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Introduction

In a classical analysis of the flow in an external boundary layer the pressure gradient is obtained
from the inviscid (potential) solution for flow past the body. The simplest example is Blasius
flow past a flat plate aligned with the flow in which the pressure gradient is zero. Consider the
case of a circular cylinder with the external flow aligned along the cylinders axis. If the cylinder
is solid, then the flow will adjust to the presence of the cylinder, generating a nonzero pressure
gradient near the nose of the cylinder. However the pressure gradient will decay asymptotically
along the cylinder. Alternatively, if fluid is being sucked into the cylinder at the free stream
velocity, the pressure gradient will zero from the leading edge.

This problem, of flow developing along a circular cylinder with zero pressure gradient, is the
one that will be considered here. There is little reported in the literature on this problem.
Seban and Bond (1] give the first three terms in a series solution valid near the leading edge
of the cylinder, giving in particular expressions for the shear stress on the surface and the
displacement area. Kelly [2]| presents different values for some of the coefficients.in the Seban
and Bond solution. In contrast, Stewartson [3] gives a series solution for very large distances
along the cylinder. In [3] it is shown that sufficiently far along the cylinder, the wall shear
stress decays logarithmically with distance, rather than than algebraically as is usually found.
Glauert and Lighthill 4] considered the flow along the entire cylinder. They developed a similar
series solution to Stewartson for the low far downstream. Also, they developed an approximate
solution for flow near the leading edge based on a Pohlhausen method with a logarithmic profile,
and have shown that this solution produces reasonable agreement with different series solutions
valid near the leading edge and far downstream. Using these solutions they produced a set of
recommended curves for quantities such as the displacement area and the skin friction

‘Here a full numerical solution of the boundary layer problem will be presented and compared



with with the previous results.

Formulation

Assuming zero pressure gradient, and the boundary layer equations in polar coordinates (z,7),

non-dimensicnalised on the cylinder radius, are
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where (u, v) are the stream wise and radial velocity components, non-dimensionalised on the free
stream velocity Uy, Re = Uyxa/v is the Reynolds number where v is the kinematic viscosity.

Introducing the transformation
y=(r-1)Re, v— Re v, (3)

N _1 .
which incorporates the usual Re™ 2 scaling, produces
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with boundary conditions

u=v=10 at y=0 (6)
u—1 as y— o0 (M

In addition a suitable initial condition must be specified. This will be considered below.

Theoretical Results

From (4-7) it may appear that the leading term in the boundary layer solution will be flat
plate Blasius flow, with an O(Re"%) perturbation. While this is true near the leading edge of
the cylinder, further downstreamn this approximation beaks down. With the Blasius solution, y
scales as z%. Hence the ratio of the terms on the right side of (5) is
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Hence when £ = O(Re) the terms of the right side are of similar magnitude due to the growth
in the boundary layer, and Blasius flow flow will not be the leading term in the solution when



the boundary layer thickness becomes comparable with the cylinder radius. Further, at this
stage it is also necessary to include the additional term in the continuity equation at leading
order.

Here the extra term will be included from the leading edge by adopting the boundary layer
equations in the form (4-7). These equations will be solved numerically, using the method
outlined below. First, however, the first two term in the series solution for the fow near the
leading edge, valid in the region 0 < z < Re, will be presented. Following Seban and Bond,
take

n=Reiz~2(r—1}/2, &= Re iz} (9)
and
% = Re™%z7 f(£,n) (10)
This gives
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The governing equation for f is
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Taking
f=Folm +&film} + ... | (13)
where it is assumed that £ < 1, produces
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The boundary conditions are
fo(0) = fo(0) =0 and fi—1 as 51— co (16)
f1(0)=f{(0)=0 and f{ =0 as n— o0 (17)

Equation (16) is the Blasius equation. The problems defined by (14-17) are easily solved
numerically. The solution give the dimensionless skin friction 7 = Ouf0y as

T = 0332277 + 0.604Re™ + ... (18)

This is essentially the same expression given by Seban and Bond/Kelly [1, 2], but with a small
difference in the second coefficient, due presumably to the increased accuracy of the calculations



performed here. Equation (18) has the skin friction tending to a constant for large z, although
formally it is valid only for z < Re.

The asymptotic series produced by Glauert and Lighthill [4] for large = gives

+ 0674 (19)

where v = 0.5772 is Euler’s constant and § = In(4z/Re). This formula has 7 decaying as =
increases, albeit slowly, inversely with Inz. Stewartson [3] produced a similar resuits, but used
& = In(4z/ReC) in place of 8, where InC = +. Stewartson’s formula is
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Equation (19) can be derived from Stewartson’s expression by writing § = 6§ — v and expanding
the first two terms in{20) for large . The Glauert and Lighthill expression for 7 is used here
as 1t gives a better comparison with the numerical solutions presented below than Stewartson’s

formula.

