
UNIVERSITY OF SOUTHAMPTON

DEPARTMENT OF ELECTRONICS AND COMPUTER SCIENCE

High-level Floating-Point Synthesis

Zaher A. Baidas

July, 2000

A thesis submitted for the title of
Doctor of Philosophy.

UNIVERSITY OF SOUTHAMPTON

High Level Floating-Point Synthesis

by

Zaher Abdulkarim Baidas

A thesis submitted for the degree of

Doctor of Philosophy.

Department of Electronics and Computer Science,

University of Southampton

July, 2000

UNIVERSITY OF SOUTHAMPTON

ABSTRACT

FACULTY OF ENGINEERING AND APPLIED SCIENCE

DEPARTMENT OF ELECTRONICS AND COMPUTER SCIENCE

Doctor of Philosophy

High Level Floating-Point Synthesis

by Zaher Abdulkarim Baidas

MOODS (Multiple Objective Optimisation in Data and control path Synthesis) is a high-
level synthesis system which provides the ability to synthesise a system level behavioural
description into a structural representation. The thesis represents an enhancement to the
original MOODS system to allow the designer to manipulate floating-point and complex
variables on an equal footing with all other data types; the additional complexities arising
from floating-point manipulation are completely hidden from the user.

Originally, the data processed by MOODS was fixed (occasionally variable) width
integers, and the functional units available were relatively unsophisticated (adders,
subtractors, multipliers, multiplexers and so on). The floating-point synthesis system
described here provides a library of high-level floating-point functions (trigonometric,
transcendental, and complex) to support the synthesis of behavioural designs incorporating
floating-point operations.

The floating-point library components themselves are implemented using a number of
base techniques, namely table lookup, the CORDIC algorithm, and iterative series.
Decisions about the mapping of base techniques onto functional units are left to a/ZoaOMg-
point optimiser, which makes individual binding choices based on global knowledge of the
overall design, allowing the internal sub-structures of these units to be shared which
results in a dramatic decrease in the overall hardware resources required to implement the
design.

Finally, an exemplar is designed and analysed in detail: a cubic equation solver synthesised
using the floating-point capability integrated within the MOODS environment.

Contents

Acknowledgements 12

Chapter 1: Introduction 13

Chapter 2: MOODS and behavioural synthesis 16

2.1 VHDL for behavioural synthesis 16

2.2 Behavioural synthesis 19

2.3 The design space 20

2.4 Internal representation 21

2.5 Scheduling and allocation 25

2.6 MOODS synthesis system 29

2.6.1 ICODE and internal representation 31

2.6.2 Transformations 36

2.6.3 The cost function 39

2.6.4 Simulated annealing optimisation 39

2.6.5 Hierarchical module expansion 42

2.6.6 Floating-point enhancement 43

Chapter 3; Background and related work 45

3.1 Real number representation 45

3.2 Fixed point functional units 47

3.2.1 Modified Booth multiplier 48

3.2.2 Rapid division algorithm 50

3.3 Developing floating-point functional units 52

3.4 Floating-point arithmetic on FPGA 53

3.5 Automatic floating-point implementation 56

3.5.1 Module generators 56

3.5.2 Block diagram tools 58

Chapter 4: Floating-point library design 62

4.1 Function evaluation 62

4.1.1 Range reduction 63

4.1.2 Table lookup 64

4.1.3 The CORDIC algorithm 73

4.1.4 Iterative series 76

4.1.5 Post evaluation 82

4.2 The status register 83

4.3 Supported functions 85

4.3.1 Algebraic operations 87

4.3.2 Logarithmic and exponential functions 91

4.3.3 Trigonometric functions 92

4.3.4 Hyperbolic functions 92

4.3.5 Type conversion functions 93

4.3.5 Complex units 94

4.4 Function implementation 96

4.4.1 Hierarchical unit expansion 97

4.4.2 Expanded module formation 98

Chapter 5: Floating-point optimisation 101

5.1 Function implementation interactions 101

5.2 Numerical interaction 105

5.2.1 Error propagation 106

5.2.2 Accuracy variation effect 109

5.3 Optimisation algorithm 111

5.4 Experimental evaluation 126

Chapter 6: Practical synthesis using FPGAs 133

6.1 FPGA prototyping board 133

6.2 Algebraic cubic equation solver 136

6.2.1 Input stage 138

6.2.2 Output stage 138

6.2.3 Core unit 139

4

6.3 Synthesis issues 145

6.3.1 Area reduction 145

6.3.2 Meeting timing specifications 148

6.3.3 Synchronisation and communication 150

6.3.4 Physical implementation issues 152

6.3.5 Final implementation 153

6.4 Comparison with microprocessors 156

Chapter 7: Conclus ions and further work 159

7.1 Source level optimisation from a floating-point perspective 160

7.2 Variable precision floating-point library 160

7.3 Component library 161

7.4 Function inversion block 162

7.5 Multi-operand floating-point units 164

Appendix A: IEEE standard for binary f loating point ar i thmetic 166

A. 1 Single-precision format evaluation 167

A.2 Operations with NAN 170

A.3 Status flags 171

A.4 Comparison operations 171

A.5 Rounding 172

Appendix B: The C O R D I C algor i thm 175

B.l The original CORDIC algorithm 175

B.2 The enhanced CORDIC algorithm 178

B.3 Computation of inverse sine and inverse cosine using CORDIC 183

Appendix C: Elementary funct ions detai ls 186

C.l Sine and cosine functions 186

C.1.1 Pre-processing stage 186

C. 1.2 Function generation unit 189

C.2 Inverse sine and inverse cosine functions 195

C.3 Inverse tangent function 199

C.4 Logarithmic functions 206

C.5 Exponential function 212

C.6 Square root function 217

C.7 VHDL library 221

Appendix D: Implementat ion details 227

D.l File formats 227

D.1.1 ICODE instruction database 227

D.l .2 Floating-point instruction database 229

D.1.3 Floating-point module library 230

D. 1.4 Floating-point expanded instruction 232

D.2 The ICODE format 234

D.3IC0DE4- 236

D.4 Adding a new instruction 239

Appendix E: Example details 241

E. 1 FPGA prototyping board data 241

E. 1.1 FPGA pin-out 241

E. 1.2 Device programming 242

E. 1.3 Device pin-assignment 243

E.2 VGA adapter 249

E.3 10 stage details 252

E.3.1 Input stage 252

E.3.2 Output stage 257

E.4 Source code listings 260

Appendix F: Papers 289

References 320

List of Figures

Figure 2.1 A generic high-level synthesis system 20

Figure 2.2 Area versus delay design space 21

Figure 2.3 Data flow graph representation 22

Figure 2.4 A sample VHDL example 23

Figure 2.5 Control dataflow graph 24

Figure 2.6 Extended timed Petri-net 25

Figure 2.7 ASAP and ALAP scheduling 27

Figure 2.8 List scheduling 28

Figure 2.9 Original MOODS system data flow 31

Figure 2.10 VHDL and the equivalent ICODE example 33

Figure 2.11 Control and datapath graphs 35

Figure 2.12 Transformation application steps 37

Figure 2.13 A one-dimensional conOguration space 40

Figure 2.14 The simulated annealing algorithm 41

Figure 2.15 Expansion process 43

Figure 2.16 MOODS synthesis system with the floating-point enhancement 44

Figure 3.1 IEEE single-precision floating-point format 46

Figure 3.2 Logarithmic number format 47

Figure 3.3 Modified Booth multiplier 49

Figure 3.4 Modified Booth multiplication example 50

Figure 3.5 A decomposition of a number into four types of strings 50

Figure 3.6 Rapid division algorithm flowchart 51

Figure 3.7 Short floating-point formats 54

Figure 3.8 FPGA-based data path block diagram 55

Figure 3.9 A design represented as a block diagram 59

Figure 3.10 Block diagram oriented tools data flow 60

Figure 4.1 Functional unit building blocks 63

Figure 4.2 Range reduction example 64

Figure 4.3 Interpolation procedure 65

7

Figure 4.4 Linear interpolation procedure 66

Figure 4.5 Cubic interpolation 67

Figure 4.6 Cubic interpolation procedure 67

Figure 4.7 Table entries variation with different interpolation degrees 70

Figure 4.8 Area/delay costs for different interpolation and infinite external ROM 70

Figure 4.9 Area/delay costs for different interpolation without external ROM 71

Figure 4.10 Partitioning the inverse sine function into sub-tables 72

Figure 4.11 Linear interpolation multiple sub-tables procedure 73

Figure 4.12 The CORDIC algorithm 74

Figure 4.13 Output functions for CORDIC 75

Figure 4.14 Absolute error in the CORDIC sine generator for 25 iterations 75

Figure 4.15 CORDIC error variation with the number of iterations 76

Figure 4.16 Taylor Theorem 77

Figure 4.17 Minimax approximation base theorems 78

Figure 4.18 Comparison between minimax and Taylor accuracy for different interpolation

degrees 79

Figure 4.19 Absolute error in the minimax approximation for the exponential function

different approximation degrees 80

Figure 4.20 Absolute error in the Taylor expansion for the exponential function for

different approximation degrees 81

Figure 4.21 Round to the nearest example 83

Figure 4.22 Raising a status flag example 85

Figure 4.23 Hyperbolic function evaluation equations 93

Figure 4.24 Complex sine function generator building blocks 95

Figure 4.25 Polar sine function generator building blocks 96

Figure 4.26 Complex function evaluation equations 96

Figure 4.27 Hierarchical unit expansion example 98

Figure 4.28 Expanded module formation 99

Figure 4.29 Expanded module development example 100

Figure 5.1 Sharing an external ROM interfacing unit 103

Figure 5.2 Sharing iterative series engine 104

Figure 5.3 Computational graph example 107

Figure 5.4 Error propagation model example 108

8

Figure 5.5 Design space for the three different benchmarks 110

Figure 5.6 The inverse tangent function parameters for a target accuracy = 10'̂ 112

Figure 5.7 Optimisation algorithm flowchart] 14

Figure 5.8 Benchl design space 120

Figure 5.9 Bench2 design space 120

Figure 5.10 Distribution of functional units between the three base techniques for benchl

for target area = 0 |im' as a function of external ROM size 121

Figure 5.11 Distribution of functional units between the three base techniques for bench I

for target area = 2e6 (im^ as a function of external ROM size 12!

Figure 5.12 Distribution of functional units between the three base techniques for benchl

for target area = infinity |Lim" as a function of external ROM size 122

Figure 5.13 Distribution of functional units between the three base techniques for bench2

for target area = 0 |im" as a function of external ROM size 122

Figure 5.14 Distribution of functional units between the three base techniques for bench2

for target area = 2.5e6 p,m" as a function of external ROM size 123

Figure 5.15 Distribution of functional units between the three base techniques for bench2

for target area = infinity |Llm' as a function of external ROM size 123

Figure 5.16 Area breakdown of the two designs based on similar base techniques (on-chip

based implementation) 124

Figure 5.17 Design space for the first set of designs 126

Figure 5.18 Design space for the second set of designs 127

Figure 5.19 Design space for the third set of designs 128

Figure 5.20 Design space for the fourth set of designs 129

Figure 5.21 Design space for the fifth set of designs 129

Figure 5.22 Design space for the sixth set of designs 130

Figure 5.23 Design space for the seventh set of designs 131

Figure 5.24 Design space for the eighth set of designs 132

Figure 5.25 Design space for the ninth set of designs 132

Figure 6.1 FPGA board block diagram 134

Figure 6.2 FPGA board photograph 136

Figure 6.3 Cubic equation solver block diagram 137

Figure 6.4 Cubic equation solver display 138

Figure 6.5 Cubic equation solution 139

Figure 6.6 Design 1 VHDL behavioural description 140

Figure 6.7 Design space for the original design 141

Figure 6.8 Partitioned core unit block diagram 142

Figure 6.9 Core unit design space 143

Figure 6.10 Alternative optimisation strategies 146

Figure 6.11 Area breakdown of both designs 147

Figure 6.12 Using the protect instruction 148

Figure 6.13 Macro port example 149

Figure 6.14 Handshaking signal waveform 150

Figure 6.15 Synchronisation within VHDL 151

Figure 6.16 Flip-flop timing parameters 151

Figure 6.17 Synchroniser schematic 152

Figure 6.18 MOODS multiplexors models 152

Figure 6.19 Final implementation block diagram 155

Figure 6.20 FPGA utilisation figures 155

Figure 6.21 The floating-point performance of different microprocessors compared to the

MOODS synthesis system 157

Figure 6.22 The cubic equation solver floating-point performance compared to modem

microprocessors 158

Figure 7.1 Function inversion block 163

Figure 7.2 Constructing the inverse function algebraically 164

Figure 7.3 Multi-operand floating-point unit example 165

Figure A. 1 Floating-point number representation 166

Figure A.2 Floating-point number bit patterns 169

Figure A.3 "Rounding to the nearest" examples 172

Figure A.4 "Rounding toward +infinity" example 173

Figure A.5 "Rounding toward -infinity" example 173

Figure A.6 "Rounding towards zero" example 174

Figure B.l A vector in three co-ordinate systems 178

Figure C.l Sine/cosine pre-processing stage 187

Figure C.2 Sine/cosine range reduction flow chart 189

Figure C.3 Error in the sine/cosine generator using linear interpolation engine with a

single-table and for different table sizes 191

10

Figure C.4 Error in the sine/cosine generator using linear interpolation and a partitioned

table for different table sizes 192

Figure C.5 Sub-tables range in the sine/cosine generator using linear interpolation and

partitioned table 192

Figure C.6 Error in the sine/cosine minimax engine for different approximation degrees 193

Figure C.7 Error in the sine/cosine CORDIC unit for different number of iterations 194

Figure C.8 inverse sine/inverse cosine generation unit 195

Figure C.9 Error in the inverse sine/inverse cosine generator using linear interpolation

engine with a partitioned table lookup 198

Figure C. 10 Error in the asin/acos generator based on the CORDIC engine for different

number of iterations 199

Figure C.I I Inverse tangent range reduction flow chart 201

Figure C. 12 Error in the inverse tangent generator using a single table and linear

interpolation for different table sizes 203

Figure C. 13 Error in the inverse tangent generator using a partitioned table and linear

interpolation for different table sizes 204

Figure C.14 Error in the inverse tangent generator using the minimax approximation for

different approximation degrees 205

Figure C.15 Error in the inverse tangent generator using the CORDIC algorithm for

different number of iterations 206

Figure C.16 Initial unit in the logarithm generator unit 207

Figure C. 17 Error in the natural logarithm generator using a single table and linear

interpolation for different table sizes 209

Figure C. 18 Error in the natural logarithm generator using a partitioned table and linear

interpolation for different table sizes 210

Figure C.19 Error in the natural logarithm generator using the minimax approximation and

for different approximation degrees 211

Figure C.20 Data flow in the logarithm post-processing stage 212

Figure C.21 Exponential pre-processing stage 213

Figure C.22 Error in the exponential generator using a single table and linear interpolation

for different table sizes 215

Figure C.23 Error in the exponential generator using the minimax approximation and for

different approximation degrees 216

11

Figure C.24 Error in the square root generator implemented as a single table lookup unit

and for different table sizes 218

Figure C.25 Error in the square root generator implemented as a partitioned table lookup

unit and for different table sizes 219

Figure C.26 Error in the square root generator using CORDIC and for different number of

iterations 220

Figure D.l ICODE instruction database file 229

Figure D.2 Floating-point instruction database file 230

Figure D.3 Floating-point Module library file 232

Figure D.4 Expanded ICODE instruction file 233

Figure D.5 Example ICODE file 235

Figure D.6 Example VHDL and ICODE files 237

Figure D.7 Example ICODE-i- file 238

Figure E. 1 FPGA package for the Xilinx FPGA used in the board 242

Figure E.2 Serial programming cable connector 243

Figure E.3 VGA adapter example 251

Figure E.4 Keyboard Information 253

Figure E.5 Keyboard interface flowchart 254

Figure E.6 Format conversion unit flowchart 256

Figure E.7 Output stage type conversion flowchart 259

12

Acknowledgements

I would like to express my profound thanks to a number of people around me who helped

make this project reality.

First I would like to thank my supervisor, Professor Andrew Brown. His constant and

consistent guidance, advice, encouragement, and conOdence were essential for completion

of this thesis, and are highly appreciated

I would also like to thank Dr. Alan Williams for his invaluable help and great patience and

diligence in answering my endless requests.

Thanks to all other members of the Electronics Systems Design Group at the University of

Southampton, in particular I am grateful to Dr. Mark Zwolinski for his ideas and

information and for giving me the chance to join the University as an MSc student at the

first place.

Finally, I would like to say a big thanks to my family. They have given their unconditional

support, knowing that doing so contributed greatly to my absence in my postgraduate

studies, during which we could have been geographically closer.

Z.A. Baidas, 2000 Chapter 1: Introduction

Chapter 1

Introduction

A floating-point number representation can simultaneously provide a large range of values

and a high degree of precision. However, their manipulation is considerably more

complicated than the corresponding fixed point operations. As a result, a portion of

modern microprocessors is often dedicated to hardware for floating-point computation.

In the past, silicon area constraints have limited the opportunity of synthesising floating-

point arithmetic units. Advances in integrated circuit fabrication technology have resulted

in both smaller feature size and increased die area, which has provided a larger transistor

budget. It is now therefore possible to implement floating-point systems on an ASIC or

even programmable logic devices. However, the complexity of floating-point units is still

a major limitation in realising cost effective, low volume systems. To overcome this

limitation, advances in current CAD tools are needed, to make it possible to sensibly

implement floating-point systems.

Behavioural synthesis works on a description that specifies the relationship between

system inputs and outputs by describing abstract data structures and functions to

manipulate them. The physical structure is not described, as the emphasis is on what the

design does and not how it does it. In addition, the data flow manipulation aspects for a

synthesis system are not generally concerned with the data fypg; the limitations of integer

arithmetic are imposed simply by the lack of functional units for more complicated data

types.

The MOODS (Multiple Objective Optimisation in Data and control path Synthesis) [1,2,

3, 4, 5] is a behavioural synthesis system which transforms a VHDL (Very High Speed IC

Hardware Description Language) [6] description into a structural netlist. It implements

global optimisation of a design data flow and control graph by the repeated application of

small, reversible (behaviour preserving) transformations. The system is designed to

Z.A. Baidas , 2000 Chapter 1; Introduction 14

support overall optimisation with respect to widely differing objectives: currently these are

total area and maximum delay. The manipulation of these objectives form the basis for

exploration of the design space, which is defined as the n-dimensional space that contains

all possible implementations of a specific design. The exploration is steered by a simulated

annealing algorithm that allows the diverse penalty functions from the various

optimisation criteria to be compared.

This thesis describes an enhancement to the basic MOODS synthesis system to support the

processing of designs containing floating-point (and complex) arithmetic. In particular, the

development of a floating-point module library and a floating-point optimiser capable of

making strategic decisions about the high level binding of each floating-point operation in

a way that meets the user's pre-defined goal.

The thesis is divided into seven chapters. Chapter 2 provides a general introduction to

behavioural synthesis and describes the basic MOODS synthesis system together with

more detailed examination of the core synthesis sub-tasks. This is followed in chapter 3 by

a discussion of some related work and commercial systems.

The design and implementation of the floating-point library is described in chapter 4,

along with several additional improvements to make the floating-point library integration

more flexible.

Chapter 5 provides an in-depth look at the floating-point optimisation challenges and the

way they were handled.

Chapter 6 highlights the development of a general purpose FPGA prototyping board and

details the design and synthesis of an exemplar; a cubic equation solver, utilises the

floating-point system discussed in the previous chapters.

Finally, chapter 7 concludes by suggesting a number of enhancements to the present

system providing areas for further research.

A number of appendices are also included providing additional information on various

aspects of the work. In particular. Appendix A outlines the main features of the IEEE 754

floating-point standard. Appendix B contains a detailed discussion of the CORDIC

Z.A. Baidas , 2000 Chapter 1: Introduction] g

algorithm. Appendix C provides further details of the floating-point library design and

implementation. Appendix D gives implementation details of the software, and Appendix

E gives details of the hardware used to support the demonstrator. Finally, Appendix F

contains a pre-print of a paper submitted to IEEE-CAD.

Z.A. Baidas . 2000 Chapter 2: M O O D S and behavioural synthesis

Chapter 2

MOODS and behavioural synthesis

Digital designs can be distinguished by the level of abstraction required to describe them

in three main domains [7, 8]: AZgonfWic or /gveZ views the system as a set of

variables and functions to manipulate them, where the system is

described as a set of registers and a set of transfer functions specifying the flow of data

between these registers [9]. ZgvgZ describes the system as a network of logic gates

and flip-flops with logic equations specifying the behaviour.

Behavioural or high-level synthesis tools [7, 8, 10, 11, 12] bridge the gap between an

abstract behavioural specification of a digital system and a register transfer level structure

that realises the given behaviour. It provides an environment that allows the designer to

experiment with a wide range of structural alternatives.

Starting with a behavioural description of a design and a set of user specified objectives,

behavioural synthesis builds a datapath by allocating hardware elements (functional units,

storage units and interconnects) and provides a controller to specify a set of operations to

be performed during every control step. It frees the designer from the difficulties of

selecting a good implementation, as it does not include design decisions such as timing

and parallelism.

2.1 VHDL for behavioural synthesis

VHDL [6] is a language for describing digital systems. It arose from the program funded

by the US Department of Defense in the late 1970s and early 1980s. In 1986, VHDL was

proposed as an IEEE standard, and it was adopted as the IEEE 1076 standard in December

1987. The language is being used for documentation, verification and synthesis of large

Z.A. Baidas, 2000 Chapter 2: M O O D S and behavioural synthesis 17

digital designs. This is actually one of the key features of VHDL. since the same VHDL

code can theoretically achieve all three of these goals.

The description of a digital system using VHDL is achieved with a set of

Each element in this hierarchy consists (usually) of a pair of design units: an and an

arcA/fgcfwre. The entity describes the lO ports of the element, and the architecture

describes the internal structure and/or the functionality (thus it is possible for an entity to

correspond to multiple architectures). This partitioning allows the design of an overall

system to be distributed amongst a number of designers; once the entity definitions are

established and agreed, the architecture designs can be carried out independently.

Within an architecture, VHDL allows three types of statement to describe the internals:

1. allows the use of any entity/architecture pair as a component

in the design architecture. Each instantiation has two parts: the name and the port map.

The component name defines the unit to be used, while the port map defines the way

the signals in the design connect the component 10 ports.

2. is used to describe the dataflow through the system. It is divided into

two groups: 1) simple signal assignment (x <= a xor b;), which simply assigns to the

target signal the value of the source expression, and 2) conditional signal assignment

(x <= a xor b when c = ' 1' else not (a xor b) ;) , w h i c h a S S i g n s tO t h e t a r g e t t h e

value of the first expression when the condition is true or the second if the condition is

false.

3. Processes provide a method to describe activities that must occur in a sequential order.

A process has three main parts: 1) a sensitivity list, 2) declaration part, and 3) statement

part. The sensitivity list defines the signals to which the process is sensitive. Any event

occurring on one of these signals causes the process to execute once. If the sensitivity

list is absent, the process will run forever, unless the user explicitly pauses the

execution with a (wait:) statement. The declaration part of the process allows the

declaration of types, variables, functions, and procedures, which are local to the

process. Finally, the statement part of the process contains a set of sequential

statements executed every time the process is activated.

Z.A. Ba idas , 2 0 0 0 Chap te r 2: M O O D S and behavioura l synthes is | g

VHDL was initially designed as a simulation language. This leads to a number of

problems when integrating VHDL in a synthesis environment and results in imposing

some limitations on the language features. Moreover, the language synthesisable subset

interpretation varies according to the level of abstraction at which the synthesis takes

place. As far as synthesis is concerned, the set of restrictions applied to

semantic interpretation of VHDL [13, 14] are summarised in the following:

» Processes do not execute in zero time, but take a number of clock cycles. Thus there is

no implicit assumption about the execution time of a process. In the simulation model,

the process executes in zero time unless the user explicitly defines a delay using a wait

statement.

» Time expressions (wait: for x sec) are converted into control steps. Therefore, delay

specifications (pausing process execution) can only be implemented as multiples of the

clock period. A delay of any period can be speciOed using the same wait statement in

the simulation model.

« Processes cannot be used to specify combinational logic. In contrast, a process can be

used to combinational logic in a simulation and/or RTL environment.

* Structural definitions such as component instantiation and gengmfg statements are not

allowed.

® Recursion within procedures is excluded, due to the difficulties created.

o Assert statements are for verification during simulation. They are ignored during

synthesis.

9 Statements within a process are executed in a sequential manner governed by an

implicit clock signal.

Sensitivity lists, such as (wait: on input) will not activate on asynchronous edges.

In the VHDL simulation model, a delay occurs within a process when a wait statement

appears. Sequential blocks between wait statements execute in zero delay. However, when

the design is synthesised, these blocks may take a number of clock cycles to execute,

dictated by the data dependency between operations and the synthesis objectives. It is

Z.A. Baidas, 2000 Chapter 2: M O O D S and behavioural synthesis 19

common in a simulation model to employ such processes to describe combinational logic

blocks that get activated when a transition occurs on any of the inputs and executes in zero

delay (or a delay speciOed by a wait statement). When synthesised, these blocks will not

be mapped to a combinational unit, instead, the system will generate a multi-cycled

sequential block with a number of internal registers.

Sensitivity lists are another issue that introduce major differences between a simulation

and a synthesis environment. WazV on and wnffV statements originally detect

asynchronous edges of the monitored signals. However, in a behavioural synthesis

environment, signal edges will be synchronised to the system clock, and transitions will

only be effective at clock edges, which might introduce timing mismatches between the

behavioural model and the synthesised structural model.

2.2 Behavioural synthesis

There are several advantages to high-level synthesis over conventional RTL synthesis

systems [9, 10, 15]. First, moving automation to a higher level assures a much shorter

design cycle'. Second, it allows comparing several designs in a reasonable amount of time.

Finally, an automated process may out-perform a human engineer in meeting most design

objectives.

The main tasks involved in a behavioural synthesis process are illustrated in Figure 2.1,

which shows the flow of data in a generic high-level synthesis system. A behavioural

description forms a starting point for a high-level synthesis system. The behavioural

description is then compiled into an mremaZ rgpreaeMfonoM. This stage may include a

compiler-like optimisation phase [16, 17] such as loop unrolling, common sub-expression

elimination, dead code elimination and inline expansion of procedures.

The increase in product ivi ty of behavioural design versus R T L design is typically quoted as a factor of five

[18].

Z . A . B a i d a s , 2 0 0 0 C h a p t e r 2 : M O O D S a n d b e h a v i o u r a l s y n t h e s i s 20

Compilation into
internal

representation

Scheduling and
allocation

. Module binding
\ and
/ controller

synthesis

System behavioural
description

Figure 2.1 A generic high-level synthesis system

The next two steps form the basis of translating behaviour into structure; scheduling and

allocation. Scheduling assigns operations to control steps (a control step is usually a single

clock cycle). Allocation involves assigning operations and variables to functional units,

storage hardware and communication paths.

The final step in this process consists of module binding and controller synthesis. In

module binding, the abstract datapath units are mapped to specific hardware

implementation provided by a technology dependent module library, while controller

synthesis provides the control circuitry responsible for generating the datapath control

signals.

2.3 The design space
High level synthesis allows the designer to investigate a range of implementations for a

particular input description, representing different trade-offs between a set of pre-defined

objectives. Each of these implementations forms a single point in what is called the design

space [4, 7, 19, 20], which is the n-dimensional space describing all possible

implementations of a single behavioural description, in terms of n design aspects. Figure

2.2 shows a two-dimensional design space represented by area and delay (processing

time). The design space is divided into two regions, containing designs that are either

achievable or unachievable. The two regions are separated by the optimal design curve,

which consists of a set of discrete points representing the most efficient implementations.

For a particular design, only a portion of the achievable region may be obtained as

indicated by the actual achievable region in Figure 2.2. This limitation in the design space

is due to a number of factors such as optimisation algorithms and design space modelling

methods [21].

Z.A. Baidas, 2000 Chapter 2; M O O D S and behavioural synthesis

CO
0)

ideal achievable
region

actual achievable
region

unachievable
region

optimal design curve

Delay

Figure 2.2 Area versus delay design space

2.4 Internal representation

The first step in high-level synthesis is to capture the behaviour of the design in the form

of an internal representation. This is essentially a one-to-one translation of the behavioural

description into a graph-based representation containing both the data flow and the control

flow of the design.

For simple designs, the data flow graph (DFG) [11] can be employed to describe the

system. The representation consists of a set of nodes, each node representing an operation

in the original behavioural description. Data dependency between two nodes is represented

by an arc connecting them. Figure 2.3 shows a sample VHDL input with the associated

data flow graph. Three nodes are generated representing one addition and two subtraction

operations. Node 3's dependency on nodes 1 and 2 is simply indicated by two arcs, the

first arc labelled C indicates node 3 dependency on node 1 through the internal variable C,

and the arc labelled D represents node 3's dependency on node 2.

Z.A. Baidas. 2 0 0 0 Chap te r 2: M O O D S and behavioura l synthes is 11

C : = A + 1 ;

D : = B - 3 ;

F := C - D;

if

1 8 #3

C\ /D

Figure 2.3 Data flow graph representation

The DFG is not sufficient for representing systems in which the execution sequence is

based on external conditions (if-eise and case blocks). The reason is that DFG is based

on data dependency, while a method of representing the control flow as well as the data

dependency is absolutely essential in such systems.

To represent the control and the data flow, some systems choose to combine the control

and datapath graphs into one structure, such as the Conrm/ Dafa/Zow Gro;?/! (CDFG) [22].

Other systems maintain separate graphs for data flow and control, with binding indicating

the relationship between elements in both graphs. An example of the latter is the

Timed Petri-Net (ETPN) [14] representation.

To illustrate these representations, a simple example is introduced in Figure 2.4 showing a

fragment of VHDL code. The graph representation of the code using CDFG and ETPN is

shown in Figure 2.5 and Figure 2.6 respectively.

Z.A. Baidas. 2000 Chapter 2; M O O D S and behavioural synthesis

C : = a. + b) / 2;

sel : = sign(c) xor sign(b);

IF sel = '1' then

r : = (a + c) / 2;

ELSE

r : = (b + c) / 2;

END IF;

Figure 2.4 A sample VHDL example

The CDFG describes the control flow of the system as a directed graph. Each node in this

graph is actually a separate DFG representing a block of assignments or a conditional

statement. The CDFG in Figure 2.5 comprises three DFGs. The first one represents the

two sequential assignments, the second two graphs representing the two conditional

assignments.

ETPN represents the datapath as a directed graph [14] with nodes and conditional arcs.

The nodes capture both the operators and the variables, while the arcs represent the

connections between nodes. These connections are only available if the arc associated

control signal (Sn) is activated. The control part of the design is described by the passage

of through a Petri-net, with vertices representing control states. The state

transaction is controlled by conditions (Cj) generated in the datapath. When a control state

receives a token, it activates the associated datapath conditional arc through its (Sn) signal

Z.A. Baidas . 2 0 0 0 Chapter 2: M O O D S and behavioural synthesis 24

a b

s g n I (s g n i

F sel = 1 then

FALSE

\
#2

I

t r u e I

a c

(#2

(3
r
V

Figure 2.5 Control dataflow graph

Z.A. Baidas, 2000 Chapter 2: M O O D S and behavioural synthesis 25

sel 1 I 1

s\

eq

S,/ \ s.

C, i I C,

+ 11 #2 I I Sign

Figure 2.6 Extended timed Petri-net

2.5 Scheduling and allocation

and aZZocafion form the basis of transferring behaviour into structure [10, 15].

These two tasks are closely interconnected and dependent on each other. For example,

high performance (speed optimised) designs require allocating more components in each

control step, to allow the exploitation of parallel execution of operations. On the other

hand, the most area-efficient designs use a minimum number of slow components, which

results in a large number of control steps. This dependency gives rise to a major problem:

any decision taken by one of the two tasks might reduce the number of possible

implementations, hence, reduce the actual achievable region in the design space.

The simplest approach to this problem is to set some resource limit before scheduling; this

is usually achieved by imposing a limit on the number of functional units available to

implement the design (e.g. one multiplier and two adders). An improved version of this

approach allows the process to iterate by re-synthesising with a modified resource limit. In

a similar way, the resource limit is imposed, and then scheduling is performed. The result

Z.A. Baidas. 2 0 0 0 Chapter 2: MOODS and behavioural synthesis 2 6

is then evaluated against the user objectives. According to the evaluation result, the

resource limit may be altered and the scheduling is performed again for a possible

improved implementation.

Another approach to this problem is to perform allocation before scheduling, trying to

produce an area minimised design within the timing constraints given. For example, some

systems [23] perform complete datapath synthesis including hardware component

mapping. Both global and local optimisations are employed at this stage to minimise the

area cost. Once the datapath is implemented, controller synthesis is then performed,

optimising the number of states according to the constrained imposed by allocation and the

timing constraints given.

The approach employed by the MOODS synthesis system, is to combine scheduling and

allocation together as a ggneraZ optimisation problem and introduces an optimisation

technique to minimise it.

The techniques that perform scheduling can be classified into two types [24]:

and Constructive scheduling creates a schedule from scratch by adding

operations one at a time until all operations are scheduled. Transformational scheduling,

on the other hand, starts with an initial schedule, generally maximally serial or maximally

parallel, and attempts to improve it by applying a number of local transformations.

Simple constructive scheduling is possible by scheduling operations 'as soon as possible'

(ASAP) or 'as late as possible' (ALAP) [25]. ASAP schedules operations in the earliest

time step allowed by data dependency, while ALAP assigns operations to the latest

possible time step. Figure 2.7 illustrates the meaning of ASAP and ALAP. The main

disadvantage of both techniques is that all operations are treated equally, with no priority

given to the more critical ones. When resource constraints are imposed, operations that are

less critical can be scheduled first on a limited resource (e.g. single multiplier). This might

block critical operations scheduling and result in an overall performance degradation.

[25] solves this problem by taking more controlled approach in selecting

the operation to be scheduled. At each control step, operations available to be scheduled

are kept in a list ordered by some pnonfy/wMcn'on; each operation in the list is then

scheduled in turn as long as the required resource is available, other wise, it will postponed

Z.A. Baidas. 2000 Chapter 2: M O O D S and behavioural synthesis 27

to the next scheduling step. Figure 2.8 represents list scheduling of a simple control graph:

operation 2 has a higher priority that operation 1. and is therefore scheduled before it,

providing an optimal solution in this case.

Step1

Step2

Step3

Step4

a) ASAP scheduling

Step2

Step3

Step4

1 2

\ /

8 JL6

! + I

V •

a) ALAP scheduling

Figure 2.7 ASAP and ALAP scheduling

In contrast with the above algorithms, the, force directed scheduling [26] attempts to create

an optimal schedule based on a more global view. The algorithm attempt to minimise the

number of resources required to implement the design within a given time constraint, by

distributing sharable operations as evenly as possible between the control steps.

Z.A. Baidas, 2000 Chapter 2: M O O D S and behavioural synthesis

Step1

Step2

1 2 3

^ Y y
\ /

>

2 3

Stepi

Step2
& w

a) Initial graph

T T

b) Scheduled graph

Figure 2.8 List scheduling

In contrast to constructive sclieduling, transformational scheduling is based on an iterative

process that applies a set of local transformations to the design initial schedule, moving the

design towards the point that meets the user pre-defined objectives in the design space.

Early transformational scheduling schemes employed exhaustive search to perform

scheduling. The approach tests all possible combinations of transformations and chooses

the best result. The method guarantees reaching an optimal solution, since all possible

designs are tested. However, it is very expensive in terms of computing time and may not

be considered as a viable solution for large designs.

Another approach to scheduling by transformations is to handle scheduling as an

optimisation problem, and employ an optimisation algorithm that exploits different

transformations to achieve the desired result [7], At this stage, a heuristic approach may be

employed to minimise the problem by selecting and applying transformations according to

a pre-defined regime guided by an analysis of the design.

In a similar manner to scheduling, resource allocation can be achieved using different

approaches. Allocation involves binding operators to functional units, binding variables to

storage units, and providing interconnect between registers and functional units.

Algorithms that implement allocation can be divided into two classes [10];

(fgrafzvg/coM.yfrwcnve and

Z.A. Baidas , 2000 Chapter 2: M O O D S and behavioural synthesis 2 9

The iterative/constructive algorithms perform allocation by iteratively assigning

operations, one at a time. These algorithms are distinguished by the method employed to

select both the element to be assigned and the unit to which it will be assigned. The

selection methods can be simply implemented to select elements in a fixed order: usually

the same order appears in the data flow graph. A more sophisticated approach relies on a

global selection, which tries to make the most suitable selection based on some metric: for

example, selecting an element that has the least effect on the total system area cost.

Global allocation techniques, on the other hand, deal with the datapath as a whole, and try

to allocate all its elements at once. A number of techniques may be used for global

allocation. A possible technique is to use a graph-based clique-partitioning algorithm [27],

which attempts to build up a graph representing datapath elements by nodes, with arcs

joining nodes that can share the same hardware. The problem is then reduced to finding a

maximal partitioning of fully interconnected nodes. Since each partition will represent

elements that can share the same hardware without conflict, the solution will represent the

minimum hardware cost.

Alternatively, branch-and-bound techniques [28] can be employed to perform global

allocation. The algorithm performs an exhaustive search by trying all possible allocations

of the datapath elements. The approach is very powerful since it checks every possible

solution and provides an efficient allocation for small designs. However, the exponential

increase in processing time makes it very expensive as the number of elements to be

allocated grows. The latter problem can be tackled by imposing bounding heuristics to

limit the number of solutions tried, for example, aborting any search that results in a cost

increase higher than a certain limit.

2.6 IVIOODS synthesis system

The vehicle used to carry out this synthesis research is called MOODS [1, 2, 3] (Multiple

Objective Optimisation of Data and control path Synthesis). The MOODS synthesis

system has been developed to compile a behavioural description of a digital circuit into a

structural description (VHDL or Verilog structural netlist), which utilises third-party tools

to implement the design. Figure 2.9 is the original MOODS system data flow showing the

major building blocks. It consists of four different tasks:

Z,A, Baidas , 2000 Chapter 2: M O O D S and behavioural synthesis 3 0

]. The VHDL behavioural description passes the source level optimiser [16. 17]. This

performs a source level optimisation on the VHDL source code, to reduce the

area/delay cost of the final hardware. Compiler-like transformations are applied at this

stage, such as algebraic simplification, dead code removal and inline expansion of

procedures.

2. The optimiser output is then compiler to an mrgnviefjiafg (ICODE) using a VHDL

language compiler. The ICODE represents the behaviour of the design at the register-

transfer level.

3. This stage is the actual synthesis process. It takes as input the ICODE file and a set of

user objectives, such as the design total area and maximum delay, and performs

scheduling, allocation and module binding and outputs a VHDL structural netlist

suitable for the target logic synthesis tool.

4. The final stage in this data flow is the low-level logic synthesis and technology

mapping, which utilises third-party tools, such as Cadence Synergy [29],

LeonardoSpectrum [30], and Xilinx Foundation [31], to transfer the structural netlist

into a physical circuit on an ASIC or a programmable logic device.

A detailed description of the MOODS synthesis system may be found in the literature [1,

2, 4, 5, 19, 32]. Outlined in the following sections are three major aspects of the synthesis

system which have a particular bearing on the discussion of the floating point subsystem:

® The initial compilation into ICODE and the internal representation.

® Module expansion.

o Global optimisation.

Z . A . B a i d a s , 2 0 0 0 C h a p t e r 2 : M O O D S a n d b e h a v i o u r a l s y n t h e s i s

FPQA ASIC

Behavioural
VHDL

User optimisdion
objectives

VHDL function library

(CODE

Core processor

Structural gate-
level neOist

Exparxded
module
library

Technology-
dependem module

libwles

Logic synthesis, placement
& routing / FPGA mapping

tools

VHDL source level
optimiser/Compiier

Module ripper
Synthesis and optimisation -

Simulated annealing
algorithm

Figure 2.9 Original MOODS system data flow

2.6.1 ICODE and internal representation

The MOODS synthesis system does not directly read the input behavioural description. It

reads an ICODE file. The logic behind this is to have MOODS as a general purpose

synthesis system that can handle different input languages simply by changing the ICODE

compiler at the front end. The VHDL2IC compiler (Figure 2.9(2)) translates the VHDL

description into an ICODE representation. The ICODE is in some way similar to an

assembly language, with additional control flow information. A simple example showing a

Z.A. Baidas , 2000 Chapter 2: M O O D S and behavioural synthesis 3 2

fragment of VHDL code with its equivalent ICODE is shown in Figure 2.10. It outlines

the key features of the ICODE language:

An ICODE instruction has the general form:

OPERATION <input:s> , <out:puts> <activat:ion list>

» Each ICODE instruction is executed once it has been acn'vaW. (Excluding the first

instruction, which is activated on the system reset.) Upon conclusion of an instruction,

all instructions in its acn'vanoM Z/j'f are activated. If the activation list is missing, the

next instruction is activated by default. For example, instruction ;2 activates both zJ

and !'4. While the absence of an activation list in results in an automatic activation of

i7.

Complex expressions are split down into a number of simple ICODE instructions, with

temporary variables identified in the figure as numeric literals. In the figure, the

VHDL assignment to the variable m is represented by five ICODE instructions (/2 to

z6).

VHDL functions and procedures are implemented as a separate with a

dedicated instruction MODULEAP to transfer the control to them. Instruction i9, for

example, halts the main execution and passes the control to the module. The

module output is returned in the var iablebefore the main execution continues.

o Conditional branches are implemented as an IF instruction with two activation lists.

One for the true condition (ACTT) and the other for the false (ACTF). In Figure 2.10,

the VHDL conditional statement (IF sel = 1 THEN ... ELSE ... END IF) is

implemented as two instructions iW and i] I, with instruction i72 being activated if the

condition is true, and being activated if the condition is false.

A complete definition of the ICODE is provided in Appendix D.

Z.A. Baidas, 2000 Chapter 2; M O O D S and behavioural synthesis 33

VHDL ICODE

i2 : MtJLT a,c,l ACT i3,i4
i3 : MULT 1,#4,2 ACT 15

m :- b*b - 4*a*c; i4
is
i6

: MULT b,b,3
: COLLECT 2
: MINUS 3,2,m

IF m >= 0 then ~il : GE m,#0,4
_i8 : IF 4 ACTT 19 ACTF 116

s := sqrt(m); : MODULEAP sqrt m,s

IF sel = 1 THEN
"ilO : EQ sel,#1,5

IF 5 ACTT 112 ACTF 114

r ;= -b + s;
""il2
_il3

NEG b,6
PLUS 6,s,r ACT 116

ELSE

r := -b - s;
"114
_il5

NEG b,7
MINUS 7,s,r

END IF;
il6

END IF;

FUNCTION MODULE sqrt input output

sqrt(input:integer)
return integer is

_END MODULE sqrt;

END;

Figure 2.10 VHDL and the equivalent ICODE example

In the core processor input stage, the design, in the form of an ICODE file, is transformed

into a control and datapath graph [1, 19]. Figure 2.11 shows the initial control and

datapath graphs for the ICODE listed in Figure 2.10.

The control graph defines the execution order of the ICODE instructions. Each node in the

graph defines a control state. Input and output arcs define a conditional control flow,

governed by signals generated on the datapath. For example, the datapath signal W/

decides on the transition from state to state or 5',6. Each control node has an

instruction list, defining the instruction to be executed when this node is activated. A set of

acyclic subgraphs divide these instructions into groups of Each

group has a unique group number. Instructions with different group numbers may be

executed concurrently. Instructions with the same group number are dependent on each

other and must be executed sequentially within the same control state.

Z.A. Baidas , 2000 Chapter 2: M O O D S and behavioural synthesis 3 4

The MOODS control graph is of six types of node (refer to Figure 2.11):

/. (for example j'g): has one input and one output, and can contain any

ICODE instructions except COLLECT, MODULEAP, or conditionals.

2. ForA: noc/g (for example j"?): the same as general node except that it has two or more

unconditional outputs. This node defines the starting point of a set of parallel execution

threads, where all the successors executed independently.

J. (for example 5",;): has one input and two or more outputs. The output

conditions are controlled by a signal from the datapath. This node is generated form an

ICODE conditional instruction such as an IF or CASE statement.

4. Dof (for example has two or more inputs, any of which can activate the node.

This node is a counterpart to the conditional node; it represents the reconvergence of

mutually exclusive control threads.

5. Ca/Z nWg (for example 5'$): the call node results from a module call instruction. When

this node is activated, it activates the execution of the required sub module. When the

sub module exits, control is returned to the submodule successor.

6. Collect node (for example 85)'. results from an ICODE collect instruction. The node

will not activate its descendant node until a fixed number of activations (indicated by

its argument) is received, thereby synchronising a set of parallel execution threads.

The node is a complement to the fork node, where the concurrent branches are joined

into a single node.

The MOODS datapath graph represents the functionality of the ICODE instructions with a

set of functional units, storage units, and interconnects. The flow of data though this graph

is governed by control signals generated by the appropriate control state in the control

graph.

The initial datapath graph is created as a one-to-one mapping of ICODE operations and

variables, with each ICODE variable represented as a storage unit (register), each ICODE

arithmetic or logical operation represented as a separate functional unit, and each

assignment operation represented as a set of registers, interconnects and control signals.

Z.A. Baidas, 2000 Chapter 2: MOODS and behavioural synthesis 35

S. Ii2

CALL ; sqMsub
moduie I

5,n)i10

J'^6

Figure 2,11 Control and datapath graphs

Z.A. Baidas . 2000 Chapter 2: M O O D S and behavioural synthesis 3 5

It is worth mentioning that the initial control and datapath graph represents a valid

structural implementation of the design. However, it is almost certainly a highly inefficient

implementation in terms of the total execution time and the large area cost. The

optimisation phase of MOODS now moves this implementation in the design space

towards the point that meets (if possible) the cost objective specified by the user

2.6.2 Transformations

MOODS employs an iterative optimisation strategy to perform synthesis. Iterative

optimisation is achieved by dividing the synthesis task into a number of local

transformations that are applied to different parts of the design using a dedicated

optimisation algorithm. This allows simultaneous consideration of synthesis sub-tasks by

performing scheduling, allocation and module binding simultaneously.

At present, MOODS has a set of fourteen different transformations. These transformations

are as a transformation applied to a valid design will result is a valid design. The

availability of inverse transformations allows a previous design decision to be reversed at

any stage during optimisation, which provides a solution for the problem encountered with

premature binding decisions which may result in a design that is not optimal.

Transformation selection and application consists of four distinct steps, as illustrated in

Figure 2.12;

1. Dam involves selecting a transformation and the portion of the design to

which it should be applied. The selection varies according to the optimisation algorithm

involved and is performed randomly in the annea/mg algorithm (see section

2.6.4).

2. Testing involves checking the validity of the transformation and ensuring that it will not

modify the design behaviour.

3. Ejf/mafzoM predicts the effect of the transformation on the system performance without

actually altering the design.

4. Execution, applies the transformation to the design.

Z.A. Baidas , 2 0 0 0 Chapte r 2: M O O D S and behav ioura l syn thes i s 37

MOODS transformations are divided into two groups: fm/zj/bmzofz'ozzj which

apply mainly to the control graph, and n//ocofzo;z azẑ / Am f̂zzzg nYzzẑ /brzziafz'ozzA- which

modify the design datapath. Scheduling transformations are listed in Table 2.1. while

allocation and binding transformations are listed in Table 2.2.

step 1 Select transformation
and target

Test transformation
validity

Transformation
valid ?

step 3
Estimate the

transformation effect on
the design

Perform t h e ^ \ ^ V®®
transformation ? ,

no

step 4 Apply the transformation

Perform
another

iteration ?

Figure 2.12 Transformation application steps

Z.A. Baidas, 2000 Chapter 2: M O O D S and behavioural synthesis JO

Transformation

name
Effect

sequential merge Combines two sequential control nodes (i.e. nodes executed sequentially)

to form a single control node implementing multiple instructions.

parallel merge Combines several concurrently executing nodes into one control node.

merge fork and

successor

Combines a fork node with one of its successors, with the successor

instructions becoming conditional instructions executed in the fort< node

control state.

group instructions

on register

Tries to bypass datapath registers that have a single input and a single

output net (i.e. a register implementing a variable accessed by one read and

one write instruction) and moves the instruction group that contains the

write instruction into the read instruction control node.

ungroup node into

groups

Moves an instruction group into its own separate control node.

ungroup node into

time slices

Divides instructions within a control node into new control nodes, such that

no control state has an execution time greater than a specified period.

clock set / multi-

cycling

A global optimisation transformation that employs ungroup node into time

slices transformation to meet a clock period constraint set by the user.

Table 2.1 Scheduling transformations

Transformation

name
Effect

combine

functional units

Responsible for joining two functional units into one, time-shared between

several operations. For example, combining an add and a subtract unit into

a single add/subtract ALU.

share registers Shares a single register between ICODE variables with non-overlapping

lifetimes, or variables that occurs in mutually exclusive conditional branches

(i.e. do not execute concurrently).

uncombine

instructions from

units

Takes a functional unit implementing a number of ICODE instructions and

moves one of those instructions into a new functional unit added to the

datapath.

uncombine units

fully

Utilises the uncombine instructions from un/te transformation to completely

remove a combined functional unit from the datapath.

unshare variable

from register

Removes one of a set of shared register variables into a new register.

unshare register

fully

Utilises the unshare variable from reg/sfertransformation to completely

unshare a register into separate registers, one for each variable.

alternative

implementation

The only binding transformation. It provides an alternative low level module

to implement a certain datapath functional unit. For example, replacing a

ripple carry adder with a carry lookahead adder to enhance the speed of

vice versa to reduce the total area cost.

Table 2.2 Allocating and binding transformations

Z.A. Baidas, 2000 Chapter 2: M O O D S and behavioural synthesis 3 9

2.6.3 The cost function

MOODS employs fourteen different transformations to manipulate the design data

structure (see Table 2.1 and Table 2.2), by chaining, merging or separating nodes in the

control and datapath graphs. A measure of the efficiency of applying these transformations

is provided by means of a "cost function" that represents the state of the design in an n-

dimensional design space as a single number, essentially the weighted sum of the costs in

each dimension.

The MOODS cost function allows the user to specify objectives for a number of design

parameters such as area and delay. These are the dimensions of design space. Each of

these objectives is deOned as a target value and a priority level, with one being the highest

priority.

During optimisation, the effect of a transformation is predicted by evaluating its effect on

the system "energy". For a single objective, the change in energy is determined by:

C -C
c.V/•//;; aprevious

r

Where is the estimated cost after applying the transformation, is the current

implementation cost, and C,n„w is the cost of the initial implementation, with negative

average energy change {AE < 0) indicating a general improvement in terms of the target

objective.

2.6.4 Simulated annealing optimisation

Design optimisation is performed using a simulated annealing algorithm [33, 34, 35, 36] to

minimise the multiple-input cost function by selecting and applying different

transformations. The term simulated annealing comes from a physical perspective;

annealing is originally a physical process where a substance is cooled down from the

liquid phase to the solid phase in a controlled, usually slow, manner. If the cooling is done

carefully enough, the energy state of the solid at the end of the cooling is at its minimum.

Z.A. Baidas , 2 0 0 0 Chapter 2: M O O D S and behavioural synthesis 40

Simulated annealing algorithm is a global optimisation method that distinguishes between

different local optima. Starting from an initial point, the algorithm performs a random

transformation and the cost function is evaluated: any downhill step is accepted and the

process repeats from the new point. An uphill step may be accepted, enabling the process

to escape from local minima. This uphill decision is made by the Metropolis [37]

algorithm. As the optimisation process proceeds, the length of the step declines and the

algorithm iterates towards a global optimum.

By way of an example, let us consider the one-dimensional configuration space

represented in Figure 2.13. The design is initially represented by point A. An optimisation

algorithm accepting only transformations that results in an improvement will hit the local

minima (point B). Simulated annealing will accept degradation and hence allows the

configuration to jump out of the local minima into the global minima (point C).

U1 O
o

A - initial
configuration

local minima

C - global minima

Configuration

Figure 2.13 A one-dimensional configuration space

In MOODS the method selects a random transformation and evaluates the change in the

cost function AE. If the transformation leads to an improvement (AE < 0), it will be

automatically accepted. Degradation might be accepted with a probability given by

exp
-AE

T
AE>0

Z.A. Baidas , 2000 Chapter 2; M O O D S and behavioural synthesis 4 1

Figure 2.14 describes the procedure as implemented in MOODS

For (temp = Tscarb; t:emp >= Tend; temp = temp * Tgtep)

{

for (1 = 0; I < Igkep; I + +)

{

t = select_transformation ();

delt_E = estimate_cost_var (t);

if (delt_E < 0 I I rand() < exp(-delt_E/temp)

Execute_transformation(t);

}

}

Figure 2.14 The simulated annealing algorithm

The sequence of temperatures during optimisation, and the number of transformations

examined per temperature, defines the anrzea/mg The annealing schedule in

MOODS is determined by four parameters:

1. The initial temperature Tsum-

2. The final temperature Tend-

3. The number of iterations per temperature

4. The reduction made to the temperature in the end of each step

T îart is difficult to determine. However it should be high enough to allow the design to

escape local minimas. For the end temperature a safe option is to always set it to zero,

since at zero temperature, only improving transformations will be applied to the design.

The optimisation algorithm performance at = 0, is a good aid to decide the If a

noticeable amount of improvement is achieved at this point, then the design is not optimal

and the number of iterations should be increased. On the other hand, if few improvements

in the design are achieved, then this is a good indication that sufficient iterations have

been performed during the optimisation phase.

Z.A. Baidas, 2 0 0 0 Chapter 2: M O O D S and behavioural synthesis z;.!

Finally, temperature reduction should be small enough so that the reduction in temperature

is slow enough to avoid trapping the design in a local minima because the temperature is

low and hence the probability of accepting degrading transformations, that cause the

design to escape this minima, is too low.

In addition to the simulation annealing algorithm, tailored heuristic optimisation is also

provided to perform design optimisation. It is based on the same set of transformations,

however, transformations are applied in a pre-defined order based on an analysis of the

performance of each transformation on a number of designs [19].

MOODS heuristic approach only accepts improving transformation, thus there is a

possibility that the algorithm delivers a local minimum. However, tests suggest that the

algorithm produces results comparable to the simulated annealing.

Note that the tailored heuristic optimisation within MOODS performs only area/delay

optimisation, while the simulated annealing is capable of performing a multi-dimentional

optimisation between many objectives.

2.6.5 Hierarchical module expansion

Originally, MOODS considered functional units as pure combinational logic blocks.

Hierarchical module expansion [19, 38, 39] provided a means of implementing multi-cycle

technology-independent functional units, which get expanded in the internal design

structure during synthesis. This enables inter-module optimisation at the sub-module level,

allowing greater opportunities for functional unit sharing. Each expanded module is

defined with separate sub-control and sub-datapath graphs, which replace the desired

datapath functional unit and its activating control states.

An example of the expansion process is given in Figure 2.15. Before expansion, the

addition is implemented using a combinational 64-bit adder that executes in a single

control state (Sj). The functional unit is then replaced by an expanded module composed

of an 16-bit adder that performs the addition operation over four control states. The

original control node was replaced by the expanded module sub-control graph (5'/ to

and the 64-bit combinational adder was replaced by a 16-bit adder and the required

interconnect.

Z.A. Baidas, 2 0 0 0 Chapter 2: M O O D S and behavioural synthesis 43

s.

•

s. b •

\5. S, S, Sy J 1 1 i_ \ S ^ S , S . S , / \ 5 .

(S J -r

cout

5 J -I'M

a) Before expansion b) After expansion

Figure 2.15 Expansion process

2.6.6 Floating-point enhancement

The core of this thesis describes an enhancement to the original MOODS synthesis system

to allow synthesising designs incorporating floating-point variables and operations. These

enhancements are identified in Figure 2.16, which reproduces the original system block

diagram (Figure 2.9) with the newly added features.

Z . A . B a i d a s , 2 0 0 0 C h a p t e r 2 : M O O D S a n d b e h a v i o u r a l s y n t h e s i s 44

/ui User optimisation
V objectives

Behavioural
VHDL

VHDL source level
optimlser/Compiler

[16,17]

VHDL2IC compiler

VHDL function library

ICODE

(Ch^JterS)

/ KXCE*
y (Appendix D)

Module ripper
Synthesis and optimisation -

Simulated annealing
algorithm

nrodute iiBrary
paramsfers

(Chapter 3, Cramer 4]

Expanded
module

module libraiy

i (Chapter 3, Chapter 4)

Structural gate -
level netlist

Logic synthesis, placement
& routing / FPGA mapping

tools

FPGA ASIC

Technology-
dependent module

libraries

Figure 2.16 MOODS synthesis system with the floating-point enhancement

Z.A. Baidas , 2000 Chapter 3: Background and related work 4 5

Chapter 3

Background and related work

This chapter presents background material describing influential research in the

development of t h e a n d j ' . It is split into four

main sections: section 3.1 describes the real number representation. Section 3.2 introduces

some fixed-point functional units of a particular interest, while section 3.3 examines some

research in the development of floating-point functional units. Attempts to implement

floating-point arithmetic on programmable logic are introduced in section 3.4. Finally,

section 3.5 describes a number of systems that automate the floating-point systems design

process.

3.1 Real number representation

There is a fundamental difference between integer and real data types. In integer

calculations, algorithms have discrete results, and ostensibly produce identical outputs on

different machines. Real calculations do not always produce identical results due to the

internal representation and the calculation accuracy. Early inconsistencies gave rise to a

common real number representation with a clear definition of the way systems should

handle real calculations, as well as the reaction of the system to exceptional situations (e.g.

division by zero, overflow) [40].

The IEEE floating-point number representation [41, 42, 43] provides a solution to this

problem. It provides four different representations of floating-point numbers. The standard

gained a great popularity and most system manufacturers produce chips to support it. A

detailed description of the standard is given in Appendix A.

Z.A. Baidas . 2000 Chapter 3: Background and related work 4 5

This research adapts the IEEE single-precision floating-point word, which is 32-bits wide

and arranged in the format shown in Figure 3.1. The floating-point word is divided into

three fields: a single-bit j/gn, an 8-bit gxpongnf and a 23-bit /racno/z.

Sign Biased exponent Fraction
rs; (E) (F)
1 II IM ^ 1
+ / -

I I I I I I I I : I I I I I I / ' I I I I I I)

27 2^ 2̂ 23 2̂ g) 2^1 y. I 2-' 2^ 2-3 2^ 2-̂ 2^
I I I I I 1 I i I I I I I I I , / I I I I I I !

