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ABSTRACT 
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High Level Floating-Point Synthesis 

by Zaher Abdulkarim Baidas 

MOODS (Multiple Objective Optimisation in Data and control path Synthesis) is a high-
level synthesis system which provides the ability to synthesise a system level behavioural 
description into a structural representation. The thesis represents an enhancement to the 
original MOODS system to allow the designer to manipulate floating-point and complex 
variables on an equal footing with all other data types; the additional complexities arising 
from floating-point manipulation are completely hidden from the user. 

Originally, the data processed by MOODS was fixed (occasionally variable) width 
integers, and the functional units available were relatively unsophisticated (adders, 
subtractors, multipliers, multiplexers and so on). The floating-point synthesis system 
described here provides a library of high-level floating-point functions (trigonometric, 
transcendental, and complex) to support the synthesis of behavioural designs incorporating 
floating-point operations. 

The floating-point library components themselves are implemented using a number of 
base techniques, namely table lookup, the CORDIC algorithm, and iterative series. 
Decisions about the mapping of base techniques onto functional units are left to a/ZoaOMg-
point optimiser, which makes individual binding choices based on global knowledge of the 
overall design, allowing the internal sub-structures of these units to be shared which 
results in a dramatic decrease in the overall hardware resources required to implement the 
design. 

Finally, an exemplar is designed and analysed in detail: a cubic equation solver synthesised 
using the floating-point capability integrated within the MOODS environment. 



Contents 

Acknowledgements 12 

Chapter 1: Introduction 13 

Chapter 2: MOODS and behavioural synthesis 16 

2.1 VHDL for behavioural synthesis 16 

2.2 Behavioural synthesis 19 

2.3 The design space 20 

2.4 Internal representation 21 

2.5 Scheduling and allocation 25 

2.6 MOODS synthesis system 29 

2.6.1 ICODE and internal representation 31 

2.6.2 Transformations 36 

2.6.3 The cost function 39 

2.6.4 Simulated annealing optimisation 39 

2.6.5 Hierarchical module expansion 42 

2.6.6 Floating-point enhancement 43 

Chapter 3; Background and related work 45 

3.1 Real number representation 45 

3.2 Fixed point functional units 47 

3.2.1 Modified Booth multiplier 48 

3.2.2 Rapid division algorithm 50 

3.3 Developing floating-point functional units 52 

3.4 Floating-point arithmetic on FPGA 53 

3.5 Automatic floating-point implementation 56 

3.5.1 Module generators 56 

3.5.2 Block diagram tools 58 



Chapter 4: Floating-point library design 62 

4.1 Function evaluation 62 

4.1.1 Range reduction 63 

4.1.2 Table lookup 64 

4.1.3 The CORDIC algorithm 73 

4.1.4 Iterative series 76 

4.1.5 Post evaluation 82 

4.2 The status register 83 

4.3 Supported functions 85 

4.3.1 Algebraic operations 87 

4.3.2 Logarithmic and exponential functions 91 

4.3.3 Trigonometric functions 92 

4.3.4 Hyperbolic functions 92 

4.3.5 Type conversion functions 93 

4.3.5 Complex units 94 

4.4 Function implementation 96 

4.4.1 Hierarchical unit expansion 97 

4.4.2 Expanded module formation 98 

Chapter 5: Floating-point optimisation 101 

5.1 Function implementation interactions 101 

5.2 Numerical interaction 105 

5.2.1 Error propagation 106 

5.2.2 Accuracy variation effect 109 

5.3 Optimisation algorithm 111 

5.4 Experimental evaluation 126 

Chapter 6: Practical synthesis using FPGAs 133 

6.1 FPGA prototyping board 133 

6.2 Algebraic cubic equation solver 136 

6.2.1 Input stage 138 

6.2.2 Output stage 138 

6.2.3 Core unit 139 



4 

6.3 Synthesis issues 145 

6.3.1 Area reduction 145 

6.3.2 Meeting timing specifications 148 

6.3.3 Synchronisation and communication 150 

6.3.4 Physical implementation issues 152 

6.3.5 Final implementation 153 

6.4 Comparison with microprocessors 156 

Chapter 7: Conclus ions and further work 159 

7.1 Source level optimisation from a floating-point perspective 160 

7.2 Variable precision floating-point library 160 

7.3 Component library 161 

7.4 Function inversion block 162 

7.5 Multi-operand floating-point units 164 

Appendix A: IEEE standard for binary f loating point ar i thmetic 166 

A. 1 Single-precision format evaluation 167 

A.2 Operations with NAN 170 

A.3 Status flags 171 

A.4 Comparison operations 171 

A.5 Rounding 172 

Appendix B: The C O R D I C algor i thm 175 

B.l The original CORDIC algorithm 175 

B.2 The enhanced CORDIC algorithm 178 

B.3 Computation of inverse sine and inverse cosine using CORDIC 183 

Appendix C: Elementary funct ions detai ls 186 

C.l Sine and cosine functions 186 

C.1.1 Pre-processing stage 186 

C. 1.2 Function generation unit 189 

C.2 Inverse sine and inverse cosine functions 195 

C.3 Inverse tangent function 199 

C.4 Logarithmic functions 206 

C.5 Exponential function 212 



C.6 Square root function 217 

C.7 VHDL library 221 

Appendix D: Implementat ion details 227 

D.l File formats 227 

D.1.1 ICODE instruction database 227 

D.l .2 Floating-point instruction database 229 

D.1.3 Floating-point module library 230 

D. 1.4 Floating-point expanded instruction 232 

D.2 The ICODE format 234 

D.3IC0DE4- 236 

D.4 Adding a new instruction 239 

Appendix E: Example details 241 

E. 1 FPGA prototyping board data 241 

E. 1.1 FPGA pin-out 241 

E. 1.2 Device programming 242 

E. 1.3 Device pin-assignment 243 

E.2 VGA adapter 249 

E.3 10 stage details 252 

E.3.1 Input stage 252 

E.3.2 Output stage 257 

E.4 Source code listings 260 

Appendix F: Papers 289 

References 320 



List of Figures 

Figure 2.1 A generic high-level synthesis system 20 

Figure 2.2 Area versus delay design space 21 

Figure 2.3 Data flow graph representation 22 

Figure 2.4 A sample VHDL example 23 

Figure 2.5 Control dataflow graph 24 

Figure 2.6 Extended timed Petri-net 25 

Figure 2.7 ASAP and ALAP scheduling 27 

Figure 2.8 List scheduling 28 

Figure 2.9 Original MOODS system data flow 31 

Figure 2.10 VHDL and the equivalent ICODE example 33 

Figure 2.11 Control and datapath graphs 35 

Figure 2.12 Transformation application steps 37 

Figure 2.13 A one-dimensional conOguration space 40 

Figure 2.14 The simulated annealing algorithm 41 

Figure 2.15 Expansion process 43 

Figure 2.16 MOODS synthesis system with the floating-point enhancement 44 

Figure 3.1 IEEE single-precision floating-point format 46 

Figure 3.2 Logarithmic number format 47 

Figure 3.3 Modified Booth multiplier 49 

Figure 3.4 Modified Booth multiplication example 50 

Figure 3.5 A decomposition of a number into four types of strings 50 

Figure 3.6 Rapid division algorithm flowchart 51 

Figure 3.7 Short floating-point formats 54 

Figure 3.8 FPGA-based data path block diagram 55 

Figure 3.9 A design represented as a block diagram 59 

Figure 3.10 Block diagram oriented tools data flow 60 

Figure 4.1 Functional unit building blocks 63 

Figure 4.2 Range reduction example 64 

Figure 4.3 Interpolation procedure 65 



7 

Figure 4.4 Linear interpolation procedure 66 

Figure 4.5 Cubic interpolation 67 

Figure 4.6 Cubic interpolation procedure 67 

Figure 4.7 Table entries variation with different interpolation degrees 70 

Figure 4.8 Area/delay costs for different interpolation and infinite external ROM 70 

Figure 4.9 Area/delay costs for different interpolation without external ROM 71 

Figure 4.10 Partitioning the inverse sine function into sub-tables 72 

Figure 4.11 Linear interpolation multiple sub-tables procedure 73 

Figure 4.12 The CORDIC algorithm 74 

Figure 4.13 Output functions for CORDIC 75 

Figure 4.14 Absolute error in the CORDIC sine generator for 25 iterations 75 

Figure 4.15 CORDIC error variation with the number of iterations 76 

Figure 4.16 Taylor Theorem 77 

Figure 4.17 Minimax approximation base theorems 78 

Figure 4.18 Comparison between minimax and Taylor accuracy for different interpolation 

degrees 79 

Figure 4.19 Absolute error in the minimax approximation for the exponential function 

different approximation degrees 80 

Figure 4.20 Absolute error in the Taylor expansion for the exponential function for 

different approximation degrees 81 

Figure 4.21 Round to the nearest example 83 

Figure 4.22 Raising a status flag example 85 

Figure 4.23 Hyperbolic function evaluation equations 93 

Figure 4.24 Complex sine function generator building blocks 95 

Figure 4.25 Polar sine function generator building blocks 96 

Figure 4.26 Complex function evaluation equations 96 

Figure 4.27 Hierarchical unit expansion example 98 

Figure 4.28 Expanded module formation 99 

Figure 4.29 Expanded module development example 100 

Figure 5.1 Sharing an external ROM interfacing unit 103 

Figure 5.2 Sharing iterative series engine 104 

Figure 5.3 Computational graph example 107 

Figure 5.4 Error propagation model example 108 



8 

Figure 5.5 Design space for the three different benchmarks 110 

Figure 5.6 The inverse tangent function parameters for a target accuracy = 10'̂  112 

Figure 5.7 Optimisation algorithm flowchart ] 14 

Figure 5.8 Benchl design space 120 

Figure 5.9 Bench2 design space 120 

Figure 5.10 Distribution of functional units between the three base techniques for benchl 

for target area = 0 |im' as a function of external ROM size 121 

Figure 5.11 Distribution of functional units between the three base techniques for bench I 

for target area = 2e6 (im^ as a function of external ROM size 12! 

Figure 5.12 Distribution of functional units between the three base techniques for benchl 

for target area = infinity |Lim" as a function of external ROM size 122 

Figure 5.13 Distribution of functional units between the three base techniques for bench2 

for target area = 0 |im" as a function of external ROM size 122 

Figure 5.14 Distribution of functional units between the three base techniques for bench2 

for target area = 2.5e6 p,m" as a function of external ROM size 123 

Figure 5.15 Distribution of functional units between the three base techniques for bench2 

for target area = infinity |Llm' as a function of external ROM size 123 

Figure 5.16 Area breakdown of the two designs based on similar base techniques (on-chip 

based implementation) 124 

Figure 5.17 Design space for the first set of designs 126 

Figure 5.18 Design space for the second set of designs 127 

Figure 5.19 Design space for the third set of designs 128 

Figure 5.20 Design space for the fourth set of designs 129 

Figure 5.21 Design space for the fifth set of designs 129 

Figure 5.22 Design space for the sixth set of designs 130 

Figure 5.23 Design space for the seventh set of designs 131 

Figure 5.24 Design space for the eighth set of designs 132 

Figure 5.25 Design space for the ninth set of designs 132 

Figure 6.1 FPGA board block diagram 134 

Figure 6.2 FPGA board photograph 136 

Figure 6.3 Cubic equation solver block diagram 137 

Figure 6.4 Cubic equation solver display 138 

Figure 6.5 Cubic equation solution 139 



Figure 6.6 Design 1 VHDL behavioural description 140 

Figure 6.7 Design space for the original design 141 

Figure 6.8 Partitioned core unit block diagram 142 

Figure 6.9 Core unit design space 143 

Figure 6.10 Alternative optimisation strategies 146 

Figure 6.11 Area breakdown of both designs 147 

Figure 6.12 Using the protect instruction 148 

Figure 6.13 Macro port example 149 

Figure 6.14 Handshaking signal waveform 150 

Figure 6.15 Synchronisation within VHDL 151 

Figure 6.16 Flip-flop timing parameters 151 

Figure 6.17 Synchroniser schematic 152 

Figure 6.18 MOODS multiplexors models 152 

Figure 6.19 Final implementation block diagram 155 

Figure 6.20 FPGA utilisation figures 155 

Figure 6.21 The floating-point performance of different microprocessors compared to the 

MOODS synthesis system 157 

Figure 6.22 The cubic equation solver floating-point performance compared to modem 

microprocessors 158 

Figure 7.1 Function inversion block 163 

Figure 7.2 Constructing the inverse function algebraically 164 

Figure 7.3 Multi-operand floating-point unit example 165 

Figure A. 1 Floating-point number representation 166 

Figure A.2 Floating-point number bit patterns 169 

Figure A.3 "Rounding to the nearest" examples 172 

Figure A.4 "Rounding toward +infinity" example 173 

Figure A.5 "Rounding toward -infinity" example 173 

Figure A.6 "Rounding towards zero" example 174 

Figure B.l A vector in three co-ordinate systems 178 

Figure C.l Sine/cosine pre-processing stage 187 

Figure C.2 Sine/cosine range reduction flow chart 189 

Figure C.3 Error in the sine/cosine generator using linear interpolation engine with a 

single-table and for different table sizes 191 



10 

Figure C.4 Error in the sine/cosine generator using linear interpolation and a partitioned 

table for different table sizes 192 

Figure C.5 Sub-tables range in the sine/cosine generator using linear interpolation and 

partitioned table 192 

Figure C.6 Error in the sine/cosine minimax engine for different approximation degrees 193 

Figure C.7 Error in the sine/cosine CORDIC unit for different number of iterations 194 

Figure C.8 inverse sine/inverse cosine generation unit 195 

Figure C.9 Error in the inverse sine/inverse cosine generator using linear interpolation 

engine with a partitioned table lookup 198 

Figure C. 10 Error in the asin/acos generator based on the CORDIC engine for different 

number of iterations 199 

Figure C.I I Inverse tangent range reduction flow chart 201 

Figure C. 12 Error in the inverse tangent generator using a single table and linear 

interpolation for different table sizes 203 

Figure C. 13 Error in the inverse tangent generator using a partitioned table and linear 

interpolation for different table sizes 204 

Figure C.14 Error in the inverse tangent generator using the minimax approximation for 

different approximation degrees 205 

Figure C.15 Error in the inverse tangent generator using the CORDIC algorithm for 

different number of iterations 206 

Figure C.16 Initial unit in the logarithm generator unit 207 

Figure C. 17 Error in the natural logarithm generator using a single table and linear 

interpolation for different table sizes 209 

Figure C. 18 Error in the natural logarithm generator using a partitioned table and linear 

interpolation for different table sizes 210 

Figure C.19 Error in the natural logarithm generator using the minimax approximation and 

for different approximation degrees 211 

Figure C.20 Data flow in the logarithm post-processing stage 212 

Figure C.21 Exponential pre-processing stage 213 

Figure C.22 Error in the exponential generator using a single table and linear interpolation 

for different table sizes 215 

Figure C.23 Error in the exponential generator using the minimax approximation and for 

different approximation degrees 216 



11 

Figure C.24 Error in the square root generator implemented as a single table lookup unit 

and for different table sizes 218 

Figure C.25 Error in the square root generator implemented as a partitioned table lookup 

unit and for different table sizes 219 

Figure C.26 Error in the square root generator using CORDIC and for different number of 

iterations 220 

Figure D.l ICODE instruction database file 229 

Figure D.2 Floating-point instruction database file 230 

Figure D.3 Floating-point Module library file 232 

Figure D.4 Expanded ICODE instruction file 233 

Figure D.5 Example ICODE file 235 

Figure D.6 Example VHDL and ICODE files 237 

Figure D.7 Example ICODE-i- file 238 

Figure E. 1 FPGA package for the Xilinx FPGA used in the board 242 

Figure E.2 Serial programming cable connector 243 

Figure E.3 VGA adapter example 251 

Figure E.4 Keyboard Information 253 

Figure E.5 Keyboard interface flowchart 254 

Figure E.6 Format conversion unit flowchart 256 

Figure E.7 Output stage type conversion flowchart 259 



12 

Acknowledgements 

I would like to express my profound thanks to a number of people around me who helped 

make this project reality. 

First I would like to thank my supervisor, Professor Andrew Brown. His constant and 

consistent guidance, advice, encouragement, and conOdence were essential for completion 

of this thesis, and are highly appreciated 

I would also like to thank Dr. Alan Williams for his invaluable help and great patience and 

diligence in answering my endless requests. 

Thanks to all other members of the Electronics Systems Design Group at the University of 

Southampton, in particular I am grateful to Dr. Mark Zwolinski for his ideas and 

information and for giving me the chance to join the University as an MSc student at the 

first place. 

Finally, I would like to say a big thanks to my family. They have given their unconditional 

support, knowing that doing so contributed greatly to my absence in my postgraduate 

studies, during which we could have been geographically closer. 



Z.A. Baidas, 2000 Chapter 1: Introduction 

Chapter 1 

Introduction 

A floating-point number representation can simultaneously provide a large range of values 

and a high degree of precision. However, their manipulation is considerably more 

complicated than the corresponding fixed point operations. As a result, a portion of 

modern microprocessors is often dedicated to hardware for floating-point computation. 

In the past, silicon area constraints have limited the opportunity of synthesising floating-

point arithmetic units. Advances in integrated circuit fabrication technology have resulted 

in both smaller feature size and increased die area, which has provided a larger transistor 

budget. It is now therefore possible to implement floating-point systems on an ASIC or 

even programmable logic devices. However, the complexity of floating-point units is still 

a major limitation in realising cost effective, low volume systems. To overcome this 

limitation, advances in current CAD tools are needed, to make it possible to sensibly 

implement floating-point systems. 

Behavioural synthesis works on a description that specifies the relationship between 

system inputs and outputs by describing abstract data structures and functions to 

manipulate them. The physical structure is not described, as the emphasis is on what the 

design does and not how it does it. In addition, the data flow manipulation aspects for a 

synthesis system are not generally concerned with the data fypg; the limitations of integer 

arithmetic are imposed simply by the lack of functional units for more complicated data 

types. 

The MOODS (Multiple Objective Optimisation in Data and control path Synthesis) [1,2, 

3, 4, 5] is a behavioural synthesis system which transforms a VHDL (Very High Speed IC 

Hardware Description Language) [6] description into a structural netlist. It implements 

global optimisation of a design data flow and control graph by the repeated application of 

small, reversible (behaviour preserving) transformations. The system is designed to 
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support overall optimisation with respect to widely differing objectives: currently these are 

total area and maximum delay. The manipulation of these objectives form the basis for 

exploration of the design space, which is defined as the n-dimensional space that contains 

all possible implementations of a specific design. The exploration is steered by a simulated 

annealing algorithm that allows the diverse penalty functions from the various 

optimisation criteria to be compared. 

This thesis describes an enhancement to the basic MOODS synthesis system to support the 

processing of designs containing floating-point (and complex) arithmetic. In particular, the 

development of a floating-point module library and a floating-point optimiser capable of 

making strategic decisions about the high level binding of each floating-point operation in 

a way that meets the user's pre-defined goal. 

The thesis is divided into seven chapters. Chapter 2 provides a general introduction to 

behavioural synthesis and describes the basic MOODS synthesis system together with 

more detailed examination of the core synthesis sub-tasks. This is followed in chapter 3 by 

a discussion of some related work and commercial systems. 

The design and implementation of the floating-point library is described in chapter 4, 

along with several additional improvements to make the floating-point library integration 

more flexible. 

Chapter 5 provides an in-depth look at the floating-point optimisation challenges and the 

way they were handled. 

Chapter 6 highlights the development of a general purpose FPGA prototyping board and 

details the design and synthesis of an exemplar; a cubic equation solver, utilises the 

floating-point system discussed in the previous chapters. 

Finally, chapter 7 concludes by suggesting a number of enhancements to the present 

system providing areas for further research. 

A number of appendices are also included providing additional information on various 

aspects of the work. In particular. Appendix A outlines the main features of the IEEE 754 

floating-point standard. Appendix B contains a detailed discussion of the CORDIC 
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algorithm. Appendix C provides further details of the floating-point library design and 

implementation. Appendix D gives implementation details of the software, and Appendix 

E gives details of the hardware used to support the demonstrator. Finally, Appendix F 

contains a pre-print of a paper submitted to IEEE-CAD. 
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Chapter 2 

MOODS and behavioural synthesis 

Digital designs can be distinguished by the level of abstraction required to describe them 

in three main domains [7, 8]: AZgonfWic or /gveZ views the system as a set of 

variables and functions to manipulate them, where the system is 

described as a set of registers and a set of transfer functions specifying the flow of data 

between these registers [9]. ZgvgZ describes the system as a network of logic gates 

and flip-flops with logic equations specifying the behaviour. 

Behavioural or high-level synthesis tools [7, 8, 10, 11, 12] bridge the gap between an 

abstract behavioural specification of a digital system and a register transfer level structure 

that realises the given behaviour. It provides an environment that allows the designer to 

experiment with a wide range of structural alternatives. 

Starting with a behavioural description of a design and a set of user specified objectives, 

behavioural synthesis builds a datapath by allocating hardware elements (functional units, 

storage units and interconnects) and provides a controller to specify a set of operations to 

be performed during every control step. It frees the designer from the difficulties of 

selecting a good implementation, as it does not include design decisions such as timing 

and parallelism. 

2.1 VHDL for behavioural synthesis 

VHDL [6] is a language for describing digital systems. It arose from the program funded 

by the US Department of Defense in the late 1970s and early 1980s. In 1986, VHDL was 

proposed as an IEEE standard, and it was adopted as the IEEE 1076 standard in December 

1987. The language is being used for documentation, verification and synthesis of large 
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digital designs. This is actually one of the key features of VHDL. since the same VHDL 

code can theoretically achieve all three of these goals. 

The description of a digital system using VHDL is achieved with a set of 

Each element in this hierarchy consists (usually) of a pair of design units: an and an 

arcA/fgcfwre. The entity describes the lO ports of the element, and the architecture 

describes the internal structure and/or the functionality (thus it is possible for an entity to 

correspond to multiple architectures). This partitioning allows the design of an overall 

system to be distributed amongst a number of designers; once the entity definitions are 

established and agreed, the architecture designs can be carried out independently. 

Within an architecture, VHDL allows three types of statement to describe the internals: 

1. allows the use of any entity/architecture pair as a component 

in the design architecture. Each instantiation has two parts: the name and the port map. 

The component name defines the unit to be used, while the port map defines the way 

the signals in the design connect the component 10 ports. 

2. is used to describe the dataflow through the system. It is divided into 

two groups: 1) simple signal assignment (x <= a xor b;), which simply assigns to the 

target signal the value of the source expression, and 2) conditional signal assignment 

(x <= a xor b when c = ' 1' else not (a xor b) ; ) , w h i c h a S S i g n s tO t h e t a r g e t t h e 

value of the first expression when the condition is true or the second if the condition is 

false. 

3. Processes provide a method to describe activities that must occur in a sequential order. 

A process has three main parts: 1) a sensitivity list, 2) declaration part, and 3) statement 

part. The sensitivity list defines the signals to which the process is sensitive. Any event 

occurring on one of these signals causes the process to execute once. If the sensitivity 

list is absent, the process will run forever, unless the user explicitly pauses the 

execution with a (wait:) statement. The declaration part of the process allows the 

declaration of types, variables, functions, and procedures, which are local to the 

process. Finally, the statement part of the process contains a set of sequential 

statements executed every time the process is activated. 
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VHDL was initially designed as a simulation language. This leads to a number of 

problems when integrating VHDL in a synthesis environment and results in imposing 

some limitations on the language features. Moreover, the language synthesisable subset 

interpretation varies according to the level of abstraction at which the synthesis takes 

place. As far as synthesis is concerned, the set of restrictions applied to 

semantic interpretation of VHDL [13, 14] are summarised in the following: 

» Processes do not execute in zero time, but take a number of clock cycles. Thus there is 

no implicit assumption about the execution time of a process. In the simulation model, 

the process executes in zero time unless the user explicitly defines a delay using a wait 

statement. 

» Time expressions (wait: for x sec) are converted into control steps. Therefore, delay 

specifications (pausing process execution) can only be implemented as multiples of the 

clock period. A delay of any period can be speciOed using the same wait statement in 

the simulation model. 

« Processes cannot be used to specify combinational logic. In contrast, a process can be 

used to combinational logic in a simulation and/or RTL environment. 

* Structural definitions such as component instantiation and gengmfg statements are not 

allowed. 

® Recursion within procedures is excluded, due to the difficulties created. 

o Assert statements are for verification during simulation. They are ignored during 

synthesis. 

9 Statements within a process are executed in a sequential manner governed by an 

implicit clock signal. 

# Sensitivity lists, such as (wait: on input) will not activate on asynchronous edges. 

In the VHDL simulation model, a delay occurs within a process when a wait statement 

appears. Sequential blocks between wait statements execute in zero delay. However, when 

the design is synthesised, these blocks may take a number of clock cycles to execute, 

dictated by the data dependency between operations and the synthesis objectives. It is 
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common in a simulation model to employ such processes to describe combinational logic 

blocks that get activated when a transition occurs on any of the inputs and executes in zero 

delay (or a delay speciOed by a wait statement). When synthesised, these blocks will not 

be mapped to a combinational unit, instead, the system will generate a multi-cycled 

sequential block with a number of internal registers. 

Sensitivity lists are another issue that introduce major differences between a simulation 

and a synthesis environment. WazV on and wnffV statements originally detect 

asynchronous edges of the monitored signals. However, in a behavioural synthesis 

environment, signal edges will be synchronised to the system clock, and transitions will 

only be effective at clock edges, which might introduce timing mismatches between the 

behavioural model and the synthesised structural model. 

2.2 Behavioural synthesis 

There are several advantages to high-level synthesis over conventional RTL synthesis 

systems [9, 10, 15]. First, moving automation to a higher level assures a much shorter 

design cycle'. Second, it allows comparing several designs in a reasonable amount of time. 

Finally, an automated process may out-perform a human engineer in meeting most design 

objectives. 

The main tasks involved in a behavioural synthesis process are illustrated in Figure 2.1, 

which shows the flow of data in a generic high-level synthesis system. A behavioural 

description forms a starting point for a high-level synthesis system. The behavioural 

description is then compiled into an mremaZ rgpreaeMfonoM. This stage may include a 

compiler-like optimisation phase [16, 17] such as loop unrolling, common sub-expression 

elimination, dead code elimination and inline expansion of procedures. 

The increase in product ivi ty of behavioural design versus R T L design is typically quoted as a factor of five 

[18]. 
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Compilation into 
internal 

representation 

Scheduling and 
allocation 

. Module binding 
\ and 
/ controller 

synthesis 

System behavioural 
description 

Figure 2.1 A generic high-level synthesis system 

The next two steps form the basis of translating behaviour into structure; scheduling and 

allocation. Scheduling assigns operations to control steps (a control step is usually a single 

clock cycle). Allocation involves assigning operations and variables to functional units, 

storage hardware and communication paths. 

The final step in this process consists of module binding and controller synthesis. In 

module binding, the abstract datapath units are mapped to specific hardware 

implementation provided by a technology dependent module library, while controller 

synthesis provides the control circuitry responsible for generating the datapath control 

signals. 

2.3 The design space 
High level synthesis allows the designer to investigate a range of implementations for a 

particular input description, representing different trade-offs between a set of pre-defined 

objectives. Each of these implementations forms a single point in what is called the design 

space [4, 7, 19, 20], which is the n-dimensional space describing all possible 

implementations of a single behavioural description, in terms of n design aspects. Figure 

2.2 shows a two-dimensional design space represented by area and delay (processing 

time). The design space is divided into two regions, containing designs that are either 

achievable or unachievable. The two regions are separated by the optimal design curve, 

which consists of a set of discrete points representing the most efficient implementations. 

For a particular design, only a portion of the achievable region may be obtained as 

indicated by the actual achievable region in Figure 2.2. This limitation in the design space 

is due to a number of factors such as optimisation algorithms and design space modelling 

methods [21]. 
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Figure 2.2 Area versus delay design space 

2.4 Internal representation 

The first step in high-level synthesis is to capture the behaviour of the design in the form 

of an internal representation. This is essentially a one-to-one translation of the behavioural 

description into a graph-based representation containing both the data flow and the control 

flow of the design. 

For simple designs, the data flow graph (DFG) [11] can be employed to describe the 

system. The representation consists of a set of nodes, each node representing an operation 

in the original behavioural description. Data dependency between two nodes is represented 

by an arc connecting them. Figure 2.3 shows a sample VHDL input with the associated 

data flow graph. Three nodes are generated representing one addition and two subtraction 

operations. Node 3's dependency on nodes 1 and 2 is simply indicated by two arcs, the 

first arc labelled C indicates node 3 dependency on node 1 through the internal variable C, 

and the arc labelled D represents node 3's dependency on node 2. 



Z.A. Baidas. 2 0 0 0 Chap te r 2: M O O D S and behavioura l synthes is 11 

C : = A + 1 ; 

D : = B - 3 ; 

F := C - D; 

if 

# 1 8 #3 

C\ /D 

Figure 2.3 Data flow graph representation 

The DFG is not sufficient for representing systems in which the execution sequence is 

based on external conditions (if-eise and case blocks). The reason is that DFG is based 

on data dependency, while a method of representing the control flow as well as the data 

dependency is absolutely essential in such systems. 

To represent the control and the data flow, some systems choose to combine the control 

and datapath graphs into one structure, such as the Conrm/ Dafa/Zow Gro;?/! (CDFG) [22]. 

Other systems maintain separate graphs for data flow and control, with binding indicating 

the relationship between elements in both graphs. An example of the latter is the 

Timed Petri-Net (ETPN) [14] representation. 

To illustrate these representations, a simple example is introduced in Figure 2.4 showing a 

fragment of VHDL code. The graph representation of the code using CDFG and ETPN is 

shown in Figure 2.5 and Figure 2.6 respectively. 
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C : = a. + b) / 2; 

sel : = sign(c) xor sign(b); 

IF sel = '1' then 

r : = (a + c) / 2; 

ELSE 

r : = (b + c) / 2; 

END IF; 

Figure 2.4 A sample VHDL example 

The CDFG describes the control flow of the system as a directed graph. Each node in this 

graph is actually a separate DFG representing a block of assignments or a conditional 

statement. The CDFG in Figure 2.5 comprises three DFGs. The first one represents the 

two sequential assignments, the second two graphs representing the two conditional 

assignments. 

ETPN represents the datapath as a directed graph [14] with nodes and conditional arcs. 

The nodes capture both the operators and the variables, while the arcs represent the 

connections between nodes. These connections are only available if the arc associated 

control signal (Sn) is activated. The control part of the design is described by the passage 

of through a Petri-net, with vertices representing control states. The state 

transaction is controlled by conditions (Cj) generated in the datapath. When a control state 

receives a token, it activates the associated datapath conditional arc through its (Sn) signal 
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Figure 2.5 Control dataflow graph 
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sel 1 I 1 

s\ 
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Figure 2.6 Extended timed Petri-net 

2.5 Scheduling and allocation 

and aZZocafion form the basis of transferring behaviour into structure [10, 15]. 

These two tasks are closely interconnected and dependent on each other. For example, 

high performance (speed optimised) designs require allocating more components in each 

control step, to allow the exploitation of parallel execution of operations. On the other 

hand, the most area-efficient designs use a minimum number of slow components, which 

results in a large number of control steps. This dependency gives rise to a major problem: 

any decision taken by one of the two tasks might reduce the number of possible 

implementations, hence, reduce the actual achievable region in the design space. 

The simplest approach to this problem is to set some resource limit before scheduling; this 

is usually achieved by imposing a limit on the number of functional units available to 

implement the design (e.g. one multiplier and two adders). An improved version of this 

approach allows the process to iterate by re-synthesising with a modified resource limit. In 

a similar way, the resource limit is imposed, and then scheduling is performed. The result 
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is then evaluated against the user objectives. According to the evaluation result, the 

resource limit may be altered and the scheduling is performed again for a possible 

improved implementation. 

Another approach to this problem is to perform allocation before scheduling, trying to 

produce an area minimised design within the timing constraints given. For example, some 

systems [23] perform complete datapath synthesis including hardware component 

mapping. Both global and local optimisations are employed at this stage to minimise the 

area cost. Once the datapath is implemented, controller synthesis is then performed, 

optimising the number of states according to the constrained imposed by allocation and the 

timing constraints given. 

The approach employed by the MOODS synthesis system, is to combine scheduling and 

allocation together as a ggneraZ optimisation problem and introduces an optimisation 

technique to minimise it. 

The techniques that perform scheduling can be classified into two types [24]: 

and Constructive scheduling creates a schedule from scratch by adding 

operations one at a time until all operations are scheduled. Transformational scheduling, 

on the other hand, starts with an initial schedule, generally maximally serial or maximally 

parallel, and attempts to improve it by applying a number of local transformations. 

Simple constructive scheduling is possible by scheduling operations 'as soon as possible' 

(ASAP) or 'as late as possible' (ALAP) [25]. ASAP schedules operations in the earliest 

time step allowed by data dependency, while ALAP assigns operations to the latest 

possible time step. Figure 2.7 illustrates the meaning of ASAP and ALAP. The main 

disadvantage of both techniques is that all operations are treated equally, with no priority 

given to the more critical ones. When resource constraints are imposed, operations that are 

less critical can be scheduled first on a limited resource (e.g. single multiplier). This might 

block critical operations scheduling and result in an overall performance degradation. 

[25] solves this problem by taking more controlled approach in selecting 

the operation to be scheduled. At each control step, operations available to be scheduled 

are kept in a list ordered by some pnonfy/wMcn'on; each operation in the list is then 

scheduled in turn as long as the required resource is available, other wise, it will postponed 
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to the next scheduling step. Figure 2.8 represents list scheduling of a simple control graph: 

operation 2 has a higher priority that operation 1. and is therefore scheduled before it, 

providing an optimal solution in this case. 

Step1 

Step2 

Step3 

Step4 

a) ASAP scheduling 

Step2 

Step3 

Step4 

1 2 

\ / 

8 JL6 

! + I 

V • 

a) ALAP scheduling 

Figure 2.7 ASAP and ALAP scheduling 

In contrast with the above algorithms, the, force directed scheduling [26] attempts to create 

an optimal schedule based on a more global view. The algorithm attempt to minimise the 

number of resources required to implement the design within a given time constraint, by 

distributing sharable operations as evenly as possible between the control steps. 
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Figure 2.8 List scheduling 

In contrast to constructive sclieduling, transformational scheduling is based on an iterative 

process that applies a set of local transformations to the design initial schedule, moving the 

design towards the point that meets the user pre-defined objectives in the design space. 

Early transformational scheduling schemes employed exhaustive search to perform 

scheduling. The approach tests all possible combinations of transformations and chooses 

the best result. The method guarantees reaching an optimal solution, since all possible 

designs are tested. However, it is very expensive in terms of computing time and may not 

be considered as a viable solution for large designs. 

Another approach to scheduling by transformations is to handle scheduling as an 

optimisation problem, and employ an optimisation algorithm that exploits different 

transformations to achieve the desired result [7], At this stage, a heuristic approach may be 

employed to minimise the problem by selecting and applying transformations according to 

a pre-defined regime guided by an analysis of the design. 

In a similar manner to scheduling, resource allocation can be achieved using different 

approaches. Allocation involves binding operators to functional units, binding variables to 

storage units, and providing interconnect between registers and functional units. 

Algorithms that implement allocation can be divided into two classes [10]; 

(fgrafzvg/coM.yfrwcnve and 
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The iterative/constructive algorithms perform allocation by iteratively assigning 

operations, one at a time. These algorithms are distinguished by the method employed to 

select both the element to be assigned and the unit to which it will be assigned. The 

selection methods can be simply implemented to select elements in a fixed order: usually 

the same order appears in the data flow graph. A more sophisticated approach relies on a 

global selection, which tries to make the most suitable selection based on some metric: for 

example, selecting an element that has the least effect on the total system area cost. 

Global allocation techniques, on the other hand, deal with the datapath as a whole, and try 

to allocate all its elements at once. A number of techniques may be used for global 

allocation. A possible technique is to use a graph-based clique-partitioning algorithm [27], 

which attempts to build up a graph representing datapath elements by nodes, with arcs 

joining nodes that can share the same hardware. The problem is then reduced to finding a 

maximal partitioning of fully interconnected nodes. Since each partition will represent 

elements that can share the same hardware without conflict, the solution will represent the 

minimum hardware cost. 

Alternatively, branch-and-bound techniques [28] can be employed to perform global 

allocation. The algorithm performs an exhaustive search by trying all possible allocations 

of the datapath elements. The approach is very powerful since it checks every possible 

solution and provides an efficient allocation for small designs. However, the exponential 

increase in processing time makes it very expensive as the number of elements to be 

allocated grows. The latter problem can be tackled by imposing bounding heuristics to 

limit the number of solutions tried, for example, aborting any search that results in a cost 

increase higher than a certain limit. 

2.6 IVIOODS synthesis system 

The vehicle used to carry out this synthesis research is called MOODS [1, 2, 3] (Multiple 

Objective Optimisation of Data and control path Synthesis). The MOODS synthesis 

system has been developed to compile a behavioural description of a digital circuit into a 

structural description (VHDL or Verilog structural netlist), which utilises third-party tools 

to implement the design. Figure 2.9 is the original MOODS system data flow showing the 

major building blocks. It consists of four different tasks: 
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]. The VHDL behavioural description passes the source level optimiser [16. 17]. This 

performs a source level optimisation on the VHDL source code, to reduce the 

area/delay cost of the final hardware. Compiler-like transformations are applied at this 

stage, such as algebraic simplification, dead code removal and inline expansion of 

procedures. 

2. The optimiser output is then compiler to an mrgnviefjiafg (ICODE) using a VHDL 

language compiler. The ICODE represents the behaviour of the design at the register-

transfer level. 

3. This stage is the actual synthesis process. It takes as input the ICODE file and a set of 

user objectives, such as the design total area and maximum delay, and performs 

scheduling, allocation and module binding and outputs a VHDL structural netlist 

suitable for the target logic synthesis tool. 

4. The final stage in this data flow is the low-level logic synthesis and technology 

mapping, which utilises third-party tools, such as Cadence Synergy [29], 

LeonardoSpectrum [30], and Xilinx Foundation [31], to transfer the structural netlist 

into a physical circuit on an ASIC or a programmable logic device. 

A detailed description of the MOODS synthesis system may be found in the literature [1, 

2, 4, 5, 19, 32]. Outlined in the following sections are three major aspects of the synthesis 

system which have a particular bearing on the discussion of the floating point subsystem: 

® The initial compilation into ICODE and the internal representation. 

® Module expansion. 

o Global optimisation. 
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Figure 2.9 Original MOODS system data flow 

2.6.1 ICODE and internal representation 

The MOODS synthesis system does not directly read the input behavioural description. It 

reads an ICODE file. The logic behind this is to have MOODS as a general purpose 

synthesis system that can handle different input languages simply by changing the ICODE 

compiler at the front end. The VHDL2IC compiler (Figure 2.9(2)) translates the VHDL 

description into an ICODE representation. The ICODE is in some way similar to an 

assembly language, with additional control flow information. A simple example showing a 
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fragment of VHDL code with its equivalent ICODE is shown in Figure 2.10. It outlines 

the key features of the ICODE language: 

# An ICODE instruction has the general form: 

OPERATION <input:s> , <out:puts> <activat:ion list> 

» Each ICODE instruction is executed once it has been acn'vaW. (Excluding the first 

instruction, which is activated on the system reset.) Upon conclusion of an instruction, 

all instructions in its acn'vanoM Z/j'f are activated. If the activation list is missing, the 

next instruction is activated by default. For example, instruction ;2 activates both zJ 

and !'4. While the absence of an activation list in results in an automatic activation of 

i7. 

# Complex expressions are split down into a number of simple ICODE instructions, with 

temporary variables identified in the figure as numeric literals. In the figure, the 

VHDL assignment to the variable m is represented by five ICODE instructions (/2 to 

z6). 

# VHDL functions and procedures are implemented as a separate with a 

dedicated instruction MODULEAP to transfer the control to them. Instruction i9, for 

example, halts the main execution and passes the control to the module. The 

module output is returned in the var iablebefore the main execution continues. 

o Conditional branches are implemented as an IF instruction with two activation lists. 

One for the true condition (ACTT) and the other for the false (ACTF). In Figure 2.10, 

the VHDL conditional statement (IF sel = 1 THEN ... ELSE ... END IF) is 

implemented as two instructions iW and i] I, with instruction i72 being activated if the 

condition is true, and being activated if the condition is false. 

A complete definition of the ICODE is provided in Appendix D. 
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VHDL ICODE 

i2 : MtJLT a,c,l ACT i3,i4 
i3 : MULT 1,#4,2 ACT 15 

m :- b*b - 4*a*c; i4 
is 
i6 

: MULT b,b,3 
: COLLECT 2 
: MINUS 3,2,m 

IF m >= 0 then ~il : GE m,#0,4 
_i8 : IF 4 ACTT 19 ACTF 116 

s := sqrt(m); : MODULEAP sqrt m,s 

IF sel = 1 THEN 
"ilO : EQ sel,#1,5 

IF 5 ACTT 112 ACTF 114 

r ;= -b + s; 
""il2 
_il3 

NEG b,6 
PLUS 6,s,r ACT 116 

ELSE 

r := -b - s; 
"114 
_il5 

NEG b,7 
MINUS 7,s,r 

END IF; 
il6 

END IF; 

FUNCTION MODULE sqrt input output 

sqrt(input:integer) 
return integer is 

_END MODULE sqrt; 

END; 

Figure 2.10 VHDL and the equivalent ICODE example 

In the core processor input stage, the design, in the form of an ICODE file, is transformed 

into a control and datapath graph [1, 19]. Figure 2.11 shows the initial control and 

datapath graphs for the ICODE listed in Figure 2.10. 

The control graph defines the execution order of the ICODE instructions. Each node in the 

graph defines a control state. Input and output arcs define a conditional control flow, 

governed by signals generated on the datapath. For example, the datapath signal W/ 

decides on the transition from state to state or 5',6. Each control node has an 

instruction list, defining the instruction to be executed when this node is activated. A set of 

acyclic subgraphs divide these instructions into groups of Each 

group has a unique group number. Instructions with different group numbers may be 

executed concurrently. Instructions with the same group number are dependent on each 

other and must be executed sequentially within the same control state. 
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The MOODS control graph is of six types of node (refer to Figure 2.11): 

/. (for example j'g): has one input and one output, and can contain any 

ICODE instructions except COLLECT, MODULEAP, or conditionals. 

2. ForA: noc/g (for example j"?): the same as general node except that it has two or more 

unconditional outputs. This node defines the starting point of a set of parallel execution 

threads, where all the successors executed independently. 

J. (for example 5",;): has one input and two or more outputs. The output 

conditions are controlled by a signal from the datapath. This node is generated form an 

ICODE conditional instruction such as an IF or CASE statement. 

4. Dof (for example has two or more inputs, any of which can activate the node. 

This node is a counterpart to the conditional node; it represents the reconvergence of 

mutually exclusive control threads. 

5. Ca/Z nWg (for example 5'$): the call node results from a module call instruction. When 

this node is activated, it activates the execution of the required sub module. When the 

sub module exits, control is returned to the submodule successor. 

6. Collect node (for example 85)'. results from an ICODE collect instruction. The node 

will not activate its descendant node until a fixed number of activations (indicated by 

its argument) is received, thereby synchronising a set of parallel execution threads. 

The node is a complement to the fork node, where the concurrent branches are joined 

into a single node. 

The MOODS datapath graph represents the functionality of the ICODE instructions with a 

set of functional units, storage units, and interconnects. The flow of data though this graph 

is governed by control signals generated by the appropriate control state in the control 

graph. 

The initial datapath graph is created as a one-to-one mapping of ICODE operations and 

variables, with each ICODE variable represented as a storage unit (register), each ICODE 

arithmetic or logical operation represented as a separate functional unit, and each 

assignment operation represented as a set of registers, interconnects and control signals. 
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Figure 2,11 Control and datapath graphs 
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It is worth mentioning that the initial control and datapath graph represents a valid 

structural implementation of the design. However, it is almost certainly a highly inefficient 

implementation in terms of the total execution time and the large area cost. The 

optimisation phase of MOODS now moves this implementation in the design space 

towards the point that meets (if possible) the cost objective specified by the user 

2.6.2 Transformations 

MOODS employs an iterative optimisation strategy to perform synthesis. Iterative 

optimisation is achieved by dividing the synthesis task into a number of local 

transformations that are applied to different parts of the design using a dedicated 

optimisation algorithm. This allows simultaneous consideration of synthesis sub-tasks by 

performing scheduling, allocation and module binding simultaneously. 

At present, MOODS has a set of fourteen different transformations. These transformations 

are as a transformation applied to a valid design will result is a valid design. The 

availability of inverse transformations allows a previous design decision to be reversed at 

any stage during optimisation, which provides a solution for the problem encountered with 

premature binding decisions which may result in a design that is not optimal. 

Transformation selection and application consists of four distinct steps, as illustrated in 

Figure 2.12; 

1. Dam involves selecting a transformation and the portion of the design to 

which it should be applied. The selection varies according to the optimisation algorithm 

involved and is performed randomly in the annea/mg algorithm (see section 

2.6.4). 

2. Testing involves checking the validity of the transformation and ensuring that it will not 

modify the design behaviour. 

3. Ejf/mafzoM predicts the effect of the transformation on the system performance without 

actually altering the design. 

4. Execution, applies the transformation to the design. 
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MOODS transformations are divided into two groups: fm/zj/bmzofz'ozzj which 

apply mainly to the control graph, and n//ocofzo;z azẑ / Am f̂zzzg nYzzẑ /brzziafz'ozzA- which 

modify the design datapath. Scheduling transformations are listed in Table 2.1. while 

allocation and binding transformations are listed in Table 2.2. 

step 1 Select transformation 
and target 

Test transformation 
validity 

Transformation 
valid ? 

step 3 
Estimate the 

transformation effect on 
the design 

Perform t h e ^ \ ^ V®® 
transformation ? , 

no 

step 4 Apply the transformation 

Perform 
another 

iteration ? 

Figure 2.12 Transformation application steps 
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Transformation 

name 
Effect 

sequential merge Combines two sequential control nodes (i.e. nodes executed sequentially) 

to form a single control node implementing multiple instructions. 

parallel merge Combines several concurrently executing nodes into one control node. 

merge fork and 

successor 

Combines a fork node with one of its successors, with the successor 

instructions becoming conditional instructions executed in the fort< node 

control state. 

group instructions 

on register 

Tries to bypass datapath registers that have a single input and a single 

output net (i.e. a register implementing a variable accessed by one read and 

one write instruction) and moves the instruction group that contains the 

write instruction into the read instruction control node. 

ungroup node into 

groups 

Moves an instruction group into its own separate control node. 

ungroup node into 

time slices 

Divides instructions within a control node into new control nodes, such that 

no control state has an execution time greater than a specified period. 

clock set / multi-

cycling 

A global optimisation transformation that employs ungroup node into time 

slices transformation to meet a clock period constraint set by the user. 

Table 2.1 Scheduling transformations 

Transformation 

name 
Effect 

combine 

functional units 

Responsible for joining two functional units into one, time-shared between 

several operations. For example, combining an add and a subtract unit into 

a single add/subtract ALU. 

share registers Shares a single register between ICODE variables with non-overlapping 

lifetimes, or variables that occurs in mutually exclusive conditional branches 

(i.e. do not execute concurrently). 

uncombine 

instructions from 

units 

Takes a functional unit implementing a number of ICODE instructions and 

moves one of those instructions into a new functional unit added to the 

datapath. 

uncombine units 

fully 

Utilises the uncombine instructions from un/te transformation to completely 

remove a combined functional unit from the datapath. 

unshare variable 

from register 

Removes one of a set of shared register variables into a new register. 

unshare register 

fully 

Utilises the unshare variable from reg/sfertransformation to completely 

unshare a register into separate registers, one for each variable. 

alternative 

implementation 

The only binding transformation. It provides an alternative low level module 

to implement a certain datapath functional unit. For example, replacing a 

ripple carry adder with a carry lookahead adder to enhance the speed of 

vice versa to reduce the total area cost. 

Table 2.2 Allocating and binding transformations 
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2.6.3 The cost function 

MOODS employs fourteen different transformations to manipulate the design data 

structure (see Table 2.1 and Table 2.2), by chaining, merging or separating nodes in the 

control and datapath graphs. A measure of the efficiency of applying these transformations 

is provided by means of a "cost function" that represents the state of the design in an n-

dimensional design space as a single number, essentially the weighted sum of the costs in 

each dimension. 

The MOODS cost function allows the user to specify objectives for a number of design 

parameters such as area and delay. These are the dimensions of design space. Each of 

these objectives is deOned as a target value and a priority level, with one being the highest 

priority. 

During optimisation, the effect of a transformation is predicted by evaluating its effect on 

the system "energy". For a single objective, the change in energy is determined by: 

C -C 
c.V/•//;; aprevious 

r 

Where is the estimated cost after applying the transformation, is the current 

implementation cost, and C,n„w is the cost of the initial implementation, with negative 

average energy change {AE < 0) indicating a general improvement in terms of the target 

objective. 

2.6.4 Simulated annealing optimisation 

Design optimisation is performed using a simulated annealing algorithm [33, 34, 35, 36] to 

minimise the multiple-input cost function by selecting and applying different 

transformations. The term simulated annealing comes from a physical perspective; 

annealing is originally a physical process where a substance is cooled down from the 

liquid phase to the solid phase in a controlled, usually slow, manner. If the cooling is done 

carefully enough, the energy state of the solid at the end of the cooling is at its minimum. 
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Simulated annealing algorithm is a global optimisation method that distinguishes between 

different local optima. Starting from an initial point, the algorithm performs a random 

transformation and the cost function is evaluated: any downhill step is accepted and the 

process repeats from the new point. An uphill step may be accepted, enabling the process 

to escape from local minima. This uphill decision is made by the Metropolis [37] 

algorithm. As the optimisation process proceeds, the length of the step declines and the 

algorithm iterates towards a global optimum. 

By way of an example, let us consider the one-dimensional configuration space 

represented in Figure 2.13. The design is initially represented by point A. An optimisation 

algorithm accepting only transformations that results in an improvement will hit the local 

minima (point B). Simulated annealing will accept degradation and hence allows the 

configuration to jump out of the local minima into the global minima (point C). 

U1 O 
o 

A - initial 
configuration 

local minima 

C - global minima 

Configuration 

Figure 2.13 A one-dimensional configuration space 

In MOODS the method selects a random transformation and evaluates the change in the 

cost function AE. If the transformation leads to an improvement (AE < 0), it will be 

automatically accepted. Degradation might be accepted with a probability given by 

exp 
-AE 

T 
AE>0 
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Figure 2.14 describes the procedure as implemented in MOODS 

For (temp = Tscarb; t:emp >= Tend; temp = temp * Tgtep) 

{ 

for (1 = 0; I < Igkep; I + +) 

{ 

t = select_transformation (); 

delt_E = estimate_cost_var (t); 

if (delt_E < 0 I I rand() < exp(-delt_E/temp) 

Execute_transformation(t); 

} 

} 

Figure 2.14 The simulated annealing algorithm 

The sequence of temperatures during optimisation, and the number of transformations 

examined per temperature, defines the anrzea/mg The annealing schedule in 

MOODS is determined by four parameters: 

1. The initial temperature Tsum-

2. The final temperature Tend-

3. The number of iterations per temperature 

4. The reduction made to the temperature in the end of each step 

T îart is difficult to determine. However it should be high enough to allow the design to 

escape local minimas. For the end temperature a safe option is to always set it to zero, 

since at zero temperature, only improving transformations will be applied to the design. 

The optimisation algorithm performance at = 0, is a good aid to decide the If a 

noticeable amount of improvement is achieved at this point, then the design is not optimal 

and the number of iterations should be increased. On the other hand, if few improvements 

in the design are achieved, then this is a good indication that sufficient iterations have 

been performed during the optimisation phase. 
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Finally, temperature reduction should be small enough so that the reduction in temperature 

is slow enough to avoid trapping the design in a local minima because the temperature is 

low and hence the probability of accepting degrading transformations, that cause the 

design to escape this minima, is too low. 

In addition to the simulation annealing algorithm, tailored heuristic optimisation is also 

provided to perform design optimisation. It is based on the same set of transformations, 

however, transformations are applied in a pre-defined order based on an analysis of the 

performance of each transformation on a number of designs [19]. 

MOODS heuristic approach only accepts improving transformation, thus there is a 

possibility that the algorithm delivers a local minimum. However, tests suggest that the 

algorithm produces results comparable to the simulated annealing. 

Note that the tailored heuristic optimisation within MOODS performs only area/delay 

optimisation, while the simulated annealing is capable of performing a multi-dimentional 

optimisation between many objectives. 

2.6.5 Hierarchical module expansion 

Originally, MOODS considered functional units as pure combinational logic blocks. 

Hierarchical module expansion [19, 38, 39] provided a means of implementing multi-cycle 

technology-independent functional units, which get expanded in the internal design 

structure during synthesis. This enables inter-module optimisation at the sub-module level, 

allowing greater opportunities for functional unit sharing. Each expanded module is 

defined with separate sub-control and sub-datapath graphs, which replace the desired 

datapath functional unit and its activating control states. 

