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Abstract

In this thesis we present four main results:

# The computation of the matching coefficients for a complete set of 4-quark
operators between the continuum HQET and Lattice HQET. This result 
extends and completes a preceding computation of the matching coefficients 
relevant for the mixing (and corrects a mistake in the latter).

# The Lattice evaluation of the coupling which is related to the form
factor at zero momentum transfer of the axial current between B*- and 
B-states. Moreover we show how this coupling constant is also related 
to the coupling g between heavy mesons and low-momentum pions that 
appears the effective heavy meson chiral Lagrangian. We find the value 
g = 0.42(4)(8). Besides its theoretical interest, the phenomenological im­
plications of such a determination are discussed.

# The lattice evaluation of the matrix elements of the four-quark operators 
which contribute to the lifetimes of B-mesons and the A(,-baryon. We find 
that the spectator effects are larger than naively expected and are in part 
responsible for the discrepancy between the 0(l/m,^) theoretical prediction 
and experimental measurement of the ratio of lifetimes T(A(,)/r(B°). In 
fact for this ratio we obtain the value 0.93(1) (2).

# A re-evaluation of the Bg parameter relevant for the B^ — B° mixing, using 
our correct result for the matching coefhcients. We obtain Bg = 0.96(3).



Preface

The Standard Model (SM) is the theory that best describes the experimental 

results in particle physics, but some of its parameters are not very well determined

by experiments because of our poor theoretical control of strong interactions. In 

particular the Cabibbo-Kobayashi-Maskawa (CKM) matrix elements that couple 

to heavy quarks are not determined with sufhcient precision. These parameters 

are extremely important because they provide a potential signal for new physics. 

For example a non unitary CKM matrix would indicate a breakdown of the SM. 

Modern day computer facilities make it possible to adopt a brute force approach 

to the problem of controlling strong interactions and allow us to compute their 

effect systematically in a non-perturbative, model-independent way. In this thesis 

we present the explicit lattice evaluation of the strong interaction effects which 

are relevant for the processes:

• B B* + TT coupling

• B^, Ah ^ X inclusive decays

5° go mixing

These processes are particularly important for two reasons: hrst, they have just 

started to be explored experimentally with modern particle accelerators, therefore 

the corresponding CKM matrix elements are very poorly determined; second, 

these processes involve an heavy 6 quark and one expects to be able to gain, from 

these studies, some insight into physics at very short distances.
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Organisation of the Thesis

This thesis is divided in five chapters. In the first we present a concise review of

the Standard Model, its degrees of freedom and their dynamics. We also present

an introduction to the phenomenology which is relevant to an understanding of

the strong interactions.

In the second chapter we present a bird's eye view of the physical meaning of 

Regularization and Renormalization in the Kadanoff-Wilson approach, having in 

mind the lattice as typical regulator. We also give an introduction to the standard 

technique of integrating out modes, to the Operator Product Expansion and to 

some effective theories which are useful in the study of the Standard Model. The 

last section of the second chapter contains an introduction to Lattice QCD.

The third chapter contains one of the main results of this thesis: the compu­

tation of the matching factors for a complete set of 4-quark operators between 

continuum HQET and Lattice HQET. These factors are necessary to relate the 

lattice matrix elements to the experimental ones, which are usually quoted in the 

continuum MS renormalization scheme. The original part of this computation is 

published in ref. [1].

The fourth chapter is dedicated to the conputation of the B B*4-7r coupling

and we discuss some phenomenological implications. Our results are published

in ref. [2].

In the fifth chapter we compute the ratios of lifetimes r(B^)/r(B°) and

T(A(,)/T(B°). For the former we obtain complete agreement with the experi­

mental results, while for the latter we find a small discrepancy with experimental 

data. In the evaluation of the relevant matrix elements for B mesons we find 

a surprising agreement between the lattice results and a naive prediction based 

on the vacuum saturation hypothesis. As a check we re-evaluate the Bg factor 

relevant for the B° — B° mixing and we observe the same kind of phenomenon. 

In the latter analysis we adopte our values for the matching factor (including
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corrections to a preceding publication) finding agreement with other indepen­

dent evaluations of the same quantity. These results are published in ref. 

and [4].

The thesis concludes with four appendices. Their main purpose is to establish 

the notation and to present a set of useful formulas which may help the reader to 

reconstruct the crucial mathematical steps in some of the presented computations.
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Chapter 1

The Standard Model

1.1 Introduction

In the 1960’s a plethora of particles were known to particle physicists, such as

the electron, the neutrino, the proton, the neutron and a number of mesons and 

baryons (which are now known to be bound states of quarks in a singlet rep­

resentation of the color group 5'f/(3)c). The interactions among these particles 

were described in terms of four distinct forces, characterised by different ranges 

and strengths. These were the strong force, with a range of about the

weak force, with a range of lO^^^m, the electromagnetic force, which has an inh- 

nite range but decreases with the inverse distance squared, and the gravitational 

force. The latter is very important to explain macroscopic phenomena, but it 

is so weak at a typical subatomic scale that it can be neglected when studying 

particles. It is the only force which is not taken into account by the Standard 

Modelh

The observed interactions between these particles exhibit some regularities 

which were described in terms of conservation laws. Some of these conserva-
^ Nevertheless the gravitational force is responsible for the large scale structure of the Uni­

verse and it may be related to the other forces in some very fundamental way. For example 
they could all be different manifestations of just one fundamental interaction.
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tion laws are known to be exact, others are only approximate, nevertheless they 

guided theorists toward a consistent mathematical description of those funda­

mental forces.

The idea of a conservation law is that it is possible to associate a quantum 

number to the different kinds of particles to discriminate if a particular reaction, 

say

"b + ... (1.1)

is possible or not. Some of these quantum number have an additive conservation 

law such aa

(1.2)

while others must be combined in a more complicated way (for example the spin 

and the isospin). Examples of additive quantum numbers are the electric charge, 

the hypercharge, the baryonic and leptonic number, the strangness, the charm- 

ness, the bottomness. Some of these quantum numbers are exactly conserved, 

some are approximatively conserved.

Each particle was identified by its mass and its quantum numbers.

At this point some patterns appeared, like those reported in figures 1.1-1.2. 

This suggested that some structure was hidden deep inside the known hadrons [9].

The simplest explanation was that all the mesons are bound states of quark- 

antiquark, while the baryons (antibaryons) are bound states of three quarks (an­

tiquarks). The existence of some of the baryons, such as the A++, was a puzzle 

in view of the Pauli exclusion principle, hence it was necessary to introduce the 

new quantum number called colour. The best attempt to describe experimental 

data from particle physics is formulated in the Standard ModeP (SM).

^As introductory reviews on the SM the reader can refer to [5, 6, 7, 8].
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1,1.1 Lagrangian Formulation

The fundamental degrees of freedom of the SM are

* Three spin ^ particles of charge Q — 0, called neutrinos:

(1.3)

where the index / is called /lofour and runs from 1 to 3. The three neutri­

nos are called i/g (electron neutrino), (muon neutnno), (tau neutrino), 

respectively. Their peculiar characteristic is that^ Tz/y = z/y.

Three spin | particles of electric charge Q = —1:

(1.4)

for y = 1,2,3. They are called e (electron), (muon), r (tau). They,

together with neutrinos, are called leptons.

Nine spin ^ particles of electric charge Q 2.

3'

U, (1.5)

for / = 1,2,3. The index 1 is called colour and runs from 1 to 3. These 

nine quarks have masses which are degenerate in colour but not in favour. 

The three different Havours are usually indicated with different symbols: u' 

(up ^uarA;), c' (c/zarm guarA), t' (top guar/c).

# Nine spin ^ particles of electric charge Q = —

is the projector on left-handed states, |(1 — 7^). R

(1.6)

1 — L is the complementary
projector.
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for % — 1,2,3 and / = 1,2,3. The three flavours are indicated as cP {down

s' guorA;), 6' guorA:).

One spin 0 complex held of electric charge Q — 1:

(1.7)

One spin 0 complex held of electric charge Q = 0:

(1.8)

When it is not necessary to specify the charge or the havour of a quark it will

be referred to simply as gh The symbol i/; will indicate a generic spin 1 held in 

the ensemble The greek index will be used to refer to the spin

components of the helds.

It is convenient to introduce the three sets of doublets

Hi 2/
Uy(z)

^/(z)
(1.9)

where the hrst of them is called the Higgs doublet and it has never been observed.

The Lagrangian of the SM is built in accordance with the gauge principle and 

three fundamental symmetries:

• t/(l)Y Group

(1.10)

where Y is an operator that has the fundamental helds as eigenstates. It is 

called
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SU{2)-w Group (for any flavour)

(1.11)

where [/(z) G 5'[/(2) and w(a;) is any of the following doublets of flelds:

(1.12)

The generators of this group are = ^. Therefore the eigenvectors of Tg 

are

T,
1 1

2
1

0
T.

0

1

1
2

0

1
(1.13)

The operator is called weak-isospin. One says that the weak-isospin of 

f/y, Tuy and is +1, the weak-isospin of Tdy and is —1, while 

Re, Ru, Rd have weak-isospin 0.

'$'ZZ(3)c Group (colour symmetry)

g(z) —> [/(a;)g(z) (1.14)

where [/(z) E 5'f/(3) and

9/(:c)

9/(3:)

(1.15)

The generators of this group will be indicated with Their explicit

expression and properties are listed in Appendix B.
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0
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f
4

0
0
1
!
4

Nb 0 0 0 1 1 1 1 0 0
Nl 1 1 1 0 0 0 0 0 0

Table 1.1: Particle quantum numbers: spin, electric charge, isospin, hypercharge, 
baryon number and lepton number

A summary of the values of spin, electric charge, weak-isospin and hypercharge 

is reported in the upper part of table (1.1).

At the moment these numbers may appear random, but they are not, in fact 

it is easy to check that

Q = 2y + Ts (1.16)

The argument goes as follows: The gauge symmetries are not symmetries of 

the Hilbert space of the Standard Model, which is selected by imposing a gauge 

constraint as an operator identity on the physical states, but they are symme- 

tries of the field theory representation of the model. Therefore one requires gauge 

symmetries not to be broken by the quantization procedure. In the path integral 

formulation of the quantum field theory this means that the regularized Jacobian 

of a gauge transformation must be the identity. Imposing such a condition is 

equivalent to eq. (1.16). This put a strong constraint on the hypercharges of 

the particles of the SM. There are symmetries of the action of the SM for which 

the corresponding Jacobian differs from the identity. This means that, at the 

quantum level, the symmetry is broken and the variation in the action picks up 

an anomalous contribution. These non-symmetries are called anomalous symme­

tries, or simply anomnizes, and their corresponding charges are not conserved.
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The most general Lagrangian invariant under local gauge

(1.14), (1.11) and (1.10) has the following structure^

transformations

Tsm = -^matter T Tym T ^ssb T ^Yukawa (1.18)

where

/:matter = Z(%^)/:+G(%^)g (1.19)

£ym = (1.20)

/:s8b = (D^y)+(D^y)) - - A (1.21)

^Yukawa = — QL‘fH{Q)QR + h.C. (1.22)

(the subsript L and R indicate left-handed and right-handed spinors respectively, 

the sum on the flavour is implicit) and we adopted the following dehnitions

4- + 2^3^ A

K. = W - a^¥• - W^]

H,iC) and H,
(2)

(j), are 3x3 matrices in flavour space).

(1.23)

(1.24)

(1.25)

(1.26)

(1.27)

In principle there is no reason why the SM Lagrangian should not contain a term of the
form

(1.17)

Experimental results indicates that <10 therefore this term will be ignored. This is 
referred to as the strong CP problem.
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1.1.2 Spontaneous symmetry breaking

The vacuum state of the SM is characterised by the minimum of the potential

that appears in eq. (121). Assuming that < 0, the acquires a vacuum 

expectation value

(/)' |0)
2A

(1.28)

Under these circumstances the Yukawa interactions of eq. (1.22) generate mass 

terms for the basic fermionic degrees of freedom of the SM [10]. These mass terms 

are conveniently expressed in terms of the unitary matrices Ug, Uu and Uj

/
(e)

\

m,, Ur (1.29)

/
vH,(") r/-! (1.30)

vK(d) r/-i

/

V
m..

y

\

mb y

Ui(4A (1.31)

mg, are the masses of charged leptons (Q = -1); mg, are the

masses of quarks with charge Q = 2/3; mg, mt are the masses of quarks with 

charge Q = —1/3. These are some of the fundamental parameters of the SM.

To have a diagonal mass matrix it is necessary to reabsorb the contribution of 

U(g), U(u) and U(d) with a rotation of the fields. In eq. (1.19) the term proportional 

to

a/2
- %IU^)d + h.c. (1.32)
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picks up a contribution from this rotation of

\/2
(1.33)

For this reason the physical states, which are mass eigenstates, couple with the 

charged weak currents through the 3x3 unitary matrix^

(1.34)

which is called the Cabibbo-Kobayashi-Maskawa matrix [11]. Its matrix elements 

are of central importance in particle physics. They are not predicted by the 

Standard Model and therefore they have to be extracted from experimental data. 

After spontaneous symmetry breaking occurs it is convenient to rewrite the

interacting part of the Lagrangian in terms of the four currents

V''7,;(^ - sin^ ^wQ)V'

= r?^T(ri ± m)/: + Q7^T(Ti ± m)%MG

(1.35)

(1.36)

(1.37)

(1.38)

called electromagnetic, neutral, weak charged and colour currents respectively. 

tan^M: = ^i/g2 and is called the wenA; onp/e.

It is also convenient to define the following combinations of the gauge field

sin cos

COS sin

(1.39)

(1.40)

(1.41)

^The leptonic sector of the SM does not get any mixing because neutrinos are supposed to 
be massless and there are no right-handed neutrinos. If this turn out not be the case, it may 
well be that this mechanism needs to be extended to leptons.

10
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In this language the interaction Lagrangian describing the coupling of the matter 

fields with the gauge bosons can be conveniently split into three pieces:

• Quantum Electrodynamics [12] (electromagnetic interaction):

rint _ ^ jem Aemix (1,42)

where is the massless gauge held associated with the photon and

e = sin (1.43)

Weak Theory [13] (weak interactions):

^int (1.44)

where is the massive neutral vector boson and are the massive 

charged vector bosons. Their masses are given, at tree-level, by

+^2 (1.45)

(1.46)

(u is the expectation value of the Higgs held.)

Quantum Chromodynamics [14, 15] (strong interactions)

(1.47)

where A'' is the massless non-abelian gauge held associated with the gluon. 

For reviews see [16, 17, 18]

Higgs sector: After spontaneous symmetry breaking only one degree of 

freedom from the Higgs doublet survives, the Higgs boson. Its Lagrangian is

11
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quite complicated because it couples with all the fermions, and Z^. The

best present experimental value for the Higgs mass is reported in Appendix 

C. For reasons that will be explained in the next chapter, Higgs effects are 

strongly suppressed at energy scales of the order of one GeV.

Usually QED and the Weak Theory are collectively called the Electroweak The­

ory.

After spontaneous symmetry breaking the effective Lagrangian for the SM is

function of the masses of its particles, of the three couplings and of the CKM 

matrix elements. The experimental values for these parameters are reported in 

Appendix C.

1.1.3 Classical equations of motion

The classical equation of motion for the gauge bosons of the SM are (ignoring

any WWZ, WWC and Higgs intercations), in the Coulomb gauge,

# Electromagnetic field (the photon):

= e j;'" (1.48)

Its solution for a static electric charge gives the well known electrostatic 

potential y(r) = e/r.

and fields (intermediate vector bosons):

(a + m^)w2 \T;r/± _ ^2

(O -t- m,2)Z!

- p
\/8
92 jnc

(1.49)

(1.50)

Their solution for a static weakly charged particle is a Yukawa-type po­

tential U(r) o( exp(—m^/^r) which explains the finite range of the weak 

interactions.

12
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Chromoelectric field (gluons):

OAl = g,r>”^A‘irAl + g,Jl (1.51)

At short distances the potential between two quarks can be modelled with

y(r) ^ 1/r, but this is not an exact solution and it is not a good approxi- 

mation for r > 1 fm.

The classical equation of motion for fermionic fields is the usual Dirac equation

in a background field are

— m)^ = 0 (1.52)

Quantum corrections spoil these naive conclusions, in particular the chromo­

electric potential between two quarks at large distances turns out to be propor­

tional to the distance: y(r) c:: ar (d is a phenomenological parameter called 

string tension). This result has been confirmed by many lattice simulations [19].

All the classical equations of motion and a complete Hamiltionian treatment 

of the SM can be found in [20].

1.2 Phenomenology

The success of the Standard Model was to combine the 5'f/(2)L x [/(1)Y Glashow - 

Weinberg - Salam theory of electroweak interactions [13] together with QCD [15] 

in one renormalizable quantum field theory. Since its formulation the Standard 

Model has been subject to a great deal of experimental tests, probing its predictive 

power well above the tree-level computations [21, 22].

At present, it seems there is no experimental evidence that is in conflict with 

the predictions of the Standard Model^.

® With the exception of the recent discovery of a neutrino mass, which is zero according to the

13
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Probably one of the most striking prediction of the Standard Model, for the 

precision of both the perturbative calculation and the experimental result, is the 

anomalous magnetic moment of the electron, gg, which can be measured form the 

magnetic dipole moment [6]

= (2 + ge)
ecr

2m, (1.53)

The theoretical result is known up to 4 loops in QED’

0.001159652156(23) (1.54)

to be compared with the experimental result

== 0.001159652188(3) (1.55)

With the exception of the Higgs, all the building blocks of the SM have been 

directly or indirectly observed in experiments and their interactions have been 

observed in scattering and decay processes. The experimental cross sections and 

decay times agree with the perturbative theoretical predictions within less that 

one standard deviation.

The situation is somewhat peculiar for quarks: they have not been observed 

directly but there is strong indirect evidence for their existence. The renormalized 

strong coupling constant pg decreases as the energy scale increases (i.e. when 

probing short distances). Therefore in this domain perturbation theory is valid

and this allows a number experimental tests which will be reviewed briefly. This

SM. In any case this effect is so tiny that it can be verified only in huge dedicated experiments 
and has no measurable effect on collider physics. Many possible extensions to the SM have 
been proposed to take into account a neutrino mass but, at present, the experimental results 
do not allow discrimination between them, therefore the SM remains the best model.

^The possibility of carrying out this calculation with such a high degree of precision is due 
to the fact that the hadronic contribution and the perturbative electroweak contribution to 
are together less than 2 10“^^.

14
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(confinement)

Energy Scale (GeV)

Figure 1.3: Experimental results for the running of as vs the momentum strans-
ferred (left). Qualitative comparison between the running of the gauge couplings 
^1, g2 and (right).

phenomenon is called /reedom [23, 24]. It is a general feature of

those theories with an unbroken non-abelian gauge group. At low energy scales 

(i.e. large distances) the perturbative expansion fails because the renormalized 

strong coupling pg (the parameter in which the perturbative expansion is done) 

increases and eventually becomes bigger than one. A plot of experimental values 

of dj, = ^3/47r at different momentum transferred is reported in figure 1.3.

There is evidence of a net di%rence between the high energy perturbative 

regime and the low energy non-perturbative one: in the first quarks appear as 

the basic degrees of freedom, while in the latter only color singlet states appear, 

the hadrons (i.e. mesons and baryons), and quarks are confined into them [25]. At 

high energy (short distances) the quarks interact through the exchange of gluons, 

while at low energy (large distances) gluons are also confined, and their residual 

effect is in the short range Van der Vaals forces between hadrons^. The energy 

scale where the transition between the two regimes occurs is the fundamental

^An example is the force that keeps together protons and neutrons in the atomic nucleus.
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parameter of QCD, and one of the most important for SM itself. It is usually

indicated with the symbol AqcD- The precise value depends on its dehnition and 

is of the order of 250 MeV. Today lattice simulations provide the only theoretical 

tool to explore the non-perturbative regime of QCD in a quantitative way without 

model dependent assumptions. In figure 1.3 the running of is compared with 

running of and pg- While ^3 increases at low energies (i.e. large scale), 

decreases. The behaviour of pg is similar to that of gg (baoause it is associated 

to the non-abelian SU{2) group), but it is much milder than it. In particular it 

never becomes bigger that one, because the low energy physics is dominated by 

spontaneous symmetry breaking (ssb) effects.

One consequence of the behaviour of gs is that, in nature, we are allowed to 

have "free" particles with electroweak charges different from zero, but we are not 

allowed to have free particles with color quantum number different from zero, for 

example quarks and gluons. Moreover, for electroweak interaction, perturbation 

theory is valid all the way down to the lowest energy scale; it is quite the opposite 

of what happens for strong interactions.

1.2.1 Electroweak sector and the Higgs

Electroweak interactions have been known for a long time because they are re­

sponsible for nuclear weak decays as well as many other particle decays. Orig­

inally Enrico Fermi proposed a theory to explain electroweak interactions which 

is based on the effective interaction Lagrangian [26]

.^Fermi
^ T+ T-A. 
\/2 "

(1.56)

The fact that this theory was not renormalizable led Glashow,Weinberg and 

Salam to postulate the existence of intermediate vector bosons, and 

(which where later discovered) and then to formulate the SM. As will be explained 

in more detail in the next chapter, any perturbative result from the electroweak
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Figure 1.4: Comparison between the indirect determinations (from LEP and 
SLD) and the world average of direct measurements of mw and rrit. The indirect 
determination (closed shaded area) is based on the measure of cross sections in 

ll + j scattering events. The shaded bands are theoretical contraints, 
obatined from the SM, for different hypothetical values of the Higgs mass.

sector of the SM can be expanded as a series in the inverse mass of mw- The 

leading contribution (order 0) in this expansion is equivalent to the corresponding 

prediction of the Fermi electroweak theory with the effective coupling given by®

^2 [1 + pert.corr.] (1.57)

This is one of the experimental quantities used to determine the fundamental 

parameters of the SM. Since the SM does not predict the values of its coupling 

constants, it does not predict a value for Gp-

Figure 1.4 shows a comparison between the indirect determinations and the 

world average of direct measurements of mw and mt- The shadow lines super­

imposed to the plot are predictions based on different possible Higgs masses. At 

the moment the Higgs remains the only unobserved particle of the SM, and there

®Actually this relation is renormalization scheme dependent. The usual schemes consist in 
taking g2,mw and mz or, alternatively, and mz as input parameters (at the mz pole).
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Figure 1.5: A three jet event from the OPAL experiment at LEP. 

are two possible scenarios:

• The Higgs is too massive to be produced with present day accelerators. If 

this is the case, it will be discovered soon by the new Large Hadron Collider 

at CERN.

• The Higgs, whose existence has been postulated to explain the masses of 

vectorial bosons and is one of the fundamental blocks of the SM, does not 

exist in real world. Hence there must be an underlying structure (above 

the energy scale we are able to explore today) that somehow explains the 

world we observe.

1.2.2 Short distance physics

The most direct evidence for existence of quarks comes from jet events in deep 

inelastic scattering (as well as in electron-positron annihilation, hadronic colli­

sions and heavy quarkonia decays). The theory suggests that, if hadrons are 

made of quarks, the longitudinal momentum of the scattering product should be

18



The Standard Model

larger than its transverse part, because of the high momennm transferred in that 

direction. The scattering products will not be in general in a colour singlet state 

and will undergo the process of i.e. a non singlet state will use

its energy to produce pairs of quark-antiquark from the vacuum to form a colour 

singlet state. This process continues like in a chain reaction so that each of the 

original scattering products brings with itself a of particles created from the 

vacuum. Both a single quark or a gluon can generate a jet event.

Jet events have been observed and a snapshot is reported in figure 1.5. From 

the angular distribution and sphericity of jets it has been possible to measure 

the spin of the quarks. From 3-jet events coming from the reaction e'*'e“ -4- qqg 

(like the one in figure) it has been possible to measure directly the coupling 

between the gluon and quarks, ^3. From the cross section of 4-jet events, and its 

comparison with perturbative calculations, the Casimir operators^® for the QCD 

gauge group have been measured. This has made it possible to check that 5'[/(3) 

is the appropriate gauge group to describe QCD. Combined results are reported 

in figure 1.6(left).

One direct measurement of the number of colors, comes form the experi-

mental ratio [27]

R
^ hadrons)

O',thQED (e+e-
TVc ^ 0/ [1 + pert.

/
corr. (1.58)

where Qf is the electric charge of the quark of flavor / and perturbative correc- 

tions are known up to three loops. Some experimental results for as function 

of the center of mass energy are reported in figure 1.6(right). The dashed line is

the prediction of the SM with fVc = 3. It fits the data remarkably well.

Casimir operators are the gauge invariant operators that commute with the generators of 
the gauge group. They are Cf,Ca and Tp- Their definitions are reported in Appendix A.
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10" 10^ 10^

C*/Cp

Figure 1.6: Experimental results for the Casimir invariants of QCD (left) and for 
the ratio R (right).

1.2,3 Long distance physics and hadronic matter

At energies below Aqcd, i e. at a length scale bigger than Aq^d — Ifm the world 

appears to be completely different from the naive picture of quarks and gluons 

interacting. The predictions of the SM for low energy physics is a world made 

of colourless bound states of quarks, called hadrons. This phenomenon is called 

confinement [25].

At tree level there are two basic ways of constructing colourless bound states 

of quarks

(1.59)

(1.60)

Since the quarks have spin \ the former must be bosons (spin 0 or 1) and the 

latter must be fermions (spin | and |). Their properties depend essentially on 

their internal structure and mainly on the flavour of their constituent quarks
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(/, /', /"). In nature particles with the same quantum numbers as M. and B are

observed and they are called mesons and 6an/ons respectively. Many of their 

properties can be deduced from this naive quark constituent model. A list of all 

the known mesons and baryons (excluding their higher excitations) is reported 

in Appendix C. In particular the proton p and the neutron n, of which we have 

daily experience, are spin ^ bound states of u and d quarks with 1 and 0 electric 

charge respectively.

The quantum numbers (/, /g), the isospin (not to be confused with the weak- 

isospin Ts), are defined to be (^,+^) for the u quark, (1, —^) for the d quark, 

(0,0) for all the other particles (antiparticles have the opposite Zs). Originally 

the isospin was introduced to discriminate between the proton and the neutron 

but it is useful to build the representations of all the particles made of u and d 

quarks.

For example, a meson with isospin (/, /a) is^^

IT A C^'2'i
^3j+|i+5 

1 1

^ +1 -11^^) +

|dd) + C/3,-2,+ 2 I /

is

|du)

(1.61)

(1.62)

Hence the lightest scalar mesons correspond to (i.e. have the same quantum 

numbers as)

TT + \

|p) ~|0,0) |7r°) |i,o) (1.63)

To build a representation for vector mesons it is necessary to compose the spin 

of the constituent quarks in a similar way to that shown for isospin.

