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Two point and three point correlation functions are calculated from a lattice 

simulation at two values of the bare coupling. Light-light and heavy-light meson 

masses, decay constants and semileptonic form factors are extracted. Guided 

extrapolations are performed to estimate the masses, decay constants and form 

factors of physical particles. Approximation methods are identified and system-

atic errors are quantified and discussed. 
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C h a p t e r 1 

In t roduc t ion 

This thesis presents results from a simulation of heavy-light meson physics us-

ing lattice-regularized quenched QCD with input from heavy-light meson chiral 

perturbation theory and heavy quark effective theory. The hadronic parts of the 

matrix elements for the semileptonic decays B — D — > K * , 

D —TT and D — a r e calculated, and the conventional form factors are pre-

sented for these decays. Theoretical estimates for the differential decay rate for 

these processes are obtained and compared to experiment where a measurement 

is available. Theoretical estimates of |Vcs|, |%:d| and are given. Theoretical 

estimates of the decay constants / s , / s , , /B' , f s : , / o , /o . , / o ' , / x , / i c , A 

and (as defined by Eq"^ 3.5 and 3.6) are determined. All dimensionful quanti-

ties require knowledge of the lattice spacing a, which is defined from the gluonic 

force scale rg following Refs. [1] and [2]. The charm and bottom mass scales 

are set by the lightest c /b meson masses, the D and the B ^ (0")) re-

spectively, except in the case of decay constants, where the mass of the decaying 

meson is used. 

The remainder of this introduction contains an overview of the field. Chapter 2 



contains an introduction to QCD Aeld theory and its lattice analogue. Chapter 

3 details the procedure for estimating matrix elements of weak currents between 

single-particle states from lattice QCD. There then follows a presentation of the 

results, predictions for semileptonic decay rates (chapter 4) and decay constants 

(chapter 5), which includes a test of some of the relations between matrix ele-

ments arising from additional symmetries of QCD in the heavy quark and chiral 

limits. A systematic discussion of the approximations and uncertainties follows 

in chapter 7. Conclusions are presented in chapter 8. An appendix is provided 

detailing definitions, conventions and formulae, aa well as a list of experimental 

inputs, and a representative set of lattice results. 

1.1 Current Progress in Heavy Flavour Particle 

Experiments 

1.1.1 Semileptonic B Decays to Light Flavours 

As of October 1999, the Cornell Electron Storage Ring is running a new experi-

ment with the centre-of-mass energy of the beam tuned to the T (4S) resonance 

at 10.58(4) GeV [3], the threshold above which BB creation becomes energetically 

possible. This experiment will be at higher luminosity than previous resonant 

BB experimental runs, which have created some 10 million BB events between 

them. The data from these completed runs have been used to infer the total 

decay rate for B —> Trli/], B —> /)lt/| and B —> wlz/| [4], and the differential decay 

rate for B — p is soon to be published [5]. The methods and results of the CLEO 

collaboration are summarized in Ref. [6]. The region of the Dalitz plot probed 

with smallest systematic uncertainty is that of high lepton energy E] > 2.3 GeV, 

relative to which the lepton rest masses are negligible. Pole-dominance models [7] 



are then used to extend the the range of the results in allowing the integrated 

semileptonic decay rate to be estimated. Alternatively, the product of the total 

lifetime and the semileptonic branching ratio can be used. The semileptonic rates 

for B —TT and B — l e a d to independent estimates for which lie in the 

interval (2.5 — 4.0) x 10"^. 

1.1.2 Semileptonic D Decays to Light Flavours 

Experiments with a D Physics programme include FOCUS (Fermilab), and the 

CLEO detector at CESR. Form factors for D -4 Kli/) are measured over the en-

tire kinematic range of with reasonable accuracy. In his review at the Heavy 

Flavours 8 conference, Stanton [8] claims that the best results remain those of 

1995 and before (from FNAL E687, Ref. [9, 10]). Measurement of D —Trlf/; is 

more difficult due to Cabibbo suppression, but Ref. [8] cites an imminent mea-

surement from FOCUS which will draw on 100 times as many events as in past 

efforts. 

1.1.3 Decay constants 

Heavy-light decay constants are not of primary interest, and there have been few 

experiments directed towards their measurement. Only /o , has been well studied, 

with the most recent determinations from the CLEO detector, BEATRICE2K 

and the Aleph collaboration at CERN (Ref. [11, 12]); a more complete synopsis 

is given in Ref. [13]. However, there are important phenomenological applications 

for decay constants; the combination for both B j and B^ mesons, needs 

to be known for extracting CKM and CP-violating parameters (the parameter 

describes BB mixing, and is expected to be close to unity). Decay constants 

are also popular as easily calculable tests of new simulation methods within the 



lattice community. 

1.2 Theoretical Background 

The standard model of particle physics is a quantum held theory containing 3 

gauge symmetries, whose vector bosons carry the fundamental strong and elec-

troweak forces. At low energies the electroweak gauge symmetry is broken by 

the vacuum, leading to massive weak vector bosons and the massless 

photon ('}) which couples only to electric current. The matter fields are 6 flavours 

of coloured, charged fermions (q), 6 fermions which have no colour (1) and the 

symmetry-breaking scalar (H). The colour force, mediated by gluons (g) is confin-

ing and the spectrum of the standard model at long distances contains colourless 

bound states and resonances qq and qqq. In this work, the colour sector of the 

standard model, the theory of quantum chromodynamics (QCD), is simulated on 

a spacetime lattice, with effective operators used for weak current interactions. 

The path integral formulation is adopted [14]. A coordinate rotation to imaginary 

time is performed [15], which permits stochastic evaluation of the amplitude for 

a decay. The sum over configurations of the fermionic fields is performed on each 

gauge configuration using a closed-form expression (c/. Eq" 2.9). 

The lattice method of calculating amplitudes in QCD dates from the late 1970's [16], 

and is now widely consulted as a means of predicting strong interaction matrix 

elements. In general, the QCD action starts with Poincare, gauge and chiral 

symmetries; on the introduction of a lattice, the action necessarily loses Poincare 

symmetry, which on a finite lattice is also broken by the boundaries. The gauge 

symmetry, by contrast, may be explicitly retained. Chiral symmetry may be re-

tained only if one is prepared to lose correspondence with some of the original 

particle content [17]. However, the freedom to choose any of the infinitely many 



discretisations of the QCD action can be used to mitigate the consequences of 

this 'no-go' theorem. Current efforts in lattice QCD can be classified according to 

their discretisation scheme for the action. The Wilson action(c/. Chap. 2) breaks 

chiral symmetry explicitly with a second-derivative term, and has the advantage 

of being amenable to systematic improvement; only one operator of dimension 

5 needs to be added to tune the action to remove terms of order o in spectral 

quantities, and operator improvement is also relatively simple. The staggered 

formulation [18] retains a subgroup of the original symmetry, at the cost of dis-

tributing the components of each spinor field over neigbouring sites. Algorithms 

for staggered fermions are practical for somewhat lower masses than in the Wil-

son case. There are technical complications relating to Aavour symmetry in the 

staggered formulation. In this work, Wilson fermions are used. 

The consequences for matrix elements of the explicit breaking of chiral symmetry 

are not well understood; this question has prompted the development of actions 

in which chiral symmetry breaking is handled in a more sophisticated way. In 

the,Ginsparg-Wilson formulation, the action is constructed to satisfy a relation 

at any lattice spacing which develops into chiral symmetry at a = 0. Actions 

satisfying the Ginsparg-Wilson relation are currently computationally expensive, 

and are not used in this work. 

Practicioners of lattice QCD are currently struggling with the problems of sim-

ulating processes with two or more hadrons in the final state, and of calculating 

matrix elements of processes involving light quarks, where conventional algo-

rithms slow down critically. 

Another widespread technique for estimating matrix elements for hadronic pro-

cesses utilises sum rules arising from the operator product expansion [19] of light-

cone perturbation theory [20]. The light-cone sum rule approach hag a different 

set of strengths and weaknesses. Although formulated in the continuum, it re-



quires many poorly determined inputs including the quark and gluon condensates. 

Quark model calculations have also been used [21, 22]. 



C h a p t e r 2 

Lat t ice M e t h o d s of Q C D 

Calculat ions 

The substantial part of this work consists in calculating the Standard Model 

predictions for semileptonic decays of heavy mesons containing a single heavy 

quark. At the quark level these decays proceed at first order in the weak coupling 

constant Gp. The decaying heavy quark interacts via the strong force with the 

light quark which is active in the decay, and both interact with the spectator. 

These quark-quark interactions include exchanges of infra-red gluons, for which 

the QCD perturbation expansion is inadequate; any renormalization condition 

results in a large value of the coupling, or in large logarithmic coefhcients, either 

of which interdicts the perturbative approach. 

Lattice QCD does not rely on formulating an asymptotic expansion in the QCD 

coupling. Instead the whole path integral (PI) is considered directly, so that 

matrix elements may be evaluated even when the strong coupling in some scheme 

is of 0(1) . The PI is expressed in terms of classical fields on a finite Euclidean 

spacetime lattice, and in terms of an action which becomes the Euclidean QCD 



action in the continuum limit, with bare parameters chosen to make the lattice a 

practical size. The lattice spacing is extracted from the calculation of some mass 

or length scale. 

The lattice PI used in this work is: 

Z = y Y % d & / d i ^ d ^ e x p ( — ( 2 . 1 ) 

6^2/, = 6'gaugeM + '$'quark[ZY, (2.2) 

W = /3 E T r ( l 3 - i ( l / r + C r ' ) ) (2.3) 

plaiquetbes 

6quark = V'a;Mc3/(^)V';, (2.4) 

2 ^ 
M^y = — ( l ; i + 7fi)'̂ (i-+i:)y + ~ 

( 2 , 6 ) 

= u r + u ; r + (2.6) 

is the colour gauge field related to the continuum gauge potential A^{x) by 

(7:̂  = exp A'^da;^, and product of links 

around an elementary plaquette. The action 6" has the familiar (Euclidean) QCD 

action 

(9 = y d-'i ^ - ^ T r F ' " ' f ^ , ( a ; ) + ^ ( ^ + W ) ^(a;) + m # ( a ; ) ^ (2.7) 

as its continuum limit. 

The pure gauge part of the lattice action has no discretization errors of 0 (a ) . The 

fermionic part of the action can be tuned to remove 0(G) errors by adding the 

irrelevant operator with coefhcient ^Csw(/)). The which remove 0(G) 

discretization errors from the PCAC relation (Eq" 3.10) are calculated in Ref.[23], 



given in terms of = 6//): 

_ l - 0 . 6 5 6 ^ g - 0 . 1 5 2 ( / ^ - 0 .054^G 

- 1 - 0.922^g :/0 

yielding = 1.61 and ° = 1.76, for this work. 

Integrating over the quark fields 7̂ , the partition function simplifies to: 

^ / n (--^gaugeM) (2.9) 

The determinant det is moved through the integral sign, in what is known 

as the quenched approximation. This determinant then disappears completely 

from observables, which are ratios of the partition function and its moments. 