An example of the expansion process is given in Figure 2.15. Before expansion, the 

addition is implemented using a combinational 64-bit adder that executes in a single 

control state (Sj). The functional unit is then replaced by an expanded module composed 

of an 16-bit adder that performs the addition operation over four control states. The 

original control node was replaced by the expanded module sub-control graph (5'/ to 

and the 64-bit combinational adder was replaced by a 16-bit adder and the required 

interconnect. 
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Figure 2.15 Expansion process 

2.6.6 Floating-point enhancement 

The core of this thesis describes an enhancement to the original MOODS synthesis system 

to allow synthesising designs incorporating floating-point variables and operations. These 

enhancements are identified in Figure 2.16, which reproduces the original system block 

diagram (Figure 2.9) with the newly added features. 
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Figure 2.16 MOODS synthesis system with the floating-point enhancement 
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Chapter 3 

Background and related work 

This chapter presents background material describing influential research in the 

development of t h e a n d j ' . It is split into four 

main sections: section 3.1 describes the real number representation. Section 3.2 introduces 

some fixed-point functional units of a particular interest, while section 3.3 examines some 

research in the development of floating-point functional units. Attempts to implement 

floating-point arithmetic on programmable logic are introduced in section 3.4. Finally, 

section 3.5 describes a number of systems that automate the floating-point systems design 

process. 

3.1 Real number representation 

There is a fundamental difference between integer and real data types. In integer 

calculations, algorithms have discrete results, and ostensibly produce identical outputs on 

different machines. Real calculations do not always produce identical results due to the 

internal representation and the calculation accuracy. Early inconsistencies gave rise to a 

common real number representation with a clear definition of the way systems should 

handle real calculations, as well as the reaction of the system to exceptional situations (e.g. 

division by zero, overflow) [40]. 

The IEEE floating-point number representation [41, 42, 43] provides a solution to this 

problem. It provides four different representations of floating-point numbers. The standard 

gained a great popularity and most system manufacturers produce chips to support it. A 

detailed description of the standard is given in Appendix A. 
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This research adapts the IEEE single-precision floating-point word, which is 32-bits wide 

and arranged in the format shown in Figure 3.1. The floating-point word is divided into 

three fields: a single-bit j/gn, an 8-bit gxpongnf and a 23-bit /racno/z. 

Sign Biased exponent Fraction 
rs; (E) (F) 
1 II IM ^ 1 
+ / -

I I I I I I I I : I I I I I I / ' I I I I I I ) 

27 2^ 2̂  23 2̂  g) 2^1 y. I 2-' 2^ 2-3 2^ 2-̂  2^ 
I I I I I 1 I i I I I I I I I , / I I I I I I ! 

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 

Figure 3.1 IEEE single-precision floating-point format 

The j'/gn bit (5') indicates the sign of the floating-point number, a negative value has a sign 

of 1; non-negative values have a sign of 0. The gxpongyzf is an unsigned integer 

field representing a multiplicative value of some power of two. The has a value of 

127. If, for instance, the biased exponent has a value of .t, then the actual exponent would 

be -727. The/racnon is a 23-bit field containing the 23 least significant bits of the 

number mantissa. The weight of the fraction most significant bit is 2"'; the fraction least 

significant bit has a weight of 2'""\ The leading 1 in the mantissa field (bit 24) is implicit 

and does not appear in the fraction field. A 32-bit real number, yi, is generated from 

y, = ( - ] ) " x l . F x 

One of the most notable features of the IEEE standard is that it allows computation to 

continue if it faces an exceptional condition, such as dividing by zero. This is achieved by 

introducing special bit patterns that do not represent ordinary numbers. The standard 

defines five such bit patterns: zero, denormalised numbers, +/- infinity, and Not a number. 

These are described in Appendix A. 

The IEEE floating-point format is not the only way to represent real numbers with finite 

precision. Various replacements have been proposed [40], although none have achieved 

the popularity of the IEEE floating-point format. 

A particular number system that has been the subject of considerable interest is the 

ZoganYWfc [44, 45, 46]. In this system, a real number is represented using 

the form (- l)^x / , with 5' being the sign bit and e is an exponent of the radix r. Figure 3.2 
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shows a general format of a logarithmic number. The exponent c is represented in a fixed-

point number with M-bits for the integer part (/). /n-bits for the fraction part (/), and 1-bit 

for the exponent sign (5'). A real number, y?, is generated from V: = (-1)^ - . where 

/- typically equals 2. 

Exponent 
(e) 

S/grf 

(S) 

+/-

n-bits 
integer (i) 

m-bits 
fraction (f) 

Figure 3.2 Logarithmic number format 

The logarithmic number representation provides a very fast and easy basis for arithmetic 

operations that involve exponent manipulation, such as multiplication and division. 

However, addition and subtraction are slower in logarithmic number systems when 

compared to floating-point number systems, and also involve a sizeable lookup table. It is 

observed that the most frequent arithmetic operations are addition and subtraction' making 

logarithmic numbers less successful when compared to floating-point numbers. Recent 

work in [47] delivered a logarithmic arithmetic unit that performs addition and subtraction 

in a comparable speed to floating point units. However, the area cost of such 

implementation is still a disadvantage when a minimum area cost is the main objective. 

3.2 Fixed point functional units 

Multiplication and division are the basic operations underpinning most arithmetic 

processes. The way multiplication and division are performed have a major effect on the 

overall system performance. Purely combinational multipliers and dividers are not viable 

designs, they consistently give the largest area. This section describes multiplication and 

' Addi t ion and subtraction typically account for more that one half the total ari thmetic operat ions in a typical 

scientif ic calculat ion [48]. 



Z.A. Baidas , 2000 Chapter 3: Background and related work 4 g 

division algorithms that allow a trade-off between system performance (delay) and 

hardware cost (area). 

The section begins with a multiplication algorithm based on the modified Booth 

algorithm. Then, an algorithm for rapid binary division is outlined. 

3.2.1 IVIodified Booth multiplier 

The Booth multiplier was originally introduced as a uniform multiplication process, which 

is independent of the sign of the input operands [49]. A modification to this method 

allowed the reduction of the number of additions required to perform the multiplication 

operation at the cost of some extra control logic [50, 51]. 

In the serial-parallel form of the multiplication operation, the multiplicand is added to the 

partial product every time a one is detected in the multiplier. For a single cycle 

multiplication, this requires a number of add operation equals the multiplier width. The 

modified Booth multiplication reduces the required number of add operations by half", by 

regrouping the multiplier bits into groups of three bits (the multiplier should be first 

appended with zero by the Isb to form the first 3-bit group, and if necessary, zeros by the 

msb to form the last 3-bit group) that control the value to be added to the partial product. 

Modified Booth encoding is illustrated in Figure 3.3, and the value to be added in each 

iteration based on the multiplier bits. 

Note that adding the multiplicand twice is simply achieved by shifting the multiplicand 

left and adding the result. Subtract twice is also performed by adding the two's 

complement of the latter. The example in Figure 3.4 illustrates the algorithm principle 

where two 5-bit (00101 x 01010) numbers are multiplied using this method. The 

multiplier is divided into three groups; the first group (100) indicates subtract twice 

operation, the second group (101) indicates a subtract one, and finally (001) indicates add 

once operation. Note that each of the three terms is sign extended up to the most 

significant bit of the final product. 

' For an odd multiplier width, the number of adders required are n+1/2, where n is the mult ipl icand width. 
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Figure 3.3 Modified Booth multiplier 

Multiplier 

Bits 
Selection Summary 

000 +0 No change to partial product. 

001 +M Add the multiplicand to the partial product. 

010 +M Add the multiplicand to the partial product. 

011 +2M Add the multiolicand twice to the partial product. 

100 -2M Subtract the multiolicand twice from the partial product. 

101 -M Subtract the multiplicand from the partial product. 

110 -M Subtract the multiplicand from the partial product. 

111 -0 No change to partial product. 

Table 3.1 Partial product selection 
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Figure 3,4 Modified Booth multiplication example 

3.2.2 Rapid division algorithm 

The rapid binary division algorithm or Wilson-Ledley division method [52, 53] provides a 

simple approach to dividing unsigned normalised fractions. The approach is based on the 

decomposition of a binary number into groups of strings of one of four types as illustrated 

in Figure 3.5. The string types are: all zeros, all ones, all zeros except one bit, and all ones 

except one bit. 

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 1 6 1 7 1 8 position 

0 . 0 0 0 0 1 1 1 1 0 0 1 0 0 1 1 0 1 1 number 
\ / \ / \ / \ / 

str ing of String of isolated one in isolated zero in 
zeros ones str ing of zeros string of ones 

Figure 3.5 A decomposition of a number into four types of strings 

The algorithm relies on a number of observations that benefit from the binary number 

decomposition illustrated above: 

1. A string of ones from a to 6 positions contribute to the magnitude of the number by 

(2"'+' - 2'''). 

2. An isolated one at position a in a string of zeros contributes by (2 ") to the magnitude. 
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3. A string of ones from a to b positions with an isolated zero at c position contributes the 

value (2"'^' - 2'̂ ^ - 2'"̂ ) to the magnitude. 

Based on these observations, the algorithm tries to detect similar strings that may occur in 

the division result and generates them at once. The procedure' is summarised in Figure 

3.6; the procedure ends when / equals the result length. Before applying the procedure, 

three main conditions should be satisfied. 

1. The denominator D should be positive and normalised. 

2. The numerator TV should be positive, with < D. 

3. is either normalised or with a single zero to the right of the binary point. 

E N D * 

i = o 

s = 1 

N l ' ) = D 

Normalise AÂ ' shifting m 
positions 

i = i + m 
s = s + 1 

\ N 
0 , = ) ^4 

i 

Each 0, through , = 0 

Key 
N : numerator 
D : denomirator 
/V ; initial numerator value 
AA"®': numerator value at s stage 
Q : division result 
n : result width 

• END 

Y 
Q, = 0 

/ = / 
s = 

+ m 
> f 7 

A . ' 

I k 

Each 0, through 

Figure 3.6 Rapid division algorithm flowchart 

F o r m o r e d e t a i l s o n t h e a l g o r i t h m a n d i ts r e l a t i o n t o t h e b i n a r y d e c o m p o s i t i o n s e e [ 5 3 ] 
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3.3 Developing floating-point functional units 

Research carried out in the development of floating-point functional units can be divided 

into two areas: research dedicated to developing floating-point arithmetic units (adder, 

subtractor, multiplier, divider) mainly for hardware implementation, and the development 

of algorithms for elementary function evaluation at both the hardware and software levels. 

An example of the first area work carried out by Oberman [48, 54] to investigate different 

methods of implementing high-performance floating-point arithmetic units, and proposed 

techniques to improve the performance of these units, mainly to speed up future 

microprocessors. One of the techniques introduced allows a full-precision floating-point 

addition operation to execute with an average delay of 2.25 clock cycles. This was 

achieved by exploiting the distribution of operands over redundant datapath hardware and 

employing pipelining and fast rounding methods. However, the significant hardware cost 

makes these techniques unsuitable for low cost designs, or designs targeting 

programmable logic devices. 

The CORDIC algorithm (Co-ordinate Rotation Digital Computer) is one example of an 

efficient algorithms to evaluate elementary functions. The algorithm was introduced in 

1959 by Voider [55] as a method to rotate a vector by an arbitrary angle, or to determine 

the angle and the magnitude of a vector. Besides vector transformation, the algorithm 

computed j'mg, coj'mg and mvgrjg fanggnf functions. Walter [56] generalised Volders 

algorithm to support a wide range of hyperbolic, logarithmic and exponential functions. A 

recent modification to the algorithm [57] enables the computation of inverse sine and 

inverse cosine functions. The CORDIC algorithm exhibits linear convergence, which 

implies that generating an n-bit result requires n iteration. Moreover, the algorithm is 

simple to implement and requires minimal hardware. Details of the CORDIC algorithm 

may be found in Appendix B. 

ATA (Add - Table lookup - Add) is another method for evaluating elementary functions 

[58]. The method evaluates these functions using a truncated Taylor series and a large 

table (around one megabit for a single instruction). The method involves evaluating a 

Taylor series approximation by parallel add/subtract, parallel table lookup, and followed 

by a multi-operand addition. The proposed hardware implementation is very fast. 

However, the table lookup size required to generate a single elementary function is 
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868352 bits, and the total amount of table size required to calculate seven elementary 

functions is about 14.2 Mbit. This large table size introduces a problem, in terms of 

internal storage area, if the algorithm is to be realised as a single chip design. 

A software library for elementary function calculation using the IEEE floating-point 

standard was proposed in [59]. The library combined a table lookup method with minimax 

approximation polynomials [60, 61] to develop high-performance software models with 

maximum accuracy. The proposed algorithms, along with similar software-based 

algorithms are often discarded in the hardware domain due to the large area overhead they 

impose. 

3.4 Floating-point arithmetic on FPGA 

There have been several studies to investigate the possibility of implementing floating-

point operations on programmable logic devices. Programmable logic devices impose 

limitation on the number of functional units, storage devices, and interconnect. This lead 

designers to avoid implementing floating-point operations on programmable logic devices, 

simply because these operations typically require a large area to be practical on these 

devices. 

A recent study [62] offered evidence that floating-point implementations on FPGAs 

should be considered. It introduced a single precision floating-point adder and multiplier 

realised on a Xilinx 4020E FPGA. The author argued that a single precision floating-point 

unit implemented on FPGA would give a reasonable performance improvement for 

floating-point applications over the currently available microprocessor. Moreover, he 

suggested that if programmable logic device density and speed continue to increase, 

platforms based on programmable devices might offer a significant speedup to pure 

floating-point applications. 

Similar work [63] proposed two single precision floating-point square root 

implementations on FPGAs. The author surveyed different methods of implementing a 

square root functional unit, and decided on an iterative method based on a single 24-bit 

adder/subtractor functional unit. A high performance implementation of the same 

algorithm was also highlighted. The second implementation exploited parallelism using a 
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fully pipelined implementation at the cost of extra hardware (almost five times the cost of 

the first serial implementation). 

An FPGA prototyping board using an Altera Flex 81188 FPGA was the target for single 

precision floating-point addition and multiplication units in [64]. The design was used to 

simulate the interaction of galaxies in what is called a gravitational N-body model. A point 

of particular interest in this work is the extra limitation introduced by FPGA devices on a 

prototyping board. The chip pins in this case are pre-assigned, which imposes additional 

constraints on the placement and routing tools and results in less efficient utilisation of the 

FPGA resources. 

A different approach to implementing floating-point operations was presented in [65]. The 

work minimised the floating-point implementation cost by introducing smaller floating-

point formats. These formats are shown in Figure 3.7. The 16-bit format has a 9-bit 

fraction field and 6-bit biased exponent, with a bias of 31. The 18-bit format has a 10-bit 

fraction field and a 7-bit biased exponent, with a bias of 63. The approach gives a major 

reduction to the total cost of the implementation, but results in a reduction of both the 

dynamic range and the representation accuracy, which might be suitable for a specific 

implementation, but is not considered a general-purpose approach to floating-point 

calculation. 

Sign Biased exponent Fraction 
(F) 

1 1 1 1 

+ / -
1 1 1 1 1 

25 2^ 23 2^ 2' ^ 
I 1 1 1 1 

1 1 1 1 1 1 1 1 
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Figure 3.7 Short floating-point formats 



Z.A. Baidas, 2000 Chapter 3: Background and related work 

The work purposed in [66] introduced an FPGA-based floating-point data path as a 

building block in a geometric processor dedicated to co-ordinate transformations in a 

graphics system. The data path performs 32-bit floating-point addition, subtraction, 

multiplication, division, and comparison operations. The design exploited the similarity in 

the floating-point operations to reduce the total area cost. This is achieved by partitioning 

the data path into four main units illustrated in Figure 3.8; an exponent manipulator; a 

fraction manipulator; a fraction arithmetic unit: and a control unit. A simple 

adder/subtractor unit is employed in the fraction arithmetic unit, which implies a serial-

parallel or "pencil and paper' implementation of the fixed-point multiplication and 

division operations. The proposed data path provided a single flag to indicate overflow, 

and ignored all other exceptional situations such as (NAN) to minimise the cost of 

hardware resources. 

fraction A fraction B 

opcode 

exponent A 

exponent B 

cont ro l 

Control s igna ls Fraction f rac tkx is 

unit manipulation 

Exponent 
manipulation 

e x p o n e n t ^ Fraction 
arithmetic unit 

-> result 

Figure 3.8 FPGA-based data path block diagram 

In contrast with the above, the work in [67] introduced a self timed single precision 

floating-point processor based on a combination of ASIC and FPGA. Instead of a global 

synchronising clock signal, the system adapted a handshaking protocol, where design units 

are locally synchronised using handshaking signal (strobe and acknowledge). The 

processor performs three floating-point operations; addition, subtraction, and division. 
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Addition was implemented in the ASIC, while the floating-point multiplier and divider 

targeted the FPGA. The independence of the addition hardware and the multiplication and 

division hardware allowed parallel scheduling of the instructions, as well as out of order 

execution. The processor adapted the simplest form to implement floating-point 

operations, such as employing serial-parallel fixed-point multiplication and division 

algorithms, in order to reduce the total hardware cost and increase the probability of 

successful processor functionality simply by reducing the complexity of the design. 

3.5 Automatic floating-point implementation 

An early attempt to automate floating-point implementation appeared in [68]. The work 

highlighted a design concept for digital signal processing applications using floating-point 

primitives, which was integrated within a synthesis environment called the ASA Silicon 

Compiler, by means of a template library. The author introduced a 32-bit floating-point 

adder to demonstrate the concept of the DSP template library. The adder was integrated as 

a generic primitive in the template library. Unfortunately, details of primitive 

implementation and integration within the silicon compiler environment were not 

presented. 

The remaining part of this section introduces two groups of floating-point implementation 

tools; tools that allow the generation of floating-point units that can be integrated within a 

system (module generators), and high-level block-diagram tools. 

It is worth mentioning that floating-point cores designed for rapid insertion into an ASIC 

environment are available at a commercial level in the form of cell-level designs, as well 

as behavioural VHDL or Verilog models for synthesis. However, this work achieves its 

goals ultimately by sharing the internals of the floating-point units; third party 'black box' 

are not considered further. 

3.5.1 Module generators 

A format conversion module generator is introduced in [69]. The module generator allows 

the automatic design of VLSI modules that perform floating-point to fixed-point 

conversion and vice versa. The module generator accepts any standard cell library and 

design rules. The output of the generator consists of the physical layout view, the netlist 
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file and all the information required to generate a SPICE file. It also provides the physical 

characteristics of the generated module, such as input and output location, and area 

utilisation. 

The module generator is considered general purpose, as it is not limited by the 

representation of the Hxed-point and the floating-point numbers. Based on a set of 

parameters specified by the user, the module generator decides on the appropriate 

structure. For example, for a floating-point point number, the user defines the number of 

bits of the fraction, the number of bits of the exponent and the exponent bias. While a 

fixed-point number is defined by the size in bits, the point position, and the number 

representation which can be sign-magnitude, one's complement, or two's complement. 

The module generator did not provide options to integrate the generated module within a 

design environment. The designer has to deal with the module as a black box that 

performs the conversion and provide an interface for it. A better approach would be to 

provide the generated module at the register transfer level using a hardware description 

language. In that case, the design could target an RTL-synthesis tool. This reduces the 

effort required to verify the functionality of the whole system that exploits the generated 

module since the whole system can be simulated at the RTL-level rather than at post-

layout level. The suggested approach might also result in a total area cost reduction as 

functional units within the module might be shared with other operations when the module 

is idle. 

Many floating-point arithmetic units are available in the form of macroceZ/a. A macrocell 

is defined as a medium to very high complexity block with given functionality, known 

interconnect interfaces and different interconnect level called vigwi' (e.g. behavioural, 

RTL, layout, etc.). GenOptim [70, 71] is one example of a tool created to design portable 

macrocells generators. It is a CAD tool that supports the implementation of architectural 

representation in different layout environments and different target technologies. It 

provides the designer with a set of high-level C function to describe the netlist, the layout, 

the test vectors, and the behavioural description of a parameterised module. GenOptim 

then provides an implementation of this module based on what is called a v/rmaZ 

which is a set of parameterised high-level operations (e.g. n-bit adder, n-bit multiplier). 
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The generator created by GenOptim can then be used to implement a technology-

dependent macrocell. The process involves defining a GenOptim virtual library in terms of 

the target technology cell library, and providing a set of parameters that defines the 

parameterised datapath units width (number of bits). The generator takes these inputs and 

automatically creates a set of outputs: a netlist describing the hierarchical interconnects 

between cells; a layout providing the placement of these cells: test vectors: and a VHDL 

behavioural description for simulation purposes. 

GenOptim has been used to implement a set of portable floating-point arithmetic unit 

generators based on the IEEE floating-point standard. Four generators were introduced to 

provide floating-point addition, floating-point multiplication, floating-point division, and 

floating-point square root operations. These generators had a parameterised fraction and 

exponent field to allow implementing any of the standards formats (single precision, 

double precision, extended single precision, and extended double precision). 

Another system, similar in structure to GenOptim, is the CXgen function library [72]. 

CXgen also provides the designer with a C library that can be used to describe and 

implement portable parameterised generators. The author presented a floating-point adder 

generator called OAF implemented using the CXgen environment. Starting from a set of 

parameters, GAF generates a floating-point adder described via a layout view, a netlist 

view, and a behavioural view. GAF also supports testability via a set of test vectors based 

on a structural analysis of the generated adder to ensure that the circuit is fully functional. 

3.5.2 Block diagram tools 

Digital systems can be represented as a network of transfer functions, data storage, I/O 

ports, and control functions. Such systems may be represented by 

consisting of blocks representing functions linked by lines representing the 

communications paths. An example of such block diagram is represented in Figure 3.9. 

Each block in the diagram represents a function that can either be simple (e.g. fixed-point 

adder) or complicated (e.g. floating-point multiplier). These blocks are connected with 

directed arcs defining the data flow through the network. 
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Function 1 

Function 2 

a. 

Function 3 

Figure 3.9 A design represented as a block diagram 

Block diagrams form the input to a family of CAD tools known 6/oc/: on'gnW 

The complete design flow of these systems is represented in Figure 3.10. The 

system allows the user to create a diagrammatic representation of the design using 

components provided by a block library. The design is then captured as a behavioural 

description or a register transfer level description. This step involves either a behavioural 

synthesis or an RTL synthesis depending on the nature of the design representation 

generated in the previous step. Finally, the structural representation of the design passes to 

a placement and routing tool to be realised as a physical implementation. 

Block diagram oriented tools also provide the ability to add new building blocks to the 

block library, which increases the system productivity and allows designing reusable 

blocks. A number of these tools integrate floating point synthesis by providing a number 

of floating point building blocks that can be instantiated within the system block diagram. 

COSSAP design environment [73] is one example of block-diagram oriented systems. It 

captures the systems representation in the form of a synthesisable HDL code (VHDL or 

Verilog HDL) using COSSAP HDL code generator. The system provides HDL code at 

both the behavioural and RTL levels, and provides two different implementation roots by 

integrating a behavioural synthesis tool [74] and an RTL synthesis tool [75] within the 

system. 
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COSSAP provides a powerful and efficient environment for digital signal processing 

applications. However, floating-point manipulation within the system is limited by the 

block library component, which currently support single precision floating-point addition 

and multiplication only. 

Block Library [ 

RTL 
description 

Behavioural 
description 

Structural 
description 

HDL code 
generation 

Block diagram 
edition 

RTL synthesis 

Placement 
and 

routing 

Figure 3.10 Block diagram oriented tools data flow 

SPW [76] is another CAD tool that supports digital design using block diagrams. In a 

similar manner to COSSAP, the system automatically captures the design as a HDL 

behavioural description. The code is then synthesised, using an integrated behavioural 

synthesis tool [77], into a structural implementation. SPW appears to have more support 
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for floating-point manipulation in comparison to COSSAP. For example, a dedicated 

floating-point communication library is provided as an add-on to the system [78.79], 

which allows the design and implementation of digital designs incorporation floating-point 

building blocks, dedicated for digital communication and wireless applications. 

Block diagram oriented tools provide a fast and convenient design environment for digital 

design where series of operations are applied continuously to a data stream. However, 

many applications require a significant amount of control logic based on external and 

internal variables. Expressing this dependency may be difficult and even impossible using 

block diagrams, while it can be easily achieved using conditional constructs provided by 

programming languages (case, if-else constructs). Moreover, when using these tools, it is 

the designer responsibility to perform the high level binding of the high-level floating-

point operation to building blocks. This manual binding decision may result in blocking a 

number of possible implementations, hence, reducing the possibility of the structural 

implementation meeting the target objectives. 
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Chapter 4 

Floating-point library design 

The floating-point library forms the core of the floating-point synthesis system. The aim of 

this chapter is to highlight the various floating-point modules that form the basis for the 

floating-point synthesis library. Functional unit structure is introduced and different 

methods for evaluation of these functions are considered. 

The text is divided into four main sections: section 4.1 describes the function evaluation 

process with an analysis of the different building blocks that composes the functional unit; 

section 4.2 examines the issue of the as a mean of "exception notification" 

to handle invalid operations; section 4.3 provides a brief description of each component in 

the library; finally, section 4.4 covers various issues that concerns the library 

implementation and integration within the MOODS synthesis system. 

4.1 Function evaluation 

The general structure of these functional units is represented in Figure 4.1. Each functional 

unit consists of three main building blocks; 

1. Range reduction. 

2. Function evaluation. 

3. Post evaluation rounding and normalisation. 
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Input(s) 
Post evaluation 

Range Function 1 rounding 
reduction evaluation and 

1 
normalisation 

Figure 4.1 Functional unit building blocks 

Three different are used to implement the function evaluation block: 

1. Table lookup. 

2. Iterative series. 

3. The CORDIC algorithm. 

These techniques generate modules with significantly different physical properties such as 

the total area cost and the total delay. This variation in the physical properties makes it 

possible to provide a wide range of implementations for a single floating-point design, 

which increases the probability to provide a single implementation that meets the user 

objectives. The floating-point library provides at least two different evaluation cores using 

two of the three base techniques listed above for each implemented function. 

4.1.1 Range reduction 

The large dynamic range provided by a floating-point representation introduces a problem 

when designing systems to handle floating-point arithmetic. Some evaluation methods, 

such as iterative series, converge over a wide range of input arguments. However, 

achieving certain accuracy over that range might require taking many terms into account, 

hence, increasing the evaluation time dramatically. Moreover, the time taken to achieve a 

given accuracy is data dependent. Other methods, such as the CORDIC [56, 61] algorithm 

has a limited domain of convergence. Having a suitable technique to reduce the range of 

the input operand(s) is therefore essential. 
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Periodic and symmetric functions have obvious reduction, others might require shifting 

and scaling. By way of an example, let us consider the natural logarithm function (y = 

/»(%)), where x = F x 2^ . The function is defined for x > 0. Range reduction can simply be 

achieved by the pre-scaling identity: 

ln (Fx2^) = ] n ( f ) + E x l n 2 

The output of the range reduction unit is generally a set of fixed-point variables and a set 

of control signals. The output variables form the input to the following function evaluation 

units, while the control signals govern the data manipulation of the unit. This dependency 

maybe illustrated with the aid of the example in Figure 4.2 which evaluates y = sin .r for 

arbitrary x. The output of the sine function range reduction block is a fixed-point number 

D and two control signals. One to decide on generating either sine or cosine in the function 

evaluation block and the other controls the final sign of the output operand. 

F x 2 

nputs 

Note: int(x) returns an integer < x 

Range reduction Function evaluation 

Output 

Figure 4.2 Range reduction example 

4.1.2 Table lookup 

Lookup tables are frequently and trivially used to evaluate mathematical functions. This 

scheme has often been rejected in practical cases, because of the large table sizes required 

for acceptable accuracy. However, combining range reduction techniques with a dedicated 

interpolation procedure gives rise to a large reduction in table size, often to the point that it 

may be reduced to an on-chip set of static registers rather than an external ROM. 
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Linear table lookup 

For a single numerically given point jc. the value of an arbitrary function /(.i) at this point 

can be evaluated [80] using the procedure described in Figure 4.3. 

DEFINITIONS: 

[interpolation coefficient 

:table break point 

/y, :weighting value 

n :interpolation order 

PROCEDURE; 

1 
4 

f^i 

f w = 

2, 

- X , 

X - X, 

Yi 

1=0 

Figure 4.3 interpolation procedure 

For linear interpolation (n = 1) and a linearly distributed table (equally spaced break 

points), the procedure can be simplified to the form shown in Figure 4.4, where a function 

/(%) is defined by a set of values (Vf, - stored in a table. For a quadratic interpolation, 

the general procedure outlined in Figure 4.3 applies. However, the computation problem 

can be simplified for the cubic interpolation procedure [80] as illustrated in Figure 4.5 and 

Figure 4.6, where a function/(a-) is interpolated using four linearly distributed break points 

(xfj, xi, X2, X3). From Figure 4.5, it is clear that cubic interpolation result equals to the sum 

of the linear interpolation (L) over the central interval (A:;, X2) and a numerical value Z. By 

introducing the relative distances between the input argument and the two internal break 

points p,q. It can be proved that Z has the value; 
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where Z,/ is the result of the linear interpolation over the interval (.vo, Xj). 

Cubic interpolation can therefore be generated in a simple way from two linear 

interpolations as illustrated in Figure 4.6. 

i=0 yo = w 

DEFINITIONS: i=1 yi = 

X :input argument 
i=2 y2 = X :input argument 

g : scaling factor (Xj -

: first break point: 

tiTip, m: temporary variables 

int{x) :function returns an integer value < % 

PROCEDURE: 

Stored Table 

V 5 y 
i = int (tmp) 

m = tmp - i 

f W = Y; + - y J X m 

Figure 4.4 Linear interpolation procedure 

A proof of this equation can be obtained by consulting [80]. 
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Figure 4.5 Cubic interpolation 

L 

L 

D E F I N I T I O N S : 

X :input argument 

S :scaling factor 

: break points 

:result of the linear interpolation over the 

interval 

;result of the linear interpolation over the 

interval 

p,q :relative distances between the input and the two 

internal break points 

PROCEDURE: 

P 
S 

q 
5 

/(A;) - + 

Figure 4.6 Cubic interpolation procedure 
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For a given accuracy, a major reduction in the table size may be achieved by using higher 

order of interpolation. This is illustrated in Table 4.1 which represents the cost as a number 

of table entries required to evaluate the sine function over the range 0 < .v < 7t/2, using 

different degrees of interpolation and for different accuracy. The results suggest that better 

Interpolation 

degree 

Number of table entries 
Interpolation 

degree Accuracy 

0.1% 

Accuracy 

0.01% 

Accuracy 

0.001% 

Accuracy 

0.0001% 

Linear 26 101 202 805 

Quadratic 10 26 51 101 

Cubic 8 15 28 53 

Table 4.1 Number of table entries for different interpolation degrees 

results can be achieved by replacing the linear interpolation procedure with a quadratic or 

cubic or even higher order interpolation, but the additional cost of the interpolation engine 

usually outweigh this advantage. The problem is quantified in Table 4.2, where the total 

interpolation engine cost in terms of on-chip area and total delay is provided for the sine 

function generator for different target accuracy and in two distinct cases; 

1. An infinite off-chip ROM is available to store the table. 

2. Table is stored as a set of on-chip static registers. 

Each configuration is given a reference code. When applicable, the total area cost includes 

the cost of implementing the internal table as a set of static registers. From the table, it is 

clear that the linear interpolation engine provides the fastest function generation and is the 

best implementation when an external ROM is available. However, a cubic interpolation 

engine has the advantage of smaller storage area especially at high accuracy targets at the 

cost of extra delay (=2.25 times the linear interpolation engine delay). The extra delay cost 

reduces the performance of the evaluation unit to the level that can be achieved with less 

expensive algorithms (such as CORDIC), which contrasts with the main objective of 

implementing functions using table lookup, which is minimum delay. The quadratic 

interpolation engine on the other hand always provides the worst area and delay figures 

and therefore is considered as impractical solution for all configurations. A note of 
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particular interest is that if the whole table may be implemented as an external ROM. 

accuracy variation will have absolutely no effect on the total area and delay cost of the 

design. That is because the interpolation procedure remains the same while accuracy in 

this case only affects the table size. 

The results are summarised in Figure 4.7 to Figure 4.9. Figure 4.7 shows a comparison of 

the three interpolation engines in terms of the table size for different target accuracy. 

Figure 4.8 and Figure 4.9 compares the total area and delay cost the three engines for 

various accuracies and with or without the external ROM. 

External 

ROM 

Degree 

Accuracy 

External 

ROM 

Degree 
0.0001% 0.001% 0.01% 0.1% 

External 

ROM 

Degree 
Area 

|Lim^ 

delay 

cycles 

area Delay 

Cycles 

area delay 

cycles 

area delay 

cycles 

Linear 150000 26 150000 26 150000 26 150000 26 

Ref A1 A2 A3 A4 

Quad 400000 74 400000 74 400000 74 400000 74 

Ref B1 B2 83 B4 

Cubic 260000 57 260000 57 260000 57 260000 57 

Ref CI C2 C3 C4 

0 Linear 440000 20 300000 20 200000 20 163000 20 0 

Ref D1 D2 D3 D4 

0 

Quad 450000 65 430000 65 413000 65 405000 65 

0 

Ref El E2 E3 E4 

0 

Cubic 291000 45 274000 45 267500 45 264000 45 

0 

Ref F1 F2 F3 F4 

Table 4.2 Interpolation area and delay figures for various configurations 
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I Linear • Quadratic • Cubic 

# 

1.00E-06 1.00E-05 1.00E-04 

Accuracy 

1.00E-03 

Figure 4.7 Table entries variation with different interpolation degrees 
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Figure 4.8 Area/delay costs for different interpolation and infinite external ROM 



Z.A. Baidas, 2000 Chapter 4: Floating-point library design 71 

70 

60 

50 

o 
"o 40 
o 

30 

o 
20 

10 

A Linear • Quad A Cubic 

E4 E2 E1 
• • • • 

E3 

100 200 300 400 500 

Area xlO^ (nm )̂ 

Figure 4.9 Area/delay costs for different interpolation without external ROM 

Non-linear table lookup 

The table size can be further reduced wi th negligible degradation in the function 

evaluation unit performance by observing the linearity o f the function over the evaluation 

interval [81]. This allows partitioning the table into multiple sub-tables, each handling a 

separate interval o f the function. This approach allows modifying the scaling factor o f 

each sub-table depending on the linearity o f each partition. Thus, a region where the 

function is linear can be tabulated wi th fewer break points than a region where the 

function is non-linear and sti l l achieve the same accuracy. 

To illustrate the advantage o f table partitioning, let us consider the inverse sine function 

(arcsin(x)) in the interval 0 < x < 1. Achieving an accuracy o f le"^ requires a scaling factor 

o f 2'^°, which requires a table size o f 1048576 entries. However, this scaling factor is only 

required as x - > 1: partitioning the table into multiple sub-tables reduces the table size to 

2796 entries and stil l achieves the same accuracy as shown in Figure 4.10. 
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3 a. 

S, =2^ 
82 = 2̂  
S3 = 2-'° 

S, = 2-1' 
S, = z " 
S. = 2=° 

0,875 

0.380G25 

0L14OG25 

Input to the inverse sine function 

Figure 4.10 Partitioning the inverse sine function into sub-tables 

Applying the table partitioning method requires a minor modification to the linear 

interpolation procedure represented in Figure 4.4 in order to provide a means of 

identifying the required sub-table. The modified procedure is listed in Figure 4.11. 

Note that i f the function can be divided into a number o f equal intervals, each handled by a 

separate sub-table, then the comparison operation in Figure 4.11 may be replaced by a 

single operation: 

R 

where R is the range covered by each sub-table. Having i? as a power o f 2 simplifies the 

division operation into a fast shift operation. 

Finally, the scaling factor on all previous interpolation procedures is adjusted to be some 

power o f 2, in order to replace the division in the scaling factor operations (when possible) 

by a fast shift operation. 

int() is a function that returns an integer value < the input argument 
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DEFINITIONS: 

Tj :first break point in sub-table i 

Sj :scaling factor for sub-table i 

Addfi :base address of sub-table i 

tmp,m,j:temporary variables 

addr„ 

addr. 

addr 

: function returns an integer value < 

PROCEDURE: 

if (x <= To) i = 0; 

else if (jic <= T;) i = 1; 

0̂ = 

y, = 

Stored Table 

else i = n; 

t jnp 
- T i ^ 

\ 
5. J 

j = int (tmp) 

i = J + addr. 

m = tJTip - j 

f(%) = y , + y J X m 

Figure 4.11 Linear interpolation multiple sub-tables procedure 

4.1.3 The CORDIC algorithm 

The CORDIC (Co-Ordinate /dotation D/gital Computer) algorithm [55, 56, 61, 82] was 

introduced as the basis for a navigational computer. Its principal advantages are that it 

requires no multipliers, and can generate two function results simultaneously. 

It is an iterative process, applied to a set of input variables (x, y, z) for » iterations, to 

generate a result accurate to » digits. Each iteration involves a shift, an add and an add 

constant operation. Each iteration is a rotation of a vector by a defined angle in one of 

three co-ordinate systems parameterised by rn. The basic iteration of the CORDIC 

algorithm is summarised in Figure 4.12. 
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DEFINITIONS: 

: input operand. 

m :=1 for circular, =0 for linear, =-l for hyperbolic 

co-ordinate system. 

a-i ran angle value stored in a table. 

dn [defines the rotation direction. 

PROCEDURE; 

for (i=0;i<n;i++) 

{ 

+ Yi ; 

Zi+i=Zi -

} 

Figure 4.12 The CORDIC algorithm 

The capabilities of the algorithm are summarised in Figure 4.13, where the input and 

output values are identified for the three different co-ordinate systems and for two distinct 

cases: 1) force z to zero, 2) force v to zero. The accuracy of the CORDIC algorithm is 

largely dependent on the number of iterations [83, 84]. For a large number of iterations, 

the algorithm delivers a high accuracy as illustrated in Figure 4.14, where the sine function 

is generated in the range [0,71/2] using CORDIC for 25 iterations. 

Due to the iterative nature of the CORDIC algorithm, reducing the required accuracy has 

absolutely no effect on the total area cost \ On the other hand, the total delay required to 

evaluate the function decreases linearly as the target accuracy reduces. This is illustrated 

in Figure 4.15, where the absolute error is monitored for different numbers of iterations in 

the same sine function generator. 

Unless accuracy reduct ion is achieved by reducing the datapath size, which might result in increasing the 

accumulat ion error and hence increasing the required number of iterations for the required accuracy. 
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X 

y — 
z — H 

- • K i ( x cos(z) - y sin(z)) 

- •K , ( x cos(z) + y sin(z)) 

->0 

Circular {m=1, z->0) 

X — 

y — 
z —H 

- > y + x z 

->0 
Linear (m=0, z~>0) 

- • K 2 ( x c o s I i ( z ) - y s i n h { z ) ) 

-•K2(x cosh(z) + y sinh(z)) 

- > 0 

Hyperbolic (m=-1, z->0) 

K; are predefined constants 

m is a control parameter 

X — 

y — 
z —H 

-•Ki V(x̂  + ŷ ) 
->0 
- • z + tan"'{y/x) 

Circular (m=1, y->0) 

X — 

y ' — 
z — H 

-•X 
->0 
- > z + y/x 

Linear (m=0, y->0) 

X — 

y — 

Z — H 

-•K2 (Vx̂  - ŷ ) 

->.z + tanh"\y/x) 

Hypertollc (m=-1, y->0) 

Figure 4.13 Output functions for CORDIC 

X 10 

0 . 6 0 .8 1 1.2 

Input to the sine function 
1.4 71/2 

Figure 4.14 Absolute error in the CORDIC sine generator for 25 iterations 
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Number of iterations (n) 

Figure 4.15 CORDIC error variation with the number of iterations 

4.1.4 Iterative series 

In this method, the value of the function/(x) is provided by an iterative process that 

calculates a polynomial approximation to the target function. The value of the input 

operand % is inserted into some formula and after a number of operations the value/(x) is 

obtained. 

A common numerical approximation is the Taylor series [60, 85], which is based on the 

Taylor theorem [85, 86], The algorithm is represented in Figure 4.16. Using this method, 

the following approximations (amongst others) may be obtained; 

sin(x) = % + 
3! 5! (2M-1)! 

cos(%)e] 1 ... + ( - ] ) 
2! 4! (2M)! 

/ \ 1 ^ x" 
exp(%) = 1 + — 4 1-...4 1! 2! nl 
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DEFINITIONS: 

:a function with n+1 derivatives in [a,b] 

:the nth derivative of ffxj. 

[Variables in the interval [a,b]. 

^ :a value between 

:approximating polynomial. 

:Remainder. 

THEOREM: 

1! nl 
/f + l 

(n + l ^ 

Figure 4.16 Taylor theorem 

Another polynomial approximation method is called the poZynomfaZ 

appmA;('maf;o?i [60, 61], which provides an approximation f (%) of a function/(jc) that 

minimises the worst-case error. The minimax approximation can be summarised by the 

two theorems represented in Figure 4.17" .̂ The first theorem says that a continuous 

f u n c t i o n c a n be approximated as accurately as desired by a polynomial. The second 

theorem implies that if a minimax approximation of the n degree is provided to the 

functiony(x), then the largest approximation error is reached at least n+2 times and that the 

error alternates. 

A proof of both theorems can be obtained by consul t ing [60]. 
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DEFINITIONS: 

:maximum distance between the approximation 

t±^ actual function. 

d :variable with a value of ±1. 

THEOREMl: 

For any ^>0 , a polynomial P exists such that : 

THE0REM2: 

f is the minimax approximation of degree n for in 

the interval [a,b] if and only if there are at least n+2 

values . . <%%+;<& such that: 

P ( X j ) - f ( X j ) = 

Figure 4.17 Minimax approximation base theorems 

Finding a minimax approximation of a function is not a straightforward process. However, 

numerica] analysis tools such as Maple [87] automatically compute the minimax 

approximation of a function over a provided interval, and provides the corresponding 

approximation error. 

In genera], the minimax approximation provides a more accurate solution compared to a 

Taylor expansion for a polynomial of similar degree. This is illustrated in Figure 4.18, 

where the exponential function is approximated using both methods for similar 

approximation degrees. The error over the approximation range is provided in Figure 4.19 

and Figure 4.20. Note the wide variation in ordinate scales. 

The example shows that minimax approximation provides better results compared to 

Taylor's expansion. However, the minimax approximation provides unique polynomials 

for each different degree that requires pre-computing. This gives the Taylor expansion an 

edge when a variable precision unit is implemented (see Chapter 7), since it is not possible 

to pre-compute the minimax approximations for every possible precision. 
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Accuracy 

Figure 4.18 Comparison between minimax and Taylor accuracy for different 
interpolation degrees 
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Figure 4.19 Absolute error in the minimax approximation for the exponential 
function different approximation degrees 
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Figure 4.20 Absolute error In the Taylor expansion for the exponential function for 
different approximation degrees 
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4.1.5 Post evaluation 

At this stage, the fina] output is adjusted to comply with the IEEE 754 floating-point 

standard. This involves; 

1. Inverting any range reduction effect. 

2. Normalising the fraction by shifting and adjusting the exponent field. 

3. Rounding the fraction by conditionally adding one to the least significant bit. 

4. Supporting any special action to indicate unusual events (e.g. overflow). 

Inverting range reduction effects can be simply demonstrated by an example: the inverse 

tangent function is generated for input operands with a magnitude greater than one using 

the conversion: 

arctant XI = arctan 
2 v^'y 

The function generator creates the inverse tangent of (1/%) and the final subtraction is 

performed in the post evaluation stage. 

The implicit one in the floating-point representation requires normalising the fraction 

field, which is simply achieved by shifting the fraction and adjusting the exponent to have 

the fraction within the range 1 < f <2. 

Rounding is required since the result in most situations cannot be represented exactly in 

the destination format (23-bit fraction field). In this case, the unit executes in round to the 

nearest mode, which is the default rounding mode in the IEEE standard [88]. Other 

rounding modes are discussed in Appendix A. In this mode, the result is rounded to the 

closest representation that fits in the destination format. If a result is exactly half way 

between two representations, it is rounded to the representation that has a zero least 

significant bit. Figure 4.21 illustrates three examples of rounding to the nearest, the first 

result XI is to the nearest representation a, while X2 is rounded to 6. X3 represents a 
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special case since it lies half way between c and therefore it is ronnded to the 

representation that has a least significant bit of zero ((/). 

1.2 23 y . , 1+2-z: ,X3 

V V 
1 ° 

a b 0 d 

Figure 4.21 Round to the nearest example 

Finally, some unusual event may occur during the operation execution that should be 

handled in the post evaluation stage. A good example for such situation is ovgr/Zow. If the 

final result of an operation has a magnitude greater than or equal to 2'"^, the value cannot 

be represented in the target format and the operation overflows. The post evaluation stage 

reacts to such situation by outputting a correctly signed inOnity symbol and setting the 

overflow flag. Further details on the post evaluation stage of different floating-point units 

are available in Appendix C. 

4.2 The status register 

Each floating-point functional unit has a set of status flags indicating the "goodness" of 

the output value. Writing to a status flag is analogous to throwing an exception. Each 

functional unit in the floating-point library can generate six status flags. These are: 

1. Invalid operation flag: is set high when an input operand is invalid for the target 

operation (for example ln(-])). 

2. Overflow flag: indicates that the final result has a magnitude greater than or equal to 

2*"^. The result in such a situation is a correctly signed infinity. 

3. Underflow flag: indicates that the final result has a magnitude greater than zero, but 

cannot be represented by the target format The result will be a correctly signed zero. 

4. Inexact, the flag is high if the final result of an operation does not equal to the 

infinitely precise result. This occurs in one of two situations: either the final result is 

rounded, or the final result is an approximation of the actual result. 
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5. Nof A /Zag: the flag is high if the operation produces NAN as the final result. 

6. Zero division flag: the flag is high if the divisor in a division operation is zero. 

Type detection blocks, integrated within the floating-point units, to detect these exceptions 

and output the corresponding flag register are discussed in Appendix C. 

Handling exceptions written to the status register is the responsibility of the designer. Two 

options are available: 

* A single status register per floating-point operation: The user can enable this option by 

providing a variable as an output argument within the floating-point function call (for 

example sin (input, output, monitor);), in that case, any exception will be signalled by 

writing the internal status register value to the provided variable. It is then the 

responsibility of the designer to provide an exception handling process that checks the 

monitor variable state and provides an appropriate reaction (similar to the C++ fry and 

cafcA block). 

# A global status register: if it was the designer's decision to ignore the status flag 

during floating-point calculation, a global port is automatically created as an output 

port and is shared among the floating-point operations within the process. In this case, 

handling the design exception should be performed externally (by interrogating (and, if 

necessary, resetting) the register with an independent process). 

Note that raising a flag within the status register does not always indicate a hazardous 

situation. This is illustrated in the example in Figure 4.22 where arctan(+oo) evaluates to 

n/2 and the final result after the multiplication by 2 is correct. However, the divide by zero 

operation signals a zero division flag. 
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arccos(;() = 2 arctan ̂  

arccos(-l) = 2 arctan 

I-A' 

I + A' 

lo 

= 2 arctan(-Hx') 

= n 

Figure 4.22 Raising a status flag example 

4.3 Supported functions 

The floating-point modules currently supported are listed in Table 4.3. A subset of the 

floating-point modules has the capability of handling complex operands. The complex 

subset has been chosen to match the IEEE math_real and math_complex VHDL standard 

[89]. However, the system provides the capability of adding new floating-point and 

complex modules as high-level functions, which are easily integrated within the floating-

point design flow. More details on implementing new floating-point and complex 

functions may be found in Appendix D. In the following section an introduction to the real 

floating-point component is provided, which is followed by an explanation of the 

conversion functions provided, and finally the extension to complex operators is 

introduced. 



Z.A. Baidas, 2000 Chapter 4: Floating-point librar)' design 86 

Function 
Real Complex 

Function 
Table CORDIC Series Table CORDIC Series 

addition 

subtraction 

multiplication 

division 

ln(z) Y Y N Y Y N 

logio(z) Y Y N Y Y N 

log2(z) Y Y N Y Y N 

logn(z) Y Y N Y Y N 

sin(z) Y Y Y Y Y Y 

cos(z) Y Y Y Y Y Y 

tan(z) Y Y Y N N N 

arcsin(z) N Y Y N N N 

arccos(z) N Y Y N N N 

arctan(z) Y Y Y N N N 

sinh(z) Y Y N Y Y Y 

cosh(z) Y Y N Y Y Y 

tanh(z) Y Y N N N N 

arcsinh(z) Y Y N N N N 

arccosh(z) Y Y N N N N 

arctanh(z) Y Y N N N N 

Y Y N Y Y Y 

Y Y N Y Y Y 

sqrt(z) Y Y N Y Y Y 

conj(z) 

real(z) 

imag(z) 

magn(z) 

arg(z) 

complex_to_polar(z) N/A Y Y Y 

polar_to_complex(z) N/A Y Y Y 

to_float() N/A 

To_complex() N/A 
* 

* These operations are implemented with separate functional unit unrelated to the three main 

techniques. 

** These return trivial results. 

Table 4.3 Floating-point function library 
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4.3.1 Algebraic operations 

This group of floating-point operations performs floating-point addition, subtraction, 

multiplication, and division of two real operands represented in the IEEE single precision 

floating-point standard. 

Floating-point addition and subtraction 

This model performs floating-point addition and subtraction of two floating-point 

numbers. The inputs to the model are two floating-point numbers a and b, and a flag to 

indicate one of the two operations Wcf or acf. The outputs of the model are the results 

of the operation and the status flags. 

Defining a floating point number as Fx2^, the floating-point addition/subtraction operation 

comprises the following individual operations [48, 54]: 

/. Perform subtraction of the exponents to form the absolute 

difference 

2. A/fgnrngnr Right shift the fraction (F) of the smaller operand by bits. The larger 

exponent is denoted 

3. Fraction addition: Perform addition or subtraction according to the effective operation, 

which is a function of the opcode (add/sub) and the sign of the operands. 

4. Conversion: Convert the fraction result, when negative to a sign magnitude 

representation. 

5. Leading-one detection: Determine the amount of left shifts needed in the case of 

subtraction yielding cancellation. For addition, determine whether or not I-bit shift 

right is required. 

6. Normalise the fraction and update 

7. Rounding: Round the final result by conditionally adding 1 to the Isb as required by the 

IEEE standard. If the rounding causes overflow, perform a 1-bit shift right and 

increment Ef. 
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Note that the sign of the exponent difference in step ] determines which of the two 

operands is larger. By swapping the operands such that the smaller operand is always 

subtracted from the larger operand, the conversion in step 4 is eliminated in all cases 

except for equal exponents. In the case of equal exponents, it is possible to get a negative 

result in step 3. Only in this event a conversion step is required, but since there is no need 

for an initial alignment shift in such case, the result subtraction will be exact and there will 

be no rounding [90]. 

Note that additional functionality is added to deal with different forms of a floating-point 

numbers as required by the IEEE standard. The following table outlines these special cases 

and shows the status flag register in each case. 

Case Result 
Status flag register 

Case Result 
Invalid inexact NAN OVF EUN ZD 

(+=) + {-°°) Quiet 

NAN 

1 1 0 0 0 0 

(-00^ -f {+00^ Quiet 

NAN 

1 1 0 0 0 0 

(+00) - (+°o) Quiet 

NAN 

1 1 0 0 0 0 

^-ooj - (-00^ Quiet 

NAN 

1 1 0 0 0 0 

(+00) + (+°o) +00 0 0 0 0 0 0 

(-00) + {-°°) -00 0 0 0 0 0 0 

(+0°) - (-c«) +00 0 0 0 0 0 0 

(-00) - (+00) -00 0 0 0 0 0 0 

Signalling NAN operand Quiet 

NAN 

1 0 1 0 0 0 

Quiet NAN operand Quiet 

NAN 

0 0 1 0 0 0 

Exponent overflow +/- 00 0 1 0 1 0 0 

Exponent underflow +/- 0 0 1 0 0 1 0 

Result Infinite precise 

result 

Result 0 1 0 0 0 0 

Final result is zero +/-0 0 0 0 0 0 0 

Table 4,4 Special cases in floating-point addition 
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Floating-point multiplication 

This model performs multiplication of two floating-point numbers provided as input 

operands. The outputs of the model are the results of the operation and the status flags. 

There are five major operations associated with floating-point multiplication [88. 91]: 

1. jfoge: Check for zero operands and set the product sign. 

2. FracfzoM fHwZfzpZfcan'oM: Fixed-point multiplication is performed on the fractions. 

3. ExpoMgnr The two exponents are added. The exponent bias shall be subtracted 

from result to get the final exponent Ef. 

4. Normalise the fraction and update 

5. Round the final result by conditionally adding 1 to the Isb as required by the 

IEEE standard. If the rounding causes overflow, perform a 1 bit shift right and 

increment 

The steps of fraction multiplication and exponent addition can be executed 

simultaneously. However, these two parallel steps must be properly synchronised before 

the normalisation step is initiated. 

The multiplier requires additional functionality to support different forms of a floating-

point number, as required by the IEEE standard. Those are listed in the following table. 
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Case Result 
Flag register 

Case Result 
Invalid Inexact NAN OVF EUN ZD 

(+0) X (-°o) Quiet NAN 1 1 0 0 0 0 

(+0) X Quiet NAN 1 1 0 0 0 0 

(-0) X (+°°) Quiet NAN 1 1 0 0 0 0 

(-0) X (-°o) Quiet NAN 1 1 0 0 0 0 

Signalling NAN operand Quiet NAN 1 0 1 0 0 0 

Quiet NAN operand Quiet NAN 0 0 1 0 0 0 

Exponent overflow +/- no 0 1 0 1 0 0 

Exponent underflow +/-0 0 1 0 0 1 0 

Result Infinite precise 

result 

Result 0 1 0 0 0 0 

Final result is zero +/- 0 0 0 0 0 0 0 

Table 4.5 Special cases in floating-point multiplication 

Floating-point division 

There are Hve major operations associated with floating-point division [48, 54, 92, 93, 94]: 

1. /nff/aZ Check for zero operands and set the product sign. 

2. This is an overflow prevention operation, ensuring that the 

dividend fraction is smaller than the divisor fraction. 

