cooling described above can be found in Barnard &: Philpott (1989), 

Kerrebrock (1977), Oates (1985) and in the book published by the Rolls-Royce Co. 

(1966). 

In the chapters to follow it may be seen that the research work discussed is based 

on film cooling and one of the main concerns has been to predict the injected mass 

flow needed to maintain an acceptable temperature in the area of the 61m and along 

the wall. 
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CHAPTER 4 
FILM COOLING IN A SUPERSONIC 
MAIN FLOW 

4.1. INTRODUCTION 

The eHciency and the hfe expectancy of a jet engine depends greatly on its 

effective coohng. The higher the temperature of the gases entering the turbine the 

higher will be the e&ciency for a given jet temperature. Nevertheless, these high 

operating temperatures cause problems to many parts of the turbine. In order to 

avoid these problems an e&cient method of cooling the various parts of the turbine 

must be used. 

Cooling the turbine by film cooHng is found to be the most effective method. 

In this method cool air enters the turbine from the compressor and it cools the 

turbine disc and the nozzle vanes. This secondary Sow of air, at lower temperature, is 

introduced into the boundary layer to produce an insulating film between the turbine 

and the main hot gas flow. The driven cool air, which is at a higher pressure than the 

hot gases that enter the turbine, prevents the exhaust gas flow from Howing inwards 

into the components of the engine and destroying them. The injected flow, due to its 

lower temperature, reduces the temperature in the region downstream of the injection. 

It is assumed that in the boundary layer there is a uniform temperature, due to the 

mixing of the main flow and the cooling air. As it has been said before, further 

down from the injection hole there is a considerable mixing of the secondary fluid 

and the main flow. Nevertheless, if the cooling of the turbine is eScient then higher 

operating temperatures and pressures can be used in order to increase the whole 
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engine performance and to optimize the fuel consumption. 

Much study has been carried out on various aspects of using film cooling as a 

practical method for cooling a turbine and its components. As we already know, the 

mass of the injected flow is vital to the performance of the whole engine. Thus, if 

the optimum amount of mass flow needed to protect the turbine is used then the 

efficiency of the engine will increase. 

In the next section we wiU discuss, briefly, the experimental and theoretical work 

of Fitt et al (1985) on the problem of finding this optimum amount of mass flow in 

the case where the main stream is subsonic, and in the section 4.3 we will discuss the 

problem where the main flow is supersonic. 

The discussion of the subsonic problem is essential for the reader in order to 

understand fully the physics and the mathematics behind the process of fllm cooling. 

Also the author of this thesis, by studying and recalculating some of the results, had 

the opportunity to understand better the work of Fitt et al (1985) and to solve the 

supersonic case. 

4.2. THE SUBSONIC FILM COOLING PROBLEM 

Fitt et al (1985) have suggested a simple model for the injection of fluid from a 

slot into a main stream. The injected flow produces a thin layer which separates the 

secondary flow from the free stream, flgure 4.1. The separation of the injected flow 

may occur at the end of the slot, but further down the flow will reattach. 

The secondary flow and the main stream are both taken to be inviscid, incom-

pressible and irrotational, so that both flows satisfy the condition for irrotational 

flow, i.e. = 0 and = 0, where $o is the velocity potential of the main 

flow and is the velocity potential of injected flow. We have also assumed that the 

injected flow is thick compared with any viscous layers, so justifying the assumption 

of inviscid flow. Furthermore, a small pressure difference, Ap, has been considered to 

exist between the free stream and the flow in the slot. Also the total outer pressure is 

taken to be shghtly greater than the slot pressure and this pressure difference means 

that the injected flow separates tangentially from the front edge of the slot. This 
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phenomenon leads to the 'hd' effect over the upstream edge of the slot, which causes 

the injected fluid to come out of the slot only in small quantities from the downstream 

edge. 

shear layer 
main flow 

injected 

flow 

turbulent flow 

F I G U R E 4.1. D i a g r a m of t h e slot p r o b l e m 

The velocity of the main flow is taken to be Uoo, the main stream static pressure 

is Poo, Pco is the density of the fluid of the main flow, the mass flow of the injected 

fluid is M, q is the fluid velocity and the slot has width X, figure 4.2. 

The total outer pressure is given by pfc* = and the total pressure 

in the slot is slightly different: thus de&iiiig a small parameter 

g, where e C 1. This means that the parameter is defined in such a way to describe a 

small perturbation to the main flow. This perturbation aiTects the region of the slot 

and the film downstream of the slot. 

Across the dividing streamline, ^ = 6'(z), the pressure must be continuous, thus 

from the difference of the order of magnitude of the perturbations between poo and 

the slot pressure we can deduce that the film has thickness of O(e^L) (since we know 

that an obstacle of thickness of produces a perturbation to p^o of 0(e^)). For 

the pressure of the slot and the film to be of the same order of magnitude, the film 

pressure must be within of poo, thus the horizontal velocity component. 
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u, in the 61m is of order [/ooG, which is substantially diEerent to the main horizontal 

velocity which is of order of [/oo. Thus a vortex sheet is created which separates the 

main flow and the injected flow. 

In the fllm we have estabhshed that the tangential velocity is 0([/ooe), meaning 

that the mass flow must be of order (since in general M = [76, where (7 is 

the velocity of the flow in the film, which has thickness 6). From the conservation of 

mass, the mass flow in the slot must be equal to the mass flow in the film, thus M in 

the slot is also of order thus the vertical velocity in the slot is 0([/ooe^). 

We will make an assumption here that these orders of magnitude apply all the way 

to the top of the slot. In fact there will be a small region to the downstream edge of 

the slot where this will not apply, because the outer flow treats this region aa a point 

source of the fluid. However, we can disregard this region to lowest order. 

OO 

o 
L 

injected 
flow 

FIGURE 4.2. The simpllAed model 

-Now that we have estabhshed the orders of magnitude of all the variables we can 

calculate the pressure for each region separately. 

In the outer flow , as it is been stated already, a perturbation of order to the 

main flow exists, which affects the secondary flow downstream of the slot. This small 

disturbance allows us to approximate the flow problem by using thin airfoil theory. 
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According to the thin airfoil theory, (described by Van Dyke (1975)), we can treat 

the slot using a superposition of a uniform stream and a source distribution (also 

described previously). This means that the equation for the stream function in the 

outer flow has the form 

= + g r ( ( ) t a n - ^ ( ^ — ( 4 . 1 ) 

from which 

# Jo \ 2 — f 

and 

where the unknown function g(t) is the source/sink distribution of the disturbance. 

In order to find g'(f) we must employ the steady version of the kinematic condition 

of the streamline ^ = 5'(z) as y ^ 0. Therefore 

(q-V)(!/ - 5'(z)) = 0 ( t / ^ + 

—'u5''(z) + ^ = 0 => u = K5"(z). (4 2) 

By substituting the expressions for u and u to the leading order into the kinematic 

condition, we have 

rr fOO 

As ^ 0 it may be seen that the function has the properties of the delta 

function, since it is zero for a; ^ f and its value is infinity when x = t. Thus the 

integral of this function as y —> 0 between — oo to oo is 1. 

Also we know that the integral of the above function is part of the stream function 

given in equation (4.1). Thus we obtain 

^ = 2 
(z — <)̂  4-
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Substituting these two results into the equation for the kinematic condition we obtain 

an expression for g(t) 

Thus it may be seen that the source/sink distribution is equal to the slope of the 

streamline. 

Since the source distribution has been determined we can continue with the so-

lution of the problem, but first it is sensible to normalize the problem in the outer 

flow, by introducing dimensionless variables (the non-dimensional variables are de-

noted with a bar). We set Y = and non-dimensinalize the fluid velocity using 

q = the pressure by p = dividing streamline by 5' = ^ and the 

stream function using $ = Having established the non-dimensional variables 

equation (4.2) becomes W = (3). 

In order to find the pressure of the main stream we have to use Bernoulli's 

equation given by the expression: p + = Poo + Thus the main How 

has non-dimensional pressure 

P . + I q ' ^ + 1 + 1 - (4.3) 

since q = In order to obtain expressions for u and v we use their defi-

nitions from the stream function. Then the two integral expressions for the velocity 

components can be written on the line y = 0 as 

= 1 -I C / and W = 0, (4.4) 
TT V 0 ^ 

where C denotes a Cauchy principal value integral. Thus substituting the above 

expressions to equation (4.3) we obtain the pressure for the free stream 

Po 
Poo w C / — ( 4 . 6 ) 

poo(71 :r y 0 f 

In order to complete the model we must consider the flow in the slot and the film 

downstream of the slot. We also have to find the pressure in each one of the these 

regions. 
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In the film region we non-dimensionalize the variables. We set a; — -j;, y = 

q — and scale the pressure with p = The streamline is non-
$ dimensionalized by 5" = and the non-dimensional stream function is ^ =-

and finally the mass flow M = • Also for the area of the film we have: $ = 0 

on ^ = 0; on ^ = 5'(^) ^ = M and on 0 < ^ < 5'(z) ^ is a function of z and 

However, we know that the injected flow is irrotational, meaning that = 0 and 

= 0, thus we find, to lowest order, that 

with the above two boundary conditions (^' = 0 on y = 0 and ony — 5(x) = M) 

we obtain an expression for 

+ B(z) 

where A(x) and B(x) are functions of x. Now, from the boundary condition $ = 0 

on y — 0 we deduce that B(x) is zero and by setting y = S{x) and # — M we find 

that This means that E = and ^ = ^ 4 ? ^ -

Applying Bernoulli's equation in the film region to the correct order of magnitude 

we find that the pressure of the film, py, must be equal to the total injection pressure, 

thus Py is given by 
_ , 1 —2 — 
P / 4 - - q 

and using the definition for the total injection pressure, above 

equation becomes 

but q — •s/u'^ + and in the film downstream of the slot we have F = 0 and the 

tangential component of the velocity is ue. Thus equation (4.6) becomes 

Also we know that « = which means that equation (4.7) can be expressed as 
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Finally, in the slot u = 0 and the vertical non-dimensional velocity component is 

O(e^), thus the non-dimensional pressure p, is obtained by using Bernoulli's equation 

to the right order of magnitude 

Pi + 2^^ = P: + 2^^ = + 2^^, (4.8) 

where q = but $ ^ = 0 and is O(e^), thus is 0{e^). This means that 

equation (4.8) becomes 

Pi = )- (4-8*) 
Poo^ oo ^ 

From the above equation it may be seen that the pressure in the slot is almost equal 

to the total injection slot pressure since the term 0(6^) is very small and it does 

not have any effects on the slot pressure, thus it can be neglected. 

In order to complete the model we have to match the pressures on the streamline. 

The assumption that the pressure is continuous across y — S{x) is used. We can drop 

the bars, for reasons of convenience and use equations (4.8a), (4.7a) and (4.5) to get 

: : : L 
aa in Fitt et al (1985). The above integro-differential equation must be solved subject 

to the boundary conditions 5'(0) = 0, 6''(0) = 0, 6''(oo) = 0. The 6rst condition means 

that the flow separates at the upstream edge of the slot, whilst the second asserts that 

the flow exits the slot tangentially (zero slope) at the upstream edge of the slot due 

to the 'lid' effect described earlier. Finally, the third boundary condition means that 

6'(oo) must be equal to M. In this way the right hand side of equation (4.9) for the 

interval z > 1 will hold and the condition 5''(oo) = 0 will be satisfied. 

4.2.1. T h e N u m e r i c a l Scheme 

Equation (4.9) was solved numerically to give a unique solution for M. In order 

to achieve this first we had to invert the integral of the equation (4.9) and use the 

boundary condition 5''(0) = 0. Thus we obtained 
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and then M was eliminated from the above equation by a simple scaling S = T M s , 

as in Fitt et al (1985). Then equation (4.10) yielded 

Fitt et al (1985). Equation (4.10a) was integrated with respect to a; subject to the 

condition T(0) = 0 to obtain the following expression for T{x) 

=h r ( ? ) ' + 1 ^ } 
which was evaluated numerically, since the above equation did not include any singular 

integrals or derivatives. Discritizing [r(a;) and assuming that it was piecewise constant 

on the interval (^t,^t+i), where A; = 1...AF, for each z then 

1 , 1 
2 7 r r ( z , ) R , V T - ^ ( a ) / { - 2 W f l o g \ + (4.12) 

where z = l...jV and waa the error term deAned as 

'^N + i [ \ ^ / 1 :̂ 
EN = / T - ^ ( 6 ) - 2 r r + log \ \ ^ 

The error term was needed in order for equation (4.12) to give us good accuracy for 

T(z) when z —» oo, since the mesh could not practically be extended to infinity. The 

above expressions were then integrated with respect to and the error term calculated 

for large to give the following numerical relaxation scheme 

N 

27rr;+i(z^) = ] ^ T r 2 ( ^ t ) A ^ t + 2z^r-^( (N+i)Q(a) 
k=l 

r ,+i (z^) =T,(z^) + ^(f,+i(z,-) - r ,(z^)), (% = l...Ar, j = 1...). 

where 

(4.13) 

a 
Z; / 

Q(a!) = a + ^(1 - 0!^)l0g 
Z, ft — i 
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1 1 1 1 
A,^ = + (&+, - i-.)log " i - ( 6 - Xi)l°g - 4 ^ M -

l « + i - ^ ? i k | - ^ ? l 

for the How problem in the interval [1, oo). The solution for the region of the slot was 

then calculated by using equation (4.12). 

The above method, equation (4.13), was used to calculate T'(T) for the interval 

1 < z < oo by using initial guessing values 2o(a;). The calculations for T(a;) would 

stop when the results of the previous T'(z) coincided with the values of the new T'(z) 

to 5 d.p. Finally, the value for the mass flow was obtained by using the expression 

M = r ( o o ) ^ 

The numerical scheme produced by Fitt et al (1985) was used by the author of 

this dissertation to recalculate the mass flow for the region of the film. This was 

achieved by writing a FORTRAN code which used this numerical method. In order 

to estimate !r(z) a positive initial guess value for T'(z) was needed together with a 

relaxation parameter ^ < 0.1. After several iterations the value of r (oo) was found 

to be 1.024 and the corresponding mass flow was calculated as M = T^(oo) = 1.075. 

The reader is referred to Fitt et al (1985) for a more detailed discussion of the 

above analytical and numerical solution. 

4.2.2. Resu l t s a n d Discussion 

The computer code written for the numerical method described in the previous 

section, was tested for various meshes with different step sizes. For each run the user 

could decide the length of the grid by using different number of points. In each case 

the values of T( l ) and T(oo) were compared. Several different tests were performed 

which are described below; other caaes can also be seen in Fitt et al (1985). 

For the first set of tests the step length was kept constant, (Ax = 0.2), but each 

time the number of points in each mesh was increased, i.e. the mesh was extended 

along the z direction. It was found that the time needed for each iteration increased 

aa the number of points was increased. On the other hand the values of !r(z) were 

found to converge faster, i.e. it was taking less time for the values of T(z) to coincide 

with the results of the previous T{x), in 5 d.p. 
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The table 4.1 includes results for a number of different meshes and also shows the 

values for T(l) and T(oo) for these meshes. It may be seen that the value for x = 1 

converged to T( l ) = 0.552 (in 3 d.p.) and that the value of each T(oo) increased as 

the X values moved away from the origin. 

