University of Southampton

Analysis and Control
of Linear Repetitive Processes

by
Sharon Elizabeth Benton

A thesis submitted for the degree of
Doctor of Philosophy
in the
Faculty of Engineering and Applied Science
Department of Electronics and Computer Science

July 2000



UNIVERSITY OF SOUTHAMPTON
ABSTRACT
FACULTY OF ENGINEERING AND APPLIED SCIENCE
ELECTRONICS AND COMPUTER SCIENCE
Doctor of Philosophy

ANALYSIS AND CONTROL OF LINEAR REPETITIVE PROCESSES
by Sharon Elizabeth Benton

Repetitive processes are a distinct class of 2D systems of both practical and algo-
rithmic interest, with a growing list of application areas. Their main identifying
characteristic is a series of sweeps, termed passes here, through a set of known dy-
namics with explicit interaction between successive outputs, or pass profiles, as the
process evolves. As a result of the explicit dependence of the process dynamics
on two independent variables (in the along the pass and pass to pass directions)
existing theory cannot be applied. This fact, together with the growing list of appli-
cations areas, has prompted an ongoing research programme into the development

of a ‘mature’ systems theory for these processes.

As part of this programme, this thesis gives new results on the analysis and con-
trol of the subclasses known as differential and discrete linear repetitive processes.
Novel results are presented in three separate research areas. Firstly new stability
results are presented, including the further development of a two-dimensional Lya-
punov equation based approach. These results provide computable information of
performance which is not available from alternative stability characterisations. An
initial study of robustness analysis is provided, including a discussion of a poten-
tially promising new approach to stability margin analysis. Preliminary results on
the design of controller structures are given, including the use of simple structure
control schemes and fast sampling considerations. Finally some areas for short to

medium term future research are discussed.
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Nomenclature

o Real constant pass length, a > 0

S(Fy, Wy, Ly) Linear repetitive process of constant pass length o
EM  Banach product space, = E, X E, X - -+ x E, (M times)
S(Eo, Wa, La)a>a, Extended linear repetitive process

k Pass index

t, p  Differential /discrete along the pass variable

zi(t) n x 1 State vector onpass k, 0 <t <a, k>1

m X 1 Output pass profileon pass k, 0 <t <, k>1

[ x 1 Vector of control inputs on pass k£, 0 <t <a, k>1
ri(t) m x 1 External reference vector on pass k, 0 <t <, k> 1
(t) m x 1 Error vector on pass k, 0 <t <, k>1

M Memory length of the process, M >'1

Lp(A, B,C) Derived conventional linear system of S(E4, Wa, Ls)

LQ(A, B;_;,C,D;) 5" Associated conventional linear system, 1 < j < M,
of S(Ey, Wy, La)

) Augmented plant matrix of S(Fy, W, L)

7% Set of ordered pairs of integers, = {(¢,7) : 4,5 >0, 1,5 € Z}
Z,  Set of nonnegative integers

R™  Euclidean n-space of real n x 1 vectors

R,  Set of positive real numbers
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Nomenclature

viii

C Set of complex numbers

X9 4" Cartesian product of space X

X4 Extended space of X¢

S(Z4, E) Linear space of all sequences on E, i.e. the functions f : Z, — E
B(Z., E) Subspace of S(Z., E) of all bounded functions

L7[0, o] Product space of square summable functions over [0, o]

270, ] Sequence space of real square summable m x 1 vectors of length o
U Open unit disc, {z : |z] < 1}

U Closed unit disc, {z : |z] < 1}

U°  Closed unit bidisc, {(z1,2) : || €1, |2] <1}

A& B Direct sum of A and B

A ® B Kronecker product of A and B

A >0, A>0 A is positive definite/positive semi-definite

A* Complex conjugate transpose of A

PDH Positive Definite Hermitian matrix

||| denotes both the norm on F, and the induced operator norm

IlAll, Nonnegative matrix associated with A

r(-)  Spectral Radius of its argument

o(Ly) Set of spectral values of L, termed the spectrum of L,

o(-) Largest singular value of its argument
a(-)  Smallest singular value of its argument
L Laplace Transform operator

S[]  Stacking operator

Vo Volterra operator B(Zy,E) — B(Z,,E)
Nz(f) Total variation of f

PrL Natural projection of L € X¢ into X(% be

viil



Chapter 1
Introduction

The concept of a repetitive process (at the time termed multipass processes) was
introduced in the 70’s as a result of research by the University of Sheffield into
looking at the problems associated with long-wall coal cutting processes (Edwards,
1974; Boland and Owens, 1980; Edwards and Owens, 1982). Since the decline of
the coal mining industry in the UK, attention in recent years has been focussed on
application areas where analysis from a repetitive process perspective has advantages
over available alternatives. These so-called algorithmic examples include the use of
repetitive process theory in the algorithmic solution of nonlinear dynamic optimal
control problems using the maximum principle (Roberts, 1994b; Roberts, 1996;
Roberts, 2000). In addition, a recent important development has been the fact
that the theory can be used within the algorithmic analysis of iterative learning
control schemes - i.e. those where a procedure is repeatedly performed with a view
to sequentially improving accuracy. Significant results on exploiting these links can
be found in, for example, (Amann, 1996; Amann et al., 1996; Amann et al., 1998;
Owens et al., 2000).

Repetitive processes have been defined (Edwards, 1974) as those involving the pro-
cessing of a material or workpiece by a sequence of sweeps, termed passes, of the
processing tool. On each pass, an output, or pass profile, is produced. One of the key
characteristics of repetitive processes is that the output yx(t), 0 <t < «, (where ¢ is
the temporal (or spatial) independent variable and « is the pass length) generated
during the k" pass acts as a forcing function on the next pass, and hence contributes

to the dynamics of the new pass profile y,41(¢), 0 <t < «a, £ > 0. It is this inter-
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action between successive pass profiles which leads to the unique control problem
associated with these processes in that oscillations can occur in the output sequence
of pass profiles which increase in amplitude from pass to pass. In the long-wall coal
cutting example, where the main objective is to maximise coal extraction without
penetrating the stone-coal interface, this can be seen via the presence of undulations
in the newly cut coal floor, which means that cutting operations (i.e. productive
work) must be suspended to enable their manual removal. This problem is one of
the key factors behind the ‘stop/start’ cutting pattern of a typical working cycle
in a coal mine. This behaviour can be easily generated in simulation studies and
experiments on scaled models of industrial processes such as long-wall coal cutting
- see (Smyth, 1992) for the details.

Attempts to control these processes using standard, termed 1D, techniques in general
fail, since they ignore the inherent two-dimensional nature of the processes, i.e.
information is propagated in two different directions - along a given pass (in the
¢t direction) and from pass to pass (in the k& direction). This has motivated the
development of a rigorous stability theory for linear repetitive processes by Rogers
and Owens (Owens, 1977; Rogers and Owens, 1992b).

In the most general case, a repetitive process has nonlinear dynamics and a variable
pass length. Clearly to analyse such a process would be a formidable task. Hence
research to date has been limited to processes with linear dynamics and a constant
pass length o with the justification that the majority of practical examples fall into
this category. A mathematical formulation of a linear repetitive process with con-
stant pass length o has been proposed in (Owens, 1977) based on an abstract model
in a Banach space setting, which includes all previously studied examples as special
cases (but also allows for the consideration of those with a potentially more com-
plex structure) and is the basis of the rigorous stability theory for these processes.
In particular, this model admits analysis of differential and discrete subclasses of
processes which are of direct industrial and algorithmic interest and which are the

subject of this thesis.

The aim of this thesis is to make progress in the development of a ‘mature’ systems
theory for linear repetitive processes with a constant pass length a. In particular,
the areas of stability (including the further development of a Lyapunov equation
based approach), robustness and controller structure design have been investigated,

each of which are commented on below. The results presented form part of an
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ongoing research program by Rogers, Owens, Galkowski et al. and a summary of
current progress can be found in (Owens and Rogers, 2000; Galkowski et al., 2000;
Rogers et al., 2000a).

1.1  Stability

Chapter 3 introduces the rigorous stability theory for linear repetitive processes with
a constant pass length o which is based on an abstract model in a Banach space
setting. Here it is demonstrated how two distinct concepts exist, namely asymptotic
stability and stability along the pass, which is not surprising since a repetitive pro-
cess is governed by two independent variables. It is shown how asymptotic stability
is a relatively weak definition of stability and, except in a few very special cases
when it is all that is required, or in fact all that is achievable, it is the stronger
condition of stability along the pass that is generally needed for acceptable systems

performance.

Using techniques from functional analysis, the theory of Rogers and Owens is ini-
tially presented for the general abstract representation of a linear repetitive process
with constant pass length « and is subsequently extended to the differential and dis-
crete subclasses of processes which are the subject of this thesis. Here it is stressed
how the accurate determination of process boundary conditions (termed ‘simple’
or ‘dynamic’ in chapter 2) is vital for correct stability classification. In fact, the
misclassification of dynamic boundary conditions as simple could result in an unsta-
ble process being accepted as stable. This is a key distinguishing feature of linear
repetitive processes and is a major reason why they cannot be analysed by direct ap-
plication of standard Roesser/Fornasini-Marchesini based theory. A summary of the
current situation in the research program into dynamic boundary condition analysis

is given in (Galkowski et al., 2000).

As an immediate consequence of stability along the pass of differential and discrete
processes, after a ‘sufficiently large’ number of passes the dynamics of the process can
be replaced by those of a 1D stable system. Clearly strong computable information
on the rate of approach of the output sequence of pass profiles to this so-called limit
profile would be of interest, in addition to bounds on the ‘error’ y; — y, on a given
pass. Two possible routes are available for obtaining these performance predictions

(which are not available from the standard Nyquist like stability tests), namely

3
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adopting a two-dimensional Lyapunov equation based approach (see chapter 4) or
using time domain (or ‘simulation-based’) tests. It is shown how for the discrete
subclass of processes the standard test for stability along the pass involves the
computation of the eigenvalues of a potentially large dimensioned matrix for all
points on the unit circle in the complex plane. Here, new tests are introduced for
this subclass which replace these computationally intensive conditions with the one-
off evaluation of the eigenvalues of a matrix with constant entries. The resulting
conditions are sufficient in nature only, but this potential conservativeness is offset by
the availability of performance measures at no extra computational cost. The theory

presented in these sections is novel and provides the basis for the paper (Benton
et al., 1998b).

Within chapter 2 it is illustrated how certain subclasses of linear repetitive processes
can be written in the form of standard 2D state-space representations. Here links be-
tween the BIBO stability of these Roesser/Fornasini-Marchesini state-space models
and the stability along the pass of linear repetitive processes are made, which allow
the transfer of certain results and ideas between the two areas. Results obtained

from exploiting these links can be found in section 3.8.

Finally, within this chapter on stability, a Volterra operator approach to stability
analysis is introduced. These relatively new results indicate that the powerful theory
of Volterra operators has a significant role to play in the analysis of discrete linear

repetitive processes, and hence is an area where future research effort should be

directed.

1.2 Lyapunov Equations

As a result of the ‘equivalence’ between the BIBO stability of 2D systems described
by the Roesser model (and hence the Fornasini-Marchesini model) and the stability
along the pass of discrete linear repetitive processes which is discussed in chapter 3,
many well known tests available for the stability analysis of 2D linear systems may

be applied here.

Chapter 4 considers the extent to which a Lyapunov equation based approach to the
stability analysis of linear repetitive processes may be applicable. A review of the

literature to date reveals that Lyapunov equations for systems with two independent
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time variables has been approached in essentially two different ways:

(i) the so-called 1D Lyapunov equation approach, which is termed 1D since the
equation has an identical structure to that for discrete linear time-invariant
systems, but with defining matrices which are functions of a complex variable;

and

(i1) the so-called 2D Lyapunov equation approach, which is defined in terms of

matrices with constant entries.

Initially, the 1D Lyapunov equation approach is introduced, here for the differential
subclass of processes (the equivalent treatment for the discrete case can be found in
any of the cited references within the main text) with simple boundary conditions.
It is shown how the resulting condition based on this equation is found to be both
necessary and sufficient for stability along the pass, and can be implemented via
computations on matrices with constant entries. This test hence serves as an alter-
native to the stability along the pass tests of chapter 3, in particular the potentially
computationally intensive Nyquist-like tests. In addition, it is shown how the tests
provide computable information on the rate of approach of the output sequence
of pass profiles to the limit profile on a given pass, and hence provide an alterna-
tive route to obtaining measures of performance prediction to the simulation-based

stability tests of chapter 3.

Finally, in this part of the chapter, a 1D Lyapunov equation is developed for a
subclass of differential processes with a particular type of dynamic boundary condi-
tions (which are of special relevance to the area of delay-differential systems theory).
Strict positive realness based tests to compute positivity are proposed which reduce
the problem to a 1D problem by showing that the (necessary and sufficient) stability
along the pass condition is equivalent to testing for positive realness of a certain 1D
rational transfer-function matrix. The analysis presented here has been presented
in (Benton et al., 2000c) and (Benton et al., 2000d).

In section 4.6 and onward, the so-called 2D Lyapunov equation approach to stabil-
ity analysis is developed. The theory presented here provides the subject for the
paper (Benton et al., 1999). Here it is shown how the existence of a positive definite
solution pair to the 2D Lyapunov equation is, in general, only sufficient for stability
along the pass. A counter-example is given which demonstrates that a stable along
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the pass process does not necessarily have the strictly bounded real property and
hence doesn’t satisfy the 2D Lyapunov equation. Two special cases are discussed,
however, where the existence of a positive definite solution pair to the 2D Lyapunov

equation is both necessary and sufficient for stability along the pass.

In section 4.7, a 2D Lyapunov equation is developed for a 2D Fornasini-Marchesini
state-space model of the dynamics of a discrete linear repetitive process which in-
volves the computation of generalised eigenvalues. The analysis presented here is
the subject of (Benton et al., 2000a).

Despite the apparent conservativeness of the sufficient but not necessary nature of
the 2D Lyapunov equation, this approach has a potentially major role to play in
the analysis of discrete linear repetitive processes in terms of stability margins and
robust stability theory, which is discussed in chapter 5. In addition, here it is shown
how the equation provides measures on performance along a given pass which is not
available from Roesser/Fornasini-Marchesini equivalent descriptions (for the discrete

subclass of processes).

1.3 Robustness

When analysing a process, it is important to not only determine stability, but also
to obtain some indication of as to how robust the system is to perturbations in
the system. In chapter 5 the subject of robustness of linear repetitive processes is
investigated. As a measure of ‘how stable’ a process is, or rather ‘how far’ from
being unstable, the subjects of allowable parameter variation bounds and stability

margins are considered.

Given a stable along the pass discrete process, the first of these areas considers how
the stability of the process is affected by perturbations in the matrices which define
the state-space model. Two types of perturbation are looked at within this thesis:

(1) structured, where the perturbation model structure and bounds on the indi-
vidual elements of the perturbation matrices are known; and

(i) unstructured, where at most a spectral norm bound on the perturbation is

known.
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The aim of the analysis presented has been to find methods of determining the min-
imum norm of the perturbation matrix A® such that the perturbed process remains
stable along the pass. A discussion of available methods is given. In section 5.4, it
is indicated how, in many cases, a good lower bound for this often suffices. Here it
is shown how the existence of a positive definite solution pair to the 2D Lyapunov
equation of chapter 4 can be used as a starting point to obtaining such lower bounds.
This application area of the 2D Lyapunov equation offsets some of its inherent con-
servativeness due to its sufficient only for stability along the pass nature, and this

analysis can be found in (Benton et al., 1999).

To conclude the work performed on parameter variations, robustness analysis is
presented using a Fornasini-Marchesini representation of the process dynamics to

give various bounds on the minimum norm of the matrices of both structured and

unstructured perturbations.

Stability margins give an indication as to the extent to which the ‘singularities’ of
a stable along the pass process may be moved before the process becomes unstable.
Given a stable along the pass process, the stability margin is defined as the shortest
distance between the singularities of the process and the boundary of the stability
region - in the case of discrete linear repetitive processes, the boundary of the unit
bidisc. Different methods for evaluating stability margins are discussed within the
chapter, and once again, it is indicated how a 2D Lyapunov equation based approach

may be used to provide good lower bounds for the margins.

Finally, in section 5.9 some very recent results on the definition of a pole of a
multidimensional system using the behavioural approach are interpreted in terms of

discrete linear repetitive processes.

1.4 Controller Structures

Repetitive processes clearly introduce control problems which are outside the scope
of existing 1D (feedback control) theory, and the question of when and under what
conditions does a basic physically realisable stabilising controller exist is compli-
cated by the fact that the process dynamics explicitly depend on two independent

complex variables.
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A general control problem can be formulated with the following aims:

(i) to define objectives;
(ii) to specify control structures; and

(iii) the development of design algorithms (ideally within a computer aided control

system design environment).

The main focus within this chapter is (ii) above, a consideration of the controller
structures available for these processes - further details of progress made in (i) and
(i11) above can be found in, for example, (Smyth, 1992; Smyth et al., 1994).

A basic consideration of the sweeping action of information propagation, and hence
the set of ‘causal’ information, indicates that repetitive process controller structures

fall into two distinct categories:

(1) those which explicitly use information from the current pass only - so-called

memoryless controllers; and

(ii) those which explicitly use information from the current pass and/or previ-
ous pass profiles, state vectors and input vectors - so-called controllers with

memaory.

Memoryless schemes (and, in particular, so-called point controllers which use data
from the current time instant on the current pass only) clearly have the simpler
structure in terms of data to be stored /logged, and hence should be fully investigated
prior to the consideration of those with a potentially more complex structure (i.e.

those in class (ii) above or alternatives).

Differential and discrete linear repetitive processes clearly have strong structural
links with 1D linear systems (see chapter 2 for further details of these links), and
hence the first attempt at controller design for these processes has been to exploit
these links wherever possible and gauge to what extent 1D structures may be applied
here. Section 6.2 introduces (current point) state feedback policies. These schemes
are, in general, only implementable with an observer structure, hence output/error-
actuated schemes are also given. In general these 1D control actions fail, since repet-

itive processes introduce control problems which are inherently two-dimensional in
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nature. In section 6.4 and onward, however, it is shown that for one subclass of
practical interest - a class of so-called benchmark problems - a 1D control action
is all that is required for acceptable systems performance, provided a high enough
gain is applied. The general philosophy adopted in this work is in the spirit of (Se-
bek and Kraus, 1995) for other classes of 2D linear systems, i.e. the use of ‘simple’
structure controllers, and the novel analysis presented here provides the basis for the
paper (Benton et al., 1998a). The work replaces the necessary and sufficient condi-
tion on gain for stability along the pass by a sufficient but not necessary alternative.
This potential conservativeness is offset by the availability of strong information on
performance along a given pass from this result at no extra computational cost,
which is not available from Nyquist-like alternatives. Two refinements to the work

are also presented, thus extending the range of application of the theory.

When one or more of the control objectives cannot be met by a current pass con-
troller, one way forward is to look at controllers with memory. Within this chapter,
an example of a memoryless linear state feedback law with proportional repetitive
minor loop compensation is introduced. Here, it is demonstrated how the applica-
tion of this type of structure to a class of benchmark problem can successfully give

a solution to the so-called repetitive systems disturbance decoupling with stability

problem.

In section 6.8, discrete processes are considered. It is shown how a discrete linear
repetitive process can be regarded as being derived from a differential process under
fast sampling conditions. It can be seen that these conditions give rise to ‘high
performance’ control for one subclass of practical interest, and this analysis provides
the basis for (Benton et al., 2000b).

Finally, an approach to controller design using the 2D Lyapunov equation of chap-
ter 4 as a starting point is given in section 6.9. Here it is shown how the equation
is used in the design of a current pass state feedback law with ‘feedforward’ of the
previous pass output action (which is an example of a controller with memory), as a
result of which the 2D Lyapunov equation is used as a suflicient condition for closed

loop stability along the pass.



Chapter 2

Background

2.1 Introduction

In the most general case, a repetitive process has nonlinear dynamics over a finite,
but variable, pass length. To analyse such a process would clearly be a formidable
task. With this motivation, research in this area to date has been restricted to linear
processes over a fixed finite pass length, with the justification that the vast majority

of previously studied practical examples fall into this category.

Within this chapter, the models of linear repetitive processes used within the analysis
presented in this thesis are formally introduced. Initially, a rigorous mathematical
representation of linear repetitive processes with a constant pass length « is pre-
sented, which is then used as the basis for the stability theory introduced in chapter 3
and onward analysis. This theory applies to all examples of processes with linear
dynamics and a constant finite pass length, including the subclasses of so-called
differential and discrete linear repetitive processes which are the main subject of
this thesis. Further industrial and algorithmic examples are briefly introduced to
give an indication of possible future areas of application of the theory. It is shown
how linear repetitive processes assume a two-dimensional nature and hence, in the
stability analysis and the formulation of physically meaningful control policies, one
possible way forward is to attempt to exploit structural links with 2D linear sys-
tems described by well known state-space models and with standard, termed 1D
here, linear systems. With this motivation, links are drawn between linear repeti-

tive process theory and, in particular, state-space model based approaches to these

10



2 Background 11

2D systems. Finally, a 2D transfer-function based approach is presented which is
used as the basis for some of the stability tests/controller design methods of the

subsequent chapters.

Prior to the introduction of formal mathematical representations, a brief overview
of ‘how the processes actually work’ is given, with the long-wall coal cutting pro-
cess referred to by way of a physical example. Long-wall coal cutting is the most
commonly encountered method of extracting coal from deep cast mines in Great
Britain, and has the basic operation, as illustrated in figure 2.1, of a coal cutting
machine being hauled along the entire length of the coal face (up to 300m in some
mines) by resting on the so-called armoured face conveyer - a collection of loosely

joined steel pans which rests on the newly cut floor profile.

Stone/Coal Interface
Cut Roof

Stone
Coal Seam

Floor Sensor —_—

4 -,

e Conveyor

—#-

Interface
Cut Floor

¥
1
[
I
[
t
1
1
(
i
[

—

! Yr41(t)

P X ‘ Along Face Direction

Figure 2.1: Side Elevation of a Long-wall Coal Cutting Installation

These machines generally cut in one direction only (left to right in figure 2.1) -
more advanced bidirectional cutting is only really feasible in very rich seam mines
- and are hauled back in reverse at high speed for the start of the next sweep, or
pass, of the coal face. Between passes, the conveyer is snaked forward hydraulically
so that it now rests of the fioor of the profile produced during the previous pass.
An idealised model of the process (see for example (Rogers and Owens, 1990a) for a

11
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detailed treatment) is based on the geometry shown in figure 2.2, which immediately

confirms that this long-wall coal cutting example is indeed a repetitive process.

New Face
| ; , Face Advance
; Direction
Sensor AN Cutting: Drum Old Face
=— .
Conveyor Machine Body — 5
X .

Along Face Direction

Figure 2.2: Plan of a Long-wall Coal Cutting Installation

Suppose now that « denotes the constant finite pass length (i.e. the total length
of the coal face being mined) and y;.1(¢), 0 < ¢ < «, the height of the stone-coal
interface above a fixed datum at ‘point’ ¢ along pass k + 1, £ > 0. Then, with the
further assumption that the conveyer moulds itself exactly on the newly cut floor
profile (the so-called rubber conveyer assumption), a simple model of the process

dynamics is

Yn1(t) = —k1 Y1 (t — X) + k2 ye(t) + k1 rpea (2)

X>0, 0<t<a, k>0 (2.1)
Here on pass k, ri(¢) is a new external variable taken to represent desired floor
coal thickness, k; and ks, are positive real scalars and X is the transport lag (time
delay) by which the sensor lags the centre of the cutting drum in the along the pass
direction. To complete the process description, the following initial conditions can

be imposed without loss of generality,

Figure 2.3 gives a representation of the response of (2.1) (with k; = 0.8, ks =1, X =
1.25 and a = 10) over the first four passes to the conditions

re+(t) = =1 and yo(t) =0, 0<t<10, k>0, (2.3)

12
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i.e. a downward unit step applied at ¢ = 0 on each pass and a zero initial pass profile

(figure based on simulation study given in (Rogers and Owens, 1992b)).

Figure 2.3: Representation of Dynamics of (2.1)-(2.2) under Conditions (2.3)

The point to note in figure 2.3 is that, although the first profile is an acceptable
‘classical’ response to a downward unit step input, oscillations are present in suc-
cessive pass profiles which increase in amplitude in the pass to pass direction, and
clearly a strong control action is required. This feature is caused by the interaction
between successive pass profiles and illustrates the essential unique control problem

associated with linear repetitive processes.

In abstract terms, a linear repetitive process can be visually represented, as shown
in figure 2.4, by a set of two axes where the horizontal axis represents the time or
distance along each pass and the vertical axis represents the pass number. The time
axis can be measured in continuous or discrete variables, but the pass number is
always a discrete measure. Now, since we are looking at processes with a constant
pass length «, the time/distance axis is limited, as shown in figure 2.4, a repetitive
process is a continuous-discrete or discrete-discrete system which is limited in one

direction.

Associated with each point in the grid are the states, zg(¢), the inputs u;(¢) and the

13
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Pass Number

Time/Distance

Figure 2.4: Two-Dimensional Nature of a Repetitive Process

outputs yi(¢). Initial conditions, in the simplest possible situation (see later for a
further discussion of this point) are specified at ¢ = 0 on each pass and the initial

pass profile is given (on the k = 0 axis).

So, on a given pass k, the process operates until ¢ = « (i.e. the end of the pass is
reached). The process then resets back to ¢ = 0, all states are reset by the initial
conditions, the pass number is iterated to k + 1 and the procedure repeats. Note
that it is this passing movement through the positive quadrant which defines the

causality of the process in the ‘obvious intuitive’ sense.

In terms of the long-wall coal cutting example, the finite length repeatable nature of
the process is clearly seen when, at the end of a pass, the cutting machine is hauled
back in reverse to the start of the pass, where it rests on the newly cut floor profile

ready for the start of the next sweeping action.

The sweeping motion is termed ‘unidirectional operation’ in the sense that the rel-
ative motion between the tool and the material is processed in one direction only.
(Edwards, 1974) discusses linear repetitive processes with a bidirectional sweeping
action, where the material is processed in each direction alternatively. The differ-
ence here is that, within these so-called ‘record and reverse’ processes, the along the
pass variable switches from ¢ to o — ¢ at the beginning of each pass. Since all re-
search to date (and the vast majority of practical examples) has been into processes

falling into the former category, processes with a bidirectional sweeping action are

14
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not considered within this thesis.

A unique feature of a repetitive process is that the output y(¢) on pass & is explicitly
effected by a finite number of previous pass profiles. In the simplest situation, the
output at point B in figure 2.4 acts as a forcing function on and hence contributes to
the dynamics at point A. Processes with this feature have the so-called unit memory
property. In the situation where it is the previous M pass profiles which contribute to
the current one the process is called non-unit memory, where the integer M, M > 1,

is termed the memory length of the process.

In the long-wall coal cutting example, the ‘interaction between successive profiles’
occurs in the form of oscillations caused by the machines weight as it comes to
rest on the newly cut coal face ready for the start of the next pass along the coal
wall, resulting in severe undulations in the newly cut floor profile (as illustrated in
figure 2.3). This physical behaviour illustrates the unique control problem associated
with these processes, namely the possible presence of oscillations in the output
sequence of pass profiles, due to pass profile interaction, which increase in amplitude

from pass to pass.

2.2 Original Approach to Stability Analysis

The first attempt at analysis of repetitive processes (then termed multipass pro-
cesses) was by Edwards in the late 60’s/early 70’s as the result of research into the
vertical steering of a long-wall coal cutting machine (Edwards, 1974). The original
approach was to convert the output sequence of pass profiles {y;(t) }x>1, 0 <t < a,
to a single pass, infinite length output y(v), 0 < v < +oo, described by a differ-
ential/algebraic delay system in which the relationships between the variables are
expressed only in terms of v. This technique expresses the process as a function of

the single coordinate v, where, given the constant finite pass length «,
v=(k—1)a+t = total pass distance traversed up to the point (k,t), (2.4)

and hence admits stability analysis by any of the well known classical techniques. In
particular, the standard inverse Nyquist stability criterion was utilised in (Edwards,
1974) to assess stability of examples of repetitive processes such as long-wall coal

cutting, ploughing and certain metal rolling operations.

15
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It was observed in (Owens, 1977), however, that this modelling approach will almost
always end in failure since it neglects the fact that the initial conditions are reset
at the beginning of each pass (the x41(0) = d41 pass initial conditions) and the
essential finite length repeatable nature of the processes, i.e. two of the inherent

characteristics of repetitive processes.

2.3 A General Abstract Representation

To remove these deficiencies, a general abstract representation has been proposed by
Edwards and Owens (Owens, 1977, Edwards and Owens, 1982) and subsequently
developed by Rogers and Owens (Rogers and Owens, 1992b) with the following

essential features,

(i) retention of initial conditions on each pass, and

(i) treatment of all previously studied examples as special cases, with the provision

for inclusion of those with a potentially more complex structure.

In the most general case, each pass k is characterised by a pass length «y, which
may vary from pass to pass, and nonlinear dynamics (see, for example, (Rogers
and Owens, 1992b) for the details). To analyse such a process would clearly be a
formidable task. This difficulty is avoided here by noting that the vast majority of
processes of practical interest studied to date are of constant pass length with linear

dynamics. Hence from this point onwards attention is restricted to linear processes

with o =, £ > 0.
It is clear that any representation of a linear repetitive process must include the
following unique characteristics (which have been illustrated in figure 2.4),

(i) a number of passes through a known set of dynamics,

(ii) an initial pass profile yy(¢) defined over 0 <t < q,

(iii) each pass subject to its own boundary conditions, disturbances and control

inputs, and

(iv) explicit interaction between successive passes.

16
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The general abstract representation of a linear repetitive process with constant pass

length o can now be defined as follows,

Definition 2.1 (General Abstract Representation) (Edwards and Owens,
1982; Rogers and Owens, 1992b) A linear repetitive process S(Eq, Wy, La) of con-
stant pass length o > 0 consists of a Banach space Eq, a linear subspace W, of E,,
and a bounded linear operator L, mapping E, into itself. The system dynamics are

described by linear recursion relations of the form
Yr+1 = La yp +bey1, k20, (2.5)

where y, € Ey 1s the pass profile on pass k and by, € Wy, k > 0. Here the term
Loy represents the contribution from pass k to pass k+1 and by.; represents initial

conditions, disturbances and control input effects on pass k + 1.

In what follows, ||-|| is used to denote both the norm on E, and the induced operator

norm.

Processes described by (2.5) have the so-called unit memory property. In other

words it is the previous pass only which explicitly contributes to the dynamics of

the current pass.

Repetitive processes also exist where the current pass dynamics are a function of
the independent inputs/disturbances to that pass and a finite number of previous
pass profiles. A practical example of such a process occurs in certain classes of
bench mining systems intended for use in more advanced ‘relatively rich’ mines
where (typically) M lies in the range 20 to 50. A full description of the model
of this example together with a complete stability characterisation for this class of
processes is presented in (Rogers and Owens, 1992b). In this situation the process is
termed non-unit memory and the dynamics can be represented by linear recursion

relations of the form
M
Yh1 = Z L Yrsr—5 + biga, (2.6)
j=1

where L7, 1 < j < M, is a bounded linear operator mapping F, into itself, y; €
Eo, k21— M, by € W, C E, and the integer M (as noted previously) is the

memory length of the process.

17
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Note that if M =1, i.e. if the process is unit memory, then (2.6) reduces to (2.5)
(with Lo := L), and hence (2.6) can be regarded as the natural non-unit memory

generalisation of (2.5).

It should also be noted that the non-unit memory process (2.6) can be written in

the ‘unit memory’ form (2.5) by considering the stacked vector
T T 1T
Vi = [yk+2—Ma Tty yk+1] (2.7)

to be a pass profile in the Banach product space EX = E, X Ey x -+ x E, (M

times). Then the non-unit memory process (2.6) can be written as

YIH-I - f/a Yk + Bk—f—l (28)
where
0 I 0 0
Lo = E e 2.9
T § (29)
LM LM~1 . Ll
and
~ T T
bk+1 = [Oa T bk—i—l] : (210)

Hence all results obtained for the unit memory abstract representation can be im-

mediately generalised to the non-unit memory case.

2.4 Two Subclasses of Interest

The general abstract representation of section 2.3 admits all previously studied ex-
amples as special cases, but also allows those with a potentially more complex struc-
ture to be considered. To illustrate the generality of this representation, two special
subclasses are introduced which are of both direct industrial and algorithmic rele-

vance, and which form the subject of this thesis.

Section 2.4.1 introduces so-called differential linear repetitive processes, where the
dynamics over a given pass evolve as a function of a continuous variable defined over
the pass length, a. It should be stressed that this subclass of processes is distinct

18
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from the class of so-called continuous-discrete 2D systems reported in the literature
(for example in (Kaczorek, 1996; Kaczorek, 1998)), in that, although the pass index

is always an unlimited discrete variable, the continuous variable is finite in duration.

Discrete linear repetitive processes are introduced in section 2.4.2. Here the dy-
namics along a given pass evolve as a function of a discrete variable and, as such,
can be thought of as the discrete analog to the differential processes presented in

section 2.4.1.

2.4.1 Differential Processes

A differential non-unit memory linear repetitive process with constant pass length
« and memory length M is described by the following state-space model over 0 <
t<a, k>0,

M
E(t) = Az (8) + Bugpa(t) + > Bjoy Yesa—j(£)
j=1

M
Yir1(t) = C wrg1 () + > Dj yesr—j(t). (2.11)
7j=1
Here on pass k, zx(t) is the n x 1 state vector, yx(¢) is the m x 1 output pass profile

vector and wuy(t) is the [ x 1 vector of control inputs.

To complete the process description, it is necessary to specify the ‘boundary con-
ditions’, namely the state initial vector at ¢ = 0 on each pass and the initial pass

profiles y;1_;(t), 1 < j < M. The simplest possible form for these (see also below) is

2r1(0) = dppr, k>0,
yi-j(t) =9;(t), 0<t<a, 1<j<M, (2.12)

where dj41 is a constant n x 1 vector, and the entries in the m x 1 vector §;(t), 1 <
7 < M, are known functions of t. Note that there are M of them since the process

explicitly uses information from the previous M passes.

Within this thesis, reference will often be made to the unit memory (i.e. M = 1)
subclass of differential processes. To avoid any ambiguity later on, the unit memory

model is explicitly stated here, as follows.
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A differential unit memory linear repetitive process with constant pass length « is

described by the following state-space model over 0 <t < «, k > 0,

i‘k+l (t) =A LE‘k_H(t) + B uk+1(t) + BO yk(t>
Yr+1(t) = C @p11(t) + D1 wi(t) (2.13)

with (simple) boundary conditions (see also later)
T5+1(0) = dpy1, k>0,
w(t) =), 0<t<a (2.14)

To write the non-unit memory differential process (2.11)-(2.12) in the form of the
abstract representation S(E,, Wy, Ly) of (2.6), first note that, over 0 < ¢t < a, k > 0,

¢ M
Yot (t) — C/ eA(t—T) {Z Bj—l yk—}—l«j(T) + B Upr1 (T)} dr
0 j=1

M
+ O&Atdk+1 -+ Z D] yk+1—j(t)' (215)

j=1

By taking the Banach space E, to be the space E, = L7'[0, @] N L [0, ] then LY,
1< j< M, is defined over 0 <t < a by

t
(L3 y)(t) = C / eA-B, | y(r) dr + D; y(t) (2.16)
a
and
it
bpi1 = C/ A= B Upyr (7) dT + Ce?dy . (2.17)
0

Hence the differential process (2.11)-(2.12) is clearly a special case of the abstract
model (2.6) already presented. Therefore all available results may be specifically

interpreted for the differential subclass of processes.

In some cases, the boundary conditions of (2.14) are simply not strong enough to
‘adequately’ model the underlying dynamics of the process - even for preliminary
simulation/control analysis. For example, the optimal control application (Roberts,
1996) requires the use of pass state initial vectors which are functions of the previous

pass profile.

Other work (Owens and Rogers, 1999) has reported a general form of dynamic

boundary conditions for differential unit memory linear repetitive processes. These
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conditions can be obtained by replacing the z441(0) = dy+1, & > 0, term in (2.14)
by

N
211(0) = dyy1 + ZKJ‘ ue(ty), k>0, (2.18)
j=1
where 0 < #; <ty < -+ < ty < «a are N sample points along the previous pass

profile and Kj, 1 < 7 < N, is an n X m matrix with constant entries.

Counsider again the choice of E, = LT[0, &) L [0, @]. Then for a process defined by
(2.13) and (2.18), with D; = 0 for simplicity, it can be shown that, over 0 < t < a,

t
(Lay)(t) =C / et By y(r) dr + Ce™ Y (2.19)
0
where
) N
7= S K vt 220
7=1
and
t
L C’/ -7 B U1 (7) d7 + Cetdy. (2.21)
0

The stability theory for linear repetitive processes has been developed (Owens, 1977;
Rogers and Owens, 1992b) in terms of the abstract representation of definition 2.1
and necessary and sufficient conditions for the various stability properties expressed
in terms of conditions on the bounded linear operator L,. This theory is formally
introduced in chapter 3 of this thesis (together with specific results for differential
and discrete processes). For now it should be noted that the inclusion of the dynamic
boundary condition term Y in (2.18) effects L, in (2.19) and hence has implications
in terms of the stability of the process. This is discussed further in chapter 3.

2.4.2 Discrete Processes

The other main subclass of specific interest covered within this thesis is discrete
linear repetitive processes. Such processes can be thought of as the natural discrete
analog to the differential processes (2.11)-(2.12) presented in section 2.4.1 and take
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the following state-space form over 0 < p < «, k >0,

M
Tr(p+1) = Azpy1(p) + Bug(p) + Z B;_1 ys+1-;(p)
j=1

M
Yrer1(p) = C Ty (p) + Z Dj yr+1-5(p). (2.22)

Once again, on pass k, zx(p) is the n x 1 state vector, yx(p) is the m x 1 vector pass
profile and wu(p) is the [ x 1 vector of control inputs, M is the memory length, and

the initial conditions are taken to have the following form (see also later),

k+1, k Z O)

ze1(0) = d
y1-;(p) = 9;(p), 0<p<a, 1< M, (2.23)

where dj41 is a constant n x 1 vector and the entries in the m x 1 vector g;(p), 1 <

J < M, are known functions of p.

As for the differential subclass of processes, we explicitly introduce the unit memory,
i.e. M =1, subclass of (2.22)-(2.23) as follows,

zpr1(p + 1) = Azpia(p) + B ursa(p) + Bo yr(p)
Yer1(p) = C 2p41(p) + D1 yi(p) (2.24)

with (simple) initial conditions (see also later)
Tp+1(0) = dyy1, k20,
volp) = (p), 0<p<a, (2.25)

In the same manner as for the differential case of the previous section, the discrete
process (2.22)-(2.23) can be written in the abstract form (2.6) by considering the
Banach product space E, = £3'[0, ] of sequences of real m x 1 vectors of length «

(corresponding top =1, 2, -+, ain (2.22)).

Then L%, 1 < j < M, in (2.6) is defined for 0 < p < a by

(Lig)(p) = { Dj () p=0 (2.26)

: P C AT B y(r)+ Djy(p), 1<p<a

and

C AP dy, 4, =0
bpy1 = p—1 F . b (2.27)
reo C AP Bups(r) +C AP dyyr, 1<p<a
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As for the differential case in section 2.4.1, if the simple boundary conditions of
(2.25) are not ‘adequate’ to model the dynamics of the process, dynamic boundary
conditions may be employed. The most general set results from replacing z;,1(0) =
dr+1, k>0, in (2.25) by

N
oxn(0) = dipr + Y K us(ty), k>0, (2.28)
Jj=1
where 0 < ¢; < {3 < - <ty < o are N sample points along the previous pass

profile and K;, 1 < j < N, is an n X m matrix with constant entries. Note that this
general form of boundary conditions are precisely those required in the nonlinear

optimal control application of (Roberts, 1996).

The stability implications of the inclusion of these dynamic boundary conditions are

discussed in chapter 3.

2.5 Further Examples of Repetitive Processes

The list of subclasses of linear repetitive processes with constant pass length « intro-
duced in the previous section is by no means exhaustive. Here, other examples are
presented which, although not specifically covered within the analysis in this thesis,
serve to highlight the range of application of the theory developed to date, together
with some areas for future development. For further details of these examples, see

the cited references.

Example 2.1 (A Delay-Algebraic System) (Rogers and Owens, 1992b) The

scalar equation

Yer1(t) = —k1 Y1 (t — X) + k2 yp(t) + k1 rea(t), 0<t <, K20,
Ye+1(t) =0, —X <t <0, X >0, (2.29)

where ky and ky are constants, has been shown to represent physical examples of
repetitive processes such as long-wall coal cutting (see section 2.1 of this chapter)
and certain metal rolling operations. Equation (2.29) has the structure of a unit
memory linear repetitive process with constant pass length o, E, = W, = the vector

space of continuous functions on [0, a] satisfying y(0) = 0 and with norm

[yl := max |y(t)]. (2.30)

0<t<a
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The operator Ly in (2.5) can then be defined by expressing y; = Lq yo in the form

Yi(t) = —kry1(t = X) + kago(t), 0<¢t<a,
yi(t) =0, —-X <t<0. (2.31)

Example 2.2 (Matrix Recursion Relations) (Rogers and Owens, 1992b) The

discrete state vector model
1‘k+1:ASL‘k+BUk, z, € R*, ukERl, k>0, (232)

can be regarded as a unit memory linear repetitive process with E, = R*, W, =
range of B and by, = Bug, k> 0.

Example 2.3 (Differential Processes with Interpass Smoothing) (Rogers
and Owens, 1992b) Interpass smoothing is a common feature of a number of indus-
trial examples, such as long-wall coal cutting, and is, in effect, the dynamic inter-
action which occurs between passes and distorts the previous pass profile(s). (In the
long-wall coal cutting example the source of this is the machine’s weight (up to 5

tonnes) as it passes over the coal face).

Consider, for simplicity, the unit memory differential process (2.13)-(2.14) with
Dy = 0. Then one possible method of modelling the effects of interpass smoothing
is to assume that the pass profile at point t on pass k + 1 is a function of the state
and inputs at this point on the current pass together with the complete pass profile

on pass k.

For ezample, a candidate representation is
i7k+1(t) =A T (t) + B Uk+1(t) + Bo/ K(t, 7') yk(’l')d’i’
0
yk+1(t) = C$k+1(t), 0<t<a, $k+1<0) =dgy1, k>0, (2-33)

where the interpass term By foa K(t,7) yp(7)dT represents a ‘smoothing out’ of the

previous pass profile in a manner governed by the properties of the kernel K (¢, 7).

Note that the particular choice of
K(t,7)=6(t — 7)1y, (2.34)
where § denotes the Dirac delta function, reduces (2.33) to (2.13).
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It is now simple to verify that (2.33) is a linear repetitive process in E, = LT[0, a]N
Lo [0, a] with

t «
(Lay)(t) = C / et By / K(r, ) y(tdt' dr, 0<t<a, (2.35)
0 0

and

t
bri1 = C/ A7) B U1 (T)dT + Cetdy, 0<t<a, k>0. (2.36)
0

Example 2.4 (Delay-Differential Systems) (Rogers and Owens, 1995b) A
class of delay-differential system in R* has the state-space form

z(t) = Az(t) + Boz(t — ) + Bu(t), t >0,
z(t —a) =xz(t), 0<t<a (2.37)

where A, By and B are constant n X n, n X n andn X [ matrices respectively.

If the delay « is interpreted as the pass length, then it is clear that these systems
have strong structural stmilarities with linear repetitive processes described by a set
of recursive differential equations. This can be seen by introducing the change of

variables

up1(t) == u(ka + t)
z(t) i =z((k—1a+t), 0<t<a, k>0, (2.38)

and denoting the pass profiles as
yr(t) = zx(t), k>0, (2.39)
Then (2.87) can be written as

j7k+1 (t) = A Thta (t) + B Up+1 (t) + Bo yk(t)
yri1(t) = apa(t), 0<t<a, k>0, (2.40)

with boundary conditions
Tr41(0) = (), k>0, (2.41)

1.e. the initial value of the state vector on pass k + 1 matches the final value of the

state for the previous pass k - clearly a necessary condition for the continuity of the
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process. So the linear delay-differential system (2.37) can be interpreted as having
the structure of a subclass of linear differential repetitive processes with interaction

between pass boundary conditions.

This fact clearly has implications regarding the interplay of concepts/theory between
the areas of delay-differential systems and linear repetitive processes. Results ob-
tained from the exploitation of these structural links can be found in the cited refer-

ernce.

Example 2.5 (Iterative Learning Control) eg. (Amann et al., 1996, Amann,
1996, Amann et al., 1998; Owens et al., 2000) The area of iterative learning control
considers systems which repeatedly perform the same task with a view to sequen-
tially improving accuracy. Original interest in this area arose as the result of robot
operations on an assembly line where the robot is required to repeat the same task
many times. The specified task can be taken as the requirement to track an external
reference vector, r(t) say, over a specified time interval 0 <t < T. The objective is
then to use the repetitive nature of the process to improve accuracy by changing the

control input from trial to trial.

One approach in the literature to this type of problem has been to view the system as
having a 2D structure. Clearly, due to the finite pass length repeatable nature of the
systems, iterative learning control has clear structural links with the area of linear

repetitive processes. For further details of these links, see the cited references.

Example 2.6 (Solution of Nonlinear Dynamic Optimal Control Problems
via the Maximum Principle) (Roberts, 1994a; Roberts, 1996; Roberts, 2000)
The cited references show that how, due to the existence of mized boundary condi-
tions, the solution of nonlinear dynamic optimal control problems via the mazimum
principle can often require an algorithm which iteratively updates a trial solution.
In (Roberts, 1994a), it is shown that the structure of a discrete linear repetitive pro-
cess arises in the analysis of the local convergence and stability properties of these
iterative algorithms for solving (classes of ) nonlinear dynamic optimal control prob-
lems. Since a trial solution s updated from iteration to iteration, the algorithm
has information propagation in two independent directions, namely along the time
horizon of the dynamic response and from iteration to iteration, and hence such
algorithms have an inherent 2D /repetitive process structure. The resulting models

have state initial vectors which are function of the previous pass profile, as in (2.28).
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Example 2.7 (Hybrid Systems) (Franke, 1998) The cited reference concerns a
2D approach to so-called event driven hybrid systems. In simple terms, such a system
has mized characteristics in that the occurrence of some ‘event’ causes the process to
switch to some other dynamics. As such, the system exhibits both continuous time
and discrete event dynamics, and hence has some basic similarities with certain
classes of iterative learning control schemes and therefore linear repetitive processes.
The details of this (relatively) recent link with repetitive process theory can be found

in the cited reference.

2.6 A 2D Systems Approach

The dynamics of discrete linear repetitive processes clearly share some basic char-
acteristics with 2D discrete linear systems recursive in the positive quadrant, i.e.
systems which propagate information in two separate directions. Hence one possible
approach to the stability analysis and development of meaningful control policies
for these processes is to treat them as 2D discrete linear systems recursive over
72 = {(i,j) : 4,7 >0, 4,j € Z,} and exploit links with the (relatively) well re-
ported field of 2D linear systems theory. A key difference which should be stressed,
however, is the fact that the pass length of a repetitive process (which corresponds

to one direction of information propagation) is always finite by definition.

Within this section, Fornasini-Marchesini and Roesser state-space model interpreta-
tions of the dynamics of discrete linear repetitive processes described by (2.22)-(2.23)
are presented. These models then form the basis for a discussion on how an equiv-
alence can be developed between standard 2D systems stability concepts and the
associated stability theory for this subclass of processes - see chapter 3 for further

details of these concepts.