3. Fmcn'on Fixed-point division is performed on the fractions. 

4. Exponenf The two exponents are subtracted. The exponent bias shall be 

added to the result to get the final exponent Ef. 

5. Rounding: Round the final result by conditionally adding 1 to the Isb as required by the 

IEEE standard. If the rounding causes overflow, perform a 1 bit shift right and 

increment Ef. 

The alignment stage always results in a normalised quotient, so there is no need for a 

normalisation stage. 

The divider requires additional functionality to support different forms of a floating-point 

number, as required by the IEEE standard. These are listed in the following table. 
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Case Result 
Flag register 

Case Result 
Invalid Inexact NAN OVF EUN ZD 

( ° ° ) + ( ° ° ) Quiet NAN 1 1 0 0 0 0 

(0) + (0) Quiet NAN 1 1 0 0 0 0 

Signalling NAN operand Quiet NAN 1 0 1 0 0 0 

Quiet NAN operand Quiet NAN 0 0 1 0 0 0 

Exponent overflow +/- oo 0 1 0 1 0 0 

Exponent underflow +/ -0 0 1 0 0 1 0 

Result Infinite precise 

result 

Result 0 1 0 0 0 0 

Divisor is zero +/- oo 0 0 0 0 0 0 

Table 4.6 Special cases in floating-point division 

4.3.2 Logarithmic and exponential functions 

Four main logarithmic functions are provided. The natural logarithm, base 2 logarithm, 

base 10 logarithm, and basex logarithm. Each model has a single input, which is floating-

point operand (except for base % logarithm, where the base is also provided as an input), 

and two outputs: the floating-point result and the status flag register. The models are based 

on generating the natural logarithm function. While the remaining models are generated 

using the following conversions: 

log^x =log2gXln;c 

log,g% = l o g , o g x l n x 

1 

Inhase 

The exponential function along with the power of z function are also provided in the 

floating-point library. Both models are based on the exponential function (exp), with the 

power of z function generated using the following conversion [95]: 

- exp(zlnx) 
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Since z is can be any real number, this module can be used to generate the square root and 

the cubic root functions. 

The square root is also provided in the floating-point library. The unit has an additional 

output port that is set to one when a negative input operand is encountered. In such case, 

the unit evaluates SQRT (Ixl) and the sign bit of the input is simply propagated to the flag 

that indicates a complex result. When this flag is asserted high, it indicates an output of the 

form: Result = j^lXI 

4.3.3 Trigonometric functions 

This group of functions consists of the sine, cosine and tangent functions, along with their 

inverses. The input angle in all these functions is defined in radians. The modules are 

based on generating the sine function after a range reduction process and then applying 

simple conversion procedures to implement both the cosine and tangent functions. 

The inverse trigonometric functions on the other hand are supported using two modules. 

The first one generates the inverse sine or inverse cosine of an input argument in the range 

[-1,1]. The second module implements the inverse tangent function. 

4.3.4 Hyperbolic functions 

Range reduction for these functions is very expensive in terms of hardware and delay. 

Therefore, these functions are built upon the elementary functions discussed before as 

shown in the equations in Figure 4.23 [56, 96]: 
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. , exp(;f)-exp(-A') , exp(A-) + exp(-%) 
sum X = — cosh 

tanh A-
exp(x)-exp(-x) 

exp(jr) + exp(-%) 

sinh ' x = ln(x + VA;"+l) cosh 'x = ln(;r+V;("-l) 

In 
^ 1 + x ^ 

tanh ' x = - 1 — X 

Figure 4.23 Hyperbolic function evaluation equations 

4.3.5 Type conversion functions 

The VHDL math_real and math_complex [89] provides three data types to represent the 

floating-point number. A type for real numbers called REAL and two complex data types 

COMPLEX and COMPLEX_POLAR. The standard is currently provided as a simulation 

modelling library with no synthesis in mind. This introduces a problem when we try to 

provide modules to manipulate floating-point vahables for synthesis purposes. To tackle 

this problem, three new data types are introduced to denote floating point and complex 

variables: 

» FLOAT: Represents a 32-bit floating-point number in the IEEE single precision 

format, and is used to represent real numbers. 

* CMPLX: Consists of two 32-bit floating-point numbers in the IEEE single precision 

format and is used to represent complex variables in the form x-f-jy. 

• CMPLX_POLAR: Consists of two 32-bit floating-point numbers in the IEEE single 

precision format and is used to represent complex variables in the form Re' .̂ 

Note that since the real and imaginary parts in the two complex types are represented as 

two floating-point numbers, the same rules that handle the status register flags in the float 

core apply here. 

A set of type conversion functions is also provided to convert between complex type and 

from complex to real and vice versa: 
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* CONJ (Z): The function returns the conjugate of a complex and complex polar 

variable. If the input argument is a real number, an overloaded function with a real 

input is used, and the same input is propagated to the output 

® REAL (Z): The function returns the real part of a complex variable. For a real input 

the output is the same as the input variable. 

* I M A G (Z): The function returns the complex part of a complex variable. For a real 

input argument the function outputs zero. 

» M A G N (Z): The function returns the magnitude of a complex polar variable. For a 

real input the output is the same as the input variable. 

o ARC (Z): The function returns the angle of a complex polar variable. For a real input 

argument the output equals zero. 

• COMPLEX_TO__POLAR (Z); The function converts a complex input argument to a 

complex polar variable. 

• P O L A R _ T O _ C O M P L E X (Z): The function converts a complex polar input 

argument to a complex variable. 

Two additional type changing functions j, , j) are also provided to 

support translation from a VHDL type real and integer to the IEEE single precision 

representation of/Zoaf and comp/gA:. 

4.3.5 Complex units 

The type conversion functions illustrated earlier, along with the floating-point library 

components are used to implement the complex functional units within the synthesis 

library. These units are based on a hierarchical decomposition of floating-point functional 

units that manipulate the real and the imaginary parts of the two complex types (complx 

and complx_polar). By way of an example, let us consider evaluating the sine function of 

a complex variable based on the following equation: 

sin(x4- yy) = sin(x)xcosh()') + ycos(%)xsinh(y) 
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The functional unit block diagram is shown in Figure 4.24. The complex variable is split 

into its two floating-point components (real and imaginary) and passes through a number 

of floating-point functional units to generate the final result. 

Real(in) 

Imag(in) 

sine 
generator 

hyperbolic 
cosine 

generator 

floating-point 
multiplier 

cosine 
generator 

hyperbolic 
sine 

generator 

Real(out) • 

floating-point 
multiplier 

Imag(out) ^ 

Figure 4.24 Complex sine function generator building blocks 

For the polar type, the sine function generator is based on the complex sine function 

generator as illustrated in Figure 4.25. The polar variable is initially converted into the 

equivalent complex representation using the complex_to_polar function. A complex sine 

function generator follows this and the output result is then transferred back into the polar 

representation using polar_to_complex functional unit. 
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Complex 
sine 

generator 

Figure 4.25 Polar sine function generator building blocks 

The rest of the complex components are implemented in a similar manner to the sine 

function based on the set of equations listed in Figure 4.26. 

(jcl + y_yl)x(x2 + y);2) = ( z l x 2 - y 2 ) ' 2 ) + y(xl}'2 + z2)'2) 

.%! + xl;»:2 + vl v2 . A:1 v2 - A:2 yl 
6__ = ^ h ; ; — 

z2 + y);2 ;c2' + );2- ' x2^ + ) '2' 

exp(x+ /)') = exp(%)xcos(}') + y exp(x)xsin( y) 

cos(A: + jv) = cos(;()xcosh(y)-ysin(A:)xsinh( y) 

sinh(z + y}') = sinh(z)xcos()') + ycosh(%)xsin()') 

cosh(x+ /}) = cosh(z)xcos()') + y sinh(.):)xsin( y) 

) X ( r 2 g 

/ i 

f 2g ye 2 r2 
e 

re -

ln(/'e''^) = ln(r) + 

ln(») 

Figure 4.26 Complex function evaluation equations 

4.4 Function implementation 

The floating-point library is integrated into the MOODS synthesis system via the 

expanded module capability. This section describes two major steps in the development of 
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the floating-point library. Those are the hierarchical unit expansion and expanded module 

implementation. Further implementation details can be found in Appendix D. 

4.4.1 Hierarchical unit expansion 

Many floating-point and complex functional units in the library are provided as a 

hierarchical structure of common building blocks. This approach allows the final synthesis 

stage to share the common building blocks of different arithmetic units, which results in a 

significant reduction of the total area cost. In addition, partitioning the arithmetic units into 

a number of building blocks allows effective pipelining. This results in a reduction of the 

total delay and increases the throughput of the whole system. As an example, consider the 

pseudo-code of Figure 4.27. 

In Figure 4.27b, the function is expanded into two sub-blocks, the range reduction 

stage and the function evaluation stage A large number 

of sub-blocks are common to more than one floating point unit. They communicate with 

each other by means of (automatically generated) temporary buffers, which are initialised 

by the system to allow the sub-blocks to know which floating-point unit they are actually 

representing. For example, in Figure 4.27b will be initialised to tell it is 

representing a and may write the range reduction details into 6w/y to 

be picked up by sin_cos_main(). The complex type conversion function 

is expanded into further building blocks (jf/zg, two floating-

point multipliers and two type converters) as shown in Figure 4.27c. The jmg and cojmg 

functions are then further expanded (Figure 4.27d). This approach makes it easy for the 

optimisation algorithm to exploit functional unit duplication. The expansion process 

involves a series of modification to the original ICODE file that represents the design. 

Details on the expansion process, along with the modifications performed on the input 

ICODE file to generate the ICODE+ after expansion are available in Appendix D. 

Note that RE() and IM() in Figure 4.27c are similar to PL/1 pseudo functions: if they 

appear on the right hand side of an assignment, the return a vaZwg, if they appear on the left 

hand side, they provide 
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COMPLEX 
POLAR PI 

Fl = sin(F2) 

CI = pclar_Co_complex(Pl) 

(a) 

-F 
FLOAT Fl, F2 
COMPLEX CI 
POLAR PI 

T1 = sin_co5_pre(F2,&bufl) 
Fl = sin_co5_main(Tl,bufl) 

T2 = arg(Pl) 
T3 = magrn(Pl) 
T4 = min(T2) 
T5 = cos{T3) 
RE(Cl) » T5 * T3 
IM(Cl) = T4 * T3 

- • 

(c) 

FLOAT Fl, F 
COMPLEX CI 
POLAR PI 

T1 = sin_cos_pre{F2,&buf1) 
Fl = sin__cos_main.(Tl,buf 1) 

polar_cc_complex(PI 

(b) 

FLOAT Fl, F2 
COMPLEX CI 
POLAR PI 

T1 = sin_cos_prefF2.&bufl) 
Fl = sin_cos_inain(Tl,buEl) 

T2 = arg(Pl) 
T3 = magn(Pl) 
T6 m min_coa_pre(T2,&buf2) 
T4 m gin_cog_inain(T6,biif2) 
T7 a Bin_com_pr#(T3,&buf3) 
T5 " mia_com_%nain(T7,buf3) 
RE (CI) = T5 * T3 
IM(Cl) = T4 * T3 

(d) 

Figure 4.27 Hierarchical unit expansion example 

4.4.2 Expanded module formation 

The floating-point library building blocks are all implemented as expanded modules which 

are inline expanded within the MOODS control and datapath graphs during the design 

synthesis process. Developing an expanded module is a straightforward process. However, 

certain points of particular interest are described here to ensure the integrity of the 

generated expanded module. 

Figure 4.28 illustrates the expanded module creation data flow. At the highest level, the 

expanded module is described as a VHDL entity with a single process. At this stage, 

simulating the VHDL behavioural description is recommended to ensure a correct module 

operation. An important point here is to remember that the expanded module will act as a 
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datapath functional unit. This implies that the input ports must be stable during the module 

execution. As an example consider an instruction such as ( c := c + a;) in a behavioural 

description. Providing a single variable as an input and output port to the same multi-cycle 

expanded module may result in an incorrect execution as it is not guaranteed that the 

output port (which is also an input port) will remain stable and will not be updated during 

the module execution. To solve this problem, an initialising stage within the expanded 

module is implemented, loading the input variables into internal registers local to the 

expanded module body before any further manipulation. 

^ VHDL2IC ^ 

1 \ 

MOODS rV I 

VHDL behavioural 
description 

ICODE file 

module 

Control & datapath 
graph 

Expanded module file 

Figure 4.28 Expanded module formation 

Once implemented, the VHDL behavioural description is transformed using theVHDL2IC 

pre-processor into an ICODE file. At this stage, a minor manual modification to the 

ICODE file is required before moving on in the generation process. The necessity of this 

manual altering of the ICODE arises from the nature of a VHDL process as an indefinitely 

repeating loop, which implies that there will always be an activation from the last control 

state to the first control state to ensure continuous execution. This activation command has 

to be eliminated manually from the ICODE file to match the nature of the expanded 

module, which has unique, non-excitable start and end control states. This manual 

manipulation to the ICODE file can be eliminated provided that the user follows certain 

guidelines. This is illustrated by the example in Figure 4.29. Figure 4.29(a) shows a simple 

VHDL process with its equivalent ICODE. Note that two ICODE instructions (3,4) 

provides a feedback to the first control state. To ensure the integrity of the generated 

expanded module. The design can be simply modified by assigning the output result to a 

temporary register in all branches and then assigning the value of this register to the output 

port at the last instruction (control state), as illustrated in Figure 4.29(b). This ensures that 
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the process will have only a single activation from the last control state to the first one. 

which can be deleted automatically by MOODS during the expanded module generation 

process. 

process 

Begin 

if add = '1 then 

output: inl + in2; 

else 

output: <= inl - in2; 

End if; 

End process; 

ea add, #1 

if 5 ACTT 

.3 plus inl,ln2,ouLput ACT 1 

.4 minus inl,in2, output: ACT 1 

a) Initial VHDL process and its equivalent ICODE 

process 

Begin 
if add = 1' then 

temp := inl + in2; 

else 

temp := inl - in2; 

End if; 

output <= temp; 

End process 

eq 

if 

add, #1,5 

ACT 

plus inl,in2,temp 

minus inl,in2,temp. 

move Hemp, output: 

ACTT 3 ACTF 4 

ACT 5 

ACT 

b) Modified VHDL process and its equivalent ICODE 

Figure 4.29 Expanded module development example 

Once complete, the ICODE file is loaded into the MOODS synthesis system and is 

transformed into an initial control and datapath graph. Finally, the design is saved as an 

expanded module file and added to the MOODS floating-point library. 
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Chapter 5 

Floating-point optimisation 

The floating-point optimiser operates on floating-point and complex operations within the 

design, binding each floating-point operation to a suitable base technique component from 

the floating-point module library. 

During optimisation, the high level binding decision of each floating-point unit (i.e. table 

lookup, iterative series, or CORDIC) takes into account a number of issues such as the 

type and number of floating-point operations required and the availability and the capacity 

of any off-chip ROM available to the system. 

This chapter details the floating-point optimisation unit. The algorithm evolved from the 

need to map each floating-point operation to a suitable high level module in a way that 

enables the main synthesis system to develop designs that meet the user's pre-defined 

objectives. 

The remainder of this chapter is divided into four sections. First, section 5.1 describes the 

physical interactions that arise from the nature of the high-level floating-point library 

components and their effects on the optimisation process. Section 5.2 introduces accuracy 

as a new design space parameter, and describes the way the system handles this issue. 

Section 5.3 describes the optimisation algorithm and details the results of an extensive 

analysis of its effectiveness on a number of benchmark designs. Finally, further 

experimental evaluation of the algorithm is provided in section 5.4. 

5.1 Function implementation interactions 

The attributes of each function implementation considered in isolation are easy to 

compare: to generate sin(x) with a table requires the table itself (which may be internal, or 

external, requiring an interface), plus an interpolation engine. To generate it with a series 
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requires a cumulative adder plus a term generator, which may require a table, but no 

interpolation engine. All these elements have easily quantifiable area and speed costs. 

However, when a number of functions are required, new interactions become important. 

Those interactions are listed in Table 5.1. 

1. There is an overhead to interfacing an ASIC/FPGA to an external ROM, but it is fixed and 

independent of the number of external function tables. 

2. Once an iterative series generator has been instantiated, the cost of switching between different 

functions is relatively small. 

3. Some function tables are subsets of others. 

4. Once a complex function is implemented, the equivalent real function is virtually free in most 

cases. 

5. Some functions are built as a hierarchical composition of other functional units. If these units are 

already available, the total cost is reduced. 

6. Once a CORDIC unit has been instantiated, the cost of other units based on CORDIC will be 

reduced. 

7. The pre-processing stage of some function generators contains the fixed-point operators 

(multiplier, divider) required in the function generator block. This reduces the total area cost by 

sharing these operators within the two blocks. 

8. An optimal distribution of the external ROM amongst the floating-point units has a great effect 

on the total system cost. 

9. Providing the exact required accuracy for every functional unit could increase the total area cost. 

10. When a floating-point function generator is shared between a large number of functional units, 

the multiplexing cost could affect the optimised decision in choosing between off-chip and on-chip 

implementations. 

Table 5.1 Function implementation interactions 



Z.A. Baidas, 2000 Chapter 5: Floating-point optimisation 103 

The cost of interfacing a design to an external ROM is divided into two sources: 

1. I/O port cost: includes the cost of the address bus port, the data bus port and the control 

signal. 

2. Control hardware: to control the process of reading data from the external ROM. This 

involves setting the address and the control signal and then latching the output data into 

an internal register. 

Figure 5.1 shows a block diagram of an external ROM interfacing unit shared between a 

number of functional units. Using this method, a number of functions using the same 

external ROM will hardly have any effect on the total system cost when compared to the 

cost of implementing a single functional unit using an external ROM. The only overhead 

when the external ROM is shared is the cost of multiplexing the data bus and the address 

bus between the functional units. 

V 

External ROM 
interface 

-^-address bus 

4 data bus 

-*-rom en 

Figure 5.1 Sharing an external ROM interfacing unit 

The same discussion above applies to a number of functional units implemented using an 

iterative series based method. The iterative series engine is an iterative process that 

performs multiply and add operations on a single input operand for a controlled number of 

loops. Sharing this unit is achieved by multiplexing four ports: the input operand, the 

multiply constants, the control variable that decides the number of iterations and the 

output results. This sharing is visualised in the block diagram in Figure 5.2. 
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input 

argument 

Ctrl 

Iterative series 
engine 

Figure 5.2 Sharing iterative series engine 

Table lookup based methods can exploit algebraic identities of certain functions to reduce 

the total storage area required to store the table. For example: cos(x) = sin(f - . This 

allows implementing both functions using a single table that stores the sine function values 

and the subtraction unit is provided as a pre-processing stage in the case of the cosine 

function. 

Complex variables are represented using two floating-point variables, one to represent the 

real part and the other to represent the imaginary part. This implies that any real number 

can be represented using a complex representation with an imaginary part equal to zero. 

Building blocks used to implement complex functional units can be used to generate the 

equivalent real function by setting the imaginary part of the input operand to zero. 

Some functions in the floating-point library are implemented as a hierarchical 

decomposition of other floating-point building blocks. The hyperbolic sine is one example, 

which is based on the exponential function. If an exponential function generator building 

block is already instantiated in the design, the unit can be used to generate the hyperbolic 

sine, which results in a major reduction in the total cost of generating the latter function. 

The total area cost required to implement a functional unit based on the CORDIC 

algorithm is dominated by the variable width shift operation and the table of constants. 

Once a decision is made to implement a functional unit using CORDIC, the cost of 

instantiating other CORDIC unit is reduced due to the possibility of sharing the shifter and 

the table of constants. 
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The Range reduction units in some functional unit generators require fixed-point 

multiplication and/or fixed-point division operators. Since instantiating these units is a 

definite requirement for implementing the appropriate functional unit, the same fixed-

point operators can be used by the function generator block, which results in a reduction of 

the total area cost. 

The limited capacity of the external ROM available is a major constraint imposed during 

the optimisation phase. A random assignment of floating-point units to the external ROM, 

and the nature of the interpolation engine (linear or non-linear table lookup), limits the 

number of operators that can exploit the external ROM, which results in a great 

degradation of the design performance, especially when a minimum area cost is required. 

A single floating-point functional unit with different target accuracies could be present in 

different parts of the design datapath. Implementing the required accuracy of each 

individual unit eliminates the possibility of sharing these units at the highest level of 

hierarchy. Assigning the highest required accuracy to all similar functional units within the 

design allows maxima] sharing of these units before flattening the design hierarchy. 

The multiplexer cost required to share a large number of functional units affects the 

optimisation decision when comparing the off-chip and on-chip table-lookup based units. 

The difference in the multiplexing cost in both cases could exceed the area saved by 

implementing the lookup table as an external ROM. 

Diverse interactions such as these require a dedicated optimisation algorithm to perform 

the high-level module binding. This algorithm is discussed in section 5.3. Further analysis, 

highlighting the effects of these interactions is provided in section 5.4. 

5.2 Numerical interaction 

The introduction of a floating-point capability to a synthesis environment gives rise to a 

new gross design parameter, that is the occwmcy of the floating-point building blocks that 

comprise the mathematical expressions within the design. Accuracy cannot be treated on 

an equal footing with the other dimensions of the design space because the effects of 

changing the accuracy of a functional unit cannot be localised in most cases, and a change 

in the accuracy of any module will threaten all operations predicated upon it. Errors 
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propagate and interact nonlinearly. Furthermore, the form of this interaction is largely data 

dependent, it is not difficult to construct a process where a change in a component 

accwracy ultimately affects the 

The floating-point processes within the system support user specification of floating point 

accuracy at two levels: it is possible to assert an overall accuracy on a design, (each 

individual floating point operation in the design will deliver this accuracy) and it is 

possible to override this and assign individual accuracies to each floating point operation. 

Within each hierarchical operator, a differential error propagation model [97, 98] is 

employed to calculate the necessary accuracies of each of the building blocks. These 

calculations result in a single figure of merit assigned to each building block indicating its 

contribution to the total error in the parent operator. These figures are provided as a set of 

parameters within the file that represents the hierarchical operator. Given the required 

accuracy of the parent operator, the accuracy of each sub-component is calculated and 

assigned. When building blocks are shared between operators later by the system, the 

accuracy of each shared block is promoted to the value of the most accurate, with units 

based on CORDIC and iterative series being an exception, as they get assigned the exact 

required accuracy in order to reduce the total delay cost. 

In the remaining part of this section, error propagation and the effect of varying accuracy 

on overall system performance will be discussed. 

5.2.1 Error propagation 

The differential error propagation model [97, 98, 99, 100] is often used to study the error 

propagation of a floating-point expression. Any arithmetic expression may be 

characterised by a co/Mf'wfan'oMaZ grapA composed of directed edges running from input 

operand nodes to operation nodes, and from operation nodes to the final result node. 

Figure 5.3 shows a computational graph of the simple arithmetic expression: 

y = 1.0 - sin(x). Each directed edge from a node to a node is assigned a weight ft;-

Pki is an error propagation factor reflecting the amount of amplification or damping that 

occurs on the error of (p^i) while generating ^k- Formally, P^j is given by; 
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Pi, 96 

The final error in the output result (p^m) is given by: 

1=1 

Applying the previous formula to the mathematical expression given in the example in 

Figure 5.3 gives a total error in the output result of the form: 

g xcos(A:) g sin(x) ^ 
- - 1 - 7 - 7 l -sin(:() l-sin(%) l - s in (x ) 

xcos(x) 

sm(.r) 

I 

1-sin(x) 

Figure 5.3 Computational graph example 

From the final expression of the accumulated error, it is clear that the effect of local 

operation error on the final accumulated error is largely dependent on the input operand(s) 
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value. For software mathematical packages [87] an exhaustive approach that involves 

evaluating the accumulated error expression for every set of input operands is usually 

employed in order to define the appropriate accuracy of each operation. This is not 

however a possible solution for a synthesis tool since the hardware is actually 

implemented for every possible input operand. The approach taken to tackle this problem 

is to exploit the differential error propagation model to identify the major error sources in 

an expression and assign the accuracy of the building block in a way that minimises the 

total error to within the required accuracy (if possible). For example, in Figure 5.3 the 

error in the sine operation is magnified as x gets near 7t/2. Therefore, the sine function 

should be evaluated to the highest possible accuracy permitted by the module library. 

By way of an example, Figure 5.4 shows the error propagation calculation of a simple 

arithmetic expression (c = a + b). For a = 3 and h = 4, the final result is c = 7. Assuming 

an absolute error of 0.1 in a and 0.2 in Z), the absolute error in the final result is Ac = 0.3, 

resulting in a relative error of pc = 0.0428, which is identical of the result of the error 

propagation model. 

dg, g, a + 6 

= - ^ x ^ = l x — ^ 
9^2 ^3 

For: Aa = 0.1, A6 = 0.2 

—> pa = 0.0333, pb — 0.0500 

—> = + = 0.0428 

h = A 

Figure 5.4 Error propagation model example 
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5.2.2 Accuracy variation effect 

The accuracy variation impact on the system parameters is largely dependent on the 

function evaluation engines invoked within the design. The results presented in this 

section demonstrate the effect accuracy variation has on the final hardware cost on three 

behavioural benchmarks incorporating floating-point manipulation. 

The original VHDL behavioural description contains six floating-point functions: sine, 

inverse sine, square root, natural logarithm, exponential, and inverse tangent function. 

TestA is implemented using a function generator based on an internal table lookup 

interpolation engine. TestB is a design utilising units based on iterative methods (CORDIC 

and minimax approximation). Finally, TestC employs a linear interpolation engine based 

on an external ROM to generate the functions. 

Figure 5.5 shows the three benchmarks located in a two-dimensional design space for 

different target accuracies. Trajectory parameters are given in Table 5.2, where each 

implementation is given a reference code. 

Design 

Accuracy = 1e-6 Accuracy = 1e-5 Accuracy=1e-4 

Design 
Area 

(urn') 

Delay 

(cycles) 

Area 

(Km') 

Delay 

(cycles) 

Area 

(nm^) 

Delay 

(cycles) 
Design 

Reference Reference Reference 

TestA 
2.39e6 214 1.14e6 214 837323 214 

TestA 
A1 A2 A3 

TestB 
836199 721 824800 645 817900 572 

TestB 
B1 82 B3 

TestC 
679513 250 679513 250 679513 250 

TestC 
C1 C2 C3 

Table 5.2 Area and delay figures for various configurations 
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Accuracy variation - design space 
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3 0 0 0 0 0 0 

2 5 0 0 0 0 0 

2 0 0 0 0 0 0 
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3 . 

1 5 0 0 0 0 0 
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< 
1 0 0 0 0 0 0 

5 0 0 0 0 0 

I AZ i ! 1 

i i * A3 

i i A 
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Delay (clock cycles) 

600 7 0 0 800 

Figure 5.5 Design space for the three different benchmarks 

From these results, some points of particular note: 

» M^or reduction of the total area cost occurs when the target accuracy is reduced on 

designs based on an internal table lookup interpolation (Al, A2, A3). As the accuracy 

reduces, table sizes for each function generator decrease. A reduction in the table size 

results in a smaller area required to store these tables as a static register. On the other 

hand, the interpolation procedure does not change with accuracy variation and 

therefore the total delay does not change. 

• Reducing accuracy in designs based on CORDIC and iterative series methods reduces 

the number of iterations required to generate the output result, which result in a shorter 

execution time (Bl, B2, B3). However, the hardware required to implement the units 

does not change apart from the loop control variables, which explains the negligible 

effect of the accuracy variation on the total area cost. 

# Designs based on an external ROM maintain the same location in the design space. 

Accuracy variation in that case affects the function generator table size, which is 

stored externally. Thus the internal design hardware and the execution time are not 

affected by the accuracy variation. 
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Finally, it is worth mentioning that in the previous test, all the units in a single design were 

chosen to be of the same nature in order to highlight the individual effects when the 

accuracy changes. This is not always the case: a design in general will have different 

function generators and the accuracy variation will result in a change in both the overall 

area and delay. 

5.3 Optimisation algorithm 

The floating-point optimiser operates on the floating-point and complex functions within 

the design, binding each operation to a suitable base technique from the floating-point 

module library. 

The algorithm relies on a number of pre-calculated metrics to guide the binding decision: 

« On-c/z/p orga is assigned to each function generator in the library, presenting the area 

cost of the unit as a stand-alone design. 

« Each function generator has an associated area figure defining the external 

ROM size required to implement the unit. Note that the area figure is only 

related to designs requiring a stored table and has the value of zero for other modules. 

# D g / o ) ; i s defined for each function generator indicating the execution time of the 

floating-point module. 

# S'/iaraZpzVz'n'/ocfor is provided for each floating-point function generator qualifying the 

increase in area cost when the module is shared between a number of compatible 

functions. 

In addition to these four metrics, the algorithm also requires extra information from the 

floating-point module library to identify the fixed-point sub-components, in each floating-

point module, that have significant effects on the total module area and/or delay cost, such 

as a fixed point-multiplier. A set of graphs representing the four main metrics of the 

inverse tangent function generator for a target accuracy of 10'^ is shown in Figure 5.6. 
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Figure 5.6 The inverse tangent function parameters for a target accuracy = 10"̂  

The floating-point optimiser relies on two routines to perform the module binding 

operation: 

1. On-cA/p The main optimisation routine, responsible for assigning 

floating-point and complex functional units to on-chip based modules (on-chip table 

lookup, CORDIC, iterative series). 

2. ExfgmaZ A supporting routine invoked by the j'onoM 

routine. It takes a number of floating-point operations and provides a possible mapping 

which utilises the external ROM most efficiently. 

The flowchart of the optimisation algorithm is shown in Figure 5.7. It is an iterative 

algorithm comprising six main steps; 

1. Initially, all floating-point modules are mapped onto an on-chip table lookup based 

technique, implemented on an infinite, virtual, internal, on-chip ROM. The result in this 

step is the fastest possible implementation of the design based on the available floating-

point module library. If this meets the user area constraints, and fits the physical 

system, the base technique mapping is complete and successful. 
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2. At this stage, the system starts trading speed against area trying to deliver the user 

requirements. A floating-point unit is selected at this stage as a target for the optimiser. 

Functional unit selected as a target for optimisation is mainly based on the total area 

cost of the functional unit (selecting the biggest unit for area optimisation) and the 

number of instances involved in the design. 

3. Select an alternative implementation for that unit. The base mapping techniques are 

selected in the following order: l)linear on-chip table, 2)partitioned on-chip table. 3) 

linear off-chip table, 4)partitioned off-chip table, 5)iterative series based unit, 6) 

CORDIC algorithm based unit. When a function is to be implemented as an off-chip 

table lookup, the external ROM utilisation routine is invoked to deliver a suitable 

implementation which utilises the ROM most efficiently. The external ROM mapping 

decision is based on an initial exhaustive search of all possible combinations of table 

lookup mappings to see which utilises the ROM most efficiently. Note that this does 

not lead to a combinatorial explosion, since a table is necessary for each floating point 

module not and in practise, sub-table isomorphism within the floating-

point module library components means that the largest number of off-chip tables ever 

considered cannot be larger than six. 

4. The effect on the overall area of the mapping change is estimated. If the area is not 

reduced, goto step (5). Otherwise, the new mapping is accepted, and if the overall user 

requirements are satisfied, the algorithm terminates successfully. 

5. If all the floating-point functional units are mapped onto the cheapest possible base 

technique (in terms of area cost), and the user requirements are not met, then the 

algorithm terminates in failure. Otherwise, return to step (2). 

6. Once the previous iterative process terminates, and the user constraints are met, a final 

delay based optimisation pass is performed, trying to improve the overall system 

performance wif/iouf violating the user constraint. For example, moving a functional 

unit mapping from iterative series to on-chip table if the difference between the target 

area cost and the actual area cost is greater than or equal to the area cost difference 

between the two base techniques. 
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Figure 5.7 Optimisation algorithm flowchart 
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It is important to mention at this stage that the area cost estimation in step (4). and the area 

cost estimation of the initial input design are both performed using a separate nreo 

gj'nmafor. The main purpose of this area estimator is to predict the total area cost of the 

synthesised design once optimised by the MOODS system. The routine divides the design 

area into two parts: 

1. pomf cojT based on the storage units cost and the fixed point operator cost. 

2. F/oafmg based on the floating point operators within the design. 

The fixed point cost is calculated once while estimating the area cost of the initial design. 

Storage units cost is based on a direct accumulation of the these units cost (internal 

registers, internal ROMs,...). For fixed point operators, a single pass is performed to 

detect the nature and the width of these operators within the design. During this initial 

pass, all operators of the same nature (adder, subtractor,..) are grouped together, and the 

accumulated area cost of these groups is calculated. 

For floating-point operators, maximum sharing of these units is expected (which is always 

the case as long as an initial optimisation phase is performed during the MOODS 

optimisation phase prior to flattening the design hierarchy). The cost of each floating point 

operator is then calculated as the sum of the single floating-point operator area cost and 

the multiplexing cost required to share this operator, which is based on the number of 

functional units within the design. 

Although the area estimator does not take into account the effect that parallelism and 

registers sharing have on the design area. The nature of the floating point designs, in 

which area cost is dominated by the floating point functional units within the design, 

allows the estimator to provide a close estimation to area cost of the MOODS structural 

output with an accuracy close to 90%. 

The design of this heuristic is derived from observations of base technique interactions. 

Some points of particular interest are: 

® Functions based on table lookup implemented on off-chip ROM share a single ROM 

controller and a single I/O port. 
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* Expanding the hierarchical (real and complex) functions before the optimisation phase 

permits substructure sharing. If both the complex and real instances of a function are 

required, this delivers significant cost reductions. 

« Mapping a function onto a CORDIC base technique makes subsequent mappings to 

that implementation more likely. 

" Two or more functions having the same table (for example j and have only 

one physical table. 

* The cost of an iterative series generator can be significantly changed by the prior 

availability of its primitive sub-units (multiplier, divider). Equally, the selection of this 

base technique reduces the cost of other operations by providing these units. 

To demonstrate the effect of the floating-point optimisation algorithm, two behavioural 

descriptions incorporating floating-point manipulation have been chosen for analysis. The 

first design, labelled benchl is composed of nine floating-point operations: addition, 

multiplication, division, sine, inverse sine, natural logarithm, exponential, inverse tangent, 

and square root. The second design, benchl, contains all the operations available in 

benchl, but differs in the number of times each operation is invoked. It has; a single 

addition, a single multiplication, a single division, a single sine, two inverse sines, three 

exponentials, four inverse tangents, five natural logarithm and six square root operations. 

Throughout the remaining portion of this section, performance figures are taken directly 

from the MOODS synthesis system using a Xilinx based module library. In this library, 

area and delay figures are obtained by an analysis of the floor planning results, obtained 

from the Xilinx Alliance development system, of the MOODS synthesis system output. 

Each design has been synthesised using a variety of optimisation configurations featuring 

different target area cost and various external ROM sizes. Note that the accuracy criterion 

is set to Ie-6 for all designs to eliminate the accuracy variation effect discussed earlier in 

this chapter. 

Table 5.3 and Table 5.4 summarise the optimisation results of both benchmarks providing 

a range of area and delay figures. Each design is optimised several times providing twelve 

different implementations. Each configuration is given a unique reference code (A1, A2, 

A3 ...). The results also provide a breakdown of the total cost in terms of area occupied by 
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funcdona] units, storage units, interconnect, and control units. Functional unit distribution 

among the three base techniques is also provided for each configuration. 

The results are summarised by a set of graphs in Figure 5.8 to Figure 5.16. Figure 5.8 and 

Figure 5.9 show a section of the area/delay design space for benchl and bench2 

respectively. Figure 5.10 to Figure 5.15 show the functional unit distribution between the 

three base techniques for all configurations. Finally, Figure 5.16 provides a comparison of 

area breakdown of two configurations of benchl and benchZ of particular interest. 



Ref 

Target 

area 

(nm2) 

Available 

External 

ROM 

(Kbyte) 

Estimated 

area 

(nm2) 

Utilised 

ROM 

(Kbyte) 

MOODS 

area 

(nm2) 

MOODS 

delay (ns) 

Delay 

(cycles) 

Function 

units cost 

(Mni2) 

Storage 

Cost (um2) 

Muxing cost 

(Hm2) 

Control cost 

(nm2) 

Off-chip 

table 

based 

units 

On-chip 

table 

based 

units 

CORDIC 

based 

units 

Iterative 

series 

based 

units 

A1 0 0 1.226E+06 0 1.117E+06 1261E+05 865 Z123E+05 5.271 E+05 3 214E+05 3.600E+04 0 0 2 4 

B1 0 3.4 1 208E+06 2.98 1.101E+06 1.099E+05 753 2^34E+05 5 083E+05 3.424E+05 3 720E+04 2 0 2 2 

CI 0 6.8 1M74E+06 6.05 1.110E+06 9 167E+04 627 2 15BE+05 4 828E+05 3 730E+0G 3a20E+04 4 0 1 1 

D1 0 CO 1163E+06 1.061E+06 5.828E+04 411 1132E+05 4 447E+05 4J33E+05 4.010E+04 6 0 0 0 

El 2E+6 0 1.957E+06 0 1.831E+06 9.160E+04 627 &005E+05 5 188E+05 &755E+05 3.630E+04 0 4 2 0 

F1 2E+6 3.4 1.974E+06 2 75 1.840E+06 8.223E+04 586 9.011E+05 4^«3E+05 4 127E+05 3.780E+04 1 4 1 0 

G1 2E+6 6.8 1974E+06 2 75 1.840E+06 8^!23E+04 586 9.011E+05 4^l83E+05 4J27E+05 3 780E+04 1 4 1 0 

HI 2E+6 1941E+0G 12.32 1 822E+06 5 658E+04 399 8.760E+05 4 274E+05 4.803E+05 3 870E+04 2 4 0 0 

11 c. 0 3.115E+06 0 2 956E+06 5431E+04 383 2.130E+06 4.336E+05 3^,44E+05 3jM0E+04 0 6 0 0 

J1 oo 3.4 3.115E+0G 0 2.956E+06 5 431E+04 383 2 130E+06 4^W6E+05 3.544E+05 3.810E+04 0 6 0 0 

K1 6.8 3.115E+06 0 2.956E+06 5.431 E+04 383 2.130E+06 4 336E+05 3.544E+05 3.810E+04 0 6 0 0 

LI oo 3 115E+06 0 2.956E+06 5.431 E+04 383 2.130E+06 4.336E+05 &544E+05 &810E+04 0 6 0 0 
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Table 5.3 Area and delay figures for various optimisation configurations of design bench 1 



Ref 

Target 

area 

(pm2) 

Available 
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ROM 

(Kbyte) 

Estimated 

area 

(nm2) 

Utilised 

ROM 

(Kbyte) 

MOODS 

area 

(nm2) 

MOODS 
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(ns) 

Delay 
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(pm2) 

Storage 

Cost (|jm2) 

Muxing cost 

(tim2) 

Control cost 

(jim2) 

Off-chip 

table 

based 

units 

On-chip 

table 

based 

units 

CORDIC 

based 

units 

Iterative 

series 

based 

units 

A2 0 0 2 028E+06 0 2.106E+06 3.512E+05 2365 2 069E+05 &926E+05 9121E+05 9.480E+04 0 0 8 13 

B2 0 3.4 &236E+06 2.98 2.233E+06 2 814E+05 1894 2 083E+05 8.950E+05 1.030E+06 9.960E+04 8 0 8 5 

C2 0 6.8 2.174E+06 5 73 2 218E+06 2.715E+05 1827 &079E+05 8 795E+05 1.030E+06 1.004E+05 9 0 8 4 

D2 0 2.172E+06 19.68 2 168E+06 1 458E+05 1023 gj'eGE+OA 8 353E+05 1130E+06 1 050E+05 21 0 0 0 

E2 2 5E+6 0 2.408E+06 0 2.411E+06 2.566E+05 1722 5.156E+05 &626E+05 &3g8E+05 9.380E+04 0 11 7 3 

F2 2.5E+6 3.4 2.344E+06 2.98 &571E+06 2.088E+05 1406 5M69E+05 8^W9E+05 1.060E+06 1.004E+05 7 11 3 0 

G2 &5E+6 6,8 2.475E+06 5 73 2.481E+06 1.946E+05 1 3 n 4 791E+05 8.605E+05 1040E+OG 1010E+05 8 11 2 0 

H2 2 5E+6 ~ 2 463E+06 15.3 2 377E+06 1.398E+05 981 3J69E+0S 8.072E+05 1.090E+06 1 027E+05 10 11 0 0 

12 oo 0 3.955E+06 0 4^63E+06 1.278E+05 897 2.130E+06 7.956E+05 t030E+06 &730E+04 0 21 0 0 

J2 oo 3.4 &955E+06 0 4^KaE+06 1^78E+05 897 2.130E+06 7.956E+05 1.030E+06 9 730E+04 0 21 0 0 
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Table 5.4 Area and delay figures for various optimisation configurations of design bench2 
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Figure 5.10 Distribution of functional units between the three base techniques for 
benchi for target area = 0 as a function of external ROM size 
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Figure 5.12 Distribution of functional units between the three base techniques for 
bench 1 for target area = infinity as a function of external ROM size 
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bench2 for target area = 0 as a function of external ROM size 
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Figure 5.16 Area breakdown of the two designs based on similar base techniques 
(on-chip based implementation) 

Comparing the floating-point optimiser estimated area cost to the final area cost o f all 

optimised designs illustrates the abil i ty o f the floating-point optimiser to provide a very 

good estimation o f the design characteristics. I n al l cases, the floating-point optimiser 

managed to predict the reduction the MOODS synthesis system optimisation phase w i l l 

achieve wi th a good degree o f accuracy (90%) without any feed back f rom the main 

optimisation phase. 

The design spaces in Figure 5.8 and Figure 5.9 show the dominant effect o f the target area 

cost on the achievable implementation o f each design. Setting the init ial target area cost 

fixes the optimal design space curve, w i th the variation in the external R O M size resulting 

in the design moving along that curve. Increasing the target area cost o f the design shifts 

the curve away f rom the design space origin, providing considerably enhanced design 

performance. 

Figure 5.10 and Figure 5.13 provide the distribution o f functional units between the three 

main base techniques for benchi and benchi respectively when a minimum area cost is 

required. The most obvious feature is that the floating-point optimiser w i l l always provide 
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an implementation based on both CORDIC and iterative series if a reasonable size external 

ROM is not available ( A l , A2). This is expected, since both techniques always provide the 

most area efficient implementation. Increasing the available external ROM results in 

functional units moving gradually to an off-chip based implementation (B1. B2, C1. C2). 

When the total external ROM size is sufOcient. the optimiser binds all possible floating-

point units to an off-chip based implementation trying to reduce the total delay cost. This 

is illustrated in the same figures by (D1, D2). It is also important to notice that none of the 

floating-point units are bound to an on-chip table lookup based module, as they tend to 

introduce a noticeable increase in area cost and are not suitable when a minimum area cost 

is required. 

I f a minimum area is not required, the system wi l l try to enhance the performance of the 

floating-point units in the design. This is illustrated in Figure 5.11 and Figure 5.14, where 

a target area cost of 2 x 10^ |im" and 2.5 x 10^ p,m" are specified for benchl and benchZ 

respectively'. In both figures, the majority of floating-point functional units were based on 

an on-chip table lookup module. The external ROM is only used to enhance the 

performance of floating-point functional units based on CORDIC or iterative series. 

An interesting feature of the floating-point optimiser is illustrated in Figure 5.12 and 

Figure 5.15. Here the target area cost is sufficient to implement all functional units as an 

on-chip table lookup unit, providing a high performance design with a minimum delay. 

Varying the external ROM size has no effect on the module binding decision since the 

target area cost has already been met. 

Finally, Figure 5.16 provides a comparison of the area breakdown of the two designs when 

implemented using similar on-chip based techniques. Note that both designs are similar in 

the floating-point functional units invoked, and differ only in the number of instances of 

each unit. The extra area cost in benchZ is mainly caused by the interconnects required to 

share the floating-point functional units among compatible units, and the control required 

for this sharing. Functional unit costs hardly change between the two units, which 

illustrates the efficiency of unit sharing, as the only increase in cost when the number of 

The target area cost is increased in bench2 to compensa te for the increase in area due to the number of 

internal registers required to pass data between the f loat ing-point operators in addition to the mult iplexing 

cost. 
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floating point operators within the design increases would be the input and output port 

multiplexing and a moderate increase in the control logic. It is also worth mentioning that 

this approach is even more efficient when the design targets an ASIC, since multiplexors 

in an ASIC are far less expensive compared to programmable logic devices, as they are 

based generally on pass transistors. 

5.4 Experimental evaluation 

The results presented in this section demonstrate the floating-point optimisation algorithm 

performance when applied to several designs. Designs are chosen to demonstrate and 

isolate the interactions listed in Table 5.1. The designs are grouped into nine different sets. 

The first set of designs demonstrate the increase in area cost when a number of iterative 

series generators have been instantiated. Five designs are chosen: a sine (CI), an 

exponential (C2), a natural logarithm (C3), a combined sine and exponential (C4), and 

finally the three function generators in a single design. 
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Figure 5.17 Design space for the first set of designs 

It is clear from Figure 5.17 that the cost of switching between the three function generators 

is relatively small once an iterative series engine is implemented. An area cost reduction of 
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28% when two iterative series engines are shared and a 42% reduction in the total area 

cost is achieved when the three function generators are combined. 

To demonstrate the effect of lookup table sharing, three designs are considered: a sine 

function generator based on an on-chip linear table lookup unit (C6), a cosine generator 

based on the same technique (C7), and a single design that combines the two generators 

(C8). The design space in Figure 5.18 shows the final area and delay cost of the three 

designs once optimised. Note that a major reduction in the area cost is achieved in C8 

when compared to the accumulated area cost of (C6) and (C7). Over the range [0,7D^2], it is 

possible for these two units to share the same table lookup, which reduces the area cost 

required to store the internal table by 50%. 
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Figure 5.18 Design space for the second set of designs 

The third set of designs represented in Figure 5.19 demonstrate the effect on total area cost 

when a complex and real function of the same nature are combined in a single design. The 

figure represents three designs: a real square root function generator based on an on-chip 

linear lookup table (C9), the corresponding complex polar function generator (CIO), and a 

design that combines both units (CI 1). It is clear that when the complex function is 

implemented, the equivalent real function is almost free (in terms of area cost). Since the 

real square root building block is maximally shared between the two operators and the 
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moderate increase in area cost in (CI 1) when compared to (CIO) is due to the sharing cost 

in terms of multiplexing and control logic. 

4500 

4000 

3500 

3000 

c, 2500 
>. 
(0 

2000 
O 

1500 

1000 

500 

0 

* C11 

* cm 

* C9 

C u m u l a t i v e a r e a o f C 9 a n d C I O 

O.OOE+OO 2.00E+05 4.00E+05 6.00E+05 8.00E+05 1.00E+06 1.20E+06 

Area (pm^) 

Figure 5.19 Design space for the third set of designs 

Hierarchical functional units within the behavioural design are expanded to their sub-

components before the floating-point optimisation phase. This allows a maximal sharing 

of similar units. This is illustrated in Figure 5.20. The hyperbolic sine (CI3) is based on 

two exponential units. Which allows a reduction in area cost of 20% when both functional 

units exist within the same design (CI4), when compared to the accumulated area cost of 

the exponential function (CI2) and the hyperbolic sine (C13). 

The CORDIC algorithm is exploited in this work to provide a cheap implementation (in 

terms of area cost) for a number of functional units, with the functional unit area mainly 

dominated by the variable width shift operation and the table of constants that store the 

rotation angle. When a number of CORDIC based function generators exist within a 

design, further reduction in the area cost is possible due to the possible sharing of the two 

units mentioned above. Figure 5.21 represents the design space of three designs: a cosine 

function generator based on CORDIC (CI5), an inverse tangent function generator based 

on CORDIC (CI6), and a design that contains both units (CI7). Sharing the building 
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blocks in (C17) results in an area reduction of 31 % when compared to the area cost of the 

two separate function generators. 
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Figure 5.20 Design space for the fourth set of designs 
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Figure 5.21 Design space for the fifth set of designs 
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Figure 5.22 represents the design space of three designs: sine function pre-processing 

stage (CIS), iterative series based sine generator (CI9), and a design that performs a full 

sine function generation based on iterative series (C20). It is clear in this example that the 

inline expansion of the two blocks before optimising allows datapath operator sharing at 

the sub-component level, which results in a 36% reduction in the total area cost in this 

case. 
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Figure 5.22 Design space for the sixth set of designs 

The limited capacity of the external ROM available to implement a behavioural design 

requires a careful distribution of this ROM between the floating-point functional units, 

especially when a minimum area cost is requested. This is illustrated in example Figure 

5.23. The design composes five floating point functional units: sine, inverse sine, 

exponential, natural logarithm, and square root. The floating point optimiser decision is to 

implement all but the inverse sine function utilising the external ROM (0.36 Kbyte in this 

example). The resulting design is illustrated by (C21). Assuming a similar design with the 

inverse sine function implemented using the external ROM (C22), the remaining four 

functional units wi l l be mapped to CORDIC and the iterative series based technique. The 

random utilisation of the external ROM in the second example produces a design that is 

32% slower and 2% bigger when compared to the floating point optimised output. 
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Figure 5.23 Design space for the seventh set of designs 

Another important issue during the floating point optimisation phase is the final floating 

point functional unit accuracy selection. It is possible for a design to comprise similar 

floating point operators with different target accuracy. Two cases arise here based on the 

function generator assigned to the functional unit; 

1. I f the accuracy variation increases the area cost of the design without affecting the 

total system delay, all compatible floating point operators are assigned the highest 

accuracy. 

2. If the accuracy variation results in delay variation, each functional unit is assigned its 

exact target accuracy. 

This is illustrated in the example in Figure 5.24, which represents the area and delay cost 

of four different designs. The first two designs (C23, C24) consist of two sine generators 

implemented as on-chip table lookup. In (C24), the target accuracy in one of the function 

generators is reduced manually from le-6 to le-5. Note that the accuracy reduction had 

hardly any effect on the total delay which the total area cost increased. Therefore, the 

floating point optimiser always goes for the first choice. On the other hand, when both 

designs are implemented as iterative series based function generators (C25, C26), the 

accuracy variation reduces the total delay without affecting the total area cost. 
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Figure 5.24 Design space for the eighth set of designs 

The final set of examples demonstrates the importance of considering the area cost of 

floating-point operators sharing during the optimisation phase. It represents a design with 

ten square root operators with a target accuracy of le-4. The floating-point optimiser 

assigns the square root to an on-chip partitioned table lookup base implementation when a 

minimum area is requested. The reason is that the difference in the sharing cost between 

the off-chip (C27) and on-chip (C28) table lookup implementation once shared between 

ten operators exceeds the total area cost of the on-chip table as illustrated in Figure 5.25. 
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Figure 5.25 Design space for the ninth set of designs 
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Chapter 6 

Practical synthesis using FPGAs 

This chapter describes the design and implementation of a practical demonstrator, from 

specification to hardware. An exemplar is chosen that uses the floating-point capabilities 

to solve a practical problem: a cubic algebraic equation. 

The chapter is divided into four sections: section 6.1 describes the FPGA hardware 

prototyping board. Section 6.2 discusses the floating-point cubic equation solver design 

and presents an exploration of the design space. Section 6.3 discusses the main problems 

encountered during the development cycle. Finally, section 6.4 presents comparisons with 

the floating-point performance of a number of microprocessors. Further details related to 

these topics may be found in Appendix E. 

6.1 FPGA prototyping board 

One of the biggest advantages of implementing digital designs on FPGAs is the possibility 

of fast prototyping. When behavioural synthesis tools are involved, the turn around time 

from an algorithmic level to an FPGA floor plan becomes extremely short. However, the 

last step (the physical implementation) requires a physical system to support it. 

The FPGA test board is designed with the following objectives in mind. It should be: 

a A flexible design, as it should be possible to reconfigure the FPGA board to almost 

arbitrary digital designs. 

® Capable of interfacing to a PC. 

o Possible to connect more than one board together to handle large designs. 

« Possible to connect additional hardware to the design. 



Z.A. Baidas, 2 0 0 0 C h a p t e r 6: Pract ical synthes is us ing F P G A s 134 

In order to accommodate these objectives, the architecture in Figure 6.1 is implemented. 
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ROM 

RS-232 Keyboard Mouse 
interface interface interface 

clock 1 

V V V V 

96 way external 
connector 

clock2 

FPGA 
programming 

unit 

96 way external 
connector 

Figure 6.1 FPGA board block diagram 

The FPGA board is compatible with three SRAM based Xilinx FPGAs; the 

XC4085XLPGA559, XC40125VXPGA559, and the XC40250XVPGA559 [101]. These 

devices vary in capacity as illustrated in Table 6.1. Three memory banks are provided: 

8Kx32bit static RAM and 8K x 32bit ROM sharing the same address and data busses, and 

a 4M X 8bit dynamic RAM with a separate data and address bus. 

In order to provide a simple way to interface the board to a personal computer, a RS232 

serial port interface is provided. Two separate PS2 connectors are provided to allow a 

keyboard and a mouse input to the board. 
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Device CLBs Flip-flops 
Typical 

gate range 

XC4085XLPGA559 3136 7168 55000-180000 

XC40125VXPGA559 4624 10336 80000-265000 

XC40250XVPGA559 8464 18400 160000-500000 

Tab le 6.1 FPGA devices characteristics 

Two options are provided to allow programming the onboard Xi l inx ITGA. A serial 

programming mode is supported via a separate connector that can be attached to a Xi l inx 

programming cable [101], and a parallel programming mode is provided using an onboard 

EPROM. A set of dip switches is provided to switch between these two modes. 

The FPGA board provides an environment where it is possible to implement a wide range 

of digital architectures on a single board. However, i f it is required to connect two or more 

boards together or connect the design to a number of external units, two sets of 96 way 

connectors are provided to support 192 bit parallel connection to the external world. 

