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Nuclear medicine images are degraded by the physical processes in the imaging system, 
that affect principally resolution and accentuate noise. Image processing might improve 
this situation and it is important, that the technique used is capable of dealing with a 
situation of high noise in the image. The maximum entropy data processing technique, 
has been found to be useful as a powerful and generally applicable image processing 
method for reconstructing images from noisy and incomplete data and shown to be of 
potential value in planar imaging. The aim of the research was to develop the technique 
of maximum entropy for clinical application and to evaluate its effectiveness in 
improving image quality. 

Maximum entropy (ME) requires definition of various parameters for its operation. 
Studies were carried out to investigate the way in which the values of these parameters 
affected image quality. This allows methods for deriving optimal values in any situation 
to be devised. 

A study was carried out to investigate the way in which the figure of merit (POM) 
method of image quality assessment depended on definition of regions defining the 
object and surroundings. This allowed description of a method for defining the regions 
which provided robust values for FOM. 

A comparative evaluation of maximum entropy processing with simple image 
smoothing (i.e,. conventional smoothing (SM)) and Wiener filtering (WF) was carried 
out in simulated images of a planar object. Image quality was evaluated using the FOM 
and using receiver operating characteristic (ROC) analysis with two different observers. 
The FOM analysis showed that all image processing technique produced significant 
improvement over the raw data and that ME was the best of the methods. These findings 
were generally supported by the ROC analysis although, the conclusions were not so 
clearly defined. There was significant correlation between FOM and detectability for 
individual observers interpreting images from a single processing technique. Correlation 
was poorer when data from all the methods were combined. 

A further comparative evaluation of the processing techniques in simulated lung images 
was performed using ROC analysis. The analysis failed to show significant 
improvements in detectability using conventional smoothing or Wiener filtering. 
However for one of the observers maximum entropy was better than raw data. 

The use of simulated images provided a known true image which was valuable both in 
objective FOM analysis and in studying visual interpretation. The variability in 
observation patterns observed for the two different readers made combined analysis of 
the data difficult but demonstrated the importance of multi-observer studies. FOM can 
not be used to describe the variability in observer performance. 

ME has been adapted to be suitable for clinical use. It gave the best results for 
processing nuclear medicine planar images, among the techniques studied. This may 
assist in improving diagnostic accuracy or in obtaining similar quality images with less 
radioactivity given to the patient or shorter imaging times. It's clinical usefulness is not 
yet convincingly shown but is of sufficient promise to recommend further studies. 
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The work described in chapter 4, has been presented in the Institute of Physics and 

Engineering in Medicine (IPEM), South Western Group Annual Meeting, 8-9 May 

1998, at Royal Devon and Exeter Hospital, Exeter, The United Kingdom. 
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Chapter One 

Physics of Nuclear Medicine Imaging 

1.1 Introduction 

Nuclear medicine imaging is a process which involves radioactive material and an 

appropriate imaging instrument. The result of the process is formation of an image, 

which is useful in the diagnosis of different diseases. The image formed is a 

distribution of a radioactive material in the body, after its administration usually into 

the patient's circulatory system. The radioactive material used is a radio-labelled 

tracer: a radionuclide, which is a gamma emitter, it is incorporated into a 

pharmaceutical (chemical) substance with a specific physiological properties. The 

incorporation will produce a substance, called a radiopharmaceutical. The 

distribution can be measured by using an external radiation detector. The most 

common instrument which acts as an external detector for imaging in nuclear 

medicine, is the gamma camera. It detects the emitted radiation from the patient, 

building up an image of the tracer distribution. The information produced is useful 

for assessing the function of different organs. 

Image formation and quality depends on the limited amount of radioactivity that can 

be administered to the patient. It is necessary to use low levels of radioactivity, so 

that the radiation potential hazard to the patient can be kept to its minimal. 

In this chapter it is briefly considered how to choose radionuclides which are useful 

in nuclear medicine imaging and how they are produced. The imaging system is 

described from the emission of gamma photons from the patient, through their 



interaction with tissue to their detection by gamma camera. The effects of different 

factors on the image quality are considered along with some methods of evaluating 

image quality. The applications of nuclear medicine images are also considered and 

thus the motivation for image processing and its usefulness for diagnostic purposes. 

In addition the proposed work which is going to be described in this thesis is 

presented. More information on the ideas reviewed in this chapter can be found in 

Blahd 1971, Aird 1975,1988, Gottschalk et al 1976, Parker et al 1978, Sharp et al 

1985, and Sorenson and Phelps 1987. 

1.2 Choosing the Radionuclide for Imaging 

Only a small number of radionuclides are clinically useful in nuclear medicine 

imaging. The principal factors which need to be considered when selecting a 

radionuclide are the type of radiation emitted, the energy and abundance of gamma 

rays and the half-life. It is necessary that the radiation used should be sufficiently 

penetrating to be externally detected. The radiation resulting from the decay of 

radioactive materials consists of either particles (alpha, beta, positron) and/or 

photons (gamma). Charged particles and very low energy photons have a very 

limited range in tissue, because the energy they carry is dissipated within the patient 

and so can not be used for imaging. In contrast, higher energy photons may traverse 

several centimetres of soft tissue without interacting with it. Thus they can be 

detected outside the patient's body using an external radiation detector and used to 

form an image of the in-vivo distribution of radioactivity in the organs of interest. 

This limits the choice to radionuclides which emit gamma, x-rays and positrons 

(Robertson 1982). One class of radionuclide which is particularly useful in imaging 

consists of those which have a metastable state. In these radionuclides the excited 

state, following beta emission and prior to gamma emission, has a relatively long 

half life. This is an important process for imaging, because if the product nuclide can 

be physically separated from its parent while in the excited or "metastable" state, 

then it is possible to obtain an almost pure gamma emitter; which undergoes the 

decay by isomeric transition (IT); e.g., Technetium-99m (Sorenson and Phelps 

1987). Another good source for imaging is those radionuclides which decay by 



electron capture (EC); which will emit x-rays characteristic of the daughter nuclide, 

in addition to gamma rays, e.g., '^^I, Some radionuclides decay emitting a 

positron, such as '^O, '^C, '^N, and These positron emitters have been used in 

positron emission tomography (PET). The emitted positrons annihilate with a nearby 

electrons emitting two gamma photons, each of energy 511 keV, travelling in 

opposite directions. 

In radionuclide imaging it is important that the radiation given off should be 

sufficiently penetrating to allow it to be detected externally. The energy of the 

radiation will affect its ability to penetrate tissue. However, high energy gamma-

rays, are difficult to stop in the external imaging device, (detector) and in the 

collimation of radiation. In contrast, low energy gamma-rays will be subject to more 

scattering and absorption in the patient tissue. Therefore, it is possible to use 

gamma-rays with energies between 50 keV and 500 keV. The optimal energy range 

which is preferred is between 120 keV and 200 keV. 

The half life of the radionuclide determines how quickly the radioactivity will decay. 

It is a useful measure of the rate of decay of a radionuclide being the time taken for a 

pure radionuclide to decay to half its initial activity. Obviously, if a short life 

radionuclide is used, then the imaging time should be considered. If the half-Hfe is 

very short then the activity will have decayed to a very low level before imaging has 

started, if it is too long then the patient will remain radioactive for a considerable 

time, which means, an increased radiation dose to the patient. Therefore, as a general 

rule the half-life of the radionuclide should be comparable to the length of the 

investigation in order to minimise the radiation dose to the patient. 

1.3 Radiopharmaceutical 

The principle of the use of radiopharmaceuticals in nuclear medicine imaging is that 

very low levels of radioactivity are added to biological compounds to label them, so 

that they can be administered into the patient usually intravenously and followed 

through the body in various ways (Eckelman 1988). The path or accumulation site of 



the labelled compound is determined with an external radiation detector. A labelled 

compound has one or more of its atoms substituted by a radioactive atom. The 

compound to be labelled must be a substance that is non-toxic in the concentration to 

be used and free from micro-organisms. 

1.4 Production of 

Nuclear medicine imaging requires radionuclides, which are easily available and 

simple to use. Technetium-99m is currently the most popular radionuclide for 

nuclear medicine imaging studies. It is a metastable radionuclide, which emits a 

certain number of conversion electrons, thus it is not a pure gamma-ray emitter; 

however, the ratio of photons to electrons emitted is greater than for beta emitters 

which have an accompanying gamma-ray (Sorenson and Phelps 1987). This is an 

advantage for studies requiring detection of gamma-rays from internally 

administered radioactivity. Obviously, the production of Technetium-99m from a 

generator has different important advantages, the gamma-rays energy produced (140 

keV) are very useful for the detection with gamma camera, it's short half-life (6 

hours), ready availability, low cost and easy labelling to different variety of imaging 

agents. 

Radionuclide generators work on the principle that a parent nuclide with relatively 

long half-life decays to produce a short lived daughter nuclide. Where the chemical 

nature of parent and daughter are quite different, it allows separation of the daughter 

from the parent. Molybdenum-99, ^^Mo, (parent) has a half-life of 2.8 days. It 

decays to it's daughter nuclide ^^Tc in the form of pertechnetate, ^TcO^" through the 

metastable radionuclide ^^'"Tc. Molybdenum-99, (^Mo) is produced by an (n, y) 

reaction or fission in a nuclear reactor. It decays to ^^"Tc by beta (P) decay (Figure 

1.1). This radionuclide has a half life of 6 h and decays to ^^Tc. 
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Figure 1.1: The decay scheme of ^^"Tc. 

1.5 The Gamma Camera 

1.5.1 Basic Principle of Operation 

Measurement of the distribution of a radionuclide within the body can provide 

important diagnostic information to aid in clinical decision making. Medical 

radionuclide imaging developed with the introduction of the rectilinear scanner by 

Ben Cassen in the early 1950s (Cassen et al 1951 and Mayneord et al 1951). The 

image was obtained by moving the detector in a rectilinear manner over the patient, 

by scanning point by point and observing the variation in count rate produced. This 

is a relatively time consuming process, which restricted the use of radioisotope 

scanners. The use of radionuclide imaging has become increasingly widespread with 

the development of the gamma camera, which has become a standard equipment in 

nuclear medicine. The gamma camera was introduced in 1958 by Hal Anger using a 

single large area of Nal(Tl) crystal and an array of photomultiplier tubes (Anger 

1958). He utilised a stationary detector which viewed a larger area simultaneously. 

This enabled images to be obtained in a shorter time. The Anger camera has been 

continuously improved most recently through the addition of digital processing to 

the analogue detector electronics. 



The gamma camera consists of two units (Figure 1.2), the collimated detector and 

the console containing pulse processing electronics and displays. The basic principle 

of operation and image formation with the gamma camera is as follows. In the 

camera's head, a collimator is positioned, to limit the gamma-rays which are emitted 

from the patient that are allowed to reach the detector. Since the emission of gamma-

rays will be emitted isotropically in random directions, the collimator is used to 

allow only the gamma-rays which are travelling perpendicular to the detector to pass 

through it. Thus, collimated gamma-rays from the patient strike the thallium-

activated sodium iodide [Nal(Tl)] crystal, which is located at the back of the 

collimator, producing a scintillation of light. The scintillation is detected by a large 

number of photomultipliers (PM) tubes (typically 37-91) arranged in a closely 

packed hexagonal array, and optically linked to the crystal. 

z signal 

y signal 
computer 

X signal 

Sodium iodide 
crystal 

Collimator 

Patient 

mwm JUUUUUUUUUUU 

Signal analyser 

Position circuits 

PM tubes 

Figure 1.2: Schematic diagram of the Gamma Camera 
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The hght from the scintillation divides among the PM tubes; those tubes close to the 

event receive the more light than those further away. Each tube converts the light 

into a voltage pulse, each pulse being proportional in amplitude to the amount of 

light each tube has received. The pattern of voltage pulses from all PM tubes 

determines the original scintillation position on the crystal. The computer receives 

the pattern of voltage pulses and produces three major output signals. Two of these 

output signals, the x and y positioning signals correspond to the position of the 

original gamma-ray scintillation on the Nal(Tl) crystal detector. The third signal 

from the computer (z signal) is a summation of the pulses from all of the PM tubes 

and is proportional to the energy loss from the gamma photon which produced the 

original scintillation. This signal is fed to a pulse height analyser set to pass only the 

voltage pulses which correspond to the photopeak of the spectrum of radiation. 

When a photopeak event has occurred (i.e., when the z signal gives the permission) 

it is allowed to contribute to the image. The final display shows the 

radiopharmaceutical distribution within the patient, as projected onto the detector 

plane. The image can either be recorded by photographing the pulses on a CRT 

screen or by storing them in a digital matrix on computer. 

1.5.2 Acquisition of Data 

In the past most gamma cameras recorded images in analogue form on photographic 

film. However as early as the 1960s devices were developed to convert the images to 

digital form on a computer. There are many advantages of digital over analogue 

images and these include control over the image display for better visualisation and 

the ability to quantify images. 

A digital nuclear medicine image is essentially an array of numbers representing the 

variation of number of counts detected across the field of view of the gamma 

camera. Each event is recorded in the memory by adding it at the appropriate x and y 

location in the 2D matrix. This may be subsequently displayed as a grey-scale image 

for further analysis. The storage of the events is performed, by computer, in matrix 

mode covering the field of view of the camera. Each element of a square matrix ( n x 
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n ) represents a small area of the field of view, called a pixel, that registers photons 

from a small specific region of the object. Therefore, the pixel intensity at any point 

in the image is related to the activity in the corresponding region in the subject being 

imaged. The width of this element is given by dividing the field of view by the 

matrix size. The pixel size used is determined by the resolution of the gamma 

camera. The Nyquist theorem requires that the pixel size must be less than half the 

resolution of the imaging device. 

The field of view on the ADAC Dual Head Genesys gamma camera is 50.8 x 38.1 

cm, which corresponds to a pixel width of 0.467 cm or 0.94 cm in 128 x 128 or 64 x 

64 matrix respectively. In this investigation the resolution was at best about 1 1 - 1 2 

mm and therefore a 128 x 128 matrix was used with a pixel size of 4.7 mm . 

The production of digital nuclear medicine images involves routing x, y and z 

analogue pulses that go to the CRT in analogue cameras to the computer interface 

input. These analogue pulses are converted to digital form by an analogue-to-digital 

converter (ADC). The gamma camera interface converts the signals from the camera 

into digital form and the data is then transferred to a computer where it is stored as a 

matrix of numbers. This allows the image to be processed and manipulated for the 

different studies. 

A nuclear medicine computer system consists of hardware components combined 

with software programs. The hardware components consist of gamma camera 

interface, CPU and memory, hard disk and magnetic tapes for storage, display and 

copy facilities. The software controls all data acquisition and processing. It includes 

image display manipulation and analysis and specific clinical application routines. 

1.6 Factors Affecting Image Quality 

In the image formation of a radionuclide within a patient there are many factors that 

contribute to the formation of a good radionuclide image with correct interpretation. 



The nuclear medicine image quality is affected by several different factors, spatial 

resolution, attenuation, scatter and noise. 

1.6.1 Spatial Resolution 

Image spatial resolution describes the sharpness or detail of the image. In a gamma 

camera the total or system resolution is composed of the intrinsic or detector 

resolution and the geometric or collimator resolution (Knoll 1979, Sharp et al 1989). 

The limit of spatial resolution achievable by the detector and the electronics is 

known as the intrinsic resolution of the camera. It is caused primarily by the 

statistical fluctuation in the distribution of pulse sizes between PM tubes from one 

scintillation event to the next. Multiple photon scattering within the detector, is 

another factor which has a much smaller effect. The intrinsic resolution will get 

worse with decreasing the energy of gamma-rays, because fewer light photons per 

scintillation event will occur, which result in large relative fluctuations in their 

distribution. 

The collimator hole geometry, length, shape and diameter affect the collimator 

resolution and efficiency. The septal penetration by gamma-rays crossing from one 

collimator hole into another must be very small, to get a reasonably accurate 

gamma-ray image projected by the collimator onto the detector. The thickness of the 

septa will be determined by the energy of the gamma-ray being imaged. A 

collimator with thick septa, can be used for higher energy gamma-rays and thin septa 

for low energy. For a given septal thickness, collimator resolution will be improved 

at the expense of decreased collimator efficiency and vice versa. 

The spatial resolution can be measured by the line spread function (LSF) or point 

spread function (PSF). These are the graph of net count-rate, of point or line image, 

as a function of the x-coordinate when the line source is placed parallel to the y-axis 

in a plane parallel to the collimator face and at a given distance from it (i.e., the 

counting-rate profiles recorded across the images of point or line source). Although 

the complete LSF or PSF is needed to fully characterise spatial resolution, a partial 
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specification is provided by the full width at half-maximum (FWHM) of the LSF or 

I'SF(I7ijgure 1.3). 

The most detailed specification of spatial resolution is provided by the modulation 

transfer function (MTF). The MTF is a method of assessing the performance of any 

imaging equipment. The evaluation of an imaging system could be measured with a 

sinusoidally varying activity distribution. The activity distribution varies with 

distance at a specific frequency (cycles/mm). This called the spatial frequency v of 

the test pattern. The contrast, or modulation, of the test pattern is defined by: 

^in (̂ max ~ ^min) ̂  (̂ max Imin) 

where I^^x and I^in are the maximum and minimum radiation intensities emitted by 

the test pattern. is the input contrast and it ranges from zero (I^ax = Imin> no 

contrast) to unity (I^in ~ 0, maximum contrast). Similarly, output contrast is 

defined in terms of the modulation of output image (e.g., image density or counting 

rate recorded from the test pattern). The ratio of output to input contrast is the 

modulation transfer function for the spatial frequency v of the test pattern, 

]WTF(v) = C ; a ( v ) / C k ( v ) 

The MTF can in fact be measured in a much simpler way by measuring a line spread 

function (LSF), the response of the camera to a line source of radioactivity. A 

Fourier Transform of the LSF describes it as a summation of sine waves of different 

frequencies. This equates it to the MTF. 

For an imaging system a flat MTF curve with a value near unity produces an image 

that is a faithful reproduction of the imaged object. Good low-frequency response is 

needed to outline the coarse details of the image and is important for the presentation 

and detection of relatively large but low-contrast lesions. Good high-frequency 

response is necessary to portray fine details and sharp edges. This is of obvious 

importance for small objects, but also sometimes for larger objects because of the 
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importance of edges and sharp borders for detection of low-contrast objects and for 

accurate assessment of their size and shape. 

Projected 
profile FWHM 

Collimator 

\ / 
\ / 
\ / 
\ / 
\ / 
\ / 
\ / 
\ / 
\ / 

Point or Line Source 

Figure 1.3: Radiation profile (point or line spread function) for a parallel-hole 

collimator. The FWHM (full width at half-maximum) of the profile is used to 

characterise collimator resolution. 

1.6.2 Attenuation and Scatter 

The tissues of the patient have an effect on the emitted gamma photons, where 

attenuation and detection of scattered photons cause significant problems in the 

formation and interpretation of images. Attenuation and scattering are mainly caused 

by Compton scatter in the patient, where the direction and energy of a gamma 

photon is changed by interaction with electrons (Figure 1.4). A relatively small 

contribution to attenuation (at about 140 keV) is caused by photon absorption in 

tissue due to the photoelectric effect. Attenuation is where a photon is going towards 

the detector, but doesn't reach it because it is stopped by absorption or scatter. The 
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attenuation of photons that would have reached the detector will result in fewer 

photons being counted in the detector. This will increase the noise and lead to an 

emphasis of structures with little intervening tissue over deeper structures. 

PM tube 

Collimator 

Attenuated photon 

Scattered photon 
with a small angle 
of scattering 

Absorbed Photon 

Scattered Photon with a 
higher angle of scattering 

Primary detected 
photon 

Figure 1.4: The interaction effects between Photons and Tissue. 

The term scatter usually refers to the detection of photons following a Compton 

scatter event, which were originally not travelling in a direction to be detected. This 

leads to the possibility of detecting malpositioned event. The photons will deviate 

from their path in travelling towards the detector and lose energy. Therefore, most 

scattered photons will be rejected by the energy window because they have a lower 

energy and lie outside the energy window. However some of scattered photons will 

be within the energy window and will be accepted. The Nal(Tl) detector will 

therefore not reject all scattered radiation, especially for gamma-ray energies below 

200keV. Scattered photons can form around 20% of the count in an image. It has 



13 

been determined that the best trade-off between noise and scatter rejection is 

obtained with a 20% energy window centred on the gamma-ray energy of interest. 

So, scattered radiation and septal penetration are additional causes of contrast 

degradation. Both have the effect of adding a background counting rate to the image 

in the vicinity of radiation sources. 

Decreased contrast results in poorer detectability of both large low-contrast objects 

as well as fine details in the image. Figure 1.5, for example, illustrates the effects of 

scattered radiation (or septal penetration, which has similar effects) on the point-

spread function and MTF of an imaging system. The addition of long tail to the PSF 

results first in the suppression of the MTF curve at low frequencies. This is reflected 

in poorer contrast of large objects which makes large low-contrast objects more 

difficult to detect and define. There also is a suppression of the high-frequency 

portion of the MTF curve that has the effect of shifting the limiting frequency for 

detection of high-contrast objects, e.g., bar patterns, to lower frequencies. Thus, the 

contrast-degrading effects of scatter and septal penetration decrease the visibility of 

all structures in the image, particularly those that are near the borderline of 

detectability. Background radiation, e.g., from over- and underlying activity, has 

similar effects. These effects will result in a perceptible loss of image sharpness as 

well as overall image contrast when overlying activity or scattered radiation are 

present. 
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Figure 1.5: Demonstration of the effects of scatter and/or septal penetration on (a) 

point spread function and (b) MTF of an imaging system. The long tails on the PSF 

have the effect of suppressing the MTF curve at both low and high spatial 

frequencies. 
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1.6.3 Noise 

Nuclear medicine images contain noise which limit their quality. This noise may be 

either random or structured. Random noise in an image occurs due to random 

fluctuations in radioactive decay and attenuation. It is the statistical fluctuation of the 

count rate. Structured noise occurs due to non-random variations in counting rate 

superimposed on the object of interest, it also can be caused by imaging system 

artefacts. In most clinical radionuclide images, noise has an effect on image quality. 

There are certain factors which influence noise in an image. The physical process of 

gamma photon emission is random in nature, because it is impossible to predict at 

any given time which one if any of the radioactive nuclei will decay. Also 

scintillation events in the crystal and their detection by the photomultiplier tubes are 

processes with random errors and these effects combine to give a source of Poisson 

distributed random noise in the image. 

Random noise is directly related to the information density of the image, which is 

the number of counts recorded per unit area of the image. The relative amount of 

noise, or variation in photon concentration, is inversely related to the number of 

photons used to form the image. Information density of images can be increased by 

increasing the counting rate or the imaging time. Information density has important 

effects on the minimum detectable size and contrast of lesions in nuclear medicine 

images. 

Assuming the number of counts, N, recorded in an area. A, of an image, where the 

information density is ID counts cm"^ , thus the number of counts and the standard 

deviation in counts are given ( Sorenson and Phelps 1987), by: 

N = A x I D (1-3) 

e X / D (1-4) 

The percentage standard deviation in counts, P^ or noise, is given by: 
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Pn(%) = ( V v 4 x 7 D ) X 1 0 0 % (1 -5 ) 

Therefore in order to detect a lesion of size A, one should distinguish it from random 

noise in the image of magnitude given by equation (1-5). For this purpose, a lesion 

contrast should be much higher than the noise, defined as the standard deviation of 

counts per pixel. 

Noise can be reduced by using a high sensitivity collimator or smoothing at the 

expense of resolution. A compromise has to be made between sensitivity and 

resolution. Reducing noise by increasing the number of counts may increase the 

absorbed dose to the patient. 

1.7 Methods of Evaluating Image Quality 

The gamma camera images are not perfect images of the underlying radionuclide 

distribution. There are certain inherent imperfections that arise from the performance 

characteristics of the detector, the electronics and the different types of collimators 

(Sorenson and Phelps 1987). The causes of these imperfections, and their effects on 

the image quality are affected by a number of different factors. Image quality can be 

evaluated by two methods. Firstly, by the physical camera performance assessment 

that can be measured or calculated for the image or imaging system. Secondly, by 

image performance assessment, where it is divided into two types (i) a subjective 

assessment, involving measurement of the ability of observers to detect objects with 

different imaging systems and under various conditions, (ii) an objective 

assessment, involving measurement of quantitative parameters such as the contrast 

to noise ratio. This acts as an intermediate stage between physical performance and 

subjective assessment. 
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1.7.1 Physical Camera Performance Assessment 

1.7.1.1 Image Non-linearity 

Image non-linearity, means a distorted image, where a straight line objects appear as 

curved line images. This occurs when the x- and y- position signals do not change 

linearly with displacement distance of a radiation source across the face of the 

detector. It results from random and systematic errors in the calculation of events 

detected by the detector. On properly functioning cameras, the non-linearity is 

almost undetectable and rarely interferes directly with image interpretation; 

however, it can cause image non-uniformity in regions of uniform count density. 