The quenched approximation can be shown to correspond to neglecting virtual 

quark loops [24]. 

Non-local effective operators and with appropriate Savour and spin are 

manufactured for the creation and destruction of mesons. While a general op-

erator with the correct symmetry properties may be relied on to overlap with 

the lattice states of interest, and are constructed in order to enhance 

the overlap and increase the signal relative to the intrinsic variance of the Monte 

Carlo samples. The construction methods are described in Ref. [25] (for heavy-

light mesons, based on a discretization of the appropriate Laguerre function) and 

in Ref. [26] (for light-light mesons, using an iterative method). The matrix ele-

ment for semileptonic PS decay is then obtained from the expectation value of 

the partition function Z. The correlation function is 

equal to the trace of propagators of the three quarks involved in the decay, inter-

leaved with the gamma matrices encoding the Lorentz transformation properties 

of the meson and the current (Eq" 2.13). 



The quark propagators are expectation values of quark bilinears in 

the partition function Z, which in the quenched approximation evaluate to: 

(2.10) 

where both G and M ^ have suppressed spin and colour indices. A set is created 

of ZY of 216;g=6.2 (305^=6.o) gB'Uge configurations selected with probability measure 

d $ — —dZYexp( —SgaugeM), 

using a combination of Cabibbo-Marinari [27] and over-relaxed heat bath algo-

rithm [28]. The average over the ensemble ZY of the components of is a 

Monte-Carlo approximation to the integral 

^ (2.12) 
i 

The light meson operator nM(0) is fixed at the origin in this work for logistical 

reasons. The heavy meson operator ^^(a:) is permitted to occupy any position in 

space, with its time coordinate fixed at 28a. The spatial coordinate ;r is Fourier 

integrated immediately to create an 'extended propagator' (described in Ref. 

[29]), with great savings in storage requirements. The current operator ^^ (̂2/) 

is permitted to occupy any site on the lattice. The final three-point correlation 

function for PS decay via the effective weak current is then given by the trace: 

C3p,(0, z, 3/) = TrrG'(2/, 0)r^G+(2/, a;)rGt(2: , 0) (2.13) 

where the identity G(.s,r) = r5G^(r, a)?^ has been used, and each T represents 

any element of the algebra. Throughout this discussion, quark and meson Savours 

have been suppressed. A diagram of a typical process, containing conventional 

10 



names and symbols for the particles involved in the decay and their degrees of 

freedom, can be found in Fig. 2.1. 

The coefhcients of this correlator's Fourier series in the spatial variables and ^ 

are projected out for discrete values of the respective conjugate labels p and A; s.t. 

1^ < 7r/A x̂yzG a-nd |^| < 7r/\/2Nxyza. The labels p ans ^ correspond to the spatial 

part of the momenta p and A; in Fig. 2.1. At large times, the contribution to the 

correlator from the lowest states dominates all others, and the desired matrix 

element is extracted from a fit: 

cgC « « 4) - (P(p)U'iP, v(t))X 

(OI^P (p))(0|nP'V |P, 

AM-p M-p y 
(2-14) 

P 

heavy quark 
active quark 

z k 

spectator quark 

Figure 2.1: The objects in a semileptonic decay: Names and symbols used in this 
work. Time proceeds from left to right. 

Two-point correlation functions for mesons are given by the trace of two quark 

11 



propagators: 

C2jO,y) = TrrG(j,,0)r'G'(s,0) (2.15) 

where %/ can take values anywhere on the lattice. Inserting a complete set of states 

and translating the large-time operator to the temporal origin gives a function 

of ^ whose spatial fourier coelScients with labels p are the square overlap of the 

interpolation operators with the true lowest state, 

Extracting the three-point matrix element by translating the operators to the 

temporal origin requires knowledge of the lowest-state masses, which are fit di-

rectly from the two-point correlator in the large time region where the lowest 

state dominates: 

( : L ( 0 ^ ^ e - W - O ) (2.16) 

where the variable sign term originates from the Anite size of the lattice, and 

depends on the behaviour of the interpolation operator under time reversal for 

periodic boundary conditions. The large time region is established by inspection 

for Aatness of the quantity (C2pt(0,< + 1) " C'2pt(0,^ — 1)) /C'2pb(0,^) (twice sinh 

of the 'effective mass'). App. F shows an output set which is typical of this work. 

Practical lattice simulations have access only to certain intermediate distance and 

momentum scales, and do not support the real processes D—Tr,/) and B—?:,/). 

A guided extrapolation of matrix elements from around the D, K mass region 

is carried out to B and vr, p masses. This extrapolation is broken down and 

described fully in Chap. 3. 

12 



C h a p t e r 3 

Ex t rac t ion of Form Factors and 

Decay Cons t an t s 

Lattice I Lattice II 
p 6.2 6.0 

Volume 24^ X 48 16^ X 48 

^̂ conRgs 216 305 
Heavy K 0.1200,0.1233,0.1266,0.1299 0.1123,0.1173,0.1223,0.1273 
Light K 0.1346,0.1351,0.1353 0.13344,0.13417,0.13455 

(GeV) 2.68(13) 2.12(18) 

^crit 0.13581(2) 0.13525(2) 

Kn 0.13578(2) 0.13520(2) 

Kg 0.13495(2) 0.13476(4) 

Table 3.1: Simulation parameters 

The simulation parameters used in the work can be fonnd in Tab. 3.1. This table 

includes the input values of quark mass and coupling and the number of lattice 

points, as well as the derived physical size of the lattice spacing and the hopping 

parameters ^critical, ^normal and Kgtr corresponding to zero, 'normal' (a light-quark 

mass scale defined in Sec. 3.6) and strange quark masses respectively. 

13 



In order to make predictions for differential decay rates, form factors and decay 

constants, the lattice Green's function data must undergo a series of transforma-

tions. The processing of the lattice data breaks up into the following stages: 

1. Implementing improvement of current operators to reduce artefacts from 

spacetime discretization 

2. Extraction of meson masses, wavefunction factors and decay constants from 

two-point Green's functions 

3. Matrix elements At from three-point Green's functions 

4. Transforming from Euclidean to Minkowski space 

5. Extracting form factors from matrix elements 

6. Changing the momentum transfer 

7. Changing the light mass 

8. Changing the heavy mass 

9. Extracting CKM elements, differential decay rates from form factors 

These stages can in theory be performed in any order, ideally giving compatible 

answers (although masses and wavefunction factors are indispensable in the ex-

traction of matrix elements from three-point functions, and the quark mass may 

only be improved after the light mass extrapolation when ^critical has been deter-

mined). The order adopted in this work cuts down the total data storage required 

as much as possible at each stage. It has been suggested by Hashimoto [30] that 

in practice, due the inexactness of the various models, final predictions do indeed 

depend on the order in which the extrapolations are carried out. This suggestion 

is addressed in Chap. 7. 

14 



3.1 Improvement 

0(0) improvement of the action has already been described in the previous chap-

ter, and consists in adding the 'clover' term with coefEcient cgw determined in 

Ref. [23] (Tab. 3.2). Full 0 (o) improvement is also applied to the current oper-

ators, using the coefhcients to 0 (o) are Zx, 6x, % where % € {A,V} according 

to the system: 

(1 4" hycirriq) (V^ + (3.1) 

-4- (1 + bxcniT-q) -f icj^adf^P) (3.2) 

where the spinor parts of the pseudoscalar ( f ) and tensor (%%;,) flavour-changing 

currents are defined by f — ^ the average 

mass of the two quark flavours o and 6. The coefhcients' values as determined by 

various authors are listed, with references, in Tab. 3.2. The bare mass of a quark 

is a function of the input hopping parameter K which appears in the Lagrangian, 

cUld of ^critical* 

— IT % 1 (̂ '̂ ) 
" \_Kq /^critical/ 

It is moreover useful to employ an improved definition of the quark mass, given 

by the following formula: 

GTYZq = Gmq(l 4- 6MG)7*q) (3.4) 

with given in Tab. 3.2. 

Almost all the improvement coefficients used in this work are calculated using 

non-perturbative (NP) methods. The most serious exception is the coefficient 

cy, whose only determination outside perturbation theory (Ref. [34]) predicts an 

15 



Coef- Favoured Value Included In Uncertainty 
Acient = 6.2 /? = 6.0 = 6.2 = 6.0 

Zv 
Zk 

6v 
6A 

Ref. [31] 
Ref. [31] 
Ref. [31] 
Ref. [32] 

0.7922 
0.8067 
1.404 
1.43 

0.7809 
0.7906 
1.477 
1.41 Ref. [33] 1.15 1.15 

cv Ref. [33] -1 .58 X 10-^ -1 .63 X 10-^ 
Ref. [34] 
Ref. [32] 

-0 .22 
- 2 . 5 8 X 10-^ 

-0 .32 
-2 .75 X 10-^ 

ca Ref. [31] 
Ref. [35] 

- 3 . 7 1 X 10-^ 
-0 .62 

-8 .28 X 10-^ 
Ref. [33] -0.6198 -0.6217 

Table 3.2: Improvement coefEcients used in this work 

eEect on matrix elements of up to 100% (to which the community has reacted 

skeptically [36]). The NP determination of the coefhcient gives a more heuristic 

cause for concern; improvement of the axial current using = 1-43^=6.2,1-41/3=6.0 

from Ref. [32] changes axial current matrix elements by a smaller but still uncom-

fortably large amount. In particular, the pseudoscalar decay constants on the two 

lattices are made to differ by up to 10% (c/. Tab. 6.1), which hardly constitutes 

improvement. To hedge, an alternative set of predictions for quantities involving 

the axial current is provided, using the previous best determined value of 6^ from 

perturbation theory. 
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3.2 Masses, Wavefunction Factors and Decay 

Constants 

The decay constants in the continuum theory of pseudoscalar and vector mesons, 

/p and / v are defined respectively as follows: 

^ (0 | .41PM> 

p" * ' 

(0|V»|V,(p)> ' ' ' 

with /.( a free index // 6 { 1 . . . 4}, and ^ a pseudovector satisfying the polarization 

sum identity: 

(3-7) 
r ^ 

3.3 Matrix Elements from Three-point Green's 

functions 

All information about matrix elements of current operators between states is 

contained in the three-point Green's functions GMJN- The matrix element of 

the current operator J between the lowest states overlapping with M and N 

respectively can be extracted from behaviour of the three-point Green's function 

at times near a quarter the length of the lattice, which is both as far away as 

possible from the origin, where M is created, and from timeslice 28 out of 48, 

where N is created, in order to ensure that only ground states contribute. The 

asymmetric position of the extension point = 28 helps to create a region in 

time which is free from the effects of unphysical time orderings. The exact region 

to be used for a given Green's function is chosen by inspection for flatness in 

17 



time after the theoretical time dependence has been divided out (for example, in 

the Green's function of Fig. 3.1, times 7-17 could be used). An estimate of the 

matrix element is obtained from each time coordinate in this supposed asymptotic 

region, and these estimates are subjected to a combined fit. 