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17

Figure 3.1 IEEE single-precision floating-point format

The j'/gn bit (5') indicates the sign of the floating-point number, a negative value has a sign

of 1; non-negative values have a sign of 0. The gxpongyzf is an unsigned integer

field representing a multiplicative value of some power of two. The has a value of

127. If, for instance, the biased exponent has a value of .t, then the actual exponent would

be -727. The/racnon is a 23-bit field containing the 23 least significant bits of the

number mantissa. The weight of the fraction most significant bit is 2"'; the fraction least

significant bit has a weight of 2'""\ The leading 1 in the mantissa field (bit 24) is implicit

and does not appear in the fraction field. A 32-bit real number, yi, is generated from

y, = (-]) " x l . F x

One of the most notable features of the IEEE standard is that it allows computation to

continue if it faces an exceptional condition, such as dividing by zero. This is achieved by

introducing special bit patterns that do not represent ordinary numbers. The standard

defines five such bit patterns: zero, denormalised numbers, +/- infinity, and Not a number.

These are described in Appendix A.

The IEEE floating-point format is not the only way to represent real numbers with finite

precision. Various replacements have been proposed [40], although none have achieved

the popularity of the IEEE floating-point format.

A particular number system that has been the subject of considerable interest is the

ZoganYWfc [44, 45, 46]. In this system, a real number is represented using

the form (- l)^x / , with 5' being the sign bit and e is an exponent of the radix r. Figure 3.2

Z.A. Baidas, 2000 Chapter 3; Background and related work 47

shows a general format of a logarithmic number. The exponent c is represented in a fixed-

point number with M-bits for the integer part (/). /n-bits for the fraction part (/), and 1-bit

for the exponent sign (5'). A real number, y?, is generated from V: = (-1)^ - . where

/- typically equals 2.

Exponent
(e)

S/grf

(S)

+/-

n-bits
integer (i)

m-bits
fraction (f)

Figure 3.2 Logarithmic number format

The logarithmic number representation provides a very fast and easy basis for arithmetic

operations that involve exponent manipulation, such as multiplication and division.

However, addition and subtraction are slower in logarithmic number systems when

compared to floating-point number systems, and also involve a sizeable lookup table. It is

observed that the most frequent arithmetic operations are addition and subtraction' making

logarithmic numbers less successful when compared to floating-point numbers. Recent

work in [47] delivered a logarithmic arithmetic unit that performs addition and subtraction

in a comparable speed to floating point units. However, the area cost of such

implementation is still a disadvantage when a minimum area cost is the main objective.

3.2 Fixed point functional units

Multiplication and division are the basic operations underpinning most arithmetic

processes. The way multiplication and division are performed have a major effect on the

overall system performance. Purely combinational multipliers and dividers are not viable

designs, they consistently give the largest area. This section describes multiplication and

' Addi t ion and subtraction typically account for more that one half the total ari thmetic operat ions in a typical

scientif ic calculat ion [48].

Z.A. Baidas , 2000 Chapter 3: Background and related work 4 g

division algorithms that allow a trade-off between system performance (delay) and

hardware cost (area).

The section begins with a multiplication algorithm based on the modified Booth

algorithm. Then, an algorithm for rapid binary division is outlined.

3.2.1 IVIodified Booth multiplier

The Booth multiplier was originally introduced as a uniform multiplication process, which

is independent of the sign of the input operands [49]. A modification to this method

allowed the reduction of the number of additions required to perform the multiplication

operation at the cost of some extra control logic [50, 51].

In the serial-parallel form of the multiplication operation, the multiplicand is added to the

partial product every time a one is detected in the multiplier. For a single cycle

multiplication, this requires a number of add operation equals the multiplier width. The

modified Booth multiplication reduces the required number of add operations by half", by

regrouping the multiplier bits into groups of three bits (the multiplier should be first

appended with zero by the Isb to form the first 3-bit group, and if necessary, zeros by the

msb to form the last 3-bit group) that control the value to be added to the partial product.

Modified Booth encoding is illustrated in Figure 3.3, and the value to be added in each

iteration based on the multiplier bits.

Note that adding the multiplicand twice is simply achieved by shifting the multiplicand

left and adding the result. Subtract twice is also performed by adding the two's

complement of the latter. The example in Figure 3.4 illustrates the algorithm principle

where two 5-bit (00101 x 01010) numbers are multiplied using this method. The

multiplier is divided into three groups; the first group (100) indicates subtract twice

operation, the second group (101) indicates a subtract one, and finally (001) indicates add

once operation. Note that each of the three terms is sign extended up to the most

significant bit of the final product.

' For an odd multiplier width, the number of adders required are n+1/2, where n is the mult ipl icand width.

Z.A. Baidas, 2 0 0 0 Chapter 3; Background and related work 49

s s s n • • D •

s • u o • • • ! • ^

• • • • n •

^

14-

Key

S : summand sign
a : summand bit
: product bit

0

! Isb

"O
m'

0

Figure 3.3 Modified Booth multiplier

Multiplier

Bits
Selection Summary

000 +0 No change to partial product.

001 +M Add the multiplicand to the partial product.

010 +M Add the multiplicand to the partial product.

011 +2M Add the multiolicand twice to the partial product.

100 -2M Subtract the multiolicand twice from the partial product.

101 -M Subtract the multiplicand from the partial product.

110 -M Subtract the multiplicand from the partial product.

111 -0 No change to partial product.

Table 3.1 Partial product selection

Z.A. Baidas, 2 0 0 0 Chapter 3: Background and related work 50

0

1 11 1 1 0 I 1 i 1 1 0

1 1 1 1 1 1 0

0 0 0 1 0 | 1 1

0 Isb

1
r

i 0 -5'

! 1 CD

! 0

0

0 0 0 0 1 1 0 0 1 0

Figure 3,4 Modified Booth multiplication example

3.2.2 Rapid division algorithm

The rapid binary division algorithm or Wilson-Ledley division method [52, 53] provides a

simple approach to dividing unsigned normalised fractions. The approach is based on the

decomposition of a binary number into groups of strings of one of four types as illustrated

in Figure 3.5. The string types are: all zeros, all ones, all zeros except one bit, and all ones

except one bit.

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 1 6 1 7 1 8 position

0 . 0 0 0 0 1 1 1 1 0 0 1 0 0 1 1 0 1 1 number
\ / \ / \ / \ /

str ing of String of isolated one in isolated zero in
zeros ones str ing of zeros string of ones

Figure 3.5 A decomposition of a number into four types of strings

The algorithm relies on a number of observations that benefit from the binary number

decomposition illustrated above:

1. A string of ones from a to 6 positions contribute to the magnitude of the number by

(2"'+' - 2''').

2. An isolated one at position a in a string of zeros contributes by (2 ") to the magnitude.

Z . A . B a i d a s , 2 0 0 0 C h a p t e r 3 ; B a c k g r o u n d a n d r e l a t e d w o r k 5 1

3. A string of ones from a to b positions with an isolated zero at c position contributes the

value (2"'^' - 2'̂ ^ - 2'"̂) to the magnitude.

Based on these observations, the algorithm tries to detect similar strings that may occur in

the division result and generates them at once. The procedure' is summarised in Figure

3.6; the procedure ends when / equals the result length. Before applying the procedure,

three main conditions should be satisfied.

1. The denominator D should be positive and normalised.

2. The numerator TV should be positive, with < D.

3. is either normalised or with a single zero to the right of the binary point.

E N D *

i = o

s = 1

N l ') = D

Normalise AÂ ' shifting m
positions

i = i + m
s = s + 1

\ N
0 , =) ^4

i

Each 0, through , = 0

Key
N : numerator
D : denomirator
/V ; initial numerator value
AA"®': numerator value at s stage
Q : division result
n : result width

• END

Y
Q, = 0

/ = /
s =

+ m
> f 7

A . '

I k

Each 0, through

Figure 3.6 Rapid division algorithm flowchart

F o r m o r e d e t a i l s o n t h e a l g o r i t h m a n d i ts r e l a t i o n t o t h e b i n a r y d e c o m p o s i t i o n s e e [5 3]

Z.A. Baidas , 2000 Chapter 3: Background and related work 5 2

3.3 Developing floating-point functional units

Research carried out in the development of floating-point functional units can be divided

into two areas: research dedicated to developing floating-point arithmetic units (adder,

subtractor, multiplier, divider) mainly for hardware implementation, and the development

of algorithms for elementary function evaluation at both the hardware and software levels.

An example of the first area work carried out by Oberman [48, 54] to investigate different

methods of implementing high-performance floating-point arithmetic units, and proposed

techniques to improve the performance of these units, mainly to speed up future

microprocessors. One of the techniques introduced allows a full-precision floating-point

addition operation to execute with an average delay of 2.25 clock cycles. This was

achieved by exploiting the distribution of operands over redundant datapath hardware and

employing pipelining and fast rounding methods. However, the significant hardware cost

makes these techniques unsuitable for low cost designs, or designs targeting

programmable logic devices.

The CORDIC algorithm (Co-ordinate Rotation Digital Computer) is one example of an

efficient algorithms to evaluate elementary functions. The algorithm was introduced in

1959 by Voider [55] as a method to rotate a vector by an arbitrary angle, or to determine

the angle and the magnitude of a vector. Besides vector transformation, the algorithm

computed j'mg, coj'mg and mvgrjg fanggnf functions. Walter [56] generalised Volders

algorithm to support a wide range of hyperbolic, logarithmic and exponential functions. A

recent modification to the algorithm [57] enables the computation of inverse sine and

inverse cosine functions. The CORDIC algorithm exhibits linear convergence, which

implies that generating an n-bit result requires n iteration. Moreover, the algorithm is

simple to implement and requires minimal hardware. Details of the CORDIC algorithm

may be found in Appendix B.

ATA (Add - Table lookup - Add) is another method for evaluating elementary functions

[58]. The method evaluates these functions using a truncated Taylor series and a large

table (around one megabit for a single instruction). The method involves evaluating a

Taylor series approximation by parallel add/subtract, parallel table lookup, and followed

by a multi-operand addition. The proposed hardware implementation is very fast.

However, the table lookup size required to generate a single elementary function is

Z.A. Baidas , 2000 Chapter 3: Background and related work 5 ^

868352 bits, and the total amount of table size required to calculate seven elementary

functions is about 14.2 Mbit. This large table size introduces a problem, in terms of

internal storage area, if the algorithm is to be realised as a single chip design.

A software library for elementary function calculation using the IEEE floating-point

standard was proposed in [59]. The library combined a table lookup method with minimax

approximation polynomials [60, 61] to develop high-performance software models with

maximum accuracy. The proposed algorithms, along with similar software-based

algorithms are often discarded in the hardware domain due to the large area overhead they

impose.

3.4 Floating-point arithmetic on FPGA

There have been several studies to investigate the possibility of implementing floating-

point operations on programmable logic devices. Programmable logic devices impose

limitation on the number of functional units, storage devices, and interconnect. This lead

designers to avoid implementing floating-point operations on programmable logic devices,

simply because these operations typically require a large area to be practical on these

devices.

A recent study [62] offered evidence that floating-point implementations on FPGAs

should be considered. It introduced a single precision floating-point adder and multiplier

realised on a Xilinx 4020E FPGA. The author argued that a single precision floating-point

unit implemented on FPGA would give a reasonable performance improvement for

floating-point applications over the currently available microprocessor. Moreover, he

suggested that if programmable logic device density and speed continue to increase,

platforms based on programmable devices might offer a significant speedup to pure

floating-point applications.

Similar work [63] proposed two single precision floating-point square root

implementations on FPGAs. The author surveyed different methods of implementing a

square root functional unit, and decided on an iterative method based on a single 24-bit

adder/subtractor functional unit. A high performance implementation of the same

algorithm was also highlighted. The second implementation exploited parallelism using a

Z.A. Baidas, 2000 Chapter 3: Background and related work 54

fully pipelined implementation at the cost of extra hardware (almost five times the cost of

the first serial implementation).

An FPGA prototyping board using an Altera Flex 81188 FPGA was the target for single

precision floating-point addition and multiplication units in [64]. The design was used to

simulate the interaction of galaxies in what is called a gravitational N-body model. A point

of particular interest in this work is the extra limitation introduced by FPGA devices on a

prototyping board. The chip pins in this case are pre-assigned, which imposes additional

constraints on the placement and routing tools and results in less efficient utilisation of the

FPGA resources.

A different approach to implementing floating-point operations was presented in [65]. The

work minimised the floating-point implementation cost by introducing smaller floating-

point formats. These formats are shown in Figure 3.7. The 16-bit format has a 9-bit

fraction field and 6-bit biased exponent, with a bias of 31. The 18-bit format has a 10-bit

fraction field and a 7-bit biased exponent, with a bias of 63. The approach gives a major

reduction to the total cost of the implementation, but results in a reduction of both the

dynamic range and the representation accuracy, which might be suitable for a specific

implementation, but is not considered a general-purpose approach to floating-point

calculation.

Sign Biased exponent Fraction
(F)

1 1 1 1

+ / -
1 1 1 1 1

25 2^ 23 2^ 2' ^
I 1 1 1 1

1 1 1 1 1 1 1 1
2-f 2-^ 2-:̂ 2^ 2"̂ 2^

1 1 1 1 1 1 I I

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

16-b i t f l o a t i n g - p o i n t f o r m a t

Sign Biased exponent Fraction
(F)

1 1 II 1

+ / -
1

1

1 1 1 1 1
26 25 2* ^ ^ 2'

1 1 1 1 1

1 1 1 1 1 1 1 1 1
2"̂ 2"̂ 2"̂ 2^ 2^ 2^ 2^ 2^ 2^ 2^^

1 1 1 1 1 1 1 1 1
17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

18-b i t f l o a t i n g - p o i n t f o r m a t

Figure 3.7 Short floating-point formats

Z.A. Baidas, 2000 Chapter 3: Background and related work

The work purposed in [66] introduced an FPGA-based floating-point data path as a

building block in a geometric processor dedicated to co-ordinate transformations in a

graphics system. The data path performs 32-bit floating-point addition, subtraction,

multiplication, division, and comparison operations. The design exploited the similarity in

the floating-point operations to reduce the total area cost. This is achieved by partitioning

the data path into four main units illustrated in Figure 3.8; an exponent manipulator; a

fraction manipulator; a fraction arithmetic unit: and a control unit. A simple

adder/subtractor unit is employed in the fraction arithmetic unit, which implies a serial-

parallel or "pencil and paper' implementation of the fixed-point multiplication and

division operations. The proposed data path provided a single flag to indicate overflow,

and ignored all other exceptional situations such as (NAN) to minimise the cost of

hardware resources.

fraction A fraction B

opcode

exponent A

exponent B

cont ro l

Control s igna ls Fraction f rac tkx is

unit manipulation

Exponent
manipulation

e x p o n e n t ^ Fraction
arithmetic unit

-> result

Figure 3.8 FPGA-based data path block diagram

In contrast with the above, the work in [67] introduced a self timed single precision

floating-point processor based on a combination of ASIC and FPGA. Instead of a global

synchronising clock signal, the system adapted a handshaking protocol, where design units

are locally synchronised using handshaking signal (strobe and acknowledge). The

processor performs three floating-point operations; addition, subtraction, and division.

Z.A. Baidas. 2000 Chapter 3. Background and related work

Addition was implemented in the ASIC, while the floating-point multiplier and divider

targeted the FPGA. The independence of the addition hardware and the multiplication and

division hardware allowed parallel scheduling of the instructions, as well as out of order

execution. The processor adapted the simplest form to implement floating-point

operations, such as employing serial-parallel fixed-point multiplication and division

algorithms, in order to reduce the total hardware cost and increase the probability of

successful processor functionality simply by reducing the complexity of the design.

3.5 Automatic floating-point implementation

An early attempt to automate floating-point implementation appeared in [68]. The work

highlighted a design concept for digital signal processing applications using floating-point

primitives, which was integrated within a synthesis environment called the ASA Silicon

Compiler, by means of a template library. The author introduced a 32-bit floating-point

adder to demonstrate the concept of the DSP template library. The adder was integrated as

a generic primitive in the template library. Unfortunately, details of primitive

implementation and integration within the silicon compiler environment were not

presented.

The remaining part of this section introduces two groups of floating-point implementation

tools; tools that allow the generation of floating-point units that can be integrated within a

system (module generators), and high-level block-diagram tools.

It is worth mentioning that floating-point cores designed for rapid insertion into an ASIC

environment are available at a commercial level in the form of cell-level designs, as well

as behavioural VHDL or Verilog models for synthesis. However, this work achieves its

goals ultimately by sharing the internals of the floating-point units; third party 'black box'

are not considered further.

3.5.1 Module generators

A format conversion module generator is introduced in [69]. The module generator allows

the automatic design of VLSI modules that perform floating-point to fixed-point

conversion and vice versa. The module generator accepts any standard cell library and

design rules. The output of the generator consists of the physical layout view, the netlist

Z.A. Baidas , 2000 Chapter 3: Background and related work 5 7

file and all the information required to generate a SPICE file. It also provides the physical

characteristics of the generated module, such as input and output location, and area

utilisation.

The module generator is considered general purpose, as it is not limited by the

representation of the Hxed-point and the floating-point numbers. Based on a set of

parameters specified by the user, the module generator decides on the appropriate

structure. For example, for a floating-point point number, the user defines the number of

bits of the fraction, the number of bits of the exponent and the exponent bias. While a

fixed-point number is defined by the size in bits, the point position, and the number

representation which can be sign-magnitude, one's complement, or two's complement.

The module generator did not provide options to integrate the generated module within a

design environment. The designer has to deal with the module as a black box that

performs the conversion and provide an interface for it. A better approach would be to

provide the generated module at the register transfer level using a hardware description

language. In that case, the design could target an RTL-synthesis tool. This reduces the

effort required to verify the functionality of the whole system that exploits the generated

module since the whole system can be simulated at the RTL-level rather than at post-

layout level. The suggested approach might also result in a total area cost reduction as

functional units within the module might be shared with other operations when the module

is idle.

Many floating-point arithmetic units are available in the form of macroceZ/a. A macrocell

is defined as a medium to very high complexity block with given functionality, known

interconnect interfaces and different interconnect level called vigwi' (e.g. behavioural,

RTL, layout, etc.). GenOptim [70, 71] is one example of a tool created to design portable

macrocells generators. It is a CAD tool that supports the implementation of architectural

representation in different layout environments and different target technologies. It

provides the designer with a set of high-level C function to describe the netlist, the layout,

the test vectors, and the behavioural description of a parameterised module. GenOptim

then provides an implementation of this module based on what is called a v/rmaZ

which is a set of parameterised high-level operations (e.g. n-bit adder, n-bit multiplier).

Z.A. Baidas . 2000 Chapter 3: Background and related work 5 g

The generator created by GenOptim can then be used to implement a technology-

dependent macrocell. The process involves defining a GenOptim virtual library in terms of

the target technology cell library, and providing a set of parameters that defines the

parameterised datapath units width (number of bits). The generator takes these inputs and

automatically creates a set of outputs: a netlist describing the hierarchical interconnects

between cells; a layout providing the placement of these cells: test vectors: and a VHDL

behavioural description for simulation purposes.

GenOptim has been used to implement a set of portable floating-point arithmetic unit

generators based on the IEEE floating-point standard. Four generators were introduced to

provide floating-point addition, floating-point multiplication, floating-point division, and

floating-point square root operations. These generators had a parameterised fraction and

exponent field to allow implementing any of the standards formats (single precision,

double precision, extended single precision, and extended double precision).

Another system, similar in structure to GenOptim, is the CXgen function library [72].

CXgen also provides the designer with a C library that can be used to describe and

implement portable parameterised generators. The author presented a floating-point adder

generator called OAF implemented using the CXgen environment. Starting from a set of

parameters, GAF generates a floating-point adder described via a layout view, a netlist

view, and a behavioural view. GAF also supports testability via a set of test vectors based

on a structural analysis of the generated adder to ensure that the circuit is fully functional.

3.5.2 Block diagram tools

Digital systems can be represented as a network of transfer functions, data storage, I/O

ports, and control functions. Such systems may be represented by

consisting of blocks representing functions linked by lines representing the

communications paths. An example of such block diagram is represented in Figure 3.9.

Each block in the diagram represents a function that can either be simple (e.g. fixed-point

adder) or complicated (e.g. floating-point multiplier). These blocks are connected with

directed arcs defining the data flow through the network.

Z.A. Baidas, 2 0 0 0 Chapter 3: Background and related work 59

Function 1

Function 2

a.

Function 3

Figure 3.9 A design represented as a block diagram

Block diagrams form the input to a family of CAD tools known 6/oc/: on'gnW

The complete design flow of these systems is represented in Figure 3.10. The

system allows the user to create a diagrammatic representation of the design using

components provided by a block library. The design is then captured as a behavioural

description or a register transfer level description. This step involves either a behavioural

synthesis or an RTL synthesis depending on the nature of the design representation

generated in the previous step. Finally, the structural representation of the design passes to

a placement and routing tool to be realised as a physical implementation.

Block diagram oriented tools also provide the ability to add new building blocks to the

block library, which increases the system productivity and allows designing reusable

blocks. A number of these tools integrate floating point synthesis by providing a number

of floating point building blocks that can be instantiated within the system block diagram.

COSSAP design environment [73] is one example of block-diagram oriented systems. It

captures the systems representation in the form of a synthesisable HDL code (VHDL or

Verilog HDL) using COSSAP HDL code generator. The system provides HDL code at

both the behavioural and RTL levels, and provides two different implementation roots by

integrating a behavioural synthesis tool [74] and an RTL synthesis tool [75] within the

system.

Z . A . B a i d a s , 2 0 0 0 C h a p t e r 3; B a c k g r o u n d a n d r e l a t e d w o r k 60

COSSAP provides a powerful and efficient environment for digital signal processing

applications. However, floating-point manipulation within the system is limited by the

block library component, which currently support single precision floating-point addition

and multiplication only.

Block Library [

RTL
description

Behavioural
description

Structural
description

HDL code
generation

Block diagram
edition

RTL synthesis

Placement
and

routing

Figure 3.10 Block diagram oriented tools data flow

SPW [76] is another CAD tool that supports digital design using block diagrams. In a

similar manner to COSSAP, the system automatically captures the design as a HDL

behavioural description. The code is then synthesised, using an integrated behavioural

synthesis tool [77], into a structural implementation. SPW appears to have more support

Z.A. Baidas, 2000 Chapter 3: Background and related work 6 1

for floating-point manipulation in comparison to COSSAP. For example, a dedicated

floating-point communication library is provided as an add-on to the system [78.79],

which allows the design and implementation of digital designs incorporation floating-point

building blocks, dedicated for digital communication and wireless applications.

Block diagram oriented tools provide a fast and convenient design environment for digital

design where series of operations are applied continuously to a data stream. However,

many applications require a significant amount of control logic based on external and

internal variables. Expressing this dependency may be difficult and even impossible using

block diagrams, while it can be easily achieved using conditional constructs provided by

programming languages (case, if-else constructs). Moreover, when using these tools, it is

the designer responsibility to perform the high level binding of the high-level floating-

point operation to building blocks. This manual binding decision may result in blocking a

number of possible implementations, hence, reducing the possibility of the structural

implementation meeting the target objectives.

Z.A. Baidas. 2000 Chapter 4: Floating-point library design ^ 2

Chapter 4

Floating-point library design

The floating-point library forms the core of the floating-point synthesis system. The aim of

this chapter is to highlight the various floating-point modules that form the basis for the

floating-point synthesis library. Functional unit structure is introduced and different

methods for evaluation of these functions are considered.

The text is divided into four main sections: section 4.1 describes the function evaluation

process with an analysis of the different building blocks that composes the functional unit;

section 4.2 examines the issue of the as a mean of "exception notification"

to handle invalid operations; section 4.3 provides a brief description of each component in

the library; finally, section 4.4 covers various issues that concerns the library

implementation and integration within the MOODS synthesis system.

4.1 Function evaluation

The general structure of these functional units is represented in Figure 4.1. Each functional

unit consists of three main building blocks;

1. Range reduction.

2. Function evaluation.

3. Post evaluation rounding and normalisation.

Z.A. Baidas, 2000 Chapter 4; Floating-point library design 63

Input(s)
Post evaluation

Range Function 1 rounding
reduction evaluation and

1
normalisation

Figure 4.1 Functional unit building blocks

Three different are used to implement the function evaluation block:

1. Table lookup.

2. Iterative series.

3. The CORDIC algorithm.

These techniques generate modules with significantly different physical properties such as

the total area cost and the total delay. This variation in the physical properties makes it

possible to provide a wide range of implementations for a single floating-point design,

which increases the probability to provide a single implementation that meets the user

objectives. The floating-point library provides at least two different evaluation cores using

two of the three base techniques listed above for each implemented function.

4.1.1 Range reduction

The large dynamic range provided by a floating-point representation introduces a problem

when designing systems to handle floating-point arithmetic. Some evaluation methods,

such as iterative series, converge over a wide range of input arguments. However,

achieving certain accuracy over that range might require taking many terms into account,

hence, increasing the evaluation time dramatically. Moreover, the time taken to achieve a

given accuracy is data dependent. Other methods, such as the CORDIC [56, 61] algorithm

has a limited domain of convergence. Having a suitable technique to reduce the range of

the input operand(s) is therefore essential.

Z.A. Baidas, 2000 Chapter 4: Floating-point library design 64

Periodic and symmetric functions have obvious reduction, others might require shifting

and scaling. By way of an example, let us consider the natural logarithm function (y =

/»(%)), where x = F x 2^ . The function is defined for x > 0. Range reduction can simply be

achieved by the pre-scaling identity:

ln (Fx2^) =] n (f) + E x l n 2

The output of the range reduction unit is generally a set of fixed-point variables and a set

of control signals. The output variables form the input to the following function evaluation

units, while the control signals govern the data manipulation of the unit. This dependency

maybe illustrated with the aid of the example in Figure 4.2 which evaluates y = sin .r for

arbitrary x. The output of the sine function range reduction block is a fixed-point number

D and two control signals. One to decide on generating either sine or cosine in the function

evaluation block and the other controls the final sign of the output operand.

F x 2

nputs

Note: int(x) returns an integer < x

Range reduction Function evaluation

Output

Figure 4.2 Range reduction example

4.1.2 Table lookup

Lookup tables are frequently and trivially used to evaluate mathematical functions. This

scheme has often been rejected in practical cases, because of the large table sizes required

for acceptable accuracy. However, combining range reduction techniques with a dedicated

interpolation procedure gives rise to a large reduction in table size, often to the point that it

may be reduced to an on-chip set of static registers rather than an external ROM.

Z.A. Baidas, 2000 Chapter 4: Floating-point library design 65

Linear table lookup

For a single numerically given point jc. the value of an arbitrary function /(.i) at this point

can be evaluated [80] using the procedure described in Figure 4.3.

DEFINITIONS:

[interpolation coefficient

:table break point

/y, :weighting value

n :interpolation order

PROCEDURE;

1
4

f^i

f w =

2,

- X ,

X - X,

Yi

1=0

Figure 4.3 interpolation procedure

For linear interpolation (n = 1) and a linearly distributed table (equally spaced break

points), the procedure can be simplified to the form shown in Figure 4.4, where a function

/(%) is defined by a set of values (Vf, - stored in a table. For a quadratic interpolation,

the general procedure outlined in Figure 4.3 applies. However, the computation problem

can be simplified for the cubic interpolation procedure [80] as illustrated in Figure 4.5 and

Figure 4.6, where a function/(a-) is interpolated using four linearly distributed break points

(xfj, xi, X2, X3). From Figure 4.5, it is clear that cubic interpolation result equals to the sum

of the linear interpolation (L) over the central interval (A:;, X2) and a numerical value Z. By

introducing the relative distances between the input argument and the two internal break

points p,q. It can be proved that Z has the value;

Z.A. Baidas, 2000 Chapter 4: Floating-point library design 66

where Z,/ is the result of the linear interpolation over the interval (.vo, Xj).

Cubic interpolation can therefore be generated in a simple way from two linear

interpolations as illustrated in Figure 4.6.

i=0 yo = w

DEFINITIONS: i=1 yi =

X :input argument
i=2 y2 = X :input argument

g : scaling factor (Xj -

: first break point:

tiTip, m: temporary variables

int{x) :function returns an integer value < %

PROCEDURE:

Stored Table

V 5 y
i = int (tmp)

m = tmp - i

f W = Y; + - y J X m

Figure 4.4 Linear interpolation procedure

A proof of this equation can be obtained by consulting [80].

Z.A. Baidas, 2000 Chapter 4: Floating-point library design 67

Figure 4.5 Cubic interpolation

L

L

D E F I N I T I O N S :

X :input argument

S :scaling factor

: break points

:result of the linear interpolation over the

interval

;result of the linear interpolation over the

interval

p,q :relative distances between the input and the two

internal break points

PROCEDURE:

P
S

q
5

/(A;) - +

Figure 4.6 Cubic interpolation procedure

Z.A. Baidas. 2000 Chapter 4; Floating-point library design 68

For a given accuracy, a major reduction in the table size may be achieved by using higher

order of interpolation. This is illustrated in Table 4.1 which represents the cost as a number

of table entries required to evaluate the sine function over the range 0 < .v < 7t/2, using

different degrees of interpolation and for different accuracy. The results suggest that better

Interpolation

degree

Number of table entries
Interpolation

degree Accuracy

0.1%

Accuracy

0.01%

Accuracy

0.001%

Accuracy

0.0001%

Linear 26 101 202 805

Quadratic 10 26 51 101

Cubic 8 15 28 53

Table 4.1 Number of table entries for different interpolation degrees

results can be achieved by replacing the linear interpolation procedure with a quadratic or

cubic or even higher order interpolation, but the additional cost of the interpolation engine

usually outweigh this advantage. The problem is quantified in Table 4.2, where the total

interpolation engine cost in terms of on-chip area and total delay is provided for the sine

function generator for different target accuracy and in two distinct cases;

1. An infinite off-chip ROM is available to store the table.

2. Table is stored as a set of on-chip static registers.

Each configuration is given a reference code. When applicable, the total area cost includes

the cost of implementing the internal table as a set of static registers. From the table, it is

clear that the linear interpolation engine provides the fastest function generation and is the

best implementation when an external ROM is available. However, a cubic interpolation

engine has the advantage of smaller storage area especially at high accuracy targets at the

cost of extra delay (=2.25 times the linear interpolation engine delay). The extra delay cost

reduces the performance of the evaluation unit to the level that can be achieved with less

expensive algorithms (such as CORDIC), which contrasts with the main objective of

implementing functions using table lookup, which is minimum delay. The quadratic

interpolation engine on the other hand always provides the worst area and delay figures

and therefore is considered as impractical solution for all configurations. A note of

Z.A. Baidas, 2000 Chapter 4: Floating-point library design 69

particular interest is that if the whole table may be implemented as an external ROM.

accuracy variation will have absolutely no effect on the total area and delay cost of the

design. That is because the interpolation procedure remains the same while accuracy in

this case only affects the table size.

The results are summarised in Figure 4.7 to Figure 4.9. Figure 4.7 shows a comparison of

the three interpolation engines in terms of the table size for different target accuracy.

Figure 4.8 and Figure 4.9 compares the total area and delay cost the three engines for

various accuracies and with or without the external ROM.

External

ROM

Degree

Accuracy

External

ROM

Degree
0.0001% 0.001% 0.01% 0.1%

External

ROM

Degree
Area

|Lim^

delay

cycles

area Delay

Cycles

area delay

cycles

area delay

cycles

Linear 150000 26 150000 26 150000 26 150000 26

Ref A1 A2 A3 A4

Quad 400000 74 400000 74 400000 74 400000 74

Ref B1 B2 83 B4

Cubic 260000 57 260000 57 260000 57 260000 57

Ref CI C2 C3 C4

0 Linear 440000 20 300000 20 200000 20 163000 20 0

Ref D1 D2 D3 D4

0

Quad 450000 65 430000 65 413000 65 405000 65

0

Ref El E2 E3 E4

0

Cubic 291000 45 274000 45 267500 45 264000 45

0

Ref F1 F2 F3 F4

Table 4.2 Interpolation area and delay figures for various configurations

Z.A. Baidas, 2000 Chapter 4; Floating-point library design 70

I Linear • Quadratic • Cubic

1.00E-06 1.00E-05 1.00E-04

Accuracy

1.00E-03

Figure 4.7 Table entries variation with different interpolation degrees

3

I
I
Q

80

70

60

50

40

30

20

10

Linear • Quadratic • Cubic

B1=B2=B3=B4

C1=C2=C3=C4

A1=A2=VS3=A4

0 50 100 150 200 250 300 350 400 450

Area x10* (pm)̂

Figure 4.8 Area/delay costs for different interpolation and infinite external ROM

Z.A. Baidas, 2000 Chapter 4: Floating-point library design 71

70

60

50

o
"o 40
o

30

o
20

10

A Linear • Quad A Cubic

E4 E2 E1
• • • •

E3

100 200 300 400 500

Area xlO^ (nm)̂

Figure 4.9 Area/delay costs for different interpolation without external ROM

Non-linear table lookup

The table size can be further reduced wi th negligible degradation in the function

evaluation unit performance by observing the linearity o f the function over the evaluation

interval [81]. This allows partitioning the table into multiple sub-tables, each handling a

separate interval o f the function. This approach allows modifying the scaling factor o f

each sub-table depending on the linearity o f each partition. Thus, a region where the

function is linear can be tabulated wi th fewer break points than a region where the

function is non-linear and sti l l achieve the same accuracy.

To illustrate the advantage o f table partitioning, let us consider the inverse sine function

(arcsin(x)) in the interval 0 < x < 1. Achieving an accuracy o f le"^ requires a scaling factor

o f 2'^°, which requires a table size o f 1048576 entries. However, this scaling factor is only

required as x - > 1: partitioning the table into multiple sub-tables reduces the table size to

2796 entries and stil l achieves the same accuracy as shown in Figure 4.10.

Z.A. Baidas, 2000 Chapter 4; Floating-point library design 72

3 a.

S, =2^
82 = 2̂
S3 = 2-'°

S, = 2-1'
S, = z "
S. = 2=°

0,875

0.380G25

0L14OG25

Input to the inverse sine function

Figure 4.10 Partitioning the inverse sine function into sub-tables

Applying the table partitioning method requires a minor modification to the linear

interpolation procedure represented in Figure 4.4 in order to provide a means of

identifying the required sub-table. The modified procedure is listed in Figure 4.11.

Note that i f the function can be divided into a number o f equal intervals, each handled by a

separate sub-table, then the comparison operation in Figure 4.11 may be replaced by a

single operation:

R

where R is the range covered by each sub-table. Having i? as a power o f 2 simplifies the

division operation into a fast shift operation.

Finally, the scaling factor on all previous interpolation procedures is adjusted to be some

power o f 2, in order to replace the division in the scaling factor operations (when possible)

by a fast shift operation.

int() is a function that returns an integer value < the input argument

Z.A. Baidas, 2000 Chapter 4: Floating-point library design 73

DEFINITIONS:

Tj :first break point in sub-table i

Sj :scaling factor for sub-table i

Addfi :base address of sub-table i

tmp,m,j:temporary variables

addr„

addr.

addr

: function returns an integer value <

PROCEDURE:

if (x <= To) i = 0;

else if (jic <= T;) i = 1;

0̂ =

y, =

Stored Table

else i = n;

t jnp
- T i ^

\
5. J

j = int (tmp)

i = J + addr.

m = tJTip - j

f(%) = y , + y J X m

Figure 4.11 Linear interpolation multiple sub-tables procedure

4.1.3 The CORDIC algorithm

The CORDIC (Co-Ordinate /dotation D/gital Computer) algorithm [55, 56, 61, 82] was

introduced as the basis for a navigational computer. Its principal advantages are that it

requires no multipliers, and can generate two function results simultaneously.

It is an iterative process, applied to a set of input variables (x, y, z) for » iterations, to

generate a result accurate to » digits. Each iteration involves a shift, an add and an add

constant operation. Each iteration is a rotation of a vector by a defined angle in one of

three co-ordinate systems parameterised by rn. The basic iteration of the CORDIC

algorithm is summarised in Figure 4.12.

Z.A. Baidas , 2000 Chapter 4: Floating-point library design 7 4

DEFINITIONS:

: input operand.

m :=1 for circular, =0 for linear, =-l for hyperbolic

co-ordinate system.

a-i ran angle value stored in a table.

dn [defines the rotation direction.

PROCEDURE;

for (i=0;i<n;i++)

{

+ Yi ;

Zi+i=Zi -

}

Figure 4.12 The CORDIC algorithm

The capabilities of the algorithm are summarised in Figure 4.13, where the input and

output values are identified for the three different co-ordinate systems and for two distinct

cases: 1) force z to zero, 2) force v to zero. The accuracy of the CORDIC algorithm is

largely dependent on the number of iterations [83, 84]. For a large number of iterations,

the algorithm delivers a high accuracy as illustrated in Figure 4.14, where the sine function

is generated in the range [0,71/2] using CORDIC for 25 iterations.

Due to the iterative nature of the CORDIC algorithm, reducing the required accuracy has

absolutely no effect on the total area cost \ On the other hand, the total delay required to

evaluate the function decreases linearly as the target accuracy reduces. This is illustrated

in Figure 4.15, where the absolute error is monitored for different numbers of iterations in

the same sine function generator.

Unless accuracy reduct ion is achieved by reducing the datapath size, which might result in increasing the

accumulat ion error and hence increasing the required number of iterations for the required accuracy.

Z.A. Baidas, 2000 Chapter 4: Floating-point library design 75

X

y —
z — H

- • K i (x cos(z) - y sin(z))

- •K , (x cos(z) + y sin(z))

->0

Circular {m=1, z->0)

X —

y —
z —H

- > y + x z

->0
Linear (m=0, z~>0)

- • K 2 (x c o s I i (z) - y s i n h { z))

-•K2(x cosh(z) + y sinh(z))

- > 0

Hyperbolic (m=-1, z->0)

K; are predefined constants

m is a control parameter

X —

y —
z —H

-•Ki V(x̂ + ŷ)
->0
- • z + tan"'{y/x)

Circular (m=1, y->0)

X —

y ' —
z — H

-•X
->0
- > z + y/x

Linear (m=0, y->0)

X —

y —

Z — H

-•K2 (Vx̂ - ŷ)

->.z + tanh"\y/x)

Hypertollc (m=-1, y->0)

Figure 4.13 Output functions for CORDIC

X 10

0 . 6 0 .8 1 1.2

Input to the sine function
1.4 71/2

Figure 4.14 Absolute error in the CORDIC sine generator for 25 iterations

Z.A. Baidas, 2000 Chapter 4: Floating-point library design 76

Number of iterations (n)

Figure 4.15 CORDIC error variation with the number of iterations

4.1.4 Iterative series

In this method, the value of the function/(x) is provided by an iterative process that

calculates a polynomial approximation to the target function. The value of the input

operand % is inserted into some formula and after a number of operations the value/(x) is

obtained.

A common numerical approximation is the Taylor series [60, 85], which is based on the

Taylor theorem [85, 86], The algorithm is represented in Figure 4.16. Using this method,

the following approximations (amongst others) may be obtained;

sin(x) = % +
3! 5! (2M-1)!

cos(%)e] 1 ... + (-])
2! 4! (2M)!

/ \ 1 ^ x"
exp(%) = 1 + — 4 1-...4 1! 2! nl

Z.A. Baidas, 2 0 0 0 Chapter 4: Floating-point library design y y

DEFINITIONS:

:a function with n+1 derivatives in [a,b]

:the nth derivative of ffxj.

[Variables in the interval [a,b].

^ :a value between

:approximating polynomial.

:Remainder.

THEOREM:

1! nl
/f + l

(n + l ^

Figure 4.16 Taylor theorem

Another polynomial approximation method is called the poZynomfaZ

appmA;('maf;o?i [60, 61], which provides an approximation f (%) of a function/(jc) that

minimises the worst-case error. The minimax approximation can be summarised by the

two theorems represented in Figure 4.17" .̂ The first theorem says that a continuous

f u n c t i o n c a n be approximated as accurately as desired by a polynomial. The second

theorem implies that if a minimax approximation of the n degree is provided to the

functiony(x), then the largest approximation error is reached at least n+2 times and that the

error alternates.

A proof of both theorems can be obtained by consul t ing [60].

Z.A. Baidas, 2000 Chapter 4: Floating-point library design 7 8

DEFINITIONS:

:maximum distance between the approximation

t±^ actual function.

d :variable with a value of ±1.

THEOREMl:

For any ^>0 , a polynomial P exists such that :

THE0REM2:

f is the minimax approximation of degree n for in

the interval [a,b] if and only if there are at least n+2

values . . <%%+;<& such that:

P (X j) - f (X j) =

Figure 4.17 Minimax approximation base theorems

Finding a minimax approximation of a function is not a straightforward process. However,

numerica] analysis tools such as Maple [87] automatically compute the minimax

approximation of a function over a provided interval, and provides the corresponding

approximation error.

In genera], the minimax approximation provides a more accurate solution compared to a

Taylor expansion for a polynomial of similar degree. This is illustrated in Figure 4.18,

where the exponential function is approximated using both methods for similar

approximation degrees. The error over the approximation range is provided in Figure 4.19

and Figure 4.20. Note the wide variation in ordinate scales.

The example shows that minimax approximation provides better results compared to

Taylor's expansion. However, the minimax approximation provides unique polynomials

for each different degree that requires pre-computing. This gives the Taylor expansion an

edge when a variable precision unit is implemented (see Chapter 7), since it is not possible

to pre-compute the minimax approximations for every possible precision.

Z.A. Baidas, 2000 Chapte 4: Floating-point library design 79

S g
•o

E
o

o
a.

Minimax and Taylor approximation

n Minimax • Taylor

100E-K)0 lOOE-01 lOOE-02 1.00E-03 1.00E-04 lOOE-05 tOOE-06 lOOE-07 1.00E-08

Accuracy

Figure 4.18 Comparison between minimax and Taylor accuracy for different
interpolation degrees

Z.A. Baidas, 2000 Chapter 4: Floating-point library design 80

a) n = 6 b) n = 5

xlO"

I 0.6

0.4

0.5

0.8 0.7 0.3 0.7 0.1 OJ 0.4 0.5 0.1 0 0.1 0.2 0.3 0 .4 0.5 0 .6 0 .7

Input

0 0.1 0.2 0.3 0.4 0.5 0 .6 0 .7

Input

c) n = 4 d) n = 3

2 5

0.035

0.03

0.025

0JM5

0 . 0 1

0.005

0 .7 0.5 0.3 0.4 0.7 0.1 0 .4 0.6 OJ 0 3 0 0 1 M M 0 4 W 0 * O J

Input

0 0 1 M W 0 4 o a 0 4 0 7

Input

e) n = 2 f)n = 1

Figure 4.19 Absolute error in the minimax approximation for the exponential
function different approximation degrees

Z.A. Baidas, 2000 Chapter 4: Floating-point library design 81

2

0.1 0.2 0.3 0.4 0.5 0.6 0.7
hput

a) n = 6

r
I 0.8

I
< 0.6

0.4

Oj

c) n = 4

0.06

0.05

I
g 0.03

e) n = 2

1̂
1.4

1 . 2

i 1

1 0-8
0.6

0.4

(12

e 02

M as M oa 04 M
Input

b) n = 5

d) n = 3

f) n = 1

Figure 4.20 Absolute error In the Taylor expansion for the exponential function for
different approximation degrees

Z.A. Baidas . 2000 Chapter 4; Floating-point library design g ?

4.1.5 Post evaluation

At this stage, the fina] output is adjusted to comply with the IEEE 754 floating-point

standard. This involves;

1. Inverting any range reduction effect.

2. Normalising the fraction by shifting and adjusting the exponent field.

3. Rounding the fraction by conditionally adding one to the least significant bit.

4. Supporting any special action to indicate unusual events (e.g. overflow).

Inverting range reduction effects can be simply demonstrated by an example: the inverse

tangent function is generated for input operands with a magnitude greater than one using

the conversion:

arctant XI = arctan
2 v^'y

The function generator creates the inverse tangent of (1/%) and the final subtraction is

performed in the post evaluation stage.

The implicit one in the floating-point representation requires normalising the fraction

field, which is simply achieved by shifting the fraction and adjusting the exponent to have

the fraction within the range 1 < f <2.

Rounding is required since the result in most situations cannot be represented exactly in

the destination format (23-bit fraction field). In this case, the unit executes in round to the

nearest mode, which is the default rounding mode in the IEEE standard [88]. Other

rounding modes are discussed in Appendix A. In this mode, the result is rounded to the

closest representation that fits in the destination format. If a result is exactly half way

between two representations, it is rounded to the representation that has a zero least

significant bit. Figure 4.21 illustrates three examples of rounding to the nearest, the first

result XI is to the nearest representation a, while X2 is rounded to 6. X3 represents a

Z.A. Baidas. 2000 Chapter 4: Floating-point library design 83

special case since it lies half way between c and therefore it is ronnded to the

representation that has a least significant bit of zero ((/).

1.2 23 y . , 1+2-z: ,X3

V V
1 °

a b 0 d

Figure 4.21 Round to the nearest example

Finally, some unusual event may occur during the operation execution that should be

handled in the post evaluation stage. A good example for such situation is ovgr/Zow. If the

final result of an operation has a magnitude greater than or equal to 2'"^, the value cannot

be represented in the target format and the operation overflows. The post evaluation stage

reacts to such situation by outputting a correctly signed inOnity symbol and setting the

overflow flag. Further details on the post evaluation stage of different floating-point units

are available in Appendix C.

4.2 The status register

Each floating-point functional unit has a set of status flags indicating the "goodness" of

the output value. Writing to a status flag is analogous to throwing an exception. Each

functional unit in the floating-point library can generate six status flags. These are:

1. Invalid operation flag: is set high when an input operand is invalid for the target

operation (for example ln(-])).

2. Overflow flag: indicates that the final result has a magnitude greater than or equal to

2*"^. The result in such a situation is a correctly signed infinity.

3. Underflow flag: indicates that the final result has a magnitude greater than zero, but

cannot be represented by the target format The result will be a correctly signed zero.

4. Inexact, the flag is high if the final result of an operation does not equal to the

infinitely precise result. This occurs in one of two situations: either the final result is

rounded, or the final result is an approximation of the actual result.

Z.A. Baidas. 2000 Chapter 4: Floating-point library design

5. Nof A /Zag: the flag is high if the operation produces NAN as the final result.

6. Zero division flag: the flag is high if the divisor in a division operation is zero.

Type detection blocks, integrated within the floating-point units, to detect these exceptions

and output the corresponding flag register are discussed in Appendix C.

Handling exceptions written to the status register is the responsibility of the designer. Two

options are available:

* A single status register per floating-point operation: The user can enable this option by

providing a variable as an output argument within the floating-point function call (for

example sin (input, output, monitor);), in that case, any exception will be signalled by

writing the internal status register value to the provided variable. It is then the

responsibility of the designer to provide an exception handling process that checks the

monitor variable state and provides an appropriate reaction (similar to the C++ fry and

cafcA block).

A global status register: if it was the designer's decision to ignore the status flag

during floating-point calculation, a global port is automatically created as an output

port and is shared among the floating-point operations within the process. In this case,

handling the design exception should be performed externally (by interrogating (and, if

necessary, resetting) the register with an independent process).

Note that raising a flag within the status register does not always indicate a hazardous

situation. This is illustrated in the example in Figure 4.22 where arctan(+oo) evaluates to

n/2 and the final result after the multiplication by 2 is correct. However, the divide by zero

operation signals a zero division flag.

Z.A. Baidas, 2000 Chapter 4: Float ing-point library design 85

arccos(;() = 2 arctan ̂

arccos(-l) = 2 arctan

I-A'

I + A'

lo

= 2 arctan(-Hx')

= n

Figure 4.22 Raising a status flag example

4.3 Supported functions

The floating-point modules currently supported are listed in Table 4.3. A subset of the

floating-point modules has the capability of handling complex operands. The complex

subset has been chosen to match the IEEE math_real and math_complex VHDL standard

[89]. However, the system provides the capability of adding new floating-point and

complex modules as high-level functions, which are easily integrated within the floating-

point design flow. More details on implementing new floating-point and complex

functions may be found in Appendix D. In the following section an introduction to the real

floating-point component is provided, which is followed by an explanation of the

conversion functions provided, and finally the extension to complex operators is

introduced.

Z.A. Baidas, 2000 Chapter 4: Floating-point librar)' design 86

Function
Real Complex

Function
Table CORDIC Series Table CORDIC Series

addition

subtraction

multiplication

division

ln(z) Y Y N Y Y N

logio(z) Y Y N Y Y N

log2(z) Y Y N Y Y N

logn(z) Y Y N Y Y N

sin(z) Y Y Y Y Y Y

cos(z) Y Y Y Y Y Y

tan(z) Y Y Y N N N

arcsin(z) N Y Y N N N

arccos(z) N Y Y N N N

arctan(z) Y Y Y N N N

sinh(z) Y Y N Y Y Y

cosh(z) Y Y N Y Y Y

tanh(z) Y Y N N N N

arcsinh(z) Y Y N N N N

arccosh(z) Y Y N N N N

arctanh(z) Y Y N N N N

Y Y N Y Y Y

Y Y N Y Y Y

sqrt(z) Y Y N Y Y Y

conj(z)

real(z)

imag(z)

magn(z)

arg(z)

complex_to_polar(z) N/A Y Y Y

polar_to_complex(z) N/A Y Y Y

to_float() N/A

To_complex() N/A
*

* These operations are implemented with separate functional unit unrelated to the three main

techniques.

** These return trivial results.

Table 4.3 Floating-point function library

Z.A. Baidas , 2000 Chapter 4: Floating-point library design g 7

4.3.1 Algebraic operations

This group of floating-point operations performs floating-point addition, subtraction,

multiplication, and division of two real operands represented in the IEEE single precision

floating-point standard.

Floating-point addition and subtraction

This model performs floating-point addition and subtraction of two floating-point

numbers. The inputs to the model are two floating-point numbers a and b, and a flag to

indicate one of the two operations Wcf or acf. The outputs of the model are the results

of the operation and the status flags.

Defining a floating point number as Fx2^, the floating-point addition/subtraction operation

comprises the following individual operations [48, 54]:

/. Perform subtraction of the exponents to form the absolute

difference

2. A/fgnrngnr Right shift the fraction (F) of the smaller operand by bits. The larger

exponent is denoted

3. Fraction addition: Perform addition or subtraction according to the effective operation,

which is a function of the opcode (add/sub) and the sign of the operands.

4. Conversion: Convert the fraction result, when negative to a sign magnitude

representation.

5. Leading-one detection: Determine the amount of left shifts needed in the case of

subtraction yielding cancellation. For addition, determine whether or not I-bit shift

right is required.

6. Normalise the fraction and update

7. Rounding: Round the final result by conditionally adding 1 to the Isb as required by the

IEEE standard. If the rounding causes overflow, perform a 1-bit shift right and

increment Ef.

Z.A. Baidas. 2000 Chapter 4: Floating-poinC library design 88

Note that the sign of the exponent difference in step] determines which of the two

operands is larger. By swapping the operands such that the smaller operand is always

subtracted from the larger operand, the conversion in step 4 is eliminated in all cases

except for equal exponents. In the case of equal exponents, it is possible to get a negative

result in step 3. Only in this event a conversion step is required, but since there is no need

for an initial alignment shift in such case, the result subtraction will be exact and there will

be no rounding [90].

Note that additional functionality is added to deal with different forms of a floating-point

numbers as required by the IEEE standard. The following table outlines these special cases

and shows the status flag register in each case.

Case Result
Status flag register

Case Result
Invalid inexact NAN OVF EUN ZD

(+=) + {-°°) Quiet

NAN

1 1 0 0 0 0

(-00^ -f {+00^ Quiet

NAN

1 1 0 0 0 0

(+00) - (+°o) Quiet

NAN

1 1 0 0 0 0

^-ooj - (-00^ Quiet

NAN

1 1 0 0 0 0

(+00) + (+°o) +00 0 0 0 0 0 0

(-00) + {-°°) -00 0 0 0 0 0 0

(+0°) - (-c«) +00 0 0 0 0 0 0

(-00) - (+00) -00 0 0 0 0 0 0

Signalling NAN operand Quiet

NAN

1 0 1 0 0 0

Quiet NAN operand Quiet

NAN

0 0 1 0 0 0

Exponent overflow +/- 00 0 1 0 1 0 0

Exponent underflow +/- 0 0 1 0 0 1 0

Result Infinite precise

result

Result 0 1 0 0 0 0

Final result is zero +/-0 0 0 0 0 0 0

Table 4,4 Special cases in floating-point addition

Z.A. Baidas . 2000 Chapter 4: Floating-point library design g g

Floating-point multiplication

This model performs multiplication of two floating-point numbers provided as input

operands. The outputs of the model are the results of the operation and the status flags.

There are five major operations associated with floating-point multiplication [88. 91]:

1. jfoge: Check for zero operands and set the product sign.

2. FracfzoM fHwZfzpZfcan'oM: Fixed-point multiplication is performed on the fractions.

3. ExpoMgnr The two exponents are added. The exponent bias shall be subtracted

from result to get the final exponent Ef.

4. Normalise the fraction and update

5. Round the final result by conditionally adding 1 to the Isb as required by the

IEEE standard. If the rounding causes overflow, perform a 1 bit shift right and

increment

The steps of fraction multiplication and exponent addition can be executed

simultaneously. However, these two parallel steps must be properly synchronised before

the normalisation step is initiated.

The multiplier requires additional functionality to support different forms of a floating-

point number, as required by the IEEE standard. Those are listed in the following table.

Z.A. Baidas, 2000 Chapter 4: Floating-point library design 90

Case Result
Flag register

Case Result
Invalid Inexact NAN OVF EUN ZD

(+0) X (-°o) Quiet NAN 1 1 0 0 0 0

(+0) X Quiet NAN 1 1 0 0 0 0

(-0) X (+°°) Quiet NAN 1 1 0 0 0 0

(-0) X (-°o) Quiet NAN 1 1 0 0 0 0

Signalling NAN operand Quiet NAN 1 0 1 0 0 0

Quiet NAN operand Quiet NAN 0 0 1 0 0 0

Exponent overflow +/- no 0 1 0 1 0 0

Exponent underflow +/-0 0 1 0 0 1 0

Result Infinite precise

result

Result 0 1 0 0 0 0

Final result is zero +/- 0 0 0 0 0 0 0

Table 4.5 Special cases in floating-point multiplication

Floating-point division

There are Hve major operations associated with floating-point division [48, 54, 92, 93, 94]:

1. /nff/aZ Check for zero operands and set the product sign.

2. This is an overflow prevention operation, ensuring that the

dividend fraction is smaller than the divisor fraction.

3. Fmcn'on Fixed-point division is performed on the fractions.

4. Exponenf The two exponents are subtracted. The exponent bias shall be

added to the result to get the final exponent Ef.

5. Rounding: Round the final result by conditionally adding 1 to the Isb as required by the

IEEE standard. If the rounding causes overflow, perform a 1 bit shift right and

increment Ef.

The alignment stage always results in a normalised quotient, so there is no need for a

normalisation stage.

The divider requires additional functionality to support different forms of a floating-point

number, as required by the IEEE standard. These are listed in the following table.

Z.A. Baidas. 2 0 0 0 Chapter 4: Floating-point library design

Case Result
Flag register

Case Result
Invalid Inexact NAN OVF EUN ZD

(° °) + (° °) Quiet NAN 1 1 0 0 0 0

(0) + (0) Quiet NAN 1 1 0 0 0 0

Signalling NAN operand Quiet NAN 1 0 1 0 0 0

Quiet NAN operand Quiet NAN 0 0 1 0 0 0

Exponent overflow +/- oo 0 1 0 1 0 0

Exponent underflow +/ -0 0 1 0 0 1 0

Result Infinite precise

result

Result 0 1 0 0 0 0

Divisor is zero +/- oo 0 0 0 0 0 0

Table 4.6 Special cases in floating-point division

4.3.2 Logarithmic and exponential functions

Four main logarithmic functions are provided. The natural logarithm, base 2 logarithm,

base 10 logarithm, and basex logarithm. Each model has a single input, which is floating-

point operand (except for base % logarithm, where the base is also provided as an input),

and two outputs: the floating-point result and the status flag register. The models are based

on generating the natural logarithm function. While the remaining models are generated

using the following conversions:

log^x =log2gXln;c

log,g% = l o g , o g x l n x

1

Inhase

The exponential function along with the power of z function are also provided in the

floating-point library. Both models are based on the exponential function (exp), with the

power of z function generated using the following conversion [95]:

- exp(zlnx)

Z.A. Baidas. 2 0 0 0 Chapter 4: Floating-point library design g o

Since z is can be any real number, this module can be used to generate the square root and

the cubic root functions.

The square root is also provided in the floating-point library. The unit has an additional

output port that is set to one when a negative input operand is encountered. In such case,

the unit evaluates SQRT (Ixl) and the sign bit of the input is simply propagated to the flag

that indicates a complex result. When this flag is asserted high, it indicates an output of the

form: Result = j^lXI

4.3.3 Trigonometric functions

This group of functions consists of the sine, cosine and tangent functions, along with their

inverses. The input angle in all these functions is defined in radians. The modules are

based on generating the sine function after a range reduction process and then applying

simple conversion procedures to implement both the cosine and tangent functions.

The inverse trigonometric functions on the other hand are supported using two modules.

The first one generates the inverse sine or inverse cosine of an input argument in the range

[-1,1]. The second module implements the inverse tangent function.

4.3.4 Hyperbolic functions

Range reduction for these functions is very expensive in terms of hardware and delay.

Therefore, these functions are built upon the elementary functions discussed before as

shown in the equations in Figure 4.23 [56, 96]:

Z.A. Baidas, 2000 Chapter 4: Floating-point library design 93

. , exp(;f)-exp(-A') , exp(A-) + exp(-%)
sum X = — cosh

tanh A-
exp(x)-exp(-x)

exp(jr) + exp(-%)

sinh ' x = ln(x + VA;"+l) cosh 'x = ln(;r+V;("-l)

In
^ 1 + x ^

tanh ' x = - 1 — X

Figure 4.23 Hyperbolic function evaluation equations

4.3.5 Type conversion functions

The VHDL math_real and math_complex [89] provides three data types to represent the

floating-point number. A type for real numbers called REAL and two complex data types

COMPLEX and COMPLEX_POLAR. The standard is currently provided as a simulation

modelling library with no synthesis in mind. This introduces a problem when we try to

provide modules to manipulate floating-point vahables for synthesis purposes. To tackle

this problem, three new data types are introduced to denote floating point and complex

variables:

» FLOAT: Represents a 32-bit floating-point number in the IEEE single precision

format, and is used to represent real numbers.

* CMPLX: Consists of two 32-bit floating-point numbers in the IEEE single precision

format and is used to represent complex variables in the form x-f-jy.

• CMPLX_POLAR: Consists of two 32-bit floating-point numbers in the IEEE single

precision format and is used to represent complex variables in the form Re' .̂

Note that since the real and imaginary parts in the two complex types are represented as

two floating-point numbers, the same rules that handle the status register flags in the float

core apply here.

A set of type conversion functions is also provided to convert between complex type and

from complex to real and vice versa:

Z.A. Baidas , 2000 Chapter 4: Floating-point library design 9 4

* CONJ (Z): The function returns the conjugate of a complex and complex polar

variable. If the input argument is a real number, an overloaded function with a real

input is used, and the same input is propagated to the output

® REAL (Z): The function returns the real part of a complex variable. For a real input

the output is the same as the input variable.