Mesh length Mesh points r ( l ) values T'(oo) values 
1 < z < 2 6 0.561 0.889 
1 < z < 4 16 0.531 0.956 
1 < z < 7 31 0.552 0.983 
1 < a; < 9 41 0.552 0.991 

1 < z < 10 46 0.552 0.993 
1 < z < 14 66 0.552 0.999 

T A B L E 4.1. Values of T ( l ) and T(oo) for c o n s t a n t s t ep 

Another set of runs was performed to investigate the convergence of T(l) and 

T(oo) when the mesh wag taken to be Axed, it was extended up to a; = 2, see table 4.2. 

This time the step length and the number of mesh points were changed with every test 

of the program. For each run the values of T(a;) at z = 1 and a; = 2 were compared. 

It was found that the computational time taken for each iteration waa increased when 

the step length decreased, but the numerical method converged to the correct values 

of T(z) faster than in the previous case. Also from this table it may be seen that T(z) 

for z = 1 converged to a value close to 0.527, whereaa the values for T'(2) were found 

to converge to 3^(2) = 0.892. The results for T'(z) seemed to be in good agreement for 

most of the meshes, whereas the results for the downstream edge of the slot indicated 

that good agreement was achieved if many points were used in each mesh. 

Az Mesh points T( l ) values r ( 2 ) values 
0.2000 6 0.561 0.889 
0.1000 11 0.547 0.891 
0.0500 21 0.538 0.891 
0.0010 1001 0.527 0.892 
0.0005 2001 0.527 0.892 

T A B L E 4.2. Values of T ( l ) a n d T(oo) for var ious s t e p l eng ths 

In order to estimate T'(oo) downstream from the slot the mesh had to be ex-

tended. This waa achieved by constructing an exponential grid in the z-direction. 
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The expression used in the code to represent this was 

Xfi — dx^sf ^ , 

where dx is the initial step length in the x-direction and sf the scaling factor used to 

produce the non-uniform mesh. 

Various combinations of scaling factors and step sizes were used in order to 

compare the value of T(oo) with the numerical value for M obtained by Fitt et al 

(1985). The step size Az was kept small and the scaling factor, a / , less than 1.10, 

in order to have a fairly fine mesh for the whole domain and accurate results to be 

produced. Also the relaxation parameter ^ was taken to be less than 0.1, but not too 

small because a small value of 0 meant that the numerical scheme tended to converge 

to the solution very slowly, i.e. it needed many iterations in order to obtain the correct 

result. When Az was changed the number of points in the mesh changed too. Thus, 

although we had to use small x steps we kept the number of the mesh points more 

than 130 during all tests in order to obtain acceptable results, i.e. accuracy to 3 d.p. 

Finally, the length of the meshes was extended up to about 33 slot-widths. 

In table 4.3 some of the different step lengths and scaling factors used may be 

seen, along with values of T'(l) and r(oo) . From the table it may be seen that the 

value of [r(l) converged to 0.518 and the value of T'(z) for infinity approached 1.024. 

Also, the best results were produced for scaling factors in the range of 1.02 to 1.04 

with step sizes between 0.001 and 0.008. 

Ax Scaling factor Number of points !r(l) values !r(z) values 
0.001 1.02 327 0.518 T(32.76)=1.024 

0.001 1.04 183 0.518 T(32.45)=1.024 

0.005 1.02 246 0.518 T(32.73)=1.024 

0.005 1.04 142 0.518 T(32.40)=1.024 

0.008 1.04 130 0.519 T(32.30)=1.024 

0.008 1.07 83 0.520 T(32.30)=1.023 

T A B L E 4.3. Values of T ( l ) and T(oo) for n o n - c o n s t a n t m e s h e s 

4.2.3. Conclus ions 

Numerical tests were conducted in order to compare them with numerical results 

that Fitt et al (1985) produced for a two-dimensional, time-independent model for the 
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slot cooling problem. The fluid for both the main and the injected flows was taken to 

be incompressible and irrotational and the injected flow was assumed to be inviscid. 

The most important results of the investigation can be summarized as follows: 

(a) The numerical scheme discussed provided a quick and economical way to 

solve the flow problem. 

(̂ 6̂  A scaling factor (exponential mesh) had to be used in order to produce a 

solution of the problem for meshes that extended for a long distance downstream 

from the slot. 

The model waa a good approximation to the viscous problem, but in caaes 

where there was viscous interaction a different approach would possibly have to be 

used. 

The small pressure difference that existed between the main flow and the 

injected flow affected a great deal the amount of the gaa that was coming out of the 

slot by creating a 'lid' over the slot. 

Finally, the model did not take into account the separation of the injected 

flow that seems likely to occur downstream of the slot. 

4.3. INTRODUCTION TO THE SUPERSONIC PROBLEM 

The problem of fllm cooling in a supersonic environment has been of great interest 

to many researchers over the years and many investigations have been conducted, aa 

we have seen in chapter 2. 

The main difference between a supersonic flow and a subsonic flow is the possible 

formation of shock waves in the former caae generated on the leading edge of a body 

as the main stream passes over its surface with supersonic velocity. The formation of 

shock waves affects the velocity of the main flow (speed reduction) and gives rise to 

rapid pressure rises. This means that the thickness of the boundary layer formed by 

the main flow increases causing earher separation. These aerodynamic effects show 

how important it is to design and use correctly the technique of fihn cooling, since aa 

incorrect use of the method could lead to heat and efficiency problems in the engine. 
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Before we start analyzing the supersonic problem, it is essential to give the de6-

nition of the free stream Mach number Moo and to write down the governing equation 

for supersonic flow. The Mach number is defined as 

Or 

where is the velocity of the free stream and Ooo is the speed of sound in the free 

stream. 

The governing equation for a supersonic 6ow has the general form 

— H~ ^yy ~ 0 (4.14) 

where B — \/M^ — 1 and $ is the velocity potential. For a derivation of the above 

linear partial differential equation the reader is referred to Carafoli (1969), chapter 

1. In the case where Moo < 1, we obtain a differential equation of elhptic type 

(Laplace's equation) and the How is subsonic. When Moo is greater than unity the 

flow is supersonic and the differential equation that we obtain is hyperbolic. 

Finally, we have denoted f/oo the velocity of the main stream; suppose that the 

main flow encounters a small disturbance then the flow is slightly deflected, resulting 

in a velocity U'^. Then the main velocity has its two components u and v be written 

aa 

« = [/oo + ^% (4.15) 

where and u' are the components of the disturbance velocity Now we know 

that for irrotational flow 

r-72;R n _ 
V $ = 0 or — —— = 0, 

but u = (7oo 4- u' and = %;' and since [/oo is a constant, the irrotationallity condition 

becomes 

o?/ oz 

This means that the potential velocity flow for the resultant main stream may be 

written as 

$ = (4.16) 
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where is the perturbation velocity potential and = u' and = v'. The above 

equation is also the general solution of the equation (4.14). 

After the introduction of the Mach number, the governing hyperbolic equation 

and the equation of the potential flow, we can move on to the supersonic problem. 

4.3.1. T h e Supe r son ic Case 

We shall consider the problem when Moo > 1 in the same domain as the subsonic 

case, namely figure 4.2. 

In the main stream the velocity [/go is supersonic, whilst under the film the 

secondary flow has subsonic velocity. The pressure across the streamline is continuous 

and the total pressures in the film and in the slot are defined as before (section 4.2), 

together with the small parameter e. 

Thus as the flow passes a small disturbance of height O(e^) equation (4.16) for 

our problem becomes 

$ = + (4.17) 

where is unknown and a: > Referring back to equation (4.16) we may note that 

F represents the perturbation velocity potential of the main stream, also described 

in Carafoli (1969). In equation (4.17) the function F(a; — B^) allows constant values 

of $ along the lines x = By + c and x = —By + c with an angle t a n ~ ^ ( ± ^ ) to the 

x-axis; these lines are known as Mach lines. All disturbances created at the surface 

propagate unchanged away from the wall along the Mach lines. Since disturbances 

cannot be propagated forwards into supersonic flow the lines are inclined downstream. 

In addition, the effect of the disturbance is felt only in the region between the first 

and last Mach lines. 

Using the steady version of the kinematic condition, y = S{x)^ as y —>• 0 we 

obtain, as before, 

(q.V)(?/ - ^(z)) = 0 => ( u ^ + - ^(a:)) => 

—u5''(a;) + f = 0 => u = M5''(a;). (4-18) 
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At this point we must non-dimensionalize the variables again. The normalization 

is the same as in section 4.2. Thus we non-dimensionalize z with Z,, ^ by q by 

[/(X), the pressure p is scaled with /)oo[/oo^, -S" by and Anally the mass Sow M 

by (all the no-dimensional variables will be denoted by em overbar). Thus 

equation (4.18) becomes 

u = 6^E^(^). (4.18a) 

Now, using (4.17) and (4.18a), we obtain for the two non-dimensional velocity com-

ponents n and F 

and using the above equations together with (4.18a) we get an expression for the 

unknown function F 

= —Be^F'{x — By) — e^S (x) => — By) = (4.19) 
u B 

In order to calculate the pressures in the various regions we have to use Bernoulli's 

equation: p + = Poo + ^/)oo%- The expression for q using the equations for 

M and F becomes 

q^ = q^ = 1 + (Y - By) = 1 -

Thus, for the non-dimensional pressure in the main stream, we have 

— I 1—2 — _ Poo I 1 
p . + j q -P.c. - 2 ^ 

, 

In order to complete the model we have to obtain expressions for the pressures in 

the slot and the film region downstream of the slot. Thus, using Bernoulli's equation 

again, the non-dimensional pressure in the slot, p^, must be equal to the total non-

dimensional injection pressure, thus we obtain 

_ , 1—2 — Poo I 1 2 . 
"' + 21 =''" = ^ + r ^ 
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since q = il + U, where H = 0 and v is 0{e^). 

For the film region the non-dimensional tangential velocity component is 0(e), 

thus the film pressure, py, is 

The pressure across the streamline is taken to be continuous thus we can equate 

the pressure in the film and in the slot, equations (4.22) and (4.21) respectively, with 

the outer pressure equation (4.20) to give 

o < z < i 

^ 1 < Z < 0 0 
(4.23) 

(again we have dropped the bars for reasons of convenience). Equation (4.23) must 

be solved subject to the boundary conditions 5'(0) = '$''(0) = 0, since the streamline 

comes out of the upstream edge of the slot and it separates tangentially at z = 0. Also 

downstream &om the slot the boundary condition 5''(oo) = 0 must be used in order 

for M = S{x) as soon as x becomes greater than 1 and the slope of the streamline to 

be zero at infinity. 

However, if we take a closer look at equation (4.23) it may be seen that the 

slope of the streamline S''(z) at z = 0 is 5''(0) = It seems that in the interval 

between z = 0 to z = 1 the boundary condition holds, but in the region very close 

to I = 0 the condition cazinot be satisfied, since from equation (4.23) we have proved 

that 5'(0) = This means that the fluid does not exit at the front edge of the 

slot tangentially to the slot (as we have assumed), but with slope equal to The 

same may be said for the region very close to z = 1. We expected S'{x) == 0, but 

we obtained This contradicts what we have said that the streamline at a; = 0 is 

parallel to the wall surface. 

Downstream from the slot we expected the streamline to be fiat, which means 

that aa the fiow leaves z = 1 the slope of the streamline must be positive or negative 

as it approaches the fiat region of the streamline aa z increases. If 5''(z) is positive 
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then from the right hand side of the equation (4.23) may be seen that 6'(z) will always 

be greater than M, but then 6''(oo) 0. On the other hand, if 6''(z) is negative then 

5'(a;) < M, which means that again 5''(oo) cannot be zero. Either way, the boundary 

condition cannot be satisfied. The only possible caae is that 5'(z) becomes M as soon 

as z = 1 and the slope of the streamline is zero from the beginning of the rear edge 

of the slot. 

These inconsistencies cannot be ignored, because as we just showed the boundary 

conditions for equation (4.23) cannot be satisfied. Thus a different approach should 

be used to solve the flow problem subject to these boundary conditions 

4.4. NUMERICAL SOLUTION 

One method to solve the problem numerically is to compare the pressures at 

selected points across the streamline for the interval 0 < z < 1 by calculating the 

outer and the Aim pressures. First the outer pressure of a selected number of points 

was calculated on ?/ = 5'(a;) by using equation (4.20) and then the average pressure of 

the points waa obtained. Also the 61m pressure along the streamline was estimated 

for the same points as above by using equation (4.22) and then the average pressure 

of the points for the film region was calculated. Then the two averaged pressures were 

compared and a value for a pressure difference, Ap was obtained. This process was 

repeated several times using different number of points for each test. Eventually the 

smallest Ap gave the optimum value of mass flow. The absolute difference between 

equations (4.20) and (4.22), defined as Ap, was given by 

12 /1 ..2\ 
= |Pao - Pa/I = I (1 - U 

'2 ' ' B " 

where and were the average pressures of the outer Eow and the film for the 

interval 0 to 1 respectively and w = aad = - \ /M^ — 1. A typical value for 

Moo = 2 was used to give B — \/3- The equation for 5'(z), the shape of the streamline 

for the region of the slot, was modelled by using straight lines and splines. 

The mass flow, M, was treated as an unknown variable, which had to be calcu-

lated. The value of M that would give the minimum pressure difference would be the 

optimum mass flow coming out of the slot. Consequently, that was considered to be 
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the solution to the flow problem. 

One factor that we had to take under consideration, since we were deahng with 

supersonic Eow, was the continuity of the pressure on the dividing streamline. Due 

to the velocity difference between the main flow and the injected stream (see section 

4.3.1), it was possible that shocks form upstream from the slot. This meant that the 

pressure would rise rapidly at that point and the thickness of the boundary layer would 

increase. However, as it was shown at the formulation of the problem, the pressure in 

the region of the flhn was of poo- This meant that the pressure difference 

between the main and the injected flows was very small, so the formation of shock 

waves was not possible. Thus the pressure across y = S{x) was taken to be continuous. 

y 
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^ outlet 1 $ = 
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\ \ 
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! 

\ 
-3 

= 0 

F I G U R E 4 .3 .Diagram of t h e c o m p u t a t i o n a l d o m a i n 

Since the flow was taken to be irrotational we could use the condition = 0, 

where 0 is the velocity potential. Thus the numerical problem that we had to solve 

was the Laplace equation for the domain bounded by the streamhne and the wall and 

subject to the boundary conditions given in flgure 4.3. 

When y = 0 u = 0, thus was set to zero on the wall. Also on the walls 

inside the slot, where y < 0, = 0. From the equation of the streamhne, y = 5'(i), 
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and the kinematic condition we deduced that ^ on the streamline and 

finally on the inlet we imposed the condition = 0 and = 0 on the outlet. 

However, as it may be seen from the boundary condition on the streamline was 

unknown. Thus it was decided to solve the problem for the same geometry but for 

the stream function ^ instead, since the values of ^ and and were all known 

on the boundary. Hence, the Laplace equation took the form = 0, subject to 

the boundary conditions shown in figure 4.4. As it may be seen from figure 4.4 the 

value of ^ on the streamline was known and set to M, described in section 4.2. 
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F I G U R E 4 . 4 . D i a g r a m of t h e Laplace d o m a i n , us ing t h e s t r e a m func t i on $ ( x , y ) 

A FORTRAN program for the Unix operating system was written, to solve the 

Laplace equation by using a NAG routine. The NAG subroutine D03EAF, Fox and 

Wilkinson (1993), was utilized, which solves the Laplace equation for any geometry 

prescribed by the user. In order for this subroutine to work e&ctively the domain of 

the model has to be in 2-dimensions and bounded by a closed contour. Also values 

of the derivatives or of the unknown function must be given for all the points of the 

boundary. The subroutine calculates the unknown function ^ by using an integral 

equation method, based upon Greenes formula. Fox and Wilkinson (1993). 