Figure 3.1: Estimate of matrix element of (B|V^|7r) ug. t ime (/(heavy = 0.12, 

Ktight = 0.1346, /(spectator = 0.1346, p = 0,^ = 0, ^ = 6.2) 

3.4 Minkowski from Euclidean 

The matrices used in the lattice simulation, which obey anticommutation rela-

tions with a Euclidean Metric ({F^, F^} = (^^^), differ from those in a Minkowski 

space representation where the form factors are defined (c/. App. C). This dif-

ference is introduced, in combination with the Wick rotation, in order to ensure 

that the Euclidean action % is a positive dehnite quantity, and a valid prob-

ability function for use in a Monte-Carlo algorithm. The matrix elements of 
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operators which are proportional to gamma-matrices are multiplied by the ap-

propriate phase before the Minkowski-space form factor decomposition is applied 

according to the recipe in App. C. 

3.5 Form Factors from Matrix Elements 

Lorentz-invariant information about the dependence of a matrix element on the 

momenta and polarizations of its particle states is expressed as a sum of quan-

tities which transform in the same representation as that matrix element, each 

multiplied by an scalar 'form factor'. Form factors in this work are listed below: 

There are 2 form factors for a matrix element(/+, 

There is 1 form factor for a (P(p)|y^|Vr(A;)) matrix element(y). 

There are 3 form factors for a (P(p)|A'^|Vr(A;)} matrix element(A^, 

The relationship between the matrix elements and the form factors is 

given in App. B. 

The number of form factors is equal to the number of matrix elements which 

cannot be related to one another by a connected Lorentz transformation. Matrix 

elements are calculated with all possible values of Lorentz indices. In addition 

states are given different momenta which are related by rotations. In this work 

the traditional approach is adopted, which is to average together matrix ele-

ments related by rotation, and to neglect those matrix elements which vanish 

theoretically (although they could in principle influence the fit through non-zero 

correlations with non-vanishing matrix elements). There are more matrix ele-

ments than form factors; minimization of the statistic of the matrix elements 

gives a prescription for form factors (c/. App. A for details). 
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Models will be used later for the dependence of the form factors on m. 

Between them, the models for the form factors have a total of at least 10 unknown 

parameters which must be fit using simulation data. The use of these models 

is critical, to guide an extrapolation of a form factor when all three kinematic 

variables are changed from their values input in the lattice simulation, to those for 

decays of physical particles and at values of for which they can be measured. 

The lattice simulation is performed with 24 combinations of M and m, and 9 

values of for each combination, in order to constrain the parameters in these 

models as much as possible. The total volume of form factor data at each value 

of the coupling therefore consists of 24 tables of the size of Tab. F . l . 

3.6 Fixing the Parameters of the Theory 

At this stage in the calculation the size of the lattice remains unknown, and 

the dimensionless parameters omnormai(q=u,d) and arngpecbator remain to be fixed. 

Lattice and numerical artefacts cause different definitions of physical parameters 

to produce mildly different results. In this work, the following order is adopted 

for defining the parameters: 

1. The scale a is set from the gluonic observable ro [1]. ro(/)) is calculated 

in [2]: 

In = 1.6805 + 1.7139(/3 - 6) - 0.8155(/? - 6)^ + 0.6667(/) - 6)^ (3.8) 

Using ro 2̂  0.49fm 2.5 GeV"^ gives: 

/̂3=6.2 ^ Q ^ Q gg Qgy- l /̂3=6.0 ^ ^ Q^g Q^y- l 
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2. The additive quark mass renormalization parameter, /(critical, is set from the 

zero quark mass intercept of the best fit omq(amp), using as a model the 

naive discretization of the PCAC relation in lowest order chiral perturbation 

theory: 

omq o( (amp)^ (3.10) 

amq is the arithmetic mean of the masses of the two quarks in the meson 

Pqiqz; amq = I (amqi + amq2). 

3. The normal quark mass ^normal = ^ ('̂ ^u + 'TZj) is set from the pseudoscalar 

vector meson mass ratio ^ as follows. First the ratio of the best At func-
my 

tions from Eq"^ 3.11 and 3.12 is constructed. Substituting the physical 

values of and then gives a quadratic equation for ^^7^, the solution 

of which gives rnnormal-

4. The strange quajk mass mgtr is set from the strange-normal pseudoscalar 

(K) mass. Starting from the best fit function for Eq" 3.11, the K mass is 

substituted for amp, and the average ^ (abnormal + amstr) is substituted for 

omq. The equation is rearranged and is calculated. 

Variations on this procedure are explored, to estimate the inconsistency of dif-

ferent parameter fixing schemes. The scale o is alternatively set from the pion 

decay constant and the rho mass The strange quark mass is alterna-

tively set from the mass of the strange-normal vector particle (K*) and from the 

strange-strange vector particle (assumed to correspond to the 
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3.7 Changing the Momentum Transfer for Form 

Factors 

The form factor may be calculated for any kinematically allowed (0 < < gmax; 

9max = + —2Mm) value of the momentum transfer and still be a result with 

physical meaning, so it is not strictly necessary to extrapolate the form factor 

systematically to a different momentum transfer. However, a direct comparison 

with existing experimental results for B —> 7rlz/i requires a prediction in the region 

of reasonably small momentum transfer ^max- Furthermore, gaining a 

moderate ability to scale the form factors in at the outset allows a theoretically 

robust extrapolation in heavy mass (Sec. 3.9), for which, according to HQET, the 

base points should lie on a trajectory in of u-A; = const., with f the four-velocity 

of the heavy meson is related to u - A; by — 2Mu - A;). 

This initial scaling entails an interpolation, which is a new addition to the fairly 

well established system used in previous calculations e.^. Ref. [37]. 

The favoured ansatz for interpolating all of the form factors in is a single pole 

model, chosen primarily for its simplicity and smoothness. Alternative smooth 

ansatz are used to construct a systematic error bar: 

# a straight line 

# a rational polynomial 

# a pole of multiplicity 2. 
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3.8 Changing the Light Mass 

The relation between light pseudoscalar mass amp and quark mass amq follows 

directly from the partial conservation of axial current [38]: 

The dependence of light decay constants and vector state masses, and of all heavy-

light masses and decay constants, is assumed to be linear in the light quark mass: 

omv ^ ^mv,o + (3-12) 

a /p ^ + ^/p,i(a7^p) (3.13) 

o/v ^ ^/v.o + X/v,i(amp) (3.14) 

An ansatz for the fitting the dependence on the light pseudoscalar meson mass 

mp of a heavy pseudoscalar to light pseudoscalar form factor / , (?T2heavy, 9^, )7̂ iight) 

must be accompanied by the specification of some trajectory in the other two 

variables, the momentum transfer and the heavy pseudoscalar mass Mp. In 

this work the constraint is const, Afp ^ const. The form factor is assumed to 

be an analytic function of the quark mass, which itself is an analytic function of 

the light pseudoscalar meson mass squared (from chiral perturbation theory, c/. 

Eq" 3.11). The following ansatz arises from a power series expansion of the form 

factor in the squared pseudoscalar meson mass (amp)^, truncated at 0((amp)^): 

/ ( a m p ) ^ + ^ / , i (amp)^ (3.15) 

where / G { / + , / " } . 

The ansatz for the dependence of the pseudoscalar to vector form factors is linear 
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in the vector meson mass and is truncated at 0(a?7%v): 

/ ( o m v ) ^ (3.16) 

where / E {A°, y } . 

3.9 Changing the Heavy Mass 

An analysis of the higher-dimensional operators contributing to heavy-light ma-

trix elements in HQET (c/. Ref. [39]) prescribes the following forms for the scaling 

of decay constants and form factors at leading order in the heavy mass scale M 

near the heavy quark limit, and at Axed recoil variable - A;: 

/ p \ / M 0 ( M ) 2:! COMgf. (3.17) 

y y M " 2 / 8 ( M ) cona^. (3.18) 

/ i \ / M 0 ( M ) 2̂  (3.19) 

( y n / \ / M ) 8 ( A f ) (3.20) 

with / i G { /° , y } , / n 6 and M a scale associated with the heavy 

quark mass, usually taken to be some definition of the heavy quark mass itself 

in the literature. In this work M is the mass of that heavy meson appropriate 

to the quantity being extrapolated, e.^., M = My, for a strange vector decay 

constant. 8 is the leading order QCD radiative correction: 

The constraint of constant - A; Axes the trajectory in for the form factors, 

with the light mass ek . naturally chosen to be constant. Ansatz suitable 
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for a, fit are prepared by including correction terms in ^ and ^ 

/ p \ / M 6 ( M ) -^p.o + 
^ f , l ^P,2 

M M2 
(3.22) 

/ v M - ' / 8 ( M ) ~ ^Pfi + 
^P,l ^P,2 

M 
(3.23) 

y i \ / M 8 ( M ) -^7,0 4-
;^;,1 , 
M 

(3.24) 

( y n / \ / M ) 8 ( M ) ^77,0 + M M2 
(3.25) 

The 4 base points for the form factor fit have been prepared so as to lie on the 

constant - A; trajectory Sec. 3.7. Each form factor and decay constant is 

now calculable at the masses of physical particles. The process is complete. 

3.10 CKM Elements and Decay Rates from Form 

Factors 

In the limit of zero lepton mass, the decay rates for the semileptonic decays e.^. 

for the B meson into a single species of massless lepton B —> Trli/] and B -4̂  pl^^ 

are given by the following formulae: [40]: 

1927r^mn 
r s . . = y , (3.26) 

^ (3.27) 

Ax(9') - + (3.28) 

2 

/^(g 2\ 

(n%B + m^) ^X?^) + y(g^) ) + 
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'(mB + rn,) A\q') - (3.29) 
m s + y 

4mg 
(3.30) 

Analogous formulae apply for the D decays D —̂  Kli/], D —7rlf/| and D —K*lz/|, 

D —> /)lz/i with the modifications |%,b| —̂  IKdj, mg — m o and mx, 

nip -4̂  mK« as appropriate. That zero lepton mass is a robust approximation can 

be inferred from Ref. [41]. It is now possible to give predictions using e.^. the 

world average value of |%ib| for the B —> pli/| diEerential decay rate, which can 

be compared directly to an imprecise measurement in large bins from CLEO [5]. 

Comparisons can also be made for the differential decay rates in the better known 

D —Kli/) and D —K*lz/i cases. The differential decay rate results are the first 

to be presented in Chap. 4. 

A couple of functions are now used to model the dependence of a form factor on 

One is the pole dominance set: 

(3.32) 

Although and do not appear explicitly in the expression for the decay 

rate, they contain information about their partners through the constraints of 

the parameterization 

/°(0) = /+(0) (3.33) 

which appear after the matrix elements are asserted to be non-singular at = 0. 

Enforcing the constraint on the axial form factors is not practical and so, in this 
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work, is truly irrelevant. 