* I M A G (Z): The function returns the complex part of a complex variable. For a real

input argument the function outputs zero.

» M A G N (Z): The function returns the magnitude of a complex polar variable. For a

real input the output is the same as the input variable.

o ARC (Z): The function returns the angle of a complex polar variable. For a real input

argument the output equals zero.

• COMPLEX_TO__POLAR (Z); The function converts a complex input argument to a

complex polar variable.

• P O L A R _ T O _ C O M P L E X (Z): The function converts a complex polar input

argument to a complex variable.

Two additional type changing functions j, , j) are also provided to

support translation from a VHDL type real and integer to the IEEE single precision

representation of/Zoaf and comp/gA:.

4.3.5 Complex units

The type conversion functions illustrated earlier, along with the floating-point library

components are used to implement the complex functional units within the synthesis

library. These units are based on a hierarchical decomposition of floating-point functional

units that manipulate the real and the imaginary parts of the two complex types (complx

and complx_polar). By way of an example, let us consider evaluating the sine function of

a complex variable based on the following equation:

sin(x4- yy) = sin(x)xcosh()') + ycos(%)xsinh(y)

Z.A, Baidas, 2 0 0 0 Chap te r 4: F loa t ing -po in t l ibrary des ign 95

The functional unit block diagram is shown in Figure 4.24. The complex variable is split

into its two floating-point components (real and imaginary) and passes through a number

of floating-point functional units to generate the final result.

Real(in)

Imag(in)

sine
generator

hyperbolic
cosine

generator

floating-point
multiplier

cosine
generator

hyperbolic
sine

generator

Real(out) •

floating-point
multiplier

Imag(out) ^

Figure 4.24 Complex sine function generator building blocks

For the polar type, the sine function generator is based on the complex sine function

generator as illustrated in Figure 4.25. The polar variable is initially converted into the

equivalent complex representation using the complex_to_polar function. A complex sine

function generator follows this and the output result is then transferred back into the polar

representation using polar_to_complex functional unit.

Z.A. Baidas, 2000 Chapter 4: Floating-point library design 96

Complex
sine

generator

Figure 4.25 Polar sine function generator building blocks

The rest of the complex components are implemented in a similar manner to the sine

function based on the set of equations listed in Figure 4.26.

(jcl + y_yl)x(x2 + y);2) = (z l x 2 - y 2) ' 2) + y(xl}'2 + z2)'2)

.%! + xl;»:2 + vl v2 . A:1 v2 - A:2 yl
6__ = ^ h ; ; —

z2 + y);2 ;c2' +);2- ' x2^ +) '2'

exp(x+ /)') = exp(%)xcos(}') + y exp(x)xsin(y)

cos(A: + jv) = cos(;()xcosh(y)-ysin(A:)xsinh(y)

sinh(z + y}') = sinh(z)xcos()') + ycosh(%)xsin()')

cosh(x+ /}) = cosh(z)xcos()') + y sinh(.):)xsin(y)

) X (r 2 g

/ i

f 2g ye 2 r2
e

re -

ln(/'e''^) = ln(r) +

ln(»)

Figure 4.26 Complex function evaluation equations

4.4 Function implementation

The floating-point library is integrated into the MOODS synthesis system via the

expanded module capability. This section describes two major steps in the development of

Z.A. Baidas , 2000 Chapter 4: Floating-point library design 9 7

the floating-point library. Those are the hierarchical unit expansion and expanded module

implementation. Further implementation details can be found in Appendix D.

4.4.1 Hierarchical unit expansion

Many floating-point and complex functional units in the library are provided as a

hierarchical structure of common building blocks. This approach allows the final synthesis

stage to share the common building blocks of different arithmetic units, which results in a

significant reduction of the total area cost. In addition, partitioning the arithmetic units into

a number of building blocks allows effective pipelining. This results in a reduction of the

total delay and increases the throughput of the whole system. As an example, consider the

pseudo-code of Figure 4.27.

In Figure 4.27b, the function is expanded into two sub-blocks, the range reduction

stage and the function evaluation stage A large number

of sub-blocks are common to more than one floating point unit. They communicate with

each other by means of (automatically generated) temporary buffers, which are initialised

by the system to allow the sub-blocks to know which floating-point unit they are actually

representing. For example, in Figure 4.27b will be initialised to tell it is

representing a and may write the range reduction details into 6w/y to

be picked up by sin_cos_main(). The complex type conversion function

is expanded into further building blocks (jf/zg, two floating-

point multipliers and two type converters) as shown in Figure 4.27c. The jmg and cojmg

functions are then further expanded (Figure 4.27d). This approach makes it easy for the

optimisation algorithm to exploit functional unit duplication. The expansion process

involves a series of modification to the original ICODE file that represents the design.

Details on the expansion process, along with the modifications performed on the input

ICODE file to generate the ICODE+ after expansion are available in Appendix D.

Note that RE() and IM() in Figure 4.27c are similar to PL/1 pseudo functions: if they

appear on the right hand side of an assignment, the return a vaZwg, if they appear on the left

hand side, they provide

Z.A. Baidas, 2000 Chapter 4; Floating-point library design 98

COMPLEX
POLAR PI

Fl = sin(F2)

CI = pclar_Co_complex(Pl)

(a)

-F
FLOAT Fl, F2
COMPLEX CI
POLAR PI

T1 = sin_co5_pre(F2,&bufl)
Fl = sin_co5_main(Tl,bufl)

T2 = arg(Pl)
T3 = magrn(Pl)
T4 = min(T2)
T5 = cos{T3)
RE(Cl) » T5 * T3
IM(Cl) = T4 * T3

- •

(c)

FLOAT Fl, F
COMPLEX CI
POLAR PI

T1 = sin_cos_pre{F2,&buf1)
Fl = sin__cos_main.(Tl,buf 1)

polar_cc_complex(PI

(b)

FLOAT Fl, F2
COMPLEX CI
POLAR PI

T1 = sin_cos_prefF2.&bufl)
Fl = sin_cos_inain(Tl,buEl)

T2 = arg(Pl)
T3 = magn(Pl)
T6 m min_coa_pre(T2,&buf2)
T4 m gin_cog_inain(T6,biif2)
T7 a Bin_com_pr#(T3,&buf3)
T5 " mia_com_%nain(T7,buf3)
RE (CI) = T5 * T3
IM(Cl) = T4 * T3

(d)

Figure 4.27 Hierarchical unit expansion example

4.4.2 Expanded module formation

The floating-point library building blocks are all implemented as expanded modules which

are inline expanded within the MOODS control and datapath graphs during the design

synthesis process. Developing an expanded module is a straightforward process. However,

certain points of particular interest are described here to ensure the integrity of the

generated expanded module.

Figure 4.28 illustrates the expanded module creation data flow. At the highest level, the

expanded module is described as a VHDL entity with a single process. At this stage,

simulating the VHDL behavioural description is recommended to ensure a correct module

operation. An important point here is to remember that the expanded module will act as a

Z.A. Baidas, 2 0 0 0 Chapte r 4: F loa t ing-po in t l ibrary des ign 99

datapath functional unit. This implies that the input ports must be stable during the module

execution. As an example consider an instruction such as (c := c + a;) in a behavioural

description. Providing a single variable as an input and output port to the same multi-cycle

expanded module may result in an incorrect execution as it is not guaranteed that the

output port (which is also an input port) will remain stable and will not be updated during

the module execution. To solve this problem, an initialising stage within the expanded

module is implemented, loading the input variables into internal registers local to the

expanded module body before any further manipulation.

^ VHDL2IC ^

1 \

MOODS rV I

VHDL behavioural
description

ICODE file

module

Control & datapath
graph

Expanded module file

Figure 4.28 Expanded module formation

Once implemented, the VHDL behavioural description is transformed using theVHDL2IC

pre-processor into an ICODE file. At this stage, a minor manual modification to the

ICODE file is required before moving on in the generation process. The necessity of this

manual altering of the ICODE arises from the nature of a VHDL process as an indefinitely

repeating loop, which implies that there will always be an activation from the last control

state to the first control state to ensure continuous execution. This activation command has

to be eliminated manually from the ICODE file to match the nature of the expanded

module, which has unique, non-excitable start and end control states. This manual

manipulation to the ICODE file can be eliminated provided that the user follows certain

guidelines. This is illustrated by the example in Figure 4.29. Figure 4.29(a) shows a simple

VHDL process with its equivalent ICODE. Note that two ICODE instructions (3,4)

provides a feedback to the first control state. To ensure the integrity of the generated

expanded module. The design can be simply modified by assigning the output result to a

temporary register in all branches and then assigning the value of this register to the output

port at the last instruction (control state), as illustrated in Figure 4.29(b). This ensures that

Z . A . B a i d a s , 2 0 0 0 C h a p t e r 4 ; F l o a t i n g - p o i n t l i b r a r y d e s i g n 100

the process will have only a single activation from the last control state to the first one.

which can be deleted automatically by MOODS during the expanded module generation

process.

process

Begin

if add = '1 then

output: inl + in2;

else

output: <= inl - in2;

End if;

End process;

ea add, #1

if 5 ACTT

.3 plus inl,ln2,ouLput ACT 1

.4 minus inl,in2, output: ACT 1

a) Initial VHDL process and its equivalent ICODE

process

Begin
if add = 1' then

temp := inl + in2;

else

temp := inl - in2;

End if;

output <= temp;

End process

eq

if

add, #1,5

ACT

plus inl,in2,temp

minus inl,in2,temp.

move Hemp, output:

ACTT 3 ACTF 4

ACT 5

ACT

b) Modified VHDL process and its equivalent ICODE

Figure 4.29 Expanded module development example

Once complete, the ICODE file is loaded into the MOODS synthesis system and is

transformed into an initial control and datapath graph. Finally, the design is saved as an

expanded module file and added to the MOODS floating-point library.

Z.A. Baidas . 2000 Chapter 5: Floating-point optimisation 101

Chapter 5

Floating-point optimisation

The floating-point optimiser operates on floating-point and complex operations within the

design, binding each floating-point operation to a suitable base technique component from

the floating-point module library.

During optimisation, the high level binding decision of each floating-point unit (i.e. table

lookup, iterative series, or CORDIC) takes into account a number of issues such as the

type and number of floating-point operations required and the availability and the capacity

of any off-chip ROM available to the system.

This chapter details the floating-point optimisation unit. The algorithm evolved from the

need to map each floating-point operation to a suitable high level module in a way that

enables the main synthesis system to develop designs that meet the user's pre-defined

objectives.

The remainder of this chapter is divided into four sections. First, section 5.1 describes the

physical interactions that arise from the nature of the high-level floating-point library

components and their effects on the optimisation process. Section 5.2 introduces accuracy

as a new design space parameter, and describes the way the system handles this issue.

Section 5.3 describes the optimisation algorithm and details the results of an extensive

analysis of its effectiveness on a number of benchmark designs. Finally, further

experimental evaluation of the algorithm is provided in section 5.4.

5.1 Function implementation interactions

The attributes of each function implementation considered in isolation are easy to

compare: to generate sin(x) with a table requires the table itself (which may be internal, or

external, requiring an interface), plus an interpolation engine. To generate it with a series

Z.A. Baidas, 2 0 0 0 Chapter 5: Floating-poinroptimisacion 1 0 2

requires a cumulative adder plus a term generator, which may require a table, but no

interpolation engine. All these elements have easily quantifiable area and speed costs.

However, when a number of functions are required, new interactions become important.

Those interactions are listed in Table 5.1.

1. There is an overhead to interfacing an ASIC/FPGA to an external ROM, but it is fixed and

independent of the number of external function tables.

2. Once an iterative series generator has been instantiated, the cost of switching between different

functions is relatively small.

3. Some function tables are subsets of others.

4. Once a complex function is implemented, the equivalent real function is virtually free in most

cases.

5. Some functions are built as a hierarchical composition of other functional units. If these units are

already available, the total cost is reduced.

6. Once a CORDIC unit has been instantiated, the cost of other units based on CORDIC will be

reduced.

7. The pre-processing stage of some function generators contains the fixed-point operators

(multiplier, divider) required in the function generator block. This reduces the total area cost by

sharing these operators within the two blocks.

8. An optimal distribution of the external ROM amongst the floating-point units has a great effect

on the total system cost.

9. Providing the exact required accuracy for every functional unit could increase the total area cost.

10. When a floating-point function generator is shared between a large number of functional units,

the multiplexing cost could affect the optimised decision in choosing between off-chip and on-chip

implementations.

Table 5.1 Function implementation interactions

Z.A. Baidas, 2000 Chapter 5: Floating-point optimisation 103

The cost of interfacing a design to an external ROM is divided into two sources:

1. I/O port cost: includes the cost of the address bus port, the data bus port and the control

signal.

2. Control hardware: to control the process of reading data from the external ROM. This

involves setting the address and the control signal and then latching the output data into

an internal register.

Figure 5.1 shows a block diagram of an external ROM interfacing unit shared between a

number of functional units. Using this method, a number of functions using the same

external ROM will hardly have any effect on the total system cost when compared to the

cost of implementing a single functional unit using an external ROM. The only overhead

when the external ROM is shared is the cost of multiplexing the data bus and the address

bus between the functional units.

V

External ROM
interface

-^-address bus

4 data bus

-*-rom en

Figure 5.1 Sharing an external ROM interfacing unit

The same discussion above applies to a number of functional units implemented using an

iterative series based method. The iterative series engine is an iterative process that

performs multiply and add operations on a single input operand for a controlled number of

loops. Sharing this unit is achieved by multiplexing four ports: the input operand, the

multiply constants, the control variable that decides the number of iterations and the

output results. This sharing is visualised in the block diagram in Figure 5.2.

Z.A. Ba idas , 2 0 0 0 Chapter 5: Roat ing-point optimisation 104

input

argument

Ctrl

Iterative series
engine

Figure 5.2 Sharing iterative series engine

Table lookup based methods can exploit algebraic identities of certain functions to reduce

the total storage area required to store the table. For example: cos(x) = sin(f - . This

allows implementing both functions using a single table that stores the sine function values

and the subtraction unit is provided as a pre-processing stage in the case of the cosine

function.

Complex variables are represented using two floating-point variables, one to represent the

real part and the other to represent the imaginary part. This implies that any real number

can be represented using a complex representation with an imaginary part equal to zero.

Building blocks used to implement complex functional units can be used to generate the

equivalent real function by setting the imaginary part of the input operand to zero.

Some functions in the floating-point library are implemented as a hierarchical

decomposition of other floating-point building blocks. The hyperbolic sine is one example,

which is based on the exponential function. If an exponential function generator building

block is already instantiated in the design, the unit can be used to generate the hyperbolic

sine, which results in a major reduction in the total cost of generating the latter function.

The total area cost required to implement a functional unit based on the CORDIC

algorithm is dominated by the variable width shift operation and the table of constants.

Once a decision is made to implement a functional unit using CORDIC, the cost of

instantiating other CORDIC unit is reduced due to the possibility of sharing the shifter and

the table of constants.

Z.A. Baidas , 2000 Chapter 5: Floating-point optimisat ion | Q 5

The Range reduction units in some functional unit generators require fixed-point

multiplication and/or fixed-point division operators. Since instantiating these units is a

definite requirement for implementing the appropriate functional unit, the same fixed-

point operators can be used by the function generator block, which results in a reduction of

the total area cost.

The limited capacity of the external ROM available is a major constraint imposed during

the optimisation phase. A random assignment of floating-point units to the external ROM,

and the nature of the interpolation engine (linear or non-linear table lookup), limits the

number of operators that can exploit the external ROM, which results in a great

degradation of the design performance, especially when a minimum area cost is required.

A single floating-point functional unit with different target accuracies could be present in

different parts of the design datapath. Implementing the required accuracy of each

individual unit eliminates the possibility of sharing these units at the highest level of

hierarchy. Assigning the highest required accuracy to all similar functional units within the

design allows maxima] sharing of these units before flattening the design hierarchy.

The multiplexer cost required to share a large number of functional units affects the

optimisation decision when comparing the off-chip and on-chip table-lookup based units.

The difference in the multiplexing cost in both cases could exceed the area saved by

implementing the lookup table as an external ROM.

Diverse interactions such as these require a dedicated optimisation algorithm to perform

the high-level module binding. This algorithm is discussed in section 5.3. Further analysis,

highlighting the effects of these interactions is provided in section 5.4.

5.2 Numerical interaction

The introduction of a floating-point capability to a synthesis environment gives rise to a

new gross design parameter, that is the occwmcy of the floating-point building blocks that

comprise the mathematical expressions within the design. Accuracy cannot be treated on

an equal footing with the other dimensions of the design space because the effects of

changing the accuracy of a functional unit cannot be localised in most cases, and a change

in the accuracy of any module will threaten all operations predicated upon it. Errors

Z.A. Baidas . 2000 Chapter 5; Floating-point optimisation | Q 5

propagate and interact nonlinearly. Furthermore, the form of this interaction is largely data

dependent, it is not difficult to construct a process where a change in a component

accwracy ultimately affects the

The floating-point processes within the system support user specification of floating point

accuracy at two levels: it is possible to assert an overall accuracy on a design, (each

individual floating point operation in the design will deliver this accuracy) and it is

possible to override this and assign individual accuracies to each floating point operation.

Within each hierarchical operator, a differential error propagation model [97, 98] is

employed to calculate the necessary accuracies of each of the building blocks. These

calculations result in a single figure of merit assigned to each building block indicating its

contribution to the total error in the parent operator. These figures are provided as a set of

parameters within the file that represents the hierarchical operator. Given the required

accuracy of the parent operator, the accuracy of each sub-component is calculated and

assigned. When building blocks are shared between operators later by the system, the

accuracy of each shared block is promoted to the value of the most accurate, with units

based on CORDIC and iterative series being an exception, as they get assigned the exact

required accuracy in order to reduce the total delay cost.

In the remaining part of this section, error propagation and the effect of varying accuracy

on overall system performance will be discussed.

5.2.1 Error propagation

The differential error propagation model [97, 98, 99, 100] is often used to study the error

propagation of a floating-point expression. Any arithmetic expression may be

characterised by a co/Mf'wfan'oMaZ grapA composed of directed edges running from input

operand nodes to operation nodes, and from operation nodes to the final result node.

Figure 5.3 shows a computational graph of the simple arithmetic expression:

y = 1.0 - sin(x). Each directed edge from a node to a node is assigned a weight ft;-

Pki is an error propagation factor reflecting the amount of amplification or damping that

occurs on the error of (p^i) while generating ^k- Formally, P^j is given by;

Z.A. Baidas, 2000 Chapter 5: Floating-point optimisat ion 107

Pi, 96

The final error in the output result (p^m) is given by:

1=1

Applying the previous formula to the mathematical expression given in the example in

Figure 5.3 gives a total error in the output result of the form:

g xcos(A:) g sin(x) ^
- - 1 - 7 - 7 l -sin(:() l-sin(%) l - s in (x)

xcos(x)

sm(.r)

I

1-sin(x)

Figure 5.3 Computational graph example

From the final expression of the accumulated error, it is clear that the effect of local

operation error on the final accumulated error is largely dependent on the input operand(s)

Z.A. Baidas, 2 0 0 0 Chapter 5: Float ing-point optimisation t08

value. For software mathematical packages [87] an exhaustive approach that involves

evaluating the accumulated error expression for every set of input operands is usually

employed in order to define the appropriate accuracy of each operation. This is not

however a possible solution for a synthesis tool since the hardware is actually

implemented for every possible input operand. The approach taken to tackle this problem

is to exploit the differential error propagation model to identify the major error sources in

an expression and assign the accuracy of the building block in a way that minimises the

total error to within the required accuracy (if possible). For example, in Figure 5.3 the

error in the sine operation is magnified as x gets near 7t/2. Therefore, the sine function

should be evaluated to the highest possible accuracy permitted by the module library.

By way of an example, Figure 5.4 shows the error propagation calculation of a simple

arithmetic expression (c = a + b). For a = 3 and h = 4, the final result is c = 7. Assuming

an absolute error of 0.1 in a and 0.2 in Z), the absolute error in the final result is Ac = 0.3,

resulting in a relative error of pc = 0.0428, which is identical of the result of the error

propagation model.

dg, g, a + 6

= - ^ x ^ = l x — ^
9^2 ^3

For: Aa = 0.1, A6 = 0.2

—> pa = 0.0333, pb — 0.0500

—> = + = 0.0428

h = A

Figure 5.4 Error propagation model example

Z.A. Baidas, 2 0 0 0 Chapter 5: Floating-point optimisation 1 0 ^

5.2.2 Accuracy variation effect

The accuracy variation impact on the system parameters is largely dependent on the

function evaluation engines invoked within the design. The results presented in this

section demonstrate the effect accuracy variation has on the final hardware cost on three

behavioural benchmarks incorporating floating-point manipulation.

The original VHDL behavioural description contains six floating-point functions: sine,

inverse sine, square root, natural logarithm, exponential, and inverse tangent function.

TestA is implemented using a function generator based on an internal table lookup

interpolation engine. TestB is a design utilising units based on iterative methods (CORDIC

and minimax approximation). Finally, TestC employs a linear interpolation engine based

on an external ROM to generate the functions.

Figure 5.5 shows the three benchmarks located in a two-dimensional design space for

different target accuracies. Trajectory parameters are given in Table 5.2, where each

implementation is given a reference code.

Design

Accuracy = 1e-6 Accuracy = 1e-5 Accuracy=1e-4

Design
Area

(urn')

Delay

(cycles)

Area

(Km')

Delay

(cycles)

Area

(nm^)

Delay

(cycles)
Design

Reference Reference Reference

TestA
2.39e6 214 1.14e6 214 837323 214

TestA
A1 A2 A3

TestB
836199 721 824800 645 817900 572

TestB
B1 82 B3

TestC
679513 250 679513 250 679513 250

TestC
C1 C2 C3

Table 5.2 Area and delay figures for various configurations

Z.A. Baidas, 2000 Chapter 5: Floating-point optimisation 10

Accuracy variation - design space

*Tes tA TestB ATestC

3 0 0 0 0 0 0

2 5 0 0 0 0 0

2 0 0 0 0 0 0

£
3 .

1 5 0 0 0 0 0
(0
0)

<
1 0 0 0 0 0 0

5 0 0 0 0 0

I AZ i ! 1

i i * A3

i i A

1 0 0 2 0 0 3 0 0 4 0 0 5 0 0

Delay (clock cycles)

600 7 0 0 800

Figure 5.5 Design space for the three different benchmarks

From these results, some points of particular note:

» M^or reduction of the total area cost occurs when the target accuracy is reduced on

designs based on an internal table lookup interpolation (Al, A2, A3). As the accuracy

reduces, table sizes for each function generator decrease. A reduction in the table size

results in a smaller area required to store these tables as a static register. On the other

hand, the interpolation procedure does not change with accuracy variation and

therefore the total delay does not change.

• Reducing accuracy in designs based on CORDIC and iterative series methods reduces

the number of iterations required to generate the output result, which result in a shorter

execution time (Bl, B2, B3). However, the hardware required to implement the units

does not change apart from the loop control variables, which explains the negligible

effect of the accuracy variation on the total area cost.

Designs based on an external ROM maintain the same location in the design space.

Accuracy variation in that case affects the function generator table size, which is

stored externally. Thus the internal design hardware and the execution time are not

affected by the accuracy variation.

Z.A. Baidas, 2000 Chapter 5: Floating-point optimisation 1 1 1

Finally, it is worth mentioning that in the previous test, all the units in a single design were

chosen to be of the same nature in order to highlight the individual effects when the

accuracy changes. This is not always the case: a design in general will have different

function generators and the accuracy variation will result in a change in both the overall

area and delay.

5.3 Optimisation algorithm

The floating-point optimiser operates on the floating-point and complex functions within

the design, binding each operation to a suitable base technique from the floating-point

module library.

The algorithm relies on a number of pre-calculated metrics to guide the binding decision:

« On-c/z/p orga is assigned to each function generator in the library, presenting the area

cost of the unit as a stand-alone design.

« Each function generator has an associated area figure defining the external

ROM size required to implement the unit. Note that the area figure is only

related to designs requiring a stored table and has the value of zero for other modules.

D g / o) ; i s defined for each function generator indicating the execution time of the

floating-point module.

S'/iaraZpzVz'n'/ocfor is provided for each floating-point function generator qualifying the

increase in area cost when the module is shared between a number of compatible

functions.

In addition to these four metrics, the algorithm also requires extra information from the

floating-point module library to identify the fixed-point sub-components, in each floating-

point module, that have significant effects on the total module area and/or delay cost, such

as a fixed point-multiplier. A set of graphs representing the four main metrics of the

inverse tangent function generator for a target accuracy of 10'^ is shown in Figure 5.6.

Z.A. Baidas . 2000 Chapter 5: Float ing-point optimisation

Odo/fccfofCGjoOf cydGB) Of'-cncaeaCruTDe cf efrie:

500

ZOO
300

200

CO

Linger or- Pahfionad Urea-off- Pcrfihoned Ifercfive CCRDIC
chptcWe oodip mptcWe off-cfio sma

fcoe rowe

Linecron- Poiihoned Unecroff- Pcfificneo ifercfrve CCRDIC
chptdDle on-chp motcwe off-Oic seis

fcWe fcUe

Cn-chpaeoCLfTT) ShacDItfyfccfof (Lrrf)

350000

300000

250000

200000

mooo
100000

50000

Lirecron- Pafifioned Unecroff- PaMMored ifercfrve CCRDIC
(f-ipTcWe on-chp cMpfcWe off-cMp seies

fcPle fooe

35300

30000

25000

20000

15000

DOOO
5000

Una3 on- PcrHhorea Lirecr off- Patitiored
mpfcWe on-i±ip chp fable off-cho

fcPle fcOe
Itecfive CORaC

Figure 5.6 The inverse tangent function parameters for a target accuracy = 10"̂

The floating-point optimiser relies on two routines to perform the module binding

operation:

1. On-cA/p The main optimisation routine, responsible for assigning

floating-point and complex functional units to on-chip based modules (on-chip table

lookup, CORDIC, iterative series).

2. ExfgmaZ A supporting routine invoked by the j'onoM

routine. It takes a number of floating-point operations and provides a possible mapping

which utilises the external ROM most efficiently.

The flowchart of the optimisation algorithm is shown in Figure 5.7. It is an iterative

algorithm comprising six main steps;

1. Initially, all floating-point modules are mapped onto an on-chip table lookup based

technique, implemented on an infinite, virtual, internal, on-chip ROM. The result in this

step is the fastest possible implementation of the design based on the available floating-

point module library. If this meets the user area constraints, and fits the physical

system, the base technique mapping is complete and successful.

Z.A. Baidas. 2000 Chapter5: Floating-point opumisation

2. At this stage, the system starts trading speed against area trying to deliver the user

requirements. A floating-point unit is selected at this stage as a target for the optimiser.

Functional unit selected as a target for optimisation is mainly based on the total area

cost of the functional unit (selecting the biggest unit for area optimisation) and the

number of instances involved in the design.

3. Select an alternative implementation for that unit. The base mapping techniques are

selected in the following order: l)linear on-chip table, 2)partitioned on-chip table. 3)

linear off-chip table, 4)partitioned off-chip table, 5)iterative series based unit, 6)

CORDIC algorithm based unit. When a function is to be implemented as an off-chip

table lookup, the external ROM utilisation routine is invoked to deliver a suitable

implementation which utilises the ROM most efficiently. The external ROM mapping

decision is based on an initial exhaustive search of all possible combinations of table

lookup mappings to see which utilises the ROM most efficiently. Note that this does

not lead to a combinatorial explosion, since a table is necessary for each floating point

module not and in practise, sub-table isomorphism within the floating-

point module library components means that the largest number of off-chip tables ever

considered cannot be larger than six.

4. The effect on the overall area of the mapping change is estimated. If the area is not

reduced, goto step (5). Otherwise, the new mapping is accepted, and if the overall user

requirements are satisfied, the algorithm terminates successfully.

5. If all the floating-point functional units are mapped onto the cheapest possible base

technique (in terms of area cost), and the user requirements are not met, then the

algorithm terminates in failure. Otherwise, return to step (2).

6. Once the previous iterative process terminates, and the user constraints are met, a final

delay based optimisation pass is performed, trying to improve the overall system

performance wif/iouf violating the user constraint. For example, moving a functional

unit mapping from iterative series to on-chip table if the difference between the target

area cost and the actual area cost is greater than or equal to the area cost difference

between the two base techniques.

Z.A. Baidas. 2 0 0 0 Chap te r 5: F loa t ing-po in t opt imisa t ion 14

Step 1

Step 2

Step 3

Step 4

Step 6

Functions mapped to
on-chip table lookup

All constraints met (SUCCESS)
Constraints
^ met? ^

Improvement?

Step 5
Further

mapping
possible?

Constraints
^ met? ,

All constraints met

Further optimisation
is not possible

(FAILURE)

(SUCCESS)

Select
functional

unit

Select alternative
implementation from

module library

Estimate area cost

Delay based
optimisation

Apply changes and
update cost

Figure 5.7 Optimisation algorithm flowchart

Z.A. Baidas , 2000 Chapter 5: Float ing-point optimisation \ 15

It is important to mention at this stage that the area cost estimation in step (4). and the area

cost estimation of the initial input design are both performed using a separate nreo

gj'nmafor. The main purpose of this area estimator is to predict the total area cost of the

synthesised design once optimised by the MOODS system. The routine divides the design

area into two parts:

1. pomf cojT based on the storage units cost and the fixed point operator cost.

2. F/oafmg based on the floating point operators within the design.

The fixed point cost is calculated once while estimating the area cost of the initial design.

Storage units cost is based on a direct accumulation of the these units cost (internal

registers, internal ROMs,...). For fixed point operators, a single pass is performed to

detect the nature and the width of these operators within the design. During this initial

pass, all operators of the same nature (adder, subtractor,..) are grouped together, and the

accumulated area cost of these groups is calculated.

For floating-point operators, maximum sharing of these units is expected (which is always

the case as long as an initial optimisation phase is performed during the MOODS

optimisation phase prior to flattening the design hierarchy). The cost of each floating point

operator is then calculated as the sum of the single floating-point operator area cost and

the multiplexing cost required to share this operator, which is based on the number of

functional units within the design.

Although the area estimator does not take into account the effect that parallelism and

registers sharing have on the design area. The nature of the floating point designs, in

which area cost is dominated by the floating point functional units within the design,

allows the estimator to provide a close estimation to area cost of the MOODS structural

output with an accuracy close to 90%.

The design of this heuristic is derived from observations of base technique interactions.

Some points of particular interest are:

® Functions based on table lookup implemented on off-chip ROM share a single ROM

controller and a single I/O port.

Z.A. Baidas. 2000 Chapter 5: Floating-point optimisation

* Expanding the hierarchical (real and complex) functions before the optimisation phase

permits substructure sharing. If both the complex and real instances of a function are

required, this delivers significant cost reductions.

« Mapping a function onto a CORDIC base technique makes subsequent mappings to

that implementation more likely.

" Two or more functions having the same table (for example j and have only

one physical table.

* The cost of an iterative series generator can be significantly changed by the prior

availability of its primitive sub-units (multiplier, divider). Equally, the selection of this

base technique reduces the cost of other operations by providing these units.

To demonstrate the effect of the floating-point optimisation algorithm, two behavioural

descriptions incorporating floating-point manipulation have been chosen for analysis. The

first design, labelled benchl is composed of nine floating-point operations: addition,

multiplication, division, sine, inverse sine, natural logarithm, exponential, inverse tangent,

and square root. The second design, benchl, contains all the operations available in

benchl, but differs in the number of times each operation is invoked. It has; a single

addition, a single multiplication, a single division, a single sine, two inverse sines, three

exponentials, four inverse tangents, five natural logarithm and six square root operations.

Throughout the remaining portion of this section, performance figures are taken directly

from the MOODS synthesis system using a Xilinx based module library. In this library,

area and delay figures are obtained by an analysis of the floor planning results, obtained

from the Xilinx Alliance development system, of the MOODS synthesis system output.

Each design has been synthesised using a variety of optimisation configurations featuring

different target area cost and various external ROM sizes. Note that the accuracy criterion

is set to Ie-6 for all designs to eliminate the accuracy variation effect discussed earlier in

this chapter.

Table 5.3 and Table 5.4 summarise the optimisation results of both benchmarks providing

a range of area and delay figures. Each design is optimised several times providing twelve

different implementations. Each configuration is given a unique reference code (A1, A2,

A3 ...). The results also provide a breakdown of the total cost in terms of area occupied by

Z.A. Baidas. 2 0 0 0 Chapter 5: Floating-point optimisation | ; y

funcdona] units, storage units, interconnect, and control units. Functional unit distribution

among the three base techniques is also provided for each configuration.

The results are summarised by a set of graphs in Figure 5.8 to Figure 5.16. Figure 5.8 and

Figure 5.9 show a section of the area/delay design space for benchl and bench2

respectively. Figure 5.10 to Figure 5.15 show the functional unit distribution between the

three base techniques for all configurations. Finally, Figure 5.16 provides a comparison of

area breakdown of two configurations of benchl and benchZ of particular interest.

Ref

Target

area

(nm2)

Available

External

ROM

(Kbyte)

Estimated

area

(nm2)

Utilised

ROM

(Kbyte)

MOODS

area

(nm2)

MOODS

delay (ns)

Delay

(cycles)

Function

units cost

(Mni2)

Storage

Cost (um2)

Muxing cost

(Hm2)

Control cost

(nm2)

Off-chip

table

based

units

On-chip

table

based

units

CORDIC

based

units

Iterative

series

based

units

A1 0 0 1.226E+06 0 1.117E+06 1261E+05 865 Z123E+05 5.271 E+05 3 214E+05 3.600E+04 0 0 2 4

B1 0 3.4 1 208E+06 2.98 1.101E+06 1.099E+05 753 2^34E+05 5 083E+05 3.424E+05 3 720E+04 2 0 2 2

CI 0 6.8 1M74E+06 6.05 1.110E+06 9 167E+04 627 2 15BE+05 4 828E+05 3 730E+0G 3a20E+04 4 0 1 1

D1 0 CO 1163E+06 1.061E+06 5.828E+04 411 1132E+05 4 447E+05 4J33E+05 4.010E+04 6 0 0 0

El 2E+6 0 1.957E+06 0 1.831E+06 9.160E+04 627 &005E+05 5 188E+05 &755E+05 3.630E+04 0 4 2 0

F1 2E+6 3.4 1.974E+06 2 75 1.840E+06 8.223E+04 586 9.011E+05 4^«3E+05 4 127E+05 3.780E+04 1 4 1 0

G1 2E+6 6.8 1974E+06 2 75 1.840E+06 8^!23E+04 586 9.011E+05 4^l83E+05 4J27E+05 3 780E+04 1 4 1 0

HI 2E+6 1941E+0G 12.32 1 822E+06 5 658E+04 399 8.760E+05 4 274E+05 4.803E+05 3 870E+04 2 4 0 0

11 c. 0 3.115E+06 0 2 956E+06 5431E+04 383 2.130E+06 4.336E+05 3^,44E+05 3jM0E+04 0 6 0 0

J1 oo 3.4 3.115E+0G 0 2.956E+06 5 431E+04 383 2 130E+06 4^W6E+05 3.544E+05 3.810E+04 0 6 0 0

K1 6.8 3.115E+06 0 2.956E+06 5.431 E+04 383 2.130E+06 4 336E+05 3.544E+05 3.810E+04 0 6 0 0

LI oo 3 115E+06 0 2.956E+06 5.431 E+04 383 2.130E+06 4.336E+05 &544E+05 &810E+04 0 6 0 0

N
>
W
K. CL D3

W o o o

n
-§

LA
3 o

• a

d

Table 5.3 Area and delay figures for various optimisation configurations of design bench 1

Ref

Target

area

(pm2)

Available

external

ROM

(Kbyte)

Estimated

area

(nm2)

Utilised

ROM

(Kbyte)

MOODS

area

(nm2)

MOODS

Delay

(ns)

Delay

(cycles)

Function

units cost

(pm2)

Storage

Cost (|jm2)

Muxing cost

(tim2)

Control cost

(jim2)

Off-chip

table

based

units

On-chip

table

based

units

CORDIC

based

units

Iterative

series

based

units

A2 0 0 2 028E+06 0 2.106E+06 3.512E+05 2365 2 069E+05 &926E+05 9121E+05 9.480E+04 0 0 8 13

B2 0 3.4 &236E+06 2.98 2.233E+06 2 814E+05 1894 2 083E+05 8.950E+05 1.030E+06 9.960E+04 8 0 8 5

C2 0 6.8 2.174E+06 5 73 2 218E+06 2.715E+05 1827 &079E+05 8 795E+05 1.030E+06 1.004E+05 9 0 8 4

D2 0 2.172E+06 19.68 2 168E+06 1 458E+05 1023 gj'eGE+OA 8 353E+05 1130E+06 1 050E+05 21 0 0 0

E2 2 5E+6 0 2.408E+06 0 2.411E+06 2.566E+05 1722 5.156E+05 &626E+05 &3g8E+05 9.380E+04 0 11 7 3

F2 2.5E+6 3.4 2.344E+06 2.98 &571E+06 2.088E+05 1406 5M69E+05 8^W9E+05 1.060E+06 1.004E+05 7 11 3 0

G2 &5E+6 6,8 2.475E+06 5 73 2.481E+06 1.946E+05 1 3 n 4 791E+05 8.605E+05 1040E+OG 1010E+05 8 11 2 0

H2 2 5E+6 ~ 2 463E+06 15.3 2 377E+06 1.398E+05 981 3J69E+0S 8.072E+05 1.090E+06 1 027E+05 10 11 0 0

12 oo 0 3.955E+06 0 4^63E+06 1.278E+05 897 2.130E+06 7.956E+05 t030E+06 &730E+04 0 21 0 0

J2 oo 3.4 &955E+06 0 4^KaE+06 1^78E+05 897 2.130E+06 7.956E+05 1.030E+06 9 730E+04 0 21 0 0

K2 6.8 3.955E+06 0 4.053E+06 1.278E+05 897 2 130E+06 7.956E+05 1.030E+06 9.730E+04 0 21 0 0

L2 3 955E+0G 0 4^63E+06 127BE+05 897 2.130E+06 7.956E+05 1.030E+06 9.730E+04 0 21 0 °

N
>
td %
Si
K
hj

8

n

g
LA
3
g

13 O

Table 5.4 Area and delay figures for various optimisation configurations of design bench2

\0

Z . A . Ba idas . 2 0 0 0 Chapter 5: Floating-point optimisation 120

1 4 0 0 0 0

1 2 0 0 0 0

1 0 0 0 0 0

80000
m
0) c

Q 60000

4 0 0 0 0

20000

0 •

Benchi - Area optimised design space

/ * \ .28e6,197516)

\ Unoptinwed
design ^

1 f * n
i 4>

= 61

D, /
/ n = j i
i L

= K1 =

^ / t /
y

Target area m 0

Targ »t area = 2000
Target are a m infinity

0 5 0 0 1 0 0 0 1 5 0 0 2 0 0 0 2 5 0 0 3 0 0 0 3 5 0 0

Area x10^ (pm^)

Figure 5.8 Benchi design space

4 0 0 0 0 0

3 5 0 0 0 0

3 0 0 0 0 0

250000
c
>< 200000
i®
M

o 1 5 0 0 0 0

100000

5 0 0 0 0

0

Bench2 - Area optimised design space

1
_ _ ! . . _ ! &

1 1 /

1 c
UnopUmlsed

1 design , /

' J
p
1 #

\ 1 "

* F 2 1 1

1

/ 9 _K") -1 9"^

Target ar

f H

M . O | \ / ^
y ^

1 /
Target area * 2 500 Ttarget area =

j

0 5 0 0 1 0 0 0 1 5 0 0 2 0 0 0 2 5 0 0 3 0 0 0 3 5 0 0 4 0 0 0

n3 / , .^2x Area x10^ (pm"")

Figure 5.9 Bench2 design space

Z.A. Baidas, 2000 Chapter 5; Floating-point optimisation 121

M
C
o

S. 4

1

1 2

• Off-chip • On-chip nCordic n iterative

(A1)

(D1)

(C1)

(B1)

3.4 6.8

External ROM size (KByte)

infinity

Figure 5.10 Distribution of functional units between the three base techniques for
benchi for target area = 0 as a function of external ROM size

(A
C
O

h
o

E
3
z

• Off-chip •On-chip •Cordic a Iteratiw

(E1) (F1) {G1) (HI)

3.4 6.8

External ROM size (KByte)

infinity

Figure 5.11 Distribution of functional units between the three base techniques for
benchi for target area = 2e6 as a function of external ROM size

Z.A. Baidas, 2000 Chapter 5: Floating-point optimisation 122

7

6

M
.1 5

1
& 4
o
o
0
E

• Off-chip • On-chip nCordic a Iteratiw

(11) (J1) (K1) (L1)

3.4 6.8

External ROM size (KByte)

infinity

Figure 5.12 Distribution of functional units between the three base techniques for
bench 1 for target area = infinity as a function of external ROM size

M
C
o

0) Q.

O

25

20

15

k 10

• Off-chip • On-chip •Cordic nlterati\e

(A2)_

(D2)

T B z r
iC2i_

3.4 6.8

External ROM size (KByte)

infinity

Figure 5.13 Distribution of functional units between the three base techniques for
bench2 for target area = 0 as a function of external ROM size

Z.A. Baidas, 2000 Chapter 5: Floating-point optimisation 123

12

10
to

I »
Q
a.
® 6

1
E
3
z

• Off-chip • On-chip nCordic o Iterative

E2) (F2) (G2) (H2)

3.4 6.8

External ROM size (KByte)

infinity

Figure 5.14 Distribution of functional units between the three base techniques for
bench2 for target area = 2.5e6 as a function of external ROM size

M
I
1
s .
O

25

20

15

te 10

E
3

• Off-chip • On-chip •Cordic alterative

(12) (J2) (K2) (L2)

3.4 6.8

External ROM size (kByte)

infinity

Figure 5.15 Distribution of functional units between the three base techniques for
bench2 for target area = infinity as a function of external ROM size

Z.A. Baidas, 2000 Chapter 5: Floating-point optimisation 124

D Functional • Storage • Interconnects • Control

2500000

2000000

h. 1500000

8
g 1000000

500000

X

bench2 (12) benchi (II)

Configuration

Figure 5.16 Area breakdown of the two designs based on similar base techniques
(on-chip based implementation)

Comparing the floating-point optimiser estimated area cost to the final area cost o f all

optimised designs illustrates the abil i ty o f the floating-point optimiser to provide a very

good estimation o f the design characteristics. I n al l cases, the floating-point optimiser

managed to predict the reduction the MOODS synthesis system optimisation phase w i l l

achieve wi th a good degree o f accuracy (90%) without any feed back f rom the main

optimisation phase.

The design spaces in Figure 5.8 and Figure 5.9 show the dominant effect o f the target area

cost on the achievable implementation o f each design. Setting the init ial target area cost

fixes the optimal design space curve, w i th the variation in the external R O M size resulting

in the design moving along that curve. Increasing the target area cost o f the design shifts

the curve away f rom the design space origin, providing considerably enhanced design

performance.

Figure 5.10 and Figure 5.13 provide the distribution o f functional units between the three

main base techniques for benchi and benchi respectively when a minimum area cost is

required. The most obvious feature is that the floating-point optimiser w i l l always provide

Z.A. Baidas, 2000 Chapter 5: Floating-point optimisation] 2 5

an implementation based on both CORDIC and iterative series if a reasonable size external

ROM is not available (A l , A2). This is expected, since both techniques always provide the

most area efficient implementation. Increasing the available external ROM results in

functional units moving gradually to an off-chip based implementation (B1. B2, C1. C2).

When the total external ROM size is sufOcient. the optimiser binds all possible floating-

point units to an off-chip based implementation trying to reduce the total delay cost. This

is illustrated in the same figures by (D1, D2). It is also important to notice that none of the

floating-point units are bound to an on-chip table lookup based module, as they tend to

introduce a noticeable increase in area cost and are not suitable when a minimum area cost

is required.

I f a minimum area is not required, the system wi l l try to enhance the performance of the

floating-point units in the design. This is illustrated in Figure 5.11 and Figure 5.14, where

a target area cost of 2 x 10^ |im" and 2.5 x 10^ p,m" are specified for benchl and benchZ

respectively'. In both figures, the majority of floating-point functional units were based on

an on-chip table lookup module. The external ROM is only used to enhance the

performance of floating-point functional units based on CORDIC or iterative series.

An interesting feature of the floating-point optimiser is illustrated in Figure 5.12 and

Figure 5.15. Here the target area cost is sufficient to implement all functional units as an

on-chip table lookup unit, providing a high performance design with a minimum delay.

Varying the external ROM size has no effect on the module binding decision since the

target area cost has already been met.

Finally, Figure 5.16 provides a comparison of the area breakdown of the two designs when

implemented using similar on-chip based techniques. Note that both designs are similar in

the floating-point functional units invoked, and differ only in the number of instances of

each unit. The extra area cost in benchZ is mainly caused by the interconnects required to

share the floating-point functional units among compatible units, and the control required

for this sharing. Functional unit costs hardly change between the two units, which

illustrates the efficiency of unit sharing, as the only increase in cost when the number of

The target area cost is increased in bench2 to compensa te for the increase in area due to the number of

internal registers required to pass data between the f loat ing-point operators in addition to the mult iplexing

cost.

Z.A. Baidas. 2000 Chap te r 5: F loa t ing-po in t op t imisa t ion 126

floating point operators within the design increases would be the input and output port

multiplexing and a moderate increase in the control logic. It is also worth mentioning that

this approach is even more efficient when the design targets an ASIC, since multiplexors

in an ASIC are far less expensive compared to programmable logic devices, as they are

based generally on pass transistors.

5.4 Experimental evaluation

The results presented in this section demonstrate the floating-point optimisation algorithm

performance when applied to several designs. Designs are chosen to demonstrate and

isolate the interactions listed in Table 5.1. The designs are grouped into nine different sets.

The first set of designs demonstrate the increase in area cost when a number of iterative

series generators have been instantiated. Five designs are chosen: a sine (CI), an

exponential (C2), a natural logarithm (C3), a combined sine and exponential (C4), and

finally the three function generators in a single design.

4 5 0 0 0

4 0 0 0 0

3 5 0 0 0

3 0 0 0 0

c 25000

>.
o 20000

15000

10000

5000

0

• C5

* C 4

C u m u l a t i v e a r M o f C 1 , C 2 , a n d C 3 ^

* C 2

* C 3

• C I

C u m u l a t i v e a r e a o f 0 1 a n d 0 2 •

O.OOE+00 1.00E+05 2.00E+05 3.00E+05 4.00E+05 5.00E+05 6.00E+05 7.00E+05

Area

Figure 5.17 Design space for the first set of designs

It is clear from Figure 5.17 that the cost of switching between the three function generators

is relatively small once an iterative series engine is implemented. An area cost reduction of

Z.A. Baidas, 2000 Chapter 5: Floating-point optimisation 127

28% when two iterative series engines are shared and a 42% reduction in the total area

cost is achieved when the three function generators are combined.

To demonstrate the effect of lookup table sharing, three designs are considered: a sine

function generator based on an on-chip linear table lookup unit (C6), a cosine generator

based on the same technique (C7), and a single design that combines the two generators

(C8). The design space in Figure 5.18 shows the final area and delay cost of the three

designs once optimised. Note that a major reduction in the area cost is achieved in C8

when compared to the accumulated area cost of (C6) and (C7). Over the range [0,7D^2], it is

possible for these two units to share the same table lookup, which reduces the area cost

required to store the internal table by 50%.

6000

5000

4000

<n

% 3000
m
0)
Q

2000

1000

* C8

C u m u l a t i v e a r e a o f C 6 a n d C 7 •

, , , 1 r 0

O.OOE+00 2.00E+05 4.00E+05 6.00E+05 B.OOE+05 1.00E+06 1.20E+06 1.40E+06

Area (pm^)

Figure 5.18 Design space for the second set of designs

The third set of designs represented in Figure 5.19 demonstrate the effect on total area cost

when a complex and real function of the same nature are combined in a single design. The

figure represents three designs: a real square root function generator based on an on-chip

linear lookup table (C9), the corresponding complex polar function generator (CIO), and a

design that combines both units (CI 1). It is clear that when the complex function is

implemented, the equivalent real function is almost free (in terms of area cost). Since the

real square root building block is maximally shared between the two operators and the

Z.A. Baidas, 2000 Chapte r 5: F loa t ing-po in t op t imisa t ion !28

moderate increase in area cost in (CI 1) when compared to (CIO) is due to the sharing cost

in terms of multiplexing and control logic.

4500

4000

3500

3000

c, 2500
>.
(0

2000
O

1500

1000

500

0

* C11

* cm

* C9

C u m u l a t i v e a r e a o f C 9 a n d C I O

O.OOE+OO 2.00E+05 4.00E+05 6.00E+05 8.00E+05 1.00E+06 1.20E+06

Area (pm^)

Figure 5.19 Design space for the third set of designs

Hierarchical functional units within the behavioural design are expanded to their sub-

components before the floating-point optimisation phase. This allows a maximal sharing

of similar units. This is illustrated in Figure 5.20. The hyperbolic sine (CI3) is based on

two exponential units. Which allows a reduction in area cost of 20% when both functional

units exist within the same design (CI4), when compared to the accumulated area cost of

the exponential function (CI2) and the hyperbolic sine (C13).

The CORDIC algorithm is exploited in this work to provide a cheap implementation (in

terms of area cost) for a number of functional units, with the functional unit area mainly

dominated by the variable width shift operation and the table of constants that store the

rotation angle. When a number of CORDIC based function generators exist within a

design, further reduction in the area cost is possible due to the possible sharing of the two

units mentioned above. Figure 5.21 represents the design space of three designs: a cosine

function generator based on CORDIC (CI5), an inverse tangent function generator based

on CORDIC (CI6), and a design that contains both units (CI7). Sharing the building

Z.A. Baidas, 2 0 0 0 Chapter 5: Floaiing-point optimisation 129

blocks in (C17) results in an area reduction of 31 % when compared to the area cost of the

two separate function generators.

4.00E+04

3.50E+04

3.00E+04

2.50E+04
in
c

>. 2.00E+04

o

1.50E+04

1.00E+04

5.00E+03 O.OOE+00

* C14

$ C13

C u m u l a t i v e a r e a o f C 1 2 a n d C 1 3 ^

* C12

O.OOE+00 1.00E+05 2.00E+05 3.00E+05 4.00E+05 5.00E+05 6.00E+05 7.00E+05

Area (pm^)

Figure 5.20 Design space for the fourth set of designs

2.50E+04

2.00E+04

— 1.50E+04

>.
iS
o 1.00E+04

5.00E+03

O.OOE+00

* C17

C15

C16

C u m u l a t i v e a r e a o f C I S a n d C 1 6 ^

O.OOE+OO 1.00E+05 2.00E+05 3.00E+05 4.00E+05 5.00E+05 6.00E+05

Area (pm^)

Figure 5.21 Design space for the fifth set of designs

Z.A. Baidas. 2 0 0 0 Chap te r 5; F loa t ing-po in t opt imisa t ion 130

Figure 5.22 represents the design space of three designs: sine function pre-processing

stage (CIS), iterative series based sine generator (CI9), and a design that performs a full

sine function generation based on iterative series (C20). It is clear in this example that the

inline expansion of the two blocks before optimising allows datapath operator sharing at

the sub-component level, which results in a 36% reduction in the total area cost in this

case.

12000

10000

8000

5
> 6000

Q
4000

2000

* C20

C18

^ Cumulative area Of C18 and C19

C19

0

O.OOE+00 5.00E+04 1.00E+05 1.50E+05 2.00E+05 2.50E+05 3.00E+05 3.50E+05

Area (pm^)

Figure 5.22 Design space for the sixth set of designs

The limited capacity of the external ROM available to implement a behavioural design

requires a careful distribution of this ROM between the floating-point functional units,

especially when a minimum area cost is requested. This is illustrated in example Figure

5.23. The design composes five floating point functional units: sine, inverse sine,

exponential, natural logarithm, and square root. The floating point optimiser decision is to

implement all but the inverse sine function utilising the external ROM (0.36 Kbyte in this

example). The resulting design is illustrated by (C21). Assuming a similar design with the

inverse sine function implemented using the external ROM (C22), the remaining four

functional units wi l l be mapped to CORDIC and the iterative series based technique. The

random utilisation of the external ROM in the second example produces a design that is

32% slower and 2% bigger when compared to the floating point optimised output.

Z.A. Baidas, 2 0 0 0 Chapter 5: Floating-point optimisation

50000

45000

40000

35000

30000

25000
ra
O 20000

15000

10000

5000

0

"C22

C21

O.OOE+00 2.00E+05 4.00E+05 6.00E+05 8.00E+05 1.00E+06 1.20E+06

Area (pm^)

Figure 5.23 Design space for the seventh set of designs

Another important issue during the floating point optimisation phase is the final floating

point functional unit accuracy selection. It is possible for a design to comprise similar

floating point operators with different target accuracy. Two cases arise here based on the

function generator assigned to the functional unit;

1. I f the accuracy variation increases the area cost of the design without affecting the

total system delay, all compatible floating point operators are assigned the highest

accuracy.

2. If the accuracy variation results in delay variation, each functional unit is assigned its

exact target accuracy.

This is illustrated in the example in Figure 5.24, which represents the area and delay cost

of four different designs. The first two designs (C23, C24) consist of two sine generators

implemented as on-chip table lookup. In (C24), the target accuracy in one of the function

generators is reduced manually from le-6 to le-5. Note that the accuracy reduction had

hardly any effect on the total delay which the total area cost increased. Therefore, the

floating point optimiser always goes for the first choice. On the other hand, when both

designs are implemented as iterative series based function generators (C25, C26), the

accuracy variation reduces the total delay without affecting the total area cost.

Z.A. Baidas, 2000 Chapter 5: Floating-point optimisation 132

25000

20000

g 15000
c_
>.

o 10000

5000

* C25
* C26

-*-C23- -*-C24

O.OOE+ 1.00E+ 2.00E+ 3.00E+ 4.00E+ 5.00E+ 6.00E+ 7.00E+ 8.00E+ 9.00E+

00 05 05 05 05 05 05 05 05 05

Area (pm^)

Figure 5.24 Design space for the eighth set of designs

The final set of examples demonstrates the importance of considering the area cost of

floating-point operators sharing during the optimisation phase. It represents a design with

ten square root operators with a target accuracy of le-4. The floating-point optimiser

assigns the square root to an on-chip partitioned table lookup base implementation when a

minimum area is requested. The reason is that the difference in the sharing cost between

the off-chip (C27) and on-chip (C28) table lookup implementation once shared between

ten operators exceeds the total area cost of the on-chip table as illustrated in Figure 5.25.

70000

60000

50000

« 40000

>1

g 30000

20000

10000

0

* C28

O.OOE+00 2.00E+05 4.00E+05 6.00E+05 8.00E+05 1.00E+06 1.20E+06

Area (pm^)

Figure 5.25 Design space for the ninth set of designs

Z.A. Baidas. 2000 Chapter 6: Practical synthesis using FPGAs 1 3 3

Chapter 6

Practical synthesis using FPGAs

This chapter describes the design and implementation of a practical demonstrator, from

specification to hardware. An exemplar is chosen that uses the floating-point capabilities

to solve a practical problem: a cubic algebraic equation.

The chapter is divided into four sections: section 6.1 describes the FPGA hardware

prototyping board. Section 6.2 discusses the floating-point cubic equation solver design

and presents an exploration of the design space. Section 6.3 discusses the main problems

encountered during the development cycle. Finally, section 6.4 presents comparisons with

the floating-point performance of a number of microprocessors. Further details related to

these topics may be found in Appendix E.

6.1 FPGA prototyping board

One of the biggest advantages of implementing digital designs on FPGAs is the possibility

of fast prototyping. When behavioural synthesis tools are involved, the turn around time

from an algorithmic level to an FPGA floor plan becomes extremely short. However, the

last step (the physical implementation) requires a physical system to support it.

The FPGA test board is designed with the following objectives in mind. It should be:

a A flexible design, as it should be possible to reconfigure the FPGA board to almost

arbitrary digital designs.

® Capable of interfacing to a PC.

o Possible to connect more than one board together to handle large designs.

« Possible to connect additional hardware to the design.

Z.A. Baidas, 2 0 0 0 C h a p t e r 6: Pract ical synthes is us ing F P G A s 134

In order to accommodate these objectives, the architecture in Figure 6.1 is implemented.

4M X 8
DRAM

8 K x 3 2
SRAM

8 K x 3 2
ROM

RS-232 Keyboard Mouse
interface interface interface

clock 1

V V V V

96 way external
connector

clock2

FPGA
programming

unit

96 way external
connector

Figure 6.1 FPGA board block diagram

The FPGA board is compatible with three SRAM based Xilinx FPGAs; the

XC4085XLPGA559, XC40125VXPGA559, and the XC40250XVPGA559 [101]. These

devices vary in capacity as illustrated in Table 6.1. Three memory banks are provided:

8Kx32bit static RAM and 8K x 32bit ROM sharing the same address and data busses, and

a 4M X 8bit dynamic RAM with a separate data and address bus.

In order to provide a simple way to interface the board to a personal computer, a RS232

serial port interface is provided. Two separate PS2 connectors are provided to allow a

keyboard and a mouse input to the board.

Z.A. Baidas, 2 0 0 0 Chap te r 6: Pract ical synthes is us ing F P G A s 135

Device CLBs Flip-flops
Typical

gate range

XC4085XLPGA559 3136 7168 55000-180000

XC40125VXPGA559 4624 10336 80000-265000

XC40250XVPGA559 8464 18400 160000-500000

Tab le 6.1 FPGA devices characteristics

Two options are provided to allow programming the onboard Xi l inx ITGA. A serial

programming mode is supported via a separate connector that can be attached to a Xi l inx

programming cable [101], and a parallel programming mode is provided using an onboard

EPROM. A set of dip switches is provided to switch between these two modes.

The FPGA board provides an environment where it is possible to implement a wide range

of digital architectures on a single board. However, i f it is required to connect two or more

boards together or connect the design to a number of external units, two sets of 96 way

connectors are provided to support 192 bit parallel connection to the external world.

Two external clock signals are provided to drive the FPGA. Each internal flip-flop can be

triggered by any of these clocks on either the rising or the falling edge. The XC4000XV

devices can run at a maximum synchronous system clock of 100 MHz. Each device in this

family is available in three speed grades (-09, -08, and -07), with a maximum clock

frequency of 76MHz, 87MHz, and lOOMHz respectively.

Figure 6.2 shows a photograph of the final hardware unit, identifying the main

components, and their position on the test board. Further details regarding different

aspects of the board such as I/O port assignment and programming details are provided in

Appendix E.