Two external clock signals are provided to drive the FPGA. Each internal flip-flop can be 

triggered by any of these clocks on either the rising or the falling edge. The XC4000XV 

devices can run at a maximum synchronous system clock of 100 MHz. Each device in this 

family is available in three speed grades (-09, -08, and -07), with a maximum clock 

frequency of 76MHz, 87MHz, and lOOMHz respectively. 

Figure 6.2 shows a photograph of the final hardware unit, identifying the main 

components, and their position on the test board. Further details regarding different 

aspects of the board such as I/O port assignment and programming details are provided in 

Appendix E. 
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Figure 6.2 FPGA board photograph 

6.2 Algebraic cubic equation solver 

This section describes the detailed design and implementation o f the exemplar, a cubic 

equation solver capable o f handling real coefficients and delivering complex roots. The 

system reads three input variables from a keyboard unit representing the three parameters 

o f a cubic equation and displays the input variables along wi th the three roots o f the cubic 

equation on a V G A screen using the built in V G A display adapter (we assume the 

coefficient o f is normalised to unity). 
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A block diagram of the system is shown in Figure 6.3. The keyboard interface unit reads 

the three parameters and converts them to the IEEE single-precision floating-point format. 

The three input parameters are also passed to the output stage to be displayed on the VGA 

screen. The core unit performs a number of floating-point calculations to generate the 

three roots. The three roots are then passed to the output stage to be displayed on the VGA 

screen. 

An mznaZfj'g key is provided using one of the unused numeric keypad keys in the 

keyboard. Pressing the mznaZf j'g key at any stage wi l l result in resetting the system and the 

output stage and the system goes into an initial state waiting for a new set of input 

parameters. 

The design is divided into three units: the input stage which includes the keyboard 

interface and the format conversion unit; the output stage that drives the VGA display 

adapter; and the core unit which performs the floating-point calculations. These units will 

be discussed in detail in the following sections. 

Core unit 
floaLresult (32 bit) 

Output stage 

Input stage 

Keyboard 

key (5 bit) 

ready 

VGA dala (9 bit) 
VGA 

adapter 

Monitor 

Figure 6.3 Cubic equation solver block diagram 
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6.2.1 Input stage 

The input stage o f the design performs two main operations: 

1. Read the keyboard input data and decode it to numerical values. 

2. Convert each numerical parameter from a decimal format to a single-precision floating-

point format. 

Ful l Details are given in Appendix E. 

6.2.2 Output stage 

The final section to be considered is the output stage, which displays the input parameters 

and the output result on a V G A display driven by a V G A adapter. A n example o f the 

displayed result is shown in Figure 6.4. A simple technique is adopted to reduce the 

complexity o f the format conversion unit[102]. Details are available in Appendix E. 

FLOATING POINT SYNTHESIS 

A1 = 7 
A2= 8 
A3= 9 

XI =-1.475761651992x2^ 

RE(X2) = -1.096952915196 x 2"̂  
IM(X2) = 1.106259226799x2 

RE(X3) = -1.096952915196 x 2^ 
1M(X3) =-1.106259226799x2° 

Figure 6.4 Cubic equation solver display 
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6.2.3 Core unit 

The core unit is the most complex part of the whole system. It receives three floating-point 

variables from the input stage and performs a number of floating-point operations to 

generate the three roots of the cubic equation. The functionality of the core unit can be 

D E F I N I T I O N S : 
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Figure 5.5 Cubic equation solution 

described behaviourally by the set of arithmetic operations required to solve a cubic 

equation. This is illustrated in Figure 6.5. 

The translation to V H D L of Figure 6.5 is direct, and is shown in Figure 6.6. The full 

design listing (including the 10 subsystems) can be found in Appendix E. 
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in float; 

in bib; 

out bit; 

in bit; 

out bit; 

in bit; 

out float 

package CoreConst is 

constant conl : real := 0.866025404; -- sqrt(3)/ 

constant con2 : real := 2.094395102; -- 2Pi/3 

constant con3 : real := 4.188790204; -- 4Pi/3 

end; 

use work.CoreConst.all; 

entity core is 

port ( 

input 

stb_in 

ack_in 

new_entry 

stb_ouc 

ack_out 

data_out 

) ; 

end; 

architecture behave of core is 

begin 

process 

variable al,a2,a3,S,T : float; 

variable R,0,R_sq,0_cu,D, sqrt_p : float; 

variable XI : float; 

variable Tempi,Temp2,theta3 : float; 

variable X2,X3 : cmplx; 

begin 

get_input_data; 

0 := ((TO_FLOAT(3.0)*a2)-(al*al))/TO_FLOAT(9.0); 

R := ((TO_FLOAT(9.0}*al*a2)-(TO_FLOAT(27.0)*a3)-(TO_FLOATf2.0)*al'al *al})/TO_FLOAT(54.0); 

R_sq := R * R; 

0 _ C U : = 0 * 0 * 0 ; 

D := R_sq + 0_cu; 

if (D = TO_FLOAT(0.0)) then 

S := CBRT(R); 

Tempi := al/TO_FLOAT(3.0}; 

XI := TO_FLOAT(2.0>*S-Templ; 

X2 := TO_COMPLEX(-S-Templ,TO_FLOAT(0.0)); 

X3 := X2; 

elslf (D > TO_FLOAT(0.0)) then 

sqrt_D := SQRTtD); 

S := CBRT(R+sqrt_p); 

T := CBRT(R-sqTt_D); 

Tempi := S+T; 

Temp2 := al/to_float(3.0); 

XI := Templ-Temp2; 

X2 := TO_COMPLEX((-Templ/TO_FLOAT(2.0))-Temp2,(S-T)*TO_FLOAT(conl)); 

X3 := C0NJ(X2); 

else 

theta3 := ACOS(R/SORT(-0_cu))/TO_FLOAT(3.0); 

Tempi := al/TO_FLOAT(3.0); 

Temp2 := TO_FLOAT(2.0)*S0RT(-0); 

XI : - Tenip2 *COS (thetaS )-Tempi; 
X2 := TO_C0MPLE%(T^mp2*COS(theta3+T0_FLOAT(con2))-Templ/T0_FLaAT(0.0)); 

X3 := TO_COMPLEX(Temp2*COS(theta3+TO_FLOAT(con.3) l-Templ,TO_FLOAT(0.0) ) ; 

end if; 

send_output_result; 

end process; 

end; 

Figure 6.6 Designl VHDL behavioural description 

Figure 6.7 shows the design space for this system. A1 represents the original unoptimised 

design, B1 represents design optimised for area (target area = 0) with 27.7 Kbyte available 

external ROM, CI represents area optimised design without an external ROM, and D1 is a 

delay optimised design (target area = 0°). 
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Figure 6.7 Design space for the original design 

In principle, it could be expected that designs B1 and CI would map successfully to the 

Xil inx XC40250XV system. However, the third party RTL synthesis tools [29,30] 

constantly failed to deliver a successful implementation. 

To overcome this, an alternative approach was adopted; the design was manually 

partitioned into two blocks (arithmetic processor and controller). 

Figure 6.8 is a block diagram showing the internal architecture of the partitioned core unit. 

The design splits into two main processors in a master-slave combination. The controller 

is responsible for controlling the data transfer through the system, and also provides the 

data and control signals required to decide the required operation to be performed in the 

arithmetic processor. This unit acts as a floating-point arithmetic unit that performs one of 

eight floating-point operations on a set of input variables passed by the controller 

according to the value of a control vector. The control vector values and the related 

floating-point operation are summarised in Table 6.2. 
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Figure 6.8 Partitioned core unit block diagram 

The distribution of floating-point operations between the two units in Figure 6.8 is largely 

arbitrary; the chosen partitioning has the merit of keeping the unit sizes approximately 

equal. 

Control vector Operation Summary 

000 Multiply2 Read two input variables and output their product. 

001 Square Read a single variable and output the square. 

010 MultiplyS Read three input variables and output their product. 

O i l Multiply4 Read four input variables and output their product. 

100 Square root Read a single variable and output the square root. 

101 Cubic root Read a single variable and output the cubic root. 

110 Cosine Read a single variable and output the cosine. 

111 inverse cosine Read a single variable and output the inverse cosine. 

Table 6.2 Arithmetic processor operations 

Figure 6.9 shows the design space tr^ectories for the two designs. Table 6.3 shows the 

details of the eight points in Figure 6.9. 
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Figure 6.9 Core unit design space 

Design 
Target 
area 

(fims) 

Available 
external 

ROM 

(Kbyte) 

Total area 

(CLBs) 
Total delay 

(cycles) 

Original 

design 

A1 N/A N/A 105435 4860 

Original 

design 

81 0 27.7 7697 1457 Original 

design C1 0 0 7548 1719 

Original 

design 

D1 oo Not used 14321 1403 

Partitioned 

design 

A2 N/A N/A 53140 5697 

Partitioned 

design 

B2 0 27.7 7907 2168 Partitioned 

design C2 0 0 7849 2465 

Partitioned 

design 

D2 oo Not used 14400 2087 

Tab le 6.3 Parameters for the design space of the original and 
partitioned designs 

The variation in the area cost of the original and partitioned design is largely dependent on 

sharing the functional units at both the floating-point building blocks level and the sub-

component level. Different versions of the original design always deliver the most area 

efficient implementation for a certain set of constraints. A relatively small increase in the 

area cost of the partitioned design occurs due to the replication of some fixed-point 

building blocks within its two units. 
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Table 6.4 represents the partitioned design at different levels during the design synthesis 

f low' . The floating-point optimiser realises the floating-point functions within the design 

datapath in terms of floating-point primitives. The number of these primitives within a 

design is represented by the floating-point primitives (building blocks) column. The 

physical floating-point primitives column represent the number of unique floating-point 

primitives within a design. The MOODS synthesis system realises the initial design 

datapath in terms of virtual functional units, which are mapped during the MOODS 

optimisation phase onto a number of physical functional units. Finally, the third party 

tools map the MOODS datapath output into a number of CLBs (virtual CLBs), which gets 

optimised by third party tools to deliver the final implementation (physical CLBs). 
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1 2 3 4 5 6 7 8 

A2 3497 450 9709 5710 2197 

C2 38 43 11 3472 438 9665 5517 2332 

D2 3465 439 16142 12259 2141 

Tab le 6.4 Parameters of the design space of the partitioned design 

The third party tool gain ( i .e . column 6 to column 7 4- column 8)is not much when 

compared to the MOODS synthesis system improvement (i.e. column 4 to column 5). The 

gain is mainly achieved by flattening the MOODS output hierarchy and optimising the 

combinational logic among these blocks. This suggests that integrating a logic 

optimisation algorithm within MOODS will eliminate the need for a third party synthesis 

tool and allow MOODS to target the Xilinx placement and routing step directly. 

More details regarding the operation of the core unit may be found in the source code 

listing in Appendix E. 

Similar details could not be produced for the original design and the unopt imised design (A2) due to 

l imitat ions imposed by the stability of the third party synthesis tools. 
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6.3 Synthesis issues 

This section represents a number of issues related to the design and synthesis of the 

floating-point cubic equation solver. The section is divided into five units; 

1. Area reduction techniques that can be used to reduce the total area cost of the design. 

2. Techniques to meet timing specifications of certain units. 

3. Synchronisation and communication between the design components and the 

modifications required to the structural output generated by MOODS. 

4. Physical implementation issues. 

5. The final implementation. 

6.3.1 Area reduction 

The FPGA targeted in this project imposed a significant limitation on the total design area. 

In order to meet the target cost some degree of compromise between the total design area 

and performance had to be made. 

The main technique to reduce the total area cost is controlling the expansion process of the 

design expanded modules within the synthesis design flow. MOODS allows the user to 

expand the internal modules at any stage of the optimisation phase. It also provides user 

control over the level of expansion to be performed. The results presented in Table 6.5 

describe two structural representations of arithmetic processor (optimised for area with 

external ROM) in the cubic equation solver optimised using two different techniques; 

1. The design hierarchy was flattened completely before the optimisation phase. 

2. The expansion process was controlled to allow maximal sharing of hierarchical units 

during expansion. 
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o f 48.7% in the total storage cost, a reduction o f 57.8% o f the total number o f fiinctional 

units, and a reduction o f 37.4% o f the total interconnect cost. 

To summarise, when a design w i th a minimum area cost is required, the fo l lowing 

empirical optimisation sequence is found to be best: 

1. Perform an init ial optimisation to al low sharing the floating-point functional units. 

2. Expand at one level only to ensure that fixed-point components wi th in the floating-

point units are not expanded. 

3. Perform a second optimisation phase to al low sharing the fixed-point units. 

4. Completely flatten the design hierarchy by expanding any remaining modules. 

5. Perform a final optimisation having min imum area cost as the highest priority. 
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Figure 6.11 Area breakdown of both designs 

Finally, the use o f subprograms at the V H D L behavioural description level is 

recommended. Besides increasing the readability and maintainability o f the design, V H D L 

subprograms play a role in reducing the total area cost o f the design. Combining repeated 

portions o f code in a single segment results in a reasonable area reduction mainly due to 
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Method 

Total area 

(um^) 

Total delay Storage Funct ional Interconnects Control 

Method 

Total area 

(um^) (ns ) Cycles units b i t s units b i t s units b i t s 

area 

(pm^) 

units 

area 

(um^) 

Flatten 1674519 19596 138 821 7813 783595 638 8851 110855 150 3969 726570 825 53499 

Preserve 

hierarchy 
1000512 38482 271 388 4005 402798 269 3671 89685 103 2389 455130 522 52899 

Table 6.5 Result of the two different techniques to optimise unit2 

Based on the design space in Figure 6.10, it is clear that both optimisation techniques 

provide a significant enhancement to the design performance when compared to the initial 

design, with the first technique resulting in an area reduction of 83.9% and a delay 

reduction of 34.3%, while the second reduces the total area by 72% and the total delay by 

66.5%. The second method provides the smallest design at the cost of some system 

performance degradation when compared to the first. This is due to the initial optimisation 

performed prior to any expansion allowing 100% sharing of the floating-point functional 

units. This early binding decision reduces the possibility of successfully applying delay 

optimisation transformations to the design resulting in less efficient delay optimisation. 
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Figure 6.10 Alternative optimisation strategies 

Examining the area breakdown of both structural representations in Figure 6.11 shows 

that forcing the optimisation algorithm to share the floating-point units allows a reduction 
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o f 48.7% in the total storage cost, a reduction o f 57.8% o f the total number o f functional 

units, and a reduction o f 37.4% o f the total interconnect cost. 

To summarise, when a design w i th a min imum area cost is required, the fo l lowing 

empirical optimisation sequence is found to be best: 

1. Perform an init ial optimisation to al low sharing the floating-point functional units. 

2. Expand at one level only to ensure that fixed-point components wi th in the floating-

point units are not expanded. 

3. Perform a second optimisation phase to al low sharing the fixed-point units. 

4. Completely flatten the design hierarchy by expanding any remaining modules. 

5. Perform a f inal optimisation having min imum area cost as the highest priority. 
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F i g u r e 6.11 A rea b reakdown of both des igns 

Finally, the use o f subprograms at the V H D L behavioural description level is 

recommended. Besides increasing the readability and maintainability o f the design, V H D L 

subprograms play a role in reducing the total area cost o f the design. Combining repeated 

portions o f code in a single segment results in a reasonable area reduction mainly due to 
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be written. Three external ports are also required: data_bus and addr_bus, which 

connect to the external ROM busses and nog which controls the external R O M bus. 

Meeting the timing specification identified in Figure 6.13b requires executing 

instruction (7 in the first clock cycle, then (2 in the second clock cycle, and finally both 

and (V in the last clock cycle. This can be simply achieved by manual scheduling 

prior to saving the module or by inserting a command between these 

instructions. 

PROGRAM ROM_read addr,data,addr_bus,data_bus,noe 

IMPORT addr [0 13] 
INPORT data [0 27] 
OUTPORT data_bus [0 27] 
OUTPORT addr_bus [0 13] 
OUTPORT noe [1 1] 

11 : MOVE addr, addr_ _bus 

12 : MOVE #0, noe 

13 : MOVE data_bus, data 
14 : MOVE 

ENDMODULE 

#1, noe 

ROM_read 

a)ROI\/l_read macro port ICODE 

clock 

addr_bus 

data_bus -

noe 

b) Timing specifications 

Figure 6.13 Macro port example 
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6.3.3 Synchronisation and communication 

Data transfer between different units of the cubic equation solver is achieved by a 

handshaking protocol based on two handshake signals: and (fct. Both signals are high 

when the system initialises. The master unit output data and asserts the .̂ 6̂ signal low. The 

slave unit detects the change in the line, reads the data and changes the state of ocA: 

from high to low. The master unit then detects the change in the acA: signal and asserts .yfA 

high. Finally, ac/r is asserted high as a consequence of the jfZ) signal being high. This 

handshaking process is represented by the waveforms in Figure 6.14. 

Figure 6.14 Handshaking signal waveform 

Implementing this protocol in a VHDL behavioural description core requires a method to 

detect signal transitions. VHDL provides two statements for this purpose: wait on signal 

and wofY wnf;/ Wa/f on terminates only when a transition occurs on the 

monitored signal, and wait until terminates when the condition changes from false to true. 

A major problem arises from using these wait statements to synchronise two units. For 

example, if a stb signal goes low and the slave unit has not yet reached its monitoring 

state, the system will halt with the slave detecting a zero on the strobe line and the master 

waiting for a transition on the acknowledge line. The problem can be solved by providing 

the wait statement within a conditional block as represented in Figure 6.15c. The 

conditional block will ensure that the execution will continue if the transition on the 

handshaking signal has already occurred. 
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Another problem appears when two different clocks drive two units of the same system. 

External signal synchronisation in this case becomes a major issue. The problem can be 

represented with the aid of Figure 6.16 which shows the relationship of the flip-flop 

timing parameters: setup and hold times in this figure are denoted by f, and respectively. 

wait on control; 

a)wait on example 

wait until control = '0'; 

b)wait until example 

if control = '1' then 
wait until control = '0'; 

End i f; 

c) wait within a conditional block 

Figure 6.15 Synchronisation within VHDL 

The decision window is the interval when the flip-flop samples its inputs and decides on a 

change of output. If the input changes within this decision window, the flip-flop may go 

into a third metastable state half way between zero and one. The length of time it can 

remain in this state is theoretically unbounded [103]. 

decision window 

Figure 6.16 Flip-flop timing parameters 

To reduce the probability of entering a metastable state, the synchroniser shown in Figure 

6.17 is used. The input to the first flip-flop may violate the setup and hold time constraint 
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and drives the flip-flop into metastability for an arbitrary time. As long as the clock period 

is greater than this time, the flip-flop output becomes stable and the second flip-flop 

provides a synchronous copy of the initial input at its output. 

Asynchronous 
input 

System 
clock 

D 0 D 0 D 0 D 0 

>Clk 
r -

)Clk 

Synchronous 
system 

Figure 6.17 Synchroniser schematic 

6.3.4 Physical implementation issues 

Once the MOODS structural representation of the cubic equation solver has been 

simulated and verified, the system can be built. At the final stage, a major problem based 

on the multiplexor cost appeared. The MOODS synthesis system provides two possible 

implementations of the multiplexor, illustrated in Figure 6.18: a normal multiplexor with 

unencoded select input; and a multiplexor based on a set of tri-state buffers. 

in2 

in3 

in4 

- output 

a)Normal multiplexor 

sel(O) 

SBl(2) 

sel(3) 

- output 

b)Tri-state based multiplexor 

Figure 6.18 MOODS multiplexors models 

Switching between these two models has a mzyor effect in the total area cost: see Table 

6.6, which represents the two parts of the cubic equation solver (FPGAl consists of the 

controller, the input stage and the output stage, FPGA2 is the arithmetic processor) 

targeting both ASIC and FPGA, and for different combinations of multiplexors. When 
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targeting an ASIC, switching between the two models had a relatively small effect on the 

total system cost, with area varying by 16.5% for the first part of the design, and 9.9% for 

the second part. The increases in area cost arise from the extra cost of implementing 

multiplexors based on tri-state buffers, which is more expensive than the general approach 

based on pass transistors. 

Design Implementation 

Tri-state buffers used to 

implement 

multiplexors 

Total area 

CLBs/Gates 

ASIC 
13740 44910 

ASIC 
0 37461 

FPGA1 13740 1514 

FPGA 0 6342 

10302 4833 

ASIC 
10503 40850 

ASIC 
0 35826 

FPGA2 10503 2419 

FPGA 0 5497 

7219 4670 

Table 6.6 Comparison of area cost based on multiplexors modification 

When targeting Xilinx FPGAs, the area variation when switching between the two 

multiplexor models increases noticeably, with an increase of the total area cost of 76% in 

the FPGAl and 56% in the FPGA2 when implementing multiplexors using the normal 

model rather than the tri-state based model. This is expected, since the limited number of 

multiplexors in the FPGA block forces the tool to implement multiplexors using 

combinational logic blocks, resulting in a great inefficiency and area cost inflation. 

Balancing the number of multiplexors based on each model is essential for a successful 

implementation. 

6.3.5 Final implementation 

The floating-point cubic equation solver project introduces the MOODS synthesis system 

floating-point capabilities. It is also as a test vehicle to establish MOODS reliability in 

implementing large behavioural designs (100 0004- gates). 
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Along the way, a number of problems were discovered in MOODS. These are not detailed 

here, as they have been reported and remedied. 

Unfortunately, the commercial Xilinx software that drives the FPGA mapper has 

consistently failed to successfully target the XC40125XV FPGA, even at moderate levels 

of utilisation. The problems encountered in the tool have supposedly been fixed; Xilinx 

has withdrawn software support for one of its own products, which has placed us in a 

difficult position. Eventually, a XC40250VX FPGA became available. The device has 

twice the capacity of the XC40125XV. However, a new range of problems related to the 

commercial tools appeared while trying to target this FPGA, and nothing could be done to 

fix these. Work rounds for these problems were far more problematic than they should 

have been. 

With a single FPGA available, the obvious solution was to implement the original design, 

which represents the whole algorithm in a single building block and delivers the most area 

efficient implementation. However, the RTL synthesis tool consistently failed in 

delivering a successful implementation of the design. This made the partitioned design the 

only sensible way forward. 

Moving to the placement and routing stage, a number of problems were encountered at 

this stage, with the same design processing time varying between two and ten days, which 

dominates the design cycle time when compared to the run times of the MOODS synthesis 

system and the RTL synthesis tool as illustrated in Table 6.7. Methods to speed up the 

process such as guiding the placement and routing with a previously routed design did not 

function correctly. 

Design flow tool 
Original design 

(hours) 

Partitioned design 

(hours) 

MOODS 10 1.5 

RTL synthesis Failed 7 

Placement and routing Failed 48-240 

Table 6.7 Run time for tools used in the design flow 

These problems made it necessary to modify the design again to further reduce the FPGA 

load. The output stage was moved to the FPGA that includes the VGA display driver. Two 
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interface units (interface] and interface2) were introduced to control passing data between 

the two FPGAs. VHDL behavioural description of both interface units are listen in 

Appendix E. A block diagram showing the final version of the cubic equation solver is 

represented in Figure 6.19. Figure 6.20 represents the area utilisation figures of the FPGA. 

XC40250VX FPGA 

Input 
stage 

Controller 
Arithmetic 
processor 

Interface 1 

Interface2 

VGA 
driver 

Figure 6.19 Final implementation block diagram 

Total latches 0 out of 16928 

Total Flipflops 6884 out of 15928 

4 input combinational blocks 14764 out of 16928 

3 input combinational blocks 5456 out of 8464 

Figure 6.20 FPGA utilisation figures 
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6.4 Comparison with microprocessors 

In recent years, advances in VLSI technology have lead to a dramatic increase in the 

floating-point performance of microprocessors, with the performance of the floating-point 

units of current computer increasing by a factor of 70 [104] in the last 10 years. 

A floating-point arithmetic unit is implemented for comparison purposes. The unit 

performs one of seven floating-point operations (addition, subtraction, multiplication, 

division, square root, sine, and cosine). Targeting the AMS 0.35|i CMOS technology, the 

total area cost of the design is 35000 gates. Comparing the area cost of this unit to the size 

of the floating-point unit in a Pentium III processor (around 1.8 million transistors)", 

indicates the possibility of great performance enhancement of the synthesis system 

floating-point units, especially with the rapid increase in programmable logic device 

capacity. 

For each of the seven floating point operations, a C program was constructed to estimate 

the total number of clock cycles required to execute this operation on five different 

microprocessors. The synthesised design performance was realised from the simulation 

results of the synthesised structural VHDL .The comparison results are illustrated in Table 

6.8 and Figure 6.21. 

Unit Platform 
Add 

(cycles) 

Sub 

(cycles) 

Mult 

(cycles) 

Div 

(cycles) 

Sqrt 

(cycles) 

sine 

(cycles) 

Cosine 

(cycles) 

Synthesis 

System 
N/A 17 20 19 79 20 45 45 

80486DX2 DOS 6.22 37 37 37 94 320 772 790 

A M D K6-2 
Windows 

NT 4.0 
24 24 24 24 24 24 24 

Pentium 
Windows 

95 
15 15 15 15 15 15 15 

Pentium II 
Windows 

NT 4.0 
9 9 9 9 9 9 9 

Pentium III 
Windows 

NT 4.0 
7 7 7 7 7 7 7 

Table 6.8 Benchmar < results of floating-point per formance of different 
microprocessors and the MOODS synthesis system 

' A r e a es t ima t ion is based on a die shot of the processor , and a s s u m i n g the equal t rans is tor dens i ty ove r the 

chip. 
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A second test is carried out to compare the floating-point performance of the cubic 

equation solver to the AMD K6-2 processor and Intel Pentium II processor. The algorithm 

was written in C and the number of clock cycles required to generate the final result is 

averaged over a number of input samples for both microprocessors. The same set of input 

samples is used to simulate the structural VHDL of the synthesised design to estimate its 

performance. The floating-point calculation time of the FPGA based unit varies between 

1158-1668 clock cycles, compared to 800-840 clock cycles for the K6-2, and 661 clock 

cycles for the Pentium II processors. The results are represented in Figure 6.22. 

Although the majority of the modem microprocessors outperformed the synthesised ALU 

in executing a single floating-point operation, these devices in general are fetch-execute 

architectures that have limitation on the number of instructions to be executed at a time. 

The result they produce for a specific design, in general, is far from optimal, because they 

are static in nature and designed for the general case. On the other hand, a synthesis tool 

has the capability to deliver a near optimal solution for a specific problem. Executing as 

many instructions as possible in parallel to increase the design's throughput to the limit 

that could exceed the peak performance of these processors. In addition, if synthesis tools 

could achieve comparable performance to microprocessors for a pure floating-point 

application, it is a good indication that these tools can be considered the main target of 

applications that require a few floating-point operations intermixed with fixed-point 

calculations. 

• Pentium • Pentium II • Pentium DK6-2 • Synthesis System D80486DX2 
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Figure 6.21 The floating-point performance of different microprocessors 
compared to the MOODS synthesis system 
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Chapter 7 

Conclusions and further work 

The work described in this thesis extended the scope of the MOODS synthesis system to 

include floating point (both real and complex) data type manipulation. The floating point 

module library presented in Chapter 4 provided a wide range of function evaluators with 

significantly different physical properties, increasing the probability of constructing a 

design that meets the user pre-defined objectives. 

Binding floating point functional units to suitable floating-point modules from the module 

library is carried out by a dedicated floating point optimiser. The optimiser is based on a 

heuristic algorithm derived from observations of floating point module interactions, and 

relies on a number of pre-calculated metrics that summarise the physical properties of each 

module. 

The above enhancements are exploited to design and implement a physical demonstrator, 

an algebraic cubic equation solver with complex root capability, intended as a 

demonstration of the floating-point capabilities. It also demonstrates the capabilities of 

MOODS as a useful tool for handling relatively large circuits (>100 000 gates). 

The work reported in this thesis opens the door to a number of research opportunities in 

the field of behavioural synthesis in general and floating-point synthesis in particular. The 

experience developed as a behavioural synthesis designer also suggests a number of 

enhancements to the behavioural synthesis tool to increase the productivity of the system. 

These enhancements and research suggestions are summarised in this chapter. 
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7.1 Source level optimisation from a floating-point 
perspective 

Hardware engineers using behavioural synthesis tools tend to write code with more regard 

to clarity than optimal implementation. Using features such as constants and temporary 

variables enables the code to be easily understood and modified. However, this common 

approach adds a considerable overhead to the synthesised unit. To solve this problem, a 

floating-point source-level optimiser is required. It is a tool to apply a set of code-

improvement transformations that target the floating-point expressions within the 

behavioural code. 

A problem closely related to the floating-point source level optimisation is that floating-

point numbers are an approximated representation of real numbers. Extra caution should 

be taken when exploiting algebraic identities to target floating-point arithmetic blocks 

[105, 106]. Consider for example: a reduction in the total cost can be achieved by 

replacing a more expensive operator with a cheaper one as in jc4-4 = x x 0.25. This 

suggests that x 4- 20 should be replaced by x x 0.05. However, the two equivalencies do 

not have the same semantics in floating-point arithmetic because 0.05 cannot be 

represented exactly in a floating-point representation, which introduces an extra source of 

error in the final result. 

The example suggests that the source level optimiser should be extremely cautious when 

applying algebraic identities to real numbers. Rather than completely eliminating algebraic 

identity based transformations, an analysis of the entire expression is required every time a 

transformation is applied to ensure that the identity holds and that the error introduced will 

not affect the system accuracy. 

7.2 Variable precision floating-point library 

Another opening for further work is the issue of variable precision floating-point 

representations and variable precision floating-point library. As discussed in Chapter 5, 

error propagation through a floating-point expression is highly dependent on the arithmetic 

operations involved and the precision of the intermediate results. It is sometimes 

impossible to provide the required target accuracy for an arithmetic expression using 
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single precision floating-point operations. A trivial solution to this problem would be to 

provide a higher precision (for example double precision) for all floating-point operations 

involved. However, this solution would in general, add an unnecessary overhead to the 

total system cost. An ideal solution would be to calculate the required accuracy for each 

floating-point operation involved and to provide an appropriate floating-point data 

precision. To achieve that, two main enhancements are required: 

1. It is not possible to provide a specific expanded module for each target precision, thus, 

an enhancement to the expanded module sub-system is required to provide some form 

of parameterised expanded module, allowing the various loop executions and variable 

widths to be specified during the synthesis runtime in terms of generic parameters. 

VHDL provides the capability of implementing parameterised units using generics [6]. 

For example, Taylor expansion can be employed to achieve every possible target 

precision by varying the number of terms involved, as well as the width of the 

intermediate calculations. 

2. The accuracy of an arithmetic expression varies according to the input data type. To be 

able to identify the exact precision of each operation, the system will require the user to 

provide a test pattern consisting of a number of input samples. The test pattern should 

then be applied to the behavioural code in conjunction with a simulation environment 

and a detailed error analysis is performed for each input set. This way, the system can 

identify the worst-case error within the test pattern and adjust the precision of each 

floating-point operation to achieve the target accuracy. 

7.3 Component library 

The floating-point manipulation units provide the ability to integrate new floating-point 

functional units within the synthesis environment. It is possible to implement reusable 

floating-point algorithms that incorporate floating-point data manipulation using the 

hierarchical unit expansion capability. These two features provide a means of increasing 

the productivity of the synthesis tool by adding new high level components to the system. 
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There is a wide range of floating-point functional units that can be added to the module 

library. It is also possible to add new building blocks to generate functional units already 

available in the library. Table 7.1 suggests a number of these units [107]. 

Function Description 

ACOT (X) Inverse cotangent of X. 

ACOTH(X) Inverse hyperbolic cotangent of X. 

ACSC(X) Inverse cosecant of X. 

ACSCH(X) Inverse hyperbolic cosecant of X. 

Error Function 2 rv 2 
erf A" = ^ c dt 

Gamma function 
r ( x ) = j J g ' W f 

Table 7.1 Suggested floating-point library components 

Hierarchical module expansion can be exploited to increase the scope of the complex 

functional units within the library. Further enhancements can be achieved by integrating a 

number of floating-point algorithms such as FFT processor cores or MPEG 

encoder/decoder. This can be taken further: pre-defined blocks of almost arbitrary 

complexity can be envisaged. 

7.4 Function inversion block 

A "function inversion block" is a functional unit that take as input a value and di function, 

and produce as output the inverse function value - see Figure 7.1 

Providing this building block would enhance the functionality of the floating-point library 

by providing the ability to generate inverse functions that are not implemented within the 

current library. This block can also be used to generate the inverse of a mathematical 

expression that combines a number of floating-point functional units. 
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Funct ion invert ing unit 

Figure 7.1 Function inversion block 

A number of constraints must be applied to ensure successful implementation of the 

inverse function: 

1. Continuous and monotonic input function. 

2. The domain of the inverse function is restricted to match the range of the input 

function. 

Given these constraints, two approaches are possible: 

* Construct a generic function inversion block to numerically find the root of the 

equation: f { x ) - x '= 0 . Root finding methods [108] such as the bisection method, 

Newton method. Falsi method or secant method will form the core of the generic unit. 

The performance of such methods is largely dependent on the quality of the initial 

estimate of the solution. This requires some analysis during the synthesis process to 

identify the nature of the input function and provide a suitable initial solution, or even 

dividing the inverse function domain into a number of intervals each has its own initial 

solution. 

Alternatively, algebraic methods could be used to construct a formula for the inverse 

of the input function [109]. The inverse function can then be implemented as a 

hierarchical block during the initial compilation stage. The method is illustrated by the 

example in Figure 7.2. 
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: = / ( * ) = 2 ^ ' - 7 

- S w u c h v 

A ^ 2 y ' - 7 

- S o N e y 

2y ' = * + 7 

x + 7 

x + 1 

Figure 7.2 Constructing the inverse function algebraically 

7.5 IVIulti-operand floating-point units 

Multi-operand floating-point units would provide a significant enhancement to the 

floating-point synthesis capability. The method has already been used in modern 

microprocessors [110, 111] to speed up graphics manipulations which involve extensive 

use of floating-point calculations. The advantage of such building blocks is illustrated in 

the example in Figure 7.3, which represents a rotation of a point by an angle 9. The 

number of building blocks involved in the expression evaluation is reduced from eight 

units to four. The number of temporary registers required to save intermediate results is 

also reduced from six to two'. This is also accompanied by a reduction in the number of 

times the intermediate results are normalised and rounded during execution. 

' Although temporary registers are often shared during the synthesis process to reduce the total cost. There is 

always an increased cost in the form of mult iplexors and control logic required sharing these registers. 
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Expression: 

/ -

X cos^ - s i n ^ % 
= 

sin 6* 
X 

v ' . sin 6* cos^ 

Evaluation: 

Without multi-operand 
units 

= cos^ 

B = sin 0 

?i = % X A 

f 2 = }' X 5 

X — r, — r, 

f ̂  X B 

f ̂  = y X A 

Mult add block 

With multi-operand 
units 

A = cos (9 

5 = sin^ 

mult _ add {x. A,-}', B, x') 

mw/f _ y, A, y') 

Figure 7.3 Multi-operand floating-point unit example 

It is important to note that in order for the system to fully exploit such multi-operand 

units, it should have the ability to re-arrange the floating-point expressions within a design 

in a way that allows mapping to these units. For example, detecting the two multiplication 

and single addition combination in the previous example and map it to the single mult-add 

block. 
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Appendix A 

IEEE standard for binary floating-
point arithmetic 

The IEEE floating-point standard [41] is the most widely used representation for floating-

point numbers. This appendix provides an introduction to this standard with an emphasis 

on the single precision representation. 

The general representation of a floating-point number in this standard is shown in Figure 

A. 1. It represents a number of the form: ( -1 ) ' x 1 .F x . The representation is divided 

into three fields: 

® Sign (s): A sign bit field indicating the sign of the floating-point number, j = I 

represents a negative number, while j' = 0 for positive numbers. 

® Biased exponent. An unsigned integer field representing the sum of the exponent and 

a constant (bias). The bias is introduced to make the field range non-negative (i.e. zero 

in this case represents the most negative value). 

o Fraction: an unsigned field containing the significant bits to the right of the binary 

point. Note that the fraction field does not include the leading digit in the significand, 

as it is assumed to be always one and is implied in the format. 

Implicit one 
Sign Biased exponent 
(S) (E) 

Fraction 
(F) 

1 h ' 
A 

+ / -
1 1 1 / 1 1 1 

1 1 1 / 1 1 1 
1. 

1 1 1 1 1 1 K 1 1 1 1 1 1 

1 1 1 1 1 1 J 1 1 1 1 1 1 

Figure A.I Floating-point number representation 
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According to the width of the biased exponent and the fraction, the standard defines four 

different formats: single; single extended: double: and double extended. These are 

summarised in Table A. 1. 

Format 
Biased 

exponent width 
Bias value 

Fraction field 

width 
Total width 

Single 8-bit +127 23-bit 32-bit 

Single extended >11-bit Unspecified >31-bit 43-bit 

Double 11-bit +1023 52-bit 64-bit 

Double extended >15-bit Unspecified >63-bit 79-bit 

Table A.1 Floating-point format parameters 

A.1 Single-precision format evaluation 

A single precision floating-point number has the general form: 

( - l ) ' x l . F x 2 

For example numbers 4-4.75, -0.125 are represented as: 

+ 4.75 — -f-100. ill X 2 ' 

= 4-1.0011, x 2 ' 

.y = 0 

= 2 

= 129, 

E = 2|o 4-127,0 

= 10000001; 

F = 00110000000000000000000 

Final bit pattern = 01000000100110000000000000000000 

- 0 . 1 2 5 = - 0 . 0 0 L x 2 ° 

-1 .000, X 2 -.1 

5' = 1 

= 124, 

E - -3 ,0 4-127,0 

= 01111100, 

F = 00000000000000000000000 

Final bit pattern = 10111110000000000000000000000000 
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The general form represented in the previous examples is what the standard defines as 

a representation of a number with a magnitude greater than or equal 

to 2"'"^ and less than 2'"^. In addition to normalised numbers, certain bit patterns in the 

standard have a specific representation, as shown in Figure A.2: 

* Zero: The value represented by an all zero exponent field and an all zero fraction field. 

Zero can have either a negative or positive sign. 

8 Denormalised number. A denormalised number indicates a quantity with magnitude 

less that 2''"^, but greater that zero. It is represented by a zero exponent field and a 

non-zero fraction field. 

» Infinity. Infinity is interpreted in the affine sense, that is,minus infinity is smaller than 

any finite number and plus infinity is greater than any finite number. Infinity is 

represented by an all zero fraction field and an all one exponent field. 

9 Not A Number (NAN): "not a number" is defined as a pattern indicating an invalid 

operation. Two types of NAN are provided: Signalling NAN and Quiet NAN. 

Signalling NAN is represented by an all one exponent field with the fraction field most 

significant bit set to one. A quiet NAN is represented by an all one exponent field, a 

zero in the fraction most significant bit and at least one one in any of the fraction least 

significant bits. 

This is summarised in Table A.2. 

Sign bit 

(s) 

Exponent 

(E) 

Fraction 

(F) 
Value 

0/1 0 0 (+0,-0) 

0/1 0 F (-1)"x(0.F)x2° 

0/1 0 < E < 255 F (-1)"x(1.F)x2<^'^^ 

0/1 255 0 -̂ -oo -oo 

0/1 255 F(22)=1 Signalling NAN 

0/1 255 F(22)=1 

F(21:0);tO 

Quiet NAN 

Table A.2 Reserved bit patterns 
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Sign Biased exponent Fraction 

+/-

a) Zero 

b)Denormalised number 

c)lnfinity 

d)Signalling NAN 

e)Quiet NAN 

-In the Denormal representation, at least of the the 
fraction bits should be non-zero. 
-In the Quiet NAN representation, at least on the 
the 22 Isbs in the fraction field should be non-zero 

Figure A.2 Floating-point number bit patterns 
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A.2 Operations with NAN 

"Not A number'' does not represent a numerical value, instead it is a symbolic 

representation of an invalid result. NAN is provided in two forms: Quiet NAN and 

Signalling NAN. 

A Quiet NAN indicates an invalid output result (e.g. -Hx, + -oo). If a Quiet NAN appears as 

an input operand to an operation, the final result will also be a Quiet NAN. 

Signalling NAN is never produced as an output result from a floating-point operation. It is 

provided as an indication for specific situations such as uninitialised variables. If a 

Signalling NAN appears as an input operand, the output result would be a Quiet NAN. 

Invalid floating-point operations that produce NAN as the final result are listed in Table 

A.3 

Operation Input operand Final result 

Addition (+00) + (-00) Quiet NAN 

Addition (-00) + (+°o) Quiet NAN 

Subtraction (+00) - (+00) Quiet NAN 

Subtraction (-00) - (-00) Quiet NAN 

Multiplication (+0) * ( + 4 Quiet NAN 

Multiplication (+0) * (-00) Quiet NAN 

Multiplication (-0) * (+°o) Quiet NAN 

Multiplication (-0) * (-co) Quiet NAN 

Addition signalling NAN Quiet NAN 

Subtraction signalling NAN Quiet NAN 

Multiplication signalling NAN Quiet NAN 

Division signalling NAN Quiet NAN 

Division +00/+00 Quiet NAN 

Division 0/0 Quiet NAN 

Table A.3 Floating-point invalid operations 
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A.3 Status flags 

Five status flags are required to monitor the execution of floating-point operations. Setting 

one of these flags indicates an exceptional situation detected while executing the 

operation. The following is a summary of the status flags indications: 

• Invalid operat ion flag: The invalid operation flag is set high if an input operand is 

invalid for the operation. The result in that case would be a Quiet NAN. The invalid 

operation flag is signalled in all the situations listed in Table A.3. 

• Zero Division Flag: The zero division flag is high if the divisor is zero in a floating-

point division operation. If the dividend does not equal to zero then the final result 

would be a correctly signed infinity, otherwise the operation is invalid and the output 

is a Quiet NAN. 

o Underf low Flag: If a floating-point operation produces a result of a magnitude too 

small to be represented as a single-precision floating-point number, the operation 

underflows and the underflow flag is set. It is an indication that the output result has a 

magnitude greater than zero, but cannot be represented as a floating point number. The 

output in this case is a correctly signed zero. 

® Overf low Flag: The overflow flag is set high if an operation on finite input operands 

produces an output result too large to fit in the single precision format. Overflow 

occurs if the output result has a magnitude greater than or equal to 2'"^. The output in 

this case is a correctly signed infinity. 

o Inexact Flag: The inexact flag is high if the output of a floating-point operation does 

not equal the infinitely precise result. On other words, it is an indication that the final 

result has been rounded or approximated. Inexact flag is also high if an underflow or 

overflow occurs. 

A.4 Comparison operations 

Floating-point comparison operations are exact, and never overflow or underflow. The 

implementation is required to support four relational operations: Zgj'.y fAan; giywaZ; grgafer 

fAon; and The last operation is the result of comparing any floating-point 
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representation to a NAN. Every NAN should compare unordered to any other floating-

point representation including another NAN. 

A comparison operation can be delivered in one of two ways: 

1. As a single unit that performs all the four comparison operations and provides a 

conditional vector identifying all the four possible relationships mentioned above. 

2. A true or false block representing one of the four relationships or a combination of 

them (e.g greater than or equal). 

In addition to the comparison true-false response, an invalid flag should be raised 

whenever a NAN is provided as an input to any of the comparison operations that does not 

involve 

A.5 Rounding 

Rounding is the process by which the result is approximated to a representation that Ots in 

the destination formats. The IEEE standard specifies four rounding modes [43,112]: round 

to the nearest; round towards +infinity; round towards -infinity; and round towards zero. 

Round to the nearest is the IEEE standard default rounding mode. In this mode, the result 

is rounded to the closest representation that fits in the destination format. If the result is 

exactly half way between two representations, it is rounded to the representation that has a 

least significant bit of zero. Figure A.3 illustrates three examples of rounding to the 

nearest. The first result Xl is to the nearest representation a, while X2 is rounded to 6. X3 

represents a special case since it lies half way between c and (f, therefore it is rounded to 

the representation that has a least significant bit of zero (d). 

12= X I ! |X2 1+2 = |X3 

V V 
a b c d 

Figure A.3 "Rounding to the nearest" examples 
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The second IEEE rounding mode is row/W In this mode, the result is 

rounded to the closest IEEE format representation that is greater than or equal to the 

output result. This is illustrated in Figure A.4. X5 cannot be represented exactly in 

floating-point format and is rounded to the next larger floating-point representation (/). 

The same occurs on X5 where it is rounded to g, the result represented by X6 fits in the 

target format and therefore no rounding takes place. 

X51 X6 

Figure A.4 "Rounding toward +infinity" example 

Round towards -infinity is the third IEEE rounding mode. In contrast to the previous 

rounding mode, it rounds the final result to the closest floating-point representation that is 

less than or equal to the output result. X7 and X8 in Figure A.5 illustrate this rounding 

mode. 

1-2-= X71 _X8 1+2-= 1+2 = 

1 j k 1 

Figure A.5 "Rounding toward -infinity" example 

In the final rounding mode, round toward zero, the result is rounded to the closest 

floating-point representation whose magnitude is less than or equals the output result. 

This mode is represented in the example in Figure A.6, where X9 is rounded to -1 .0 x 2 

and XIO is rounded to 0. 

23 
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)^9 0 X10 2-23 2-2Z 

1 

V 
m n o p 

Figure A.6 "Rounding towards zero" example 

The standard provides further details on a 32-bit integer format that accompanies the 

floating-point number representation, along with the required type conversion operations. 

It also discusses traps and trap handler issues, which are user defined subroutines that 

track a certain status flag and replaces the output result of an operation that raises that flag. 

It also discusses the ability of providing user control over these traps, which gives the right 

to enable and disable these traps. These issues are not represented in this Appendix as they 

are not related to this work. Further details can be found in [41]. 
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Appendix B 

The CORDIC algorithm 

The CORDIC algorithm (Coordinate Rotation Digital Computer) was first introduced by 

Voider [55] as a computing technique to perform vector rotation. It allows computing 

trigonometric functions, as well as multiplying and dividing numbers using only shift and 

add operations. In 1971, Walter [56] provided a general form of the original algorithm to 

provide a means of computing a wide range of elementary functions, including hyperbolic 

and logarithmic functions. A slight modification of Walter's version allowed computing 

the inverse sine and inverse cosine functions [57]. 

This appendix provides a description of the CORDIC algorithm. It is organised in three 

sections: section B.l outlines the main properties of the original CORDIC algorithm; 

section B.2 describes the enhanced version of the algorithm represented in [56]; and 

section B.3 shows the modifications required to include both inverse sine and inverse 

cosine in the set of CORDIC generated functions. 

B.1 The original CORDIC algorithm 

The original algorithm [55] introduced CORDIC as a special purpose computing machine 

that can be used to rotate a vector by an arbitrary angle or determine the angle and the 

magnitude of the vector. In other words, the CORDIC machine can be used to solve one of 

the two sets of equations: 

^ ( ) ' C o s / I + jcsin ,i.) 

%'= ^ ( x c o s / I - sin 

or 

9 = tan ' — 
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In order to control the functionality of the CORDIC unit (i.e. solving one of the two sets of 

previous equations), CORDIC defines two modes of operation: 

1. in this mode, the original co-ordinates of the vector (A,: ) together with 

an angle of rotation (,1) are provided, and the co-ordinates of the vector after rotation by 

the given angle ( x a r e calculated. 

2. ygcfonng in this mode, the co-ordinates of the vector are given (.Y,y). and the 

magnitude (7 )̂ and the angle ( ^ of that vector are computed. 

Having two modes of operation with different functionality might suggest two computing 

units. This is not the case here, since the computing unit is implemented to perform 

mfan'oM and a special feedback is provided to perform the vgcfonng mode. In the latter, 

the same unit is used to rotate the vector until the angle equals zero, which implies that the 

sum of the rotations performed in the negative of the original angle, and the value of the 

new X co-ordinate equal the original magnitude. 

In the original CORDIC algorithm, the operation starts with a unique first rotation by an 

angle of ±7i/2. The new co-ordinates after the rotation are: 

^2 - - } ' l - ^1 cos(^, ± — ) 

>'2 = i-^'i = sin(6'| ±—) 

The remaining steps are a series of rotations by an angle %, where: 

(y. = t a n ' ' 

The general expression for the new vector co-ordinates after each step / is given by' : 

sin(^, ±(%,) = y, ± 2 - " 

Xy+i = + cos(^, +(%, ) = X. + 2"''"^^ 

A proof of this can be found in [55]. 
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By introducing a new variable to control the rotation direction, the general expression 

becomes: 

+ sin(^, + ) = y, + 2 - ' " - ' A,. 

+ cos(^. + 2-"-- ' y, 

where 

= +1 or - 1 

After performing » rotations the final vector co-ordinates will be: 

= (Vl + 2 ̂  + "v/l + 2 ' +... + Vl + 2̂ "'" )/?! sin(̂ ] + d̂ oĉ  + d-jCX.̂  +... + ) 

= (V l + 2 " + V l + 2 ' + . . . + •\Jl + 2 )/?! cos(^| + d̂ cx̂  + d + . . . + d ) 

Note that the increase in the magnitude is the constant K for a certain number of iteration. 

Substituting K gives the general form of the final co-ordinates: 

= ; [s in (^ , + A ) 

= A:cos(<9, -1-/I) 

where 

A — d^oc^ + d^cx-j +... + d 

From the previous definition of the vectoring mode, the following condition applies: 

- ^ + . . . + 

As mentioned earlier, controlling the rotation direction is achieved by d„ which takes a 

value +1 or - 1 . To determine the value of d„ a new variable z,, is introduced to accumulate 

the angle variation: 
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For the rotation mode, the sign of decides the value with (/« = +1 for > 0. otherwise 

-1. For vectoring mode, the sign of controls the value with 6̂ ,, = -1 for v,, > 0. 

otherwise -1. 

B.2 The enhanced CORDIC algorithm 

The algorithm is based on a linear, circular, and hyperbolic co-ordinate system 

parameterised by a constant m [56, 61] as shown in Figure B. 1, where a vector with a 

magnitude and angle A, is defined using the three co-ordinate systems, where: 

A, = tan"' m-

m = 0 

Figure B.1 A vector in three co-ordinate systems 

From the previous two equations, it is clear that m = 1 for a circular system; m = 0 for a 

linear system; and m = - \ for a hyperbolic co-ordinate system. 

A new vector f ,+/ may be obtained from f , by: 
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=A, 

The magnitude and the angle of the new vector are given bv: 

— ./4, — Of, 

where 

or, = m - tan '(m - ) 

AT, + 

The previous set of equations suggest that the angle and the magnitude of the original 

vector are modified by quantities which are independent of the A- and y co-ordinates. By 

applying the previous transformation for n iterations we get: 

A,, - /Ig - a; 

where 

1=0 

/? - ! 

This implies that the total change in the angle is an accumulation of the intermediate 

changes, while the total change in the magnitude is the product of the incremental 

changes. 

The angle factor and the magnitude factor A!, are provided in Table B. 1 for the three 

different co-ordinate systems. 
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Co-ordinate 

system 

Angle 

factor 

a; 

Magnitude factor 

Ki 

Circular tan'̂ 8i (1+6')''' 

Linear 5i 1 

Hyperbolic tanh'^6i (1-6')'' ' 

Table B.I Angle and magnitude factors 

By introducing a new variable z to accumulate the angle variation: 

:/+! - Z/ + 

we end up with three difference equations for y, z), and solving them for n iterations 

gives: 

cos(o?M -) + )'o sin(Qy7? -)] 
1 1 

cos(a)M') - Xg sin(o)M -)] 

Using the final set of equations, a wide range of elementary functions may be generated. 

Table B.2 and Table B.3 represent the output value after » iterations and for two different 

modes: 

1. The angle A is forced to zero, which means that y„ = 0 (vectoring mode). 

2. The accumulation of the angle variation is forced to zero, which means that z„ = 0 

(rotation mode). 
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Co-ordinate 

system 
Final Values 

Circular ^ cos Zn - Vo sin -g) 

Y,, A' (cos Zo + 0̂ sin z,,) 

Linear 

^ lo + 
Z, -40 

Hyperbolic -> A" (Xg cosh Zo + Vo sinh Zg) 

^ ^ (vo cosh Zo + ;uo sinh z )̂ 

Table B.2 CORDIC result for the rotation mode 

Co-ordinate 

system 
Final Values 

Circular 

z„ ^ Zo - tan" ' (^) 

Linear 
^ 

z„ ^ Z o - — 
'̂o 

Hyperbolic 

y,, ^ 0 

—> Zo - tanh ' (—) 
-̂ 0 

Table B.3 CORDIC result for the vectoring mode 
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In addition to the functions listed in the previous tables, the following functions may also 

be generated: 

sm z 
tan z = 

tanh. 

cosz 
sinh z 

cosh z 

Inz = 2 tanh' A:=z + l ,y = z - l 

Vz - ) ' \ A : = z + - ^ , v - z - { 

In order to be able to force the angle A to zero by a set of rotations o;, the direction of the 

rotation is defined in each step so that: 

A+i - A 

This implies that the remaining rotations in each step must be at least within o;,., of zero, 

which defines the main convergence criterion; 

/=/+] 

This introduces a limitation on the domain of convergence of this algorithm: 

max|y% I = 
J 

. / = 0 

Another problem appears in the hyperbolic mode, as the convergence criterion is not 

satisfied. However, if the steps (4, 13, 40, 121,..., f, 3f+l , . . . ) then the criterion is satisfied 

[56]. 

For a practical implementation of the algorithm, 6i is assigned the value 2 ' which results 

in the final form of the algorithm: 
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1 - d L 2 

n+s J 2 

-«+i 

-/I \ 

A - " y 

Where = sign (z„) for the rotation mode and -sign (A,,) for the vectoring mode. These 

rotations can be performed by a series of shift (multiply by 2 ") and add operations with 

the values of the rotation angles (a;,) pre-calculated and stored in a small table. 