The FORTRAN code, written to solve the fiow problem, before using the NAG 

routine created a mesh bounded by the streamline and the wall and on the boundary 
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the values of # and and were imposed. The interval 0 < z < l o n ^ — 6'(z) 

and the unknown shape of the streamline were modelled by using various functions 

such as straight lines or splines. Then the subroutine D03EAF was utilized. 

4.4.1. G e n e r a t i n g t h e M e s h 

The first task was to determine the shape of the streamline in the region z = 0 

to z = 1, i.e. over the slot, since the streamline after 1 and for a long distance 

downstream from the cavity was known to be flat and parallel to the wall. 

The first approach to model this part of the streamline was to use straight lines. 

It was decided to join two straight lines with different slopes at the midpoint of the 

interval, x — 0.5, figure 4.5. Then we had to determine their slope and the number 

of points on the boundary. 

It was decided to use three different domains, each one with more points than 

the previous one: Do,Di and D2. Thus Do had 61 points from which 33 were used 

as nodal points (the values of ^ and and were prescribed on them). The 

second mesh, Di had 85 points and the nodes this time were 42. Finally, the third 

domain, Dg was created by using 119 points from which 59 were nodes. Then, a 

fourth one, D3, was created, which combined some features from the previous three: 

on the sharp corners of the mesh more points were added, whilst at the intervals 

where the variations of ^ and its derivatives were small, some points were omitted. 

The new mesh had 127 points from which 63 were nodal points. 

Each domain was tested for the same mass flow, M = 2, but for different number 

of points on the boundary and the streamline. This was done in order to determine 

which mesh was the best to use in order to proceed with the solution of the problem. 

Measurements of the mass flow coming out of the slot (0 < z < 1) were also recorded 

and points on the outlet and inlet of the model were also monitored. 

The results from Do, Di and Dg were compared with the ones produced by D3, 

case 4. Table 4.4 shows the results that each mesh produced when the mass flow 

was taken to be 2. From this table it may be seen that on the streamline the value 

obtained for ^ is 2, as it waa expected since it was set to this value. On the walls 
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the program estimated the ^ values to be zero, or very close to zero. Finally, the ^ 

values for some points on inlet and outlet were also recorded. Table 4.5 illustrates 

better the differences between each of the domains Do, -Di, Dg and Dz for a given 

set of points. The absolute difference of the mass flow between each domain and 

Dg was measured for many points on the boundary. From this table it may be seen 

that the difference between -D3 and the other domains decreased as the points on the 

boundary increased. There was also good agreement between D2 and Dz for many of 

the points on the domain. As it can be seen from both tables the number of points 

on the boundary influenced the final outcome. 

The most coarse domain produced results which are accurate for some of the 

tested points, those which were not sensitive to changes of ^ and and ^y on the 

boundary, along the flat part of the streamline and on the wall. However, for the case 

of the coarse mesh, where there were very few points, only 33 nodes, or 67 points, it 

is clear that the difference between Do and D3 was quite high at the points where 

there waa a sharp corner, or where the stream function changed value, or when the 

streamline changed shape (z — 1 and x = 0). 

When more points were added to the domain (Di and D2) the results in general 

were improved. Thus the absolute differences of Di and D2 with D3 were very small. 

With more points added on the mesh (Di had 42 nodes and for Dg 59) the results 

and the difference in the values of the mass flow were in general improved, since the 

grid had more points at the regions where the shape of the boundary was not smooth, 

near z = 0 and z = 1. 

4.4.2. Us ing S t r a igh t Lines 

After determining the number of points on the boundary we continued with the 

next stage which was to use two straight lines, joined at a point, to model the shape 

of the streamline and to calculate the pressure difference along the boundary. 

In order to find the slopes of the lines where Ap was minimum, we decided 

to keep the mass flow and the z-coordinate constant and change the 1/-coordinate 

of the point, i.e. the slope of both lines would change each time the ^ value was 

changing, figure 4.5. The mass flow was taken to be 2 and z = 0.5 and we tested the 
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program for various values of y. The meshes had the same number of points on the 

boundary, except in the interval 0 < z < 1, where different number of points were 

used: n = 4,6,9 and 11. The table 4.6a shows some pressure differences, Ap, for 

various y-coordinates, for x = 0.5 and different slopes of the two lines for the case 

where n = 6. When more points were added on the interval it was found that the 

outcome was not affected significantly. 

#y = 0 

lines with 
different slopes 

^ = M 

= 0 # 1 = 0 

midpoint 

#U = 0 

-3 
#g = 0 

F I G U R E 4.5, D i a g r a m of t h e mode l , us ing lines 

From the table 4.6a it may be seen that the minimum pressure difference was 

in' the region 0.20 < (/ < 0.35, where the value of i/ = 0.22 acted like a lower limit 

and y — 0.35 the upper bound. It can also be seen that the ^-coordinate of the point 

should have been closer to 0.22 than to 0.35, since the pressure difference at ^ = 0.22 

was less. Thus we investigated this region in more detail, by testing some more points 

which were around 0.22. The results obtained from some of the tested points can be 

seen in table 4.6b. 

From the table 4.6b, it may be seen that the ^-coordinate of the point with the 

minimum pressure difference was y = 0.25, since Ap was found to be very small. Thus 

this point was used as the joining one for the two lines, x =0 to 0.5 and x =0.5 to 1. 

Having established the slopes of the two lines, it waa then decided to continue the 
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investigation by testing various mass flows. In this way we would be able to deduce 

the optimum value of M, which would give the minimum pressure difference. 

We tested five more different values of mass flow and various ^-coordinates of the 

point X =0.5. The results can be seen at the tables 4.7a-4.7e. 

From the tables 4.7a-4.7e it may be seen that the point (0.5,0.25) produced the 

lowest value for the pressure difference: Ap % 0, for any value of mass Sow. However, 

it seems that the minimum pressure difference waa zero. This cannot be right, since 

we had assumed that there was only one non-zero mass flow which would give the 

lowest Ap. The graphical representation of the above results (Ap vs mass flow) can 

be seen in figure 4.6. The graphical solution that we obtained had the form of a line 

touching the z-axis, instead of a curve which would have a minimum, positive point 

(the unique value of the mass flow and the minimum Ap). 

Thus the approach that we had followed to solve the problem, by using two 

straight lines, was proven to be not the right one. Then another method was used: to 

solve the problem by using smooth curves in the interval 0 to 1. These curves should 

also satisfy the boundary conditions 5''(0) = ^' '(l) = 0. 

4.4.3. Us ing Po lynomia l s of High O r d e r 

The fitting of a polynomial curve to a set of data points haa applications in the 

area of computer graphics and mathematics, when a smooth curve must be drawn 

through data points. Also in cases where continuity of function derivatives is essential, 

a spline can be utilized. A spline function P{x) is a polynomial between each pair of 

data points, but one whose coe&cients are determined nonlocally. This property is 

intended to ensure global smoothness in the flnite interval [a;o, where the spline is 

defined. Splines are more stable than polynomials because they tend to oscillate less 

between the data points. Mathematically, it is possible to construct a spline, fA;(z), 

on each strictly increasing interval [zt, so that the resulting curve ^ = -P(3:) a^id 

its first derivatives are all continuous on the larger interval [ z o , T h e continuity 

of f (z) means that the graph ^ = -P(:z:) will not have sharp comers. 

The function f (z) defined in the interval is called a sphne of degree TV 
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if it has the following properties: 

(i) in each local interval [zt, z t+i] f (a:) is given by a spline of degree TV, denoted 

aa 

(ii) at each point Xk the function P(x) — fk, where fk is the function value of 

the point 

(iii) at the common point Xk of the two subintervals [xk-i,Xk] and [xk,Xk+i] P 

satisfies 

(1) -ffc—i(^fc) — Pk^^k) and 

(2) and finally, 

(iv) the function f (a;) and its derivatives up to order jV — 1 are all continuous in 

the global interval [zo,z^]; given in Conte and de Boor (1965). 

Splines of high order were constructed for the interval 0 < a; < 1 and they were 

found to produce a very smooth streamline, similar to the one in figure 4.2. 

The same process as before waa followed in order to determine the optimum 

value of the mass flow: the pressure difference was calculated across the streamline 

for different values of M and then the results from each case were compared with each 

other. The mass flow which would produce the minimum Ap would be the desired 

M. It was also decided to use different methods to represent the interval from 0 to 1. 

Thus various tests were performed with one curve passing through all the points of the 

interval, two curves joined at the middle point, x — 0.5 and having the ^-coordinate 

moving up and down and finally, having two 'moving' points, i.e. three curves joined 

at equally spaced intervals. For all these cases a FORTRAN code was written to 

construct the splines in the interval 0 to 1 and then to solve Laplace's equation using 

the NAG routine mentioned in section 4.4. Since it was decided to use three ways 

(three different interpolating functions) to estimate the streamline for the interval 0 

to 1, the numerical code had to change slightly each time a different case was used. 

Nevertheless, the process to determine the shape of y = S{x) in the area above the 

slot was similar as in section 4.4.2. The interpolating curve(s) was constructed and 

then the pressure of the film and the outer flow on the streamline were compared. 
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The smallest pressure difference obtained by a given mass flow would produce the 

solution to the flow problem. 

During the process of constructing the splines we guaranteed that the derivative 

conditions were satisfied and also that the curves were continuous at the joining points 

of the interval 0 to 1. Also the number of points in the rest of the mesh was remained 

constant, i.e. only the number of the points in the interval was changed. 

For the first case one spline was constructed to connect the interval 0 to 1 with 

an intermediate point at x = 0.5. The ^-coordinate of this point could change to 

produce a different spline each time. The spHne curve had to pass through these 3 

points and create some more, which would be placed in equally spaced positions, in 

the smaller intervals 0 to 0.5 and 0.5 to 1. The number of these data points varied 

from n = 2 t o n = 21. For each case various values of mass Eow were used in order to 

determine which M would give the minimum Ap. This value of mass flow was then 

compared with the results obtained from the other cases. The mass flow which would 

give the minimum pressure difference when the results from all cases were compared 

would be the optimum M and the solution to our flow problem. However, the results 

produced from this method proved to be inconclusive. The tables 4.8a-4.8f show the 

results of Ap obtained for various mass flows and ^/-coordinates for x = 0.5. From the 

graphs of figures 4.7a-4.7f, where the pressure difference is plotted against the mass 

flow, it may be seen that it is very difficult to draw any conclusions for the optimum 

value of mass flow. 

Since the method of using one curve did not work, it was decided to use two 

curves for the interval 0 to 1, by joining them at z = 0.5. In the middle of each of the 

two smaller intervals created (0 to 0.5 and 0.5 to 1) one point was placed, estimated 

by the interpolating curve. The ^-coordinate of the point could move up, or down 

depending on the input data. We were careful to keep both functions continuous at 

the joining point. The total number of points for each curve varied from n = 5 to 

n = 21 for the whole interval. The tables 4.9a-4.9e show various pressure differences 

for different values of M. Also the graphs of figures 4.8a-4.8e show Ap plotted against 

the mass flow M. For this set of results, again, the optimum mass flow was different 

for different numbers of points in the interval. Thus, once again we were not able to 
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obtain any useful results. 

Thus it was decided to use two 'moving' points at z = 0.333 and x = 0.667. For 

the three intervals created one point was added at an equal spaced position, whose 

^-coordinate was calculated by the spline. In this way three splines were used. Again, 

all three functions were kept continuous at the joining points and at the same time 

the boundary conditions for S'{x) at z = 0 and x — 1 were satisfied. During each test 

one of the two 'moving points' was kept constant and the ^-coordinate of the other 

point, together with the mass flow were changing, i.e. the same method that was used 

before was also followed this time. Then the reverse process was used: the former 

was taken, as the 'moving point' and the latter as the stationary point. In the tables 

4.10a-4.10b we present some representative results for two sets of points: n = 5 and 

n = 17. As it may be seen the results obtained were once again not satisfactory, and 

hence it was decided to try a completely different method. 

4.4.4. Us ing a O p t i m i z a t i o n Technique 

Since the above approaches to find a minimum pressure difference did not work 

it was decided to use a optimization method. The process of optimization was very 

similar to the method described above. 

The streamline was approximated by using spline interpolation and having two 

'moving' points in the interval 0 to 1. One more point equally placed in each of 

the subintervals was created by the splines. Then an initial guessing value for the 

mass flow together with two guessing values for the ^-coordinates of the 'moving' 

points were supplied. Then the pressure difference was estimated by following the 

same process as in section 4.4.3. The optimizing NAG routine E04CCP treated the 

above parameters as initial data in order to start the iterations for M and the two 

^-coordinates. The routine used the Simplex method. Fox and Wilkinson (1993), to 

produce the new values of the mass Eow and the two (/-coordinates. These parameters 

produced a new Ap, which waa compared with the previous pressure difference. The 

smallest pressure difference together with the entries produced this particular Ap were 

stored in order to repeat the above process and comparisons. Eventually, the value 

of M and the values of the two ^-coordinates for the points z = 0.333 and z = 0.667 
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which produced the overall minimum pressure difference, were found. 

The minimization process was initiated by testing the program for different num-

bers of points in the interval 0 to 1. The first test waa performed by having 7 overall 

points in the interval above the slot and then the number of points was increased to 9 

and 11. However, with more points added to the mesh the results were inconclusive. 

That was due to the fact that each time the number of points was changed the results 

for the optimum mass Sow changed too. Thus we could not verify the initial results 

produced for the case n = 7, shown in table 4.11. This table shows various values 

of the mass flows together with the value of Ap for two moving points: pi — 0.333 

and p2 = 0.667, with variable ^/-coordinates. Figure 4.9 shows a typical curve of the 

pressure difference vs the mass flow. 

4.5. DISCUSSION OF RESULTS 

A numerical investigation waa conducted for the problem of 61m cooling in a 

supersonic main stream. The main and the injected flows were taken to be inviscid, 

incompressible and time independent. 

The first stage in solving the problem was to determine the shape of the stream-

line for the interval a; = 0 to z = 1. Three methods were used to find the optimum 

shape of the boundary: by joining two straight lines and two/three splines at the 

middle point and by using a minimization technique. For each method the pressure 

difference across the boundary was calculated, by obtaining the pressure in the film 

and the main flow and then comparing them. The mass flow which would produce the 

minimum Ap was the solution to our problem. However, all methods produced incon-

clusive results due to the fact that the mass flow calculated from all three techniques 

did not converge to a specific value, thus we could not be conffdent about it. 

In the sections to follow we comment on the results obtained from each method. 

4.5.1. Discuss ion of Resu l t s for t h e M e t h o d of S t r a igh t Lines 

The first approach was to use straight hnes to join the interval above z = 0 and 

z = 1. The results produced are summarized in the tables 4.7a-4.7e. From these 
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tables it can be seen that the mass How did not converge to a specific value. The 

pressure diEerence declined as M decreased and for two cases (table 4.7a and 4.7c) 

Ap was found to be very close to zero, this means that that there were two different 

mass flows for which the same minimum pressure difference was obtained. The graph 

of figure 4.6 illustrates clearly our conclusion. We obtained a broken hne, with no 

minimum point, instead of a curve with a lowest minimum, which would have been 

the appropriate mass flow for a speci6c non-zero Ap. 