The pole dominance perspective is that form factors may be largely inSuenced 

near by a pole at the nearest resonance, which for is the = 1" (vector) 

resonance with the appropriate flavour. The position of this resonance is known 

in the B -4 Trlt/; (mB«=5324.9(18)MeV) and the D —Trl^ 2006.7(5)MeV) 

cases. Becirevic and Kaidalov [7] thus propose the following (BK) parameteri-

zation for /' ' '(g^), /°(g^), e. for B —> 7rlz/| (the relative numbers of poles are 

prescribed by HQET, and are simply consequence of demanding consistency with 

Eq"= 3.22-3.25): 

~ ( 1 - * ) ( ! - ; $ ) 

f V ) ~ 7 7 3 ^ (3.36) 

Form factors for decays to a vector final state are also modeled as poles. However, 

although the principle of pole dominance is widely used in an exploratory context, 

it is rarely clear a pn 'on just how important the non-analytic structure of the 

form factors beyond this pole will be. For this reason, the position of the leading 

poles in the P —VWi form factors are treated as free parameters in the At even 

where they are approximately known: 

^(2) 
^ (3.38) 

~ (3.39) 

'4°(';') ~ (3.4o) 
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Again, the relative multiplicities of the poles are suggested by HQET. = 

is imposed, since is noisy (c/. Figs. 4.3, 4.8, 4.13). 

The relationship between the fitted pole positions and measured resonances with 

the appropriate quantum numbers is detailed in Sees. 4.1.1— 4.1.3. 

With the help of these models, and after a numerical integration over 

|%:s| and |%:d| can be extracted. 
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C h a p t e r 4 

Resu l t s for Semileptonic Decay 

R a t e s and C K M P a r a m e t e r s 

Results are presented to two significant figures. Where a result is referred to 

without quoting a value of /), /) = 6.2 may be assumed, which is the closest to 

the continuum limit in this work. Where a number is quoted without error, the 

error is zero at the precision to which the number is given. 

Preliminary results for P—>P differential decay rates, which could have been found 

in Ref. [42], are superceded by those of the following sections. The results of this 

chapter are shortly to be sumbitted for publication, and drafts are available on 

request from the author ( [43, 44]). 
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GeV") OTT OlM LO L2 L3 
1.0(3) 1.1(4) 1.1(4) 1.2(4) 1.3(5) 

f ( g ^ ) 0.87(3) 0.90(2) 0.92(2) 0.95(2) 0.98(3) 
|Ks |-^dr/dg^(ps-^GeV-^) 0.065(5) 0.057(4) 0.049(4) 0.041(4) 0.033(3) 

Table 4.1: Form factors and differential decay rate for D Klz/i aa functions of 
/) = 6.2 

4.1 Form Factors and Differential Decay Rates 

4 . 1 . 1 D Klz^h D - > li*\p\ 

Form factors for physical D and K mesons are presented in Fig. 4.1, in which error 

bars contain statistical errors only. The differential decay rate in units of 

extracted from Eq" 3.26, is summarized in Tab. 4.1, which shows 5 representative 

values of The full set of data points and the best fit curve are depicted in 

figure Fig. 4.2. 

The value obtained with = 6.2 for yD-^K(O) = 0.7(2) is in good agreement 

with the average experimental determination /D-»^K(0) = 0.71 (3)(3) [8]. This 

agreement may suggest that quenching errors are moderate compared to the 

systematic errors introduced in the mass mutation procedure required for D—> 7r 

and B—> vr. The second effective pole in /"""(g^) is placed at a mass of 3.2(5)GeV, 

and the pole in at 2.4(2)GeV; the pole positions are reported for interest's 

sake and are not presented as spectroscopic predictions. 

Form factors for D K*lz/) are presented in sets of two, A^(Fig. 4.3), followed 

by y(Fig . 4.4). The differential decay rate in units of |%:s|^ is summarized in 

Tab. 4.2, and depicted in full in figure Fig. 4.5. The pole in corresponds to a 

resonance of mass 2.5 GeV (c/. ??ZD,=1968.5(6)MeV). 
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# D->K, f, P=6.2 
o D->K, P=6.0 

» D->K, f , p=6.2 
o D->K, f*. B=6.0 

qlGe\r) 

Figure 4.1: The form factors for D —> K semileptonic decay (/) = 6.2, /) — 6.0) 

GeV") -0.012 0.072 0.16 0.24 0.33 
0.77(5) 0.78(5) 0.80(6) 0.81(6) 0.82(6) 

0.68(11) 0.70(13) 0.72(14) 0.74(16) 0.77(17) 
0.68(3) 0.68(3) 0.69(3) 0.70(3) 0.70(3) 
0.60(4) 0.62(4) 0.65(5) 0.67(5) 0.70(6) 

|%:s|-"dr/dg2(p8-iGeV-") 0.046(5) 0.053(4) 0.060(4) 0.066(4) 0.070(3) 

Table 4.2: Form factors and diEerential decay rate for D K*lz/i as functions of 
^ = 6.2 

4.1.2 D —)• 7rlr/i, D -4 plui 

D —TT form factors are presented in Fig. 4.6. The differential decay rates are 

summarized in Tab. 4.3 and depicted in full in Fig. 4.6. The second effective pole 

in is placed at a mass of 3.1(5)GeV, and the pole in at 2.5(3)GeV. 

D —> p form factors are presented in Figs. 4.8 and 4.9. The differential de-

cay rates are summarized in Tab. 4.4 and depicted in full in Fig. 4.10. The 
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3e+11 

o |3=6.0 

2e+11 

-6 1e+11 

0.5 1 

q ' (Ge\ / ) 

Figure 4.2: The differential decay rate for D —> K semileptonic decay = 6.2, 
/) = 6.0) 

?"(GeV") 

|%:d|-^dr/dg"(ps-iGeV - 2 n 

0.72 0.86 1.0 1.1 1.3 
0.95(5) 1.0(5) 1.1(5) 1.1(6) 1.2(6) 
0.83(4) 0.85(4) 0.87(3) 0.90(3) 0.92(3) 

0.098(10) 0.094(9) 0.090(8) 0.086(8) 0.082(8) 

Table 4.3: Form factors and differential decay rate for D —7rlz/| as functions of 
/? = 6.2 

pole in is not well determined, but is consistent with a resonance of mass 

mo ^1.9MeV. The pole in corresponds to a resonance of mass 2.4(4)MeV 

(c^. mgo—2422.2(18)MeV). The pole in y corresponds to a resonance of mass 

2.3GeV, to be compared with mg.o—2006.7(5)MeV. 
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» D->K', A\ P=6.2 
o D->K', A\ P=6.0 
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# D->K . A , P=6.2 
o D->K', A', P=6.0 
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Figure 4.3: The form factors for D — K * semileptonic decay = 6.2, 
= 6.0) 

GeV") -0.049 0.035 0.12 0.20 0.29 
0.68(5) 0.70(5) 0.71(6) 0.72(6) 0.73(7) 

AXg^) 
0.60(12) 0.61(14) 0.63(16) 0.66(18) 0.68(20) 

AXg^) 0.62(3) 0.62(3) 0.63(3) 0.63(3) 0.64(4) 
A«(g^) 0.56(5) 0.58(6) 0.60(6) 0.62(6) 0.64(7) 

|Kd | - "dr /dg"(ps - :GeV-") 0.047(13) 0.054(13) 0.059(13) 0.064(13) 0.068(13) 

Table 4.4: Form factors and differential decay rate for D —/)lz/] as functions of 
= 6.2 

4 . 1 . 3 B —> t t I z / i , B —> p\v\ 

The form factors / + and for the decay B 7rli/i are presented in Fig. 4.11. 

The quantities dr/d<^^/|14bp and rB->7riiyi/|Kib|^ are summarized in Tab. 4.5 and 

depicted in full in Fig. 4.12, where the extrapolation to heavy mass includes 

0 terms (c/. Eq" 3.24). The second effective pole in is placed at a 

mass of 9(2)GeV, and the pole in at 6.5(5)GeV. The {/-axis scale of Fig. 4.12 
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Figure 4.4: The form factors y , for D K* semileptonic decay (/) = 6.2, 
^ = 6.0) 

relative to Fig. 4.11 may make errors appear larger than expected. 
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T3 
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-2e+11 

» M 2 
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Figure 4.5: The differential decay rate for D — K * semileptonic decay (/) = 6.2, 
/) = 6.0) 

• D->ji, f°, (3=6.2 
o D->n, f. P=6.0 

* D - > 7 1 , f , (3=6.2 
o D->ji, f , (3=6.0 

q (Ge\r) 

Figure 4.6: The form factors for D —% semileptonic decay (/) = 6.2, /) = 6.0) 
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364-1 1 

• 6=6.2 
o (3=6.0 

2e+11 

1 1e+11 

q'(GeV') 

Figure 4.7: The diEerential decay rate for D —vr semileptonic decay (/3 = 6.2, 

= 6.0) 
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» D->p, A \ P=6.2 
o D->p, |3=6.0 

: 1 J 11 1 

f t ^ r r T ^ 
-

# D->p, A". p=6.2 
o D->p, A'. P=6.0 

q (Gev ) 

Figure 4.8: The form factors for D — s e m i l e p t o n i c decay (/) = 6.2, 
/) = 6.0) 

D->p, V, P=6.2 
o D—>p, V, 6=6.0 

qlGeV") 

Figure 4.9: The form factors y , for D -4 /) semileptonic decay (/) = 6.2, 
/) = 6.0) 
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T3 
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1e+11 

-1e+11 

-2e+11 
0.5 

q'(GeV') 

Figure 4.10: The diiferential decay rate for D p semileptonic decay (/) = 6.2, 

= 6.0) 

• B->n, f", |3=6.2 
o f, (3=6.0 
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10 

• B - > 7 I , f , (3=6.2 
o B->7i, f*, (3=6.0 
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20 

20 

qXGeXT) 
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30 

Figure 4.11: The form factors for B —> 7r semileptonic decay (/) = 6.2, = 6.0) 
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GeV") m o 20^4 20^8 21^2 21.6 
y+(g^) 1.7(2) 1.8(2) 1.9(2) 2.1(2) 2.3(3) 
f ( g ^ ) 0.76(4) 0.77(4) 0.79(4) 0.80(4) 0.82(4) 

|%,b|-^dr/dg"(ps-iGeV-^) 0.32(7) 0.31(7) 0.30(7) 0.29(7) 0.29(7) 

Table 4.5: Form factors and differential decay rate for B —vrlt/i as functions of 
^ = 6.2 

1e+12 

#B=6.2 
o p=6.0 8e+11 

^ 4e+11 

2e+11 

q'(GeV'' 

Figure 4.12: The differential decay rate for B —TT semileptonic decay (/3 = 6.2, 
= 6 .0 ) 

B —̂  form factors are presented in Figs. 4.13 and 4.14. The differential decay 

rates are summarized in Tab. 4.6 and depicted in full in Fig. 4.15. The pole in 

is not well determined, but is consistent with a resonance of mass rx,l.9MeV. 