Another of quantity of interest is the “displacement area”, which represents the amount by
which the fluid in the main stream is displaced by the action the viscous effects in the bound-
ary layer. In two-dimensional flow the displacement thickness gives the distance which the
streamlines in the far field are displaced from those of the inviseid flow past the body. However,
in cylindrical coordinates, the displacement of the streamlines in away from the surface decays
inversely with r due to the expansion in area with r. Hence there is no unique displacement
thickness, and the appropriate quantity is the displacement area. In non-dimensional form

A = 2];00(1 — u)rdr (21)

gi‘}es the displacement area relative to the cross-sectional area of the cylinder. Substituting the
Blasius profile directly into (21) produces

Ay = Re" 3% {3.44 + 4.37Re-%a:%] (22)
The solution to (14-17) gives
Ay = Re"¥z} [3.442 4+ 0.143Re™ ¥ + . ] (23)

Equation (23) is valid only for 0 < £ < Re. For large z Glauert and Lighthill give

A, _ 4z [1 . 1+'y+’2ln2+”.]
Re

3 5 (24)

Stewartson [3] states that the boundary layer thickness is ultimately of order (z/Reé )%, consis-
tent with (24). Hence the boundary layer grows at a factor (ln a:)_% more slowly than for the
flat plate.



Numerical Method

In the original polar coordinates the velocity can be obtained from the streamfunction ¥(z, )

through
18y 1oy
R =L (25)
In boundary layer coordinates write
P = Re"é‘ll(sc, z) (26)

where z = Re3z™3 (r — 1). The boundary layer equations (4) and (5) can now be written as a
system of coupled first order differential equations:
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The boundary conditions are
¥(z,0) =u(z,0) =0 and u#—1 as n— o0 (30)

The Keller box [5] method is used to solve (27-30). The Keller box method is a Crank-Nicolson
finite difference method, which is second order accurate. Newton’s method is used to solve the
non-linear set of algebraic equations which result once the equations have been discretised. A
uniform grid is used in 2. Since the Keller box method involves values only at the present and
previous grid points in the streamwise direction, the grid step in z can be changed with no
further complications to the method. The streamwise grid step is scaled with % in accordance
with the expected development of the boundary layer, so that Az = z3A.

The initial condition was obtained from (10), (13}, and the solution to (14-17). Typical numer-
ical parameters were 2mq; = 20, 250 points in z, A = 0.05, and £y = 0.01.

Results

For reference consider a flow with Re = 10%, corresponding e.g. to a cylinder with diameter
1 cm in water with a free stream velocity of 1 m/s. Figure 1 shows the dimensionless skin
friction near the leading edge of the cylinder where the Blasius sclution should be valid at
leading order. Figure 1 shows 7 from the numerical solution, the Blasius values and Blasius
plus the O(Re‘%) perturbation. Clearly, even at this stage the perturbation is significant, and
the Blasius solution alone does not give an accurate estimate of the skin friction.
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Figure 1: Dimensionless skin friction near the leading edge of the cylinder for Re = 104

Figure 2 shows the skin friction much further downstream. For very large z, the Blasius values
are much too small while the addition of the O(Re‘%) term gives values that are too large. For
sufficiently large = the Glauert and Lighthill formula (19) gives excellent resuits.
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Figure 2: Dimensionless skin friction for Re = 10*



The displacement area is shown in figure 3. This figure displays A calculated directly from
the numerical solution, using the Blasius solution (22), the expansion valid for 0 < z < Re
(23), and Glauert and Lighthill's expression for large = (24). As expected A; is smaller than
that given using the Blasius profile, and (23) is valid only near the leading edge of the cylinder.
Glauert and Lighthill’s formula (24} is tending towards the numerical values but only for very

large z.
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Figure 3: Displacement area for Re = 10*

Perhaps of more interest than the displacement area, which does not give a direct measure of
the displacement of the streamlines, is the boundary layer thickness. This is shown in figure
4, along with the Blasius values. The boundary layer thickness has been defined as value of
y = 232 where u /Use = 0.99. The boundary layer is significantly thinner than for the flat plate
case, with the difference increasing with z. This is consistent with the higher shear stress in

the cylindrical case.

Stability

Flat plate boundary layer flow is one of the cases in which linear stability theory based on a
normal mode approach produces a reasonable compafison with experimental results. Hence, for
very high values of Re where the flow near the leading edge of the cylinder is given by Blasius
flow, linear theory should indicate where the flow first becomes unstable in this case as well.
For lower Re or further down the cylinder, the higher values of the wall shear stress and lower
values of the displacement area suggest that the flow will be more stable for the cylinder than
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Figure 4: Dimensionless boundary layer thickness for Re = 10*

the flat plate. However, the governing equation for the disturbance is not the same, so this

prediction must be treated with caution.
The disturbance to the flow is given by
¥1 = ¢(r) expli(az — wi)] (31)

where 1), is the disturbance streamfunction, ¢(r) its complex amplitude, and & and w the wave
number and frequency of the disturbance. Substituting (31) in the Navier-Stokes equations and

linearising produces

w A 1
(u- ;) (D-ap-r (5} = (D - 0¥ (32)
where o L5
= (33)

Equation (32) is the axisymmetric equivalent of the more familiar Orr-Sommerfeld equation

found for two-dimensional flow. Adopting the the boundary layer scaling

r=1+Re 2y, o=Reif (34)
(32) becomes '
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where ¢ = w/a is the complex wave speed, R; = Re'zl', and the prime on u now refers to 4/3y.

