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ANALYSIS AND CONTROL OF LINEAR REPETITIVE PROCESSES 

by Sharon Elizabeth Benton 

Repetitive processes are a distinct class of 2D systems of both practical and algo-

rithmic interest, with a growing list of application areas. Their main identifying 

characteristic is a series of sweeps, termed passes here, through a set of known dy-

namics with explicit interaction between successive outputs, or pass profiles, as the 

process evolves. As a result of the explicit dependence of the process dynamics 

on two independent variables (in the along the pass and pass to pass directions) 

existing theory cannot be applied. This fact, together with the growing list of appli-

cations areas, has prompted an ongoing research programme into the development 

of a 'mature' systems theory for these processes. 

As part of this programme, this thesis gives new results on the analysis and con-

trol of the subclasses known as differential and discrete linear repetitive processes. 

Novel results are presented in three separate research areas. Firstly new stability 

results are presented, including the further development of a two-dimensional Lya-

punov equation based approach. These results provide computable information of 

performance which is not available from alternative stability characterisations. An 

initial study of robustness analysis is provided, including a discussion of a poten-

tially promising new approach to stability margin analysis. Preliminary results on 

the design of controller structures are given, including the use of simple structure 

control schemes and fast sampling considerations. Finally some areas for short to 

medium term future research are discussed. 
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Chapter 1 

Introduction 

The concept of a repetitive process (at the time termed multipass processes) was 

introduced in the 70's aa a result of research by the University of Sheffield into 

looking at the problems associated with long-wall coal cutting processes (Edwards, 

1974; Boland and Owens, 1980; Edwards and Owens, 1982). Since the decline of 

the coal mining industry in the UK, attention in recent years has been focussed on 

application areas where analysis from a repetitive process perspective hcis advantages 

over available alternatives. These so-called algorithmic examples include the use of 

repetitive process theory in the algorithmic solution of nonlinear dynamic optimal 

control problems using the maximum principle (Roberts, 1994b; Roberts, 1996; 

Roberts, 2000). In addition, a recent important development has been the fact 

that the theory can be used within the algorithmic analysis of iterative learning 

control schemes - i.e. those where a procedure is repeatedly performed with a view 

to sequentially improving accuracy. Significant results on exploiting these links can 

be found in, for example, (Amann, 1996; Amann et al., 1996; Amann et al., 1998; 

Owens et al., 2000). 

Repetitive processes have been defined (Edwards, 1974) as those involving the pro-

cessing of a material or workpiece by a sequence of sweeps, termed passes, of the 

processing tool. On each pass, an output, or pass profile, is produced. One of the key 

characteristics of repetitive processes is that the output 2/t(t), 0 < ( < a, (where t is 

the temporal (or spatial) independent variable and a is the pass length) generated 

during the k^̂  pass acts as a forcing function on the next pass, and hence contributes 

to the dynamics of the new pass profile 2/t+i(^), 0 < ( < a, A; > 0. It is this inter-
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action between successive pass profiles which leads to the unique control problem 

associated with these processes in that oscillations can occur in the output sequence 

of pass profiles which increase in amplitude from pass to pass. In the long-wall coal 

cutting example, where the main objective is to maximise coal extraction without 

penetrating the stone-coal interface, this can be seen via the presence of undulations 

in the newly cut coal Aoor, which means that cutting operations (i.e. productive 

work) must be suspended to enable their manual removal. This problem is one of 

the key factors behind the 'stop/start' cutting pattern of a typical working cycle 

in a coal mine. This behaviour can be easily generated in simulation studies and 

experiments on scaled models of industrial processes such as long-wall coal cutting 

- see (Smyth, 1992) for the details. 

Attempts to control these processes using standard, termed ID, techniques in general 

fail, since they ignore the inherent two-dimensional nature of the processes, i.e. 

information is propagated in two different directions - along a given pass (in the 

t direction) and from pass to pass (in the k direction). This has motivated the 

development of a rigorous stability theory for linear repetitive processes by Rogers 

and Owens (Owens, 1977; Rogers and Owens, 1992b). 

In the most general case, a repetitive process has nonlinear dynamics and a variable 

pass length. Clearly to analyse such a process would be a formidable task. Hence 

research to date haa been limited to processes with linear dynamics and a constant 

pass length a with the justiScation that the majority of practical examples fall into 

this category. A mathematical formulation of a linear repetitive process with con-

stant pass length a has been proposed in (Owens, 1977) based on an abstract model 

in a Banach space setting, which includes all previously studied examples as special 

cases (but also allows for the consideration of those with a potentially more com-

plex structure) and is the basis of the rigorous stability theory for these processes. 

In particular, this model admits analysis of differential and discrete subclasses of 

processes which are of direct industrial and algorithmic interest and which are the 

subject of this thesis. 

The aim of this thesis is to make progress in the development of a 'mature' systems 

theory for linear repetitive processes with a constant pass length a . In particular, 

the areas of stability (including the further development of a Lyapunov equation 

based approach), robustness and controller structure design have been investigated, 

each of which are commented on below. The results presented form part of an 
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ongoing research program by Rogers, Owens, Galkowski et al. and a summary of 

current progress can be found in (Owens and Rogers, 2000; Galkowski et al., 2000; 

Rogers et al., 2000a). 

1.1 Stability 

Chapter 3 introduces the rigorous stability theory for linear repetitive processes with 

a constant pass length a which is based on an abstract model in a Banach space 

setting. Here it is demonstrated how two distinct concepts exist, namely asymptotic 

stability and stability along the pass, which is not surprising since a repetitive pro-

cess is governed by two independent variables. It is shown how asymptotic stability 

is a relatively weak deGnition of stability and, except in a few very special caaes 

when it is all that is required, or in fact all that is achievable, it is the stronger 

condition of stability along the pass that is generally needed for acceptable systems 

performance. 

Using techniques from functional analysis, the theory of Rogers and Owens is ini-

tially presented for the general abstract representation of a linear repetitive process 

with constant pass length a and is subsequently extended to the differential and dis-

crete subclasses of processes which are the subject of this thesis. Here it is stressed 

how the accurate determination of process boundary conditions (termed 'simple' 

or 'dynamic' in chapter 2) is vital for correct stability classification. In fact, the 

misclassihcation of dynamic boundary conditions as simple could result in an unsta-

ble process being accepted as stable. This is a key distinguishing feature of linear 

repetitive processes and is a major reason why they cannot be analysed by direct ap-

plication of standard Roesser/Fornasini-Marchesini based theory. A summary of the 

current situation in the research program into dynamic boundary condition analysis 

is given in (Galkowski et al., 2000). 

As an immediate consequence of stability along the pass of differential and discrete 

processes, after a 'sufficiently large' number of passes the dynamics of the process can 

be replaced by those of a ID stable system. Clearly strong computable information 

on the rate of approach of the output sequence of pass prohles to this so-called limit 

profile would be of interest, in addition to bounds on the 'error' on a given 

pass. Two possible routes are available for obtaining these performance predictions 

(which are not available from the standard Nyquist like stability tests), namely 
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adopting a two-dimensional Lyapunov equation based approach (see chapter 4) or 

using time domain (or 'simulation-based') tests. It is shown how for the discrete 

subclass of processes the standard test for stability along the pass involves the 

computation of the eigenvalues of a potentially large dimensioned matrix for all 

points on the unit circle in the complex plane. Here, new tests are introduced for 

this subclass which replace these computationally intensive conditions with the one-

oBF evaluation of the eigenvalues of a matrix with constant entries. The resulting 

conditions are sufficient in nature only, but this potential conservativeness is offset by 

the availability of performance measures at no extra computational cost. The theory 

presented in these sections is novel and provides the basis for the paper (Benton 

et al., 1998b). 

Within chapter 2 it is illustrated how certain subclasses of linear repetitive processes 

can be written in the form of standard 2D state-space representations. Here links be-

tween the BIBO stability of these Roesser/Fornasini-Marchesini state-space models 

and the stability along the pass of linear repetitive processes are made, which allow 

the transfer of certain results and ideas between the two areas. Results obtained 

from exploiting these links can be found in section 3.8. 

Finally, within this chapter on stability, a Volterra operator approach to stability 

analysis is introduced. These relatively new results indicate that the powerful theory 

of Volterra operators has a signiEcant role to play in the analysis of discrete linear 

repetitive processes, and hence is an area where future research effort should be 

directed. 

1.2 Lyapunov Equa t ions 

As a result of the 'equivalence' between the BIBO stability of 2D systems described 

by the Roesser model (and hence the Fornasini-Marchesini model) and the stability 

along the pass of discrete linear repetitive processes which is discussed in chapter 3, 

many well known tests available for the stability analysis of 2D linear systems may 

be applied here. 

Chapter 4 considers the extent to which a Lyapunov equation based approach to the 

stability analysis of linear repetitive processes may be applicable. A review of the 

literature to date reveals that Lyapunov equations for systems with two independent 
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time variables has been approached in essentially two different ways: 

(i) the so-called ID Lyapunov equation approach, which is termed ID since the 

equation has an identical structure to that for discrete linear time-invariant 

systems, but with de6ning matrices which are functions of a complex variable; 

and 

(ii) the so-called 2D Lyapunov equation approach, which is defined in terms of 

matrices with constant entries. 

Initially, the ID Lyapunov equation approach is introduced, here for the differential 

subclass of processes (the equivalent treatment for the discrete case can be found in 

any of the cited references within the main text) with simple boundary conditions. 

It is shown how the resulting condition based on this equation is found to be both 

necessary and sufficient for stability along the pass, and can be implemented via 

computations on matrices with constant entries. This test hence serves as an alter-

native to the stability along the pass tests of chapter 3, in particular the potentially 

computationally intensive Nyquist-like tests. In addition, it is shown how the tests 

provide computable information on the rate of approach of the output sequence 

of pass profiles to the limit profile on a given pass, and hence provide an alterna-

tive route to obtaining measures of performance prediction to the simulation-based 

stability tests of chapter 3. 

Finally, in this part of the chapter, a ID Lyapunov equation is developed for a 

subclass of differential processes with a particular type of dynamic boundary condi-

tions (which are of special relevance to the area of delay-diEerential systems theory). 

Strict positive realness based tests to compute positivity are proposed which reduce 

the problem to a ID problem by showing that the (necessary and sufEcient) stability 

along the pass condition is equivalent to testing for positive realness of a certain ID 

rational transfer-function matrix. The analysis presented here has been presented 

in (Benton et al., 2000c) and (Benton et al., 2000d). 

In section 4.6 and onward, the so-called 2D Lyapunov equation approach to stabil-

ity analysis is developed. The theory presented here provides the subject for the 

paper (Benton et al., 1999). Here it is shown how the existence of a positive definite 

solution pair to the 2D Lyapunov equation is, in general, only sufficient for stability 

along the pass. A counter-example is given which demonstrates that a stable along 
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the pass process does not necessarily have the strictly bounded real property and 

hence doesn't satisfy the 2D Lyapunov equation. Two special cases are discussed, 

however, where the existence of a positive definite solution pair to the 2D Lyapunov 

equation is both necessary and sufBcient for stability along the pass. 

In section 4.7, a 2D Lyapunov equation is developed for a 2D Fornasini-Marchesini 

state-space model of the dynamics of a discrete linear repetitive process which in-

volves the computation of generalised eigenvalues. The analysis presented here is 

the subject of (Benton et al., 2000a). 

Despite the apparent conservativeness of the sufficient but not necessary nature of 

the 2D Lyapunov equation, this approach has a potentially major role to play in 

the analysis of discrete linear repetitive processes in terms of stability margins and 

robust stability theory, which is discussed in chapter 5. In addition, here it is shown 

how the equation provides measures on performance along a given pass which is not 

available from Roesser/Fornasini-Marchesini equivalent descriptions (for the discrete 

subclass of processes). 

1.3 Robus tnes s 

When analysing a process, it is important to not only determine stability, but also 

to obtain some indication of as to how robust the system is to perturbations in 

the system. In chapter 5 the subject of robustness of linear repetitive processes is 

investigated. As a measure of 'how stable' a process is, or rather 'how far' from 

being unstable, the subjects of allowable parameter variation bounds and stability 

margins are considered. 

Given a stable along the pass discrete process, the 6rst of these areas considers how 

the stability of the process is affected by perturbations in the matrices which define 

the state-space model. Two types of perturbation are looked at within this thesis: 

(i) structured, where the perturbation model structure and bounds on the indi-

vidual elements of the perturbation matrices are known; and 

(ii) unstructured, where at most a spectral norm bound on the perturbation is 

known. 
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The aim of the analysis presented has been to End methods of determining the min-

imum norm of the perturbation matrix A $ such that the perturbed process remains 

stable along the pass. A discussion of available methods is given. In section 5.4, it 

is indicated how, in many cases, a good lower bound for this often sufEces. Here it 

is shown how the existence of a positive deSnite solution pair to the 2D Lyapunov 

equation of chapter 4 can be used as a starting point to obtaining such lower bounds. 

This application area of the 2D Lyapunov equation offsets some of its inherent con-

servativeness due to its sufficient only for stability along the pass nature, and this 

analysis can be found in (Benton et al., 1999). 

To conclude the work performed on parameter variations, robustness analysis is 

presented using a Fornasini-Marchesini representation of the process dynamics to 

give various bounds on the minimum norm of the matrices of both structured and 

unstructured perturbations. 

Stability margins give an indication as to the extent to which the 'singularities' of 

a stable along the pass process may be moved before the process becomes unstable. 

Given a stable along the pass process, the stability margin is defined as the shortest 

distance between the singularities of the process and the boundary of the stability 

region - in the case of discrete linear repetitive processes, the boundary of the unit 

bidisc. Different methods for evaluating stability margins are discussed within the 

chapter, and once again, it is indicated how a 2D Lyapunov equation based approach 

may be used to provide good lower bounds for the margins. 

Finally, in section 5.9 some very recent results on the definition of a pole of a 

multidimensional system using the behavioural approach are interpreted in terms of 

discrete linear repetitive processes. 

1.4 Control ler S t r u c t u r e s 

Repetitive processes clearly introduce control problems which are outside the scope 

of existing ID (feedback control) theory, and the question of when and under what 

conditions does a basic physically realisable stabilising controller exist is compli-

cated by the fact that the process dynamics explicitly depend on two independent 

complex variables. 



1 Introduction 

A general control problem can be formulated with the following aims: 

(i) to define objectives; 

(ii) to specify control structures; and 

(iii) the development of design algorithms (ideally within a computer aided control 

system design environment). 

The main focus within this chapter is (ii) above, a consideration of the controller 

structures available for these processes - further details of progress made in (i) and 

(iii) above can be found in, for example, (Smyth, 1992; Smyth et al., 1994). 

A basic consideration of the sweeping action of information propagation, and hence 

the set of 'causal' information, indicates that repetitive process controller structures 

fall into two distinct categories: 

(i) those which explicitly use information from the current pass only - so-called 

memoryless controllers; and 

(ii) those which explicitly use information from the current pass and/or previ-

ous pass proEles, state vectors and input vectors - so-called controllers with 

memory. 

Memoryless schemes (and, in particular, so-called point controllers which use data 

from the current time instant on the current pass only) clearly have the simpler 

structure in terms of data to be stored/logged, and hence should be fully investigated 

prior to the consideration of those with a potentially more complex structure (i.e. 

those in class (ii) above or alternatives). 

Differential and discrete linear repetitive processes clearly have strong structural 

links with ID linear systems (see chapter 2 for further details of these links), and 

hence the first attempt at controller design for these processes has been to exploit 

these links wherever possible and gauge to what extent ID structures may be applied 

here. Section 6.2 introduces (current point) state feedback policies. These schemes 

are, in general, only implementable with an observer structure, hence output/error-

actuated schemes are also given. In general these ID control actions fail, since repet-

itive processes introduce control problems which are inherently two-dimensional in 
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nature. In section 6.4 and onward, however, it is shown that for one subclass of 

practical interest - a class of so-called benchmark problems - a ID control action 

is all that is required for acceptable systems performance, provided a high enough 

gain is applied. The general philosophy adopted in this work is in the spirit of (Se-

bek and Kraus, 1995) for other classes of 2D linear systems, i.e. the use of 'simple' 

structure controllers, and the novel analysis presented here provides the basis for the 

paper (Benton et al., 1998a). The work replaces the necessary and sufficient condi-

tion on gain for stability along the pass by a sufficient but not necessary alternative. 

This potential conservativeness is offset by the availability of strong information on 

performance along a given pass from this result at no extra computational cost, 

which is not available from Nyquist-like alternatives. Two refinements to the work 

are also presented, thus extending the range of application of the theory. 

When one or more of the control objectives cannot be met by a current pass con-

troller, one way forward is to look at controllers with memory. Within this chapter, 

an example of a memoryless linear state feedback law with proportional repetitive 

minor loop compensation is introduced. Here, it is demonstrated how the applica-

tion of this type of structure to a class of benchmark problem can successfully give 

a solution to the so-called repetitive systems disturbance decoupling with stability 

problem. 

In section 6.8, discrete processes are considered. It is shown how a discrete linear 

repetitive process can be regarded as being derived from a differential process under 

fast sampling conditions. It can be seen that these conditions give rise to 'high 

performance' control for one subclass of practical interest, and this analysis provides 

the basis for (Benton et al., 2000b). 

Finally, an approach to controller design using the 2D Lyapunov equation of chap-

ter 4 as a starting point is given in section 6.9. Here it is shown how the equation 

is used in the design of a current pass state feedback law with 'feedforward' of the 

previous pass output action (which is an example of a controller with memory), as a 

result of which the 2D Lyapunov equation is used as a sufficient condition for closed 

loop stability along the pass. 



Chapter 2 

Background 

2.1 In t roduc t i on 

In the most general case, a repetitive process has nonlinear dynamics over a finite, 

but variable, pass length. To analyse such a process would clearly be a formidable 

task. With this motivation, research in this area to date has been restricted to linear 

processes over a fixed finite pass length, with the justification that the vast majority 

of previously studied practical examples fall into this category. 

Within this chapter, the models of linear repetitive processes used within the analysis 

presented in this thesis are formally introduced. Initially, a rigorous mathematical 

representation of linear repetitive processes with a constant pass length a is pre-

sented, which is then used as the basis for the stability theory introduced in chapter 3 

and onward analysis. This theory applies to all examples of processes with linear 

dynamics and a constant finite pass length, including the subclasses of so-called 

differential and discrete linear repetitive processes which are the main subject of 

this thesis. Further industrial and algorithmic examples are briefly introduced to 

give an indication of possible future areas of application of the theory. It is shown 

how linear repetitive processes assume a two-dimensional nature and hence, in the 

stability analysis and the formulation of physically meaningful control policies, one 

possible way forward is to attempt to exploit structural links with 2D linear sys-

tems described by well known state-space models and with standard, termed ID 

here, linear systems. With this motivation, links are drawn between linear repeti-

tive process theory and, in particular, state-space model bcised approaches to these 

10 
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2D systems. Finally, a 2D transfer-function based approach is presented which is 

used as the basis for some of the stability tests/controller design methods of the 

subsequent chapters. 

Prior to the introduction of formal mathematical representations, a brief overview 

of 'how the processes actually work' is given, with the long-wall coal cutting pro-

cess referred to by way of a physical example. Long-wall coal cutting is the most 

commonly encountered method of extracting coal from deep cast mines in Great 

Britain, and has the basic operation, as illustrated in figure 2.1, of a coal cutting 

machine being hauled along the entire length of the coal face (up to 300m in some 

mines) by resting on the so-called armoured face conveyer - a collection of loosely 

joined steel pans which rests on the newly cut floor profile. 

Stone/Coal Interface 

Cut Roof 

Stone 
"T Coal Seam 

Drum 

Floor Sensor 

Conveyor 

Interface 
Cut Floor 

Along Face Direction 

Figure 2.1: Side Elevation of a Long-wall Coal Cutting Installation 

These machines generally cut in one direction only (left to right in figure 2.1) -

more advanced bidirectional cutting is only really feasible in very rich seam mines 

- and are hauled back in reverse at high speed for the start of the next sweep, or 

pass, of the coal face. Between passes, the conveyer is snaked forward hydraulically 

so that it now rests of the fioor of the profile produced during the previous pass. 

An idealised model of the process (see for example (Rogers and Owens, 1990a) for a 

11 
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detailed treatment) is based on the geometry shown in figure 2.2, which immediately 

confirms that this long-wall coal cutting example is indeed a repetitive process. 

New Face 
Face Advance 
Direction 

Old Face Sensor 

Conveyor 

Cutting Drum 

Machine Body 

Along Face Direction 

Figure 2.2: Plan of a Long-wall Coal Cutting Installation 

Suppose now that a denotes the constant finite pass length (i.e. the total length 

of the coal face being mined) and ?/t+i(^), 0 < f < a, the height of the stone-coal 

interface above a fixed datum at ' po in t ' t along pass A: + 1, k > 0. Then, with the 

further cissumption that the conveyer moulds itself exactly on the newly cut floor 

profile (the so-called rubber conveyer assumption), a simple model of the process 

dynamics is 

Vk+iit) — — Vk+iit — X) + k2 yk{t) + ^1 rt+i(() 

AT > 0, 0 < ( < a, A: > 0. (2.1) 

Here on pass A, rk(t) is a new external variable taken to represent desired floor 

coal thickness, and A;2 are positive real scalars and % is the transport lag (time 

delay) by which the sensor lags the centre of the cutting drum in the along the pass 

direction. To complete the process description, the following initial conditions can 

be imposed without loss of generality. 

yk+i{t) — 0, — ^ ^ ^ 0, A; > 0. (2 .2 ) 

Figure 2.3 gives a representation of the response of (2.1) (with ki = 0.8, k2 = 1, X = 

1.25 and a = 10) over the first four passes to the conditions 

rk+i(() = - 1 and ^o(() = 0, 0 < ( < 10, A; > 0, (2.3) 

12 
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i.e. a downward unit step applied at ( = 0 on each pass and a zero initial pass profile 

(Hgure based on simulation study given in (Rogers and Owens, 1992b)). 

Figure 2.3: Representation of Dynamics of (2.1)-(2.2) under Conditions (2.3) 

The point to note in figure 2.3 is that, although the first profile is an acceptable 

'classical' response to a downward unit step input, oscillations are present in suc-

cessive pass profiles which increase in amplitude in the pass to pass direction, and 

clearly a strong control action is required. This feature is caused by the interaction 

between successive pass profiles and illustrates the essential unique control problem 

associated with linear repetitive processes. 

In abstract terms, a linear repetitive process can be visually represented, as shown 

in figure 2.4, by a set of two axes where the horizontal axis represents the time or 

distance along each peiss and the vertical axis represents the pass number. The time 

axis can be measured in continuous or discrete variables, but the pass number is 

always a discrete measure. Now, since we are looking at processes with a constant 

pass length a , the time/distance axis is limited, as shown in figure 2.4, a repetitive 

process is a continuous-discrete or discrete-discrete system which is limited in one 

direction. 

Associated with each point in the grid are the states, Xk{t), the inputs ui.{t) and the 

13 
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Pass Number 
A 

Time/Distance 

Figure 2.4: Two-Dimensional Nature of a Repetitive Process 

outputs Pk(i)- Initial conditions, in the simplest possible situation (see later for a 

further discussion of this point) are speciGed at ( = 0 on each pass and the initicil 

pass proBle is given (on the A; = 0 axis). 

So, on a given pass A:, the process operates until ( = a (i.e. the end of the pass is 

reached). The process then resets back to ^ = 0, all states are reset by the initial 

conditions, the pass number is iterated to & + 1 and the procedure repeats. Note 

that it is this passing movement through the positive quadrant which defines the 

causality of the process in the 'obvious intuitive' sense. 

In terms of the long-wall coal cutting example, the finite length repeatable nature of 

the process is clearly seen when, at the end of a pass, the cutting machine is hauled 

back in reverse to the start of the pass, where it rests on the newly cut Aoor profile 

ready for the start of the next sweeping action. 

The sweeping motion is termed 'unidirectional operation' in the sense that the rel-

ative motion between the tool and the material is processed in one direction only. 

(Edwards, 1974) discusses linear repetitive processes with a bidirectional sweeping 

action, where the material is processed in each direction alternatively. The differ-

ence here is that, within these so-called 'record and reverse' processes, the along the 

pass variable switches from ( to a — t at the beginning of each pass. Since all re-

search to date (and the vast majority of practical examples) haa been into processes 

falling into the former category, processes with a bidirectional sweeping action are 

14 
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not considered within this thesis. 

A unique feature of a repetitive process is that the output on pass A; is explicitly 

effected by a Snite number of previous pass proEles. In the simplest situation, the 

output at point B in figure 2.4 acts as a forcing function on and hence contributes to 

the dynamics at point A. Processes with this feature have the so-called unit memory 

property. In the situation where it is the previous M pass profiles which contribute to 

the current one the process is called non-unit memory, where the integer M, M >1, 

is termed the memory length of the process. 

In the long-wall coal cutting example, the 'interaction between successive profiles' 

occurs in the form of oscillations caused by the machines weight as it comes to 

rest on the newly cut coal face ready for the start of the next pass along the coal 

wall, resulting in severe undulations in the newly cut floor profile (as illustrated in 

figure 2.3). This physical behaviour illustrates the unique control problem associated 

with these processes, namely the possible presence of oscillations in the output 

sequence of pass profiles, due to pass profile interaction, which increase in amplitude 

from pass to pass. 

2.2 Original Approach to Stabil i ty Analysis 

The Erst attempt at analysis of repetitive processes (then termed multipass pro-

cesses) was by Edwards in the late 60's/early 70's as the result of research into the 

vertical steering of a long-wall coal cutting machine (Edwards, 1974). The original 

approach was to convert the output sequence of pass profiles {2/t(()}&>i, 0 < ^ < a, 

to a single pass, inhnite length output ^(z;), 0 < f < -t-oo, described by a differ-

ential/algebraic delay system in which the relationships between the variables are 

expressed only in terms of r. This technique expresses the process as a function of 

the single coordinate v, where, given the constant finite pass length a, 

— l)o!- |-f = total pass distance traversed up to the point (A:, f), (2.4) 

and hence admits stability analysis by any of the well known classical techniques. In 

particular, the standard inverse Nyquist stability criterion was utilised in (Edwards, 

1974) to assess stability of examples of repetitive processes such aa long-wall coal 

cutting, ploughing and certain metal rolling operations. 

15 
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It was observed in (Owens, 1977), however, that this modelling approach will almost 

always end in failure since it neglects the fact that the initial conditions are reset 

at the beginning of each pass (the zt+i(0) — pass initial conditions) and the 

essential finite length repeatable nature of the processes, i.e. two of the inherent 

characteristics of repetitive processes. 

2.3 A Genera l Abs t r ac t Represen ta t ion 

To remove these deficiencies, a general abstract representation has been proposed by 

Edwards and Owens (Owens, 1977; Edwards and Owens, 1982) and subsequently 

developed by Rogers and Owens (Rogers and Owens, 1992b) with the following 

essential features, 

(i) retention of initial conditions on each pass, and 

(ii) treatment of all previously studied examples as special cases, with the provision 

for inclusion of those with a potentially more complex structure. 

In the most general case, each pass A is characterised by a pass length which 

may vary from pass to pass, and nonlinear dynamics (see, for example, (Rogers 

and Owens, 1992b) for the details). To analyse such a process would clearly be a 

formidable task. This difficulty is avoided here by noting that the vast majority of 

processes of practical interest studied to date are of constant pass length with linear 

dynamics. Hence from this point onwards attention is restricted to linear processes 

with cKt = a, A; > 0. 

It is clear that any representation of a linear repetitive process must include the 

following unique characteristics (which have been illustrated in figure 2.4), 

(i) a number of passes through a known set of dynamics, 

(ii) an initial pass profile yo{t) defined over 0 <t < a, 

(iii) each pass subject to its own boundary conditions, disturbances and control 

inputs, and 

(iv) explicit interaction between successive passes. 

16 
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The general abstract representation of a linear repetitive process with constant pass 

length a can now be defined as follows, 

Definit ion 2.1 (General Abstract Representation) (Edwards and Owens, 

TZopera oMcf Owema, v4 Zmear procegg o/ coM-

paag a > 0 o/ o BanacA apace Ea, a Zmear iVa o /^a , 

a /mear operator mappmp mfo TAe are 

described by linear recursion relations of the form 

Uk+l — -̂ a Vk + f̂c+1) ^ ^ 0, (2.5) 

w/iere E (Ae poaa proyz/e OM paaa A; azicf 6t+i G Wa, A; > 0. ^ere (Ag (erm 

repreaeM â Âe /rom poaa A; fo paaa A; + 1 antf repreae/i^a 

c0M(f%f%0Ma, dzâ zfr̂ omcea oMtf coĤ roZ mpt(( ej^ec(a OM paaa A; + 1. 

In what follows, || • || is used to denote both the norm on and the induced operator 

norm. 

Processes described by (2.5) have the so-called unit memory property. In other 

words it is the previous pass only which explicitly contributes to the dynamics of 

the current pass. 

Repetitive processes also exist where the current pass dynamics are a function of 

the independent inputs/disturbances to that pass and a Anite number of previous 

pass profiles. A practical example of such a process occurs in certain classes of 

bench mining systems intended for use in more advanced 'relatively rich' mines 

where (typically) M lies in the range 20 to 50. A full description of the model 

of this example together with a complete stability characterisation for this class of 

processes is presented in (Rogers and Owens, 1992b). In this situation the process is 

termed non-unit memory and the dynamics can be represented by linear recursion 

relations of the form 

M 

Vk+l — ^ ] L^a Vk+l—j 4" &fc+l, (2.6) 
i=i 

where 1 < j < M, is a bounded linear operator mapping into itself, E 

-B'a, A; > 1 — M, 6̂ +1 E C and the integer M (as noted previously) is the 

memory length of the process. 

17 
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Note that if M = 1, i.e. if the process is unit memory, then (2.6) reduces to (2.5) 

(with Z/a := and hence (2.6) can be regarded as the natural non-unit memory 

generalisation of (2.5). 

It should also be noted that the non-unit memory process (2.6) can be written in 

the 'unit memory' form (2.5) by considering the stacked vector 

X X 

^^+1 \yk+2—Mi ' ' ' 

to be a pass profile in the Banach product space 

times). Then the non-unit memory process (2.6) can be written as 

= -^a + f̂c+l 

where 

" 0 f 0 0 

(2.7) 

X ( M 

(2 .8) 

Z/Q. .— 

and 

0 • • • 

ljM-1 

bk+1 [O, • • • , 

J 

Li 

(2.9) 

(2.10) 

Hence all results obtained for the unit memory abstract representation can be ini-

mediately generalised to the non-unit memory case. 

2.4 Two Subclasses of In te res t 

The general abstract representation of section 2.3 admits all previously studied ex-

amples as special cases, but also allows those with a potentially more complex struc-

ture to be considered. To illustrate the generality of this representation, two special 

subclasses are introduced which are of both direct industrial and algorithmic rele-

vance, and which form the subject of this thesis. 

Section 2.4.1 introduces so-called dlEerential linear repetitive processes, where the 

dynamics over a given pass evolve as a function of a continuous variable defined over 

the pass length, a . It should be stressed that this subclass of processes is distinct 

18 
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from the class of so-called continuous-discrete 2D systems reported in the literature 

(for example in (Kaczorek, 1996; Kaczorek, 1998)), in that, although the pass index 

is always an unlimited discrete variable, the continuous variable is hnite in duration. 

Discrete linear repetitive processes are introduced in section 2.4.2. Here the dy-

namics along a given pciss evolve cis a function of a discrete variable and, as such, 

can be thought of as the discrete analog to the differential processes presented in 

section 2.4.1. 

2.4.1 Differential Processes 

A differential non-unit memory linear repetitive process with constant pass length 

a and memory length M is described by the following state-space model over 0 < 

( < a. A; > 0, 

M 

M 

?/&+i(() = C ?/t+i_X^)' (2.11) 
i=i 

Here on pass A:, a;t(^) is the M x 1 state vector, 2/A(̂ ) is the m x 1 output pass pro61e 

vector and «k(^) is the / x 1 vector of control inputs. 

To complete the process description, it is necessary to specify the 'boundary con-

ditions', namely the state initial vector at ( = 0 on each pass and the initial pass 

prohles ?/i_j ((), 1 < j < M. The simplest possible form for these (see also below) is 

3:k+i(0) = (fk+i, A: > 0, 

m_j(t) = %(t), 0 < t < a , 1 < ; < M , (2.12) 

where is a constant n x 1 vector, and the entries in the m x 1 vector %((), 1 < 

j < M, are known functions of (. Note that there are M of them since the process 

explicitly uses information from the previous M passes. 

Within this thesis, reference will often be made to the unit memory (i.e. M = 1) 

subclass of differential processes. To avoid any ambiguity later on, the unit memory 

model is explicitly stated here, as follows. 

19 
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A differential unit memory linear repetitive process with constant pass length a is 

described by the following state-space model over 0 < ( < a, A: > 0, 

ik+iit) = ^ Xk+i(t) + B Uk+i(t) + So yk{t) 

2/&+1W = C" + Di (2.13) 

with (simple) boundary conditions (see also later) 

^/c+i(0) — A; > 0, 

2/oW = 0 < ( < a. (2.14) 

To write the non-unit memory differential process (2.1l)-(2.12) in the form of the 

abstract representation 5'(.B'a, Wa, Z,a) of (2.6), first note that, over 0 < ( < a, A > 0, 

2/t+i(^) = 3/A+i-XT) + ^ ^^+1(1-) j dT 

M 

+ Ce^^dk+i + Dj yk+i^j[t). (2.15) 
i=i 

By taking the Banach space to be the space Ea = L^[0,a] D Lao[0,a] then 

1 < j ^ is deAned over 0 < t < CK by 

(1^ ?/)(() = C r ?/(T) dT + D, 2/(() (2.16) 

and 

= C / %6&+i(T) df + Ce'^y.+i. (2.17) 
' 0 

Hence the differential process (2.11)-(2.12) is clearly a special case of the abstract 

model (2.6) already presented. Therefore all available results may be specifically 

interpreted for the differential subclass of processes. 

In some cases, the boundary conditions of (2.14) are simply not strong enough to 

'adequately' model the underlying dynamics of the process - even for preliminary 

simulation/control analysis. For example, the optimal control application (Roberts, 

1996) requires the use of pass state initial vectors which are functions of the previous 

pass proAle. 

Other work (Owens and Rogers, 1999) has reported a general form of dynamic 

boundary conditions for differential unit memory linear repetitive processes. These 
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conditions can be obtained by replacing the z&+i(0) = dt+i, A; > 0, term in (2.14) 

by 

N 

a;&+i(0) = 4 + 1 + m(4) , ^ > 0, (2.18) 
j=l 

where ' are N sample points along the previous pass 

profile and Kj, 1 < j < N, is axi n x m matrix with constant entries. 

Consider again the choice of = ^^[0, a] nZ,oo[0, a]. Then for a process de6ned by 

(2.13) and (2.18), with = 0 for simplicity, it can be shown that, over 0 <t < a, 

(1« ?/)(() = <; r 1/(T) dT + Y (2.19) 
Jo 

where 

and 

N 

^ = (2.20) 

bt+i = C / ?/&+i(T) (fT + (2.21) 

The stability theory for linear repetitive processes haa been developed (Owens, 1977; 

Rogers and Owens, 1992b) in terms of the abstract representation of deEnition 2.1 

and necessary and sufficient conditions for the various stability properties expressed 

in terms of conditions on the bounded linear operator Z/Q. This theory is formally 

introduced in chapter 3 of this thesis (together with specific results for differential 

and discrete processes). For now it should be noted that the inclusion of the dynamic 

boundary condition term Y in (2.18) effects La in (2.19) and hence has implications 

in terms of the stability of the process. This is discussed further in chapter 3. 

2.4.2 Discrete Processes 

The other main subclass of specific interest covered within this thesis is discrete 

linear repetitive processes. Such processes can be thought of as the natural discrete 

analog to the differential processes (2.11)-(2.12) presented in section 2.4.1 and take 
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the following state-space form over 0 < p < a, k > 0, 

M 

+ 1) = ^ + B wt+i(p) + ^ -Bj-i i/A+i_; (p) 
i=i 

M 

m+i(p) = (2.22) 
3 = 1 

Once again, on pass A;, 2;A(p) is the n x 1 state vector, i/t(p) is the m x 1 vector pass 

proGle and ^/t(p) is the / x 1 vector of control inputs, M is the memory length, and 

the initial conditions are taken to have the following form (see also later), 

2 f̂c+l(0) = Ĉ fc+1) ^ ^ 0, 

= (2.23) 

where is a constant M x 1 vector and the entries in the m x 1 vector % (p)' ^ — 

j < M, are known functions of p. 

As for the di%rential subclass of processes, we explicitly introduce the unit memory, 

i.e. M = 1, subclass of (2.22)-(2.23) as follows, 

a;t+i(p + 1) = v4 a;t+i(p) + -8 «&+i(p) + Bo ?/t(p) 

2/&+i(p) = C" a;t+i(p) + Di ?/&(p) (2.24) 

with (simple) initial conditions (see also later) 

^/c+i(0) — ĉ fc+i) k ^ 0, 

i/o(p) = m(p), 0 < P < a. (2.25) 

In the same manner as for the differential case of the previous section, the discrete 

process (2.22)-(2.23) can be written in the abstract form (2.6) by considering the 

Banach product space = ^ [ 0 , ct] of sequences of real m x 1 vectors of length a 

(corresponding to p = 1, 2, - - - , a in (2.22)). 

Then L^, 1 < j < M, in (2.6) is defined for 0 < p < a by 

( i i ! / )(p) = { + a . y M , 1 < p < „ 

and 

^ __ j C dk+i, p —0 (0 07\ 

CAP 4+1, 
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As for the differential case in section 2.4.1, if the simple boundary conditions of 

(2.25) are not 'adequate' to model the dynamics of the process, dynamic boundary 

conditions may be employed. The most general set results from replacing z/;+i(0) = 

A; > 0, in (2.25) by 

N 

a:k+i(0) = 4+1 + ^ ^ > 0, (2.28) 

i=i 

where 0 < < (2 < ' " < < CK are N sample points along the previous pass 

profile and 1 < j < TV, is an n x m matrix with constant entries. Note that this 

general form of boundary conditions are precisely those required in the nonlinear 

optimal control application of (Roberts, 1996). 

The stability implications of the inclusion of these dynamic boundary conditions are 

discussed in chapter 3. 

2.5 F u r t h e r Examples of Repe t i t ive Processes 

The list of subclasses of linear repetitive processes with constant pass length a intro-

duced in the previous section is by no means exhaustive. Here, other examples are 

presented which, although not specifically covered within the analysis in this thesis, 

serve to highlight the range of application of the theory developed to date, together 

with some areas for future development. For further details of these examples, see 

the cited references. 

Example 2.1 (A Delay-Algebraic System) (Rogers and Owens, 1992b) The 

m+i(() = 2/&+i(̂  - %) + A2 ?/&(<) + Ai rt+i((), 0 < f < a. A; > 0, 

?/A+i(() = 0, - X < ( < 0 , % > 0 , (2.29) 

wAere Ai A;2 ore Aaa Aeezi a/iowM (o pAi/azca/ eiampZea 0/ 

proceaaea ai/cA oa coaZ (̂ aee aeĉ zoM o/ (Ma 

c e / f a m m e f a / Aaa (Ae a ^ r u c ^ w e 0 / a ztmf 

memon/ Zmear proceaa cô â OM^ paaa a, .Ba = = (Ae %;ec(or 

apoce 0/ coM^mtfoua OM [0, a] ?/(0) = 0 a/id luzfA Morm 

Il2/||:=m^l3/(^)|. (2.30) 
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TAe operator 2/̂  m can t/ien 6e (feyzmecf 6?/ eipressmp ?/i = 2/o /orm 

?/i(f) = —A;i 2/1 — -%̂ ) + A;2 i/o(t), 0 < t < a, 

?/i(t) = 0, - X < t < 0 . (2.31) 

Example 2.2 (Matrix Recursion Relat ions) (Rogers and Owens, 1992b) The 

discrete state i;ector mo(feJ 

Xk+i = A Xk B Uk, Xj. G M", li/j G , A: > 0, (2.32) 

can, 6e regarded as a î mt memoTT/ linear repetiti?;e process wit/i = R", = 

range of B and = B Uk, k > 0. 

Example 2.3 (Differential Processes wi th Inter pass Smoothing) (Rogers 

and Owens, /nterpass smoothing is a common/eatwe o / a nwm6er o/indtts-

triaf ezampfes, suc/t as fonp-waH coaf cifttinp, and is, in e_^ect, tAe dynamic inter-

action wAic/i occtfrs between passes and distorts tAe preriows pass pro_ /̂e(^s/ (7n t/ie 

long-wall coal cutting example the source of this is the machine's weight (up to 5 

tonnes^ as it passes oi;er tAe coaZ/acej. 

Consider, /or simp/icit^/, tAe i^nit memory/ dijg êrentiaZ process %f;itA 

Di = 0. Then one possible method of modelling the effects of interpass smoothing 

is to assume tAat t/ie pass pro_ /̂e at point t on pass A + 1 is a /unction o/ tAe state 

and inpi^ts at t/iis point on tAe c?^rrent pass together iuit& t&e comp/ete pass pro/i/e 

on pass A;. 

For ezampZe, a candidate representation is 

±A+i(^) = ^ 2;t+i(t) 4- B 'at+i(^) + Bo / j^(t, r) 2/&(T)dT 
Jo 

i/t+i(t) = C a;A+i(^), 0 < t < a, ZA+i(0) = d&+i, A: > 0, (2.33) 

wAere t/ie interpass term Bo j||^.K'(t, r) 2/t(T)d'r represents a 'smoothing oi/t^ o/tAe 

preriotis pass pro_̂ Ze in a manner go?;emed tAe properties o/ tAe Aiez-neZ j^(t, T). 

#ote tAat t/te partic^Zar cAoice o/ 

7^(t, T) = (̂ (t - T)7m, (2.34) 

w/iere i5 denotes t/ie Dirac deZta/iinction, rediices to 
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23 MOW azmpZe <o iien/y (Anf %3 a Jmear repê ẑ we proceaa m = ^^[0, a] D 

i^oo[0,a;] wî A 

(I,^i/)(t) = c / e ^ M g o / K(T,f)2/(t')dfdT, 0 < t < a , (2.35) 
Jo Jo 

(IM(f 

6t+i = C" / Mt+i(T)c(T + Ce'^yt+i, 0 < ( < a, A; > 0. (2.36) 

Example 2.4 (Delay-Differential Systems) (Rogers and Owens, 1995b) A 

class of delay-differential system in K" has the state-space form 

j;(^) = z(t) + Bo z(( — a) + B %/(̂ ), ( > 0, 

z(^ —a):=a;o((), 0 < ( < O ! (2.37) 

w/iere .4, Bo aM(fB are coMŝ oM^ n x n, M x M oMcfa x / ma^nces regpec(%%;eẐ . 

jy (Ae (feZay a za m^erpre^ed aa </ie pasa ZeMpfA, (AeM cZear (Aeae aygitema 

Aai;e â roM^ â ruĉ i/raZ 6%m%Zar%̂%es Zmeor repe(z(%?;e proceaaea (feacn^eii a aê  

o/ recifraii'e (Z%j0''ereM(m/ egwô zoMa. T/iza can 6e aeeM 5%/ m^rodwcm^ (Ae c/iGM ê o/ 

i;arm6Zea 

M&+i(() := '(/(A;*]! + t) 

a;t(^):=3;((A; —l)a! + (), 0 < ^ < a ! , A:>0, (2.38) 

ond deMofmp paaa pro/iZea aa 

3/A(() = 3;&((), A: > 0. (2.39) 

r/iGM COM 6e wvî êM aa 

Zk+i (t) = /I 37̂ +1 (̂ ) + B ift+i (̂ ) + Bo 3/t (t) 

Z/t+iW = 3;t+i((), 0 < ( < a, A: > 0, (2.40) 

with boundary conditions 

rt+i(0) - 3;&((i;), A; > 0, (2.41) 

i e . (Ae W(%oZ o/ (Ae afo^e i;ec(or OM poaa A; + 1 ma^cAea (/le M̂aZ i;aZ'ue o/ f/ie 

afate /or t/ie premo-ua paaa A: - cfearf^ o Meceaaan/ coMcfifioM /or f/ie coMtmrn̂ ?/ o/ t/ze 
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process. "̂0 tAe Ztnear deZoy-cZẑ eremtmZ system con 6e mterpretecZ os 

tAe struct!/re o/ 0 s?/6cZoss 0/ Zmear dZjĝ erentmZ repetztzi;e processes witA mteractzoM 

6etweeM poss boî McZar̂ / condztzoMS. 