The pole in corresponds to a mass of 5.6(9)GeV, and the poles in and y 

seem to center around a similar region. Experimental B spectroscopy is in its 

infancy, but a promising resonance peak known as the B j has been found near 

5700 MeV [45]. A set of quantum numbers has not yet been assigned, and HQET 
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GeV") 

|K ,b | - ' d r / dg^ (ps - 'GeV- ' ) 

16.6 16.9 17.1 17.3 17.6 
1.3(2) 1.3(2) 1.3(2) 1.2(3) 1.2(3) 
1.8(7) 1.9(8) 2.0(10) 2.1(12) 2.2(15) 

0.59(4) 0.59(5) 0.59(5) 0.59(5) 0.59(6) 
1.6(6) 1.7(6) 1.7(6) 1.8(6) 1.9(7) 
1.3(2) 1.2(2) 1.2(2) 1.1(2) 1.1(2) 

Table 4.6: Form factors and diEerential decay rate for B -4 pli/i as functions of 

9^, = 6.2 

analysis suggests that the B j may contain several resonances. 

• B->p, A , (3=6.2 

— ^ 

# B->p, A , p=6.2 

q (Gev ) 

Figure 4.13: The form factors for B —> semileptonic decay (/) = 6.2) 
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>p, A , p=6.2 

B->p, V, p=6.2 

q (GeV 

> 1.2 -

Figure 4.14: Tiie form factors V, for B — p semileptonic decay (/) = 6.2) 

4.2 Integrated and Partially Integrated Decay 

Rates 

4.2.1 Resul ts 

For massless leptons, the semileptonic heavy to light decay rate (c/. Eq" 3.27) 

is integrated using Simpson's rule with 500 strips, giving integrated decay rates of 

rD^KlM=l(0.07)xl0^1 | l / ; , | 2 s - \ rD_: r l^=2(0 .2 )x l0^1 | ^ d | 2 s - \ r B ^ H ^ = l . l ( 0 . 3 ) X 

10'" | % . b P s - \ r D ^ K . | ^ =5.9(0.5) x l O ' « | K s | ' s - \ r D ^ p M = 8 ( 0 . 9 ) x l 0 ' « 

s " ' and rB_»;,ii/i=3.1(1.5) x 10'" |Kib|^ s " ' . Using lifetime and branching ratio 

data (c/. Tab. D. l , App.D) CKM moduli can be calculated directly, and are 

found to have the following values: 

|;^s|/3=6.2 = 0.93(3)(10) (4.1) 
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o 

•q "d 

4e+12 

36+12 

2e+12 

1e+12 

• p=6.2 

q'(GeV') 

Figure 4.15: The differential decay rate for B — s e m i l e p t o n i c decay = 6.2) 

|Kd|̂ ==6.2 = 0.19(2)(7) 

IK,tU=6.2 = 3.2(4)(10) X 10-^ 

(4.2) 

(4.3) 

IK.|;3=6,O = 0.86(3)(10) 

Hrfl,3=6.0 = 0.1S(1)(7) 

IKtbr f .o = 3.0(o)(10) X 10 - ' 

(4.4) 

(4.5) 

(4.6) 

The world average values are [3]: 

IKsl = 0.975(1) 

IKdl = 0.21(1) 

|%,b| = 3.5(15) X 10-^ 

(4.7) 

(4.8) 

(4.9) 
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0 < GeV") < 7 7 < g"( GeV") < 14 14 < g"( GeV") < 20.3 
CLEO collab. [5] 7.6(44) 4.8(31) 7.1(31) 

This work 7.4(13) 15(4) 10(1) 

Table 4.7: Partially integrated rates from CLEO and this work for B -4̂  pl̂ /i over 
three bins, each covering approximately one third of the allowed range in 

(4.10) 

The estimates at — 6.2 of |%s|, |%:d| and |%]b| are found to be in comfortable 

accord with experiment. That the estimate at ^ = 6.0 for |%s| is somewhat 

different from the world average, is attributed to lattice artefacts. 

Although the error bars on both experimental and lattice calculations are large, 

the fact of agreement in all cases is heuristically supportive of the standard model. 

Scaling between the two values of is variable, with violations between = 6.2 

and ,9 = 6.0 results ranging from very small in the case of the D —> Klz/̂  differential 

decay rate, to up to 25% in the case of some of the less well-determined form 

factors for B plz/|. In all cases, however, the scaling violation is less than the 

Monte-Carlo error, from which one may argue that little would be gained from 

having simulated using larger /). 

Ref. [5] gives the total rate for B — p M measured over three ranges of shown 

in Tab. 4.7 along with the corresponding estimate from this work. 

4.2.2 Discussion 

The reduction in statistical error relative to Ref. [37] is believed to be a side effect 

of extrapolating the form factors at constant and in particular, of interpolat-

ing the lattice form factors when choosing for the chiral extrapolation. The 
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C b a P /(O) 

D —> Klz/i 
D —> 7rli/| 
B -4̂  Trlz/̂  

0.58(8) 
1.2(2) 
1.1(2) 

0.39(12) 
0.37(13) 
0.33(12) 

1.3(2) 
1.6(3) 
1.5(2) 

0.36(6) 
0.73(0) 
0.73(0) 

Table 4.8: Parameters for the PS-^PS form factor fits following BK [7]: /) = 6.2 

interpolation acts like a smoothing filter over for the lattice form factor, and 

reduces spread at an early point in the analysis. 

A pole dominance model is known to work well, and good fits are obtained. It 

is not surprising that the BK model for a close relative of pole dominance 

with an extra free parameter, is similarly successful. The usefulness of the BK 

parameterization is in its isolation of quantities with particular theoretical sig-

nificance, some of which are investigated in the next section. The fit parameters 

are presented in Tabs. 4.8 and 4.9. 

One plausible explanation for the pattern of discrepancies between the binned 

B —> /)lz4 decay rate from Ref. [5] and this work is the existence of a large 

scale-setting error in which, by moving the position of the maximum in the 

differential decay rate, could have an effect on the event density consistent with 

the numbers in Tab. 4.7. Notwithstanding this possiblility, note that the numbers 

of Ref. [5] are themselves extrapolated from the region of high electron energy 

(where swamping from the Cabibbo-enhanced b—>c decays is not observed) to the 

full kinematic range. In addition, the systematic errors on the lattice calculations 

are large. All things considered, the level and nature of disagreement in Tab. 4.7, 

while unsatisfactory, is passable, particularly when better experiments are close 

at hand. 
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y(o) My(GeV) A(^)(0) M^M(GeV) 
D K'li4 
D -4̂  plui 
B — 

0.77(5) 
0.69(5) 

0.97(49) 

3.2(16) 
3.3(24) 

0.69(13) 
0.62(16) 
0.60(45) 

2.8(7) 
3.1(14) 

Ai(0) M^i(GeV) v4°(0) M^o(GeV) 

D IClz4 
D /)lz/i 
B —plz/] 

0.68(3) 
0.62(3) 

0.46(15) 

2.8(7) 
3.1(14) 

0.61(4) 
0.58(5) 

0.34(18) 

2.2(2) 
2.3(2) 
5.5(8) 

Table 4.9: Parameters for the P S — f o r m factor fits following pole dominance: 
/? = 6.2 

4.3 Theoretical Observations 

The process of calculating heavy-light form factors on the lattice gives a number 

of theoretical parameters worthy of study: 

4.3.1 T h e Coupling 

The B*B7r coupling is the dimensionless form factor defined by: 

(BX/)|B(p)7r(g)) = - g(27r)'̂ (^(p' - p - g) (4.11) 

A coupling gro'DTT is defined anologously. 

At tree level in heavy meson chiral perturbation theory (HMCPT), 

related to the coupling ^ in the heavy meson chiral Lagrangian by: 

SB-B, = ^ (4.12) 
Jtt 

5'B'B%(77̂ )̂ is the physical coupling gB'B^ [46]. 
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Crossing symmetry gives a relation to the residue of the pole 'res.' in 

at 

ars'STT = (4,13) 

can be extracted from the fit parameter cg of the best fit curve for the 

form factor / ° , using the BK model. The estimate for the B*B7r coupling (/b'Btt 

is defined as follows: 

6̂ 8*8% = 2CB/B (4-14) 

The extraction of is performed similarly, and results are presented for 

these two, as well as the values of the pseudoscalar-vector-pion coupling at the 

unphysical quark masses input into the simulation, in Tab. 4.10, along with the 

HMCPT coupling constant 

^ = 6.2 

^heavy 9 
0.1299 1.0(2) 18(4) 
0.1266 0.7(1) 17(3) 
0.1233 0.6(1) 17(2) 
0.1200 0.51(8) 17(2) 

M a 
mB 0.7(1) 18(3) 

mo 0.43(7) 32(5) 

Table 4.10: The pseudoscalar-vector-pion coupling at different values of heavy 
meson mass. The four non-physical heavy mesons correspond to the heavy quark 
mass parameters used as simulation inputs. 
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= 6.2 /) = 6.0 

= 220(5) MeV / B = 200(5) MeV 

u = 143(2) u = 112(3) 
= 1.1(1) = 1 . 2 ( 2 ) 

Table 4.11: Quantities relevant to the soft pion relation 

4.3.2 Soft P ion Theorems 

HMCPT [47] gives a soft pion theorem for B 7r matrix elements: 

f l ' l L . ) = T (4 15) 
JTt 

and a similar relation for D —> 7r matrix elements. This family of relations has 

attracted considerable attention in lattice studies. On the one hand, fulfilment of 

this soft pion theorem is a reassurance after the extensive process of extracting 

form factor predictions from the lattice; when violation of this theorem is ob-

served, however, there are many possibly revealing explanations (quenching error 

and poor approach to the chiral limit are the most popular). In this work, the soft 

pion theorem is fulfilled within the large errors, which is moderately encouraging. 

Hashimoto, who has been of the opinion that this soft pion theorem is violated 

in quenched QCD, suggests that discretization errors inherent in the relativistic 

simulation of heavy quarks used here may be causing a false fulfilment, an in-

stance of two wrongs making a right [30]. This possibility may not be ruled out. 

Results are presented in Tab. 4.11. Preliminary results, which could have been 

found in Ref. [48] are superceded by those of Tab. 4.11. 
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;0 = 6.2 = 6.0 

^heavy MH(MeV) / ( ? ' = 0) ^heavy MH(MeV) = 0) 

0.12000 2100(100) 0.65(5) 0.11230 2300(100) 0.66(9) 
0.12330 1860(90) 0.71(5) 0.11730 2000(100) 0.70(8) 
0.12660 1560(80) 0.79(4) 0.12230 1670(80) 0.77(7) 
0.12990 1220(60) 0.92(3) 0.12730 1280(60) 0.86(6) 

Table 4.12: /(O) ug. heavy mass 

4.3.3 Compar ison with Q C D Predic t ion for Scaling with 

Heavy Mass 

3 

QCD scaling dictates that the quantity should tend to a 

constant in the heavy quark limit [49]. This motivates the following ansatz: [50] 

My 
(4.16) 

Data from the four heavy quark masses of this study are tabulated in Tab. 4.12, 

and are presented in Fig. 4.16 together with best-fit curves from a 1-parameter At 

to Eqn. 4.16, where the /(O) have been extracted from a BK fit at the simulated 

masses. /(O) at and are superimposed on the plot. The QCD scaling 

is seen to be well satisfied, and fitting to Eq" 4.16 gives a result for /(O) at the 

D and B masses which is constistent that given by the procedures used in this 

work. 

