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NOMENCLATURE 
 
A Wetted surface area [m2 ] 
Fn Froude Number [U/(gL)1/2] 
FnH Depth Froude Number [U/(gH)1/2] 
HT Transom immersion [m] 
H Water depth [m] 
k Wave number [m-1] 
L Length on waterline [m] 
S Separation between catamaran demihull centrelines [m] 
U Ship speed [m/s] 
W Channel breadth [m] 
RWP Wave pattern resistance [N] 
CWP  Coefficient of wave pattern resistance [RWP/(0.5ρAU2)]         
g Acceleration due to gravity [9.81m/s2] 
ρ Density of water [kg/m3] 
σ Source strength [m2 s-1] 
θ Wave angle [deg] 
ζ Wave elevation [m] 
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1. INTRODUCTION 
 
The wave wash generated by high speed ferries and other marine vehicles can impact upon 
safety and the environment in terms of the safety of smaller craft, people on beaches, coastal 
erosion and changes in the local ecology. The assessment of the impact of wave wash may be 
characterised in three stages as (i) defining the near-field waves generated by the advancing 
ship (taken as say 0.5 to 1.0 ship lengths from the ship centreline), (ii) the propagation of 
these waves to the far field and (iii) the impact of the wave wash on safety and the 
environment.  It is noted that, with the arrival of higher speeds, shallow water effects tend to 
have a more significant influence on the near-field wave generation and wave propagation to 
the far field.  As a result of the developments in the use of high speed craft, there is a need to 
develop tools for predicting the ship generated near-field waves and their propagation to the 
far field, both for applications at the preliminary design stage of the ship and during ship 
operation. This report describes the development of numerical methods for predicting the 
content and structure of the near-field wave system. 
 
An extensive amount of research into the powering of fast displacement vessels has been 
carried out at the University of Southampton, Refs. 1 to 6, including the use of theoretical and 
experimental techniques. The thin ship, or slender body, theory described in Refs. 4 and 5 has 
been developed and adapted for the numerical prediction of wash waves.  The theory had 
been developed in order to calculate the wave pattern resistance of slender monohull and  
catamaran forms with transom sterns, but it has been found  to be also applicable to more 
general ship forms, provided they have sufficiently high length to breadth ratio.  The theory 
is flexible in that it allows multiple and staggered hulls to be investigated and is also 
applicable in the super-critical speed range.  The thin ship theory approach provides an 
alternative to higher order panel methods for estimating wave resistance and, when applied 
strictly to slender hulls, has been found to provide a similar degree of accuracy at a fraction 
of the computational effort, Refs. 5 and 6.   Gadd, Refs. 7 and 8 also produces promising 
wash predictions using simplified assumptions and methods.  The theory provides a 
description of the component long-crested linear waves of the wave system in terms of their 
height, period and direction.  These waves may then be used as input conditions for 
numerical wave propagation and transformation models, or applied to wave decay 
relationships such as those derived experimentally and discussed in Refs. 9 and 10. 
 
Basic thin ship theory, as described for example in Refs. 4 and 5, requires a number of 
refinements in order to improve its potential for predicting near field wave wash in a reliable 
manner over the whole range of likely ship operation and requirements.  For example, the 
transom stern which is used by most of the high speed displacement ships under 
consideration is known to have a significant effect on wavemaking, but can be difficult to 
model numerically.  The effects of the transom are also known to be sensitive to changes in 
the operational trim of the vessel, Ref. 5. These effects, together with the assessment of 
performance in the supercritical speed range, required further investigation and experimental 
validation. 
 
The theoretical work described forms part of a wider research programme, funded by EPSRC 
and industry and managed by Marinetech South Ltd., over a two year period. The programme 
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included an extensive series of wave elevation measurements for monohulls and catamarans 
in deep and shallow water.  The experimental work is the subject of separate reports, Refs.11, 
12 and 13.  Details of the hull forms used in the experimental and theoretical investigations 
are shown in Fig.1 and Table 1. 
 
 
2. DESCRIPTION OF THE WAVE CHARACTERISTICS 
 
Some or all of the following wave properties at sub-critical, trans-critical and supercritical 
speeds may be used to describe the wave system. 
 