Non-linearity is assessed by imaging a parallel-line bar phantom or orthogonal hole 

phantom. 

1.7.1.2 Image Non-Uniformity 

When a uniform distribution of activity is imaged on a gamma camera, it shows 

areas of above and below average count density. There are two major causes for 

image non-uniformity: (i) nonuniform detection efficiency which arises from small 

differences in the pulse-height spectrum for different photomultiplier tubes, (ii) 

image non-linearity. The non-uniformity assessment is performed by obtaining an 

image of a flood-field source. 

1.7.1.3 Sensitivity 

Sensitivity is considered as the camera detection efficiency. It is defined as the count 

rate obtained per unit radioactivity. It is affected by the type of collimator and 

deteriorates as collimator resolution improves. 



18 

1.7.1.4 Energy Resolution 

Energy resolution determines the accuracy with which the energy of the radiation 

can be measured. It is an important parameter in the gamma camera, where the 

measurement of gamma-ray energy will determine whether or not the event will be 

rejected as a scattered photon. A convenient measure for the energy resolution is the 

width of the photopeak in the energy spectrum, which is known as the full-width at 

half-maximum (FWHM). 

1.7.1.5 Count-Rate Performance 

The relationship between observed and true count-rate is referred to as the count-rate 

characteristic. The count-rate performance is influenced primarily by the dead-time, 

which is the minimum time interval that separates two events in order they are 

recorded as two separate pulses. Dead time gives rise to a systematic underestimate 

of count rates, the magnitude of which increases with count rate. 

1.7.2 Image Performance Assessment 

1.7.2.1 Human Perception and ROC Methods 

Images are rich in information and in deciding what an image represents, an ideal 

observer will take account of all the relevant information present. The human visual 

system is a fundamental part of medical image interpretation. Human observers are 

disturbed by the presence of noise and unsharpness in the image and these defects 

impair perception. Usually performance is measured in terms of what the observer 

can detect. Detecting a feature in an image means, to observe its presence but not 

necessarily specifying its form. There are three aspects of perception performance, 

(i) detection, where a decision is made as to whether some abnormality is present, 

(ii) recognition, where features such as size and shape of an abnormality are 

quantified and (iii) identification, where decisions are made as to likely disease 
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patterns that correspond to the recognised, detected abnormalities. The 

measurements can be performed by the so-called 'receiver operating characteristic' 

(ROC) methods (Metz et al 1976, Kelsey et al 1985, Herman et al 1989, Metz 1989, 

Chesters 1992, Gooley et al 1992). It is used in measuring the perceptual 

performance and yields a measure of inherent detectability. It relies on having a 

definitive diagnosis on which to base the performance of image interpretation. The 

method consists of determining the true-positive and false-positive rates at different 

criterion levels. The true-positive rate is the fraction of positive images correctly 

identified as positive by the observer. The false-positive rate is the fraction of 

negative images incorrectly identified as positive by the observer. The result will be 

constructed on a graph (ROC curve), as a plot of true-positive rate against false-

positive rate and each point on the curve corresponds to a different criterion level. 

Therefore, the ROC analysis can be used in assessing the success of an image 

processing technique in improving detectability of abnormalities. 

1.7.2.2 Contrast-to-Noise Ratio 

The ability to distinguish features within a nuclear medicine image depends on 

differences in uptake of radioactivity. The detectability of that feature will depend on 

the contrast between the counts in the feature compared to that in the surrounding 

count. Image contrast refers to the differences in density or intensity between areas 

of the imaged object containing different concentrations of radioactivity. Since the 

physical processes of gamma photon emission are random in nature, the information 

density (the number of counts recorded per unit area of the image), can be subject to 

random statistical variations in counting rate (random noise). It is known that there is 

noise in the image and this will influence how well features will be seen. In order to 

detect a region of any size in an image, it would have to distinguish it from random 

noise fluctuations in the image. Increasing noise makes features more difficult to 

identify. 

Image contrast is the difference between the surrounding activity and the average 

count in the object. It is reduced by background and scatter. A region in an image 
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will generally be surrounded by radioactivity, so that in a planar imaging a 

background count is added to the image. Background is the overlying and underlying 

activity that contributes to the number of counts in a region of interest. Thus even 

when there is no activity in a feature in the body there will be counts detected at the 

corresponding area in the image leading to a decrease in contrast of visualisation of 

features. Image contrast can also be reduced by scattered radiation, leading to a 

decrease in the visibility of all the features in the image. 

Detectability depends on both contrast and noise. Therefore image detectability can 

be measured by contrast-to-noise ratio. It is an objective measure used as a criterion 

of assessing how well a particular objects can be visualised. The parameter 

calculated is known as a 'Figure of Merit' (FOM), of visual detectability of detail in 

an image (Herman et al 1989, Furuie et al 1994). 

1.8 Applications of Nuclear Medicine 

The nuclear medicine images which are produced from the distribution of the 

radionuclides within the body have different applications, which are useful for 

diagnostic purposes. The images produced are usually planar images of the 

accumulation of the radiopharmaceutical in the organ of interest. In bone imaging 

for example, a compound named MDP (methylene-diphosphonate) can be labelled 

with ^̂ ™Tc and injected intravenously into the patient. The radiolabeled compound 

will localise in bone, areas of rapidly growing bone taking up more of the compound 

than other areas. In detecting the increased activity in the localised area, by using 

gamma camera, a clear image of the lesion will be obtained, such as fractures, 

tumours or healing bone. 

A sequence of images can also be obtained displaying the changes in the tracer 

distribution with time. In renal scan for example, ^ "̂"Tc is attached to a compound 

named DTP A (diethyltriamine-penta-acetic acid), which is rapidly excreted by the 

urinary system to image the kidneys and measure their function. 
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A very large number of similar tests exist assessing the function of many organs. In 

general, morphology and structure of certain organs are best studied using other 

modalities techniques; such as x-ray computed tomography (CT scan) or magnetic 

resonance imaging (MRI). However, the information obtained from nuclear 

medicine radionuclide images are useful diagnostic tool, since the ability of an organ 

or tumour to take up a radiopharmaceutical is related to its function. 

Another method of nuclear medicine imaging is single photon emission computed 

tomography (SPECT). In this a series of images will be acquired by rotating a 

gamma camera around the patient. The images obtained are used for the production 

of a three dimensional image (multi-cross-sectional images) of the distribution of 

radioactivity. The images produced will give more detailed information, of a better 

contrast images, e.g., in brain and cardiac imaging (Maclntyre et al 1994). The role 

of imaging in nuclear medicine has also developed with a new technique of positron 

emission tomography (PET). The technique provides a unique information on 

regional tissue physiology. It enables physiologically important elements such as 

and to be used for radiolabelling and to measure regional blood 

flow and a variety of metabolic processes. Nuclear medicine images have lower 

quality than other medical imaging techniques and therefore, any improvements 

brought about by image processing could be of value. 

1.9 The Proposed Work 

The radioactivity that can be administered to the patient in radionuclide imaging is 

limited, by consideration of patient radiation protection, in that it must not give rise 

to an unacceptable risk of detriment to the patient. In the United Kingdom ARSAC 

(Administration of Radioactive Substances Advisory Committee), defines the 

maximum recommended radioactivity for each type of study and also explain the 

legislation relating to the administration of radioactive substances (Notes for 

Guidance... 1998). This will have an effect on the quality of the images produced, by 

limiting the number of gamma photons detected within an acceptable imaging time. 

Image quality is also degraded by the physical processes in the imaging system. 
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Image processing might improve this situation and it is important, that the technique 

used is capable of dealing with a situation of high noise in the image. The hypothesis 

to be tested is that image processing should improve the image quality of any given 

image. 

The maximum entropy data processing technique, has been found to be useful as a 

powerful and generally applicable image processing method for reconstructing 

images from noisy and incomplete data (Gull et al 1978, Gull and Skilling 1984, 

Livesey et al 1985, Skilling 1991). It uses knowledge of the available image data and 

the point spread function (PSF) of the imaging device to give an improved image 

quality. The maximum entropy deconvolution technique (Gull 1989, Daniell 1991), 

has been developed to solve the problem of processing nuclear medicine planar 

images (Simpson et al 1995). It showed an improvement in image quality assessed 

by several criteria. However, the technique requires further development to make it 

robust for routine clinical use. Therefore, the proposed work is going to be 

performed according to the following plan of investigation; 

(1) Optimisation of the technique; 

Operation of the processing technique requires several parameters to be set up 

manually. These values must be correct for optimal performance of the processing. 

Therefore, a variety of different phantoms will be studied and the optimum 

parameters will be chosen by studying the figure of merit (FOM) of the quality of 

the images. 

(2) Experimental evaluation of the technique; 

To evaluate maximum entropy technique in a phantom study, using ROC analysis as 

a subjective assessment for detectability. The aim will be to demonstrate improved 

performance using maximum entropy or equivalent performance using a lower count 

processed image. 

(3) Clinical evaluation in planar images: 

With a positive outcome obtained from the experiments, an evaluation of the 

maximum entropy technique was made in a nuclear medicine clinical study, using 



23 

ROC analysis. In this part of the project, experienced nuclear medicine clinicians 

and nuclear medicine physicist were used as the observers to interpret both 

processed and unprocessed nuclear medicine planar images. 

This thesis will determine the efficacy of the maximum entropy technique in 

improving image interpretation. It is hoped that the clinical benefits will be (i) 

improved diagnostic accuracy (ii) reduced imaging time resulting in improved cost 

effectiveness of the service or (iii) reduced radiation dose to the patient. 
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Chapter Two 

Image Processing in Planar Nuclear 

Medicine Imaging 

2.1 Introduction 

Nuclear medicine images suffer from poor quality that arises from different factors, 

which have already been mentioned in section 1.6. Image processing techniques 

might be used to overcome this problem by transforming the acquired data to an 

improved representation of the physical distribution of activity. In this chapter an 

introduction to image processing is provided with particular emphasis on maximum 

entropy processing as applied to planar nuclear medicine images. 

2.1.1 The Image Formation Process 

In image formation, the ideal planar image is a projection (a two dimensional 

representation) of the three-dimensional distribution of radioactivity. However, in 

practice a perfect image is not obtained, due to the effect of several processes (see 

chapter one). Degradation due principally to attenuation, blurring and noise causes 

the real image (data) to be of poorer quality than the ideal one. As mentioned in 

chapter one, attenuation groups together the loss of photons from absorption and 

Compton scatter. The blurring has contributions from intrinsic resolution of the 

gamma camera, the imperfect nature of the collimator geometry and Compton 

scattered photons accepted by both collimator and energy window. Attenuation and 
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blurring are complicated, interdependent effects dependent on the shape and size of 

the patient and the distribution of activity. Blurring increases the number of data 

elements influenced by each element of the activity distribution. As the degree of the 

blurring depends on the depth of the emitting radioactivity, the description of the 

image formation process in two dimensions requires an approximation to be made 

(Simpson et al 1995). An average depth for the activity is assumed so that the 

acquired image (data), d(x,y), can be considered as a convolution of the ideal image 

or map m(x,y) with a point spread function (PSF) p(x,y) (Figure 2.1). This point-

spread-function is the response of the system to a point of radioactivity at some 

average distance from the camera through an average thickness of scattering 

material. The Poisson noise can be considered an additive function. Therefore the 

image formation process is described mathematically as: 

(2-1) 

where ® represents the two-dimensional convolution process and n(x,y) is the noise. 

- > 

True object PSF Blurred image 

Figure 2.1: Convolution process blurring the real image distribution by the point 

spread function. 
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2.1.2 The Principle of Image Restoration 

In general any data processing problem can be thought of as a mathematical 

transform from the physical quantity wished to be determined (map, m) to the actual 

measurements (data, d). In the image processing example the data is the acquired 

image and the map is the processed image. 

If the transform from map to data is linear, it can be described thus as, 

k - 1, Ndata (2-2) 
f=/ 

where d^ is the data, m, is the map (the conclusions or the set of values we wish to 

determine) and is the transform matrix. N âta and are the number of 

elements in the map and data respectively. For image processing and N^ap are 

equal. This linear relationship may be complicated but, with knowledge of the 

system, it can be determined. The goal in processing the data is to use it to gain as 

much information as possible about the underlying distribution. 

The above equation assumes the data to be noiseless, but as stated in chapter one 

noise is influenced in an image by certain factors. Thus it can be considered as an 

additive factor (%) to the image, therefore: 

~ [ k=l,Ndata ( 2 - 3 ) 

i=l 7 

The aim of image restoration is to recover the ideal image as closely as possible. 

This is done by attempting to solve equation (2-1) for m(x,y). This process is known 

as deconvolution. It is the inverse of convolution and the process is often referred to 

as the inverse problem (Figure 2.2). 
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Image restoration involves the derivation of the map from the data and is therefore 

the inverse of the image formation process; 

m=R'd (2-4) 

Convolution 

Acquired 

data space 

du , k—1,2,—,k 

Conclusion space 

or map 

mj , 1 = l,2,....,n 

Data processing ( Deconvolution) 

Figure 2.2: Image processing theory. 

The requirement is to calculate the real distribution, m (ideal image) from the data, d 

and the point-spread-function, p which are known. The process of deconvolution is a 

complicated problem but can be simplified by using the Fourier Transform. This 

transforms the convolution equation to become a simple product, therefore, equation 

(2-1) will become; 

(2-5) 

where and ^(<^(^ are the Fourier transforms of d(x,y), m(x,y) and 

p(x,y) respectively, w and u- are spatial frequencies in the x and y directions 

respectively. Since our data contains noise, n(x,y) it is included in the data, thus 

equation (2-5) will become; 

(2-6) 
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where SKoia-) represents real noisy data. 

The noise being random is unknown but successful solutions have to make 

allowance for it. Its presence means that there are many distribution maps that are 

consistent with the data and the image reconstruction problem is how to select the 

best of these maps. Many different approaches have been used with varying levels of 

success. Maximum entropy has the ability to determine the most probable solution to 

such a problem and therefore its application to restoration in radionuclide imaging is 

worthy of investigation. 

2.1.3 Techniques for Image Restoration 

2.1.3.1 Filter Techniques 

Image filtering offers a great potential for improving image quality. It is used in 

processing of images either to enhance a particular image feature such as the edge of 

a structure or to remove statistical noise (Ott et al 1988). It involves first Fourier 

transformation of the image to its spatial frequency components. Each of these 

components is multiplied by a weighting factor (the filter) and the inverse Fourier 

Transform is applied to convert this filtered data back into an image in real space. 

Smoothing filters are used for reducing noise in images. Since noise in nuclear 

medicine images is most evident at high spatial frequencies, these filters are 

designed to attenuate high frequencies while sparing low frequencies (Sharp et al 

1985). However reducing the effect of noise also reduces contrast of the image and 

thus the signal to noise ratio may not be maximised (Tanaka et al 1970). 

Image restoration involves use of a filter enhancing the high frequency components 

that have been lost by the blurring of the imaging process. The problem with this 

approach is that the noise at these frequencies is also enhanced. 



29 

A number of different digital filter methods have been formulated in an attempt to 

produce optimum restoration of the inherent image quality lost during the imaging 

process while at the same time suppressing the noise (Andrews et al 1977, Pratt 

1978, Castleman 1979). One of these methods uses the Wiener filter (King et al 

1983). This approach assumes that the imaging system is linear and stationary and 

that the noise is additive with constant variance and uncorrelated with the object 

(Andrews et al 1977, Pratt 1978, Castleman 1979). With these assumptions the 

Wiener filter is derived as a filter which minimises the mean-square error between 

the original object and the restored image of the object (Andrews et al 1977, Pratt 

1978, Castleman 1979). Its major problem is that it requires rather detailed 

knowledge of the object and noise and the blurring process (King et al 1983). Other 

techniques of filtering the image in a way which attempt to recover some of the 

resolution but also to minimise the noise have also been described (King et al 1984). 

2.1.3.2 Iterative Techniques 

An iterative technique is a process of successive approximations used for solving a 

mathematical problem. In image processing it is often used to carry out 

deconvolution. Its method (Figure 2.3) is to make an initial guess of the map by, for 

example, setting each image pixel count to the mean pixel count (total counts/total 

number of pixels) and then to use an iterative procedure to alter this map gradually 

by comparing the corresponding expected image data at each iteration with the 

actual raw data projections (Webb 1988). The expected images are calculated using 

knowledge of the physics of the image formation process, in the planar imaging case 

using convolution as described above. 

One of the methods which is commonly used is Maximum Likelihood Expectation 

Maximisation (MLEM). The MLEM algorithm increases in every iteration the 

likelihood that the image estimate generated the measured data. The values in the 

images are constrained to stay positive. However, noise is uncontrolled when using 

MLEM and it increases with increasing iteration number. As the expected data gets 

closer to the actual data than the noise level, features appear in the solution which 
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are due solely to noise (Liang et al 1989, Green 1990, Herbert and Gopal 1992, 

Lalush et al 1992). Techniques have been described to avoid this problem using 

various smoothing constraints (Tsui et al 1991). The method has been extensively 

applied to SPECT reconstruction. 

Another iterative method which is the main concern in this thesis is the Maximum 

Entropy technique. It has been applied to different image processing problems 

(Daniell 1991, Skilling 1991) and has proved very successful in handling noisy and 

incomplete data (Gull et al 1978, Gull et al 1984, Livesey et al 1985). It can be used 

to deconvolve the planar images with a point spread function. The idea of the 

maximum entropy technique is to select the most probable solution from all those 

which are consistent with the data considering the noise present. It is an iterative 

technique, starting from an input trial map and updating it until it converges on the 

maximum entropy solution. It has already been shown to give improved image 

quality in planar imaging (Simpson et al 1995). 

convolve 

Initial (jjuess of map 

convolution 

(Next estimate of data) 

Compare with actual data 

Is the estimate data close enough to 

the real data ? Yes out 

No 

Modify solution (map) 

Figure 2.3: Description of the iterative process. 
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2.2 The Principle of Maximum Entropy 

2.2.1 Baysian Interpretation 

The maximum entropy technique is based on Bayes theory, which updates the 

probability of a conclusion based on new data (Cox 1946). Bayes theorem can be 

applied in different conditions where conclusions can be drawn depending on 

uncertain data. Bayes theorem can be stated that the probability of a conclusion or 

map, given the measured data is : 

Prob(conclusion\data) oc Prob(conclusion) x Prob(data\conclusion) 

The notation Prob(A\B) denotes the "Probability that A is true, given that B is true". 

In maximum entropy, the prior probability of a given distribution of activity is 

related to entropy. So the term Prob(conclusion) is the prior probability of the 

conclusion before measuring the data. The probability of the data can be calculated 

given an initial map knowing the PSF and knowing the data error. Then the term 

Prob(data \ conclusion) is known as the likelihood, measuring the probability of the 

data given a set of conclusions. The term Prob(conclusion\data) is called the 

posterior probability of the conclusions given the collected data. That can tell us how 

to change our conclusions based on the data. 

2.2.2 Maximum Entropy Approach 

2.2.2.1 Consistent Conclusions 

The approach of Maximum Entropy uses the forward, conclusion to data, transform 

in solving the problem of the inverse transform. Maximum entropy will then choose 

the conclusion which is the most probable solution (i.e., choosing the conclusion 

which has the maximum probability). 
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In a perfect imaging system this transform is stable, thus given any set of 

conclusions or map m, it is possible to generate the noiseless data, g expected from 

the system in the absence of random errors, 

j?* (2-7) 
/ 

where is the transform from map to data. If a conclusion or map m were the true 

underlying distribution, and noise in each datum (pixel) d^ was Gaussian with 

standard deviation then, on average, each noiseless datum g^ would be one 

standard deviation from the corresponding d^.value. 

2.2.2 .2 %^-test 

Thus if m were the perfect solution, the % statistic for g and d 

j , , = (2-8) 

would, on average, give a value of The % statistic is introduced as a test to 

provide a mean of judging whether a trial solution (map) is consistent with data 

(Press et al. 1 

data points Njata-

(Press et al. 1992). Thus, for consistent solutions % must be equal to the number of 

2.2.2.3 Entropy 

There are a large number of different trial solutions (map) which are consistent with 

data. A criterion which can help us choose between these consistent conclusions is 

needed. Maximum entropy is an example of such a criterion giving the solution with 
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the highest entropy solution which is therefore the most probable of these consistent 

solutions (Skilling 1988, Daniell 1991). Entropy is used as a criterion to choose 

between solutions which satisfy all the data constraints. The entropy S as a property 

of our conclusion m, can be defined as follows; 

S /f;) (2-9) 
f = l 

where m; are the different levels in the map, and b i s a constant (i.e., the default 

solution) whose effect on the algorithm will be described in the next section. 

2.2.2.4 The Maximum Entropy Algorithm 

2 The maximum entropy algorithm is an iterative process. At each iteration both % 

and entropy S, are calculated and the new estimate of the distribution is calculated 

based on gradients of % and entropy with respect to the solution values. The 

algorithm searches for the conclusion, which fulfils the constraint x = and has 

the highest entropy. 

The method requires the definition of a default level for the solution. This is usually 

taken as the most desirable value of the solution in the presence of poor data. This 

affects the constrained optimisation, pushing the solution towards this value. This 

leads to a distortion of the total count in the solution, tending to reduce total counts 

for the conclusion which is less than the mean of the data and increasing them for 

the one which is more than the mean of the data. This distortion was overcome 

(Simpson et al 1995) by changing from a uniform default level b to a nonuniform 

default level b;, modifying equation (2-9) to be, 
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S \og{m.!6,) (2-10) 
Z = 1 

The default solution b, was obtained by making it a smoothed version of the original 

data, i.e. a convolution with some blurring function. It was achieved by repeatedly 

performing a nine-point smooth with weights 4, 2 and 1 (Lieberman 1977, Simpson 

e t ^ l 9 9 5 ) . 

2.3 Practical Considerations of Applying Maximum Entropy 

As mentioned earlier, for a particular maximum entropy problem several parameters 

need to be specified. The definition of these parameters is now discussed in detail. 

2.3.1 Number of Iterations 

It has been found (Simpson et al 1995) that the algorithm usually converges and 

gives each maximum entropy solution in approximately 6 iterations. Sometimes 

however the algorithm will produce sensible solutions with a larger number of 

iterations. In other situations the algorithm does not converge and therefore a 

maximum number of iterations has to be set to avoid the algorithm iterating for ever. 

2.3.2 Definition of Errors 

Since the % statistic is introduced (equation (2-8)), as a constraint in testing the 

consistency of a conclusion with the data, an estimate of expected errors is needed in 

its evaluation. The best estimate of the error datum d]̂  is a standard deviation of data 

point, CTk. 



35 

Since the data comes from the radioactive emission process which is random, the 

errors will follow a Poisson distribution where, 

(2-11) 

This allows an estimate of the standard deviation to be made. However, it has been 

previously found (Simpson et al 1995) that the algorithm did not converge with 

standard deviations calculated as above. This was considered to be due to the 

presence of systematic sources of errors: such as background error, and 

imperfections in the model. These systematic errors are difficult to quantify. 

Therefore, they were included in the model by introducing two parameters (C^ and 

C2) as constants in the standard deviation calculation. The error is then estimated 

using the following modified equation: 

or* = f C, (2-1:2) 

The choice of Cj and Cg have an effect on the convergence of the algorithm and the 

properties of the solutions produced. Therefore these parameters must be correct for 

the optimal performance of the processing. 

2.3.3 Definition of Default Solution 

The default solution (bj specifies the initial trial map for the algorithm for the first 

iteration. It specifies the solution that maximum entropy should produce when the 

data is so poor as to provide no constraint on the algorithm i.e., as to provide little or 

no information. A low constant value may be used as a default solution to minimise 

the occurrence of false positive interpretations of the solution. However in our 
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application of maximum entropy the default solution b; has been made (Simpson et 

al 1995) a smoothed version of the original data d, (i.e., a convolution of d with 

some blurring function), to enable the total counts in the image to be maintained. 

The degree of smoothing used for the default solution will also influence the final 

conclusion and therefore this is another parameter requiring optimisation in the 

practical application of the technique. 

2.4 Summary 

In this chapter the image formation process has been considered to address the 

problem that affect the production of nuclear medicine image quality. Furthermore 

the principle of image restoration of this noisy and incomplete data has been 

considered. Different techniques for image restoration were mentioned and 

presented the maximum entropy technique as a possible approach to solve this 

problem. 
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Chapter Three 

Investigations on the use of Maximum 

Entropy in Planar Radionuclide Imaging 

Deconvolution 

3.1 Introduction 

3.1.1 Previous Work 

An investigation has been previously performed to evaluate the maximum entropy 

technique (Simpson et al 1995). The investigation studied one phantom as a test 

object. The phantom used was a planar source. Images of the phantom were obtained 

to investigate the effect of parameters C; and C2 (Chapter 2 section 2.3) on image 

quality and evaluate the improvement in image quality obtained. The result showed 

that the convergence of the algorithm and the quality of the images depended heavily 

on the values of the error parameters Cj and C2. The technique was found to produce 

solutions close to the optimum over a wide range of error parameters C, and C2 , 

although the values of C, and C2 varied considerably with the number of counts in 

the image. 
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3.1.2 Summary of Proposed Work 

The purpose of the work described in this chapter was to investigate thoroughly the 

parameters defining the errors on each data point, and also the default solution which 

is the most desirable solution in the presence of poor data. The aim is to find out 

how to define the errors and default solution to give the best solution. The 

performance of maximum entropy was also compared to the use of conventional 

smoothing and a technique using a combination of both maximum entropy and 

smoothing. 