Clearly for large Re the stability characteristics near the leading edge of the cylinder will be
similar to those for the flat plate. Drazin and Reid [6] give the critical values of

R. =519, @, =0.0304 (36)

based on the displacement thickness as the characteristic length. In non-dimensional terms the
displacement thickness for Blasius flow is given by

81 = 1.72z3 Re™ % (37)

Hence in the scalings used here

_ R, 2 _ Q¢
Te = (172> /Re and ﬁc = W (38)

where z. is the point the flow first becomes unstable.

Calculations were performed for a range of Reynolds numbers. For Re = 10, which (38) gives
z. = 0.91 and B, = 0.185, the critical point was found to be at z, ~ 0.99 and 8 =~ 0.177.
As expected, this is further downstream than for Blasius flow. For Re = 5 x 10%, (38) gives
zc = 1.82 and S, = 0.131, while for the cylinder, z. ~ 2.18 with 8. =~ 0.12.

The gap between the predicted and calculated values of z,. increases as Re decreases. For
Re = 2x10* (38) gives z, = 4.55 and &, = 0.0828, while the values from the numerical solution
are . ~ 8.02 and 8, =~ 0.0617. However, for Re = 10* no unstable modes were found. Note
that at this point the eigenvalue ¢ is consistent with the values for higher Re in that R(c) is
approximately the same, which indicates that the solution to (35} has not jumped to another
branch, i.e. is still obtaining the least stable solution.

Further, even for the higher Re considered here, the flow is unstable only for a finite section of
the cylinder, with $(¢) > 0 only for z, < = < z,, where z,; depends on Re. For Re = 2 x 104,
zs = 410, for Re = 5 x 10*, z, ~ 4800, and for Re = 10°, z, = 21211. In all cases the change
back to stable flow is still in the region in which the series with Blasius flow as the leading term
might be expected to be valid.

Discussion

Calculations have been performed for the boundary layer on a long thin cylinder, including
effects which come from the radial nature of the problem. Near the leading edge of the cylinder
a solution can be written as a series which is formally valid for 2 < Re, with Blasius flow as
the leading term. However, in practice the second term in the series, which is of relative order
(z/Re)'/?, plays a significant role much closer to the leading edge. In the expression for the
skin friction (18), proportional to the leading term, the second term is 2.09(z/Re)*/2, which
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equals 0.66 when z/Re = 1/10, and 0.21 when z/Re = 1/100. Hence, except very close to the
leading edge, 7 is significantly different from that for Blasius flow. This can be seen clearly in
Figure 1 which shows the skin friction near the leading edge for Re = 10*.

Further down the cylinder, when = < Re, the series solution given by Glauert and Lighthill [4]
gives excellent results for the skin friction (Figure 2}, but worse agreement for the displacement
area (Figure 3).

The boundary layer thickness is lower and the skin friction is higher in the cylinder flow than
those for Blasius flow. In general this would suggest that the flow is more stable. This prediction
has been borne out, In fact, for low with Re = 10! or less the flow is unconditionally stable
to linear normal mode disturbances. Physically, the flow would still be expected to become
unstable then turbulent along the cylinder as the boundary layer grows in thickness. However,
at lower Reynolds numbers there will be no simple, two-dimensional, Tollmein-Schlichting type
wave growth/transition scenario. At higher Reynolds numbers, instability when it occurs is
further downstream than for Blasius flow, and for the Reynolds numbers investigated in detail,
occurs only for a finite length of the cylinder, with the flow becoming stable again when z is still
well short of Re. This does not of course imply that the flow will be laminar far downstream.
However, with a carefully designed experiment it may be that laminar flow can be maintained
much further downstream than with a flat plate (c.f. Poiseuille flow in a pipe as opposed to a
channel).

The enhanced stability characteristics over flat plate boundary layer flow are due to a com-
bination of effects. Although the fuller profile found for the cylinder would be expected to
be more stable, this is not the full reason. If the velocity profile for the cylinder case with
Re = 10* are used with an Orr-Sommerfeld solver, then unstable modes are found, albeit with
the critical point further downstream predicted from (38). Also, if the Blasius profile is used
with the cylindrical stability solver, unstable modes are found for Re = 10%. Hence it is both
the change in the velocity profile and the effect of the extra term in the stability equation (35)
which produces the unconditional stability of the flow when Re = 10%.

Unconditional normal mode linear stability has of course been found with other basic flows. In
particular, no unstable modes have been found for Poiseuille flow in a pipe, although this flow
is well known to be unstable at sufficiently high Reynolds number.