From the shape of the first graph (figure 4.7a) it was obvious that a minimum 

mass flow existed. This mass flow was found to be 0.487 and it produced a Ap = 

0.1173e — 3 (table 4.8a). The above results were obtained by running a program for 

5 points in the interval. 

The second test was performed with n (number of points in the interval) equal 

to 7. The numerical results can be seen in table 4.8b. Their graphical representation, 

6gure 4.7b, another Ap = 0.1262e — 2 for ajiother optimum mass flow (M = 0.554). 

This graph produced a minimum point but we could not be sure that this mass flow 

was the right one, since it was not close to the value of M calculated by the previous 

case. 

From the third run, it may be seen that the increase at the number of points n = 9 

influenced, once again, the flnal outcome. This is evident from the table 4.8c and the 

graph of Ap vs M of flgure 4.7c. The pressure difference went up (Ap = 0.1518e — 2) 

whilst the mass flow decreased, M = 0.234. The shape of the graph has the same 

form as the previous ones, i.e. a minimum point was established, but the results were 

nowhere near to the previous ones. 

Another test was performed, with the number of points been increased to 11. The 

results from this run can be seen in flgure 4.7d and the table 4.8d. The behaviour of 

the model was similar to the previous ones. It seems that it was very sensitive to mesh 

changes. This time M was found to be 0.340 with a minimum Ap = 0.1406e — 2. The 

graph of flgure 4.7d produced a minimum point, but it was not close to any previous 

points that we obtained from the last runs. 

This time n waa taken to be 17 eind from the graph of flgure 4.7e and the table 
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4.8e, we can see that the pressure difference was found to be less than the ones 

obtained in the case where n = 9, 11. Thus Ap — 0.1334e — 2 with a mass flow of 

0.231. Furthermore, the mass flow was less than the previous case, but very close to 

M for n = 9. Nevertheless, it was not very wise to say that the optimum mass flow 

was found to be somewhere in the region of 0.231 and 0.234 since the two values of 

Ap (for n = 9 and n = 17) did not coincide. 

The last set of tests was performed with n = 21. The graph of figure 4.7f has 

ail the characteristics of all the previous ones: a minimum point with a value of 

M = 0.100 and Ap = 0.1267e — 2. All the above results showed us that the optimum 

value of mass flow was greatly affected by the number of points. 

4.5.2. Discuss ion of Resu l t s for t h e M e t h o d of Splines 

The second method used, was to model the unknown streamline (from z = 0 to 

1) by using splines, which could satisfy the boundary conditions: S'(0) = 5''(1) = 

0. With this method we were able to produce a smooth curve to join the interval. 

Different number of points were used for the section z — 0 to 1 in order to test the 

dependency of the solution on the mesh. 

This method involved the construction of two curves joined together at a point, 

the middle of the interval z = 0.5. Both curves were continuous at the connecting 

point and satisfied the boundary conditions. 

The first test performed for n = 5 and the results can be seen in table 4.9a and 

graphically in the figure 4.8a, where a plot of the mass flow against Ap is shown. The 

optimum mass flow was found to be M = 0.585 with Ap = 0.1487e — 2. This graph 

is very similar to previous ones: a minimum point was found, but its value was not 

close to any other one from the previous tests. 

The second run was performed for n = 9. The graph of figure 4.8b shows a similar 

pattern with the previous graph. From the table 4.9b we can see that Ap = 0.1464e —2 

was very close to the previous value, but this time the mass Sow changed: M = 0.350. 

Another test, with n = 9, shows (table 4.9c) a pressure difference of 0.1412e — 2, 

but for a mass flow of 0.280. We can say that this result was close to the previous one, 
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but we still could not be confident about the actual mass flow. Finally, the graph of 

figure 4.8c has all the properties of the previous ones, a minimum point which gave 

the minimum Ap for an optimum mass flow. 

When the number of points in the interval was increased, n = 17, the pressure 

difference dropped to 0.1265e — 2 (table 4.9d) for a mass flow of 0.152. The shape of 

the graph, figure 4.8d, was found to be very similar to the ones produced by all the 

previous runs, with fewer points in the interval. 

For the last run, a = 21 (figure 4.8e) good agreement existed between the above 

results and the results from this test, since M = 0.170 and Ap = 0.1269e — 2, table 

4.9e. However, these results were still inconclusive, since we could not say with great 

confidence the actual value of the mass flow. 

Another way to solve the problem was then employed: two moving points were 

used, with three curves joined at two equally spaced points, i.e. x — 0.333 and 

z = 0.667. A lot of runs were performed at this stage and the general approach was 

to keep stationary one of the points and move the ^-coordinate of the second point 

up, or down. At the same time we changed the value of the mass flow. Then the 

same process was repeated for the other moving point. The tests conducted involved 

a various number of points, from a = 5 to n = 21. However, most of the produced 

combinations of the two moving points and the mass flow were unsuccessful, i.e. the 

pressure difference was too high. 

The tables 4.10a and 4.10b show the two most successful combinations for n = 5 

and n = 17. As may be seen the two tests gave different values for M and Ap. Table 

4.10a shows a minimum Ap = 0.2004e — 1 for a range of mass Sows: 0.237-0.239, and 

for two points with coordinates: (0.333,0.10) and (0.667,0.45). On the other hand, 

from table 4.10b we obtained a lower Ap = 0.8307e — 3 for M = 0.235 0.240 and 

points (0.333,0.10) and (0.667,0.35). Clearly, it may be seen that for the same values 

of mass flow we obtained entirely different pressure differences. Thus we could not 

say with confidence which test produced the optimum pressure difference and correct 

mass flow. 
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4.5.3. Discuss ion of Resu l t s for t h e Min imiza t ion M e t h o d 

Since the above method did not work, it was decided to use a minimization 

technique. In this way we would specify the mass flow and we would guess two initial 

values for the ^-coordinates of the moving points. A NAG routine that was utilized 

attempted to find two suitable ^-coordinates, which would give a minimum Ap for a 

given value of M. This process was repeated several times, until an optimum value 

of M was found. 

The table 4.11 shows tabulated values of mass How and Ap, for optimized 

coordinates. The graph of Ap vs M, figure 4.9, is very similar to all the previous 

ones, only in this case the minimum Ap = 0.1538e — 1 for M = 0.610. As we can 

see this value of mass flow was not close to any of the previous ones. Thus it was 

decided to use again, more points in the interval 0 to 1. However, all the tests proved 

inconclusive, the mass flow did not converge to a specific value and in many cases the 

algorithm did not converge to a speciflc pressure difference value. 

4.6. CONCLUSIONS 

A lot of different methods were used in order to obtain the optimum mass flow 

for the problem of fllm cooling in supersonic main flow. Unfortunately, all of the 

techniques failed to produce trustworthy results. It seems that all the solutions were 

mesh dependent, since changing the number of points in the interval 0 to 1 the mass 

flow and subsequently the pressure difference also changed. Thus we could never be 

sure about the results produced. It is possible that the numerical solution of the 

problem was affected by possible singularities in the region very close to the slot 

edges. As has been discussed earlier there are inner regions in the slot that the 

boundary conditions do not apply. This phenomenon did not influence the results of 

the subsonic case, but it is possible that it affected the solution for the supersonic 

flow problem. 

If some experiments were conducted it would have been possible to compare these 

results with the numerical ones which were obtained from the above methods. Another 

approach would possibly be to use CPD methods, since fluid dynamics packages could 
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give us some information about the How in the &Lm and the pressure on the streamline. 

Physically, we know, that there is only one value of mass flow that gives the 

minimum pressure difference with the above scaling. It is, however, possible that for 

other scalings the mass flow, and maybe the pressure difference will vaz-y. 
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X y Do Di D2 D, 

4.00 &30 0.6012 0.6047 0.6000 0.6175 
3.50 1.00 2.0044 1.9992 2.0011 2.0000 
L75 1.00 2.0000 2.0006 1.9978 1.9992 
LOO 1.00 2.0896 2.0000 2.0066 2.0063 
0.89 0.89 1.9952 1.9999 2.0016 2.0016 
0.40 0.40 1.9973 2.0000 1.9996 1.9996 
0.00 0.00 0.0004 0.0000 0.0000 0.0000 
0.00 -1.10 0.0005 0.0001 0.0000 0.0000 
0.00 -2.75 0.0000 0.0000 0.0000 0.0000 
0.25 -3.00 1.5083 1.5047 1.5019 1.5069 
0.50 -3.00 1.0013 0.9995 0.9991 1.0057 
0.50 0.00 1.4067 1.3243 1.3689 13681 
LOO -2.50 0.0066 0.0006 0.0005 0.0003 
1.00 -0.75 0.0124 0.0124 0.0007 -0.0028 
2.00 0.00 0.0009 0.0000 0.0016 0.0015 
3.80 0.00 0.0005 0.0000 0.0063 0.0000 

T A B L E 4.4. Values of M at d i f ferent po in t s for var ious d o m a i n s 

X y D 3 - D 0 I I D 3 - D 1 D3 — D21 
4.00 0.30 L63e-2 L30e -2 L75e -2 
3.50 LOO 4.40e-3 8.00e-4 L l O e - 3 
L75 LOO 7.00e-4 L30e -3 L 5 0 e - 3 
LOO LOO 8.30e-2 6.30e-3 3.00e-4 
0.89 0.89 6.40e-3 L80e -3 O.OOe-0 
0.40 0.40 2.30e-3 4.00e-4 O.OOe—0 
0.00 0.00 4.00e-4 O.OOe-0 O.OOe-0 
0.00 -1.10 5.00e-4 O.OOe-0 O.OOe-0 
0.00 -2.75 O.OOe-0 G.OOe—4 O.OOe-0 
0.25 -3.00 L40e -3 2.20e-3 5.00e-3 
0.50 -3.00 4.40e-3 6.23e-3 6.58e—3 
0.50 0.00 3.76e-2 4.48e—2 2.00e-4 
LOO -2.50 6.59e-3 5.94e-3 4.51e-4 
1.00 -0.75 9.54e-3 9.55e-3 2.15e-3 
2.00 0.00 6.49e—4 L 5 1 e - 3 2.18e-5 
3.80 0.00 1.08e-2 2.64e-3 3.69e-3 

T A B L E 4.5. Abso lu t e differences of M for d i f ferent d o m a i n s 
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y 5^ Ap 

0.65 L30 -0.30 0.233e-l 
&45 0.90 &10 0.483e-l 
0.35 0.70 0.30 0.654e-2 
0.20 0.40 0.60 0.312e-2 
&15 0.30 0.70 0.656e-2 
&10 0.20 0.80 0.980e-2 
0.21 0.42 0.58 0.261e-2 
0.22 0.44 0.56 0.197e-2 

T A B L E 4.6a. P r e s s u r e differences for var ious po in t s , M = 2 

y 5^ Ap 
0.26 0.52 0.48 0.65e-3 
0.25 0.50 0.50 O(IO-G) 
0.24 0.48 0.52 0.65e-3 

T A B L E 4.6b. P r e s s u r e differences for s o m e specific po in t s , M = 2 

TABLE 4.7a. 

y Ap 

0.35 0.6532e-2 
0.24 0.6528e-3 
0.25 O.OOOOe-0 
0.26 0.6529e-3 
0.22 0J.959e-2 
0.20 0.3261e-2 
0.10 0.9798e-2 

re differences fo 

y Ap 

0.35 0.6528e-2 
0.24 0.6531e-3 
0.25 0.4452e-6 
0.26 0.1961e-2 
0.22 0.6527e-3 
0.20 0.3252e-2 
0.10 0.9798e-2 

:0.1, us ing lines 

T A B L E 4.7b. P r e s s u r e differences for M = 0 . 3 , using lines 
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y Ap 

0.35 0.6534e-2 
0.24 0.6593e-3 
&25 O.OOOOe-0 
0.26 0.6723e-3 
0.22 0.1965e-2 
0.20 0.3212e-2 
0.10 0.9760e-2 

T A B L E 4.7c. P r e s s u r e differences for M = : l , us ing lines 

y Ap 
0.24 0.1394e-2 
0.25 0.1702e-2 
0.26 0.2205e-2 
0.22 0.1745e-2 
0.20 0.3362e-2 
0.10 0.9620e-2 

T A B L E 4.7d. P r e s s u r e differences for M—3, using lines 

y Ap 

0.24 0.1503e-2 
0.25 0.1790e-2 
0.26 0.2276e-2 
0.22 0.1810e-2 
0.20 0.2864e-2 
&10 0.9564e-2 

T A B L E 4.7e. P r e s s u r e differences for M = 4 . 5 , using lines 
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M y Ap 

0.200 0.25 0.1395e-2 
0.300 0.25 0.8336e-3 
0.487 0.25 0.1173e-3 
0.500 0.25 0.1318e-3 
0.700 0.25 0.1395e-2 
1.000 0.24 0.3843e-2 
2.000 0.26 0.3342e-2 
4.500 0.26 0.1029e-l 

T A B L E 4.8a. P r e s s u r e differences ob t a ined by using one curve , n = 5 

M y Ap 
0.300 0.25 0.1678e-2 
0.554 0.25 0.1262e-2 
0.600 0.25 0.1293e-2 
0.700 0.25 0.1578e-2 
LOOO 0.26 0.3170e-2 
2.000 0.24 0.3663e-2 
4.500 0.24 0.4000e-2 

T A B L E 4.8b. P r e s s u r e differences ob t a ined by using one curve , n = 7 

M y Ap 

OAOO 0.25 0.1535e-2 
0.200 0.25 0.1595e-2 
0.234 0.25 0.1518e-2 
0.300 0.25 0.1529e-2 
0.600 0.25 0.1752e-2 
0.700 0.25 0.1859e-2 
LOOO 0.24 0.3265e-2 
2.000 0.25 0.3204e-2 
4.500 0.24 0.2755e-2 

T A B L E 4.8c. P r e s s u r e di f ferences ob t a ined by using one curve , n = 9 
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M y Ap 

0.20 0.25 0.1459e-2 
0.30 0.25 0.1412e-2 
&34 0.25 0.1406e-2 
0.50 0.25 0.1558e-2 
0.70 0.25 0.1989e-2 
1.00 0.26 0.3091e-2 
2.00 0.25 0.3112e-2 
4.50 0.25 0.2805e-2 

T A B L E 4.8d. P r e s s u r e di f ferences ob t a ined by us ing one cu rve , n—11 

M y Ap 
0.200 0.25 0.1335e-2 
0.231 0.25 0.1334e-2 
OJOO 0.25 0.1993e-2 
LOOO 0.22 0.2795e-2 
2.000 0.25 0.2941e-2 
4.500 0.25 0.2926e-2 

T A B L E 4,8e. P r e s s u r e differences ob t a ined by us ing one curve , n = 1 7 

M y Ap 

0.1 0.25 0.1267e-2 
0.2 0.25 0.1276e-2 
0.3 0.25 0.1280e-2 
1.0 0.26 0.2294e-2 
2.0 0.25 0.2761e-2 
4.5 0.25 0.2684e-2 