B.3 Computation of inverse sine and inverse 
cosine using CORDIC 

This section shows how the method can be used to calculate the inverse sine and inverse 

cosine functions. Firstly, a simple algorithm is introduced, along with its main 

disadvantage. Then a final version of the algorithm that tackles this drawback [57] is 

outlined. 

Assuming that we want to compute z = cos''(f), we perform a rotation of the angle z 

starting at the point (1,0) Using CORDIC this can be achieved by: 

Zo = 0 

X q = 1 

= 1 if z„ < zelse-

f f+ l -d„l 

1 V 

z.+i tan" 2' 

lim = cos"' (r) 

The main problem faced here is that the value z is unknown, which implies that we cannot 

perform the test above to control the rotation direction. However, the test can be replaced 

with the following equivalent test" 

See [57] for a proof of this replacement . 
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) if z,, > f else - ) 

where 

f=0 

The new test solves the problem encountered in the previous algorithm. However, a major 

drawback arises from the fact that at each step is required. To compute f,, the 

relation (1+2'̂ ")'̂ " may be used. But this would require a true multiplication at 

each step. To overcome fA/j' problem, nvo rotations of tan''2"" must be performed in 

each rotation, which reduces the computation to f„+y = (1+2'""). thereby reducing the true 

multiplication to an add and a shift operation. Performing this modification we obtain the 

following algorithm to compute the inverse cosine; 

0 

^0 — ^ 

) if ^ else - ) 

' n + I ^..2' V 
V" " V 

+ 26f„ tan ' 2" 

In a similar manner the algorithm to compute the inverse sine is: 

0̂ 

Xn 

% = 0 

) if else - ) 

"II+1 

1 - ( f . .2 -n Y 

< 2 - 1 

+26f^ tan"' 2" 

y 

^+1 

The domain of convergence of the CORDIC algorithm is defined by the accumulated sum 

of the elementary rotations performed over the required number of iterations. This implies 
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that the double rotation performed in this algorithm to reduce the multiplication cost 

doubles the size of the algorithm convergence domain. 
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Appendix C 

Elementary functions details 

This appendix provides internal details of the floating-point library elementary functions 

discussed in Chapter 4. In each section, a detailed description of the range reduction unit is 

provided, as well as a description of the function generators provided to implement the 

function. Function generator accuracy estimates based on simulation results of uniformly 

distributed samples over the required input range are also provided. 

C.1 Sine and cosine functions 

The sine and cosine functions are combined into one building block, generating either the 

sine or the cosine of the input operand according to the value of control input. The input to 

the function generator is in radians. 

C.1.1 Pre-processing stage 

The pre-processing stage performs two tasks: 

1. Input operand type detection. 

2. Reduces the range of the input operand to the range of the function generation block 

[0,7[/2]. 

A block diagram of the pre-processing stage is provided in Figure C. l . Input type 

detection is the first stage in the pre-processing step. It performs a series of tests to identify 

certain cases represented in Table C. l . If any of these cases are detected, the appropriate 

value is assigned to the output and the done flag is raised to indicate that there is no need 

for further processing in the following function generation block. The type detection unit 

also assigns the appropriate value to the/Zag 
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input 

in seL 

Input type detection 

Range reduction 

flag register 

_^done 

. output 

_^out_sel 

_*.sign 

Figure C.1 Sine/cosine pre-processing stage 

If the input operand passes the type detection stage, a range reduction is performed on the 

input to scale it within the range Ixl e [0,7[/2]'. This is achieved using the following 

equation: 

sin(6-Y-t-D) = < 

+ sin Dif Q mod 4 = 0 

+ cos D if <2mod4 = 1 

- s i n D ^ 6 m o d 4 = 2 

-cosD/ /^ g m o d 4 = 3 

The application of the range reduction procedure takes place in a number of steps 

illustrated in the flow graph of Figure C.2; 

1. The input is divided by Till (multiplied by 2/71) and the output result is stored in a 

temporary variable. 

2. The fractional part of the previous step result is then multiplied by (7C/2) and the result 

is provided as the output operand. 

If the input is already within this range, the range reduction procedure is bypassed. 
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3. The input control variable combined with the integer part of the division result in 

step one and the input operand sign are used to identify the final result sign and the 

operation to be performed in the following stage (generating either the sine or the 

cosine function). 

Operation Input Output 
Flag register 

Operation Input Output 
Inexact Invalid NAN OVF EUN ZD 

sine + 00 

Quiet 

NAN 
0 1 1 0 0 0 

sine -oo 

Quiet 

NAN 
0 1 1 0 0 0 

sine 
Sig. 

NAN 

Quiet 

NAN 
0 1 1 0 0 0 

sine 
Quiet 

NAN 

Quiet 

NAN 
0 0 1 0 0 0 

sine zero 0 0 0 0 0 0 0 

cosine + CO 

Quiet 

NAN 
0 1 1 0 0 0 

cosine -oo 

Quiet 

NAN 
0 1 1 0 0 0 

cosine 
Sig. 

NAN 

Quiet 

NAN 
0 1 1 0 0 0 

cosine 
Quiet 

NAN 

Quiet 

NAN 
0 0 1 0 0 0 

cosine zero 1 0 0 0 0 0 0 

Table C.I Special input cases in the sine/cosine function 
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input 

out_sel = in_sel out_ŝ  = in_sel out_sel = in_sel 

tmp = input y 

result = frac(tmp) 
0=int(tmp) 

sign =sign(ir9]ut) and in_sel sign =sign(input) or in_sel sign =sign(input) or in_sel sign =sign(input) and in_sel 

Figure C.2 Sine/cosine range reduction flow chart^ 

C.1.2 Function generation unit 

The first set of function generators is based on a single lookup table with linear 

interpolation. The absolute error over the required range varies as the table size and hence 

the difference between two adjacent break points (slope) changes. The figures in Table C.2 

represent the error variation as the table size changes. These results are summarised in 

Figure C.3, where the error is shown for different table sizes. 

inl(x) re turns the nearest integer less that or equal to x (nearest zero), frac(x) returns the value x-int(x). 
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Name Slope Table entries Maximum error 

sin_cos_7_lsi 2-11 3217 3.9539e-8 

sin_cos_6_lsi 2 " 805 4.8599e-7 

sin_cos_5_lsi 2" 202 7.6292e-6 

sin__cos_4_isi 2-b 101 3.0905e-5 

sin_cos_3_lsi 2-4 26 4.8783e-4 

sin_cos_2Jsi 2'' 7 7.7000e-3 

T a b l e C.2 M a x i m u m error in the s ine/cos ine genera tor us ing s ingle tab le 

and l inear interpolat ion 

A reduction in the table s ize is achieved by partitioning the lookup table into a number of 

sub-tables. The table is partitioned so that the maximum error generated in each sub-table 

is less than a limit that guarantees the target accuracy. This is i l lustrated in Table C.3 and 

Figure C.4, where the error is represented for d i f ferent combina t ions of par t i t ioned table. 

Figure C.5 shows the sub-tables distribution for the four units listed in Table C.3. 

Name Sub-table range 
Sub-table 

slope 
Table 

entries 

Maximum 

error 

sin_cos_7_lmi 

0-0.19635 2-M 403 

1.0052e-7 
sin_cos_7_lmi 0.19635-0.98175 2 ^ 805 

1.0052e-7 
sin_cos_7_lmi 

0.98175-^/2 2"" 1207 
1.0052e-7 

sin cos 6 Imi 
0-0.490875 2"" 126 

8.8646e-7 sin cos 6 Imi 
0.490875-n/2 2-B 553 

8.8646e-7 

sin cos 5 imi 
0-0.294525 2-t) 19 

8.6986e-6 sin cos 5 imi 
0.294525-m'2 2" 164 

8.6986e-6 

sin cos 4 Imi 
0-0.883575 2" 29 

9.2394e-5 sin cos 4 Imi 
0.883575-n/2 2-b 44 

9.2394e-5 

Tab le C.3 M a x i m u m error in the s ine/cos ine genera tor using par t i t ioned 

tab le and l inear interpolat ion 
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nput to the sne function 

a) sin_cos_7_lsi 

Input to the ^ne Function 

c) sin_cos_5_lsi 

M 04 W M 1 ^ 14 ^ 
Input to the skie function 

Input to the sitie Rmctkm 

b) sin_cos_6Jsi 

hput to the sne ninctton 

d) sin_cos_4Jsi 

nput to the sine function 

e) sin_cos_3_lsi f) sin_cos_2Jsi 

Figure C.3 Error in the sine/cosine generator using linear interpolation engine with 
a single-table and for different table sizes 
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M 04 W M 1 ^ 14 ^ 
bipul lo Ihe sine ftinctton 

a) sin_cos_7_lmi 

Input to me stoe nmction 

mput to the sine mndion 

b) sin_cos_6_lmi 

I b 
c) sin_cos_5Jmi 

0 M M W M 1 ^ 14 ^ 
Input to Hie sne function 

d) sin_cos_4Jmi 

Figure C.4 Error in the sine/cosine generator using linear interpolation and a 
partitioned table for different table sizes 

Unit name 

sin_cos_7Jmi 

sin_cos_6_lini 

sin_cos_5Jmi 

sin cos 4 Imi 

0 

S1 

S1 

Sub-tables range 

S1 S2 S3 

1 1 
S2 

S2 

S1 S2 

K 
2 

Figure C.5 Sub-tables range in the sine/cosine generator using linear 
interpolation and partitioned table 

Note that for the table lookup based implementation, an equivalent unit that replaces the 

internal table with an external ROM interface is provided to allow implementing the table 

using an external ROM. 
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An iterative series method based on the minimax approximation of the sine/cosine 

function is also available to generate these functions. As expected, the error in the function 

approximation is highly dependent on the approximating function degree. The maximum 

approximation error for different approximation degrees is illustrated in Table C.4 and the 

same results are summarised in Figure C.6. 

Name Approximation 
degree 

Maximum error 

sin_cos_7_ser 7 9.1500e-8 

sin_cos_6_ser 6 4.7340e-7 

sin_cos_5_ser 5 7.1280e-6 

sin_cos_4_ser 4 1.0400e-4 

Table C.4 Maximum error in the sine/cosine generator using minimax 
approximation 

M M M 1 12 ^ 
Input to the skw function M M M 1 ^ 14 ^ 

Input to the sine (unction 

a) sin_cos_7_ser b) sin_cos_6_ser 

input to tiie sme function InpU to the ane fuvtion 
^ ^ 

c) sin_cos_5_ser d) sin_cos_4_ser 

Figure C.6 Error in the sine/cosine minimax engine for different approximation 
degrees 
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Finally, a CORDIC based engine is provided to generate this function. The unit uses the 

CORDIC algorithm in the circular mode (m = 1) and with the input operand initialised as 

(x = \IK,y = Q,z^ input operand). The accuracy of these flinction generators varies 

according to the number of CORDIC iterations. This is shown in Table C.5 and Figure C.7 

showing the maximum approximation errors for different number of iterations. 

Name Number of 
iterations 

IMaximum error 

sin_cos_7_COR 25 1.1913e-7 

sin_cos_6_COR 22 5.1109e-7 

sin_cos_5_COR 18 7.5161e-6 

sin_cos_4_COR 15 6.0760e-5 

Table C.5 Maximum error in the sine/cosine generator using CORDIC 
algorithm 

input to (he Mid ian 

a) sin_cos_7_cor 

Input to the sine function 

b) sin_cos_6_cor 

input to the sne function 

c) sin_cos_5_cor 

0 M 04 M as 1 U 14 # 
Input to the sine function 

d) sin_cos_4_cor 

Figure 0.7 Error in the sine/cosine CORDIC unit for different number of iterations 
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C.2 Inverse sine and inverse cosine functions 

The inverse sine and inverse cosine functions are implemented using a single building 

block, and a control input is provided to select between the two functions. Due to the 

periodic nature of both the sine and cosine function, their inverses cannot be formed unless 

the domain is restricted. This restricts the input to the range [-1.1], which eliminates the 

need for a range reduction block. 

A block diagram representing the building blocks of the unit is shown in Figure C.8. Input 

type detection performs a series of tests to detect certain cases in which the output is 

predefined. These cases are represented in Table C.6. If any of these cases is detected, the 

corresponding output value is assigned and the function generator is bypassed. 

input 

in_sel 

flag register 

> output 

Function generator 

Input type detection 

Figure C.8 inverse sine/inverse cosine generation unit 

For the general case, the inverse sine function is generated in the range [0,1] and the final 

output is provided using the simple relationship: 

arcsin(±jc) = ±arcsin(l A: I) 

arccos(±x) = y - [+ arcsin(lI)] 
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Operation Input Output 
Flag register 

Operation Input Output 
Inexact Invalid NAN OVF EUN ZD 

Inverse 

sine 
+ OC 

Quiet 

NAN 
0 1 1 0 0 0 

Inverse 

sine 
-oo 

Quiet 

NAN 
0 1 1 0 0 0 

Inverse 

sine 

Sig. 

NAN 

Quiet 

NAN 
0 1 1 0 0 0 

Inverse 

sine 

Quiet 

NAN 

Quiet 

NAN 
0 0 1 0 0 0 

Inverse 

sine 
zero 0 0 0 0 0 0 0 

Inverse 

sine 
>111 

Quiet 

NAN 
0 1 1 0 0 0 

inverse 

cosine 
+00 

Quiet 

NAN 
0 1 1 0 0 0 

inverse 

cosine 
-ex, 

Quiet 

NAN 
0 1 1 0 0 0 

inverse 

cosine 

Sig. 

NAN 

Quiet 

NAN 
0 1 1 0 0 0 

inverse 

cosine 

Quiet 

NAN 

Quiet 

NAN 
0 0 1 0 0 0 

inverse 

cosine 
zero 71/2 0 0 0 0 0 0 

inverse 

cosine 
>111 

Quiet 

NAN 
0 1 1 0 0 0 

Table C.6 special input cases in the inverse sine/inverse cosine function 

The function generation unit is implemented using either a partitioned lookup table or a 

CORDIC base procedure^. For a table-based method, Table C.7 and Figure C.9 represent 

the maximum error encountered for different table sizes. 

^ Due to the nature of the inverse sine function as neither a single slope table lookup nor a polynomial 

approximat ion are not a viable solution for this funct ion . 
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Name Sub-table range 
Sub-table 

slope 

Table 

entries 

Maximum 

error 

asin_acos_7_lmi 

0-0.234375 2-10 240 

3.0335e-7 asin_acos_7_lmi 

0.234375-0.53125 2-11 608 

3.0335e-7 asin_acos_7_lmi 

0.53125-0.78125 2-1̂  1024 

3.0335e-7 asin_acos_7_lmi 

0.78125-0.890625 2-13 896 

3.0335e-7 asin_acos_7_lmi 
0.890625-0.96875 2-14 1280 

3.0335e-7 asin_acos_7_lmi 
0.96875-0.986022 2-1 b 566 

3.0335e-7 asin_acos_7_lmi 

0.986022-0.994353 546 

3.0335e-7 asin_acos_7_lmi 

0.994353-0.999236 2-1W 1281 

3.0335e-7 asin_acos_7_lmi 

0.999236-0.999694 2-ia 241 

3.0335e-7 asin_acos_7_lmi 

0.999694-1 2-̂ 1 642 

3.0335e-7 

asin_acos_6_lmi 

0-0.140625 2'" 36 

5.4699e-7 asin_acos_6_lmi 

0.140625-0.390625 2-« 128 

5.4699e-7 asin_acos_6_lmi 

0.390625-0.71875 g.iu 336 

5.4699e-7 asin_acos_6_lmi 

0.71875-0.875 2-11 320 

5.4699e-7 asin_acos_6_lmi 0.875-0.988739 932 5.4699e-7 asin_acos_6_lmi 

0.988739-0.99884 2-ib 662 

5.4699e-7 asin_acos_6_lmi 

0.99884-0.999542 2-1/ 93 

5.4699e-7 asin_acos_6_lmi 

0.999542-0.999786 2"̂  ̂  64 

5.4699e-7 asin_acos_6_lmi 

0.999786-1 225 

5.4699e-7 

asin_acos_5_lmi 

0-0.28125 •z' 36 

5.3550e-6 asin_acos_5_lmi 

0.28125-0.640625 2-b 92 

5.3550e-6 asin_acos_5_lmi 

0.640625-0.828125 2-y 96 

5.3550e-6 asin_acos_5_lmi 

0.828125-0.9375 2"̂  ̂  112 

5.3550e-6 asin_acos_5_lmi 0.9375-0.993958 2 '^ 232 5.3550e-6 asin_acos_5_lmi 

0.993958-0.996245 2'i ̂  19 

5.3550e-6 asin_acos_5_lmi 

0.996245-0.999358 2-ib 103 

5.3550e-6 asin_acos_5_lmi 

0.999358-0.999755 2" It) 27 

5.3550e-6 asin_acos_5_lmi 

0.999755-1 2"̂  ̂  65 

5.3550e-6 

asin_acos_4_lmi 

0-0.265625 2-. 9 

4.5791 e-5 asin_acos_4_lmi 

0.265625-0.53125 2-b 17 

4.5791 e-5 asin_acos_4_lmi 

0.53125-0.78125 2" 32 

4.5791 e-5 asin_acos_4_lmi 0.78125-0.921875 2-« 36 4.5791 e-5 asin_acos_4_lmi 

0.921875-0.994872 2-n 150 

4.5791 e-5 asin_acos_4_lmi 

0.994872-0.999541 2-ia 39 

4.5791 e-5 asin_acos_4_lmi 

0.999541-1 2-1̂  31 

4.5791 e-5 

Table C.7 Maximum error in the inverse sine/inverse cosine generator using 
partitioned table and linear interpolation 
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«io' 

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 t 
Ifput to tt» invBrs* sin* Midlen 

a) asin_acos_7_lmi 

3 

IrfNJl to IhB im«rs« sirw ftjncllen 

b) asin_acos_6_lmi 

c) asin_acos_5_lmi d) asin_acos_4Jini 

Figure C.9 Error in the inverse sine/inverse cosine generator using linear 
interpolation engine with a partitioned table lookup 

A minor modification to the CORDIC algorithm (see Appendix B for details) provides an 

iterative procedure to implement the inverse sine and inverse cosine functions. Table C.8 

and Figure C. 10 represent the accuracy of this method for different number of iterations. 

Name Number of 
iterations 

Maximum error 

as! n_acos_7_CO R 26 1.1268e-7 

as! n_acos_6_CO R 22 9.3970e-7 

asin_acos_5_COR 19 7.60058-6 

asin_acos_4_COR 16 6.0995e-5 

asin_acos_3_COR 13 4.7333e-4 

asin_acos_2_COR 11 1.8907e-3 

Table C.8 Maximum error in the inverse sine/inverse cosine generator using 
CORDIC algorithm 
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0 ai 020304(19(16 017(1809 
Input to the arcsin ftivtion 

a) asin_acos_7_cor 

0 M M M M M M M W 
Input to the arcsin function 

c) asin_acos_5_cor 

0 0 1 0 2 0 3 0 4 05 06 07 0 8 0 9 
Input to the arcsin ftjnctian 

e) asin_acos_3_cor 

0 M M M M M M M W M 1 
Input to #m afcsin ftncfen 

b) asin_acos_6_cor 

0 M M M M W M M W M 1 
Input to 

d) asin_acos_4_cor 

0 01 0 2 0 3 0 4 0 8 0 6 07 08 08 1 
Input to the arcsin function 

f) asin_acos_2_cor 

Figure C.10 Error in the asin/acos generator based on the CORDIC engine for 
different number of iterations 

C.3 Inverse tangent function 

The function generator of the inverse tangent function consists of two main building 

blocks: 

1. A pre-processing stage that performs range reduction and input type detection. 
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2. The main function generation unit, which calculates the inverse tangent of an input 

argument within the range [0,1]. 

In addition to those two units, a final adjustment stage is required to undo the modification 

performed by the range reduction stage. 

In the pre-processing stage, input type detection is performed to identify any of the input 

values listed in Table C.9 and output the appropriate result. If none of the listed values are 

detected, the execution continues to the range reduction unit adjusts the input argument to 

within the range [0,1], and provides the necessary control signals to govern the data flow 

in the following stage. A flow chart describing the range reduction procedure is given in 

Figure C. 11. At this stage, the input is divided into two groups; 

1. If input is in the range Ltl < 1, then the function is calculated directly. 

2. If bri > 1, range reduction is required: 

f 1 A 
arc tan arctanix) 

9 ' 

Input Output 
Flag register 

Input Output 
Inexact Invalid NAN OVF EUN ZD 

+ 00 T I I 2 0 0 0 0 0 0 

-oo -7I/2 0 0 0 0 0 0 

Sig. 

NAN 

Quiet 

NAN 
0 1 1 0 0 0 

Quiet 

NAN 

Quiet 

NAN 
0 0 1 0 0 0 

0 0 0 0 0 0 0 0 

linputl>2^'' ±71/2 1 0 0 0 0 0 

linputkO.OOT ±input 1 0 0 0 0 0 

Table C.9 Special input cases in the inverse tangent function 
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The function generation unit is implemented using the three methods described in Chapter 

4: table lookup, iterative series, and the CORDIC algorithm. 

Table lookup based units are provided using both a single slope table and a partitioned 

table. For the first set, error variation as the table size changes is represented in Table C. 10 

and Figure C. 12. Similar figures for the partitioned table based units are provided in Table 

C . l l and Figure C. 13. 

input 

Y 

output = input 

indicates that tlie final output 
result should be inverted 

> 

N 

1 
o u i p u l — 

input 

f ina l_sub = 1 

1 

'Indicates that the final output 
result is of the form 

arctan(input) 

input < u 

Y 

r 

s ign = 1 

> 

Figure C.11 Inverse tangent range reduction flow chart 
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Name Slope Table entries Maximum error 

atan_main_7_lsi 2-iu 1024 8.8135e-8 

atan_main_6_lsi 2 " 512 3.1999e-7 

atan_main_5_lsi 2" 128 4.9649e-6 

atan__main_4_lsi 2-b 32 7.9282e-5 

atan_main_3Jsi 2-a 16 3.1684e-4 

atan_main_2_lsi 2"' 4 5.000e-3 

Table C.10 Maximum error in the inverse tangent generator using a single 
table and linear interpolation 

Name Sub-table range 
Sub-table 

slope 
Table 

entries 

Maximum 

error 

atan_main_7_lmi 0-0.0625 2-9 32 8.8135e-8 atan_main_7_lmi 

0.0625-1 2'""̂  960 

8.8135e-8 

atan_main_6_lmi 0-0.3125 2-B 80 9.6207e-7 atan_main_6_lmi 

0.3125-1 2'" 352 

9.6207e-7 

atan_main_5_lmi 0-0.125 2-b 8 6.9654e-6 atan_main_5_lmi 

0.125-1 2" 112 

6.9654e-6 

atan_main_4_lmi 0-0.125 2" 2 9.0130e-5 atan_main_4_lmi 

0.125-1 2-b 28 

9.0130e-5 

Table C.11 Maximum error in the inverse tangent generator using a 
partitioned table and linear interpolation 
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M M M M M W M M W 
Input to the inverse tangent Ikinction 

a) atan_main_7Jsi 

M M M M W M M W M 
hput to the kiverse tangent towtton 

c) atan_main_5_lsi 

0 0-1 0-2 0.3 0-4 0-5 0-6 0.7 0.8 0.9 1 
feipirt to the fciverse tangent hmction 

b) atan_main_6Jsi 

0 M ^ M M M M M M M 1 
hput to the Inverse tangent ftinction 

d) atan_main_4_lsi 

M M M M M W M M 
kiputto the Inverse tangent (Unction 

e) atan_main_3_lsi 

0 M M W M M M 1 
Input to the Inverse tangent fcmctton 

f) atan_main_2_lsi 

Figure C.12 Error in the inverse tangent generator using a single table and linear 
interpolation for different table sizes 
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0aia2a3(i4(i3(ie0L7(i80Lg i 
bipul to Iht cxpontnlial function 

a) atan_main_7_lmi 

0 M M M M W W M M M 1 
kiput totbetxpoiwfitlal kmction 

c) atan_main_5_lmi 

0 0.1 0.2 0.3 0.4 0.S 0.6 0.7 0.8 0.9 
hput to the •xpomntial function 

b) atan_niain_6_lmi 

0 ^ M M M W M M M M 1 
input to tlie exponential function 

d) atan_main_4Jmi 

Figure C.13 Error in the inverse tangent generator using a partitioned table and 
linear interpolation for different table sizes 

An iterative series method based on the minimax approximation is also used to generate 

the inverse tangent function. The maximum approximation error for different 

approximation degrees is illustrated in Table C.12 and Figure C.14. 

Name Approximation 
degree 

Maximum error 

atan_main_7_ser 7 7.3643e-8 

atan_main_6_ser 6 4.2296e-7 

atan_main_5_ser 5 6.40568-6 

atan_main_4_ser 4 2.0947e-5 

Table C.12 Maximum error in the inverse tangent generator using the 
minimax approximation 



Z.A. Baidas, 2000 Appendix C: Elementary function details 205 

M M M M M W M M M 
Input to the inverse tangent ftmctkMi 

a) atan_main_7_ser 

^ M M M M M W W 
Input to tlie bnterae tangent bnction 

b) atan_maln_6_ser 

0 M M M M M W W M M 1 
input to the inverse tangent function 

c) atan_maln_5_ser 

M M M M W W M M M 
input to the inverse tangent function 

d) atan_tnain_4_ser 

Figure C.14 Error in the inverse tangent generator using the minimax 
approximation for different approximation degrees 

Finally, a CORDIC based engine is provided to generate this function. The units uses the 

CORDIC algorithm in the circular mode (m = 1) and with the input operands initialised as 

{x=\,y = input operand, z =0). The accuracy of this function generator is dependent on 

the number of CORDIC iterations. This is shown in the results in Table C.13 and Figure 

(115. 

Name Number of 
iterations 

Maximum error 

atan_main_7_C0R 25 9.9845e-8 

atan_main_6_COR 22 5.0590e-7 

atan_m ai n_5_C0 R 18 7.6204e-6 

atan_main_4_COR 15 6.0870e-5 

Table C.13 Maximum error in the inverse tangent generator using the 
CORDIC algorithm 
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0 M M M M M W M M M 1 
Input to titearctai function 

a) atan_main_7_cor 

0 M M M M M W ^ M M 1 
biput to the arctan tanctioti 

b) atan_main_6_ cor 

0 a i a 2 0 L 3 a 4 W M ( i 7 ( i 8 a 9 i 
hput to the wctan function 

c) atan_main_5_ cor 

0 M M M M W M M 1 
kiput to the arctan function 

d) atan_main_4_ cor 

Figure C.15 Error in the inverse tangent generator using the CORDIC algorithm 
for different number of iterations 

C.4 Logarithmic functions 

The natural logarithm function is combined with the base 2 logarithm and the base 10 

logarithm in a single unk\ The unit consists of two main components: 

1. A unit that generates the natural logarithm of the input. 

2. A post-processing unit that adjusts the output of the previous stage and generates the 

final result according to the required fiinction. 

" Logarithm of an arbitrary base is implemented a hierarchical using the natural logarithm unit and a 

floating-point divider (logbase x = In x / In base) 
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The functional unit is based on one of the mathematical properties of the logarithm 

function; 

ln( ] .Fx2^) = ]n( l . f ) + ln(2^) 

= ln(l.F) + Exln(2) 

This implies that the natural logarithm of a floating-point number can be generated using a 

function generator in the range [1,2]. 

A block diagram of the Orst unit is represented in Figure C. 16. It consists of a type 

detection block, employed to detect certain situations and act according to a pre-defined 

regime, and the main function generator, which performs the natural logarithm calculation 

of the input/racnoM field. 

Input Input type detection 

Function generator 

Flag register 

Done 

, Output 

Exponent 

Figure C.16 Initial unit in the logarithm generator unit 

Table C.9 represents the input values the type detection block detects along with the 

output value and the flag register content in each case. If none of these cases are detected, 

the execution moves to the function generation block. 

For the function generation block, three sets of function generators are provided. The first 

is based on a single slope table lookup; the second uses a partitioned lookup table; and 
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finally an iterative process based on a polynomial approximation of the function is also 

provided. 

T h e single s lope table lookup implementa t ion provides the fastest solut ion at the cost of 

relatively large table compared to the partitioned table. Table C. 15 provides a comparison 

both methods for similar target accuracy, the results are summarised in Figure C.17 and 

Figure C.18. 

Input Output 
Flag register 

Input Output 
Inexact Invalid NAN OVF EUN ZD 

4-00 
Quiet 

NAN 
0 1 1 0 0 0 

Quiet 

NAN 
0 1 1 0 0 0 

Sig. 

NAN 

Quiet 

NAN 
0 1 1 0 0 0 

Quiet 

NAN 

Quiet 

NAN 
0 0 1 0 0 0 

0 -oo 0 0 0 0 0 0 

<0 
Quiet 

NAN 
0 1 1 0 0 0 

Tab le C.14 specia l Input cases In the logar i thm funct ion 

Method Name Table entries Maximum error 

Single table 

Ln_pre_7_lsi 1024 1.1853e-7 

Single table 

Ln_pre_6_lsi 512 4.8382e-7 

Single table 
Ln_pre_5_lsi 128 7.5707e6 

Single table 
Ln_pre_4_lsi 64 3.0032e-5 

Single table 

Ln_pre_3Jsi 32 1.1826e-4 

Single table 

Ln_pre_2_lsi 16 4.594e-4 

Partitioned table 

Ln_pre_7Jmi Same as LN_pre_7_lsi 

Partitioned table 
Ln_pre_6Jmi 368 9.0378e-7 

Partitioned table 
Ln_pre_5_lmi 112 9.8758e-6 

Partitioned table 

Ln_pre_4_lmi 36 9.3764e-5 

T a b l e C.15 M a x i m u m error In the logar i thm generator us ing a s ingle and 

par t i t ioned tab le 
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1 ^ ^ ^ ^ M ^ ^ ia 
Input to the natural iogar lhm ftjnction 

a) ln_pre_7Jsi 

'f 

^ ^ ^ W M ^ ^ M 
Input to the natural logafMhm kwctfon 

c) ln_pre_5Jsi 

M ^ ^ ^ ^ ^ ^ ^ ^ 
Input to the natural togarithm function 

b) ln_pre_6_lsi 

1 ^ ^ M ^ ^ ^ ^ M ^ 2 
Input to the natural togaithm kmctkm 

d) ln_pre_4Jsi 

^ ^ ^ M M ^ ^ 
hiput t o the natural logarttbm ftinctkm 

e) ln_pre_3Jsi 

r 

f) ln_pre_2Jsi 

1 ^ ^ ^ U ^ ^ ^ ^ ^ 2 
biput to the natural logarithm lUnctfon 

Figure C.17 Error in the natural logarithm generator using a single table and 
linear interpolation for different table sizes 
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a) ln_pre_7Jmi 

^ ^ w ^ U M 
Input to the nalwal logarthm function 

c) ln_pre_5Jmi 

U ^ W ^ W U M ^ 2 
Input to Vie natural logarthm hmction 

1 U ^ ^ ^ ^ M ^ ^ ^ 2 
Input to the natural logarithm function 

b) ln_pre_6Jml 

1 U ^ ^ M U W ^ ^ W 2 
Input to the neural logarithm function 

d) ln_pre_4Jmi 

Figure C .18 Error in the natural logarithm generator using a partitioned table and 
linear interpolation for different table sizes 

For the third set of function generators, the minimax approximation procedure provides a 

cheap solution in terms of area at the cost of extra delay. The unit delay is highly 

dependent on the target accuracy. As the required accuracy increases, the approximating 

polynomial degree increases and so does the number of iterations. The results in Table 

C.16 and Figure C.19 represent four function generators based on the minimax 

approximation for different accuracy target. 
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Name Approximation 
degree 

Maximum error 

Ln_pre_7_ser 7 6.1669e-8 

Ln_pre_6_ser 6 4.3195e-7 

Ln_pre_5_ser 5 8.9136e-6 

Ln_pre_4_ser 4 6.0755e-5 

Table C.16 Maximum error in the logarithm generator using mini max 
approximation 

n ia ^ 4̂ ia ^ ^ 
Input to the naturai bgarWun Amotion 

a)ln_pre_7_ser 

^ ^ W ^ ^ ^ ^ 
input to the natural iogarthm fwiction 

c) ln_pre_5_ser 

Input to the natural 

b) ln_pre_6_ser 

1 ^ ^ ^ U ^ ^ ^ ^ ^ 2 
kipU to the natural logarithm hmctlon 

d) In_pre_4_ser 

Figure C. I9 Error in the natural logarithm generator using the minimax 
approximation and for different approximation degrees 

The post-processing stage has four inputs: the output result of the previous stage; the main 

input exponent; a control flag (done); and the flag register. If the done flag is set, the input 

and the flag register are bypassed to the final output and no flirther processing is 

performed. In normal situations (done = 0), the data flow in this unit is represented in 

Figure C.20. It consists of three operations: 
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1. Multiplying the exponent by (ln2). 

2. Adding the result of the previous step to the input to generate the final result. 

3. This stage is required only in the case of the base 2 logarithm or base 10 logarithm, 

where the result is multiplied by an adjusting factor. 

required only in the base 10 
logarithm case 

put exponent 

required only in the base 2 
logarithm case 

(input + Ex ln2)xlog2E 

(input + Ex ln2)xlog^gE 

Exln2 

input + Ex In2 

T 
output 

Figure C.20 Data flow in the logarithm post-processing stage 

C.5 Exponential function 

The exponential function generator consists of a pre-processing stage and a function 

generation core. The pre-processing stage performs two tasks: 

1. Input operand type detection. 

2. Reduces the range of the input operand to within the range of the function generation 

block [0,ln2]. 

A block diagram of the pre-processing stage is provided in Figure C.21. Input type 

detection is the first stage in the pre-processing step. It performs a series of tests to identify 
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certain cases represented in Table C.17. If any of these cases detected, the proper value is 

assigned to the output and the (fong flag is raised to indicate that there is no need for 

further processing in the following function generation block. The type detection unit also 

assigns the appropriate value to the/Zog /-ggz.yfgr. 

input Input type detection 

Range reduction 

^ flag register 

_>done 

. output 

_>.Q 

_>invert 

Figure C.21 Exponential pre-processing stage 

If the input operand passes the type detection stage, a range reduction is performed on the 

input to scale it within the range Ixl e [0,]n2]^ 

F x 2 ^ = ! 2 x l n 2 + x In 2 

F x 2 ' 

In 2 

exp(F X 2^) = 2^ xexp(/?EM x In 2) 

The procedure takes place in four steps; 

1. The input is divided by ln2 (multiplied by l/ln2) and the output result is stored in a 

temporary variable. 

2. The fractional part of the previous step is then multiplied by (ln2) and the result is 

provided as the output. 

If the input is already within this range, the range reduction procedure is bypassed. 
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3. The integer part of step 1 (Q) is provided as an output. 

4. If the input operand is negative, the invert flag is set to one to indicate that the final 

output should be inverted (exp(-x) = l/expM). 

Input Output 
Flag register 

Input Output 
Inexact Invalid NAN OVF EUN ZD 

+ 00 + 00 0 0 0 0 0 0 

-oo 0 0 0 0 0 0 1 

Sig. 

NAN 

Quiet 

NAN 
0 1 1 0 0 0 

Quiet 

NAN 

Quiet 

NAN 
0 0 1 0 0 0 

zero 1 0 0 0 0 0 0 

Table C.17 Special input cases in the exponential function 

The function generation step is provided using Table lookup based units using single slope 

tables. Error variation as the table size changes is shown in Table C.18 and Figure C.22. 

For this particular function, dividing the table into multiple sub-tables does not result in 

any reduction in the table size, as all the partitions require the same slope to meet the 

target accuracy. 

Name Slope Table entries Maximum error 

exp_main_7_lsi 2-11 1434 3.6241 e-8 

exp_main_6_lsi 2 " 359 9.2173e-7 

exp_main_5_lsi 2'" 180 3.7129e-6 

exp_main_4_lsi 2-b 45 6.0123e-5 

exp_main_3_lsi 2-b 23 3.390e-4 

exp_main_2_lsi 2-3 6 3.900e-3 

Table C.18 Maximum error in the exponential generator using a single table 
and linear interpolation 
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An iterative series method based on the minimax approximation of the fiinction is also 

provided. The maximum approximation error for different approximation degrees is 

illustrated in Table C.19 and the results are summarised in Figure C.23. 

M 04 M M 
Input to the «xponcfitial Mic t ion Input to the exponential function 

a) exp_main_7_lsi b) exp_main_6_ isi 

^ M M 04 M M M 
Input to the exponential ftmction 

02 03 (14 05 06 
kiput to the exponential Mict ion 

c) exp_main_5Jsi d) exp_main_4_lsi 

M M M 04 W M M 
Input to the exponential function Input to the exponential Mic t ion 

e) exp_inain_3_lsi f) exp_main_2_lsi 

Figure C.22 Error in the exponential generator using a single table and linear 
interpolation for different table sizes 
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Name Approximation 
degree 

Maximum error 

exp_main_7_ser 6 2.4737e-8 

exp_main_6_ser 5 1.3485e-7 

exp_main_5_ser 4 3.9179e-6 

exp_main_4_ser 3 1.1176e-4 

Table C.19 Maximum error in the exponential generator using the minimax 
approximation 

U M 04 M M M 
input to the exponential funclIon Input to the exponential (imciion 

a) exp_main_7_ser b) exp_main_6_ser 

02 03 04 06 oe a? 
Input lo the exponentiel kmc* ion 

^ M M 04 M W M 
Input to the exponential function 

c) exp_main_5_ser d) exp_main_4_ser 

Figure C.23 Error in the exponential generator using the minimax approximation 
and for different approximation degrees 
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C.6 Square root function 

The square root function generator has a simple pre-processing stage attached to a main 

function generation block. In addition to the type detection block which detect the cases 

listed in Table C.20, the pre-processing stage checks the input exponent. If an odd 

exponent is detected, the exponent is incremented and the fraction is shifted right. 

allowing the square root to be generated using the general form: 

V F x 2 ^ = V F x 2 ^ , 0 . 5 < F < 2 

A type detection block monitoring the values listed in Table C.20 is provided prior to the 

exponent adjustment unit. If any of these values is provided as an input operand, the 

output is set to a pre-defined value along with an appropriate flag register, and the 

operation terminates. 

Input Output 
Flag register 

Input Output 
Inexact Invalid NAN OVF EUN ZD 

+00 +00 0 0 0 0 0 0 

0+jo° 0 0 0 0 0 0 

Sig. 

NAN 

Quiet 

NAN 
0 1 1 0 0 0 

Quiet 

NAN 

Quiet 

NAN 
0 0 1 0 0 0 

zero 0 0 0 0 0 0 0 

Table C.20 Special input cases in the square root function 

For normal operation, two engines are provided to generate the square root function. The 

first is a table lookup based engine with both a single slope and multi-slope table. A 

comparison between the total table size for different target accuracies is provided in Table 

C.21 and Figure C.24. 
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g 2 

Input to the square root function input to the square root function 

a) sqrt_7_lsi b) sqrt_6Jsi 

input to the square root function Input to the square root function 

c) sqrt_5_lsi d) sqrt_4Jsi 

Input to the square root function Input to the square root function 

e) sqrt_3_lsi f) sqrt_2Jsl 

Figure C.24 Error in the square root generator implemented as a single table 
lookup unit and for different table sizes 
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Method Name Table entries Maximum error 

Single table 

sqrt_7Jsi 1536 8.6020e-8 

Single table 

sqrt_6Jsi 768 3.40486-7 

Single table 
sqrt_5Jsi 192 5.3312e-6 

Single table 
sqrt_4Jsi 48 8.2379e-5 

Single table 

sqrt_3Jsi 24 3.1566e-4 

Single table 

sqrt_2Jsi 6 4.000e-3 

Partitioned table 

sqrt_7_lmi 1056 1.1410e-7 

Partitioned table 
sqrt_6_lmi 364 9.2021 e-7 

Partitioned table 
sqrt_5Jmi 120 9.1946e-6 

Partitioned table 

sqrt_4Jmi Same as sqrt_4_lsi 

Table C.21 Maximum error in tfie square root generator using a single and 
partitioned table 

I 

Input to the square root function Input (o the square root tunction 

a) sqrt_7Jini b) sqrt_6_lmi 

Input to the square root function 

c) sqrt_5Jml 

Figure C.25 Error in the square root generator implemented as a partitioned table 
lookup unit and for different table sizes 



Z.A. Baidas, 2000 Appendix C; Elementary function details 220 

The CORDIC algorithm can also be used to generate the square root function. Error 

variation as the number of iterations change is shown in Table C.22 and Figure C.26. A 

note of particular interest here is that the angle variation (z variable, see Appendix B) has 

absolutely no effect of the execution, which implies that the angle calculation as well as 

the stored rotation values are not required to generate the square root function and can be 

eliminated completely from the CORDIC procedure that generates the square root. 

Name Number of Maximum error 
iterations 

sqrt_7_C0R 12 6.2357e-8 

sqrt_6_C0R 10 8.5353e-7 

sqrt_5_C0R 9 3.4490e-6 

sqrt_4_C0R 8 1.3908e-5 

Table C.22 Maximum error in the square root generator using the CORDIC 
algorithm 

Kiput to the square root ftinctton 

a) sqrt_7_cor 

Input t o the square root function 

c) sqrt_5_cor 

IjjlflPifiiFiinii" 

Input to the square root function 

b) sqrt_6_cor 

Input to the square root function 

d) sqrt_4_cor 

Figure C.26 Error in the square root generator using CORDIC and for different 
number of iterations 
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C.7 VHDL library 

User access to the floating-point and complex functional units is provided by means of a 

VHDL package. Roating-point and complex functions and procedures, along with type 

conversion units are embodied in this package. The floating-point package declaration is 

provided in Listing C.l. 

Listing C.l Floating-point and complex package declaration 

MOODS FLOATING-POINT AND COMPLEX SYNTHESIS LIBRARY 

LIBRARY IEEE; 
USE IEEE.std_logic_1164.all; 
USE IEEE. st:d_logic_unsigned. all; 

PAC3CAGE FLP_OPS IS 

-- TYPE DECLARATION 
TYPE FLOAT is array (31 downtzo 0) of STD_LOGIC; 
TYPE CMPLX is array {63 downto 0) of STD_LOGIC; 
TYPE CMPLX_POLAR is array (63 downto 0) of STD_LOGIC; 
TYPE STATUS is array (5 downto 0) of STD_LOGIC; 
— T Y P E STD_LOGIC IS STD_LOGIC; 

-- return the real part of a complex variable 
FUNCTION RE(input : IN CMPLX) return FLOAT; 
FUNCTION RE(input : IN FLOAT) return FLOAT; 

-- return the imaginary part of a complex variable 
FUNCTION IMAG(input : IN CMPLX) return FLOAT; 
FUNCTION IMAG(input : IN FLOAT) return FLOAT; 

-- return the magnitude of a complex polar variable 
FUNCTION MAGN(input : IN CMPLX_POLAR) return FLOAT; 
FUNCTION MAGN(input : IN FLOAT) return FLOAT; 

-- return the angle of a complex polar variable 
FUNCTION ARG(input : IN CMPLX_POLAR) return FLOAT; 
FUNCTION ARG(input : IN FLOAT) return FLOAT; 

return the conjugate 
FUNCTION CONJ(input 
FUNCTION CONJ(input 
FUNCTION CONJ'( input 

IN CMPLX_POLAR) return CMPLX_POLAR; 
IN CMPLX) return CMPLX; 
IN FLOAT) return FLOAT; 

converts a complex input argument to a complex polar 
FUNCTION COMPLEX_TO_POLAR (input : IN CMPLX) return CMPLX_POLAR; 

same functionality but with a STD_LOGIC register support 
PROCEDURE COMPLEX_TO_POLAR_F 
( input : IN CMPLX; output : OUT CMPLX_POLAR; FLAG_REG : OUT STATUS) 

-- converts a complex polar input argument to a complex 
FUNCTION POLAR_TO_COMPLEX (input : IN CMPLX_POLAR) return CMPLX; 

-- same functionality but with a STD_LOGIC register support 
PROCEDURE POLAR_TO_COMPLEX_F 
( input : IN CMPLX_POLAR; output : OUT CMPLX; FLAG_REG : OUT STATUS) 
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-- VHDL type real and integer to float , cmp 
FUNCTION to_float (input : IN integer) return FLOAT; 
FUNCTION to_float (input : IN REAL) return FLOAT; 

or cmplx__polai 

FUNCTION to_complex (inputl : IN integer;input2 : IN integer) return CMPLX; 
FUNCTION to_complex (inputl : IN real;input2 : IN real) return CMPLX; 
FUNCTION to_coinplex (inputl : IN FLOAT;inputZ : IN FLOAT) return CMPLX; 
FUNCTION to_complex (inputl : IN integer;input2 : IN real) return CMPLX; 
FUNCTION to_complex (inputl : IN integer;inputZ : IN FLOAT) return CMPLX; 
FUNCTION to_complex (inputl : IN real;input2 : IN integer) return CMPLX; 
FUNCTION to_complex (inputl : IN real;input2 : IN FLOAT) return CMPLX; 
FUNCTION to_complex (inputl : IN FLOAT;input2 : IN integer) return CMPLX; 
FUNCTION to_complex (inputl : IN FLOAT;input2 : IN real) return CMPLX; 

-- Addition operations 
FUNCTION "+" (inl, in2 FLOAT) return FLOAT; 
FUNCTION "+" (inl, in2 : CMPLX) return CMPLX; 
FUNCTION "+" (inl, in2 : CMPLX_POLAR) return CMPLX_POLAR; 
FUNCTION (inl : CMPLX; in2 : FLOAT) return CMPLX; 
FUNCTION "+" (inl : CMPLX_POLAR; in2 : FLOAT) return CMPLX_POLAR; 

PROCEDURE FLP_ADD 
( inl, in2 : IN FLOAT; output : OUT FLOAT); 
PROCEDURE FLP_ADD_F 
( inl, in2 : IN FLOAT; output : OUT FLOAT; FLAG_REG OUT STATUS); 

PROCEDURE CMPLX_ADD 
( inl, in2 : IN CMPLX; output : OUT CMPLX); 
PROCEDURE CMPLX_ADD_F 
( inl, in2 : IN CMPLX; output : OUT CMPLX; FLAG_REG OUT STATUS) 

PROCEDURE CMPLX_ADD 
(inl : CMPLX; in2 : FLOAT; output : OUT CMPLX); 
PROCEDURE CMPLX_ADD_F 
(inl : CMPLX; in2 : FLOAT; output : OUT CMPLX; FLAG_REG : OUT STATUS); 

PROCEDURE POLAR_ADD 
( inl, in2 : IN CMPLX_POLAR; output : OUT CMPLX_POLAR); 
PROCEDURE POLAR_ADD_F 

( inl, in2 : IN CMPLX_POLAR; output : OUT CMPLX_POLAR; FLAG_REG : OUT STATUS) 

PROCEDURE POLAR_ADD 

(inl : CMPLX_POLAR; in2 : FLOAT; output : OUT CMPLX_POLAR); 
PROCEDURE POLAR_ADD_F 
(inl : CMPLX_POLAR; in2 : FLOAT; output : OUT CMPLX_POLAR; FLAG_REG : OUT 
STATUS); 

-- Subtraction operations 
FUNCTION 
FUNCTION 
FUNCTION 
FUNCTION 
FUNCTION 

(inl, in2 : FLOAT) return FLOAT; 
(inl, in2 : CMPLX) return CMPLX; 
(inl, in2 : CMPLX_POLAR) return CMPLX_POLAR; 
(inl : CMPLX; in2 : FLOAT) return CMPLX; 
(inl : CMPLX POLAR; in2 : FLOAT) return CMPLX POLAR; 

PROCEDURE FLP_SUB 
( inl, in2 : IN FLOAT; output 
PROCEDURE FLP_SUB_F 
( inl, in2 : IN FLOAT; output 

OUT FLOAT); 

OUT FLOAT; FLAG_REG : OUT STATUS) 

PROCEDURE CMPLX_SUB 
( inl, in2 : IN CMPLX; output 
PROCEDURE CMPLX_SUB_F 
( inl, in2 : IN CMPLX; output 

OUT CMPLX); 

OUT CMPLX; FLAG_REG : OUT STATUS); 
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PROCEDURE CMPLX_SUB 
(inl : CMPLX; in2 : FLOAT; output : OUT CMPLX); 
PROCEDURE CMPLX_SUB_F 

(inl : CMPLX; in2 : FLOAT; output : OUT CMPLX; FLAG_REG : OUT STATUS); 

PROCEDURE POLAR_SUB 
( inl, in2 : IN CMPLX_POLAR; output : OUT CMPLX_POLAR); 
PROCEDURE POLAR_SUB_F 

( inl, in2 : IN CMPLX_POLAR; output : OUT CMPLX_POLAR; FLAG_REG : OUT STATUS) 

PROCEDURE POLAR_SUB 

(inl : CMPLX_POLAR; in2 : FLOAT; output : OUT CMPLX_POLAR); 
PROCEDURE POLAR_SUB_F 
(inl : CMPLX_POLAR; in2 : FLOAT; output : OUT CMPLX_POLAR; FLAG_REG : OUT 
STATUS); 
-- Multiplication operations 
FUNCTION (inl, in2 : FLOAT) return FLOAT; 
FUNCTION (inl, in2 : CMPLX) return CMPLX; 
FUNCTION (inl, in2 : CMPLX_POLAR) return CMPLX_POLAR; 
FUNCTION (inl : CMPLX; in2 : FLOAT) return CMPLX; 
FUNCTION (inl : CMPLX_POLAR; in2 : FLOAT) return CMPLX_POLAR; 

PROCEDURE FLP_MULT 
( inl, in2 : IN FLOAT; output 
PROCEDURE FLP_MULT_F 
( inl, in2 : IN FLOAT; output 

OUT FLOAT); 

OUT FLOAT; FLAG_REG OUT STATUS); 

PROCEDURE CMPLX_MULT 
{ inl, in2 : IN CMPLX; output 
PROCEDURE CMPLX_MULT_F 
( inl, in2 : IN CMPLX; output 

OUT CMPLX); 

OUT CMPLX; FLAG_REG OUT STATUS); 

PROCEDURE CMPLX_MULT 
(inl : CMPLX; in2 : FLOAT; output : OUT CMPLX); 
PROCEDURE CMPLX_MULT_F 

(inl : CMPLX; in2 : FLOAT; output : OUT CMPLX; FLAG_REG : OUT STATUS); 

PROCEDURE POLAR_MULT 
( inl, in2 : IN CMPLX_POLAR; output : OUT CMPLX_POLAR); 
PROCEDURE POLAR_MULT_F 

( inl, in2 : IN CMPLX_POLAR; output : OUT CMPLX_POLAR; FLAG_REG : OUT STATUS) 

PROCEDURE POLAR_MULT 

(inl : CMPLX_POLAR; in2 : FLOAT; output : OUT CMPLX_POLAR); 
PROCEDURE POLAR_MULT_F 
(inl : CMPLX_POLAR; in2 : FLOAT; output : OUT CMPLX_POLAR; FLAG_REG : OUT 
STATUS); 
-- Division operations 
FUNCTION "/" (inl, in2 : FLOAT) return FLOAT; 
FUNCTION "/" (inl, in2 : CMPLX) return CMPLX; 
FUNCTION "/" (inl, in2 : CMPLX_POLAR) return CMPLX_POLAR; 
FUNCTION "/" (inl : CMPLX; in2 : FLOAT) return CMPLX; 
FUNCTION "/' (inl : CMPLX_POLAR; in2 : FLOAT) return CMPLX_POLAR; 

PROCEDURE FLP_DIV 
( inl, in2 ; IN FLOAT; output 
PROCEDURE FLP_DIV_F 
( inl, in2 : IN FLOAT; output 

OUT FLOAT); 

OUT FLOAT; FLAG_REG OUT STATUS) 

PROCEDURE CMPLX_DIV 
( inl, in2 : IN CMPLX; output : OUT CMPLX); 
PROCEDURE CMPLX_DIV_F 
( inl, in2 : IN CMPLX; output : OUT CMPLX; FLAG_REG : OUT STATUS); 
PROCEDURE CMPLX_DIV 
(inl : CMPLX; in2 : FLOAT; output : OUT CMPLX); 
PROCEDURE CMPLX_DIV_F 
(inl : CMPLX; in2 : FLOAT; output : OUT CMPLX; FLAG_REG : OUT STATUS) 
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PROCEDURE POIjAR_DIV 
( inl, in2 : IN CMPLX_POLAR; output : OUT CMPLX_POLAR); 
PROCEDURE POLAR_DIV_F 

( inl, in2 : IN CMPLX_POLAR; output : OUT CMPLX_POLAR; FLAG_REG : OUT STATUS) 

PROCEDURE POLAR_DIV 

(inl : CMPLX_POLAR; in2 : FLOAT; output : OUT CMPLX_POLAR); 
PROCEDURE POLAR_DIV_F 
(inl : CMPLX_POLAR; in2 : FLOAT; output : OUT CMPLX_POLAR; FLAG_REG : OUT 
STATUS); 

-- Logarithm 
FUNCTION LN (inl : FLOAT) return FLOAT; 
FUNCTION LOGIO (inl : FLOAT) return FLOAT; 
FUNCTION L0G2 (inl : FLOAT) return FLOAT; 
FUNCTION LOG (inl : FLOAT; base : FLOAT) return FLOAT; 

PROCEDURE LN_F 
( inl : IN FLOAT; output : OUT FLOAT; FLAG_REG : OUT STATUS); 
PROCEDURE LOG10_F 
( inl : IN FLOAT; output : OUT FLOAT; FLAG_REG : OUT STATUS); 
PROCEDURE L0G2_F 
( inl : IN FLOAT; output : OUT FLOAT; FLAG_REG : OUT STATUS); 
PROCEDURE LOG_F 
( inl : IN FLOAT; base : FLOAT; output : OUT FLOAT; FLAG_REG : OUT STATUS) 