Z.A. Baidas, 2000 Chapter 6: Practical synthesis using FPGAs 136

Serial
programming pins

Programming
mode control

switches

96 way
first

connector

Main
FPGA

96 way
second

connector

Programming
EPROM

RS232
level shifter

K^f'V

RS-232 serial
connector

ROM bank

Primary clock

DRAM bank

Secondary clock

SRAM bank

PS2 buffers

Keyboard PS2
connector

Mouse PS2
connector

Figure 6.2 FPGA board photograph

6.2 Algebraic cubic equation solver

This section describes the detailed design and implementation o f the exemplar, a cubic

equation solver capable o f handling real coefficients and delivering complex roots. The

system reads three input variables from a keyboard unit representing the three parameters

o f a cubic equation and displays the input variables along wi th the three roots o f the cubic

equation on a V G A screen using the built in V G A display adapter (we assume the

coefficient o f is normalised to unity).

Z.A. Baidas. 2 0 0 0 Chapter 6. Practical synthesis using F P G A s 137

A block diagram of the system is shown in Figure 6.3. The keyboard interface unit reads

the three parameters and converts them to the IEEE single-precision floating-point format.

The three input parameters are also passed to the output stage to be displayed on the VGA

screen. The core unit performs a number of floating-point calculations to generate the

three roots. The three roots are then passed to the output stage to be displayed on the VGA

screen.

An mznaZfj'g key is provided using one of the unused numeric keypad keys in the

keyboard. Pressing the mznaZf j'g key at any stage wi l l result in resetting the system and the

output stage and the system goes into an initial state waiting for a new set of input

parameters.

The design is divided into three units: the input stage which includes the keyboard

interface and the format conversion unit; the output stage that drives the VGA display

adapter; and the core unit which performs the floating-point calculations. These units will

be discussed in detail in the following sections.

Core unit
floaLresult (32 bit)

Output stage

Input stage

Keyboard

key (5 bit)

ready

VGA dala (9 bit)
VGA

adapter

Monitor

Figure 6.3 Cubic equation solver block diagram

Z,A. Baidas, 2000 Chapter 6; Practical synthesis using FPGAs 138

6.2.1 Input stage

The input stage o f the design performs two main operations:

1. Read the keyboard input data and decode it to numerical values.

2. Convert each numerical parameter from a decimal format to a single-precision floating-

point format.

Ful l Details are given in Appendix E.

6.2.2 Output stage

The final section to be considered is the output stage, which displays the input parameters

and the output result on a V G A display driven by a V G A adapter. A n example o f the

displayed result is shown in Figure 6.4. A simple technique is adopted to reduce the

complexity o f the format conversion unit[102]. Details are available in Appendix E.

FLOATING POINT SYNTHESIS

A1 = 7
A2= 8
A3= 9

XI =-1.475761651992x2^

RE(X2) = -1.096952915196 x 2"̂
IM(X2) = 1.106259226799x2

RE(X3) = -1.096952915196 x 2^
1M(X3) =-1.106259226799x2°

Figure 6.4 Cubic equation solver display

Z.A. Baidas , 2000 Chapter 6: Practical synthesis using F P G A s 139

6.2.3 Core unit

The core unit is the most complex part of the whole system. It receives three floating-point

variables from the input stage and performs a number of floating-point operations to

generate the three roots of the cubic equation. The functionality of the core unit can be

D E F I N I T I O N S :

X + 1 Jl"" + t? T A' -f-- = 0

SOLUTION:

— 7.1 ci-^ — Ici
3

9 54

i f (D = 0)

Xj — '2,S Y ?

A", = —S

else if (D > 0)

%, = 5 + r - -^a,

-T)

X'3 = —j(S + T) —jCi T)

else

cos (9 = R!

= 2 . y ^ c o s (j ^) -

X-, — 2-y/- Q cos(-^0 +

X-^ = 2-\/- Q cos(-^0 +

Figure 5.5 Cubic equation solution

described behaviourally by the set of arithmetic operations required to solve a cubic

equation. This is illustrated in Figure 6.5.

The translation to V H D L of Figure 6.5 is direct, and is shown in Figure 6.6. The full

design listing (including the 10 subsystems) can be found in Appendix E.

Z.A. Baidas, 2 0 0 0 Chapter 6: Practical synthesis using FPGAs 140

in float;

in bib;

out bit;

in bit;

out bit;

in bit;

out float

package CoreConst is

constant conl : real := 0.866025404; -- sqrt(3)/

constant con2 : real := 2.094395102; -- 2Pi/3

constant con3 : real := 4.188790204; -- 4Pi/3

end;

use work.CoreConst.all;

entity core is

port (

input

stb_in

ack_in

new_entry

stb_ouc

ack_out

data_out

) ;

end;

architecture behave of core is

begin

process

variable al,a2,a3,S,T : float;

variable R,0,R_sq,0_cu,D, sqrt_p : float;

variable XI : float;

variable Tempi,Temp2,theta3 : float;

variable X2,X3 : cmplx;

begin

get_input_data;

0 := ((TO_FLOAT(3.0)*a2)-(al*al))/TO_FLOAT(9.0);

R := ((TO_FLOAT(9.0}*al*a2)-(TO_FLOAT(27.0)*a3)-(TO_FLOATf2.0)*al'al *al})/TO_FLOAT(54.0);

R_sq := R * R;

0 _ C U : = 0 * 0 * 0 ;

D := R_sq + 0_cu;

if (D = TO_FLOAT(0.0)) then

S := CBRT(R);

Tempi := al/TO_FLOAT(3.0};

XI := TO_FLOAT(2.0>*S-Templ;

X2 := TO_COMPLEX(-S-Templ,TO_FLOAT(0.0));

X3 := X2;

elslf (D > TO_FLOAT(0.0)) then

sqrt_D := SQRTtD);

S := CBRT(R+sqrt_p);

T := CBRT(R-sqTt_D);

Tempi := S+T;

Temp2 := al/to_float(3.0);

XI := Templ-Temp2;

X2 := TO_COMPLEX((-Templ/TO_FLOAT(2.0))-Temp2,(S-T)*TO_FLOAT(conl));

X3 := C0NJ(X2);

else

theta3 := ACOS(R/SORT(-0_cu))/TO_FLOAT(3.0);

Tempi := al/TO_FLOAT(3.0);

Temp2 := TO_FLOAT(2.0)*S0RT(-0);

XI : - Tenip2 *COS (thetaS)-Tempi;
X2 := TO_C0MPLE%(T^mp2*COS(theta3+T0_FLOAT(con2))-Templ/T0_FLaAT(0.0));

X3 := TO_COMPLEX(Temp2*COS(theta3+TO_FLOAT(con.3) l-Templ,TO_FLOAT(0.0)) ;

end if;

send_output_result;

end process;

end;

Figure 6.6 Designl VHDL behavioural description

Figure 6.7 shows the design space for this system. A1 represents the original unoptimised

design, B1 represents design optimised for area (target area = 0) with 27.7 Kbyte available

external ROM, CI represents area optimised design without an external ROM, and D1 is a

delay optimised design (target area = 0°).

Z.A. Baidas, 2 0 0 0 Chapte r 6: Pract ica l synthes is us ing F P G A s 141

18000

16000

14000

12000

10000

D1
A1

(4860,105435)

S 8000

6000

4000

2000

0

XC40250 capacity

* *

XC40125 capacity

1000 2000 3000 4000

Delay (cycles)

5000 6000

Figure 6.7 Design space for the original design

In principle, it could be expected that designs B1 and CI would map successfully to the

Xil inx XC40250XV system. However, the third party RTL synthesis tools [29,30]

constantly failed to deliver a successful implementation.

To overcome this, an alternative approach was adopted; the design was manually

partitioned into two blocks (arithmetic processor and controller).

Figure 6.8 is a block diagram showing the internal architecture of the partitioned core unit.

The design splits into two main processors in a master-slave combination. The controller

is responsible for controlling the data transfer through the system, and also provides the

data and control signals required to decide the required operation to be performed in the

arithmetic processor. This unit acts as a floating-point arithmetic unit that performs one of

eight floating-point operations on a set of input variables passed by the controller

according to the value of a control vector. The control vector values and the related

floating-point operation are summarised in Table 6.2.

Z.A. Baidas, 2000 Chapter 6: Practical synthesis using FPGAs 142

Output Stage

Arithmetic
processor

mult ip ly squa re

COSIM

ack

control (3 bit)
N

N
data oul (8 bil)

/

/ k'
/

data in (8 bit)

Controller
0)
CT

!
3
a.
c

Figure 6.8 Partitioned core unit block diagram

The distribution of floating-point operations between the two units in Figure 6.8 is largely

arbitrary; the chosen partitioning has the merit of keeping the unit sizes approximately

equal.

Control vector Operation Summary

000 Multiply2 Read two input variables and output their product.

001 Square Read a single variable and output the square.

010 MultiplyS Read three input variables and output their product.

O i l Multiply4 Read four input variables and output their product.

100 Square root Read a single variable and output the square root.

101 Cubic root Read a single variable and output the cubic root.

110 Cosine Read a single variable and output the cosine.

111 inverse cosine Read a single variable and output the inverse cosine.

Table 6.2 Arithmetic processor operations

Figure 6.9 shows the design space tr^ectories for the two designs. Table 6.3 shows the

details of the eight points in Figure 6.9.

Z.A. Baidas. 2 0 0 0 Chapter 6: Practical synthesis using F P G A s 143

18000

16000

14000

12000
5697,53140

10000
XC40250 capacity

0) 8000

XC40125 capacity

1000 2000 3000 4000

Delay (cycles)

5000 6000 7000

Figure 6.9 Core unit design space

Design
Target
area

(fims)

Available
external

ROM

(Kbyte)

Total area

(CLBs)
Total delay

(cycles)

Original

design

A1 N/A N/A 105435 4860

Original

design

81 0 27.7 7697 1457 Original

design C1 0 0 7548 1719

Original

design

D1 oo Not used 14321 1403

Partitioned

design

A2 N/A N/A 53140 5697

Partitioned

design

B2 0 27.7 7907 2168 Partitioned

design C2 0 0 7849 2465

Partitioned

design

D2 oo Not used 14400 2087

Tab le 6.3 Parameters for the design space of the original and
partitioned designs

The variation in the area cost of the original and partitioned design is largely dependent on

sharing the functional units at both the floating-point building blocks level and the sub-

component level. Different versions of the original design always deliver the most area

efficient implementation for a certain set of constraints. A relatively small increase in the

area cost of the partitioned design occurs due to the replication of some fixed-point

building blocks within its two units.

Z.A. Baidas, 2000 Chapter 6: Practical synthesis using FPGAs 144

Table 6.4 represents the partitioned design at different levels during the design synthesis

f low' . The floating-point optimiser realises the floating-point functions within the design

datapath in terms of floating-point primitives. The number of these primitives within a

design is represented by the floating-point primitives (building blocks) column. The

physical floating-point primitives column represent the number of unique floating-point

primitives within a design. The MOODS synthesis system realises the initial design

datapath in terms of virtual functional units, which are mapped during the MOODS

optimisation phase onto a number of physical functional units. Finally, the third party

tools map the MOODS datapath output into a number of CLBs (virtual CLBs), which gets

optimised by third party tools to deliver the final implementation (physical CLBs).

c O) '«
0)
Q

h
f l

.5 >
TO ~

15

m «
•B g
11

cc
c
o

lis
= 1
(C
3
r >

.•s

l i

(fl
ffi
O
"5
3

05 m «

s i
O (0
W TO

Q.

(fl

ol
SI
(0 o

0.

c O) '«
0)
Q

h
f l

r i 11

cc
c
o

lis
= 1
(C
3
r >

Q. u
c
3

"C >

05 m «

s i
O (0
W TO

Q.

(fl

ol
SI
(0 o

0.

1 2 3 4 5 6 7 8

A2 3497 450 9709 5710 2197

C2 38 43 11 3472 438 9665 5517 2332

D2 3465 439 16142 12259 2141

Tab le 6.4 Parameters of the design space of the partitioned design

The third party tool gain (i .e . column 6 to column 7 4- column 8)is not much when

compared to the MOODS synthesis system improvement (i.e. column 4 to column 5). The

gain is mainly achieved by flattening the MOODS output hierarchy and optimising the

combinational logic among these blocks. This suggests that integrating a logic

optimisation algorithm within MOODS will eliminate the need for a third party synthesis

tool and allow MOODS to target the Xilinx placement and routing step directly.

More details regarding the operation of the core unit may be found in the source code

listing in Appendix E.

Similar details could not be produced for the original design and the unopt imised design (A2) due to

l imitat ions imposed by the stability of the third party synthesis tools.

Z.A. Baidas, 2000 Chapter 6: Practical synthesis using FPGAs 1 ^ 5

6.3 Synthesis issues

This section represents a number of issues related to the design and synthesis of the

floating-point cubic equation solver. The section is divided into five units;

1. Area reduction techniques that can be used to reduce the total area cost of the design.

2. Techniques to meet timing specifications of certain units.

3. Synchronisation and communication between the design components and the

modifications required to the structural output generated by MOODS.

4. Physical implementation issues.

5. The final implementation.

6.3.1 Area reduction

The FPGA targeted in this project imposed a significant limitation on the total design area.

In order to meet the target cost some degree of compromise between the total design area

and performance had to be made.

The main technique to reduce the total area cost is controlling the expansion process of the

design expanded modules within the synthesis design flow. MOODS allows the user to

expand the internal modules at any stage of the optimisation phase. It also provides user

control over the level of expansion to be performed. The results presented in Table 6.5

describe two structural representations of arithmetic processor (optimised for area with

external ROM) in the cubic equation solver optimised using two different techniques;

1. The design hierarchy was flattened completely before the optimisation phase.

2. The expansion process was controlled to allow maximal sharing of hierarchical units

during expansion.

Z.A. Baidas, 2000 Chapter 6: Practical synthesis using FPGAs 147

o f 48.7% in the total storage cost, a reduction o f 57.8% o f the total number o f fiinctional

units, and a reduction o f 37.4% o f the total interconnect cost.

To summarise, when a design w i th a minimum area cost is required, the fo l lowing

empirical optimisation sequence is found to be best:

1. Perform an init ial optimisation to al low sharing the floating-point functional units.

2. Expand at one level only to ensure that fixed-point components wi th in the floating-

point units are not expanded.

3. Perform a second optimisation phase to al low sharing the fixed-point units.

4. Completely flatten the design hierarchy by expanding any remaining modules.

5. Perform a final optimisation having min imum area cost as the highest priority.

900000

800000

700000

- g 600000

Z 500000
o
" 400000
£

< 300000

200000

100000

0

• Storage • Functional •Interconnects • Control

flattened design preserve hierarchy

Configuration

Figure 6.11 Area breakdown of both designs

Finally, the use o f subprograms at the V H D L behavioural description level is

recommended. Besides increasing the readability and maintainability o f the design, V H D L

subprograms play a role in reducing the total area cost o f the design. Combining repeated

portions o f code in a single segment results in a reasonable area reduction mainly due to

Z.A. B a i d a s . 2 0 0 0 Chap te r 6: Pract ica l synthes is us ing F P G A s 146

Method

Total area

(um^)

Total delay Storage Funct ional Interconnects Control

Method

Total area

(um^) (ns) Cycles units b i t s units b i t s units b i t s

area

(pm^)

units

area

(um^)

Flatten 1674519 19596 138 821 7813 783595 638 8851 110855 150 3969 726570 825 53499

Preserve

hierarchy
1000512 38482 271 388 4005 402798 269 3671 89685 103 2389 455130 522 52899

Table 6.5 Result of the two different techniques to optimise unit2

Based on the design space in Figure 6.10, it is clear that both optimisation techniques

provide a significant enhancement to the design performance when compared to the initial

design, with the first technique resulting in an area reduction of 83.9% and a delay

reduction of 34.3%, while the second reduces the total area by 72% and the total delay by

66.5%. The second method provides the smallest design at the cost of some system

performance degradation when compared to the first. This is due to the initial optimisation

performed prior to any expansion allowing 100% sharing of the floating-point functional

units. This early binding decision reduces the possibility of successfully applying delay

optimisation transformations to the design resulting in less efficient delay optimisation.

70000

60000

50000

c , 40000

a 30000
o

20000

10000

0

Initial design

Preserve hierarchy

Flattened

—H

O.OOE+00 1.00E+06 2.00E+06 3.00E+06 4.00E+06 5.00E+06 6.00E+06 7.00E+06

Area ([jm

Figure 6.10 Alternative optimisation strategies

Examining the area breakdown of both structural representations in Figure 6.11 shows

that forcing the optimisation algorithm to share the floating-point units allows a reduction

Z.A. Baidas, 2000 Chapter 6: Practical synthesis using FPGAs 147

o f 48.7% in the total storage cost, a reduction o f 57.8% o f the total number o f functional

units, and a reduction o f 37.4% o f the total interconnect cost.

To summarise, when a design w i th a min imum area cost is required, the fo l lowing

empirical optimisation sequence is found to be best:

1. Perform an init ial optimisation to al low sharing the floating-point functional units.

2. Expand at one level only to ensure that fixed-point components wi th in the floating-

point units are not expanded.

3. Perform a second optimisation phase to al low sharing the fixed-point units.

4. Completely flatten the design hierarchy by expanding any remaining modules.

5. Perform a f inal optimisation having min imum area cost as the highest priority.

900000

800000

700000

600000

I Storage N Functional E Interconnects E Control

500000
o
" 400000
%

300000

200000

100000

flattened design preserve hierarchy

Configuration

F i g u r e 6.11 A rea b reakdown of both des igns

Finally, the use o f subprograms at the V H D L behavioural description level is

recommended. Besides increasing the readability and maintainability o f the design, V H D L

subprograms play a role in reducing the total area cost o f the design. Combining repeated

portions o f code in a single segment results in a reasonable area reduction mainly due to

Z.A. Baidas, 2000 Chapter 6: Practical synthesis using FPGAs 149

be written. Three external ports are also required: data_bus and addr_bus, which

connect to the external ROM busses and nog which controls the external R O M bus.

Meeting the timing specification identified in Figure 6.13b requires executing

instruction (7 in the first clock cycle, then (2 in the second clock cycle, and finally both

and (V in the last clock cycle. This can be simply achieved by manual scheduling

prior to saving the module or by inserting a command between these

instructions.

PROGRAM ROM_read addr,data,addr_bus,data_bus,noe

IMPORT addr [0 13]
INPORT data [0 27]
OUTPORT data_bus [0 27]
OUTPORT addr_bus [0 13]
OUTPORT noe [1 1]

11 : MOVE addr, addr_ _bus

12 : MOVE #0, noe

13 : MOVE data_bus, data
14 : MOVE

ENDMODULE

#1, noe

ROM_read

a)ROI\/l_read macro port ICODE

clock

addr_bus

data_bus -

noe

b) Timing specifications

Figure 6.13 Macro port example

Z.A. Baidas, 2000 Chapter 6: Practical synthesis using F P G A s 50

6.3.3 Synchronisation and communication

Data transfer between different units of the cubic equation solver is achieved by a

handshaking protocol based on two handshake signals: and (fct. Both signals are high

when the system initialises. The master unit output data and asserts the .̂ 6̂ signal low. The

slave unit detects the change in the line, reads the data and changes the state of ocA:

from high to low. The master unit then detects the change in the acA: signal and asserts .yfA

high. Finally, ac/r is asserted high as a consequence of the jfZ) signal being high. This

handshaking process is represented by the waveforms in Figure 6.14.

Figure 6.14 Handshaking signal waveform

Implementing this protocol in a VHDL behavioural description core requires a method to

detect signal transitions. VHDL provides two statements for this purpose: wait on signal

and wofY wnf;/ Wa/f on terminates only when a transition occurs on the

monitored signal, and wait until terminates when the condition changes from false to true.

A major problem arises from using these wait statements to synchronise two units. For

example, if a stb signal goes low and the slave unit has not yet reached its monitoring

state, the system will halt with the slave detecting a zero on the strobe line and the master

waiting for a transition on the acknowledge line. The problem can be solved by providing

the wait statement within a conditional block as represented in Figure 6.15c. The

conditional block will ensure that the execution will continue if the transition on the

handshaking signal has already occurred.

Z.A. Baidas, 2000 Chapter 6: Practical synthesis using FPGAs

Another problem appears when two different clocks drive two units of the same system.

External signal synchronisation in this case becomes a major issue. The problem can be

represented with the aid of Figure 6.16 which shows the relationship of the flip-flop

timing parameters: setup and hold times in this figure are denoted by f, and respectively.

wait on control;

a)wait on example

wait until control = '0';

b)wait until example

if control = '1' then
wait until control = '0';

End i f;

c) wait within a conditional block

Figure 6.15 Synchronisation within VHDL

The decision window is the interval when the flip-flop samples its inputs and decides on a

change of output. If the input changes within this decision window, the flip-flop may go

into a third metastable state half way between zero and one. The length of time it can

remain in this state is theoretically unbounded [103].

decision window

Figure 6.16 Flip-flop timing parameters

To reduce the probability of entering a metastable state, the synchroniser shown in Figure

6.17 is used. The input to the first flip-flop may violate the setup and hold time constraint

Z.A. Baidas , 2 0 0 0 Chap te r 6: Pract ical synthesis us ing F P G A s

and drives the flip-flop into metastability for an arbitrary time. As long as the clock period

is greater than this time, the flip-flop output becomes stable and the second flip-flop

provides a synchronous copy of the initial input at its output.

Asynchronous
input

System
clock

D 0 D 0 D 0 D 0

>Clk
r -

)Clk

Synchronous
system

Figure 6.17 Synchroniser schematic

6.3.4 Physical implementation issues

Once the MOODS structural representation of the cubic equation solver has been

simulated and verified, the system can be built. At the final stage, a major problem based

on the multiplexor cost appeared. The MOODS synthesis system provides two possible

implementations of the multiplexor, illustrated in Figure 6.18: a normal multiplexor with

unencoded select input; and a multiplexor based on a set of tri-state buffers.

in2

in3

in4

- output

a)Normal multiplexor

sel(O)

SBl(2)

sel(3)

- output

b)Tri-state based multiplexor

Figure 6.18 MOODS multiplexors models

Switching between these two models has a mzyor effect in the total area cost: see Table

6.6, which represents the two parts of the cubic equation solver (FPGAl consists of the

controller, the input stage and the output stage, FPGA2 is the arithmetic processor)

targeting both ASIC and FPGA, and for different combinations of multiplexors. When

Z.A. Baidas. 2 0 0 0 Chapter 6: Practical synthesis using F P G A s 153

targeting an ASIC, switching between the two models had a relatively small effect on the

total system cost, with area varying by 16.5% for the first part of the design, and 9.9% for

the second part. The increases in area cost arise from the extra cost of implementing

multiplexors based on tri-state buffers, which is more expensive than the general approach

based on pass transistors.

Design Implementation

Tri-state buffers used to

implement

multiplexors

Total area

CLBs/Gates

ASIC
13740 44910

ASIC
0 37461

FPGA1 13740 1514

FPGA 0 6342

10302 4833

ASIC
10503 40850

ASIC
0 35826

FPGA2 10503 2419

FPGA 0 5497

7219 4670

Table 6.6 Comparison of area cost based on multiplexors modification

When targeting Xilinx FPGAs, the area variation when switching between the two

multiplexor models increases noticeably, with an increase of the total area cost of 76% in

the FPGAl and 56% in the FPGA2 when implementing multiplexors using the normal

model rather than the tri-state based model. This is expected, since the limited number of

multiplexors in the FPGA block forces the tool to implement multiplexors using

combinational logic blocks, resulting in a great inefficiency and area cost inflation.

Balancing the number of multiplexors based on each model is essential for a successful

implementation.

6.3.5 Final implementation

The floating-point cubic equation solver project introduces the MOODS synthesis system

floating-point capabilities. It is also as a test vehicle to establish MOODS reliability in

implementing large behavioural designs (100 0004- gates).

Z.A. Baidas, 2000 Chapter 6: Practical synthesis using FPGAs 154

Along the way, a number of problems were discovered in MOODS. These are not detailed

here, as they have been reported and remedied.

Unfortunately, the commercial Xilinx software that drives the FPGA mapper has

consistently failed to successfully target the XC40125XV FPGA, even at moderate levels

of utilisation. The problems encountered in the tool have supposedly been fixed; Xilinx

has withdrawn software support for one of its own products, which has placed us in a

difficult position. Eventually, a XC40250VX FPGA became available. The device has

twice the capacity of the XC40125XV. However, a new range of problems related to the

commercial tools appeared while trying to target this FPGA, and nothing could be done to

fix these. Work rounds for these problems were far more problematic than they should

have been.

With a single FPGA available, the obvious solution was to implement the original design,

which represents the whole algorithm in a single building block and delivers the most area

efficient implementation. However, the RTL synthesis tool consistently failed in

delivering a successful implementation of the design. This made the partitioned design the

only sensible way forward.

Moving to the placement and routing stage, a number of problems were encountered at

this stage, with the same design processing time varying between two and ten days, which

dominates the design cycle time when compared to the run times of the MOODS synthesis

system and the RTL synthesis tool as illustrated in Table 6.7. Methods to speed up the

process such as guiding the placement and routing with a previously routed design did not

function correctly.

Design flow tool
Original design

(hours)

Partitioned design

(hours)

MOODS 10 1.5

RTL synthesis Failed 7

Placement and routing Failed 48-240

Table 6.7 Run time for tools used in the design flow

These problems made it necessary to modify the design again to further reduce the FPGA

load. The output stage was moved to the FPGA that includes the VGA display driver. Two

Z.A. Baidas, 2000 Chapter 6: Practical synthesis using FPGAs 155

interface units (interface] and interface2) were introduced to control passing data between

the two FPGAs. VHDL behavioural description of both interface units are listen in

Appendix E. A block diagram showing the final version of the cubic equation solver is

represented in Figure 6.19. Figure 6.20 represents the area utilisation figures of the FPGA.

XC40250VX FPGA

Input
stage

Controller
Arithmetic
processor

Interface 1

Interface2

VGA
driver

Figure 6.19 Final implementation block diagram

Total latches 0 out of 16928

Total Flipflops 6884 out of 15928

4 input combinational blocks 14764 out of 16928

3 input combinational blocks 5456 out of 8464

Figure 6.20 FPGA utilisation figures

Z.A. Baidas, 2 0 0 0 Chapter 6: Praccicat synthesis using F P G A s 156

6.4 Comparison with microprocessors

In recent years, advances in VLSI technology have lead to a dramatic increase in the

floating-point performance of microprocessors, with the performance of the floating-point

units of current computer increasing by a factor of 70 [104] in the last 10 years.

A floating-point arithmetic unit is implemented for comparison purposes. The unit

performs one of seven floating-point operations (addition, subtraction, multiplication,

division, square root, sine, and cosine). Targeting the AMS 0.35|i CMOS technology, the

total area cost of the design is 35000 gates. Comparing the area cost of this unit to the size

of the floating-point unit in a Pentium III processor (around 1.8 million transistors)",

indicates the possibility of great performance enhancement of the synthesis system

floating-point units, especially with the rapid increase in programmable logic device

capacity.

For each of the seven floating point operations, a C program was constructed to estimate

the total number of clock cycles required to execute this operation on five different

microprocessors. The synthesised design performance was realised from the simulation

results of the synthesised structural VHDL .The comparison results are illustrated in Table

6.8 and Figure 6.21.

Unit Platform
Add

(cycles)

Sub

(cycles)

Mult

(cycles)

Div

(cycles)

Sqrt

(cycles)

sine

(cycles)

Cosine

(cycles)

Synthesis

System
N/A 17 20 19 79 20 45 45

80486DX2 DOS 6.22 37 37 37 94 320 772 790

A M D K6-2
Windows

NT 4.0
24 24 24 24 24 24 24

Pentium
Windows

95
15 15 15 15 15 15 15

Pentium II
Windows

NT 4.0
9 9 9 9 9 9 9

Pentium III
Windows

NT 4.0
7 7 7 7 7 7 7

Table 6.8 Benchmar < results of floating-point per formance of different
microprocessors and the MOODS synthesis system

' A r e a es t ima t ion is based on a die shot of the processor , and a s s u m i n g the equal t rans is tor dens i ty ove r the

chip.

Z.A. Baidas, 2000 Chapter 6: Practical synthesis using FPGAs 157

A second test is carried out to compare the floating-point performance of the cubic

equation solver to the AMD K6-2 processor and Intel Pentium II processor. The algorithm

was written in C and the number of clock cycles required to generate the final result is

averaged over a number of input samples for both microprocessors. The same set of input

samples is used to simulate the structural VHDL of the synthesised design to estimate its

performance. The floating-point calculation time of the FPGA based unit varies between

1158-1668 clock cycles, compared to 800-840 clock cycles for the K6-2, and 661 clock

cycles for the Pentium II processors. The results are represented in Figure 6.22.

Although the majority of the modem microprocessors outperformed the synthesised ALU

in executing a single floating-point operation, these devices in general are fetch-execute

architectures that have limitation on the number of instructions to be executed at a time.

The result they produce for a specific design, in general, is far from optimal, because they

are static in nature and designed for the general case. On the other hand, a synthesis tool

has the capability to deliver a near optimal solution for a specific problem. Executing as

many instructions as possible in parallel to increase the design's throughput to the limit

that could exceed the peak performance of these processors. In addition, if synthesis tools

could achieve comparable performance to microprocessors for a pure floating-point

application, it is a good indication that these tools can be considered the main target of

applications that require a few floating-point operations intermixed with fixed-point

calculations.

• Pentium • Pentium II • Pentium DK6-2 • Synthesis System D80486DX2

1000

&
o O
u

Q

100

10

I

Add Sub Mult Div Sqrt Sine Cosine

Entry

Figure 6.21 The floating-point performance of different microprocessors
compared to the MOODS synthesis system

Z.A. Baidas , 2 0 0 0 Chap te r 6: Pract ica l synthes is us ing F P G A s 158

5»
t o

a>
O

1800

1600

1400

1200

1000

800

600

400

200

0

• Minimum • Maximum

Synthesis system AMD K6-2

Design

Intel Pentium II

Figure 6.22 The cubic equation solver floating-point performance compared to
modern microprocessors

Z.A. Baidas. 2 0 0 0 Chapter 7: Conclusions and further work] 5 ^

Chapter 7

Conclusions and further work

The work described in this thesis extended the scope of the MOODS synthesis system to

include floating point (both real and complex) data type manipulation. The floating point

module library presented in Chapter 4 provided a wide range of function evaluators with

significantly different physical properties, increasing the probability of constructing a

design that meets the user pre-defined objectives.

Binding floating point functional units to suitable floating-point modules from the module

library is carried out by a dedicated floating point optimiser. The optimiser is based on a

heuristic algorithm derived from observations of floating point module interactions, and

relies on a number of pre-calculated metrics that summarise the physical properties of each

module.

The above enhancements are exploited to design and implement a physical demonstrator,

an algebraic cubic equation solver with complex root capability, intended as a

demonstration of the floating-point capabilities. It also demonstrates the capabilities of

MOODS as a useful tool for handling relatively large circuits (>100 000 gates).

The work reported in this thesis opens the door to a number of research opportunities in

the field of behavioural synthesis in general and floating-point synthesis in particular. The

experience developed as a behavioural synthesis designer also suggests a number of

enhancements to the behavioural synthesis tool to increase the productivity of the system.

These enhancements and research suggestions are summarised in this chapter.

Z.A. Baidas, 2 0 0 0 Chapter 7: Conclusions and further work } 6 0

7.1 Source level optimisation from a floating-point
perspective

Hardware engineers using behavioural synthesis tools tend to write code with more regard

to clarity than optimal implementation. Using features such as constants and temporary

variables enables the code to be easily understood and modified. However, this common

approach adds a considerable overhead to the synthesised unit. To solve this problem, a

floating-point source-level optimiser is required. It is a tool to apply a set of code-

improvement transformations that target the floating-point expressions within the

behavioural code.

A problem closely related to the floating-point source level optimisation is that floating-

point numbers are an approximated representation of real numbers. Extra caution should

be taken when exploiting algebraic identities to target floating-point arithmetic blocks

[105, 106]. Consider for example: a reduction in the total cost can be achieved by

replacing a more expensive operator with a cheaper one as in jc4-4 = x x 0.25. This

suggests that x 4- 20 should be replaced by x x 0.05. However, the two equivalencies do

not have the same semantics in floating-point arithmetic because 0.05 cannot be

represented exactly in a floating-point representation, which introduces an extra source of

error in the final result.

The example suggests that the source level optimiser should be extremely cautious when

applying algebraic identities to real numbers. Rather than completely eliminating algebraic

identity based transformations, an analysis of the entire expression is required every time a

transformation is applied to ensure that the identity holds and that the error introduced will

not affect the system accuracy.

7.2 Variable precision floating-point library

Another opening for further work is the issue of variable precision floating-point

representations and variable precision floating-point library. As discussed in Chapter 5,

error propagation through a floating-point expression is highly dependent on the arithmetic

operations involved and the precision of the intermediate results. It is sometimes

impossible to provide the required target accuracy for an arithmetic expression using

Z.A, Baidas , 2000 Chapter 7: Conclusions and fur ther work 1 5]

single precision floating-point operations. A trivial solution to this problem would be to

provide a higher precision (for example double precision) for all floating-point operations

involved. However, this solution would in general, add an unnecessary overhead to the

total system cost. An ideal solution would be to calculate the required accuracy for each

floating-point operation involved and to provide an appropriate floating-point data

precision. To achieve that, two main enhancements are required:

1. It is not possible to provide a specific expanded module for each target precision, thus,

an enhancement to the expanded module sub-system is required to provide some form

of parameterised expanded module, allowing the various loop executions and variable

widths to be specified during the synthesis runtime in terms of generic parameters.

VHDL provides the capability of implementing parameterised units using generics [6].

For example, Taylor expansion can be employed to achieve every possible target

precision by varying the number of terms involved, as well as the width of the

intermediate calculations.

2. The accuracy of an arithmetic expression varies according to the input data type. To be

able to identify the exact precision of each operation, the system will require the user to

provide a test pattern consisting of a number of input samples. The test pattern should

then be applied to the behavioural code in conjunction with a simulation environment

and a detailed error analysis is performed for each input set. This way, the system can

identify the worst-case error within the test pattern and adjust the precision of each

floating-point operation to achieve the target accuracy.

7.3 Component library

The floating-point manipulation units provide the ability to integrate new floating-point

functional units within the synthesis environment. It is possible to implement reusable

floating-point algorithms that incorporate floating-point data manipulation using the

hierarchical unit expansion capability. These two features provide a means of increasing

the productivity of the synthesis tool by adding new high level components to the system.

Z.A. Baidas, 2 0 0 0 Chapter 7: Conclusions and further work 162

There is a wide range of floating-point functional units that can be added to the module

library. It is also possible to add new building blocks to generate functional units already

available in the library. Table 7.1 suggests a number of these units [107].

Function Description

ACOT (X) Inverse cotangent of X.

ACOTH(X) Inverse hyperbolic cotangent of X.

ACSC(X) Inverse cosecant of X.

ACSCH(X) Inverse hyperbolic cosecant of X.

Error Function 2 rv 2
erf A" = ^ c dt

Gamma function
r (x) = j J g ' W f

Table 7.1 Suggested floating-point library components

Hierarchical module expansion can be exploited to increase the scope of the complex

functional units within the library. Further enhancements can be achieved by integrating a

number of floating-point algorithms such as FFT processor cores or MPEG

encoder/decoder. This can be taken further: pre-defined blocks of almost arbitrary

complexity can be envisaged.

7.4 Function inversion block

A "function inversion block" is a functional unit that take as input a value and di function,

and produce as output the inverse function value - see Figure 7.1

Providing this building block would enhance the functionality of the floating-point library

by providing the ability to generate inverse functions that are not implemented within the

current library. This block can also be used to generate the inverse of a mathematical

expression that combines a number of floating-point functional units.

Z.A. Baidas, 2000 Chapter 7: Conclus ions and further work 163

Funct ion invert ing unit

Figure 7.1 Function inversion block

A number of constraints must be applied to ensure successful implementation of the

inverse function:

1. Continuous and monotonic input function.

2. The domain of the inverse function is restricted to match the range of the input

function.

Given these constraints, two approaches are possible:

* Construct a generic function inversion block to numerically find the root of the

equation: f { x) - x '= 0 . Root finding methods [108] such as the bisection method,

Newton method. Falsi method or secant method will form the core of the generic unit.

The performance of such methods is largely dependent on the quality of the initial

estimate of the solution. This requires some analysis during the synthesis process to

identify the nature of the input function and provide a suitable initial solution, or even

dividing the inverse function domain into a number of intervals each has its own initial

solution.

Alternatively, algebraic methods could be used to construct a formula for the inverse

of the input function [109]. The inverse function can then be implemented as a

hierarchical block during the initial compilation stage. The method is illustrated by the

example in Figure 7.2.

Z.A. Baidas, 2000 Chapter 7: Conclusions and further work 164

: = / (*) = 2 ^ ' - 7

- S w u c h v

A ^ 2 y ' - 7

- S o N e y

2y ' = * + 7

x + 7

x + 1

Figure 7.2 Constructing the inverse function algebraically

7.5 IVIulti-operand floating-point units

Multi-operand floating-point units would provide a significant enhancement to the

floating-point synthesis capability. The method has already been used in modern

microprocessors [110, 111] to speed up graphics manipulations which involve extensive

use of floating-point calculations. The advantage of such building blocks is illustrated in

the example in Figure 7.3, which represents a rotation of a point by an angle 9. The

number of building blocks involved in the expression evaluation is reduced from eight

units to four. The number of temporary registers required to save intermediate results is

also reduced from six to two'. This is also accompanied by a reduction in the number of

times the intermediate results are normalised and rounded during execution.

' Although temporary registers are often shared during the synthesis process to reduce the total cost. There is

always an increased cost in the form of mult iplexors and control logic required sharing these registers.

Z.A. Baidas. 2000 Chapter 7: Conclusions and further work 165

Expression:

/ -

X cos^ - s i n ^ %
=

sin 6*
X

v ' . sin 6* cos^

Evaluation:

Without multi-operand
units

= cos^

B = sin 0

?i = % X A

f 2 = }' X 5

X — r, — r,

f ̂ X B

f ̂ = y X A

Mult add block

With multi-operand
units

A = cos (9

5 = sin^

mult _ add {x. A,-}', B, x')

mw/f _ y, A, y')

Figure 7.3 Multi-operand floating-point unit example

It is important to note that in order for the system to fully exploit such multi-operand

units, it should have the ability to re-arrange the floating-point expressions within a design

in a way that allows mapping to these units. For example, detecting the two multiplication

and single addition combination in the previous example and map it to the single mult-add

block.

Z.A. Baidas , 2000 Appendix A: IEEE standard for binary floating-point arithmetic 1 5 6

Appendix A

IEEE standard for binary floating-
point arithmetic

The IEEE floating-point standard [41] is the most widely used representation for floating-

point numbers. This appendix provides an introduction to this standard with an emphasis

on the single precision representation.

The general representation of a floating-point number in this standard is shown in Figure

A. 1. It represents a number of the form: (-1) ' x 1 .F x . The representation is divided

into three fields:

® Sign (s): A sign bit field indicating the sign of the floating-point number, j = I

represents a negative number, while j' = 0 for positive numbers.

® Biased exponent. An unsigned integer field representing the sum of the exponent and

a constant (bias). The bias is introduced to make the field range non-negative (i.e. zero

in this case represents the most negative value).

o Fraction: an unsigned field containing the significant bits to the right of the binary

point. Note that the fraction field does not include the leading digit in the significand,

as it is assumed to be always one and is implied in the format.

Implicit one
Sign Biased exponent
(S) (E)

Fraction
(F)

1 h '
A

+ / -
1 1 1 / 1 1 1

1 1 1 / 1 1 1
1.

1 1 1 1 1 1 K 1 1 1 1 1 1

1 1 1 1 1 1 J 1 1 1 1 1 1

Figure A.I Floating-point number representation

Z.A. Baidas, 2000 Appendix A: IEEE standard for binary f loating-point arithmetic 167

According to the width of the biased exponent and the fraction, the standard defines four

different formats: single; single extended: double: and double extended. These are

summarised in Table A. 1.

Format
Biased

exponent width
Bias value

Fraction field

width
Total width

Single 8-bit +127 23-bit 32-bit

Single extended >11-bit Unspecified >31-bit 43-bit

Double 11-bit +1023 52-bit 64-bit

Double extended >15-bit Unspecified >63-bit 79-bit

Table A.1 Floating-point format parameters

A.1 Single-precision format evaluation

A single precision floating-point number has the general form:

(- l) ' x l . F x 2

For example numbers 4-4.75, -0.125 are represented as:

+ 4.75 — -f-100. ill X 2 '

= 4-1.0011, x 2 '

.y = 0

= 2

= 129,

E = 2|o 4-127,0

= 10000001;

F = 00110000000000000000000

Final bit pattern = 01000000100110000000000000000000

- 0 . 1 2 5 = - 0 . 0 0 L x 2 °

-1 .000, X 2 -.1

5' = 1

= 124,

E - -3 ,0 4-127,0

= 01111100,

F = 00000000000000000000000

Final bit pattern = 10111110000000000000000000000000

Z.A. Baidas , 2000 Appendix A: IEEE standard for binary floating-point arithmetic 168

The general form represented in the previous examples is what the standard defines as

a representation of a number with a magnitude greater than or equal

to 2"'"^ and less than 2'"^. In addition to normalised numbers, certain bit patterns in the

standard have a specific representation, as shown in Figure A.2:

* Zero: The value represented by an all zero exponent field and an all zero fraction field.

Zero can have either a negative or positive sign.

8 Denormalised number. A denormalised number indicates a quantity with magnitude

less that 2''"^, but greater that zero. It is represented by a zero exponent field and a

non-zero fraction field.

» Infinity. Infinity is interpreted in the affine sense, that is,minus infinity is smaller than

any finite number and plus infinity is greater than any finite number. Infinity is

represented by an all zero fraction field and an all one exponent field.

9 Not A Number (NAN): "not a number" is defined as a pattern indicating an invalid

operation. Two types of NAN are provided: Signalling NAN and Quiet NAN.

Signalling NAN is represented by an all one exponent field with the fraction field most

significant bit set to one. A quiet NAN is represented by an all one exponent field, a

zero in the fraction most significant bit and at least one one in any of the fraction least

significant bits.

This is summarised in Table A.2.

Sign bit

(s)

Exponent

(E)

Fraction

(F)
Value

0/1 0 0 (+0,-0)

0/1 0 F (-1)"x(0.F)x2°

0/1 0 < E < 255 F (-1)"x(1.F)x2<^'^^

0/1 255 0 -̂ -oo -oo

0/1 255 F(22)=1 Signalling NAN

0/1 255 F(22)=1

F(21:0);tO

Quiet NAN

Table A.2 Reserved bit patterns

Z.A. Baidas. 2 0 0 0 Appendix A: IEEE standard for binary floating-point arithmetic 169

Sign Biased exponent Fraction

+/-

a) Zero

b)Denormalised number

c)lnfinity

d)Signalling NAN

e)Quiet NAN

-In the Denormal representation, at least of the the
fraction bits should be non-zero.
-In the Quiet NAN representation, at least on the
the 22 Isbs in the fraction field should be non-zero

Figure A.2 Floating-point number bit patterns

Z.A. Baidas , 2000 Appendix A: IEEE standard for binary f loat ing-point arithmetic 170

A.2 Operations with NAN

"Not A number'' does not represent a numerical value, instead it is a symbolic

representation of an invalid result. NAN is provided in two forms: Quiet NAN and

Signalling NAN.

A Quiet NAN indicates an invalid output result (e.g. -Hx, + -oo). If a Quiet NAN appears as

an input operand to an operation, the final result will also be a Quiet NAN.

Signalling NAN is never produced as an output result from a floating-point operation. It is

provided as an indication for specific situations such as uninitialised variables. If a

Signalling NAN appears as an input operand, the output result would be a Quiet NAN.

Invalid floating-point operations that produce NAN as the final result are listed in Table

A.3

Operation Input operand Final result

Addition (+00) + (-00) Quiet NAN

Addition (-00) + (+°o) Quiet NAN

Subtraction (+00) - (+00) Quiet NAN

Subtraction (-00) - (-00) Quiet NAN

Multiplication (+0) * (+ 4 Quiet NAN

Multiplication (+0) * (-00) Quiet NAN

Multiplication (-0) * (+°o) Quiet NAN

Multiplication (-0) * (-co) Quiet NAN

Addition signalling NAN Quiet NAN

Subtraction signalling NAN Quiet NAN

Multiplication signalling NAN Quiet NAN

Division signalling NAN Quiet NAN

Division +00/+00 Quiet NAN

Division 0/0 Quiet NAN

Table A.3 Floating-point invalid operations

Z.A. Baidas , 2000 Appendix A: IEEE standard for binary floating-point arithmetic] ~]]

A.3 Status flags

Five status flags are required to monitor the execution of floating-point operations. Setting

one of these flags indicates an exceptional situation detected while executing the

operation. The following is a summary of the status flags indications:

• Invalid operat ion flag: The invalid operation flag is set high if an input operand is

invalid for the operation. The result in that case would be a Quiet NAN. The invalid

operation flag is signalled in all the situations listed in Table A.3.

• Zero Division Flag: The zero division flag is high if the divisor is zero in a floating-

point division operation. If the dividend does not equal to zero then the final result

would be a correctly signed infinity, otherwise the operation is invalid and the output

is a Quiet NAN.

o Underf low Flag: If a floating-point operation produces a result of a magnitude too

small to be represented as a single-precision floating-point number, the operation

underflows and the underflow flag is set. It is an indication that the output result has a

magnitude greater than zero, but cannot be represented as a floating point number. The

output in this case is a correctly signed zero.

® Overf low Flag: The overflow flag is set high if an operation on finite input operands

produces an output result too large to fit in the single precision format. Overflow

occurs if the output result has a magnitude greater than or equal to 2'"^. The output in

this case is a correctly signed infinity.

o Inexact Flag: The inexact flag is high if the output of a floating-point operation does

not equal the infinitely precise result. On other words, it is an indication that the final

result has been rounded or approximated. Inexact flag is also high if an underflow or

overflow occurs.

A.4 Comparison operations

Floating-point comparison operations are exact, and never overflow or underflow. The

implementation is required to support four relational operations: Zgj'.y fAan; giywaZ; grgafer

fAon; and The last operation is the result of comparing any floating-point

Z.A. Baidas , 2000 Appendix A: IEEE standard for binary floating-point arithmetic] 7 2

representation to a NAN. Every NAN should compare unordered to any other floating-

point representation including another NAN.

A comparison operation can be delivered in one of two ways:

1. As a single unit that performs all the four comparison operations and provides a

conditional vector identifying all the four possible relationships mentioned above.

2. A true or false block representing one of the four relationships or a combination of

them (e.g greater than or equal).

In addition to the comparison true-false response, an invalid flag should be raised

whenever a NAN is provided as an input to any of the comparison operations that does not

involve

A.5 Rounding

Rounding is the process by which the result is approximated to a representation that Ots in

the destination formats. The IEEE standard specifies four rounding modes [43,112]: round

to the nearest; round towards +infinity; round towards -infinity; and round towards zero.

Round to the nearest is the IEEE standard default rounding mode. In this mode, the result

is rounded to the closest representation that fits in the destination format. If the result is

exactly half way between two representations, it is rounded to the representation that has a

least significant bit of zero. Figure A.3 illustrates three examples of rounding to the

nearest. The first result Xl is to the nearest representation a, while X2 is rounded to 6. X3

represents a special case since it lies half way between c and (f, therefore it is rounded to

the representation that has a least significant bit of zero (d).

12= X I ! |X2 1+2 = |X3

V V
a b c d

Figure A.3 "Rounding to the nearest" examples

Z.A. Baidas , 2000 Appendix A: IEEE standard for binary f loat ing-point arithmetic 173

The second IEEE rounding mode is row/W In this mode, the result is

rounded to the closest IEEE format representation that is greater than or equal to the

output result. This is illustrated in Figure A.4. X5 cannot be represented exactly in

floating-point format and is rounded to the next larger floating-point representation (/).

The same occurs on X5 where it is rounded to g, the result represented by X6 fits in the

target format and therefore no rounding takes place.

X51 X6

Figure A.4 "Rounding toward +infinity" example

Round towards -infinity is the third IEEE rounding mode. In contrast to the previous

rounding mode, it rounds the final result to the closest floating-point representation that is

less than or equal to the output result. X7 and X8 in Figure A.5 illustrate this rounding

mode.

1-2-= X71 _X8 1+2-= 1+2 =

1 j k 1

Figure A.5 "Rounding toward -infinity" example

In the final rounding mode, round toward zero, the result is rounded to the closest

floating-point representation whose magnitude is less than or equals the output result.

This mode is represented in the example in Figure A.6, where X9 is rounded to -1 .0 x 2

and XIO is rounded to 0.

23

Z.A. Baidas , 2000 Appendix A: IEEE standard for binary floating-point arithmetic 174

)^9 0 X10 2-23 2-2Z

1

V
m n o p

Figure A.6 "Rounding towards zero" example

The standard provides further details on a 32-bit integer format that accompanies the

floating-point number representation, along with the required type conversion operations.

It also discusses traps and trap handler issues, which are user defined subroutines that

track a certain status flag and replaces the output result of an operation that raises that flag.

It also discusses the ability of providing user control over these traps, which gives the right

to enable and disable these traps. These issues are not represented in this Appendix as they

are not related to this work. Further details can be found in [41].

Z.A. Baidas, 2000 Appendix B: The C O R D I C algorithm 1 7 5

Appendix B

The CORDIC algorithm

The CORDIC algorithm (Coordinate Rotation Digital Computer) was first introduced by

Voider [55] as a computing technique to perform vector rotation. It allows computing

trigonometric functions, as well as multiplying and dividing numbers using only shift and

add operations. In 1971, Walter [56] provided a general form of the original algorithm to

provide a means of computing a wide range of elementary functions, including hyperbolic

and logarithmic functions. A slight modification of Walter's version allowed computing

the inverse sine and inverse cosine functions [57].

This appendix provides a description of the CORDIC algorithm. It is organised in three

sections: section B.l outlines the main properties of the original CORDIC algorithm;

section B.2 describes the enhanced version of the algorithm represented in [56]; and

section B.3 shows the modifications required to include both inverse sine and inverse

cosine in the set of CORDIC generated functions.

B.1 The original CORDIC algorithm

The original algorithm [55] introduced CORDIC as a special purpose computing machine

that can be used to rotate a vector by an arbitrary angle or determine the angle and the

magnitude of the vector. In other words, the CORDIC machine can be used to solve one of

the two sets of equations:

^ () ' C o s / I + jcsin ,i.)

%'= ^ (x c o s / I - sin

or

9 = tan ' —

Z.A. Baidas, 2000 Appendix B: The C O R D I C algori thm 1 7 6

In order to control the functionality of the CORDIC unit (i.e. solving one of the two sets of

previous equations), CORDIC defines two modes of operation:

1. in this mode, the original co-ordinates of the vector (A,:) together with

an angle of rotation (,1) are provided, and the co-ordinates of the vector after rotation by

the given angle (x a r e calculated.

2. ygcfonng in this mode, the co-ordinates of the vector are given (.Y,y). and the

magnitude (7)̂ and the angle (^ of that vector are computed.

Having two modes of operation with different functionality might suggest two computing

units. This is not the case here, since the computing unit is implemented to perform

mfan'oM and a special feedback is provided to perform the vgcfonng mode. In the latter,

the same unit is used to rotate the vector until the angle equals zero, which implies that the

sum of the rotations performed in the negative of the original angle, and the value of the

new X co-ordinate equal the original magnitude.

In the original CORDIC algorithm, the operation starts with a unique first rotation by an

angle of ±7i/2. The new co-ordinates after the rotation are:

^2 - - } ' l - ^1 cos(^, ± —)

>'2 = i-^'i = sin(6'| ±—)

The remaining steps are a series of rotations by an angle %, where:

(y. = t a n ' '

The general expression for the new vector co-ordinates after each step / is given by' :

sin(^, ±(%,) = y, ± 2 - "

Xy+i = + cos(^, +(%,) = X. + 2"''"^^

A proof of this can be found in [55].

Z.A. Baidas, 2000 Appendix B: The CORDIC algorithm] 7 7

By introducing a new variable to control the rotation direction, the general expression

becomes:

+ sin(^, +) = y, + 2 - ' " - ' A,.

+ cos(^. + 2-"-- ' y,

where

= +1 or - 1

After performing » rotations the final vector co-ordinates will be:

= (Vl + 2 ̂ + "v/l + 2 ' +... + Vl + 2̂ "'")/?! sin(̂] + d̂ oĉ + d-jCX.̂ +... +)

= (V l + 2 " + V l + 2 ' + . . . + •\Jl + 2)/?! cos(^| + d̂ cx̂ + d + . . . + d)

Note that the increase in the magnitude is the constant K for a certain number of iteration.

Substituting K gives the general form of the final co-ordinates:

= ; [s in (^ , + A)

= A:cos(<9, -1-/I)

where

A — d^oc^ + d^cx-j +... + d

From the previous definition of the vectoring mode, the following condition applies:

- ^ + . . . +

As mentioned earlier, controlling the rotation direction is achieved by d„ which takes a

value +1 or - 1 . To determine the value of d„ a new variable z,, is introduced to accumulate

the angle variation:

Z.A. Baidas, 2000 Appendix B: The C O R D I C algori thm 178

For the rotation mode, the sign of decides the value with (/« = +1 for > 0. otherwise

-1. For vectoring mode, the sign of controls the value with 6̂ ,, = -1 for v,, > 0.

otherwise -1.

B.2 The enhanced CORDIC algorithm

The algorithm is based on a linear, circular, and hyperbolic co-ordinate system

parameterised by a constant m [56, 61] as shown in Figure B. 1, where a vector with a

magnitude and angle A, is defined using the three co-ordinate systems, where:

A, = tan"' m-

m = 0

Figure B.1 A vector in three co-ordinate systems

From the previous two equations, it is clear that m = 1 for a circular system; m = 0 for a

linear system; and m = - \ for a hyperbolic co-ordinate system.

A new vector f ,+/ may be obtained from f , by:

Z.A. Baidas, 2000 Appendix B: The C O R D I C algori thm] 7 9

=A,

The magnitude and the angle of the new vector are given bv:

— ./4, — Of,

where

or, = m - tan '(m -)

AT, +

The previous set of equations suggest that the angle and the magnitude of the original

vector are modified by quantities which are independent of the A- and y co-ordinates. By

applying the previous transformation for n iterations we get:

A,, - /Ig - a;

where

1=0

/? - !

This implies that the total change in the angle is an accumulation of the intermediate

changes, while the total change in the magnitude is the product of the incremental

changes.

The angle factor and the magnitude factor A!, are provided in Table B. 1 for the three

different co-ordinate systems.

Z.A. Baidas. 2000 Appendix B: The C O R D I C algori thm 180

Co-ordinate

system

Angle

factor

a;

Magnitude factor

Ki

Circular tan'̂ 8i (1+6')'''

Linear 5i 1

Hyperbolic tanh'^6i (1-6')'' '

Table B.I Angle and magnitude factors

By introducing a new variable z to accumulate the angle variation:

:/+! - Z/ +

we end up with three difference equations for y, z), and solving them for n iterations

gives:

cos(o?M -) +)'o sin(Qy7? -)]
1 1

cos(a)M') - Xg sin(o)M -)]

Using the final set of equations, a wide range of elementary functions may be generated.

Table B.2 and Table B.3 represent the output value after » iterations and for two different

modes:

1. The angle A is forced to zero, which means that y„ = 0 (vectoring mode).

2. The accumulation of the angle variation is forced to zero, which means that z„ = 0

(rotation mode).

Z.A. Baidas, 2000 Appendix B: The C O R D I C algorithm 1 8 1

Co-ordinate

system
Final Values

Circular ^ cos Zn - Vo sin -g)

Y,, A' (cos Zo + 0̂ sin z,,)

Linear

^ lo +
Z, -40

Hyperbolic -> A" (Xg cosh Zo + Vo sinh Zg)

^ ^ (vo cosh Zo + ;uo sinh z)̂

Table B.2 CORDIC result for the rotation mode

Co-ordinate

system
Final Values

Circular

z„ ^ Zo - tan" ' (^)

Linear
^

z„ ^ Z o - —
'̂o

Hyperbolic

y,, ^ 0

—> Zo - tanh ' (—)
-̂ 0

Table B.3 CORDIC result for the vectoring mode

Z.A. Baidas . 2 0 0 0 Appendix B: The C O R D I C algorithm | g 2

In addition to the functions listed in the previous tables, the following functions may also

be generated:

sm z
tan z =

tanh.

cosz
sinh z

cosh z

Inz = 2 tanh' A:=z + l ,y = z - l

Vz -) ' \ A : = z + - ^ , v - z - {

In order to be able to force the angle A to zero by a set of rotations o;, the direction of the

rotation is defined in each step so that:

A+i - A

This implies that the remaining rotations in each step must be at least within o;,., of zero,

which defines the main convergence criterion;

/=/+]

This introduces a limitation on the domain of convergence of this algorithm:

max|y% I =
J

. / = 0

Another problem appears in the hyperbolic mode, as the convergence criterion is not

satisfied. However, if the steps (4, 13, 40, 121,..., f, 3f+l , . . .) then the criterion is satisfied

[56].

For a practical implementation of the algorithm, 6i is assigned the value 2 ' which results

in the final form of the algorithm:

Z.A. Baidas, 2000 Appendix B: The C O R D I C algorithm 183

1 - d L 2

n+s J 2

-«+i

-/I \

A - " y

Where = sign (z„) for the rotation mode and -sign (A,,) for the vectoring mode. These

rotations can be performed by a series of shift (multiply by 2 ") and add operations with

the values of the rotation angles (a;,) pre-calculated and stored in a small table.

B.3 Computation of inverse sine and inverse
cosine using CORDIC

This section shows how the method can be used to calculate the inverse sine and inverse

cosine functions. Firstly, a simple algorithm is introduced, along with its main

disadvantage. Then a final version of the algorithm that tackles this drawback [57] is

outlined.

Assuming that we want to compute z = cos''(f), we perform a rotation of the angle z

starting at the point (1,0) Using CORDIC this can be achieved by:

Zo = 0

X q = 1

= 1 if z„ < zelse-

f f+ l -d„l

1 V

z.+i tan" 2'

lim = cos"' (r)

The main problem faced here is that the value z is unknown, which implies that we cannot

perform the test above to control the rotation direction. However, the test can be replaced

with the following equivalent test"

See [57] for a proof of this replacement .

Z.A. Baidas , 2000 Appendix B: The C O R D I C algori thm [84

) if z,, > f else -)

where

f=0

The new test solves the problem encountered in the previous algorithm. However, a major

drawback arises from the fact that at each step is required. To compute f,, the

relation (1+2'̂ ")'̂ " may be used. But this would require a true multiplication at

each step. To overcome fA/j' problem, nvo rotations of tan''2"" must be performed in

each rotation, which reduces the computation to f„+y = (1+2'""). thereby reducing the true

multiplication to an add and a shift operation. Performing this modification we obtain the

following algorithm to compute the inverse cosine;

0

^0 — ^

) if ^ else -)

' n + I ^..2' V
V" " V

+ 26f„ tan ' 2"

In a similar manner the algorithm to compute the inverse sine is:

0̂

Xn

% = 0

) if else -)

"II+1

1 - (f . .2 -n Y

< 2 - 1

+26f^ tan"' 2"

y

^+1

The domain of convergence of the CORDIC algorithm is defined by the accumulated sum

of the elementary rotations performed over the required number of iterations. This implies

Z.A. Baidas, 2000 Appendix B: The CORDIC algorithm] g g

that the double rotation performed in this algorithm to reduce the multiplication cost

doubles the size of the algorithm convergence domain.