^^The coefficients are the well known Clebsch-Gordan coefficients.
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Analogously a baryon with isospin (7,73) is^^

ir/3) = Drill luuu) + Dr 1 1 1 |uud) +^3,2,2,2 ' ^ ^3,2,2-2 ' ^ (1.66)

D{ 1 1 1 ludu) -)- D{ 1 1 1 \duu') +^3,2 -2'2 ' ' ^3,-2,2'2 ' ' (1.67)

D{ 1 1 1 Iddu) + D{ 1 1 1 \dud}j +/3 -2 -2'2 ' ^ ^3,-2,2 -2 ' ' (1.68)

Dr 1 1 1 Iwdd) + Dr 111 Iddd)i3i 2 ’ 2 ’ 2 ■'35 2 ’ 2 ’ 2
(1.69)

Hence one can identify the following equivalences

Ip) 2’

1
2’

|A++)

|A0>

IA-)

13
I 2’
13
I 2 
I 3I 2>
I 3I 2’

'+2)

>

(1.70)

It is trivial to observe that for these baryons Q = /a + 1/2.

Since the M and d quarks are almost degenerate in mass, so are the multiplets 

in the isospin that have been built (for 7 — 0,1/2,1 and 3/2).

Adopting this technique, building the exact representation for any hadronic 

particle becomes straightforward.

1.2.4 B Physics

One pattern can be easily identihed from the tables of Appendix C: there are

groups of particles with almost the same mass. While for light hadrons these 

multiplets are explained by the fact that the mass is dominated by the binding

^^The D coefficients are defined as

V)!
/a,mi,m2,m3

^r,2,0 ^0)2)2 I 2 > 2 I

'-^/3,mi ,0*^0,m2,m3 ' ,mi,1 ^1 ,m2,m3 V

2 ,1 ^1,2.2^^’2’2 1 2 U ^U2’2
/3,mi,0'-^0,m2,m3 "i '^/3,mi ,-l'-^-I,m2,m3

(1.64)

(1.65)
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energy of the constituents, for some of the heavy hadrons the mnltiplets are due 

to the fact that the mass is dominated by the most massive of the constituent 

quarks.

As an example, the quartet of heavy mesons B""", B", B°, B° can be considered. 

They are almost degenerate in mass, and this mass is very big; in fact they all 

contain one single heavy quark 6 or antiquark 5. Using additive properties of the 

electric charge and the dehnitions of the six basic quarks (u, d, c, s, t, 6) it can be

shown that

|B+) |u5) |B0> ru |d6)

|B-) IM |B+ ) - |6d)
(1.71)

The 8M predicts that the decay times of each of the B's is dominated by the 

decay time of the 6 quark; therefore they must be more or less the same. The 

experimental results are

T(B+) = T(B-) = (1.65 T 0.04)10-^^s

T(B") = T(B") = (1.56 ± 0.04)10-^^s

(1.72)

(1.73)

This again is a striking prediction of the SM. But there is more: since the theoret­

ical decay time for a free b quark can be computed from the SM, the comparison

with the experimental lifetimes of the B mesons can be used to extract infor­

mation from the meson decay. The theoretical decay time at tree level is given 

by'"

(1.74)

The comparison between (1.74) and (1.72) or (1.73) gives a rough estimation of

is the branching ratio for a B decaying into lepton and neutrino plus anything. 
This quantity is predicted by the SM to be 0.17 [8], while the experimental result is 0.10(2) [122].
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the CKM matrix element Vcb — 0.04.

In the table of baryons there is another heavy particle with almost the same 

mass as the S’s, At, which contains the same quark, h. It is a baryon therefore it 

must contain two light quarks; they are a u and a d quark, in fact Af, is a singlet 

of isospin. Its decay time is

T(A6) = (1.24±0.08)10-^^a (1.75)

which is 20% less than expected from the naive picture that has been presented. 

One of the main goals of this thesis is to quantify this discrepancy in the frame- 

work of quantum field theory.

B mesons can be considered the hydrogen atom of QCD. In fact, as the

hydrogen atom is characterised by a huge mass of the nucleus, B mesons are 

characterised by the mass of the 6 quark, which is much bigger than the mass 

of the so called un/ence guor/c. In some sense, that will be formalised in the 

next chapter, the b quark may be considered static thus simplifying the study of 

the structure of the meson. In this static approximation it has been possible to 

compute the wave function of the light quark in a heavy meson and the effective 

coupling which will be introduced in the next chapter.

1.2.5 Mixing with and without CP violation

The physics of K mesons and B mesons (we will concentrate on the latter as an 

example) is complicated by the fact that different neutral states are relevant to the 

analysis of different processes. For example |B°) and \B^ ) have a definite quark 

content and are useful to understand scattering and decay processes, but they 

are not eigenstates of the Hamiltonian, hence they mix under temporal evolution. 

Moreover eigenstates of the Hamiltonian are not, in general, CP eigenstates.
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To study a system it is convenient to introduce the mass eigenstates

|B^>oc|B0) + 6M|B0)

(X |B°)

(of mass respectively and m,^) and the physical states

(1.76)

(1.77)

(1.78)

(1.79)

Eqs. (1.76)-(1.77) implicitly define With some algebra one can show that CP 

violation in mixing can be observed through asymmetries in semileptonic decays

i*vx) - ^ i-uX) _ 1 -
^ i*vx) + ^ i-ux) i + M

(1.80)

Therefore the parameter plays a very fundamental role. The key parameters 

in a theoretical study of a system are the off-diagonal elements of the

Hamiltonian

(g0|n|g0) = Mi2 + 2ri2 (1.81)

where M12 and ri2 are the dispersive and absorptive parts respectively and 

can be expressed as function of these parameters

M-12
IM12

1 + Im
r 12
M:12

(1.82)

The SM accounts for the quantities and F12 by the box diagrams with inter-
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mediate top quarks

Mi2 = /M 

riz^/r/imgBg

(1.83)

(1.84)

where /r &re kinematical factors that can be computed in perturbation

theory and only depend on the quark masses and CKM matrix elements [28]. On

the other hand

BB

/,B mg

(1.85)

(1.86)

encode nonperturbative effects due to strong interactions, /g and Bg will be 

computed explicitly in chapter 5. It is important to stress that without CP 

violations [6^1 = 1 and the eigenstates of B would also be CP eigenstates.

The phenomenon of mixing is similar to mixing but, in

the analysis of the former, the corresponding box diagrams contain s quarks in 

external lines (instead of a 6 quark). The boxes with internal u and c quarks 

became important and one encounters three QCD coefhcients instead of one.

1.2.6 The unitarity triangle and new physics

Using unitarity the CKM matrix can be parametrized, according to Wolfenstein, 

in terms of four parameters [29] A, p, p and A

/
CKM

1 a!
2

-A

A ^A^(p — zp) ^

^ AA^(1 - p - %p) -AA^

+ 0(A'' (1.87)

v4, p and p are of order unity, and A is the sine of the so called Cabibbo angle.
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Figure 1.7: The unitarity triangle (left) and its present best constraints 
(right) [21].

The unitarity of Vckm implies that

(1.88)

This can be visualized in the so called unitarity triangle, sketched in figure 1.7, 

together with the current experimental bounds.

It is extremely important to measure CKM matrix elements separately. In 

fact a non-unitary CKM matrix would mean a non conserved charge in the SM. 

Therefore the model would be non-renormalizable and one would be forced to 

introduce new fundamental degrees of freedom, i.e. new fundamental particles.

The presence of the complex phase ry in this matrix means complex couplings 

in the Lagrangian, eq. (1.33), which are not invariant under time reversal. Due to 

the CPT theorem these interactions are not invariant under CP. This phenomenon 

has been observed in .

Today the best determination of the CKM matrix elements, assuming three 

generations of quarks and imposing unitarity, are reported in Appendix C.
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1,2.7 PCAC phase transition

In the same way as confinement involves the local colour symmetry, PCAC {Par-

ConaeruecZ AzioZ Ct/rrenZ [7]) involves the global chiral fiavour symmetry 

associated to the current

(1.89)

This symmetry is manifestly broken by the presence of a non-vanishing quark 

mass matrix. On the other hand the masses of u, d and s quarks are small and 

one would expect this symmetry to be approximately valid at energy scales above 

ms- In particular one would expect a partner of opposite chirality for the proton. 

But it does not seem to exist.

What happens is that the vacuum spontaneously breaks this symmetry. As

a consequence of it, the Goldstone theorem states that there must be a multiplet 

of Ay — 1 massless pseudoscalar bosons [30]. Actually, they will not be exactly 

massless, because the u, d and s quarks are not massless, but their masses will 

be of the order of and [31].

Such a multiplet has been found in nature: it corresponds to the octet of 

the light pseudoscalar mesons 7r, % and of figure 1.1. As consequence of the 

Goldstone theorem the masses of these particle verify with good approximation

4m,^ — 3mn = oc (1.90)

which is known as Gell-Mann-Okubo formula. This confirms once again the power 

of the SM predictions.

1,2.8 Beyond the Standard Model

There are a number of questions which are not addressed by the SM. For example 

it does not take into account the recent discovery of neutrino masses (and the
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consequent neutrino oscillations) and it becomes non-renormalizable when em-

bedded in a curved space-time (such as the real one where the energy-momentum 

tensor is coupled to the gravitational tensor). But most importantly the SM does 

not explain why its fundamental parameters are what they are; Why is the gauge 

group 5'[/(3)c X 6'[/(2)L x [/(1)Y? Why is the strong CP phase so small that it is 

undetected? Why do the particles have the masses they have? Why is space-time 

four dimensional?

To these, many other questions could be added, originated mainly from cos- 

mological observations. It seems reasonable to think that SM is only an effective 

theory (as are many other theories that have been introduced to describe particu­

lar kinematical regions) and that there is an underlying structure in our Universe. 

Maybe new particle accelerators will be able to explore higher energy scales and 

will be able to find new symmetries, such as supersymmetries; maybe they will 

discover that all the known particles are different excitations of the same funda­

mental object (a string?); perhaps they will give evidence of extra dimensions, to 

which we are blind today because they are compactihed down to a small scale; 

they may even discover that we live on a four dimensional domain wall between 

different phases in a more-than-four dimensional manifold.

Unfortunately at the moment there is no evidence of any of the former. It 

is important to observe that any of the possible ways forward most likely will 

come from the discovery of a new particle or from the discovery of a non uni- 

tary interaction. For example a non unitary CKM matrix. This makes a good 

point for the quest of a better understanding of QCD in the non-perturbative 

regime. At the moment lattice simulations provide the only available tool to de- 

termine systematically the non-perturbative effects in particle physics, without 

any model-dependent assumption. The quantitative estimation of these effects is 

crucial to extract informations from experimental results.
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Chapter 2

Effective Theories

2.1 Regularization and Renormalization

The concepts of regularization and renormalization play a fundamental role in

particle physics for two reasons:

# One never measures the value of the particle helds in every point in space- 

time but one measures their integrals over the test function of the physical 

detectors, which have a finite extension. Therefore there are mathematical 

reasons to require that the fields are defined in the space of distributions.

* One wants to model the unknown short distance physics by introducing a

Lagrangian density which contains only local (contact) interactions.

If one tries to combine the previous statements in a Quantum Field Theory, 

one encounters the problem of divergences and must find a way of dealing with 

them. The mathematical origin of these divergences is the presence of undefined 

formal products of distributions in the Lagrangian from which the path integral 

is computed. Renormalization can in fact be described in mathematical terms as 

the problem of defining these products of distributions^

^For general reviews on the subject see [32, 33]
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In the next subsections we will analyze, as an explanatory example, the prob­

lem of defining the product of 6 functions by regularizing them by a sequence of 

smooth functions that become more localised at zero. We will then show how an 

arbitrary quantum held can be expanded and regularized using delta functions 

and how the presence of a finite spatial cut-off in the regularized distributions 

is equivalent to a hnite cut-off in the momentum expansion of the held itself. 

In the end we will relate our conclusions to ordinary Quantum Mechanics and 

Quantum Field Theories (in the Kadanoff-Wilson approach to renormalization). 

This is not intended to be an introduction to Renormalization, which the reader 

is supposed to be familiar with, but it is presented as an alternative view of its 

meaning having in mind the lattice as typical regulator.

2.1.1 Regularizing distributions

The 5 function is a distribution which is dehned as

— a;)F(a;)dz = F(a;) (2.1)

where F(2;) can be any smooth function. The same 6 function can be thought of 

as the limit of an ordinary function (i((Z, z)

6(a;) =lim ^(n, z) (2-2)

where (i(n, a;) must be smooth enough, localized in z within a precision a and its 

integral must be normalized to one. This procedure will be called regularization.
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-1.5 -1 -0.5 0.5 1 1.5

Figure 2.1: Examples of possible regularizations for a delta function. The z axis 
is in units of u, the ^ axis is in units of

Some possible regularization schemes are^

1
a;) -t- a/2) - - a/2)]

(^(a, a;) = ^exp(—a;^/a^)

. 8in(7ra:/a)
()(a, a;) =

Tra;

(2.3)

(2.4)

(2.5)

They are sketched in figure 2.1. The di&rent schemes are equivalent in the 

sense that they give the same result for the following limit

lirn / ^(a, a: — a;)F(a;)da; = F(a;) (2.6)

but they do not give the same limit in expressions of the form

liin / [(^(a, a: — a;)]""'"^F(a;)da; =? (2.7)

Moreover eq. (2.7) is likely to be divergent as a"'^. Suppose one wants to give a 

well defined meaning to the limit in eq. (2.7) by removing somehow the divergence 

that occurs. One way of doing it is by making F(x) dependent on a, according

^The 9{x) function is defined to be 0 for a; < 0 and 1 for x > 0. It is discontinuous in x = 0.
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with the prescription for a;),

(2.8)

where === a + O(o^). In other words the divergence of the integral is

absorbed in the normalization of the function F{x). This procedure is called

rgnonnoZzzotMn and it depends on which regularization has been chosen. From

now on the scheme of eq. (2.3) will be considered in particular. After renormal­

ization

(^(n, a; — a;)]""''^Z;;"(a)F(a;)da; = const. + C)(n) (2.9)

and its limit for a -4 0 becomes well defined. Therefore, up to order a terms one

can redefine the integral of eq. (2.7) in the following way

[6(a; - a;)]""''^F(a;)dz slini / [6(a, a; - a;)]'^"'"^Z;^"(a)f (a;)da: (2.10)

The situation can be even more complicated if F{x) itself is defined in terms of

delta functions. For example one can consider the case when F(a;) = exp[^^^(a;)]. 

In this case it is not sufficient to regularize 6 and renormalize F to get rid of the 

divergence, one is forced to renormalize ^ as well.

It is a general statement that, if the function F(a:, p) depends on some constant 

p, one has to renormalize the constant

^ ^/^(a) (2.11)

by imposing a constraint

[6((Z, a: — a7)]""''^Zj:("(G)F(a;, g;;(a))da; = const. (2.12)
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Eq. (2.12) fixes the behaviour of as function of n. Its solution, 

can have a non-trivial behaviour in n. Eq.(2.12) is a particular case of what 

is generally known as the fZenonno/zzatzon Group Eg'untzon (RGE) [23]. The 

behaviour of versus o is called runmng. Another common way of writing

the renormalization group equation is

(^(o, z - z)]"+^.2'^^(n)F(a;, pA(o))da; = 0
dlogo

or explicitly

(2.13)

"Ty[<^(o, a; - a;)]"+^.^^"F(a:, PA)d% = 0 (2.14)

where

/)(^'A)

T(gR)

d
^logn
d

PA

9 logo
ZR(o)

(2.15)

(2.16)
an

If the original constant g is dimensionless, pg(a) must also depend on some other 

scale, say A, to cancel the dimension of o. In other words must be a function 

of oA, an adimensional quantity. This simple example shows how the renor­

malization procedure may force one to introduce a second scale A of which the 

renormalized constant is a function. This phenomenon is called dimensional 

trnnamutotmn. In typical physical problems, o is a free parameter and it can be 

chosen (the physics does not depend on it providing it is small enough), while 

A characterizes the typical scale of the effect one wants to describe. One mea­

sures ^^((^A) at some physical scale n = d. This hxes the value of A and, as a 

consequence, the value of g;; at any other scale.
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2.1,2 Lattice regularization and momentum cut-off

Any given smooth function (^(z) defined in [—L, L] can be approximated with 

a;) functions

z) = ^ a; - /cu)
k=—L/a

with or expanded in momentum

(2.17)

(2.18)
n=0

where

Pn = —]
27r

i^(z)e (2,19)

The expansion in momentum of the right hand side of eq.(2.17) can be written

as

i latt (u, z) = ^ (2.20)

n=0

where

b'
27r

l/a

E
h——1j j Q,

/ (i(o, A;o —z)e
J-L

(2,21)

It becomes evident that for the integrand oscillates fast and the corre­

sponding integral, has to be small; while for < l/<^ the integral is almost 

constant and approximately equal to therefore c::^ 6^- The different

behaviour of the integrand is shown in hgure 2.2. This proves that eq.(2.17) can
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Figure 2.2: Different behaviour of the integrand of 6^ for high frequency modes
(left) and low &equency modes (right) respectively.

be written as

<;6(a;) z:: z) z) =
n=0

(2.22)

If <^(z) describes some physical quantity and one has a hnite resolution in 

space, a, then (^(z) can be replaced by its Fourier expansion with a cut-oE in mo­

mentum space Pn < Therefore this technique can be regarded as a different, 

but in some sense equivalent, regularization scheme.

Note that 6o is the mean value of ^(z). Moreover pi = 7r/T represents the 

minimum energy/momentum mode that can propagate on a hnite unidimensional 

volume of length 2L.

The superscripts "latt" and "co", used to identify the two different regulariza- 

tions, are abbreviations of lattice and cuf-o/f respectively. For multi-dimensional 

integrals, the common regularization schemes are fouli-yz/lors and dimemiona/ 

regularization. The latter consists in changing the number of dimensions from 4 

to 4 —2g and taking the limit of g —> 0. Despite the fact that this is a less intuitive 

regularization scheme, it is the most practical for actual calculations [34, 35].

Divergences associated with limit o —> 0 are called ultraviolet, while those 

associated with limit T oo are called infrared divergences.
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2.1.3 Applications to quantum mechanics

Suppose one studies the quantum mechanical problem of modelling a system 

for which the energy eigenvalues, are known and derived by an interaction 

potential of the form

V{r)
a + y^(r) (2.23)

but the interaction potential is not known. Therefore one wants to And a y^(r) 

that better predicts the data, En-

The standard procedure is to perform a multipole-like expansion of the po­

tential that appear in the Schrodinger equation

y^(r) = Co(i(r) d- CiVr6(r) d- C2V^(i(r) ... (2.24)

(this expansion is well dehned for regularized deltas) and obtain the coefhcients of 

the expansion by comparison between data and predictions for the energy levels, 

En. Naively one would expect to be able to reconstruct the unknown potential 

in this way.

This technique does not work. In fact, even at the second order in stemdard

perturbation theory one finds a product of delta functions

En En + Cq

m-^n

(7%| 6(r) jm) (m| (^(r) jn)
En. Em.

(2.25)

which, as it has been shown, it not uniquely defined. It is necessary to regularize 

the theory and renormalize the coupling constants co, ci, C2, etc.

Prom the physical point of view the problem arises when, in eq. (2.25), the 

sum runs over a complete set of states |m). However, since one does not have 

infinite resolution in experiments, one should exclude from the sum those states 

with energy (momentum) bigger than the inverse cut-off, a.
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The fact that it is necessary to renormalize Cg means that the parameters 

of the Schrodinger equation become functions of o. Nevertheless, even if the 

parameters of the theory depend on a, the physical quantities computed from the 

theory must be independent of a.

The right and well defined procedure to solve the original problem is

• Regularize the ^ function

• Expand the unknown potential as

1/^(0, r) = CRo(o)(^(r) + CAi(o)Vr(^(r) + CB2(G)Vr6(r) + ... (2.26)

• Determine the cjii{a) coefficients, up to a fixed order in perturbation theory, 

by comparing the predicted values for the energy level with the experimental 

ones.

Since the physics must be independent of a one implicitly defines a running for 

the In this simple case the RGBs read

dlogn
-^^(0^1(0), CE2(a), CR3(o), ...) = 0 (2.27)

where ^^(0^1 (a), C;(2(o), CR3(o), - ) are the theoretical values for the energy levels 

as function of the constants CA^(a).

The lesson one learns is that, as in the multipole expansion, one can mimic the 

complex high momentum, short distance structure of the "real theory" (whatever

it is) by a generic set of simple point-like interactions. The couplings are the ana- 

logues of the multipole moments, while the delta functions are analogues to the 

multipoles that generate the field. It is not true that, as higher order corrections 

are added, the potential of eq. (2.26) will eventually become identical to the true

one (assuming it exists). There are infinitely many theories which share the same 

low energy behaviour. Generally speaking our low energy experimental data do
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not contain enough information to probe, and completely specify, the high energy 

structure of the underlying theory.

2.1.4 Applications to quantum field theory

While in quantum mechanics one computes energy levels, in quantum held theory 

(QFT) one computes n-point Green functions, which are integrals of the form

(2.28)

(T stands for the time ordered product) which we rewrite in the compact notation

(2.29)

where is a sum over all the possible held conhgurations, and

(2.30)

is a non-linear functional in (^(z) depending on some coupling constant (s) p. An 

important point here is that ^"[(^(z),^] contains terms like ... coming

from the expansion of the action. For simplicity it will be assumed that the held 

has a one dimensional domain [—L,L]. There are two natural ways of formally 

dehning the integral (2.29).

# Introduce a cut-oE o, approximate the held as in eq.(2.17), and integrate 

over all the

A=-LlJ '

(2.31)
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Introduce a momentum cut-oEpyy 2:^ a \ expand in Fourier components 

as in eq. (2.18) and integrate over the coe&cients of the expansion

(0|T{,;i(zi)...,^(z»)} 10)'"'" - ^n/F"[r(a,z),^] (2.32)

In both cases the integral may diverge, therefore it becomes necessary to renor-

malize the functional (i.e. the field cj) itself) or the coupling constant(s) g.

Usually both of them^.

Analogously to the quantum mechanical example, the problem of ultraviolet

divergences (associated to the limit u 0) arises because one would like the 

fields to be defined in the space of distributions and, at the same time, one is 

modelling unknown physics with a local Lagrangian density. Therefore any non­

trivial functional of these fields would be divergent [32]. It become necessary to 

introduce a finite cut-off a and regularize the theory. Again one must impose the 

condition that physical predictions are independent of the regularization scheme 

and from the cut-off, o. Therefore one needs one RGB for each parameter of the 

theory^.

For example in a theory where

(2.33)

one uses the 2-point Green function to renormalize the coupling m, i.e. the mass, 

and the 3-point Green function to renormalize the coupling g. In other words 

one imposes a constraint on the values of mass and coupling constant which are 

predicted by the theory, by equating them to the experimental results. From 

these RGBs one obtains the running for the mass m and the coupling constant(s) 

9-

^In case of a multidimensional domain for the fields, one generally prefers to use dimensional 
regularization because it preserves Poincare invariace and gauge invariance of the theory.

'‘In analogy with the RGE eq. (2.14).
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Usually one distinguishes between the “bare” parameters that appear in the

regularized Lagrangian (for a finite value of the cut-off, a) and the “dressed", 

“physical" or “renormalized" parameters that are dehned and measured by actual 

experiments. If one takes the limit n —> 0, the bare parameters lose any physical 

meaning and one must carefully define the renormalized ones (one says to choose 

a prescription). If one is happy of keeping the cut-off small but hnite one is 

allowed to identify the renormalized and the bare parameters, because these can 

now be measured. This is the approach one uses on the lattice and it corresponds 

to the Kadanoff-Wilson approach to renormalization.

One can write a RGE both for the bare parameters (as function of the cut- 

off) or, equivalently, for the renormalized ones (as function of the renormalization 

scale, i.e. the scale at which one performs the measurements). The two equations 

are formally identical at first order in pertubation theory®. This is not surpris- 

ing because one can always define the renormalized coupling at a scale d to be 

equivalent to the bare coupling with a cut-off a — a.

The general form for the RGBs of the n-point Green functions, eq. (2.31) is

+ '^T(gA) ) (0| <6(a;i)...<;6(zn) = 0 (2.34)

where

/)(gR)
d

^logo
9R

9R

(2.35)

(2.36)

and ^^(a) is defined as the wave function renormalization factor

(2.37)

®Only at second order in perturbation theory the RGE for the renormalized parameters 
shows a dependence from their exact definition, the renormalization prescription.
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For non-abelian gauge theories in four dimensions without symmetry breaking

(such as QCD), at one loop, turns out to satisfy the equation^

9a

where

AQCD ll-2Ar/

-AQeD9jM+o{ai)
(40

(2.38)

(2.39)

Its solution can be written in the form

0!a(o) = ^ = 27r
47r log(oAQCD)

(2.40)

and therefore decreases (increases) when a decreases (increases). This phe­

nomenon was already presented in the last chapter and is called _^ge-

dom [24]. The scale Apcn is due to dimensional transmutation and can be thought 

of as the typical energy scale of QCD. The presence of this physical scale breaks 

the scale invariance of the theory. For QCD this is related to the presence of the 

so called ^race anomolp.

For an abelian gauge theory (such as QED) ^^(a) obeys the equation

A(gA)
9a A

qed»|M + 0(j|)
(4%)

(2.41)

where = 4AI//3. Note that the right hand side of eq.(2.41) has an opposite 

sign than the right hand side of eq.(2.38). In fact the renormalized coupling 

constant of QED decreases (increases) when a increases (decreases), quite the 

opposite of QCD.

It has been seen how, in QFT, one is forced to introduce two different energy 

scales:

®RGE are commonly written in terms of and not of a.
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• A: the typical scale of the effect being studied. This scale is in nature and

there is no freedom to hx it. For QCD it is AqcD — 250MeV.

# // = the scale that corresponds to the precision of the mathematical 

description, the cut-off in the Kadanoff-Wilson approach to Renormaliza­

tion Group. The theory is said to be renormalizable if this scale can be

arbitrarily large. This does not mean that one can trust the predictions of 

the theory with arbitrary precision.

It is usually possible to model the same phenomenon using different QFTs,

which differ in the regularization-renormalization prescription and/or the renor- 

malization scale. The predictions of these different theories must be compatible 

with each other apart from order 0(u) corrections.