Motivated by research in the field of image enhancement and filtering, the following

state-space model was introduced in (Roesser, 1975) for systems recursive in the

positive quadrant (omitting the output equation which has no role in this work),
xh(z —+ 17]) = Al .’Eh(’l,]) +A2 .’L‘v(’l,]) + Bl ’LL(’L,])

Here 7 and j are positive integer valued horizontal and vertical coordinates, zj is

the m X 1 vector of horizontally transmitted information, z, is the m x 1 vector
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of vertically transmitted information and w is the I x 1 vector of control inputs.
Note here that the local state z(4, ) has been divided into horizontal and vertical

components, each of which is propagated by a first order difference equation.

In Fornasini-Marchesini model structures (Fornasini and Marchesini, 1978), the state
vector is not split into horizontal and vertical components and the output equation
is once again not required. With z(¢, j) denoting the (appropriately dimensioned)
state vector at (¢,7), ¢ > 0, j > 0, the general model of this type has the structure

2(i4+1,7+1) = Asz(i+1,5)+ As 2(¢,5 + 1) + A7 2(4, 7)
+ Bz u(i+1,7)+ Byu(i,j + 1) (2.43)

where, as in (2.42), u is the appropriately dimensioned vector of control inputs.

In (Galkowski et al., 1995) and subsequently in (Galkowski et al., 1999b) it is shown
that the dynamics of discrete linear repetitive processes can be represented by a dy-
namically equivalent singular Fornasini-Marchesini type model. The starting point
for this model is the so-called augmented state vector for discrete linear repetitive

processes, defined for the state-space model (2.24) as
T
Zi(p) = [25 (), v (0)] - (2.44)

It then follows immediately that the dynamics of (2.24) can be written in the form

E Zy(p+1) = As Zy1(p) + Ao Zi(p) + Bs upi1(p) (2.45)
where
A 0 B B
E = [n 0 , Ag = N Ag b= 0 0 and B5 = . (246)
0 0 c I, 0 Dy 0

This is a singular version of the Fornasini-Marchesini model of (2.43) with Ag =
0, By = 0. Other work (Galkowski et al., 1999b) has concluded that this singular-
ity is not an intrinsic feature (in a well defined sense) of discrete linear repetitive
processes, since a key property of the state-space model (2.24) is that it is nonsin-
gular (also termed standard or regular). Further Fornasini-Marchesini type models
of these processes are introduced in (Galkowski et al., 1999a) and (Galkowski et al.,
1999b) which have been constructed via the development of a ‘transformation the-
ory’ for nonsingular Fornasini-Marchesini and Roesser models from their singular

counterparts. For a detailed treatment, refer to the papers cited.
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In (Rocha et al., 1996) it has been argued that the discrete subclass of non-unit
memory linear repetitive processes with state-space form (2.22) has a Roesser rep-

resentation. In particular, the process has a Roesser-type structure where

(i) xp - current pass state vector = (horizontally transmitted information),

(i) z, - current pass output vector y; (vertically transmitted information).

To write (2.22)-(2.23) in Roesser form, introduce the following notation (as in (Rocha
et al., 1996)),

2(p) = Wi @), -+, vi1 ()" €RY, N =mM. (2.47)

Then it follows that (2.22)-(2.23) can be written

: 1 A A : B
Ty (p + ) 11 12 a:k(p) 4 1 uk(p) (2.48)
Zr41(P) Ay Ax z(p) 0
where
An=4, Bi=B, Ap= {BM—l, Tty BOL Ay = [O, -, 0, CT}T, and
0 I, 0
Ap=1| = . (2.49)
0 - 0 I,
Dy -+ Dy Dy

In particular, unit memory discrete linear repetitive processes (2.24)-(2.25) can be

written

B
0

A By

zy(p+1)
[ ¢ D ur(p), (2.50)

2p41(p)

z1(p) } 4

z,(p)

from where the so-called augmented plant matrix for this process can then be defined

as

A B
® = ° 1. (2.51)
C D
In addition, if we define the augmented state vector as
Xi(p) := [zx(p)7, 2(0)7]" (2.52)
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and define
X7 (p) = [z +9)7, ze5(0)7)7, (2.53)

then the state-space equation (2.50) now reads

Xil(p) = @ Xip(p) + Bug(p), k>0, 0<p<a, (2.54)
where
— B
= 2.55
) (2.59)

The ‘equivalence’ between Roesser / Fornasini-Marchesini models and certain classes
of discrete linear repetitive processes has enabled the interchanging of stability tests
between the two areas. This link, however, has not been useful in addressing cur-
rently open systems theoretic questions (such as what (if anything) is meant by
reachability / controllability). Hence (based on the preliminary results in (Galkowski
et al., 1995)) new nonsingular 2D linear systems representations of the dynamics of
(2.24) have been introduced in (Galkowski et al., 1999b) which are then used with
the singular Fornasini-Marchesini state-space models discussed previously in the

characterisation of local reachability / controllability properties for these processes.

Introduce the following transformations into the discrete unit memory subclass of
processes with state-space form (2.24),

ze(p+1) — Azy(p) — Bu(p)

yr(p) — C zx(p)- (2.56)

M (p) :
pi(p) :

Then the following representation can be obtained

peri(p) | =] DWC Di 0 pe(p) |+ 0 | ur(p) (2.57)
Mi+1(P) ByC By 0 me(p) 0

which is a standard (nonsingular) Roesser model whose state dimension is 2n + m
as opposed to 2(n+m) for the singular Roesser model which can be developed from

the singular Fornasini-Marchesini model of (2.45)-(2.46).

As a special case of this, consider now the case when D; is nonsingular and define

the so-called restricted state vector for (2.24) as
2(p) = [z (p), 1 ()] (2.58)
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Hence, here we have

m(p) = BoD7 i (p) (2.59)

and the following restricted 2D state-space model of Roesser type is obtained for
the dynamics of (2.24),
(p+1 A ByD;! ' B
xk(p ) _ 0471 :Ek(p) + Uk(p)- (260)
tr41(p) D,C D, v (p) 0

This section has introduced some of the models from ‘classical’ 2D systems theory

which are available for the subclass of discrete linear repetitive processes with con-
stant pass length a which are employed throughout this thesis. The stability theory

for these models is presented in chapter 3.

2.7 A 2D Transfer-Function Approach

A major basis for the analysis of 1D linear systems theory is the transfer-function
representation. It is expected that such an approach may play a similar role for 2D

systems, and in particular for linear repetitive processes.

(Rogers and Owens, 1989a) has developed a 2D transfer-function matrix descrip-
tion for differential processes using two separate transform parameters. Prior to
the introduction of these transforms, some preliminary results and observations are
required. Firstly the processes must be well posed in the sense that sequences of
inputs are mapped to sequences of outputs. In addition, they must exhibit multi-
pass causality. As an illustration of this last point, consider the differential process
(2.11)-(2.12). Then, in this case, multipass causality means that the output y(t) at

any time t on pass k does not depend on information from any of the following sets,

X=Azp(r) 1 t<r7<a}U{zxy(t) : 0<t<a,l>k}

D={d, : >k}

U={u(r) s t<r<a}lU{w(®): 0<t<a l>k}
YV={y(r) rt<r<a}l U {ulk) :0<t<a l>k} (2.61)

This set of causal information is illustrated in figure 2.5. (Note that this discussion

of multipass causality extends in a natural manner to discrete processes described
by (2.22)-(2.23)).
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Pass Index

NON-CAUSAL

;,N
o
—
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Time

Figure 2.5: Set of Causal Information at Time ¢ on Pass &

Under these conditions, a formal definition of a 2D transfer-function description
for linear repetitive processes described by (in this case) a differential model can
be given. In order to do this, some formal definitions of the transforms are first

introduced. These have been included within the appendix section A.2.

Given these initial results, and proceeding as in (Rogers and Owens, 1989a), the 2D
transfer-function of the non-unit memory differential process (2.11)-(2.12) can be

written as
Y{(s,z) = G(s,2) U(s, 2) (2.62)
where G(s, z) is the m x [ 2D transfer-function matrix given by
G(s,z) = (Im — D(2))'C{sl, — A— B(2)(I, — D(2))*'C}'B (2.63)

and
M M '
B(z)=Y Bj1z7, D(z)=) Dz (2.64)
j=1 j=1

Note that, in the differential model (2.11)-(2.12), two parameters are required to
specify a variable (namely the pass index £ and the time or distance along the
pass t) and hence this is the basic reason why the transfer-function matrix for the
process is 2D in nature. In (2.62)-(2.64) the Laplace transform variable s represents
the along the pass dynamics whereas the second parameter 27! is a ‘backward’ shift

operator which takes account of the interaction between successive pass profiles.
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After routine algebraic manipulation, (2.62)-(2.64) can be rearranged to give clearer

insight into the physical structure of the processes, as follows,
Y(s,z) = Go(s sz+§:G )27 Y (s, 2)

where

Go(s) = C(sI, — A)™'B, and

Gj(s)=C(sl,— A)'Bj.1+D;, 1<j<M.

Now, consider the two elements of this representation separately.

2.7.1 Derived Conventional Linear System

Firstly consider the subsystem described by

Y(s) = Gols) Uls)
= CO(sI, — A)'BU(s).

(2.65)

(2.66)

(2.67)

This is just the transfer-function representation of a 1D linear system and represents

the contribution of the current pass input vector acting alone to the current pass

profile. To illustrate this, suppose that, in (2.11),

(1) the previous pass terms are deleted, i.e. B;_1 =0, D; =0, 1<j< M,

(ii) the pass subscript & + 1 is dropped, and

(iii) the concept of a pass length is irrelevant.

Then (2.11) reduces to

i(t) = Az(t)+ B u(t)
y(t) = Cu=(t), =(0)=d,

(2.68)

which is just the well known state-space model from conventional differential linear
systems theory. With this in mind, (2.67) is termed the derived conventional lin-
ear system of (2.11)-(2.12), denoted Lp(A, B,C). It then follows that, under the
conditions (i) to (iii) above, G(s,z) in (2.62) reduces to Go(s) which is just the

transfer-function matrix of Lp(A, B, C).
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2.7.2 Associated Conventional Linear System

Now consider the set of subsystems described by G;(s), 1 < j < M, of (2.65).
It can be shown that G,(s) is the transfer-function of the j™* so-called associated

conventional linear system, LQ (A, Bj_1,C, Dj), described by the state-space model

i(t) = Az(t)+ By (t)
Wi(t) = Caz(t)+D;y 7 (¢), =z(0)=0. (2.69)

Now each subsystem (2.69) is a 1D linear system and in fact (2.69) can be regarded
as describing the contribution of pass &+ 1 — j to the current one. This can be seen
by restricting ¢ to [0, o] and by setting y' 77 (¢) equal to the (k+1— 7)™ pass profile.
Note that each of the j%* associated conventional linear systems can be written in

the transfer-function matrix form
Wi(s) = Gi(s) Y (s) (2.70)
with

G,(s) = C(sl, — A)™'B;_, + D;. (2.71)

2.7.3 Physical Interpretation

Returning now to the expansion (2.65) of Y(s, z). Firstly note that G(s,2) can be

written
G(s,z) = (Im - ZGj(s)z‘j) Go(s). (2.72)

Then, what we have is a representation of a linear repetitive process which gives us
physical insight into the structure of the system. Observation of figure 2.6 shows
that Go(s) (the transfer-function matrix of the derived conventional linear system)
has the effect of a dynamic pre-compensator with the G;(s) terms, 1 < j < M, (the
transfer-function matrices of the associated conventional linear systems) as feedback

elements representing the crucial interaction terms.

It should be noted that this block diagram is not unique. The point is that it
clearly highlights the fact that the process dynamics are constructed from the in-

terconnection of subsystems whose dynamics are characterised by 1D linear systems
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Uls, z) + Y (s, 2)

Go(s) X

Z_lC;l(S) ~—

Pre-compensator

272G (s)

o
+
\\\\\______z“ﬂft?Al(s)

Repetitive Interaction

Figure 2.6: Block Diagram Interpretation of a Linear Repetitive Process

transfer-function matrices. With this motivation it appears that 1D linear systems
methods may play a role in the design of control schemes for linear repetitive pro-

cesses. This is discussed further in chapter 6.

One other point should be discussed prior to ending this section on 2D transfer-
function matrices. In the unit memory, M = 1, case, G;(s) denotes the contribution
of pass profile y;, to y41 and as such is termed the interpass transfer-function matrix.
For the more general M > 1 non-unit memory case, let Y'(s) denote the combined

effects of the previous M passes. Then
M

Y(s) = Z Wis) =Y G;(s) Y'(s). (2.73)

j=1
This expression can be interpreted in ‘unit memory’ form by stacking up the Y(s)

terms and writing it as

}/Q—AI(S) }/1—AJ(S>
- = G(s) : , (2.74)
Y (s) Y9(s)
where
0 Iy 0
G(s) = O h L (2.75)

(;A4(S) (;2(8) (;1(5)
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is an mM x mM block companion matrix, and which, since the process has now

been written in unit memory form, is termed the interpass transfer-function matrix.

This interpass transfer-function matrix will be referred to in subsequent chapters,

together with the mM x mM constant coefficient block companion matrix defined
by

D = lim G(s) (2.76)
|s| =00
le.
0 In 0
D=| . (2.77)
0 0 In
Dy Dy Dy

2.7.4 Discrete Processes

Equivalent discrete versions of the transfer-function matrix concepts introduced in
this section are outlined in (Rogers and Owens, 1992b). Instead of the s/z transforms
used for the differential processes, a z;/z or ‘double 2’ transform is used for discrete
processes. Since the transfer-function matrices and results presented generalise in a

natural manner, the details here are omitted.

2.8 Summary

This chapter has introduced some of the models available (and those which are
used in the subsequent analysis within this thesis) for representing linear repetitive
processes with a constant pass length a. The associated stability theory is presented

in the following chapter.

A rigorous mathematical representation of linear repetitive processes with constant
pass length « has been given. It has been illustrated how this abstract representation
admits analysis of processes with certain special structures, with emphasis on the
differential and discrete subclasses. These constitute the two main subclasses where
research has been focussed to date, and are of both direct industrial and algorithmic

interest. Further examples of areas where adopting a repetitive process approach
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has certain benefits over alternatives has been presented in section 2.5 which serves

to illustrate areas where future research effort may be directed.

Section 2.6 has established links between certain subclasses of linear repetitive pro-
cesses and well known models from 2D linear systems theory. Stability results ob-
tained from exploiting the structural links between such processes and 2D linear
systems can be found in (Rocha et al., 1996), amongst others, and are summarised
in section 3.8. It should be stressed that not all linear repetitive processes have
an associated 2D Roesser/Fornasini-Marchesini form. In particular, certain ‘non-
standard’ forms, such as processes with interpass smoothing effects, have no 2D
Roesser/Fornasini-Marchesini representation. Hence the application areas of this
associated stability analysis is limited to those processes possessing certain special

structures.

Finally, within section 2.7 a 2D transfer-function representation of a linear repetitive
process has been presented. It is anticipated that such an approach, as in 1D linear
systems theory, will play a significant role in the analysis and design of control
schemes for these processes, in addition to providing physical insight into their

structure.
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Chapter 3

Stability

3.1 Introduction

A key property of any system, whether it represents a physical process or is of
a purely algorithmic nature, is that of stability. Using techniques from functional
analysis, a rigorous stability theory has been developed by Rogers and Owens for the
abstract representation of linear repetitive processes introduced in chapter 2 (see, for
example, (Rogers and Owens, 1992b)). This theory, presented here in section 3.2,
demonstrates that two distinct concepts of stability exist, namely asymptotic stabil-
ity and stability along the pass. This is not surprising since, as already illustrated, a
linear repetitive process is governed by two independent variables, i.e. in the along
the pass and the pass to pass directions. Within this chapter, it is highlighted that
asymptotic stability is a relatively weak definition of stability and that in general
(with a few notable exceptions) it is the stronger concept of stability along the pass

which is required for acceptable systems performance.

In sections 2.4.1 and 2.4.2 of chapter 2, differential and discrete classes of linear
repetitive processes were introduced which were shown to be special cases of the
abstract representation of definition 2.1. Within sections 3.3 and 3.4 of this chapter,
the stability theory for the abstract representation is specifically interpreted for
these processes. Here it is shown how the determination of the boundary conditions
(termed ‘simple’ or ‘dynamic’) is of vital importance. In fact, the misclassification of
a process with dynamic boundary conditions as having simple boundary conditions

could result in an unstable process being determined as stable.

38



3 Stability 39

Section 3.5 discusses simulation-based stability tests which assume that suitably well
behaved plant step response data is available or can be obtained from simulation
studies. In this and the subsequent sections it is demonstrated how, for the discrete
subclass of processes, the standard test for stability along the pass involves calcu-
lating the eigenvalues of an mM x mM transfer-function matrix for all points on
the unit circle in the complex plane, which can be computationally intensive even
in the simplest of cases. With this motivation, new stability tests have been devel-
oped for this subclass which replace these complex computational conditions with
a one-off computation of the eigenvalues of a matrix with constant entries. The
resulting conditions are sufficient but not necessary, but serve to act as a simple
‘acceptance criterion’. In addition, this conservativeness is offset by the availability
of performance measures for a given pass, supplied by the new stability conditions
at no extra computational cost. The theory in these sections is novel, and provides

the basis of the paper (Benton et al., 1998b).

Within section 2.6 it was illustrated how certain classes of linear repetitive processes
can assume a ‘classical’ 2D systems structure. In section 3.8 links are drawn between
the stability along the pass of these discrete linear repetitive processes and the BIBO
stability of systems described by the Roesser / Fornasini-Marchesini 2D state-space

models.

The chapter concludes by introducing a Volterra operator based approach to the

stability analysis of discrete linear repetitive processes.

3.2 Stability Theory for the General Abstract

Representation

Within this section, the rigorous stability theory developed by Rogers and Owens for
the abstract representation of a linear repetitive process with constant pass length
o is presented, introducing the two separate concepts of asymptotic stability and

stability along the pass.
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3.2.1 Asymptotic Stability

In chapter 2 it was illustrated (via figure 2.3) that the unique control problem
associated with linear repetitive processes is that the output sequence of pass profiles
{yr}r>1 can contain oscillations which become unbounded from pass to pass. With
this motivation, the natural intuitive definition of asymptotic stability is to demand
that, given any initial profile y, and any disturbance sequence {b;};>1 which ‘settles
down’ to a steady disturbance by, as kK — +o0, after a ‘sufficiently large’ number of
passes the output sequence of pass profiles ‘settles down’ to a steady profile y,, as
k — +o0. The phrases in quotes are, of course, subject to interpretation and depend
upon the application under consideration. This idea is illustrated in figure 3.1

(further discussion of the so-called limit profile yo is given in section 3.2.2).

" yo = Initial pass profile.
11 = First pass profile.
- yz N
LT T : Yoo = Limit profile.
//// yoo :
0 o

Figure 3.1: Asymptotic Stability of a Linear Repetitive Process

In practical applications, the effect of modelling errors and uncertainties will produce
uncertainty in the structure of L, in the abstract repetitive process model (2.5) and
hence the following definition of asymptotic stability is used since this definition
ensures that the ‘set of all stable systems’ is open (in a well defined sense) in the
class of all linear repetitive processes. Note that here we only consider the unit
memory case since all results obtained generalise in a natural manner to the case
when M > 1. Also note that the results given here (i.e. in section 3.2) plus relevant

proofs can be found in chapter 3 of (Rogers and Owens, 1992b).

Definition 3.1 (Abstract Representation - Asymptotic Stability) A linear
repetitive process S(Eqy, Wy, Ly) of constant pass length a > 0 is said to be asymp-
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totically stable if there exists a real scalar 0 > 0 such that, given any initial profile
Yo and any strongly convergent disturbance sequence {by}i>1 C W,, the sequence

{yr}r>1 generated by the perturbed process
Y1 = (Lo + 7)Yk + bry1, k20, (3.1)

converges strongly to a so-called limit profile yoo € Eo whenever ||y|| < &, where || -||

denotes the norm on E,.

Asymptotic stability is then the requirement that bounded disturbance (or forcing)
sequences generate (in some well defined sense) bounded sequences of pass profiles.
Note that this property has been augmented by the practically motivated require-
ment that asymptotic stability is retained in the presence of small modelling errors

or simulation approximations.

Now consider the general abstract representation (2.5) of a linear repetitive process
under asymptotic stability. In addition, consider the case of by = b, =0V k> 0 in
(3.1), i.e. an absence of disturbances, which causes the set of pass profiles {yg }x>1
to be strongly convergent to zero. Then taking

Lyo

"= ] (3.2)

gives ||y]| = §. Since yr = (Lo + 7)"yo is strongly convergent (by definition) it is
bounded V yy € E,.

Application of the Banach Steinhaus (Uniform Boundedness) Theorem A.1 now says

d real M, > 0 such that

1(La + 7"l € Mo, k>0, (3.3)
or equivalently
5\,
(1 + IILaII> |Lall < Ma, k20 (3.4)

Defining

Ao = (1 + Hi]')_l <1, (3.5)

we now consider the case of the ‘real system’, i.e. the system which is not subject

to any small perturbations/modelling uncertainties, and .". v = 0. Then

lyell = [ Zayoll < ILall lyoll < MaA*(lyoll- (3.6)
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Hence, in the absence of disturbances, since 0 < A, < 1, the output sequence of
pass profiles {yy},>1 converges strongly to zero for all initial profiles, i.e. asymptotic
stability is the requirement that the effects of the initial pass profile are rapidly

attenuated.

In order to introduce a formal asymptotic stability result for the abstract representa-
tion some definitions are needed. Within the appendix section A.1 formal definitions
of spectral values, spectrum and spectral radius of the bounded linear operator L,

are given.

Given these definitions, the following result now characterises asymptotic stability

for the general abstract representation of (2.5),

Theorem 3.1 (Abstract Representation - Asymptotic Stability) A linear
repetitive process S(Eq, Wy, Ly) of constant finite pass length oo > 0 is asymptotically
stable if, and only if,

r(Le) < 1 (3.7)

where 7(-) denotes the spectral radius of its argument (throughout this thesis).

Note that if F, is finite dimensional, this result is equivalent to the requirement

that all eigenvalues of L, lie in the open unit disc in the complex plane.

The condition of theorem 3.1 is not surprising since a superficial consideration of
the abstract representation (2.5) indicates a similarity between the structure of
S(E4, Wy, L) and the well known linear time-invariant discrete time system, and
hence in this sense it is to be expected that the stability of the process depends

explicitly on the spectrum of L.

3.2.2 Limit Profile

Now this result gives little or no information regarding the transient behaviour of
the process. For this type of information we look towards the so-called limit profile
of the process. This is the ‘steady state’ profile, under asymptotic stability, which
the output sequence of pass profiles tends towards after a sufficiently large number
of passes, and is represented by v in figure 3.1. Formally, the limit profile can be

defined as follows,
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Definition 3.2 (Abstract Representation - Limit Profile) Suppose that the
linear repetitive process S(Eq, Wa, L) of definition 2.1 is asymptotically stable and
that {by}r>1 1s a disturbance sequence that converges strongly to a disturbance by,.
Then the strong limit

Yoo 1= lim yy (3.8)

k—+o0
is termed the limit profile corresponding to {by}r>1.
This definition implies that, under asymptotic stability, the output sequence of pass

profiles {yx}x>1 converges strongly to the limit profile yo, (in the sense of the norm

on E,), i.e.

Jm g — gool| = 0. (3.9)

Corollary 3.1 Suppose that the conditions of definition 8.2 hold. Then the corre-

sponding limit profile is the unique solution of the linear equation

Yoo = La Yoo + boo, (310)
where
boo := lim by. (3.11)
k—+o0

Clearly yo, is independent of the initial pass profile y; (as we would expect due to
asymptotic stability) and independent of the direction of approach to by, and by

rearranging (3.10) as follows
Yoo = (Im - La>_1bom ‘ (312)

we see that (3.10) has a unique solution due to the asymptotic stability condition
(3.7). Note that equation (3.10) can be formally obtained from the asymptotic
stability definition 3.1 be setting v = 0 in (3.1) and replacing each term by its

strong limit.

The following result shows that performance of an asymptotically stable process can
be partially characterised by real scalars M, > 0 and 0 < A, < 1 describing the rate
of approach of the output sequence of pass profiles {y;}x>1 to the limit profile,
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Theorem 3.2 (Abstract Representation - Asymptotic Stability) Suppose
that the linear repetitive process S(Eqy, Wa, Ly) of definition 2.1 with constant pass
length o« > 0 28 asymptotically stable. Further, let this process be subjected to a
constant disturbance sequence byi1 = by, k > 0, which generates the limit profile
Yoo. LThen there exists real scalars My, > 0 and 0 < A, < 1 such that

Joe = vl < 2238 (ol + 12211 k20 (5.13

Note that in effect this result states that the output sequence {y;}x>1 approaches the
limit profile at a geometric rate governed by A,. For a further discussion/analysis

of these so-called performance bounds see section 3.7.

3.2.3 Stability along the Pass

Asymptotic stability of S(E,, Wy, Ls) guarantees the process has a limit profile.
However it is not guaranteed that this limit profile has acceptable dynamic char-
acteristics. A simple example which illustrates this key point for the differential
subclass is given in section 3.3.2. Hence the natural definition of stability along the
pass is to demand that the limit profile is stable in the standard, i.e. 1D, sense as
the pass length becomes ‘large’, i.e. as o — +o0o. Now this intuitive definition of
stability along the pass is not applicable if the limit profile is not a 1D linear system
state-space model. Therefore the definition of stability along the pass is made in
terms of the rate of approach of the output sequence of pass profiles to the limit

profile.

This characterisation requires the introduction of the concept of a so-called extended
linear repetitive process. This consists of a collection of models obtained by allowing
the pass length o take values greater than some nominal value o, and can be

formally defined as follows,

Definition 3.3 (Extended Linear Repetitive Process) A collection of models
of S(Ey, Wy, L) with pass lengths in the range o > «yq is termed an extended linear

repetitive process and is denoted S(Eq, Wy, La)a>ao-

Stability along the pass can then be defined by considering the rate of approach of

the output sequence {y;}x>1 to the limit profile as follows,
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Definition 3.4 (Abstract Representation - Stability along the Pass) The
extended linear repetitive process S(Eq, Wy, La)a>aq 18 Stable along the pass if there
exists finite real scalars My, > 0 and 0 < A < 1 (independent of o) such that,
for each a > ag and for each constant disturbance sequence by 1 = by, k > 0, the
output sequence from the model S(Eq, Wy, Lo) satisfies the inequality

N e L (3.14)
To be of use in a particular application, the abstract results must be convertible
into a suitable computable form. Since this definition is not in an appropriate form
for the derivation of a stability criterion, the following lemma is presented which
implies a more useful definition of stability along the pass. Given theorem 3.2 (i.e.

that the process is asymptotically stable - a necessary condition for stability along

the pass), this result demands the existence of finite bounds M, and A for the

scalars M, and A,, as a — +00.

Lemma 3.1 S(Eqy, Wa, La)a>a, 5 said to be stable along the pass if, and only if, 3
finite real scalars My, > 0 and 0 < Ay, < 1, independent of the pass length «, such

that

ILE]] < Moo AL, (3.15)
Va>0,Lk>0.
Hence, in effect, stability along the pass of S(Eq, Wa, La)a>a, requires that the rate

of convergence of the output sequence of pass profiles {y;}5>1 to the limit profile yo,
has a guaranteed geometric upper bound which is independent of the pass length «.

This result leads to the following which is one of several equivalent characterisations

of stability along the pass for S(Eqs, Wa, La)azao

Theorem 3.3 (Abstract Representation - Stability along the Pass) The

extended linear repetitive process S(Eq, Wa, La)a>a, @5 stable along the pass if, and

only if,
(a)
Too i= SUp 7(Lq) < 1 (3.16)

a>ag
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and

(b)
My := sup sup ||(z] — La) 7| < 400 (3.17)

azag |z]2A

for some real number A € (7o, 1).

Note that it can be shown that condition (b) can be relaxed to

My = sup sup ||(2] — L)Y < +o0. (3.18)

azag |z|=A

Part (a) of this result is equivalent to the requirement that all models with a > ag
are asymptotically stable. This is the stronger requirement that asymptotic stability
holds uniformly, i.e. that asymptotic stability is independent of pass length. Hence
the reason for retaining the separate identities of (a) and (b) in theorem 3.3 despite
the fact that (b) does imply (a).

It can be shown that the ‘boundedness’ condition (b) is equivalent to the requirement

that 3\ € (7o, 1) such that
(21 = La)y =1 (3.19)

has a uniformly bounded (with respect to «) solution y € E, V n € E, satisfying
sup, ||n|| < +ooV|z| > A. In general this condition is very difficult to interpret. For
the special cases of the differential and discrete processes introduced in sections 2.4.1

and 2.4.2, however, the stability results of sections 3.3 and 3.4 are obtained, respec-

tively.

3.3 Stability Theory for Differential Processes

Within section 2.4.1 it was shown how differential processes with the state-space
model (2.11) can be written in the form of the abstract representation (2.5), and
hence the stability theory introduced in the previous section can be specifically inter-
preted for these processes. The theory is presented initially for differential processes
with state-space model (2.11) and the simple boundary conditions (2.12), with the
necessary amendments to the results to accommodate the dynamic boundary con-

ditions of (2.18) given at the end of the section.
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A discussion of the extension of these results to the discrete subclass of processes

described by models of the form (2.22) is given in section 3.4.

3.3.1 Asymptotic Stability

The following result gives necessary and sufficient conditions for asymptotic stability
of differential processes described by (2.11)-(2.12),

Theorem 3.4 (Asymptotic Stability - Differential Non-unit Memory)

(Rogers and Owens, 1992b) The differential non-unit memory linear repetitive pro-
cess (2.11)-(2.12) is asymptotically stable if, and only if, all eigenvalues of the
mM x mM block companion matriz D given by (2.77) have modulus strictly less

than unity.

The following corollary of theorem 3.4 can now be given for unit memory differential

processes with state-space representation (2.13)-(2.14),

Corollary 3.2 (Differential Unit Memory Case) (Rogers and Owens, 1992b)
Setting M = 1 in theorem 3.4 gives the result that the unit memory differential
linear repetitive process (2.13)-(2.14) is asymptotically stable if, and only if, all
eigenvalues of the m x m matriz Dy lie in the open unit circle in the complex plane,

i.e. if, and only if,

Notice that the results of theorem 3.4 and corollary 3.2 are counter-intuitive, since
what we have in effect is a stability condition which is independent of the system
matrices A, B, By and C. In particular, the result is independent of the eigenvalues
of the matrix A which clearly govern the dynamics along a given pass. This is due
entirely to the fact that the pass length « is finite and this changes drastically when

the case of @ — +o00 is considered (see later).

As an illustration, consider the case of a differential unit memory single-input /
single-output (SISO) process with zero control inputs, i.e. ug1(t) =0, 0 < ¢t <
a, k > 0, and zero state initial conditions on each pass, i.e. zx11(0) =0, & > 0.

Then on the k™ pass the initial output is
y£(0) = Diyo(0). (3.21)
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So, for the sequence {y;(0)};>1 not to become unbounded (in a well defined sense)

as the pass index & — 400, we require
T‘(Dl) = lDll <1, (322)

i.e. the condition of corollary 3.2, which can be tested by computing the eigenvalues
of Dy and displaying them relative to the unit circle in the complex plane (standard
1D test). Hence, in physical terms, asymptotic stability is the requirement that the
initial output on each pass does not become unbounded as k — +o0, i.e. the effect

of the initial profile is attenuated after a large number of passes.

3.3.2 Limit Profile

As for the abstract case, asymptotic stability guarantees the existence of a limit pro-
file for the differential process with state-space model (2.11)-(2.12) as the following

corollary shows,

Corollary 3.3 (Limit Profile - Differential Case) (Rogers and Quwens, 1992b)
Suppose that the condition of theorem 3.4 holds and that a strongly convergent se-
quence {ux}r>1 is applied. Then the limit profile for differential linear repetitive
processes defined by (2.11)-(2.12) is described by the state-space model

bunlt) = Aen(t) + B uea(t) + B yoa(t)
Uoo(t) = C 2o (t) + D Uo(t), 0<t <, 2(0) = dy, (3.23)

where

M M
B=) By, D=> D Um g = ue and  lim dy =dw,  (3.24)
=1

j=1
or, since asymptotic stability ensures that I, — D is nonsingular,
Eoo(t) = (A+ B (Im — D)1 C) 200 (t) + B ueo(t)

yoo(t) = ([m - f))_l C:Eoo(t), 0<t<a, 1'00(0) = deo. (3'25)

This is obtained by replacing each term in the process description (2.11)-(2.12) by
its strong limit. Note that the transfer-function matrix of this limit profile can also
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be obtained by setting z = 1 in the m x [ 2D transfer-function matrix G(s, z) given
by (2.64).

Clearly (3.25) represents a standard state-space model from 1D linear differential
systems theory. Hence, if the differential process (2.11)-(2.12) is asymptotically
stable then, after a ‘sufficiently large’ number of passes, the process dynamics may
be replaced by those of a 1D linear system. This fact has obvious implications from
a feedback control point of view, which is discussed further in chapter 6 of this thesis

on controller design.

Now asymptotic stability is a weak stability condition for the reason that, since the
pass length « is fixed and finite, even an unstable 1D system can only produce a
bounded output over such a duration. In this respect, asymptotic stability cannot
guarantee that the resulting limit profile has acceptable dynamic characteristics and,

in particular, that it is stable in the 1D sense.

The following simple example illustrates the point,

Example 3.1 (Asymptotic Stability # Stability along the Pass) Consider

the following SISO differential unit memory process, where [ is a real scalar,

Tri1(t) = —Tpp1(t) + upsa () + (14 B) ye(2)
) = 2pna(2)
=0, 0<t<a, k>0 (3.26)

yk+1(t
mk+1(0)

Then, since in terms of (2.18)-(2.14) Dy = 0, the process is asymptotically stable
with limit profile

QOO(t) =p yoo(t) -+ 'U'oo(t)
0<t<a yo(0)=0. (3.27)

Also if up1(t) =1 and yo(¢t) =0, 0 <t < a, k>0, then it can be easily shown
that the first pass profile is given by

p)=1-¢" 0<t <o (3.28)
But solving the limit profile differential equation (3.27) gives

Yeo(t) = (e = 1), 0<t<an (3.29)
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So although the first pass profile (3.28) is clearly an acceptable dynamic character-
istic response to the unit step command uy(t) = 1, the resulting limit profile has
unacceptable dynamic characteristics. In particular, for B > 0, the dynamics of the

limit profile increase exponentially and can be said to be ‘unstable along the pass’ in

the obuvious intuitive sense.

Despite the apparent weakness of asymptotic stability, cases do exist where this is
all that is required (for example certain classes of iterative learning control schemes
(Amann et al., 1996; Amann et al., 1998; Owens et al., 2000)) or, in fact, all
that can be achieved (for example nonlinear optimal control using the maximum
principle (Roberts, 1996; Roberts, 2000)). In this latter example, where a discrete
unit memory linear repetitive process arises, the matrix corresponding to A never
has all of its eigenvalues inside the unit circle in the complex plane which (as seen
in the following section) is a necessary condition for stability along the pass. Hence
asymptotic stability is all that is achievable here. In the majority of examples of
repetitive processes, however, it is the stronger condition of stability along the pass

which is required for acceptable systems performance.

3.3.3 Stability along the Pass

The stability along the pass result (theorem 3.3) for the abstract representation of
definition 2.1 can be specifically interpreted for the differential subclass of processes

as follows,

Theorem 3.5 (Stability along the Pass - Differential Case) (Rogers and
Owens, 1992b) Suppose that
(i) the pair {C, A} is observable;

(11) the pair {A:Z?; B;_1v71} is controllable at all but a finite number of
points yi, Y2, -+, Yq in the complex plane; and

(iii) |sl, — A — Z]Nil Bj 17! ' P(v7H)7IC| has no roots on the imaginary azis
of the complex plane, 1 <1 < g, where

P(y) =7Im— Dy =y "Dy —--- = 4"M Dy (3.30)
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Then the extended linear repetitive process S(Eqo, Wea, La)a>a, generated by differ-
ential models of the form (2.11)-(2.12) with a > « is stable along the pass if, and

only if,

(a)
Teo = sup{|z|: P(z) =0} < 1, (3.31)
and

b) there exists real numbers € > 0 and roo < A < 1 such that
(
u | ,
|sI = A=Y " B; 12" P(2)7'C| #£ 0 (3.32)
j=1

for all complex numbers z, s satisfying |z| > A and Re{s} > —e.

Note that condition (b) of this result is not computationally feasible.

At this stage, it is convenient to introduce the following definition,

Definition 3.5 (Asymptotic Stability Polynomial) (Rogers and Owens,
1989b) The so-called asymptotic stability polynomial P,(z) for the differential process
(2.11) is defined as

Py(2) == |Q(2)] (3.33)
where

Q(2) =Ip—2"'Dy — - —27MDy, (3.34)

and 1s to be regarded as a polynomial in 271

Then it can easily be shown that condition (a) of theorem 3.5 for asymptotic stability

can be replaced by
Puz) = Q) £0 ¥ 2> 1 (3.35)

It is also clear that, in this case, the spectral values of L, ¥V « > 0 are given by the

solutions of P,(z) = 0. Hence

Too =supr(Ly) <1 (3.36)
a>0
if condition (3.35) holds.

The stability along the pass polynomial for (2.11) can be defined as follows,
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Definition 3.6 (Stability along the Pass Polynomial) (Rogers and Ouwens,
1989b) The so-called stability along the pass polynomial A,(s,z) for the process
(2.11) is defined as

Ap(s,z) = |sl, — A — Z B;_1277Q(2)"'C), (3.37)

with Q(z) as in (3.84), and is regarded as a polynomial in s with coefficients which

are rational functions in z71.

A simple argument now shows that (b) of theorem 3.5 is equivalent to the existence

of real numbers ¢ > 0 and ro, < A < 1 such that
Ap(s,z) # 0 (3.38)

for all complex z, s satisfying [z| > A and Re{s} > —e.

The following alternative set of necessary and sufficient conditions now characterise
stability along the pass of differential processes with state-space model (2.11)-(2.12).
The result, in effect, replaces condition (b) of theorem 3.5 by two conditions which

are both computationally feasible.

Theorem 3.6 (Stability along the Pass - Differential Case) (Rogers and
Owens, 1992b) Suppose that the assumptions of theorem 3.5 hold. Then the extended
linear repetitive process S(Eq, Wa, La)asa, generated by differential models of the
form of (2.11)-(2.12) with o > g is stable along the pass if, and only if,

(a) all eigenvalues of the mM x mM block companion matriz D of (2.77) have

modulus strictly less than unity;

(b) all eigenvalues of the matriz A have strictly negative real parts or, equiv-
alently, the derived conventional linear system Lp(A, B,C) described by the

transfer-function matriz Go(s) of (2.65) is stable; and

(¢c) all eigenvalues of the mM x mM interpass transfer-function matriz G(s) of
(2.75) with s = iw have modulus strictly less than unity for all real frequencies

w > 0.
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Now each of these conditions can be tested via well known 1D linear systems stability

tests which are compatible with a computer aided analysis environment and has a

well defined physical meaning.

Condition (a) is just the asymptotic stability condition already stated in theorem 3.4.
(Note that this is as expected since asymptotic stability is a necessary condition for

stability along the pass).

Condition (b) ensures that the derived conventional linear system is stable in the
standard 1D sense. It is the requirement that the matrix A is Hurwitz and guarantees
that the dynamics produced along any pass are uniformly bounded independent of
the pass length. This condition is intuitively obvious since it prevents the presence

of exponential growth terms within the along the pass dynamics.

For condition (c), we consider the special case of a SISO differential unit memory
process (2.13) with zero state initial conditions and control inputs on each pass.

Then the dynamics of the process along pass & + 1 can be written
Yiy1(s) = Gi(s) Ya(s), k>0, (3.39)
where
Gi(s) = C(sI, — A By + D. (3.40)
Then, in this special case, the frequency component of the process can be written
Vi(iw) = G¥(iw) Yo(iw), k>0, w>0. (3.41)

Hence condition (c) is the requirement that the frequency component of the initial
pass profile is attenuated from pass to pass, i.e. |Gi(iw)] <1 V w > 0. In the
general (multivariable) case, (c) can be tested by constructing the continuous curves
(or characteristic loci) generated by the eigenvalues g;(s) of G1(s), s =iw V w >0

and superimposing the unit circle on the resulting plots.
Returning to example 3.1, it is this third condition which is not satisfied here, since

Gi(s) = i—}}f— (3.42)

and hence, for f > 0, |G1(iw)| £ 1Vw > 0.

The three conditions of theorem 3.6 are tested in the order they are presented,
i.e. with the most computationally intensive conditions computed last only if re-
quired. (Smyth, 1992) gives a comprehensive treatment of the testing of these three

conditions for a given example.
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3.3.4 Differential Processes with Dynamic Boundary

Conditions

Within section 2.4.1 of chapter 2 so-called dynamic boundary conditions were intro-
duced which cover cases where the simple boundary conditions of (2.14) are simply
not strong enough to ‘adequately’ model the underlying dynamics of the process.
The inclusion of dynamic boundary conditions affects the bounded linear operator
L,, in the abstract formulation (2.5), and hence these conditions alone can destabilise

the process, as outlined below.

It can easily be seen that asymptotic stability of the simple boundary condition case
of (2.13) and (2.14), i.e. 7(D;) < 1, is a necessary condition for asymptotic stability
of the dynamic boundary condition case of (2.13) and (2.18). Hence for simplicity,
we set D; =0 in (2.13) for the remainder of this section.

It is shown in (Owens and Rogers, 1999) that, for differential unit memory processes
with state-space model (2.13) and ‘initial conditions’ (2.18), asymptotic stability is
determined by the following result,

Corollary 3.4 (Dynamic Boundary Conditions - Asymptotic Stability)

(Owens and Rogers, 1999) Suppose that the pair {A, By} is controllable. Then the
linear repetitive process S(Eq, Wy, Lo) generated by (2.18) and (2.18) (with D; =0)
under a strongly convergent input sequence {uy}r>1 i asymptotically stable if, and

only if, all solutions of
|2I, — M(2)] =0 (3.43)

have modulus strictly less than unity, where

N
M(z) =Y K;Ce’t)ts (3.44)
j=1
with
A(z) :=A+27'B,C, z#0. (3.45)

Note that we assume that N and ¢; are fixed at the outset along the pass length o
and, in particular, do not vary when developing stability along the pass criteria by

letting o — +o00.
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Then, under the condition of corollary 3.4, the limit profile for the process is defined

as follows,

Corollary 3.5 (Dynamic Boundary Conditions - Limit Profile) (Owens
and Rogers, 1999) The limit profile for an asymptotically stable differential linear
repetitive processes defined by (2.13) and (2.18) (with D; = 0) under a strongly

convergent input sequence {uy}r>1 is described by the state-space model

Too(t) = (A4 BoC) 2oo(t) + B uw(t)
Uo(t) = C zeo(t) (3.46)

with state initial vector z.(0) given by
Teo(0) = (I, — M(1)) Ydu (3.47)

where uq 15 the strong limit of {ur}r>1, deo is the strong limit of {d}r>1 and the
invertability of the matriz I, — M (1) is guaranteed by asymptotic stability.

Once again, it is clear that, if the process is asymptotically stable, then its repetitive
dynamics can, after a ‘sufficiently large’ number of passes, be replaced by those of

a standard 1D linear state-space system.

Stability along the pass of processes with state-space model (2.13) and (2.18) can

then be characterised as follows,

Theorem 3.7 (Dynamic Boundary Conditions - Stability along the Pass)
(Owens and Rogers, 1999) Suppose that {A, By} tis controllable and {C, A} is ob-
servable. Then S(E,, Wy, L) generated by (2.13) and (2.18) (with Dy = 0) is stable
along the pass if, and only if,

(a) the condition of corollary 3.4 holds,
(b) all eigenvalues of the matriz A have strictly negative real parts, and

(c)

supr(Gi(iw)) < 1 (3.48)

w>0

where G (s) := C(sl, — A)"' By.
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Note that for the simple boundary condition case, the conditions of theorem 3.7
can be tested using standard 1D techniques - this is no longer true, however, when

dynamic boundary conditions are employed.

It is clear from the above results that accurate determination of boundary conditions
for a given example is vital for correct stability classification. In particular, with
the wrong choice of boundary conditions, an unstable process may be accepted as

asymptotically stable.

3.4 Stability Theory for Discrete Processes

Within this section, the abstract stability theory of section 3.2 is interpreted for
the discrete subclass of processes. Here just the main results are quoted - in gen-
eral, discussions of the results can be carried over from those given in the sec-
tion on differential process stability given previously. For a detailed treatment see,
for example, (Rogers and Owens, 1992b) for the simple boundary conditions case
and (Galkowski et al., 1999a) for the case of dynamic boundary conditions and the

relevant references cited within the text of the section.

An additional point should be noted here. Within section 2.6 of chapter 2 it was
shown how certain classes of discrete processes can be written in 2D Roesser /
Fornasini-Marchesini form. The extent to which so-called ‘classical’ 2D stability
theory can be applied to these subclasses of linear repetitive processes is discussed

within section 3.8 of this chapter.

Consider the subclass of discrete linear repetitive processes with state-space model
(2.22)-(2.23). Then the following result characterises asymptotic stability for these

processes,

Theorem 3.8 (Asymptotic Stability - Discrete Case)  (Rogers and Owens,
1992b) Discrete non-unit memory linear repetitive processes with state-space model
(2.22)-(2.23) are asymptotically stable if, and only if, all eigenvalues of the mM X
mM block companion matriz D given by the discrete form of (2.77) have modulus

strictly less than unaty.

Asymptotic stability guarantees the existence of a limit profile for the process, which

is defined in the following corollary,
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Corollary 3.6 (Limit Profile - Discrete Case) (Rogers and Owens, 1992b)
Suppose that the condition of theorem 3.8 holds and that a strongly convergent se-
quence {ug}r>1 @s applied. Then the limit profile for discrete linear repetitive pro-
cesses defined by (2.22)-(2.23) is described by the state-space model

TP+ 1) = (A+ B (I, — D)™ C) 2o (p) + B tico(p)
Yoo(P) = (Im = D) Czeo(p), 0<p< @, 200(0) = deo, (3.49)

where
M M
B=> B;., D= ZD]-, Hm up =g, and  lim di = deo. (3.50)
The following is one of several equivalent sets of necessary and sufficient conditions

for stability along the pass of discrete processes described by (2.22) and (2.23),

Theorem 3.9 (Stability along the Pass - Discrete Case) (Rogers and Quwens,
1992b) Suppose that

(i) the pair {C, A} is observable;
(11) the pair {A, Z]Ail B;_17’7'} 4s controllable at all but a finite number of

poOINts Y1, Ya, **, Vg 0 the complex plane; and

(1) |21, — A — Zﬁl B;_17]'P(%7Y)71C| has no roots on the unit circle in
the complex plane, 1 < i < q, where P(7) is defined by (3.50).

Then the extended linear repetitive process S(Eq, W, La)aZag generated by discrete
models of the form of (2.22)-(2.23) with o > g is stable along the pass if, and only

if,

(a) all eigenvalues of the mM x mM block companion matriz D, constructed
from the 2D transfer-function matriz G(z1, z) using the discrete form of (2.65)

have modulus strictly less than unity;

(b) all eigenvalues of the matriz A have modulus strictly less than unity or,
equivalently, the derived conventional linear system Lp(A, B, C) is stable; and
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(c) all eigenvalues of the mM x mM interpass transfer-function matriz G(z),
constructed from G(z1, z) using the discrete form of (2.65) have modulus strictly

less than unity for all real frequencies zy satisfying |z, = 1.

Note that each of the conditions of theorem 3.9 can be tested using well known 1D

linear system stability tests.

Within section 2.4.2 of chapter 2 dynamic boundary conditions were introduced for
the discrete processes (2.24) which cover cases when the simple boundary conditions
of (2.25) are not strong enough to model the process dynamics. Stability results for
discrete processes with state-space structure (2.24) and (2.28) are now presented
and these results are the discrete analog to the differential theory introduced in

section 3.3.

As for the differential case, we see that asymptotic stability of processes described
by (2.24) and (2.25) (i.e. r(D;) < 1) is a necessary condition for processes with
dynamic boundary conditions described by (2.24) and (2.28). Hence, for simplicity,
we set Dy = 0 in (2.24) for the remainder of this section.