T A B L E 4.8f, P r e s s u r e differences ob t a ined by using one curve , n = 2 1 
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M y Ap 
0.300 0.20 0.1583e-2 
0.585 0.25 0.1487e-2 
0.700 0.25 0.1671e-2 
LOOO 0.25 0.3659e-2 
2.000 0.24 0.3679e-2 
4.500 0.20 0.2951e-2 

T A B L E 4.9a. P r e s s u r e differences ob t a ined by using two curves , n = 5 

M y Ap 
0.20 0.25 0.1523e-2 
0.35 0.25 0.1464e-2 
&70 0.20 0.1982e-2 
LOO 0.25 0.3221e-2 
&00 &24 0.3348e-2 
4^0 0.24 0.3020e-2 

T A B L E 4.9b. P r e s s u r e di f ferences ob t a ined by using two curves , n = 7 

M y Ap 

&20 0.25 0.1425e-2 
0.28 0.25 0.1412e-2 
0.70 0.26 0.1973e-2 
LOO 0.25 0.2983e-2 
2.00 0.24 0.3098e-2 
4.50 0.24 0.2937e-2 

T A B L E 4.9c. P r e s s u r e differences ob t a ined by using two curves , n = 9 
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M y Ap 
&100 0.25 0.1268e-2 
0.152 0.25 0.1265e-2 
0.600 0.25 0.1682e-2 
LOOO 0.27 0.2795e-2 
2.000 0.27 0.2787e-2 
4.500 0.27 0.2747e-2 

T A B L E 4.9d. P r e s s u r e differences ob t a ined by using two curves , n = 1 7 

M y Ap 
0.10 0.24 0.1273e-2 
0.17 0.24 0.1269e-2 
0.40 0.26 0.1349e-2 
1.00 0.26 0.2759e-2 
&00 0.27 0.2761e-2 
4^0 &27 0.2734e-2 

T A B L E 4.9e. P r e s s u r e di f ferences ob t a ined by using two curves , n==21 

yi y2 M Ap 
&10 0.45 0.237-0.239 0.2004e-l 
&15 0.45 0.685-0.699 0.2014e-l 
0.24 0.45 0.732 0.2571e-l 
0.25 0.45 0.718 0.2637e-l 
0.26 0.45 0.701 0.2698e-l 
0.22 0.45 0.760 0.2445e-l 
0.20 0.45 0.785-0.789 0.2320e-l 
0.27 0.45 0.685 0.2762e-l 

T A B L E 4.10a. P r e s s u r e differences for var ious M a n d 

y -coord ina t e s using t h r e e curves , n = 5 
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yi y2 M Ap 
&10 0.35 0.235-0.240 0.8308e-3 
0.22 0.10 0.370-0.380 0.3894e-2 
0.24 0.10 0.580 0.3939e-2 
0.25 0.10 0.594-0.599 0.3950e-2 
0.26 0.65 0.392-0.401 0.3956e-2 
0.30 0.22 0.568-0.577 0.3531e-2 

T A B L E 4.10b. P r e s s u r e differences for var ious M a n d 

y -coord ina t e s using t h r e e curves , n = 1 7 

yi 2/2 M Ap 
0.2370 0.7591 MO 0.1628e-l 
0.2162 0.8143 0.40 0.1594e-l 
0.2041 0.7953 0.50 0.1566e-l 
0.1874 0.8140 0.61 0.1538e-l 
0.1630 0.7673 0.70 0.1748e-l 
0.1891 0.7515 0.80 0.2044e-l 
0.1975 0.7265 0.90 0.2368e-l 
0.2053 0.6893 LOO 0.2731e-l 

T A B L E 4.11. P r e s s u r e differences for var ious M a n d 

y -coord ina tes , n—7 
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CHAPTER 5 
THE HEAT TRANSFER PROBLEM 

5.1. INTRODUCTION TO THE PROBLEM 

High temperatures in a turbine cause thermal stresses which can aifect its hfe 

expectancy. In order to limit these effects it is essential to determine the temperature 

profiles in the area of the turbine and its components. In this chapter we will exam-

ine the phenomenon of heat transfer in a subsonic main stream on the surface of a 

turbine blade when film cooling takes place. The thin layer of fluid is created when 

a secondary flow is injected from a slot. This injected flow covers the slot and the 

area downstream of the cavity. The temperature of the main stream is much higher 

than the temperature of the injected duid. Both fluids are assumed to be inviscid and 

incompressible. 

5.2. THE ENERGY EQUATION 

The partial diEerential equation governing heat transfer is the energy equation. 

For a constant property viscous fluid with heat convection, heat conduction and vis-

cous dissipation the equation has the general form 

p . ( f + ( q . v ) T ) = w ^ T + , | : | : ( | i ) ' (5.1) 

where T(x,y) is the temperature of the fluid, p is the density of the fluid, c the 

specific heat capacity, A: the thermal conductivity, // the viscosity coe&cient, Ozigik 

(1977), and q the velocity vector. When the fluid is incompressible and the viscous 
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dissipation effects are negligible (aa in our case), equation (5.1) becomes 

/)c + (q V)T^ = (5.2) 

Since the How is considered to be steady, equation (5.2) can be simplified further by 

omitting from the left hand side of the equation the time derivative term. Thus the 

equation becomes 

/)c(q.VT) = (5.3a) 

which in 2 dimensions can be written 

The first boundary condition for equation (5.3a) is that the temperature on the 

boundary between the free stream and the film is taken to be equal to the main stream 

temperature, Ti. Thus 

T = Ti at 2/ = ^(z) , 

where S(x) is the streamline. At the wall there will be a second condition which 

prescribes the heat transfer there. For an insulated wall 

a r 
—— = 0 at y = 0, 

or more generally, 

^ = h'(T^ - T f ) , 

where h' is the heat transfer coefficient, Ty^ the wall temperature and Tf the fluid 

temperature. Another possible condition is 

Tu, = constant at y = 0, 

which means that the wall temperature is constant. Away from the slot the temper-

ature T tends to the main stream temperature Ti: T —>• Ti as x —̂  oo. Finally, the 

temperature in the slot is taken to be equal to To, where To < 7%, thus 

T = To when 0 < x < 1 and 0 < y < S(x). 
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This means that we can approximate the solution of the problem by calculating the 

temperature profiles starting from x = 1, because we assume that the main stream 

temperature does not affect the slot temperature, since the 'lid' effect (described 

in chapter 4, section 4.2) keeps the slot temperature at Tq. Figure 5.1 shows the 

geometry of the heat transfer problem. Equation (5.3b) must be solved subjected 

to the boundary conditions shown in figure 5.1, in order to obtain the temperature 

profiles in the film and to determine the temperature of the wall downstream of the 

slot. 

main stream 

T = Ti 

film region 

T = Tu 

F I G U R E 5.1. T h e doma in for t h e hea t t r a n s f e r p r o b l e m 

Before proceeding with the solution of the problem, it is sensible to scale and 

non-dimensionalize the variables of the model to see if any simplifications are possible. 

5.3. DEFINING THE PROBLEM 

We will use the same dim'ensionless variables as in chapter 4 and section 4.2. 

Thus Uoo is the velocity of the main stream, poo the density of the fluid of the free 

stream, L is the slot width and e is a small parameter, defined by equation (4.1), 

which describes a small disturbance to the main flow. Also we introduce the following 
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non-dimensional parameters 1 V ~ « = TF~l^ u = JT^ and T = Ti'^o ' 

where T is the temperature of the film, Ti the main stream temperature and To the 

temperature of the injected secondary Euid, with To < for film cooling. The above 

non-dimensionalization reduces equation (5.3b) to the following form 

- To) + - To)] = 

- To) + - :ro) 

- To) + WTp(Ti - To)] = 

T , , (T i - To) + ^ f p | ^ ( T i - To) (5.4) 
€ 

where a = and is the thermal difFusivity. If we look closely at equation (5.4) we 

will see that the Tyy term is orders of magnitude greater than Tj^ , since e <C 1- This 

means that Tyy is the dominant term of the right hand side, and thus we can omit 

the term T^z. Equation (5.4) becomes, therefore 

+ t;T,)(Ti - To) = T,,(Ti - To), (5.5) 

(we have also dropped the bars over the variables for simplicity). If we examine 

equation (5.5) more carefully, we can see that the left hand side of the equation 

represents the convective heat transfer term and the right hand side is the conduction-

(diffusion) term. Now, we can define 6 — aLUoo^^, a parameter that determines which 

terms dominate equation (5.5). 

When 6 1, the flow has negligible effect on the temperature distribution and 

the temperature is considered constant in the area of the film. This means that the 

convective term is the dominant term of equation (5.5) and Elm cooling occurs, with 

the region downstream of the slot well protected from the main stream temperature. 

In fact, film cooling will not be effective at a long distance downstream of the slot 

due to the considerable mixing of the main stream and secondary flows. 

In the case when 6 1, diffusion dominates the area downstream of the cavity 

and the main stream temperature is spread in the area of the film. Thus, to lowest 

order equation (5.5) gives 
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with boundary conditions = 0 on y = 0 and T = 1 on y = S(x). The solution of 

the above equation is 

T = + B(z), 

where A(x) and B(x) are function of x, determined by the boundary conditions. Thus 

when T = 1 on ^ = 5'(z) we obtain 1 = 6'(z)A(z) + and for 3^ = 0 on ^ = 0, 

we get A(z) = 0. Thus the temperature in the film is simply T = 1. However, this 

case is beyond our present aim and we will ignore it. 

The most interesting case is when 6 is 0(1) and the terms in equation (5.5) 

balance eax:h other (aa seems likely in our case, where 6 = 1 ) and both sides of the 

energy equation must be retained. This means that must be O(e^). Then 

film cooling occurs for a distance downstream of the slot and at the same time the 

main stream temperature affects the temperature in the film region, i.e. heat transfer 

occurs. 

As has been said before we can approximate the solution of the temperature 

domain by starting the calculations from z =1. We have assumed that the secondary 

flow comes out of the slot tangentially at the upstream edge of the cavity, meaning 

that the outer How forms a 'lid' over the slot, which affects a great deal the amount 

of mass flow coming out of the cavity. Nevertheless, due to this phenomenon, the 

area of the slot is well protected from the hot gases of the outer flow and the slot 

temperature is not inEuenced by the main stream temperature. 

Thus the mesh for the heat transfer problem starts from x = 1 and extends 

downstream from the slot. The grid is also bounded by the streamline on top, and 

the wall at the bottom. The boundary conditions may be seen on diagram of 6gure 

5.1 and are very similar to those given in section 5.2. Thus, on the wall we assume 

there is no heat exchange between the surface and the fluid (the wall is perfectly 

insulated), i.e. 

—— = 0 at y — 0. 
gy 

On the streamline we have prescribed the main stream non-dimensional temperature 

T = 1 at y = 5'(a;) 

73 



and at the beginning of the mesh, on the downstream edge of the slot, we use the 

non-dimensional slot temperature 

T — 0 at X = 1. 

5.4. NUMERICAL SOLUTION, FINITE DIFFERENCE SCHEME 

Equation (5.5) can be solved numerically by using a finite difference method. If 

we denote the value of T at a point, p, on the grid by fp and the step length in the z 

and ^ directions by A and Z respectively, then the mesh point p will have coordinates 

z = 1 + (n — and (/ = ( j — l)f, where n = l . . .nz (where MZ is the number of 

points in the x direction) and j = l...ny, (where ny is the number of points in the y 

direction). Thus the value at the point can also be written in the form 

tp = t(nh^ J — ^n,j-

Now using Taylor's theorem we can write the first derivatives on the left hand side 

of (5.5) by using forward-difference expressions and for the second derivative of the 

right hand side we can use central-differences. Thus the derivatives in equation (5.5) 

become 

rr, ^ ^nj+1 — 
ly _ ^ 

rp ^ tn,j+l n-t~ tnJ — 1 
l y y — — . 

For the derivative condition, = 0, on the wall ( j — 1), we use 

rp _ ^ 

which implies 

^n,2 — ^n,0 5 

where is a Actional point that has been introduced only for reasons of convenience. 

From the above expression it may be seen that we can substitute ^^,2 for ^n,o each 

time it appears. The above expressions for the derivatives can be used in equation 
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(5.5) to produce a finite difference approximation to the energy equation. The finite 

difference scheme is 

1 2 1 

and on multiplying by h and defining r = ^ we obtain 

J- — = r^nj+1 — + r ^n j_ i . 

Rearranging the equation to have all the known values of t on the right hand side we 

obtain 

J- = H n j ' - i — ^nj(2r — 6u/r — 4- r<n j+ i ( l — 

^n+1,7 ~ ^ j(2r Svlr — 6u^ -f- Svl^^ (5.6) 

where 6 is defined previously (and set equal to 1) and tz cannot be equal to zero (the 

values for both velocity components are given in the following section). The above 

formula is called a simple explicit method, Smith (1965), since it has one unknown 

value ( t n+ i j ) directly expressed in terms of known ones. 

5.4.1. Def in ing t h e T h r e e Regions of t h e P r o b l e m 

The numerical scheme given in equation (5.6) must be used together with some 

results obtained for the subsonic flow problem in Fitt et al (1985). Defining "^(x, y) = 

y'ifx)^ where M is the mass flow at infinity and S{x) the streamline, we can obtain 

expressions for u and v. We know that u = and D = — w h i c h means that 

u = and V = ySx 5(^)2 • Since the mass flow and the streamline are known, u and 

D caji easily be calculated. However we have three regions where u changes according 

to These regions are 

region (i) when 1/ = 0, ^ ( z , 0) = 0 and u = 0, 

region (ii) when 0 < (/ < 5'(a:), ^ ( z , y ) = and u = and 

region (iii) when ^ = 5'(z), ^^(z,^) - M and 

The mass How is defined as M = ^f^(oo) and the streamline 'S'(z) — A f i j f ( z ) , 

section 4.2.1 and Fitt et al (1985). Thus by substituting these equations into the 

above three expressions we get 
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region (i) w = t; = 0, 

region (ii) ajid 

region (iii) 7/ = ?; = 

Before we solve equation (5.6) described at the section 5.4 it is essential to check 

the stability of the simple explicit method. 

5.4.2. S tab i l i ty Analysis of t h e N u m e r i c a l Scheme 

We consider the solution t of the finite difference equation approximating the ex-

act solution T of the energy equation. Now, due to truncation errors of the numerical 

solution, we will obtain a solution t*. The difference (t — t*) is defined as the error 

^ and it can be expressed as a Fourier series = Ylktzo where z = -\/(—1)-

We will consider only the propagation of one component of the error, which can be 

written as . In order to determine this error we aasume a solution of the difference 

equation of the form 

The quantity G is called the amplification factor of the method since 

| M | = |G"| |e '^4 = IGI". 
I 

In order for the method to be stable we need |C?| < 1, Smith (1965). By the term 

stability we mean that the values of (mj aJid any local error must be bounded as 

n increases since numerical operations are applied to both values as the solution 

propagates forward in space. Thus, in order for the solution of the finite difference 

equation to converge to the exact solution, the error should not be magnified as the 

solution of the problem continues. 

It may be seen that the tangential velocity component is a function of z, i.e. 