3.2 Investigation of the Validity of the Error Model 

If the result of measuring the number of counts is N, it is known in theory that the 

error as estimated by the standard deviation of the counts, a will be equal to yfW . 

However, as has been mentioned earlier when this estimate is used in maximum 

entropy processing the algorithm doesn't converge. Therefore an experiment was 

carried out to confirm the validity of the error model. 

3.2.1 The Aim of the Experiment 

To prove that, the standard deviation of measured counts is equal to the square root 

of the count, for all count rates. 

3.2.2 Method 

A rectangular source (58 x 44 cm) containing a uniform activity of Co-57 (lOOMBq) 

was imaged using a Genesys dual-headed gamma camera (only one head is used) 

with a low energy general purpose collimator (ADAC, Milpitas, CA). A planar 

dynamic study was acquired with a short time per image (0.1 sec/frame), at 128 x 
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128 matrix size. The acquired images were transferred to a Sun SparcStation2 to 

perform the processing. By summing different numbers of frames from the dynamic 

study, images of a uniform source with average count per pixel varying between 

0.05 and 5.1. were created. A rectangular region of interest was drawn to cover the 

largest possible area while avoiding getting too close to the edge of the field of view 

of the camera. The PICS Program (Fleming et al 1991) was used to calculate the 

mean (N) and experimental standard deviation count per pixel. The expected 

standard deviation was calculated as , and compared to the measured standard 

deviation. The paired t-test was used to determine the significance of the differences 

between the experimental standard deviation and the theoretical standard deviation. 

3.2.3 Results and Discussion 

The experimental standard deviation for the acquired data was similar to the 

theoretical standard deviation (Figure 3.1a). The t-test proved that there was no 

significant difference between the experimental standard deviation and the 

theoretical standard deviation (P = 0.1). That was confirmed when the difference 

between both methods was plotted against the average (Figure 3.1b) (Bland and 

Altman 1986). 
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Figure 3.1a; A comparison between the assessment of the standard deviation 

theoretically and experimentally. The straight line is the line of equality. 
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Figure 3.1b: Difference versus mean for the assessment of the standard deviation 

measured theoretically and experimentally. 

The result of the experimental measurements on the gamma camera shows that the 

error is equal to VtV even at low count. This confirms the relationship expected 

from Poisson statistics. However the maximum entropy algorithm doesn't converge 

when using this error. That could be due to different sources of the errors. Although 

it has been confirmed that the theoretical estimate of the standard deviation of counts 

is correct, the distribution will be asymmetric at low counts as it follows the Poisson 

distribution. The current algorithm which uses statistic does not take this into 

consideration and this could be a source of the problem of non-convergence. To 

correct for this would require a major revision of the algorithm and is beyond the 

scope of the thesis. 

A further problem arises from using the actual measured count to estimate the error. 

With the Poisson distribution estimating the error from the square root of N is 

probably quite accurate at high counts, however, when it gets to very low counts 

(e.g., zero or one count) it results to a fallacious estimate. It is common in nuclear 

medicine images to have a significant number of pixels which have no counts. For 

these pixels the error is estimated at zero and this is clearly wrong. 
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In future work the intention is to deal with the problems at zero and low counts by 

using an iterative adjustment of errors. The process will be to create an initial 

maximum entropy image from which it can get a better estimate of the error. Then 

the new errors can be applied on another application of maximum entropy and 

iteratively improve the image. 

3.2.4 Conclusion 

The investigation of the validity of the error model proved that the assumption that 

the standard deviation of count is given by the square root of the count even at a very 

low count. However this does not imply that it is correct to estimate errors from 

measured counts at low count rate and improvement in the error model is the subject 

of current research (McGrath et al 1998). This will attempt to solve the low count 

error estimation by using an iterative adjustment of errors. The problem of an 

asymmetric distribution of error is a further problem in applying maximum entropy 

which is beyond the scope of this study. 

3.3 Choice of Parameters for Assessing Image Quality 

The aim of using the maximum entropy technique in nuclear medicine is to give an 

improved representation of image quality to aid in clinical decision making. The 

main concept of maximum entropy processing is to choose the optimal image for a 

given set of values for data, experimental errors and default solution. The best 

method of evaluating any technique is to test how successfully it aids performance of 

the task for which it is required. In the case of image quality this would be how well 

it allows clinicians to precisely identify and make their decision on any features in 

the image. As has been mentioned (see chapter 1), the receiver operating 

characteristic (ROC) analysis can be used to assess image performance. However for 

choosing the optimal parameters needed by the algorithm, ROC assessment is 

obviously laborious and time consuming. It is more convenient to use a measurable 

quantity of the image itself which can be related to observer performance. Image 
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quality can be assessed conventionally by measures of contrast, resolution and noise. 

Image processing techniques, however, often improve one aspect of image quality at 

the expense of another and therefore it is useful to use a single measure to express 

quality. Therefore a Figure of Merit ( FOM ) has been used, as a mathematical 

parameter to measure image quality (Herman et al 1989). The Figure of Merit is an 

objective measure of image quality, which doesn't depend on someone's opinion. It 

is considered to be related to the ability of an observer to detect an object on a 

uniform background in ROC analysis. 

The general approach of the experiment is to vary the various parameters used by 

maximum entropy, and make corresponding measurements of the quality of the 

images produced and in this way to find the parameter values providing optimal 

image quality. 

The figure of merit can be defined by calculating the number of pixels, mean and 

variance of a region in the image representing an object and the corresponding 

values for the surrounding background. Its incorporates both the contrast between 

object and background and the noise. There are various methods of calculating the 

figure of merit, and these are discussed in detail in the next section. 

The FOMs do not directly include a consideration of resolution. However for small 

objects at the threshold of detection the measured contrast is closely dependent on 

resolution. The FOM, therefore, effectively includes the influence of resolution. 

3.3.1 Description of Different Figure of Merits (FOMs) 

Three methods of calculating the figure of merit which have been previously 

described are considered. Essentially they are contrast to noise ratios, but they are 

slightly different in expression. The three different figures of merit have been named 

as, FOMl, F0M2 and FOMS. They can be described in the following equations as 

follows: 
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The First equation, FOMl = , ° (3-1) 

where n^, and (7̂ ^ are the number of pixels, mean and variance of the object 

region in the image, and %, my and are the corresponding values for the 

surrounding background. 

This equation has been used previously by Simpson et al 1995. It incorporates the 

contrast (m^ - my) and the noise in both the object and surroundings. 

The Second equation, FOM2 = (3-2) 
c r . 

b 

This is the classical contrast to noise ratio (Chesters M S 1992) using only the noise 

in the background. The is introduced to allow the FOM to reflect the greater 

detectability of larger objects. 

This is the equation which will be used for this study, the reason for which will be 

explained in detail below. 

Jn n,(m -m.) 
The Third equation, F 0 M 3 = - — ( 3 - 3 ) 

n^ + aln 

This equation gives statistical measure of the significance between two means, based 

on the z-statistic. It therefore gives a measure of the statistical significance of the 

object having a different count from the background. 

Since the concern is visualising a particular object to help in decision making, the 

figure of merit which will be used must be related to image detectability (Chesters 

1992, Simpson et al 1995). FOMl and F0M2 have previously been related to 

detectability of objects (Simpson et al 1995), F0M3 has not formally been related to 
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detectability but it is interesting to note the similarity of this statistical formula to the 

other proven FOMs. 

In the following paragraph there will be a brief discussion on how the three figures 

have been calculated and why the F0M2 have been chosen for this study. 

In a previous study by our group FOMl had been used in calculating the 

detectability. The surrounding background noise was assessed as the standard 

deviation of pixel count in the surrounding background region. However it was 

noticed that when changing the size of the surrounding background on the same 

image, the value of FOMl will vary. This makes it difficult to compare the results 

when measuring and comparing different phantoms. FOMS also depended on the 

area of the background region and therefore has the same disadvantage. Thus the 

F0M2 has been used, as its calculation is independent of the value of the 

surrounding background size. 

An alternative and more complete way of comparing quality of solutions was to use 

contrast to noise plots and these are also used extensively in describing the results. 

3.4 Defining the Optimal Parameters for Maximum Entropy 

Processing in Planar Radionuclide Imaging 

3.4.1 Phantom Measurements 

The three physical phantoms which were measured as test objects are called the 

Williams phantom, Fleming phantom and Goddard phantom. All the phantoms 

(Figure 3.2) have been imaged through 4.6 cm of scattering material. 

The Williams phantom is a flat perspex container of dimensions 23.8 x 16.9 cm, 

with parallel faces 0.9 cm apart. In between the faces it contains four circular 

recesses and four perspex pillars, of differing diameters, (0.5, 1.0, 2.0, and 4.0 cm). 
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It is filled with a radioactive material and viewed by a gamma camera as a planar 

source. The phantom image appears as an area with a uniform activity with the four 

circular recesses appearing as hot spots with double activity and the perspex pillars 

appearing as cold spots with no activity. 

The Fleming phantom is a flat perspex container of dimensions 10 x 10 cm, with 

four perspex pillars, of differing diameters (0.25, 0.5, 1.0, and 2.0 cm). When this 

phantom was filled with a radioactive material and imaged by gamma camera, it 

showed a uniform area with four cold spots, representing the four perspex pillars. 

The Goddard phantom also is a flat perspex container 34 x 34 cm dimension, 

containing 12 circular recesses and 12 perspex pillars, of differing diameters, (0.5, 

1.0, 2.0 and 4.0 cm) and differing depths. This gave a series of hot and cold spots 

differing in both size and contrast. 

All the three phantoms images were obtained using one head of a Genesys Dual-

headed Gamma Camera with a low energy general purpose collimator. A dynamic 

study was acquired with a frame time of 5.0 seconds, at 128 x 128 matrix size (pixel 

dimension 0.467 cm). The acquired study was transferred to a Sun SparcStation2, to 

perform the processing. Images with a variety of counts was created by summing 

different numbers of frames. The maximum entropy program was used in processing 

the planar images of the phantoms. 
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Figure 3.2: Images of the three physical phantoms, which are used as test objects. 
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3.4.2 Defining the Optimal Number of Smooths for the Default 

Solution 

3.4.2.1 Method 

A default solution is required by the algorithm for the purpose of providing an initial 

trial map for the first iteration and specifies the solution in the presence of poor data. 

Previous work showed that a smoothed version of the original data could be used as 

the default. The purpose of this experiment was to investigate how the degree of 

smoothing affected the quality of the maximum entropy processed images. The three 

phantoms (Figure 3.2) were used in this test. The 2.0 cm cold spot was chosen as the 

feature to be studied and a region was drawn around it and a background region in a 

selected area in the surroundings. Then 1 , 2 , 5 , and 12 passes of a smoothing filter 

were used as default data. The filter applied was one commonly used for smoothing 

radionuclide images in which each pixel is replaced by a weighted sum of itself and 

the eight surrounding pixels with the following weighting scheme (kernel):, 

1 2 1 

2 4 2 

1 2 1 

These different defaults were tested with varying the error parameters C, and Cg, to 

select the optimal number of smooths for use as default data. The maximum entropy 

solutions, using each of the default data were obtained and compared to the original 

acquired data. Contrast and noise measures were used for the calculation of the 

image quality as follows, 

Contrast = m^ - my and Noise = (J ^ 
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where and 1% are the mean count per pixel in the object and the surrounding 

background region respectively, and (Ty is the standard deviation of counts per pixel 

in the uniform area surrounding the object. 

The PICS Program (Fleming et al 1991) is used to calculate the image quality which 

results from each solution using the F0M2 described above. 

3.4.2.2 Results and Discussion 

The result shows that using different levels of smoothing as default data gives 

varying solutions. For each level of smoothing a range of solutions was produced 

starting from a high contrast, high noise solution going down to a low contrast low 

noise solution (Figure 3.3). The different solutions were produced by varying the 

error parameter C; with Cj at a constant value of 1.0 . The point representing the raw 

image is presented for comparison. 
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Figure 3.3: Maximum entropy solutions using a fixed value of Ci= 1.0 and varying 

the number of smooths used in the default solution. The image used was a Williams 

phantom with a total count of 108k. 
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The optimum figure of merit was obtained with a default solution of 5 smooths 

(Figure 3.4). A similar result is produced when investigating the same object using a 

lower values of Cj (Figure 3.5a and 3.5b). 
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Figure 3.4: The F0M2 of maximum entropy solution when varying the number of 

smooths for the default solution, while using a fixed value of Cj = 1.0, for the 

Williams phantom, total count is 108k. The highest numerical figure of merit (i.e., -

200) indicates the optimum solution. 
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Figure 3.5a: The F0M2 of maximum entropy solution when varying the number of 

default smoothing using 1 , 2 , 5 and 12 smooths, while using a lower value of Cj = 

0.2 , for the Williams phantom, total count is 108k. 



50 

e 

-40 

- 8 0 

-120 

-160 

-200 

higher C] 

lower C2 

• Raw data 

• 1 smooths 

X 2 smooths 

A 5 smooths 

* 12 smooths 

0 1 2 3 4 5 6 7 8 9 10 11 12 

Noise 

Figure 3.5b: The F0M2 of maximum entropy solution when varying the number of 

default smoothing using 1 , 2 , 5 and 12 smooths, while using a lower value of C, = 

0.6 , for the Williams phantom, total count is 108k. 

3.4.2.3 Conclusion 

The investigation on defining the optimal number of smooths for the default solution 

bj (equation 2.10), for which 1, 2, 5, and 12 smooths were used, suggested that the 

number of smoothing doesn't have a large effect on image quality. 5 smooths was 

considered the optimal number of smooths for the default solution according to the 

results so far, because it produced improved quality solutions compared to 1,2, and 

12 smooths. However lower count images might need a higher number of smooths. 

This needs to be investigated thoroughly in a larger variety of images. 
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3.4.3 Defining the Optimal Error Parameters 

3.4.3.1 Method 

To define the optimal error parameters which are required by the algorithm to 

specify the errors in the data, imaging of the 2.0 cm cold object in the Williams 

phantom has been investigated. The value of constants C, and C2 have been varied 

over the whole range of convergence. Thus the value of constant C] was varied 

between 0.0 - 5.0, and the value of C2 between 0.0 - 10.0 . The contrast and noise of 

the 2.0 cm cold object have been measured and the way they vary with the values of 

Ci and C2 studies. The image quality was calculated by measuring the figure of merit 

of the different solutions and the one with the optimal value determined. 

3.4.3.2 Results and Discussion 

The result shows (Figure 3.6a), that when applying maximum entropy on the raw 

data, using a fixed value of constant Cj (C, = 0.3), and varying the values of constant 

C2 (C2 = 0.0 to 10), maximum entropy processing produced various different 

solutions but with certain values of C2 (0.0 - 0.5 and 4.5 - 10), the algorithm did not 

converge and no solution was produced. The values of C; = 1 .0- 4.0, allowed the 

algorithm to converge and produce solutions which had different contrast and noise 

level. The contrast of each solution was increased when choosing a lower value of 

C2, and at the same time the noise level was increased (Figure 3.6a). Therefore high 

contrast solutions were associated with high noise and vice versa. 

Since the ideal solution has high contrast and low noise, the figure of merit is 

required to determine the optimal solution. The variation of F0M2 with value of C2 

is shown in figure 3.6b and with noise in figure 3.6c. As C2 increased the F0M2 

increased and the level of noise is decreased. The solution with the highest F0M2 

was therefore in this case also the smoothest solution. The figure of merit of the raw 

data was about -67.9, which is well below the most of the maximum entropy 

solutions. 
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Figure 3.6a: Maximum entropy solutions of the Williams phantom, using a fixed low 

value of Ci = 0.3 and varying the values of constant Cj using 5 smooths for the 

default solution, where a high contrast solution is associated with high noise. 
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Figure 3.6b: The variations in the figure of merit of maximum entropy solutions with 

varying the values of error parameter Cj, and having a fixed value of C,= 0.3. 
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Figure 3.6c: The variations in the figure of merit and the level of noise of maximum 

entropy solutions, using C,= 0.3, where the F0M2 of the raw data is well below the 

most of maximum entropy solutions. 

The choice of the value of constant C, can be chosen based on the figure of merit. 

Theoretically the value of C , - 1.0 is more acceptable. It has been found that the 

optimal figure of merit increased slowly as increasing the value of C, from zero until 

it reached Cj = 1.0, then there was a rapid reduction in the figure of merit as the 

value of Ci increased to more than 1 (Figure 3.6d). This will be explained in more 

detail in the next section (section 3.4.4). 

Therefore the convergence of the algorithm and the figure of merit (F0M2) is 

dependent on the values of the error parameters Cj and €3. The variation in the 

figure of merit whether varying the constant Cj or constant C2 is illustrated more 

completely in table 3.1 . 



54 

1 
"(3 

t 
o 

0 

-20 

-40 
-60 

- 8 0 

^[00 

^140 

^[60 

^180 

-200 

0 O j 1 1.5 3.5 4.5 5.5 2 25 3 

CI 

Figure 3.6d: The variations of the figure of merit 2 when we vary the value of C,, 

while the drop off in the F0M2 can be noticed as we increased the value o f C , to 

more than 1. 
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F O M 2 

9.5 

9.0 

8.5 

8.0 

7.5 

7.0 

6.5 

6.0 

-165.3 5.5 

-159.1 5.0 

-155.6 -77^3 4.5 

-129.4 -167.1 4.0 

-102.6 -141.4 -172.4 -177.0 3.5 

-80.57 -116.3 -150.0 -779.6 3.0 

-61.02 -91.51 -126.6 -158.6 -180.6 2.5 

-43.87 -71.09 -100.6 -133.1 2.0 

-50.78 -78.16 -107.2 -162.7 # 1.5 

-51.78 -78.58 -133.6 -177.2 # 1.0 

-154.5 -772.'^ 0.5 

0.0 

0.1 0.2 0.3 0.4 0.6 0.8 1.0 1.2 

( * 
( / 
(# 

) Did not converge on maximum iterations (20). 
) Default solution fitted the data . 
) Trial map fitted data on iteration 1 . 

Table 3.1: The variations in the figure of merit 2, when the values of constants Cj 

and C2 are varied, using 5 smooths for the default solution, for the 2.0 cm cold object 

of the Williams phantom which has a total count of 108k. 
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3.4.3.3 Conclusion 

The investigation of defining the optimal error parameters C, and C; which are 

required by the algorithm to specify the errors in the data, shows that the value of 

constant C, can be chosen based on the figure of merit. The optimal figure of merit 

was fairly independent of Cj for values of Cj below Cj = 1.0 . The decrease in the 

figure of merit for values of Cj of more than 1, suggested that the theoretical value 

of Ci = 1.0 would be acceptable. F0M2 depended heavily on parameter C2 . In the 

example chosen the highest F0M2 was found at the upper limit of convergence, 

corresponding to the smoothest solution. 

3.4.4 The Effect of Various Factors on Error Parameters 

3.4.4.1 Method 

There are various factors which have an effect on error parameters. This effect can 

be assessed by varying certain different factors on the image. These factors are the 

size of the object, and whether it is a hot or cold object, the total count in the image 

and the mean count (the number of counts/pixel) in the region of interest in the 

surrounding activity. The Williams phantom, Fleming phantom and Goddard 

phantom (see section 3.2.1), were chosen for the assessment of these effects. A 

selection of images of the phantoms with different total counts were obtained to 

enable the parameters to be varied. Regions of interest defining the object and 

background areas, were drawn on a high count image in which all the objects were 

clearly visible. 

( i ) The Size of the Object, The Williams phantom was used for assessing this effect. 

A region of interest for each cold object size (1.0, 2.0 and 4.0 cm) was drawn 

separately on the high count image and another region of interest was drawn in the 

surrounding area, as a background region. The same background region was used in 

conjunction with all three object sizes. An image with a total count of 108k count 

was used. The regions for each object and the surrounding background region were 
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first applied to the raw image. Using a fixed value of error parameter C, of 0.3, 

various maximum entropy solutions were obtained by varying the value of C2. The 

image quality for each object was measured for all the solutions and the figure of 

merits were compared. In addition the optimal F0M2 value for each value of Cj for 

which convergence was obtained was determined and its variation with C, studied 

for each object. 

( i i ) Hot Objects, Three hot objects in the Williams phantom (1.0, 2.0, and 4.0 cm 

diameter) were studied using the same procedure as in ( i ) above. 

( iii ) The Total count in the Image, For this measurement three images of the 

Williams phantom has been obtained with different total counts. The total counts 

were 216k count, 108k count and 46.5k count respectively. Investigating various 

values of constant Cj of 0.0 - 1.2, different maximum entropy solutions were 

obtained by varying the value of Cj. The optimal F0M2 value for each value of C, 

for which convergence was obtained was also determined. The region of the 2 cm 

cold object and the surrounding background region (as drawn earlier) were applied 

on each distribution. 

( iv ) Variation of Image Structure, It was considered reasonable to hope that 

objective image parameters such as total count might be used to be able to predict 

the optimal error parameters in any particular image. For this to be useable the 

derived rules would have to be applicable to any image. Therefore the variation of 

F0M2 for the 2.0 cm cold object in the three different phantoms was studied. Two 

separate sets of measurements were carried out, (a) Where the total count was the 

same in the different phantoms and (b) where the counts per pixel in the surrounding 

region were constant (i.e., the mean count). 

For all the measurements, the PICS Program (Fleming et al 1991) was used for 

calculating the image quality. 
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3.4.4.2 Results and Discussion 

The result of the experiment on object size shows that the figure of merit for the 

three object sizes (1.0, 2.0, and 4.0 cm) in a Williams phantom are different. It can 

be noticed that (Figure 3.7a) the larger objects have a higher F0M2. This is expected 

since as increasing the object size, detectability should be higher. For all three 

objects the F0M2 is higher for low noise solutions corresponding to the higher 

values of for which convergence is obtained (Figure 3.7b). The values of Cg 

producing the optimal F0M2 did however vary a little with the smallest object being 

optimally imaged with a slightly higher noise / higher contrast solution. 

The results also show (Figure 3.8), that the optimal figure of merit does not depend 

very much on the value of C,. 

The measurements which were performed on the hot objects, show that hot objects 

are giving the same pattern of results (Figure 3.9), as the results of using cold objects 

as shown above, however there is a slight trend for hot objects to have a higher 

optimal F0M2. 

The improvements in the image quality, when the maximum entropy processing 

technique was applied to the raw image is presented in (Figure 3.10). 



59 

S 
g 

0 

-100 

-200 

-300 

-400 

-500 

-600 

-700 

higher 

10 12 

Noise 

14 

lower C2 

Cold objects 

• 1 cm 

* 2 cm 

A 4 cm 

16 18 20 

Figure 3.7a: The object F0M2 increases as the object size increase, for a given value 

of Ci = 0.3 for the Williams phantom. 
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Figure 3.7b: When varying the value of for a given value of Ci= 0.3 of the 

Williams phantom, the object F0M2 increases as increasing the object size. 
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Figure 3.8: Determining the choice of Cj for different cold objects sizes on the 

Williams phantom having a total count of 108k. 
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Figure 3.9: Determining the choice of constant C, for different hot objects, on the 

108k count Williams phantom. 
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Figure 3.10: The different solutions with an improvements in the image quality, when 

applying maximum entropy processing technique to the raw image, for the 2.0 cm cold object 

of the Williams phantom which has a total count of 108k count and Ci = 1.0 . 
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The effect of total count in the image on a 2.0 cm cold object of a Williams phantom 

shows (Figure 3.11a) that the optimal F0M2 for different values of C, are roughly 

constant. When choosing a fixed value of Cj (Ci= 0.2 and 1.0), and varying the 

value of C2 (Figure 3.1 lb and Figure 3.11c), a wide range of solutions for the three 

counts was found. However for Ci= 1.0 the range of solution is lower than when 

using a lower value of C, and therefore the F0M2 is more stable. The value of C2 

giving optimal F0M2 did depend on the total count for a given object suggesting 

that total count might be used to select Cg. 
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Figure 3.11a: The effect of total count on the error parameter Cj, for a 2.0 cm cold 

object of a Williams phantom. The optimal F0M2 is constant, showing the 

independence of the value of Cj on the total count in the image. 



