UNIVERSITY OF SOUTHAMPTON

DEPARTMENT OF ELECTRONICS AND COMPUTER SCIENCE

High-level Floating-Point Synthesis

Zaher A. Baidas

July, 2000

A thesis submitted for the title of
Doctor of Philosophy.

UNIVERSITY OF SOUTHAMPTON

High Level Floating-Point Synthesis

by

Zaher Abdulkarim Baidas

A thesis submitted for the degree of

Doctor of Philosophy.

Department of Electronics and Computer Science,

University of Southampton

July, 2000

UNIVERSITY OF SOUTHAMPTON

ABSTRACT

FACULTY OF ENGINEERING AND APPLIED SCIENCE
DEPARTMENT OF ELECTRONICS AND COMPUTER SCIENCE

Doctor of Philosophy

High Level Floating-Point Synthesis

by Zaher Abdulkarim Baidas

MOODS (Multiple Objective Optimisation in Data and control path Synthesis) is a high-
level synthesis system which provides the ability to synthesise a system level behavioural
description into a structural representation. The thesis represents an enhancement to the
original MOODS system to allow the designer to manipulate floating-point and complex
variables on an equal footing with all other data types; the additional complexities arising
from floating-point manipulation are completely hidden from the user.

Originally, the data processed by MOODS was fixed (occasionally variable) width
integers, and the functional units available were relatively unsophisticated (adders,
subtractors, multipliers, multiplexers and so on). The floating-point synthesis system
described here provides a library of high-level floating-point functions (trigonometric,
transcendental, and complex) to support the synthesis of behavioural designs incorporating
floating-point operations.

The floating-point library components themselves are implemented using a number of
base techniques, namely table lookup, the CORDIC algorithm, and iterative series.
Decisions about the mapping of base techniques onto functional units are left to a floating-
point optimiser, which makes individual binding choices based on global knowledge of the
overall design, allowing the internal sub-structures of these units to be shared which
results in a dramatic decrease in the overall hardware resources required to implement the

design.

Finally, an exemplar is designed and analysed in detail: a cubic equation solver synthesised
using the floating-point capability integrated within the MOODS environment.

1o

Contents

Acknowledgementsccorrinmmenin 12
Chapter 1: Introduction.........ccccimmriciimnin s 13
Chapter 2: MOODS and behavioural synthesis...........cccccciieiiiniiiinneen, 16
2.1 VHDL for behavioural SYNthesisoccoaviiiiiiiiiiiecce it 16
2.2 Behavioural SYNThEsISoiiiiieiiiii e 19
2.3 The deSIZN SPACEeeueeutetiitieie ettt ettt 20
2.4 Internal repreSEntationoiviiiriiiiie e 21
2.5 Scheduling and allocation..........ccooiiiiiiiiii e 25
2.6 MOODS SYNthesis SYSIEIM ...cuvouiiiiiiiiiiiiiie ettt 29
2.6.1 ICODE and internal representation..........ccoooiuiireiiiiiiioieineiiiie e 31
2.6.2 TransfOrMAtIONSc.veiti ettt 36
2.6.3 The COSt FUNCHIOMN .oiiiiiiieiiit ettt 39
2.6.4 Simulated annealing OPtIMISAION.cccivuiiiiiiiiiie it 39
2.6.5 Hierarchical module eXpansioncc.ccccceieiiiiiiiiie e 42
2.6.6 Floating-point €nhanCementcoocooiiiiiimiiiiicie it 43
Chapter 3: Background and related work......cccccccimriiiniiicciieenninnccnnnnn, 45
3.1 Real number representationooiiiiiiiiii s 45
3.2 Fixed point functional UnitS ... 47
3.2.1 Modified Booth multiplier.......cooiiiiii 48
3.2.2 Rapid division algorithm ... 50

3.3 Developing floating-point functional UNits..........ccooiiiiiiiiiii 52
3.4 Floating-point arithmetic on FPGA ..., 53
3.5 Automatic floating-point implementationcccoocviiriiiiiiiiiii e 56
3.5.1 MOdUule ZENETALOTS ...eeiuiiuieiiieii ittt 56

3.5.2 Block diagram tOO0IS ...c...oruieiiiiiiiieee e 58

(99

Chapter 4: Floating-point library designc.cccoominiiiiiiniiniciniennennnn, 62
4.1 FUNCHON @VAIUATION «.iiiitiiiiiii it 62
4.1.1 Range 1@AUCHION coviiiiiiiii e 63
4.1.2 Table 100KUP .ooviiii 64
4.1.3 The CORDIC algOrithim...c..ceiiiiiiiiiiiir e 73
414 TEETATIVE SEIIES wevietireiite ettt ettt ettt ettt e e 76
4.1.5 POSt @VAIUATION ..ttt 82

4.2 The STATUS TEZISTET ...ttt sttt 83
4.3 Supported FUNCHIONSooviiiiiiii i 85
4.3.1 Algebraic OPEIatiONS ...ccueiiiiiiiiiiiieeiit ittt 87
4.3.2 Logarithmic and exponential functions ..., 91
4.3.3 Trigonometric fUNCHOMNS «......ooiiiiiiiiiiiii e 92
4.3.4 Hyperbolic fUNCHIOMS.coiiiiiiiiiii it 92
4.3.5 Type conversion fUNCHONSccociiiiiiiiii it 93
4.3.5 COMPIEX UNILS ..utititiieieiiie ettt 94

4.4 Function implementationcouioiiiiiiiiiie ittt 96
4.4.1 Hierarchical unit @Xpansionccciiiiiiniiiii st 97
4.4.2 Expanded module formation..........ccoccoiiiiiiii 98
Chapter 5: Floating-point optimisation ... 101
5.1 Function implementation iNteractionsocooeiiirieiiiiiiei e 101
5.2 Numerical INELACTION ...vviivieiiiiiiiiciieiet ettt 105
5.2.1 ErTOr ProPAZationc.cvvueieiiieiie it 106
5.2.2 Accuracy variation effect..........cccoooiiiiiii 109

5.3 Optimisation alOTItRIMoiiiiiiiii 111
5.4 Experimental @Valuationcooooiiiiiiiiiiiei e 126
Chapter 6: Practical synthesis using FPGAS.........ccccocvciiniiniiniiennnnes 133
6.1 FPGA prototyping board ..o 133
6.2 Algebraic cubic eqUation SOIVETottt 136
6.2, 1 TNPUL SEAZE ..eevecieiie ettt 138
6.2.2 OULPUL STAZE .eeveiireeieeeie ettt 138

6.2 3 0T U oooneeeo e e e e e e et e e e et r e e a e ees 139

6.3 SYNTNESIS ISSULS ..ieviiiieiii ettt 145
6.3.1 AT€a TEAUCTION. ..ottt eiiii ettt 145
6.3.2 Meeting timing SPecifiCationS.........cociiiiiiiiiiiiiiii e 148
6.3.3 Synchronisation and COMMUNICALIONevviieiiiiiieiii e 150
6.3.4 Physical implementation ISSUESccoiiuiiriieiierieeee et 152
6.3.5 Final implementationccccoiviiiii e 153

6.4 Comparison With MICTOPIOCESSOTSccueiiiiiiiiriiiiii et 156

Chapter 7: Conclusions and further work.......c.innnnn. 159

7.1 Source level optimisation from a floating-point perspective............cccoocuevirncnnnn, 160

7.2 Variable precision floating-point library ... 160

7.3 Component IDTATYcc.ciiiiiiiiiiiiie e 161

7.4 Function inversion bIOCKco.ooiiiii 162

7.5 Multi-operand floating-point UNILSooceiiiiiiiiiiii e 164

Appendix A: IEEE standard for binary floating point arithmetic......... 166

A.1 Single-precision format evaluationcccooiiiiriiiiiii i 167

A.2 Operations wWith NAN ... 170

A3 StatUS FTAZS v 171

A4 COMPAriSON OPETALIONSevviuviiiieieiceiiieie et e 171

A5 ROUNAING. ..ttt et 172

Appendix B: The CORDIC algorithmcccccccovcimmmemiininniiiiniiiannnennnn 175

B.1 The original CORDIC algorithm ..., 175

B.2 The enhanced CORDIC algorithm.......ccccoiioniiiiiiiiii e 178

B.3 Computation of inverse sine and inverse cosine using CORDIC 183

Appendix C: Elementary functions detailscccccoiirivricrnnnnnani 186

C.1 Sine and COSINE fUNCHOMStitiiit it 186
C.1.1 Pre-proCessSing SLAZEcocuerireuiiiiaieeiieiieeis ittt 186
C.1.2 Function eneration UMITcooeireeeiuiaieenie i 189

C.2 Inverse sine and inverse cosine funCionSc.ccoiviiviiiii i 195

C.3 Inverse tangent fUNCHONiiiiiiiiieic e 199

C.4 Logarithmic fUNCHIOMNSc.vorviiiiiiiiiiiiiiii e 206

C.5 Exponential fUnCIONociiiiiiiiiiiic e 212

5

C.6 SQUAre ro0t FUNCTION ...ttt et 217
C.7 VHDL IIDIAIY oo 221
Appendix D: Implementation details ..o 227
D.1 FIlE TOIMALS ..ottt et 227
D.1.1 ICODE instruction databasecccooeeviieriieniiciiiciiiies oo 227
D.1.2 Floating-point instruction database............cccocoviviiiiiiiiiiii 229
D.1.3 Floating-point module library ... 230
D.1.4 Floating-point expanded INSrUCHON . ..o 232

D.2 The TCODE fOITNAL ...ooviiiiiiiieceit ettt e 234

D .3 TCODEF ittt 236
D.4 Adding @ NeW INSIIUCHION ...evcuviviiiieiiiieie ittt 239
Appendix E: Example details ..., 241
E.1 FPGA prototyping board dataccoooiiiiiiiiii 241
E. 1T FPGA PIN-OU Lot 241
E.1.2 Device ProgramimiNccooie ittt 242
E.1.3 Device pin-assignmMentcccoviiiirimiiiiiaiai ittt 243

E.2 VGA QAAPLET c.viviiiiiiieieeieeee ettt ettt 249
E.3 1O Stage detailsoovieeieiiieiiiice e 252
E.3. 1 INPUL SEAZE «.vieeiveteeieeeeec ettt 252
E.3.2 OULPUL SLAZE ...ev ettt e ettt eb et eb b 257

E.4 Source code HStIMES....coiiiiiiaiiiitie ittt 260
Appendix F: Papers......cccomminmineinene s s e 289

RO I EINCES o innrveeiesressensrsssnnssenssassresssasesssenssassenssassrnsssasssnssnsssnssnsssnssnnsnnssnss 320

List of Figures

Figure 2.1 A generic high-level synthesis system...........c.ccccoi e, 20
Figure 2.2 Area versus delay deSIZn SPACEcccooiiiiiiiiiiiiiiiii e 21
Figure 2.3 Data flow graph representationoocovvioiiiiiiiiiie i 22
Figure 2.4 A sample VHDL example ... 23
Figure 2.5 Control dataflow graph...........ccoiii 24
Figure 2.6 Extended timed Petri-net...........cccocooiiiiiiiiiiii 25
Figure 2.7 ASAP and ALAP scheduling ... 27
Figure 2.8 List scheduling..........ccoooiiiiiii 28
Figure 2.9 Original MOODS system data fIowcccciiiiiiii 31
Figure 2.10 VHDL and the equivalent ICODE example.................... e, 33
Figure 2.11 Control and datapath graphs..........coii 35
Figure 2.12 Transformation application SIEPScciviirirriiiiiiiiiii e 37
Figure 2.13 A one-dimensional configuration SPaCecccceieviiiiiiiiiiciciciecceeeens 40
Figure 2.14 The simulated annealing algorithm ... 41
Figure 2.15 EXPanSion PrOCESS ...c.vviiiiiiiiiiiiaie s eie ettt 43
Figure 2.16 MOODS synthesis system with the floating-point enhancement................... 44
Figure 3.1 [EEE single-precision floating-point formatccocccovviiiiiviinnnicinin e, 46
Figure 3.2 Logarithmic number format ... 47
Figure 3.3 Modified Booth multiplier. ... 49
Figure 3.4 Modified Booth multiplication exampleccociiiiiiiiii, 50
Figure 3.5 A decomposition of a number into four types of Stringsc.cccoccocieiiiienns 50
Figure 3.6 Rapid division algorithm flowchart.............ooooi 51
Figure 3.7 Short floating-point fOrmats ..o 54
Figure 3.8 FPGA-based data path block diagram.............c.cocoii 55
Figure 3.9 A design represented as a block diagram ... 59
Figure 3.10 Block diagram oriented tools data flow.............ccoooiii 60
Figure 4.1 Functional unit building blocks ... 63
Figure 4.2 Range reduction eXample ... 64

Figure 4.3 Interpolation ProCedureooiiiiiiiiniiiiecie et 65

Figure 4.4 Linear interpolation procedurecooiiiiiiiiiiioiiiie e 66
Figure 4.5 Cubic Interpolationcccooiiiiiiiiii e 67
Figure 4.6 Cubic interpolation proCedureoccooiiiiiiiiiiiiiii i 67
Figure 4.7 Table entries variation with different interpolation degrees..........cccccviiniennnnn 70
Figure 4.8 Area/delay costs for different interpolation and infinite external ROM 70
Figure 4.9 Area/delay costs for different interpolation without external ROM................. 71
Figure 4.10 Partitioning the inverse sine function into sub-tables ... 72
Figure 4.11 Linear interpolation multiple sub-tables procedure................. 73
Figure 4.12 The CORDIC algorithm ..o, 74
Figure 4.13 Output functions for CORDIC ... 75
Figure 4.14 Absolute error in the CORDIC sine generator for 25 iterations...................... 75
Figure 4.15 CORDIC error variation with the number of iterations................ccccceevinnn. 76
Figure 4.16 Taylor Theorem ...t 77
Figure 4.17 Minimax approximation base theoremsocccocvviiiiiiiiiiiii 78

Figure 4.18 Comparison between minimax and Taylor accuracy for different interpolation
AEETEES ..ttt e 9

Figure 4.19 Absolute error in the minimax approximation for the exponential function
different approXimation dEZIEEScciirieriiiiiiiiiii it 80

Figure 4.20 Absolute error in the Taylor expansion for the exponential function for

different approXimation deZreescocivviriiiiiiiiiiie e 81
Figure 4.21 Round to the nearest eXample ..., 83
Figure 4.22 Raising a status flag example ..., 85
Figure 4.23 Hyperbolic function evaluation eqUations..........coc.oveiviviiiiciiiiiie e, 93
Figure 4.24 Complex sine function generator building blocks.................. 95
Figure 4.25 Polar sine function generator building BIOCKS w.oovevevere oo 96
Figure 4.26 Complex function evaluation equationscccoovviiiiiiiiiiiinieicc i 96
Figure 4.27 Hierarchical unit expansion example ..., 98
Figure 4.28 Expanded module formationccocoiiiiiiii 99
Figure 4.29 Expanded module development example................o.coo 100
Figure 5.1 Sharing an external ROM interfacing unit ..., 103
Figure 5.2 Sharing iterative Series ENZINEccoociiiriiiiiaiiie e 104
Figure 5.3 Computational graph eXxample..........ccoooiiiiiiiii s 107

Figure 5.4 Error propagation model example ... 108

Figure 5.5 Design space for the three different benchmarks ... 110
Figure 5.6 The inverse tangent function parameters for a target accuracy = 10 . 112
Figure 5.7 Optimisation algorithm flowchart ... 114
Figure 5.8 Benchl design space...........oc 120
Figure 5.9 Bench2 design SPace.........cooiiiiiiiiiiiiiiicccee e 120

Figure 5.10 Distribution of functional units between the three base techniques for bench|
for target area = 0 (lm” as a function of external ROM Sizecocoovvvveveveeeien) 121

Figure 5.11 Distribution of functional units between the three base techniques for bench]|

o

for target area = 2e6 ;,Lm2 as a function of external ROM s1zeccccocoviiiinnnnnn.n. 1
Figure 5.12 Distribution of functional units between the three base techniques for bench|
for target area = infinity umz as a function of external ROM sizeccocccceei s
Figure 5.13 Distribution of functional units between the three base techniques for bench2
for target area = 0 m” as a function of external ROM SiZec.ococovivverrenennns 122
Figure 5.14 Distribution of functional units between the three base techniques for bench2
for target area = 2.5¢6 wm” as a function of external ROM SiZecccocoovvernnn. 123
Figure 5.15 Distribution of functional units between the three base techniques for bench2
for target area = infinity um2 as a function of external ROM sizec.oceceennee. 123

Figure 5.16 Area breakdown of the two designs based on similar base techniques (on-chip

based IMPIEMENTAION) .c..occuiiiiiiiiiieee et 124
Figure 5.17 Design space for the first set of designs ..o 126
Figure 5.18 Design space for the second set of designs........cccociviiiiiiiiiiiiininiiicie, 127
Figure 5.19 Design space for the third set of designs.........cccooooiiiiiiiie 128
Figure 5.20 Design space for the fourth set 0of designs..........ccccciiiiiiii e 129
Figure 5.21 Design space for the fifth set of designs.........cooooiii 129
Figure 5.22 Design space for the sixth set of designs.........ooeviiiiiiiiiiii 130
Figure 5.23 Design space for the seventh set of designsccccoviiiiiiiiiiiniiins 131
Figure 5.24 Design space for the eighth set of designs..............o 132
Figure 5.25 Design space for the ninth set of designscccccoooiiiis 132
Figure 6.1 FPGA board block diagram............ccoccoiiiiiiiiiiiiiiiii e 134
Figure 6.2 FPGA board photograph..........cccocoiiiiiiiii 136
Figure 6.3 Cubic equation solver block diagram ... 137
Figure 6.4 Cubic equation solver diSplaycccooiiiiii 138

Figure 6.5 Cubic equation SOIULIONc..iiiiiiiiiiii i 139

Figure 6.6 Design] VHDL behavioural description ... 140
Figure 6.7 Design space for the original design..............cooooiiiiii 141
Figure 6.8 Partitioned core unit block diagram ... 142
Figure 6.9 Core unit deSiZN SPACEccuoiuiiiiiiiiiiiiieeet et 143
Figure 6.10 Alternative optimisation StrateZiesococeiiiiriiiriiiiiiiiiie et 146
Figure 6.11 Area breakdown of both designs ... 147
Figure 6.12 Using the protect iNStIUCHONcc.oiiiiiiniiiieiie e, 148
Figure 6.13 Macro port eXample.........ccoocoiiiiiiiiii e 149
Figure 6.14 Handshaking signal waveform ... 150
Figure 6.15 Synchronisation within VHDL ... 151
Figure 6.16 Flip-flop timing parameters.........cocooviiiiiiiiiiisie e 151
Figure 6.17 Synchroniser SChematiC ..ot 152
Figure 6.18 MOODS multiplexors models..............ccoiiii 152
Figure 6.19 Final implementation block diagram...........ccccocooiii 155
Figure 6.20 FPGA utilisation fIZUIeS.........oooiiiiiiiiiiii s 155
Figure 6.21 The floating-point performance of different microprocessors compared to the
MOODS SYNthEsis SYSIEIMiiuiiiiiiiiiie ettt st e e e 157
Figure 6.22 The cubic equation solver floating-point performance compared to modern
TIHCTOPTOCESSOTS 1ovtivtiiiee et et e ere e e ee e te s e ias et e e a e ete s e s e ib e e e ns e e eae e s it e e eae e e ste s et e e ereesneeas 158
Figure 7.1 Function inversion blocK ... 163
Figure 7.2 Constructing the inverse function algebraically ... 164
Figure 7.3 Multi-operand floating-point unit example ... 165
Figure A.1 Floating-point number representationccocoioiiiiiiiiiii e 166
Figure A.2 Floating-point number Dit Patterns ... 169
Figure A.3 "Rounding to the nearest” examples ..., 172
Figure A.4 "Rounding toward +infinity” example ..., 173
Figure A.5 "Rounding toward -infinity” example ... 173
Figure A.6 "Rounding towards zero” example..........cccooiiiiiii 174
Figure B.1 A vector in three co-0rdinate SyStemSs.........occovvviiiiiiiiiiiniie 178
Figure C.1 Sine/cosine pre-proCessing SAZEc.ooiroviiiiieiiiiiiciie e 187
Figure C.2 Sine/cosine range reduction flow chart................. 189

Figure C.3 Error in the sine/cosine generator using linear interpolation engine with a

single-table and for different table Sizes ... 191

Figure C.4 Error in the sine/cosine generator using linear interpolation and a partitioned
table for different table SIZES.......oiiiiiriiii e 192
Figure C.5 Sub-tables range in the sine/cosine generator using linear interpolation and
partitioned table ... 192
Figure C.6 Error in the sine/cosine minimax engine for different approximation degrees193
Figure C.7 Error in the sine/cosine CORDIC unit for different number of iterations 194
Figure C.8 inverse sine/inverse cosSine generation UNItoooceiiviiieiicoieineeesreeeneen 195
Figure C.9 Error in the inverse sine/inverse cosine generator using linear interpolation
engine with a partitioned table lookup............cooooo 198
Figure C.10 Error in the asin/acos generator based on the CORDIC engine for different
NUMDET OF TEETATIONS ...ttt e e 199
Figure C.11 Inverse tangent range reduction flow chart...................... 201
Figure C.12 Error in the inverse tangent generator using a single table and linear
interpolation for different table SIZeS ... 203
Figure C.13 Error in the inverse tangent generator using a partitioned table and linear
interpolation for different table S1zes ... 204
Figure C.14 Error in the inverse tangent generator using the minimax approximation for
different approXimation degreescociviuiiiiiiiiiiiiiiiie e 205
Figure C.15 Error in the inverse tangent generator using the CORDIC algorithm for
different number Of IEIAIONS ...o.uiiiiiiiiicie e 206
Figure C.16 Initial unit in the logarithm generator Unit...........ccocoocieiiiiniiiniiiiececeee, 207
Figure C.17 Error in the natural logarithm generator using a single table and linear
interpolation for different table S1ZeS ... 209
Figure C.18 Error in the natural logarithm generator using a partitioned table and linear
interpolation for different table SIZES.........ccooiiiiiiiiiiii 210

Figure C.19 Error in the natural logarithm generator using the minimax approximation and

for different approXimation dEZTEESceviuiiiiiiiiiiiiiiii et 211
Figure C.20 Data flow in the logarithm post-processing Stage.......coocververrierrrieroeeennenn. 212
Figure C.21 Exponential pre-proCessing STAZEc.ueievivrieiiiiiiiereniiiieiiieeeiieesesnreesanaae e 213

Figure C.22 Error in the exponential generator using a single table and linear interpolation

FOr QITTETENE TADIE SIZES oot e e 215

Figure C.23 Error in the exponential generator using the minimax approximation and for

different approXimation AEEIEESccverieritiriieiieiireie ettt 216

Figure C.24 Error in the square root generator implemented as a single table lookup unit
and for different table SIZeS.......oooiiiiii 218

Figure C.25 Error in the square root generator implemented as a partitioned table lookup
unit and for different table SIZeS ... 219

Figure C.26 Error in the square root generator using CORDIC and for different number of

TETALIONS L.oiiiiiiiie e e 220
Figure D.1 ICODE instruction database file...........ccccocniiiiiiiiiiii 229
Figure D.2 Floating-point instruction database fileccocoiiiiiiiiii, 230
Figure D.3 Floating-point Module library file ..., 232
Figure D.4 Expanded ICODE instruction file.........coccoiiiiiiiiiiiiiiiicre e 233
Figure D.5 Example ICODE fileoooiiiiiiiiiiii e 235
Figure D.6 Example VHDL and ICODE filesc.coocoiiiiiiiiiiiii e 237
Figure D.7 Example ICODE+ fileoooiiiiiiiiie e 238
Figure E.1 FPGA package for the Xilinx FPGA used in the board.............ccccco. 242
Figure E.2 Serial programming cable connectorccccooiiiiiciii 243
Figure E.3 VGA adapter eXample.. ..ot 251
Figure E.4 Keyboard Information ..ot 253
Figure E.5 Keyboard interface flowchart.............occociiiii e 254
Figure E.6 Format conversion unit flowchart ...t 256

Figure E.7 Output stage type conversion flowchart...........occoooiiiiiii, 259

Acknowledgements

I would like to express my profound thanks to a number of people around me who helped
make this project reality.

First I would like to thank my supervisor, Professor Andrew Brown. His constant and
consistent guidance, advice, encouragement, and confidence were essential for completion

of this thesis, and are highly appreciated

I would also like to thank Dr. Alan Williams for his invaluable help and great patience and

diligence in answering my endless requests.

Thanks to all other members of the Electronics Systems Design Group at the University of
Southampton, in particular I am grateful to Dr. Mark Zwolinski for his ideas and

information and for giving me the chance to join the University as an MSc student at the

first place.

Finally, I would like to say a big thanks to my family. They have given their unconditional
support, knowing that doing so contributed greatly to my absence in my postgraduate

studies, during which we could have been geographically closer.

I

Z.A. Baidas, 2000 Chapter I: Introduction 1

Chapter 1

Introduction

A floating-point number representation can simultaneously provide a large range of values
and a high degree of precision. However, their manipulation is considerably more
complicated than the corresponding fixed point operations. As a result, a portion of

modern microprocessors is often dedicated to hardware for floating-point computation.

In the past, silicon area constraints have limited the opportunity of synthesising floating-
point arithmetic units. Advances in integrated circuit fabrication technology have resulted
in both smaller feature size and increased die area, which has provided a larger transistor
budget. It 1s now therefore possible to implement floating-point systems on an ASIC or
even programmable logic devices. However, the complexity of floating-point units is still
a major limitation in realising cost effective, low volume systems. To overcome this
limitation, advances in current CAD tools are needed, to make it possible to sensibly

implement floating-point systems.

Behavioural synthesis works on a description that specifies the relationship between
system inputs and outputs by describing abstract data structures and functions to
manipulate them. The physical structure is not described, as the emphasis is on what the
design does and not how it does it. In addition, the data flow manipulation aspects for a
synthesis system are not generally concerned with the data fype; the limitations of integer

arithmetic are imposed simply by the lack of functional units for more complicated data

types.

The MOODS (Multiple Objective Optimisation in Data and control path Synthesis) [1, 2,
3.4, 5] 1s a behavioural synthesis system which transforms a VHDL (Very High Speed IC
Hardware Description Language) [6] description into a structural netlist. It implements
global optimisation of a design data flow and control graph by the repeated application of

small, reversible (behaviour preserving) transformations. The system is designed to

Z.A. Baidas, 2000 Chapter I: Introduction 14

support overall optimisation with respect to widely differing objectives: currently these are
total area and maximum delay. The manipulation of these objectives form the basis for
exploration of the design space, which is defined as the n-dimensional space that contains
all possible implementations of a specific design. The exploration is steered by a simulated
annealing algorithm that allows the diverse penalty functions from the various

optimisation criteria to be compared.

This thesis describes an enhancement to the basic MOODS synthesis system to support the
processing of designs containing floating-point (and complex) arithmetic. In particular, the
development of a floating-point module library and a floating-point optimiser capable of
making strategic decisions about the high level binding of each floating-point operation in

a way that meets the user’s pre-defined goal.

The thesis is divided into seven chapters. Chapter 2 provides a general introduction to
behavioural synthesis and describes the basic MOODS synthesis system together with
more detailed examination of the core synthesis sub-tasks. This is followed in chapter 3 by

a discussion of some related work and commercial systems.

The design and implementation of the floating-point library is described in chapter 4,

along with several additional improvements to make the floating-point library integration

more flexible.

Chapter 5 provides an in-depth look at the floating-point optimisation challenges and the

way they were handled.

Chapter 6 highlights the development of a general purpose FPGA prototyping board and
details the design and synthesis of an exemplar: a cubic equation solver, utilises the

floating-point system discussed in the previous chapters.

Finally, chapter 7 concludes by suggesting a number of enhancements to the present

system providing areas for further research.

A number of appendices are also included providing additional information on various
aspects of the work. In particular, Appendix A outlines the main features of the IEEE 754

floating-point standard. Appendix B contains a detailed discussion of the CORDIC

Z.A. Baidas, 2000 Chapter 1: Introduction 15

algorithm. Appendix C provides further details of the floating-point library design and
implementation. Appendix D gives implementation details of the software, and Appendix
E gives details of the hardware used to support the demonstrator. Finally, Appendix F

contains a pre-print of a paper submitted to IEEE-CAD.

Z.A. Baidas, 2000 Chapter 2: MOODS and behavioural synthesis 16

Chapter 2

MOODS and behavioural synthesis

Digital designs can be distinguished by the level of abstraction required to describe them
in three main domains [7, 8]: Algorithmic or behavioural level views the system as a set of
variables and functions to manipulate them. Register transfer level, where the system is
described as a set of registers and a set of transfer functions specifying the flow of data
between these registers [9]. Logic level describes the system as a network of logic gates

and flip-flops with logic equations specifying the behaviour.

Behavioural or high-level synthesis tools [7, 8, 10, 11, 12] bridge the gap between an
abstract behavioural specification of a digital system and a register transfer level structure
that realises the given behaviour. It provides an environment that allows the designer to

experiment with a wide range of structural alternatives.

Starting with a behavioural description of a design and a set of user specified objectives,
behavioural synthesis builds a datapath by allocating hardware elements (functional units,
storage units and interconnects) and provides a controller to specify a set of operations to
be performed during every control step. It frees the designer from the difficulties of
selecting a good implementation, as it does not include design decisions such as timing

and parallelism.

2.1 VHDL for behavioural synthesis

VHDL [6] is a language for describing digital systems. It arose from the program funded
by the US Department of Defense in the late 1970s and early 1980s. In 1986, VHDL was
proposed as an IEEE standard, and it was adopted as the IEEE 1076 standard in December

1987. The language is being used for documentation, verification and synthesis of large

Z.A. Baidas, 2000 Chapter 2: MOODS and behavioural synthesis 17

digital designs. This is actually one of the key features of VHDL. since the same VHDL

code can theoretically achieve all three of these goals.

The description of a digital system using VHDL is achieved with a set of design units.
Each element in this hierarchy consists (usually) of a pair of design units: an entirv and an
architecture. The entity describes the IO ports of the element, and the architecture
describes the internal structure and/or the functionality (thus it is possible for an entity to
correspond to multiple architectures). This partitioning allows the design of an overall
system to be distributed amongst a number of designers; once the entity definitions are

established and agreed, the architecture designs can be carried out independently.

Within an architecture, VHDL allows three types of statement to describe the internals:

1. Component instantiation allows the use of any entity/architecture pair as a component
in the design architecture. Each instantiation has two parts: the name and the port map.
The component name defines the unit to be used, while the port map defines the way

the signals in the design connect the component 10 ports.

2. Signal assignment is used to describe the dataflow through the system. It is divided into
two groups: 1) simple signal assignment (x <= a xor b;), which simply assigns to the
target signal the value of the source expression, and 2) conditional signal assignment
(x <= a xor b when ¢ = ‘1’ else not (a xor b);), which assigns to the target the

value of the first expression when the condition is true or the second if the condition is

false.

3. Processes provide a method to describe activities that must occur in a sequential order.
A process has three main parts: 1) a sensitivity list, 2) declaration part, and 3) statement
part. The sensitivity list defines the signals to which the process is sensitive. Any event
occurring on one of these signals causes the process to execute once. If the sensitivity
list is absent, the process will run forever, unless the user explicitly pauses the
execution with a (wait) statement. The declaration part of the process allows the
declaration of types, variables, functions, and procedures, which are local to the
process. Finally, the statement part of the process contains a set of sequential

statements executed every time the process is activated.

Z.A. Baidas, 2000 Chapter 2: MOODS and behavioural synthesis 18

VHDL was initially designed as a simulation language. This leads to a number of
problems when integrating VHDL in a synthesis environment and results in imposing
some limitations on the language features. Moreover, the language synthesisable subset
interpretation varies according to the level of abstraction at which the synthesis takes
place. As far as behavioural synthesis is concerned. the set of restrictions applied to

semantic interpretation of VHDL [13, 14] are summarised in the following:

e Processes do not execute in zero time, but take a number of clock cycles. Thus there is
no implicit assumption about the execution time of a process. In the simulation model,
the process executes in zero time unless the user explicitly defines a delay using a wait

Statement.

e Time expressions (wait for x sec) are converted into control steps. Therefore, delay
specifications (pausing process execution) can only be implemented as multiples of the
clock period. A delay of any period can be specified using the same wait statement in

the simulation model.

e Processes cannot be used to specify combinational logic. In contrast, a process can be

used to model combinational logic in a simulation and/or RTL environment.

e Structural definitions such as component instantiation and generate statements are not

allowed.
e Recursion within procedures is excluded, due to the difficulties created.

s Assert statements are for verification during simulation. They are ignored during

synthesis.

e Statements within a process are executed in a sequential manner governed by an

implicit clock signal.

e Sensitivity lists, such as (wait on input) will not activate on asynchronous edges.

In the VHDL simulation model, a delay occurs within a process when a wair statement
appears. Sequential blocks between wait statements execute in zero delay. However, when
the design is synthesised, these blocks may take a number of clock cycles to execute,

dictated by the data dependency between operations and the synthesis objectives. It is

Z.A. Baidas, 2000 Chapter 2: MOODS and behavioural synthesis 19

common in a simulation model to employ such processes to describe combinational logic
blocks that get activated when a transition occurs on any of the inputs and executes in zero
delay (or a delay specified by a wait statement). When synthesised, these blocks will not
be mapped to a combinational unit, instead, the system will generate a multi-cycled

sequential block with a number of internal registers.

Sensitivity lists are another issue that introduce major differences between a simulation
and a synthesis environment. Wait on and wait until statements originally detect
asynchronous edges of the monitored sighals. However, in a behavioural synthesis
environment, signal edges will be synchronised to the system clock, and transitions will
only be effective at clock edges, which might introduce timing mismatches between the

behavioural model and the synthesised structural model.

2.2 Behavioural synthesis

There are several advantages to high-level synthesis over conventional RTL synthesis
systems [9, 10, 15]. First, moving automation to a higher level assures a much shorter
design cycle'. Second, it allows comparing several designs in a reasonable amount of time.

Finally, an automated process may out-perform a human engineer in meeting most design

objectives.

The main tasks involved in a behavioural synthesis process are illustrated in Figure 2.1,
which shows the flow of data in a generic high-level synthesis system. A behavioural
description forms a starting point for a high-level synthesis system. The behavioural
description is then compiled into an internal representation. This stage may include a
compiler-like optimisation phase [16, 17] such as loop unrolling, common sub-expression

elimination, dead code elimination and inline expansion of procedures.

' The increase in productivity of behavioural design versus RTL design is typically quoted as a factor of five

[18].

Z.A. Baidas, 2000 Chapter 2: MOODS and behavioural synthesis 20

I — e

—_ | = Module bindi

— { o \ i i i ule binding

| . > J COT%':::;T into- 1} b Schedulingand || ‘—\ and

i i \) l ; allocation il controller

[— | [— |

| j representation { / ! | Y synthesis

System behavioural — —— e ——
description

Figure 2.1 A generic high-level synthesis system

The next two steps form the basis of translating behaviour into structure: scheduling and
allocation. Scheduling assigns operations to control steps (a control step is usually a single
clock cycle). Allocation involves assigning operations and variables to functional units,

storage hardware and communication paths.

The final step in this process consists of module binding and controller synthesis. In
module binding, the abstract datapath units are mapped to specific hardware
implementation provided by a technology dependent module library, while controller

synthesis provides the control circuitry responsible for generating the datapath control

signals.

2.3 The design space

High level synthesis allows the designer to investigate a range of implementations for a
particular input description, representing different trade-offs between a set of pre-defined
objectives. Each of these implementations forms a single point in what is called the design
space [4,7, 19, 20], which is the n-dimensional space describing all possible
implementations of a single behavioural description, in terms of n design aspects. Figure
2.2 shows a two-dimensional design space represented by area and delay (processing
time). The design space is divided into two regions, containing designs that are either
achievable or unachievable. The two regions are separated by the optimal design curve,
which consists of a set of discrete points representing the most efficient implementations.
For a particular design, only a portion of the achievable region may be obtained as
indicated by the actual achievable region in Figure 2.2. This limitation in the design space
is due to a number of factors such as optimisation algorithms and design space modelling

methods [21].

Z.A. Baidas, 2000 Chapter 2: MOODS and behavioural synthesis

| ideal achievable
| region

™

Area
N
e

\ actual achievable

\! region ///3

unachievable

, optimal design curve
region

Delay

Figure 2.2 Area versus delay design space

2.4 Internal representation

The first step in high-level synthesis is to capture the behaviour of the design in the form
of an internal representation. This is essentially a one-to-one translation of the behavioural

description into a graph-based representation containing both the data flow and the control
flow of the design.

For simple designs, the data flow graph (DFG) [11] can be employed to describe the
system. The representation consists of a set of nodes, each node representing an operation
in the original behavioural description. Data dependency between two nodes is represented
by an arc connecting them. Figure 2.3 shows a sample VHDL input with the associated
data flow graph. Three nodes are generated representing one addition and two subtraction
operations. Node 3’s dependency on nodes | and 2 is simply indicated by two arcs, the
first arc labelled C indicates node 3 dependency on node 1 through the internal variable C,

and the arc labelled D represents node 3’s dependency on node 2.

[

Z.A. Baidas. 2000 Chapter 2: MOODS and behavioural synthesis i)

i

If

OO
(!

Owp.
O w

Figure 2.3 Data flow graph representation

The DFG is not sufficient for representing systems in which the execution sequence is
based on external conditions (if-else and case blocks). The reason is that DFG is based
on data dependency, while a method of representing the control flow as well as the data

dependency is absolutely essential in such systems.

To represent the control and the data flow, some systems choose to combine the control

and datapath graphs into one structure, such as the Control Dataflow Graph (CDFG) [22].
Other systems maintain separate graphs for data flow and control, with binding indicating
the relationship between elements in both graphs. An example of the latter is the Extended

Timed Petri-Net (ETPN) [14] representation.

To illustrate these representations, a simple example is introduced in Figure 2.4 showing a
fragment of VHDL code. The graph representation of the code using CDFG and ETPN is

shown in Figure 2.5 and Figure 2.6 respectively.

Z.A. Baidas. 2000 Chapter 2: MOODS and behavioural synthesis 23

c = (a + b) / 2;
sel := sign(c) xor sign(b);
IF sel = '1’ then

r := (a +c) / 2;
ELSE

r := (b +c) / 2;
END IF;

Figure 2.4 A sample VHDL example

The CDFG describes the control flow of the system as a directed graph. Each node in this
graph is actually a separate DFG representing a block of assignments or a conditional
statement. The CDFG in Figure 2.5 comprises three DFGs. The first one represents the

two sequential assignments, the second two graphs representing the two conditional

assignments.

ETPN represents the datapath as a directed graph {14] with nodes and conditional arcs.
The nodes capture both the operators and the variables, while the arcs represent the
connections between nodes. These connections are only available if the arc associated
control signal (S,) is activated. The control part of the design is described by the passage
of tokens through a Petri-net, with vertices representing control states. The state
transaction is controlled by conditions (C;) generated in the datapath. When a control state

recelves a token, it activates the associated datapath conditional arc through its (S,) signal

Z.A. Baidas. 2000 Chapter 2: MOODS and behavioural synthesis

%«

@ -
3

0 o
@/44

3

/<
g

]
| xor |
|
’ sel |
L v
|
/m
FALSE | TRUE
\ 4 A
c b a c

END IF

Figure 2.5 Control dataflow graph

Z.A. Baidas, 2000 Chapter 2: MOODS and behavioural synthesis

g
h

Figure 2.6 Extended timed Petri-net

2.5 Scheduling and allocation

Scheduling and allocation form the basis of transferring behaviour into structure [10, 15].
These two tasks are closely interconnected and dependent on each other. For example,
high performance (speed optimised) designs require allocating more components in each
control step, to allow the exploitation of parallel execution of operations. On the other
hand, the most area-efficient designs use a minimum number of slow components, which
results in a large number of control steps. This dependency gives rise to a major problem:
any decision taken by one of the two tasks might reduce the number of possible

implementations, hence, reduce the actual achievable region in the design space.

The simplest approach to this problem is to set some resource limit before scheduling; this
is usually achieved by imposing a limit on the number of functional units available to
implement the design (e.g. one multiplier and two adders). An improved version of this
approach allows the process to iterate by re-synthesising with a modified resource limit. In

a similar way, the resource limit is imposed, and then scheduling is performed. The result

Z.A. Baidas. 2000 Chapter 2: MOODS and behavioural synthesis 26

is then evaluated against the user objectives. According to the evaluation result. the
resource limit may be altered and the scheduling is performed again for a possible

improved implementation.

Another approach to this problem is to perform allocation before scheduling. trying to
produce an area minimised design within the timing constraints given. For example. some
systems [23] perform complete datapath synthesis including hardware component
mapping. Both global and local optimisations are employed at this stage to minimise the
area cost. Once the datapath is implemented, controller synthesis is then performed,
optimising the number of states according to the constrained imposed by allocation and the

timing constraints given.

The approach employed by the MOODS synthesis system, is to combine scheduling and
allocation together as a general optimisation problem and introduces an optimisation

technique to minimise it.

The techniques that perform scheduling can be classified into two types [24]: constructive
and transformational. Constructive scheduling creates a schedule from scratch by adding
operations one at a time until all operations are scheduled. Transformational scheduling,
on the other hand, starts with an initial schedule, generally maximally serial or maximally

parallel, and attempts to improve it by applying a number of local transformations.

Simple constructive scheduling is possible by scheduling operations ‘as soon as possible’
(ASAP) or ‘as late as possible’ (ALAP) [25]. ASAP schedules operations in the earliest
time step allowed by data dependency, while ALAP assigns operations to the latest
possible time step. Figure 2.7 illustrates the meaning of ASAP and ALAP. The main
disadvantage of both techniques is that all operations are treated equally, with no priority
given to the more critical ones. When resource constraints are imposed, operations that are
less critical can be scheduled first on a limited resource (e.g. single multiplier). This might

block critical operations scheduling and result in an overall performance degradation.

List scheduling [25] solves this problem by taking more controlled approach in selecting
the operation to be scheduled. At each control step, operations available to be scheduled
are kept in a list ordered by some priority function; each operation in the list is then

scheduled in turn as long as the required resource is available, other wise, it will postponed

Z.A. Baidas, 2000 Chapter 2: MOODS and behavioural synthesis 27

to the next scheduling step. Figure 2.8 represents list scheduling of a simple control graph:
operation 2 has a higher priority that operation 1. and is therefore scheduled before it,

providing an optimal solution in this case.

1 2 3 4 1 2
Step1 /*\ (4 K*\; //'f-\ Stept () \/?
NP N P
/ \ /
! / i /
L5/ 8 7 L5/ 3
StepZ2 \7/*\(* é) Step2 (" O
\,/ - N
| |
/'\!\8 / ‘3 : 6 4
N
Step3 (- Step3 A\ () (+)
x] L / f
Lo] | |
g L9 7
Step4 (7/:%1 Step4 ’/‘1"\(\/Y\
T 7Y
| | |
v v v v

a) ASAP scheduling a) ALAP scheduling

Figure 2.7 ASAP and ALAP scheduling
In contrast with the above algorithms, the force directed scheduling [26] attempts to create
an optimal schedule based on a more global view. The algorithm attempt to minimise the
number of resources required to implement the design within a given time constraint, by

distributing sharable operations as evenly as possible between the control steps.

Z.A. Baidas, 2000 Chapter 2: MOODS and behavioural synthesis 28

]
AOA A 2 9
Step1 * /*\ - Step1 *\ [
\ 7// Y /
iy 1 La/
Step2 U Step2 /—*\f ?/\?
| T T
; i
| |
v v v v
a) Initial graph b) Scheduled graph

Figure 2.8 List scheduling

In contrast to constructive scheduling, transformational scheduling is based on an iterative
process that applies a set of local transformations to the design initial schedule, moving the
design towards the point that meets the user pre-defined objectives in the design space.
Early transformational scheduling schemes employed exhaustive search to perform
scheduling. The approach tests all possible combinations of transformations and chooses
the best result. The method guarantees reaching an optimal solution, since all possible
designs are tested. However, it is very expensive in terms of computing time and may not

be considered as a viable solution for large designs.

Another approach to scheduling by transformations is to handle scheduling as an
optimisation problem, and employ an optimisation algorithm that exploits different
transformations to achieve the desired result [7]. At this stage, a heuristic approach may be
employed to minimise the problem by selecting and applying transformations according to

a pre-defined regime guided by an analysis of the design.

In a similar manner to scheduling, resource allocation can be achieved using different
approaches. Allocation involves binding operators to functional units, binding variables to
storage units, and providing interconnect between registers and functional units.
Algorithms that implement allocation can be divided into two classes [10]:

iterative/constructive and global.

Z.A. Baidas, 2000 Chapter 2: MOODS and behavioural synthesis 29

The iterative/constructive algorithms perform allocation by iteratively assigning
operations, one at a time. These algorithms are distinguished by the method employed to
select both the element to be assigned and the unit to which it will be assigned. The
selection methods can be simply implemented to select elements in a fixed order: usually
the same order appears in the data flow graph. A more sophisticated approach relies on a
global selection, which tries to make the most suitable selection based on some metric: for

example, selecting an element that has the least effect on the total system area cost.

Global allocation techniques, on the other hand. deal with the datapath as a whole, and try
to allocate all its elements at once. A number of techniques may be used for global
allocation. A possible technique is to use a graph-based clique-partitioning algorithm [27],
which attempts to build up a graph representing datapath elements by nodes, with arcs
joining nodes that can share the same hardware. The problem is then reduced to finding a
maximal partitioning of fully interconnected nodes. Since each partition will represent
elements that can share the same hardware without conflict, the solution will represent the

minimum hardware cost.

Alternatively, branch-and-bound techniques [28] can be employed to perform global
allocation. The algorithm performs an exhaustive search by trying all possible allocations
of the datapath elements. The approach is very powerful since it checks every possible
solution and provides an efficient allocation for small designs. However, the exponential
increase in processing time makes it very expensive as the number of elements to be
allocated grows. The latter problem can be tackled by imposing bounding heuristics to
limit the number of solutions tried, for example, aborting any search that results in a cost

increase higher than a certain limit.

2.6 MOODS synthesis system

The vehicle used to carry out this synthesis research is called MOODS [1, 2, 3] (Multiple
Objective Optimisation of Data and control path Synthesis). The MOODS synthesis
system has been developed to compile a behavioural description of a digital circuit into a
structural description (VHDL or Verilog structural netlist), which utilises third-party tools
to implement the design. Figure 2.9 is the original MOODS system data flow showing the

major building blocks. It consists of four different tasks:

Z.A. Baidas, 2000 Chapter 2: MOODS and behavioural synthesis 30

l.

The VHDL behavioural description passes the source level optimiser [16. [7]. This
performs a source level optimisation on the VHDL source code, to reduce the
area/delay cost of the final hardware. Compiler-like transformations are applied at this
stage, such as algebraic simplification, dead code removal and inline expansion of

procedures.

The optimiser output is then compiler to an intermediate code (ICODE) using a VHDL
language compiler. The ICODE represents the behaviour of the design at the register-

transfer level.

This stage is the actual synthesis process. It takes as input the ICODE file and a set of
user objectives, such as the design total area and maximum delay, and performs
scheduling, allocation and module binding and outputs a VHDL structural netlist

suitable for the target logic synthesis tool.

The final stage in this data flow is the low-level logic synthesis and technology
mapping, which utilises third-party tools, such as Cadence Synergy [29],
LeonardoSpectrum [30], and Xilinx Foundation [31], to transfer the structural netlist

into a physical circuit on an ASIC or a programmable logic device.

A detailed description of the MOODS synthesis system may be found in the literature [1,

2,4,5, 19, 32]. Outlined in the following sections are three major aspects of the synthesis

system which have a particular bearing on the discussion of the floating point subsystem:

The 1nitial compilation into ICODE and the internal representation.
Module expansion.

Global optimisation.

Z.A. Baidas, 2000 Chapter 2: MOODS and behavioural synthesis 31

/ Behavioural
/ VHDL
|
|
Y
]

A

(1)
VHDL source level
optimiser/Compiler

l

r
wie 10O B

User optimisation compiler | VHDL function library
objectives | ISR

—

Core processor

| | —
v
L < - Expanded |
| Module ripper I module
! Synthesis and optimisation - | library
i Simulated annealing i
i algorithm i
| »i 1
I
! :
I
E :
R A] = =
)
Technology-
Structural gate -
/ level netlist ; dePe‘l‘igre::ie";m“'e
y

(4)
Logic synthesis, placement
& routing / FPGA mapping
tools

) -
i gl

FPGA ASIC

Figure 2.9 Original MOODS system data flow

2.6.1 ICODE and internal representation

The MOODS synthesis system does not directly read the input behavioural description. It
reads an ICODE file. The logic behind this is to have MOODS as a general purpose
synthesis system that can handle different input languages simply by changing the ICODE
compiler at the front end. The VHDL2IC compiler (Figure 2.9(2)) translates the VHDL
description into an ICODE representation. The ICODE is in some way similar to an

assembly language, with additional control flow information. A simple example showing a

(%]
8]

Z.A. Baidas. 2000 Chapter 2: MOODS and behavioural synthesis

fragment of VHDL code with its equivalent ICODE is shown in Figure 2.10. It outlines

the key features of the ICODE language:

e An ICODE instruction has the general form:

OPERATION <inputs> , <outputg> <activation list>

e Each ICODE instruction is executed once it has been activated. (Excluding the first
instruction, which is activated on the system reset.) Upon conclusion of an instruction,
all instructions in its activation list are activated. If the activation list is missing, the
next instruction is activated by default. For example, instruction i2 activates both i3

and 4. While the absence of an activation list in /6 results in an automatic activation of

i7.

o (Complex expressions are split down into a number of simple ICODE instructions, with
temporary variables identified in the figure as numeric literals. In the figure, the

VHDL assignment to the variable m is represented by five ICODE instructions (i2 to

i6).

e VHDL functions and procedures are implemented as a separate module, with a
dedicated instruction MODULEAP to transfer the control to them. Instruction i9, for
example, halts the main execution and passes the control to the sgrt module. The

module output is returned in the variable m before the main execution continues.

e Conditional branches are implemented as an IF instruction with two activation lists.
One for the true condition (ACTT) and the other for the false (ACTF). In Figure 2.10,
the VHDL conditional statement (IF sel = 1 THEN ... ELSE ... END IF) is
implemented as two instructions 1/0 and i//, with instruction i/2 being activated if the

condition is true, and (/4 being activated if the condition is false.

A complete definition of the ICODE is provided in Appendix D.

[U8]
(U8]

Z.A. Baidas, 2000 Chapter 2: MOODS and behavioural synthesis

VHDL ICODE

i2 : MULT a,c,l ACT i3,1i4
i3 . MULT 1,#%4,2 ACT iS5

m := b*b - 4*a*c; i4 : MULT b,b,3

i5 : COLLECT 2

i6 : MINUS 3,2,m

IF m >= 0 then i7 : GE m, #0,4
| i8 : IF 4 ACTT i8 ACTF 1il6
s := sqgrt{m); [}9 : MODULEAP sgrt m,s
1 - 1 TuEN [110 : EQ sel,#1,5
1 sel = | i11: IF 5 ACTT il12 ACTF i14
- [i12: NEG b, 6
r o= - 7 . .
s | i13: PLUS 6,s,r ACT 116
ELSE
114: NEG b,7
r := -b - s; ,
| 115: MINUS 7,s,r
116
END TF; *
END IF;
FUNCTION MODULE sqgrt input, output

sgrt (input:integer)
return integer is .
END MODULE sdgrt;

END;

Figure 2.10 VHDL and the equivalent ICODE example

In the core processor input stage, the design, in the form of an ICODE file, is transformed
into a control and datapath graph [1, 19]. Figure 2.11 shows the initial control and

datapath graphs for the ICODE listed in Figure 2.10.

The control graph defines the execution order of the ICODE instructions. Each node in the
graph defines a control state. Input and output arcs define a conditional control flow,
governed by signals generated on the datapath. For example, the datapath signal s4/
decides on the transition from state Sg to state Sg or 6. Each control node has an
instruction list, defining the instruction to be executed when this node is activated. A set of
acyclic subgraphs divide these instructions into groups of dependent instructions. Each
group has a unique group number. Instructions with different group numbers may be
executed concurrently. Instructions with the same group number are dependent on each

other and must be executed sequentially within the same control state.

Z.A. Baidas, 2000 Chapter 2: MOODS and behavioural synthesis 34

The MOODS control graph is of six types of node (refer to Figure 2.11):

[. General node (for example Ss): has one input and one output. and can contain any

ICODE instructions except COLLECT, MODULEAP, or conditionals.

2. Fork node (for example S,): the same as general node except that it has two or more
unconditional outputs. This node defines the starting point of a set of parallel execution

threads, where all the successors executed independently.

3. Conditional node (for example Sg): has one input and two or more outputs. The output
conditions are controlled by a signal from the datapath. This node is generated form an

ICODE conditional instruction such as an IF or CASE statement.

4. Dot node (for example S;6): has two or more inputs, any of which can activate the node.
This node is a counterpart to the conditional node; it represents the reconvergence of

mutually exclusive control threads.

5. Call node (for example So): the call node results from a module call instruction. When
this node is activated, it activates the execution of the required sub module. When the

sub module exits, control 1s returned to the submodule successor.

6. Collect node (for example Ss): results from an ICODE collect instruction. The node
will not activate its descendant node until a fixed number of activations (indicated by
its argument) is received, thereby synchronising a set of parallel execution threads.
The node is a complement to the fork node, where the concurrent branches are joined

into a single node.

The MOODS datapath graph represents the functionality of the ICODE instructions with a
set of functional units, storage units, and interconnects. The flow of data though this graph

is governed by control signals generated by the appropriate control state in the control

graph.

The initial datapath graph is created as a one-to-one mapping of ICODE operations and
variables, with each ICODE variable represented as a storage unit (register), each ICODE
arithmetic or logical operation represented as a separate functional unit, and each

assignment operation represented as a set of registers, interconnects and control signals.

Z.A. Baidas. 2000

Chapter 2: MOODS and behavioural synthests

oS}
h

|] o z
i a f ¢ T i b
{ Lo [;
! — r ‘ !
(5,)2 Lo
)\A\‘ —
/ N Tt N
< S TR I #4) e
. ™ i | i ! H
(s)e (s,)i R R
. / — -
7 IEN e N
/ i
/7 oougerz
i 85] E
|
| i
3 }
|
—d

—
.

T —

...............................

S’) i8
8
Z_/\ s41
/ v
/ CALL , » sqrt sub-
module
N —— sel (1)

542

Figure 2.11 Control and datapath graphs

Z.A. Baidas. 2000 Chapter 2: MOODS and behavioural synthesis 36

It is worth mentioning that the initial control and datapath graph represents a valid
structural implementation of the design. However. it is almost certainly a highlyv inefficient
implementation in terms of the total execution time and the large area cost. The
optimisation phase of MOODS now moves this implementation in the design space

towards the point that meets (if possible) the cost objective specified by the user

2.6.2 Transformations

MOODS employs an iterative optimisation strategy to perform synthesis. Iterative
optimisation is achieved by dividing the synthesis task into a number of local
transformations that are applied to different parts of the design using a dedicated
optimisation algorithm. This allows simultaneous consideration of synthesis sub-tasks by

performing scheduling, allocation and module binding simultaneously.

At present, MOODS has a set of fourteen different transformations. These transformations
are complete, as a transformation applied to a valid design will result is a valid design. The
availability of inverse transformations allows a previous design decision to be reversed at

any stage during optimisation, which provides a solution for the problem encountered with

premature binding decisions which may result in a design that is not optimal.

Transformation selection and application consists of four distinct steps, as illustrated in

Figure 2.12:

1. Data selection involves selecting a transformation and the portion of the design to
which it should be applied. The selection varies according to the optimisation algorithm

involved and is performed randomly in the simulated annealing algorithm (see section

2.6.4).

2. Testing involves checking the validity of the transformation and ensuring that it will not

modify the design behaviour.

3. Estimation predicts the effect of the transformation on the system performance without

actually altering the design.

4. Execution, applies the transformation to the design.

Z.A. Baidas, 2000

MOODS transformations are divided into two groups: scheduling transformations which

Chapter 2: MOODS and behavioural synthesis

apply mainly to the control graph, and allocation and binding transformations which

modify the design datapath. Scheduling transformations are listed in Table 2.1. while

allocation and binding transformations are listed in Table 2.2.

¥

I
step 1 !' Select transformation
and target

A

Test transformation

|
|

step 2. | validity
|

l

Transformation
valid ?

Step 3

A 4

|

Estimate the

transformation effect on

the design

|
|
|
j

I
|
|

Perform the
transformation ?

no

- SR

A

1

step 4 | Apply the transformation [

| |
—

]

yes

another
iteration ?

no;

Figure 2.12 Transformation application steps

Z.A. Baidas, 2000

Chapter 2: MOODS and behavioural synthesis 38

Transformation

Effect
name
sequential merge | Combines two sequential control nodes (i.e. nodes executed seguentially)
to form a single control node implementing multiple instructions.
parallel merge Combines several concurrently executing nodes into one control node.

merge fork and
successor

Combines a fork node with one of its successors, with the successor
instructions becoming conditional instructions executed in the fork node
control state.

group instructions
on register

Tries to bypass datapath registers that have a single input and a single
output net (i.e. a register implementing a variable accessed by one read and
one write instruction) and moves the instruction group that contains the
write instruction into the read instruction control node.

ungroup node into
groups

Moves an instruction group into its own separate control node.

ungroup node into
time slices

Divides instructions within a control node into new control nodes, such that
no control state has an execution time greater than a specified period.

clock set / multi-
cycling

A global optimisation transformation that employs ungroup node into time
slices transformation to meet a clock period constraint set by the user.

Table 2.1 Scheduling transformations

Transformation
name

Effect

combine
functional units

Responsible for joining two functional units into one, time-shared between
several operations. For example, combining an add and a subtract unit into
a single add/subtract ALU.

share registers

Shares a single register between ICODE variables with non-overlapping
lifetimes, or variables that occurs in mutually exclusive conditional branches
(i.e. do not execute concurrently).

uncombine
instructions from
units

Takes a functional unit implementing a number of ICODE instructions and
moves one of those instructions into a new functional unit added to the

datapath.

uncombine units
fully

Utilises the uncombine instructions from units transformation to completely
remove a combined functional unit from the datapath.

unshare variable
from register

Removes one of a set of shared register variables into a new register.

unshare register
fully

Utilises the unshare variable from register transformation to completely
unshare a register into separate registers, one for each variable.

alternative
implementation

The only binding transformation. It provides an alternative low level module
to implement a certain datapath functional unit. For example, replacing a
ripple carry adder with a carry lockahead adder to enhance the speed of
vice versa to reduce the total area cost.

Table 2.2 Allocating and binding transformations

Z.A. Baidas, 2000 Chapter 2: MOODS and behavioural synthesis 39

2.6.3 The cost function

MOODS employs fourteen different transformations to manipulate the design data
structure (see Table 2.1 and Table 2.2), by chaining, merging or separating nodes in the
control and datapath graphs. A measure of the efficiency of applying these transformations
is provided by means of a "cost function” that represents the state of the design in an n-

dimensional design space as a single number, essentially the weighted sum of the costs in

each dimension.

The MOODS cost function allows the user to specify objectives for a number of design
parameters such as area and delay. These are the dimensions of design space. Each of

these objectives is defined as a target value and a priority level, with one being the highest

priority.

During optimisation, the effect of a transformation is predicted by evaluating its effect on

the system "energy". For a single objective, the change in energy is determined by:

estimule previous

AE =
mirial
Where C,, i 15 the estimated cost after applying the transformation, C,..., is the current
implementation cost, and C,,, 1S the cost of the initial implementation, with negative
average energy change (4AF < 0) indicating a general improvement in terms of the target

objective.

2.6.4 Simulated annealing optimisation

Design optimisation is performed using a simulated annealing algorithm [33, 34, 35, 36] to
minimise the multiple-input cost function by selecting and applying different
transformations. The term simulated annealing comes from a physical perspective:
annealing is originally a physical process where a substance is cooled down from the
liquid phase to the solid phase in a controlled, usually slow, manner. If the cooling is done

carefully enough, the energy state of the solid at the end of the cooling is at its minimum.

Z.A. Baidas, 2000 Chapter 2: MOQDS and behavioural synthesis 40

Simulated annealing algorithm is a global optimisation method that distinguishes between
different local optima. Starting from an initial point. the algorithm performs a random
transformation and the cost function is evaluated: any downhill step 1s accepted and the
process repeats from the new point. An uphill step may be accepted, enabling the process
to escape from local minima. This uphill decision is made by the Metropolis [37]
algorithm. As the optimisation process proceeds. the length of the step declines and the

algorithm iterates towards a global optimum.