Some QFTs have a ffnite number of coupling constants and it is possible to 

give a well deffned meaning to the limit a -4 0 because ail the possible diver­

gencies can be absorbed in the renormalized constants. These QFTs are said to 

be renormalizable. Other QFTs are not renormalizable because it is not possible 

to absorb all the divergencies in a ffnite set of constants. The possible Green 

functions, at different orders in perturbation theory, exhibit an infinite variety 

of divergent behaviour. Originally it was believed that only renormalizable QFT 

made sense^. The modern picture is different: if the world is described by a 

continuous QFT, it must be a renormalizable one. But the world could have a 

minimum length scale and the renormalization requirement is no longer a funda- 

mental one. Perhaps the most important modern interpretation of these results 

is that, if one wants to formulate a QFT to describe physics down to a ffnite res- 

olution, say o, and one does not pretend it to be the theory of everything, it does 

not have to be renormalizable (because one does not pretend to send the scale a 

to zero) [37]. These particular kind of theories are called (ffgonga^.

’^This requirement led Weinberg, Glashow and Salam to formulate the Standard Model. 
®E.g. the Fermi theory of electroweak interactions is not renormalizable but it is able to 

describe with good accuracy weak interactions at energy scales below mw
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In the real world, there might be new supersymmetric interactions or super-

string, or electrons and muons may have internal stucture, none of which is incor- 

porated in the SM. Nevertheless the SM has been formulated and still explains 

the results of our experiments with a typical accuracy of 10%. Renormalization 

saved us by saying that one does not need to know what happens at very high 

momenta in order to understand low momentum experiments.

Wilson showed that any information about physics above the renormalization 

scale is contained in the coefhcients of the effective theory.

The procedure to relate the renormalized parameters/operators between two 

different theories, or different regularization schemes, is called matching®.

For renormalizable effective theories this procedure is stated in the Appelquist- 

Carazzone theorem [38]. It states that, under some given conditions, the effects 

of high energy modes only appear in the low energy mode physics

(pn < through corrections which are proportional to a, or through renor- 

malization.

It has been shown by Symanzik [39] that it is possible to improve the conver-

gence of an effective theory to its continuum limit (a -4 0) from 0(a) to 0(a'^"*'^). 

In order to achieve this, it is necessary to add to the effective Lagrangian terms 

which are proportional to a, a^,...,a" and adjust the corresponding coefficients. 

This improvement technique is heavily used in lattice simulations where the min- 

imum length scale, the lattice spacing a, cannot be reduced arbitrarily, therefore 

one desires the dependence on a of the Green functions to be as small as possible. 

In the next sections some effective theories will be introduced, which will be used 

in the later study of heavy mesons and baryons.

®An explicit example will be give in the next chapter.
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2.1.5 Operator Product Expansion

Another way to view the conclusions of the previous section is to say that one 

can study an interaction that is fundamentally a product of currents by replacing 

this product of operators by a sum of local operators. As an example of interest 

we consider here the following expansion of a product of two operators

(2.42)

where the coefhcients Cn(z) are unknown c-number functions and the operators 

On, organized by their dimension, are constructed from the basic held considering 

they must have the same transformation properties as the left-hand side.

The expansion (2.42) implies a relation between Green functions

(o|r{o^(z)Og(o)...} |0)'"'''" - ^Cn(z,u) (0|r{On(0)...} |o)'""'" (2.43)
n

where the dots represent any arbitrary product of fields. One can write the RGE 

for the Green functions that appear on the left-hand side and those that appear 

on the right-hand side of eq. (2.43). Their difference uniquely determine a RGE 

for the On(a;,u) coefficients

2
da

- (Tv4 + Tn - 7n)l On(z, o) = 0
(2.44)

where 'yg and -y^ are the anomalous dimensions of and respectively.

The one loop solution of eq. (2.44) is

Cn(3;,a)
const. / 0!a(:r) (i'X+i'B-7n)/2/3o

\x\ 1 —dn (2.45)

where -y/^, -yg and are the numerical coefficients of the 1-loop anomalous di-

mensions of Oa,Ob and On respectively, and dg and d„ are the dimensions
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of the corresponding operators.

The expansion (2.42) is called Operator Product Expansion and it is a par- 

ticnlarly useful tool in QCD to disentangle the perturbative physics, encoded in 

the coefficients Cn(z), from the non perturbative physics, encoded in the expec- 

tation values of the local operators 0„. The former are computed in perturbation 

theory, while the latter can be measured or evaluated using lattice. Sum Rules 

or model dependent assumptions.

2.2 Examples of interest

2.2.1 Heisenberg-Euler Effective Theory and quenching

As a hrst example one can try to formulate an effective theory for QED. In 

particular one may be interested in modelling QED at energy scales below the 

electron mass, mg. In this kinematic region the electron (and other fermions) 

cannot be produced directly but, instead, influences the physics of photons only 

through virtual processes. In other words one may be interested in formulating an 

effective Lagrangian Zlg// which generates the same Green functions for photons 

as

- mg)?/' (2.46)

does. More formally one can write

(2.47)

The path integral in the fermionic modes can be done, as was shown in eq.(2.32),

thus obtaining an implict form for the, so called, Heisenberg-Euler effective La-
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grangian [40]

[ (I^xCe-h (2.48)

This procedure is called integrating out modes. The right hand side can be

expanded in powers of l/yng

+ «(&) + 0{.‘) (2.49)

Note how the first term gives a contribution to the photon propagator which

is equivalent to the one-loop correction of QED. Corrections to this effective 

Lagrangian can be of two forms:

At any finite order in a, one has to add terms of any order in 1/m

* The coefficients of terms of any order in l/m^ receive corrections of arbi-

trarily high order in a, because of multi-loop diagrams.

The theory described by the effective Lagrangian (2.49) is not renormalizable 

because it would be necessary to include terms of arbitrary order in l/m^ to 

cancel its perturbative divergences.

This is an example of what has been discussed in the section 2.1.2. The fact 

that loop ejects are proportional to the inverse mass square of the particle in 

the loop tells us that loops of massive particles can be neglected. This is why, 

for example, one can neglect effects of particles more massive than the electron, 

when computing quantum corrections to atomic spectra.

The approximation of neglecting corrections of the order l/m^ is called guench- 

ing and is a peculiar characteristic of many lattice simulations of QCD.
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2,2.2 Fermi Electroweak Theory

Exactly as was done for QED, one can integrate out modes of heavy particles 

in the theory of weak interactions. In this case the most massive modes are

associated with and bosons. Ignoring the latter one can write

(2.50)

thus obtaining for the interactive part of the Lagrangian

rint C,Fermi + 0(-r) (2.51)
w

where /Zf'ermi is the Fermi interaction Lagrangian [26] of eq. (1.56). is much 

bigger than the typical hadronic scale, AqcD, therefore one can consider vCpermi & 

good approximation of /Iweak when studying non-perturbative QCD corrections 

to hadronic matrix elements.

In practice, if one wants to compute perturbative corrections to Green func-

tions and keep the renormalization scale ^ below 771^/, one is allowed to perform

the following approximation when computing Feynman diagrams involving W

propagators

^2 J+/'(p)
1

P m
-T (p)d^p P2

IV 8m,%
(2.52)

w

where are charged weak currents. This is because of the cut-off in momentum 

space induced by the renormalization procedure.

2.2.3 Heavy Quark Effective Theory

In the preceding example only modes that did not appear in the external asymp­

totic states were integrated out. In practice loops of heavy particles in Feynman

diagrams have been absorbed in corrections to the Lagrangian. One may be in­
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terested in a different problem, that is integrating out modes of a particle that 

does appear in the external states, for example a heavy quark (which will be 

indicated with the symbol h). In the external states the heavy quark cannot be a 

free particle (because of conhnement) but it must be in an hadronic bound state. 

Therefore it is not an on-shell particle and the off-shell component of its momen- 

tum is due to the exchange of gluons within the hadron. One can describe the 

behaviour of this heavy quark with an effective theory in which modes with en­

ergy above A have been integrated out and only appear in the parameters 

of the theory. Moreover one requires Apcn A. In such a theory the off-shell 

component of a heavy quark, bounded in an hadronic state, is only due to the 

exchange of soft gluons and it is of the order of A.

In this framework, the momentum of the heavy quark can be written as

(2.53)

where /c^ is the off-shell part of it and k? ^ h?. On the other hand the hadron, 

of which the heavy quark is a constituent, must be on-shell and one can measure 

its momentum and hence its velocity, The on-shell components of the heavy 

quark momentum can be expressed in terms of the velocity of the hadron.

P.
.on-shell on-shell | ^ (2.54)

This statement is not rigorous because there are ambiguities in the definition of

the mass of the quarks, since they cannot be observed as free particles. However 

it can be proven that the following reasoning can be made consistent whichever 

definition is taken.

Since in the effective theory that is considered a natural momentum cut-off.
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A is present the free propagator of the heavy quark can be expanded in l/m,i

1 + A 1

The same propagrator can be obtained by the effective Lagrangian

(2.55)

-^HQET — h ( —{DnV^)h + 0{ —)Z J TfTlh (2.56)

The expansion (2.55) can be carried out to obtain those terms of higher order 

both in 1/m/i and in in the same fashion as what was done to construct the 

Heisenberg-Euler Lagrangian. The effective Lagrangian (2.56) is called

Quark Ejfective Theory^^ (HQET).

Note the presence of the projector (1 + ^)/2 in the tree level HQET. In this 

low energy description loops of heavy quarks have been integrated out, therefore 

a second quantization description of these particles becomes redundant. The 

projector in the effective Lagrangian means that anti-particles, at tree level, do 

not couple to the effective degrees of freedom. An analogous description for anti­

particles would have been possible, and the effective Lagrangian would have had 

a projector on anti-particles instead, (1 — ^)/2.

One prediction of the theory is that, at tree-level and for a static hadron (i.e.

= (1,0)), the heavy quark only couples to the temporal component of the 

gauge field. In other words the interaction between spin and colour magnetic 

field is of higher order in l/rrih. Correspondingly, a symmetry emerges between 

those states which differ only by the spin orientation of the heavy quark^^. The 

pseudo-scalar and vector mesons, B and B* (both are ground states of zero

^°For reference see [41, 42]
instead of a heavy quark, one considers a heavy nucleus in an atom, this is saying that all 

the spin of the atom is carried by the nucleus and it is not affected by electro-magnetic interac­
tion at the typical energy scale of chemical reactions. This statement is crucial in techniques of 
magnetic resonance, where one uses huge magnetic fields to interact with the magnetic moment 
of the nucleus (which is proportional to the spin) without any screening effect by the electrons.
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orbital angular momentum), present an example of such a spin degeneracy. In 

fact, up to corrections of the order l/m/^ = l/rub, they are degenerate in mass 

(as was observed in the preceeding chapter) and the wave functions of their light 

constituent quarks coincide. This statement is crucial in determining their wave 

function. This will be done in chapter 4.

Another important conclusion comes from the fact that, at tree-level, the 

HQET Lagrangian (2.56) does not depend on mh- Therefore if there is more than 

one heavy quark, the theory must be symmetric with respect to the interchange 

between them. This phenomenon is called guurA; It predicts that

the wave function of a heavy meson is independent of the havour and spin of the 

heavy quark, leading to a covariant representation of heavy mesonic states [41]. 

The angular momentum J and the parity f of the light degrees of freedom 

determine a degenerate doublet of states with spin-parity

An example of this are the families of B and D mesons. The former is char- 

acterised by a heavy 6 quark and the latter by a c quark with Agcn < < m;,.

The heavy quark symmetry is manifest in the spectrum, in fact it predicts

B* mB D* mD (2.57)

Experimentally = 0.49GeV^, m|, = 0.55GeV^ while the cor-

rection to the prediction of the heavy quark symmetry are of order O.lGeV^. 

Therefore it works as well as one should expect. Moreover the heavy quark sym­

metry is mainly a symmetry between the dynamical parameters that characterise 

hadrons containing heavy quarks of different flavour, in fact they have the same 

wave function and the same QGD corrections to their spectrum^^. A practical

the same way as different isotopes of the same atom have different masses but have 
the same electronic wave functions, the same energy levels and, therefore, the same chemical 
properties.

51



Effective Theories

effect of heavy quark symmetry is that

(D| |B) = = 'Uf, - 'Ug) (2.58)

where ^(w) is called Zspur-kKwe /uMcfzon. ^(0) = 1, because of the heavy quark

symmetry combined with the conservation of the vectorial current

2.2.4 Goldstone Theorem and Chiral Lagrangian

The Goldstone theorem, when applied to the axial current, states that, if one 

computes the Green function

d^z (0| J^''(z)$(0) |0) (2.59)

where 0 is any operator that creates any field configuration which has a non-

vanishing expectation value that breaks the symmetry associated with the charged 

axial current one finds that

lim g''G2(g") 0 (2.60)

and the Green function G"(g^) must have a pole at — 0. In other words there 

must be massless particles associated to this pole, the Goldstone bosons.

It has been seen in chapter 1 that is spontaneously broken; this is because 

the chiral condensate qq acquires a vacuum expectation value. The corresponding 

Goldstone bosons are the pseudo-scalar mesons that can be built with the lightest 

of the quarks: u, d and s. They are the eight particles

TrO KO .^0 77

Since 77%^, and are not exactly zero, these particles are called pseudo- 

Goldstone bosons and their masses squared are expected to be of the order of the 

masses of the constituent quarks.
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It is convenient to arrange these particle in a 3 x 3 mnltiplet according with 

their transformation properties under x

^ 7r°/\/2 + 7;/\/6

M

TT ' \

V
TT

K-

-TrO/^ + Ty/Vd ATO

K" -s/^r, )

(2.61)

In this language a transformation corresponds to Ai —f/Ad while

a transformation corresponds to Ad -4^ Adf/^ (in both cases [/ G

SU{Nf)). The most general effective Lagrangian for this multiplet (2.61) has

the form

■6* = \f> + 2M({ + {!)} + 0(p^ (2.62)

where ^ = exp(^Ad/F)r), while and Ao are phenomenological parameters. 

Eq.(2.62) constitutes one more example of an effective Lagrangian. It is called 

CAzruf Loprongzon [43]. It has a phenomenological origin and its range of validity 

is below the energy scale given by the lightest resonance in the particle spectrum, 

Trip ~ 770MeV. Higher order correction to this Lagrangian can appear in off- 

diagonal matrix elements in M, in terms involving more than two derivatives 

and in the renormalization of the constants. Assuming degenerate light quark 

maases, i.e. = m, a comparison with tree-level predictions of the SM

suggests that

1

M ~ An

v
m 0 0 

0 m 0 

0 0 m.

An
A

(0|gg|0)

(2.63)

(2.64)

(2.65)
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(the masses of the w and d quarks are assumed to be same). Using eq. (2.64) in 

eq. (2.62) one obtains

= 2mAo (2.66)

= (m 4- ma)Ao (2.67)
2

= -(m + 2m^)Ao (2.68)

which prove the Gell-Mann-Oknbo formula of eq. (1.90).

All the parameters of the Chiral Lagrangian can be calculated from first prin­

ciples (i.e. from QCD) by performing lattice simulations. In particular will be 

computed explicitly in chapter 4.

A combination of heavy quark symmetry and chiral symmetry has been used 

in recent years to develop the .ffeoug/ Meson (HM%), describing

the interactions of low-momentum pions with mesons containing a single heavy 

quark^^ [44].

The pseudoscalar and vector mesons, B and B*, are described by a 4 x 4 Dirac

matrix .fif with two spinor indices, one for the heavy quark and one for the light

degrees of freedom. In terms of the effective meson fields

H 1 + ^ - B'ysl ; H (2.69)

where u is the velocity of the meson and B and B* are the annihilation operators 

for particles containing a 6 quark in the initial state. These meson fields are used 

in the effective Lagrangian to describe the heavy mesons. The light mesons are 

treated as an octet of pseudo-Goldstone bosons according to the usual Chiral 

Lagrangian formalism. At low-momentum the strong interactions of B and B* 

mesons with light pseudoscalars are described by the couplings in the effective

^^for reviews see [45, 46].
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Lagrangian; the lowest order interaction is given by [44, 46]:

(2.70)

where

(2.71)

The Roman indices a and b denote light quark flavour and, as usual, repeated 

indices are summed over 1,2,3. The expansion of A in terms of pion fields begins

with a linear term,

An — ——d^M + ...
^ TT

(2.72)

The coupling g in eq. (2.70) can easily be related to the B*Btt coupling defined

as [105, 75]

(B°(p)7r+(g)|g*+(p')) = (^Tr)"" 6(p' - p - g) (2.73)

where is the polarization vector of the B* and the physical states are relativis-

tically normalised

(B(p)|B(p')) = 2p"(27r)=<iW(p-p') (2.74)

The physical coupling is given by the value of the above form factor for an 

on-shell pion

(2.75)
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At tree level in the heavy meson chiral lagrangian, the above matrix element is 

{B»(p)7r+(,)|iJ-+(p')> = -^SM'‘(p'){2'r<5‘'‘>(p'-p-<;) (2.76)
/tt

which therefore yields:

2mg
Pg'Bvr = JTT

(2.77)

As a result, ^ and can be considered as equivalent. The above relation can 

be extended to take into account higher-order terms in the HM% lagrangian [47, 

48, 50]. The effective coupling ^ will be computed explicitly in chapter 4.

2.3 Lattice QCD

At the typical hadronic scale, while electroweak effects can computed in the stan­

dard perturbative way, QCD effects are non-perturbative. Therefore it becomes 

necessary to formulate QCD in such a way to make it possible to perform a 

numerical computation of the Green functions.

This is done by choosing the lattice regularization scheme and re-writing the 

action of QCD in terms of some effective degrees of freedom, as will be briefly 

explained^'^.

2.3.1 Basic degrees of freedom and action

is notThe Aharonov-Bohm experiment revealed that the gauge field 

observable, because it is gauge dependent, but the phase of a particle in a gauge

i4For reviews see [51, 19, 53, 54]. This introduction will not cover the technical aspects of 
implementing lattice simulation on a computer. For a basic review on the subject and some 
C++ code one can refer to the free package mdpqcd described in ref. [98].
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&eld background, moving from a; to i/, is an observable

(2.78)

(T* indicates a path-ordered exponential). For a hnite lattice spacing a, it becomes 

convenient to write the action of QCD in terms of the quark fields (which are 

associated to the lattice sites) and of the phases associated to the shortest paths 

on the lattice

^ ^ + a^/2) (2.79)

f/_^(z) = ^ - o^) - 1 - 2^aA^(z - 0/1/2) (2.80)

(which are associated to the links between two consecutive lattice sites). In QCD 

U are 3x3 complex matrices, called links.

The basic discretized operators which appear in the Lagrangian, are:

• Ordinary derivatives^:

^^i/'(z) = ^ [1/7(3; 4- 0/1) - 1/7(3; - 0/ (2.81)

Covariant derivative:

D^i/7(3;) = ^ [[/^(3;)i/7(3; + o/l) - f/_^(3;)i/7(z - o/l)] (2.82)

It is trivial to check that in the continuum limit it is equivalent to the usual

s^We remark that a different choice could be made as long as in the limit a -4 0 one recovers 
the ordinary derivative.
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covariant derivative of QCD. In fact, up to order a corrections,

Dfj.'tp{x) —— [(1 + igaAn(x) + ...)(1 + adn + ...)Tp{x) 

(1 — igaA^ix^ + — Cbd^ + ..?jip{x)

(2.83)

• Field-strengh tensor:

Gny{x) — [f%i/(a:) + Pp.p{x — ag) 4- f%z,(z — au) +

PfAui^x — dg — ct/y)j — (/r f/) (2.84)

where is called plaquette and is defined as

7^;,(z) = [/;^(z)[/;,(a; + o^)[/_,;(z + + ai/)(7_i,(a; + nP) (2.85)

It can be proved that, expanding in a, one obtains

P,Ax) = 1 + ta^geGl.ix) - °^G%{x)G‘“‘-'(x) + ...
(2.86)

which substitued into eq. (2.84) justihes the dehnition.

For practical purposes, that will be examined below, one is usually interested

in the Euclidean formulation of Lattice QCD. This is achieved by performing the

Wick rotation^^

zo -4 zzo; Zi -4 Zi (2.87)

^®The way how different quantities transform under the Wick rotation is reported in ta-
ble (B.14)
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Under this rotation the exponential term in the action becomes real

gig _ gia-^ Ez ^ __y g-'^E = g-a" Ez
(2.

From now on all the quoted quantities (including q' matrices) will be Euclidean. 

In terms of the links, any Green function of QCD can be written as

(2.89)

where [55]

51“" = /3 E 1 — -Re ixP^^{x)

^ ^(T)(''y'^D^ 4- m)'^(a;) + 0(o)

(2.90)

(2.91)

The variable /? = 6/g'^{a) has been introduced to conform to the standard

notation of Lattice QCD. In the gauge part of the action there are no order u

corrections and the first corrections arise at the order a^. On the other side, in 

the quark part of the Lagrangian, order a corrections play, in general, a very

important role for the following two reasons:

# If one neglects order a corrections and naively uses the lattice covariant 

derivative to implement one obtains a free quark propagator of the

form

^(P)
a

Z'yf' sin(pua) + am
(2.92)

which has 16 zeros in the Brillouin zone in the limit m —> 0, to be confronted
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with the single zero of the continuum propagator

1
(2.93)

This problem is known as doubling. To get rid of this proliferation of zero 

modes Wilson proposed to add to the action a term of order n of the form

^ - 2^(z) + - n^)]

(2.94)

(this is not the only possible solution to the problem but it is the one of 

interest in this thesis). In practical simulations r is fixed to be 1, neverthe­

less it is convenient to show its dependence. Note that eq. (2.94) is a mass 

term therefore it explicitly breaks chiral symmery.

When computing Green functions one is always interested in the limit a -4 0 

and one would like to improve the convergence of Green functions from order 

a to order This can be done by adding to the Action terms of order a 

that compensate for the discretization errors up to the same order [57]. In 

particular one can choose a term of the form

(2.95)
X,IJ.>V

where the constant cg%y must be fixed somehow. This term is usually re­

ferred to as c/ouer term.

Including these 0(a) corrections the quark part of the action can be re-written

as

(2.96)
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where

(2.97)
IJ,>V

and, at tree-level 17

/5
1

2ma -I- 8r Cgw = 1 (2.99)

The action (2.96-2.97) is referred to as 5'MA:olesZamz-lToZAerf nctzon (SW) [56].

The coefficient 12k can be absorbed in the definition of the fermionic fields,

and

Note that the lattice spacing a is not an input parameter but, because of

dimensional transmutation, its value uniquely depends on the value of /). From 

the lattice one measures the spectrum as function of and K in units of l/n and, 

by comparison with the physical spectrum one extracts the value of u and the 

mass of the quark that corresponds to each given value of /(. on the other 

side is uniquely dependent on the scale (i.e. on or, equivalently, on p) and it 

must be determined by fine tuning.

^^The fact that Lattice QCD with the action of eq. (2.97) is 0(a) improved for on-shell
quantities does not simply appear form a Taylor expansion. To show the improvement it is 
necessary to list all dimension 5 operators, use the equations of motion to reduce some of them
and absorb the contribution of the remaining two operators in the coupling constant and mass 
renormalization

(2.98)
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2.3.2 Simulation aspects and quenching

First of all, one can consider Green functions that do not depend on quark fields

and integrate out the quarks

(0|0{„.)|0) latt [df/] [d^] [di/,] O (...[[/]) 

[df/]0 (...[[/]) det

(2.100)

where

f[t/] ,-gp":=[[/]+lndetQ[(7]
(2.101)

In practice one neglects the contribution of In det in the probability f [I/], 

eq. (2.101). This is called the quenched Its only motivation is the

limitation in present computer power. It introduces a systematic error in the 

computations that has to be quantified.

The probability P[U] is real (this is why Lattice computations are performed 

in Euclidean space) and resembles a Boltzman weight factor. Therefore standard 

statistical mechanics techniques can be applied.

Any standard lattice simulation begins with the creation of an ensemble of 

gauge conhgurations {[/'}. It is created through a Markov process [53], i.e. each 

configuration I/' is generated from the preceding one, using a stochastic

algorithm satisfying the condition

(2.102)

where P([/ -4 [/') is the probability of generating the configurations I/' from the 

configuration I/. Such an algorithm is called a Monte CnrZo AtpontAm. Note that
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State 7^ jPT Operator J
scalar 1- 0++ g?'

1- 0++ g/g'
pseudoscalar 1- 0-+ gqSg'

1- 0-+ g/yO-ySg'
vector 1+ 1— gq/'g'

1+ 1— g'y'^q^g'
axial 1- 1++ gq^^q^g^
tensor 1+ 1+- gq/^Yg'
octet 1

2
1-
2

1
2

1 - 
2 ,

decuplet 3
_____ 2_______

3 +
______2________ (g^4^7°'7V^)(g"*')Gvt

Table 2.1: Example of currents used on lattice and their relative quantum num-
bers. g, and g" are dihlerent favours. The superscripts j and /c are color 
labels.

f depends on = 6/g^(o) which is the parameter that hxes the lattice scale. 

The initial configuration can be chosen to be "cold", i.e. when all its links 

are the identity, or “hot”, when each link is a random SU{N) matrix [58, 59].

The computation of any Green function, dehned in eq. (2.100), can be ap­

proximated as an average over the ensemble of gauge conhgurations

(2.103)
Wl

where N is the number of generated configurations.

2.3.3 Correlation functions and fermions

The typical quantities that are measured on the lattice are the two and three- 

point correlation functions between currents and their Fourier transforms at zero
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momentum

C2(4) = / d"x(0|J(0)jt(z)|0>

(^30(4,4)= / d^xd^y(0|J(-!/)0(0)J^(a;)|0)

(2.104)

(2.105)

Since the lattice metric is Euclidean, the asymptotic behaviour of the spatial

Fourier transform of the two point correlation function, in the limit tx —)■ 00, is

given by

(2.106)

where mj is the mass of the lightest state |1 j) created by the current and

Zj = K1jU'(0)|0)| (2.107)

From the measurement of 6*2(4) and its fit to (2.106), it is possible to extract

masses of particles, my. In the same fashion from the asymptotic behaviour of 

the ratio between the three and two-point correlation functions it is possible to 

extract matrix elements [60]

630(4,4 1 <lj|0|U)
62(4)62(4) 2my

(2.108)

The most general current J{x) is expressed in terms of fundamental fermionic

fields 9^(3;) (the quark fields). A list of some interesting currents J is reported 

in table 2.1. In expressions like eq.(2.104) and (2.105) these fields are Wick 

contracted

(2.109)

Despite the fact that fermions are neglected when gauge configurations are cre-
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ated, they are re-introduced at a later stage as particles propagating in the gluonic 

background held. Therefore the two and three point correlation functions can be 

written as appropriate traces of propagators, %(a;, ?/, [[/]), in the backgroud glu­

onic held [/. For example the propagator of a pseudoscalar meson (associated to 

the current J = from T to ^ can be computed as

(0| J(^) Jt(z) |0)

N

I |0)

|tr |0)

^ tr a;, ?/, (2.110)
{[/}

On each gauge conhguration [/, the fermion propagator 5" is computed by

inverting the fermionic matrix

S{x,y, [(/I) = (2.111)

This is the most expensive part of any lattice calculations. In the computation

of the propagator /< and are input parameters. The former is in one to one

correspondence with the fermion mass

1 /I
m,

2n y Kj ^‘cvit
(2.112)

and Kcrif is a parameter depending on The chiral limit corresponds to the limit 

K —^ Kcru, when the quark becames massless. In practice any inversion algorithm 

for eq.(2.111) converges slower and slower as the chiral limit is approached and 

this can never be reached.

