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Numerical relativity is a relatively small but growing area of research in General Relativ-

ity. The background and motivation for this type of work is first described. The major 

project of the Southampton Relativity group, CCM (Cauchy-characteristic matching) is 

next outlined and the initial work on cylindrical symmetry is subjected to a complete and 

detailed analysis to ascertain its validity. The next stage of the project was to extend the 

CCM scheme in cylindrical symmetry to two degrees of freedom using a solution due to 

Piran, Safier and Katz which possesses both gravitational degrees of freedom. This fam-

ily of solutions is derived, and the modifications required to be made to the existing code 

are described. The problems that were encountered, and the means by which they were 

overcome are considered, and error and convergence results are presented. Finally, a new 

approach to CCM is considered in which the principal null directions of the system are 

calculated, rather than the metric functions which are inherently coordinate dependent. 

However the practical application of this method turns out to be less successful than 

had originally been hoped for, and the major problems which arise are discussed. Some 

final comments are made as to the successes and drawbacks of the various methods, and 

suggestions are made to possible future areaa of development. 
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Introduction 

0.1 Numer ica l Relat ivi ty 

In this introduction the origins of the subject of Numerical Relativity are outlined. We 

shall describe how the natural human desire to know and understand more about the 

world around us has driven people through the ages to learn more about the universe. 

From early speculation, which was based mainly upon ideology, to observations made 

with the telescopes and satellite probes of today, the main pioneers and procedures are 

described. We then conclude by outlining the growing status of numerical relativity, and 

the increasing contribution that this field is making to our understanding of the universe 

in which we live. 

In the early ages of man there was little if any knowledge of any countries and 

civilisations beyond their own. Most ideas about what lay beyond immediate experi-

ence was founded on myths and legends, and the world was believed to be flat. Greek 

philosophers began to question this belief, and early mathematics also seemed not to 

support this theory. An experiment was designed to test the notion. By placing two 

identical sticks many miles apart and observing that the shadows that these cast at the 

same time of day had different lengths, it was demonstrated that the Earth's surface 

was in fact curved. Thus began a slow development which reconciled scientific theory 

with observation. The Greeks believed that the planets should be perfect spheres which 

described perfectly circular orbits about the Earth. However observed orbits were not 

quite like this. Ptolemy succeeded in adding slight circular corrections to circular orbits 

to achieve a theory which matched observation of the time, and this theory survived for 

over 1500 years. By the 16th century more accurate observations of planetary orbits 

were available, and Ptolemy's model no longer fitted completely with these. Copernicus 



determined that circular orbits would very nearly fit with the new observations with 

the provision that the centre of the system be the Sun rather than the Earth. Later in 

around 1600 Johannes Kepler devised a theory which also had the Sun at the centre, 

but where the planets described eliptical orbits. The Church refuted these ideas, believ-

ing rather that God created the Earth as the centre of his universe, but when in 1609 

Galileo observed with a telescope that Jupiter had satellites, the Earth-centred model 

was finally laid to rest. 

From the middle of the seventeenth century Isaac Newton begazi to study the laws 

and factors that governed motion. He produced his three laws of motion, and also gave 

some thought to forces that exist between objects. Whether an apple really fell and 

gave him a flash of inspiration or whether this story is just a myth is not certain. But 

regardless of the method, he devised a theory of gravitation which for the first time 

gave a means of understanding everyday gravitational phenomena. Newton's theory of 

gravity waa baaed on the theory that every piece of matter pulls every other piece of 

matter towards it. In the case of a body falling under the force of the Earth's local 

gravity, the Earth does move towards the body but the motion is too small relatively to 

be detected. He stated that quantitively a gravitational force exists between two objects 

of masses mi and mg say, the force F of attraction between them being given by 

(0.1) 

where r is the distance between the two centres of gravity and G is Newton's Gravitia-

tional constant. 

In our lifetime the idea of gravity is second nature, and few would dispute the maxim 

'what goes up must come down'. In Newton's time though this theory represented a 

great breakthrough, and when he applied his laws of gravitation and motion to the solar 

system he found that his predictions were the first which actually matched the observed 

universe. This model produced a universe that was infinite and forever unchanging. 

However, as the resolution of telescopes improved, more and more detail of the stars and 

planets was able to be observed and strange whirlpool configurations were discovered. 

These were found to be galaxies in their own right. Furthermore spectroscopic analysis 

of light coming from these galaxies showed that they exhibited a red-shift, that is the 



universe was in fact expanding. Theoreticians were uneasy with this idea however, and 

still favoured a static model. 

In 1915 Albert Einstein proposed his celebrated General Theory of Relativity which 

unified space and time into one theory. One consequence of the theory was that a static 

universe was not possible. Instead the universe must either be expanding or contracting. 

Einstein thought that this was a flaw in his theory, and added in a term known as the 

cosmological constant in order to allow the universe to remain a constant size. He later 

described this move as 'the biggest blunder of his life', after George Le Maitre had 

worked through Einstein's theory and showed that expansion of the universe was indeed 

what waa observed, and that the cosmological constant was not needed. Several famous 

experiments have supported Einstein's theory, including the observed advance of the 

perihelion of Mercury, and the bending of light as it passes massive objects such as 

planets. There is still not conclusive proof that General Relativity is in fact the correct 

theory, but it remains the most likely candidate at present, and that which best fits with 

observation. Since Einstein first proposed his theory, many people have worked on his 

ideas and sought further proof to support it. 

Einstein's equations are extremely complex, but the emergence of computer technol-

ogy suggested that computers might be a useful tool in further exploring implications 

of the theory. Moreover, despite a large amount of analytical work it became clear that 

there were practical limitations in using a purely analytical approach, in that there are 

only a limited number of physically realistic exact solutions. At the same time exact 

solutions of Einstein's equations do not exist for many physically significant scenarios, 

including the two body problem, radiative sources and the interior of a rotating body 

undergoing gravitational collapse. A greater understanding of problems such as these 

would help to combine the mathematical theory with the observations of astrophysicists 

and cosmologists. Numerical simulations could also produce more evidence to support 

the General Relativistic theory. For example gravitational waves are generally believed 

to be one consequence of the theory, and have not as yet been detected directly. This 

is due to the tiny size of signal that could be detected in relation to the accuracy of the 

detection instruments at this stage. The next generation of detectors ( LIGO, VIRGO 

etc) may finally have the resolution needed to pick up these faint signals when they come 

on line in a few years time. If these do detect gravitational waves, this will provide firm 



evidence in support of the General Theory of Relativity. A procedure for experimentally 

testing the strong-field predictions of General Relativity using data from these detectors 

is considered in [1]. 

0.1.1 A new approach to solving Einstein's equations 

Classical mechanics, which governs the macroscopic motion of objects, is now well un-

derstood. In this case, experiments could be performed to analyse how various factors 

(mass of objects, initial velocities etc.) affected the resultant motion. Understanding 

the behaviour of our universe is a very involved problem which classical Newtonian 

theory cannot fully handle. The General Theory of Relativity best fits with what has 

been observed, but the universe is not like a laboratory where factors can be varied 

at will to examine patterns of behaviour. The elegance of the General Theory is only 

matched by the complexity of the equations, which are second order partial differential 

equations and highly non-linear. Consequently purely theoretical work has been mainly 

restricted to special cases, usually of high symmetry, where the equations simplify and 

become soluable. The great challenge is to harness the power of the new generation of 

supercomputers to solve the complex equations for any given spacetime. 

In the 1960s a small number of people began to attempt to solve Einstein's equa-

tions via computer simulation - thus numerical relativity was born. The first numerical 

general relativistic calculations were performed by May and White [2], and Hahn and 

Lindquist [3]. The former investigated spherical matter collapse and the formation of 

neutron stars, and the latter looked into black hole collision. Although both studies 

made some progress, the work waa hampered by the underdevelopment of the necessary 

theoretical techniques and the available computer power of the time. A number of new 

numerical techniques needed to be developed in order to cope with the complexities 

of a four-dimensional system. One such technique was based on the so-called ADM 

'3+1' formalism [4] which, in essence, involves splitting spacetime into a series of 3-

dimensional spacelike hypersurfaces which are connected by 1-dimensional timelike lines. 

This method is addressed in, for example, [5]. Essentially the four-dimensional problem 

can be addressed by considering the 3-geometry on the series of spacelike hypersufaces. 

The geometries of successive slices can be related through the evolution equations, which 



come directly from the Einstein field equations. The fundamental components to the 

formalism are the choice of an initial three-surface S, and the construction of a family 

of slices {S} , along with a congruence of curves along which the data is propagated from 

one slice to the next. In order to uniquely describe the four-metric in this new way it 

is neccessary to know the three-metric gij on each slice, and also the shift vector 

and lapse function a . The lapse function specifies the normal separation of the slices 

while the shift vector defines where the normal intersects the upper slice in relation to 

the lower. 

Figure 0.1; An illustration of the '3+1' set up 

As an illustration, consider Figure 0.1 which shows two adjacent three-surfaces. The 

time-like normal vector at the point P , ((, z ') on the surface t = constant, intersects 

the next surface, t + At = constant at the point R. When the normal vector intersects 

the upper slice it has been displaced due to the shift vector RQ which has components 

TV' in the upper slice , and so R has coordinates (t + 5t,x^ — N''St). The proper time 

that elapses is aSt where a is the lapse function. Note that a = 1 / \ / ^ . 

We now present a derivation of the ^3+1' decomposition of the metric. We choose a 

family of spacelike hypersurfaces, S which form a foliation of spacetime. These hyper-



surfaces are given by 

(0 2) 

is the covariant normal to the family and lu" = is the contravariant normal 

from it. If n" is the unit normal to the foliation, which must naturally be proportional 

to w", then it satisfies 

M-'M. = - 1 (0.3) 

with the standard signature ( - 1 , + ! , + ! , + ! ) . We then define the projection operator by 

~ (0.4) 

This is used to project tensors into the foliation. From equations (0.3 - 0.4), Ba = 0, 

and we can obtain the induced 3-metric by projecting the 4-dimensional metric into E, 

viz 

(0.5) 

From (0.3- 0.4), 

(0.6) 

+ (0.7) 

The next step is to choose a rigging vector field that lies nowhere in the foliation. It 

can therefore be decomposed into components parallel to and orthogonal to M", i.e. 

r = AM" + AT" (0.8) 

where again a is the lapse function and N'̂  the shift vector, satisfying 

= 0 (0.9) 

We find from (0.7 - 0.8) that 

- A '̂')(^^ - A^̂ ) + (0.10) 

Coordinates (z'') = (a;°,z^) = are chosen where the hypersurfaces are the 

slices 
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The rigging vector field is —. With this choice of coordinates the induced 3-metric and 

the shift vector are entirely spacial. We have 

(0 .11) 

and 

TV" = 

Combining (0.10) and (0.11- 0.12) we find that 

1 / - 1 ^ 

^ TV/" y 

Now define the induced covariant metric 7^1, by 

9°' = ^ 

(0 .12) 

(0.13) 

(0.14) 

so that Greek indices can be raised and lowered with 7^" and 7^^. Thus 

& = 7,^ TV' 

Since the covariant and contravariant metrics must satify the relation 

(0.15) 

= < (0 .16) 

we deduce from (0.13) that 

/ ^ 
9ab 

\ N.,, JflU J 

Therefore the line element in canonical form is 

(0.17) 

(0 .18) 

Thus knowing the three-geometry, the lapse function and the shift vector, the four-

metric can be uniquely reconstructed. For a more detailed discussion of the '3 + 1' 

formalism see, for example [5] or [6]. Basic methods and issues related to numerical 

relativity are addressed in [7]. 

The ability to express a four-geometry in terms of 3-geometries and these other functions 

makes it possible to study general relativity via computer modelling. Einstein's equations 

7 



are second order partial differential equations, and standard finite differencing techniques 

such as those used in the study of fluid mechanics can be applied. The principles of the 

finite difference method as used in the Southampton work are outlined in section 1.2, 

or for a more general description see [8]. Once the evolution equations for the system 

being considered have been put into finite difference form, and any necessary boundary 

conditions have been enforced, the initial conditions are applied. The simulation can 

then run, and the output is compared with analytical or semi-analytical results to assess 

the reliability of the code. Self-consistency checks, such a.s convergence tests, are also 

a way by which the model's validity can be evaluated. Early simulations were limited 

by the memory and speed of the computers that were available to researchers. Modern 

codes are increasingly complex, and cover a wide range of research interests. The Grand 

Challenge project in the United States involves a large scale collaboration to investigate 

gravitational radiation resulting from the coalescence of a binary black hole system (some 

examples of recent work in this project are described in [9] [10] [11] [12]). While this may 

be regarded as, in a sense, the holy grail of numerical relativity, many other projects 

contribute to the greater understanding of the big picture. For example, comparing 

the results from numerical gravitational wave simulations with physical evidence when 

(or if) gravitational waves are detected will provide evidence to support or contradict 

General Relativity. Many examples of recent work and ideas can be found in proceedings 

from workshops and conferences related to numerical relativity, such as that held in 

Southampton a few years ago [13]. 

As with any numerical approach, there is an amount of scepticism as to whether the 

results obtained are realistic, for by its nature a computer simulation will always generate 

a numerical solution of some form. A similar situation existed when computer algebra 

systems were first developed. In General Relativity, SHEEP (d'lnverno, Frick) was able 

to compute metric tensors and associated 'objects' which previously would have taken 

days or even months to calculate by hand. Confidence in the answers generated was 

eventually obtained by performing the same calculation using other algebra systems. 

The answers obtained were consistent between the systems and were also consistent 

with hand calculations, when they were available. Thus the validity of these systems 

was confirmed, and subsequently the computer tools were accepted into general use. 

Similarly, computer simulations must be benchmarked, and a level of consistency 



is required to confirm their validity. Benchmarking is achieved by requiring that the 

results obtained are in keeping with analytic predictions or other similar simulations. 

Consistency is achieved by performing convergence tests on any particular simulation. 

Thus most models begin by examining special cases, or spacetimes with certain symme-

tries so that the behaviour is already understood. Hence if the results produced by the 

simulation differ vastly from the expected solution, the code needs further refinement. 

However if the results are consistent the model can be developed further with some 

confidence that the basic hypotheses of the model are correct. 

The ultimate aim of numerical relativists is to develop a reliable computer code which, 

when given the initial configuration of any spacetime or universe could then calculate 

the subsequent behaviour. This is obviously a lot to ask, but the benefits would be 

great. It would bring relativity into the position where, just as a mechanical system can 

be carefully scrutinised, each parameter could be adjusted to examine how this affected 

the large picture. As a result, a far greater understanding of complex problems could 

be achieved. However, to arrive at this final stage one must begin with what is already 

known and hope to learn from this at each stage, as progression to this final goal occurs. 

There would then be a great opportunity for numericists and theoreticians to work more 

closely together to produce a better and more complete understanding of the universe. 

0.2 The Sou thampton project 

Southampton is one of the main centres for Numerical Relativity in the UK. The main 

project consists of attempting to combine interior Cauchy codes with exterior charac-

teristic codes connected across an interface, in order to model scenarios of astrophysical 

interest. This area has now become known as CCM - Cauchy-characteristic matching. 

Moreover, the exterior vacuum region is compactified so as to include future null infinity 

into the regime where gravitational radiation can be unambiguously defined. This over-

comes one of the main drawbacks of existing codes on finite grids, namely their reliance 

on ad-hoc definitions of gravitational radiation at the boundary. 

The project has four main stages in its development, namely showing that the method 

works in (i) flat space (ii) cylindrical symmetry (iii) axial symmetry (iv) full generality. 