FUNCTION LN (inl : CMPLX) return CMPLX; 
FUNCTION LOGIO (inl : CMPLX) return CMPLX; 
FUNCTION L0G2 (inl : CMPLX) return CMPLX; 
FUNCTION LOG (inl : CMPLX; base : FLOAT) return CMPLX; 

PROCEDURE LN_F 
( inl : IN CMPLX; output : OUT CMPLX; FLAG_REG : OUT STATUS); 
PROCEDURE LOG10_F 
( inl : IN CMPLX; output : OUT CMPLX; FLAG_REG : OUT STATUS); 
PROCEDURE L0G2_F 
( inl : IN CMPLX; output : OUT CMPLX; FLAG_REG : OUT STATUS); 
PROCEDURE LOG_F 
( inl : IN CMPLX; base : FLOAT; output : OUT CMPLX; FLAG_REG : OUT STATUS) 

FUNCTION LN (inl : CMPLX_POLAR) return CMPLX_POLAR; 
FUNCTION LOGIO (inl : CMPLX_POLAR) return CMPLX_POLAR; 
FUNCTION L0G2 (inl : CMPLX_POLAR) return CMPLX_POLAR; 
FUNCTION LOG (inl : CMPLX_POLAR; base : FLOAT) return CMPLX_POLAR; 

PROCEDURE LN_F 
( inl : IN CMPLX_POLAR; output : OUT CMPLX_POLAR; FLAG_REG : OUT STATUS); 
PROCEDURE LOG10_F 
( inl : IN CMPLX_POLAR; output : OUT CMPLX_POLAR; FLAG_REG : OUT STATUS); 
PROCEDURE L0G2_F 
( inl : IN CMPLX_POLAR; output : OUT CMPLX_POLAR; FLAG_REG : OUT STATUS); 
PROCEDURE LOG_F 
( inl : IN CMPLX_POLAR; base : FLOAT; output : OUT CMPLX_POLAR; 
FLAG_REG : OUT STATUS); 

-- Trigonometric 
FUNCTION SIN (inl : 
FUNCTION COS (inl : 
FUNCTION TAN (inl : 
FUNCTION ASIN (inl 
FUNCTION ACOS (inl 
FUNCTION ATAN (inl 

FLOAT) return FLOAT 
FLOAT) return FLOAT 
FLOAT) return FLOAT 
FLOAT) return FLOAT 
FLOAT) return FLOAT 
FLOAT) return FLOAT 

PROCEDURE SIN_F 
( inl : IN FLOAT; output : OUT FLOAT; FLAG_REG : OUT STATUS) 
PROCEDURE COS_F 
( inl : IN FLOAT; output : OUT FLOAT; FLAG_REG : OUT STATUS) 
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output : OUT FLOAT; FLAG_REG : OUT STATUS) 

OUT FLOAT; FLAG_REG : OUT STATUS) 

PROCEDURE TAN_F 
( inl : IN FLOAT 
PROCEDURE ASIN_F 
( inl : IN FLOAT; output 
PROCEDURE ACOS_F 
( inl : IN FLOAT; output : OUT FLOAT; FLAG_REG : OUT STATUS) 
PROCEDURE ATAN_F 
( inl : IN FLOAT; output : OUT FLOAT; FLAG_REG : OUT STATUS) 

FUNCTION SIN (inl : CMPLX) return CMPLX; 
FUNCTION COS (inl : CMPLX) return CMPLX; 

PROCEDURE SIN_F 
( inl : IN CMPLX; output : OUT CMPLX; FLAG_REG : OUT STATUS); 
PROCEDURE COS_F 
( inl : IN CMPLX; output : OUT CMPLX; FLAG_REG : OUT STATUS); 

FUNCTION SIN (inl : CMPLX_POLAR) return CMPLX_POLAR; 
FUNCTION COS (inl : CMPLX_POLAR) return CMPLX_POLAR; 

PROCEDURE SIN_F 
( inl : IN CMPLX_POLAR; output : OUT CMPLX_POLAR; FLAG_REG : OUT STATUS) 
PROCEDURE COS_F 
( inl : IN CMPLX_POLAR; output : OUT CMPLX_POLAR; FLAG_REG : OUT STATUS) 

-- Hyperbolic 
FUNCTION SINH (inl : 
FUNCTION COSH (inl : 
FUNCTION TANH (inl : 
FUNCTION ASINH (inl 
FUNCTION ACOSH (inl 
FUNCTION ATANH (inl 

FLOAT) return FLOAT 
FLOAT) return FLOAT 
FLOAT) return FLOAT 
FLOAT) return FLOAT 
FLOAT) return FLOAT 
FLOAT) return FLOAT 

PROCEDURE SINH_F 
( inl : IN FLOAT; output : OUT FLOAT; FLAG_REG : OUT STATUS); 
PROCEDURE COSH_F 
( inl : IN FLOAT; output : OUT FLOAT; FLAG_REG : OUT STATUS); 
PROCEDURE TANH_F 
( inl : IN FLOAT; output : OUT FLOAT; FLAG_REG : OUT STATUS); 
PROCEDURE ASINH_F 
( inl : IN FLOAT; output : OUT FLOAT; FLAG_REG : OUT STATUS); 
PROCEDURE ACOSH_F 
( inl : IN FLOAT; output : OUT FLOAT; FLAG_REG : OUT STATUS); 
PROCEDURE ATANH_F 
( inl : IN FLOAT; output : OUT FLOAT; FLAG_REG : OUT STATUS); 

FUNCTION SINH (inl : CMPLX) return CMPLX; 
FUNCTION COSH (inl : CMPLX) return CMPLX;" 

PROCEDURE SINH_F 
( inl : IN CMPLX; output : OUT CMPLX; FLAG_REG : OUT STATUS); 
PROCEDURE COSH_F 
( inl : IN CMPLX; output : OUT CMPLX; FLAG_REG : OUT STATUS); 

FUNCTION SINH (inl : CMPLX_POLAR) return CMPLX_POLAR; 
FUNCTION COSH (inl : CMPLX_POLAR) return CMPLX_POLAR; 

PROCEDURE SINH_F 
( inl : IN CMPLX_POLAR; output : OUT CMPLX_POLAR; FLAG_REG : OUT STATUS) 
PROCEDURE COSH_F 
( inl : IN CMPLX_POLAR; output : OUT CMPLX_POLAR; FLAG_REG : OUT STATUS) 

-- Exponential 
FUNCTION EXP (inl : FLOAT) return FLOAT; 
PROCEDURE POWER 
( inl : IN FLOAT; pow : IN FLOAT; output : OUT FLOAT); 
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PROCEDURE EXP_F 
(inl : FLOAT; output : OUT FLOAT; FLAG_REG : OUT STATUS); 
PROCEDURE POWER_F 
( Inl : IN FLOAT; pow : IN FLOAT; output : OUT FLOAT; FLAG_REG : OUT STATUS); 

FUNCTION EXP (inl : CMPLX) return CMPLX; 
PROCEDURE POMER 
( inl : IN CMPLX; pow : IN FLOAT; output : OUT CMPLX); 

PROCEDURE EXP_F 
(inl : CMPLX; output : OUT CMPLX; FLAG_REG : OUT STATUS); 
PROCEDURE POMER_F 
( inl : IN CMPLX; pow : IN FLOAT; output : OUT CMPLX; FLAG_REG : OUT STATUS); 

FUNCTION EXP (inl : CMPLX_POLAR) return CMPLX_POLAR; 
PROCEDURE POWER 
( inl : IN CMPLX_POLAR; pow : IN FLOAT; output : OUT CMPLX_POLAR); 

PROCEDURE EXP_F 
(inl : CMPLX_POLAR; output : OUT CMPLX_POLAR; FLAG_REG : OUT STATUS); 
PROCEDURE POWER_F 
( inl : IN CMPLX_POLAR; pow : IN FLOAT; output : OUT CMPLX_POLAR; 
FLAG_REG : OUT STATUS); 

-- Square root 
PROCEDURE SORT 
( inl : IN FLOAT; output : OUT FLOAT; imaginary : OUT STD_LOGIC); 
PROCEDURE SQRT_F 
( inl : IN FLOAT; output : OUT FLOAT; imaginary : OUT STD_LOGIC; FLAG_REG : OUT 
STATUS); 

FUNCTION CBRT( inl : IN FLOAT)return FLOAT; 
PROCEDURE CBRT_F 
( inl : IN FLOAT; output : OUT FLOAT; FLAG_REG : OUT STATUS); 

FUNCTION SORT ( inl : IN CMPLX) return CMPLX; 
PROCEDURE SORT_F 
( inl : IN CMPLX; output : OUT CMPLX; FLAG_REG : OUT STATUS); 

FUNCTION SQRT (inl : IN CMPLX_POLAR) return CMPLX_POLAR; 
PROCEDURE SORT_F 
( inl : IN CMPLX_POLAR; output : OUT CMPLX_POLAR;FLAG_REG : OUT STATUS); 

END FLP_OPS; 
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Appendix D 

Implementation details 

This appendix provides a range of information concerning the floating-point library 

development and provides a quick reference to add new building blocks and hierarchical 

units to the floating-point library. 

The appendix is divided into four sections: section D.l introduces a number of file 

formats, namely the ICODE instruction database (inst.icd), the floating-point instruction 

database (flplib.ficd), the floating-point module library (flplib.mlib) and the floating-point 

expanded instruction set (.fxi). Section D.2 describes the ICODE file format. Section D.3 

represents the ICODE file modification performed in the floating-point manipulation stage 

to generate the ICODE+ file. Finally, section D.4 summarises the steps required to 

develop and integrate a new floating-point instruction into the library. 

D.1 File formats 

This section describes three file formats used in the integration of the floating-point 

library, along with a brief description of the MOODS ICODE instruction database. 

D.1.1 ICODE instruction database 

MOODS ICODE instructions are defined in an ICODE instruction database file. Each 

entry in that file represents a new ICODE instruction and is composed of: 

1. Instruction name (e.g. PLUS, MINUS, FLP_SIN). 

2. A unique ICODE instruction number. 

3. A datapath module instruction number representing the function required to implement 

this instruction from the low level module library. 
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4. The instruction I/O port definition. 

A fragment of the ICODE instruction database file is shown in Figure D. 1. The file defines 

ten ICODE instructions. Comments in the Hie are indicated by a preceding semicolon. The 

first three parameters in an instruction declaration can be easily identified. For example, 

the first instruction is a PLUS instruction with a unique instruction number of 14 and the 

function required to implement this instruction in the low level module library is function 

number 14. 

I/O port definition provides information on the number of I/O ports available and the 

width of each port in terms of the primary instruction width. For the PLUS instruction, 

two input ports and one output port are available. In order to specify the width of these 

ports, four different notations are provided: 

1. Primary (p): defines the port that represents the primary width of the instruction. For 

example, adding two 16-bit numbers will require a plus instruction with a primary 

width of 16 which meets the width of the two input ports, which is why the two ports 

are indicated by p in the port declaration. 

2. Fixed ( f ) : defines a port that always has the same width indicated by the numerical 

value attached to it. The MINUSC instruction in Figure D. 1 has a fixed input port of 1-

bit represented by (f l) , which is the carry-in port in this case. 

3. Dependent (d): defines a port with a width related to the primary width. The nature of 

the relation is specified by the numerical value attached to it. Three possible values are 

available: 1 implies that the port width equals the primary width; 2 implies a width 

equal to the primary width 4- 1; and 3 indicates twice the width of the primary width. 

An example of a dependent port is the output port in the MULT instruction. 

Multiplication generates a result that is twice as wide as the primary input port, 

therefore the output port is defined as (d3). 

4. Independent (i): defines a port of an arbitrary width. The port width in this case is the 

same as the width of the variable connected to it. An example of this case is the first 

output in the SRAMREAD instruction. The output represents a variable width address 

bus and is defined as (i). 
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ICODE instiruction datiabase file 

; Format of definitions is : 

; <CODE naine> <ICODE number> <DP fn> <No. 

PLUS 14 14 2 1 P P d2 

MINUS 15 15 2 1 P P d2 

MINUSC 151 15 3 2 P P fl dl fl 

MULT 18 18 2 1 P P d3 

NE 23 23 2 1 P P f T 

ROMREAD 100 10000 2 3 i P i f 1 dl 

SRAMREAD 101 10001 2 4 i P i fl dl 

sin_cos_5 _lsi 704 10704 5 2 P fl fl fl f6 

sin_cos_6_lmi 706 10706 5 2 p fl fl fl f6 dl f6 

sin_cos_6_line 707 10707 7 4 p fl fl fl f6 fl4 f28 dl f6 fl fl4 

Figure D.I ICODE instruction database file 

D.1.2 Floating-point instruction database 

The floating-point instruction database file provides information that allows manipulation 

of the floating-point instruction in the floating-point pre-processor. A preceding semicolon 

indicates comment in this file. Each floating-point instruction is identified using an entry 

providing the following definitions: 

1. A unique instruction name. 

2. Instruction number. 

3. A flag to indicate if the unit is part of the low level floating-point building block 

database or a hierarchical decomposition of a number of units. 

4. A number of figures identifying the location of the external ROM interface ports in the 

unit I/O port list. 

Figure D.2 shows an example of the floating-point instruction database with three floating 

point units declarations. FLP_MULT is instruction number 59, it is part of the floating-

point module library and therefore the hierarchical flag is assigned to N. The floating-
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point multiplier does not require an external ROM which is indicated by assigning zero to 

all the external ROM interface port locations. The SIN_COS unit on the other hand has a 

possible implementation that utilises an external ROM: an external ROM interface is 

defined for it. To interface to an external ROM four ports are required: 

1. Bias register: defining the starting point of the function table within the external ROM. 

In the SIN_COS case it is port number six. 

2. an output port connects directly to the external ROM address bus. It is 

port number seven in the SIN_COS function. 

3. Data bus: another output port that connects to the to the external ROM data bus. Port 

number ten in the SIN_COS unit is assigned to that bus. 

4. Output enable: a control signal that controls the read operation of the external ROM. 

Port number eleven in the SIN_COS unit provides this signal. 

Note that the hierarchical flag in the FLP_CBRT declaration is assigned to Y. This 

indicates that the FLP_CBRT is a hierarchical unit composed of a number of functional 

units and the unit should be expanded within the ICODE structure before any further 

processing. 

ICODE instruction database file 

Format of definitions is : 

<inst:. name> <nuinber> <hier. flag> <bias> <address> <data> <ctrl> 

FLP_MULT 49 N 0 0 0 0 

SIN_COS 157 N 6 7 10 11 

FLP CBRT 142 Y 0 0 0 0 

Figure D.2 Floating-point instruction database file 

D.1.3 Floating-point module library 

The floating-point module library provides essential information on the cost of different 

engines provided to implement a floating-point function. Figure D.3 provides an example 

of the floating-point library declaring the SIN_COS instruction. Each floating-point 

instruction is defined by: 



Z.A. Baidas, 2 0 0 0 Appendix D: Implementat ion details 2 3 1 

1. Instruction name that matches the name in the floating-point ICODE database. 

2. The number of units provided to implement this function. 

This is followed by entries that define the area and delay cost of each of the engines that 

implement the floating-point instruction. This includes: 

1. Module number. 

2. Accuracy figure defining the maximum error in the output result (6 implies a maximum 

error of 10'^). 

3. Total on_chip area cost in fxm". 

4. Total number of external ROM entries required. 

5. An average number of clock cycles required executing the engine. The data is based on 

simulation results of the optimised floating-point blocks. 

6. A Figure indicating increase in area cost when the unit is shared (i.e. the multiplexing 

cost). Comparing area costs of a number of testbenches incorporating shared floating-

point units is carried out to get a close estimation of this figure. 

7. ICODE unit name that indicates the name of the ICODE instruction that represents this 

possible implementation of the main function. 

8. Names of fixed-point units that are utilised in the design and have a major effect on the 

total design area and/or delay cost. For example a fixed point multiplier, a fixed point 

divider, or a barrel shifter. 
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; <instruct:ion naine> 

; d u m b e r of modules> 

; <unit number> <accuracy> <area cost:> <ext:. ROM> <delay> <sharing cost:> 

; <unit name> <fixed_point units> 

sin_cos 

26 

1 6 105616 805 30 33000 sin_ _cos_ 6_ _lsi fixed. _inult 

2 6 109909 679 34 33000 sin_ _cos_ 5_ _lmi fixed. _mult 

3 6 469000 0 20 25875 sin_ _cos_ 6_ _lsi fixed. _mul t 

4 6 387000 0 24 25875 sin_ _cos_ 5_ _lrtii fixed. 

5 6 88000 0 76 24840 sin_ _cos_ 6_ _ser fixed. _mult 

Figure D.3 Floating-point Module library file 

D.1.4 Floating-point expanded instruction 

A floating-point expanded instruction is a sequential implementation of a floating-point 

function, which is dynamically expanded within the internal design representation during 

the floating-point pre-processing stage and prior to the optimisation phase. This evolved 

from the need to generalise the implementation of a hierarchical functional unit and split it 

up into components to reduce the complexity that faces the optimisation routine. An 

expanded ICODE instruction format (fxi) is provided to facilitate this decomposition. 

Figure D.4 'shows an example of a/x/ file. It consists of five main parts: 

1 . Header declaring the expanded instruction argument. Three arguments are provided in 

this case: input, output, and flag_reg. 

2. Alias declaration defines a slice of an I/O port or an internal register. It has the general 

format: 

ALIAS <naine> <lsb> <msb> <from> <lsb> <msb> 

For example, line 7 declares a slice of the second port named (%2) with an ascending 0 

to 31 range. The alias is used as an alternative name to the port with any modification 

to the alias resulting in a similar modification to the port. 

3. Register declaration defines a new internal register. It has the general format: 

REG <naine> <lsb> <msb> 

Note that the line numbers in the figure are for illustration purposes only and are not part of the file format. 
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For example, line 12 declares a register named (%6) with an ascending 0 to 31 range. 

4. The instructions block defines a sequence of ICODE operations on the declared aliases 

and internal registers. Each instruction is provided as an opcode followed by a list of 

operands. Binary constants can be used as operands using the (#) operator. Each 

instruction within the block is either an original ICODE instruction or a newly added 

floating-point operation. 

5. The final line in the file provides the error propagation information, which indicate the 

contribution each building block has on the total instruction error. These figures are 

utilised by the floating-point pre-processing units to decide the accuracy of each 

building block based on the target accuracy of the hierarchical unit. 

input output: flag_reg 

-- %1 = variable or alias name 
-- 0 31 = Isb msb 
-- 1 = from input number 1 

alias %1 0 31 1 0 31 -- input 

alias %2 0 31 2 0 31 -- output 

8. alias %3 0 5 3 0 5 -- flag_reg 
9. alias %4 0 0 1 31 31 -- input_sign 
10. alias %5 0 30 1 0 30 -- input_rest 
11. alias %17 0 0 2 31 31 -- output_sign 

12. reg %6 0 31 

13. reg %10 0 31 

14. reg %11 0 30 

15. reg %12 0 0 

16. reg %13 0 0 

17. reg %14 0 31 

18. reg %15 0 31 

1 9 . ( 
20. move #00111110101010101010101010101010 %10 

21. move %4 %13 
22. move %5 %11 

23. move #0 %12 

24. concat %12 %11 %6 

25. flp_ln_f %6 %14 %3 
26. flp_mult_f %10 %14 %15 %3 

27. Elp_exp_f %15 %2 %3 

28. move %4 %17 

29. } 

30. 0 0 0 0 0 2 0 1 0 

Figure D.4 Expanded ICODE instruction file 
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D.2 The ICODE format 

The ICODE format is a textura] representation of the behaviour of the system at the 

register transfer level. The system is represented by a number of with the top 

level identified by a special program declaration. Each module has an optional 10 

parameter list, defining the module interface to the higher level. A module contains a 

number of ICODE Each process consists of an and an acni ono;; 

which defines the processes to be activated once the current process concludes. 

ICODE instructions operate on explicitly declared variables (register, alias, counter, 

memon;), and/or temporary variables. It may be thought of as a kind of hardware assembly 

language. In MOODS, the high level behavioural input (VHDL). ICODE is "source 

language neutral", in that translation from other high level languages (ANSI-C, SystemC) 

is just as feasible. 

Name Format 

Program declaration PROGRAM program_name io_list [info] 
Module declaration MODULE module_name io^list [info] 

Port declaration IMPORT 1 OUTPORT port_name port__range 

Register declaration REGISTER register_name register_range 
Counter declaration COUNTER 1 COUNTDOWN counter_name counter_range 

Alias declaration ALIAS alias_name alias_range FROM source_name source_sub_range 

Constant declaration # integer value 

Integer value decimal | %liinary_valL!e | &oc(:al_value| $hex_value 

Information (info) (specifier : value) 
ROM declaration ROM name data_range ADDRESS address_range DATA rom_content 

RAM declaration RAM name daCa_range ADDRESS address_range 

Activation list Instruction_label [,Instruction_lahel] 
Unconditional activation ACT activation_list 
Activate if true ACTT activation_list 

Activate if false ACTF activation list 
Collect instruction COLLECT number_of_collects 
Conditional instruction IF 1 IFNOT 

variable_name acC_if_true acC_if_false [info] 
Count instruction COUNT 

counter, [step], limit act_if_true act_if_false [info] 
Decode instruction DECODE variable [info] 

{CASE constant unconditional_acCivation [info]] 
Switch instruction SWITCHON variable [info] 

(CASE constant unconditional_activation [info]} 
DEFAULT unconditional_activation [info] 

Module call instruction MODULEAP module^name io_list [info] 

Memory read instruction MEMREAD memory_variable_name, address, output [info] 

Memory write instruction MEMWRITE input, inemory_variahle__name, address [info] 
General instruction EQ 1 NE 1 GR I GE 1 LS 1 LE 1 AND | OR | XOR | NOT | NEG | PLUS 

1 MINUS 1 MULT 1 DIV | LSHIFT | RSHIFT | ROR j ROL | MOVE | 
SETTRUE 1 HIGHZ | CONCAT 

Table D.l ICODE format definition 

System execution starts with the first process in the top-level program. Other modules are 

executed using the MODULEAP instruction, which takes as parameters the module name 

and a list of variables to interface to the 10 ports. Table D.l provides a complete definition 
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of the ICODE format, while the listing in Figure D.5 illustrates most of the ICODE 

features. 

PROGRAM dummy enable , prognun dee/mmfion 

"IMPORT 
INPORT 
IMPORT 
INPORT 
INPORT 
OUTPORT 

enable 
sel 

6] 

0 6 ] 

0 6 ] 

1 ] 

0 2 ] 

0 6 ] 

register declarations 

REGISTER t:_a 

REGISTER t:_b 
REGISTER 
REGISTER 

process 

internal rem 110,#%1101100,#%110i: 

internal ROM 

11,#%1100001,1110100 

#^000000 , t_b 

#%0000000 , c_c 

enable fl7 
temporary 

.L6 17 , enable , 18 
if 18 accc LB actf L6 (pt:OJL pf:0.2) 

.L8 eg enable , #1 , 19 

if 19 acCt LIO actf L5 {pC:OJ^ pf:0.2} 

.LIO move #0 , 

.Lll plus 
plus 

t:_a , 
C_b , 

a , t_a 
b , t_b 

plus activate it false 

counc i , # 2 LIS J (actf LllJ) {pt:0.25, pf:0 

.LIS 
swiCchon 

sel , 
20 

act L27 {pt : 0 . 2} 

#2 act L26 {pt : 0. 2} 
#1 act L25 (pt :0. 2) 

case #0 act L23 {pt :0. 2} 

default act L28 {pt :0. 2} 

endcase 

.L23 moduleap average t_a , t:_b , t_ c , temp 

move temp , result (2_act L2 > 
.L25 move C_a , result act L2 

.L26 move t-b , result act L2 

.L27 move C _ C , result act L2 

.L28 memread internal_rom[sel], 21 
21 , result act L2 

(gn^odule dummy 2 ^ module label matches declaration 

MODULE average inl , in2 , in3 , avr mulMnoduk decbrmMon 

INPORT 

inl 
in2 
in3 

plus 
plus 
div 

inl , in2 , 22 
22 , in3 , 23 
23 , #3 , avr 

endmodule average 

Figure D.5 Example ICODE file 
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D.3 ICODE+ 

The ICODE+ file is the floating-point optimiser output that contains all the necessary 

information required by MOODS to implement the circuit. ICODE+ generation is a four 

stage process. The first two stages occur before the optimisation algorithm, and the final 

two stages are required once the functional unit mapping is decided: 

1. Initially, a global flag register port is added (if applicable) as an output port: this is 

connected to the floating-point unit internal flag register to indicate any exception 

during the unit execution. 

2. In the second stage, hierarchical units are expanded into sub-blocks. The operation 

involves declaring a set of temporary variables and aliases to provide a communication 

path between the unit sub-components. 

3. At this stage, each floating-point functional unit is replaced with the appropriate 

expanded module name within the floating-point module library. 

4. The external ROM interface (if required) is provided at this stage. It involves 

declaring the the (fafa and the ROM confro/ .y/gnaZ and interfacing 

them to the appropriate floating-point unit. An A/aa' constant, will also be 

assigned to each floating-point unit to indicate the lookup-table location within the 

external ROM. 

By way of an example, consider the VHDL behavioural description in Figure D.6 along 

with its ICODE file. The equivalent ICODE+ file is represented in Figure D.7. Initially, a 

flag register is declared as an output port (line 8) and is interfaced to the cubic root unit^. 

Then the unit is expanded into its sub components (lines 46 to 60). Note that the 

exponential and natural logarithm functions within the cbrt() unit are again expanded into 

further building blocks (lines 52 to 54, and lines 56 to 58 respectively). The stage also 

involves declaring a number of temporary registers (lines 12 to 27) and a number of 

aliases (lines 30 to 41) declaring sub-ranges of internal variables. Finally, once the 

optimisation is performed, the floating-point functional units are replaced with expanded 

• Note that the cbrt() unit has been expanded into its sub-components, which hides the flag register interface. 
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module declarations. In this case the natural logarithm and the exponential functions are 

replaced with external table lookup based implementations named ln_pre_7_lse. and 

exp_main_7_lse. 

Finally, the external ROM interface is implemented within the design. Two output ports 

and one input port are declared. The output ports represent the ROM address bus (line 10) 

and the ROM control port (line 9) and the input port representing the ROM data bus (line 

5). A register representing an 6/a.y (line 28) is also required to indicate the starting 

point of the natural logarithm and exponential units lookup tables within the external 

ROM. The register is connected to the two units and is assigned a value each time 

a unit is executed. 

VHDL 

1. Entity test is 
2. port (input : in FLOAT; 
3. enabie : in bit; 
4. ready : out bit; 
5. result: out FLOAT); 
6. end; 
7. Architecture behave of test is 
8. Begin 
9. Process 
10. Begin 
11. ready <= '0'; 
12. wait until enable = '1'; 
13. result <= cbrt(input); 
14. ready <='1'; 
15. wait until enable = '0'; 
16. End Process; 
17. End behave; 

ICODE 

1. PROGRAM test input, enable, ready, result 

3. import input [0:31] 
4. inport enable [1:1] 
5. outport ready [1:1] 
6. outport result [0:31] 

8. .PR1 move #%0, ready 
9. .if4_false__3 eq enable, #1, 5 
10. if 5 ACTT if4Jrue_5 ACTF if4_false_3 (pt:0.8, pf:0.2) 
11. .if4_true_5 cbrt input, result 
12. move #%1, ready 
13. if8_false_7 eq enable, #0, 6 
14. if 6 ACTT PR1 ACTF i(BJalse_7 {pt:0.! 3, pt .0.2) 
15. ENDMODULE test 

Figure D.6 Example VHDL and ICODE files 
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ICODE+ 

PROGRAM test input, enable , ram Jata_bus , ready , result, globaLfiag_reg , rom_en . rom_address_bus 

3. IMPORT input [0:31] 
4. IMPORT enable [1.1] 
5. IMPORT rom_data_bus [0:27] 
6. OUTPORT ready [1:1] 
7. OUTPORT result [0:31] 
8. OUTPORT globaLflag_reg [0:5] 
9. OUTPORT rom_en [0:0] 
10. OUTPORT rom_address_bus [0:13] 
11 . 

12. 
13. 
14. 
14. 
15. 
16 . 

17. 
18. 
19, 
20. 
21. 
22. 
23. 
24. 
25. 
26. 
27. 
28. 
29. 
30. 
31. 
32. 
33. 
34. 
35. 
36. 
37. 
38. 
39. 
40. 
41. 
42. 

REGISTER 
REGISTER 
REGISTER 
REGISTER 
REGISTER 
REGISTER 
REGISTER 
REGISTER 
REGISTER 
REGISTER 
REGISTER 
REGISTER 
REGISTER 
REGISTER 
REGISTER 
REGISTER 
REGISTER 
REGISTER 

fx _reg1 [0:31] 
fx _reg2 [0:31] 
fx _reg3 [0:30] 
fx _reg4 [0:0] 
fx ^reg5 [0:0] 
fx _reg6 [0:31] 
fx _reg7 [0:31] 
fx _reg8 [0:31] 
tx _reg9 [0:0] 
tx _reg10 [0:7] 
fx _reg11 [0:5] 
fx _reg12 [0:31] 
fx _reg13 [0:7] 
fx _reg14 [0:0] 
fx _reg15 [0:0] 
fx _reg1G [0:5] 
fx _reg17 [0:0] 
rom_address_bias [0:13] 

ALIAS 
ALIAS 
ALIAS 
ALIAS 
ALIAS 
ALIAS 
ALIAS 
ALIAS 
ALIAS 
ALIAS 
ALIAS 
ALIAS 

fxLaliasI 
{xi_alias2 
fxLalias3 
txLalias4 
fxi_alias5 
fxLaliasS 
fxi__alias7 
fxLaliasS 
fxi„alias9 
fxi_alias10 
fxLalias11 
fxi_alias12 

[0:31] from 
[0:31] from 
[0:5] from 
[0:0] from 
[0:30] from 
[0:0] from 
[0:31] from 
[0:31] from 
[0:5] from 
[0:31] from 
[0:31] from 
[0:5] from 

input 
result 

global_flag_reg 
input 
input 
result 
fxi_reg1 
fxi_reg6 

fxi_alias3 
fxLreg? 

fxi_alias2 
fxLaliasS 

[0:31] 
[0:31] 
[0:5] 
[31:31] 
[0:30] 
[31:31] 

[0:31] 
[0:31] 
[0:5] 
[0:31] 
[0:31] 
[0:5] 

43. .L2 move #%0 , ready 
44. .L3 eq enable , # 1 , 5 
45. if 5 actt L5 actf L3 {pt:0.8, pf:0.2) 
46. .L5 move #%00111110101010101010101010101010 , fxi_reg2 
47. move fxi_alias4 , fxi_reg5 
48. move fxi_alias5 , fxi_reg3 
49. move #%0 , fxi_reg4 
50. concat fxi_reg4 , fxi_reg3 , fxi_reg1 
51. move #%00000000000000 , rom_address_bias 
52. ln_pre_7Jse fxi_alias7 , rom_address_bias , rom_data_bus , fxi_reg8 , txi_reg9 , txi_reg10 
53. fxi_reg11 , rom_en , rom_address_bus 
54. In^post fxi_reg8 , fxLreglO , fxLreg9 , fxi_reg11 , fxi_alias8 , fxi_ _alias9 
55. flp_mult„f fxi_reg2 , fxi_reg6 , fxLreg7 , fxi_alias3 
56. exp_pre fxi_alias10 , fxLreg12 , fxi_reg13 , fxi_reg15 , fxi_reg14 , fxi_reg17 , fxi_reg16 
57. move #%00010000000000 , rom_address_bias 
58. exp_main_7_ Ise fxi_reg12 , fxi_reg13 , fxi_reg15 , fxi_reg14 , fxi_reg17 , fxi_reg16 , rom_address_bias ,\ 
59. rom_data„bus , (xi_alias11 , fxi_alias12 , rom_en , rom_ address_bus 
60. move fxLalias4, fxi_alias6 
61. move #%1 . ready 
62. .LI 9 eq enable , # 0 , 6 
63. if 6 actt L2 actf LI 9 {pt:0.8, pf:0.2) 

Figure D.7 Example ICODE+ file 
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D.4 Adding a new instruction 

Two types of floating-point unit can be integrated witliin the floating-point synthesis 

library: a normal floating-point functional unit, and a hierarchical floating-point functional 

unit. In both cases, knowledge of the nature of the function is required by the system in 

order to be able to handle the new function. To achieve this, a number of steps are 

required; 

1. Provide an entry in the floating-point ICODE instruction database file to declare the 

new instruction and assign it a new unique instruction number. 

2. At this point, if we are adding a new hierarchical instruction composed of pre-defined 

building blocks, all that is necessary is to provide an expanded ICODE instruction file 

describing the sequence of data execution within the new instruction, an example of 

which is provided in Figure D.4. 

3. In the more general case of dealing with a new instruction, a number of possible 

implementations of the instruction in the form of a set of expanded modules should be 

provided. Details about generating expanded modules are provided in Chapter 4. 

4. A block defining the parameters of all possible implementations of the new function 

should be added to the floating-point module library file. This is an important step, 

since the information provided here will be used to guide the optimisation procedure 

during the high level binding process. An example of the floating-point module library 

file is available in Figure D.3. 

5. Each possible implementation of the function should be assigned a unique ICODE 

instruction in the ICODE instruction database file, in order to allow the MOODS 

synthesis system to handle the expanded module expansion and optimisation process. 

For example, the last three entries in Figure D. 1 define three different implementations 

for the SIN_COS instruction, each represented by a different expanded module and 

therefore assigned to a separate ICODE instruction. 

6. If a module is to be implemented using an external ROM, a file that contains an ASCII 

text format of the ROM entries which has the same name as the expanded module and 

with a (.ROM) extension should be provided to be used in generating the external ROM 

data. 
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By following these steps, the new instruction can be integrated within the floating-point 

synthesis library. It is worth mentioning that the user should try to preserve the hierarchy 

of the floating-point functional unit before generating the expanded model. For example, 

during the floating-point library development, an optimised fixed-point multiplier and 

fixed-point divider are provided as expanded modules in the MOODS template library. 

The currently available floating-point building blocks invoke these modules every time a 

multiplier and divider is required. This approach tends to produce better results at the final 

synthesis stage since it allows maximal sharing of the two expensive fixed-point units. The 

user is encouraged to take a similar approach rather than implementing a multiplication or 

division procedure every time it is required at the VHDL level. Note that the multiplier 

and divider are only an example and this note applies to any relatively expensive units that 

might be used more than once in a number of floating-point implementations. 
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Appendix E 

Example details 

This appendix provides additional information regarding the FPGA prototyping board and 

the cubic equation solver discussed in Chapter 6. It is organised in three sections: Section 

E. 1 provides additional data for the FPGA prototyping board. Section E.2 provides 

additional information on the VGA display adapter used to drive the VGA screen in the 

cubic equation solver design. Finally, section E.3 contains VHDL source listings of the 

designs in Chapter 6. 

E.1 FPGA prototyping board data 

E.1.1 FPGA pin-out 

The prototyping board was designed to support the Xilinx XC40125XVPG559, 

XC4085XVPG559, and XC40250XVPG559 FPGA. These are members of the Xilinx 

XC4000 series devices based on a programmable architecture of Configurable Logic 

Blocks (CLBs). Each device is programmed by loading the configuration data into internal 

memory cells. A top view of the FPGA pin-out is provided in Figure E. l . The 

XC40125XV for example, is based on a CLB array of 68 x 68 unit providing a total 

number of 4624 CLBs. It is claimed that the device is capable of implementing designs in 

the gate range 80,000 to 265,000 gates. The estimation is provided by Xilinx and is based 

on 20-30% of the CLBs used as RAMs. Further details on these devices can be found on 

[101]. 
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BC 
B 

BA 

AW 
AV 
J 
AT 

AN 

AL 
AU 

"AK 
AJ 

AG 
AH 

AF 
AE 

AD 
AC 
— A8 
AA, 
w 

2 4 6 8 10 12 14 16 18 # 
1 3 5 7 9 11 ^1 ^ 1 7 19 21 

2̂ 24 26 28 30 32 34 36 38 40 42 
23 25 27 29 31 33 35 37 39 41 43 

PG559 TOP VIEW 

Figure E.I FPGA package for the Xilinx FPGA used in the board 

E.1.2 Device programming 

Two methods may be employed to programme the device. Serial programming from a PC 

using a download cable or parallel programming based on an external ROM driven by the 

FPGA. Note that the device needs to be programmed whenever it is powered up. This 

suggests that the serial method may be used to programme the design during the 

implementation phase, while it is desirable to use the parallel mode for the final version of 

the design. A set of switches is provided on the board to enable one of these two modes. 

The default serial mode is active if the switches are off. Figure E.2 shows the PC cable 

connector provided. Details on the functionality of each pin on the connector are available 

in [101]. 
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DONE DOUT 

PROG CCLK DONE 

Figure E.2 Serial programming cable connector 

E.I.3 Device pin-assignment 

DRAM BANK 

Address bus 
(A10 downto AO) 

nWE 

nCAS 

nRAS-

4M X 8-BIT 
DRAM 

4M X 8-BIT 
DRAM 

4M X 8-BIT 
DRAM 

4M X 8-BIT 
DRAM 

4M X 8-BIT 
DRAM 

4M X 8-BIT 
DRAM 

f \ Data bus 
tDQ7 downto DQO) 

Port FPGA Pad Name Port FPGA Pad Name 

AO J41 DQO J39 

A1 J43 DQ1 K40 

A2 K42 DQ2 L39 

A3 L37 DOS H38 

A4 L41 D04 G39 

A5 L43 DOS AA43 

A6 H40 006 AB40 

A7 H42 D07 AB42 

A8 G43 nWE AB38 

A9 AA37 nCAS J37 

A10 AA41 nRAS AC39 
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EPROM BANK 

Address bus 
(A12 downto AO) 

nCE-

nOE-

8K X 32-BIT 
EPROM 

8K X 32-BIT 
EPROM 

8K X 32-BIT 
EPROM 

8K X 32-BIT 
EPROM 

8K X 32-BIT 
EPROM 

K Data bus 
(D31 downto DO) 

Port FPGA Pad Name Port FPGA Pad Name 

AO C9 D20 820 

A1 C11 D19 818 

A2 C13 D18 816 

A3 C15 D17 814 

A4 C17 D16 810 

A5 C21 D15 88 

A6 C23 D14 86 

A7 C27 D13 84 

A8 C29 D12 A41 

A9 C31 D11 A37 

A10 C33 D10 A35 

A11 C35 D9 A33 

A12 C43 D8 A29 

D31 C5 07 A27 

D30 B42 D6 A23 

D29 B40 D5 A21 

D28 B3B D4 A17 

D27 B36 D3 A15 

D26 834 D2 A9 

D25 B30 D1 A7 

D24 B28 DO A3 

D23 B26 nCE F36 

D22 824 nOE G33 

D21 822 
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SRAM BANK 

Address bus 
(A12 downto AO) 

nWE-

nOE 

V 
8K X 32-BIT 

SRAM 

Data bus 
(031 downto AO) 

Port FPGA Pad Name Port FPGA Pad Name 

AO C9 D20 B20 

A1 C11 D19 B18 

A2 C13 D18 B16 

A3 C15 D17 B14 

A4 C17 D16 B10 

A5 C21 D15 88 

A6 C23 D14 86 

A7 C27 D13 84 

A8 C29 D12 A41 

A9 C31 D11 A37 

A10 C33 D10 A35 

A l l C35 D9 A33 

A12 C43 D8 A29 

D31 C5 D7 A27 

D30 B42 D6 A23 

D29 B40 D5 A21 

D28 B38 D4 A17 

D27 836 D3 A15 

D26 B34 D2 A9 

D25 830 D1 A7 

D24 B28 DO A3 

D23 B26 nWE F40 

D22 B24 nOE F42 

D21 822 
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CLOCK GENERATORS 

C L 0 C K 1 

C L 0 C K 2 

FPGA 

Port FPGA Pad Name Port FPGA Pad Name 

CL0CK1 F38 1 CL0CK2 E37 

SERIAL PORT INTERFACE 

CTS 
(clear to send) 

RD 
(recieve data) 

max233 

RTS 
(ready to send) 

TD 
(transmit data) 

Port FPGA Pad Name Port FPGA Pad Name 

CTS AP4 RTS AT6 

RD AP2 TD AP8 
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EXTERNAL PORT A 

A1-A32 

B1-B32 

C1-C32 

Port 
FPGA Pad 

Name 
Port FPGA Pad 

Name 
Port FPGA Pad 

Name 
Port FPGA Pad 

Name 

A1 AO A25 D2 817 TCK C9 E11 

A2 A1 A26 D3 818 TMS CIO E13 

A3 A2 A27 04 819 nRS C11 E15 

A4 A3 A28 D5 820 02 C12 E17 

A5 A4 A29 D6 821 06 C13 E19 

A6 A5 A30 D7 822 08 C14 E21 

A7 A6 A31 nPROG 823 DIG CIS E23 

A8 A7 A32 DONE 824 012 C16 E25 

A9 A8 B1 MO 825 014 C17 E27 

A10 A9 B2 M l 826 016 C18 E29 

A11 A10 83 M2 827 018 C19 E31 

A12 A11 84 DOUT 828 020 C20 E33 

A13 A12 B5 nINIT 829 022 C21 E35 

A14 A13 86 nLDC 830 024 C22 E41 

A15 A14 87 HDC 831 026 C23 F2 

A16 A15 68 CCLK 832 028 C24 F6 

A17 A16 89 RDY C I 030 C25 F8 

A18 A17 810 nCSO C2 032 C26 F12 

A19 A18 811 GCK2 C3 034 C27 F18 

A20 A19 812 GCK3 C4 036 C28 F20 

A21 A20 813 GCK4 C5 040 C29 F22 

A22 A21 814 GCK5 C6 042 C30 F24 

A23 DO 815 TOO C7 E7 C31 F26 

A24 D1 816 TD1 C8 E9 C32 F32 
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EXTERNAL PORT B 

A1-A32 

B1-B32 

C1-C32 

Port FPGA Pad 
Name 

Port 
FPGA Pad 

Name 
Port FPGA Pad 

Name 
Port FPGA Pad 

Name 

A1 BA39 A25 BC15 B17 AY30 C9 AU39 

A2 BA41 A26 BC17 B18 AY32 C10 AU43 

A3 BA43 A27 BC21 B19 AY34 C11 AV2 

A4 BB2 A28 BC23 B20 AY36 C12 AV4 

A5 BB6 A29 BC27 B21 AY38 C13 AV8 

A6 BBS A30 BC33 B22 AY40 C14 AV12 

A7 BB10 A31 BC35 B23 BA11 C15 AVI a 

A8 BB14 A32 BC37 B24 BA13 C16 AV20 

A9 BB16 B1 AW27 B25 BA15 C17 AV24 

A10 BB18 B2 AW31 B26 BA17 C18 AV26 

A11 BB20 B3 AW33 B27 BA21 C19 AV32 

A12 BB22 B4 AW35 B28 BA27 C20 AV36 

A13 BB24 B5 AW37 B29 BA29 C21 AV40 

A14 BB26 B6 AY2 B30 BA31 C22 AV42 

A15 BB28 B7 AY4 B31 BA33 C23 A W 3 

A16 BB30 BB AY8 B32 BA35 C24 AW7 

A17 BB34 B9 AY10 C I GND C25 AW11 

A18 BB36 B10 AY12 C2 SUPPLY C26 A W 1 3 

A19 BB38 B11 AY14 C3 AU23 C27 A W 1 5 

A20 BB40 B12 AY18 C4 AU25 C28 A W 1 7 

A21 BC3 B13 AY20 C5 AU27 C29 A W 1 9 

A22 BC7 B14 AY22 C6 AU29 C30 A W 2 1 

A23 BC9 B15 AY26 C7 AU31 C31 AW23 

A24 BC11 B16 AY28 C8 AU33 C32 AW25 
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PS2 INTERFACE 

PS2 A PS2 A PS2 A 

PS2 B PS2 B PS2 B 

DATA_A 

C L K A 

DATAJB 

CLK B 

Port FPGA Pad Name Port FPGA Pad Name 

DATA_A AFI3 DATA_B AT2 

CLK_A AR1 CLK_B AR7 

E.2 VGA adapter 

The interface to the VGA adapter' is provided via an 8-bit input port and a 1-bit output 

ready signal. The input port is split into two fields; a 7-bit instruction occupying the 

bottom 7-bits of the port, and a single bit strobe signal. The VGA adapter drives a VGA 

display at a resolution of 640 x 480 pixels. This requires a 10-bit variable to identify the x 

location and a 9-bit variable to identify the y location. The VGA adapter instructions are 

listen in Table E . l . 

The Set palette instruction allows the user to set the RGB ratios of 16 different colours. A 

unique 4-bit binary number allowing 16 different colours to be located will identify each 

colour, and each colour may be recalled by using the set colour instruction. 

The Set point instruction sets the locations of one of two points pi and pO. Both points 

should be located to allow drawing lines from pO to p i . The two points also designate the 

T h e adap te r is a con t r ibu t ion f r o m a d i f fe ren t research p ro jec t within the s ame research g r o u p [113 ] 
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top left corner (pO) and the bottom right comer (pi) in the rectangle drawing mode. On the 

text drawing mode, only the point pO is required to specify the top left comer of the ASCII 

character. 

The Set mode instmction defines the VGA drawing mode. Four modes are available, 

designated by two bit binary variables: 

1. Mode = 00 is a direct draw mode on both the foreground and the back ground (text 

drawing mode). 

2. Mode = 01 is a direct drawing mode on the foreground. 

3. Mode = 10 is an XOR drawing mode on both the foreground and the background. 

4. Mode = 11 is an XOR drawing mode on the foreground. 

Accessing the VGA adapter is a five-stage process: 

1. Set the input port MSB to zero at the initialisation stage. 

2. Set the port MSB to one along with the required VGA instruction. 

3. Wait until an acknowledge is received (busy signal = 1). 

4. Set the input port MSB to zero. 

5. The instruction is now executed, any further commands are performed by looping back 

to stage two. 

An example representing the functionality of the VGA adapter is represented in Figure 

E.3. It shows a sequence of commands along with the expected output. 
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Command sequence Output display 

1. set colour 0 to gray 
2. set colour 1 to light blue 
3. set drawing mode to direct draw mode 

4. set background colour to gray 
5. set foreground colour to gray 
6. set point PO to (10,10) 
7. set pdnt P1 to (629,370) 
8. draw rectangle 

9. set foreground colour to light blue 
10. set point PO to (40,20) 
11. draw ascii character E 
12. draw ascii character S 
13. draw ascii character D 
14. draw ascii character G — 

15. set point PO to (40,64) 
16. set point PI to (120,64) 
17. draw line _ 

18. set point PO to (140,100) 
19. set point PI to (400,250) 
20. set background colour to light blue 
21. draw rectangle 

initialisation 

draw gray 
background 

Figure E.3 VGA adapter example 

instruction 
Instruction 

length 
Detailed bit field 

Set point [p1, pO. x(9;0), y(8;0)] 4 "OOOOX",p1,pO 

"XX", x(9:5) 

x(4:0), y(8;7) 

y(6;0) 

Set page [front, page(1;0)] 1 "0001", front, page(1;0) 

Set made [mode(1:0)] 1 "001 OX", mode(1;0) 

Set palette [colour(3;0),R(3;0),G(3:0),B(3:0)] 3 "0011", colour(3;1) 

colour(0), "X", R(3;0). G(3) 

G{2;0). B{3:0) 

Set colour [foreground, coiour(3;0)] 1 "01", foreground, colour(3:0) 

Draw line 1 "1001XXX" 

Draw rectangle 1 "1010XXX" 

Wait for vertical blanking 1 "1011XXX" 

Draw character [xsize(1:0), ysize(1:0), 

ASCI 1(7:0)] 

2 "11", xsize(1 ;0),ysize(1 ;0),ASC1I(7) 

ASCI 1(6:0) 

Table E.1 VGA adapter instruction set 
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E.3 10 stage details 

E.3.1 Input stage 

Before examining the operation of the keyboard interface unit, first consider Figure E.4 

which represents the keyboard sequential data along with what is called the .ycoMcrx/f of 

the keys in the numerical keypad. Every time a key is pressed, the keyboard generates a 

scancode. Each key has a unique scancode consisting of one or more 8-bit words. The 

scancodes related to each key in the numerical keypad are represented in Figure E.4c in 

hexadecimal. When the key is released, the keyboard regenerates the scancode preceded 

by hex FO. For example the scancodes generated when (num lock) key is pressed and 

released are 45 FO 45. 

The generated scancode is provided as serial data on the keyboard data line, synchronised 

by a clock signal provided on the keyboard clock line with a new bit outputted every 

falling edge on the clock line. Note that the keyboard outputs groups of 9-bit data: a start 

bit indicating the beginning of a new word precedes the 8-bit word. 

The flowchart in Figure E.5 illustrates the keyboard interface process. The process waits to 

detect a falling edge on the keyboard_clock line, and once detected, the data on the 

keyboard_data line is latched into an internal register. The loop iterates nine times until the 

whole 8-bit word is detected (the start bit is ignored). The next step involves decoding the 

scancode to identify the pressed key. This stage involves the following operations: 

1. If a FO code is detected, the following scancode is ignored, since this would be a 

release code. 

2. If an EO is detected, another word is read before decoding, as HO indicates an extended 

word. 

3. If the scancode represent a key within the recognised set (shaded in Figure E.4b) 

decode it. 

4. If the pressed key is (numlock), toggle the initialise line low and pass it to the core unit 

and the output stage to initialise the system. 

5. The divide, add, and multiply keys in the keypad are ignored. 
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6. The minus key is used to invert the sign of the current parameter. The input number is 

assumed to be positive. Every time the minus key is pressed the number sign is 

inverted. 

Keyboard clock 

Keyboard data 

a) Keyboard serial outputs 

num 
lock / * 

-

7 8 9 

4 5 6 

1 2 3 
Enter 

0 
• 

Enter 

b) Numerical keypad 

Key Code Key Code Key Code 
num 
lock 45 9 49 2 50 

/ E035 + 4E 3 51 

* 37 4 4B 0 52 

- 4A 5 4C 53 

7 47 6 4D Enter E01C 

8 48 1 4F 

c)Key scan codes 

Figure E.4 Keyboard Information 
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waA tor a clock 
falling edge 

key(index) = k8yt)rd_data 

• 

To decode 

increment 
ind@( 

key = FO 

key = EO 

released = i 
decode = 0 

extended = 0 

extended = 1 

code withjn the 
recoonised set 

decode = 1 

key = 1C 
and extended = i 

decode = l 
entef_press = 1 

decode = 1 

decode key and output to the next 

Figure E.5 Keyboard interface flowchart 

Each numerical parameter is expected to be input as a set of decimal values followed by 

an (enter). Every time a related key is pressed, the decoded key is passed to the output 
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Stage to be displayed and also to the format conversion stage. The format conversion stage 

converts a set of binary coded decimal values in to a binary single precision floating point 

number and passes it to the core unit. 

The functionality of the format conversion is illustrated by the flowchart in Figure E.6. It 

consists of two main blocks: the first block generates a binary representation of the integer 

part of the input operand, the second generates the fraction part. At each step, two 

operations are performed: 

1. Multiply the integer accumulator by lOjo (lOlO?). 

2. Add the input value to the accumulator. 

To illustrate the functionality of this block a simple example is provided where the 

sequence 2, 5, 6 is provided indicating a decimal value of 256. The sequence of execution 

is: 

acc = 0 

occ = accxlOlO = 0 

acc = acc + 0010 = 0010 

acc = accXlOlO = 10100 

acc - acc + OlOl = 11001 

acc = flccXlOlO = 111111010 

acc = acc + 0110 = 100000000^ = 256,^ 

Note that the internal register that holds the integer part of the input parameter is a 63-bit 

register allowing a maximum entry of (±9223372036854775808) for the integer part. The 

execution continues in the first block until the maximum number of digits is reached or the 

decimal point is encountered or the (enter) key is pressed. 

Once the decimal point is encountered, execution moves to the second block, which is 

responsible for generating the fraction of the input parameter. At this stage, the digits to 

the right of the decimal points are pushed into a stack until the (enter) key is pressed or the 

maximum number of digits is received (seven digits in this case). Once the fraction digit 

accumulation is completed the conversion operation starts. The operation involves the 

three following steps; 
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1. Divide the fraction accumulator by 10. 

2. Divide the input digit by 10. 

3. Add the results in 1 and 2 and save it in the fraction accumulator. 

start integer generation 

acc1 = 0 
read key 

Go to fraction 
Y generation 

key = point 

key = Enter 

! N 

acci = acc1 * 10 + key 

read new key 

Fraction generation 

acc2 = 0 

read new key and 
push key to stack 

key = Enter 

Y 

pop key from stack 

; acc2 = key/10 + acc2/10 

stack empty 

normalise and output 
result 

Figure E.6 Format conversion unit flowchart 
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Once the second stage is concluded, two internal variables will hold the integer and 

fraction part of the input parameter in a binary format. These two numbers are then treated 

as a single fixed point variable which is normalised to fit into the output format and the 

output sign and exponent value are assigned. 

E.3.2 Output stage 

The unit splits into two blocks executing before and after the roots calculation in the core 

unit. 

The first block performs two main duties. It is responsible for creating the static elements 

of the VGA display (e.g. title, background, variable names). It also monitors the data input 

stage to display the decimal values of the input parameters. 

The second block, monitors the core unit for the root values and displays them on the 

VGA screen. This stage involves a simple type conversion to convert the binary 

representation of the floating-point number to the displayed representation. 