63 

I 

0 

-30 
- 6 0 

-90 

^[50 

-210 
-240 
-270 

Total count rate 

• 46.5k count 

* 108k count 

A 216k count 

0 1 5 6 

C2 

7 8 9 10 11 n 

Figure 3.11b: The variations in the solutions of varying total count of a Williams 

phantom using C;= 0.2 and varying the values of C2. 
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Figure 3.11c: The variation in the solutions of varying total count of a Williams 

phantom using a value of C,= 1.0 and varying the values of C2. 
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The results of the measurement obtained using the same total count in the three 

phantoms shows that different F0M2 are obtained (Figure 3.12a). Here it is noticed 

that the three phantoms are varying in size, thus the Fleming phantom is the smallest 

in size, therefore that the mean number of counts per pixel in the Fleming phantom 

will be higher than the other two phantoms and hence the F0M2. Figure 3.12a, 

shows that for a given value of Cj (€;= 1.0), the optimal value of C2 cannot be 

predicted from the total count because it is dependent on the environment. For the 

Williams and Goddard phantoms the best solutions were obtained at the upper end of 

the range of values for C2 for which convergence was obtained. However for the 

Fleming phantom, the best solutions were obtained at the middle of the range of 

convergence. 
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Figure 3.12a: The total count was kept uniform for the three phantoms at a given 

value of Ci= 1.0 and varying the values of C2. 
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Having the same mean count in the surrounding background area in the three 

phantoms, gave similar optimal F0M2 values as would be expected (Figure 3.12b). 

However the value of C2 giving the optimal solution was different for the three 

phantoms showing that mean count in surrounding area of the image cannot be used 

to predict the optimal C2 value. 
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Figure 3.12b: The mean count (c/p) was kept uniform for the three phantoms at a 

given value of C , - 1.0 and varying the values of C2. 

On the basis of the results obtained so far, the following method is suggested as a 

rule by which the value of error parameters C, and C2 can be chosen. Cj = 1.0 is a 

natural choice for that parameter. It is theoretically correct and although optimal 

solutions do not vary greatly with C,, the result obtained with Cj = 1.0 were slightly 

superior to other values in a number of solutions. In addition the range of solutions 

produced with C, - 1.0 is lower indicating that it will be more stable value. 

In most of the examples studied to date with = 1.0, the value of Cg giving optimal 

F0M2 was close to the higher limit of C2 giving convergence (Figures 3.11 and 
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3.12). The only example where this was not the case was with the Fleming phantom 

with very high count per pixel where the optimal value of C2 was closer to the lower 

limits of convergence. Therefore as a general rule it is intended to use the upper and 

lower limits of convergence, to calculate the optimal value of C2, ^pt. 

Therefore, C2 opt = L + 0.8 ( U - L ) for U ( 5 (3-4) 

= 4 & r U > 5 

where U and L are the upper and lower limits of convergence respectively. 

This rule needs to be investigated thoroughly and tested in different situations. 

3.4.4.3 Conclusion 

The assessment of the effect of the various factors on the error parameters shows 

that as the size of the object is increased its F0M2 is increased. The values of C2 

producing the optimal F0M2 varied, with the smallest object being optimally 

imaged with a slightly higher noise / higher contrast solution. However the 

investigation shows that the optimal figures of merit were not dependent on Cj for 

all three object sizes and for both hot and cold objects. 

For Ci = 1.0, the value of C2 giving optimal solutions varied. However it was 

generally found that the best solutions were when C2 was close to the upper limit of 

convergence. This enabled definition of a rule for the choice of C2 based on the 

range of values giving convergence (equation 3-4). However this rule needs to be 

tested and investigated thoroughly for defining the optimal value of and C2 in a 

variety of imaging situations. 

The value of error parameter giving optimal F0M2 depends on the object size. The 

suggestion is that optimal F0M2 is at smoother end of a range of convergence. 

However error parameter C, does not affect the F0M2 severely. 
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Neither the total count nor the count per pixel could be used to predict parameter C2. 

3.4.5 Comparing Maximum Entropy Solutions to Conventional 

Smoothing 

3.4.5.1 Method 

The purpose of this experiment was to compare the use of a simple data processing 

technique with the maximum entropy results described earlier. It was decided to 

investigate simple smoothing of the data (section 3.4.2.1). The Williams phantom 

image with 108k total count was studied. The conventional smoothing was obtained 

by applying a smoothing filter technique (see section 3.4.2.1). Eight solutions were 

produced corresponding to variation in the number of passes of the filter between 1 

and 8 . A region of interest was drawn around the 2.0 cm cold object and a 

background region was drawn in the surroundings area. The image quality of the raw 

data, maximum entropy solutions and the conventionally smoothed images were 

calculated and their figures of merit were compared. 

3.4.5.2 Results and Discussion 

As previously maximum entropy produced a range of solutions in some of which 

both noise and contrast were improved simultaneously (Figure 3.13a). Image quality 

was increased significantly over the raw image (Figure 3.13b). The actual images 

were shown in figure 3.10 . The smaller hot and cold objects are more visible on the 

first two maximum entropy solutions. However the expected improvement in F0M2 

in images 3 and 4 which have the highest F0M2 is not clearly apparent on visual 

inspection. 

Smoothing always produce a decrease in contrast. However fair smoothing of the 

raw image reduces noise significantly without losing much contrast (Figure 3.13a) 
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and therefore the F0M2 increases initially (Figure 3.13b). However further 

smoothing of the raw data decreases contrast without further noise reduction (Figure 

3.13a). Maximum entropy gave improved contrast compared to smoothing for higher 

contrast solutions but the highest, F0M2 for smoothing and maximum entropy are 

similar (Figure 3.13b). 
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Figure 3.13a: The improvement in contrast and noise when applying maximum 

entropy processing and a conventional smoothing to the raw data, of the Williams 

phantom, total count is 108k count and using a value of Ci= 1.0 and varying the 

values of C2 for maximum entropy processing. 
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Figure 3.13b: The improvement in image F0M2 when applying maximum entropy 

technique and we can notice the similarity in the highest F0M2 of both techniques. 

The actual images produced by maximum entropy and smoothing are shown in 

figure 3.14 . 
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Figure 3.14: The improvement in contrast when applying maximum entropy processing to the 

raw image, compared to a conventional smoothing of the raw image. 
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3.4.5.3 Conclusion 

The comparison of maximum entropy with smoothing showed that maximum 

entropy was able to produce a better contrast at relatively high noise solutions. 

However the maximum F0M2 which tended to be found at lower noise was very 

similar for the two techniques, although maximum entropy did give slightly higher 

values. 

3.4.6 Investigation of the Value of Smoothing High Contrast 

Maximum Entropy Solutions 

3.4.6.1 Method 

The above results indicated that maximum entropy processing can produce solutions 

with increased contrast level, but also that smoothing is effective in reducing noise. 

This naturally leads to investigation of the effect of smoothing high contrast 

maximum entropy solutions. Therefore, maximum entropy solutions, which have the 

highest contrast for different values of Cj were smoothed conventionally (as 

smoothing the raw data above), by a variable amount (Figure 3.15a). The image 

quality was calculated and compared to the raw data, maximum entropy solutions 

and the conventional smoothing of the raw data. 

3.4.6.2 Results and Discussion 

Here the results show that smoothing the maximum entropy solution which has the 

highest contrast level, for a given value of Cj, will produce images with a higher 

contrast than either maximum entropy or smoothing alone for a given noise level 

(Figure 3.15a). The F0M2 of the smoothed high contrast maximum entropy solution 

determined from the optimal F0M2 was clearly improved compared to the other two 
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processing techniques (Figure 3.15b). However an excessive smoothing of the high 

contrast maximum entropy solution will worsen the F0M2 of the images. The actual 

images produced by the three techniques are shown for comparison in figure 3.16 . 

The smoothing and maximum entropy techniques gave solutions with approximately 

equal optimal F0M2 and the corresponding images appeared similar. However the 

smoothed high contrast image with the highest figure of merit surprisingly looked 

somewhat inferior to the other two images. There is clearly some discrepancy 

between the figure of merit values and the visual appearance of the images. 
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Figure 3.15a: The improvement in contrast when the technique of smoothing the 

highest maximum entropy solution is applied, over a conventional smoothing of the 

raw data, of the Williams phantom, total count is 108k count and using a value of 

Ci= 1.0 . For smoothing high contrast ME image, the value of C, = 0.6 is used, to 

allow a comparison with pure ME solution at Cj = 1.0. 
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Figure 3.15b: The F0M2 of the solutions obtained using the technique of smoothing 

high contrast maximum entropy shows a higher F0M2 value, compared to pure ME 

solution and conventional smoothing of the raw data. 
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Raw image High contrast ME image (1st solution) 

ME image (4th solution) 

SM of the raw image Smoothed high contrast ME image 

Figure 3.16: The images produced when smoothing the maximum entropy solution which has 

the highest contrast level, compared to the solution produced by maximum entropy or 

smoothing the raw data, at the same given level of noise (2.4 counts). 
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3.4.6.3 Conclusion 

The success of smoothing in improving image quality led to the investigation of 

smoothing high contrast maximum entropy solutions. A high contrast maximum 

entropy solution was selected and smoothed by variable amounts. This produced 

solutions with higher F0M2 than the other two techniques (Figure 3.15b ). For this 

technique the value of Ci=0.6 was used, in a since it is closer to C, = 1.0. However it 

will also be necessary to investigate the use of lower values of Cj so the value 

producing the best quality solution can be found. 

The qualitative appearance of the images of the Williams phantom following 

processing by all three techniques showed that there was very little difference in the 

visual clarity of the different object. This was somewhat surprising and 

disappointing in the case of the smoothing of the high contrast maximum entropy 

image, which according to the figure of merit should have been the best image. 

3.5 Summary 

The investigation of the validity of the error model proved that the assumption that 

the standard deviation of count is given by the square root of the count even at a very 

low count. Initial results suggest the algorithm should use 5 smooths for the default 

solution. A rule has been suggested for defining the optimal values of error 

parameters C, and Cg, which are required by the algorithm to specify the errors in 

the data. The assessment of the effect of the various factors on the error parameters 

shows that regardless of the size and state (cold or h o t ) of the objects, the optimal 

figure of merit is fairly independent of the value of Cj. The total count in the image 

and the mean count in the area containing activity (counts/pixel) could not easily be 

used in choosing the best value of error parameters Cj and C ; . 

Smoothing produced optimal image quality comparable with maximum entropy 

although it was not able to produce images with contrast enhancement as was 

possible with maximum entropy. 
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Smoothing of a high contrast maximum entropy solution resulted in a better image 

quality parameter than the use of either algorithm alone. However this was not borne 

out in visual image inspection. 

A study of the correspondence between the quantitative and visual assessment of the 

images will be the subject of further work in this thesis. 
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Chapter Four 

The Effect of the Location of the 

Surrounding Background Region in the 

Calculation of Parameters of Nuclear 

Medicine Image Quality using Simulated 

Images 

4.1 Introduction 

An improved representation of nuclear medicine images can assist the observer in 

clinical decision making. The image quality is affected by many factors such as 

spatial resolution, scatter, and noise. Those interpreting (i.e., the nuclear medicine 

clinicians) are distracted by the presence of noise and unsharpness in the image and 

these defects impair perception. Our concern is visualizing a particular object in the 

image to help in decision making. An objective figure of merit (FOM) is a useful 

measure of image quality as it does not depend on subjective opinion. In this study, a 

FOM defined by contrast to noise ratio is used (Chesters 1992). Contrast and noise 

can be defined from the image by calculating the mean and standard deviation of 

count per pixel of both a region of interest and a surrounding background region. 

However, the values obtained may depend on the size and position of the 

surrounding background region. An investigation was therefore carried out to check 

the effect of different sizes of the surrounding background region on the image 

quality measurement. In this study a computer simulation was used to create the 
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images used for defining these regions. The advantage of using a simulated object is 

in the variety of distributions in the image that can be investigated and the abihty to 

study systematically, the effects of various factors on the image. 

4.2 Methods 

4.2.1 Simulation Technique 

The simulation of gamma camera imaging process which was used in this study used 

convolution of the activity distribution with a spatially varying the Point Spread 

Function (PSF) (Fleming et al 1994). The principle of this approach is to obtain the 

PSF of the gamma camera collimator system and its variation with distance from the 

collimator and thickness of intervening attenuating medium. The total PSF is the sum of 

the contributions from the primary photons and from scattered photons which are 

accepted by the collimator and detected in the energy window. 

The primary photon PSF depends on the intrinsic resolution of the gamma camera 

detector and the geometric properties of the collimator. It accordingly depends on the 

distance of the point from the surface of the collimator face, attenuation thickness of 

the material between the point and the collimator and on the sensitivity of the gamma 

camera / collimator system in terms of count rate per unit activity. The scattered photon 

PSF also depended on the thickness of attenuation material between the point and 

camera, i.e., forward scattering material, but was assumed independent of the distance 

from the collimator and the thickness of backscattering material (Fleming and Simpson 

1994). 

The simulation technique requires definition of a three-dimensional distribution of 

activity and the corresponding map of attenuation coefficients of the distribution 

volume and its surroundings. The corresponding two-dimensional projection image 

produced with the camera in the x, y plane is composed of the sum of the primary 

photon and scattered photon contributions. The field of view of the gamma camera was 
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digitised as a 128 x 128 matrix with a corresponding pixel size of 0.467 cm (Fleming 

1996^ 

4.2.2 Study on the Effect of Background Region Position 

4.2.2.1 Image Simulation 

The simulated image was a planar source of activity parallel to the camera face at a 

distance of 13.0 cm with 12.6 cm of water equivalent material between it and the 

collimator. The dimensions of the simulated images were 18.0 cm x 18.0 cm, area 

containing a uniform distribution of activity, with a square cold object of 

dimensions, 0.9 cm x 0.9 cm (2 x 2 pixel), in the middle of the image with no 

activity. The object was 1 pixel (0.467 cm) deep. Initially one image of the 

distribution was simulated without any noise and a second with a typical level of 

noise. Noise was added to each pixel count according to Poisson statistics. The 

simulated image appears as a square area with a uniform activity, in the middle it 

contains a cold object representing a square cold area with no radioactivity located in 

the centre of the image. The image obtained is a planar image produced with the 

camera in perpendicular plane and composed of the sum of the primary and scattered 

photons contributions. The first simulated image is a noiseless image used for 

defining the object region of interest and the surrounding background regions, 

whereas the second simulated image is a noisy image typical of those used for all the 

processing and image quality calculations in this study (Figure 4.1). The noise added 

is random and therefore several different images of the same imaging process can be 

simulated which will differ only in their noise content. These are referred to as 

different realisations of the imaging process. 
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( a ) ( b ) 

Figure 4.1; The simulated images which are used in the investigation are (a) a 

noiseless image with a uniform variation in the count and (b) a noisy image. The 1.0 

cm cold object is clearly visible in the centre of the noiseless image. 

4.2.2.2 The Technique 

A 2 X 2 pixel square region was defined representing the 0.9 cm simulated cold 

object. Surrounding background regions (SBKG region) of annular shape; 1 pixel 

wide and of varying radius, were also created (Figure 4.2). 

The annuli regions were centered around the object. The annular region was chosen 

because all the points surrounding the object should have approximately the same 

count as they are the same distance from the cold object. The surrounding 

background regions were labelled (i.e. R02 - R18), (Table 4.1.) The radius of the 

largest region was 19 pixels (8.87 cm), which is very close to the edge of the image. 

For completion of the study another object with the same dimensions (i.e., 2 x 2 

pixel square region), was simulated representing a 0.9 cm hot object. The count per 

pixel in the hot object was twice the count in the surrounding area. 
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Cold object 

Figure 4.2: A representation of how the different SBKG regions were defined in this 

investigation, where the cold object appears as a square area in the middle and the 

first SBKG region (ROl), is a square around it. The maximum size region, (R18), is 

shown on the border of the image. The SBKG region is a 1 pixel wide annulus. 

Region Label ( R ) The radius of the actual 
surrounding background 
region ( SBKG region) 

Region Label ( R ) 

in pixel in centimeter 
ROl 2 &93 
R02 3 1.40 
R03 4 L87 
R04 5 233 
R05 6 1 8 0 
R06 7 3.27 
R07 8 3.74 
ROB 9 4.20 
R09 10 4.67 
RIO 11 5.14 
R l l 12 5 ^ 0 
R12 13 &07 
R13 14 &54 
R14 15 7.00 
R15 16 7.47 
R16 17 7.94 
R17 18 8.41 
R18 19 &87 

Table 4.1: The radius for the different surrounding background (SBKG) regions, 

which were used in this investigation. 
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Contrast and noise measures were used for the calculation of the image quality. The 

contrast level is defined from the difference between the mean count per pixel in the 

object and the surrounding background region. The noise level is the standard 

deviation of counts in the uniform area surrounding the object. 

For both hot and cold objects, 13 different realisations of the images were obtained 

to enable the variation of noise and contrast to be studied. 

The image quality was measured using the defined object region and the SBKG 

regions for the raw data and the processed image. The processed image was 

produced by the maximum entropy processing technique. 

4.3 Results 

The level of noise for the raw data shows a variation in the standard deviation as the 

position and size of the 1 pixel wide SBKG region was varied (Figure 4.3). 
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Figure 4.3: The level of noise (i.e., a standard deviation), for the raw data of a single 

1.0 cm simulated cold object using different SBKG regions (ROl - R18), positioned 

in different areas surrounding the object. 
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Variations in the standard deviation occurred particularly in the regions which are 

closer to the object. However as the size of the SBKG region was increased which is 

evidently accompanied by a change in the position, the result shows an 

approximately constant value for the standard deviation of the raw data images. 

Some other realizations were therefore simulated (i.e., 13 different simulated images 

representing the raw data), with the same image parameters and the resuhs were 

averaged (i.e., the mean) to get a better estimate of the standard deviation (Figure 

4 /0 . 

A paired t-test showed that there was a statistically significant increase in the noise 

with distance for regions close to the object border (P < 0.05). Noise was then kept 

constant with distance until there was a sudden increase for SBKG region R18, 

which was drawn very close to the edge of the image. 

Raw data (cold object) 
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Figure 4.4: The standard deviation of count ( + / standard error on the mean) for the 

raw data of 13 simulated 1.0 cm cold objects, for annular regions of varying radius. 

When the raw data was processed using the maximum entropy technique, the result 

(Figure 4.5) shows the same pattern of result as in figure 4.4, although the standard 
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deviation was less in the result produced when the maximum entropy technique was 

applied. 

As the position of the SBKG region changed (Figures 4.6 and 4.7), the contrast level 

for the raw data and the maximum entropy solution shows similarity in the pattern 

results, although the contrast level for the raw data was less than when it was 

processed by maximum entropy technique. There was a significant increase in 

contrast level between ROl (0.93 cm) to R03 (1.87 cm), for both images. As the 

radius of the region increased to 4.2 cm, the contrast level was maintained at a 

reasonably constant level. Subsequently there was a drop in the measured contrast 

level as the size and position of the SBKG region was increased (i.e., R08 (4.20 cm) 

to R18(8.87 cm). 
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Figure 4.5: The standard deviation of count ( + / standard error on the mean) for the 

different 1.0 cm simulated cold objects for maximum entropy solution (ME), with 

changing the position of the SBKG region ROl - R18. 
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Raw data (cold object) 

w 
M - 1 0 

+. -n: 
-14 

- 1 6 

-18 

- 2 0 

-22 

-24 

% <6. % f f 

Radius of annular region (cm) 

Figure 4.6: The mean for the contrast of the first solution for a 1.0 cm simulated cold 

object for the raw data solution using different widths for the different BKG regions. 
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Figure 4.7: The mean for the contrast of the first solution for a 1.0 cm simulated cold 

object for maximum entropy solution using different widths for the different BKG 

regions. 
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The results for the FOM of the raw data and the maximum entropy solution shows 

substantial variations with the position of the surrounding region. These variations 

essentially followed the changes in contrast and were hence showed a decrease for 

regions drawn close to the object or at the edge of the image (Figures 4.8 and 4.9). 

The FOM for both results were reasonably constant in between 2.0 and 4 cm radius, 

however, there was a significant drop in the FOM for higher radii. 

Similar results were also obtained when a simulated 1.0 cm hot object (Figures 

4.10,4.11,4.12,4.13,4.14 and 4.15) was measured. However in this case the contrast 

increases for radii above 4.0 cm. 
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Figure 4.8: The mean for the figure of merit of the first solution for a 1.0 cm 

simulated cold object for the raw data solution using different widths for the 

different BKG regions. 
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Maximum entropy (cold object) 
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Figure 4.9: The mean for the figure of merit of the first solution for a 1.0 cm 

simulated cold object for the maximum entropy solution using different widths for 

the different BKG regions. 
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Figure 4.10: The standard error of the mean of the standard deviation for the raw 

data of 13 simulated 1.0 cm hot objects, for annular regions of varying radius. 
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Figure 4.11: The standard error of the mean of the standard deviation for the 

maximum entropy of 13 simulated 1.0 cm hot objects, for annular regions of varying 

radius. 
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Figure 4.12: The mean for the contrast of the first solution for a 1.0 cm simulated hot 

object for the raw data solution using different widths for the different BKG regions. 
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Figure 4.13: The mean for the contrast of the first solution for a 1.0 cm simulated hot 

object for the maximum entropy solution using different widths for the different 

BKG regions. 
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Figure 4.14: The mean for the figure of merit of the first solution for a 1.0 cm 

simulated hot object for the raw data solution using different widths for the different 

BKG regions. 
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Figure 4.15: The mean for the figure of merit of the first solution for a 1.0 cm 

simulated hot object for the maximum entropy solution using different widths for the 

different BKG regions. 

4.4 Discussion 

For the figures of merit to be of value in providing a measure of object detectability 

they must be reliably determined. The figure of merit used in nuclear medicine 

image quality calculation depends on defining a surrounding background (SBKG) 

region. In this investigation influence of the location of the surrounding background 

region was studied by altering the size and position of these regions. 

The noise level in this study was defined as the variability in the count in the chosen 

surrounding background area measured by the standard deviation of the counts in 

this area. The calculation of the standard deviation of the counts in the raw data 
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shows essentially a constant result as the size and position of the SBKG region was 

changed. As the area surrounding the object is uniform and the standard deviation is 

the square root of counts per pixel in that area, it is expected to be constant. When 

the SBKG region was close to the cold object the counts tended to be less due to the 

proximity of the object. That meant by getting closer to the object the level of count 

was less and hence lower standard deviation (Figure 4.4). This resulted from the 

limited gamma camera resolution. Also the regions closer to the object are smaller in 

size, therefore there was a greater variation in noise estimate due to random statistics 

(Figure 4.4). As the SBKG region was getting very close to the edge of the image the 

standard deviation was increased and this was due to the limited gamma camera 

resolution (Figures 4.2 and 4.4). 

If only one study is considered (Figure 4.3), misleading results could be obtained. 

This was due to the considerable variation in the noise level due to random statistics 

particularly in the smaller inner regions. Different realisations were therefore 

simulated and the results averaged to obtain a more robust measurement of the noise 

(Figure 4.4). 

The results of figure 4.6, shows how the contrast value is varying widely as the 

position and size of the SBKG region is changed. For the inner SBKG regions in the 

area very close to the object, there was a gradual increase in the contrast value, with 

the radius of SBKG region. This was followed by a reasonably constant contrast 

value for regions of radii between 2.0 cm and 4.0 cm . The reduction of contrast for 

SBKG regions close to the object was due to the limited gamma camera resolution 

influencing the counts in the region. The gradual decrease in contrast with radii 

between about 4.0 cm and 8.0 cm for the cold object can be explained by reduction 

in scatter contribution towards the edge of the image compared to the centre. The 

rapid drop in the contrast value for the cold object as the regions started to approach 

the edge of the image was due to the limited gamma camera resolution. 

There were consequently substantial variations in the FOM (Figure 4.8), of the 

object. These findings will help in defining a reliable rules for drawing the SBKG 

region in a consistent manner. 
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When the hot object was used in this study it showed similar results compared to the 

results obtained with the cold object (Figures 4.10,4.12,4.14). The similarities were 

clear when figures 4.4, 4.6 and 4.8 were compared to figures 4.10, 4.12 and 4.14. 

However there was an apparent increase in the contrast value and the FOM, as the 

SBKG region approaches the edge of the image. This was an artificial increase due 

to the fact that the count level in the surrounding background is falsely low. There 

was a reasonably constant value of contrast and FOM for regions between R03 (1.87 

cm) to R08 (4.20 cm), which was similar to the result obtained from the cold object. 

This evidently will help in defining the rule for drawing the SBKG region. 

From this study it was clear that there was an improvement in the contrast value and 

the FOM as the raw data had been processed by maximum entropy technique 

(Figures 4.7 and 4.9 for the cold object and figures 4.13 and 4.15 for the hot object). 

There was an increase in the contrast value in the area between R03 to R08, from -

16.7 in the raw data to -21.9 in the maximum entropy solution, (Figures 4.6 and 4.7). 

Similarly, the FOM was increased from -4.0 in the raw data to about -8.0 for 

maximum entropy solution (Figures 4.8 and 4.9). There was a lower drop in contrast 

value with maximum entropy than with the raw data (Figures 4.6 and 4.7), between 

4.0 cm and the edge of the image. This is expected as the process of maximum 

entropy is restoring the scattered counts which give rise to this effect to their correct 

location. 