The work on stage (ii) of this scheme is described in [14] and [15]. The group is 

9 



currently focussing on (iii). The major difficulties lie in coping with the transfer of 

information at the interface between the regions, and in obtaining regular compactified 

equations in the exterior region. The ultimate aim of the project is to produce a fully 

general code which can take any appropriate initial conditions and produce from them 

a series of evolution slices. However, it is hoped that through examining the procedures 

neccessary in the steps labelled (i)-(iii) above, a greater understanding of the problems 

associated with the process, especially the matching of the two regimes at the interface, 

will be achieved. 

0.3 Mot ivat ion for this work 

The computer code that had been developed by the Southampton group at stage (ii) 

mentioned above, that is in the case of cylindrical symmetry, had only fully considered 

the case with one gravitational degree of freedom, and where there was no rotational 

degree of freedom. It was thought that it would be of interest in this case to also 

consider a vacuum solution with two gravitational degrees of freedom. The results 

obtained via the computer evolution could then be compared with the exact prescription 

of the solution in question. The solution chosen for this purpose was given in [16], 

and appeared at first sight to be fairly simple. However, in the implementation of 

this comparison the existing code was subjected to a much harsher test that had been 

expected, and also required some modifications in order that the evolution grid could 

include future null infinity. The convergence results and errors obtained, as stated in [15], 

showed the code to give very successful reproduction of the expected data. 

Further to testing how well the numerical scheme dealt with the presence of the 

rotational element in this solution, the existing code was a useful tool with which new 

numerical methods and ideas could be examined. Due to the results obtained previ-

ously, the code was reliable enough to try out a method suggested in [17]. This involved 

calculating the principal null directions which contain coordinate-invariant information 

about the spacetime. This approach, if successful, could be an important new numer-

ical approach because it is often the metric functions which are evolved in numerical 

simulations of this nature, but these are heavily dependant upon the coordinate system 

being used. Thus this new idea was applied to the computer code, in order to investi-

10 



gate the practicality of this approach, and to aim to test the accuracy of the computer 

simulations further. 

The work described in this thesis deals with the development of the coding in these 

two areas, giving details of what was done and comments on the success and merits 

of these methods. Attention is also drawn to areas which generate problems, or where 

practicalities of implementation restrict the efficiency and desirability of the methods. 

11 



Chapter 1 

Validation of the computer code 

1.1 Verifying the equations 

A first step in the process of verifying the work was to go through the derivation of 

all equations that were used. We began with [14], the first paper in which vacuum 

cylindrical symmetry is considered by the Southampton group. The starting point for 

this work is the standard general cylindrically symmetric line element due to Jordan, 

Ehlers, Kundt and Kompaneets [18], [19]. Using the coordinates (z'^) = = 

{t,r,(f)^z) in the Cauchy region the line element, or metric, is given by (1) : 

+ (fz)" (1.1) 

where the metric functions •0, and 7 are functions only of t and r, ie 

V' = V'(^,r), w = w(^,r), = (1.2) 

We compute the Ricci tensor, Rab, for this metric and then use the fact that for vacuum 

solutions we have the identity 

= 0 (1.3) 

This gives us six non-trivial equations, from the non-identically zero components, viz. 

Aoo, i?oi, i?ii, -R22, R23 and R33. After some simple manipulation, involving merely taking 

linear combinations of these quantities, we obtain the equations labelled (6)-(9) in [14]. 

12 



le 

= oV + = 0 (1.4) 

2e^^ ^^(^23 — UjRss)— = Ow + 2r Ŵ_r + 4(w_(^_( — W r̂V'.r) — 0 (1.5) 

rAol = 7,t - 2r^,t<^,r - = 0 (1.6) 

l r ( ^ + All) = 7,r - /̂ (V;̂  + V') - + w,̂ ) = 0 (1.7) 

(1.8) 

where 

df^ r dr dr'^ 

These are the field equations for this problem in the Cauchy region of our spacetime. 

The contracted Bianchi identities can be expressed 

{ - 2 f l L + -RjiL)^„ = o (1.10) 

These show that R22,t and the combination {2Rn — r~"^e '̂̂ /?22,r) are functions of equa-

tion (1.7). Due to the cylindrical symmetry, we also have the identity 

R22 + (r^e — w^) A33 + 2lo (w%3 — R^z) = 0 (1.11) 

These put together imply that R n andi?22 are determined in terms of the main evolution 

equations. Hence if ip^ti w and w,* are prescribed on an initial t =• constant slice then 

the coupled wave equations (1.4 - 1.5) can be used to evolve ip and u> into the future. 

7, which represents the energy of the system, can be obtained by quadrature once the 

other two metric functions are known. 

In the characteristic region we introduce a null coordinate, u. Then the evolution slices 

in this region are given by a series of hypersurfaces where u takes a constant value. We 

set 

u = f — r (1-12) 

and thus our line element in terms of our new coordinates (u, r, (j), z) becomes 

(̂ 5̂  = + e^ (̂w(;!, + (fz)^ (1.13) 

13 



This is equation (16) in [14]. We compute the Ricci tensor components for this metric, 

and then by taking similar linear combinations of the non-identically zero components 

as in the Cauchy region, we produce the field equations (18)-(20) : 

2^,ur — V\rr + f " V\r) + — 2w_uW_r) — 0 (1.14) 

~ ^,rr ~ ^ ^ (<̂ ,w ~ V'.r^.r) = 0 (1.15) 

1 
2' 

The corresponding fourth equation in this set should be 

'7,u + 2r(^j^ — + w,uW,r) —0 (1-16) 

7,r - rV']!. - = 0 (1.17) 

This equation is incorrectly stated in [14], for taking coordinates (w,r, <̂ , z) we have 

Aoo = + 2 r - S , r - = 0 (1.18) 

which, on multiplication by yields equation ( 1.17). However, this mistake is not 

pEussed through to the computer code itself. 

These characteristic field equations cannot be regularised as they stand, and so we 

need to consider a mechanism that will put them into a regularised form. We shall 

apply the method of Geroch decomposition. The formalism developed by Geroch, [20] 

enables us to 'factor out ' one direction by means of an appropriate Killing vector, and 

from thence forwards concentrate fully on the remaining 3-space. This, it turns out, 

enables us to regularise our field equations. In the case of vacuum cylindrical symmetry, 

since all the functions are independent of z, it seems desirable to remove this direction 

and turn our full attention to what remains. Applying the method and general equa-

tions of the Appendix of [201, we obtain new (though equivalent) forms for the field 

equations. The wave equations can then be simultaneously regularised, to remove the 

singularities at infinity. 

Two metrics are conformally related when we can write 

^.6 = (1.19) 

for some fi. If we rescale cj) so that 

= (1 .20) 

14 



then for some appropriate value of 6 we may be able to regularise the field equations. 

We follow the method of Appendix D in [21] (particularly using (D.14)), and discover 

that if 5 = —1/2 then the 3-dimensional wave equation is then conformally invariant. 

This suggests that we can regularise the equations in the characteristic regime by means 

of a rescaling. Thus the characteristic region can be regularised by introducing a new 

radial coordinate, 

(1 .21) 
r 

we then set ^ and following Geroch set = A = 1 + to obtain new 

parameters, 

m = (1 .22) 
y 

and 

to = (1.23) 

We rescale our former parameters by x~^ so that 

^ = (1-24) 

6 = z " : o = yo, (1.25) 

Proceeding in this way we finally obtain compactified, regular forms for the held equa-

tions in the characteristic region ( (59) - (62) ) 

(1 .26) 

+23/^A'"Xmu; + (1-27) 

7,1, = -^!/A"^[m^ + iu^ + 2!/(mm,^ + iutu,^) + i/^(m^ + iu^)] (1.28) 

= - ^ { M " + lV" + ^!/'A-'[(m + ! / m j M + (u; + 2/w,)iy]} (1.29) 

15 



where 

M = (1.30) 

= (1.31) 

These equations are used directly in the computer coding used in the numerical model. 

In the second paper in the on-going series by the Southampton relativity group, [15], 

the framework of the numerical scheme is developed, and the details of the interface 

matching method are presented. The line element in the Cauchy region is, as before, 

given by 

+ cfz)^ (1.32) 

We follow the ADM 3 + 1 formalism [4] and impose the slicing condition 

(1.33) 

where A'j are the mixed components of the extrinsic curvature, defined shortly. If we 

set X = 7 — then the lapse function N is defined as 

TV = 

The extrinsic curvature components can be computed from the formulae 

(1.34) 

K: 
27V 

Here hij is the three-metric of the t — constant hypersurfaces, TV' are the components 

of the shift vector, and D, is the covariant derivative compatible with the three-metric. 

The shift-vector has all components set to zero, so that = 0. hij is used to raise and 

lower spacial indices in the usual way. With coordinates (z"') = (r, <̂ , z), the covariant 

components of the three-metric are 

/ 

"v 

g2(V'-̂ ) 0 0 

0 

\ 

0 we .2V' 

(1.36) 
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while the contravariant components are given by 

h 

\ 

g2('Y-V') 

0 

0 

r -wr 

-wr e ^^4-w^r 

(1.37) 

Since the shift vector components are identically zero in this case, the expression for the 

extrinsic curvature components simplifies to 

K,, 
1 

(1.38) 
2/f az 

Thus the covariant components are given by the following. Note that in the simplified 

form of ( 1.38), this tensor is symmetric. 

2exc% 

K 

Krz = 0 
a ; 

2eX(% 

1 d 

3V'-T _ , .2,/, _3i/'-'Y 

^(pz 2exo% 
1 d 

W ^,(6" 

2ex 

Thus the mixed forms are 

(1.39) 

(1.40) 

(1.41) 

(1.42) 

(1.43) 

(1.44) 

(1.45) 

AT; = 

= o 

= o 

= o 

Si/*—7 

(1.46) 

(1.47) 

(1.48) 

(1.49) 
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+cjr-^e'* {^-10J + e"*-^ 

h't = <P.,e*"' -

=4'̂  
1 

-̂ggSV'-'Y 

-r 

(1.50) 

(1.51) 

(1.52) 

These are sufficient to determine evolution expressions for the three metric functions 

"y (via X = T — '^), and w. Equation (1.46) yields equation (6) of [15], (1.52) can be 

rearranged into (8) of [15], and (1.52) with (1.50) gives equation (7) of the same. 

If Lj;, Z/f and L are defined as given in (12) and (13) of [15] then we readily obtain 

(14)-(17). An error occurs in the statement of the next equation, for from (3) 

-2,/, 

then 

-(Wr)̂ e '̂̂  — r (%,r + V'.r) + ^ (̂V'.r)'' 

+ r"(Arf - )" + = 0 (1.53) 

rex y +rM — ) + ^ 

%,r - tr - r(t.y + I 2^2^-2% ^2^(^^2g-2^-2x (1-54) 

The remaining equations of section A follow simply from the earlier ones. Section B 

restates the main equations of [14]. 

The interface equations of part III section B were verified with the exception that errors 

were discovered in (56) & (70). From (55), we have 

LO 
_ ^ 

But from the chain rule as in (50), 

d 
/(^,!/) 2 

(1.55) 

(1.56) 
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Thus, making use of relation (54) of [14], 

A = 1 4- my (1.57) 

(1.58) 

^,y ~ (^2/),!/ (1.59) 

and from (57) of [14], 

(1.6()) 

we obtain 

du\yx) 2 dyXyX 

!/A 1 / 2 V 2 \!/A 2/2A2 

VKu , %3/M/y M/ ^ 

%A A2 2 VyA sfA %A2 

+ T ( ^ ) - + &r + ('Gi) 

Therefore, 

w, 
, MM/ , ii/M" , i ! / W , _ , 

+ n ^ M L - o ^ (1.62) %A A 2 A 2 A2 ' 2 A 

Note that the last term in the published equation (56) is therefore incorrect. Also in 70 

there is a surplus factor of 2 on the last term in the first round bracket. The equation 

should read 

4- 3r ^4-8 '0^r '^ , r 4" 2w 4* r 

-8 r^ /^( l f , ( 4- I t r + + 2 y (1.63) 

For from (69) of [15] we have 

4rI^-2rA"w,r-r^/^m (1.64) 
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^ — 2rA^w,r — 

= -2 r3 /^ + 4r l f_ , - 2e'̂ '̂ Wr - 8r^,re'^^w,r - 2re'''^w,rr 

— — r^/^w,r + 4rZ,^_t — 8r^,fe^^w,r — 2re^^a;,r( — 

= -2 r^ /^ (^4lf + 4 r l f_ , + 4rZ,f,, - 2e'''̂ Wr - 8n/,,,e'^'^w,r - SrV'.te'̂ '̂ w,^ 

—2re^^w,rr — 2re^^w,rf ^ 

= -2 r^ /^ ^-2re' '^w,rr - 2re'^^w,H - 8r^,re'^'^w,r - 8r^,te'^'^w,r - 2e'''^Wr 

+ 4 l f + 4 r l f , , + 4 r l t , - - r ' / ' - ro, ,) (1.65) 

Recall that from (60) we can extract expressions for the derivatives of o with respect to 

^ and r: 

o = r'"^/^w = y r"^e^^w,r ( ^ ^ 4 ^ c / r (1.66) 

=^o,r = r-^e'^^w,( (1.67) 

=> o,( = r"^e'*^w,r (1. 

If we now use substi tute these expressions into ( 1.65) then we obtain 

'W,yy — ^2w^rr 4" 2w r̂( "i" 8'0,t'^,r 4" 8'0,r'^,r "t" 2r Ŵ 

- 8 r^ / ^ + I f , , + + 2r^/^o + 2r^/^ + 2r^/^ (r-^e'^'^w, 

^,yy ~ (Sip̂ t'-̂ r̂ 4" 2w,r( + 3r + Sip^r'̂ ,r 4- 2uĵ rr + ^ 

- 8 r ^ / " ( i t , + I f , , + r - ^ l f ) + 2 y (1.69) 

In the characteristic region, by finite differencing equations (59) & (60) of [14] in the 

case where a; = VF = 0, we obtained (72) of [15] with the exception that the last term 

in the first square bracket needed to be corrected to 

3 r a i + i ^ ^ (L70) 
^3/^+1 

Thus the equations derived and developed in both [14] and [15] are verified, with the 

exception of a few slight discrepancies. We shall find however that these errors are not 
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critical errors, and that they have not contaminated the numerical scheme developed 

from them. 

1.2 Fini te Difference methods 

The validity of the equations which form the basis for our scheme has now been estab-

lished. The next step is to put them into a form compatible with a numerical evolution. 

We shall illustrate the principles involved in the Cauchy region, although the same 

methods are applied in the characteristic region. 

Firstly we need to set up our grid in the Cauchy region. Since we are concerned 

with cylindrically symmetric systems, we only need to consider points at various radial 

distances from the origin. We define a radial axis, starting from the origin where clearly 

r = 0. Here r is the distance of the points from the origin in the plane. The distance 

of the interface from the origin is purely arbitrary, but for numerical convenience we let 

the interface lie on the infinite cylinder r = 1. Thus the Cauchy region can be described 

by equally spaced points along the radial axis between the values of 0 and 1. In the 

characteristic region, we have a similar scheme, but the radial coordinate used is ?/, 

which runs from 1 at the interface to 0 at future null infinity. Thus on each iteration 

we calculate the values of each evolution variable at each relevant point along the radial 

axis. Therefore %, 2, are calculated for 0 < r < 1, and m, w, M, ty are evaluated 

for 1 < ^ < 0. The values of these functions can then be determined at any point in the 

slice by symmetry. 

The numbers of grid-points in each of the two regions are specified at the start of 

each run of the program. If we suppose that the number of grid-points in the Cauchy 

region is given by M and the corresponding number in the characteristic region is given 

by Mc then the spacing between adjacent points in each region is respectively 

c(r = - (1.71) 
n — 1 ^ 

so that 
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r(2:) =: (z -- 1)0^-

s/(j) = 1 -- ( j -- l)db/ (1.74) 

j&or 1 m zuicl 1 j 

These points are retained throughout the evolution. However, the value of t in the 

Cauchy region, emd in the characteristic region, is repeatedly increased by a constant 

increment in order to produce a series of evolution slices. It is shown in section III, part 

A of [15] how in order to keep the Cauchy and characteristic slices 'in step', we need to 

fix the value of Au to be equal to the time spacing, At. 