Z.A. Baidas , 2000 Appendix C: Elementary funct ion details 1 § 5

Appendix C

Elementary functions details

This appendix provides internal details of the floating-point library elementary functions

discussed in Chapter 4. In each section, a detailed description of the range reduction unit is

provided, as well as a description of the function generators provided to implement the

function. Function generator accuracy estimates based on simulation results of uniformly

distributed samples over the required input range are also provided.

C.1 Sine and cosine functions

The sine and cosine functions are combined into one building block, generating either the

sine or the cosine of the input operand according to the value of control input. The input to

the function generator is in radians.

C.1.1 Pre-processing stage

The pre-processing stage performs two tasks:

1. Input operand type detection.

2. Reduces the range of the input operand to the range of the function generation block

[0,7[/2].

A block diagram of the pre-processing stage is provided in Figure C. l . Input type

detection is the first stage in the pre-processing step. It performs a series of tests to identify

certain cases represented in Table C. l . If any of these cases are detected, the appropriate

value is assigned to the output and the done flag is raised to indicate that there is no need

for further processing in the following function generation block. The type detection unit

also assigns the appropriate value to the/Zag

Z.A. Baidas, 2000 Appendix C: Elementary function details 187

input

in seL

Input type detection

Range reduction

flag register

_^done

. output

_^out_sel

_*.sign

Figure C.1 Sine/cosine pre-processing stage

If the input operand passes the type detection stage, a range reduction is performed on the

input to scale it within the range Ixl e [0,7[/2]'. This is achieved using the following

equation:

sin(6-Y-t-D) = <

+ sin Dif Q mod 4 = 0

+ cos D if <2mod4 = 1

- s i n D ^ 6 m o d 4 = 2

-cosD/ /^ g m o d 4 = 3

The application of the range reduction procedure takes place in a number of steps

illustrated in the flow graph of Figure C.2;

1. The input is divided by Till (multiplied by 2/71) and the output result is stored in a

temporary variable.

2. The fractional part of the previous step result is then multiplied by (7C/2) and the result

is provided as the output operand.

If the input is already within this range, the range reduction procedure is bypassed.

Z.A. Baidas. 2000 Appendix C: Elementary function details 188

3. The input control variable combined with the integer part of the division result in

step one and the input operand sign are used to identify the final result sign and the

operation to be performed in the following stage (generating either the sine or the

cosine function).

Operation Input Output
Flag register

Operation Input Output
Inexact Invalid NAN OVF EUN ZD

sine + 00

Quiet

NAN
0 1 1 0 0 0

sine -oo

Quiet

NAN
0 1 1 0 0 0

sine
Sig.

NAN

Quiet

NAN
0 1 1 0 0 0

sine
Quiet

NAN

Quiet

NAN
0 0 1 0 0 0

sine zero 0 0 0 0 0 0 0

cosine + CO

Quiet

NAN
0 1 1 0 0 0

cosine -oo

Quiet

NAN
0 1 1 0 0 0

cosine
Sig.

NAN

Quiet

NAN
0 1 1 0 0 0

cosine
Quiet

NAN

Quiet

NAN
0 0 1 0 0 0

cosine zero 1 0 0 0 0 0 0

Table C.I Special input cases in the sine/cosine function

Z.A. Baidas. 2 0 0 0 Appendix C: Elementary function details 189

input

out_sel = in_sel out_ŝ = in_sel out_sel = in_sel

tmp = input y

result = frac(tmp)
0=int(tmp)

sign =sign(ir9]ut) and in_sel sign =sign(input) or in_sel sign =sign(input) or in_sel sign =sign(input) and in_sel

Figure C.2 Sine/cosine range reduction flow chart^

C.1.2 Function generation unit

The first set of function generators is based on a single lookup table with linear

interpolation. The absolute error over the required range varies as the table size and hence

the difference between two adjacent break points (slope) changes. The figures in Table C.2

represent the error variation as the table size changes. These results are summarised in

Figure C.3, where the error is shown for different table sizes.

inl(x) re turns the nearest integer less that or equal to x (nearest zero), frac(x) returns the value x-int(x).

Z.A. Baidas, 2000 Appendix C: Elementary function details 190

Name Slope Table entries Maximum error

sin_cos_7_lsi 2-11 3217 3.9539e-8

sin_cos_6_lsi 2 " 805 4.8599e-7

sin_cos_5_lsi 2" 202 7.6292e-6

sin__cos_4_isi 2-b 101 3.0905e-5

sin_cos_3_lsi 2-4 26 4.8783e-4

sin_cos_2Jsi 2'' 7 7.7000e-3

T a b l e C.2 M a x i m u m error in the s ine/cos ine genera tor us ing s ingle tab le

and l inear interpolat ion

A reduction in the table s ize is achieved by partitioning the lookup table into a number of

sub-tables. The table is partitioned so that the maximum error generated in each sub-table

is less than a limit that guarantees the target accuracy. This is i l lustrated in Table C.3 and

Figure C.4, where the error is represented for d i f ferent combina t ions of par t i t ioned table.

Figure C.5 shows the sub-tables distribution for the four units listed in Table C.3.

Name Sub-table range
Sub-table

slope
Table

entries

Maximum

error

sin_cos_7_lmi

0-0.19635 2-M 403

1.0052e-7
sin_cos_7_lmi 0.19635-0.98175 2 ^ 805

1.0052e-7
sin_cos_7_lmi

0.98175-^/2 2"" 1207
1.0052e-7

sin cos 6 Imi
0-0.490875 2"" 126

8.8646e-7 sin cos 6 Imi
0.490875-n/2 2-B 553

8.8646e-7

sin cos 5 imi
0-0.294525 2-t) 19

8.6986e-6 sin cos 5 imi
0.294525-m'2 2" 164

8.6986e-6

sin cos 4 Imi
0-0.883575 2" 29

9.2394e-5 sin cos 4 Imi
0.883575-n/2 2-b 44

9.2394e-5

Tab le C.3 M a x i m u m error in the s ine/cos ine genera tor using par t i t ioned

tab le and l inear interpolat ion

Z.A. Baidas, 2 0 0 0 Appendix C; Elementary fiinction details 191

nput to the sne function

a) sin_cos_7_lsi

Input to the ^ne Function

c) sin_cos_5_lsi

M 04 W M 1 ^ 14 ^
Input to the skie function

Input to the sitie Rmctkm

b) sin_cos_6Jsi

hput to the sne ninctton

d) sin_cos_4Jsi

nput to the sine function

e) sin_cos_3_lsi f) sin_cos_2Jsi

Figure C.3 Error in the sine/cosine generator using linear interpolation engine with
a single-table and for different table sizes

Z.A. Baidas, 2000 Appendix C: Elementary function details 192

M 04 W M 1 ^ 14 ^
bipul lo Ihe sine ftinctton

a) sin_cos_7_lmi

Input to me stoe nmction

mput to the sine mndion

b) sin_cos_6_lmi

I b
c) sin_cos_5Jmi

0 M M W M 1 ^ 14 ^
Input to Hie sne function

d) sin_cos_4Jmi

Figure C.4 Error in the sine/cosine generator using linear interpolation and a
partitioned table for different table sizes

Unit name

sin_cos_7Jmi

sin_cos_6_lini

sin_cos_5Jmi

sin cos 4 Imi

0

S1

S1

Sub-tables range

S1 S2 S3

1 1
S2

S2

S1 S2

K
2

Figure C.5 Sub-tables range in the sine/cosine generator using linear
interpolation and partitioned table

Note that for the table lookup based implementation, an equivalent unit that replaces the

internal table with an external ROM interface is provided to allow implementing the table

using an external ROM.

Z.A. Baidas, 2000 Appendix C: Elementary function details 193

An iterative series method based on the minimax approximation of the sine/cosine

function is also available to generate these functions. As expected, the error in the function

approximation is highly dependent on the approximating function degree. The maximum

approximation error for different approximation degrees is illustrated in Table C.4 and the

same results are summarised in Figure C.6.

Name Approximation
degree

Maximum error

sin_cos_7_ser 7 9.1500e-8

sin_cos_6_ser 6 4.7340e-7

sin_cos_5_ser 5 7.1280e-6

sin_cos_4_ser 4 1.0400e-4

Table C.4 Maximum error in the sine/cosine generator using minimax
approximation

M M M 1 12 ^
Input to the skw function M M M 1 ^ 14 ^

Input to the sine (unction

a) sin_cos_7_ser b) sin_cos_6_ser

input to tiie sme function InpU to the ane fuvtion
^ ^

c) sin_cos_5_ser d) sin_cos_4_ser

Figure C.6 Error in the sine/cosine minimax engine for different approximation
degrees

Z.A. Baidas, 2000 Appendix C: Elementary function details 194

Finally, a CORDIC based engine is provided to generate this function. The unit uses the

CORDIC algorithm in the circular mode (m = 1) and with the input operand initialised as

(x = \IK,y = Q,z^ input operand). The accuracy of these flinction generators varies

according to the number of CORDIC iterations. This is shown in Table C.5 and Figure C.7

showing the maximum approximation errors for different number of iterations.

Name Number of
iterations

IMaximum error

sin_cos_7_COR 25 1.1913e-7

sin_cos_6_COR 22 5.1109e-7

sin_cos_5_COR 18 7.5161e-6

sin_cos_4_COR 15 6.0760e-5

Table C.5 Maximum error in the sine/cosine generator using CORDIC
algorithm

input to (he Mid ian

a) sin_cos_7_cor

Input to the sine function

b) sin_cos_6_cor

input to the sne function

c) sin_cos_5_cor

0 M 04 M as 1 U 14 #
Input to the sine function

d) sin_cos_4_cor

Figure 0.7 Error in the sine/cosine CORDIC unit for different number of iterations

Z.A. Baidas, 2000 Appendix C: Elementary function details 195

C.2 Inverse sine and inverse cosine functions

The inverse sine and inverse cosine functions are implemented using a single building

block, and a control input is provided to select between the two functions. Due to the

periodic nature of both the sine and cosine function, their inverses cannot be formed unless

the domain is restricted. This restricts the input to the range [-1.1], which eliminates the

need for a range reduction block.

A block diagram representing the building blocks of the unit is shown in Figure C.8. Input

type detection performs a series of tests to detect certain cases in which the output is

predefined. These cases are represented in Table C.6. If any of these cases is detected, the

corresponding output value is assigned and the function generator is bypassed.

input

in_sel

flag register

> output

Function generator

Input type detection

Figure C.8 inverse sine/inverse cosine generation unit

For the general case, the inverse sine function is generated in the range [0,1] and the final

output is provided using the simple relationship:

arcsin(±jc) = ±arcsin(l A: I)

arccos(±x) = y - [+ arcsin(lI)]

Z.A. Baidas, 2000 Appendix C: Elementary function details 196

Operation Input Output
Flag register

Operation Input Output
Inexact Invalid NAN OVF EUN ZD

Inverse

sine
+ OC

Quiet

NAN
0 1 1 0 0 0

Inverse

sine
-oo

Quiet

NAN
0 1 1 0 0 0

Inverse

sine

Sig.

NAN

Quiet

NAN
0 1 1 0 0 0

Inverse

sine

Quiet

NAN

Quiet

NAN
0 0 1 0 0 0

Inverse

sine
zero 0 0 0 0 0 0 0

Inverse

sine
>111

Quiet

NAN
0 1 1 0 0 0

inverse

cosine
+00

Quiet

NAN
0 1 1 0 0 0

inverse

cosine
-ex,

Quiet

NAN
0 1 1 0 0 0

inverse

cosine

Sig.

NAN

Quiet

NAN
0 1 1 0 0 0

inverse

cosine

Quiet

NAN

Quiet

NAN
0 0 1 0 0 0

inverse

cosine
zero 71/2 0 0 0 0 0 0

inverse

cosine
>111

Quiet

NAN
0 1 1 0 0 0

Table C.6 special input cases in the inverse sine/inverse cosine function

The function generation unit is implemented using either a partitioned lookup table or a

CORDIC base procedure^. For a table-based method, Table C.7 and Figure C.9 represent

the maximum error encountered for different table sizes.

^ Due to the nature of the inverse sine function as neither a single slope table lookup nor a polynomial

approximat ion are not a viable solution for this funct ion .

Z.A. Baidas, 2 0 0 0 Appendix C: Elementary function details 197

Name Sub-table range
Sub-table

slope

Table

entries

Maximum

error

asin_acos_7_lmi

0-0.234375 2-10 240

3.0335e-7 asin_acos_7_lmi

0.234375-0.53125 2-11 608

3.0335e-7 asin_acos_7_lmi

0.53125-0.78125 2-1̂ 1024

3.0335e-7 asin_acos_7_lmi

0.78125-0.890625 2-13 896

3.0335e-7 asin_acos_7_lmi
0.890625-0.96875 2-14 1280

3.0335e-7 asin_acos_7_lmi
0.96875-0.986022 2-1 b 566

3.0335e-7 asin_acos_7_lmi

0.986022-0.994353 546

3.0335e-7 asin_acos_7_lmi

0.994353-0.999236 2-1W 1281

3.0335e-7 asin_acos_7_lmi

0.999236-0.999694 2-ia 241

3.0335e-7 asin_acos_7_lmi

0.999694-1 2-̂ 1 642

3.0335e-7

asin_acos_6_lmi

0-0.140625 2'" 36

5.4699e-7 asin_acos_6_lmi

0.140625-0.390625 2-« 128

5.4699e-7 asin_acos_6_lmi

0.390625-0.71875 g.iu 336

5.4699e-7 asin_acos_6_lmi

0.71875-0.875 2-11 320

5.4699e-7 asin_acos_6_lmi 0.875-0.988739 932 5.4699e-7 asin_acos_6_lmi

0.988739-0.99884 2-ib 662

5.4699e-7 asin_acos_6_lmi

0.99884-0.999542 2-1/ 93

5.4699e-7 asin_acos_6_lmi

0.999542-0.999786 2"̂ ̂ 64

5.4699e-7 asin_acos_6_lmi

0.999786-1 225

5.4699e-7

asin_acos_5_lmi

0-0.28125 •z' 36

5.3550e-6 asin_acos_5_lmi

0.28125-0.640625 2-b 92

5.3550e-6 asin_acos_5_lmi

0.640625-0.828125 2-y 96

5.3550e-6 asin_acos_5_lmi

0.828125-0.9375 2"̂ ̂ 112

5.3550e-6 asin_acos_5_lmi 0.9375-0.993958 2 '^ 232 5.3550e-6 asin_acos_5_lmi

0.993958-0.996245 2'i ̂ 19

5.3550e-6 asin_acos_5_lmi

0.996245-0.999358 2-ib 103

5.3550e-6 asin_acos_5_lmi

0.999358-0.999755 2" It) 27

5.3550e-6 asin_acos_5_lmi

0.999755-1 2"̂ ̂ 65

5.3550e-6

asin_acos_4_lmi

0-0.265625 2-. 9

4.5791 e-5 asin_acos_4_lmi

0.265625-0.53125 2-b 17

4.5791 e-5 asin_acos_4_lmi

0.53125-0.78125 2" 32

4.5791 e-5 asin_acos_4_lmi 0.78125-0.921875 2-« 36 4.5791 e-5 asin_acos_4_lmi

0.921875-0.994872 2-n 150

4.5791 e-5 asin_acos_4_lmi

0.994872-0.999541 2-ia 39

4.5791 e-5 asin_acos_4_lmi

0.999541-1 2-1̂ 31

4.5791 e-5

Table C.7 Maximum error in the inverse sine/inverse cosine generator using
partitioned table and linear interpolation

Z.A. Baidas, 2000 Appendix C: Elementary function details 198

«io'

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 t
Ifput to tt» invBrs* sin* Midlen

a) asin_acos_7_lmi

3

IrfNJl to IhB im«rs« sirw ftjncllen

b) asin_acos_6_lmi

c) asin_acos_5_lmi d) asin_acos_4Jini

Figure C.9 Error in the inverse sine/inverse cosine generator using linear
interpolation engine with a partitioned table lookup

A minor modification to the CORDIC algorithm (see Appendix B for details) provides an

iterative procedure to implement the inverse sine and inverse cosine functions. Table C.8

and Figure C. 10 represent the accuracy of this method for different number of iterations.

Name Number of
iterations

Maximum error

as! n_acos_7_CO R 26 1.1268e-7

as! n_acos_6_CO R 22 9.3970e-7

asin_acos_5_COR 19 7.60058-6

asin_acos_4_COR 16 6.0995e-5

asin_acos_3_COR 13 4.7333e-4

asin_acos_2_COR 11 1.8907e-3

Table C.8 Maximum error in the inverse sine/inverse cosine generator using
CORDIC algorithm

Z.A. Baidas, 2000 Appendix C; Elementary function details 199

0 ai 020304(19(16 017(1809
Input to the arcsin ftivtion

a) asin_acos_7_cor

0 M M M M M M M W
Input to the arcsin function

c) asin_acos_5_cor

0 0 1 0 2 0 3 0 4 05 06 07 0 8 0 9
Input to the arcsin ftjnctian

e) asin_acos_3_cor

0 M M M M M M M W M 1
Input to #m afcsin ftncfen

b) asin_acos_6_cor

0 M M M M W M M W M 1
Input to

d) asin_acos_4_cor

0 01 0 2 0 3 0 4 0 8 0 6 07 08 08 1
Input to the arcsin function

f) asin_acos_2_cor

Figure C.10 Error in the asin/acos generator based on the CORDIC engine for
different number of iterations

C.3 Inverse tangent function

The function generator of the inverse tangent function consists of two main building

blocks:

1. A pre-processing stage that performs range reduction and input type detection.

Z.A. Baidas, 2000 Appendix C: Elementary function details 200

2. The main function generation unit, which calculates the inverse tangent of an input

argument within the range [0,1].

In addition to those two units, a final adjustment stage is required to undo the modification

performed by the range reduction stage.

In the pre-processing stage, input type detection is performed to identify any of the input

values listed in Table C.9 and output the appropriate result. If none of the listed values are

detected, the execution continues to the range reduction unit adjusts the input argument to

within the range [0,1], and provides the necessary control signals to govern the data flow

in the following stage. A flow chart describing the range reduction procedure is given in

Figure C. 11. At this stage, the input is divided into two groups;

1. If input is in the range Ltl < 1, then the function is calculated directly.

2. If bri > 1, range reduction is required:

f 1 A
arc tan arctanix)

9 '

Input Output
Flag register

Input Output
Inexact Invalid NAN OVF EUN ZD

+ 00 T I I 2 0 0 0 0 0 0

-oo -7I/2 0 0 0 0 0 0

Sig.

NAN

Quiet

NAN
0 1 1 0 0 0

Quiet

NAN

Quiet

NAN
0 0 1 0 0 0

0 0 0 0 0 0 0 0

linputl>2^'' ±71/2 1 0 0 0 0 0

linputkO.OOT ±input 1 0 0 0 0 0

Table C.9 Special input cases in the inverse tangent function

Z . A . B a i d a s , 2 0 0 0 A p p e n d i x C: Elementar) ' funct ion detai l s 20]

The function generation unit is implemented using the three methods described in Chapter

4: table lookup, iterative series, and the CORDIC algorithm.

Table lookup based units are provided using both a single slope table and a partitioned

table. For the first set, error variation as the table size changes is represented in Table C. 10

and Figure C. 12. Similar figures for the partitioned table based units are provided in Table

C . l l and Figure C. 13.

input

Y

output = input

indicates that tlie final output
result should be inverted

>

N

1
o u i p u l —

input

f ina l_sub = 1

1

'Indicates that the final output
result is of the form

arctan(input)

input < u

Y

r

s ign = 1

>

Figure C.11 Inverse tangent range reduction flow chart

Z.A. Baidas, 2000 Appendix C: Elementary funct ion details 202

Name Slope Table entries Maximum error

atan_main_7_lsi 2-iu 1024 8.8135e-8

atan_main_6_lsi 2 " 512 3.1999e-7

atan_main_5_lsi 2" 128 4.9649e-6

atan__main_4_lsi 2-b 32 7.9282e-5

atan_main_3Jsi 2-a 16 3.1684e-4

atan_main_2_lsi 2"' 4 5.000e-3

Table C.10 Maximum error in the inverse tangent generator using a single
table and linear interpolation

Name Sub-table range
Sub-table

slope
Table

entries

Maximum

error

atan_main_7_lmi 0-0.0625 2-9 32 8.8135e-8 atan_main_7_lmi

0.0625-1 2'""̂ 960

8.8135e-8

atan_main_6_lmi 0-0.3125 2-B 80 9.6207e-7 atan_main_6_lmi

0.3125-1 2'" 352

9.6207e-7

atan_main_5_lmi 0-0.125 2-b 8 6.9654e-6 atan_main_5_lmi

0.125-1 2" 112

6.9654e-6

atan_main_4_lmi 0-0.125 2" 2 9.0130e-5 atan_main_4_lmi

0.125-1 2-b 28

9.0130e-5

Table C.11 Maximum error in the inverse tangent generator using a
partitioned table and linear interpolation

Z.A. Baidas, 2000 Appendix C: Elementary function details 203

M M M M M W M M W
Input to the inverse tangent Ikinction

a) atan_main_7Jsi

M M M M W M M W M
hput to the kiverse tangent towtton

c) atan_main_5_lsi

0 0-1 0-2 0.3 0-4 0-5 0-6 0.7 0.8 0.9 1
feipirt to the fciverse tangent hmction

b) atan_main_6Jsi

0 M ^ M M M M M M M 1
hput to the Inverse tangent ftinction

d) atan_main_4_lsi

M M M M M W M M
kiputto the Inverse tangent (Unction

e) atan_main_3_lsi

0 M M W M M M 1
Input to the Inverse tangent fcmctton

f) atan_main_2_lsi

Figure C.12 Error in the inverse tangent generator using a single table and linear
interpolation for different table sizes

Z.A. Baidas, 2000 Appendix C: Elementary function details 204

0aia2a3(i4(i3(ie0L7(i80Lg i
bipul to Iht cxpontnlial function

a) atan_main_7_lmi

0 M M M M W W M M M 1
kiput totbetxpoiwfitlal kmction

c) atan_main_5_lmi

0 0.1 0.2 0.3 0.4 0.S 0.6 0.7 0.8 0.9
hput to the •xpomntial function

b) atan_niain_6_lmi

0 ^ M M M W M M M M 1
input to tlie exponential function

d) atan_main_4Jmi

Figure C.13 Error in the inverse tangent generator using a partitioned table and
linear interpolation for different table sizes

An iterative series method based on the minimax approximation is also used to generate

the inverse tangent function. The maximum approximation error for different

approximation degrees is illustrated in Table C.12 and Figure C.14.

Name Approximation
degree

Maximum error

atan_main_7_ser 7 7.3643e-8

atan_main_6_ser 6 4.2296e-7

atan_main_5_ser 5 6.40568-6

atan_main_4_ser 4 2.0947e-5

Table C.12 Maximum error in the inverse tangent generator using the
minimax approximation

Z.A. Baidas, 2000 Appendix C: Elementary function details 205

M M M M M W M M M
Input to the inverse tangent ftmctkMi

a) atan_main_7_ser

^ M M M M M W W
Input to tlie bnterae tangent bnction

b) atan_maln_6_ser

0 M M M M M W W M M 1
input to the inverse tangent function

c) atan_maln_5_ser

M M M M W W M M M
input to the inverse tangent function

d) atan_tnain_4_ser

Figure C.14 Error in the inverse tangent generator using the minimax
approximation for different approximation degrees

Finally, a CORDIC based engine is provided to generate this function. The units uses the

CORDIC algorithm in the circular mode (m = 1) and with the input operands initialised as

{x=\,y = input operand, z =0). The accuracy of this function generator is dependent on

the number of CORDIC iterations. This is shown in the results in Table C.13 and Figure

(115.

Name Number of
iterations

Maximum error

atan_main_7_C0R 25 9.9845e-8

atan_main_6_COR 22 5.0590e-7

atan_m ai n_5_C0 R 18 7.6204e-6

atan_main_4_COR 15 6.0870e-5

Table C.13 Maximum error in the inverse tangent generator using the
CORDIC algorithm

Z.A. Baidas, 2000 Appendix C: Elementary function details 206

0 M M M M M W M M M 1
Input to titearctai function

a) atan_main_7_cor

0 M M M M M W ^ M M 1
biput to the arctan tanctioti

b) atan_main_6_ cor

0 a i a 2 0 L 3 a 4 W M (i 7 (i 8 a 9 i
hput to the wctan function

c) atan_main_5_ cor

0 M M M M W M M 1
kiput to the arctan function

d) atan_main_4_ cor

Figure C.15 Error in the inverse tangent generator using the CORDIC algorithm
for different number of iterations

C.4 Logarithmic functions

The natural logarithm function is combined with the base 2 logarithm and the base 10

logarithm in a single unk\ The unit consists of two main components:

1. A unit that generates the natural logarithm of the input.

2. A post-processing unit that adjusts the output of the previous stage and generates the

final result according to the required fiinction.

" Logarithm of an arbitrary base is implemented a hierarchical using the natural logarithm unit and a

floating-point divider (logbase x = In x / In base)

Z.A. Baidas . 2000 Appendix C: Elementary function details 207

The functional unit is based on one of the mathematical properties of the logarithm

function;

ln(] .Fx2^) =]n(l . f) + ln(2^)

= ln(l.F) + Exln(2)

This implies that the natural logarithm of a floating-point number can be generated using a

function generator in the range [1,2].

A block diagram of the Orst unit is represented in Figure C. 16. It consists of a type

detection block, employed to detect certain situations and act according to a pre-defined

regime, and the main function generator, which performs the natural logarithm calculation

of the input/racnoM field.

Input Input type detection

Function generator

Flag register

Done

, Output

Exponent

Figure C.16 Initial unit in the logarithm generator unit

Table C.9 represents the input values the type detection block detects along with the

output value and the flag register content in each case. If none of these cases are detected,

the execution moves to the function generation block.

For the function generation block, three sets of function generators are provided. The first

is based on a single slope table lookup; the second uses a partitioned lookup table; and

Z.A. Baidas. 2000 Appendix C: Elementary function details 208

finally an iterative process based on a polynomial approximation of the function is also

provided.

T h e single s lope table lookup implementa t ion provides the fastest solut ion at the cost of

relatively large table compared to the partitioned table. Table C. 15 provides a comparison

both methods for similar target accuracy, the results are summarised in Figure C.17 and

Figure C.18.

Input Output
Flag register

Input Output
Inexact Invalid NAN OVF EUN ZD

4-00
Quiet

NAN
0 1 1 0 0 0

Quiet

NAN
0 1 1 0 0 0

Sig.

NAN

Quiet

NAN
0 1 1 0 0 0

Quiet

NAN

Quiet

NAN
0 0 1 0 0 0

0 -oo 0 0 0 0 0 0

<0
Quiet

NAN
0 1 1 0 0 0

Tab le C.14 specia l Input cases In the logar i thm funct ion

Method Name Table entries Maximum error

Single table

Ln_pre_7_lsi 1024 1.1853e-7

Single table

Ln_pre_6_lsi 512 4.8382e-7

Single table
Ln_pre_5_lsi 128 7.5707e6

Single table
Ln_pre_4_lsi 64 3.0032e-5

Single table

Ln_pre_3Jsi 32 1.1826e-4

Single table

Ln_pre_2_lsi 16 4.594e-4

Partitioned table

Ln_pre_7Jmi Same as LN_pre_7_lsi

Partitioned table
Ln_pre_6Jmi 368 9.0378e-7

Partitioned table
Ln_pre_5_lmi 112 9.8758e-6

Partitioned table

Ln_pre_4_lmi 36 9.3764e-5

T a b l e C.15 M a x i m u m error In the logar i thm generator us ing a s ingle and

par t i t ioned tab le

Z.A. Baidas, 2000 Appendix C; Elementary function details 209

1 ^ ^ ^ ^ M ^ ^ ia
Input to the natural iogar lhm ftjnction

a) ln_pre_7Jsi

'f

^ ^ ^ W M ^ ^ M
Input to the natural logafMhm kwctfon

c) ln_pre_5Jsi

M ^ ^ ^ ^ ^ ^ ^ ^
Input to the natural togarithm function

b) ln_pre_6_lsi

1 ^ ^ M ^ ^ ^ ^ M ^ 2
Input to the natural togaithm kmctkm

d) ln_pre_4Jsi

^ ^ ^ M M ^ ^
hiput t o the natural logarttbm ftinctkm

e) ln_pre_3Jsi

r

f) ln_pre_2Jsi

1 ^ ^ ^ U ^ ^ ^ ^ ^ 2
biput to the natural logarithm lUnctfon

Figure C.17 Error in the natural logarithm generator using a single table and
linear interpolation for different table sizes

Z.A. Baidas, 2000 Appendix C: Elementary function details 210

a) ln_pre_7Jmi

^ ^ w ^ U M
Input to the nalwal logarthm function

c) ln_pre_5Jmi

U ^ W ^ W U M ^ 2
Input to Vie natural logarthm hmction

1 U ^ ^ ^ ^ M ^ ^ ^ 2
Input to the natural logarithm function

b) ln_pre_6Jml

1 U ^ ^ M U W ^ ^ W 2
Input to the neural logarithm function

d) ln_pre_4Jmi

Figure C .18 Error in the natural logarithm generator using a partitioned table and
linear interpolation for different table sizes

For the third set of function generators, the minimax approximation procedure provides a

cheap solution in terms of area at the cost of extra delay. The unit delay is highly

dependent on the target accuracy. As the required accuracy increases, the approximating

polynomial degree increases and so does the number of iterations. The results in Table

C.16 and Figure C.19 represent four function generators based on the minimax

approximation for different accuracy target.

Z.A. Baidas, 2000 Appendix C: Elementary function details 211

Name Approximation
degree

Maximum error

Ln_pre_7_ser 7 6.1669e-8

Ln_pre_6_ser 6 4.3195e-7

Ln_pre_5_ser 5 8.9136e-6

Ln_pre_4_ser 4 6.0755e-5

Table C.16 Maximum error in the logarithm generator using mini max
approximation

n ia ^ 4̂ ia ^ ^
Input to the naturai bgarWun Amotion

a)ln_pre_7_ser

^ ^ W ^ ^ ^ ^
input to the natural iogarthm fwiction

c) ln_pre_5_ser

Input to the natural

b) ln_pre_6_ser

1 ^ ^ ^ U ^ ^ ^ ^ ^ 2
kipU to the natural logarithm hmctlon

d) In_pre_4_ser

Figure C. I9 Error in the natural logarithm generator using the minimax
approximation and for different approximation degrees

The post-processing stage has four inputs: the output result of the previous stage; the main

input exponent; a control flag (done); and the flag register. If the done flag is set, the input

and the flag register are bypassed to the final output and no flirther processing is

performed. In normal situations (done = 0), the data flow in this unit is represented in

Figure C.20. It consists of three operations:

Z.A. Baidas, 2000 A p p e n d i x C: E l e m e n t a r y func t ion deta i ls 212

1. Multiplying the exponent by (ln2).

2. Adding the result of the previous step to the input to generate the final result.

3. This stage is required only in the case of the base 2 logarithm or base 10 logarithm,

where the result is multiplied by an adjusting factor.

required only in the base 10
logarithm case

put exponent

required only in the base 2
logarithm case

(input + Ex ln2)xlog2E

(input + Ex ln2)xlog^gE

Exln2

input + Ex In2

T
output

Figure C.20 Data flow in the logarithm post-processing stage

C.5 Exponential function

The exponential function generator consists of a pre-processing stage and a function

generation core. The pre-processing stage performs two tasks:

1. Input operand type detection.

2. Reduces the range of the input operand to within the range of the function generation

block [0,ln2].

A block diagram of the pre-processing stage is provided in Figure C.21. Input type

detection is the first stage in the pre-processing step. It performs a series of tests to identify

Z.A. Baidas. 2000 Appendix C: Elementary function details 213

certain cases represented in Table C.17. If any of these cases detected, the proper value is

assigned to the output and the (fong flag is raised to indicate that there is no need for

further processing in the following function generation block. The type detection unit also

assigns the appropriate value to the/Zog /-ggz.yfgr.

input Input type detection

Range reduction

^ flag register

_>done

. output

_>.Q

_>invert

Figure C.21 Exponential pre-processing stage

If the input operand passes the type detection stage, a range reduction is performed on the

input to scale it within the range Ixl e [0,]n2]^

F x 2 ^ = ! 2 x l n 2 + x In 2

F x 2 '

In 2

exp(F X 2^) = 2^ xexp(/?EM x In 2)

The procedure takes place in four steps;

1. The input is divided by ln2 (multiplied by l/ln2) and the output result is stored in a

temporary variable.

2. The fractional part of the previous step is then multiplied by (ln2) and the result is

provided as the output.

If the input is already within this range, the range reduction procedure is bypassed.

Z.A. Baidas, 2000 Appendix C: Elementary function details 2 1 4

3. The integer part of step 1 (Q) is provided as an output.

4. If the input operand is negative, the invert flag is set to one to indicate that the final

output should be inverted (exp(-x) = l/expM).

Input Output
Flag register

Input Output
Inexact Invalid NAN OVF EUN ZD

+ 00 + 00 0 0 0 0 0 0

-oo 0 0 0 0 0 0 1

Sig.

NAN

Quiet

NAN
0 1 1 0 0 0

Quiet

NAN

Quiet

NAN
0 0 1 0 0 0

zero 1 0 0 0 0 0 0

Table C.17 Special input cases in the exponential function

The function generation step is provided using Table lookup based units using single slope

tables. Error variation as the table size changes is shown in Table C.18 and Figure C.22.

For this particular function, dividing the table into multiple sub-tables does not result in

any reduction in the table size, as all the partitions require the same slope to meet the

target accuracy.

Name Slope Table entries Maximum error

exp_main_7_lsi 2-11 1434 3.6241 e-8

exp_main_6_lsi 2 " 359 9.2173e-7

exp_main_5_lsi 2'" 180 3.7129e-6

exp_main_4_lsi 2-b 45 6.0123e-5

exp_main_3_lsi 2-b 23 3.390e-4

exp_main_2_lsi 2-3 6 3.900e-3

Table C.18 Maximum error in the exponential generator using a single table
and linear interpolation

Z.A. Baidas, 2000 Appendix C; Elanentary function details 215

An iterative series method based on the minimax approximation of the fiinction is also

provided. The maximum approximation error for different approximation degrees is

illustrated in Table C.19 and the results are summarised in Figure C.23.

M 04 M M
Input to the «xponcfitial Mic t ion Input to the exponential function

a) exp_main_7_lsi b) exp_main_6_ isi

^ M M 04 M M M
Input to the exponential ftmction

02 03 (14 05 06
kiput to the exponential Mict ion

c) exp_main_5Jsi d) exp_main_4_lsi

M M M 04 W M M
Input to the exponential function Input to the exponential Mic t ion

e) exp_inain_3_lsi f) exp_main_2_lsi

Figure C.22 Error in the exponential generator using a single table and linear
interpolation for different table sizes

Z.A. Baidas, 2000 Appendix C: Elementary function details 216

Name Approximation
degree

Maximum error

exp_main_7_ser 6 2.4737e-8

exp_main_6_ser 5 1.3485e-7

exp_main_5_ser 4 3.9179e-6

exp_main_4_ser 3 1.1176e-4

Table C.19 Maximum error in the exponential generator using the minimax
approximation

U M 04 M M M
input to the exponential funclIon Input to the exponential (imciion

a) exp_main_7_ser b) exp_main_6_ser

02 03 04 06 oe a?
Input lo the exponentiel kmc* ion

^ M M 04 M W M
Input to the exponential function

c) exp_main_5_ser d) exp_main_4_ser

Figure C.23 Error in the exponential generator using the minimax approximation
and for different approximation degrees

Z.A. Baidas , 2000 Appendix C: Elementary function details 2 1 7

C.6 Square root function

The square root function generator has a simple pre-processing stage attached to a main

function generation block. In addition to the type detection block which detect the cases

listed in Table C.20, the pre-processing stage checks the input exponent. If an odd

exponent is detected, the exponent is incremented and the fraction is shifted right.

allowing the square root to be generated using the general form:

V F x 2 ^ = V F x 2 ^ , 0 . 5 < F < 2

A type detection block monitoring the values listed in Table C.20 is provided prior to the

exponent adjustment unit. If any of these values is provided as an input operand, the

output is set to a pre-defined value along with an appropriate flag register, and the

operation terminates.

Input Output
Flag register

Input Output
Inexact Invalid NAN OVF EUN ZD

+00 +00 0 0 0 0 0 0

0+jo° 0 0 0 0 0 0

Sig.

NAN

Quiet

NAN
0 1 1 0 0 0

Quiet

NAN

Quiet

NAN
0 0 1 0 0 0

zero 0 0 0 0 0 0 0

Table C.20 Special input cases in the square root function

For normal operation, two engines are provided to generate the square root function. The

first is a table lookup based engine with both a single slope and multi-slope table. A

comparison between the total table size for different target accuracies is provided in Table

C.21 and Figure C.24.

Z.A. Baidas, 2000 Appendix C: Elementary function details 218

g 2

Input to the square root function input to the square root function

a) sqrt_7_lsi b) sqrt_6Jsi

input to the square root function Input to the square root function

c) sqrt_5_lsi d) sqrt_4Jsi

Input to the square root function Input to the square root function

e) sqrt_3_lsi f) sqrt_2Jsl

Figure C.24 Error in the square root generator implemented as a single table
lookup unit and for different table sizes

Z.A. Baidas, 2000 Appendix C: Elementary function details 219

Method Name Table entries Maximum error

Single table

sqrt_7Jsi 1536 8.6020e-8

Single table

sqrt_6Jsi 768 3.40486-7

Single table
sqrt_5Jsi 192 5.3312e-6

Single table
sqrt_4Jsi 48 8.2379e-5

Single table

sqrt_3Jsi 24 3.1566e-4

Single table

sqrt_2Jsi 6 4.000e-3

Partitioned table

sqrt_7_lmi 1056 1.1410e-7

Partitioned table
sqrt_6_lmi 364 9.2021 e-7

Partitioned table
sqrt_5Jmi 120 9.1946e-6

Partitioned table

sqrt_4Jmi Same as sqrt_4_lsi

Table C.21 Maximum error in tfie square root generator using a single and
partitioned table

I

Input to the square root function Input (o the square root tunction

a) sqrt_7Jini b) sqrt_6_lmi

Input to the square root function

c) sqrt_5Jml

Figure C.25 Error in the square root generator implemented as a partitioned table
lookup unit and for different table sizes

Z.A. Baidas, 2000 Appendix C; Elementary function details 220

The CORDIC algorithm can also be used to generate the square root function. Error

variation as the number of iterations change is shown in Table C.22 and Figure C.26. A

note of particular interest here is that the angle variation (z variable, see Appendix B) has

absolutely no effect of the execution, which implies that the angle calculation as well as

the stored rotation values are not required to generate the square root function and can be

eliminated completely from the CORDIC procedure that generates the square root.

Name Number of Maximum error
iterations

sqrt_7_C0R 12 6.2357e-8

sqrt_6_C0R 10 8.5353e-7

sqrt_5_C0R 9 3.4490e-6

sqrt_4_C0R 8 1.3908e-5

Table C.22 Maximum error in the square root generator using the CORDIC
algorithm

Kiput to the square root ftinctton

a) sqrt_7_cor

Input t o the square root function

c) sqrt_5_cor

IjjlflPifiiFiinii"

Input to the square root function

b) sqrt_6_cor

Input to the square root function

d) sqrt_4_cor

Figure C.26 Error in the square root generator using CORDIC and for different
number of iterations

Z.A. Baidas, 2000 Appendix C: Elementary function details 2 2 ^

C.7 VHDL library

User access to the floating-point and complex functional units is provided by means of a

VHDL package. Roating-point and complex functions and procedures, along with type

conversion units are embodied in this package. The floating-point package declaration is

provided in Listing C.l.

Listing C.l Floating-point and complex package declaration

MOODS FLOATING-POINT AND COMPLEX SYNTHESIS LIBRARY

LIBRARY IEEE;
USE IEEE.std_logic_1164.all;
USE IEEE. st:d_logic_unsigned. all;

PAC3CAGE FLP_OPS IS

-- TYPE DECLARATION
TYPE FLOAT is array (31 downtzo 0) of STD_LOGIC;
TYPE CMPLX is array {63 downto 0) of STD_LOGIC;
TYPE CMPLX_POLAR is array (63 downto 0) of STD_LOGIC;
TYPE STATUS is array (5 downto 0) of STD_LOGIC;
— T Y P E STD_LOGIC IS STD_LOGIC;

-- return the real part of a complex variable
FUNCTION RE(input : IN CMPLX) return FLOAT;
FUNCTION RE(input : IN FLOAT) return FLOAT;

-- return the imaginary part of a complex variable
FUNCTION IMAG(input : IN CMPLX) return FLOAT;
FUNCTION IMAG(input : IN FLOAT) return FLOAT;

-- return the magnitude of a complex polar variable
FUNCTION MAGN(input : IN CMPLX_POLAR) return FLOAT;
FUNCTION MAGN(input : IN FLOAT) return FLOAT;

-- return the angle of a complex polar variable
FUNCTION ARG(input : IN CMPLX_POLAR) return FLOAT;
FUNCTION ARG(input : IN FLOAT) return FLOAT;

return the conjugate
FUNCTION CONJ(input
FUNCTION CONJ(input
FUNCTION CONJ'(input

IN CMPLX_POLAR) return CMPLX_POLAR;
IN CMPLX) return CMPLX;
IN FLOAT) return FLOAT;

converts a complex input argument to a complex polar
FUNCTION COMPLEX_TO_POLAR (input : IN CMPLX) return CMPLX_POLAR;

same functionality but with a STD_LOGIC register support
PROCEDURE COMPLEX_TO_POLAR_F
(input : IN CMPLX; output : OUT CMPLX_POLAR; FLAG_REG : OUT STATUS)

-- converts a complex polar input argument to a complex
FUNCTION POLAR_TO_COMPLEX (input : IN CMPLX_POLAR) return CMPLX;

-- same functionality but with a STD_LOGIC register support
PROCEDURE POLAR_TO_COMPLEX_F
(input : IN CMPLX_POLAR; output : OUT CMPLX; FLAG_REG : OUT STATUS)

Z.A. Baidas, 2000 Appendix C: Elementary function details

-- VHDL type real and integer to float , cmp
FUNCTION to_float (input : IN integer) return FLOAT;
FUNCTION to_float (input : IN REAL) return FLOAT;

or cmplx__polai

FUNCTION to_complex (inputl : IN integer;input2 : IN integer) return CMPLX;
FUNCTION to_complex (inputl : IN real;input2 : IN real) return CMPLX;
FUNCTION to_coinplex (inputl : IN FLOAT;inputZ : IN FLOAT) return CMPLX;
FUNCTION to_complex (inputl : IN integer;input2 : IN real) return CMPLX;
FUNCTION to_complex (inputl : IN integer;inputZ : IN FLOAT) return CMPLX;
FUNCTION to_complex (inputl : IN real;input2 : IN integer) return CMPLX;
FUNCTION to_complex (inputl : IN real;input2 : IN FLOAT) return CMPLX;
FUNCTION to_complex (inputl : IN FLOAT;input2 : IN integer) return CMPLX;
FUNCTION to_complex (inputl : IN FLOAT;input2 : IN real) return CMPLX;

-- Addition operations
FUNCTION "+" (inl, in2 FLOAT) return FLOAT;
FUNCTION "+" (inl, in2 : CMPLX) return CMPLX;
FUNCTION "+" (inl, in2 : CMPLX_POLAR) return CMPLX_POLAR;
FUNCTION (inl : CMPLX; in2 : FLOAT) return CMPLX;
FUNCTION "+" (inl : CMPLX_POLAR; in2 : FLOAT) return CMPLX_POLAR;

PROCEDURE FLP_ADD
(inl, in2 : IN FLOAT; output : OUT FLOAT);
PROCEDURE FLP_ADD_F
(inl, in2 : IN FLOAT; output : OUT FLOAT; FLAG_REG OUT STATUS);

PROCEDURE CMPLX_ADD
(inl, in2 : IN CMPLX; output : OUT CMPLX);
PROCEDURE CMPLX_ADD_F
(inl, in2 : IN CMPLX; output : OUT CMPLX; FLAG_REG OUT STATUS)

PROCEDURE CMPLX_ADD
(inl : CMPLX; in2 : FLOAT; output : OUT CMPLX);
PROCEDURE CMPLX_ADD_F
(inl : CMPLX; in2 : FLOAT; output : OUT CMPLX; FLAG_REG : OUT STATUS);

PROCEDURE POLAR_ADD
(inl, in2 : IN CMPLX_POLAR; output : OUT CMPLX_POLAR);
PROCEDURE POLAR_ADD_F

(inl, in2 : IN CMPLX_POLAR; output : OUT CMPLX_POLAR; FLAG_REG : OUT STATUS)

PROCEDURE POLAR_ADD

(inl : CMPLX_POLAR; in2 : FLOAT; output : OUT CMPLX_POLAR);
PROCEDURE POLAR_ADD_F
(inl : CMPLX_POLAR; in2 : FLOAT; output : OUT CMPLX_POLAR; FLAG_REG : OUT
STATUS);

-- Subtraction operations
FUNCTION
FUNCTION
FUNCTION
FUNCTION
FUNCTION

(inl, in2 : FLOAT) return FLOAT;
(inl, in2 : CMPLX) return CMPLX;
(inl, in2 : CMPLX_POLAR) return CMPLX_POLAR;
(inl : CMPLX; in2 : FLOAT) return CMPLX;
(inl : CMPLX POLAR; in2 : FLOAT) return CMPLX POLAR;

PROCEDURE FLP_SUB
(inl, in2 : IN FLOAT; output
PROCEDURE FLP_SUB_F
(inl, in2 : IN FLOAT; output

OUT FLOAT);

OUT FLOAT; FLAG_REG : OUT STATUS)

PROCEDURE CMPLX_SUB
(inl, in2 : IN CMPLX; output
PROCEDURE CMPLX_SUB_F
(inl, in2 : IN CMPLX; output

OUT CMPLX);

OUT CMPLX; FLAG_REG : OUT STATUS);

Z.A. Baidas, 2000 Appendix C: Elementary function details 223

PROCEDURE CMPLX_SUB
(inl : CMPLX; in2 : FLOAT; output : OUT CMPLX);
PROCEDURE CMPLX_SUB_F

(inl : CMPLX; in2 : FLOAT; output : OUT CMPLX; FLAG_REG : OUT STATUS);

PROCEDURE POLAR_SUB
(inl, in2 : IN CMPLX_POLAR; output : OUT CMPLX_POLAR);
PROCEDURE POLAR_SUB_F

(inl, in2 : IN CMPLX_POLAR; output : OUT CMPLX_POLAR; FLAG_REG : OUT STATUS)

PROCEDURE POLAR_SUB

(inl : CMPLX_POLAR; in2 : FLOAT; output : OUT CMPLX_POLAR);
PROCEDURE POLAR_SUB_F
(inl : CMPLX_POLAR; in2 : FLOAT; output : OUT CMPLX_POLAR; FLAG_REG : OUT
STATUS);
-- Multiplication operations
FUNCTION (inl, in2 : FLOAT) return FLOAT;
FUNCTION (inl, in2 : CMPLX) return CMPLX;
FUNCTION (inl, in2 : CMPLX_POLAR) return CMPLX_POLAR;
FUNCTION (inl : CMPLX; in2 : FLOAT) return CMPLX;
FUNCTION (inl : CMPLX_POLAR; in2 : FLOAT) return CMPLX_POLAR;

PROCEDURE FLP_MULT
(inl, in2 : IN FLOAT; output
PROCEDURE FLP_MULT_F
(inl, in2 : IN FLOAT; output

OUT FLOAT);

OUT FLOAT; FLAG_REG OUT STATUS);

PROCEDURE CMPLX_MULT
{ inl, in2 : IN CMPLX; output
PROCEDURE CMPLX_MULT_F
(inl, in2 : IN CMPLX; output

OUT CMPLX);

OUT CMPLX; FLAG_REG OUT STATUS);

PROCEDURE CMPLX_MULT
(inl : CMPLX; in2 : FLOAT; output : OUT CMPLX);
PROCEDURE CMPLX_MULT_F

(inl : CMPLX; in2 : FLOAT; output : OUT CMPLX; FLAG_REG : OUT STATUS);

PROCEDURE POLAR_MULT
(inl, in2 : IN CMPLX_POLAR; output : OUT CMPLX_POLAR);
PROCEDURE POLAR_MULT_F

(inl, in2 : IN CMPLX_POLAR; output : OUT CMPLX_POLAR; FLAG_REG : OUT STATUS)

PROCEDURE POLAR_MULT

(inl : CMPLX_POLAR; in2 : FLOAT; output : OUT CMPLX_POLAR);
PROCEDURE POLAR_MULT_F
(inl : CMPLX_POLAR; in2 : FLOAT; output : OUT CMPLX_POLAR; FLAG_REG : OUT
STATUS);
-- Division operations
FUNCTION "/" (inl, in2 : FLOAT) return FLOAT;
FUNCTION "/" (inl, in2 : CMPLX) return CMPLX;
FUNCTION "/" (inl, in2 : CMPLX_POLAR) return CMPLX_POLAR;
FUNCTION "/" (inl : CMPLX; in2 : FLOAT) return CMPLX;
FUNCTION "/' (inl : CMPLX_POLAR; in2 : FLOAT) return CMPLX_POLAR;

PROCEDURE FLP_DIV
(inl, in2 ; IN FLOAT; output
PROCEDURE FLP_DIV_F
(inl, in2 : IN FLOAT; output

OUT FLOAT);

OUT FLOAT; FLAG_REG OUT STATUS)

PROCEDURE CMPLX_DIV
(inl, in2 : IN CMPLX; output : OUT CMPLX);
PROCEDURE CMPLX_DIV_F
(inl, in2 : IN CMPLX; output : OUT CMPLX; FLAG_REG : OUT STATUS);
PROCEDURE CMPLX_DIV
(inl : CMPLX; in2 : FLOAT; output : OUT CMPLX);
PROCEDURE CMPLX_DIV_F
(inl : CMPLX; in2 : FLOAT; output : OUT CMPLX; FLAG_REG : OUT STATUS)

Z.A. Baidas. 2000 Appendix C: Elementary function details 224

PROCEDURE POIjAR_DIV
(inl, in2 : IN CMPLX_POLAR; output : OUT CMPLX_POLAR);
PROCEDURE POLAR_DIV_F

(inl, in2 : IN CMPLX_POLAR; output : OUT CMPLX_POLAR; FLAG_REG : OUT STATUS)

PROCEDURE POLAR_DIV

(inl : CMPLX_POLAR; in2 : FLOAT; output : OUT CMPLX_POLAR);
PROCEDURE POLAR_DIV_F
(inl : CMPLX_POLAR; in2 : FLOAT; output : OUT CMPLX_POLAR; FLAG_REG : OUT
STATUS);

-- Logarithm
FUNCTION LN (inl : FLOAT) return FLOAT;
FUNCTION LOGIO (inl : FLOAT) return FLOAT;
FUNCTION L0G2 (inl : FLOAT) return FLOAT;
FUNCTION LOG (inl : FLOAT; base : FLOAT) return FLOAT;

PROCEDURE LN_F
(inl : IN FLOAT; output : OUT FLOAT; FLAG_REG : OUT STATUS);
PROCEDURE LOG10_F
(inl : IN FLOAT; output : OUT FLOAT; FLAG_REG : OUT STATUS);
PROCEDURE L0G2_F
(inl : IN FLOAT; output : OUT FLOAT; FLAG_REG : OUT STATUS);
PROCEDURE LOG_F
(inl : IN FLOAT; base : FLOAT; output : OUT FLOAT; FLAG_REG : OUT STATUS)

FUNCTION LN (inl : CMPLX) return CMPLX;
FUNCTION LOGIO (inl : CMPLX) return CMPLX;
FUNCTION L0G2 (inl : CMPLX) return CMPLX;
FUNCTION LOG (inl : CMPLX; base : FLOAT) return CMPLX;

PROCEDURE LN_F
(inl : IN CMPLX; output : OUT CMPLX; FLAG_REG : OUT STATUS);
PROCEDURE LOG10_F
(inl : IN CMPLX; output : OUT CMPLX; FLAG_REG : OUT STATUS);
PROCEDURE L0G2_F
(inl : IN CMPLX; output : OUT CMPLX; FLAG_REG : OUT STATUS);
PROCEDURE LOG_F
(inl : IN CMPLX; base : FLOAT; output : OUT CMPLX; FLAG_REG : OUT STATUS)

FUNCTION LN (inl : CMPLX_POLAR) return CMPLX_POLAR;
FUNCTION LOGIO (inl : CMPLX_POLAR) return CMPLX_POLAR;
FUNCTION L0G2 (inl : CMPLX_POLAR) return CMPLX_POLAR;
FUNCTION LOG (inl : CMPLX_POLAR; base : FLOAT) return CMPLX_POLAR;

PROCEDURE LN_F
(inl : IN CMPLX_POLAR; output : OUT CMPLX_POLAR; FLAG_REG : OUT STATUS);
PROCEDURE LOG10_F
(inl : IN CMPLX_POLAR; output : OUT CMPLX_POLAR; FLAG_REG : OUT STATUS);
PROCEDURE L0G2_F
(inl : IN CMPLX_POLAR; output : OUT CMPLX_POLAR; FLAG_REG : OUT STATUS);
PROCEDURE LOG_F
(inl : IN CMPLX_POLAR; base : FLOAT; output : OUT CMPLX_POLAR;
FLAG_REG : OUT STATUS);

-- Trigonometric
FUNCTION SIN (inl :
FUNCTION COS (inl :
FUNCTION TAN (inl :
FUNCTION ASIN (inl
FUNCTION ACOS (inl
FUNCTION ATAN (inl

FLOAT) return FLOAT
FLOAT) return FLOAT
FLOAT) return FLOAT
FLOAT) return FLOAT
FLOAT) return FLOAT
FLOAT) return FLOAT

PROCEDURE SIN_F
(inl : IN FLOAT; output : OUT FLOAT; FLAG_REG : OUT STATUS)
PROCEDURE COS_F
(inl : IN FLOAT; output : OUT FLOAT; FLAG_REG : OUT STATUS)

Z.A. Baidas. 2000 Appendix C: Elementary function details 225

output : OUT FLOAT; FLAG_REG : OUT STATUS)

OUT FLOAT; FLAG_REG : OUT STATUS)

PROCEDURE TAN_F
(inl : IN FLOAT
PROCEDURE ASIN_F
(inl : IN FLOAT; output
PROCEDURE ACOS_F
(inl : IN FLOAT; output : OUT FLOAT; FLAG_REG : OUT STATUS)
PROCEDURE ATAN_F
(inl : IN FLOAT; output : OUT FLOAT; FLAG_REG : OUT STATUS)

FUNCTION SIN (inl : CMPLX) return CMPLX;
FUNCTION COS (inl : CMPLX) return CMPLX;

PROCEDURE SIN_F
(inl : IN CMPLX; output : OUT CMPLX; FLAG_REG : OUT STATUS);
PROCEDURE COS_F
(inl : IN CMPLX; output : OUT CMPLX; FLAG_REG : OUT STATUS);

FUNCTION SIN (inl : CMPLX_POLAR) return CMPLX_POLAR;
FUNCTION COS (inl : CMPLX_POLAR) return CMPLX_POLAR;

PROCEDURE SIN_F
(inl : IN CMPLX_POLAR; output : OUT CMPLX_POLAR; FLAG_REG : OUT STATUS)
PROCEDURE COS_F
(inl : IN CMPLX_POLAR; output : OUT CMPLX_POLAR; FLAG_REG : OUT STATUS)

-- Hyperbolic
FUNCTION SINH (inl :
FUNCTION COSH (inl :
FUNCTION TANH (inl :
FUNCTION ASINH (inl
FUNCTION ACOSH (inl
FUNCTION ATANH (inl

FLOAT) return FLOAT
FLOAT) return FLOAT
FLOAT) return FLOAT
FLOAT) return FLOAT
FLOAT) return FLOAT
FLOAT) return FLOAT

PROCEDURE SINH_F
(inl : IN FLOAT; output : OUT FLOAT; FLAG_REG : OUT STATUS);
PROCEDURE COSH_F
(inl : IN FLOAT; output : OUT FLOAT; FLAG_REG : OUT STATUS);
PROCEDURE TANH_F
(inl : IN FLOAT; output : OUT FLOAT; FLAG_REG : OUT STATUS);
PROCEDURE ASINH_F
(inl : IN FLOAT; output : OUT FLOAT; FLAG_REG : OUT STATUS);
PROCEDURE ACOSH_F
(inl : IN FLOAT; output : OUT FLOAT; FLAG_REG : OUT STATUS);
PROCEDURE ATANH_F
(inl : IN FLOAT; output : OUT FLOAT; FLAG_REG : OUT STATUS);

FUNCTION SINH (inl : CMPLX) return CMPLX;
FUNCTION COSH (inl : CMPLX) return CMPLX;"

PROCEDURE SINH_F
(inl : IN CMPLX; output : OUT CMPLX; FLAG_REG : OUT STATUS);
PROCEDURE COSH_F
(inl : IN CMPLX; output : OUT CMPLX; FLAG_REG : OUT STATUS);

FUNCTION SINH (inl : CMPLX_POLAR) return CMPLX_POLAR;
FUNCTION COSH (inl : CMPLX_POLAR) return CMPLX_POLAR;

PROCEDURE SINH_F
(inl : IN CMPLX_POLAR; output : OUT CMPLX_POLAR; FLAG_REG : OUT STATUS)
PROCEDURE COSH_F
(inl : IN CMPLX_POLAR; output : OUT CMPLX_POLAR; FLAG_REG : OUT STATUS)

-- Exponential
FUNCTION EXP (inl : FLOAT) return FLOAT;
PROCEDURE POWER
(inl : IN FLOAT; pow : IN FLOAT; output : OUT FLOAT);

Z.A. Baidas, 2000 Appendix C: Elementary function details 226

PROCEDURE EXP_F
(inl : FLOAT; output : OUT FLOAT; FLAG_REG : OUT STATUS);
PROCEDURE POWER_F
(Inl : IN FLOAT; pow : IN FLOAT; output : OUT FLOAT; FLAG_REG : OUT STATUS);

FUNCTION EXP (inl : CMPLX) return CMPLX;
PROCEDURE POMER
(inl : IN CMPLX; pow : IN FLOAT; output : OUT CMPLX);

PROCEDURE EXP_F
(inl : CMPLX; output : OUT CMPLX; FLAG_REG : OUT STATUS);
PROCEDURE POMER_F
(inl : IN CMPLX; pow : IN FLOAT; output : OUT CMPLX; FLAG_REG : OUT STATUS);

FUNCTION EXP (inl : CMPLX_POLAR) return CMPLX_POLAR;
PROCEDURE POWER
(inl : IN CMPLX_POLAR; pow : IN FLOAT; output : OUT CMPLX_POLAR);

PROCEDURE EXP_F
(inl : CMPLX_POLAR; output : OUT CMPLX_POLAR; FLAG_REG : OUT STATUS);
PROCEDURE POWER_F
(inl : IN CMPLX_POLAR; pow : IN FLOAT; output : OUT CMPLX_POLAR;
FLAG_REG : OUT STATUS);

-- Square root
PROCEDURE SORT
(inl : IN FLOAT; output : OUT FLOAT; imaginary : OUT STD_LOGIC);
PROCEDURE SQRT_F
(inl : IN FLOAT; output : OUT FLOAT; imaginary : OUT STD_LOGIC; FLAG_REG : OUT
STATUS);

FUNCTION CBRT(inl : IN FLOAT)return FLOAT;
PROCEDURE CBRT_F
(inl : IN FLOAT; output : OUT FLOAT; FLAG_REG : OUT STATUS);

FUNCTION SORT (inl : IN CMPLX) return CMPLX;
PROCEDURE SORT_F
(inl : IN CMPLX; output : OUT CMPLX; FLAG_REG : OUT STATUS);

FUNCTION SQRT (inl : IN CMPLX_POLAR) return CMPLX_POLAR;
PROCEDURE SORT_F
(inl : IN CMPLX_POLAR; output : OUT CMPLX_POLAR;FLAG_REG : OUT STATUS);

END FLP_OPS;

Z.A. Baidas , 2000 Appendix D: Implementat ion details 2 2 /

Appendix D

Implementation details

This appendix provides a range of information concerning the floating-point library

development and provides a quick reference to add new building blocks and hierarchical

units to the floating-point library.