The overall characteristics of sub-critical and supercritical wave patterns are shown in Fig.2a.  
Basic properties of the wave system are given in Fig. 2b which shows a typical (predicted) 
wave pattern, a longitudinal cut through the wave pattern, the typical distribution of wave 
energy (sub-critical in this example) within the wave system and the wave resistance. Further 
descriptors are given in Figs. 2c and 2d which show the propagation angles of the leading 
divergent waves and wave resistance relative to deep water as speed passes from sub- critical, 
through trans-critical to supercritical. 
 
 
3. BACKGROUND TO BASIC THIN SHIP THEORY 
 
The background and development of the theory is described in Refs. 1, 4 and 5.  In the 
theory, it is assumed that the ship hull(s) will be slender, the fluid is inviscid, incompressible 
and homogeneous, the fluid motion is steady and irrotational, surface tension may be 
neglected and that the wave height at the free surface is small compared with the wave 
length.   For the theory in its basic form, ship shape bodies are represented by planar arrays of 
Kelvin sources on the local hull centrelines, together with the assumption of linearised free 
surface conditions.  The theory includes the effects of a channel of finite breadth and the 
effects of shallow water. 
 
The strength of the source on each panel may be calculated from the local slope of the local 
waterline, Equation (1) 

                                          σ = dA
dx
dyU

π2
− ,   where 

dx
dy  is the slope of  the waterline     (1) 

The hull waterline offsets in the current procedures can be obtained directly and rapidly as 
output from a commercial lines faring package, such as  ShipShape, Ref.14. 
 
The wave system is described as a series using the Eggers coefficients, Equation (2), 

                          ζ  = ( ) ( )[ ]
W

ymxkxk
m

m
mmmmmm
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0
∑
=

+                           (2) 

The wave coefficients ξm and ηm can be derived theoretically using Equations (3), noting that 
they can also be derived experimentally from physical measurements of ζ in Equation (2). 
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The wave pattern resistance may be calculated from Equation (4) which describes the 
resistance in terms of the Eggers coefficients,         
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It is noted that the theory provides an estimate of the proportions of transverse and diverging 
content in the wave system and that the theoretical predictions of the wave pattern and wave 
resistance can be compared directly with values derived from physical measurements of the 
wave elevation. 
 
4. MODIFICATIONS  TO  THE  BASIC  THEORY 
 
4.1      Distribution of sources 
 
The hull is represented by an array of sources on the hull centreline and the strength of each 
source is derived from the slope of the local waterline. It was found from earlier use of the 
theory, e.g. Ref.5, that above about 18 waterlines and 30 sections the difference in the 
predicted results became very small as the number of panels was increased further.  The main 
hull source distribution finally adopted for most of the calculations was derived from 20 
waterlines and 50 sections. This number was also maintained for changes in trim and sinkage. 
 
The basic theory was modified in order to facilitate the insertion of additional sources and 
sinks to simulate local pressure changes.  These would be used, for example, to represent the 
transom stern, a bulbous bow and other discontinuities on the hull. 
 
4.2 Transom stern effects 
 
 It has been noted from model tests and full scale operation that trim and hence transom 
immersion can have a significant influence on the wave pattern and consequently on the 
wave resistance and wave wash.  An important refinement to the basic theory, and a 
requirement of all theories, does therefore concern the need to model the transom stern in a 
satisfactory manner.  A popular and reasonably satisfactory procedure has been to apply a 
hydrostatic  (ρgHT)  transom resistance correction, Ref. 4.  Whilst this gives a reasonable 
correction to the resistance, it does not do so by correcting the wave system and is therefore 
not capable of predicting the wave wash correctly.  The use of sources / sinks placed in the 
vicinity of the transom, Refs. 15 and 16, has been used with reasonable success, whilst the 
creation of a virtual stern and associated source strengths, Refs.5, 6 and 17, has been found to 
provide the best results in terms of wave pattern resistance.  In order to confirm that this 
would also be the case for the prediction of wash waves, an investigation was carried out to 
verify the use of a virtual stern and/or the alternative use of source/sink placements. 
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An investigation was carried out using a simplified (parabolic) description of the virtual 
stern. As for the wave pattern resistance estimates, Ref.5, the results were also found to 
provide satisfactory wave wash predictions. 
 