The following result introduced in (Rogers et al., 1998) characterises asymptotic
stability of processes described by (2.24) and (2.28) and is the discrete counterpart
to corollary 3.4,

Corollary 3.7 (Dynamic Boundary Conditions - Asymptotic Stability)

(Rogers et al., 1998) Suppose that the pair {A, By} is controllable. Then the linear
repetitive process S(Eq, Wa, La) generated by (2.24) and (2.28) (with D; = 0) under
a strongly convergent input sequence {uy}r>1 1s asymptotically stable if, and only if,

all solutions of
|z, — M(2)| =0 (3.51)

have modulus strictly less than unity, where

N
M(z) =Y K;CAPi(z) (3.52)
i=1
with
A(z) == A+ 271B,C, z#0. (3.53)
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The following corollary then defines the limit profile for the process,

Corollary 3.8 (Dynamic Boundary Conditions - Limit Profile) (Rogers
et al., 1998) The limit profile for discrete linear repetitive processes defined by (2.24)
and (2.28) (with D1 = 0) under a strongly convergent input sequence {ug}r>1 is
described by the state-space model B
Teo(Pp+1) = (A+ BoC) 2eo(p) + B ueo(p)
Yoo(P) = C zoo(p) (3.54)

with state initial vector x4 (0) given by
20o(0) = (In — M(1) Yde (3.55)
where Uy s the strong limit of {uy}r>1, deo is the strong limit of {dy}r>1 and the

invertability of the matriz I, — M (1) is guaranteed by asymptotic stability.

This corollary shows that, once again, under asymptotic stability the process dy-
namics may be replaced by those of a 1D discrete linear system, after a sufficiently

large number of passes.

Stability along the pass can then be characterised by the following result,

Theorem 3.10 (Dynamic Boundary Conditions - Stability along the Pass)
(Rogers et al., 1998) Suppose that {A, By} is controllable and {C, A} is observable.

Then S(Eqy, Wa, La) generated by (2.24) and (2.28) (with D; = 0) is stable along

the pass if, and only if,

(a) the condition of corollary 8.7 holds,

(b) all eigenvalues of the matriz A have modulus strictly less than unity, and
(c) all eigenvalues of the transfer-function matriz G1(z1) have modulus strictly

less than unity V |21 = 1, where G1(21) := C(z I, — A)71B,.

In contrast to the corresponding conditions for the differential subclass of processes,
the conditions of theorem 3.10 can be tested via well known 1D linear systems
tests. The starting point of this approach is to derive a 1D equivalent model of the
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dynamics of the process, as presented in (Galkowski et al., 2000). Much further
work remains to be done on these promising initial results before the true potential
of this approach can be realistically assessed, and thus this remains an open area

for future research.

3.5 Simulation-Based Stability Tests

Within this section, time domain or ‘simulation-based’ tests for stability along the
pass of the differential processes of (2.11)-(2.12) are presented based on the step
response matrix of the associated conventional linear systems of (2.11). The results
presented were first introduced in (Rogers and Owens, 1990b) (and subsequently
extended in (Rogers and Owens, 1992a)) and provide an alternative route to per-
formance prediction than the 1D Lyapunov approach to stability analysis presented

in chapter 4. Extensive use is made of the well known results summarised in the

appendix section A.3.

Now consider the subclass of differential processes with state-space form (2.11)-
(2.12). The following analysis uses as a starting point the so-called associated con-
ventional linear systems of (2.11), defined by (2.69), where it is assumed that each
member of this set is controllable and observable. Further, the following assumptions

concerning the step response matrix of each of these systems are made,

Assumption 3.1 Write the j* associated conventional linear system (2.69) in the

convolution form W3 = L7 y}=7 where
(=)0 = [ )y~ 1) dt + Dy (5.50
and H(t), 1 < j < M, is the m x m impulse response matriz
HI(t) = Ce™B;_;. (3.57)
Then 1t is assumed that the step response matriz

i
Wj(t)=/ H(t)dt +D;, t>0, (3.58)
0
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of this element 1s available and it is conventent to write this matriz in the form

Wht) - W)
Wi(t) = - : (3.59)

Here W]fv(t) denotes the response of the p'* output channel to a unit step applied at

t =0 in the v!" input channel.

Assumption 3.2 W(t) is assumed to be a stable response. Formally it is required

that
W3 ()]l < / T NEI ) o e+ 11Dyl < 00, (3.60)

where || -[|;m = max; ), |(+)] is the matriz norm induced by the vector norm ||- || =

max; |(+);] in R™.

Note that under the standard controllability and observability assumptions, condi-
tion (3.60) holds if, and only if, all eigenvalues of the matrix A have strictly negative
real parts (a necessary condition for stability along the pass). Further, it is assumed
that W7(t) is available from appropriate simulation studies on the ;i 1 < j < M,
element of (2.69) (see (Smyth, 1992) for further details of this point).

Suppose now that E, in the abstract model S(E,, Wy, L, ) is taken as L™ (0, +o00),

where L, has the block companion structure of

0 I 0
L. = 3.61
0 0 I ( )
LM LM——l Ll
with L7, 1 < j < M, defined by
i
(L)) =C [ MIByr)ir+ Dy, 0<t<a (302
Further, define L € B(X¥, X%), XV = LY (0,400), N = mM, as
0 I 0
L= , 3.63
0 0 I ( )
LM LZ Ll
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with L7, 1 < j < M, as in (3.56).

In which case it follows immediately that the natural projection (see definition A.11)
of L € X into X{§ ,» = LE(0,a) is just Lq of (3.61), i.e.

P,L =L, 0<a<+oo, (3.64)
and
P.L=L. (3.65)

Now the result of lemma A.8 can be applied to each element in turn of the plant step
response matrices W7(¢), 1 < j < M, to construct the matrix ||P,,L7||, of (A.36)

and hence the N x N block companion matrix

0 I, 0
L . (3.66)
1L, 2, LM

It follows that the following application of the partial ordering of definition A.2
holds,

ILallp < | Lllpy, 0 << +oo. (3.67)

The following result then expresses stability along the pass of processes described
by (2.11) in terms of the matrix || L||, of (3.66),

Theorem 3.11 (Simulation-based Stability along the Pass) (Rogers and
Owens, 1990b) Suppose that the matriz ||L|, of (3.66) has been constructed for
the differential non-unit memory linear repetitive process (2.11)-(2.12). Then the
extended linear repetitive process S(Eq, Wa, La)aza, generated by this model with

a > ap 1s stable along the pass if

r(|[L]],) < 1. (3.68)

Note that this result is sufficient only, hence there exists examples which are stable
along the pass but for which theorem 3.11 fails to produce a conclusive result. This
potential conservativeness is offset by the fact that the result produces, at no extra

computational cost, measures on performance along a given pass on key aspects of
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expected systems performance. For further details of these performance bounds see

section 3.7.

At this stage, note that the initial entries in W7(¢), 1 < j < M, of (3.58) or (3.59)
are simply the elements of the matrix D;, 1 < j < M, and hence the entries in

”D”p = | Tl_igﬂr(PTL)Hp (3.69)
are given by
0 I 0
1Dy = ' o' Lo (3.70)
[ Dl [Dallp (1011l

Further, by (a) of theorem 3.6, (2.11) is asymptotically stable if, and only if, the
spectral radius of the matrix D is strictly less than unity. Application of the spectral
radius inequality 7(D) < r(||D||,) of lemma A.1 now leads to the following result,
which is clearly a simple preliminary test for the applicability of theorem 3.11 to a

given example,

Lemma 3.2 (Rogers and Owens, 1990b) Differential non-unit memory linear repet-
itive processes with state-space model (2.11)-(2.12) are asymptotically stable if

r(IDllp) <1 (3.71)

with || D], given by (3.70).

The stability tests require the computation of the total variation of each element of
the step response matrix of the associated conventional linear system. (Smyth, 1992)
details the numerical and software aspects of implementing theorem 3.11 within
a CAD environment. Note that there are a number of special cases where it is
possible to obtain an explicit formula for ||L||,, with the consequent possibility of
obtaining ‘synthesis type’ results for use in design studies. For a detailed treatment
of these cases see, for example, (Rogers and Owens, 1992b). The advantage of
this approach is that, unlike the stability tests of section 3.3, it can be extended
to cases where it is necessary, for example, to include interpass smoothing effects
in the basic model. Details of work undertaken on the use of these simulation-
based tests in the specification and design of control schemes for these processes
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are given in (Smyth, 1992). In addition, in (Rogers and Owens, 1992a; Rogers and
Owens, 1992b) it is demonstrated that the stability tests presented above provide
computable information on performance along a given pass, which is not available
from the Nyquist like tests of section 3.3. Further information on these so-called
performance bounds is given in section 3.7. Also note that these results generalise
to the discrete subclass of processes described by models of the form (2.22)-(2.23)
as shown in (Rogers and Owens, 1992b).

Now recall the stability along the pass conditions of theorem 3.9 for the discrete
subclass of processes, and note that condition (c) of this result involves calculating
the eigenvalues of an mM x mM transfer-function matrix for all points on the unit

circle. This can be computationally intensive even for the simplest of cases.

With this motivation, new stability tests are developed in the following section for
the discrete subclass of processes which replace the potentially complex computa-
tional conditions mentioned above with sufficient but not necessary alternatives.
This conservativeness is offset by the results supplying at no extra computational

cost information on performance along a given pass (which are not available from

theorem 3.9).

3.6 Simple Structure Stability Tests

In this section simple structure stability tests are developed for the discrete subclass
of linear repetitive processes using some basic results from the theory of nonnegative
matrices (included in the appendix section A.1). These tests replace the need to
compute the eigenvalues of a transfer-function matrix for all points on the unit circle
in the complex plane with a one-off computation of the eigenvalues of a matrix with
constant entries, and are the subject of the paper (Benton et al., 1998b). In addition,
it is shown how the tests produce information on performance along a given pass at

no extra computational cost.

In order to develop the theory, some notation is needed. Consider the subclass of
discrete non-unit memory linear repetitive processes with state-space representation
(2.22)-(2.23). For this model, introduce the transfer-function matrix

G(Zl) = A.2 (21[n - A)_l Al + A3, (372)
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where
Al - [BM—-la y BO]) A2 = [07 ’ CTJT and
0 I, 0
s 0 oo oo I, (3.73)
DM . Dl

Then the following result (which is a restatement of theorem 3.9) gives necessary

and sufficient conditions for stability along the pass of (2.22)-(2.23),

Theorem 3.12 (Stability along the Pass - Discrete Non-unit Memory)
Under the technical controllability and observability assumptions of theorem 3.9,
processes described by (2.22)-(2.23) are stable along the pass if, and only if,

(a)
r(d3) <1, r(A) <1, (3.74)

and

(b) all eigenvalues of the transfer-function matriz G(z1) have modulus strictly

less than unity V |z;| = 1.

Note however that condition (b) requires the computation of the eigenvalues of
the interpass transfer-function matrix G(z;) for all points on the unit circle - a
task which involves working with an mM x mM transfer-function matrix. Hence a

‘heavy’ computational load could result for even the simplest cases of (2.22)-(2.23).

Here, alternative sufficient stability along the pass conditions are developed which
involve the one-off computation of the eigenvalues of a matrix with constant entries.
The new stability tests exploit some basic properties of the theory of nonnegative

matrices which are reviewed in the appendix section A.1.

By considering the nonnegative matrix associated with each of the matrices in the-
orem 3.12, we obtain the following set of sufficient conditions for stability along the

pass of discrete linear repetitive processes,
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Theorem 3.13 (Benton et al., 1998b) Under the assumptions of theorem 8.9, pro-
cesses described by (2.22)-(2.23) are stable along the pass if

(a)
r(l[4sllp) <1, r([lAll) <1, and (3.75)

(b)
r (11 4allp (In = 1Allp) 7 1Al + [l 4s]],) < 1. (3.76)

Proof :  The proof of (a) is trivial on applying the spectral radius inequality of
lemma A.1 to part (a) of theorem 8.12. To prove (b), first note that (2,1, — A)™1
can be represented by an absolutely convergent power series for r(A) < |z, as

follows,

(I, — A) = Zilz (g) 2 # 0. (3.77)
r=>0

Hence by applying the properties of nonnegative matrices given in lemma A.1,

et o e (Al
IGata = Ay < Z( -

Therefore

) = (I, = |A]l,)7", on|n|=1 (3.78)

HG(Zl)Hp < ||A2Hp (Ln HAHP)*I HAIHP + HA3“;0’ Vial =1, (3.79)

and the result follows immediately on using the partial ordering on matrices of defi-
nition A.2.

This result can be extended. Suppose that |- || = max; >, [(")i;]| is the matrix norm
on ny X np matrices induced by the vector norm max; |(-);| in R*2. Then the following
corollary of theorem 3.13 gives an alternative sufficient condition for stability along
the pass for the unit memory (M = 1) case. This condition follows immediately
from the spectral radius inequality (|| X||,) < [|(|X|]p)]] = || X]] of lemma A.1.

Corollary 3.9 (Benton et al., 1998b) Suppose that the pair {C, A} is observable
and the pair {A, By} is controllable. Then, unit memory processes described by
(2.24)-(2.25) are stable along the pass if
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(a)
||[4s|| = ID1]| < 1, ||4]|<1,  and (3.80)

(b)
[ A2f](1 = [JAIDT 1Al + [ 4s]] < 1. (3.81)

Proof : Obtained trivially on setting M =1 in the proof of theorem 3.13.

Note that corollary 3.9 can only produce a conclusive result when applied to unit
memory processes. This is because the block companion structure of ||As|l, means

that r(||As]]) < 1 can never hold in the non-unit memory case.

Similar results to those of corollary 3.9 have been reported by, for example, (Ahmed,
1980) for 2D linear systems described by the Roesser (Roesser, 1975) or Fornasini-
Marchesini (Fornasini and Marchesini, 1978) models. There are however no Roesser
/ Fornasini-Marchesini alternatives to the performance measures which can be ob-

tained from theorem 3.13 and which are presented in the next section.

3.7 Performance Bounds

An immediate conclusion of stability along the pass is that after a ‘sufficiently large’
number of passes, the dynamics of the process may be replaced by those of a stable
1D linear system. This fact is obviously of interest in terms of the specification and
design of control schemes for these processes which is discussed in (Smyth, 1992)
where it is argued that information on the following aspects of system performance

would be of great use,

(i) the rate of approach of the output sequence of pass profiles to the resulting

limit profile, and

(i) the error y; — Yo On any pass k.

Within this section it is shown that the stability tests of the previous section produce
at no extra cost computable information concerning the rate of approach to the limit

profile together with bounds on performance along any given pass.
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Return now to the abstract representation S(E,, Wy, L,) of definition 2.1 under
stability along the pass, where no loss of generality arises from restricting our at-
tention to the unit memory (M = 1) case. Suppose also that the disturbance
sequence applied is constant from pass to pass (a relevant physical assumption in
many cases (Smyth, 1992)), i.e. by = b, k > 0.

Then the recursion relationship for the abstract model (2.5) can be rewritten as

Y = La Yk—1+ boo

k
= LEivo+ > Iy be. (3.82)

j=1

Similarly, the limit profile (3.10) (under stability along the pass and hence asymp-
totic stability, i.e. with r(L,) < 1) takes the form

Yo = Z L{;‘l boo- (383)
=1

Therefore the error term y; — Yo On a given pass k can be written

o

Ve — Yoo = LEyo — > Li " boo, (3.84)

j=k+1

and by looking at the nonnegative matrix associated with each side of (3.84) gives

an estimate of convergence as

[l = Yool lp < (L) {Hyolip + (L Hboollp} ) (3.85)

j=k+1

where, for discrete processes with state-space representation (2.22)-(2.23) under the
notation of (3.72)-(3.73),

L = || Asllp(Zn — 11 All5) ] Avlly + 11 As]l. (3.86)

Further development of the last equation yields the following result,

Theorem 3.14 (Performance Bounds) (Benton et al., 1998b) Suppose that
S(Ea, Wa, Ly) generated by (2.22)-(2.23) is stable along the pass and that theo-
rem 3.183 holds. Suppose also that the control input sequence applied is constant

from pass to pass, i.e. Up = Us, k > 1, and hence by, = by, kK > 1, in the abstract
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model (2.5). Then for a € (0,00) 3 an m x m nonnegative matrizc W and a real

scalar v € (r(L),1) such that the error yp — Yoo, k > 0, satisfies

lys = veolls < WA {lollp + (I — L) 7 [[beollp}- (3.87)

Proof : Since byy11 = b, k > 0, the error term yr — Yoo for the process can be
expressed as (3.84) and therefore the inequality (3.85) holds as shown in the analysis

above.

To proceed, first note that, since theorem 8.18 holds, we have
r(L) < 1. (3.88)

Hence (I, —f/)_l exists and is nonnegative by lemma A.2, and it can easily be shown

that

oo

Im=L)t= Y L~ (3.89)
j=k+1
Therefore it remains to be shown that there ezists a nonnegative matric W > 0 and

a real scalar y € (r(L),1) such that

LF<wok k>0 (3.90)

~

This follows on noting that 7(Ly) < 7(L) < 1 by lemma A.1, and hence it is possible
to choose real numbers W > 0 and v € (r(L),1) such that

1L < Wo*, k>0 (3.91)

Further, 1t is clear that the partial ordering L¥ < Q holds where Q is the m x m
matriz with each element equal to |L||. The result (3.87) now follows immediately
on using (3.89) and defining W as the m X m nonnegative matriz with each element

equal to w.

Suppose now that y(p) and ¥’ (p) denote the i**, 1 < i < m, output channels of
yr(p) and yoo(p) respectively. Suppose also that ||bs|, is available and assume, for

simplicity, that the initial pass profile is zero, and introduce

ci= (e, v em)” = () (T — 1) bl (3.92)
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Then it follows immediately that

[19:(P) = Yoo (P)llp < [1ye = Yoollp < €. (3.93)

Hence yi(p) lies in the band defined by

(8

Y W) — v () < e, 1<i<m. (3.94)

i=1
Note that the width of these bands is, in effect, governed by L.

Hence it has been shown that the output pass profile on pass k, yx(t), approaches
the limit profile at a geometric rate governed by L. This information is available
at no extra computational cost from the sufficient stability tests of the previous
section, and this offsets the conservative nature of the tests. A further discussion of

performance bounds is given in section 6.4 of chapter 6.

3.8 Links between 2D Systems Stability and
Repetitive Process Stability

In section 2.6 of chapter 2 it was shown that the dynamics of a large subclass
of discrete linear repetitive processes can be represented by equivalent Roesser /
Fornasini-Marchesini 2D state-space structures. Within this section, links are drawn
between the stability of these discrete linear repetitive processes and the BIBO

stability of 2D linear systems.

Consider again the Roesser state-space model (2.42) for 2D systems recursive in the
positive quadrant. Then applying the 2D z-transform (where to follow 2D systems
notation convention z and z; now represent ‘backwards’ shifts) yields the following
2D transfer-function matrix,
-1
-1
2z, I, — A —A
Glz,2) = | ! 2
—Aj 271, — Ay

Application of the BIBO stability results of Shanks (lemma A.11) or Huang (lemma
A.12) then shows that this is dependent on the roots of the so-called characteristic

B,y

B | (3.95)

polynomial of the system,

I, — 214 —21 A,

. (3.96)
—‘ZA3 Im - ZA4

pr(21) 2) =
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Alternatively, use of Schur’s formula yields
pr(zl, Z) = IIn - ZlAll lIm — ZA4 - leAg(In - ZlAl)m1A2|, (397)

and hence the following result gives necessary and sufficient conditions for BIBO
stability of the Roesser 2D state-space model (2.42),

Theorem 3.15 (BIBO Stability of Roesser Model) (Boland and Owens, 1980)
The Shanks (or equivalently, the Huang) stability test for the 2D Roesser model is

equivalent to the following conditions

(a) Ay is a stability matriz (i.e. all eigenvalues lie in the open unit circle in

the complex plane),
(b) A4 is a stability matriz, and
(c) all eigenvalues of the transfer-function matriz
P(z7h) = Ag(2 M, — AT A + Ay (3.98)

with |z1| = 1 lie in the open unit circle in the complez plane.

It can be shown that for the 2D systems described by the Roesser model (see eg. (Lu
and Lee, 1985) for the details) that (a) and (b) are equivalent necessary conditions,

hence either may be dispensed with.

At this stage it is convenient to introduce a formal definition of BIBO stability of

linear repetitive processes, as follows,

Definition 3.7 (BIBO Stability) (Rogers and Owens, 1992b) A linear repetitive
process S(Eqy, Wy, L) of constant pass length o > 0 is said to be bounded input-
bounded output (BIBO) stable if there exists a real scalar 6 > 0 such that, given
any yo and {bp}r>1 C Wo bounded in norm (ie. |by|| < ¢ for some constant
a1 >0V k> 1), the output sequence {yx}r>1 generated by the perturbed process

(8.1) is bounded in norm whenever ||y|| < 4.

This definition demands that bounded disturbance sequences generate bounded se-
quences of pass profiles (i.e. the standard BIBO requirement) but also that this

property is retained in the presence of small modelling errors.
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In (Rocha et al., 1996) links between BIBO stability of 2D systems described by
the Roesser state-space model and the concepts of asymptotic stability and stability
along the pass of discrete linear repetitive processes were investigated. Taking each
stability property in turn, the following conclusions were drawn. If a process is
asymptotically stable, then the resulting limit profile is BIBO stable over the pass
length o, which is finite, since over such a duration even an unstable 1D linear
system can only produce a bounded output. Hence asymptotic stability is BIBO
stability over the finite length only. Stability along the pass is then the stronger
requirement that the process is BIBO stable uniformly (i.e. independent of the pass

length). This equivalence is summarised in the following result,

Theorem 3.16 (BIBO Stability /Stability along the Pass Equivalence)

(Rocha et al., 1996) S(Ea, W, La)a>a, generated by (2.22)-(2.23) is stable along
the pass if, and only if, it is BIBO stable in the sense of Shanks or Huang. (Note
that the transfer-function matriz of (8.95) must have no nonessential singularities

of the second kind).

As a result of theorem 3.16, many tests available for checking BIBO stability of 2D
linear systems described by the Roesser model can also be applied to testing for
stability along the pass of discrete linear repetitive processes described by (2.22)-
(2.23).

Within section 2.6, new Roesser-type representations of the dynamics of discrete
unit memory linear repetitive processes were presented, which have proved use-
ful in characterising local reachability / controllability properties for these pro-
cesses (Galkowski et al., 1999b). Consider then the subclass of discrete linear
repetitive processes with state-space model (2.57) (under transformation (2.56))

and introduce the characteristic polynomial for this process as

[n — Zlfi —B
,2) = . R 3.99
pr(a,2) & Iy~ 2D (3.99)
where
) . . [pbc] . Do
A=A B=|0 1|, C= , D= 3.100
[ ] [ B,C i By 0 ( )

Then the Shanks test for stability (lemma A.11) says that the process (2.57) is BIBO
stable if, and only if,

pr(z1,2) #0, |z <1, |z] < 1. (3.101)
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Note that, in this form, this test is not computationally feasible in all but the simplest
cases. This problem can be overcome by using Huang’s test (of lemma A.12) which
states that (2.57) is BIBO stable if, and only if,

pR(Zla O) '7é 07 lzl! < 1; and
pR(Zl, Z) 7’5 O, ]zll = 1, IZ! S 1. (3102)
Note that the stability conditions of (3.101) and (3.102) assume that the transfer-

function matrix description of the underlying dynamics has no nonessential singu-

larities of the second kind (Goodman, 1977).

It is also routine to show (Rogers and Owens, 1992b) that in the case of (2.57) these
conditions can be reduced to the form of the following corollary,

Corollary 3.10 (Galkowski et al., 1999b) The 2D BIBO linear systems stability
test of Huang (Huang, 1972) applied to the dynamics of discrete linear repetitive

processes written in the form (2.57) requires that
(a) r(D1) <1, r(A)<1, and
(b) all eigenvalues of the transfer-function matriz
G(z") = C(z7' I, — A) ' By + Ds (3.103)

lie in the open unit circle in the complex plane ¥V |z;*| = 1.

The results presented above are based on a Roesser structure interpretation of the
dynamics of the discrete process (2.24)-(2.25). Results obtained from interpreting
the well known BIBO stability theory for Fornasini-Marchesini type structures can
be found in (Galkowski et al., 1999Db).

3.9 A Volterra Approach to Stability Analysis

Recent new results on the controllability of discrete linear repetitive processes

(Dymkov et al., 2000) strongly suggest that the powerful theory of Volterra operators
has a significant role to play in the onward development of a mature systems theory
for linear (and nonlinear) repetitive processes. In this section the Volterra approach

is used to study the stability properties of discrete linear repetitive processes.
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Let F be a finite dimensional normed linear space over the complex field C with
norm || - || and let Z, be the set of nonnegative integers. Also let S(Z., F) be the
linear space of all sequences on E, i.e. the functions f : Z, — E. Then S(Z., F)
is a locally convex Hausdorff topological space when equipped with the topology of

uniform convergence on finite sets, i.e. the family of neighbourhoods is defined as
Une=A{f:f€SZ,E), |[f(k)]|lg <€, ke N} (3.104)

where N is the set of all finite subsets from Z, and € ranges over the set R, of all

positive real numbers.

Suppose now that B(Z,, E) denotes the subspace of S(Z,, E) of all bounded func-
tions, i.e. f:Z; — E such that supyez, [|f(k)|[e < +oco. Then it is a standard
fact that B(Z., E) is dense in S(Z.., E) with respect to the topology of uniform con-

vergence over finite sets. Also B(Z,, E) is a Banach space under a suitable norm
definition, eg. ||f|| = supgez, IIf (k)|

Now let V and W be finite dimensional normed spaces over the complex field C and
let A:E—FE B:V —F By:W—FE C:E— W, and D; : W — W be
linear operators. By letting [0, a] be the set of integers {0 < i < a} for given integer
a, it is possible to describe the discrete unit memory linear repetitive process (2.24)

as
(P +1) = Azpia(p) + B ueta(p) + Bo ye(p)

Yrer1(p) = C zia(p) + D1 yi(p) (3.105)

with respect to the unknown functions z : Z. x [0,a] — F and y : Z, x [0,a] —

W. The function z is the current pass state vector, y is the pass profile vector, and

w: Zy x [0,a] — V is the control input vector.

The formal definition of a solution for (3.105) is as follows,

Definition 3.8 (Solution for (3.105)) For a given control input vector ug(p), the
pair of functions {z(p), ys(p)} defined on Z, x [0,a] with ranges in E and W
respectively are said to be the solution of the equations of (3.105) if they satisfy
them ¥V (k,p) € Z4 x [0, a.

It can easily be verified that, for any function v € S(Z4, F) and any collection

of elements dy, do, -+ ,d, from W, there is a unique solution to the equations of
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(3.105) satisfying
zx(0) = v(k), k€ Zy, yo(p) =dp, p€[0,al (3.106)
These are termed the initial conditions here.

The following analysis uses some properties of the Volterra operator which are re-

viewed in the appendix section A.5.

The structural properties of the process described by (3.105) and (3.106) can be
studied by considering the space of bounded functions. Note that the closure of this
set with respect to the topology of uniform convergence equals the space S(Z,, E).
Hence the question considered in the following analysis is of under what conditions
the solution of (3.105)-(3.106) is bounded.

Suppose that the initial condition function and the control input satisfy the follow-

ing,

sup [|[7(k)||g < +oo, sup |lugs1(p)|ly < 400, (3.107)
kEZ kEZ+

Vpel0al

Then, without some additional assumptions, the solution to (3.105)-(3.106) may

become unbounded, as illustrated in the following example,

Example 3.2 Let A=0,C =0, up1(p) =0,k € Z,,p €[0,a]. Then it can easily
be seen that yy(p) = D¥ d, and zx(p) = ByD¥ d, is the solution of (3.105)-(3.106).
Clearly supyey, ||zx(p)ll = +oco and supyesz, ly(®)ll = +oo Vp € [0,a], de. the
solution is unbounded if the eigenvalues of Dy lie outside the unit disc U.

The following result then gives the condition for the existence of bounded solutions
to (3.105)-(3.106),

Theorem 3.17 If the spectrum o(D1) of the operator Dy lies within the unit disc,
then, for any functions v(k) and ug(p) satisfying conditions (5.107), the solution

I‘k(p) = z(kap77;d) U), yk(p) = y(k,p,’)’, d7 ’U,) (3108)
of the system (8.105)-(3.106) satisfies the following conditions ¥V p € [0, ],

up ll2x(p)]| < +oo,  sup s(p)] < +oo. (3.100)
keZ kEZ +
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Proof : Here we use the operator representation for the system (3.105)-(3.106) in
the space B(Z., E). Introduce the operator T : B(Zy,E) — B(Z,, E) defined as

(TH)(k+1)=f(k+1)—D.f(k), keZ.. (3.110)

Also define for each p € [0,0a] the functions z, : Zy — E, yp, : Zy —> W and
Up Ly — V as

(@p) (k) = zx(p),  (Wp)(k) == ua(p), (up)(k) = upsa(p), k€Zy. (3.111)
Then (3.105) can be written as
(T yp)(k) = (C zp)(k), (3.112)
which can be rewritten in the operator form
Ty,=Cuz, pe€l0al (3.113)
If the inverse operator T~ for T exists, then (8.113) yields
yp =T 7C (3.114)

and to establish the conditions for the ezistence of the T~ first note that (3.110) 1s
a special case of the Volterra operator Vy of definition A.49, and hence lemma A.13
may be applied. Further, it is easy to verify that the power series representation
T(z) of T is T(z) = I — zDy. Since the spectral values of D, € U, detT(z) # 0 for
|z] <1, z€ C. Hence T has the bounded inverse linear operator T~ which has, as
in (A.51), the form

k
(T7')(k) = > Tip(k—1), z€C, (3.115)
i=0
where T; : E — E, i € Ly, are linear operators satisfying Y .o, [|T3]] < +o0.

At this stage, we have shown that (3.114) holds and it can be rewritten in the form
W) () = (T C o) (k) k€ Ly (3.116)

Substituting (3.116) into (8.105) and using (3.115) gives

k
T(p+1) = Azpa(p) + By ZY}C zy-i(p) + B up1(p). (3.117)

1=0
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Since the initial conditions v(k) = xx(0) and control input function ui(p), k €
Z., p€|0,a], satisfy conditions (3.107), it follows immediately from (3.117) that

k
sup ||zr+1(D)]|g = sup ||A zx41(0) + By ZTZC Tp-i(0) + B up1(0)]] < +oo.
k€Z+ kEZ+ i=0 E

(3.118)
Hence

k
sup |zx+1(2)||lg = sup || A zp1(1) + By ZTiC Tp-i(1) + Bupi(1)|| < oo,
k€Z+ kEZ+ i=0 B

(3.119)

and continuing this procedure for all p € [0,«] establishes the first conclusion of

theorem 3.17 on z(p).
Finally due to (5.116) we also have

sup lys(0)llw < [IT7| sup 1C zp(k)|lw < +oo0, (3.120)

and the proof is complete.

Consider now the process (3.105) free of control inputs, i.e. with u(p) =0,0<p <
o, k > 0. This homogeneous version of (3.105) can be represented as

Tpn(p+1) = Azpiilp) + Bo yr(p)
yri1(p) = Capia(p) + D1 yr(p). (3.121)
At this stage, we introduce the following definitions of stability,

Definition 3.9 (Exponential Stability) The system (8.121) is said to be expo-
nentially stable if there exists a real scalar q, 0 < g < 1, such that the inequalities

lz(k,p, 7, d)||lz < Ad*, [ly(k,p,7,d)llw < Ad¥, (3.122)
hold for all v € B(Z., E) and any collection of elements dy, dy, -~ , dg from W,

where A is some positive real scalar.

Definition 3.10 (Weak Exponential Stability) The system (3.121) is said to
be weakly exponentially stable if there exists a real scalar g, 0 < q < 1, such that the

inequalities

lz(k,p, v, d)||le < Ad*, ly(k,p, 7, d)|lw < Ad¥, (3.123)
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hold for all v € B(Z, E) with ||y(k)
of elements dy, dy, ---, do from W, where X\ is some positive real scalar.

| <wn®, w>0,0<n<1, and any collection

Note that the term ‘exponential stability’ arises from the fact that the decrease in
the solution {z4(p), yx(p)} with respect to the variable k is required to follow the

exponential function exp{klngq}.

It is now necessary to represent the solutions of (3.121) in the ring of power series.

In order to do this, introduce the formal power series representation of z;(p) and

Yx(p) as
X(z,p) =Y wa1(p)z*, Y(zp) =) wven(p)2®, pel0a] (3.124)

Substituting these power series expansions into (3.121) gives

X(z,p+1) = AX(z,p)+ 2By Y(2,p) + By y(0, p)
Y(z,p) = CX(z,p)+2D1Y(z,p)+ D1y(0,p), (3.125)

and combining these two equations yields
p—-1
X(z,p) = AP(2) X(2,0)+ ) A(2)8(2)d;,
i=0

Y(2,p) = (I —2D1)7 [C(AP(2)X(2,0) + ZA”_I_Z'(Z)ﬁ(Z)di) + Didp),

(3.126)

where
A(z) = A+ 2Bo(I — 2D1)7'C, and B(z) = By + 2Bo(I — 2D;) "' Dy, (3.127)

The following result now characterises the property of exponential stability of pro-
cesses described by (3.121), and hence of non-homogeneous processes described by

(3.105),

Theorem 3.18 (Exponential Stability) If the system (3.105) is exponentially
stable then the following condition holds

det(A(z) = M) £0 VY |z] =1, [A|>1. (3.128)
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Proof : To obtain a contradiction, assume that (3.121) is exponentially stable
but the condition of the result does not hold. Then we have det(A(z) — AgI) = 0

for some |zp| = 1, |Ao| > 1, and there ezists a nontrivial vector a € E such that
A(Zo)a = /\oa,

Consider the solution pair {zy(p), yx(p)} of (8.121) generated by the following initial

conditions
z,(0) = azg®, w(p) =0, 2€Z,, k€0l (3.129)
Then since the solution xy(p) is stable, 3 constants 0 < ¢ <1, A > 0, such that
lzx()l|e < Ag*, ¥V pel0,al (3.130)

Since ¢ < 1, 3 an integer N such that Ag™ < 1|ja]|s. Also,
o0
2p) =Y 41 (p)7” (3.131)
k=0
can be written as
X (2,p) = AP(2)X(2,0) = AP(2)a y_(2/z)". (3.132)
k=0

Suppose now that the analytic matriz function AP(z) can be expanded into the fol-

lowing convergent power series

(o9}
= APz, (3.133)
s==0
Then 3 an integer s > N such that
S (p) i 1
Y APA| < ; Ypelal (3.134)
i=sg+1 E

For the remainder of the proof, the norm of z(p) at k = sq is estimated. Note that
T, (p) s the coefficient of the term z°° in the power series representation of X (z,p).
Hence (5’.132)-{3.134) yields

Jza(@)ls = S AP
E 1=s0+1 E

> 4% (z0)alls - Z ke zle!PHaHE—inauEz§HanE,
: (3.135)
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and due to the stability of z1(p), we have

zs,(0)llz < Ag® < A" < Zlalls (3.136)

[SSRI

which contradicts (8.135).

The following example demonstrates that (3.128) alone is not sufficient for exponen-

tial stability of processes described by (3.105),

Example 3.3 Consider the discrete linear repetitive process with state-space repre-

sentation
xmwwazrz2ijmm+“g}mm
yri1(p) = ~ 8 é } zp41(p). (3.137)
In this case, -
Alz) = [ 1é2 1;2} (3.138)
and
det[A(z) = M| = (1/2-2)2?#0V]z| =1, A > 1. (3.139)

Consider now the solution of (3.137) under the bounded initial conditions x,(0) =
p, k€ Zy, yo(p) =0, p € [0,a], where p is some constant. Also set ||z(p)|| =
max{zi(p)} where z%(p), i = 1,2, denotes the elements of the state vector on pass

k. Then it can easily be shown that for p € [0,a], k > 0,

2p+1
Tp(p) = yi+1(p)=< > )p

i1 (@) = Yrlp) = (g;) p. (3.140)
Hence
@l = 2, (o) = 2 (3.141)

and this example is not exponentially stable in the space of bounded functions.
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The following result relates to weak exponential stability,

Theorem 3.19 (Weak Exponential Stability) The system (3.121) is weakly ez-
ponentially stable if, and only if, condition (3.128) holds.

Necessity : Follows from theorem 3.18

Sufficiency :  Suppose that (3.128) holds, and note that this means that this
condition also holds for |z| < 1 and |\ > 1. From (3.128) it follows that det(I —
pA(z)) # 0 for |z| < 1, |u] <1, and, since ¢(z) = det(] — pA(z)) is an analytic
function, 3 a real scalar p > 1 such that det(I — pA(z)) # 0 for |z| < p, |p| < p.
Therefore, (8.153) shows that the inverse matriz (I — pA(z))™! can be written as

(I =A@ =3 ut > AP (2l <p, ul <p (3.142)

Let g = ﬁ%l and zg = ﬁ;—l. Then clearly the series (3.142) converges at (ug, 29)-

Hence 3 a real constant L > 0 such that

WEA® i <L or <L (3.143)

. . (k) 2 \HF
This inequality shows that ||A;"|| < L (E) :

It now follows from (3.126) that the power series representation X (z,p) for the
solution z(k,p,,d) to (8.105) may be written as

X(z,p) = AP(2) ny(s)zs + Z_:Ap_l“i(z)ﬁ(z)di. (3.144)

For the remainder of the proof, define for power series of the form ¥(z) = Y2 a(i)2",
a(i) € E, the mapping 0,(V(z)) = a(s), s € Z,, which is clearly linear. Then

p—-1

2(s,p) = 0s(X(2,)) = 0, (H(2) Y (D)2) + D os(AP7H(2)B(2)d)
i=0 k=0
o [k p-1 o [ i
= o, (Z (Z A§p)”y(k - i)zk> zs) + Zas (Z ( A;k)BgDi_j> z’) d
k=0 \i=0 k=0 i=0 \j=0
s p—1 s
- < APy (s — i)) + AW By D} dy. (3.145)
i=0 k=0 j=0
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The condition det(A(z) — A) # 0 for |z| = 1, |A| > 1 means that det(I — zD;) # 0
for |z| = 1. Hence the spectrum of the operator Dy lies within the unit disc U, and
there exists real scalars K >0, 0 < 8 < 1, such that |Di| < K#°V s € Z,.

The above bounds imply that

|z(s,p,7,d)||e
s 9 p+i . p—1 s 9 p+i '
<L YU+ LK || Byl ||d e g5,
253 (25) v+ LxiBl| 133 =
1= ;=0 j=0
(3.146)
Define r = max{n, /%, 6}, and then clearly r < 1. Then
s p-1 s
(s, ., )l < Lw > 7% + LK || Bo|| |ldl| > > r**e
1=0 k=0 j=0
= Lw(s + 1)r*tP~t 4 LK||Bo|l |d]|(s + V)7t~ 11 — rP)(1 — r)7,
(3.147)
and the desired inequality
1 1
(s, p, 7, d)llw < SAG° + 5A¢* = Ag’ (3.148)

follows immediately where

0=V, A= sup{Tur (s + g, LR Ball[dlr (1= r7)(s + g**).
(3.149)

From the representation (8.126), it can be seen that the proof of stability for yi(p)
follows by analogy from the proof for xy(p) given above.

3.10 Summary

Within this chapter the rigorous stability theory developed by Rogers and Owens for
linear repetitive processes with a constant pass length o has been introduced. The
theory is based on the abstract representation of the processes in a Banach space
setting which was introduced in chapter 2 and covers the two separate concepts of

asymptotic stability and stability along the pass. The existence of two separate types
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of stability for these processes is as expected since the processes depend explicitly on
two independent variables. Asymptotic stability is the requirement that bounded
sequences of inputs produce bounded sequences of outputs over the pass length,
whereas stability along the pass is the requirement that this holds independently of
the pass length (i.e. the case of letting @ — +0c0). Although examples do exist
where asymptotic stability is all that is required (eg. (Owens et al., 2000)) or in fact
all that is achievable (eg. (Roberts, 2000)), it is the stronger condition of stability -
along the pass which is of most interest here.

In sections 3.3 and 3.4 the theory developed initially for the general abstract rep-
resentation of a linear repetitive process has been specifically interpreted for the
differential and discrete subclasses of processes, firstly for the simple boundary con-

dition case and then for dynamic boundary conditions.

In the simple boundary condition case, it has been shown that for both subclasses
the resulting conditions for stability along the pass can be tested by applying well

known tests from 1D linear systems theory.

In terms of S(E,, W,, L, ) generated by a differential process with dynamic boundary

conditions, there are two cases to deal with:

(i) as @ — 400, allow N — 400 and ¢; — +o0; and

(ii) as o — 400, keep N and t; fixed.

In (Owens and Rogers, 2000) it is highlighted that the second case is of the most
practical relevance, and hence is what has been considered in the literature to date.

How to approach case (i) above remains an open research area.

For the second case above, for both the differential and discrete subclasses of pro-
cesses, stability along the pass conditions have been given which clearly indicate
that the accurate determination of boundary conditions for a given example is vi-
tal for correct stability characterisation. In terms of the tests, it is clear that the
real problem arises with the condition for asymptotic stability (which is where the

dynamic case differs from the simple boundary condition case).

In terms of the differential subclass of processes, in the general dynamic boundary
condition case the resulting stability conditions can no longer be tested via standard

1D techniques. The problem of developing computationally efficient stability tests
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for this subclass is still open.

In terms of the discrete subclass of processes, however, for state initial vectors of
the (most general) form

a—1

2i41(0) = dis + Y Ry (4) (3.150)
=0
the resulting stability along the pass conditions can be tested for via standard linear

systems tests. For the details see the reference cited in the text.

For the differential and discrete subclasses of processes, as an immediate consequence
of stability along the pass, after a ‘sufficiently large’ number of passes, the dynamics
of the process under consideration may be replaced by those of a stable 1D linear
system (or stable limit profile as it is termed here). Clearly strong measures on
the following aspects of systems performance is of interest in terms of performance

evaluation of a given example:

(i) the rate of approach of the output sequence of pass profiles to the limit profile;

and

(ii) the error y; — Yoo ON a given pass k.

In terms of obtaining computable bounds on these aspects of performance pre-
diction, two routes are available. Omne approach, the two-dimensional Lyapunov
equation route, is fully detailed in chapter 4. Here, the time domain (also termed
simulation-based) approach in the discrete case has been introduced. It has been
shown that the standard test for stability along the pass involves the evaluation of a
potentially large dimensioned matrix for all points on the unit circle in the complex
plane. In section 3.6, for the discrete subclass of processes, this condition has been
replaced by a one-off computation of a matrix with constant entries. Although the
resulting condition for stability along the pass is sufficient in nature only, this po-
tential conservativeness is offset by the availability of performance measures along
a given pass from the new conditions at no extra computational cost. The theory
presented here is novel and provides the subject of the paper (Benton et al., 1998b).

Within chapter 2 it was shown how certain subclasses of linear repetitive processes
can be written in the form of 2D linear systems described by the Roesser or Fornasini-

Marchesini state-space models. These 2D systems interpretations have led to the
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following advance in terms of systems theory for discrete linear repetitive processes.
For the standard (i.e. nonsingular) model, a formal equivalence has been shown to
exist between the stability along the pass of discrete linear repetitive processes and
the BIBO stability of the corresponding Roesser (and hence Fornasini-Marchesini)

state-space model interpretation of the process dynamics.

In addition, it has been shown in (Galkowski et al., 1999b) that consideration of
the singular model has led to the development of a transition matrix (or fundamen-
tal matrix sequence) and hence a general response formula (which calculates the
process response to a given input sequence and boundary conditions), which leads
to a characterisation of certain reachability /controllability properties. See the cited

reference for further details.

This chapter concludes by introducing a Volterra operator based approach to sta-
bility analysis of discrete linear repetitive processes and as such remains an area
where future research effort should be directed. Although this route is very new,
it appears that this approach may play a significant role in the stability analysis of

such processes.
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Chapter 4

1D and 2D Lyapunov Equations

4.1 Introduction

As a result of the ‘equivalence’ between the BIBO stability of 2D systems described
by the Roesser model (and hence the Fornasini-Marchesini model) and the stability
along the pass of discrete linear repetitive processes which has been presented in
chapter 3, many well known tests available for the stability analysis of 2D linear
systems may be applied to linear repetitive processes. Within this chapter, the
question of to what extent a Lyapunov equation based approach to the stability

analysis of these processes can be applied is considered.

The most basic aim of using these Lyapunov-type equations is to provide a suitable
extension of conventional 1D theory. A review of the literature indicates that the
problem of developing a Lyapunov-type equation for 2D linear systems described
by, for example, the Roesser state-space model has been approached in essentially

two different ways:

(i) the 1D Lyapunov equation approach, so-called because the equation has an
identical structure to that for discrete linear time-invariant systems, but with

defining matrices which are functions of a complex variable; and

(ii) the so-called 2D Lyapunov equation approach, defined in terms of matrices

with constant entries.
Initially the 1D Lyapunov equation is introduced, firstly for the subclass of differ-
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ential processes with simple boundary conditions - for the discrete case, see (Rogers
and Owens, 1996). It is shown how the resulting necessary and sufficient conditions
for stability along the pass can be implemented by computations on matrices with
constant entries. In the discrete case, this serves as an alternative to the standard
stability along the pass tests of chapter 3 which require the computation of the
eigenvalues of a potentially large dimensional matrix for all points on the unit cir-
cle in the complex plane. It is highlighted how performance measures are available
from the resulting condition for stability along the pass which provide computable
information on the rate of approach of the output sequence of pass profiles to the
limit profile on a given pass. The 1D equation does not, however, provide useful
measures of relative stability, i.e. stability margins or robustness to, for example,
uncertainties in the model description (unlike the 2D equation case - see chapter 5
for further details of these robustness measures). To conclude this analysis, a 1D
Lyapunov equation characterisation of stability along the pass is introduced for a
subclass of differential processes possessing dynamic boundary conditions of a spe-
cial structure (which is of particular interest in terms of classes of delay-differential
systems). New strict positive realness tests for the resulting condition are intro-
duced, and the analysis presented here provides the basis for the papers (Benton
et al., 2000c) and (Benton et al., 2000d).

In section 4.6 the so-called 2D Lyapunov equation is presented, which is defined in
terms of matrices with constant entries. It is shown here how the existence of a
positive definite solution pair to this equation, in general, provides a sufficient but
not necessary condition for stability along the pass. In particular, a counter example
is given which demonstrates that a stable along the pass process does not necessarily
have the strictly bounded real property and hence doesn’t satisfy the 2D Lyapunov
equation. The analysis here can be found in (Benton et al., 1999). In section 4.7,
a 2D Lyapunov equation is developed for a 2D Fornasini-Marchesini state-space
model of the dynamics of a discrete linear repetitive process which involves the
computation of generalised eigenvalues. The analysis of this section can be found
in (Benton et al., 2000a). To offset this apparent conservativeness of the sufficient
only nature of the 2D Lyapunov equation approach, it is shown in section 4.9 how

the equation provides performance measures along a given pass.
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4.2 1D Lyapunov Equation Approach

Within this and the following sections, the so-called 1D Lyapunov equation approach
to the stability analysis of linear repetitive processes is introduced. Here the differ-
ential subclass of processes is considered (for a detailed treatment including relevant
proofs see (Owens and Rogers, 1995)) - for the discrete case see, for example, (Rogers
and Owens, 1996). As a starting point, consider the unit memory subclass of differ-
ential linear repetitive processes with state-space representation (2.13)-(2.14). Also,
without loss of generality, set dy4+1 = 0, £ > 0. Then the following result expresses
stability along the pass in terms of a 1D Lyapunov equation. This result has been

previously reported as theorem 3 in (Owens and Rogers, 1995).