By way of an example, let us consider the one-dimensional configuration space
represented in Figure 2.13. The design is initially represented by point A. An optimisation
algorithm accepting only transformations that results in an improvement will hit the local
minima (point B). Simulated annealing will accept degradation and hence allows the

configuration to jump out of the local minima into the global minima (point C).

A - initial

configuration /—\

AN //
M~/

Cost

N

B - local minima

/

C - global minima

Configuration

Figure 2.13 A one-dimensional configuration space

In MOODS the method selects a random transformation and evaluates the change in the
cost function AE. If the transformation leads to an improvement (AE < 0), it will be

automatically accepted. Degradation might be accepted with a probability given by

P:exp(EJ ;o AE>0

Z.A. Baidas, 2000 Chapter 2: MOODS and behavioural synthesis 41

Figure 2.14 describes the procedure as implemented in MOODS

| For (temp = Tsrare; Cemp >= Teng; temp = temp * Tsiep)
{

for (I = 0; I < Icrep; I++)

{
t = select_transformation ();
delt E = estimate_cost _var (t);
if (delt_E < 0 || rand() < exp(-delt_E/temp))

Execute_transformation(t);
}

Figure 2.14 The simulated annealing algorithm

The sequence of temperatures during optimisation, and the number of transformations
examined per temperature, defines the annealing schedule. The annealing schedule in

MOODS is determined by four parameters:

1. The initial temperature 7.

2. The final temperature 7,,4.

3. The number of iterations per temperature ..

4. The reduction made to the temperature in the end of each step Ty

Ty 18 difficult to determine. However it should be high enough to allow the design to
escape local minimas. For the end temperature 7,4, a safe option is to always set it to zero,

since at zero temperature, only improving transformations will be applied to the design.

The optimisation algorithm performance at 7,4 = 0, is a good aid to decide the I,,. If a
noticeable amount of improvement is achieved at this point, then the design is not optimal
and the number of iterations should be increased. On the other hand, if few improvements
in the design are achieved, then this is a good indication that sufficient iterations have

been performed during the optimisation phase.

Z.A. Baidas, 2000 Chapter 2: MOODS and behavioural synthesis 42

Finally, temperature reduction should be small enough so that the reduction in temperature
is slow enough to avoid trapping the design in a local minima because the temperature is
low and hence the probability of accepting degrading transformations, that cause the

design to escape this minima, 1s too low.

In addition to the simulation annealing algorithm, tailored heuristic optimisation is also
provided to perform design optimisation. It is based on the same set of transformations.
however, transformations are applied in a pre-defined order based on an analysis of the

performance of each transformation on a number of designs [19].

MOODS heuristic approach only accepts improving transformation, thus there is a
possibility that the algorithm delivers a local minimum. However, tests suggest that the

algorithm produces results comparable to the simulated annealing.

Note that the tailored heuristic optimisation within MOODS performs only area/delay
optimisation, while the simulated annealing is capable of performing a multi-dimentional

optimisation between many objectives.

2.6.5 Hierarchical module expansion

Originally, MOODS considered functional units as pure combinational logic blocks.
Hierarchical module expansion [19, 38, 39] provided a means of implementing multi-cycle
technology-independent functional units, which get expanded in the internal design
structure during synthesis. This enables inter-module optimisation at the sub-module level,
allowing greater opportunities for functional unit sharing. Each expanded module is
defined with separate sub-control and sub-datapath graphs, which replace the desired

datapath functional unit and its activating control states.

An example of the expansion process is given in Figure 2.15. Before expansion, the
addition is implemented using a combinational 64-bit adder that executes in a single
control state (S,). The functional unit is then replaced by an expanded module composed
of an 16-bit adder that performs the addition operation over four control states. The
original control node was replaced by the expanded module sub-control graph (S, to S,),
and the 64-bit combinational adder was replaced by a 16-bit adder and the required

interconnect.

Z.A. Baidas, 2000 Chapter 2: MOODS and behavioural synthesis 43

a g ;‘ b ! Locin S, a b cin
e Fea | N ! |
1 i | i b | o
| i XY v v — ¥ |
: ;] S Ss & 5/ N VAN e
| | /Y\ h BET ’ e \ ’
N [52 =
(s) |] ~ Ly
\\/ ; cm} 3 H cin
' (s) ——*!
PN | 7 is« isg‘[&,s, 1"
- sum | | I T R T N |
fsum b ,.44‘coiut‘
R 64
\2¢/ '
|
v
a) Before expansion b) After expansion

Figure 2.15 Expansion process

2.6.6 Floating-point enhancement

The core of this thesis describes an enhancement to the original MOODS synthesis system
to allow synthesising designs incorporating floating-point variables and operations. These
enhancements are identified in Figure 2.16, which reproduces the original system block

diagram (Figure 2.9) with the newly added features.

Z.A. Baidas, 2000

Chapter 2: MOODS and behavioural synthesis

44

Behavioural
VHDL

A

VHDL source level
optimiser/Compiler

User optimisation
objectives

[16,17]

4

VHDL2IC compiler

VHDL function library |

v
ICODE
v _ﬁm,WH&;g_
Ploatg e 7. module fibrary |
optimiser PN
(Chapter 5) ' ;
{Chapter 8, Chapter 4)
A\ 4
4 ICODE+ /

4 - =
< L R o TN apl
< | |
Module ripper i Floating point]
»| Synthesis and optimisation - l¢—————— modute library]
Simulated annealing { !
algorithm i(Chapter 3, Chapter 4),
- e
Technology-
Structural gate - . dependent module |
level netlist i libFaties i
i y H
4
Logic synthesis, placement
& routing / FPGA mapping
tools

—

FPGA

z

ASIC

Figure 2.16 MOODS synthesis system with the floating-point enhancement

th

Z.A. Baidas, 2000 Chapter 3: Background and related work 4

Chapter 3

Background and related work

This chapter presents background material describing influential research in the
development of the floating-point library and floating-point svnthesis. It is split into four
main sections: section 3.1 describes the real number representation. Section 3.2 introduces
some fixed-point functional units of a particular interest, while section 3.3 examines some
research 1n the development of floating-point functional units. Attempts to implement
floating-point arithmetic on programmable logic are introduced in section 3.4. Finally,

section 3.5 describes a number of systems that automate the floating-point systems design

process.

3.1 Real number representation

There is a fundamental difference between integer and real data types. In integer
calculations, algorithms have discrete results, and ostensibly produce identical outputs on
different machines. Real calculations do not always produce identical results due to the
internal representation and the calculation accuracy. Early inconsistencies gave rise to a
common real number representation with a clear definition of the way systems should

handle real calculations, as well as the reaction of the system to exceptional situations (e.g.

division by zero, overflow) [40].

The IEEE floating-point number representation [41, 42, 43] provides a solution to this
problem. It provides four different representations of floating-point numbers. The standard
gained a great popularity and most system manufacturers produce chips to support it. A

detailed description of the standard is given in Appendix A.

Z.A. Baidas, 2000 Chapter 3: Background and related work 46

This research adapts the IEEE single-precision floating-point word, which is 32-bits wide
and arranged in the format shown in Figure 3.1. The floating-point word is divided into

three fields: a single-bit sign, an 8-bit biased exponent and a 23-bit fraction.

Implicit one

Sign Biased exponent Fraction

(s) (E) (F)
i Iy)]
i T T T 1 . T T T T T Y T T T T i
(4|27 2 2 20 2 22 20120 22 25 24 29 20 . 2182192002 p22 23
i | 1 i L1 [{ i 1 [L 1] { ‘/A [{ I] [

31 30 29 28 27 28 25 24 23 22 21 20 19 18 17 ' 5 4 3 2 1 ¢

Figure 3.1 IEEE single-precision floating-point format

The sign bit (S) indicates the sign of the floating-point number, a negative value has a sign
of 1; non-negative values have a sign of 0. The biased exponent is an unsigned integer
field representing a multiplicative value of some power of two. The bias has a value of
127. If, for instance, the biased exponent has a value of x, then the actual exponent would
be x —127. The fraction is a 23-bit field containing the 23 least significant bits of the
number mantissa. The weight of the fraction most significant bit is 2"; the fraction least
significant bit has a weight of 2% The leading 1 in the mantissa field (bit 24) is implicit

and does not appear in the fraction field. A 32-bit real number, y,, is generated from

y, = (=1 xLEx2F"7,

One of the most notable features of the IEEE standard is that it allows computation to
continue if it faces an exceptional condition, such as dividing by zero. This is achieved by
introducing special bit patterns that do not represent ordinary numbers. The standard
defines five such bit patterns: zero, denormalised numbers, +/- infinity, and Not a number.

These are described in Appendix A.

The IEEE floating-point format is not the only way to represent real numbers with finite
precision. Various replacements have been proposed [40], although none have achieved

the popularity of the IEEE floating-point format.

A particular number system that has been the subject of considerable interest is the
logarithmic number system [44, 45, 46]. In this system, a real number is represented using

the form (-1)° x r“, with § being the sign bit and e is an exponent of the radix r. Figure 3.2

Z.A. Baidas, 2000 Chapter 3: Background and related work 47

shows a general format of a logarithmic number. The exponent ¢ is represented in a fixed-
point number with n-bits for the integer part (i), m-bits for the fraction part (f). and 1-bit

Far

for the exponent sign (S). A real number, ys, is generated from v. = (~=1)* x7"*/*" where

r typically equals 2.

—
Exponent
(e)

Sign} n-bits m-bits !
(S) integer (i) fraction (f)
Il , | Bl
‘ !] T T / T T T T T /! o R i
Ly Y N Y N S N T N S/ O O S N

Figure 3.2 Logarithmic number format

The logarithmic number representation provides a very fast and easy basis for arithmetic
operations that involve exponent manipulation, such as multiplication and division.
However, addition and subtraction are slower in logarithmic number systems when
compared to floating-point number systems, and also involve a sizeable lookup table. It is
observed that the most frequent arithmetic operations are addition and subtraction' making
logarithmic numbers less successful when compared to floating-point numbers. Recent
work in [47] delivered a logarithmic arithmetic unit that performs addition and subtraction
in a comparable speed to floating point units. However, the area cost of such

implementation is still a disadvantage when a minimum area cost is the main objective.

3.2 Fixed point functional units

Multiplication and division are the basic operations underpinning most arithmetic
processes. The way multiplication and division are performed have a major effect on the
overall system performance. Purely combinational multipliers and dividers are not viable

designs, they consistently give the largest area. This section describes multiplication and

' Addition and subtraction typically account for more that one half the total arithmetic operations in a typical

scientific calculation [48].

Z.A. Baidas, 2000 Chapter 3: Background and related work 48

division algorithms that allow a trade-off between system performance (delay) and

hardware cost (area).

The section begins with a multiplication algorithm based on the modified Booth

algorithm. Then. an algorithm for rapid binary division is outlined.

3.2.1 Modified Booth multiplier

The Booth multiplier was originally introduced as a uniform multiplication process, which
is independent of the sign of the input operands [49]. A modification to this method
allowed the reduction of the number of additions required to perform the multiplication

operation at the cost of some extra control logic [50, 51].

In the serial-parallel form of the multiplication operation, the multiplicand is added to the
partial product every time a one is detected in the multiplier. For a single cycle
multiplication, this requires a number of add operation equals the multiplier width. The
modified Booth multiplication reduces the required number of add operations by half’, by
regrouping the multiplier bits into groups of three bits (the multiplier should be first
appended with zero by the Isb to form the first 3-bit group, and if necessary, zeros by the
msb to form the last 3-bit group) that control the value to be added to the partial product.

Modified Booth encoding is illustrated in Figure 3.3, and the value to be added in each

iteration based on the multiplier bits.

Note that adding the multiplicand twice is simply achieved by shifting the multiplicand
left and adding the result. Subtract twice is also performed by adding the two’s
complement of the latter. The example in Figure 3.4 illustrates the algorithm principle
where two 5-bit (00101 x 01010) numbers are multiplied using this method. The
multiplier is divided into three groups: the first group (100) indicates subtract twice
operation, the second group (101) indicates a subtract one, and finally (001) indicates add
once operation. Note that each of the three terms is sign extended up to the most

significant bit of the final product.

? For an odd multiplier width, the number of adders required are n+1/2, where n is the multiplicand width.

Z.A. Baidas, 2000

Chapter 3: Background and related work

™~

0
! I | [
§$ 8§ o o oo O o0 0e—— lsb
N B
- { { O ;
i s B O A o e e ; <
H j o~ i -
DEDEB?D O — A ,_g
‘ ; : ' —-—]
| | @
| L =
. | L
| | |
| I
|
L 0

Key
S : summand sign
o+ summand bit

@ : product bit

Figure 3.3 Modified Booth multiplier

Multiplier
Bite Selection Summary
000 +0 No change to partial product.
001 +M Add the multiplicand 1o the partial product.
010 +M Add the multiplicand to the partial product.
011 +2M |Add the multiplicand twice to the partial product.
100 -2M Subtract the multiplicand twice from the partial product.
101 -M Subtract the multiplicand from the partial product.
110 -M Subtract the multiplicand from the partial product.
111 -0 No change to partial product.

Table 3.1 Partial product selection

Z.A. Baidas, 2000 Chapter 3: Background and related work 30

"0
111111101 1 0«—— 0sb
1111101 1 18
010 01 0 1 ——— 0|
o1
| o~ T
i | 0|
.0
0000110010

Figure 3.4 Modified Booth multiplication example

3.2.2 Rapid division algorithm

The rapid binary division algorithm or Wilson-Ledley division method [52, 53] provides a
simple approach to dividing unsigned normalised fractions. The approach is based on the
decomposition of a binary number into groups of strings of one of four types as illustrated
in Figure 3.5. The string types are: all zeros, all ones, all zeros except one bit, and all ones

except one bit.

0 12 34 56 7 8 9 10 1112 13 14 15 161718 position
0.0000 1111 00100 11011 number
\ /
string of string of isolated one in isolated zero in
zeras ones string of zeros string of ones

Figure 3.5 A decomposition of a number into four types of strings

The algorithm relies on a number of observations that benefit from the binary number

decomposition illustrated above:

1. A string of ones from a to b positions contribute to the magnitude of the number by

(2-(1+] _ 2-/}).

2. Anisolated one at position a in a string of zeros contributes by (27) to the magnitude.

th

Z.A. Baidas. 2000 Chapter 3: Background and related work

3. A string of ones from a to b positions with an isolated zero at ¢ position contributes the

value (2" =27 = 2) to the magnitude.

Based on these observations, the algorithm tries to detect similar strings that may occur in
the division result and generates them at once. The procedure” is summarised in Figure
3.6; the procedure ends when i equals the result length. Before applying the procedure,

three main conditions should be satisfied.
1. The denominator D should be positive and normalised.
2. The numerator N should be positive, with N < D.

3. N is either normalised or with a single zero to the right of the binary point.

i=0
E s=1
‘ T
] 1
> NY=NEU-D — N&=NSULD }ﬁ
N { i1 N
i H | |
Y + v Y
END | Normalise N'®/ shifting m END
positions
i i T
| |
| 1 : ! ; |
j= i i PN Y | I i=i+m
f=i+m i _ | _ i
s:5+7J i Q=1 ; Q=0 s=s5+1
A %
v I
! |
Each Q through Q. =0] | Each Q through Q=1 [
| [
T]
L]
i Key
N :numerator —
JD : denomirator
| AP initial numerator value
| NS} numerator value at s stage
Q :division result
n :result width

Figure 3.6 Rapid division algorithm flowchart

* For more details on the algorithm and its relation to the binary decomposition see [53]

h
ro

Z.A. Baidas, 2000 Chapter 3: Background and related work

3.3 Developing floating-point functional units

Research carried out in the development of floating-point functional units can be divided
into two areas: research dedicated to developing floating-point arithmetic units (adder,
subtractor, multiplier, divider) mainly for hardware implementation, and the development

of algorithms for elementary function evaluation at both the hardware and software levels.

An example of the first area work carried out by Oberman [48, 54] to investigate different
methods of implementing high-performance floating-point arithmetic units, and proposed
techniques to improve the performance of these units, mainly to speed up future
microprocessors. One of the techniques introduced allows a full-precision floating-point
addition operation to execute with an average delay of 2.25 clock cycles. This was
achieved by exploiting the distribution of operands over redundant datapath hardware and
employing pipelining and fast rounding methods. However, the significant hardware cost
makes these techniques unsuitable for low cost designs, or designs targeting

programmable logic devices.

The CORDIC algorithm (Co-ordinate Rotation DIgital Computer) is one example of an
efficient algorithms to evaluate elementary functions. The algorithm was introduced in
1959 by Volder [55] as a method to rotate a vector by an arbitrary angle, or to determine
the angle and the magnitude of a vector. Besides vector transformation, the algorithm
computed sine, cosine and inverse tangent functions. Walter [56] generalised Volders
algorithm to support a wide range of hyperbolic, logarithmic and exponential functions. A
recent modification to the algorithm [57] enables the computation of inverse sine and
inverse cosine functions. The CORDIC algorithm exhibits linear convergence, which
implies that generating an n-bit result requires n iteration. Moreover, the algorithm is
simple to implement and requires minimal hardware. Details of the CORDIC algorithm

may be found in Appendix B.

ATA (Add - Table lookup — Add) is another method for evaluating elementary functions
[58]. The method evaluates these functions using a truncated Taylor series and a large
table (around one megabit for a single instruction). The method involves evaluating a
Taylor series approximation by parallel add/subtract, paralle] table lookup, and followed
by a multi-operand addition. The proposed hardware implementation is very fast.

However, the table lookup size required to generate a single elementary function is

W
e

Z.A. Baidas, 2000 Chapter 3: Background and related work

868352 bits, and the total amount of table size required to calculate seven elementary
functions is about 14.2 Mbit. This large table size introduces a problem, in terms of

internal storage area, if the algorithm is to be realised as a single chip design.

A software library for elementary function calculation using the IEEE floating-point
standard was proposed in [59]. The library combined a table lookup method with minimax
approximation polynomials [60, 61] to develop high-performance software models with
maximum accuracy. The proposed algorithms, along with similar software-based
algorithms are often discarded in the hardware domain due to the large area overhead they

impose.

3.4 Floating-point arithmetic on FPGA

There have been several studies to investigate the possibility of implementing floating-
point operations on programmable logic devices. Programmable logic devices impose
limitation on the number of functional units, storage devices, and interconnect. This lead
designers to avoid implementing floating-point operations on programmable logic devices,
simply because these operations typically require a large area to be practical on these

devices.

A recent study [62] offered evidence that floating-point implementations on FPGAs
should be considered. It introduced a single precision floating-point adder and multiplier
realised on a Xilinx 4020E FPGA. The author argued that a single precision floating-point
unit implemented on FPGA would give a reasonable performance improvement for
floating-point applications over the currently available microprocessor. Moreover, he
suggested that if programmable logic device density and speed continue to increase,
platforms based on programmable devices might offer a significant speedup to pure

floating-point applications.

Similar work [63] proposed two single precision floating-point square root
implementations on FPGAs. The author surveyed different methods of implementing a
square root functional unit, and decided on an iterative method based on a single 24-bit
adder/subtractor functional unit. A high performance implementation of the same

algorithm was also highlighted. The second implementation exploited parallelism using a

Z.A. Baidas, 2000 Chapter 3: Background and related work 54

fully pipelined implementation at the cost of extra hardware (almost five times the cost of

the first serial implementation).

An FPGA prototyping board using an Altera Flex 81188 FPGA was the target for single
precision floating-point addition and multiplication units in [64]. The design was used to
simulate the interaction of galaxies in what is called a gravitational N-body model. A point
of particular interest in this work is the extra limitation introduced by FPGA devices on a
prototyping board. The chip pins in this case are pre-assigned, which imposes additional
constraints on the placement and routing tools and results in less efficient utilisation of the

FPGA resources.

A different approach to implementing floating-point operations was presented in [65]. The
work minimised the floating-point implementation cost by introducing smaller floating-
point formats. These formats are shown in Figure 3.7. The 16-bit format has a 9-bit
fraction field and 6-bit biased exponent, with a bias of 31. The 18-bit format has a 10-bit
fraction field and a 7-bit biased exponent, with a bias of 63. The approach gives a major
reduction to the total cost of the implementation, but results in a reduction of both the
dynamic range and the representation accuracy, which might be suitable for a specific
implementation, but is not considered a general-purpose approach to floating-point

calculation.

Sign Biased exponent Fraction
(S) (E) (F)
1 |]
T T T T T f T f 1 T T T li
- 25 2 2 22 2"]2’ 22 28 24 25 p6 27 28 29}
L [1 { [l 1 [1 { 1 | (.t
15 14 13 12 " 10 8 8 7 8 5 4 3 2 1 0

16-bit floating-point format

Sign Biased exponent Fraction
(s) (E) (F)
i i !

N B B R S M L R I RS L
+H-| 2T 2 P 2 X2 27!2’ 22 23 24 25 26 o7 2F 2921’
[S SO D AT S W SN S SN S T S

17 16 15 14 13 12 1 10 9 8 7 6 5 4 3 2 1 0

18-bit floating-point format

Figure 3.7 Short floating-point formats

n
h

Z.A. Baidas, 2000 Chapter 3: Background and related work

The work purposed in {66] introduced an FPGA-based floating-point data path as a
building block in a geometric processor dedicated to co-ordinate transformations in a
graphics system. The data path performs 32-bit floating-point addition, subtraction.
multiplication, division, and comparison operations. The design exploited the similarity in
the floating-point operations to reduce the total area cost. This is achieved by partitioning
the data path into four main units illustrated in Figure 3.8: an exponent manipulator: a
fraction manipulator; a fraction arithmetic unit: and a control unit. A simple
adder/subtractor unit is employed in the fraction arithmetic unit, which implies a serial-
parallel or “pencil and paper’ implementation of the fixed-point multiplication and
division operations. The proposed data path provided a single flag to indicate overflow.
and ignored all other exceptional situations such as (NAN) to minimise the cost of

hardware resources.

fraction A fraction B

i

!
|
f control

opcode Cont.rol ! signals Fr:actloq fractions
unit manipulation
|

l | L B
A
ctrl

Exponent o Fraction
exponent A -) exponent,, , . ., ——f—> result
P manipulation arithmetic unit |

p

exponent B I

Figure 3.8 FPGA-based data path block diagram

In contrast with the above, the work in [67] introduced a self timed single precision
floating-point processor based on a combination of ASIC and FPGA. Instead of a global
synchronising clock signal, the system adapted a handshaking protocol, where design units
are locally synchronised using handshaking signal (strobe and acknowledge). The

processor performs three floating-point operations: addition, subtraction, and division.

Z.A. Baidas. 2000 Chapter 3: Background and related work

Addition was implemented in the ASIC, while the floating-point multiplier and divider
targeted the FPGA. The independence of the addition hardware and the multiplication and
division hardware allowed parallel scheduling of the instructions, as well as out of order
execution. The processor adapted the simplest form to implement floating-point
operations, such as employing serial-parallel fixed-point multiplication and division
algorithms, in order to reduce the total hardware cost and increase the probability of

successful processor functionality simply by reducing the complexity of the design.

3.5 Automatic floating-point implementation

An early attempt to automate floating-point implementation appeared in [68]. The work
highlighted a design concept for digital signal processing applications using floating-point
primitives, which was integrated within a synthesis environment called the ASA Silicon
Compiler, by means of a template library. The author introduced a 32-bit floating-point
adder to demonstrate the concept of the DSP template library. The adder was integrated as
a generic primitive in the template library. Unfortunately, details of primitive
implementation and integration within the silicon compiler environment were not

presented.

The remaining part of this section introduces two groups of floating-point implementation
tools: tools that allow the generation of floating-point units that can be integrated within a

system (module generators), and high-level block-diagram tools.

It is worth mentioning that floating-point cores designed for rapid insertion into an ASIC
environment are available at a commercial level in the form of cell-level designs, as well
as behavioural VHDL or Verilog models for synthesis. However, this work achieves its
goals ultimately by sharing the internals of the floating-point units; third party ‘black box’

are not considered further.

3.5.1 Module generators

A format conversion module generator is introduced in [69]. The module generator allows
the automatic design of VLSI modules that perform floating-point to fixed-point
conversion and vice versa. The module generator accepts any standard cell library and

design rules. The output of the generator consists of the physical layout view, the netlist

LN
(@)

Z.A. Baidas, 2000 Chapter 3: Background and related work 37

file and all the information required to generate a SPICE file. It also provides the physical
characteristics of the generated module, such as input and output location, and area

utilisation.

The module generator is considered general purpose, as it is not limited by the
representation of the fixed-point and the floating-point numbers. Based on a set of
parameters specified by the user, the module generator decides on the appropriate
structure. For example, for a floating-point point number, the user defines the number of
bits of the fraction, the number of bits of the exponent and the exponent bias. While a
fixed-point number is defined by the size in bits, the point position, and the number

representation which can be sign-magnitude, one’s complement, or two’s complement.

The module generator did not provide options to integrate the generated module within a
design environment. The designer has to deal with the module as a black box that
performs the conversion and provide an interface for it. A better approach would be to
provide the generated module at the register transfer level using a hardware description
language. In that case, the design could target an RTL-synthesis tool. This reduces the
effort required to verify the functionality of the whole system that exploits the generated
module since the whole system can be simulated at the RTL-level rather than at post-
layout level. The suggested approach might also result in a total area cost reduction as

functional units within the module might be shared with other operations when the module

1s idle.

Many floating-point arithmetic units are available in the form of macrocells. A macrocell
is defined as a medium to very high complexity block with given functionality, known
interconnect interfaces and different interconnect level called views (e.g. behavioural,
RTL, layout, etc.). GenOptim [70, 71] is one example of a tool created to design portable
macrocells generators. It is a CAD tool that supports the implementation of architectural
representation in different layout environments and different target technologies. It
provides the designer with a set of high-level C function to describe the netlist, the layout,
the test vectors, and the behavioural description of a parameterised module. GenOptim
then provides an implementation of this module based on what is called a virtual library,

which is a set of pérameterised high-level operations (e.g. n-bit adder, n-bit multiplier).

Z.A. Baidas, 2000 Chapter 3: Background and related work 58

The generator created by GenOptim can then be used to implement a technology-
dependent macrocell. The process involves defining a GenOptim virtual library in terms of
the target technology cell library, and providing a set of parameters that defines the
parameterised datapath units width (number of bits). The generator takes these inputs and
automatically creates a set of outputs: a netlist describing the hierarchical interconnects
between cells; a layout providing the placement of these cells: test vectors: and a VHDL

behavioural description for simulation purposes.

GenOptim has been used to implement a set of portable floating-point arithmetic unit
generators based on the IEEE floating-point standard. Four generators were introduced to
provide floating-point addition, floating-point multiplication, floating-point division, and
floating-point square root operations. These generators had a parameterised fraction and
exponent field to allow implementing any of the standards formats (single precision,

double precision, extended single precision, and extended double precision).

Another system, similar in structure to GenOptim, is the CXgen function library [72].
CXgen also provides the designer with a C library that can be used to describe and
implement portable parameterised generators. The author presented a floating-point adder
generator called GAF implemented using the CXgen environment. Starting from a set of
parameters, GAF generates a floating-point adder described via a layout view, a netlist
view, and a behavioural view. GAF also supports testability via a set of test vectors based

on a structural analysis of the generated adder to ensure that the circuit is fully functional.

3.5.2 Block diagram tools

Digital systems can be represented as a network of transfer functions, data storage, I/O
ports, and control functions. Such systems may be represented by block diagrams
consisting of blocks representing functions linked by lines representing the
communications paths. An example of such block diagram is represented in Figure 3.9.
Each block in the diagram represents a function that can either be simple (e.g. fixed-point
adder) or complicated (e.g. floating-point multiplier). These blocks are connected with

directed arcs defining the data flow through the network.

Z.A. Baidas, 2000 Chapter 3: Background and related work 59

<
3 » Function 1 | ;
| = f —
Function3 ———» &
— f o
3 ~——~>4[Function 2 ——
[|

Figure 3.9 A design represented as a block diagram

Block diagrams form the input to a family of CAD tools known as block diagram oriented
systems. The complete design flow of these systems 1s represented in Figure 3.10. The
system allows the user to create a diagrammatic representation of the design using
components provided by a block library. The design is then captured as a behavioural
description or a register transfer level description. This step involves either a behavioural
synthesis or an RTL synthesis depending on the nature of the design representation
generated in the previous step. Finally, the structural representation of the design passes to

a placement and routing tool to be realised as a physical implementation.

Block diagram oriented tools also provide the ability to add new building blocks to the
block library, which increases the system productivity and allows designing reusable
blocks. A number of these tools integrate floating point synthesis by providing a number

of floating point building blocks that can be instantiated within the system block diagram.

COSSAP design environment [73] is one example of block-diagram oriented systems. It
captures the systems representation in the form of a synthesisable HDL code (VHDL or
Verilog HDL) using COSSAP HDL code generator. The system provides HDL code at
both the behavioural and RTL levels, and provides two different implementation roots by
integrating a behavioural synthesis tool [74] and an RTL synthesis tool [75] within the

system.

Z.A. Baidas, 2000 Chapter 3: Background and related work 60

COSSAP provides a powerful and efficient environment for digital signal processing
applications. However, floating-point manipulation within the system is limited by the
block library component, which currently support single precision floating-point addition

and multiplication only.

., Blockdagam |
7 | edition ;
| Block Library L»________ﬁwj
i
%
i
H Y 1
| 1
} HDL code
§ generation
L
|
a 4
Behavioural RTL
description description
I
!
| Y | r |
f | l
2 Behavioural ! .
! synthesis | RTL synthesis
| :' |
i | |
]
]
h 4 A
Structural
description
]
H
|
|
i
Placement
and
routing

Figure 3.10 Block diagram oriented tools data flow

SPW [76] is another CAD tool that supports digital design using block diagrams. In a
similar manner to COSSAP, the system automatically captures the design as a HDL
behavioural description. The code is then synthesised, using an integrated behavioural

synthesis tool [77], into a structural implementation. SPW appears to have more support

Z.A. Baidas, 2000 Chapter 3: Background and related work 61

for floating-point manipulation in comparison to COSSAP. For example. a dedicated
floating-point communication library is provided as an add-on to the system [78.79].
which allows the design and implementation of digital designs incorporation floating-point

building blocks, dedicated for digital communication and wireless applications.

Block diagram oriented tools provide a fast and convenient design environment for digital
design where series of operations are applied continuously to a data stream. However,
many applications require a significant amount of control logic based on external and
internal variables. Expressing this dependency may be difficult and even impossible using
block diagrams, while it can be easily achieved using conditional constructs provided by
programming languages (case, if-else constructs). Moreover, when using these tools, it is
the designer responsibility to perform the high level binding of the high-level floating-
point operation to building blocks. This manual binding decision may result in blocking a
number of possible implementations, hence, reducing the possibility of the structural

implementation meeting the target objectives.

Z.A. Baidas, 2000 Chapter 4: Floating-point library design 62

Chapter 4

Floating-point library design

The floating-point library forms the core of the floating-point synthesis system. The aim of
this chapter 1s to highlight the various floating-point modules that form the basis for the
floating-point synthesis library. Functional unit structure is introduced and different

methods for evaluation of these functions are considered.

The text is divided into four main sections: section 4.1 describes the function evaluation
process with an analysis of the different building blocks that composes the functional unit;
section 4.2 examines the issue of the status register as a mean of “exception notification”
to handle invalid operations; section 4.3 provides a brief description of each component in
the library; finally, section 4.4 covers various issues that concerns the library

implementation and integration within the MOODS synthesis system.

4.1 Function evaluation

The general structure of these functional units is represented in Figure 4.1. Each functional

unit consists of three main building blocks:
1. Range reduction.
2. Function evaluation.

3. Post evaluation rounding and normalisation.

9

Z.A. Baidas, 2000 Chapter 4: Floating-point library design 6

1 | . Post evaluation

| « | ‘ |
Input(s) | i j i % | i 'Output(s
put(s) Range | Function | | rounding Output(s)
reduction] evaluation] and
E 5 . normalisation
J L

Figure 4.1 Functional unit building blocks

Three different base rechniques are used to implement the function evaluation block:

1. Table lookup.
2. lterative series.
3. The CORDIC algorithm.

These techniques generate modules with significantly different physical properties such as
the total area cost and the total delay. This variation in the physical properties makes it
possible to provide a wide range of implementations for a single floating-point design,
which increases the probability to provide a single implementation that meets the user
objectives. The floating-point library provides at least two different evaluation cores using

two of the three base techniques listed above for each implemented function.

4.1.1 Range reduction

The large dynamic range provided by a floating-point representation introduces a problem
when designing systems to handle floating-point arithmetic. Some evaluation methods,
such as iterative series, converge over a wide range of input arguments. However,
achieving certain accuracy over that range might require taking many terms into account,
hence, increasing the evaluation time dramatically. Moreover, the time taken to achieve a
given accuracy is data dependent. Other methods, such as the CORDIC [56, 61] algorithm
has a limited domain of convergence. Having a suitable technique to reduce the range of

the input operand(s) is therefore essential.

Z.A. Baidas, 2000 Chapter 4: Floating-point library design 64

Periodic and symmetric functions have obvious reduction, others might require shifting
and scaling. By way of an example, let us consider the natural logarithm function (y =
In(x)), where x = Fx2" . The function is defined for x > 0. Range reduction can simply be

achieved by the pre-scaling identity:

The output of the range reduction unit is generally a set of fixed-point variables and a set
of control signals. The output variables form the input to the following function evaluation
units, while the control signals govern the data manipulation of the unit. This dependency
maybe illustrated with the aid of the example in Figure 4.2 which evaluates y = sin x for
arbitrary x. The output of the sine function range reduction block is a fixed-point number
D and two control signals. One to decide on generating either sine or cosine in the function

evaluation block and the other controls the final sign of the output operand.

Range reduction Function evaluation
. [Fx2*
Q=int . _
z +sinDif a=0
Inputs E +cosDif a=1 Output
o DZ(sz)_Q By =) f e
F ES FX2E:Q£+D a D —-smDif a=2 ¥
’ —cosDif a=3
a=0mod4
Note: int(x) returns an integer< x

Figure 4.2 Range reduction example

4.1.2 Table lookup

Lookup tables are frequently and trivially used to evaluate mathematical functions. This
scheme has often been rejected in practical cases, because of the large table sizes required
for acceptable accuracy. However, combining range reduction techniques with a dedicated
interpolation procedure gives rise to a large reduction in table size, often to the point that it

may be reduced to an on-chip set of static registers rather than an external ROM.

Z.A. Baidas, 2000

Chapter 4: Floating-point library design

Linear table lookup

For a single numerically given point x. the value of an arbitrary function f{x) at this point

can be evaluated [80] using the procedure described in Figure 4.3.

DEFINITIONS:
A, :interpolation coefficient
X :table break point
U, :weighting value
Vi P (x;)
n :interpolation order
PROCEDURE:
1
A =
(¢, = 3¢) 0 =3, 0) (30 = X) (X — %)
2
H: =
X = X,
Z /’liyl
flx) = ==
D M
i=0

For linear interpolation (n = 1) and a linearly distributed table (equally spaced break

Figure 4.3 interpolation procedure

points), the procedure can be simplified to the form shown in Figure 4.4, where a function

fix) is defined by a set of values (v, — v,) stored in a table. For a quadratic interpolation,

the general procedure outlined in Figure 4.3 applies. However, the computation problem

can be simplified for the cubic interpolation procedure [80] as illustrated in Figure 4.5 and

Figure 4.6, where a function f{x) is interpolated using four linearly distributed break points

(x0, X1, X2, x3). From Figure 4.5, it is clear that cubic interpolation result equals to the sum

of the linear interpolation (L) over the central interval (x,, x,) and a numerical value Z. By

introducing the relative distances between the input argument and the two internal break

points p,q. It can be proved that Z has the value:

Z.A. Baidas, 2000 Chapter 4: Floating-point library design

z:lf-f’ix(L—L,)'

where L, is the result of the linear interpolation over the interval (xy, x3).

Cubic interpolation can therefore be generated in a simple way from two linear

interpolations as illustrated in Figure 4.6.

tmp,m: temporary variables

int(x):function returns an integer value £ x

PROCEDURE:

i=0 yozf(xo)
DEFINITIONS: =1 y, = fix,)
- i=2 |y, = f
e :input argument ’ Yo _(XZ)
S :scaling factor (x; — Xi.;)
Xo :first break point Stored Table
Vi s F(x:)

Figure 4.4 Linear interpolation procedure

" A proof of this equation can be obtained by consulting [80].

66

Z.A. Baidas, 2000 Chapter 4: Floating-point library design

Figure 4.5 Cubic interpolation

DEFINITIONS:
X :input argument
S :scaling factor (x; - Xi.1)

Xo-X3 : break points

Vi F(xy)

L :result of the linear interpolation over the
interval (x;, X2)

Ly :result of the linear interpolation over the
interval (xy, X3)

p,g :relative distances between the input and the two
internal break points

PROCEDURE:

f<x>:L+f§[L—LJ

Figure 4.6 Cubic interpolation procedure

67

Z.A. Baidas. 2000 Chapter 4: Floating-point library design 63

For a given accuracy, a major reduction in the table size may be achieved by using higher
order of interpolation. This is illustrated in Table 4.1which represents the cost as a number
of table entries required to evaluate the sine function over the range 0 < x < /2. using

different degrees of interpolation and for different accuracy. The results suggest that better

Number of table entries
interpolation
degree Accuracy Accuracy Accuracy Accuracy
0.1% 0.01% 0.001% 0.0001%
Linear 26 101 202 805
Quadratic 10 26 51 101
Cubic 8 15 28 53

Table 4.1 Number of table entries for different interpolation degrees

results can be achieved by replacing the linear interpolation procedure with a quadratic or
cubic or even higher order interpolation, but the additional cost of the interpolation engine
usually outweigh this advantage. The problem is quantified in Table 4.2, where the total
interpolation engine cost in terms of on-chip area and total delay is provided for the sine

function generator for different target accuracy and in two distinct cases:
1. An infinite off-chip ROM is available to store the table.

2. Table is stored as a set of on-chip static registers.

Each configuration is given a reference code. When applicable, the total area cost includes
the cost of implementing the internal table as a set of static registers. From the table, it is
clear that the linear interpolation engine provides the fastest function generation and is the
best implementation when an external ROM is available. However, a cubic interpolation
engine has the advantage of smaller storage area especially at high accuracy targets at the
cost of extra delay (=2.25 times the linear interpolation engine delay). The extra delay cost
reduces the performance of the evaluation unit to the level that can be achieved with less
expensive algorithms (such as CORDIC), which contrasts with the main objective of
implementing functions using table lookup, which is minimum delay. The quadratic
interpolation engine on the other hand always provides the worst area and delay figures

and therefore is considered as impractical solution for all configurations. A note of

Z.A. Baidas. 2000

Chapter 4: Floating-point library design

particular interest is that if the whole table may be implemented as an external ROM.

accuracy variation will have absolutely no effect on the total area and delay cost of the

design. That is because the interpolation procedure remains the same while accuracy in

this case only affects the table size.

The results are summarised in Figure 4.7 to Figure 4.9. Figure 4.7 shows a comparison of

the three interpolation engines in terms of the table size for different target accuracy.

Figure 4.8 and Figure 4.9 compares the total area and delay cost the three engines for

various accuracies and with or without the external ROM.

Accuracy
External |Degree 0.0001% 0.001% 0.01% 0.1%
Area | delay | area | Delay | area | delay | area | delay
ROM um? |cycles| um? |Cycles| um® |cycles| um® |cycles
oo Linear | 150000| 26 150000| 26 150000 26 150000 26
Ref At A2 A3 A4
Quad |400000, 74 400000, 74 400000} 74 400000 74
Ref B1 B2 B3 B4
Cubic 260000 57 260000 57 1260000 57 260000 57
Ref C1 c2 C3 C4
0 Linear | 440000 20 300000 20 |200000 20 163000 20
Ref D1 D2 D3 D4
Quad | 450000 65 |430000 65 413000, 65 405000(65
Ref E1 E2 E3 E4
Cubic {291000] 45 (274000 45 1267500 45 264000 45
Ref F1 F2 F3 F4

Table 4.2 Interpolation area and delay figures for various configurations

Z.A. Baidas, 2000 Chapter 4: Floating-point library design 70

| BLinear HQuadratic HCubic |

900

800 -

700 -
600 -
500 -

400 -

Table entries

300 -

200 -

100 -
0 - -
1.00E-06 1.00E-05 1.00E-04 1.00E-03

Accuracy

Figure 4.7 Table entries variation with different interpolation degrees

mLinear W Quadratic m Cubic |

o]
o

B1=B2=B3=B4
|

~
o

C1=C2=C3=C4
o

[}
o

[
o

A1=A2=A3=A4

Delay (cycles)
iy
o

w
o

N
o

-
o

o

T T T T T T T

0 50 100 150 200 250 300 350 400 450
Area x10° (um?)

Figure 4.8 Area/delay costs for different interpolation and infinite external ROM

Z.A. Baidas, 2000 Chapter 4: Floating-point library design 71

L A Linear A Quad A Cubic
70
E4 E2 E1
AA A A
60 E3
i F3
0 g
3 40 F4
>
8
& 30
3
20 A ra &
10
O T T T T
0 100 200 300 400 500
Area x10° (um?)

Figure 4.9 Area/delay costs for different interpolation without external ROM

Non-linear table lookup

The table size can be further reduced with negligible degradation in the function
evaluation unit performance by observing the linearity of the function over the evaluation
interval [81]. This allows partitioning the table into multiple sub-tables, each handling a
separate interval of the function. This approach allows modifying the scaling factor of
each sub-table depending on the linearity of each partition. Thus, a region where the
function is linear can be tabulated with fewer break points than a region where the

function is non-linear and still achieve the same accuracy.

To illustrate the advantage of table partitioning, let us consider the inverse sine function
(arcsin(x)) in the interval 0 < x < 1. Achieving an accuracy of 1e® requires a scaling factor
of 2%, which requires a table size of 1048576 entries. However, this scaling factor is only
required as x — 1: partitioning the table into multiple sub-tables reduces the table size to

2796 entries and still achieves the same accuracy as shown in Figure 4.10.

Z.A. Baidas, 2000 Chapter 4: Floating-point library design 72

Output

ra

0.140625 V
S

4 <

R

L

0 1
Input to the inverse sine function

Figure 4.10 Partitioning the inverse sine function into sub-tables

Applying the table partitioning method requires a minor modification to the linear
interpolation procedure represented in Figure 4.4 in order to provide a means of

identifying the required sub-table. The modified procedure is listed in Figure 4.11.

Note that if the function can be divided into a number of equal intervals, each handled by a
separate sub-table, then the comparison operation in Figure 4.11 may be replaced by a
single operation:

. input
i =1int(P

)2

where R is the range covered by each sub-table. Having R as a power of 2 simplifies the

division operation into a fast shift operation.

Finally, the scaling factor on all previous interpolation procedures is adjusted to be some
power of 2, in order to replace the division in the scaling factor operations (when possible)

by a fast shift operation.

% int() is a function that returns an integer value < the input argument

Z.A. Baidas, 2000 Chapter 4: Floating-point library design

DEFINITIONS: addr, | y, =T

T, :first break point in sub-table i

. , addr, V, = f(T7)
S :scaling factor for sub-table 1 .

Addr: :base address of sub-table 1

Vi t£(x5)

tmp,m, j:temporary variables addr, yn:'f(Tn)

int(x):function returns an integer value < x
Stored Table

PROCEDURE:
if (x <= T,) 1 = 0;
else 1f (x <= T4) 1 = 1;
else 1 = n;
x - Ti
tmp = | ——
S, j

7 = int (tmp)
i = j+ addr
m = tmp — J
ix) =y, + vy, —y:)xXm

Figure 4.11 Linear interpolation multiple sub-tables procedure

4.1.3 The CORDIC algorithm

The CORDIC (Co-Ordinate Rotation DFgital Computer) algorithm [55, 56, 61, 82] was
introduced as the basis for a navigational computer. Its principal advantages are that it

requires no multipliers, and can generate two function results simultaneously.

It is an iterative process, applied to a set of input variables (x, y, z) for n iterations, to
generate a result accurate to n digits. Each iteration involves a shift, an add and an add
constant operation. Each iteration is a rotation of a vector by a defined angle in one of
three co-ordinate systems parameterised by m. The basic iteration of the CORDIC

algorithm is summarised in Figure 4.12.

Z.A. Baidas, 2000 Chapter 4: Floating-point library design 74

DEFINITIONS:
X0, Vo, Zo :input operand.
m :=1 for circular, =0 for linear, =-1 for hyperbolic

co-ordinate systemn.

oL ran angle value stored in a table.
dp :defines the rotation direction.
PROCEDURE:

for (i=0;i<n;i++)

{
Xia=x; = diyi2™H;
Via=dixi2™h + vy
Zi1=Z; - dil;

}

Figure 4.12 The CORDIC algorithm

The capabilities of the algorithm are summarised in Figure 4.13, where the input and
output values are identified for the three different co-ordinate systems and for two distinct
cases: 1) force z to zero, 2) force y to zero. The accuracy of the CORDIC algorithm is
largely dependent on the number of iterations [83, 84]. For a large number of iterations,
the algorithm delivers a high accuracy as illustrated in Figure 4.14, where the sine function

is generated in the range [0,7/2] using CORDIC for 25 iterations.

Due to the iterative nature of the CORDIC algorithm, reducing the required accuracy has
absolutely no effect on the total area cost’. On the other hand, the total delay required to
evaluate the function decreases linearly as the target accuracy reduces. This is illustrated
in Figure 4.15, where the absolute error is monitored for different numbers of iterations in

the same sine function generator.

3 Unless accuracy reduction is achieved by reducing the datapath size, which might result in increasing the

accumulation error and hence increasing the required number of iterations for the required accuracy.

Z.A. Baidas, 2000 Chapter 4: Floating-point library design

X _>L_>K1(x cos(z) - y sin(z)) X —p) X —PKi \/(x2 + y2)
Y —»{ Y —pKi(x cos(z) +y sin(z)) y —» Y| —»0
z—pZ|—»0 z —p{Z|—pz+tan’yi)
Circular (m=1, z—0) Circular (m=1, y—0)
X — X f—px X —1 X X
Yy —p Y —pYy+xz Yy —p»Y+H—pO
z—»Z—>»0 z —>Z—>z+y/x
Linear (m=0, z—0) Linear (m=0, y—0)
X __-;Z_;Kz(x cosh(z) - y sinh(z)) X _>E_.>K2 (W2-y?)
y —»| Y |—pKlx cosh(z) +y sinh(z)) y —»Y|—»0
z —p{Z|—»0 z —p|Z | —pz+tanh’(yix)
Hyperbolic (m=-1, z—0) Hyperbolic (m=-1, y—0)
K; are predefined constants
mis a control parameter

Figure 4.13 Output functions for CORDIC

x 10"
1.4 T T T T T T T

12+ E

o
®

o
[=2)

Absolute error

0 0.2 0.4 0.6 0.8 1 1.2 1.4 /2
Input to the sine function

Figure 4.14 Absolute error in the CORDIC sine generator for 25 iterations

Z.A. Baidas, 2000

Chapter 4: Floating-point library design

1
i

1 /

-log10(worst absolute output error
w

0 5 10 15

20

Number of iterations (n)

25

30

Figure 4.15 CORDIC error variation with the number of iterations

4.1.4 Iterative series

In this method, the value of the function f{x) is provided by an iterative process that

calculates a polynomial approximation to the target function. The value of the input

76

operand x 1s inserted into some formula and after a number of operations the value f(x) is

obtained.

A common numerical approximation is the Taylor series [60, 85], which is based on the

Taylor theorem [85, 86]. The algorithm is represented in Figure 4.16. Using this method,

the following approximations (amongst others) may be obtained:

3 5

. x' x
sm(x):x——3—!»+—§-—..
4
‘ x° x
cos(x):]»—z—!— —4—!——

exp(x) = l+'—x+£—+...

2

20—

X
I G) L—
=1 2n—-D!
(= "X
(2n)!
_X”
+.....

Z.A. Baidas, 2000

Chapter 4: Floating-point library design

DEFINITIONS:
f(x) ra function with n+l derivatives in [a,b].
f(x) ™ :the nth derivative of f(x).
X, Xo :variables in the interval [a,b]l.
¢ ra value between x,x;.
P,(x) :approximating polynomial.
Ry (x) :Remainder.
THEOREM:
fx)=P(x)+ R, (x)
R0 =S)+ 2 pg e B2 e
R0 = B2 g
(n+1)!

77

Figure 4.16 Taylor theorem

Another polynomial approximation method is called the minimax polynomial
approximation [60, 61], which provides an approximation P(x) of a function f(x) that
minimises the worst-case error. The minimax approximation can be summarised by the
two theorems represented in Figure 4. 17%. The first theorem says that a continuous
function f{x) can be approximated as accurately as desired by a polynomial. The second

theorem implies that if a minimax approximation of the n degree is provided to the

function f{x), then the largest approximation error is reached at least n+2 times and that the

error alternates.

* A proof of both theorems can be obtained by consulting [60].

Z.A. Baidas. 2000 Chapter 4: Floating-point library design 78

DEFINITIONS:

| |P~-f| |~ :maximum distance between the approximation
and the actual function.

d :variable with a value of *1.

THEOREM1:

For any 0>0 , a polynomial P exists such that

[[p-£]] < &

THEOREM2 :
P is the minimax approximation of degree n for f(x) in

the interval [a.,b] if and only if there are at least n+2
values a<x;<x;<. . . <x,.:<b such that:

P(xs)-f(x;) = d(-1)7||P-£] |«

Figure 4.17 Minimax approximation base theorems

Finding a minimax approximation of a function is not a straightforward process. However,
numerical analysis tools such as Maple [8§7] automatically compute the minimax
approximation of a function over a provided interval, and provides the corresponding

approximation error.

In general, the minimax approximation provides a more accurate solution compared to a
Taylor expansion for a polynomial of similar degree. This is illustrated in Figure 4.18,
where the exponential function is approximated using both methods for similar
approximation degrees. The error over the approximation range is provided in Figure 4.19

and Figure 4.20. Note the wide variation in ordinate scales.

The example shows that minimax approximation provides better results compared to
Taylor’s expansion. However, the minimax approximation provides unique polynomials
for each different degree that requires pre-computing. This gives the Taylor expansion an
edge when a variable precision unit is implemented (see Chapter 7), since it is not possible

to pre-compute the minimax approximations for every possible precision.

Z.A. Baidas, 2000 Chapter 4: Floating-point library design

Minimax and Taylor approximation

H Minimax @ Taylor

Polynomial degree
»H

T T T

100E+00 100E-01 100E-02 100E-03 100E-04 100E-05 100E-06 100E-07 100E-08
Accuracy

Figure 4.18 Comparison between minimax and Taylor accuracy for different
interpolation degrees

. Baidas, 2000 Chapter 4: Floating-point library design

x10° x107

25

bl
o

Absolute error
Absolute error

-

L s N N L L
0 0.1 0.2 0.3 04 05 0.6 0.7

ajn=6 b)n=5

08

N
o

Absolute error
N
Absolute error
o
@

15H
041
1H
0.2F
05f
"o 01 02 03 04 05 0.6 07) 01 0.2 03 04 05 06 07
Input Input
c)n=4 dn=3
x 10°
3 T T T T T T 0.045
0.04
25
0.035
2 003}
§ g 0.025}
215 2
B - L
H R
< <
1t 0.015}
0.01F
0.5F
0.005}
0 01 0.2 03 04 05 0.6 07 0 01 02 03 04 05 06 0.7
Input Input
e)n=2 fin=1

Figure 4.19 Absolute error in the minimax approximation for the exponential
function different approximation degrees

Z.A. Baidas, 2000 Chapter 4: Floating-point library design 81

5 A
1.8’(10 1 aX 10
18} 18}
14} 14}
1.2} 12}
E E 4l
° P
3 3
go8p ; o8}
<< <
os} 0.6}
04} 0.4}
0.2} 0.2}
0 : . 0 s
0 0.1 0.2 0 0.4 02
ajn=6
x 10°
16 v —— —r v . 0.012
14}
001}
12}
0.008}
.1t -
3 3
s
5 0.8 £ 0.006}
° °
2 2
< 0.8} <
0.004}
04} 1
0.002}
0.2}
o i i 0 L
0 0.1 0.2 03 04 0.5 0.8 07 0 01
Input
c)n=4 dn=3
0.07 v r - . 0.35 v -
0.06} 0.3t
0.05} 0.25}
£ 004l 3 02}
s s
e -
3 3
E 0.03} 2015
< <
0.02}- 0.1
001} 0.05}
0 : . " A : 0
) 0.1 0.2 03 04 05 0.6 07 0
Input
e)n=2 fin=1

Figure 4.20 Absolute error in the Taylor expansion for the exponential function for
different approximation degrees

Z.A. Baidas. 2000 Chapter 4: Floating-point library design {2

4.1.5 Post evaluation

At this stage, the final output is adjusted to comply with the IEEE 754 floating-point

standard. This involves:

I. Inverting any range reduction effect.

o

. Normalising the fraction by shifting and adjusting the exponent field.

3. Rounding the fraction by conditionally adding one to the least significant bit.

N

. Supporting any special action to indicate unusual events (e.g. overflow).

Inverting range reduction effects can be simply demonstrated by an example: the inverse

tangent function is generated for input operands with a magnitude greater than one using

the conversion:

T 1
arctan(x) =—— arctan[—]
2 X

The function generator creates the inverse tangent of (1/x) and the final subtraction is

performed in the post evaluation stage.

The implicit one in the floating-point representation requires normalising the fraction

field, which is simply achieved by shifting the fraction and adjusting the exponent to have

the fraction within the range 1 < f <2.

Rounding is required since the result in most situations cannot be represented exactly in
the destination format (23-bit fraction field). In this case, the unit executes in round to the
nearest mode, which is the default rounding mode in the IEEE standard [88]. Other
rounding modes are discussed in Appendix A. In this mode, the result is rounded to the
closest representation that fits in the destination format. If a result is exactly half way
between two representations, it is rounded to the representation that has a zero least
significant bit. Figure 4.21 illustrates three examples of rounding to the nearest, the first

result X1 is to the nearest representation a, while X2 is rounded to b. X3 represents a

Z.A. Baidas. 2000 Chapter 4: Floating-point library design 83

special case since it lies half way between ¢ and d, therefore it is rounded to the

representation that has a least significant bit of zero (d).

128 { X1 1 } X2 1422 }X3 14222
A\ / A\ | <\ A
N \// NS
a b c d

Figure 4.21 Round to the nearest example

Finally, some unusual event may occur during the operation execution that should be
handled in the post evaluation stage. A good example for such situation is overflow. 1If the
final result of an operation has a magnitude greater than or equal to 2'% the value cannot
be represented in the target format and the operation overflows. The post evaluation stage
reacts to such situation by outputting a correctly signed infinity symbol and setting the
overflow flag. Further details on the post evaluation stage of different floating-point units

are available in Appendix C.

4.2 The status register

Each floating-point functional unit has a set of status flags indicating the “goodness” of
the output value. Writing to a status flag is analogous to throwing an exception. Each

functional unit in the floating-point library can generate six status flags. These are:

1. Invalid operation flag: is set high when an input operand is invalid for the target

operation (for example In(-1)).

2. Overflow flag: indicates that the final result has a magnitude greater than or equal to

2'*% The result in such a situation is a correctly signed infinity.

3. Underflow flag: indicates that the final result has a magnitude greater than zero, but

cannot be represented by the target format The result will be a correctly signed zero.

4. Inexact: the flag is high if the final result of an operation does not equal to the
infinitely precise result. This occurs in one of two situations: either the final result is

rounded, or the final result is an approximation of the actual result.

Z.A. Baidas, 2000 Chapter 4: Floating-point library design 4

5. Not A number flag: the flag is high if the operation produces NAN as the final result.

6. Zero division flag: the flag is high if the divisor in a division operation is zero.

Type detection blocks, integrated within the floating-point units. to detect these exceptions

and output the corresponding flag register are discussed in Appendix C.

Handling exceptions written to the status register is the responsibility of the designer. Two

options are available:

e A single status register per floating-point operation: The user can enable this option by
providing a variable as an output argument within the floating-point function call (for
example sin (input, output, monitor);), in that case, any exception will be signalled by
writing the internal status register value to the provided variable. It is then the
responsibility of the designer to provide an exception handling process that checks the
monitor variable state and provides an appropriate reaction (similar to the C++ 1y and

catch block).

e A global status register: if it was the designer’s decision to ignore the status flag
during floating-point calculation, a global port is automatically created as an output
port and is shared among the floating-point operations within the process. In this case,
handling the design exception should be performed externally (by interrogating (and, if

necessary, resetting) the register with an independent process).

Note that raising a flag within the status register does not always indicate a hazardous
situation. This is illustrated in the example in Figure 4.22 where arctan(+e0) evaluates to
7/2 and the final result after the multiplication by 2 is correct. However, the divide by zero

operation signals a zero division flag.

Z.A. Baidas, 2000 Chapter 4: Floating-point library design 85

arccos(x) = 2 arctan |
+ X

arccos(—1) = 2arctan \/%

= 2 arctan(+eo)

=7

Figure 4.22 Raising a status flag example

4.3 Supported functions

The floating-point modules currently supported are listed in Table 4.3. A subset of the
floating-point modules has the capability of handling complex operands. The complex
subset has been chosen to match the IEEE math_real and math_complex VHDL standard
[89]. However, the system provides the capability of adding new floating-point and
complex modules as high-level functions, which are easily integrated within the floating-
point design flow. More details on implementing new floating-point and complex
functions may be found in Appendix D. In the following section an introduction to the real
floating-point component is provided, which is followed by an explanation of the
conversion functions provided, and finally the extension to complex operators is

introduced.

Z A. Baidas, 2000

Chapter 4: Floating-point library design

Function

Real

Complex

Table

CORDIC gsamsT'Tame

|

CORDIC

T
i

|

Series

addition

*

*

subtraction

*

*

multiplication

*

*

division

*

*

in(z)

logio(2)

logz(2z)

logn(z)

sin(z)

arcsinh(z)

arccosh(z)

arctanh(z)

b3

e

z

n

¥}
g
Y]
=
N
<| <| <| <| <| <| <| <| <| <| zZ| Z| <| <| <| <| <| <| <

sqrt(z)

< <] <] <] <] <] <] <| <] <| <| <] <| <] <| <| <| <| <

Z| Zl Z| Z 21 Z21 2] Z Z] <] <I < <] <} <] Z) Z| 2 2

<| <| < z| Z| Z| zZ| <| <| Z| 2| Z| 2| <| <| <| <| <| <

<| < <tz zZ| z| 2| <] <| 2| 2 2 2 <] <| <| <| < <

<| XL < 2 Z2| Z| Z| | X Z 2| Z2| Z2| <| <{ 2 2 2 Z

conj(z)

*
*

*

real(z)

*
*

*

imag(z)

*
*

*

magn(z)

*
*

arg(z)

*%

complex_to_polar(z)

N/A

polar_to_complex(z)

N/A

to_float()

*

N/A

To_complex()

N/A

*

* These operations are implemented with separate functional unit unrelated to the three main

techniques.

#* These return trivial results.

Table 4.3 Floating-point function library

86

Z.A. Baidas, 2000 Chapter 4: Floating-point library design 87

4.3.1 Algebraic operations

This group of floating-point operations performs floating-point addition, subtraction.
multiplication, and division of two real operands represented in the IEEE single precision

floating-point standard.

Floating-point addition and subtraction

This model performs floating-point addition and subtraction of two floating-point
numbers. The inputs to the model are two floating-point numbers a and b, and a flag to
indicate one of the two operations add or subtract. The outputs of the model are the results

of the operation and the status flags.

Defining a floating point number as Fx2", the floating-point addition/subtraction operation

comprises the following individual operations [48, 54]:

1. Exponent subtraction: Perform subtraction of the exponents to form the absolute

difference |E, — Epl = d.

2. Alignment: Right shift the fraction (F) of the smaller operand by d bits. The larger

exponent 1s denoted Ey.

3. Fraction addition: Perform addition or subtraction according to the effective operation,

which is a function of the opcode (add/sub) and the sign of the operands.

4. Conversion: Convert the fraction result, when negative to a sign magnitude

representation.