4.5 Conclusion 

This investigation has shown that the image quality calculation when using a 

measure of noise, contrast level and figure of merit, depends on the position of the 

surrounding background region in the image. Defining this region very close to the 

edge of the object or very close to the edge of the image, will affect the image 

quality calculation, by the influence of scattering and limited gamma camera 

resolution. The optimal or the most constant results were obtained in the areas 

between R03 to R08. Therefore a rule for defining the position of the SBKG region 

is recommended for the calculation of the image quality. The region should be 
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located at a distance between 2.0 cm to 4.0 cm away from the edge of the object. It 

should also not include pixels closer than 1.0 cm from the edge of the uniform area, 

to avoid the influence of the imaging system resolution. 
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]Efirsf42 

Investigations on the use of Maximum 

Entropy, Wiener Filter and Conventional 

Smoothing Techniques in Processing 

Simulated Images 

5.1 Introduction 

The earliest attempts at image processing in nuclear medicine used pure smoothing 

filters to improve the signal to noise ratio of images (Tauxe et al 1966, Budinger 1973, 

Maclntyre 1973, Berch et al 1974, Pizer et al 1978, Lange et al 1977). An example is 

the nine-point smoothing algorithm which is widely used (Starck and Carlsson 1997). 

Another class of image processing technique consists of those for correcting for loss of 

resolution caused by the imaging device such as Wiener filter (Skarsgard et al 1961, 

linuma and Nagai 1967, Di Paola et al 1983). One characteristic of clinical images, 

which has continually created problems, is that the required signal for detection or 

enhancement is very poorly defined. This complicates the evaluation of image 

processing techniques, because the true distribution of activity to be used as a gold 

standard is not known. For this reason image simulation studies were used in this 

investigation. Known abnormalities can be introduced during the simulation process 

and interpretation of the simulated images judged against this standard. The aim of this 

study is to evaluate the use of maximum entropy, Wiener filter and conventional 

smoothing in processing nuclear medicine images. Simulated images have been 

produced and processed extensively with the different techniques. Simulation was used 
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for the variety of distributions in the image that can be created and investigated and 

the abihty to study systematically, the effects of various factors in the image, on 

detection and localization of features. 

Image quality may be assessed quantitatively using a figure of merit based on 

contrast to noise ratios. From the previous investigation (Chapter 4), a consistent 

method of measuring a figure of merit (FOM) was developed. One of the questions 

we wish to address here is how the FOM relates to the visual detectability. As has 

been mentioned earlier (Chapter 3), there was a lack of correspondence between the 

figure of merit as a quantitative measure and visual assessment ( i.e., visual 

appearance ) of the images, therefore, a subjective assessment for the image 

detectability is essential for comparison. The different techniques will be evaluated 

in their ability to detect known abnormalities and compared both to each other and 

the raw unprocessed images. The evaluation will be carried out (i) by assessing the 

figure of merit of abnormality detection as described in previous chapter and (ii) by 

using Receiver Operating Characteristic (ROC) analysis of visual interpretation of 

the images. The confidence levels of visual detection found in the ROC experiment 

will be compared with the FOM determined using the techniques described in the 

previous chapter. This will allow FOM to be related to object detectability. 

5.2 Methods 

5.2.1 Simulation 

All the images used in this study were produced using the simulation technique 

(Fleming and Simpson 1994, Fleming 1996) which has been explained earlier in chapter 

4. A series of images in two sets were simulated. The first set consisted of images used 

for determining certain parameters which were required for the processing 

techniques. The second set of images consisted of images which were used for image 

interpretation. The first set of images had also been used previously for the 

investigation in chapter 4. It consisted of 13 realisations simulated with a single cold 

object of size 1.0 cm located in the centre of a planar area of uniform activity of size 18 



96 

X 18 cm. The second set consisted of 40 images, each simulated with one, two or three 

objects of variable size (0.5 cm and 1.0 cm) and variable contrast, and located in 

distributed planar area of uniform activity also of size 18.0 cm square. Objects of this 

size were close to the threshold of detectability. The object appears as a square cold area 

representing the cold object with no radioactivity located in the distributed area. The 

actual counts in the surrounding background area is 400. Accordingly, to have objects 

with varying clarity (true contrast), the number of counts in these cold object areas were 

varied. Ten objects had zero count in the object area (maximum contrast), 36 objects 

had 100 counts and 10 objects had 200 counts. The visual appearance of the objects 

with zero count is better than the objects with 200 count. The number of objects with 

different sizes and true contrast are presented in table 5.1. 

Number of count in the 
object areas for the 
three type of object 

Size and number of objects 

0.5 cm 1.0 cm 

number of 
objects 

number of 
objects 

Total number of 
objects 

0 count 5 5 10 
100 count 19 17 36 
200 count 5 5 10 

56 

Table 5.1: The numbers of objects with different sizes and level of contrast, which were 

used in the study. The visual appearance of the object decreases with increasing the 

number of counts in the object area. 

The images were simulated so that the total count was 200 - 220 k. Statistical noise was 

added using Poisson distribution. The object area in the first set of images is an area 

without any activity and appears as a cold object. These images are known as 

abnormal cold images due to the presence of the cold object within the distributed 

area. The objects in the second set of images varied in contrast, to provide images 

both above and below the threshold of detectability and to check the ability of the 

different image processing techniques. 
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In order to compare the ability of the techniques to identify correctly images with no 

abnormality another similar series of 20 noisy images were simulated without any 

object in the distributed area. These images are known as normal images. 

The simulation technique was based around the performance of an ADAC Pegasys 

gamma camera fitted with a low energy general purpose collimator. 

The planar source was positioned 13.0 cm from the camera with 11.0 cm of water 

equivalent attenuating material between it and the camera face. A 128 x 128 matrix 

size was used which corresponded to a pixel size of 4.67 mm. The isotope modelled 

was ^^"Tc, collected with a symmetric 20 % energy window centred around 140 keV. 

5.2.2 Image Processing Methods 

The original simulated images are referred to as raw data images, as they did not 

undergo any image processing procedure. Afterwards each image was processed 

separately by maximum entropy (ME), Wiener filter (WF) and conventional 

smoothing (SM) techniques. A comparison of the maximum entropy processing 

technique was made with these commonly used image processing techniques. 

Conventional smoothing was an example of a pure noise suppression technique. The 

WF technique was chosen due to the similarity with ME technique. The WF method 

has been formulated in an attempt to produce optimum restoration of the inherent image 

quality lost during the imaging process, while at the same time suppressing the noise 

(King et al 1983, Sharp et al 1989). 

5.2.2.1 Maximum Entropy 

The maximum entropy technique requires the specification of a number of parameters 

for its operation. The first parameter to be specified is the initial solution for the 

algorithm known as the default solution. For this the raw data image was convolved 

with a smoothing operation using Fast Fourier Transforms, which is faster than spatial 
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convolution. The convolution produces a smoothed image, of the raw data. The number 

of smooths was set to 5 smooths for the optimum detectability as suggested in chapter 3. 

The use of a filtered image of the original data as the default enables the total count in 

the image to be maintained. The algorithm requires two parameters to be entered as 

constants, C, and Cg which define the data errors ( equation (2-12) ). The choice of 

those two constants produces solutions with varying compromises between noise and 

resolution. 

5.2.2.2 Wiener Filtering 

The Wiener filter image processing technique, is an inverse filter. It enhances 

intermediate Ixequencies and reduces high frequencies. 

This filter requires previous knowledge of the object and of the noise, in particular their 

power spectrum. Knowledge of the process of blurring is also needed, so it needs to 

know the transfer function (MTF) of the gamma-camera. The Wiener filter is defined 

(Pratt 1991) as : 

where H(u,v) is the MTF of the gamma-camera, which is the Fourier transform of the 

PSF, H* (u, v) is the conjugate of H(u, v), ^(u, v) is the power spectrum of the noise 

and f(u,v) is the power spectrum of the object. So Wiener filtering attempts to recover 

a blurred object by incorporating the system modulation transfer function ( MTF ) and 

its noise characteristics. 

Wiener filtering has been widely used for the problem of planar deconvolution of 

nuclear medicine images (King et al 1983, Boulfelfel et al 1992, Shao et al 1994). It has 

been used in gated cardiac blood-pool images of thallium-201 (Miller et al 1984), with 

heuristic modifications on the filter to adapt it better to this kind of image. Wiener filter 
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has also been applied to SPECT (Single Photon Emission Tomography) images (Hon et 

all989). 

The Wiener filter image processing program which was used in this investigation was 

one of several software applications which were part of the Vision software package 

(SMV America, Software, USA). It required the point spread fiinction FWHM ( 1.0 -

16.0 mm) to be input. It assumed that the ratio of the power spectrum of noise to that of 

the object was constant and equal to 0.15 [i.e., ( ^(u, v) I ((u,v) in equation 5-1]. 

5.2.2.3 Conventional Smoothing 

Conventional smoothing as a simple data processing technique was also used for 

processing the simulated images. It is commonly used for reducing noise in 

radionuclide images. Conventional smoothing is different from maximum entropy and 

Wiener filter techniques, in that it is not a deconvolution technique but it reduces noise 

at the expense of some reduction in contrast. The smoothing operator replaces each 

pixel value by a weighted sum of itself and the eight surrounding pixels with the 

following weighting scheme:, 

J 2 1 
16 16 16 

2 4 2 
16 16 16 

J_ 2 J_ 
16 16 16 

Thus each image was smoothed four times, producing four solutions corresponding to 

variation in the number of passes of the filter between 1 - 4. As the number of passes of 

the filter was increased, the contrast of the image decreased. A typical contrast noise 
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graph for a defect in a simulated image as the number of passes of the filter is varied is 

shown in figure 5.3 ( section 5.3.2.1). After one smooth the noise reduces rapidly with 

relatively little loss of contrast. Further smoothing reduces the noise considerably less 

than the first smooth and, therefore, it was recommended to use one pass filter for the 

comparison. 

The smoothing filter used was incorporated within PICS Program (Fleming et al 1991). 

5.2.3 Determination of Processing Parameters for Comparison 

The purpose of the experiment was to compare the image quality of the different 

processing techniques. However each technique produced a range of solutions which 

had a different compromise between contrast and noise. In comparing them it is 

important to ensure that the solutions used in the comparison are chosen in a consistent 

manner. Ideally a measure obtained fi"om the image itself should be used and in this 

study the level of noise in the image as measured by the standard deviation in a uniform 

area was chosen. It was decided to select a fixed value of noise and then to examine 

the solution from each technique giving that noise value. The value of noise chosen 

was that corresponding to one smooth of the data. The reasons for this choice were 

( i ) that one smooth considerably reduced the noise in the images with only minimal 

reduction in contrast and so was a reasonable choice for the smoothing process. 

( ii ) both the other techniques had continuously variable parameters to control the 

noise level of the solution. This could then be adjusted to give the same noise level 

as one smooth. The smoothing used in this study only gave discrete solutions based 

on the number of passes of the filter and could not have been used in this way if one 

of the other techniques had been used to set the noise level. 

Accordingly the first set of images which consisted of 13 different realisations of each 

of the cold object distributions were created. The technique used for simulating these 

realisations was as explained above. Subsequently each of the 13 realisations were 

processed individually by maximum entropy, Wiener filtering and conventional 

smoothing techniques. 
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For processing the 13 realisations by maximum entropy the value of parameter C; was 

varied between 0.2 - 1.0 . and the value of parameter C2 between 0.0 - 5.0 . That 

resulted in producing different images with varying quality. 

For processing with the Wiener filtering technique, specification of the point spread 

function FWHM was required. Each image was processed with the FWHM value 

varying between 2 and 12 mm . 

Afterwards image quality was assessed using PICS Program (Fleming et al 1991). 

Regions of interest were defined around the cold object and a background region 

(SBKG region) in the distributed area, according to the technique explained in chapter 

4. The program calculated the object contrast and the standard deviation (level of noise) 

in the distributed region. The values for each type of processing were averaged over the 

13 images to get a better estimate of the image quality measures. Contrast-noise plots 

of the averaged results from raw data, conventional smoothing, maximum entropy 

and Wiener filtering techniques, were plotted for the cold objects. These results 

enabled definition of the value of parameter C; for maximum entropy and the FWHM 

of point spread function for Wiener filtering which would give the same noise level 

found using a single pass of the filter for the conventional smoothing. 

5.2.4 Defining the Value of Parameter 

As the value of Cj was defined, subsequently the value of C2 needed to be chosen 

according to the same principle. In this investigation it was decided to use the 40 

realisations which were simulated earlier (section 5.2.1), for the variety of reasons. Each 

simulated image contains objects of diameter 0.5 cm or 1.0 cm, positioned within the 

distributed area. These objects also varied in contrast to test the similarity in results with 

different contrast levels. Each image appeared as an area with reasonably uniform 

activity superimposed by one or more areas of reduced counts representing cold objects. 

Normal images also need to be obtained for comparing these abnormal cases, therefore, 

another set of 20 realisations were simulated without any object in the distributed area. 

Each image was processed by ME using the value of Cj defined by the above 
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experiment and several different values of C2 covering the range of convergence. The 

image contrast and noise of each of the solutions was assessed using the standard 

protocol. The Q value at which the noise level equalled that of one smooth of the data 

was noted. The average value of from all images was calculated and taken as that to 

be used to create solutions for the subsequent observer interpretation study. 

5.2.5 Image Evaluation 

Image evaluation needs to be performed for measuring the effectiveness of different 

image processing techniques. As important as the development of a new technique, 

testing its ability to improve image quality is essential. 

In medical image processing the ultimate test of the technique is its effectiveness in 

improving the clinical application of the images. However, such experiments are quite 

difficult to perform and relatively few have been carried out. The following reference 

contain some examples (Neill and Hutchinson 1971). The other general approach has 

been to look for objective quantitative parameters of image improvement. One approach 

which is widely used for image evaluation is that of distance metrics such as the root 

mean squared distance between the reconstructed images and known "true" images. 

However other workers restricted the use of this approach and append some conditions 

regarding its medical relevance and significance (Penney et al 1990). They found out 

that there was a lack of correspondence between normalised mean squared error and 

visual appearance. 

Other groups have used image contrast (King et al 1984, Webb et al 1985), resolution 

(Arlig et al 1997), the level of noise in the image (Boulfelfel et al 1992) and signal to 

noise ratio (Kinahan and Karp 1994), as measures for image evaluation. 

The approach taken in this study is to consider that the detectability of abnormalities 

depends on both contrast resolution and noise in the image and therefore, that it can be 

assessed and evaluated by measuring contrast-to-noise ratio. 
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The task in this study is to evaluate the difference between the three image processing 

techniques in detecting an abnormality in an image. This should be related to the 

relative quality or merit of the three image processing techniques. Measuring this merit 

with a high degree of confidence was recommended by Herman and Yeung 1989 and 

others (Hanley 1989). This can be achieved with the widely used receiver operating 

characteristic ( ROC ) analysis of subjective human observer performance. This 

approach is the ultimate test of observer ability in detecting an abnormality. The 

problem with ROC analysis, using human observers is its complexity and hence, cost. 

Therefore an alternative approach which is less complex and less costly, is the 

numerical observer (FOM). This approach is known as a "figure of merit" (FOM), of 

visual detectability of detail in an image (Herman and Yeung 1989, Furuie et al 1994). 

The numerical observer approach (FOM), has been used previously for investigation in 

chapter 3, and it was shown that there was an apparent lack of correspondence between 

the figure of merit used (i.e., F0M2 ) and the visual appearance of the images. 

Therefore in view of the doubt over the ability of FOM to adequately predict 

detectability it was decided to carry out ROC analysis in addition to calculation of 

F0M2. Hence as part of this investigation it was possible to compare the results 

obtained from the F0M2 approach with these from the ROC analysis approach. 

In this study the simulated images obtained by the maximum entropy image processing 

technique will be analysed and compared with the original images and the results 

obtained by using the other two image processing techniques: Wiener filtering and 

conventional smoothing. The set of 40 simulated images were used, each with one or 

more cold objects of variable size (0.5 cm and 1.0 cm), and located in the distributed 

area. Another set of 20 normal image were simulated accordingly for comparison. 

Each image obtained was processed by the three processing techniques (conventional 

smoothing, maximum entropy and Wiener filter), using the required parameters as 

determined from the previous investigation (see sections 5.2.3 and 5.2.4). The total 

number of images obtained after the processing were 240, of which 160 were abnormal 

image, (images with cold objects abnormality) and 80 were normal image ( images 

without any abnormality). 
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5.2.5.1 Figure of Merit 

Measures of contrast and noise were used to calculate the figure of merit, as a 

mathematical parameter to measure image quality (Herman and Yeung 1989). An 

investigation described in chapter 3 has been carried out to compare three different 

figure of merits (FOMl, F0M2 and F0M3), in calculating the image detectability. It 

was found that FOMl and F0M3 values were dependent on the size of the surrounding 

background region, and therefore the F0M2 was chosen to be used for the calculation 

of image detectability. It is a simple contrast to noise ratio (Chesters 1992) and is 

independent of the size of the surrounding background region. Thus F0M2 was 

calculated for all the images in this investigation using the method described in chapter 

4, for selecting the surrounding background region. The parameters required by the 

processing techniques were chosen as described above, so that only one processed 

image was obtained for comparison from each technique. 

In evaluating the quality of the images obtained, figure of merit (F0M2), was calculated 

for each of the 240 images, for both raw and processed data. The PICS Program 

(Fleming e ta l 1991) was used to calculate the image quality of the images obtained, 

following the same technique which was used for calculating the contrast level and the 

standard deviation of the images (Chapter 4) . 

5.2.5.2 Receiver Operating Characteristic ( R O C ) Analysis 

Receiver operating characteristic (ROC) analysis is a procedure, derived from statistical 

decision theory, that was developed in the context of electronic signal detection (Green 

and Moses 1966). It is used to evaluate the accuracy of different diagnostic and 

prognostic technologies. It is particularly relevant for conducting observer performance 

tests, with real or simulated clinical cases to evaluate diagnostic systems that require 

subjective observer interpretation (Hanley 1989). 

Receiver operating characteristic (ROC) analysis has been used in a broad variety of 

medical imaging studies (Metz 1986). It is an effective way of performing the task of 
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evaluating nuclear medicine image processing techniques (Houston 1985). ROC 

methodology accounts for the sensitivity and specificity of the image processing 

technique depending on the particular "decision criterion" or "critical confidence level" 

that a user chooses to adopt in distinguishing between nominally "positive" and 

nominally "negative" results (Metz 1989). In the diagnostic outcome there are two 

kinds of correct responses and two kinds of incorrect responses. Taking the distinction 

between abnormality and normality as example, the correct responses are termed true-

positives (TP) and true-negatives (TN). In the former, for instance, the abnormality in 

question was present, and the diagnostic system indicated that it was present; in the 

second instance, the abnormality was not present, and the diagnostic system indicated 

that it was not present. The two kinds of incorrect outcome are termed; false-positive 

(FP) and false-negative (FN). In a false-positive outcome, the abnormality is absent, but 

the system decides that it is present; in a false-negative outcome, the abnormality is 

present, but the system decides that it is absent. So in this context any assessment of 

diagnostic performance requires some comparison of diagnostic decisions with truth. 

The simplest measure of diagnostic decision quality is the fraction of cases for which 

the observer ( e.g., the physicians ) is correct, which is often called "Accuracy". 

Therefore sensitivity and specificity represent two kinds of accuracy which gives the 

ROC plot: the first for actually positive cases and the second for actually negative cases. 

Thus both sensitivity and specificity can be calculated as follow: 

. . . Number of true positive (TP) decisions 
Sensitivity = — 5-2 

Number of actually positive cases 

and 

. Number of true negative (TN) decisions 
Specificity = 5-3 

Number of actually negative cases 

The ROC curve is a plot of sensitivity (the true positive fraction) on the y axis against 

1-specificity ( the false positive fraction) on the x axis. The ideal ROC curve is the line 
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y = 1 at one level of discrimination all the objects are visualised with no false objects 

being detected. 

ROC analysis has been used to evaluate the performance of a broad range of diagnostic 

systems. The first ROC curve in diagnostic radiology was calculated by Lusted (1960), 

who reanalysed previously published data on the detection of pulmonary tuberculosis to 

show that apparent differences in diagnostic performance could be explained in terms of 

the ROC model. Also ROC methodology has been used for investigation in chest 

radiography (Goodenough et al 1973, Lassen and Bloch 1978, Kundel et al 1979, 

Herman et al 1982, Kelsey et al 1982, Revesz et al 1982, Kelsey et al 1982, Kelsey 

1983) and mammography (Ackerman and Gose 1972, Starr et al 1975, Goin et al 1983, 

Gohagan et al 1984). Several investigators have used ROC analysis to study the clinical 

utility of computed tomography in specific organ systems (Dendy et al 1977, Ritchings 

et al 1979, Meany et al 1980, Warren 1981, Abrams et al 1982, Hesel et al 1982, 

Fukushisha et al 1984, Judy et al 1985). In ultrasonography the utility has been assessed 

in pregnancy testing (Blackwell et al 1975, Uchida et al 1979, Niederau and Sonnenberg 

1984). In radionuclide imaging ROC methodology has been used to compare a 

conventional scintillation camera and the Anger tomographic scanner for detection of 

brain lesions (Turner et al 1976a, Turner et al 1976b, Brown et al 1980). The diagnostic 

reliability of individual image features in liver scintigraphy (Simon et al 1981) and in 

lung scintigraphy (Sullivan et al 1983) has been investigated too. Myocardial perfusion 

imaging was studied as well (Cuaron et al 1980, Wiener et al 1980). Gated imaging 

technique in lung scintigraphy for the detection of pulmonary emboli was compared to 

other technique (Alderson et al 1979). Investigators at the University of Aberdeen 

evaluated single-photon emission computed tomography (SPECT) in brain (Carril et al 

1979) and liver (Dendy et al 1981) imaging, using the ROC analysis. SPECT was 

compared with conventional scintigraphy in liver-spleen imaging by another group at 

the University of Michigan (Keyes et al 1984). A study by Hermann et al (1982) 

surveyed the ability of different laboratories to detect simulated lesions in a standard 

scintigraphic phantom. Various different studies have used ROC analysis to investigate 

the effectiveness of image processing techniques (Kundel 1972, Andrus et al 1975, 

Herath and Sharp 1976, Houston and MacLeod 1977, IAEA Third progress report 1977, 
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Houston et al 1979, Pullan et al 1980, Armstrong et al 1983, Miller et al 1984, Lehr and 

Capek 1985). 

In simple ROC analysis the observer views images some of which contain a single 

abnormality and the rest of which are normal. However clinicians normally recognise 

that common diagnostic tasks are not equivalent to simple yes / no decisions. The 

correct diagnosis of a tumour or a microcalcification for example, also requires the 

accurate specification of its location. ROC analysis cannot take into account this 

location information. For example, an observer could miss a lesion that is present and 

mistake a noise feature located somewhere else on the image for a lesion, and this 

performance would be scored similarly to that of a observer who correctly detected the 

lesion without detecting the noise, that is, both responses would be scored as true-

positive case. ROC methodology does not allow for multiple abnormalities per image. 

While some theoretically useful attempts have been made at overcoming these 

limitations (Starr et al 1975, Metz et al 1976), they have their own limitations and do 

not apply to clinical tasks in which the observers has to detect and locate multiple 

nodules on the same image. Thus location ROC (LROC) analysis has been used (Starr 

et al 1975) to directly measure the ability of an observer to detect the presence of a 

single case of a particular kind of abnormality in an image and to localise it. It has been 

suggested by Swets and Pickett (1982) that LROC analysis can also be used to measure 

the ability of observers to detect and classify abnormalities. A generalisation of the 

LROC approach, called free-response operating characteristic (FROC) analysis (Bunch 

et al 1978) applies to the situation in which a particular kind of abnormality may be 

present at more than one location in an image and the observer is required to detect the 

presence of the abnormality at each of its locations. Unfortunately, LROC and FROC 

analysis share two substantial practical limitations: no formal curve-fitting procedures 

and no generally applicable statistical tests for differences in performance have been 

developed. Thus as it has been suggested (Metz 1989), neither LROC nor FROC 

analysis can be recommended broadly. 

In this investigation ROC analysis will be used to evaluate the results obtained from, 

maximum entropy, Wiener filtering and conventional smoothing, image processing 

techniques, in processing the simulated images. Applying ROC analysis to the results 
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obtained from the three image processing techniques will allow them to be compared 

based on the performance of the interpreter (i.e., the reader) using the images to give a 

diagnostic decision. The images used in this investigation contain more than one object 

located in different places within the images, therefore, a simple method has been 

developed using ROC analysis approach, to measure the ability of observers to detect 

and classify abnormalities present at more than one location in the image. This method 

treats each abnormality as an individual feature to be detected and the normal area in an 

image containing an abnormality as a separate normal feature. This means for example 

that an image with a single abnormality is treated as two objects one normal and the 

other abnormal. Conventional ROC analysis can then be applied to the results of 

observation on all the objects. This is equivalent to the so called AFROC approach 

described by Chakraborty (1990). 