Finally note that the stabilty of the flow at lower Reynolds numbers rules out some of the
standard methods used for in industry for transition prediction, as these commonly rely on
empirical correlations of the observed behaviour of basic flows with the linear stability charac-
teristics. In particular, neither the industry standard e” method or Granvilles method could
be used.
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Further Work

Considering first a cylinder aligned with the flow, the obvious next step is to extend the nu-
merical modelling to include turbulence. There are a number of ways of increasing complexity
that this can be done. The first would be to retain the assumption of boundary layer flow but
include a simple turbulence model, such as the Baldwin-Lomax model, along with the standard
interaction law as the outer boundary condition. The interaction law couples the outer inviscid
flow and inner viscous flow so that the pressure in the boundary layer is not specified but calcu-
lated as part of the solution. A more computationally intensive but more satisfactory approach
would be to use an incompressible Navier-Stokes solver with one of the standard turbulence
models such as the £ — w model.

Both of these approaches assume axisymmetric flow, and would require reasonable but not ex-
cessively large computational resources. The boundary layer approach would involve modifying
the boundary layer code used in the present study, while there is an in-house Navier-Stokes
solver available at Southampton that could be used for any further work. The aim in both
approaches would be to produce estimates of the behaviour of the boundary layer as it develops
downstream beyond the laminar stage. Since there should be a similar amount of work involved
in these two approaches, the Navier-Stokes one would be prefered.

A more realistic approach would be to calculate the turbulent flow directly, and then calculate
the pressure spectrum from the data obtained. There are two main methods that could be used,
Large Eddy Simulation (LES) and so-called Direct Numerical Simulations (DNS). The former
attempts to calculate the large scale eddies in the flow directly and models the missing, smaller
length scale effects through a sub-grid model. The latter makes no approximations, but solves
the full Navier-Stokes equations directly. A major advantage of LES is that it can handle flows
with much higher Reynolds numbers while DNS should be more accurate/realistic as it should
include all effects/length scales, although the maximum Reynolds number flow that can be
calculated is limited. Both approaches are feasible but require large computational resources.

Suppose now that the cylinder is not aligned with the flow but exhibits a small amplitude
oscillatory motion, with the axis of the cylinder given by

r= Asin(kz — wt) (39)

where all quantities are in dimensional form. It is assumed here that the oscillation to the
cylinder lies in a plane, whereas it could be three-dimensional/helical. However, the basic

arguments would stay the same.
If the wave length of the disturbance is L, its wave speed matches the flow speed, and the
maximum slope on the cylinder is 1° then

L 2z
T = gy Sin f(m — Ut} (40)
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Suppaose now radius of the cylinder is 1 cm, and a typical wavelength is order 100 m, so that
L = 10%a. Then the amplitude of the transverse motion of the cylinder is 0O(28a), so that,
assuming that the growth rate of the boundary layer is still O((z/Re)!/?)), the motion of
the cylinder will not be contained within the boundary layer until z = O(800Re). Hence,
although an analysis could be performed with the leading part of the cylinder stationary and
the transverse motion sufficiently far downstream that it is contained within the boundary layer,

this would require an extremely long cylinder.

The transverse motion of the motion of the cylinder has a Reynolds number based on the peak
velocity of

4

Hence, in general, given R, (for example, 350 when Re = 10%), and the size of the transverse
motion compared to the thickness of the boundary layer, transverse shedding of the boundary
layer/vortices would be expected, and a boundary layer type analysis would not be appropriate,
unless the sideways motion of the cylinder occurs only very far downstream .

Consider now the case that the main stream is not aligned with the cylinder, but is inclined at
an angle of around to 5°. In this case the velocity normal to the cylinder would be roughly 10%
of the free stream velocity. Hence the transverse Reynolds number based on the diameter of
the cylinder is sufficiently large that significant cross stream effects could occur. In particular,
if the flow was laminar, eddy shedding and a vortex wake might be expected. However, for
turbulent flow, much of this secondary motion could be suppressed.

In summary, there are a number of ways this research could proceed, depending largely on
the resources available. The most satisfactory would be to perform a DNS or LES study.
However, while this is feasible it would require significant resources, not least in terms of the
computational facilities required. A more modest approach, which is a cbvious first step, would
be to use a standard incompressible Navier-Stokes solver with e.g. a k — w turbulence model
for the flow along the cylinder aligned with the flow. This should provide estimates of the
behaviour of the boundary layer as the flow develops downstream, in particular of the growth
of the boundary layer and the drag force on the cylinder.
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Introduction

In a classical analysis of the flow in an external boundary layer the pressure gradient is obtained
from the inviscid (potential) solution for flow past the body. The simplest example is Blasius
flow past a flat plate aligned with the flow in which the pressure gradient is zero. Consider the
case of a circular cylinder with the external flow aligned along the cylinders axis. If the cylinder
is solid, then the flow will adjust to the presence of the cylinder, generating a nonzero pressure
gradient near the nose of the cylinder. However the pressure gradient will decay asymptotically
along the cylinder. Alternatively, if fluid is being sucked into the cylinder at the free stream
velocity, the pressure gradient will zero from the leading edge.