We next introduce the Courant stability condition which is effectively a condition on 

the ratio of the grid spacing with respect to the time direction against that for the space 

direction. In order to maintain stability of the evolution, we find that the following 

condition must be observed: 

Thus in the Cauchy region, the distance between time slices must not exceed that be-

tween cidjacent points in the same time slice. Similarly in the characteristic region 

We see therefore that the time that elapses between one time level and the next is very 

much limited by the grid spacing within each slice. However, by having the grid points 

closer together on each time-step, there is greater accuracy than on a coarser mesh. A 

balance must thus be found between the accuracy required and the time for which we 

wish to evolve our problem. 

Having established the grid to be used, we can now address the methods for calcu-

lating and evolving the variables. The set-up is described in detail in section C of [15]. 

We require initial values for the functions tp and L in the Cauchy region, and m in the 

characteristic region. We also need the value of M on the interface, i.e. M(j/(1)). These 

are computed depending on the option invoked at the commencement of the program. 

For example, in the case of the comparison with the Weber-Wheeler wave, [22], we have 
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explicit expressions for the metric functions ^ and 'y, whilst w is zero everywhere. The 

values of the are thus readily obtained, the values of L are calculated via equation 

(14) of [15], and m in the characteristic region is found from (37) of [15]. The value of 

M on the interface follows from (54) of that paper. 

Hence the initial values for the evolution variables are set. The next step is to use 

the evolution equations to produce a succession of evolution slices. We use a centred 

second-order finite difference scheme known as the leapfrog evolution scheme. This 

scheme uses information from three successive evolution slices, and therefore three levels 

of information are stored . The evolution equations are the mechanism by which this 

information is paased between the adjacent slices. In the Cauchy region these are the 

equations which describe the time derivatives of the evolution variables, equations (14) 

- (17) of [15], while in the characteristic region they are the equations giving the u 

derivatives of the evolution variables, (38) - (39). We also make use of (40) and (41) to 

calculate the values of M and W out along the slices as y runs from 1 to 0. 

The main principles of the finite difference method are now illustrated. If we begin 

with (14) of [15], viz. 

V'.t = (1.77) 

then this needs to be transformed into an expression where each function is represented 

by the function at certain grid-points. The notation which is used is that the value 

of function / at the grid-point on the time-slice is written as If we centre 

our difference scheme at the point r" and apply the scheme to the above equation, we 

obtain the following. Functions are replaced by their respective values at the central 

point, and derivatives take standard forms. In the case of a first derivative, the second-

order expression is closely related to the definition of a derivative from first principles. 

We have 

(1.78) 
r, - r, 

Note that the distance between the time slices and is Ai + A/ = 2Af. Thus 

( 1.77) becomes 
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This is then rearranged to explicitly express the value of 0 on the time-slice in 

terms of data from previous time-slices thus: 

== 4%"-' 4- (1.80) 

Other standard derivatives, centred at r " are given by the following: 

= / j : : ! v i ; (1.82) 

# + l - V'n.i 
rILi 

-- -1 

( r r ' -- r r ) ( r r - r r ) 

(rl+i - r r ) ( r r -- r ^ i ) (rZti -- r r ) ( r r -- r?Li) 

and so on. The form that the expressions for the various derivatives take are obviously 

similar when is replaced by another function, except that wherever a ^ appears above 

it is to be replaced by the new function as appropriate. Thus for example if we require 

a finite-difFernce expression for w,r then by analogy with ( 1.81) we obtain 

-,r(^) - (1.84) 
^̂ +̂1 - H- i 

These principles are applied to all the evolution equations. These then allow the evo-

lution of the information through the grid. The same procedure is followed in the 

characteristic region for m and lu, and a complicated subroutine enables the calculation 

of the values for M and ty, via (40) and (41). Due to the strong coupling of these two 

equations, they need to be solved in combination, by quadrature. 

This thus gives an apparatus for the evolution of the two schemes, one in the Cauchy 

regime and the other in the characteristic region. However a key aim of this work is 

to be able to pass information across the interface by which the two regions are joined. 

This calls for very careful matching of the variables in the two regions, especially with 

regards to the radial derivatives across the interface. Second-order accuracy can be 

maintained via the use of ghost points in the characteristic region, and the extension of 

the Cauchy slices beyond the interface for the initial start-up procedures. This issue is 

discussed in [15]. However, the principles of the finite difference method as applied to 

these interface-matching procedures remain as previously described. 
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1.3 Checking the numerical scheme 

The final stage in double-checking the work that had been done was to establish that the 

equations had been correctly encoded. This involved both ensuring that the equations 

had been accurately put into the finite differenced form, and also that the variables and 

constants were passed between main program and subroutines in a consistent manner. 

The main program takes the following shape: 

1) Initial values are set for i/), w, 2 and on the Cauchy grid, M on the interface and 

for m in the characteristic grid. 

2) A thick sandwich method is employed as described in III C of [15], to evolve this 

initial data backwards. Thus there are three slices of initial data as required for a scheme 

of second-order accuracy. 

3) The evolution equations are applied, in conjuction with equations to match the two 

sets of variables at the interface, to produce a series of evolution slices. 

4) The inherent error, in the form of an /2 norm is calculated and a graphics output is 

obtained for each metric function. 

In order to check through the computer code, each of these four stages must be 

examined carefully. For the first point, it is important to ensure that each of the required 

variables is initialised correctly. A failure to initialise any of the variables required at the 

set-up stage will lead to the value of that variable at each point being set to zero. The 

way in which •0, w, L and Lf are calculated for the initial slice depends upon whether 

general initial conditions are being used, as described in section IV B of [15], or whether 

an exact solution is being used, in which case the metric functions are known explicitly 

and thus these quantities are readily obtained. The initialising routines were thoroughly 

checked, and found to be correct. 

The next stage was to work through the thick sandwich scheme, which applies only 

in the Cauchy region. The initial data is evolved via an explicit first-order Euler method 

onto a slice at time ^ ^ A^, and then this slice in conjunction with the first can generate 

a slice at time ^ - Af using the usual leapfrog method. Finally the first slice and that at 

< - A^ produce the last set-up slice at f - 2A^. The code was again found to be correct. 

The main part of the code which required to be carefully worked through was the 
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third part listed above. The subroutine calls from main program to subroutines and vice 

versa showed no discrepancies. The subroutines themselves were rigourously checked, 

and finally found to match the equations already verified exactly. The interface matching 

routines were long and complicated, but these were also found to be without error. 

Finally the 12 norm is defined by 

1 ^ 
= Iff (1.85) 

i-l 

This is calculated on each slice for the non-zero metric functions ^ and 7. Graphics 

display is via Matt Choptuick's visualisation tool. All this section of the code was found 

to be satisfactory. 

Thus the computer code described in [14] and [15] by the Southampton group was 

fully checked and verified. The scheme can simulate the general vacuum cylindrically 

symmetric case, however only the case where w = 0 had been examined in detail. In the 

next chapter a solution due to Piran et al. [16] is introduced, which was studied and 

used to explore the behaviour and performance of the code when the rotational degree 

of freedom was present. 
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Chapter 2 

Extension to two gravitational 

degrees of freedom 

2.1 The family of exact solutions due to P i ran , Safier 

and Ka tz 

We have described how the computer code developed by Dubai, d'lnverno and Clarke 

[15] had been subjected to a number of consistency checks, in order to establish its 

validity as a code to model the evolution of cylindrically symmetric vacuum spacetimes. 

It had been used to compare the output obtained by numerically evolving a given set 

of initial conditions with the output from the exact solution due to Weber and Wheeler 

[22] at the same times. This comparison yielded very encouraging results, with an error 

of less than 0.1% between the evolved data and the computed values for the specified 

exact solution, at a resolution of 300 grid-points in each of the Cauchy and characteristic 

grids. 

However, one limitation of this Weber-Wheeler wave was that it constrained one 

of the three metric functions, w, to be zero. It was felt that a further step in the 

investigative process would be to see how the code coped with solutions which included 

a rotational element, i.e. where uj was non-zero, since this involves passing derivative 

information across the interface. Fortunately, an exact solution for non-zero w haa been 

found by Piran, Safier and Katz [16]. In the remainder of this chapter, we shall employ 

the convention that numerically generated functions are written in lower case, i/;, "y, w, 
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while the analytic forms of [16] are written in upper case F, 0 . 

This two-parameter family of solutions is given by the general cylindrically symmetric 

vacuum line element due to Jordan, Ehlers, Kundt and Kompaneets, namely 

(2.1) 

where the three metric functions, $ , F and ft are functions of [/ = T — R and V = T + R 

and are given as follows: 

0 2 5 2 4- (Af - ^ ' 

n = - 1)H 2[1 + (1 - 1 , 
^ A,A,2[a2( l_A,A,)2 + (A, + A«)2]/ 

where 

+ (2.5) 

A, = a-^[(a" + y")& + y] (2.6) 

^ = 1 + Xu^v + 2[(1 — a ^)A„A„]2 (2.7) 

The two parameters that govern the solutions are a, which determines the total energy 

of the waves, and o which acts aa a length scale, where 1 < a < oo and 0 < a < oo. 

The special case a = 1 corresponds to flat space. 

We first wanted to check that this was indeed a solution of the vacuum field equations 

directly, by computing the Ricci tensor and showing it to be identically zero. However 

the nature of the forms of the metric functions, in particular the existance of nested 

square roots, meant that a calculation by hand would be very protracted and messy. 

Rather disappointingly, both the computer algebra packages SHEEP and GRTENSOR 

were unable to complete the calculation. We were however able to confirm that the 

solutions were vacuum for particular choices of the parameters a and a. 
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2.1.1 Derivation of the family of exact solutions 

Here we shall lay out the method that was used to show indirectly that the exact solution 

of Piran, Safier and Katz is indeed a solution of Einstein's Vacuum Field Equations. 

We begin with the Kerr solution in Boyer-Lindquist coordinates, (a:") = 

(r^ + 
2 ^2 

A 
(fr ' - (2.^ 

where 

(2.9) 

A = (r — (2 .10) 

The method consists of considering a sequence of coordinate transformations: 

N e w coordinates 1: («") = {x^,R, $,(/)) 

where 

Then 

r = m + A + ^ and = m^ — a .̂ 

dr = ( 1 ^4-^ dR 

(2 .11) 

(2 .12) 

and so 
AV 4 ^ 2 / ^ 

sin^9 
m + R + + a^]d(f) — adx^ (2.13) 

where z=: ^rn + R + 4- a'^cos^O, (2.14) 

A = ( /? + — rri?. 
4A/ 

(2.15) 

N e w Coordinates 2: (a;") — (a;°,p, z, < 

where z = RcosO^ 

^ = orc<an(,5/z) 

(2 .16) 

(2 .17) 
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T h a i (2.18) 

CO60 (2.19) 

= (,c!(f̂  + z((z) (^ + z ) 2 (2.20) 

(ZjO 

Z Z'' 
2 \ - l 

zc(^ — ^«(z 
f2 + z2 (2.21) 

and SO 

'ix" ""' 
(p2 + ;^^ 

-2 

' P' /Lf \^(^c(^4-zc(z)^ 

A V 4(^2 + ^2)7 (^2 + ^2) 

m + (^^ + z^)2 + y ^ ) +o^) ( ( ( ;6 -o( fz 
2 \ 2 

/)^(z(f^ — ^(fz)2 

4(p2 + Z' 2 

(pS-Hz 2\2 

where 

/ = ( m + (^ ' + # + — ^ ) 
2 O^zS 

4()o2 + ^2^2 y _|_ ^2 

(2.22) 

(2.23) 

A 2 I =2 
Z* 2 

2 \ 2 

4(p2 + z2)& 
+ (2.24) 

We next apply a trick involving the complex coordinate transformation: 

X —y %z, z —̂  it, CI —y lo, p —y p, ([> —y 0, —y M'^ 

Then 

ds^ = —-{ dz 
p" Z' _ ^g(̂ )2 

( ^ 2 _ ^ 2 ) y A V 4(^2 _ ^2)/ ( ^ ^ - ^ ^ ) 

+ 

/)2(^2 _ ^2) 

P^(f(f^ — ^(ff)2 
(^2 _ f2)2 

m + (,0 - r ) 2 + 
4(^2 — fz) : 

j + 0(fz 

where /)^ = f m + (^^ - P ) 2 + 
\ 2 g2p 
+ 

4( ,52 - f2 )#y ( ^ " - M 

(2.25) 

(2.26) 
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Thus 

A 2 rz 
4(p2 

7^2 12 

6^ — 

4(^2 — f^): 

M" 

16(p2 _ f2) 

Af2 12 

-

4(p2 — fZ): . 

A ^ \ 2 1 
A = ( A - — I = — L - [ 4 E " - M " ] ^ 

4 ; z / 16^2 

since obtain 

(2.27) 

2 \ 2 ^2 

r 
A 

' y p2#2 

7#2\2 1 

r / / - M 2 \ 2 \ 
^ + i? + ~ ^ J 4- Gc(z 

4^2 / A2 

I.e. (fg 

+ 2 

+ 2 

jO^p / ^ 2 \ 2 

jW2\2 

(fP + 

A4 

/ P 
1 

Moreover, we find 

[ # 1 ' ' ~ 
A#2 

'/\Gp2 

p2A2 
Aa2p4 

1 f p2A4 f2A2\ 

A = 

4^2 

m + R + 
Ari \2 

4 A / 

n 

m + / i H — 
4 # / 

2-1 

Af2\2 

4 A / 

r — 771 -\- R -{-
4E 

p = [m + R + 
M ^ \ 
—— J -j- —-— 
4 A / 

and 

1^4 4 ^ V . 

, r , . A l 2 
^ "" , So + 

Lp2#2 

(2.28) 

(2.29) 

(2.30) 

(2.31) 

so 

ds — goodi + Igoxdidp + Qiidp^ + g22dz^ + 2g2zdzd(l) + gz'^dcj)^ 
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where 

^00 

^01 

^11 

^22 

^23 

^33 

1 6 A ^ 
^2 

1 6 A ^ 

1 6 A ^ 
1 

2 ap 

p2#2 
A 

16,0^^^A - P(4A^ -

-16;ofA^A + ^f(4A^ - M ^ ) ^ 

lePB^'A - ,o"(4A^ - M")^ 

a y + ÂA 

m + # + 
Af2^/ =2 

f2#4 

4 E / 

A o ^ + ^ ^ ( ( m + A+^y 

(2.33) 

(2.34) 

(2.35) 

(2.36) 

(2.37) 

(2.38) 

N e w Coordinates 3: (%*) = (T, R, Z, $) 

where 

7 _ MA , _ MA + 

4 A V M V 4(p2_(2) 

(2.39) 

(2.40) 

m 
Z = z — 2—()7i 4- Af)<^ (2.41) 

$ 
M 

(2.42) 

N e w Coordinates 4: (%*) = (f/, V, Z, # ) 

where 

(7 = r - A 
at a^M 

M 4 ( p - ^ ) ( ^ + <) 

aM(^ + f) 

M ^ 4(^ — f)(^ + () 

a/) + 
a ^ M 

M 4 ( ^ - < ) ( p + () 

(2.43) 
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(2.44) 

772 
Z = z — 2—(m + (2.45) 

$ 
M 

(2.46) 

Letting u = + u = — f then 

0% oAf 
(2.47) 

y 00 oAf 

M 4u 

Multiplying ( 2.47) by we obtain 

(2.48) 

u I a j" 4 
(2.49) 

u 

I.e. 

u 
M 

2a 
-[/ ± \/[/2 + Q2 (2.50) 

Similarly, 

V — 

M 
% 

Taking positive square roots, so that u > 0 and 0 > 0, we obtain 

M 
u — p t 

2a 
\/a2 + - (7 

(2.51) 

(2.52) 

0 = ^ ( 
M 

Va^ + yz + y 

In these coordinates, the metric tensor takes the form, 

(2.53) 
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L.e. 