A further investigation was carried out with the systematic placement of a source at specific 
positions near the transom. Reasonable success had been achieved with earlier investigations, 
Ref.16. Source strength is equated to the strength necessary to bring the total integration of 
source/sink strength over the hull to zero.  If successful, such an approach is much simpler to 
apply than a virtual stern. The results of the systematic investigation are shown in Fig.3.  It is 
seen that the best results are obtained using a single source near the base of the transom, 
when the correlation with the experimental results is seen to be good. This correction for the 
transom was deemed to be adequate and most of the further studies into the validation of the 
theory used a single source approach to model the transom correction. 
 
4.3 Running trim and sinkage 
 
As a result of the significance of the transom stern immersion and its effect on resistance and 
wash, it is important to be able to incorporate suitable estimates of running sinkage and trim 
in the theoretical model.  This was highlighted by the work reported in Refs. 5 and 6 which 
showed that, whilst reasonably large changes in trim can have relatively small effects on 
wave resistance arising from the hull source distribution, the resulting changes in the wave 
resistance due to changes in the transom immersion can be very significant.  A number of 
investigators have employed an experimentally derived sinkage and trim input to their 
theoretical models, which is not unreasonable if data from a fairly wide range of geosim hull 
forms are employed, such as those described in Ref. 3.  In order to facilitate data for this use, 
regression analysis has been carried out on the deep water trim and sinkage data in Ref. 3, 
and the coefficients of the regression are given in Tables 2 and 3.  Examples of typical curve 
fits are shown in Figs.4a and 4b.  Curve fitting has not been carried out on the shallow water 
data reported in Refs.11 and 12. As seen in the example of experimental data in Figs.5a and 
5b, the sinkage and trim in shallow water are broadly similar to the deep water results at 
lower and higher speeds, although at around the critical speed there are significant increases 
in both trim and sinkage. At or near critical speed, the large increases in sinkage and trim 
have to be considered separately. 
 
A hybrid model has been developed which facilitates improvements in the estimates of 
sinkage and trim based on changes in the dynamic pressures around the hull. The model links 
the thin ship wave prediction procedures to an existing well proven panel code, Ref.19. An 
outline of the overall approach is shown in Fig.6.  In the current version of the procedure, a 
fixed horizontal waterline is used in the panel code and the hydrostatic moment resulting 
from the actual wave elevation around the hull is derived by numerical integration of the 
wave.  This technique provides reasonable first order approximations to sinkage and trim and 
should be suitable for new developments in hull forms for which acceptable trim and sinkage 
data are not available. An acceptable approximation to the wave profile can be derived using 
thin ship theory, as described in Section 4.4.  In order to improve the robustness of the 
method, further work is ongoing to use the theoretical estimate of hull wave profile directly 
in the panel code. 
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4.1 Hull wave profile 
 
In order to facilitate direct numerical estimates of dynamic trim and sinkage, a theoretical 
estimate of the hull wave profile is required. This may then be applied directly as described 
in Section 4.3 or used as a wave elevation input into the panel method. 
 
Theoretical investigations were carried out on the Wigley and NPL hulls, Figs.1a and 1c.  
Wave profiles estimated directly on the hull surface were not very successful, due mainly to 
non-linearities in the wave content near the hull. Various longitudinal cuts were then 
investigated over a range of distances off the vessel centreline.  The cut at B/4 off the 
centreline proved to give the best agreement with the experimental profiles on the hull 
surface.  Such cuts have to be moved forward, depending on speed, to derive the correct 
longitudinal position. The forward shift varied between 5% to 20% of ship length, depending 
on speed. This forward shift was found to be suitable represented for both monohulls and 
catamarans by: 
                           

Forward shift (%L) = 4.176 / Fn1.709 
 
Examples of the resulting theoretical estimates are shown in Fig.7, which are deemed to be 
acceptable for this intended use.  
 