There are two standard ways of computing the fermion propagator: exact 

and stochastic. The former is very time expensive therefore it is usual normal 

practice to compute propagators ending in one single point of the lattice. The 

latter is less precise but allows one to compute propagators from each point to
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each point of the lattice in a feasible time.

2.3,4 Lattice discrete symmetries

The lattice formulation of QCD is invariant under the following discrete symme­

tries of the quark propagator [61]

• Parity, P:

(2.113)

Charge conjugation, C:

[P]) = (2.114)

Time reversal, T:

S%{x,yAU]) = [£/’'1)(7V)« (2715)

H symmetry:

(2.116)

P^, P^, P^ are the parity reversed, charge conjugate, time reversed gauge 

conhguration respectively.

These discrete symmetries play a very important role because they put some 

contraint on the Euclidean Green functions. In particular one can consider Green
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function of the form

(2.117)

where the trace is in spin and colour, and S are quark propagators connecting 

an arbitrary couple of points in the ensemble {xi,a:„}. Imposing invariance

under f (parity), one obtains that

(2.118)

where TV is the number of indices that differ from 0. Eq. (2.118) is true

also in the Minkowski space.

Imposing invariance under f CH one obtains that

(2.119)

This tells whether any Green function is real or imaginary.

Eq. (2.119) is not true in Minkowski space. In fact it is replaced by an 

equivalent expression where N counts the total number of indices that

are equal to 5.

As an example one can consider

= / d&e'P": (0| ^(a:, 0)yy^(0, z)f |0)
(2.120)

Since AI = 3, eq. (2.118) tells that it is odd under parity and eq. (2.119) tells 

that it is imaginary. Moreover for p = 0 it must be zero (because it is odd under 

parity).
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2.3.5 Heavy quarks

Lattice simulations can be combined with HQET to simulate the behaviour of a

heavy quark. In the limit where its mass is bigger than l/n the heavy quark (anti­

quark) can be considered static and its propagator (derived for the discretized

version of the HQET Lagrangian) is

[^])
1 + y

1 - Y
a/3

a/3

l u
f/(z)o...Uo(3/-oO) ^(ty-^z)(^x,y (2.121)

It includes the contribution of both a quark (propagating forward in time) and 

of an anti-quark (propagating backward in time).

2.3.6 Determining csw

There are three standard techniques to hx the parameter CgM/

• 1-loop improvement [112]

cgiy = 1 + 1.5954//3 (2.122)

* Tadpole improvement [111] (i.e. resumming the contribution of all tadpole 

graphs to the renormalization of the tree-level cg^^).

1
Mn

(2.123)

where Uo is the gauge average of ^Re trf%^. It can be extracted from 

numerical simulations.

* Non-perturbative improvement [112]. This is the most sophisticated tech- 

nique. The idea behind it is that of determining the improvement coef-
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Hcients for the different operators (including by measuring indepen­

dently on lattice the left and right-hand side of Ward identities and impos­

ing the constraint that they coincide. The table of results for can be 

summarized by the following fitting function (valid only for /) > 5.7)

- 3.648/)^ - 7.254/) + 6.642 
/)3 - 5.2458/)2

(2.124)

Even if different techniques may give different results for csw they are con- 

sistent with each other providing the operators are improved adopting the corre­

sponding procedure. Whichever improvement technique is used, the SW action 

generates Green functions that converge to the continuum limit up to correction of 

the second order in a and order 1 in a (for 1-loop) or exactly (for non-perturbative 

improvement).

2.3.7 Lattice errors

Numerical simulations of Lattice QCD are characterized by a number of statistical 

and systematical errors which will have to be taken into account when quoting 

lattice results. What follows is a list of the most common errors one has to 

consider, possibly reduce and, hopefully, quantify:

• Statistical errors. All Monte Carlo simulations are based on statistical 

sampling therefore they introduce a statistical error that is expected to 

decrease with l/\/]V where N is the number of independent measurements 

(in case of one measurement for gauge configuration, N is the number of 

gauge configurations). Since the gauge conhgurations are created using a 

Markov chain based on small changes to link variables, one may be worried 

about correlations among the different conhgurations. Because of modern 

day computational power it is possible to generate reasonable statistical 

samples and this is no more a major problem.
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• Finite volume. Because of the finite volume, periodic or anti-periodic

boundary conditions are imposed for the held. Therefore every observable

which is computed on the lattice suffers from an unphysical contribution of

mirror states. In any case, these hnite-volume contributions to the Green

functions falls off exponentially with the lattice length and they are usually

negligible for a lattice size T bigger than On the other side the

effects of mirror states are crucial in preventing a direct determination of

scattering phases from lattice [62].

• Quenched approximation. This approximation is the hardest to justify.

Its only reason is the present limitation in computational power. As a 

consolation one can argue that present exploratory unquenched simulations 

suggest that the effects of the quark loops in the mass spectrum are small, 

but the error introduced by quenching in the determination of can be 

as big as 10%-20%.

• Finite lattice spacing, a. Physical results are extracted from lattice in 

the limit of a —> 0. This limit cannot be reached in real lattice simulation 

and in practice one performs simulations with a finite (as small as possible) 

lattice spacing. The discrepancy between the computed Green functions 

and their continuum limit is usually of the order of a (or for improved 

lattice actions). In typical simulations l/n = 1 4- 3GeV.

• Chiral extrapolation. It has been shown that because of the finite volume 

effects, an infrared cut-off is naturally associated with the lattice and u and 

d quarks are too light to be simulated, even by modern day computers.

Therefore one usually performs lattice simulations for values of

much bigger of the physical values (typically of the order of 100 MeV), then

performs an extrapolation of the results to the limit = ruj = 0. This

extrapolation is called the chiral extrapolation. It corresponds to the limit
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K Kcrit For the masses of light particles (the pseudo-Goldstone boson) 

this extrapolation is guided by predictions of the chiral Lagrangian such as

the Gell-Mann-Okubo formula, eq. (1.90)

• Heavy quarks. The c and b quarks are too heavy to propagate on a typical 

lattice, therefore there are two possible approaches. One possibility is to

simulate these quarks with a mass smaller than the physical one and then 

to perform an extrapolation to the physical mass. This approach is similar 

to the chiral extrapolation for the heavy quark. The second possibility is to 

implement the HQET on lattice. This implies that one considers the heavy 

quark as static and, in principle, systematically computes corrections to 

this approximation in the l/rrih expansion. This is the approach that will 

be used in the rest of the thesis when simulating heavy hadrons.

• Matching between lattice and continuum scheme. Experimental 

data are analyzed using some continuum renormalization scheme, usually 

dimensional regularization with the MS prescription. To confront Lattice 

QCD results with phenomenology it is therefore necessary to match the 

matrix elements between the two diEerent schemes. In general

(0| 0^(...) |0)^^ = (0| OX-)

= ((^,,+O(a,))(0|OX...)|0r'

(2.125)

(2.126)

where Zij are called matching coefhcients and have a perturbative origin. 

The matching coefficients are computed in perturbation theory and usually 

they are known only at 1-loop. One explicit example of a matching com­

putation will be given in the next chapter. Since is big at the typical 

lattice energy scale, corrections of higher order in can contribute to an 

error in the matching of as much as 10%. Moreover in the matching proce- 

dure it is common that matrix elements of some continuum operator mix
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with the corresponding matrix elements of new operators that appear on 

lattice, because is, in general, non diagonal. The contribution of these 

operators can be big and must be taken into account.
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Chapter 3

Perturbative Matching Coefficients

This is the most technical chapter of the thesis and it can be skipped in a first 

reading. In section 3.1 the matching coefficients for a general set of 2- and 

4-quark operators (namely qVq, bVq, bVqqVh and bVc^Tq) renormalized in the 

continuum and in the lattice theory will be computed explicitly

(3.1)

(6^9)^'/' (3.2)

{brfqqffbf^'^ (3.3)

= Z,f‘^{^,a){brfqbrfq)'‘"'‘‘ (3.4)

In the continuum, dimensional regularization with modified minimal subtraction, 

MS is used. The superscripts “MS” and “latt” refer to the renormalization scheme 

and //, a~^, //' to the renormalization energy scales. The index A represents both 

color and spin indices that are contracted between the two matrices F and F. b 

will be considered a static quark, as prescribed by the HQET, while q will be 

considered massless. Infrared divergences will be cured by giving an infinitesimal 

mass to the gluon, A. (Any dependence on A cancels in the final results.)
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At 1-loop the matching coefficients Zj,- will be written as

Oi,

47r
a) — 5ij + ( -7ij log (3.5)

where the coeflicients 7^-, and will be computed for each of the different 

operators in the corresponding subsection, see eqs. (3.39)-(3.41), eqs. (3.51)-(3.53) 

and tables 3.2, 3.4.

In section 3.2 the matching coefficients for the same set of operators renor­

malized at different scales, but in the same scheme, will be computed

{brfqqTfbf^'f^

{brfqbrfq)^'>^

= z.

= z. ‘(ti,,i.‘)(bTfqbtfqf

(3.6)

(3.7)

(3.8)

(3.9)

The coefficients z^, in the leading log approximation, will be expressed as

/^ ) — dij +
a{n') \ ^

- 1 (3.10)

i.e. as function of the perturbative coefficient 7^- that were computed before. 

is defined in eq. (2.39) and Nc is the number of colours, i.e. 3 for QCD.

In section 3.3 some examples will be given in detail to clarify the usage of our 

results for some parameters of practical interest in this thesis.

For qTiq and bViq type operators the basis of table 3.1 (left) has been chosen, 

while for bTfqqTfb and bTfqbTfq the basis of table 3.1 (right) is used. The 

constants wi,,, u)2,i and that appear in table 3.1 are defined in the dimensional
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r. ^1,1 ^2,1 ^3,1
I 4 -2 1

-4 2 -1
7° -2 2 1
Y -2 2 -1

7°7^ 2 -2 -1
2 _2 1
1 2 -1

rd(g)rd ^l,i ^2,i ^3,1 ^4,?.
4 3/2 —- ^ -3/2
4 3/2 -4 -3/2
4 3/2 -4 -3/2

.R® .R 4 3/2 -4 -3/2
7''^ ® 7;;-^ -1/2 0 -5 0
7^1/ g) 7,^E 5 0 1/2 0
7'''R ® 7;:'^ 5 0 1/2 0
7'^.R g) 7;^A -1/2 0 -5 0

Table 3.1: Choice of basis of spin matrices, T, (left) and Tj ® f, (right).

regularization scheme in D = 4 — 2e dimensions from the implicit relations

(3.11)

(3.12)

The origin of the constants ^2,1, ^3,: and ^4,1 will be explained later, together 

with the problem of evanescent operators. To keep the results as general as 

possible all the results will be expressed as function of the w's and the fl's.

3.1 Continuum MS vs Lattice renormalization

The idea behind the matching is that physical results must be independent of the 

renormalization scheme that is used in the computation. At a perturbative level 

one writes this statement in mathematical language as

(^MS

^latt

(i',yogAV' + C) + o((,') tree

+ 47r
(%iogAV+d|"") + o(y) tree

(3.13)

(3.14)

Where the terms in square brackets are the 1- 2- ... n-loops perturbative cor- 

rection in the appropriate renormalization scheme, q'tj is called the onoma/ous
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(fzmengzon In the simplest cases is diagonal. From now on we will be

interested in the 1-loop relation between the two renormalization schemes. At 

th^ order

aMS

47r
a..1 + + 0(o!^)
4^

alatt

. 47r
(3.15)

and one, up to order terms, can easily invert the perturbative coefficients and 

can identify

^ij 47r
(%logAV + 4') + 0(a') OMS (3.16)

with

Sij 47r
("yij log -H d|^") + 0(o!^) latt (3.17)

(it does not matter in which scheme ^ is renormalized). Therefore one deduces 

the 1-loop relation

MS latt
i -t-

47r
-%log/^^G^ -f - d latt

(3.18)

What is left to do is to list all of the 1-loop relevant diagrams contributing 

to the renormalization of the set of operators in which we are interested, 

and compute them in each of the two renormalization schemes. The sum of 

the terms proportional to ^logA^ will give a contribution to the anomalous 

dimension matrix 'jij and it will turn out to be the same in the two renormalization 

schemes. If one identifies the two renormalization scales = 0""^ any logarithmic 

dependence on the renormalization scale disappears in the matching.

The computation of Feynman diagrams is performed using the Feynman rules 

which are given in Appendix D, both for the continuum QCD (the rules for
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modified minimal substraction, MS are given in Appendix B) and for lattice 

QCD.

In the lattice case many more diagrams appear, at the same order, than in 

the continuum case and we will distinguish between those diagrams that originate 

from the standard Wilsonian action and those diagrams originated from the SW 

improvement, eq. (2.96): the new quark-gluon interaction derived from the clover 

term, eq. (2.95) will be represented by a grey blob. This vertex is denoted in 

Appendix D by the symbol (p, g). The improvement technique prescribes that 

the addition of the clover term to the Wilsonian Lagrangian must be accompanied 

by a transformation of the quark helds in fermionic operators

9

q

1 :or(.^ -mg

1 ^
1 + "^g)

(3.19)

(3.20)

where D are the usual covariant derivatives. This is necessary to cancel order

a corrections in the numerical evaluation of the expectation values of operators 

involving light quarks. Under this rotation the operator qTq transforms as follows

qVq qVq+ ^arq r-r (3.21)

This new order u contribution can be read in the Feynman language as two 

additional Feynman rules for the rotated operator, coming from and from 

respectively. These two new Feynman vertices are represented by a grey 

star (note that the static quarks are not rotated). The complete set of lattice 

diagrams that will be relevant to the present calculations are reported in

# hg. (3.1): Corrections to massless quark and static quark propagators.

# hg. (3.2): Corrections to gFg vertex.

# hg. (3.3): Corrections to BUg vertex.

77



Perturbative Matching Coefficients

• fig. (3.4): Corrections to 4-quark operators.

All these figures are at the end of the chapter. The diagrams have been labelled

with a progressive number going from 01) to 61) and they will be referred to by 

the corresponding number.

The explicit evaluation of diagram 27) is reported step by step, as an example,

in Appendix D.

It has not been possible to solve symbolically the integrals originated in the

lattice diagrams, therefore they have been expressed in terms of some parameters 

c, e,/, u,h, m,etc. which are also defined in Appendix D. These parameters 

have been integrated numerically using the CERN libraries. Divergences have

been removed from the numerical integration by subtracting a small ball (of 

radius 1) from the integration domain. The intergration on the ball is performed

exactly.

Some of these parameters were already introduced by Eichten and Hill [63],

Flynn et al. [64], Borrelli et al. [65]. In a few cases we found some disagreement 

with the results of the latter, but our results are in agreement with the recent 

paper [121].

3.1.1 Renormalization of the external lines

The quark self energy contributes to the constants through the renormalization

of the external lines. In fact each external quark line is renormalized according 

with

^(p) (3.22)

where the renrmalization constant Zg for QCD, at one loop, is defined as

Za = 1 + |e(p) (3.23)
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and, for a massless quark, Z(p) corresponds to the Feynman diagram

%
4%

Cp (divergence + logA^/r"^ + finite part);) (3.24)

For what follows we are interested in the "log + hnite part" of the 1-loop Z2 

renormalization constant in the following four cases.

# Massless quark in the continuum scheme:

^c.(iogAV- + i: (3.25)

Static quark in the continuum scheme [63]:

a
47r

Cf(-21ogA'/r-') (3.26)

Note that the static-quark propagtor, eq. (D.4), depends only on po there­

fore Z(p) oc po-

Massless quark in the lattice scheme [64, 65]:

A

A

a01) = —^CF(logA^(z^ 4- y)
47r

02)+ 03)+04) =^CF(yO
Itt

(3.27)

(3.28)

Static quark in the lattice scheme [64]:

A
^Po

06)
0:3

471
Cf'(—21ogA^o^ + e) (3.29)
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3.1.2 Matching qVq type operators

To perform this matching we now proceed in evaluating all the 1-loop perturbative

corrections to gFg in the continuum and in the lattice scheme to obtain the 

coefhcients "/ij and of eq. (3.18).

* Vertex correction in the continuum scheme

(wgiW2_i/2 -h 3w^ ;/8) (3.30)

where and depend on the T* spin matrix are are tabulated in 

table 3.1 for our choice of a basis.

Vertex corrections in the lattice scheme (all the relevant diagrams, excluding 

the contribution of the external lines, are reported in hg. (3.2)):

07)

-ui - (wi ^ - 4)u2/12 -h wgiw] g(tTit'')g (3.31)

08) (3.32)

10) = - 4^2/12 + g(rrit'')g (3.33)

11) = ^2 [si + (w^ - 4)52/12 + wi,i53/4] g(tTif )g (3.34)

12) = 13) = ^2 [(wi ^ - 4)54/12 -I- wi,^55/4] g(f Fit'')? (3.35)

14) — ^2 [(w^ i — 4)53/12 4- Wi_i57/4] g(t'^Fit'')g (3.36)

15) = 17) = (3.37)

16) = 18) = ^(_Z)g(F,m9 (3.38)
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Summing all the contributions (and including the renormalization factors 

for each of the two external light quarks) one gets

MS

d:latt
ij

4 + Wi_:W2,i/2 + 3w^/8)

^(/ + /^)-Ui + 2si-m-Z+

+ (w^ — 4)(2s2 + 2^4 + 2sq — V2 — vl — w|)/12 

+LOl^i{w + wl + Wg + S3/2 + S5/2 + ■S7/2)]

(3.39)

(3.40)

1.0^4 j — 2.4w4 i + 3.1 (3.41)

We observe that for the vector and axial currents, Fj = 7^, 7^7® the anomalous 

dimension is exactly zero (because in these cases ^ = 4, see table 3.1). In fact 

these two currents are conserved. Moreover we observe that the matching factors 

are diagonal, i.e. different operators do not mix. This is not true in general for 

a different basis of Fi matrices. Consider for example

9^9 = % [9^9 - 97^9] (3.42)

the two operators on the right have multiplicative matching factors, but they are 

different, therefore qLq mixes with qRq.

3.1.3 Matching bVq type operators

Following the same procedure as in the last subsection we will proceed evaluating 

all the 1-loop perturbative corrections to the operator bF.g in the continuum and 

in the lattice scheme.

* Vertex correction in the continuum scheme

^(-logA^/^ ^-H)6(tTit'')g
47r

(3.43)
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Vertex corrections in the lattice scheme

19)

20) 

21) 

22)

23)

24)

25)

log + di)6(^Tif'')g + ^(d2)6(^''yriy^'')g (3.44)
47r 47r

(3.45)

^(n)5(rnf )g + ^(_(f/)6(r/ryn9 (3.46)
47r 47r
^(-g)5(f''y°n''y°('')g (3.47)

^(-m)5(riff)g (3.48)

^(-Z)6(nrr)g (3.49)
47r
2(/i)K^VrY(')9 (3.50)

Our results can be summarized in the three parameters which appear in eq. (3.18):

= JijCF(-3/2)

<*r

df

<^uC'F(5/4)
-1

(3.51)

(3.52)

(e + / + / ) + di + n — m — Z4-
12
^3,1 ((^2 — 2d^ — q — h)

6.89^3,i + 9.37 (3.53)

where W3,i is dehned in eq. (3.12) and tabulated in table 3.1 for our basis.

3.1.4 Matching bTqqtb type operators

The matching of 4-quark type operators is more diSicult because there are two 

different fermion lines in each Feynman diagram.

We distinguish five categories of loop corrections to the general operator

o, = brf 6 (3.54)

82



Perturbative Matching Coefficients

They are:

I. Corrections to the external lines, 01)-06), which have been computed in

subsection 3.1.1.

II. Vertex corrections to each of the quark bilinears, 19)-25), which have been

computed in subsection 3.1.3.

III. Correction in which the gluon couples to both static-quark propagators,

26^

IV. Corrections in which the gluon couples to one static-quark propagator,

27),28),30),31),47)-50),55),56).

V. Corrections in which the gluon does not couple to static-quarks, 29) ,32)- 

46),51)-54),57)-61).

First of all we proceed by computing the missing diagrams in the continuum 

scheme.

III. Corrections in which the gluon couples to both static quarks

m ------ =^(21ogA^//^)6(t"ri)gg(fit'')6 (3.55)
47r

IV. Corrections in which the gluon couples to one static-quark propagator

a' (log A"//,-" - l)5(tT,)#(tT^)6 (3.56)
47r

and

^(logA"//-" - i)5(nr)#(nt'')6 (3.57)
47r
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V. Corrections in which the gluon does not couple to static quarks

Si^ & 47r

477

log A"/,-" + +

[(-1/4) log^ + ^2,i] X

(3.58)

Apparently the choice of a regularization scheme, such as NDR (Naive Dimen- 

sional Regularization), HV ('t Hooft-Veltman) or DRed (Dimensional Reduction), 

together with a subtraction prescription (in our case MS) makes the continuum 

operators completely defined. A more careful analysis demonstrates, however, 

that this is not the case if more than one fermion line is present in the Feynman 

diagrams. In this case one has to specify how to deal with euonescenf operators 

(i.e. operators that do not exist in four dimensions) that appear in D = 4 — 2e 

dimensions. The problem arises because the two rules

(3.59)

and

} = 0 (3.60)

are not compatible in arbitrary dimensions. Therefore there is not a unique 

definition of Each regularization scheme provides a different definition for 

but none of them provides a unique definition of tensor products of gamma 

matrices containing This ambiguity becomes manifest if one tries to compute

the following evanescent operator in D = 4 — 2g dimensions

yyyZ, g, /y^-y^'y^T - IGy'^T (g) y^Z, (3.61)
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which vanishes linearly in e. When an operator of this kind is produced in a

divergent diagram (proportional to l/s), it gives rise to a finite contribution to 

the diagram, even when the limit D 4 is taken.

One way of removing any ambiguity is choosing a basis of Pi (gi F, in D di- 

rnensions on which to project every possible gamma structure. Another possible 

choice is hxing the order s contribution of each evanescent operator.

Our renormalization prescription for evanescent operators in D dimension is 

completely specified by order s terms in

y yy (gi = (lo - 6E)y 0 T;, + (6 + 2s)yy (g (3.62)

together with the usual prescriptions of the HV scheme^. Our choice coincides 

with that of Flynn ef uf. for AB = 2 operators. The coefficients ^3,i

and of table 3.1 (on which the matching coefficients depend) depend on this 

choice.

The lattice counterpart of the matching does not suffer from this ambiguity 

and it is uniquely defined at each stage.

We will proceed by listing the contribution of all of the lattice corrections.

III. Correction in which the gluon couples to both static quarks

a.26) = ^(21ogA"u")6(fn)gg(ry)6 (3.63)

^7® anticommutes with for ;U = 0,1,2,3 and commutes with the other y'' matrices; the 
gamma structure that comes form original operator, not from the perturbative correction, is 
not extended to D dimensions.
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IV. Corrections in which the gluon couples to one static-quark propagator

27) = ^(log A"a" - di)5(tT^)#(tT,)6 +
47r

(3.64)

28) = ^(logA^n^ - di)5(rif )gg(nt'')6 4-
47r
|^(<i2)4(r,7"r)TO-(f.7“(“)6 (3.65)

30) = ^(-d')4(iVr.)99(t“7“fi)!> (3.66)

31) = ^(-/)4(r.7“r),9(f.7»f)4 (3.67)

47) = ^(-n,)4(ri(“)m(f.t“)6 +

^(-<i')4(ri7”t“)TO(f.7"«“)4 (3.68)

48) = ^(-9)4(r.7"t“)TO(f.7»i“)4 (3.69)

49) = ^(-n)6(S“r.)gg{i“f.)6 +

^(-d')Ki“7"r.)gg(i‘‘7"ft)4 (3.70)

50) = ^(-g)4(i‘‘7«r.)TO(t‘‘7"f.)4 (3.71)

V. Corrections in which the gluon does not couple to static quarks

a.29) = ^(-logAV-Ui)6(nr)gg(rr^)6 +
47r
OLq

47r
((-1/4) log - U2/12)6(na'"'r)#(rcr''''n)6 +

(3.72)

32) = 33) = ^(-u(/12)5(r,a'"'r)#(f(T''''n)6 +
47r

^(K.;)6(r.7'‘t“)99(t‘‘7'‘f.)4 (3.73)

34) = |i(-t,'/12)6(r.CT'“'(“)99(tV''‘fi)6 + 

^(aj')Kri7'‘«“)g9(«“7'‘f.)6 (3.74)
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35)
a.

36)

38)

43)

39) = ^(gi)6(nf'')#(fn)6 +

Ati
a. (s3/4)5(nyr)gg(ryn)6
47r
37) = 40) = 41)
a.
47r

47r
(g5/4)5(nyr)#(fyn)6

a.

44) z.