M = M(z) and the ^ velocity component is a function of y, i.e. D = D(2/) (see also 

section 5.4.1). Thus for simplicity reasons we can set u = 0 and check the stability 

for the following equation 

2]^ T y y , 
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since u is considered to be constant along the y direction. Substituting tn^j with 

Qn^tfSj the difference equation (5.6) we obtain the following expression 

Dividing by 

G = — 2r + + re '^) => 

= ( re" '^ — 2r + 6t( 4- re '^) . 

Rearranging and replacing e""'^ = cos — * sin ^ and = cos ^ % sin /), we obtain 

= 2r(cos ^ — 1) + 

For stability we require |(9| < 1, therefore we have 

, 2 r ( cos /9 - 1) .,1 ., 
h i < i. 

The left hand side of this inequality gives 

- 1 < 2r{co,l3^1) ^ J ^ _ 2 ^ 2 r ( c o s / ; - l ) ^ 

1 > Y- ( l — cos^). 

ou 

Thus we want ^ ^ > r. The main term in this inequality is 1 — cos/3. Thus we 

want 

|1 — COS;9| < 2. 

The left hand side of this inequality gives 3 > cos /? which is true and the right hand 

side gives —1 < cos /? which is also true. Thus 1 — cos ^ < 2 is true and we can say 

now that the inequality > r becomes ^ > r. The constant 6 is taken to be 1, 

thus we obtain 
u 

Now we have to check the value of u. We know that u = (from section 5.4.1) 

and also that M = n^^(oo). From here it may be seen that M i > .H (̂a;), thus setting 

M s = H(oo) (from section 4.4.2) we obtain that 1.024 > H(x). Thus the value of u 
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will always have a lower limit, meaning that always %/ > 1 and the ratio will have an 

upper bound, 
1 

2 

Thus it may be seen that r must be marginally less than | in order for the left hand 

side of the original inequality to stand. 

Now, the right hand side of the inequality gives 

2 r ( c o s ^ - l ) I ^ ^ ^ ^ 2 r ( c o 8 ^ - 1) ^ ^ 

From here it is obvious that cos < 1 for the above expression to be satisfied, since 

8 and u can only be non-zero positive numbers. Thus for the right hand side we also 

obtain r < ^. 

Since an analytical solution of equation (5.5) does not exist we can also solve the 

heat problem by using a different numerical scheme. In this way we will be able to 

compare the results produced from both methods to show that the solution obtained 

for the energy equation is correct. 

5.4.3. T h e C r a n k - N i c o l s o n Scheme 

This method is based on using central difference approximations at the interme-

diate mesh point (n + ^,jf) for the second derivative in equation (5.6). Thus for the 

first derivatives and Ty the finite difference equations remain the same as before, 

but now Tyy becomes 

j'+l ^ j - l + + l + ( n j - l ) , 

and the difference approximation to equation (5.5) is 

2^n+l,j —1 ~1" ^n,j+l "" —l)-

Multiplying by h and defining r = ^ leads to 

r 
W n + I J - = g ^ n + l j + l -
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r r r 
J + j - 1 + 2^nj+l — 

and rearranging the equation to have all the unknowns on the left hand side we obtain 

the following result 

r r r 
(r 4- — 2 ^ n j - l + 

r 
(6u — r + 6vr l ) tn j + (— — Svrl)tn,j-^i- (5.7) 

This is the Crank-Nicolson finite difference method. The terms on the left hand side 

of equation (5.7) are the unknown values of t, whereas on the right hand side the values 

of ^ are all known. This numerical scheme is Smith (1965), meaning that 

the unknown values of t can be found only by the solution of simultaneous equations 

generated when the expressions for the values of the unknown ^ are derived. 

5.4.4. S tabi l i ty Analys is of t h e Crank—Nicolson Scheme 

Now, before we progress any further we consider the stability of the above 

method. The same process will be followed as before. Thus if we introduce the 

quantity and substitute it for and set D = 0, equation (5.7) becomes 

(6u - r)G"e'^^' + 

Dividing by we obtai am 

- r + 

Now using Euler's formula again, = cos^ + (sin^^, and rearranging the above 

equation to have G on the left hand side, we obtain 

G(r + — r cos ;^) = r cos — r. 

For stability we require |G| < 1, thus the above expression becomes 

r ( c o s / 3 - l ) + fa 

' ' ' r ( l - c o s ; 8 ) + 6«' 
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^ ^ r(cos — 1) + ^ ^ 
r ( l — cos ;9) + 6^ 

We examine first the left hand side 

-1 < 
r(cos ,8 — 1) + 
r ( l — cos ,9) + 6%/ 

—6^ — r ( l — cos < r(cos ,8 — 1) + => —26^ < 0, 

which is true, since 6 = 1 and u cannot be negative. Now the right hand side will give 

r ( c o s — 1) + 6!̂  < r ( l — cos^) + => cos/) < 1, 

which is also true as long as 0 (for the case = 0 the method is unstable). From 

the above analysis it is obvious that r in unconditionally stable and can take any 

positive non-zero values. Thus the Crank-Nicolson scheme is proven to be stable for 

any values of r. 

5.4.5. T h e Crank-Nico l son E q u a t i o n s 

The scheme developed above, equation (5.7), leads to a system of equations which 

can be solved numerically by writing it in the matrix form 

A x = b 

where A is the coefficient matrix, x the unknown vector and b the vector of the 

known values. If the system of equations is written down for all the unknowns, then 

the coefficient matrix will be 

/ + r 0 
^ 6^ + r 0 

0 \ 
0 

6u + r / \ 0 0 0 ... -

and the general form of the vector b will be 

b = - L j - i + (6t/ - r + 6urZ)^nj + (g ^ 

Note here that for the Erst row, j = 1, and in the last row we add to 

the vector the known value of the boundary point, tn+ij+i^ The above matrix has a 
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tri-diagonal structure which makes the system ideally suited for solution by iterative 

methods, such as Jacobi or Gauss-Seidel. The latter was used to solve the system of 

equations and produce the temperatures of the wall surface for the region of the film 

as discussed below. 

5.5. THE TEST PROBLEM 

Before we proceed any further in the solution of the energy equation in the 

film it is essential to check the validity of the model and the two numerical schemes 

(simple explicit and Crank-Nicolson methods), by solving a test problem for which 

the analytical solution can be found. 

The simplest equation related to our problem is the heat equation in a rectangular 

region with the same boundary conditions as above, except now the upper boundary 

of the mesh is y = 1 and not y = S(x) as it is for the actual heat problem. Thus the 

two-dimensional heat equation considered is 

c- (5.8) 

where c =con.stant, and the boundary conditions are 

Ty = 0 on y = 0 

T = 1 on y — 1 and 

T = 0 on x = 1. 

For simplicity we define a new variable © such that ©(a;, y) = 1 — T(x, y). Figure 

5.2 shows the domain in which the parabolic equation must be solved together with 

the boundary conditions in terms of 6 , which are 

©2, = 0 on y = 0, 

0 = 0 on y = 1 and 

0 = 1 on re = 1. 

Thus equation (5.8) becomes 

c 
m ^ 
dx (9y2 

(5-9) 
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The analytical solution of equation (5.9) with the above boundary conditions 

is easy to determine and will be used to compare the results obtained by the two 

numerical schemes described in sections 5.4 and 5.4.3. The two numerical methods 

will be used to solve equation (5.9) in order to produce a solution for the temperature 

0 on the wall at a distance x downstream from a slot for the rectangular mesh shown 

in figure 5.2. By comparing the results of the two solutions (analytical and numerical) 

we will be able to examine the validity of the two numerical methods and also check 

if the numerical schemes have been implemented correctly into computer codes. 

0 = 0 

F I G U R E 5.2. T h e d o m a i n for t h e t e s t p r o b l e m 

5.5.1. T h e Analy t ica l Solut ion of t h e Tes t P r o b l e m 

In order to solve equation (5.9) analytically we assume a solution of the form 

0 ( z , y ) = A'(z)y(t/), where % is a function of z only and F is a function of y only. 

Thus, starting with 0 = XY, we can write (5.9) in terms of X and Y and separating 

variables, we obtain 

(5.10) 

We now make the assumption that since the left hand side is a function of z only and 

the right hand side a function of y only, for these to be equal each side must be equal 
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to the same constant. Let this constant be — A .̂ Thus the left hand side of equation 

(5.10) becomes 

= 0 

which gives a solution of the form 

where A is a constant, to be determined by the boundary conditions. The right hand 

side gives 

^ = -A^ y " + A^y = 0 

which has a general solution of the form 

y(^ ) = B cos(A^) + D siii(A^), 

where B and D are constants. Thus the general separable solution of the heat equation 

is 

0 ( z , ^ ) = % y = [Bcos(A(/) + D8ii i (A?/)]Ae-^\ (5.11) 

Now, in order to Snd the three unknown constants AB, AD aad A we will have to 

use the boundary conditions. Thus 

8y = [ -BA sin(A!/) + DA cos(A{/)]Ae-^^ (5.12) 

and when = 0 at ^ = 0 equation (5.12) becomes 

D A A e - ^ ' : ^ D = 0. 

Thus equation (5.11) now becomes 

@(z,^) = A'e"'^'^cos(Ay). (5.13) 

When 0 = 0 at y = 1 equation (5.13) is 

x2 , TT 
cos(A^) = 0 => cos A = 0=^AM = — + n7r 

where n = 0,...,oo. The above results mean that (5.13) takes the new form 

0(a;,^) = ^ A n e ':^cos(An!/). (5-14) 
n=0 
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To satisfy the boundary condition Q(x,y) = 1 at x =1, we obtain 

y i ^ cos(AR^) = 1, 

n—O 

and we find the coefficient An by using a Fourier series. Thus we get 

a2 /•! 2 
An — 2e~^ / cos{Xny)dy =4> An = — s i n A „ . 

Jo 
Thus equation (5.14) now becomes 

™ 1 A2 
8(a;, ^) = 2 — sin(AM)e ^-('=-1) cos(AM!/). (5.15) 

An 

This is the analytical solution of the heat equation for the prescribed boundary con-

ditions. We can now use the simple explicit method and the Crank-Nicolson scheme, 

to numerically solve the equation (5.9) and then compare both sets of results with 

the results produced from the analytical solution (5.15). 

5 .5 .2 . N u m e r i c a l C a l c u l a t i o n s for t h e Tes t P r o b l e m 

Two FORTRAN codes were written to calculate the temperature G in the domain 

for any z downstream from the slot. One program solved the heat equation by using 

the simple explicit method, which for equation (5.9) is 

De&iing the ratio r = ^ and rearranging the above finite difference equation, we 

obtain 

tn+l,j — ^n,j 4" ^^n,j —l)-

The other program used the Crank-Nicolson method, which for this case takes the 

following form 

tn+l,j in,] _ _J_ 
' 2Z2 (̂ n+l,j+l 2fn+l,j 4" —1 4" ^̂ n,j 4~inj' —l) ̂  

y* rp 7* T* f 
+ ( g + l)^n+l,; — j+1 = + (^ " ^ 
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This expression produces a system of equations which can be solved with the same 

method described in section 5.4.5. 

During the entire process of running the programs we kept the ratio, r, less than 

I for the explicit method, since the stability analysis suggested that a stable scheme 

could be produced only if r < | . The Crank-NIcolson method was able to handle a 

wide range of values of r from 0.1 to even 3.33. 

Since the solution would propagate along the x-axis, the step in this direction, 

Ax was taken to be small, so that a more accurate solution would be found. The x-

step was in the range of 0.001 to 0.01. The y-step. Ay, was also taken to be relatively 

small between 0.02 to 0.08. The boundary conditions imposed on the mesh of figure 

5.2. where also used in order to start the calculation of the temperature. 

5.5.3. Resu l t s a n d Discussion of t h e Test Mode l 

Many runs were performed to check that the results of the two numerical methods 

were reliable and close to the analytical solution. 

Many different combinations of a; and y discretisations were investigated to prove 

that the two methods were mesh-independent. As it is mentioned above Ax took any 

values from 0.001 to 0.01 and the y-step was also relatively small. However, for the 

explicit method we had to be sure that the ratio would always be less than 1, in order 

to obtain an accurate solution. On the other hand when the Crank-Nicolson method 

was utilized Ay was taken to be even smaller than 0.05, (values for Ay = 0.04 to 0.01 

were also used). The constant of the heat equation, c, was taken to be 1. In table 

5.1 we show tabulated values of the temperature along the surface of the wall for a 

distance of up to one slot-width downstream from the cavity. 

It may be seen that for the first few steps the temperature values are not that close 

to each other, but as we move away from the slot the temperature values produced 

by the Crank-Nicolson scheme seem to converge to the analytic results quicker than 

the results produced from the explicit method. Nevertheless, both methods have 

given results which are quite acceptable and trustworthy. This may also be seen from 

the graph of figure 5.3, where the temperature on the wall is plotted against z, the 
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distance from the slot. In figure 5.3 it is visible that the results from the explicit 

method, (expl), and the results from the Crank-Nicolson method, (ens), are very 

close to the analytic solution, (analyt). 

X Implicit Method Analytic solution Explicit Method 
1.0 0.000000 0.000000 0.000000 
1.1 0.000174 0.000032 0.000061 
1.2 0.006705 0.000176 0.005714 
1.3 0.030142 0.026281 0.028478 
1.4 0.069781 0.064333 0.066643 
1.5 0.119496 0.109967 0.113321 
1.6 0.166398 0.159006 0.164859 
1.7 0.217988 0.209954 0.215133 
1.8 0.266672 0.258172 0.264043 
1.9 0.313221 0.304373 0.312194 
2.0 0.358601 0.349495 0.356404 

T A B L E 5.1. C o m p a r i s o n of t h e two numer i ca l m e t h o d s a n d 

t h e analy t ic solut ion for t h e t e s t p r o b l e m 

Finally, we conclude that both numerical methods are reliable, produce very 

accurate results and can be used to solve the energy equation for the actual problem. 

5.6. NUMERICAL CALCULATIONS FOR THE ACTUAL PROBLEM 

In order to calculate the temperature profiles for the region of the wall it was 

necessary to estimate the shape of the streamline (which was considered to be one of 

the boundaries of the domain, seen in figure 5.1 and section 5.3) and the value of the 

mass flow at infinity. The results for the values of M and S{x), obtained by using 

the FORTRAN code described in sections 4.2.1 and 4.2.2 and then were utilized in 

order to evaluate « and (as they were given in section 5.4.1). These results were 

implemented in two numerical codes which solved the heat transfer problem by using 

the simple explicit and the Crank-Nicolson methods. Then the temperature readings 

obtained by the two programs were compared with each other. 

The boundary condition T = Ti, where Ti = 1, was implemented on the stream-

line and above it, whilst the boundary condition T = To, To = 0, was imposed on the 
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line z =1. Finally, on the wall the boundary condition Ty =0 wag used. It was thus 

assumed that the wall was insulated. 

In order to accurately obtain the temperature downstream from the slot, it was 

decided to use an exponential mesh (employing a scaling factor, described in section 

4.2.2) and a great number of points in the z-direction, in order to have the z-step 

relatively small. Ay was also chosen to be small in the region 0.02 to 0.08. 

Both numerical schemes were tested many times for different Az and A^ and the 

results were recorded. The ratios for the explicit method, as before, were taken to 

be less than 1, whereas the Crank-Nicolson scheme was able to handle larger values 

of r. Tables 5.2. and 5.3 show some combinations for Ax, Ay and r used and the 

temperatures recorded on the surface of the wall downstream from the slot. 