4.3.4 Measurement of the Re normalizat ion Cons tan ts Zm 

and hy 

A measurement of the renormalization constants Zy and by can be made by 

observing that the timelike component of the flavour-degenerate lattice vector 

48 



f (0) 

3 4 
M (GeV) 

Figure 4.16: Test of QCD scaling relation for /(O) (/) = 6.2) 

current looks like a quark counting operator. Demanding that ( P | ^ | P ) / 2 m p 

be equal to unity for degenerate active quark in P, permits an estimate of the 

total multiplicative renormalization /oc. = Zv( l + bvomq). This combination is 

tabulated in Tab. 4.13 and 4.14. 

Estimates for Zy and 6v can be extracted from a At: 

ĥeavy "1" 1 ̂ •̂ ^^q(̂ heavy)) (4.17) 

with base points at two different values of Kheavy at ,9 = 6.2 and four different 

values of Kheavy at = 6.0. The results of the fit are as follows: 

0.80(1) ^ = 6.2 
Zy = %o = { by = Xi 

0.80(2) - 6.0 

1.25(4) = 6.2 

1.27(6) = 6.0 

By comparison, the Alpha collaboration gives [51] Zy, 6v as 0.792, 1.40(1) at 

^ = 6.2, and 0.781, 1.47(1) at /) = 6.0. The total renormalisation factor is 

plotted in Fig. 4.17 along with the determination of Ref. [51]. 

Zy and are estimated using an entirely different method to Ref. [51]. The 

level of agreement with Ref. [51] is one indicator that discretization error in 3pt 

49 



K h e a v y / ^ s p e c t a t o r ^ V e f F ( A l p h a c o l l a b . ) 

0.1200 0.1346 1.29(2) 1.33 
0.1200 0.1351 1.28(3) 1.33 
0.1266 0.1346 1.07(2) 1.09 
0.1266 0.1351 1.07(2) 1.09 

Table 4.13: Multiplicative renormalisation factor for the vector cnrrent, = 6.2. 
Errors in the Alpha numbers are negligible at this precision. 

^ h e a v y ^ s p e c t a t o r ^ V e f F ( A l p h a c o l l a b . ) 

0.1123 0.13344 1.57(3) 1.65 
0.1123 0.13417 1.57(4) 1.65 
0.1173 0.13344 1.38(2) 1.43 
0.1173 0.13417 1.37(3) 1.43 
0.1223 0.13344 1.20(2) 1.23 
0.1223 0.13417 1.20(3) 1.23 
0.1273 0.13344 1.04(2) 1.05 
0.1273 0.13417 1.03(2) 1.05 

Table 4.14: Multiplicative renormalisation constant for the vector cnrrent, 
6.0. Errors in the Alpha niimbers are negligible at this precision. 

Green's functions may be small at /) — 6.2 and not too large at /) = 6.0. 
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Alpha collab 

am„ 

Figure 4.17: Zv(l+6vGmq) for different Kheavy (/) = 6-2). Each doublet represents 
a measurement from two correlators with different spectator quarks. The Alpha 
determinations are stretched to the left axis in order to guide the eye. 
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C h a p t e r 5 

Decay Cons tan t s 

5.1 Results 

Decay constants are presented in Tab. 5.1. 

Tab. 5.2 shows the ratios of strange heavy meson decay constants to those of the 

light counterparts. A chiral perturbation theory approach predicts these ratios 

/B(MeV) / S ' /D(MeV) / d * 

(3 = 
(3 = 

^ 6.2 
: 6.0 

220(5) 
200(5) 

21(1) 
17(2) 

220(3) 
210(3) 

7.5(2) 
6.9(2) 

/aXMeV) / s ' /nXMeV) /or 
P = 
(3 = 

6.2 
6.0 

240(3) 
210(3) 

20(1) 
16(1) 

240(2) 
220(2) 

7.3(1) 
6.9(1) 

A(MeV) /p /K(MeV) /K' u 
= 6.2 

^ = 6.0 
140(2) 
130(3) 

3.6(3) 
3.4(5) 

160(2) 
140(2) 

3.9(2) 
3.6(4) 

4.1(2) 
3.8(2) 

Table 5.1: Decay constants, ^ = 6.2 and = 6.0 
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TT ZEE 3E SI 
/BS /B| /ds Id* 

/) = 6.2 0.90(3) 1.1(1) 0.91(2) 1.0(5) 
,9 = 6.0 0.91(4) 1.1(2) 0.93(2) 1.0(5) 

Table 5.2: SU(3) Ratios of decay constants, = 6.2 

to be unity at tree level, with corrections starting at second order in Aqco over 

the chiral symmetry breaking scale ^ 4%/^. 

Decay constants are inputs for the matrix elements for mixing in the B and K 

systems, and in estimating CKM elements from pure leptonic decay widths of 

mesons. Experiment has yet to measure heavy meson decay constants precisely, 

and so an wide range of lattice (150 < / s < 220 MeV) [52, 53], and other (/g ^ 

90 — 120 MeV [49]) calculations is tolerated in the literature. Quenched lattice 

calculations generally occupy the lower end (/g —> 150 MeV), whereag exploratory 

dynamical studies give higher numbers (/g —̂  220 MeV). One possible reason for 

the high values of here relative to other quenched simulations is that ro gives 

a 10% finer estimate of the lattice spacing than the usual scale-setting 

quantity in simulations where only the decay constants are to be extracted. 

5.2 Heavy Quark Symmetry Properties 

Heavy quark symmetry predicts that matrix elements of the vector and axial 

current bilinears obey a spin symmetry which, when combined with Eq"^ 3.5 and 

3.6, gives the following relation between decay constants, expressed here as a 

function of the spin-averaged maas M = (m? -t- 3mv) /4: 

/ p / v M + 0 ( i ) (5,1) 
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The ratio [ / (M) is deAned by [ / (M) = Iii HQET, [ / (M) ^ 1 rejects 

deviation from the heavy quark limit. Taking up to two-loop radiative corrections 

into account in (continuum) HQET, [ / (M) is given by [39]: 

= '̂ -2) 

The consistency of these decay constants with continuum HQET can be tested, 

using a fit inspired by Eq" 5.2: 

+ (5.3) 
M \ STT 

Fig. 5.1 shows fit to the form specified by Eq" 5.3, for each /). The curve 

for = 6.2 is consistent with continuum HQET infinite-mass behaviour. In the 

case of = 6.0, however, O(o^) corrections deflect the fitted curve from unity at 

infinite mass. O(AQCD) corrections to HQET at light mass may also be partly 

responsible. Whatever the cause, the behaviour of at /) = 6.0 cautions 

against using the results at both couplings for any systematic extrapolation to 

the continuum. 
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a2 &4 cu 
1/M (GeV) 

Figure 5.1: The ratio A r ug. heavy mass 

55 



C h a p t e r 6 

Sys temat ic Er ro r Tables 

This chapter contains only tables. A discussion is in the next chapter. 

f (^max)D—fKli^ f (^maxjo—fKli^ / o / x 

Sys. error from 1.7 1,1 220MeV 160MeV 

Interpolation range 1% — — — 

Mass scale 1% 1% 7% 7% 
Interpolation function 25% 3% — __ 

HQET trunc. order 1% 1% — — 

Extraction of — — — 3% 
Strange quark mass 1% 2% — 2% 

Lattice difference/mass — — — 1% 
Coeff. cv 2% — — — 

Coeff. 6* — — 3% — 

Composed % error 25% 4% 8% 8% 

Table 6.1: Breakdown of systematic error estimates for D —> Klz/] 
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f (9max)D— u 

Sys. error from 1.4 1.5 140MeV 

Interpolation range 2% — — 

Mass scale 2% 2% 9% 
Interpolation function 10% — — 

Pion mass 1% — 1% 
Meson/quark chiral extr. 1% — — 

HQET trunc. order 2% — — 

Extraction of /p,v — 4% 4% 
Lattice difference/mass — 1% 1% 

Coeff. 6^ — 3% — 

Composed % error 11% 5% 10% 

Table 6.2: Breakdown of systematic error estimates for D n\u\ 

/ s 

Sys. error from 8.3 1.2 220MeV 

Interpolation range 1% 1% — 

Mass scale 3% 4% 11% 
Interpolation function 365% 15% — 

Pion mass 2% 2% — 

Meson/quark chiral extr. 1% 1% — 

HQET trunc. order 13% 13% 6% 
Extraction of /p,v — — 2% 

Coeff. cv 6% 2% — 

Coeff. — — 6% 
Composed % error 370% 21% 14% 

Table 6.3: Breakdown of Systematic Error Estimates for B -4̂  7rli/|. The large 
variation in /'''(gmax) to the proximity of to the vector pole. 
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IKsl iKdl IXibl 

Sys. error from 0.92 0.21 0.0032 

Interpolation range — — 1% 
Mass scale 3% 5% 7% 

Interpolation function 6% 12% 19% 
HQET trunc. order — 1% 8% 
Strange quark mass 1% — 

— 

CoeE. cv 2% 2% 7% 
Composed % error 7% 13% 23% 

Table 6.4: Breakdown of systematic error estimates for CKM quantities 

^ ( ' J m a x O D — ^ ('?max)D—^K*l̂  ^ (̂ max)D-̂ K*li-i ^ )'K'l 

Sys. error from 0.94 0.93 0.77 0.89 

Interpolation range — 2% 1% 4% 
Mass scale 4% 3% — 2% 

Interpolation function 24% 13% 7% 8% 
HQET trunc. order 2% 1% 1% 4% 
Strange quark mass 3% 2% 2% 3% 

Coeff. Cy 5% 1% 1% 4% 
Coeff. 1% 1% — 3% 

Composed % error 25% 14% 7% 12% 

Table 6.5: Breakdown of systematic error estimates for D —K* 

^ ( '?max)D— ^ ( ? m a x ) D — ^ ( '?max)D->pl^l 

Sys. error from 0.88 0.97 0.71 0.81 

Interpolation range 1% 2% 2% 5% 
Maas scale 2% 1% 1% 6% 

Interpolation function 37% 18% 7% 10% 
HQET trunc. order 3% 3% 1% 4% 

Coeff. cv 7% 2% 1% 3% 
Coeff. 3% 3% 2% 23% 

Composed % error 38% 19% 8% 27% 

Table 6.6: Breakdown of systematic error estimates for D —> p 
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^ ( 9max ) B —!• pi ('?max)B—>plî  ^ (9max)B->pl̂  ^ (9max)B->pli/l 

Sys. error from 1.4 3.0 0.64 1.2 

Interpolation range 2% 1% 1% 1% 
Mass scale 3% 4% 4% 2% 

Interpolation function 112% 37% 35% 115% 
Meson/quark chiral extr. — — — 1% 

HQET trunc. order 16% 2% 21% 95% 
CoeE. Cy 2% 1% 6% 39% 
Coeff. 6^ 22% 9% 8% 32% 

Composed % error 115% 38% 42% 157% 

Table 6.7: Breakdown of systematic error estimates for B -4̂  /) 