46) ==

51) ==

52) ==

55) ==

56) :=

57) =

58) =

61) =

42) = ;^(S6/I2)6(na^"r)#(t''cr''^n)6 +
47r

^(g7/4)5(nyr)gg(fyn)6

^(^4)5(nf)gg((T,)6 +

^(4/12)g(na/"'^'')6g(r(T''''n)6 +

^(t6/4)5(nyr)#(fyn)6

45) = ^(^7/12)6(n(T^''r)#(ra"^n)6 +

^((8/4)6(nyr)gg(rfn)6

^(f9/12)6(na/"'f'')#(ra''^n)6 +
47r
^(^io/4)5(nyr)#(^''yn)6

53) = ^(-m/4)6(nyr)g9(r?''n)6
47r

54) = ^(-//4)5(nyf )gg(fyn)6 

2(/,)5(fyn)gg(r7°n)6 

^(/z)6(nyr)#(n/r)6

59) - ^(^2/4)5(nyr)gg(ryn)6

60) = ^(^3/4)6(nf f )gg(ryn)6
471

^((i/4)6{r.7'‘«“)?9-(i“7'‘f.)6
47r

(3.75)

(3.76)

(3.77)

(3.78)

(3.79)

(3.80)

(3.81)

(3.82)

(3.83)

(3.84)

(3.85)

(3.86)

(3.87)

(3.88)

Our results for the coefhcients and are presented in table 3.2. Note that 

the index j does not span the basis of table 3.1 but it spans the set of operators
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j (categ.) 4' dUU = 0)

1 (I,II) 1
2 6.36

2 (II) 3
2 1 6.19 5(r

3(11) 0 0 -6.89
4 (III) 2 0 -4.53
5 (IV) 1 ““1 -6.19 5(r^t'')g g(rdt«)6 + 6(rr4)g g(rf 4)6

6 (IV) 0 0 -6.89 /f")? 9(f 4/r )6 + 6(r/r4)g g(ry r4)6

7(V) -1 5.12
8(V) 1

4 1^2,1 1.05

9 (V) 0 0 -2.43 6(r4yt'')gg(t''yf4)6

Table 3.2: Values of the contributions to jij and dij for AB = 0 4-quark operators.

Oj of table 3.2, which depend on O,. This notation is particularly convenient

because it applies to any operator, whatever the spin and color structure are.

The symbolic expression for the coefficients -i- ^ is given in

table 3.3, where the components proportional to the dj^ would be the results if 

the Wilson formulation of the quark action had been used, and those proportional 

to d^"^ are the additional contributions which result from the use of the SW 

improved action.

3,1.5 Matching bViqbtiq type operators

There are many parallels between the calculations of matrix elements of specta- 

tor effects in inclusive decays and that of the matrix elements of the AB = 2 

operators which contribute, for example, to the important process of mix-

ing. Indeed, we have recomputed the matrix elements of the AB = 2 operators 

and compared the results to those in ref. [67] as a check on our procedures and 

programs. The calculation of the matching factors are also similar in the two
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Wilson contribution SW contribution
d};^ = / + e = 17.89 

== di = 5.46 
d^ = d2 = —7.22 
dY = —c = —4.53 
d^ = —di = —5.46 
dY = dg = —7.22 
d!^ — —= 4.85 
d^ = -U2/I2 = 0.17 
d^ = to = —1.21

dSW ^ + m) = -11.53
d^'^ = n = 0.73
df ^ — h — 2d/ — q = 0.33
dr=o
dgM: = = -0.73
d^^ = = 0.33
d^M/ = 2si +14 = 0.27
dg^ — (—0^ + s — 2si — ^4 T tg)/12 = 0.87 
dg^ A (—2/ — 2?Ti + s + t^)/4 = —1.22

Table 3.3: Values of the coefhcients aud Their symbolic expressions are
given in terms of the variables defined in Appendix D.

cases, and we have exploited this fact as a check on our perturbative calculation. 

The difference between the matching of AB = 0 operators and

AB = 2 operators (bViqbriq) is in the direction of one of the two fermionic lines

AB = 0 AB

Therefore the evaluation of the various contributions to the d^/s for AB = 2 

operators parallels that of the operator for spectator effects in inclusive decays. 

In particular each of the lattice Feynman diagrams that has been computed in the 

last subsection can easily be mapped in the corresponding diagram for AB = 2 

operator. The numerical part of these diagram can be even or odd under this map, 

depending on the structure of the Feynman integrand. The explicit computation 

shows that only corrections that fall in the categories j = 4, 5, 7, 8 are odd, while 

the others are even.

In the case of continuum diagrams it was not possible to find an exact trans-
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j (categ.) Tv d\f 01^" (AB = 2)

1 (I,II) -1 1
2 6.36 CFbTfqbVtq

2(11) 3
2 1 6.19 B(rr4t'')gBr4g + Br4gB(t"r4t«)^

3 (II) 0 0 -6.89 B(t''q'°r^q'°t")g Bf -p BEdoi B(t''q'°r4q/°t'')g

4 (III) -2 -0 4.53 h(t‘Tt)qh{eVt)q
6 (IV) -1 1 6.19 B(r4t«)gB(tT4)g + B(rr4)gB(r^t'')g

6 (IV) 0 0 -6.89 B(r4q'0t'^)gB(t='q0f^)g + B(f'''qOr<^)gB(q^cf<^r)g

7(V) 1 ^3,i -5.12 B(r4r)gB(r4r)g

8(V) 1
4 -1.05

9 (V) 0 0 -2.43 B(r4q,;^r)9B(r4yr)g

Table 3.4: Values of the contributions to and dij for AB = 2 4-quark operators.

formation, therefore they have been recomputed and expressed in terms of the 

parameters and ^ of table 3.1 (right).

The results of our analysis are reported in table 3.4.

In considering the crossing relations between inclusive decays and mixing, 

we note that in the latter process, one of the 6 fields destroys a quark (so that 

= B) and the other creates an antiquark (so that Bq'" = —B).

3.2 Matching different scales

We will here consider a different problem: the computation of the matching 

coefficients between operators regularized in the same theory but renormalized at

different scales. This can be done by imposing a Renormalization Group Equation 

(RGB) for the amplitudes of each of the operators 0% between an initial state |2)

and a final state |/). Introducing the definition

(3.89)
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the form of the RGB at one loop is

^dfj, ^^ISn'^dg (3.90)

where -y is the one loop anomalous dimension matrix (of which 'Yy are elements) 

for the operators O, renormalized in the continuum at the scale /.(. /)o is of 

eq. (2.39). For an asymptotically free theory one can neglect the contributions 

of higher order terms and the solution of eq. (3.90) is

(^i(At,g) exp JL
Po

dp (3.91)

where and p = p(^) are constant values. Integrating it explicitly one obtains

(3.92)

where Gj are constant values.

Going back to the dehnition, eq. (3.89), one can rewrite eq. (3.92) for the 

renormalized operators

a(//)y
MS,/ (3.93)

In the simplest cases, since the anomalous dimension matrix is diagonal, one 

obtains

' c,(g)
a(X) \ ^^0

K(/^) /

(3.94)

(3.95)

For bFippfib and bFiP^fip type operators it is necessary to reduce the op­

erators Oj of tables (3.2-3.4) to the same basis of the original operators before
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computing the exponential. This computation is straightforward but tedious and

depends on the particular basis in which one is interested in. Therefore we will 

later present the result only for those operators which are needed in the rest of 

the thesis.

Alternatively one can make use of the relation

^ g6ioga^ - 1 + Moga" = 1 + 6(n" - 1) (3.96)

which is true for small values of — 1 and can simplify eq. (3.93). One obtains

Zij (P', P' )
/

7/2/)o'

ĉ

HL
a!(y)\ 
«(At) /

(3.97)

This expression is known as the leading log approximation and it is appropriate 

even when the two indices % and ^ span different bases. Therefore eq. (3.97) is 

immediately applicable to the results of tab. 3.2 and 3.4.

3.3 Examples of interest

3.3,1 Computation of

By the symbol we refer (as in standard literature) to the matching coefhcient 

for the axial current = 97^7^9 between continuum and lattice schemes

(3.98)

Therefore we look in subsection 3.1.2 for the coefhcients 7^^, and ,i.e. 

eqs.(3.39-3.41), and evaluate them for the values of the parameters w correspond-
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ing to From table 3.1(left) we read = 2 and W2,i = —2. Hence

'Jij ~ 0 (3.99)

# = (3.100)

(i'“‘ = 5,jCF{2.3) (3.101)

Therefore using eq. (3.18) we get

ZT'= l + ^Cf{-2.1) (3.102)

We observed that is a conserved current (apart from the anomaly) therefore

the associated Ward identity implies % = 0, in agreement with our finding.

3.3.2 Computation of

By the symbol we refer to the matching coefficient for zero component of

the axial current (which corresponds to an interpolating operator

that creates a static B meson) between continuum and lattice schemes

(3.103)

Therefore we look in subsection 3.1.3 for the coefhcients and ,i.e.

eqs.(3.51-3.53), and evaluate them for the values of the parameters cu correspond-

ing to r:='y°q'^. From table 3.1 (left) we read = — 1. Hence

3/2) (3.104)

dp = (5/4) (3.105)

dg" = d,,0^(19.44) (3.106)
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Therefore using eq. (3.18) we get

a..= 1 + f^CF(3/21ogA^a^ + 5/4 - 21.6)
47r

(3.107)

3.3,3 Computation of Zij for B — B Mixing

We are particularly interested in the operator whose matrix elements contains 

the non-perturbative QCD effects for mixing:

1̂  63''ypZ,g2] (3.108)

The indices 1,2,3 and 4 are hctitious quantum numbers used to track the two 

possible inequivalent Wick contractions of the helds when computing matrix ele­

ments. In this caae the different operators Oj of table 3.4 reduce to 3 independent

ones:

O lattR (3.109)

— biLq2 b'iRqi + b\Rq2 b^Lq^ + -bi^^Lq2 b^^pRq^ + -61 ^^77^2 bz'ypLq^

— biLqi 6377% — 6177% 63T% — -6i7^T% 637^77% — -617^77% bz'ypLq2

(3.110)
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as well as itself. In fact when one computes perturbative corrections to 

the operators Oj of table 3.4 can be simplified using Fierz identities:

O3

O5

06

O9

Oa = 2 ( 1 + 1 I Ot

1

+ 1 I

N
£
N
AT- 1

2Ar Or

1 O
1
N

07 = 08 =

/N- 1

N

7V-1
2N

Of

2Ar
OR

(3.111)

(3.112)

(3.113)

(3.114)

(3.115)

(3.116)

(3.117)

Adding the different contributions with the appropriate coefhcients dij we get

O MS a. a. a.. - (1 + ^^Za)Or + gDfvOr + latt (3.118)

where

D, -22.4, DN -13.8 and DR -3.2 . (3.119)

The results for and Dff in eq. (3.119) agree with those in the literature [66], 

whereas that for does not (a similar conclusion was reached independently

by Gimenez [121]). In ref. [66] the quoted result is Dr = —5.4

^We believe that the reason is that in eq. (B.16) of ref. [65] there should be a correction:

(...) 4-
4

(w -h I a' 4
16D 3 ' 16D 3

eq. (B.26) should be replaced by

latt

Di 1 [s + 4w^ - 2(1 + m)]

(3.120)

(3.121)
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i = 1 2 = 2 z = 3 2 = 4 ^latt

; = 1 -21.64 - 2.06 0.54 bj^Lq qj^Lb
j = 2 - -21.64 2.16 2.40 bLq qRb
J = 3 9.29 2.43 -10.80 2.83 b'y'^Lt^'q q'y^^Lt'^b
; = 4 9.72 10.79 11.34 -9.05 bLt°^q qRt°'b
; = 5 -18.37 - -3.06 -
j = 6 36.75 18.37 6.12 3.06
j = 7 -13.78 - 6.89 - b'-f^Rt°'q q-yi^Lt^b
; = 8 27.56 13.78 -13.78 -6.89 bLR q qLt°-b

Table 3.5: CoefRcients for the four operators of eqs. (3.123)-(3.126). 

3.3.4 Computation of Zij for B Decay

In the computation of inclusive decay times, in chapter 5, we will need the match- 

ing coefficients for the four operators

O

O:

o.

O

,MS = bj^Lqqj^Lb (3.123)

— bLq qLRb (3.124)

,MS = b^^LRq q^^LRb (3.125)

(3.126)

For each of them we pick up the coe&cients from table 3.2 and we project the 

operators Oj on a convenient basis. In the basis of table 3.5 we can reexpress our

and that in table 3

DI, = —0.38 for r 1 . (3.122)

There errors are carried forward into successive papers [66], [67] and [68]. Moreover in the same 
paper, in the definition of (eq. (B.17)), the term A2 at the denominator should be replaced 
by A; (the correct expression is reported in Appendix D).
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results in the formula

(3.127)

where the Dij coefficients are also reported in table 3.5.

3.3.5 Computation of Zij for B Decay

In the computation of inclusive decay times, in chapter 5, we will also need the 

matching coefficients for the two 4-quark operators

= byZ/ggq'uZ/b (3.128)

(3.129)

In this basis one can rearrange the coefficients 'yij of table (3.2) and, for three 

colours, one finds

7
8 6 

-4/3 1
(3.130)

Therefore using the leading log approximation, eq. (3.97), one gets

^ I I 8/9 -2/3
.G'W/ \ -4/27 1/9

(3.131)

which is the same result quoted by Neubert and Sachrajda in ref. [91].
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01)'

04)"

02)'

05)'

03)"

06)'

Figure 3.1: Lattice Feynman graphs contributing to 1-loop corrections to light 
and heavy quark propagators.

07) 08) 09)

10) 11) 12)

13) 14) 15)

16) 17) 18)

3.2: Lattice Feynman 
erators.

graphs contributing to 1-loop corrections

____________________r-i________ ^_________________________________________________________________

19) w 20) 21)

22) 23) 24)

25)

Figure 3.3: Lattice Feynman graphs contributing to 1-loop corrections to bViq 
type operators.
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53)

27)

30)

28)

31)

34)

46)

55)

58)

61)

-CPtZL-O

Figure 3.4: Lattice Feynman graphs contributing to 1-loop corrections to briqqTib 
and bTiqbTiq type operators.
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Chapter 4

The gB*BTT Effective Coupling

chapter M on (Ae paper;

G. De Divitiis, L. Del Debbio, M. Di Pierro, J. Flynn, C. Michael and J. Peisa

[UKQCD Collaboration], “Towards a lattice determination of the gB-Bn con- 

pling", JHEP 9810 (1998) 010; hep-lat/9807032

4.1 Introduction

We showed in chapter 2 that the form factor that appears in eq. (2.73)

(B°(p)7r+(g)|B*+(p')) = -pB.B;r(9^)g;if;''(p') (27r)'^ 6(p' - p - g) (4.1)

is related, for an on-shell pion, to the coupling constant p that appears in the

Heavy Meson Chiral Lagrangian, eq. (2.70),

 A (4.2)

where is defined as

= lim^ pB'B4r(9^) (4.3)
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Moreover starting from eq. (4.1) and performing an LSZ reduction of the pion 

held, we hnd that the coupling is related to the form factor at zero

momentum-transfer of the axial current between hadronic states. Such a relation 

is the analog, in the Bvr system, of the Goldberger-Treiman relation, relating the 

nucleon electromagnetic form factor to the nucleon-nucleon-pion coupling, An 

important consequence of the Goldberger-Treiman relation, for our purposes, is 

that it allows a numerical evaluation of the gg. coupling, as the form factors 

of the axial current can be evaluated by a lattice simulation. The details of the 

pion reduction are presented in Section 4.1.1.

The interest of such a computation is two-fold. Prom a theoretical point-of- 

view, it is interesting per ae to be able to hx, from lattice QCD, the coupling 

appearing in the heavy meson chiral lagrangian. In addition, it is important to 

stress that this determination also has phenomenological motivations. Assuming 

vector meson dominance (VMD) in the B > vr/z/ decay, the coupling pg'gT hxes 

the normalisation of the form factors used to parametrise the matrix element of 

the weak vector current, between hadronic states. Dehning the form

factors by

(7r+(p')|yiB(p)) mg - m2

(4.4)

where o' = p — p' is the transferred momentum, the contribution from the B* 

channel is easily evaluated

/i(9' 1
2/b. 1 -

(4.5)

The normalisation of the form factor therefore depends on the B*B7r coupling
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and the decay constant of the vector meson, dehned as

ml
(Oiy'lBXp)) (4,6)

Heavy quark symmetry and chiral symmetry justify this pole form for /i when

is close to = (mg - m,r)^ [44, 47, 48, 50, 69, 70]. For far from 

the pole form may be taken as a phenomenological ansatz. However, we note 

that the functional dependence of the form factor in eq. (4.5) cannot be simulta- 

neously consistent with heavy quark symmetry at large which demands that 

A(9max) the light-cone sum rule scaling relation at = 0, which
states yi(Q'^=0) ^ m^^^^ [71]^. Nonetheless, by fitting lattice results, which are 

available in the high q'^ region where the pole form is justified, we can determine 

the parameters in eq. (4.5).

It is interesting to remark that the interplay of the effective Lagrangian ap­

proach and lattice simulations provides another determination of the form factors 

for the heavy-to-light B decays and therefore sheds further light on the theoretical 

determination of the non-perturbative effects mentioned at the beginning. This 

result can be compared with direct computations of the same quantities obtained 

by fitting lattice data [73], using unitarity bounds [74] and sum rules [75, 76].

In the work described here, the matrix element of the light quark axial current 

between the heavy mesons is computed in a quenched lattice simulation of QCD 

in the static heavy quark limit, using stochastic methods to compute the desired 

light quark propagators, as described in Section 4.2. The discussion of systematic 

errors is an important issue in any lattice calculation and plays a crucial part 

in estimating the error on the final result. In this respect, it is important to 

stress here that we are presenting an exploratory study. Our main concern is 

therefore to test the possibility of extracting the coupling defined above, rather

^Light-cone sum rules have also been applied at large and reproduce the scaling 
behaviour of /i as demanded by heavy quark symmetry [72]
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than presenting its best lattice determination. Such a task would require a more 

extensive simulation and is left for further studies.

Renormalisation constants are needed in order to connect lattice results with 

continuum physical observables. Those relevant for the action and the quantities 

considered in this paper are summarised in section 4.2.1.

The best estimate we obtain for g is

9
.u

2mg
9B-B-K — 0.42(4)(8) (4.7)

The phenomenological implications of this result are discussed in section 4.3.

The value of g enters many phenomenological quantities of interest calcu­

lated in heavy meson chiral perturbation theory, including the form factors for 

semileptonic 5 —> tt decays mentioned here, as well as 5* ^ tt decays and other 

quantities such as ratios of heavy meson leptonic decay constants, heavy meson 

mass splittings and radiative decays. Even the relatively crude estimate obtained 

here should be interesting for heavy meson phenomenology, but we believe future 

more precise lattice computations would be valuable.

4.1.1 Pion reduction

An LSZ reduction of the pion in the definition of eq. (4.1), yields

{B°{p)'K^{q)\B*^{p + q)) = i{ml-q^) f e'‘^'^{B{p)\7r{x)\B*{p + q)) (4.8)
J X

Using the PCAC relation

7r(a;) d'"A^{x) (4.9)
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where is, as usual, the QCD axial current, eq. (4.8) becomes

1 th ^ r ~
+ = — / 6"':'(B(p)|A^(a:)|B*(p + 9)>

A
(4.10)

The matrix element of the axial current is parametrised in terms of three form 

factors

(B"{p)i.4,(0)jB-+(p + 9)> = + (?',) (2p+

+ (’1 ■ g) liiFsiq^) (4.11)

yielding for the B*Btt coupling

1 - 0'^ 
A m2

[0(1^) + {m|. - rnl)

(4.12)

In the static limit in which our simulation is performed, the B and B* mesons

are degenerate, so that the form factor fg can be discarded.

Analytical continuation of eq. (4.12) towards the soft-pion limit (g^ Q),

leads to

1
^g'B7r(0) — —-^fl(O) (4.13)

It is commonly assumed, when deriving the Goldberger-Treiman relation, that 

PB'B, Is a smooth function of g^, and, therefore, that the physical coupling can 

be approximated by

— ^B*BT(m^) % gg'B7r(0) (4.14)

The above equation explicitly shows that, in the soft-pion limit, the
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B*

71

B B= B

Figure 4.1: Tree-level diagrams needed to compute the matrix element of the axial 
current in HM^. The dot (#) represents the ^-vertex in the HM% lagrangian; the 
squares are insertions of the axial current in eq. (4.16).

coupling is related to the form factor of the axial current between B and B* 

states. If one were working in the chiral limit from the very beginning, the same 

Goldberger-Treiman relation, eq. (4.13), would be obtained from the conservation 

of the axial current.

The relation between ^5*5^ &tid g mentioned earlier can be rederived by com­

paring the matrix element of the Noether current associated to chiral symmetry 

both in HM% and QCD. In the chiral limit, the Noether currents associated with 

chiral symmetry, in QCD and in IIM%, are respectively

■^ScD.p = 5“t^75<7‘ (4.15)

and

- 2g + B“ «B; ') + (4.16)

where the ellipsis denotes terms with more than one pion or terms containing 

both heavy-mesons and pions.

The form factors of the axial current in QCD are related to the coupling of the 

heavy meson chiral lagrangian by matching the two theories at tree level. The 

diagrams needed at tree level to evaluate the matrix element in eq. (4.11) for the
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HM% current are depicted in fig. 4.1. A straightforward computation leads to

-2p mg
2g

which, together with the Golberger-Treiman relation, reproduces eq. (2.77). One 

may also work away from the chiral and heavy quark limits and include corrections 

for finite mass pions and heavy quarks in this result.

The determination of g is therefore reduced to the computation of the matrix 

element of the light-light axial vector current between hadronic states. Such an 

evaluation can be performed using three-point correlation functions on the lattice. 

The details of the calculation are reported in the next section.

4.2 Results

4.2.1 Renormalisation constants

Quantities that will be evaluated on the lattice are connected to their continuum 

counterparts by a finite renormalisation. In order to extract physical information, 

the matrix element of a bilinear quark operator defined on the lattice, has

to be multiplied by the corresponding renormalisation constant

latt,a (4.17)

which in general depends on the renormalisation scale /i and the details of the

lattice discretization (a single continuum operator may also match onto a set of 

lattice operators). For partially conserved currents, the // dependence disappears 

in the above definition, the associated anomalous dimension being equal to zero.

This is the case for the QCD light-light axial current considered here. It is also 

the case for the heavy-light current in full QCD, but not for the static-light
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current onto which it matches in the effective theory: hence the renormalisation 

constant in eq. (4.25) below, which converts the lattice matrix element to

the physical includes the e&ct of running between different scales in the

effective theory.

In our simulation, we use the standard gluon action and the tadpole-improved

Sheikholeslami-Wohlert [111, 56] fermion action for the light quarks. Our value 

of ^ = 5.7 implies = l.lOGeV and = 1.57.

The matrix element of the light-light axial current between an initial state % 

and a final state / in the continuum can be written as^

{/f A, .MS (/I A, \i] !att 1-loop ^0
1—loopU

(4.18)
0

The factor t/o, & measure of the average link variable, can be interpreted as a non- 

perturbative rescaling of the quark fields in the tadpole improvement prescription. 

For our lattice % = 0.86081.

The perturbative part reads

y l-IOOp 1 + 4tc Ca

u,1-loop
0 1 + ^A

1 + ^((^4 -
(4.19)

where A — —for the plaquette definition used for uq and (a — —13.8 [112, 113].

We note here that the removal of tree-level 0(a) discretisation errors is achieved 

by combining the Sheikholeslami-Wohlert action for = 1 with improved oper­

ators, found by redefining or "rotating" the quark helds [114]. In our simulation, 

the rotation has not been applied to the quarks, so the perturbative coefhcient 

above is calculated using the improved action only. Moreover, in perturbation 

theory, cg%y = 1 -I- 0(0:), so we quote above calculated for = 1, without 

rotated light quark fields. In [115] the light fermion bilinear operator renormal-

^Note that is computed similarly to of eq. (3.102) but the former does not
include contributions from the rotation of the operator, while the latter does. In this case the 
former is used for consistency with the tadpole improved action.
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isations are given as functions of csw and an arbitrary amount of field rotation:

using our actual value of = 1.57, with no field rotation, in those results 

would increase by 5%.

The mean-field improved perturbative expansion is performed in terms of a 

boosted coupling constant, 6, which in our case is chosen as 6 = ao/^o) where 

do is the bare lattice coupling constant. We use 6 for a in eq. (4.19). For our 

lattice, with ,8 = 5.7 and % = 0.86081 from the average plaquette, this leads to

Ztadpole z1—loop ^0

u 1-loop
0

0.806. (4.20)

In the same way it is necessary to match the renormalized current that we 

use to create a B (or equivalently a B*) meson

(0| IB)^" = Zr^'" (0| |B),MS V latt (4.21)

Using the results of chapter 3, we obtain

^at.c ^ ^ = 0.75
47r

(4.22)

As an alternative method, we also computed using a more sophisticated 

technique proposed by Lepage and Mackenzie [111]. We performed the match­

ing at a different scale, g*, which is determined from the expectation value of 

In(gG)^ in the one-loop lattice perturbation theory integrals for the corrections 

to the renormalisation constant, including the perturbative tadpole improvement 

corrections for the chosen definition of %. For the improved, cgw = 1, action 

and plaquette definition of Gimenez and Reyes [121] quote = 2.29. We 

used this value. We will also adopt a plaquette definition of the lattice coupling
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constant according to (for zero flavours)

-In trf%^
47r

AX3.41/a)(l - 1.19a, (4.23)

Once a, is determined, we can use the equation for the running of a,, at two 

loops,

0(.(9)
27r

^0 ln(g/A) + ^ In (2 ln(g/A))
(4.24)

to determine «,($*). In the quenched theory, Pq — 11 and Pi = 102. We find

nA = 0.294 and a,(g*) = 0.216.

Since q* = 2.52GeV (extracted from ref. [121] using our value for a~p is 

between the charm and b quark thresholds we perform the continuum running 

with four active flavours. From the Particle Data Group (PDG) [122], we take
— 237l24MeV using two-loop running, and find Ap^^^ using continuity 

of the strong coupling at the b quark threshold. This threshold value is given 

by satisfying m^^(m6) = m;, = 4.25GeV, using the average of the range, 

4.1-4.4GeV, quoted by the PDG [122].

The overall renormalisation constant is thus given by:

^static
.A

25

1(^X9') 7 I "

Using the inputs given above, we find

8 ^(mb) , a(g*
3—+0-91 — 47r

41n(g*(i) — 19.36 -t- -7r^ (4.25)

^ Q yg (4.26)

in agreement with our naive estimate of eq. (4.22). Independent variations of 

A(^) and m,(, to the ends of the ranges quoted above and ±10% variation in
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change this value by 1.3% or less. Changing g* to l/n or vr/o reduces by

13% or raises it by 1.3% respectively.

We close this section by noting that both and are evaluated

in the chiral limit and so do not depend on the light quark mass used in the 

simulation.

4.2.2 Stochastic propagators

The numerical analysis is carried out on 20 quenched gauge conhgurations, gen- 

crated on a 12^ x 24 lattice at /? = 5.7, corresponding to = 1.10 GeV. The 

heavy quark propagators are evaluated in the static limit [63]. Stochastic prop­

agators [107, 108] are used to invert the fermionic matrix for the light quarks. 