TAzs /oct cZeorZi/ Aas zmpZicatzoms rê orcZm^ t/ie mtezyZoy 0/ coMcepts/tAeor%/ between 

tAe oreos 0/ (feZo2/-(̂ 0̂̂ 6rent%oZ systems and Zmeor repetz'twe processes. TZestfZts 06-

tained from the exploitation of these structural links can be found in the cited refer-

ence. 

Example 2.5 (Iterative Learning Control) eg. (Amann et al, 1996; Amann, 

vlmonn et a/., Owens et aZ., ^000/) TAe areo o/%terot2%;e Zeominp controZ 

considers systems wMcA repeatedZy pef/orm tAe same tasA: witA o mew to segtten-

tmZZy impromng accwocy. OnginaZ interest in tAis area arose as tAe reswZt 0/ ro6ot 

operations on an assembly Zine wAere t/ie ro6ot is regi/ired to repeat tAe same tasA; 

many times. TAe speci/ied tasA; can 6e taA;en as tAe regitirement to tracA: an eitefviaZ 

re/erence i/ector, r(t) say, o?;er a speci_/zed time interuaZ 0 < t < T. TAe o6jectit;e is 

tAen to wse tAe repetitive nature 0/ tAe process to impro?;e accttracy 6y cAanping tAe 

controZ inpwt /rom triaZ to triaZ. 

One approach in tAe Ziteratiire to t/iis type o/pro6Zem Aas 6een to mew tAe system as 

Aai;in^ a structure. CZearZy, di/e to tAe finite pass ZenptA repeatabZe natzfre o/ tAe 

systems, iteratî ^e Zeaming controZ Aas cZear st?^ct?fraZ ZinAis witA t/ie area 0/ Zinear 

repetiti?;e processes, f o r /urtAer detaiZs 0/ tAese ZinA;s, see tAe cited re/erences. 

Example 2.6 (Solut ion of Nonlinear Dynamic Optimal Control Problems 

via the M a x i m u m Principle) (Roberts, 1994a; Roberts, 1996; Roberts, 2000) 

TAe cited re/erences sAow tAat Aow, di/e to tAe existence 0/ mia;ed bowndaT-y condi-

tions, tAe soZtftion 0/ nonZinear dynamic optimaZ controZ protZems ma t/ie maa::im?/m 

principle can often require an algorithm which iteratively updates a trial solution. 

in (̂ TZoAerts, it is sAown tAat t/ie stn/ctwe o / a discrete Zinear repetiti?;e pro-

cess arises in t/ie anaZysis 0/ tAe ZocoZ con?;e7yence and statiZity propeTiies 0/ tAese 

iteratii;e aZporitAms/or soZmnp ^cZasses 0/^ nonZinear dynamic optimaZ controZ pro6-

Zems. 5'ince a triaZ soZ^ftion is updated /rom iteration to iteration, tZie aZporitAm 

Aos in/ormation propagation in two independent directions, nameZy aZong t/ie time 

horizon 0/ t/ie dynamic response and /rom iteration to iterotion, and Aence sticA 

aZporitAms Aai;e an inherent ^D/repetiti?;e process structwe. (TAe res!/Zting modeZs 

Aai;e state initiaZ vectors wAicA are /wnction 0/ tAe premoifs pass pro^Ze, as in 
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Example 2.7 (Hybrid Systems) (Franke, 1998) The cited reference concerns a 

approach (o ao-caZZed ê ;e?2( 7% aimpk (erms, giic/i a 5^g(em 

Aaa c/iarac^ena^zca m (Aaf occwTremce o/aomg 'ei/e/if' cat/sea Âe process (o 

(o gome of/ier v4a g?/cA, (Ae 6o(A coM(mi/oug 

oTicf (fzacre^e e%;eM̂  (fymamzcg, Aezice Ana some 6o5zc 5%m%Zan(%e5 ce?^am 

c/as5es o/ % êra<it;e Zeonimc/ cofi^ro/ schemes (Aere/ore Zmeor repe(i(%re procesaes. 

TAe (fe^oiZs o/ (A%6 (̂ reZô *?;e/yy) rece/i^ ZmA; wzfA repe(%f%t;e procesa (Aeor%/ can 6e /oi/nd 

m (Ae c%(e(f re/erence. 

2.6 A 2D Sys tems Approach 

The dynamics of discrete linear repetitive processes clearly share some basic char-

acteristics with 2D discrete hnear systems recursive in the positive quadrant, i.e. 

systems which propagate information in two separate directions. Hence one possible 

approach to the stability analysis and development of meaningful control policies 

for these processes is to treat them as 2D discrete linear systems recursive over 

= {(%, j) : j > 0, z, j E Z+} and exploit links with the (relatively) well re-

ported field of 2D linear systems theory. A key difference which should be stressed, 

however, is the fact that the pass length of a repetitive process (which corresponds 

to one direction of information propagation) is always finite by definition. 

Within this section, Fornasini-Marchesini and Roesser state-space model interpreta-

tions of the dynamics of discrete linear repetitive processes described by (2.22)-(2.23) 

are presented. These models then form the basis for a discussion on how an equiv-

alence can be developed between standard 2D systems stability concepts and the 

associated stability theory for this subclass of processes - see chapter 3 for further 

details of these concepts. 

Motivated by research in the field of image enhancement and filtering, the following 

state-space model was introduced in (Roesser, 1975) for systems recursive in the 

positive quadrant (omitting the output equation which has no role in this work), 

a:/,(% + l , ; ) = ;4i a;,,(2,j)-Hyl2a;«(%,j) + Bi!/(%,;) 

a:v(t,j + l ) = ^3a:/,(t,j) + ^4a:«(t,j) + -B2'u(i,j). (2.42) 

Here i and j are positive integer valued horizontal and vertical coordinates, is 

the n X 1 vector of horizontally transmitted information, Xy is the m x 1 vector 
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of vertically transmitted information and is the / x 1 vector of control inputs. 

Note here that the local state r(z, '̂) has been divided into horizontal and vertical 

components, each of which is propagated by a first order difference equation. 

In Fornasini-Marchesini model structures (Fornasini and Marchesini, 1978), the state 

vector is not split into horizontal and vertical components and the output equation 

is once again not required. With j ) denoting the (appropriately dimensioned) 

state vector at i > 0, j > 0, the general model of this type has the structure 

+ 1, J + 1) = z[i + 1, j) + AQ z{i, j + 1) + AT z{i, j) 

+ B3 u{i -t- l,j) + B4 u{i, j -|-1) (2.43) 

where, aa in (2.42), u is the appropriately dimensioned vector of control inputs. 

In (Galkowski et al., 1995) and subsequently in (Galkowski et al., 1999b) it is shown 

that the dynamics of discrete linear repetitive processes can be represented by a dy-

namically equivalent singular Fornasini-Marchesini type model. The starting point 

for this model is the so-called augmented state vector for discrete linear repetitive 

processes, defined for the state-space model (2.24) as 

Z&(p) [z^p), 2/1 (P)]^. (2.44) 

It then follows immediately that the dynamics of (2.24) can be written in the form 

E Zf;+i(p + 1) = As Zk+i{p) + AQ Zk{p) + B5 Uk+i{p) (2.45) 

where 

E 
0 

0 0 
AQ 

C -L 
, -̂ 9 

0 Bo 

0 Di 
and B..; 

B 

0 
. (2.46) 

This is a singular version of the Fornasini-Marchesini model of (2.43) with AQ = 

0, B4 = 0. Other work (Galkowski et al., 1999b) has concluded that this singular-

ity is not an intrinsic feature (in a well defined sense) of discrete linear repetitive 

processes, since a key property of the state-space model (2.24) is that it is nonsin-

gular (also termed standard or regular). Further Fornasini-Marchesini type models 

of these processes are introduced in (Galkowski et al., 1999a) and (Galkowski et al., 

1999b) which have been constructed via the development of a 'transformation the-

ory' for nonsingular Fornasini-Marchesini and Roesser models from their singular 

counterparts. For a detailed treatment, refer to the papers cited. 
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In (Roclia et al., 1996) it has been argued that the discrete subclass of non-unit 

memory linear repetitive processes with state-space form (2.22) has a Roesser rep-

resentation. In particular, the process has a Roesser-type structure where 

(i) a;/, - current pass state vector (horizontally transmitted information), 

(ii) Xy - current pass output vector % (vertically transmitted information). 

To write (2.22)-(2.23) in Roesser form, introduce the following notation (as in (Rocha 

et al., 1996)), 

z&(p) := , 3/1-1 (P)]^ G N ^ mM. 

Then it follows that (2.22)-(2.23) can be written 

(2.47) 

a;t(p + 1 ) 

^k+i(p) 

^11 -̂ 12 

A21 v422 ^A(p) 
+ 

0 
i(t(p) (2.48) 

where 

v4ii = v4, = B, ^12 = , 

0 7m 0 

.A22 = 
0 

DM 

0 Im 

D2 Di 

Bo], ^21 — [0, • • • , 0, C ] , and 

(2.49) 

In particular, unit memory discrete linear repetitive processes (2.24)-(2.25) can be 

written 

a;&(p + 1) ' A Bo ' a;&(p) ' B ' 

'Zt+l(p) %(p) 0 
(2.50) 

from where the so-called augmented plant matrix for this process can then be de6ned 

aa 

$ := 
A Bo 

C Di 
(2.51) 

In addition, if we define the augmented state vector as 

:^t(p) := [a;t(p)^, Zt(p)^]^ 
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andckdne 

then the state-space equation (2.50) now reads 

^ ^^(p) + 5 ^^t(p), A > 0, 0 < p < a, 

where 

B = 
B 

0 

(2.53) 

(2.54) 

(2.55) 

The 'equivalence' between Roesser / Fornasini-Marchesini models and certain classes 

of discrete linear repetitive processes has enabled the interchanging of stability tests 

between the two areas. This link, however, has not been useful in addressing cur-

rently open systems theoretic questions (such as what (if anything) is meant by 

reachability / controllability). Hence (based on the preliminary results in (Galkowski 

et al., 1995)) new nonsingular 2D linear systems representations of the dynamics of 

(2.24) have been introduced in (Galkowski et al., 1999b) which are then used with 

the singular Fornasini-Marchesini state-space models discussed previously in the 

characterisation of local reachability / controllability properties for these processes. 

Introduce the following transformations into the discrete unit memory subclass of 

processes with state-space form (2.24), 

%(p) := r&(p 4-1) - A zt(p) - B 'UA(p) 

//A:(p) := 2/A(p) - C ZA(p). (2.56) 

Then the following representation can be obtained 

A O / 

D i C Di 0 

BqC BQ 0 

which is a standard (nonsingular) Roesser model whose state dimension is 2ri + m 

as opposed to 2(n + m) for the singular Roesser model which can be developed from 

the singular Fornasini-Marchesini model of (2.45)-(2.46). 

As a special case of this, consider now the case when Di is nonsingular and define 

the so-called restricted state vector for (2.24) as 

Zt(p+ 1) 

/̂ &+l(p) = 

?7t+i(p) _ 

' B ' 

m(p) + 0 ^&(p) (2.57) 

. %(P) . _ 0 _ 

(2.58) 
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Hence, here we have 

%(p) = -Bo^i ^ (2.59) 

and the following restricted 2D state-space model of Roesser type is obtained for 

the dynamics of (2.24), 

a;A(p + 1) 

//6+l(p) D i C Di 

a:A(p) 
_L 

" B ' 

/̂ &(p) 0 
wtCp). (2.60) 

This section has introduced some of the models from 'classical' 2D systems theory 

which Eire available for the subclass of discrete linear repetitive processes with con-

stant pass length a which are employed throughout this thesis. The stability theory 

for these models is presented in chapter 3. 

2.7 A 2D Transfer -Funct ion Approach 

A major basis for the analysis of ID linear systems theory is the transfer-function 

representation. It is expected that such an approach may play a similar role for 2D 

systems, and in particular for linear repetitive processes. 

(Rogers and Owens, 1989a) has developed a 2D transfer-function matrix descrip-

tion for differential processes using two separate transform parameters. Prior to 

the introduction of these transforms, some preliminary results and observations are 

required. Firstly the processes must be well posed in the sense that sequences of 

inputs are mapped to sequences of outputs. In addition, they must exhibit multi-

pass causality. As an illustration of this last point, consider the differential process 

(2.11)-(2.12). Then, in this case, multipass causality means that the output ?/t(() at 

any time t on pass k does not depend on information from any of the following sets, 

X = {3;A:(T) : ( < T < a } U {a:z(t) : 0 < t < a, Z > A} 

D = {di : I > k} 

= {2/&(T) : ( < T < a } U {Mz(t) : 0 < ( < a, Z > A:} 

^ = {m('r) : ^ < T < a } U {^i(() : 0 < ( < a, Z > A:}. (2.61) 

This set of causal information is illustrated in figure 2.5. (Note that this discussion 

of multipass causality extends in a natural manner to discrete processes described 

by (2.22)-(2.23)). 
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Pass Index 

k 

k - 1 

NON-CAUSAL 

CAUSAL 

\i \i : \i \i 

Time 
a 

Figure 2.5: Set of Causal Information at Time t on Pass A; 

Under these conditions, a formal definition of a 2D transfer-function description 

for linear repetitive processes described by (in this case) a differential model can 

be given. In order to do this, some formal definitions of the transforms are first 

introduced. These have been included within the appendix section A.2. 

Given these initial results, and proceeding as in (Rogers and Owens, 1989a), the 2D 

transfer-function of the non-unit memory differential process (2.11)-(2.12) can be 

written as 

y ( s , z ) = G(s ,z ) [ ; (g ,z ) (2.62) 

where (?(g, z) is the m x Z 2D transfer-function matrix given by 

(3(5, z) = (7m - D ( z ) ) - ' C { s 4 - /I - B(z)(Zm - D ( z ) ) - : C } - ' g (2.63) 

and 

M 

i=i 

a ( z ) = E A- (2.64) 
i=i 

Note that, in the differential model (2.11)-(2.12), two parameters are required to 

specify a variable (namely the pass index k and the time or distance along the 

pass () and hence this is the basic reason why the transfer-function matrix for the 

process is 2D in nature. In (2.62)-(2.64) the Laplace transform variable s represents 

the along the pass dynamics whereas the second parameter z~^ is a 'backward' shift 

operator which takes account of the interaction between successive pass profiles. 
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After routine algebraic manipulation, (2.62)-(2.64) can be rearranged to give clearer 

insight into the physical structure of the processes, as follows, 

M 

y(g, z) = ^0(5) [/(a, z) + ^ y(a, z) (2.65) 

where 

GQ(̂ S) — Ci^slji — A.) and 

= C{sln — A) ^Bj-i + Dj, 1 < i < M. (2.66) 

Now, consider the two elements of this representation separately. 

2.7.1 Derived Conventional Linear System 

Firstly consider the subsystem described by 

y(5) = Go (3) [/(a) 

= C(5f^ - yl)-"B [/(s). (2.67) 

This is just the transfer-function representation of a ID linear system and represents 

the contribution of the current pass input vector acting alone to the current pass 

profile. To illustrate this, suppose that, in (2.11), 

(i) the previous pass terms are deleted, i.e. Bj^i = 0, Dj = 0, I < j < M, 

(ii) the pass subscript /c + 1 is dropped, and 

(iii) the concept of a pass length is irrelevant. 

Then (2.11) reduces to 

z(t) = A a;(t) 4- B %/(t) 

^(() = Cz(() , z(0) = d, (2.68) 

which is just the well known state-space model from conventional differential linear 

systems theory. With this in mind, (2.67) is termed the derived conventional lin-

ear system of (2.11)-(2.12), denoted LD{A, B,C). It then follows that, under the 

conditions (i) to (iii) above, G{s,z) in (2.62) reduces to (?o(g) which is just the 

transfer-function matrix of Z,f,(A, B, C). 
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2.7.2 Associated Conventional Linear System 

Now consider the set of subsystems described by 1 < j < M, of (2.65). 

It can be shown that Gj(g) is the transfer-function of the j*'' so-called associated 

conventional linear system, Bj^i,C, D j ) , described by the state-space model 

z(() = A a;(f) + 

/ - : ' ( ( ) , 3;(0) = 0. (2.69) 

Now each subsystem (2.69) is a ID linear system and in fact (2.69) can be regarded 

as describing the contribution of paas A: 4-1 — j to the current one. This can be seen 

by restricting t to [0, a] and by setting equal to the (A; -t-1 — j)*'' pass proHle. 

Note that each of the j*'' associated conventional linear systems can be written in 

the transfer-function matrix form 

M:^(g) = (2.70) 

with 

Gj(s) = C(sJ„ — j4) ^Bj^i -|- Dj. (2.71) 

2.7.3 Physical In te rp re ta t ion 

Returning now to the expansion (2.65) of y ( s , z). Firstly note that G(g, z) can be 

written 

G(s,z) = (2.72) 

Then, what we have is a representation of a linear repetitive process which gives us 

physical insight into the structure of the system. Observation of figure 2.6 shows 

that Go(s) (the transfer-function matrix of the derived conventional linear system) 

has the effect of a dynamic pre-compensator with the (j; (g) terms, 1 < j < M, (the 

transfer-function matrices of the associated conventional linear systems) as feedback 

elements representing the crucial interaction terms. 

It should be noted that this block diagram is not unique. The point is that it 

clearly highlights the fact that the process dynamics are constructed from the in-

terconnection of subsystems whose dynamics are characterised by ID linear systems 
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^0(5) 

Pre-compensator 

y (g , z ) 

z ^Gi(s) z ^Gi(s) 

z (^2(5) z (^2(5) 

Repetitive Interaction 

Figure 2.6: Block Diagram Interpretation of a Linear Repetitive Process 

transfer-function matrices. With this motivation it appears that ID linear systems 

methods may play a role in the design of control schemes for linear repetitive pro-

cesses. This is discussed further in chapter 6. 

One other point should be discussed prior to ending this section on 2D transfer-

function matrices. In the unit memory, M = 1, case, Gi(s) denotes the contribution 

of pass profile to and as such is termed the interpass transfer-function matrix. 

For the more general M > 1 non-unit memory case, let y ( s ) denote the combined 

eEects of the previous M pEisses. Then 

Y{s) :=Y,W'(s) = (2.73) 
j-1 j=l 

This expression can be interpreted in 'unit memory' form by stacking up the y(g) 

terms and writing it aa 

(2.74) 

' y ^ - ^ ( s ) ' 

= (7(3) 

y(g) y"(g) 

where 

G(5) 

0 /„ 

0 

(^2(5) Gi(g) 

(2.75) 
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is an m M x block companion matrix, and which, since the process has now 

been written in unit memory form, is termed the interpass transfer-function matrix. 

This interpass transfer-function matrix will be referred to in subsequent chapters, 

together with the x constant coefBcient block companion matrix de&ned 

by 

D = lim G{s) (2.76) 
laj—yoo 

I.e. 

D = 
0 0 7m 

DM Dg 

(2.77) 

2.7.4 Discrete Processes 

Equivalent discrete versions of the transfer-function matrix concepts introduced in 

this section are outlined in (Rogers and Owens, 1992b). Instead of the g/z transforms 

used for the differential processes, a z i / z or 'double z' transform is used for discrete 

processes. Since the transfer-function matrices and results presented generalise in a 

natural manner, the details here are omitted. 

2.8 Summary 

This chapter has introduced some of the models available (and those which are 

used in the subsequent analysis within this thesis) for representing linear repetitive 

processes with a constant pass length a . The associated stability theory is presented 

in the following chapter. 

A rigorous mathematical representation of linear repetitive processes with constant 

pass length a has been given. It has been illustrated how this abstract representation 

admits analysis of processes with certain special structures, with emphasis on the 

differential and discrete subclasses. These constitute the two main subclasses where 

research has been focussed to date, and are of both direct industrial and algorithmic 

interest. Further examples of areas where adopting a repetitive process approach 
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has certain beneGts over alternatives has been presented in section 2.5 which serves 

to illustrate areas where future research effort may be directed. 

Section 2.6 has established links between certain subclasses of linear repetitive pro-

cesses and well known models from 2D linear systems theory. Stability results ob-

tained from exploiting the structural links between such processes and 2D linear 

systems can be found in (Rocha et al., 1996), amongst others, and are summarised 

in section 3.8. It should be stressed that not all linear repetitive processes have 

an associated 2D Roesser/Fornasini-Marchesini form. In particular, certain 'non-

standard' forms, such as processes with interpass smoothing effects, have no 2D 

Roesser/Fornasini-Marchesini representation. Hence the application areas of this 

associated stability analysis is limited to those processes possessing certain special 

structures. 

Finally, within section 2.7 a 2D transfer-function representation of a linear repetitive 

process has been presented. It is anticipated that such an approach, as in ID linear 

systems theory, will play a signihcant role in the analysis and design of control 

schemes for these processes, in addition to providing physical insight into their 

structure. 
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Chapter 3 

Stability 

3.1 In t roduc t i on 

A key property of any system, whether it represents a physical process or is of 

a purely algorithmic nature, is that of stability. Using techniques from functional 

analysis, a rigorous stability theory has been developed by Rogers and Owens for the 

abstract representation of linear repetitive processes introduced in chapter 2 (see, for 

example, (Rogers and Owens, 1992b)). This theory, presented here in section 3.2, 

demonstrates that two distinct concepts of stability exist, namely asymptotic stabil-

ity and stability along the pass. This is not surprising since, as already illustrated, a 

linear repetitive process is governed by two independent variables, i.e. in the along 

the pass and the pass to pass directions. Within this chapter, it is highlighted that 

asymptotic stability is a relatively weak definition of stability and that in general 

(with a few notable exceptions) it is the stronger concept of stability along the pass 

which is required for acceptable systems performance. 

In sections 2.4.1 and 2.4.2 of chapter 2, differential and discrete classes of linear 

repetitive processes were introduced which were shown to be special cases of the 

abstract representation of definition 2.1. Within sections 3.3 and 3.4 of this chapter, 

the stability theory for the abstract representation is specifically interpreted for 

these processes. Here it is shown how the determination of the boundary conditions 

(termed 'simple' or 'dynamic') is of vital importance. In fact, the niisclassification of 

a process with dynamic boundary conditions as having simple boundary conditions 

could result in an unstable process being determined as stable. 
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Section 3.5 discusses simulation-based stability tests which assume that suitably well 

behaved plant step response data is available or can be obtained from simulation 

studies. In this and the subsequent sections it is demonstrated how, for the discrete 

subclass of processes, the standard test for stability along the paas involves calcu-

lating the eigenvalues of an x transfer-function matrix for all points on 

the unit circle in the complex plane, which can be computationally intensive even 

in the simplest of cases. With this motivation, new stability tests have been devel-

oped for this subclass which replace these complex computational conditions with 

a one-off computation of the eigenvalues of a matrix with constant entries. The 

resulting conditions are sufficient but not necessary, but serve to act as a simple 

'acceptance criterion'. In addition, this conservativeness is offset by the availability 

of performance measures for a given pass, supplied by the new stability conditions 

at no extra computational cost. The theory in these sections is novel, and provides 

the basis of the paper (Benton et al., 1998b). 

Within section 2.6 it was illustrated how certain classes of linear repetitive processes 

can assume a 'classical' 2D systems structure. In section 3.8 links are drawn between 

the stability along the pass of these discrete linear repetitive processes and the BIBO 

stability of systems described by the Roesser / Fornasini-Marchesini 2D state-space 

models. 

The chapter concludes by introducing a Volterra operator bcised approach to the 

stability analysis of discrete linear repetitive processes. 

3.2 Stabi l i ty Theory for t h e Genera l A b s t r a c t 

Rep re sen t a t i on 

Within this section, the rigorous stability theory developed by Rogers and Owens for 

the abstract representation of a linear repetitive process with constant pass length 

a is presented, introducing the two separate concepts of asymptotic stability and 

stability along the pass. 
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3.2.1 Asympto t i c Stabili ty 

In chapter 2 it was illustrated (via figure 2.3) that the unique control problem 

associated with linear repetitive processes is that the output sequence of pass profiles 

{yk}k>i can contain oscillations which become unbounded from pass to pass. With 

this motivation, the natural intuitive definition of asymptotic stability is to demand 

that, given any initial profile 2/0 and any disturbance sequence {6t}A>i which 'settles 

down' to a steady disturbance 600 as A; ^ +00, after a 'sufBciently large' number of 

passes the output sequence of pass profiles 'settles down' to a steady profile ?/oo as 

A; — + 0 0 . The phrases in quotes are, of course, subject to interpretation and depend 

upon the application under consideration. This idea is illustrated in figure 3.1 

(further discussion of the so-called limit proEle 1/00 is given in section 3.2.2). 

2/0 

/ 
/ / 

2/0 = Initial pass proSle. 

2/1 = First pass proEle. 

3/00 = Limit proEle. 

a 

Figure 3.1: Asymptotic Stability of a Linear Repetitive Process 

In practical applications, the effect of modelling errors and uncertainties will produce 

uncertainty in the structure of La in the abstract repetitive process model (2.5) and 

hence the following definition of asymptotic stability is used since this definition 

ensures that the 'set of all stable systems' is open (in a well defined sense) in the 

class of all linear repetitive processes. Note that here we only consider the unit 

memory case since all results obtained generalise in a natural manner to the case 

when M > 1. Also note that the results given here (i.e. in section 3.2) plus relevant 

proofs can be found in chapter 3 of (Rogers and Owens, 1992b). 

Def ini t ion 3.1 (Abstract Representat ion - Asymptot i c Stabil ity) A linear 

proceaa 5'(^7a, IVa, -Z/a) 0/ paaa a > 0 0̂ 6e 
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%/ (Aere ezig<5 a rea/ sco/ar > 0 ŝ fcA mz(za/ pro^/e 

1/0 o/id amy coMi;er̂ eM( (f*g(wr6aMce aegifemce C Âe aegtfence 

{^k}k>i gemera êcf 6?/ (/&e peiiwAed process 

1/t+i = (!,« + 7)3/A + bt+i, A; > 0, (3.1) 

coMfef^es gfroMpẐ  (o a so-coZZe<i Z%m%( projiZe 2/00 E .Ba w/temei;er H'yH < wAere || -1| 

denotes the norm on E^-

Asymptotic stability is then the requirement that bounded disturbance (or forcing) 

sequences generate (in some well deEned sense) bounded sequences of pass proxies. 

Note that this property has been augmented by the practically motivated require-

ment that asymptotic stability is retained in the presence of small modelling errors 

or simulation approximations. 

Now consider the general abstract representation (2.5) of a linear repetitive process 

under asymptotic stability. In addition, consider the case of 5̂ . = boo = 0 V fc > 0 in 

(3.1), i.e. an absence of disturbances, which causes the set of pass profiles 

to be strongly convergent to zero. Then taking 

7 = 7 ^ (3.2) 

||-̂ Q 11 

gives ll'-yll = Since = (I/a 4- 7)̂ 3/0 is strongly convergent (by deSnition) it is 

bounded V 2/0 G 

Application of the Banach Steinhaus (Uniform Boundedness) Theorem A.l now says 

3 real > 0 such that 

or equivalently 

Defining 

\{La + 7)̂ 11 < Mg, k (3.3) 

l + ~ ) t > 0 . (3.4) 
ll-̂ a II / 

-/Q! 

- 1 

Ac. = ( 1 + ) < 1, (3.5) 

we now consider the case of the 'real system', i.e. the system which is not subject 

to any small perturbations/modelling uncertainties, and 7 = 0. Then 

llmll = < ll-C'lll II2/0II < (3.6) 
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3 Stability 42 

Hence, in the absence of disturbances, since 0 < < 1, the output sequence of 

pass proAles converges strongly to zero for all initial profiles, i.e. asymptotic 

stability is the requirement that the effects of the initial pass profile are rapidly 

attenuated. 

In order to introduce a formal asymptotic stability result for the abstract representa-

tion some definitions are needed. Within the appendix section A.l formal definitions 

of spectral values, spectrum and spectral radius of the bounded linear operator La 

are given. 

Given these definitions, the following result now characterises asymptotic stability 

for the general abstract representation of (2.5), 

T h e o r e m 3.1 (Abstract Representat ion - Asymptot i c Stabil ity) A linear 

proceaa 5'(E'a, Wa, Z,a) poaa a > 0 

r(^c.) < 1 (3.7) 

w/iere r ( ) demotes tAe spectral radma (/leataj. 

Note that if is finite dimensional, this result is equivalent to the requirement 

that all eigenvalues of lie in the open unit disc in the complex plane. 

The condition of theorem 3.1 is not surprising since a superficial consideration of 

the abstract representation (2.5) indicates a similarity between the structure of 

^'(EaiWaif/a) and the well known linear time-invariant discrete time system, and 

hence in this sense it is to be expected that the stability of the process depends 

explicitly on the spectrum of 

3.2.2 Limit Profile 

Now this result gives little or no information regarding the transient behaviour of 

the process. For this type of information we look towards the so-called limit profile 

of the process. This is the 'steady state' profile, under asymptotic stability, which 

the output sequence of pass profiles tends towards after a sufficiently large number 

of passes, and is represented by in figure 3.1. Formally, the limit profile can be 

defined as follows, 
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Def init ion 3.2 (Abstract Representation - Limit Profile) Suppose that the 

/mear process 5'(Ea, Wa, jLa) o/ 5fo6/e and 

5̂ a ^egi/eTice coMferyes (o a 6oo-

Then the strong limit 

?/oo := lim %/k (3.8) 
A—̂-}-oo 

%5 (ermed (Ae pro^Ze correapoTicfm^ fo {6t}&>i. 

This deSnition implies that, under asymptotic stability, the output sequence of pass 

profiles {̂ A:}&>i converges strongly to the limit profile i/oo (in the sense of the norm 

on Ea), i.e. 

lim ||%/&-z/oo|| = 0. (3.9) 
A—̂  + 00 

Corollary 3.1 Suppose that the conditions of definition 3.2 hold. Then the corre-

apoMiimg pro_̂ Ze za (/le ttMzgtfe o/ Zmeor 

2/oo — Liq, 2/oo ~l~ ôo) (3.10) 

w/iere 

boo := lim bk- (3.11) 
t—̂ -|-00 

Clearly yoo is independent of the initial pass profile yo (as we would expect due to 

asymptotic stability) and independent of the direction of approach to feoo, and by 

rearranging (3.10) as follows 

Voo = {^m — La) ^boo, (3.12) 

we see that (3.10) has a unique solution due to the asymptotic stability condition 

(3.7). Note that equation (3.10) can be formally obtained from the asymptotic 

stability definition 3.1 be setting 7 = 0 in (3.1) and replacing each term by its 

strong limit. 

The following result shows that performance of an asymptotically stable process can 

be partially characterised by real scalars > 0 and 0 < < 1 describing the rate 

of approach of the output sequence of pass profiles {yk}k>i to the limit profile, 
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T h e o r e m 3.2 (Abstrac t R e p r e s e n t a t i o n - A s y m p t o t i c Stabi l i ty) Suppose 

/meor proceas o/ poaa 

a > 0 g^at/e. fYi/fAer, proceaa 6e 5i/6jec(e(f (o a 

(f%a(ur6ance aegtfe/ice 6^+1 = 6oo, A; > 0, wAzc/i pe/iera^ea (Ae proyZ/e 

2/oo. T̂Aem (/igre ezzs^s reaZ aca/ara > 0 ontf 0 < < 1 awc/i 

iVk 2/oo||<M^A^j||2/o|| + Y % ^ j , A:>0. (3.13) 

Note tha t in effect this result states tha t the output sequence {yk}k>i approaches the 

limit proAle at a geometric rate governed by A .̂ For a further discussion/analysis 

of these so-called performance bounds see section 3.7. 

3.2.3 Stabil i ty along the Pass 

Asymptotic stability of 5'(.B'a,Wa,Z,a) guarantees the process has a limit profile. 

However it is not guaranteed tha t this limit profile has acceptable dynamic char-

acteristics. A simple example which illustrates this key point for the differential 

subclass is given in section 3.3.2. Hence the natural definition of stability along the 

pass is to demand that the limit profile is stable in the standard, i.e. ID, sense as 

the pass length becomes 'large', i.e. aa a —̂  +oo. Now this intuitive definition of 

stability along the pass is not applicable if the limit profile is not a ID linear system 

state-space model. Therefore the definition of stability along the pEiss is made in 

terms of the rate of approach of the output sequence of pass profiles to the limit 

profile. 

This characterisation requires the introduction of the concept of a so-called extended 

linear repetitive process. This consists of a collection of models obtained by allowing 

the pass length a take values greater than some nominal value ao, and can be 

formally defined as follows, 

Def in i t ion 3.3 ( E x t e n d e d Linear R e p e t i t i v e Proces s ) A collection of models 

of S{Ea, Wa, La) With pass lengths in the range a > ag is termed an extended linear 

proceaa (fe/iofed ^(E'a, IVa, -La)a>ao. 

Stability along the pass can then be defined by considering the rate of approach of 

the output sequence {yk}k>i to the limit profile as follows, 
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Definit ion 3.4 (Abstract Representation - Stability along the Pass) The 

eikMcfecf /meor proce^a 5'(Ea, M/a, w a(o6Ze (Ae poaa */ (Aere 

_/zn%(e reo/ aca/ora Moo > 0 0 < Aoo < 1 o/cK^ 5%fc/i (Aof, 

/or eoc/i a > ao /or eacA co7ig(aM( (fza^ur^azice aeg^fe^ce b^+i = 6oo, A; > 0, (Ae 

gegT/eace ^rom (Ae mo(feZ 5'(E'a, Wa, aa(%5yzeg (Ae 

IIZ/A 2/oo||<MooA^j||2/o|| + Y % ^ j , A:>0. (3.14) 

To be of use in a particular application, the abstract results must be convertible 

into a suitable computable form. Since this definition is not in an appropriate form 

for the derivation of a stability criterion, the following lemma is presented which 

implies a more useful definition of stability along the pass. Given theorem 3.2 (i.e. 

that the process is asymptotically stable - a necessary condition for stability along 

the pass), this result demands the existence of finite bounds and Aoo for the 

scalars and A ,̂ as a -4 +oo. 

Lemma 3.1 S{Ea, Wa, La)a>ao said to be stable along the pass i f , and only i f , 3 

/iMzfe reaZ aca/ara Moo > 0 0 < Aoo < 1, o/ (Ae poaa a, aitcA 

\ \L l \ \< (3.15) 

V O! > 0, A > 0. 

Hence, in eEect, stability along the pass of 5'(Ea, 14^, I/a)a>ao requires that the rate 

of convergence of the output sequence of pass prohles {2/&}t>i to the limit profile ?/oo 

has a guaranteed geometric upper bound which is independent of the pass length a. 

This result leads to the following which is one of several equivalent characterisations 

of stability along the pass for 5'(^a, i,a)a>ao, 

Theorem 3.3 (Abstract Representation - Stability along the Pass) The 

Zmear repe^ f̂zre proceaa 6'(E'a, Wa,i,a)a>ao aZonp (Ae paaa i / 

sup r(La) < 1 (3.16) 
a>ao 
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(b) 

Mo := sup sup ||(zf — < +00 (3.17) 
a > a o | z |>A 

/or gome reoZ nitmAer A € (foo, 1). 

Note that it can be shown that condition (b) can be relcixed to 

Mo := sup sup II(z/ — .La)"^|| < +00. (3.18) 
a > a o | z |=A 

Part (a) of this result is equivalent to the requirement that all models with a > ao 

are asymptotically stable. This is the stronger requirement that asymptotic stability 

holds uniformly, i.e. that asymptotic stability is independent of pass length. Hence 

the reason for retaining the separate identities of (a) and (b) in theorem 3.3 despite 

the fact that (b) does imply (a). 

It can be shown that the 'boundedness' condition (b) is equivalent to the requirement 

that 3 A E (foo, 1) such that 

(zf-I ,c , )3/ = 77 (3.19) 

has a uniformly bounded (with respect to a) solution y ^ Ea^ rj ^ satisfying 

supa 117711 < +ooV|z | > A. In general this condition is very difEcult to interpret. For 

the special cases of the differential and discrete processes introduced in sections 2.4.1 

and 2.4.2, however, the stability results of sections 3.3 and 3.4 are obtained, respec-

tively. 

3.3 Stabi l i ty Theo ry for Different ial Processes 

Within section 2.4.1 it was shown how differential processes with the state-space 

model (2.11) can be written in the form of the abstract representation (2.5), and 

hence the stability theory introduced in the previous section can be specifically inter-

preted for these processes. The theory is presented initially for differential processes 

with state-space model (2.11) and the simple boundary conditions (2.12), with the 

necessary amendments to the results to accommodate the dynamic boundary con-

ditions of (2.18) given at the end of the section. 

46 



3 Stability 47 

A discussion of the extension of these results to the discrete subclass of processes 

described by models of the form (2.22) is given in section 3.4. 

3.3.1 Asympto t ic Stabili ty 

The following result gives necessary and sufficient conditions for asymptotic stability 

of differential processes described by (2.11)-(2.12), 

T h e o r e m 3.4 (Asymptot i c Stability - Differential Non-unit Memory) 

OMcf OweMa, iTAe memory Zmear pro-

cess o/z/y a/Z o/ (Ae 

77%M X m M 6/ocA: compamoM D pzt/e/i 6̂ / Zesa 

The following corollary of theorem 3.4 can now be given for unit memory differential 

processes with state-space representation (2.13)-(2.14), 

Corollary 3.2 (Differential Unit M e m o r y Case) (Rogers and Owens, 1992b) 

M = 1 in (Aeorem (Ae (Ae memon/ 

Zmeor proceaa afabZe and onZi/ aZZ 

o/ (Ae m x m Zte m (Ae opeTi circZe m </ie compZea; p/ane, 

i e . and 

r(Di) < 1. (3.20) 

Notice that the results of theorem 3.4 and corollary 3.2 are counter-intuitive, since 

what we have in effect is a stability condition which is independent of the system 

matrices A, B, BQ and C. In particular, the result is independent of the eigenvalues 

of the matrix A which clearly govern the dynamics along a given pass. This is due 

entirely to the fact that the pass length a is Enite and this changes drastically when 

the case of a —> +oo is considered (see later). 

As an illustration, consider the case of a differential unit memory single-input / 

single-output (SISO) process with zero control inputs, i.e. Uk+i(t) = 0, 0 < t < 

a, A; > 0, and zero state initial conditions on each pass, i.e. 2;t+i(0) — 0, A; > 0. 

Then on the pass the initial output is 

3/jk(0) = Df2/o(0). (3.21) 
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So, for the sequence {2/A(0)}A>i not to become unbounded (in a well deEned sense) 

as the pass index A; —> 4-cx3, we require 

r(Di) = |Di| < 1, (3.22) 

i.e. the condition of corollary 3.2, which can be tested by computing the eigenvalues 

of £>1 and displaying them relative to the unit circle in the complex plane (standard 

ID test). Hence, in physical terms, asymptotic stability is the requirement that the 

initial output on each pass does not become unbounded as A; —> +oo, i.e. the effect 

of the initial profile is attenuated after a large number of passes. 

3.3.2 Limit Profile 

As for the abstract case, asymptotic stability guarantees the existence of a limit pro-

file for the differential process with state-space model (2.11)-(2.12) as the following 

corollary shows. 

Corollary 3.3 (Limit Profi le - Differential Case) (Rogers and Owens, 1992b) 

Suppose that the condition of theorem 3,4 holds and that a strongly convergent se-

gwemce {'UA:}A>i /or Zmear 

Zoo(() = A a;oo(() + B %foo(() -I- B ?/oo(() 

3/oo(̂ ) = C a;oo(() + D ^oo(^), 0 < ( < a, a;oo(0) = doo, (3.23) 

w/iere 

A—>00 K-400 
B D — y^Dj, lim Uk = Uco and lira dk = d^, (3.24) 

j=i i=i 

ioo{i) = {A + B (Im — D) ^ C) Xcx>{t) + B Uoo{t) 

^oo(() = (4) - ^)"^ c a;oo((), 0 < ( < a, a;oo(0) = (foQ. (3.25) 

This is obtained by replacing each term in the process description (2.11)-(2.12) by 

its strong limit. Note that the transfer-function matrix of this limit profile can also 
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be obtained by setting z = 1 in the m x Z 2D transfer-function matrix G(g, z) given 

by (2.64). 

Clearly (3.25) represents a standard state-space model from ID lineeir differential 

systems theory. Hence, if the differential process (2.11)-(2.12) is asymptotically 

stable then, after a 'sufRciently large' number of passes, the process dynamics may 

be replaced by those of a ID linear system. This fact has obvious implications from 

a feedback control point of view, which is discussed further in chapter 6 of this thesis 

on controller design. 

Now asymptotic stability is a weak stability condition for the reason that, since the 

pass length a is fixed and finite, even an unstable ID system can only produce a 

bounded output over such a duration. In this respect, asymptotic stability cannot 

guarantee that the resulting limit profile has acceptable dynamic characteristics and, 

in particular, that it is stable in the ID sense. 

The following simple example illustrates the point. 

Example 3.1 (Asymptot ic Stability ^ Stability along the Pass) Consider 

(Ae memory proceaa, tuAere a reaZ gcaZar, 

ik+i{t) = + Uk+i{t) + (1 + /3) yk{t) 

?/t+i(^) = a;A+i(() 

1^+1(0) = 0, 0 < t < a , A:>0. (3.26) 

Then, since in terms of (2.13)-(2.14) Di = 0, the process is asymptotically stable 

i/ooit) = (3 J / o o ( ^ ) 4 " ' U ' c a i i ) 

0 < t < a, 2/oo(0) = 0. (3.27) 

Also if Uf;^i{t) = 1 and yo{t) = 0, 0 < t < a, k > 0, then it can be easily shown 

2/i(() = l - e - \ 0 < ( < ( , . (3.28) 

2/oo(() = - 1), 0 < f < a. (3.29) 
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5'o (/te /zraf poaa proyZZe za c/eorZy occep<a5Ze c/iaroc^er-

regpoMse (o (/le â ep commancf 'Ui(t) = 1, (Ae reawZfm^ proyZ/e /tag 

«7%accep(o6Ze (fynomic c/iarac^ena^icg. parfzct/Zar, /or ,8 > 0, (Ae dynamzca o/ <Ae 

pro/ik mcreaae ea;pongM(m/Zi/ ancf coM 6e aazd (o 6e 'lizzafaA/e oZofip fAe paaa' m 

<Ae oAmotfS Wm^22;e seMae. 

Despite the apparent weakness of asymptotic stability, cases do exist where this is 

all that is required (for example certain classes of iterative learning control schemes 

(Amann et al., 1996; Amann et al., 1998; Owens et al., 2000)) or, in fact, all 

that can be achieved (for example nonlinear optimal control using the maximum 

principle (Roberts, 1996; Roberts, 2000)). In this latter example, where a discrete 

unit memory linear repetitive process arises, the matrix corresponding to A never 

has all of its eigenvalues inside the unit circle in the complex plane which (as seen 

in the following section) is a necessary condition for stability along the pass. Hence 

asymptotic stability is all that is achievable here. In the majority of examples of 

repetitive processes, however, it is the stronger condition of stability along the pass 

which is required for acceptable systems performance. 

3.3.3 Stabil i ty along the Pass 

The stability along the pass result (theorem 3.3) for the abstract representation of 

deRnition 2.1 can be specifically interpreted for the differential subclass of processes 

as follows. 

Theorem 3.5 (Stability along the Pass - Differential Case) (Rogers and 

Owena, 

(i) the pair {C,A} is observable; 

(ii) the pair {-A, is controllable at all but a finite number of 

points 7i, 72, • • • , 7g the complex plane; and 

|sJn — v4 — Aas zio roo(a on (/le aiza 

o/ compZei p/ane, 1 < % < 9; w/iere 

P(7) = 7 / ^ - - 7-^D2 7'""^^^. (3.30) 
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r/iGM Zmeor repe(%<%?;e proceaa 'S'(Ea,M/a,-^a)a>ao ge îero^ed 6?/ (f%#er-

mo(feZa o/ (Ae /orm a > do %5 g(a6Ze aZoMp (Ae poaa aW 

W 

roo — sup{|z| : f (z) = 0} < 1, (3.31) 

and 

(Aere rea( 7i%fm6era e > 0 a/id Too < A < 1 sitcA 

M 
|g/^ - A - ^ Bj_iz^-:''f (z)-^C| f 0 (3.32) 

i=i 

/or oZZ compfei mwrnbera z, s |z| > A azzd j?e{s} > —6. 