This problem, of flow developing along a circular cylinder with zero pressure gradient, is the
one that will be considered here. There is little reported in the literature on this problem.
Seban and Bond {1} give the first three terms in a series solution valid near the leading edge
of the cylinder, giving in particular expressions for the shear stress on the surface and the
displacement area. Kelly [2] presents different values for some of the coefficients.in the Seban
and Bond solution. In contrast, Stewartson [3] gives a series solution for very large distances
along the cylinder. In [3] it is shown that sufficiently far along the cylinder, the wall shear
stress decays logarithmically with distance, rather than than algebraically as is usually found.
Glauert and Lighthill [4] considered the flow along the entire cylinder. They developed a similar
series solution to Stewartson for the flow far downstream. Also, they developed an approximate
solution for flow near the leading edge based on a Pohlhausen method with a logarithmic profile,
and have shown that this solution produces reasonable agreement with different series solutions
valid near the leading edge and far downstream. Using these solutions they produced a set of
recommended curves for quantities such as the displacement area and the skin friction

Here a full numerical solution of the boundary layer problem will be presented and compared



with with the previous results.

Formulation

Assuming zero pressure gradient, and the boundary layer equations in polar coordinates (z,7),

non-dimensionalised on the cylinder radius, are

du Ov v
6—$+E+;-—0 (l)

ou, w1 (Fu 10w
u@:z; vBr_Re ar?  ror
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where (u,v) are the stream wise and radial velocity components, non-dimensionalised on the free
stream velocity Uy,. Re = Uya/v is the Reynolds number where v is the kinematic viscosity.

Introducing the transformation
y={r— 1)Re%, v — Re_%u, (3)
which incorporates the usual Re™? scaling, produces
|
Re-}
QH + Qy_ 4 Lzl =0 (4)
9z 8y 1+ Re 3y

WO _Pu Rer bu )
9z 3y Oy* 14 Re~iyOy
with boundary conditions

u=v=0 at y=0 (6)
v—=1 as y— oo (7)

In addition a suitable initial condition must be specified. This will be considered below.

Theoretical Results

From (4-7) it may appear that the leading term in the boundary layer solution will be flat
plate Blasius flow, with an O(Re'%) perturbation. While this is true near the leading edge of
the cylinder, further downstream this approximation beaks down. With the Blasius solution, y
scales as z. Hence the ratio of the terms on the right side of (5) is

Re~% 0u 8%u Re'%a:z
(——— (8)

1+ Re_%y a_y a_yz -
Hence when x = O(Re) the terms of the right side are of similar magnitude due to the growth

in the boundary layer, and Blasius flow flow will not be the leading term in the solution when



the boundary layer thickness becomes comparable with the cylinder radius. Further, at this
stage it is also necessary to include the additional term in the continuity equation at leading

order.

Here the extra term will be included from the leading edge by adopting the boundary layer
equations in the form (4-7). These equations will be solved numerically, using the method
outlined below. First, however, the first two term in the series solution for the flow near the
leading edge, valid in the region 0 < z < Re, will be presented. Following Seban and Bond,
take

n= Re%m'%(fr‘2 -1)/2, ¢&= Re"izh (9)
and
% = Re"2z% f(£,7) (10)
This gives
_ 104 _of __ 10 _ Retair of 0
u_;b_r-_ on’ VETre T [ n3n+3§(§f)] (12)

The governing equation for f is

2 2 2 2
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Taking
f=rfolm) +&filn) + ... (13)
where it is assumed that £ < 1, produces
1
fo' + 5fof =0 (14)
1 1
i+ §fof{' - §f6f{ +fofi+2nfy" +2ff =0 (15)
The boundary conditions are
fol0) = f5(0)=0 and  fo—1 as 700 (16)
A0)=f{0)=0 and f{ -0 as 7= o0 (17)

Equation (16) is the Blasius equation. The problems defined by (14-17) are easily solved
numerically. The solution give the dimensionless skin friction 7 = du/8y as

7=0332277 +0.694Re™2 + ... (18)

This is essentially the same expression given by Seban and Bond/Kelly [1, 2], but with a small
difference in the second coefficient, due presumably to the increased accuracy of the calculations
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performed here. Equation (18) has the skin friction tending to a constant for large z, although
formally it is valid only for z < Re.

The asymptotic series produced by Glauert and Lighthill [4] for large = gives

T=g+2_7+272—%11'2—41n2
§ 4 53

where v = 0.5772 is Euler’s constant and § = In(4z/Re). This formula has r decaying as z

+ 06~ (19)

increases, albeit slowly, inversely with Inz. Stewartson [3] produced a similar results, but used
§ = In(4z/ReC) in place of §, where InC = +y. Stewartson’s formula is

2

in? +4In2 Re7
T = - = + + —=

S -2 T 2
) 43 2§ (20)

Equation (19) can be derived from Stewartson’s expression by writing § = § — v and expanding
the first two terms in(20) for large z. The Glauert and Lighthill expression for 7 is used here
as it gives a better comparison with the numerical solutions presented below than Stewartson’s

formula.