The appendix is divided into four sections: section D.l introduces a number of file

formats, namely the ICODE instruction database (inst.icd), the floating-point instruction

database (flplib.ficd), the floating-point module library (flplib.mlib) and the floating-point

expanded instruction set (.fxi). Section D.2 describes the ICODE file format. Section D.3

represents the ICODE file modification performed in the floating-point manipulation stage

to generate the ICODE+ file. Finally, section D.4 summarises the steps required to

develop and integrate a new floating-point instruction into the library.

D.1 File formats

This section describes three file formats used in the integration of the floating-point

library, along with a brief description of the MOODS ICODE instruction database.

D.1.1 ICODE instruction database

MOODS ICODE instructions are defined in an ICODE instruction database file. Each

entry in that file represents a new ICODE instruction and is composed of:

1. Instruction name (e.g. PLUS, MINUS, FLP_SIN).

2. A unique ICODE instruction number.

3. A datapath module instruction number representing the function required to implement

this instruction from the low level module library.

Z.A. Baidas, 2000 Appendix D: Implementat ion details 2 2 8

4. The instruction I/O port definition.

A fragment of the ICODE instruction database file is shown in Figure D. 1. The file defines

ten ICODE instructions. Comments in the Hie are indicated by a preceding semicolon. The

first three parameters in an instruction declaration can be easily identified. For example,

the first instruction is a PLUS instruction with a unique instruction number of 14 and the

function required to implement this instruction in the low level module library is function

number 14.

I/O port definition provides information on the number of I/O ports available and the

width of each port in terms of the primary instruction width. For the PLUS instruction,

two input ports and one output port are available. In order to specify the width of these

ports, four different notations are provided:

1. Primary (p): defines the port that represents the primary width of the instruction. For

example, adding two 16-bit numbers will require a plus instruction with a primary

width of 16 which meets the width of the two input ports, which is why the two ports

are indicated by p in the port declaration.

2. Fixed (f) : defines a port that always has the same width indicated by the numerical

value attached to it. The MINUSC instruction in Figure D. 1 has a fixed input port of 1-

bit represented by (f l) , which is the carry-in port in this case.

3. Dependent (d): defines a port with a width related to the primary width. The nature of

the relation is specified by the numerical value attached to it. Three possible values are

available: 1 implies that the port width equals the primary width; 2 implies a width

equal to the primary width 4- 1; and 3 indicates twice the width of the primary width.

An example of a dependent port is the output port in the MULT instruction.

Multiplication generates a result that is twice as wide as the primary input port,

therefore the output port is defined as (d3).

4. Independent (i): defines a port of an arbitrary width. The port width in this case is the

same as the width of the variable connected to it. An example of this case is the first

output in the SRAMREAD instruction. The output represents a variable width address

bus and is defined as (i).

Z.A. Baidas, 2000 Appendix D: Implementat ion details 2 2 9

ICODE instiruction datiabase file

; Format of definitions is :

; <CODE naine> <ICODE number> <DP fn> <No.

PLUS 14 14 2 1 P P d2

MINUS 15 15 2 1 P P d2

MINUSC 151 15 3 2 P P fl dl fl

MULT 18 18 2 1 P P d3

NE 23 23 2 1 P P f T

ROMREAD 100 10000 2 3 i P i f 1 dl

SRAMREAD 101 10001 2 4 i P i fl dl

sin_cos_5 _lsi 704 10704 5 2 P fl fl fl f6

sin_cos_6_lmi 706 10706 5 2 p fl fl fl f6 dl f6

sin_cos_6_line 707 10707 7 4 p fl fl fl f6 fl4 f28 dl f6 fl fl4

Figure D.I ICODE instruction database file

D.1.2 Floating-point instruction database

The floating-point instruction database file provides information that allows manipulation

of the floating-point instruction in the floating-point pre-processor. A preceding semicolon

indicates comment in this file. Each floating-point instruction is identified using an entry

providing the following definitions:

1. A unique instruction name.

2. Instruction number.

3. A flag to indicate if the unit is part of the low level floating-point building block

database or a hierarchical decomposition of a number of units.

4. A number of figures identifying the location of the external ROM interface ports in the

unit I/O port list.

Figure D.2 shows an example of the floating-point instruction database with three floating

point units declarations. FLP_MULT is instruction number 59, it is part of the floating-

point module library and therefore the hierarchical flag is assigned to N. The floating-

Z.A, Baidas, 2000 Appendix D: Implementation details 2 3 0

point multiplier does not require an external ROM which is indicated by assigning zero to

all the external ROM interface port locations. The SIN_COS unit on the other hand has a

possible implementation that utilises an external ROM: an external ROM interface is

defined for it. To interface to an external ROM four ports are required:

1. Bias register: defining the starting point of the function table within the external ROM.

In the SIN_COS case it is port number six.

2. an output port connects directly to the external ROM address bus. It is

port number seven in the SIN_COS function.

3. Data bus: another output port that connects to the to the external ROM data bus. Port

number ten in the SIN_COS unit is assigned to that bus.

4. Output enable: a control signal that controls the read operation of the external ROM.

Port number eleven in the SIN_COS unit provides this signal.

Note that the hierarchical flag in the FLP_CBRT declaration is assigned to Y. This

indicates that the FLP_CBRT is a hierarchical unit composed of a number of functional

units and the unit should be expanded within the ICODE structure before any further

processing.

ICODE instruction database file

Format of definitions is :

<inst:. name> <nuinber> <hier. flag> <bias> <address> <data> <ctrl>

FLP_MULT 49 N 0 0 0 0

SIN_COS 157 N 6 7 10 11

FLP CBRT 142 Y 0 0 0 0

Figure D.2 Floating-point instruction database file

D.1.3 Floating-point module library

The floating-point module library provides essential information on the cost of different

engines provided to implement a floating-point function. Figure D.3 provides an example

of the floating-point library declaring the SIN_COS instruction. Each floating-point

instruction is defined by:

Z.A. Baidas, 2 0 0 0 Appendix D: Implementat ion details 2 3 1

1. Instruction name that matches the name in the floating-point ICODE database.

2. The number of units provided to implement this function.

This is followed by entries that define the area and delay cost of each of the engines that

implement the floating-point instruction. This includes:

1. Module number.

2. Accuracy figure defining the maximum error in the output result (6 implies a maximum

error of 10'^).

3. Total on_chip area cost in fxm".

4. Total number of external ROM entries required.

5. An average number of clock cycles required executing the engine. The data is based on

simulation results of the optimised floating-point blocks.

6. A Figure indicating increase in area cost when the unit is shared (i.e. the multiplexing

cost). Comparing area costs of a number of testbenches incorporating shared floating-

point units is carried out to get a close estimation of this figure.

7. ICODE unit name that indicates the name of the ICODE instruction that represents this

possible implementation of the main function.

8. Names of fixed-point units that are utilised in the design and have a major effect on the

total design area and/or delay cost. For example a fixed point multiplier, a fixed point

divider, or a barrel shifter.

Z.A. Baidas. 2000 Appendix D: Implementation details 2 3 2

; <instruct:ion naine>

; d u m b e r of modules>

; <unit number> <accuracy> <area cost:> <ext:. ROM> <delay> <sharing cost:>

; <unit name> <fixed_point units>

sin_cos

26

1 6 105616 805 30 33000 sin_ _cos_ 6_ _lsi fixed. _inult

2 6 109909 679 34 33000 sin_ _cos_ 5_ _lmi fixed. _mult

3 6 469000 0 20 25875 sin_ _cos_ 6_ _lsi fixed. _mul t

4 6 387000 0 24 25875 sin_ _cos_ 5_ _lrtii fixed.

5 6 88000 0 76 24840 sin_ _cos_ 6_ _ser fixed. _mult

Figure D.3 Floating-point Module library file

D.1.4 Floating-point expanded instruction

A floating-point expanded instruction is a sequential implementation of a floating-point

function, which is dynamically expanded within the internal design representation during

the floating-point pre-processing stage and prior to the optimisation phase. This evolved

from the need to generalise the implementation of a hierarchical functional unit and split it

up into components to reduce the complexity that faces the optimisation routine. An

expanded ICODE instruction format (fxi) is provided to facilitate this decomposition.

Figure D.4 'shows an example of a/x/ file. It consists of five main parts:

1 . Header declaring the expanded instruction argument. Three arguments are provided in

this case: input, output, and flag_reg.

2. Alias declaration defines a slice of an I/O port or an internal register. It has the general

format:

ALIAS <naine> <lsb> <msb> <from> <lsb> <msb>

For example, line 7 declares a slice of the second port named (%2) with an ascending 0

to 31 range. The alias is used as an alternative name to the port with any modification

to the alias resulting in a similar modification to the port.

3. Register declaration defines a new internal register. It has the general format:

REG <naine> <lsb> <msb>

Note that the line numbers in the figure are for illustration purposes only and are not part of the file format.

Z.A. Baidas. 2000 Appendix D: Implementation details 2 3 3

For example, line 12 declares a register named (%6) with an ascending 0 to 31 range.

4. The instructions block defines a sequence of ICODE operations on the declared aliases

and internal registers. Each instruction is provided as an opcode followed by a list of

operands. Binary constants can be used as operands using the (#) operator. Each

instruction within the block is either an original ICODE instruction or a newly added

floating-point operation.

5. The final line in the file provides the error propagation information, which indicate the

contribution each building block has on the total instruction error. These figures are

utilised by the floating-point pre-processing units to decide the accuracy of each

building block based on the target accuracy of the hierarchical unit.

input output: flag_reg

-- %1 = variable or alias name
-- 0 31 = Isb msb
-- 1 = from input number 1

alias %1 0 31 1 0 31 -- input

alias %2 0 31 2 0 31 -- output

8. alias %3 0 5 3 0 5 -- flag_reg
9. alias %4 0 0 1 31 31 -- input_sign
10. alias %5 0 30 1 0 30 -- input_rest
11. alias %17 0 0 2 31 31 -- output_sign

12. reg %6 0 31

13. reg %10 0 31

14. reg %11 0 30

15. reg %12 0 0

16. reg %13 0 0

17. reg %14 0 31

18. reg %15 0 31

1 9 . (
20. move #00111110101010101010101010101010 %10

21. move %4 %13
22. move %5 %11

23. move #0 %12

24. concat %12 %11 %6

25. flp_ln_f %6 %14 %3
26. flp_mult_f %10 %14 %15 %3

27. Elp_exp_f %15 %2 %3

28. move %4 %17

29. }

30. 0 0 0 0 0 2 0 1 0

Figure D.4 Expanded ICODE instruction file

Z.A. Baidas, 2 0 0 0 A p p e n d i x D: Imp lemen ta t i on detai ls 234

D.2 The ICODE format

The ICODE format is a textura] representation of the behaviour of the system at the

register transfer level. The system is represented by a number of with the top

level identified by a special program declaration. Each module has an optional 10

parameter list, defining the module interface to the higher level. A module contains a

number of ICODE Each process consists of an and an acni ono;;

which defines the processes to be activated once the current process concludes.

ICODE instructions operate on explicitly declared variables (register, alias, counter,

memon;), and/or temporary variables. It may be thought of as a kind of hardware assembly

language. In MOODS, the high level behavioural input (VHDL). ICODE is "source

language neutral", in that translation from other high level languages (ANSI-C, SystemC)

is just as feasible.

Name Format

Program declaration PROGRAM program_name io_list [info]
Module declaration MODULE module_name io^list [info]

Port declaration IMPORT 1 OUTPORT port_name port__range

Register declaration REGISTER register_name register_range
Counter declaration COUNTER 1 COUNTDOWN counter_name counter_range

Alias declaration ALIAS alias_name alias_range FROM source_name source_sub_range

Constant declaration # integer value

Integer value decimal | %liinary_valL!e | &oc(:al_value| $hex_value

Information (info) (specifier : value)
ROM declaration ROM name data_range ADDRESS address_range DATA rom_content

RAM declaration RAM name daCa_range ADDRESS address_range

Activation list Instruction_label [,Instruction_lahel]
Unconditional activation ACT activation_list
Activate if true ACTT activation_list

Activate if false ACTF activation list
Collect instruction COLLECT number_of_collects
Conditional instruction IF 1 IFNOT

variable_name acC_if_true acC_if_false [info]
Count instruction COUNT

counter, [step], limit act_if_true act_if_false [info]
Decode instruction DECODE variable [info]

{CASE constant unconditional_acCivation [info]]
Switch instruction SWITCHON variable [info]

(CASE constant unconditional_activation [info]}
DEFAULT unconditional_activation [info]

Module call instruction MODULEAP module^name io_list [info]

Memory read instruction MEMREAD memory_variable_name, address, output [info]

Memory write instruction MEMWRITE input, inemory_variahle__name, address [info]
General instruction EQ 1 NE 1 GR I GE 1 LS 1 LE 1 AND | OR | XOR | NOT | NEG | PLUS

1 MINUS 1 MULT 1 DIV | LSHIFT | RSHIFT | ROR j ROL | MOVE |
SETTRUE 1 HIGHZ | CONCAT

Table D.l ICODE format definition

System execution starts with the first process in the top-level program. Other modules are

executed using the MODULEAP instruction, which takes as parameters the module name

and a list of variables to interface to the 10 ports. Table D.l provides a complete definition

Z.A. Baidas, 2000 Appendix D: Implementation details 235

of the ICODE format, while the listing in Figure D.5 illustrates most of the ICODE

features.

PROGRAM dummy enable , prognun dee/mmfion

"IMPORT
INPORT
IMPORT
INPORT
INPORT
OUTPORT

enable
sel

6]

0 6]

0 6]

1]

0 2]

0 6]

register declarations

REGISTER t:_a

REGISTER t:_b
REGISTER
REGISTER

process

internal rem 110,#%1101100,#%110i:

internal ROM

11,#%1100001,1110100

#^000000 , t_b

#%0000000 , c_c

enable fl7
temporary

.L6 17 , enable , 18
if 18 accc LB actf L6 (pt:OJL pf:0.2)

.L8 eg enable , #1 , 19

if 19 acCt LIO actf L5 {pC:OJ^ pf:0.2}

.LIO move #0 ,

.Lll plus
plus

t:_a ,
C_b ,

a , t_a
b , t_b

plus activate it false

counc i , # 2 LIS J (actf LllJ) {pt:0.25, pf:0

.LIS
swiCchon

sel ,
20

act L27 {pt : 0 . 2}

#2 act L26 {pt : 0. 2}
#1 act L25 (pt :0. 2)

case #0 act L23 {pt :0. 2}

default act L28 {pt :0. 2}

endcase

.L23 moduleap average t_a , t:_b , t_ c , temp

move temp , result (2_act L2 >
.L25 move C_a , result act L2

.L26 move t-b , result act L2

.L27 move C _ C , result act L2

.L28 memread internal_rom[sel], 21
21 , result act L2

(gn^odule dummy 2 ^ module label matches declaration

MODULE average inl , in2 , in3 , avr mulMnoduk decbrmMon

INPORT

inl
in2
in3

plus
plus
div

inl , in2 , 22
22 , in3 , 23
23 , #3 , avr

endmodule average

Figure D.5 Example ICODE file

Z.A. Baidas, 2000 Appendix D: Implementation details 9 3 6

D.3 ICODE+

The ICODE+ file is the floating-point optimiser output that contains all the necessary

information required by MOODS to implement the circuit. ICODE+ generation is a four

stage process. The first two stages occur before the optimisation algorithm, and the final

two stages are required once the functional unit mapping is decided:

1. Initially, a global flag register port is added (if applicable) as an output port: this is

connected to the floating-point unit internal flag register to indicate any exception

during the unit execution.

2. In the second stage, hierarchical units are expanded into sub-blocks. The operation

involves declaring a set of temporary variables and aliases to provide a communication

path between the unit sub-components.

3. At this stage, each floating-point functional unit is replaced with the appropriate

expanded module name within the floating-point module library.

4. The external ROM interface (if required) is provided at this stage. It involves

declaring the the (fafa and the ROM confro/ .y/gnaZ and interfacing

them to the appropriate floating-point unit. An A/aa' constant, will also be

assigned to each floating-point unit to indicate the lookup-table location within the

external ROM.

By way of an example, consider the VHDL behavioural description in Figure D.6 along

with its ICODE file. The equivalent ICODE+ file is represented in Figure D.7. Initially, a

flag register is declared as an output port (line 8) and is interfaced to the cubic root unit^.

Then the unit is expanded into its sub components (lines 46 to 60). Note that the

exponential and natural logarithm functions within the cbrt() unit are again expanded into

further building blocks (lines 52 to 54, and lines 56 to 58 respectively). The stage also

involves declaring a number of temporary registers (lines 12 to 27) and a number of

aliases (lines 30 to 41) declaring sub-ranges of internal variables. Finally, once the

optimisation is performed, the floating-point functional units are replaced with expanded

• Note that the cbrt() unit has been expanded into its sub-components, which hides the flag register interface.

Z.A. Baidas, 2000 Appendix D; Implementat ion details 237

module declarations. In this case the natural logarithm and the exponential functions are

replaced with external table lookup based implementations named ln_pre_7_lse. and

exp_main_7_lse.

Finally, the external ROM interface is implemented within the design. Two output ports

and one input port are declared. The output ports represent the ROM address bus (line 10)

and the ROM control port (line 9) and the input port representing the ROM data bus (line

5). A register representing an 6/a.y (line 28) is also required to indicate the starting

point of the natural logarithm and exponential units lookup tables within the external

ROM. The register is connected to the two units and is assigned a value each time

a unit is executed.

VHDL

1. Entity test is
2. port (input : in FLOAT;
3. enabie : in bit;
4. ready : out bit;
5. result: out FLOAT);
6. end;
7. Architecture behave of test is
8. Begin
9. Process
10. Begin
11. ready <= '0';
12. wait until enable = '1';
13. result <= cbrt(input);
14. ready <='1';
15. wait until enable = '0';
16. End Process;
17. End behave;

ICODE

1. PROGRAM test input, enable, ready, result

3. import input [0:31]
4. inport enable [1:1]
5. outport ready [1:1]
6. outport result [0:31]

8. .PR1 move #%0, ready
9. .if4_false__3 eq enable, #1, 5
10. if 5 ACTT if4Jrue_5 ACTF if4_false_3 (pt:0.8, pf:0.2)
11. .if4_true_5 cbrt input, result
12. move #%1, ready
13. if8_false_7 eq enable, #0, 6
14. if 6 ACTT PR1 ACTF i(BJalse_7 {pt:0.! 3, pt .0.2)
15. ENDMODULE test

Figure D.6 Example VHDL and ICODE files

Z.A. Baidas. 2000 Appendix D: Implementation details 238

ICODE+

PROGRAM test input, enable , ram Jata_bus , ready , result, globaLfiag_reg , rom_en . rom_address_bus

3. IMPORT input [0:31]
4. IMPORT enable [1.1]
5. IMPORT rom_data_bus [0:27]
6. OUTPORT ready [1:1]
7. OUTPORT result [0:31]
8. OUTPORT globaLflag_reg [0:5]
9. OUTPORT rom_en [0:0]
10. OUTPORT rom_address_bus [0:13]
11 .

12.
13.
14.
14.
15.
16 .

17.
18.
19,
20.
21.
22.
23.
24.
25.
26.
27.
28.
29.
30.
31.
32.
33.
34.
35.
36.
37.
38.
39.
40.
41.
42.

REGISTER
REGISTER
REGISTER
REGISTER
REGISTER
REGISTER
REGISTER
REGISTER
REGISTER
REGISTER
REGISTER
REGISTER
REGISTER
REGISTER
REGISTER
REGISTER
REGISTER
REGISTER

fx _reg1 [0:31]
fx _reg2 [0:31]
fx _reg3 [0:30]
fx _reg4 [0:0]
fx ^reg5 [0:0]
fx _reg6 [0:31]
fx _reg7 [0:31]
fx _reg8 [0:31]
tx _reg9 [0:0]
tx _reg10 [0:7]
fx _reg11 [0:5]
fx _reg12 [0:31]
fx _reg13 [0:7]
fx _reg14 [0:0]
fx _reg15 [0:0]
fx _reg1G [0:5]
fx _reg17 [0:0]
rom_address_bias [0:13]

ALIAS
ALIAS
ALIAS
ALIAS
ALIAS
ALIAS
ALIAS
ALIAS
ALIAS
ALIAS
ALIAS
ALIAS

fxLaliasI
{xi_alias2
fxLalias3
txLalias4
fxi_alias5
fxLaliasS
fxi__alias7
fxLaliasS
fxi„alias9
fxi_alias10
fxLalias11
fxi_alias12

[0:31] from
[0:31] from
[0:5] from
[0:0] from
[0:30] from
[0:0] from
[0:31] from
[0:31] from
[0:5] from
[0:31] from
[0:31] from
[0:5] from

input
result

global_flag_reg
input
input
result
fxi_reg1
fxi_reg6

fxi_alias3
fxLreg?

fxi_alias2
fxLaliasS

[0:31]
[0:31]
[0:5]
[31:31]
[0:30]
[31:31]

[0:31]
[0:31]
[0:5]
[0:31]
[0:31]
[0:5]

43. .L2 move #%0 , ready
44. .L3 eq enable , # 1 , 5
45. if 5 actt L5 actf L3 {pt:0.8, pf:0.2)
46. .L5 move #%00111110101010101010101010101010 , fxi_reg2
47. move fxi_alias4 , fxi_reg5
48. move fxi_alias5 , fxi_reg3
49. move #%0 , fxi_reg4
50. concat fxi_reg4 , fxi_reg3 , fxi_reg1
51. move #%00000000000000 , rom_address_bias
52. ln_pre_7Jse fxi_alias7 , rom_address_bias , rom_data_bus , fxi_reg8 , txi_reg9 , txi_reg10
53. fxi_reg11 , rom_en , rom_address_bus
54. In^post fxi_reg8 , fxLreglO , fxLreg9 , fxi_reg11 , fxi_alias8 , fxi_ _alias9
55. flp_mult„f fxi_reg2 , fxi_reg6 , fxLreg7 , fxi_alias3
56. exp_pre fxi_alias10 , fxLreg12 , fxi_reg13 , fxi_reg15 , fxi_reg14 , fxi_reg17 , fxi_reg16
57. move #%00010000000000 , rom_address_bias
58. exp_main_7_ Ise fxi_reg12 , fxi_reg13 , fxi_reg15 , fxi_reg14 , fxi_reg17 , fxi_reg16 , rom_address_bias ,\
59. rom_data„bus , (xi_alias11 , fxi_alias12 , rom_en , rom_ address_bus
60. move fxLalias4, fxi_alias6
61. move #%1 . ready
62. .LI 9 eq enable , # 0 , 6
63. if 6 actt L2 actf LI 9 {pt:0.8, pf:0.2)

Figure D.7 Example ICODE+ file

Z.A. Baidas, 2000 Appendix D: Implementation details 2 3 9

D.4 Adding a new instruction

Two types of floating-point unit can be integrated witliin the floating-point synthesis

library: a normal floating-point functional unit, and a hierarchical floating-point functional

unit. In both cases, knowledge of the nature of the function is required by the system in

order to be able to handle the new function. To achieve this, a number of steps are

required;

1. Provide an entry in the floating-point ICODE instruction database file to declare the

new instruction and assign it a new unique instruction number.

2. At this point, if we are adding a new hierarchical instruction composed of pre-defined

building blocks, all that is necessary is to provide an expanded ICODE instruction file

describing the sequence of data execution within the new instruction, an example of

which is provided in Figure D.4.

3. In the more general case of dealing with a new instruction, a number of possible

implementations of the instruction in the form of a set of expanded modules should be

provided. Details about generating expanded modules are provided in Chapter 4.

4. A block defining the parameters of all possible implementations of the new function

should be added to the floating-point module library file. This is an important step,

since the information provided here will be used to guide the optimisation procedure

during the high level binding process. An example of the floating-point module library

file is available in Figure D.3.

5. Each possible implementation of the function should be assigned a unique ICODE

instruction in the ICODE instruction database file, in order to allow the MOODS

synthesis system to handle the expanded module expansion and optimisation process.

For example, the last three entries in Figure D. 1 define three different implementations

for the SIN_COS instruction, each represented by a different expanded module and

therefore assigned to a separate ICODE instruction.

6. If a module is to be implemented using an external ROM, a file that contains an ASCII

text format of the ROM entries which has the same name as the expanded module and

with a (.ROM) extension should be provided to be used in generating the external ROM

data.

Z.A, Baidas , 2000 Appendix D: Implementat ion details 2 4 0

By following these steps, the new instruction can be integrated within the floating-point

synthesis library. It is worth mentioning that the user should try to preserve the hierarchy

of the floating-point functional unit before generating the expanded model. For example,

during the floating-point library development, an optimised fixed-point multiplier and

fixed-point divider are provided as expanded modules in the MOODS template library.

The currently available floating-point building blocks invoke these modules every time a

multiplier and divider is required. This approach tends to produce better results at the final

synthesis stage since it allows maximal sharing of the two expensive fixed-point units. The

user is encouraged to take a similar approach rather than implementing a multiplication or

division procedure every time it is required at the VHDL level. Note that the multiplier

and divider are only an example and this note applies to any relatively expensive units that

might be used more than once in a number of floating-point implementations.

Z.A, Baidas , 2000 Appendix E: Example details 2 4 1

Appendix E

Example details

This appendix provides additional information regarding the FPGA prototyping board and

the cubic equation solver discussed in Chapter 6. It is organised in three sections: Section

E. 1 provides additional data for the FPGA prototyping board. Section E.2 provides

additional information on the VGA display adapter used to drive the VGA screen in the

cubic equation solver design. Finally, section E.3 contains VHDL source listings of the

designs in Chapter 6.

E.1 FPGA prototyping board data

E.1.1 FPGA pin-out

The prototyping board was designed to support the Xilinx XC40125XVPG559,

XC4085XVPG559, and XC40250XVPG559 FPGA. These are members of the Xilinx

XC4000 series devices based on a programmable architecture of Configurable Logic

Blocks (CLBs). Each device is programmed by loading the configuration data into internal

memory cells. A top view of the FPGA pin-out is provided in Figure E. l . The

XC40125XV for example, is based on a CLB array of 68 x 68 unit providing a total

number of 4624 CLBs. It is claimed that the device is capable of implementing designs in

the gate range 80,000 to 265,000 gates. The estimation is provided by Xilinx and is based

on 20-30% of the CLBs used as RAMs. Further details on these devices can be found on

[101].

Z.A. Baidas, 2000 Appendix E; Example details 242

BC
B

BA

AW
AV
J
AT

AN

AL
AU

"AK
AJ

AG
AH

AF
AE

AD
AC
— A8
AA,
w

2 4 6 8 10 12 14 16 18 #
1 3 5 7 9 11 ^1 ^ 1 7 19 21

2̂ 24 26 28 30 32 34 36 38 40 42
23 25 27 29 31 33 35 37 39 41 43

PG559 TOP VIEW

Figure E.I FPGA package for the Xilinx FPGA used in the board

E.1.2 Device programming

Two methods may be employed to programme the device. Serial programming from a PC

using a download cable or parallel programming based on an external ROM driven by the

FPGA. Note that the device needs to be programmed whenever it is powered up. This

suggests that the serial method may be used to programme the design during the

implementation phase, while it is desirable to use the parallel mode for the final version of

the design. A set of switches is provided on the board to enable one of these two modes.

The default serial mode is active if the switches are off. Figure E.2 shows the PC cable

connector provided. Details on the functionality of each pin on the connector are available

in [101].

Z.A. Baidas, 2 0 0 0 A p p e n d i x E: E x a m p l e detai ls 243

DONE DOUT

PROG CCLK DONE

Figure E.2 Serial programming cable connector

E.I.3 Device pin-assignment

DRAM BANK

Address bus
(A10 downto AO)

nWE

nCAS

nRAS-

4M X 8-BIT
DRAM

4M X 8-BIT
DRAM

4M X 8-BIT
DRAM

4M X 8-BIT
DRAM

4M X 8-BIT
DRAM

4M X 8-BIT
DRAM

f \ Data bus
tDQ7 downto DQO)

Port FPGA Pad Name Port FPGA Pad Name

AO J41 DQO J39

A1 J43 DQ1 K40

A2 K42 DQ2 L39

A3 L37 DOS H38

A4 L41 D04 G39

A5 L43 DOS AA43

A6 H40 006 AB40

A7 H42 D07 AB42

A8 G43 nWE AB38

A9 AA37 nCAS J37

A10 AA41 nRAS AC39

Z.A. Baidas. 2000 Appendix E: Example details 244

EPROM BANK

Address bus
(A12 downto AO)

nCE-

nOE-

8K X 32-BIT
EPROM

8K X 32-BIT
EPROM

8K X 32-BIT
EPROM

8K X 32-BIT
EPROM

8K X 32-BIT
EPROM

K Data bus
(D31 downto DO)

Port FPGA Pad Name Port FPGA Pad Name

AO C9 D20 820

A1 C11 D19 818

A2 C13 D18 816

A3 C15 D17 814

A4 C17 D16 810

A5 C21 D15 88

A6 C23 D14 86

A7 C27 D13 84

A8 C29 D12 A41

A9 C31 D11 A37

A10 C33 D10 A35

A11 C35 D9 A33

A12 C43 D8 A29

D31 C5 07 A27

D30 B42 D6 A23

D29 B40 D5 A21

D28 B3B D4 A17

D27 B36 D3 A15

D26 834 D2 A9

D25 B30 D1 A7

D24 B28 DO A3

D23 B26 nCE F36

D22 824 nOE G33

D21 822

Z.A. Baidas, 2000 Appendix E: Example details 245

SRAM BANK

Address bus
(A12 downto AO)

nWE-

nOE

V
8K X 32-BIT

SRAM

Data bus
(031 downto AO)

Port FPGA Pad Name Port FPGA Pad Name

AO C9 D20 B20

A1 C11 D19 B18

A2 C13 D18 B16

A3 C15 D17 B14

A4 C17 D16 B10

A5 C21 D15 88

A6 C23 D14 86

A7 C27 D13 84

A8 C29 D12 A41

A9 C31 D11 A37

A10 C33 D10 A35

A l l C35 D9 A33

A12 C43 D8 A29

D31 C5 D7 A27

D30 B42 D6 A23

D29 B40 D5 A21

D28 B38 D4 A17

D27 836 D3 A15

D26 B34 D2 A9

D25 830 D1 A7

D24 B28 DO A3

D23 B26 nWE F40

D22 B24 nOE F42

D21 822

Z.A. Baidas, 2000 Appendix E: Example details 246

CLOCK GENERATORS

C L 0 C K 1

C L 0 C K 2

FPGA

Port FPGA Pad Name Port FPGA Pad Name

CL0CK1 F38 1 CL0CK2 E37

SERIAL PORT INTERFACE

CTS
(clear to send)

RD
(recieve data)

max233

RTS
(ready to send)

TD
(transmit data)

Port FPGA Pad Name Port FPGA Pad Name

CTS AP4 RTS AT6

RD AP2 TD AP8

Z.A. Baidas, 2 0 0 0 A p p e n d i x E: E x a m p l e detai ls 241

EXTERNAL PORT A

A1-A32

B1-B32

C1-C32

Port
FPGA Pad

Name
Port FPGA Pad

Name
Port FPGA Pad

Name
Port FPGA Pad

Name

A1 AO A25 D2 817 TCK C9 E11

A2 A1 A26 D3 818 TMS CIO E13

A3 A2 A27 04 819 nRS C11 E15

A4 A3 A28 D5 820 02 C12 E17

A5 A4 A29 D6 821 06 C13 E19

A6 A5 A30 D7 822 08 C14 E21

A7 A6 A31 nPROG 823 DIG CIS E23

A8 A7 A32 DONE 824 012 C16 E25

A9 A8 B1 MO 825 014 C17 E27

A10 A9 B2 M l 826 016 C18 E29

A11 A10 83 M2 827 018 C19 E31

A12 A11 84 DOUT 828 020 C20 E33

A13 A12 B5 nINIT 829 022 C21 E35

A14 A13 86 nLDC 830 024 C22 E41

A15 A14 87 HDC 831 026 C23 F2

A16 A15 68 CCLK 832 028 C24 F6

A17 A16 89 RDY C I 030 C25 F8

A18 A17 810 nCSO C2 032 C26 F12

A19 A18 811 GCK2 C3 034 C27 F18

A20 A19 812 GCK3 C4 036 C28 F20

A21 A20 813 GCK4 C5 040 C29 F22

A22 A21 814 GCK5 C6 042 C30 F24

A23 DO 815 TOO C7 E7 C31 F26

A24 D1 816 TD1 C8 E9 C32 F32

Z.A. Baidas. 2 0 0 0 Appendix E: Example details 248

EXTERNAL PORT B

A1-A32

B1-B32

C1-C32

Port FPGA Pad
Name

Port
FPGA Pad

Name
Port FPGA Pad

Name
Port FPGA Pad

Name

A1 BA39 A25 BC15 B17 AY30 C9 AU39

A2 BA41 A26 BC17 B18 AY32 C10 AU43

A3 BA43 A27 BC21 B19 AY34 C11 AV2

A4 BB2 A28 BC23 B20 AY36 C12 AV4

A5 BB6 A29 BC27 B21 AY38 C13 AV8

A6 BBS A30 BC33 B22 AY40 C14 AV12

A7 BB10 A31 BC35 B23 BA11 C15 AVI a

A8 BB14 A32 BC37 B24 BA13 C16 AV20

A9 BB16 B1 AW27 B25 BA15 C17 AV24

A10 BB18 B2 AW31 B26 BA17 C18 AV26

A11 BB20 B3 AW33 B27 BA21 C19 AV32

A12 BB22 B4 AW35 B28 BA27 C20 AV36

A13 BB24 B5 AW37 B29 BA29 C21 AV40

A14 BB26 B6 AY2 B30 BA31 C22 AV42

A15 BB28 B7 AY4 B31 BA33 C23 A W 3

A16 BB30 BB AY8 B32 BA35 C24 AW7

A17 BB34 B9 AY10 C I GND C25 AW11

A18 BB36 B10 AY12 C2 SUPPLY C26 A W 1 3

A19 BB38 B11 AY14 C3 AU23 C27 A W 1 5

A20 BB40 B12 AY18 C4 AU25 C28 A W 1 7

A21 BC3 B13 AY20 C5 AU27 C29 A W 1 9

A22 BC7 B14 AY22 C6 AU29 C30 A W 2 1

A23 BC9 B15 AY26 C7 AU31 C31 AW23

A24 BC11 B16 AY28 C8 AU33 C32 AW25

Z . A . Baidas, 2 0 0 0 Appendix E: Example details 249

PS2 INTERFACE

PS2 A PS2 A PS2 A

PS2 B PS2 B PS2 B

DATA_A

C L K A

DATAJB

CLK B

Port FPGA Pad Name Port FPGA Pad Name

DATA_A AFI3 DATA_B AT2

CLK_A AR1 CLK_B AR7

E.2 VGA adapter

The interface to the VGA adapter' is provided via an 8-bit input port and a 1-bit output

ready signal. The input port is split into two fields; a 7-bit instruction occupying the

bottom 7-bits of the port, and a single bit strobe signal. The VGA adapter drives a VGA

display at a resolution of 640 x 480 pixels. This requires a 10-bit variable to identify the x

location and a 9-bit variable to identify the y location. The VGA adapter instructions are

listen in Table E . l .

The Set palette instruction allows the user to set the RGB ratios of 16 different colours. A

unique 4-bit binary number allowing 16 different colours to be located will identify each

colour, and each colour may be recalled by using the set colour instruction.

The Set point instruction sets the locations of one of two points pi and pO. Both points

should be located to allow drawing lines from pO to p i . The two points also designate the

T h e adap te r is a con t r ibu t ion f r o m a d i f fe ren t research p ro jec t within the s ame research g r o u p [113]

Z.A. Baidas, 2000 Appendix E: Example details 250

top left corner (pO) and the bottom right comer (pi) in the rectangle drawing mode. On the

text drawing mode, only the point pO is required to specify the top left comer of the ASCII

character.

The Set mode instmction defines the VGA drawing mode. Four modes are available,

designated by two bit binary variables:

1. Mode = 00 is a direct draw mode on both the foreground and the back ground (text

drawing mode).

2. Mode = 01 is a direct drawing mode on the foreground.

3. Mode = 10 is an XOR drawing mode on both the foreground and the background.

4. Mode = 11 is an XOR drawing mode on the foreground.

Accessing the VGA adapter is a five-stage process:

1. Set the input port MSB to zero at the initialisation stage.

2. Set the port MSB to one along with the required VGA instruction.

3. Wait until an acknowledge is received (busy signal = 1).

4. Set the input port MSB to zero.

5. The instruction is now executed, any further commands are performed by looping back

to stage two.

An example representing the functionality of the VGA adapter is represented in Figure

E.3. It shows a sequence of commands along with the expected output.

Z.A. Baidas , 2 0 0 0 A p p e n d i x E; Example details 251

Command sequence Output display

1. set colour 0 to gray
2. set colour 1 to light blue
3. set drawing mode to direct draw mode

4. set background colour to gray
5. set foreground colour to gray
6. set point PO to (10,10)
7. set pdnt P1 to (629,370)
8. draw rectangle

9. set foreground colour to light blue
10. set point PO to (40,20)
11. draw ascii character E
12. draw ascii character S
13. draw ascii character D
14. draw ascii character G —

15. set point PO to (40,64)
16. set point PI to (120,64)
17. draw line _

18. set point PO to (140,100)
19. set point PI to (400,250)
20. set background colour to light blue
21. draw rectangle

initialisation

draw gray
background

Figure E.3 VGA adapter example

instruction
Instruction

length
Detailed bit field

Set point [p1, pO. x(9;0), y(8;0)] 4 "OOOOX",p1,pO

"XX", x(9:5)

x(4:0), y(8;7)

y(6;0)

Set page [front, page(1;0)] 1 "0001", front, page(1;0)

Set made [mode(1:0)] 1 "001 OX", mode(1;0)

Set palette [colour(3;0),R(3;0),G(3:0),B(3:0)] 3 "0011", colour(3;1)

colour(0), "X", R(3;0). G(3)

G{2;0). B{3:0)

Set colour [foreground, coiour(3;0)] 1 "01", foreground, colour(3:0)

Draw line 1 "1001XXX"

Draw rectangle 1 "1010XXX"

Wait for vertical blanking 1 "1011XXX"

Draw character [xsize(1:0), ysize(1:0),

ASCI 1(7:0)]

2 "11", xsize(1 ;0),ysize(1 ;0),ASC1I(7)

ASCI 1(6:0)

Table E.1 VGA adapter instruction set

Z.A. Baidas, 2000 Appendix E: Example details 2 5 2

E.3 10 stage details

E.3.1 Input stage

Before examining the operation of the keyboard interface unit, first consider Figure E.4

which represents the keyboard sequential data along with what is called the .ycoMcrx/f of

the keys in the numerical keypad. Every time a key is pressed, the keyboard generates a

scancode. Each key has a unique scancode consisting of one or more 8-bit words. The

scancodes related to each key in the numerical keypad are represented in Figure E.4c in

hexadecimal. When the key is released, the keyboard regenerates the scancode preceded

by hex FO. For example the scancodes generated when (num lock) key is pressed and

released are 45 FO 45.

The generated scancode is provided as serial data on the keyboard data line, synchronised

by a clock signal provided on the keyboard clock line with a new bit outputted every

falling edge on the clock line. Note that the keyboard outputs groups of 9-bit data: a start

bit indicating the beginning of a new word precedes the 8-bit word.

The flowchart in Figure E.5 illustrates the keyboard interface process. The process waits to

detect a falling edge on the keyboard_clock line, and once detected, the data on the

keyboard_data line is latched into an internal register. The loop iterates nine times until the

whole 8-bit word is detected (the start bit is ignored). The next step involves decoding the

scancode to identify the pressed key. This stage involves the following operations:

1. If a FO code is detected, the following scancode is ignored, since this would be a

release code.

2. If an EO is detected, another word is read before decoding, as HO indicates an extended

word.

3. If the scancode represent a key within the recognised set (shaded in Figure E.4b)

decode it.

4. If the pressed key is (numlock), toggle the initialise line low and pass it to the core unit

and the output stage to initialise the system.

5. The divide, add, and multiply keys in the keypad are ignored.

Z.A. Baidas, 2 0 0 0 Appendix E; Example details 253

6. The minus key is used to invert the sign of the current parameter. The input number is

assumed to be positive. Every time the minus key is pressed the number sign is

inverted.

Keyboard clock

Keyboard data

a) Keyboard serial outputs

num
lock / *

-

7 8 9

4 5 6

1 2 3
Enter

0
•

Enter

b) Numerical keypad

Key Code Key Code Key Code
num
lock 45 9 49 2 50

/ E035 + 4E 3 51

* 37 4 4B 0 52

- 4A 5 4C 53

7 47 6 4D Enter E01C

8 48 1 4F

c)Key scan codes

Figure E.4 Keyboard Information

Z.A. Baidas, 2000 Appendix E: Example details 254

waA tor a clock
falling edge

key(index) = k8yt)rd_data

•

To decode

increment
ind@(

key = FO

key = EO

released = i
decode = 0

extended = 0

extended = 1

code withjn the
recoonised set

decode = 1

key = 1C
and extended = i

decode = l
entef_press = 1

decode = 1

decode key and output to the next

Figure E.5 Keyboard interface flowchart

Each numerical parameter is expected to be input as a set of decimal values followed by

an (enter). Every time a related key is pressed, the decoded key is passed to the output

Z.A. Baidas , 2000 Appendix E: Example details 2 5 5

Stage to be displayed and also to the format conversion stage. The format conversion stage

converts a set of binary coded decimal values in to a binary single precision floating point

number and passes it to the core unit.

The functionality of the format conversion is illustrated by the flowchart in Figure E.6. It

consists of two main blocks: the first block generates a binary representation of the integer

part of the input operand, the second generates the fraction part. At each step, two

operations are performed:

1. Multiply the integer accumulator by lOjo (lOlO?).

2. Add the input value to the accumulator.

To illustrate the functionality of this block a simple example is provided where the

sequence 2, 5, 6 is provided indicating a decimal value of 256. The sequence of execution

is:

acc = 0

occ = accxlOlO = 0

acc = acc + 0010 = 0010

acc = accXlOlO = 10100

acc - acc + OlOl = 11001

acc = flccXlOlO = 111111010

acc = acc + 0110 = 100000000^ = 256,^

Note that the internal register that holds the integer part of the input parameter is a 63-bit

register allowing a maximum entry of (±9223372036854775808) for the integer part. The

execution continues in the first block until the maximum number of digits is reached or the

decimal point is encountered or the (enter) key is pressed.

Once the decimal point is encountered, execution moves to the second block, which is

responsible for generating the fraction of the input parameter. At this stage, the digits to

the right of the decimal points are pushed into a stack until the (enter) key is pressed or the

maximum number of digits is received (seven digits in this case). Once the fraction digit

accumulation is completed the conversion operation starts. The operation involves the

three following steps;

Z.A, Baidas , 2000 Appendix E: Example details 256

1. Divide the fraction accumulator by 10.

2. Divide the input digit by 10.

3. Add the results in 1 and 2 and save it in the fraction accumulator.

start integer generation

acc1 = 0
read key

Go to fraction
Y generation

key = point

key = Enter

! N

acci = acc1 * 10 + key

read new key

Fraction generation

acc2 = 0

read new key and
push key to stack

key = Enter

Y

pop key from stack

; acc2 = key/10 + acc2/10

stack empty

normalise and output
result

Figure E.6 Format conversion unit flowchart

Z.A. Baidas. 2000 Appendix E: Example details 2 5 7

Once the second stage is concluded, two internal variables will hold the integer and

fraction part of the input parameter in a binary format. These two numbers are then treated

as a single fixed point variable which is normalised to fit into the output format and the

output sign and exponent value are assigned.

E.3.2 Output stage

The unit splits into two blocks executing before and after the roots calculation in the core

unit.

The first block performs two main duties. It is responsible for creating the static elements

of the VGA display (e.g. title, background, variable names). It also monitors the data input

stage to display the decimal values of the input parameters.

The second block, monitors the core unit for the root values and displays them on the

VGA screen. This stage involves a simple type conversion to convert the binary

representation of the floating-point number to the displayed representation.

The VGA display adapter" [113] that drives the VGA screen inteifaces to the system via

an 8-bit command port and a 1-bit busy signal. A low busy signal indicates that the

adapter is ready to receive a new instruction. Each instruction is 7-bits long. A new

instruction is latched into the VGA adapter by loading the instruction to the lower seven

bits of the input port and setting the most significant bit. The adapter provides a set of

basic instructions that supports writing to the VGA screen. The instructions are set point,

set page, set mode, set palette, set colour, draw rectangle, draw line, and draw text.

A simple technique is adopted to create the display of the static elements on the screen.

The required set of instructions is developed and stored in internal ROMs. A loop is then

provided to iterate through these ROMs and output the VGA commands to the adapter.

Two internal ROMs are provided. The first is a 47 x 7-bit ROM provided to store the

initialisation commands such as setting the colour palette, setting the drawing mode, and

drawing the background and the title underline. The second ROM is 84 x 7-bit responsible

for drawing the static characters on the screen (the title, the inputs and the output names).

The adapter was synthesised using the M O O D S synthesis system and implemented on an F P G A .

Z.A, Baidas , 2000 Appendix E: Example details 2 5 8

Once the screen is initialised, the output stage starts monitoring the input keys and

displaying them on the appropriate location on the screen. Upon receiving the third

parameter, the output stage starts monitoring the core unit to receive the output results and

display them on the screen.

To perform the last step and display the output result, the output stage needs to convert the

binary representation of the floating-point number into another representation that can be

read easily. A number of possible methods can be used to print the floating-point numbers

[102]. However, a fairly simple approach is taken due to the limited hardware resources

available, illustrated in the flow chart of Figure E.7.

The conversion operation starts by detecting any possible symbolic representations such as

NAN or infinity and displaying the equivalent ASCII representation. If none of these

symbols are detected, execution moves to the second stage. The second stage starts by

displaying the result sign. The following step displays the fraction field, starting by

displaying the implicit one and the decimal point. Then the decimal digits of the fraction

are displayed sequentially where at each step the fraction is multiplied by 10 and the

integer part of the result is displayed until the fraction equals zero.

The final step in the conversion operation displays the exponent. After removing the bias,

the actual exponent passes through five stages:

1. If the exponent is less than zero, a negative sign is displayed and the exponent is

complemented.

2. If the exponent is greater than or equal to 100, a one is displayed and 100 is subtracted

from the exponent, a flag (flagl) is set at this stage to indicate that the exponent is >

100.

3. The third stage involves counting the number of tens contained within the exponent and

displaying it as a decimal number, a flag (flag2) is set here to indicate that the

remaining exponent is > 10.

4. A special case when (flagl = I and f]ag2 = 0) is detected here and a zero is displayed

before displaying the last digit.

Z.A. Baidas. 2000 Appendix E: Example details 259

5. At this stage, the exponent will have a value between 0 and 9. which is displayed

directly.

Si art

detected
^ denormal

: N

output
sign

output (1.)

frac = frac ' 10

' output (int(frac))

I frac=frac-int(frac) !

'output equfvalent;̂
symbol

frac = 0 ^ output (0)
Y ,

output (X 2)

To output exponent

Output exponent

exp < 0

output (-), :
(complement exp j

exp >= 100

V Y
output (1),

exp = exp -100
flagi = 1

exp >= 10

Y

t count numt}er of
10's

output (count)
exp = exp -
10'count
flagZ = 1

1 and
flag2 =

output(O)

output (exp)

Figure E.7 Output stage type conversion flowchart

Z.A. Baidas, 2 0 0 0 Appendix E: Example details 2 6 0

E.4 Source code listings

Listing E. 1 Input stage VHDL behavioural description 261

Listing E.2 Original design VHDL behavioural description 266

Listing E.3 controller VHDL behavioural description 268

Listing E.4 Arithmetic processor VHDL behavioural description 273

Listing E.5 Output stage VHDL behavioural description 276

Listing E.6 Interface unit in the first FPGA 285

Listing E.7 Interface unit in the second FPGA 287

Z.A. Baidas, 2000 Appendix E: Example details 261

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22

23
24
25
26

27
28

29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62

63
64
65
66
67

Listing E.I Input stage VHDL behavioural description

The main input stage. Provides an interface to the keyboard unit and transfei
the input data to the core unit and the output stage. It also provide a
system reset entry to reset the whole system via the new_entry output

package InputConst is
-- scancodes for various keys
constant rel_code
constant ext_code
constant num^code
constant minus_code
constant point_code
constant enter_code
constant zero_code
constant one_code
constant two_code
constant three_code
constant four_code
constant five_code
constant six_code
constant seven_code
constant eight_code
constant nine_code

bit_vector
bit_vector
bit_vector
bit_vector
bit_vector
bit_vector
bit_vector
bit_vector
bit_vector
bit_vector
bit_vector
bit_vector
bit_vector
bit_vector
bit_vector
bit_vector

(7 downto 0
(7 downto 0
(7 downto 0
(7 downto 0
(7 downto 0
(7 downto 0
(7 downto 0
(7 downto 0
(7 downto 0
(7 downto 0
(7 downto 0
(7 downto 0
(7 downto 0
(7 downto 0
(7 downto 0
(7 downto 0

internal representation of keys
constant num__val
constant minus_val
constant point_val
constant enter_val
constant zero_val
constant one_val
constant two_val
constant three_val
constant four_val
constant five_val
constant six_val
constant seven_val
constant eight_val
constant nine_val

end InputConst;

bit_vector
bit_vector
bit_vector
bit_vector
bit_vector
bit_vector
bit_vector
bit_vector
bit_vector
bit_vector
bit_vector
bit_vector
bit_vector
bit vector

(7
(7
(7
(7
(7
(7
(7
(7
(7
(7
(7
(7
(7
(7

downto u
downto 0
downto 0
downto 0
downto 0
downto 0
downto 0
downto 0
downto 0
downto 0
downto 0
downto 0
downto 0
downto 0

"11110000

"11100000

"01110111

"01111011

"01110001'

"01011010'

"01110000'

"01101001'

"01110010'

"01111010'

"01101011'

"01110011"

"01110100"

"01101100"

"01110101"

"01111101"

"01010"

"01101"

"10000"

"01111"

"00000"

"00001"

"00010"

"00011"

"00100"

"00101"

"00110"

"00111"

"01000"

'01001"

use work.InputConst.all;
entity in_stage is
port (key_clk,key_data in bit;
float_output
key_out
stb_core
ack_core
stb_out
ack_out
new_entry

out bit_vector(31 downto 0)
out bit_vector(4 downto 0);
out bit;
in bit;
out bit;
in bit;
out bit

end;

architecture behave of in_stage is

-- an array is declared to act as a stack for the fraction digits

type in_array is array(0 to 6) of bit_vector(3 downto 0);

begin
process
-- a counter for the number of serial bits received form the keyboard
variable bit_count ; bit_vector{3 downto 0);
-- int__part holds the integer value of the input
variable int_part : bit_vector(62 downto 0);
-- frac_part holds the fraction value of the input
variable frac_part : bit_vector(23 downto 0);

Z.A. Baidas, 2000 Appendix E: Example details 2 6 ^

68 variable extended , released : bit;
G9 variable decode : bit;
70 variable key_val : bit_vector(4 downto 0);
7 1 variable done_press,new_press,enter_press,minus_press : bit;
72 -- a flag that indicates the decimal point press while monitoring
73 -- the integer part we are receiving the integer part
74 variable frac : bit;
75 variable key_word : bit_vector(7 downto 0);
7 6 variable frac_count : integer range 0 to 7;
77 variable int_count : integer range 0 to 19;
78 -- temporary variables
79 variable div_resultl,div_result2 : bit_vector (31 downto 0);
80 -- the stack that hold the fraction digits
81 variable frac_inputs : in_array;
82 begin
83 -- initialise all the control and the handshaking signals
84 -- along with the accumulators
85 new_entry <= '1';
86 stb_core <= '1';
87 stb_out <= '1';
88 key_out <= "00000";
89 frac_count := 0;
9 0 int_count := 0;
91 frac ;= '0 ' ;
92 new_press := '0';
93 enter_press := '0';
94 minus_press := '0';
95 float_output(31) <= '0';
96 decode := '0 ' ;
97 extended := '0';
98 released := '0 ' ;
99 bit_count := "1111";

100 int_part := convert_int2bv{0,63);
101 frac_part := convert_int2bv(0,24);
102 wait for 0 ns;
103
104 -- The main loop that reads the keyboard entries and converts them to
105 -- a floating-point number.
106
107 loop
108
109 The first loop reads the keyboard serial data and converts
110 -- it to a single word
111
112 loop
113 -- wait for the keyboard clock to go low
114 wait until key__clk = 1;
115 wait until key_clk = 0;
116 -- enter the bit into the key_word
117 if bit_count(3) = '0' then
118 key_word := "0" & key_word(7 downto 1) ;
119 key__word(7) := key_data;
12 0 end i f;
121 -- exit the loop
122 exit when bit_count = "1001";
123 -- next bit
124 bit_count ;= bit_count + "0001";
125 end loop;
126 -- reset the bit_count to its starting position
127 -- set the initial bit count to 15 (this is so the start bit is ignored)
128 bit_count := "1111";
129 if key_word = rel_code then
130 -- ignore the next word sent
131 decode : = ' 0 ' ;
132 released := '1';
133 elsif released = '1' then
134 -- the last character was a release code
135 -- ignore the present code and reset the released flag
136 released := '0';

Z.A. Baidas, 2000 Appendix E: Example details 2 6 3

137 -- also reset the extended flag for release of extended keys
138 extended := '0';
139 elsif key_word = ext_code then
140 check the extended bit
141 extended := '1';
142 elsif key_v;ord = num_code then
143 decode := '1';
144 key_val := num_val;
145 new_press := '1';
146 elsif key_word = min'us_code then
147 decode := '1 ' ;
148 minus_press ;= '1';
149 float_output(31) <= NOT float_output(31);
150 key_val ;= minus_val;
151 elsif key_word = point_code then
152 decode ;= ' 1' ;
153 frac := ' 1' ;
154 key_val := point_val;
155 elsif key_word = zero_code then
156 decode ;= ' 1' ;
157 key_val := zero_val;
158 elsif key_word = one_code then
159 decode := ' 1 ' ;
160 key_val ;= one_val;
161 elsif key_word = two_code then
162 decode := '1';
163 key_val := two_val;
164 elsif key_word = three_code then
165 decode := ' 1 ' ;
166 key_val := three_val;
167 elsif key_word = four_code then
168 decode := '1';
169 key_val := four_val;
170 elsif key_word = five_code then
171 decode := '1';
172 key_val := five_val;
173 elsif key_word = six_code then
174 decode := '1';
175 key_val := six_val;
176 elsif key_word = seven_code then
177 decode := '1';
178 key_val := seven_val;
179 elsif key_word = eight_code then
180 decode := '1';
181 key_val := eight_val;
182 elsif key_word = nine_code then
183 decode := '1';
184 key_val := nine_val;
185 elsif key_word = enter_code and extended = '1' then
186 decode := '1';
187 key_val ;= enter_val;
188 enter_press := '1';
189 end if;
190 -- a key entry part of the numerical pad is received if decode = 1
191 if decode = '1' then
192 decode := '0';
193 -- output stage is ready to receive an entry
194 wait until ack_out = '1';
195 if (enter_press = '1' or new_press = '1' or minus_press = '1') then
196 new_entry <= not new_press;
197 key_out <= key__val;
198 stb_out <= '0';
199 wait for 0 ns;
200 -- check for the decimal point
201 elsif key_val /= point_val then
202 key_out <= key_val;
203 stb_out <= '0';
204 wait for 0 ns;
205