Note that condition (b) of this result is not computationally feasible. 

At this stage, it is convenient to introduce the following deAnition, 

Definit ion 3.5 (Asymptot ic Stability Polynomial) (Rogers and Owens, 

rAe 5o-caHe(f oĝ /mp̂ ô ĉ poZi/7iommZf^(z) /or (Ae (fi^eren^mZproceaa 

%g oa 

fX-::) := IQ('2:)I (3-33) 

wAere 

0(z) = 7^ - z - ' D i (3.34) 

an,d is (o 6e regarded as a po/i/nomia,( in, 

Then it can easily be shown that condition (a) of theorem 3.5 for asymptotic stability 

can be replaced by 

f^(z) = |Q(z)| ^ 0 V |z| > 1. (3.35) 

It is also clear that, in this case, the spectral values of iLa V a > 0 are given by the 

solutions of Pa{z) = 0. Hence 

roo = 8upr(Z/a) < 1 (3.36) 
Q>0 

if condition (3.35) holds. 

The stability along the pass polynomial for (2.11) can be defined as follows, 
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3 StaWity 52 

Def ini t ion 3.6 (Stabil ity along the Pass Polynomial) (Rogers and Owens, 

T/ie ao-caZW o/oMp (/le p<is5 pofi/MommZ Ap(g,z) /or fAe process 

25 de/zned as 

M 

A f (s, z) : = |sJ» - ^ (3.37) 

i=i 

WfA Q(z) OS m <9.̂ ,̂ , a/td %a regarded os a poJyMomioZ m s coê ĝ czeRfa 

ore ra ẑoMaZ/z/Mĉ zons m 

A simple argument now shows that (b) of theorem 3.5 is equivalent to the existence 

of real numbers 6 > 0 and roo < A < 1 such that 

v 4 p ( g , z ) # 0 (3.38) 

for all complex z, s satisfying |z| > A and Re{s} > —e. 

The following alternative set of necessary and sufhcient conditions now characterise 

stability along the pass of differential processes with state-space model (2.11)-(2.12). 

The result, in effect, replaces condition (b) of theorem 3.5 by two conditions which 

are both computationally feeisible. 

Theorem 3.6 (Stabil ity along the Pass - Differential Case) (Rogers and 

Oiuens, '̂'appose (/le asstimp^ions o/t/ieorem 5.5 /loZd. (TAen (A,e eifended 

/mear repe(z(%re process 'S'(^a, Wa,Z'o)a>ao ^enerafed 61/ d^eren^mZ modeZs 0/ (/le 

/orm 0/ a > ag is s(o6Ze aZonp (Ae pass ond ô Ẑ / 

aZZ ezpeMfoZwes o/^Ae mM x mM 6Zoc& compamon mo^ria: D 0/ 7?^ Aai;e 

modulus strictly less than unity; 

6̂̂  aZZ ezgenT âZtfes 0/ fAe moMa; A Aai/e sMc^Z^ nepafi^e reaZ par^s or, egww-

alently, the derived conventional linear system LD{A, B,C) described by the 

(rons/er-yztncfion ma^rii Go(s) 0/ is sfa6Ze; and 

(c) all eigenvalues of the mM x mM interpass transfer-function matrix G{s) of 

s = iw Aoi/e modi/Ztts s(r%c% Zess fZian wn%<2//or aZZ reaZyreg'uencies 

w > 0. 
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Now each of these conditions can be tested via well known ID linear systems stability 

tests which are compatible with a computer aided analysis environment and has a 

well defined physical meaning. 

Condition (a) is just the asymptotic stability condition already stated in theorem 3.4. 

(Note that this is as expected since cisymptotic stability is a necessary condition for 

stability along the pass). 

Condition (b) ensures that the derived conventional linear system is stable in the 

standard ID sense. It is the requirement that the matrix A is Hurwitz and guarantees 

that the dynamics produced along any pass are uniformly bounded independent of 

the pass length. This condition is intuitively obvious since it prevents the presence 

of exponential growth terms within the along the pass dynamics. 

For condition (c), we consider the special case of a SISO differential unit memory 

process (2.13) with zero state initial conditions and control inputs on each pass. 

Then the dynamics of the process along pass A: + 1 can be written 

^ + i ( 4 = Gi(g)yt(g), A:>0, (3.39) 

where 

Gi(g) = C ( g / n - A ) - ^ B o + Di. (3.40) 

Then, in this special case, the frequency component of the process can be written 

}t(zw) = Gi(%w) ?o(%w), A; > 0, w > 0. (3 41) 

Hence condition (c) is the requirement that the frequency component of the initial 

pass profile is attenuated from pass to pass, i.e. |Gi(%w)| < 1 V w > 0. In the 

general (multivariable) case, (c) can be tested by constructing the continuous curves 

(or characteristic loci) generated by the eigenvalues gj(s) of Gi(s), s = ico V w > 0 

and superimposing the unit circle on the resulting plots. 

Returning to example 3.1, it is this third condition which is not satisfied here, since 

^ 7 T l 

and hence, for /) > 0, |Gi(iw)| ^ 1 Vw > 0. 

The three conditions of theorem 3.6 are tested in the order they are presented, 

i.e. with the most computationally intensive conditions computed last only if re-

quired. (Smyth, 1992) gives a comprehensive treatment of the testing of these three 

conditions for a given example. 
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3.3.4 Differential Processes with Dynamic Boundary 

Condit ions 

Within section 2.4.1 of chapter 2 so-called dynamic boundary conditions were intro-

duced which cover cases where the simple boundary conditions of (2.14) are simply 

not strong enough to 'adequately' model the underlying dynamics of the process. 

The inclusion of dynamic boundary conditions affects the bounded linear operator 

La in the abstract formulation (2.5), and hence these conditions alone can destabilise 

the process, as outlined below. 

It can easily be seen that asymptotic stability of the simple boundary condition case 

of (2.13) and (2.14), i.e. r(Di) < 1, is a necessary condition for asymptotic stability 

of the dynamic boundary condition case of (2.13) and (2.18). Hence for simplicity, 

we set = 0 in (2.13) for the remainder of this section. 

It is shown in (Owens and Rogers, 1999) that, for di&rential unit memory processes 

with state-space model (2.13) and 'initial conditions' (2.18), asymptotic stability is 

determined by the following result. 

Corollary 3.4 (Dynamic Boundary Condit ions - Asymptot i c Stabil i ty) 

/mear proceaa ^(E'a, Wa, Z/a) ge/iemfecf Di = 0^ 

wncfer a za oaT/mpfoficaZZ?/ and 

%/, aZZ o/ 

jzfn — M ( z ) | = 0 (3.43) 

have modulus strictly less than unity, where 

N 

M ( z ) : - ^ K j C e ^ ( " ) * ; (3.44) 
;=i 

with 

A(z) := A + z~^BoC, z 0. (3.45) 

Note that we assume that N and tj are fixed at the outset along the pass length a 

and, in particular, do not vary when developing stability along the peiss criteria by 

letting a —-t-oo. 
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Then, under the condition of corollary 3.4, the limit proSle for the process is dehned 

as follows, 

Corollary 3.5 (Dynamic Boundary Conditions - Limit Profile) (Owens 

oMcf iTAe proyzZe /or Zmear 

pmceaaea 61/ a?%d = Oj i/ncfer a 

gegwence z-s deacnbetf 6y (/le sfo^e-spoce mo(feZ 

ioo{T) = {A + BqC) Xoo{T) + B U(xi{t) 

2/oo(̂ ) = C" roo(() (3.46) 

3<ofe mzYmf rector a;oo(0) gifSM 

a:oo(0) = (/» - M ( l ) ) - y ^ (3.47) 

lu/iere Hoo is (Ae sfroTip Km,i( 0/ (̂ oo 3̂ (Ae sfrong 0/ 

m?;e7io6%V%(i/ 0/ /̂le mafna: 7̂  — M(l ) %5 pwarom êed 61/ 

Once again, it is clear that, if the process is asymptotically stable, then its repetitive 

dynamics can, after a 'sufhciently large' number of passes, be replaced by those of 

a standard ID linear state-space system. 

Stability along the pass of processes with state-space model (2.13) and (2.18) can 

then be characterised as follows, 

Theorem 3.7 (Dynamic Boundary Conditions - Stability along the Pass) 

{̂ 4, Bo} coM̂ roZZo6Ze {C', A} is 06-

serfatZe. TAeM '5'(E'a, Z,a) peMera(e<i 6%/ ozzd = 0^ is s<a6Ze 

along the pass i f , and only i f , 

(a) the condition of corollary 3.4 holds, 

(̂ 6̂  a// 0/ (Tie ma(ria; /lafe sfricfZi/ reaZ pa/fs, 

(c) 

supr(Gi(iw)) < 1 (3 
w>0 

where Gi{s) := C(s/„ — A)'^BQ. 
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Note that for the simple boundary condition case, the conditions of theorem 3.7 

can be tested using standard ID techniques - this is no longer true, however, when 

dynamic boundary conditions are employed. 

It is clear from the above results that accurate determination of boundary conditions 

for a given example is vital for correct stability classification. In particular, with 

the wrong choice of boundary conditions, an unstable process may be accepted cis 

asymptotically stable. 

3.4 Stabi l i ty Theory for Discre te Processes 

Within this section, the abstract stability theory of section 3.2 is interpreted for 

the discrete subclass of processes. Here just the main results are quoted - in gen-

eral, discussions of the results can be carried over from those given in the sec-

tion on differential process stability given previously. For a detailed treatment see, 

for example, (Rogers and Owens, 1992b) for the simple boundary conditions case 

and (Galkowski et al., 1999a) for the case of dynamic boundary conditions and the 

relevant references cited within the text of the section. 

An additional point should be noted here. Within section 2.6 of chapter 2 it was 

shown how certain classes of discrete processes can be written in 2D Roesser / 

Fornasini-Marchesini form. The extent to which so-called 'classical' 2D stability 

theory can be applied to these subclasses of linear repetitive processes is discussed 

within section 3.8 of this chapter. 

Consider the subclass of discrete linear repetitive processes with state-space model 

(2.22)-(2.23). Then the following result characterises asymptotic stability for these 

processes, 

Theorem 3.8 (Asymptot ic Stability - Discrete Case) (Rogers and Owens, 

are oncf ozi/i/ o/ (Ae mM x 

Asymptotic stability guarantees the existence of a limit profile for the process, which 

is defined in the following corollary, 
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Corollary 3.6 (Limit Profile - Discrete Case) (Rogers and Owens, 1992b) 

o/ (Aeorem (9 AoMa a coni;er^en^ ge-

appZzed. TAen f/ie pro^/e /or (f^cre^e Zmeor pro-

ceaaes %s (feacnbed aWe-apace mocfeZ 

Xco{P + 1) = (^ + -B (Im ~~ D) ^ C) Xoo{p) + B Uooip) 

2/oo(p) = (/m - C" a;oo(p), 0 < p < a, a;oo(0) = (foo, (3.49) 

wAere 

M M 

A—̂oo A:—̂oo 
B = 7 -Si-i, D = Dj, lim Uk = and lim dk = d^o- (3.50) 

^ ^ K.—^rx") At— 
i=i i=i 

The following is one of several equivalent sets of necessary and suKcient conditions 

for stability along the pass of discrete processes described by (2.22) and (2.23), 

Theorem 3.9 (Stability along the Pass - Discrete Case) (Rogers and Owens, 

(Ae pair {C, A} M o^aeT^at̂ e; 

(ii) the pair {/I, controllable at all but a finite number of 

?i, 1'2, ' ' ' , 7g compZea; p/oMe; on(f 

l^ifn — A — (7i )̂ Tio roofa on (/le czrcZe 

(Ae compZea;p/aMe, 1 < * < 9, luAere f('y) za (feyzned 61/ ^^,90/ 
27% 

rAe/i (/le Zmear proceaa 6'(.B'a, Wa,I/a)a>aQ penera^ed 61/ diacrefe 

modeZa 0/ (Ae /oT-m 0/ a > do za a(a6Ze aJomg fAe poaa and on/y 

(a) all eigenvalues of the mM x mM block companion matrix D, constructed 

/rom (Ae ;9D r̂ama/er-/uMc(%on ma^ni (3r(zi, z) itamg f/ie (fiacrefe /orm 0/ 

have modulus strictly less than unity; 

6̂̂  aZZ e% ê7i!;a/'uea 0/ fAe A /ioi;e mo(f%W a(nc% ŝaa or, 

;(Ae (fentiecf coM^en^wna/ Zmear ayafem Z,f)(v4, B, C) %a â oWe; and 
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("Cy) oZZ o/(Ae mM x mM mferpaaa (mMs/er-/umcf*0M mo(ni G(zi), 

con,5frucfec(/rom G(zi, z) itsmp (Tie discrete/orm 0/ /ia?;e modWtfa gt7ic% 

less than unity for all real frequencies Zi satisfying \zi\ = 1. 

Note that each of the conditions of theorem 3.9 can be tested using well known ID 

linear system stability tests. 

Within section 2.4.2 of chapter 2 dynamic boundary conditions were introduced for 

the discrete processes (2.24) which cover cases when the simple boundary conditions 

of (2.25) are not strong enough to model the process dynamics. Stability results for 

discrete processes with state-space structure (2.24) and (2.28) are now presented 

and these results are the discrete analog to the differential theory introduced in 

section 3.3. 

As for the differential case, we see that asymptotic stability of processes described 

by (2.24) and (2.25) (i.e. r(Di) < 1) is a necessary condition for processes with 

dynamic boundary conditions described by (2.24) and (2.28). Hence, for simplicity, 

we set Di = 0 in (2.24) for the remainder of this section. 

The following result introduced in (Rogers et al., 1998) characterises asymptotic 

stability of processes described by (2.24) and (2.28) and is the discrete counterpart 

to corollary 3.4, 

Corollary 3.7 (Dynamic Boundary Conditions - Asymptot ic Stability) 

aZ., f/ie pair {A, Bq} ia con̂ roZZabZe. T/iezi (Ae Zmear 

repe(%fi?;e proceaa 5'(.Ba, Z/̂ ) ^e/ieraW = Oj ttWer 

a ŝ roMpZ?/ coMt;ergeM( aegweTice aâ /mp̂ ofzcaZẐ / 5(a6Ze a/icZ OM/y ^ 

oZZ 5oZ!/(%oma 0 / 

| z ; » - M ( z ) | = 0 (3.51) 

Aare a^ncfZi/ Zeaa (Aazi w/iere 

N 

M ( z ) : = ^ ; r j C ; 4 P ; ( z ) (3.52) 
j=i 

A(z) := v4 + Z^^BQC, Z ^ 0. (3.53) 
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The following corollary then defines the limit profile for the process, 

Corollary 3.8 (Dynamic Boundary Conditions - Limit Profile) (Rogers 

(ZTij Di = Oj tfWer a coM2)er̂ eM( mpiff aegtfeMce w 

described by the state-space model 

3̂ 00(p + 1) = + BqC) XAO{p) + B U^{p) 

%/oo(p) = (3.54) 

s(a<e "uecfor 3:oo(0) gt-uen 61/ 

Zoo(O) = (fn - M( l ) ) -yoo (3.55) 

wAere t̂ oo Z'S (/le (foo afroMp f/&e 

0/ (Ae ma^na; 7̂  — -^(1) ?̂/ora7% êe(f 6^ <i5i/mp(of%c 3(062/%. 

This corollary shows that, once again, under asymptotic stability the process dy-

namics may be replaced by those of a ID discrete linear system, after a sufBciently 

large number of passes. 

Stability along the pass can then be characterised by the following result, 

Theorem 3.10 (Dynamic Boundary Conditions - Stability along the Pass) 

e( a/., {v4,Bo} confroZZo6k a/id {C, v4} w o65en;o6Ze. 

r/iGM 5'(^a, Wa,i}a) Di = Oj M aJoMg 

f/ie po55 %y, and OTif?/ %/, 

o/coroZZory 7AoM5, 

aZZ ê gen.'uaZ'uea 0/ t/ie ma^viz A /lawe moduZiis afncfZi/ Zeas (/ion and 

(c) all eigenvalues of the transfer-function matrix Gi{zi) have modulus strictly 

less than unity V |zi| = 1, where Gi{zi) ;= C(zi/„ — A)^^Bo. 

In contrast to the corresponding conditions for the differential subclass of processes, 

the conditions of theorem 3.10 can be tested via well known ID linear systems 

tests. The starting point of this approach is to derive a ID equivalent model of the 
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dynamics of the process, as presented in (Galkowski et al., 2000). Much further 

work remains to be done on these promising initial results before the true potential 

of this approach can be realistically assessed, and thus this remains an open area 

for future research. 

3.5 Simulat ion-Based Stabi l i ty Tests 

Within this section, time domain or 'simulation-based' tests for stability along the 

pass of the differential processes of (2.11)-(2.12) are presented based on the step 

response matrix of the associated conventional linear systems of (2.11). The results 

presented were first introduced in (Rogers and Owens, 1990b) (and subsequently 

extended in (Rogers and Owens, 1992a)) and provide an alternative route to per-

formance prediction than the ID Lyapunov approach to stability analysis presented 

in chapter 4. Extensive use is made of the well known results summarised in the 

appendix section A.3. 

Now consider the subclass of differential processes with state-space form (2.11)-

(2.12). The following analysis uses as a starting point the so-called associated con-

ventional linear systems of (2.11), defined by (2.69), where it is assumed that each 

member of this set is controllable and observable. Further, the following assumptions 

concerning the step response matrix of each of these systems are made. 

A s s u m p t i o n 3.1 Write the associated conventional linear system (2.69) in the 

(Z,; + A (3.56) 
0 

1 < J < M, m x m zmpwke reapoTige 

„At Zf̂ (̂ ) = (3.57) 

Then it is assumed that the step response matrix 

;y^( t )= / zf^(t')df + Dj, ( > o , (3.58) 
Jo 
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0/ OMd %5 coTti/eTiient (0 wri(e f/iis mutrii in, f/ie /orm 

W/.W ••• WlJi) 

W^t) (3.59) 

WLit) ••• WiJt) 

.^ere deMô ea (Ae reapo^ae o/^Ae p*'' owfpttf c/ia/iMe/ (0 o ĝ ep oppZiecf a( 

^ = 0 m (/le cAoMMeZ. 

Assumpt ion 3.2 W^{t) is assumed to he a stable response. Formally it is required 

that 

+ l l ^ ; L < +00, (3.60) 

w/iere || - ||m = majq ^ . |(-)ij| za mofna: norm mtftfced fec^or norm 

max^ |('),| m R'". 

Note that under the standard controllability and observability assumptions, condi-

tion (3.60) holds if, and only if, all eigenvalues of the matrix A have strictly negative 

real parts (a necessary condition for stability along the pass). Further, it is assumed 

that W'' (̂ ) is available from appropriate simulation studies on the 1 < j < M, 

element of (2.69) (see (Smyth, 1992) for further details of this point). 

Suppose now that in the abstract model 5'(.B'a, Wa,Z/a) is taken as Z,^(0, +00), 

where JLa has the block companion structure of 

La = 

0 I 0 

0 I 
(3.61) 

rM rM-l rl 
•^a -^a -^a 

with L^, 1 < j < M, defined by 

3/)(^) ^ i/(T)dT + Dj 2/(̂ ), 0 < f < a. 
Jo 

Further, deAne Z: E B(X^, %^), = i:^(0, +00), TV = mM, as 

0 7 0 

(3.62) 

L 
0 0 I 

(3.63) 
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with Z/, 1 < ji < M, 35 in (3.56). 

In which case it follows immediately that the natural projection (see definition A. 11) 

of 1/ E into = Z,^(0, CK) is jnst Z,a of (3.61), i.e. 

and 

Z,Q, 0 < a < +00, 

Pr^L = L. 

(3.64) 

(3.65) 

Now the result of lemma A.8 can be applied to each element in turn of the plant step 

response matrices W^{t), 1 < j < M, to construct the matrix of (A.36) 

and hence the TV x TV block companion matrix 

m 

0 

0 

12,̂ 1 

L 

0 

l^'ll 

0 

\m 

(3.66) 

It follows that the following application of the partial ordering of definition A.2 

holds, 

\L. Q lip < ||Z/||p, 0 < a < +00. (3.67) 

The following result then expresses stability along the pass of processes described 

by (2.11) in terms of the matrix ||Z,||p of (3.66), 

T h e o r e m 3.11 (Simulation-based Stabil ity along the Pass) (Rogers and 

Owena, mofni ||Z/||p o/ /or 

fAe Zmear process (Ae 

a > cKo w (Ae poaa %/ 

rdl-C/llp) < 1. (3.68) 

Note that this result is suScient only, hence there exists examples which are stable 

along the pass but for which theorem 3.11 fails to produce a conclusive result. This 

potential conservativeness is offset by the fact that the result produces, at no extra 

computational cost, measures on performance along a given pass on key aspects of 
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expected systems performance. For further details of these performance bounds see 

section 3.7. 

At this stage, note that the initial entries in 1 < j < M, of (3.58) or (3.59) 

are simply the elements of the matrix Dj, 1 < j < M, and hence the entries in 

(3.69) 

are given by 

\ \ D M lip 

0 

|-^2l|p \D i||p 

(3.70) 

Further, by (a) of theorem 3.6, (2.11) is asymptotically stable if, and only if, the 

spectral radius of the matrix D is strictly less than unity. Application of the spectral 

radius inequality r(D) < r(||D||p) of lemma A.l now leads to the following result, 

which is clearly a simple preliminary test for the applicability of theorem 3.11 to a 

given example. 

Lemma 3.2 (Rogers and Owens, 1990b) Differential non-unit memory linear repet-

proceaaeg aWe-gpace modeJ are 

r(ll^llp) < 1 (3.71) 

|D||p pwGM 6̂ / 70/ 

The stability tests require the computation of the total variation of each element of 

the step response matrix of the associated conventional linear system. (Smyth, 1992) 

details the numerical and software aspects of implementing theorem 3.11 within 

a CAD environment. Note that there are a number of special cases where it is 

possible to obtain an explicit formula for with the consequent possibility of 

obtaining 'synthesis type' results for use in design studies. For a detailed treatment 

of these cases see, for example, (Rogers and Owens, 1992b). The advantage of 

this approach is that, unlike the stability tests of section 3.3, it can be extended 

to cases where it is necessary, for example, to include interpass smoothing effects 

in the basic model. Details of work undertaken on the use of these simulation-

based tests in the specification and design of control schemes for these processes 
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are given in (Smyth, 1992). In addition, in (Rogers and Owens, 1992a; Rogers and 

Owens, 1992b) it is demonstrated that the stability tests presented above provide 

computable information on performance along a given pass, which is not available 

from the Nyquist like tests of section 3.3. Further information on these so-called 

performance bounds is given in section 3.7. Also note that these results generalise 

to the discrete subclass of processes described by models of the form (2.22)-(2.23) 

as shown in (Rogers and Owens, 1992b). 

Now recall the stability along the pass conditions of theorem 3.9 for the discrete 

subclass of processes, and note that condition (c) of this result involves calculating 

the eigenvalues of an mM x mM transfer-function matrix for all points on the unit 

circle. This can be computationally intensive even for the simplest of cases. 

With this motivation, new stability tests are developed in the following section for 

the discrete subclass of processes which replace the potentially complex computa-

tional conditions mentioned above with sufficient but not necessary alternatives. 

This conservativeness is offset by the results supplying at no extra computationcil 

cost information on performance along a given pass (which are not available from 

theorem 3.9). 

3.6 Simple S t r u c t u r e Stabil i ty Tests 

In this section simple structure stability tests are developed for the discrete subclass 

of linear repetitive processes using some basic results from the theory of nonnegative 

matrices (included in the appendix section A.l). These tests replace the need to 

compute the eigenvalues of a transfer-function matrix for all points on the unit circle 

in the complex plane with a one-off computation of the eigenvalues of a matrix with 

constant entries, and are the subject of the paper (Benton et al., 1998b). In addition, 

it is shown how the tests produce information on performance along a given pass at 

no extra computational cost. 

In order to develop the theory, some notation is needed. Consider the subclass of 

discrete non-unit memory linear repetitive processes with state-space representation 

(2.22)-(2.23). For this model, introduce the transfer-function matrix 

G(zi) A2 {z\In — A) ^ v4i 4- Az, (3.72) 
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where 

Ai = [BM-I , • • • , So] , A2 = [O, • • • , and 

v4, = 

0 I„ 

0 •• 

DM • • Di 

(3.73) 

Then the following result (which is a restatement of theorem 3.9) gives necessary 

and sufficient conditions for stability along the pass of (2.22)-(2.23), 

Theorem 3.12 (Stability along the Pass - Discrete Non-unit Memory) 

[/mcfer (Ae itecAyizca/ (wsttmpftozw 0/ (/leorem ,9.9, 

procegaea (feacnfigcf 61/ ore ofong (Ae pasg 

r(^3) < 1, r(;4) < 1, (3.74) 

/egg (Aafi V |zi| = 1. 

Note however that condition (b) requires the computation of the eigenvalues of 

the interpass transfer-function matrix G{zi) for all points on the unit circle - a 

task which involves working with an mM x mM transfer-function matrix. Hence a 

'heavy' computational load could result for even the simplest cases of (2.22)-(2.23). 

Here, alternative sufficient stability along the pass conditions are developed which 

involve the one-off computation of the eigenvalues of a matrix with constant entries. 

The new stability tests exploit some basic properties of the theory of nonnegative 

matrices which are reviewed in the appendix section A.l. 

By considering the nonnegative matrix associated with each of the matrices in the-

orem 3.12, we obtain the following set of sufficient conditions for stability along the 

pass of discrete linear repetitive processes, 
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Theorem 3.13 (Benton et al., 1998b) Under the assumptions of theorem 3.9, pro-

(b) 

^(ll^sllp) < 1, < 1, (3.75) 

(||^2||p (-̂ n ~ IÎ IIP) NI^iIIp + IÎ SIIP) < 1- (3.76) 

Proof : The proof of (a) is trivial on applying the spectral radius inequality of 

Zemmo v4..Z o/ ^Aeorem Tb pro%;e (̂ 6̂ , (zi/^ — 

caTi 6e represented 6^ coM2;er̂ eM< power senea /or r(A) < |zi|, aa 

/oZZow5, 

1 °° / X \ 
( z i 7 n - A ) - ^ = - ^ - , z i f O . (3.77) 

r=0 

^ence 6^ (/te propertzeg o/Mon,?iepa(ii;e matrices pi'ven m Zemma 

1 °° /ll/lll X"" 
\\{ziln ~ ^) l̂lp ^ 1—I ^ 2 ( n—F ) " (̂ " ~ ll^llp) Nil = 1- (3.78) 

Fl | r=0 \ 1-̂ 11 / 

r/iere/ore 

||G^(^i)||p ^ li^2||p (-̂ n ~ ll^llp) ^ ll^illp + ll^sllp) V |zi| = 1, (3.79) 

oncZ tAe res%/( /oZ/ows zmmecfmteZy on (Ae partmZ orcZenng on matnces o/ (fe/i-

mtion .A.,9. 

This result can be extended. Suppose that || -1| = max, ^ . |(')ij| is the matrix norm 

on 7%! X712 matrices induced by the vector norm mcix̂  |(')i| in E"'. Then the following 

corollary of theorem 3.13 gives an alternative sufficient condition for stability along 

the pass for the unit memory (M = 1) case. This condition follows immediately 

from the spectral radius inequality r(| |X||p) < ||(||%||p)|| = \\X\\ of lemma A.l . 

Corollary 3.9 (Benton et al., 199Sh) Suppose that the pair {C,A} is observable 

ancf (Ae pazr {.4, Bo} controZZa6Ze. TAen, wmt memo?^ processes cZescrî ed 61/ 

ore sta6Ze aZong f/ie poss i / 
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ll^sll = ll-Dill < 1, ll^ll < 1, and (3.80) 

(b) 

| |^2| |(1 ~ 11-̂ 11) ^ ll^ill + ll^sll < 1- (3.81) 

Proof : Obtained trivially on setting M = 1 in the proof of theorem 3.13. 

Note that corollary 3.9 can only produce a conclusive result when applied to unit 

memory processes. This is because the block companion structure of IIAgjlp means 

that r(11X3II) < 1 can never hold in the non-unit memory case. 

Similar results to those of corollary 3.9 have been reported by, for example, (Ahmed, 

1980) for 2D linear systems described by the Roesser (Roesser, 1975) or Fornasini-

Marchesini (Fornasini and Marchesini, 1978) models. There are however no Roesser 

/ Fornasini-Marchesini alternatives to the performance measures which can be ob-

tained from theorem 3.13 and which are presented in the next section. 

3.7 P e r f o r m a n c e Bounds 

An immediate conclusion of stability along the pass is that after a 'sufficiently large' 

number of passes, the dynamics of the process may be replaced by those of a stable 

ID linear system. This fact is obviously of interest in terms of the specification and 

design of control schemes for these processes which is discussed in (Smyth, 1992) 

where it is argued that information on the following aspects of system performance 

would be of great use, 

(i) the rate of approach of the output sequence of pass profiles to the resulting 

limit profile, and 

(ii) the error i/t — %/oo on any pass A. 

Within this section it is shown that the stability tests of the previous section produce 

at no extra cost computable information concerning the rate of approach to the limit 

profile together with bounds on performance along any given pass. 
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Return now to the abstract representation of dehnition 2.1 under 

stability along the pass, where no loss of generality arises from restricting our at-

tention to the unit memory (M = 1) case. Suppose also that the disturbance 

sequence applied is constant from pass to paas (a relevant physical assumption in 

many cases (Smyth, 1992)), i.e. 6̂  = 6oo, A; > 0. 

Then the recursion relationship for the abstract model (2.5) can be rewritten as 

Vk — La Uk—l 4" ^oo 
k 

= 1/0+ ^ 1 / ^ - ^ 6 ^ . (3.82) 
;=i 

Similarly, the limit profile (3.10) (under stability along the pass and hence asymp-

totic stability, i.e. with r{La) < 1) takes the form 

OO 
= 6^. (3.83) 

i=i 

Therefore the error term — ôo on a given pass k can be written 

OO 

2/A — 3/oo = 2/0 ^ ^ '̂oo, (3.84) 
j=k+l 

and by looking at the nonnegative matrix associated with each side of (3.84) gives 

an estimate of convergence as 

11% - < (i)' I i . (3.85) 
I j=k+l J 

where, for discrete processes with state-space representation (2.22)-(2.23) under the 

notation of (3.72)-(3.73), 

= ||^2||p(-^n ^ ll^llp) ^ll^lllp + ll^sllp- (3.86) 

Further development of the last equation yields the following result. 

Theorem 3.14 (Performance Bounds) (Benton et al, 1998b) Suppose that 

5'(E'a,Wa,Z,a) 6?/ posa ^Aeo-

rem AoZda. S'wppoae aZgo (/le coM r̂oZ appZzed 

/rom paaa (o pagg, i e . ^ ^ 1, AeMce 6̂  = 6oo, A > 1, m 
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mocfeZ r/ie/i /or a E (0, oo) 3 an m x m ?2om%ê o<%i;e mo^ria; aMcf a reaZ 

scoZar -y E (r(-L), 1) sifcA (Ae error i/t — i/oo, A > 0, so(%5/ies 

||m-2/oo||p < W7''{||2/otlp + (Jm-Z/)-"||6oolW. (3.87) 

Proof : 6'mce 6̂ +1 = 6oo, A; > 0, (Ae error ^erm — i/oo /or (Ag process can 6e 

eipressecZ os and ^Aere/ore (Ae meg%faZ% AoZds as s/ioii;M m (Ae oMaẐ /sis 

a6o?;e. 

To proceetf, yZrsf no(e (Ziat, since (Zieorem /loZds, lue /tare 

r (I ) < 1. (3.88) 

ffence (7^ —-̂ )"^ eiisfs oncZ is nonne^d^iwe 6?/ Zemma oMcZ i( can easiẐ / 6e sAown 

OO 

(fm - ^ ) - ' = ^ (3.89) 
j=k+l 

r/iere/ore i( remains (o 6e sAown (Aaf f/iere ea;ists a nomnega(i!;e ma(ni > 0 ancZ 

a real scalar 7 G (r(2), 1) such that 

A > 0. (3.90) 

r/iis /oZZoios on nô in̂  (Aa( r(Z,a) < r(2) < 1 6̂  ̂ emma ̂4..Z, ancZ Aence i( is possi5Ze 

0̂ cAoose reaZ numbers ^ > 0 ond 7 E (r(2), 1) si/cA (Aa( 

| | I * ' | | < # 7 \ A > 0 . (3.91) 

j%r /̂ier, i( is cZear (Aâ  (Ae pa?̂ iaZ orcZering 2^ < Q /loZcZs luZiere Q is (Ae m x m 

ma^rir luî A eacA eZemen^ eg«aZ (o ||2||. TAe resuZ( now/oZZows immedia^eZy 

on ifsing ancZ (Zeŷ ning as (Ae m x m nonnega^ii/e mafria; eacA eZemenf 

egiiaZ fo W. 

Suppose now that 3/t(p) 2/!o(p) denote the i*'', 1 < i < m, output channels of 

?/t(p) and 2/oo(p) respectively. Suppose also that ||boo||p is available and cissume, for 

simplicity, that the initial pass profile is zero, and introduce 

G := (^l, ' ' ' , ^ -L) Ĥ&ooHp- (3.92) 
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Then it follows immediately that 

llm(p) - 3/00Wlip < II2/& 

Hence yl{p) lies in the band defined by 

Voo I |p ^ 

\ 
1 < % < m. 

i=i 

(3.93) 

(3.94) 

Note that the width of these bands is, in eSect, governed by 2. 

Hence it has been shown that the output pass proHle on pass A;, ^t(t), approaches 

the limit profile at a geometric rate governed by 2. This information is available 

at no extra computational cost from the sufficient stability tests of the previous 

section, and this oSFsets the conservative nature of the tests. A further discussion of 

performance bounds is given in section 6.4 of chapter 6. 

3.8 Links be tween 2D Sys tems Stabi l i ty and 

Repe t i t ive Process Stabil i ty 

In section 2.6 of chapter 2 it waa shown that the dynamics of a large subclass 

of discrete linear repetitive processes can be represented by equivalent Roesser / 

Fornasini-Marchesini 2D state-space structures. Within this section, links are drawn 

between the stability of these discrete linear repetitive processes and the BIBO 

stability of 2D linear systems. 

Consider again the Roesser state-space model (2.42) for 2D systems recursive in the 

positive quadrant. Then applying the 2D z-transform (where to follow 2D systems 

notation convention z and now represent 'backwards' shifts) yields the following 

2D transfer-function matrix, 
-1 

G(zi,z) = 
v - l 

-A.2 

Im. — A4 B2 
(3.95) 

Application of the BIBO stability results of Shanks (lemma A.11) or Huang (lemma 

A. 12) then shows that this is dependent on the roots of the so-called characteristic 

polynomial of the system, 

In ~ —Z1A2 
Pr(^11 — 

—zA^ Im — 

(3.96) 
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Alternatively, use of Schur's formula yields 

Pr{zi, z) = |/„ — ZiAil \Im — ZA4 — ZizA3[In — ZiAi) ^^2!) (3.97) 

and hence the following result gives necessary and sufRcient conditions for BIBO 

stability of the Roesser 2D state-space model (2.42), 

Theorem 3.15 ( B I B O Stability of Roesser Model) (Boland and Owens, 1980) 

The Shanks (or equivalently, the Huang) stability test for the 2D Roesser model is 

G Jze m opeM c%rcZe m 

(zZf (m7i5/er-/'U7ic(%07i 

-P(^i )̂ := A^{zi În — Ai) ^A2 + Ai (3.98) 

|zi| = 1 /%e m (/le open czrcZe m (Ae compZei p/a^e. 

It can be shown that for the 2D systems described by the Roesser model (see eg. (Lu 

and Lee, 1985) for the details) that (a) and (b) are equivalent necessary conditions, 

hence either may be dispensed with. 

At this stage it is convenient to introduce a formal definition of BIBO stability of 

linear repetitive processes, as follows. 

Defini t ion 3.7 ( B I B O Stability) (Rogers and Owens, 1992b) A linear repetitive 

procegg 5'(^a,M^,Z,a) 0/ paaa a > 0 gmd (o 5e 

(Aere emafa o reoZ acafar (̂  > 0 

gfiy 2/0 GMcf {6k}&>i C Wa ||6&|| < Ci /or gome comafoM^ 

ci > 0 V A; > Ij, the output sequence {yk\k>i generated by the perturbed process 

(3.1) is bounded in norm whenever ||'y|| < 5. 

This definition demands that bounded disturbance sequences generate bounded se-

quences of pass profiles (i.e. the standard BIBO requirement) but also that this 

property is retained in the presence of small modelling errors. 
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In (Rocha et al., 1996) links between BIBO stability of 2D systems described by 

the Roesser state-space model and the concepts of asymptotic stability and stability 

along the pass of discrete linear repetitive processes were investigated. Taking each 

stability property in turn, the following conclusions were drawn. If a process is 

asymptotically stable, then the resulting limit profile is BIBO stable over the pass 

length a , which is finite, since over such a duration even an unstable ID linear 

system can only produce a bounded output. Hence asymptotic stability is BIBO 

stability over the finite length only. Stability along the pass is then the stronger 

requirement that the process is BIBO stable uniformly (i.e. independent of the pass 

length). This equivalence is summarised in the following result, 

Theorem 3.16 (BIBO Stabil i ty/Stabil i ty along the Pass Equivalence) 

(Ae m fAe aenae o/ or 

that the transfer-function matrix of (3.95) must have no nonessential singularities 

o/ gecoMcf Hncf/ 

As a result of theorem 3.16, many tests available for checking BIBO stability of 2D 

linear systems described by the Roesser model can also be applied to testing for 

stability along the pass of discrete linear repetitive processes described by (2.22)-

(2.23). 

Within section 2.6, new Roesser-type representations of the dynamics of discrete 

unit memory linear repetitive processes were presented, which have proved use-

ful in characterising local reachability / controllability properties for these pro-

cesses (Galkowski et al., 1999b). Consider then the subclass of discrete linear 

repetitive processes with state-space model (2.57) (under transformation (2.56)) 

and introduce the characteristic polynomial for this process as 

In ~ 
Pr{,^I 1 -z) — 

-c I m+n 

where 

A = A, B = 0 I C 
DiC 

BoC 
D = 

Di 

Bo 

0 

0 

(3.99) 

(3.100) 

Then the Shanks test for stability (lemma A.11) says that the process (2.57) is BIBO 

stable if, and only if, 

PA(zi,z)7^0, | z i | < l , | z | < l . (3.101) 
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Note that, in this form, this test is not computationally feasible in all but the simplest 

cases. This problem can be overcome by using Huang's test (of lemma A. 12) which 

states that (2.57) is BIBO stable if, and only if, 

0)7^0, | z i | < l , and 

7̂  0, ki | = 1, |z| < 1. (3.102) 

Note that the stability conditions of (3.101) and (3.102) assume that the transfer-

function matrix description of the underlying dynamics has no nonessential singu-

larities of the second kind (Goodman, 1977). 

It is also routine to show (Rogers and Owens, 1992b) that in the case of (2.57) these 

conditions can be reduced to the form of the following corollary. 

Corollary 3.10 (Galkowski et al, 1999b) The 2D BIBO linear systems stability 

r(-Di) < 1, r(v4) < 1, 

(b) all eigenvalues of the transfer-function matrix 

G'(zr^) = C(zrV^ - ^)-^Bo -H Di (3.103) 

Z*e m f/ie open circZe m (Ae compZei pZane V = 1. 

The results presented above are based on a Roesser structure interpretation of the 

dynamics of the discrete process (2.24)-(2.25). Results obtained from interpreting 

the well known BIBO stability theory for Fornasini-Marchesini type structures can 

be found in (Galkowski et al., 1999b). 

3.9 A Vol ter ra Approach to Stabi l i ty Analysis 

Recent new results on the controllability of discrete linear repetitive processes 

(Dymkov et al., 2000) strongly suggest that the powerful theory of Volterra operators 

has a significant role to play in the onward development of a mature systems theory 

for linear (and nonlinear) repetitive processes. In this section the Volterra approach 

is used to study the stability properties of discrete linear repetitive processes. 

73 



3 Stability 74 

Let ^ be a Hnite dimensional normed linear space over the complex Geld (C with 

norm || - ||g and let be the set of nonnegative integers. Also let 5'(Z+, .B) be the 

linear space of all sequences on E, i.e. the functions / : Z_|_ — T h e n 5'(Z+, E) 

is a locally convex Hausdorff topological space when equipped with the topology of 

uniform convergence on finite sets, i.e. the family of neighbourhoods is defined as 

[/M,. = { / : / e ^(Z+, E), ||/(A:)||^ < 6, A: 6 N } (3.104) 

where TV is the set of all finite subsets from and 6 ranges over the set E_t_ of all 

positive real numbers. 

Suppose now that denotes the subspace of jB) of all bounded func-

tions, i.e. / : —> E such that sup̂ j.̂ ^ \\f{k)\\E < +oo. Then it is a standard 

fact that E) is dense in 5'(Z+, E) with respect to the topology of uniform con-

vergence over finite sets. Also E) is a Banach space under a suitable norm 

definition, eg. | | / | | =8upA6z+||/(A:)||g. 

Now let y and VF be 6.nite dimensional normed spaces over the complex field C and 

let /I : ^ E, B : y ^ E, Bo : ^ C : ^ ^ and Di : ^ l/F be 

linear operators. By letting [0, a] be the set of integers {0 < % < a } for given integer 

a, it is possible to describe the discrete unit memory linear repetitive process (2.24) 

as 

(p + 1) = yl Z&+1 (p) + g (p) + Bo (p) 

^&+i(p) = Cr&+i(p) + Di^&(p) (3.105) 

with respect to the unknown functions z : 2+ x [0, a] — E and ^ : Z_|_ x [0, a] — 

W. The function x is the current pass state vector, y is the pass profile vector, and 

K : X [0, a] — y is the control input vector. 

The formal definition of a solution for (3.105) is as follows. 

Def ini t ion 3.8 (Solut ion for (3.105)) For a given control input vector Uk{p), the 

pair {a;t(p), ^/^(p)} (feyZMetf on x [0,0;] m E' TV 

respectively are said to be the solution of the equations of (3.105) if they satisfy 

(/lem V (A,p) E X [0, a]. 

It can easily be verified that, for any function 7 E S{Z^,E) and any collection 

of elements di, dg, • • • ,da from W, there is a unique solution to the equations of 
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(3.105) satisfying 

3:6(0) = ?(&), A;GZ+, ^ o ( p ) ^ 4 , pG[0,a!]. (3.106) 

These are termed the initial conditions here. 

The following analysis uses some properties of the Volterra operator which are re-

viewed in the appendix section A.5. 

The structural properties of the process described by (3.105) and (3.106) can be 

studied by considering the space of bounded functions. Note that the closure of this 

set with respect to the topology of uniform convergence equals the space S{ZJ^,E). 

Hence the question considered in the following analysis is of under what conditions 

the solution of (3.105)-(3.106) is bounded. 

Suppose that the initial condition function and the control input satisfy the follow-

ing, 

sup ||7(A;)||g < +00, sup ||%ft+i(p)||y < +oo, (3.107) 

Vp E [0, a]. 

Then, without some additional assumptions, the solution to (3.105)-(3.106) may 

become unbounded, as illustrated in the following example, 

Example 3.2 Let A = 0, C = 0, Uk+i{p) = 0, k e Z+, p G [0, a]. Then it can easily 

(ig aeeM 3/t(p) = (fp aW2;t(p) — aoWzoM o/ 

CZeaHysup^gg^||a;t(p)|| = +oo om(fsup;^g2^||2/t(p)|| = + o o V p E [0,o;], i e . f/ie 

solution is unbounded if the eigenvalues of Di lie outside the unit disc U. 