Theorem 4.1 (1D Lyapunov Equation) Suppose that the pair {C, A} is observ-
able and the pair { A, By} is controllable. Then the extended linear repetitive process
S(Ea, Wa, La)aza, generated by (2.13) and (2.14) (with 2341(0) = 0, k > 0) with
o > g 18 stable along the pass if, and only if,

(a) r(Dy) < 1,

(b) |sI, — Al #0, Re(s) >0, and

(c) 3 a rational polynomial matriz solution P(s) of the Lyapunov equation
GT(—s)P(s)G(s) — P(s) = —I (4.1)

bounded in an open neighbourhood of the imaginary azis of the complex plane
with the properties that P(s) = PT(—s) and

B < Pliw) = PT(—iw) < B3I Y w>0 (4.2)

for some choices of real scalars B; > 1, i = 1, 2, where G(s) is the interpass
transfer-function matriz of the process, derived from the state-space quadruple
{Aa BOa 07 Dl}

Note that the Lyapunov equation (4.1) in theorem 4.1 is identical in structure to that
for 1D discrete linear systems, except for the fact that the coefficient matrices are
functions of a complex variable. Hence it is termed 1D here to distinguish it from
the alternative Lyapunov equation (termed 2D) for processes described by (2.24)
and (2.25) which is developed in section 4.6.
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Note that the scalars §;, ¢ = 1, 2, in this result play no role in the stability analysis
but, as theorem 4.2 below shows, together with P(s) they are the key to obtaining

bounds on expected system performance.

As a starting point to the following analysis, assume that the differential process
(2.13)-(2.14) is stable along the pass and consider the solution matrix P(s) of the
1D Lyapunov equation of theorem 4.1. Then factorization techniques enable us to

write
P(s) = FT(=5)F(s) (4.3)

where F'(s) is stable and minimum phase, and hence has a stable minimum phase

inverse. Also, without loss of generality, let

lim F(s) = PY? (4.4)

|§|—++0o0
where the matrix on the right hand side of this equation is the unique positive
definite square root of P, > 0 which solves
Dfp D, - P, = -1, (4.5)
where (4.5) can be obtained by defining Py, := limj,|~ 4 P(iw) and observing that
hlnjs|__>+oo G(S) = Dl-

Now consider the differential unit memory process which is free of control inputs,
Le. upyi(t) =0,0 <t < a, k>0, Then, in this situation, it follows that the
process dynamics can be written in terms of the standard (1D) Laplace transform

as
Yisr(s) = Gls) Yi(s), k>0, (4.6)

Also let

~

$i(s) = F(s) Yi(s), k>0, (4.7)

denote ‘filtered’ (by the properties of F(s)) outputs. Then the following result
(theorem 4 in (Owens and Rogers, 1995)) gives bounds on expected performance of

the sequence of ‘filtered’ pass profiles,
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Theorem 4.2 (1D Lyapunov Equation - Performance Bounds) Suppose
that S(Eq, Wa, La) generated by (2.13)-(2.14) (with zero control inputs and xj,,(0) =
0, k > 0) is stable along the pass and set X = LT*(0, +o0). Then, Vk > 0,

Yesalk = %2l — 1Yl (4.8)

and hence the ‘filtered’ sequence of pass profiles {HYkHX}kZO 18 strictly monotonically

decreasing to zero and satisfies, for k > 0, the inequality
Vel x < M)Vollx (4.9)
where
Ai=(1-5H) <1 (4.10)
Also the actual output sequence of pass profiles {||Ys||x }x>0 is bounded by

1Yl x < NA*||Yollx (4.11)

where

N = BBt > 1. (4.12)

The 1D Lyapunov equation characterisation of stability along the pass provides the
following information on the rate of approach of the output sequence of pass profiles
produced by a stable example of the form (2.13) and (2.14) to the limit profile (a

stable 1D differential linear system):

(i) the output sequence of ‘filtered’ pass profiles {HYkH}kzo consists of monotone

signals converging to zero at a computable rate in L*(0, +00); and

(ii) the actual sequence of output pass profiles {||Yz||}x>0 converges at the same ge-
ometric rate, but this is no longer necessarily monotonic. This deviation from
monotonicity is described by the parameter N computed from the solution of

the 1D Lyapunov equation of theorem 4.1 and (4.12).

It should be stressed that, for the discrete subclass of processes, there are no
2D Roesser/Fornasini-Marchesini alternatives to the performance information in-

troduced here.
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4.3 Solving the 1D Lyapunov Equation

To solve the 1D Lyapunov equation (and hence stability tests only involving com-
putations on matrices with constant entries) in the general case requires the use of
the Kronecker product, denoted ®, for matrices (as defined in definition A.6). In
computational (or testing) terms, only the imaginary axis, i.e. s = iw, needs to be
considered - the extension of this curve can be achieved (if required) by analytic
continuation means. In particular, if conditions (a) and (b) of theorem 4.1 hold,
the example under consideration is stable along the pass if, and only if, 3 a positive
definite Hermitian (denoted PDH) matrix P(iw) which solves (4.1).

Suppose that a Hermitian matrix P(iw) has been obtained. Then it follows immedi-
ately that the PDH requirement on P(iw) is equivalent to it satisfying the so-called
axis positivity property of Siljak (Sﬂjak, 1971). In particular, the following result is

an immediate consequence of Sijak’s criterion for axis positivity of P(iw),

Lemma 4.1 Under the assumptions of theorem 4.1, differential linear repetitive
processes described by (2.13) and (2.14) are stable along the pass if, and only 1f,
(a) the conditions (a) and (b) of theorem 4.1 hold, and
(b) the solution matriz P(iw) of the 1D Lyapunov equation (4.1) satisfies P(0) >

0 and det(P(iw)) >0 V w > 0.

Further details on how these conditions can be applied to a particular example can
be found in (Rogers et al., 1999).
Now note that the 1D Lyapunov equation (4.1) with s = 4w can be written as

(I — GT(—iw) ® GT (iw))S[P(iw)] = S[I] (4.13)

where S[-] denotes the stacking operator. Also 3 a unique solution matrix P(iw) to

this equation provided
det(In2 — GT(~iw) ® GT(iw)) #0 Vw. (4.14)

Under the controllability and observability assumptions of theorem 4.1, the process
is stable along the pass if, and only if, 3 a PDH matrix P(iw) which solves (4.1)

YV w. Then if condition (b) of lemma 4.1 holds for some arbitrary value of w, say w,,
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we have 7(G(iw,)) < 1. Hence the following are an equivalent set of stability along

the pass conditions to theorem 4.1,
Theorem 4.3 The conditions of theorem 4.1 are equivalent to the following,

(a) the conditions (a) and (b) of theorem 4.1 hold,
(b) for an arbitrary w,,

r(G(iw,)) <1, and (4.15)

(¢) (4.14) holds.

To apply the conditions of theorem 4.3, it is necessary to test these three constant

matrices for stability in the 1D sense

(i) Dy with respect to the unit circle in the complex plane,
(i1) G(iw,) with respect to the unit circle in the complex plane, and

(iii) A with respect to the imaginary axis in the complex plane,

and the determinant condition of (4.14), and hence this test is no more computa-

tionally efficient than alternatives.

The following result then gives alternative conditions for stability along the pass

which are expressed in terms of the eigenvalues of constant matrices,

Theorem 4.4 Suppose that the controllability and observability assumptions of the-
orem 4.1 hold. Then S(Es, Wq, Ls) generated by (2.13) and (2.14) with x;1(0) =
0, k£ > 0, is stable along the pass if, and only if,

(a) conditions (a) and (b) of theorem 4.1 hold,
(b) (4.15) holds, and
(c)

det(’ X1 +nXy + X3) #0 V n=1iw, V w, (4.16)
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where
(000 0 00 0 0
000 0 071 0 0
X = , Xo= and
000 0 00 —J 0
000 —I 00 0 I®AT-AT®IT
[ 1-DT®@DT I®BY Bf®D! DI®DT
DTeCT —I@AT 0 0
Xy=| “ . (4.17)
CT®I 0 AT 0
cTeCT 0 0 AT @ AT

Proof : See (Rogers et al., 1999).

In this last result, the matrices X;, 1 < ¢ < 3, are composed of compatibly dimen-
sioned Kronecker products of the matrices A, By, C and D; respectively. Also it can
be seen that the matrix X; of (4.17) is singular and therefore the solutions cannot be
obtained directly using existing software. Instead, extensive, but routine, algebraic
manipulations must be performed to reformulate (4.16) as a condition involving a
first order matrix polynomial which can easily be tested via existing software for
computing generalised eigenvalues. See (Rogers et al., 1999) for a further discussion

of this point.

4.4 Differential Processes with Dynamic

Boundary Conditions Stability Tests

Within this section we develop a 1D Lyapunov equation characterisation of stability
along the pass for a subclass of differential linear repetitive processes in the presence
of so-called dynamic pass state initial conditions. The analysis presented here forms
the subject for the papers (Benton et al., 2000c) and (Benton et al., 2000d).

Consider the subclass of unit memory differential linear repetitive processes of the
form (2.13) with m=n, C = I, and D; =0, i.e.

Ypr1(t) = Ayps1(t) + Bug(t) + Boyp(t), 0<t<a, k>0 (4.18)

Here we consider the process subject to a subclass of dynamic boundary conditions of

the general form of (2.18), with N =1, K; = I,, and ¢; = a, which are of particular
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interest in terms of links with delay-differential systems and also repetitive control

schemes. In this case, the boundary conditions for (4.18) are
yk+1(0) = dk+1 + yk<04), k Z 0. (419)

Now note that in the testing for stability along the pass of processes with dynamic
boundary conditions, it is the first part of theorem 3.7 which cannot be tested by
direct application of 1D linear systems tests. The aim of the analysis in this section
is to develop a 1D Lyapunov equation based interpretation of this condition for the
special case of differential processes with the state-space representation (4.18) and

dynamic boundary conditions of the form (4.19).

For asymptotic stability of differential processes described by (4.18) and (4.19),
condition (a) of theorem 3.7 requires that all solutions of

|21, — Atz Bole| — ¢ (4.20)

have modulus strictly less than unity ¥V a > 0. Now write z = €°*, and hence (4.20)

reduces to the requirement that all solutions of
|sI, — F(s)| =0 (4.21)
have strictly negative real parts where
F(s) = A+ Bye*“. (4.22)

It can also be shown (using results in (Kamen, 1980)) that (4.21) reduces to the

requirement that
|sI, — F(e™™)|#0 ¥ Re(s) >0 V we€|0,2n]. (4.23)

The following result now expresses the condition of (4.23) in terms of a 1D Lyapunov
equation (see (Brierley et al., 1982) for a similar approach for a class of differential

linear systems with commensurate time delays),

Theorem 4.5 Condition (4.21) holds if, and only if, for a given PDH matriz
Q(e™), w € [0, 27|, the solution P(e™) of the matriz Lyapunov equation

F*(e™)P(e™) + P(e™)F (™) = —Q(e™) (4.24)
is PDH Y w € [0, 27|, where * denotes the complex conjugate transpose operation.
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Proof : To show sufficiency first note that, for any fired w, € [0, 27], the matriz
F(e™°) is an n X n matriz with complez elements. Also let \q be an eigenvalue of
this matriz with corresponding eigenvector w,. Then we have
Fle™)w, = Aow,
wiF* (™) = w! (4.25)

where the bar denotes the complex conjugate operation. Now pre-multiplying (4.24)

by wk and post-multiplying by w, yields
wrQ(e™ ) w, = —wi{F*(e™°)P(e™°) + P(e°)F (") }w,. (4.26)

Then, since both P(e*) and Q(e™) are PDH matrices Vw € [0, 2], and using (4.25)
above, it follows that

wrQ(e™*)w, = — (Ao + Ao)wiP(e™)w,. (4.27)
Then we have
1 1 (wrQ(e™)w
Re(X) = 5(A+ ) = —> (w*P(ew)w> <0 (4.28)

where now X is any eigenvalue of F(e*) with corresponding eigenvector w. Hence
sufficiency of theorem 4.5 holds.

To show necessity, consider (4.24) with an arbitrary PDH matriz Q(e*) on [0, 27].
Then if (4.23) holds, it can be shown (Kamen, 1980) that all eigenvalues of the
matriz F(e*) have strictly negative real parts Vw € [0, 27]. Now define

P(e™) :2/ eI (€N Q) e )t gt (4.29)
0

which is well defined since the eigenvalues of F(e™) (and F*(e*)) are in the left
half of the complex plane. Also P*(e™) = P(e™), Vw € [0, 27], and
F*(eiw)P(ez'w) + P(ez’w)F(ez’w) — / (F*(eiw)eF*(ei“‘)tQ(eicu)eF(eiw)t
0

-+ eF*(ei‘")tQ(eiw)eF’(ei“’)tF(eiw)> dt

oo d * ([ iw ; iw
— A <—d_teF (e )tQ(ezw)eF(e )

w [ piw ; d iw
+€F (e )tQ(ezw)d_teF(e )t) dt

— ~d Fr(e)t iwy  F(et)t
= /0 a(e Q(e™)e )dt

= —Q(e") (4.30)
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where this last equality follows from the fact that eF€) — 0, and eF ()t — o
as t — +o00. Hence we have that

F*(e™)P(e"™) + P(e™)F(e"™) = —Q(e™), Y w € [0, 27] (4.31)

and P*(e™) = P(e*)Vw € [0, 27, as required.

Now define
F(2)|,zeiv = Fi(w) + iF3(w) (4.32)

where Fy(w) and Fy(w) are real n x n matrices. Also for a fixed w, € [0, 2], F(e)

is an n X n matrix with complex entries which can be written as
F(e") = Fi(w,) + iF3(w,). (4.33)
Write the system ¢ = F(e™°)y as
Ur + 195 = (Fi(wo) + iF2(wo)) (yr + 1) (4.34)

where 7, and y; denote the real and imaginary parts of y respectively. Then sepa-

{%}. (4.35)
Yi

rating (4.34) into real and imaginary parts now yields
i | _
Vi

F(w) :=

Fl (wo) -—FQ (wo)
Fg(wc,) Fl(wo)

Introduce

F(w) —Fw)

B R | (4.36)

Then, in the SISO case, a necessary and sufficient condition for condition (a) of
theorem 3.7 to hold is that Fi(w) < 0V w € [0, 27, i.e. 1D stability of the real part

of F'(e™). Also in this case
det(s] — F(w)) = s? — 2f1(w)s + f2(w) + f2(w) (4.37)

where f;(w), j = 1,2, are the SISO elements of F;(w), j = 1,2, in (4.36).

Hence, in the SISO case, a necessary and sufficient condition for (a) of theorem 3.7
is that fi1(w) < 0V w € [0, 27].
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Example 4.1 As an ezample, consider the following unforced differential process

war=] % 2 Jonatos [0 [ (439

where a,b and c are positive real numbers, subject to the boundary conditions

Yi+1(0) = yr(a) (4.39)

i.e. a special case of (4.19). Then in this case

0 1 .
F(z) = [ } , 2z =e". (4.40)
—a —b-—cz
The solution of the Lyapunov equation (4.24) with Q = I, is
1| |b+ecz)f>+ala+1) b+cz
Plz)=— , y=2(b+ . 441
(2) ay [ b+cz a+1 Y (b4 ccosw) ( )
Then
b+ cz|* + (a + 1)
det(P = .
et(P(2)) - (4.42)
and P(e®) is PDHY w € [0, 27 if, and only if, y > 0, i.e. if, and only if,
b+ccosw>0Vw e [0,27]. (4.43)

Hence (4.538) satisfies (a) of theorem 8.7 if, and only if, b > c.

4.5 Strict Positive Realness Based Tests

Within this section tests for condition (4.23) are developed using a strict positive
realness approach. The analysis here forms the basis of the paper (Benton et al.,

2000c).

First note that, on setting z = €™, (4.23) is equivalent (Kamen, 1980) to
A(s,z) :=det(sl, — F(2)) #0, Re(s) >0, |z] =1 (4.44)
or

A(s,€™) # 0, Re(s) > 0, w € [0, 27]. (4.45)
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This is an equation with complex coefficients which are polynomial in e* and it is
required that all its roots should lie in the open left half of the s-plane. Using ‘clas-
sical’ root clustering theory, the condition for this (see, for example, (Jury, 1973))
is that the Hermite matrix obtained from the coefficients in A(s,e™) is positive
definite or, alternatively, the inner-wise matrix obtained from the coefficients must

be positive inner-wise.

Consider the complex polynomial

= zn: b;s'. (4.46)
i=0

Then the Hermite matrix, H, associated with B(s) is obtained as follows,

where
hpg = Z ) Re(bn_j—1bn—p_g1j), P+q=even, p<q,
j=1
P
hp:q = jhn n G- lbn —p~ q+]> p+q:Odd; p<gq
J:1
and hpq=hep (4.48)

(where Re and Im denote the real and imaginary parts of a complex number respec-
tively). Also it can be shown (Kamen, 1980; Jury, 1973) that H positive definite
Vw € [0,27] (or |e™] € [-1,1]) is equivalent to the following conditions

H(®) = H(1)>0 (4.49)
det(H(e™)) > 0Vw € [0,27]. (4.50)
The checking of (4.49) is straightforward and the more difficult condition of (4.50)

can be checked using a positivity test. This is based on the fact that det(H(e™))
is a function of cosw,cos2w,--- and, on setting z = cosw, det(H (e*)) becomes a

function of z and its powers. Hence (4.50) becomes
det(H (™)) = F(z) > 0, = € [-1,1]. (4.51)

This last condition holds provided F(z) has no real roots in the interval [—1,1].
Also introduce the change of variable (a bilinear transform)
uw—1

4.52
w1 ( )

Tr =
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into (4.51) to yield the equivalent condition that
Fi(u) >0, u € [0, +00). (4.53)

Then this condition can be checked using any of the computational positivity tests
(Jury, 1973).

In the remainder of this section we develop a computationally more feasible alterna-
tive to the approach just presented. The starting point is to note that the condition
to be tested here can be expressed as the requirement that a two variable polynomial

of the general form

p—1l ¢
a(s,z) = s" + Z }: a;;872 (4.54)

7=0 i=0
should satisfy
a(s,z) #0, Re(s) >0, |z] < 1. (4.55)

Firstly we show how (4.55) can be reduced to a one-dimensional problem by showing
how it is equivalent to the positive realness of a certain 1D rational transfer-function
matrix, which leads to a numerically efficient testing algorithm. The following anal-
ysis requires as background the results summarized next relating to the so-called
strictly bounded real lemma (see for example (Anderson and Vongpanitlerd, 1973)

for a detailed treatment).

Definition 4.1 (Strictly Bounded Real Matrices) A real rational transfer-
function matriz G(s) = C1(slI, — A;) "B, s termed strictly bounded real if, and only

if, the matriz Ay is Hurwitz (i.e. all its eigenvalues have negative real parts) and

I - GY(—iw)G(iw) >0Vw e R (4.56)

The well known strictly bounded real lemma (Anderson and Vongpanitlerd, 1973)

takes the following form here,

Lemma 4.2 (Strictly Bounded Real Lemma) Suppose that G(s) is a proper
rational transfer-function matriz and let { A, By, C1, D1} be an associated minimal
realization. Then this transfer-function matriz is strictly bounded real if, and only

if, 3 a real symmetric positive definite matrix P such that

| AfP+PA +CfC, PB, +C{D,

<0. 4.57
(PB;+CTD,)T  DTD; -1 (4.57)
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One characterization of this strictly bounded real property (for the proof see, for
example, (Gu and Lee, 1989)) is that G(s) has this property if, and only if, for any
given real symmetric matrix ¢ > 0, 3¢ > 0 such that,

(i)
I-DID, >0, and (4.58)
(ii) the algebraic Riccati equation

ATP + PA, + (PB, + CTD)(I — DTD,)"(BTP+ DTCy) + CTC, +eQ = 0
(4.59)

has a positive definite solution P.

Also the requirement for a minimal realization can be relaxed by the following result
(also proved in (Gu and Lee, 1989)),

Lemma 4.3 Suppose that G(s) is strictly proper and let {Ay, By, C1} be a state-
space realization with the pair {A1, B1} controllable. Then G(s) is strictly bounded
real if, and only if, for any given real symmetric matriz Q@ > 0, 3 a scalar ¢ > 0

such that the algebraic Riccati equation

ATP 4 PA, + PBBTP + CIC, +eQ =0 (4.60)
has a positive definite solution P.
Note that if (4.60) has a solution P > 0 for a given e* > 0 then for any € € [0, ¢*
this equation admits at least one positive definite solution.
If G(s) is not strictly proper the following result (again from (Gu and Lee, 1989))

can be used,

Lemma 4.4 Suppose that {A;, By, Cy, D1} is a minimal realization of G(s). Then
G(s) is strictly bounded real if, and only if, Gm(s) is strictly bounded real where
Gm(s) is realized by {Am, Bm, Cin} where

An = A+ B/(I-DfD)'DIc,

Bn = By(I-DTD,) 2,

Cn = (I—D,DT)"3C;. (4.61)
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The key point here is that if A; is Hurwitz then this implies that A,, is Hurwitz and
also the controllability of {Ay, By} implies the controllability of {A.,, B}

To apply these results, first note the following result (proved in (Gu and Lee, 1986)),

Lemma 4.5 Consider the two variable polynomial a(s, z) and suppose that a(0, z) #
0V |z| < 1. Then (4.55) holds if, and only if,

(a) a(s,0) is Hurwitz, and

(b)
a(s,z) # 0, Re(s) =0, |z| < 1. (4.62)

Clearly it is the second of these conditions which is the most difficult to test. In
what follows we develop a numerically efficient test based on treating a(s,z) as a
polynomial, denoted a,(z), in z with coefficients which are polynomials in s with s

taking values on the extended imaginary axis of the complex plane.

The key point to note now is that (4.62) is true if, and only if, a,(2) has all its
roots outside the unit circle for all s on the imaginary axis. Hence we can apply a
1D stability test to this condition using a point-wise approach, and here we use the
Schur-Cohn test expressed in the following form (from (Ptak and Young, 1980)).

Lemma 4.6 (Schur-Cohn Test) Let a(z) = ag+ a1z + -+ + an2", ag # 0, a, #
0, be a polynomial with complex coefficients ay, k = 0,1,--- ,n. Define also the

triangular Toeplitz matrices

ap ay an-2 Qp-1
0 @ a Qp—2
D= (4.63)
[ a1
L D 0 ap |
and
i an  Op—1 e az ap 1
0 An  Qpn-1 ' az
N = ‘ : : . (4.64)
an  Qp-1
B O 0 an |
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Then a(z) # 0V |z| <1 4f, and only if, the Hermitian matriz

®=D"D—-N*N (4.65)
is strictly positive (where again * denotes the complex conjugate transpose operation).
Note also that if ag # 0 then if ® is PDH < the matrix G = ND™! is a strict
contraction (see appendix definition A.5).

In the case under consideration here, the coefficient ay is a polynomial in s, s = iw.
Hence @ = ap(—s), k = 0,1, -+ ,n. Also the triangular Toeplitz matrices D and N
of (4.63) and (4.64) respectively can be constructed for this case. Similarly, define

®(s) = DT(—s)D(s) — NT(=s)N(s) (4.66)
and
G(s) = N(s)D7!(s). (4.67)

Then a simple controllable realization for G(—s) is defined as follows

[T T N R I )
I, O 0 0 g CcT
A= I, O 0 |, B=] . |.C"=]| : (4.68)
. ., . O Cg
L O Iq O .
where
[ Go; Q15 Qg5 " Qg-1j ]
0 agj @y - Ggy
Ay =1+ &+ (4.69)
Qapj Q1
R 0 0 G,Q] |
and
[ Agj Qg-1j Gg-2j - Qlj ]
0 ag  agyj :
Cpoj= (=1 | = : L g (4.70)
0 - . aq]. aq—lj
0 0 0 agy |
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are upper triangular Toeplitz matrices with real aj; as defined in (4.54).

The next stage is to show that (4.55) is equivalent to G(—s) being bounded real.
To do this, first take G(—s) = C(sI — A)~'B as defined by (4.68). Then (a) of
lemma 4.5 implies that det(sI — A)) = det(D(—s)) = (a(s,0))" is Hurwitz and
hence G(—s) is stable. Using (b) of lemma 4.5 we now have that ®(iw) is PDH
Vw € R and this, in turn, is equivalent to G(—iw) being a strict contraction for each

w € R. Hence G(—s) is strictly bounded real.

Suppose now that G(—s) is strictly bounded real. Then det(s] — A) is Hurwitz and
hence (a) of lemma 4.5 holds. Also, since G(—iw) is a strict contraction for each w,
this implies, by the Schur-Cohn test, that (b) of lemma 4.5 holds.

The arguments just given establish the following result,

Theorem 4.6 Consider the two-variable polynomial a(s, z) defined by (4.54) and
G(—s) defined by the state-space matrices of (4.68). Suppose also that a(0,z) #
0V |z| = 1. Then this polynomial satisfies (4.55) if, and only if, G(—s) is strictly

bounded real.

This leads immediately to the following algorithm for testing (4.55),

1. Input p, ¢ and a;; as defined in (4.54).

2. Test if a(s, 0) is Hurwitz and, if not, then stop since (4.55) does not hold (and

hence the example under consideration is not stable along the pass).

3. Construct the matrices A, B, ¢ and choose a positive definite matrix @ and
a positive real scalar e to solve the algebraic Riccati equation (4.60). If this
equation has a solution then (4.55) holds. In which case proceed to test the

other conditions for stability along the pass.

Note that the realisation defined by (4.68) may not be minimal and hence there
could be numerical problems in solving the algebraic Riccati equation if the product
pq is large. Hence an input normal realisation (Moore, 1981) should be used to
obtain a minimal realisation prior to testing G(—s) for the strict bounded realness

property.

It is possible to avoid computing the solution of the algebraic Riccati equation here.

This is based on the the fact that since G(—s) is strictly proper, it is guaranteed to
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be strictly bounded real if det(I — GT(—s)G(s)) # 0V Re(s) = 0 or, equivalently,
det(®(s)) # 0V Re(s) = 0. Also since we are using a minimal realization of G(—s)
it can be shown that this transfer-function matrix is strictly bounded real if, and
only if, the Hamiltonian matrix

[ i BB

H, = {-OTC* o (4.71)

has no purely imaginary eigenvalues. Note that the dimensions of this matrix are
2pg x 2pq and hence if pq is ‘large’ then the eigenvalue computation cannot be

expected to produce ‘high accuracy’ results.

Example 4.2 As an example, suppose that
a(s,z) =s+v+ (B + As)z (4.72)

where |v| # |B] and "y"> 0. In this case, (4.55) clearly only holds if, and only if,

As+
G(—s) = 4.73
(~5) = 2 (4.73)
18 strictly bounded real. Now set
A— — YA
A, =22 g 4 ¢, =B (4.74)

1= A2 1— A2

(as per (4.61)) and hence strict bounded realness of G(—s) implies A,, < 0. Also
let P be the solution of (4.60) with Q =1 and then

P24+ 24,P+C% +¢e=0. (4.75)

Now we have that P > 0 requires that A2, > C2% + ¢ which holds if, and only if,
v > |B| (since A <0, v >0). Hence we have stability when

A <1, 7> 8] >0. (4.76)

4.6 The 2D Lyapunov Equation Approach

Within this section the so-called 2D Lyapunov equation approach to the stability

analysis of linear repetitive processes is introduced. The analysis introduced here
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has been presented in (Benton et al., 1999) and (Benton et al., 2000a). Consider the
subclass of unit memory discrete linear repetitive processes with state-space model
(2.24) and simple boundary conditions (2.25). The starting point for the analysis
presented in this section is the following set of necessary and sufficient conditions
for stability along the pass which have been reported previously, but the proof here

is more direct.

Theorem 4.7 (Stability along the Pass) (Rogers and Owens, 1993) For the
unit memory discrete process of (2.24)-(2.25), suppose that the pair {A, By} is con-
trollable and the pair {C, A} is observable. Then the process is stable along the pass
if, and only 1f,

(a) all eigenvalues of the matriz Dy have modulus strictly less than unity,

(b) all eigenvalues of the matriz A have modulus strictly less than unity, and

(¢)
znl, — A — By

0 4.77
-C Z[m - Dl # ( )

p(z1,2) = det
Viz| > 1, |2] > 1.

Proof : In effect this consists of showing that (a), (b) and (c) here are equivalent to
the conditions of theorem 3.3. To show necessity, first note that, since the spectrum
of Ly, 0(Ls) = o(D1), the spectral radius of L, in this case is independent of a,
and hence, from theorem 3.3, we have 1o = 7(D1), and hence condition (a) holds.

Consider now the solution  of the equation

(2] = La)¢ = o (4.78)
for some arbitrary {y € E, and z such that |z| > X\ with X\ € (re,1). Equivalently,
(4.78) can be written in the state-space form

nl,—A =B z(z1) | _ | Gol(z1)
~C 2, - D; [ ((2) } a [ Co(2) } (4.79)

with state vector z(i), 1 =0, 1, 2, -+, z(0) = 0, by applying the z-transform with

variable denoted by z,. It now follows from a routine argument that the existence of

a uniform bound My is equivalent to

pl1,2) 20, |zl 2 1—¢, |2 2 A (4.80)
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where € > 0 1s some real number. The observability assumption on {C, A} guaran-
tees that there are no ‘hidden’ unstable modes and the controllability assumption on

{A, By} ensures that all system modes are excited.
Now, use of Schur’s formula yields
p(Zl, Z) = det(zIm - Dl) det(zlfn —A- Bo(ZIm - Dl)‘lC') (481)

and hence, given condition (a) of the result, (4.80) reduces to the requirement that

3 a real number € > 0 such that
det(z1l, — A — Bo(2l, — D1)7'C) #0, |zl >1—¢, |2| >\ (4.82)
This requires that
|det(z11, — A — Bo(2Im — D1)7'CO) = (ln] = 14 €)", |z1] 21, |2] > A, (4.83)

and considering |z| — +oco now yields condition (b). The proof of necessity is

completed by noting that
(21, 2)| = (J2] = reo)™ (|21 =1+ €)" > 0. (4.84)
To prove sufficiency, first note that (a) trivially implies that ro, < 1. Consider also
plz,2) 70, |zl 21, [zl 21 (4.85)
which, since T(Dy) < 1, reduces to
det(z1I, — A — By(zl, — D1)7'C) #0, |z1|>1, |2| > 1. (4.86)

Also (21, — Dy) ™t s strictly proper and this fact combined with r(A) < 1 (condition
(b)) yields, for some € >0, 7> 0 and A € (re, 1),

det(z11, — A — By(zl, — Dy)7'C) £ 0 (4.87)

if either |z1] > 1 — € and |z| > 7 and/or |z1| > r and |z| > A. Consequently it only
remains to consider (4.87) on the compact set {z1 : 1—e < |z| <r}x{z:1< |z <
r}. A routine argument based on this fact leads, for some € >0, and A € (re, 1) to

det(21], — A — Bo(zl, — D1)7'C) #0, |z >1~¢ |z|> A\ (4.88)

At this stage, it remains to prove that the solution ((-) of (4.78) generated by (o(-) is
uniformly bounded in the sense that 3 a constant M such that ||| < M||¢ll, V& €
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E,. To prove this first note that the set {A+ By(zl,, — D1)7C : |2| > A} is bounded
in the sense of the norm. Also this set is relatively compact and therefore can be

covered by a finite number of open balls Bj of centre A7 and radius 07 such that
o(Aj+T) C{at|a| S 1€} VT) <67 (4.89)

where €* 15 a positive constant.

To choose appropriate A and 67 note that if P; is a Lyapunov matriz for A2 then
it is also a Lyapunov matriz for A3 + TV ||[T|| < 6% in the sense that

(A +T)TP;(AS +T) — Py < —él, (4.90)
where € is a positive constant. Also, in BY, ({.90) guarantees the existence of real
scalars p; and €; such that ||(A? + )| < ek, 1= 0, 1, ---. Bquivalently,

(A + Bo(2Ln — D1) 1OV < pmély, =0, 1, - (4.91)

where (1, = max; y; and ey, = max;e;. This in turn means that the solution ((-) of
(4.78) is uniformly bounded ¥V (y € E, and the proof is complete.

The so-called augmented plant matrix for processes described by (2.24)-(2.25) has
already been defined as

A By
C D

. (4.92)

Then, since p(z1, z) = det(diag{z1l,, 21, } —P), setting z; = z = 1 gives r(®) < 1 as
another necessary condition for stability along the pass. Clearly the three necessary
conditions (D) < 1, r(A) < 1 and r(®) < 1 should be tested before proceeding

with the analysis of a given example.

The so-called 2D Lyapunov equation (see (Lodge and Fahmy, 1981) for the case of
2D linear systems described by the Roesser state-space model) has the form

TW® —W = —-Q (4.93)

where W = Wy @ W,, and Wy, Wy and @ are symmetric matrices of dimension
nxmn, mxmand (n+m) X (n+ m) respectively and @ denotes the direct sum,
Le. W = diag(Wy, Wa).
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In nD linear systems theory, the so-called nD Lyapunov equation was first developed
in (Piekarski, 1977) as a condition for the multivariate characteristic polynomial of
an nD continuous linear system to be strictly Hurwitz, i.e. no zeros in the region
Re(s;), 1 < i < n. This was then extended to the 2D discrete case using the
double bilinear transform (Lodge and Fahmy, 1981). Here it was asserted that the
existence of positive definite symmetric matrices ¢ and W satisfying (4.93) was a
necessary and sufficient condition for BIBO stability. In (Anderson et al., 1986),
however, it was subsequently shown that, in general, the 2D Lyapunov equation
condition is sufficient but not necessary for the BIBO stability of such systems.
The equation (4.93) is termed 2D to denote the fact that it is defined in terms
of matrices which have constant entries (as opposed to the 1D Lyapunov equation
of the previous sections of this chapter which has entries which are functions of a
complex variable). The remainder of this section investigates the role of (4.93) in
the stability analysis of discrete linear repetitive processes described by (2.24) and
(2.25).

The following analysis makes use of the following results and definitions for so-
called strictly bounded real matrices (see, for example, (Anderson and Vongpan-
itlerd, 1973) for a detailed treatment). These results form the discrete counterpart

to the definitions for differential processes used in section 4.4.

Definition 4.2 (Strictly Bounded Real Matrices) Let S(n) be a square matriz
of real rational functions in the complex variable n. Then S(n) is termed strictly
bounded real (SBR) provided

(a) all poles of S(n) lie in |n| < 1, and

(b) I —ST(e"*)5(e™) >0, V we]0,2m].

Conditions (a) and (b) can be reduced to conditions on the matrices of a minimal

state-space realization of S(n) using the following result, which is known as the

bounded real lemma,

Lemma 4.7 (Bounded Real Lemma) Suppose that the transfer-function matriz
S(n) has a minimal state-space realisation defined by the quadruple {F, G, H, J} such
that

S(n)=H'(nI — F)™'G + J. (4.94)
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Then S(n) 1s SBR if, and only if, 3 a symmetric matriz P > 0 such that the matriz
Q1 given by

| 1-JT7-G"PG —(FTPG+ HJ)T

_ 4.95
@ ~FT"PG-HJ P-FTPF—HHT (4.95)

1s positive definite.

Note that if {F,G, H,J} is not a minimal realisation of S(n) and 3 a symmetric
matrix P > 0 such that @ of (4.95) satisfies Q; > 0, then S(n) is still SBR, but the
converse cannot be established. Also, if @); > 0 then S(n) is a bounded real matrix.

The answer to under what conditions is (4.93) solved by symmetric positive definite
W and @ is based on the bounded real lemma 4.7 and is given by the following

result,

Theorem 4.8 Consider the case of discrete linear repetitive processes described by
(2.24) and (2.25) and suppose that, for some nonsingular T, the transfer-function

matrix
Gi(z) = TG(2))T ' =T|C(x1, — A) " By + Dy|T7! (4.96)

is SBR. Suppose also that {A, By} is completely reachable and that {CT, A} is com-
pletely observable. Then 3 symmetric matrices Q@ >0 and W = W1 & Wy > 0 such
that the 2D Lyapunov equation (4.93) is satisfied.

Conversely, if (4.93) holds for symmetric @ > 0 and W = Wy & W, > 0, then 3 a
nonsingular matriz T such that G1(z1) is SBR.

Note that the proof of this result is identical to that of theorem 1 in (Anderson

et al., 1986) and hence is omitted here.

Consider now condition (c) of theorem 4.7. Then it follows immediately (by simple
operations on the defining determinant) that this condition is equivalent to

21-[71 - A —BO
det 0V >1, |2 > 1. 4.97
0 e | #O Tz b (4.97)

Application of Huang's criterion for BIBO stability of 2D discrete linear systems
(theorem A.12) now shows that (4.97) is equivalent to the following two conditions
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(the first of which has already been established)

det(z1, — A)#0 V |z]>1, and
det(zl, —G(z1)) #0 V |z =1 and |z| > 1. (4.98)

Now let \;{A} and A\ {G(e™)} denote the eigenvalues of A and G(2;)|,,—eiw Tespec-

tively. Then these two conditions become

[Ai{A} < 1, 1<i<n, and

PG} <1, 1<i<m, ¥ welo,2q], (4.99)

and, for any nonsingular 7', the last condition of (4.99) is equivalent to
IN{G1(e™)} = |N{TG(e*)T '} <1, 1<i<m, Ywel0,2n]. (4.100)

Suppose now that Gy(z;) is SBR. Then in the minimal realisation of this transfer-
function matrix, we have immediately |[\;{A}| < 1, 1 <14 < n. Also by the SBR

property,
In — GT(e™™)G1(e®) >0 YV w e [0,2n], (4.101)
which implies that
IM{G()} <1 Vwel0,2r], 1<i<m. (4.102)

As the counter-example given below demonstrates, however, the argument which
establishes (4.102) cannot be reversed. Equivalently, (c¢) of theorem 4.7 does not
imply that G1(z;) is SBR. Hence there exists stable along the pass discrete linear
repetitive processes with a G;(z1) which are not SBR and therefore, by theorem 4.8,
it follows that for such a process symmetric matrices W = W1 @ Wy > 0and Q > 0
satisfying the corresponding 2D Lyapunov equation do not exist. This result can be
illustrated as in figure 4.1 and is stated formally as follows,

Theorem 4.9 Suppose that the pair {A, By} is completely reachable and that the
pair {CT, A} is completely observable. Then discrete linear repetitive processes de-
scribed by (2.24) and (2.25) are stable along the pass if G1(z1) of (4.96) is SBR.

A counter-example to the converse of the result of theorem 4.9 is the 6-state, 2-input,
2-output process with the following state-space model describing the contribution

110



4 1D and 2D Lyapunov Equations 111

Set of all processes which satisfy 2D Lyapunov equation

Set of all stable along the pass processes

Figure 4.1: Illustration of sufficient but not necessary nature of the 2D Lyapunov

equation for stability along the pass.

of the previous pass dynamics to those of the current pass over 0 < p < a, k>0,

Tre(p+1)
281 10 0 0 0] 0028 0 ]
2657 01 0 00 0.008 0
0845 00 0 00 0012 0
- 00 281 10 |THPF] g g |B®
0 0 —2.657 0 1 0 —0.008
i 00 0845 0 0 0 0012 |
biia () = [S o g}xﬂl(pw[_gjw Ofﬂyk@) (4.103)

First note that the necessary conditions of r(D;) < 1, r(4) < 1 and 7(®) < 1, with
® constructed from (4.92), are easily shown to hold in this case. Hence this example
is stable along the pass if, and only if, the condition of (4.77) holds. The following
analysis shows that this is the case using the equivalent formulation of (4.98).

Consider G(z;) which can be written in the form

0.5 Gulz) :l | (4.104)

G(ZI) B Gb(Zl) 0.5

where
0.02822 — 0.0082; + 0.012
23 — 2.812% + 2.6572, — 0.845
0.0282% + 0.0082; + 0.012
23 +2.8127 4 2.6572 + 0.845

Since r(D;) < 1, to show that the conditions of (4.98) hold, and hence that the
process is stable along the pass, it remains to be shown that the eigenvalues of
(4.104) satisfy

Go(z1) = +0.007, and

Gy(z) = — 0.007. (4.105)

N{G(e™)} <1, i=1,2, wel0,2n] (4.106)
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First note that
det(zly — G(z1)) = (2 — 0.5)% — G,(e™)Gy(e™). (4.107)
Also it is easily verified, by evaluating |G,(e™)Gy(e™)| Vw € [0, 27] that
|G, (e¥)Gy(e™)] < 0.007. (4.108)

This, in turn, implies that the values of z for which (4.107) is zero, i.e. the eigenvalues
of G(e*), are all close to 0.5. Hence (4.106) holds and the process is stable along
the pass.

Now we show that Gy (z1) is not SBR by showing that there is no nonsingular matrix
T such that Gi(z1) = TG(z;)T ™! satisfies

I -Gy (e7™)G(e") >0, YV we[0,2n]. (4.100)

The approach used it to assume that a nonsingular matrix 7" does exist, and then

to establish a contradiction. Suppose therefore that
P=TTT. (4.110)
Then (4.109) can be rewritten as
P —GT(e™)PG(e™) >0 Y w e [0,27]. (4.111)
Next we will show that 3 no P > 0 such that the following two conditions hold,

P-G"(1)PG(1) > 0, and (4.112)
P - GT(-1)PG(-1) > O. (4.113)

From (4.104) and (4.105) we obtain

G(1) = [ 05 0[13} and G(-1) = [0'5 _5} (4.114)

- a 0.5
where

a =0.000435 and g = 16.007. (4.115)

Since P is symmetric, denote its elements by pi1, p1a = pa1 and poy, and no loss of

generality arises from setting p;; = 1. Hence, since P is positive definite, we have

Ip12| < /P22 (4.116)
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Return now to (4.112), which can be rewritten as

P - GT(1)PG(1)
B 0.75 + apiz — a’pa —0.58 — (0.75 — af)p12 + 0.5apss
T | —0.58 = (0.75 — af)pia + 0.5ap0 —f* — Bp12 + 0.75ps2
(4.117)

Then for this matrix to be positive definite we require that
—3? = Bp12 + 0.75pp > 0, (4.118)

or, on rearranging and using (4.116),

0.75p22 > B° — |B1y/P22- (4.119)
On further rearranging we obtain
2
pa2 > 51,8[ ~ 10. (4.120)
Now rewrite (4.113) as
P - GT(-1)PG(-1)
. 0.75 + ﬁplg — ,82]722 —0.5a0 — (075 — Olﬁ)pm -+ 05,8}922
—0.5a: — (0.75 — af8)p12 + 0.58p2 —a? — apis + 0.75pa
(4.121)

This matrix is positive definite provided
0.75 + Bp12 — B7pa2 > 0, (4.122)

or, after similar analysis to the above,
B < — 0.1 (4.123)
2 —( =~ U.1L. .
® 7 218]

Condition (4.123) clearly contradicts (4.120), and hence our original assumption
is invalid and there is no nonsingular matrix 7" such that (4.109) holds. Hence the
immediate conclusion is that, for this example, symmetric matrices W = W, @ W, >
0 and @ > 0 which solve the corresponding 2D Lyapunov equation (4.93) do not
exist. It has already been shown, however, that this process is stable along the pass,

and hence this is a counter-example to the assertion that the existence of a positive
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definite solution pair {W, @} to the 2D Lyapunov equation (4.93) is equivalent to
stability along the pass of discrete linear repetitive processes described by (2.24)
and (2.25). Essentially the necessity part of the 2D Lyapunov equation result here

is different from the 1D case.

Some special cases exist, however, where the 2D Lyapunov equation condition is

both necessary and sufficient for stability along the pass, as the following sections

show.

4.6.1 Special Case 1 - ® is Normal

Suppose that the augmented plant matrix ® (4.92) of the process under consideration

is normal, i.e.
TP = dP”. (4.124)

Then, following the analysis in (Fadali and Gnanasekaran, 1989) for systems de-
scribed by the Roesser 2D state-space model, necessity is immediate since (4.93) is

equivalent to
TWe -W <0, (4.125)

i.e. 7(®) < 1, which is a necessary condition (see earlier in this section) for stability
along the pass. Note that equation (4.125) is structurally similar to the Lyapunov
equation for 1D discrete linear time-invariant systems with W constrained to be
positive definite block diagonal matrix. In particular, under stability along the
pass, it follows that the augmented plant matrix @ is stable in the 1D sense. (Note
that the converse is not generally true.) This necessary condition is expressed in
terms of a matrix with constant entries and hence should be tested before proceeding

further with the stability analysis of a given example.

To prove the converse, i.e. that if 7(®) < 1 then (4.125) holds, denote the eigenvalues
of ® by w;, 1 <17 < n+m, and the corresponding eigenvector matrix by R. Then,

since ® is normal,
d=R diag{wi}lgiSMm R (4126)

where * denotes the complex conjugate transpose operator.
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Substituting (4.126) and W = I,,,, into (4.125) then yields
TWe® - W =R (IQ? = Inym) R* (4.127)

where Q = diag{w?}1<i<n+m, and this matrix is negative definite since |w;|? < 1,1 <
i < n+m, by the assumption that r(®) < 1. Equivalently (4.125), the 1D discrete
linear systems Lyapunov equation holds under the choice of W = I,,,,, and, since
I, 1, is block diagonal under any partition, ® also satisfies the 2D Lyapunov equation

for stability along the pass.

Hence we have established the following corollary of theorem 4.9 (see (Fadali and
Gnanasekaran, 1989) for the 2D Roesser model case).

Corollary 4.1 (® is Normal) Suppose that the augmented plant matriz ® for dis-
crete linear repetitive processes described by (2.24)-(2.25) is normal. Then such
processes are stable along the pass if, and only if, there exists symmetric positive

definite matrices W and @ which satisfy the Lyapunov equation (4.93)

This result can be extended slightly. A matrix &' is said to be 2D similar to ® if
&' = T71®T where T = Ty ® T5 is a similarity transform and 7} and 7} are both
invertible. Then it can easily be verified that the steps of the above analysis also
hold if the augmented plant matrix ® is 2D similar to normal, and the following

corollary is obtained,

Corollary 4.2 (9 is 2D Similar to Normal) Suppose that the augmented plant
matriz &' for discrete linear repetitive processes described by (2.24)-(2.25) can be

written
' =TT (4.128)

where T' ="T1 @ T, T1 and T, are invertible, and ® is normal. Then such processes
are stable along the pass if, and only if, there ezists symmetric positive definite
matrices W and Q which satisfy the 2D Lyapunov equation (4.93).

4.6.2 Special Case 2 - Process is SISO

Another special case is when the process is SISO. Then in this case it follows imme-
diately that the two conditions for the SBR property are equivalent. In particular,

IM{G(E™®)} <1 VY welo,2n], (4.129)
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and
1-G(e™)G(e™) >0 Y we(0,27] (4.130)

are equivalent, and hence we have the following corollary of theorem 4.9.

Corollary 4.3 (SISO Processes) SISO discrete linear repetitive processes
described by (2.24)-(2.25) are stable along the pass if, and only if, there exists sym-
metric positive definite matrices W and Q) which solve the 2D Lyapunov equation

(4.93).

4.7 2D Fornasini-Marchesini Model Based

Lyapunov Equation

In 2D linear systems analysis there are (as noted previously in this thesis) two
commonly used and extensively studied state-space models, namely those due to
Roesser (Roesser, 1975) and Fornasini-Marchesini (Fornasini and Marchesini, 1978).
Within chapter 2 both models have been presented and in chapter 3 it was shown
that an ‘equivalence’ exists between the BIBO stability of systems described by
~ the Roesser state-space model (and hence also those described by the Fornasini-
Marchesini state-space model) and the stability along the pass of the discrete sub-
class of linear repetitive processes. This fact enables the interchange, to great effect,
of stability tests between these two areas. Here, 2D Fornasini-Marchesini model
based Lyapunov equations are developed - the analysis here is presented in (Benton
et al., 2000a).