The VGA display adapter" [113] that drives the VGA screen inteifaces to the system via 

an 8-bit command port and a 1-bit busy signal. A low busy signal indicates that the 

adapter is ready to receive a new instruction. Each instruction is 7-bits long. A new 

instruction is latched into the VGA adapter by loading the instruction to the lower seven 

bits of the input port and setting the most significant bit. The adapter provides a set of 

basic instructions that supports writing to the VGA screen. The instructions are set point, 

set page, set mode, set palette, set colour, draw rectangle, draw line, and draw text. 

A simple technique is adopted to create the display of the static elements on the screen. 

The required set of instructions is developed and stored in internal ROMs. A loop is then 

provided to iterate through these ROMs and output the VGA commands to the adapter. 

Two internal ROMs are provided. The first is a 47 x 7-bit ROM provided to store the 

initialisation commands such as setting the colour palette, setting the drawing mode, and 

drawing the background and the title underline. The second ROM is 84 x 7-bit responsible 

for drawing the static characters on the screen (the title, the inputs and the output names). 

The adapter was synthesised using the M O O D S synthesis system and implemented on an F P G A . 
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Once the screen is initialised, the output stage starts monitoring the input keys and 

displaying them on the appropriate location on the screen. Upon receiving the third 

parameter, the output stage starts monitoring the core unit to receive the output results and 

display them on the screen. 

To perform the last step and display the output result, the output stage needs to convert the 

binary representation of the floating-point number into another representation that can be 

read easily. A number of possible methods can be used to print the floating-point numbers 

[102]. However, a fairly simple approach is taken due to the limited hardware resources 

available, illustrated in the flow chart of Figure E.7. 

The conversion operation starts by detecting any possible symbolic representations such as 

NAN or infinity and displaying the equivalent ASCII representation. If none of these 

symbols are detected, execution moves to the second stage. The second stage starts by 

displaying the result sign. The following step displays the fraction field, starting by 

displaying the implicit one and the decimal point. Then the decimal digits of the fraction 

are displayed sequentially where at each step the fraction is multiplied by 10 and the 

integer part of the result is displayed until the fraction equals zero. 

The final step in the conversion operation displays the exponent. After removing the bias, 

the actual exponent passes through five stages: 

1. If the exponent is less than zero, a negative sign is displayed and the exponent is 

complemented. 

2. If the exponent is greater than or equal to 100, a one is displayed and 100 is subtracted 

from the exponent, a flag (flagl) is set at this stage to indicate that the exponent is > 

100. 

3. The third stage involves counting the number of tens contained within the exponent and 

displaying it as a decimal number, a flag (flag2) is set here to indicate that the 

remaining exponent is > 10. 

4. A special case when (flagl = I and f]ag2 = 0) is detected here and a zero is displayed 

before displaying the last digit. 
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5. At this stage, the exponent will have a value between 0 and 9. which is displayed 

directly. 

Si art 

detected 
^ denormal 

: N 

output 
sign 

output (1.) 

frac = frac ' 10 

' output (int(frac)) 

I frac=frac-int(frac) ! 

'output equfvalent;̂  
symbol 

frac = 0 ^ output (0) 
Y , 

output (X 2) 

To output exponent 

Output exponent 

exp < 0 

output (-), : 
(complement exp j 

exp >= 100 

V Y 
output (1), 

exp = exp -100 
flagi = 1 

exp >= 10 

Y 

t count numt}er of 
10's 

output (count) 
exp = exp -
10'count 
flagZ = 1 

1 and 
flag2 = 

output(O) 

output (exp) 

Figure E.7 Output stage type conversion flowchart 
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E.4 Source code listings 

Listing E. 1 Input stage VHDL behavioural description 261 

Listing E.2 Original design VHDL behavioural description 266 

Listing E.3 controller VHDL behavioural description 268 

Listing E.4 Arithmetic processor VHDL behavioural description 273 

Listing E.5 Output stage VHDL behavioural description 276 

Listing E.6 Interface unit in the first FPGA 285 

Listing E.7 Interface unit in the second FPGA 287 
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1 
2 
3 
4 
5 
6 
7 
8 
9 

10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 

23 
24 
25 
26 

27 
28 

29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 

63 
64 
65 
66 
67 

Listing E.I Input stage VHDL behavioural description 

The main input stage. Provides an interface to the keyboard unit and transfei 
the input data to the core unit and the output stage. It also provide a 
system reset entry to reset the whole system via the new_entry output 

package InputConst is 
-- scancodes for various keys 
constant rel_code 
constant ext_code 
constant num^code 
constant minus_code 
constant point_code 
constant enter_code 
constant zero_code 
constant one_code 
constant two_code 
constant three_code 
constant four_code 
constant five_code 
constant six_code 
constant seven_code 
constant eight_code 
constant nine_code 

bit_vector 
bit_vector 
bit_vector 
bit_vector 
bit_vector 
bit_vector 
bit_vector 
bit_vector 
bit_vector 
bit_vector 
bit_vector 
bit_vector 
bit_vector 
bit_vector 
bit_vector 
bit_vector 

(7 downto 0 
(7 downto 0 
(7 downto 0 
(7 downto 0 
(7 downto 0 
(7 downto 0 
(7 downto 0 
(7 downto 0 
(7 downto 0 
(7 downto 0 
(7 downto 0 
(7 downto 0 
(7 downto 0 
(7 downto 0 
(7 downto 0 
(7 downto 0 

internal representation of keys 
constant num__val 
constant minus_val 
constant point_val 
constant enter_val 
constant zero_val 
constant one_val 
constant two_val 
constant three_val 
constant four_val 
constant five_val 
constant six_val 
constant seven_val 
constant eight_val 
constant nine_val 

end InputConst; 

bit_vector 
bit_vector 
bit_vector 
bit_vector 
bit_vector 
bit_vector 
bit_vector 
bit_vector 
bit_vector 
bit_vector 
bit_vector 
bit_vector 
bit_vector 
bit vector 

(7 
(7 
(7 
(7 
(7 
(7 
(7 
(7 
(7 
(7 
(7 
(7 
(7 
(7 

downto u 
downto 0 
downto 0 
downto 0 
downto 0 
downto 0 
downto 0 
downto 0 
downto 0 
downto 0 
downto 0 
downto 0 
downto 0 
downto 0 

"11110000 

"11100000 

"01110111 

"01111011 

"01110001' 

"01011010' 

"01110000' 

"01101001' 

"01110010' 

"01111010' 

"01101011' 

"01110011" 

"01110100" 

"01101100" 

"01110101" 

"01111101" 

"01010" 

"01101" 

"10000" 

"01111" 

"00000" 

"00001" 

"00010" 

"00011" 

"00100" 

"00101" 

"00110" 

"00111" 

"01000" 

'01001" 

use work.InputConst.all; 
entity in_stage is 
port (key_clk,key_data in bit; 
float_output 
key_out 
stb_core 
ack_core 
stb_out 
ack_out 
new_entry 

out bit_vector(31 downto 0) 
out bit_vector(4 downto 0); 
out bit; 
in bit; 
out bit; 
in bit; 
out bit 

end; 

architecture behave of in_stage is 

-- an array is declared to act as a stack for the fraction digits 

type in_array is array(0 to 6) of bit_vector(3 downto 0); 

begin 
process 
-- a counter for the number of serial bits received form the keyboard 
variable bit_count ; bit_vector{3 downto 0); 
-- int__part holds the integer value of the input 
variable int_part : bit_vector(62 downto 0); 
-- frac_part holds the fraction value of the input 
variable frac_part : bit_vector(23 downto 0); 
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68 variable extended , released : bit; 
G9 variable decode : bit; 
70 variable key_val : bit_vector(4 downto 0); 
7 1 variable done_press,new_press,enter_press,minus_press : bit; 
72 -- a flag that indicates the decimal point press while monitoring 
73 -- the integer part we are receiving the integer part 
74 variable frac : bit; 
75 variable key_word : bit_vector(7 downto 0); 
7 6 variable frac_count : integer range 0 to 7; 
77 variable int_count : integer range 0 to 19; 
78 -- temporary variables 
79 variable div_resultl,div_result2 : bit_vector (31 downto 0); 
80 -- the stack that hold the fraction digits 
81 variable frac_inputs : in_array; 
82 begin 
83 -- initialise all the control and the handshaking signals 
84 -- along with the accumulators 
85 new_entry <= '1'; 
86 stb_core <= '1'; 
87 stb_out <= '1'; 
88 key_out <= "00000"; 
89 frac_count := 0; 
9 0 int_count := 0; 
91 frac ;= '0 ' ; 
92 new_press := '0'; 
93 enter_press := '0'; 
94 minus_press := '0'; 
95 float_output(31) <= '0'; 
96 decode := '0 ' ; 
97 extended := '0'; 
98 released := '0 ' ; 
99 bit_count := "1111"; 

100 int_part := convert_int2bv{0,63); 
101 frac_part := convert_int2bv(0,24); 
102 wait for 0 ns; 
103 
104 -- The main loop that reads the keyboard entries and converts them to 
105 -- a floating-point number. 
106 
107 loop 
108 
109 The first loop reads the keyboard serial data and converts 
110 -- it to a single word 
111 
112 loop 
113 -- wait for the keyboard clock to go low 
114 wait until key__clk = 1; 
115 wait until key_clk = 0; 
116 -- enter the bit into the key_word 
117 if bit_count(3) = '0' then 
118 key_word := "0" & key_word(7 downto 1) ; 
119 key__word(7) := key_data; 
12 0 end i f; 
121 -- exit the loop 
122 exit when bit_count = "1001"; 
123 -- next bit 
124 bit_count ;= bit_count + "0001"; 
125 end loop; 
126 -- reset the bit_count to its starting position 
127 -- set the initial bit count to 15 (this is so the start bit is ignored) 
128 bit_count := "1111"; 
129 if key_word = rel_code then 
130 -- ignore the next word sent 
131 decode : = ' 0 ' ; 
132 released := '1'; 
133 elsif released = '1' then 
134 -- the last character was a release code 
135 -- ignore the present code and reset the released flag 
136 released := '0'; 
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137 -- also reset the extended flag for release of extended keys 
138 extended := '0'; 
139 elsif key_word = ext_code then 
140 check the extended bit 
141 extended := '1'; 
142 elsif key_v;ord = num_code then 
143 decode := '1'; 
144 key_val := num_val; 
145 new_press := '1'; 
146 elsif key_word = min'us_code then 
147 decode := '1 ' ; 
148 minus_press ;= '1'; 
149 float_output(31) <= NOT float_output(31); 
150 key_val ;= minus_val; 
151 elsif key_word = point_code then 
152 decode ;= ' 1' ; 
153 frac := ' 1' ; 
154 key_val := point_val; 
155 elsif key_word = zero_code then 
156 decode ;= ' 1' ; 
157 key_val := zero_val; 
158 elsif key_word = one_code then 
159 decode := ' 1 ' ; 
160 key_val ;= one_val; 
161 elsif key_word = two_code then 
162 decode := '1'; 
163 key_val := two_val; 
164 elsif key_word = three_code then 
165 decode := ' 1 ' ; 
166 key_val := three_val; 
167 elsif key_word = four_code then 
168 decode := '1'; 
169 key_val := four_val; 
170 elsif key_word = five_code then 
171 decode := '1'; 
172 key_val := five_val; 
173 elsif key_word = six_code then 
174 decode := '1'; 
175 key_val := six_val; 
176 elsif key_word = seven_code then 
177 decode := '1'; 
178 key_val := seven_val; 
179 elsif key_word = eight_code then 
180 decode := '1'; 
181 key_val := eight_val; 
182 elsif key_word = nine_code then 
183 decode := '1'; 
184 key_val := nine_val; 
185 elsif key_word = enter_code and extended = '1' then 
186 decode := '1'; 
187 key_val ;= enter_val; 
188 enter_press := '1'; 
189 end if; 
190 -- a key entry part of the numerical pad is received if decode = 1 
191 if decode = '1' then 
192 decode := '0'; 
193 -- output stage is ready to receive an entry 
194 wait until ack_out = '1'; 
195 if (enter_press = '1' or new_press = '1' or minus_press = '1') then 
196 new_entry <= not new_press; 
197 key_out <= key__val; 
198 stb_out <= '0'; 
199 wait for 0 ns; 
200 -- check for the decimal point 
201 elsif key_val /= point_val then 
202 key_out <= key_val; 
203 stb_out <= '0'; 
204 wait for 0 ns; 
205 
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206 

207 -- decimal to float for the integer part is performed here 
208 -- it involves multiplying the accumulator by 10 and adding the 
209 -- keyboard value to it. Note that the multiply by 1010 is achieved 
210 -- by a simple shift and add operation 
211 
212 if (frac = '0' and int_count /= 19) then-- still in the integer part 
213 int_count := int_count + 1; 
214 -- multiply by "1010" 
215 int_part:= int_part(61 downto 0)&"0'' + int_part(59 downto 0)&"000"; 
216 -- add the input value 
217 int_part := int_part + key_val; 
218 else 
219 -- if receiving the fraction digits just push them in the stack 
220 frac_inputs(frac_count) := key_val (3 downto 0); 
221 frac_count := frac_count + 1; 
222 end if; 
223 else 
224 key_out <= key_val; 
225 wait for 0 ns; 
226 stb_out <= '0'; 
227 end if; 
228 wait until ack_out = '0'; 
229 stb_out <= '1'; 
23 0 wait for 0 ns; 
231 minus_press := '0'; 
232 if (enter_press = '1') then -- output the float_output to the core 
233 -- first generate the number and normalise it 
234 float_output (30 downto 23) <= "01111111"; --initialise the exponent 
235 wait for 0 ns; 
236 if (frac = '1') then 
237 frac_count := frac_count - 1; 
238 loop 
239 -- generate the binary equivalent of the fraction digits 
240 fixed_div ("0" & frac_inputs (frac_count) & convert_int2bv(0,27), 
2 4 1 "01010000000000000000000000000000",div_resultl); 
242 fixed_div ("00000" & frac_part & "000", 
243 "01010000000000000000000000000000",div_result2); 
244 frac_part(23 downto 0) := div_resultl (26 downto 3) 
245 + div_result2(26 downto 3); 
246 wait for 0 ns; 
247 Exit when frac_count = 0; 
248 frac_count ;= frac_count - 1; 
249 end loop; 
250 end if; 
251 -- normalise the integer part and adjust the exponent 
252 if (int_part /= convert_int2bv(0,63)) then 
253 loop 
254 exit when int_part(62 downto 1) = convert_int2bv(0,62); 
255 frac_part:= int_part(0) & frac_part(23 downto 1); 
256 int_part := "0" & int_part (62 downto 1); 
257 float_output(30 downto 23) <= float_output (30 downto 23) + "1"; 
258 wait for 0 ns; 
259 end loop; 
260 -- then number is less than one 
261 elsif (frac_part /= convert__int2bv (0 , 2 4) ) then 
262 loop 
2 63 exit when int_part(0) = "1"; 
264 int_part(0) := frac_part(23); 
2 65 frac__part := frac_part (22 downto 0) & "0"; 
266 float_output(30 downto 23) <= float_output (30 downto 23) - "1"; 
2 67 wait for 0 ns; 
268 end loop; 
269 else -- the entry is zero 
270 float_output{31 downto 23) <= convert_int2bv(0,9); 
271 wait for 0 ns; 
272 end if; 
273 float_output (22 downto 0) <= frac_part (23 downto 1); 
274 -- output the floating-point entry to the core 
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275 wait until ack_core = '1' 
276 stb_core <= '0'; 
277 wait until ack_core = '0' 
2 7 8 stb_core <= 
2 7 9 Exit; 
280 elsif new_press = '1' then 
281 new_entry <= '0'; 
282 wait until ack_core = '1' 
283 stb_core <= '0'; 
284 wait until ack_core = '0' 
285 stb_core <= '1'; 
286 Exit; 
287 end if; 
288 enter_press ;= '0'; 
289 new_press ;= '0'; 
290 new_entry <= '1'; 
2 91 end i f; 

292 end loop; 
293 end process; 
2 94 end behave; 
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Listing E.2 Original design VHDL behavioural description 

1 
2 -- Floating-point: Cubic equation solver core. 
3 -- All the fl oating-point operations are performed within the core. This is 
4 
5 

-- a direct translation of the mathematical equations 

6 package CoreConst is 
7 constant conl : real : = 0.866025404; -- sqrt(3)/2 
8 constant con2 : real : = 2.094395102; -- 2Pi/3 
9 constant con3 : real : = 4.188790204; -- 4Pi/3 

10 end; 
11 
12 use work.CoreConst.all; 
13 entity core i s 
14 port ( 
15 input in float; 
16 stb_in in bit; 
17 ack_in out bit; 
18 new_entry in bit; 
19 stb_out out bit; 
20 ack_out in bit; 
21 data_out out float 
22 ) ; 

23 end; 
24 architecture behave of core is 
25 begin 
26 process 
27 variable al,a2,a3,S/T : float; 
28 variable R, Q,R_sq,0_cu,D, sgrt_D : float; 
29 variable XI : float; 
30 variable Tempi, Teinp2, thetaS : float; 
31 variable X2,X3 : cmplx; 
32 32 
33 — a procedure to read the three input parameters and store them in al,a2,a3 
34 34 
35 procedure get_input_data is 
36 begin 
37 wait until stb_in = '0' ; 
38 al := input; 

39 ack_in <= '0' ; 
40 wait until stb_in = '1' ; 
41 ack_in <= '1' ; 
42 wait until stb_in = '0' ; 
43 a2 := input; 
44 ack_in <= ' 0 ' ; 
45 wait until stb_in = •1' ; 
46 ack_in <= 
47 wait until stb_in = ' 0 ' ; 
48 a3 := input; 
49 ack_in <= •0' ; 

50 wait until stb_in = •1' ; 

51 ack_in <= '1' ; 
52 end get_input_data; 
53 
54 54 
55 -- a procedure to deliver results to the output stage 
56 56 
57 procedure send_output_ .result is 
58 begin 
59 data_out < = XI; 
60 wait until ack_out = '1' ; 
61 stb_out <= '0'; 
62 wait until ack_out = '0' ; 
63 stb_out <= ' 1' ; 
64 data_out < = RE(X2); 
65 wait until ack_out = '1' ; 
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66 stb_out <= '0'; 
67 wait until ack_out = '0'; 
68 stb_out <= ' 1' ; 
69 data_out <= IMAG(X2); 
70 wait until ack_out = '1'; 
7 1 stb_out <= '0'; 
72 wait until ack_out = '0'; 
73 stb_out <= '1'; 
74 data_out <= RE(X3); 
75 wait until ack_out = '1'; 
76 stb_out <= '0'; 
77 wait until ack_out = '0'; 
78 stb_out <= '1'; 
79 data_out <= IMAG(X3); 
80 wait until ack_out = '1'; 
81 stb_out <= '0'; 
82 wait until ack_out = '0'; 
83 stb_out <= '1'; 
84 end send_output_result; 
85 -- core process see Figure 6.5 
86 begin 
87 get_input_data; 
88 0 := ((TO_FLOAT(3.0)*a2)-(al*al))/TO_FLOAT(9.0); 
89 R := ((TO_FLOAT(9.0)*al*a2)-(TO_FLOAT(27.0)*a3) 
90 -(TO_FLOAT(2.0)*al*al *al))/TO_FLOAT(54.0); 
91 R_sq := R * R; 
92 Q_cu := 0 * 0 * 0; 
93 D ;= R_sq + Q_cu; 
94 if (D = TO_FLOAT(0.0)) then 
95 S := CBRT(R); 
96 Tempi := al/TO_FLOAT(3.0); 
97 XI := TO_FLOAT(2.0)*S-Templ; 

= TO_COMPLEX(-S-Templ,TO_FLOAT(0.0)); 
= X2 ; 

100 elsif (D > TO_FIjOAT(0.0)) then 
101 sgrt_D := SORT(D); 
102 S := CBRT(R+sqrt_D); 
103 T := CBRT(R-sqrt_D); 
104 Tempi := S+T; 
105 Temp2 := al/TO_FLOAT(3.0); 

Terapl-Temp2; 
TO_COMPLEX((-Templ/TO_FLOAT(2.0))-Temp2,(S-T)*TO_FLOAT(conl)); 
C0NJ(X2); 

98 X2 
99 X3 

106 XI 
107 X2 
108 X3 
109 else 
110 theta3 :=ACOS(R/SQRT(-Q_cu))/TO_FLOAT(3.0); 
1 1 1 Tempi := al/TO_FLOAT(3.0); 
112 Temp2 := TO_FLOAT(2.0)*SQRT(-Q); 
113 XI := Temp2*COS(theta3)-Tempi; 
114 X2 := TO_COMPLEX(Temp2 *COS(theta3+T0_FL0AT(con2))-Tempi,TO_FLOAT(0.0)) 
115 X3 := TO_COMPLEX(Temp2*COS(theta3+TO_FLOAT(con3))-Templ,TO_FLOAT(0.0)) 
116 end if; 
117 send_output_result; 
118 end process; 
119 end; 
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L i s t i ng E.3 controller VHDL behavioural description 

The unit: acts as a master in a master slave combination that genei 
three roots of the cubic equation. The unit uses the arithmetic pi 
to generate a number of functions as well as floating-point 
multiplication. The control over the arithmetic processor is provided via a 
3-bit control vector and two handshaking signals (stb_c2,ack_c2) 
the control signal is defined as follows: 

:es the 
:essor as 

controj 

000 
001 
010 
Oil 
100 
101 
110 
111 

Reaction 

Multiply two operands 
Square a single operand 
multiply three operands 
multiply four operands 
Square root 
Cubic root 
cosine function 
inverse cosine function 

29 
30 
31 
32 
33 
34 
35 
36 
37 

55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 
66 
67 

package UnitConst is 

21 constant mult2_op bit_ _vector (2 downto 0) = "000" 
22 constant square_op bit_ .vector (2 downto 0) = "001" 
23 constant mult3_op bit_ _vector (2 downto 0) = "010" 
24 constant mult4_op bit_ _vector (2 downto 0) = "Oil" 
25 constant sqrt_op bit_ ̂vector (2 downto 0) = "100" 
26 constant cbrt_op bit_ .vector (2 downto 0) = "101" 
27 constant cos_op bit_ .vector 12 downto 0) = "110" 
28 constant acos_op bit_ .vector (2 downto 0) = "111" 

constant conl 
constant con2 
constant con3 

end; 

real 
real 
real 

= 0.866025404 
= 2.094395102 
= 4.188790204 

sqrt(3)/2 
2Pi/3 
4Pi/3 

use work.UnitConst.all; 
entity controller is 
port ( 

38 input : in float; 
39 stb_in : in bit; 
40 ack_in : out bit; 
41 new_entry : in bit; 
42 ack_c2 : in bit; 
43 stb_c2 : out bit; 
44 c2_data : out bit_vector (7 downto 0 
45 c2_result ; in bit_vector 7 downto 0) 
46 control : out bit_vector (3 downto 0 
47 stb_out ; out bit; 
48 ack_out ; in bit; 
49 data_out : out float 
50 ) ; 

51 end; 
52 architecture behave of controller is 
53 begin 
54 process 

-- a number of floating-point variables to hold intermediate results 
variable al,a2,a3,S,T : float; 
variable R,Q,R_sq,Q_cu,D, sqrt_D ; float; 
variable XI : float; 
variable Tempi,Temp2,Temp3,Temp4,thetaS,core2_result : float; 
variable X2,X3 : cmplx; 

-- a procedure to read the three input parameters and store them in al,a2,a3 

procedure get_input__data 
begin 
wait until stb_in = '0'; 
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12 0 
121 
122 
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129 
130 
131 
132 
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134 
135 
136 

al := input; 
ack_in <= '0'; 
wgAt until stb_in = '1' 
ack_in <= '1'; 
wait until stb_in = ^3' 
a2 := input; 
ack_in <= '0'; 
wait until stb_in = '1' 
ack_in <= '1'; 

wait until stb_in = 
a3 := input; 
ack_in <= '0'; 
wait until stb_in = '1' 
ack_in <= '1'; 

end get_input_data; 

procedure to deliver results to the output stage 

procedure send_output_result is 
begin 

data_out <= XI; 
wait until ack_out = '1'; 
stb_out <= '0'; 
wait until ack_out = '0'; 
stb_out <= '1'; 

data_out <= RE(X2); 
wait until ack_out = '1'; 
stb_out <= '0'; 
wait until ack_out = '0'; 
stb_out <= '1' ; 
data_out <= IMAG(X2); 

wait until ack_out = '1'; 
stb_out <= '0'; 
wait until ack_out = '0'; 
stb_out <= '1' ; 

data_out <= RE(X3); 
wait until ack_out = '1'; 
stb_out <= '0'; 

wait until ack_out = '0'; 
stb_out <= '1'; 

data_out <= IMA.G(X3); 
wait until ack_out = '1'; 
stb_out <= '0'; 

wait until ack_out = '0'; 
stb_out <= '1'; 

end send_output_result; 

The procedure sends a floating-point variable to the slave unit over four 

iterations. It provides the strobe signal and monitors the acknowledge 

procedure send_to_core2 
begin 
wait until ack_c2 = '1'; 
c2_data <= data (31 downto 24) 
stb_c2 <= '0'; 

wait until ack_c2 = '0'; 
stb_c2 <= '1'; 
wait until ack__c2 = ' 1' ; 
c2_data <= data (23 downto 15) 
stb_c2 <= '0'; 

wait until ack_c2 = '0'; 
stb_c2 <= '1'; 
wait until ack_c2 = '1'; 
c2_data <= data (15 downto 8); 
stb_c2 <= '0'; 
wait until ack_c2 = '0'; 
stb_c2 <= '1'; 
wait until ack_c2 = '1'; 

data : bit_vector (31 downto 0)) is 
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185 
186 
187 
188 
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200 
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c2_data <= data (7 downto 0) 
st:b_c2 <= ' 0 ' ; 
wait: until ack_c2 = '0'; 
stb_c2 <= '1'; 

end send_to_core2; 

The procedure receives the floating-point result of a certain operation 
from the arithmetic processor. It is based on monitoring a transition on 
acknowledge signal to indicate a new result which it recieves over four 
iterations 

c2 result; 

c2 result; 

c2_result; 

:= c2_result; 

Procedure get_from_core2 is 
begin 

wait until ack_c2 = '0'; 
core2_result(31 downto 24 ) 
stb_c2 <= '0'; 
wait until ack_c2 = '1 
Stb_c2 <= '1'; 

wait until ack_c2 = ^ 
core2_result(23 downto 16 
stb_c2 <= '0'; 

until ack_c2 = ^ 
stb_c2 <= '1'; 

wait until ack_c2 = '0 
core2_result(15 downto 
stb_c2 <= '0'; 

wait until ack_c2 = '1 
stb_c2 <= '1'; 

wait until ack_c2 = '0 
core2_result(7 downto 
stb_c2 <= '0'; 

wait until ack_c2 = '1 
stb_c2 <= '1'; 

end get_from_core2; 

begin 
-- initialise control ports 
ack_in <= '1' 
stb_c2 <= '1' 
stb_out <= '1' 
control <= "000"; 

wait for 0 ns; 
get_input_data; 
control <= mult2_op; 
wait for 0 ns; 
send_to_core2(TO_FLOAT(3.0)); 

send_to_core2{a2); 
get_from_core2; 
Tempi := core2_result; 

control <= sguare_op; 
wait for 0 ns; 
send_to_core2(al); 
get_from_core2; 
Temp2 := core2_result; 

Q := ((Tempi)-(Temp2))/TO_FLOAT(9.0); 
control <= mult3_op; 
wait for 0 ns; 

send_to_core2(TO_FLOAT(9.0)); 
send_to_core2(al); 
send_to_core2(a2); 

get_from_core2; 
Tempi ;= core2_result; 
control <= mult2_op; 
wait for 0 ns; 
send_to_core2(TO_FLOAT(27.0)); 
send_to_core2(a3); 
get_from_core2; 
Temp2 := core2_result; 
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206 control <= mult4_op; 

207 wait for 0 ns; 
2 0 8 send_t:o_core2 (TO_FLOAT (2.0) ) 
2 0 9 send_to_core2(al) 
210 send_to_core2(al) 
211 send_to_core2(al) 
212 get_from_core2; 
2 1 3 Temp] := core2_result; 
2 1 4 R := ((Templ)-(Temp2)-(Temp3))/TO_FLOAT(54.0); 
215 control <= square_op; 

216 wait for 0 ns; 
217 send_to_core2(R); 
218 R_sg := core2__result; 
2 1 9 control <= inult3_op; 
220 wait for 0 ns; 
221 send_to_core2(Q); 

222 send_t:o_core2 (Q) ; 
223 send_to_core2(Q); 

2 2 4 get_from_core2; 
2 2 5 0 cu := core2_result; 
226 D := R_sq + Q_cu; 
227 if (D = TO_FLOAT(0.0)) then 
228 control <= cbrt_op; 

229 wait for 0 ns; 
2 3 0 send_t:o_core2 (R) ; 
231 get_from_core2; 
232 S := core2_result; 
2 3 3 Tempi := al/TO_FLOAT(3.0); 
234 control <= mult2_op; 
235 wait for 0 ns; 
23 6 send_to_core2(TO_FLOAT(2.0)); 
237 send_to_core2(S) ; 
238 get_from_core2; 
239 Temp2 ;= core2_result; 

:= Temp2-Tempi; 
= TO_COMPLEX(-S-Templ,TO_FLOAT(0.0)); 
: = X2 ; 

2 4 3 elsif (D > TO_FLOAT(0.0)) then 
244 control <= sqrt_op; 
245 wait for 0 ns; 
246 send_to_core2(D); 

247 get_from_core2; 
248 sqrt_D ;= core2_result; 
249 control <= cbrt_op; 

250 wait for 0 ns; 
251 send_to_core2(R+sqrt_D); 
252 get_from_core2; 
253 S := core2_result; 
254 send_to_core2(R-sqrt_D); 
255 get_from_core2 ; 
256 T := core2__result; 
2 57 Tempi ;= S+T; 

2 5 8 Temp2 := al/TO_FLOAT(3.0); 
2 59 XI := Tempi-Temp2; 
260 control <= mult2_op; 
261 wait for 0 ns; 
262 send_to__core2 (S-T) ; 
263 send_to_core2(TO_FLOAT(conl)); 
2 64 get_from_core2; 
265 Temp3 ;= core2_result; 
2 G6 X2 := TO_COMPLEX((-Tempi/TO_FLOAT(2.0))-Temp2,Temp3) 
2 6 7 X3 := C0NJ(X2); 
268 else 
269 control <= sqrt_op; 
270 wait for 0 ns; 

2 7 1 send_to_core2(-Q_cu); 
272 get_from_core2; 
273 Temp3 := core2_result; 
274 control <= acos_op; 

2 4 0 XI 
2 4 1 X2 
2 4 2 X3 
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275 wait for 0 ns; 
2 7 6 send_t:o_core2 (R/Temp3) ; 
2 7 7 get:_froin_core2; 
278 Temp4 := core2_result; 
2 7 9 kheta3 := Temp4/TO_FLOAT(3.0); 
2 8 0 Tempi := al/TO_FLOAT(3.0); 
281 control <= sqrt_op; 
282 wait for 0 ns; 
2 8 3 send_t:o_core2 ( -Q) ; 
284 get_from_core2 ; 
285 Temp3 := core2_result; 
286 control <= mult2_op; 

287 wait for 0 ns; 
2 8 8 send_t:o_core2 (TO_FLOAT (2 . 0) ) ; 
289 send_to_core2(Temp3); 

2 9 0 get:_from_core2; 
291 Temp2 ;= core2_result; 
292 control <= cos_op; 

293 wait for 0 ns; 
294 send_to_core2(thetaS) ; 
295 get_from_core2; 
296 Temp3 := core2_result; 
2 9 7 control <= mult2_op; 
298 wait for 0 ns; 
299 send_to_core2(Temp3); 
300 send_to_core2(Temp2); 

301 get_from_core2; 
302 Temp4 ;= core2_result; 
303 XI := Temp4-Templ; 
304 control <= cos_op; 

305 wait for 0 ns ; 
306 send_to__core2 (theta3+T0_FL0AT (con2 ) ) ; 
307 get_from_core2 ; 
308 Temp3 := core2_result; 
309 control <= mult2_op; 

310 wait for 0 ns; 
311 send_to_core2(Temp3); 
312 send_to_core2(Temp2); 
313 get_from_core2; 
314 Temp4 ;= core2_result; 

315 X2 := TO_COMPLEX(Temp4-Templ,TO_FLOAT(0.0) 
316 control <= cos_op; 

317 wait for 0 ns; 
318 send_to_core2{theta3+TO_FLOAT{con3) ) ; 
319 get_from_core2; 
320 Temp3 := core2_result; 
321 control <= mult2_op; 

322 wait for 0 ns; 
323 send_to_core2(Temp3); 
324 send_to_core2(Temp2); 
325 get_from_core2; 
326 Temp4 := core2_result; 
3 2 7 X3 :=TO_COMPLEX(Temp4-Templ,TO_FLOAT(0.0): 

32 8 end if; 
329 send_output_result; 
330 end process; 

331 end; 



Z.A. Baidas, 2000 Appendix E: Example details 273 

1 
2 
3 
4 
5 
6 

7 
8 
9 

10 
11 
12 

13 
14 
15 
16 
17 
18 

19 
20 
21 
22 

23 
24 

2 5 

2 6 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 

41 
42 
43 
44 
45 
46 

47 
48 

49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 

66 
67 

Listing E.4 Arithmetic processor VHDL behavioural description 

The unit ack as a slave in a master slave combination. It is 
a floating-point arithmetic unit that performs one of eight floating-point 
operations based on a control vector provided as an input port 
the control signal is defined as follows: 
control Reaction 

000 Multiply two operands 
001 Square a single operand 
010 multiply three operands 
011 multiply four operands 
100 Square root 
101 Cubic root 
110 cosine function 
111 inverse cosine function 

Once the result is generated it is transferred back to the master unit 
using the same handshaking signals but in reverse order (i.e. acknowledge 
acts as strobe and vice versa) 

package UnitConst is 
constant mult2_op 
constant sguare_op 
constant mult3_op 
constant mult4_op 
constant sqrt__op 
constant cbrt_op 
constant cos_op 
constant acos_op 

end; 

bit_vector 
bit_vector 
bit_vector 
bit_vector 
bit_vector 
bit_vector 
bit_vector 
bit vector 

(2 downto 0 
(2 downto 0 
(2 downto 0 
(2 downto 0 
(2 downto 0 
(2 downto 0 
(2 downto 0 
(2 downto 0 

" 0 0 0 ' 

"001' 

"010' 

'Oil" 
'100" 

'101" 

'110" 

'Ill-

use work.UnitConst.all; 
entity arith_pro is 
port(input : in bit_vector (7 downto 0); 
stb_corel : in bit; 

ack_corel : out bit; 
control : in bit_vector (2 downto 0); 
result : out bit_vector (7 downto 0)); 

end; 

architecture behave of arith__pro is 
begin 
process 

-- temporary variables to hold the input operands and the output result 

variable out_data,xl,x2,x3,x4: float; 
variable in_data : float; 

-- a simple procedure that reads the data from unitl_core governed by 
-- two handshaking signals over four iterations 

Procedure read_data is 
begin 
wait until stb_corel = '0'; 
in_data (31 downto 24) := input; 
ack_corel <= '0'; 
wait until stb_corel = '1'; 
ack_corel <= '1' ; 
wait until stb_corel 
in_data (23 downto 16 
ack_corel <= '0'; 

wait until stb_corel 
ack_corel <= '1'; 
wait until stb_corel = '0 
in_data (15 downto 
ack_corel <= '0'; 

wait until stb core! = '1 

' 0 ' ; 

:= input; 

'1' ; 

: = input; 



Z.A. Baidas, 2000 Appendix E: Example details 274 

68 
69 
70 
71 
72 
73 
74 
75 
76 

77 
78 
79 
80 
81 
82 

83 
84 
85 

86 
87 
88 

89 
90 

91 
92 
93 

9 4 

95 
96 
97 
98 
99 

100 
101 
102 

103 
104 
105 
106 
107 
108 
109 
110 
111 
112 

113 
114 
115 
116 
117 
118 
119 
120 
121 
122 

123 
124 
12 5 
126 

127 
128 
129 
130 
131 
132 
133 
134 
135 
136 

ack_corel <= '1'; 
wait until stb_corel = '0'; 
in_data (7 downto 0) := input; 
ack_corel <= '0'; 
wait until stb_corel = '1'; 
ack_corel <= '1'; 

end read_data; 

begin 
ack_corel <= '1'; 
wait for 0 ns; 
read_data; 
xl := in_data; 
case control is 
when mult2_op => 

read_data; 
x2 := in_data; 
out_data := xl * xl; 
when square_op => 
out_data := xl * xl; 

when mult3_op => 
read_data; 
x2 := in_data; 

read_data; 
x3 := in_data; 
out_data := xl * x2 * x3; 
when mult4_op => 

read_data; 
x2 := in_data; 
read_data; 
x3 := in_data; 

read_data; 
x4 ;= in_data; 
out_data := xl * x2 * x3 * x4; 
when sqrt_op => 
out_data ^ SQRT(xl); 
when cbrt_op => 
out_data := CBRT(xl); 
when cos_op => 

out_data ^ COS(xl); 
when acos_op => 
out_data := ACOS{xl); 
when others => 

null; 
end case; 

output out_data over 4 iteration to the output stage 
starting with the MSBs 

result <= out_data (31 downto 24); 
wait for 0 ns; 
ack_corel <= '0'; 
wait until stb_corel = '0'; 
ack_corel <= '1'; 
wait until stb_corel = '1'; 

result <= out__data (23 downto 16); 

wait for 0 ns; 
ack_corel <= '0'; 
wait until stb_corel = '0'; 
ack_corel <= '1'; 
wait until stb_corel = '1'; 

result <= out_data (15 downto 8); 
wait for 0 ns; 
ack_corel <= '0'; 

wait until stb_corel = '0'; 
ack_corel <= 
wait until stb_corel = '1'; 
result <= out_data (7 downto 0); 
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137 wait for 0 ns; 
138 ack_corel <= '0'; 

139 wait until stb_corel = '0' 
140 ack_corel <= '1'; 
141 wait until stb_corel = '1' 
142 end process; 

143 end behave; 
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Listing E.5 Output stage VHDL behavioural description 

1 
2 -- The output: stage is responsible for driving the VGA adapter that connects 
3 -- to the VGA screen, starts by initializing the screen static components 
4 -- such as titles and borders. Then it starts monitoring the input stage to 
5 -- display the entries provided by the keyboard. The final stage includes 
G -- monitoring the core to get the floating-point outputs, performs 
7 -- type conversion and display them on the screen. 
8 
9 entity out_stage is 

10 port ( key : in bit_vector (4 downto 0); 
11 stb_in ; in bit; 
12 ack_in : out bit; 
13 

14 float_in : in bit_vector (31 downto 0); 
15 stb_c : in bit; 
16 ack_c : out bit; 
17 
18 vga_data : out bit_vector (7 downto 0); 
19 ready : in bit 
20 ) ; 
21 end; 
22 architecture behave of out_stage is 
23 
24 -- initial commands that initialises the VGA adapter and draws the static 
25 -- components on the screen are provided in goups of internal ROMs. A control 
26 -- loop passes through these ROMS and output the commans in order 

27 
28 
29 ROM_SetPage initialises the VGA adapter by setting the pallete, setting the 
30 -- drawing mode and the drawing page.It also draws the back groun rectange 
31 -- and any other static lines. 
32 
33 type ROM_SetPage is array(0 to 35) of bit_vector(6 downto 0); 
34 
35 

36 -- ROM_CharSet holds all the static ASCII characters such as the main title 
37 -- and the variables names 
38 
39 type ROM_CharSet is array(0 to 83) of bit_vector(6 downto 0); 

4 0 

4 1 

42 -- ROM_resetSc holds the command sequence required to reset the output results 
43 -- by drawing a rectangle with the same colour as the back ground over 
44 -- the output result 
45 
46 type ROM_resetSc is array(0 to 19) of bit_vector(6 downto 0); 
47 
48 
49 begin 
50 main_process : process 
51 variable adrs_set : integer range 0 to 47; 
52 variable adrs_char : integer range 0 to 84; 
53 variable CharSet : ROM CharSet := ( 

54 "1000110", -- F (70) 
55 "1101100", 1 (108) 
56 "1101111", -- o (111) 
57 "1100001", -- a (97) 
58 "1110100", - - t (116) 
59 "1101001", -- i (105) 
60 "1101110", -- n (110) 
61 "1100111", - - g (103) 
62 "0100000", -- space (32 
63 "1010000", - - P (80) 
64 "1101111", -- o (111) 
65 "1101001", -- i (105) 
66 "1101110", -- n (110) 
67 "1110100", - - t (116) 
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68 "0100000", -- space (32) 
69 "1010011", -- S (83) 
70 "1111001", -- y (121) 
71 "1101110", -- n (110) 
72 "1110100", -- t (116) 
73 "1101000", - - h (104) 
74 "1100101", -- e (101) 

75 "1110011", -- s (115) 
76 "1101001", -- i (105) 
77 "1110011", -- s (115) 

78 
79 

80 
81 
82 
83 

84 
85 

86 
87 

88 
89 

90 
91 

92 

93 
94 

95 
96 

97 

98 
99 

100 
101 
102 

103 

104 
105 
106 

107 

108 

109 

110 
111 
112 

113 

114 

115 

116 

117 

118 
119 
12 0 
121 
122 

123 

124 
125 
12 6 

127 
128 
12 9 

130 
131 

132 
133 

134 
135 

136 

"1000001' 
"OllOOOr 
"0100000' 
"0111101' 
"0100000" 

"1000001" 
"0110010" 
"0100000" 
"0111101" 
"0100000" 

"1000001" 
"0110011" 
"0100000" 
"0111101" 
"0100000" 

"1011000" 
"0110001" 
"0100000" 
"0100000" 
"0100000" 
"0100000" 
"0100000" 
"0111101" 
"0100000" 

"1010010" 
"1100101" 
"0101000" 
"1011000" 
"0110010" 
"0101001" 
"0100000" 
"0111101" 
"0100000" 

"1001001" 
"1101101" 
"0101000" 
"1011000" 
"0110010" 
'0101001" 
"0100000" 
'0111101" 
'0100000" 

'1010010' 
'1100101" 
'0101000" 
'1011000" 
'0110011" 
'0101001" 
'0100000" 
'0111101" 
'0100000" 

• A (65)-- address = 24 

1 M 9 ) 

space (32) 

= ^ ^ ) 

space (32) 

A (65)-- address = 29 

2 (sm 
space (32) 
= 

space (32) 

A (65)-- address = 34 

3 ^ ^ ) 

space (32) 

= ^ ^ ) 

space (32) 

X (88)-- address = 39 

1 (49) 
space (32) 

space (32) 
space (32) 

space (32) 

space (32) 
= (61) 

space (32) 

R (82)-- address = 48 
e (101) 

( (40) 

X (88) 
2 (50) 

) (41) 

space (32) 
= (61) 

space (32) 

address 57 1 (73) 
m (109) 
( (40) 
X (88) 

2 (50) 
) (41) 
space (32) 
= (61) 
space (32) 

R (82)-- address = 66 
e (101) 

( (40) 

X (88) 
3 (51) 

) (41) 
space (32) 
= (61) 

space (32) 
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137 "1001001", -- I (73)-- address = 7 5 
138 "1101101% -- m (109) 
139 "0101000", -- ( (40) 
140 "1011000", — X (88) 

1 4 1 "0110011", -- 3 (51) 
142 "0101001", -- ) (41) 
143 "0100000", -- space (32) 
144 "0111101", -- = (61) 

145 "0100000" -- space (32) 
146 ) ; 

147 variable SetPage : ROM_SetPage := ( 

148 "0011000", -- set the palette 

149 "0011011", -- colour 0 
150 "1011101", -- to grey ( Bacltgroud color) 
151 
152 "0011000", -- colour 1 light blue (title and 

153 "1000011", 
154 "0111110", 
155 
156 "0011001", -- colour 2 dark, blue (al,a2,a3) 
157 "0000100", 
158 "0101001", 
159 
160 "0011001", --colour 3 black 
161 "1000000", 
162 "0000000", 
163 
164 "0010000", -- mode = direct draw 

165 "0001100", -- set raster page to 0 

166 "0001000", — set render page to 0 
167 
168 --draw khe background rectangle 

169 "0100011", -- set background color to black 

17 0 "0110011", -- set fore color to black 

171 "0000001", -- set point 0 to (0,0) 
172 "0000000", 
173 "0000000", 
174 "0000000", 
17 5 "0000010", -- set point 1 to (639,479) 
176 "0010011", 
177 "1111111", 
178 "1011111", 
17 9 "1010000", -- draw rectangle 
180 
181 "0100000", -- set background color to grey 
182 "0110000", -- set fore color to grey 
183 "0000001", -- set point 0 to (10,10) 

184 "0000000", 
185 "0101000", 
186 "0001010", 
187 "0000010", -- set point 1 to (629,370) 
188 "0010011", 
189 "1010110", 
190 "1110010", 
191 "1010000", -- draw rectangle 
192 
193 "0110001", -- set colour to light blue 

194 "0000001", -- set point 0 to (40,64) 

195 "0000001", 
196 "0100000", 
197 "1000000", 
198 "0000010", 
199 "0001101", 
200 "0100000", 
201 "1000000", -- set point 1 to (424,54) 

202 "1001000" -- draw line 
203 ) ; 

204 variable initialise : bit := '1'; -- initial. 
205 variable x_ val,a_sign_x : bit_vector (9 downto 
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2 0 6 
207 
2 0 8 
209 
210 
211 
212 

213 
214 
215 
216 
217 
218 
219 
220 
221 
222 
223 

2 2 4 

225 
226 
227 
2 2 8 
229 
230 
231 
232 
233 
234 
235 
236 
237 
238 
239 
240 
241 
242 
243 
244 
245 
246 
247 
248 
249 
250 
251 
252 
253 

254 
255 
256 
2 57 
258 
259 
260 
261 
262 
263 
264 
265 
266 
267 
268 
269 
270 
271 
272 
273 
274 

variable y_val : bit_vector (8 downto 0); 
variable number : bit_vect:or (6 downto 0); 
variable sign : bit; 
variable float_val : bit_vector (31 downto 0) 
variable temp : bit_vector (26 downto 0); 
variable exponent : bit_vector (8 downto 0); 
variable count : bit_vector (3 downto 0); 
variable current_key : bit_vector (4 downto ( 
variable out_hund,out_ten : bit; 

-- A procedure to output a single VGA command provided as an input argument 
-- to the VGA screen. 

procedure send2vga(inst : in bit_vector('7 downto 0)) is 
begin 
wait until ready = '0'; 
vga_data(7 downto 0) <= inst(7 downto 0); 

wait until ready ='1'; 
vga_data(7) <= '0'; 

end send2vga; 

-- A procedure to draw an ASCII character provided as an input argument 
-- to the location specified by xl,yl. The character size is also provided by 
-- the xsize and ysize arguments 

procedure DrawChar (xl : in bit_vector(9 downto 0); 
yl : in bit_vector(8 downto 0); 
char : in bit_vector{6 downto 0); 
xsize : in bit_vector(l downto 0); 
ysize : in bit_vector(l downto 0)) is 
begin 

--set point 0 
send2vga("10000001"); 
send2vga(''100'' & xl(9 downto 5)); 
send2vga(''l'' & xl(4 downto 0) & yl(8 downto 7)); 
send2vga("l" & yl(6 downto 0)); 

draw character 
send2vga("lll'' & xsized downto 0) & ysized downto 0) & "0"); 
send2vga("l" & char(6 downto 0)); 

end DrawChar; 

-- A simple procedure to read a key entry from the input stage 

procedure get_key is 
begin 

wait until stb_in = '0'; 
current_key := key; 
ack_in = '0'; 
wait until stb_in = '1'; 
ack_in <= '1'; 

end get_key; 

-- A simple procedure to output the sign of the input variables 

procedure output_sign (sign : in bit; x : in bit_vector (9 downto 0); 
y : in bit_vector (8 downto 0)) is 
begin 
if (sign = '0') then -- output blank in the location 

DrawChar(x,y,"0100000","00","00"); 
else -- output (-) (45) in the location 
DrawChar(x,y,"0101101","00","00"); 

end i f; 
end output_sign; 
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275 

2 7 6 -- A procedure to read a floating-point value from the core 
277 -- and save in an internal variable (float_val) 
278 
279 procedure get_float is 
280 begin 
281 wait until stb_c = '0'; 
282 float_val := float_in; 
283 ack_c <= '0'; 
284 wait until stb_c = '1' ; 
285 ack_c <= '1'; 

286 end get_float; 
287 
288 
2 8 9 -- A procedure to display the sign of the floating-point result (the roots) 
290 
291 procedure f_output__sign is 
292 begin 
293 if (float_val(31) = '0') then -- the sign is plus 

2 9 4 DrawChar (x_val,y_val,"0101011","00","00"); 
295 else 
2 9 6 DrawChar (x_val,y_val,"0101101","00","00"); 
297 end if; 
298 x_val := x_val + convert_int2bv{8,10); 
299 end f_output_sign; 
300 
301 

302 A procedure to display the mantissa of the floating-point result 
303 -- (the roots) 
304 
305 procedure f_output_mantissa is 
306 begin 

307 DrawChar (x_val,y_val,"0110001","00","00"); — output the implicit 1 
308 x_val := x_val + convert_int2bv(8,10); 
309 DrawChar ( x _ v a l , y _ v a l 0 1 0 1 1 1 0 0 0 D O " ) ; -- output the decimal point 
310 x_val := x_val + convert__int2bv (8 , 10) ; 
311 temp := "0000" & float_val(22 downto 0); 

312 -- convert the fraction to its equivelent sequence of ASCII digits 
313 for j in 0 to 12 loop 
314 -- multipliy by 1010 then output temp(26 downto 23) 
315 -- then set temp(26 downto 23) to "0000" 
316 temp := temp(25 downto 0) & "0" + temp(23 downto 0) & "000"; 
317 number := "000" & temp(26 downto 23); 

318 -- the equivelent ascii character conversion 
319 number ;= convert_int2bv(48,7) + number; 
320 DrawChar (x_val,y_val,number,"0000"); 
321 x_val := x_val + convert_int2bv(8,10); 
322 temp(26 downto 23) := "0000"; 
323 end loop; 
324 end f_output_mantissa; 
325 
326 
327 -- A procedure to display the exponent of the floating-point result 
328 -- (the roots) 
329 
330 procedure f_output_exponent is 
331 begin 
332 -- output (space * space ) 
333 DrawChar (x_val,y_val," 0100000 00 00 ") ; 
334 x_val := x_val + convert_int2bv(8,10); 
335 DrawChar ( x _ v a l , y _ v a l 0 1 0 1 0 1 0 0 0 ","00 ") ; 
336 x_val ;= x_val + convert_int2bv(8,10); 
337 DrawChar ( x _ v a l , y _ v a l 0 1 0 0 0 0 0 0 0 00") ; 
338 x_val := x_val + convert_int2bv(8,10); 
339 
340 DrawChar (x_val,y_val,"0110010","00","00"); -- output 2 
3 4 1 x_val := x_val + convert_int2bv(8,10); 
342 y_val ;= y_val - convert_int2bv(8,10); 
343 -- now final thing output the exponent 
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344 exponent := "0" & float_val(30 downto 23) - convert_int2bv(127,9); 
3 4 5 if (exponent (8) = '1') then -- negative exponent 
3 4 6 exponent := NOT exponent + "000000001": 
3 4 7 DrawChar (x_val,y_val, "0101101 ","00%"00"); 
3 4 8 x_val := x_val + convert_int2bv(8,10); 
34 9 end if; 
3 5 0 if (exponent >= convert_int2bv(100,9)) then 
351 -- output 1 and subtract 100 
352 DrawChar (x_val,y_val,"0110001","00","00"); 
353 x_val ;= x_val + convert_int2bv(8,10); 
354 exponent := exponent - convert_int2bv(100,9); 
355 out_hund := '1'; 
3 56 end if; 
357 if (exponent >= convert_int2bv(10,9)) then 
358 count := "0000"; 
359 out_ten := '1'; 

360 loop 
361 exit when exponent < convert_int2bv(10,9); 

3 6 2 exponent := exponent - convert_int2bv(10,9); 
3 63 count := count + "0001"; 
3 64 end loop; 
365 number := "000" & count; 
366 number ;= convert_int2bv(48,7) + number; 
367 DrawChar ( x _ v a l , y _ v a l , n u m b e r 0 0 0 0 " ) ; 

3 6 8 x_val := x_val + convert_int2bv(8,10); 
3 69 end if; 
370 if (out__hund = ' 1' and out_ten = '0') then 
371 number := convert_int2bv(48 , 7) ; 
372 DrawChar (x__val, y_val, number," 00 "," 00 ") ; 
373 x_val := x_val + convert_int2bv(8,10); 
374 end if; 
375 -- output the BCD LSB 
376 number := exponent (6 downto 0); 
377 number := convert_int2bv(48,7) + number; 

378 DrawChar (x_val, y__val, n u m b e r 0 0 "," 00 ") ; 
379 end f_output_exponent; 
380 
381 

3 8 2 -- A procedure to control displaying the floating-point result on the VGA 
383 -- screen. It checks for demornal situations and then display the number 
384 -- based on three procedures declared earlier (f_output_sign, 
385 -- f_output_mantissa,f_output__exponent) 
386 
387 procedure output_float is 
388 begin 

3 8 9 if float_val(30 downto 23) = "00000000" then -- result = zero (48) 
390 DrawChar ( x _ v a l , y _ v a l 0 1 1 0 0 0 0 0 0 0 0 " ) ; 
391 -- e=255 is preserved for NaN and infinity 
392 elsif float_val{30 downto 23) = "11111111" then 
393 -- detected infinity 