The following result then gives the condition for the existence of bounded solutions 

to (3.105)-(3.106), 

Theorem 3.17 If the spectrum o{Di) of the operator Di lies within the unit disc, 

(AeM, /or '"/(A;) ^^(p) (Ae 50/1/(20?% 

a;&(p)=a:(A:,p,'y,d,M), %/&(p) = ^(A:,p,7,(f,i/) (3.108) 

0/ (Ae fAe /oZ/oiumg condẑ toMa Vp E [0,0;], 

sup ||a;t(p)|| < +00, sup ||2/t(p)|| < +00. (3.109) 
/:ez+ tez+ 
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f r o o / ; ^ere we f̂ae (Ae operator repreaeziWion/or (/le system m 

(Ae apoce B(Z+, E). Zn^rodtfce (Ae opero^or T : B(Z+, E) — B ( Z + , ^ ) dê ^ned aa 

(T/)(A; + 1) = /(A; + 1) - Di/(A), A; G Z+. (3.110) 

/IZgo (̂ e/zMe /or eacA p 6 [0, a;] Âe /u7ic(%0Ma a;̂  : Z+ — E ' , % : Z+ — W omd 

Up : Z+ —V as 

(a;p)(A;) := Zt(p), (%)(A;) := 2/t(p), W)(/:) := t(&+i(p), A; E Z+. (3.111) 

r/iem CAM 5e wn((eM aa 

(T%)(A;) = (Ca;p)(A;), (3.112) 

wAzcA CQM 6e rewn((eM m /̂le operator /orm 

r^ /p^C^p, pE[0 ,a ] . (3.113) 

/if (/le m?;er3e operator / o r T ez%a(5, (Ae)% ẑeZda 

% = r-^Czp, (3.114) 

dTid <0 egtabZis/i (/le coM(ft<ton,s /or t/ie eiiatence o/ f/ie /irsf Tiofe is 

a apeczaZ caae o/ Âe yb/̂ eTra operator Vg o/ (fe_̂ m̂ %0M ̂ 4..̂ ,̂ aMcf AeMce Zemma v4..Z,F 

ma;/ ('6 opp/zecf. f^rf/ier, zf Z5 eas;/ fo ren/^ (/laf f/ie power genea repreaeMfa^mM 

T'(z) o / T is T'(z) — / — zDi. 5'mce f/ie spec(raZ Wites o / D i E (7, detT'(z) ^ 0 /or 

|z| < 1, z E C. ^eMce T" /las fAe 6o?f7i(fed mrerge ^mear operator wA%cA Aag, 05 

m (/le/orm 

k 

(T-^(^)(A:) = ] g 7 1 # - % ) , z E C , (3.115) 
1 = 0 

w/iere : E — E , % E Z+, are Zmear operotors safisj^mg ll^ll < +00. 

.4( s(age, we Aofe s/iow/i (/io( /loZtfa a^ii %( coM 6e rewnffe/i m (/le /orm 

(%)(A:) = (T'''^Ca;p)(A:), A:EZ+. (3.116) 

m(o (̂ .̂.Z05y) aW g%?;e5 

fc 

zt+i(p + 1) = A a;&+i(p) + Bo a;t_i(p) + B 'Ut+i(p). (3.117) 
2 = 0 
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5'mce 'y(A;) = z&(0) and coM r̂oZ /umc^mn A; E 

Z+, p E [0,0:], coM(f*(%o?ig %(/o/Zowa immetfm^eJyyrom 

k 

A Xfc+i(0) + BQ TjC a;&_:(0) + B %/̂ _|_i(0) < +oo. sup ||a;t+i(l)||^ = sup 
/kGZ+ 1 = 0 E 

(3.118) 

JifeMce 

sup ||zA+i(2)||^ = sup 
A;EZ+ &€% + 

-A a7t+i(l) + BQ TiC Xk-iiX) + B %ft+i(l) 

:=0 
< +00, 

E 

(3.119) 

procedi^re /or a/J p E [0,0;] e5fa6J%gAea (Ae ẑrâ  conc/i/a%oM o/ 

^Aeorem 5.^7 OM a;A(p)-

(o ,̂9.̂ 6̂'y) we aZao Aat;e 

sup ||?/&(p)||iy < IIT 1̂1 sup ||Ca;p(A;)||M: < +oo, (3.120) 

OM(f (Ae proo/ za comp/efe. 

Consider now the process (3.105) free of control inputs, i.e. with 'Uk(p) = 0, 0 < p < 

a, A > 0. This homogeneous version of (3.105) can be represented as 

zt+i (p + 1) = A zt+i (p) + Bo 2/t (p) 

2/A+i (p) = C rt+i (p) + Di (p). 

At this stage, we introduce the following definitions of stability, 

(3.121) 

Def in i t ion 3.9 (Exponential Stabil i ty) The system (3.121) is said to be expo 

(Aere a reaZ scaZar g, 0 < g < 1, aifcA (Aa( (Ae 

lk(A:,p,7,(^)||g < Ag\ ||i/(A;,p,'y,(f)||M^ < Ag*:, 

AoZ(f /or oZZ "Y E ^ ( 2 + , ^ ) coZZeĉ zoM o/ e/emeM^g (fo, di, 

wAere A some pos^fzfe reo^ sca/or. 

(3.122) 

da yrom IV, 

Def ini t ion 3.10 (Weak Exponent ia l Stabil ity) The system (3.121) is said to 

6e weaÂ Zy ezponeM;(m/Z%/ s/a^Ze %/ (Aere eâ zŝ s a reaZ scaZar g, 0 < g < 1, g?/cA (Aô  Âe 

k(A;,p,7,(^)||f; < Ag'', ||i/(A;,p,7,(f)||ty < Ag*', (3.123) 

77 



3 Stability 78 

AoM /or ofZ 'y E B(Z+, E) ||7(^)|| < w > 0, 0 < ?; < 1, aMcf co//ec(%orz 

o/ e/emen(g do, di, - - , (fa jrom PF, wAere A zs aome poa^^zfe reaZ acaZor. 

Note that the term 'exponential stability' arises from the fact that the decrease in 

the solution {a;/:(p), 2/A:(p)} with respect to the variable A; is required to follow the 

exponential function exp{^'lng}. 

It is now necessary to represent the solutions of (3.121) in the ring of power series. 

In order to do this, introduce the formal power series representation of Xk{p) and 

2/6 (p) as 

oo oo 
= = p E [ 0 , a ] . (3.124) 

k=0 k=:0 

Substituting these power series expansions into (3.121) gives 

X ( z , p 4 - 1 ) = v4%(z,p) + z B o y ( z , p ) + Boi/(0,p) 

y ( z , p ) = C X ( z , p ) + z D i y ( z , p ) + Di2/(0,p), (3.125) 

and combining these two equations yields 

p—1 
%(z,p) = ytP(z)X(z,0) + ^ ^ ^ - ' - ' ( z ) / ) ( z ) d , , 

:=0 
p—1 

y (z ,p ) = ( f - zDi ) -^ [C(y l^ (z )X(z ,0 ) + ^ylP- ' -Xz) /3(z )d , ) + Did^], 
i=0 

(3.126) 

where 

^ ( z ) = A + zBo(7 - zDi)-^C, and ;9(z) = Bo + zBo(f - zDi ) -^Di . (3.127) 

The following result now characterises the property of exponential stability of pro-

cesses described by (3.121), and hence of non-homogeneous processes described by 

(3.105), 

T h e o r e m 3.18 ( E x p o n e n t i a l S tab i l i ty ) If the system (3.105) is exponentially 

stable then the following condition holds 

det(>t(z) - A7) f 0 V |z| = 1, |A| > 1. (3.128) 
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-Proo/ ; Tb o aaaifme %a ea:;pomenf%o/Zi/ gfa6/e 

con(f% 2̂0M 0/ (Ae reai/Z^ (foea mo( AoM. ?/ien we Aai;e det(^(zo) — Aof) = 0 

/or gome |zo| = 1, |Ao| > 1, an(f (Aere ea;%â 5 o non^nwaZ rector o E ^ atfcA 

A{zo)a — Aqci. 

ConaWer (Ae aoZi/̂ zon po%r {a;t(p), 0/ generaW 61/ <Ae /oZ/owm^ zm(W 

contfifzong 

z&(0) = ozg *=, 1/0(p) - 0, z E Z+, A; E [0, a]. (3.129) 

TAen amce (Ae soZu ẑon 2;t(p) %g gfa6Ze, 3 conafon^a 0 < g < l , A > 0 , 

lkA:(p)lk<Ag^, V p E [ 0 , a ] . 

5'mce g < 1, 3 an m(e^er TV Ag^ < ^||a||^. v4Zao, 

(3.130) 

/:=0 

can 6e wriffen aa 

X(z ,p) = ^^(z)%(z,0) = y l P ( z ) a ^ ( z / z o ) \ 

(3.131) 

(3.132) 
A=:0 

6'%ippoge now Âe anaZy(%c ma^r^ /z/ncfzon yl^(z) con 6e eiponcfed m(o /̂le /oZ-

Zowm^ conrer^en^ power aeneg 

00 
^P(z) = ^ A ^ ) z ' . (3.133) 

6 = 0 

Then 3 an integer SQ > N such that 

E 
i=so+l 

(P) J 
: 0̂ < - V p E [ 0 , a ] . (3.134) 

For f/ie remainiier 0/ /̂le proo/ (Ae norm o/a;&(p) o( A: = gg %'S eâ zmô ecZ. jVo(e (Aof 

3:̂ 0 (p) 5̂ coe_;0̂ c*enf o/(Ae (erm z"" in fAe power gerzeg repreaen^o^ion o/J^(2,p). 

^ence 

k«o(p)l E 

ao 

E 4 ' ' h f a 

i=l 

so 

E ^ : f z i a 

:=0 E 

E ^ ' ^ = - E A (P) ..i 
: 0̂ Znl 

%=o 1=̂ 0+1 

> ||A(^)(zo)o||g — E A 
i = s o + l 

1 3 
> |Aop||a||_B — - | |o | |g > - | |o | |g , 

E 

(3.135) 
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aad (o (Ae o/zt(p) , we Ao(;e 

k,o(p)| |g < Ag'" < Ag < - | | o | | E (3.136) 

wAzcA coM^radzcfa 

The following example demonstrates that (3.128) alone is not sufhcient for exponen-

tial stability of processes described by (3.105), 

Example 3.3 (fzgcre^e Zmear process 5(a^e-5pace repre-

z&+i(p + l) = 

2/&+i(p) = 

1/2 0 

0 1/2 

0 1 

0 0 

:ck+i(p) 

3;&+i(p). 

1 0 

0 1 
%(p) 

(3.137) 

cage, 

yl(z) 
1/2 z 
0 1/2 

(3.138) 

det[^(z) - Af] = (1/2 - A)̂  f 0 V |z| - 1, A > 1. (3.139) 

Consider mow fAe aoZŵ iom o/ ^,9.^57) i/mcfer (Ae 5oif7i(fed com(f%(%OM5 ̂ ^̂ (O) = 

p, A: E Z+, i/o(p) = 0, P G [0,a], wAere p aome conafami ylko aef ||3:t(p)|| = 

max{z^(p)} wAere a;).(p), z = 1,2, (feno^ea fAe eZemen^a o/ (Ae aWe i;ec(or om paas 

A:. TAem com 6e aAowM /or p E [0, a], A; > 0, 

3:1+1 (P) = !/Li(p) = 

a^A+iW = 2/&+i(p) = t ^ j P-

2p + 1 
2P 

(3.140) 

Jifemce 

IK.WII > \MP)11 = ^ (3.141) 

QMcf eiamp/e ^ Mo( eipomem ẑaZZ?/ atabZe m (Ae apace o/ botfrntfed /Kmchoma. 
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The following result relates to weak exponential stability, 

Theorem 3.19 (Weak Exponent ia l Stability) The system (3.121) is weakly ex-

Necessity : Follows from theorem 3.18 

Sufficiency : Suppose that (3.128) holds, and note that this means that this 

ako AoJcfg /or |z| < 1 oW |A| > 1. f^om /oZ/otua det(7 — 

)U.A(z)) ^ 0 /or |z| < 1, |/i| < 1, OMii, amce ^(z) = det(7 — //^(z)) w 

/uMc(%07i, 3 a reaZ acaZor p > 1 det(7 — //yl(z)) ^ 0 /or |z| < p, |//| < p. 

TAere/ore, a/iowa (Ae mferae ma^rii ( / — /^^(z))"^ ca/% 6e ag 

oo oo 
( f - ; / y l ( z ) ) ^ = | z | < p , | / / | < p . (3.142) 

A;=0 %=0 

/̂ o = ^ and zo = T/ie/i cfeorf?/ f/ie genea coM^erpeg at (//o, -zo). 2 ''u 2 
^ence 3 o reaZ co7ig(o)%t Z/ > 0 

<L or p+n'*\^m 
< I/. (3.143) 

TAzg megwoZit?/ gAowa 11-̂ !̂ ^ II ^ 

now /oZZowa /rom (Aat (Ae power aenes repreaenW/oM %(z,p) /or (Ae 

aoZi/tzon z(A;,p,-y, d) (o 6e wHtten aa 

00 p - 1 

X(z,p) = y t ' W ^ Y W z ' + (3.144) 
s=0 i=0 

For (Ae remomder o/(Ae proo/ cZe/ine/or power genea o/(/ie/om% ^(z) — o(^)'Z\ 

0(2) E (Ae mappm^ o-a(^(z)) = 0(5), g E Z+, wMcA ia cZearĴ / Zmeor. TAen 

00 P—1 
x(s,p) = a,(X{z,p)) = a,(A''(z)'^i{t)z') + ^a,(A'^^^''{z)l3{z)di) 

= ( E ( E a'"7(^ - . ) / ) -h E . i f ; ( t AfB„DT') A 4 
\fc=0 \ 2=0 / / k=0 \ 2=0 \j=0 / / 

= ( ± A r ' , { s - , ) ] + ' ^ ± A f B , D l ~ ' d , . (3.145) 
\ 1=0 / k=0 j=0 
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r/ie det(Vl(z) — A) ^ 0 /or |z| = 1, |A| > 1 meang det(/ — zDi) ^ 0 

/or |z| = 1. ^GTicg fAe apec^rum o/(Ae operator Di Zzes wzfAm (/le diac [/, 

(Aere eizafa reoZ gca/ora > 0, 0 < ^ < 1, [D l̂ < V s € Z+. 

The above hounds imply that 

k(s ,P ,7 , ( f ) | \E 

® / O \ p+' ® / O \ P+' 

i=0 / /j=0 i=0 / 

(3.146) 

DeyzMG r = maj({7y, antf cZear/y r < 1. TAeR 

s p—1 s 

lk(g, p, 7, d)||^ < E + ^^ll^oll IMII Z Z 
2=0 k—0 j=0 

— f/cj(5 + ||(f||(5 + — r^)(l — r)"^, 

(3.147) 

(Ae de5%re(f 

2 ^ 2 
:c(g,P,7,(^)||g < ^Ag' + ^Ag' = Ag' (3.148) 

/oZ/owa wAere 

g = \/r, ^A = sup{Z/wr^"X^ + l )9 '^ \ -^-^ll-Bo||||o(||r"Xl-)^^)(^ + l)9 '̂'"^}-
Z 5 

(3.149) 

.PV-om (/le represGM^afion caM 6e 6eeM (Ae proo/ o/ /or ?/&(?) 

/o/Zowa 61/ omaZoĝ / (Ae proo//or Zt(p) abone. 

3.10 S u m m a r y 

Within this chapter the rigorous stability theory developed by Rogers and Owens for 

linear repetitive processes with a constant pass length a has been introduced. The 

theory is based on the abstract representation of the processes in a Banach space 

setting which was introduced in chapter 2 and covers the two separate concepts of 

asymptotic stability and stability along the pass. The existence of two separate types 
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of stability for these processes is as expected since the processes depend explicitly on 

two independent variables. Asymptotic stability is the requirement that bounded 

sequences of inputs produce bounded sequences of outputs over the pass length, 

whereas stability along the pass is the requirement that this holds independently of 

the pass length (i.e. the case of letting a — + 0 0 ) . Although examples do exist 

where asymptotic stability is all that is required (eg. (Owens et al., 2000)) or in fact 

all that is achievable (eg. (Roberts, 2000)), it is the stronger condition of stability 

along the pass which is of most interest here. 

In sections 3.3 and 3.4 the theory developed initially for the general abstract rep-

resentation of a linear repetitive process has been specifically interpreted for the 

differential and discrete subclasses of processes, hrstly for the simple boundary con-

dition case and then for dynamic boundary conditions. 

In the simple boundary condition case, it has been shown that for both subclasses 

the resulting conditions for stability along the pass can be tested by applying well 

known tests from ID linear systems theory. 

In terms of 5'(.B'a, Z,a) generated by a differential process with dynamic boundary 

conditions, there are two cases to deal with: 

(i) as a — + 0 0 , allow + 0 0 and +00 ; and 

(ii) aa a —> +00, keep jV and fixed. 

In (Owens and Rogers, 2000) it is highlighted that the second case is of the most 

practical relevance, and hence is what has been considered in the literature to date. 

How to approach case (i) above remains an open research area. 

For the second case above, for both the differential and discrete subclasses of pro-

cesses, stability along the pass conditions have been given which clearly indicate 

that the accurate determination of boundary conditions for a given example is vi-

tal for correct stability characterisation. In terms of the tests, it is clear that the 

real problem arises with the condition for asymptotic stability (which is where the 

dynamic case differs from the simple boundary condition case). 

In terms of the differential subclass of processes, in the genercil dynamic boundary 

condition case the resulting stability conditions can no longer be tested via standard 

ID techniques. The problem of developing computationally efficient stability tests 
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for this subclass is still open. 

In terms of the discrete subclass of processes, however, for state initial vectors of 

the (most general) form 

a—1 

^fc+i(0) = ^ ] ^jVk j j ) (3.150) 
i=o 

the resulting stability along the pass conditions can be tested for via standard linear 

systems tests. For the details see the reference cited in the text. 

For the differential and discrete subclasses of processes, as an immediate consequence 

of stability along the pass, after a 'sufRciently large' number of passes, the dynamics 

of the process under consideration may be replaced by those of a stable ID linear 

system (or stable limit proEle as it is termed here). Clearly strong measures on 

the following aspects of systems performance is of interest in terms of performance 

evaluation of a given example: 

(i) the rate of approach of the output sequence of pass profiles to the limit profile; 

and 

(ii) the error — i/oo on a given pass A;. 

In terms of obtaining computable bounds on these aspects of performance pre-

diction, two routes are available. One approach, the two-dimensional Lyapunov 

equation route, is fully detailed in chapter 4. Here, the time domain (also termed 

simulation-based) approach in the discrete case has been introduced. It has been 

shown that the standard test for stability along the pass involves the evaluation of a 

potentially large dimensioned matrix for all points on the unit circle in the complex 

plane. In section 3.6, for the discrete subclass of processes, this condition has been 

replaced by a one-off computation of a matrix with constant entries. Although the 

resulting condition for stability along the pass is sufficient in nature only, this po-

tential conservativeness is oSset by the availability of performance measures along 

a given pass from the new conditions at no extra computational cost. The theory 

presented here is novel and provides the subject of the paper (Benton et al., 1998b). 

Within chapter 2 it was shown how certain subclasses of linear repetitive processes 

can be written in the form of 2D linear systems described by the Roesser or Fornasini-

Marchesini state-space models. These 2D systems interpretations have led to the 
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following advance in terms of systems theory for discrete linear repetitive processes. 

For the standard (i.e. nonsingular) model, a formal equivalence has been shown to 

exist between the stability along the pass of discrete linear repetitive processes and 

the BIBO stability of the corresponding Roesser (and hence Fornasini-Marchesini) 

state-space model interpretation of the process dynamics. 

In addition, it has been shown in (Galkowski et al., 1999b) that consideration of 

the singular model has led to the development of a transition matrix (or fundamen-

tal matrix sequence) and hence a general response formula (which calculates the 

process response to a given input sequence and boundary conditions), which leads 

to a characterisation of certain reachability/controllability properties. See the cited 

reference for further details. 

This chapter concludes by introducing a Volterra operator based approach to sta-

bility analysis of discrete linear repetitive processes and as such remains an area 

where future research effort should be directed. Although this route is very new, 

it appears that this approach may play a significant role in the stability analysis of 

such processes. 
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Chapter 4 

I D and 2D Lyapunov Equations 

4.1 I n t r o d u c t i o n 

As a result of the 'equivalence' between the BIBO stability of 2D systems described 

by the Roesser model (and hence the Fornasini-Marchesini model) and the stability 

along the pass of discrete linear repetitive processes which has been presented in 

chapter 3, many well known tests available for the stability analysis of 2D linear 

systems may be applied to linear repetitive processes. Within this chapter, the 

question of to what extent a Lyapunov equation based approach to the stability 

analysis of these processes can be applied is considered. 

The most basic aim of using these Lyapunov-type equations is to provide a suitable 

extension of conventional ID theory. A review of the literature indicates that the 

problem of developing a Lyapunov-type equation for 2D linear systems described 

by, for example, the Roesser state-space model has been approached in essentially 

two different ways: 

(i) the ID Lyapunov equation approach, so-called because the equation hcis an 

identical structure to that for discrete linear time-invariant systems, but with 

defining matrices which are functions of a complex variable; and 

(ii) the so-called 2D Lyapunov equation approach, defined in terms of matrices 

with constant entries. 

Initially the ID Lyapunov equation is introduced, firstly for the subclass of differ-
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ential processes with simple boundary conditions - for the discrete case, see (Rogers 

and Owens, 1996). It is shown how the resulting necessary and sufhcient conditions 

for stability along the pass can be implemented by computations on matrices with 

constant entries. In the discrete case, this serves as an alternative to the standard 

stability along the pass tests of chapter 3 which require the computation of the 

eigenvalues of a potentially large dimensional matrix for all points on the unit cir-

cle in the complex plane. It is highlighted how performance measures are available 

from the resulting condition for stability along the pass which provide computable 

information on the rate of approach of the output sequence of pass profiles to the 

limit profile on a given pass. The ID equation does not, however, provide useful 

measures of relative stability, i.e. stability margins or robustness to, for example, 

uncertainties in the model description (unlike the 2D equation case - see chapter 5 

for further details of these robustness measures). To conclude this analysis, a ID 

Lyapunov equation characterisation of stability along the pass is introduced for a 

subclaas of differential processes possessing dynamic boundary conditions of a spe-

cial structure (which is of particular interest in terms of classes of delay-differential 

systems). New strict positive realness tests for the resulting condition are intro-

duced, and the analysis presented here provides the basis for the papers (Benton 

et al., 2000c) and (Benton et al., 2000d). 

In section 4.6 the so-called 2D Lyapunov equation is presented, which is defined in 

terms of matrices with constant entries. It is shown here how the existence of a 

positive definite solution pair to this equation, in general, provides a sufficient but 

not necessary condition for stability along the pass. In particular, a counter example 

is given which demonstrates that a stable along the pass process does not necessarily 

have the strictly bounded real property and hence doesn't satisfy the 2D Lyapunov 

equation. The analysis here can be found in (Benton et al., 1999). In section 4.7, 

a 2D Lyapunov equation is developed for a 2D Fornasini-Marchesini state-space 

model of the dynamics of a discrete linear repetitive process which involves the 

computation of generalised eigenvalues. The analysis of this section can be found 

in (Benton et al., 2000a). To offset this apparent conservativeness of the sufficient 

only nature of the 2D Lyapunov equation approach, it is shown in section 4.9 how 

the equation provides performance measures along a given pass. 
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4.2 I D Lyapunov Equation Approach 

Within this and the following sections, the so-called ID Lyapunov equation approach 

to the stability analysis of linear repetitive processes is introduced. Here the differ-

ential subclass of processes is considered (for a detailed treatment including relevant 

proofs see (Owens and Rogers, 1995)) - for the discrete cage see, for example, (Rogers 

and Owens, 1996). As a starting point, consider the unit memory subclass of differ-

ential linear repetitive processes with state-space representation (2.13)-(2.14). Also, 

without loss of generality, set = 0, A: > 0. Then the following result expresses 

stability along the pass in terms of a ID Lyapunov equation. This result has been 

previously reported as theorem 3 in (Owens and Rogers, 1995). 

Theorem 4.1 ( I D Lyapunov Equation) Suppose that the pair {C, A} is observ-

QMcf (Ae pmr {A, Bo} /meor procesg 

5(^0, Wa,I/a)a>ao a/zd a:t+i(0) = 0, k > 0^ 

a > CKo w o/oTip (Ae poaa oncf ^ 

("dy) r(Di) < 1, 

(̂ 6̂  |gfn — 7̂  0, .Re(s) > 0, 

3 a rofionaZ poZi/TiomiaZ mafrii sofiifion f (s) o/ f/ie egnatioR 

G ^ ( - s ) f (g)G(g) - f (g) = - 7 (4.1) 

bounded in an open neighbourhood of the imaginary axis of the complex plane 

f/ie properfieg ^(5) = f ^(—s) 

^ f / < P ( w ) = f ' ^ ( - w ) < ^ ^ 7 V w > 0 (4.2) 

/or aome c/ioices 0/ reaJ gcaZora /?, > 1, z = 1, 2, w/iere (3(a) (Ae 

0/ process, den?;ed /rom 

{A ,Bo ,C ,Di } . 

Note that the Lyapunov equation (4.1) in theorem 4.1 is identical in structure to that 

for ID discrete linear systems, except for the fact that the coefficient matrices are 

functions of a complex variable. Hence it is termed ID here to distinguish it from 

the alternative Lyapunov equation (termed 2D) for processes described by (2.24) 

and (2.25) which is developed in section 4.6. 
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Note that the scalars % = 1,2, in this result play no role in the stability analysis 

but, as theorem 4.2 below shows, together with P(g) they are the key to obtaining 

bounds on expected system performance. 

As a starting point to the following analysis, assume that the differential process 

(2.13)-(2.14) is stable along the pass and consider the solution matrix P(a) of the 

ID Lyapunov equation of theorem 4.1. Then factorization techniques enable us to 

write 

f (g) = (4.3) 

where f (g) is stable and minimum phase, and hence has a stable minimum phase 

inverse. Also, without loss of generality, let 

lim F{s) = P'J^ (4.4) 
| s j ->+oo 

where the matrix on the right hand side of this equation is the unique positive 

deAnite square root of > 0 which solves 

D f - Poo = - f , (4.5) 

where (4.5) can be obtained by defining P^o := lim|w|->+oo P(%w) and observing that 

liiTi|5j_)._i_oo (?(<s) = Di-

Now consider the differential unit memory process which is free of control inputs, 

i.e. Uk+i(t) = 0, 0 < t < a, fc > 0. Then, in this situation, it follows that the 

process dynamics can be written in terms of the standard (ID) Laplace transform 

as 

}^+i(g) = G'(g)}^(g), A:>0. (4.6) 

Also let 

yA(a) = p(s ) }1,(a), A; > 0, (4.7) 

denote 'filtered' (by the properties of P(g)) outputs. Then the following result 

(theorem 4 in (Owens and Rogers, 1995)) gives bounds on expected performance of 

the sequence of 'filtered' pass profiles. 
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Theorem 4.2 ( I D Lyapunov Equation - Performance Bounds) Suppose 

Wa, I,a) by zero co)ifroZ oW a;t+i(0) = 

0, A; > 0^ 25 ĝ oAZe (Ae pcwg and 5e( ^ = 2)^(0, +cx3). T/ieM, V A; > 0, 

ll^l'+illx — l l^ l lx ^ l l^ l lx (4.8) 

ancf /lence aegttence o/paag pro/zka {||^Hx}k>o mon,o<omca((i/ 

decreoam^ (o zero aMcf aâ iayZea, /or A; > 0, (Ae megi/aZ%(y 

ll^llx < '̂ ''11̂ 11̂ - (4.9) 

w/iere 

A : = ( l - / ) ^ ^ ) ^ / ^ < l . (4.10) 

v4Zgo (Ae ac(«oZ aeg^^ence o/poaa pro/zZea {| |}t | |x}t>o 6oi/n<ied 

< ArA l̂lYollx (4.11) 

wAere 

> 1. (4.12) 

The ID Lyapunov equation characterisation of stability along the pass provides the 

following information on the rate of approach of the output sequence of pass profiles 

produced by a stable example of the form (2.13) and (2.14) to the limit profile (a 

stable ID differential linear system); 

(i) the output sequence of 'filtered' pass profiles {||^||}*;>o consists of monotone 

signals converging to zero at a computable rate in L™(0, +oo); and 

(ii) the actual sequence of output pass profiles {||}t||}&>o converges at the same ge-

ometric rate, but this is no longer necessarily monotonic. This deviation from 

monotonicity is described by the parameter N computed from the solution of 

the ID Lyapunov equation of theorem 4.1 and (4.12). 

It should be stressed that, for the discrete subclass of processes, there are no 

2D Roesser/Fornasini-Marchesini alternatives to the performance information in-

troduced here. 
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4.3 Solving t h e I D Lyapunov Equa t ion 

To solve the ID Lyapunov equation (and hence stability tests only involving com-

putations on matrices with constant entries) in the general case requires the use of 

the Kronecker product, denoted for matrices (as defined in definition A.6). In 

computational (or testing) terms, only the imaginary cixis, i.e. g = zw, needs to be 

considered - the extension of this curve can be achieved (if required) by analytic 

continuation means. In particular, if conditions (a) and (b) of theorem 4.1 hold, 

the example under consideration is stable along the pass if, and only if, 3 a positive 

definite Hermitian (denoted PDH) matrix P{ico) which solves (4.1). 

Suppose that a Hermitian matrix P ( w ) has been obtained. Then it follows immedi-

ately that the PDH requirement on f (%w) is equivalent to it satisfying the so-called 

axis positivity property of Siljak (Siljak, 1971). In particular, the following result is 

an immediate consequence of Sijak's criterion for axis positivity of F(%w), 

L e m m a 4.1 (/le o/ (/leorem (mear repefiH'ue 

proceaaea (/le poga and on/?/ 

6̂̂  f/ie goWmn (%w) o/(Ae .ZD ( V - P ( O ) > 

0 and det ( f (iw)) > 0 V w > 0. 

Further details on how these conditions can be applied to a particular example can 

be found in (Rogers et al., 1999). 

Now note that the ID Lyapunov equation (4.1) with s = iu) can be written as 

(f^2 - G^(-%w) (g, G^(%w))^[f (%w)] = ^[7] (4.13) 

where ] denotes the stacking operator. Also 3 a unique solution matrix f (tw) to 

this equation provided 

det(7ni2 — (?̂ (—%w) (g) G^(zw)) ^ 0 Vw. (4.14) 

Under the controllability and observability assumptions of theorem 4.1, the process 

is stable along the pass if, and only if, 3 a PDH matrix f (%w) which solves (4.1) 

Vw. Then if condition (b) of lemma 4.1 holds for some arbitrary value of co, say cOo, 
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we have r(G(zWo)) < 1. Hence the following are an equivalent set of stability along 

the pass conditions to theorem 4.1, 

Theorem 4.3 The conditions of theorem 4-1 are equivalent to the following, 

/or OM Wg, 

r(G(%cJo)) < 1, and (4.15) 

To apply the conditions of theorem 4.3, it is necessary to test these three constant 

matrices for stability in the ID sense 

(i) Di with respect to the unit circle in the complex plane, 

(ii) (?(%Wo) with respect to the unit circle in the complex plane, and 

(iii) with respect to the imaginary axis in the complex plane, 

and the determinant condition of (4.14), and hence this test is no more computa-

tionally efficient than alternatives. 

The following result then gives alternative conditions for stability along the pass 

which are expressed in terms of the eigenvalues of constant matrices, 

Theorem 4.4 Suppose that the controllability and observability assumptions of the-

orem /loW. TAen, Wa,I/a) 61/ oW wif/i zt+i(0) = 

0, A > 0, 25 aZoMp (Ae poaa 

o/(Aeorem AoZd, 

det(77^Xi + + ^3) 7̂  0 V 7; = %w, V w, (4.16) 
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-

= 

0 0 0 0 0 0 0 0 

0 0 0 0 
, = 

0 I 0 0 
, = 

0 

0 0 0 0 0 0 - J 0 

0 0 0 -I 0 0 0 7(3 -

I DI Dl 

- f ® 0 0 

u 0 (2)7 0 

0 0 ig) 

(4.17) 

Proof : See (Rogers et al, 1999). 

In this last result, the matrices A'i, 1 < % < 3, are composed of compatibly dimen-

sioned Kronecker products of the matrices A, BQ, C and DX respectively. Also it can 

be seen that the matrix Xi of (4.17) is singular and therefore the solutions cannot be 

obtained directly using existing software. Instead, extensive, but routine, algebraic 

manipulations must be performed to reformulate (4.16) as a condition involving a 

first order matrix polynomial which can easily be tested via existing software for 

computing generalised eigenvalues. See (Rogers et al., 1999) for a further discussion 

of this point. 

4.4 Different ia l Processes wi th Dynamic 

B o u n d a r y Condi t ions Stabil i ty Tests 

Within this section we develop a ID Lyapunov equation characterisation of stability 

along the pass for a subclass of differential linear repetitive processes in the presence 

of so-called dynamic pass state initial conditions. The analysis presented here forms 

the subject for the papers (Benton et al., 2000c) and (Benton et al., 2000d). 

Consider the subclass of unit memory differential linear repetitive processes of the 

form (2.13) with m = n, C = /„ and Di = 0, i.e. 

yi+i(t) = Ayt+i(t) + B un.i(t) + B„yt(t), 0 < i < o. A; > 0. ( 4 1 8 ) 

Here we consider the process subject to a subclass of dynamic boundary conditions of 

the general form of (2.18), with jV = 1, = 7̂  and = a, which are of particular 
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interest in terms of links with delay-differential systems and also repetitive control 

schemes. In this case, the boundary conditions for (4.18) are 

;/k+i(0) = 4 + 1 + %(«), A: > 0. (4.19) 

Now note that in the testing for stability along the pass of processes with dynamic 

boundary conditions, it is the first part of theorem 3.7 which cannot be tested by 

direct application of ID linear systems tests. The aim of the analysis in this section 

is to develop a ID Lyapunov equation based interpretation of this condition for the 

special case of differential processes with the state-space representation (4.18) and 

dynamic boundary conditions of the form (4.19). 

For asymptotic stability of differential processes described by (4.18) and (4.19), 

condition (a) of theorem 3.7 requires that all solutions of 

= 0 (4.20) 

have modulus strictly less than unity V a > 0. Now write z = 6"°̂ , and hence (4.20) 

reduces to the requirement that all solutions of 

\sln ^ -F'(s) I = 0 (4.21) 

have strictly negative real parts where 

F(g) = yl + Boe-"''. (4.22) 

It can also be shown (using results in (Kamen, 1980)) that (4.21) reduces to the 

requirement that 

^ 0 V Re(s) > 0 V w e [0,27r]. (4.23) 

The following result now expresses the condition of (4.23) in terms of a ID Lyapunov 

equation (see (Brierley et al., 1982) for a similar approach for a class of differential 

linear systems with commensurate time delays). 

Theorem 4.5 Condition (4-21) holds i f , and only i f , for a given PDH matrix 

Q(e"^), w E [0,27r], (Ae aoWioM f (e*^) 

F*(e''")f (e''") + P ( e ^ ) F ( e ^ ) = -Q(e''") (4.24) 

is PDHW LO e [0,27r], where * denotes the complex conjugate transpose operation. 
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f r o o / ; 7b a/iow mo(e /or any E [0, 27r], (Ae maMz 

%g an n X 71 ma^Tiz compZei eZemem ŝ. ^ko Zê  Aq 6e an ezgem%;a/we o/ 

fA%6 mafnz wz(A corrggpontfrnp ez^enfecfor Wg. r/ien we Aa^e 

F(e'''''')wo = AoWo 

wAere (Ae 6ar (feno^es (Ae compZei coMjwpâ e opera(wM. TVow pre-m /̂Z îp/ymp 

by w* and yieMa 

= -w;{FXe''''')P(e'"''') + f (4.26) 

iTAen, gmce 6o(A f (e*^) ond Q(e'^) are fDJT mafncea Vw E [0,27r], ancf ttamp ((̂ .,85̂ ) 

a6oi;e, it /oHowa (Aat 

— "(^0 + (4 27) 

TAen we Aai;e 

fl=(A) = 1(A + A) = - 1 < 0 (4.28) 

wAere now A %5 any ei^ent/aZite o/F(e"^) wzfA coTregponcfmp ez^en?;ec(or w. ifence 

atf^czency o/ fAeorem ^.,5 Ao/dg. 

7b aAow necesgz^y, conazder wẑ A an arbitrary fDfTmatr^ 0(6*^) [0,27r]. 

T'Aen %/ AoMa, con be aAown ĵ̂ âmen, jP̂ Oy) (Aâ  aZZ eipentiaZt/ea o/ (Ae 

matrza; F(e"^) Aa^e afncfZy ne^afziie rea/ parta Vw E [0, 27r]. #ow (fe_^ne 

f ( e ' ' ' ) : = / e^'("'")*Q(e'"')e'^("'")*dt (4.29) 

Jo 

wAicA %a we// de/ine(f 5%nce fAe ezpenra/weg o/ ^(6*^) (and F*(e'^)) are m tAe /e/( 

Aa^ o/ tAe comp/ez p/ane. /Iko f *(e'^) = f (e"^), V w E [0,27r], and 

F*(e^)f(e' '")+f(e' '^)f(e' '") = j ^f*(e^)e^'(='")^Q(e''^)e^(^'")* 

+ e'''(=")*Q(e-)e^(''")*F(e-)) 

JQ at \ / 

= -Q(e'") (4.30) 
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lu/iere (Ais /ofkws /rom f/ie /acf fAat 0, and e '̂(='")< —^ 

ag ^ +00. ffence we /tare 

F * ( e ^ ) f ( e ^ ) +P(e'"')F(e'") = -0(e'"'), Vw e [0,27r] 

f *(e'^) = f (e*'̂ ) Vw E [0, 27r], as regm'red. 

(4.31) 

Now define 

F(z) | ,=, i . : = f i ( w ) + 2 F 2 H (4.32) 

where f i ( w ) and f2(w) are real n, x n, matrices. Also for a 5xed E [0,27r], ^(6"^°) 

is an n X n matrix with complex entries which can be written as 

F ( e - ' ' ) = F i ( w , ) + %F2(w,). 

Write the system = F(e''^'')^ as 

3/r + %2/i == (-^l((^o) + %-^(^o))(2/r + %2/i 

(4.33) 

(4.34) 

where i/r and i/i denote the real and imaginary parts of ?/ respectively. Then sepa-

rating (4.34) into real and imaginary parts now yields 

(4.35) 
ijr -Pl(Wo) — F2{tOo) Vv 

Vi -p2(Wo) -Pl((^o) Vi 

Introduce 

F(w) := 
Fi(w) -F2(w) 

F2(w) f i ( w ) 
(4.36) 

Then, in the SISO case, a necessary and sufficient condition for condition (a) of 

theorem 3.7 to hold is that Fi(w) < OVw E [0, 27r], i.e. ID stability of the real part 

of ^(6*^). Also in this case 

det(s7 — F{uj)) = — 2fi(u))s + (w) + / | (w) (4.37) 

where /;(w), j = 1,2, are the SISO elements of f}(w), j = 1,2, in (4.36). 

Hence, in the SISO case, a necessary and suScient condition for (a) of theorem 3.7 

is that yi(w) < 0 V w E [0, 27r]. 
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E x a m p l e 4.1 coMs%(fer /oZZowm^ tfM/orce(f process 

Vk+lif) — 
0 1 

—a —h 

0 0 

0 —c 
(4.38) 

wAere a, 6 oMcf c ore poazfzve reoZ 

2/&+i(0) = 2/&(a!) (4.39) 

i e . o apecW coae o/ (TAe/i m (Aza cage 

F(z) 
0 1 

—o —b — cz 
z = e"". (4.40) 

TAe o/ (Ae Q — 2̂ 

|6 + cz |^+ 0 ( 0 + 1) 6 + cz 

6 + cz 0 + 1 
2/ = 2(6 + ccosw). (4.41) 

de^(P(z)) = 
' + cz|^ + (o + 1)'' 

01/2 (4.42) 

and P(e"^) is PDHV co G [0, 2TI] i f , and only i f , y > 0, i.e. i f , and only i f , 

6 + ccosw>0VwE[0 ,27r ] . (4 43) 

f̂ eMce gô âyzes 0/ (Aeorem ^.7 oW oWy 6 > c. 

4.5 Str ic t Posi t ive Realness Based Tests 

Within this section tests for condition (4.23) are developed using a strict positive 

realness approach. The analysis here forms the basis of the paper (Benton et al., 

2000c). 

First note that, on setting z = e"^, (4.23) is equivalent (Kamen, 1980) to 

A(a, z) := det(g/n — -^('Z)) 0, Re(s) > 0, |z| = 1 (4.44) 

or 

A(s, e^) f 0, Re(g) > 0, w e [0,27r]. (4.45) 
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This is an equation with complex coefBcients which are polynomial in and it is 

required that all its roots should lie in the open left half of the g-plane. Using 'clas-

sical' root clustering theory, the condition for this (see, for example, (Jury, 1973)) 

is that the Hermite matrix obtained from the coefEcients in A(s,e'^) is positive 

deAnite or, alternatively, the inner-wise matrix obtained from the coefhcients must 

be positive inner-wise. 

Consider the complex polynomial 

= (4.46) 
2 = 0 

Then the Hermite matrix, H, associated with B{s) is obtained as follows, 

H = {hp^q} (4.47) 

where 
p 

^p,q — 2( —1) 2 y ^(—l)'^ Tie(bji-j—ibn-p-q+j), P Q ~ even, p Q, 

i=i 

1 ^ 
= 2 ( - l ) ^ ^ " ^ ( - l ) : ' Im(6n__;_i6n-p-,+;), P + 9 ^ odd, p < g 

and /ip,, = (4.48) 

(where Re and Im denote the real and imaginary parts of a complex number respec-

tively). Also it can be shown (Kamen, 1980; Jury, 1973) that H positive definite 

V w E [0, 2n] (or |e"^| G [—1,1]) is equivalent to the following conditions 

^(e'°) = n ( l ) > 0 (4.49) 

det(j7(e''")) > 0VwE[0,27r]. (4.50) 

The checking of (4.49) is straightforward and the more difficult condition of (4.50) 

can be checked using a positivity test. This is based on the fact that det(ff(e"^)) 

is a function of cosw,cos2w, - - - and, on setting z = cosw, det(j7(e'^)) becomes a 

function of a; and its powers. Hence (4.50) becomes 

det(ff(e^)) = F(a;) > 0, z E [ -1 ,1] . (4.51) 

This last condition holds provided F{x) has no real roots in the interval [—1,1]. 

Also introduce the change of variable (a bilinear transform) 

11 — 1 

a; = (4.52) 
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into (4.51) to yield the equivalent condition that 

-F'i(ii) > 0, G [0,+oo). (4.53) 

Then this condition can be checked using any of the computational positivity tests 

(Jury, 1973). 

In the remainder of this section we develop a computationally more feasible alterna-

tive to the approach just presented. The starting point is to note that the condition 

to be tested here can be expressed as the requirement that a two variable polynomial 

of the general form 

p - l g 

o(g, z) := ^ ^ (4.54) 
j = 0 2 = 0 

should satisfy 

o(g, z) ^ 0, Re(s) > 0, |z| < 1. (4.55) 

Firstly we show how (4.55) can be reduced to a one-dimensional problem by showing 

how it is equivalent to the positive realness of a certain ID rational transfer-function 

matrix, which leads to a numerically efficient testing algorithm. The following anal-

ysis requires as background the results summarized next relating to the so-called 

strictly bounded real lemma (see for example (Anderson and Vongpanitlerd, 1973) 

for a detailed treatment). 

Definit ion 4.1 (Strictly Bounded Real Matrices) A real rational transfer-

(j(g) = Ci(gfn — z a (ermecf reo/ oW onZy 

/ — G (̂—%w)G(%w) > 0 V w E R. (4.56) 

The well known strictly bounded real lemma (Anderson and Vongpanitlerd, 1973) 

takes the following form here, 

Lemma 4.2 (Strictly Bounded Real Lemma) Suppose that G{s) is a proper 

rational transfer-function matrix and let {Ai, Di} be an associated minimal 

3 G reaZ f 

A f f - k P A i - h C T C i P B i - k C ^ D i 

(PBi + C^Di):^ - / 
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One characterization of this strictly bounded real property (for the proof see, for 

example, (Gu and Lee, 1989)) is that (7(g) has this property if, and only if, for any 

given real symmetric matrix Q > 0, 3 e > 0 such that, 

(i) 

I - D'^DI > 0, and (4.58) 

(ii) the algebraic Riccati equation 

y l f p + fv4i + ( f + C % ) ( / - D % ) - X B ^ P + D^Ci) + + eQ = 0 

(4.59) 

has a positive definite solution P. 