The subsequent analysis uses the following Roesser model of the discrete linear
repetitive process of (2.24) and (2.25) as a starting point, which has already been

introduced in section 2.6 of chapter 2,

z(k,p+1) A 0 I, z(k, p) B
wk+1,p) | =| D1C Dy 0 plk,p) | + 1 0 | u(k,p). (4.131)
n(k +1,p) BoC By 0 n(k, p) 0

An equivalent Fornasini-Marchesini model of (4.131), with the control input term

deleted, can be obtained as follows

e(k,p+1) | _ 4 z(k, p) - | wlk,p+1)
[ Alk+1,p) } - { Ak +1,p) ] A { Ak, p) } (4.132)
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where
A0 I, 0 0 0
P P | n(k,p)
Al— 0 0 0 , AQ— ch Dl 0 and A(k),p)— i .
00 0 B,C B, 0 (k. p)
(4.133)

Given the stability equivalence, we can now state the following result.

Theorem 4.10 S(E,, W,, L,) generated by (4.132) and (4.153) is stable along the
pass if, and only if,

p(z1, 2) = det(Iopim — nA — zfiz) #0 in Uz, (4.134)

where U2 ={(21,2) 1 |a| €1, |2] £ 1}.

Note that the necessary conditions r(D;) < 1 and r(A) < 1 should clearly be tested

before recourse to the condition of theorem 4.10.

By Huang’s criterion (lemma A.12), (4.134) is equivalent to the requirements that

(i)
p(21,0) #0, |zn| <1, and (4.135)
(i)
p(z1,2) #0, |z1] =1, 2| <1 (4.136)
Suppose, therefore that the matrix Hyg, defined by
Hi, = A, + €™ A, (4.137)
satisfies
r(Hm) <1 Vwel0,2n] (4.138)

Then the images of the unit polydisc {(z1, 2) : |z1| = 1, |z| = 1} under the polynomial

functions

cjl(zl, ?7) = det(I2n+m - Zlfil — fo]/iz) (4139)
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and
G2(7), 2) = det(Lonim — 27 A1 — 2A) (4.140)
coincide with the images of the polynomial function det(lz, 1, — 2A — zfig) when
acting on the sets
T 0 {(z,2) s lz] > |2]} (4.141)
and
T n{(z,2) : |2 > |2} (4.142)

Now, since ¢;(0,7) # 0, |n] < 1 and r(A; + e A,) < 1 by assumption, g (21, ™) #
0, |21] €1, ¢i(21,7) # 01in U by Huang’s criterion. The same property holds for
G2(7, z) and hence (4.134) holds.

Conversely, stability along the pass implies that det(Ia, m — 2 A~ z/lz) # 0 in 7.
Hence det(lopim — 2 A, — zei‘“fl?) #0, |z1] <1, |z| <1, which means that r(/ll -+
e A,) < 1. Hence the following result has been established,

Theorem 4.11 Suppose that r(D;) < 1 andr(A) < 1. Then S(E,, W,, L) gener-
ated by (2.24) and (2.25) is stable along the pass if, and only if,

r(Ay +e%4y) <1 Y wel0,2n]. (4.143)
In particular, we have

Corollary 4.4 Necessary conditions for stability along the pass of S(Ey, Wy, Ly)
generated by (2.24) and (2.25) are that r(A; + Ay) < 1 and r(A; — 43) < 1.

Use of this last result now leads to the following 1D Lyapunov equation interpreta-
tion of stability along the pass. The proof of this result is omitted here since it is
identical to that in (Rogers and Owens, 1996) for an essentially Roesser based 2D

systems model interpretation of the dynamics of discrete linear repetitive processes.

Theorem 4.12 Suppose that 7(D;) < 1 andr(A) < 1. Then S(En, Wa, La) gener-
ated by (2.24) and (2.25) is stable along the pass if, and only if, the 1D Lyapunov

equation
(Al -+ e‘i“’Ag)TP(ei“’)(Al -+ ei“’flz) - P(@iw) = -1 (4144)
has a positive definite Hermitian (PDH) solution P(e™).
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Testing for stability using this last theorem involves obtaining a Hermitian solution
matrix P(e™) to (4.144) and testing to see if this matrix is positive definite Vw €
[0,27]. Applying standard positivity tests means that this is equivalent to the

following two conditions,

(i)

P(e**) > 0 for any w, € [0,27] and (4.145)

(ii)
det(P(e™)) > 0 Yw € [0, 27]. (4.146)
Hence it is not necessary to test all of the principal minors of P(e*) for positivity.
Instead, it is enough to test at one point and then to ensure, using only the determi-

nant, that none of the eigenvalues (or the principal minors) of P(e™) changes sign
for w € [0,27]. (See the proof of the next result for the arguments which establish

this fact.)

The following result is the first step in obtaining a stability test for the 1D Lya-
punov equation condition which only involves computations with matrices which

have constant entries, where, for ease of notation, we write G(e™) = A; + €™ A,.

Theorem 4.13 S(E4, Wy, La) generated by (2.24) and (2.25) is stable along the
pass if, and only if,

(a) r(Dy) <1 and r(A) <1,
(b) P the solution of
GT(e7we) PG (e™) — P(ee) = —] (4.147)
is positive definite for any w, € [0,27], and
(c)

det(I — GT(e™™) @ GT(e™)) # 0V w € [0, 271). (4.148)
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Proof: Here it is only required to prove that (b) and (c) are equivalent to (4.144).
To do this, consider (4.144) written as

(I -GT(e™™) @ GT(e))S[P(e™)] = S[I] (4.149)

where S|+ denotes the stacking operator. For the ezistence of a unique solution we

require that
det(I — GT(e™™) @ GT(e™)) # 0V w € [0, 2n]. (4.150)

Also for P(e™) to be PDH, it is required that the eigenvalues of this matriz remain
positive ¥ w € [0,2n]. These eigenvalues are continuous functions of w and hence
they will always be positive if P(e™) is positive definite for an arbitrary value of w
and (4.149) holds. This proves the equivalence of (b) and (c) to (4.149).

Using this last result, it is possible to follow (Rogers and Owens, 1996) and obtain
a stability test which involves the computation of generalised eigenvalues.

The following result now gives a sufficient condition for stability along the pass in
terms of a 2D Lyapunov equation interpretation of (4.143) (termed the generalised
2D Lyapunov equation associated with state-space model (4.132)) (see (Hinamoto,
1993) for the case of 2D systems described by the Fornasini-Marchesini state-space

model),

Theorem 4.14 S(E,,W,, L,) generated by (4.132) and (4.183) is stable along the
pass if 3 a (2n + m) x (2n 4+ m) symmetric matric P > 0 such that

pP 0

—ATPA>0 (4.151)
0 pBP

Q=

where i and B are positive real numbers which satisfy Bi + P = 1 and A =
i
Proof: Suppose that the conditions of this theorem hold. Assume that

det(Ippim — 2141 — 245) =0 (4.152)
for some (z1,2) € C*. Hence 3 a 2n + m vector %, say, & # 0 such that

(Inpim — 2147 — 243)2 =0 (4.153)
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for some (z1,2) € C?. Equivalently,
&= (214 + 2453, (4.154)

Hence, using (4.151) and (4.154) (where the superscript * denotes the complez con-

Jugate or complex conjugate transpose as appropriate)

n 1 [n m ~
#P: = & [ 2 Dnsm 2 Ionim ] ATpA | B+ } 3
ZI2n+m
— 2 2\ Ak -~ 2~k * ® 21I2n+m ~
= (Bi]z1|* + Ba|2|7)2* Pt — & [ 2 hnim 2 Donam ]Q .
zj2n+m
(4.155)
Using this last equation, we now have that
) ) Ak YA ~ " * le2n+m ~
(Bila 2 + Bol2)? — 1)3*Pi = & [ ST e { } B (4.156)
ZI2n+m
Also, since P > 0 and Q > 0, we have that £*PZ > 0 and
~ % " " le2n+m ~
# | 2ilnim 2 Dnim } Q >0, (4.157)
zj2n+m
Hence, using (4.156) and ({.157), we have that
Bilz)? + Balz]? = 1> 0 (4.158)
or
2 2
I—Z-%l—— + Iil‘—- > 1, (4.159)
B1 B2

and hence the region which satisfies (4.152) in the (|z1],|z]) - plane is the region
outstde the ellipse given by

2 2
I_Z_}_l__ + %— =1. (4.160)
b1 B2

Note again that if (4.152) holds then (4.159) is valid.

Now, to obtain a contradiction, suppose that

det(I2n+m — ZIAI - ZAQ) 7£‘ 0 (4161)
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for (z1,2) € C* satisfying

I

1 + 1 <L (4.162)
B B
Also introduce
—3
U, = {(21,2) : Bilar]” + Bal2* < 1}, (4.163)

Then if (4.161) holds, T c Ui. Hence if (4.161) is valid for (z1,2) € U; then
this condition is also valid for (z,2) € T, and hence this establishes that (4.151)
is a sufficient condition for stability along the pass of (2.24). Figure 4.2 shows a

schematic of this condition in the (|z1], |z|) plane.

Figure 4.2: Tllustration of the condition in theorem 4.14.

1t follows from this result that stable along the pass examples with roots of det(Zonm—
21 A — z/iQ) in the shaded regions S; and S5 of figure 4.3 do not satisfy the 2D Lya-
punov equation (4.151), i.e. it is not possible to find admissible 5;, ¢ = 1, 2, such that
the roots of det(Zopim — z1A1 - zAQ) in both areas S; and S, are outside the corre-
sponding ellipse. This means that there is a (potentially) large number of examples
whose stability properties cannot be confirmed by use of (4.151).

If we impose 31 = [y = %, then the following result is obtained (once again,

see (Hinamoto, 1993) for the case of 2D linear systems described by the Fornasini-

Marchesini state-space model),
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1v2

Figure 4.3: Illustration of the sufficiency of theorem 4.14.

Theorem 4.15 The 2D Lyapunov equation for (4.132)-(4.138) in the case when
B = B2 = 3 holds if, and only if, the (2n + m) x (4n + 2m) matriz A can be

decomposed as

T 0

4.164
0T (4.164)

A=T7R|T o}s{

where R and S are compatibly dimensioned orthogonal matrices, T is a nonsingular

matriz, and
I'= diag{rl, s 77’2n+m} (4165)

where |r;| < %,j:1,2,--- ,2n 4+ m.

Proof: To show sufficiency, suppose that (4.164) holds and set P =TTT > 0. Then

in the case when By = [y = % we have that

]
P o "
o = | PP 0l _arpa
0 &P
_ [Tt 0 ] [T 0 G| 70 T 0
0 BITT 0 77T 0 0 0 T
[ TT 0 Lpim —T2 0 T 0
= |7, TT}ST 51“0 l . (4.166)
L 242n4+m
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Here we clearly have Q) > 0 and hence theorem 4.14 holds for stability along the

pass.

To show necessity, suppose that 3 symmetric P > 0 such that (4.151) holds, i.e.
Q > 0, when By = B, = +. Then since P > 0, 3T, det(T) # 0, such that P =TTT.

2
Hence using (4.151) we have that

JETT 0 VBT 0 |
; \/B—QTTH . \/ET} AT'TTTA > 0 (4.167)

or, equivalently,

In m 0 T %
Frlans —ATA>0 (4.168)
0 B212n+m
where
A=|4 4|, 4=TAT? and A =TT (4.169)

Now write the singular value decomposition of A as
A:R[F 0}5 (4.170)

where R, S and T' are defined as in (4.164). Hence, on substituting (4.170) into
(4.168), we have that

Ionim 0 'z o
brlans — 57 S$>0 (4.171)
0 Bolonim 0 0
or, since By = 3 = -21-,
Iopim — I'? 0
Prlans > 0. (4.172)
0 /8212n+m

This last equation implies that |r;] < %, 7=1,2,--2n+m. Consequently A can
be decomposed as in (4.164).

In what follows, a less conservative version of the sufficient condition of (4.151) is
developed. For this, we need the standard fact that for a positive definite (or positive

semi-definite) real matrix P it is always possible to write it as

P=UTTU (4.173)
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where U is orthogonal and I' = diag{eoy, -+, 02p1m} with, in the positive definite
1 1
case, 0; > 0, 1 < j < 2n+m. Also set I'z = diag{c?,-- - , Ognim - Then
P = (P:)TP: (4.174)

where P2 = ['2U. For ease of notation, write P¥ = (P2)T and then (4.151) can be

written as

P%(BIIQn—i—m)P% 0

0 P% (Bolonsm)P? | ATPR Ly mPRA. (4175)
n-++m

Q=

In what follows, we consider the following 2D Lyapunov equation defined by appro-
priately dimensioned positive definite matrices P, W7, W5 and R, and which clearly
reduces to (4.151) if Wi = Bi11ansm, Wo = Balonim, and R = oy i,

J — ATPTRPIA. (4.176)

PTW,P3 0
Q= T 1
0 PTW,P:

The following result can now be established (see (Lu, 1994a) for the case of 2D linear
systems described by the Fornasini-Marchesini state-space model),

Theorem 4.16 Discrete linear repetitive processes giving rise to the 2D Fornasini-
Marchesini state-space model matrices A; and A, are stable along the pass if 3
positive definite matrices P, W1, Wy and R such that Q) defined by (4.176) is positive
definite and that

R-W; =Wy 2>0. (4.177)
Proof: Suppose that the conditions of the theorem hold but the process under con-

sideration is unstable along the pass. Then this means that 3 (z1,2) € U* such
that

det([2n+m - ZlAl - ZAQ) = (. (4178)

This, in turn, means that 3 q # 0 such that

2 In m
q:A[212+ }q, (4.179)
z~[2n+m

wherefl:[/ll flz}
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Hence we have that

¢*PTRPig= L — M, (4.180)
where
* — — P%W1P% O le2n+m
L=gq [le2n+m ZIZn—i—m:l 0 szchP% Iomim g, and
DIypim
M = q* ’: TZ_IIZn—i—m —Z—IQn—}‘m } Q o q. (4181)
zIZn-i—m

From this last equation it follows that

g*P? (R — |21|*W, — |2]*W,) P3g

N _ z21lonim
= —q I: le2n+m zIﬁZn—{-m } Q { Lhand } q (4182)
Z[2n+m
DLpim .
Also, since (z1,2) # 0, 2112 g £ 0 and Q > 0, means that the right hand
Z 2n+m

side of (4.182) is negative. Conversely, however, the facts that |z1| < 1,|z] <1 and
R —W; — Wy > 0 imply that R — |21|*Wy — |z[*Wy > 0, i.e. the left hand side of

(4.182) is nonnegative and we have a contradiction to our original assumption.

This completes the proof.
The following corollary gives a special case of theorem 4.16.

Corollary 4.5 Discrete linear repetitive processes giving rise to the 2D Fornasini-
Marchesini state-space model matrices Ay and A, are stable along the pass if 4 a

matriz P > 0 such that

PZW,P3 0 U
= — ATPA >0, 4.183
¢ 0  P3W,P: (4.183)

where Wy, = UTT U and Wy = UTT,U, with U orthogonal and

Pl = diag{ol,l, v 701,2n+m} and

Fg = diag{O'gv]_, s a02,2n+m} (4184)
with o1; >0, 094 > 0, o1 +o2; =1, 1< <2n+m.

Proof : Set R = Ih, ., and note that Iopim — W1 —Wso = 0. Applying theorem 4.16

now gives the result.
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Suppose now that U = I5,.,. Then we have the following corollary,

Corollary 4.6 Discrete linear repetitive processes giving rise to 2D Fornasini-
Marchesini state-space model matrices Ay and A, are stable along the pass if 3P > 0
such that

PzW, P2 0 .
0= Y N ATPAs (4.185)
0 Piw,p}
where W; = diag{cj1, -+, 0jom+m}, J = 1,2, satisfies the conditions of the previous

corollary.

In addition, suppose that R = Iypim, W1 = Bilonsm, and Wy = Bylo,,,, where
B >0, By > 0and B; + B, = 1. Then we obtain the condition of theorem 4.14
as a special case of theorem 4.16 and this is the essential reason that this theorem
is a less conservative result. Finally, note that the choice of R = I, in each of
these corollaries incurs no loss of generality (this can be established by considering
a transformation of the form A; = T‘IAjT, j =1,2) and hence the following result

can be stated.

Theorem 4.17 Discrete linear repetitive processes giving rise to 2D Fornasini-
Marchesini state-space model matrices Ay and A, are stable along the pass if 3
matrices P > 0, W; > 0 and Wy > 0 such that

PEW,P3 0 e
— — ATPA >0 4.186
N 0  PIW,P: (4186)
and
Iopm — Wi — W > 0. (4.187)

Now we consider the numerical solution of the generalised 2D Lyapunov equation
(4.186), i.e. given A find P, Wy > 0 and W, > 0 such that Q defined by (4.186)
is positive definite and (4.187) holds. In what follows, we establish a result that
relates the existence of such positive definite P, W; and W, to a norm minimisation
problem. After this, the numerical solution of the norm minimisation problem is

discussed.

The analysis which follows requires consideration of A = [ A, A, ] where flj =

T“lfle, J = 1,2, for some nonsingular matrix 7. Also let || - || denote the induced
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2-norm of the matrix involved. Now suppose that 3 P > 0, W; > 0 and W, > 0
such that @ > 0 in (4.186) and (4.187) holds. Then we show below that this is

equivalent to

<1 (4.188)

min Altvl 0
0

Vs

where the minimum is sought with 7', V; and V; all nonsingular and subject to
I — V'l——TVi—l . *V'z—T‘/?—l Z 0.

To establish (4.188) first suppose that 3 P > 0, W; > 0and W, > 0 such that Q > 0
in (4.186) and (4.187) holds. Now write

Wy = VTV, Wy = VTV (4.189)
and set 7-! = P2. In which case we have, from (4.186) and (4.187),
VTTT TV, 0 VT 0 o Vi 0
t ° 1o ' =I—| ' AT ' (4.190)
0 VITT 0 TV, V; 0 Vs
and
R A e A A (4.191)
Hence, since @ > 0, (4.190) implies that
- Vi 0
' <1 (4.192)
0 W

and hence (4.188) holds.

Suppose now that (4.188) holds. In which case, 3 some nonsingular 7, V4 and V;
satisfying (4.192) and hence

I-VV =Tt >0 (4.193)
and also
~ VI 0 | .-l Vi 0
=7—| ! T > 0. 4.194

Selecting P = T-7T~1, Wy = Vi TV !, Wy = V, TV, implies, by (4.194), that Q
of (4.186) is positive definite where
{ 7T T 0

4.195
0 T-Tv T ( )

Q:

Q V-l—lT—l 0
0 1/2~1T—1
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and (4.193) gives (4.187).

The optimisation problem of (4.188) is quite well known in the literature. For

example, efficient solution methods can be found in (Luenberger, 1984).

4.8 Solving the 2D Lyapunov Equation

Here, algorithms are given for solving the 2D Lyapunov equation of the previous

sections. Consider again the 2D Lyapunov equation (4.93), i.e.
TWwe - w = -Q. (4.196)

Then no loss of generality arises from assuming that @ has the form

KT o |[Kx 17 KTK  KTLT
Q= .| = . (4.197)
L N||o N LK LL"+NN

where K and N are n X n and m X m nonsingular matrices respectively, and L is

an m X n matrix.

The 2D Lyapunov equation (4.196) can now be rewritten as the following three

expressions,
W, — ATw A - C"W,C = KTK, (4.198)
Wy — DIW,D, — BIW,By = LLT + NN7, (4.199)
-BIw,A - DIw,C = LK. (4.200)

Hence finding symmetric positive definite matrix solutions of (4.196) is equivalent
to finding symmetric positive definite matrices W; and W5, nonsingular matrices
K and N, and a matrix L such that (4.198) - (4.200) hold. Here two algorithms
for solving this problem are given, starting with one based on the use of spectral

factorisation.

Algorithm 1

Step 1: Find an n X n symmetric positive definite matrix W; such that

W1 — GT(e™™)YW1G1(e™) > 0V w € ]0, 27] (4.201)
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where

G1(e™) = By(e™I,, — D,)7'C + A. (4.202)

Step 2: Find an m x m nonsingular matrix N such that

Wi — G (™YW, G1 (%) — CT (€I, — D)) *NNT (eI, — D,)"'C > 0,
Vw e [0, 27]. (4.203)

Step 3: Find an n x n rational matrix W(z;') such that

Wi — Gi(z2))W1Gi(27Y) — CT(2{In — DT)NNT (271, — Dy)7C
= W*(21)W (2 h). (4.204)

Step 4: Find an n x n matrix K and an m X n matrix L such that

W(z") =K+ LY (21, — Dy)7'C. (4.205)

Step 5: Find an m x m symmetric positive definite matrix Wj as the solution of
W, — DYW,D, = BfW,By + LL* + NNT. (4.206)

It can be shown (Agathoklis et al., 1989) that if G;(2z;!) is minimal and strictly
positive real then it is always possible to obtain the positive definite solutions to the
2D Lyapunov equation using the above algorithm. Also well known 1D methods can
be used at each step. The execution of steps 1 and 2 requires a method for testing the
strictly bounded real property. Note, however, that although such algorithms exist,
no algorithm has been developed yet which ensures that if a positive definite matrix
Wy satisfying (4.201) exists, this W will be found. In step 2, a simple choice for N
is N = el,, where ¢ is sufficiently small to ensure that (4.203) holds. Note, however,
that a ‘very small’ € could lead to a ¢ which is ‘almost’ positive semi-definite since
det(Q) = (¢™K)2. In step 3, (4.204) can be rewritten as

I = GH(21)Gr (1Y) = W (21)W (217) (4.207)
where
TAT-! TB
Gr(zh) = 0 } N° (27 Ln — D) tCTH (4.208)

130



4 1D and 2D Lyapunov Equations 131

and W; = T*T. Finally, note that the spectral factorisation problem here, and the
realisation of W (z;'!), have been well studied and numerous algorithms are available
in the open literature (see, for example, (Agathoklis et al., 1989) and the relevant
references therein). Also at step 5, a simple 1D Lyapunov equation has to be solved.

Algorithm 2

The following are the steps in the solution algorithm which uses a matrix Riccati

equation.
Step 1: Find an n x n positive definite matrix W; such that
Wy — GT(e7™™)W1G1(e") > 0V w € [0, 27], (4.209)
where G (') is as in (4.202).
Step 2: Find and m X m nonsingular matrix N such that
Wy — GT (e )W Gy (™) — CT (eI, — D) ' NNT(e7*1,, — D1)7}C > 0,
Vw € [0, 27). (4.210)

Step 3: Find a m x m symmetric positive definite matrix W; as the solution of the

following matrix Riccati equation
DIW,Dy + HFG + NNT + BI W, By, =0 (4.211)

where

H = B{W)A+ DiW,C

F = (W, - ATW A~ CTW,C)™!

H = (ATW.B, + DIw,C)7. (4.212)
The first two steps of this algorithm are identical to the previous one but here the
spectral factorization has been replaced by (4.211) to determine W,. Also the matrix

@ can be obtained by substituting ) = W; @ W, in the 2D Lyapunov equation and
it can be shown (Agathoklis et al., 1989) that @ > 0.

4.9 Performance Bounds

Within this section computable bounds on performance along a given pass are in-
troduced which use the positive definite solution pair {W,Q} of the 2D Lyapunov
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equation (4.196) as a starting point. So, suppose that the 2D Lyapunov equation
(4.196) holds and introduce

ka+1(P+1)H€V1 = 17{+1(p+1>W1$k+1(P+1), and
N1, = Y (p)Wayria(p)- (4.213)

Then applying these definitions to (4.196) gives

211 (P + Dl + e 0) i, = lzx @), = Ny @)y, = —llzs@)I7 = llve@)I]F-
(4.214)

Now suppose that z;,1(0) = 0, £ > 0, and introduce for 7 > 0,

lzjallfy, = ZHv’Uﬂl(p‘Fl)H%}n
lyjaalliy = Dy + Dy, (4.215)

3
1l
=}

Then applying these summations to (4.214) gives

el + venlliv, = Noelli, s + lyelli, -
< Ml + lyll). (4.216)

A

Now assume that

Wi—-1 < MW,
Wy —1 < AW, (4.217)

where A; and Ay are real positive scalars.
Then
(@rsns ver) 1 = lznaa i, + Nvenlli, < AU w0l1?) (4.218)

where A = max(A1, A\2). The process is stable along the pass if A < 1 which is always
guaranteed to be true if Wy, Wy > I. Hence we have a geometric convergence to

zero in the pass to pass direction.

It is possible to compute the rate A using the fact that if a square matrix W satisfies
W =WT >TIthen 3X €[0,1): W — I < AW. Then it is easily shown that

W-I<W- W=(1- W (4.219)

7x(W) (W)
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Hence in the case of (4.218)

1
A = max (1 - = ) ,1=1,2. (4.220)

4.10 Summary and Conclusions

Within this chapter the question of to what extent a Lyapunov based approach to
the stability analysis of linear repetitive processes is available has been addressed. A
study of the literature to date has revealed that the development of Lyapunov-type
equations for 2D systems described by the Roesser/Fornasini-Marchesini state-space

models has been approached in essentially two different ways:

(1) the so-called 1D Lyapunov equation approach, defined in terms of matrices

which are functions of a complex variable; and

(ii) the so-called 2D Lyapunov equation, defined in terms of matrices with constant

entries.

Initially, the 1D equation has been investigated, firstly for differential processes with
simple boundary conditions. The term 1D refers to the fact that the equation has
an identical structure to that for discrete linear time-invariant systems but with
defining matrices which are functions of a complex variable. The resulting condition
for stability along the pass based on this equation is both necessary and sufficient
(as opposed to the sufficient only nature of the 2D Lyapunov equation condition
- see later), and can be implemented by computations on matrices with constant
entries. Hence this result serves as an alternative to previously presented/developed
tests (see chapter 3 for the details) for stability along the pass which require the
computation of the eigenvalues of a potentially large dimensioned matrix for all
points on the unit circle. In addition, it has been shown how the 1D equation
approach provides performance information on the rate of approach of the output
sequence of pass profiles to the limit profile. It should be stressed, however, that
the 1D equation does not provide any useful measures of relative stability, such as
stability margins or robustness measures to, for example, uncertainties in the model
description or parameter variations (unlike the 2D Lyapunov equation case - see

below). Some comments on methods of solution of the 1D Lyapunov equation have
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been made. For full details of such techniques see the relevant references cited within

the text.

To conclude the analysis of the 1D Lyapunov equation approach, a subclass of
processes with dynamic boundary conditions have been considered, which have links
with certain classes of delay-differential systems and area of repetitive control. A 1D
Lyapunov equation characterisation of stability along the pass has been introduced
for this subclass and shown to provide a stability condition which is both necessary
and sufficient. Strict positive realness based tests to compute positivity have been
developed which reduce the problem to a 1D problem by showing that the condition
is equivalent to testing for positive realness of a certain 1D rational transfer-function
matrix. The analysis presented in this section on dynamic boundary conditions
provides the basis for the papers (Benton et al., 2000c) and (Benton et al., 2000d).

In section 4.6 and onward, the so-called 2D Lyapunov equation approach has been
considered, which is defined in terms of matrices with constant entries. Here it has
been shown that, in general, the existence of a positive definite solution pair to the
2D Lyapunov equation is a sufficient but not necessary condition for stability along
the pass of discrete linear repetitive processes. A counter-example is given to show
that a stable along the pass process does not necessarily imply that the process is
strictly bounded real and hence satisfies the 2D Lyapunov equation. Two special
cases have been presented, however, when the 2D Lyapunov condition provides
necessary and sufficient conditions for stability along the pass - SISO systems and
the case when the augmented plant matrix of the process is normal. In section 4.7 a
2D Lyapunov equation has been developed for a 2D Fornasini-Marchesini state-space

model, which involves the computation of generalised eigenvalues. The analysis |
presented here on the 2D Lyapunov equation for discrete linear repetitive processes

provides the basis for the paper (Benton et al., 2000a).

Despite its apparent conservativeness, the 2D Lyapunov equation approach has a
potentially major role to play in the analysis of discrete linear repetitive processes in
terms of stability margins and robust stability theory as discussed in the following
chapter. In addition, the performance measures of section 4.9 are not available from

Roesser/Fornasini-Marchesini alternatives (for the discrete subclass of processes).

Note that progress can be made in terms of the development of a 2D Lyapunov
equation for the differential subclass of processes. This subject remains an area

where future research effort should be focussed.
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Chapter 5

Robustness

5.1 Introduction

In addition to determining whether or not a given process is stable along the pass, it
is important to obtain measures of ‘how stable’ the process is or, more specifically,
‘how far’ it is from being unstable. Within this chapter, the subject of robustness
of linear repetitive processes is considered. The first area looked at is how sensitive
the property of stability along the pass is to system parameter variations. Secondly
the subject of stability margins is introduced. For both areas of robustness analysis,
discussions on the available methods of computation of the bounds/margins are
given. In addition it is noted that, in many cases, evaluation of the exact bound or
margin is not necessary (or possible) in which case good lower bounds may suffice.
With this motivation, a Lyapunov equation based approach to robustness analysis
for the two areas of parameter variation bounds and stability margins is given, using
the 2D Lyapunov equation of chapter 4 as a starting point, and hence this work can
be seen to be an application of the theory presented in the relevant sections therein.

The analysis of these sections can be found in (Benton et al., 1999).

A valid criticism of the work to date on stability margins for 2D linear systems is the
lack of a ‘transparent’ link to resulting systems performance. In particular, consider
the 1D linear continuous time case and suppose that all the system poles lie to the
left of the line Re(s) = —o, ¢ > 0. Then this can be directly related to the system

performance to, say, a step command.
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To expand on this last point, consider, for simplicity, the unforced state-space model

t(t) = Az(t), z(t) € R*, z(0) = m, (5.1)
and let A have distinct eigenvalues A;; 1 <4 < n. Then the system performance is
given by

$(t) = Z T diag{eA”t}lsiSn Tt To (52)
i=1

where T' is the eigenvector matrix of A. Hence the stability margin here has a

‘transparent’ link to resulting system performance.

In the 2D/nD case, such a link is not present in previous work and it is clear that
this is a problem which must be addressed before any further progress is possible.
Here the basis of one highly promising approach is utilised by, in effect, specialis-
ing recent work on a pole theory for nD linear systems based on the behavioural
approach (Wood et al., 2000). This is discussed further in section 5.9.

It should be noted that the analysis presented in this chapter provides only an in-
troductory consideration of the subject area of robust stability theory for discrete
linear repetitive processes - much further research effort is required before an objec-

tive appraisal of the techniques presented can be made.

5.2 Parameter Variations

The first stage in the analysis of a given linear repetitive process is to decide whether
it is stable or not. If the process is stable along the pass, it is then important to
consider how this property is affected in the presence of system parameter varia-
tions. Such variations can arise as the result of, for example, model inaccuracy or
measurement noise, and the analysis presented here determines the degree to which

the process will tolerate system parameter variations without becoming unstable

along the pass.

In the case of discrete linear systems described by, for example, the Roesser 2D
state-space model, this general area has been studied under two different types of
perturbations in the matrices which define the state-space model as follows:

(i) structured, where the perturbation model structure and bounds on the indi-

vidual elements of the perturbation matrix are known; and
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(ii) unstructured, where at most a spectral norm bound on the perturbation is

known.

5.2.1 Problem Statement

As a starting point, consider the subclass of unit memory discrete linear repetitive
processes with the state-space model (2.24)-(2.25). Assume that the process is stable
along the pass and is free of control inputs, i.e. u(p) =0, 0 < p < a, k > 0. Then
this so-called nominal system can be written in the following form over 0 < p <

a, k>0,

z(p+1) | | A By

Z111(p) ¢ D,
where zx11(p) := yr(p), 0 < p < a, k > 0. Using the augmented state matrix
notation of (2.51)-(2.53), the nominal system can be rewritten over 0 < p < a, k > 0,

2,(p)

z(p) } (5.3)

Xi'(p) = @ Xu(p)- (5.4)

Note that, since the process is stable along the pass (by assumption), the three
conditions of theorem 4.7 hold, in addition to the necessary condition of 7(®) < 1.

Now consider the subclass of discrete processes with the following additive pertur-

bation structure for the augmented plant matrix,

Pper = @ + AD. (5.5)
Here
AA AB,
Ad = 5.6
AC AD; (5.6)

represents the matrix of unstructured perturbations, with elements having the same
dimensions as for ®. Then the perturbed unforced system has the following state-

[ z+(p) } (5.7)

space representation over 0 < p < «, k > 0,

241 (p) zk(p) C + AC D1 -+ ADI Zk(p)
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X;l(p) = Pper Xi(p). (5-8)

The question addressed in the following sections, then, is what conditions need to
be imposed on the structure of the perturbation matrix (5.6) to ensure that the
perturbed nominal system remains stable along the pass? (Note that, clearly, the
three conditions r(D1+ ADy) <1, 7(A+AA) < 1and 7(® + A®) < 1 are required
to hold in addition to condition (c) of theorem 4.7 with ® replaced by ®p.;.)

Now for the nominal stable along the pass discrete process (5.3), define the set of

unstructured unstable along the pass perturbations of the form (5.6) as
Sy = {A® : A € C™F™*(ntm) " 1 A® is unstable along the pass}. (5.9)
The exact bound for stable along the pass perturbations can now be defined as

vi= inf [AB]| (5.10)

Then, given a nominal stable along the pass discrete process with augmented plant
matrix ®, an unforced discrete linear repetitive process with augmented plant matrix

&, will remain stable along the pass if
IA®] < v. (5.11)

Thus, the aim of the analysis presented here is to find methods of determining the
minimum norm of the matrix A® such that the perturbed system remains stable
along the pass, or at least a good lower bound for it. In this latter case, a lower

bound, vy, for v provides a sufficient condition for stability along the pass, as follows
[AD|| < v, < 0. (5.12)

A review of the literature indicates that, for systems described by the Roesser /
Fornasini-Marchesini 2D state-space models, this problem has been approached in

essentially two different ways :

(i) methods for evaluating the exact bound for stable along the pass perturbations,
see, for example, (Lu, 1994b; Lu, 1989); and

(i1) methods for obtaining a lower bound for v, see, for example, (Lu, 1994b) for

one such 2D Lyapunov equation based approach.
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For the remainder of this chapter, the following notation conventions are used. Sin-
gular values of a matrix I are defined as the square root of the eigenvalues of F*F,
o(F) and g(F') denote the largest and smallest singular values of F' respectively, the
vector norm ||z|| for 7 x 1 vectors z is given by (3.1, z2)"/?

|[F|| is the the induced 2-norm and is equal to & (F).

and the matrix norm

5.3 The Exact Bound for Stable Perturbations

Consider the subclass of stable along the pass unit memory discrete linear repetitive
processes of the form (2.24)-(2.25) with nominal system (5.3), and let ®,., denote
the augmented plant matrix of the process which has been subjected to unstructured

perturbations with the additive perturbation structure of (5.5).

The so-called characteristic equation of the unperturbed stable process is defined
(as in (4.77)) as

In - Z]_A ‘—ZlBO
~2C I, — 2D,
= det[z; 'L, ® 27 I, — D] (5.13)

p(zb z) =

and since the process is stable along the pass, we have
p(z1,2) 0V (2, 2) € U (5.14)
Now introduce the characteristic equation of the perturbed system (5.7) as

In - Zl(A -+ AA) —-Zl(BO + AB())

Poec(202) =0 LAC) I — o(Dy+ AD)
= det[z7 [, ® 27 L, — Pper (5.15)
and let
m(21,2) = [ L@z ', - ®]™"
and  Tper(21,2) = [ L@ 27 L, — Bpe] (5.16)

Then, following (Lu, 1989) for the case of discrete systems with dynamics described
by the Roesser 2D state-space model, a sufficient condition for the perturbed system

to remain stable along the pass is given by the following lemma,
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Lemma 5.1 Given the unit memory discrete linear repetitive process (2.24)-(2.25)
subject to unstructured perturbations with the additive perturbation structure of (5.5),

the perturbed process remains stable along the pass provided the perturbation matriz
(5.6) satisfies

[A2] < |Ir(e™, )71 ¥ 0 < wywp < 27 (5.17)

Now, from the definition of 7(z;, z) we can write
(e, e™2)| 7! = ole™ I, ® e ], — @], (5.18)

and, since the singular values of a given matrix are continuous functions of the

matrix entries, (5.18) achieves its minimum on ) where
Q= {(wr,w2) : 0 < wy,wy < 27} (5.19)
Thus (5.17) may be restated as
1A2] <4q, (5.20)
where
q:= mﬂing[ei“’lIn @© eI, — ®). (5.21)
Then we have the following result (which is proved in (Lu, 1989) for the case of 2D

discrete systems described by the Roesser state-space model),

Theorem 5.1 Given a stable along the pass discrete linear repetitive process (2.24)-
(2.25), the exact bound, v, for stable along the pass perturbations of the form (5.6)

s given by

v=yq (5.22)
with g defined as in (5.21).
Hence, from this result, it follows that the tightest upper bound for unstructured

complex perturbations that will not cause system instability is provided by ¢ defined

above. The question remaining is, for a given example, how can this g be evaluated?

The literature provides several approaches for evaluating this exact bound for stable

along the pass perturbations. A computationally feasible method is given in (Lu,
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1989), which involves computing the infimum of the minimum singular values of a
two variable complex matrix of size (m +n) x (m+n) over §, which can be compu-
tationally intensive. Two alternative methods for computing the exact perturbation
bound v are presented in (Lu, 1994b). The first method, in effect, reduces the cal-
culation to a 1D minimisation problem where the objective function is the stable
perturbation bound of a family of 1D discrete systems, which is then solved using
the bisection method. The second approach uses a direct optimisation technique.
Both methods are more numerically efficient, and so can be seen as an improvement

on the original approach.

The following section implements the idea that it is not always necessary to know

the exact bound for stable perturbations. Instead a good lower bound often suffices.

5.4 A Lyapunov Approach to Perturbation

Bounds

Within this section, a Lyapunov equation based approach to finding good lower
bounds for v is presented. Consider the unforced stable along the pass discrete
linear repetitive process (5.3). The starting point for the following analysis, then,
is to assume that this process satisfies the 2D Lyapunov equation of chapter 4, i.e.
that 3 a positive definite solution pair {W,Q} to equation (4.93). It should be
stressed that the assumption that the 2D Lyapunov equation is satisfied is stronger
than assuming stability along the pass alone due to its sufficient but not necessary

nature.

Following (Lu, 1994b) for the case of 2D discrete systems described by the Roesser
state-space model, and given the positive definite matrices W = W; & W, and @
as solution to the 2D Lyapunov equation (4.93), construct the Lyapunov function

¢x(p) as
¢i(p) = pi(p) + i () (5.23)
with
¢ (p) = 2y (p)Wrze(p) and  ¢i(p) = 2 (P)Waz(p) (5.24)
where, as before, z;(p) = yr-1(p), 0 < p < @, k > 1. Hence, using the augmented
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state vector notation of (5.4), we have
d1(p) = Xi (D)W Xi(p). (5.25)

The function ¢ (p) represents the energy stored in the delays and, since W; and W,
are positive definite, ¢y (p) > 0 provided X (p) # 0.

Define

i) = dpp+1)+ dh(p)
= X (p)WXi (p) (5.26)

using the notation of (5.8). Then equations (5.23)-(5.26) together with the perturbed
process state-space representation (5.7) and the 2D Lyapunov equation (4.93) can

be used to compute Ay (p), defined as

Agr(p) = ¢4 (p) — d(p)
= X T(p)WXiHp) — X (p)W Xy(p)
= —X]’;T(p){W - @T W(pper}Xk(p)' (527>

per

Thus if (W —®T W d,,) is positive definite, then we have A¢y(p) < 0 and Agy(p) =

per
0 only when Xy(p) = 0. Then, in this situation, a routine argument (see, for

example, (El-Agizi and Fahmy, 1979)) can be used to show that the energy stored
in the delays is decreasing and hence that the perturbed process (5.7) satisfies the
2D Lyapunov equation. Therefore the perturbed process is stable along the pass.

Now (5.27) can be expanded to give

Adr(p) = —Xi (p)QXi(p) + 2X; (p) 2T W AS X (p) + X[ (p)(AD)" WA X, (p).
(5.28)

Since W is positive definite, it can be factored to give W = WT/2W/2 where
WT/2 .= (WY)T and W/? some matrix known as a square root of W. In addition,

since W is symmetric, so is its square root, i.e. W2 = W7/2, Hence
Ab(p) < — [a(Q) — 2 |ET W2 F (W) | A%] — (W) 16817 [ Xu(p)]* (5.2
Clearly
TWYPW2e =W - Q (5.30)
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which gives
|eTW?| < 7AW - Q). (5.31)
Then an upper bound for A¢,(p) is given by

Agr(p) < —[a(Q) - 252 (W — Q)T A(W) | A®| — T(W) |AB1*] || Xk (p)I|.
(5.32)

Since the right hand side of this inequality is a quadratic in ||A®||, it follows that if

[F(W - Q) +a(Q)]/* —a*(W - Q)
/(W)

|AS] < (5.33)

then Agr(p) < 0V0 < p < «, k > 0, and hence the perturbed system remains
stable along the pass. Therefore a lower bound, vy, for v can be obtained by setting

vp equal to the right hand side of (5.33).

An alternative Lyapunov function may be defined as
Yi(p) = [¢1(p) + S} (p)]"? (5.34)

with ¢?(p) and ¢¥(p) defined as in (5.24).

Similarly define
i (0) = (00 + 1) + 61, (0)]'V7, (5.35)
and, as before, compute

Avr(p) = i (p) — Ye(p)
= [X{(p)PL W @per Xio(p)]? — [XT (0)W Xi(p)]'/?
< [(XT(p)@" WX, (p)]'/? — (X (p)W Xi(p)]"/?
+ (X3 (P) BT W @per X (0)]M? — [ X[ (p)@T W B X (p)]V/?|
X7 (p)QXk(p)
[(X{ () (W = Q)X (p)[V2 + [ X (0)W Xy (p)]*/2
+ (W) | AR || Xk(p)]]

2(Q)IIXu(p)] -
{[6—1/2(W _ Q) +a—1/2(w)] HXL(P)H (W)HACI)“ ”Xk(p)H

_ a(Q) _Fl/2
s -l I (639

IA
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Hence, following a similar argument to that above, if

a(Q)
A2l < ) TP P - O) (5.37)

then Avr(p) < 0VO0 < p < o, k > 0, and therefore the perturbed system (5.7)
remains stable along the pass. Hence, setting v, equal to the right hand side of

(5.37) gives an alternative lower bound for v.

Note that other bounds based on a Lyapunov equation approach are possible - see,

for example, (Tzafestas et al., 1992).

This section on a Lyapunov approach to parameter variation bounds concludes by
considering the special case where ||®|| < 1. The two bounds for v presented earlier
in this section require a solution to the 2D Lyapunov equation (4.93) which can be
computationally intensive. However, if ||®|| < 1, the matrix @ defined by

Q=lhim— 27O (5.38)

is positive definite, which implies that the 2D Lyapunov equation with constant
coefficients (4.93) has a positive definite solution with W = I,,,,,, and @ given by
(5.38).

Then since
7(®T®) = ||®|* and
I(Inym — 27®) = 1@, (5.39)
and by denoting the bound of (5.33) as v} and that of (5.37) as v in this case, the

two perturbation bounds v} and v? become

[F(®T®) + o ([nym — B®T®))/2 — 57/2(3T D)

T 52 (Lpsm)

= 1-—]|9| (5.40)
g 0(Lnsm — ©T9) T
DT GIngm) + T2 (Laym)T2(8TE) 1+ |2

= 19| (5.41)

ie. for the special case of ||®]| < 1 the two perturbation bounds v} and v} are
identical and equal to 1 — ||®||, which can be evaluated without the need to solve

the 2D Lyapunov equation.
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Note that v} and v? are lower bounds for the actual permissible parameter variation
bound v, and hence the least conservative bounds are those which are as high as
possible. Therefore, amongst all equivalent realisations of the system matrix 7®7T 1,
it is best to seek a similarity transformation T = T @ T3 such that ||T®T || is
minimised so as to achieve the largest possible stability robustness bounds v} and

vZ. This point is discussed further in section 5.8.

5.5 Fornasini-Marchesini Model Based Analysis

Here robustness analysis is performed using a Fornasini-Marchesini model as a start-
ing point. The analysis in this section uses some results from the theory of nonneg-

ative matrices which are summarised in the appendix section A.1.

Consider the discrete unit memory linear repetitive process with state-space rep-

resentation (2.24)-(2.25) and assume that the following necessary conditions for

stability along the pass hold,
r(D1) <1 and 7(A) <1, (5.42)

i.e. conditions (a) and (b) of theorem 4.7. Then the following result gives a condition

for stability along the pass,

Theorem 5.2 Discrete linear repetitive processes with unforced dynamics described

by (5.3) are stable along the pass if, and only if,

det(Inym — 21A1 — 2A2) #0 YV (21,2) € i (5.43)
where
A B 0
1= 0 and A, = 0 (5.44)
0 C D

and T = {(z1,2) : |a| <1, |2 < 1}.

Proof: Follows immediately on noting that, from theorem 4.7, stability along the

pass holds if, and only if,

p(z1,2) 0 Y (21,2) € U (5.45)
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To proceed, we need the following result,

Lemma 5.2 Consider the transfer-function matrix
Gi(21) = (Insm — 21 A1) (5.46)

and write its Maclaurin series expansion as

Gi(z1) = (Ingm — 2141) 4 = i Al (5.47)
§=0
Then
1G1(21) 24, < H (5.48)
where
H:= i 142 Ay, ¥ (21,2) € T (5.49)
=0

Proof: Follows immediately from applying the properties of nonnegative matrices

given in section A.1 and hence the details are omitted.
Now we have the following sufficient condition for stability along the pass,

Theorem 5.3 Duiscrete linear repetitive processes with unforced dynamics described

by (5.8) are stable along the pass if
r(H) < 1. (5.50)

Proof: Since r(A1) < 1, condition (5.48) for stability along the pass is equivalent

to
det(Inim — (Ingm — 2141) " 242) #£0 ¥V (21,2) €T (5.51)
and this condition holds provided
r(Gi(z1)24;5) <1 Y (21,2) € U (5.52)
Hence, using the spectral radius inequality of lemma A.1, we have
r(Gh(z1)24s) < 7(|Ga(2)2sllp) < r(H) ¥ (21,2) €T (5.53)
and the proof is complete.
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An identical analysis, and hence the proof is omitted here, leads to the following

result,

Theorem 5.4 Discrete linear repetitive processes with unforced dynamics described

by (5.8) are stable along the pass if

r(H;) <1 (5.54)
where
Hy =) || 43 Aslp. (5.55)

As a special case, suppose that all elements in A; and A, are positive. Then in this

case the matrices H and H, as defined above are given as follows,

H = (In+m~A1)_1Ag and
H1 = (In+m—A2)~1A1. (556)

Now consider the same discrete process, where the matrices A; and/or A, are subject

to additive perturbations as follows,

A1 — Al‘i‘AA]_
Ay — Ay +AA, (5.57)

and the perturbation matrices AA;, ¢ = 1,2, can have the following forms:

(1) JAAl, < @;F;, i=1,2, where 4; > 0 and F; is a nonnegative matrix. This is
the case when highly structured information is available on the perturbations

of the entries in A;; or

(ii) |AAl < fi, 1 = 1,2, where f; > 0 and, for a matrix X, || X]| = o(X) =
(Amax(XTX))? where Amax(-) denotes the maximum eigenvalue. This corre-
sponds to the case when the perturbations are unstructured and only a spectral

norm bound on the perturbation is known.

As in the analysis of the previous section, the starting point of what follows is the
assumption that the nominal (i.e. unforced unperturbed) process is stable along the

pass. In which case the aim of the remainder of this section is to find bounds on
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|AAlp, i = 1,2, for perturbations of the type (i) above and on ||AA4]|, i = 1,2, for
type (ii).