 
5. VALIDATION OF THE THEORY AND EXAMPLE APPLICATIONS 
 
5.1       General 
   
Examples are presented to validate the theory and to illustrate its applications and scope.  The 
theory has been well validated for wave pattern resistance in deep water, Refs.1,5,6 and 16.  
Validation of the theory was required for the physical wave patterns and profiles, especially 
in shallow water and at supercritical speeds.  This has been facilitated using the new shallow 
water experimental data presented in Refs.11 and 12.   The hull forms used in the 
investigations are shown in Fig.1 and their particulars are given in Table 1. 
 
5.2       Wigley  Parabolic  Hull (non transom), Fig.1(a). 
            Deep water – theoretical and experimental 
 
 Estimates of the theoretical wave pattern resistance are compared with experimental 
data in Fig.8, where it is seen that satisfactory agreement is achieved.  Similarly, cuts through 
the wave pattern at two transverse positions, Fig.9, also show very good agreement with 
earlier experimental measurements. This good correlation with experiments for the Wigley 
hull has been found by other investigators and is, perhaps, not surprising given that the 
method has not been hampered by the need for any form of transom correction. 
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5.3       Round bilge catamaran hull, Series 64, Fig1(b) 
            Deep water – theoretical and experimental 
     
A number of physical wave cuts for the Series 64 model had been carried out in the 
Southampton Institute test tank.  Comparisons of the theoretical and experimental wave cuts 
are shown in Fig.10. It is seen that there is reasonable agreement between the theoretical and 
experimental results. 
 
5.4        Round bilge monohull, NPL Series, Fig.1(c) 
             Shallow water: sub-critical - theoretical and experimental 
 
Fig.11 shows the comparison of measured and predicted wave cuts for model 5b at Froude 
Numbers Fn of 0.22 and 0.38 at a water depth of 0.4m. It is seen that acceptable agreement is 
achieved. 
 
 
5.5 Round bilge catamaran hull, NPL Series, Fig.1(c)  

Shallow water: supercritical - theoretical and experimental 
 
Fig.12 shows a comparison of the measured and predicted wave cuts for model 5b for 
different water depths (H=0.2m and 0.4m) and two hull separations (S/L=0.2 and 0.4). In 
general, the theory provides an acceptable agreement with the experiments, especially at very 
high speeds.  The theory with no transom correction underestimates the wave height, whilst 
the theory with a single source correction gives better results, including the prediction of the 
leading bow waves. It is however found that, at supercritical speeds, the theory with a single 
source tends to create a hollow in front of the bow wave, although the size of the hollow 
decreases with increase in Fn. 
 
5.6 Effect of Length/Displacement ratio (L/∇1/3) 
 
Fig.13a shows the influence of L/∇1/3 on the wave pattern resistance. It is seen that an 
increase in L/∇1/3 causes a reduction in wave pattern resistance, which is in line with the 
experimental results in Fig.13b.  Fig.14 shows good agreement between the experimental and 
theoretical wave cuts for model 4b (L/∇1/3 = 7.4) and model 5b (L/∇1/3 = 8.5). 
 
5.7 Effect of Catamaran hull separation (S/L), in shallow water 
 
Fig.15a shows the influence of catamaran hull separation on the wave pattern resistance. It is 
seen that as the separation is increased, there is a reduction in resistance, which is in line with 
the experimental results in Fig.15b. Fig.16 shows good agreement between the experimental 
and theoretical wave cuts for the two separations. 
 
5.8 Theoretical wave pattern resistance 
 
Fig.17 shows the theoretical estimates of the wave pattern resistance ratio (wave pattern 
resistance shallow water/wave pattern resistance deep water) for model 5b catamaran with 
S/L = 0.2 at water depths of H = 0.2m and 0.4m for a range of depth Froude Number.  It is 
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seen that the trend agrees with the experimental results in Fig.18, although the theoretical 
ratio at about critical speed is much higher than the experimental results. It is noted that the 
effects of shallow water are significant in the critical speed region, where there are large 
increases in resistance, whilst the resistance decreases again at supercritical speeds. 
 
 
5.9 Divergent wave angle 
 
Fig.19 shows the change in divergent wave angle with change in speed, derived using 
Kofoed-Hansen theory (Ref.10), the thin ship theory and the experimental results (Ref.11).  It 
is seen that there is good agreement between the thin ship theory and the experimental 
results. 
 