They can be used in place of light quark propagators calculated with the usual 

deterministic algorithm. The stochastic inversion is based on the relation

= (0
1
Z

[#] exp (4.27)

where, in our case, Q is the tadpole improved 8W fermionic operator of eq. (2.97) 

and the indices z, j, A: represent simultaneously the space-time coordinates, the 

spinor and colour indices. Two values of K are considered, Ki = 0.13843 and 

/(2 = 0.14077, with cgu^ = 1.57. The heavier value, /ci, corresponds to a bare 

mass of the light quark around m = 140 MeV and Kg corresponds to a lighter 

mass m = 75 MeV. The chiral limit corresponds to = 0.14351 [109]. For 

every gauge configuration, an ensemble of 24 independent fields is generated 

with gaussian probability

1PM = - exp (-(^I(Q^0)i;(Aj) (4.28)
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All light propagators are computed as averages over the pseudo-fermionic sam­

ples:

or'S'i; = < (4.29)

where the two expressions are related by the H symmetry; S = More-

over, the maximal variance reduction method is applied in order to minimise the 

statistical noise [107]. Maximal variance reduction involves dividing the lattice 

into two boxes (0 < t < T/2 and T'/2 < t < T) and solving the equation of 

motion numerically within each box, keeping the spinor held ^ on the boundary 

hxed. According to the maximal reduction method, the fields which enter the 

correlation functions must be either the original fields (p or solutions of the equa- 

tion of motion in disconnected regions. The stochastic propagator is therefore 

defined from each point in one box to every point in the other box or on the 

boundary. For this reason, when computing a three-point correlation function

(4.30)

one operator — O in the present work — is forced to be on the boundary (to = 0 

or T/2) and the other two must be in di%rent boxes, while the spatial coordi­

nates are not constrained. If j is a point of the boundary, not all the terms in 

(Q(^) j lie on the boundary because the operator Q involves first neighbours in all 

directions. Hence, whenever a propagator Sij is needed with one of the points 

on the boundary, we use whichever of the two expressions in eq. (4.29) has the 

spinor computed away from the boundary.

It is generally advantageous to "smear" the interpolating operators J and 

over the spatial coordinates, in order to enhance the overlap with the ground 

state. In our simulations spatial fuzzed links are used for smearing the hadronic
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interpolating operators [110, 107]. This technique consists in replacing light quark

held g(z), by a "fuzzed" held

+ i) + - i)
1=1,2,3

where dehned by the recursive relations

(4.31)

C/f (3:) = P5[/(2) [cC/f (z) + + i + j) +

u‘:,(x)u,-{x-})u;-{x+i-3)

= 'Pg[/(2) C — 1 + j) +

Fi

(4.32)

(4.33)

(4.34)

(4.35)

starting with initial values CO^(z) = 17i(a;) and [/f)(z) = U^(a: — i). 'Pga(2) is a 

projector on 5'[/(2), implemented as in the Cabibbo-Marinari cooling algorithm, 

and = 2.5 is a constant value. The recursive procedure to compute [/±i(^) 

been applied twice.

4.2.3 Lattice computation

In order to extract the three-point correlation function Q and the two-point 

correlation function Cg for local (L) and fuzzed (F) sources are computed. The 

FF three-point function is dehned as

(^f^i,(x;ti,t2) = :p y d^3/(0|Jr(y,-ti)v4^(x + y,0)J^i(y,t2)|0) (4.36)

where * and are fuzzed operators with the quantum numbers corresponding 

respectively to the B* and B states. Analogous dehnitions hold for the FB and 

BB cases. For time separations that are large enough to isolate the lowest energy
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states, the three-point function is related to the axial current matrix element

2mB
(4.37)

where ^ is the polarisation label of the vector particle, and the sum over po- 

larisations is omitted. In the static limit considered in this paper, the slope of 

the exponential time-decay is not the physical mass of the mesons; it can be 

interpreted as a binding energy. Moreover, the two-point functions for the vector 

and pseudoscalar particles are degenerate, leading to the same binding energies 

and Z factors for both the B and B*. In order to avoid confusion, the physical 

mass is denoted by mg and the binding energy by Mg. is the overlap of 

the interpolating operator with the physical state, dehned from the two-point 

functions

2 d'?/ (0|J^(y,0)r ^(y,t)|0>

F\2 ^-Mst (4.38)

Integrating the three-point function over x gives the matrix element for zero 

momentum transfer. In this limit, the latter can be expressed in terms of the 

form factor in eq. (4.11).

The sum over polarisations in eq. (4.37) yields

d z Cg _(x;ti,t2) -^ (^ ) (p,̂ 1/ m -)Fi(0)e- (4.39)
B

The last equation shows that the three-point functions with // z/ and = 0 

should vanish. Therefore, only the correlators with = u = 1,2,3 are henceforth 

considered.

Moreover, taking rotational symmetry into account, C^^(x;ti,t2) is expected 

to be a function of the distance r only, up to cut-oE effects. The three-point
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functions measured on the lattice are averaged over equivalent x positions^. The

desired matrix element is obtained from the ratio

^ V/j.2mg
(4.40)

where the time-dependence cancels when the three-point function is divided by 

the product of two-point functions.

The coefficients and are extracted from the exponential ht of the two 

point correlation functions C2. The data are reported in hg. 4.2. As one can 

see from the plots, the two-point functions already exhibit a single-exponential 

behaviour at moderate time separations. The main sources of error in this com- 

putation are expected to stem from the determination of the three-point function 

and from the value of the light quark masses, which are far from the chiral limit. 

Thus, a single exponential fit of the two-point functions turns out to be accurate 

enough for the scope of this study. The value of is extracted from a direct fit 

of while is obtained from and The results of the fit are shown 

directly on the plot. It is worth remarking that, in all the channels considered, 

single-exponential fits yield reasonable values for the reduced

The B meson decay constant, in the static approximation, can be extracted

^The symbol
E.

indicates the average on all the spatial positions on the lattice compatible with the constraint 
|x| = r. On a finite lattice V = L^, only some distances are allowed

-t-

because each z, must be an integer between 0 and L/2. For each allowed distance r, a given 
number of terms Nr appears in the above sum, yielding a relative error on each point SE^{r, t) ~

e.g.

Ao = 1; ATi = 6; = 12; = 6; ... ; ^
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Figure 4.2: Logarithmic plots of and for both values of K. The
quoted values refer to the reduced
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Ki Kg ^crit
Mgo

(z‘-f
/f““(GeV)

0.930(4)
4.75(10)
0.59(1)
0.43(1)

0.898(5)
4.57(10)
0.58(2)
0.43(1)

0.862(7)
4.37(15)
0.57(3)
0.42(2)

Table 4.1: Values for Mg and obtained from fitting the two-point
functions.

from

/■static _ {/static
mg

-3/2 (4.41)

where renormalisation constant for the axial current in the static

theory, which was defined in eq. (4.25). The aim here is not a precise determi­

nation of the pseudoscalar decay constant, Rather, the result is presented

to allow an estimate of the systematic errors in our computation of the HMx 

coupling, g.

The results of the fits, together with the values for are summarised in 

table 4.1. The B meson binding energies obtained from the fits of and 

are consistent with each other. However, our determination appears to be slightly 

different from the one published in [107]. The discrepancy can be explained as 

a contribution from excited states, which is subtracted in [107] where a multi­

exponential ht is performed. The 1-state ht yields a value of approximately 

20% higher than the one obtained from the 3-state fit. Hence the value obtained 

for the static B decay constant lies above other lattice calculations of this quan- 

tity [106]. We take into account this effect by adding a systematic error to our 

results of the order 20%.

This is a first, exploratory, direct lattice determination of the coupling g, so 

the discrepancies noted above are perhaps expected and could easily arise from 

various lattice artefacts. Our value of (5 is far from the continuum limit, while our
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action and operators are not fully 0(a) improved. We have not tried to optimise

the smearing or fitting procedures. Our ensemble of gauge conhgurations and 

the collection of spinor configurations on each gauge sample are quite small. The 

calculation is also performed in the quenched approximation. All of these issues 

could be addressed in a further simulation, but here we will keep in mind that 

the uncertainties will propagate as systematic errors to our final result for the 

coupling.

The generation of stochastic propagators for the light quark and the static 

approximation for the heavy quark have proved to be useful tools in this in-

vestigation. However, neither is strictly necessary to calculate the axial current 

matrix element of interest. One could combine static heavy quarks with light 

quark propagators determined by standard deterministic methods. A full 0(a)- 

improved simulation with heavy quark masses around the charm mass would 

allow one to go beyond the static approximation and study the dependence of 

g on the heavy mass. The freedom allowed in lattice calculations to tune quark 

masses would also allow the light quark mass dependence, noted above as strik­

ingly absent, to be investigated in more detail.

Returning to the results of the present simulation, the quantity Eo(r, t), which 

is expected to vanish, is measured as a further consistency check. The data 

reported in figs. 4.3 and 4.4 show a much smaller signal than the one obtained 

for Ei(z, t). As ^ is increased, the fictitious peak at zero distance decreases, while 

the noise increases.

Using rotational invariance, the average of the three spatial components of

Ei(r, t)

E(r,t) = l(Ei(r,t) + E2(r,t) + E3(r,t)) (4.42)

is measured. The results are reported in figs. 4.3 and 4.4, for the two values of %

used in this simulation. At fixed r, E{r, t) is expected to be independent of t. As
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E\r, (),K = 0.13843

E{r, i),K = 0.13843

Figure 4.3: Plots of E^{r,t) and E{r,t) as functions of r for different values of t 
(= 3,4, 5,6) for k = 0.13843.
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E\r, (),/( = 0.14077

0.00 - 

-0.02 

-0.04 - 

-0.06 - 

-0.08 - 

-0.10

E{r, t), K — 0.14077 
---------- 1------------- 1----

t — 3
• t = A
• t = 3
• t = 6

4 6
distance r

10

Figure 4.4: Plots of E^{r,t) and E{r,t) as functions of r for different values of t 
(= 3,4, 5, 6) for k = 0.14077.
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Figure 4.5: Plot of E(r) as a function of r for K = 0.13843.

this behaviour is confirmed by the data, the signal can be improved by averaging 

the values at different times, each weighted with its error, yielding a function of 

the spatial distance E{r), which needs to be integrated over the three-dimensional 

volume. Since this is an exploratory calculation we have neglected the effects of 

correlations between neighbouring time slices on the error in the average. Our 

choice increases the statistical error in our result. However, we note that the 

systematic errors considered below in any case dominate the uncertainty in the 

values at each time. The time-slices considered in the average are f = 4,5,6. 

Logarithmic plots of E(r) is displayed in hgs. 4.5 and 4.6 for both values of K, 

suggesting that the data are consistent with an exponential decay.

To evaluate the volume integral, F'(r) is fitted with a two-parameter expo­

nential for each value of /c,

/(r) = (4.43)

The results of the fit and the values of the reduced are recorded on the hgures.
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Figure 4.6: Plot of E(r) as a function of r for /( = 0.14077.

The coupling p is finally obtained by integrating analytically the fitted function:

g
iatt A.'nr‘̂ E{r)dr 47rr^y(r)dr (4.44)

The superscript "latt" indicates, as usual, that these numbers are defined on 

the lattice using operators renormalised at the lattice energy scale = 1.10 

GeV. As for the two-point functions, the value of does not appear to depend 

on the mass of quarks. It is not clear from this simulation, whether this is a 

genuine physical feature or, as explained earlier, an artefact of the lattice used 

here. Further studies should aim to clarify this point.

The best estimate for at /< = Kcrit is thus obtained from a weighted 

average of the results at the two kappas used in our simulations

= 0.52(5) (10) (4.45)

The first error is statistical; the second is an estimate of the systematic error of 

20%, based on the systematic error observed in the estimate of /g.
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4.3 Phenomenology
We now combine the lattice matrix element with its renormalisation factor to 

find the continuum value for g. Since we observe no light quark mass dependence

in ^ and evaluated the renormalisation constant in the chiral limit, we mul-

tiply the lattice matrix element in eq. (4.45) by the renormalisation constant in 

eq. (4.20), to obtain the value

.MS ^Wpole^latt ^ 0.42(4)(8) (4.46)

for the coupling of the heavy mesons with the Goldstone bosons.

The direct decay B* -> Bit is kinematically forbidden. However, the cor- 

responding reaction occurs in the D system, where the coupling is also

related to p by an expression analogous to eq. (2.77), although the l/mg correc­

tions are expected to be larger in the charm case. A recent analysis [123], incor- 

porating chiral symmetry breaking corrections plus l/rric corrections in the HM% 

lagrangian and fitting to the branching ratios for -4- D°7r°, —)■ D'^rc^

and D* -4 (together with radiative decay rates for the same D* mesons), 

gives respectively

9

9

0.271^1^ (D*° D°7r°)

(D: ^ D,7r«)

(4.47)

(4.48)

The two fold ambiguity can be resolved by imposing the experimental limit 

r(D*"'') < 0.13MeV [124], which gives g < 0.52 to a good approximation [123].

Other estimates of g are derived using constituent quark models and sum rules. 

Starting from the non-relativistic result ^ = 1, quark models can be improved 

using more sophisticated assumptions to describe the quark dynamics inside the 

meson. Independent estimates are obtained from computing QCD correlation 

functions in the framework of sum rules. To give an idea of the range spanned
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Reference 9 Reference 9
[75] 0.32(2) [125] 0.7
1126] 0.39 [105] 0.75-1.0
[46]'' 0.44 (16) [127, 128] 0.4-0.7

[129] 0.38

“Combined sum rule + lattice results

Table 4.2: Recent determinations of the coupling constant p

Figure 4.7: Comparison of various estimates of the coupling p.

by different determinations, some recent results are listed in table 4.2, while our 

value together with the average of other determinations is displayed in hg. 4.7.

The best estimate from a global analysis of available results, quoted in the 

review [46], is

- 0.38 (4.49)

with a total uncertainty of 20%; the latter being comparable with the estimated 

systematic error from our lattice computation. Not only is the result presented 

in this paper compatible with the previous estimates; the systematic error is also 

competitive when compared to the above results.
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The agreement with other previous estimates is pleasing, but the value of the 

coupling g can also be used to check the consistency of the heavy quark symmetry 

predictions in the soft pion limit for the lattice results.

The form factor of the semileptonic decay B —is predicted to have the 

expression given earlier in eq. (4.5). This behaviour for yi(g^) is expected to be 

valid near zero recoil (g^ -4 where the closest vector resonance dominates, 

even beyond the leading approximation in l/mt, in HQET [70]. One also obtains 

this behaviour from the heavy meson chiral lagrangian [44, 47, 48, 50], valid for 

a low momentum pion. It is perhaps surprising that such a behaviour is found 

by sum rules to hold reasonably, at least for the D meson, also at 0 [75]. In 

this case the coupling g would fix the normalisation of the form factor /i . The 

extension of the validity of the vector pole dominance for general values of has 

no simple theoretical justification. It can be argued that the contributions from 

different resonances can lead to a single pole behaviour; however, in this case, 

the relation between g and /i(0) would be spoilt.

Lattice data for the semi-leptonic B decay form factors have been fitted as­

suming a pole behaviour for [73], yielding /i(0) = 0.44(3), to be compared 

with eq. (4.5) in the VMD hypothesis

A (0)1 VMD —
 nig

^ = 0.50(5)(10) (4.50)

which is in good agreement with the direct fit. Such an agreement should not 

come as a surprise: the lattice data, after chiral extrapolation, turn out to be 

close to the end-point of the phase space kinematically allowed for B vr decays 

(g^ gAaz)- The lattice normalisation of the form factor comes therefore from 

a fit in a region where vector dominance does hold. Hence, the above agreement 

should be seen as a consistency check of the two lattice computations. It is 

nevertheless important to see that the two results are not contradictory.

Assuming a pole form for /i, an independent bound on the value of the residue
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is obtained by enforcing the theory to satisfy unitarity [130]. The bound quoted

in [130] is

nig.yi(O) < lOGeV^ (4.51)

which translates into

A(0) < 0.4 (4.52)

This, again, agrees reasonably with the determination obtained from VMD, using 

our value for and the one coming from the direct ht of the lattice form factors.

As the lattice determinations will improve in the future, the comparison of 

the three results summarised here could become an effective way to constrain the 

residue at the B* pole.
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Chapter 5

Spectator Effects in Inclusive 

Decays of Heavy Hadrons

TAza za 6oae(f on tAe puWzaAeff j^apera;

M. Di Fierro and C.T. Sachrajda [UKQCD Collaboration], "A Lattice study of 

spectator effects in inclusive decays of B mesons", Nucl. Phys. B534 (1998) 373 

liep-lat/9805028.

M. Di Fierro and C.T. Sachrajda [UKQCD Collaboration], “Spectator effects in

inclusive decays of beauty hadrons", hep-lat/9809083.

M. Di Fierro and C.T. Sachrajda [UKQCD Collaboration], “A Lattice study of 

spectator effects in inclusive decays of Af, baryons", (in preparation)

5.1 Introduction

Inclusive decays of heavy hadrons can be studied in the framework of the heavy 

quark expansion, in which widths and lifetimes are computed as series in inverse 

powers of the mass of the f^-quark [83, 84, 85] U The leading term of this expansion 

corresponds to the decay of a free-quark and is universal, contributing equally

Tor recent reviews and additional references see refs. [86, 87].
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to the lifetimes of all beauty hadrons (see eq. (174). Remarkably there are 

no corrections of 0(l/m(,), and the hrst corrections are of 0(l/m,^) [88, 85]. 

"Spectator effects", i.e. contributions from decays in which a light constituent 

quark also participates in the weak process, enter at third order in the heavy- 

quark expansion, i.e. at 0(l/m^). However, as a result of the enhancement 

of the phase space for 2-4^2 body reactions, relative to 1-43 body decays, the 

spectator effects are likely to be larger than estimates based purely on power 

counting, and may well be significant. The need to evaluate the spectator effects 

is reinforced by the striking discrepancy between the experimental result for the 

ratio of lifetimes

T(B,)
0.78 d: 0.04 , (5.1)

and the theoretical prediction

r{Bi)
0.98 + 0{l/m|] (5.2)

In order to explain this discrepancy in the conventional approach, the higher 

order terms in the heavy quark expansion, and the spectator effects in particular, 

would have to be surprisingly large. We evaluate these spectator effects for B 

mesons and the A;, baryon.

The experimental value of the ratio of lifetimes of the charged and neutral 

B-mesons is [89]

T(B-)
r(Bl)

1.06 ±0.04 , (5.3)

to be compared to the theoretical prediction

T(B-
T(Bg)

1 + 0(l/m^) . (5.4)
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Below we determine the contribution to the 0{\/ml) term on the right-hand side 

of eq. (5.2) and (5.4) coming from spectator effects, which we believe to be the 

largest component.

Our results for the ratios of lifetimes are

Spectator Effects in Inclusive Decays of Heavy Hadrons

r(B“)
= 1.03(2)(3) (5.5)

T(B0)

T(A6) f 0.91(1) for = rrid = 140 MeV
(5.6)

T(B0) i 0.93(1) for ruu = rud = 75 MeV

For the second ratio it was not possible to perform a chiral extrapolation, there­

fore we quoted the results for two different values of the light quark mass.

Our results indicate that spectator effects are not negligible, and indeed they 

are bigger than naive estimations based purely on power counting. Although they 

do not appear to be sufficiently large to account fully for the discrepency.

We remark that the matrix elements between B mesons are evaluated on a 

24^ X 48 lattice at /? = 6.2, while the matrix elements between At states are 

evaluated on a 16^ x 24 lattice at ^ — 5.7 (the same used in the simulation which 

is discussed in chapter 4) therefore, having established that spectator effects are 

significant, a future study on a bigger lattice (with larger /?) is required in order 

to improve the precision of our results.

The results of our calculations indicate that the vacuum saturation hypothesis 

is (surprisingly?) well satisfied. In other words we find that the lattice matrix 

elements that are relevant to spectator effects for B decays factorize within the 

statistical errors

{B\bVqqtb \B) ~ {B\bVq |0) (0| qVb \B) (5.7)

The present calculation is very similar to that of the Bg-parameter of B-B 

mixing (see section 1.2.5), for which several recent simulations have been per­
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formed [67, 68, 94], including one using the same configurations used in this 

study [67]. We use the calculations of the Bg parameter as a comparison and 

check on our results, both for the perturbative matching coefficients and for the 

evaluation of the matrix elements. We also stress that the feature that the values 

of the matrix elements of the operators (5.13)-(5.16) are close to those expected 

from the vacuum saturation hypothesis is also present in the evaluation of the 

Bg-parameter.

The plan of the remainder of this chapter is as follows. In the next subsection 

we show the relation, at tree-level in perturbation theory, between the inclusive 

decay times of heavy hadrons and the matrix elements of the operators dehned 

in eqs. (5.13)-(5.16). In the successive three sections we will present our results 

for T(B'')/T(B°), Bg-parameter and T(A(,)/T(B°) respectively. We remind the 

reader that all the matching factors which are required in this chapter are com- 

puted in chapter 3.

5.1.1 Heavy Quark Expansion

Using the optical theorem, the inclusive decay time of a hadron Bb, containing a 

6 quark, can be written as the following matrix element

spectator Effects in Inclusive Decays of Heavy Hadrons

-1 1
(5.8)

where C^ff is that part of the effective weak Lagrangian involving an heavy b

quark. At the renormalization scale electroweak corrections are negligible

and can be ignored, while strong perturbative corrections must be taken into 

account. The explicit form of Be//, including strong perturbative corrections to
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6 r j 5 g r,- fo

Figure 5.1: Spectator contributions to the transition op-
erator T {/}e//(z),/Zey/(0)} (left), and the corresponding operator in the OPE 
(right). Here Pi denotes some combination of Dirac and colour matrices.

the coefhcients, is

Gp.
Ceff n/2

Cl (mb) + +

yi ay 1,6] + h.C. j
l=:ep,,T

(5.9)

where

= li-mT "■">

Cl (mb)
1 / a ,(miv)y+ _ 1 aXm^y y-
2 \ / 2 \ aX^b) /

-0.25

(5.10)

(5.11)

and u_ = —2(i_|_ = —In the numerical analysis 0!^(miy) = 0.117 is used,

following ref. [91].

The inverse decay time of eq. (5.8) is written in terms a non local product of

operators but it can be expanded in terms of local operators using the Operator 

Product Expansion. We perform the OPE in a series of local operators with 

increasing dimension, whose coefhcients contain inverse powers of the 6 quark
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mass:

T{Hb) ^ =
1927r^ 2mHi,riTf, I

mt

-^{Hh\ Oi \Hb) + ...|
^ mi J

(5.12)

where four dimension 6 operators contribute to the spectator effect of 0(mj

Oi = hYLq ql^,Lb

O2 = bLq qRb

O3 =

e»4 = bLfqqRf'b

(5.13)

(5.14)

(5.15)

(5.16)

The operators Oi arise from the tree-level contractions (reported in fig. 5.1) in 

the transition operator of eq. (5.8). The matching coefficients, C3, C5 and Cg^j, 

contain information about short disctance physics and are determined at tree- 

level in [91]. It is remarkable that there is no contribution of terms of order l/mg 

because there is no way of building a non trivial operator of dimension four.

Since we are performing an expansion in the heavy quark mass and this quan­

tity cannot be measured directly, there is an ambiguity in defining the kinetic- 

energy of the b quark. This has the practical effect that some of the matrix 

elements that appear in the expansion (5.12) are divergent and their divergence 

is cancelled by an opposite divergence in the matching coefficients of the corre­

sponding operators. This cancellation occurs only at an infinite order in per­

turbation theory and one, in practice, cannot reach such a theoretical precision. 

This problem is known as renormalon ambiguity. One way to go around the 

problem is that of taking a ratio of lifetimes and expanding it in 1/mb so that 

only differences of matrix elements of the same operators appear. This cancels
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the divergences. In particular we are interested in B and Ab decays and, up to 

order from eq. (5.12) one obtains

T(B-
T(B!0)

T(BfO)

i+E 2m,g 2mg

1 + A + ^ ^
m;6 L

(B|0,|B) (Ab|0,|Ab)
2m, 2mA,

(5.17)

(5.18)

where A is the contribution of order 0 and 1/m^. It only depends on mt and the 

two phenomenological quantities

(B|66|B) (Ab|56|Ab)
2ma 2mA|,

(B|5crG6|B) (AblbaGAlAb)

0.04(1)

2mg 2m,
0.72 GeV^

(5.19)

(5.20)

These numerical values are extracted from experiments: the mass spectrum and 

the B-B* mass splitting, respectively.

After the substitutions of eqs.(5.19), (5.20) and the numerical values for the 

coedicients, the ratios in eqs. (5.17) and (5.18) can be written as linear combina- 

tion of six matrix elements of the four 4-quark operators (5.13)-(5.16)

T(B-)

T(B0)
T(Ab)
T(B0)

tto + 0,i€i + 02^2 + C^sBi + CI3B2

bo + 5i£i + 62^2 4" b^Li + 64L2

(5.21)

(5.22)
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value value
ao -hl.OO bo +0.98
ai -0.697 bi -0.173
0-2 +0.195 62 +0.195
as +0.020 63 +0.030
04 +0.004 64 -0.252

Table 5.1: a, and coe&cients corresponding to operators renormalized in the 
continuum MS at the scale // — mg.

where ^

£i

Li

8 (g|Oi |B)
2mg

8 (gjOs |B)
/g/llB 2mg

8 (.\| 0, |A>
/g/^B 2mA

£2

Lo

8 (B102IB)
/An^B 2mg

8 (g]04|B)
/g)7lB 2mg

8 (A[ O3 [A>
/§mg 2mA

(5.23)

(5.24)

(5.25)

The numerical values for the coefhcients Ui and 6^ have been computed in [91] 

and are reported in table 5.1 for operators renormalized in the continuum MS 

renormalization scheme at the scale /.( = mg.

5.2 B decays

5.2.1 Perturbative matching

Since the Wilson coefficient functions of the operators (5.13)-(5.16) in the OPE 

for inclusive decay rates have been evaluated only at tree-level [91], at the same 

level of precision it is sufficient to compute the matrix elements in any "reason-

^In terms of the parameters B and r introduced in ref. [91]

r = -6L1

g = -21:2/1:1 -1/3
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able” renormalization scheme. We present our results for the matrix elements of 

the HQET operators in the MS scheme at a renormalization scale In order 

to obtain these from the matrix elements of bare operators in the lattice theory, 

with cut-off a~^ (where a is the lattice spacing), which we compute directly in 

our simulations, we require the corresponding matching coefficients.

It is convenient to perform the matching in two steps:

i) The first step is the evaluation of the coefficients which relate the HQET 

operators in the continuum (MS) and lattice schemes, both defined at the 

scale a~^.