5.2.5.2.1 Design of Experiment 

Comparing the different image processing techniques, using ROC analysis, the 240 

images were saved in one file. The images were randomly ordered, to enable the 

observer reading the images avoiding any reading-order effect (Metz 1989). The 

randomisation was obtained by locating each of the raw data images and its processed 

images, in different location order in the file. This was done to avoid locating the raw 

data image and its processed images close to each other. The observers were instructed 

that the experiment was designed to test their ability to detect any abnormality on the 

images and also, to test the ability of the three different image processing techniques. In 

order to familiarise the observers with the nature of the experiment, a warm-up period 

was conducted on a training data set as a training session. Then each observer was 

provided with a two-page set of "Instructions to Observer", describing the task and 

defining carefully the nature of abnormalities to be reported in the real study, to clarify 

the procedure which needs to be followed in reading the images. They were instructed 

to interpret each image as follows:-
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( i ) To detect the object and its location in each image and subdivide his/her 

response to each image in the file, into five levels of confidence if using the discrete 

rating scale as the following rating scale: 

1 = Definitely no cold object present. 

2 = Fairly certain no cold object present 

3 = Equivocal 

4 - Fairly certain a cold object present 

5 = Definitely a cold object present 

Alternatively if the continuous rating scale was used a subjective probability estimate 

(ranging from 0% -100%) was made as follows: 

0% - 9% = Definitely no cold object present 

10% - 39 %o = Fairly certain no cold object present 

40% - 7 5 / 4 = Equivocal 

76% - 89 % = Fairly certain cold object present 

90% - 100% = Definitely cold object present 

( i i ) The object is located in one of the locations in the image, A to I, as indicated 

in figure 5.1a. 

( i i i ) If no object were detected and a decision were given such as " Definitely no 

object present" then that image box should be ticked ( ^ ) only. 

( iv ) If a decision is made the observer needs to fill in the location of his/her 

response according to the corresponding level of confidence. 

( v ) There is no time restriction for interpretation of each image. 

( v i ) The observer is free to change the display size, the contrast and the 

brightness of the images according to his/her need (i.e., to use the workstation fully), 

however no image processing is permitted. 

( v i i ) Each observer is free to repeatedly change his/her response to each image 

until a decision is made. 

(v i i i ) If any ambiguities are raised, they can be discussed individually with the 

researcher. 
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Also they were provided with a set of tables, for the 240 images which were to be 

completed so as to contain the level of confidence and the location of each object in the 

image (Figure 5.1b). 

Two observers interpreted the data one using a Sun SparcStation 2 (Sun Microsystems, 

Mountain View, CA) to display the images and, the other a Vision workstation (SMV, 

BUC, France). 



I l l 

( a ) 

Image number: 1 

Level of confidence Percentage of confidence for each location ( % ) 

A B C D E F G H I J K L M N 0 p Q R S T 

Definitely no cold object present y y y 

Fairly certain no cold object present 20 

Equivocal 45 

Fairly certain a cold object present 85 

Definitely a cold object present 100 

( b ) 

Figure 5.1: In this diagram (a): is an example of an image with different objects 

distributed within different locations in the distributed area and some of the locations 

does not have any objects, (b): is an example of a table filled with a decision made 

by an interpreter, indicating the level of confidence and the Percentage of confidence 

for each location (%). 



112 

5.2.5.2.2 Analysis Technique 

Receiver operating characteristic ( ROC ) analysis was applied to the results of all the 

images obtained above. In this experiment, two experienced observers {one nuclear 

medicine physician (consultant) and one nuclear medicine physicist (consultant)}, each 

reported the 240 simulated unprocessed and processed images, according to the 

instructions given above. The result of the experiment from each observer was 

collected, categorized and then analyzed using the ROC program, developed by 

Metz et al (1990), which are based on the Dorfman and Alf approach (1969). 

This program calculates maximum-likelihood estimates of binormal ROC curves, 

including the area under each curve and its standard deviation, from data collected 

on either discrete and continuous scales. The purposes of ROC program are to 

calculate the statistical significance of the difference between two ROC curve 

estimates using, (i) the Area Test, for testing the difference between the areas under 

the two ROC curves and, (ii) the True and False Positive Test, for testing the 

difference between the true- positive fractions (TPFs) on the two ROC curves at a 

selected false-positive fraction (FPF). 

In this study both values have been recorded but more attention paid to the true 

positive fraction statistical test at a low value of false positive fraction as an 

operating point, as this was considered more representative of the clinical situation. 

The statistical significance was calculated between the result obtained from the raw 

data, conventional smoothing, maximum entropy and Wiener filtering. Six 

comparisons were made as follows: 

(i) Raw data versus Conventional smoothing 

(ii) Raw data versus Maximum entropy 

(iii) Raw data versus Wiener filtering 

(iv) Conventional smoothing versus Maximum entropy 

(v) Conventional smoothing versus Wiener filtering 

(vi) Maximum entropy versus Wiener filtering 
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5.2.5.2.3 Confidence-Rating Scales: 

Receiver operating characteristic (ROC) studies comparing observer performance 

under different medical imaging conditions have involved data collected on a 

discrete or continuous scale. In the approach of a discrete confidence-rating scale, 

five categories ( e.g., definitely absent, fairly certain absent, equivocal, fairly certain 

present and definitely present ) can be used by the observers to report their 

confidence in performing a two-alternative decision task for each case. This will 

allow a smooth ROC curve to be fited to the data, if the scoring pattern is well-

distributed (Metz 1989, Rockette et al 1990). The continuous rating scale allowed a 

subjective probability estimate ranging from 0% - 100%, that an abnormality was 

present (Swets et al 1991). An experimental comparison to measure observer 

performance in the detection of abdominal masses in a multi-observer ROC study 

has been performed comparing continuous and discrete confidence-judgment scales 

(Rockette et al 1992). The continuous rating scale has been found to be more reliable 

than discrete scale and therefore, it was recommended to be used for routine 

radiological studies, due to its potential advantages in approximating clinical 

reporting more closely and in increasing the likelihood of successful ROC curve 

fitting. 

Finally as mentioned earlier in chapter 3, a lack of correspondence was observed 

between the figure of merit and the visual appearance of the images. Accordingly the 

figure of merit was studied for any correlation with receiver operating characteristic 

(ROC) analysis. This was performed by investigating any linear trend between the 

detectability of the images obtained from the calculated image quality ( F0M2 ) and 

the perceptual interpretation that had been made for the images as part of the ROC 

analysis (Readers decision). 

The SPSS software (Statistic program for social studies) was used to calculate these 

correlation's. 
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5.3 Results 

The results will be divided into three parts. ( i ) the simulation of the images used in the 

study. ( ii ) the determination of the operating parameters for the image processing 

techniques which have been used in the study. (iii) the image evaluation experiment. 

5.3.1 Simulation of the Images 

Two set of simulated images were used in this investigation, the first set consisted of 

images with a single object located in the centre of the distributed area. The second 

set of images consisted of a mixture of normal and abnormal simulated images. Each 

image contained one or more objects located in the distributed area. These varied in 

size and contrast (Figure 5.2). 

( a ) ( b ) 

Figure 5.2: Example of the simulated images used in the study (a) is a planar image 

with a single cold object located in the centre of the image (b) is another planar 

image with three objects different in size and located in the distributed area. The 

arrows indicate the location of the objects. 
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5.3.2 Determining the Parameters Required by the Processing 

Techniques 

5.3.2.1 Conventional Smoothing 

Smoothing the images conventionally using 1 - 4 passes of the nine point filter was 

studied. One smooth of the data numerically reduced the noise from 8.0 to 3.0 counts 

while only reducing contrast from 15.3 to 11.3 counts. Smoothing between one and 

four passes reduced contrast further while reducing noise at a much decreased rate 

(Figure 5.3). Therefore for conventional smoothing one pass filter was determined 

for processing the images. Contrast / noise analysis was also applied to the images in 

the second experiment in which variable contrast objects were studied. For one pass 

of the smoothing filter the average noise level was found to be 6.0 . 

Contrast 
Oi 

- 2 

-4 

- 6 

- 8 

- 10 

- 1 2 

-14 

- 1 6 

4 pass 

• RD 

+ RD smoothing, 1-4 

1 pass 

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 

Noise 

Figure 5.3: Variation of mean contrast with mean noise, with varying degrees on 

conventional smoothing applied to the data set with one cold object. Smoothing the 

raw data between one and four passes of the filter reduced the contrast while 

reducing noise at a much decreased rate. 



116 

5.3.2.2 Maximum Entropy 

Maximum entropy image processing technique, gives various different solutions 

when varying the value of parameters Cj between 0.2 - 1.0 and C2 between 0.0 - 5.0. 

In some of these both contrast and noise were improved simultaneously (figure 5.4). 

0 

-5 

Contrast 

-30 

-35 

Higher Cj 

-10 • RD 

-15 * ME C1=1.0 

-20 
X ME C1=0.6 

-20 • ME C1=0.4 

-25 A MEC1=0.2 

lower C, 

0 1 2 3 4 5 6 7 

Noise 

9 10 11 12 13 14 

Figure 5.4: Plots of mean contrast against mean noise for maximum entropy processed 

images with varying the value of Cj between 0.2 - 1.0 . Note that the contrast of the 

object is negative as it is a cold object. 

At Ci = 0.2 the range of convergence obtained with varying C2 was high. However 

the image with the highest contrast ( i.e., the value of C2 = 3.4) was a very noisy 

image. As C2 was increased the images became less noisy but had reduced contrast. 

The same pattern of results was obtained with varying the value of Cj, from 0.4 -

1.0, however the range of convergence was less. Although the value of C]= 1.0 was 

theoretically correct, the image quality was not as good ( the contrast at the 

equivalent noise level was lower ) (Figure 5.4). The raw data was presented in all the 

graphs for the purpose of comparison to see how the image quality was improved 

when applying the different image processing techniques. 
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The level of noise for the raw data before applying any image processing was 8, 

which was higher than any solution of images obtained from maximum entropy 

image processing technique at parameter Ci= 0.4 - 1.0. However at €,= 0.2 the level 

of noise for the first two solutions (i.e., at lower value of parameter C2) were higher 

than the raw data, although they did have high contrast. It was decided to select the 

value of parameter Cj at 0.6 which was the closest value to the theoretically correct 

value of 1.0 at which the contrast levels were not compromised. 

For the maximum entropy image processing technique, it was essential at this stage to 

choose the best value for parameter C .̂ The second set of realisations which consists of 

images with three different contrast levels in the object area ( cnl, cn2 and cn3 ) was 

used for this part of the study. Variation of parameter C2 between 3.7 - 5.O., gave 

solutions with a range of images differing in image quality. In these images one pass of 

a conventional smoothing filter gave a noise level of 6.0 . Therefore the aim was to find 

the value of C2 which gave this noise level. 

For maximum entropy processing a value of C2 of 4.5 was found to give a noise level of 

approximately 6.0 for both normal and abnormal images with objects of different 

contrast (Figure 5.5). 
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Noise 

• me3.7-5.0_cn1-cn3 

* me3.7-5.0_nornnal 

Series 3 

Figure 5.5: Maximum entropy processing at a value of C2 of 4.5 was chosen at a noise 

level of approximately 6.0 for both normal and abnormal images with objects of 

different contrast. The noise values are presented in table 5.2. 

5.3.2.3 Wiener Filter 

The raw data were also processed by the Wiener filter image processing technique. 

This gave a variety of results when the point spread function FWHM value was 

varied between 2 - 1 2 mm (Figure 5.6). The mean of the level of noise for the raw 

data images before processing for the first data set was 8.0, while after Wiener 

filtering processing by varying the point spread function FWHM between 2-12 mm, 

the mean level of noise was varied. The noise was highest for FWHM = 2 mm, and 

decreased monotonically with increasing FWHM. This was accompanied with an 

increase in the level of contrast when the FWHM was between 2 - 4 mm. Then 

followed a rapid drop in the level of contrast when the FWHM was between 5 - 1 2 
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mm (Figure 5.7). The value of noise corresponding to one conventional smooth (i.e., 

3.0 ) was used to determine the point spread function FWHM value for Wiener filter 

image processing technique. Accordingly the value of 6 mm was determined for 

Wiener filtering (Figure 5.6). 

10 
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8 

7 
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3 
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1 

0 

Level of Noise 

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 

FWHM (mm) 

Figure 5.6: Plots of mean noise against mean point spread function FWHM for Wiener 

filter processed images. 
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Figure 5.7: Plots of mean contrast against mean point spread function FWHM for 

Wiener filter processed images. 
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For the Wiener filter image processing technique, the point spread function FWHM 

value was obtained according to the above investigation at 6.0 mm. However when 

applied to the second data set, the level of noise obtained at the value of 6.0 mm 

FWHM, was slightly higher than the level of noise determined from the other two 

image processing techniques. Therefore all the images were processed at point spread 

function FWHM between 5.0 - 6.0 mm, so that an appropriate value could be chosen 

and a fair comparison obtained. The value for point spread function FWHM at 5.5 mm 

was chosen (Figure 5.8) as this value gave exactly the same level of noise (i.e., level of 

noise 6.0 ) as the maximum entropy and conventional smoothing image processing 

techniques. 

Noise 

6.5 

5.5 

4.5 

• WF5-6_cn1-cn3 

* WF5-6_normal 

Series 3 

5.5 

FWHM (mm) 

6.5 

Figure 5.8: Plots of mean noise against mean point spread function FWHM for Wiener 

filter processed images. The value for point spread function FWHM was chosen at 5.5 

mm as this value gave exactly the same level of noise ( level of noise 6 ) as the 

maximum entropy and conventional smoothing image processing techniques. These 

values were obtained from the second set of images (section 5.2.1). 
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5.3.2.4 Results 

For the purpose of comparison the mean value of contrast and noise for the normal 

image, raw data were determined as -5.2 and 11.8 respectively. The contrast was 

therefore lower than the noise as expected in the absence of a true feature. When 

processed by any of the processing technique various solutions were obtained in which 

the level of noise varied, but the level of contrast was small and fairly constant. This 

was expected since the normal image does not contain any abnormality. Therefore the 

level of contrast, which is the difference in between the mean count per pixel in the 

region of interest selected and the mean count per pixel in surrounding region, should be 

small. 

The result obtained from Maximum entropy and Wiener filter image processing 

techniques, at the level of noise 6 was produced at the value of parameter C2 = 4.5 and 

at the point spread function FWHM value of 5.5 mm, respectively. 

A summary of mean contrast and noise levels can be found in Table 5.2a and b. Also an 

example of the images obtained by varying the different parameters which are required 

by the three image processing techniques, are presented in figure 5.9. Examples of the 

images with varying the level of contrast are presented in figure 5.10. 
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Mean of the Level of Noise 
Technique True contrast 1 

= 0 count 
True contrast 2 

= 100 count 
True contrast 3 

= 200 count 
Normal 
Image 

Raw data 1L73 1L76 1L86 1L78 

Conventional smoothing 
at one pass filter 

5^9 5^9 &05 6J4 

Maximum entropy at 
Ci= 0.6 and C2 = 4.5 

6.06 5^5 6J^ 

Wiener filter at point 
spread function FWHM 
= 5.5 mm 

&07 5^8 &09 &08 

( a ) 

Mean of Level of Contrast 
Technique True contrast 1 

= 0 count 
True contrast 2 

= 100 count 
True contrast 3 

= 200 count 
Normal 
Image 

Raw data -31.29 -23.61 -1&34 -5.17 

Conventional smoothing 
at one pass filter 

-24J3 -1&83 -1336 -4.83 

Maximum entropy at 
Ci= 0.6 and Cg = 4.5 

-3L66 -24.29 -1&56 -3.31 

Wiener filter at point 
spread function FWHM 
= 5.5 mm 

-2&72 -22.46 -15.1 -4.44 

(b) 

Table 5.2: Summary of the (a) mean noise and (b) mean contrast, levels using the 

images with different true contrast, gives results with similar values for the three image 

processing techniques. 
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Raw data 

1 pass f i l t e r 

Max i muni entropy 
CI = 0+6 

Wiener filter 

Figure 5.9: The image quality of the different solutions obtained by varying the different 

parameters for the three image processing techniques. 
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Figure 5.10; Example of normal images and images containing cold objects with 

varying the level of contrast. Images from 1 - 4 are representing the normal image as 

follow, (1) raw data , (2) smoothing, (3) maximum entropy and (4) Wiener filtering. 

Images from 5-8 , are for the first confrast, from 9 - 12 are for the second contrast and 

13 -16 are for the third contrast. All the three different contrast images are in this order, 

raw data, smoothing, maximum entropy and Wiener filtering respectively. 
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5.3.3 Image Evaluation 

In order to check the difference in the ability of the three different image processing 

techniques, in processing the above simulated images, image evaluation has been 

performed. The Figure of merit (F0M2), ( see Chapter 3, section 3.3 ), has been used 

as an objective measure of image quality. Also ROC analysis has been used as a 

subjective assessment for detectability. 

From the previous investigation, certain images were selected for this evaluation. 

These were the 40 images ( i.e., Raw data images ), containing abnormalities and 

also the processed versions of these images. The parameters which has been 

determined previously were used to give images with similar level of noise. The 

image quality calculations have confirmed that, by exhibiting the similarity in the 

level of noise for the three image processing techniques (Figure 5.11). 
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Image number 

Figure 5.11; The similarity in the level of noise for the three image processing 

techniques. 
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To compare this similarity statistically, a paired t-test was used, to show how 

significant the difference between each group would be (Table 5.3). 

Comparison P-value 95% CI 
Maximum entropy vs. Conventional smoothing &116 (-0.047, 0.413) 
Maximum entropy vs. Wiener filtering (X332 (-0.104, 0.304) 
Conventional smoothing vs. Wiener filtering 0.06 (-0.17, 0.002) 

Raw data vs. Maximum entropy 0.000 (-5.96, -5.59) 
Raw data vs. Wiener filtering 0.000 (5.69, 6.06) 
Raw data vs. Conventional smoothing 0.000 (5.76, 6.15) 

Table 5.3: The difference in noise level between each group of images was calculated 

and compared statistically using a paired t-test. 

These results conclude that there were no significant difference in the level of noise 

in the images chosen for the comparison and this actually makes a fair comparison. 

The statistical significance in the level of noise for the raw data, was significantly 

higher than that of the three image processing techniques, where the p-value was 

0.000 for all the situations ( i.e., Raw data versus Maximum entropy. Raw data 

versus Wiener filtering and Raw data versus Conventional smoothing ). This was 

expected since the processing techniques were supposed to reduce noise. 

The level of contrast for the raw data and the results obtained from the three image 

processing techniques were different, on account of the ability of the different image 

processing technique to improve the image quality. 

Figure 5.12 shows the way in which the measured contrast varied with the true 

value. Smoothing naturally lost contrast compared to the raw data and Wiener 

filtering also had to reduce contrast in making compromise with noise reduction. ME 

however maintained the original contrast successfully. 
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Figure 5.12: The measured contrast compared to the true contrast. It shows the way in 

which the decrease in detectability of the measured contrast with increasing the true 

contrast value. 

These findings were further demonstrated when the figure of merit was calculated. 

They showed that there was an improvement in theoretical detectability, when 

applying all the image processing techniques. The improvement in detectabilty 

varied from one image processing technique to the other. The p-value for the 

difference in detectability ( i.e., F0M2 ) between the raw data and the three image 

processing techniques was highly significant (Table 5.4). By comparing the values 

for the raw data images to the ones obtained from the three image processing 

techniques (Table 5.4), each technique shows an improvement in the detectability of 

the images. The images processed by maximum entropy image processing technique 

had a higher value of F0M2 than the images processed with Wiener filter and 

conventional smoothing techniques. The p-value for the difference in object 

detectability between the images processed with the three different image processing 

techniques showed significant differences in each case. Both maximum entropy 

technique versus conventional smoothing technique and Wiener filtering technique 
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versus conventional smoothing technique had P= 0.000, while for maximum entropy 

technique versus Wiener filtering technique P= 0.03 (Table 5.5). 

Thus based on these F0M2 results the object detectability for each of the processing 

techniques should be improved relative to the raw data images. They would also predict 

that ME should be theoretically the best technique. These hypotheses will be tested in 

analysing the results of the subsequent ROC experiment. 

Technique Mean of F0M2 SD ( S E ) 

Raw data -2.92 L95(&261) 
Conventional smoothing -4.76 3.248 (0.434) 
Wiener filtering -5^4 3.704 ((L495 ) 
Maximum entropy -5^8 3.962 ((X529) 

Table 5.4: The mean of F0M2 and its standard deviation, for the improvement in 

detectability (F0M2) as the raw data processed by the three image processing 

techniques. 

Comparison Techniques P-value Paired 
Differences 

SD (SE ) 
Maximum entropy vs. Conventional smoothing 0.000 L33(0J78) 
Maximum entropy vs. Wiener filtering 0.03 L48(&198) 
Conventional smoothing vs. Wiener filtering 0.000 0.997 (0T33) 

Table 5.5: The significance of differences in detectability (F0M2), between the 

performance of the different processing techniques. Note that the difference between 

the three image processing techniques was highly significant. 
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5.3.3.1 Receiver Operating Characteristic ( ROC ) Analysis 

The ability of the three different image processing techniques to improve 

detectability was assessed subjectively by applying Receiver operating characteristic 

(ROC) analysis. The results obtained from both observers, for the raw data and its 

processing by conventional smoothing, maximum entropy and Wiener filtering 

techniques were analyzed by calculating the sensitivity ( TPF ) and specificity ( 1 -

FPF ) of object detection. For both observers the analysis of the data obtained is 

presented in Figure 5.13a and b, defining the fitted ROC line obtained from the 

program. Figure 5.13c and d, presenting the corresponding actual data points for 

both reader, without any data fitting. 

The area under the ROC curve, for each reader in each condition (the raw data, 

conventional smoothing, Wiener filtering and maximum entropy) was calculated and 

the sensitivity at a false positive fraction of 0.1 was defined. The results of statistical 

comparison between the three image processing techniques are shown in Table 5.6. 

Analysis of these results for the first reader using the true positive fraction test at 

false positive fraction 0.1, indicated that conventional smoothing and Wiener 

filtering techniques did not perform significantly better ( P > 0.05 ) in processing the 

raw data. In fact they gave a lower value of TPF although it was not statistically 

significant. By contrast maximum entropy performed significantly better (P= 0.007) 

in processing the raw data. 
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Figure 5.13: The ROC curves after fitting the line from the program, for (a) reader 1 

and (b) reader 2, for the raw data and its processing by conventional smoothing, 

maximum entropy and Wiener filtering techniques. The ROC curves (c) and (d) 

represent plots of the actual data points for both readers respectively, without any 

data fitting. 



Reader 1 Reader 2 
Area test TPF test Area test rPF test 

Imaging technique P-value P-value P-value P-value for 
AUC (SE) for TPF at for AUC (SE) for TPF at TPF test 

AUC FPF= 
0.1 

TPF 
test 

AUC FPF= 
0.1 

Raw data 0.67 (0.0501) 
0.141 

0.51 
0J45 

0.57 (0.0533) 
0.009 

0.26 
&161 

Conventional smoothing 0.71 (0.0485) 0.41 0.63 (0.0516) 0 J 4 
Raw data 0.67 (0.0501) 

0.0016 
&51 

0.007 
0.57 (0.0533) 

0.0023 
0.26 

0.006 
Maximum entropy 0.80 (0.0413) 0.65 0.69 (0.0495) 0.44 
Raw data 0.67 (0.0501) 

0.532 
0.51 

0347 
0.57 (0.0533) 

0.0016 
0.26 

0.044 
Wiener filtering 0.68 (0.05) 0.46 0.64 (0.0514) 0 J 7 
Conventional smoothing 0.71 (0.0485) 

0.433 
0.41 

&001 
0.63 (0.0516) 

0.756 
0 3 4 

0176 
Maximum entropy 0.80 (0.0413) 0.65 0.69 (0.0495) 0.44 
Conventional smoothing 0.71 (0.0485) 

0.437 
0.41 

0.49 
0.63 (0.0516) 

&853 
0 3 4 

0.634 
Wiener filtering 0.68 (0.05) 0.46 0.64 (0.0514) 0 3 7 
Maximum entropy 0.80 (0.0413) 

0.015 
0.65 

0.0007 
0.69 (0.0495) 

0.593 
0.44 

0363 
Wiener filtering 0.68 (0.05) 0.46 0.64 (0.0514) 0 3 7 

Table 5.6; Estimates of the binormal ROC parameters and the inter-condition coefficients for the area under the estimated ROC. For both true 
positive fraction (TPF) test at false positive fraction (FPF) = 0.1 and area test, for both readers. 
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The analysis for the inter-comparison between conventional smoothing versus 

Wiener filtering technique was not significant ( P= 0.49 ), although, the comparison 

between maximum entropy versus Wiener filtering techniques and maximum 

entropy versus conventional smoothing techniques were highly significant ( P < 

0.05 ). Similar results were obtained when the area under ROC curve ( i.e., AUG ) 

were used for obtaining the significance between each comparison. 