+ 2e^^WZd0 + (2.54) 

ds^ — Igoidx^dx^ + g22idx^)^ + 1g2zdx^dx^ -f g^sidx^^^ (2.55) 

where 

^01 = (2 gg) 

922 = e'* (2.57) 

923 = OeS* (2.58) 

933 = + ^e-^^(y - C/)̂  (2.59) 

C h a n g e of C o o r d i n a t e s : (%*) = (x ° , x \x^ ,x^ ) = {i,p,z,. 

^ = ¥ < ' - « - 4 ( 1 ^ P-««) 

= lCf(* ^"'5) " (2-61) 

where 

M 4(t + p) 

2/72 
== z ^ (2X32) 

J . M , 
«& == -z-<6 (2.63) 

M = (m^ + a^)2 (2.64) 
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J a c o b e a n M a t r i x , 

This has seven non-zero components, namely 

^ &M 

M M 4(f - / 
a&r / a oAf 

VM 4 ( f - f ) 2 

_ o oAf 

i%r " M ^ 4 ( f + p ) 2 

ay a oAf 

a; Af + ̂ frzi^ (2G5) 

(2.66) 

(2.67) 

(2.68) Af 4(Z + p)2 

3 2 
1 (2^w) 

a Z 2m 
___ == - - ^ - ( m + Af) (2.70) 

(2.71) 
Af 

We now perform a transformation of the metric, using the transformation relationship 

(2/72) 

The non-zero components of the original metric here are g'oi, 5̂ 22, a'23 and ^33, and the 

new metric components we obtain via this transformation are 

[~m) + w j »'• 
2r-2$ 

I.e. 

2 \ A f 4 ( f - p ) V V A < r ^ 4 ( f + p ) 2 , 

" di dji 
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(8UdU\ _ fdUdV\ fdUdV\ iavdv\ 
+ \ - s t T p r ' + KVp-MP'" + \-mWph' 

I.e. 
• /dUdV\ (dUdV\ 

+1 di d p r ' + +° (2.74) 

But from ( 2.65 - 2.68), and while the metric tensor is symmetric, 

so that goi — 5*10 • 

Thus 

#01 
6% ap 

groi = 0 (2.75) 

o oM 
+ 

M 4 ( ^ - p ) V \ M 4 ( f + p ) 2 
a &M .,2r-2$ (2.76) 

^22 — 5̂ 22 — 6 2$ (2.77) 

^23 — '^5'22 + "^#23 -ir-(/M + M)e^* + — 
a a 

(2.78) 

" Wj + \ M ) 
4m' 

im + M f e « - + - Uf 
/1/,z / 

4-777, / \ A/f"̂  A/f'̂  
#33 = ^ 2 (fM + M) + m M - Mf l ) + — ^ 

Defining a = — then 

a' ' - 1 (2 .80) 

1 — Of = 1 
6^ + 6^ — 
M2 M2 M2 (2.8i: 

We also require the following side relations: 

M 
p - f = § [ ( a ' + c ' ) ' - c ' l = f A (2.82) 
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Le. 

+ + + = (2.83) 

M 
^ (2.84) 

(—-^(<^1, —Au) (2.85) 

R"̂  ~ — P ~ -M^XuXy (2.86) 

^ (2.87) 

/ -
f = (m + A + ^ l 

V j j ? / 
4mA + 

4A 
2mMAy2Ay2 ^ 

2MAy"Ay" 

M (l -}- A„A„ + 2Ay^Ay^m/Af^ 

EWW 

( l + A%A% + 2 \ \ / ^ \ y ^ \ / \ — Q;~2 

M E 2Ay2Ay: 

(R-K' 
V iR, 

\ 2 ) 
2 

' ^ X A - - r + ' ^ X A - - r + 4A%A% 

Z-J'- A«A )̂̂  

16fP 

2 

#2" 

(2.88) 

(2.89) 
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where 

+ -

I.e. 

4A%A% 

, 

A\y_\y 

4A%A% 

4A%A% 

Af2AuAv/4 

.^2 a^(A^ - Au)̂  
: + 4A,, A, 

E' + (A, - A,)' 

+ (A, - A,)^l Ol 

1 + A%A% + 2[(1 — cx )̂A%A%ŷ ^ 

(2.90) 

(2.91) 

Derivat ion of express ions for and F. 

From equation( 2.36), 

.,2$ -§22 

Now, 

Le. 

Also, 

so 

a v + fee. = ^ ( K + K)' + ^ ( 1 - A.A.) ' 

a y + = a w 
16 

16 

(Aw + A„)^ + 0!^(1 — A%A%)̂  

+ (At, — A„)^] 

,2$ a::(l - A,A,)2 + (A, + A,)^ 

[a^E^ + (A, - A,)2] 

From ( 2.37), 

^23 
ap2 

A - ( ( m 
• VV 

ap2 

a^ — -

m + R + 

+ 

4 # 

16a? 

mM'^ 

#23 

p2R2 

2ma^^f 

2E 

2ma^^ r - M^' 
+ + m 

(2.92) 

(2.93) 

(2.94) 

(2.95) 

(2.96) 

(2.97) 
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Also from ( 2.78), 

Hence, 

thus 

so 

I.e. 

®3 = y O e ™ - ^ ( m + M ) e " (2.98) 

= (2,99) 
a a 

- 2 '2 
x,f\ /R / 

/ 2 (62^2 + ^2A) 

m \ 2ma:' (M^(A, + A,)^/16) (MSA-:/2A;^/^/2) 
2 5 ( ^ 1 ( 1 + 

a / V M y M(a2M2[a2( l -A^A^)2 + (A^ + A^M/16) 

2ar m5(Au + A^)^A^^/^A^^/^ 
, 2 , 

n = a (a" - l )^ /" |2[ l + (1 - - 5(A^A,)-'/^(A^ + A^)^ 

X [Q;̂ (1 — A„Aij)^ + (Ai, + A„)^] ^1 (2.101) 

gzr _ g2$g2r-2* 

= (—a'22)(2a'oi) 

'a(7ay\\ 
yy 

/ A^A=2 52 :^ / ,52 , ^ 2 \ 2 \ / [ o y + -R^^]' 
(l6Ap^A^ - - M^) 

1 6 A j ^ ^ 

M V 4 ( f - ^ ) V M V 4 ( f + ^ ) 2 

- P(4A^ - M ^ ) ^ ] [ a y + A^A] 

16AA8&2M-2(^1 + l /A^j (̂ 1 4- 1/A2 

say. (2.102) 
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Now, 

16Ap'R' - P(4R/' - M ^ f = ^ ( 1 -

M® 

= + Au)^ — (A,, — Au)^] 

= " i^ (^ ^ AuA,,) - 4AuAi, 
L«, l f i ^ f R ^ - P H F ? - M y = M''A.A„(1 - A„A.)' (2,103, 

Then, from ( 2.94) and ( 2.103), 

ofAf* 
n 

64 
"~ ^u^v) [Q^ (̂(1 ~ ^«A%)̂  + (Au + A ,̂)̂ ] (2.104) 

' " " i ) 
- A„A.)^AJA; « ' (1 + A y ( i + A;) 

4A^A/ " ''gSGM^ A^Ag 

a W 

"M 

Thus 

d — ~~̂ A ~ + ^^)(1 + A^) (2.105) 

.zr n 

e 

d 

[Q;^((1 — \u^vY (-̂ u + -^v)^] 

(1 + A:)(1 + A2) 

+ 2A%A% 4- + Q^(l — 2A%A% + A^A )̂ 

(1+A2)(1 + A2) 

" 1 ~ A^Ay + 2AuA% + a^{l — 2AuA% + A^A^) 
(1 + A^)(1 + A2) 

2r _ ( l + A^)(l + A^) + (a^ —1)(1 —2AuA^ + A^A^) 

(1 + A2)(l + A2) 

and so finally. 

(2.106) 

(2.107) 

(2.108) 

(2.109) 

(2.110) 

e — l + (a: — 1)(1 —AuA„)/[(l + A^)(l + A )̂] (2.111) 

We have therefore verified the forms for the metric functions F and Cl as given by 

Piran, Safier and Katz in [16]. 
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2.2 Derivat ion of t he evolution variables 

In order to initiate and evolve a numerical scheme, the theoretical framework must be 

put into the correct form for this purpose. The evolution is divided into two regions, each 

having different evolution variables which are meshed together across the interface. The 

interior region where |r| < 1 is known aa the Cauchy region, and here the traditional 

'3+1' approach is used. For |r| > 1 null hypersurfaces are used for a sequence of 

successive values of the null coordinate u = ( - r. The derivations of the forms of the 

evolution variables in each of these regions, and the corresponding evolution equations 

needed to sustain the evolution are given in the following sections. 

2.2.1 The metric functions in the Cauchy region 

The computer code requires certain specific quantities to be calculated and then evolved. 

In the case of our code, in the Cauchy region we require w, f and We have explicit 

expressions for w and so computing their values at each grid-point on the initial 

Cauchy slice merely involves substituting in the value chosen for the initial time, and 

the value of our radial parameter, r, at each point. However, we will need to determine 

the values for L and L'^ in terms of the Piran metric expressions. 

We have, via the evolution equations of [14] expressions for these variables in terms 

of $ , r and n, and their derivatives. Explicitly, for our initial values for 2 and we 

shall need to use 

1 ~ 
(2.112) 

and 

(2.113) 

We shall therefore require the time derivatives of the metric functions $ and 0 . In 

order to derive these, we shall also require the time derivatives of the 'building block' 

functions, and 2 . 

Au = o — [/] (2.114) 
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+ (̂  - - r)] (2.115) 

\ _ - - 1 / 1 
+ (( - r)")-'/"(2(^ - r)) - l ) (2.116) 

U (2.117) 

Â  = &-^[(6^ + y^)^/^ + y ] (2.118) 

A, = a-^[(a^ + (̂  + r)")^/^ + (̂  + r)] (2.119) 

^v,t — ^ ^ ^2^^^ + (̂  4- r)^) ^''^(2(i + r)) + 1^ (2.120) 

^((a^ + y^y /z + l̂ 

1 + \y \u + 2[(1 — a (2.122) 

\( — ^u^v,t + ^u,t^v + 2 \ / l — a ^(r(AuA„_i + Xu,t^v){^u^v) (2.123) 

: , = A.A.,, + A„,,A„ + (2.124) 

",t — ( l 4- y ^ ^ )(AuA^^( + A„,tA^) (2.125) 

Similarly, the radial derivatives are given by 

+ (2.126) 

V r = a - ( j p ^ 5 ^ + l ) (2.127) 

+ Y ^ ^ ^ (AuAjĵ r + -^u.r- î;) (2.128) 
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For 

2$ _ + (A„ + 

+ (A^ — Au)^] 
(2.129) 

Thus differentiating with respect to t , 

2*^6 
2$ _ 2o;^(l — A„A )̂(—AuAt;_i — A„̂ <Aj;) + 2(A% + A„)(Ai,_t + ^u,t) 

a222 + (A, - A^)2 

[a^(l — A%A%)2 + [Xy + A„)^ 

+ (A, - A,)2]2 
2o;^=,c,_( 4" 2(A% — Xu){K,t — ^u,t) 

$ 
a + (A„ — A„)^ 

X 
2 \ a ^ ( l — A%A%)2 4- (At, + A%)2 

/ 2 a ^ ( l — A^A^)(—AuAt,_( — A^ t̂A )̂ + 2(A% + A„)(A„^j + Xu,t) 

I ( ,252 + (A, - A«)^ 

[q;^(1 — AwA%y* + (\y + Aw)' 

[^252 + (A, - A,)2]2 
2o;̂ cLj=,_( + 2(Aw — Au)(A„_t — Xu,t) 

$ 
— (2Q^(1 ~ XuXy)(—XuXy t̂ — Xu t̂Xy) + 2(A% + A )̂(A^ f̂ + A^/) 
2^ a222 + ( A , _ A , ) 2 

[o;^(l — A%Aw)2 + (At, + Xu)̂  
2a^c,z,_( + 2(A% — Xy,)(Xy t̂ — A„ î) 

[(,252 + (A, - A,)2]2 

ct^(l — AuA )̂(—AuA^_( — Xu,tXy) + (At, + Xu)(Xy t̂ + A(t,() 

o!^(l — XyXy)'^ 4" (At, 4" Au)2 

+ (-̂ t̂, — Au)(A^,( — Au,() 

+ (A, - AJ^ 

I.e. 

$ ='(1-A.A.)L(A. + A.r 
CK̂ (1 ~ AuA^)(AuAi,,( 4- Au,(At,)^ 

1 
+ (A, - A,)2 

4- (A^ — Au)(At,_( — Au_t)^ 

(2.130) 

(2.131) 

(2.132) 

Initial values for L can therefore be found from the expression 

L = (2.133) 
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where we calculate the value of from ( 2.133) above. To set our initial values of 

we shall need to compute 

0 = a\/cx^ — 1 2 + 2 V l -
-(At, + Au)̂  

(2.134) 

n . z\/a^ — 1 
+ Au)^ 4- 2c(A^, 4- ^u)i^v,t + ^u,t) 

(A,A,)V2[a2(i _ A,A,)2 + (A, + A,)2] 

'(At, + Au)^ 

A«A„[a;^(l — AwA%)2 + (A„ + A^)^]^ 

(AuAi,)^'^^[2a:^(l — AuA^)(—AuAi,,( — Au,(A^) + 2(A^ + Ai.)(A(,_t + Au,() 

+ g(AwAi,)^/^(AuA^,( + Au,tA(,)[a^(l — AuAi,)^ + (A^ + A^)' 

ly/a'^ — 1 

(A,A,)i/2 
(A„ + Au)[r._((At, 4- Au) + 2zL(A _̂( + A^,() 

[a2(l - A,A,)2 + (A, + A,)2] 

(Ar + Au)^ 
X 

A^A,[a2(i _ A,A,)2 + (A, + A )̂̂ ]̂  

2AuA„[(Ai, + Au)(Ai,,t 4- A^,,) — a^(l — AuAi,)(AuA;,,( 4- Au,fA^)] 

4- A{ ,̂tAi,)[a;̂ (l — A^At,)̂  4- (A^ 4- A )̂̂  (2.135) 

Therefore we can evaluate the values for on our initial slice via 

0 / = -26-'^'^ I f 

I.e. 

Lt 
1 

(2.136) 

(2.137) 

Similarly, we shall require initial values for % on our starting slice, which we can calculate 

via the equation 

(2.138) 

Here X — 7 ~ '0? and so from the preceding expressions we have 
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= r(^,( - r,() (2.139) 

Thus we are equipped with all we need to initialise all our evolution variables in the 

Cauchy region. We now turn our attention to the exterior characteristic region and the 

evolution variables in this regime. 

2.2.2 The metric functions in the characteristic region 

In the characteristic region, we introduce the null coordinate ^ - r and use our 

rescaled radial coordinate ^ where !/ = 1 at the interface and y -4- 0 as r oo.We 

therefore redefine our functions in terms of our variables u and y, thus: 

u = ^ + r = < — r + 2r = 'u + 2?/"^ (2.140) 

^ (2.141) 

recalling that on each characteristic slice the value of u is constant. The functions 

A ,̂ iTL, r , $ and 0 are defined in terms of u and v as before, but this time using v as 

given in equation ( 2.140). 