394 if float_val(22 downto 0) = "00000000000000000000000" then 
395 if (float_val(31) = '0') then -- +inf 
396 DrawChar ( x _ v a l , y _ v a l 0 1 0 1 0 1 1 G O 00 ") ; 
397 else -- -inf 
398 DrawChar {x_val,y_val,"0101101","00" , "00") ; 
3 99 end if; 
400 x_val := x_val + convert_int2bv(8,10); 
401 DrawChar (x_val,y_val,"1101001","0000 ' 
402 x_val := x_val + convert_int2bv(8,10); 
403 DrawChar {x_val,y_val,"110111000","00' 
404 x_val := x_val + convert_int2bv(8,10); 
4 0 5 DrawChar (x_val,y_val,"1100110","00","00" 
406 else -- NAN 
407 DrawChar ( x _ v a l , y _ v a l 1 0 0 1 1 1 0 0 0 0 0 " 
408 x_val := x_val + convert_int2bv(8,10); 
409 DrawChar ( x _ v a l , y _ v a l , " 1 0 0 0 0 0 1 0 0 0 0 " 
410 x_val := x_val + convert_int2bv(8,10); 
411 DrawChar (x_val,y_val,"1001110","00","00" 
412 end if; 
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413 else -- normal case 
414 f_output_sign; 
415 f__output_mantissa; 
416 f_output_exponent; 
417 end if; 
4 1 8 end output_float; 
419 
420 -- main control sequence 
421 

422 begin 
423 if (initialise = '1') then 
424 adrs_set = 0; 
4 2 5 out_hund := '0'; 
42 6 out_ten := ' 0 ' ; 

4 2 7 vga_data <= "00000000"; 
428 wait for 0 ns; 

4 2 9 -- set the pallete, draw the background and draw the underline 
430 loop 
4 3 1 send2vga("l'' & SetPage(adrs_set)); 
432 exit when adrs_set = 35; 
433 adrs_set = adrs_set + 1; 
434 end loop; 
43 5 adrs_char ;= 0; 
436 initialise = '0'; 

437 

4 3 8 -- now draw the fixed characters (title in light blue) 
439 (al,a2,a3) in dark blue 
440 send2vga("l" & "0100000"); -- set back ground color to grey 
441 sendZvga("1" & "0110001"); -- set foreground color to light blue. 
442 x_val := convert_int2bv{40,10); 
4 4 3 y_val := convert_int2bv(32,9); 
444 loop -- draw the title -- x_size = y_size = "01"; 
445 DrawChar (x_val,y_val,CharSet(adrs_char) , "01" , " 01") ; 
446 exit when adrs_char = 23; 
447 adrs_char := adrs_char + 1; 
448 x__val : = x_val + convert_int2bv (15 , 10 ) ; 
449 end loop; 

4 5 0 send2vga("l" & "0110010"); -- set foreground color to dark blue. 
451 x_val := convert_int2bv(40,10); 
4 52 y_val := convert_int2bv(88,9); 
4 53 adrs_char := 24; 
454 loop -- draw al,a2,a3 

4 5 5 DrawChar (x_val,y_val,CharSet(adrs_char),"00","00"); 
456 exit when adrs__char = 38; 
457 adrs_char := adrs_char + 1; 
458 x_val := convert_int2bv{8,10); 
459 if (adrs_char = 29) then 

460 x_val ;= convert_int2bv(40,10); 
461 y_val ;= convert_int2bv(120,9); 
462 elsif {adrs_char = 34) then 
4 63 x_val := convert_int2bv(40,10); 
464 y_val := convert__int2bv (15 2 , 9 ) ; 
4 65 end if; 
466 end loop; 

467 send2vga{"l" & "0110011"); -- set foreground color to black. 
468 x_val := convert_int2bv(40,10); 
469 y_val := convert_int2bv(200,9); 
47 0 adrs_char := 39; 

471 loop -- draw xl,rex2,imx2,rex3,imx3 
472 DrawChar (x_val,y_val,CharSet{adrs_char),"00","00"); 
473 exit when adrs_char = 83; 
474 adrs_char := adrs_char + 1; 
475 x_val := convert_int2bv(8,10); 
476 if (adrs_char = 48) then 
477 x_val := convert_int2bv(40,10); 
478 y_val := convert_int2bv(232 , 9) ; 
479 elsif (adrs_char = 57) then 
480 x_val := convert_int2bv(40 , 10) ; 
481 y__val ;= convert_int2bv (2 5 6 , 9 ) ; 
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482 els 1f {adrs_char = 56) then 

4 8 3 x_val := convert:_int2bv(40,10); 
4 8 4 y_val := convert_int2bv(288,9); 
4 8 5 elslf (adrs_char = 75) then 
486 x_val := convert_int2bv(40,10j; 
487 y_val := convert_int2bv(312,9); 
4 8 8 end i f; 
489 end loop; 
4 90 end i f; 

4 9 1 -- initialisation is done the process will start monitoring the input stage 
4 9 2 -- to display the three input paramemters al,a2,a3 and display them digit 
493 -- by digit on the VGA screen 
494 ack_in <= '1'; 
495 ack_c <= '1'; 
496 wait for 0 ns; 
497 -- get al 
498 sign = '0'; 

4 9 9 x_val := convert_int2bv(104,10); -- 96 for the sign 
500 y_val := convert_int2bv(88,9); 
5 0 1 a_sign_x := convert_lnt2bv(96,10); 

5 0 2 -- set back ground color to grey and foreground color to dark blue. 
503 send2vga(''l'' & "0100000"); 
504 send2vga("l'' & "0110010"); 
505 for i in 0 to 2 loop 
506 if (i = 1) then -- recieving the second variable (a2) 
507 sign = '0'; 

5 0 8 x_val := convert_int2bv(104,10); — 96 for the sign 
509 y_val ;= convert_int2bv(120,9); 
510 a_sign_x := convert_int2bv{96,10); 
511 elsif (i = 2) then -- receiving the third variable (a3) 
512 sign = '0'; 

5 1 3 x_val := convert_int2bv(104,10); — 96 for the sign 
514 Y_val := convert_int2bv(120,9); 
515 a_sign_x := convert_int2bv(96,10); 
516 end if; 
517 loop 
518 get_key; 

519 if (current_key = "01101") then -- minus 
520 sign := not sign; 
521 output_sign (sign, a_sign_x,y_val); 
522 elsif {current_key = "10000") then -- point (46) 

523 DrawChar (x_val,y_val,"0101110","00","00"); 
524 x_val := x_val + convert_int2bv(8,10); 
525 elsif (current_key = "01111") then -- enter 
52 6 exit; 

527 else -- a digit is received generate the equielent ASCII character 
528 -- and output it 
529 number := "00" & current_key; 

530 number := convert_int2bv(48,7) + number; 
531 DrawChar ( x _ v a l , y _ v a l , n u m b e r 0 0 0 0 " ) ; 
532 x_val := x_val + convert_int2bv{8,10); 
533 end if; 
534 end loop; 
535 end loop; 

536 -- the final stage is reading the roots from the core unit and display them 
537 x_val := convert_int2bv{12 8,10); -- XI 
538 y_val := convert_int2bv(200,9); 
539 get_float; 
540 output_float; 
541 x_val := convert_int2bv(12 8,10); -- RE(X2) 
542 y_val := convert_int2bv(232,9); 
543 get_float; 
544 output_float; 
545 x_val := convert_int2bv(128,10); -- IM(X2) 
546 y_val := convert_int2bv(256,9); 
547 get_float; 
548 output_float; 

549 x_val := convert_int2bv(12 8,10); -- RE(X3) 
550 y_val := convert_int2bv(288,9); 
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551 geC_float; 
552 output_float; 

553 x_val := convert_int2bv(128,10); -- IM(X2 
554 y_val := convert_int2bv(312,9); 
555 get_float; 
556 output_float; 
557 end process; 
558 end behave; 
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Listing E.6 Interface unit in the first FPGA 

1 
2 
3 
4 
5 
6 
7 
8 
9 

10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 

24 
25 
26 
2 7 

28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 
66 
67 

-- The unit is part of the final modification to the cubic equation solver 
-- as a result of moving the output stage to the second FPGA. 
-- The data is converted into blocks of 6-bit output and passed to interface2 
-- in the second FPGA 

entity interfacel is 
port ( key : in bit_vector (4 downto 0); 
stb__in ; in bit; 
ack_fpga2 : in bit; 
float_in : in bit_vector (31 downto 0); 
stb_c : in bit; 
ack_c : out bit; 
stb_fpga2 : out bit; 
ctrl_fpga2 : out bit; 
ack_in : out bit; 
fpga2_data : out bit_vector (5 downto 0) 
) ; 

end; 
architecture behave of interfacel is 
begin 
process 
variable count : integer range 0 to 3; 
variable in_key : bit_vector (4 downto 0); 
begin 
-- first initialise all ports 
ack_in <= '1'; 
ack_c <= '1'; 
stb_fpga2 <= '1'; 
ctrl_fpga2 <= '0'; -- '0' means initialise the screen for a new entry 
-- now negotiate with fpga2 to initialise screen 
wait until ack_fpga2 = '1'; 
stb_fpga2 <= '0'; 
wait until ack_fpga2 = '0'; 
stb_fpga2 <= '1'; 
ctrl_fpga2 <= '1'; 
count := 0; 
loop 
wait until stb_in = '0'; 
in_key := key; 
ack_in <= '0'; 
wait until stb_in = '1'; 
ack_in <= '1'; 
if (in_key = "01111") then 
count := count + 1; 

End i f; 
fpga2_data(4 downto 0) <= in__key; 
wait until ack_fpga2 = '1'; -- send the key to the output 
Stb_fpga2 <= '0'; 
wait until ack_fpga2 = '0'; 
stb_fpga2 <= '1'; 
exit when count = 3 ; -- three enters mean three parameters 

End loop; 
-- now receiving the five floating point variables 
loop 
wait until stb_c = '0'; 
fpga2_data <= float_in (5 downto 0); 
wait until ack_fpga2 = '1'; 
stb_fpga2 <= '0'; 
wait until ack_fpga2 = '0'; 
stb_fpga2 <= '1'; 

-- count three enters 

if key is enter 

fpga2_data <= float_in (11 downto 6); 
wait until ack_fpga2 = '1'; 
stb_fpga2 <= '0'; 
wait until ack_fpga2 = '0'; 
Stb_fpga2 <= '1'; 
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68 
69 
70 
71 
72 
73 
74 
75 
76 
77 
78 
79 
80 
81 
82 

83 
84 
85 

86 
87 
88 
89 
90 
91 
92 
93 
94 
95 
96 

fpga2_data <= float_in (17 downto 12); 
wait: until ack_fpga2 = '1'; 
stb_fpga2 <= '0'; 
wait until ack_fpga2 = '0'; 
stb_fpga2 <= '1'; 

fpga2_data <= float_in (23 downto 18); 
wait until ack_fpga2 = '1'; 
stb_fpga2 <= '0'; 
wait until ack_fpga2 = '0'; 
stb_fpga2 <= '1'; 

fpga2_data <= float_in (29 downto 24); 
wait until ack_fpga2 = '1'; 
stb_fpga2 <= '0'; 
wait until ack_fpga2 = '0'; 
stb_fpga2 <= '1'; 

fpga2_data <= "0000" & float_in (31 downto 30) 
wait until ack_fpga2 = '1'; 
stb_fpga2 <= '0'; 
wait until ack_fpga2 = 
stb_fpga2 <= '1'; 
ack_c <= '0'; 

wait until stb_c = '1' 
ack_c <= '1'; 

end loop; 
end process; 

end behave; 

'0' ; 



14 stb_core 
15 ack_core 
16 ack_fpga 
17 stb_fpga 
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Listing E.7 Interface unit in the second FPGA 

1 
2 -- The unit is part of the final modification to the cubic equation solver 
3 -- as a result of moving the output stage to the second FPGA. 
4 -- The data is received from the first FPGA in blocks of 6-bit, which gets 
5 -- adjusted to the appropriate formate and passed to the output stage 
6 
7 
8 entity interface2 is 
9 port ( initialise : out bit; 

10 key : out bit_vector (4 downto 0); 
11 stb_in : out bit; 
12 ack_in : in bit; 
13 float_data : out bit_vector (31 downto 0); 

out bit; 
in bit; 
out bit; 
in bit; 

18 ctrl_fpga : in bit; 
19 fpga_data : in bit_vector (5 downto 0) 
20 ') ; 
21 end; 
22 architecture behave of interface] is 
23 begin 
24 process 
25 variable enter_count : integer range 0 to 3; 
26 variable data : bit_vector (5 downto 0); 
27 variable Ctrl ; bit; 
28 begin 
29 -- first initialise all ports 
3 0 stb_in <= '1 ' ; 
31 stb_core <= '1'; 
32 ack_fpga <= '1'; 
33 initialise <= '1'; 
34 protect; 
35 initialise <= '0'; -- initialise VGA driver 
3 6 -- get key from FPGAl 
37 enter_count = '0'; 
38 loop 
39 wait until stb_fpga = '0'; 
40 Ctrl := ctrl_fpga; 
41 data ;= fpga_data; 
42 ack_fpga <= '0'; 
43 wait until stb_fpga = '1'; 
44 ack_fpga <= '1'; 
45 exit when Ctrl = ' 0 ' ; 
46 -- here ctrl does not equal 0 
47 -- send the key to VGA 
48 if {enter_count /= 3) then 
49 key <= data {4 downto 0); 
50 wait until ack_in = '1'; 
51 stb_in <= '0'; 
52 wait until ack_in = '0'; 
53 stb_in <= '1' ; 
54 -- key is sent to output stage now check if it is an enter 
55 if (data(4 downto 0) = "01111") then 
56 enter_count := enter_count + 1; 
57 end if; 
58 else -- we are receiving floating-point results five of them 
59 float_data (5 downto 0) <= data; 
60 wait until stb_fpga = '0'; 
61 Ctrl := ctrl_fpga; 
62 float_data (11 downto 6) <= fpga_data; 
63 ack_fpga <= '0'; 
64 wait until stb_fpga = '1'; 
65 ack_fpga <= '1'; 
66 exit when Ctrl = '0'; 
67 wait until stb_fpga = '0'; 
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68 Ctrl ctrl_fpga; 
69 float_data (17 downto 
70 ack_fpga <= '0'; 
71 wait until stb_fpga = 
72 ack_fpga <= '1'; 
73 exit when Ctrl = '0'; 
74 wait until stb_fpga = 
75 Ctrl := ctrl_fpga; 
76 float_data (23 downto 
77 ack_fpga <= '0' ; 
78 wait until stb_fpga = 
79 ack_fpga <= '1'; 
80 exit when Ctrl = '0'; 
81 wait until stb_fpga = 
82 Ctrl = ctrl_fpga; 

83 float_data (29 downto 
84 ack_fpga <= '0' ; 
85 wait until stb_fpga = 
86 ack_fpga <= '1'; 
87 exit when Ctrl = '0'; 
88 wait until stb_fpga = 
89 Ctrl := ctrl_fpga; 
90 float_data (31 downto 
91 ack_fpga <= '0'; 
92 wait until stb_fpga = 
93 ack_fpga <= '1'; 
94 exit when Ctrl = '0'; 
95 -- the float variable 
96 wait until ack_core = 
97 stb_core <= '0'; 
98 wait until ack_core = 
99 stb_core <= '1'; 

100 end if; 
101 end loop; 
102 end process; 
103 end behave; 

12) <= fpga_data; 

fpga_data; 

' 0 ' 

24) <= fpga_data; 

30) <= fpga_data (1 downto 0) 

• I ' 

is recieved now send it 

' 0 ' 
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Appendix F 

Papers 

The paper contained in this Appendix, "Floating-point Behavioural Synthesis" submitted 

to the IEEE Transactions on Computer-Aided Design, describes the floating-point 

synthesis capabilities of the MOODS synthesis system. It briefly surveys the infrastructure 

of the floating-point optimisation algorithm, along with a description of the way the 

system handles the high-level floating-point binding decisions based on a set of pre-

determined interactions. 
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Floating point behavioural synthesis 

Z. Baidas, A.D. Brown and A.C. Williams 
Department of Electronics and Computer Science 

University of Southampton 
Hampshire SO 17 IBJ 

England 
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1. Introduction 

Floating point number representation can simultaneously provide a large range of 

numbers and a high degree of precision. However, the manipulation of floating point 

numbers is considerably more complicated than the corresponding fixed point operations -

as a consequence, a portion of modern microprocessors is devoted to dedicated hardware 

for floating point computation. Increasing hardware capacity and increasing power of 

optimisation techniques now make it possible to sensibly synthesise systems containing 

floating point operations on an ASIC or FPGA. 

Behavioural synthesis works on a description that specifies the rgZan'oW?//) 

between system inputs and outputs by describing abstract data structures and functions to 

manipulate them. The physical structure is not described, as the emphasis is on what a 

design (fogj' and not Aow it is done. In addition, the data flow manipulation aspects for a 

synthesis system are not generally concerned with the data rVjOg,- the limitations of integer 

arithmetic are imposed simply by the lack of functional units for more complicated data 

types. 

1.1 Existing system 

The MOODS (Multiple Objective Optimisation for Data and Control path 

Synthesis) system has been described in detail elsewhere[1-5]. In precis, this is a synthesis 

system which implements global optimisation of a design dataflow and control graph by 

the repeated application of small, reversible (behaviour preserving) transforms, under the 

control of a simulated annealing algorithm. The system is designed to support overall 

optimisation with respect to widely differing criteria; currently these are area, delay and 

power dissipation. The operation of the system is usually characterised by a (fgjfgn 

- the entire structural design is represented by its values of area, delay and 

power dissipation, and these numbers form the coordinates of a point in design space. The 

algorithm moves the design through this space, as in figure 1, from an initial point, created 

from a line-by-line translation of the user behaviour, towards a user defined goal (typically 

minimum area, delay and dissipation). The speed of this process allows the designer to 

interactively study the tradeoffs possible between the three criteria. 

1.2 The floating point enhancement 

An overview of the entire system is given in figure 2. The shaded boxes in figure 2 

represent the aspects of the system described in this paper. The floating point optimiser 
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makes strategic decisions about the high level binding for each floating point unit (i.e. 

table lookup, iterative series or CORDIC), taking into account such issues as the type and 

number of each floating point operation required, and the availability and capacity of any 

off-chip ROM available to the system. This 'coarse design'is then presented to the 

simulated annealing algorithm. The front end of subsystem consists of a 'module-

ripping'unit[6], which allows the simulated annealing based optimiser to capitalise on 

similarities in the internal structures of the floating point units. . The definition of the 

floating point number underpinning this work is the IEEE single precision floating point 

standard 754-1985 [9]. 

1.3 Other systems 

Work elsewhere has implemented floating point capabilities by introducing a non-

standard format[10] - this results in a reduction in both the accuracy and dynamic range 

available - and in the introduction of a dedicated chip to handle floating point 

operations[l 1] - effectively a discrete ALU. A set of block-diagram-based commercial 

tooIs[12,13] allows users to create graphical representations of their systems using an 

assortment of functions provided in block libraries. These tools mainly support fixed-point 

format for hardware design, with a limited support of some standard floating point 

operations (addition, subtraction, multiplication, and division). Global optimisation is not 

supported. The key point of behavioural synthesis is that the designer should not 

concerned with the structure, just the system functionality. 

1.4 Overall strategy 

The high level behavioural description (which may contain fixed and floating point 

operations) is defined in VHDL, parsed and translated into ICODE. This is a hardware 

equivalent of assembly language; the principle significant difference being that ICODE 

supports multiple 'control' threads and parallelism. (The rationale for a file-based step in 

the overall dataflow is the same as for a software development environment: an overall 

project may consist of many source files, only some of which will be modified at each edit 

cycle. Further, ICODE is language neutral - parts of a project may be described using 

HDLs other than VHDL, and ICODE allows the support of a mixed language design 

environment.) 

The ICODE representation is then input to the floating point optimiser, which is 

the subject of this paper. It is described in detail in section HI. The main synthesis 
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optimisation block - controlled by a simulated annealing algorithm - operates on the 

control and dataflow graphs of the design. Local, reversible, small transforms are applied 

quasi-randomly (see [1-5]), which have the effect of iteratively moving the design from 

the initial point to a point as close as possible to the user defined objectives (see figure 1). 

This approach is successful because (from the perspective of the simulated annealing 

algorithm) the transforms are Zoca/ (i.e. they affect only a few other nodes each in the 

dataflow and control graphs) and zWgpgMcfe/zf. Attempts to use this philosophy on the 

floating point optimiser produced disappointing results, because each floating point 

mapping choice has repercussions; there is a very strong Tollow-me' effect. 

This makes iterative techniques unsuitable and constructive methods more attractive. A 

number of different procedures were explored; the heuristic described in section III 

permits MOODS to produce the best' results, although of course other algorithms may be 

just as suitable. 

Section 11 describes the implementation of the floating point library itself (the 

functional units are much more complex than their fixed point counterparts), and section 

n i describes how these structures are manipulated by the floating point optimisation 

algorithm. Finally, two examples are analysed, illustrating the behaviour of the system on 

non-trivial designs. 

II. The floating point library 

The floating point modules currently supported are given in table 1. (There is no 

reason in principle why the complex counterparts of all the functions cannot be supported; 

we chose to support those recommended in the IEEE standard 1076.2[14]) Each functional 

unit consists of three building blocks; 

1. Range reduction. 

2. Function evaluation. 

3. Post evaluation rounding and normalisation. 

II. 1 Range reduction 

The large dynamic range provided by a floating point representation introduces a 

problem when designing systems to handle floating point arithmetic. Some evaluation 

methods, such as iterative series, converge over a wide range of arguments. However, 

achieving a good accuracy over that range requires taking many terms into account. Other 

methods, such as the C0RDIC[11,15] algorithm have an in-built limited range of 



Z.A. Baidas, 2000 Appendix F: Papers 2 9 4 

convergence. Having a suitable technique to reduce the range of the input operand(s) is 

therefore essential. Each function has its own range reduction unit: periodic and symmetric 

functions have obvious reductions, and others include shifting and scaling (for example, 

ln(M.2^) => ln(M) + E.ln(2)) 

11.2 Function evaluation 

Three different (table lookup, iterative series and CORDIC) are 

used to implement the functional units; these techniques generate modules with 

significantly different physical properties. 

11.2.1 Table lookup 

Look-up tables are frequently and trivially used to evaluate mathematical 

functions. This scheme has often been rejected in practical cases because of the large table 

sizes required for acceptable accuracy. However, combining range reduction techniques 

with a dedicated interpolation procedure gives rise to a large reduction in table size, often 

to the point that it may be reduced to an on-chip set of static registers, rather than an 

external ROM. For example, evaluating to an accuracy of I % , using linear 

interpolation, requires a table with just six entries. Further reduction in table size can be 

achieved by partitioning a table into several smaller sub-tables that handle intervals of a 

function, each with its own scaling factor appropriate to that sub-table[16]. Even greater 

reduction in table size may be achieved by replacing the linear interpolation procedure 

with a quadratic or even higher order interpolation procedure, but the additional costs of 

the interpolation engine usually outweigh this advantage (although of course the 

interpolation unit can be shared amongst an arbitrary number of tables). 

Finally, the scaling factor and intervals in the previous discussion can be trivially 

forced to be a power of two, so that all the division operations during interpolation may be 

replaced by fast binary right shift operations. 

11.2.2 Iterative series 

In this method the value of a function/(x) is obtained by an iterative process; the 

value of x is inserted into some formula and after a number of operations the value is 

obtained. This is attractive when the relationship between adjacent terms in the series is 
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simple, or when the accuracy requirements are low. For example, the Taylor expansion of 

V A-.yM('A,lissin(:v) = y f « ; = ( - 1 ) " . — L + i=A , 
«=o (2fi + l)! ^ 2 J(M4-l)(2;!4-3) 

The main issue in calculating functions using power series is the number of terms that 

need to be taken in order to ensure that the result is accurate to the desired precision. 

II.2.3 The CORDIC algorithm 

The CORDIC (Co-Ordinate/(otationD/gital Computer) algorithm[l 1,15,17] was 

introduced as the basis for a navigational computer. Its principal advantages are that it 

requires no multipliers, and can generate two function results simultaneously. 

It is an iterative process, applied to a set of input variables (;c, v, z) for « iterations, 

to generate a result accurate to n digits. Each iteration involves a shift, an add and an add 

constant operation. The capabilities of the algorithm are summarised in figure 3. 

II.3 Post evaluation rounding and normalisation 

At this stage, the output result is adjusted to comply with the IEEE 754 standard. 

This involves 

1. Rounding the quotient by conditionally adding one to the least significant bit. 
All the floating point library modules work to an internal accuracy of 28 bits - the 
IEEE standard has 23. 

2. Normalising the quotient by shifting and adjusting the exponent field. 
The standard saves a bit by assuming the most significant bit of the fraction field is 
always set (which means it need not be saved) and modifying the exponent 
accordingly. 

3. Providing the special symbols to represent unusual events (infinity, NAN). 
Finally, any range reduction effects are inverted. 

III. The floating point optimisation block 

The task of this block is to assign a base technique (i.e. one of the three 

implementation methods above) to each floating point functional unit in the design. The 

aim of the process is not to produce directly an implementation that will meet the global 

design parameters specified by the user, rather to produce an intermediate implementation 

that makes it likely that the simulated annealing based optimiser will be able to approach 

the design objectives. 
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III.l Function implementation interactions 

The attributes of each function implementation considered in isolation are easy Co 

compare: to generate with a table requires the table itself (which may be internal, or 

external, requiring an interface), plus an interpolation engine. To generate it with a series 

requires a cumulative adder plus a term generator, which may require a table, but no 

interpolation engine. All these elements have easily quantifiable area and speed costs. 

However, when a number of functions are required, new interactions become important: 

# There is an overhead to interfacing an ASIC/FPGA to an external ROM or RAM, but 
it is fixed and independent of the number of external function tables. 

" The CORDIC algorithm can generate two function results simultaneously. 

» Once an iterative series generator has been instantiated, the cost of switching between 
different functions is relatively small. 

« Once a complex function is implemented, the equivalent real function is virtually free 
in most cases. 

« Some functions are built as a hierarchical composition of other functional units. If 
these units are already available, the total cost is reduced. 

» Some functions can be realised as functions of other functions. If these are already 
available, part of the required behaviour can be bootstrapped'. 

# Some function tables are subsets of others. 

9 If the external ROM size is limited, the distribution of tables onto the ROM affects the 
overall area and speed. 

# A low accuracy functional unit is a complete subset of any higher accuracy 
counterpart. 

® If a high number of functional units are to mapped onto an external ROM, the 
multiplexer costs can become comparable to the cost of an alternative base technique. 

Diverse interactions such as these require a dedicated optimisation algorithm. 

1II.2 Practical function implementation 

The overall synthesis system operates by instantiating sequential multi-cycle 

technology-independent functional blocks, which are inline expanded in the internal 

design structure during synthesis. These expanded modules act as templates, and enable 

the implementation of functional units not available in the MOODS technology library[6]. 

The floating point functional units are provided to the synthesis system as a set of 
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expanded modules. This enables inter-module optimisation at the sub-module level, 

allowing greater opportunities for functional unit sharing. In addition, a pre-processing 

stage handles floating point functional unit binding to the base technique expanded 

modules to help the main synthesis core to reach an optimum that meets the users supplied 

objectives. 

The pre-processing stage performs three tasks: 

1. Hierarchical unit expansion 

2. Exception register allocation 

3. Base technique optimisation 

III.2.1 Hierarchical unit expansion 

Many floating point and complex functional units in the library are provided as a 

hierarchical structure of common building blocks. This approach allows the final synthesis 

stage to share the common building blocks of different arithmetic units, which results in a 

significant reduction of the total area cost. In addition, partitioning the arithmetic units into 

a number of building blocks allows effective pipelining. This results in a reduction of the 

total delay and increases the throughput of the whole system. As an example, consider the 

pseudo-code of figure 4. 

The sine function is expanded into two sub-blocks, the range reduction stage 

and the function evaluation stage - figure 4b. A large 

number of sub-blocks are common to more than one floating point unit. They 

communicate with each other by means of (automatically generated) temporary buffers, 

which are initialized by the system to allow the sub-blocks to know which floating point 

unit they are actually representing. For example, hufl in figure 4b will be initialized to tell 

sin__cosj>re() it is representing a sin(), and sin_cos_pre() may write the range reduction 

details into to be picked up by The complex type conversion 

function is expanded into further building blocks two 

floating point multipliers and two type converters) - figure 4c. The jmg and 

functions are then further expanded (figure 4d). This approach makes it easy for the main 

annealing algorithm to exploit functional unit duplication. 

Note that RE() and IM() in figure 4c are similar to PL/1 pseudofunctions: if they 

appear on the right hand side of an assignment, they return a vaZwg, if they appear on the 

left hand side, they provide access. 
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As an aside, it is useful at this point to review the unit hierarchy utilised by the 

system; this will put the numeric results presented later into context. The hierarchy is 

shown in table 2. It is the job of the floating point optimiser (this paper, section HI) to 

realise floating point library units (level I) in terms of floating point primitives (level 2). It 

is the job of the simulated anneahng optimiser[l-8] to realise the floating point primitives 

in terms of MOODS functional units (level 3). Finally, the MOODS functional units will 

be realised in terms of (for the purposes of this paper) FPGA CLBs. This is done by the 

low-level logic optimiser supplied by the FPGA manufacturer. (Alternatively, the system 

can target ASICs directly - in this case, low level logic optimisation and placement and 

routing are needed.) At each step in the process, virtual units at one level can jAo/e 

physical units at the underlying level. 

III.2.2 Exception status register 

Implementing floating point operations necessarily implies supporting some kind 

of 'exception notification', to handle illegal operation attempts, over- and underflow, and 

so on. The IEEE floating point standard[9] defines the behaviour of a floating point system 

in pathological situations, both in terms of bit patterns in the floating point variable itself, 

and in a rggz'j'fg/'. The status register is a six-bit register that indicates the integrity of 

a floating point operation. Asserting one of the flags (bits) is analogous to throwing an 

exception; it is the responsibility of the user to handle (capture) the exception. 

From a broad perspective, there are two sensible places for such a register in a 

VHDL design. It is possible to have a single, global status register that can be accessed by 

any instruction within a process - the user must provide a dedicated monitor process for 

the register, and must decide what action (if any) is to be taken if a flag is raised. Equally, 

each floating point unit may have its own local register, and handle problems in its own 

way. Overloads of the floating point functions allow the user to use either (or both) 

technique(s) - if a flag register is supplied as an actual argument to a function instantiation, 

it is used; otherwise the existence of a global register is assumed. (This register will be 

automatically by the system, but any /Mon/formg process is the responsibility of 

the user.) 
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I I I 2.3 Accuracy considerations 

The introduction of a floating point capability gives rise to a fourth gross design parameter 

- that of accwmc}'. This cannot be treated on an equal footing with the other three 

dimensions of design space because the effects of changing the accuracy of a functional 

unit cannot be localised - a change to any module in the dataflow graph will threaten all 

operations predicated upon it. Errors propagate and interact non-linearly, and furthermore 

the extent and form of the interactions are invariably data dependent. It is not difficult to 

construct a process where a change of component accuracy ultimately affects behaviour. 

The system supports user specification of floating point accuracy at two levels: it is 

possible to assert an overall accuracy on a process, (each individual floating point 

operation in the process will deliver this accuracy) and it is possible to override this and 

assign individual accuracies to each floating point operation. Within each operator, a 

differential error propagation model[18] is employed to calculate the necessary accuracies 

of each of the sub-blocks, given the required accuracy of the parent operator itself. Where 

sub-blocks are shared between operators later by the system, the accuracy of each shared 

sub-block is promoted to the value of the most accurate. 

Figure 5 shows the design space trajectories for a large process (example 1), with a 

variety of user constraints and goals, optimised with a number of different accuracy 

requirements. The original behavioural VHDL process description contains sin(), arctan(), 

expO, ln(), arcsinO and sqrt(). Each trajectory consists of Ove points: 0.0001% accuracy 

(the end marked with a solid point), 0.001%, 0.01%, 0.1% and 1%. Tr^ectories T1..T3 are 

optimised with respect to area - changing the accuracy requirements impacts almost 

entirely on the delay. Trajectories T4..T6 are optimised with respect to delay, and 

changing accuracy requirements are traded off against system area. Trajectory parameters 

are given in table 3 - the trajectories in figure 5 are the Onal, physical characteristics of 

alternative structures delivering the same behaviour. "Delay" (table 3) is plotted against 

"Physical CLBs (datapath)" + "Physical CLBs (controller). The floating point functions 

(table 2, level 1) are implemented in terms of 10 virtual floating point primitives (level 2). 

The floating point optimiser cannot share any of these units because they are all different, 

hence 10 physical floating point primitives are required. (The point of this example is to 

demonstrate the effects of changing accuracy.) Depending on the amount of off-chip 

ROM available and the (user imposed) accuracy requirements, differing base technique 

bindings are asserted, which give rise to the "Virtual functional unit" column. The 

simulated annealing algorithm maps these onto a reduced number of physical functional 
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units (table 2, level 3). These are implemented in terms of virtual CLBs. which are 

mapped onto physical CLBs by the low level optimiser/router supplied with the FPGAs. 

Comparing the "Virtual CLE" column with the "Physical CLE (datapath)" column shows 

that this step does not gain much. 

Some points of particular note are: 

» Any user instructions for accuracies in excess of 0.0001 % are ignored (i.e. treated as 
0.0001%), as the floating point internal structure cannot support the results. 

« If a very low accuracy is required (less than 1 %) the resource impact of the function 
generation cores becomes negligible. The area requirements are dominated by the 
range reduction and post processing units. 

* In trajectories T3 and T6, the whole design is realised as a set of table lookup modules 
utilising an external ROM; accuracy variation has no effect on the system parameters. 

* The tr^ectories do not all terminate at exactly the same point because of numerical 
noise - recall that the principal optimisation process is controlled by a simulated 
annealing algorithm. 

III.2.4 Base technique optimisation 

The floating point optimiser (figure 2) operates on the floating point and complex 

functions within the design, binding each floating point operation to a suitable base 

technique component from the floating point module library. 

The algorithm consists of two non-interacting phases: ex/gmaZ ozemory 

and on-chip optimisation. Empirical results indicate that by far the best results (in terms of 

area and delay) can be obtained by utilising table lookup implemented on off-chip ROM to 

its fullest extent; the system therefore attempts to do this before attempting to handle other 

interactions. 

IIL2.4.1 External memory utilisation 

Each module in the expanded module library and technology dependent library has 

two figures of merit associated with it: the cfeZay and the area. In the floating point library, 

these are expanded: the area factor is split into the on-chip area and the ojf-chip area. The 

approach here is simple: the algorithm performs an exhaustive search of all possible 

combinations of table lookup mapping to see which utilises the ROM most effectively. 

Note that this does not lead to a combinatorial explosion: a table is necessary for each 

floating point module type, not instance, and in practise, subtable isomorphism within the 
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list of table 1 means that the largest number of off-chip tables ever considered cannot be 

larger than six. 

I1I.2.4.2 On-chip optimisation 

The flowchart of this phase of the system is shown in figure 6. 

Step (1): All remaining floating point modules are mapped onto a table lookup base 
technique, implemented on an infinite, virtual, internal (on-chip) RAM. If 
this meets the user area constraints, and fits the physical system, the base 
technique mapping is complete and successful. 

Step (2): Select the biggest (irrespective of user requirements) floating point 
functional unit. (Step (1) gave t h e p o s s i b l e mapping - here we are 
iteratively trading speed against area until we can deliver the user 
requirements.) 

Step (3): Increment the mapping for that unit. (The base technique mappings are 
ordered: 1. Linear table, 2. Piecewise linear table, 3. Iterative series, 4. 
CORDIC. Note that step (I) maps all units to 1 (linear table), and 
attempting to increment past 4 has no effect. Not all mappings are allowed 
for all floating point module types - see table 1.) 

Step (4): The effect on the overall area of the mapping change is estimated. If the 
area is not reduced, goto step (5). Otherwise, the new mapping is accepted, 
and if the overall user requirements are satisfied, the algorithm terminates 
successfully. 

Step (5): If all the floating point functional units are mapped onto the CORDIC base 
technique, and the user requirements are not met, then the algorithm 
terminates in failure. Otherwise, return to step (2). 

The shaded decision boxes in figure 6 represent an invocation of the Estimator'. 

This is a subsystem that predicts, from the current state of the design dataflow and control 

graph, what/wrfAgr improvements the simulated annealing based optimisation (see figure 

2) will be able to make. The Estimator is a heuristic algorithm, which takes as input the 

statistical properties of the design (for example, variable and operator count - both fixed 

and floating point, control constructs and so on) and predicts the compression that the 

simulated annealing phase will be able to achieve with a reasonable degree of accuracy 

(90-95%). 

The design of this system is derived from observations of base technique 

interactions. Some points of particular interest are: 

Functions based on table lookup implemented on off-chip ROM share a single ROM 
controller and a single I/O port. 
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Expanding the hierarchical (real and complex) functions before the optimisation phase 
permits substructure sharing. If both the complex and real instances of a function are 
required, this delivers significant cost reductions. 

Mapping a function onto a CORDIC base technique makes subsequent mappings to 
that implementation more likely. 

Two or more functions having the same table (for example and j) have only 
one physical table. 

# The cost of an iterative series generator can be significantly changed by the prior 
availability of its primitive subunits (multiplier, divider). Equally, the selection of this 
base technique reduces the cost of other operations by providing these units. 

Figure 7 shows the effects of this process, with the accuracy criterion set to 10'̂  on 

the process of figure 5. In figure 7a, the user requirements are optimisation with respect to 

delay alone, and the set of histograms shows the distribution of the functional units 

between the three base techniques, as a function of off-chip ROM capacity. The tradeoff 

between the two table-based implementations as the external ROM resource becomes 

scarcer is clear, with CORDIC and iterative series only coming into play as a last resort. 

Figure 7b shows the same design, this time optimised for minimum area. Here, the 

main tradeoff is between external ROM usage and iterative series, as the latter obviously 

consumes less area than the on-chip table lookup, although there is a delay price to pay. 

IV. Quadra t i c equation solver (example 2) 

The power of this level of description is illustrated by implementing a complex 

quadratic equation solver. This takes as input the three (real) quadratic coefficients and 

delivers the (possibly complex) roots. The VHDL behavioural description of the design is 

listed in figure 8. The design space accuracy trajectories for this process are virtually 

identical, as the design has only one non-linear operator, the square root. The process is 

optimised from (area, delay) coordinates of (7800,1800) to a small region centered around 

(1542,376), an improvement of a factor of 5 in both dimensions. Note that the floating 

point optimiser has realised 12 floating point functions with only 4 physical floating point 

primitives. Quantitative details are given in table 4 for a target accuracy of 10'^. 

V. Final r emarks 

V. l Compar ison with other published results 

Comparable studies are hard to find. 
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[10] reports a study of floating point arithmetic on FPGAs, but the authors have 

their own (reduced bit width) floating point format, the synthesis is RTL based, and there 

is no optimisation - by using RTL, the designer is forcing the cycle-by-cycle timing, which 

is an important degree of freedom exploited by MOODS. Speed is reported in terms of 

time, not clock cycles. 

[11] describes the manwaZ design and characterisation of two versions of a single 

real floating point square root system implemented on Xilinx XC4000 series FPGAs. 

Table 5 shows a comparison of this functional unit with the corresponding unit from the 

MOODS library. The third row is an implementation that can be switched between real 

and complex by a single control line. (The behaviour is the same as setting the imaginary 

part of the operand to zero, but this implementation is signiOcantly smaller than the sum of 

the other two.) The data taken from [11] is hard to interpret, because the authors 

distinguish between "CLE functional generators" and "CLE flip-flops". Each Xilinx CLE 

is composed of two function generators and two flip-flops, and it is not clear how these 

figures map onto the total CLE usage on the chip. 

The key point of work, however, is that the MOODS floating point library is 

designed to exploit module sharing and support large designs consisting of many 

invocations of units from within the library. 

V.2 Conclusions 

Even with the increasing size and processing power of silicon systems, the 

difficulties of synthesising sizeable circuits containing floating point operations are great. 

The system described here allows a designer to manipulate floating point and complex 

variables on an ybofmg with all other data types (fixed point, access operations, 

control stuctures), and the additional complexities arising are hidden from the user. 

Module decomposition, space- and time multiplexing of submodules and accuracy 

considerations are all controlled by three simple user specified parameters: the desired 

area, the desired speed and the desired accuracy. The designer is free to concentrate on the 

functionality of the design, and does not have to worry about the implementation details, 

which, of course, is the goal of every behavioural synthesis system. 

Acknowledgements 

This work was supported by EPSRC grant reference GR/L28494, "High level 

floating point synthesis library". 



Z.A. Baidas , 2000 Appendix F: Papers 3 Q 4 

References 

1. Baker K.R., Currie A.J. and Nichols K. G., "Multiple objective optimisation in a 
behavioural synthesis system", /EE 140. August 
1993, pp 253-260. 

2. Brown, A.D., Baker K. R. and Williams, A.C., "Online testing of statically and 
dynamically scheduled synthesized systems", /EEE-CAD 16. no 1, pp 47-57. 1997. 

3. Williams A. C., "A behavioural VHDL synthesis system using data path 
optimisation", f A D University of Southampton, UK, July 1997. 

4. Baker K. R., Brown A. D. and Currie A. J., "Optimisation efficiency in behavioural 
synthesis", /EEfmc.-C;rcwzf.y 141. no. 5, pp 399-406, 1994 

5. Baker K. R., "Multiple objective optimisation of data and control paths in a 

behavioural silicon compiler", PhD thesis, University of Southampton, UK, 
September 1992. 

6. Williams, A.C, Brown, A.D and Baidas, Z., "Hierarchical module expansion using 
templates', EDE'9^ q/TgcAnoZogv, 
September 1998. 

7. Nijhar, T.P.K, and Brown, A.D., "Source level optimisation of VHDL for 
behavioural synthesis", /EE 
144. no 1, January 1997, pp 1-6. 

8. Nijhar, T.P.K, and A.D. Brown, A.D., "HDL-specific source level behavioural 
optimisation", 7EE DfgffoZ 144. no 2, 
March 1997, pp 138-144. 

9. IEEE Standard for Binary Floating point Arithmetic, ANSI/IEEE Std 754-1985 

10. Shirazi N., Walters, A.L. and Athanas, P. "Quantitative analysis of floating point 
arithmetic on FPGA based custom computing machines", Report, Virginia state 
University, January 1995. 

] 1. Wakamatsu A. "Implementation of single precision floating point square root on 

FPGAs", Fifth annual IEEE SYMPOSIUM on field-programmable custom 
co/M/pwrmg 1997, pp 226-232. 

12. Barbara T., "Finally, behavioural synthesis is production-ready". Computer 
Design, 36, no. 7, pp 57-63, July 1997. 

13. Barbara T., "Behavioural synthesis yet to prove itself beyond DSP", Computer 
no. 6, pp 88-96, June 1995. 

14. Standard VHDL Language Mathematical Packages (MATH_REAL and 
MATH_COMPLEX), 1076.2-1996 

15. Voider J. E., "The CORDIC trigonometric computing technique", IRE Trans. 
Electron. Comput. 8, 1959, pp 330-334. 



Z.A. Baidas , 2000 Appendix F: Papers 3 Q 5 

16. Chance R. J., "The effect of processor architecture on an efficient floating point 
table look-up algorithm", Mzc/oj'A'.yfgfM.r. 15, no. 8. October 
1991,pp411-415. 

17. Mazenc C., Merrheim X. and Muller J.. "Computing functions cos' 'and sin"' using 
CORDIC", /EEE on no. 1, January 1993, pp. 118 121. 

18. Mutrie M, and Bartels R, "An approach to floating point error analysis using 
computer algebra", ACM MafA., 7, 1992, pp 284-293. 



Z.A. Baidas, 2000 Appendix F: Papers 306 

Figure and table captions 

Table 1: The floating point library. 

Table 2: The unit hierarchy. 

Table 3: Parameters for the design space trajectories of figure 5. 

Table 4: Parameters for the design space trajectories of the quadratic equation solver 
(example 2). 

Table 5; Comparison between the MOODS square root unit and that from [11]. 

Figure 1: A two-dimensional projection (area/delay) of behavioural design space. 

Figure 2: The overall synthesis system. 

Figure 3; The CORDIC algorithm. 

Figure 4: Hierarchical floating point unit expansion. 

Figure 5: Design space tr^ectories, showing the movement of a complex design as 
user accuracy requirements change. 

Figure 6: On-chip optimisation algorithm. 

Figure 7: Distribution of functional unit bindings between the three base techniques 
as a function of external ROM size. 

Figure 8: Quadratic equation solver behavioural description. 
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REAL COMPLEX* 

u o 0) o 
FUNCTION 0 

> "m Q 0) 
> % o 

n 
CO 0) 

Li. 

o Si 
ro o o 

1- o H o 
* * * * 

/ * * * * 

+ 
* * * * 

-
* * * * 

In(z) y y n y y n 

logio(z) y y n y y n 

log2(z) y y n y y n 

logn(z) y y n y y n 

sin(z) y y y y y y 

cos(z) y y y y y y 

tan(z) y y y n n n 
arcsin(z) n y y n n n 
arccos(z) n y y n n n 
arctan(z) y y y n n n 

sinh(z) y y n y y y 

cosh(z) y y n y y y 

tanh(z) y y n n n n 
arcsinh(z) y y n n n n 
arccosh(z) y y n n n n 
arctanh(z) y y n n n n 

e ' y y n y y y 

z f ^ y y n y y y 

sqrt(z) y y n y y y 

conj(z) 
* * 

real(z) * * * 

imag(z) * 

magn(z) * * * 

arg(z) * * * 

complex_to_polar(z) n/a y 
polar_to_complex(z) n/a y 
to_float() ## n/a 
to_complex(,) n/a ## 

* * 
* 

# 
# 

These are implemented using a single base technique/functional unit. 

These return trivial results 
The complex functions are all overloaded to allow input as real, complex polars or 
complex Cartesians 

Type changing functions support translation between VHDL type real and 

integer[\A'] and IEEE float and complex[9]. 

Tab le 1: T h e f loat ing point l ib ra ry 
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Level Name 
Number of units 
(inc. overloads) 

Examples 

1 
Floating point 

functions (table 1) 
53 

complex arcsin(), 
Z l ^ 

2 
Floating point 

primitives 
125 

sin_cos_pre(), 
sin_cos_main() 

3 
MOODS functional 

units 
16 

fixed point multiply, 
MUX, shift 

4 CLBs — 

Xilinx function 
generators, flip-flops 

Tab le 2: T h e uni t h i e ra rchy 
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c 
a 

en 
CO 
_i 
O 
15 
3 r > 

U) 

- 1 C3 O. 
o cc 
'3 TO 
CL 

m 

d l 

Si 
(/) o 
CL 

Original n/a n/a 10^ 523 525 36204 32307 1113 
10^ 140 537 283 2515 2020 558 
10^ 140 537 283 2544 2044 558 

T1 0.000 10^ 614 544 395 3624 2983 584 
10^ 781 550 397 3733 3065 590 
10^ 946 550 398 3848 3213 596 
10^ 160 514 275 2602 1908 538 
10^ 160 514 275 2602 1908 538 

T2 
area 

5^410 ioM 160 514 275 2602 1908 538 
area 

10^ 204 551 295 2989 2244 587 
10^ 694 547 310 3159 2593 592 
10^ 160 514 275 2602 1908 538 
10^ 160 514 275 2602 1908 538 

73 10* 160 514 275 2602 1908 538 
10^ 160 

10 10 
514 275 2602 1908 538 

10^ 160 b 10 10 514 275 2602 1908 538 
10^ 140 519 285 2622 2148 513 
10^ 140 519 285 2651 2177 513 

T4 0.000 10^ 140 519 285 3774 3300 513 
10^ 140 519 285 5698 5124 513 
10^ 159 555 305 11134 10181 550 
10^ 160 514 278 2648 2105 532 
10^ 160 514 278 2648 2105 532 

T5 
delay 

3.410 10* 160 514 278 2648 2105 532 
delay 

10^ 157 527 298 4139 3524 549 
10^ 155 528 299 7682 7058 542 
10^ 160 514 278 2648 2105 532 
10^ 160 514 278 2648 2105 532 

T6 i c r 160 514 278 2648 2105 532 
10^ 160 514 278 2648 2105 532 
lO"*' 160 514 278 2648 2105 532 

Up to the point of final realisation, the 'area' cost refers to data path only. The 
controller is held in an abstract form until the final implementation - it is optimised 
by M O O D S on an equal basis to the datapath elements. 

Tab le 3: P a r a m e t e r s fo r the design space t ra jec tor ies of f igure 5. 
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Performance CLB 
function 

generator 

CLB flip-
flops Latency 

(clock cycles) 
Issue (clock 

cycles) 

CLB 
function 

generator 

CLB flip-
flops 

Iterative 25 24 82 138 
Pipeline 15 1 408 675 

(i) F loat ing po in t square root FPGA implementat ion details ( f rom [11]). 

Speed (clock cycles) CLB usage 

Real 20 297 

Complex polar 25 314 
Real & complex polar 26 363 

(i i) Isolated f loat ing po in t (real and complex polar) square root F P G A M O O D S 
implementat ion details. 

Table 5: Compar ison between the M O O D S square root un i t and that f r o m [11]. 
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Initial design 

Area 

Achievable design 
region 

Reducing 
anneal 

temperature 

Unachievable design region 

Each point in the trajectory 
represents a different 

structural design 

Final design 

F igure 1: A two-dimensional pro ject ion (area/delay) of behavioural design space. 
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Behavioural 
VHDL 

MOODS 

User optimisation 
objectives 

VHDL source level 
optimiser/Compiler [7,8] 

ICODE 

Floating point 
optimiser (see figure 6) 

ICODE+ 

Module ripper 
Hierarchy flattening 

Synthesis and optimisation • 
Simulated annealing 

algorithm 

< -

< -

Structural gate -
level netlist 

Logic synthesis, placement 
& routing / FPGA mapping 

tools 

FPGA 

FPGA ASIC 

VHDL function library 

Floating point 
module library 

parameters 

Expanded 
module 
library 

Floating point 
module library 

Technology-
dependent module 

libraries 

Figure 2: The overall synthesis system 
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z 

->.Ki(x cos(z) - y sin(z)) 

->.Ki(x cos(z) + y sin(z)) 

- > 0 

Circular (mi=1, m2=0) 

- • K i \ + y )̂ 

- • 0 

- • z + tan'\y/x) 

Circular (mi=1, m2=1) 
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- •X 

- • y + X Z 
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Linear (mi=0, m2=0) 

X 
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z 

> 0 

- • z + y/x 

Linear (mi-0, m2=1) 

X 
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-^K2(x cosh(z) + y sinh(z)) 

> 0 

Hyperbolic (mi=-1, m2=0) 

X 

y 

z 

-•Kz (Vx^-y^) 

•>0 

- • z + tan h'̂  (y/x) 

Hyperbolic (mi=-1, mg-l) 

K, are predefined constants 

mi, mz are control parameters 

Figure 3: The CORDIC algorithm 
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FLOAT Fl, F2 
COMPLEX CI 
POLAR PI 

Fl = sin(F2) 

CI = polar_Co_complex(Pl) -

FLOAT Fl, F2 
COMPLEX CI 
POLAR PI 

T1 = sin_cos_pre (F2, Scbufl) 
Fl = sin_cos_pre(Tl,buf1) 

CI = polar_to_complex(Pl) 

(a) (b) 

FLOAT Fl, F2 FLOAT Fl, F2 
COMPLEX CI COMPLEX CI 
POLAR PI POLAR PI 

T1 = sin_cos_pre(F2,&bufl) T1 = sin_cos_pre(F2,&bufl) 
Fl = sin_cos_main{T1,buf1) Fl = sin__cos_main (T1, buf 1) 

T2 = arg(Pl) mm^ T2 = arg(Pl) 
T3 = magn(Pl) T3 = magn(Pl) 
T4 = sin(T2) T6 = sin_cos_pre(T2,&buf2) 
T5 = cos(T3) T4 = sin__cos_inain (T6, buf 2 ) 
RE(Cl) = T5 * T3 T7 = sin_cos_pre(T3,&buf3) 
IM{C1) = T4 * T3 T5 = sin__cos_main(T7,buf3) 

RE(Cl) = T5 * T3 
IM(Cl) = T4 * T3 

(C) (d) 

Figure 4: Hierarchical floating point uni t expansion 
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Figu re 5: Design space t ra jec tor ies , showing the movement of a complex design 
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Figure 7: Distribution of functional unit bindings between the three base 
techniques as a function of external ROM size. 
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ENTITY quad IS 
PORT 

END; 

(a,b,c 
single_root 
oukpubl,output2 
ready 

IN float; 
OUT bit; 
OUT c omp1ex; 
OUT bit 

ARCHITECTURE behave OF quad IS 
BEGIN 

PROCESS 
VARIABLE tl : float; 
VARIABLE t2 : complex; 
BEGIN 

ready <= '0'; 
WAIT FOR 10 ns; 
IF (a = t:o_float:(0)) THEN 

single_root <= '1'; 
tl := -c/b; 
outputl <= float_to_complex(t:l,ko_float( 

ELSE 
single_root <= '0'; 
t2 := sqrt:(b*b - t:o_float(4)*a*c); 
oukputl <= (float_to_complex(-b,to_float: 
output2 <= (float_to_complex(-b,to_float 

ENDIF; 
ready <= '1'; 
WAIT FOR 10 ns; 

END PROCESS; 

END behave; 

0 ) ) 

: o ) 
: o ) 

- t 2 ) 

kk2) 
ko. 
to 

_float(2) 
float(2) 

'a) 
*a) 

Figure 8: Quadratic equation solver behavioural description 
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