5. Leading-one detection: Determine the amount of left shifts needed in the case of

subtraction yielding cancellation. For addition, determine whether or not 1-bit shift

right is required.
6. Normalisation: Normalise the fraction and update £

7. Rounding: Round the final result by conditionally adding 1 to the Isb as required by the
IEEE standard. If the rounding causes overflow, perform a 1-bit shift right and

increment £,

Z.A. Baidas, 2000

Note that the sign of the exponent difference in step 1 determines which of the two
operands is larger. By swapping the operands such that the smaller operand is always

subtracted from the larger operand, the conversion in step 4 is eliminated in all cases

Chapter 4. Floating-point library design

except for equal exponents. In the case of equal exponents, it is possible to get a negative

result in step 3. Only in this event a conversion step 1s required. but since there is no need

for an initial alignment shift in such case, the result subtraction will be exact and there will

be no rounding [90].

Note that additional functionality is added to deal with different forms of a floating-point

numbers as required by the IEEE standard. The following table outlines these special cases

and shows the status flag register in each case.

Status flag register

Case Result
Invalid | Inexact | NAN | OVF | EUN | ZD
(#00) + (-o0) Quiet 1 1 0 0 0 0
NAN
(-o0) + (+e0) Quiet 1 1 0 0 0 0
NAN
(+00) - (+00) Quiet 1 1 0 0 0 0
NAN
(-o0) - (-e0) Quiet 1 1 0 0 0 0
NAN
(400) + (+o0) oo 0 0 0 0 0 0
(-o0) + (-o0) o0 0 0 0 0 0 0
(+o0) - (-o0) oo 0 0 0 0 0 0
(<e0) - (+0) w0 0 0 0 0 0 0
Signaliing NAN operand Quiet 1 0 1 0 0 0
NAN
Quiet NAN operand Quiet 0 0 1 0 0 0
NAN
Exponent overflow +/- o0 0 1 0 1 0 0
Exponent underflow +/- 0 0 1 0 0 1 0
Result # Infinite precise Result 1 0 0 0 0
result
Final result is zero +/-0 0 0 0 0 0 0

Table 4.4 Special cases in floating-point addition

Z.A. Baidas. 2000 Chapter 4: Floating-point library design {0

Floating-point multiplication

This model performs multiplication of two floating-point numbers provided as input

operands. The outputs of the model are the results of the operation and the status flags.

There are five major operations associated with floating-point multiplication [88, 91]:

1. Initial stage: Check for zero operands and set the product sign.

!\.)

Fraction multiplication: Fixed-point multiplication is performed on the fractions.

3. Exponent addition: The two exponents are added. The exponent bias shall be subtracted

from result to get the final exponent Ej.
4. Normalisation: Normalise the fraction and update £

5. Rounding: Round the final result by conditionally adding [to the Isb as required by the
IEEE standard. If the rounding causes overflow, perform a [bit shift right and

increment £,

The steps of fraction multiplication and exponent addition can be executed
simultaneously. However, these two parallel steps must be properly synchronised before

the normalisation step is initiated.

The multiplier requires additional functionality to support different forms of a floating-

point number, as required by the IEEE standard. Those are listed in the following table.

Z.A. Baidas, 2000

Chapter 4: Floating-point library design

90

Case Result Flag register
Invalid | Inexact | NAN | OVF | EUN | ZD
(+0) X (-o0) Quiet NAN 1 1 0 0 0 0
(+0) X (+0) Quiet NAN 1 1 0 0 0 0
(-0) X (+<0) Quiet NAN 1 1 0 0 0 0
(-0) X {-o0) Quiet NAN 1 1 0 0 0 0
Signalling NAN operand | Quiet NAN 1 0 1 0 0 0
Quiet NAN operand Quiet NAN 0 0 1 0 0 0
Exponent overflow +/- oo 0 1 0 1 0 0
Exponent underflow +-0 0 1 0 0 1 0
Result # Infinite precise Result 0 1 0 0 0 0
result
Final result is zero +/-0 0 0 0 0 0 0

Table 4.5 Special cases in floating-point multiplication

Floating-point division

There are five major operations associated with floating-point division [48, 54, 92, 93, 94]:

3]

Dividend alignment: This is an overflow prevention operation, ensuring that the

dividend fraction is smaller than the divisor fraction.

. Initial stage: Check for zero operands and set the product sign.

Fraction Division: Fixed-point division is performed on the fractions.

Exponent subtraction: The two exponents are subtracted. The exponent bias shall be

added to the result to get the final exponent Ej.

Rounding: Round the final result by conditionally adding I to the Isb as required by the

IEEE standard. If the rounding causes overflow, perform a [bit shift right and

increment E.

The alignment stage always results in a normalised quotient, so there is no need for a

normalisation stage.

The divider requires additional functionality to support different forms of a floating-point

number, as required by the IEEE standard. These are listed in the following table.

Z.A. Baidas, 2000

Chapter 4: Floating-point library design

91

Flag register

Case Resuit
Invalid | Inexact | NAN | OVF | EUN | ZD
(o) + (o0) Quiet NAN 1 1 0 0 0 0
(0) + (0) Quiet NAN 1 1 0 0 0 0
Signalling NAN operand | Quiet NAN 1 0 1 0 0 0
Quiet NAN operand Quiet NAN 0 0 1 0 0 0
Exponent overflow +/- oo 0 1 0 1 0 0
Exponent undertiow +/-0 0 1 0 0 1 0
Result = Infinite precise Result 0 1 0 0 0 0
result
Divisor is zero +/- o0 0 0 0 0 0 0

Table 4.6 Special cases in floating-point division

4.3.2 Logarithmic and exponential functions

Four main logarithmic functions are provided. The natural logarithm, base 2 logarithm,

base 10 logarithm, and base x logarithm. Each model has a single input, which is floating-

point operand (except for base x logarithm, where the base 1s also provided as an input),

and two outputs: the floating-point result and the status flag register. The models are based

on generating the natural logarithm function. While the remaining models are generated

using the following conversions:

log, x

log,, x

] 0 g hase X

The exponential function along with the power of z function are also provided in the

floating-point library. Both models are based on the exponential function (exp), with the

=Inxx

=log, exlnx

=J]og,,exlnx

Inbase

power of z function generated using the following conversion [95]:

x" =exp(zlnx)

Z.A. Baidas, 2000 Chapter 4: Floating-point library design 92

Since z is can be any real number, this module can be used to generate the square root and

the cubic root tunctions.

The square root is also provided in the floating-point library. The unit has an additional
output port that is set to one when a negative input operand is encountered. In such case,
the unit evaluates SQRT (Ix}) and the sign bit of the input is simply propagated to the flag

that indicates a complex result. When this flag is asserted high, it indicates an output of the

form: Result = j /I X1

4.3.3 Trigonometric functions

This group of functions consists of the sine. cosine and tangent functions, along with their
inverses. The input angle in all these functions is defined in radians. The modules are
based on generating the sine function after a range reduction process and then applying

simple conversion procedures to implement both the cosine and tangent functions.

The inverse trigonometric functions on the other hand are supported using two modules.
The first one generates the inverse sine or inverse cosine of an input argument in the range

[-1,1]. The second module implements the inverse tangent function.

4.3.4 Hyperbolic functions

Range reduction for these functions is very expensive in terms of hardware and delay.
Therefore, these functions are built upon the elementary functions discussed before as

shown in the equations in Figure 4.23 [56, 96]:

Z.A. Baidas, 2000 Chapter 4: Floating-point library design 93

inh x= exp(x) —r)exp(ax) cosh x = exp(x) :exp(—x)

' s

S

tanh x = exp({x) —exp(—x)

exp(x) +exp(—x)

sinh"x-——ln(x+\/;2_a) cosh“lx::ln(x—s-x/ﬂ)

1+x
Inf ——
l—x

tanh” x =

Figure 4.23 Hyperbolic function evaluation equations

4.3.5 Type conversion functions

The VHDL math_real and math_complex [89] provides three data types to represent the
floating-point number. A type for real numbers called REAL and two complex data types
COMPLEX and COMPLEX_POLAR. The standard 1s currently provided as a simulation
modelling library with no synthesis in mind. This introduces a problem when we try to
provide modules to manipulate floating-point variables for synthesis purposes. To tackle
this problem, three new data types are introduced to denote floating point and complex

variables:

e FLOAT: Represents a 32-bit floating-point number in the IEEE single precision

format, and is used to represent real numbers.

e CMPLX: Consists of two 32-bit floating-point numbers in the IEEE single precision

format and is used to represent complex variables in the form x+jy.

e CMPLX_POLAR: Consists of two 32-bit floating-point numbers in the [EEE single

precision format and is used to represent complex variables in the form Re".

Note that since the real and imaginary parts in the two complex types are represented as

two floating-point numbers, the same rules that handle the status register flags in the float

core apply here.

A set of type conversion functions is also provided to convert between complex type and

from complex to real and vice versa:

Z.A. Baidas, 2000 Chapter 4: Floating-point library design 94

e CONJ (Z): The function returns the conjugate of a complex and complex polar

variable. If the input argument is a real number. an overloaded function with a real

input is used, and the same input is propagated to the output

e REAL (Z): The function returns the real part of a complex variable. For a real input

the output is the same as the input variable.

o IMAG (Z): The function returns the complex part of a complex variable. For a real

input argument the function outputs zero.

e MAGN (Z): The function returns the magnitude of a complex polar variable. For a

real input the output is the same as the input variable.

e ARG (Z): The function returns the angle of a complex polar variable. For a real input

argument the output equals zero.

¢ COMPLEX_TO_POLAR (Z): The function converts a complex input argument to a

complex polar variable.

¢ POLAR_TO_COMPLEX (Z): The function converts a complex polar input

argument to a complex variable.

Two additional type changing functions (to_float(), to_complex(,)) are also provided to
support translation from a VHDL type real and integer to the IEEE single precision

representation of float and complex.

4.3.5 Complex units

The type conversion functions illustrated earlier, along with the floating-point library
components are used to implement the complex functional units within the synthesis
library. These units are based on a hierarchical decomposition of floating-point functional
units that manipulate the real and the imaginary parts of the two complex types (complx
and complx_polar). By way of an example, let us consider evaluating the sine function of

a complex variable based on the following equation:

sin(x + jy) = sin(x) X cosh(y) + jcos(x)Xsinh(v)

Z.A. Baidas, 2000

Chapter 4: Floating-point library design

95

The functional unit block diagram is shown in Figure 4.24. The complex variable is split

into its two floating-point components (real and imaginary) and passes through a number

of floating-point functional units to generate the final result.

Real(in)

sine
generator

Imag(in)

hyperbolic
cosine
generator

cosine
generator

hyperbolic
sine
generator

— Y

floating-point
multiplier

Yy

floating-point
multiplier

Real(out)

Imag(out)

Figure 4.24 Complex sine function generator building blocks

For the polar type, the sine function generator is based on the complex sine function

generator as illustrated in Figure 4.25. The polar variable 1s initially converted into the

equivalent complex representation using the complex_to_polar function. A complex sine

function generator follows this and the output result is then transferred back into the polar

representation using polar_to_complex functional unit.

Z.A. Baidas, 2000

Chapter 4: Floating-point library design

96

polar

— polar_to_complex r

|

4 j Complex | polar
, sine — complex_to_polar -—»

| 1 generator ‘ f

L |

Figure 4.25 Polar sine function generator building blocks

The rest of the complex components are implemented in a similar manner to the sine

function based on the set of equations listed in Figure 4.26.

(x1+ jyDX(x24 jy2) = (x1x2 = y2y2)+ j(x1y2 + x2y2)
x1+ jyl _ xIx2+ yly2 n x1y2—x2vy1

K24 jy2 x27+y20 T x27+y2?

exp(x+ jv) =exp(x)xcos(y)+ jexp(x)xsin(y)

cos(x+ jv) = cos(x)xcosh(y)— jsin(x)xsinh(v)

sinh(x+ jy)=sinh(x)xcos(y)+ jcosh(x)Xxsin(y)

cosh(x+ jy) = cosh(x)Xxcos(y)+ jsinh(x)xsin(y)

(rle’”)x(r2e'?) = rlr2e/ "%

1,461 .
rle _ rl o016

=
e’ r2
g
2

J(re’® :\/r—‘ef-

In(re’®) =In(r)+ j(6)

In(r)+j(6)
In{n)

log, (re’?) =

Figure 4.26 Complex function evaluation equations

4.4 Function implementation

The floating-point library is integrated into the MOODS synthesis system via the

expanded module capability. This section describes two major steps in the development of

Z.A. Baidas, 2000 Chapter 4: Floating-point library design 97

the floating-point library. Those are the hierarchical unit expansion and expanded module

implementation. Further implementation details can be found in Appendix D.

4.4.1 Hierarchical unit expansion

Many floating-point and complex functional units in the library are provided as a
hierarchical structure of common building blocks. This approach allows the final synthesis
stage to share the common building blocks of different arithmetic units, which results in a
significant reduction of the total area cost. In addition, partitioning the arithmetic units into
a number of building blocks allows effective pipelining. This results in a reduction of the
total delay and increases the throughput of the whole system. As an example, consider the

pseudo-code of Figure 4.27.

In Figure 4.27b, the sine function is expanded into two sub-blocks, the range reduction
stage (sin_cos_pre()), and the function evaluation stage (sin_cos_main()). A large number
of sub-blocks are common to more than one floating point unit. They communicate with
each other by means of (automatically generated) temporary buffers, which are initialised
by the system to allow the sub-blocks to know which floating-point unit they are actually
representing. For example, bufl in Figure 4.27b will be initialised to tell sin_cos_pre() it is
representing a sin(), and sin_cos_pre() may write the range reduction details into buf/ to
be picked up by sin_cos_main(). The complex type conversion function
polar_to_complex() 1s expanded into further building blocks (sine, cosine, two floating-
point multipliers and two type converters) as shown in Figure 4.27c. The sine and cosine
functions are then further expanded (Figure 4.27d). This approach makes it easy for the
optimisation algorithm to exploit functional unit duplication. The expansion process
involves a series of modification to the original ICODE file that represents the design.
Details on the expansion process, along with the modifications performed on the input

ICODE file to generate the ICODE+ after expansion are available in Appendix D.

Note that RE() and IM() in Figure 4.27¢ are similar to PL/1 pseudo functions: if they
appear on the right hand side of an assignment, the return a value, if they appear on the left

hand side, they provide access.

Z.A. Baidas, 2000

Chapter 4: Floating-point library design

sini{F2)

polar_to_complex(Pl)

(a)

FLOAT F1l, F2
COMPLEX C1

POLAR P1

Tl = sin_cos_pre(F2, &bufl)
Fl = sin_cos_main(Tl, bufl}
T2 = arg(PL)

T3 = magn({Pl)

T4 = sin(T2)

TS = cos{T3)

RE(C1) = T5 * T3

IM(Cl) = T4 * T3

(c)

—

FLOAT

Fl, FZ

COMPLEX C1

POLAR P11

Tl
F1l

sin_cos_pre(F2,&bufl)
sin_cos_main(T1,bufl)

polar_tve_complex(Pl}

(b}

FLOAT F1, FZ
COMPLEX C1
POLAR P1

non

sin_cos_pre(F2, &bufl}
sin_cos_maini{Tl,bufl}

= arg (P1l}

T3 = magni{Pl}

T6 = gin_cos_pre(T2,&buf2)
T4 = sin_cos_main{T6,buf)
T7 = sin_cos_pre{T3, &bufl)
T5 = sin_cos_main(T7,buf3)
RE(Cl}) = T5 * T3

IM{Cl) = T4 * T3

(d)

Figure 4.27 Hierarchical unit expansion example

4.4.2 Expanded module formation

98

The floating-point library building blocks are all implemented as expanded modules which

are inline expanded within the MOODS control and datapath graphs during the design

synthesis process. Developing an expanded module is a straightforward process. However,

certain points of particular interest are described here to ensure the integrity of the

generated expanded module.

Figure 4.28 illustrates the expanded module creation data flow. At the highest level, the

expanded module is described as a VHDL entity with a single process. At this stage,

simulating the VHDL behavioural description is recommended to ensure a correct module

operation. An important point here is to remember that the expanded module will act as a

Z.A. Baidas, 2000 Chapter 4: Floating-point library design 99

datapath functional unit. This implies that the input ports must be stable during the module
execution. As an example consider an instruction such as (¢ :=c¢ + a:) in a behavioural
description. Providing a single variable as an input and output port to the same multi-cycle
expanded module may result in an incorrect execution as it is not guaranteed that the
output port (which is also an input port) will remain stable and will not be updated during
the module execution. To solve this problem, an initialising stage within the expanded
module is implemented, loading the input variables into internal registers local to the

expanded module body before any further manipulation.

RS [N ;
I f VT
) N 0o
oo | VHDL2IC |——> —— oo {
i / , I i
VHDL behavioural Control & datapath
description graph

’ module /

Expanded module file

Figure 4.28 Expanded module formation

Once implemented, the VHDL behavioural description is transformed using the VHDL2IC
pre-processor into an ICODE file. At this stage, a minor manual modification to the
ICODE file is required before moving on in the generation process. The necessity of this
manual altering of the ICODE arises from the nature of a VHDL process as an indefinitely
repeating loop, which implies that there will always be an activation from the last control
state to the first control state to ensure continuous execution. This activation command has
to be eliminated manually from the ICODE file to match the nature of the expanded
module, which has unique, non-excitable start and end control states. This manual
manipulation to the ICODE file can be eliminated provided that the user follows certain
guidelines. This is illustrated by the example in Figure 4.29. Figure 4.29(a) shows a simple
VHDL process with its equivalent [CODE. Note that two ICODE instructions (3,4)
provides a feedback to the first control state. To ensure the integrity of the generated
expanded module. The design can be simply modified by assigning the output result to a
temporary register in all branches and then assigning the value of this register to the output

port at the last instruction (control state), as illustrated in Figure 4.29(b). This ensures that

Z.A. Baidas, 2000 Chapter 4: Floating-point library design 100

the process will have only a single activation from the last control state to the first one.

which can be deleted automatically by MOODS during the expanded module generation

process.
process
Begin
if add = ’1’ then 1 eq add, #1,5 <&
cutput <= inl + in2; if 5 ACTT 2 ACTF 4
else 32 plus inl, in2,cutput ACT 1
output <= inl - in2; minus inl, in2,output ACT 1
End if;
End process;

a) Initial VHDL process and its equivalent ICODE

process
Begin
if add = '1' then 1 eg add, #1.5
temp := inl + inZ; if s ACTT 3 ACTF 4
else) .3 plus inl,inZ, temp ACT 5
temp ;= inl - in2; .4 minus inl,in2, temp———— |
End if; .5 move temp, output ACT 1-ff—
output <= temp;
End process;

b) Modified VHDL process and its equivalent ICODE

Figure 4.29 Expanded module development example

Once complete, the ICODE file is loaded into the MOODS synthesis system and is
transformed into an initial control and datapath graph. Finally, the design is saved as an

expanded module file and added to the MOODS floating-point library.

Z.A. Baidas, 2000 Chapter 5: Floating-point optimisation 101

Chapter 5

Floating-point optimisation

The floating-point optimiser operates on floating-point and complex operations within the
design, binding each floating-point operation to a suitable base technique component from

the floating-point module library.

During optimisation, the high level binding decision of each floating-point unit (i.e. table
lookup, iterative series, or CORDIC) takes into account a number of issues such as the
type and number of floating-point operations required and the availability and the capacity

of any off-chip ROM available to the system.

This chapter details the floating-point optimisation unit. The algorithm evolved from the
need to map each floating-point operation to a suitable high level module in a way that
enables the main synthesis system to develop designs that meet the user’s pre-defined

objectives.

The remainder of this chapter is divided into four sections. First, section 5.1 describes the
physical interactions that arise from the nature of the high-level floating-point library
components and their effects on the optimisation process. Section 5.2 introduces accuracy
as a new design space parameter, and describes the way the system handles this issue.
Section 5.3 describes the optimisation algorithm and details the results of an extensive
analysis of its effectiveness on a number of benchmark designs. Finally, further

experimental evaluation of the algorithm is provided in section 5.4.

5.1 Function implementation interactions

The attributes of each function implementation considered in isolation are easy to
compare: to generate sin(x) with a table requires the table itself (which may be internal, or

external, requiring an interface), plus an interpolation engine. To generate it with a series

Z.A. Baidas, 2000 Chapter 5: Floating-point optimisation 102

requires a cumulative adder plus a term generator, which may require a table. but no
interpolation engine. All these elements have easily quantifiable area and speed costs.
However, when a number of functions are required, new interactions become important.

Those interactions are listed in Table 5.1.

1. There is an overhead to interfacing an ASIC/FPGA to an external ROM, but it is fixed and

independent of the number of external function tables.

2. Once an iterative series generator has been instantiated, the cost of switching between different

functions is relatively small.

3. Some function tables are subsets of others.

4. Once a complex function is implemented, the equivalent real function is virtually free in most

cases.

5. Some functions are built as a hierarchical composition of other functional units. If these units are
already available, the total cost is reduced.

6. Once a CORDIC unit has been instantiated, the cost of other units based on CORDIC will be

reduced.

7. The pre-processing stage of some function generators contains the fixed-point operators
(multiplier, divider) required in the function generator block. This reduces the total area cost by

sharing these operators within the two blocks.

8. An optimal distribution of the external ROM amongst the floating-point units has a great effect
on the total system cost.

9. Providing the exact required accuracy for every functional unit could increase the total area cost.

10. When a floating-point function generator is shared between a large number of functional units,
the multiplexing cost could affect the optimised decision in choosing between off-chip and on-chip

implementations.

Table 5.1 Function implementation interactions

Z.A. Baidas, 2000 Chapter 3: Floating-point optimisation 103

The cost of interfacing a design to an external ROM is divided into two sources:

I. I/O port cost: includes the cost of the address bus port, the data bus port and the control

signal.

2. Control hardware: to control the process of reading data from the external ROM. This
involves setting the address and the control signal and then latching the output data into

an internal register.

Figure 5.1 shows a block diagram of an external ROM interfacing unit shared between a
number of functional units. Using this method, a number of functions using the same

external ROM will hardly have any effect on the total system cost when compared to the
cost of implementing a single functional unit using an external ROM. The only overhead
when the external ROM is shared 1s the cost of multiplexing the data bus and the address

bus between the functional units.

———-address bus

Ext.ernal ROM l«——data bus
interface

—¥>rom_en

Figure 5.1 Sharing an external ROM interfacing unit

The same discussion above applies to a number of functional units implemented using an
iterative series based method. The iterative series engine is an iterative process that
performs multiply and add operations on a single input operand for a controlled number of
loops. Sharing this unit is achieved by multiplexing four ports: the input operand, the
multiply constants, the control variable that decides the number of iterations and the

output results. This sharing is visualised in the block diagram in Figure 5.2.

Z.A. Baidas, 2000 Chapter 3: Floating-point optimisation 104

MUX “) CU'I

L Iterative series R
o . r—‘}‘ oMUx |
7 | engine S

o input |
i
|

Figure 5.2 Sharing iterative series engine

Table lookup based methods can exploit algebraic identities of certain functions to reduce
the total storage area required to store the table. For example: cos(x) = sin(5 —x). This

allows implementing both functions using a single table that stores the sine function values
and the subtraction unit is provided as a pre-processing stage in the case of the cosine

function.

Complex variables are represented using two floating-point variables, one to represent the
real part and the other to represent the imaginary part. This implies that any real number
can be represented using a complex representation with an imaginary part equal to zero.
Building blocks used to implement complex functional units can be used to generate the

equivalent real function by setting the imaginary part of the input operand to zero.

Some functions in the floating-point library are implemented as a hierarchical
decomposition of other floating-point building blocks. The hyperbolic sine is one example,
which is based on the exponential function. If an exponential function generator building
block is already instantiated in the design, the unit can be used to generate the hyperbolic

sine, which results in a major reduction in the total cost of generating the latter function.

The total area cost required to implement a functional unit based on the CORDIC
algorithm is dominated by the variable width shift operation and the table of constants.
Once a decision is made to implement a functional unit using CORDIC, the cost of
instantiating other CORDIC unit is reduced due to the possibility of sharing the shifter and

the table of constants.

Z.A. Baidas, 2000 Chapter 5: Floating-point optimisation 105

The Range reduction units in some functional unit generators require fixed-point
multiplication and/or fixed-point division operators. Since instantiating these units is a
definite requirement for implementing the appropriate functional unit, the same fixed-

point operators can be used by the function generator block. which results in a reduction of

the total area cost.

The limited capacity of the external ROM available is a major constraint imposed during
the optimisation phase. A random assignment of floating-point units to the external ROM,
and the nature of the interpolation engine (linear or non-linear table lookup), limits the
number of operators that can exploit the external ROM, which results in a great

degradation of the design performance, especially when a minimum area cost is required.

A single floating-point functional unit with different target accuracies could be present in
different parts of the design datapath. Implementing the required accuracy of each
individual unit eliminates the possibility of sharing these units at the highest level of
hierarchy. Assigning the highest required accuracy to all similar functional units within the

design allows maximal sharing of these units before flattening the design hierarchy.

The multiplexer cost required to share a large number of functional units affects the
optimisation decision when comparing the off-chip and on-chip table-lookup based units.
The difference in the multiplexing cost in both cases could exceed the area saved by

implementing the lookup table as an external ROM.

Diverse interactions such as these require a dedicated optimisation algorithm to perform
the high-level module binding. This algorithm is discussed in section 5.3. Further analysis,

highlighting the effects of these interactions is provided in section 5.4.

5.2 Numerical interaction

The introduction of a floating-point capability to a synthesis environment gives rise to a
new gross design parameter, that is the accuracy of the floating-point building blocks that
comprise the mathematical expressions within the design. Accuracy cannot be treated on
an equal footing with the other dimensions of the design space because the effects of
changing the accuracy of a functional unit cannot be localised in most cases, and a change

in the accuracy of any module will threaten all operations predicated upon it. Errors

Z.A. Baidas. 2000 Chapter 5: Floating-point optimisation 106

propagate and interact nonlinearly. Furthermore, the form of this interaction is largely data
dependent, it is not difficult to construct a process where a change in a component

accuracy ultimately affects the behaviour.

The floating-point processes within the system support user specification of floating point
accuracy at two levels: it is possible to assert an overall accuracy on a design, (each
individual floating point operation in the design will deliver this accuracy) and it is
possible to override this and assign individual accuracies to each floating point operation.
Within each hierarchical operator, a differential error propagation model [97, 98] is
employed to calculate the necessary accuracies of each of the building blocks. These
calculations result in a single figure of merit assigned to each building block indicating its
contribution to the total error in the parent operator. These figures are provided as a set of
parameters within the file that represents the hierarchical operator. Given the required
accuracy of the parent operator, the accuracy of each sub-component is calculated and
assigned. When building blocks are shared between operators later by the system, the
accuracy of each shared block is promoted to the value of the most accurate, with units
based on CORDIC and iterative series being an exception, as they get assigned the exact

required accuracy in order to reduce the total delay cost.

In the remaining part of this section, error propagation and the effect of varying accuracy

on overall system performance will be discussed.

5.2.1 Error propagation

The differential error propagation model {97, 98, 99, 100] is often used to study the error
propagation of a floating-point expression. Any arithmetic expression may be
characterised by a computational graph composed of directed edges running from input

operand nodes to operation nodes, and from operation nodes to the final result node.

Figure 5.3 shows a computational graph of the simple arithmetic expression:
y =1.0 —sin(x) . Each directed edge from a node &; to a node & is assigned a weight Py,
Py is an error propagation factor reflecting the amount of amplification or damping that

occurs on the error of & (p&;) while generating &. Formally, Py; is given by:

Z.A. Baidas, 2000 Chapter 3: Floating-point optimisation
TS
P}\»,’ — p%} {zr X%L
pE 95 &

The final error in the output result (p&,,) is given by:

pé:m = 2 pé‘:z Pmi
=1

Applying the previous formula to the mathematical expression given in the example in

Figure 5.3 gives a total error in the output result of the form:

p<,

B { xcos(x) B sin(x)
S l-sin() 7 1-sin() 777 1=sin(x)

Figure 5.3 Computational graph example

From the final expression of the accumulated error, it is clear that the effect of local

operation error on the final accumulated error is largely dependent on the input operand(s)

Z.A. Baidas, 2000 Chapter 5: Floating-point optimisation 108

value. For software mathematical packages [87] an exhaustive approach that involves
evaluating the accumulated error expression for every set of input operands is usually
employed in order to define the appropriate accuracy of each operation. This is not
however a possible solution for a synthesis tool since the hardware is actually
implemented for every possible input operand. The approach taken to tackle this problem
is to exploit the differential error propagation model to identify the major error sources in
an expression and assign the accuracy of the building block in a way that minimises the
total error to within the required accuracy (if possible). For example, in Figure 5.3 the
error in the sine operation is magnified as x gets near /2. Therefore, the sine function

should be evaluated to the highest possible accuracy permitted by the module library.

By way of an example, Figure 5.4 shows the error propagation calculation of a simple
arithmetic expression (¢ = a + b). For a = 3 and b = 4, the final result is ¢ = 7. Assuming
an absolute error of 0.1 in a and 0.2 in b, the absolute error in the final result is Ac = 0.3,
resulting in a relative error of pc = 0.0428, which is identical of the result of the error

propagation model.

a

R

P L=1x

! CISEES a+b
qu — ag? Xf: :IX b
T9g, £ a+b

p§3 =P Xp§1 + P, Xpé:z

For:Aa=0.1,Ab=0.2
— pa =0.0333, pb =0.0500
— pc=p& =3x pa+2pb=0.0428

Figure 5.4 Error propagation model example

Z.A. Baidas, 2000 Chapter 5: Floating-point optimisation 109

5.2.2 Accuracy variation effect

The accuracy variation impact on the system parameters 1s largely dependent on the
function evaluation engines invoked within the design. The results presented in this
section demonstrate the effect accuracy variation has on the final hardware cost on three

behavioural benchmarks incorporating floating-point manipulation.

The original VHDL behavioural description contains six floating-point functions: sine.
inverse sine, square root, natural logarithm, exponential, and inverse tangent function.
TestA is implemented using a function generator based on an internal table lookup
interpolation engine. TestB is a design utilising units based on iterative methods (CORDIC
and minimax approximation). Finally, TestC employs a linear interpolation engine based

on an external ROM to generate the functions.

Figure 5.5 shows the three benchmarks located in a two-dimensional design space for
different target accuracies. Trajectory parameters are given in Table 5.2, where each

implementation is given a reference code.

Accuracy = 1e-6 Accuracy = 1e-5 Accuracy=1e-4
Area Delay Area Delay Area Delay
Design 2 2)
um® | (cycles) | (um?’) | (cycles) | (um?®) | (cycles)
Reference Reference Reference
2.39e6 { 214 1.14e6 214 837323 214
TestA
A1 A2 A3
836199 T 721 824800 L 645 817900 572
TestB
B1 B2 B3
679513 250 679513 250 679513 250
TestC
C1 c2 C3

Table 5.2 Area and delay figures for various configurations

Z.A. Baidas, 2000 Chapter 5: Floating-point optimisation 110

Accuracy variation - design space
& TestA TestB A TesiC
3000000 -
2500000 : o
~ 2000000
o
£
=1
< 1500000
2]
9 i 'y A2 : i i ;
< 1500000 ’ : : —ee——
& A3 | | ® B8 B
| | A | | |
500000 : ——6t=6263 : ﬂ
0 . - + .
0 100 200 300 400 500 600 700 800
Delay (clock cycles)

Figure 5.5 Design space for the three different benchmarks

From these results, some points of particular note:

Major reduction of the total area cost occurs when the target accuracy is reduced on
designs based on an internal table lookup interpolation (A1, A2, A3). As the accuracy
reduces, table sizes for each function generator decrease. A reduction in the table size
results in a smaller area required to store these tables as a static register. On the other
hand, the interpolation procedure does not change with accuracy variation and

therefore the total delay does not change.

Reducing accuracy in designs based on CORDIC and iterative series methods reduces
the number of iterations required to generate the output result, which result in a shorter
execution time (B1, B2, B3). However, the hardware required to implement the units
does not change apart from the loop control variables, which explains the negligible

effect of the accuracy variation on the total area cost.

Designs based on an external ROM maintain the same location in the design space.
Accuracy variation in that case affects the function generator table size, which is

stored externally. Thus the internal design hardware and the execution time are not

affected by the accuracy variation.

Z.A. Baidas, 2000 Chapter 5: Floating-point optimisation 111

Finally, it is worth mentioning that in the previous test. all the units in a single design were
chosen to be of the same nature in order to highlight the individual effects when the
accuracy changes. This is not always the case: a design in general will have different
function generators and the accuracy variation will result in a change in both the overall

area and delay.

5.3 Optimisation algorithm

The floating-point optimiser operates on the floating-point and complex functions within
the design, binding each operation to a suitable base technique from the floating-point

module library.

The algorithm relies on a number of pre-calculated metrics to guide the binding decision:

o On-chip area is assigned to each function generator in the library, presenting the area

cost of the unit as a stand-alone design.

o Each function generator has an associated off-chip area figure defining the external
ROM size required to implement the unit. Note that the off-chip area figure is only

related to designs requiring a stored table and has the value of zero for other modules.

e Delay factor is defined for each function generator indicating the execution time of the

floating-point module.

e Sharability factor is provided for each floating-point function generator qualifying the
increase in area cost when the module is shared between a number of compatible

functions.

In addition to these four metrics, the algorithm also requires extra information from the
floating-point module library to identify the fixed-point sub-components, in each floating-
point module, that have significant effects on the total module area and/or delay cost, such
as a fixed point-multiplier. A set of graphs representing the four main metrics of the

R . 6 - . .
inverse tangent function generator for a target accuracy of 10 is shown in Figure 5.6.

Z.A. Baidas. 2000

Chapter 5: Floating-point optimisation

Cff-chyp gren{nuer of ernes

Deioy fardor(dook oydes s
00 g 500
100 %—* E0G A e x-—-r.,_,yth
S ac A
50 | 0 -
co? — | a0 | -
40 J} — 200 -
2 F‘]{ R
T
Limxy or- Potitioned Line off- Patitioned lterdive CORDIC Liner oy Patitiored Lineo off- Potiticrea itadive CORDIC
chiptchie ordip dNptdle off-chip seYies diptcole onchip chip tcoie otf-chip series
hle fcole tade tchle
Onchip aea(un?) Sharapility fector (Ut
| 350000 3o | 25000
300000 +— T . 30000
. 250000 1 | 25000 7 e
¢ 200000 — ;20000 L—' i F—
! 000 18000 S —
100000 I ooo S —
¢}] 0
{ Lirer o Patitiored Liner off- Patitiored itecive CORDIC | Ureg on Potitiored Lirea off- Patitiored Btagive CORDIC
{ chip ichie on-chp chiptcble off-chip series chiptcble on-chip chiptable off-chip SEEs
tehle table tcole tole

Figure 5.6 The inverse tangent function parameters for a target accuracy = 10°

The floating-point optimiser relies on two routines to perform the module binding

operation:

1. On-chip optimisation: The main optimisation routine, responsible for assigning

floating-point and complex functional units to on-chip based modules (on-chip table

lookup, CORDIC, iterative series).

FJ

External ROM utilisation: A supporting routine invoked by the on-chip optimisation

routine. It takes a number of floating-point operations and provides a possible mapping,

which utilises the external ROM most efficiently.

The flowchart of the optimisation algorithm is shown in Figure 5.7. It is an iterative

algorithm comprising six main steps:

1. Initially, all floating-point modules are mapped onto an on-chip table lookup based

technique, implemented on an infinite, virtual, internal, on-chip ROM. The result in this

step is the fastest possible implementation of the design based on the available floating-

point module library. If this meets the user area constraints, and fits the physical

system, the base technique mapping is complete and successful.

Z.A. Baidas, 2000 Chapter 5: Floating-point optimisation 113

2. At this stage, the system starts trading speed against area trying to deliver the user
requirements. A floating-point unit is selected at this stage as a target for the optimiser.
Functional unit selected as a target for optimisation is mainly based on the total area
cost of the functional unit (selecting the biggest unit for area optimisation) and the

number of instances involved in the design.

3. Select an alternative implementation for that unit. The base mapping techniques are
selected in the following order: I)linear on-chip table, 2)partitioned on-chip table. 3)
linear off-chip table, 4)partitioned off-chip table, S)iterative series based unit. 6)
CORDIC algorithm based unit. When a function is to be implemented as an off-chip
table lookup, the external ROM utilisation routine is invoked to deliver a suitable
implementation which utilises the ROM most efficiently. The external ROM mapping
decision is based on an initial exhaustive search of all possible combinations of table
lookup mappings to see which utilises the ROM most efficiently. Note that this does
not lead to a combinatorial explosion, since a table is necessary for each floating point
module fype, not instance, and in practise, sub-table isomorphism within the floating-
point module library components means that the largest number of off-chip tables ever

considered cannot be larger than six.

4. The effect on the overall area of the mapping change is estimated. If the area is not
reduced, goto step (5). Otherwise, the new mapping is accepted, and if the overall user

requirements are satisfied, the algorithm terminates successfully.

5. If all the floating-point functional units are mapped onto the cheapest possible base
technique (in terms of area cost), and the user requirements are not met, then the

algorithm terminates in failure. Otherwise, return to step (2).

6. Once the previous iterative process terminates, and the user constraints are met, a final
delay based optimisation pass is performed, trying to improve the overall system
performance without violating the user constraint. For example, moving a functional
unit mapping from iterative series to on-chip table if the difference between the target
area cost and the actual area cost is greater than or equal to the area cost difference

between the two base techniques.

Z.A. Baidas, 2000 Chapter 5: Floating-point optimisation

114

i
{
i
i
A 4

Functions mapped to

Step 1
on-chip table lookup

T
|
!

}\ Y All constraints met (SUCCESS)
Constraints »

met?

functional i
unit {
|

{ Select
Step 2 |

T
!
h 4

Select alternative
Step 3 implementation from
P module library

|

\ 4

Step 4 Estimate area cost

improvement?

l Y
Apply changes and
] update cost

Further
mapping
possible?

Constraints
met?

N
[All constraints met !
[
| ! v
| Further optimisation
Delay based is not possible
Step 6 optimisation (FAILURE)

i(SUCCESS)

Figure 5.7 Optimisation algorithm flowchart

Z.A. Baidas, 2000 Chapter 5: Floating-point optimisation 115

It is important to mention at this stage that the area cost estimation in step (4). and the area
cost estimation of the initial input design are both performed using a separate area
estimator. The main purpose of this area estimator is to predict the total area cost of the

synthesised design once optimised by the MOODS system. The routine divides the design

area into two parts:

1. Fixed point cost based on the storage units cost and the fixed point operator cost.

2. Floating point cost based on the floating point operators within the design.

The fixed point cost is calculated once while estimating the area cost of the initial design.
Storage units cost is based on a direct accumulation of the these units cost (internal
registers, internal ROMs, ...). For fixed point operators, a single pass is performed to
detect the nature and the width of these operators within the design. During this initial
pass, all operators of the same nature (adder. subtractor, ..) are grouped together, and the

accumulated area cost of these groups is calculated.

For floating-point operators, maximum sharing of these units is expected (which is always
the case as long as an initial optimisation phase is performed during the MOODS
optimisation phase prior to flattening the design hierarchy). The cost of each floating point
operator is then calculated as the sum of the single floating-point operator area cost and
the multiplexing cost required to share this operator, which is based on the number of

functional units within the design.

Although the area estimator does not take into account the effect that parallelism and
registers sharing have on the design area. The nature of the floating point designs, in
which area cost is dominated by the floating point functional units within the design,

allows the estimator to provide a close estimation to area cost of the MOODS structural

output with an accuracy close to 90%.

The design of this heuristic is derived from observations of base technique interactions.

Some points of particular interest are:

e Functions based on table lookup implemented on off-chip ROM share a single ROM

controller and a single I/O port.

Z.A. Baidas, 2000 Chapter 5: Floating-point optimisation 116

e Expanding the hierarchical (real and complex) functions before the optimisation phase
permits substructure sharing. If both the complex and real instances of a function are

required, this delivers significant cost reductions.

e Mapping a function onto a CORDIC base technique makes subsequent mappings to

that implementation more likely.

e Two or more functions having the same table (for example sin() and cos()) have only

one physical table.

e The cost of an iterative series generator can be significantly changed by the prior
availability of its primitive sub-units (multiplier, divider). Equally, the selection of this

base technique reduces the cost of other operations by providing these units.

To demonstrate the effect of the floating-point optimisation algorithm, two behavioural
descriptions incorporating floating-point manipulation have been chosen for analysis. The
first design, labelled bench1 is composed of nine floating-point operations: addition,
multiplication, division, sine, inverse sine, natural logarithm, exponential, inverse tangent,
and square root. The second design, bench2, contains all the operations available in
benchl, but differs in the number of times each operation is invoked. It has: a single
addition, a single multiplication, a single division, a single sine, two inverse sines, three

exponentials, four inverse tangents, five natural logarithm and six square root operations.

Throughout the remaining portion of this section, performance figures are taken directly
from the MOODS synthesis system using a Xilinx based module library. In this library,
area and delay figures are obtained by an analysis of the floor planning results, obtained
from the Xilinx Alliance development system, of the MOODS synthesis system output.
Each design has been synthesised using a variety of optimisation configurations featuring
different target area cost and various external ROM sizes. Note that the accuracy criterion

is set to le-6 for all designs to eliminate the accuracy variation effect discussed earlier in

this chapter.

Table 5.3 and Table 5.4 summarise the optimisation results of both benchmarks providing
arange of area and delay figures. Each design is optimised several times providing twelve
different implementations. Each configuration is given a unique reference code (A1, A2,

A3 ...). The results also provide a breakdown of the total cost in terms of area occupied by

Z.A. Baidas. 2000 Chapter 5: Floating-point optimisation 117

functional units, storage units, interconnect. and control units. Functional unit distribution

among the three base techniques is also provided for each configuration.

The results are summarised by a set of graphs in Figure 5.8 to Figure 5.16. Figure 5.8 and
Figure 5.9 show a section of the area/delay design space for benchl and bench2
respectively. Figure 5.10 to Figure 5.15 show the functional unit distribution between the
three base techniques for all configurations. Finally, Figure 5.16 provides a comparison of

area breakdown of two configurations of benchl and bench2 of particular interest.

Available Function Off-chi On-chi Iterati
Target Estimated Utilised MOODS . P P CORDIC t ve
External MOODS Detlay units cost Storage Muxing cost Control cost table table series
Ref area area ROM area based
ROM delay (ns) (cycles) {(um2) Cost (um2) (um2) {(um2) based based based
(1m?2) (11m2) (Kbyte) {1m2) . R units
(Kbyte) units units units
Al 0 0 1.226E+08 0 1.117E+06 | 1.261E+05 865 2.123E+05 5.271E+05 3.214E+05 3.600E+04 0 0] 2 4
B1 0 3.4 1.208E+06 2.98 1.101E+06 | 1.099E+05 753 2.134E+05 5.083E+05 3.424E+05 3.720E+04 2 0 2 2
C1 0 6.8 1.174E+06 6.05 1.110E+06 | 9.167E+04 627 2.156E+05 4.828E+05 3.730E+05 3.820E+04 4 0 1 1
D1 0 - 1.163E+06 19.68 1.061E+06 | 5.828E+04 411 1.132E+05 4.447E+05 4.133E+05 4.010E+04 6 0 Q Q
E1 2E+6 0 1.957E+06 0 1.831E+06 | 9.160E+04 627 9.005E+05 5.188E+05 3.755E+05 3.630E+04 0 4 2 0
F1 2E+6 3.4 1.974E+06 2.75 1.B40E+06 | 8.223E+04 586 9.011E+05 4.883E+05 4.127E+05 3.780E+04 1 4 1 0
G 2E+6 6.8 1.974E+06 275 1.840E+06 | 8.223E+04 586 9.011E+05 4.883E+05 4.127E+05 3.780E+04 1 4 1 0
Hi 2E+8 © 1.941E+06 12.32 1.822E+06 | 5.658E+04 399 8.760E+05 4.274E+05 4.803E+05 3.870E+04 2 4 0 0
1 e 0 3.115E+06 0 2.956E+06 | 5431E+04 383 2.130E+06 4.336E+05 3.544E+05 3.B10E+04 0 6 0 0
J1 s 3.4 3.115E+06 0 2.956E+06 5.431E+04 383 2.130E+06 4.336E+05 3.544E+05 3.810E+04 0 [§] 0 0
K1 it 6.8 3.115E+06 0 2.956E+06 | 5.431E+04 383 2.130E+06 4.336E+05 3.544E+05 3.810E+04 0 [§] Q 0
L1 °° o 3.115E+06 0 2.956E+06 | 5.431E+04 383 2.130E+06 4.336E+05 3.544E+05 3.810E+04 0 6 0 0

Table 5.3 Area and delay figures for various optimisation configurations of design bench1

0007 ‘sepled 'V'Z

uneold :¢ Jaideyy

=
0

uonestundo rod

811

Available Off-chi On-chi Iterativi
Target Estimated | Utilised | MOODS | MOODS Function _ P P compic rative
external Delay i Storage Muxing cost Control cost table table series
Ref area area ROM area Delay units cost based
ROM (cycles) Cost (um2) (nm2) (1Lm2) based based based
(um2) (nm2) (Kbyte) (um2) (ns) (um2) . units
(Kbyte) units units units
A2 0 0 2.028E+06 0 2.106E+06 | 3.512E+05 2365 2.069E+05 8.926E+05 9.121E+05 9.480E+04 0 0 8 13
B2 0 3.4 2.236E+06 2.98 2.233E+06 | 2.814E+05 1894 2.083E+05 8.950E+05 1.030E+06 9.960E+04 8 0 8 5
Cc2 0 6.8 2.174E+06 573 2.21BE+06 | 2.715E+05 1827 2.079E+05 8.795E+05 1.030E+06 1.004E+05 9 0 8 4
D2 0 o 2.172E+06 19.68 2.168E+06 | 1.458E+05 1023 9.762E+04 8.353E+05 1.130E+06 1.050E+05 21 0 0 0
E2 2.5E+6 o} 2.408E+06 0 2.411E+06 | 2.566E+05 1722 5.156E+05 B8.626E+05 9.388E+05 9.380E+04 Q 11 7 3
F2 2.5E+6 3.4 2.344E406 2.98 2.571E+06 | 2.088E+05 1406 5.169E+05 8.939E+05 1.060E+06 1.004E+05 7 11 3 0
G2 2.5E+6 6.8 2.475E+06 5.73 2.481E+086 1.946E+05 1311 4 791E+05 8.605E+05 1.040E+06 1.010E+05 8 11 2 0
H2 2.5E+6 i 2.463E+06 15.3 2.377E+06 1.398E+05 981 3.769E+05 8.072E+05 1.090E+06 1.027E+05 10 11 0 0
12 oo ¢} 3.955E+06 0 4.053E+06 1.278E+05 897 2.130E+06 7.956E+05 1.030E+06 9.730E+04 0 21 0 0 7
Jz2 o 3.4 3.955E+06 0 4.053E+06 1.278E+Q5 897 2.130E+06 7.956E+05 1.030E+06 9.730E+04 0 21 0 0
K2 o 6.8 3.955E+06 0 4.053E+06 1.278E+05 897 2.130E+06 7.956E+05 1.030E+06 9.730E+04 Q 21 0 0
L2 o i 3.955E+06 0 4.053E+06 1.278E+05 897 2.130E+06 7.956E+05 1.030E+06 9.730E+04 [} 21 0 0

Table 5.4 Area and delay figures for various optimisation configurations of design bench2

000z ‘septed 'V'Z

uneorq :¢ Ideyp

=)
-0

uoyestundo jutod

611

Z.A. Baidas.

2000

Chapter 5: Floating-point optimisation

Bench1 - Area optimised design space
140000 =
/AT i
120000 / * i (4.28e6,197518)
/ 81 \ 7 T Unoptimised
,’ L 4 l 7 \\‘ design /
100000 : 5 7
{ g | ® Fil=G1 |
> 80000 L& R
< 2 / =)kl s
~ L D1 /) / Ll
Q ™ 50000 3 - o N
\\ \\ / A N - /’
40000 AN L
Target area =0 | Target area = infinity
Target area = 2000
20000
0 . .
0 500 1000 1500 2000 2500 3000 3500
Area x10° (um?)
Figure 5.8 Bench1 design space
Bench2 - Area optimised design space
400000 ‘ % -
‘ , G\ |
350000 4— + t L 2 T } (V.97 804452
| T ?UnoptimiSEdVi
] v/ \ ! design
300000 e
N \ 4
i el i
< 250000 G
|
2 IEE
> 200000 \ | L Jef2] |
R | ! [z / T
8 : i i / /‘ﬁ/ ok 12
150000] L,‘ L d \’ o // L .]
H | \ i N\ . 4
100000 \ Target arga = 0 ; \‘/~r/ ! g
50000 | I Térget area = 2500 Tiarget area = infinity
0 | -
0 500 1000 1500 2000 2500 3000 3500 4000
Area x10° (um?)

Figure 5.9 Bench2 design space

Z.A. Baidas, 2000 Chapter 5: Floating-point optimisation 121

| OOfichip mOn-chip mCordic mlterative |
7
(D1)
6
z
8 5
s (A1) (C1)
g 4
a
°
S 3
g (B1)
o
2
N B |
0 = T T T
0 34 6.8 infinity
External ROM size (kByte)

Figure 5.10 Distribution of functional units between the three base techniques for
bench1 for target area = 0 um? as a function of external ROM size

L o Oftchip m On-chip m Cordic | lterative]
5
4 (E1) (F1) (G1) (H1)
7]
c
K<}
g3
o
[
e
o
5 2
£
£
2
1 4
0 - . .
0 3.4 6.8 infinity
External ROM size (kByte)

Figure 5.11 Distribution of functional units between the three base techniques for
bench1 for target area = 2e6 um? as a function of external ROM size

Z.A. Baidas, 2000 Chapter 5: Floating-point optimisation 122

| OOfichip mOn-chip mCordic mlterative |
7
5 (11) (J1) (K1) (L1)
2
g5
5
2 4
o
S
5 3
Ke]
E2
2
1
0 T T T
0 3.4 6.8 infinity
External ROM size (kByte)

Figure 5.12 Distribution of functional units between the three base techniques for
bench1 for target area = infinity um? as a function of external ROM size

| OOfichip mOn<chip mCordic mlterative |
25
(D2)
20 &
"]
c
K]
g 15
Q.
)
5 (C2)
£
Z
5 Rk
0 n T T
0 3.4 6.8 infinity
External ROM size (kByte)

Figure 5.13 Distribution of functional units between the three base techniques for
bench2 for target area = 0 um? as a function of external ROM size

Z.A. Baidas, 2000 Chapter 5: Floating-point optimisation 123

| OOfichip mOnchip mCordic mlterative |

12

(E2)

(F2) (G2) (H2)

10

Number of operations
(o))

3.4 6.8 infinity
External ROM size (kByte)

Figure 5.14 Distribution of functional units between the three base techniques for
bench2 for target area = 2.5e6 um? as a function of external ROM size

| OOffichip mOnchip mCordic m lterative |
25
(12) (J2) (K2) (L2)
20
()
c
2
-
g 15
o
o
Y
o
5 10
a
£
2
5
0 T T T
0 3.4 6.8 infinity
External ROM size (kByte)

Figure 5.15 Distribution of functional units between the three base techniques for
bench2 for target area = infinity um? as a function of external ROM size

Z.A. Baidas, 2000 Chapter 5: Floating-point optimisation 124

EFunctional M Storage H Interconnects [Control |

2500000

2000000

1500000

Area cost (ym?)

-
[¢)] (=]
o o
o o
o o
o (=]
o o
1 1

o
I

bench2 (12) bench1 (1)
Configuration

Figure 5.16 Area breakdown of the two designs based on similar base techniques
(on-chip based implementation)

Comparing the floating-point optimiser estimated area cost to the final area cost of all
optimised designs illustrates the ability of the floating-point optimiser to provide a very
good estimation of the design characteristics. In all cases, the floating-point optimiser
managed to predict the reduction the MOODS synthesis system optimisation phase will
achieve with a good degree of accuracy (90%) without any feed back from the main

optimisation phase.

The design spaces in Figure 5.8 and Figure 5.9 show the dominant effect of the target area
cost on the achievable implementation of each design. Setting the initial target area cost
fixes the optimal design space curve, with the variation in the external ROM size resulting
in the design moving along that curve. Increasing the target area cost of the design shifts
the curve away from the design space origin, providing considerably enhanced design

performance.

Figure 5.10 and Figure 5.13 provide the distribution of functional units between the three
main base techniques for bench1 and bench2 respectively when a minimum area cost is

required. The most obvious feature is that the floating-point optimiser will always provide

(S
wn

Z.A. Baidas, 2000 Chapter 5: Floating-point optimisation 1

an implementation based on both CORDIC and iterative series if a reasonable size external
ROM is not available (A1, A2). This is expected. since both techniques always provide the
most area efficient implementation. Increasing the available external ROM results in
functional units moving gradually to an off-chip based implementation (B1. B2, C1. C2).
When the total external ROM size is sufficient. the optimiser binds all possible floating-
point units to an off-chip based implementation trying to reduce the total delay cost. This
is illustrated in the same figures by (D1, D2). It is also important to notice that none of the
floating-point units are bound to an on-chip table lookup based module, as they tend to

introduce a noticeable increase in area cost and are not suitable when a minimum area cost

1s required.

If a minimum area is not required, the system will try to enhance the performance of the
floating-point units in the design. This is illustrated in Figure 5.11 and Figure 5.14, where
a target area cost of 2 x 10° pm?” and 2.5 x 10° um? are specified for benchl and bench2
respectively'. In both figures, the majority of floating-point functional units were based on
an on-chip table lookup module. The external ROM is only used to enhance the

performance of floating-point functional units based on CORDIC or iterative series.

An interesting feature of the floating-point optimiser is illustrated in Figure 5.12 and
Figure 5.15. Here the target area cost 1s sufficient to implement all functional units as an
on-chip table lookup unit, providing a high performance design with a minimum delay.
Varying the external ROM size has no effect on the module binding decision since the

target area cost has already been met.

Finally, Figure 5.16 provides a comparison of the area breakdown of the two designs when
implemented using similar on-chip based techniques. Note that both designs are similar in
the floating-point functional units invoked, and differ only in the number of instances of
each unit. The extra area cost in bench2 is mainly caused by the interconnects required to
share the floating-point functional units among compatible units, and the control required
for this sharing. Functional unit costs hardly change between the two units, which

illustrates the efficiency of unit sharing, as the only increase in cost when the number of

" The target area cost is increased in bench2 to compensate for the increase in area due to the number of
internal registers required to pass data between the floating-point operators in addition to the multiplexing

cost.

Z.A. Baidas, 2000 Chapter 5: Floating-point optimisation 126

floating point operators within the design increases would be the input and output port
multiplexing and a moderate increase in the control logic. It is also worth mentioning that
this approach is even more efficient when the design targets an ASIC. since multiplexors
in an ASIC are far less expensive compared to programmable logic devices, as they are

based generally on pass transistors.

5.4 Experimental evaluation

The results presented in this section demonstrate the floating-point optimisation algorithm
performance when applied to several designs. Designs are chosen to demonstrate and

isolate the interactions listed in Table 5.1. The designs are grouped into nine different sets.

The first set of designs demonstrate the increase in area cost when a number of iterative
series generators have been instantiated. Five designs are chosen: a sine (C1), an
exponential (C2), a natural logarithm (C3), a combined sine and exponential (C4), and

finally the three function generators in a single design.

45000 o
40000 *C5
35000
30000
- e C4 o
£ 25000
= Cumulative arga of C1, C2,and C3 ——p
< 20000
o e C2
15000 4
& C3
10000 * C1
Cumuiative area of Ct and C2 —»
5000
0 . - — - - ;
0.00E+00 1.00E+05 2.00E+05 3.00E+05 4.00E+05 5.00E+05 6.00E+05 7.00E+05
Area (um?)

Figure 5.17 Design space for the first set of designs

It is clear from Figure 5.17 that the cost of switching between the three function generators

is relatively small once an iterative series engine is implemented. An area cost reduction of

Z.A. Baidas, 2000 Chapter 5: Floating-point optimisation 127

28% when two iterative series engines are shared and a 42% reduction in the total area

cost is achieved when the three function generators are combined.

To demonstrate the effect of lookup table sharing, three designs are considered: a sine
function generator based on an on-chip linear table lookup unit (C6), a cosine generator
based on the same technique (C7), and a single design that combines the two generators
(C8). The design space in Figure 5.18 shows the final area and delay cost of the three
designs once optimised. Note that a major reduction in the area cost is achieved in C8
when compared to the accumulated area cost of (C6) and (C7). Over the range [0,7/2]. it is
possible for these two units to share the same table lookup, which reduces the area cost

required to store the internal table by 50%.

6000 oo

5000 * C8

4000
@
R
> 3000
&
©
Q $ &8

2000

Cumulative area of C6 and C7 —— P
1000
O T T T T
0.00E+00 2.00E+05 4.00E+05 6.00E+05 B8.00E+05 1.00E+06 1.20E+06 1.40E+06
Area (um?)

Figure 5.18 Design space for the second set of designs

The third set of designs represented in Figure 5.19 demonstrate the effect on total area cost
when a complex and real function of the same nature are combined in a single design. The
figure represents three designs: a real square root function generator based on an on-chip
linear lookup table (C9), the corresponding complex polar function generator (C10), and a
design that combines both units (C11). It is clear that when the complex function is
implemented, the equivalent real function is almost free (in terms of area cost). Since the

real square root building block is maximally shared between the two operators and the

Z.A. Baidas, 2000 Chapter 5: Floating-point optimisation 128

moderate increase in area cost in (C11) when compared to (C10) is due to the sharing cost

in terms of multiplexing and control logic.

4500 e .
4000
e C11
3500 + C10
3000
¢ C9
£ 2500
)
o 2000
]
1500
1000 Cumulative area of C9 and C10
—p
500
O T T T
0.00E+00 2.00E+05 4.00E+05 6.00E+05 8.00E+05 1.00E+06 1.20E+06
Area (pm?)

Figure 5.19 Design space for the third set of designs

Hierarchical functional units within the behavioural design are expanded to their sub-
components before the floating-point optimisation phase. This allows a maximal sharing
of similar units. This is illustrated in Figure 5.20. The hyperbolic sine (C13) is based on
two exponential units. Which allows a reduction in area cost of 20% when both functional
units exist within the same design (C14), when compared to the accumulated area cost of

the exponential function (C12) and the hyperbolic sine (C13).

The CORDIC algorithm is exploited in this work to provide a cheap implementation (in
terms of area cost) for a number of functional units, with the functional unit area mainly
dominated by the variable width shift operation and the table of constants that store the
rotation angle. When a number of CORDIC based function generators exist within a
design, further reduction in the area cost is possible due to the possible sharing of the two
units mentioned above. Figure 5.21 represents the design space of three designs: a cosine
function generator based on CORDIC (C15), an inverse tangent function generator based

on CORDIC (C16), and a design that contains both units (C17). Sharing the building

Z.A. Baidas, 2000

Chapter 5: Floating-point optimisation

129

blocks in (C17) results in an area reduction of 31% when compared to the area cost of the

two separate function generators.

Delay (ns)

4.00E+08 oo e . . ,

3.50E+04 ° Cid

3.00E+04

L 4
[1p]
P

2.50E+04

2.00E+04

1.50E+04
Cumulative area of C12 and C13 ——P>

1.00E+04
o C12

5.00E+03

0.00E+00 :
0.00E+00 1.00E+05 2.00E+05 3.00E+05 4.00E+05 5.00E+05 6.00E+05 7.00E+05

Area (um?)

Figure 5.20 Design space for the fourth set of designs

Delay (ns)

D B O A0 ot i “+ -
|
® C17
2.00E+04
1.50E+04
C15
1.00E+04 . <+
c16
5.00E+03
Cumulative area of C15and C16 ——

0.00E+00

0.00E+00 1.00E+05 2.00E+05 3.00E+05 4.00E+05 5.00E+05 6.00E+05
Area (um?)

Figure 5.21 Design space for the fifth set of designs

Z.A. Baidas, 2000 Chapter 5: Floating-point optimisation 130

Figure 5.22 represents the design space of three designs: sine function pre-processing
stage (C18), iterative series based sine generator (C19), and a design that performs a full
sine function generation based on iterative series (C20). It is clear in this example that the
inline expansion of the two blocks before optimising allows datapath operator sharing at
the sub-component level, which results in a 36% reduction in the total area cost in this

case.

12000 e [T
¢ C20
10000 i
c18
8000 &
I
£
> 6000
]
©
[m]
4000
& Cumulative area of C18and C19 ——>
C19
2000
0 . : -
0.00E+00 5.00E+04 1.00E+05 1.50E+05 2.00E+05 2.50E+05 3.00E+05 3.50E+05
Area (um?)