Also the requirement for a minimal realization can be relaxed by the following result 

(also proved in (Gu and Lee, 1989)), 

Lemma 4.3 Suppose that G{s) is strictly proper and let {Ai, Bi,Ci} be a state-

gpace co?2fro//a6/e. [TAeTi G(g) ia bot/nded 

reo/ ^ GMcf onZ;/ /or OTzy reaZ mofni Q > 0, 3 a acofar e > 0 

such that the algebraic Riccati equation 

+ eQ = 0 (4.60) 

Aaa 0 aoWzoM f . 

Note that if (4.60) has a solution P > 0 for a given e* > 0 then for any e G [0, e*] 

this equation admits at least one positive definite solution. 

If G{s) is not strictly proper the following result (again from (Gu and Lee, 1989)) 

can be used, 

Lemma 4.4 ta a mmimoZ reaZizafzoM o/G(s) . TAezi 

G(g) 6ou7i(fe(f rea/ aMcZ Gm(5) ia reo/ lu/iere 

- ^i + gi(7-DrDi)-^D^C: 1) 

2 

= ( Z - D i D H - ^ C i . (4.61) 
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The key point here is that if Ai is Hurwitz then this implies that is Hurwitz and 

also the controllability of {Ai, B i } implies the controllability of {A^, 

To apply these results, first note the following result (proved in (Gu and Lee, 1986)), 

L e m m a 4.5 Consider the two variable polynomial a(s, z) and suppose that a(0, z) ^ 

0 V |z| < 1. TAeM AoMa ^ 

o(s,0) 

(b) 

o(a,z) ^ 0, 7Ze(a) = 0, |z| < 1. (4.62) 

Clearly it is the second of these conditions which is the most difficult to test. In 

what follows we develop a numerically efficient test based on treating a{s, z) as a 

polynomial, denoted 0^(2), in z with coefficients which are polynomials in g with g 

taking values on the extended imaginary axis of the complex plane. 

The key point to note now is that (4.62) is true if, and only if, a«(z) has all its 

roots outside the unit circle for all s on the imaginary axis. Hence we can apply a 

ID stability test to this condition using a point-wise approach, and here we use the 

Schur-Cohn test expressed in the following form (from (Ptak and Young, 1980)). 

L e m m a 4.6 (Schur-Cohn Test) Let a{z) = ao + aiz + • 

0, o compZei A: = 0,1, 

Go - - - an-2 On-l 

0 Go ai • • • Ctn-2 

and 

D := 

0 • • • 

0 0 

N := 

0 • • • 

0 0 

Oo Ql 

Go 

^n—1 ' ' ' ^2 

0 —1 ' ' ' 2̂ 

®n—1 

O'N 

+ a^z , qq ^ 0, On 

' , M. DeyzMe aZao (Ae 

(4.63) 

(4.64) 
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TAeM a(z) 0 V |z| < 1 %/, ozzd onZ^ %/, f/ie mafrii 

$ = D*D — N*N (4.65) 

M (̂ wAere a^am * de^o^e^ fAe compZei coMjiigo^e ^mngpoae opem^ioTz/ 

Note also that if ao ^ 0 then if $ is PDH <=> the matrix G = ND'^^ is a strict 

contraction (see appendix definition A.5). 

In the case under consideration here, the coefficient is a polynomial in g, s = w . 

Hence % = ak{—s), k = 0,1, - • • ,n. Also the triangular Toeplitz matrices D and N 

of (4.63) and (4.64) respectively can be constructed for this case. Similarly, define 

$(g) = D ^ ( - s ) D ( g ) - N ^ ( - s ) # ( g ) 

and 

G(5) = JV(g)D-X5). 

Then a simple controllable realization for G{—s) is defined as follows 

A = 

—•Ai 

In 

-^2 ~^3 

0 0 

In 0 

0 L 

-Ap 

0 

0 B 

L 

C' 

CJ 

where 

Ap-j 

aoj aij a2j 

0 Q,(jj dij 

0 

0 0 --

(^q—2j 

0 a^j 

and 

= (-ly 

(^qj 0,q—lj 0,q—2j 

O-QJ ^Q—LJ 

aij 

0 

0 

0'q-2j 

OIQJ (^Q—LJ 

0 o , qj 

(4.66) 

(4.67) 

(4.68) 

(4.69) 

(4.70) 
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are upper triangular Toeplitz matrices with real a^j as defined in (4.54). 

The next stage is to show that (4.55) is equivalent to G(—a) being bounded real. 

To do this, 6rst take (?(—s) = (7(51 — v4)'^B as deGned by (4.68). Then (a) of 

lemma 4.5 implies that det(gf — A)) = det(D(—s)) = (o(g,0))" is Hurwitz and 

hence G{—s) is stable. Using (b) of lemma 4.5 we now have that $(%w) is PDH 

Vw E R and this, in turn, is equivalent to G{—ico) being a strict contraction for each 

w E R. Hence G(—g) is strictly bounded real. 

Suppose now that (?(—s) is strictly bounded real. Then det(sf — A) is Hurwitz and 

hence (a) of lemma 4.5 holds. Also, since G{—iuj) is a strict contraction for each w, 

this implies, by the Schur-Cohn test, that (b) of lemma 4.5 holds. 

The arguments just given establish the following result, 

T h e o r e m 4.6 ConWer (Ae o(s,z) 62/ 

G(—g) 5?/ (Ae gWe-gpoce 0/ oZgo a(0,z) ^ 

0 V |z| = 1. [TAen (Mg poZynommZ gofigyEeg G/icf om/?/ G(—g) %g gMc% 

Aoundetf rea/. 

This leads immediately to the following algorithm for testing (4.55), 

1. Input p, g and 0̂ ^ as deSned in (4.54). 

2. Test if o(g, 0) is Hurwitz and, if not, then stop since (4.55) does not hold (and 

hence the example under consideration is not stable along the pass). 

3. Construct the matrices A, B, C and choose a positive deSnite matrix Q and 

a positive real scalar e to solve the algebraic Riccati equation (4.60). If this 

equation has a solution then (4.55) holds. In which case proceed to test the 

other conditions for stability along the paas. 

Note that the realisation defined by (4.68) may not be minimal and hence there 

could be numerical problems in solving the algebraic Riccati equation if the product 

pq is large. Hence an input normal realisation (Moore, 1981) should be used to 

obtain a minimal realisation prior to testing G{—s) for the strict bounded realness 

property. 

It is possible to avoid computing the solution of the cilgebraic Riccati equation here. 

This is based on the the fact that since G{—s) is strictly proper, it is guaranteed to 
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be strictly bounded real if det(f — G^(—g)G(s)) ^ 0 VRe(g) = 0 or, equivalently, 

det($(g)) ^ OVRe(g) = 0. Also since we are using a minimal realization of (?(—a) 

it can be shown that this transfer-function matrix is strictly bounded real if, and 

only if, the Hamiltonian matrix 

Ha: = (4.71) 

has no purely imaginary eigenvalues. Note that the dimensions of this matrix are 

2pg X 2pg and hence if pg is 'large' then the eigenvalue computation cannot be 

expected to produce 'high accuracy' results. 

Example 4.2 As an example, suppose that 

a(s, z) = a -j- -y 4- As)z (4.72) 

wAere |'y| ^ |/?| 'y > 0. /n caae, cZearZi/ OTiZy /loZdg azzcf 

G ( - » ) = — (4^73) 

reoZ. TVow 

^ -8m = 1, C'm = ^ (4.74) 

0̂5 per Ae/zce reo/Meaa o/G(—s) ^4^ < 0. ylko 

W P 6e (Ae soWion 0/ wif/i, Q = 1 aW t/ien, 

4- 2 A ^ P 4- + 6 = 0. (4.75) 

#ow we Aare f > 0 reg?fireg + e wAzcA Ao/cfs onZy 

'y > |/)| (̂ smce < 0, 'y > 0 / fTe^ce u;e Aa?;e luAeTi 

|A| < 1, 7 > 1,91 > 0. (4.76) 

4.6 T h e 2D Lyapunov Equa t ion A p p r o a c h 

Within this section the so-called 2D Lyapunov equation approach to the stability 

analysis of linear repetitive processes is introduced. The analysis introduced here 
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has been presented in (Benton et al., 1999) and (Benton et al., 2000a). Consider the 

subclass of unit memory discrete linear repetitive processes with state-space model 

(2.24) and simple boundary conditions (2.25). The starting point for the analysis 

presented in this section is the following set of necessary and sufficient conditions 

for stability along the pass which have been reported previously, but the proof here 

is more direct. 

Theorem 4.7 (Stability along the Pass) (Rogers and Owens, 1993) For the 

proceaa o/ {A, Bo} 25 coM-

OMd (Ae {C, A} za o6gen;aWe. TAem (/le proceaa paaa 

("aj aZf eigen.'uaZneg o/ (/le mafrii /la'ue moduZiig gfricfZy Zess 

— A —Bo 
p(zi, z) := (fê  

kil > 1, Izl > 1. 

-c 
7^0 (4.77) 

Proof : In effect this consists of showing that (a), (b) and (c) here are equivalent to 

(/le o/ (Aeorem 5. ,9. Tb g/iow smce (Ae gpec(rum 

o/Z/Q, cr(^a) = (7'(-Di), mdmg o/Z/a m (Aza coae %5 o/A, 

on(f Aemce, /rom (Aeorem we Aai;e roo = r(Di), OMcf Ae/zce AoZda. 

Comaijer /low ;(Ae ao/'û zoM o/ (Ae 

(z/ — Z'a)^ — Co (4.78) 

/or aoTTie arbifrory (o E and z awcA |z| > A A E (roo, 1). 

CQM 6e wnMen m (Ae a^a^e-apace /orm 

Zl7n - Vl - B o z(zi) Co(^l) 

— C zim ~ Dl ( W _ Co(^) 
(4.79) 

with state vector x{i), 2 = 0, 1, 2, • • • , z(0) = 0, by applying the z-transform with 

ranatZg o(eMo(e(f 6?/ zi. now /o/Zowa /rom o rowfme (Ae eiiafence o/ 

a ttm/orm Mg *a eg?f%t;oZeM( (o 

p ( z i , z ) ^ 0 , | z i | > l - 6 , | z | > A (4.80) 
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wAere e > 0 some reaZ nwm6er. iT/ie o6ge7T;a6z/% ŷ aasttmp^ion on {C, v4} 

(ees (Aere ore no 'Azcfden' wnsfabZe modes and /̂le con̂ ro//a6%/%(y ossztmp^zon on 

{A, Bo} ens?ires (Aof a// s^s^em modes ore ea;c%(ed. 

Now, use of Schur's formula yields 

p(^i! = det(zfyn ~ Di) det{ziln — A ~ Bo[zIjn — -Di) ^C) (4.81) 

and Aence, pzren cond%(%on ô̂  o/ Âe res%iZ(, reduces (o (Ae regmremen( (Aof 

3 a reoZ n%zm6er e > 0 si/cA (Ao( 

det(zi/„ — A — B^i^zlra ^ Di) Ĉ*) ^ 0, | > 1 — e, |z| > A. (4.82) 

T/izs reguzres ^Ao( 

I det(ziJ„ — A — Bo(zIm ~ Di) ^(7)| > (|zi| — 1 + e)", |zi| > 1, |z| > A, (4.83) 

and cons^dennp |z| —^ +oo now yzeZds condẑ %on ^5/ TAe proo/ o/ necess% %s 

compZefed noh'np (Aof 

|p(^i,'Z)| > (kl — roo)'"(|'Zi| — 1 + e)" > 0. (4.84) 

To prot;e stfj^^czenci/, _/zrst nofe f/iat ô̂  MmoZZ?/ %mpZ%es f/ia( roo < 1. Consider afso 

p ( z i , z ) ^ 0 , | z i | > l , | z | > l (4.85) 

smce r(Di) < 1, rediices (o 

det(zi/„ — A — B^i^zlra — Di) ^C) 7̂  0, \zi\ > 1, \z\ > 1. (4.86) 

Ako (zfm — -Di)"^ s(ric(fi/ proper and (Ms /ac( combined m(/i r(A) < 1 ^condition 

(̂ 6̂ ^ ?/%eZds, /or some e > 0, r 0 ond A G (roo, 1), 

det(zi7n -~ A ~ Bo{zIm — Di) ^C) 7̂  0 (4.87) 

%/ ei(Aer |zi| > 1 — e ond |z| > r and/or |zi| > r ond |z| > A. Consegi/en<Z^ onZ^ 

remoins (o consider on (Ae compact se( {zi : 1 —e < |zi| < r} x {z : 1 < |z| < 

r}. v4 roi/(ine or^7imen< 6ased on (Ais /ocf kods, /or some e > 0, and A E (roo, 1) (o 

det(2i/„ — A — Bo^zlm — Di) ^C) 0, |zi| > 1 — e, \z\ > A. (4.88) 

(Ais s(ope, if remains (o proi;e f/io( </ie soWion (̂ (') 0/ ^enerofed ^o() 

uniformly bounded in the sense that 3 a constant M such that ||C|| < ikf||Co||, V (0 € 
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Tb )%o(e (Ae sef {v4 + Bo(z/m — : |z| > A} %s 5oun<fe(f 

m (Ae aenae 0/ Morm. AZso ae( %g reZâ î /e/y compoc^ (Aere/ore ca^ 6e 

coi;ere(f 6%/ Mi/m6er 0/ open taZZa B? 0/ centre and mdma (Aa( 

cr(A" + r) c {zi : |zi| < 1 — e"} V ||r|| < 5" (4.89) 

w/iere e" w o po5%(%!;e cona^anf. 

To cAooge appropna(e ancf no(e %/ %a a i,2/ap%fnoi; ma^nr /or fAen 

%5 aZao o ma^ztc /or 4̂? + F V ||r|| < <5̂? m (Ae ge/we 

+ r ) - < -Ein (4.90) 

wAere e %5 a po3%(me cona^omi .AZao, m B?, (̂ .̂ 0 )̂ ptfarom^eea (Ae eiia^evice 0/ reaZ 

scaZara //j an(Z aucA ||(Aj + r)'|| < , % = 0, 1, - - -. 

||(A + Bo(z;^ - Di)-^C)'|| < % = 0, 1, - - - (4.91) 

wAere = max^ oMcf = mciXj . iTAza m meama f/io< (Ae go/w(%oM (^() 0/ 

25 T/m/orm/y 6oi//i(fe(f V (̂ o 6 oMcf /̂le proo/ ig compZefe. 

The so-called augmented plant matrix for processes described by (2.24)-(2.25) has 

already been deSned as 

$ = 
A Bo 

C Di 
(4.92) 

Then, since p(zi, z) = det(diag{zi/n, 2 /^} —$), setting Zi — z = 1 gives r($) < 1 as 

another necessary condition for stability along the pass. Clearly the three necessary 

conditions r(Di) < 1, r(yl) < 1 and r($) < 1 should be tested before proceeding 

with the analysis of a given example. 

The so-called 2D Lyapunov equation (see (Lodge and Fahmy, 1981) for the case of 

2D linear systems described by the Roesser state-space model) has the form 

= - Q (4.93) 

where l y = IVi @ 1^2, and W2 and Q are symmetric matrices of dimension 

72 X M, m X m and (n 4- m) x (n 4- m) respectively and @ denotes the direct sum, 

i.e. W = diag(iyi, W2). 
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In nD linear systems theory, the so-called nD Lyapunov equation was first developed 

in (Piekarski, 1977) as a condition for the multivariate characteristic polynomial of 

an nD continuous linear system to be strictly Hurwitz, i.e. no zeros in the region 

Re(gi), 1 < % < M. This was then extended to the 2D discrete case using the 

double bilinear trcmsform (Lodge and Fahmy, 1981). Here it was cisserted that the 

existence of positive deHnite symmetric matrices Q and IV satisfying (4.93) was a 

necessary and sufficient condition for BIBO stability. In (Anderson et al., 1986), 

however, it was subsequently shown that, in general, the 2D Lyapunov equation 

condition is sufficient but not necessary for the BIBO stability of such systems. 

The equation (4.93) is termed 2D to denote the fact that it is defined in terms 

of matrices which have constant entries (as opposed to the ID Lyapunov equation 

of the previous sections of this chapter which has entries which are functions of a 

complex variable). The remainder of this section investigates the role of (4.93) in 

the stability analysis of discrete linear repetitive processes described by (2.24) and 

(2.25). 

The following analysis makes use of the following results and definitions for so-

called strictly bounded real matrices (see, for example, (Anderson and Vongpan-

itlerd, 1973) for a detailed treatment). These results form the discrete counterpart 

to the definitions for differential processes used in section 4.4. 

Def ini t ion 4.2 (Strictly B o u n d e d Real Matrices) Let S{r]) be a square matrix 

o/ reo/ m compZea; TAeM 5'(7y) 

aZ/po/eg o/5'(?y) m jTyj < 1, 

("6; 7 - 5^(e-^)^(e^) >0, V w E [0,2%]. 

Conditions (a) and (b) can be reduced to conditions on the matrices of a minimal 

state-space realization of 5'(T)) using the following result, which is known as the 

bounded real lemma, 

L e m m a 4.7 (Bounded Real Lemma) Suppose that the transfer-function matrix 

5'(?7) Aaa a {f, (7, jif, J} aitcA 

that 
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T/ieM 5(77) a/id onZy 3 o mofrza; f > 0 (/le mo^hi 

Qi 6?/ 

Qi = 

%g (feyZm ê. 

/ _ jT J _ (g<rp(; _ ( f % + 

G - ^ J p - f 
(4.95) 

Note that if {F, G, H, J} is not a minimal realisation of S{rj) and 3 a symmetric 

matrix P > 0 such that Qi of (4.95) satisfies Qi > 0, then 5'(/7) is still SBR, but the 

converse cannot be established. Also, if Qi > 0 then 5'(?;) is a bounded real matrix. 

The answer to under what conditions is (4.93) solved by symmetric positive dehnite 

and Q is based on the bounded real lemma 4.7 and is given by the following 

result, 

Theorem 4.8 Comaider (/le coae 0/ Zmear proceasea (feacn6e(f 6?/ 

GMd awppoae /or gome MOMamgtfZar T, fAe fro725/er-/uMc(%on 

Gi(zi) := TG(zi)T-" = T[C(zi7^ - A)-"Bo + (4.96) 

S'ttppose a/ao {A, Bo} comp/e^eZ^ reacAa6Ze and {C^, A} is com-

p/ê eZy o65er2;a5/e. TAen 3 aymmeMc mafncea Q > 0 and @ 14^ > 0 atfcA 

(/le ,8D iv^ap f̂no?; egitâ zoTi 

Com?;er6e/y, AoJcfa /or gy^^mefnc Q > 0 and l y = > 0, (Aen 3 a 

nonsingular matrix T such that Gi{zi) is SBR. 

Note that the proof of this result is identical to that of theorem 1 in (Anderson 

et al., 1986) and hence is omitted here. 

Consider now condition (c) of theorem 4.7. Then it follows immediately (by simple 

operations on the defining determinant) that this condition is equivalent to 

det 
^ll-n — A —BQ 

0 zlm — G{Zi) 
# 0 V | z i | > 1, | z | > 1. ( 4 .97 ) 

Application of Huang's criterion for BIBO stability of 2D discrete linear systems 

(theorem A. 12) now shows that (4.97) is equivalent to the following two conditions 
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(the 6rst of which has already been established) 

det(zi7n — ^ 0 V ki | ^ 1, 

det(z/m - G(zi)) ^ 0 V |zi| = 1 and |z| > 1. (4.98) 

Now let Ai{^} and Ai{G(e"^)} denote the eigenvalues of ^ and G(zi)|z^=e'" respec-

tively. Then these two conditions become 

! < % < " , and 

|A i {G(e"^)} | < 1 , V w E [0,2%], 

and, for any nonsingular T, the last condition of (4.99) is equivalent to 

|Ai{Gi(e''')}| = |A,{TG(e^)T-^}| < 1 , 1 < % < m, V w e [0, 27r]. (4.100) 

Suppose now that Gi(zi) is SBR. Then in the minimal realisation of this transfer-

function matrix, we have immediately |Aj{^}| < 1 , 1 < i < n. Also by the SBR 

property, 

^ (?^(6 ^'^)Cri(e"^) > 0 V w E [0, 27r], (4.101) 

which implies that 

|Ai{G(e"^)}| < 1 V w E [0,27r], 1 < % < m. (4.102) 

As the counter-example given below demonstrates, however, the argument which 

establishes (4.102) cannot be reversed. Equivalently, (c) of theorem 4.7 does not 

imply that Gi(zi) is SBR. Hence there exists stable along the pass discrete linear 

repetitive processes with a Gi(zi) which are not SBR and therefore, by theorem 4.8, 

it follows that for such a process symmetric matrices W = Wi @ W2 > 0 and Q > 0 

satisfying the corresponding 2D Lyapunov equation do not exist. This result can be 

illustrated as in figure 4.1 and is stated formally as follows. 

Theorem 4.9 Suppose that the pair {A, BQ} is completely reachable and that the 

pair {(7^, A} /mear proceasea de-

ancf o r e oJoMg (Ae p a s s * / G i ( z i ) 0 / za 

A counter-example to the converse of the result of theorem 4.9 is the 6-state, 2-input, 

2-output process with the following state-space model describing the contribution 
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Set of all processes which satisfy 2D Lyapunov equation 

Set of all stable along the pass processes 

Figure 4.1: Illustration of sufficient but not necessary nature of the 2D Lyapunov 

equation for stability along the pass. 

of the previous pass dynamics to those of the current pass over 0 < p < a , A;>0, 

a;A+i(p + 1) 

- 2 . 8 1 1 0 

- 2 . 6 5 7 0 1 

- 0 . 8 4 5 0 0 

0 0 0 

0 0 0 

0 0 0 

0 

0 

0 

2.81 

0 0 

0 0 

0 0 

1 0 

- 2 . 6 5 7 0 1 

0 .845 0 0 

%+i(p) 

%+i(p) = 
0 0 0 1 0 0 

1 0 0 0 0 0 

0.028 

0.008 

0.012 

0 

0 

0 

0.5 0 . 0 0 7 

- 0 . 0 0 7 0 .5 

0 

0 

0 

0.028 

-0 .008 

0.012 

(4.103) 

First note tha t the necessary conditions of r(Bi) < 1, r(A) < 1 and r ($ ) < 1, with 

$ constructed from (4.92), are easily shown to hold in this case. Hence this example 

is stable along the pass if, and only if, the condition of (4.77) holds. The following 

analysis shows tha t this is the case using the equivalent formulation of (4.98). 

Consider G(zi) which can be written in the form 

0.5 G . ( z i ) 
G(zi) = 

G 6 ( z i ) 0 .5 
(4.104) 

where 

(?o(zi) = 
0.028z^ - 0 . 0 0 8 z i + 0 . 0 1 2 

3 - 2 .81z? + 2.657Z1 - 0 . 8 4 5 

0.028z^ + 0.008zi + 0.012 

+ 0.007, and 

0.007. 
z^4-2.81zif + 2.657zi + 0.845 (4.105) 

Since r(Di) < 1, to show that the conditions of (4.98) hold, and hence tha t the 

process is stable along the pass, it remains to be shown that the eigenvalues of 

(4.104) satisfy 

|A^{G(e^)}| < 1 , 2 = 1,2, w E [0,27r]. (4.106) 
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First note that 

det(z72 ^ = (z — 0.5)^ — Ga{e^'^)Gb{e^'^). (4.107) 

Also it is easily veriAed, by evaluating |Ga(e''^)(?b(e"^)| Vw E [0, 27r] that 

|G^(e")G6(e'^)| < 0.007. (4.108) 

This, in turn, implies that the values of z for which (4.107) is zero, i.e. the eigenvalues 

of 0(6*^), are all close to 0.5. Hence (4.106) holds and the process is stable along 

the pass. 

Now we show that Gi(zi) is not SBR by showing that there is no nonsingular matrix 

T such that (?i(zi) = T'G(zi)T'"^ satisEes 

f - G'r(e-''")Gi(e'^) > 0 , V w e [0,27r]. (4.109) 

The approach used it to assume that a nonsingular matrix T does exist, and then 

to establish a contradiction. Suppose therefore that 

f = (4.110) 

Then (4.109) can be rewritten as 

f - G^(e-'''')f G(e^) > 0 V w G [0,27r]. (4.111) 

Next we will show that 3 no P > 0 such that the following two conditions hold. 

P - G ^ ( 1 ) P G ( 1 ) > 0, and 

P - G ^ ( - 1 ) P G ( - 1 ) > 0. 

From (4.104) and (4.105) we obtain 

G ( l ) = 
0.5 

—a 0.5 
and G(—1) = 

0.5 

a 0.5 

where 

a = 0.000435 and /? = 16.007. 

(4.112) 

(4.113) 

(4.114) 

(4.115) 

Since P is symmetric, denote its elements by pn, pi2 = P21 and P22, and no loss of 

generality arises from setting p u = 1. Hence, since P is positive definite, we have 

IPizI < (4.116) 
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Return now to (4.112), which can be rewritten as 

P - G ^ ( 1 ) P G ( 1 ) 

0.75 + Qpi2 ^ —0.5^ — (0.75 — ct/5)pi2 + 0.5Q;P22 

—0.5/3 — (0.75 — Ckf3)pi2 + 0.5(i'P22 — — I3pi2 + 0.75p22 

(4.117) 

Then for this matrix to be positive definite we require that 

— (3pi2 + 0.75p22 > 0, (4.118) 

or, on rearranging and using (4.116), 

0.75p22 > ,8̂  — |^|-\/P22- (4.119) 

On further rearranging we obtain 

^ | / 3 | - 1 0 . (4.120) 

Now rewrite (4.113) as 

f - G ^ ( - 1 ) P G ( - 1 ) 

0.75 + Ppi2 ~ P'^P22 —0.5a — (0.75 — Q;/3)pi2 + 0.5/3p22 

-0.5a; — (0.75 — Oil3)pi2 ~l~ 0.5/)p22 — ^ — ctpi2 4- 0.75p22 

(4.121) 

This matrix is positive definite provided 

0.75 + fip\2 —' 0^P22 > 0, (4.122) 

or, after similar analysis to the above, 

\ ^ < ^ : ^ 0 . 1 . (4.123) 

Condition (4.123) clearly contradicts (4.120), and hence our original assumption 

is invalid and there is no nonsingular matrix T such that (4.109) holds. Hence the 

immediate conclusion is that, for this example, symmetric matrices W = Wi®W2 > 

0 and Q > 0 which solve the corresponding 2D Lyapunov equation (4.93) do not 

exist. It has already been shown, however, that this process is stable along the pass, 

and hence this is a counter-example to the assertion that the existence of a positive 
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definite solution pair {W, Q} to the 2D Lyapunov equation (4.93) is equivalent to 

stability along the pass of discrete linear repetitive processes described by (2.24) 

and (2.25). Essentially the necessity part of the 2D Lyapunov equation result here 

is different from the ID case. 

Some special cases exist, however, where the 2D Lyapunov equation condition is 

both necessary and sufficient for stability along the pass, as the following sections 

show. 

4.6.1 Special Case 1 - 0 is N o r m a l 

Suppose that the augmented plant matrix $ (4.92) of the process under consideration 

is normal, i.e. 

(4.124) 

Then, following the analysis in (Fadali and Gnanasekaran, 1989) for systems de-

scribed by the Roesser 2D state-space model, necessity is immediate since (4.93) is 

equivalent to 

^ < 0, (4.125) 

i.e. r ( # ) < 1, which is a necessary condition (see earlier in this section) for stability 

along the pass. Note that equation (4.125) is structurally similar to the Lyapunov 

equation for ID discrete linear time-invariant systems with W constrained to be 

positive dehnite block diagonal matrix. In particular, under stability along the 

pass, it follows that the augmented plant matrix $ is stable in the ID sense. (Note 

that the converse is not generally true.) This necessary condition is expressed in 

terms of a matrix with constant entries and hence should be tested before proceeding 

further with the stability analysis of a given example. 

To prove the converse, i.e. that if r ( $ ) < 1 then (4.125) holds, denote the eigenvalues 

of $ by Wi, 1 < i < n + m, and the corresponding eigenvector matrix by R. Then, 

since $ is normal, 

$ = ^ diag{wi}i<,<n+m (4.126) 

where * denotes the complex conjugate transpose operator. 

114 



4 ID and 2D Lyapunov Equations 115 

Substituting (4.126) and IV = 7n+m into (4.125) then yields 

- W = (|fl|" - ;»+^) JZ* (4.127) 

where r) = diag{w?}i<i<n+m, and this matrix is negative definite since |w,|^ < 1 ,1 < 

% < M + 771, by the assumption that r($) < 1. Equivalently (4.125), the ID discrete 

linear systems Lyapunov equation holds under the choice of = fn+ni and, since 

In+m is block diagonal under any partition, $ also satisfies the 2D Lyapunov equation 

for stability along the pass. 

Hence we have established the following corollary of theorem 4.9 (see (Fadali and 

Gnanasekaran, 1989) for the 2D Roesser model case). 

Corollary 4.1 ( $ is Normal) Suppose that the augmented plant matrix $ for dis-

cre^e Zmear procea^ea (feacnbecf 6?/ za Mormo/. TAen aitcA 

proceaaea ore gtabZg aZoMp (/le poaa and oTiZy i/, (/lere eizgfa 

This result can be extended slightly. A matrix $' is said to be 2D similar to $ if 

$ ' = T ~ ^ ^ T where T = Ti ® T2 is a similarity transform and Ti and T2 are both 

invertible. Then it can easily be verified that the steps of the above analysis also 

hold if the augmented plant matrix $ is 2D similar to normal, and the following 

corollary is obtained, 

Corollary 4.2 ( $ is 2D Similar to Normal) Suppose that the augmented plant 

mafnr /or (fzacre^e /mear processes (fescn6e<i cam 

(4.128) 

%i/iere T = Ti @ 32, ^ ?2 ore ^ MormaJ. [TAem sucA proceaaea 

are gtabZe a(on,p (/le pass i/) aiiff on,fi/ i/, f/iere eiists si/mme^nc 

ma(nces TV a?id Q wAzcA sa^zs)^ Z,yap?fno%; egi/a(*07% 

4.6.2 Specia l Case 2 - P roces s is SISO 

Another special case is when the process is SISO. Then in this case it follows imme-

diately that the two conditions for the SBR property are equivalent. In particular, 

|Ai{G(e''")}| < 1 V w E [0,27r], (4.129) 
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and 

1 - > 0 V w e [0,27r], 

are equivalent, and hence we have the following corollary of theorem 4.9. 

(4.130) 

Corollary 4.3 (SISO Processes) SISO discrete linear repetitive processes 

(ZegcnAecf 6^ are (Ae paga (Aere 

me^nc moMceg Q wMcA ao/re fAe ,gD 

4.7 2D Fornasini-Marchesini Model Based 

Lyapunov Equa t ion 

In 2D linear systems analysis there are (aa noted previously in this thesis) two 

commonly used and extensively studied state-space models, namely those due to 

Roesser (Roesser, 1975) and Fornasini-Marchesini (Fornasini and Marchesini, 1978). 

Within chapter 2 both models have been presented and in chapter 3 it was shown 

that an 'equivalence' exists between the BIBO stability of systems described by 

the Roesser state-space model (and hence also those described by the Fornasini-

Marchesini state-space model) and the stability along the pass of the discrete sub-

class of linear repetitive processes. This fact enables the interchange, to great eEect, 

of stability tests between these two areas. Here, 2D Fornasini-Marchesini model 

based Lyapunov equations are developed - the analysis here is presented in (Benton 

et al., 2000a). 

The subsequent analysis uses the following Roesser model of the discrete linear 

repetitive process of (2.24) and (2.25) as a starting point, which has already been 

introduced in section 2.6 of chapter 2, 

a?(A;,p -t-1) A 0 In 3:(A:,p) " B ' 

//(A; -1- l ,p) = D i C Di 0 )u(A;,p) + 0 M(A;,p). (4.131) 

?7(A; - H , p ) _ _ BoC Bo 0 _ . ?7(^,P) . _ 0 _ 

An equivalent Fornasini-Marchesini model of (4.131), with the control input term 

deleted, can be obtained as follows 

z(A;,p -I- 1) 

A(A: 4- l ,p) 
= Al 

z(A;,p) 

A(A; -I- l ,p) 
+ A? 

a;(A:,p -t-1) 

A(A;,p) 
(4.132) 
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where 

A 0 In 0 0 0 

v4i = 0 0 0 , ^2 = D i C Di 0 and A(A;,p) 

0 0 0 Bo 0 

(4.133) 

Given the stability equivalence, we can now state the following result. 

Theorem 4.10 S{Ea, Wa,La) generated by (4-132) and (4-133) is stable along the 

pass i/, 

z) := - 'Z^2) 7̂  0 m (7 (4.134) 

w2 wAerg [/ = {(zi ,z) : |zi| < 1, |z| < 1}. 

Note that the necessary conditions r(Di) < 1 and r(A) < 1 should clearly be tested 

before recourse to the condition of theorem 4.10. 

By Huang's criterion (lemma A. 12), (4.134) is equivalent to the requirements that 

(i) 

p ( z i , 0 ) f 0 , | z i | < l , and 

11 

7̂  0, \zi\ — 1, |zj < 1. 

Suppose, therefore that the matrix iJfm defined by 

Hfm := Ai + A2 

satisfies 

< 1 V w E [0,27r] . 

(4.135) 

(4.136) 

(4.137) 

(4.138) 

Then the images of the unit polydisc {(zi, z) : |zi| = 1, |z| = 1} under the polynomial 

functions 

9l(^l,^) — dGt(f2n+m — 
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and 

?2(^, 'Z) = det(72n+m ^ — ^-^2) (4.140) 

coincide with the images of the polynomial function det(72n+m — — zAg) when 

acting on the sets 

n {(zi, z) : |zi| > |z|} (4.141) 

and 

[ / ' ^ n { ( z i , z ) : | z | > | z i | } . (4.142) 

Now, since gi(0,^) ^ 0, jTyj < 1 and r(Ai + e'^A2) < 1 by assumption, gi(zi,e"^) # 

0, |zi| < 1, 91 (zi,^) ^ 0 in by Huang's criterion. The same property holds for 

92(̂ 1 z) and hence (4.134) holds. 

Conversely, stability along the pass implies that det(f2n+m — ziAi — ^^2) ^ 0 in (7 .̂ 

Hence det(72n+m — zi^i — ze"^vi2) 0, |zi| < 1, |z| < 1, which means that r(Ai + 

e"^A2) < 1. Hence the following result has been established, 

T h e o r e m 4 .11 Suppose that r(Z?i) < 1 andr(A) < 1. Then S{Ea,Wa,La) gener-

r ( i i + e ^ i 2 ) < 1 V w e [0, 27r]. (4.143) 

In particular, we have 

Corollary 4.4 Necessary conditions for stability along the pass of S{Ea,Wa, La) 

ore r ( . 4 i 4- A2) < 1 oTid r(v4i — X2) < 1. 

Use of this last result now leads to the following ID Lyapunov equation interpreta-

tion of stability along the pass. The proof of this result is omitted here since it is 

identical to that in (Rogers and Owens, 1996) for an essentially Roesser based 2D 

systems model interpretation of the dynamics of discrete linear repetitive processes. 

Theorem 4.12 Suppose that r(Di) < 1 andr{A) < 1. Then S{Ea,Wa, La) gener-

( i i + e-'"A2)^f (e''')(ii + e^A2) - f (e'") = - f (4.144) 

has a positive definite Hermitian (PDH) solution P(e '") . 
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Testing for stability using this last theorem involves obtaining a Hermitian solution 

matrix f (e*^) to (4.144) and testing to see if this matrix is positive definite V w e 

[0,27r]. Applying standard positivity tests means that this is equivalent to the 

following two conditions, 

(i) 

> Ofor any Wo E [0,27r] and (4.145) 

(") 

det(P(e''^)) > 0 Vw E [0,27r]. (4.146) 

Hence it is not necessary to test all of the principal minors of f (e*^) for positivity. 

Instead, it is enough to test at one point and then to ensure, using only the determi-

nant, that none of the eigenvalues (or the principal minors) of f (e* )̂ changes sign 

for w E [0,27r]. (See the proof of the next result for the arguments which establish 

this fact.) 

The following result is the first step in obtaining a stability test for the ID Lya-

punov equation condition which only involves computations with matrices which 

have constant entries, where, for ease of notation, we write (^(e*^) = + 6* .̂̂ 2. 

Theorem 4.13 S(^a,Wa,Z,a) peMemW oZoMp (/le 

r(Di) < 1 QMcf r(.4) < 1, 

(b) P the solution of 

^^(6-^")^6(6^°) - f (e'"̂ ") = - 7 (4.147) 

/or am?/ W(, E [0, 27r], OMcf 

(c) 

de((f - G^(e-^) ig,G^(e^)) ^ OVw E [0,27r]. (4.148) 
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Proof: o/iZy regwired (o pro7;e 6̂̂  ond are 

7b (fo (Aw, coMa%(fer wn̂ êzz oa 

(7 - (g, (e^)] = ^[7] (4.149) 

w/iere 5'[ ] demo êg fAe operator. For (Ae ezza^ence o/ a ao/'u(%om i/;e 

regi/zre 

( fe( (7-G^(e-^)®G^(e'")) f OVw E [0,2?:]. (4.150) 

AZao /or f (e" )̂ (o 6e f DTf, is regmret̂  (Ae ez^enwZ'uea o/ (Aia mofr^ remom 

pog%(z7;e V w E [0,27r]. (TAeae ore co7i(m2(o?w /uMcfzoTW o/w Aence 

(Ae?/ oZiuaŷ  6e pogz(zt;e %/ f (e" )̂ za pog%(%i'e (feyiMẑ e /or ar^zfrar;/ t;o/'ue o/ w 

a?i(f AoMa. T/iw proi;eg (Ae egw^Wemce o/ a/id (o 

Using this last result, it is possible to follow (Rogers and Owens, 1996) and obtain 

a stability test which involves the computation of generalised eigenvalues. 

The following result now gives a sufEcient condition for stability along the pass in 

terms of a 2D Lyapunov equation interpretation of (4.143) (termed the generalised 

2D Lyapunov equation associated with state-space model (4.132)) (see (Hinamoto, 

1993) for the case of 2D systems described by the Fornasini-Marchesini state-space 

model). 

Theorem 4.14 5'(Ea,Wa,I,a) geTierafecf 61/ ig gfabZe afovip 

pagg %/ 3 o (2n -{- m) x (2^ 4- m) mo^na; f > 0 

Q 
0 

0 A P 
- /I > 0 (4.151) 

wAere /32 pogz îiie reo/ nwrn^era wMcA ga(z5_/̂  A + A = 1 azzff A = 

Proof: Suppose that the conditions of this theorem hold. Assume that 

det(/2„4.m — ZiAi — ZA2) = 0 (4.152) 

/or gome (zi, z) 6 . Tfe/ice 3 a 2^ + m i;ecfor z, goy, f ^ 0 gwcA 

(72n+m "" ^ zA2)X = 0 (4.153) 
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/or some E EgmwZe?%%, 

$ = (zi^i + z^2):r. (4.154) 

^CMce, OTid (̂ luAere (Ae awperacrzp^ * deMo^es </ie comp/ea; con-

^2(ga(e or comp/ea; coTî tf̂ ô e (roMspose 05 appropna^ej 

z* -̂ 1 ^2n+m ^ ^2n+m 

|2 , a i_|2\;:;* ( A k i r + ; 8 2 k r ) r p & - & ' z;/: 

•2'l-̂ 2n+m 

^^2n+m 

zVo l-̂ 2n4-?7i -̂ 2n4-m Q ^1 -̂ 2n+m 

^l-2n+m 
X. 

(4.155) 

Using this last equation, we now have that 

( A k i | " + A | z | " - l ) : r * f & = :r* -̂ 2n+m -̂ 2n+m Q 
^1^2n+m 

^^2n+m 
f . (4.156) 

Ako, smce f > 0 and Q > 0, lue /la'ue (Aat > 0 and 

X Q ^1^2n+m 

^^2n+m 
^l^2n+m ^ ^2n+m 

E^ence, ond we Aofe /̂ia< 

z > 0. (4.157) 

or 

I 10 119 
ki k 

"JT 
P2 

1 
Pi 

> 1, 

and Aence (Ae region wA%cA sa^is/ies %n fAe ( |zi | , |z | 

o«(side (Ae e/ftpse gifen 61/ 

k i l ' |z|" 1. 

(4.158) 

(4.159) 

p/ane w (Ae region 

(4.160) 
<02 

Note again that if (4-152) holds then (4-159) is valid. 

#ow, 0̂ o6(a%n a contradiction, suppose t/iaf 

det(l2n+m ^1-^1 ~ ^^2) 7̂  0 (4.161) 
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/or (zi, z) E 

y4ko 

Fil 
1 

01 

|Z|' 
~ 

< 1. (4.162) 

— 2 

c/p —{( 'Z i , z ) :Ak i | +/^2kl ^ 1 } - (4.163) 

TAeM %y AoMs, U" C C/p. E^e/ice %/ Wzcf/or (zi ,z) E (Aen 

(Aza comcfẑ zoM %a o/go w W / o r (zi,2) E (7 , and Aence (Aza ea^ab/za/ieg 

25 a /or aZoMg (Ae paas o/ F%g«re .̂ .;2 sAows a 

5cAema(%c o/̂ A%5 coMcfifzoTi m fAe (|zi|, |z|) pJa/ie. 

1 

0 1 

Figure 4.2; Illustration of the condition in theorem 4.14. 

It follows from this result that stable along the pass examples with roots of det(f2n+m-

.ziAi — z^2) in the shaded regions 5'i and of Sgure 4.3 do not satisfy the 2D Lya-

punov equation (4.151), i.e. it is not possible to find admissible Pi, i = 1, 2, such that 

the roots of det(72n+m — — 'Z-A2) in both areeis 5'i and ^2 are outside the corre-

sponding ellipse. This means that there is a (potentially) large number of examples 

whose stability properties cannot be confirmed by use of (4.151). 

If we impose ,81 = A = then the following result is obtained (once again, 

see (Hinamoto, 1993) for the case of 2D linear systems described by the Fornasini-

Marchesini state-space model), 
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| z | 
' / % 

1 

0 1 ; J 
V 2 1 

V 2 

Figure 4.3: Illustration of the sufficiency of theorem 4.14. 

Theorem 4.15 The 2D Lyapunov equation for (4-132)-(4-133) in the case when 

1 Ao/ds (Ae (2n 4- ni) x (4^ + 2m) mafrzr A cam 6e 

(decomposed as 

A = r 0 s 
T 0 

0 T 
(4.164) 

luAere B azid 5 are compa îbZi/ dimeiisioMed or̂ AopoTiaf matrices, T is a Monsmgtifar 

r — diag^ri, • • • , ?'2n+m} (4.165) 

lu/iere |r_,| < j = 1, 2, - - - , 2?% + m. 

Proof: To show sufficiency, suppose that (4-164) holds and set P = T^T > 0. Then 

m (Ae case wAen ^ ?/;e /iai;e fAa^ 

Q = 
A f 0 

0 

0 

0 

0 

0 2 ^ 

' 7 ^ 0 ' ' 0 ' 
5 

" t o " 
— 

' 7 ^ 0 ' 
5 ^ 

' 0 ' 
5 

" t o " 

0 7 ^ 
5 ^ 

0 0 0 T 

A-̂ 2n+m — 0 

0 l̂ 2̂ 2n+m 
S 

' T 0 
S 

0 

0 T 
(4.166) 
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E êre we c/eoH;/ Aore Q > 0 oMcf Ae^ce (Aeorem AoZcfg /or oZon^ (Ae 

poga. 

Tb sAow ?2ece55%(̂ , at/ppoae (Ao( 3 gymme^nc f > 0 atfcA (Aaf AoZcZa, ie . 

Q > 0, wAen = ,02 = -̂ T̂Aeyi smce f > 0, 3 T, (fe((T') ^ 0, ai/cA (Aâ  f = T^T. 

