The University of Southampton
University of Southampton Institutional Repository

Ground based laboratory atomic oxygen calibration experiments

Ground based laboratory atomic oxygen calibration experiments
Ground based laboratory atomic oxygen calibration experiments

Existing devices and analysis techniques for the monitoring of space and laboratory simulated Atomic Oxygen (AO) environments have been investigated and improved to enable more accurate and reliable measurement and calibration of AO flux and fluences than previously possible. This research was based on experimental work carried out in a ground based AO facility designed to simulate the low Earth orbit (LEO) AO space environment, an environment which contributes significantly to the degradation of spacecraft materials.

Three types of AO measuring device, referred to as 'silver film', 'bulk polymer mass loss' and 'polymer overlay' devices, were used in the experiments and were based on the following principles for detection of AO, respectively:

  • The electrical resistivity characteristics of oxidising, thin silver films.
  • The mass loss of bulk polymeric materials.
  • The combination of both the above phenomena.

In calibrating the response of these devices upon exposure to AO, it was necessary to improve an existing technique to establish reference measurements of AO fluences based on the mass loss of the polymeric material 'Kapton-H'. Experiments showed that the most significant disturbance factor affecting accurate measurements of mass loss was atmospheric humidity, which was found to be responsible for a disturbance of 0.012(±>0.002)mg per percent change in atmospheric humidity level for the particular samples used in this research. Experiments also revealed a novel technique which indicated the relative stability of conditions within a simulated AO environment by the ratio of mass losses of a set of polymeric test samples, including polyethylene, polytetrafluoroethylene and Kapton-H, described as a 'signature analysis technique'.

Interactions occurring between AO and a variety of polyethylene related polymeric materials were shown to be influenced by the methods used to manufacture and process the polymers. This influence has been related to changes in polymeric material density and crystallinity. In addition, the limitations in protecting a polymeric material from AO erosion by insertion of fluorine into the side-chain group chemistry have been indicated.

Of most significance to the development of polymer overlay devices was the discovery that the overlay material AO erosion yield was dependent upon the rate at which the polymer overlay material was sputter deposited. These devices were also shown to detect AO fluences that were linearly dependent upon the initial thickness of the overlay material up to certain thicknesses, beyond which the effects of overlay porosity or fracturing weakened the linear relationship.

A novel method for analysing silver film device electrical resistances under AO exposure has been developed from a combination of existing fundamental theories concerning the electrical reistivity phenomena in thin metallic films. Validation of this analysis method revealed that experimental silver film data were consistently in disagreement with the existing theories due to a factor influencing the conduction electron mean free path length in the silver films. Final validation of this analysis technique was performed by comparing results derived from the same set of experimental silver film device data using the new technique and an example of a previous technique. It was confirmed that the novel analysis technique produced far more consistent values for the oxidation yeild of silver, 3±0.5x10-24cm3.atom-1, than the previously used technique, 6±3x10-24cm3.atom-1. The novel analysis technique has been demonstrated to be theoretically more accurate for the analysis of silver film resistance data than any previously applied theories.

University of Southampton
Matcham, Jeremy Stephen
Matcham, Jeremy Stephen

Matcham, Jeremy Stephen (1998) Ground based laboratory atomic oxygen calibration experiments. University of Southampton, Doctoral Thesis.

Record type: Thesis (Doctoral)

Abstract

Existing devices and analysis techniques for the monitoring of space and laboratory simulated Atomic Oxygen (AO) environments have been investigated and improved to enable more accurate and reliable measurement and calibration of AO flux and fluences than previously possible. This research was based on experimental work carried out in a ground based AO facility designed to simulate the low Earth orbit (LEO) AO space environment, an environment which contributes significantly to the degradation of spacecraft materials.

Three types of AO measuring device, referred to as 'silver film', 'bulk polymer mass loss' and 'polymer overlay' devices, were used in the experiments and were based on the following principles for detection of AO, respectively:

  • The electrical resistivity characteristics of oxidising, thin silver films.
  • The mass loss of bulk polymeric materials.
  • The combination of both the above phenomena.

In calibrating the response of these devices upon exposure to AO, it was necessary to improve an existing technique to establish reference measurements of AO fluences based on the mass loss of the polymeric material 'Kapton-H'. Experiments showed that the most significant disturbance factor affecting accurate measurements of mass loss was atmospheric humidity, which was found to be responsible for a disturbance of 0.012(±>0.002)mg per percent change in atmospheric humidity level for the particular samples used in this research. Experiments also revealed a novel technique which indicated the relative stability of conditions within a simulated AO environment by the ratio of mass losses of a set of polymeric test samples, including polyethylene, polytetrafluoroethylene and Kapton-H, described as a 'signature analysis technique'.

Interactions occurring between AO and a variety of polyethylene related polymeric materials were shown to be influenced by the methods used to manufacture and process the polymers. This influence has been related to changes in polymeric material density and crystallinity. In addition, the limitations in protecting a polymeric material from AO erosion by insertion of fluorine into the side-chain group chemistry have been indicated.

Of most significance to the development of polymer overlay devices was the discovery that the overlay material AO erosion yield was dependent upon the rate at which the polymer overlay material was sputter deposited. These devices were also shown to detect AO fluences that were linearly dependent upon the initial thickness of the overlay material up to certain thicknesses, beyond which the effects of overlay porosity or fracturing weakened the linear relationship.

A novel method for analysing silver film device electrical resistances under AO exposure has been developed from a combination of existing fundamental theories concerning the electrical reistivity phenomena in thin metallic films. Validation of this analysis method revealed that experimental silver film data were consistently in disagreement with the existing theories due to a factor influencing the conduction electron mean free path length in the silver films. Final validation of this analysis technique was performed by comparing results derived from the same set of experimental silver film device data using the new technique and an example of a previous technique. It was confirmed that the novel analysis technique produced far more consistent values for the oxidation yeild of silver, 3±0.5x10-24cm3.atom-1, than the previously used technique, 6±3x10-24cm3.atom-1. The novel analysis technique has been demonstrated to be theoretically more accurate for the analysis of silver film resistance data than any previously applied theories.

This record has no associated files available for download.

More information

Published date: 1998

Identifiers

Local EPrints ID: 463674
URI: http://eprints.soton.ac.uk/id/eprint/463674
PURE UUID: edd3683c-5aee-483d-8f3f-939eb4481b6c

Catalogue record

Date deposited: 04 Jul 2022 20:55
Last modified: 04 Jul 2022 20:55

Export record

Contributors

Author: Jeremy Stephen Matcham

Download statistics

Downloads from ePrints over the past year. Other digital versions may also be available to download e.g. from the publisher's website.

View more statistics

Atom RSS 1.0 RSS 2.0

Contact ePrints Soton: eprints@soton.ac.uk

ePrints Soton supports OAI 2.0 with a base URL of http://eprints.soton.ac.uk/cgi/oai2

This repository has been built using EPrints software, developed at the University of Southampton, but available to everyone to use.

We use cookies to ensure that we give you the best experience on our website. If you continue without changing your settings, we will assume that you are happy to receive cookies on the University of Southampton website.

×