Az r X distance Curve name 
0.001 0.277 0.6185 1.345 1̂1 
0.002 0.408 0.6318 1.352 1̂2 
0.003 0.415 0.6403 1.365 1̂3 
0.004 0.458 0.6445 1.365 1̂4 

T A B L E 5.2. Wal l t e m p e r a t u r e s ob t a ined by t h e explicit 

m e t h o d , case Ty — 0 

Aa; r T(z) X distance Curve name 
0.003 0.833 0.6365 1.365 2̂3 
0.003 1.200 0.6379 1.365 2̂4 
0.002 2.222 0.6211 1.352 2̂2 
0.001 2.500 0.6127 1.345 t21 
0.004 4.444 0.6381 1.360 2̂5 

T A B L E 5.3. Wall t e m p e r a t u r e s ob t a ined by t h e implici t 

m e t h o d , case Ty = 0 

5.7. RESULTS AND DISCUSSION 

The results for the simple exphcit method may be seen in table 5.2, where dif-

ferent ratios and different Ax and Ay (and hence r) were used and the values of the 
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temperature at a point a; % 1.360, downstream from the slot have been recorded. (The 

decision to take x % 1.360 was based purely on the fact that Ax was relatively small 

and in order to extent the mesh at a long distance downstream from the slot more 

points had to be added, thus it would have taken longer for the computer codes to 

estimate the temperature values. Since the results obtained by the different combina-

tions of Az and (seen in tables 5.2 and 5.3), were in a good agreement with each 

other for each case, there was no need to extend the grid. However, we note here that 

for the comparison of the two methods the mesh was extended a long distance further 

down from the slot in order to check the difference in the results produced by the two 

methods.) It is obvious that the temperature values are all very close together. Thus 

for values of r less than ^ the method seemed to work well and produced acceptable 

results. However, when r got close to | , or exceeded it, the solution deteriorated due 

to instability as indicated in section 5.4.2, i.e. the ratio must always be less than 1 

in order for the simple explicit method to work. 

The graphical representation of the results obtained by the ratio combinations 

given in table 5.2. can be seen in figure 5.4, (curves t u to ^14). The temperature on 

the wall surface against distance downstream from the slot were plotted for some of 

the different values of r for the explicit method. We see that the temperature profiles 

were all very similar, and all the curves had similar shapes. Thus, when r was kept 

small we were able to produce accurate results by using the simple explicit method. 

This meant that there was no mesh dependence for this method. 

When the Crank-Nicolson scheme was utilized we were able to use ratio values 

greater than since the stability analysis had proved that the method was stable for 

any ratio values. Thus r waa taken to be in the range of 0.833 to 4.444, table 5.3. 

It may be seen that the temperature values on the wall were very similar for all 

the different discretisations. The temperature results seemed to converge to values in 

the range 0.627 to 0.635 for x around 1.360. As can be seen the differences between the 

temperature values for the sets of results for the various combinations of Ax and Ay 

were very small. This result is also illustrated, clearly, by the graphical representation 

of the figure 5.5, where all curves, (̂ 2% to ^25), seemed to follow the same shape. 

Two cases, one using each method, were plotted against each other, in figure 



5.6. The curve of (expl) represented the results produced from the explicit case 

where Ax =0.003 and r =0.415. The graph of (ens) represented one case from the 

Crank-Nicolson method, with Ax =0.003 and r =1.2. Although the number of points 

differed in both situations the results were quite acceptable, since both curves had 

similar shapes and gave very similar temperatures for a long distance downstream 

from the slot. Finally, from figure 5.5 it can be seen that the explicit method reached 

the main stream temperature quicker than the Crank-Nicolson scheme. Thus a small 

difference existed between the two numerical schemes for temperature values at a long 

distances downstream of the slot. Nevertheless, this difference was only between 1 

and 2%, as it may be seen in table 5.4. 

5.8. CONCLUSIONS FOR THE CASE Ty=0 

A numerical study was performed on the problem of heat transfer in subsonic 

main How, when a secondciry fluid is injected from a slot. The latter was at lower 

temperature than the former and as it came out of the cavity formed a thin film down-

stream from the slot. Both Hows were taken to be irrotational and time independent 

and the fluids incompressible. Our aim was to calculate the temperature downstream 

from the slot in the area of the film and on the wall and find the distance away from 

the cavity at which the temperature would get significantly high. It was assumed 

that there was no heat transfer between the wall and the fluid, the wall was perfectly 

insulated, (2^=0), although in most realistic cases the blade surface is not perfectly 

insulated due to internal blade cooling, see section 3.4. 

Two methods were used, in order to be able to compare results and be sure 

that the results produced were trustworthy and accurate. The two methods were aa 

explicit method and an implicit scheme. The results of both methods seemed to be in 

good agreement with each other and both models have predicted quite accurately the 

distance downstream from the slot at which the temperature rose to a critical value. 

It may be seen that the above numerical schemes were very economical methods 

of solving heat transfer problems quickly and quite accurately. From the various tests 

that were performed it was obvious that there was no mesh dependence for any of 

the methods, since the various combinations of Ax and Ay used, seemed to produce 
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similar results all the time. However, when the results of the schemes were plotted 

against each other there was a small difference, around 1 to 2%. Nevertheless, they 

both produced curves with similar shapes and similar behaviour. 

X Explicit Method Implicit Method 
1.000 0.0000 0.0000 
1.155 0.2675 0.2667 
1.340 0.5374 0.5255 
1.400 0.5887 0.5768 
1.710 0.7524 0.7376 
2.130 0.8553 0.8456 
2.460 0.9101 0.8961 
2.650 0.9306 0.9202 
2.897 0.9606 0.9434 

T A B L E 5.4. C o m p a r i s o n of t h e two numer i ca l m e t h o d s 

for t h e case Ty = 0 

In cases where we wanted to determine the temperature proSles a long distemce 

downstream from the slot we had to use a scaling factor, which produced an expo-

nential mesh. This enabled us to calculate T(x) far downstream of the rear edge of 

the slot. Also Az had to remain small during the whole process in order for both 

methods to produce accurate results. 

From all the plots it may be seen that the temperature in the film would eventu-

ally reach the main stream temperature, but this would happen a long distance from 

the rear end of the slot. For both methods it seemed likely that the film temperature 

would reach the main stream temperature at distance of about 3.10 slot-widths. 

By using the simple explicit method, or the Crank-Nicolson scheme, it would be 

very easy to find the distance downstream of the slot over which the film temperature 

rose significantly. It may be seen that for a distance of about 1.28 to 1.30 slot-

widths the temperature of the film was close to 0.5 of Ti, and it reached 99% of 

Ti at a distance of about 3.00 slot-widths. Thus the engineer can determine quite 

accurately the wall surface temperature and decide whether or not to use another slot 

arrangement downstream of the first hole, in order to keep the fihn temperature of 

acceptable levels and hence improve the life expectancy of the turbine blade. 
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Finally, it has to be said that, if a different value for the constant 6 was used it 

would be possible that the film cooling process would be aifected, due to the different 

properties that the fluids would possess. Removing this dependence would however 

amount to nothing more than a scaling in z. 

5.9. THE HEAT TRANSFER CASE WITH Ty ^ 0 

Another problem that was examined was the case where there was heat flow 

across the surface of the wall, i.e. the wall waa not insulated. In this caae heat transfer 

between the wall and the fluid was modelled by using the boundary condition 

T, = h'(T„ - T f ) , 

where /i' is a constant called the heat transfer coefRcient, Tu, the temperature of 

the wall (usually the unknown quantity) and Tf the temperature of the fluid. This 

problem represented a more realistic case of the actual phenomenon of heat transfer 

met in the turbine engines and their components. 

This problem approached in a similar way to the case when Ty =0. The only 

difference this time was the boundary condition at y =0. Thus both computer codes 

(for the explicit and the Crank-Nicolson schemes) were slightly modified in order to 

include the new boundary condition. The only problem that arose was the calculation 

of the heat transfer coefficient. However, after a literature search an empirical expres-

sion for h' was found and used in both programs. The equation for the coefficient is 

given by Jacob (1959) and is 

= 0.057 f - j 

where k is the thermal conductivity, d the distance downstream of the slot, which 

varies according to z, p is the density of the 8uid, Cp is the specific heat capacity and 

[/(X) is the velocity of the main How. Some typical values for the above parameter were 

found by referring to J anna (1986). Thus we obtained: p = 0.352 kg/m^, Cp = 1141.7 

J/(kgK), & — 0.06752 W/(mK) at a temperature of TiC = 1000. The calculations for 

the temperature profiles were now carried out using the expression for h'. 
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5.9.1. N u m e r i c a l Ca lcu la t ions 

In order to implement the new boundary condition into the computer codes we 

Erst had to express it into a finite difference form in a similar way as before, section 

5.3. Thus the expression Ty = h'{T^ — T f ) became 

T, = - T/), (5.16) 

but T/ = Ti, where Ti is the temperature of the main flow and Ti = 1, thus equation 

(5.16) was solved for the unknown grid point and became 

tn,0 ~ tn,2 2 / / i (tn,l !)• 

In this way we eliminated the fictional point tn,o and we used the two finite difference 

methods (simple explicit and Crank-Nicolson) to solve the problem. 

Apart from this change in the FORTRAN programs the same process as before 

was followed. Thus the step in the z-direction was kept relatively small, the mesh was 

extended at a long distance downstream of the slot by using a scaling factor and 

was allowed to take values up to 0.085. In this way the accuracy of the solution was 

kept at acceptable levels. Different combinations of Ax and Ay were used in order 

to check that the solution was independent of the mesh points for both the numerical 

methods. Finally, the ratio for the explicit method was kept less than | in order to 

have a stable numerical scheme. 

5.9.2. R e s u l t s a n d Discussion 

Both methods were tested for many different combinations of Az and A^, which 

meant that we used a wide range of ratios. The methods seemed to produced very 

accurate results of the temperature profiles on the wall surface. 

The graph of figure 5.7 shows the four different cases for the explicit method. 

Each graph was produced with different values of r, and for some cases the number 

of grid points differed too. Table 5.5 shows the estimated temperature values for the 
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wall surface for four combinations. 

Ax r X distance Curve name 
0.001 0.400 0.4466 1.358 4̂1 
0.003 0.416 0.4567 1.365 (43 
0.002 0.421 0.4424 1.351 4̂2 
0.003 0.467 0.4505 1.365 4̂4 

T A B L E 5.5. Wal l t e m p e r a t u r e s ob t a ined by t h e explicit 

m e t h o d , case Ty ^ 0 

It may be seen that the values were slightly lower thaa the ones produced in the 

previous case. This was due to the fact that the wall was not insulated this time and 

heat was allowed to pass across its surface. This meant that for the region downstream 

of the slot the wall and the film would be at a lower temperature than before, due to 

internal cooling of the turbine. Thus the blade surface and the film would reach the 

main stream temperature later than before. 

The Crank-Nicolson method handled ratios r which exceeded the value of As 

may be seen from table 5.6, where only some combinations are tabulated, the ratio 

reached values up to 3.333. 

Ax r r ( z ) X distance Curve name 
0.002 0.420 0.4431 1.351 5̂2 
0.001 1.479 0.4465 1.358 5̂1 
0.003 3.333 0.4517 1.365 5̂3 

T A B L E 5.6. Wal l t e m p e r a t u r e s ob t a ined by t h e implici t 

m e t h o d , case Ty ^ 0 

The temperature values produced from the explicit method were very close to 

the results calculated by the Crank-Nicolson scheme. The difference between the 

cases was very small, which allowed us to believe that the Crank-Nicolson scheme 

produced more accurate results, since it is a method which can use any given values 

for r and can achieve convergence faater. From the graph of Egure 5.8 we can see that 

the curves of most of the cases were very close together, thus we can conclude that 

there was no mesh dependence. 

93 



Finally, a comparison was made between two of the most representative cases, 

one from each method, in order to investigate the behaviour of each numerical scheme 

at a long distance downstream from the slot. It was chosen to use Ax =0.001, 

and r =0.400 for the explicit method (expl) and for the Crank-Nicolson scheme 

(ens): Az =0.002 and r =2.45. The two cases were extended to a distance of about 

4.00 slot-widths downstream of the slot. The graph of figure 5.9 shows the explicit 

method (expl) together with the curve of the Crank-Nicolson scheme, (ens). It may 

be seen that both methods produced very similar results. Nevertheless, there was a 

difference between the numerical values of the temperature profiles produced by the 

two methods, but it was very small, around 1 to 2%, or in some cases even less, table 

5.7. 

X Explicit Method Implicit Method 
1.000 0.0000 0.0000 
1.101 0.1312 0.1348 
1.305 0.3948 0.3871 

1.816 0.6801 0.6767 
2.070 0.7523 0.7452 
2.428 0.8320 0.8211 
2.681 0.8739 0.8699 
2.939 0.9096 0.9007 
3.280 0.9497 0.9358 
3.514 0.9757 0.9664 
3.735 0.9951 0.9829 

T A B L E 5.7, C o m p a r i s o n of t h e two numer i ca l methodis 

for t h e case Ty / 0 

Since AT, where A T = Tyj — Tf, was not constant and the wall was not insulated 

the temperature rose very quickly on the surface of the wall near the trailing edge of 

the slot, where the thickness of the film was small. However, it took longer for Tw 

to reach Ti, since the wall surface absorbed an amount of the heat supplied by the 

main flow. The surface was subject to internal cooling thus its temperature was also 

affected by the temperature of the inner region of the turbine blade (lower than the 

free stream temperature). Thus conduction between the film fluid and the coolant of 

the turbine component took place and slowed down the process of heat transfer and 
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heating up the wall surface, i.e. convection was slower than before. 

We have to mention here that the results obtained could have been different, if 

a different expression for h' had been used. The value of the coefficient h' was found 

experimentally and it is possible that this heat transfer coefficient is valid only for a 

few heat transfer problems, or only for a given distance downstream of the slot. 

Another factor which also needs attention is the form of the boundary condition. 

It can be seen that the derivative on the wall surface depended also on the fluid 

temperature, in our case the main flow temperature Ti; if a different scaling was used 

for Ti the derivative condition would change and the final outcome would change too. 

So it is possible to have different results depending on the normalization that we used 

at the formulation of the problem. 

Nevertheless, we knew from the test problem and the previous case that the two 

numerical methods were implemented correctly. Thus the results they produced were 

trustworthy and reliable. 

5.9.3. Conclus ions for t h e Case Ty ^ 0 

This numerical study involved the investigation of secondary flow injected across 

a free stream flow. The main stream flow temperature was Ti and the secondary 

flow had temperature To, where To <T\. Our aim was to calculate the temperature 

profiles on the wall surface downstream from the injection, formed in the region of 

the film, where heat flux existed across the wall, i.e. the wall was not insulated. 

Two methods, which were used for the previous two heat transfer problems, 

were utilized again. The two methods were a simple explicit method and the Craak-

Nicolson method. Many tests were performed to examine the mesh dependence of the 

methods. It was shown that the two methods gave accurate results independently of 

the various combinations of the ratio r used. 

However, it would have been possible to obtain different results if a different 

expression for the heat transfer coefficient was used, or if a different equation for the 

boundary condition was used, i.e. the scaling of the Buid temperature was taken to 

be different from T\ — 1 and To = 0 for the outer flow and the slot respectively. 
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Finally, the results produced from both numerical methods were very close to 

each other. A difference of about 1.5% suggests that the numerical schemes were 

used correctly, there was no mistake in their implementation into computer codes 

and the results produced could be believed to be accurate. 