Figure 5.22 Design space for the sixth set of designs

The limited capacity of the external ROM available to implement a behavioural design
requires a careful distribution of this ROM between the floating-point functional units,
especially when a minimum area cost 1s requested. This is illustrated in example Figure
5.23. The design composes five floating point functional units: sine, inverse sine,
exponential, natural logarithm, and square root. The floating point optimiser decision is to
implement all but the inverse sine function utilising the external ROM (0.36 Kbyte in this
example). The resulting design is illustrated by (C21). Assuming a similar design with the
inverse sine function implemented using the external ROM (C22), the remaining four
functional units will be mapped to CORDIC and the iterative series based technique. The
random utilisation of the external ROM in the second example produces a design that is

32% slower and 2% bigger when compared to the floating point optimised output.

Z.A. Baidas, 2000

Chapter 5: Floating-point optimisation

50000

45000

ca22

40000

c21

35000

L 3

30000

25000

Delay (ns)

20000

15000

10000

5000

0
0.00E+00

2.00E+05

4.00E+05

6.00E+05
Area (pm?)

8.00E+05

1.00E+06

1.20E+06

Figure 5.23 Design space for the seventh set of designs

Another important issue during the floating point optimisation phase is the final floating
point functional unit accuracy selection. It is possible for a design to comprise similar

floating point operators with different target accuracy. Two cases arise here based on the

function generator assigned to the functional unit:

1. If the accuracy variation increases the area cost of the design without affecting the

total system delay, all compatible floating point operators are assigned the highest

accuracy.

[US]

2. If the accuracy variation results in delay variation, each functional unit is assigned its

exact target accuracy.

This is illustrated in the example in Figure 5.24, which represents the area and delay cost

of four different designs. The first two designs (C23, C24) consist of two sine generators

implemented as on-chip table lookup. In (C24), the target accuracy in one of the function

generators is reduced manually from le-6 to le-5. Note that the accuracy reduction had
hardly any effect on the total delay which the total area cost increased. Therefore, the
floating point optimiser always goes for the first choice. On the other hand, when both

designs are implemented as iterative series based function generators (C25, C26), the

accuracy variation reduces the total delay without affecting the total area cost.

Z.A. Baidas, 2000 Chapter 5: Floating-point optimisation
25000 —reer B
& C25
¢ C26
20000
-+ 15000
£
)
£
& 10000
5000 4-C23 +-C24
0 :
0.00E+ 1.00E+ 2.00E+ 3.00E+ 4.00E+ 5.00E+ 6.00E+ 7.00E+ 8.00E+ 9.00E+
00 05 05 05 05 05 05 05 05 05
Area (um?)

Figure 5.24 Design space for the eighth set of designs

The final set of examples demonstrates the importance of considering the area cost of
floating-point operators sharing during the optimisation phase. It represents a design with
ten square root operators with a target accuracy of le-4. The floating-point optimiser
assigns the square root to an on-chip partitioned table lookup base implementation when a
minimum area is requested. The reason is that the difference in the sharing cost between
the off-chip (C27) and on-chip (C28) table lookup implementation once shared between

ten operators exceeds the total area cost of the on-chip table as illustrated in Figure 5.25.

00761010 NSRS

60000

50000

¢ C27
* C28

40000

30000

Delay (ns)

20000

10000

0 ; i
0.00E+00 2.00E+05 4.00E+05 6.00E+05 8.00E+05 1.00E+06 1.20E+06

Area (um?)

Figure 5.25 Design space for the ninth set of designs

3
(98]

Z.A. Baidas, 2000 Chapter 6: Practical synthesis using FPGAs 1

Chapter 6

Practical synthesis using FPGAs

This chapter describes the design and implementation of a practical demonstrator, from
specification to hardware. An exemplar is chosen that uses the floating-point capabilities

to solve a practical problem: a cubic algebraic equation.

The chapter is divided into four sections: section 6.1 describes the FPGA hardware
prototyping board. Section 6.2 discusses the floating-point cubic equation solver design
and presents an exploration of the design space. Section 6.3 discusses the main problems
encountered during the development cycle. Finally, section 6.4 presents comparisons with
the floating-point performance of a number of microprocessors. Further details related to

these topics may be found in Appendix E.

6.1 FPGA prototyping board

One of the biggest advantages of implementing digital designs on FPGAs is the possibility
of fast prototyping. When behavioural synthesis tools are involved, the turn around time
from an algorithmic level to an FPGA floor plan becomes extremely short. However, the

last step (the physical implementation) requires a physical system to support it.

The FPGA test board is designed with the following objectives in mind. It should be:

e A flexible design, as it should be possible to reconfigure the FPGA board to almost

arbitrary digital designs.
e Capable of interfacing to a PC.
e Possible to connect more than one board together to handle large designs.

e Possible to connect additional hardware to the design.

Z.A. Baidas, 2000 Chapter 6: Practical synthesis using FPGAs

134

In order to accommodate these objectives, the architecture in Figure 6.1 is implemented.

4M x 8
DRAM

8K x 32
SRAM

RS-232 Keyboard Mouse
interface interface interface

4 4

] clock1 l , clock2 I
vy y
FPGA
FPGA < programming
unit

8K x 32
ROM

T 77

|

i

|

|
|

|
|
|
i
L

|
|
|

96 way external
connector

1

96 way external
connector

Figure 6.1 FPGA board block diagram

The FPGA board is compatible with three SRAM based Xilinx FPGAs: the
XC4085XLPGAS559, XC40125VXPGASS9, and the XC40250XVPGASS59 [101]. These

devices vary in capacity as illustrated in Table 6.1. Three memory banks are provided:

8Kx32bit static RAM and 8K x 32bit ROM sharing the same address and data busses, and

a 4M x 8bit dynamic RAM with a separate data and address bus.

In order to provide a simple way to interface the board to a personal computer, a RS232

serial port interface is provided. Two separate PS2 connectors are provided to allow a

keyboard and a mouse input to the board.

(98]
n

Z.A. Baidas, 2000 Chapter 6: Practical synthesis using FPGAs 1

Typicai
Device CLBs Flip-flops
gate range
XC4085XLPGA559 3136 7168 55000-180000
XC40125VXPGAS559 4624 10336 80000-265000
XC40250XVPGA559 8464 18400 160000-500000

Table 6.1 FPGA devices characteristics

Two options are provided to allow programming the onboard Xilinx FPGA. A serial
programming mode is supported via a separate connector that can be attached to a Xilinx
programming cable [101], and a parallel programming mode is provided using an onboard

EPROM. A set of dip switches is provided to switch between these two modes.

The FPGA board provides an environment where it is possible to implement a wide range
of digital architectures on a single board. However, if it is required to connect two or more
boards together or connect the design to a number of external units, two sets of 96 way

connectors are provided to support 192 bit parallel connection to the external world.

Two external clock signals are provided to drive the FPGA. Each internal flip-flop can be
triggered by any of these clocks on either the rising or the falling edge. The XC4000XV
devices can run at a maximum synchronous system clock of 100 MHz. Each device in this
family is available in three speed grades (-09, -08, and -07), with a maximum clock

frequency of 76MHz, 87MHz, and 100MHz respectively.

Figure 6.2 shows a photograph of the final hardware unit, identifying the main
components, and their position on the test board. Further details regarding different
aspects of the board such as VO port assignment and programming details are provided in

Appendix E.

Z.A. Baidas, 2000 Chapter 6: Practical synthesis using FPGAs 136

Programming
mode control

switches ROM bank

Serial
programming pins

96 way
first
connector
Primary clock
Main Y DRAM bank
FPGA
Rt i
96 way Secondary clock
second
connector
Prté:;;n(mng SRAM bank
RS232
level shifter PS2 buffers
. Mouse PS2
connector Keyboard PS2

connector

Figure 6.2 FPGA board photograph

6.2 Algebraic cubic equation solver

This section describes the detailed design and implementation of the exemplar, a cubic
equation solver capable of handling real coefficients and delivering complex roots. The
system reads three input variables from a keyboard unit representing the three parameters
of a cubic equation and displays the input variables along with the three roots of the cubic
equation on a VGA screen using the built in VGA display adapter (we assume the

coefficient of x° is normalised to unity).

Z.A. Baidas, 2000 Chapter 6: Practical synthesis using FPGAs 137

A block diagram of the system is shown in Figure 6.3. The keyboard interface unit reads
the three parameters and converts them to the IEEE single-precision floating-point format.
The three input parameters are also passed to the output stage to be displayed on the VGA
screen. The core unit performs a number of floating-point calculations to generate the
three roots. The three roots are then passed to the output stage to be displayed on the VGA

screen.

An initialise key 1s provided using one of the unused numeric keypad keys in the
keyboard. Pressing the initialise key at any stage will result in resetting the system and the
output stage and the system goes into an initial state waiting for a new set of input

parameters.

The design is divided into three units: the input stage which includes the keyboard
interface and the format conversion unit; the output stage that drives the VGA display
adapter; and the core unit which performs the floating-point calculations. These units will

be discussed in detail in the following sections.

T
stb P ready ;
e ack L] VGA
Core unit J\ Output Stage VGA data (9 bit)
float_result {32 bit) IE— adapter
4 2 A 2
T = —T
_éf % j _g < initialise ﬁ
v P =
stb_out o
ack_out T
Monitor
Input stage ey (5
A A
Keyboard

Figure 6.3 Cubic equation solver block diagram

Z.A. Baidas, 2000 Chapter 6: Practical synthesis using FPGAs 138

6.2.1 Input stage
The input stage of the design performs two main operations:
1. Read the keyboard input data and decode it to numerical values.

2. Convert each numerical parameter from a decimal format to a single-precision floating-

point format.

Full Details are given in Appendix E.

6.2.2 Output stage

The final section to be considered is the output stage, which displays the input parameters
and the output result on a VGA display driven by a VGA adapter. An example of the
displayed result is shown in Figure 6.4. A simple technique is adopted to reduce the

complexity of the format conversion unit[102]. Details are available in Appendix E.

FLOATING POINT SYNTHESIS

2
X1 = -1.475761651992 x 2

RE(X2) = -1.096952915196 x 2';
IM(X2) = 1.106259226799 x 2

-1
RE(X3) = -1.096952915196 x 20
IM(X3) =-1.106259226799 x 2

Figure 6.4 Cubic equation solver display

Z.A. Baidas, 2000 Chapter 6: Practical synthesis using FPGAs 139

6.2.3 Core unit

The core unit is the most complex part of the whole system. It receives three tloating-point
variables from the input stage and performs a number of floating-point operations to

generate the three roots of the cubic equation. The functionality of the core unit can be

DEFINITIONS:
xtaxt+a,x+a, =0
SOLUTION:

3a, —al2 R 9a,a, —27a, ~2a,3 .

9 54
D=Q'+R%;
if (D=0)
S=4R;
x =28~1a;

X3 = X,5
elseif (D> 0)
§=yR++D;
T =3R-+/D;
x, =85+T~-1q
X, = =3 (S+T)~La, +4i3(S~T)
¥, == (S+T)~ta, ~1iV3(S -T)

cos@=R/+-0’
x, =24/-Qcos(36) -+ a,
x, =2+/-Qcos(30+) —1a

X, =24/-Qcos(20+4) —1a,

else

Figure 6.5 Cubic equation solution

described behaviourally by the set of arithmetic operations required to solve a cubic

equation. This is illustrated in Figure 6.5.

The translation to VHDL of Figure 6.5 is direct, and is shown in Figure 6.6. The full

design listing (including the 1O subsystems) can be found in Appendix E.

Z.A. Baidas, 2000

Chapter 6: Practical synthesis using FPGAs

variable X1 : float;
variaple Templ, Temp2, thetal : float;
variable X2,X3 : cmplx;
begin
get_input_data;

R_sg R * E;

Q_cu :=Q * Q0 *Q;

:= R_sg + Q_cu;

if (D = TO_FLOAT(0.0)) then

]

S := CBRT(R};
Templ := al/TCO_FLOAT(3.0});
X1 ;= TO_FLOAT(2.0)*S-Templ;
X2 .= TO_COMPLEX(-S8-Templ, TO_FLOAT(C.0)};
X3 = X2;
elsif (D > TO_FLOAT(0.0)) then
sqgrt_D := SQRTI(D);

O}

;= CBRT(R+sqgrt_D);
CBRT (R-sgrt_D);

send_output_result;
end process;
eng;

constant conil real := 0.866025404; ~-- sgrt(
constant conZ : real := 2.094395102; -- 2Pi/
constant con3 : real := 4.188790204; ~-- 4Pi/
end;
use work.CoreConst.all;
sntity core is
port
input : in float;
stb_in : in bit;
ack_in : out bit;
new_entry : in bit;
stb_out : out bit;
ack_out : in bit;
data_out : out fleoat
Y
end;
architecture behave of core is
begin
Drocess
variable al,aZ,a3,S,T : float;
variable R,¢,R_sqg,Q_cu,D, sgrt_D : float;

Q0 := ({TO_FLOAT(3.0)*aZ)-{al*al))/TO_FLOAT(9.0);
R := ((TO_FLOAT(9.0)*al*a2)-(TO_FLOAT{27.0)*a2)-(TC_FLOAT{(2.0)*al*al *al))/TO_FLOAT(54.0};

Templ := S+T;

Temp2 := al/to_flcat(3.0};

X1 := Templ-TempZ;

®2 := TO_COMPLEX((-Templ/TO_FLOAT(2.0))-Temp2, {S-T) *TO_FLOAT(conl)});

X3 := CONJ(X2);
else

thetal := ACOS(R/SQRT(-Q_cu))/TO_FLOAT(3.0};

Templ := al/TO_FLOAT(3.0);

Temp2 := TO_FLOAT(2.0)*SQRT(-Q);

X1 := Temp2*COS{theta3)-Templ;

¥2 := TO_COMPLEX (Temp2*C0S (theta3+TO_FLOAT (con2))-Templ, TO_FLOAT(0.0));

X3 := TO_COMPLEX(Temp2*CQS (theta3+TO_FLOAT (con3})-Templ, TO_FLOAT(0.0));
end if;

Figure 6.6 Design1 VHDL behavioural description

140

Figure 6.7 shows the design space for this system. Al represents the original unoptimised

design, B1 represents design optimised for area (target area = 0) with 27.7 Kbyte available

external ROM, C1 represents area optimised design without an external ROM, and D1 is a

delay optimised design (target area = oo).

Z.A. Baidas, 2000 Chapter 6: Practical synthesis using FPGAs 141

18000
4

16000 A 5

14000 - ’m (4860,105435)

12000

10000
XC40250 capacity o
8000 '”

C1

i
L 2

Area (CLB)

6000
XC40125 capacity

4000

2000

0 1000 2000 3000 4000 5000 6000
Delay (cycles)

Figure 6.7 Design space for the original design

In principle, it could be expected that designs B1 and C1 would map successfully to the
Xilinx XC40250XV system. However, the third party RTL synthesis tools [29,30]

constantly failed to deliver a successful implementation.

To overcome this, an alternative approach was adopted; the design was manually

partitioned into two blocks (arithmetic processor and controller).

Figure 6.8 1s a block diagram showing the internal architecture of the partitioned core unit.
The design splits into two main processors in a master-slave combination. The controller
is responsible for controlling the data transfer through the system, and also provides the
data and control signals required to decide the required operation to be performed in the
arithmetic processor. This unit acts as a floating-point arithmetic unit that performs one of
eight floating-point operations on a set of input variables passed by the controller
according to the value of a control vector. The control vector values and the related

floating-point operation are summarised in Table 6.2.

Z.A. Baidas, 2000

Chapter 6: Practical synthesis using FPGAs

Output Stage J
A
IEIE
EH] e
| Iy
i i
J
!
Y) mitialise
. - [‘
Arithmetic Controller s ack
st) Q
processor " &
[| square I < f T]] "g
| muitiply square root add | sublract dide | (A n
; i control (3 bit) E | float_in —
i cubic inverse f -~
{ root cosine cosine | N o
data out (8 bit) _C_
14
data in (8 bit)
[

Figure 6.8 Partitioned core unit block diagram

The distribution of floating-point operations between the two units in Figure 6.8 is largely

arbitrary; the chosen partitioning has the merit of keeping the unit sizes approximately

equal.

Control vector Operation Summary
000 Multiply2 Read two input variables and output their product.
001 Square Read a single variable and output the square.
010 Multiply3 Read three input variables and output their product.
011 Multiply4 Read four input variables and output their product.
100 Square root Read a single variable and output the square root.
101 Cubic root Read a single variable and output the cubic root.
110 Cosine Read a single variable and output the cosine.
111 Inverse cosine | Read a single variable and output the inverse cosine.

Table 6.2 Arithmetic processor operations

Figure 6.9 shows the design space trajectories for the two designs. Table 6.3 shows the

details of the eight points in Figure 6.9.

Z.A. Baidas. 2000

Chapter 6: Practical synthesis using FPGAs

18000
16000
D2
¢ A
14000 4 _
A2
- 12000 (5697,53140)
Z 10000
e XC40250 capacity on
$ 8000 QB2 G
<
6000
XC40125 capacity
4000 ‘ B
2000
0
0 1000 2000 3000 4000 5000 6000 7000
Delay (cycles)
Figure 6.9 Core unit design space
Taraet Available
Desian arga external Total area Total delay
g (am) ROM (CLBs) (cycles)
(Kbyte)
A1 N/A N/A 105435 4860
Original B1 0 27.7 7697 1457
design C1 0 0 7548 1719
D1 oo Not used 14321 1403
A2 N/A N/A 53140 5697
Partitioned B2 0 27.7 7907 2168
design Cc2 0 0 7849 2465

Table 6.3 Parameters for the design space of the original and

partitioned designs

.

L

The variation in the area cost of the original and partitioned design is largely dependent on

sharing the functional units at both the floating-point building blocks level and the sub-

component level. Different versions of the original design always deliver the most area

efficient implementation for a certain set of constraints. A relatively small increase in the

area cost of the partitioned design occurs due to the replication of some fixed-point

building blocks within its two units.

Z.A. Baidas, 2000 Chapter 6: Practical synthesis using FPGAs 144

Table 6.4 represents the partitioned design at different levels during the design synthesis
flow'. The floating-point optimiser realises the floating-point functions within the design
datapath in terms of floating-point primitives. The number of these primitives within a
design is represented by the floating-point primitives (building blocks) column. The
physical floating-point primitives column represent the number of unique floating-point
primitives within a design. The MOODS synthesis system realises the initial design
datapath in terms of virtual functional units, which are mapped during the MOODS
optimisation phase onto a number of physical functional units. Finally, the third party
tools map the MOODS datapath output into a number of CLBs (virtual CLBs), which gets

optimised by third party tools to deliver the final implementation (physical CLBs).

) =2 © o

E 2o | £¢ | g = ? @ , @ =
se | £2 | 82 | 2 =5 @ | 3% | 33
a s © = ox a [| 3} < o2
c K] oE = E c2 25 O - @ s
=) 2% =< =T == 9 c = T o T =
@ = 2 T S a =3 i) 8 2 8 L€
[© 5 5 e = © o* - “w «© 2K+
Q o £ £ = 3 2 S £ s

= =2 | £2 | £ 2 o o

1 2 3 4 5 6 7 8
A2 3497 450 9709 5710 2197
c2 38 43 1 3472 438 9665 5517 2332
D2 3465 439 16142 | 12259 | 2141

Table 6.4 Parameters of the design space of the partitioned design

The third party tool gain (i.e. column 6 to column 7 + column 8)is not much when
compared to the MOODS synthesis system improvement (i.e. column 4 to column 5). The
gain is mainly achieved by flattening the MOODS output hierarchy and optimising the
combinational logic among these blocks. This suggests that integrating a logic
optimisation algorithm within MOODS will eliminate the need for a third party synthesis

tool and allow MOODS to target the Xilinx placement and routing step directly.

More details regarding the operation of the core unit may be found in the source code

listing in Appendix E.

! Similar details could not be produced for the original design and the unoptimised design (A2) due to

limitations imposed by the stability of the third party synthesis tools.

Z.A. Baidas, 2000 Chapter 6: Practical synthesis using FPGAs 145

6.3 Synthesis issues

This section represents a number of issues related to the design and synthesis of the

floating-point cubic equation solver. The section is divided into five units:

. Area reduction techniques that can be used to reduce the total area cost of the design.

—

o

Techniques to meet timing specifications of certain units.

(98]

Synchronisation and communication between the design components and the

modifications required to the structural output generated by MOODS.
4. Physical implementation issues.

5. The final implementation.

6.3.1 Area reduction

The FPGA targeted in this project imposed a significant limitation on the total design area.
In order to meet the target cost some degree of compromise between the total design area

and performance had to be made.

The main technique to reduce the total area cost is controlling the expansion process of the
design expanded modules within the synthesis design flow. MOODS allows the user to
expand the internal modules at any stage of the optimisation phase. It also provides user
control over the level of expansion to be performed. The results presented in Table 6.5
describe two structural representations of arithmetic processor (optimised for area with

external ROM) in the cubic equation solver optimised using two different techniques:
1. The design hierarchy was flattened completely before the optimisation phase.

2. The expansion process was controlled to allow maximal sharing of hierarchical units

during expansion.

Z.A. Baidas, 2000 Chapter 6: Practical synthesis using FPGAs 147

of 48.7% in the total storage cost, a reduction of 57.8% of the total number of functional

units, and a reduction of 37.4% of the total interconnect cost.

To summarise, when a design with a minimum area cost is required, the following

empirical optimisation sequence is found to be best:
1. Perform an initial optimisation to allow sharing the floating-point functional units.

2. Expand at one level only to ensure that fixed-point components within the floating-

point units are not expanded.
3. Perform a second optimisation phase to allow sharing the fixed-point units.
4. Completely flatten the design hierarchy by expanding any remaining modules.

5. Perform a final optimisation having minimum area cost as the highest priority.

| @Storage @ Functional @ Interconnects @ Control |

900000
800000
700000

€ 600000

flattened design preserve hierarchy

Configuration

Figure 6.11 Area breakdown of both designs

Finally, the use of subprograms at the VHDL behavioural description level is
recommended. Besides increasing the readability and maintainability of the design, VHDL
subprograms play a role in reducing the total area cost of the design. Combining repeated

portions of code in a single segment results in a reasonable area reduction mainly due to

Z.A. Baidas, 2000

Chapter 6: Practical synthesis using FPGAs

Total delay Storage Functional Interconnects Control
Total area
Method area area area area
(1m9) (ns) Cycles | units | bits units bits units bits units
(um?®) (um?) (um®) (wm?)
Flatten 1674519 19596 138 821 7813 783595 638 8851 110855 156G 3969 726570 825 53499
Preserve
1000512 38482 on 388 4005 402798 269 3671 89685 103 2389 455130 522 | 52899
hierarchy |
.

Table 6.5 Result of the two different techniques to optimise unit2

Based on the design space in Figure 6.10, it is clear that both optimisation techniques

provide a significant enhancement to the design performance when compared to the initial

design, with the first technique resulting in an area reduction of 83.9% and a delay

reduction of 34.3%, while the second reduces the total area by 72% and the total delay by

66.5%. The second method provides the smallest design at the cost of some system

performance degradation when compared to the first. This 1s due to the initial optimisation

performed prior to any expansion allowing 100% sharing of the floating-point functional

units. This early binding decision reduces the possibility of successfully applying delay

optimisation transformations to the design resulting in less efficient delay optimisation.

70000 -

Initial design

60000

50000

Preserve hierarchy

40000

30000

Delay (ns)

Flattened

20000

10000

0

Area (pmz)

0.00E+00 1.00E+06 2.00E+06 3.00E+06 4.00E+06 5.00E+06 6.00E+06 7.00E+06

Figure 6.10 Alternative optimisation strategies

Examining the area breakdown of both structural representations in Figure 6.11 shows

that forcing the optimisation algorithm to share the floating-point units allows a reduction

Z.A. Baidas, 2000 Chapter 6: Practical synthesis using FPGAs 147

of 48.7% in the total storage cost, a reduction of 57.8% of the total number of functional

units, and a reduction of 37.4% of the total interconnect cost.

To summarise, when a design with a minimum area cost is required, the following

empirical optimisation sequence is found to be best:
1. Perform an initial optimisation to allow sharing the floating-point functional units.

2. Expand at one level only to ensure that fixed-point components within the floating-

point units are nof expanded.

(9]

Perform a second optimisation phase to allow sharing the fixed-point units.
4. Completely flatten the design hierarchy by expanding any remaining modules.

5. Perform a final optimisation having minimum area cost as the highest priority.

7 Control |

B Storage B Functional @& Interconnects

800000
800000
700000
<= 600000

£
2
= 500000
0

flattened design preserve hierarchy

Configuration

Figure 6.11 Area breakdown of both designs

Finally, the use of subprograms at the VHDL behavioural description level is
recommended. Besides increasing the readability and maintainability of the design, VHDL
subprograms play a role in reducing the total area cost of the design. Combining repeated

portions of code in a single segment results in a reasonable area reduction mainly due to

Z.A. Baidas, 2000 Chapter 6: Practical synthesis using FPGAS 149

be written. Three external ports are also required: data_bus and addr_bus, which
connect to the external ROM busses and noe which controls the external ROM bus.
Meeting the timing specification identified in Figure 6.13b requires executing
instruction i/ in the first clock cycle, then i2 in the second clock cycle, and finally both
i3 and i4 in the last clock cycle. This can be simply achieved by manual scheduling

prior to saving the module or by inserting a protect command between these

instructions.

PROGRAM ROM_read addr,data, addr_bus, data_bus, noe
INPORT addr [0:13]
INPORT data [0:27]
OUTPORT data_bus [0:27]
OUTPORT addr_bus [0:13]
OUTPORT noe [1:1]

il: MOVE addr, addr_bus

i2: MOVE #0, noe

i13: MOVE data_bus, data

14: MOVE #1, noe
ENDMODULE ROM_read

a)ROM_read macro port ICODE

ww_ LML
addr_busj :

data_bus

noe

b) Timing specifications

Figure 6.13 Macro port example

Z.A. Baidas, 2000 Chapter 6: Practical synthesis using FPGAs 150

6.3.3 Synchronisation and communication

Data transfer between different units of the cubic equation solver is achieved by a
handshaking protocol based on two handshake signals: srb and ack. Both signals are high
when the system initialises. The master unit output data and asserts the stb signal low. The
slave unit detects the change in the stb line, reads the data and changes the state of ack
from high to low. The master unit then detects the change in the ack signal and asserts srb
high. Finally. ack is asserted high as a consequence of the stb signal being high. This

handshaking process is represented by the waveforms in Figure 6.14.

data j

stb !
\

Figure 6.14 Handshaking signal waveform

Implementing this protocol in a VHDL behavioural description core requires a method to
detect signal transitions. VHDL provides two statements for this purpose: wait on signal
and wait until condition. Wait on terminates only when a transition occurs on the

monitored signal, and wait until terminates when the condition changes from false to true.

A major problem arises from using these wait statements to synchronise two units. For
example, if a stb signal goes low and the slave unit has not yet reached its monitoring
state, the system will halt with the slave detecting a zero on the strobe line and the master
waiting for a transition on the acknowledge line. The problem can be solved by providing
the wait statement within a conditional block as represented in Figure 6.15c. The
conditional block will ensure that the execution will continue if the transition on the

handshaking signal has already occurred.

wn

Z.A. Baidas, 2000 Chapter 6: Practical synthesis using FPGAS 1

Another problem appears when two different clocks drive two units of the same system.
External signal synchronisation in this case becomes a major issue. The problem can be
represented with the aid of Figure 6.16 which shows the relationship of the flip-flop

timing parameters: setup and hold times in this figure are denoted by 7, and 1, respectively.

walt on control;

a)wait on example

walt until contrecl = 07;

b)wait until example

if control = ‘1’ then
wait until control = ‘0/;
End if;

¢) wait within a conditional block

Figure 6.15 Synchronisation within VHDL

The decision window is the interval when the flip-flop samples its inputs and decides on a
change of output. If the input changes within this decision window, the flip-flop may go
into a third metastable state half way between zero and one. The length of time it can

remain in this state is theoretically unbounded [103].

clock

decision window

data

Figure 6.16 Flip-flop timing parameters

To reduce the probability of entering a metastable state, the synchroniser shown in Figure

6.17 is used. The input to the first flip-flop may violate the setup and hold time constraint

Z.A. Baidas, 2000 Chapter 6: Practical synthesis using FPGAs 152

and drives the flip-flop into metastability for an arbitrary time. As long as the clock period
is greater than this time, the flip-flop output becomes stable and the second flip-flop

provides a synchronous copy of the initial input at its output.

I

Asynchronous | i
input ooa poQ |

{ i Synchronous |

bClk LCik 3

rf M J system |

System (| |
clock !

|

Figure 6.17 Synchroniser schematic

6.3.4 Physical implementation issues

Once the MOODS structural representation of the cubic equation solver has been
simulated and verified, the system can be built. At the final stage, a major problem based
on the multiplexor cost appeared. The MOODS synthesis system provides two possible
implementations of the multiplexor, illustrated in Figure 6.18: a normal multiplexor with

unencoded select input; and a multiplexor based on a set of tri-state buffers.

int \ int —%
in2 \ sél(O)
output in2 —i]
in3 output
sel(1)
ind f in3 ——‘1>—
4 sel(2)
i i
sel " _.-ﬂ£>_~
sel(3)
a)Normal multiplexor b)Tri-state based mulitiplexor

Figure 6.18 MOODS multiplexors models

Switching between these two models has a major effect in the total area cost: see Table
6.6, which represents the two parts of the cubic equation solver (FPGAI consists of the
controller, the input stage and the output stage, FPGA2 is the arithmetic processor)

targeting both ASIC and FPGA, and for different combinations of multiplexors. When

Z.A. Baidas, 2000 Chapter 6: Practical synthesis using FPGAs 153

targeting an ASIC, switching between the two models had a relatively small effect on the
total system cost, with area varying by 16.5% for the first part of the design. and 9.9% for
the second part. The increases in area cost arise from the extra cost of implementing
multiplexors based on tri-state buffers., which is more expensive than the general approach

based on pass transistors.

Tri-state buffers used to
. . Total area
Design implementation implement
CLBs/Gates
multiplexors
13740 44910
ASIC
0 37461
FPGAT 13740 1514
FPGA 0 6342
10302 4833
10503 40850
ASIC
0 35826
FPGA2 10503 2419
FPGA 0 5497
7219 4670

Table 6.6 Comparison of area cost based on multiplexors modification

When targeting Xilinx FPGAs, the area variation when switching between the two
multiplexor models increases noticeably, with an increase of the total area cost of 76% in
the FPGA1 and 56% in the FPGA2 when implementing multiplexors using the normal
model rather than the tri-state based model. This is expected, since the limited number of
multiplexors in the FPGA block forces the tool to implement multiplexors using
combinational logic blocks, resulting in a great inefficiency and area cost inflation.

Balancing the number of multiplexors based on each model is essential for a successful

implementation.

6.3.5 Final implementation

The floating-point cubic equation solver project introduces the MOODS synthesis system
floating-point capabilities. It is also as a test vehicle to establish MOODS reliability in

implementing large behavioural designs (100 000+ gates).

Z.A. Baidas, 2000 Chapter 6: Practical synthesis using FPGAs 154

Along the way, a number of problems were discovered in MOODS. These are not detailed

here, as they have been reported and remedied.

Unfortunately, the commercial Xilinx software that drives the FPGA mapper has
consistently failed to successfully target the XC40125XV FPGA, even at moderate levels
of utilisation. The problems encountered in the tool have supposedly been fixed: Xilinx
has withdrawn software support for one of its own products, which has placed us in a
difficult position. Eventually, a XC40250VX FPGA became available. The device has
twice the capacity of the XC40125XV. However, a new range of problems related to the
commercial tools appeared while trying to target this FPGA, and nothing could be done to
fix these. Work rounds for these problems were far more problematic than they should

have been.

With a single FPGA available, the obvious solution was to implement the original design,
which represents the whole algorithm in a single building block and delivers the most area
efficient implementation. However, the RTL synthesis tool consistently failed in

delivering a successful implementation of the design. This made the partitioned design the

only sensible way forward.

Moving to the placement and routing stage, a number of problems were encountered at
this stage, with the same design processing time varying between two and ten days, which
dominates the design cycle time when compared to the run times of the MOODS synthesis
system and the RTL synthesis tool as illustrated in Table 6.7. Methods to speed up the
process such as guiding the placement and routing with a previously routed design did not

function correctly.

Original design Partitioned design
Design flow tool
(hours) (hours)
MOODS 10 1.5
RTL synthesis Failed 7
Placement and routing Failed 48-240

Table 6.7 Run time for tools used in the design flow

These problems made it necessary to modify the design again to further reduce the FPGA

load. The output stage was moved to the FPGA that includes the VGA display driver. Two

Z.A. Baidas, 2000 Chapter 6: Practical synthesis using FPGAs 1

n
n

interface units (interfacel and interface2) were introduced to control passing data between

the two FPGAs. VHDL behavioural description of both interface units are listen in

Appendix E. A block diagram showing the final version of the cubic equation solver is

represented in Figure 6.19. Figure 6.20 represents the area utilisation figures of the FPGA.

XC40250VX FPGA

J |
— | f
‘ i

; |

l , ‘
Input | Arithmetic
stage Controlier | processor

!

1
VGA J
driver |

1

]

Figure 6.19 Final implementation block diagram

Total latches
Total Flipflops
4 input combinational blocks

3 input combinational blocks

0 out of 16928
6884 out of 16928
14764 out of 16928
5456 out of 8464

Figure 6.20 FPGA utilisation figures

Z.A. Baidas, 2000 Chapter 6: Practical synthesis using FPGAs 156

6.4 Comparison with microprocessors

In recent years, advances in VLSI technology have lead to a dramatic increase in the
floating-point performance of microprocessors, with the performance of the floating-point

units of current computer increasing by a factor of 70 [104] in the last 10 years.

A floating-point arithmetic unit is implemented for comparison purposes. The unit
performs one of seven floating-point operations (addition, subtraction, multiplication,
division, square root, sine, and cosine). Targeting the AMS 0.35u CMOS technology. the
total area cost of the design is 35000 gates. Comparing the area cost of this unit to the size
of the floating-point unit in a Pentium III processor (around 1.8 million transistors)”,
indicates the possibility of great performance enhancement of the synthesis system
floating-point units, especially with the rapid increase in programmable logic device

capacity.

For each of the seven floating point operations, a C program was constructed to estimate
the total number of clock cycles required to execute this operation on five different
microprocessors. The synthesised design performance was realised from the simulation
results of the synthesised structural VHDL .The comparison results are illustrated in Table

6.8 and Figure 6.21.

Add Sub Mult Div Sqrt Sine Cosine
Unit Platform
(cycles) (cycles) (cycles) (cycles) (cycles) (cycles) (cycles)
Synthesis
N/A 17 20 19 79 20 45 45
System
80486DX2 | DOS 6.22 37 37 37 94 320 772 790
Windows
AMD K6-2 24 24 24 24 24 24 24
NT 4.0
Windows
Pentium 15 15 15 15 15 15 15
95
Windows
Pentium i 9 9 9 9 9 9 9
NT 4.0
Windows
Pentium Il 7 7 7 7 7 7 7
NT 4.0

Table 6.8 Benchmark results of floating-point performance of different
microprocessors and the MOODS synthesis system

? Area estimation is based on a die shot of the processor, and assuming the equal transistor density over the

chip.

Z.A. Baidas, 2000 Chapter 6: Practical synthesis using FPGAs 157

A second test is carried out to compare the floating-point performance of the cubic
equation solver to the AMD K6-2 processor and Intel Pentium II processor. The algorithm
was written in C and the number of clock cycles required to generate the final result is
averaged over a number of input samples for both microprocessors. The same set of input
samples is used to simulate the structural VHDL of the synthesised design to estimate its
performance. The floating-point calculation time of the FPGA based unit varies between
1158-1668 clock cycles, compared to 800-840 clock cycles for the K6-2, and 661 clock

cycles for the Pentium II processors. The results are represented in Figure 6.22.

Although the majority of the modern microprocessors outperformed the synthesised ALU
in executing a single floating-point operation, these devices in general are fetch-execute
architectures that have limitation on the number of instructions to be executed at a time.
The result they produce for a specific design, in general, is far from optimal, because they
are static in nature and designed for the general case. On the other hand, a synthesis tool
has the capability to deliver a near optimal solution for a specific problem. Executing as
many instructions as possible in parallel to increase the design’s throughput to the limit
that could exceed the peak performance of these processors. In addition, if synthesis tools
could achieve comparable performance to microprocessors for a pure floating-point
application, it is a good indication that these tools can be considered the main target of
applications that require a few floating-point operations intermixed with fixed-point

calculations.

| OPentium Il EPentium |l BEPentium BK6-2 DOSynthesis System @80486DX2 [

1000

8

Delay (clock cycles)
o

Add Sub Mult Div Sqrt Sine Cosine
Entry

Figure 6.21 The floating-point performance of different microprocessors
compared to the MOODS synthesis system

Z.A. Baidas, 2000

Chapter 6: Practical synthesis using FPGAs

1800 -~

O Minimum O Maximum

1600

1400

1200
1000

800

600

Delay (clock cycle)

400

200

Synthesis system AMD K6-2 Intel Pentium Il
Design

158

Figure 6.22 The cubic equation solver floating-point performance compared to

modern microprocessors

Z.A. Baidas. 2000 Chapter 7: Conclusions and further work 159

Chapter 7

Conclusions and further work

The work described in this thesis extended the scope of the MOODS synthesis system to
include floating point (both real and complex) data type manipulation. The floating point
module library presented in Chapter 4 provided a wide range of function evaluators with
significantly different physical properties, increasing the probability of constructing a

design that meets the user pre-defined objectives.

Binding floating point functional units to suitable floating-point modules from the module
library is carried out by a dedicated floating point optimiser. The optimiser is based on a
heuristic algorithm derived from observations of floating point module interactions, and

relies on a number of pre-calculated metrics that summarise the physical properties of each

module.

The above enhancements are exploited to design and implement a physical demonstrator,
an algebraic cubic equation solver with complex root capability, intended as a
demonstration of the floating-point capabilities. It also demonstrates the capabilities of

MOODS as a useful tool for handling relatively large circuits (>100 000 gates).

The work reported in this thesis opens the door to a number of research opportunities in
the field of behavioural synthesis in general and floating-point synthesis in particular. The
experience developed as a behavioural synthesis designer also suggests a number of
enhancements to the behavioural synthesis tool to increase the productivity of the system.

These enhancements and research suggestions are summarised in this chapter.

Z.A. Baidas, 2000 Chapter 7: Conclusions and further work 160

7.1 Source level optimisation from a floating-point
perspective

Hardware engineers using behavioural synthesis tools tend to write code with more regard
to clarity than optimal implementation. Using features such as constants and temporary
variables enables the code to be easily understood and modified. However. this common
approach adds a considerable overhead to the synthesised unit. To solve this problem. a
floating-point source-level optimiser is required. It is a tool to apply a set of code-
improvement transformations that target the floating-point expressions within the

behavioural code.

A problem closely related to the floating-point source level optimisation is that floating-
point numbers are an approximated representation of real numbers. Extra caution should
be taken when exploiting algebraic identities to target floating-point arithmetic blocks
[105, 106]. Consider for example: a reduction in the total cost can be achieved by
replacing a more expensive operator with a cheaper one as in x + 4 =x x 0.25. This
suggests that x + 20 should be replaced by x x 0.05. However, the two equivalencies do
not have the same semantics in floating-point arithmetic because 0.05 cannot be
represented exactly in a floating-point representation, which introduces an extra source of

error in the final result.

The example suggests that the source level optimiser should be extremely cautious when
applying algebraic identities to real numbers. Rather than completely eliminating algebraic
identity based transformations, an analysis of the entire expression is required every time a

transformation is applied to ensure that the identity holds and that the error introduced will

not affect the system accuracy.

7.2 Variable precision floating-point library

Another opening for further work is the issue of variable precision floating-point
representations and variable precision floating-point library. As discussed in Chapter 5,
error propagation through a floating-point expression is highly dependent on the arithmetic
operations involved and the precision of the intermediate results. It is sometimes

impossible to provide the required target accuracy for an arithmetic expression using

Z.A. Baidas, 2000 Chapter 7: Conclusions and further work 161

single precision floating-point operations. A trivial solution to this problem would be to
provide a higher precision (for example double precision) for all floating-point operations
involved. However, this solution would in general, add an unnecessary overhead to the
total system cost. An ideal solution would be to calculate the required accuracy for each
floating-point operation involved and to provide an appropriate floating-point data

precision. To achieve that, two main enhancements are required:

1. It is not possible to provide a specific expanded module for each target precision, thus,
an enhancement to the expanded module sub-system is required to provide some form
of parameterised expanded module, allowing the various loop executions and variable
widths to be specified during the synthesis runtime in terms of generic parameters.
VHDL provides the capability of implementing parameterised units using generics [6].
For example, Taylor expansion can be employed to achieve every possible target
precision by varying the number of terms involved, as well as the width of the

intermediate calculations.

2. The accuracy of an arithmetic expression varies according to the input data type. To be
able to identify the exact precision of each operation, the system will require the user to
provide a test pattern consisting of a number of input samples. The test pattern should
then be applied to the behavioural code in conjunction with a simulation environment
and a detailed error analysis is performed for each input set. This way, the system can
identify the worst-case error within the test pattern and adjust the precision of each

floating-point operation to achieve the target accuracy.

7.3 Component library

The floating-point manipulation units provide the ability to integrate new floating-point
functional units within the synthesis environment. It is possible to implement reusable
floating-point algorithms that incorporate floating-point data manipulation using the
hierarchical unit expansion capability. These two features provide a means of increasing

the productivity of the synthesis tool by adding new high level components to the system.

Z.A. Baidas, 2000 Chapter 7: Conclusions and further work 162

There is a wide range of floating-point functional units that can be added to the module
library. It is also possible to add new building blocks to generate functional units already

available in the library. Table 7.1 suggests a number of these units [107].

Function Description
ACOT (X) Inverse cotangent of X.
ACOTH(X) Inverse hyperbolic cotangent of X.
ACSC(X) Inverse cosecant of X.

ACSCH(X) Inverse hyperbolic cosecant of X.

Error Function

2 X 2
erf x=—=| e dr
=l

Gamma function

IN'x)= _Lme_fr""dt

Table 7.1 Suggested floating-point library components

Hierarchical module expansion can be exploited to increase the scope of the complex
functional units within the library. Further enhancements can be achieved by integrating a
number of floating-point algorithms such as FFT processor cores or MPEG
encoder/decoder. This can be taken further: pre-defined blocks of almost arbitrary

complexity can be envisaged.

7.4 Function inversion block

A “function inversion block” is a functional unit that take as input a value and a function,

and produce as output the inverse function value — see Figure 7.1

Providing this building block would enhance the functionality of the floating-point library
by providing the ability to generate inverse functions that are not implemented within the
current library. This block can also be used to generate the inverse of a mathematical

expression that combines a number of floating-point functional units.

Z.A. Baidas, 2000 Chapter 7: Conclusions and further work 163

— % Function inverting unit ———»

Figure 7.1 Function inversion block

A number of constraints must be applied to ensure successful implementation of the

inverse function:
1. Continuous and monotonic input function.

2. The domain of the inverse function is restricted to match the range of the input

function.
Given these constraints, two approaches are possible:

e Construct a generic function inversion block to numerically find the root of the
equation: f(x)— x’= 0. Root finding methods [108] such as the bisection method,
Newton method, Falsi method or secant method will form the core of the generic unit.
The performance of such methods is largely dependent on the quality of the initial
estimate of the solution. This requires some analysis during the synthesis process to
identify the nature of the input function and provide a suitable initial solution, or even
dividing the inverse function domain into a number of intervals each has its own initial

solution.

e Alternatively, algebraic methods could be used to construct a formula for the inverse
of the input function [109]. The inverse function can then be implemented as a
hierarchical block during the initial compilation stage. The method is illustrated by the

example in Figure 7.2.

Z.A. Baidas, 2000 Chapter 7: Conclusions and further work 164

y=fla)=22" -7

-Switch xand ¥

x=2y'-7

- Solve for v

2yt =x+7

Figure 7.2 Constructing the inverse function algebraically

7.5 Multi-operand floating-point units

Multi-operand floating-point units would provide a significant enhancement to the
floating-point synthesis capability. The method has already been used in modern
microprocessors [110, 111] to speed up graphics manipulations which involve extensive
use of floating-point calculations. The advantage of such building blocks is illustrated in
the example in Figure 7.3, which represents a rotation of a point (x,y) by an angle 6. The
number of building blocks involved in the expression evaluation is reduced from eight
units to four. The number of temporary registers required to save intermediate results is
also reduced from six to two'. This is also accompanied by a reduction in the number of

times the intermediate results are normalised and rounded during execution.

' Although temporary registers are often shared during the synthesis process 10 reduce the total cost. There is

always an increased cost in the form of multiplexors and control logic required sharing these registers.

Z.A. Baidas. 2000 Chapter 7: Conclusions and further work 16

Expression: Mult_add block
x’ _|cos@ —sind uE r ¥ v
y “|sin@ cos@ y ’[k_} i
+
Evaluation: v
Without multi-operand With multi-operand
units units
A=cosf A=cosd
B =sind B =sinf
[, =xXA mult _add(x,A~y,B.x")
I, =yXB mult _add(x,B,y, A,y
=1 -1,
I, =xXB
r,=yxA
y =1, +1,

Figure 7.3 Multi-operand floating-point unit example

It is important to note that in order for the system to fully exploit such multi-operand
units, it should have the ability to re-arrange the floating-point expressions within a design
in a way that allows mapping to these units. For example, detecting the two multiplication
and single addition combination in the previous example and map it to the single mult-add

block.

h

Z.A. Baidas, 2000 Appendix A: IEEE standard for binary floating-point arithmetic 166

Appendix A

IEEE standard for binary floating-
point arithmetic

The IEEE floating-point standard [41] is the most widely used representation for floating-
point numbers. This appendix provides an introduction to this standard with an emphasis

on the single precision representation.

The general representation of a floating-point number in this standard is shown in Figure

A.1. Tt represents a number of the form: (1) x 1.F x 257" The representation is divided

into three fields:

e Sign (s): A sign bit field indicating the sign of the floating-point number. s = 1

represents a negative number, while s = 0 for positive numbers.

e Biased exponent: An unsigned integer field representing the sum of the exponent and
a constant (bias). The bias is introduced to make the field range non-negative (i.e. zero

in this case represents the most negative value).

e Fraction: an unsigned field containing the significant bits to the right of the binary
point. Note that the fraction field does not include the leading digit in the significand,

as 1t is assumed to be always one and 1s implied in the format.

Implicit one
Sign Biased exponent Fraction
1 I I / T H 1 1 T T T T T \/1 T 1] I T I
+/- e] 1] ce
| i { }/1 |] 1 1 I | | I | { { 1/‘ { [| { f {

Figure A.1 Floating-point number representation

Z.A. Baidas, 2000 Appendix A: IEEE standard for binary floating-point arithmetic

167

According to the width of the biased exponent and the fraction, the standard defines four

different formats: single: single extended: double: and double extended. These are

summarised in Table A.1.

Biased Fraction field
Format . Bias value Total width
exponent width width
Single 8-bit +127 23-bit 32-bit
Single extended >11-bit Unspecified 231-bit 43-bit
Double 11-bit +1023 52-bit 64-bit
Double extended 215-bit Unspecified >63-bit 79-bit

Table A.1 Floating-point format parameters

A.1 Single-precision format evaluation

A single precision floating-point number has the general form:
(_ 1)\ % 1 F % 2 E-bhius

For example numbers +4.75, -0.125 are represented as:

+4.75=+100.11,x2°
=+1.0011, x2°

s=0
E=2,+127,
=129,
= 10000001,

F = 00110000000000000000000
Final bit pattern = 010000001001 10000000000000000000

-0.125=-0.001, x2°

=-1.000, x2™"
s=1
E=-3,,+127,,
=124,
=01111100,

F = 00000000000000000000000
Final bit pattern = 101111 10000000000000000000000000

Z.A. Baidas, 2000 Appendix A: IEEE standard for binary floating-point arithmetic 168

The general form represented in the previous examples is what the standard defines as
Normalised Numbers: a representation of a number with a magnitude greater than or equal
to 2% and less than 2'%%, In addition to normalised numbers, certain bit patterns in the

standard have a specific representation, as shown in Figure A.2:

e Zero: The value represented by an all zero exponent field and an all zero fraction field.

Zero can have either a negative or positive sign.

o Denormalised number: A denormalised number indicates a quantity with magnitude

less that 27", but greater that zero. It is represented by a zero exponent field and a

non-zero fraction field.

o Infinity: Infinity is interpreted in the affine sense, that is,minus infinity is smaller than
any finite number and plus infinity is greater than any finite number. Infinity is

represented by an all zero fraction field and an all one exponent field.

e Not A Number (NAN): “not a number” is defined as a pattern indicating an invalid
operation. Two types of NAN are provided: Signalling NAN and Quiet NAN.
Signalling NAN is represented by an all one exponent field with the fraction field most
significant bit set to one. A quiet NAN is represented by an all one exponent field, a
zero in the fraction most significant bit and at least one one in any of the fraction least

significant bits.

This is summarised in Table A.2.

Sign bit Exponent Fraction Value
(s) (E) (F)
0/1 0 0 (+0,-0)
0/1 0 F (-1)°x(0.F)x2°
0/1 0<E<255 F (-1)°x(1.F)x2'E12
071 255 0 +00,-00
0/1 255 F(22)=1 Signalling NAN
01 255 F(22)=1 Quiet NAN

F(21:.0)= 0

Table A.2 Reserved bit patterns

Z.A. Baidas. 2000 Appendix A: IEEE standard for binary floating-point arithmetic

Sign Biased exponent Fraction

(S) (E) (F)

1 I , l

A A B D I B S N E L A R SR B R B

] |

[Y U SRR WUONY NN Sy N I SN SO MU NN NN S Ey Y Y O NS SR B

L L L L L L L S e L A B e

X0 000000 O0/0O0O0O0O0 O 0 00 0 0 O

! AR SN SN TR WU N SN NN NN TR SN S S /A S N I W N B
a) Zero

T I I T T I P/ I T I f I I]

; T T T T T T T T
;X;oooooooolxxxxxx....xxxxxxf
NS AN S TS WS NN TSN N VNS SN SN NN SR S N N/ S S S
b)Denormalised number
|] T I T I I I T] 1] I I I T / I T I T I I
Xyt 14111411 100000O0 00O0O0O0 O
% ; L1 | I I N SR ! N | I [Y/ [B !
¢)infinity
i 1 i i H I i T I T 1 1 1 i &// I 1 i | I I i
XP1 111t 1t 1 1 1 XX X XX s XXX X X X
[1 { 1 i { i I 1 l 1 | ! ! / ! 1 1 { [| S
d)Signalling NAN
I I H T I ! I I T I 1 I I \/ T I 1 I 1 I i
X1t 11 1 1 1 1[0 X X X X X X X X X X X|
I 1 I ! ! 1 I I I | I 1 1 V | i | I { i i

e)Quiet NAN

-In the Denormal representation, at least of the the
fraction bits should be non-zero.

-In the Quiet NAN representation, at least on the
the 22 Isbs in the fraction field should be non-zero

Figure A.2 Floating-point number bit patterns

Z.A. Baidas, 2000 Appendix A: IEEE standard for binary floating-point arithmetic 170

A.2 Operations with NAN

“Not A number” does not represent a numerical value, instead it is a symbolic
representation of an invalid result. NAN is provided in two forms: Quiet NAN and

Signalling NAN.

A Quiet NAN indicates an invalid output result (e.g. 4+o0 + -o0). If a Quiet NAN appears as

an input operand to an operation, the final result will also be a Quiet NAN.

Signalling NAN is never produced as an output result from a floating-point operation. It is
provided as an indication for specific situations such as uninitialised variables. If a

Signalling NAN appears as an input operand, the output result would be a Quiet NAN.

Invalid floating-point operations that produce NAN as the final result are listed in Table

A3

Operation Input operand Final result
Addition (+00) + (-c0) Quiet NAN
Addition (o0} + (+o0) Quiet NAN
Subtraction (#o0) - {+o0) Quiet NAN
Subtraction (-o0) - (-o0) Quiet NAN
Multiplication (+0) ™ (4e0) Quiet NAN
Multiplication (+0) * (-e0) Quiet NAN
Multiplication (-0) * (+o0) Quiet NAN
Muttiplication (-0) * (-o0) Quiet NAN
Addition signalling NAN Quiet NAN
Subtraction signalling NAN Quiet NAN
Multiplication signalling NAN Quiet NAN
Division signalling NAN Quiet NAN
Division Fooftoeo Quiet NAN
Division 0/0 Quiet NAN

Table A.3 Floating-point invalid operations

Z.A. Baidas, 2000 Appendix A: IEEE standard for binary floating-point arithmetic 171

A.3 Status flags

Five status flags are required to monitor the execution of floating-point operations. Setting
one of these flags indicates an exceptional situation detected while executing the

operation. The following is a summary of the status flags indications:

e Invalid operation flag: The invalid operation flag is set high if an input operand is
invalid for the operation. The result in that case would be a Quiet NAN. The invalid

operation flag is signalled in all the situations listed in Table A.3.

e Zero Division Flag: The zero division flag is high if the divisor is zero in a floating-
point division operation. If the dividend does not equal to zero then the final result.
would be a correctly signed infinity, otherwise the operation is invalid and the output

is a Quiet NAN.

e Underflow Flag: If a floating-point operation produces a result of a magnitude too
small to be represented as a single-precision floating-point number, the operation
underflows and the underflow flag is set. It is an indication that the output result has a
magnitude greater than zero, but cannot be represented as a floating point number. The

output in this case is a correctly signed zero.

e Overflow Flag: The overflow flag is set high if an operation on finite input operands
produces an output result too large to fit in the single precision format. Overflow
occurs If the output result has a magnitude greater than or equal to 2'% The output in

this case 1s a correctly signed infinity.

e Inexact Flag: The inexact flag is high if the output of a floating-point operation does
not equal the infinitely precise result. On other words, it is an indication that the final
result has been rounded or approximated. Inexact flag is also high if an underflow or

overflow occurs.

A.4 Comparison op erations

Floating-point comparison operations are exact, and never overflow or underflow. The
implementation is required to support four relational operations: less than; equal; greater

than; and unordered. The last operation is the result of comparing any floating-point

Z.A. Baidas, 2000 Appendix A: IEEE standard for binary floating-point arithmetic 172

representation to a NAN. Every NAN should compare unordered to any other floating-

point representation including another NAN.

A comparison operation can be delivered in one of two ways:

. As a single unit that performs all the four comparison operations and provides a

conditional vector identifying all the four possible relationships mentioned above.

2. A true or false block representing one of the four relationships or a combination of

them (e.g greater than or equal).

In addition to the comparison true-false response, an invalid flag should be raised

whenever a NAN is provided as an input to any of the comparison operations that does not

involve unordered.

A.5 Rounding

Rounding is the process by which the result is approximated to a representation that fits in
the destination formats. The IEEE standard specifies four rounding modes [43,112]: round

to the nearest; round towards +infinity; round towards —infinity; and round towards zero.

Round to the nearest is the IEEE standard default rounding mode. In this mode, the result
is rounded to the closest representation that fits in the destination format. If the result is
exactly half way between two representations, it is rounded to the representation that has a
least significant bit of zero. Figure A.3 illustrates three examples of rounding to the
nearest. The first result X1 1s to the nearest representation a, while X2 is rounded to b. X3
represents a special case since it lies half way between ¢ and d, therefore it is rounded to

the representation that has a least significant bit of zero (d).

1.0 : X1 1 } X2 1428 }X3 14222
A U A
a b c d

Figure A.3 "Rounding to the nearest” examples

Z.A. Baidas, 2000 Appendix A: IEEE standard for binary floating-point arithmetic 173

The second IEEE rounding mode is round towards +infinity. In this mode, the result is
rounded to the closest IEEE format representation that is greater than or equal to the
output result. This is illustrated in Figure A.4. X5 cannot be represented exactly in
floating-point format and is rounded to the next larger floating-point representation (f).
The same occurs on X5 where it is rounded to g, the result represented by X6 fits in the

target format and therefore no rounding takes place.

1;:2(4)g(5 1 I X6 14228 14222
LA

/ \/1 _—_’/A

e f g h

Figure A.4 "Rounding toward +infinity” example

Round towards —infinity is the third IEEE rounding mode. In contrast to the previous
rounding mode, it rounds the final result to the closest floating-point representation that is

less than or equal to the output result. X7 and X8 in Figure A.5 illustrate this rounding

mode.

1-2® X7' X8 1428 14222
1

I

S

— <>

Figure A.5 "Rounding toward -infinity” example

In the final rounding mode, round toward zero, the result is rounded to the closest
floating-point representation whose magnitude is less than or equals the output result.
This mode is represented in the example in Figure A.6, where X9 is rounded to —1.0 x 27

and X10 is rounded to O.

Z.A. Baidas, 2000 Appendix A: IEEE standard for binary floating-point arithmetic 174

&9 p-23 o X1 0 023 o2
| A i o
\ 7 A ‘i‘
S \
m n [s) p

Figure A.6 "Rounding towards zero” example

The standard provides further details on a 32-bit integer format that accompanies the
floating-point number representation, along with the required type conversion operations.
It also discusses traps and trap handler issues, which are user defined subroutines that
track a certain status flag and replaces the output result of an operation that raises that flag.
It also discusses the ability of providing user control over these traps, which gives the right
to enable and disable these traps. These issues are not represented in this Appendix as they

are not related to this work. Further details can be found in [41].

h

Z.A. Baidas, 2000 Appendix B: The CORDIC algorithm 17

Appendix B

The CORDIC algorithm

The CORDIC algorithm (COordinate Rotation DIgital Computer) was first introduced by
Volder [55] as a computing technique to perform vector rotation. It allows computing
trigonometric functions, as well as multiplying and dividing numbers using only shift and
add operations. In 1971, Walter [56] provided a general form of the original algorithm to
provide a means of computing a wide range of elementary functions, including hyperbolic
and logarithmic functions. A slight modification of Walter’s version allowed computing

the inverse sine and inverse cosine functions [57].

This appendix provides a description of the CORDIC algorithm. It is organised in three
sections: section B.1 outlines the main properties of the original CORDIC algorithm,
section B.2 describes the enhanced version of the algorithm represented in [56]; and
section B.3 shows the modifications required to include both inverse sine and inverse

cosine in the set of CORDIC generated functions.

B.1 The original CORDIC algorithm

The original algorithm [55] introduced CORDIC as a special purpose computing machine
that can be used to rotate a vector by an arbitrary angle or determine the angle and the

magnitude of the vector. In other words, the CORDIC machine can be used to solve one of

the two sets of equations:

y'=K(ycos A+ xsin A)
x'=K(xcosA— ysinA)

or

Z.A. Baidas, 2000 Appendix B: The CORDIC algorithm 176

In order to control the functionality of the CORDIC unit (i.e. solving one of the two sets of

previous equations), CORDIC defines two modes of operation:

I. Rotation mode: in this mode, the original co-ordinates of the vector (x,v) together with
an angle of rotation (A) are provided, and the co-ordinates of the vector after rotation by

the given angle (x’,y") are calculated.

2. Vectoring mode: in this mode, the co-ordinates of the vector are given (x,v). and the

magnitude (R) and the angle (8) of that vector are computed.

Having two modes of operation with different functionality might suggest two computing
units. This is not the case here, since the computing unit is implemented to perform
rotation and a special feedback is provided to perform the vecroring mode. In the latter,
the same unit is used to rotate the vector until the angle equals zero, which implies that the
sum of the rotations performed in the negative of the original angle, and the value of the

new x co-ordinate equal the original magnitude.

In the original CORDIC algorithm, the operation starts with a unique first rotation by an

angle of £/2. The new co-ordinates after the rotation are:

x, =%y, =R, cos(6, i%)
v, =%x, = R, sin(6, ifzi)

The remaining steps are a series of rotations by an angle o, where:
- =2 .
o =tan” 277V Q>
The general expression for the new vector co-ordinates after each step i is given by':

Vi =V1I+27PR sin(0, +)=y, £27 P x,

=2(i=2) \ — ~{i~2)
[+27777 R cos(8 o) =x,£2 ¥,

"A proof of this can be found in [S5].

Z.A. Baidas, 2000 Appendix B: The CORDIC algorithm 177

By introducing a new variable d; to control the rotation direction. the general expression

becomes:
Vi =VI+277YR sing +d.o)=y, +d 27,
X =VI+27PR cos(0, +d.or) = x, +d 27y,
where

d, =+lor—1

After performing n rotations the final vector co-ordinates will be:

v =W1+270 #1427 4 A1+ 279 R sin(6, +d,ar, +dyor, +...+d)
2, =W+270 #1427+ V1427)R cos(0, +d,a, +dat, +...+d)

Note that the increase in the magnitude is the constant K for a certain number of iteration.