EeMce we Aofe Âô  

0 

0 
V^iT 0 

0 V%T 
> 0 (4.167) 

or, egtfZDo/eM Ẑi/, 

(^1^2n+m 0 

0 /32-̂ 2n+m 
- > 0 

wAere 

A = , v4i = oMd ^2 = TylgT' 

TVow wn^e fAe smpuZor raZwe decompo52(%o7i o/ A os 

A = E r 0 s 

(4.168) 

(4.169) 

(4.170) 

wAere 5" and F ore (feyznetf aa m Ee^ce, on a?/65̂ %Wmg mfo 

we Aofe (Ao( 

Pl^2n+m 0 
-S^ 

F^ 0 
^ > 0 

0 2̂̂ 2n+m 0 0 
(4.171) 

or, gzMce /)i = /)2 = 

Pl^2n+m 

0 

r^ 0 

hlln+m 
> 0. (4.172) 

iTAza Zaaf eg^a^zon %mpZ%eg fAaf |rj| < _̂' = 1,2, - - - 2/% + m. ConaegtieM^Zi/ A ca% 

6e (Zecompoaecf aa m 

In what follows, a less conservative version of the sufficient condition of (4.151) is 

developed. For this, we need the standard fact that for a positive definite (or positive 

semi-definite) real matrix P it is always possible to write it as 

P = U'^VU 
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where U is orthogonal and F = diagfui, • • • ,a"2„+m} with, in the positive definite 

case, (7; > 0 , 1 < j < 2n + m. Also set r i = diag{(T^, - - - , 0-2^+^}- Then 

f = (4.174) 

where = T^U. For ease of notation, write P ? = &nd then (4.151) can be 

written as 

Q 
0 

0 
(4.175) 

In what follows, we consider the following 2D Lyapunov equation defined by appro-

priately dimensioned positive definite matrices f , Wi, W2 a:id and which clearly 

reduces to (4.151) if IVi = = A-̂ Zn+m, and E = 72n+m, 

0 

0 
(4.176) 

The following result can now be established (see (Lu, 1994a) for the case of 2D linear 

systems described by the Fornasini-Marchesini state-space model). 

Theorem 4.16 Discrete linear repetitive processes giving rise to the 2D Fornasini-

MorcAesW gfofe-gpace mofviceg Ai .A2 are afaA/e (Ae paaa 3 

f , W2 omcf ^ ai/cA Q 6̂ / (V 

- W2 > 0. (4.177) 

Proof: Suppose that the conditions of the theorem hold but the process under con-

ofoMp (/le paaa. T/ieM (Ma meazia f/iof 3 (-2̂ 1,/%) E (7̂  

that 

(fe((72n+m ^^2) — 0-

This, in turn, means that 3 q ^ 0 such that 

q = A -̂ 2n+m 

•2'-̂ 2n+m 

(4.178) 

(4.179) 

where A Ai A2 
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^ence we Aore (Aaf 

w/iere 

Z, = g* 

M = g* 

^1^2n-{-m ^^2n+m 

•2l-̂ 2n+7n ^^2n+m 

0 fWWoPi 
^1^2n+m 

^^2n+m 

Q ^2n+m 

^^2n+m 

(4.180) 

g, OMd 

(4.181) 

From this last equation it follows that 

g * P ^ ( E - Izit^Wi - |zrW2)f^g 

^1^2n+m ^^2n+m Q 
^1^2n+m 

^^2n+m 
q- (4.182) 

.4/50, amce (zi ,z) ^ 0, g ^ 0 Q > 0; meoMg (Ae Aond 
^LL2N+M 

^^2n+m 

o/ M me^a^zre. Conrerae/^, Aowei/er, f/ie/ocfa |zi| < 1, |z| < 1 amd 

E — TVi — > 0 — |z|^W2 > 0, i e . Âe /eji( gzcfe o/ 

Z5 MOMMegG(%i;e and we /la /̂e a co7ifm<i%c(%o% <o o w ongmaZ ags^mption.. 

[TAza comp/e^ea /̂le proo/. 

The following corollary gives a special case of theorem 4.16. 

Corollary 4.5 Discrete linear repetitive processes giving rise to the 2D Fornasini-

Marc/ieami 6(o(e-.space mode/ ma^ncea Ai omd .4% are 5(a6/e (Ae paag 3 a 

P > 0 a'uc/i 

Q = 
0 

0 
> 0, (4.183) 

w/iere Wi = (7^ri(7 w%(A (7 or(Ao^onaZ 

1, • • • , o'i^2n+m} and 

r2 — d,iag{^0'2^1^ • • • j '^2,2n+m} 

(Tij > 0, (72,; > 0, 4- (72,; = 1 , 1 < j < 2n + TM. 

(4.184) 

f roo / ; 5'e( .R = /2n+m Mofe /2n+m —14̂ 1 — = 0. v4ppZ?/mg (Aeorem 

now gives the result. 
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Suppose now that [/ = 72n+m- Then we have the following corollary, 

Corollary 4.6 Discrete linear repetitive processes giving rise to 2D Fornasini-

Morc/iegW mocfeJ Ai A2 are aZoMg (Ag paaa > 0 

such that 

Q = 
f zPKif 2 

0 

0 

f y W p f : 
- > 0 (4.185) 

wAere W, = , (Tj,2n+m}, J = 1,2, f/ie 0/ fAe premowa 

coroZZ<z7T/. 

In addition, suppose that E = 72n4-m, = /8i/2n+m, and IVg = ;82-̂ 2n+m where 

/3i > 0, /92 > 0 and /)i + /?2 — 1- Then we obtain the condition of theorem 4.14 

as a special case of theorem 4.16 and this is the essential reason that this theorem 

is a less conservative result. Finally, note that the choice of i? = hn+m in each of 

these corollaries incurs no loss of generality (this can be established by considering 

a transformation of the form Aj = T~^AjT, j = 1, 2) and hence the following result 

can be stated. 

Theorem 4.17 Discrete linear repetitive processes giving rise to 2D Fornasini-

MarcAeaim and Ag are â abZe aZong (/te poaa 3 

mafnces P > 0, > 0 W2 > 0 g%cA 

Q 
P2W1P2 

0 
0 

PTW2Pi 
- r P A > 0 

and 

2̂n+m — ^ ^ 0-

(4.186) 

(4.187) 

Now we consider the numerical solution of the generalised 2D Lyapunov equation 

(4.186), i.e. given A 6nd P, > 0 and Wg > 0 such that Q deSned by (4.186) 

is positive definite and (4.187) holds. In what follows, we establish a result that 

relates the existence of such positive definite P, Wi and W2 to a norm minimisation 

problem. After this, the numerical solution of the norm minimisation problem is 

discussed. 

The analysis which follows requires consideration of A = 

T^^AjT, j = 1,2, for some nonsingular matrix T. Also let 

^2 where A, 

denote the induced 
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2-norm of the matrix involved. Now suppose that 3 f > 0, IVi > 0 and TV2 > 0 

such that Q > 0 in (4.186) and (4.187) holds. Then we show below that this is 

equivalent to 

mm A 
0 

0 
< 1 (4.188) 

where the minimum is sought with T, Vi and V2 all nonsingular and subject to 

f > 0. 

To establish (4.188) first suppose that 3 P > 0, > OandM^ > 0 such that Q > 0 

in (4.186) and (4.187) holds. Now write 

W2 = (4.189) 

and set T"^ = P2 . In which case we have, from (4.186) and (4.187), 

0 0 

0 
Q 

0 

0 0 

0 

0 

and 

I - > 0. 

Hence, since Q > 0, (4.190) implies that 

' 0 " 
A 

' 0 " 

0 1^ 
< 1 

(4.190) 

(4.191) 

(4.192) 

and hence (4.188) holds. 

Suppose now that (4.188) holds. In which case, 3 some nonsingular T,Vi and V2 

satisfying (4.192) and hence 

f - > 0 

and also 

Q = I 
> 1 ^ 0 0 " 

0 0 ^2 _ 
> 0. 

(4.193) 

(4.194) 

Selecting P = W2 = implies, by (4.194), that Q 

of (4.186) is positive definite where 

Q 
0 

Q 
0 

(4.195) 
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and (4.193) gives (4.187). 

The optimisation problem of (4.188) is quite well known in the literature. For 

example, efficient solution methods can be found in (Luenberger, 1984). 

4.8 Solving t h e 2D Lyapunov Equa t ion 

Here, algorithms are given for solving the 2D Lyapnnov equation of the previous 

sections. Consider again the 2D Lyapunov equation (4.93), i.e. 

= - Q . (4.196) 

Then no loss of generality arises from assuming that Q has the form 

(4.197) 

where and are M x n and m x m nonsingular matrices respectively, and I, is 

an m X M matrix. 

The 2D Lyapunov equation (4.196) can now be rewritten as the following three 

expressions, 

0 ' ' K 

L N 0 

(4.198) 

(4.199) 

(4.200) 

Hence finding symmetric positive definite matrix solutions of (4.196) is equivalent 

to finding symmetric positive definite matrices Wi and W2, nonsingular matrices 

K and N, and a matrix L such that (4.198) - (4.200) hold. Here two algorithms 

for solving this problem are given, starting with one baaed on the use of spectral 

factorisation. 

Algori thm 1 

Step 1: Find an n x n symmetric positive definite matrix Wi such that 

Wi -G^(e-' '")iyiGi(e^) > OVw G [0,27r] (4.201) 
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where 

+ A. (4.202) 

Step 2: Find an m x m nonsingular matrix N such that 

> 0, 

Vwe[0,27r]. (4.203) 

Step 3: Find an n x rt rational matrix W{zi^) such that 

M^i-G^(zi)WiGi(zr') - C ^ ( z * / ; ^ - D n A ^ N ^ ( z r V ^ - D i ) - ' C 

= :y*(zi)PK(zr^). (4.204) 

Step 4: Find an n x n matrix K and an m x n matrix L such that 

;^(zr^) = jr + - Di)-^C. (4.205) 

Step 5: Find an m x m symmetric positive definite matrix W2 as the solution of 

1̂ 2 - (4.206) 

It can be shown (Agathoklis et al., 1989) that if Gi(zj'^) is minimal and strictly 

positive real then it is always possible to obtain the positive definite solutions to the 

2D Lyapunov equation using the above algorithm. Also well known ID methods can 

be used at each step. The execution of steps 1 and 2 requires a method for testing the 

strictly bounded real property. Note, however, that although such algorithms exist, 

no algorithm has been developed yet which ensures that if a positive definite matrix 

satis^ing (4.201) exists, this will be found. In step 2, a simple choice for JV 

is = elm where e is sufficiently small to ensure that (4.203) holds. Note, however, 

that a 'very small' e could lead to a Q which is 'almost' positive semi-definite since 

det(Q) = {e'^Ky. In step 3, (4.204) can be rewritten as 

7 - GX;^i)Gr(zr') = M^*(zi)FK(zr') (4.207) 

where 

GXzr') -
TBo ' 

0 
+ 

N 
(̂ 1 (4.208) 
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and Finally, note that the spectral factorisation problem here, and the 

realisation of have been well studied and numerous algorithms are available 

in the open literature (see, for example, (Agathoklis et al., 1989) and the relevant 

references therein). Also at step 5, a simple ID Lyapunov equation has to be solved. 

A lgor i thm 2 

The following are the steps in the solution algorithm which uses a matrix Riccati 

equation. 

Step 1: Find an n x n positive definite matrix Wi such that 

> OVw G [0,27r], (4.209) 

where Gi(e"^) is as in (4.202). 

Step 2: Find and m x m nonsingular matrix N such that 

IVi - Gf (e-''')M^iGi(e'"') - - Di)-"7VN^(e-^f^ - Di)-^C > 0, 

VwE[0,27r]. (4.210) 

S tep 3: Find a m x m symmetric positive definite matrix Wg as the solution of the 

following matrix Riccati equation 

+ E- f G + = 0 (4.211) 

where 

i f = (^^TViBo+D^iygC)^. (4.212) 

The first two steps of this algorithm are identical to the previous one but here the 

spectral factorization has been replaced by (4.211) to determine Also the matrix 

Q can be obtained by substituting Q = IVi @ IV2 in the 2D Lyapunov equation and 

it can be shown (Agathoklis et al., 1989) that Q > 0. 

4.9 P e r f o r m a n c e Bounds 

Within this section computable bounds on performance along a given pass are in-

troduced which use the positive definite solution pair {W, Q} of the 2D Lyapunov 
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equation (4.196) aa a starting point. So, suppose that the 2D Lyapunov equation 

(4.196) holds and introduce 

lkA+i(p+1)11^1 := a;I+i(p+l)M^iZt+i(p+l), and 

||2/t+i(p)ll^2 := 2/^i(p)^22/&+i(p). (4.213) 

Then applying these definitions to (4.196) gives 

lk&+i(p+ 1)11^1 + ll2/&+i(p)llk - lkt(p)| |^i - ||2/t(p)||^2 = - | k t ( p ) | | / - ||2/A(p)||r 

(4.214) 

Now suppose that x/;+i(0) = 0, k > 0, and introduce for j > 0, 

OO 

lk;+lllwi := yi lk;+i(P + 
p=:0 

00 

ll%'+ill^2 Il%'+i(P + 1)11^2- (4.215) 
p=0 

Then applying these summations to (4.214) gives 

ll̂ f̂c+llliyj + llz/fc+lllvyj ~ IIz/tl 1̂ 2̂-7 

— -^(Il^fcllwi + ll^kllwg)' (4.216) 

W i - / < 

Wg ~ ^ ^ ^2^21 (4.217) 

where Ai and A2 are real positive scalars. 

Then 

||(a7t+i,2/A+i)||^ := + llz/t+iIlL < A(||(a;;(.,^t)||^) (4.218) 

where A = max:(Ai, A2). The process is stable along the pass if A < 1 which is always 

guaranteed to be true if Hence we have a geometric convergence to 

zero in the pass to pass direction. 

It is possible to compute the rate A using the fact that if a square matrix W satisfies 

W = > I then 3 A e [0,1) : — J < XW. Then it is easily shown that 

^ ) # . (4.219) 
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Hence in the case of (4.218) 

: may I 1 — 
cr(M/,.) 

4.10 S u m m a r y and Conclusions 

Within this chapter the question of to what extent a Lyapunov based approach to 

the stability analysis of linear repetitive processes is available has been addressed. A 

study of the literature to date has revealed that the development of Lyapunov-type 

equations for 2D systems described by the Roesser/Fornasini-Marchesini state-space 

models has been approached in essentially two different ways: 

(i) the so-called ID Lyapunov equation approach, defined in terms of matrices 

which are functions of a complex variable; and 

(ii) the so-called 2D Lyapunov equation, defined in terms of matrices with constant 

entries. 

Initially, the ID equation has been investigated, firstly for differential processes with 

simple boundary conditions. The term ID refers to the fact that the equation has 

an identical structure to that for discrete linear time-invariant systems but with 

defining matrices which are functions of a complex variable. The resulting condition 

for stability along the pass based on this equation is both necessary and sufficient 

(as opposed to the sufficient only nature of the 2D Lyapunov equation condition 

- see later), and can be implemented by computations on matrices with constant 

entries. Hence this result serves as an alternative to previously presented/developed 

tests (see chapter 3 for the details) for stability along the pass which require the 

computation of the eigenvalues of a potentially large dimensioned matrix for all 

points on the unit circle. In addition, it has been shown how the ID equation 

approach provides performance information on the rate of approach of the output 

sequence of pass profiles to the limit profile. It should be stressed, however, that 

the ID equation does not provide any useful measures of relative stability, such as 

stability margins or robustness measures to, for example, uncertainties in the model 

description or parameter variations (unlike the 2D Lyapunov equation case - see 

below). Some comments on methods of solution of the ID Lyapunov equation have 
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been made. For full details of such techniques see the relevant references cited within 

the text. 

To conclude the analysis of the ID Lyapunov equation approach, a subclass of 

processes with dynamic boundary conditions have been considered, which have links 

with certain classes of delay-differential systems and area of repetitive control. A ID 

Lyapunov equation characterisation of stability along the pass has been introduced 

for this subclass and shown to provide a stability condition which is both necessary 

and sufficient. Strict positive realness based tests to compute positivity have been 

developed which reduce the problem to a ID problem by showing that the condition 

is equivalent to testing for positive realness of a certain ID rational transfer-function 

matrix. The analysis presented in this section on dynamic boundary conditions 

provides the basis for the papers (Benton et al., 2000c) and (Benton et al., 2000d). 

In section 4.6 and onward, the so-called 2D Lyapunov equation approach has been 

considered, which is defined in terms of matrices with constant entries. Here it has 

been shown that, in general, the existence of a positive definite solution pair to the 

2D Lyapunov equation is a sufficient but not necessary condition for stability along 

the pass of discrete linear repetitive processes. A counter-example is given to show 

that a stable along the pass process does not necessarily imply that the process is 

strictly bounded real and hence satisfies the 2D Lyapunov equation. Two special 

cases have been presented, however, when the 2D Lyapunov condition provides 

necessary and sufficient conditions for stability along the pass - SISO systems and 

the case when the augmented plant matrix of the process is normal. In section 4.7 a 

2D Lyapunov equation has been developed for a 2D Fornasini-Marchesini state-space 

model, which involves the computation of generalised eigenvalues. The analysis 

presented here on the 2D Lyapunov equation for discrete linear repetitive processes 

provides the basis for the paper (Benton et al., 2000a). 

Despite its apparent conservativeness, the 2D Lyapunov equation approach has a 

potentially major role to play in the analysis of discrete linear repetitive processes in 

terms of stability margins and robust stability theory as discussed in the following 

chapter. In addition, the performance measures of section 4.9 are not available from 

Roesser/Fornasini-Marchesini alternatives (for the discrete subclass of processes). 

Note that progress can be made in terms of the development of a 2D Lyapunov 

equation for the differential subclass of processes. This subject remains an area 

where future research effort should be focussed. 
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Chap te r 5 

Robus tness 

5.1 In t roduc t i on 

In addition to determining whether or not a given process is stable along the pass, it 

is important to obtain measures of 'how stable' the process is or, more specihcally, 

'how far' it is from being unstable. Within this chapter, the subject of robustness 

of linear repetitive processes is considered. The Grst area looked at is how sensitive 

the property of stability along the pass is to system parameter variations. Secondly 

the subject of stability margins is introduced. For both arecis of robustness analysis, 

discussions on the available methods of computation of the bounds/margins are 

given. In addition it is noted that, in many cases, evaluation of the exact bound or 

margin is not necessary (or possible) in which case good lower bounds may suffice. 

With this motivation, a Lyapunov equation based approach to robustness analysis 

for the two areas of parameter variation bounds and stability margins is given, using 

the 2D Lyapunov equation of chapter 4 as a starting point, and hence this work can 

be seen to be an application of the theory presented in the relevant sections therein. 

The analysis of these sections can be found in (Benton et al., 1999). 

A valid criticism of the work to date on stability margins for 2D linear systems is the 

lack of a 'transparent' link to resulting systems performance. In particular, consider 

the ID linear continuous time case and suppose that all the system poles lie to the 

left of the line Re(s) = —cr, cr > 0. Then this can be directly related to the system 

performance to, say, a step command. 
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To expand on this last point, consider, for simplicity, the unforced state-space model 

= Vl z((), E R", z(0) = Zo, (5.1) 

and let A have distinct eigenvalues 1 < % < M. Then the system performance is 

given by 
n 

^ diag{e^'*}i<i<n rg (5.2) 
i=l 

where T is the eigenvector matrix of yl. Hence the stability margin here has a 

' t ransparent ' link to resulting system performance. 

In the 2D/nD case, such a link is not present in previous work and it is clear that 

this is a problem which must be addressed before any further progress is possible. 

Here the basis of one highly promising approach is utilised by, in effect, specialis-

ing recent work on a pole theory for nD linear systems based on the behavioural 

approach (Wood et al., 2000). This is discussed further in section 5.9. 

It should be noted tha t the analysis presented in this chapter provides only an in-

troductory consideration of the subject area of robust stability theory for discrete 

linear repetitive processes - much further research effort is required before an objec-

tive appraisal of the techniques presented can be made. 

5.2 P a r a m e t e r Variat ions 

The hrst stage in the analysis of a given linear repetitive process is to decide whether 

it is stable or not. If the process is stable along the pass, it is then important to 

consider how this property is affected in the presence of system parameter varia-

tions. Such variations can arise as the result of, for example, model inaccuracy or 

measurement noise, and the analysis presented here determines the degree to which 

the process will tolerate system parameter variations without becoming unstable 

along the pass. 

In the case of discrete linear systems described by, for example, the Roesser 2D 

state-space model, this general area has been studied under two different types of 

perturbations in the matrices which define the state-space model as follows: 

(i) structured, where the perturbation model structure and bounds on the indi-

vidual elements of the perturbation matrix are known; and 

136 



5 Robustness 137 

(ii) unstructured, where at most a spectral norm bound on the perturbation is 

known. 

5.2.1 P rob l em Sta tement 

As a starting point, consider the subclass of unit memory discrete linear repetitive 

processes with the state-space model (2.24)-(2.25). Assume that the process is stable 

along the pass and is free of control inputs, i.e. = 0, 0 < p < a, A: > 0. Then 

this so-called nominal system can be written in the following form over 0 < p < 

a, A; > 0, 

a:t(p + 1) ' A Bo ' %(p) 

z&+i(p) 'ZA(P) 
(5.3) 

where ;/&(?), 0 < p < a, A; > 0. Using the augmented state matrix 

notation of (2.51)-(2.53), the nominal system can be rewritten over 0 < p < a, A: > 0, 

as 

(5.4) 

Note that, since the process is stable along the pass (by assumption), the three 

conditions of theorem 4.7 hold, in addition to the necessary condition of r ( $ ) < 1. 

Now consider the subclass of discrete processes with the following additive pertur-

bation structure for the augmented plant matrix, 

$per = $ + A $ . 

Here 

A $ = 
/\A A5o 

A C A D i 

(5.5) 

(5.6) 

represents the matrix of unstructured perturbations, with elements having the same 

dimensions as for $ . Then the perturbed unforced system has the following state-

space representation over 0 < p < a ! , A;>0, 

a;t(p-t-1) 

'Z&+l(p) 
= $ per 

A. + Aj4 Bq + Ai?o 

C + A C D i - k A D i ^k(p) 
(5.7) 
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or 

'11 ^ k ( p ) = $ p e r ^ k ( p ) . (5.8) 

The question addressed in the following sections, then, is what conditions need to 

be imposed on the structure of the perturbation matrix (5.6) to ensure that the 

perturbed nominal system remains stable along the pass? (Note that, clearly, the 

three conditions r(Di + ADi) < 1, r(/ l + AA) < 1 and r ($ + A $ ) < 1 are required 

to hold in addition to condition (c) of theorem 4.7 with $ replaced by $per.) 

Now for the nominal stable along the pass discrete process (5.3), dehne the set of 

unstructured unstable along the pass perturbations of the form (5.6) as 

:= { A $ : A $ E $ + A $ is unstable along the paas}. (5.9) 

The exact bound for stable along the pass perturbations can now be deHned as 

V := inf l|A$ll. (5.10) 

Then, given a nominal stable along the pass discrete process with augmented plant 

matrix $ , an unforced discrete linear repetitive process with augmented plant matrix 

$per will remain stable along the pass if 

| |A$|| < (5.11) 

Thus, the aim of the analysis presented here is to End methods of determining the 

minimum norm of the matrix A $ such that the perturbed system remains stable 

along the pass, or at least a good lower bound for it. In this latter case, a lower 

bound, Vb, for v provides a sufficient condition for stability along the pass, as follows 

||A$H <?;(,< II. (5.12) 

A review of the literature indicates that, for systems described by the Roesser / 

Fornasini-Marchesini 2D state-space models, this problem has been approached in 

essentially two different ways : 

(i) methods for evaluating the exact bound for stable along the pass perturbations, 

see, for example, (Lu, 1994b; Lu, 1989); and 

(ii) methods for obtaining a lower bound for f , see, for example, (Lu, 1994b) for 

one such 2D Lyapunov equation based approach. 
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For the remainder of this chapter, the following notation conventions are used. Sin-

gular values of a matrix F are dehned as the square root of the eigenvalues of f *F, 

o'(F) and denote the largest and smallest singular values of F respectively, the 

vector norm ||a;|| for M x 1 vectors z is given by and the matrix norm 

| |F| | is the the induced 2-norm and is equal to ^ (F ) . 

5.3 T h e Exac t Bound for Stable P e r t u r b a t i o n s 

Consider the subclass of stable along the pass unit memory discrete linear repetitive 

processes of the form (2.24)-(2.25) with nominal system (5.3), and let $per denote 

the augmented plant matrix of the process which has been subjected to unstructured 

perturbations with the additive perturbation structure of (5.5). 

The so-called characteristic equation of the unperturbed stable process is defined 

(as in (4.77)) as 

X-Znz) = 
^ A 

— zC Im — zDi 

det[Z]̂  ® Z ^Ifn ~ $] 

and since the process is stable along the pass, we have 

p(zi,z) ^ 0 V (zi ,z) E (7 .̂ 

Now introduce the characteristic equation of the perturbed system (5.7) as 

(5.13) 

(5.14) 

Pper(-2l) z) — 
— zi{A-\- AA) —ZI{BQ + ABo) 

—z{C + A C ) Im — z(^Di + AZ^i) 

det[zj (B z ^Im ~ $ p e r ] (5.15) 

and let 

T(zi,z) = 

and T^er(zi,z) = 

- $1 -1 

-IT ^ — $ 1"̂  
^perj 

(5.16) 

Then, following (Lu, 1989) for the case of discrete systems with dynamics described 

by the Roesser 2D state-space model, a sufficient condition for the perturbed system 

to remain stable along the pass is given by the following lemma. 
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Lemma 5.1 CmeM (/le memon/ dzacre^e Zmear repe(z(%t;e proceaa 

(o ?in5(rwcf2/re(f pezfw6a(wMa w%<A pe/fw6a(%0M s^ruc^we o/ J / 

(Ae pe?iw6e(f proceaa remamg g(o6Ze ak?%p (Ae paag pro^Vfecf (Ae perft/rAo^wn mo^na; 

5o(ig_/ie3 

HA$||<H7-(e''^\e''^")H-^ V 0 < w i , w 2 < 2 7 r . (5.17) 

Now, from the definition of T{ZI, Z) we can write 

| |T(e- \ e'"^)||-' = @ - $], (5.18) 

and, since the singular values of a given matrix are continuous functions of the 

matrix entries, (5.18) achieves its minimum on fl where 

r3 = { (wi ,w2) :0<wi ,w2<27r} . (5.19) 

Thus (5.17) may be restated as 

||A$|| < g, (5.20) 

where 

g := imn2[e"^^7n @ — $]- (5 21) 

Then we have the following result (which is proved in (Lu, 1989) for the case of 2D 

discrete systems described by the Roesser state-space model), 

Theorem 5.1 Given a stable along the pass discrete linear repetitive process (2.24)-

(/le /or (Ae pogg o/ /oTTTz 

zg pifeM 6%/ 

%; = g (5.22) 

mf/i g (fe_̂ Med ag m 

Hence, from this result, it follows that the tightest upper bound for unstructured 

complex perturbations that will not cause system instability is provided by q defined 

above. The question remaining is, for a given example, how can this g be evaluated? 

The literature provides several approaches for evaluating this exact bound for stable 

along the pass perturbations. A computationally feasible method is given in (Lu, 
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1989), which involves computing the infimum of the minimum singular values of a 

two variable complex matrix of size + x (m + M) over f), which can be compu-

tationally intensive. Two alternative methods for computing the exact perturbation 

bound V are presented in (Lu, 1994b). The first method, in effect, reduces the cal-

culation to a ID minimisation problem where the objective function is the stable 

perturbation bound of a family of ID discrete systems, which is then solved using 

the bisection method. The second approach uses a direct optimisation technique. 

Both methods are more numerically efficient, and so can be seen as an improvement 

on the original approach. 

The following section implements the idea that it is not always necessary to know 

the exact bound for stable perturbations. Instead a good lower bound often suffices. 

5.4 A Lyapunov Approach to P e r t u r b a t i o n 

B o u n d s 

Within this section, a Lyapunov equation based approach to finding good lower 

bounds for is presented. Consider the unforced stable along the pass discrete 

linear repetitive process (5.3). The starting point for the following analysis, then, 

is to assume that this process satisfies the 2D Lyapunov equation of chapter 4, i.e. 

that 3 a positive definite solution pair {W,Q} to equation (4.93). It should be 

stressed that the assumption that the 2D Lyapunov equation is satisfied is stronger 

than assuming stability along the pass alone due to its sufficient but not necessary 

nature. 

Following (Lu, 1994b) for the case of 2D discrete systems described by the Roesser 

state-space model, and given the positive definite matrices W = Wi ®W2 and Q 

aa solution to the 2D Lyapunov equation (4.93), construct the Lyapunov function 

<?!»&(p) as 

'̂ A(p) := < t̂(p) + <̂ %(p) (5.23) 

with 

<^t(p):=3;I(p)l^ia;t(p) and (^%(p):=z%'(p)W2Zt(p) (5.24) 

where, as before, zt(p) = 2/A-i(p), 0 < p < a, A: > 1. Hence, using the augmented 
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state vector notation of (5.4), we have 

= XUp)WX, (P ) . (5.25) 

The function ^&(p) represents the energy stored in the delays and, since and W2 

are positive definite, ^^(p) > 0 provided %t(p) ^ 0. 

Define 

tf(p) := '^ i (p+ l ) + 0i+i(p) 

= Xl^-^(p)WXt\p) (5.26) 

using the notation of (5.8). Then equations (5.23)-(5.26) together with the perturbed 

process state-space representation (5.7) and the 2D Lyapunov equation (4.93) can 

be used to compute A^t(p), defined as 

AA.(p) := 4'V(p) - <l>t(p) 

= Xl^^{p)wxr(p) - X^lp)WX,{p) 

= - X H p ) { W ^ ^ l „ W ^ , „ } X t ( p ) . (5.27) 

Thus if ( ly — $^riy$per) is positive deEnite, then we have A^t(p) < 0 and A(^t(p) = 

0 only when Xk{p) = 0. Then, in this situation, a routine argument (see, for 

example, (El-Agizi and Fahmy, 1979)) can be used to show that the energy stored 

in the delays is decreasing and hence that the perturbed process (5.7) satisSes the 

2D Lyapunov equation. Therefore the perturbed process is stable along the pass. 

Now (5.27) can be expanded to give 

A,^t(p) = W + 2 % n P ) $ ' ^ : ^ A % ( p ) + Xr(p)(A$)^M/A$%,(p). 

(5.28) 

Since W is positive definite, it can be factored to give W = , where 

pprT/2 ._ j some matrix known cis a square root of In addition, 

since W is symmetric, so is its square root, i.e. Hence 

A(^t(p) < - [2(0) - 2 o'̂ /̂ (PK) | |A$|| - o:(M )̂ ||A$||^] ||Xt(p)||^(5.29) 

Clearly 

^ VK - Q (5.30) 
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which gives 

- Q). (5.31) 

Then an upper bound for A^&(p) is given by 

< - [^(Q) - - Q) | |A$|| - o:(:y) ||A$||"] ||X,(p)||". 

(5.32) 

Since the right hand side of this inequality is a quadratic in | |A$||, it follows that if 

II^II , [nW-Q) + am'^'-^"'(W-Q) 
" I' a^n(W) ^ ' 

then A^A(p) < O V O < P < O ! , A : > 0 , and hence the perturbed system remains 

stable along the pass. Therefore a lower bound, for can be obtained by setting 

2̂6 equal to the right hand side of (5.33). 

An alternative Lyapunov function may be defined as 

V't(p) := (5.34) 

with ^^(p) and (̂ %(p) defined as in (5.24). 

Similarly define 

:= + 1) + 9l'%+i(p)]̂ /̂  (5.35) 

and, as before, compute 

A * ( p ) — ii"(j>) -

= - ixl(p)wx,{pf" 

< {X'^(,p)iS>^WitXt{p)f'^ - [Xl(p)WXt{p)fl^ 

+ \[Xl{p)'il,,W%„Xu(p)fl^ - [Xl{p)-i''WtXt(p)YI''\ 

-Xl[p)QX,(p) 
< 

< -

+F^/"(iy) | |A$| | ||Xt(p)|| 
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Hence, following a similar argument to that above, if 

^ - Q) 

then A'̂ &(p) < O V O < p < a , A : > 0 , and therefore the perturbed system (5.7) 

remains stable along the pass. Hence, setting eqnal to the right hand side of 

(5.37) gives an alternative lower bound for 

Note that other bounds based on a Lyapunov equation approach are possible - see, 

for example, (Tzafestaa et al., 1992). 

This section on a Lyapunov approach to parameter variation bounds concludes by 

considering the special case where ||$|| < 1. The two bounds for f presented earlier 

in this section require a solution to the 2D Lyapunov equation (4.93) which can be 

computationally intensive. However, if | |$| | < 1, the matrix Q defined by 

Q = -̂ n+m - (5.38) 

is positive definite, which implies that the 2D Lyapunov equation with constant 

coefficients (4.93) has a positive definite solution with W = In+m and Q given by 

(5.38). 

Then since 

a ( $ ^ # ) = | |$lp and 

o:(/n+,.-$""$) = 1 - | | $ | | \ (5.39) 

and by denoting the bound of (5.33) as and that of (5.37) as in this case, the 

two perturbation bounds and become 

1 [a($^$) + ^(f»+m - - o::/:'($:^$) 
= 

<7 

Vh 

= 1 - ||$|| (5.40) 

^(/n+m) + ^^^^(/n+m)^^^^($^$) 1 + ll^ll 
= (5 .41 ) 

ie. for the special case of ||$|| < 1 the two perturbation bounds and are 

identical and equal to 1 — ||#| | , which can be evaluated without the need to solve 

the 2D Lyapunov equation. 
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Note that and are lower bounds for the actual permissible parameter variation 

bound V, and hence the least conservative bounds are those which are as high as 

possible. Therefore, amongst all equivalent realisations of the system matrix 

it is best to seek a similarity transformation T" = @ 7]; such that is 

minimised so as to achieve the largest possible stability robustness bounds and 

This point is discussed further in section 5.8. 

5.5 Fornasini-Marchesini Mode l Based Analysis 

Here robustness analysis is performed using a Fornasini-Marchesini model as a start-

ing point. The analysis in this section uses some results from the theory of nonneg-

ative matrices which are summarised in the appendix section A.l. 

Consider the discrete unit memory linear repetitive process with state-space rep-

resentation (2.24)-(2.25) and cissume that the following necessary conditions for 

stability along the pass hold, 

r(Z)i) < 1 and r(v4) < 1, (5.42) 

i.e. conditions (a) and (b) of theorem 4.7. Then the following result gives a condition 

for stability along the pass, 

Theorem 5.2 /mear procesgeg wifA descnAed 

by are aZoMp (Ae pogg 

det[In-\-m — ZA2) ^ 0 V (zi,z) E U (5.43) 

w/iere 

Ai = 
A Bo 

0 0 
amd yl2 

0 0 

C Di 
(5 .44 ) 

Proof: Follows immediately on noting that, from theorem J^.l, stability along the 

p ( z i , z ) ^ 0 V ( z i , z ) E (5 .45 ) 
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To proceed, we need the following result, 

L e m m a 5 . 2 Consider the transfer-function matrix 

Gl('Zl) = ( /n+m — ^ ( 5 . 4 6 ) 

Mocfaitrin series ea;pa?is%oM as 

OO 

G l ( ^ l ) = ( /n+m - ^ ( 5 . 4 7 ) 
3=0 

T/ien. 

wAere 

|(ji('Zi)-Z-/^2||p ^ ( 5 . 4 8 ) 

: = V ( z i , z ) e (7 . ( 5 .49 ) 

j=o 

Proof: Follows immediately from applying the properties of nonnegative matrices 

m sec^zom v4..Z o/id Aemce (Ae are 

Now we have the following sufBcient condition for stability along the peiss. 

T h e o r e m 5.3 Discrete linear repetitive processes with unforced dynamics described 

are s(o6Ze a/oMp (/le poss %/ 

r ( ^ ) < 1. (5 .50 ) 

Proof: Since r{Ai) < 1, condition (5-43) for stability along the pass is equivalent 

to 

det{In+m — {In+m " ^ l ^ l ) ^^^2) 7̂  0 V {zi,z) E U (5.51) 

r{Gi(^zi)zA2^ <1 V (zi,z) E U . (5.52) 

H ênce, ifsmg (/le speĉ roZ ratfms meg2/oZ%(y o /kmma we Aai;e 

r ( G i ( z i ) z ^ 2 ) < r ( | | G i ( z i ) z A 2 | | p ) < /"( f f ) V ( z i , z ) E ( 5 . 5 3 ) 

and the proof is complete. 
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An identical analysis, and hence the proof is omitted here, leads to the following 

result, 

Theorem 5.4 Dzacrefe Zmear procegaea %6M/orceo( deacnAecf 

61/ are 5to6/e ofomp poss %/ 

r ( Z f i ) < 1 (5 .54 ) 

wAere 

00 
i^i ;= ^ ll^^/lillp. (5.55) 

j=0 

As a special case, suppose that all elements in v4i and ^̂ 2 are positive. Then in this 

case the matrices i f and aa de6ned above are given as follows, 

H = {In+m ~ ^1) ^^2 and 

-^1 = (-^n+m - ;42)"^Ai . (5 .56 ) 

Now consider the same discrete process, where the matrices Ai and/or A; are subject 

to additive perturbations as follows, 

A-i —y Ai + Aj4I 

A2 —>• A2 + AAg (5.57) 

and the perturbation matrices AAj, i = 1,2, can have the following forms: 

(i) IIAAillp < Oifi, i = 1,2, where 6, > 0 and is a nonnegative matrix. This is 

the case when highly structured information is available on the perturbations 

of the entries in Af, or 

(ii) IIAj4;|| < fi, i = 1,2, where / , > 0 and, for a matrix X, | |X|| = a(X) = 

(')̂ max(-X̂ -̂% )̂)̂  where Amax(') denotes the maximum eigenvalue. This corre-

sponds to the case when the perturbations are unstructured and only a spectral 

norm bound on the perturbation is known. 

As in the analysis of the previous section, the starting point of what follows is the 

assumption that the nominal (i.e. unforced unperturbed) process is stable along the 

pass. In which case the aim of the remainder of this section is to find bounds on 
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II AAillp, % = 1,2, for perturbations of the type (i) above and on || Ayli||, % = 1, 2, for 
type (ii). 

The analysis of this section requires the following result, 

L e m m a 5.3 Write the Maclaurin series for 

z) ;= {In+m ~ ziAi — ZA2) ^ (5.58) 

Then 

= ^ ( z i v 4 i + (5.59) 
i=o 

\\T{zi, z)\\p < H In+rn + Hi + H2 V (zi, z) E [/ (5.60) 

Hi '•= {In+m ~ L1L2) ^{Ll + L1L2) 

H2 := {In+m ~ L2L1) ^{L2+L2LI) (5.61) 

:= ^ IMillp, -̂ 2 := ^ ll^2llp- (5.62) 
i=i i=i 

Proof : First note that 

T{^1) ^) = In+m + Hi 4- H2 (5.63) 

wAere 

Hi := Aifi{Ai, A2, Zi^ z), 

H2 := ^2/2(^1, ^2, ^1, ^), (5.64) 

w/iere yi('), 2 — 1,2, ore MOMJmear/uMCfioTia 

00 

3=1 

oo 

^2 = yi^2^''(/n+m + ^ 1 ) (5.65) 
i=i 
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oncf /leMce, /or |zi| < 1 ancZ |z| < 1, 

||-f^l||p ^ Li{\\In+rn + H2\\p) < Li + Li\\H2\\P 

II-̂ 2lip < Li2{\\In+TN + H2\\p) < L2 + L2\\Hi\\p. (5.66) 

Hence on solving the two inequalities of (5.66) we have that 

ll-^illp < Hi := {In+m ~ L1L2) ^{Li + L1L2) 

||%||p < H2 '•= {In+m ~ L2L1) (̂iv2 + Z/2-̂ l) (5.67) 

QMcf (Ae proo/ compZê e. 

Note that for H in lemma 5.3 to exist, we require 

r(Z,i.L2) = r(iL2Z/i) < 1 (5.68) 

and hence this fact can be regarded as another suScient condition for stability along 

the pass. 

In the case when ||^i||p = A , i = 1, 2, i.e. when all elements of Ai and A2 are positive 

and r(Ai + A2) < 1 then H = {In+m — — ^2)"^- Also if ||A;||p ^ Ai, i = 1, 2, and 

in addition r(||y4iHp + MzlW < 1 then A < (/n+m - Millp - ll^2||p)"^. 

The following result now gives sufficient conditions for stability along the pass under 

the structured perturbations of case (i) defined above. 

Theorem 5.5 The following are sufficient conditions for stability along the pass 

of discrete linear repetitive processes under the structured perturbations of case (i) 

(ie.||A^i||p < % = 1,2), 

r{Hi + {In+m + ^1)^jFj) < 1 (5.69) 
1=1 

or 

\H2 + {In+m + -̂ 2)̂ ^ ttj-Pi) < 1- (5.70) 
%=:1 

Proof: The proofs of these two conditions follow the same basic steps and hence 

(/le proo/ 0/ ̂5. Aere. 
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r/ze /or pe7iw6e(f process m caae a(o6Ze (Ae paga 

%/, a/id omẐ / 

det{In+m ~ ̂ 1(̂ 1 + ̂ ^1) ~ z[A2 + AA2)) 7̂  0 V (zi, z) E U (5.71) 

or, amce r(Ai) < 1, (/lia rgdi/ces (o 

det(̂ In+m ~ {In+m ~ l̂A-i) ^ {̂n+m ~ l̂-̂ i) {̂zil̂ Ai + ZAA2)) ^ 0 (5.72) 
2̂ 

/or (zi,z) 6 (7 . T'Azg coTidẑ zoTi AoZo(a %/ 

'^{{^n+m ~~ ^lAi) ^zA2 + {In+m ~ -Zl-̂ l) (̂ZiAAi + ZAA2)) <1 V {zi, z) G U . 

(5 .73 ) 

(7smg ancf eg /̂oh'on /eada fo (Ae /oZZowmg megifa(%<%ea 

r{Gi{^zi)zA2 + Gi{z\)(^ziAA\ + zAAg)) < r{^Hi + ||A||p) 
2 

< r{Hi + {In+m + -^<1)^2 ^ i ^ i ) 74) 

1=1 

wAerg 

ll-̂ llp •= ll̂ îllp + ||Ayl2||p (5.75) 

(ZMcf (/le proo/ compZefe. 

The following result gives sufficient conditions for the stability along the pass of 

discrete processes subject to the unstructured perturbations of case (ii) defined 

above. 

Theorem 5.6 The following are sufficient conditions for stability along the pass of 

(f%5cre(e Zmear repe^z^we proce^aea tiMcfgr (Ae jDer(%ir6a(2o?%5 0/ caae 

(fe^Tigd a6oi;e, 

+ ("8) 

1 5 0 

or 
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P r o o f : ^ ^ 0 % (Ae proo/s o/ (Aeae (wo /oZZow %(fe7i(%coZ g(ep5 omd Aemce 

omZi/ %a proi/ecf Aere. TAe proo/ reJzea on (Ae /aĉ  %/v̂  %g an / x Z ma(nz 

fAen r(%) < ^(%). ^ence we Aa%;e (Ae 

r{H + {In+m + •^l)(||'^^l||p + |l^^2||p)) ^ / l + /2 <^{In+m + Li) + a(iJ) (5.78) 

and f/̂ e re5?/Z( /oZZows zmmedm^eZy. 

In addition, the following stability along the pass conditions apply to both types of 

perturbations, 

Theorem 5.7 Discrete linear repetitive processes are stable along the pass under 

6o(/i ̂2/̂ 65 o/per(?/r6o(zofia Wroduce(f ttMcfer and a6ot;e z/(/ie/o/Jotumg con-

d%(70Ma Ao/(f /or (Ae a(ruc(!/re(f perfwr6a(%ona reapeĉ zre/y, 

2 

Si-Pi) < 1, 2 = 1,2, (5.79) 
i=\ 

a,M(f 

A + A < — ^ (5.80) 

tu/iere %a (fejined 6?/ 

P r o o f : 6'mce (Ae MommaZ 5i/5(em za agai/med (o 6e g(a6Ze oZoM^ (Ae pass, /o/Zows 

(/le per(w6e(f aZao 6e afo^Ze aZoM̂  (/le paga and on/y 

det(In+Tn ^ (In+m ~ ^1^1 ~ ^^2) ^(ziAAi + ZAA2)) ^ 0 (5.81) 

/or (zi ,z) E 17̂ . T/ie reaWt Tiow/oZZows o% ond 

Note now that the conditions of (5.76) and (5.77) require that o'{H) < 1 and ^(-ffi) < 

1 respectively. This restriction is not required by (5.80) and hence it is a less 

conservative alternative to these two conditions. 