5.10. HEAT TRANSFER WITH CONSTANT WALL TEMPERATURE 

This problem involved the calculation of the heat flux across the surface of the 

turbine blade when the wall temperature, was known and taken to be constant. 

Thus Tw was set equal to To on y = 0 (internal cooling of the turbine blade was 

assumed to have kept the blade surface at a constant temperature) and by keeping 

the other boundary conditions the same as before {T = Tq x — 1 and T = Ti at 

^ = 5'(a:), where 5'(a:) is the streamline) we tried to obtain at ^ = 0. In this way 

we were able to calculate the thermal stresses across the surface of the blade. 

The two computer codes, used for the case Ty = 0, were utilized, only this time 

we prescribed the condition Tyj —0 at y =0. This meant that the temperature along 

the wall surface was known and we would be examining the rate of heat transfer 

across the wall some distance downstream from the slot, when the temperature of the 

film region was increasing. 

Many tests were performed for both numerical schemes, simple explicit and 

Crank-Nicolson methods, and the results for most of the runs were recorded and 

shown in the tables 5.8-5.10 and figures 5.10-5.13. We used a range of different com-

binations of Aa; (from 0.001 to 0.004) and (from 0.05 to 0.085) for both methods, 

but the ratio r was kept less than ^ for the explicit method. 

5,10.1. Resu l t s a n d Discussion 

The results of the simple explicit method in figure 5.10, show the heat transfer 

across the wall against the distance x downstream from the slot. It may be seen that 

the heat flux increased rapidly for a short distance downstream of the slot, but as 

X was increasing Ty started to fall. The values of Ty were very similar for all the 

combinations, table 5.8, which meant that the scheme for r < ^ was not only stable. 
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but also mesh-independent. 

Az r T;/ a t ! / = 0 X distance Curve name 
0.001 0.278 1.5213 1.5077 hi 
0.002 0.312 1.5139 1.5068 
0.003 0.415 1.4858 1.5030 7̂3 
0.004 0.469 1.5077 1.5072 

T A B L E 5.8, H e a t t r a n s f e r ob t a ined by t h e explicit 

m e t h o d , case Tw = 0 

The Crank-Nicolson scheme produced very similar results to those obtained by 

the simple explicit method. Although there was a small difference between the two 

methods we can say that they both predicted quite accurately the heat transfer across 

the wall. Figure 5.11 shows the results obtained when Ty was plotted against x for 

various combinations of Ax and Ay. As it may be seen all curves were very close 

to each other. The same observation can be said from the table 5.9, where these 

combinations were tabulated, together with the values of Ty. The Crank-Nicolson 

method seemed to produce results which were in a very good agreement with each 

other, independently of the ratios or the number of points in the mesh. 

Ax r Ty at y = 0 X distance Curve name 
0.003 0.494 1.5006 1.5072 8̂2 
0.002 1.200 1.5085 1.5083 8̂1 
0.004 2.500 1.5003 1.4946 8̂3 

T A B L E 5.9. H e a t t r a n s f e r ob t a ined by t h e implici t 

m e t h o d , case Tw = 0 

Finally, we again compared the two numerical methods at a long distance down-

stream from the slot. For the explicit method (expl) it waa used: Az =0.004 and 

r = 0.469 and for the Crank-Nicolson scheme (ens): Ax — was taken to be 0.003 

and r = 3.333. The graph of figure 5.12 shows the two curves obtained when Ty was 

plotted against z. 

From figure 5.12 it may be seen that the heat fiux and the temperature gradient 

across the wall were decreasing as z waa increasing. This waa due to the decrease of the 

heat transfer coefficient, h', which is proportional to the x distance downstream 
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of the slot. At the trailing edge of the cavity, where the film thickness waa small, 

the temperature near the wall rose quickly. However, further down from the slot h' 

decreased together with 7^. 

If we attempt to relate Newton's law of cooling, q = h' AT (where q is the heat 

transfer and A T = T«; — T/), with Fourier's law of conduction, q = kTy (where k is 

the thermal conductivity of the fluid, defined in section 5.2), on y = 0 we obtain 

a ' A T 
A T ' 

From here, it may be seen that since AT is constant, independent of x as a: increases, 

the heat transfer is reduced as the distance downstream from the slot increases. Thus 

the heat flux declines together with h' as x goes to infinity. This means that the 

temperature in the film will never reach the free stream temperature, since the wall 

is not insulated and a substantial amount of heat is absorbed by it. 

X Explicit Method Implicit Method 
1.000 0.0000 0.0000 
1.068 0.5959 0.6049 
1.110 1.0180 1.0210 
1.239 1.4616 1.4587 
1.418 1.5259 1.5153 
1.609 1.4914 1.4764 
1.856 1.4456 1.4254 
2.006 1.4201 1.3981 
2.090 1.4010 1.3882 

T A B L E 5.10. C o m p a r i s o n of t h e two numer ica l m e t h o d s for t h e case Tw = 0 

From the table 5.10 it may be seen that good agreement existed between the 

two methods and they both predicted an increase in the heat flux at the trailing 

edge of the slot, whereas further downstream from the cavity both numerical schemes 

estimated quite accurately that the heat flux would decrease. 

5.10.2. Conclus ions for t h e case Tv 0 

The problem considered in section 5.10 involved the investigation of heat transfer 

across the wall of a turbine blade in the presence of film cooling in a subsonic environ-

ment. The aim of this work was to calculate the heat flux across the face of the wall 
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when the wall temperature remained constant, = T}), where To is the temperature 

of the injected flow. 

The two finite difference schemes used in the previous problems were utilized 

again. We were able to implement the new boundary condition on the wall, Tu, = 0, 

and used the existing programs, with some modiEcations, to calculate the heat flux 

at y = 0. 

Many different runs were performed for both methods, simple explicit and Crank-

Nicolson method. All the results showed that there was no mesh dependence, since 

the results produced from both methods were very similar (although different ratios 

and mesh points were used) and there was only a very small difference between the 

temperature calculations of the two finite difference schemes. It seemed that both 

methods predicted quite accurately the rapid increase of heat flux above the wall 

surface at the rear edge of the slot and the decline of at the downstream region. 

Another way to calculate the heat transfer across the wall surface could also be 

to investigate the film cooling effectiveness rj of the slot arrangement. The parameter 

T] is defined as 

Ti - To ' 

where Tau, is the adiabatic wall temperature, the wall temperature of a perfectly in-

sulated wall. The coefficient r/ depends only on the two flow temperatures and the 

position of the wall surface. Thus at the trailing edge of the slot is 1, where down-

stream of the slot the film cooling effectiveness approaches zero since the adiabatic 

wall temperature approaches the mainstream temperature, because of the mixing of 

the primary and the secondary flows. In conclusion, the two numerical schemes would 

be possible to predict 7] for a range of slot configurations and conditions. The full 

details of the calculations may be found in Pitt and Stafanidis (1997). 
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CHAPTER 6 
DISCUSSION AND FURTHER WORK 

6.1. INTRODUCTION 

The efficiency of aircraft gas turbine engines is strongly affected by maximum al-

lowable turbine temperature, and the performance improvement that can be achieved 

by increases in this parameter are substantial. Such increases are limited by heat 

transfer considerations and, for this reason, many contemporary research efforts are 

directed at obtaining a better understanding of cooling schemes than can be incorpo-

rated into component designs in order to permit higher gas temperature operation. 

The current research work represents investigations that were conducted, firstly, 

on the film cooling method in a supersonic regime in the turbine blade of an engine 

and secondly, on the effects of heat transfer on turbine components when the main 

flow is subsonic. 

In the sections to follow we state the conclusions of the two problems analyzed 

and also suggest improvements and further work which might be carried out in order 

to get a more complete view of the problems. 

6.2. THE SUPERSONIC CASE 

A numerical investigation was performed on the problem of film cooling in a 

supersonic main flow, when a secondary flow was injected, from a slot, into the main 

stream. Both fluids were assumed inviscid and incompressible and the flow was time 

independent. Different numerical techniques were used to produce results which would 
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give us some idea about the process of film cooling in high speed flows. Our main aim 

was to calculate the mass flow across the slot by measuring the pressure difference 

across the streamline. The pressure difference was given by the difference of the 

averaged pressures of a set of points calculated on the dividing streamline by using 

the pressure equations for the outer flow and the film, for the area over the region of 

the slot. However, the results obtained seemed to be inconclusive due to the fact that 

a minimum Ap could not be found. 

It was decided to model the unknown region of the free streamline between 0 and 

1, by different polynomials. Then by comparing the pressure across the bounding 

streamline we would be able to find the value of mass flow that would produce the 

minimum pressure difference. At the beginning straight lines were used and, when 

this method failed, it was then decided to use smooth splines which would join the two 

ends of the boundary. However, after many tests it seemed that this method did not 

work either, since the results we were obtaining did not converge to a specific value 

of mass flow. Finally, an optimization technique was used, in an attempt to calculate 

the minimum pressure difference for a given mass flow. However, this method failed 

too. 

It may be said that the model was very sensitive to changes in the number of grid 

points, especially in the region between 0 and 1. By changing the number of points, 

the pressure difference and the mass flow also changed. This mesh dependence was 

observed during all the various approaches used to solve the problem. Even test 

problems that were solved showed that mesh dependence existed. 

It also seemed that the solution of the problem had been influenced by possible 

singularities in the region of the slot. The analytical solution showed us that in the 

inner region of the slot, very close to its edges, the boundary conditions did not 

hold. This phenomenon also existed in the subsonic case, but there we were able to 

ignore it, since it did not affect the final outcome. However, it affected the results 

of the supersonic case and it seemed that if further investigation on the problem had 

to be carried out, then these possible singularities should have been included in the 

formulation of the model. 

It is possible that some experimental work must first be performed in order to be 
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able to compare the experimental results with the results obtained from the numerical 

investigation. Having done this, it will be easier to investigate the model in more detail 

and, especially, the region of great importance over the slot. 

Finally, we can also take the problem forward by looking into other cases, such 

as the time dependent supersonic problem, the suction of air into the area of the slot 

(Poo > Psi the main stream pressure is greater than the slot pressure) and also the 

case where, due to unsteadiness, the air can be sucked in, or injected out, as in a rim 

seaL 

6.3. THE HEAT TRANSFER PROBLEM 

The second problem that we looked into was the problem of heat transfer on the 

wall of a turbine blade in a subsonic environment, during the film cooling process. 

The temperature of the injected flow. To, was taken to be lower than the main cross 

flow temperature Ti. Three cases were examined: heat transfer in the region of the 

film when the wall was insulated, heat transfer in the area of the film when heat 

flux across the wall existed, and heat transfer across the wall surface when the wall 

temperature was taken to be constant. In the Erst two cases we were interested in 

calculating the wall temperature and in the last one we wanted to obtain results for 

the heat flux across the wall. 

In order to solve the above three problems, two finite difference schemes were 

developed and then implemented into two computer codes. A simple explicit method 

and the Crank-Nicolson method were used. 

For the first case, where there was no heat transfer across the wall, Ty = 0 at 

^ =0, the results obtained from both methods seemed to be in good agreement with 

each other. It was seen that both numerical methods were not sensitive to the number 

of mesh points, since all the different combinations used produced very similar results. 

The model was not difficult to formulate, the meshes were relative easy to create 

and the numerical schemes very straightforward to implement on a computer. How-

ever, due to the fact that good accuracy could only be achieved with small x steps, 

many points were needed if we wanted to extent our mesh a long way downstream 
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from the slot. An exponential grid could be constructed by using a simple scaling 

factor to multiply it by the original Ax, the step in the x direction. Finally, the 

Crank-Nicolson method proved to be time consuming due to the large number of 

calculations that had to perform in order to estimate the temperature profiles. 

The second problem was the case of heat transfer across the wall surface and the 

expression for the derivative boundary condition was now given by equation (5.16). 

The same process aa before was followed and both numerical schemes produced 

results which were in a very good agreement with each other. There was a slight 

difference between them, but, from the results produced in the previous case, we were 

confident that the two finite difference schemes were implemented correctly and the 

computer codes were written free of errors. 

From the temperature profiles on y = 0, it may be seen that the temperature 

close to the rear edge of the slot rose quicker than before, but it took longer for Tu, 

to reach the free stream temperature. This was due to the fact that the wall was not 

insulated anymore and a large amount of heat could pass across it. Near the trailing 

end of the slot, where the film thickness was small, the effect of the mainstream 

temperature on the blade surface was stronger than a long distance downstream of 

the cavity. Thus, along the wall the process of convection was slowed down. 

The final case that we looked at was the problem of heat transfer in a subsonic 

environment when the wall surface downstream from the slot was kept at a constant 

temperature, = Zo, where To was the temperature of the secondary fluid and 

the wall temperature. In this case we were able to investigate the heat flux across the 

surface of the turbine blade azid calculate Tg, at ^ =0. 

To solve this problem the two numerical schemes developed above were employed 

again. It was found that both methods gave results which were mesh independent 

and it seemed that they predicted quite accurately the variation of the heat flux at 

y = 0 as the temperature of the film changed. 

In this case Tyj was constant, AT (where AT = Tyj — T f ) was also constant, which 

meant that as z increased /z' decreased (since /i' was proportional to described 

in section 5.9) and the temperature gradient together with the heat flux declined too. 
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Also a large amount of heat was absorbed by the wall surface in the inner regions of 

the turbine blade. This meant that the temperature of the film was seriously affected 

and it could never reach the free stream temperature as long as the mixing of the 

main and injected flows was not strong. 

The Crank-Nicolson scheme is, in general, considered a more reliable numerical 

method than the simple explicit method, possibly because it is stable over a wider 

range of ratio values. Nevertheless, both numerical schemes used are very easy to 

implement and provide a very economical means of calculating heat transfer problems. 

Finally, by using the above two numerical methods it is possible to estimate the 

distance on the turbine blade where the film temperature starts to reach the main 

stream temperature. It is essential for the designer to know the distance downstream 

of the slot of which the film temperature rises significantly and causes material prob-

lems to the blade. By determining this distance the engineer can improve the life 

expectancy of the turbine components (in our case the turbine blade) by injecting 

into the free stream more cooling fluid from another slot, situated downstream of the 

first one. 

Another way to improve the life expectancy of a turbine is to investigate the ef-

fectiveness of a particular slot arrangement by looking at the film cooling effectiveness 

7), defined in section 5.10.2. Usually, designers ajid engineers prefer to use instead 

of temperature readings on the wall surfaces, because in this way they can quickly 

obtain more information by just changing the main flow and the fllm temperatures Ti 

or To respectively,so to obtain a different r] value and be able to calculate the cooling 

effectiveness of a particular slot arrangement. 

For the same geometric situation it would be possible to investigate all the above 

three caaes for the problem where the flow is not steady but time dependent. Also we 

can carry out experiments and numerical investigation for the second case (Ty ^ 0) 

when a different heat transfer coefficient is used, or in the expression for the derivative 

boundary condition Ti is changed, i.e. different scaling, Ti ^ 1. 

Another interesting problem is the supersonic heat transfer problem. However, 

we would have difficulties defining the boundaries of the model, due to the fact that 
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the supersonic problem examined did not produce the results that we wanted, thus 

the position of the dividing streamline is still unknown. 
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