5.10 Effects of Fn and FnH   

Fig.20 shows the wave patterns at different speeds in deep water, where the changes from 
diverging plus transverse waves to predominantly diverging waves can be seen.  Fig 21 
shows the influences of depth Froude Number (FnH) at a constant speed Froude Number (Fn). 
As the critical speed is approached the diverging wave angle reduces to a small angle (see 
also Fig.19) before increasing again at supercritical speeds.  Fig.22 shows the same effects, 
and includes plots of the wave contours where the diverging wave angles can be seen. 
 
5.11 Distribution of wave energy 
 
Predicted wave patterns and the distribution of the wave pattern resistance components (or 
wave energy) at different speeds in deep water are shown in Fig.23.  It can be seen that, as 
the speed increases, the diverging wave angle becomes steeper and the distribution of wave 
energy changes. At higher speed Froude Numbers the transverse wave components decrease, 
and most of the wave energy lies in the diverging waves. 
 
Fig.24 shows the predicted wave patterns and the distribution of the wave pattern resistance 
components (or wave energy) with change in depth Froude Number. It is seen that at 
supercritical speeds, since a gravity wave cannot travel at speeds > (gH)1/2, the transverse 
waves disappear and waves can only be propagated at angles greater than θ = Cos-1(gH/U)1/2. 
 
These results, which describe wave patterns and their associated distribution of wave 
components (or energy) within that pattern, together with the prediction of the wave 
propagation angles (Fig.19), are of value as input to wave propagation models. 
 
 
6. DISCUSSION 

 
The chosen examples have illustrated the wide scope and usefulness of theoretical methods in 
the prediction of wave patterns and wave wash and, in particular, the relative effects due to 
changes in the design and operational features. This has allowed the development of a robust 
numerical method, based on thin ship theory, for the estimation of near field wash waves in 
terms of wave period, height, direction of propagation and energy distribution, in a form 
suitable for use in wave propagation/transformation models.   
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The developed numerical method provides the facility to investigate low wash design 
features such as the influence of L/∇1/3, S/L, hull shape and novel forms, and low wash 
guidelines for operational features such as speed, trim and shallow water. 
The investigations also illustrated potential limitations in the applications of the theory.  In 
particular, there is a need for great care in the use of suitable transom corrections and hence 
the need to incorporate reliable sinkage/trim estimates. There is also the need for further 
refinements to improve the predictions around the critical depth speed, which tends to change 
with variation in length Froude Number.    
 
 
7. CONCLUSIONS 
 
5.1 It  is found that thin ship theory can be usefully employed as a simple and effective 
means of estimating near-field ship wash with low computational effort.  Part of its 
effectiveness relies on the ship hull(s) being slender or thin, which is generally the case for 
high speed vessels. 
 
5.2 Thin ship theory is found to be useful  in assessing the relative influences on wave 
pattern resistance, and the generation of wash waves, of design and operational features such 
as novel hulls and multihulls and changes in ship speed, trim and water depth. 
 
5.3 Running trim, sinkage and transom immersion can have a significant influence on the 
generated  wave wash.  Corrections due to these effects, of sufficient accuracy, can be 
relatively difficult to incorporate in simple thin ship theory.  Linkage of the thin ship 
approach with a hull panel code facilitates improvements in the estimates of these 
corrections. 
 
5.4   The theoretical results, validated by experiments,  provide the facility to develop low 
wash guidelines for operational features such as speed, trim and shallow water, and low wash 
design features such as the influences of  L/∇1/3, S/L and hull shape. 
 
5.5    Overall, it is found that the numerical methods developed and described  provide very 
realistic predictions of wave wash and wave resistance. 
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Model 4b 5b 6b 5s 

L [m] 1.6 1.6 2.1 1.6 
L/∇1/3 7.4 8.5 9.5 8.5 
L/B 9.0 11.0 13.1 12.8 
B/T 2.0 2.0 2.0 2.0 
CB 0.397 0.397 0.397 0.537 
CP 0.693 0.693 0.693 0.633 
CM 0.565 0.565 0.565 0.848 