Spectator Effects in Inclusive Decays of Heavy Hadrons

OMS,a ,latt,a

An
(5.26)

where the lattice (continuum) operators are labelled by the superscript 

“latt” (MS). The coefficients Dij for the operators of interest have been 

computed in chapter 3 and are reported in table 3.5. The mixing of oper­

ators is such that it is necessary to compute the matrix elements of eight 

lattice operators (see table 3.5). They are the original four (5.13)-

(5.16) and the four new ones

Os = b-y^Rq 97^ T 6 (5.27)

Oe = bLq qLb (5.28)

O7 — bj'^Ri"q qj^iLl"b (5.29)

Og = iLf'q qLt"b (5.30)

ii) We then evolve the HQET operators in the continuum scheme from renor-

^Prom these it is possible to obtain the matrix elements in any other renormalization scheme 
using perturbation theory.
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malization scale = a ^ to scale = m;,,

(5.31)

This evolution, sometimes known as “hybrid renormalization”, requires

knowledge of the anomalous dimension matrix [95, 96, 97] (see also sec-

tion 3.3.5).

The matching procedure involves short-distance physics only, and so can be 

carried out in perturbation theory. Lattice perturbation theory generally con- 

verges very slowly, and therefore, where possible, the matching should be per- 

formed non-perturbatively so as to minimise these systematic errors. We, how- 

ever, do not use a non-perturbative renormalization, but, when evaluating the 

matching coefhcients, we do use a “boosted” lattice coupling constant in order 

to partially resum the large higher order contributions (e.g. those coming from 

tadpole graphs).

In order to obtain the parameters B, and Si it is also necessary to determine

the normalization of the axial current [65]. In this case there is a single coefhcient

(Oi ]B),MS (0| )B>' (5.32)

both renormalized at the scale // = (see section 3.3.2). is the temporal 

component of the current associated to a B meson. FYom now on the subscript 0 

and superscript B will be omitted. At one loop order in perturbation theory the 

expression for this coefficient was computed in section 3.3.2. For our value of

Zstatic
A 20

47r
0.79 (5.33)

Using hybrid renormalization one can obtain the axial current in the MS scheme
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at scale mt. We stress again that the results presented for the B^'s and E.'s below 

were obtained with both the four quark operators and the axial current defined 

in the HQET in the MS scheme at the scale m,,

In the following subsection we combine the results of the matrix elements

computed on the lattice with the perturbative coefficients presented in this section

to obtain the B/s and g/s.

5.2.2 Lattice computation and results

The non-perturbative strong interaction effects in spectator contributions to in­

clusive decays are contained in the matrix elements of the eight four-quark oper­

ators, Oj, given in table 3.5. We evaluate these matrix elements in a quenched 

simulation on a 24^ x 48 lattice at = 6.2 using the S'W tree-level improved 

action [56]: The use of this action reduces the errors due to the granularity of 

the lattice to ones of O(o!aa), where n is the lattice spacing. We use the 60 

SU(3) gauge-held conhgurations, and the light quark propagators corresponding 

to hopping parameters K =0.14144, 0.14226 and 0.14262 which have been used 

previously to obtain the B-parameter of B°-B° mixing [67] and other quantities 

required for studies of B-physics. The value of the hopping parameter in the 

chiral limit is given by Kchi = 0.14315. The calculation of the matrix elements of 

the operators in table 3.5 is very similar to that of the AB = 2 operators from 

which the B-parameter is extracted, and we exploit the similarities to perform 

checks on our calculations (see section 5.3 and Appendix B).

The evaluation of the matrix elements requires the computation of two- and 

three-point correlation functions

 spectator Effects in Inclusive Decays of Heavy Hadrons

= |o> (5.34)

* These differ at one-loop level from the corresponding operators in QCD.
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where we have assumed that > 0, and

latt (5.35)

where ty > 0 > tx- In eqs. (5.34) and (5.35) and J are interpolating operators

which can create or destroy a heavy pseudoscalar meson (containing a static 

heavy quark) and Oj is one of the operators whose matrix element we wish to 

evaluate. In practice we choose J to be the fourth component of an axial current. 

It is generally advantageous to "smear" the interpolating operators J and 

over the spatial coordinates, in order to enhance the overlap with the ground 

state. Following ref. [67] we have used several methods of smearing and checked 

that the results for the matrix elements of Oj are independent of the choice of 

smearing. In this paper we present as our "best" results those obtained using 

a gauge-invariant smearing based on the Jacobi algorithm described in ref. [99]. 

The smeared heavy-quark held at time t, 6'^(z, t), is dehned by

5'^(z) = ^M(f, f)6(f,t) , (5.36)
x'

where

JV
M(f, ^) = (5.37)

n=0

and A is the three-dimensional version of the Laplace operator. The parameter 

Kg and the number of iterations can be used to control the smearing radius, and

here we present our results for Kg = 0.25 and N = 140 which corresponds to an

rms smearing radius ro = 6.4u [100]. The smeared interpolating operator is then

chosen to be J'^{x) = {x)jsq{x), where q is the held of the light quark. The

local interpolating operator is simply dehned to be J^(z) = 5(a;)q'5g(a;).

The eight matrix elements {B \ Oj{0) are determined by computing the
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ratios:

(5.38)

where ti and are positive and sufficiently large to ensure that only the ground

state contributes to the correlation functions. The indices S' and T denote

whether the interpolating operators are smeared or local. It is convenient to

choose both J and to be smeared in the three-point function and to eval- 

uate the two-point functions with a local operator at the source and a smeared 

one at the sink. At large time separations and tg,

(B|OXO) |B) latt (5.39)

where is given by

(o| j^(o) |B)'^" = . (5.40)

The defined in eq.(5.38) contribute directly to the B/s and the e/s, apart 

from perturbative matching factors. To see this, note that the leptonic decay 

constant of the B-meson in the static limit (i.e. infinite mass limit for the 6- 

quark) is given by

f.
2
B mg

(5.41)

so that

BX^i,^2) (B|Oj(0)|B)"latt
4(2^atic\2

(B|OX0)|B) latt

(5.42)

which corresponds precisely to the normalization of the B.'s and a/s in eqs.(5.23)-
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(5.24) (apart from the matching factors j four-quark operator

Oj described in section 5.2.1).

In these computations it is particularly important to establish that the con-

tribution from the ground-state has been isolated. The natural way to do this 

is to look for plateaus, i.e. for regions in ti and for which Rj{ti,t2) is inde- 

pendent of and ^2- Since the statistical errors grow fairly quickly with ti,2 our 

ability to verify the existence of plateaus is limited. For example in hg. 5.2 we 

present our results for .Rj(ti,t2), obtained with the light quark mass correspond- 

ing to K = 0.14226 as a function of t2 for ti = 3. The results are consistent 

with being constant, but the errors are uncomfortably large for (2 > 5 or so. An 

alternative, and perhaps more convincing, way to confirm that the contribution 

from the ground-state has been isolated is to check that the values of the are 

independent of the method of smearing used to define the smeared interpolating 

operators. Following ref. [67], in addition to the gauge invariant prescription for 

smearing described above, we have defined the smeared field in four other ways 

(having transformed the fields to the Coulomb gauge). For these additional four 

cases, M(f, ) of eq. (5.37) is replaced by the following

 Spectator Effects in Inclusive Decays of Heavy Hadrons

Exponential: M(f,f) = exp(-|f - :^|/ro), (5.43)

Gaussian : M(z, ^) = exp(-|:r - ^^j^/rg), (5.44)

Cube : M (f, ^)
3

(5.45)
i=l

3

Double Cube : M(f, f') = jQ ( 1
i=l

Fi -
2rn

0(2ro — Fi — a;^|),

(5.46)

and we have chosen ro = 5. As an example, we present in table 5.2 the results 

for the 7Zj(ti,t2) for = 3 and (2 = 3, again for the middle value of the three

k’s, k = 0.14226.
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Figure 5.2: Results for the Rj, j = 1-8 as a function of t2 for ti = 3. The
value of the quark mass corresponds to K = 0.14226.

We take as our best results those obtained with the gauge invariant smearing,

and with ti = ~ 3. After extrapolating to the chiral limit we find the following

results for the

1.04 ±0.04 ^(2(3,3) = 1.00 ±0.03 (5.47)

%(3,3) = -0.01 ±0.02 774(3,3) = -0.00 ±0.01 (5.48)

^5(3,3)- -0.97 ±0.06 775(3,3) = -0.98 ±0.05 (5.49)

^7(3,3) — -0.03 ± 0.03 779(3,3) = -0.01 ±0.01 (5.50)

We now combine these results with the matching coefficients presented in 

section 5.2.1 to determine the B.'s and the g,'s. For the value of the lattice
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Gauge Inv. Exponential Gaussian Cube Double Cube
Ai(3,3) 1.02(3) 1.03(2) 1.04(3) 1.03(2) 1.07(8)
^2(3,3) 1.00(2) 1.01(2) 1.01(3) 1.01(2) 1.00(5)
^3(3,3) 0.00(1) -0.00(1) -0.00(2) -0.00(1) -0.03(3)
^4(3,3) 0.00(1) 0.00(1) 0.01(1) 0.00(1) 0.01(2)
^5(3,3) -0.99(4) -1.01(3) -1.01(4) -1.00(3) -1.01(7)
%(3,3) -0.99(3) -1.00(2) -1.01(3) -1.00(3) -1.01(6)
;i!7(3,3) -0.04(2) -0.03(2) -0.04(2) -0.03(2) -0.09(5)
^8(3,3) -0.00(1) -0.00(1) -0.01(1) -0.01(1) -0.02(2)

Table 5.2: Values of the .Rj(3,3) obtained with diEerent smearing methods for a 
light quark with K = 0.14226.

coupling constant we take one of the standard definitions of the boosted coupling

47r (47r)2;do
0.0105 . (5.51)

Here /do is of eq. (2.39) for IV/ = 0, because we performed a quenched

simulation, i.e. zero quark flavours. Using the coefficients from table 3.5 we then 

obtain

BMS,a-

MS,a-

^ R, = 0.98(8)

(Zf'U (S2, + ^4^%) R, = 0.93(5)

£MS,a ^ 
1

^MS,a-i
^2

{ZT“T" U, + ^^%) R, = 0.01(3)

4%
D4/ = 0.00(2)

We now evolve these coefficients to the scale m;,, using the relation 3.131,
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which we rewrite in the form

MS,mb

MS,mi, MS,a- + MS,a

where

a Jo -1\\ 9/2/)o
1-0.09(3)

(5.52)

(5.53)

(5.54)

In estimating ^ and its uncertainty we have allowed for a conservative variation 

of the parameters around the "central" values (AqcD = 250 MeV, — 2.9 GeV,

rrib — 4.5 GeV and /?o =9). We finally obtain®:

j^MS,mi,

^1

1.06(8)

-0.01(3)

1.01(6) 

-0.01(2) .

(5.55)

(5.56)

Using the results in eqs. (5.55) and (5.56) we obtain the following value for 

the ratio of lifetimes for the neutral and charged B-mesons:

T(B
/ jy \ — Go 4" o-iBi + (X2B2 + O361 + 0462 — 1.03(2)(3) (5.57)

where the coelhcients are taken from ref. [91] and reported in table 5.1. The 

first error in eq. (5.57) is from the uncertainty in the values of the matrix elements 

in eqs. (5.55) and (5.56), whereas the second is an estimate of the uncertainty due 

to our ignorance of the one-loop contribution to the Wilson coefficient function 

in the OPE (this was estimated by varying the matching scale from m,b/2 to 2m(, 

using the procedure described in ref. [91]). The value in eq. (5.57) is in good

°These matrix elements have also been evaluated using QCD sum-rules [101]. These authors
And g]^s,m6 ^ 0 96(4)_ ^ q 95(2), ^ _Q 14(4) ^ _o.08(i), differing
somewhat (particularly for the Ej’s) from our values.

142



Spectator Effects in Inclusive Decays of Heavy Hadrons

agreement with the experimental results in eq. (5.3).

5.3 B — B mixing

In this section we revisit the phenomenologically important process of B-B mix-

ing. The computation of the matrix elements of the relevant lattice operators 

on the same gauge configurations has already been presented in [67], and we 

do not add to these lattice computations. We do, however, wish to make two 

observations

i) The matrix elements of the lattice AB = 2 operators relevant for B-B 

mixing factorize with a similar precision to that found for the four-quark

operators considered in section 5.2.2. Because of the way in which lattice 

computations are usually organised, this property is not as readily manifest 

for the AB=2 operators as it is for the spectator effects. However, by 

using colour and spin Fierz identities, we demonstrate that the values of 

the matrix elements of the lattice AB = 2 operators are very close to those 

expected using factorization. Some of our observations have already been 

noted in ref. [94], where the Wilson formulation for the light quarks was 

used. We extend this investigation of factorization, and show that each 

contribution to the matrix elements (i.e. each Wick contraction) is close to 

the estimated value obtained using the factorization and vacuum saturation 

hypothesis.

ii) We believe that there is an error in the published value of the matching 

factors for the AB = 2 operators using the SW action for the light quarks. 

We discussed this in some detail in chapter 3. In this section we briefly 

comment on the consequences of this error.

We now consider these two observations in turn.
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5.3.1 Factorization

In order to determine the B-parameter of B-B mixing, eq. (1.85), we need to

compute the matrix element of the operator Of,, dehned in eq. (3.108), in the MS 

scheme at the scale m,;,. In the matching between the continuum scheme and the 

lattice scheme this operator mixes with the three lattice operators Of, O^ and 

0/v defined in eqs.(3.108)-(3.110) of chapter 3, as well as with

1
Os — - \b1Lq2 h^Lqi — 611/^4 631/%] (5.58)

which arises from the matching between the continuum full theory and the con­

tinuum effective theory [64]. At order Os we rewrite the definition 1.85, in terms 

of the matching factors and the lattice parameters, as

a.') ^"1 l + ^(41ogm^a^-hOf + Df) Ri

a.
47r 47r

a.
4%

(5.59)

where the coefhcients Df, and Df/ have been computed in section 3.3.3, the 

coefficients Of = —14 and Og = —8 are computed in ref. [64] and are defined 

as

0 \iatt,a 3(Zy L̂ic\2

8/im^
0 \latt,a (5.60)

for each of the operators and

We now show that these matrix elements (and related ones) are reproduced 

remarkably accurately by assuming the factorisation hypothesis and vacuum sat­

uration. For each of these operators (Oj) we dehne the ratio Bj(ti, ^2) analogously

144



Spectator Effects in inclusive Decays of Heavy Hadrons

to eq.(5.38) as follows

3 (^^^(^1,^2)
(5.61)

where the correlation functions C and C^j are defined in eqs.(5.34) and (5.35),

except that in the Csj the operators Oj are now AB = 2 operators, and the 

interpolating operators destroy a B-meson and create a B-meson.

We start by explaining explicitly what we mean by factorization (combined 

with vacuum saturation). The evaluation of the B-parameter requires the com- 

putation of three-point functions C3j(fi,f2), which are of the form^

(0|g(2/)T^K2/) 6(0)rg(0)6(0)fg(0) g(a;)3/^6(3;) |0) (5.62)

There are four Wick contractions which contribute to the correlation function, 

and it is convenient to track these by introducing a fictitious quantum number, 

labelled by an integer suffix on each field, so that the correlation function is

written in the form

(0|92(2/)f6i(2/) Or^f(O) 94(a;)7^63(3;) (5.63)

where

(^rgif = 63+ 63^94 bitq2 — 61 bsf'q2 — 61 (5.64)

and r, r are Dirac matrices. The contraction of spinor (a, /3) and colour (o) 

indices in each bilinear in eq. (5.64) is implicit (e.g.

Only contractions between fields with the same suffix are allowed, and the four 

terms in eq. (5.64) correspond to the four original Wick contractions. For all the

®The extension of this discussion to include smeared interpolating operators is completely
straightforward.
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operators of interest, by using colour and spin Fierz identities, it is possible to 

rewrite each of the four terms into sums of operators of the form (5ir'Q(2) (63^'94) 

and for some y-matrices F' and f'. In the factorization and

vacuum saturation hypothesis

(g|(6ir't%) (63^^94) I B)-0, (5.65)

and

(B| (5,r'52) (&r'A) \B) - {B| (5,r',2) |0> (0| fef'g,) IB) (5.66)

Lorentz invariance implies that each of the matrix elements on the right-hand 

side of eq. (5.66) vanishes or is proportional to the leptonic decay constant /g. 

We now consider each of the operators in turn:

# Oy, and The factor of 3/8 in eq. (5.61) was chosen so that the factor­

ization hypothesis gives Az, = = 1. Numerically we hnd:

Az,(3,3)-b^A(3,3)
0.95(3) (5.67)

* Og: Lorentz invariance implies that the matrix element (B |6(T^''(1—'y^)g | 0) 

vanishes. Using this fact we deduce that factorization implies that Bg 

5/8. The numerical result for Rs is 0.60(3), in very good agreement with 

the estimate based on factorization.

# Finally factorization implies that 1, in good agreement with the 

numerical value 0.97(4).

In order to illustrate further that the numerical results quoted above are in 

agreement with expectations based on factorization and vacuum saturation we

present separately in fig. 5.3 the contributions to each of the ratios from the two
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Figure 5.3: Results for the and Rj (j = Z,, R, ZZ) as a function of (2 for
ti = 3. The value of the quark mass corresponds to K = 0.14226.

independent contractions:

R'' = (B|(6ir'g2) (63^94)1^) 

and

Ji‘= (B| (SiF-ft) (ht’q^) IS) 

as well as the total combination

(5.68)

(5.69)

R - -(2^" - 2^^")
0 (5.70)

We see that not only are the values of the R's quoted above in agreement with
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expectations from factorization, but the values of each of the and are also 

those we would expect on this assumption:

Spectator Effects in Inclusive Decays of Heavy Hadrons

Rl-i 4- (5.71)

^-1 Rr^- 1 ^ (5.72)

In this subsection we have demonstrated that the surprising precision of pre­

dictions for matrix elements obtained using the factorization hypothesis in inclu­

sive decays, which was discussed in section 5.2.2, also applies to existing results 

for B-B mixing.

5.3.2 Matching

In this subsection we discuss very briefly the implications of the error in the 

published value of the perturbative matching factors in B-B mixing (see appendix 

B). For example, we take method (a) of ref. [67] (in which each of the ratios Ri 

is fitted separately) and, substituting our values in eq. (5.59), we find

gMS.m, ^ Q 66(2) , Bg - a;G/23gMS,m, ^ 0.96(3) (5.73)

where and Bg are the B-parameter in the MS scheme at scale and the

renormalization group invariant B-parameter respectively. For the comparison 

we only quote the statistical error. In order to see the effect of the error in 

the matching coefficient, the result in eq. (5.73) should be compared with that 

obtained in ref. [67] using an identical procedure (except for the values of the 

matching coefficients):

BMS.m, _ 0.69(2) , Bb = _ 102(3) (5.74)

Gimenez and Martinelli had pointed out that the authors of ref. [67] had used
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matching coefficient which did not include the contributions to the 0{o?) terms in 

the lattice operators which they had used [68]. As explained in ref. [68], this leads 

to a negligible correction to the B-parameter. The differences in the values in

eqs. (5.73) and (5.74) are therefore largely due to the error discussed in appendix

B.

5.4 Ab decays

The main motivation for this study is that, as a result of the enhancement of the

phase space for 2 —> 2 body reaction, relative to 1 —> 3 body decays, we expect 

the spectator effects in A;, decays to be larger than estimates based purely on 

power counting. This preliminary study seems to indicate that this is not the 

case, but further investigation will be required. We will proceed by evaluating the 

two missing matrix elements and Tg of eq. (5.22), since si and 62 have already 

been computed in section 5.2. Our results will be summarized in eq. (5.97).

5.4.1 Perturbative matching

In lattice simulations we compute matrix elements of bare operators with ultra­

violet cut-off (where a is the lattice spacing). We wish to determine matrix 

elements of renormalised operators in some standard renormalisation scheme (the 

MS scheme for example), and this can be done in perturbation theory. We have 

discussed this in some detail earlier in this chapter, and here we briefly repeat 

the main points relevant for the evaluation of the matrix elements and B2.

We start by relating the matrix elements Li and L2 (defined in the MS scheme 

say) renormalised at m;, to those renormalised at The Wilson coefficient 

functions in the OPE expansion have been evaluated at tree level[91] only and at

Spectator Effects in Inclusive Decays of Heavy Hadrons
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the same level of precision the relevant matching coefficients are [95, 96]

8 ^ \ ,MS „-i / 2

Spectator Effects in Inclusive Decays of Heavy Hadrons

£MS,rnt,

T MS,mi,
^2

1 + I +

27
Z,MS,a“

1

(5.75)

(5.76)

where

MOV'"*
l:=(h40(5) (5.77)

In estimating (i we have used Apcn = 250 MeV, = 1.10 GeV, m,, — 

4.5 GeV and /)o = 9. The error in 6 is evaluated allowing a conservative 20% 

uncertainty for AqcD-

The second step of the matching relates the matrix elements renormalised in 

the continuum to those regularized on lattice (both at the same energy scale, the 

inverse lattice spacing). Although this involves corrections of 0(0;^), which are 

in principle beyond the precision which we require, we do include them because 

the perturbative coefficients in lattice perturbation are generally large. This 

computation, for the most general four quark operator involving one heavy quark, 

appears in the appendix of ref. [1]. In the present case this matching can be 

written in the form

LMS,a-^

LMS,a-^ 8
/g^B

[hiiMi + Afg + hi^Ms + hiii,MA

\h2iM1 + A22 AZg + hgg AZ3 + /Z24 AZ4]

(5.78)

(5.79)
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coefficient expression value
hii 1 _L im _ ^ 4% 13 _ Ki- |di2j 0.737
hi2 a

47r .-K13] 0.112
hi3 a

A-n -|-di4 — 2di5 — diy] 0.113
hi4 a

Att
—die] 0.084

^21 47r £ 14 — 2di5 — diyl 0.025
^22 a

Atx
0.019

^23 1 + 1A _ 4? L12 ^dii + ^(^12 — gdi4 + ^dis — ^diy] 0.869
^24 a

Atv

.Kiel__ -0.042

Table 5.3: Matching coefhcients for the matrix elements Mi and M2, renormalised 
on lattice at an energy scale = 1.10 GeV. The constants dij correspond to 
the lattice matching factors of table 3.2

where

Ml

M2

Ms

M4

2mA,

2mA,
(Ab| |Ab)

2mA,
(Abj jAb) ^ (A(,| |Ab)

2mA,

(5.80)

(5.81)

(5.82)

2mA6 2mA,

are the bare lattice matrix elements regularised at the appropriate lattice scale.

The coefBcients hij are listed in table (1.1) where, for the lattice coupling constant 

we have used a boosted coupling equal to

0!^^"(a ^) 6(8KcT'it)^
4% (47r)2,go 0.01216 . (5.84)

The matching coefRcients corresponding to the lattice action which we are using 

are reported in table (5.3).

A consequence of the Heavy Quark Elective Theory, and the fact that the 

light quarks in the A^ are in a spin zero combination, is that the number of lattice
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operators whose matrix elements have to be evaluated is four rather than eight,

which is the case for heavy mesons.

In order to obtain the factor it is also necessary to determine the

normalization of the axial current,

Spectator Effects in Inclusive Decays of Heavy Hadrons

/gmg = (0| |B)

(5.85)

where is the time component of the axial current defined on the lattice and

Zg is obtained from the numerical value of its matrix element determined from 

numerical simulations At our value of the lattice spacing

^static _ 2
47r

0.75 (5.86)

In the following section we combine the results for the matrix elements computed 

on the lattice, and Zg, with the perturbative coeGicients presented in this 

section, hij and to obtain the required values for Li(mh) and L2(mb).

5.4.2 Lattice computation and results

The non-perturbative strong interaction effects in spectator contributions to in-

clusive decays are contained in the matrix elements (5.83). They have been 

evaluated in a quenched simulation on a 12^ x 24 lattice at = 5.7 using the 

SW tree-level improved action [56]. We use 20 gauge-held conhgurations and the 

light quark propagators are computed using a stochastic inversion for the light 

propagators.

The use of this stochastic inversion technique makes it possible to compute 

a light-quark propagator from each point on the lattice with 0 < f < 12 (we 

call this region box I) to each point with 12<t<24 = 0 (box II). As already 

explained in chapter 4, this doubles the effective statistics in the computation of
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t

Figure 5.4: Plot of after the substraction for the contribution of excited 
states.

the matrix elements.

In this exploratory study we have performed the calculations at Csw = 1.57,

and with two values of the light-quark mass, m = 140MeV and m = 75MeV, 

corresponding to Ki = 0.13847 and k,2 — 0.14077 respectively. For this value of 

Csw — 0.14351. The origin of our value for cgw is discussed in chapter 4.

The same lattice has been used to compute, with satisfactory results, the wave 

function of a B-meson and the elective B* B -1- vr coupling constant (in the 

Heavy Meson Chiral Lagrangian). This computation was described in chapter 4.

The evaluation of the matrix elements requires the computation of 2- and 

3-point correlation functions of the form,

(5.87)

153



Spectator Effects In inclusive Decays of Heavy Hadrons

where we have assumed > 0, and

= ■Hy)o,{o)J'(x) !0) (5.88)

where > 0 > fi. In eqs. (5.87) and (5.88) J and are interpolating operators 

which can destroy/create the A;, baryon. Our choice is

4
a,b,c,a,^

^abc (5.89)

where E, d and 6 are creation operators for the quarks.

Moreover we define a quantity Za that encodes the superposition between

this current and the desired ground state

(A|„s|Jt(0) |0) 

\/2mA
(5.90)

where s is the spin (up or down) of the baryon.

In order to enhance the contribution of the ground state to the correlation 

functions, it is useful to “smear” the interpolating operators J and (see e.g. 

ref. [100] and references therein). In this section we will follow ref. [81] and Eidopt 

the type of smearing known as “fuzzing”, already described in some detail in 

section 4.2.2. We introduce two superscipts on each correlation function, each of 

which can be either "F" or "F” depending whether the interpolating operators 

J and are fuzzed or local.

The standard technique to extract hadronic matrix elements of the type

(Aft I Oj I Aft) is to look for plateaus in the ratios

2 (5.91)

In our analysis, however, even with the use of fuzzed interpolating operators J
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and it is not possible to eliminate entirely the effects of excited states from 

the three-point correlation functions On the other hand we do And

that the ground state does dominate the two-point correlation function 

for t > 3, and the masses we obtain in this way agree, within errors, with those 

found by Chris Michael on the same lattice using a 3-mass correlated fit for 

different smeared correlators.