Substituting K gives the general form of the final co-ordinates:

v, =Ksin(6, + 1)
x,,, =Kcos(g, + 1)

where
A=do, +d,a,+...+d .,

From the previous definition of the vectoring mode, the following condition applies:

-0=do +d,o, +...+d,Q,

As mentioned earlier, controlling the rotation direction is achieved by d, which takes a
value +1 or —1. To determine the value of d, a new variable z, is introduced to accumulate
the angle variation:

Z 1 = Zn +dnan

7
St

Z.A. Baidas, 2000 Appendix B: The CORDIC algorithm 178

For the rotation mode, the sign of z, decides the d, value with d, = +1 for z, > 0. otherwise
-1. For vectoring mode, the sign of v, controls the d, value with ¢, = -1 for v, 2 0.

otherwise -1.

B.2 The enhanced CORDIC algorithm

The algorithm is based on a linear, circular, and hyperbolic co-ordinate system
parameterised by a constant m [56, 61] as shown in Figure B.1, where a vector P; with a

magnitude K; and angle A, is defined using the three co-ordinate systems, where:

P =(xy,)

\

Figure B.1 A vector in three co-ordinate systems

From the previous two equations, it is clear that m = 1 for a circular system; m = O for a

linear system; and m = -1 for a hyperbolic co-ordinate system.

A new vector P;;; may be obtained from P; by:

Z.A. Baidas, 2000 Appendix B: The CORDIC algorithm

=X, +my.0,
=V, —x0,

The magnitude and the angle of the new vector are given by:

Ri*l - Rz X Ki
where

o, =m" tan"(m°§,)

K. :1/I+nz5,2

The previous set of equations suggest that the angle and the magnitude of the original

vector are modified by quantities which are independent of the x and y co-ordinates. By

applying the previous transformation for n iterations we get:

An = A() -
R, =R, xK

where

-

a=Sa
1=0
-1

i

K=11K.

i

T
<

This implies that the total change in the angle is an accumulation of the intermediate

changes, while the total change in the magnitude is the product of the incremental

changes.

The angle factor ¢, and the magnitude factor K; are provided in Table B.1 for the three

different co-ordinate systems.

Z.A. Baidas, 2000 Appendix B: The CORDIC algorithm 180

) Angle
Co-ordinate Magnitude factor
factor
system Ki
&
Circular tan”'§; (148"
Linear 5 1
Hyperbolic tanh™'3, (1-5%)"

Table B.1 Angle and magnitude factors

By introducing a new variable z to accumulate the angle variation:

we end up with three difference equations for (x, ¥, z), and solving them for n iterations
gives:

x, = Klx, 005(0072%)+ Yo sin(am%)]

1 . 1
v, = K[y, cos(om?®) — x, sin(om)]
=z, +

7
o

Using the final set of equations, a wide range of elementary functions may be generated.

Table B.2 and Table B.3 represent the output value after n iterations and for two different

modes:
1. The angle A is forced to zero, which means that y, = 0 (vectoring mode).

2. The accumulation of the angle variation is forced to zero, which means that z,=0

(rotation mode).

Z.A. Baidas, 2000 Appendix B: The CORDIC algorithm
Co-ordinate .
Final Values
system
Circular x, = K(x,co8z,—y,sinz,)
v, = K(y,cosz,+x,sinz,)
z, =0
Linear X, =X,
N, ™ Vo T XpZ
Z;z - O
Hyperbolic x, = K (x,cosh z, + v, sinh z,)
y, = K (v, cosh z, + x, sinh z,)
z, =0

Table B.2 CORDIC result for the rotation mode

Co-ordinate .
Final Values
system
Circular) 2 2
x, = Kqlx," +y,
y, =0
i -1, Yo
Z, — 5~ tan (———)
Xo
Linear X, = X,
v, =0
Yo
Z/x - ~0 —‘_
Xo
Hyperbolic 2 2
x, = Kqlx," =y,
y, =0
-1, Yo
z, = 7, —tanh™ (—)
Yo

Table B.3 CORDIC result for the vectoring mode

181

Z.A. Baidas. 2000 Appendix B: The CORDIC algorithm 182

In addition to the functions listed in the previous tables, the following functions may also

be generated:

sin 7
tanz =
cos z
sinh z
tanh z =
cosh z

1nz:2tanh"[l}x:z+1,y=z—l
x

\/T_ I 0 VI |
T=XT -y x= bty =g

In order to be able to force the angle A to zero by a set of rotations ¢, the direction of the

rotation is defined in each step so that:

lAm l = HA,.

—a

This implies that the remaining rotations in each step must be at least within ¢;,_; of zero,

which defines the main convergence criterion:

This introduces a limitation on the domain of convergence of this algorithm:

n-1
max|A)| =, + > o,
=0

Another problem appears in the hyperbolic mode, as the convergence criterion is not

satisfied. However, if the steps (4, 13, 40, 121,..., f, 3f+1,...) then the criterion is satisfied

[56].

For a practical implementation of the algorithm, ¢; is assigned the value 2" which results

in the final form of the algorithm:

Z.A. Baidas, 2000 Appendix B: The CORDIC algorithm 183

Znﬂ :Z’n“dna/s
Where d, = sign (z,) for the rotation mode and —sign (v,) for the vectoring mode. These
rotations can be performed by a series of shift (multiply by 2™) and add operations with

the values of the rotation angles (¢;,) pre-calculated and stored in a small table.

B.3 Computation of inverse sine and inverse
cosine using CORDIC

This section shows how the method can be used to calculate the inverse sine and inverse
cosine functions. Firstly, a simple algorithm is introduced, along with its main

disadvantage. Then a final version of the algorithm that tackles this drawback [57] is

outlined.

Assuming that we want to compute z = cos™ (1), we perform a rotation of the angle z

starting at the point (1,0) Using CORDIC this can be achieved by:

Z, =0

x, =1

v, =0

d =1 1f z <zelse—1
xn+l 1 - dn 2_” .X”
yn+l d;z 2_” 1 yn

. _ e]

Lps1 =2, + dn tan~ 2

lim z, =cos™ (1)

n—-+oee

The main problem faced here is that the value z is unknown, which implies that we cannot
perform the test above to control the rotation direction. However, the test can be replaced

with the following equivalent test”

? See [57] for a proof of this replacement.

Z.A. Baidas, 2000 Appendix B: The CORDIC algorithm 184

d,=sign(y,) if x 2K telse—sign(y,)

where

K, =ﬁ\/1+2*"

i=0

The new test solves the problem encountered in the previous algorithm. However, a major

drawback arises from the fact that at each step 7, = Kt is required. To compute 7, the

2n

relation 1,4, =, (142")1/2 may be used. But this would require a true multiplication at
each step. To overcome this problem, rwo rotations of d, tan™ 2™ must be performed in
each rotation, which reduces the computation to 1., =1, (1+2‘2”). thereby reducing the true
multiplication to an add and a shift operation. Performing this modification we obtain the

following algorithm to compute the inverse cosine:

7, =0

X, =1

Yo =0

d =sign(y,) 1f x 2t else—sign(y,)
o) (1 —d27 ([,
A - d 2" 1 Y,

- P]
Lo T4, + 2dn tan~ 2

_ -1
! 1 _tn +tn2

n+

In a similar manner the algorithm to compute the inverse sine is:

2, =0

X, =1

Yo =0

d, =sign(x,) 1ify <t else—sign(x,)
va) (1 —d2 ([,
Yari B d,2™ 1 Ya

- -1 y—n
Z11+l - Zn + Zdn tan 2

1=t +12™"

n+l

The domain of convergence of the CORDIC algorithm is defined by the accumulated sum

of the elementary rotations performed over the required number of iterations. This implies

Z.A. Baidas, 2000 Appendix B: The CORDIC algorithm

that the double rotation performed in this algorithm to reduce the multiplication cost

doubles the size of the algorithm convergence domain.

Z.A. Baidas, 2000 Appendix C: Elementary function details 186

Appendix C

Elementary functions details

This appendix provides internal details of the floating-point library elementary functions
discussed in Chapter 4. In each section, a detailed description of the range reduction unit is
provided, as well as a description of the function generators provided to implement the
function. Function generator accuracy estimates based on simulation results of uniformly

distributed samples over the required input range are also provided.

C.1 Sine and cosine functions

The sine and cosine functions are combined into one building block, generating either the
sine or the cosine of the input operand according to the value of control input. The input to

the function generator is in radians.

C.1.1 Pre-processing stage
The pre-processing stage performs two tasks:

1. Input operand type detection.

2. Reduces the range of the input operand to the range of the function generation block

[0,m/2].

A block diagram of the pre-processing stage is provided in Figure C.1. Input type
detection is the first stage in the pre-processing step. It performs a series of tests to identify
certain cases represented in Table C.1. If any of these cases are detected, the appropriate
value is assigned to the output and the done flag is raised to indicate that there is no need

for further processing in the following function generation block. The type detection unit

also assigns the appropriate value to the flag register.

Z.A. Baidas. 2000 Appendix C: Elementary function details 187

» flag register

' » done
input » Input type detection

| output

p
—
Range reduction
. » out_sel
in_sel »> \ ;
| |y sign

Figure C.1 Sine/cosine pre-processing stage

If the input operand passes the type detection stage, a range reduction is performed on the

input to scale it within the range Ixl € [0,7/2]". This is achieved using the following

equation:

+sinDif QOmod4=0
+cosDif QOmod4=1
—sinDif QOmod4=2
—cosDif Omod4=3

sin(Q5+D) =

The application of the range reduction procedure takes place in a number of steps

illustrated in the flow graph of Figure C.2:

I. The input is divided by /2 (multiplied by 2/rt) and the output result is stored in a

temporary variable.

2. The fractional part of the previous step result is then multiplied by (7/2) and the result

is provided as the output operand.

"If the input is already within this range, the range reduction procedure is bypassed.

Z.A. Baidas. 2000

Appendix C: Elementary function details

188

The input control variable in_sel combined with the integer part of the division result in

step one and the input operand sign are used to identify the final result sign and the

operation to be performed in the following stage (generating either the sine or the

cosine funct

ion).

Flag register

Operation | Input ;| Output

Inexact | Invalid NAN OVF EUN ZD
Quiet

sine +oo 0 1 1 0 0] 0
NAN
Quiet

sine -o0 0 1 1 0 0 0
NAN
Sig. Quiet

sine 0 1 1 0 0 0
NAN NAN
Quiet | Quiet

sine 0 0 1 0 0 0
NAN NAN

sine zZero 0 0 0 0 0 0 0
Quiet

cosine +o0 0 1 1 0 0 0
NAN
. Quiet

cosine -o0 0 1 1 0 0 0
NAN
‘ Sig. Quiet

cosine 0 1 1 0 0 0
NAN NAN
Quiet | Quiet

cosine 0 0 1 0 0 0
NAN NAN

cosine ZEero 1 0 0 0 0 0 0

Table C.1 Special input cases in the sine/cosine function

Z.A. Baidas, 2000 Appendix C: Elementary function details 189

input

tmp = input / %

3

result = frac{tmp) %
Q=int(tmp)
out_sel = in_sel out_sel = in_sel out_sel = in_sel out_sel = in_sel
sign =sign(input) and in_sel sign =sign(input) and in_sel sign =sign{input) or in_sel sign =sign(input) or in_sel

Figure C.2 Sine/cosine range reduction flow chart®

C.1.2 Function generation unit

The first set of function generators is based on a single lookup table with linear
interpolation. The absolute error over the required range varies as the table size and hence
the difference between two adjacent break points (slope) changes. The figures in Table C.2
represent the error variation as the table size changes. These results are summarised in

Figure C.3, where the error is shown for different table sizes.

2 int(x) returns the nearest integer less that or equal to x (nearest zero). frac(x) returns the value x-int(x).

Z.A. Baidas, 2000 Appendix C: Elementary function details 190

Name Slope Table entries Maximum error
sin_cos_7_lsi o 3217 3.9539-8
sin_cos_6_lsi 2° 805 4.8599e-7
sin_cos_5_lsi 27 202 7.6292e-6
sin_cos_4_Isi 2°® 101 3.0905e-5
sin_cos_3_lsi 2 26 4.8783e-4
sin_cos_2_lsi 2° 7 7.7000e-3

Table C.2 Maximum error in the sine/cosine generator using single table
and linear interpolation

A reduction in the table size is achieved by partitioning the lookup table into a number of
sub-tables. The table is partitioned so that the maximum error generated in each sub-table
is less than a limit that guarantees the target accuracy. This is illustrated in Table C.3 and
Figure C.4, where the error is represented for different combinations of partitioned table.

Figure C.5 shows the sub-tables distribution for the four units listed in Table C.3.

Sub-table Table Maximum
Name Sub-table range slope .
entries error
0-0.19635 2 403
sin_cos_7_Imi 0.19635-0.98175 2 805 . 005207
. e-
0.98175-n/2 2" 1207
0-0.490875 2® 126
sin_cos_6_Imi - 8.8646e-7
0.490875-1/2 2 553
0-0.294525 2® 19
sin_cos_5_Imi ~ 8.6986e-6
0.294525-11/2 2 164
0-0.883575 2° 29
sin_cos_4_Imi - 9.2394e-5
0.883575-1/2 2 44

Table C.3 Maximum error in the sine/cosine generator using partitioned
table and linear interpolation

Z.A. Baidas, 2000 Appendix C: Elementary function details 191

-8
x10 x107
4 5
35 45
4
3
as
25
4 £
g2 i g 25
£ i
i i a
< s |1 [RHgcE 8 2
v
U LRI | 15
1 ‘.‘ AL

o
o

o

a

] 02 04 06 08 1 12 14 nl2 0 02 04 06 08 1 12 14 =2
Input to the sine function Input to the sine function
a) sin_cos_7_lsi b) sin_cos_6_lIsi
10«8 3
B x a5 x10
L 3
6}
25
5
4 g2
E
i i
15
3
1
2 i
il
1 05 h h
i)
0 A A : 0 A
[} 02 04 06 08 1 12 14 =2 0 02 04 06 08 1 12 14 =2
Input to the sine function Input to the sine function
c) sin_cos_5_lIsi d) sin_cos_4_lIsi
x10* x10°
5 8,
45 7
4
6
35

Absolute error
N
n
Absolute error
S

3

15
2

1
05 !
0 — o

0 02 04 06 08 1 12 14 =2 0 02 04 06 08 1 12 14 =2
Input to the sine function Input to the sine function
e) sin_cos_3_lsi f) sin_cos_2_lIsi

Figure C.3 Error in the sine/cosine generator using linear interpolation engine with
a single-table and for different table sizes

Z.A. Baidas, 2000

Appendix C: Elementary function details

192

x10”

o 02 04 08 08 1 12 14 w2
Input to the sine function

a) sin_cos_7_Imi

0.2 04 06 08 1 12 e w2
Input to the sine function

c) sin_cos_5_Imi

2 o o

Absolute error

©

0 02 04 06 08 1 12 1.4 w2
Input to the sine function

b) sin_cos_6_Imi

08

02

o 02 04 06 08 1 12 14 2
Input to the sine function

d) sin_cos_4_Imi

Figure C.4 Error in the sine/cosine generator using linear interpolation and a
partitioned table for different table sizes

Unit name Sub-tables range
n
0 2
S1 S2 S3
sin_cos_7_Imi f }
S1 S2
sin_cos_6_Imi }
S1 S2
sin_cos_5_Imi }
S1 S2
sin_cos_4_Imi }

Figure C.5 Sub-tables range in the sine/cosine generator using linear

interpolation and partitioned table

Note that for the table lookup based implementation, an equivalent unit that replaces the

internal table with an external ROM interface is provided to allow implementing the table

using an external ROM.

Z.A. Baidas, 2000 Appendix C: Elementary function details 193

An iterative series method based on the minimax approximation of the sine/cosine
function is also available to generate these functions. As expected, the error in the function
approximation is highly dependent on the approximating function degree. The maximum
approximation error for different approximation degrees is illustrated in Table C.4 and the

same results are summarised in Figure C.6.

Name Approximation Maximum error
- degree ;
sin_cos_7_ser 7 9.1500e-8
sin_cos_6_ser 6 4.7340e-7
sin_cos_5_ser 5 7.1280e-6
sin_cos_4_ser 4 1.0400e-4

Table C.4 Maximum error in the sine/cosine generator using minimax
approximation

x10”7 x10°

1

o

08

»
o

08

a

4
o

07

L

gos
205
3

304

Absolute error
N
N o @

o

03

02

01 J .
o

o
4] 02 04 06 08 1 12 14 w2

o
o

02 04 06 o8 1 12 14 =2

o

Input to the sine function Input to the sine function
a) sin_cos_7_ser b) sin_cos_6_ser
x10° x10™
8 12 ’—
g 1
6
o8
5
g B
g4 gos
g 3
4 E
04
2
02
1
DIJ 0.2 04 06 08 1 12 14 2 00 0.2 04 06 08 1 12 14 =2
Input to the sine function Input to the sine function
c) sin_cos_5_ser d) sin_cos_4_ser

Figure C.6 Error in the sine/cosine minimax engine for different approximation
degrees

Z.A. Baidas, 2000 Appendix C: Elementary function details 194

Finally, a CORDIC based engine is provided to generate this function. The unit uses the
CORDIC algorithm in the circular mode (m = 1) and with the input operand initialised as
(x=1/K,y =0, z = input operand). The accuracy of these function generators varies
according to the number of CORDIC iterations. This is shown in Table C.5 and Figure C.7

showing the maximum approximation errors for different number of iterations.

Name o Number of Maximum error
R ~_ iterations '
sin_cos_7_COR 25 1.1913e-7
sin_cos_6_COR 22 5.1109e-7
sin_cos_5 COR 18 7.5161e-6
sin_cos_4_COR 15 6.0760e-5

Table C.5 Maximum error in the sine/cosine generator using CORDIC
algorithm

Absolute error

o

o

04 06 08 1 12 14 x2 02 04 08 08 1 12
Input to the sine lunction Input to the sine function

a) sin_cos_7_cor b) sin_cos_6_cor

DT
14

Input to the sine function Input to the sine function

i
w2 0 02 04 06 08 1 12 14 w2

c) sin_cos_5_cor d) sin_cos_4_cor

Figure C.7 Error in the sine/cosine CORDIC unit for different number of iterations

Z.A. Baidas, 2000 Appendix C: Elementary function details 195

C.2 Inverse sine and inverse cosine functions

The inverse sine and inverse cosine functions are implemented using a single building
block. and a control input is provided to select between the two functions. Due to the
periodic nature of both the sine and cosine function, their inverses cannot be formed unless
the domain is restricted. This restricts the input to the range [-1.1], which eliminates the

need for a range reduction block.

A block diagram representing the building blocks of the unit is shown in Figure C.8. Input
type detection performs a series of tests to detect certain cases in which the output is
predefined. These cases are represented in Table C.6. If any of these cases is detected, the

corresponding output value is assigned and the function generator is bypassed.

\h_, flag register

input Input type detection /;/

y

i__, output

| - |

—>

Function generator

in_sel »

Figure C.8 inverse sine/inverse cosine generation unit

For the general case, the inverse sine function is generated in the range [0,1] and the final

output is provided using the simple relationship:

arcsin(tx) = tarcsin{l x 1)

arccos(tx) = —725 —[Zarcsin(l x)]

Z.A. Baidas. 2000 Appendix C: Elementary function details 196

. Flag register
Operation | input | Output
Inexact | Invalid NAN OVF EUN ZD
Inverse Quiet
. +oo 0 1 1 0 0 0
sine NAN
inverse Quiet
o0 0 1 1 0 0 0
sine NAN
Inverse Sig. Quiet
0 1 1 0 0 0
sine NAN NAN
Inverse Quiet | Quiet
0 0 1 0 0 0
sine NAN NAN
Inverse
. zero 0 0 0 0 0 0 0
sine
Inverse Quiet
>111 0 1 1 0 0 0
sine NAN
inverse Quiet
+oo 0 1 1 0 0 0
cosine NAN
inverse Quiet
-00 0 1 1 0 0 0
cosine NAN
inverse Sig. Quiet
0 1 1 0 0 0
cosine NAN NAN
inverse Quiet | Quiet
0 0 1 0 0 0
cosine NAN NAN
inverse
) zero n/2 0 0 0 0 0 0
cosine
inverse Quiet
>11 0 1 1 0 0 0
cosine NAN

Table C.6 special input cases in the inverse sine/inverse cosine function

The function generation unit is implemented using either a partitioned lookup table or a
CORDIC base procedure3. For a table-based method, Table C.7 and Figure C.9 represent

the maximum error encountered for different table sizes.

* Due to the nature of the inverse sine function as [xI— 1, neither a single slope table lookup nor a polynomial

approximation are not a viable solution for this function.

Z.A. Baidas, 2000

Appendix C: Elementary function detatls

Name Sub-table range | Sub-table Table Maximum
slope entries error
0-0.234375 2 240
0.234375-0.53125 2 608
0.53125-0.78125 o 1024
0.78125-0.890625 2" 896
asin_acos_7_Imi 0.890625-0.90875 a 1280 3.0335e-7
0.96875-0.986022 o™ 566
0.986022-0.994353 o 546
0.994353-0.999236 278 1281
0.999236-0.999694 2™ 241
0.999694-1 2 642
0-0.140625 2° 36
0.140625-0.390625 2° 128
0.390625-0.71875 2" 336
0.71875-0.875 2 320
asin_acos_6_Imi | 0.875-0.988739 2" 932 5.4699e-7
0.988739-0.99884 2™ 662
0.99884-0.999542 2 93
0.999542-0.999786 2™ 64
0.999786-1 2% 225
0-0.28125 27 36
0.28125-0.640625 2 92
0.640625-0.828125 2° 96
0.828125-0.9375 2™ 112
asin_acos_5_Imi | 0.9375-0.993958 2" 232 5.3550e-6
0.993958-0.996245 o 19
0.996245-0.999358 2™ 103
0.999358-0.999755 21 27
0.999755-1 2 65
0-0.265625 2° 9
0.265625-0.53125 2° 17
0.53125-0.78125 27 32
asin_acos_4_Imi | 0.78125-0.921875 2" 36 4.5791e-5
0.921875-0.994872 o 150
0.994872-0.999541 2 39
0.999541-1 2™ 31

Table C.7 Maximum error in the inverse sine/inverse cosine generator using

partitioned table and linear interpolation

Z.A. Baidas, 2000 Appendix C: Elementary function details

198

x10° y’
sxw

35

»

Absolute eror
= »n
o ~ 1)

fed
o

0
0 01 02 03 04 05 06 07 08 09
Input to the imverse sine function

a) asin_acos_7_Imi

02 ©03 04 05 06 07 08 09 1
input 1o the inverse sine function

b) asin_acos_6_Imi

]| I E Il
1 .

04 0 07 08 09 0

Input to the inverse sine unction

c) asin_acos_5_Imi

01

02 03 04 05 06 07 08 09 1

Input to the inverse sine function

d) asin_acos_4_Imi

Figure C.9 Error in the inverse sine/inverse cosine generator using linear

interpolation engine with a partitioned table lookup

A minor modification to the CORDIC algorithm (see Appendix B for details) provides an

iterative procedure to implement the inverse sine and inverse cosine functions. Table C.8

and Figure C.10 represent the accuracy of this method for different number of iterations.

Name Number of Maximum error
. G iterations : :
asin_acos_7_COR 26 1.1268e-7
asin_acos_6_COR 22 9.3970e-7
asin_acos_5 COR 19 7.6005e-6
asin_acos_4_COR 16 6.0995e-5
asin_acos_3_COR 13 4.7333e-4
asin_acos_2_COR 11 1.8907e-3

Table C.8 Maximum error in the inverse sine/inverse cosine generator using
CORDIC algorithm

199

Appendix C: Elementary function details

Z.A. Baidas, 2000

x107

x10®

14

o © < o °
o o o o
Jowe eNosqy

04

Input to the arcsin function

06 07 08 08

05

03

02

01

08

09

02 03 04 05 06 07
Input to the arcsin function

01

o

acos_6_cor

b) asin

acos_7_cor

a) asin

x10°

x10°

0. 03 04 05 06 07 08 09
Input to the arcsin function

01

06 07 08 08

05

04

Input to the arcsin function

03

Jdoue 8)njosqy

acos_4_cor

d) as

5 cor

in_acos_

c) as

x10

x10®

08 09 1

03 04 05 06 07
Input to the arcsin function

02

0.1

]

05 06 07 08 09

04

Input to the arcsin function

03

02

douse efosqy

acos_2_cor

f) as

in_acos_3_cor

e) as

Figure C.10 Error in the asin/acos generator based on the CORDIC engine for
different number of iterations

C.3 Inverse tangent function

The function generator of the inverse tangent function consists of two main building

blocks:

1. A pre-processing stage that performs range reduction and input type detection.

Z.A. Baidas, 2000 Appendix C: Elementary function details 200

2. The main function generation unit, which calculates the inverse tangent of an input

argument within the range [0,1].

In addition to those two units, a final adjustment stage is required to undo the modification

performed by the range reduction stage.

In the pre-processing stage, input type detection is performed to identify any of the input
values listed in Table C.9 and output the appropriate result. If none of the listed values are
detected, the execution continues to the range reduction unit adjusts the input argument to
within the range [0,1], and provides the necessary control signals to govern the data flow
in the following stage. A flow chart describing the range reduction procedure is given in

Figure C.11. At this stage, the input is divided into two groups:
1. If input is in the range Ixl < 1, then the function is calculated directly.

2. If Ixl 2 1, range reduction is required:

X

P

] T
arctan(—‘ J = arctan (,\)

Fiag register
Input Output
Inexact | Invalid | NAN OVF EUN ZD
+o0 /2 0 0 0 0 0 0
-00 -1t/2 0 0 0 0 0 0
Sig. Quiet
0 1 1 0 0 0
NAN NAN
Quiet Quiet
0 0 1 0 0] 0
NAN NAN
0 0 0 0 0 o] 0 0
linputl>2%* +n/2 1 0 0 0 0 0
linputl<0.007 +input 1 0 0 0 0 0

Table C.9 Special input cases in the inverse tangent function

Z.A. Baidas, 2000 Appendix C: Elementary function details 201

The function generation unit is implemented using the three methods described in Chapter

4: table lookup, iterative series, and the CORDIC algorithm.

Table lookup based units are provided using both a single slope table and a partitioned
table. For the first set, error variation as the table size changes is represented in Table C.10
and Figure C.12. Similar figures for the partitioned table based units are provided in Table

C.11 and Figure C.13.

input

linputt < 1

A

output = input output =

indicates that the final output
result is of the form
= - arctan(input)

2

final_sub = 1

indicates that the final output
result should be inverted Y

Figure C.11 Inverse tangent range reduction flow chart

Z.A. Baidas, 2000

Appendix C: Elementary function details

o

3]

Name Slope Table entries Maximum error
atan_main_7_lsi 2" 1024 8.8135e-8
atan_main_6_lsi 2° 512 3.1999e-7
atan_main_5_lsi 27 128 4.9649¢-6
atan_main_4_lsi 27 32 7.9282¢-5
atan_main_3_lsi 2" 16 3.1684e-4
atan_main_2_lsi 2F 4 5.000e-3

Table C.10 Maximum error in the inverse tangent generator using a single
table and linear interpolation

Sub-table Table Maximum
Name Sub-table range slope entries error

atan_main_7_Imi 0-0.0625 27 32 8.8135e-8
0.0625-1 2™ 960

atan_main_6_Imi 0-0.3125 27" 80 9.6207e-7
0.3125-1 27 352

atan_main_5_Imi 0-0.125 2° 8 6.9654e-6
0.125-1 27 112

atan_main_4_Imi 0-0.125 2" 2 9.0130e-5
0.125-1 2 28

Table C.11 Maximum error in the inverse tangent generator using a

partitioned table and linear interpolation

Z.A. Baidas, 2000 Appendix C: Elementary function details 203
oX10 3 4510 7
s ﬁ
3
! h
25
6
£s 3
H g
3 4 2s
<
3
1
2
05
1
00 01 02 03 04 05 06 07 08 08 00 01 02 03 04 05 06 07 08 09 1
Input to the inverse tangent function Input to the inverse tangent function
a) atan_main_7_lIsi b) atan_main_6_lIsi
5 x10° O x10%
45
4
6
E° ;
§ 25 g4
i. i
15
2
1
05
0O 01 02 03 04 05 06 07 08 08 00 01 02 03 04 05 06 07 08 09 1
Input to the inverse tangent function Input to the inverse tangent function
c) atan_main_5_lsi d) atan_main_4_lsi
as* A §X10 2
8 5
25
4
3 ;
2 g3
g5 i
< <
2
1
05 1
00 01 02 03 04 05 06 07 [+X:] 09 00 01 02 03 04 05 06 o7 o8 09 1

Input to the inverse tangent function

e) atan_main_3_lsi

Input to the inverse tangent function

f) atan_main_2_lsi

Figure C.12 Error in the inverse tangent generator using a single table and linear
interpolation for different table sizes

Z.A. Baidas, 2000 Appendix C: Elementary function details 204

x10° %10

Absolute error
o o a

W

01 02 03 04 05 06 07 08 08 1

o

0 01 02 03 04 05 06 07 [oX:] 09

Input to the exponential function Input to the exponential function
a) atan_main_7_Imi b) atan_main_6_Imi
x10° x10™
 f ¥
6
08
g 06
: (Y
5
3
5 04
02
0 01 02 03 04 05 06 07 08 08 1 00 01 02 03 04 05 06 07 08 09 1
Input to the exponential lunction Input to the exponential function
c) atan_main_5_Imi d) atan_main_4_Imi

Figure C.13 Error in the inverse tangent generator using a partitioned table and
linear interpolation for different table sizes

An iterative series method based on the minimax approximation is also used to generate
the inverse tangent function. The maximum approximation error for different

approximation degrees is illustrated in Table C.12 and Figure C.14.

Name | Approximation Maximum error

| Cierea _ ! i
atan_main_7_ser 7 7.3643e-8
atan_main_6_ser 6 4.2296e-7
atan_main_5_ser 5 6.4056e-6
atan_main_4_ser 4 2.0947e-5

Table C.12 Maximum error in the inverse tangent generator using the
minimax approximation

Z.A. Baidas, 2000 Appendix C: Elementary function details 205

4
7 1
& 35
3
5 e
4 £ 25
25 H
i K
i
<3 <
15
2 1
1 05
) o
) 01 02 03 04 05 06 07 o8 0s 1 o 01 02 03 04 [06 07 08 09 1
Input to the inverse tangent function Input to the inverse tangent function
a) atan_main_7_ser b) atan_main_6_ser
x10°¢ x10°
7 25
6
2
5
E E 15
4
3 3
B 3 K}
2 -
< <
2
05
1
0 o
0 01 02 03 04 05 06 07 08 08 1 0 0.1 02 03 04 05 06 07 08 08 1
Input to the inverse tangent function Input to the inverse tangent function
c) atan_main_5_ser d) atan_main_4_ser

Figure C.14 Error in the inverse tangent generator using the minimax
approximation for different approximation degrees

Finally, a CORDIC based engine is provided to generate this function. The units uses the
CORDIC algorithm in the circular mode (m = 1) and with the input operands initialised as
(x =1, y = input operand, z =0). The accuracy of this function generator is dependent on
the number of CORDIC iterations. This is shown in the results in Table C.13 and Figure
C.15.

Name Number of Maximum error
iterations :
atan_main_7_COR 25 9.9845e-8
atan_main_6_COR 22 5.0590e-7
atan_main_5_COR 18 7.6204e-6
atan_main_4_COR 15 6.0870e-5

Table C.13 Maximum error in the inverse tangent generator using the
CORDIC algorithm

Z.A. Baidas, 2000 Appendix C: Elementary function details 206

x107 x10°

08

08

go

g os

o 01 02 03 04 05 06 07 [oX:] [oX°] 1 0 01 02 03 04 05 06 o7 08 [eX°] 1
Input to the arctan function Input to the arctan function
a) atan_main_7_cor b) atan_main_6_ cor

Absolute error

0 01 02 03 04 0s 06 07 08 08 1 0 01 02 03 04 0s 06 07 o8 08 1
Input to the arctan function Input to the arctan function

¢) atan_main_5_ cor d) atan_main_4_ cor

Figure C.15 Error in the inverse tangent generator using the CORDIC algorithm
for different number of iterations

C.4 Logarithmic functions

The natural logarithm function is combined with the base 2 logarithm and the base 10

logarithm in a single unit*. The unit consists of two main components:
1. A unit that generates the natural logarithm of the input.

2. A post-processing unit that adjusts the output of the previous stage and generates the

final result according to the required function.

4 Logarithm of an arbitrary base is implemented a hierarchical using the natural logarithm unit and a

floating-point divider (logpase x = In x / In base)

Z.A. Baidas. 2000 Appendix C: Elementary function details 207

The functional unit is based on one of the mathematical properties of the logarithm

function:

In(1.Fx25)y=In(l.F)+In(2%)
=1In(1.F)+ ExIn(2)

This implies that the natural logarithm of a floating-point number can be generated using a

function generator in the range [1,2].

A block diagram of the first unit is represented in Figure C.16. It consists of a type
detection block, employed to detect certain situations and act according to a pre-defined
regime, and the main function generator, which performs the natural logarithm calculation

of the input fraction field.

SN Flag register
|
Input » Input type detection 1

' , Done
™
%_, Output
' L
Function generator

» Exponent

Figure C.16 Initial unit in the logarithm generator unit

Table C.9 represents the input values the type detection block detects along with the
output value and the flag register content in each case. If none of these cases are detected,

the execution moves to the function generation block.

For the function generation block, three sets of function generators are provided. The first

is based on a single slope table lookup; the second uses a partitioned lookup table; and

Z.A. Baidas. 2000

Appendix C: Elementary function details

finally an iterative process based on a polynomial approximation of the function is also

provided.

The single slope table lookup implementation provides the fastest solution at the cost of
relatively large table compared to the partitioned table. Table C.15 provides a comparison

both methods for similar target accuracy, the results are summarised in Figure C.17 and

Figure C.18.
Flag register
Input Output
Inexact Invalid NAN OVF EUN ZD
Quiet
+00 0 1 1 0] 0] 0]
NAN
Quiet
oo 0 1 1 0 0] 0
NAN
Sig. Quiet
0 1 1 0] 0 0
NAN NAN
Quiet Quiet
0 0 1 0 0 0
NAN NAN
0 -o0 0 0 0 0 0 0
Quiet
<0 0 1 1 0 0 0
NAN
Table C.14 special input cases in the logarithm function
Method Name Table entries Maximum error
Ln_pre_7_lsi 1024 1.1853e-7
Ln_pre_6_lsi 512 4.8382e-7
Ln_pre_5_lsi 128 7.5707e6
Single table :
Ln_pre_4_lsi 64 3.0032e-5
Ln_pre_3_lsi 32 1.1826e-4
Ln_pre_2_lsi 16 4.594e-4
Ln_pre_7_Imi Same as LN_pre_7_lsi
Ln_pre_6_Iimi 368 9.0378e-7
Partitioned table i
Ln_pre_5_Imi 112 9.8758e-6
Ln_pre_4_Imi 36 9.3764e-5

Table C.15 Maximum error in the logarithm generator using a single and
partitioned table

Z.A. Baidas, 2000

Appendix C: Elementary function details

x107

5
Bos
<
04
02 |
o
1 11 12 13 14 15 16 17 18 19 2
Input to the natural logarithm function
a) In_pre_7_lsi
x10°®
8
E
H
o
<
0
1 11 12 13 14 15 16 17 18 19 2
Input to the natural logarithm function
c) In_pre_5_lIsi
x10™
12
1
08
¢ ;
§os]
g H
o
<
04
02
0
1 11 12 13 14 15 16 17 18 18 2
Input to the natural logarithm function

e) In_pre_3_lsi

x107
5

1 11 12 13 14 15 16 17 18 19 2
Input to the natural logarithm function
b) In_pre_6_lIsi
x10°
35
]
2siiH]
if
2
i
thadnd
s ik
L v 1
\;‘1» A
1
| v i
W i
NIt
I
{
° :
1 11 12 13 14 15 16 17 18 19 2
Input to the natural logarithm function
d) In_pre_4 lIsi
x10*
5 ~
wl
4
35
3
25
2
15
1
05
0
1 11 12 13 14 15 16 17 18 18 2
Input to the natural logarithm function

f) In_pre_2_Isi

Figure C.17 Error in the natural logarithm generator using a single table and

linear interpolation for different table sizes

Z.A. Baidas, 2000 Appendix C: Elementary function details 210

Absolute error

1 11 1.2 13 14 15 16 17 18 19 2
1 11 12 13 14 15 16 17 18 19 2
natural logarithm function
putto the log Input to the natural logarithm function

a) In_pre_7_Imi b) In_pre_6_Imi

08

Absolute error

1 11 12 13 14 15 16 17 18 19 & 1 1.1 12 13 14 15 16 17 18 19 2
Input to the natural logarithm function Input to the natural logarithm function

c) In_pre_5_Imi d) In_pre_4_Imi

Figure C.18 Error in the natural logarithm generator using a partitioned table and
linear interpolation for different table sizes

For the third set of function generators, the minimax approximation procedure provides a
cheap solution in terms of area at the cost of extra delay. The unit delay is highly
dependent on the target accuracy. As the required accuracy increases, the approximating
polynomial degree increases and so does the number of iterations. The results in Table
C.16 and Figure C.19 represent four function generators based on the minimax

approximation for different accuracy target.

Z.A. Baidas, 2000

Appendix C: Elementary function details

Name Approximation Maximum error
: degree
Ln_pre_7_ser 7 6.1669¢e-8
Ln_pre_6_ser 6 4.3195e-7
Ln_pre_5_ser 5 8.9136e-6
Ln_pre_4 ser 4 6.0755e-5

Table C.16 Maximum error in the logarithm generator using minimax

approximation

211

x10°®
#

x10”

Absolute error

x10°
9

1.1

a) In_pre_7_ser

12 13 14 15 16 17 18 19 2 1 8
Input to the natural logarithm function

12 13 14 16 16 17 18 19 2
Input to the natural logarithm function

b) In_pre_6_ser

Absolute error

Absolute error
»

11

12 13 14

c) In_pre_5_ser

15 16 17 18 19
Input to the natural logarithm function

2 1 11

12 13 14 15 16 17 18 19 2
Input to the natural logarithm function

d) In_pre_4 ser

Figure C.19 Error in the natural logarithm generator using the minimax

approximation and for different approximation degrees

The post-processing stage has four inputs: the output result of the previous stage; the main

input exponent; a control flag (done); and the flag register. If the done flag is set, the input

and the flag register are bypassed to the final output and no further processing is

performed. In normal situations (done = 0), the data flow in this unit is represented in

Figure C.20. It consists of three operations:

[§e]
]

Z.A. Baidas, 2000 Appendix C: Elementary function details

1. Multiplying the exponent by (In2).
2. Adding the result of the previous step to the input to generate the final result.

3. This stage 1s required only in the case of the base 2 logarithm or base 10 logarithm.

where the result is multiplied by an adjusting factor.

—

input exponent
‘ ExIn2
I
\ 4 h 4

required only in the base 2
logarithm case

required only in the base 10% | (fnput+Ex In2)xlog E |
logarithm case L‘"“‘"““'“"“l‘““""""“"“‘
(input + E x In2)xlog, ,E

output

Figure C.20 Data flow in the logarithm post-processing stage

C.5 Exponential function

The exponential function generator consists of a pre-processing stage and a function

generation core. The pre-processing stage performs two tasks:

1. Input operand type detection.

2. Reduces the range of the input operand to within the range of the function generation

block [0,In2].

A block diagram of the pre-processing stage is provided in Figure C.21. Input type

detection is the first stage in the pre-processing step. It performs a series of tests to identify

Z.A. Baidas. 2000 Appendix C: Elementary function details

19
I

certain cases represented in Table C.17. If any of these cases detected. the proper value is
assigned to the output and the done flag is raised to indicate that there is no need for
further processing in the following function generation block. The type detection unit also

assigns the appropriate value to the flag register.

» flag register
. » done
input » Input type detection
|
|
. output
o
— |
i J |
| Range reduction Q
’ » invert
’ |

Figure C.21 Exponential pre-processing stage

If the input operand passes the type detection stage, a range reduction is performed on the

input to scale it within the range Ixl & [0,In2]’:

Fx28=0xIn2+ REM xIn2
Fx2E
In2

exp(F x2%)=2% xexp(REM x1n 2)

=0+ REM

The procedure takes place in four steps:

1. The input is divided by In2 (multiplied by 1/In2) and the output result is stored in a

temporary variable.

2. The fractional part of the previous step is then multiplied by (In2) and the result 1s

provided as the output.

7 If the input is already within this range, the range reduction procedure is bypassed.

Z.A. Baidas, 2000 Appendix C: Elementary function details 214

3. The integer part of step | (Q) is provided as an output.

4. If the input operand is negative, the invert flag is set to one to indicate that the final

output should be inverted (exp(-x) = l/exp(x)).

Flag register
Input Output
Inexact Invalid NAN OVF EUN ZD

+o0 +00 0 0] 0 0 0 0
oo 0 0 0 0 0 0 1

Sig. Quiet
0 1 1 0 0 0

NAN NAN

Quiet Quiet
0 0 1 0 0 0

NAN NAN
zero 1 0 0 0 0 0 0

Table C.17 Special input cases in the exponential function

The function generation step is provided using Table lookup based units using single slope
tables. Error variation as the table size changes is shown in Table C.18 and Figure C.22.
For this particular function, dividing the table into multiple sub-tables does not result in

any reduction in the table size, as all the partitions require the same slope to meet the

target accuracy.

Name Slope Table entries Maximum error
exp_main_7_lsi o 1434 3.6241e-8
exp_main_6_lsi 2° 359 9.2173e-7
exp_main_5_lsi 2° 180 3.7129¢-6
exp_main_4_lsi 2° 45 6.0123e-5
exp_main_3_lsi 2° 23 3.390e-4
exp_main_2_lsi 2° 6 3.900e-3

Table C.18 Maximum error in the exponential generator using a single table
and linear interpolation

Z.A. Baidas, 2000 Appendix C: Elementary function details 215

An iterative series method based on the minimax approximation of the function is also
provided. The maximum approximation error for different approximation degrees is

illustrated in Table C.19 and the results are summarised in Figure C.23.

x10® x10°
7 1
09
6
08
s A “ 1 07
! . gos
2 L £ 05
H
H °r 04
204 b i 03
o2f [N
1 I |
{ 01
0 0
0 0.1 02 03 04 05 06 07 0 0.1 02 03 04 05 06 07
Input to the exponential function input to the exponential function
a) exp_main_7_lsi b) exp_main_6_ Isi
x10°
8
6
g4
2
] L
0 01 02 03 04 05 06 07
Input to the exponential function
c) exp_main_5_lIsi d) exp_main_4_lsi
x10* x10°
25 4
35
2
3
25
£ ;
H g 2
]]
2! <15
1
05
05
0 | 0
0 01 02 03 04 05 06 07 0 0.1 02 03 04 05 06 07
Input to the exponential function Input to the exponential function
e) exp_main_3_lsi f) exp_main_2_lIsi

Figure C.22 Error in the exponential generator using a single table and linear
interpolation for different table sizes

Z.A. Baidas, 2000 Appendix C: Elementary function details 216
Name Approximation Maximum error
degree
exp_main_7_ser 6 2.4737e-8
exp_main_6_ser 5 1.3485e-7
exp_main_5_ser 4 3.9179e-6
exp_main_4_ser 3 1.1176e-4

Table C.19 Maximum error in the exponential generator using the minimax
approximation

x10
25

o 01 02 03 04 05 06 07

Input to the exponential function

a) exp_main_7_ser

07

03
Input to the exponential function

0 01 02 04 05 06

c) exp_main_5_ser

o 0.1 02 03 04 05 06

Input to the exponential function

b) exp_main_6_ser

02 03 04 05 06

Input to the exponential function

0 01

d) exp_main_4_ser

Figure C.23 Error in the exponential generator using the minimax approximation
and for different approximation degrees

Z.A. Baidas, 2000 Appendix C: Elementary function details 217

C.6 Square root function

The square root function generator has a simple pre-processing stage attached to a main
function generation block. In addition to the type detection block which detect the cases
listed in Table C.20, the pre-processing stage checks the input exponent. If an odd
exponent is detected, the exponent is incremented and the fraction is shifted right,

allowing the square root to be generated using the general form:

E
VFx2" =iFx2? 0.5<|F|<2

A type detection block monitoring the values listed in Table C.20 is provided prior to the
exponent adjustment unit. If any of these values is provided as an input operand, the
output is set to a pre-defined value along with an appropriate flag register, and the

operation terminates.

Flag register
Input Output
Inexact | Invalid NAN OVF EUN ZD
+oo +o0 0 0 0 0 0 0
-0 O+jeo 0 0 0 0 0 0
Sig. Quiet
0 1 1 0 0 0
NAN NAN
Quiet Quiet
0 0 1 0 0 0
NAN NAN
zero 0 0 0 0 0 0 0

Table C.20 Special input cases in the square root function

For normal operation, two engines are provided to generate the square root function. The
first is a table lookup based engine with both a single slope and multi-slope table. A

comparison between the total table size for different target accuracies is provided in Table

C.21 and Figure C.24.

Z.A. Baidas, 2000

Appendix C: Elementary function details

218

x10°®
9

w0 ~ ®

Absolute error
IS

Absolute error

[i il

1 15 2 a5 1 15 2
Input to the square root function Input to the square root function

a) sqrt_7_lIsi b) sqrt_6_lIsi
" x10*
08
g Eo°
3 304
i 0
05 1 15 2 05 1 15 2
Input to the square root function Input to the square root function
c) sqrt_5_lIsi d) sqrt_4 _lIsi
x10* x107
35 — 45 =
3 4 |
P 35
25| |
3
§ 2 § 25
3 E
31s =
< <
15
1 4
1
Wy
, [:
a5 1 15 05 1 15 2
Input to the square root function Input to the square root function
e) sqrt_3_lIsi f) sqrt_2_lIsi

Figure C.24 Error in the square root generator implemented as a single table

lookup unit and for different table sizes

Z.A. Baidas, 2000 Appendix C: Elementary function details 219
Method Name Table entries Maximum error
sqrt_7_lsi 1536 8.6020e-8
sqrt_6_lIsi 768 3.4048e-7
sqrt_5_lIsi 192 5.3312e-6
Single table
sqrt_4_Isi 48 8.2379e-5
sqrt_3 lIsi 24 3.1566e-4
sqrt_2_lIsi 6 4.000e-3
sqrt_7_Imi 1056 1.1410e-7
sgrt_6_Imi 384 9.2021e-7
Partitioned table

sgrt_5_Imi 120 9.1946e-6
sqrt_4_Imi Same as sqgrt_4_lsi

Table C.21 Maximum error in the square root generator using a single and

partitioned table

x10”

o8

Absolute error
Absolute srror
°© o o

06 I

04 i | "
|

02 f

05 gl 15 2
Input to the square root function

a) sqrt_7_Imi b) sqrt_6_Imi

x10°
1

15 2
Input to the square root function

c) sqrt_5_Imi

Figure C.25 Error in the square root generator implemented as a partitioned table

lookup unit and for different table sizes

Z.A. Baidas, 2000 Appendix C: Elementary function details 220

The CORDIC algorithm can also be used to generate the square root function. Error
variation as the number of iterations change is shown in Table C.22 and Figure C.26. A
note of particular interest here is that the angle variation (z variable, see Appendix B) has
absolutely no effect of the execution, which implies that the angle calculation as well as
the stored rotation values are not required to generate the square root function and can be

eliminated completely from the CORDIC procedure that generates the square root.

Name Number of Maximum error
iterations
sqrt_7_COR 12 6.2357e-8
sqrt_6_COR 10 8.5353e-7
sqrt_5_COR 9 3.4490e-6
sqrt_4_COR 8 1.3908e-5

Table C.22 Maximum error in the square root generator using the CORDIC
algorithm

Absolute error

1 15 2
Input to the square root function

Input to the square root function

a) sqrt_7_cor b) sqrt_6_cor

Absoiute error

T —
15 2). 1 15 2
function Input to the square root function

1
Input to the square root

c)sqrt_5 cor d) sqrt_4 _cor

Figure C.26 Error in the square root generator using CORDIC and for different
number of iterations

Z.A. Baidas, 2000 Appendix C: Elementary function details 29

C.7 VHDL library

User access to the floating-point and complex functional units is provided by means of a
VHDL package. Floating-point and complex functions and procedures, along with type
conversion units are embodied in this package. The floating-point package declaration is

provided in Listing C.1.

Listing C.1 Floating-point and complex package declaration

LIBRARY IEEE;
USE IEEE.std_logic_1164.al1l;
USE IEEE.std_logic_unsigned.all;

PACKAGE FLP_OPS IS
-~ TYPE DECLARATION
TYPE FLOAT is array (31 downto 0) of STD_LOGIC;
TYPE CMPLX is array (63 downto 0) of STD_LOGIC;
TYPE CMPLX¥_POLAR is array (63 downto 0) of STD_LOGIC;
TYPE STATUS is array (5 downto 0) of STD_LOGIC;
--TYPE STD_LOGIC IS STD_LOGIC;
-- return the real part of a complex variable
FUNCTION RE(input : IN CMPLX) return FLOAT;
FUNCTION RE{input : IN FLOAT) return FLOAT;

-- return the imaginary part of a complex variable
FUNCTION IMAG{input : IN CMPLX) return FLOAT;
FUNCTION IMAG (input : IN FLOAT) return FLOAT;

-- return the magnitude of a complex polar variable
FUNCTION MAGN({input : IN CMPLX_POLAR) return FLOAT;
FUNCTION MAGN (input : IN FLOAT) return FLOAT;

-- return the angle of a complex polar variable
FUNCTION ARG(input : IN CMPLX_POLAR) return FLOAT;
FUNCTION ARG({input : IN FLOAT) return FLOAT;

-- return the conjugate

FUNCTION CONJ(input : IN CMPLX_POLAR) return CMPLX POLAR;
FUNCTION CONJ (input : IN CMPLX) return CMPLX;

FUNCTION CONJ{(input : IN FLOAT) return FLOAT;

-- converts a complex input argument to a complex polar

FUNCTION COMPLEX_TO_POLAR (input : IN CMPLX) return CMPLX_POLAR;

-- same functionality but with a STD_LOGIC register support
PROCEDURE COMPLEX_TO_POLAR_F

(input : IN CMPLX; output : OUT CMPLX_POLAR; FLAG_REG : OUT STATUS);

~-- converts a complex polar input argument to a complex
FUNCTION POLAR_TO_COMPLEX (input : IN CMPLX_POLAR) return CMPLX;

-- same functionality but with a STD_LOGIC register support

PROCEDURE PQLAR_TO_COMPLEX_F
(input : IN CMPLX_POLAR; output : OUT CMPLX; FLAG_REG : OUT STATUS);

Z.A. Baidas, 2000 Appendix C: Elementary function details 270
-~ VHDL type real and integer to float , cmplx or cmplx_polar
FUNCTION to_flecat (input : IN integer) return FLOAT;

FUNCTION to_float (input : IN REAL) return FLOAT;

inputl : IN integer;input2 : IN integer) return CMPLX;
inputl : IN real;input2 : IN real) return CMPLX;
inputl : IN FLOAT;input2 : IN FLOAT) return CMPLX;
inputl : IN integer;input2 : IN real) return CMPLX;
inputl : IN integer;input2 : IN FLOAT) return CMPLX;
inputl : IN real;input?2 : IN integer) return CMPLX;
inputl : IN real;input2 : IN FLOAT) return CMPLY;
FUNCTION to_complex (inputl : IN FLOAT;input2 : IN integer) return CMPLX;
FUNCTION to_complex (inputl : IN FLOAT;input2 : IN real) return CMPLX;

FUNCTION to_complex
FUNCTION to_complex
FUNCTION to_complex
FUNCTION to_complex
FUNCTION to_complex
FUNCTION to_complex
FUNCTION to_complex

~-- Addition operations

FUNCTION "+" {(inl, in2 : FLOAT) return FLOAT;

FUNCTION "+" {inl, in2 : CMPLX) return CMPLX;

FUNCTION "+" (inl, in2 : CMPLX_POLAR) return CMPLX_POLAR;
FUNCTION "+" (inl : CMPLX; in2 : FLOAT) return CMPLX;

FUNCTION "+" (inl : CMPLX_PQOLAR; in2 : FLOAT) return CMPLX_POLAR;

PROCEDURE FLP_ADD

(inl, 1in2 : IN FLOAT; output : OUT FLOAT);

PROCEDURE FLP_ADD_F

(inl, in2 : IN FLOAT; output : OUT FLOAT; FLAG_REG : OUT STATUS);

PROCEDURE CMPLX_ADD

(inl, inZ : IN CMPLX; output : OUT CMPLX);

PROCEDURE CMPLX_ADD_F

(inl, in2 : IN CMPLX; output : OUT CMPLX; FLAG_REG : QUT STATUS);

PRCOCEDURE CMPLX_ADD
(inl : CMPLX; in2 : FLOAT; output : OUT CMPLX);

PROCEDURE CMPLX_ADD_F
(inl : CMPLX; in2 : FLOAT; output : OUT CMPLX; FLAG_REG : OUT STATUS);

PROCEDURE POLAR_ADD
(inl, in2 : IN CMPLX_POLAR; output : OUT CMPLX_POLAR);

PROCEDURE POLAR_ADD_F
(inl, in2 : IN CMPLX_POLAR; output : OUT CMPLX_POLAR; FLAG_REG : OUT STATUS);

PROCEDURE POLAR_ADD

(inl : CMPLX_POLAR; in2 : FLOAT; output : OUT CMPLX_POLAR) ;

PROCEDURE POLAR_ADD_F

(inl : CMPLX_POLAR; in2 : FLOAT; output : OUT CMPLX_PCLAR; FLAG_REG : OUT

STATUS) ;

-- Subtraction operations

FUNCTION "-" (inl, in2 : FLOAT) return FLOAT;

FUNCTION "-" (inl, in2 : CMPLX) return CMPLX;

FUNCTION "-" {inl, in2 : CMPLX_POLAR) return CMPLX_POLAR;
FUNCTION "-" (inl : CMPLX; in2 : FLOAT) return CMPLX;

FUNCTION "-" {inl : CMPLX_POLAR; in2 : FLOAT) return CMPLX_POLAR;

PROCEDURE FLP_SUB
(inl, in2 : IN FLOAT; output : OUT FLOAT) ;

PROCEDURE FLP_SUB_F
(inl, in2 : IN FLOAT; output : OUT FLOAT; FLAG_REG : OUT STATUS);

PROCEDURE CMPLX_SUB
{ inl, in2 : IN CMPLX; output : OUT CMPLX);

PROCEDURE CMPLX_SUB_F
(inl, in2 : IN CMPLX; output : OUT CMPLX; FLAG_REG : OUT STATUS);

[
1
(%]

Z.A. Baidas, 2000 Appendix C: Elementary function details

PROCEDURE CMPLX_SUB

(inl : CMPLX; in2 : FLOAT; output : QOUT CMPLX);

PROCEDURE CMPLX_SUB_F

(inl : CMPLX; inZ : FLOAT; output : OUT CMPLX; FLAG_REG : QUT STATUS);

PROCEDURE POLAR_SUB

(inl, in2 : IN CMPLX_POLAR; output : OUT CMPLX_ POLAR) ;

PROCEDURE POLAR_SUB_F

(inl, in2 : IN CMPLX_POLAR; output : OUT CMPLX_POLAR; FLAG_REGC : OUT STATUS);

PROCEDURE POLAR_SUB

(inl : CMPLX_POLAR; in2 : FLOAT; output : OUT CMPLX_POLAR) ;
PRCCEDURE POLAR_SUB_F

(inl : CMPLX_POLAR; 1in2 : FLOAT; output : OUT CMPLX_POLAR; FLAG_REG : OUT
STATUS) ;

-~ Multiplication operations

FUNCTION "** (inl, in2 : FLOAT) return FLOAT;

FUNCTION "*" (inl, in2 : CMPLX) return CMPLX;

FUNCTION "** (inl, in2 : CMPLX_POLAR) return CMPLX_POLAR;
FUNCTION "*" (inl : CMPLX; in2 : FLOAT) return CMPLX;

FUNCTION "*" (inl : CMPLX_POLAR; in2 : FLOAT) return CMPLX_POLAR;

PROCEDURE FLP_MULT

(inl, in2 : IN FLOAT; output : OUT FLOAT);

PRCCEDURE FLP_MULT_F

(inl, in2 : IN FLOAT; output : OUT FLOAT; FLAG_REG : OUT STATUS);

PROCEDURE CMPLX_MULT

(inl, in2 : IN CMPLX; output : OUT CMPLX);

PROCEDURE CMPLX_MULT_F

(inl, in2 : IN CMPLX; output : OUT CMPLX; FLAG_REG : OUT STATUS);

PROCEDURE CMPLX_MULT

(inl : CMPLX; in2 : FLOAT; output : OUT CMPLX);

PROCEDURE CMPLX_MULT_F

(inl : CMPLX; inZ2 : FLOAT; output : OUT CMPLX; FLAG_REG : OUT STATUS);

PROCEDURE POLAR_MULT
(inl, in2 : IN CMPLX POLAR; output : OUT CMPLX_POLAR) ;

PROCEDURE POLAR_MULT_F
(inl, in2 : IN CMPLX_POLAR; output : OUT CMPLX_ POLAR; FLAG_REG : OUT STATUS);

PROCEDURE POLAR_MULT

{(inl : CMPLX_POLAR; in2 : FLOAT; output : OUT CMPLX_POLAR) ;
PROCEDURE POLAR_MULT_F

(inl : CMPLX_POLAR; in2 : FLOAT; output : OUT CMPLX_POLAR; FLAG_REG : OUT
STATUS) ;

-- Division operations

FUNCTION "/" (inl, in2Z : FLOAT) return FLOAT;

FUNCTION *"/*" (inl, in2 : CMPLX) return CMPLX;

FUNCTION "/" (inl, in2 : CMPLX_POLAR) return CMPLX_POLAR;
FUNCTION "/" (inl : CMPLX; in2 : FLOAT) return CMPLX;

FUNCTION "/* (inl : CMPLX_POLAR; in2 : FLOAT) return CMPLX_POLAR;

PROCEDURE FLP_DIV

(inl, in2 : IN FLOAT; output : OUT FLOAT):

PROCEDURE FLP_DIV_F

(inl, in2 : IN FLOAT; output : OUT FLOAT; FLAG_REG : QOUT STATUS);

PROCEDURE CMPLX_DIV

(inl, in2 : IN CMPLX; output : OUT CMPLX) ;

PROCEDURE CMPLX_DIV_F

(inl, in2 : IN CMPLX; output : OUT CMPLX; FLAG_REG : QUT STATUS);
PROCEDURE CMPLX_DIV

(inl : CMPLX; 1in2 : FLOAT; output : OUT CMPLX);

PROCEDURE CMPLX_DIV_F

(inl : CMPLX; in2 : FLOAT; output : OUT CMPLX; FLAG_REG : OUT STATUS);

Z.A. Baidas, 2000 Appendix C: Elementary function details

PROCEDURE POLAR_DIV
(inl, in2 : IN CMPLX_POLAR; output : OUT CMPLX_POCLAR) ;
PROCEDURE POLAR_DIV_F

]

(inl, in2Z : IN CMPLX_POLAR; output : OUT CMPLX_POLAR; FLAG_REG : OUT STATUS):

PROCEDURE POLAR_DIV

(inl : CMPLX_POLAR; in2 : FLOAT; output : OUT CMPLX_POLAR);
PROCEDURE POLAR_DIV_F

(inl : CMPLX_POLAR; in2 : FLOAT; output : OUT CMPLX_POLAR; FLAG_
STATUS) ;

(O]
o]
t
©
o]
&

3

-- Logarithm

FUNCTION LN (inl : FLOAT) return FLOAT;

FUNCTION LOG10 (inl : FLOAT) return FLOAT;

FUNCTION LOG2 (inl : FLOAT) return FLOAT;

FUNCTION LCG {(inl : FLOAT; base : FLOAT) return FLOAT;

PROCEDURE LN_F

{ inl : IN FLOAT; output : OUT FLOAT; FLAG_REG : OUT STATUS);
PROCEDURE LOG1l0_F

(inl : IN FLOAT; output : OUT FLOAT; FLAG_REG : OUT STATUS);
PROCEDURE LOGZ_F

(inl : IN FLOAT; output : OUT FLOAT; FLAG_REG : OUT STATUS);

PROCEDURE LOG_F
(inl : IN FLOAT; base : FLOAT; output : OUT FLOAT; FLAG_REG : OUT STATUS);

FUNCTION LN (inl : CMPLX) return CMPLX;

FUNCTION LOG10 (inl : CMPLX) return CMPLX;

FUNCTION LOG2 (inl : CMPLX) return CMPLX;

FUNCTION LOG (inl : CMPLX; base : FLOAT) return CMPLX;

PROCEDURE LN_F
(inl : IN CMPLX; output : OUT CMPLX; FLAG_REG : OUT STATUS);

PROCEDURE LOGlO_F

(inl : IN CMPLX; output : OUT CMPLX; FLAG_REG : OUT STATUS) ;
PROCEDURE LOG2Z2_F

(inl : IN CMPLX; output : OUT CMPLX; FLAG_REG : OUT STATUS);

PROCEDURE LOG_F
(inl : IN CMPLX; base : FLOAT; output : OUT CMPLX; FLAG_REG : OUT STATUS);

FUNCTION LN (inl : CMPLX_POLAR) return CMPLX_ POLAR;

FUNCTION LOG10 (inl : CMPLX_POLAR) return CMPLX_POLAR;

FUNCTION LOGZ (inl : CMPLX_POLAR) return CMPLX_POLAR;

FUNCTION LOG (inl : CMPLX_POLAR; base : FLOAT) return CMPLX_POLAR;

PROCEDURE LN_F
(inl : IN CMPLX_POLAR; output : OUT CMPLX _POLAR; FLAG_REG : OUT STATUS);

PROCEDURE LOG10_F

(inl : IN CMPLX_POLAR; output : OUT CMPLX_POLAR; FLAG_REG : OUT STATUS);
PROCEDURE LOGZ_F

(inl : IN CMPLX_POLAR; output : OUT CMPLX_POLAR; FLAG_REG : OUT STATUS);
PROCEDURE LOG_F

(inl : IN CMPLX_POLAR; base : FLOAT; output : OUT CMPLX_POLAR;

FLAG_REG : OUT STATUS);

-- Trigonometric

FUNCTION SIN (inl : FLOAT) return FLOAT;
FUNCTION COS (inl : FLOAT) return FLOAT;
FUNCTION TAN {(inl : FLOAT) return FLOAT;
FUNCTION ASIN (inl : FLOAT) return FLOAT;
FUNCTION ACOS (inl : FLOAT) return FLOAT;
FUNCTION ATAN (inl : FLOAT) return FLOAT;

PROCEDURE SIN_F
(inl : IN FLOAT; output : OUT FLOAT; FLAG_REG : OUT STATUS);

PROCEDURE COS_F
(inl : IN FLOAT; output : OUT FLOAT; FLAG_REG : OUT STATUS);

Z.A. Baidas, 2000 Appendix C: Elementary function details

PRCCEDURE TAN_F

(inl : IN FLOAT; output : OUT FLOAT; FLAG_REG : OUT STATUS) ;
PROCEDURE ASIN_F

(inl : IN FLOAT; output : OUT FLOAT; FLAG_REG : OUT STATUS);
PROCEDURE ACOS_F

(inl : IN FLOAT; output : OUT FLOAT; FLAG_REG : OUT STATUS);
PROCEDURE ATAN_F

(inl : IN FLOAT; output : OUT FLOAT; FLAG_REG : OUT STATUS);

FUNCTION SIN ({(inl : CMPLX) return CMPLX;
FUNCTION COS (inl : CMPLX) return CMPLX;

PROCEDURE SIN_F

(inl : IN CMPLX; output : OUT CMPLX; FLAG_REG : OUT STATUS);
PROCEDURE COS_F

(inl : IN CMPLX; output : OUT CMPLX; FLAG_REG : OUT STATUS);

FUNCTION SIN (inl : CMPLX_ POLAR) return CMPLX_POLAR;
FUNCTION COS (inl : CMPLX_POLAR) return CMPLX_POLAR;

PROCEDURE SIN_F
(inl : IN CMPLX_POLAR; output : OUT CMPLX_POLAR; FLAG_REG : OUT STATUS);

PROCEDURE COS_F
(inl : IN CMPLX_POLAR; output : OUT CMPLX POLAR; FLAG_REG : OUT STATUS);

-- Hyperbolic

FUNCTION SINH (inl : FLOAT) return FLOAT;

FUNCTION COSH (inl : FLOAT) return FLOAT;

FUNCTION TANH {(inl : FLOAT) return FLOAT;

FUNCTION ASINH (inl : FLOAT) return FLOAT;
FUNCTION ACOSH (inl : FLOAT) return FLOAT;
FUNCTION ATANH (inl : FLOAT) return FLOAT;

PROCEDURE SINH_F

(inl : IN FLOAT; output : OUT FLOAT; FLAG_REG : OUT STATUS);
PROCEDURE COSH_F

(inl : IN FLOAT; output : OUT FLOAT; FLAG_REG : OUT STATUS);
PROCEDURE TANH_F

(inl : IN FLOAT; output : OUT FLOAT; FLAG_REG : OUT STATUS);
PROCEDURE ASINH_F

(inl : IN FLOAT; output : OUT FLOAT; FLAG_REG : OQUT STATUS);
PROCEDURE ACOSH_F

(inl : IN FLOAT; output : OUT FLOAT; FLAG_REG : OUT STATUS);

PROCEDURE ATANH_F
(inl : IN FLOAT; output : OUT FLOAT; FLAG_REG : OUT STATUS);

FUNCTION SINH (inl : CMPLX) return CMPLX;
FUNCTION COSH (inl : CMPLX) return CMPLX;”

PROCEDURE SINH_F
(inl : IN CMPLX; output : OUT CMPLX; FLAG_REG : OUT STATUS);

PROCEDURE COSH_F
(inl : IN CMPLX; output : OUT CMPLX; FLAG_REG : OUT STATUS);

FUNCTION SINH (inl : CMPLX_POLAR) return CMPLX_POLAR;
FUNCTION COSH (inl : CMPLX_POLAR) return CMPLX_POLAR;

PROCEDURE SINH_F
(inl : IN CMPLX_POLAR; output : OUT CMPLX_POLAR; FLAG_REG : OUT STATUS) ;

PROCEDURE COSH_F
(inl : IN CMPLX_POLAR; output : OUT CMPLX_POLAR; FLAG_REG : OUT STATUS);

-- Exponential

FUNCTION EXP (inl : FLOAT) return FLOAT;

PROCEDURE POWER

(inl : IN FLOAT; pow : IN FLOAT; output : OUT FLOAT);

[R]

N

Z.A. Baidas, 2000

PROCEDURE EXP_F

Appendix C: Elementary function details

(inl FLOAT; output OoUT FLOAT; FLAG_REG oUT STATUS) ;

PROCEDURE POWER_F

{ inl IN FLOAT; pow IN FLOAT; output OUT FLOAT; FLAG_REG : OUT STATUS)
FUNCTION EXP (inl CMPLX) return CMPLX;

PROCEDURE POWER

(inl IN CMPLX; pow IN FLOAT; output oUT CMPLX) ;

PROCEDURE EXP_F

(inl CMPLX; output OUT CMPLX; FLAG_REG QUT STATUS) ;

PROCEDURE POWER_F

{(inl IN CMPLX; pow IN FLOAT; output QUT CMPLX,; FLAG_REG OUT STATUS)
FUNCTION EXP (inl CMPLX_POLAR) return CMPLX_POLAR;

PROCEDURE POWER

{ inl IN CMPLX_POLAR; pow IN FLOAT; output QUT CMPLX_POLAR) ;
PROCEDURE EXP_F

(inl CMPLX_POLAR; output OUT CMPLX_POLAR; FLAG_REG OUT STATUS) ;
PROCEDURE POWER_F

(inl IN CMPLX_PCLAR; pow IN FLOAT; output OUT CMPLX_POLAR;
FLAG_REG OUT STATUS) ;

-- Sqguare root

PROCEDURE SQRT

(inl IN FLOAT; output OUT FLOAT; imaginary OUT STD_LOGIC) ;
PROCEDURE SQRT_F

(inl IN FLOAT; output QUT FLOAT; imaginary OUT STD_LOGIC; FLAG_REG
STATUS) ;

FUNCTION CBRT(inl IN FLOAT)return FLOAT;

PROCEDURE CBRT_F

(inl IN FLOAT; output OUT FLOAT; FLAG_REG QUT STATUS) ;

FUNCTION SQRT (inl IN CMPLX) return CMPLX;

PROCEDURE SQRT_F

{(inl IN CMPLX; output OUT CMPLX; FLAG_REG OUT STATUS) ;

FUNCTION SQRT (inl IN CMPLX_POLAR) return CMPLX _POLAR;

PROCEDURE SQORT_F

(inl IN CMPLX_POLAR; output OUT CMPLX_POLAR;FLAG_REG OUT STATUS) ;

END FLP_OPS;

226

:

ouT

o
2]
~J

Z.A. Baidas, 2000 Appendix D: Implementation details

Appendix D

Implementation details

This appendix provides a range of information concerning the floating-point library
development and provides a quick reference to add new building blocks and hierarchical

units to the floating-point library.