Z.A. Baidas. 2000 Appendix E: Example details 264

206

207 -- decimal to float for the integer part is performed here
208 -- it involves multiplying the accumulator by 10 and adding the
209 -- keyboard value to it. Note that the multiply by 1010 is achieved
210 -- by a simple shift and add operation
211
212 if (frac = '0' and int_count /= 19) then-- still in the integer part
213 int_count := int_count + 1;
214 -- multiply by "1010"
215 int_part:= int_part(61 downto 0)&"0'' + int_part(59 downto 0)&"000";
216 -- add the input value
217 int_part := int_part + key_val;
218 else
219 -- if receiving the fraction digits just push them in the stack
220 frac_inputs(frac_count) := key_val (3 downto 0);
221 frac_count := frac_count + 1;
222 end if;
223 else
224 key_out <= key_val;
225 wait for 0 ns;
226 stb_out <= '0';
227 end if;
228 wait until ack_out = '0';
229 stb_out <= '1';
23 0 wait for 0 ns;
231 minus_press := '0';
232 if (enter_press = '1') then -- output the float_output to the core
233 -- first generate the number and normalise it
234 float_output (30 downto 23) <= "01111111"; --initialise the exponent
235 wait for 0 ns;
236 if (frac = '1') then
237 frac_count := frac_count - 1;
238 loop
239 -- generate the binary equivalent of the fraction digits
240 fixed_div ("0" & frac_inputs (frac_count) & convert_int2bv(0,27),
2 4 1 "01010000000000000000000000000000",div_resultl);
242 fixed_div ("00000" & frac_part & "000",
243 "01010000000000000000000000000000",div_result2);
244 frac_part(23 downto 0) := div_resultl (26 downto 3)
245 + div_result2(26 downto 3);
246 wait for 0 ns;
247 Exit when frac_count = 0;
248 frac_count ;= frac_count - 1;
249 end loop;
250 end if;
251 -- normalise the integer part and adjust the exponent
252 if (int_part /= convert_int2bv(0,63)) then
253 loop
254 exit when int_part(62 downto 1) = convert_int2bv(0,62);
255 frac_part:= int_part(0) & frac_part(23 downto 1);
256 int_part := "0" & int_part (62 downto 1);
257 float_output(30 downto 23) <= float_output (30 downto 23) + "1";
258 wait for 0 ns;
259 end loop;
260 -- then number is less than one
261 elsif (frac_part /= convert__int2bv (0 , 2 4)) then
262 loop
2 63 exit when int_part(0) = "1";
264 int_part(0) := frac_part(23);
2 65 frac__part := frac_part (22 downto 0) & "0";
266 float_output(30 downto 23) <= float_output (30 downto 23) - "1";
2 67 wait for 0 ns;
268 end loop;
269 else -- the entry is zero
270 float_output{31 downto 23) <= convert_int2bv(0,9);
271 wait for 0 ns;
272 end if;
273 float_output (22 downto 0) <= frac_part (23 downto 1);
274 -- output the floating-point entry to the core

Z.A. Baidas. 2000 Appendix E: Example details 265

275 wait until ack_core = '1'
276 stb_core <= '0';
277 wait until ack_core = '0'
2 7 8 stb_core <=
2 7 9 Exit;
280 elsif new_press = '1' then
281 new_entry <= '0';
282 wait until ack_core = '1'
283 stb_core <= '0';
284 wait until ack_core = '0'
285 stb_core <= '1';
286 Exit;
287 end if;
288 enter_press ;= '0';
289 new_press ;= '0';
290 new_entry <= '1';
2 91 end i f;

292 end loop;
293 end process;
2 94 end behave;

Z.A. Baidas, 2000 Appendix E; Example details 266

Listing E.2 Original design VHDL behavioural description

1
2 -- Floating-point: Cubic equation solver core.
3 -- All the fl oating-point operations are performed within the core. This is
4
5

-- a direct translation of the mathematical equations

6 package CoreConst is
7 constant conl : real : = 0.866025404; -- sqrt(3)/2
8 constant con2 : real : = 2.094395102; -- 2Pi/3
9 constant con3 : real : = 4.188790204; -- 4Pi/3

10 end;
11
12 use work.CoreConst.all;
13 entity core i s
14 port (
15 input in float;
16 stb_in in bit;
17 ack_in out bit;
18 new_entry in bit;
19 stb_out out bit;
20 ack_out in bit;
21 data_out out float
22) ;

23 end;
24 architecture behave of core is
25 begin
26 process
27 variable al,a2,a3,S/T : float;
28 variable R, Q,R_sq,0_cu,D, sgrt_D : float;
29 variable XI : float;
30 variable Tempi, Teinp2, thetaS : float;
31 variable X2,X3 : cmplx;
32 32
33 — a procedure to read the three input parameters and store them in al,a2,a3
34 34
35 procedure get_input_data is
36 begin
37 wait until stb_in = '0' ;
38 al := input;

39 ack_in <= '0' ;
40 wait until stb_in = '1' ;
41 ack_in <= '1' ;
42 wait until stb_in = '0' ;
43 a2 := input;
44 ack_in <= ' 0 ' ;
45 wait until stb_in = •1' ;
46 ack_in <=
47 wait until stb_in = ' 0 ' ;
48 a3 := input;
49 ack_in <= •0' ;

50 wait until stb_in = •1' ;

51 ack_in <= '1' ;
52 end get_input_data;
53
54 54
55 -- a procedure to deliver results to the output stage
56 56
57 procedure send_output_ .result is
58 begin
59 data_out < = XI;
60 wait until ack_out = '1' ;
61 stb_out <= '0';
62 wait until ack_out = '0' ;
63 stb_out <= ' 1' ;
64 data_out < = RE(X2);
65 wait until ack_out = '1' ;

Z.A. Baidas. 2000 Appendix E: Example details 2 6 7

66 stb_out <= '0';
67 wait until ack_out = '0';
68 stb_out <= ' 1' ;
69 data_out <= IMAG(X2);
70 wait until ack_out = '1';
7 1 stb_out <= '0';
72 wait until ack_out = '0';
73 stb_out <= '1';
74 data_out <= RE(X3);
75 wait until ack_out = '1';
76 stb_out <= '0';
77 wait until ack_out = '0';
78 stb_out <= '1';
79 data_out <= IMAG(X3);
80 wait until ack_out = '1';
81 stb_out <= '0';
82 wait until ack_out = '0';
83 stb_out <= '1';
84 end send_output_result;
85 -- core process see Figure 6.5
86 begin
87 get_input_data;
88 0 := ((TO_FLOAT(3.0)*a2)-(al*al))/TO_FLOAT(9.0);
89 R := ((TO_FLOAT(9.0)*al*a2)-(TO_FLOAT(27.0)*a3)
90 -(TO_FLOAT(2.0)*al*al *al))/TO_FLOAT(54.0);
91 R_sq := R * R;
92 Q_cu := 0 * 0 * 0;
93 D ;= R_sq + Q_cu;
94 if (D = TO_FLOAT(0.0)) then
95 S := CBRT(R);
96 Tempi := al/TO_FLOAT(3.0);
97 XI := TO_FLOAT(2.0)*S-Templ;

= TO_COMPLEX(-S-Templ,TO_FLOAT(0.0));
= X2 ;

100 elsif (D > TO_FIjOAT(0.0)) then
101 sgrt_D := SORT(D);
102 S := CBRT(R+sqrt_D);
103 T := CBRT(R-sqrt_D);
104 Tempi := S+T;
105 Temp2 := al/TO_FLOAT(3.0);

Terapl-Temp2;
TO_COMPLEX((-Templ/TO_FLOAT(2.0))-Temp2,(S-T)*TO_FLOAT(conl));
C0NJ(X2);

98 X2
99 X3

106 XI
107 X2
108 X3
109 else
110 theta3 :=ACOS(R/SQRT(-Q_cu))/TO_FLOAT(3.0);
1 1 1 Tempi := al/TO_FLOAT(3.0);
112 Temp2 := TO_FLOAT(2.0)*SQRT(-Q);
113 XI := Temp2*COS(theta3)-Tempi;
114 X2 := TO_COMPLEX(Temp2 *COS(theta3+T0_FL0AT(con2))-Tempi,TO_FLOAT(0.0))
115 X3 := TO_COMPLEX(Temp2*COS(theta3+TO_FLOAT(con3))-Templ,TO_FLOAT(0.0))
116 end if;
117 send_output_result;
118 end process;
119 end;

Z.A. Baidas, 2000 Appendix E: Example details 268

1
2

3
4
5
6

7
8
9

10
11
12
13

14
15
16
17
18
19
20

L i s t i ng E.3 controller VHDL behavioural description

The unit: acts as a master in a master slave combination that genei
three roots of the cubic equation. The unit uses the arithmetic pi
to generate a number of functions as well as floating-point
multiplication. The control over the arithmetic processor is provided via a
3-bit control vector and two handshaking signals (stb_c2,ack_c2)
the control signal is defined as follows:

:es the
:essor as

controj

000
001
010
Oil
100
101
110
111

Reaction

Multiply two operands
Square a single operand
multiply three operands
multiply four operands
Square root
Cubic root
cosine function
inverse cosine function

29
30
31
32
33
34
35
36
37

55
56
57
58
59
60
61
62
63
64
65
66
67

package UnitConst is

21 constant mult2_op bit_ _vector (2 downto 0) = "000"
22 constant square_op bit_ .vector (2 downto 0) = "001"
23 constant mult3_op bit_ _vector (2 downto 0) = "010"
24 constant mult4_op bit_ _vector (2 downto 0) = "Oil"
25 constant sqrt_op bit_ ̂vector (2 downto 0) = "100"
26 constant cbrt_op bit_ .vector (2 downto 0) = "101"
27 constant cos_op bit_ .vector 12 downto 0) = "110"
28 constant acos_op bit_ .vector (2 downto 0) = "111"

constant conl
constant con2
constant con3

end;

real
real
real

= 0.866025404
= 2.094395102
= 4.188790204

sqrt(3)/2
2Pi/3
4Pi/3

use work.UnitConst.all;
entity controller is
port (

38 input : in float;
39 stb_in : in bit;
40 ack_in : out bit;
41 new_entry : in bit;
42 ack_c2 : in bit;
43 stb_c2 : out bit;
44 c2_data : out bit_vector (7 downto 0
45 c2_result ; in bit_vector 7 downto 0)
46 control : out bit_vector (3 downto 0
47 stb_out ; out bit;
48 ack_out ; in bit;
49 data_out : out float
50) ;

51 end;
52 architecture behave of controller is
53 begin
54 process

-- a number of floating-point variables to hold intermediate results
variable al,a2,a3,S,T : float;
variable R,Q,R_sq,Q_cu,D, sqrt_D ; float;
variable XI : float;
variable Tempi,Temp2,Temp3,Temp4,thetaS,core2_result : float;
variable X2,X3 : cmplx;

-- a procedure to read the three input parameters and store them in al,a2,a3

procedure get_input__data
begin
wait until stb_in = '0';

Z.A. Baidas. 2000 Appendix E: Example details 269

68
69
70
71
72
73
7 4

75
76
77
78
79
80
81
82

83
84
85

86
87
88
89
90

91
92
93
94
95
96

97
98
99

100
101
102

103
104
105
106

107
108
109
110
111
112

113
114
115
116
117
118
119
12 0
121
122
123
124
125
126
127
12 8

129
130
131
132
133
134
135
136

al := input;
ack_in <= '0';
wgAt until stb_in = '1'
ack_in <= '1';
wait until stb_in = ^3'
a2 := input;
ack_in <= '0';
wait until stb_in = '1'
ack_in <= '1';

wait until stb_in =
a3 := input;
ack_in <= '0';
wait until stb_in = '1'
ack_in <= '1';

end get_input_data;

procedure to deliver results to the output stage

procedure send_output_result is
begin

data_out <= XI;
wait until ack_out = '1';
stb_out <= '0';
wait until ack_out = '0';
stb_out <= '1';

data_out <= RE(X2);
wait until ack_out = '1';
stb_out <= '0';
wait until ack_out = '0';
stb_out <= '1' ;
data_out <= IMAG(X2);

wait until ack_out = '1';
stb_out <= '0';
wait until ack_out = '0';
stb_out <= '1' ;

data_out <= RE(X3);
wait until ack_out = '1';
stb_out <= '0';

wait until ack_out = '0';
stb_out <= '1';

data_out <= IMA.G(X3);
wait until ack_out = '1';
stb_out <= '0';

wait until ack_out = '0';
stb_out <= '1';

end send_output_result;

The procedure sends a floating-point variable to the slave unit over four

iterations. It provides the strobe signal and monitors the acknowledge

procedure send_to_core2
begin
wait until ack_c2 = '1';
c2_data <= data (31 downto 24)
stb_c2 <= '0';

wait until ack_c2 = '0';
stb_c2 <= '1';
wait until ack__c2 = ' 1' ;
c2_data <= data (23 downto 15)
stb_c2 <= '0';

wait until ack_c2 = '0';
stb_c2 <= '1';
wait until ack_c2 = '1';
c2_data <= data (15 downto 8);
stb_c2 <= '0';
wait until ack_c2 = '0';
stb_c2 <= '1';
wait until ack_c2 = '1';

data : bit_vector (31 downto 0)) is

Z.A. Baidas. 2 0 0 0 Appendix E: Example details 270

137
138
139
140
141
142
143
144
145
14 6

147
148
149
150
151
152
153
154

155
156
157
158
159
160
161
162

163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182

183

184
185
186
187
188
189
190
191
192
193

194
195
196
197
198
199
200
201
202

203
204
205

c2_data <= data (7 downto 0)
st:b_c2 <= ' 0 ' ;
wait: until ack_c2 = '0';
stb_c2 <= '1';

end send_to_core2;

The procedure receives the floating-point result of a certain operation
from the arithmetic processor. It is based on monitoring a transition on
acknowledge signal to indicate a new result which it recieves over four
iterations

c2 result;

c2 result;

c2_result;

:= c2_result;

Procedure get_from_core2 is
begin

wait until ack_c2 = '0';
core2_result(31 downto 24)
stb_c2 <= '0';
wait until ack_c2 = '1
Stb_c2 <= '1';

wait until ack_c2 = ^
core2_result(23 downto 16
stb_c2 <= '0';

until ack_c2 = ^
stb_c2 <= '1';

wait until ack_c2 = '0
core2_result(15 downto
stb_c2 <= '0';

wait until ack_c2 = '1
stb_c2 <= '1';

wait until ack_c2 = '0
core2_result(7 downto
stb_c2 <= '0';

wait until ack_c2 = '1
stb_c2 <= '1';

end get_from_core2;

begin
-- initialise control ports
ack_in <= '1'
stb_c2 <= '1'
stb_out <= '1'
control <= "000";

wait for 0 ns;
get_input_data;
control <= mult2_op;
wait for 0 ns;
send_to_core2(TO_FLOAT(3.0));

send_to_core2{a2);
get_from_core2;
Tempi := core2_result;

control <= sguare_op;
wait for 0 ns;
send_to_core2(al);
get_from_core2;
Temp2 := core2_result;

Q := ((Tempi)-(Temp2))/TO_FLOAT(9.0);
control <= mult3_op;
wait for 0 ns;

send_to_core2(TO_FLOAT(9.0));
send_to_core2(al);
send_to_core2(a2);

get_from_core2;
Tempi ;= core2_result;
control <= mult2_op;
wait for 0 ns;
send_to_core2(TO_FLOAT(27.0));
send_to_core2(a3);
get_from_core2;
Temp2 := core2_result;

Z.A. Baidas , 2000 Appendix E: Example details 2 7 !

206 control <= mult4_op;

207 wait for 0 ns;
2 0 8 send_t:o_core2 (TO_FLOAT (2.0))
2 0 9 send_to_core2(al)
210 send_to_core2(al)
211 send_to_core2(al)
212 get_from_core2;
2 1 3 Temp] := core2_result;
2 1 4 R := ((Templ)-(Temp2)-(Temp3))/TO_FLOAT(54.0);
215 control <= square_op;

216 wait for 0 ns;
217 send_to_core2(R);
218 R_sg := core2__result;
2 1 9 control <= inult3_op;
220 wait for 0 ns;
221 send_to_core2(Q);

222 send_t:o_core2 (Q) ;
223 send_to_core2(Q);

2 2 4 get_from_core2;
2 2 5 0 cu := core2_result;
226 D := R_sq + Q_cu;
227 if (D = TO_FLOAT(0.0)) then
228 control <= cbrt_op;

229 wait for 0 ns;
2 3 0 send_t:o_core2 (R) ;
231 get_from_core2;
232 S := core2_result;
2 3 3 Tempi := al/TO_FLOAT(3.0);
234 control <= mult2_op;
235 wait for 0 ns;
23 6 send_to_core2(TO_FLOAT(2.0));
237 send_to_core2(S) ;
238 get_from_core2;
239 Temp2 ;= core2_result;

:= Temp2-Tempi;
= TO_COMPLEX(-S-Templ,TO_FLOAT(0.0));
: = X2 ;

2 4 3 elsif (D > TO_FLOAT(0.0)) then
244 control <= sqrt_op;
245 wait for 0 ns;
246 send_to_core2(D);

247 get_from_core2;
248 sqrt_D ;= core2_result;
249 control <= cbrt_op;

250 wait for 0 ns;
251 send_to_core2(R+sqrt_D);
252 get_from_core2;
253 S := core2_result;
254 send_to_core2(R-sqrt_D);
255 get_from_core2 ;
256 T := core2__result;
2 57 Tempi ;= S+T;

2 5 8 Temp2 := al/TO_FLOAT(3.0);
2 59 XI := Tempi-Temp2;
260 control <= mult2_op;
261 wait for 0 ns;
262 send_to__core2 (S-T) ;
263 send_to_core2(TO_FLOAT(conl));
2 64 get_from_core2;
265 Temp3 ;= core2_result;
2 G6 X2 := TO_COMPLEX((-Tempi/TO_FLOAT(2.0))-Temp2,Temp3)
2 6 7 X3 := C0NJ(X2);
268 else
269 control <= sqrt_op;
270 wait for 0 ns;

2 7 1 send_to_core2(-Q_cu);
272 get_from_core2;
273 Temp3 := core2_result;
274 control <= acos_op;

2 4 0 XI
2 4 1 X2
2 4 2 X3

Z.A. Baidas , 2000 Appendix E: Example details 2 7 2

275 wait for 0 ns;
2 7 6 send_t:o_core2 (R/Temp3) ;
2 7 7 get:_froin_core2;
278 Temp4 := core2_result;
2 7 9 kheta3 := Temp4/TO_FLOAT(3.0);
2 8 0 Tempi := al/TO_FLOAT(3.0);
281 control <= sqrt_op;
282 wait for 0 ns;
2 8 3 send_t:o_core2 (-Q) ;
284 get_from_core2 ;
285 Temp3 := core2_result;
286 control <= mult2_op;

287 wait for 0 ns;
2 8 8 send_t:o_core2 (TO_FLOAT (2 . 0)) ;
289 send_to_core2(Temp3);

2 9 0 get:_from_core2;
291 Temp2 ;= core2_result;
292 control <= cos_op;

293 wait for 0 ns;
294 send_to_core2(thetaS) ;
295 get_from_core2;
296 Temp3 := core2_result;
2 9 7 control <= mult2_op;
298 wait for 0 ns;
299 send_to_core2(Temp3);
300 send_to_core2(Temp2);

301 get_from_core2;
302 Temp4 ;= core2_result;
303 XI := Temp4-Templ;
304 control <= cos_op;

305 wait for 0 ns ;
306 send_to__core2 (theta3+T0_FL0AT (con2)) ;
307 get_from_core2 ;
308 Temp3 := core2_result;
309 control <= mult2_op;

310 wait for 0 ns;
311 send_to_core2(Temp3);
312 send_to_core2(Temp2);
313 get_from_core2;
314 Temp4 ;= core2_result;

315 X2 := TO_COMPLEX(Temp4-Templ,TO_FLOAT(0.0)
316 control <= cos_op;

317 wait for 0 ns;
318 send_to_core2{theta3+TO_FLOAT{con3)) ;
319 get_from_core2;
320 Temp3 := core2_result;
321 control <= mult2_op;

322 wait for 0 ns;
323 send_to_core2(Temp3);
324 send_to_core2(Temp2);
325 get_from_core2;
326 Temp4 := core2_result;
3 2 7 X3 :=TO_COMPLEX(Temp4-Templ,TO_FLOAT(0.0):

32 8 end if;
329 send_output_result;
330 end process;

331 end;

Z.A. Baidas, 2000 Appendix E: Example details 273

1
2
3
4
5
6

7
8
9

10
11
12

13
14
15
16
17
18

19
20
21
22

23
24

2 5

2 6
27
28
29
30
31
32
33
34
35
36
37
38
39
40

41
42
43
44
45
46

47
48

49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

66
67

Listing E.4 Arithmetic processor VHDL behavioural description

The unit ack as a slave in a master slave combination. It is
a floating-point arithmetic unit that performs one of eight floating-point
operations based on a control vector provided as an input port
the control signal is defined as follows:
control Reaction

000 Multiply two operands
001 Square a single operand
010 multiply three operands
011 multiply four operands
100 Square root
101 Cubic root
110 cosine function
111 inverse cosine function

Once the result is generated it is transferred back to the master unit
using the same handshaking signals but in reverse order (i.e. acknowledge
acts as strobe and vice versa)

package UnitConst is
constant mult2_op
constant sguare_op
constant mult3_op
constant mult4_op
constant sqrt__op
constant cbrt_op
constant cos_op
constant acos_op

end;

bit_vector
bit_vector
bit_vector
bit_vector
bit_vector
bit_vector
bit_vector
bit vector

(2 downto 0
(2 downto 0
(2 downto 0
(2 downto 0
(2 downto 0
(2 downto 0
(2 downto 0
(2 downto 0

" 0 0 0 '

"001'

"010'

'Oil"
'100"

'101"

'110"

'Ill-

use work.UnitConst.all;
entity arith_pro is
port(input : in bit_vector (7 downto 0);
stb_corel : in bit;

ack_corel : out bit;
control : in bit_vector (2 downto 0);
result : out bit_vector (7 downto 0));

end;

architecture behave of arith__pro is
begin
process

-- temporary variables to hold the input operands and the output result

variable out_data,xl,x2,x3,x4: float;
variable in_data : float;

-- a simple procedure that reads the data from unitl_core governed by
-- two handshaking signals over four iterations

Procedure read_data is
begin
wait until stb_corel = '0';
in_data (31 downto 24) := input;
ack_corel <= '0';
wait until stb_corel = '1';
ack_corel <= '1' ;
wait until stb_corel
in_data (23 downto 16
ack_corel <= '0';

wait until stb_corel
ack_corel <= '1';
wait until stb_corel = '0
in_data (15 downto
ack_corel <= '0';

wait until stb core! = '1

' 0 ' ;

:= input;

'1' ;

: = input;

Z.A. Baidas, 2000 Appendix E: Example details 274

68
69
70
71
72
73
74
75
76

77
78
79
80
81
82

83
84
85

86
87
88

89
90

91
92
93

9 4

95
96
97
98
99

100
101
102

103
104
105
106
107
108
109
110
111
112

113
114
115
116
117
118
119
120
121
122

123
124
12 5
126

127
128
129
130
131
132
133
134
135
136

ack_corel <= '1';
wait until stb_corel = '0';
in_data (7 downto 0) := input;
ack_corel <= '0';
wait until stb_corel = '1';
ack_corel <= '1';

end read_data;

begin
ack_corel <= '1';
wait for 0 ns;
read_data;
xl := in_data;
case control is
when mult2_op =>

read_data;
x2 := in_data;
out_data := xl * xl;
when square_op =>
out_data := xl * xl;

when mult3_op =>
read_data;
x2 := in_data;

read_data;
x3 := in_data;
out_data := xl * x2 * x3;
when mult4_op =>

read_data;
x2 := in_data;
read_data;
x3 := in_data;

read_data;
x4 ;= in_data;
out_data := xl * x2 * x3 * x4;
when sqrt_op =>
out_data ^ SQRT(xl);
when cbrt_op =>
out_data := CBRT(xl);
when cos_op =>

out_data ^ COS(xl);
when acos_op =>
out_data := ACOS{xl);
when others =>

null;
end case;

output out_data over 4 iteration to the output stage
starting with the MSBs

result <= out_data (31 downto 24);
wait for 0 ns;
ack_corel <= '0';
wait until stb_corel = '0';
ack_corel <= '1';
wait until stb_corel = '1';

result <= out__data (23 downto 16);

wait for 0 ns;
ack_corel <= '0';
wait until stb_corel = '0';
ack_corel <= '1';
wait until stb_corel = '1';

result <= out_data (15 downto 8);
wait for 0 ns;
ack_corel <= '0';

wait until stb_corel = '0';
ack_corel <=
wait until stb_corel = '1';
result <= out_data (7 downto 0);

Z.A. Baidas , 2000 Appendix E: Example details

137 wait for 0 ns;
138 ack_corel <= '0';

139 wait until stb_corel = '0'
140 ack_corel <= '1';
141 wait until stb_corel = '1'
142 end process;

143 end behave;

Z.A. Baidas . 2000 Appendix E; Example details 2 7 6

Listing E.5 Output stage VHDL behavioural description

1
2 -- The output: stage is responsible for driving the VGA adapter that connects
3 -- to the VGA screen, starts by initializing the screen static components
4 -- such as titles and borders. Then it starts monitoring the input stage to
5 -- display the entries provided by the keyboard. The final stage includes
G -- monitoring the core to get the floating-point outputs, performs
7 -- type conversion and display them on the screen.
8
9 entity out_stage is

10 port (key : in bit_vector (4 downto 0);
11 stb_in ; in bit;
12 ack_in : out bit;
13

14 float_in : in bit_vector (31 downto 0);
15 stb_c : in bit;
16 ack_c : out bit;
17
18 vga_data : out bit_vector (7 downto 0);
19 ready : in bit
20) ;
21 end;
22 architecture behave of out_stage is
23
24 -- initial commands that initialises the VGA adapter and draws the static
25 -- components on the screen are provided in goups of internal ROMs. A control
26 -- loop passes through these ROMS and output the commans in order

27
28
29 ROM_SetPage initialises the VGA adapter by setting the pallete, setting the
30 -- drawing mode and the drawing page.It also draws the back groun rectange
31 -- and any other static lines.
32
33 type ROM_SetPage is array(0 to 35) of bit_vector(6 downto 0);
34
35

36 -- ROM_CharSet holds all the static ASCII characters such as the main title
37 -- and the variables names
38
39 type ROM_CharSet is array(0 to 83) of bit_vector(6 downto 0);

4 0

4 1

42 -- ROM_resetSc holds the command sequence required to reset the output results
43 -- by drawing a rectangle with the same colour as the back ground over
44 -- the output result
45
46 type ROM_resetSc is array(0 to 19) of bit_vector(6 downto 0);
47
48
49 begin
50 main_process : process
51 variable adrs_set : integer range 0 to 47;
52 variable adrs_char : integer range 0 to 84;
53 variable CharSet : ROM CharSet := (

54 "1000110", -- F (70)
55 "1101100", 1 (108)
56 "1101111", -- o (111)
57 "1100001", -- a (97)
58 "1110100", - - t (116)
59 "1101001", -- i (105)
60 "1101110", -- n (110)
61 "1100111", - - g (103)
62 "0100000", -- space (32
63 "1010000", - - P (80)
64 "1101111", -- o (111)
65 "1101001", -- i (105)
66 "1101110", -- n (110)
67 "1110100", - - t (116)

Z.A. Ba idas , 2 0 0 0 A p p e n d i x E; E x a m p l e detai ls 277

68 "0100000", -- space (32)
69 "1010011", -- S (83)
70 "1111001", -- y (121)
71 "1101110", -- n (110)
72 "1110100", -- t (116)
73 "1101000", - - h (104)
74 "1100101", -- e (101)

75 "1110011", -- s (115)
76 "1101001", -- i (105)
77 "1110011", -- s (115)

78
79

80
81
82
83

84
85

86
87

88
89

90
91

92

93
94

95
96

97

98
99

100
101
102

103

104
105
106

107

108

109

110
111
112

113

114

115

116

117

118
119
12 0
121
122

123

124
125
12 6

127
128
12 9

130
131

132
133

134
135

136

"1000001'
"OllOOOr
"0100000'
"0111101'
"0100000"

"1000001"
"0110010"
"0100000"
"0111101"
"0100000"

"1000001"
"0110011"
"0100000"
"0111101"
"0100000"

"1011000"
"0110001"
"0100000"
"0100000"
"0100000"
"0100000"
"0100000"
"0111101"
"0100000"

"1010010"
"1100101"
"0101000"
"1011000"
"0110010"
"0101001"
"0100000"
"0111101"
"0100000"

"1001001"
"1101101"
"0101000"
"1011000"
"0110010"
'0101001"
"0100000"
'0111101"
'0100000"

'1010010'
'1100101"
'0101000"
'1011000"
'0110011"
'0101001"
'0100000"
'0111101"
'0100000"

• A (65)-- address = 24

1 M 9)

space (32)

= ^ ^)

space (32)

A (65)-- address = 29

2 (sm
space (32)
=

space (32)

A (65)-- address = 34

3 ^ ^)

space (32)

= ^ ^)

space (32)

X (88)-- address = 39

1 (49)
space (32)

space (32)
space (32)

space (32)

space (32)
= (61)

space (32)

R (82)-- address = 48
e (101)

((40)

X (88)
2 (50)

) (41)

space (32)
= (61)

space (32)

address 57 1 (73)
m (109)
((40)
X (88)

2 (50)
) (41)
space (32)
= (61)
space (32)

R (82)-- address = 66
e (101)

((40)

X (88)
3 (51)

) (41)
space (32)
= (61)

space (32)

Z.A. Baidas, 2000 Appendix E: Example details 278

137 "1001001", -- I (73)-- address = 7 5
138 "1101101% -- m (109)
139 "0101000", -- ((40)
140 "1011000", — X (88)

1 4 1 "0110011", -- 3 (51)
142 "0101001", --) (41)
143 "0100000", -- space (32)
144 "0111101", -- = (61)

145 "0100000" -- space (32)
146) ;

147 variable SetPage : ROM_SetPage := (

148 "0011000", -- set the palette

149 "0011011", -- colour 0
150 "1011101", -- to grey (Bacltgroud color)
151
152 "0011000", -- colour 1 light blue (title and

153 "1000011",
154 "0111110",
155
156 "0011001", -- colour 2 dark, blue (al,a2,a3)
157 "0000100",
158 "0101001",
159
160 "0011001", --colour 3 black
161 "1000000",
162 "0000000",
163
164 "0010000", -- mode = direct draw

165 "0001100", -- set raster page to 0

166 "0001000", — set render page to 0
167
168 --draw khe background rectangle

169 "0100011", -- set background color to black

17 0 "0110011", -- set fore color to black

171 "0000001", -- set point 0 to (0,0)
172 "0000000",
173 "0000000",
174 "0000000",
17 5 "0000010", -- set point 1 to (639,479)
176 "0010011",
177 "1111111",
178 "1011111",
17 9 "1010000", -- draw rectangle
180
181 "0100000", -- set background color to grey
182 "0110000", -- set fore color to grey
183 "0000001", -- set point 0 to (10,10)

184 "0000000",
185 "0101000",
186 "0001010",
187 "0000010", -- set point 1 to (629,370)
188 "0010011",
189 "1010110",
190 "1110010",
191 "1010000", -- draw rectangle
192
193 "0110001", -- set colour to light blue

194 "0000001", -- set point 0 to (40,64)

195 "0000001",
196 "0100000",
197 "1000000",
198 "0000010",
199 "0001101",
200 "0100000",
201 "1000000", -- set point 1 to (424,54)

202 "1001000" -- draw line
203) ;

204 variable initialise : bit := '1'; -- initial.
205 variable x_ val,a_sign_x : bit_vector (9 downto

Z.A. Baidas, 2000 Appendix E: Example details 279

2 0 6
207
2 0 8
209
210
211
212

213
214
215
216
217
218
219
220
221
222
223

2 2 4

225
226
227
2 2 8
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253

254
255
256
2 57
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274

variable y_val : bit_vector (8 downto 0);
variable number : bit_vect:or (6 downto 0);
variable sign : bit;
variable float_val : bit_vector (31 downto 0)
variable temp : bit_vector (26 downto 0);
variable exponent : bit_vector (8 downto 0);
variable count : bit_vector (3 downto 0);
variable current_key : bit_vector (4 downto (
variable out_hund,out_ten : bit;

-- A procedure to output a single VGA command provided as an input argument
-- to the VGA screen.

procedure send2vga(inst : in bit_vector('7 downto 0)) is
begin
wait until ready = '0';
vga_data(7 downto 0) <= inst(7 downto 0);

wait until ready ='1';
vga_data(7) <= '0';

end send2vga;

-- A procedure to draw an ASCII character provided as an input argument
-- to the location specified by xl,yl. The character size is also provided by
-- the xsize and ysize arguments

procedure DrawChar (xl : in bit_vector(9 downto 0);
yl : in bit_vector(8 downto 0);
char : in bit_vector{6 downto 0);
xsize : in bit_vector(l downto 0);
ysize : in bit_vector(l downto 0)) is
begin

--set point 0
send2vga("10000001");
send2vga(''100'' & xl(9 downto 5));
send2vga(''l'' & xl(4 downto 0) & yl(8 downto 7));
send2vga("l" & yl(6 downto 0));

draw character
send2vga("lll'' & xsized downto 0) & ysized downto 0) & "0");
send2vga("l" & char(6 downto 0));

end DrawChar;

-- A simple procedure to read a key entry from the input stage

procedure get_key is
begin

wait until stb_in = '0';
current_key := key;
ack_in = '0';
wait until stb_in = '1';
ack_in <= '1';

end get_key;

-- A simple procedure to output the sign of the input variables

procedure output_sign (sign : in bit; x : in bit_vector (9 downto 0);
y : in bit_vector (8 downto 0)) is
begin
if (sign = '0') then -- output blank in the location

DrawChar(x,y,"0100000","00","00");
else -- output (-) (45) in the location
DrawChar(x,y,"0101101","00","00");

end i f;
end output_sign;

Z.A. Baidas , 2000 Appendix E: Example details 2 8 0

275

2 7 6 -- A procedure to read a floating-point value from the core
277 -- and save in an internal variable (float_val)
278
279 procedure get_float is
280 begin
281 wait until stb_c = '0';
282 float_val := float_in;
283 ack_c <= '0';
284 wait until stb_c = '1' ;
285 ack_c <= '1';

286 end get_float;
287
288
2 8 9 -- A procedure to display the sign of the floating-point result (the roots)
290
291 procedure f_output__sign is
292 begin
293 if (float_val(31) = '0') then -- the sign is plus

2 9 4 DrawChar (x_val,y_val,"0101011","00","00");
295 else
2 9 6 DrawChar (x_val,y_val,"0101101","00","00");
297 end if;
298 x_val := x_val + convert_int2bv{8,10);
299 end f_output_sign;
300
301

302 A procedure to display the mantissa of the floating-point result
303 -- (the roots)
304
305 procedure f_output_mantissa is
306 begin

307 DrawChar (x_val,y_val,"0110001","00","00"); — output the implicit 1
308 x_val := x_val + convert_int2bv(8,10);
309 DrawChar (x _ v a l , y _ v a l 0 1 0 1 1 1 0 0 0 D O ") ; -- output the decimal point
310 x_val := x_val + convert__int2bv (8 , 10) ;
311 temp := "0000" & float_val(22 downto 0);

312 -- convert the fraction to its equivelent sequence of ASCII digits
313 for j in 0 to 12 loop
314 -- multipliy by 1010 then output temp(26 downto 23)
315 -- then set temp(26 downto 23) to "0000"
316 temp := temp(25 downto 0) & "0" + temp(23 downto 0) & "000";
317 number := "000" & temp(26 downto 23);

318 -- the equivelent ascii character conversion
319 number ;= convert_int2bv(48,7) + number;
320 DrawChar (x_val,y_val,number,"0000");
321 x_val := x_val + convert_int2bv(8,10);
322 temp(26 downto 23) := "0000";
323 end loop;
324 end f_output_mantissa;
325
326
327 -- A procedure to display the exponent of the floating-point result
328 -- (the roots)
329
330 procedure f_output_exponent is
331 begin
332 -- output (space * space)
333 DrawChar (x_val,y_val," 0100000 00 00 ") ;
334 x_val := x_val + convert_int2bv(8,10);
335 DrawChar (x _ v a l , y _ v a l 0 1 0 1 0 1 0 0 0 ","00 ") ;
336 x_val ;= x_val + convert_int2bv(8,10);
337 DrawChar (x _ v a l , y _ v a l 0 1 0 0 0 0 0 0 0 00") ;
338 x_val := x_val + convert_int2bv(8,10);
339
340 DrawChar (x_val,y_val,"0110010","00","00"); -- output 2
3 4 1 x_val := x_val + convert_int2bv(8,10);
342 y_val ;= y_val - convert_int2bv(8,10);
343 -- now final thing output the exponent

Z.A. Baidas, 2000 Appendix E: Example details 2 8

344 exponent := "0" & float_val(30 downto 23) - convert_int2bv(127,9);
3 4 5 if (exponent (8) = '1') then -- negative exponent
3 4 6 exponent := NOT exponent + "000000001":
3 4 7 DrawChar (x_val,y_val, "0101101 ","00%"00");
3 4 8 x_val := x_val + convert_int2bv(8,10);
34 9 end if;
3 5 0 if (exponent >= convert_int2bv(100,9)) then
351 -- output 1 and subtract 100
352 DrawChar (x_val,y_val,"0110001","00","00");
353 x_val ;= x_val + convert_int2bv(8,10);
354 exponent := exponent - convert_int2bv(100,9);
355 out_hund := '1';
3 56 end if;
357 if (exponent >= convert_int2bv(10,9)) then
358 count := "0000";
359 out_ten := '1';

360 loop
361 exit when exponent < convert_int2bv(10,9);

3 6 2 exponent := exponent - convert_int2bv(10,9);
3 63 count := count + "0001";
3 64 end loop;
365 number := "000" & count;
366 number ;= convert_int2bv(48,7) + number;
367 DrawChar (x _ v a l , y _ v a l , n u m b e r 0 0 0 0 ") ;

3 6 8 x_val := x_val + convert_int2bv(8,10);
3 69 end if;
370 if (out__hund = ' 1' and out_ten = '0') then
371 number := convert_int2bv(48 , 7) ;
372 DrawChar (x__val, y_val, number," 00 "," 00 ") ;
373 x_val := x_val + convert_int2bv(8,10);
374 end if;
375 -- output the BCD LSB
376 number := exponent (6 downto 0);
377 number := convert_int2bv(48,7) + number;

378 DrawChar (x_val, y__val, n u m b e r 0 0 "," 00 ") ;
379 end f_output_exponent;
380
381

3 8 2 -- A procedure to control displaying the floating-point result on the VGA
383 -- screen. It checks for demornal situations and then display the number
384 -- based on three procedures declared earlier (f_output_sign,
385 -- f_output_mantissa,f_output__exponent)
386
387 procedure output_float is
388 begin

3 8 9 if float_val(30 downto 23) = "00000000" then -- result = zero (48)
390 DrawChar (x _ v a l , y _ v a l 0 1 1 0 0 0 0 0 0 0 0 ") ;
391 -- e=255 is preserved for NaN and infinity
392 elsif float_val{30 downto 23) = "11111111" then
393 -- detected infinity

394 if float_val(22 downto 0) = "00000000000000000000000" then
395 if (float_val(31) = '0') then -- +inf
396 DrawChar (x _ v a l , y _ v a l 0 1 0 1 0 1 1 G O 00 ") ;
397 else -- -inf
398 DrawChar {x_val,y_val,"0101101","00" , "00") ;
3 99 end if;
400 x_val := x_val + convert_int2bv(8,10);
401 DrawChar (x_val,y_val,"1101001","0000 '
402 x_val := x_val + convert_int2bv(8,10);
403 DrawChar {x_val,y_val,"110111000","00'
404 x_val := x_val + convert_int2bv(8,10);
4 0 5 DrawChar (x_val,y_val,"1100110","00","00"
406 else -- NAN
407 DrawChar (x _ v a l , y _ v a l 1 0 0 1 1 1 0 0 0 0 0 "
408 x_val := x_val + convert_int2bv(8,10);
409 DrawChar (x _ v a l , y _ v a l , " 1 0 0 0 0 0 1 0 0 0 0 "
410 x_val := x_val + convert_int2bv(8,10);
411 DrawChar (x_val,y_val,"1001110","00","00"
412 end if;

Z.A. Baidas, 2000 Appendix E: Example details 2 8 2

413 else -- normal case
414 f_output_sign;
415 f__output_mantissa;
416 f_output_exponent;
417 end if;
4 1 8 end output_float;
419
420 -- main control sequence
421

422 begin
423 if (initialise = '1') then
424 adrs_set = 0;
4 2 5 out_hund := '0';
42 6 out_ten := ' 0 ' ;

4 2 7 vga_data <= "00000000";
428 wait for 0 ns;

4 2 9 -- set the pallete, draw the background and draw the underline
430 loop
4 3 1 send2vga("l'' & SetPage(adrs_set));
432 exit when adrs_set = 35;
433 adrs_set = adrs_set + 1;
434 end loop;
43 5 adrs_char ;= 0;
436 initialise = '0';

437

4 3 8 -- now draw the fixed characters (title in light blue)
439 (al,a2,a3) in dark blue
440 send2vga("l" & "0100000"); -- set back ground color to grey
441 sendZvga("1" & "0110001"); -- set foreground color to light blue.
442 x_val := convert_int2bv{40,10);
4 4 3 y_val := convert_int2bv(32,9);
444 loop -- draw the title -- x_size = y_size = "01";
445 DrawChar (x_val,y_val,CharSet(adrs_char) , "01" , " 01") ;
446 exit when adrs_char = 23;
447 adrs_char := adrs_char + 1;
448 x__val : = x_val + convert_int2bv (15 , 10) ;
449 end loop;

4 5 0 send2vga("l" & "0110010"); -- set foreground color to dark blue.
451 x_val := convert_int2bv(40,10);
4 52 y_val := convert_int2bv(88,9);
4 53 adrs_char := 24;
454 loop -- draw al,a2,a3

4 5 5 DrawChar (x_val,y_val,CharSet(adrs_char),"00","00");
456 exit when adrs__char = 38;
457 adrs_char := adrs_char + 1;
458 x_val := convert_int2bv{8,10);
459 if (adrs_char = 29) then

460 x_val ;= convert_int2bv(40,10);
461 y_val ;= convert_int2bv(120,9);
462 elsif {adrs_char = 34) then
4 63 x_val := convert_int2bv(40,10);
464 y_val := convert__int2bv (15 2 , 9) ;
4 65 end if;
466 end loop;

467 send2vga{"l" & "0110011"); -- set foreground color to black.
468 x_val := convert_int2bv(40,10);
469 y_val := convert_int2bv(200,9);
47 0 adrs_char := 39;

471 loop -- draw xl,rex2,imx2,rex3,imx3
472 DrawChar (x_val,y_val,CharSet{adrs_char),"00","00");
473 exit when adrs_char = 83;
474 adrs_char := adrs_char + 1;
475 x_val := convert_int2bv(8,10);
476 if (adrs_char = 48) then
477 x_val := convert_int2bv(40,10);
478 y_val := convert_int2bv(232 , 9) ;
479 elsif (adrs_char = 57) then
480 x_val := convert_int2bv(40 , 10) ;
481 y__val ;= convert_int2bv (2 5 6 , 9) ;

Z.A. Baidas . 2000 Appendix E: Example details

482 els 1f {adrs_char = 56) then

4 8 3 x_val := convert:_int2bv(40,10);
4 8 4 y_val := convert_int2bv(288,9);
4 8 5 elslf (adrs_char = 75) then
486 x_val := convert_int2bv(40,10j;
487 y_val := convert_int2bv(312,9);
4 8 8 end i f;
489 end loop;
4 90 end i f;

4 9 1 -- initialisation is done the process will start monitoring the input stage
4 9 2 -- to display the three input paramemters al,a2,a3 and display them digit
493 -- by digit on the VGA screen
494 ack_in <= '1';
495 ack_c <= '1';
496 wait for 0 ns;
497 -- get al
498 sign = '0';

4 9 9 x_val := convert_int2bv(104,10); -- 96 for the sign
500 y_val := convert_int2bv(88,9);
5 0 1 a_sign_x := convert_lnt2bv(96,10);

5 0 2 -- set back ground color to grey and foreground color to dark blue.
503 send2vga(''l'' & "0100000");
504 send2vga("l'' & "0110010");
505 for i in 0 to 2 loop
506 if (i = 1) then -- recieving the second variable (a2)
507 sign = '0';

5 0 8 x_val := convert_int2bv(104,10); — 96 for the sign
509 y_val ;= convert_int2bv(120,9);
510 a_sign_x := convert_int2bv{96,10);
511 elsif (i = 2) then -- receiving the third variable (a3)
512 sign = '0';

5 1 3 x_val := convert_int2bv(104,10); — 96 for the sign
514 Y_val := convert_int2bv(120,9);
515 a_sign_x := convert_int2bv(96,10);
516 end if;
517 loop
518 get_key;

519 if (current_key = "01101") then -- minus
520 sign := not sign;
521 output_sign (sign, a_sign_x,y_val);
522 elsif {current_key = "10000") then -- point (46)

523 DrawChar (x_val,y_val,"0101110","00","00");
524 x_val := x_val + convert_int2bv(8,10);
525 elsif (current_key = "01111") then -- enter
52 6 exit;

527 else -- a digit is received generate the equielent ASCII character
528 -- and output it
529 number := "00" & current_key;

530 number := convert_int2bv(48,7) + number;
531 DrawChar (x _ v a l , y _ v a l , n u m b e r 0 0 0 0 ") ;
532 x_val := x_val + convert_int2bv{8,10);
533 end if;
534 end loop;
535 end loop;

536 -- the final stage is reading the roots from the core unit and display them
537 x_val := convert_int2bv{12 8,10); -- XI
538 y_val := convert_int2bv(200,9);
539 get_float;
540 output_float;
541 x_val := convert_int2bv(12 8,10); -- RE(X2)
542 y_val := convert_int2bv(232,9);
543 get_float;
544 output_float;
545 x_val := convert_int2bv(128,10); -- IM(X2)
546 y_val := convert_int2bv(256,9);
547 get_float;
548 output_float;

549 x_val := convert_int2bv(12 8,10); -- RE(X3)
550 y_val := convert_int2bv(288,9);

Z.A. Baidas , 2000 Appendix E; Example details ")g4

551 geC_float;
552 output_float;

553 x_val := convert_int2bv(128,10); -- IM(X2
554 y_val := convert_int2bv(312,9);
555 get_float;
556 output_float;
557 end process;
558 end behave;

Z.A. Baidas, 2000 Appendix E: Example details 285

Listing E.6 Interface unit in the first FPGA

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23

24
25
26
2 7

28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67

-- The unit is part of the final modification to the cubic equation solver
-- as a result of moving the output stage to the second FPGA.
-- The data is converted into blocks of 6-bit output and passed to interface2
-- in the second FPGA

entity interfacel is
port (key : in bit_vector (4 downto 0);
stb__in ; in bit;
ack_fpga2 : in bit;
float_in : in bit_vector (31 downto 0);
stb_c : in bit;
ack_c : out bit;
stb_fpga2 : out bit;
ctrl_fpga2 : out bit;
ack_in : out bit;
fpga2_data : out bit_vector (5 downto 0)
) ;

end;
architecture behave of interfacel is
begin
process
variable count : integer range 0 to 3;
variable in_key : bit_vector (4 downto 0);
begin
-- first initialise all ports
ack_in <= '1';
ack_c <= '1';
stb_fpga2 <= '1';
ctrl_fpga2 <= '0'; -- '0' means initialise the screen for a new entry
-- now negotiate with fpga2 to initialise screen
wait until ack_fpga2 = '1';
stb_fpga2 <= '0';
wait until ack_fpga2 = '0';
stb_fpga2 <= '1';
ctrl_fpga2 <= '1';
count := 0;
loop
wait until stb_in = '0';
in_key := key;
ack_in <= '0';
wait until stb_in = '1';
ack_in <= '1';
if (in_key = "01111") then
count := count + 1;

End i f;
fpga2_data(4 downto 0) <= in__key;
wait until ack_fpga2 = '1'; -- send the key to the output
Stb_fpga2 <= '0';
wait until ack_fpga2 = '0';
stb_fpga2 <= '1';
exit when count = 3 ; -- three enters mean three parameters

End loop;
-- now receiving the five floating point variables
loop
wait until stb_c = '0';
fpga2_data <= float_in (5 downto 0);
wait until ack_fpga2 = '1';
stb_fpga2 <= '0';
wait until ack_fpga2 = '0';
stb_fpga2 <= '1';

-- count three enters

if key is enter

fpga2_data <= float_in (11 downto 6);
wait until ack_fpga2 = '1';
stb_fpga2 <= '0';
wait until ack_fpga2 = '0';
Stb_fpga2 <= '1';

Z.A. Baidas, 2000 Appendix E: Example details 286

68
69
70
71
72
73
74
75
76
77
78
79
80
81
82

83
84
85

86
87
88
89
90
91
92
93
94
95
96

fpga2_data <= float_in (17 downto 12);
wait: until ack_fpga2 = '1';
stb_fpga2 <= '0';
wait until ack_fpga2 = '0';
stb_fpga2 <= '1';

fpga2_data <= float_in (23 downto 18);
wait until ack_fpga2 = '1';
stb_fpga2 <= '0';
wait until ack_fpga2 = '0';
stb_fpga2 <= '1';

fpga2_data <= float_in (29 downto 24);
wait until ack_fpga2 = '1';
stb_fpga2 <= '0';
wait until ack_fpga2 = '0';
stb_fpga2 <= '1';

fpga2_data <= "0000" & float_in (31 downto 30)
wait until ack_fpga2 = '1';
stb_fpga2 <= '0';
wait until ack_fpga2 =
stb_fpga2 <= '1';
ack_c <= '0';

wait until stb_c = '1'
ack_c <= '1';

end loop;
end process;

end behave;

'0' ;

14 stb_core
15 ack_core
16 ack_fpga
17 stb_fpga

Z.A. Baidas, 2000 Appendix E; Example details 2 8 7

Listing E.7 Interface unit in the second FPGA

1
2 -- The unit is part of the final modification to the cubic equation solver
3 -- as a result of moving the output stage to the second FPGA.
4 -- The data is received from the first FPGA in blocks of 6-bit, which gets
5 -- adjusted to the appropriate formate and passed to the output stage
6
7
8 entity interface2 is
9 port (initialise : out bit;

10 key : out bit_vector (4 downto 0);
11 stb_in : out bit;
12 ack_in : in bit;
13 float_data : out bit_vector (31 downto 0);

out bit;
in bit;
out bit;
in bit;

18 ctrl_fpga : in bit;
19 fpga_data : in bit_vector (5 downto 0)
20 ') ;
21 end;
22 architecture behave of interface] is
23 begin
24 process
25 variable enter_count : integer range 0 to 3;
26 variable data : bit_vector (5 downto 0);
27 variable Ctrl ; bit;
28 begin
29 -- first initialise all ports
3 0 stb_in <= '1 ' ;
31 stb_core <= '1';
32 ack_fpga <= '1';
33 initialise <= '1';
34 protect;
35 initialise <= '0'; -- initialise VGA driver
3 6 -- get key from FPGAl
37 enter_count = '0';
38 loop
39 wait until stb_fpga = '0';
40 Ctrl := ctrl_fpga;
41 data ;= fpga_data;
42 ack_fpga <= '0';
43 wait until stb_fpga = '1';
44 ack_fpga <= '1';
45 exit when Ctrl = ' 0 ' ;
46 -- here ctrl does not equal 0
47 -- send the key to VGA
48 if {enter_count /= 3) then
49 key <= data {4 downto 0);
50 wait until ack_in = '1';
51 stb_in <= '0';
52 wait until ack_in = '0';
53 stb_in <= '1' ;
54 -- key is sent to output stage now check if it is an enter
55 if (data(4 downto 0) = "01111") then
56 enter_count := enter_count + 1;
57 end if;
58 else -- we are receiving floating-point results five of them
59 float_data (5 downto 0) <= data;
60 wait until stb_fpga = '0';
61 Ctrl := ctrl_fpga;
62 float_data (11 downto 6) <= fpga_data;
63 ack_fpga <= '0';
64 wait until stb_fpga = '1';
65 ack_fpga <= '1';
66 exit when Ctrl = '0';
67 wait until stb_fpga = '0';

Z.A. Baidas, 2000 Appendix E: Example details 188

68 Ctrl ctrl_fpga;
69 float_data (17 downto
70 ack_fpga <= '0';
71 wait until stb_fpga =
72 ack_fpga <= '1';
73 exit when Ctrl = '0';
74 wait until stb_fpga =
75 Ctrl := ctrl_fpga;
76 float_data (23 downto
77 ack_fpga <= '0' ;
78 wait until stb_fpga =
79 ack_fpga <= '1';
80 exit when Ctrl = '0';
81 wait until stb_fpga =
82 Ctrl = ctrl_fpga;

83 float_data (29 downto
84 ack_fpga <= '0' ;
85 wait until stb_fpga =
86 ack_fpga <= '1';
87 exit when Ctrl = '0';
88 wait until stb_fpga =
89 Ctrl := ctrl_fpga;
90 float_data (31 downto
91 ack_fpga <= '0';
92 wait until stb_fpga =
93 ack_fpga <= '1';
94 exit when Ctrl = '0';
95 -- the float variable
96 wait until ack_core =
97 stb_core <= '0';
98 wait until ack_core =
99 stb_core <= '1';

100 end if;
101 end loop;
102 end process;
103 end behave;

12) <= fpga_data;

fpga_data;

' 0 '

24) <= fpga_data;

30) <= fpga_data (1 downto 0)

• I '

is recieved now send it

' 0 '

Z.A, Baidas , 2000 Appendix F: Papers

Appendix F

Papers

The paper contained in this Appendix, "Floating-point Behavioural Synthesis" submitted

to the IEEE Transactions on Computer-Aided Design, describes the floating-point

synthesis capabilities of the MOODS synthesis system. It briefly surveys the infrastructure

of the floating-point optimisation algorithm, along with a description of the way the

system handles the high-level floating-point binding decisions based on a set of pre-

determined interactions.

Z.A. Baidas , 2000 Appendix F: Papers 2 9 0

Floating point behavioural synthesis

Z. Baidas, A.D. Brown and A.C. Williams
Department of Electronics and Computer Science

University of Southampton
Hampshire SO 17 IBJ

England

Abstract

W a cfgj'/g/z 7.y/7%g(/

(occaj'70Ma/Z)' varmt /g) wWfA mfegg/-, r/7eyw77Cf70MaZ wnffj org coMCom/faMfZy

M7wZ0pZgxer.y .yo o77j. TTzg 07777j' worA:

org (7) fo prov/Wg o Z/6ror); c^AzgA-Zgvg//Zoonng po(77r /w77Cf7onj' (rr7g0/70777grr7c,

fro/zjcgMfigMfoZ, co777pZg%j fo j'wp/porf fAe c^^gAovfowro/ (̂ 6̂ 7̂ 77.̂ 777corporof777g

co777p/7cofg<^ q/̂ /Zoar777g po7M/ 0pgr0f7077.y, 077(/ ('2)^0 mcorporofg fA7.y mfo o/i

opH7777.y7/7g 6eAov70Mro/ j'y77fAe.y7.y g77V7roM777gMf. FZoonng pomf 77777/̂ org Zorgg oM(̂

CWm ĝrĵ OTTZg, 077^ 077 0pf77777\y0f70M fgcAM7<ywg wA7cA o/ZoM/.y fAg 777fg777oZ .yw6^fr77cf7^rgj 0 /

f/ig^g f̂ 77(Y& To 6g g/iorg(f (m 6of/7 ^̂ pocg OM(f nmgj pro^ucg^ o 6/ro7)iof7c dgcrgoa^g m f/zg

ovgroZZ Aorcfworg rgj'OT^rcgj' rg^w7rg<^ fo j'7<pporf̂ o 6fg.y7g77.

TTzg yZ00f777g p0777 f 7770(fMZg.y rAg777̂ gZvgj' 07g gOcA 7777p/g777g77fg<̂ 777 j'gVgroZ M/OVJ." Oĵ

on 7fgrof7vg jgngj', 6); fo6Zg Zootwp 077(j T ĵ'mg f/zg C07(D7C o/gonr/zm. 777g cAo7cg

Z/77pZg777g»f0rZ077 Z.y fO fAg Opf77MZ.ygr, M Âzc/z 777oA:gĵ Z'77<̂ ZVZW7<0/ 6zM<̂ ZMg c/zozcgĵ 6o^g6f 077

gZo6oZ X?70wWgg q^f/zg ovgro/Z cfgj'zgM.

TTzzj' popgr <^g^crz6g.y /Ag Zz6rori' 0776̂ fAg 0pfz777z\90/z07z oZgorzfATM o77<̂ c^gTTioTZj'rrofg^

f/zg ovgroZZ .yvjfgTM ẑ .yg wzVA 077 gxgTMpZor.- o/ZooffTzg poznf gwo^/rofzc g<̂ wofzo77 &o(vgr

copo6/g q/(fg/zvgrz77g co/Tip/gz roof.y, rgoZz.yg<:f zfj'zng .^0% q / o ^z/zm: ^ 0 7 2 J X y F P G A .

Z.A. Baidas . 2000 Appendix F: Papers 2 9 1

1. Introduction

Floating point number representation can simultaneously provide a large range of

numbers and a high degree of precision. However, the manipulation of floating point

numbers is considerably more complicated than the corresponding fixed point operations -

as a consequence, a portion of modern microprocessors is devoted to dedicated hardware

for floating point computation. Increasing hardware capacity and increasing power of

optimisation techniques now make it possible to sensibly synthesise systems containing

floating point operations on an ASIC or FPGA.

Behavioural synthesis works on a description that specifies the rgZan'oW?//)

between system inputs and outputs by describing abstract data structures and functions to

manipulate them. The physical structure is not described, as the emphasis is on what a

design (fogj' and not Aow it is done. In addition, the data flow manipulation aspects for a

synthesis system are not generally concerned with the data rVjOg,- the limitations of integer

arithmetic are imposed simply by the lack of functional units for more complicated data

types.

1.1 Existing system

The MOODS (Multiple Objective Optimisation for Data and Control path

Synthesis) system has been described in detail elsewhere[1-5]. In precis, this is a synthesis

system which implements global optimisation of a design dataflow and control graph by

the repeated application of small, reversible (behaviour preserving) transforms, under the

control of a simulated annealing algorithm. The system is designed to support overall

optimisation with respect to widely differing criteria; currently these are area, delay and

power dissipation. The operation of the system is usually characterised by a (fgjfgn

- the entire structural design is represented by its values of area, delay and

power dissipation, and these numbers form the coordinates of a point in design space. The

algorithm moves the design through this space, as in figure 1, from an initial point, created

from a line-by-line translation of the user behaviour, towards a user defined goal (typically

minimum area, delay and dissipation). The speed of this process allows the designer to

interactively study the tradeoffs possible between the three criteria.

1.2 The floating point enhancement

An overview of the entire system is given in figure 2. The shaded boxes in figure 2

represent the aspects of the system described in this paper. The floating point optimiser

Z.A. Baidas, 2000 Appendix F: Papers 2 9 2

makes strategic decisions about the high level binding for each floating point unit (i.e.

table lookup, iterative series or CORDIC), taking into account such issues as the type and

number of each floating point operation required, and the availability and capacity of any

off-chip ROM available to the system. This 'coarse design'is then presented to the

simulated annealing algorithm. The front end of subsystem consists of a 'module-

ripping'unit[6], which allows the simulated annealing based optimiser to capitalise on

similarities in the internal structures of the floating point units. . The definition of the

floating point number underpinning this work is the IEEE single precision floating point

standard 754-1985 [9].

1.3 Other systems

Work elsewhere has implemented floating point capabilities by introducing a non-

standard format[10] - this results in a reduction in both the accuracy and dynamic range

available - and in the introduction of a dedicated chip to handle floating point

operations[l 1] - effectively a discrete ALU. A set of block-diagram-based commercial

tooIs[12,13] allows users to create graphical representations of their systems using an

assortment of functions provided in block libraries. These tools mainly support fixed-point

format for hardware design, with a limited support of some standard floating point

operations (addition, subtraction, multiplication, and division). Global optimisation is not

supported. The key point of behavioural synthesis is that the designer should not

concerned with the structure, just the system functionality.