A separate analysis of the results obtained from the second reader for the comparison 

showed that there is a significant difference in processing the raw data images with 

maximum entropy and Wiener filtering ( P < 0.05 ). However, when the comparison 

was carried out between the three image processing techniques, it showed that none 

of the techniques is significantly better ( P > 0.05 ) than the others. The sensitivity of 

all three processing techniques was better than the raw data ( TPF = 0.26 ) being 

highest for maximum entropy ( TPF = 0.44.). 

The results of the raw data and each individual image processing technique obtained 

from each reader were compared and tested for any significant difference between 

their interpretation, and shown in table 5.7 and figure 5.14a,b,c and d. By using the 

true positive fraction test at false positive fraction 0.1, it shows that there is no 

significant difference ( P > 0.05 ) in both readers interpretation of the images which 

processed by conventional smoothing and Wiener filtering techniques. However for 

interpreting the raw data and maximum entropy images there was a significant 

difference in the results of both readers. Reader 1 obtained higher ROC curve than 

reader 2 for all techniques. 
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Imaging technique Area test TPF test 

AUG (SE) P-value Average TPF P-value Average 

for of AUC at for TPF of AUC 

AUC for both 

observers 

FPF 

=&1 

test for both 

observers 

Reader 1 0.67(0.0501) &51 

Raw data 0.002 0.62 0.003 0 3 8 

Reader 2 0.57(0.0533) &26 

Reader 1 0.71(0.0485) ().41 

Conventional 0324 0.67 0.423 0 3 7 

smoothing 0.63(0.0516) 0 J 4 

Reader 2 

Reader 1 0.80(0.0413) 0.65 

Maximum entropy 0J^4 0J5 (X019 0.54 

Reader 2 0.69(0.0495) 0.44 

Reader 1 O.680IO5) 0.46 

Wiener filter (1415 &66 0.266 0.41 

Reader 2 0.64(0.0514) 0 J 7 

Table 5.7; The result of both readers for the raw data and the three image processing 

techniques using the area under curve and false positive fraction tests. Both readers 

result were averaged for testing any significant trends. 
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Figure 5.14: The sensitivity and (1- specificity) for both readers when interpreting 

the images of the (a) raw data (b) conventional smoothing (c) maximum entropy and 

(d) Wiener filtering techniques. 
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It is important to recognize that different response patterns were found from the 

ROC analysis of both readers. The ways in which observers use the rating scale may 

depend on the training they receive in use of the scales, on the nature, subtlety, and 

prevalence of abnormality in the experiment, and on the consequence of positive and 

negative findings in the corresponding display. There was a correlation in the result 

obtained from both tests ( i.e., AUC test and TPF test) applied to the data, which 

was interpreted by both observers (Figure 5.15). 
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TPF testatFPF = 0.1 
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* ReaderZ 

&4 0.6 &8 
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Figure 5.15: The correlation between area under curve (AUC) test and true positive 

fraction (TPF) test, for both readers. 

5.3.3.2 The Correlation Between FOM2 and ROC Analysis 

The decision made from each reader regarding the detectability or the perception of 

each image was correlated to the figure of merit which was obtained by calculating 

the image quality for each image. The Spearman correlation coefficient was used to 

evaluate the correlation between both evaluation techniques. The correlation of both 
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evaluation techniques for both readers are given in figure 5.16a,b,c and d, figure 

5.17a,b,c and d and table 5.8. 

For the first reader for the raw data and for each individual image processing 

techniques, it has been found that there was a significant correlation, r (P < 0.001) 

between the F0M2 and detectability. Thus the probability of such a correlation, or 

one more extreme, arising by chance when there was in fact no relation is 

approximately 0 in 1000. 

From the results obtained from the second reader for the raw data and each 

individual image processing techniques, there were also a significant correlations, r 

(P< 0.001) between the F0M2 and detectability. However for each technique the 

correlation coefficient was lower for this reader. 

Although there was a linear correlation between F0M2 and detectability, the correlation 

coefficients were not very high and some individual results obtained, particularly with 

the maximum entropy and Wiener filtering techniques seems to be anomalous with 

respect to the general trend (Figure 5.16c, 5.16d, Figure 5.17c and Figure 5.17d). 

These were examples either having high detectability with very low F0M2, or low 

detectability and high F0M2. In extreme cases, objects with high F0M2 had zero 

detectability. Table 5.9 shows the results for several individual objects for one of the 

readers using maximum entropy processing including two of the anomalous 

examples. In fact these anomalous results were generally for images with very small 

size (0.5 cm) and very low contrast objects. However one of the images with bigger 

object size (1.0 cm) gave a similar anomalous result. In retrospect this was probably due 

to interpreter error, for example reading the wrong image. 

The mean of the F0M2 and detectability for the raw data and the images processed with 

the three image processing techniques, for both readers are shown in figure 5.18. For 

both readers there was a correlation between F0M2 and detectability. The correlation 

was particularly good for reader 2. The raw data result for the first reader was 

inconsistent compared to the trend of other results. 
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Figure 5.16; The relationship between F0M2 and detectability for the first reader, for 

(a) raw data (b) conventional smoothing (c) maximum entropy and (d) Wiener filtering, 

the correlation coefficients were not very high and some individual results obtained, 

particularly with the maximum entropy and Wiener filtering techniques seems to be 

anomalous with respect to the general trend. See table 5.8., for the correlation 

coefficients and P-values. 
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Figure 5.17: The relationship between F0M2 and detectability for the second reader, for 

the (a) raw data (b) conventional smoothing (c) maximum entropy and (d) Wiener 

filtering techniques. The correlation coefficients were not very high and some 

individual results obtained, particularly with the maximum entropy and Wiener filtering 

techniques seem to be anomalous with respect to the general trend. 
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Technique 
Reader 1 Reader 2 

Technique r P-value r P-value 
Raw data 0.8 0.000 &56 0.000 
Conventional smoothing &75 0.000 0.65 0.000 
Wiener filtering 0 J 6 0.000 &57 0.000 
Maximum entropy 0.65 0.000 &43 0.001 

Table 5.8; The Spearman correlation coefficients, between F0M2 and ROC 
detectability for both readers. 

Image number Detectability F0M2 Size of object 
( c m ) 

Contrast % of 
object 

1 100 -14.76 1 100 
2* 15 -11.31 1 75 
3 60 -7.22 1 75 
4 10 -6.72 0.5 75 
5 0 -5.77 1 50 

6* 80 -239 0.5 75 
7 0 -L32 0.5 50 

Table 5.9; Some particular and anomalous (*) cases (images) of maximum entropy 

results, for one of the readers. 
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Figure 5.18; The mean of F0M2 against the mean of detectability of the raw data and 

the three techniques for both readers. 
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5.4 Discussion 

The task of comparing processing techniques in medical imaging is not straightforward. 

Clinical images can be used for evaluation but it is difficult to be certain of the true 

diagnosis in these real images. In this study simulated images have been used to 

substitute the real clinical images, due to the benefits that arise from the simulation of 

images. The main advantage is that the true image distribution is known and can be 

used as a gold standard against which to compare the performance of other techniques. 

Simulation also allows a variety of distributions and features in the image to be created 

and investigated. It therefore allows us to study systematically, the effects of various 

factors in the image, on the detection, localization, and determination of shape and 

size of any added artifact. However the disadvantage of the simulated images is a lack 

of reality. No simulation techniques can currently model all aspects of gamma camera 

acquisition. 

The three image processing techniques produced a variety of images different in 

image quality. Each technique required certain parameters to carry out the 

processing. In comparing the techniques it was important to choose these parameters 

in a controlled way so that the comparison could be meaningful. The type of object 

that was used to create the simulated images allowed for the level of noise in the 

image to be calculated. That enabled the selection of the parameters required by the 

different image processing techniques to be defined and limited. The standard 

deviation (i.e., level of noise ) also allowed producing equivalent images from each 

method. The contrast to noise graphs were valuable to enable selection of parameters 

approximately maximizing the contrast to noise ratio. All processing techniques used 

in this study have the disadvantage of having to choose parameters which determine 

the level of smoothing applied to the images. In principle maximum entropy used 

with C] = 1 and C; = 0 should give a theoretically optimal solution. However the 

technique does not converge with these error values and other values have to be 

chosen to make the technique operate. Cj has been optimized for the particular 

images used in this study but the general use of Cj = 0.6 would have to be validated 

for other types of image distribution. From our previous studies we know C2 will be 
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quite count dependent. Thus in its present form ME is not able to define on overall 

optimal solution, only an optimal solution given a specific level of smoothing. 

The Wiener filter process also has two parameters that can be varied, the FWHM of 

the point spread function and the noise parameter. The version of the filter used in 

this study only allowed one of these parameters to be varied, the FWHM. This did 

allow a full range of solutions to be created, from high contrast high noise to low 

contrast low noise so that a reasonable comparison could be made with other 

techniques. However not having the ability to control the noise parameter was a 

limitation of this study. 

Having determined the values of the parameters for each image processing technique 

the image evaluation could be carried out objectively (F0M2) and subjectively 

(ROC analysis), in a consistent manner. 

All processing techniques had a better F0M2 than raw data, primarily as a result of 

reducing noise by a factor of about two. Both image processing techniques involving 

image sharpening (i.e., maximum entropy and Wiener filtering) were better than 

conventional smoothing. Conventional smoothing inevitably had to lose contrast 

resolution while improving noise, whereas the deconvolution techniques were able 

to more or less maintain contrast with the same improvement in noise. The 

maximum entropy image processing technique produced higher F0M2 than Wiener 

filter image processing technique, indicating that the theoretically more rigorous 

approach in image optimization is in fact producing improved images using 

objective image evaluation with conventional parameters of image quality. 

ROC analysis has been used to test the ability of the three image processing 

techniques to improve subject image detectability. Both readers ranked the image 

processing techniques in this order: maximum entropy, Wiener filter and 

conventional smoothing. The result obtained from the first reader shows that 

conventional smoothing and the Wiener filtering technique did not perform 

significantly better in processing the raw data ( P > 0.05 ). In contrast the maximum 

entropy results were significantly better from those of the raw data, conventional 
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smoothing and Wiener filtering ( P < 0.05 ). This was true whether the sensitivity of 

maximum entropy results at a low FPF value (0 .1 ) or at the area under ROC curve 

in general, were used to show an improvement in image quality. This was not the 

case with the second reader who found all three image processing techniques to be 

significantly better than the raw data ( P < 0.05 ), but none of the techniques was 

significantly better than the other ( P > 0.05 ). The sensitivity of maximum entropy 

technique was the highest (TPF = 0.44) at FPF = 0.1. 

There were clear difference between the diagnostic accuracies achieved by the two 

readers. This can be explained primarily by the individual methods of interpretation. 

Reader 1 developed a strategy of detection based on creation of a learning set of 

images with percentage confidence of detectability scores ranging evenly between 

0% and 100 % . Each image was then compared to this baseline data set using 

careful adjustment of the upper contrast level to determine the value at which objects 

disappeared. Considerable care was taken over each evaluation. Reader 2 reported 

the images much more quickly and essentially recorded his initial impression of 

objects which were clearly seen in the image. He used the discrete five point scale in 

reporting. The pattern of results was also different between the readers. For reader 2 

all the image processing techniques performed better than the raw data whereas 

reader 1 produced better results with raw data than with either smoothing or Wiener 

filtering. For this reader interpretation of raw data gave better results than expected 

from the F0M2 predictions. This is almost certainly because some observers carry 

out a smoothing by eye giving higher confidence to pixels which stand out from the 

surrounding if there are other nearby pixels of similar value. This suggests that 

image processing techniques are likely to be more valuable to some observers than 

others. 

The results obtained from both readers showed a significant correlation between the 

figure of merit and detectability using ROC analysis for each individual image 

processing technique. However there was a range of correlation coefficients and in 

general the correlation was not precise. For a given figure of merit there was a 

considerable variation in the percentage score of the confidence of detectability. 

Even when taking care with the assessment of the F0M2 value there is variation due 
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to the noise in the image (Chapter 4). However this does not account for most of the 

variability seen in relationship between F0M2 and visual detectability and this is 

explained by the subjective and variable nature of the percentage confidence visual 

score. 

The use of ROC analysis is dependent on the performance of human observer. 

Therefore it has certain limitations. One problem is the complexity and hence the cost of 

the study. More than one observer has to be used, each observer has to read many 

images and conditions for the study have to be carefully controlled. The time each 

observer needs to spend in reading the images can be very long. However it is a more 

reliable measure for the performance of many modalities. 

5.5 Conclusion 

The study has shown that image processing technique are effective in terms of objective 

improvement. However the argument was less clear for subjective image interpretation. 

For simple planar objects in which the model describing the image formation process 

was precise maximum entropy image processing technique, theoretically an optimal 

technique, produced superior images. F0M2 correlates to detectability, but does not 

appear to be a reliable alternative to ROC analysis. 
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Chapter Six 

Investigations on the use of Maximum 

Entropy, Wiener Filter and Conventional 

smoothing Techniques in Processing 

Simulated Lung Ventilation Perfusion 

Images 

6.1 Introduction 

Pulmonary Embolism (PE) is an important cause of death . In the United Kingdom 

about 20,000 patients per year die from PE and it contributes up to 15-29% of all deaths 

in an acute general hospital (Gray 1993). PE is the presence of a blood clot or other 

foreign substance in pulmonary arterial blood vessels, which leads to obstruction of 

circulation to lung tissue. Most pulmonary emboli originate from thrombi in the 

proximal deep veins of the lower limbs. When this happens partial obstruction of 

arterial blood flow of the lung occurs, resulting in dysfunction of the affected lung 

tissue. There are many diagnostic procedures that can be used to detect PE such as, 

Chest radiography (Chest X-ray), Pulmonary Angiography, Spiral Computed 

Tomography Angiography (SCTA), Magnetic Resonance Imaging (MRI) and 

Ventilation and Perfusion Scintigraphy (V/Q scan). Chest radiographs are essential in 

the imaging evaluation of a patient clinically suspected of having pulmonary embolism 

(PE), although it is not an accurate means of diagnosis. The chest radiograph can help in 

establishing or excluding some of the possible clinical diagnosis to differentiate 
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between PE and others, such as cardiac failure, chest infection or pulmonary 

hypertension, which may account for the patient's symptoms. Pulmonary angiography 

is suggested for patients with high risk of PE. It has a high sensitivity of detection of PE 

and is considered the gold standard for the diagnosis of PE. However it is an invasive 

procedure involving the placement of a catheter into the right side of the heart with an 

injection of contrast medium into the pulmonary arteries. A pulmonary angiogram is 

considered when some other imaging scan (i.e., such as V/Q scan images) would not be 

able to define the risk group of PE to which the patient can be classified. However it is 

contraindicated in patients who are allergic to the contrast medium used for the study. 

According to the PIOPED (prospective investigation of pulmonary embolism 

diagnosis) study, pulmonary angiography is a relatively safe but not trivial procedure 

(Gottschalk et al 1993a and b). There is thus a need for an investigation which has a 

high diagnostic accuracy and specificity, but which is relatively non-invasive and can 

readily be used for screening. One such procedure is provided by ventilation/perfusion 

lung scintigraphy which is described more fully below. Another diagnostic procedure 

which is non-invasive and used as a mean of investigating patients with PE, is Spiral CT 

angiography (SCTA). This does not require catheterisation of central vessels. It images 

the lungs, mediastinum and pleural spaces and also it is able to reveal non-embolic 

pathology presenting with symptoms identical to PE which are likely to produce non-

diagnostic V/Q scans. The sensitivity of SCTA for detection of PE is over 80%, while 

the sensitivity of V/Q scans is 45% (Kemp et al 1997). 

Ventilation scintigraphy is used to assess disorders of transport of gas down the 

bronchial tree. To study ventilation scintigraphy, either gases (^^^Xe, ^'"Kr) or ^̂ ™Tc-

DTPA (Diethylenetriaminepentaacetic acid) aerosols are commonly used. Perfusion 

scintigraphy is a useful diagnostic procedure to study disorders of blood distribution. It 

gives a non-invasive method for demonstrating pulmonary perfusion. The procedure is 

carried out by giving the patient an intravenous injection of ^^'"Tc-labelled human 

albumin microspheres (HAM) or macroaggregates (MAA). These albumin particles, 

occlude small branches of the pulmonary artery and the capillaries, so the resulting 

images will show the areas of the lung which are perfused. Perfusion scintigraphy alone 

cannot distinguish between embolus, infarct, or any other cause of impaired pulmonary 

perfiasion due to its ability to study only disorders of blood distribution. A combined 
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ventilation / perfusion (V/Q) lung scintigram can, however, reliably do so for any 

mismatched abnormalities. 

There are many limitations of the quality of radionuclide imaging, with particularly the 

resolution of the gamma camera being worse than other medical imaging systems. As 

has been mentioned in chapter one, the spatial resolution is affected by the collimator 

resolution and the intrinsic resolution and is of the order of 1.0 cm. Nuclear medicine 

images are also degraded by the presence of noise, which reduces the certainty of the 

image density at a particular location. In lung scintigraphy the image produced is a two 

dimensional representation of the three dimensional distribution of radioactivity 

introduced to the lung and this reduces the contrast of abnormal features. 

If the influence of image processing on diagnostic accuracy is to be investigated, there 

needs to be confidence in the true diagnosis. This is difficult to ascertain with clinical 

data and so in this investigation computer simulated images were used instead. 

Computer simulation has proven its practicality and usefulness in the assessment of 

image interpretation both qualitatively and quantitatively (Fleming and Simpson 1994). 

In this investigation the maximum entropy image processing technique has been used to 

process simulated lung V/Q images and compared to the use of other image processing 

techniques. 

6.2 Methods 

6.2.1 Image Simulation 

The simulation program (Fleming 1996) required definition of a distribution of activity 

in the lungs and a map of the attenuation coefficients of the surrounding tissues. These 

were defined using high-resolution anatomical data from nine magnetic resonance 

images on male subjects. These had been segmented into soft tissue, lung and bone 

using a semi automatic method (Fleming 1996). The program used these distributions as 

an input to create simulated planar gamma camera images of the lung from any required 
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angle. Normal images used uniform distribution of activity in the airways (Fleming et al 

1997). The process is summarised in figure 6.1. 

The simulations were considered by expert observers to be realistic in appearance. The 

use of several different lung models allowed inter-subject variability amongst normals 

to be included in the study. Abnormalities were introduced using a model of the lung 

segments which was described relative to one of the subjects in the study. 
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Figure 6.1; Example of input data to the simulation program algorithm, that is, (1 - 4) 

the activity distribution in the lung and (5 - 8) the attenuation map. hnages (9 - 12) and 

(13-16) shows the anterior, right posterior obUque, posterior and left posterior oblique 

planar ventilation and perfusion images respectively, derived from the simulation. The 

first and second rows consist of a series of four transverse shces from the three-

dimensional data sets. For each set, the leftmost image is near the top of the lung and 

subsequent images are obtained by moving down the lung. Each sUce is oriented with 

the anterior aspect of the subject at the top of the image and with the left side on the 

right. The activity distribution assumes uniform concentration per unit airway volume 

in each generation. 
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6.2.2 Segmental Model 

The segmental model used in this study was obtained using photographs of casts of the 

lung airways ( anterior, posterior, left posterior oblique, right posterior oblique, left 

lateral and right lateral) (Netter 1989). Measurements of dimensions of the different 

segments were obtained from the photographs and applied to a three dimensional 

outline of the lungs obtained from the MR images of one of the subjects in this study 

(Al-Abdul Salam 1998). Each segment has given a different number as in table 6.1: 

Segment Left Lung Segment Right Lung 

number number 

10 Apical 11 Apical 

2 Anterior 12 Anterior 

3 Posterior 13 Posterior 

4 Apical superior 14 Apical superior 

5 Lingular superior 15 Lateral 

6 Lingular inferior 16 Medial 

7 Anterior medial basal 17 Anterior basal 

8 Lateral basal 18 Medial basal 

9 Posterior basal 19 Lateral basal 

20 Posterior basal 

Table 6.1: Value of segments for the segmental model. 

An illustration of the outlines of some of the segments is shown in figure 6.2 
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Figure 6.2; Transverse slices through the lung starting towards the apex of the lung top 

left and moving left to right then top to bottom towards the base of the lung. Each 

segment is shown in a different colour. 
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6.2.3 Creating Segmental Defects 

The creation of segmental defects for a particular subject required definition of the 

outline of the segment for that individual. This was done by carrying out an elastic 

transform of the segmental model to the lung shape. This based on a radial stretching of 

the model around the hilum of the lung when the main bronchus enters the lung 

(Fleming et al 1996). This point had been defined on the MR data sets of aU subjects. 

The defect was created by setting the activity in the segment to zero. 

Normal images were produced assuming a uniform distribution in the lung airways 

(Fleming et al 1997). Example shces through typical normal and abnormal activity 

distributions in the lung are shown in figure 6.3. 

Normal slices 

c i iT 

Abnormal 

C I I 
slices 

Figure 6.3: Example transaxial slices of the activity distribution within the lung. The 

top row of images is taken from a normal distribution of activity. The lower row shows 

those of a distribution with a defect in the left lingular superior segment. 
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6.2.4 Method of Simulating Lung Images 

In this investigation two sets of data have been produced, normal lung images without 

any defect and abnormal lung images with a segmental defect. For each of the nine 

subjects used in this study 19 images were created each with a segmental defect in a 

different segment, examples are shown in figure 6.4. 

The typical lung image was simulated by using a previously described technique in 

chapter 4 for simulating gamma camera images (Fleming et al 1994, Fleming 1996). As 

it has been mentioned, the lung models were obtained from real magnetic resonance 

images (MRI) of the thorax in nine male subjects. For each data set eight lung views 

were simulated, anterior (ANT), right anterior oblique (RAO), left anterior oblique 

(LAO), posterior (POST), left posterior oblique (LPO), right posterior oblique (RPO), 

left lateral (LL) and right lateral (RL). 
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Figure 6.4: Normal images for the four views used in this study and the corresponding 

abnormal images with a defect in the segment. 
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All the views were simulated with the following parameters: 126 c/s/MBq gamma 

camera sensitivity, and 100 sec imaging time. Noise was added to all the simulations. 

All the images gave a total count of approximately 200 k counts, which is similar to the 

total count used in real V/Q scan. This corresponded to an activity of 50 MBq of ^^"Tc 

in the lung, which is well within ARSAC limits of this type of investigation. 

Although some medical centres use the eight lung views and others use six views 

excluding the right and left anterior obliques (Morrel et al 1993), only four lung views 

(anterior, posterior, left posterior oblique and right posterior oblique ) were used in this 

study, because these are the views usually acquired in clinical practice in Southampton 

General Hospital, Nuclear Medicine Department. 

The data sets prepared for viewing by clinicians consisted of four perftision views and 

four ventilation views. The four ventilation views each consisted of one particular 

realisation of the simulation of a normal distribution of activity. A normal perfusion 

data set consisted of a second realisation of the simulation of a normal distribution. 

Normal ventilation and perfusion images, therefore, differed in their noise 

characteristic. The images of the lung with segmental defects were presented to 

experienced nuclear medicine physicians, to check the visual appearance of the defects 

compared to real lung images. Some segments were excluded from this study due to 

their obvious visual appearance to the interpreter, which might decrease the chance of 

assessing the difference in the ability of the three image processing techniques in 

processing nuclear medicine planar images. 

6.2.5 Method of Creating a Segmental Guidance for Interpretation 

When interpreting the V/Q lung scan images for the diagnosis of pulmonary embolism 

based on the presence of mismatched segmental or subsegmental defects, nuclear 

medicine physicians normally use a guide for identifying the lung segments. This is in 

the form of a crib, consisting of an outline of the segmental anatomy from each view. In 

this study, instead of using an anatomical outline, the segmental defects were simulated 

in the normal lung views (anterior, posterior, left posterior oblique and right posterior 



154 

oblique), to allow real visualisation of the appearance of the segments on the images. It 

was impossible to create all the segmental defects in one view, therefore, in each view 

one or two segments and at most three, for both lungs (right and left) were created 

(Figure 6.5). The segments in the image appears as a "cold" area in which there are 

reduced counts. For each lung view there were three noise-free images of the lung, 

containing segmental defects each identified with the name of each segment as it 

appears in the different positions. This was used by the interpreters as a guide to identify 

the location of each segment in this study. 
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Figure 6.5; Simulation of a crib showing the appearance of segmental defects on the 

different noise-free views. The upper four views are for normal lung image, where the 

lower twelve views represented the segmental defects. 
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6.2.6 Image Processing 

All the images with or without segmental defect (abnormal and normal simulated lung 

images), were processed by ME, WF and SM techniques. This was carried out using the 

results from the previous investigation described in chapter 5, where the parameters 

required by the three image processing techniques were defined to attain images with 

similar level of noise. However with the lung images it was not easy to obtain an 

estimate of the noise level as noise was superimposed on the real features in the image. 