Another of quantity of interest is the “displacement area”, which represents the amount by
which the fluid in the main stream is displaced by the action the viscous effects in the bound-
ary layer. In two-dimensional flow the displacement thickness gives the distance which the
streamlines in the far field are displaced from those of the inviscid flow past the body. However,
in cylindrical coordinates, the displacement of the streamlines in away from the surface decays
inversely with r due to the expansion in area with r. Hence there is no unique displacement
thickness, and the appropriate quantity is the displacement area. In non-dimensional form

Ay = 2[100(1 —u)rdr (21)

gives the displacement area relative to the cross-sectional area of the cylinder. Substituting the
Blasius profile directly into (21) produces

Ay = Re iz? 344+ 437Re" %z (22)
The solution to (14-17) gives
Ay = Re"iz? [3.442 +0.143Re"5z% + .. ] (23)

Equation (23) is valid only for 0 < z « Re. For large z Glauert and Lighthill give

4 1 1 *21n 2
w[ +M+”_]

A== |5

3 5 (24)

Stewartson (3] states that the boundary layer thickness is ultimately of order (I/Reé)%, consis-

tent with (24). Hence the boundary layer grows at a factor (Inz) 7 more slowly than for the

flat plate.



Numerical Method

In the original polar coordinates the velocity can be obtained from the streamfunction #(z,r)

through
1oy 15y
e "TTras (25)
In boundary layer coordinates write
¥ = Re™71U(z, 2) (26)

where z = Re%w'%(r — 1). The boundary layer equations (4) and (5) can now be written as a
system of coupled first order differential equations:

1

T2 o
u= g 21 T 5 (27)

14+ Re 252z 02
T= .T,_%@ (28)

z
Ju 1 o 101 Re™3
u_....._—_—-"r:m_f——f——-’"—'"——"—'r 29
0z 14 Re~3z3z 0% 0z 14 Re"iziz (29)
The boundary conditions are

V(z,0) =u(£,0) =0 and u—1 as n- o0 (30}

The Keller box {5] method is used to solve (27-30). The Keller box method is a Crank-Nicolson
finite difference method, which is second order accurate. Newton’s method is used to solve the
non-linear set of algebraic equations which result once the equations have been discretised. A
uniform grid is used in z. Since the Keller box method involves values only at the present and
previous grid points in the streamwise direction, the grid step in z can be changed with no
further complications to the method. The streamwise grid step is scaled with 7 in accordance
with the expected development of the boundary layer, so that Az = TIA.

The initial condition was obtained from (10), {13), and the solution to (14-17). Typical numer-
ical parameters were Zm,, = 20, 250 points in z, A = 0.05, and 2y = 0.01.

Results

For reference consider a flow with Re = 10¢, corresponding e.g. to a cylinder with diameter
1 em in water with a free stream velocity of 1 m/s. Figure 1 shows the dimensionless skin
friction near the leading edge of the cylinder where the Blasius solution should be valid at
leading order. Figure 1 shows 7 from the numerical solution, the Blasius values and Blasius
plus the O(Re_%) perturbation. Clearly, even at this stage the perturbation is significant, and
the Blasius solution alone does not give an accurate estimate of the skin friction.
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Figure 1: Dimensionless skin friction near the leading edge of the cylinder for Re = 10*

Figure 2 shows the skin friction much further downstream. For very large z, the Blasius values
are much too small while the addition of the O(Re_%) term gives values that are too large. For
sufficiently large z the Glauert and Lighthill formula (19) gives excellent results.
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Figure 2: Dimensionless skin friction for Re = 10*



The displacement area is shown in figure 3. This figure displays A, calculated directly from
the numerical solution, using the Blasius solution (22}, the expansion valid for 0 < £ <« Re
(23), and Glauert and Lighthill’s expression for large z (24). As expected A, is smaller than
that given using the Blasius profile, and (23) is valid only near the leading edge of the cylinder.
Glauert and Lighthill’s formula (24) is tending towards the numerical values but only for very

large z.
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Figure 3: Displacement area for Re = 10*

Perhaps of more interest than the displacemeni area, which does not give a direct measure of
the displacement of the streamlines, is the boundary layer thickness. This is shown in figure
4, along with the Blasius values. The boundary layer thickness has been defined as value of
y= z7z where u /U = 0.99. The boundary layer is significantly thinner than for the flat plate
case, with the difference increasing with z. This is consistent with the higher shear stress in

the cylindrical case.

Stability

Flat plate boundary layer flow is one of the cases in which linear stability theory based on a
normal mode approach produces a reasonable compa.fison with experimental results. Hence, for
very high values of Re where the flow near the leading edge of the cylinder is given by Blasius
flow, linear theory should indicate where the flow first becomes unstable in this case as well.
For lower Re or further down the cylinder, the higher values of the wall shear stress and lower
values of the displacement area suggest that the flow will be more stable for the cylinder than
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Figure 4: Dimensionless boundary layer thickness for Re = 10?