1 1 |B—>pli/) 

Sys. error from 0.90 0.17 0.0023 

Interpolation range 2% 3% — 

Mass scale 1% 3% 2% 
Interpolation function 3% 3% 22% 

HQET trunc. order — 3% 17% 
Strange quark mass 2% — — 

Coeff. cv — 1% 9% 
Coelf. 2% 4% 9% 

Composed % error 5% 7% 31% 

Table 6.8: Breakdown of systematic error estimates for CKM quantities from 
PS-4V 
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YK' / D YB" 

Sys. error from 220MeV 21 220MeV 7.5 

Mass scale 11% 12% 7% 10% 
HQET trunc. order 6% 4% — — 

Extraction of 2% 5% — 1% 
Lattice difference/mass — 1% — — 

CoeE. cv — 24% — 8% 
Coeff. 6% — 3% — 

Naive/KLM norm [54] 1% 2% — — 

Composed % error 14% 28% 8% 12% 

Table 6.9: Breakdown of systematic error estimates for 1=^ decay constants 

/B, / s : /o . / o : 

Sys. error from 240MeV 20 240MeV 7.3 

Mass scale 8% 9% 6% 8% 
HQET trunc. order 6% 3% — — 

Extraction of — 2% — 1% 
Strange quark mass 2% 3% 2% 2% 

Coeff. cv — 26% — 8% 
Coeff. 6^ 6% — 3% — 

Naive/KLM norm [54] 1% 2% — — 

Composed % error 12% 28% 7% 12% 

Table 6.10: Breakdown of systematic error estimates for S=1 decay constants 
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u / x /p /K' u 

Sys. error from 140MeV 160MeV 3.6 3.9 4.1 

Mass scale 9% 7% — 1% 2% 
Pion mass 1% — — — — 

Extraction of 4% 3% 3% 3% 3% 
Strange quark mass — 2% — 1% 3% 

Lattice difference/mass 1% 1% — — — 

Coeff. cv — — 2% 2% 3% 
Composed % error 10% 8% 4% 4% 6% 

Table 6.11: Breakdown of systematic error estimates for light decay constants 

/s. /BF /OA 

/D* 

Sys. error from 0.90 0.92 0.91 0.97 

Mags scale 2% 3% 2% 2% 
HQET trnnc. order — 1% — — 

Extraction of 2% 3% — — 

Strange quark mass 3% 3% 2% 2% 
Lattice difference/mass — 1% — — 

Coeff. Cy — 1% — — 

Composed % error 4% 5% 3% 3% 

Table 6.12: Breakdown of systematic error estimates: SU(3) ratios of decay con-
stants 
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C h a p t e r 7 

Discussion of Sys temat ic Er rors 

7.1 Sources of Error 

Sources of error are discussed in the following order: 

1. Statistical Error 

2. Discretization Error 

3. Finite-size Error 

4. Model Errors 

5. Truncation Errors 

6. Parameter-Axing Error 

7. Quenching Error 
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7.2 Statistical Error 

The error bars in all figures are calculated using the bootstrap technique, using 

the 18*̂ ^ and 82""̂  percentiles of 400 resamplings as the lower and upper bound 

respectively. The first error on all numbers is symmetrized by setting equal to 

half the difference of the 18"̂ ^ and 82""̂  percentile. 

7.2.1 The Boo t s t r ap 

The results of this work are all stochastic estimates whose underlying distribution 

is not accessible. They are, however, a symmetric function of the Mcfg identically 

distributed samples of some random variable. In the bootstrap procedure [55], 

this symmetry is used to motivate a prescription for sampling a low-bias estimate 

of the underlying distribution of each result: simply replace each member of the 

set of samples with another one chosen at random, with the possibility of repeats, 

and recalculate. 

Any resampling does not add information, and the bootstrap prescription repre-

sents a particular degree of tradeoff between the following undesirable features: 

The resampled set (bootstrap set) results are quite correlated with one another. 

On average, two bootstrap sets with 216< Mcfg <305 will have at least one copy 

of a common 40% of the original information. Correlation must be introduced 

if any resampling is to retain a significant proportion of the information in the 

original sample. As an extreme example, filling the set with a single copy of each 

member of the original set bar one (selected at random) preserves almost all the 

information (the canonical 'jackknife'). 

Moreover, a bootstrap set with 216< Mcfg <305 is expected to contain at least 
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one copy of only -̂̂ 63% e of the original information (Fig. 7.1), 

with multiple copies Ailing up the rest of the space. Bias may be generally done 

away with by losing information at the same time; as an extreme example, filling 

the set with copies of exactly one member of the set chosen at random gives a 

very uncertain result. 

Despite these features, a resampling scheme offers an off Aoc access to the under-

lying distribution of our results, without which it would be impossible either to 

construct error bars or to perform fits. The bootstrap is not necessarily the opti-

mal resampling scheme for error fitting applications. However, the bootstrap has 

been shown to satisfy certain criteria of general applicability, and it is generally 

trusted for estimates of percentiles. 

100 

90 

80 

70 

60 

y axis: expected % of original included 
at least once in a resampled set 

100 200 300 

cfg 

Figure 7.1: Expected percentage of Mcfg diEerent members of the initial set in-
cluded in a resampled set of size zicfg-
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7.2.2 Statist ical Er ror in this Work 

In all but the most extreme cases in this work (B -4 pli/i form factors) statistics 

are not the most significant source of error. Otherwise put, gaining further con-

trol over extrapolation procedures is important for the future, while the lattice 

calculation itself is already well enough under control. Most importantly, it would 

appear to pay to use configurations in return for heavier quarks on a finer lattice. 

7.3 Discretization Error 

Discretization errors are of serious concern in this lattice simulation, since the 

rest masses of the heaviest lattice mesons are almost as large as the ultraviolet 

cutoff. The lattice dispersion relation behaves much as in the continuum, and the 

improvement of operators has been thoroughly implemented; these two consid-

erations indicate that the correlation functions are largely free of discretisation 

error. The charge hag always been that the small discretisation errors which do 

exist, become amplified in the extrapolation to the B scale. 

The most relevant test performed in this work is to change the truncation order 

in the heavy quark extrapolation. The variation induced is at worst up to 15% 

for important quantities, which must be ascribed jointly to discretization error, 

model error and truncation error. 

The decay constants do not scale well between = 6.0 and = 6.2 in this work, 

which is also explicable in the context of discretization error. However in light 

of the efforts made to reduce 0(o) errors, and in the absence of a continuum 

extrapolation, the scaling violation is tentatively ascribed to truncation error in 

HQET expansion, and to uncertainty in setting the scale. 
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An at tempt is also made to take account of the uncertainty in the improvement 

coefficients. These are inputs into the lattice simulation, and are mostly known 

quite well, with exceptions being discussed in Sec. 3.1. The decay constants in 

particular are sensitive to the improvement coefficients. 

7.4 Finite-Size Error 

There are no properties of the lattice simulation in this work which are directly 

sensitive to the box infra-red cutoff at '^120MeV. The scales in the matrix element 

are sufficiently far from 120MeV that , whatever error is introduced in the chiral 

extrapolation, it is not regarded as being a result of simulating in a finite box. 

7.5 Model Error 

7.5.1 T h e Initial In terpola t ion of Lat t ice D a t a for Form 

Factors 

In the case of interpolating the form factors in different approaches to the 

theory indicate a set of models, no member of which is preferred a p n o n . An 

interval estimate for the modeling error in a result is constructed from a spread 

using a representative of different reasonable classes of model. Pole dominance is 

an ultraviolet consideration, and is not theoretically robust in this context. The 

other options, which are listed in 3.7 are chosen for a combination of simplicity 

and smoothness. 
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7.5.2 Genera l f{q^) Fi ts 

The kinematic constraint, although analytically robust, is not used for the 

^ts. Implementing the kinematic constraint for these form factors 

is observed to cause the fit to fail. This feature is loosely attributed to the 

fact that the kinematic constraint cannot be implemented at exactly = 0 

depends on particle masses and is thus inexact), in conjunction with the general 

noisiness of P to V form factors. In the case of the form factors Z"*" and for 

P - ^ P decay, this problem is not observed. 

7.6 Truncation Error 

The models for the extrapolation to heavy mass and light mass are infinite asymp-

totic series which are in practice truncated at an order somewhat smaller than 

the number of data points available. 

The desired situation is both to have sufficient parameters to describe the sub-

stantial behaviour of the model function, and at the same time, sufhcient degrees 

of freedom that the lit can accomodate small random 8uctuations from the model. 

If the theory demands too many parameters, or if too few data points are avail-

able, then these desiderata may not be satisfied. 

7.7 Parameter-fixing Error 

Pseudoscalar decay constants, being dimensionful, are especially sensitive to the 

fundamental mass scale, which is the most difficult and important physical quan-

tity to Ax. (The strange and normal scales induce only a small variation in any 
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of the results, and the charm and bottom scales can be consistently defined.) 

7.8 Quenching Error 

Quenching error is not addressed systematically in this work. The agreement with 

experiment for D —Klz/) and D —> K*liy|, and |%a|, is circumstantial evidence 

that quenching effects are small for these matrix elements. Once extrapolation 

to light mass has been performed, other model-dependent errors are large enough 

that quenching effects may be neglected; this is typified by the consistency with 

experiment, and large errors, of the determination of |%:d|. 

7.9 Do the Steps Commute? 

The question of what extent the final answers are sensitive to the internal order 

of the analysis procedure is superficially a valid one, at least in that it suggests a 

variety of consistency tests. However, the systematic error bars associated with 

those parts of the analysis which can be interchanged, are found to be roughly 

symmetrical. The clear suggestion is that final numbers will be compatible with 

those of a permuted procedure. 
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C h a p t e r 8 

Conclusions 

This study has produced phenomenological results of various signihcaiice. The 

calculation of form factors is facilitated by the smoothing of the lattice data, and 

by the extrapolation at constant so that statistical errors remain small in the 

tricky B —7rlf/| case. The semileptonic form factors for decay to a vector particle 

are controlled to the extent of allowing extrapolations to the p and B masses. 

After extrapolation, the form factors seem to retain their expected shape, and 

give reasonable predictions for decay rates and for |Kib|-

The lattice calculations of |%ib| from semileptonic decays cannot be said from this 

work to be signiAcant in the effort to probe the consistency of the standard model. 

The region allowed in this work for |%,b| is too large and overlaps significantly 

both with values permitted in the standard model by current theoretical and 

experimental knowledge, and with values which are forbidden. However hope 

remains that future lattice technology for semileptonic decays may make them 

useful to this particular end. With so many steps in the procedure, a thorough 

investigation of systematic artefacts has been necessary to give any credibility 

to the results. The investigation of each systematic adds to the error bar, which 
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becomes of the order of 70% in the case of B decays and total rates. At the outset, 

however, it was not clear if these systematics could even be plausibly estimated, 

much less if that estimate would be small enough not to invalidate the procedure 

completely. The agreement with experiment for D —f Kl̂ î and D K*lz/|, and 

|%:s| is a moderate indication that the accounting for sources of error has been 

thorough. 