In terms of the evolution variables in the characteristic region, we work with m,w,M,W 

as defined in [14]. For m, we have 

e^^ = l + m2/ (2.142) 

thus 

— 1 

(2.143) 
y 

where i/i is expressed in terms of our characteristic variables if and Our variable w is 

derived from the Geroch potential o, and is defined in the characteristic region as the 

integral: 

where o is given by 

10 = 02/^ (2.144) 

- / / y),, + !,)..) du 

+ dy (2.145) 
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Here F is a Axed point and f is the point where o is being calculated. For convenience 

we shall set F as the interface point on the initial slice, that is F = r(») = (/(I) on the 

slice at the starting time. If we define Q as the interface point on the slice upon which 

we wish to compute o, then we may rewrite the expression for o as follows 

+ (2.146) 

Thus the path of integration is from the fixed point F up the interface to the appropriate 

slice and then along that slice as far as the point in question. 

We shall find that we encounter serious problems with the metric function fl, for as 

0, n -4- oo. Hence our variable w as defined above becomes a bad candidate for 

an evolution variable, and we shall find that we need to introduce a new variable when 

we include a rotational element in our spacetime. We shall address this problem in the 

next section. 

The other two variables, M and are calculated via their (/-derivatives: 

K: , = + + (2.147) 

+ (2.148) 

j (2.149) 

^ + 32/w J (2.150) 

+ (2.151) 

Since we cannot use our w in this case, we shall obviously need to reformulate these 

equations in terms of our new variables. We shall give the amended versions of all the 

relevant equations in a later section. 
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2.3 Regular isat ion of t he characterist ic variables 

Whilst in the Cauchy region, all our variables are well-behaved, and the Piran metric 

functions are all bounded. However, in the characteristic region, we cannot proceed 

merely by substituting for u = u+2^"^ without generating problems as we move towards 

future null infinity, for then y -4 0 and hence u -4 oo. Thus, although remains 

constant and is therefore bounded for all values of ?/, for A,, we have 

A„ = a + u + 
2 l2 

-f" t/ "i" (2.152) 

which 'blows up' as we approach oo. This then makes all subsequent functions (5:,$,r,fl) 

unbounded, so we need to rescale the basic function and then adjust the metric 

functions accordingly, in an attempt to write our metric functions as regular functions. 

Let 

All — y A^ 

I.e. 

A,, = a ' 

(2.153) 

(2.154) 

A,, = a ^ + + 2 ) ' ) + 2 

Then we redefine our metric functions, replacing A„ by 

(2.155) 

(2.156) 

2/̂  + Au(3/̂ A^) + 2i/[(l - a ^)Au(!/^Ai,)]2 (2.157) 

4- A„At; + 2y[(l — a ^)A^A^]2 (2.158) 

gZr _ 2 (a^ - 1)(1 - A^A^)" 
(1 + A^)(1 + A2) 

(2.159) 

(1 + A2)(!/4 + (2/2A,)2) 
(2.160) 
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= 14_ (2.161) 
(1 + ) 

2$ __ a ^ ( l - AuA,,)^ + (A,; + Au)^ 
A2Z2 + ( A , - A , ) 2 (2.162) 

,2$ - A«!/^A^)^ + (^^A^ + ^^A^) 
(,2(^22)2 + ({/2A, - 2/2Au)2 

^2$ _ ^ AuA„)^ + (A,, + ^^Au)^ 

(22::* 4- CA, -- %2Au)2 

2 

(2.163) 

(2.164) 

\2 
n o((% 1) / (2 4- 2(1 a ) / __ ^^^^^^2 ^^^2]) (2-165) 

i l = a(e2 --1)1/2 ^2 2(1 __ a,._2)i/2 

3/"H(!/2A« + 3/2 Aj:: \ 
!/(A«!/2A,)V2[«2(^2 _ ^2^^^J2 + (^2^^ + ^2^^)2]; l^'^^b) 

We can now take the limit of all these functions as we approach future null infinity, 

i.e as ^ -4̂  0. We Arst note that Â  is a constant and bounded on each characteristic 

hypersurface. 

lim((A^) = lim + 2)^)" + ^ 2 ^ 

= G-i[2 + 2] 

1 ^ ( 1 7 ) = i (2.168) I.e. 

I.e. 

^!%('^) — li_m(2/̂  + A„Ai, + 2y[(l — o; ^)A„At;]2) 

= W(AuA^) 

lim(=) = ^ (2.169) 
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Hence 

llnXe^*) == (A, + 
a2E'4-(A,-- , /2Au)2 y 

,. f A^(A%A%)^ + A„ \ 

_ a;^A2(4o-^)^ + (45-1)2 

0!2(46-iAw)2 4-(4a-i)2 

_ 16o^or2A2-pl6o'2 

16a^a-2A2H-165-2 

lim(e^'') = 1. (2,170) 

l im(e :n = l i n . f l + " W 
*-+° *-+° ^ (1 A2)(y4 

= 1 4- 0%: -- l )Hm(^ 
(1 4- A%)(Av') 

=> = 1 4- ((%' --

which is clearly bounded for all values of !/. 

Finally, for f% we have 

]irn((Tl) == luni(^o(a2 - l)*/:^2 4-:2(l -- a S)*/: 

•^(y^Au + A„)̂  

!/(A.A,)V2[(,2(2/2 _ A,A,)2 + (A, + {/ZA,)^]. 

((a^ - 1)1/2^2 + 2 \ / l - a -2 - lim f 
* - ^ ° \ % \ / ^ [ a 2 A % A / + A / ] 7 

i.e. l^nn|(fl) = a(<22 __ i)i/2[2 4- 2 \ / l - >< (2.17'2) 

— U m f l l (2 ,73 ) \ /4a-U«[a2A2(4a-i)2 + (45-1)2] 

Hence 

]ina(fl) == CO (2.174) 
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Thus, although the 'building-block' functions, and are regular for all values of 

!/, and the metric functions ^ and T are also made regular by this rescaling, the other 

function, fl, which governs the rotation of the system, is not. H has a factor of 1/ 

multiplying the denominator which it appears cannot be removed. Thus as ^ gets smaller 

(Lnd approaches zero, is not well behaved. 

This fact has serious implications in terms of which quantities we shall be able to 

use as comparison functions. That is, how to compare the values obtained through 

the evolution with those from the analytic prescription. In the past, it has generally 

been the metric functions themselves which have been used for this purpose, and indeed 

there is no problem in implementing this approach with ^ and T, for both analytic 

expressions can be expressed in such a way that they are bounded for all values of our 

radial coordinates, r and In addition, the evolving i/; can be expressed directly in 

terms of our evolving characteristic variables m and and although this is not the case 

with the evolving "y, we can obtain an expression for "y at each point by integration along 

the null hypersurface which is sufBciently accurate for our purposes. It is to be noted 

here that the values for 7 that we calculate in the characteristic region have no bearing 

on the evolving characteristic variables, they are merely computed for comparison with 

the expected values deduced from the analytic expression. 

However, the third metric function, fl, is clearly unsuitable for use as a comparison 

function, since it is not bounded for all values of under consideration. We therefore 

need to find an alternative comparison function, which contains information about the 

rotational behaviour of the spacetime. A possible alternative candidate is the charac-

teristic function w, which is derived from the Geroch potential o, where, in terms of our 

characteristic variables, (z°) = z), 

o,a — 0,0) (2.175) 

w = ^ (2.176) 

However, it transpires that lu is also unbounded as ^ 0. For 0 is of order - , as we 

1 ' 
saw previously, hence 0,^ is of order —. Consequently 
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o ~ y + constant (2.177) 

and so 

1 
to - (SUIT'S) 

y 

If msteaxi we consider o, the Geroch potential directly, which from the above is regular 

for all values of t/ m the range 0 < ?/ < 1, we should then have a well-behaved comparison 

function ag required. However, by virtue of w being unbounded for small t/, it too is 

unsuitable for use as an evolution variable, for errors will rapidly be generated in m which 

will then be propagated through the other evolution variables, since all the variables are 

strongly inter-related. Thus we shall also need to rewrite the baaic computer code in 

the characteristic region, and on the interface, replacing w by m/, and PF = ^ by an 

appropriate alternative. 

2.4 Reformula t ion of the code 

As suggested in the previous section, we shall replace lu by and now investigate the 

relationship between 0 and M/. Then 

(2.179) 

= (2.180) 

= (2.181) 

= 3//^^ (2.182) 

= (2.183) 

Hence this transformation between u; and o and and 0 is entirely consistent with the 

corresponding relations involving m and We have 

() = "̂ 3/ (2.184) 

^ = ^2 / (2.185) 
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We shall now present the analogue o~equations to the lo-equations given in [15]. These 

are then finite-differenced and used to write the adapted subroutines for the character-

istic regions. 

2.4.1 Interface relations involving w and W 

We first state the existing equations involving w or iV from [15] in, where neccessary, 

their corrected form. Here, equations ( 2.186) - ( 2.188) correspond to equations (55) -

(57) in [15] and ( 2.189) - ( 2.191) similarly correspond to equations (68) - (70). 

Wr = — (2.186) 

Lt = \ ^ + \y(yy ' ) . , (2.I88) 

W = + r (fr (2.189) 

= ^ + r (2.190) 

_ -t- Slp^r^,r 4" ~f" 2Wrt + T ^iO^t 

+ 3r-^w,r) - 8r"/"(^ ^ j 

+ 2r^/^ y ^ (fr 

Now the revised versions of these become 

O,. M O 1 0 l i / O . . 
+ I T T + o T + !/2A ' ?/A ' 2 A ' 2 A2 

2 A 

0 . . M 0 10 ^lyO. ^ ly^ 

S 5 a + ^ + 2 A + 2 ^ ' " ^ ' ' ' ' ~ 2 T 

(2.191) 

(2.192) 
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o = + (2.195) 

and then using equation ( 2.194) 

O y = 4 Z — 

!/ !/^ 
o y - 2r̂ /̂ e'̂ ^Wr (2.196) 

Ôyy — 2r^e^^ 4- '̂4^,r^,r 4- S^̂ fW r̂ 4" 2cĵ rr 4" 2w 

-2r^ + 41^ J (2.197) 

2.4.2 Characteristic equations involving w and W 

In our reformulation of the characteristic scheme from the variables m, w, M and to 

the variables m, o, M and W we must isolate all equations involving w or W and amend 

them appropriately. Previously the w and W dependent equations in the characteristic 

region were given by the following, where ( 2.198) - ( 2.201) correspond to equations 

(39)-(42) in [15]. 

= AlV (2.198) 

+^!/^(m^ + 2^mm,^ - (2.199) 

^ ^-! / (" ; + !,3/ + 3!/«;,:/) 

+ ^2^^(mw + 4- (2.200) 

= - ^ % / [ ^ ^ 4 - w ^ + 22/(mm,^ + wm,^)4-!/^(m^ + wj^)] (2.201) 

If we recall that 

w = - (2.202) 
y 

(2.203) 

^ (2.205) 
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w 
0 

y 

o ,y o 
1,2 

(2.206) 

(2.207) 

then these transform to 

I.e. 

Therefore we have 

M ,y 

M. 

M. 

t/AM/ 

AO 

A y 4A 
-%/(m + + St/m 

+ — + 2^mm 
" y' 

2o 
2/ 2/̂  

!/ !/ 

,y 

^ 2/ 

1 

n 
-!/(m + + 3)/m,^ 

— 2o^o,y + 2o 

+ 2o2/o,̂  

,y -!/(m + 
'^,y 0 J ]_ 

' A % 4A 
/ 
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From equation ( 2.200) we obtain 

(2 .208) 
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(2 .212) 

(2.213) 

(2.214) 
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Now, equation ( 2.201) can be rewritten as 

^ + + + (2.215) 

%!/ = + + (2.216) 

The only other equation involving w and is equation (43) in [15], which is not 

utilised in our evolution scheme, although it could be similarly altered to replace vj and 

its derivatives with the appropriate o-equivalents, and similarly for W. We shall not, 

however, do this here. 

Thus the complete set of regularised equations in the characteristic region are: 

M -
1 + my 

O : 

(2.217) 

T T ^ ' (2'218) 

y(Tn + + 3ym,„) 

+ + + (2.219) 

^ + + + + (2.220) 

+ + (2.221) 

2.4.3 Regular singular behaviour 

The modified propagation equations (2.219 - 2.220) would appear to be singular for 

2/ -4 0, by virtue of the term in - . However, this pair of coupled singular equations are 

in fact regular singular equations, since their solutions remain regular for all values of 

The homogeneous parts of these are 

+ = 0 (2.222) 

0 , 3 , - 2 / 7 V M - ^ = 0 (2.223) 

where for simplicity we set 

Now, is given by 

TV-
1 + my (2.224) 

(2.225) 
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and so explicitly, 

!/^(l + m ! / ) W a ^ - l ( 2 ( l + \ / l - a - 2 ) y = = + 
,21/ %J | / ,y 

^ y\/^u^v[(^'^{y'^ — A%A%)2 4- (At, + y'^XuY] 

^(y^Au + A%y 

! /"A,A,[a2(! /2_Aj,)2 + (A,+3/2A,)2]2 u^v (y^ — XuX^y + (At, + y^Xu)^ 

~^'^y\/^u^v[<^ {y AuAt,)(2j/ — A%A%) + (A ,̂ + y^\u){^v,y + 2yA„)] 

+ <^y\/^«7^Atj_y[o;^(y^ — AuAi,)^ + (Xy + y'^XuY] (2.226) 

In the limit as y —>• 0, Â , —> 4 /a , Xy^y -4 0, c -4- AXy/a and —>• 0. Thus ignoring 

terms of first or higher order, this reduces to 

W - ' = 

~ /—5 r 2\/A,j,/C! 
= —avcK — 1 

+ 1 ] 

2\/aA,^(a^ — 1) 
I.e. lim(o,,) = - +0(y) (2.228) 

SO o,y is regular for 3/ -4̂  0. Similarly we can obtain the asymptotic limit for m as ^ 0. 

We need to apply de rHopital's rule in this case, since m = (ê '̂  - 1)/^) and the limit 

of haa already been found to be 1. We have 

de I'Hopital =4> 

lim(m) = - AuArX22/ - AuA ,̂̂ ) + Ŝ /A^A^ + 4i/̂ AuA ,̂̂  - 2o;^5S,^ \ 
v-̂ o 0,2^2 + 2a2^55,^ + (A^ - + 2!/(A;, - 2/2A^)(A ,̂̂  - 2?/Au) j 

Ignoring terms of first or higher order, the only part of the numerator which survives 
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comes from the term We find that 

Therefore, the function TV as deAned in eqnation( 2.224) is regular as ;/ -4- 0. If we take 

the derivative of equation (2.220) with respect to we obtain 

0,^^ - 7VM - 2/7V,yM - ^ ^ = 0 (2.232) 
2/ 

By using equations (2.219 - 2.220) we can eliminate M and its derivative so that 

where the dominant singular part is X. 2 ^ 2 0 
" y •' (2 234) 

The trial solution O = yields 

a;(z - 1)?/^ ^ - -a;,/"' ^ ^ 0 (2.235) 

which simpliAes to 

- 3z + 2 = 0 (2.236) 

with roots a; = 1 and z = 2. Thus 0 has regular independent solutions (/ and 2/̂ , and so 

exhibits regular singular behaviour as i/ -4 0. 

2.4.4 Selection of the third comparison function 

Having now converted the original scheme into an m, o, M and O scheme in the char-

acteristic region and in the interface-matching area, we are in a position to proceed to 

run the program and to evaluate how well the evolving spacetime simulation matches 

the prescription given in [16]. All that remains is to decide what we are going to use to 

investigate how well the evolving system matches up with the expected analytic space-

time of Piran. It is obvious enough to take $ and T as two of the comparison functions, 

but what to use for the third is not so clear. As stated previously, O is unsuitable due 

to its behaviour as the radial distance increases to oo. There is no evolution variable 

which exists in both Cauchy and characteristic region (with the possible exception of i/i, 
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which is closely related to m in the characteristic domain). We must therefore consider 

all remaining possibilities in turn, and shall choose for this purpose that which is most 

easily implemented, and which contains information about the rotational degree of free-

dom of the spacetime. The characteristic variable m is too closely related to $ for it 

to be used as an independent check, which leaves the best remaining alternative as o. 