A [m2] 0.338 0.276 0.401 0.261 
LCB [%] -6.4 -6.4 -6.4 -6.4 

 
                Table 1  Principal particulars of models used in the experimental  

                 and theoretical investigations 
 

TRIM=a(L/V1/3)n 
Fn Monohull S/L=0.2 S/L=0.3 S/L=0.4 S/L=0.5 

 a n a n a n a n a n 
0.4 555.06 -3.50 328.00 -2.99 988.28 -3.44 6583.40 -4.48 301.97 -2.90 
0.5 5183.70 -4.06 1548.60 -3.18 8799.70 -4.09 5631.00 -3.98 830.40 -3.03 
0.6 7722.40 -4.17 3226.40 -3.50 8186.20 -4.03 7183.60 -4.05 1422.40 -3.23 
0.7 7583.60 -4.14 2057.30 -3.38 4489.40 -3.79 7010.40 -4.05 1497.70 -3.25 
0.8 4760.90 -3.89 2459.10 -3.51 2061.60 -3.42 5498.10 -3.92 1241.60 -3.15 
0.9 1777.10 -3.38 1772.10 -3.37 1207.20 -3.14 2687.70 -3.56 825.13 -2.93 
1 811.16 -2.98 827.33 -2.99 958.82 -3.04 2068.70 -3.46 419.29 -2.59 

 
              Table 2  Coefficients of regression equations for dynamic trim (degrees)  
                      for NPL Series, Ref.3  Trim = a(L/∇1/3),  L/∇1/3 = 7.5 – 9.5, B/T = 1.5 – 2.5  
  

SINKAGE=a(L/V1/3)n-m 
Fn Monohull S/L=0.2 S/L=0.3 S/L=0.4 S/L=0.5 

 a n m a n m a n m a n m a n m 
0.3 2.59 0.08 0 8.90 -0.39 0 10.24 -0.50 0 6.91 -0.32 0 11.10 -0.58 0 

0.4 19.06 -0.58 0 29.42 -0.61 0 66.53 -1.04 0 18.54 -0.44 0 21.71 -0.57 0 
0.5 48.73 -0.96 0 44.31 -0.74 0 87.03 -1.21 0 19.81 -0.49 0 32.37 -0.72 0 

0.6 69.52 -1.27 0 7.57 -0.31 0 14.90 -0.65 0 12.10 -0.51 0 18.94 -0.71 0 
0.7 14.37 -0.63 0 0.89 -0.16 0 0.59 1.00 3.54 0.30 1.01 0 3.36 -0.11 0 
0.8 0.28 1.26 0 1.77 1.00 16.50 1.66 1.00 12.87 1.23 1.00 8.32 0.0022 3.19 0 

0.9 0.0004 4.38 0 1.89 1.00 16.97 2.55 1.00 20.68 2.17 1.00 16.62 1.49 1.00 10.50

1 4.0E-08 8.65 0 4.93 1.00 44.16 3.22 1.00 26.49 2.01 1.00 15.61 1.66 1.00 12.58
 
             Table 3  Coefficients of regression equations for sinkage (% draught, positive upward) 
                     for NPL Series, Ref.3.  Sinkage = a(L/∇1/2) – m,  L/∇1/3 = 7.5 – 9.5, B/T = 1.5 – 2.5 
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                  Fig.1  Hull forms used in the experimental and theoretical investigations 
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                                Fig. 2a  Description of wave characteristics 
                                             Sub-critical and supercritical wave patterns 
 
 
 
 
 
 
 
 
 
 
 

                                                                   



 
 
 
 
 
 

 
       
                    Fig. 2b  Description of wave characteristics Wave pattern, 
                                 longitudinal wave cut,  distribution of wave energy and wave resistance 
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         Fig.2(c)   Description of wave characteristics: divergent wave angle 
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Fig.3a  Single source correction at four different positions 
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           Fig.4a  Dynamic sinkage                                               Fig.4b   Dynamic trim 
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                                                      Fig.6   Outline of hybrid model 
 
 



Fig.7c Comparison of hull wave profiles of model 4b monohull, Fn=0.4 
-0.02

-0.01

0

0.01

0.02

0.03

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

X/L

w
av

e 
el

ev
at

io
n/

L

exp.(spencer)

theory@B/4

Fig.7e Comparison of hull wave profiles of model 4b monohull, Fn=0.9 
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Fig.7d Comparison of hull wave profiles of model 4b monohull, Fn=0.6 