The author reflects that the next few years promise not only more computer 

power, but also developments in heavy quark theory, chiral perturbation theory 

(quenched and unquenched) and most importantly an experimental revolution in 

B physics. 
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A p p e n d i x A 

Curve F i t t ing and Lat t ice D a t a 

A.l Goodness of Fit 

The theoretical asymptotic behaviour of the two point Green function in Eu-

clidean spacetime, GMM(^) is an exponential decay with time constant equal to 

the energy of the state M, the lowest-energy eigenstate of the transfer matrix: 

z ) - cosh(EMT/2) (A.l) 

The positive exponential term of the hyperbolic cosine in Eq" A.l arises from 

propagation backwards in time of a meson originating on the next period of 

the lattice. This is one of a number of effects, collectively referred to as lattice 

artefacts, which have neither physical signiRcance nor analogues in the continuum 

theory. The data have been averaged over field configurations. The badness 

of fit statistic in general use is the positive definite chi-squared statistic 

(A.2) 
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where AR is a set of contiguous times chosen by inspection to lie the region in 

which asymptotic behaviour has set in. is the inverse of the covariance matrix 

estimator = Cov(d(,.c((y). The best At values of the parameters 

those which globally minimize the badness of fit: 

= 0 (A-3) 

= 0 (A.4) 

Minimization is performed iteratively to 10 ^ fractional tolerance using the amoe^o 

or downhill simplex method, which can be found in the Numerical Recipes books [56] 

The omoe6a routine is deterministic, and so in general cannot find a global min-

imum of a function with a complicated structure of minima. Non-global 

minima exist generally in when the model is a polynomial of degree n > 2, or 

a product of sums of exponentials of the parameters, aa in Eq" A.l . An initial 

guess is chosen by the computer in order to increase the likelihood of the a global 

minimum in being found. In fact the most likely cause of an extreme badness 

of fit parameter is an idiosyncracy of the minimization algorithm, which can al-

most always be remedied by simply resetting the jump rates and directions and 

restarting the algorithm with the parameters which were wrongly returned. Oc-

casionally a local minimum will be found, in which case decreasing the fit range 

and setting correlations between data to zero is necessary. 

A.2 Correlations in the Data 

The statistic is defined so that its minimum value will occur when the param-

eters e.^. E , Z are equal to the values which correspond to a maximum in the 



likelihood function C\ 

r = (A.5) 

This method requires that: 

1. The data are distributed multivariate normally. 

2. The bias of the estimators for the means and correlation coefhcients is 

controlled systematically. 

3. The error of these estimators is reasonably small. 

Michael [57] advises caution with regard to the 3rd condition, when the num-

ber of timeslices is not much smaller than the number of samples, which is 

never the case here (A^cfg/A^ ^ 20). Conditions 1 and 2 are generally met by 

lattice data. The robustness of the maximum likelihood method for our data 

is illustrated by juxtaposing best-fit results by minimization against best-ht 

results using an Aoc non-parametric goodness-of-At statistic Z)| , the ^2 

norm of the TV-component vector 

VJE, 2 ) = — E I I (A.6) 
"boot 

| y ( E , is a number in the half-open unit interval 0 < | y ( ^ , Z) | < 1. Generally 

speaking, |y(a:)| can be thought of as a measure of by how much observation a 

trial point a; (in this case the model function CrMM) is separated from an TV-

dimensional generalization of the median, and in one dimension, |y(a;)| is simply 

proportional to the number of of data between z and the median. A comparison 

of the results using with those of | y | for a typical meson correlator (A^ = 16) 

is presented in Tab. A.l . 



x^/d.o.f. y 
Best Fit ^ 0.841 0.843 
Best Fit Z 66.0 68.2 
%^/d.o.f. 1.10 1.53 

y 0.24 0.01 

Table A.l: Comparison of %^/d.o.f. and y badness of fit statistics for pseudoscalar 
mesonic green's function with quark mass parameters = 0.12,/{2 = 0.13460 at 
lattice coupling = 6.2 



A p p e n d i x B 

Form Factor Defini t ions 

Form factors for semileptonic meson decay in Minkowski space are defined as 

follows: 

( p ( k ) i ^ y v i P ( m ) 

|P(p)> 

r ( g i + 

Lr (V(k) r |V '7V^ |P (p ) ) - 4 ^ ' 
ht^h'- , 

V 

2t 

my + mp 

z(mv + n^p) 

f - f 
,9 - ^ 

mf 
A ' (g ' ) + 

P A ; 

mt 

(B.l) 

(B.2) 

2mv 2mv 

(B.3) 

where 6 { 0 . . . 3}. f " , g'', and e'"''"' are defined by the following: 

f ^ = pf" + A;̂  (B.4) 
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9" 

g,U 

— A;'' 

d i a g ( l , - 1 , - 1 , - 1 ) 

1 n(^i/p(7) = 1 

1 l i l i iupa) = — 1 

0 otherwise. 

(B.5) 

(B6) 

(B.7) 

P and V denote the lowest mass pseudoscalar and vector states respectively. 



A p p e n d i x C 

Defini t ions of 7 and a Mat r ices 

The Minkowski 7 and cr matrices are defined as follows: 

7^ = 

7 

/ 1 0 0 0 ^ 

0 1 0 0 

0 0 - 1 0 

0 0 0 - 1 y 

/ 0 0 0 - % ^ 

0 0 z 0 

0 * 0 0 

- z 0 0 0 y 

/ 0 0 1 0 \ 

0 0 0 1 

1 0 0 0 

0 1 0 0 

0 0 0 1 ^ 

0 0 1 0 

0 - 1 0 0 

y - 1 0 0 0 y 

7^ = 

7® = 

\ 

/ 0 0 1 0 ^ 

0 0 0 - 1 

- 1 0 0 0 

0 1 0 0 y 

%7°7^7^7^ 

(7''' = ^ [ 7 ^ 7 1 

(C.l) 

(C.2) 

(C.3) 

(C.4) 
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The Euclidean gamma and sigma matrices and 2^^, are defined as follows: 

Ti = (C.5) 

r4 = "Xo (G.6) 

S„„ = i i r „ . r „ | (C.7) 

Ts = "Xs (C-8) 



A p p e n d i x D 

List of Physical I n p u t s 

Physical inputs can be found in Tab. D. l . 
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mso 5279.1(12)MeV 
5324.9(18)MeV 

mgo 1864.6(5)MeV 
mD.0 2006.7(5)MeV 
moo 2422.2(18)MeV 
mKo 497.672(31)MeV 

mx'O 891.66(26)MeV 
134.9764(6)MeV 
770.0(8)MeV 

1.56(4)ps 
0.415(4)ps 
3.49(17) X 10-
3^X6) X 10-3 

l J % ^ ) x l O - 4 
l j % 6 ) x l O - 4 

Tgo 
Tqo 

r(D° Kl^) 
r(D° —> Trli/i) 
r(B° Trlz/]) 

r(D° K*ei/a) 
r(D° -4-
r(BO - 4 2 J X ^ ) x l O 

n4d| 
|t4s| 

IKibl 

A ® 
as(Mzo) 

5279.1(12)MeV 
mD+ 1869.3(5)MeV 

mD.+ 2010.0(5)MeV 
mo, 1968.5(6)MeV 

mK+ 493.677(16)MeV 
896.10(28)MeV 
139.56995(35)MeV 

TB + 
TD+ 

r(D+ Kli/i) 
r(D"'" —> Trli/]) 

Trlt/,) 

r(D+ K*M) 

^ plz/|) 

r(D+ 
r ( D + . 

r(B+ -
0.9715(1) 
0.21(1) 

3(2) X 10-3 
295 MeV 
0.116(4) 

1.65(4)ps 
1.057(15)ps 
6^%^) X10-2 
& l ( 1 5 ) x l O - 3 

4^X6) X 10-2 
2 J % ^ ) x l O - 3 
2.7(7) X 10-3 

Table D.l : Physical inputs: source is [3]. Masses are charge-averaged, / represents 
an electron or a muon, and not a tau. 



A p p e n d i x E 

Defini t ions of Improved 

Opera to r s and Express ions for 

Improvemen t Coefficients 

Vfi —> Z \ (1 + byarriq') (V^ + (E.l) 

(1 + (A,; + ) (E.2) 

)7iq == ?7%q(l "K bMCUTtq) 

The Alpha collaboration present improvement coefBcients in polynomial or ra-

tional polynomial form: 

1 - 0.7663^g + 0.0488^^ 

1 - 0.6369^g 

1 — 0.8496^q -f" 0.0610^0 

1 - 0.7332^g 

1 - 0.6518gg - 0.1226^^ 

1 - 0.84676rg 

= ' n C r r (Ref. [51]) (E.4) 
7o 

z a = ' ^ ( R e M s u ) (E.5) 

^ ^ (Ref. [51]) (E.6) 



2 

CA = -0.00756gg I _ ° (Ref. [23]) (E.7) 

cv = -0.01225(1)CF X (Ref. [33]) (E.S) 

v^^^'e Cp = = - (#0 = 3) (E^^ 
2»r a 



A p p e n d i x F 

An Example Set of Lat t ice D a t a 

The output of the lattice simulation is presented for one combination of Kheavy in 

Tab. F . l . 
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Light P Light V Heavy P 
mp 0.281(2) my 0.378(4) mp 0.841(1) 
/p 0.064(3) / v 4.2(1) / p 0.089(1) 

0,0,0 0,1,1 1,0,1 1,1,0 1,V2,1 
/+ — 0.88(3) 1.10(7) 1.50(6) 0.77(2) 

f 1.00(2) 0.78(3) 0.97(6) 1.00(3) 0.69(2) 
V — 0.91(3) 0.76(15) 1.41(11) 0.84(4) 
A° — 0.67(3) 0.85(9) 1.03(7) 0.63(3) 
A' 0.76(2) 0.61(2) 0.67(6) 0.71(4) 0.58(2) 
A' — 0.71(7) 1.04(80) 0.90(50) 0.56(6) 

0 , \ /2 , \ /2 1,1,\/2 1 , ^ 3 , 1 , 2 , 1 
/+ 
f 
V 
A° 
A' 
A' 

0.58(4) 
0.58(4) 
0.53(6) 
0.43(2) 
0.38(3) 
0.26(5) 

0.50(6) 
0.52(5) 
0.41(7) 
0.37(2) 
0.31(3) 

0.73(5) 
0.68(6) 
0.41(9) 
0.53(4) 
0.48(5) 

0.66(3) 
0.68(3) 
0.66(6) 
0.42(3) 
0.52(3) 

0.16(5) 0.48(13) 0.52(5) 

Table F . l : Output of the lattice simulation at for Kheavy = 0.12, Kiight = 0.1346, 
/{spectator = 0.1346, = 6.2: masses, decay constants and form factors. Momenta 
are to be multiplied by ^ 