In addition, upper bounds for 6,, i = 1, 2, can be computed as 

6i a ( 7 f f i ) + 02 < 1. (5.82) 

It is possible to provide an alternative upper bound for T{zi,z) to that of (5.60), as 

can be seen in the following result, 
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Lemma 5.4 T(zi ,z) o/ safzgyZea m e g W % / o r (zi,z) E (7 ,̂ 

\\T{zi, z)\\p < L := In+m + L\ + L2 + Li + L2 (5.83) 

w/iere 

2 i := 

^2 : = D + (5 .84 ) 

B := In+m — Hi — Hi[In+m — H2) ^i^2; 

C := Hi{In+ra-^ Ll L2) + Hi{In+Tn — H2) ( - ^n+m + - ^ 1 + - £ ' 2 ) , 

D := {In+m ~ H2) ^H2{In+m + Ll + L2): 

^ := (-̂ n+m -
00 

-H"! := Mj^2||p, 
i=i 
00 

:^2 : = (5 .85 ) 

;=i 

Proof: First write the Maclaurin series for T{zi, z) in the form 

00 00 
T{^1J — In+m + A{zi + ^ 2 ^2^ + Ki + K2 (5.86) 

J=1 

w/iere 

00 
jiTl := ^ / l X z ( f n + r . + ^ l + H2) 

i=i 
00 

K2 '•= A^AiZiZ^{Inj^rn + Hi + -^2)- (5.87) 

.ffeMce we /lane 

00 

4-^1 
i=i 
00 

^ 2 ^ + (5 .88 ) 
i=i 
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MOW /0Z/0W6 (/lof 

11-̂1 lip ^ Hi{In+m + Li + L2 + \\Ki\\p + \\K2\\p) 

ll-K̂ allp < -̂ 2̂ (-̂ n+m +-^1 +-^2 + 11-̂ 1 lip + II-̂ "2 lip) (5.89) 

avid /le/ice 

K2IIP < 2 2 : = D + ^B-^C. (5.90) 

The matrix L in (5.83) exists provided 

/ - ( E l + : ^ i ( 4 + m -:^2)- ' :^2) < i (5.91) 

and this is another sufficient condition for stability along the pass. This condi-

tion can also be used to derive sufficient conditions for stability along the pass as 

alternative to (5.79) and (5.80). 

In summary, this section has presented robustness analysis based on a Fornasini-

Marchesini model of the dynamics of a discrete linear repetitive process. Given a 

stable along the paas unforced system, bounds on the permissible parameter varia-

tions have been derived for both cases of structured and unstructured perturbations. 

Note that to fully exploit these results the least conservative set for a particular ex-

ample should obviously be used. 

5.6 Stabi l i ty Marg ins 

The second type of relative stability analysis to be discussed within this thesis is 

that of stability margins. In ID systems theory, the stability margin is defined 

as a measure of the distance between the dominant poles (or eigenvalues) of the 

system and the stability limit (for discrete systems this is just the boundary of the 

unit circle). Then a necessary and sufficient condition for ID stability is that this 

measure, a say, is strictly greater than zero. (Note that if a = 0, then a root lies on 

the unit circle, whereas a < 0 means that at least one root lies outside the stability 

region and the process is unstable). 

Within this section, candidate definitions of stability margins for discrete linear 

repetitive processes are given. Note here that, since a fundamental difference be-

tween systems in one dimension and those in n, n > 2, is that the singularities are 
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no longer isolated poles, but multidimensional manifolds, the stability margin for a 

repetitive process is given in terms of analytic regions of functions in two variables. 

5.6.1 P rob l em Sta tement 

In characterising systems behaviour, besides stability, it is extremely useful (or even 

essential) to have an indication of to what extent the poles of the system may 

be moved before it becomes unstable. In ID systems theory, the distance of the 

dominant eigenvalues from the stability limit (the so-called stability margin) is used 

as a measure for this. 

Consider the subclass of discrete linear unit memory processes with the state-space 

representation (2.24)-(2.25). The starting point of the following analysis is to assume 

that the process is stable along the pass. Now assume that the process is free of 

control inputs and rewrite the dynamics of the process in the form of (5.3). Now 

since, by assumption, the process is stable along the pass, theorem 4.7 holds and we 

have 

In 

-ZC In zDi 
^ 0, for (zi, z) E . (5 .92) 

The definition of a stability margin for 2D discrete systems described by the Roesser 

state-space model was 6rst introduced in (Agathoklis et al., 1982) as a criterion for 

characterising the spatial domain performance of a stable 2D system. Here (see 

also (Walach and Zeheb, 1982; Swamy et al., 1981)) a stability margin is defined 

as the shortest distance between the singularities of the system and the boundary 

of the stability region, which is the boundary of the unit bidisc. This is the largest 

bidisc where p(zi,z) has no roots, i.e. 

/)(zi,z) f 0 in % {(^1,^) : k i | < l + (Ti,|z| < 1} 

X z i , z ) 7̂  0 in = {(zi ,z) : |zi| < l , | z | <1-^(73} 

p(zi, z) ^ 0 in [/j = {(zi, z) : |zi| < 14- (7, |z| < 1 -t- cr}. (5.93) 

Then the conditions > 0, cg > 0, o' > 0, are necessary and sufficient conditions 

for stability along the pass of discrete processes described by (2.24) and (2.25). 

A review of the literature indicates that considerable effort has been directed towards 

the development of algorithms for computing ai , erg and a. As a result of this, 
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numerous algorithms are available based on different approaches/starting points. 

For example, (Walach and Zeheb, 1982; Agathoklis et al., 1982; Hertz and Zeheb, 

1987) are based on minimizing the distance between the roots of p(zi,z) and the 

boundary of the unit bidisc = {(zi ,z) : |zi| = 1, |z| = 1} and (Roytman et al., 

1987) introduces algorithms based on the so-called resultant matrix. 

5.7 A Lyapunov Approach to Stabil i ty Marg in 

Analysis 

A different approach is based on the premise that it is not always necessary to know 

the exact value of the stability margin. Instead it suffices to know that they are 

greater than certain lower limits. This concept is illustrated for the equivalent ID 

case in figure 5.1. Examples of such limits can be obtained as functions of the 

positive definite solution to the 2D Lyapunov equation which has been extensively 

discussed in chapter 4. Here we present one such limit as a function of the solution 

of (4.93) (see also (Agathoklis, 1985; Agathoklis, 1988) for the case of 2D systems 

with dynamics described by the Roesser state-space model). 

unit circle, |zl = 1 

actual biggest disc containing no roots 

lower bound for this 

conservativeness of margin 

Figure 5.1: Lower Bound for ID Stability Margin 

Consider again the unforced stable along the pass subclass of discrete linear repet-

itive processes of (5.3). In addition, assume that there exists a positive definite 

solution pair {W,Q} to the 2D Lyapunov equation (4.93), which can be rewritten 

in the form 

= Q (5.94) 
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with 

Q 
Ql 02 

0 1 03 
(5.95) 

Note once again that the satisfaction of the 2D Lyapunov equation is a stronger 

requirement to that of stability along the pass alone. 

Now pre and post multiply equation (5.94) by (/)i/n @ ;02̂ m) where and are 

real positive scalars to yield 

0 

0 
$ T 0 

0 1^2 
$ (5.96) 

where 

$ = 
(31A ^2^0 

A C ^2^1 
(5.97) 

Then adding W to both sides of (5.96) and rearranging gives 

= Q 

where 

+ (1 - /^2A02 

+ (1 — ^ 2 ) ^ 

(5.98) 

(5.99) 

Since W is positive definite, a sufficient condition for the stability along the pass 

of discrete processes with augmented plant matrix $ is that Q is positive definite, 

which is in turn a sufficient condition for 

p(zi, z) = det(diag{7n, 7 ^ } - diag{zi7n, ^ 7 ^ } $ ) f 0 V (zi, z) G (7^ (5.100) 

The relationship between the zeros of p(zi ,z) and p(zi,z), denoted (^^,2') and 

(z',^^) respectively, is established with the following lemma, 

L e m m a 5.5 ^ (z ' , z ' ' ) OMd (zii^') (Ae roo(s o / p ( z i , z ) 

GMd p(zi, z) (/leM reWmviaMp /loMg 

(z^,z') = (/3iz;,/32z'). (5.101) 
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Consider now the roots of the characteristic equation p(zi, z) as a function of /5i and 

8̂2 and refer to the process with augmented plant matrix $ as the 'new process'. 

Clearly if/3i = ;82 = 1, p('Zi,'Z) = p('Zi,'Z) and the new process is stable along the 

pass. I f > 1, 2 = 1,2, the roots of p(zi, z) move away from (zi, z") towards infinity 

and the new process remains stable along the pass, while for < 1, % = 1,2, the 

roots move towards the boundary of the unit bidisc and, eventually, some move to 

within the unit bidisc. Hence a sufficient condition for the roots of p{zi,z) to be 

outside the unit bidisc for a certain value of (A, /32) is that Q is positive definite for 

that value. Consequently the range of (/5i,/?2) for which Q remains positive definite 

is clearly related to the distance between the roots of p{zi,z) and the boundary of 

the unit bidisc. Note that, since the satisfaction of the 2D Lyapunov equation is 

a sufiBcient but not necessary condition for stability along the pass, Q not being 

positive definite does not imply that p{zi,z) has a root within the unit bidisc and 

hence is unstable along the pass. Hence this approach can give lower bounds only 

for the stability margins, and, in general, not the exact values. 

A lower bound for ai 

From the definition of the stability margin bidisc in (5.93) it follows that a lower 

bound for ai can be obtained from the range of /3i for which Q is positive definite 

with ^2 = 1- Setting /32 = 1 in (5.99) yields 

Q 
+ (1 - AQ2 

(5.102) 

Since Q3 is positive definite, we require 

+ (1 " ^1)^1 — ^0^ > 0. (5.103) 

Then a lower bound for (7i can be obtained as 

- 1 (5.104) 

where 

limit min A(VFi) 

max A(VI/x ~ Qi + Q2Q3 

Similar bounds for (J2 and a can be obtained as follows 

(5.105) 

(72 > ,8^"' - 1 (5.106) 
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where 

min (̂14̂ 2] 

max A(TV2 - Q3 + 

and 

where 

/? = = /)2, (7 > limit 

&mt_ / 
rnajc A(I4^ — Q) 

(5.107) 

(5.108) 

(5.109) 

An alternative lower bound for ai can be obtained using the state vector of (2.52), 

Le. 

^&(p) = kt(p)^, zt(p) \TLT 

and introducing 

Ai — 
/I 0 

C 0 
and .42== 

0 Bo 

0 Di 

(5.110) 

(5.111) 

Then a bound for cri can be derived from the range of for which Q is positive 

definite with /52 = 1 as follows. The aim is to find a lower bound for /3i such that $ 

with ^2 = 1 satisfies the 2D Lyapunov equation and hence is stable along the pass. 

Now, since both $ and $ admit positive definite solutions to the 2D Lyapunov 

equation (5.94), we can write 

:^r(p) { ( ^ - - (M^ - J^t(p) < ;^r(p) {M: - %t(p). 

(5.112) 

After extensive but routine manipulations we obtain, 

;cr(p){(A - + (/3i - i ) ; i f ; ^ $ + ( A -

< %r(p) ;(:t(p). (5.113) 

Then (see (Tzafestas et al., 1992) for the case of 2D discrete linear systems described 

by the Roesser model) a sufBcient condition for Q to be positive definite is 

(^1 - l)"||Ai|n|TV|| + 2(A - l) | | / l i | | ||IV|| ||$|| < Amm(M: - = Amin(Q). 

(5.114) 
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Hence the stability margin is given by 

A1--I 0^115) 

where 

= W I M • ' ' 

The lower bound for (T2 is derived by routine changes to the analysis just completed 

for <ji. Hence only the final result is given here, i.e. 

erg ==,92 - -1 :> (5.117) 

where 

S -ll<i'IIIHy|| + v ' l | i y r i i t l P + |[ty||A„i„(9) 

\\M WW • ' ' 

The lower bound for cr follows from considering the case where /3i = ;82 = /3. The 

final result is 

cr ==/) -- 1 :> (5.119) 

where 

+ + ( " 2 0 ) 

5.8 M i n i m u m Spect ra l N o r m s 

Clearly the lower bounds for the stability margins presented in the previous section 

depend upon the choice of matrices W and Q, i.e. different bounds are obtained for 

different pairs of matrices. In (Lu et al., 1986) it is shown that the least conservative 

bounds, i.e. those closest to the actual value of the stability margin, can be obtained 

with a pair {W, Q} corresponding to the minimum norm of the augmented system 

matrix $ . 

Suppose that the example under consideration is stable along the pass cind that it 

admits a positive definite solution pair {W, Q} to the 2D Lyapunov equation (5.94). 

Then the minimum spectral norm /i for the process is defined as 

)U = ndn | | r$r -^ | | (5.121) 
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where T = Ti @ T];, and Ti and T]; are n x M and m x m matrices respectively. 

The pair {W, Q} obtained sets W = T~^T where T is the matrix which minimises 

(5.121) and corresponds to the minimum norm /i of $ . This choice of W gives the 

best lower bounds for the stability margins. Algorithms for obtaining a regular T 

are discussed in (Lodge and Fahmy, 1981) and properties of /i are discussed in (Lu 

et al., 1986). 

5.9 T h e Poles of a Repet i t ive Process 

As yet in this thesis no discussion has been given on the subject of a repetitive 

process version of the well known ID linear systems theory concept of a pole (or 

zero). The stability dependence on two complex variables precludes the numerical 

definition of a pole and hence the singularities are no longer isolated points (as in 

ID linear systems theory) but multidimensional manifolds. 

Within this section, the poles of a discrete unit memory linear repetitive process 

are studied using the behavioural approach (Wood et al., 2000). Behavioural theory 

uses a high level of abstract algebra, and consideration of the subject of poles (and, 

more recently zeros, - see (Zaris et al., 2000) for the details) of multidimensional 

(and hence 2D) systems is a recent advance in this area. Hence only a brief outline 

of the ideas as applicable to linear repetitive process theory is given - for further 

details see (Rogers et al., 2000b) - and the area remains open for future research. 

Consider the discrete linear repetitive process with state-space representation (2.24)-

(2.25). Since the state vector on pass 0, i.e. zo(p), 0 < p < a, plays no role 

in the process dynamic evolution, it is convenient to relabel the state trajectories 

37̂ +1 (p) 1-4̂  a;t(p) (keeping of course the same interpretation). (Note that this is 

equivalent to introducing a change of variables, eg. Zk(p) := 3;&+i(p), and proceeding 

from there.) 

The repetitive process dynamics are now described by the following state-space 

representation over 0 < p < a, k > 0, 

:c&(p+l) = v4zt(p)-KBMt+i(p)-|-Bo2/&(p) 

3/A:+i(p) = Czt (p) + Di2/&(p). (5.122) 

Using the terminology of (Wood et al., 2000), the behaviour Bx,u,y of this system 
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can now be given by the kernel representation, 

/ X \ 
Ziln — A —zB -~Bq 

—C 0 — Di 
0, (5.123) u 

\ 2/ / 

where zi denotes the along the pass shift operator, eg. applied to gives 

(zia;t)(p) := + 1), (5.124) 

and denotes the pass to pass shift operator, as follows 

(̂ 2/&)(p) := i/&+i(p). (5.125) 

Note that the components of the solutions of the system can be considered as func-

tions from to R, though for purposes of interpretation they are cut off in one 

dimension at the pass length a (a key difference from the standard 2D linear systems 

caae). 

The poles of this system are dehned as the characteristic points of the zero-input 

behaviour (i.e. the unforced, or nominal, discrete process obtained by setting 

Mk(p) = OVA > 0, 0 < p < a), that is the set of all trajectories which can arise when 

the input vanishes. The zero-input behaviour is given to within trivial isomorphism 

by 

Following (Wood et al., 2000), the poles of the process can be defined as 

Def ini t ion 5.1 (Poles of a Discrete Linear Repet i t ive Process) The poles of 

(Ae Zmear process ore (/le pomk m comp/ei space 

where the matrix on the left hand side of (5.126) fails to have full rank. That is, 

(Aei/ are pirem 6?/ </ie se< 

- ( W , a) E C" I p(oi, o) - 0}, (5.127) 

wAere 

p ( z i , z ) = d e t y (5.128) 
- C y 

The set V is called the pole variety of the system. 
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Since, in this case, the pole variety is given by the vanishing of a single 2D non-unit 

polynomial, it is guaranteed to be a one-dimensional geometric set in 2D complex 

space, i.e. a curve. In particular, the pole variety cannot be zero-dimensional (i.e. 

finite). This corresponds to the fact that proper principal ideals in the ring C[zi,z] 

have codimension 1. Note also that the pole variety is a complex variety, even though 

the entries of the matrices yl, and Di are generally assumed to be real. This 

is essential in order to capture the full exponential-type dynamics of the system. 

Poles can be interpreted in terms of exponential trajectories (Wood et al., 2000), 

which in the case of repetitive processes have a clear physical interpretation. Assume 

therefore that (ai,a) E is a zero of and write it in the form oi = 

o = (with — 0 for = 0 and ^ = 0 for a = 0). The existence of such a 

zero guarantees (see (Wood et al., 2000) for the details) the existence of a so-called 

exponential trajectory in the system having the form 

3;i(p) = cos(0ip 4- Â;) -t- sin(gip + ^/c), 

2/&(p) = cos(gip 4- Â;) 4- sin(gip + gA;), 

< ( p ) = 0, (5.129) 

where 2 ;oo ,ZoQ E R", 1/00,3/00 E E'", and at least one of these four is non-zero. 

This form of exponential trajectory has been characterised algebraically by Oberst 

(Oberst, 1990). Conversely, the existence of such a trajectory implies that 

p(rie'^\re'^) = 0, i.e. the so-called frequency (rie"^\re'^) is a pole of the repetitive 

process. 

In the case where (oi, o) 6 it is straightforward to construct such trajectories from 

the zeros of the characteristic polynomial p{zi,z). Take oi and a to be real numbers 

satisfying p(ai,o) — 0. There must then exist a non-zero vector (zoo,3/oo) E 

satisfying 

(5̂130) 
—C aim Di J y yoo J 

System trajectories can now be obtained by extending (zoo,i/oo) to give 
~ XqqCL^Q., 

3/t(p) = 2/00̂ 1 

4 ( P ) - 0 (5.131) 
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Then it can easily be shown that 

= Axoottitt^ + BoUoQa^a^ 

= ^ 4 ( p ) + ^ 4 + i ( p ) + -8o2/&(p) (5.132) 

2/1+1 (f)) = 03/ooaio'' 

= DiUQQaiU^ + Cxooa^a^ 

= + (5.133) 

proving that (5.131) indeed describes a solution of the system. 

Returning to the general case (5.129), we see that if mod a = r > 1 then we have 

a non-zero exponential (or sinusoidal) state-output trajectory in the system, which 

tends towards infinity as the pass number increases (but may remain stable along any 

given pass). Conversely, if mod a = r < 1 for all poles (ai ,a) , then no trajectory 

tends to inanity for a given value of p as the pass number increases, but there may 

be trajectories tending to inEnity along the pass. Thus we again run up against the 

distinction between asymptotic stability and stability along the pass. In order to 

avoid having trajectories of the form (5.129) which are unstable either along the pass 

or in the ^-direction we also need to avoid poles (ai, a) with mod ai > 1. In other 

words, we need that the characteristic variety (5.127) of the zero-input behavior lies 

in the closed unit polydisc 

P i = {(ai ,a) e I mod Oi < 1, mod a < 1} (5.134) 

It can be shown that the characteristic polynomial characterisation of stability along 

the pass of theorem 4.7 is equivalent to the condition that no poles of the system lie 

outside Vi- Equivalently, with zero input there should be no exponential/ sinusoidal 

state-output trajectories which tend to infinity either in the pass to pass direction 

or along the pass. 

Valcher has obtained similar results for the more general setting of stability of 2D 

behaviours over the lattice (Valcher, 2000). 

Note finally that poles can be decomposed into controllable and uncontrollable, 

observable and unobservable poles, as described in (Wood et al., 2000). The only 

one of these sets which can be easily described for repetitive processes is the set of 

unobservable poles, which give the (2D) frequencies which can occur in the state 

163 



5 Robustness 164 

when both input and output vanish. These are given by the rank-loss points of the 

matrix 

Ziln —A 
(5.135) 

and 80 indeed describe the defect of observability. 

5.10 S u m m a r y 

Within this chapter an initial investigation into the area of stability robustness of 

discrete linear repetitive processes has been undertaken. 

Firstly the subject of bounds on the size of parameter variations which are allowable 

to avoid instability of a stable along the pass process are considered. Two different 

types of perturbations have been considered: 

(i) structured, where the perturbation model structure and bounds on the indi-

vidual elements of the perturbation matrix are known; and 

(ii) unstructured, where at most a spectral norm bound on the perturbation is 

known. 

It has been shown in chapter 4 that stability along the pass can be characterised in 

terms of a 2D Lyapunov equation, but that the resulting condition is sufficient but 

not necessary (except in certain special cases - see chapter 4 for the details). Here 

it has been shown how this potential conservativeness is offset by the availability of 

robustness measures using the 2D Lyapunov equation as a starting point which are 

not available from other characterisations of stability along the pass. 

Using this approach, lower bounds on the unstructured type of perturbations of case 

(ii) above have been presented in section 5.4. The two bounds derived, vl and v^, 

are lower bounds for v, the exact bound for stable along the pass perturbations. 

Clearly in respect of a given example, evaluation of is the preferred option. This 

however can be computationally intensive, and so it may be acceptable to look 

towards a suitable alternative. The Lyapunov bounds give sufficient conditions 

on the minimum norm requirement of the perturbation matrix A $ but require a 
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solution to the 2D Lyapunov equation (4.93). Clearly 2;̂  ^ ^ ^ also 

a c o m p a r i s o n of t h e e q u i v a l e n t b o u n d s f o r 2 D d i s c r e t e s y s t e m s d e s c r i b e d b y t h e 

Roesser state-space model in (Lu, 1994b) reveals that 

( 5 . 1 3 6 ) 

O t h e r b o u n d s a r e a l s o p o s s i b l e . C l e a r l y f u r t h e r d e v e l o p m e n t is n e e d e d h e r e , i n 

particular on the development of alternative approaches and on comparing these 

b o u n d s i n t e r m s of c o n s e r v a t i v e n e s s a n d r e l a t e d f a c t o r s . I n p a r t i c u l a r , i t is a n t i c i -

p a t e d t h a t i n d i v i d u a l b o u n d s o n e a c h e l e m e n t of t h e a u g m e n t e d p l a n t p e r t u r b a t i o n 

m a t r i x ( 5 . 6 ) a r e p o s s i b l e . T o d i s t i n g u i s h t h i s w o r k f r o m i t s s t a n d a r d I D l i n e a r sy s -

t e m s c o u n t e r p a r t e m p h a s i s s h o u l d b e p l a c e d o n t h e t w o r e p e t i t i v e i n t e r a c t i o n t e r m s 

ABo and ADi. In addition, the approach has looked at the unstructured class of 

p e r t u r b a t i o n s o n l y . C l a s s ( i ) t y p e p e r t u r b a t i o n s p r o v i d e a d d i t i o n a l i n f o r m a t i o n o n 

the structure of the perturbations, hence it is expected that the resulting bounds 

w i l l b e t i g h t e r . 

Section 5.5 presents stability robustness analysis using a Fornasini-Marchesini model 

a s a s t a r t i n g p o i n t f o r t w o c l a s s e s of s t r u c t u r e d a n d u n s t r u c t u r e d p e r t u r b a t i o n s . 

N o t e t h a t t o f u l l y e x p l o i t t h e s e r e s u l t s , t h e l e a s t c o n s e r v a t i v e s e t f o r a p a r t i c u l a r 

example should obviously be used. 

T h e s e c o n d t y p e of r o b u s t n e s s a n a l y s i s c o n s i d e r e d w i t h i n t h i s t h e s i s is s t a b i l i t y 

margins. Here it is shown how the definitions of stability margins for discrete linear 

repetitive processes are the natural generalisation of the corresponding terms from 

ID linear systems theory. Note that, however, since a fundamental di&rence be-

tween systems in one dimension and those in M, n > 2, is that the singularities are 

n o l o n g e r i s o l a t e d p o l e s , b u t a r e m u l t i d i m e n s i o n a l m a n i f o l d s , t h e s t a b i l i t y m a r g i n 

f o r a r e p e t i t i v e p r o c e s s is g i v e n i n t e r m s of a n a l y t i c r e g i o n s i n t h e {zi, z) p l a n e . 

A s a r e s u l t of t h i s , n u m e r o u s a l g o r i t h m s a r e a v a i l a b l e f o r e v a l u a t i n g t h e s t a b i l i t y 

m a r g i n s b a s e d o n d i f f e r e n t s t a r t i n g p o i n t s ( s ee s e c t i o n 5 . 6 . 1 f o r t h e d e t a i l s ) . A n 

alternative approach is based on the premise that it is not always necessary to 

know the exact value of the stability margin. Instead it suSces to know that it is 

g r e a t e r t h a n c e r t a i n l o w e r l i m i t s . E x a m p l e s of s u c h l i m i t s h a v e b e e n p r e s e n t e d i n 

s e c t i o n 5 .7 , w h i c h u s e s t h e e x i s t e n c e of a p o s i t i v e d e f i n i t e s o l u t i o n p a i r {W, Q} t o 

t h e 2 D L y a p u n o v e q u a t i o n of c h a p t e r 4 a s a s t a r t i n g p o i n t . T h e a n a l y s i s h e r e is 

p r e s e n t e d i n ( B e n t o n e t a l . , 1 9 9 9 ) . T h e m a r g i n s p r e s e n t e d d e p e n d e x p l i c i t l y o n t h e 
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matrices IV and Q of the solution to the 2D Lyapunov equation. Clearly different 

W a n d Q g i v e d i f f e r e n t l o w e r b o u n d s f o r t h e m a r g i n s . I t i s s h o w n i n s e c t i o n 5 . 8 

t h a t t h e l e a s t c o n s e r v a t i v e l o w e r b o u n d c o r r e s p o n d s t o t h e m i n i m u m n o r m of t h e 

a u g m e n t e d p l a n t m a t r i x $ . 

F i n a l l y , s e c t i o n 5 . 9 h a s p r o v i d e d a n i n i t i a l d i s c u s s i o n o n t h e e x t e n s i o n t o l i n e a r 

repetitive processes of some very recent results on the definition of the concept of 

a p o l e o f a m u l t i d i m e n s i o n a l s y s t e m u s i n g t h e b e h a v i o u r a l a p p r o a c h . A p o l e h a s 

been deEned (Wood et al., 2000) as an element of space which is a zero of the 

c h a r a c t e r i s t i c p o l y n o m i a l p{zi,z). T h e p o t e n t i a l s t r e n g t h of t h i s a p p r o a c h i s t h a t 

t h e p o l e s c a n b e i n t e r p r e t e d i n t e r m s of s o - c a l l e d e x p o n e n t i a l t r a j e c t o r i e s w h i c h , i n 

t h e c a s e of d i s c r e t e l i n e a r r e p e t i t i v e p r o c e s s e s , h a v e a r e a l p h y s i c a l m e a n i n g . C l e a r l y 

this fact has major implications regarding the development of robustness measures 

f o r t h e s e p r o c e s s e s - p a r t i c u l a r l y f o r s t a b i l i t y m a r g i n s - s i n c e a m a j o r c r i t i c i s m o f 

approaches used to date has been the lack of any strong 'physical meaning'. For 

t h e s e r e a s o n s , this h i g h l y p r o m i s i n g a r e a i s o n e i n w h i c h i m m e d i a t e r e s e a r c h effort 

s h o u l d b e d i r e c t e d . 
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Chapter 6 

Controller Structures 

6.1 I n t r o d u c t i o n 

T h e u n i q u e c o n t r o l p r o b l e m a s s o c i a t e d w i t h l i n e a r r e p e t i t i v e p r o c e s s e s i s t h e p o s s i b l e 

p r e s e n c e of o s c i l l a t i o n s i n t h e o u t p u t s e q u e n c e of p a s s p r o f i l e s w h i c h i n c r e a s e i n 

a m p l i t u d e f r o m p a s s t o p a s s ( i . e . i n t h e k d i r e c t i o n ) . T h i s b e h a v i o u r is a p p a r e n t 

i n t h e l o n g - w a l l c o a l c u t t i n g e x a m p l e v i a t h e p r e s e n c e of s e v e r e u n d u l a t i o n s i n t h e 

n e w l y c u t f l o o r p r o f i l e c a u s e d b y t h e m a c h i n e s w e i g h t a s i t c o m e s t o r e s t a n d h a s 

b e e n i l l u s t r a t e d i n figure 2 . 3 . T h e m i n i m u m a i m , t h e r e f o r e , of a n y c o n t r o l s c h e m e 

for these processes is stabilisation. 

As indicated, repetitive processes clearly introduce control problems which are out-

side the scope of existing ID linecir systems theory, and hence the question aa to 

w h e n a n d u n d e r w h a t c o n d i t i o n s d o e s a b a s i c p h y s i c a l l y r e a l i s a b l e s t a b i l i s i n g c o n -

t r o l l e r e x i s t is c o m p l i c a t e d b y t h e f a c t t h a t t h e p r o c e s s d y n a m i c s d e p e n d e x p l i c i t l y 

on two complex variables. Research into controller design for linear repetitive pro-

c e s s e s is s t i l l i n i t s i n f a n c y , b u t t h e ' o b v i o u s ' s t a r i n g p o i n t i s t o l o o k a t a v a i l a b l e 

structures from conventional ID linear systems theory and see to what degree they 

may be applied here. 

A g e n e r a l c o n t r o l p r o b l e m c a n b e f o r m u l a t e d w i t h t h e f o l l o w i n g a i m s : 

(i) to set (or define) objectives; 

( i i ) s p e c i f y c o n t r o l s t r u c t u r e s ( s u c h a s f e e d b a c k c o n t r o l s c h e m e s ) ; a n d 
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(iii) the development of design algorithms (ideally within a computer aided control 

system design environment). 

Some eEort has been directed towards the development of suitable control objectives 

for differential and discrete linear repetitive processes (Smyth, 1992), where, clearly, 

an obviously necessary feature of any practically feasible control scheme is stability 

along the pass. 

A d d i t i o n a l d e s i g n c o n s i d e r a t i o n s c a n b e b a s e d o n p e r f o r m a n c e s p e c i f i c a t i o n s re -

garding, for e x a m p l e , t h e l i m i t p r o f i l e f o r the p r o c e s s . S o - c a l l e d l i m i t p r o f i l e b a s e d 

strategies have the following type of considerations as elements of the control objec-

tive: 

( i ) s p e c i f i c a t i o n s for the d y n a m i c s o f yoo, i.e. in a d d i t i o n t o stability, t h e limit 

p r o f i l e d y n a m i c s s h o u l d satisfy s u c h a d d i t i o n a l I D l i n e a r s y s t e m s p e r f o r m a n c e 

criteria as deemed appropriate (standard linear control measures can be ap-

plied); 

(ii) requirements on the rate of approach of the output sequence of pass profiles 

{yk}k>i to t h e l i m i t p r o f i l e i/oo, i e. the o u t p u t s e q u e n c e m u s t b e within a 

speciEed 'band' of the limit profile after a specihed number of passes, say A;*, 

have elapsed and remain within it VA; > A;*; 

(iii) bounds on the error 2/̂  — i/oo, A: > 0, on a given pass, i.e. the error should be 

'acceptable'. 

These points have been addressed in (Smyth et al., 1994) using detailed simulation 

s t u d i e s w h e r e t h e f o l l o w i n g g e n e r a l p u r p o s e s p e c i f i c a t i o n f o r t h e f o r m of t h e l i m i t 

profile h a s b e e n f o r m u l a t e d (in a d d i t i o n t o t h e obvious requirement of s t a b i l i t y a l o n g 

the pass): 

(Ae gegite/ice o/paga o proyz/e t/oo 'occep^-

ofong pogg occur m a Yeago/iat/e' 

number of passes and simultaneously 'tolerable' errors on any pass k should be guar-

anteed. 

The interpretation of the terms in quotation marks clearly should be refined into 

design criteria appropriate t o t h e particular a p p l i c a t i o n u n d e r c o n s i d e r a t i o n . 
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C o n t r o l s t r u c t u r e s f o r l i n e a r r e p e t i t i v e p r o c e s s e s c a n b e c l a s s i f i e d , i n g e n e r a l t e r m s , 

under the following two headings, 

( i ) t h o s e w h i c h e x p l i c i t l y u s e i n f o r m a t i o n f r o m t h e c u r r e n t p a s s o n l y , t e r m e d 

m e m o r y l e s s c o n t r o l l e r s , 

( i i ) t h o s e w h i c h e x p l i c i t l y u s e i n f o r m a t i o n f r o m t h e c u r r e n t p a s s a n d / o r p r e v i -

o u s p a s s p r o f i l e s , s t a t e v e c t o r s a n d i n p u t v e c t o r s - s o - c a l l e d c o n t r o l l e r s w i t h 

m e m o r y . 

Memoryless schemes clearly have the simpler structure in terms of implementation 

a n d of d a t a w h i c h must b e l o g g e d / s t o r e d . H e n c e t h e p o t e n t i a l o f s u c h s c h e m e s 

s h o u l d b e f u l l y e v a l u a t e d p r i o r t o t h e c o n s i d e r a t i o n of t h o s e w i t h a p o t e n t i a l l y m o r e 

complex structure, such as those in class (ii) above or alternatives. Consideration 

of t h e s p e c i f i c a t i o n of c o n t r o l s t r u c t u r e s f o r d i f f e r e n t i a l a n d d i s c r e t e l i n e a r r e p e t i t i v e 

p r o c e s s e s i s t h e s u b j e c t of t h i s c h a p t e r . 

( S m y t h , 1 9 9 2 ) m a k e s i n i t i a l p r o g r e s s i n t h e d e v e l o p m e n t of d e s i g n a l g o r i t h m s f o r 

i m p l e m e n t a t i o n w i t h i n a c o m p u t e r a i d e d c o n t r o l s y s t e m d e s i g n e n v i r o n m e n t . T h i s 

area is beyond the scope of this thesis, but is the subject of an on-going research 

p r o g r a m i n t o t h e d e v e l o p m e n t a n d d e s i g n of M A T L A B t o o l b o x e s b y G r a m a c k i e t 

a l . , s e e f o r e x a m p l e ( G r a m a c k i e t a l . , 1 9 9 9 ) . 

This chapter first introduces so-called memoryless feedback control schemes, which 

u s e i n f o r m a t i o n f r o m t h e c u r r e n t p a s s o n l y . T h e a p p l i c a t i o n of p u r e l y I D c o n t r o l 

s t r u c t u r e s f a i l s i n g e n e r a l ( a p a r t f r o m a f e w r e s t r i c t i v e s p e c i a l c a s e s - s e e b e l o w ) s i n c e 

linear repetitive processes introduce control problems which are outside the scope of 

existing t h e o r y . R e c e n t s t u d i e s h a v e i n d i c a t e d t h a t a s t a t e / o u t p u t f e e d b a c k ( R o g e r s 

a n d O w e n s , 1 9 9 3 ; S m y t h , 1 9 9 2 ) o r f e e d b a c k a n d f e e d f o r w a r d ( A m a n n e t a l . , 1 9 9 6 ) 

a p p r o a c h m a y m a k e s o m e p r o g r e s s t o w a r d s t h e c o n t r o l l e r p r o b l e m , b u t i t w i l l n o t 

s u c c e e d i n a l l c a s e s . A r e t u r n - d i f f e r e n c e t h e o r y i s t h e n d e v e l o p e d w h i c h a c t s a s 

a n a t u r a l c o u n t e r p a r t t o t h e c o r r e s p o n d i n g I D t h e o r y . U s i n g t h e s t a n d a r d l i n e a r 

systems case as motivation, it is to be expected that much valuable insight into the 

general area of controller design can be gained by considering subclcisses with certain 

s p e c i a l s t r u c t u r a l p r o p e r t i e s . I n s e c t i o n 6 . 4 a n d o n w a r d s , t h e f e e d b a c k s t r u c t u r e s 

i n t r o d u c e d i n s e c t i o n 6 . 2 a r e a p p l i e d t o c e r t a i n c l a s s e s of t h e s e s o - c a l l e d b e n c h m a r k 

p r o b l e m s . H e r e i t i s s h o w n t h a t , f o r o n e s u b c l a s s of p r a c t i c a l i n t e r e s t , a I D c o n t r o l 
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action is all that is required for acceptable systems performance. This theory is 

n o v e l a n d p r o v i d e s t h e b a s i s f o r t h e p a p e r ( B e n t o n e t a l . , 1 9 9 8 a ) . A d i s c u s s i o n 

of t h e e f f e c t i v e u s e of c o n t r o l l e r s w i t h m e m o r y is i n c l u d e d i n s e c t i o n 6 . 6 , w h i c h is 

t h e n i l l u s t r a t e d b y l o o k i n g a t a s u b c l a s s of s e c o n d o r d e r d i f f e r e n t i a l p r o c e s s e s . I n 

section 6.8 discrete processes are considered. Here it is shown how a discrete linear 

repetitive process can be regarded aa being derived from a differential process under 

f a s t s a m p l i n g c o n d i t i o n s , a s s h o w n i n ( B e n t o n e t a l . , 2 0 0 0 b ) . A c o n t r o l s c h e m e is 

t h e n d e s i g n e d f o r a b e n c h m a r k c l a s s of d i s c r e t e p r o c e s s e s - s o - c a l l e d m u l t i v a r i a b l e 

d i s c r e t e first o r d e r l a g s . I n s e c t i o n 6 . 9 t h e 2 D L y a p u n o v e q u a t i o n of c h a p t e r 4 is u s e d 

i n t h e d e s i g n of a c u r r e n t p a s s s t a t e f e e d b a c k c o n t r o l l a w w h i c h h a s b e e n a u g m e n t e d 

b y ' f e e d f o r w a r d ' p r e v i o u s p a s s a c t i o n . T h i s is a t y p e of c o n t r o l l e r w i t h m e m o r y , a n d 

h e n c e is a n e x a m p l e of t h e s c h e m e s i n t r o d u c e d i n s e c t i o n 6 .6 . F i n a l l y , t h e c h a p t e r 

concludes by noting some arecis for future work. 

6.2 Memory less Feedback Contro l Schemes for 

Linear Repe t i t ive Processes 

T h e s t a r t i n g p o i n t i n t h e d e v e l o p m e n t of m e m o r y l e s s c o n t r o l s c h e m e s f o r d i f f e r e n t i a l 

linear repetitive processes is to consider feedback type control structures for which 

a f u l l I D c o n t r o l t h e o r y is r e a d i l y a v a i l a b l e a n d s ee t o w h a t e x t e n t t h e y m a y b e 

a p p l i c a b l e h e r e . T h e s e s c h e m e s a r e t h e n a t u r a l g e n e r a l i s a t i o n of a c o r r e s p o n d i n g 

s c h e m e f o r t h e d e r i v e d c o n v e n t i o n a l l i n e a r s y s t e m LD{A, B, C) of t h e p r o c e s s ( 2 . 1 1 ) -

(2.12). In particular, they reduce to this scheme under application of the three 

actions below: 

( i ) a n y p r e v i o u s p a s s t e r m s a r e d e l e t e d ; 

(ii) the pass subscript A; -t-1 is dropped; and 

(iii) the concept of a pass length is ignored. 

C o n s i d e r t h e s u b c l a s s of d i f f e r e n t i a l l i n e a r r e p e t i t i v e p r o c e s s e s w i t h s t a t e - s p a c e 

model (2.11)-(2.12) (for the discrete case see, for example, (Rogers and Owens, 

1 9 9 2 b ) ) . T o i n t r o d u c e t h e first of t h e s e s c h e m e s , first n o t e t h a t t h e s t a n d a r d s t a t e 

f e e d b a c k l a w f o r t h e d e r i v e d c o n v e n t i o n a l l i n e a r s y s t e m L]J{A, B, C) of t h e p r o c e s s 
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(i.e. the system obtained from (2.11)-(2.12) by applying points (i) to (iii) above) 

h a s t h e f o l l o w i n g f o r m o v e r t > 0, 

%/(() = Fa; ( ( )+(?r( t ) (6.1) 

where F and G are constant / x n and Z x m matrices respectively and r(() is the 
n e w m X 1 e x t e r n a l r e f e r e n c e i n p u t . 

T h e n a t u r a l g e n e r a l i s a t i o n of t h i s s t a t e f e e d b a c k l a w t o t h e f u l l d i f f e r e n t i a l p r o c e s s 

( 2 . 1 1 ) - ( 2 . 1 2 ) i s t h e n a s f o l l o w s ( R o g e r s a n d O w e n s , 1 9 9 2 b ; S m y t h , 1 9 9 2 ) f o r A > 0, 

0 < t < a, 

= F ZA+i(() + G rA+i(() (6.2) 

with F and G defined as above, and r&_,_i(̂ ) denoting the m x 1 external reference 

vector on pass A: 4-1. This scheme is termed 'current point' since it uses information 

f r o m t h e c u r r e n t t i m e i n s t a n t o n t h e c u r r e n t p a s s o n l y , a n d i s a n e x a m p l e of a 

so-called memoryless controller. 

Applying the feedback controller (6.2) to the differential process (2.11) yields the 

f o l l o w i n g c l o s e d l o o p s y s t e m o v e r 0 < t < a, k > 0, 

M 

±&+i(() = (/4 + ) zt+i(() + BG r&+i(() + ^ i/t+i_;(() 

M 

^A+i(^) = C a;&+i(() + 2/A+i-; ((). (6.3) 
i = i 

Clearly this closed loop system has an identical structure to the differential process 

(2.11) (with the new external reference vector rt_|_i(() replacing the control input 

vector ?/t+i(^)) hence the process (2.11) is said to be closed under the control 

action ( 6 . 2 ) . T h e r e f o r e a l l s t a b i l i t y c o n d i t i o n s w h i c h h a v e b e e n d e r i v e d f o r t h e 

differential process (and which have been presented in chapter 3) may be applied 

t o t h e c l o s e d l o o p s y s t e m ( 6 . 3 ) . I n p a r t i c u l a r , t h e a s y m p t o t i c s t a b i l i t y a n d s t a b i l i t y 

along the pass results of theorems 3.4 and 3.6 respectively may be used to assess 

the stability of the closed loop system. 

N o t e t h a t t h e s t a t e f e e d b a c k l a w ( 6 . 2 ) d o e s n o t a f f e c t t h e Dj, 1 < j < M , m a t r i c e s 

in the closed loop system (6.3) (which is also true for the case of processes with 

t h e d y n a m i c b o u n d a r y c o n d i t i o n s of ( 2 . 1 8 ) ) , a n d h e n c e t h e a s y m p t o t i c s t a b i l i t y of 
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the process is unaffected by the controller. This is a direct result of the fact that 

the output pass profile A; > 0, does not explicitly depend on the input 

v e c t o r Uk+i{t), k > 0 , o n a g i v e n p a s s , i . e . t h e r e is n o ' d i r e c t f e e d t h r o u g h ' b e t w e e n 

i n p u t a n d o u t p u t . T h e r e f o r e w e h a v e t h e s i t u a t i o n t h a t t h e p r o p e r t y o f a s y m p t o t i c 

s t a b i l i t y i s i n v a r i a n t u n d e r m e m o r y l e s s s t a t e f e e d b a c k , a n d h e n c e a n a s y m p t o t i c a l l y 

u n s t a b l e s y s t e m c a n n o t b e s t a b i l i s e d b y a m u l t i p a s s c a u s a l f e e d b a c k c o n t r o l s c h e m e 

( f o r a f u r t h e r d i s c u s s i o n of t h i s p o i n t , s e e t h e c o n c l u s i o n s s e c t i o n of t h i s c h a p t e r ) . 

H o w t o o v e r c o m e t h i s p r o b l e m r e m a i n s a n o p e n a r e a . F o r n o w , w e u s e t h e a r g u m e n t 

t h a t , i n p r a c t i c a l t e r m s , a s y m p t o t i c s t a b i l i t y i s a l w a y s p r e s e n t d u e t o t h e s t a b i l i s i n g 

i n f l u e n c e of r e s e t t i n g t h e i n i t i a l c o n d i t i o n s a t t h e b e g i n n i n g of e a c h p a s s . I n a d d i t i o n , 

i t s h o u l d a l s o b e n o t e d t h a t t h e o b s e r v a t i o n of i n d u s t r i a l l y o r i e n t e d c a s e s l e a d s t o 

t h e c o n c l u s i o n t h a t t h e d e - s t a b i l i s i n g i n f l u e n c e s ( i n t h e s e c a s e s ) a r i s e d u e t o t h e 

a l o n g t h e p a s s d y n a m i c s o n l y - s e e ( S m y t h , 1 9 9 2 ) f o r t h e d e t a i l s of t h i s p o i n t . F o r 

these reasons, for the remainder of this chapter we will assume asymptotic stability 

holds. 