The appendix is divided into four sections: section D.1 introduces a number of file
formats, namely the ICODE instruction database (inst.icd), the floating-point instruction
database (flplib.ficd), the floating-point module library (flplib.mlib) and the floating-point
expanded instruction set (.fxi). Section D.2 describes the ICODE file format. Section D.3
represents the JICODE file modification performed in the floating-point manipulation stage
to generate the ICODE+ file. Finally, section D.4 summarises the steps required to

develop and integrate a new floating-point instruction into the library.

D.1 File formats

This section describes three file formats used in the integration of the floating-point

library, along with a brief description of the MOODS ICODE instruction database.

D.1.1 ICODE instruction database

MOODS ICODE instructions are defined in an ICODE instruction database file. Each

entry in that file represents a new ICODE instruction and is composed of:
1. Instruction name (e.g. PLUS, MINUS, FLP_SIN).

2. A unique ICODE instruction number.

3. A datapath module instruction number representing the function required to implement

this instruction from the low level module library.

Z.A. Baidas, 2000 Appendix D: Implementation details 228
4. The instruction I/O port definition.

A fragment of the ICODE instruction database file is shown in Figure D.1. The file defines
ten ICODE instructions. Comments in the file are indicated by a preceding semicolon. The
first three parameters in an instruction declaration can be easily identified. For example,
the first instruction is a PLUS instruction with a unique instruction number of 14 and the

function required to implement this instruction in the low level module library is function

number 14.

I/O port definition provides information on the number of I/O ports available and the
width of each port in terms of the primary instruction width. For the PLUS instruction,
two input ports and one output port are available. In order to specify the width of these

ports, four different notations are provided:

1. Primary (p): defines the port that represents the primary width of the instruction. For
example, adding two 16-bit numbers will require a plus instruction with a primary
width of 16 which meets the width of the two input ports, which is why the two ports

are indicated by p in the port declaration.

2. Fixed (f): defines a port that always has the same width indicated by the numerical
value attached to it. The MINUSC instruction in Figure D.] has a fixed input port of 1-

bit represented by (f1), which is the carry-in port in this case.

3. Dependent (d): defines a port with a width related to the primary width. The nature of
the relation is specified by the numerical value attached to it. Three possible values are
available: I implies that the port width equals the primary width; 2 implies a width
equal to the primary width + I; and 3 indicates twice the width of the primary width.
An example of a dependent port is the output port in the MULT instruction.
Multiplication generates a result that is twice as wide as the primary input port,

therefore the output port is defined as (d3).

4. Independent (i): defines a port of an arbitrary width. The port width in this case is the
same as the width of the variable connected to it. An example of this case is the first
output in the SRAMREAD instruction. The output represents a variable width address

bus and is defined as (i).

o
|]
\O

Z.A. Baidas, 2000 Appendix D: Implementation details

; ICODE instruction database file
; Format of definitions 1is:
<CODE name> <ICODE number> <DP fn> <No. I/P> <No. O/P> <I/O spec.>

’

PLUS 14 14 2 1 p p dzZ

MINUS 15 15 1 p p d2
MINUSC 151 15 3 2 pp f1 di f1
MULT i8 18 21 pp d3
NE 23 23 1 pp £l

ROMREAD 100 10000 23 ip 1 f1 dl
SRAMREAD 101 10001 2 4 ip 1 fl 4l

£f1 £1 £1 fe6 dl £6
£1 f1 £1 £6 dl fé
£1 £1 f1 f£6 £14 £28 4l f6 f1 fl14

sin _cos_6_1si 704 10704 5 2

ke}

sin_cos_6_1lmi 706 10706 5 2
sin _cos_6_1lme 707 10707 7 4

‘g T

Figure D.1 ICODE instruction database file

D.1.2 Floating-point instruction database

The floating-point instruction database file provides information that allows manipulation
of the floating-point instruction in the floating-point pre-processor. A preceding semicolon
indicates comment in this file. Each floating-point instruction is identified using an entry

providing the following definitions:
[. A unique instruction name.

2. Instruction number.

3. A flag to indicate if the unit is part of the low level floating-point building block

database or a hierarchical decomposition of a number of units.

4. A number of figures identifying the location of the external ROM interface ports in the

unit I/O port list.

Figure D.2 shows an example of the floating-point instruction database with three floating
point units declarations. FLP_MULT is instruction number 59, it is part of the floating-

point module library and therefore the hierarchical flag is assigned to N. The floating-

Z.A. Baidas, 2000 Appendix D: Implementation details 230

point multiplier does not require an external ROM which is indicated by assigning zero to
all the external ROM interface port locations. The SIN_COS unit on the other hand has a
possible implementation that utilises an external ROM: an external ROM interface is

defined for it. To interface to an external ROM four ports are required:

1. Bias register: defining the starting point of the function table within the external ROM.

In the SIN_COS case it is port number Six.

2. Address bus: an output port connects directly to the external ROM address bus. It is

port number seven in the SIN_COS function.

3. Data bus: another output port that connects to the to the external ROM data bus. Port

number ten in the SIN_COS unit is assigned to that bus.

4. Qutput enable: a control signal that controls the read operation of the external ROM.

Port number eleven in the SIN_COS unit provides this signal.

Note that the hierarchical flag in the FLP_CBRT declaration is assigned to Y. This
indicates that the FLP_CBRT is a hierarchical unit composed of a number of functional

units and the unit should be expanded within the ICODE structure before any further

processing.

; ICODE instruction database file

; Format of definitions is:
; <inst. name> <number> <hier. flag> <bias> <address> <data> <ctrl>

FLP_MULT 49 N O 0 0 O
SIN_COS 157 N 6 7 10 11
FLP_CBRT 142 Y 0 0 0 O

Figure D.2 Floating-point instruction database file

D.1.3 Floating-point module library

The floating-point module library provides essential information on the cost of different
engines provided to implement a floating-point function. Figure D.3 provides an example
of the floating-point library declaring the SIN_COS instruction. Each floating-point

instruction is defined by:

Z.A. Baidas, 2000 Appendix D: Implementation details

12
[99]

1. Instruction name that matches the name in the floating-point ICODE database.

2. The number of units provided to implement this function.

This is followed by entries that define the area and delay cost of each of the engines that

implement the floating-point instruction. This includes:

1. Module number.

b

Accuracy figure defining the maximum error in the output result (6 implies a maximum

error of 10’6).
3. Total on_chip area cost in umz‘
4. Total number of external ROM entries required.

5. An average number of clock cycles required executing the engine. The data is based on

simulation results of the optimised floating-point blocks.

6. A Figure indicating increase in area cost when the unit is shared (i.e. the multiplexing
cost). Comparing area costs of a number of testbenches incorporating shared floating-

point units is carried out to get a close estimation of this figure.

7. ICODE unit name that indicates the name of the ICODE instruction that represents this

possible implementation of the main function.

8. Names of fixed-point units that are utilised in the design and have a major effect on the
total design area and/or delay cost. For example a fixed point multiplier, a fixed point

divider, or a barrel shifter.

1o
9
3%

Z.A. Baidas, 2000 Appendix D: Implementation details

; <instruction name>
; <number of modules>
; <unit number> <accuracy> <area cost> <ext. ROM> <delay> <sharing cost>

; <unit name> <fixed point units>

sin_cos

26

1 6 105616 805 30 33000 sin_cos_6_1si fixed_mult
2 6 109909 679 34 33000 sin_cos_6_1mi fixed_mult
3 6 469000 O 20 25875 sin_cos_6_lsi fixed_mult
4 6 387000 0 24 25875 sin_cos_6_1mi fixed_mult
5 6 88000 O 76 24840 sin_cos_6_ser fixed mult

Figure D.3 Floating-point Module library file

D.1.4 Floating-point expanded instruction

A floating-point expanded instruction is a sequential implementation of a floating-point
function, which is dynamically expanded within the internal design representation during
the floating-point pre-processing stage and prior to the optimisation phase. This evolved
from the need to generalise the implementation of a hierarchical functional unit and split it
up into components to reduce the complexity that faces the optimisation routine. An
expanded ICODE instruction format (fxi) is provided to facilitate this decomposition.

Figure D.4 'shows an example of a fxi file. It consists of five main parts:

1. Header declaring the expanded instruction argument. Three arguments are provided in

this case: input, output, and flag_reg.

o

Alias declaration defines a slice of an I/O port or an internal register. It has the general

format:

ALIAS <name> <lsb> <msb> <from> <lsb> <msb>
For example, line 7 declares a slice of the second port named (%?2) with an ascending O
to 31 range. The alias is used as an alternative name to the port with any modification

to the alias resulting in a similar modification to the port.
3. Register declaration defines a new internal register. It has the general format:

REG <name> <lsb> <msb>

' Note that the line numbers in the figure are for illustration purposes only and are not part of the file format.

Z.A. Baidas. 2000 Appendix D: Implementation details

h

tD
LI
I

For example, line 12 declares a register named (%6) with an ascending 0 to 31 range.

The instructions block defines a sequence of ICODE operations on the declared aliases
and internal registers. Each instruction is provided as an opcode followed by a list of
operands. Binary constants can be used as operands using the (#) operator. Each
instruction within the block i1s either an original ICODE instruction or a newly added

floating-point operation.

The final line in the file provides the error propagation information, which indicate the
contribution each building block has on the total instruction error. These figures are
utilised by the floating-point pre-processing units to decide the accuracy of each

building block based on the target accuracy of the hierarchical unit.

O~ O U W

NN RN NN R NN R B R e
W WA U R WN R OWOTOU B WM R O -

30.

input output flag_reg

-- %1 = variable or alias name

-- 0 31 = 1sb msb

-1 = from input number 1

alias %1 0 31 1 0 31 -- input

alias %2 0 31 2 0 31 -- output
alias %3 0 5 3 0 5 -- flag_reg
alias %4 0 0 1 31 31 -- input_sign
alias %5 0 30 1 0 30 ~- input_rest
alias %17 0 0 2 31 31 -- output_sign
reg %6 0 31

reg %10 0 31

reg %11 0 30

reg %12 0 0

reg %13 0 O

reg %14 0 31

reg %15 0 31

{
move #00111110101010101010101010101010 %10
move %4 %13
move %5 %11
move #0 %12
concat %12 %11 %6
flp_In_f %6 %14 %3
flp.mult_f %10 %14 %15 %3
flp_exp_f %15 %2 %3
move %4 %17

}

000002010

Figure D.4 Expanded ICODE instruction file

Z.A. Baidas, 2000

[§]
L
EEN

Appendix D: Implementation details

D.2 The ICODE format

The ICODE format is a textural representation of the behaviour of the system at the

register transfer level. The system is represented by a number of modules, with the top

level identified by a special program declaration. Each module has an optional IO

parameter list, defining the module interface to the higher level. A module contains a

number of ICODE processes. Each process consists of an instruction and an activation

list, which defines the processes to be activated once the current process concludes.

ICODE instructions operate on explicitly declared variables (register, alias, counter,

memory), and/or temporary variables. It may be thought of as a kind of hardware assembly

language. In MOODS, the high level behavioural input (VHDL). ICODE is “source

language neutral”, in that translation from other high level languages (ANSI-C, SystemC)

is just as feasible.

Name Format
Program declaration PROGRAM program_name io_list [info]
Module declaration MODULE module name io_list [info]

Port declaration

INPORT ! OUTPORT port_name port_range

Register declaration

REGISTER register_name reglister range

Counter declaration

COUNTER | COUNTDOWN counter_name counter_range

Alias declaration

ALIAS alias_name alias_range FROM source_name source sub_range

Constant declaration

inrteger value

Integer value

decimal | %binary_value | &octal_value| $hex_value

Information {(info}

{specifier : value}

ROM declaration

ROM name data_range ADDRESS address_range DATA rom_content

RAM declaration

RAM name data_range ADDRESS address_range

Activation list

Instruction_label [,Instruction_label]

Unconditional activation

ACT activation_list

Activate if true

ACTT activation_1list

Activate 1f false

ACTF activation list

Collect instruction

COLLECT number_of_collects

Conditional instruction IF | IFNOT

variable_name act_1f _true act_1if false [info]
Count instruction COUNT

counter, |[stepl, limit act_if_true act_1if false [info]
Decode instruction DECODE variable [info]l

{CASE constant unconditional_activation [info}l}
Switch instruction SWITCHON variable [iInfo]

{CASE constant unconditional_activation [infol}

DEFAULT unconditional_activation [info]
Module call instruction MODULEAP module_name io_1list [info]
Memory read instruction MEMREAD memory. variable name, address, output [info]
Memory write instruction | MEMWRITE input, memory variable_name, address [info]

General instruction

EQ | NE | GR | GE | LS | LE | AND | OR | XOR | NOT | NEG | PLUS
| MINUsS | MULT | DIV | LSHIFT | RSHIFT | ROR | ROL | MOVE |
SETTRUE | HIGHZ | CONCAT

Table D.1 ICODE format definition

System execution starts with the first process in the top-level program. Other modules are

executed using the MODULEAP instruction, which takes as parameters the module name

and a list of variables to interface to the IO ports. Table D.1 provides a complete definition

Z.A. Baidas, 2000

Appendix D: Implementation details

35

of the ICODE format, while the listing in Figure D.5 illustrates most of the ICODE

features.

T 10 port declarations
[0:6]

[0:6] ™

16:6]

[1:1}

[6:2]

. __OUTPCRT result [0:6] //
~oU 1T x Ol
— g
——
B

" REGISTER t_a
/ REGISTER t b
% REGISTER t_c
\\\\REGISTER temp

—
Te——

main program declaration

ndmodule dummy > module label matches deciaration

e

< MODULE average inl , in2 , in} , avr > submodule declaration
—
INPORT inl {0:6]
INPORT in2 [0:6]
INPORT in3 (0:6]
QUTPORT avr [G:6]
plus inl , in2 , 22
plus 22 , in3 , 23
div 23, #3 , avr
endmodule average

CCUNTER 1 [1:2]
internal ROM
— . . . T
< rom internal_rom [0:6] address [0:4] data {#%1007110,#%1101160,t%llOllll,ﬁ%llCGOGl,#%lllOqu;/)
S ___w_ﬂ__#_ﬂ—~r’~"'/ﬂ/
process constant binary value
label (53 move $0000000) t_a
— move #%0000000 , t_b
move #%0000000 , t_c
LS move enable |, /l;\> ri':f}:ﬁ,'y
N
L6 ne 17 , enable , 18
if 18 actt LB actf L6 {pt:0.8, pf:0.2)
.L8 edq enable , #1 , 19
if 15 actt L1 actf LS {pt:0.8, pf:0.2}
.L10 move #0 , 4
L1t plus t.a , &, t_a
plus t.b, b, t.b
plus te et activate if true activate if false
count i, %2 ’Q@ gc/t—f Li1 (pt:0.25, pf:0.75)
LL1S move sel , 20
switchon 20
o integer in decimal
case @3/ act L27 {pt:0.2}
case #2 act L26 {pt:0.2}
case #1 act L25 {(pt:0.2)
case #0 act L23 {pt:0.2}
default act LIB {pt:0.2}
endcase
.L23 moduleap average t_a . t_b, t_c , temp
T
move temp , result Q act L2 /\/ unconditional activation
e
.L25 move t_a , result act L2
VL2686 move t_b ., result act LZ
LL27 move t_.c , result act L2
.L28 memread internal_rom([sell, 21
move 21 , result act L2

Figure D.5 Example ICODE file

(R
(]
(@)

Z.A. Baidas, 2000 Appendix D: Implementation details

D.3 ICODE+

The ICODE-+ file is the floating-point optimiser output that contains all the necessary
information required by MOODS to implement the circuit. ICODE+ generation is a four
stage process. The first two stages occur before the optimisation algorithm, and the final

two stages are required once the functional unit mapping is decided:

1. Initially, a global flag register port is added (if applicable) as an output port: this is
connected to the floating-point unit internal flag register to indicate any exception

during the unit execution.

2. In the second stage, hierarchical units are expanded into sub-blocks. The operation
involves declaring a set of temporary variables and aliases to provide a communication

path between the unit sub-components.

3. At this stage, each floating-point functional unit is replaced with the appropriate

expanded module name within the floating-point module library.

4. The external ROM interface (if required) is provided at this stage. It involves
declaring the address bus, the data bus and the ROM control signal and interfacing
them to the appropriate floating-point unit. An address bias constant, will also be

assigned to each floating-point unit to indicate the lookup-table location within the

external ROM.

By way of an example, consider the VHDL behavioural description in Figure D.6 along
with its ICODE file. The equivalent ICODE+ file is represented in Figure D.7. Initially, a
flag register is declared as an output port (line 8) and is interfaced to the cubic root unit®.
Then the cbrt() unit is expanded into its sub components (lines 46 to 60). Note that the
exponential and natural logarithm functions within the cbrt() unit are again expanded into
further building blocks (lines 52 to 54, and lines 56 to 58 respectively). The stage also
involves declaring a number of temporary registers (lines 12 to 27) and a number of
aliases (lines 30 to 41) declaring sub-ranges of internal variables. Finally, once the

optimisation is performed, the floating-point functional units are replaced with expanded

* Note that the cbrr() unit has been expanded into its sub-components, which hides the flag register interface.

Z.A. Baidas, 2000 Appendix D: Implementation details 237

module declarations. In this case the natural logarithm and the exponential functions are
replaced with external table lookup based implementations named In_pre_7_lIse. and

exp_main_7_lse.

Finally, the external ROM interface is implemented within the design. Two output ports
and one input port are declared. The output ports represent the ROM address bus (line 10)
and the ROM control port (line 9) and the input port representing the ROM data bus (line
5). A register representing an address bias (line 28) is also required to indicate the starting
point of the natural logarithm and exponential units lookup tables within the external

ROM. The register is connected to the two units and is assigned a constant value each time

a unit is executed.

VHDL

1. Entity test is
2. port (input : in FLOAT;
3. enable : in bit;
4, ready : out bit;
5. resuft : out FLOAT);
6. end;
7. Architecture behave of test is
8. Begin
9. Process
10. Begin
11, ready <=0}
12, wait until enable =13
13. result <= cbrt(input);
14, ready<='1}
15. wait until enable = '0’;
16. End Process;
17. End behave;

ICODE

1. PROGRAM test input, enable, ready, result

2.

3.inport input [0:31]

4.inport enable 1

5. outport ready [1:1]

6. outport result [0:31]

7.

8. .PR1 move #%0, ready

9. .if4_false_3 eq enable, #1, 5

10. if 5 ACTT if4_true_5 ACTFif4_false 3 (pt:0.8, pf:0.2}
11..if4_true 5 cbrt input, result

12. move #%1, ready

13.if8 false_7 eq enable, #0, 6

14, if 6 ACTT PR1 ACTF if8_false 7 {pt:0.8, pf:0.2}
15. ENDMODULE test

Figure D.6 Example VHDL and ICODE files

Z.A. Baidas, 2000 Appendix D: Implementation details
ICODE+
1. PROGRAM test input, enable, rom_data_bus , ready , result , global_flag_reg , rom_en , rom_address_bus
2.
3. INPORT input [0:31]
4, INPORT enable 1
5. INPORT rom_data_bus [0:27]
6. OUTPORT ready [1:1]
7. OUTPORT resuit [0:31]
8. OUTPORT global_fiag_reg {0:5]
9. QUTPORT rom_en [0:0]
10. QUTPORT rom_address_bus [0:13]
11.
12. REGISTER fxi_reg1t [0:31]
13. REGISTER ixi_reg2 {0:31]
14. REGISTER fxi_reg3 [0:30]
14. REGISTER fxi_reg4 10:0]
15. REGISTER fxi_reg5 [0:0]
16. REGISTER fxi_reg6 [0:31]
17. REGISTER fxi_reg7 {0:31]
18. REGISTER fxi_reg8 [0:31]
19. REGISTER ixi_reg9 [0:0]
20. REGISTER fxi_reg10 [0:7]
21. REGISTER fxi_regi1 [0:5]
22. REGISTER fxi_regt2 [0:31]
23. REGISTER fxi_reg13 [0:7]
24 REGISTER fxi_regi4 [0:0}
25. REGISTER fxi_reg1s [0:0}
26. REGISTER fixi_regi6 [0:5)
27. REGISTER fxi_reg17 [0:0]
28. REGISTER rom_address_bias [0:13]
29.
30. ALIAS xi_alias1 [0:31] from input [0:31}
31. ALIAS fxi_alias2 [0:31] from result {0:31}
32. ALIAS fxi_alias3 [0:5] from global_flag_reg [0:5]
33. ALIAS fxi_alias4 [0:0] from input [31:31]
34. ALIAS fxi_aliasb [0:30] from input [0:30}
35. ALIAS fxi_alias6 [0:0] from result [31:31]
36. ALIAS fxi_alias7 [0:31] from fxi_regl [0:31]
37. ALIAS fxi_alias8 [0:31] from fxi_reg6 [0:31}
38. ALIAS fxi_alias9 [0:5] from fxi_alias3 [0:5]
39. ALIAS fxi_alias10 [0:31] from fxi_req7 [0:31]
40. ALIAS fxi_alias11l [0:31] from fixi_alias2 [0:31)
41. ALIAS fxi_alias12 [0:5] from fxi_alias3 [0:5]
42.
43. L2 move #%0 , ready
44, 1.3 eq enable , #1 , 5
45. if 5 acttls actft3 {pt0.8, pf0.2}
46. .L5 move #%00111110101010101010101010101010 , fxi_reg2
47. move txi_alias4 , fxi_reg5
48. move fxi_alias5 , txi_reg3
49. move #%0 , fxi_reg4
50. concat fxi_reg4 , fxi_reg3 , fxi_reg1
51. move #%00000000000000 , rom_address_bias
a52. In_pre_7_lse fxi_alias7? , rom_address_bias , rom_data_bus , fxi_reg8 , ixi_reg9, txi_regi0 \
53. fxi_regi1, rom_en , rom_address_bus
54. In_post ixi_reg8 , fxi_regi0, ixi_reg9 , txi_reg11 , ixi_alias8 , ixi_alias9
55. fip_mult_f fxi_reg2 , fxi_reg6 , fxi_reg7 , fxi_alias3
56. exp_pre fxi_alias10 , fxi_reg12, fxi_reg13, fxi_reg15, fxi_reg14 , fxi_reg17, fxi_reg16
57. move #9%00010000000000 , rom_address_bias
58. exp_main_7_lse fxi_reg12, fxi_reg13, txi_reg15 , fxi_reg14 , fxi_reg17 , fxi_reg16 , rom_address_bias \
59. rom_data_bus , fxi_alias11, fxi_alias12 , rom_en , rom_address_bus
60. move fxi_alias4 | fxi_alias6
61. move #%1 , ready
62. .L19 eq enable , #0 , 6
63. if 6 acttl2 actflL19 {pt0.8, pf.0.2}
64. endmodule test

Figure D.7 Example ICODE+ file

Z.A . Baidas, 2000 Appendix D: Imptementation details 239

D.4 Adding a new instruction

Two types of floating-point unit can be integrated within the floating-point synthesis
library: a normal floating-point functional unit, and a hierarchical floating-point functional
unit. In both cases, knowledge of the nature of the function 1s required by the system in

order to be able to handle the new function. To achieve this, a number of steps are

required:

1. Provide an entry in the floating-point ICODE instruction database file to declare the

new instruction and assign it a new unique instruction number.

2. At this point, if we are adding a new hierarchical instruction composed of pre-defined
building blocks. all that 1s necessary is to provide an expanded ICODE instruction file
describing the sequence of data execution within the new instruction, an example of

which is provided in Figure D 4.

3. In the more general case of dealing with a new instruction, a number of possible
implementations of the instruction in the form of a set of expanded modules should be

provided. Details about generating expanded modules are provided in Chapter 4.

4. A block defining the parameters of all possible implementations of the new function
should be added to the floating-point module library file. This is an important step,
since the information provided here will be used to guide the optimisation procedure
during the high level binding process. An example of the floating-point module library

file is available in Figure D.3.

5. Each possible implementation of the function should be assigned a unique ICODE
instruction in the ICODE instruction database file, in order to allow the MOODS
synthesis system to handle the expanded module expansion and optimisation process.
For example, the last three entries in Figure D.1 define three different implementations
for the SIN_COS instruction, each represented by a different expanded module and

therefore assigned to a separate ICODE instruction.

6. If a module is to be implemented using an external ROM, a file that contains an ASCII
text format of the ROM entries which has the same name as the expanded module and

with a ((ROM) extension should be provided to be used in generating the external ROM

data.

Z.A. Baidas, 2000 Appendix D: Implementation details 240

By following these steps, the new instruction can be integrated within the floating-point
synthesis library. It is worth mentioning that the user should try to preserve the hierarchy
of the floating-point functional unit before generating the expanded model. For example.
during the floating-point library development, an optimised fixed-point multiplier and
fixed-point divider are provided as expanded modules in the MOODS template library.
The currently available floating-point building blocks invoke these modules every time a
multiplier and divider is required. This approach tends to produce better results at the final
synthesis stage since it allows maximal sharing of the two expensive fixed-point units. The
user is encouraged to take a similar approach rather than implementing a multiplication or
division procedure every time it is required at the VHDL level. Note that the multiplier
and divider are only an example and this note applies to any relatively expensive units that

might be used more than once in a number of floating-point implementations.

Z.A. Baidas, 2000 Appendix E: Example details 241

Appendix E

Example details

This appendix provides additional information regarding the FPGA prototyping board and
the cubic equation solver discussed in Chapter 6. It is organised in three sections: Section
E.1 provides additional data for the FPGA prototyping board. Section E.2 provides
additional information on the VGA display adapter used to drive the VGA screen in the

cubic equation solver design. Finally, section E.3 contains VHDL source listings of the

designs in Chapter 6.

E.1 FPGA prototyping board data

E.1.1 FPGA pin-out

The prototyping board was designed to support the Xilinx XC40125XVPGS559,
XC4085XVPGS559, and XC40250XVPG559 FPGA. These are members of the Xilinx
XC4000 series devices based on a programmable architecture of Configurable Logic
Blocks (CLBs). Each device is programmed by loading the configuration data into internal
memory cells. A top view of the FPGA pin-out is provided in Figure E.1. The
XC40125XV for example, is based on a CLB array of 68 x 68 unit providing a total
number of 4624 CLBs. It is claimed that the device is capable of implementing designs in
the gate range 80,000 to 265,000 gates. The estimation is provided by Xilinx and is based

on 20-30% of the CLBs used as RAMs. Further details on these devices can be found on

[101].

]
N
o

Z.A. Baidas, 2000 Appendix E: Example details

T O mMm I X T 1V 4 <

S

2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36 38 40 42
1 3 5 7 9 11 13 15 17 19 21: 23 25 27 29 31 33 35 37 39 41 43
1

1
|

PG559 TOP VIEW

Figure E.1 FPGA package for the Xilinx FPGA used in the board

E.1.2 Device programming

Two methods may be employed to programme the device. Serial programming from a PC
using a download cable or parallel programming based on an external ROM driven by the
FPGA. Note that the device needs to be programmed whenever it is powered up. This
suggests that the serial method may be used to programme the design during the
implementation phase, while it is desirable to use the parallel mode for the final version of
the design. A set of switches is provided on the board to enable one of these two modes.
The default serial mode is active if the switches are off. Figure E.2 shows the PC cable
connector provided. Details on the functionality of each pin on the connector are available

in [101].

Z.A. Baidas, 2000 Appendix E: Example details

init e HDC DONE DOUT NG ™S ™0

5V GND CCLK DONE DO PROG TCK ™

Figure E.2 Serial programming cable connector

E.1.3 Device pin-assignment

o
(8]

DRAM BANK
Addressbus ——— I Data bus
(A10 downto AQ) ——— M—L>(DQ7 downto DQO)
4M X 8-BIT

nWE ———» DRAM

nCAS —— I

nRAS ——Mw—»

|

Port FPGA Pad Name Port FPGA Pad Name
AO Ja1 DQO Ja39
A1 Jas DQ1 K40
A2 K42 DQ2 L39
A3 L37 DQ3 H38 ‘!
A4 | L41 DQ4 G39
A5 L43 DQ5 AA43
A6 H40 DQ6 AB40
A7 H42 DQ7 AB42
A8 G43 nWE AB38
A9 AA37 nCAS J3z
A10 AA41 nRAS AC39

Z.A. Baidas, 2000

Appendix E: Example details

244

EPROM BANK
Address bus | \> Data bus
(A12 downto A0) L (D31 downto DO)
8K X 32-BIT
EPROM
nCE ——»|
NOE——>
l
Port FPGA Pad Name Port FPGA Pad Name
AO co | D20 B20
A1 c11 . D19 B18
A2 c13 D18 B16
A3 c15 D17 B14
A4 c17 D16 B10
A5 c21 D15 B8
AB c23 D14 B6
A7 c27 D13 B4
A8 c29 D12 A4
. A9 c3t D11 A37
A10 C33 D10 A35
Al C35 D9 A33
A12 c43 D8 A29
D31 Cc5 D7 A27
D30 B42 D6 A23
D29 B40 D5 A21 |
D28 B38 D4 | A17 ‘
D27 B36 D3 | A15
D26 B34 D2 | A9
D25 B30 o1 | A7
D24 B28 | Do A3
D23 B26 nCE F36
| D22 B24 nOE G33
| D2t B22 J |

Z.A. Baidas, 2000

Appendix E: Example details

Address bus
(A12 downto AO)

|

SRAM BANK

D

8K X 32-BIT

SRAM

—

N
P Data bus
>

(D31 downto AQ)

Port FPGA Pad Name Port FPGA Pad Name
AO co D20 B20

A1 cii D19 B18

A2 c13 D18 B16

A3 c15 D17 B14

A4 c17 D16 B10

A5 c21 D15 B8

A6 C23 D14 B6

A7 ca7 D13 B4

A8 c29 D12 A4l

A9 Cc31 D11 A37

A10 c33 D10 A35

A11 c35 D9 A33

A12 c43 D8 A29 |
D31 cs5 D7 A27

D30 B42 D6 A23

D29 B40 D5 A21

D28 B38 D4 A17
D27 B36 D3 A15
D26 B34 D2 A9
D25 B30 D1 A7
D24 B28 DO A3
D23 B26 nWE F40
D22 B24 nOE Fa2
D21 | B22 |

tn

Z.A. Baidas, 2000

Appendix E: Example details

CLOCK? ———»

CLOCK2 __ =

246

CLOCK GENERATORS

FPGA

Port FPGA Pad Name Port FPGA Pad Name
CLOCK1 F38 CLOCK2 E37
SERIAL PORT INTERFACE
CTS RTS
e o
(clear to send) (ready to send)
max233
RD D
. > -«
(recieve data) (transmit data)
Port FPGA Pad Name Port FPGA Pad Name
CTS AP4 RTS AT6
RD AP2 ™ AP8

Z.A. Baidas, 2000 Appendix E: Example details

| EXTERNAL PORT A

T ——— N
| | > A1-A32

> B1-B32

L

E\>

; C1-C32

I/
A1 AO A25 D2 B17 TCK co E11
A2 A1 A26 D3 B18 T™S c10 E13
A3 A2 A27 D4 B19 nRS C11 E15
A4 | A3 A28 D5 B20 D2 c12 E17

—

A5 Ad A29 D6 B21 D6 C13 | E19
AB A5 A30 D7 B22 D8 C14 E21
A7 AB A31 nPROG B23 D10 c15 E23
A8 A7 A32 DONE B24 D12 | C16 E25
A9 A8 B1 MO B25 D14 | Cc17 E27
A10 A9 B2 M1 B26 D16 c18 E29
A11 A10 B3 M2 B27 D18 c19 E31
A12 A1t B4 DOUT B8 D20 c20 E33
A13 A12 B5 nINIT B29 | D22 co1 E35
Al4 A13 B6 nLDC B30 | D24 c22 | E41
A15 A14 B7 HDC B31 D26 c23 F2
A16 A15 B8 CCLK B32 D28 c24 F6
A17 A16 B9 RDY C1 D30 T c25 F8
A18 A17 B10 nCS0 c2 D32 | C26 Fi2
A19 A18 B11 GCK2 | C3 D34 " c27 F18
A20 A19 B12 GCK3 c4 D36 | co8 F20
A21 A20 B13 GCK4 C5 D40 c29 F22
A22 A21 B14 GCK5 C6 D42 c30 Fo4
A23 DO B15 TDO c7 i E7 c31 F26
A24 D1 B16 | TD1 cs | E9 c3z2 F32

Z.A. Baidas, 2000 Appendix E: Example details 248

EXTERNAL PORT B
; \ N
| | > A1-A32
|
| AN
| - > B1-B32
-
|
| N
; » > C1-C32
a | %
Al BA39 A25 BC15 B17 AY30 C9 AU39
A2 BA41 A26 BC17 B18 AY32 C10 | AU43
A3 BA43 A27 BC21 B1g AY34 C11 AV2
A4 BB2 A28 BC23 B20 AY36 1 C12 AvV4
A5 BB6 A29 BC27 B21 AY38 C13 AVS
AB BB8 A30 BC33 B22 AY40 C14 TAV12
A7 BB10 A31 BC35 B23 BA11 ' C15 AV18
,r A8 BB14 A32 BC37 B24 BA13 | Cl6 AV20
A9 BB16 B1 AW27 B25 BA15 C17 AV24
A10 BB18 B2 AW 31 B26 BA17 ci8 AV26
A1l BB20 B3 AW33 B27 BA21 C19 AV32
A12 BB22 | B4 AW35 B28 BA27 C20 AV36
A13 BB24 | B5 AW37 | B29 BA29 C21 AV40
[Al4 BB26 Bé AY2 B30 BA31 | c22 AV42
A15 BB28 B7 AY4 B31 BA33 Cc23 B AW3
A16 BB30 B8 AY8 B32 BA35 C24 AW7
A17 BB34 B9 AY10 C1 GND C25 AW11
| A8 BB36 B10 AY12 Cc2 ! SUPPLY C26 AW13
A19 BB38 B11 AY14 C3 ’ AU23 Cz27 AW15
A20 BB40 B12 AY18 C4 , AU25 c28 AW17
A21 BC3 B13 AY20 C5 AU27 C29 AW19
A22 BC7 B14 J AY22 Cé6 AU29 % C30 AW21
A23 BCg B15 AY26 c7 AU3T “ C31 AW23
= .
| A24 BC11 B16 | AY28 | C8 AU33 | C32 AW?25

Z.A. Baidas, 2000 Appendix E: Example details 249

PS2 INTERFACE

<« DATA_A
PS2 A <« CLKA

«——— CLK_B

Port FPGA Pad Name Port FPGA Pad Name
DATA_A ARS3 DATA_B AT2 |
CLK_A AR1 CLK_ B AR7 ,\

E.2 VGA adapter

The interface to the VGA adapter' is provided via an 8-bit input port and a 1-bit output
ready signal. The input port is split into two fields: a 7-bit instruction occupying the
bottom 7-bits of the port, and a single bit strobe signal. The VGA adapter drives a VGA
display at a resolution of 640 x 480 pixels. This requires a 10-bit variable to identify the x
location and a 9-bit variable to identify the y location. The VGA adapter instructions are

listen in Table E.1.

The Set palette instruction allows the user to set the RGB ratios of 16 different colours. A
unique 4-bit binary number allowing 16 different colours to be located will identify each

colour, and each colour may be recalled by using the set colour instruction.

The Set point instruction sets the locations of one of two points p1 and p0. Both points

should be located to allow drawing lines from pO to p1. The two points also designate the

' The adapter is a contribution from a different research project within the same research group [113]

Z.A. Baidas, 2000 Appendix E: Example details 250

top left corner (p0) and the bottom right corner (p1) in the rectangle drawing mode. On the
text drawing mode, only the point p0O is required to specify the top left corner of the ASCII

character.

The Set mode instruction defines the VGA drawing mode. Four modes are available,

designated by two bit binary variables:

1. Mode =00 is a direct draw mode on both the foreground and the back ground (text

drawing mode).
2. Mode =01 1s a direct drawing mode on the foreground.
3. Mode = 10 is an XOR drawing mode on both the foreground and the background.

4. Mode = 11 is an XOR drawing mode on the foreground.

Accessing the VGA adapter is a five-stage process:

1. Set the input port MSB to zero at the initialisation stage.

2. Set the port MSB to one along with the required VGA instruction.
3. Wait until an acknowledge is received (busy signal = 1).

4. Set the input port MSB to zero.

5. The instruction is now executed, any further commands are performed by looping back

to stage two.

An example representing the functionality of the VGA adapter is represented in Figure

E.3. It shows a sequence of commands along with the expected output.

Z.A. Baidas, 2000

Appendix E: Example details

251

Command sequence
1. set colour 0 to gray]
set colour 1 to light blue
set drawing mode to direct draw mod:

w N

set background colour to gray
set foreground colour to gray
set point PO to (10,10)

set point P1 to (629,370)
draw rectangle

O NO O A

| L

9. set foreground colour to light blue
10. set point PO to (40,20)
11. draw ascii character E
12. draw ascii character S
13. draw ascii character D
14. draw ascii character G _—

15. set point PO to (40,64)
16. set point P1 to (120,64)
17. draw line

18. set point PO to (140,100)

19. set point P1 to (400,250)

20. set background colour to light blue

21. draw rectangle]

initialisation

draw gray
background

Output display

Figure E.3 VGA adapter example

Instruction meieten Detailed bit field
length

Set point [p1, p0, x(9:0), y(8:0)] 4 “0000X”,p1,p0
“XX*, x(9:5)
x(4:0), y(8:7)
y(6:0)

Set page [front, page(1:0)] 1 “0001”, front, page(1:0)

Set made [mode(1:0)] 1 “0010X”, mode(1:0)

Set palette [colour(3:0),R(3:0),G(3:0),B(3:0)] 3 “0011”, colour(3:1)
colour(0), “X”, R(3:0), G(3)
G(2:0), B(3:0)

Set colour [foreground, colour(3:0)] 1 “01”, foreground, colour(3:0)

Draw line 1 “1001XXX"

Draw rectangle 1 “1010XXX”

Wait for vertical blanking 1 “1011XXX"

Draw character [xsize(1:0), ysize(1:0), 2 “11”, xsize(1:0),ysize(1:0),ASCII(7)

ASCII(7:0)]

ASCII(6:0)

Table E.1 VGA adapter instruction set

Z.A. Baidas, 2000 Appendix E: Example details 252

E.3 10 stage details

E.3.1 Input stage

Before examining the operation of the keyboard interface unit, first consider Figure E.4
which represents the keyboard sequential data along with what is called the scancode of
the keys in the numerical keypad. Every time a key is pressed, the keyboard generates a
scancode. Each key has a unique scancode consisting of one or more 8-bit words. The

scancodes related to each key in the numerical keypad are represented in Figure E.4¢ in
hexadecimal. When the key is released, the keyboard regenerates the scancode preceded
by hex FO. For example the scancodes generated when (num lock) key is pressed and

released are 45 FO 45.

The generated scancode is provided as serial data on the keyboard data line, synchronised
by a clock signal provided on the keyboard clock line with a new bit outputted every
falling edge on the clock line. Note that the keyboard outputs groups of 9-bit data: a start

bit indicating the beginning of a new word precedes the 8-bit word.

The flowchart in Figure E.5 illustrates the keyboard interface process. The process waits to
detect a falling edge on the keyboard_clock line, and once detected, the data on the
keyboard_data line is latched into an internal register. The loop iterates nine times until the
whole 8-bit word is detected (the start bit is ignored). The next step involves decoding the

scancode to identify the pressed key. This stage involves the following operations:

1. If a FO code is detected, the following scancode is ignored, since this would be a

release code.

to

If an EO is detected, another word is read before decoding, as EQ indicates an extended

word.

3. If the scancode represent a key within the recognised set (shaded in Figure E.4b)

decode it.

4. If the pressed key is (numlock), toggle the initialise line low and pass it to the core unit

and the output stage to initialise the system.

5. The divide, add, and multiply keys in the keypad are ignored.

Z.A. Baidas, 2000 Appendix E: Example details 253

6. The minus key is used to invert the sign of the current parameter. The input number is
assumed to be positive. Every time the minus key is pressed the number sign is

inverted.

num *
lock / 5
819
+
Keyboard clock 408 l'e
keppodcaa | (000000 |23
Enter
0
a) Keyboard serial outputs b) Numerical keypad
Key Code Key Code Key Code
num
ock | 45 9 49 2 50
/ E035 + 4E 3 51
* 37 4 4B 0 52
- 4A 5 4C . 53
47 6 4D Enter | EO1C
48 1 4F

c)Key scan codes

Figure E.4 Keyboard Information

Z.A. Baidas, 2000 Appendix E: Example details 254
Stant Decode
v B4 o
7 \\
7 . N
= 7 S released =1
noex=0 <\‘ key = FO 7 > decode = 0
7
\\/{ -
< N
///K\
- \\ Y released = 0
wait for a clock > | (eased = 1 - eleased =
\fa!lmg edgV i rete; =t - extended = 0
\V// \//,/
| ‘ j
f increment ; 1 N

index

i A T~ H

@ | , ~ ,

key(index) = keybrd_data “ : \/ key = E0 Bﬁ’ extended = 1 ——]
| \/ —~ i

P s Y —— j
~ ' o ;
/ \ N L B / ~_ y ? |
&/\/ index = 8 > e / code within: the P decode = 1 e
- / - \recOgn;Secy i :
\/ ~ |

~

Y e

To decode / ’\ ! ‘
key =1C decode = 1 | SO

&denended = 1 enter_press = 1 |
— e s

e _

\r//
/

Y
|
) 4

r

% decode key and output to the next
| stage
|
i

A

Figure E.5 Keyboard interface flowchart

Each numerical parameter is expected to be input as a set of decimal values followed by

n (enter). Every time a related key is pressed, the decoded key is passed to the output

Z.A. Baidas, 2000 Appendix E: Example details 255

stage to be displayed and also to the format conversion stage. The format conversion stage
converts a set of binary coded decimal values in to a binary single precision floating point

number and passes it to the core unit.

The functionality of the format conversion is illustrated by the flowchart in Figure E.6. It
consists of two main blocks: the first block generates a binary representation of the integer
part of the input operand, the second generates the fraction part. At each step. two

operations are performed:
1. Multiply the integer accumulator by 10, (1010,).

2. Add the input value to the accumulator.

To illustrate the functionality of this block a simple example is provided where the

sequence 2, 5, 6 is provided indicating a decimal value of 256. The sequence of execution

1s:

acc=0

acc =accx1010=0

acc =acc+0010=0010

acc =accx1010=10100
acc=acc+0101=11001

acc =accx1010=111111010

acc = acc + 0110 = 100000000, =256,

Note that the internal register that holds the integer part of the input parameter is a 63-bit
register allowing a maximum entry of (£9223372036854775808) for the integer part. The
execution continues in the first block until the maximum number of digits is reached or the

decimal point is encountered or the (enter) key is pressed.

Once the decimal point is encountered, execution moves to the second block, which is
responsible for generating the fraction of the input parameter. At this stage, the digits to
the right of the decimal points are pushed into a stack until the (enter) key is pressed or the
maximum number of digits is received (seven digits in this case). Once the fraction digit
accumulation is completed the conversion operation starts. The operation involves the

three following steps:

Z.A. Baidas, 2000

Appendix E: Example details

1. Divide the fraction accumulator by 10.

12

(S

. Divide the input digit by 10.

Add the results in | and 2 and save it in the fraction accumulator.

—
Start integer generation Fraction generation
4 v
acct =0
acc2 =0
read key 2
s ‘~ o
—] [PE—
v

1\ acct = acct * 10 + key v

Go to fraction
Y generation

read new key and
push key 10 stack

} N

\/key = Ente‘r>ﬁ"d““‘*;E
\/ g

e /

Y

>
<

y

pop key from stack ,

! ! |
! L acc2 = key/10 + acc2/10 J i

: :
i i

\ |

A

Y \/ N
"“\/ stack empty
e

N

i
i
|
|
i

narmalise and output

resuit

|
i
i
i
|

Figure E.6 Format conversion unit flowchart

56

[
wn
~J3

Z.A. Baidas, 2000 Appendix E: Example details

Once the second stage is concluded, two internal variables will hold the integer and
fraction part of the input parameter in a binary format. These two numbers are then treated
as a single fixed point variable which is normalised to fit into the output format and the

output sign and exponent value are assigned.

E.3.2 Output stage

The unit splits into two blocks executing before and after the roots calculation in the core

unit.

The first block performs two main duties. It is responsible for creating the static elements
of the VGA display (e.g. title, background, variable names). It also monitors the data input

stage to display the decimal values of the input parameters.

The second block, monitors the core unit for the root values and displays them on the
VGA screen. This stage involves a simple type conversion to convert the binary

representation of the floating-point number to the displayed representation.

The VGA display adapter” [113] that drives the VGA screen interfaces to the system via
an 8-bit command port and a 1-bit busy signal. A low busy signal indicates that the
adapter is ready to receive a new instruction. Each instruction is 7-bits long. A new
instruction is latched into the VGA adapter by loading the instruction to the lower seven
bits of the input port and setting the most significant bit. The adapter provides a set of
basic instructions that supports writing to the VGA screen. The instructions are set point,

set page, set mode, set palette, set colour, draw rectangle, draw line, and draw text.

A simple technique is adopted to create the display of the static elements on the screen.
The required set of instructions is developed and stored in internal ROMs. A loop is then
provided to iterate through these ROMs and output the VGA commands to the adapter.
Two internal ROMs are provided. The first is a 47 x 7-bit ROM provided to store the
initialisation commands such as setting the colour palette, setting the drawing mode, and
drawing the background and the title underline. The second ROM is 84 x 7-bit responsible

for drawing the static characters on the screen (the title, the inputs and the output names).

* The adapter was synthesised using the MOODS synthesis system and implemented on an FPGA.

Z.A. Baidas, 2000 Appendix E: Example details 258

Once the screen is initialised. the output stage starts monitoring the input keys and
displaying them on the appropriate location on the screen. Upon receiving the third
parameter, the output stage starts monitoring the core unit to receive the output results and

display them on the screen.

To perform the last step and display the output result, the output stage needs to convert the
binary representation of the floating-point number into another representation that can be
read easily. A number of possible methods can be used to print the floating-point numbers
[102]. However, a fairly simple approach is taken due to the limited hardware resources

available, illustrated in the flow chart of Figure E.7.

The conversion operation starts by detecting any possible symbolic representations such as
NAN or infinity and displaying the equivalent ASCII representation. If none of these
symbols are detected, execution moves to the second stage. The second stage starts by
displaying the result sign. The following step displays the fraction field, starting by
displaying the implicit one and the decimal point. Then the decimal digits of the fraction
are displayed sequentially where at each step the fraction is multiplied by 10 and the

integer part of the result is displayed until the fraction equals zero.

The final step in the conversion operation displays the exponent. After removing the bias,

the actual exponent passes through five stages:

1. If the exponent is less than zero, a negative sign is displayed and the exponent is

complemented.

2. If the exponent is greater than or equal to 100, a one is displayed and 100 is subtracted
from the exponent, a flag (flagl) is set at this stage to indicate that the exponent is >

100.

3. The third stage involves counting the number of tens contained within the exponent and

displaying it as a decimal number, a flag (flag2) is set here to indicate that the

remaining exponent is > 10.

4. A special case when (flagl = 1 and flag2 = 0) is detected here and a zero is displayed

before displaying the last digit.

Z.A. Baidas. 2000

5. At this stage, the exponent will have a value between 0 and 9. which 1s displayed

directly.

Appendix E: Example details

Start

i

\\ Y T :
detected ', loutputequivaient;

.
\\dfnorma!/// symbol
\/

output (0)

|

———y)
i - i H |
| frac = frac * 10 output (x2) |

f"-__-L‘_‘—"?
i
! output (int{frac))

|
i

: v
To output exponent

———

J frac=frac-int(frac) |
‘ i
[

Output exponent

output (-), i
{ complement exp |

[U — |

7 \ N
pr >=100 />‘"‘—
e i

“ -

~"

Y
i output (1), |
cexp=exp-100
I flagt=1 |

b4

e \\
~ N
exp >= 10 > ?
-~ i

\\\ /
Y

| count number of |
| 10's i

|
.
| output {count) |
| exp=exp- |
; 10%count

| flage=1 |

|

\\ l
~ N
flagl =1 and ™, N

. flagz=0_~
\\J

i

Ly

output(0) !

-
Y

|
output (exp) |

Figure E.7 Output stage type conversion flowchart

Z.A. Baidas, 2000 Appendix E: Example details

E.4 Source code listings

Listing E.1 Input stage VHDL behavioural descriptionccoooooviiioiiiiciii e,
Listing E.2 Original design VHDL behavioural description............ccccocoveiviininonl
Listing E.3 controller VHDL behavioural descriptioncccocoeveiiiiiiiiiiii e
Listing E.4 Arithmetic processor VHDL behavioural descriptioncc.oo.ccoooooiionn..
Listing E.5 Output stage VHDL behavioural descriptionc.ccccoveiviiiiiiieiiiinincnn,
Listing E.6 Interface unit in the first FPGA ...