-0.02
-0.01

0
0.01
0.02
0.03
0.04
0.05

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
X/L

w
av

e 
el

ev
at

io
n/

L exp.(spencer)
theory@B/4

-0.4

-0.2

0

0.2

0.4

0.6

0.8

0 0.2 0.4 0.6 0.8 1
X/L

W
av

e 
he

ig
ht

/T
exp(Shearer).
exp.(Insel)
theory@ B/4

Fig.7a Comparison between experimental and theoretical wave profiles: Wigley monohull Fn=0.35 
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Fig.8 Wave pattern resistance - Wigley Hull
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                     Fig.9   Comparison of wave cuts between theory and experiment – Wigley hull 
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Fig:11a Comparison of wave profiles: 5b monohull Fn=0.22 H=0.4m FnH=0.44 Y/L=0.93
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Fig:12c Comparison of wave profiles: 5b S/L=0.2 Fn=1.02 H=0.4m FnH=2.04 Y/L=0.93
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Fig:12d Comparison of wave profiles: 5b S/L=0.4 Fn=1.02 H=0.4m FnH=2.04 Y/L=0.93
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Fig.13a Theoretical wave pattern resistance: effect of 
length to displacement ratio, H=0.4m
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Fig.13b Experimental wave resistance: effect of length to 
displacement ratio, H=0.4m
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Fig.15a Theoretical wave pattern resistance: H=0.4m
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Fig.15b Experimental wave resistance: H=0.4m
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Fig.16b Comparison of wave profiles: 5b S/L=0.4 Fn=1.02 H=0.4m FnH=2.04 Y/L=0.93
-0.03

-0.02

-0.01

0

0.01

0.02

0.03

0 2 4 6 8 10 12 14

X(m)

W
av

e 
el

ev
at

io
n(

m
)

Exp.
Theory(single source)



0

1

2

3

4

5

6

7

8

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2 2.2 2.4 2.6 2.8 3
FnH

C
W

P/
C W

Pi
nf

H=0.2m
H=0.4m

Fig.17 Theoretical wave pattern resistance ratio: 5b catamaran S/L=0.2

0

1

2

3

4

5

6

7

8

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2 2.2 2.4 2.6 2.8 3FnH

C W
/C

W
in

f

H=0.2m
H=0.4m

Fig.18 Experimental wave resistance ratio: 5b catamaran S/L=0.2

 
 
 
 
 
 
 

Fig.19 Diverging wave angle
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Fig.20  Wave patterns – NPL Catamarans (Deep water) 
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               Fig.21 Wave patterns – NPL Catamaran : Change in depth Froude number at  
                          given speed 

 
 



  
Model 5b S/L=0.25, Fn=0.5, FnH=0.8, tank breadth=20m 

  
Model 5b S/L=0.25, Fn=0.5, FnH=1.05, tank breadth=20m 

  
Model 5b S/L=0.25, Fn=0.5, FnH=1.2, tank breadth=20m 

  
Model 5b S/L=0.25, Fn=0.5, FnH=1.5, tank breadth=20m 

 
                                               Fig.22   Wave patterns – wave contours 
 



 

 

5b monohull Fn=0.5 Deep water

0

0.0001

0.0002

0.0003

0.0004

0.0005

0.0006

0.0007

0 10 20 30 40 50 60 70 80 90 100
Theta (degree)

C W
P

     Fn=0.5      
    
 

5b monohull Fn=0.7 Deep water

0

0.00005

0.0001

0.00015

0.0002

0.00025

0.0003

0 10 20 30 40 50 60 70 80 90 100
Theta (degree)

C W
P

 
     Fn=0.7      
           

5b monohull Fn=1.0 Deep water

0

0.00002

0.00004

0.00006

0.00008

0.0001

0 10 20 30 40 50 60 70 80 90 100
Theta (degree)

C W
P

 
 

     Fn=1.0 
                
                  Fig.23 Wave pattern & distribution of wave pattern resistance: change in Fn  
                             at a given water depth, 5b monohull 
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