the flat plate. However, the governing equation for the disturbance is not the same, so this

prediction must be treated with caution.
The disturbance to the flow is given by
1 = ¢(r) expli(az — wt)] (31)

where 11 is the disturbance streamfunction, ¢(r) its complex amplitude, and o and w the wave
number and frequency of the disturbance. Substituting (31) in the Navier-Stokes equations and

linearising produces

. A 1
(u Bl g) D - a2)¢ -7 (u?) - iaKe (D - a2)2¢5 52
where 2 148 33
=57 ror @

Equation (32) is the axisymmetric equivalent of the more familiar Orr-Sommerfeld equation

found for two-dimensional low. Adopting the the boundary layer scaling
r= 1+Re—%y, a:Re%ﬁ (34)

(32) becomes

2 -3 -3
(u—C)(8(’5—**—}:‘:{3 %—ﬁ%ﬁ) —U"+RET u' =

822 r Oz

-4 9 - -4
1 [0 2Reid 3R IRTIO8 (@ S ﬂ2¢)+ﬁ4¢

iRB |8z ¢ 923 r? 922 3 Oz

(35)



where ¢ = w/e is the complex wave speed, R = Re%, and the prime on u now refers to 8/8y.

Clearly for large Re the stability characteristics near the leading edge of the cylinder will be
similar to those for the flat plate. Drazin and Reid [6] give the critical values of

R, =519, o, = 0.0304 (36)

based on the displacement thickness as the characteristic length. In non-dimensional terms the
displacement thickness for Blasius flow is given by

8, = 1.72z3 Re3 (37)
Hence in the scalings used here

Qe

R 2
T, = (——E—) /Re and Be = ———-—-—1 ——

1.72
where z, is the point the flow first becomes unstable.

Calculations were performed for a range of Reynolds numbers. For Re = 10%, which (38) gives
z. = 0.91 and 8. = 0.185, the critical point was found to be at z, =~ 0.99 and 8 =~ 0.177.
As expected, this is further downstream than for Blasius flow. For Re = 5 x 10%, (38) gives
z. = 1.82 and f; = 0.131, while for the cylinder, z, =~ 2.18 with 3, ~ 0.12.

The gap between the predicted and calculated values of z. increases as Re decreases. For
Re = 2x10* (38) gives z, = 4.55 and S, = 0.0828, while the values from the numerical solution
are 7, = 8.02 and 5, =~ 0.0617. However, for Re = 10* no unstable modes were found. Note
that at this point the eigenvalue ¢ is consistent with the values for higher Re in that R{(c) is
approximately the same, which indicates that the solution to (35) has not jumped to another
branch, i.e. is still obtaining the least stable solution.

Further, even for the higher Re considered here', the flow is unstable only for a finite section of
the cylinder, with $(¢) > 0 only for z. < < z,, where z, depends on Re. For Re = 2 x 104,
zs =~ 410, for Re = 5 x 10%, z; ~ 4800, and for Re = 10°, =, =~ 21211. In all cases the change
back to stable flow is still in the region in which the series with Blasius flow as the leading term
might be expected to be valid.

Discussion

Calculations have been performed for the boundary layer on a long thin cylinder, including
effects which come from the radial nature of the problem. Near the leading edge of the cylinder
a solution can be written as a series which is formally valid for z < Re, with Blasius flow as
the leading term. However, in practice the second term in the series, which is of relative order
(z/Re)'/?, plays a significant role much closer to the leading edge. In the expression for the
skin friction (18), proportional to the leading term, the second term is 2.09(z/Re)'/2, which

9



equals 0.66 when z/Re = 1/10, and 0.21 when z/Re = 1/100. Hence, except very close to the
leading edge, 7 is significantly different from that for Blasius flow. This can be seen clearly in
Figure 1 which shows the skin friction near the leading edge for Re = 10%.

Further down the cylinder, when z < Re, the series solution given by Glauert and Lighthill [4]
gives excellent results for the skin friction (Figure 2), but worse agreement for the displacement
area (Figure 3).

The boundary layer thickness is lower and the skin friction is higher in the cylinder flow than
those for Blasius flow. In general this would suggest that the flow is more stable. This prediction
has been borne out, In fact, for low with Re = 10 or less the flow is unconditionally stable
to linear normal mode disturbances. Physically, the flow would still be expected to become
unstable then turbulent along the cylinder as the boundary layer grows in thickness. However,
at lower Reynolds numbers there will be no simple, two-dimensional, Tollmein-Schlichting type
wave growth/transition scenario. At higher Reynolds numbers, instability when it occurs is
further downstream than for Blasius flow, and for the Reynolds numbers investigated in detail,
occurs only for a finite length of the cylinder, with the ow becoming stable again when = is still
well short of Re. This does not of course imply that the flow will be laminar far downstream.
However, with a carefully designed experiment it may be that laminar flow can be maintained
much further downstream than with a flat plate {c.f. Poiseuille flow in a pipe as opposed to a
channel}).