Listing E.7 Interface unit in the second FPGAcocoiiiiiiiiiiiiiie e

201
266
268
273
276
285
287

Z.A. Baidas, 2000 Appendix E: Example details

Listing E.1 Input stage VHDL behavioural description

l ___
2 -- The main input stage. Provides an interface to the keyboard unit and transfer
3 -- the input data to the core unit and the output stage. It also provide a
4 -- system reset entry to reset the whole system via the new_entry output
L oo
6

7 package InputConst is

8 ~-- scancodes for various keys

9 constant rel_code bit_vector (7 downto Q) = "11110000";

10 constant ext_code bit_vector (7 downte 0) := "11100000";

11 constant num_code bit_wvector (7 downto 0) “011l10111";

12 constant minus_code bit_vector (7 downto 0) := "01111011";

13 constant point_code bit_vector (7 downto () := "01110001";

14 constant enter_code bit_vector (7 downto 0) = "01011010";

15 constant zero_code bit_vector (7 downto 0) = 01110000,

16 constant one_code bit_vector (7 downto 0) = "01101001";

17 constant two_code bit_vector (7 downte 0) = "01110010";

18 constant three_code bit_vector (7 downto 0) := "01111010";

19 constant four_code bit_vector (7 downtoc 0) := "01101011";

20 constant five_code bit_vector (7 downto 0) = “01110011;

21 constant six_code bit_vector (7 downto 0) := "01110100";

22 constant seven_code bit_vector (7 downto 0) = "01101100";

23 constant eight_code bit_vector (7 downto 0) := "01110101";

24 constant nine_code bit_vector (7 downto 0) := "01111101";

25 -~ internal representation of keys

26 constant num_val bit_vector (7 downto 0) = "01010";

27 constant minus_val bit_vector (7 downto 0) := "01101";

28 constant point_val bit_vector (7 downto 0) := #10000";

29 constant enter_val bit_vector (7 downto 0) = "01l111";

30 constant zero_val bit_vector (7 downto 0) := "00000";

31 constant one_val bit_vector (7 downto 0) = "00001";

32 constant two_val bit_vector (7 downto 0) := "00010";

33 constant three_val bit_vector (7 downto 0) := *00011";

34 constant four_val bit_vector {7 downto 0) := "00100";

35 constant five_wval bit_vector (7 downte 0) := "00101";

36 constant six_val bit_vector (7 downto 0) := *00110";

37 constant seven_val bit_vector (7 downto Q) := *00111";

38 constant eight_val bit_vector (7 downto 0) = "01000";

39 constant nine_val bit_vector (7 downto 0) := *01001";

40 end InputConst;

41

42 use work.InputConst.all;

43 entity in_stage is

44 port (key_clk, key_data in bit;

45 float_output out bit_vector {31l downto 0);

46 key_out ocut bit_vector (4 downto 0);

47 stb_core out bit;

48 ack_core in bit;

49 stb_out out bit;

50 ack_out in bit;

51 new_entry out bit

52)

53 end;

54

55 architecture behave of in_stage is

56 e e
57 -~ an array is declared to act as a stack for the fraction digits

BB
59 type in_array is array{0 to 6) of bit_vector (3 downto 0);

60 begin

61 process

62 -- a counter for the number of serial bits received form the keyboard
63 variable bit_count bit_vector (3 downto 0);

64 ~-- int_part holds the integer value of the input

65 variable int_part bit_vector (62 downto Q);

66 -- frac_part holds the fraction wvalue of the input

67 variable frac_part bit_vector (23 downto 0);

Z.A. Baidas, 2000 Appendix E: Example details

68 variable extended , released : bit;

69 variable decode : bit;

70 variable key_val : bit_vector (4 downto () ;

71 variable done_press,new_press, enter_press,minus_press : bit;

72 -~ a flag that indicates the decimal point press while monitoring
73 -- the integer part we are receiving the integer part

74 variable frac : bit;

75 variable key_word : bit_vector (7 dewntoc 0);

76 variable frac_count : integer range 0 to 7;

77 variable int_count : integer range 0 to 19;

78 -- temporary variables

79 variable div_resultl,div_result2 : bit_vector (31 downto 0);

80 -- the stack that hold the fraction digits

81 variable frac_inputs : in_array;

82 begin

83 -- initialise all the control and the handshaking signals

84 -- along with the accumulators

85 new_entry <= ‘1';

86 stbh_core <= '17;

87 stb_out <= "1';

88 key_out <= "00000";

89 frac_count := 0;

S0 int_count := 0;

91 frac := '0";

92 new_press := '0';

93 enter_ press := ‘0’';

94 minus_press := ‘0';

95 float_output(31l) <= ‘0’;

86 decode := '0';

97 extended := ‘0';

98 released := ’0°';

93 bit_count := “1111";
100 int_part := convert_int2bvi{(0,63);
101 frac_part := convert_int2bv(0,24);
102 wait for 0 ns;
103 e e e
104 -- The main loop that reads the keyboard entries and converts them to
105 -- a floating-point number.
106 o e e
107 loop
108 s e e e
109 ~- The first loop reads the keyboard serial data and converts
110 -- it to a single word
1l e e e e e
112 loop
113 -- wait for the keyboard clock to go low
114 wait until key_clk = 1;
115 wait until key_clk = 0;
116 -- enter the bit into the key_word
117 if bit_count(3) = ‘0’ then
118 key_word := "0" & key word(7 downto 1) ;
119 key_word(7) := key_data;
120 end if;
121 -- exit the loop
122 exit when bit_count = "1001";
123 -- next bit
124 bit_count := bit_count + "0001";
125 end loop;
126 -~ reset the bit_count to i1ts starting position
127 -- set the initial bit count to 15 {this is so the start bit is ignored)
128 bit_count := “1111*;
129 if key_word = rel_code then

130 -- ignore the next word sent

131 decode := ‘0';

132 released := '1';

133 elsif released = ‘1’ then
134 -~ the last character was a release code

135 -- ignore the present code and reset the released flag

136 released := '0';

Z.A. Baidas, 2000 Appendix E: Example details
137 -- also reset the extended flag for release of extended keys
138 extended := '0';
139 elsif key_word = ext_code then
140 —-- check the extended bit
141 extended := "17;
142 elsif key_word = num_code then
143 decode := '1°;
144 key_val := num_val;
145 new_press := '1’;
146 elsif key_word = minus_code then
147 decode := '1’;
148 minus_press := ‘1’;
149 float_output(31l) <= NOT float_output(31);
150 key_val := minus_val;
151 elsif key_word = point_code then
152 decode := '1’;
153 frac := '1’;
154 key_val := point_val;
155 elsif key_word = zero_code then
156 decode := ‘1°;
157 key_val := zero_val;
158 elsif key_word = one_code then
159 decode := '1’;
160 key_val := one_val;
161 elsif key_word = two_cocde then
162 decode := '1';
163 key_val := two_val;
164 elsif key_word = three_code then
165 decode := ‘1';
166 key_val := three_val;
167 elsif key_word = four_code then
168 decode := ‘'1‘;
169 key_val := four_val;
170 elsif key_word = five_code then
171 decode := "1’;
172 key_val := five_val;
173 elsif key_word = six_code then
174 decode := '1';
175 key_val := six_val;
176 elsif key_word = seven_code then
177 decode := '1';
178 key_val := seven_val;
179 elsif key_word = eight_code then
180 decode := '1';
181 key_val := eight_val;
182 elsif key_word = nine_code then
183 decode := ‘1°';
184 key_val := nine_val;
185 elsif key_word = enter_code and extended = ‘1’ then
186 decode := '17';
187 key val := enter_val;
188 enter_press := '17;
189 end 1if;
190 -- a key entry part of the numerical pad is received if decode = 1
191 if decode = '1' then
192 decode := '0’;
193 -- output stage is ready to receive an entry
194 wait until ack out = '1’;
195 if (enter_press = 'l' or new_press = 'l’ or minus_press = ‘1') then
196 new_entry <= not new_press;
197 key_out <= key_val;
198 sth_out <= '0';
199 wait for 0 ns;
200 -- check for the decimal point
201 elsif key val /= point_val then
202 key_out <= key_val;
203 stb_out <= '0';
204 wait for 0 ns;

205

19
(v

206
207
208
208
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274

Z.A.

Baidas. 2000 Appendix E: Example details

-~ decimal to float for the integer part is performed here
-- it invelves multiplying the accumulator by 10 and adding t
-- keyboard value to it. Note that the multiply by 1010 is ac
~- by a simple shift and add operation
if (frac = ’0’ and int_count /= 19) then-- still in the integer part
int_count := int_count + 1;
~- multiply by "1010"
int_part:= int_part (6l downto 0)&"0" + int_part(59 downto 0)&"000";
-- add the input value

int_part := int_part + key_val;
else
-- if receiving the fraction digits just push them in the stack
frac_inputs(frac_count) := key_val (3 downto 0);
frac_count := frac_count + 1;
end if;
else

key_out <= key_val;
wait for 0 ns;
sth_out <= '0°;
end 1f;
wait until ack_out = '0’;
stb_out <= ’1°';
wait for 0 ns;

minus_press := ‘0';
if (enter_press = 'l’) then -- output the float_output to the core
-— first generate the number and normalise it
float_output (30 downto 23) <= "01111111"; --initialise the exponent
wait for 0 ns;
if (frac = '1’) then
frac_count := frac_count - 1;
loop
-- generate the binary equivalent of the fraction digits
fixed_div ("0" & frac_inputs (frac_count) & convert_int2bv (0,27},

"01010000000000000000000000000000",div_resultl);
fixed_div ("00000" & frac_part & “000*,
"01010000000000000000000000000000",div_result2);
frac_part{23 downto 0) := div_resultl (26 downto 3)
+ div_result2 (26 downto 3);

wait for 0 ns;

Exit when frac_count = 0;
frac_count := frac_count - 1;
end loop;
end if;

-- normalise the integer part and adjust the exponent
if (int_part /= convert_int2bv(0,63)) then

loop
exit when int_part(62 downte 1) = convert_int2bv(0,62);
frac_part:= int_part{(0) & frac_part(23 downto 1);
int_part := "0" & int_part (62 downto 1);

float_output {30 downto 23) <= float_output (30 downto 23) + "1";
walt for 0 ns;
end loop;
-- then number is less than one
elsif (frac_part /= convert_int2bv(0,24)) then

loop
exit when int_part(0) = *1";
int_part(0) := frac_part(23);
frac_part := frac_part{22 downto 0) & "0O";
float_output (30 downto 23) <= float_output (30 downto 23) - "1";
wait for 0 ns;

end loop;

else -- the entry is zero

float_output (31l downto 23) <= convert_int2bv(0,9);
wait for 0 ns;
end 1f;
float_output (22 downto 0) <= frac_part (23 downto 1);
-- output the floating-point entry to the core

275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294

Z.A. Baidas, 2000 Appendix E: Example details

wait until ack_core =

stb_core <= '0';
walt until ack_core = '0’;
stb_core <= '1°‘;
Exit;

elsif new_press = '1' then
new_entry <= '0°';
walt until ack_core = '1';
sth_core <= "0’ ;
walt until ack_core = '0’;
stb_core <= '1';
Exit;

end if;

enter_press := '0';

new_press := '0";

new_entry <= ’'1’;

end 1f;
end lecop;

end process;
end behave;

WO U R WwN

N RN R R B R R R
WNHOOU®RINARP WD PO

24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

Z.A. Baidas, 2000 Appendix E: Example details

Listing E.2 Original design VHDL behavioural description

-~ FPloating-point Cubic eguation sclver core.

-~ All the floating-point operations are performed within the core. This is

-- a direct translation of the mathematical equations

package CoreConst is
constant conl real
constant con?2 real
constant coni3 real

end;

i

0.866025404; -~ sqrt(3)/2
2.0943%95102; ~-- 2Pi/
4.188750204; -- 4Pi/3

use work.CoreConst.all;
entity core is
port (

input
sth_in
ack_in
new__entry
stb_out
ack_out

in float;
in bit;
out bit;
in bit;
out bit;
in bit;

data_out out float
)
end;
architecture behave of core is
begin
process
variable al,a2,al3,s,T
variable R,Q,R_sqg,Q_cu,D,
variable X1 float;
variable Templ, Temp?2, thetas
variable X2,X3 cplx;

float;

sgrt_D float;

float;

procedure get_input_data is

begin

wait until stb_in = '0’;
al := input;

ack_in <= '0';

wait until stb_in = '1’;
ack_in <= '1’;

walit until stb_in = '0’;
az := input;

ack_in <= '0"';

wailt until stb_in = '1';
ack_in <= '1';

wait until stb_in = '0';
a3 := input;

ack_in <= '0’;

wait until stb_in = "1’;
ack_in <= '1';

end get_input_data;

procedure send_output_result is

begin

data_out <= XI1;

wait until ack_out = '1';
asth_out <= 0’ ;

walt until ack_out = '0‘;

sth_out <= "1';
data_out <= RE(XZ2);
wait until ack_out = '1';

Z.A. Baidas, 2000 Appendix E: Example details

66 sth_out <= '0';

67 wait until ack_out = '0’;

68 sth_out <= "1°';

69 data_out <= IMAG(X2});

70 wailt until ack_out = ‘1°;

71 stb_out <= '0';

72 walt until ack out = '0';

73 stbh_out <= ‘'1’;

74 data_out <= RE(X3);

75 walt until ack_out = '1';

76 sth_out <= 0';

77 wait until ack_out = '0';

78 sth_out <= 1';

79 data_out <= IMAG(X3);

80 wait until ack_out = '1’;

81 stb_out <= '0;

82 wailt until ack_out = ‘0’;

83 stb_out <= '1';

84 end send_output_result;

85 ~- core process see Figure 6.5

86 begin

87 get_input_data;

88 Q := {(TO_FLOAT(3.0)*a2)-(al*al))/TO_FLOAT(9.0)};
89 R := ({TO_FLOAT(9.0)*al*a2)-(TC_FLOAT(27.0)*a3)
g0 -(TO_FLOAT(2.0)*al*al *al))/TO_FLOAT(54.0);
91 R_sg := R * R;

92 Q.cu = Q * Q * Q;

93 D := R_sg + Q_cu;

94 if (D = TO_FLOAT(0.0)) then

95 S := CBRT{(R);

g6 Templ := al/TO_FLOAT(3.0);

97 X1 := TO_FLOAT(2.0)*S-Templ;

98 X2 := TO_COMPLEX(-S-Templ, TO_FLOAT(0.0));

99 X3 = X2;
100 elsif (D » TO_FLOATI(0.0)) then
101 sgrt_D := SQRT(D);
102 S := CBRT(R+sqgrt_D);
103 T := CBRT(R-sqrt_D);
104 Templ := S+T;
105 Temp2 := al/TO_FLOAT(3.0);
106 X1 := Templ-Temp2;
107 X2 := TO_COMPLEX((-Templ/TO_FLOAT(2.0))-Temp2, (S-T) *TO_FLOAT (conl)) ;
108 X3 := CONJ(X2);
109 else
110 thetal3 := ACOS{(R/SQRT(-Q_cu))/TO_FLOAT(3.0);
111 Templ := al/TO_FLOAT(3.0);
112 Temp2 := TO_FLOAT(2.0)*SQRT(-Q);
113 X1 := Temp2*COS(thetal3)-Templ;
114 X2 := TO_COMPLEX (Temp2*COS (theta3+TO_FLOAT (con2))-Templ, TO_FLOAT(0.0));
115 X3 := TO_COMPLEX (Temp2*COS (theta3+TO_FLOAT (con3))-Templ, TO_FLOAT(0.0)) ;
116 end if;
117 send_output_result;
118 end process;

119 end;

35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67

Z.A. Baidas, 2000

Appendix E: Example details

Listing E.3 controller VHDL behavioural description

three rocts
to generate

the control
control

multiplication.
3-bit control vector and two handshaking signals

The unit acts as a master in a master slave combination that generat
of the cubic equaticn. The unit uses the arithmetic proc

a number of functions as well as floating-point
The control over the arithmetic processor 1is
(stb_c2,ack_c2}
signal is defined as follows:
Reaction

Multiply two operands

Square a single operand

multiply three operands

nmultiply four operands

Square root

Cubic root

cosine function

inverse cosine function

provide

package UnitConst is

constant
constant
constant
constant
constant
constant
constant
constant

conl
con2
con3

constant

constant

constant
end;

mult2_op
square_op
mult3_op
multd_op
sgrt_op
cbrt_op
cos_op
acos_op

:= "000";
= "0Q1t;
:= "010";
= "011";

downto 0)
)
)
)
) = "100";
)
)
)

downto

bit_vector (2 0
bit_vector (2 0
bit_wvector (2 downto 0
bit_vector (2 downto 0
bit_vector (2 downto 0
bit_vector (2 downto 0
bit_vector (2 downto 0
bit_vector (2 0

= "101";
c= "1107;
downto c= "111;
0.866025404;
2.094395102; ~--
4.188790204; --

-- sqgrt(3)/2
2Pi/3
4Pi/3

real :=
real
real

i

use work.UnitConst.all;
entity controller is

port

input
stb_in
ack_in
new_entry
ack_c2
sth_c2
c2_data
c2_result
control
sth_out
ack_out
data_out
)

end;

in float;

in bit;

out bit;

in bit;

in bit;

out bit;

out bit_vector
in bit_vector
out bit_vector
out bit;

in bit;

out float

(7 downto 0} ;
(7 downto 0);
(3 downto 0);

architecture behave of controller is

begin

process
-- a number
variable
variable
variable
variable
variable

X1

al,
R,Q,R._sg9,Q_cu,D,

Templ, Temp2, Temp3, Temp4, thetal, core?_result
X2,

of floating-point variables to hold intermediate results
a2,a3,s,T float;
sgrt_D float;

float;

float;

X3 cmplx;

procedure get_input_data

begin
wait until

is

stb_in = ‘0’ ;

Z.A. Baidas. 2000 Appendix E: Example details 269

68 al := input;

69 ack_in <= '0°;

70 wait until stb_in = '17;

71 ack_in <= '1°';

72 wait until stb_in = '0’;

73 a2 := input;

74 ack_in <= '0';

75 wait until stb_in = ’1’;

76 ack_in <= '1";

77 wait until stb_in = ‘0°;

78 a3 := input;

79 ack_in <= '0';

80 wait until stbh_in = '1’;

81 ack_in <= '1';

82 end get_input_data;

83

B m e
85 -- a procedure to deliver results to the output stage

BB o e e e
87 procedure send_output_result is

88 begin

89 data_out <= X1;

90 wait until ack _out = '1';

91 stb_out <= '0';

92 wait until ack_out = ‘0’;

93 stb_out <= ’1';

94 data_out <= RE(X2);

95 wait until ack_out = '17;

96 stb_out <= '0’;

97 wait until ack_out = '0’;

98 stb_out <= '17;

99 data_out <= IMAG(X2);

100 wailt until ack_out = '1’;
101 stb_out <= '0';

102 wait until ack _out = '0’;
103 stbh_out <= '17;

104 data_out <= RE(X3);
105 wait until ack_out = '1';
106 stbh_out <= ‘0';

107 wait until ack_out = '0’;
108 stb_out <= 1°;

109 data_out <= IMAG(X3);
110 wait until ack_out = '1';

111 stbh_out <= '0’;
112 wait until ack _out = '0’;
113 stb_out <= "1';

114 end send_output_result;
LlS e e e
116 -- The procedure sends a floating-point variable to the slave unit over four
117 -- lterations. It provides the strobe signal and monitors the acknowledge
I bt e Tt T T PR U p——
1158 procedure send_to_core2 {(data : bit_vector (31 downto 0)) is
120 begin

121 wait until ack _c2 = "1';
122 c2_data <= data (31 downto 24);

123 sth_c2 <= '0’;

124 wait until ack_c2 = ‘0';

125 sth_c2 <= "17;

126 wait until ack_c2 = '1';

127 c2_data <= data (23 downto 16);

128 stbh_c2 <= '0';

129 wait until ack_ec2 = '0’;

130 stb_c2 <= "1’;

131 wait until ack_c2 = '1’;

132 c2_data <= data (15 downtoc 8);

133 stbh_¢2 <= '0';

134 wait until ack_c2 = '0’;

135 stb_c2 <= "1';

136 wailt until ack_c2 = '1';

Z.A. Baidas. 2000 Appendix E: Example details 270

137 cZ_data <= data (7 downto 0);
138 stb_c2 <= '0';

139 wait until ack_c2 = '0';

140 sth_c2 <= ‘17;

141 end send_to_corel;

142

143 e
144 -- The procedure receives the floating-point result of a certain operation
145 -- from the arithmetic processor. It is bhased on monitoring a transition on
146 -~ acknowledge signal to indicate a new result which it recieves over four
147 -- lterations

148 m e e
149 Procedure get_from_core2 is

150 begin

151 walt until ack_c2 = '0';

152 coreZ_result (31 downto 24) := c2Z_result;
153 sth_c2 <= '07;

154 wait until ack_c2 = '1';

155 stb_c2 <= '1";

156 walt until ack_c2 = '0°;

157 core2_result (23 downto 16) := cZ_result;
158 sth_c2 <= '0';

159 wait until ack_c2 = "1';

160 stb_c2 <= '1°;

161 wait until ack_c2 = '0’;

162 core2_result (15 downto 8) := c2_result;
163 stb_c2 <= ‘0’;

164 wait until ack_c2 = '17;

165 stbh_c2 <= '1';

166 wailt until ack_c2 = '0';

167 coreZ_result (7 downto 0) := c2_result;
168 sth_c2 <= '0';

169 wait until ack_c2 = "1’;

170 stb_c2 <= "'1";

171 end get_from_ corel;

172

173 begin

174 -- initialise control ports

175 ack_in <= '1’;

176 stb_c2 <= '1";

177 stbh_out <= ‘1°;

178 control <= "Q00";

179 wait for 0 ns;

180 get_input_data;

181 control <= mult2_op;

182 wait for 0 ns;

183 send_to_coxe2 (TO_FLOAT(3.0));

184 send_to_coreZ(al);

185 get_from_corel2;

186 Templ := coreZ_result;

187 control <= sguare_op;

188 wait for 0 ns;

189 send_to_core2 (al);

190 get_from_coreZ;

191 Temp?2 := coreZ_result;

182 Q := {({Templ)-(Temp2))/TO_FLOAT(9.0) ;

193 control <= mult3_op;

194 wait for 0 ns;

195 send_to_core? (TO_FLOAT(9.0));

196 send_to_core2 (al);

197 send_to_core2(a2);

198 get_from_corel;

199 Templ := coreZ_result;

200 control <= mult2_op;

201 wait for 0 ns;

202 send_to_core2 (TO_FLOAT(27.0));

203 send_to_core2 (a3);

204 get_from_coreZ;

205 Temp2 := coreZ_result;

Z.A. Baidas, 2000 Appendix E: Example details

206 control <= multd_op;

207 wait for 0 ns;

208 send_to_corel (TO_FLOAT (2.0));
208 send_to_coreZ{al);

210 send_to_core2 (al);

211 send_to_core2(al);

212 get_from_corel;

213 Temp3 := corel_result;

214 R := ({(Templ)-(Temp2)-(Temp3))/TO_FLOAT(54.0) ;
215 control <= square_op;

216 wait for 0 ns;

217 send_to_core2(R);

218 R_sqg := coreZ_result;

2189 control <= mult3_op;

220 wait for 0 ns;

221 send_to_coreZ (Q);

222 send_to_core2 {(Q);

223 send_to_core2{Q);

224 get_from_corel;

225 Q_cu := corel_result;

226 D := R_sg + Q_cu;

227 if (D = TO_FLOAT(0.0)) then
228 control <= cbrt_op;

229 wait for 0 ns;

230 send_to_core2(R);

231 get_frow_corel;

232 S := coreZ_result;

233 Templ := al/TO_FLOAT{3.0);
234 control <= mult2_op;

235 wait for 0 ns;

236 send_to_core2 (TO_FLOAT(2.0)}) ;
237 send_to_core2 (S);

238 get_from_core?l;

239 TempZ := coreZ_result;

240 X1 := Temp2-Templ;

241 X2 := TO_COMPLEX({(-S-Templ, TO_FLOAT(0.0));
242 X3 = X2;

243 elsif (D > TO_FLOAT((.0)) then
244 control <= sqgrt_op;

245 wait for 0 ns;

246 send_to_core2 (D) ;

247 get_from_corel;

248 sgrt_D := corel2_result;

249 control <= cbrt_op;

250 wait for 0 ns;

251 send_to_core2 {R+sqgrt_D);
252 get_from corel;

253 S := core2_result;

254 send_to_core2 (R-sgrt_D);
255 get_from_corel2;

256 T := core2_result;

257 Templ := S+T;

258 Temp2 := al/TO_FLOAT(3.0);
259 X1 := Templ-Temp?2;

260 control <= mult2_op;

261 wait for 0 ns;

262 send_to_core2 (S-T);

263 send_to_core2 (TO_FLOAT (conl));
264 get_from_core2;

265 Temp3 := coreZ_result;

266 X2 := TO_COMPLEX({(-Templ/TO_FLCAT(2.0))-Temp2, Temp3) ;
267 X3 := CONJ(X2);

268 else

269 control <= sgrt_op;

270 wait for 0 ns;

271 send_to_core2 (-Q_cu);

272 get_from_corel;

273 Temp3 := coreZ_result;

274 control <= acos_op;

Z.A. Baidas, 2000 Appendix E: Example details
275 wait for 0 ns;
276 send_to_coreZ (R/Temp3) ;
277 get_from_corel;
278 Tempd := corel_result;
279 thetal3 := Temp4d/TO_FLOAT(3.0);
280 Templ := al/TO_FLOAT(3.0);
281 control <= sgrt_op;
282 wait for 0 ns;
283 send_to_core2 (~Q) ;
284 get_from _corel;
285 Templ3 := corel_result;
286 control <= mult2_op;
287 wait for 0 ns;
288 send_to_core2 (TO_FLOAT(2.0));
289 send_to_core? (Templ);
290 get_from_corel;
291 Temp2 := corel_result;
292 control <= cos_op;
293 wait for 0 ns;
294 send_to_core? (thetal);
295 get_from_core2;
296 Temp3 := core2_result;
297 control <= mult2_op;
298 wait for 0 ns;
299 send_to_coreZ (Temp3) ;
300 send_to_corel (Temp2) ;
301 get_from_corel2;
302 Temp4 := corel2_result;
303 X1 := Tempd-Templ;
304 control <= cos_op;
305 wait foxr 0 ns;
306 send_to_core2{theta3+TO_FLOAT (conl)) ;
307 get_from_corel;
308 Temp3 := coreZ_result;
309 control <= mult2_op;
310 wait for 0 ns;
311 send_to_core2 (Temp3) ;
312 send_to_coreZ {Temp2);
313 get_from_corelZ;
314 Temp4 := corelZ_result;
315 X2 := TO_COMPLEX (Tempd-Templ, TO_FLOAT(0.0));
316 control <= cos_op;
317 wait for 0 ns;
318 send_to_core2 (theta3+TO_FLOAT (con3)) ;
319 get_from_corel;
320 Temp3 := corelZ_result;
321 control <= mult2_op;
322 wait for 0 ns;
323 send_to_coreZ (Temp3) ;
324 send_to_core2 (Temp2) ;
325 get_from_coreZ;
326 Tempd4 := core2_result;
327 X3 := TO_COMPLEX (Tempd-Templ, TO_FLOAT(0.0));
328 end if;
329 send_output_result;
330 end process;

331 end;

[
o

12
~J

2

Z.A. Baidas. 2000 Appendix E: Example details

Listing E.4 Arithmetic processor VHDL behavioural description

L o
2 -- The unit ack as a slave in a master slave combination. It is
3 -~ a floating-point arithmetic unit that performs one of eight floating-poin
4 ~- operations based on a control vector provided as an input port
5 ~— the control signal is defined as fcllows:
6 -- control Reaction
7 —-—— e ——— e
8 -- 000 Multiply two operands
9 -- 001 Sgquare a single operand
10 -- 010 multiply three operands
11 -- 011 multiply four operands
12 -- 100 Square root
13 -- 101 Cubic root
14 -- 110 cosine function
15 -- 111 inverse cosine function
16 ~-- Once the result is generated it is transferred back to the master unit
17 -~ using the same handshaking signals but in reverse order (i.e. acknowledge
18 -- acts as strobe and vice versa)
T Tt
20
21 package UnitConst is
22 constant mult2_op : bit_vector (2 downto 0) := "000";
23 constant square_op : bilit_vector (2 downto 0) := "001";
24 constant mult3_op : bit_vector (2 downto 0) := "010";
25 constant multd_op : bit_vector (2 downto 0) := "011*;
26 constant sqgrt_op : bit_vector (2 downto 0) := "100";
27 constant cbrt_op : bit_vector (2 downtc 0) := "101“;
28 constant cos_op : bit_vector (2 downto 0} := "110";
29 constant acos_op : bit_vector (2 downto Q) := "111";
30 end;
31
32 use work.UnitConst.all;
33 entity arith_pro is
34 port (input : in bit_vecter (7 downto 0);
35 stb_corel : in bit;
36 ack_corel : out bit;
37 control : in bit_vector (2 downto 0);
38 result : out bit_vector (7 downto 0));
39 end;
40 architecture behave of arith_pro is
41 begin
42 process
43 e e e e e
44 -- temporary variables to hold the input operands and the output result
45 e
46 variable out_data,xl,x2,x3,x4: float;
47 variable in_data : float;
48 e e
49 ~- a simple procedure that reads the data from unitl_core governed by
50 -- two handshaking signals over four iterations
5l e e e e~
52 Procedure read_data is
53 begin
54 wait until stb_corel = '0°;
55 in_data (31 downto 24) := input;
56 ack_corel <= '0’;
57 walt until stb_corel = '1°’;
58 ack_corel <= "17;
59 wait until stb_corel = '0°;
60 in_data (23 downto 16) := input;
61 ack_corel <= '0';
62 wait until stb_corel = ‘1’;
63 ack_corel <= '17;
64 wait until stbh_corel = '0°';
65 in_data (15 downto 8) := input;
66 ack_corel <= '0';

67 wait until stb_corel = '1°;

Z.A. Baidas, 2000 Appendix E: Example details

68 ack_corel <= '1°';
69 wait until stb_corel = “0’;

70 in_data (7 downto 0) := input;
71 ack_corel <= '0’;

72 wait until stb_corel = '17;

73 ack_corel <= "1';

74 end read_data;

75 begin

76 ack_corel <= '17;

77 wait for 0 ns;

78 read_data;

79 x1 := in_data;

80 case control is

81 when mult2_op =>

82 read_data;

83 %2 := 1in_data;

84 out_data := x1 * x1;

85 when sqguare_op =>

86 out_data := x1 * x1;

87 when mult3_op =>

88 read_data;

89 x2 := in_data;

90 read_data;

91 x3 := in_data;

92 out_data := x1 * x2 * x3;

93 when multd_ocp =>

94 read_data;

95 x2 := 1in_data;

96 read_data;

87 x3 := in_data;

98 read_data;

99 x4 := in_data;
100 out_data := xl1 * x2 * x3 * x4;
101 when sgrt_op =>
102 out_data := SQRT(x1l);
103 when cbrt_op =>
104 out_data := CBRT(x1l);
105 when cos_op =>
106 out_data := COS{xl);
107 when acos_op =>
108 out_data := ACOS(x1);
109 when others =>
110 null;
111 end case;
112 r e e e
113 -- output out_data over 4 iteration to the output stage
114 -~ starting with the MSBs
115 e e e
116 result <= out_data {31 downto 24);
117 wait for 0 ns;
118 ack_corel <= '0';
119 wait until stb_corel = '0';
120 ack_corel <= '1’;
121 wait until stb_corel = '1’;
122
123 result <= out_data (23 downto 16);
124 wait for 0 ns;
125 ack_corel <= ‘0';
126 wailt until stb_corel = '0';
127 ack_corel <= "1';
128 walt until stb_corel = '1°’;
129
130 result <= out_data (1% downto 8);
131 wait for 0 ns;

132 ack_corel <= '0';

133 walt until stb_corel = '0';

134 ack_corel <= '17;

135 wait until stb_corel = '1°';

136 result <= out_data (7 downto 0);

137
138
139
140
141
142
143

Z.A. Baidas, 2000

wait for 0 ns;

ack_corel <
wait until
ack_corel <
wait until
end process;
end behave;

= 0
stb_corel
- /lll.

stbh_corel

Appendix E: Example details

[

(3]

Z.A. Baidas, 2000 Appendix E: Example details 276

Listing E.5 Output stage VHDL behavioural description

TN
2 -~ The output stage is responsible for driving the VGA adapter that connects
3 ~-- to the VGA screen. starts by initializing the screen static components
4 -- such as titles and borders. Then it starts monitoring the input stage to
5 -- display the entries provided by the keyboard. The final stage includes
6 -- monitoring the core to get the floating-point outputs, performs
7 -~ type conversion and display them on the screen.
B e
9 entity out_stage is
10 port (key : in bit_vector (4 downto 0j;
11 stb_in : in bit;
12 ack_in : out bit;
13
14 float_in : in bit_vector (31 downto 0);
15 stbh ¢ : in bit;
16 ack_c : out bit;
17
18 vga_data : out bit_vector (7 downto 0);
19 ready : 1in bit
20)i
21 end;
22 architecture behave of cut_stage is
P i
24 -~ initial commands that initialises the VGA adapter and draws the static
25 -- components on the screen are provided in goups of internal ROMs. A control
26 -~ loop passes through these ROMS and output the commans in order
2 o e e e e e e e e e
28 s e e e e e
29 ~-- ROM_SetPage initialises the VGA adapter by setting the pallete, setting the
30 -~ drawing mode and the drawing page.It also draws the back groun rectange
31 -- and any other static lines.
32 e e e e e e e
33 type ROM_SetPage is array{0 to 35) of bit_vector (6 downto 0);
34
B e e e e e —
36 -- ROM_CharSet holds all the static ASCII characters such as the main title
37 -- and the variables names
38 e e e e e e
39 type ROM_CharSet is array(0 to 83) of bit_vector (6 downto 0);
40
4] e e e
42 -~ ROM_resetSc holds the command sequence required to reset the output results
43 -- by drawing a rectangle with the same colour as the back ground over
44 -- the output result
45 e e e
48 type ROM_resetSc is array {0 to 19) of bit_vector (6 downto 0);
47
48
49 begin
50 main_process : process
51 variable adrs_set : integer range 0 to 47;
52 variable adrs_char : integer range 0 to 84;
53 variable CharSet : ROM_CharSet := (
54 "1000110%, -- F (70)
55 *1101100", -- 1 (108)
56 ©1101111, -- o (111)
57 1100001, -- a (97)
58 ©1110100", -- t (116)
59 ©1101001", -- 1 (105)
60 *1101110", -- n (110)
61 ©1100111", -- g (103)
62 "0100000", -- space (32)
63 "1010000", -- p (80)
64 1101111, -- o (111y
€5 1101001, -- 1 (105)
66 "1101110", -- n (110)
67 1110100, -- t (116)

68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
118
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136

Z.A. Baidas, 2000

"0100000",
*1010011",
"1111001",
"1101110",
1110100,
11010060,
©1100101",
*1110011,
"1101001",
"1110011,

*1000001",
01100017,
*0100000",
0111101,
0100000,

©1000001",
*0110010",
"0100000",
"g111101",
"0100000",

"1000001",
0110011,
0100000,
0111101,
0100000,

"1011000",
0110001,
"0100000",
0100000,
*0100000",
"0100000",
"0100000",
"0111101",
0100000,

*1010010",
1100101,
*0101000",
"1011000",
"0110010",
"0101001",
*0100000",
*01l11101",
"0100000",

1001001,
"1101101",
"0101000",
1011000,
0110010,
*0101001",
"0100000",
"0111101",
"0100000",

"1010010",
"1100101",
"0101000",
"1011000",
"0110011",
"0101001",
0100000,
"0111101",
"0100000",

Appendix E: Example details

space (32)
(83)

R A I
-
o
(62

A (65)-- address = 24
1 (49)

space (32)

= {61)

space (32)

A (65)-- address = 29
2 (50)

space (32)

= (61)

space (32)

A (65)-- address = 34
3 (51

space (32)

= (61)

space (32)

39

1

X (88)-- address
1 (49)

space (32)

space (32)

space (32)

space (32)

space (32)

= (61)

space (32)

(82)-- address = 48
(101)

(40)

(88)

(50)
(41)
space (32)
= (61)
space (32)

~ N X~ 0D W

73)~- address = 57
109)

40)

88)

50)

(41)

space (32)

= (61)

space (32)

{
{
(
(
{

— M~ M

-- address = 66

Z.A. Baidas, 2000 Appendix E: Example details

137 *1001001", -- I (73)-- address = 75

138 "1101101", -- m (109)

139 "01010600", -~ ((40)

140 "1011000", -- X (88)

141 *0110011", -- 3 (51)

142 "0101001", --) (41)

143 "0100000", -- space (32)

144 “0111101", -- = (61)

145 "0100000" -- space (32)

146)V ;

147 variable SetPage : ROM_SetPage := (
148 ©0011000", -- set the palette

149 *0011011", -- colour O

150 "1011101", ~-- to grey (Backgroud color)
151

152 “0011000", -- colour 1 light blue (title and underline)
153 “1000011",

154 "0111110",

155

156 “0011001 ", ~- colour 2 dark blue (al,aZ,al)
157 "0000100",

158 0101001,

159

160 "0011001", --colour 3 black

161 *1000000",

162 *0000000",

163

164 "0010000", -- mode = direct draw

165 "0001100", -- set raster page to 0

166 *0001000", =-- set render page to 0

167

168 --draw the background rectangle

169 "0100011", -- set background color to black
170 "Q1i0011", -- set fore color to black
171 *QQ00001 ", -~ set point 0 to (0,0)

172 "0000000",

173 "Q000000",

174 "0000000",

175 "0000010", -- set point 1 to (639,479)
176 “0010011",

177 "1111111",

178 ©1011111",

179 ©1010000", -- draw rectangle

180

181 "0100000", -- set background color to grey
182 "0110000", -- set fore color to grey
183 "0000001l", ~-- set point 0 to (10,10)
184 *0000000",

185 "0101000",

186 ©0001010",

187 "0000010", ~- set point 1 to (629,370)
188 *0010011",

189 ©1010110",

190 *1110010",

191 "1010000", ~-- draw rectangle

192

193 "0110001", -- set colour to light blue
194 "0000001", -- set point 0 to (40,64)
195 “gooo001",

196 «0100000",

197 "1000000",

198 *0000010",

199 "0001101",

200 *0100000",

201 *1000000", -- set point 1 to {(424,64)
202 "1001000" -- draw line

203)i

204 variable initialise : bit := "1°; -- initialise the vga screen

205 variable x_val,a_sign_x : bit_vector (9 downto 0);

206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274

Z.A. Baidas, 2000

variable y_val : bit_vect
variable number : bit_vec
variable sign : bit;

Appendix E: Example details

or (8 downto 0);
ter (6 downto 0);

variable float_val : bit_vector (31 downto 0);

variable temp : bit_wvecto

r (26 downto 0};

variable exponent : bit_vector (8 downto 0);

variable count : bit_vect
variable current_key : bi

or {3 downto 0);
t_vector (4 downto 0}

variable out_hund,ocut_ten : bit;

279

-~ A procedure to output a single VGA command provided as an input argument

-- t£o the VGA screen.

procedure send2vga(inst
begin
wait until ready = '0';
vga_data (7 downto () <=
wait until ready ='1";
vga_datal(7) <= '0';

end send2vga;

in bit_vector (7 downto 0))

inst (7 downto 0);

~-- A procedure to draw an ASCII character provided as an input argument

-~ to the location specified by xl1,yl. The character size is also provided by

-- the xsize and ysize ar

guments

procedure DrawChar (xl

in bit_vector (9 downto 0);

vl : in bit_vector(8 downto 0);

char : in bit_vector {6 downto 0);
xsize : in bit_vector(l downto 0);
yvsize : in bit_vector(l downto 0}) is

begin
--set point 0
send2vga ("10000001");

send2vga (*100" & x1(9 downto 85));

send2vga ("1l" & x1(4 downto 0)

send2vga("l" & yl(6 downto 0));

-- draw character

send2vga{"111* & xsize(l downto 0)

sendZvga("l" & char(6 downto 0));

end DrawChar;

& yv1(8 downto 7)) ;

& vsize(l downto 0)

&

“O");

procedure get_key is

begin

wait until stb_in = '0°';
current_key := key:
ack_in = '0’;

wait until stb_in = '1’;
ack_in <= '1’;

end get_key;

procedure output_sign (sign : in bit; x : in bit_vector

y : in bit_vector (8 downto 0)) 1is

begin

if (sign = '0’) then -- output blank in the location
DrawChar (x,y, "0100000", *00","00");

else -- output (-) (45) in the location
DrawChar{(x,y,"0101101","00","00");

end if;

end output_sign;

(9 downto 0};

Z.A. Baidas, 2000 Appendix E: Example details 280

275 e
276 -~ A procedure to read a floating-point value from the core

277 -- and save in an internal variable (float_val)

278 m e
279 procedure get_float is

280 begin

281 walt until stb_c = '0';

282 float_val := float_in;

283 ack_c <= '0’;

284 wait until sth_c = '1’;

285 ack_c <= '17;

286 end get_£float;

287

288 e e e e
289 -- A procedure to display the sign of the floating-point result (the roots)
290 e e e
291 procedure f_output_sign is

292 begin

293 if (float_val(3l) = '0’) then -- the sign is plus

294 DrawChar (x_val,y_val,"0101011","00","00");

295 else

286 DrawChar (x_val,y_wval,"0101101*,"00","00");

297 end if;

298 x_val := x_val + convert_int2bv (8,10} ;

299 end f_output_sign;

300

301 e e e e
302 -- A procedure to display the mantissa of the floating-point result

303 -- (the roots)

304 e e e
305 procedure f_output_mantissa is

306 begin

307 DrawChar (x_val,y_val,"0110001","00","00"); ~- output the implicit 1
308 x_val := x_val + convert_int2bv(8,10);

308 DrawChar (x_wval,y_val,"0101110","00","00"); -~ output the decimal point
310 x_val := x_val + convert_int2bv(8,10);

311 temp := "0000" & float_val(22 downto 0);

312 -- convert the fraction to its equivelent sequence of ASCII digits

313 for 7 in 0 to 12 loop

314 -- multipliy by 1010 then output temp (26 downto 23)

315 -- then set temp(26 downto 23) to "0000"

316 temp := temp (25 downto 0) & "0" + temp(23 downto 0) & "000";

317 number := "000" & temp(26 downto 23);

318 -~ the equivelent ascii character conversion

319 number := convert_int2bv{(48,7) + number;

320 DrawChar (x_val,y_val,number,"00","00");

321 x_val := x_val + convert_int2bv(8,10);

322 temp (26 downto 23) := "0000";

323 end loop;

324 end f_output_mantissa;

325

326 e
327 -- A procedure to display the exponent of the floating-point result

328 -~ {the roots)

328 e e
330 procedure f_output_exponent is

331 begin

332 -- output (space * space)

333 DrawChar (x_val,y_wval,"0100000","00","00");

334 x_val := x_val + convert_int2bv(8,10);

335 DrawChar (x_val,y_wval,"0101010","00Q0","00");

336 x_val := x_val + convert_int2bv(8,10);

337 DrawChar (x_val,y_val,*0100000",*00",»00");

338 x_val := x_val + convert_int2bv(8,10);

339

340 DrawChar (x_val,y_val,"0110010","00","00"); -- output 2

341 x_val := x_val + convert_int2bv(8,10);

342 v_val := y_val - convert_int2bv(8,10);

343 ~- now final thing output the exponent

344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
3982
393
394
395
356
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412

Z.A. Baidas, 2000 Appendix E: Example details
exponent := "0" & float_val(30 downto 23) - convert_intZbv (1l
if (exponent (8) = '1’) then -- negative exponent
exponent := NOT expcnent + "000000001";
DrawChar (x_val,y_val,"0101101","00","00");
x_val := x_val + convert_int2bv(8,10);
end if;
if (exponent >= convert_int2bv(100,9)) then

-- output 1 and subtract 100
DrawChar (x_val,y_wval,"0110001","00","00");

»_val := x_val + convert_int2bv(8,10);
exponent := exponent - convert_int2bv(100,9);
out_hund := '1’;
end if;
if (exponent >= convert_int2bv(10,9)) then
count := "0000";
out_ten := ’1";
loop
exit when exponent < convert_int2bv(10,9);
exponent := exponent - convert_int2bv(10,9);
count := count + "0001";
end loop;
number := "000" & count;
number := convert_int2bvi{48,7) + number;
DrawChar ({(x_val,vy_val,number,*00","“00");
x_val := x_val + convert_int2bv{8,10);
end if;
if (out_hund = ‘1’ and out_ten = '0’) then
number := convert_int2bv(48,7);
DrawChar (x_val,y_val,number,"00","00");
x_val := x_val + convert_int2bv{8,10);
end 1if;
-- output the BCD LSB
number := exponent (6 downto 0);
number := convert_int2bv{(48,7) + number;

DrawChar (x_val,y_val,number,*00","00");
end f_output_exponent;

-- A procedure to control displaying the floating-point result on the VGA
-- screen. It checks for demornal situations and then display the number

-~ based on three procedures declared earlier (f_output_sign,
-- f_output_mantissa, f_output_exponent)

procedure output_fleoat is
begin
if float_wval(30 downto 23) = "00000000" then -- result =
DrawChar (x_val,y_wval,"0110000","00","00");
-- e=255 is preserved for NaN and infinity

elsif float_val(30 downto 23) = "11111111" then
-- detected infinity
if float_val(22 downto 0) = "00000000000000000000000" then
if (fleocat_wval(31l) = ’0’) then -~ +inf
DrawChar (x_val,y_val,"0101011","00","00");
else -- -inf
DrawChar (x_wval,v_val,"0101101","00",*0Q");
end if;
x_val := x_val + convert_int2bv(8,10);
DrawChar (x_val,y_val,"1101001","00","00");
x_val := x_val + convert_int2bv{8,10);
DrawChar (x_val,y_val,"1101110","00","00");
x_val := x_val + convert_int2bv(8,10);
DrawChar (x_val,y_val,"1100110",*00","00");
else -- NAN
DrawChar (x_val,y_wval,"1001110","00","00");
x_val := x_val + convert_int2bv(8,10);
DrawChar (x_val,y_val,"1000001","00","00");
x_val := x_val + convert_int2bv(8,10);
DrawChar (x_val,y_val,"1001110","00","00");
end if;

Zero

Z.A. Baidas, 2000 Appendix E: Example details 28
413 else -- normal case
414 f_output_sign;
415 f_output_mantissa;
416 f_output_exponent;
417 end 1if;
418 end output_float;
A1 e
420 -- maln control sequence
42l e e
422 begin
423 if (initialise = '1’) then
424 adrs_set = 0;
425 out_hund := '0';
426 out_ten := '0';
427 vga_data <= "00000000";
428 wait for 0 ns;
429 -- set the pallete, draw the background and draw the underline
430 loop
431 sendZvga("l" & SetPage(adrs_set));
432 exit when adrs_set = 35;
433 adrs_set = adrs_set + 1;
434 end loop;
435 adrs_char := 0;
436 initialise = '0’;
437
438 -- now draw the fixed characters (title in light blue)
439 -- (al,a2,a3) in dark blue
440 send2vga("1l" & "0100000%"); -- set back ground color to grey
441 send2vga("1l" & "0110001"); -- set foreground color to light blue.
442 x_val := convert_int2bv(40,10);
443 yv_val := convert_int2bv{(32,9);
444 loop -- draw the title -- x_size = y_size = "01";
445 DrawChar (x_val,y_val,CharSet{adrs_char),"01","01");
446 exit when adrs_char = 23;
447 adrs_char := adrs_char + 1;
448 x_val := x_val + convert_int2bv(1l6,10);
449 end loop;
450 send2vga("1l" & "0110010"); -- set foreground color to dark blue.
451 x_val := convert_int2bv{(40,10);
452 yv_val := convert_int2bv(88,9);
453 adrs_char := 24;
454 loop -- draw al,a2,a3
455 DrawChar (x_val,vy_val,CharSet(adrs_chaxr),"00","00");
456 exit when adrs_char = 38;
457 adrs_char := adrs_char + 1;
458 x_val := convert_int2bv(8,10);
459 if (adrs_char = 29) then
460 x_val := convert_int2bv(40,10);
461 y_val := convert_intZbv(120,9);
462 elsif (adrs_char = 34) then
463 x_val := convert_int2bv(40,10);
464 v_val := convert_int2bv(152,9);
465 end if;
466 end loop;
467 send2vga("1" & "0110011"); -- set foreground color to black.
468 x_val := convert_int2bv(40,10);
469 y_val := convert_int2bv(200,9);
470 adrs_char := 39;
471 loop -- draw x1,rex2,imx2,rex3, imx3
472 DrawChar (x_val,y_val,CharSet(adrs_char),"00","00");
473 exit when adrs_char = 83;
474 adrs_char := adrs_char + 1;
475 x_val := convert_int2bv(8,10);
476 if (adrs_char = 48) then
477 x_val := convert_int2bv(40,10);
478 y_val := convert_int2bv(232,9);
479 elsif (adrs_char = 57) then
480 x_val := convert_int2bv(40,10);

481 y_val := convert_int2bv(256,9);

o

482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550

Z.A. Baidas, 2000

Appendix E: Example details

elsif (adrs_char = 66) then
x_val := convert_intZbv(40,10);
y.val := convert_int2bv(288,9);
elsif (adrs_char = 75) then
x_val := convert_int2bv(40,10);
v_val := convert_int2bv(312,9);
end 1f;
end loop;
end if;

-- initialisation is done the process will start monitoring the input stage
~- to display the three input paramemters al,a2,a3 and display them digit

-- by digit on the VGA screen

-- 96 for the sign

-- set back ground color to grey and foreground color to dark blue.

ack_in <= "1°';

ack_c <= '1";

wait for 0 ns;

-- get al

sign = '0';

x_val := convert_int2bv(104,10);
v_val := convert_int2bv(88,9);
a_sign_x := convert_intl2bv(96,10);
send2vga ("1™ & "0100000");
send2vga ("1" & *0110010");

for 1 in 0 to 2 loop

if (i = 1) then -- recieving the second variable (a2)
sign = '0’;
x_val := convert_int2bv{104,10); -~ 96 for the sign
v_val := convert_int2bv(120,9);
a_sign_x := convert_int2bv(96,10);
elsif (1 = 2) then -- receiving the third variable (a3)
sign = '07';
x_val := convert_int2bv(104,10); -- 96 for the sign
v_val := convert_int2bv(120,9);
a_sign_x := convert_int2bv(96,10);
end if;
loop
get_key;
if (current_key = "01101") then -- minus
sign := not sign;
output_sign (sign, a_sign_x,y_val);
elsif (current_key = "10000") then -- point (46)
DrawChar (x_val,y_val,"0101110","00","00");
x_val := x_val + convert_int2bv(8,10);
elsif (current_key = "01111*) then -- enter
exit;
else -- a digit is received generate the equielent ASCII character

-- and output it
number := “00"
number :=
DrawChar

& current_key;
convert_int2bv (48,7)
(x_val,v_val,number, "00", 00"} ;

+ number;

x_val := x_val + convert_int2bv(8,10);

end if;
end loop;
end loop;

-- the final stage is reading the roots from the core unit and display them

x_val := convert_int2bv(128,10);
v._val := convert_int2bv(200,9);

get_float;

output_=£float;

x_val := convert_int2bv(128,10);
yv_val := convert_int2bv{(232,9);

get_float;

output_float;

x_val := convert_int2bv(128,10);
yv_val := convert_int2bv(256,9);

get_float;

output__float;

x_val := convert_int2bv(128,10);
v_val := convert_int2bv{(288,9);

-- X1

-- RE({X2)

-~ IM(X2)

~- RE(X3)

551
552
553
554
555
556
557
558

Z.A. Baidas, 2000

get_flcat;
output_~float;

x_val := convert_intZbv(128,10);
yv_val := convert_int2bv(312,9);
get_float;

output_float;
end process;
end behave;

IM(X

(o8]

Appendix E: Example details

)

284

WO U B WN M

PR REEPBRMBRR(SR
VONOU s Wh R o

20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67

Z.A. Baidas, 2000

Appendix E: Example details 285

Listing E.6 Interface unit in the first FPGA

The unit is part of the
as a result of moving t
The data is converted i

final modification to the cubic equation solver
he output stage to the second FPGA.
nto blocks of 6-bit output and passed to interface?l

-- in the second FPGA

entity interfacel is

port (key : in bit_vector (4 downto 0);
stb_in : in bit;
ack_fpga2 : in bit;
float_in : in bit_vector (31 downto 0);
sth_c : in bit;

ack_c : out bit;

stb_fpga2 : out bit;
ctrl_fpgaZ : out bit;

ack_in : out bit;

fpga2_data : out bit_vector (5 downto 0)

)i
end;
architecture behave
begin
process
variable count
variable in_key
begin

of interfacel is

integer range 0 to 3;

bit_vector (4 downto 0);

-- first initialise all ports

ack_in <= "1';
ack_c <= '17;
stb_fpga2 <= '1’;

ctrl_fpga2 <= '0';

7

wait until ack_fpga2 = '1’;

stb_fpga2 <= '0’';

wait until ack fpga2 = '0’;

stb_fpga2 <= '17’;

ctrl_fpga2 <= '1';

’

-- '0’ means initialise the screen for a new entry
-- now negotiate with fpgal2 to initialise screen

stb_fpga2 <= '1’;

fpgaZ2_data <= float_in
wailt until ack_fpga2 =
sth_fpgaz <= '0';
wait until ack_fpgal2 =
stb_fpga2 <= '1';

count := 0; -- count three enters
loop

walt until stb_in = ‘0';

in_key := key;

ack_in <= '0';

walilt until stb_in = ‘1';

ack_in <= '1°';

if (in_key = "01111") then -- 1if key is enter

count := count + 1;

End if;

fpga2_data(4 downto 0) <= in_key;

wait until ack_fpga2 = '1’; -- send the key to the output

stb_fpga2 <= 0';

wait until ack_fpga2 = '0’;

stb_fpga2 <= ‘1°;

exit when count = 3; -- three enters mean three parameters
Bnd loop;
-- now receiving the five floating point variables
loop

wait until stbh_c = '0';

fpga2_data <= float_in (5 downto 0);

wait until ack_fpgaz = '1’;

stb_fpga?2 <= '0";

wait until ack_fpga2 = ‘0';

(11 downto 6);
lll;

IOI,.

Z.A. Baidas, 2000 Appendix E: Example details

68 fpga2z_data <= float_in (17 downto 12};
69 wait until ack_fpgaZ = ‘1';

70 stbh_fpgaz <= '0";

71 wailt until ack_fpga2 = '0';

72 sth_fpgaz <= '1";

73

74 fpga2_data <= float_in (23 downto 18);
75 wait until ack_fpgaz = '1’;

76 stb_fpga2 <= ‘0';

77 wait until ack_fpga2 = '0’;

78 stb_fpga2 <= '1’;

78

80 fpgaZ_data <= float_in {29 downto 24);
81 walt until ack_fpga2 = ’'17;

82 stb_fpga2 <= ‘0';

83 walt until ack_fpga2 = '0°;

84 stb_fpga2 <= '1";

85

86 fpga2_data <= "0000" & float_in (31 downto 30);
87 wait until ack_fpga2 = ‘1’;

88 stbh_fpgaZ <= '0';

89 wait until ack_fpga2 = '0°;

90 stb_fpga2 <= '1’;

91 ack_ ¢ <= '0’;

g2 wait until stb_c = "1';

93 ack_c <= "17;

94 end loop;

95 end process;

96 end behave;

W o 3O U bW

N I e S G G I
HOWVLONOAW dWN P O

22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
585
56
57
58
58
60
61
62
63
64
65
66
67

Z.A. Baidas, 2000 Appendix E: Example details

Listing E.7 Interface unit in the second FPGA

- The unit is part of the final modification to the cubic equation solver
- as a result of moving the output stage to the second FPGA.

- The data is received from the first FPGA in blocks of é-bit, which gets
- adjusted to the appropriate formate and passed to the output stage

entity interface2 is

port (initialise : out bit;
key : out bit_vector (4 downto 0);
stb_in : out bit;
ack_in : in bit;
fleoat_data : out bit_vector (31 downto 0);
stb_core : out bit;
ack_core : in bit;
ack_fpga : out bit;
stb_fpga : in bit;
ctrl_fpga : in bit;
éfpga_data : in bit_vector (5 downto 0)
)

end;
architecture behave of interfacel is

begin

process
variable enter_count : integer range 0 to 3;
variable data : bit_vector (5 downto 0);
variable ctrl : bit;
begin
-- first initialise all ports
stb_in <= '1°;

sth_core <= ‘1°;
ack_fpga <= 1';
initialise <= '1';
protect;
initialise <= '0’; -- initialise VGA driver
-- get key from FPGAl
enter_count = ‘'0’;
loop
wait until stb_fpga = '0’;
ctrl := ctrl_fpga;
data := fpga_data;
ack_fpga <= '0’;
wait until stb_fpga = '1’;
ack_fpga <= '1';
exit when ctrl = ‘0’;

-- here ctrl does not equal 0

-- send the key to VGA

if (enter_count /= 3) then
key <= data (4 downto 0);

wait until ack_ in = ‘1°';
stb_in <= '0';
wait until ack_in = ‘0’;

stb_in <= '1';
~-- key is sent to output stage now check if it is an enter

if (data(4 downto 0) = "01111") then
enter_count := entexr_count + 1;
end if;
else -- we are receiving floating-point results five of them
float_data (5 downto 0) <= data;
wait until stb_fpga = 0°;
ctrl := ctrl_fpga;

float_data {11 downto 6) <= fpga_data;
ack_fpga <= '0';

wait until stb_fpga = '1';
ack_fpga <= '1';
exit when ctrl = '0';

wait until stb_fpga = 0';

287

Z.A. Baidas, 2000 Appendix E: Example details 288

68 ctrl := ctrl_~fpga;

69 float_data (17 downto 12) <= fpga_data;
70 ack_fpga <= ‘0°;

71 wait until stb_fpga = ‘1’;

72 ack_fpga <= '1’';

73 exit when ctrl = ‘Q0’;

74 wait until stb_fpga = '0';

75 ctrl := ctrl_fpga;

76 float_data (23 downto 18) <= fpga_data;
77 ack_fpga <= '0’;

78 wait until stb_fpga = ‘1’;

79 ack_fpga <= '1’;

80 exit when ctxrl = "0’;

81 wait until stb_fpga = ‘0’;

82 ctrl = ctrl_fpga;

83 float_data (29 downto 24) <= fpga_data;
84 ack_~fpga <= "0';

85 wait until stb_fpga = '1’;

86 ack_fpga <= '1';

87 exit when ctrl = 0’;

88 wait until stb_fpga = '0’;

89 ctrl := ctrl_fpga;

S0 float_data (31 downto 30) <= fpga_data (1 downto Q0);
91 ack_fpga <= '0’";

92 walt until stb_fpga = ‘1’;

93 ack_fpga <= 1';

94 exit when ctrl = ‘0’;

95 -- the float variable is recieved now send it
96 wait until ack_core = '1';

97 stb_core <= ‘0';

98 wait until ack_core = ‘0°;

99 stb_core <= '1';
100 end if;
101 end loop;
102 end process;

103 end behave;

Z.A. Baidas, 2000 Appendix F: Papers 289

Appendix F

Papers

The paper contained in this Appendix, “Floating-point Behavioural Synthesis™ submitted
to the IEEE Transactions on Computer-Aided Design, describes the floating-point
synthesis capabilities of the MOODS synthesis system. It briefly surveys the infrastructure
of the floating-point optimisation algorithm, along with a description of the way the
system handles the high-level floating-point binding decisions based on a set of pre-

determined interactions.

Z.A. Baidas, 2000 Appendix F: Papers 200

Floating point behavioural synthesis

Z. Baidas, A.D. Brown (Senior Member) and A.C. Williams
Department of Electronics and Computer Science
University of Southampton
Hampshire SO17 1BJ
England

Abstract

Traditionally, the data processed by a synthesised digital design is fixed
(occasionally variable) width integer, and the functional units available are concomitantly
simple (adders, subtractors, multipliers, multiplexers and so on). The aims of this work
are two-fold: (1) to provide a library of high-level floating point functions (trigonometric,
transcendental, complex) to support the synthesis of behavioural designs incorporating
complicated sets of floating point operations, and (2) to incorporate this into an
optimising behavioural synthesis environment. Floating point units are large and
cumbersome, and an optimisation technique which allows the internal substructures of
these units to be shared (in both space and time) produces a dramatic decrease in the
overall hardware resources required to support a design.

The floating point modules themselves are each implemented in several ways. as
an iterative series, by table lookup and using the CORDIC algorithm. The choice of
implementation is left to the optimiser, which makes individual binding choices based on
global knowledge of the overall design.

This paper describes the library and the optimisation algorithm and demonstrates
the overall system use with an exemplar: a floating point quadratic equation solver

capable of delivering complex roots, realised using 30% of a Xilinx 40125XV FPGA.

Z.A. Baidas. 2000 Appendix F: Papers 201

L. Introduction

Floating point number representation can simultaneously provide a large range of
numbers and a high degree of precision. However. the manipulation of floating point
numbers is considerably more complicated than the corresponding fixed point operations -
as a consequence, a portion of modern microprocessors is devoted to dedicated hardware
for floating point computation. Increasing hardware capacity and increasing power of
optimisation techniques now make it possible to sensibly synthesise systems containing
floating point operations on an ASIC or FPGA.

Behavioural synthesis works on a description that specifies the relationship
between system inputs and outputs by describing abstract data structures and functions to
manipulate them. The physical structure is not described, as the emphasis is on what a
design does and not how it is done. In addition, the data flow manipulation aspects for a
synthesis system are not generally concerned with the data fype, the limitations of integer

arithmetic are imposed simply by the lack of functional units for more complicated data

types.

I.1 Existing system

The MOODS (Multiple Objective Optimisation for Data and Control path
Synthesis) system has been described in detail elsewhere[1-5]. In précis, this is a synthesis
system which implements global optimisation of a design dataflow and control graph by
the repeated application of small, reversible (behaviour preserving) transforms, under the
control of a simulated annealing algorithm. The system is designed to support overall
optimisation with respect to widely differing criteria; currently these are area, delay and
power dissipation. The operation of the system is usually characterised by a design
trajectory - the entire structural design is represented by its values of area, delay and
power dissipation, and these numbers form the coordinates of a point in design space. The
algorithm moves the design through this space, as in figure 1, from an initial point, created
from a line-by-line translation of the user behaviour, towards a user defined goal (typically
minimum area, delay and dissipation). The speed of this process allows the designer to

interactively study the tradeoffs possible between the three criteria.

1.2 The floating point enhancement

An overview of the entire system is given in figure 2. The shaded boxes in figure 2

represent the aspects of the system described in this paper. The floating point optimiser

Z.A. Baidas, 2000 Appendix F: Papers 292

makes strategic decisions about the high level binding for each floating point unit (i.e.
table lookup, iterative series or CORDIC), taking into account such issues as the type and
number of each floating point operation required. and the availability and capacity of any
off-chip ROM available to the system. This coarse design’is then presented to the
simulated annealing algorithm. The front end of thiis subsystem consists of a ‘module-
ripping’ unit[6], which allows the simulated annealing based optimiser to capitalise on
similarities in the internal structures of the floating point units. . The definition of the
floating point number underpinning this work is the IEEE single precision floating point

standard 754-1985[9].