1.4 Overall strategy

The high level behavioural description (which may contain fixed and floating point

operations) is defined in VHDL, parsed and translated into ICODE. This is a hardware

equivalent of assembly language; the principle significant difference being that ICODE

supports multiple 'control' threads and parallelism. (The rationale for a file-based step in

the overall dataflow is the same as for a software development environment: an overall

project may consist of many source files, only some of which will be modified at each edit

cycle. Further, ICODE is language neutral - parts of a project may be described using

HDLs other than VHDL, and ICODE allows the support of a mixed language design

environment.)

The ICODE representation is then input to the floating point optimiser, which is

the subject of this paper. It is described in detail in section HI. The main synthesis

Z.A. Baidas, 2000 Appendix F: Papers 2 9 3

optimisation block - controlled by a simulated annealing algorithm - operates on the

control and dataflow graphs of the design. Local, reversible, small transforms are applied

quasi-randomly (see [1-5]), which have the effect of iteratively moving the design from

the initial point to a point as close as possible to the user defined objectives (see figure 1).

This approach is successful because (from the perspective of the simulated annealing

algorithm) the transforms are Zoca/ (i.e. they affect only a few other nodes each in the

dataflow and control graphs) and zWgpgMcfe/zf. Attempts to use this philosophy on the

floating point optimiser produced disappointing results, because each floating point

mapping choice has repercussions; there is a very strong Tollow-me' effect.

This makes iterative techniques unsuitable and constructive methods more attractive. A

number of different procedures were explored; the heuristic described in section III

permits MOODS to produce the best' results, although of course other algorithms may be

just as suitable.

Section 11 describes the implementation of the floating point library itself (the

functional units are much more complex than their fixed point counterparts), and section

n i describes how these structures are manipulated by the floating point optimisation

algorithm. Finally, two examples are analysed, illustrating the behaviour of the system on

non-trivial designs.

II. The floating point library

The floating point modules currently supported are given in table 1. (There is no

reason in principle why the complex counterparts of all the functions cannot be supported;

we chose to support those recommended in the IEEE standard 1076.2[14]) Each functional

unit consists of three building blocks;

1. Range reduction.

2. Function evaluation.

3. Post evaluation rounding and normalisation.

II. 1 Range reduction

The large dynamic range provided by a floating point representation introduces a

problem when designing systems to handle floating point arithmetic. Some evaluation

methods, such as iterative series, converge over a wide range of arguments. However,

achieving a good accuracy over that range requires taking many terms into account. Other

methods, such as the C0RDIC[11,15] algorithm have an in-built limited range of

Z.A. Baidas, 2000 Appendix F: Papers 2 9 4

convergence. Having a suitable technique to reduce the range of the input operand(s) is

therefore essential. Each function has its own range reduction unit: periodic and symmetric

functions have obvious reductions, and others include shifting and scaling (for example,

ln(M.2^) => ln(M) + E.ln(2))

11.2 Function evaluation

Three different (table lookup, iterative series and CORDIC) are

used to implement the functional units; these techniques generate modules with

significantly different physical properties.

11.2.1 Table lookup

Look-up tables are frequently and trivially used to evaluate mathematical

functions. This scheme has often been rejected in practical cases because of the large table

sizes required for acceptable accuracy. However, combining range reduction techniques

with a dedicated interpolation procedure gives rise to a large reduction in table size, often

to the point that it may be reduced to an on-chip set of static registers, rather than an

external ROM. For example, evaluating to an accuracy of I % , using linear

interpolation, requires a table with just six entries. Further reduction in table size can be

achieved by partitioning a table into several smaller sub-tables that handle intervals of a

function, each with its own scaling factor appropriate to that sub-table[16]. Even greater

reduction in table size may be achieved by replacing the linear interpolation procedure

with a quadratic or even higher order interpolation procedure, but the additional costs of

the interpolation engine usually outweigh this advantage (although of course the

interpolation unit can be shared amongst an arbitrary number of tables).

Finally, the scaling factor and intervals in the previous discussion can be trivially

forced to be a power of two, so that all the division operations during interpolation may be

replaced by fast binary right shift operations.

11.2.2 Iterative series

In this method the value of a function/(x) is obtained by an iterative process; the

value of x is inserted into some formula and after a number of operations the value is

obtained. This is attractive when the relationship between adjacent terms in the series is

Z.A. Baidas , 2000 Appendix F: Papers 2 9 5

simple, or when the accuracy requirements are low. For example, the Taylor expansion of

V A-.yM('A,lissin(:v) = y f « ; = (- 1) " . — L + i=A ,
«=o (2fi + l)! ^ 2 J(M4-l)(2;!4-3)

The main issue in calculating functions using power series is the number of terms that

need to be taken in order to ensure that the result is accurate to the desired precision.

II.2.3 The CORDIC algorithm

The CORDIC (Co-Ordinate/(otationD/gital Computer) algorithm[l 1,15,17] was

introduced as the basis for a navigational computer. Its principal advantages are that it

requires no multipliers, and can generate two function results simultaneously.

It is an iterative process, applied to a set of input variables (;c, v, z) for « iterations,

to generate a result accurate to n digits. Each iteration involves a shift, an add and an add

constant operation. The capabilities of the algorithm are summarised in figure 3.

II.3 Post evaluation rounding and normalisation

At this stage, the output result is adjusted to comply with the IEEE 754 standard.

This involves

1. Rounding the quotient by conditionally adding one to the least significant bit.
All the floating point library modules work to an internal accuracy of 28 bits - the
IEEE standard has 23.

2. Normalising the quotient by shifting and adjusting the exponent field.
The standard saves a bit by assuming the most significant bit of the fraction field is
always set (which means it need not be saved) and modifying the exponent
accordingly.

3. Providing the special symbols to represent unusual events (infinity, NAN).
Finally, any range reduction effects are inverted.

III. The floating point optimisation block

The task of this block is to assign a base technique (i.e. one of the three

implementation methods above) to each floating point functional unit in the design. The

aim of the process is not to produce directly an implementation that will meet the global

design parameters specified by the user, rather to produce an intermediate implementation

that makes it likely that the simulated annealing based optimiser will be able to approach

the design objectives.

Z.A. Baidas , 2000 Appendix F: Papers 2 9 6

III.l Function implementation interactions

The attributes of each function implementation considered in isolation are easy Co

compare: to generate with a table requires the table itself (which may be internal, or

external, requiring an interface), plus an interpolation engine. To generate it with a series

requires a cumulative adder plus a term generator, which may require a table, but no

interpolation engine. All these elements have easily quantifiable area and speed costs.

However, when a number of functions are required, new interactions become important:

There is an overhead to interfacing an ASIC/FPGA to an external ROM or RAM, but
it is fixed and independent of the number of external function tables.

" The CORDIC algorithm can generate two function results simultaneously.

» Once an iterative series generator has been instantiated, the cost of switching between
different functions is relatively small.

« Once a complex function is implemented, the equivalent real function is virtually free
in most cases.

« Some functions are built as a hierarchical composition of other functional units. If
these units are already available, the total cost is reduced.

» Some functions can be realised as functions of other functions. If these are already
available, part of the required behaviour can be bootstrapped'.

Some function tables are subsets of others.

9 If the external ROM size is limited, the distribution of tables onto the ROM affects the
overall area and speed.

A low accuracy functional unit is a complete subset of any higher accuracy
counterpart.

® If a high number of functional units are to mapped onto an external ROM, the
multiplexer costs can become comparable to the cost of an alternative base technique.

Diverse interactions such as these require a dedicated optimisation algorithm.

1II.2 Practical function implementation

The overall synthesis system operates by instantiating sequential multi-cycle

technology-independent functional blocks, which are inline expanded in the internal

design structure during synthesis. These expanded modules act as templates, and enable

the implementation of functional units not available in the MOODS technology library[6].

The floating point functional units are provided to the synthesis system as a set of

Z.A. Baidas . 2000 Appendix F: Papers 2 9 7

expanded modules. This enables inter-module optimisation at the sub-module level,

allowing greater opportunities for functional unit sharing. In addition, a pre-processing

stage handles floating point functional unit binding to the base technique expanded

modules to help the main synthesis core to reach an optimum that meets the users supplied

objectives.

The pre-processing stage performs three tasks:

1. Hierarchical unit expansion

2. Exception register allocation

3. Base technique optimisation

III.2.1 Hierarchical unit expansion

Many floating point and complex functional units in the library are provided as a

hierarchical structure of common building blocks. This approach allows the final synthesis

stage to share the common building blocks of different arithmetic units, which results in a

significant reduction of the total area cost. In addition, partitioning the arithmetic units into

a number of building blocks allows effective pipelining. This results in a reduction of the

total delay and increases the throughput of the whole system. As an example, consider the

pseudo-code of figure 4.

The sine function is expanded into two sub-blocks, the range reduction stage

and the function evaluation stage - figure 4b. A large

number of sub-blocks are common to more than one floating point unit. They

communicate with each other by means of (automatically generated) temporary buffers,

which are initialized by the system to allow the sub-blocks to know which floating point

unit they are actually representing. For example, hufl in figure 4b will be initialized to tell

sin__cosj>re() it is representing a sin(), and sin_cos_pre() may write the range reduction

details into to be picked up by The complex type conversion

function is expanded into further building blocks two

floating point multipliers and two type converters) - figure 4c. The jmg and

functions are then further expanded (figure 4d). This approach makes it easy for the main

annealing algorithm to exploit functional unit duplication.

Note that RE() and IM() in figure 4c are similar to PL/1 pseudofunctions: if they

appear on the right hand side of an assignment, they return a vaZwg, if they appear on the

left hand side, they provide access.

Z.A. Baidas, 2000 Appendix F; Papers 2 9 8

As an aside, it is useful at this point to review the unit hierarchy utilised by the

system; this will put the numeric results presented later into context. The hierarchy is

shown in table 2. It is the job of the floating point optimiser (this paper, section HI) to

realise floating point library units (level I) in terms of floating point primitives (level 2). It

is the job of the simulated anneahng optimiser[l-8] to realise the floating point primitives

in terms of MOODS functional units (level 3). Finally, the MOODS functional units will

be realised in terms of (for the purposes of this paper) FPGA CLBs. This is done by the

low-level logic optimiser supplied by the FPGA manufacturer. (Alternatively, the system

can target ASICs directly - in this case, low level logic optimisation and placement and

routing are needed.) At each step in the process, virtual units at one level can jAo/e

physical units at the underlying level.

III.2.2 Exception status register

Implementing floating point operations necessarily implies supporting some kind

of 'exception notification', to handle illegal operation attempts, over- and underflow, and

so on. The IEEE floating point standard[9] defines the behaviour of a floating point system

in pathological situations, both in terms of bit patterns in the floating point variable itself,

and in a rggz'j'fg/'. The status register is a six-bit register that indicates the integrity of

a floating point operation. Asserting one of the flags (bits) is analogous to throwing an

exception; it is the responsibility of the user to handle (capture) the exception.

From a broad perspective, there are two sensible places for such a register in a

VHDL design. It is possible to have a single, global status register that can be accessed by

any instruction within a process - the user must provide a dedicated monitor process for

the register, and must decide what action (if any) is to be taken if a flag is raised. Equally,

each floating point unit may have its own local register, and handle problems in its own

way. Overloads of the floating point functions allow the user to use either (or both)

technique(s) - if a flag register is supplied as an actual argument to a function instantiation,

it is used; otherwise the existence of a global register is assumed. (This register will be

automatically by the system, but any /Mon/formg process is the responsibility of

the user.)

Z.A. Baidas, 2000 Appendix F: Papers 2 9 9

I I I 2.3 Accuracy considerations

The introduction of a floating point capability gives rise to a fourth gross design parameter

- that of accwmc}'. This cannot be treated on an equal footing with the other three

dimensions of design space because the effects of changing the accuracy of a functional

unit cannot be localised - a change to any module in the dataflow graph will threaten all

operations predicated upon it. Errors propagate and interact non-linearly, and furthermore

the extent and form of the interactions are invariably data dependent. It is not difficult to

construct a process where a change of component accuracy ultimately affects behaviour.

The system supports user specification of floating point accuracy at two levels: it is

possible to assert an overall accuracy on a process, (each individual floating point

operation in the process will deliver this accuracy) and it is possible to override this and

assign individual accuracies to each floating point operation. Within each operator, a

differential error propagation model[18] is employed to calculate the necessary accuracies

of each of the sub-blocks, given the required accuracy of the parent operator itself. Where

sub-blocks are shared between operators later by the system, the accuracy of each shared

sub-block is promoted to the value of the most accurate.

Figure 5 shows the design space trajectories for a large process (example 1), with a

variety of user constraints and goals, optimised with a number of different accuracy

requirements. The original behavioural VHDL process description contains sin(), arctan(),

expO, ln(), arcsinO and sqrt(). Each trajectory consists of Ove points: 0.0001% accuracy

(the end marked with a solid point), 0.001%, 0.01%, 0.1% and 1%. Tr^ectories T1..T3 are

optimised with respect to area - changing the accuracy requirements impacts almost

entirely on the delay. Trajectories T4..T6 are optimised with respect to delay, and

changing accuracy requirements are traded off against system area. Trajectory parameters

are given in table 3 - the trajectories in figure 5 are the Onal, physical characteristics of

alternative structures delivering the same behaviour. "Delay" (table 3) is plotted against

"Physical CLBs (datapath)" + "Physical CLBs (controller). The floating point functions

(table 2, level 1) are implemented in terms of 10 virtual floating point primitives (level 2).

The floating point optimiser cannot share any of these units because they are all different,

hence 10 physical floating point primitives are required. (The point of this example is to

demonstrate the effects of changing accuracy.) Depending on the amount of off-chip

ROM available and the (user imposed) accuracy requirements, differing base technique

bindings are asserted, which give rise to the "Virtual functional unit" column. The

simulated annealing algorithm maps these onto a reduced number of physical functional

Z.A. Baidas , 2000 Appendix F: Papers 3QQ

units (table 2, level 3). These are implemented in terms of virtual CLBs. which are

mapped onto physical CLBs by the low level optimiser/router supplied with the FPGAs.

Comparing the "Virtual CLE" column with the "Physical CLE (datapath)" column shows

that this step does not gain much.

Some points of particular note are:

» Any user instructions for accuracies in excess of 0.0001 % are ignored (i.e. treated as
0.0001%), as the floating point internal structure cannot support the results.

« If a very low accuracy is required (less than 1 %) the resource impact of the function
generation cores becomes negligible. The area requirements are dominated by the
range reduction and post processing units.

* In trajectories T3 and T6, the whole design is realised as a set of table lookup modules
utilising an external ROM; accuracy variation has no effect on the system parameters.

* The tr^ectories do not all terminate at exactly the same point because of numerical
noise - recall that the principal optimisation process is controlled by a simulated
annealing algorithm.

III.2.4 Base technique optimisation

The floating point optimiser (figure 2) operates on the floating point and complex

functions within the design, binding each floating point operation to a suitable base

technique component from the floating point module library.

The algorithm consists of two non-interacting phases: ex/gmaZ ozemory

and on-chip optimisation. Empirical results indicate that by far the best results (in terms of

area and delay) can be obtained by utilising table lookup implemented on off-chip ROM to

its fullest extent; the system therefore attempts to do this before attempting to handle other

interactions.

IIL2.4.1 External memory utilisation

Each module in the expanded module library and technology dependent library has

two figures of merit associated with it: the cfeZay and the area. In the floating point library,

these are expanded: the area factor is split into the on-chip area and the ojf-chip area. The

approach here is simple: the algorithm performs an exhaustive search of all possible

combinations of table lookup mapping to see which utilises the ROM most effectively.

Note that this does not lead to a combinatorial explosion: a table is necessary for each

floating point module type, not instance, and in practise, subtable isomorphism within the

Z.A. Baidas , 2000 Appendix F: Papers 3 Q]

list of table 1 means that the largest number of off-chip tables ever considered cannot be

larger than six.

I1I.2.4.2 On-chip optimisation

The flowchart of this phase of the system is shown in figure 6.

Step (1): All remaining floating point modules are mapped onto a table lookup base
technique, implemented on an infinite, virtual, internal (on-chip) RAM. If
this meets the user area constraints, and fits the physical system, the base
technique mapping is complete and successful.

Step (2): Select the biggest (irrespective of user requirements) floating point
functional unit. (Step (1) gave t h e p o s s i b l e mapping - here we are
iteratively trading speed against area until we can deliver the user
requirements.)

Step (3): Increment the mapping for that unit. (The base technique mappings are
ordered: 1. Linear table, 2. Piecewise linear table, 3. Iterative series, 4.
CORDIC. Note that step (I) maps all units to 1 (linear table), and
attempting to increment past 4 has no effect. Not all mappings are allowed
for all floating point module types - see table 1.)

Step (4): The effect on the overall area of the mapping change is estimated. If the
area is not reduced, goto step (5). Otherwise, the new mapping is accepted,
and if the overall user requirements are satisfied, the algorithm terminates
successfully.

Step (5): If all the floating point functional units are mapped onto the CORDIC base
technique, and the user requirements are not met, then the algorithm
terminates in failure. Otherwise, return to step (2).

The shaded decision boxes in figure 6 represent an invocation of the Estimator'.

This is a subsystem that predicts, from the current state of the design dataflow and control

graph, what/wrfAgr improvements the simulated annealing based optimisation (see figure

2) will be able to make. The Estimator is a heuristic algorithm, which takes as input the

statistical properties of the design (for example, variable and operator count - both fixed

and floating point, control constructs and so on) and predicts the compression that the

simulated annealing phase will be able to achieve with a reasonable degree of accuracy

(90-95%).

The design of this system is derived from observations of base technique

interactions. Some points of particular interest are:

Functions based on table lookup implemented on off-chip ROM share a single ROM
controller and a single I/O port.

Z.A. Baidas . 2000 Appendix F: Papers 3 Q 2

Expanding the hierarchical (real and complex) functions before the optimisation phase
permits substructure sharing. If both the complex and real instances of a function are
required, this delivers significant cost reductions.

Mapping a function onto a CORDIC base technique makes subsequent mappings to
that implementation more likely.

Two or more functions having the same table (for example and j) have only
one physical table.

The cost of an iterative series generator can be significantly changed by the prior
availability of its primitive subunits (multiplier, divider). Equally, the selection of this
base technique reduces the cost of other operations by providing these units.

Figure 7 shows the effects of this process, with the accuracy criterion set to 10'̂ on

the process of figure 5. In figure 7a, the user requirements are optimisation with respect to

delay alone, and the set of histograms shows the distribution of the functional units

between the three base techniques, as a function of off-chip ROM capacity. The tradeoff

between the two table-based implementations as the external ROM resource becomes

scarcer is clear, with CORDIC and iterative series only coming into play as a last resort.

Figure 7b shows the same design, this time optimised for minimum area. Here, the

main tradeoff is between external ROM usage and iterative series, as the latter obviously

consumes less area than the on-chip table lookup, although there is a delay price to pay.

IV. Quadra t i c equation solver (example 2)

The power of this level of description is illustrated by implementing a complex

quadratic equation solver. This takes as input the three (real) quadratic coefficients and

delivers the (possibly complex) roots. The VHDL behavioural description of the design is

listed in figure 8. The design space accuracy trajectories for this process are virtually

identical, as the design has only one non-linear operator, the square root. The process is

optimised from (area, delay) coordinates of (7800,1800) to a small region centered around

(1542,376), an improvement of a factor of 5 in both dimensions. Note that the floating

point optimiser has realised 12 floating point functions with only 4 physical floating point

primitives. Quantitative details are given in table 4 for a target accuracy of 10'^.

V. Final r emarks

V. l Compar ison with other published results

Comparable studies are hard to find.

Z.A. Baidas, 2000 Appendix F: Papers 3 Q 3

[10] reports a study of floating point arithmetic on FPGAs, but the authors have

their own (reduced bit width) floating point format, the synthesis is RTL based, and there

is no optimisation - by using RTL, the designer is forcing the cycle-by-cycle timing, which

is an important degree of freedom exploited by MOODS. Speed is reported in terms of

time, not clock cycles.

[11] describes the manwaZ design and characterisation of two versions of a single

real floating point square root system implemented on Xilinx XC4000 series FPGAs.

Table 5 shows a comparison of this functional unit with the corresponding unit from the

MOODS library. The third row is an implementation that can be switched between real

and complex by a single control line. (The behaviour is the same as setting the imaginary

part of the operand to zero, but this implementation is signiOcantly smaller than the sum of

the other two.) The data taken from [11] is hard to interpret, because the authors

distinguish between "CLE functional generators" and "CLE flip-flops". Each Xilinx CLE

is composed of two function generators and two flip-flops, and it is not clear how these

figures map onto the total CLE usage on the chip.

The key point of work, however, is that the MOODS floating point library is

designed to exploit module sharing and support large designs consisting of many

invocations of units from within the library.

V.2 Conclusions

Even with the increasing size and processing power of silicon systems, the

difficulties of synthesising sizeable circuits containing floating point operations are great.

The system described here allows a designer to manipulate floating point and complex

variables on an ybofmg with all other data types (fixed point, access operations,

control stuctures), and the additional complexities arising are hidden from the user.

Module decomposition, space- and time multiplexing of submodules and accuracy

considerations are all controlled by three simple user specified parameters: the desired

area, the desired speed and the desired accuracy. The designer is free to concentrate on the

functionality of the design, and does not have to worry about the implementation details,

which, of course, is the goal of every behavioural synthesis system.

Acknowledgements

This work was supported by EPSRC grant reference GR/L28494, "High level

floating point synthesis library".

Z.A. Baidas , 2000 Appendix F: Papers 3 Q 4

References

1. Baker K.R., Currie A.J. and Nichols K. G., "Multiple objective optimisation in a
behavioural synthesis system", /EE 140. August
1993, pp 253-260.

2. Brown, A.D., Baker K. R. and Williams, A.C., "Online testing of statically and
dynamically scheduled synthesized systems", /EEE-CAD 16. no 1, pp 47-57. 1997.

3. Williams A. C., "A behavioural VHDL synthesis system using data path
optimisation", f A D University of Southampton, UK, July 1997.

4. Baker K. R., Brown A. D. and Currie A. J., "Optimisation efficiency in behavioural
synthesis", /EEfmc.-C;rcwzf.y 141. no. 5, pp 399-406, 1994

5. Baker K. R., "Multiple objective optimisation of data and control paths in a

behavioural silicon compiler", PhD thesis, University of Southampton, UK,
September 1992.

6. Williams, A.C, Brown, A.D and Baidas, Z., "Hierarchical module expansion using
templates', EDE'9^ q/TgcAnoZogv,
September 1998.

7. Nijhar, T.P.K, and Brown, A.D., "Source level optimisation of VHDL for
behavioural synthesis", /EE
144. no 1, January 1997, pp 1-6.

8. Nijhar, T.P.K, and A.D. Brown, A.D., "HDL-specific source level behavioural
optimisation", 7EE DfgffoZ 144. no 2,
March 1997, pp 138-144.

9. IEEE Standard for Binary Floating point Arithmetic, ANSI/IEEE Std 754-1985

10. Shirazi N., Walters, A.L. and Athanas, P. "Quantitative analysis of floating point
arithmetic on FPGA based custom computing machines", Report, Virginia state
University, January 1995.

] 1. Wakamatsu A. "Implementation of single precision floating point square root on

FPGAs", Fifth annual IEEE SYMPOSIUM on field-programmable custom
co/M/pwrmg 1997, pp 226-232.

12. Barbara T., "Finally, behavioural synthesis is production-ready". Computer
Design, 36, no. 7, pp 57-63, July 1997.

13. Barbara T., "Behavioural synthesis yet to prove itself beyond DSP", Computer
no. 6, pp 88-96, June 1995.

14. Standard VHDL Language Mathematical Packages (MATH_REAL and
MATH_COMPLEX), 1076.2-1996

15. Voider J. E., "The CORDIC trigonometric computing technique", IRE Trans.
Electron. Comput. 8, 1959, pp 330-334.

Z.A. Baidas , 2000 Appendix F: Papers 3 Q 5

16. Chance R. J., "The effect of processor architecture on an efficient floating point
table look-up algorithm", Mzc/oj'A'.yfgfM.r. 15, no. 8. October
1991,pp411-415.

17. Mazenc C., Merrheim X. and Muller J.. "Computing functions cos' 'and sin"' using
CORDIC", /EEE on no. 1, January 1993, pp. 118 121.

18. Mutrie M, and Bartels R, "An approach to floating point error analysis using
computer algebra", ACM MafA., 7, 1992, pp 284-293.

Z.A. Baidas, 2000 Appendix F: Papers 306

Figure and table captions

Table 1: The floating point library.

Table 2: The unit hierarchy.

Table 3: Parameters for the design space trajectories of figure 5.

Table 4: Parameters for the design space trajectories of the quadratic equation solver
(example 2).

Table 5; Comparison between the MOODS square root unit and that from [11].

Figure 1: A two-dimensional projection (area/delay) of behavioural design space.

Figure 2: The overall synthesis system.

Figure 3; The CORDIC algorithm.

Figure 4: Hierarchical floating point unit expansion.

Figure 5: Design space tr^ectories, showing the movement of a complex design as
user accuracy requirements change.

Figure 6: On-chip optimisation algorithm.

Figure 7: Distribution of functional unit bindings between the three base techniques
as a function of external ROM size.

Figure 8: Quadratic equation solver behavioural description.

Z.A. Baidas, 2000 Appendix F: Papers 307

REAL COMPLEX*

u o 0) o
FUNCTION 0

> "m Q 0)
> % o

n
CO 0)

Li.

o Si
ro o o

1- o H o
* * * *

/ * * * *

+
* * * *

-
* * * *

In(z) y y n y y n

logio(z) y y n y y n

log2(z) y y n y y n

logn(z) y y n y y n

sin(z) y y y y y y

cos(z) y y y y y y

tan(z) y y y n n n
arcsin(z) n y y n n n
arccos(z) n y y n n n
arctan(z) y y y n n n

sinh(z) y y n y y y

cosh(z) y y n y y y

tanh(z) y y n n n n
arcsinh(z) y y n n n n
arccosh(z) y y n n n n
arctanh(z) y y n n n n

e ' y y n y y y

z f ^ y y n y y y

sqrt(z) y y n y y y

conj(z)
* *

real(z) * * *

imag(z) *

magn(z) * * *

arg(z) * * *

complex_to_polar(z) n/a y
polar_to_complex(z) n/a y
to_float() ## n/a
to_complex(,) n/a ##

* *
*

These are implemented using a single base technique/functional unit.

These return trivial results
The complex functions are all overloaded to allow input as real, complex polars or
complex Cartesians

Type changing functions support translation between VHDL type real and

integer[\A'] and IEEE float and complex[9].

Tab le 1: T h e f loat ing point l ib ra ry

Z.A. Baidas, 2000 Appendix F: Papers 308

Level Name
Number of units
(inc. overloads)

Examples

1
Floating point

functions (table 1)
53

complex arcsin(),
Z l ^

2
Floating point

primitives
125

sin_cos_pre(),
sin_cos_main()

3
MOODS functional

units
16

fixed point multiply,
MUX, shift

4 CLBs —

Xilinx function
generators, flip-flops

Tab le 2: T h e uni t h i e ra rchy

Z.A. Baidas, 2000 Appendix F: Papers 309

.N
</)

I t
— _a
2 -
m
X
LU

1 "Area" (unit count)

% m
2
H-

c
••S >

Q. O
o

.N
</)

I t
— _a
2 -
m
X
LU

>. o re
3 U o <

_g)

o
a

.5 .
o «

Q. C

f l
1 1
Li.

g g

— in re Q

l |

i ' l f l .= 0)
re •>
o =
5= E

f 1
CL a.

c

l i
5 - 1

o c
a

ih _ c re 3

'^2

c
a

en
CO
_i
O
15
3 r >

U)

- 1 C3 O.
o cc
'3 TO
CL

m

d l

Si
(/) o
CL

Original n/a n/a 10^ 523 525 36204 32307 1113
10^ 140 537 283 2515 2020 558
10^ 140 537 283 2544 2044 558

T1 0.000 10^ 614 544 395 3624 2983 584
10^ 781 550 397 3733 3065 590
10^ 946 550 398 3848 3213 596
10^ 160 514 275 2602 1908 538
10^ 160 514 275 2602 1908 538

T2
area

5^410 ioM 160 514 275 2602 1908 538
area

10^ 204 551 295 2989 2244 587
10^ 694 547 310 3159 2593 592
10^ 160 514 275 2602 1908 538
10^ 160 514 275 2602 1908 538

73 10* 160 514 275 2602 1908 538
10^ 160

10 10
514 275 2602 1908 538

10^ 160 b 10 10 514 275 2602 1908 538
10^ 140 519 285 2622 2148 513
10^ 140 519 285 2651 2177 513

T4 0.000 10^ 140 519 285 3774 3300 513
10^ 140 519 285 5698 5124 513
10^ 159 555 305 11134 10181 550
10^ 160 514 278 2648 2105 532
10^ 160 514 278 2648 2105 532

T5
delay

3.410 10* 160 514 278 2648 2105 532
delay

10^ 157 527 298 4139 3524 549
10^ 155 528 299 7682 7058 542
10^ 160 514 278 2648 2105 532
10^ 160 514 278 2648 2105 532

T6 i c r 160 514 278 2648 2105 532
10^ 160 514 278 2648 2105 532
lO"*' 160 514 278 2648 2105 532

Up to the point of final realisation, the 'area' cost refers to data path only. The
controller is held in an abstract form until the final implementation - it is optimised
by M O O D S on an equal basis to the datapath elements.

Tab le 3: P a r a m e t e r s fo r the design space t ra jec tor ies of f igure 5.

H

s
'n

i . ?

f t
I?

a
i .
eg

'S
BP
n rD

I

I
a
y
IT

a
c
SB &
n

C
A
§

C
'r:

CD

"T3
g
5
o

3

o

c/] 3̂
o
3

(D
b'
d

n
o
C/]
Q

a .
&)

"O %
=r
O
3

O
—1
O)

—1
Ol H H —1

IV) —1 CQ'
D'
E.

Trajectory

d
CD
CD

m
o
fl)

3
QT

Optimisation
objective

O
O

o
kl
o
o

o
b
o
o o

o

o
k j
o
o

o
b
8

3
QT

External ROM size
(kbyte)

ro
CD

tV)
CD

IV)
Ol
CD (JO

w IV)
cn

oo
IV) §

o

Delay
(clock cycles)

ro
Floating point

functions*

IV)
Virtual floating

point primitives*

Physical floating
point primitives*

CD
CD
N

CD
N
00

CD
CD
00

CO
CD
N

CD
N
00

CD
N
-P̂

CD
CD
00

Virtual
functional units* >

(3
INJ
O ro

o
IV)
o
N

00
o

00
-si

CD
O

CD
CD
00

Physical
functional units*

&)

c
Z3

00
N
00

00
N
cn

IV)
00
N

CO
cn

03
cn O

cn
00

cn
CD
00
00

Virtual CLBs*

8
C
ZJ

N
N
O)

N
N
GO 01 CD

Di
GO

CO
00
CD

cn
cn
CD
o

Physical CLBs
(datapath)*

N
OJ

N
cn
IV)

N
IV)
CD

N
-î 5̂

cn
N Rg

-1̂
o

Physical CLBs
(controller)

Z.A. Baidas, 2000 Appendix F: Papers 311

Performance CLB
function

generator

CLB flip-
flops Latency

(clock cycles)
Issue (clock

cycles)

CLB
function

generator

CLB flip-
flops

Iterative 25 24 82 138
Pipeline 15 1 408 675

(i) F loat ing po in t square root FPGA implementat ion details (f rom [11]).

Speed (clock cycles) CLB usage

Real 20 297

Complex polar 25 314
Real & complex polar 26 363

(i i) Isolated f loat ing po in t (real and complex polar) square root F P G A M O O D S
implementat ion details.

Table 5: Compar ison between the M O O D S square root un i t and that f r o m [11].

Z.A. Baidas. 2 0 0 0 Appendix F: Papers 312

Initial design

Area

Achievable design
region

Reducing
anneal

temperature

Unachievable design region

Each point in the trajectory
represents a different

structural design

Final design

F igure 1: A two-dimensional pro ject ion (area/delay) of behavioural design space.

Z . A . B a i d a s , 2 0 0 0 A p p e n d i x F: Pape r s 313

Behavioural
VHDL

MOODS

User optimisation
objectives

VHDL source level
optimiser/Compiler [7,8]

ICODE

Floating point
optimiser (see figure 6)

ICODE+

Module ripper
Hierarchy flattening

Synthesis and optimisation •
Simulated annealing

algorithm

< -

< -

Structural gate -
level netlist

Logic synthesis, placement
& routing / FPGA mapping

tools

FPGA

FPGA ASIC

VHDL function library

Floating point
module library

parameters

Expanded
module
library

Floating point
module library

Technology-
dependent module

libraries

Figure 2: The overall synthesis system

Z.A. Baidas, 2000 Appendix F: Papers 314

X

y

z

->.Ki(x cos(z) - y sin(z))

->.Ki(x cos(z) + y sin(z))

- > 0

Circular (mi=1, m2=0)

- • K i \ + y)̂

- • 0

- • z + tan'\y/x)

Circular (mi=1, m2=1)

X

y

z

- •X

- • y + X Z

> 0

Linear (mi=0, m2=0)

X

y

z

> 0

- • z + y/x

Linear (mi-0, m2=1)

X

y

z

-•K2(x cosh(z) - y sinh(z))

-^K2(x cosh(z) + y sinh(z))

> 0

Hyperbolic (mi=-1, m2=0)

X

y

z

-•Kz (Vx^-y^)

•>0

- • z + tan h'̂ (y/x)

Hyperbolic (mi=-1, mg-l)

K, are predefined constants

mi, mz are control parameters

Figure 3: The CORDIC algorithm

Z.A. Baidas, 2000 Appendix F: Papers 315

FLOAT Fl, F2
COMPLEX CI
POLAR PI

Fl = sin(F2)

CI = polar_Co_complex(Pl) -

FLOAT Fl, F2
COMPLEX CI
POLAR PI

T1 = sin_cos_pre (F2, Scbufl)
Fl = sin_cos_pre(Tl,buf1)

CI = polar_to_complex(Pl)

(a) (b)

FLOAT Fl, F2 FLOAT Fl, F2
COMPLEX CI COMPLEX CI
POLAR PI POLAR PI

T1 = sin_cos_pre(F2,&bufl) T1 = sin_cos_pre(F2,&bufl)
Fl = sin_cos_main{T1,buf1) Fl = sin__cos_main (T1, buf 1)

T2 = arg(Pl) mm^ T2 = arg(Pl)
T3 = magn(Pl) T3 = magn(Pl)
T4 = sin(T2) T6 = sin_cos_pre(T2,&buf2)
T5 = cos(T3) T4 = sin__cos_inain (T6, buf 2)
RE(Cl) = T5 * T3 T7 = sin_cos_pre(T3,&buf3)
IM{C1) = T4 * T3 T5 = sin__cos_main(T7,buf3)

RE(Cl) = T5 * T3
IM(Cl) = T4 * T3

(C) (d)

Figure 4: Hierarchical floating point uni t expansion

Z.A. Baidas, 2000 Appendix F; Papers 316

c
3 o o
m
o <
o
Q.

ro

12000

10000

8000

6000

4 0 0 0

2000

Original (pre-optimised) design; (523,33420)

T3. T6 are c egenerate

200 4 0 0 6 0 0

Delay(clock cycles)

800 1000

Figu re 5: Design space t ra jec tor ies , showing the movement of a complex design
as user accuracy r equ i r emen t s change .

Z.A. Baidas, 2000 Appendix F: Papers 317

Step(1) Functions
rnappedto

on-chip

All constraints met: success

Step (2)

Step (4)

Se
func

u

ect
ional
lit

1
Increment
mapping

Estir
area

nate
cost

Further
mappings
possible

No area reduction

Area reduction
1

Implement
and update

costs

Implement
and update

costs

Constraints
not met

All constraints
met: success No further

mappings
possible;

failure

Step (5)

"Estimator" - what will MOODS do with
this implementation of the design?

F igure 6: O n chip opt imisat ion a lgor i thm

Z.A. Baidas, 2000 Appendix F: Papers 318

(a) Optimised for delay

• On-chip table • Off-chip table •CORDIC • Iterative series

1 .7 3 . 4 6 . 8

External ROM (kbyte)

Infinite

(b) Optimised for area

• On-chip table • Off-chip table •CORDIC • Iterative series

E
3
Z

7

6

5

4

3

2

1

0 c
1 .7 3 . 4 6 . 8

External ROM (kbyte)

Infinite

Figure 7: Distribution of functional unit bindings between the three base
techniques as a function of external ROM size.

Z.A. Baidas, 2000 Appendix F: Papers 319

ENTITY quad IS
PORT

END;

(a,b,c
single_root
oukpubl,output2
ready

IN float;
OUT bit;
OUT c omp1ex;
OUT bit

ARCHITECTURE behave OF quad IS
BEGIN

PROCESS
VARIABLE tl : float;
VARIABLE t2 : complex;
BEGIN

ready <= '0';
WAIT FOR 10 ns;
IF (a = t:o_float:(0)) THEN

single_root <= '1';
tl := -c/b;
outputl <= float_to_complex(t:l,ko_float(

ELSE
single_root <= '0';
t2 := sqrt:(b*b - t:o_float(4)*a*c);
oukputl <= (float_to_complex(-b,to_float:
output2 <= (float_to_complex(-b,to_float

ENDIF;
ready <= '1';
WAIT FOR 10 ns;

END PROCESS;

END behave;

0))

: o)
: o)

- t 2)

kk2)
ko.
to

_float(2)
float(2)

'a)
*a)

Figure 8: Quadratic equation solver behavioural description

Z.A. Baidas , 2000 References 3 2 0

References

1. Baker, K.R. - Currie, A.J. - Nichols, K.G.. "Multiple Objective Optimisation in a
Behavioural Synthesis System", lEE Proceedings - G, Vol. 140, No.4 August 1993,
pp. 253-260.

2. Baker, K.R. - Brown, A.D. - Currie, A.J., "Optimisation Efficiency in Behavioural

Synthesis", lEE Proceedings on Circuits, Devices and Systems, Vol. 141, No. 5.
October 1994, pp. 399-406.

3. Brown, A.D. - Baker, K.R. - Williams, A.C., "On-Line Testing of Statically and
Dynamically Scheduled Synthesized Systems", IEEE Transactions on Computer-
Aided Design, Vol. 16, No. 1, January 1997, pp. 47-57.

4. Baker, Keith R., "Multiple Objective Optimisation of Data and Control Paths in a
Behavioural Silicon Compiler", PhD Thesis, University of Southampton, September
1992.

5. Baker, Keith R., "The MOODS Synthesis System - User Manual v2.xx". University
of Southampton, July 1993.

6. "Standard VHDL Reference Manual, IEEE Std 1076-1993", IEEE Catalog No.
SHI 6840, 1993.

7. McFarland, M.C. - Parker, A C. - Camposano, R., "The High-Level Synthesis of
Digital Systems", Proceedings of the IEEE, Vol. 78, February 1990, pp. 301-318.

8. Camposano, R., "From Behavior to Structure: High-Level Synthesis", IEEE Design
and Test of Computers, Vol. 7, No. 5, October 1990, pp. 8-19.

9. Rushton, A., "VHDL for Logic Synthesis", McGraw-Hill, 1995, ISBN: 0-070-09092-
6.

10. Lin, Youn-Long, "Recent Development in High-Level Synthesis", ACM Transactions
on Design Automation of Electronic Systems, Vol. 2, No. 1, January 1997, pp. 2-21.

11. Gajski, Daniel D. - Ramachandran, Loganath, "Introduction to High-Level
Synthesis", IEEE Design and Test of Computers, Vol. 11, No. 4, Winter 1994, pp.
45-54.

12. Micheli, Gionanni, "High Level Synthesis of Digital Circuits", IEEE Design and Test
of Computers, Vol. 7, No. 5, October 1990, pp. 6-7.

13. Camposano, R. - Saunders, L.F. - Tabet, R.M., "VHDL as Input for High Level
S y n t h e s i s I E E E Design and Test of Computers, Vol. 8, No. 1,March 1991, pp. 43-
49.

Z.A. Baidas , 2000 References 3 2 •

14. Eles, Petru - Kuchcinski, Krzysztof - Minea. Marius. "Compiling VHDL into a High-
level Synthesis Design Representation", EURO-DAC 92 : European Design
Automation Conference, Ch. 121, 1992, pp. 604-609.

15. McFarland, M.C. - Parker, A.C. - Camposano, R., "Tutorial on High-Level
Synthesis", Proceedings of the 25th ACM/IEEE Design Automation Conference.
1988, pp. 330-336.

16. Nijhar, T.P.K. - Brown, A.D., "HDL-Specific Source Level Behavioural
Optimisation", lEE Proceedings-Computers and Digital Techniques, Vol. 144, No. 2,
1997,pp.138-144.

17. Nijhar, T.P.K. - Brown, A.D., "Source Level Optimisation of VHDL for Behavioural
Synthesis", lEE Proceedings-Computers and Digital Techniques, Vol. 144, No. 1,
1997, pp. 1-6.

18. Camposano, Raul, "Behavioral Synthesis", Design Automation Conference, Ch. 161,
1996, pp. 33-34.

19. Williams, A.C., "A Behavioural VHDL Synthesis System using Data path
Optimisation", PhD Thesis, University of Southampton, July 1997.

20. De Micheli, Giovanni, "Synthesis and Optimisation of Digital Circuits", McGraw-
Hill, 1994, ISBN: 0-071-13271-6.

21. McFarland, M.C., "Reevaluating the Design Space for Register-Transfer Hardware
Synthesis", IEEE International Conference on Computer-Aided Design, ICCAD-87 -
Digest of Technical Papers, 1987, Ch. 119, pp. 262-265.

22. Brewer, Forrest - Gajski, Daniel, "Chippe: A System for Constraint Driven
Behavioural Synthesis", IEEE Transactions on Computer-Aided Design, Vol.9, No.
7, July 1990, pp. 681-694.

23. Camposano, Raul - Rosenstiel, Wolfgang, "Synthesizing Circuits From Behavioral
Descriptions", IEEE Transactions on Computer-Aided Design, Vol. 8, No. 2,
February 1989, pp. 171-180.

24. Walker, Robert A. - Chaudhuri, Samit, "Introduction to the Scheduling Problem",
IEEE Design and Test of Computers, Vol. 12, No. 2, Summer 1995, pp. 60-69.

25. Xia, C. - Cheng, H.D., "High-Level Synthesis; Current Status and Future Prospects",
Circuits Systems Signal Processing, Vol. 14, No. 3, 1995, pp. 351-400.

26. Paul in, Pierre G. - Knight, John P., "Force-Directed Scheduling for the Behavioral
Synthesis of ASIC's", IEEE Transactions on Computer-Aided Design, Vol.8, No. 6,
June 1989, pp. 661-678.

27. Tseng, Chia-Jeng - Siewiorek, Daniel P., "Automated Synthesis of Data paths in
Digital Systems", IEEE Transactions on Computer-Aided Design, Vol. 5, No. 3, July
1986, pp. 379-395.

Z.A. Baidas, 2000 References

28. Septien, J. - Mozos, D. - Tirado, J.F. - Hermida. R. - Fernandez. M. - Mecha. H..
"FIDIAS: An Integral Approach to High-Level Synthesis", lEE Proceedings -
Circuits, Devices and Systems, Vol. 142, No. 4, August 1995.

29. "Quick Start Guide for Xilinx Alliance Series 1.5", Xilinx, Version 1.5, 1998.

30. "LeonardoSpectrum User's Guide", Exemplar Logic, Inc. Version 1999.1, 1999.

31. "Synergy VHDL Synthesizer and Optimizer Tutorial", Cadence Design Systems,
Version 2.2, June 1995.

32. Baker, Keith R., "Writing Behavioural VHDL for MOODS Synthesis - User Manual
vl.xx". University of Southampton, July 1993.

33. Ru ten bar, Rob A., "Simulated Annealing Algorithms: An Overview", IEEE Circuits
and Devices, Vol. 5, No. 1, January 1989, pp. 19-26.

34. Nahar, S. - Sahni, S. - Shragowitz, E., "Simulated Annealing and Combinatorial
Optimisation", 23rd Design Automation Conference, 1986, pp. 293-299.

35. Kirkpatrick, Scott, "Optimization by Simulated Annealing: Quantitative Studies",
Journal of Statistical Physics, Vol. 34, No. 5/6, 1984, pp. 975-986.

36. Kirkpatrick, S. - Gelatt Jr., C D. - Vecchi, M.P., "Optimization by Simulated
Annealing", Science, 13 May 1983, Vol. 220, No. 4598, pp. 671-680.

37. Metropolis, N. - Rosenbluth, A. - Teller, A. - Teller, E., "Equation of State
Calculations by Fast Computing Machines", Journal of Chemical Physics, Vol. 21,
1087,1953.

38. Williams, A C. - Brown, A.D. - Baidas, Z.A., "Optimisation in Behavioural Synthesis
using Hierarchical Expansion: Module Ripping", In Preparation.

39. Williams, A C. - Brown, A.D. - Baidas, Z.A., "Hierarchical Module Expansion in a
VHDL Behavioural Synthesis System", FDL'98, September 1998.

40. Goldberg, David, "The Design of Floating-Point Data Types", ACM Letters on
Programming Languages and Systems, Vol. 1, No. 2, June 1992, pp. 138-151.

41. "IEEE Standard for Binary Floating-Point Arithmetic, IEEE Std 754-1985", 1985.

42. "IEEE Standard for Radix-Independent Floating-Point Arithmetic, IEEE Std 854-
1987", 1987.

43. Advanced Micro Devices Inc., "IEEE Floating-Point Format", Microprocessors and
Microsystems, Vol. 12, No. 1, 1988, pp. 13-23.

44. Henkel, Hartmut, "Improved Addition for Logarithmic Number system", IEEE
Transactions on Acoustics, Speech, and Signal Processing, Vol. 37, No. 2, February
1989.

Z.A. Baidas, 2000 References 3 2 3

45. Lai, Fang-shi, "A Hybrid Number System Processor with Geometric and Complex
Arithmetic Capabilities", IEEE Transactions on Computers. Vol. 40, No. 8. August
1991.

46. Das, Debasish - Mukhopadhayaya, Krishnendu - Sinha. Bhabani P., "Implementation
of Four Common Functions on an LNS Co-Processor", IEEE Transactions on
Computers, Vol. 44, No. 1, January 1995, pp. 155-161.

47. Coleman, J.N. - Chester, E.I., "A 32-bit Logarithmic Arithmetic Unit and its

Performance Compared to Floating Point", 14th IEEE Symposium on Computer
Arithmetic, Proceedings, Ch. 32, 1999, pp. 142-151.

48. Oberman, Stuart Franklin, "Design Issues in high Performance Floating point
Arithmetic Units", Technical report, Stanford University, Reference No. CSL-TR-96-
711, December 1996.

49. Booth, Andrew D., "A Signed Binary Multiplication Technique", Quarterly Journal
of Mechanics and Applied Mathematics, Vol. 4, 1951, pp. 236-240.

50. ALTawaijry, Hesham - Flynn, Michael, "Performance/Area Tradeoffs in Booth
Multipliers", Technical report, Stanford University, Reference No. CSL-TR-95-684,
November 1995.

51. Bewick, Gray W., "Fast multiplication: Algorithms and Implementation", PhD
Thesis, Stanford University, February 1994.

52. Wilson, J.B. - Ledley, R.S., "An Algorithm for Rapid binary Division", IRE
Transactions on Electronic Computers Vol. 16, 1961, pp. 224-226.

53. Ledely, Robert Steven, "Digital Computer and Control Engineering", McGraw-Hill,
1960.

54. Oberman, Stuart Franklin, "Design Issues in High Performance Floating Point
Arithmetic Units", PhD Thesis, Stanford University, November 1996.

55. Voider, J.E., "The CORDIC Trigonometric Computing Technique", IRE Transactions
on Electronic Computers, Vol. EC-8, 1959,pp.330-334.

56. Walther, J.S., "A Unified Algorithm for Elementary Functions", Spring Joint
Computer Conference Proceedings, Vol. 38, 1971, pp.379-385.

57. Mazenc, Christophe - Merrheim, Xavier - Muller, Jean-Michel, "Computing
Functions cos"' and sin"' Using Cordic", IEEE Transactions on Computers, Vol. 42,
No. 1, January 1993, pp. 118-122.

58. Wong, W.F. - Goto, E., "Fast Evaluation of The Elementary Functions in Single
Precision", IEEE Transactions on Computers, Vol. 44, No. 6, March 1995, pp. 453-
457.

Z.A. Baidas, 2000 References g 2 4

59. Gal, Shmuel - Bachelis, Boris, "An Accurate elementary Mathematical Library for
the IEEE Floating Point Standard", ACM Transactions on Mathematical Software.
Vol. 17, No. 1, 1991, pp. 26-45.

60. Atkinson, Kendall E., "An Introduction to Numerical Analysis", John Wiley & Sons.
1978, ISBN: 0-471-02985-8.

61. Muller, Jean-michel, "Elementary Functions, Algorithms and Implementation".
Birkhauser, 1997, ISBN: 0-817-63990-X.

62. Ligon, Walter B. - McMillan, Scott - Monn, Greg. "A Re-evaluation of the
Practicality of Floating-Point Operations on FPGAs", IEEE Symposium on FPGAs
for Custom Computing Machines Proceedings, Ch .65, 1998, pp .206-215.

63. Li, Yamin - Chu, Wanming, "Implementation of Single Precision Floating Point
Square Root on FPGAs", 5th Annual IEEE Symposium on Field-Programmable
Custom Computing Machines, Ch. 32, 1997, pp. 226-232.

64. Louca, Loucas - Cook, Todd A. - Johnson, Willian H., "Implementation of IEEE
single Precision Floating Point Addition and Multiplication on FPGAs", ", IEEE
Symposium on FPGAs for Custom Computing Machines Proceedings, Ch. 24. 1996,
pp. 107-116.

65. Shirazi, Nabil - Walters, A1 - Athanas, Peter, "Quantitative Analysis of Floating Point
Arithmetic on FPGA Based Custom Computing Machines".

66. Xing, Shanzhen - Yu, William Wing Hong, "FPGA-Based Floating-Point Datapath
Design for Geometry Processing", SPIE Conference on Configurable Computing:
Technology and Application, November 1998.

67. Brunvand, Erik - Novak, Joe H., "Using FPGAs to Prototype Self-Timed Floating-
Point Co-Processors", IEEE 1994 Custom Integrated Circuits Conference, 1994.

68. Scheelen, J., "Floating-Point DSP Primitives for the ASA Silicon compiler".
International Conference on DSP Applications and Technology, Ch. 10, 1991.

69. Kyrloglou, N.A. - Kouforavlou, O.G. - Goutis, C.E., "Number Format conversion:
Algorithm and VLSI Module Generator", Int. J. Electronics, Vol. 73, No. 1, 1992,
pp.145-156.

70. Houelle, A. - Mehrez, H., "On Portable Macro-Cell FPU Generators Using the Fully
754-IEEE Standard", IEEE Transactions on VLSI Systems, Vol. 6, No. 1, 1998, pp.
1749-1754.

71. Aberbour, Mourad - Houelle, Alain - Mehrez, Habeb - Vaucher, Nicolas - Guyot,
Alain, "On Portable Macrocell FPU Generators for Division and Square Root
Operators Complying to the Full IEEE-754 Standard", IEEE Transactions on VLSI
Systems, Vol. 6, No. 1, March 1998, pp. 114-121.

Z.A. Baidas , 2000 References 3 9 5

72. Compan, A. - Debaud, P. - Delorme, V. - Francois, J.A. - Mehrez, H. - Pecheux. F..
"GAF : A Portable Standard-Cell Floating Point Adder Generator Using The CXgen
Function Library", Microprocessing and Microprogramming, Vol. 32, 1991, pp. 637-
644.

73. "COSSAP Design Environment Datasheet", Synopsys, Inc., 1999.

74. "Behavioural Compiler Datasheet", Synopsys, Inc., 1999.

75. "DesignCompilerDatasheet", Synopsys, Inc., 1999.

76. "Datasheet Signal Processing Workstation with Convergence Simulation
Architecture", Cadence Design Systems, 1998.

77. "Datasheet Visual Architect", Cadence Design Systems, 1997.

78. "Datasheet SPW Floating-Point Communications Library", Cadence Design Systems,
1997.

79. Barbara, T., "Finally, Behavioural Synthesis is Production Ready", Computer Design,
Vol. 36, No. 7, July 1997, pp. 57-63.

80. Stiefel, Eduard L., "An Introduction to Numerical Mathematics", Academic Press,
1963.

81. Chance, R.J., "The Effect of Processor Architecture on an Efficient Floating-Point
Table look-up Algorithm", Microprocessors and Microsystems, Vol. 15, No. 8,
October 1991, pp. 411-415.

82. Hahn, Helmut - Timmermann, Dirk - Hosticka, Bedrich J. - Rix, Bernold, "A Unified
and Division-Free CORDIC Argument Reduction Method with Unlimited
Convergence Domain Including Inverse Hyperbolic Functions", IEEE Transactions
on Computers, Vol. 43, No. 11, November 1994, pp. 1339-1344.

83. Hu, Yu Hen, "The Quantization Effects of the CORDIC Algorithm", IEEE
Transactions on Signal Processing, Vol. 40, No. 4, April 1992, pp. 834-844.

84. Kota, Kishore - Cavallaro, Joseph R., "Numerical Accuracy and Hardware Tradeoffs
for CORDIC Arithmetic for Special -Purpose Processors", IEEE Transactions on
Computers, Vol. 42, No. 7, July 1993, pp. 769-779.

85. Spiegel, Murray R., "Theory and Problems of Complex Variables", McGraw-Hill,
1974, ISBN: 0-070-84382-1.

86. Weltner, K. - Grosjean, J. - Schuster, P. - Weber, W.J., "Mathematics for Engineers
and Scientists", Stanley Thornes, 1995, ISBN; 0-859-50120-5.

87. Char,B.W. - Geddes, K.O. - Gonnet, G.H. - Leong, B.L. - Monagan, M B. - Watt,
S.M., "Maple V Library Reference Manual", Springer-Verlag, 1991.

Z.A. Baidas, 2000 References 3 2 6

88. Hennessy, John L. - Patterson, David A.. "Computer Organization and Design, The
Hardware/Software Interface", Morgan Kaufmann, 1994, ISBN: 1-558-60282-8.

89. "Standard VHDL Language Mathematical Package (MATH_REAL and
MATH_COMPLEX), IEEE P1076.2' , 1996.

90. Nhon, T.Q. - Flynn, M., "An Improved Algorithm for High-Speed Floating-Point
Addition", Technical report, Stanford University, Reference No. CSL-TR-90-442,
August 1990.

91. Al-Twaijry, Hesham Abdulaziz, "Area and Performance Optimised CMOS
Multiplier", PhD Thesis, Stanford University, August 1997.

92. Oberman, Stuart F. - Flyyn, Michael J., "Design Issues in Floating-Point Division",
Technical report, Stanford University, Reference No. CSL-TR-94-647, December
1994.

93. Oberman, Stuart F. - Flyyn, Michael J., "An Analysis of Division Algorithms and
Implementations", Technical report, Stanford University, Reference No. CSL-TR-95-
675, December 1996.

94. Oberman, Stuart F. - Flyyn, Michael J., "Division Algorithms and Implementation",
IEEE Transactions on Computers, Vol. 46, No. 8, 1997, pp. 833-854.

95. Churchhouse, R.F., "Handbook of Applicable Mathematics", Vol. 3, John Wiley and
Sons, 1981, ISBN: 0-471-27947-1.

96. Swartzlander, Earl E. [editor], "Computer Arithmetic", Dowden, Hutchinson & Ross
Inc. 1980, ISBN 0-879-33350-2.

97. Mutrie, Mark P.W. - Bartels, Richard H. - Char, Bruce W., "An Approach for
Floating-Point Error Analysis using Computer Algebra", ISSAC 92. Papers from the
international symposium on Symbolic and algebraic computation, 1992, pp. 284-293.

98. Bauer, F.L., "Computational Graphs and Rounding Error", Siam Journal of
Numerical Analysis, Vol. 11, No. 1, March 1974, pp. 87-96.

99. Molenkamp, J.H.J. - Goldman, V.V. - Hulzen, Van, "An Improved Approach to
Automatic Error Cumulation Control", Proceedings of the 1991 international
symposium on Symbolic and algebraic computation , 1991, pp. 414-418.

100. Hulshof, B.J.A. - Van Hulzen, J.A., "Automatic Error Cumulation Control",
EUROS AM 84: International Symposium on Symbolic and Algebraic Computation,
Ch. 37, 1984, pp. 260-271.

101. "The Programmable Logic Data Book", Xilinx, 1998, PN 0010323.

102. Burger, Robert G. - Dybvig, R. Kent, "Printing Floating-Point Numbers Quickly and
Accurately", ACM Sigplan Notices, Vol. 31, No. 5, 1996, pp. 108-116.

Z.A. Baidas , 2000 References 3 2 7

103. Wakerly, John F., "Digital Design Principles and Practices", 2nd ed.. Prentice Hall.
1994, ISBN: 0-130-59973-5.

104. Langet, S.H., "A Comparison of the Floating-Point Performance of Current
Computers", Computers in Physics, Vol. 12, No. 4, July/August 1998, pp. 338-345.

105. Goldberg, David, "What every computer scientist should know about floating-point
arithmetic", ACM Computing Surveys, Vol. 23, No. 1, March 1991, pp. 5-48.

106. Alfred, V. Aho - Jeffrey, D. Ullman, "Principles of compiler design", Addison-
Wesley, 1977, ISBN: 0-201-00022-9.

107. Kreyszig, Erwin, "Advanced Engineering Mathematics", 7th ed., Jhon Wiley & Sons,
1993, ISBN: 0-471-59989-1.

108. Press, W.H. - Teukolsky, S.A. - Vetteling, W.T. - Flannery, B.P., "Numerical Recipes
in C: The Art of Scientific Computing", Cambridge University Press, 2nd edition,
1992, ISBN: 0-521-43108-5.

109. Davenport, J.H. - Siret, Y. - Tournier, E., "Computer Algebra Systems and
Algorithms for Algebraic Computation", Academic Press, 1988, ISBN: 0-122-04230-
1.

110. "3DN0W Technology Manual", Advanced Micro Devices, Inc., 1998.

111. Thakkar, Shreekant - Huff, Tom, "The Internet Streaming SIMD Extensions", Intel
Technology Journal Q2, 1999.

112. Dewar, R.B.K. - Smosna, M., "Microprocessors a Programmer's View", McGraw-
Hill, 1990, ISBN: 0-070-16638-2.

113. Milton, D.J.D., "Memory Allocation within Hardware Synthesis", Transfer Thesis,
University of Southampton, August 1999.