The analysis of this section requires the following result,

Lemma 5.3 Write the Maclaurin series for

T(Z]_, Z) = (In+m - ZlAl - ZAg)hl (558)
as
T(z,z Z (21 4; + 245 (5.59)
7i=0
Then
IT(21,2)ly S H = Inym +Hy + Hy Y (21,2) € T (5.60)
where
ﬁl = (In+m — Lle)_l(Ll -+ Lng)
Hy = (Inym — LyLy) ™ (Ly + LyLy) (5.61)
and
Ly = Z HA{“IH Ly = Z JIA§||p- (5.62)
i=1 j=1
Proof: First note that
T(zl,z) = n+m+[j.f1 —f—ﬁg (563)
where
[:[1 = Alfl(Al,Ale,z),
Hy = Asfo(As, As, 2, z), (5.64)

where fi(+), i = 1,2, are nonlinear functions of their arguments. It now follows (by

extensive, but routine, manipulations) that

Hy = ZAlzl n+m+H2)

H, = Z AL (I + H) (5.65)

j=1
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and hence, for |z <1 and |z| <1,

12y < Li([nsm + Hallp) < Ly + Ly || Hollp
IHoll, < Lo(|Tnsm + Hallp) < Lo + La|| Hylp- (5.66)

Hence on solving the two inequalities of (5.66) we have that

FII = ([n—{-m - Lle)_l(Ll + Lle)
Hy = (Inym — LoLy) " (Lg + Ly Ly) (5.67)

[reat™
(e[

IA

INA

and the proof is complete.

Note that for A in lemma 5.3 to exist, we require
r(L1Ls) = r(LaLy) < 1 (5.68)

and hence this fact can be regarded as another sufficient condition for stability along

the pass.

In the case when (|4;|l, = A, 7 = 1,2,i.e. when all elements of A, and A, are positive
and r(A; + Ay) < 1 then H= (Ingm — A1 — Ag) 71 Also if || 4;]], # As, 1= 1,2, and
in addition 7(||A; ||, + [|4z2ll,) < 1 then H < (Inym — [|A1]l, — [|A2|l,)

The following result now gives sufficient conditions for stability along the pass under

the structured perturbations of case (i) defined above.

Theorem 5.5 The following are sufficient conditions for stability along the pass
of discrete linear repetitive processes under the structured perturbations of case (i)

defined above (i.e.||AAl, < & F;, i =1,2),

2

r(Hy+ (Ingm + L)Y a:F) < 1 (5.69)
i==1
or
2
r(Hy + (Ingm + L2)) | a:Fy) < 1. (5.70)
3=l

Proof: The proofs of these two conditions follow the same basic steps and hence

only the proof of (5.69) is given here.
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The closed loop system for the perturbed process in this case is stable along the pass

if, and only if,
det(Tnim — 21(A1 + AA) — 2(Ay + AA)) £ 0 VY (21,2) € T (5.71)
or, since (A1) < 1, this reduces to
det(Inym — (Inam — 2141) 245 — (Ingm — 2141) " H(21 A4, + zAA)) #0 (5.72)
for (z1,2) € T°. This condition holds if

T(([n—Fm - ZlAl)_leg -+ (In—|—m - ZlAl)ul(ZlAAl -+ ZAAQ)) <1l V¥ (21, Z) € Uz.
(5.73)

Using (5.47) and (5.49), this last equation leads to the following inequalities
T(Gl(zl)ZAz + él(zl)(zlAAl -+ ZAAQ)) S T(H1 + HAHP)

2
< r(Hy+ (Ingm + Ll)z ;1) (5.74)

i=1
where

1Al = A4l + [|A Al (5.75)

and the proof is complete.

The following result gives sufficient conditions for the stability along the pass of
discrete processes subject to the unstructured perturbations of case (ii) defined

above.

Theorem 5.6 The following are sufficient conditions for stability along the pass of
discrete linear repetitive processes under the unstructured perturbations of case (ii)
defined above,

1-3(H)
h+ /< = A (5.76)
or
1 —o(H;)
fitfa< (5.77)

T(Inym + L)’
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Proof: Again, the proofs of these two conditions follow identical steps and hence
only (5.76) is proved here. The proof relies on the fact that if X is an | x | matriz
then r(X) < (X). Hence we have the inequality

r(H + (Inim + L) ([A A, + [|A42lp) < o+ 2 0(Tnam + L) +G(H)  (5.78)

and the result follows immediately.

In addition, the following stability along the pass conditions apply to both types of

perturbations,

Theorem 5.7 Discrete linear repetitive processes are stable along the pass under
both types of perturbations introduced under (i) and (it) above if the following con-

ditions hold for the structured and unstructured perturbations respectively,
r(HY aF)<1, i=12 (5.79)

and

fi+fa < —_"1]:7 (5.80)

where H is defined by (5.60).

Proof: Since the nominal system is assumed to be stable along the pass, it follows

that the perturbed system will also be stable along the pass if, and only if,
det(]n+m — (In+m — ZlA1 - ZAZ)_1<21AA1 -+ ZAAQ)) # 0 (581)

for (z1,2) € T, The result now follows immediately on using (5.59) and (5.60).

Note now that the conditions of (5.76) and (5.77) require that (H) < 1 and o(H;) <
1 respectively. This restriction is not required by (5.80) and hence it is a less

conservative alternative to these two conditions.

In addition, upper bounds for a;, 1 = 1,2, can be computed as
a1 E(HFl) + a3 E(HFZ) < 1. (582)

It is possible to provide an alternative upper bound for T'(z, z) to that of (5.60), as

can be seen in the following result,
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Lemma 5.4 T'(z,2) of (5.58) satisfies the following inequality for (21, z) € U2,

1T (21, 2)llp < L= Lyym + Ly + Ly + le + fo
where
L, = B'C
by = D+BBIC
and
B = In+m - T{—l - ﬁl (In—f—m - F?)_l-ﬁ%
O = ﬁl(fn—l—m + Ll + LQ) + ﬁl(In+m - ﬁ?)“lﬁz(fn_;_m + L1 + Lg),
D = (In+m - —HZ)_1F2(In+m + Ly + L2)>
E = (In+m - EQ)_lﬁ%
H = ) [Al4,

j=1

143 Axlp-

x|
i
[M]8

j==1

<
Il

Proof: First write the Maclaurin series for T(z1,z) in the form

T(21,2) = Ingm + Al + " Alz+ Ky + K,

j=1 j=1

where

Kl = ZA{Z{Z([n+m+FI1+g2)

j=1
KQ = ZAgAlzlzj(Imm + E[l -+ ffz)
Jj=1
Hence we have that
.FIl = ZA{Z{ -+ K1
Jj=1

H2 - ZA%Z—{—Kz
j=1
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It now follows that

1Kill, < Hi(Tnsm + Ly + Le + [|Kilp + || Kal|)
1ol < Ha(Ingm + Ly + Lz + [|Kull, + [ Kallp) (5.89)

and hence
|Killp < Ly:=B7'C
|Kall, < Ly:=D+EB™'C. (5.90)

The matrix L in (5.83) exists provided
T(ﬁl -+ ﬁl(In—i—m — EQ)_lﬁQ) <1 (591)

and this is another sufficient condition for stability along the pass. This condi-

tion can also be used to derive sufficient conditions for stability along the pass as
alternative to (5.79) and (5.80).

In summary, this section has presented robustness analysis based on a Fornasini-
Marchesini model of the dynamics of a discrete linear repetitive process. Given a
stable along the pass unforced system, bounds on the permissible parameter varia-
tions have been derived for both cases of structured and unstructured perturbations.
Note that to fully exploit these results the least conservative set for a particular ex-

ample should obviously be used.

5.6 Stability Margins

The second type of relative stability analysis to be discussed within this thesis is
that of stability margins. In 1D systems theory, the stability margin is defined
as a measure of the distance between the dominant poles (or eigenvalues) of the
system and the stability limit (for discrete systems this is just the boundary of the
unit circle). Then a necessary and sufficient condition for 1D stability is that this
measure, o say, is strictly greater than zero. (Note that if ¢ = 0, then a root lies on
the unit circle, whereas o < 0 means that at least one root lies outside the stability

region and the process is unstable).

Within this section, candidate definitions of stability margins for discrete linear
repetitive processes are given. Note here that, since a fundamental difference be-

tween systems in one dimension and those in n, n > 2, is that the singularities are
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no longer isolated poles, but multidimensional manifolds, the stability margin for a

repetitive process is given in terms of analytic regions of functions in two variables.

5.6.1 Problem Statement

In characterising systems behaviour, besides stability, it is extremely useful (or even
essential) to have an indication of to what extent the poles of the system may
be moved before it becomes unstable. In 1D systems theory, the distance of the
dominant eigenvalues from the stability limit (the so-called stability margin) is used

as a measure for this.

Consider the subclass of discrete linear unit memory processes with the state-space
representation (2.24)-(2.25). The starting point of the following analysis is to assume
that the process is stable along the pass. Now assume that the process is free of
control inputs and rewrite the dynamics of the process in the form of (5.3). Now
since, by assumption, the process is stable along the pass, theorem 4.7 holds and we

have

In — Z]_A —21B0

=2
0, f ,2) e U 5.92
—zC I, —zD; 7 or (21,2) ( )

p(zla Z) -

The definition of a stability margin for 2D discrete systems described by the Roesser
state-space model was first introduced in (Agathoklis et al., 1982) as a criterion for
characterising the spatial domain performance of a stable 2D system. Here (see
also (Walach and Zeheb, 1982; Swamy et al., 1981)) a stability margin is defined
as the shortest distance between the singularities of the system and the boundary
of the stability region, which is the boundary of the unit bidisc. This is the largest

bidisc where p(z1, z) has no roots, i.e.

pz1,2) #0 in U2 = {(z1,2) : || < L+ 01, ]2] < 1}
pz1,2) #0 in U2 = {(21,2) : |21] < 1,]2] < 1+ 02}
plzr,2) #0 in Uy = {(21,2) || <1+0,]z] <1+0}. (5.93)

Then the conditions o; > 0, 05 > 0, o > 0, are necessary and sufficient conditions
for stability along the pass of discrete processes described by (2.24) and (2.25).

A review of the literature indicates that considerable effort has been directed towards

the development of algorithms for computing o7, 03 and o. As a result of this,
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numerous algorithms are available based on different approaches/starting points.
For example, (Walach and Zeheb, 1982; Agathoklis et al., 1982; Hertz and Zeheb,
1987) are based on minimizing the distance between the roots of p(z;,2) and the
boundary of the unit bidisc T2 = {(z1,2) : |z1| = 1,]z| = 1} and (Roytman et al.,
1987) introduces algorithms based on the so-called resultant matrix.

5.7 A Lyapunov Approach to Stability Margin
Analysis

A different approach is based on the premise that it is not always necessary to know
the exact value of the stability margin. Instead it suffices to know that they are
greater than certain lower limits. This concept is illustrated for the equivalent 1D
case in figure 5.1. Examples of such limits can be obtained as functions of the
positive definite solution to the 2D Lyapunov equation which has been extensively
discussed in chapter 4. Here we present one such limit as a function of the solution
of (4.93) (see also (Agathoklis, 1985; Agathoklis, 1988) for the case of 2D systems

with dynamics described by the Roesser state-space model).

unit circle, |z| =1

L actual biggest disc containing no roots

lower bound for this

conservativeness of margin

Figure 5.1: Lower Bound for 1D Stability Margin

Consider again the unforced stable along the pass subclass of discrete linear repet-
itive processes of (5.3). In addition, assume that there exists a positive definite
solution pair {W, @} to the 2D Lyapunov equation (4.93), which can be rewritten

in the form

W-3"We=Q (5.94)
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with

| @1 Qe
Q= [Qf{ o } . (5.95)

Note once again that the satisfaction of the 2D Lyapunov equation is a stronger

requirement to that of stability along the pass alone.

Now pre and post multiply equation (5.94) by (511, @ P2l,) where 8, and f, are

real positive scalars to yield

[ﬁ%gvl 0 }_@T[Wl 0 }@:{ e ﬁzﬁle] (5.96)

BWy 0 W, £i18:Q;  B5Qs
where
$ = [&A FeBo | (5.97)
piC B2y
Then adding W to both sides of (5.96) and rearranging gives
W—-d"TWwd =0 (5.98)
where
ol [ Bo+1-W  BAQ } | (5,99
B1BaQ7 B3Qs + (1 = B3)W,

Since W is positive definite, a sufficient condition for the stability along the pass
of discrete processes with augmented plant matrix ® is that @ is positive definite,

which is in turn a sufficient condition for
Az, 2) = det(diag{I,, In} — diag{z11,, 2L, }®) £ 0 V (21,2) € T  (5.100)

The relationship between the zeros of p(z1,2) and p(z1, z), denoted (z§,2°) and

(23, 2°) respectively, is established with the following lemma,

Lemma 5.5 (Agathoklis, 1988) If (z7,2°) and (2],%°) denote the roots of p(z1, z)
and p(z1, z) respectively, then the following relationship holds

(21,2°) = (Br21, Ba2?). (5.101)
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Consider now the roots of the characteristic equation p(z1, z) as a function of 4; and
By and refer to the process with augmented plant matrix $ as the ‘new process’.
Clearly if 8y = 2 = 1, p(2z1,2) = p(z1,2) and the new process is stable along the
pass. If §; > 1, ¢ = 1, 2, the roots of p(z;, z) move away from (2, 2*) towards infinity
and the new process remains stable along the pass, while for §; < 1, 7 = 1,2, the
roots move towards the boundary of the unit bidisc and, eventually, some move to
within the unit bidisc. Hence a sufficient condition for the roots of p(z1, 2) to be
outside the unit bidisc for a certain value of (8, 52) is that Q is positive definite for
that value. Consequently the range of (31, 32) for which Q remains positive definite
is clearly related to the distance between the roots of p(z1, z) and the boundary of
the unit bidisc. Note that, since the satisfaction of the 2D Lyapunov equation is
a sufficient but not necessary condition for stability along the pass, @ not being
positive definite does not imply that p(z1,2) has a root within the unit bidisc and
hence is unstable along the pass. Hence this approach can give lower bounds only

for the stability margins, and, in general, not the exact values.

A lower bound for o

From the definition of the stability margin bidisc U2 in (5.93) it follows that a lower
bound for ¢; can be obtained from the range of 5; for which Q is positive definite
with 8, = 1. Setting > = 1 in (5.99) yields

— 2 1 — BHW-
0= BiQ1 + ( Tﬁl) 1 Bi1Qs ‘ (5.102)
p10Q; Qs
Since ()3 is positive definite, we require
B2Q, + (1 — BHW, — £2Q.Q5'QF > 0. (5.103)
Then a lower bound for ¢; can be obtained as
oy > pimit 1 (5.104)
where
- in A(W;
linit min A(W) . (5.105)
max A(W; — Q1 + Q3 Q3 ' Q2)

Similar bounds for oy and ¢ can be obtained as follows
oy > fimit _ 1 (5.106)
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where
- in A(W-
gmlt — min ( 2)T — (5107)
max A(We — Qs + Q3 Q7 "Qs)
and
B=p=p, o=pf""~1 (5.108)
where
limit min A(W)
= _ 1
P \/max AW - Q) (5.109)
An alternative lower bound for oy can be obtained using the state vector of (2.52),
le.
Xi(p) = lex(p)T, 21(p)T]" (5.110)
and introducing
A0 B
A1 = s and A2 = 0 0 . (5111)
C 0 Dy

Then a bound for g; can be derived from the range of 5; for which @ is positive
definite with 8, = 1 as follows. The aim is to find a lower bound for f; such that >
with B8, = 1 satisfies the 2D Lyapunov equation and hence is stable along the pass.
Now, since both & and & admit positive definite solutions to the 2D Lyapunov

equation (5.94), we can write

XF(p) { (W - 8TW®) = (W — 8" W) } Xu(p) < X[ (p) {W — 9" W} Xi(p)
| (5.112)

After extensive but routine manipulations we obtain,

XT(){(B1 — 12 ATWA; + (B — D)ATWS + (6, — 1)@W AT } X (p)
< X (p) {W - 2TW} Xi(p). (5.113)

Then (see (Tzafestas et al., 1992) for the case of 2D discrete linear systems described
by the Roesser model) a sufficient condition for Q to be positive definite is

(B — D2 AP IW ]| + 2081 = DI AL W] 2] € Aain(W = TW ) = Anin (Q).
(5.114)
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Hence the stability margin is given by

o =p—1>p (5.115)
where
s =Wl + VIWIEI2N2 + W [ Auin (@)
b= 171 ' (5:116)

The lower bound for o5 is derived by routine changes to the analysis just completed

for 0. Hence only the final result is given here, i.e.

oy =P =12 b (5.117)
where
> =W+ VIW P20 + W] Amin(Q)
= AN ' (5.118)

The lower bound for ¢ follows from considering the case where 8y = 3 = 3. The

final result is

c=B-1>4 (5.119)
where
3 _ Amin(@)
B = 1+\/1+ EEER (5.120)

5.8 Minimum Spectral Norms

Clearly the lower bounds for the stability margins presented in the previous section
depend upon the choice of matrices W and @), i.e. different bounds are obtained for
different pairs of matrices. In (Lu et al., 1986) it is shown that the least conservative
bounds, i.e. those closest to the actual value of the stability margin, can be obtained
with a pair {W,@Q} corresponding to the minimum norm of the augmented system

matrix &.

Suppose that the example under consideration is stable along the pass and that it
admits a positive definite solution pair {W, Q} to the 2D Lyapunov equation (5.94).
Then the minimum spectral norm u for the process is defined as

= mj@n | T®T | (5.121)

159



5 Robustness 160

where T' =177 @ T5, and 7} and T, are n X n and m X m matrices respectively.

The pair {W, Q} obtained sets W = 717 where T' is the matrix which minimises
(5.121) and corresponds to the minimum norm g of ®. This choice of W gives the
best lower bounds for the stability margins. Algorithms for obtaining a regular 7'
are discussed in (Lodge and Fahmy, 1981) and properties of 4 are discussed in (Lu
et al., 1986).

5.9 The Poles of a Repetitive Process

As yet in this thesis no discussion has been given on the subject of a repetitive
process version of the well known 1D linear systems theory concept of a pole (or
zero). The stability dependence on two complex variables precludes the numerical
definition of a pole and hence the singularities are no longer isolated points (as in

1D linear systems theory) but multidimensional manifolds.

Within this section, the poles of a discrete unit memory linear repetitive process
are studied using the behavioural approach (Wood et al., 2000). Behavioural theory
uses a high level of abstract algebra, and consideration of the subject of poles (and,
more recently zeros, - see (Zaris et al., 2000) for the details) of multidimensional
(and hence 2D) systems is a recent advance in this area. Hence only a brief outline
of the ideas as applicable to linear repetitive process theory is given - for further
details see (Rogers et al., 2000b) - and the area remains open for future research.

Consider the discrete linear repetitive process with state-space representation (2.24)-
(2.25). Since the state vector on pass 0, i.e. zo(p), 0 < p < a, plays no role
in the process dynamic evolution, it is convenient to relabel the state trajectories
Tre1(p) — z1(p) (keeping of course the same interpretation). (Note that this is
equivalent to introducing a change of variables, eg. z;(p) := zy41(p), and proceeding

from there.)

The repetitive process dynamics are now described by the following state-space

representation over 0 < p < «, k > 0,

zp(p+1) = Awzp(p) + Bupi(p) + Bo yr(p)
Yer1(p) = Cai(p)+ D1 yw(p). (5.122)

Using the terminology of (Wood et al., 2000), the behaviour B, , of this system
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can now be given by the kernel representation,

X

wl,—A —2B  —B,

~0, 5.123

( —C 0 2L, — D ) ¢ (5.123)
y

where z; denotes the along the pass shift operator, eg. z; applied to z;(p) gives
(z1z2)(p) = au(p + 1), (5.124)
and z denotes the pass to pass shift operator, as follows

(zyx)(P) == Yra(p). (5.125)

Note that the components of the solutions of the system can be considered as func-
tions from Zi to R, though for purposes of interpretation they are cut off in one
dimension at the pass length « (a key difference from the standard 2D linear systems

case).

The poles of this system are defined as the characteristic points of the zero-input
behaviour B, g, (i.e. the unforced, or nominal, discrete process obtained by setting
ur(p) = 0VE > 0,0 < p < «), that is the set of all trajectories which can arise when

the input vanishes. The zero-input behaviour is given to within trivial isomorphism

by
I,—A -B
“ ° Tl =0 (5.126)
~C zl, — Dy Y

Following (Wood et al., 2000), the poles of the process can be defined as

Definition 5.1 (Poles of a Discrete Linear Repetitive Process) The poles of
the discrete linear repetitive process (2.24)-(2.25) are the points in 2D complez space
where the matriz on the left hand side of (5.126) fails to have full rank. That is,

they are given by the set
V(Bzoy) = {(a1,a) € C? | p(a1,a) = 0}, (5.127)

where

I,-A -B
p(z1,2) = det ( “ . —ODl > : (5.128)

The set V is called the pole variety of the system.
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Since, in this case, the pole variety is given by the vanishing of a single 2D non-unit
polynomial, it is guaranteed to be a one-dimensional geometric set in 2D complex
space, i.e. a curve. In particular, the pole variety cannot be zero-dimensional (i.e.
finite). This corresponds to the fact that proper principal ideals in the ring C[z, 2]
have codimension 1. Note also that the pole variety is a complex variety, even though
the entries of the matrices A, By, C and D, are generally assumed to be real. This

is essential in order to capture the full exponential-type dynamics of the system.

Poles can be interpreted in terms of exponential trajectories (Wood et al., 2000),
which in the case of repetitive processes have a clear physical interpretation. Assume
therefore that (a;,a) € C* is a zero of p(z1,2), and write it in the form a; =
r1e a = re? (with 6; = 0 for a; = 0 and § = 0 for a = 0). The existence of such a
zero guarantees (see (Wood et al., 2000) for the details) the existence of a so-called

exponential trajectory in the system having the form

zi(p) = zhorir* cos(fyp + 0k) + z3yrir¥ sin(01p + 0k),
yh(p) = ylortr® cos(Bip + Ok) + yaorir® sin(6,p + 0k),
u(p) = 0, (5.129)

where z3,, 22, € R, v3,y3 € R™, and at least one of these four is non-zero.
This form of exponential trajectory has been characterised algebraically by Oberst
(Oberst, 1990). Conversely, the existence of such a trajectory implies that

p(r1e®1, 7e®) = 0, i.e. the so-called frequency (r1€',re’) is a pole of the repetitive

process.

In the case where (a;,a) € R? it is straightforward to construct such trajectories from
the zeros of the characteristic polynomial p(z1, z). Take a; and a to be real numbers

satisfying p(a;,a) = 0. There must then exist a non-zero vector (zgo, Yoo) € R**™

alfn — A —BO Too _ O (5 130)
~C aly, — D Yoo .

System trajectories can now be obtained by extending (zop, Yoo) to give

satisfying

x;(p) = $ooa€ak,
yi (p) = yooa,fak,
u(p) = 0 (5.131)
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Then it can easily be shown that

zi(p+1) = ayzgala®

k 3
= Azgala® + Byygoala®

= Az (p) + Bujy1(p) + Boyi(p) (5.132)
Z/;c+1(p) = ayooalloak

= Dyygpdla® + Cropala®

= Dy (p) + Czi(p), (5.133)

proving that (5.131) indeed describes a solution of the system.

Returning to the general case (5.129), we see that if mod a = r > 1 then we have
a non-zero exponential (or sinusoidal) state-output trajectory in the system, which
tends towards infinity as the pass number increases (but may remain stable along any
given pass). Conversely, if mod a = r < 1 for all poles (a;,a), then no trajectory
tends to infinity for a given value of p as the pass number increases, but there may
be trajectories tending to infinity along the pass. Thus we again run up against the
distinction between asymptotic stability and stability along the pass. In order to
avoid having trajectories of the form (5.129) which are unstable either along the pass
or in the k-direction we also need to avoid poles (a1, a) with mod a; > 1. In other
words, we need that the characteristic variety (5.127) of the zero-input behavior lies

in the closed unit polydisc

P1 = {(a1,a) €C*| moda; <1, moda<1} (5.134)

It can be shown that the characteristic polynomial characterisation of stability along
the pass of theorem 4.7 is equivalent to the condition that no poles of the system lie
outside P;. Equivalently, with zero input there should be no exponential/ sinusoidal
state-output trajectories which tend to infinity either in the pass to pass direction

or along the pass.

Valcher has obtained similar results for the more general setting of stability of 2D
behaviours over the lattice Z? (Valcher, 2000).

Note finally that poles can be decomposed into controllable and uncontrollable,
observable and unobservable poles, as described in (Wood et al., 2000). The only
one of these sets which can be easily described for repetitive processes is the set of

unobservable poles, which give the (2D) frequencies which can occur in the state
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when both input and output vanish. These are given by the rank-loss points of the

( zl]j(; 4 ) (5.135)

and so indeed describe the defect of observability.

matrix

5.10 Summary

Within this chapter an initial investigation into the area of stability robustness of

discrete linear repetitive processes has been undertaken.

Firstly the subject of bounds on the size of parameter variations which are allowable
to avoid instability of a stable along the pass process are considered. Two different

types of perturbations have been considered:

(i) structured, where the perturbation model structure and bounds on the indi-

vidual elements of the perturbation matrix are known; and

(ii) unstructured, where at most a spectral norm bound on the perturbation is

known.

It has been shown in chapter 4 that stability along the pass can be characterised in
terms of a 2D Lyapunov equation, but that the resulting condition is sufficient but
not necessary (except in certain special cases - see chapter 4 for the details). Here
it has been shown how this potential conservativeness is offset by the availability of
robustness measures using the 2D Lyapunov equation as a starting point which are

not available from other characterisations of stability along the pass.

Using this approach, lower bounds on the unstructured type of perturbations of case
(ii) above have been presented in section 5.4. The two bounds derived, vi and v,
are lower bounds for v, the exact bound for stable along the pass perturbations.
Clearly in respect of a given example, evaluation of v is the preferred option. This
however can be computationally intensive, and so it may be acceptable to look
towards a suitable alternative. The Lyapunov bounds give sufficient conditions

on the minimum norm requirement of the perturbation matrix A® but require a
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solution to the 2D Lyapunov equation (4.93). Clearly v < v and v} < v, but also
a comparison of the equivalent bounds for 2D discrete systems described by the
Roesser state-space model in (Lu, 1994b) reveals that

vE < vp. (5.136)

Other bounds are also possible. Clearly further development is needed here, in
particular on the development of alternative approaches and on comparing these
bounds in terms of conservativeness and related factors. In particular, it is antici-
pated that individual bounds on each element of the augmented plant perturbation
matrix (5.6) are possible. To distinguish this work from its standard 1D linear sys-
tems counterpart emphasis should be placed on the two repetitive interaction terms
AB, and AD;. In addition, the approach has looked at the unstructured class of
perturbations only. Class (i) type perturbations provide additional information on

the structure of the perturbations, hence it is expected that the resulting bounds
will be tighter.

Section 5.5 presents stability robustness analysis using a Fornasini-Marchesini model
as a starting point for two classes of structured and unstructured perturbations.
Note that to fully exploit these results, the least conservative set for a particular

example should obviously be used.

The second type of robustness analysis considered within this thesis is stability
margins. Here it is shown how the definitions of stability margins for discrete linear
repetitive processes are the natural generalisation of the corresponding terms from
1D linear systems theory. Note that, however, since a fundamental difference be-
tween systems in one dimension and those in n, n > 2, is that the singularities are
no longer isolated poles, but are multidimensional manifolds, the stability margin

for a repetitive process is given in terms of analytic regions in the (21, z) plane.

As a result of this, numerous algorithms are available for evaluating the stability
margins based on different starting points (see section 5.6.1 for the details). An
alternative approach is based on the premise that it is not always necessary to
know the exact value of the stability margin. Instead it suffices to know that it is
greater than certain lower limits. Examples of such limits have been presented in
section 5.7, which uses the existence of a positive definite solution pair {W, @} to
the 2D Lyapunov equation of chapter 4 as a starting point. The analysis here is
presented in (Benton et al., 1999). The margins presented depend explicitly on the
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matrices W and @ of the solution to the 2D Lyapunov equation. Clearly different
W and @ give different lower bounds for the margins. It is shown in section 5.8
that the least conservative lower bound corresponds to the minimum norm of the

augmented plant matrix ®.

Finally, section 5.9 has provided an initial discussion on the extension to linear
repetitive processes of some very recent results on the definition of the concept of
a pole of a multidimensional system using the behavioural approach. A pole has
been defined (Wood et al., 2000) as an element of C? space which is a zero of the
characteristic polynomial p(z1,2). The potential strength of this approach is that
the poles can be interpreted in terms of so-called exponential trajectories which, in
the case of discrete linear repetitive processes, have a real physical meaning. Clearly
this fact has major implications regarding the development of robustness measures
for these processes - particularly for stability margins - since a major criticism of
approaches used to date has been the lack of any strong ‘physical meaning’. For

these reasons, this highly promising area is one in which immediate research effort

should be directed.
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Chapter 6

Controller Structures

6.1 Introduction

The unique control problem associated with linear repetitive processes is the possible
presence of oscillations in the output sequence of pass profiles which increase in
amplitude from pass to pass (i.e. in the k direction). This behaviour is apparent
in the long-wall coal cutting example via the presence of severe undulations in the
newly cut floor profile caused by the machines weight as it comes to rest and has
been illustrated in figure 2.3. The minimum aim, therefore, of any control scheme

for these processes is stabilisation.

As indicated, repetitive processes clearly introduce control problems which are out-
side the scope of existing 1D linear systems theory, and hence the question as to
when and under what conditions does a basic physically realisable stabilising con-
troller exist is complicated by the fact that the process dynamics depend explicitly
on two complex variables. Research into controller design for linear repetitive pro-
cesses is still in its infancy, but the ‘obvious’ staring point is to look at available
structures from conventional 1D linear systems theory and see to what degree they

may be applied here.

A general control problem can be formulated with the following aims:

(1) to set (or define) objectives;

(ii) specify control structures (such as feedback control schemes); and
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(iii) the development of design algorithms (ideally within a computer aided control

system design environment).

Some effort has been directed towards the development of suitable control objectives
for differential and discrete linear repetitive processes (Smyth, 1992), where, clearly,
an obviously necessary feature of any practically feasible control scheme is stability

along the pass.

Additional design considerations can be based on performance specifications re-
garding, for example, the limit profile for the process. So-called limit profile based
strategies have the following type of considerations as elements of the control objec-

tive:

(i) specifications for the dynamics of Yo, i.. in addition to stability, the limit
profile dynamics should satisfy such additional 1D linear systems performance
criteria as deemed appropriate (standard linear control measures can be ap-
plied);

(ii) requirements on the rate of approach of the output sequence of pass profiles
{yr}r>1 to the limit profile y., i.e. the output sequence must be within a
specified ‘band’ of the limit profile after a specified number of passes, say &*,

have elapsed and remain within it V £ > k*;

(iii) bounds on the error yx — yoo, k£ > 0, on a given pass, i.e. the error should be

‘acceptable’.

These points have been addressed in (Smyth et al., 1994) using detailed simulation
studies where the following general purpose specification for the form of the limit
profile has been formulated (in addition to the obvious requirement of stability along
the pass):

Drive the output sequence of pass profiles {yx}r>1 to a limit profile yo, with ‘accept-

able’ along the pass dynamics. ‘Practical’ convergence should occur in a ‘reasonable’

number of passes and simultaneously ‘tolerable’ errors on any pass k should be guar-

anteed.

The interpretation of the terms in quotation marks clearly should be refined into

design criteria appropriate to the particular application under consideration.
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Control structures for linear repetitive processes can be classified, in general terms,

under the following two headings,

(i) those which explicitly use information from the current pass only, termed

memoryless controllers,

(i1) those which explicitly use information from the current pass and/or previ-
ous pass profiles, state vectors and input vectors - so-called controllers with

memory.

Memoryless schemes clearly have the simpler structure in terms of implementation
and of data which must be logged/stored. Hence the potential of such schemes
should be fully evaluated prior to the consideration of those with a potentially more
complex structure, such as those in class (ii) above or alternatives. Consideration
of the specification of control structures for differential and discrete linear repetitive

processes is the subject of this chapter.

(Smyth, 1992) makes initial progress in the development of design algorithms for
implementation within a computer aided control system design environment. This
area is beyond the scope of this thesis, but is the subject of an on-going research
program into the development and design of MATLAB toolboxes by Gramacki et

al., see for example (Gramacki et al., 1999).

This chapter first introduces so-called memoryless feedback control schemes, which
use information from the current pass only. The application of purely 1D control
structures fails in general (apart from a few restrictive special cases - see below) since
linear repetitive processes introduce control problems which are outside the scope of
existing theory. Recent studies have indicated that a state/output feedback (Rogers
and Owens, 1993; Smyth, 1992) or feedback and feedforward (Amann et al., 1996)
approach may make some progress towards the controller problem, but it will not
succeed in all cases. A return-difference theory is then developed which acts as
a natural counterpart to the corresponding 1D theory. Using the standard linear
systems case as motivation, it is to be expected that much valuable insight into the
general area of controller design can be gained by considering subclasses with certain
special structural properties. In section 6.4 and onwards, the feedback structures
introduced in section 6.2 are applied to certain classes of these so-called benchmark

problems. Here it is shown that, for one subclass of practical interest, a 1D control
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action is all that is required for acceptable systems performance. This theory is
novel and provides the basis for the paper (Benton et al., 1998a). A discussion
of the effective use of controllers with memory is included in section 6.6, which is
then illustrated by looking at a subclass of second order differential processes. In
section 6.8 discrete processes are considered. Here it is shown how a discrete linear
repetitive process can be regarded as being derived from a differential process under
fast sampling conditions, as shown in (Benton et al., 2000b). A control scheme is
then designed for a benchmark class of discrete processes - so-called multivariable
discrete first order lags. In section 6.9 the 2D Lyapunov equation of chapter 4 is used
in the design of a current pass state feedback control law which has been augmented
by ‘feedforward’ previous pass action. This is a type of controller with memory, and
hence is an example of the schemes introduced in section 6.6. Finally, the chapter

concludes by noting some areas for future work.

6.2 Memoryless Feedback Control Schemes for

Linear Repetitive Processes

The starting point in the development of memoryless control schemes for differential
linear repetitive processes is to consider feedback type control structures for which
a full 1D control theory is readily available and see to what extent they may be
applicable here. These schemes are the natural generalisation of a corresponding
scheme for the derived conventional linear system Lp(A, B, C) of the process (2.11)-
(2.12). In particular, they reduce to this scheme under application of the three

actions below:

(i) any previous pass terms are deleted,;
(i1) the pass subscript & + 1 is dropped; and

(iii) the concept of a pass length is ignored.

Consider the subclass of differential linear repetitive processes with state-space
model (2.11)-(2.12) (for the discrete case see, for example, (Rogers and Owens,
1992b)). To introduce the first of these schemes, first note that the standard state
feedback law for the derived conventional linear system Lp(A, B, C) of the process
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(i.e. the system obtained from (2.11)-(2.12) by applying points (i) to (iii) above)
has the following form over ¢ > 0,

u(t) = Fz(t)+ Gr(t) (6.1)

where F' and G are constant [ x n and ! X m matrices respectively and r(¢) is the

new m X 1 external reference input.

The natural generalisation of this state feedback law to the full differential process
(2.11)-(2.12) is then as follows (Rogers and Owens, 1992b; Smyth, 1992) for £ > 0,
0<t<q,

Upy1(t) = F 2py1(t) + G 1y (1) (6.2)

with £ and G defined as above, and 7.1(¢) denoting the m x 1 external reference
vector on pass k -+ 1. This scheme is termed ‘current point’ since it uses information
from the current time instant on the current pass only, and is an example of a

so-called memoryless controller.

Applying the feedback controller (6.2) to the differential process (2.11) yields the
following closed loop system over 0 <t < o, k > 0,

M
tp1(t) = (A+ BF) 1 (t) + BG rasa(t) + Y Bjoa via—5(0)

j=1

M
Ui (t) = Cziqa(8) + D Dj yrr—5(t). (6.3)
j=1
Clearly this closed loop system has an identical structure to the differential process
(2.11) (with the new external reference vector r.1(t) replacing the control input
vector uy,1(¢)) and hence the process (2.11) is said to be closed under the control
action (6.2). Therefore all stability conditions which have been derived for the
differential process (and which have been presented in chapter 3) may be applied
to the closed loop system (6.3). In particular, the asymptotic stability and stability
along the pass results of theorems 3.4 and 3.6 respectively may be used to assess

the stability of the closed loop system.

Note that the state feedback law (6.2) does not affect the D;, 1 < j < M, matrices
in the closed loop system (6.3) (which is also true for the case of processes with
the dynamic boundary conditions of (2.18)), and hence the asymptotic stability of
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the process is unaffected by the controller. This is a direct result of the fact that
the output pass profile yy,1(t), & > 0, does not explicitly depend on the input
vector ugy1(t), £ > 0, on a given pass, i.e. there is no ‘direct feedthrough’ between
input and output. Therefore we have the situation that the property of asymptotic
stability is invariant under memoryless state feedback, and hence an asymptotically
unstable system cannot be stabilised by a multipass causal feedback control scheme
(for a further discussion of this point, see the conclusions section of this chapter).
How to overcome this problem remains an open area. For now, we use the argument
that, in practical terms, asymptotic stability is always present due to the stabilising
influence of resetting the initial conditions at the beginning of each pass. In addition,
it should also be noted that the observation of industrially oriented cases leads to
the conclusion that the de-stabilising influences (in these cases) arise due to the
along the pass dynamics only - see (Smyth, 1992) for the details of this point. For
these reasons, for the remainder of this chapter we will assume asymptotic stability
holds.

The state feedback control law (6.2) requires the availability of all elements of the
state vector zp,1(t), which may not always be possible, due to, for example, physi-
cal/financial constraints. In such cases, by analogy with the standard 1D approach,
state estimators/observers may be employed. With this in mind, an alternative to
the state-activated feedback control scheme presented above is to consider classes
of output feedback control schemes (see, for example, (Rogers and Owens, 1993)
and (Rogers and Owens, 1995a) for the discrete/differential cases respectively).

Consider the output sequence of pass profiles {yz(¢)}x>1 from the differential non-
unit memory linear repetitive process with state-space form (2.11)-(2.12). Then at
time t on pass k the information in the following set is causal (as already illustrated

in figure 2.5) and can be used for output feedback control,

Y=Y,UY,
Vi ={y(r): 0<7<¢}
Vy={y(r): 0<7<e, 0<r<k-1} (6.4)

From an implementation viewpoint, control schemes which use information from
the current time instant ¢ on pass k clearly have the simplest structure in terms
of information which must be stored/logged, and hence it is logical to see what
progress can be achieved using these so-called current point controllers prior to the

consideration of those with a potentially more complex structure.
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Suppose, therefore, that r,,1(¢) is an external m x 1 vector representing the desired
behaviour of the process on pass k + 1, and define the so-called current pass error

vector over 0 < ¢ < « as
ers1(t) = Th4a(t) — yrra(t), k>0 (6.5)

Then a memoryless dynamic unity negative feedback controller for (2.11)-(2.12)
constructs the input uy1(¢), k£ > 0, as the output from the state-space system

i1 (t) = A% 24 (8) + B epia(t)
upy(t) = C% 25, (t) + D€ e1a(t), 0<t<a, k>0, (6.6)

where z{; () is the n; X 1 internal state of the controller on pass k+1. The resulting
control scheme describes a memoryless dynamic unity negative error actuated output
feedback control scheme for (2.11)-(2.12) and, in effect, (6.6) describes a standard
1D forward path controller applied on pass k + 1. Specific choices of the matrices
n (6.6) can now be made to yield a number of special cases of control laws which

are the natural generalisation of their extensively used conventional linear systems

counterpart.

At this stage, introduce the so-called augmented state vector
X ) = [z )7, 25, )T € RY, N=n+mn. (6.7)

It then follows that the state-space models describing the forward path and closed
loop systems of (2.11) under (6.5)-(6.6) are given over 0 < ¢ < o, k > 0, by

XEa6) = AXEL () + Bera () + Z Bj_1 Yra1-5(t)
j=1
M

Yrr1(t) = ¢ XL+1 Z i Yr+1—5( (6.8)

and
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respectively, where

- [ 4 Bce ol s B o,
0o 4¢ |© T 7| Be |© YT o |0 ==
C=|co|, Dj=D,1<j<M (6.10)

Both (6.8) and (6.9) are closed in that they have an identical structure to the
open loop model (2.11). Hence known stability theory again may be applied. In
particular, note that the matrices D;, 1 < j < M, in (6.9) are once again invariant
under this scheme, and hence the conclusions drawn earlier on asymptotic stability
also apply here for this class of output feedback control structures. Note that, here,
the process is closed under a (memoryless) cascade connection. It can also be seen
that closure also holds under a parallel (feedforward) connection and with non-unity

negative feedback loops with memoryless controllers in the feedback paths.

In order to proceed with a return-difference type analysis, it is first necessary to
describe memoryless dynamic unity negative feedback control in 2D transfer-function

terms. First recall from section 2.7 that the 2D transfer-function matrix description

of (2.11) is
Y(s,2) = G(s,2) U(s, 2) (6.11)

where the m x [ 2D transfer-function matrix G(s, z) is given by

-1
G(s,z) = (Im - iGj(s)zﬂ') Go(s) (6.12)
j=1

with
Go(s) = C(sI, — A)"'B (6.13)

and
G(s)=C(sl, — A)'Bj.1+D;, 1<j<M. (6.14)

Then note that the 2D transform versions of (6.5) and (6.6) are

e(s,z) = R(s,z) =Y (s, z) (6.15)

and
U(s,z) = K(s,2) e(s, z) (6.16)
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respectively, where
K(s,z) = K(s) = C°(sl,, — A°)"*B° + DC. (6.17)
Further, applying these transforms to (6.8), after some manipulation yields
Y(s,2) = Qs,2)e(s,2)
= G(s,2)K(s,2)e(s, 2) (6.18)

i.e. the 2D transfer-function matrix Q(s, z) of the forward path system is just the

product of that for the plant and the forward path controller.
Substituting in for e(s, z) gives
Y(s,z) = H(s,z) R(s, z) (6.19)
where the m x m 2D closed loop transfer-function matrix H (s, z) is given by
H(s,2) = (Im + Q(s,2))7'Q(s, 2). (6.20)

The block diagram interpretation of (6.19) is given in figure 6.1, where it can be
seen that this scheme is clearly the natural generalisation of its conventional linear

systems counterpart.

R(s,2) + e(s,2)

U(S,Z) Y(&z)

K(s, z) G(s, z)

Figure 6.1: Forward Path Memoryless Controller

Now that the memoryless dynamic unity negative feedback control scheme has been

expressed in 2D transfer-function matrix terms, we can proceed with a return-

difference type analysis.

6.3 Return-Difference Theory

In 1D linear systems theory, the return-difference operator generates the difference
between the injected and returned signals. Within this section, the concept of a

return-difference theory for linear repetitive processes is considered.
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Consider the 1D derived conventional linear system Lp(A, B,C) of the differen-
tial linear repetitive process (2.11)-(2.12) with transfer-function matrix Gg(s) and
subject to dynamic unity negative feedback control with forward path controller
transfer-function matrix K (s). Further, let p,(s) and p.(s) denote the characteris-
tic polynomials of the open loop forward path system and the closed loop system
respectively, and denote the return-difference matrix by 7'(s). Then we have

T(s) = Im + Go(s)K(s). (6.21)
The standard 1D linear systems result, as shown in any relevant text, is

(e} = 2. (6.22)

This relationship acts as a basis for a large number of design techniques currently

available in conventional linear systems theory.

For the case of the differential linear repetitive process with state-space model (2.11)-
(2.12) under memoryless dynamic unity negative feedback control, the natural def-

inition of a return-difference matrix is
T(s,2) = I+ G(s,2)K (s, 2). (6.23)

To link this matrix to closed loop stability along the pass, it is necessary to first
introduce the concept of a characteristic polynomial for the process. As in the
case of its 1D linear systems counterpart, this should contain all of the information
necessary to determine the stability nature of the process. Consequently, an obvious

candidate for this open loop is
Po(8,2) = P(2)Ap(s, 2) (6.24)

where, from definitions 3.5 and 3.6, P,(z) and Ap(s, z) are the asymptotic stability

and stability along the pass polynomials respectively.

Further, by Schurs formula,

| slh—A —B(z)
Po(8,2) = o 0(2) (6.25)
with Q(z) as in (3.34) and
B(z) = Z Bj_1 277 (6.26)

176



6 Controller Structures 177

Then the following result characterises stability along the pass in terms of its char-

acteristic polynomial,

Theorem 6.1 (Characteristic Polynomial - Stability along the Pass)
(Rogers and Owens, 1992b) Suppose that the assumptions of theorem 3.5 hold. Then
the extended linear repetitive process S(Eq, Wa, La)a>a, generated by (2.11)-(2.12)
with o« > aq s stable along the pass if, and only if,

Po(8,2) # 0 in the region {s: Re{s} >0} U{z:|z| > 1} (6.27)

where p,(s, z) denotes the characteristic polynomial of the process, defined by (6.25).

Under the assumption that (2.11) (and hence (6.9)) is asymptotically stable, the
following result expresses stability along the pass under memoryless dynamic feed-
back control in terms of the matrices T'(s) and T'(s, z), where T'(s) and T'(s, z) are
the return-difference matrices of the derived conventional linear system Lp(A, B, C)

and the full process respectively,

Theorem 6.2 (Return-Difference Matrix - Stability along the Pass)
(Rogers and Owens, 1995a) Suppose that the differential linear repetitive process
(2.11)-(2.12) is asymptotically stable and subject to the memoryless dynamic unity
negative feedback control scheme described by (6.5)-(6.6). Then the extended linear
repetitive process S(Eq, Wa, La)a>ay generated by the closed loop state-space model
(6.9) with oo > «q ts stable along the pass if, and only if,

(a) |T(s)| #0, Re{s} >0, and

(b) [T(s,2)| #0, Re{s} >0, [z[=1,

where the return-difference matrices T(s) and T(s,z) are defined by (6.21) and
(6.23) respectively.

Note that the version of this result for the discrete subclass of processes can be
found in (Rogers and Owens, 1993).

Return now to T'(s, z) of (6.23) and let p.(s, z) denote the closed loop polynomial,
le.
sl, — A+ BC —(B(z) — BD(z))

pe(s,z) = _C Q(Z) ) (6.28)
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with B(z) and Q(z) as for (6.25) and
M
D(z)=> Djz7. (6.29)
=1

Then it can easily be shown that

pel$:2) s ). (6.30)

Given that T'(s, z) is the natural generalisation of the return-difference matrix 7'(s)
for conventional linear systems, it can be conjectured that T'(s, z) should play a
similar role in the design of control schemes for, say, closed loop stability along the

pass. This subject remains an open area for future research.

6.4 Application to Benchmark Problems 1.
Multivariable First Order Lags

Within section 6.2 candidate memoryless feedback controller schemes for differential
linear repetitive processes have been introduced. To illustrate the potential of this
general approach, these structures are applied here to subclasses of processes pos-
sessing certain special properties - so-called benchmark problems - which provides
a starting point for the analysis of more complex cases. The work in this and the
subsequent section forms the basis for the paper (Benton et al., 1998a) and is novel.

Consider the subclass of differential unit memory processes where the state-space
triple (4, B, C) in (2.13) takes the structure of a multivariable first order lag (Owens,
1975), i.e. m =1 = n and the first Markov parameter is nonsingular. First order

lags are the multivariable equivalent of the scalar first order lag Ti“il and a full
control theory exists for them. Relevant results are presented within the appendix

section A.6.

Hence, given (2.13)-(2.14) with m = =n, |CB| # 0 and D; = 0, a simple (current
pass) state transformation yields the equivalent description over £ > 0, 0 <t < o,

Upe1(t) = —Ag AL yrar (8) + Agt ugea(2) + Bo yi(t) (6.31)
where Ay, A; and By are real constant m X m matrices with |Aq| # 0.
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As a first attempt at controller design, consider the proportional forward path con-

troller
up1(t) = K epy1(t) = (pAo — A1) e (?) (6.32)

where p > 0 is a real scalar gain and the m X 1 current pass error vector ez, ()
on pass k + 1 is as defined in (6.5). This control scheme is an example of the error
actuated feedback laws introduced in section 6.2, and can be obtained from (6.6) by
setting A° = B =C% =0, D = K = (pAg — 4,).