The two further characteristic variables, M and O are calculated from m and o, and 

so are less attractive candidates as comparison functions. Using o as the third quantity 

for comparison also has the advantage that as an evolution variable itself, it is evolved 

through the code, and hence is readily exportable for graphics output and later when 

computing the absolute errors. However, it transpires that computing the corresponding 

values of o from the held equations of [15] and the metric expressions of Piran, in order 

to compare them with the evolved o(*), is more difficult. 

Recall that o is given by 

rP ,,, , 1 
(2.237) 

(2.238) 

We shall obviously need to calculate ^ and ^ for Piran's metric function f) in the 
ay otf 

characteristic region. We have 

n(u,2/) o \ / 2 + 2 \ / l - a -2 

+ A ,)^ 
(2.239) 

n 
\ T r/\,2r'„2 __ \ T \ 2 I rT i .,2\ \2i yy — A„A„)^ + (A„ + j/^A„)2] 

:(At, + !/^Au)^ 
X 

!/AuA^[a2 (^2 _ AuA )̂2 + (A^ + 

A I,,u [0:̂ (2/̂  — AuA„)^ + (At, + t/^A„)^] 
1 ^u^v,u ~l~ ^u,u^v 

\J \u^X 

"I" y A ^ A | ^ ( y A^A^) ( A^A^̂ ^ ^u,u^v} 

+2(A^ + 2/̂ Au)(Ai,_u + (/^Au,u)] (2.240) 
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0 . 
A/q;2 — i ( y ' ^ ^ u Y + + y^Xu)i^v,y + 2yXu) 

V ,,. /\ T r ^ , 2 / ' , , 2 \ T \2 I /T I .,2\ A21 2/\/AuA^[a^(^2 _ + (A^ + (/^A^)^] 

X 
2/2A,A,[a2 (2/2 _ A,A,)2 + (A, + 

^\/A„At;[tt^(y^ — Xu^vY ~t" 4" y^Au)^] 

+ + (An + 2/̂ Au)̂ ] 

^ XuXy[2(x^ (y^ — XuXy)(2y — A„Â ŷ) 

4-2(A^ + y^Xu){Xy^y + 2yX^ 

where A„, Â , and S are as previously defined and 

(2.241) 

1 
a 

0 
1 

0 

1 

a 

u 

. a /S^ + 

!/^(!/^u + 2) ^ ^2' 

_|_ ({/2^ + 2)2 

22/^a^ + 2!/«(!/^u + 2) 

& ô2 4-(^2u-^2)2 
+ 2^M 

1 + 
! / \ / r a~ 

Xu Xy 
XujuXy "4" A%A% % 

E,„ = 2y + 2 v T ^ y A X + ( l + ^ L - ^ " ) ( 

^ \AX 
In other words, we shall be evaluating at each point (u,y) 

^u,y^v "f" ̂ u^v,y 

(2.242) 

(2.243) 

(2.244) 

(2.245) 

(2.246) 

(2.247) 

f /a2(2/2-AwAv)2 + (Av + 3/2A«)2Y 

F \ (%2:5'_4- (A, 4-_%2;Vu)2 

fya^(!/^ - AuA^)^ + (A;, + 

!/^n(t/,!/),^ (ft/ 

) ( y f l ( , / , ! / ) , , + 2/'n(?/, 3/),,) (ft/(2.248) 
/F aS-Er 4- (Av 4- yZJVu): / ^ % 

with the derivatives of fl aa above. It transpired that o as given above could not be 

integrated directly, and therefore a numerical integration method must be implemented. 

The details of this procedure are dealt with in the next section. 

Due to the slicing method implemented in the external characteristic region, i.e. the 

use of null w = cons^on;^ hypersurfaces, it is possible to perform the cfw and integrals 

59 



separately. In order to calculate the value of o at grid-point * on the t/-surface, it will 

be neccessary to integrate with respect to u along the interface from the initial = 0) 

interface point (F, say) up to the interface point on level-j , and then with respect to y 

along that null slice out as far as point ; (the Anal point, P say). This idea is illustrated 

in Figure 2.1. 

Interface 

P' Q 

Figure 2.1: Paths of integration for o 

It is to be noted that in this case, where the rotational degree of freedom is included, 

initial values shall need to be specified for both o on the characteristic slice, and for 0 on 

the interface. The initial value for 0(1) can be found from equation( 2.192), while for the 

initial values for o on the characteristic slice we shall need to integrate equation( 2.248) 

to obtain a value for o at each point. We then proceed as before. 

Although o only exists as an evolution variable in the characteristic region, in the 

same way that we have constructed o in the characteristic region as a sum of integrals 

with respect to and ?/, in the Cauchy region we can express o as a sum of integrals 

with respect to ^ and r. Thus we have 

fP I , 1 

Of = ^ (2.249) 

where f is a fixed initial point, and f is the point at which o is being defined. 
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For the Piran interior o we use r), n(^, r),( and n(^, r),^ as deAned and calculated 

from the metric forms of [16]. Then 

/ - P I 

JF r JF r (2.250) 

where ^ is as given previously, and the derivatives of H are given by 

n + 2E(At, + Au)(A;,,r + 

V a/AuA^[q;2(1 — A„At;)^ + (A ĵ + Au)2] 

"(Aiy + Au)̂  
A„At;[o;2(l — A„A„)^ + (At, 4- A„)^]^ 

+2YAuA^[(A^ + Au)(A^,r + Au_r) 

^ (1 A^A )̂(A^A^y^ "f~ A^ A (2.251) 

with 

n. -a\/— 1 
'=',((A„ + Au)^ + 25(A^ + Au)(A^,( + Au,f) 

VA,A,[a2(l - A,A,)2 + (A, + A^)^] 

(A„ 4- A )̂̂  
X 

A«A,[a2(i _ A,A,)2 + (A, + A,)2]2 

+2yAuAi,[(At, + Aî )(Ai,,( + Au_() 

—a (1 — A„At,)(AuA^ (̂ + Au,(At (2.252) 

Ay 

^ + (̂  — - (f - r) 

^ (o^ + (̂  + r)^)^/^ + ( + r 

1 + A + u\y 4- 2 \ / l — cc"'^\J 

r ~ t 

+ (̂  — r)^ 
t + r 

Lâ  

+ 1 

(2.253) 

(2.254) 

(2.255) 

(2.256) 

(2.257) 
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•',r i^u^v,r + ^u,r^v) ( 1 + 
' 1 — 

A u,t 

^v,t 

t — r 

a2 + (Z —r)2 

f + r 

+ (^ + r)^ 
+ 1 

— ('̂ uAt,,( + Au_(A^)fl + 
u — 

A%A% 

(2.258) 

(2.259) 

(2.260) 

(2.261) 

For the interior part of the evolving o we shall express the integrands in terms of the 

Cauchy evolution variables, namely w, Lf and L. We can write, from equation (15) 

of [15] 

= -26-^^^!^ (2.262) 

so that o can be expressed in terms of the Cauchy evolution variables thus: 

o • I —C LU f 
J f r 

dr (2.263) 

I.e. 
1 

" r (2-264) 

Thus we now possess explicit expressions for o both in terms of the evolving variables and 

the analytic forms of Piran. The first case, which we shall refer to as the evolving o, is 

given by equation( 2.264) in the Cauchy region and simply by the evolution variable o in 

the characteristic region. The second case taken from [16] is given by equation( 2.250) 

in the Cauchy region and equation( 2.248) in the characteristic region, and shall be 

referred to as Piran's o. 

2.5 Numer ica l Integrat ion 

2.5.1 Procedure for computing the integrals 

The expressions for o which have been obtained involve a sum of two integrals. In the 

Cauchy region these are with respect to ^ and r, while in the exterior characteristic region 

the integrals are with respect to and In the case where there is no rotational degree 

of freedom present, w = 0 throughout. Since the Geroch potential o is defined in terms 

of derivatives of w, clearly o = 0 also, or equivalently w = 0. This also fixes O and W 
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)(*) = (̂ 3/ (2.266) 
JwUl 

as zero. This signiAcantly simplifies the initialisation of these variables. Unfortunately 

when w is non-zero, o and 0 are also non-zero, and cannot be expressed in terms of the 

other variables except in terms of an integral. Thus in order to establish values for the 

evolving o on the initial characteristic slice at each grid-point {/(%) there is no suitable 

alternative method than to numerically integrate 

° = - / J ' + !/),„) rfu 

+ / (2.265) 
JQ 

We have set the fixed point f aa the interface point on the initial slice. Thus the (ft/ 

integral above has limits F and Q, which in this case are the same point. Recall that 

Q is defined as the interface point on the slice in question. Hence the expression for o 

which is to be integrated via a numerical method reduces to 

fy{i) 

'y{i) 

Once these values have been calculated, they can then be evolved in conjunction 

with the other variables to form the basis of the numerical scheme. All other evolution 

variables are initialised via their derivations from the formulae of Piran et al. [16] and 

no further integration is required throughout the evolution proper. However, as noted 

previously o can only be explicitly expressed in terms of integrals. Thus when calcu-

lating the values of Piran's o-function for the purpose of computing the errors involved 

in the evolution, numerical integration is again the only means by which these values 

may be obtained. The same is true for the Cauchy part of the evolving o-function. It is 

important to remember that these numerical integrations are not a part of the evolution 

process, merely a means by which the accuracy of the code can be determined. 

In each case, the expressions obtained for o (with the exception of the evolving o in 

the code itself) involve one integral along the Cauchy-characteristic slice (̂  ^constant 

in the Cauchy region, and t/ = in the characteristic region), and one other in 

a direction parallel to the direction of propagation of the slices. That is, in the interior 

region, there is an integral with respect to time, and in the characteristic regime the 

second integral is with respect to the null variable u, although for purposes within the 

code we have u = ^ — o r rather « = ^ — 1. Since the code employs a second-order 
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accurate differencing scheme, with information stored on three successive time-levels, it 

is clear that in order to calculate the integrals in directions orthogonal to the slices, it 

will be neccessary to calculate a piece at each time-step, and then take a cumulative 

total from the initial slice to the current level. 

The method employed in order to calculate the time integral up the interface was 

to evaluate the integrand at the mid-point between and the time slice at that 

moment in the evolution being number j + 1, and then multiply the result by the 

spacing between time levels, i.e. A^. Equivalently in the characteristic portion we do 

the analagous thing to calculate the u integral, taking the value of the relevant integrand 

at the mid-point between and and multiplying this by the spacing between null 

hypersurfaces, Au. 

Here the Axed initial point F which appears as the lower limit on the integrals which 

make up the o function is taken to be the interface point on the initial slice. This 

makes it simple to construct the o-function. The first integral with respect to i or u is 

cumulatively calculated up the interface as far as point Q, then the second integral with 

respect to the radial variable r or y is numerically calculated along the relevant slice as 

far ag the point in question, f . 

We then apply a numerical integration routine, which combines a trapezoidal inte-

gration method with a polynomial interpolation routine, to calculate o along the slices. 

This produces a value for each grid point in the Piran—o scheme, and for Cauchy points 

with the evolving-o scheme. We can then perform a comparison between the evolving-o 

and Piran's-o. 

Thus this modified version of the original code has three comparison functions, i/; 

and 7 as before, and the Geroch potential function o. These were then used to establish 

the accuracy of the code in the case of Piran's family of exact solutions [16]. 

2.6 Convergence results 

The code when compared with the Weber-Wheeler wave [22] had showed robust second-

order convergence [15]. The modified code, produced in order to examine its perfor-

mance when evolving with solutions containing two degrees of freedom [16] had also 

been programmed to second-order accuracy. However, the neccessary change of variable 
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0 

Figure 2.2: Function plot for 

Figure 2.3: Function plot for 7. 
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o 0.05 

Figure 2.4: Function plot for o. 

in the characteristic region from w to o, and especially the initialisation of this variable 

by means of a numerical integration method, waa expected to reduce the accuracy of 

the evolution. The degree of this reduction in accuracy was something we wished to 

determine. 

Figures 2.2 - 2.4 show plots of the three comparison functions P and o, from the 

analytic prescription of [17]. ^ and T are both symmetric in time. $ corresponds to 

the translational mode, and the main activity is in the Cauchy region, near the centre 

of the system. A pulse comes in from infinity, the centre coincides with the r = 0 axis 

when ( = 0, and then the pulse rebounds. T corresponds to the energy of the system, 

and again we see more activity in the Cauchy region than the characteristic. As might 

be expected, there is a build up of energy around the r = 0 axis for t ~ 0, when the 

pulse haa come in and is about to rebound. The graph of o, the Geroch potential is 

more dif&cult to interpret, since unlike ^ and P it has less of a clear physical meaning. 

The evolving variables ^ and "y were compared with the corresponding Piran func-

tions as follows. A value was chosen for the parameter which determines how often 

output is drawn from the evolving data. This value is typically in the region of 20. 

Then in that case, after the original slice data is taken from the 20*'̂ , 40* ,̂ 60*̂  slices, 

and so on. On each of these designated slices the pointwise error for ^ and "y is calculated 
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at each point using a formula of the following form: 

(2.267) 

and similarly for The functions ^ and "y labelled as 'ezacf are those taken from 

the formulae of [16], in standard form in the Cauchy region and in their regularised 

(barred) forms in the characteristic region, z, is the value at the z''" point of the grid of 

the spatial coordinate which combines the r and y coordinates into one coordinate as 

follows. 

r for 0 < z < 1 
(2.268) 

2 — !/ f o r l < z < 2 

The use of this unifying coordinate enables plots across the whole radial range to be 

produced. In interpreting these, however, it is important to appreciate that when z > 1, 

the physical spacing between adjacent z points is not uniform, since Hence as 

z mcreases beyond the interface point, situated at z = 1, the distance between adjacent 

points increases, even though on the grid itself Az is constant. This means that on the 

plots with z as the spatial coordinate the graph is distorted once z > 1. However, the 

general trends in behaviour can be clearly seen. To define the pointwise error for our o 

function we state the following. 

if(c)i — o(̂ Zi)gxact ~ (2.269) 

where is the function previously defined as Piran's o, and is that previously 

defined as the evolving o. These pointwise errors are plotted here, (figures 2.5 - 2.7), 

with the appropriate functions above, in surface plots for times ranging from —1.25 to 

1.25. Here the curvature parameter a waa taken as 2. The length scale o was equal to 

0.5, thus the quantity t/a satisfies 
t 
r < 2.5 (2.270) 

Smce the real time has no physical meaning without reference to the length scale, this 

gives a more realistic indication of the period of evolution. For example, if a very large 

value of o were chosen, say o = 10, the scheme would run for about 25 time units, but 

this would give no additional information. 

Different values of o gave similar plots to those shown but on different scales. When 

a was set equal to 1, Minkowski spacetime was recovered. For values of a greater than 
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about lOslngubf behavmiu vwa obxsrved. For<%we ofviewh%;the parameter were 

assigned the values a = 2, o = 0.5 for all plots shown here. 