It was therefore decided that as far as possible the same processing parameters would be 

used for the different techniques as in the experiment on the simulated planar phantom. 

This was considered justified as the counts per pixel in the lung images were similar to 

those in the planar phantom. Therefore the processing of the simulated lung images was 

performed by using one pass of the nine point filter for SM technique, point spread 

function FWHM 5.5 mm for WF technique and Cj = 0.6 for ME technique. An 

exception is the value for parameter Cj for the ME technique, where convergence of the 

algorithm to give solutions for some of the simulated lung images was not possible at 

the operating point of Cg = 4.5 . Therefore, all the images were processed by ME 

technique using a value of C, = 0.6 and a value of parameter C2 between 0.5 - 7.0, 

selected as described below. 

6.2.6.1 Method of Choosing the Maximum Entropy Solution for 

Evaluation 

In this investigation all the images which has been processed by SM and WF image 

processing techniques according to the previously defined parameters were used for 

evaluation. However the images parameters for the ME image processing technique had 

to be chosen using a different approach. 

Therefore the aim was to use ME technique to process the lung images using a rule 

derived from its use on the planar images to produce images with approximately the 

same level of noise as the other techniques. 
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The rule used is similar in concept to that described in chapter 3. For any image, ME 

processing using a fixed value of Cj , produces solutions for a range of values of C2, 

Qmin to Cgmax • Outside this range the algorithm does not converge. The image 

corresponding to C2min is a noisy sharp image while that corresponding to is a 

smoother lower resolution image. The problem is that this range over which solutions 

can be obtained varies with different images. The hypothesis is that to obtain solutions 

of a given noise level, ME should be operated at C2 value C20P which is a fixed 

percentage f, along the range of values for which solutions are obtained, i.e., 

^2op ~ f ( ^2max ~ 2̂min ) 2̂min 6-1 

From the previous investigation ( Chapter 5 ) on the cold object planar study, the ME 

technique was operated with C, = 0.6 and C2 = 4.5 . These values were to give solutions 

with a noise level equivalent to one smooth of the data. 

Using equation 6-1 the average value of f was obtained from the planar phantom 

experiment. The value of f was calculated to be 0.26 . For the simulated lung study 

images, the ME technique was applied with Cj = 0.6 and C2 varying over the range of 

convergence. The lower and upper limits of convergence, and €2^3%., were noted 

for each lung view (anterior, posterior, left posterior oblique and right posterior 

oblique). Then the operational value of C2 was calculated from equation 6-1 using a 

value of f of 0.26 . 

6.2.7 Image Evaluation using ROC Analysis 

Subjective visual interpretation of images is almost universally used in clinical practice 

of ventilation / perfusion imaging. Therefore evaluation of the performance of the 

different image processing techniques with this technique is required. 

In this investigation the simulated lung images obtained by the maximum entropy 

image processing technique will be analysed and compared with the non-processed (raw 

data) images and the results obtained by using Wiener filtering and conventional 
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smoothing image processing techniques. Twenty sets of simulated lung images were 

used, each set representing one patient with four lung views (anterior, posterior, left 

posterior oblique and right posterior oblique) of both ventilation and perfusion. The 

perfusion images each had a single segmental defect located in the right or left lung 

side. Nine normal simulated lung images were also created in which both ventilation 

and perfusion were normal. There were therefore 29 sets of raw data images which were 

each processed by the three techniques giving a total of 116 data sets and therefore 928 

images (i.e., raw data and processed images). Example of these images are shown in 

figure 6.6 . All data sets were evaluated by the previously described and widely used 

approach, receiver operating characteristic (ROC) analysis. 

6.2.7.1 Interpretation of Images 

The 928 images were saved in one file using PICS Program ( Portable Imaging 

Computer System) (Fleming et al 1991), which is a medical image processing software 

system running on a UNIX Sun Sparcstation. The data sets were randomly ordered to 

avoid any reading-order effect (Metz 1989). The randomisation was obtained by 

locating each of the raw data V/Q images and its processed images, in different location 

order in the file. That was done to avoid locating the raw data and its processed images 

closer to each other. Two experienced observers were used to read these images, one is 

a nuclear medicine physicist (consultant), and the second is a nuclear medicine 

physician (consultant). The observers were instructed that the experiment was designed 

to test their ability to detect a PE (i.e., defected segment) on the simulated lung images 

and also, to test the ability of the three different image processing techniques. Each 

observer was provided with a two-page set of "Instructions to Observer", to clarify the 

procedure which needs to be followed in reading the images. It described the task, 

defining carefully the abnormalities to be reported in the study and, also the sheet 

containing examples of images with defects which they will use as a guide. 
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Figure 6.6; Example of the lung images used in the evaluation of the three image 

processing techniques. That is, the anterior, right posterior oblique, posterior and left 

posterior oblique planar lung images, of the ventilation data (top row) and the perfusion 

raw data (second row). The third, fourth and fifth rows show the images when 

processed by conventional smoothing, maximum entropy and Wiener filtering 

techniques, respectively. 
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The observers were instructed to interpret each set of images as follows; 

( i ) To detect the PE defect and its location in each set of images and subdivide 

his/her response into five levels of confidence if using the discrete rating scale, as the 

following rating scale: 

1 = Definitely no PE present 

2 = Fairly certain no PE present 

3 = Equivocal 

4 = Fairly certain PE present 

5 = Definitely PE present 

Or if using the continuous rating scale a subjective probability estimate (ranging from 

0% - 100%) was used as follow: 

0% - 9% = Definitely no PE present 

10% - 39 % = Fairly certain no PE present 

40% - 75 % == Equivocal 

76% - 89 % = Fairly certain PE present 

90% -100% = Definitely PE present 

( i i ) The PE defect is located in one of the lung segments as indicated in the example 

sheet. 

( i i i ) If no PE defect were detected and a decision were given such as "Definitely no 

PE present" then all the appropriate boxes should be ticked 

( i v ) If a decision is made the observer needs to fill in the location of his/her 

response according to the corresponding level of confidence. 

(V) There is no time restriction for interpretation of each image. 

( v i ) The observer is free to change the display size, the contrast and brightness of the 

images according to his/her need (i.e., to use the workstation fully), however no image 

processing is permitted. 

(v i i ) Each observer is free to repeatedly change his/her response to each image until a 

decision is made. 

(vi i i ) If any ambiguities are raised, they can be discussed individually with the 

researcher. 
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Also the observers were provided with a set of tables one for each of the 116 data sets 

which were to be completed so as to contain the level of confidence and the location 

(i.e., the percentage of confidence for the continuous scale which was explained earlier 

in chapter 5) of each PE in the image. To display the images the two observers 

interpreted the data one using Sun SparcStation 2 and the other used Vision workstation 

(SMV America, Software, USA). 

6.2.7.2 Analysis of Results 

The results from each of the observers were collected, categorised and then analysed 

using the ROC program, developed by Metz et al (1990), which are based on the 

Dorfman and Alf (1969) approach. 

As has been explained earlier, this program calculates maximum-likelihood 

estimates of binormal ROC curves, including the area under each curve and its 

standard deviation, from data collected on discrete and continuous scales ( please see 

section 5.2.5.2.2). 

The statistical significance was calculated between the result obtained from the raw 

data, conventional smoothing, maximum entropy and Wiener filtering image 

processing techniques. Six comparisons were made as follows: 

(i) Raw data versus Conventional smoothing 

(ii) Raw data versus Maximum entropy 

(iii) Raw data versus Wiener filtering 

(iv) Conventional smoothing versus Maximum entropy 

(v) Conventional smoothing versus Wiener filtering 

(vi) Maximum entropy versus Wiener filtering 
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6.3 Results 

In this investigation two sets of simulated lung images were created, the first set 

consisted of abnormal lung images with an area of reduced counts representing a lung 

image with a PE in one of its segments. The second set of images consisted of normal 

lung images, represented by simulated lung images without any segmental defect. The 

results shows that the appearance of some of the segmental defects were obvious to the 

interpreter, whereas others were more subtle, so out of the 19 segmental defects created 

only nine were used. 

The ability of the three different image processing techniques to improve 

detectability was assessed subjectively by applying receiver operating characteristic 

(ROC) analysis. The sensitivity (TPF) and specificity (1 - FPF) of detection of 

abnormalities were calculated for the raw data and its processing by conventional 

smoothing, maximum entropy and Wiener filtering techniques. The results of 

analysis of the data for both observers are presented in figure 6.7a and b. 
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Figure 6.7: The ROC curves obtained for (a) reader 1 and (b) reader 2 in interpreting 

the data set of lung images using the different processing techniques. 



162 

The area and TPF tests were chosen for the statistical analysis of the data. The tests 

compute the statistical significance of the difference between the areas under the ROC 

curves and the difference between the FPF at a 0.1 FPF point respectively. The null 

hypothesis is that each two sets of rating data arose from ROC curves with equal area 

beneath them. 

That analysis was applied to each reader's rating data. The area under the ROC curve 

and its standard error, for each reader in each condition (the RD, SM, WF and ME) 

was calculated and the sensitivity at a false positive fraction of 0.1 was defined. The 

results of statistical comparison between the three image processing techniques are 

shown in table 6.2. 

The results of both the area and TPF tests performed, comparing each two ROC curves 

within readers, is expressed in terms of the two-tailed P-value. The two-tailed P-value 

represents the confidence with which the null hypothesis can be rejected. Lower P-

values indicate more confidence in the statistical significance of the observed difference 

between the three image processing techniques. 



Reader 1 Reader 2 
Area test TPF test Area test rPF test 

Imaging technique P-value P-value P-value P-value for 
AUC (SE) for TPF at for AUC (SE) for TPF at TPF test 

AUC FPF= 
0.1 

TPF 
test 

AUC FPF= 
0.1 

Raw data 0.84(0.062) 
0.113 

0.78 
0J^5 

0.68(0.0794) 
0478 

0.46 
0.887 

Conventional smoothing 0.92(0.0444) (186 0.67(0.0804) 0.43 
Raw data 0.84(0.062) 

0.032 
0.78 

0.039 
0.68(0.0794) 

0.472 
0.46 

&584 
Maximum entropy 0.99(0.0149) 0.98 0.7(0.0779) &42 
Raw data 0.84(0.062) 

0.547 
0.78 

&545 
0.68(0.0794) 

0.814 
0.46 

0.518 
Wiener filtering 0.81(0.066) 0.77 0.69(0.0784) 0.5 
Conventional smoothing 0.92(0.0444) 

0J^5 
0.86 

0.084 
0.67(0.0804) 

0246 
0.43 

0.557 
Maximum entropy 0.99010149) 0.98 0.7(0.0779) 0.42 
Conventional smoothing 0.92(0.0444) 

0J^7 
0.86 

0J^8 
0.67(0.0804) 

0.578 
0.43 

11254 
Wiener filtering 0.81(0.066) 0.77 0.69(0.0784) 0.5 
Maximum entropy 0.99(0.0149) 

0.024 
0.98 

0.032 
0.7(0.0779) 

0.486 
0.42 

(1799 
Wiener filtering 0.81(0.066) 0.77 0.69(0.0784) 0.5 

Table 6.2: Estimates of the binomial ROC parameters and the inter-condition coefficients for the area under the estimated ROC curve. For both 
true positive fraction (TPF) test at false positive fraction (FPF) = 0.1 and area test, for both readers. 
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Analysis of these results for the first reader using the true positive fraction test at false 

positive fraction = 0.1 showed that the sensitivity of maximum entropy, conventional 

smoothing and the raw data were better than the Wiener filtering technique (TPF = 

0.77) being highest for maximum entropy (TPF = 0.98) . Conventional smoothing and 

Wiener filtering techniques did not perform significantly better (P > 0.05) in processing 

the raw data. But maximum entropy performed significantly better (P = 0.039) in 

processing the raw data. The analysis for the comparison between conventional 

smoothing versus maximum entropy and conventional smoothing versus Wiener 

filtering techniques was not significant (P > 0.05), although the comparison between 

maximum entropy versus Wiener filtering techniques was significant (P < 0.05). Similar 

results were obtained when the area under ROC curve was used for obtaining the 

significance between each comparison. 

The results obtained from the second reader for the six comparisons using the true 

positive fraction test at 0.1 false positive fraction showed that there is no significant 

difference between any of the comparisons (P > 0.05). Similar results were obtained 

when the area under ROC curve was used for obtaining the significance between each 

comparison. The sensitivity of Wiener filtering, maximum entropy and the raw data 

were higher than conventional smoothing (TPF = 0.43) being highest for Wiener 

filtering (TPF = 0.51). 

The results obtained from both readers for the raw data and the three image processing 

techniques were compared for investigating the significance of the difference between 

their interpretation and summarised in table 6.3. Both readers results are shown in figure 

6.8 a, b, c, and d . Applying the true positive fraction test at 0.1 false positive fraction, 

shows that the two readers interpreted the images of the raw data and the images 

processed by the three image processing techniques differently and that difference was 

statistically significant. When the area under curve test was applied, for interpreting the 

raw data and maximum entropy images their was no significant difference in the result 

of obtained from both readers (P > 0.05), although their was a significant difference in 

the interpretation of the conventional smoothing and Wiener filtering images (P < 0.05). 
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When the results from both readers were averaged (Table 6.3), for the area under the 

ROC curve and the sensitivity at FPF = 0.1, the sensitivity of the three techniques in 

processing the raw data were proved to be in the order of : maximum entropy, 

conventional smoothing and Wiener filter. 

Imaging technique Area test TPF test 

AUC (SE) P- Average TPFat P-value Average 

value of AUC FPF =0.1 for ofTPF 

for TPF 

AUC test 

Reader 1 0.84(0.062) 0J8 

Raw data &061 0 J 6 0.015 0.61 

Reader 2 0.68(0.0794) 0.44 

Reader 1 0.92(0.0444) 0^6 

Conventional smoothing 0.004 a795 0.002 0L645 

Reader 2 0.67(0.0804) OjJ 

Reader 1 0.99(0.0149) 0 4 8 

Maximum entropy 0J^2 &845 0.008 0J3 

Reader 2 0.7(0.0779) 0 4 8 

Reader 1 0.81(0.066) 0 J 7 

Wiener filter 0XM9 0 J 5 0.038 0.64 

Reader 2 0.69(0.0784) O j l 

Table 6.3: Comparing both readers result for testing any significant trends in 

interpreting the lung images. 
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Figure 6.8; The ROC curves obtained from both readers for (a) raw data (b) 

conventional smoothing (c) maximum entropy and (d) Wiener filtering, for 

interpreting the data set of lung images. 
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Also there was a significant correlation in the results obtained from both parameters 

(i.e., TPF test and AUC test) used to assess image interpretation (Figure 6.9). 

1.2 
True positive fraction test 

O.g 

0.6 

0.4 

0.2 

* * 

0.2 &4 06 &8 
Area under curve test 

• Reader 1 

-k Reader 2 

1.2 

Figure 6.9: The correlation between area under curve (AUC) test and true positive 

fraction (TPF) test for the first reader (•), and the second reader (*). 

6.4 Discussion 

The assessment of image processing techniques requires their interpretation to be 

compared to that of the gold standard of the true diagnosis. In many clinical situations 

this is not generally available and the diagnosis of PE is one such example. Therefore 

simulated images which enable truth to be known provide a useful way of evaluating 

the different image processing algorithms. The use of simulation also has its limitations. 

The diagnostic process in nuclear medicine imaging depends on two separate 

components; 
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( i ) the physiological uptake of the radiopharmaceutical being different in the diseased 

part of the organ being different from normal. 

( i i ) the gamma camera being able to adequately represent the activity distribution. 

In the simulation technique described here only the second component of this process is 

being tested. In addition a clinician reporting a V/Q scan will have other information to 

hand in addition to the scan itself, such as the patient's history and an x-ray. Despite 

these limitation, still has an important role to play in giving a clear evaluation of the 

image interpretation process itself, uncomplicated by other factors on which a clinical 

diagnosis will depend. 

In this investigation simulated lung images have been used to evaluate the three image 

processing techniques. These techniques produce a variety of images which are 

different in quality. The parameters required by the three image processing techniques 

were defined according to the results obtained from the previous investigation in 

chapter 5 . These parameters were chosen to give images with a similar level of noise. 

For Wiener filtering (WF) and conventional smoothing (SM) this was straightforward 

as the same parameters could be used. However for maximum entropy (ME) a more 

complicated regime had to be employed due to the fact that not all the images 

converged for a fixed value of error parameter C2 . This represents a significant 

disadvantage in the practical use of ME, in that a range of solutions have to be created 

to allow a consistent operation of the technique. 

ROC analysis has been used to test the ability of the three image processing techniques 

to enhance and improve the detectability of images. The first reader ranked the three 

image processing techniques as follows, maximum entropy, conventional smoothing 

and Wiener filter, while the second reader ranked them as, maximum entropy, Wiener 

filter and conventional smoothing. The results obtained from the first reader indicated 

that the conventional smoothing and Wiener filtering techniques did not perform 

significantly better than the raw data (P > 0.05). The maximum entropy result was 

significantly different from the raw data, but not from conventional smoothing and 

Wiener filter techniques. The maximum entropy result was higher in its sensitivity 
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(TPF) at a low false positive fraction (FPF) value of 0.1 or using the area under the 

ROC curve (AUC), indicating the improvement in image quality. However in the case 

of the second reader none of the three image processing techniques gives any 

significantly different result compared to the raw data, when applying both the area 

under the ROC curve test or the true positive fraction (TPF) test (P > 0.05). Also none 

of the techniques was significantly better than the other (P > 0.05). The sensitivity of the 

Wiener filter image processing technique was the highest (TPF = 0.51) at FPF = 0.1, but 

the maximum entropy technique gives the highest value for the area under the curve 

(AUC = 0.7). 

There was a clear difference in the two readers interpretation of the images. Reader 1 

had a higher ROC curve for all sets of images, which was significant in each case using 

the TPF test. Therefore the results are not consistent across both observers. That could 

be due to the variation in their perception. It is noticeable that the two readers are varied 

in their degree of training and experience. Therefore their method of interpreting the 

data was different. The first reader planned a strategy of detection to obtain the fine 

differences in image appearance. A set of reference images was first established 

defining typical percentage detectabilities across the range 0 - 1 0 0 %. Each image was 

then compared to this baseline data set using carefiil adjustment of the upper contrast 

level to determine the value at which objects disappeared. Considerable care was 

taken over each evaluation. Reader 2 reported the images much more quickly and 

essentially recorded his initial impression of objects which were clearly seen in the 

image. He used the discrete five point scale (see section 5.2.5.2.3) in reporting. This 

might represent the clinical reporting of nuclear medicine images by nuclear 

medicine clinicians which does not depend on the image only, it requires a patient's 

history and certain other medical information. 

6.5 Conclusion 

This investigation has shown that the improvements of image processing observed on a 

planar object are not so clearly seen in this example of a clinical study. This is not 

surprising for several reasons. The two deconvolution techniques would not be expected 
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to operate so effectively as the convolution model describing their operation does not 

apply exactly to the imaging of a three dimensional object. In a 3D object the point 

spread function (PSF) is varying at different depths whereas the ME and WF techniques 

assume a single PSF. There were also limitations in the numbers of images that could be 

used in the ROC experiment, due to the long time required for evaluation and lack of 

availability of that time for the readers. In retrospect the experiment could probably 

have been improved using subsegmental defects instead of segmental defects, as this 

would have provided more features around the threshold of detectability; segmental 

defects were generally too obvious. 

Despite these deficiencies the study was able to demonstrate that ME did produce a 

significant improvement for one of the readers. This suggests it may be of value in 

improving diagnostic accuracy for some observers and is worthy of further study. 

The practical application of ME in this study was hampered by the difficulty of defining 

the error parameters. The new method of ME processing, recently developed (McGrath 

1998) in which parameters are predefined may be of value in this respect. 
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Chapter Seven 

Conclusions and Future Work 

In this chapter a summary of the findings of this study will be put into context of 

previous work that has been carried out. It will also discuss future work that is 

indicated as a result of the work 

7.1 Practical Implementation of Maximum Entropy 

The practical application of ME requires several parameters to be defined. The 

technique will also only converge for a limited range of parameters. In this study an 

investigation of the influence of parameter values on image quality has been carried 

out. This data has then been used to develop rules for using the technique in practice. 

The requirement of defining these parameters is, however, still a drawback of the 

technique and further work is required in this area. A new technique for application 

of ME not requiring parameter definition has recently be developed in which the 

data errors required are obtained iteratively (McGrath 1998). This is currently of 

promise, but requires fuller evaluation. 

Another practical aspect of the technique is the time it takes to operate. The current 

algorithm takes about 30 sec to process a 128 x 128 image. This is a little long for 

routine application. However, the code has not been optimised for speed and is being 

run on a relatively old computer. Therefore it is anticipated that considerable 



172 

improvements in running time could be achieved if routine application were 

required. 

7.2 Assessment of Image Quality using a Figure of Merit 

Objective quantitative measures of image performance are of potential value in 

evaluating quality. However, they require accurate and reproducible values of 

contrast and noise to be measured from the images. With planar radionuclide 

imaging this can only be achieved easily by imaging planar objects. Even in this 

situation the study has shown that care needs to be taken in defining the regions of 

interest in the image used to evaluate contrast and noise. When measured carefully, 

the FOM used in this study (i.e., F0M2) did show correlation with observer 

detectability (Chapter 5). For a given observer using a particular processing 

technique there was a significant correlation in each case. However, the correlations 

were not exact and there was considerable variability in detectability for a given 

figure of merit. The data from the different processing techniques varied 

monotonically with the corresponding mean F0M2. However, for only one of the 

observers did the results from the raw data fit into this same pattern. For the other 

observer the detectability for the raw data was considerably higher than expected 

based on the F0M2. 

F0M2 values are clearly giving useful information on image performance and in 

particular on the relative values of image processing techniques. However, their 

direct relation to detectability of objects needs to be interpreted with some care. 

7.3 Comparative Evaluation of Maximum Entropy Processing 

A lot of work has been carried out on the application of image processing in planar 

radionuclide imaging. This has generally led to little clear advantage in clinical 

practice although some recent work show that there is evidence for improved 

diagnostic accuracy (Mountford 1998). In this study the immediate visual impact of 
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all the image processing techniques is confirmed as being quite subtle. However, 

quantitative evaluation using F0M2 analysis on planar objects shows quite clearly 

image processing is providing improvements. ROC data provided less clear evidence 

although for one observer all the processing techniques gave improved detectability 

compared to the raw data. This suggests that all the forms of processing studied may 

be of value for some observers. However, for the simulated lung data the ROC study 

showed little evidence of the advantage of image processing. Only the ME technique 

for one observer showed a significant improvement over the unprocessed images. 

The results suggest that maximum entropy does perform better than other image 

processing techniques. In the planar image study it gave the best results from the 

F0M2 analysis and for both observers using the ROC. In the lung study ME was the 

only technique to show a significant improvement over the raw data, although this 

was only true for one of the observers. This suggests that further work to prove its 

value in clinical imaging is indicated. Thus there is still hope of potential clinical 

application to either in improving diagnostic accuracy or in achieving similar 

accuracy with lower count images leading to dose-reduction or shortening of 

imaging times. 

7.4 Use of Simulation in Evaluation of Image Interpretation 

The simulation of images has been used in this investigation to substitute the real 

clinical images. Its main value compared to the use of clinical data is that the true 

image distribution is known and can be used as a gold standard to compare the 

performance of different techniques. It also allows the influence of various 

parameters on the image quality and interpretation to be studied in a systematic 

manner. Its disadvantage lies in the difficulty of simulating all aspects of clinical 

imaging, both of the physical imaging process and more particularly of the clinical 

context in which image interpretation occurs, such as other prior information about 

the patient condition. Nevertheless simulation does provide a very useful way of 

studying the influence of image formation process on the detection of abnormalities. 
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7.5 Visual Image Interpretation 

The results shows a clear difference between the diagnostic accuracies achieved by 

the two readers. This can be due to different circumstances such as, the individual 

methods of interpretation from one reader to another and the number and type of 

images used in the investigation. Therefore it is suggested to perform more studies 

and increase the number of readers. The simulated lung images were useful on 

evaluating the performance of image processing techniques. However, most of the 

segmental defects were too easily seen to distinguish between the capabilities of 

different techniques. Therefore smaller sub-segmental defects would be likely to 

provide better differentiation between techniques. 

7.6 Conclusion 

ME has been adapted to be suitable for clinical use. It gave the best results for 

processing nuclear medicine planar images, among the techniques studied. This may 

assist in improving diagnostic accuracy or in obtaining similar quality images with 

less radioactivity given to the patient or shorter imaging times. It's clinical 

usefulness is not yet convincingly shown but is of sufficient promise to recommend 

further studies, both in V/Q scanning and other types of radionuclide investigations. 
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