Application of this control action to (6.31) yields the following closed loop system,
Ge41(t) = —plm Yua1(t) + (Pl — A7 Ar) T4 (t) + Bo yi(?). (6.33)

Since both (6.31) and (6.33) are subclasses of differential linear repetitive processes,
i.e. (6.31) is closed under (6.32), the results of theorems 3.4 and 3.6 may be applied
to assess stability. Now, as the ‘D;’ matrix in (6.33) is identically zero, the closed
loop process is automatically asymptotically stable. In terms of theorem 3.6 for
stability along the pass, condition (b) clearly holds Vp > 0. Now consider the closed
loop interpass transfer-function matrix of (6.33) which can easily be seen to have

the form

1
Gl(S) = 51 pBO‘ (634)

Condition (c) of theorem 3.6 then translates to the requirement that all eigenvalues
of G1(s) have modulus strictly less than unity Vs = iw, w > 0. Suppose now that
the eigenvalues of G;(s) are denoted by A;(s), 1 < j < m. Then it follows that

lim sup |);(iw)] = 0, (6.35)

p—r+co w>0
and hence the following result is obtained,
Theorem 6.3 (Benton et al., 1998a) Suppose that the differential linear repetitive
process (6.31) is subject to memoryless proportional unity negative feedback control

defined by (6.5) and (6.32). Then the resulting closed loop system (6.33) is stable
along the pass for all

p > r(Bg). (6.36)
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This result shows that a differential linear repetitive process (2.13)-(2.14) with state-
space triple (A, B, C) having the structure of a multivariable first order lag can be
stabilised by a 1D control action provided a high enough gain is applied.

Under the control action of theorem 6.3, the closed loop limit profile of the process

is described by the 1D state-space model
Uoo(t) = (=pIm + Bo) Yoo(t) + (pIm — Ay A1) 700(t), 0<t <0 (6.37)

Since p > r(By), this closed loop limit profile is stable in the standard 1D sense.

As p —> +o0, the limit profile dynamics approach those of the system

Joo(t) = =P Yoo (t) + p Teo(2), (6.38)
which is a stable, totally non-interacting 1D linear system with zero steady state
error in response to a unit step applied at ¢ = 0 any channel. In particular, ‘high
gain’ produces closed loop stability and low static and dynamic interaction between

loops.

The question remaining is how to find an admissible finite gain p, and compute
information on the rate of approach of the output sequence of pass profiles {yx }r>1

to the limit profile y,, in terms of bounds on the error e = Yy — Yo

In what follows it is shown that these questions can be answered by replacing the
necessary and sufficient condition on gain for stability along the pass of theorem 6.3
by a sufficient but not necessary alternative. This analysis uses some basic results

from the theory of nonnegative matrices which are summarised in the appendix

section A.1l.

Suppose now that the eigenvalues of the ‘A’ matrix have strictly negative real parts
(a necessary condition for stability along the pass) - in other words that the derived
conventional linear system is stable in the standard 1D sense. Suppose also that
the simulation-based route of section 3.5 is adopted and that W (¢) denotes the step
response matrix of G(s) and note that, given (6.34), each element in this matrix
is monotonic and sign-definite. Therefore, the maximal value of W (t) occurs at

t = 400, and hence by the final value theorem we can write,

1
|Wl|p == [|W(+00)|, = |G1(0)]l, = ;IIBollp- (6.39)
It follows then that
Sglgr(Gl(iW)) < St;lg?‘(HGl(iw)lb) < r([Wllp), (6.40)
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and hence we obtain the following sufficient condition for closed loop stability along

the pass,

Theorem 6.4 (Benton et al., 1998a) Suppose that the differential linear repetitive
process (6.31) is subject to memoryless proportional unity negative feedback control
defined by (6.5) and (6.32). Then the resulting closed loop system is stable along the

pass if
p = (|| Bollp)- (6.41)

Turning now to the estimate of convergence rates, the following result is proved
in (Smyth, 1992) where, without loss of any generality, the initial pass profile has

been set equal to zero,

Theorem 6.5 (Performance Bounds) (Smyth, 1992) Suppose that the underly-
ing function spaces are Lo, spaces. Suppose also that the condition of theorem 6.4
holds for a given value of p and that the reference signal is pass independent, i.e.

Tk = Too for all values of k. Then
19 = Yoollp < e = || M lpl7eol (6.42)
where
1Millp = (I = W) 7MWl (6.43)
and ||reo|lp has i element sup;s, |75, (t)], 1< i< m.
The performance information made available from this result indicates that the
output sequence of pass profiles approaches the limit profile at a geometric rate

determined by a computable scalar v € (r(||[W|l,),1). Also the i" element of the
output vector on a given pass k, denoted yi, lies (point-wise) in the range defined

by
v () —mi <yl <y (@) +ml V>0 (6.44)
where mt can easily be calculated from theorem 6.5.

This bound for y: has a simple graphical interpretation, as shown in figure 6.2,
where it can be seen that y! lies in a band of width 2m} which approaches zero

geometrically as p — +co.
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yi(t) lies |
in this band ~_|

Figure 6.2: Bounds on rates of approach of the i*" element of the output sequence

of pass profiles to the limit profile

The overall conclusion of this analysis is that under ‘high gain’ (i.e. p — 400) the
limit profile of the closed loop system can be reached to within arbitrary accuracy on
the first pass. In applications terms, this level of performance will not be achievable
except when the value of the scalar gain p actually employed is physically imple-
mentable. This situation where the required gain p is outside the available range can
arise in several ways, for example the ideal choice of parameter may be physically
unavailable or unrealistic due to eg. an inaccurate plant model, financial restric-
tions or structural/data uncertainties. Two alternative approaches to this analysis

are introduced in the following section.

6.5 Extensions

The paper (Benton et al., 1998a) presents two refinements to the analysis presented
here. If the value of the scalar gain p that can actually be implemented is outside
the range required to give the desired level of performance then, by analogy with
standard 1D linear systems theory, an alternative is to include dynamics within
the forward path controller. This section begins by generalising the results of the
previous section in this respect. Also the possibility of further generalisation to
the case where the state-space triple (A4, B, C) only approximates the structure of a
multivariable first order lag in a well defined sense is considered. In this situation,
it is shown how a reduced order model of the dynamics may be used in the design

of a controller for the process in many cases of practical interest.
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6.5.1 A More General Parametric Controller

In practice, the ideal choice of scalar gain p may be physically unavailable or unre-

alistic, in which case a more general parametric form of the controller (6.32) is to

replace the real constant matrix K by
K (s) = Ap diag{p;(s)}1<j<m — 41 (6.45)

where the p;(s), 1 < j < m, are proper minimum phase transfer-functions. This
forward path controller can be realised by the state-space model of (6.6) and it can
easily be seen that the application of this controller yields the closed loop system

. 1 : _
Y(s,z) = diag {m}lggm (diag {p;(s)}cjcm — Ao YA R(s, 2)
1
+271 diag {———} By Y (s, 2). 6.46
s+ p;(s) 1<j<m " ( )

It can then be easily seen that condition (b) of the stability along the pass theo-
rem 3.6 is governed by the zeros of the so-called scalar return differences

ri(8) =1+s1p;(s), 1<j<m. (6.47)
Also, the closed loop interpass transfer-function matrix takes the form
Gi(s) = diag{(s + pj(s))_l}lgjgm By. (6.48)

Hence, if the p;(s), 1 < j < m, have been chosen so as condition (b) of theorem 3.6
holds, then the closed loop system is stable along the pass if, and only if, all eigen-
values of G1(s) have modulus strictly less than unity Vs = iw, w > 0. This condition

can be tested via standard 1D linear systems techniques.

To consider the use of theorems 6.4 and 6.5 in this case, first note that the entries in
the step response matrix W (t) are no longer guaranteed to be monotonic and sign
definite. Hence the closed form expression for |||, is no longer available. Instead
the elements of this matrix must be computed numerically using the techniques
and software detailed in (Smyth, 1992). Here it suffices to note that the analysis
of the previous section generalises in a natural manner and that the associated

computations are numerically reliable and efficient.
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6.5.2 Approximation Method

The second refinement to the work presented here considers the case where the
state-space triple (A, B,C) does not exactly fit the multivariable first order lag
model (6.31). In conventional linear systems controller design applications, low
order models play an important role due to the presence of approximate pole-zero
cancellation in the system transfer-function matrix. In such situations, controller
design can be based on a simplified model of the complex plant dynamics, and this
reduced order model can provide insight into the system structure. Bearing this in
mind, although at a first glance the structure of the multivariable first order systems
introduced in the previous section appears restrictive, it is natural to consider the

use of reduced order models for which a known analytic design method exists.

Within this section a subclass of differential processes is introduced where the state-
space triple (A4, B,C) does not exactly fit the multivariable first order lag model
(A.57). It is shown how, in such situations, controller design may be based on a
simplified model of the plant dynamics (such as, in this case, a multivariable first
order model) to achieve acceptable systems performance, provided a contraction
mapping condition is satisfied. Such an approach exploits the simple structure of
the low order model controllers (with known analytic design techniques) whilst being
applicable to systems of a more complex nature. The approximate model can be of
arbitrary dynamic complexity - the first order model presented here is the simplest
possible (and, as shown in (Edwards and Owens, 1977), is adequate for controller
design in many cases of practical interest), but more complex models can be obtained
from identification experiments. The first order model can be estimated from the
plant model or from experimental transient tests. (Note, however, that the model

contains no information on the plant zero structure.)

Following the analysis in (Owens, 1978) for multivariable systems, consider the case
where the state-space triple (A4, B, C) in (2.13)-(2.14) has the m x m minimum phase

transfer-function matrix G(s) of the form
G U(s) = sAg+ Ay + Hy(s), |Ao] #0, (6.49)

where H,(s) is stable and strictly proper. It then follows that H,(0) is finite, and
replacing A; by A; + H,(0), Ha(s) by Hu(s) — H,(0) and defining AgH (s) = Hy(s) —
H,(0) yields

G_I(S) = SAO + Al + A()H(S), |A0] ?é 0, H(O) =0. (650)
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Using theorem A.4 and the identity G™1(s)G(s) = I, it is easily verified that

AyCB = I, and hence that |CB| # 0, Ao = (CB)™! and clearly A; = G71(5)],=0.

It is intuitively reasonable that if H(s) is ‘small’ in some well defined sense then
G(s) can be approximated by the first order model obtained by neglecting H(s) in
equation (6.50), i.e.

G1l(s) = sAo + Ay, (6.51)

where the results of section 6.4 can then be used to construct a control scheme K(s)
for the system. The precise mathematical justification of these ideas uses the theory
of functional analysis in the form of Banach spaces of analytic functions and the

contraction mapping theorem (see (Freeman, 1973) for the details).

Now (as in (Owens, 1978)) define the norm, ||H||, of H(s)

|H]|| ;= max max Z[Hw(s)] (6.52)
j=1

s€D 1<i<m £

where D is the contour in the complex plane consisting of the imaginary axis s =

iw, |w| < R, and the large semicircle |s| = R in the right half complex plane.

Application of the procedure outlined in section 6.4 to design a memoryless unity
negative controller for the process then proceeds as follows. Select the forward path

controller as
K(s) = pAo — A (6.53)

where p is a positive real scalar. Then by applying this control action to the ap-

proximate multivariable first order lag process
G (s,2) = Ags + A1 + AgH(s) — 27 AyBy, H(0) =0, (6.54)
after some manipulation, gives a closed loop system of the form
Y (s,2) = Go(s) R(s,2) + 271G1(s) Y (s, 2) (6.55)

with the transfer-function matrices Go(s) and Gi(s) given by

— 1 -1_P _ ATt A
Go(s) = (Im + S+pH(S)) S+p( m P ), and
1 1
G = I, +—H “1B,. .
1(s) S+p( + . (8))" Bo (6.56)
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Here Gy(s) represents the derived conventional linear system of the approximate
multivariable first order lag repetitive process under the forward path proportional
controller of (6.5), (6.32) and (6.53) and G1(s) is the closed loop interpass transfer-

function matrix.

Considering each of the conditions of theorem 3.6 in turn, the stability along the
pass of the closed loop system can now be assessed. Firstly, the closed loop system
is asymptotically stable since the ‘D;’ matrix of condition (a) is identically zero.

For condition (b), we require the derived conventional linear system to be stable in
the standard 1D sense. In order to assess this, consider the 1D linear system with

open loop transfer-function matrix

Y(s) = G(s)U(s) (6.57)
and closed loop transfer-function matrix

Y (s) = Go(s) R(s) (6.58)

with Go(s) as in (6.56).

The stability of this 1D linear system can be assessed using the approach given in
Edwards and Owens (Edwards and Owens, 1977). The method utilises the tech-
niques of Freeman (Freeman, 1973) in the form used by Owens (Owens, 1974).

Then, by defining
Q(s) :=G(s)K(s), and
Qals) :=Ga(s)K(s) (6.59)
with G(s) and G4(s) as in (6.50) and (6.51), after some manipulation we can write
Y(s) = Go(s) R(s)

= —Q7(s)Y(s) + R(s)
= (In+Q3'(s)) '{Q4 () — Q7 (5)}Y (s) + R(s)]. (6.60)

Let D be the usual Nyquist contour as defined earlier in this section, and consider
R —> +o00. Assume that Q7(s) and Q'(s) are bounded on D and analytic in it’s
interior and that (I, +Q,(5)) ™ = (Im+Qa(s))*Q4(s) is stable. Then a sufficient
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condition for closed loop stability can be obtained by application of the contraction

mapping theorem (Owens, 1974). That is to say, we require

mwmmz] ()7HQZ () — Q71(s))y] < 1. (6.61)

1Si<m 5eD £
Noting that
(Im + Q7' () 7H(Q4'(s) = Q7*(s))

= {K(s) + G3'(s)} K (s) K (s){G7' () — G7'(s)}

_ (=D
= o, H) (6.62)

expression (6.61) becomes

(6.63)

max sup E
1<i<m

sED 5+p

This result states that if the minimum phase multivariable system G(s) of (6.50) is
approximated by the minimum phase reduced model G4(s) of (6.51) and a forward
path controller K (s) is designed to ensure that the reduced order closed loop system
{In + Qa(s)} " HQ7 (s)} = {I, + Q;*(s)} 7! is stable in the standard 1D sense,
then application of K(s) to G(s) yields a 1D stable closed loop system provided
that expression (6.63) is satisfied.

It is easily verified that it is always possible to choose p > 0 to satisfy this, and

hence guarantee the stability of the derived conventional linear system, by choosing

p> max igDp Z |Hi;(s) (6.64)
ie.
o> 1 H]|. (6.65)

’r

Prior to a discussion of this result, a few points should be made regarding the
evaluation of ||H||. To calculate |H|| we need to search the right half s-plane to
see where it attains it’s maximum. Since H(s) is stable and strictly proper, its
derivative, H'(s), exists and is strictly proper. Therefore H(s) is analytic and non-
constant and hence the maximum modulus theorem may be applied, which states

that |H(s)| achieves its maximum on the boundary of the contour D. Any point on
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the semicircular section of this contour may be written in the polar form s = Re®,
with —7/2 < 6 < w/2. So, since H(s) is strictly proper, |H(Re?)] — 0 as
R — +00. Hence the maximum value of |H(s)| is achieved on the imaginary axis.
So, | H(s)|| = maXi<icm SUPs_sy, »5e1 |Hij(s)], which can be evaluated by searching

the imaginary axis.

Now consider again the high gain condition (6.65). In particular, note that if H(s) is
‘small’ in the sense that the right hand side of (6.65) is small then G 4(s), the transfer-
function matrix of the derived conventional linear system obtained by deleting the
term H(s) in (6.50), will be a good approximation to G(s) in both the closed and
open loop system. In more general situations, however, H(s) may be significant and
higher gains are required to ensure stability. Note that this technique will not cope
with any general system, since the transfer-function matrix G~*(s) of the derived
conventional linear system must be of the form (6.50), and it may be that the control

gains required to satisfy (6.65) are too high for practical application.

Now return to condition (c) of the stability along the pass theorem 3.6. If the scalar
gain p has been chosen so that condition (b) of this result holds, i.e. if p > ||H]|],
then the closed loop system is stable along the pass if, and only if, the eigenvalues of
G1(s) of (6.56) have modulus strictly less than unity Vs = iw, w > 0. This condition

can be tested via standard linear system techniques.

The closed loop limit profile of the process can be represented by

(5T + oI —}(Bo H($))Y(5) = oI — é’_—p—A—lmoo(s). (6.66)

Notice for high gain (i.e. as p — +o00) this is equivalent to

Yio(s) ~ SipRoo(s) (6.67)

which is the same limit profile for the exact multivariable first order lag repetitive
process case (as outlined in (Rogers and Owens, 1992b) and as can be seen from
taking Laplace transforms of (6.38)). Hence, in the limit, the output of the system
under the controller based on the reduced order model approaches that of the exact

multivariable first order lag process.
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6.6 Effective use of Memory Terms

The control structures of the previous sections all possess the so-called memoryless
property in that information is used from the current pass only. These memoryless
schemes have a simple structure and relatively low demands on information which
must be logged /stored, and hence the majority of research to date has been focussed
on this class of control scheme. Problems arise, however, when one or more of the
control objectives cannot be met by a current pass controller. Then one way forward
is to introduce controllers with memory, i.e. those which explicitly use information
from the current pass and/or previous pass profiles, state vectors and input vectors.

Such controllers utilise data from the Y; set in the definition of causal information
of (6.4).

(Rogers and Owens, 1992b) analyses so-called proportional repetitive minor loop
compensation schemes which constitute a subclass of all possible control schemes
with memory. Here, with respect to the differential process (2.11)-(2.12), a memory-
less linear state feedback law with proportional repetitive minor loop compensation

has the structure
M
Up1(t) = Fopa (8) + Griea(t) = Y Kjyen—(t), 0<t<a, k>0, (6.68)
i=1

where F, G and K;,1 < j < M, arelxn,xmand | Xm matrices respectively, and
rp41(t) is the new m x 1 external reference vector on pass k£ + 1. Figure 6.3 shows a
schematic diagram of this control action. Note that this reduces to the memoryless
forward path controller (6.2) if the previous pass contribution terms are deleted.

Applying the control scheme (6.68) to the differential process (2.11) yields the closed

loop state-space model

M
G41(t) = (A + BF) o (t) + BGria(t) + Y (Bjo1 — BK;) gi15(t)
j=1
M
Yrr1(t) = C zpya(t) + Z Djyrp1-5(t), 0<t<a, k20, (6.69)

j=1

which is closed in the sense that it has an identical structure to (2.11). Hence
known stability theory applies. Note once again that the D;, 1 < j < M, matrices

are invariant under this control action, and hence it is necessary to assume open
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Ykro—m(t) yx(t) Yk+2—m(t) i (%)
Ykt1-m(t) yk—lit) l Yr+1—m(2) yk—ll(t) i
Ky | K- | Ko K, By |By-3---- | By By
- @ = -+ +
Tre1(t) _ N :f'_k+1(t) ~ s $k+1(t)c Yrs1
+® + f T o
A e
F

Figure 6.3: Structure of a memoryless linear state feedback controller with propor-

tional repetitive minor loop compensation

loop asymptotic stability. The extra design freedom achieved by implementing a
controller with memory is clearly the choice of the matrices K;, 1 < 7 < M.

Returning now to output feedback control schemes, a memoryless dynamic unity
negative feedback controller with proportional repetitive minor loop compensation

for (2.11) constructs the input uz11(¢), & > 0, as
M
wen(®) = 960 () = 3K, pens(®), 0<t<a k20, (670
j=1

where K;, 1 < j < M, is a l x m matrix and y§,,(t) is the output from
5.0 (8) = A% €, (1) + B e ()
Yl (t) = CCal  (t) + D erya(t), 0<t<a, k>0, (6.71)

where zf,; (¢) is the 7y x 1 internal state of (6.71) and the current pass error vector
exs1(t) is again defined by (6.5). Note that this scheme reduces to (6.5)-(6.6) if
K;, 1 <j < M, are chosen to be identically zero.

Then, using the augmented state vector definition of (6.7), application of the con-
troller (6.70)-(6.71) to the differential process (2.11) yields the following composite
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state-space model describing the forward path system,

() = AXAO + B o)+ 3 By syt
i=1
M
yer1(t) = C X, (8) Z i Uk1-j(t), 0<t<ea, k>0, (6.72)

where A, B, C and lj]‘, 1 <7< M, are as in (6.10), but here

B;_, — BK;
’10 ] 1<j< M. (6.73)

3 —

Bj—l -

Further, combining (6.5) and (6.72) yields the closed loop state-space model

le—i—l(t) = (A - BC) le+1(t) + Briga(t) + Z ) Yrr1-5(t)
M
yrar (1) = C XA (1) Z i Uksr-;(t), 0<t<a, k>0 (6.74)

Both (6.72) and (6.74) are closed in the sense that they have an identical structure to
(2.11). Hence known stability can once again be applied, but note that the D;, 1 <
j < M, matrices are again invariant. Hence it is necessary to once again assume
open loop asymptotic stability. As with the state feedback scheme introduced earlier
in this section, the extra design freedom associated with this scheme is the choice of
design parameters K;, 1 < j < M. These terms only influence the interpretation of
condition (c) of theorem 3.6 in that they effect the previous pass driving terms in
the state equation only and hence are referred to as having the so-called separation
property. As a result of this, such controllers should be of particular use in terms of
the so-called repetitive systems disturbance decoupling problem (see later). Within
the next section, this scheme is applied to a class of benchmark problems - so-called

multivariable second order lags.

6.7 Application to Benchmark Problems II.
Multivariable Second Order Lags

Despite the introduction of an approximation term into the model of the state-
space triple (A, B, C'), multivariable first order lags do not describe all the dynamics
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effects observed in differential linear systems. In particular, the multivariable first
order lag model does not admit the modelling of oscillations in the closed loop
system.  (Owens, 1975) introduces the concept of a multivariable second order
type system as a useful vehicle for illustrating oscillation in multivariable feedback
systems. Note that, in general, a higher order model will produce less conservative
results at the potential expense of working with a more complex model. Within this

section, previously discussed control structures are applied to this second class of

benchmark problems.

Consider the subclass of differential linear repetitive processes where the state-
space triple (A, B,C) in (2.13) takes the structure of a multivariable second or-
der lag (Owens, 1975). A second order structure (termed ‘restrictive’ in the lit-
erature) is be defined by analogy with the second order inverse transfer-function
g7 (s) = s(sag + a1), ag # 0, and has the derived conventional m x m invertible

linear system Lp(A, B, C) with inverse transfer-function matrix,

G l(s) = s{sAg + A1}, |Ao| #0
or  Gs) = %{SAO + A (6.75)

i.e. the outputs are simply integrated outputs from the first order lag {sAq+ A4;} L.

It can easily be verified that the process whose derived conventional linear system
has this structure can be described by the following second order differential equation

with matrix coefficients,

d*yp11 AYri1,,,
Ag () + A (t) = ups1(t) + AoBo ye(t), 0<t<a, k>0,

dt? dt
d?y;, L dy ~
= ikzﬂ (t) + Ayt A 3];;1 (t) = Ay" w1 (t) + Bo yi(t). (6.76)
This process can be written in the form of a state-vector model by introducing the
variables
#h(®) = wen()
wgl(t) = Yrta(t) (6.77)
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where :cgljzl(t) and 375321@) are m x 1 vectors, and writing

) 0
Tk l(t) _ 0 Im T, 1(t) 0
( ‘fbgl(t) ) B < 0 —A' 4 ) ( xél:i)—l(t) ) i ( Al >uk+1(f)

Igcl)1(t)
) = (I o) S50 ), 0<t<a k>0, (6.78)
Ty (t
o )

or, introducing the augmented state vector Xi , (¢) = (z, 1, (t)7, a3, (t)T)T gives,

XA (1) = AXE () + Bupa(t) + By X{(2)

Y (t) = C X21(t), 0<t<a, k>0, (6.79)
where
A - O IE ) B - (.)_1 3 BO - O O )
0 —Ajt4, A; By, 0
and C=(0 I, ). (6.80)

At this point a brief introduction to the well known disturbance decoupling with
stability problem for 1D linear systems is given. Consider, then, the system

t(t) = Az(t) + Bu(t) + D q(t)
y(t)=Cz(t), t=0, (6.81)

where z(t) is the n x 1 state vector, y(t) is the m x 1 output vector, u(t) is the
[ x 1 vector of control inputs and ¢(¢) is a v x 1 vector representing a disturbance
which is assumed not to be directly measurable by the controller. Further, suppose
that the linear state feedback law u(t) = F z(¢) is applied. Then the disturbance
decoupling problem is to find a suitable F' such that the disturbance ¢(¢) has no
influence on the controlled output y(¢). Equivalently, the closed loop system is said
to be disturbance decoupled relative to the pair {y(t), q(¢)} if, for each n x 1 initial
condition z(0), the output y(t), ¢ > 0, is identical V ¢(¢) € R”.

In the field of 1D systems theory, much research effort has been invested in this
control problem. The fact that the resulting conditions do not ensure closed loop
stability (in that the eigenvalues of (A+ BF') have strictly negative real parts) has led
to the introduction of the so-called disturbance decoupling with stability problem.
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Returning now to repetitive processes, it is clear that a similar problem can be
formulated. In particular, consider the differential unit memory case (all results
generalise in a natural manner to the non-unit memory case) and interpret the
previous pass term yg(t), 0 < ¢ < o, k > 0, as a disturbance which is not directly
measurable by the controller on pass k + 1. Suppose also that the current pass

controller
Uk+1(t) =F $k+1(t>, 0 S (A S &, k 2 0, (682)

is applied. Then the first requirement of the so-called repetitive systems disturbance
decoupling with stability problem (RSDDSP) is that, given any initial condition
z;(0) = dp € R, the closed loop output y(t) is the same for all y;_4(¢t) € R™.
Hence repetitive systems disturbance decoupling simply means that the contribution
of the previous pass profile to the current one is zero, 0 <t <, k > k* > 1, i.e.
the previous pass profile is regarded as a disturbance to be rejected. Clearly the
optimal choice of k* here is k* = 1. The second requirement of the RSDDSP is that
(as a basic minimum) all eigenvalues of A + BF have strictly negative real parts.
It therefore appears that there exists some strong structural similarities between
the RSDDSP and its conventional linear systems counterpart. As a result of this
link, it appears that an extension of 1D approaches such as using geometric concepts
such as (A, B)-invariant subspaces may make progress in tackling the problem. This

general area remains a subject for future work.

For now, we use the memoryless dynamic unity negative feedback controller with
proportional repetitive minor loop compensation introduced in section 6.6 to solve
the RSDDSP in the special case of the subclass of differential processes whose derived

conventional linear system has the structure of a multivariable second order lag.

Return, therefore, to the differential process (6.79) and consider the application of

the following forward path controller over 0 < ¢ < o, k > 0,

Uk+1(t) = K(ris1(t) — Yrr1(t)) — AoBo yx(t) (6.83)
with K > 0. (6.83) is an example of the memoryless dynamic unity negative feedback
control action with proportional repetitive minor loop compensation of (6.5) and
(6.70)-(6.71) introduced in section 6.6.

Then, application of (6.83) yields the following closed loop system
le—l—l(t) = AC leﬂ(t) + BC Th+1(t)
wa(t) = CXit (), 0<t<a, k>0, (6.84)
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with X7 ;(t) and C' defined as in (6.79),

) 0 I, i 0
Ao = and Be = . 6.85
¢ ( AT —ATVA ) e e ( _AK > (6.85)

Clearly, the repetitive interaction terms have disappeared and hence this is just a
standard (second-order) 1D system. Hence in (6.74) the pass profile y;(t), 0 < ¢ <
a, k > 0, is independent of the pass profiles y,_;(t), 1 < j < M, for all passes k > 1.
Equivalently, the repetitive systems disturbance decoupling problem is achieved in

this case with an optimum choice of k* = 1.

The closed loop limit profile in this case is described in transfer-function matrix

terms by
Yao(8) = C(sI — Ac) " Be Reo(s) (6.86)

which is just the transfer-function matrix of the derived conventional linear system
under the memoryless control scheme obtained by deleting the repetitive interaction
terms in (6.83). Hence the design exercise can be completed by using appropriate
1D techniques to choose the K in (6.83) to meet the required specifications.

6.8 Discrete First Order Models for Linear

Repetitive Processes

Within this section, discrete linear repetitive processes are considered. Initially it is
shown how a unit memory differential linear repetitive process can be successfully
sampled to obtain a linear time-invariant discrete repetitive process, provided that
the sampling rate is high enough. The multivariable first order lag model introduced
in section 6.4 for differential processes is extended to define an equivalent formulation
for discrete sampled data processes. Finally, it is shown how a multivariable discrete
first order lag, in many cases of practical interest, is a quite adequate approximation
for the purpose of controller design provided that the plant is minimum phase and
satisfles a contraction mapping condition. The analysis introduction in this section

is novel and can be found in (Benton et al., 2000b).
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6.8.1 Fast Sampling of Linear Repetitive Processes

Due to advances in computer technology, systems today tend to be viewed as sam-
pled data systems. Within this section it is shown how the discrete unit memory
linear repetitive process, denoted Sy, described by the following state-space model
over 0<p<a, k>0,

Te(p+1) = Az (p) + B w1 (p) + By vi(p)
Y1 (p) = C z11(p) (6.87)

can be regarded as being derived from a differential unit memory process, denoted
S, of the following form over 0 <t < «, k > 0,

i"k—i»l (ZL,) =A T+ (?f) + B uk+1(t) + BO yk(t)

yk+1(t) = C iy | (t) (688)
with initial conditions zy1(0) = dg41, £ > 0, and yo(t) = 9(t), 0 <t < .
Now subject (6.88) to synchronous digital control with sampling period h, where

iy = Thr1(gh) (6.89)

and where, for integer ¢, 0 < ¢ < £, and piecewise continuous input

up, = Uugsr(qh)
= wupe1(t) on gh <t < (g+ 1. (6.90)

In addition, note that, under fast sampling conditions (i.e. A — 0), yx(¢) on the
«

interval [gh, (¢ + 1)h) can be approximated by yx(qh), 0 < ¢ < &, k > 0. This

approximation improves as h — 0, and we have

lim yx(7) = ye(gh), on [gh,(¢+ 1)h). (6.91)

h—0t
Note that this is equivalent to the assumption that the previous pass profile is

piecewise continuous.

Then, if the differential linear repetitive process (6.88) is subject to the sampling
scheme described by (6.89) and (6.90), a discrete linear repetitive process of the
form (6.87) is obtained with

h h
A=e'" B= A/ e “"Bdr and By = A/ e 47 By dr. (6.92)
0 0
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The derivations of the result given here is lengthy and hence has been included as
an appendix (section B). It should be noted, however, that the approximation in
the final term of (6.92) improves as h — 0, i.e. under fast sampling conditions,
and that the differential model is recovered in the limit.

6.8.2 Application to Benchmark Problems III.
Multivariable Discrete First Order Lags

Consider the subclass of discrete unit memory processes where the state-space triple
(A, B,C) in (2.24)-(2.25) takes the structure of a multivariable discrete first order
lag (Owens, 1979). In the cited reference, an m x m discrete first order lag is defined
to be a controllable and observable m-input m-output discrete time system with

inverse transfer-function matrix
Gil(z1) = (21 — 1)Ag + Ay (6.93)

where Ag and A; are real m X m matrices and |[Aq| # 0.

Given (2.24)-(2.25) with m = [ = n and |CB| s 0, a simple (current pass) state
transformation yields the equivalent description over 0 < p < «, k£ > 0,

Y10+ 1) = (Im — A7 A1) yraa(p) + Ayt g1 (p) + Bo yi(p),  (6.94)

where Ag, A; and By are real constant m x m matrices with |Ag| 5 0. This state-

space representation has 2D transfer-function matrix G 4(z1, z), where
G;;l(zl, Z) = (21 - 1)A0 + Al - Z“IAQBQ. (695)

As a first attempt at controller design, consider the memoryless proportional forward

path controller of the general parametric form
Ulz1,2) = K(21) Bz, 2) = (diag{1 — p3(21) hisjemo — A1) Bz, 2),  (6.96)

where the p;(z), 1 < j <m, are proper minimum phase transfer-function matrices,

the m x 1 current pass error vector ej1(p) on pass k + 1 has 2D transform
E(z1,z) = R(z1,2) — Y (21, 2) (6.97)
and where R(z, z) is the 2D transform of the new external reference input.
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This control scheme is a discrete example of the differential error actuated feedback
systems introduced in section 6.2. Application of this control action to (6.94) yields

the closed loop system,

Y(Zl, Z) = Go(Zl) R(Zl, Z) -+ Z_lGl(Zl) Y(Zl, Z) (698)
where
: 1 : _
Go(21) = diag {m}KKm (dlag{l — pi(21) hi<icm — A 1A1)
i 1
Gl(zl) = dlag {m}lgjsm Bo. (699)

Application of theorem 3.6 for stability along the pass then proceeds as follows.
Clearly, both the open and closed loop systems are asymptotically stable. Now for
condition (b) of theorem 3.6 to hold, we require that the derived conventional linear
system Lp(A, B,C) is stable in the standard 1D sense.

The closed loop transfer-function matrix of Lp(A, B, C) is given by Gy(z1) in (6.99)
above, which is clearly stable if, and only if, |p;(z1)| <1, 1 < j<mV|zn]|=1.

In particular, the closed loop derived conventional linear system possesses small
steady state errors and small interaction effects in response to unit step demands
only if the elements of the matrix Aj'A; are ‘small enough’. It can be seen that this
is not a severe restriction on the practical application of the results by regarding the
discrete process (6.94) as being derived from a differential process of the form (6.87)
under the sampling scheme described by (6.89) and (6.90). Clearly the discrete
process Sy is a discrete model of the differential process S which is parameterised
by the sampling interval h. Hence G 4(z1) of (6.93) is also parameterised by h in the
sense that the choice of Ay and A; will depend explicitly on this sampling interval.
Then, on comparing the matrices of (6.94) with (6.92), it follows that

Jim, AFIA; = hli)r(l)’l+{fm — e =0 (6.100)
and hence the closed loop derived conventional linear system will possess small
interaction effects and steady state errors in response to unit step demands if the

sampling rate is fast enough.

Assuming, for simplicity, that A has a diagonal canonical form with eigenvalues

denoted by A;, 1 < j < m, and eigenvector matrix £. Then

A =F diag{e/\fh}lgjgm E—l (6101)
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suggesting that a necessary condition for AyA; to be small is that
Ajh| <1, 1<j5<m. (6.102)

Equivalently, the sampling rate must be fast in comparison to the poles of the

underlying continuous open loop plant.

Now returning to the stability along the pass theorem 3.6, the closed loop interpass

transfer-function of (6.94) has the form

1

Gi(z1) = diag {Z—“p}@

} By. (6.103)
1<j<m

Therefore, if the p;(21), 1 < j < m, have been chosen so as condition (b) of theo-
rem 3.6 holds, then the closed loop system is stable along the pass if, and only if, all
eigenvalues of G(z;) have modulus strictly less than unity for all real frequencies

21 satisfying |z;] = 1. This condition can be tested via standard 1D linear systems

techniques.

The design method can be extended to the case where the state-space triple (4, B, C)
in (2.24)-(2.25) only approximates the structure of a discrete multivariable first order

lag.

Consider the subclass of discrete linear repetitive processes whose derived conven-
tional linear system Lp(A, B,C) has the approximate structure of a multivariable
discrete multivariable first order lag. In this case Lp(A, B,C) has an open loop

m X m invertible, minimum phase transfer-function matrix G(z;) of the form
G Hz) = (21 — DAg + Ay + AoH(2) (6.104)

where H(z;) is strictly proper, H(1) = 0 and |A| # 0.

Then, in a method analogous to the one presented in section 6.5.2 for differential
processes, the discrete first order lag model G;'(z1) of (6.93) can be used as a
reduced order model for the purpose of controller design provided that H(z;) satisfies

a contraction mapping condition.
The relevant matrix is
L(z) = [K(z1)+G3H(2)]7[Gh () = G (=)

- vans{ i) (6:10)
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and a sufficient condition for closed loop stability is that ||L(z)]| < 1.

Since the analysis here is just the discrete counterpart to that presented in sec-
tion 6.5.2, the details are omitted - see for example (Owens, 1979) for the case of

1D multivariable discrete systems.

6.9 Controller Design using a 2D Lyapunov
Equation Approach

Within this section the 2D Lyapunov equation of chapter 4 is used in the design of a
so-called current pass state feedback control law augmented by ‘feedforward’ previ-

ous pass output action, which is an example of a controller with memory discussed

earlier in this chapter.
Consider a discrete linear repetitive process with state-space representation (2.24)
and (2.25). Then for this process, such a control law has the form

Upr1(p) = =F i1 (p) + Sye(p), 0<p<a, k>0. (6.106)

Application of this control action to the process yields the following closed loop

system over 0 < p < a, k > 0,

zrr1(p+1) = (A—BF)zy(p) + (Bo+ BS) yk(p)
Yes1(p) = Czppa(p) + D1 yr(p) (6.107)

The closed loop augmented plant matrix for (6.107) is defined by

A—BF By+BS

=& - BS (6.108)
C D,

$, =

where ® is the augmented plant matrix of the uncontrolled system and

S=[F -5, (6.109)

Following the analysis in (Lu and Lee, 1985) for the case of discrete linear systems
described by the Roesser 2D state-space model, we replace @ in the 2D Lyapunov

200



6 Controller Structures 201

equation (4.93) by @, to give

(® - BS)TW(® - BS) - W = -Q
— (BTWo)TS + ST(BTW®) — STBTWBS + (W —dTWd ~ Q) =0
(6.110)
or
TS+ 576 - 8TDS+Q =0 (6.111)
where
® = BTwa
D = B™WB
Q = W-3"We-Q. (6.112)

Now consider (temporarily) the case when ! = N := n+m. Then in this case, (6.111)
is a matrix Riccati equation with D>0and O = Q. This leads immediately to
the following results on invoking the 2D Lyapunov equation as a sufficient condition

for closed loop stability along the pass.

Theorem 6.6 Consider S(E,, Wy, La) generated by (2.24)-(2.25) subject to the
control law (6.106) in the case when | = N. Then the resulting closed loop sys-
tem 1s stable along the pass if 4 two N X N matrices W =W, &@Wy >0 and Q > 0
such that the Riccati equation (6.111) has a real solution K .

To solve this Riccati equation, first construct the 2NV x 2N matrix

~

6 #r (6.113)

. | & -D|_ BTW& ~-BTWB
| - -3TWE -Q) —-¥TWB |

Also let a; be the 2N x 1 eigenvector of M corresponding to the eigenvalue \;, 1 <
1 < 2N, and partition it as

b;
az-::l: } 1<i<2N, (6.114)

where b; and ¢; are N x 1 vectors. Then we have the following result from (Rogers
et al., 2000a),
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Theorem 6.7 Suppose that a;, -+ , ay are eigenvectors of the matriz M of (6.118)
1
corresponding to eigenvalues Ay, - - - , Ay. Suppose also that [ by -+ by exrists.
. -1
K:[Cl CN:I[bl bN] (6115)

is a solution of the Riccati equation (6.111). Also if the eigenvectors a;, 1 <i < N,

are real then the matriz K here is a real solution of this Riccati equation.

Hence we have the following theorem,

Theorem 6.8 Consider S(Ey, Wy, Ly) generated by (2.24)-(2.25) with | = N and
subject to the control law (6.106). Then the resulting closed loop system is stable
along the pass if Q > 0 and W = Wi & W, > 0 can be chosen such that M of (6.113)

has N real eigenvectors ay, ---, ay corresponding to the eigenvalues Ay, -+, Ay,

with X; # —A;, 1 <4, <N, and [ by - by } eTLSts.

Example 6.1 As an example, consider the case when

1 1 N 1 -1
0 -1 -1 1
Hence we can set W = 811, and Q = Paly with 5; > 0, i = 1, 2.

Then, in this case,
M=-p5 = /M (6.117)

—1_8
where ¢ =1 e

Now note that det(A\ — M) = N3(\2—(4q—1)), and hence choosing B1 = 1, By = 1/2
gives the eigenvalues of M as M3 =0, Ayq = 1. Also the eigenvectors for Ay =0

and Xy = 1 are

1 1
0 ~1
a = , ay = 6.118
Y 27 12 (6.118)
0 1/2
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Hence

. |1/2 0
K_[ ; 1/2} (6.119)

which is a real symmetric solution of (6.111).

Also note that

121
@C_[m _1/2} | (6.120)

which corresponds to a stable along the pass process.

Now consider the (more realistic) case of when [ < n+m and let the matrix K be of
the form K = P, Py, where P, has dimensions N x N. Then (6.111) takes the form

TP, + PId - PTEP,+Q =0 (6.121)
where
= PTBTW®, E=PTBTWBP (6.122)

and hence the above stabilisation can also be applied in the general case.

Example 6.2 As an ezample, consider the case when

1 1 A 1
o-[1 ] o[ 1) ooz

Here set P = [ 1 -1 ] and then

. 1 -1
BP = ) 6.124
=1 } (6124
Also, from the previous example, (6.121) has a real solution
1/2 0
Py = 6.125
=] (6129
and hence in this case
. 1/2
K=PPFP = . 6.126
P=| } (6.126)
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6.10 Summary and Conclusions

This chapter has presented some of the available control structures for linear repet-
itive processes which have been considered to date. Control schemes for differential
and discrete processes inherently fall into two different categories,

(i) those which explicitly use information from the current pass only, termed

memoryless controllers, and

(ii) those which explicitly use information from the current pass and/or previ-

ous pass profiles, state vectors and input vectors - so-called controllers with

memory.

Differential and discrete linear repetitive processes clearly have strong structural
links with standard (1D) differential and discrete linear systems respectively. In fact,
it has been shown in chapter 3 that the stability theory for these two subclasses of
processes can be tested by direct application of well known 1D linear systems tests.
This raises the natural question of what exactly can be achieved by standard (1D)
feedback control schemes in this context, e.g. is it possible to use standard unity

negative feedback control policies to stabilise these processes?

As a starting point in answering this question, section 6.2 has presented classes of
state feedback (see, for example, (Smyth, 1992; Rogers and Owens, 1992b)) and
output feedback (see, for example, (Rogers and Owens, 1993) and (Rogers and
Owens, 1995a) for the discrete/differential cases respectively) control laws, which
are examples of so-called current point schemes. The application of both types of
structure results in a closed system, and hence known stability theory can be applied.
It is found, however, that the property of asymptotic stability remains invariant
under these control policies, and, in fact, under all multipass causal feedback control

schemes (Rogers and Owens, 1992b) for the following reasons:

(i) for the simple boundary conditions case, asymptotic stability depends only on
the matrices D;, 1 < 7 < M. For the case of dynamic boundary conditions, the
result just noted is a necessary condition for asymptotic stability of processes

with these boundary conditions, and hence the same conclusion can be drawn;

(i) for eg. differential processes, the output y1(t) does not explicitly depend on
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the input uz1(¢), 0 <t < «, k > 0, (i.e. there is no ‘direct feedthrough’

between input and output on any pass).

How to overcome this systems theoretic problem is not clear, and remains a topic for
further research. For now, we use the argument that, in practical cases, asymptotic
stability is always present due to the stabilising influence of resetting the initial
conditions on each pass, and hence for this chapter asymptotic stability has been

assumed to hold.

An additional point should be made about the state feedback schemes already men-
tioned. Such structures require the availability of all elements of the state vector,
and hence current pass state feedback laws can, in general, only be implemented with
an observer structure. Observer theory for differential and discrete linear repetitive

processes is not covered here and remains an open area for future research.

To illustrate the potential of this general approach, section 6.4 sees the application
of memoryless feedback control schemes to processes possessing a certain special
structure - so-called benchmark problems. Here it is shown that the question of as
to what exactly can be achieved using a standard (1D) memoryless feedback control
scheme has a solution in one case of practical interest with the added benefit of
‘high’ performance in a meaningful sense. The analysis presented here is novel and
provides the basis for the paper (Benton et al., 1998a). The general philosophy
adopted in this work is in the spirit of (Sebek and Kraus, 1995) for other classes of
2D linear systems, i.e. the use of ‘simple’ structure controllers. In contrast to this
previous work which can only consider stability, here the design of the controller for
stability and performance can be achieved in one step. The analysis replaces the
necessary and sufficient condition on gain for stability along the pass of theorem 6.3
by a sufficient but not necessary alternative. This potential conservative is offset
by the availability of strong information on performance along a given pass from
this result at no extra computational cost, which is not available from Nyquist-like

alternatives.

Section 6.5 has introduced some refinements to the analysis of the previous section.
If the required value of the scalar gain p is outside the available range, by analogy
with standard 1D linear systems theory, an approach is to include dynamics within
the forward path controller. The application of a general parametric form of a pro-

portional controller has been given in section 6.5.1. For the inclusion of an integral
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control element, see for example (Owens, 1978). Section 6.5.2 has considered the use
of reduced order models in the design of controllers for linear repetitive processes.
Here it has been shown that a first order model may be used to achieve acceptable
systems performance for processes possessing a certain structure, provided a con-
traction mapping condition is satisfied. This ensures that if the approximation term
H(s) is ‘small’ in some well defined sense, then the reduced order model will be a
good approximation for both the closed and open loop system dynamics. In more
general situations, however, H(s) may be significant and higher gains are required

to ensure stability.

When one or more of the control objectives cannot be met by a current pass con-
troller, one way forward is to introduce controllers with memory, i.e. those which
explicitly use information from the current pass and/or previous pass profiles, state
vectors and input vectors. Within section 6.6, as an example of a controller with
memory, a so-called memoryless linear state feedback law with proportional repet-
itive minor loop compensation has been presented. This type of control structure
has been applied to a benchmark class of processes whose derived conventional lin-
ear system has the structure of a multivariable second order lag, where it has been
shown to successfully give a solution to the so-called repetitive systems disturbance

decoupling with stability problem.

In section 6.8 discrete processes have been considered. It has been shown how a
discrete linear repetitive process can be regarded as being derived from a differential
process under fast sampling conditions. The analysis presented here is novel and
can be found in (Benton et al., 2000b). The structures of the previous sections have
then been applied to a benchmark class of discrete processes - so-called discrete

multivariable first order lags.

Finally, in section 6.9 the 2D Lyapunov equation of chapter 4 has been used in the
design of a current pass state feedback law with ‘feedforward’ of the previous pass
output action, which is an example of a control action with memory. This leads
to the 2D Lyapunov equation being used as a sufficient condition for closed loop

stability along the pass.

The controller structures presented within this chapter are by no means exhaustive.
Research into available control schemes for linear repetitive processes remains in its
early stages, and only certain aspects of the general problem area have been ad-

dressed. Iterative learning control remains an application where the most progress
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has been made today in terms of the development of control schemes for differential
and discrete processes - see, for example, (Amann et al., 1996) for feedback and
feedforward actions or (Amann et al., 1998) for 2D predictive control. In terms
of repetitive processes, this chapter and other work (eg. (Rogers and Owens, 1993;
Rogers and Owens, 1995a)) has demonstrated the potential strength of feedback
control structures. In addition, the relative simplicity of the schemes implies that
their potential should be fully investigated prior to the consideration of those with
a more complex structure. An open area where future research effort should be di-
rected is the development of meaningful optimal control policies for linear repetitive

processes. This is discussed further in the final chapter of this thesis.
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Chapter 7

Conclusions and Further Work

The aim of this thesis has been to extend the existing systems theory for linear
repetitive processes with a constant pass length o. Within this chapter each of the
major areas covered are discussed including a summary of what has been presented,
novel contributions made and ideas on how the work performed may be extended.

Finally some directions for short to medium term future research are discussed.

7.1 Stability

Within chapter 3 the rigorous stability theory for linear repetitive processes with a
constant pass length o developed by Rogers and Owens has been presented. The
theory is based on an abstract model in a Banach space setting and includes all such
processes as special cases, and hence provides a powerful general base for the control
related study of these processes. In particular, asymptotic stability and stability
along the pass results for the subclasses of differential and discrete processes have

been given, which are the subject of this thesis.