The enhanced stability characteristics over flat plate boundary layer flow are due to a com-
bination of effects. Although the fuller profile found for the cylinder would be expected to
be more stable, this is not the full reason. If the velocity profile for the cylinder case with
Re = 10* are used with an Orr-Sommerfeld solver, then unstable modes are found, albeit with
the critical point further downstream predicted from (38). Also, if the Blasius profile is used
with the cylindrical stability solver, unstable modes are found for Re = 10*. Hence it is both
the change in the velocity profile and the effect of the extra term in the stability equation (35)
which produces the unconditional stability of the flow when Re = 104,

Unconditional normal mode linear stability has of course been found with other basic flows. In
particular, no unstable modes have been found for Poiseuille flow in a pipe, although this flow
is well known to be unstable at sufficiently high Reynolds number.

Finally note that the stabilty of the flow at lower Reynolds numbers rules out some of the
standard methods used for in industry for transition prediction, as these commeonly rely on
empirical correlations of the observed behaviour of basic fows with the linear stability charac-
teristics. In particular, neither the industry standard e method or Granvilles method could

be used.
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Further Work

Considering first a cylinder aligned with the flow, the obvious next step is to extend the nu-
merical modelling to include turbulence. There are a number of ways of increasing complexity
that this can be done. The first would be to retain the assumption of boundary layer flow but
include a simple turbulence model, such as the Baldwin-Lomax model, along with the standard
interaction law as the outer boundary condition. The interaction law couples the outer inviscid
flow and inner viscous flow so that the pressure in the boundary layer is not specified but calcu-
lated as part of the solution. A more computationally intensive but more satisfactory approach
would be to use an incompressible Navier-Stokes solver with one of the standard turbulence
models such as the k& — w model.

Both of these approaches assume axisymmetric flow, and would require reasonable but not ex-
cessively large computational resources. The boundary layer approach would involve modifying
the boundary layer code used in the present study, while there is an in-house Navier-Stokes
solver available at Southampton that could be used for any further work. The aim in both
approaches would be to produce estimates of the behaviour of the boundary layer as it develops
downstream beyond the laminar stage. Since there should be a similar amount of work involved
in these two approaches, the Navier-Stokes one would be prefered.

A more realistic approach would be to calculate the turbulent flow directly, and then calculate
the pressure spectrum from the data obtained. There are two main methods that could be used,
Large Eddy Simulation (LES) and so-called Direct Numerical Simulations (DNS). The former
attempts to calculate the large scale eddies in the flow directly and models the missing, smaller
length scale effects through a sub-grid model. The latter makes no approximations, but solves
the full Navier-Stokes equations directly. A major advantage of LES is that it can handle flows
with much higher Reynolds numbers while DNS should be more accurate/realistic as it should
include all effects/length scales, although the maximum Reynolds number flow that can be
calculated is limited. Both approaches are feasible but require large computational resources.

Suppose now that the cylinder is not aligned with the flow but exhibits a small amplitude
oscillatory motion, with the axis of the cylinder given by

r = Asin(kz — wt) (39)

where all quantities are in dimensional form. It is assumed here that the oscillation to the
cylinder lies in a plane, whereas it could be three-dimensional/helical. However, the basic

arguments would stay the same.

If the wave length of the disturbance is L, its wave speed matches the flow speed, and the
maximum slope on the cylinder is 1° then

L | 2x
r = %SIH f(.’ﬂ - Uoot) (40)
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Suppose now radius of the cylinder is 1 ¢cm, and a typical wavelength is order 100 m, so that
L = 10%a. Then the amplitude of the transverse motion of the cylinder is O(28e), so that,
assuming that the growth rate of the boundary layer is still O({x/Re)'/?)), the motion of
the cylinder will not be contained within the boundary layer until z = O(800Re). Hence,
although an analysis could be performed with the leading part of the cylinder stationary and
the transverse motion sufficiently far downstreamn that it is contained within the boundary layer,

this would require an extremely long cylinder.

The transverse motion of the motion of the cylinder has a Reynolds number based on the peak

velocity of
4

360
Hence, in general, given R; (for example, 350 when Re = 10%), and the size of the transverse

R, = —Re = 0.035Re (41)

motion compared to the thickness of the boundary layer, transverse shedding of the boundary
layer /vortices would be expected, and a boundary layer type analysis would not be appropriate,
unless the sideways motion of the cylinder occurs only very far downstream .

Consider now the case that the main stream is not aligned with the cylinder, but is inclined at
an angle of around to 5°. In this case the velocity normal to the cylinder would be roughly 10%
of the free stream velocity. Hence the transverse Reynolds number based on the diameter of
the cylinder is sufficiently large that significant cross stream effects could occur. In particular,
if the flow was laminar, eddy shedding and a vortex wake might be expected. However, for
turbulent flow, much of this secondary motion could be suppressed.

In summary, there are a number of ways this research could proceed, depending largely on
the resources available. The most satisfactory would be to perform a DNS or LES study.
However, while this is feasible it would require significant resources, not least in terms of the
computational facilities required. A more modest approach, which is a obvious first step, would
be to use a standard incompressible Navier-Stokes solver with e.g. a & — w turbulence model
for the flow along the cylinder aligned with the flow. This should provide estimates of the
behaviour of the boundary layer as the flow develops downstream, in particular of the growth
of the boundary layer and the drag force on the cylinder.
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