[.3 Other systems

Work elsewhere has implemented floating point capabilities by introducing a non-
standard format[10] - this results in a reduction in both the accuracy and dynamic range
available - and in the introduction of a dedicated chip to handle floating point
operations[11] - effectively a discrete ALU. A set of block-diagram-based commercial
tools[12,13] allows users to create graphical representations of their systems using an
assortment of functions provided in block libraries. These tools mainly support fixed-point
format for hardware design, with a limited support of some standard floating point
operations (addition, subtraction, multiplication, and division). Global optimisation is not
supported. The key point of behavioural synthesis is that the designer should not

concerned with the structure, just the system functionality.

1.4 Overall strategy

The high level behavioural description (which may contain fixed and floating point
operations) is defined in VHDL, parsed and translated into ICODE. This is a hardware
equivalent of assembly language; the principle significant difference being that ICODE
supports multiple ‘control’ threads and parallelism. (The rationale for a file-based step in
the overall dataflow is the same as for a software development environment: an overall
project may consist of many source files, only some of which will be modified at each edit
cycle. Further, ICODE is language neutral - parts of a project may be described using
HDLs other than VHDL, and ICODE allows the support of a mixed language design
environment.)

The ICODE representation 1s then input to the floating point optimiser, which is

the subject of this paper. It is described in detail in section III. The main synthesis

Z.A. Baidas, 2000 Appendix F: Papers 293

optimisation block - controlled by a simulated annealing algorithm - operates on the
control and dataflow graphs of the design. Local. reversible, small transforms are applied
quasi-randomly (see [1-5]), which have the effect of iteratively moving the design from
the initial point to a point as close as possible to the user defined objectives (see figure 1).
This approach is successful because (from the perspective of the simulated annealing
algorithm) the transforms are local (i.e. they affect only a few other nodes each in the
dataflow and control graphs) and independent. Attempts to use this philosophy on the
floating point optimiser produced disappointing results, because each floating point
mapping choice has system-wide repercussions; there is a very strong follow-me’ effect.
This makes iterative techniques unsuitable and constructive methods more attractive. A
number of different procedures were explored; the heuristic described in section III
permits MOODS to produce the best’ results, although of course other algorithms may be
just as suitable.

Section II describes the implementation of the floating point library itself (the
functional units are much more complex than their fixed point counterparts), and section
IIT describes how these structures are manipulated by the floating point optimisation
algorithm. Finally, two examples are analysed, illustrating the behaviour of the system on

non-trivial designs.

I1. The floating point library

The floating point modules currently supported are given in table 1. (There is no
reason in principle why the complex counterparts of all the functions cannot be supported;
we chose to support those recommended in the IEEE standard 1076.2[14]) Each functional

unit consists of three building blocks:

1. Range reduction.
2. Function evaluation.
3. Post evaluation rounding and normalisation.

I1.1 Range reduction

The large dynamic range provided by a floating point representation introduces a
problem when designing systems to handle floating point arithmetic. Some evaluation
methods, such as iterative series, converge over a wide range of arguments. However,
achieving a good accuracy over that range requires taking many terms into account. Other

methods, such as the CORDIC[11,15] algorithm have an in-built limited range of

Z.A. Baidas, 2000 Appendix F: Papers 294

convergence. Having a suitable technique to reduce the range of the input operand(s) is
therefore essential. Each function has its own range reduction unit: periodic and symmetric

functions have obvious reductions, and others include shifting and scaling (for example,

In(M.25%) = In(M) + E.In(2))

11.2 Function evaluation
Three different base technigues (table lookup, iterative series and CORDIC) are

used to implement the functional units; these techniques generate modules with

significantly different physical properties.

11.2.1 Table lookup

Look-up tables are frequently and trivially used to evaluate mathematical
functions. This scheme has often been rejected in practical cases because of the large table
sizes required for acceptable accuracy. However. combining range reduction techniques
with a dedicated interpolation procedure gives rise to a large reduction in table size, often
to the point that it may be reduced to an on-chip set of static registers, rather than an
external ROM. For example, evaluating sin(x) to an accuracy of 1% , using linear
interpolation, requires a table with just six entries. Further reduction in table size can be
achieved by partitioning a table into several smaller sub-tables that handle intervals of a
function, each with its own scaling factor appropriate to that sub-table[16]. Even greater
reduction in table size may be achieved by replacing the linear interpolation procedure
with a quadratic or even higher order interpolation procedure, but the additional costs of
the interpolation engine usually outweigh this advantage (although of course the
interpolation unit can be shared amongst an arbitrary number of tables).

Finally, the scaling factor and intervals in the previous discussion can be trivially
forced to be a power of two, so that all the division operations during interpolation may be

replaced by fast binary right shift operations.

11.2.2 Iterative series
In this method the value of a function f(x) is obtained by an iterative process; the
value of x is inserted into some formula and after a number of operations the value is

obtained. This is attractive when the relationship between adjacent terms in the series is

[}
O
n

Z.A. Baidas, 2000 Appendix F: Papers

simple, or when the accuracy requirements are low. For example. the Taylor expansion of

oo ":212*1 _1 \,3
] Y .k 1 C) = twy, In = —1 ”.*‘—*‘ d In+1 =1h — —
Sinfx) 1s sin(x) '; (=1 D an 1 (> o)

The main issue in calculating functions using power series is the number of terms that

need to be taken in order to ensure that the result is accurate to the desired precision.

I1.2.3 The CORDIC algorithm

The CORDIC (Co-Ordinate Rotation Dlgital Computer) algorithm[11,15,17] was
introduced as the basis for a navigational computer. Its principal advantages are that it
requires no multipliers, and can generate two function results simultaneously.

It is an iterative process, applied to a set of input variables (x, v, z) for n iterations,
to generate a result accurate to n digits. Each iteration involves a shift, an add and an add

constant operation. The capabilities of the algorithm are summarised in figure 3.

I1.3 Post evaluation rounding and normalisation
At this stage, the output result 1s adjusted to comply with the IEEE 754 standard.

This involves

1. Rounding the quotient by conditionally adding one to the least significant bit.
All the floating point library modules work to an internal accuracy of 28 bits - the
IEEE standard has 23.

2. Normalising the quotient by shifting and adjusting the exponent field.
The standard saves a bit by assuming the most significant bit of the fraction field is
always set (which means it need not be saved) and modifying the exponent
accordingly.

3. Providing the special symbols to represent unusual events (infinity, NAN).
Finally, any range reduction effects are inverted.

II1. The floating point optimisation block

The task of this block is to assign a base technique (i.e. one of the three
implementation methods above) to each floating point functional unit in the design. The
aim of the process is not to produce directly an implementation that will meet the global
design parameters specified by the user, rather to produce an intermediate implementation
that makes it likely that the simulated annealing based optimiser will be able to approach

the design objectives.

Z.A. Baidas, 2000 Appendix F: Papers 206

I11.1 Function implementation interactions

The attributes of each function implementation considered in isolation are easy to
compare: to generate sin(x) with a table requires the table itself (which may be internal, or
external, requiring an interface), plus an interpolation engine. To generate it with a series
requires a cumulative adder plus a term generator, which may require a table, but no
interpolation engine. All these elements have easily quantifiable area and speed costs.
However, when a number of functions are required, new interactions become important:
e There is an overhead to interfacing an ASIC/FPGA to an external ROM or RAM, but

it is fixed and independent of the number of external function tables.

e The CORDIC algorithm can generate two function results simultaneously.

e Once an iterative series generator has been instantiated, the cost of switching between
different functions is relatively small.

e Once a complex function is implemented, the equivalent real function is virtually free
1N mMost cases.

¢ Some functions are built as a hierarchical composition of other functional units. If
these units are already available, the total cost is reduced.

e Some functions can be realised as functions of other functions. If these are already
available, part of the required behaviour can be bootstrapped”.

e Some function tables are subsets of others.

e If the external ROM size is limited, the distribution of tables onto the ROM affects the
overall area and speed.

e A low accuracy functional unit is a complete subset of any higher accuracy
counterpart.

e If a high number of functional units are to mapped onto an external ROM, the
multiplexer costs can become comparable to the cost of an alternative base technique.

Diverse interactions such as these require a dedicated optimisation algorithm.

I11.2 Practical function implementation

The overall synthesis system operates by instantiating sequential multi-cycle
technology-independent functional blocks, which are inline expanded in the internal
design structure during synthesis. These expanded modules act as templates, and enable
the implementation of functional units not available in the MOODS technology library[6].

The floating point functional units are provided to the synthesis system as a set of

Z.A. Baidas. 2000 Appendix F: Papers 297

expanded modules. This enables inter-module optimisation at the sub-module level.
allowing greater opportunities for functional unit sharing. In addition. a pre-processing
stage handles floating point functional unit binding to the base technique expanded
modules to help the main synthesis core to reach an optimum that meets the users supplied
objectives.

The pre-processing stage performs three tasks:
1. Hierarchical unit expansion
2. Exception register allocation

3. Base technique optimisation

I11.2.1 Hierarchical unit expansion

Many floating point and complex functional units in the library are provided as a
hierarchical structure of common building blocks. This approach allows the final synthesis
stage to share the common building blocks of different arithmetic units, which results in a
significant reduction of the total area cost. In addition, partitioning the arithmetic units into
a number of building blocks allows effective pipelining. This results in a reduction of the
total delay and increases the throughput of the whole system. As an example, consider the
pseudo-code of figure 4.

The sine function is expanded into two sub-blocks, the range reduction stage
(sin_cos_pre()), and the function evaluation stage (sin_cos_main()) - figure 4b. A large
number of sub-blocks are common to more than one floating point unit. They
communicate with each other by means of (automatically generated) temporary buffers,
which are initialized by the system to allow the sub-blocks to know which floating point
unit they are actually representing. For example, buf/ in figure 4b will be initialized to tell
sin_cos_pre() it is representing a sin(), and sin_cos_pre() may write the range reduction
details into bufT to be picked up by sin_cos_main(). The complex type conversion
function polar_to_complex() is expanded into further building blocks (sine, cosine, two
floating point multipliers and two type converters) - figure 4c. The sine and cosine
functions are then further expanded (figure 4d). This approach makes it easy for the main
annealing algorithm to exploit functional unit duplication.

Note that RE() and IM() in figure 4c are similar to PL/1 pseudofunctions: if they

appear on the right hand side of an assignment, they return a value, if they appear on the

left hand side, they provide access.

Z.A. Baidas, 2000 Appendix F: Papers 208

As an aside, it is useful at this point to review the unit hierarchy utilised by the
system; this will put the numeric results presented later into context. The hierarchy is
shown in table 2. It is the job of the floating point optimiser (this paper, section III) to
realise floating point library units (level 1) in terms of floating point primitives (level 2). It
is the job of the simulated annealing optimiser[1-8] to realise the floating point primitives
in terms of MOODS functional units (level 3). Finally, the MOODS functional units will
be realised in terms of (for the purposes of this paper) FPGA CLBs. This is done by the
low-level logic optimiser supplied by the FPGA manufacturer. (Alternatively, the system
can target ASICs directly - in this case, low level logic optimisation and placement and
routing are needed.) At each step in the process, virtual units at one level can share

physical units at the underlying level.

I11.2.2 Exception status register

Implementing floating point operations necessarily implies supporting some kind
of ’exception notification’, to handle illegal operation attempts, over- and underflow, and
so on. The IEEE floating point standard[9] defines the behaviour of a floating point system
in pathological situations, both in terms of bit patterns in the floating point variable itself,
and in a status register. The status register is a six-bit register that indicates the integrity of
a floating point operation. Asserting one of the flags (bits) is analogous to throwing an
exception; it is the responsibility of the user to handle (capture) the exception.

From a broad perspective, there are two sensible places for such a register in a
VHDL design. It is possible to have a single, global status register that can be accessed by
any instruction within a process - the user must provide a dedicated monitor process for
the register, and must decide what action (if any) is to be taken if a flag is raised. Equally,
each floating point unit may have its own local register, and handle problems in its own
way. Overloads of the floating point functions allow the user to use either (or both)
technique(s) - if a flag register is supplied as an actual argument to a function instantiation,
it is used; otherwise the existence of a global register is assumed. (This register will be
provided automatically by the system, but any monitoring process is the responsibility of

the user.)

Z.A. Baidas, 2000 Appendix F: Papers 299

III 2.3 Accuracy considerations

The introduction of a floating point capability gives rise to a fourth gross design parameter
- that of accuracy. This cannot be treated on an equal footing with the other three
dimensions of design space because the effects of changing the accuracy of a functional
unit cannot be localised - a change to any module in the dataflow graph will threaten all
operations predicated upon it. Errors propagate and interact non-linearly, and furthermore
the extent and form of the interactions are invariably data dependent. It is not difficult to
construct a process where a change of component accuracy ultimately affects behaviour.
The system supports user specification of floating point accuracy at two levels: it is
possible to assert an overall accuracy on a process, (each individual floating point
operation in the process will deliver this accuracy) and it is possible to override this and
assign individual accuracies to each floating point operation. Within each operator, a
differential error propagation model[18] is employed to calculate the necessary accuracies
of each of the sub-blocks, given the required accuracy of the parent operator itself. Where
sub-blocks are shared between operators later by the system, the accuracy of each shared
sub-block is promoted to the value of the most accurate.

Figure 5 shows the design space trajectories for a large process (example 1), with a
variety of user constraints and goals, optimised with a number of different accuracy
requirements. The original behavioural VHDL process description contains sin(), arctan(),
exp(), In(), arcsin() and sqrt(). Each trajectory consists of five points: 0.0001% accuracy
(the end marked with a solid point), 0.001%, 0.01%, 0.1% and 1%. Trajectories T1..T3 are
optimised with respect to area - changing the accuracy requirements impacts almost
entirely on the delay. Trajectories T4..T6 are optimised with respect to delay, and
changing accuracy requirements are traded off against system area. Trajectory parameters
are given in table 3 - the trajectories in figure 5 are the final, physical characteristics of
alternative structures delivering the same behaviour. "Delay" (table 3) is plotted against
"Physical CLBs (datapath)" + "Physical CLBs (controller). The floating point functions
(table 2, level 1) are implemented in terms of 10 virtual floating point primitives (level 2).
The floating point optimiser cannot share any of these units because they are all different,
hence 10 physical floating point primitives are required. (The point of this example is to
demonstrate the effects of changing accuracy.) Depending on the amount of off-chip
ROM available and the (user imposed) accuracy requirements, differing base technique
bindings are asserted, which give rise to the "Virtual functional unit" column. The

simulated annealing algorithm maps these onto a reduced number of physical functional

Z.A. Baidas, 2000 Appendix F: Papers 300

units (table 2, level 3). These are implemented in terms of virtual CLBs, which are
mapped onto physical CLBs by the low level optimiser/router supplied with the FPGAs.
Comparing the "Virtual CLB" column with the "Physical CLLB (datapath)" column shows
that this step does not gain much.

Some points of particular note are:
e Any user instructions for accuracies in excess of 0.0001% are ignored (i.e. treated as

0.0001%), as the floating point internal structure cannot support the results.

e [faverylow accuracy is required (less than 1%) the resource impact of the function
generation cores becomes negligible. The area requirements are dominated by the
range reduction and post processing units.

e Intrajectories T3 and T6, the whole design is realised as a set of table lookup modules
utilising an external ROM; accuracy variation has no effect on the system parameters.

e The trajectories do not all terminate at exactly the same point because of numerical
noise - recall that the principal optimisation process is controlled by a simulated
annealing algorithm.

I11.2.4 Base technique optimisation

The floating point optimiser (figure 2) operates on the floating point and complex
functions within the design, binding each floating point operation to a suitable base
technique component from the floating point module library.

The algorithm consists of two non-interacting phases: external memory utilisation
and on-chip optimisation. Empirical results indicate that by far the best results (in terms of
area and delay) can be obtained by utilising table lookup implemented on off-chip ROM to

its fullest extent; the system therefore attempts to do this before attempting to handle other

Interactions.

I11.2.4.1 External memory utilisation

Each module in the expanded module library and technology dependent library has
two figures of merit associated with it: the delay and the area. In the floating point library,
these are expanded: the area factor is split into the on-chip area and the off-chip area. The
approach here is simple: the algorithm performs an exhaustive search of all possible
combinations of table lookup mapping to see which utilises the ROM most effectively.
Note that this does not lead to a combinatorial explosion: a table is necessary for each

floating point module fype, not instance, and in practise, subtable isomorphism within the

Z.A. Baidas, 2000 Appendix F: Papers 301

list of table | means that the largest number of off-chip tables ever considered cannot be

larger than six.

111.2.4.2 On-chip optimisation
The flowchart of this phase of the system is shown in figure 6.

Step (1): All remaining floating point modules are mapped onto a table lookup base
technique, implemented on an infinite, virtual, internal (on-chip) RAM. If
this meets the user area constraints, and fits the physical system, the base
technique mapping is complete and successful.

Step (2): Select the biggest (irrespective of user requirements) floating point
functional unit. (Step (1) gave the fastest possible mapping - here we are
iteratively trading speed against area until we can deliver the user
requirements.)

Step (3): Increment the mapping for that unit. (The base technique mappings are
ordered: 1. Linear table, 2. Piecewise linear table, 3. Iterative series, 4.
CORDIC. Note that step (1) maps all units to 1 (linear table), and
attempting to increment past 4 has no effect. Not all mappings are allowed
for all floating point module types - see table I.)

Step (4): The effect on the overall area of the mapping change is estimated. If the
area is not reduced. goto step (5). Otherwise, the new mapping is accepted,
and if the overall user requirements are satisfied. the algorithm terminates

successfully.

Step (5): If all the floating point functional units are mapped onto the CORDIC base
technique, and the user requirements are not met, then the algorithm
terminates in failure. Otherwise, return to step (2).
The shaded decision boxes in figure 6 represent an invocation of the Estimator’.
This is a subsystem that predicts, from the current state of the design dataflow and control
graph, what further improvements the simulated annealing based optimisation (see figure
2) will be able to make. The Estimator is a heuristic algorithm, which takes as input the
statistical properties of the design (for example, variable and operator count - both fixed
and floating point, control constructs and so on) and predicts the compression that the
simulated annealing phase will be able to achieve with a reasonable degree of accuracy
(90-95%).
The design of this system is derived from observations of base technique

interactions. Some points of particular interest are:

e Functions based on table lookup implemented on off-chip ROM share a single ROM
controller and a single I/O port.

Z.A. Baidas. 2000 Appendix F: Papers 302

e Expanding the hierarchical (real and complex) functions before the optimisation phase
permits substructure sharing. If both the complex and real instances of a function are
required, this delivers significant cost reductions.

e Mapping a function onto a CORDIC base technique makes subsequent mappings to
that implementation more likely.

e Two or more functions having the same table (for example sin() and cos()) have only
one physical table.

e The cost of an iterative series generator can be significantly changed by the prior
availability of its primitive subunits (multiplier, divider). Equally, the selection of this
base technique reduces the cost of other operations by providing these units.

Figure 7 shows the effects of this process, with the accuracy criterion set to 10 on
the process of figure 5. In figure 7a, the user requirements are optimisation with respect to
delay alone, and the set of histograms shows the distribution of the functional units
between the three base techniques, as a function of off-chip ROM capacity. The tradeoff
between the two table-based implementations as the external ROM resource becomes
scarcer is clear, with CORDIC and iterative series only coming into play as a last resort.

Figure 7b shows the same design, this time optimised for minimum area. Here, the
main tradeoff is between external ROM usage and iterative series, as the latter obviously

consumes less area than the on-chip table lookup, although there is a delay price to pay.

IV. Quadratic equation solver (example 2)

The power of this level of description is illustrated by implementing a complex
quadratic equation solver. This takes as input the three (real) quadratic coefficients and
delivers the (possibly complex) roots. The VHDL behavioural description of the design is
listed in figure 8. The design space accuracy trajectories for this process are virtually
identical, as the design has only one non-linear operator, the square root. The process is
optimised from (area, delay) coordinates of (7800,1800) to a small region centered around
(1542,376), an improvement of a factor of 5 in both dimensions. Note that the floating
point optimiser has realised 12 floating point functions with only 4 physical floating point

primitives. Quantitative details are given in table 4 for a target accuracy of 10

V. Final remarks
V.1 Comparison with other published results

Comparable studies are hard to find.

o8}
o
ve)

Z.A. Baidas, 2000 Appendix F: Papers

[10] reports a study of floating point arithmetic on FPGAs, but the authors have
their own (reduced bit width) floating point format, the synthesis is RTL based. and there
is no optimisation - by using RTL. the designer is forcing the cycle-by-cycle timing. which
is an important degree of freedom exploited by MOODS. Speed is reported in terms of
time, not clock cycles.

[11] describes the manual design and characterisation of two versions of a single
real floating point square root system implemented on Xilinx XC4000 series FPGAs.
Table 5 shows a comparison of this functional unit with the corresponding unit from the
MOOQODS library. The third row is an implementation that can be switched between real
and complex by a single control line. (The behaviour is the same as setting the imaginary
part of the operand to zero, but this implementation is significantly smaller than the sum of
the other two.) The data taken from [11] is hard to interpret, because the authors
distinguish between "CLB functional generators" and "CLB flip-flops". Each Xilinx CLB
is composed of two function generators and two flip-flops, and it is not clear how these
figures map onto the total CLB usage on the chip.

The key point of rhis work, however, is that the MOODS floating point library is
designed to exploit module sharing and support large designs consisting of many

invocations of units from within the library.

V.2 Conclusions

Even with the increasing size and processing power of silicon systems, the
difficulties of synthesising sizeable circuits containing floating point operations are great.
The system described here allows a designer to manipulate floating point and complex
variables on an equal footing with all other data types (fixed point, access operations,
control stuctures), and the additional complexities arising are hidden from the user.
Module decomposition, space- and time multiplexing of submodules and accuracy
considerations are all controlled by three simple user specified parameters: the desired
area, the desired speed and the desired accuracy. The designer is free to concentrate on the
functionality of the design, and does not have to worry about the implementation details,

which, of course, is the goal of every behavioural synthesis system.

Acknowledgements

This work was supported by EPSRC grant reference GR/L28494, "High level

floating point synthesis library".

Z.A. Baidas, 2000 Appendix F: Papers 304

References

1.

10.

11.

12.

14.

15.

Baker K.R., Currie A.J. and Nichols K. G., "Multiple objective optimisation in a
behavioural synthesis system", IEE Proc.-Circuits Devices & Svstems, 140, August
1993, pp 253-260.

Brown, A.D., Baker K. R. and Williams, A.C., "Online testing of statically and
dynamically scheduled synthesized systems", I[EEE-CAD 16, no 1, pp 47-57. 1997.

Williams A. C., "A behavioural VHDL synthesis system using data path
optimisation", PhD thesis, University of Southampton, UK, July 1997.

Baker K. R., Brown A. D. and Currie A. J., "Optimisation efficiency in behavioural
synthesis"”, IEE Proc.-Circuits Devices & Systems, 141, no. 5, pp 399-406, 1994

Baker K. R., "Multiple objective optimisation of data and control paths in a
behavioural silicon compiler”, PhD thesis, University of Southampton, UK,
September 1992.

Williams, A.C, Brown, A.D and Baidas, Z., "Hierarchical module expansion using
templates’, FDL98 conference, Swiss Federal Institute of Technology, Lausanne,
September 1998.

Nijhar, T.P.K, and Brown, A.D., "Source level optimisation of VHDL for
behavioural synthesis", IEE proceedings on Computers and Digital Techniques,
144, no 1, January 1997, pp 1-6.

Nijhar, T.P.K, and A.D. Brown, A.D., "HDL-specific source level behavioural
optimisation”, IEE proceedings on Computers and Digital Techniques, 144, no 2,
March 1997, pp 138-144.

IEEE Standard for Binary Floating point Arithmetic, ANSI/IEEE Std 754-1985

Shirazi N., Walters, A.L. and Athanas, P. "Quantitative analysis of floating point
arithmetic on FPGA based custom computing machines”, Report, Virginia state
University, January 1995.

Wakamatsu A. "Implementation of single precision floating point square root on
FPGAs", Fifth annual IEEE SYMPOSIUM on field-programmable custom
computing machines, 1997, pp 226-232.

Barbara T., "Finally, behavioural synthesis is production-ready", Computer
Design, 36, no. 7, pp 57-63, July 1997.

Barbara T., "Behavioural synthesis yet to prove itself beyond DSP", Computer
Design, 34. no. 6, pp 88-96, June 1995.

Standard VHDL Language Mathematical Packages (MATH_REAL and
MATH_COMPLEX), 1076.2-1996

Volder J. E., "The CORDIC trigonometric computing technique”, IRE Trans.
Electron. Comput. 8, 1959, pp 330-334.

Z.A. Baidas, 2000 Appendix F: Papers 305

16. Chance R. J., "The effect of processor architecture on an efficient floating point
table look-up algorithm", Microprocessors and Microsvstems. 15, no. 8. October
1991, pp 411-415.

17. Mazenc C., Merrheim X. and Muller J., "Computing functions cos”and sin™ using
CORDIC", IEEE Transactions on Computers, 42, no. |, January 1993, pp.118 121.

18. Mutrie M, and Bartels R, "An approach to floating point error analysis using
computer algebra”, ACM Trans. Math., 7, 1992, pp 284-293.

Z.A. Baidas, 2000 Appendix F: Papers 306

Figure and table captions

Table 1: The floating point library.

Table 2: The unit hierarchy.

Table 3: Parameters for the design space trajectories of figure 5.

Table 4: Parameters for the design space trajectories of the quadratic equation solver

(example 2).

Table 5: Comparison between the MOODS square root unit and that from [11].
Figure I: A two-dimensional projection (area/delay) of behavioural design space.
Figure 2: The overall synthesis system.

Figure 3: The CORDIC algorithm.

Figure 4: Hierarchical floating point unit expansion.

Figure 5: Design space trajectories, showing the movement of a complex design as

user accuracy requirements change.
Figure 6: On-chip optimisation algorithm.

Figure 7: Distribution of functional unit bindings between the three base techniques
as a function of external ROM size.

Figure 8: Quadratic equation solver behavioural description.

Z.A. Baidas, 2000

sk ok

%

#

##

Appendix F: Papers

COMPLEX#

FUNCTION

Table
Iterative

CORDIC

Table
lterative
CORDIC

!
.
i
|
!

+ >~ =

*
*

*
3*

*
*

*
*

%
*

*
¥

*
*

*
*

In{z)
log1o(2)
log(z)
logn(2)
sin(z)
cos(z)
tan(z)
arcsin(z)
arccos(z)
arctan(z)
sinh(z)
cosh(z)
tanh(z)
arcsinh(z)
arccosh(z)
arctanh(z)
eZ

21 22

sqri(z)

M<K <<C< J I I <<C
Mg << <<

30333333 30Cw<w << I3 >S

ML 335333 I <<t

MWW 330X I3 IISS

conj(z)
real(z)
imag(z)
magn(z)
arg(z)

complex_to_polar(z)
polar_to_complex(z)

*
*
*
*
*

n/a
n/a

(LWL I ORI ool < <<<

to_float()
to_complex(,)

##
n/a

n/a
##

These are implemented using a single base technique/functional unit.

These return trivial results
The complex functions are all overloaded to allow input as real, complex polars or

complex Cartesians
Type changing functions support translation between VHDL type real and

integer[14] and IEEE float and complex[9].

Table 1: The floating point library

307

Z.A. Baidas, 2000

Appendix F: Papers

Number of units

Level Name (inc. overloads) Examples
’ Floating point 53 complex arcsin(),
functions (table 1) z1%
Floating point sin_cos_pre(),
2 2 125 : A
primitives sin_cos_main()
3 MOQODS functional 16 fixed point multiply,
units MUX, shift
Xilinx function
4 CLBs B generators, flip-flops
Table 2: The unit hierarchy

Z.A. Baidas, 2000

Appendix F: Papers

09

© "Area" (unit count)
N
o 7] o * * = *
> = > 3 |= o0 2% o 2 . ® »
S 5203 | £ 2% Su 8% E|-E & %z o3
Q RN T > 5 =0 gc| ®S=2ox §° 85 ! K] o2
2 EL | 52 o 8% | o8 2EFE 55 5 O =8 T9
G £ 3 g = o S|EGQI =ET=E £Ec| ¢ = S & 3=
- 5y 5 < S |gEcg| S2oa 50 £0 3 R 5 5
% Tle2| £EELE 9 “E § £ | &
TR S 0o £ o 5 5 o o
Qo Qo — —
Original | n/a n/a 10° | 523 525 36204 | 32307 | 1113
10 140 537 | 283 | 2515 | 2020 | 558
10° | 140 537 | 283 | 2544 | 2044 | 558
T1 0.000 | 10* | 614 544 | 395 | 3624 | 2983 | 584
10° | 781 550 | 397 | 3733 | 3065 | 590
10° | 946 550 | 398 | 3848 | 3213 | 596
10° | 160 514 | 275 | 2602 | 1908 | 538
10° | 160 514 | 275 | 2602 | 1908 | 538
T2 areq | 3410 10° | 160 514 | 275 | 2602 | 1908 | 538
10° | 204 551 | 295 | 2989 | 2244 | 587
10° | 694 547 | 310 | 3159 | 2583 | 592
102 | 160 514 | 275 | 2602 | 1908 | 538
10° | 160 514 | 275 | 2602 | 1908 | 538
T3 . 10% | 160 514 | 275 | 2602 | 1908 | 538
10° | 160 514 | 275 | 2602 | 1908 | 538
10° [160 | 6 | 10 | 10 "'514 | 275 | 2602 | 1908 | 538
102 | 140 519 | 285 | 2622 | 2148 | 513
10° | 140 519 | 285 | 2651 2177 | 513
T4 0.000 | 10" | 140 519 | 285 | 3774 | 3300 | 513
10° | 140 519 | 285 | 5698 | 5124 | 513
10° | 159 555 | 305 | 11134 | 10181 | 550
10% | 160 514 | 278 | 2648 | 2105 | 532
10° | 160 514 | 278 | 2648 | 2105 | 532
T5 delay | 3-410 10* | 160 514 | 278 | 2648 | 2105 | 532
y 10° | 157 527 | 298 | 4139 | 3524 | 549
10° | 155 528 | 299 | 7682 | 7058 | 542
102 | 160 514 | 278 | 2648 | 2105 | 532
10° | 160 514 | 278 | 2648 | 2105 | 532
T6 oo 10° | 160 514 | 278 | 2648 | 2105 | 532
10° | 160 514 | 278 | 2648 | 2105 | 532
10 | 160 514 | 278 | 2648 | 2105 | 532
* Up to the point of final realisation, the ‘area’ cost refers to data path only. The

controller is held in an abstract form until the final implementation - it is optimised

by MOODS on an equal basis to the datapath elements.

Table 3:

Parameters for the design space trajectories of figure 5.

*(Z 9jdwiexd) I3A]0S

uonenbs aneapenb Yy jo sat1033(ea) deds uSisap Iy} 10J SIjWRBIRY

P alqe L

-

d eiep 01 s19J01 1509 BaIv, Ay ‘uonesijeal reury jo jutod ay; 03 dn

"AJuo yie

O
=
o e o ",\,“ j‘% Trajectory
23
Q s
@ % =3 Optimisation
2 m o objective
—lolo|—|lolo :
Liglo|w|wlo|2| External ROM size
SEEEEER (kbyte)
—
A EENERE Delay
2o lola|=|8 (clock cycles)
_ Floating point
n functions*
- Virtual floating
o point primitives*
N Physical floating
point primitives*
219812199 Virtual .
Njw o Njw |~) functional units* | 2
o> $
s} . =
DD P et P Physical —_
RoiNolN|o functional units* | S5
Q
®|0|y | mim |2 |a g
Sl ®|0|0KR|Q| Virtual CLBs* | 2
ST Y o)
JIJE|FRQ|:| Physical CLBs
o|w|FHlw|n|0| (datapath)*
ASNINSR|N| Physical CLBs
oo N|O|= |5 (controlier)

000T ‘sepied 'V'Z

siade 1] xipuaddy

0183

Z.A. Baidas, 2000

Appendix F: Papers

Performance CLB CLE flio- |
Latency Issue (clock function P
flops
{clock cycles) cycles) generator
lterative 25 24 82 138
Pipeline 15 1 | 408 675

(i) Floating point square root FPGA implementation details (from [11]).

Speed (clock cycles) CLB usage
Real 20 297
Complex polar 25 314
Real & complex polar 26 363

(i) Isolated floating point (real and complex polar) square root FPGA MOODS
implementation details.

Table 5: Comparison between the MOODS square root unit and that from [11].

Z.A. Baidas, 2000 Appendix F: Papers

Area

Figure 1:

(98]
pan
(9]

Initial design

Each point in the trajectory
represents a different
structural design

Achievable design
region

Reducing
anneal
temperature

\ Unachievable design region
\//\ >
\ Delay

Final design

A two-dimensional projection (area/delay) of behavioural design space.

Z.A. Baidas, 2000

Appendix F: Papers

Behavioural
VHDL

VHDL source level
optimiser/Compiler [7,8]

l

= 5

~ VHDL function library

Hierarchy flattening
Synthesis and optimisation -
Simulated annealing
algorithm

--
--

Floating point

module library

I
I
|
|
1
1
:
|
ICODE |
|
i
!
I
|
)) | Floating point
Floating point | i
F . & , module library
optimiser (see figure 6) : parameters
!
I
L —
y : a— i
|)
ICODE+ ! Expanded |
: module |
| library |
| i
|
|
< I
Module ripper :
|
|
|
I
|
1
|
I

Structural gate -
level netlist

l

Logic synthesis, placement
& routing / FPGA mapping
tools

Technology—
dependent module
libraries

f

() -

FPGA

i

ASIC

Figure 2: The overall synthesis system

Z.A. Baidas

X —p
—

Circular (my=1, m,=0)

Linear (my=0, m»=0)

L

. 2000

N < [x

-0

‘__»X

[Z—»0

X —

y —b

X
Y

L —>

Hyperbolic (m1=-1, m,=0)

(Z}—>0

X
Y|—pyxz

Appendix F: Papers

- K1(x cos(z) -y sin(z))
- Ki(x cos(z) + y sin(z))

— Ka(x cosh(z) - y sinh(z))
—p Ks(x cosh(z) + y sinh(z))

K; are predefined constants

my, mp are control parameters

Figure 3: The CORDIC algorithm

N <

N

x

N <

X
Y
Z

——p K \'(x2 + y2)
___>O
L p 7 +tan’(y/x)

Circular (my=1, mo=1)

X
Y
Z

X
__»O
—p7+y/X

Linear (m4=0, mp=1)

X —»Kz (X% - y?)

Y

_»O

Z

-z + tanh ™ (y/x)

Hyperbolic (m=-1, my=1)

Z.A. Baidas, 2000

Appendix F: Papers

FLOAT F1, F2
COMPLEX C1
POLAR P1

F1 = sin(F2)

Cl = polar_to_complex{P1l)

(a)

COMPLEX C1
POLAR P1

T2 = arg(Pl)

T4 = sin(T2)
T5 = cos(T3)

IM(C1)

FLOAT F1, F2
Tl = sin_cos_pre(F2,&bufl)
Fl = sin_cos_main(T1l,bufl)
T3 = magn(P1l)

RE(C1l) = T5 * T3
= T4 * T3

Figure 4: Hierarchical floating point unit expansion

(0

L4 _))
—
()]

FLOAT F1, F2
COMPLEX C1
POLAR P1

Tl = sin cos_pre(F2,&bufl)
Fl = sin_cos_pre(Tl1l,bufl)

Cc1l polar_to_complex(Pl)

]

(b)

FLOAT F1, F2
COMPLEX C1
POLAR P1

Tl = sin_cos_pre(F2,&bufl)
Fl = sin_cos_main(T1,bufl)

T2 = arg(P1l)

T3 = magn(P1l)

T6 = sin_ cos_pre(T2,&buf2)
T4 = gin_cos_main(T6,buf2)
T7 = sin cos_pre (T3, &bufl)
T5 = sin_cos_main(T7,buf3)
RE(Cl) = T5 * T3

IM(Cl) = T4 * T3

(d)

Z.A. Baidas, 2000

Appendix F: Papers

10000

8000

6000

Area (FPGA CLB count)

4000

2000

i

Lo
i H ;
I \

I

. (523,33420)

@

® bbb ol
T4 Original (pre-optimised) design
| i i ;
! | | ‘ i
| I ; |
| ; .i
I | |
| | : |
5 | |
15 ; { !
] ! | :
| | |
¢ ?
| | |
| ! i
I 5 ?
B |
1 i
z

T3, T6 afe degenerat

EEEEEN

I

i

| T
. |
{ t
1
? 5
]
| . L
e | |
| |
i |
., |

0 200

400 600

Delay(clock cycles)

800

1000

Figure 5:

Design space trajectories, showing the movement of a complex design

as user accuracy requirements change.

Z.A. Baidas, 2000

Step (1)

Step (2)

Step (3)

Step (4)

Y

Functions
mapped to
on-chip

Appendix F: Papers

All constraints met: success

<\

A

Select
functional
unit

|

Increment
mapping

|

Estimate
area cost

BN

No area reduction

Area reduction

Implement
and update
costs

All constraints
met: success

Constraints
not met

mappings
possibie:
tailure

"Estimator” - what will MOODS do with
this implementation of the design?

Figure 6: On chip optimisation algorithm

No further

Further
mappings
possibie

Step (5)

Z.A. Baidas, 2000

Appendix F: Papers

Number of operations
o =~ N W A~ 00 O N

(a) Optimised for delay

M On-chip table O Off-chip table BCORDIC O Iterative series

0 1.7 3.4 6.8 Infinite
External ROM (kbyte)

Figure 7:

Number of operations

(b) Optimised for area

Il On-chip table O Off-chip table BCORDIC Olterative seriesJ

N W b~ OO N

—

0 1.7 34 6.8 Infinite
External ROM (kbyte)

Distribution of functional unit bindings between the three base
techniques as a function of external ROM size.

318

Z.A. Baidas, 2000 Appendix F: Papers

ENTITY quad IS

PORT (a,b,c : IN float;
single_root : OUT bit;
outputl,output? : OUT complex;
ready : OUT bit
)i

END;

ARCHITECTURE behave OF quad IS
BEGIN
PROCESS
VARIABLE tl : float;
VARIABLE t2 : complex;
BEGIN
ready <= '0';
WAIT FOR 10 ns;
IF (a = to_float{0)) THEN

ready <= '1’;
WAIT FOR 10 ns;
END PROCESS;
END behave;

single_root <= '17;

tl := -c/b;

outputl <= float_to_complex{tl,to_float(0));
ELSE

single_root <= '0’;

t2 := sqgrt(b*b - to_float(4d)*a*c);

outputl <= (float_to_complex(-b,to_=£float(0))-t2)/(to_£float(2)*a);

output2 <= (fleoat_to_complex(-b,to_float(0))+t2)/(to_float(2)*a);
ENDIF;

Figure 8: Quadratic equation solver behavioural description

Z.A. Baidas, 2000 References

o8]
[
-]

References

12.

13.

Baker, K.R. - Currie, A.J. - Nichols, K.G., "Multiple Objective Optimisation in a
Behavioural Synthesis System", IEE Proceedings - G, Vol. 140, No.4 August 1993,

pp- 253-260.

Baker, K.R. - Brown, A.D. - Currie, A.J., "Optimisation Efficiency in Behavioural
Synthesis”, IEE Proceedings on Circuits, Devices and Systems, Vol. 141, No. 5.
October 1994, pp. 399-406.

Brown, A.D. - Baker, K.R. - Williams, A.C., "On-Line Testing of Statically and
Dynamically Scheduled Synthesized Systems”, IEEE Transactions on Computer-
Aided Design, Vol. 16, No. 1, January 1997, pp. 47-57.

Baker, Keith R., "Multiple Objective Optimisation of Data and Control Paths in a
Behavioural Silicon Compiler", PhD Thesis, University of Southampton, September
1992.

Baker, Keith R., "The MOODS Synthesis System - User Manual v2.xx", University
of Southampton, July 1993.

"Standard VHDL Reference Manual, IEEE Std 1076-1993", IEEE Catalog No.
SH16840, 1993.

McFarland, M.C. - Parker, A.C. - Camposano, R., "The High-Level Synthesis of
Digital Systems", Proceedings of the IEEE, Vol. 78, February 1990, pp. 301-318.

Camposano, R., "From Behavior to Structure: High-Level Synthesis", IEEE Design
and Test of Computers, Vol. 7, No. 5, October 1990, pp. 8-19.

Rushton, A., "VHDL for Logic Synthesis", McGraw-Hill, 1995, ISBN: 0-070-09092-
6.

Lin, Youn-Long, "Recent Development in High-Level Synthesis", ACM Transactions
on Design Automation of Electronic Systems, Vol. 2, No. 1, January 1997, pp. 2-21.

Gajski, Daniel D. - Ramachandran, Loganath, "Introduction to High-Level
Synthesis”, IEEE Design and Test of Computers, Vol. 11, No. 4, Winter 1994, pp.
45-54.

Micheli, Gionanni, "High Level Synthesis of Digital Circuits", IEEE Design and Test
of Computers, Vol. 7, No. 5, October 1990, pp. 6-7.

Camposano, R. - Saunders, L.F. - Tabet, RM., "VHDL as Input for High Level
Synthesis”, IEEE Design and Test of Computers, Vol. 8, No. 1,March 1991, pp. 43-
49.

Z.A. Baidas, 2000 References 321

14.

15.

20.

21.

23.

24.

25.

26.

27.

Eles, Petru - Kuchcinski, Krzysztof - Minea, Marius, "Compiling VHDL into a High-
level Synthesis Design Representation”, EURO-DAC 92 : European Design
Automation Conference, Ch. 121, 1992, pp. 604-609.

McFarland, M.C. - Parker, A.C. - Camposano, R., "Tutorial on High-Level
Synthesis", Proceedings of the 25th ACM/IEEE Design Automation Conference,

1988, pp. 330-336.

Nijhar, T.P.K. - Brown, A.D., "HDL-Specific Source Level Behavioural
Optimisation”, IEE Proceedings-Computers and Digital Techniques, Vol. 144, No. 2,
1997, pp. 138-144.

Nijhar, T.P.K. - Brown. A.D., "Source Level Optimisation of VHDL for Behavioural
Synthesis", IEE Proceedings-Computers and Digital Techniques, Vol. 144, No. 1,
1997, pp.1-6.

Camposano, Raul, "Behavioral Synthesis”, Design Automation Conference, Ch. 161,
1996, pp. 33-34.

Williams, A.C., "A Behavioural VHDL Synthesis System using Data path
Optimisation”, PhD Thesis, University of Southampton, July 1997.

De Micheli, Giovanni, "Synthesis and Optimisation of Digital Circuits", McGraw-
Hill, 1994, ISBN: 0-071-13271-6.

McFarland, M.C., "Reevaluating the Design Space for Register-Transfer Hardware
Synthesis", IEEE International Conference on Computer-Aided Design, ICCAD-87 -
Digest of Technical Papers, 1987, Ch. 119, pp. 262-265.

Brewer, Forrest - Gajski, Daniel, "Chippe: A System for Constraint Driven
Behavioural Synthesis", IEEE Transactions on Computer-Aided Design, Vol.9, No.

7, July 1990, pp. 681-694.

Camposano, Raul - Rosenstiel, Wolfgang, "Synthesizing Circuits From Behavioral
Descriptions”, IEEE Transactions on Computer-Aided Design, Vol. 8, No. 2,
February 1989, pp. 171-180.

Walker, Robert A. - Chaudhuri, Samit, "Introduction to the Scheduling Problem",
IEEE Design and Test of Computers, Vol. 12, No. 2, Summer 1995, pp. 60-69.

Xia, C. - Cheng, H.D., "High-Level Synthesis: Current Status and Future Prospects”,
Circuits Systems Signal Processing, Vol. 14, No. 3, 1995, pp. 351-400.

Paulin, Pierre G. - Knight, John P., "Force-Directed Scheduling for the Behavioral
Synthesis of ASIC’s", IEEE Transactions on Computer-Aided Design, Vol.8, No. 6,
June 1989, pp. 661-678.

Tseng, Chia-Jeng - Siewiorek, Daniel P., "Automated Synthesis of Data paths in
Digital Systems", IEEE Transactions on Computer-Aided Design, Vol. 5, No. 3, July
1986, pp. 379-395.

Z.A. Baidas, 2000 References

28.

29.

30.

31.

32.

33.

34.

35.

36.

37.

38.

39.

4Q.

42.

43.

44.

(O3]
12
[Re)

Septien, J. - Mozos, D. - Tirado, J.F. - Hermida, R. - Fernandez. M. - Mecha. H..
"FIDIAS: An Integral Approach to High-Level Synthesis", IEE Proceedings -
Circuits, Devices and Systems, Vol. 142, No. 4, August 1995.

"Quick Start Guide for Xilinx Alliance Series 1.5", Xilinx, Version 1.5, 1998.
"LeonardoSpectrum User’s Guide", Exemplar Logic, Inc. Version 1999.1, 1999.

"Synergy VHDL Synthesizer and Optimizer Tutorial”, Cadence Design Systems,
Version 2.2, June 1995.

Baker, Keith R., "Writing Behavioural VHDL for MOODS Synthesis - User Manual
v1.xx", University of Southampton, July 1993.

Rutenbar, Rob A., "Simulated Annealing Algorithms: An Overview", IEEE Circuits
and Devices, Vol. 5, No. 1, January 1989, pp. 19-26.

Nahar, S. - Sahni, S. - Shragowitz, E., "Simulated Annealing and Combinatorial
Optimisation", 23rd Design Automation Conference, 1986, pp. 293-299.

Kirkpatrick, Scott, "Optimization by Simulated Annealing: Quantitative Studies",
Journal of Statistical Physics, Vol. 34, No. 5/6, 1984, pp. 975-986.

Kirkpatrick, S. - Gelatt Jr., C.D. - Vecchi, M.P., "Optimization by Simulated
Annealing", Science, 13 May 1983, Vol. 220, No. 4598, pp. 671-680.

Metropolis, N. - Rosenbluth, A. - Teller, A. - Teller, E., "Equation of State
Calculations by Fast Computing Machines", Journal of Chemical Physics, Vol. 21,

1087, 1953.

Williams, A.C. - Brown, A.D. - Baidas, Z.A., "Optimisation in Behavioural Synthesis
using Hierarchical Expansion: Module Ripping", In Preparation.

Williams, A.C. - Brown, A.D. - Baidas, Z.A., "Hierarchical Module Expansion in a
VHDL Behavioural Synthesis System", FDL98, September 1998.

Goldberg, David, "The Design of Floating-Point Data Types", ACM Letters on
Programming Languages and Systems, Vol. 1, No. 2, June 1992, pp. 138-151.

"IEEE Standard for Binary Floating-Point Arithmetic, IEEE Std 754-1985", 1985.

"IEEE Standard for Radix-Independent Floating-Point Arithmetic, IEEE Std 854-
1987", 1987.

Advanced Micro Devices Inc., "IEEE Floating-Point Format", Microprocessors and
Microsystems, Vol. 12, No. 1, 1988, pp. 13-23.

Henkel, Hartmut, "Improved Addition for Logarithmic Number system", IEEE
Transactions on Acoustics, Speech, and Signal Processing, Vol. 37, No. 2, February

1989.

Z.A. Baidas, 2000 References

45.

46.

47.

48.

49.

50.

51.

52.

53.

54.

55.

56.

57.

58.

(%)
9]
(U]

Lai, Fang-shi, "A Hybrid Number System Processor with Geometric and Complex
Arithmetic Capabilities”, IEEE Transactions on Computers. Vol. 40, No. 8, August
1991.

Das, Debasish - Mukhopadhayaya, Krishnendu - Sinha. Bhabani P., "Implementation
of Four Common Functions on an LNS Co-Processor”, IEEE Transactions on
Computers, Vol. 44, No. 1, January 1995, pp. 155-161.

Coleman, J.N. - Chester, E.I., "A 32-bit Logarithmic Arithmetic Unit and its
Performance Compared to Floating Point", 14th IEEE Symposium on Computer
Arithmetic, Proceedings, Ch. 32, 1999, pp. 142-151.

Oberman, Stuart Franklin, "Design Issues in high Performance Floating point
Arithmetic Units", Technical report, Stanford University, Reference No. CSL-TR-96-

711, December 1996,

Booth, Andrew D., "A Signed Binary Multiplication Technique", Quarterly Journal
of Mechanics and Applied Mathematics, Vol. 4, 1951, pp. 236-240.

Al_Tawaijry, Hesham - Flynn, Michael, "Performance/Area Tradeoffs in Booth
Multipliers", Technical report, Stanford University, Reference No. CSL-TR-95-684,

November 1995.

Bewick, Gray W., "Fast multiplication: Algorithms and Implementation"”, PhD
Thesis, Stanford University, February 1994.

Wilson, J.B. - Ledley, R.S., "An Algorithm for Rapid binary Division", IRE
Transactions on Electronic Computers Vol. 16, 1961, pp. 224-226.

Ledely, Robert Steven, "Digital Computer and Control Engineering", McGraw-Hill,
1960.

Oberman, Stuart Franklin, "Design Issues in High Performance Floating Point
Arithmetic Units", PhD Thesis, Stanford University, November 1996.

Volder, J.E., "The CORDIC Trigonometric Computing Technique", IRE Transactions
on Electronic Computers, Vol. EC-8, 1959.pp.330-334.

Walther, J.S., "A Unified Algorithm for Elementary Functions”, Spring Joint
Computer Conference Proceedings, Vol. 38, 1971, pp.379-385.

Mazenc, Christophe - Merrheim, Xavier - Muller, Jean-Michel, "Computing
Functions cos™' and sin™ Using Cordic", IEEE Transactions on Computers, Vol. 42,

No. 1, January 1993, pp. 118-122.

Wong, W.F. - Goto, E., "Fast Evaluation of The Elementary Functions in Single
Precision", IEEE Transactions on Computers, Vol. 44, No. 6, March 1995, pp. 453-
457.

Z.A. Baidas, 2000 References

59.

60.

61.

62.

63.

64.

65.

66.

67.

68.

69.

70.

71.

»
o
=~

Gal, Shmuel - Bachelis, Boris, "An Accurate elementary Mathematical Library for
the IEEE Floating Point Standard", ACM Transactions on Mathematical Software.
Vol. 17, No. 1, 1991, pp. 26-45.

Atkinson, Kendall E., "An Introduction to Numerical Analysis". John Wiley & Sons.
1978, ISBN: 0-471-02985-8.

Muller, Jean-michel, "Elementary Functions, Algorithms and Implementation”.
Birkhauser, 1997, ISBN: 0-817-63990-X.

Ligon, Walter B. - McMillan, Scott - Monn, Greg. "A Re-evaluation of the
Practicality of Floating-Point Operations on FPGAs", IEEE Symposium on FPGAs
for Custom Computing Machines Proceedings, Ch .65, 1998, pp .206-215.

Li, Yamin - Chu, Wanming, "Implementation of Single Precision Floating Point
Square Root on FPGAs", 5th Annual IEEE Symposium on Field-Programmable
Custom Computing Machines, Ch. 32, 1997, pp. 226-232.

Louca, Loucas - Cook, Todd A. - Johnson, Willian H., "Implementation of IEEE
single Precision Floating Point Addition and Multiplication on FPGAs", ", IEEE
Symposium on FPGAs for Custom Computing Machines Proceedings, Ch. 24, 1996,

pp- 107-116.

Shirazi, Nabil - Walters, Al - Athanas, Peter, "Quantitative Analysis of Floating Point
Arithmetic on FPGA Based Custom Computing Machines".

Xing, Shanzhen - Yu, William Wing Hong, "FPGA-Based Floating-Point Datapath
Design for Geometry Processing”, SPIE Conference on Configurable Computing:
Technology and Application, November 1998.

Brunvand, Erik - Novak, Joe H., "Using FPGAs to Prototype Self-Timed Floating-
Point Co-Processors"”, IEEE 1994 Custom Integrated Circuits Conference, 1994.

Scheelen, J., "Floating-Point DSP Primitives for the ASA Silicon compiler”,
International Conference on DSP Applications and Technology, Ch. 10, 1991.

Kyrloglou, N.A. - Kouforavlou, O.G. - Goutis, C.E., "Number Format conversion:
Algorithm and VLSI Module Generator", Int. J. Electronics, Vol. 73, No. 1, 1992,
pp.-145-156.

Houelle, A. - Mehrez, H., "On Portable Macro-Cell FPU Generators Using the Fully
754-1EEE Standard", IEEE Transactions on VLSI Systems, Vol. 6, No. 1, 1998, pp.
1749-1754.

Aberbour, Mourad - Houelle, Alain - Mehrez, Habeb - Vaucher, Nicolas - Guyot,
Alain, "On Portable Macrocell FPU Generators for Division and Square Root
Operators Complying to the Full IEEE-754 Standard”, IEEE Transactions on VLSI
Systems, Vol. 6, No. 1, March 1998, pp. 114-121.

Z.A. Baidas, 2000 References

72.

73.

74.

75.

76.

7.

78.

79.

80.

81.

82.

83.

84.

85.

86.

87.

9
R
Lh

Compan. A. - Debaud, P. - Delorme, V. - Francois, J.A. - Mehrez. H. - Pecheux. F..
"GAF : A Portable Standard-Cell Floating Point Adder Generator Using The CXgen
Function Library", Microprocessing and Microprogramming, Vol. 32, 1991, pp. 637-
644.

"COSSAP Design Environment Datasheet", Synopsys, Inc., 1999.
"Behavioural Compiler Datasheet”, Synopsys. Inc., 1999.
"Design Compiler Datasheet”, Synopsys, Inc., 1999.

"Datasheet Signal Processing Workstation with Convergence Simulation
Architecture”, Cadence Design Systems, 1998.

"Datasheet Visual Architect”, Cadence Design Systems, 1997.

"Datasheet SPW Floating-Point Communications Library", Cadence Design Systems,
1997.

Barbara, T., "Finally, Behavioural Synthesis is Production Ready", Computer Design,
Vol. 36, No. 7, July 1997, pp. 57-63.

Stiefel, Eduard L., "An Introduction to Numerical Mathematics", Academic Press,
1963.

Chance, R.J., "The Effect of Processor Architecture on an Efficient Floating-Point
Table look-up Algorithm", Microprocessors and Microsystems, Vol. 15, No. 8,
October 1991, pp. 411-415.

Hahn, Helmut - Timmermann, Dirk - Hosticka, Bedrich J. - Rix, Bernold, "A Unified
and Division-Free CORDIC Argument Reduction Method with Unlimited
Convergence Domain Including Inverse Hyperbolic Functions"”, IEEE Transactions
on Computers, Vol. 43, No. 11, November 1994, pp. 1339-1344.

Hu, Yu Hen, "The Quantization Effects of the CORDIC Algorithm", IEEE
Transactions on Signal Processing, Vol. 40, No. 4, April 1992, pp. 834-844.

Kota, Kishore - Cavallaro, Joseph R., "Numerical Accuracy and Hardware Tradeoffs
for CORDIC Arithmetic for Special -Purpose Processors”, IEEE Transactions on
Computers, Vol. 42, No. 7, July 1993, pp. 769-779.

Spiegel, Murray R., "Theory and Problems of Complex Variables", McGraw-Hill,
1974, ISBN: 0-070-84382-1.

Weltner, K. - Grosjean, J. - Schuster, P. - Weber, W.J., "Mathematics for Engineers
and Scientists”, Stanley Thornes, 1995, ISBN: 0-859-50120-5.

Char,B.W. - Geddes, K.O. - Gonnet, G.H. - Leong, B.L. - Monagan, M.B. - Watt,
S.M., "Maple V Library Reference Manual", Springer-Verlag, 1991.

Z.A. Baidas, 2000 References 326

88.

89.

90.

91.

92.

93.

94.

95.

96.

97.

98.

99.

100.

Hennessy. John L. - Patterson, David A.. "Computer Organization and Design. The
Hardware/Software Interface”, Morgan Kaufmann, 1994, ISBN: 1-558-60282-8.

"Standard VHDL Language Mathematical Package (MATH_REAL and
MATH_COMPLEX), IEEE P1076.2", 1996.

Nhon, T.Q. - Flynn, M., "An Improved Algorithm for High-Speed Floating-Point
Addition", Technical report, Stanford University, Reference No. CSL-TR-90-442,
August 1990.

Al-Twaijry, Hesham Abdulaziz, "Area and Performance Optimised CMOS
Multiplier", PhD Thesis, Stanford University, August 1997.

Oberman, Stuart F. - Flyyn, Michael J., "Design Issues in Floating-Point Division",
Technical report, Stanford University, Reference No. CSL-TR-94-647, December

1994,

Oberman, Stuart F. - Flyyn, Michael J., "An Analysis of Division Algorithms and
Implementations”, Technical report, Stanford University, Reference No. CSL-TR-95-
675, December 1996.

Oberman, Stuart F. - Flyyn, Michael J., "Division Algorithms and Implementation”,
IEEE Transactions on Computers, Vol. 46, No. 8, 1997, pp. 833-854.

Churchhouse, R.F., "Handbook of Applicable Mathematics”, Vol. 3, John Wiley and
Sons, 1981, ISBN: 0-471-27947-1.

Swartzlander, Earl E. [editor], "Computer Arithmetic", Dowden, Hutchinson & Ross
Inc. 1980, ISBN 0-879-33350-2.

Mutrie, Mark P.W. - Bartels, Richard H. - Char, Bruce W., "An Approach for
Floating-Point Error Analysis using Computer Algebra”, ISSAC 92. Papers from the
international symposium on Symbolic and algebraic computation, 1992, pp. 284-293.

Bauer, F.L., "Computational Graphs and Rounding Error", Siam Journal of
Numerical Analysis, Vol. 11, No. 1, March 1974, pp. 87-96.

Molenkamp, J.H.J. - Goldman, V.V. - Hulzen, Van, "An Improved Approach to
Automatic Error Cumulation Control", Proceedings of the 1991 international
symposium on Symbolic and algebraic computation , 1991, pp. 414-418.

Hulshof, B.J.A. - Van Hulzen, J.A., "Automatic Error Cumulation Control",
EUROSAM §84: International Symposium on Symbolic and Algebraic Computation,
Ch. 37, 1984, pp. 260-271.

. "The Programmable Logic Data Book", Xilinx, 1998, PN 0010323.

. Burger, Robert G. - Dybvig, R. Kent, "Printing Floating-Point Numbers Quickly and

Accurately”, ACM Sigplan Notices, Vol. 31, No. 5, 1996, pp. 108-116.

Z.A. Baidas, 2000 References 327

103.

104.

105.

107.

108.

109.

112.

113.

Wakerly, John F., "Digital Design Principles and Practices", 2nd ed.. Prentice Hall.
1994, ISBN: 0-130-59973-5.

Langet, S.H.. "A Comparison of the Floating-Point Performance of Current
Computers”, Computers in Physics, Vol. 12, No. 4, July/August 1998, pp. 338-345.

Goldberg, David, "What every computer scientist should know about floating-point
arithmetic”, ACM Computing Surveys, Vol. 23, No. 1, March 1991, pp. 5-48.

. Alfred, V. Aho - Jeffrey, D. Ullman, "Principles of compiler design", Addison-

Wesley, 1977, ISBN: 0-201-00022-9.

Kreyszig, Erwin, "Advanced Engineering Mathematics", 7th ed., Jhon Wiley & Sons,
1993, ISBN: 0-471-59989-1.

Press, W.H. - Teukolsky, S.A. - Vetteling, W.T. - Flannery, B.P., "Numerical Recipes
in C: The Art of Scientific Computing”, Cambridge University Press, 2nd edition,
1992, ISBN: 0-521-43108-5.

Davenport, J.H. - Siret, Y. - Tournier, E., "Computer Algebra Systems and
Algorithms for Algebraic Computation”, Academic Press, 1988, ISBN: 0-122-04230-

1.

. "3DNOW Technology Manual", Advanced Micro Devices, Inc., 1998.

. Thakkar, Shreekant - Huff, Tom, "The Internet Streaming SIMD Extensions", Intel

Technology Journal Q2, 1999.

Dewar, R.B.K. - Smosna, M., "Microprocessors a Programmer’s View", McGraw-
Hill, 1990, ISBN: 0-070-16638-2.

Milton, D.J.D., "Memory Allocation within Hardware Synthesis", Transfer Thesis,
University of Southampton, August 1999.