Figure 2.5: Pointwise errors for multiplied by 10 .̂ 

0.15' 

Figure 2.6: Pointwise errors for -y, multiplied by 10 .̂ 

The errors as shown in figures (2.4) to (2.6) were obtained with 0 = 2 and a = 

0.5. It IS here that the effect of numerically initialising the evolution variable o in the 
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Figure 2.7: Pointwise errors for o, multiplied by 10*. 

characteristic region can be seen. In the Cauchy region, 0 < z < 1, the errors for ^ 

and 'y are small. The errors shown for o in the Cauchy region have little significance 

smce they only give the differences between two numerically calculated integrals. Recall 

that o only evolves in the characteristic region. However in the characteristic region, 

1 < z < 2, the errors for o are significantly smaller. Notice however the shearing effect at 

the interface as ^ increases from its starting value - 1 . This indicates a loss of accuracy 

in the non-evolving o as it was calculated along the interface. This was not unexpected, 

since the only way of calculating the portion of the integral, up the interface, waa to 

evaluate the integral for each section between successive slices and sum from the first 

slice to the current one. The graph suggests that errors in the calculation of the (fi/ 

integral were less significant. A similar jump in error at the interface was observed for 

^ and -y, and the strong interrelations between evolution variables meant that the error 

in numerically initializing o contaminated these variables as well. 

Thus the need to set initial values for the evolution variable o via a numerical inte-

gration method greatly affected the errors of the scheme. Were it not for the singular 

behaviour of 17, this function could have been used instead. It could have been initialised 

without the use of numerical integration, and would almost certainly have given much 
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smaller errors. However in the caae of the exact solution being used this waa not possi-

ble, and so we were constrained to the use of numerics in spite of the loss of accuracy 

incurred . 

In order to determine the rate of convergence the norms would need to be calculated 

for each of these functions. Previously when the rotational degree of freedom was absent, 

the code displayed second order convergence, and the norm was required to show this. 

However, on this occasion second order convergence was not observed. We therefore 

need to consider instead the norm. This is defined aa 

N 
) exact % j I (2.271) 

The values of this function were computed at each time slice for each of the three 

comparison functions, 'y and o. These values are plotted in figures 2.8—2.10. Note 

that in each case the y-axis shows the norm multiplied by 10'̂  for convenience. As 

would be expected the norm for o was the largest of the three. All three graphs show 

an increasing trend as the evolution progressed as one would predict. The reason for 

the Suctuations in the norm for T is unclear, however the graphics show norms of 

reasonable order. 

Figure 2.8: Plot of t h e 11 n o r m for ip. 

Table 2.1 shows the values of the Zl norm of the three functions, "y and o at 

^ = 0, for a range of grid resolutions. Each time the number of grid points is doubled, 
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Figure 2.9: Plot of the 11 n o r m for 7 . 

o 10 

Figure 2.10: P lo t of t he 11 n o r m for 0. 
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Grid 

P o i n t s 

N o r m li 

f o r ^ 

F a c t o r N o r m /i 

fo r 7 

F a c t o r N o r m /i 

fo r o 

Fac to r 

75 1.036x10-3 - 4.709x10-3 - 8.741x10-3 -

150 2.877x10-'^ 3.6 1.308x10-3 3.6 2.498x10-3 3.5 

300 7.378x10-^ 3.9 3.352x10-"^ 3.9 6.574x10-'' 3.7 

600 1.845x10-^ 4.0 8.382x10-^ 4.0 1.685x10-"^ 3.9 

Table 2.1: Convergence results for Piran's solution at time ( = 0 

for first order convergence the norm should decrease by a factor of 2 and then by a 

further factor of 2 since the t ime-step is also automatically halved. Thus overall the 

norm would be expected to show a decrease by a factor of 4 each time the resolution 

is doubled . In Table 2.1 t he resolut ion refers to t h e n u m b e r of grid points in b o t h 

the Cauchy and characteristic regions, thus the total number of grid points is twice 

the resolution. The columns labelled 'factor' show the factor by which the norm 

for each of the three functions has decreased from the previous resolution. This shows 

that the function o displays only first order convergence. This was predicted due to the 

neccessary construction of this function through numerical integration methods. This 

m e a n t t h a t even if t h e evolving o was accura te to second order , t he func t ion cons t ruc ted 

from Piran's solution which was used to test the convergence would show only first order 

convergence. The fact that the other two functions, ^ and "y, also showed first-order 

rather than second-order convergence was more surprising. It had been hoped that the 

use of the integration routine to set initial values for o would have only a minimal effect on 

the accuracy of the evolution. Indeed it is not obvious as to why this initial procedure 

should cause the accuracy to be reduced to this extent. The variables are all closely 

interrelated, and this would explain some of this reduction in the order of convergence 

of the variables i/) ajid --y. Thus the revised code displays first-order convergence in all 

three comparison functions, i/i, "y and o. The adjustments neccessary to cope with Piran's 

solution had been more involved than expected, but the problems that were generated 

were overcome. Therefore the code had been tested in a case where both degrees of 

freedom were involved. Furthermore, the exact solution of Piran is not asymptotically 

Sat. Despite the fact that the convergence is less rapid than for the case where there 
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was no rotational degree of freedom present, this still shows that the amended code was 

able to successfully reproduce the functions as prescribed from the solution of Piran. 
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C h a p t e r 3 

Pr inc ipa l Nul l Direct ions 

3.1 Mot ivat ion 

The methods described previously have been able to show the accuracy of the code, 

but involve computing metric functions which are coordinate dependent. The idea has 

been suggested of employing instead principal null directions (PNDs), which provide 

gauge-invariant information about solutions of Einstein's equations. Principal null di-

rection calculations are generally approached through the use of spinors and null tetrads, 

while numerical relativity traditionally utilises ADM '3 + T slicing to produce a series of 

3-dimensional spacelike slices. At Arst sight these two approaches seem irreconcilable. 

However, a m e t h o d for compu t ing P N D s f r o m a '3 + 1' scenario, assuming as an input t he 

intrinsic metric and extrinsic curvature on a spacelike slice, has recently been proposed 

by G u n n a r s e n et al. [17]. This m e t h o d makes P N D s more accessible to numer ica l rela-

tivistic schemes, and could provide a suitable bridge between the two previously separate 

approaches. The advantages of this would be appreciable. For example, the orientation 

of the PNDs relative to each other can determine the Petrov type of the system. Hence 

if t h e four P N D s could be calcula ted at various points on each evolut ion slice, then a 

spacetime 'map ' of the PNDs could be produced. This would then clearly demonstrate 

the generic behaviour at each designated point, from the relationship between PND di-

rections and Petrov type as shown overleaf. In Table 3.1 it is assumed that further to 

the conditions stated, the remaining PND directions are all distinct and in a different 

direction to those already considered. In this context, however, a direction is considered 
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R e l a t i v e d i r e c t i o n s of P N D s P e t r o v t y p e 

Four dis t inct direct ions Type I 

One identical pair Type II 

T h r e e ident ical direct ions Type III 

Two distinct pairs of directions T y p e D 

All in same direction Type N 

W = 0 Type 0 

Table 3.1: Pe t rov types 

as a vector direction, that is v and - v have the same direction. An introduction to the 

Pet rov classification can be found in, e.g. [23]. 

In [17] t h e ' 3 + 1 ' m e t h o d is appl ied to Kas to r -Traschen solutions to ob ta in various 

'snapshot' PND pictures with various configurations of black holes. Our aim is to pro-

duce similar pictures of our vacuum cylindrically symmetric solutions at various time 

intervals. 

3.2 The ' 3 + 1 ' me thod for comput ing P N D s 

We outline the method for calculating the PNDs aa proposed in [17]. The input required 

is the induced 3-dimensional metric /tat, and extrinsic curvature of the spacelike 

hypersurface 2 , and the method finally outputs the projections of the PNDs in that 

hypersur face . T h e cons t ra in t equa t ions are 

A - patp"'' + = 2A (3.1) 

- pA"'') = 0 (3.2) 

Here p and are the fully contracted forms of pat and Aaf,. Note that it is the 3-metric 

that is used to raise and lower indices. Thus p = PatA'"'' and A = is the 

unique torsion free derivative operator compatible with the 3-metric. The electric and 

magne t i c field tensors are defined by: 

= Aat - p̂phm + PPnt - g 

B, _ mn r) 

(3.3) 

(3.4) 
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respectively, where 6̂ 6= is the Levi-Civita alternating tensor, with 6̂ 60̂ "'"= = 3!. Both 

tensors are symmetric and trace-free by virtue of the constraint equations ( 3.1) and 

( 3.2). A unit vector Aeld z" in the slice S is selected, and the tensor fields and 

But are then decomposed into components along and perpendicular to z". The following 

quant i t ies are then defined 

•Sa6 — hab (3.5) 

e = (3.6) 

(3.7) 

Gat = — ZgZ'̂) (3.8) 

6 = g . ^ r z ^ (3.9) 

6a == (3.10) 

((̂ g — ZaZ"̂ ) — ẑ z"̂ ^ + -66^6 (3-11) 

Note tha t in equation (10) of [17] the last term is erroneously given as rather than 

-jbsaf,- If & ro ta t ion by y in the p lane orthogonal to the field z"' is denoted by 

j / = e / ' z ' (3.12) 

and two or thogonal uni t vector fields in the plane orthogonal to z" are chosen and wri t ten 

z" and then we can define the complex null vector m" by 

1 
m (3.13) 

Finally the Weyl scalars can be expressed in terms of these quantities as follows: 

^0 = (-ea6 + Ja''66c)yM''m'' (3.14) 

(3.15) 

2̂ = ^(-e + 26) (3.16) 

^ 3 = ^ ( e a + J^'=6c)m'' (3.17) 

^4 = ( - e a 6 - J / 6 6 c ) m ' ' m ^ (3.18) 

Once these Weyl scalars have been calculated, then the PNDs can be obtained by 

finding t h e roots of t h e quar t ic 

+ 4^3Z^ + 6^2^^ + 4 ^ i z + $0 = 0 (3.19) 
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For each root, Zi say, (1=1,...,4), writing 

z, = tan(g,/2)e-"̂ ' (3.20) 

then the unit vectors, describe the principal null direction, where 

= cos + sin cos + sin sin (3.21) 

Thus in the four-dimensional scheme, r + is a principal null direction for each * 

(% 6 {1,2 ,3 ,4}) where is the unit normal to the slice 2 in the original four-manifold. 

3.2.1 Solving the Weyl quartic 

It is clear from the previous section that in order to calculate the PNDs it is neccessary 

to solve equation ( 3.19). The dTnverno-Russell-Clark method is used for this purpose 

[24]. First, substituting t/ = + ^ 3 into ( 3.19), the equation becomes 

where 

J 

K 

2/̂  + 6̂ ?/̂  + 4(9?/ + A" = 0 

4̂̂ 0 ~ 4 Î̂ 3 + 3̂ 2 
4̂ 3̂ 2̂ 
3̂ 2̂ 
2̂ $0 

J ' - 3Â" 

3̂ ^ = 4̂̂ 2 

G = ^4^1-3^4^3^2 + 2 ;̂ 

(3.22) 

(3.23) 

(3.24) 

(3.25) 

(3.26) 

(3.27) 

The solutions to ( 3.22) are more easily expressed in terms of the solutions to the reducing 

cubic, 

A ^ - / A + 2 J = 0 (3.28) 

These solutions are misquoted in [17] and should be stated as 

/ 
A2 

-̂3 

g2n,/3p_^g4m/3 ĵ 

4n,/3p , 2n,/3 J _ 
^ 3 f 

(3.29) 

(3.30) 

(3.31) 
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where 

P -J 4k 
1/3 

(3.32) 

Although the expressions for f and the roots A, in [17] satisfy the reducing cubic 

( 3.22), t hey finally p roduce roots for t he qua r t i c equa t ion which are inconsis tent wi th 

those obtained from [25] and with the formulation of [24], from which they were taken. 

T h e next s tep is to define th ree complex number s a , /5, 7, by 

a" = 2$4Ai-4^ 

= 2^4A2-4^ 

7 2$4A3 - 4^ 

where the signs are determined by the constraint 

(3.33) 

(3.34) 

(3.35) 

= 4(9 

Now, [17] gives 

f + 477 

However, this in conjunction with ( 3.35) yields 

(3.36) 

(3.37) 

2$4A3 - 4^ + 477 
— 2$4— AH -|- 2^4A2 — AH + AH 

A3 = Aj -f- Ag 

From ( 3.29) - ( 3.31) this would require t h a t 

I ( p + ^ ) + + e™-''; 3&) 

Thus taking real parts of ( 3.39) we obtain 

and taking the imaginary parts. 

2 2 3 f ^ 2 2 3 f ^ 

(3.38) 

(3.39) 

(3.40) 

(3.41) 
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So clearly the expression given for ( 3.37) is incorrect. Following the method of [25] 

we have 

As = ('y" + 4 )̂/2$4 

=> + 12 

Thus the expression for in terms of and A" should read 

7̂  = - + /)̂  + 1277) 

(3.42) 

(3.43) 

Finally we obtain four complex numbers which are the solutions of ( 3.19). They ; 

given by 

are 

1̂ 

2̂ 

3̂ 

'̂4 

1 
3̂ + 2 (o; + /? + 7) /$4 

^ 3 + g ( a - - 7) / $ 4 

1 
3̂ + —(—a 4-/3 — 7) /$4 

1 • 
3̂ + -(—a —;9 + 7) /$4 

(3.44) 

(3.45) 

(3.46) 

(3.47) 

If each of the z,- is then written z, = = tan(^^/2)e- '^ then the projections of 

t he four P N D s in t h e spacelike slice 2 are given by t h e uni t vectors 

"t- sin cos + sin sin (3.48) 

3.3 Calculat ion of the Weyl scalars 

To remain consistent with the notation of [17] we shall let Aa6 be the 3-metric on the 

spacelike slice E, a n d pab be t he extr ins ic curva ture of E. Here t he indices a and h can 

each take three values. We shall consider here the method of [17] as applied to the 

general vacuum cylindrical caae. In our (^, r, z) coordinates the full metric is 

% 

.e2(V'-̂ ) 0 0 0 
0 62(̂ ,-7) Q Q 
0 0 + 

0 0 we 2̂  ,2V 

(3.49) 
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Thus the induced 3-metric on a constant time slice in (r, z) coordinates is 

g2(!/'-'Y) 

0 

0 

r̂ e 4-
we 

(3.50) 

with contravariant components 

/ 

\ 

0 

0 

r -2e2^ 

-wr "e 2^2V ^-2^ ^2^-2^2^. 

(3.51) 

/ 

The extrinsic curvature components have previously been calculated to be 

Pr 

- WW, 

P<t>z 

Sip—'y 

(3.52) 

(3.53) 

(3.54) 

(3.55) 

where since is symmetric, and the other components are zero. The non-

zero contravariant components of the extrinsic curvature in (r, z) coordinates are given 

by 

p 

p"' 

-e 

P 

r e 

i _ 
(̂w,( + 2ŵ ,() = P 

p- = e-x(r-2e2̂ (w'V',t + ww,,)-e-'̂ ,̂,) 

(3.56) 

(3.57) 

(3.58) 

(3.59) 

The tensors and were calculated using the expressions found for the com-

ponents of the 3-metric and extrinsic curvature in the formulae of equations( 3.3) and 

( 3.4). The next step was to choose the three unit vector helds z", z". For ease 

of plotting and interpretation, we chose a Cartesian frame X F Z , rather than a frame 

with the vectors pointing in the directions of A 0 Z . In ((, r, z) coordinates a standard 

cylindrically symmetric orthonormal frame is 

0 , 0 , 0 (3.60) 
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0,6 -̂̂ ,0,0) 

(0,0,e^/r, -we^f/r) 

(0,0,0,e-̂  

(3.61) 

(3.62) 

(3.63) 

vnth 
= —rTo a — —y ya — —^ Za = 1 (3.64) 

and all other combinations zero. The cylindrical polar baais (f, z) and the Cartesian 

basis (z, z) are connected by 

with reciprocal relations 

X 

y 

z 

r = cos + sin ^ 

$ = — sin + cos 

z = k 

= i = cos (/)f — sin 0 $ 

= j = sin </)f + cos 

= k = z 

Hence, using equations ( 3.61) and ( 3.62) we get 

X = cos I 

y = sm < 

^ gV'-'Y ^ 

0 

» / 

0 

v 0 / 

sin (f) 

0 

e /̂r 
-wê /r 

\ 

+ COS(̂  

\ 
\ — '• / 

0 

e /̂r 
wê /r 

The components of and z'' are then 

cos 

-r ^e^sini 

wr ^e^sini 

'̂ 8in< 
r cos I 

-wr ^ cos < 

(3.65) 

(3.66) 

(3.67) 

(3.68) 

(3.69) 

(3.70) 

(3.71) 

(3.72) 

(3.73) 

(3.74) 
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0 ^ 

\ / 

(3.75) 

The components e, Sa, 6^6, 6, 6̂  and were calculated from the expressions in [17] 

and given previously here as ( 3.6)-( 3.11). The specialist GR computer algebra system 

STENSOR was used to calculate these components, and this system was also used to 

obtain explicit expressions for the Weyl scalars, $o, $ i , . . . , for our chosen unit vector 

fields z". An outline of the capabilities and procedures of STENSOR and SHEEP 

can be found in [26]. 