Despite its apparent weakness, there are cases where asymptotic stability is all that
is needed for acceptable systems performance, see for example (Amann et al., 1996;
Owens and Rogers, 2000), or indeed all that is achievable, see for example (Roberts,
1996; Roberts, 2000), but in the majority of cases it is the stronger condition of

stability along the pass which is required.

The problem of testing a differential/discrete process for stability along the pass
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reduces to three conditions which can all be tested via well known 1D linear systems
stability techniques (and hence can be implemented into a computer aided analysis
environment). These tests however provide no really ‘useful’ information concerning
expected systems performance and, in particular, about the behaviour of the output
sequence of pass profiles as the process evolves from pass to pass. In addition, the
third condition for both subclasses involves the computation of the eigenvalues of a
potentially high dimensioned transfer-function matrix for all points on the unit circle
in the complex plane for the discrete case and the imaginary axis of the complex

plane for the differential case, which may result in a very high computational load.

With this motivation, simple structure stability tests have been presented in sec-
tion 3.6 which, for the discrete subclass of processes, replace the computational
complexity of this final stability along the pass condition with the one-off compu-
tation of the eigenvalues of a matrix with constant entries. This work is novel and
forms the basis for the paper (Benton et al., 1998b). The analysis exploits the basic
properties of nonnegative matrices and provides alternative sufficient conditions for
stability along the pass. Although the sufficient nature of the tests means that the
results will not produce a conclusive result for all examples, they act as a simple
low-computational load ‘acceptance’ criterion in some cases. To offset this conser-
vativeness, the tests provide, at no extra computational cost, strong information
on performance along a given pass, which is not available from the Nyquist-like
characterisations of stability along the pass. Similar results to the above have been
presented for systems described by the Roesser / Fornasini-Marchesini 2D state-
space models, but there are no Roesser / Fornasini-Marchesini alternatives possible

for these performance measures.

In chapter 2 it is highlighted how the boundary conditions z;,1(0) = dyy1, & >
0, are sometimes not strong enough to adequately model the process dynamics.
With this motivation, so-called dynamic boundary conditions have been proposed
in (Owens and Rogers, 1999) for the differential case (and (Rogers et al., 1998)
for the discrete case). In the same paper it has been shown how the dynamic
boundary condition term effects the bounded linear operator which governs the
process dynamics, and hence the stability of the process is affected. In fact, the
incorrect modelling of boundary conditions could lead to an asymptotically unstable
process being misinterpreted as asymptotically stable. For the differential subclass of
processes with dynamic boundary conditions the asymptotic stability result can no
longer be tested by using well known 1D systems theory techniques. The problem of
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developing computationally efficient stability tests here is still an open problem. For
a certain subclass of discrete processes with dynamic boundary conditions, however,
the resulting conditions can be tested for using 1D techniques. The route is via a
1D equivalent linear systems state-space model of the process dynamics and further
details of this and the issues arising here due to the inclusion of dynamic boundary

conditions can be found in, for example, (Galkowski et al., 2000).

Discrete linear repetitive processes have strong structural links with 2D discrete lin-
ear systems described by the Roesser and Fornasini-Marchesini state-space models.
Several key differences exist however. Repetitive processes are uniquely charac-
terised by a finite pass length - this is the key distinction between these processes
and the classes of continuous-discrete and discrete-discrete systems reported in the
literature. Another point to note is that not all linear repetitive processes have an
equivalent Roesser / Fornasini-Marchesini state-space model interpretation (such
as processes with interpass smoothing) - hence linear repetitive processes are not,
in general, a subclass of 2D systems having a Roesser / Fornasini-Marchesini type
dynamic representation. For these reasons, the well developed 2D linear systems
theory cannot be directly applied here, such as what is meant (if anything) by con-
trollability for these processes. However, it is still feasible to exploit such theory for
examples for which a Roesser / Fornasini-Marchesini interpretation of the process
dynamics exists. For example, chapter 2 includes Roesser / Fornasini-Marchesini
interpretations of the dynamics of a subclass of discrete processes. The Fornasini-
Marchesini model presented is singular, however, but it is concluded in (Galkowski

et al., 1999b) that the singularity is not an intrinsic feature of the process.

Chapter 3 includes stability results obtained from well known 2D theory using these
representations of the process dynamics as starting points. The 2D systems inter-
pretations have led to the following advances in terms of systems theory for discrete

linear repetitive processes:

(i) for the standard (nonsingular) model, a formal equivalence has been shown to
exist between stability along the pass and the BIBO stability of the Roesser

(and therefore Fornasini-Marchesini) interpretations; and

(ii) the singular model has led to the development of a transition matrix (or fun-
damental matrix sequence) and hence a general response formula which leads

to a characterisation of certain reachability /controllability properties.
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These conclusions are drawn for the simplest boundary conditions case, but a gen-
eralisation to the case of dynamic boundary conditions should be possible (Owens
and Rogers, 2000), and this stands as a short term future research area.

Finally, in this chapter, a Volterra approach to the stability analysis of discrete
linear repetitive processes has been introduced. The powerful theory of the Volterra
operator has only recently started to be applied to the area of linear repetitive
processes and so, as yet, no conclusive appraisal of the approach can be made.
It is anticipated, however, that this route will have a major role to play in the
onward development of a mature systems theory for linear (and nonlinear) repetitive
processes, and hence is an area for short to medium term research. In particular,
the approach has already been used (Dymkov et al., 2000) to produce significant

new results on controllability for these processes.

7.2 Lyapunov Equations

As a result of the equivalence between standard 2D stability concepts and the sta-
bility along the pass of certain subclasses of discrete linear repetitive processes, it is
natural to consider the application of well known 2D techniques. Within chapter 4,
the question of to what extent a Lyapunov equation based approach to the stability
analysis of linear repetitive processes is applicable has been addressed. The aim
here is to give a suitable extension to existing 1D theory and provide an alternative
route to obtaining performance prediction information than the time-domain (also
termed simulation-based) tests of chapter 3. A review of the literature reveals that,
for 2D linear systems described by the Roesser / Fornasini-Marchesini state-space

models, essentially two different types of equation have been considered:

(i) the 1D Lyapunov equation, so-called because the equation has an identical
structure to that for discrete linear time-invariant systems, but with matrices

which are functions of a complex variable; and

(i) the so-called 2D Lyapunov equation, defined in terms of matrices with constant

entries.

Initially the 1D equation approach has been considered. The necessary and sufficient

stability along the pass conditions presented are implemented via computations
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on matrices with constant entries and provide an alternative to the Nyquist-like
stability along the pass tests of chapter 3. In addition, the test produces at no extra
computational cost performance measures in the form of computable information
concerning the convergence of the output sequence of pass profiles under stability
along the pass to the resulting limit profile (for which, for the discrete subclass, there
are no Roesser / Fornasini-Marchesini alternatives). The 1D Lyapunov equation
approach, however, has not been useful in providing measures of robustness such as

stability margins, which have been discussed in chapter 5.

A discussion on methods of solving the 1D Lyapunov equation has been provided in
section 4.3. Here it has been shown how the solution of the 1D Lyapunov equation
(and hence stability tests only involving computations on matrices with constant
entries) in the general case requires the use of the Kronecker product for matrices.
The solution involves the requirement that a Hermitian matrix P(s) evaluated on the
imaginary axis, s = 1w, satisfies the so-called axis positivity property of Siljak (Sﬂjak,
1971).

Within section 4.4, a 1D Lyapunov equation has been developed for a subclass
of differential linear repetitive processes possessing a special structure of dynamic
boundary conditions, which is of particular interest in terms of links with delay-
differential systems and also repetitive control schemes. The analysis presented here
provides the basis for the papers (Benton et al., 2000c) and (Benton et al., 2000d). In
chapter 3 it was highlighted how the first condition of the test for stability along the
pass (i.e. the asymptotic stability condition) for processes with dynamic boundary
conditions cannot be tested using well known 1D linear systems techniques. Thus the
aim of the analysis here has been to develop a 1D Lyapunov equation interpretation
of this condition for differential processes with this special class of dynamic boundary
conditions, and hence supplying a computationally viable testing method. Strict
positive realness based tests have been given for the new stability conditions which
indicate how the condition is equivalent to testing for positive realness of a certain
1D rational transfer-function matrix. Hence a 1D characterisation of stability along
the pass has been obtained for this subclass of differential processes.

The 2D Lyapunov equation differs from the 1D case in that it provides sufficient
but not necessary conditions for stability along the pass (except in a number of
special cases - see the text for the details). The analysis given on this approach
is presented in (Benton et al., 1999) and subsequently extended in (Benton et al.,
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2000a). The analysis uses the theory and results of strictly bounded real matrices,
and in particular uses the bounded real lemma. A counter-example is given which
shows that there exists stable along the pass processes for which no solution pair
{W,Q} to the 2D Lyapunov equation exists. Despite this conservativeness, the
2D Lyapunov equation has a (potentially) major role to play in the analysis of
discrete linear repetitive processes in terms of the provision of strong computable
performance information (see section 4.9) for a given pass, and in providing a starting
point in the evaluation of stability margins and robust stability theory, which have

been discussed in chapter 5.

In section 4.7, a 2D Lyapunov equation has been derived for a class of discrete
processes using a Fornasini-Marchesini representation of the process dynamics as
a starting point. The resulting new sufficient stability along the pass conditions
involve the computation of generalised eigenvalues. Two new algorithms for giving
a positive definite solution pair to the 2D Lyapunov equation have been introduced.
In both, the equation has been reduced to solving simultaneously three expressions.
The first algorithm is based on the use of spectral factorisation and utilises well
known 1D methods at each step. The second algorithm replaces the use of spectral

factorisation with the need to solve a Riccati-type equation to determine Wj.

Finally, it should be noted that the analysis presented using the 2D Lyapunov equa-
tion approach has only been for the discrete subclass of processes. The development
of a 2D Lyapunov equation for the differential subclass of processes remains an open

area.

7.3 Robustness

Within chapter 5 an initial investigation into the area of robust stability theory for
linear repetitive processes has been made. When analysing a process it is important
to not only determine stability, but also obtain some indication of how robust the
process is to perturbations in the system. In particular, within this thesis, the
subject areas of allowable parameter variation bounds and stability margins have

been investigated.

Given a stable along the pass discrete linear repetitive process, the first of these

areas considers how the process stability is affected by perturbations within the
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process system matrices, which may arise due to model inaccuracy or measurement
noise for example. Two different types of perturbation in the matrices which define

the state-space model have been looked at:

(i) structured, where the perturbation model structure and bounds on the indi-

vidual elements of the perturbation matrix are known; and

(ii) unstructured, where at most a spectral norm bound on the perturbation is

known.

The aim of the analysis here then has been to find methods of determining the
minimum norm of the matrix A® such that the perturbed process remains stable
along the pass. A discussion of some of the methods available for determining this
exact bound have been given - in many cases, however, a good lower bound often
suffices. In section 5.4, a Lyapunov approach to finding lower bounds for this exact
minimum norm bound has been presented. The analysis uses the existence of a
positive definite solution pair to the 2D Lyapunov equation as a starting point,
and hence is an application area of part of the analysis of chapter 4. In addition,
the availability of these robust stability measures using the 2D Lyapunov equation

offsets some of the inherent conservativeness due to the equations sufficient but not

necessary nature.

It should be noted that the bounds obtained

(i) are not available for all stable along the pass discrete processes (since there
exist processes which are stable along the pass and for which there exists no

solution to the 2D Lyapunov equation), and

(ii) depend explicitly on the matrices W and @ which provide the solution to the

2D Lyapunov equation.

It has been shown in section 5.8 that the least conservative lower bound corresponds

to the minimum norm of the augmented plant matrix ®.

Finally in this section, robustness analysis has been presented using a Fornasini-
Marchesini representation of the process dynamics as a starting point. Different
bounds are obtained, and clearly to fully exploit these results, the least conservative

set for a particular example should be used.
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Clearly further development is needed here, in particularly in terms of the develop-
ment of alternative approaches and on comparing these bounds in terms of conser-

vativeness and related factors.

Stability margins provide an indication as to what extent the singularities of a system
may be ‘moved’ before the process becomes unstable. Given a stable along the pass
process, the stability margin has been defined as the shortest distance between the
singularities of the system and the boundary of the stability region - for discrete
linear repetitive processes, this is the boundary of the unit bidisc. Then a necessary
and sufficient condition for stability along the pass of these processes is that this

measure, o say, is greater than zero.

Different methods for evaluating these stability margins have been discussed, and
once again it has been shown how a 2D Lyapunov equation approach can be used

to obtain good lower bounds for the margins.

A wvalid criticism on the work to date on stability margins has been the lack of a
‘transparent’ link to resulting systems performance. With this motivation, in sec-
tion 5.9 some very recent results on the definition of a pole of a multidimensional
system using the behavioural approach have been interpreted for a subclass of dis-
crete linear repetitive processes. Here a pole has been defined as an element of C?
space which is a zero of the characteristic polynomial p(z1, 2) of the process. The
potential strength of this approach is that the poles can be interpreted in terms of
so-called exponential trajectories of the process which, in the case of discrete linear
repetitive processes, have a well defined physical meaning. In effect, these exponen-
tial trajectories form the ‘building blocks’ of the process dynamics, and hence this
has major implications regarding the analysis of these processes. In particular, it
is anticipated that the application of this approach to stability margin analysis will
result in a ‘transparent’ link to expected systems performance. Hence this highly

promising area is one in which immediate future research effort should be directed.

7.4 Controller Structures

The unique control problem associated with linear repetitive processes is that the
output sequence of pass profiles can contain oscillations which increase in amplitude

from pass to pass. This behaviour can be seen in the long-wall coal cutting example
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via the presence of severe undulations in the newly cut coal floor wall which have to
be removed manually, and hence this is a key reason behind the ‘stop/start’ typical

cutting pattern in a working coal mine.

In (Smyth, 1992; Smyth et al., 1994) objectives for the control of linear repetitive
processes have been formulated, together with the development of design algorithms.
Here we have concentrated on the specification of controller structures for these

processes, which can be classified under the two general headings:

(i) memoryless controllers, which explicitly use information from the current pass

only; and

(ii) so-called controllers with memory which explicitly use information from the

current pass and/or previous pass profiles, state vectors and input vectors.

Memoryless schemes clearly have the simpler structure in terms of implementation
and of data which must be logged/stored and hence the initial work in this area has
concentrated on such schemes. Differential and discrete linear repetitive processes
have strong structural links with 1D differential and discrete linear systems. This
raises the natural question of what can be achieved using standard 1D feedback
control schemes. Such schemes use data from the current time instant on the current

pass only and as such are termed current point controllers.

Section 6.2 has introduced current pass state feedback and output feedback control
laws. It has been shown that linear repetitive processes are closed under such con-
trol actions, and hence known stability theory may be applied. It is shown here
that the property of asymptotic stability is invariant under memoryless state and
output feedback, i.e. an asymptotically unstable system cannot be stabilised by a
memoryless multipass causal feedback control scheme. This is due to the facts that,

under all multipass causal feedback control schemes,

(i) asymptotic stability only depends on D,, and

(i) the output yi4+1(t) does not explicitly depend on the input u.1(t) on a given
pass - i.e. there is no ‘direct feedthrough’ of the input to the output.

How to overcome this problem remains an open area for future research. For now

the argument is used that asymptotic stability is practically inherent. Note that the
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state feedback control schemes can in general only be implemented with an observer
structure. Observer theory for linear repetitive processes remains an open research

area.

Valuable insight into the general area of controller design can be gained by studying
subclasses of processes with certain special structural properties - so-called bench-
mark problems. The application of purely 1D control actions tend to fail, except
in a few certain special cases, since the process dynamics depend explicitly on two
independent variables. Here, however, it is shown how for one subclass of practical
interest (so called multivariable first order lags) a 1D control action is all that is re-
quired for acceptable systems performance under certain requirements on gain. The
work presented here is novel and can be found in (Benton et al., 1998a). The anal-
ysis replaces the necessary and sufficient stability along the pass condition on gain
with a sufficient only alternative. To offset this potential conservativeness, strong
information on performance along a given pass is available from the tests at no extra
computational cost, which is not available from the Nyquist-like characterisations of
stability along the pass. Two refinements to this analysis have also been presented

which extend the scope of application of the theory.

When one or more of the control objectives cannot be met by a current pass con-
troller, a way forward is to look at controllers with memory. Within section 6.6, a
so-called memoryless linear state feedback law with proportional repetitive minor
loop compensation has been presented and applied to a class of benchmark problem
where it has been shown, in this case, to give a solution to the so-called repetitive

systems disturbance decoupling with stability problem.

In section 6.8 discrete processes have been considered. Here it has been shown how
a discrete process can be regarded as being derived from a differential process under
fast sampling conditions. The analysis presented here can be found in (Benton et al.,
2000Db).

Finally within this chapter, the 2D Lyapunov equation of chapter 4 has been used
in the design of a current pass state feedback law with ‘feedforward’ of the previous
pass output action, which is an example of a control action with memory. This
provides an additional application area of the 2D Lyapunov equation analysis of

chapter 4, thus offsetting part of its overall conservative nature.

The controller structures presented in this chapter do not provide an exhaustive list.
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Research into available control schemes for these processes remains in its early stages
and only certain aspects of the general problem have been addressed. Clearly much
future work must be performed before a realistic assessment of available techniques
can be made. Iterative learning control remains an application area where the most
progress has been made to date in terms of the development of control schemes for

differential and discrete processes, and is one area where current research effort is

being focussed.

As a final point, the development of optimal control schemes for linear repetitive
processes remains open. In (Jones and Owens, 1981) an initial attempt at the
numerical optimisation of multipass processes was given, but little progress has

been made since, leaving this subject open for future research.

7.5 Final Remarks

Before concluding this thesis, a few final remarks should be made. Firstly note
that alternative approaches to the analysis of repetitive processes are also possible.
For example, in (Johnson et al., 1996), analysis generalising the Rosenbrock systems
matrix theory (Rosenbrock, 1970) for these processes has been performed. Similarly,

there is much scope for the use of the behavioural approach here, as noted in the

robustness section above.

Finally, the subject of the implementation of the stability tests of chapter 3 and
controller design algorithms of chapter 6 into a computer aided design environment is
beyond the scope of this thesis. This is the subject of an ongoing research programme
into the development and design of MATLAB toolboxes by Gramacki et al., see for
example (Gramacki et al., 1999).
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Appendix A

Background Results and Theory

A.1 Some Results from Functional Analysis and

the Theory of Matrices

The analysis within this thesis uses results from the theory of matrices and functional
analysis which are summarised below. The proofs of the results can be found in any

relevant text and so are omitted.

Definition A.1 (Spectral Value, Spectrum, Spectral Radius) A complex

number X\ is said not to be a spectral value of L, if, and only if, the bounded linear
operator AI — L, where I 1s the identity operator in E,, has range dense in E, and
a bounded inverse (A — Ly)™'. Then the set o(L,) of all spectral values of Lq is
called the spectrum of L, and its spectral radius is defined to be the finite positive

number
7(Lg) := sup |A| (A1)
A€o (La)
or equivalently
r(Ly) = lim HLiHl/k. (A.2)
k—+o0

If E, is finite dimensional, then L, can be represented by a complex square matrix.

Then (L) is the maximum of the moduli of the eigenvalues.
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Definition A.2 (Partial Ordering, Nonnegative Matrix) The partial ordering

< on ny X ny matrices is defined by the relation

Further, the absolute value of an ny X ny matriz A is defined to be the ny X ny real,

or so-called nonnegative, matriz

[ Al A,
1Al = : (A.4)
’Anll[ lAnanI

Lemma A.1 (Properties of Nonnegative Matrices) The absolute value, ||A||,,

of an ni X ny matriz A has the following ‘norm-like’ properties,

(a) ||All, >0,
(b) |I7All, = 7| |Allp, for all complex scalars 7,
(¢c) If B is another ny x ny matriz then ||A+ B, < ||All, + || Bllp,

(d) If B is another matriz compatible for pre-multiplication by A then
|AB|lp < [[Allpll Bllp,

(e) If A and B are square matrices then 0 < ||A]l, < B = r(4) < r(||4]l,) <
r(B).
Lemma A.2 If A is an nqy xny matriz then (I, —||Al|,) " ezists and is nonnegative

if, and only if,

r(lAlle) < 1. (A.5)

Definition A.3 (Absolute Value of a Vector) Let X be a Banach space and
X? its d* Cartesian product regarded as the linear vector space of columns X =
(z1, T2, -+, za)T of elements of X. Then the absolute value of z € X% is defined

as

Izllp = (lzall, lazll, -, lzal)” € RY (A.6)
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where || - || denotes the norm in X. Further the norm in R? is defined as
Izl = max || (A7)
where © € RY is regarded as the column x = (1, xa, -+, xq)T, and the norm in X¢

s defined as

2]l = max || (A.8)

1<i<d

Definition A.4 (Absolute Value of an Operator) Let B(X%, X9) denote the
space of bounded linear operators mapping X% into X%4. Further, represent L €
B(X% X%) as

Y =Lz (A.9)
or

Y = Z Lijz; (A.10)
J

where the L;;j are bounded linear operators in X. Then the absolute value of L is
defined to be

ILull [l
Ll = (A.11)
[Zatll [ Lara |l
where || - || is also used to denote the operator norm induced by the vector norm in

X.

Theorem A.1 (Banach-Steinhaus (Uniform Boundedness) Theorem)
(Kreyszig, 1978) Let {T,,} be a sequence of bounded linear operators T,, : X — Y
from a Banach space X into a normed space Y such that {||T,z||} is bounded for

every x € X, say,
ITwz|| < cq, n=12,--- (A.12)

where ¢, is a real number. Then the sequence of the norms {||T,||} is bounded, that

18, there 1s a c such that

HTTLH Sca n:172)"' . (A13)
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Definition A.5 (Contraction) Let X = (X,d) be a metric space. A mapping
T: X — X is called a contraction on X if there is a positive real number 8 < 1
such thatVz,y € X,

d(Tz,Ty) < Bd(z,y). (A.14)

Geometrically this means that any points  and y have images which are closer

together than the points z and y.

Definition A.6 (Kronecker Product) The Kronecker product of two matrices of

appropriate dimensions takes the form

0,11B 0,12B e G,lnB
A®B = : (A.15)

am1 B o Qmn B

Definition A.7 (Positive Definiteness) The matriz A is positive semidefinite,
denoted A > 0, if the quadratic form 2T Az > 0 Vz. If equality holds only when
z = 0, we say that A is positive definite, denoted A > 0. Note that because 22T Az =
tT(A+ ATz +2T(A— AT)z = 2T (A+ ATz, we usually assume that A is symmetric.

Lemma A.3 (Properties of Positive Definite Matrices) The following prop-

erties of positive definite matrices hold:
(a) A symmetric matriz A is positive definite (semidefinite) if, and only if, all
it’s eigenvalues are positive (nonnegative);

(b) A is positive semidefinite if, and only if, it can be written in the factored

form A =TT7T for some matriz T, known as a square root of A;

(c) If A is positive definite, then all its principal submatrices are positive defi-

nite. In particular, all the diagonal eniries are positive;

(d) If A is positive definite then the factorization A = LDMT ezists and D =

diag(dy, - -+, dn) has positive diagonal entries; and

(e) If A € R™*" is positive definite, and X € R"** has rank k, then B =
XTAX ¢ RF** s also positive definite.
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Lemma A.4 (Cholesky Factorization) If A € R™"™ is symmetric positive def-
inite, then there exists a unique lower triangular G € R™ ™ with positive diagonal
entries such that A = GGT.

Definition A.8 (Normal Matrices) If for matriz A € R*™*"
ATA = AAT, (A.16)
then A s said to be normal.
Lemma A.5 A € C**" is normal if, and only if, there ezists a unitary Q € C**"
such that
Q*AQ = diag{ 1, -+, \n} (A.17)

where )\;, 1 <1 <mn, are the eigenvalues of A.

A.2 A Formal Derivation of the 2D Transfer-

Function Representation

In order to introduce a transfer-function matrix description for linear repetitive
processes described by, say, the differential non-unit memory subclass of processes
with the state-space representation (2.11)-(2.12), some formal definitions are first
required. These definitions can be regarded as the natural generalisation of the as-
sociated 1D concepts from the well known differential /discrete linear systems theory
and here just the main results are stated without proof. For a complete discussion
(plus related proofs etc.) see, for example, (Rogers and Owens, 1992b; Rogers and
Owens, 1989a).

Definition A.9 (z-Transform) The ‘z-transforms’ of the sequences uj41(t), Tr41(%)
and Yp+1(t), 0 <t < a, k>0, are defined by

Ult,2) = ui(t) + 2z  ua(t) + 27 2us(t) - -
X(t,2) = z(t)+ 27w (t) + 2 223(t) - and
Y(t,z) = n(t)+2"ya(t) + 27 %p(t) - (A.18)

respectively.
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Results on the convergence and existence properties of the equations (A.18) are

contained in the following result,

Lemma A.6 Suppose that the terms in (A.18) are bounded in the sense that there
exists real numbers M; > 0, \; >0, 1 <1i <3, such that

lus()Il < MATH, k21

lze()ll < MpA3™' k=1 and

lye()ll < MsA3™t, k>1 : (A.19)
where || - || is chosen as any suitable norm in E,. Then (A.18) converge absolutely

in the regions |z| > A1, |z| > A2 and |z] > A3 respectively.

Define 2 X (¢, z) as

) 0 -1 -2
EZX(t’ z) = 55“’1“) + 27 —wa(t) + 2 = (t) + - - (A.20)

and consider, without loss of generality, the special case of zero initial pass profiles

and state initial conditions on each pass, i.e.
y-3(t)=0, 0<t<a, 1<j<M,
dpe1 =0, k>0. (A.21)

Hence X (0, z) = 0, and the ‘z-transform’ of (2.11)-(2.12) in this case is easily shown
to be

%X(t, 2) = (A+B(2)Un—D(2))7'C) X(t,2) + BU(t, 2)
Y(t,2) = (Im— D(2))7'CX(t,2) (A.22)
where
B(z) = }:Bj_lz—f, D(z) = ijz—f (A.23)

and the term (I, — D(z)) is always invertible since

lim (I, — D(z)) = L. (A.24)

[z]—>+o0

One method for solving for X (¢, z) (and hence for Y (¢,z)) in (A.22)-(A.23) is to
use a Laplace transform approach. The potential problem here is that the variables
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u;(t), z;(t) and y;(t), j > 1, of the series U(t, z), X(¢,z) and Y (¢, z) respectively
are only defined on the finite interval [0,«]. The use of the Laplace transform
however, requires the variables to be defined over [0,+0c0). This problem can be
overcome by noting that, due to multipass causality, the result will be unaffected if
the Laplace transform is applied to arbitrary extensions of the variables from [0, ]
to [0, +00) (provided, of course, that these extensions satisfy the necessary existence

conditions).
Then, assuming that the variables u;(t), z;(t) and y;(¢), > 1, have been suitably

extended from [0, a] to [0, +00), the Laplace transforms can be defined as follows,

Definition A.10 (s-Transform) The ‘s-transforms’ of the series U(t,z), X (¢, 2)
and Y (t,2), 0<t<a, k>0, are defined by

Uls,z) = LUt 2) = Luy(t) + 27 Luy(t) + 272 Lus(t) - -
X(s,2) = LX(t,2) = Lay(t) + 27 'Laa(t) + 272 La3(t) -+ and
Y(s,z) = LY(t,2)= Ly (t)+ 2" Lya(t) + 272 Lys(t) - - (A.25)

respectively, where L denotes the Laplace transform with respect to the along the

pass variable t.

Results on the convergence and existence properties of the equations (A.25) are

contained in the following lemma,

Lemma A.7 Suppose that there exists real numbers M; >0, 5; >0, \; >0, 1<
1 < 3, such that

lu; (O] < My PN k=1

lz;(OI < M, N kE>1 and

Iy < M\ k>1 (A.26)
respectively, 7 > 1, V¢ > 0, where || - || denotes any suitable vector norm. Then the

series of (A.25) converge absolutely in the regions {|z| > Ay, Re{s} > B}, {|z] >
Ao, Re{s} > Ba} and {|z| > X3, Re{s} > B3} respectively.

The results and definitions presented here are for the differential subclass of pro-
cesses. Equivalent results for discrete processes are presented in (Rogers and Owens,
1992b) and, since the results generalise in a natural manner, the details are omitted

here.
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A.3 Mathematical Background for Simulation-
Based Stability Tests

This section introduces the background results necessary for the simulation-based
stability tests and subsequent analysis of section 3.5. Further details of these results
can be found in, for example, (Owens and Chotai, 1983) and (Rogers and Owens,
1990b) and the relevant references therein. The section begins with the following

result, known as the total variation lemma,

Lemma A.8 (Total Variation Lemma) Suppose that g € L1(0,T), d is a real

scalar and
t
f(t):= d—+—/ g(T)dr (A.27)
0

15 bounded and continuous on the infinite open interval 0 < t < +oo with local
mazima and minima at times t; < ty < --- satisfying supt; = +o00 in the extended
half-line t > 0. Then with to =0,

Ne(f) = |d] + / 9(t)dt (A.28)
where
Nr(f) = [FO) + D 1£(ts) = Fltea)| + 1F(T) = f(te)], (A.29)

k* is the largest integer k such that t, < T, and

Noolf) := sup Nz (f). (A.30)

T>0

The quantity Nr(f) is the norm of f regarded as a function of the bounded variations
on the half-open interval 0 < ¢ < T (for each function f). Hence it is termed the
total variation of f. Nz(f) is a continuous function of T and is monotonically
increasing. Hence Ny (f) can be obtained as

Neolf) = _lim_Nr(f). (A.31)

T-—+00

Further, Np(f) can easily be computed from simple graphical operations on f(t) as

can been seen via figure A.1.
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f
! ¢
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0 £ t T ts ty = 400

Nr(f)=a+b+c+d

Figure A.1: Nr(f) - The Total Variation of f

These operations can be implemented into a CAD environment (for further details
see (Smyth, 1992)). Note also that

lim |Neo(f) = Nr(f)] =0, (A.32)

T—+c0
and consequently Ny (f) can be accurately estimated using data on a ‘long enough’

time interval 0 < ¢t < T

Note that an equivalent discrete result to lemma A.8 can be found in (Rogers and
Owens, 1992b).

The following analysis requires some basic results from the theory of nonnegative
matrices which are reviewed in the appendix section A.1. In particular, use will be
made of the special case X = L (0, +00) in definitions A.3 and A.4 as follows,

Definition A.11 (Extended Space, Natural Projection) The extended space
of X% = L2 (0, +00) is denoted by X2. Further, the natural projection of L € X¢
into X(dO’T) = L2 (0,T) regarded as a subspace of X? is denoted by PrL.
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Lemma A.9 Consider L € B(X®, X%) and suppose that its elements L;; have the

convolution form
(Lijz;)(t) = dijz;(t) / Hi;(t ()dr. (A.33)
Then PrL;; has induced norm
T
I1PrEill =1dsl + | 1Hi)ldr (A.34)
in Lo (0,T).
Further, use will be made of the following results,

Lemma A.10 Suppose that L € B(X%, X%) has elements of the form (A.38) and
denote the step response matriz of L by Q(t) with elements Q;;(t). Then

|PrLi;|| = Np(Qi5), 1<i<dy, 1<j<dy, VT >0, (A.35)
and hence
Nr(Qu) -+ Np(Qig,)
|PrLl|, = : v T >0. (A.36)
NT(lel) NT(ledz)

Theorem A.2 Suppose that the elements of L € B(X%, X9) have the structure of
(A.33). Then¥ T >0,

1PrLl = II(IPrLp)| = max > Nr(Qy)
da
< 2= IUPoLI = max > Noo( Qi) (A.37)

A.4 Two-Dimensional Systems : A Review of

Basic Concepts

This section introduces some of the well established theory for 2D linear systems.

For a comprehensive treatment see, for example, (Dudgeon and Mersereau, 1984).
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Initially we introduce the following partial ordering scheme for ordered pairs of

integers (7,7), with ¢ > 0, j > 0,

(h,k) < (i,7)if, and only if, h <iand k < j
, = (t,7)if, and only if, h =7 and k = j
(E) < (i,g) if, and only if, (b, k) < (i) and (h, k) # (i, ). (A.38)

Then a two-dimensional linear shift-invariant system, in general, can be described
by a convolution of the input u(m,n) and the impulse response function h(m,n).
Here, however, it is only necessary to consider initially the special case of scalar

systems whose input/output map is described by the recursive structure

y(m,n) = "> alk,ulm—kn—1)=> > b(i,j)ylm—in—j), (A.39)

k=0 =0 =0 j=0

for (1,7) # 0. This difference equation describes, in effect, a quarter plane 2D digital
filter, which is said to be spatially causal over the quadrant (¢, j) > 0 since y(m,n)
depends only on input and output variables at points (7, j) < (m,n).

Applying the 2D z-transform to (A.39) (where, using 2D systems convention, z; and
z are regarded as ‘backwards’ shift operators) yields the 2D transfer-function matrix

description
Az, 2)
G(z,2) = Bla.z)’ (A.40)
where
K L I J
Al 2) =33 alk, D)2k, Bla,z) =Y > b(k, )22, (A.41)
k=0 =0 1=0 j=0

and, for notational simplicity, we take 5(0,0) = 1.

Now, since b(0,0) = 1, B(zy, z) # 0 in some neighbourhood U? of (0, 0), where
U2 = {(21,2) : |21] <, |2] < €} (A.42)

Hence, in U2, the function G(z1, 2) is analytic and has the power series expansion

G(z1,2) = Z Z h(m,n)z*z". (A.43)

m=0 n=0
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As in the 1D case, the only truly useful systems are those which are stable. We
say that a system is BIBO (bounded input / bounded output) stable if its output
sequence remains bounded whenever its input sequence is bounded. Then the linear
shift-invariant 2D system (A.39) is said to be BIBO stable if, and only if,

D> Ik(m,n)| < +o0, (A.44)

i.e. if the impulse response is absolutely summable.

At this stage, a fundamental difference between 1D and 2D systems theory should
be noted (which is one of the major reasons why, in the analysis of 2D systems, a
simple extension of the 1D results is often incorrect). Given two functions P(p) and
Q(p), consider %. Then when the dimension of p > 1, even if P(p) and Q(p) are
relatively prime, their zero sets may intersect resulting in a ‘bad’ type of singularity
called a nonessential singularity of the second kind. This type of singularity is only
encountered in systems of dimension > 2 and has no one-dimensional counterpart.
Note that a zero of Q(p) which is not simultaneously a zero of P(p) is called a
nonessential singularity of the first kind (which is analogous to a pole of a 1D
system). In (Goodman, 1977) it has been shown (via clever counter-examples) that
the existence of nonessential singularities of the second kind on the boundary of the
unit polydisc in the z-plane can cause problems. This has the unexpected result in
that the stability problem is influenced not only by the denominator polynomial but
also by the numerator polynomial. For the remainder of this section, however, this
problem is avoided by assuming that A(zq, z) and B(z, z) are mutually coprime and

have no nonessential singularities of the second kind.

The following then is the basic result for BIBO stability of systems given by (A.39)
due to Shanks,

Lemma A.11 (Shanks BIBO Stability Test) (Shanks et al., 1972) The 2D sys-
tem (A.39) with 2D transfer-function matriz G(z1,2) of (A.40) is BIBO stable 1f,
and only if,

B(z1,2) #0, |z <1, || <1 (A.45)

Since this result is computationally intensive to check, lemma A.11 cannot be tested
in all but a very few simple cases. This problem can be overcome, however, by using

the following equivalent standard result due to Huang,
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Lemma A.12 (Huang BIBO Stability Test) (Huang, 1972) The 2D system
(A.89) with 2D transfer-function matriz (A.40) is BIBO stable if, and only if,

(a)
B(z,0)#£0 V |z <1, (A.46)

and

(b)

B(z1,2) #0 V |z =1, |2/ < 1. (A.47)

Note that the conditions of lemma A.12 are interchangeable in terms of z; and z.

A.5 Some Properties of the Volterra Operator

Within this section, some properties of the Volterra operator are established which
are required for the analysis presented in section 3.9. For proofs of the results see,

for example, (Dymkov et al., 1999).

Let F be a finite dimensional normed linear space over the complex field C with
norm || - ||z and let Z, be the set of nonnegative integers. Also let S(Z_, E) be the
linear space of all sequences on E, i.e. the functions f : Zy — E. Then S(Z4, E)
is a locally convex Hausdorff topological space when equipped with the topology of
uniform convergence on finite sets, i.e. the family of neighbourhoods is defined as

Unme=A{f:f€5(Z:,E), |F(F)llz <e k€ N} (A.48)

where N is the set of all finite subsets from Z, and € ranges over the set R, of all

positive real numbers.

Suppose now that B(Z., E') denotes the subspace of S(Z., E') of all bounded func-
tions, i.e. f:Z, — E such that sup,ez, [|f(k)[|r < +co. Then it is a standard
fact that B(Z., E) is dense in S(Z, E') with respect to the topology of uniform con-

vergence over finite sets. Also B(Zy, E) is a Banach space under a suitable norm

definition, eg. ||f|| = SUPgez., 1f(R) |-
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The Volterra operator used within this thesis, V4 : B(Z4,F) — B(Z.,E), is
defined by

(Vof)(s) =D Aif(s—1i), s€Zy (A.49)
i=0
where A; : ¥ — V, ¢ € Z, are given linear operators. Operators of this form are

known as discrete Volterra operators or shift operators of the second type.

Suppose now that there exists some fixed bases in £ and V. Then the linear op-
erators A;, 1 € Z,, can be interpreted as matrices on the complex field C. Also
associate with each function z € B(Z,, F) the analytic function z(z) defined by the

power series
z(z) = Za:izi (A.50)

which converges in the unit disc U = {z € C: |z| < 1}. Then it can easily be shown
that the mapping 2 — z(z) is bijective.

Now associate with each Volterra operator Vj its representation V4(z) in the ring of
power series defined by

Vo(z2) =Y Aid, zeC (A.51)
=0

Then the mapping Vo — Vp(2) is injective between operators on the form (A.49)
and the set of formal matrix series whose members are of the form (A.51), and it
can easily be seen that the matrix function Vp(2) : £ — V is a linear map for each

zeU.

Suppose now that the matrices A;, 7 € Z, are such that the power series (A.51) con-
verges in some domain which contains the unit disc U. Then it follows immediately

that

=0

and hence, for each function f € B(Z, E),

< (ZHAM) 111 (A.53)
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Hence, under these assumptions, V4 is a bounded linear operator.

Let Vi, Vo : B(Z4,E) — B(Z4, E) be Volterra operators. Then the composition
ViVa : B(Z4,E) — B(Z4, E) is also a Volterra operator and its representation in
the ring of power series is given by V1Vo — Vi(2)Va(2). Also if § € B(Z,, E) then
the image Vpf8 € B(Z,4, E) corresponds to the analytic function V4(2)8(z).

The following result now characterises the inverse operator of Vp(z),

Lemma A.13 (Inverse Volterra Operator) If E =V and det Vy(2) # 0, |2] <
1, z € C, then the Volterra operator Vy is invertible.

It can be shown that the matrix V,(z) can be transformed (or factored) by applying
appropriate elementary operations to obtain the following

Vo(2) = 01 (2)p(2)o2(2), (A.54)

where o1(2) and o4(z) are square matrices of appropriate dimension which are an-
alytic in the unit disc U and have nonzero determinants at all points of the closed
unit disc U, and the matrix p(z), which has the same dimensions as Vy(z), and has
elements which are all are zero except, possibly, for those on the leading diagonal

which are monic polynomials with roots in the closed unit disc U.

Without loss of generality, it is assumed that the nonzero diagonal elements p;(z), - - - |
pi(z) of the matrix p(z) are in the first [ rows with the property that each nonzero
polynomial p;(z) divides p;j+1(2), 1 < j < I — 1. Then, the matrix p(z) can be

written in the form

m(z) 0O
0 po((2)

p(2) = 0 o pl@ 0 : (A.55)
0 0O - 0 --- 0

The following result establishes that the Volterra operators @J; and @5 generated by

the matrices o1(z) and o9(2) respectively are invertible,

Lemma A.14 (Bijective Volterra Operators) The Volterra operator
Vo : B(Zy,E) — B(Z,, E) is bijective if, and only if, rank Vy(z) = nVz € C, |z| <

1, where n = dim E.
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The spectrum of the Volterra operator can be characterised by the following result,

Theorem A.3 (Spectrum of the Volterra Operator) The spectrum X(Vy) of

the Volterra operator Vi is given by

(W) = U oc(Vo(2)) (A.56)

lz]<1

where o(Vy(z)) denotes the eigenvalues of the matriz V(z).

A.6 Theory of the Multivariable First Order Lag

The theory of standard differential linear systems with the structure of a multivari-
able first order lag can be found in (Owens, 1978) and the references therein. There

follows a brief summary of the main facts.

Definition A.12 (Multivariable First Order Lag) (Owens, 1978) An m-input
/m-output strictly proper system described by the m x m transfer-function matriz
G 4(8) is said to be a multivariable first order lag system if, and only if, |G a(s)| # 0

and
Gl (s) = Ags + Ay (A.57)

where Ay and A, are real constant matrices with |Aq| # 0.

The term first order lag is motivated by the analogy with the classical first order

lag defined by the transfer-function
g7 (s) = aps +ay, ag#0. (A.58)
Writing
Ga(s) = {Aps + A1} F = {sI, + A7 A} 1A, (A.59)

it can be seen that G 4(s) has a state-space realisation specified by 4 = —A;' 4,
B = A;', C =1, and n = m. This is formalised in the following theorem,
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Theorem A.4 (Owens, 1978) An m-input/ m-output strictly proper, controllable
and observable system specified by the state-space triple (A, B,C) is a multivariable

first order lag if, and only if, n = m and |CB]| # 0.
Using the series expansion of G4(s) for large values of |s| we have
Gals) = Clshn— A) "B = ~CB+ glz;CAB FSOABL - (AGO)
and hence
In = G3'(5)Gals) = {4y + ~A}{CB+ ~CAB+ ) (A.61)

and, by equating powers of s71, it follows that Ay)CB = I, i.e. Ay = (CB)™!. Also

it can be seen that Ay = lim,_,g G;ll(s).

Extending the analogy, a differential unit memory linear repetitive process whose
derived conventional linear system Lp(A, B,C) takes the form of a multivariable
first order lag has the state-space model

a1 (t) = Ay Ar 2 () + Ag wia (8) + Bo ya(t)

Y1 (t) = pya(2). (A.62)
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Sampling Result Derivation

Within this section, the fast sampling of linear repetitive processes result of sec-

tion 6.8.1 is derived.

Consider the discrete unit memory linear repetitive process described by the state-

space model

Tp(p+1) = A Tpi1(p) + B ug+1(p) + By Y (D),
yir1(p) = C orsalp), 0<p<a, k>0, (B.1)

and regard this process as being derived from a differential unit memory process of

the form

Ci?k_H(t) =A Trt1 (t) + B uk+1(t) + Bg yk(t),
yk'{‘l(t) = ka-}-l(t)) 0 S t S a, k Z 07 (B2)

with initial conditions zp11(0) = dg41, & > 0, and yo(t) = §(t), 0 <t < a.
Now subject (B.2) to synchronous digital control with sampling period h, where

Thit = Trar(gh), (B.3)

and where, for integer ¢, 0 < ¢ < ¢, and piecewise continuous input
gerq, 0<g< & D p

iy = ua(gh)
= wupi(t) on [gh,(¢+ 1)h). (B.4)
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As a starting point to the following analysis, first note that (B.2) has the following
solution for £ > 0, 0 <t < ¢,

¢
Yre1(t) = C/ eAC N By yp(7) + B upyr (1)} dr + Cet dyyr. (B.5)
0
At the time instant ¢ = gh, the solution (B.5), k > 0, of (B.2) is
qh
yk+1(qh) = C/ 6A(qh—T){B0 yk(T) + B uk+1(7)} dr + CeAqh dk+1
0
qh
> ka+1(qh) = eAqh {/ GHAT{BO yk(T) + B ’U,;H_l(T)} dr + dk—f—l} . (B6)
0

Similarly, at the time instant ¢ = (¢ + 1)h we have, for k£ > 0,

(g+1)h
Tra((g+ 1h) = eAeth {/ e *7{Bo yx(7) + B ugs1(7)} dr + dk+1}
0
gh
= eAheAqh {/ €HAT{B0 yk(’f‘) -+ B uk—{-l(T)} dT
0

(g+1)h
+/ e ™ { By yi(7) + B g1 (1)} d7 + diia
gh

(g+1)h
— eAh {xk+1(Qh) + eAqh/ e”T{Bo ys(7) + B ups1 ()} dT} :
gh

(B.7)

Now consider each term in this expression in turn.

Firstly look at the term involving ug,1(¢) in (B.7). Due to the fact that the input
is piecewise continuous, i.e. upy1(t) = upy1(gh) on [gh, (¢ + 1)h), we can write for

k>0,0<¢< %,
(g+1)h R
eAheAqh/ e M Bup(r)dr = eAheAqhe_Aqh/ e B dr ug41(qh)
qh 0
an [ 4
= e ./o e " Bdruj_,. (B.8)

Now consider the y;(t) term in (B.7). Initially note that, under fast sampling con-
ditions (i.e. under h — 0), yx(t) on the interval [gh, (¢+1)h) can be approximated
by yx(gh), 0 < ¢ < %, k> 0. This approximation improves as h — 0, and we have

lim yi(7) = yr(gh), on [gh, (g +1)h). (B.9)

h-s0t

237



B Sampling Result Derivation 238

This is equivalent to the assumption that the previous pass profile is piecewise

continuous.
Hence, under this assumption, the y;(¢) term in (B.7) can be written

(g+1)h R
eAheAqh/ e By yi(7) dr = eAh/ e "B, dr i, (B.10)
qh 0

Then combining (B.8) and (B.10) and introducing the notation of (B.3) enables
(B.7) to be written

h
:czﬁ = €Ah$z+1 + eAh_/O e (B dr uZ+1 + Bo dr yg) ) (B.11)

Comparing this result with (B.2) gives
R _ rh R ok
A=et B= A/ e "B dr and By = A/ e "By dr (B.12)
0 0

as required.

In the following analysis, it is shown that the discrete linear repetitive process (B.1)
obtained via the synchronous sampling scheme defined by (B.3) and (B.4) becomes
a differential linear repetitive process of the form (B.2) in the limit A — 07.

Following the approach in (Ackermann, 1985), from (B.11) we can write,

.1 1 1 Ah an [T _ar
hhjg 3 (2 — oh) = hl_ljgl+ 7 {(e — L), te . e "B dr ug,,
h
+ eAh/ e "By dr yg} . (B.13)
0

Now consider each term in this expression in turn.

Firstly look at the term involving z}_,. Using the power series expansion for eh

we can write

: 1 Ah q — ; 1 2 q
hli>r£1+ E(e —I)zh,, = hlir(r)l+ﬁ {I, + Ah+O(R?*) = I} =,
= Az{, (B.14)

where O(h?) represents terms involving h? or higher powers of h.
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Similarly, for the term involving uf , we can write,

N ST L q
h12£1+ 5 {e /0 e TBdruy,,
1 h
= lim — {(I +Ah+0(h2))/ (I + AT+ O(r*) Bdr UZ+1}
0

= lim % {(In + Ah+ O(h?)) [h+ O(R*)| Bui,}

h—0t

= Bul,,. (B.15)

Finally for y{ we have

1 h
lim — < e / ~ATBy dr yf
oot R {e 0 ¢ 04T U

h
0

h—0+

= lim %{(I+Ah+0(h2)) [h+O(h?)] Boyi}

h—0+

— Byyl (B.16)

Also note that, in the limit h — 0%, u}_, and y{ become continuous variables.

Hence, combining these three results, and noting that, in the limit,

. 1 +1 -q
hE}ng 7 (#h1 — 2ih) = Tepns (B.17)
we can write
i =Act  +Bul, + By, (B.18)

which, as h — 0T, approaches
j?k—H (t) =A Tht1 (t) + B uk+1(t) + Bo Yk (t), (B19)

which is just the differential linear repetitive process (B.2) as required.
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