We have followed the following procedure to extract the matrix elements 

(Ai|0,|At>;

• For each value of the light-quark mass we start by fitting the two-point 

correlation function for t > 3 with a single exponential

Spectator Effects in Inclusive Decays of Heavy Hadrons

F \2 (5.92)

thus obtaining the mass of the ground state, mA-

• In order to be able to subtract the effects of the excited state from the

three point correlation functions, we now fit for t > 1 with a double

exponential

(5.93)

keeping mA and fixed at the values obtained from the single exponential 

fit above.

For each of the operators of interest, Oj, we then fit the three-point corre­

lation function C[j^{ti,t2) to

2mA
(5.94)

(5.95)
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Figure 5.5: Plot of the matrix elements and computed after the
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expression Ki 1^2

ZaZ'I = />b/2 0.33(1) 0.33(1)
Ml -0.026(3) -0.019(3)
M2 0.045(4) 0.038(5)
M3 0.018(2) 0.013(2)
M4 -0.040(4) -0.031(4)
rMS,a-^ -0.18(2) -0.13(3)
rMS,a-i
-^2 0.21(2) 0.16(2)
r MS.mi, -0.31(3) -0.22(4)
T MS,mj,
^2 0.23(2) 0.17(2)

Table 5.4: Lattice results for the matrix elements computed on lattice, Mi, the
combined matrix elements at two different scales, and the physical ratio of
lifetimes.

thus obtaining values for the two unknown parameters (Ab| Oj |A(,) and the 

constant C, which encodes the contribution from excited states.

This procedure has been repeated for each of the 4 relevant operators, on 40 

jackknife samples to extract the statistical errors (twice the number of gauge 

configurations because of the two boxes into which the maximal variance reduc-

tion divides the lattice).

In order to justify the above procedure a posteriori, we subtract the con- 

tributions from the excited state obtained above from the two- and three-point

correlation functions, and look for plateaus in the ratios:

zl (5.96)

where C indicates that contribution from excited states has been substracted 

from the correlation function C. The subtracted two-point correlation function 

is reported in fig. 5.4. Fig. 5.5 shows the plateaus of R for those operators that 

correspond to and Z/2 (with the appropriate normalization factor The

plateaus in fig. 5.5 give us confidence in our treatment of the subtraction of the
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contribution of the excited state. The results for the operators obtained from 

eq. (5.96) agree to within 1% with those obtained from eq. (5.95).

Our results for the two values of K are reported in table (5.4). Combining 

them with eq. (5.22) we obtain

 Spectator Effects in Inclusive Decays of Heavy Hadrons

T(A(,) _ I 0.91(1) for m
I 0.93(1) for m.

u —

u —

140 MeV 

75 MeV
(5.97)
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Appendix A

Introduction to Quantum Field 
Theory

Consider a system described by a set of fields and a Lagrangian which is
function of eventually some external fields

C = Cq -\- Cl

vC; is the interactive part of the Lagrangian. The equations of motion are given

by

0 (A.2)

Noether’s theorem: If, under the general infinitesimal transformation of 
space-time coordinates and fields (functions of the infinitesimal parameters Sag)

(A.3)

(A.4)

the Lagrangian transforms in the following way

(A.5)
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Appendix A. Introduction to Quantum Field Theory

then the transformation is a symmetry of the equation of motion and there is a
conserved current associated to it

(a-Ax; - •»■) - CXI (A.6)

with a,; = 0. The generators of the transformation are the conserved charges
given by

(Vl.7)

If in the transformation (A.4) the parameter is function of x, the trans- 
formation is called a gauge transformation.

The generator of temporal translations is called the Hamiltonian and it is 
defined as

B'(t) = j7o(t) + E;(^) = / d^a:

where = — /d^a;/2/(x, t^;).

(A.8)

Green functions: The vacuum expectation value of a set of fields is defined
as

r->^oo

1
Z[0]

(A.9)

where

(A.IO)

The latter expression is called the generating functional (or partition function
after the Wick rotation).

Note the distinction between |0), a state containing 0 particles, and |0), inter­
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preted as the physical vacuum state. Eq. (A.9) may be interpreted together as a 
definition of G(...) and |0). The symbol in eq. (A.9)) has to be interpreted 
as an operator in the Fock space, while in eq. (A. 10) it has to be interpreted as 
a quantum field dehned in some appropriate physical Hilbert space. Since there 
is a 1 — 1 correspondence between them, the same symbol can be used without 
generating ambiguities.

LSZ reduction formula: In the context of the scattering processes and 
decay processes it is often convenient to define in and out states as

Appendix A. Introduction to Quantum Field Theory

1 —} — 00

1 —A-f-OO

(A.ll)

(A.12)

The state m (out) has to be interpreted as the state which asymptotic be­
haviour for large negative (positive) time is that given by (^4(2;i)(^2(^2)---|0)
(^3(Z4)^3(Z4)... |0)).

It is possible to construct a Hilbert space for the m states and associate a 
Fock representation to it. It is important to stress that this representation is 
isomorphic but not coincident with the analogous representation for out states. 
The two are related by the so called matrix

|<Ai(a:i)(A2(2;2)...>o«( = |'^i(a:i)(^2(3;2)...)(. (A.13)

and the S matrix is formally defined as

=: exp : Z[Ji,..., Jn] (A.14)

where A"i_z<^i(a:) is the free classical equation of motion for the field <^^(z) derived 
by the Lagrangian /%. In the case of a scalar theory jF,,! = (Oi; + m,) is the 
Klein-Gordon functional and nii is the mass associated to the field Eq. A.14 
is called LSZ reduction formula.

Optical Theorem: Because of restrictions imposed by causality the S matrix 
has to be hemitian. In terms of the transition matrix T, implicitly defined by
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Appendix A. introduction to Quantum Field Theory

(S = 1 + iT, the theorem states that

T^T = 2Im(T)

Decay and Scattering: One is usually interested in the transition matrix 
elements between some asymptotic w and owt states

= - 2(27r)'^(^'^(pi +P2 + -p3 -P4 - (A.16)

Mfi is the transition amplitude that appears in the formulas for the decay
rate (A.17) and for the cross section (A.18). In practice can be computed
directly from the Green function (A.9), isolating the connected contribution and 
omitting the propagators for external particles.

The formula for the inverse decay time of a particle of 4-momentum p =
(Ep,p) is

r -1 1 n (27r)V(p-^Pi) (A.17)
i>l

The formula for the cross section of two scattering particles of momenta pi 
and p2 respectively is

1
a

4\/(Pl 'P2)^ -P!P2 n (27r)V(pi +P2 -
i>2

(A.18)

where Ep = -I- and d^ = (27r) ^d"^.
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Appendix B

Useful Formulae and Notation

B.l Notation in Minkowski Space-Time in c? = 4 
dimension

Metric

= diag(l, -1, -1, -1) (13.1)

Pauli matrices

(71
0 1 
1 0

(^2
0 -2
i 0

0-3
1 0

0 -1
0B.2)

they undergo the commutation relation

(B.3)

Dirac matrices (Dirac representation)

7
1 0 
0 -1 7

0
-cr, 0 7

0 1 
1 0

(B.4)
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Appendix B. Useful Formulae and Notation

Dirac matrices (Chiral representation)

7
0 1 
1 0

7
0 (Ti 
—(T; 0 7

-1 0
0 1

(B.5)

In both the representations and are hermitian and -y' are anti-hermitian.
The following relations hold

r =
:[7^,7l

75 = 7^ = ^7'^7^7^7^

(EftO

(B/n

(B.8)

Projectors

L
1 - f

R —
1+7^

(B.9)

Traces

tr(7'^7'') = 

tr(7^7'^7^) = 0 

tr(y/yy) =

where = -^0123 = T

(B.IO)

(B.ll)

(B.12)

(B.13)
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Appendix B. Useful Formulae and Notation

B.2 Notation in Euclidean Space-Time in d = 4 
dimension

• Wick rotation prescription (E for Euclidean, M for Minkowski)

E M E M
a;' a;'

^0 Qi

—iAo

F^J

7° 7° Y —zy
5 _ 57 7

-6^'' = diag(—1, —1, —1, —1) 

Dirac matrices (Dirac representation)

7
1 0
0 -1 7

0
0 7

(B.14)

The integration measure transform as follow

exp(-5g) = exp(2.$M)

where

The choice d^azg = id^z^ can be made, hence - ]

• Metric

(B.15)

(B.16)

(B.17)

0 1 
1 0

(B.18)
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Appendix B. Useful Formulae and Notation

Dirac matrices (Chiral representation)

7
0 1 
1 0

7
0
20: 0

7
-1 0 
0 1 

(B.19)

All the Euclidean Dirac matrices are hermitian. The following relations
hohi

aliU [[7'', 7"

(B.20)

(B.21)

(B.22)

and all the are hermitian.

Projectors

L
^ _ /y5

i?
1+7^

(B.23)

Traces

tr(yf) =

tr(7'^7'^7^) = 0

tr(yf yy) = 

tr('y^yyyy) = 46^'"^

where = — 1.

B.3 Operators and Algebra

(B.24)

(B.25)

(B.26)

(B.27)

Fourier decomposition of the basic fields (of spin 0, 1/2 and 1 respectively)
in a basis of creation-annihilation operators (using the relativistic normal-
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ization)

A. (a;)

'"dsP
2Ep
/"daP
/ 2R

[a(p)e-'P': + ot(p)g.pz] (g28)

^ [6(p, s)^^a(p, + (f^(p, g)t;a(p,

^ i'2

^ ^k(p,a)c(p,g)e '^': + e;(p,g)c^(p,a)e'P':

(B.29)

(B.30)

where Ep = \/m^ + p^ and d^ = (27r)

The creation-annihilation operators satisfy commutation relations deduced
by the theorem of "spin and statistics" and causality.

Commutation relations for bosons

[a(p),o(p')] = [a^(p),a^(p')] = 0 

[a(p), o^(p')] = 2Ep(27r)^(5^(p - p') 

[c(p,s),ct(p',g')] = 2Ep(i,y(27r)^J^(p - p')

(B.31)

(B.32)

(B.33)

• Commutation relations for fermions

{6(p,s),6(p',y)} = {6^(p,s),6^(p%a')} = 0 

{d(p, g), d(p', g')} = {d^(p, g), d^(p% g')} = 0 

{6(p,g),6^(p',g')} = 2Ep(^,y(27r)^6^(p-p') 

{d(p,g),dt(p%g')} = 2Ep(^,y(27r)^(^^(p - p')

(B.34)

(B.35)

(B.36)

(B.37)

The Dirac spinors u(p, g) is a positive-energy eigenstate of momentum p
and of spin g = u(p,g) is a negative-energy eigenstate of the same
operators. They are solutions of the Dirac equations

(/) — m)u(p, g) = 0 

(;i-t-m)u(p,g) = 0

(B.38)

(B.39)
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Appendix B. Useful Formulae and Notation

w(p, s) = M^(p, 5)7° and f(p, s) = t;^(p, 5)7° are solutions of

tZ(p, == 0 (6/40)

u(p, g)(;) + m)=:0 (B.41)

# Relations between spinors

^(p, r)t/(p, g) = 

u(p,r)u(p,g) = -2mar,^ 

n(p,r)7^M(p,g) = 

u(p,r)7^u(p,g) = -2p''(ir,3 

w(p, g)iZ(p, g) = ^ 4- m

y]u(p,g)u(p,g)

(B.42)

(B.43)

(B.44)

(B.45)

(B.46)

(B.47)

• Gordon decomposition

1
M(p% r)7''w(p, g) = [(p' + p)'' + 20-^''(p' - p)./] M(p, s)

(B.48)

Explicit expression for the Dirac spinors in the Dirac representation

rt(p,g)

u(p,g)

(Ep + m) 2 
(Ep + m)-i(a'p)

(Ep + m)-i((7 - p) 

(Ep + 771)2

(B.49)

(B.50)

where are eigenstates of the spin

X+1/2
1
0

%-l/2
0
1

(B.51)
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Appendix B. Useful Formulae and Notation

Free scalar propagator

zA(z) = (0|T |0) = / d4p -ipx

~ + is
(B.52)

Free Dirac propagator

= (01?^ {V'a(a:),i/'^(0)j |0) = /d4p
+ zs

-ipx (B.53)

Free vector-field propagator

= (0|T {;4,;(z),;4^(0)} |0) = / d4p

where

(1 - QP/iP,/
— Cm,^ -t- 26

%(—+ /,i(/(p))
p^ — 4- 26

-ipx

(B.54)

(B.55)

It is gauge dependent. The choice C = 1 correspond to the Feynman gauge 
and (^ = 0 to the Landau gauge. For a massless vector field A,;, the choice 

= 0 is called Coulomb gauge and correspond to the constraint

(o|a''A/z)|o> = 0 (B.56)
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Discrete symmetries (in Minkowski space)

C P T
<A(3:) 77c 7^<^(Tr)

7)0^,; <6^ (z)
V'a(a;) 77?r(?^7°7^)a^V';9(a;r)

-77Tp''''A^(ZT)
: 7/''^ : : 7/;^ : : T/'T/' : : :

: : : : — : : : 7/;y^^ :

: V'T/iV' : - : : : T/'Y^T/' : p/'f' : 7/)"/^^ :

: : : : : :
: 7/;(7„^7/' : : : : T/zcTy^^T/; : : V"7,ii,V' :

where % = ^=1 &nd 7;^, 7)^ are chosen such that 
definitions for any operator 0(a;)

Ml • "Mn-(CFr)o„.,„„„W(CFr)-' = (-i)"o*.

This is known as CPT theorem. Note that TiT^^ 

Fierz identities

x)

1. Under these

(B.57)

-7.

/ % 7/2^3 724 \ / 1 1 1 1 1 ^ / 7:i7:47Z37:2 \
%Y^7/27Z3Y^7.(4

_ 1 
“4

1 1 -1 _2 1
2

7%! Y^ 774 7:3 Y^ 7:2

ttlY'" 7/2^37/, ^4 4 '—— -2 2 0 7:iY''7:47:3Y/;r(2
%7^7''«2«37^77''(^4 4 -4 2 -2 0 7:iY^Y''rt47:3Y^YA^2

V 7:27130-^1,774 /
1 12

12 0 0
-2 j V 7:i0-'"''7:4E30-^i,7:2 y
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Appendix B. Useful Formulae and Notation

* Clebsh-Gordan Coefficients, They can be built by iterative use
of the two identities

+1) - mi ,m2
\/:7i0i + 1) - m,i(Tn,i + +

\/j2(;2 + 1) - ^2(7722 + mi,1712-1 (B.58)

,012\/;U +1) -

VjlUl + 1) - +

\/j2(j2 + 1) - )7l2()Tl2 + 1)C'^^%2+1 (B.59)

They are different from zero only if

m = m,i 4- m,2; |;i - ;2| < j < b'l + j2| (B.60)

B.4 Gauge groups

* Gauge tranfromation on the fields [/ = ^ 5'f/(7V)

y —} f/y 

i/) —f/i/'

1/; -4

(B.61)

(B.62)

(B.63)

• Properties of the group generators

tr(^'') = 0
1
P

,t, _ 1I 7.1 -- ~

tr(ft

(B.64)

(B.65)

(B.66)

(B.67)
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• Casimir operators (i.e. gauge invariant operators which commute with all
the generators of the gauge group):

a
cdb\*

cd

(B.68)

(B.69)

(B.70)

The next table lists the properties of those groups which appear to be the 
most relevant in physics

group generators Cf' Tp

(B.71)

Gell-Mann matrices

A' (B.72)

(B.73)

(B.74)

(B.75)
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The matrices t'' = ^ are generators of S'L/ (3) and satisfy the relations

4

== —
6

rt'' (2) f

rt'' ® t''r = ^1 ® (gi r
9 6

(B.76)

(B.77)

(B.78)

(B.79)

(B.80)

where are totally antisymmentric, are totally symmentric and their 
non vanishing elements are given by

o6c a6c d<i6c (z6c d^bc

123 1 118 l/\/3 355 1/2
147 1/2 146 1/2 366 -1/2
156 -1/2 157 1/2 377 -1/2
246 1/2 228 l/\/3 448 -l/2\/3

257 1/2 247 -1/2 558 -l/2\/3
345 1/2 256 1/2 668 -l/2\/3
367 -1/2 338 l/\/3 778 -l/2\/3
458 \/3/2 344 1/2 888 -l/\/3
678 \/3/2

(B.81)

B.5 Rules for Dimensional Regularization

In d = 4 — 2g dimensions and in Minkowski space.

• Metric

^00 = 1

— —1 for i = 1,3 — 2s

= 0 for a ^

(B.82)

(B.83)

(B.84)
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# Relations between 'y matrices

y= 4-26

yy?,! = (26 - 2)y

yyy'Y,; = — 26'y'^''y''

(B.85)

(B.86)

(B.87)

(B.88)

Feynman parametrization

1 r(a + 6 + c)
r(o)r(6)r(c)

yi .1
dz / dy

X

^  2/) C~~l

0 Vo [a;Ai+?/A2 + (l-z-^)A3] a+b+c (B.89)

Typical integrals

yy / dj/u
— A + 26)'

/:2m (B.90)

/ dj/c
(/c^ — A + 26)'

(B.91)

where

Fn,m{^)
„-„2 / 1 Nn+m A 2+m-n A

1^5 - >06 i^)r(^ + " — 2)

(B.92)

and is a sum with sign over all the possible contractions of the
indices. The sign is positive for an even permutation and negative for an
odd permutation. For example:

P^l/i2/l3/:4 _ gfj.lfj.2 gl2.3tJ.4 _ g^^l^^3 g^^A^1.2 _|_ g|2l^^4 g^J.3^22
(B.93)

(B.94)
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Using the MS' prescription (for u.v. divergences)

(-l)"+^(a - m - 1)!
(m + l)(n - 1)!

Fn,m{^) —^(n>m+2)

(n=m+2) ^2 (B.95)

Gamma function (for any n positive integer)

r(n + a) = (n — 1)! + C)(e) 

r(6) = — Tg + 0(e)

(B.96)

(B.97)

where '"/g = 0.577.. is the Euler number. 

Useful integrals

(B.98)
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Appendix C

Units, Parameters, Particles

• Conversion factors

-251 GeV-^ = 6.5821219(13) 10""" s 

= 0.197327053(59) fm 

= 0.197327053(59) 10"^^ m

• Constants

Quantity Symbol Value
speed of light in vacuum c 299792458
Plank constant h/lix 1.05457266(63) lO'^Ms
Avogadro number Na 6.0221367(36) lO^^mol"^
Boltzmann constant k 8.617385(73) lO'^eV
wavelength of lei/ particle hc/e 1.23984277(37) lO-^ni
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Parameters of the Standard Model

Symbol Value Symbol Value
me 0.51099906(15) ^deV A=e^/4% 1/137.035989(6)

105.658389(34) MeV Gf 1.16639(1) 10-5 MeV
1777.05(3)MeV aXmg) (hll92(2)

mu 1.5 4- 5 MeV mj 3 4-9 MeV
me 1.3(1) GeV m^ 65(5) GeV
m( 174(5) GeV mb 4.2(1) GeV

80.41(10) GeV mg 90.187(7) GeV
sin^ ^w(m%) 0.2312(3) AqcD 250(50) ^deV[136]
m;^ 66t^^ GeV

* Cabibbo-Kobayashi-Maskawa matrix elements

Kbl \ / 0.9751(6) 0.221(2) 0.003(1) \

l%:^l IKfel 0.221(3) 0.9743(7) 0.041(5)
1^.1 IK^I ) ^ (h009(5) 0.040(6) 0.9991(2)

e Examples scalar mesons

Symbol 99 mass Symbol 99 mass
Tr"*" ucf 1,0- 139 B+ ub 1,0- 5278
7r° du 1,0- 134 db 1,0- 5279
Tf- uu — dd 1,0- 139 g- i'O- 5278

V uu 4- dd 0,0- 547 If bd 1,0- 5279
K+ us ^,0- 493 Dt cs 0,0- 1968

ds ^,0- 498 s6 0,0- 5279
K- su 493 d: sc 0,0- 1968
Tf s(i |,o- 498 bs 0,0- 5369
D+ cd |,0- 1869 Vc cc 0,0- 2979

cu 1,0- 1864
D- (fu |,0- 1869
If uc 1.0- 1864
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* Examples of vectorial mesons

Symbol 99 I,J^ mass Symbol 99 mass

P ME — dcf 1,1+ 770 d: 0,1- 782
U) 0,1- 1419 c6,6c 0,1- ?

K* ^9,95 1414 J/V, cc 0,1- 3096
D* c^9c 2006 T 66 0,1- 9460
B* 69,96 1,1" 5324

• Examples of Baryons

Symbo 999 mass Symbol 999 mass

P 1 1 + 
2, 2 938 Q- sas 1672

n 1 1 +
2,2 939 A+ nc(c ^1+ 2285

A++ 3 3+ 
2,2 1232 S++ MltC i,r 2452

A+ uud 3 3+ 
2,2 1232 ndc i,r 2453

A° rtdcf 3 3 + 
2' 2 1232 E? (fcitc 2452

A- 3 3 + 
2, 2 1232 MSC 1 1+

2' 2 2465
E+ rtrts i.r 1189 dsc 1 1 +

2, 2 2465
E° ncfs i,r 1192 =0 ng6 1 1 +

2, 2 ?

E- i,r 1189 c(s6 1 1 +
2, 2 ?

A° 1115 K it(f6 o,r 5624
go 11+

2,2 1314
(fss 11+

2,2 1321
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Feynman Rules

D.l Feynman rules for QCD and HQET 
(Minkowski space)

• Gluon Propagator in the Feynman gauge (with an infinitesimal mass A as
infrared regulator)

-w/jiy

— A^
(I).l)

Quark Propagator

Quark-Gluon Vertex

(D.2)

9) = (D.3)

Static Quark Propagator

Bh(p)
PO + K

(D.4)
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Static Quark-Gluon Vertex

^o(p,9) = (D.5)

D.2 Feynman rules for Lattice QCD and HQET 
(Euclidean space)

In quoting following Feynman rules, we adopt the definitions

CM

sAp)

cos(pp/2)

sin(p„/2)

(D.6)

(D.7)

and all the momenta are in units of the lattice spacing. In the expressions for
the vertices, p is intedened to be the momentum of the incoming quark and g is 
the momentum of the outcoming quark. The symbols A;(p) are defined later in
this Appendix.

* Gluon Propagator in the Feynman gauge (with an infinitesimal mass A as 
infrared regulator)

4Ai(p) -b o^A^
(D.8)

• Quark Propagator

T,f '1pCAp)Sf(p) +rn+ 2rA, (p)
D(p)

Quark-Gluon Vertex

A2(p)
(D.9)

g) = + g) + -b g)

Improved Quark-Gluon Vertex (from SW “clover” term)

g) = ^ - g)

(D.IO)

(D.ll)
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# Quark-two-Gluon Vertex

# Static Quark Propagator

1

(D.12)

Dh(p) 1 — g-Vo + 6

Static Quark-Gluon Vertex

Static Quark-two-Gluon vertex

(D,13)

(D.14)

(D.15)

D.3 Example of computation of a Lattice Feyn­
man diagram

As an example the following Feynman diagram that contributes to the one loop 
correction of the operator brqqTb will be computed explicitely.

(D.16)

(D.17)
d4

J (27r)4

9^ 1
(47r)^ TT^

X
1

[2%

y,(0, A:)D(A;)r G, 14o(0, A;)Dh(A:)rG/'0(A;) = 

f i'k - r%)
A2(A;)

-t- z7r6(A:o)
J 4Ai(A:)

tT ig, (D.18)

The terms l/2S'o and iTiS{ko) come from the principal value and the pole residue,
due to the static quark propagator, respectively. We expand the integrand and
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observe that

'5'^(—A:) = -s,{k) (D.19)

C'/i(—A:) = +C^(A:) (D.20)
Ai(-A;) = +Aj(A:) (D.21)

therefore any term in the integrand with an odd number of S' functions vanishes
in the integration and just two terms survive:

(47r)^

P" 1

CoCo
4A1A2

4A1A2

tT 0 rr + 

(T (g) rr (D.22)

Moreover we observe that, due to the lattice hypercubic symmetry,

Wo /- ,4, C-iCi A ,4, W2 /- ,4, Ws
A1A2 J A1A2 J

therefore the following relation holds 

CoCo 1

d'^A;
Ai A2

d'^A:
Ai A2

(D.23)

d'^A:
A1A2

1
4 Ai A2

d'^A:
1 - IZp 'S',,5'p/4 

A1A2
(D.24)

Substituting the identity of eq. (D.24) into the first term of eq. (D.22), together 
with the dehnition of Ai, we obtain

I
_g^JL
(47r)^ TT^

-2r
(47r)^ TT

- (1 - ^1/4
d'^A;

4A1A2
tT (g) tT +

d'^A; Ai6(A;o)
4Ai A2

y tT ® y tTO-tai (D.25)

The first integral is divergent therefore we isolate the divergence by adding and
substractiong the integrand Ao(A:) — ^(1 — A;^)/(A;^ + o^A^)^ and we replace the 
numerical integrals with the symbols and 0(2, defined in eqs. (D.42)-(D.43).
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The result reads 

^2
/

(4^)
^(1 ^ ^ (^2)7°^T (g)

7r^(A;^ + (4^y
(D.26)

The first integral can be computed analitically (with the appropriate prescription
for the pole when A -4 0) and we obtain

^ (logn^A" - di) tT (g) tT + ^(d2)7°tT ®
(47r)2 '' (47r)^

This is the result quoted in Chapter 3 for the diagram n. 27).

D.4 Definition of useful parameters

(D.27)

= cos(p,,/2) (D.28)

= 8in(p,,/2) (D.29)

Ao(p) (D.30)

Ai(p) = ^sin^(p/2)
p

(D.31)

A2(p) = sin^ Pp + (m + 2r Ai)^
p

(D.32)

A3(p) = y]cos^(p/2) = (4-Ai) (D.33)

A4(p) (D.34)

A5(p)
p

(D.35)

A6(p)
p

(D.36)

A7(p) = E cos^(Pf/2)
p

(D.37)

A8(p) = E^in^Pf cos^(P(/2) = ^4(4 - Ai) - (A4 - As) (D.38)
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Note that A2(p) only appears for the quark propagator and m is the mass 
of the quark. For what concerns this thesis we are only interested in massless 
quarks (chiral limit) therefore m is set equal to zero in the numerical evaluation 
of the Feynman integrals. Our definitions of the Ai(p) functions are constistent 
with those of ref. [65] but not with those of ref.

D.5 Definition of useful integrals

In the following definitions, the symbol □ refers to the four dimensional integra­
tion domain defined by

O = {V//, /Cy; e [-TT, +7r]} (D.39)

Useful integrals:

di
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