The expressions obtained for the '3+1' Weyl scalars were as follows: 

$0 = _g2V'-2'Y 

_ | _ g # 2 ? ^ 3 ^ ^ 

ze ^ ( 2 c o s ^ ( ; 6 — 2 r 

+ COS <̂ sin<̂ %̂r̂ ,r - - 3̂ ]|. - (3.76) 

$1 L^-1 g^^-a-y 
sinc^ - '-y,rW,r + + W,rr -

+ r ^^cos<^(4^,rV',<-2%rV',<-2%(V',r+2V',r(+r-^'-y,<-r-Vt;,, W,f 

4-
4 

COS (-y.tW,* - + 5V',rW,r - + W,rr - r 

(3.77) 

2 

1 

T 2V',rW,( — + 4̂ _(W r̂ + W,r( (3.78) 
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Sill<;6 + 5l/;,rW,r - + W,rr - r"̂ W,r) 

+r"^e"^'^COS #,fV',r-

<̂ (7,r̂ ,r - %(W,( - 5̂ ,rW,r + - W,rr + r"̂ W,r) 

+r̂ e-̂ '̂ 8m<;6(2%rV',<+ 2%,V',r- rV^W, rW,^ 

COS I 

4̂ =2V'-2''y 

COS 

+ lr3e''̂ -"̂ (2coŝ  _ 2r'w,t) 

(2co8̂ <;6-l)|̂ %f̂ ,(- %ri/',r+ 3 ĵ|.+ ^ , r r - r "^^ , r+ 

<^sm </, ('-y,rW,( + %fW,r - 6^,rW,( - w,r( + 

<;Asiii(;6̂%(V',< - + ,̂rr - r"̂ ,̂r + 

(3.79) 

Identical expressions for these Weyl scalars were obtained when they were calculated in 

SHEEP directly f rom the f rame and the four-dimensional metric. This means that the 

decomposition given in Gunnarsen's method is consistent with classical ' 3+1 ' decompo-

sition techniques, since both give the same result. Thus having speciAed the frame, it 

makes no diEerence by which of these methods the Weyl scalars are calculated. 

3.4 Adap ta t ion of t he computer code 

T h e evolution rout ines in t h e s imulat ion were left as before, bu t in addi t ion routines for 

computing the values of the Weyl scalars, ^ 0 - ^ 4 were written. Thus from the evolving 

values of the metric functions P, 0 we derived a value for each of these scalars at 

every grid point on the current evolution level. Once these were known, the method of 

Gunnarsen et al. was applied to obta in the PNDs for the grid point in question. So, we 

needed to solve the Weyl polynomial, ( 3.19), where the coeEcients of z and its powers 

were functions of P, f l and their derivatives. The standard leapfrog scheme was used 

to express these functions and their derivatives in suitable form. Once the five Weyl 

scalars had been calculated at any one grid point the dTnverno-Russell-Clark method 
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was appl ied as descr ibed in section 3.2.1 to ob ta in t he complex n u m b e r s z at t h a t point . 

Finally standard routines split the complex numbers into their modulus and argument 

forms where 

z, = tan (^,/2) (z = 1...4) (3.80) 

Thus and are defined aa 

= 2a rc tan | z | (3.81) 

= -arg'(z) (3.82) 

and then these inserted into equation ( 3.48) to finally obtain the principal null directions 

at t h a t poin t (as p ro j ec t ed into t h e spacelike hypersur face t = constant). 

3.5 Prob lems wi th identification of roots 

The Hrst observation to make about this method as applied to a numerical approach is the 

ambiguity involved in proceeding from the Weyl scalars, $o, . , ^4 to the four complex 

numbers Z i , T h e are expressed in terms of three complex numbers, a , /) and -y, 

which are themselves only defined as etc. Indeed, from equations ( 3.14)-( 3.18) we see 

t h a t in ca lcula t ing t h e z, f r o m t h e no fewer t h a n 3 roots are taken , two being square 

roots a n d the o the r a cube root . Since all t he quant i t i es involved are complex, th is leads 

to a significant p rob lem in isolat ing one un ique solution t h roughou t t h e evolut ion process. 

The choice of solution obtained from the first slice is to a large extent immaterial, but 

what is very important is that it is the same solution that is obtained on each future 

slice. If one un ique root is not isolated and the p rog ram j u m p s f r o m root to root , t hen 

the PND pattern becomes meaningless. Recall that to calculate values for Ai,..., A3 we 

require a value for f which is given as f = { - J + _ ( f / 3 ) 3 y / 3 define 

A = - (7/3)^ (3.83) 

Then obtaining a value for f involves firstly taking the square root of A, and then the 

cube root of the complex number - J -|- \/A. However, the fact that all these quantities 

are complex numbers means that each time a root must be taken there is choice as to 

which of the roots is the 'right' one. The first occasion when this problem arises is in 

calculating the square root that occurs in the definition of f . However, in the case of 



applying the PND approach of Gunnarsen et al. to the Weber Wheeler wave, we can 

util ise t h e fact t h a t th is solut ion has no ro ta t iona l e lement , a n d thus w = 0. If th is 

constraint is applied to the definitions of the Weyl scalars, ( 3.76)-( 3.79), the imaginary 

components are all found to vanish. Thus in the case of non-rotating systems, the Weyl 

scalars are necessarily real. This means that unlike the general case where A is fully 

complex and thus has no preferred square root, we can choose to always take either 

the positive or the negative square root when computing i/A. Hence without loss of 

generality, in this caae one can always take the positive square root of A, so that 

x/A 
A or 

(3.84) 

where A, B € % and A, B > 0. In the general case where a rotational element is present, 

this simplification is not easily applied. Although when taking a square root, the hrst 

quadrant root would always be preferred over the third quadrant root, it is difficult 

to choose between the second and fourth quadrants as to which is the preferred one. 

Having applied this constraint there still remained the significant numerical problem of 

isolating one solution through the remaining cube root and final square rooting processes. 

In order to obtain any meaningful information from the PND evolution it was essential 

that the choosing of roots was consistent. This problem was particularly important 

when calculating f . For as previously noted, the first square root can be confined to 

the upper half plane but the choice of the cube root f cannot be restricted in the same 

way. Since it is the argument of the complex number that distinguishes between the 

three roots, it was this that waa used to select the preferred root. Various methods of 

tracking the position on the Argand diagram of the previous root were attempted, in 

each of the stages from to A simple procedure which recorded the argument of 

the complex number on the previous slice was successful, where we defined (using the 

case of for illustration) 

arg(fr) - aTg(fr' 

- (arg(f n - 1.) + 

arg(f'r) - (arg(f n - 1,) + ̂ Ĥ  

(3.85) 
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We then simply select the argument of our function f at point z of the slice by finding 

the minimum of these, tha t is m m ) - Then if is the minimum, the 

argument of is taken to lie in the region 0 < < §11, if is the minimum 

it is taken in t h e region | n < arg(Pp) < | n and if t he m i n i m u m is found to be arg^ the 

region is gl l < < 211. This approach was wholly successful except in the cases 

when the solution crossed the axes. On these occasions significant problems were encoun-

tered in t ha t t h e root was forced to be t h a t nearest the previous root , and hence would 

not go through the axis but instead was re jec ted in it. Thus despite extensive work it 

was not possible to successfully isolate one root th rough the ent i re evolution process, 

and the simulation sporadically jumped from one root to another. The PNDs obtained 

were erratic and therefore we could draw no conclusions from them through this method. 

If, instead, we work with a standard cylindrical f rame 

Q 0 o) 

r" = (0,e -̂̂ ,0,0) 

= ( 0 , 0 , e ^ / r , - w e ^ / r ) 

r = (o,o,o,e-^) 

t hen the ' 3 + 1 ' Weyl scalars are given by 

(3.86) 

(3.87) 

(3.88) 

(3.89) 

t r 27 - 7,rV',r + V'.r - V'jl + V'.rr + ^ (̂ r + V'.r -

1 
T r W , r - - 5 ^ , r W , r + + r W . 

(3.90) 

^1 = 0 (3.91) 
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$0 4 

1 

V 

- 2''y,r - 2^,r + r 

2^,rW,( - 2^,fW,r - r^W,( (3.92) 

(3.93) 

$ 4 = e^V-ZT' 7,(V',( - ?,r̂ ,r + - V'î  + V'.rr + %/" ^ (V',r + %r - ^ 

+ - r ^'^(4^,rV',t-2%rV',t-2%(V',r+2^,r(+r \ , ( - r ^e^^W,rW,̂  

%fW,( - %rW,r + 5^,rW,r - + W,rr - T ^W,r 

+r"V "̂̂ '̂  ^3^_rW,f + 3^,(W,r - %rW,( - %(W,r + W,r( - (3.94) 

Notice that in this caae, two of the Weyl scalars vanish, namely and ^3. This means 

t h a t in t h e analys is , a s impl i f ica t ion arises. For, recall t h a t t h e e q u a t i o n we need to 

solve in order to calculate our complex numbers Z1...Z4 is 

$4̂"̂  + 4̂ 3Ẑ  + 6#2Ẑ  + 4$iz + $0 = 0 (3.95) 

Thus in this case, for this chosen tetrad our quartic equation in z reduces to a quadratic 

in 

$4(ẑ )̂  + + $0 = 0 

wi th solu t ion 

3̂ 2 ̂  \/9(^2)' ^ $0̂ 4 

(3.96) 

(3.97) 

Hence we can e x t r a c t u n a m b i g u o u s solut ions for z, our complex n u m b e r (up to sign), a n d 

t h u s th i s t e t r a d enables us t o ca lcu la te t h e associa ted P N D s in th i s f r a m e . I n t e r p r e t a t i o n 

of these vec tors is m u c h m o r e diff icul t , however , s ince t h e P N D s were found to be of t h e 

f o r m 

(3.98) 

a n d in a cyl indr ica l ly s y m m e t r i c m o d e l where we have effect ively f ac to red ou t cp, dcf) is 

r a t h e r diff icult t o i n t e r p r e t . 
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So to sum up the PND work, implementing the method of Gunnarsen et al. in the 

pr()grcLm was iiot t()o clifBcult, but there v/aa (iiGicult;/ in axzhieving rneaniiigful resiilts. 

Two different choices of tetrad were tried, but each had serious drawbacks: one gave 

unambiguous solutions with little physical meaning, while the solutions of the other 

would have been eaay to understand but could not be satisfactorily obtained. However, 

there is scope for using a similar method in numerical relativistic work, and with the 

right tetrad this may prove to provide useful information. Unfortunately we were unable 

to do this for t h e exact solutions [22] [16] under considerat ion. 



C h a p t e r 4 

Conclusions 

We have studied the numerical model of vacmim cylindrical symmetry developed by the 

Southampton Group, which combines an inner Cauchy region with an outer character-

istic region via an interface. Its validity waa proven by rigourously checking all analytic 

calculations and their implementation in the code. The exact solution of Piran et al. waa 

used aa a further test of the code, involving all three degrees of freedom. This solution 

is not asymptotically Aat, and the rotational element for the solution is not bounded 

at future null inAnity. This meant that care had to be taken in the discretisation of the 

functions to ensure that all computed quantities were bounded. Due to the unbounded 

nature of the metric function 0 it was decided to use the Geroch potential function 

o as the third comparison function along with the other two metric functions, ^ and 

r , which were well-behaved for all radial values. The evolution produced by the code 

followed the analytic prediction well, but the convergence waa only first order despite 

the fact that the differencing methods employed were second order. This was as a result 

of the need to evolve the Geroch potential o rather than fl, for o is defined in terms of 

the derivative of fl. Thus numerical integration wag needed to obtain values for o on 

the initial slice, and also on every iteration to calculate the values for comparison with 

the evolving function. Although the integration routine was second order, the overall 

accuracy of the evolution waa reduced to first order in this case. However, the errors 

were still of accep tab le size. 

The code waa also investigated in terms of the feaaibility of producing principal 

null directions numerically, as suggested by Gunnarsen et al. [17]. In this work, an 
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algorithm is given for calculating the principal null directions when the induced 3-metric 

and extrinsic curvature of a spacelike hypersurface are known. This computation of the 

PNDs clearly suited '3+1 ' codes. However, the steps required to translate the induced 

3-metric and extrinsic curvature into solutions for the PNDs are of tensorial form. This 

means t h a t w i thou t a p r o g r a m m i n g language which can pe r fo rm tensor man ipu la t ions 

(eg. products, contractions, implied summation etc.) this method is not as immediately 

applicable as is suggested. Also generally it is the metric functions, in our case T and 

n which are evolved, and not the nine components of the 3-metric It was neccessary 

therefore to ca lcula te ana ly t ic fo rms for t he final s tage of t he tensor calculat ion, namely 

the Weyl scalars - ^4 and to proceed numerically from that point. Another major 

problem with this approach is the ambiguity involved in taking roots of complex numbers, 

which led to significant difhculties in obtaining meaningful values for the principal null 

directions by this method. However it is possible that in a suitable frame where some 

of the Weyl scalars vanish more success might be possible. It is unlikely however that 

this would be t h e case for a general space t ime wi th no symmetr ies . 

W h e r e now for Numerical Relat ivi ty? 

The future for numerical relativistic work looks bright. Certainly there still remains some 

distrust of work in numerical relativity compared with wholly analytical approaches. 

T h e fac t t h a t much of classical research is not appl icable to s i tua t ions of as t rophysical 

mterest has meant that numerical studies are becoming more attractive. As detectors 

become more sensitive and astrophysical measurements more accurate, new observations 

will require explanations. It is likely that numerical, rather than analytical work will be 

able to provide these explanations. Yet numerical work in this area must be supported 

by analytical work, for without calculating the governing equations in as simple and 

appropriate a form as possible, progress is highly unlikely. Thus numerical relativists 

must continue to develop techniques and methods which can be applied to more and 

more general situations. 

Numer ica l re la t iv i ty m a y still be a young field of research, b u t much progress has 

a l ready been m a d e . T h e key to mak ing real progress in re la t ivis t ic unde r s t and ing is 

to ob ta in a b e t t e r grasp of t he physical processes involved. Whi le m a n y numer ica l 
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codes in this area of research may have limited applicability, any insight gained into 

physically relevant p rob lems is invaluable. Indeed every successful p r o g r a m adds ano ther 

piece to t h e puzzle. A m e t h o d successfully applied in one case m a y lead ano the r group 

to overcome a similar obstacle in their work. Similarly an approach found to have 

significant p rob lems involved m a y save another group f rom proceeding down a dead 

end. By combining the advances made through various programs which focus on one 

specific area, there exists a real possibility of successfully tackling much more complicated 

problems. 
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