T h e s t a t e f e e d b a c k c o n t r o l l a w ( 6 . 2 ) r e q u i r e s t h e a v a i l a b i l i t y of a l l e l e m e n t s of t h e 

state vector which may not always be possible, due to, for example, physi-

c a l / f i n a n c i a l c o n s t r a i n t s . I n s u c h c a s e s , b y a n a l o g y w i t h t h e s t a n d a r d I D a p p r o a c h , 

s t a t e e s t i m a t o r s / o b s e r v e r s m a y b e e m p l o y e d . W i t h t h i s i n m i n d , a n a l t e r n a t i v e t o 

the state-activated feedback control scheme presented above is to consider classes 

of output feedback control schemes (see, for example, (Rogers and Owens, 1993) 

a n d ( R o g e r s a n d O w e n s , 1 9 9 5 a ) f o r t h e d i s c r e t e / d i f f e r e n t i a l c a s e s r e s p e c t i v e l y ) . 

Consider the output sequence of pass proEles {i/A;(()}A;>i from the differential non-

u n i t m e m o r y l i n e a r r e p e t i t i v e p r o c e s s w i t h s t a t e - s p a c e f o r m ( 2 . 1 1 ) - ( 2 . 1 2 ) . T h e n a t 

t i m e t o n p a s s k t h e i n f o r m a t i o n i n t h e f o l l o w i n g s e t is c a u s a l ( a s a l r e a d y i l l u s t r a t e d 

i n figure 2 . 5 ) a n d c a n b e u s e d f o r o u t p u t f e e d b a c k c o n t r o l , 

y = 

^ = {2/&(T) : 0 < T < t} 

^ = {2/r(T) : 0 < T < O ! , 0 < r < A ; - l } . (6.4) 

F r o m a n i m p l e m e n t a t i o n v i e w p o i n t , c o n t r o l s c h e m e s w h i c h u s e i n f o r m a t i o n f r o m 

t h e c u r r e n t t i m e i n s t a n t t o n p a s s k c l e a r l y h a v e t h e s i m p l e s t s t r u c t u r e i n t e r m s 

of i n f o r m a t i o n w h i c h m u s t b e s t o r e d / l o g g e d , a n d h e n c e i t i s l o g i c a l t o s e e w h a t 

p r o g r e s s c a n b e a c h i e v e d u s i n g t h e s e s o - c a l l e d c u r r e n t p o i n t c o n t r o l l e r s p r i o r t o t h e 

c o n s i d e r a t i o n of t h o s e w i t h a p o t e n t i a l l y m o r e complex s t r u c t u r e . 
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Suppose, therefore, that rA:+i(t) is an external m x 1 vector representing the desired 

behaviour of the process on pass A; + 1, and define the so-called current pass error 

vector over 0 < ( < a as 

et+iW = A; > 0. (6.5) 

T h e n a m e m o r y l e s s d y n a m i c u n i t y negative f e e d b a c k c o n t r o l l e r f o r ( 2 . 1 1 ) - ( 2 . 1 2 ) 

c o n s t r u c t s t h e i n p u t Uk+i{t), k > 0, as the o u t p u t from t h e s t a t e - s p a c e s y s t e m 

= + 0 < ( < O ! , A:>0, (6.6) 

where a;^^(^) is the x 1 internal state of the controller on pass /c-t-l. The resulting 

control scheme describes a memoryless dynamic unity negative error actuated output 

feedback control scheme for (2.11)-(2.12) and, in effect, (6.6) describes a standard 

ID forward path controller applied on pass A 4- 1. Specific choices of the matrices 

i n ( 6 . 6 ) can n o w b e m a d e t o y i e l d a n u m b e r of s p e c i a l c a s e s of c o n t r o l l a w s which 

a r e t h e n a t u r a l g e n e r a l i s a t i o n of t h e i r e x t e n s i v e l y u s e d c o n v e n t i o n a l l i n e a r s y s t e m s 

counterpart. 

At this stage, introduce the so-called augmented state vector 

G N = n + 7̂ 1. (6.7) 

I t then f o l l o w s t h a t the s t a t e - s p a c e m o d e l s d e s c r i b i n g t h e f o r w a r d path a n d c l o s e d 

l o o p systems of ( 2 . 1 1 ) u n d e r ( 6 . 5 ) - ( 6 . 6 ) a r e g i v e n o v e r 0 <t < a, A: > 0, b y 

M 

^ et+i(() -t- ̂  Bj-i ?/t+i_;(̂ ) 
i = i 

M 

2/t+i(() = ^ A 2/t+i-;(^) (6.8) 

a n d 

M 

^m(f) = {A- BC) + B - BDj) Vm-M 
i-1 

M 

i/&+i(() = C X ^ i ( ^ ) + ^ D j m + i - j ( ( ) ( 6 . 9 ) 
i = i 

1 7 3 
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respectively, where 

A = 

c = 

0 
4 - 1 , ^ = , A - i = 4 - 1 , A - i = 

0 

C 0 (6.10) 

B o t h ( 6 . 8 ) a n d ( 6 . 9 ) a r e c l o s e d i n t h a t t h e y h a v e a n i d e n t i c a l s t r u c t u r e t o t h e 

open loop model (2.11). Hence known stability theory again may be applied. In 

p a r t i c u l a r , n o t e t h a t t h e m a t r i c e s Dj, 1 < j < M , i n ( 6 . 9 ) a r e o n c e a g a i n i n v a r i a n t 

u n d e r t h i s s c h e m e , a n d h e n c e t h e c o n c l u s i o n s d r a w n e a r l i e r o n a s y m p t o t i c s t a b i l i t y 

a l s o a p p l y h e r e f o r t h i s c l a s s of o u t p u t f e e d b a c k c o n t r o l s t r u c t u r e s . N o t e t h a t , h e r e , 

the process is closed under a (memoryless) cascade connection. It can also be seen 

t h a t c l o s u r e a l s o h o l d s u n d e r a p a r a l l e l ( f e e d f o r w a r d ) c o n n e c t i o n a n d w i t h n o n - u n i t y 

n e g a t i v e f e e d b a c k l o o p s w i t h m e m o r y l e s s c o n t r o l l e r s i n t h e f e e d b a c k p a t h s . 

In order to proceed with a return-dlEerence type analysis, it is first necessary to 

d e s c r i b e m e m o r y l e s s d y n a m i c u n i t y n e g a t i v e f e e d b a c k c o n t r o l i n 2 D t r a n s f e r - f u n c t i o n 

t e r m s . F i r s t r e c a l l f r o m s e c t i o n 2 . 7 t h a t t h e 2 D t r a n s f e r - f u n c t i o n m a t r i x d e s c r i p t i o n 

of (2.11) is 

y(g, z) = G(g, z) [/(s, z) 

where the m x Z 2D transfer-function matrix G(g, z) is given by 

(6.11) 

(?(g, z) Ir, 

w i t h 

a n d 

Go(g) = C(s/» - ^)-^B 

Gj(g) — C{sln — A) ^Bj^i + Dj, 1 < i < M. 

T h e n n o t e t h a t t h e 2 D t r a n s f o r m v e r s i o n s of ( 6 . 5 ) a n d ( 6 . 6 ) a r e 

e(s, z) = E(s, z) — y(g, z) 

a n d 

[/(s, z) = jiL'(g, z) e(g, z) 
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respectively, where 

z) = (6.17) 

Further, applying these transforms to (6.8), after some manipulation yields 

y (g ,z ) := Q(5,z)e(5,z) 

= G(s,z)j<'(s,z)e(g,z) (6.18) 

i.e. the 2D transfer-function matrix Q(a, z) of the forward path system is just the 

p r o d u c t o f t h a t f o r t h e p l a n t a n d t h e f o r w a r d p a t h c o n t r o l l e r . 

Substituting in for e(g, z) gives 

y(g,z)=:.fif(g,z)7Z(g,z) (6.19) 

where the m, x m 2D closed loop transfer-function matrix .H'(s, z) is given by 

^ ( s , z) = (f^ + Q(s, z))-'Q(s, z). (6.20) 

T h e b l o c k d i a g r a m i n t e r p r e t a t i o n of ( 6 . 1 9 ) is g i v e n i n figure 6 . 1 , w h e r e i t c a n b e 

s e e n t h a t t h i s s c h e m e is c l e a r l y t h e n a t u r a l g e n e r a l i s a t i o n of i t s c o n v e n t i o n a l l i n e a r 

systems counterpart. 

e(5,z) 
;r(g,z) 

[/(g,z) 
G(g,z) 

y(g,z) 
;r(g,z) G(g,z) 

Figure 6.1: Forward Path Memoryless Controller 

N o w t h a t t h e m e m o r y l e s s d y n a m i c u n i t y n e g a t i v e f e e d b a c k c o n t r o l s c h e m e h a s b e e n 

e x p r e s s e d i n 2 D t r a n s f e r - f u n c t i o n matrix t e r m s , w e c a n p r o c e e d w i t h a r e t u r n -

difference type analysis. 

6.3 Re tu rn -Di f fe rence Theory 

I n I D l i n e a r s y s t e m s t h e o r y , t h e r e t u r n - d i f f e r e n c e o p e r a t o r g e n e r a t e s t h e d i f f e r e n c e 

b e t w e e n t h e i n j e c t e d a n d r e t u r n e d s i g n a l s . W i t h i n t h i s s e c t i o n , t h e c o n c e p t of a 

return-difference theory for linear repetitive processes is considered. 
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Consider the ID derived conventional linear system Z,c(yl, B ,C) of the diEeren-

t i a l l i n e a r r e p e t i t i v e p r o c e s s ( 2 . 1 1 ) - ( 2 . 1 2 ) w i t h t r a n s f e r - f u n c t i o n m a t r i x ( ? o ( s ) a n d 

s u b j e c t t o d y n a m i c u n i t y n e g a t i v e f e e d b a c k c o n t r o l w i t h f o r w a r d p a t h c o n t r o l l e r 

transfer-function matrix A'(s). Further, let P(,(g) and Pc(5) denote the characteris-

tic polynomials of the open loop forward path system and the closed loop system 

r e s p e c t i v e l y , a n d d e n o t e t h e r e t u r n - d i f f e r e n c e m a t r i x b y T ( s ) . T h e n w e h a v e 

T h e s t a n d a r d I D l i n e a r s y s t e m s r e s u l t , a s s h o w n i n a n y r e l e v a n t t e x t , is 

Pc(a) 
M l Po(5)' 

(6.21) 

( 6 . 2 2 ) 

This relationship acts as a basis for a large number of design techniques currently 

a v a i l a b l e i n c o n v e n t i o n a l l i n e a r s y s t e m s theory. 

For the case of the differential linear repetitive process with state-space model (2.11)-

( 2 . 1 2 ) u n d e r m e m o r y l e s s d y n a m i c u n i t y n e g a t i v e f e e d b a c k c o n t r o l , t h e n a t u r a l d e f -

i n i t i o n of a r e t u r n - d i f f e r e n c e m a t r i x is 

% z ) G(g, z)j(7(s, z). (6.23) 

To link this matrix to closed loop stability along the pciss, it is necessary to hrst 

i n t r o d u c e t h e c o n c e p t of a c h a r a c t e r i s t i c p o l y n o m i a l for t h e p r o c e s s . A s i n t h e 

c a s e of i t s I D l i n e a r s y s t e m s c o u n t e r p a r t , t h i s s h o u l d c o n t a i n al l o f t h e i n f o r m a t i o n 

necessary to determine the stability nature of the process. Consequently, an obvious 

candidate for this open loop is 

Po{s, z) — P2(2)^1^(5, z) (6.24) 

where, from definitions 3.5 and 3.6, f^(z) and Af(g,z) are the asymptotic stability 

a n d s t a b i l i t y a l o n g t h e p a s s p o l y n o m i a l s r e s p e c t i v e l y . 

Further, by Schurs formula, 

Po(̂ ! 

w i t h Q{z) a s i n ( 3 . 3 4 ) a n d 

sin ^ 

-C 

- B ( z ) 

Q ( z ) 
(6.25) 

M 

B{z) = z" 
i = i 

(6.26) 
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Then the following result characterises stability along the pciss in terms of its char-

a c t e r i s t i c p o l y n o m i a l , 

Theorem 6.1 (Characteristic Polynomial - Stability along the Pass) 

and Oioeng, o/</ieorem AoJd. iTAen 

f/ie ea;(eMde(f Zmeor procega 5'(Ea, generaW 63/ 

with a > ao is stable along the pass i f , and only i f , 

Po(g, z) ^ 0 m (Ae region {s : .Re{s} > 0} U {z : |z| > 1} (6.27) 

w/iere Po(s, z) (Ae cAarac^enafzc poZi/MommZ o/(Ae proceag, 

U n d e r t h e a s s u m p t i o n t h a t ( 2 . 1 1 ) ( a n d h e n c e ( 6 . 9 ) ) is a s y m p t o t i c a l l y s t a b l e , t h e 

f o l l o w i n g r e s u l t e x p r e s s e s s t a b i l i t y a l o n g t h e p a s s u n d e r m e m o r y l e s s d y n a m i c f e e d -

b a c k c o n t r o l i n t e r m s of t h e m a t r i c e s T ( s ) a n d T{s,z), w h e r e T ( s ) a n d T(s,z) a r e 

t h e r e t u r n - d i f f e r e n c e m a t r i c e s of t h e d e r i v e d c o n v e n t i o n a l l i n e a r s y s t e m Lu{A, B, C) 

a n d t h e f u l l p r o c e s s r e s p e c t i v e l y . 

Theorem 6.2 (Return-Difference Matrix - Stability along the Pass) 

(ZTzd Owena, Zmeor proceaa 

is (Ae memon/feas 

/eed^act confroZ scAeme descn6ed 62/ (TAen </ie /meor 

repe(%(%re p r o c e a s <S'(E'a, W a , ^ a ) a > a o 61/ fAe cJosetf Zoop s ^ a ^ e - a p a c e m o d e f 

o; > (to 25 oJoMg (Ae poaa and onẐ / 

("oj |?'(s)| 9̂  0, 7Ze{s} > 0, dMcf 

r6;|T'(s,z)|fO, ^e{g}>0, |z|>l, 

w/iere (Ae rê urn-cfzjQ êre/ice moMcea T'(s) ancf ^(^i-z) are 62/ and 

re5peĉ %i;eZ2/-

N o t e t h a t t h e v e r s i o n of t h i s r e s u l t f o r t h e d i s c r e t e s u b c l a s s of p r o c e s s e s c a n b e 

found in (Rogers and Owens, 1993). 

R e t u r n n o w t o T ( s , z) of ( 6 . 2 3 ) a n d l e t p c ( 5 , z ) d e n o t e t h e c l o s e d l o o p p o l y n o m i a l , 

i . e . 

+ - ( B ( z ) - B D ( z ) ) 

—C Q(^) 

1 7 7 

Pc(a,;z) (6.28) 
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with B(z) and Q(z) as for (6.25) and 

M 

= (6.29) 
3=1 

T h e n i t c a n e a s i l y b e s h o w n t h a t 

Pc(a,z) 

Po(5, z) 
= 17(5,2)1. (6.30) 

G i v e n t h a t T ( s , z) i s t h e n a t u r a l g e n e r a l i s a t i o n of t h e r e t u r n - d i f f e r e n c e m a t r i x T ( s ) 

for conventional linear systems, it can be conjectured that T(g,z) should play a 

similar role in the design of control schemes for, say, closed loop stability along the 

p a s s . T h i s s u b j e c t r e m a i n s a n o p e n a r e a f o r f u t u r e r e s e a r c h . 

6.4 Appl ica t ion to Benchmark P rob lems I. 

Mul t ivar iable Firs t Order Lags 

Within section 6.2 candidate memoryless feedback controller schemes for differential 

l i n e a r r e p e t i t i v e p r o c e s s e s h a v e b e e n i n t r o d u c e d . T o i l l u s t r a t e t h e p o t e n t i a l o f t h i s 

general approach, these structures are applied here to subclauses of processes pos-

sessing certain special properties - so-called benchmark problems - which provides 

a s t a r t i n g p o i n t f o r t h e a n a l y s i s of more c o m p l e x c a s e s . T h e w o r k i n t h i s a n d t h e 

s u b s e q u e n t s e c t i o n f o r m s t h e b a s i s f o r t h e p a p e r ( B e n t o n e t a l . , 1 9 9 8 a ) a n d i s n o v e l . 

C o n s i d e r t h e s u b c l a s s o f d i f f e r e n t i a l u n i t m e m o r y p r o c e s s e s w h e r e t h e s t a t e - s p a c e 

triple (^, B, C) in (2.13) takes the structure of a multivariable first order lag (Owens, 

1 9 7 5 ) , i . e . m — I = n a n d t h e f i r s t M a r k o v p a r a m e t e r i s n o n s i n g u l a r . F i r s t o r d e r 

l a g s a r e t h e m u l t i v a r i a b l e e q u i v a l e n t of t h e s c a l a r f i r s t o r d e r l a g a n d a f u l l 

c o n t r o l t h e o r y e x i s t s f o r t h e m . R e l e v a n t r e s u l t s a r e p r e s e n t e d w i t h i n t h e a p p e n d i x 

s e c t i o n A . 6 . 

Hence, g i v e n ( 2 . 1 3 ) - ( 2 . 1 4 ) w i t h m = I = n, \CB\ ^ 0 a n d P i = 0 , a s i m p l e ( c u r r e n t 

p a s s ) s t a t e t r a n s f o r m a t i o n y i e l d s t h e e q u i v a l e n t d e s c r i p t i o n o v e r A; > 0 , ^ <t < a, 

^A+l (^ ) = —-^0 y k + l { t ) + ^ 0 ^ ^ & + l ( ^ ) + ^ 0 Vki t ) ( 6 . 3 1 ) 

w h e r e AQ, Ai a n d BQ a r e r e a l c o n s t a n t m x m m a t r i c e s w i t h | / l o | ^ 0. 
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As a first attempt at controller design, consider the proportional forward path con-

troller 

— K G/c+l (̂ ) = (p̂ o — ^l) ̂ k+lif) (6.32) 

where p > 0 is a real scalar gain and the m x 1 current paas error vector eA+i(() 

o n p a s s A; + 1 i s a s d e f i n e d i n ( 6 . 5 ) . T h i s c o n t r o l s c h e m e i s a n e x a m p l e o f t h e e r r o r 

actuated feedback laws introduced in section 6.2, and can be obtained from (6.6) by 

setting = 0, = (pylo - Ai). 

Application o f t h i s c o n t r o l action to ( 6 . 3 1 ) y i e l d s t h e f o l l o w i n g c l o s e d l o o p system, 

yk+l{t) = —pim Uk+lii) + {pim — + Bq yk{t). ( 6 . 3 3 ) 

S i n c e b o t h ( 6 . 3 1 ) a n d ( 6 . 3 3 ) are s u b c l a s s e s o f d i f f e r e n t i a l l i n e a r repetitive p r o c e s s e s , 

i . e . ( 6 . 3 1 ) i s c l o s e d u n d e r ( 6 . 3 2 ) , t h e r e s u l t s o f t h e o r e m s 3 . 4 a n d 3 . 6 m a y b e a p p l i e d 

t o a s s e s s s t a b i l i t y . N o w , a s t h e ' D i m a t r i x i n ( 6 . 3 3 ) i s i d e n t i c a l l y z e r o , t h e c l o s e d 

l o o p p r o c e s s i s a u t o m a t i c a l l y a s y m p t o t i c a l l y s t a b l e . I n t e r m s o f t h e o r e m 3 . 6 f o r 

stability along the paas, condition (b) clearly holds Vp > 0. Now consider the closed 

l o o p i n t e r p a s s t r a n s f e r - f u n c t i o n m a t r i x o f ( 6 . 3 3 ) w h i c h c a n e a s i l y b e seen to h a v e 

t h e f o r m 

= —;—^0- (6.34) 
5 + P 

Condition (c) of theorem 3.6 then translates to the requirement that all eigenvalues 

of Gi(a) have modulus strictly less than unity Vg = zw, w > 0. Suppose now that 

the eigenvalues of Gi(s) are denoted by Aj(g), 1 < j < m. Then it follows that 

lim sup|Aj(2w)| —0, (6.35) 
p-^+OO 

a n d h e n c e t h e f o l l o w i n g r e s u l t i s o b t a i n e d , 

Theorem 6.3 (Benton et al, 1998a) Suppose that the differential linear repetitive 

procegg (o memon/Zeaa propoviiomoZ /eedbocA; confrof 

defined by (6.5) and (6.32). Then the resulting closed loop system (6.33) is stable 

(Ae pagg /or o/Z 

p > r(Bo). (6.36) 
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T h i s r e s u l t s h o w s t h a t a d i f f e r e n t i a l l i n e a r r e p e t i t i v e p r o c e s s ( 2 . 1 3 ) - ( 2 . 1 4 ) w i t h s t a t e -

space triple (A, B, C) having the structure of a multivariable first order lag can be 

stabilised by a ID control action provided a high enough gain is applied. 

Under the control action of theorem 6.3, the closed loop limit proSle of the process 

is described by the ID state-space model 

Vooit) = {~plm + -Bo) Vooit) + (plm ^ 0 < t < a. ( 6 . 3 7 ) 

Since p > r(Bo), this closed loop limit profile is stable in the standard ID sense. 

As p — + 0 0 , the limit profile dynamics approach those of the system 

= - P Z/00 W + P (6.38) 

which is a stable, totally non-interacting ID linear system with zero steady state 

e r r o r i n r e s p o n s e t o a u n i t s t e p a p p l i e d a t t = 0 a n y c h a n n e l . I n p a r t i c u l a r , ' h i g h 

gain' produces closed loop stability and low static and dynamic interaction between 

loops. 

T h e q u e s t i o n r e m a i n i n g is h o w t o f i n d a n a d m i s s i b l e f i n i t e g a i n p , a n d c o m p u t e 

information on the rate of approach of the output sequence of pass proEles {2/A}&>i 

t o t h e l i m i t p r o f i l e yoo i n t e r m s of b o u n d s o n t h e e r r o r = Vk — Voo-

I n w h a t follows i t is s h o w n t h a t t h e s e q u e s t i o n s c a n b e a n s w e r e d b y r e p l a c i n g t h e 

necessary and suSicient condition on gain for stability along the pass of theorem 6.3 

by a sufficient but not necessary alternative. This analysis uses some basic results 

f r o m t h e t h e o r y of n o n n e g a t i v e m a t r i c e s w h i c h a r e s u m m a r i s e d i n t h e a p p e n d i x 

section A.l. 

S u p p o s e n o w t h a t t h e e i g e n v a l u e s of t h e ' A ' m a t r i x h a v e strictly n e g a t i v e r e a l p a r t s 

(a necessary condition for stability along the pass) - in other words that the derived 

c o n v e n t i o n a l l i n e a r s y s t e m is s t a b l e i n t h e s t a n d a r d I D s e n s e . S u p p o s e a l s o t h a t 

t h e s i m u l a t i o n - b a s e d r o u t e of s e c t i o n 3 . 5 is a d o p t e d a n d t h a t W{t) d e n o t e s t h e s t e p 

response matrix of (3i(g) and note that, given (6.34), each element in this matrix 

is m o n o t o n i c a n d s i g n - d e f i n i t e . T h e r e f o r e , t h e m a x i m a l v a l u e o f W{t) o c c u r s a t 

t = - f o o , a n d h e n c e b y t h e final v a l u e t h e o r e m w e c a n w r i t e , 

| | W | | p : = | | W ( 4 - o o ) | | p = | | G i ( 0 ) | | p = - | | B o | | p . ( 6 . 3 9 ) 

I t f o l l o w s t h e n t h a t 

supr(Gi(%w)) < supr(||Gi(%w)||p) < r(||iy||p), (6.40) 
tj>0 w>0 
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and hence we obtain the following sufHcient condition for closed loop stability along 

the pass, 

Theorem 6.4 (Benton et al, 1998a) Suppose that the differential linear repetitive 

proceag /o memon/Zeas proporfionaf /eecf6ocA; co?i<roZ 

TAeM </ie reawẐ mg cZoaecf Zoop aZonp (Ae 

pasa %/ 

P > r(||Bo||p). (6.41) 

T u r n i n g n o w t o t h e e s t i m a t e of c o n v e r g e n c e r a t e s , t h e f o l l o w i n g r e s u l t is p r o v e d 

i n ( S m y t h , 1 9 9 2 ) w h e r e , w i t h o u t l o s s of a n y g e n e r a l i t y , t h e i n i t i a l p a s s p r o f i l e h a s 

been set equal to zero, 

Theorem 6.5 (Performance Bounds) (Smyth, 1992) Suppose that the underly-

mg gpaces are Z,oo ^poceg. aZso o/ f/ieorem 

AoZcfs / o r o g m e M 7;aZ'we o / p oMcZ (/ le r e / e r e M c e zg p a a s mdepemcZeMf, i e. 

r,}; = roo /or aZZ W'uea o/A:. iTAeM 

11% !/oo||p ^ "̂k •— II-̂ fcllpll̂ oolip (6.42) 

wAere 

||MA||p = (/m-||M^IW-lM^||p (6.43) 

oMcZ ||roo||p z*'' eZemen^ sup^g |r^(t)|, 1 < % < m. 

T h e p e r f o r m a n c e i n f o r m a t i o n m a d e a v a i l a b l e f r o m t h i s r e s u l t i n d i c a t e s t h a t t h e 

o u t p u t s e q u e n c e of p a s s p r o f i l e s a p p r o a c h e s t h e l i m i t p r o f i l e a t a g e o m e t r i c r a t e 

d e t e r m i n e d b y a c o m p u t a b l e s c a l a r 7 G (r(||W||p), 1). A l s o t h e i*^ e l e m e n t of t h e 

output vector on a given pass /c, denoted lies (point-wise) in the range defined 

by 

2/L(^) - < 3/1 < 2/L(() + V < > 0 (6.44) 

w h e r e m l c a n e a s i l y b e c a l c u l a t e d f r o m t h e o r e m 6 . 5 . 

T h i s b o u n d f o r h a s a s i m p l e g r a p h i c a l i n t e r p r e t a t i o n , a s shown i n figure 6 .2 , 

where it c a n b e s e e n t h a t y l l i e s i n a b a n d of w i d t h 2 m l w h i c h a p p r o a c h e s z e r o 

geometrically as p —> +00. 
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2/K )̂ lies 
i n t h i s b a n d 

y'M 

Figure 6.2: Bounds ou rates of approach of the element of the output sequence 

of pass profiles to the limit proSle 

T h e o v e r a l l c o n c l u s i o n of t h i s analysis i s that u n d e r ' h i g h g a i n ' ( i . e . p - 4 + o o ) the 

limit profile of the closed loop system can be reached to within arbitrary accuracy on 

the first pass. I n a p p l i c a t i o n s t e r m s , t h i s l e v e l of p e r f o r m a n c e w i l l n o t b e a c h i e v a b l e 

except when the value of the scalar gain p actually employed is physically imple-

m e n t a b l e . T h i s situation w h e r e the r e q u i r e d g a i n p i s outside t h e a v a i l a b l e r a n g e c a n 

a r i s e i n several w a y s , f o r e x a m p l e t h e i d e a l c h o i c e of p a r a m e t e r may b e p h y s i c a l l y 

u n a v a i l a b l e o r u n r e a l i s t i c d u e t o eg . a n inaccurate p l a n t m o d e l , financial restric-

tions or s t r u c t u r a l / d a t a u n c e r t a i n t i e s . T w o a l t e r n a t i v e a p p r o a c h e s t o t h i s a n a l y s i s 

a r e i n t r o d u c e d i n t h e f o l l o w i n g s e c t i o n . 

6.5 Extens ions 

T h e p a p e r ( B e n t o n e t a l . , 1 9 9 8 a ) presents t w o r e f i n e m e n t s t o the a n a l y s i s p r e s e n t e d 

here. If the value of the scalar gain p that can actually be implemented is outside 

the range required to give the desired level of performance then, by analogy with 

s t a n d a r d I D l i n e a r s y s t e m s theory, a n a l t e r n a t i v e i s t o i n c l u d e d y n a m i c s w i t h i n 

the forward path controller. This section begins by generalising the results of the 

previous section in t h i s r e s p e c t . A l s o t h e possibility of f u r t h e r g e n e r a l i s a t i o n t o 

t h e c a s e w h e r e t h e s t a t e - s p a c e t r i p l e {A, B, C) o n l y a p p r o x i m a t e s t h e s t r u c t u r e of a 

multivariable Arst order lag in a well defined sense is considered. In this situation, 

it is shown how a reduced order model of the dynamics may be used in the design 

of a c o n t r o l l e r for t h e p r o c e s s i n many c a s e s of p r a c t i c a l i n t e r e s t . 
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6.5.1 A More General Pa ramet r i c Controller 

In practice, the ideal choice of scalar gain p may be physically unavailable or unre-

alistic, in which case a more general parametric form of the controller (6.32) is to 

replace the real constant matrix 7^ by 

K{s) = AQ d i a g { p y ( s ) } i < j < T O — Ai ( 6 . 4 5 ) 

w h e r e t h e Pj{s), 1 < j < m, a r e p r o p e r m i n i m u m p h a s e t r a n s f e r - f u n c t i o n s . T h i s 

f o r w a r d p a t h c o n t r o l l e r c a n b e r e a l i s e d b y t h e s t a t e - s p a c e m o d e l of ( 6 . 6 ) a n d i t c a n 

e a s i l y b e s e e n t h a t t h e a p p l i c a t i o n of t h i s c o n t r o l l e r y i e l d s t h e c l o s e d l o o p s y s t e m 

y(a , z ) = d i a g i ^ I (diag{pX5)}i<j<^-v4^^v4i)E(g,z) 

f z ' ^ d i a g i — r — T - r i B o y ( s , z ) . (6.46) 
L5 + P;(s) J 

It can then be easily seen that condition (b) of the stability along the pass theo-

r e m 3 . 6 is g o v e r n e d b y t h e z e r o s of t h e s o - c a l l e d s c a l a r r e t u r n d i f f e r e n c e s 

rj(a) = l + s"^Pj(s), (647) 

A l s o , t h e c l o s e d l o o p i n t e r p a s s t r a n s f e r - f u n c t i o n m a t r i x t a k e s t h e f o r m 

Gi(g) = diag{(g + /)j(a))"^}i<;<m -Bo- (6.48) 

Hence, if the Pj(s), 1 < J < have been chosen so as condition (b) of theorem 3.6 

holds, t h e n t h e c l o s e d l o o p s y s t e m is s t a b l e a l o n g t h e p a s s i f , a n d o n l y if , a l l e i g e n -

v a l u e s of Gi{s) h a v e m o d u l u s s t r i c t l y l e s s t h a n u n i t y V s = ioo, w > 0. T h i s c o n d i t i o n 

c a n b e t e s t e d v i a s t a n d a r d I D l i n e a r s y s t e m s t e c h n i q u e s . 

T o c o n s i d e r t h e u s e of t h e o r e m s 6 . 4 a n d 6 . 5 i n t h i s c a s e , f i r s t n o t e t h a t t h e e n t r i e s i n 

t h e s t e p r e s p o n s e m a t r i x W{t) a r e n o l o n g e r g u a r a n t e e d t o b e m o n o t o n i c a n d s i g n 

d e f i n i t e . H e n c e t h e c l o s e d f o r m e x p r e s s i o n f o r | | W | | p i s n o l o n g e r a v a i l a b l e . I n s t e a d 

t h e e l e m e n t s of t h i s m a t r i x m u s t b e c o m p u t e d n u m e r i c a l l y u s i n g t h e t e c h n i q u e s 

a n d s o f t w a r e d e t a i l e d i n ( S m y t h , 1 9 9 2 ) . H e r e i t s u f f i c e s t o n o t e t h a t t h e a n a l y s i s 

o f t h e p r e v i o u s s e c t i o n g e n e r a l i s e s i n a n a t u r a l m a n n e r a n d t h a t t h e a s s o c i a t e d 

c o m p u t a t i o n s a r e n u m e r i c a l l y r e l i a b l e a n d e f f i c i e n t . 

183 



6 Controller Structures 184 

6.5.2 Approximat ion M e t h o d 

T h e s e c o n d r e f i n e m e n t t o t h e w o r k p r e s e n t e d h e r e c o n s i d e r s t h e c a s e w h e r e t h e 

s t a t e - s p a c e t r i p l e {A, B, C) d o e s n o t e x a c t l y fit t h e m u l t i v a r i a b l e first o r d e r l a g 

m o d e l ( 6 . 3 1 ) . I n c o n v e n t i o n a l l i n e a r s y s t e m s c o n t r o l l e r d e s i g n applications, l o w 

o r d e r m o d e l s p l a y a n i m p o r t a n t r o l e d u e t o t h e p r e s e n c e of a p p r o x i m a t e p o l e - z e r o 

c a n c e l l a t i o n in t h e s y s t e m t r a n s f e r - f u n c t i o n m a t r i x . I n s u c h s i t u a t i o n s , c o n t r o l l e r 

d e s i g n c a n b e b a s e d o n a s i m p l i f i e d m o d e l of t h e c o m p l e x p l a n t d y n a m i c s , a n d t h i s 

r e d u c e d o r d e r m o d e l c a n p r o v i d e i n s i g h t i n t o t h e s y s t e m s t r u c t u r e . B e a r i n g t h i s i n 

m i n d , a l t h o u g h a t a first g l a n c e t h e s t r u c t u r e of t h e m u l t i v a r i a b l e first o r d e r s y s t e m s 

i n t r o d u c e d i n t h e p r e v i o u s s e c t i o n a p p e a r s r e s t r i c t i v e , i t i s n a t u r a l t o c o n s i d e r t h e 

u s e of r e d u c e d o r d e r m o d e l s f o r w h i c h a k n o w n a n a l y t i c d e s i g n m e t h o d e x i s t s . 

W i t h i n t h i s s e c t i o n a s u b c l a s s of d i f f e r e n t i a l p r o c e s s e s is i n t r o d u c e d w h e r e t h e s t a t e -

space triple (A, B, C) does not exactly fit the multivariable first order lag model 

(A.57). It is shown how, in such situations, controller design may be based on a 

s i m p l i f i e d m o d e l of t h e p l a n t d y n a m i c s ( s u c h a s , i n t h i s c a s e , a m u l t i v a r i a b l e first 

order model) to achieve acceptable systems performance, provided a contraction 

m a p p i n g c o n d i t i o n i s s a t i s f i e d . S u c h a n a p p r o a c h e x p l o i t s t h e s i m p l e s t r u c t u r e of 

t h e l o w o r d e r m o d e l c o n t r o l l e r s ( w i t h k n o w n a n a l y t i c d e s i g n t e c h n i q u e s ) w h i l s t b e i n g 

a p p l i c a b l e t o s y s t e m s of a m o r e c o m p l e x n a t u r e . T h e a p p r o x i m a t e m o d e l c a n b e of 

a r b i t r a r y d y n a m i c c o m p l e x i t y - t h e first o r d e r m o d e l p r e s e n t e d h e r e i s t h e s i m p l e s t 

possible (and, as shown in (Edwards and Owens, 1977), is adequate for controller 

d e s i g n i n m a n y c a s e s of p r a c t i c a l i n t e r e s t ) , b u t m o r e c o m p l e x m o d e l s c a n b e o b t a i n e d 

f r o m i d e n t i f i c a t i o n e x p e r i m e n t s . T h e first o r d e r m o d e l c a n b e e s t i m a t e d f r o m t h e 

p l a n t m o d e l o r f r o m e x p e r i m e n t a l t r a n s i e n t t e s t s . ( N o t e , h o w e v e r , t h a t t h e m o d e l 

contains no information on the plant zero structure.) 

F o l l o w i n g t h e a n a l y s i s i n ( O w e n s , 1 9 7 8 ) f o r m u l t i v a r i a b l e s y s t e m s , c o n s i d e r t h e c a s e 

w h e r e t h e s t a t e - s p a c e t r i p l e {A, B, C) i n ( 2 . 1 3 ) - ( 2 . 1 4 ) h a s t h e mxm m i n i m u m p h a s e 

t r a n s f e r - f u n c t i o n m a t r i x G{s) o f t h e f o r m 

G ^{s) = Sj4O + -l- Ha{s), |J4O| 7^ 0 , ( 6 . 4 9 ) 

w h e r e H a { s ) i s s t a b l e a n d s t r i c t l y p r o p e r . I t t h e n f o l l o w s t h a t H a { 0 ) is finite, a n d 

replacing by yli + ffo(0), jfifa(s) by ^^(s) -77o(0) and defining Aon(s) = jifo(5) -

ffa(O) yields 

G-Xg) = s^o + Ai+v4o^(5) , l^olT^O, j:f(0)=zO. (6.50) 
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U s i n g t h e o r e m A . 4 a n d t h e i d e n t i t y G~'^{s)G{s) = 7 ^ , i t is e a s i l y v e r i f i e d t h a t 

AQCB — IM a n d h e n c e t h a t \CB\ ^ 0, AQ = a n d c l e a r l y AI = G " ^ ( g ) | j , = o . 

I t is i n t u i t i v e l y r e a s o n a b l e t h a t if H{s) is ' s m a l l ' i n s o m e we l l d e f i n e d s e n s e t h e n 

G(s) can be approximated by the first order model obtained by neglecting in 

equation (6.50), i.e. 

= s ^ o + AI, ( 6 . 5 1 ) 

where the results of section 6.4 can then be used to construct a control scheme fr(s) 

f o r t h e s y s t e m . T h e p r e c i s e m a t h e m a t i c a l j u s t i f i c a t i o n of t h e s e i d e a s u s e s t h e t h e o r y 

of f u n c t i o n a l a n a l y s i s i n t h e f o r m of B a n a c h s p a c e s of a n a l y t i c f u n c t i o n s a n d t h e 

c o n t r a c t i o n m a p p i n g t h e o r e m ( see ( F r e e m a n , 1 9 7 3 ) f o r t h e d e t a i l s ) . 

N o w ( a s i n ( O w e n s , 1 9 7 8 ) ) d e f i n e t h e n o r m , | | H | | , of H{s) 

771 
| | i J | | : = m a x m a x | j f » ( a ) | ( 6 . 5 2 ) 

sen l<i<m 
" " i = i 

w h e r e D is t h e c o n t o u r i n t h e c o m p l e x p l a n e c o n s i s t i n g of t h e i m a g i n a r y a x i s s = 

iio, |w | < R, a n d t h e l a r g e s e m i c i r c l e | s | = i ? i n t h e r i g h t h a l f c o m p l e x p l a n e . 

Application of the procedure outlined in section 6.4 to design a memoryless unity 

n e g a t i v e c o n t r o l l e r f o r t h e p r o c e s s t h e n p r o c e e d s a s f o l l o w s . S e l e c t t h e f o r w a r d p a t h 

controller as 

K(^s^ = pAQ — A i ( 6 . 5 3 ) 

w h e r e p is a p o s i t i v e r e a l s c a l a r . T h e n b y a p p l y i n g t h i s c o n t r o l a c t i o n t o t h e a p -

p r o x i m a t e m u l t i v a r i a b l e first o r d e r l a g p r o c e s s 

G ^ ( s , Z ) = AQS + AI + AQH[S) — z ^AQBQ, ( 0 ) = 0 , ( 6 . 5 4 ) 

a f t e r s o m e m a n i p u l a t i o n , g i v e s a c l o s e d l o o p s y s t e m of t h e f o r m 

y(g, z) = Go(a) .R(g, z) + z"^Gi(s) y(g, z) (6.55) 

w i t h t h e t r a n s f e r - f u n c t i o n m a t r i c e s GQ{S) a n d G i ( s ) g i v e n b y 

g -I- P g -t- P P 

Gi(s) = + - ^ ^ ( g ) ) - ' g o . (6.56) 
s + p s + p 
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Here Go(s) represents the derived conventional linear system of the approximate 

multivariable first order lag repetitive process under the forward path proportional 

controller of (6.5), (6.32) and (6.53) and Gi(g) is the closed loop interpass transfer-

f u n c t i o n m a t r i x . 

Considering each of the conditions of theorem 3.6 in turn, the stability along the 

pass of the closed loop system can now be assessed. Firstly, the closed loop system 

is asymptotically stable since the 'Di' matrix of condition (a) is identically zero. 

For condition (b), we require the derived conventional linear system to be stable in 

the s t a n d a r d I D sense. I n o r d e r t o assess t h i s , c o n s i d e r the I D l i n e a r s y s t e m with 

o p e n l o o p transfer-function m a t r i x 

y( s ) = G(s) [/(a) (6.57) 

a n d c l o s e d l o o p transfer-function m a t r i x 

y(g) = Go(g) ;Z(g) (6.58) 

w i t h Go{s) a s i n ( 6 . 5 6 ) . 

T h e s t a b i l i t y of t h i s I D l i n e a r s y s t e m c a n b e a s s e s s e d u s i n g t h e a p p r o a c h g i v e n i n 

E d w a r d s a n d Owens ( E d w a r d s a n d O w e n s , 1 9 7 7 ) . T h e m e t h o d utilises t h e t e c h -

n i q u e s of F r e e m a n ( F r e e m a n , 1 9 7 3 ) i n the form u s e d b y O w e n s ( O w e n s , 1 9 7 4 ) . 

Then, by defining 

Q(s) := G(s).R'(s), and 

0^(5) := G^(a)^(a) (6.59) 

with G{s) a n d G a ( s ) a s i n ( 6 . 5 0 ) a n d ( 6 . 5 1 ) , a f t e r s o m e m a n i p u l a t i o n w e c a n w r i t e 

y(g) = Go(s)E(s) 
= - 0 - X g ) y ( 5 ) + ;z(a) 

= (-̂ m + Q^^(5)) X^)}^(^) + ^(^)]- (6.60) 

L e t D b e t h e usual Nyquist c o n t o u r a s d e f i n e d e a r l i e r i n t h i s s e c t i o n , a n d c o n s i d e r 

R — ) • + 0 0 . A s s u m e t h a t Q " ^ ( s ) a n d Q^^{s) a r e b o u n d e d o n D a n d a n a l y t i c i n i t ' s 

i n t e r i o r a n d t h a t ( J m + Q ^ ^ ( s ) ) ~ ^ = {Im + Q A { s ) ) ~ ^ Q A { s ) is s t a b l e . T h e n a s u f f i c i e n t 
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condition for closed loop stability can be obtained by application of the contraction 

mapping theorem (Owens, 1974). That is to say, we require 

majc sup ^ |(/m + - Q < 1- (6-61) 

N o t i n g t h a t 

(/m + - Q"'W) 

( -1 ) 

5 + p 

expression (6.61) becomes 

H{s), (6.62) 

m 

m a x sup 
l<«<m / seD j=i 

a + p 
< 1. (6.63) 

T h i s r e s u l t s t a t e s t h a t if t h e m i n i m u m p h a s e m u l t i v a r i a b l e s y s t e m G(s) of ( 6 . 5 0 ) is 

approximated by the minimum phase reduced model G/i(a) of (6.51) and a forward 

path controller Jir(g) is designed to ensure that the reduced order closed loop system 

stable in the standard ID sense, 

then application of A'(g) to G(g) yields a ID stable closed loop system provided 

that e x p r e s s i o n ( 6 . 6 3 ) is s a t i s f i e d . 

It is easily verihed that it is always possible to choose p > 0 to satisfy this, and 

h e n c e g u a r a n t e e t h e s t a b i l i t y of t h e d e r i v e d conventional l i n e a r s y s t e m , by choosing 

771 
p> m a x s u p \ H i j { s ) \ (6.64) 

seD i = i 

i . e . 

P > ( 6 . 6 5 ) 

P r i o r t o a discussion of t h i s result, a f e w p o i n t s s h o u l d b e m a d e r e g a r d i n g the 

e v a l u a t i o n of | | i ? | | . T o c a l c u l a t e | | ^ | | w e n e e d t o s e a r c h t h e r i g h t h a l f s - p l a n e t o 

see where it attains it's maximum. Since .H'(s) is stable and strictly proper, its 

d e r i v a t i v e , H'{s), e x i s t s and i s strictly p r o p e r . T h e r e f o r e H{s) i s a n a l y t i c a n d n o n -

c o n s t a n t a n d h e n c e t h e m a x i m u m m o d u l u s t h e o r e m m a y b e a p p l i e d , w h i c h states 

t h a t | i ^ ( s ) | a c h i e v e s i t s m a x i m u m o n t h e b o u n d a r y of t h e c o n t o u r D. A n y p o i n t o n 
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the semicircular section of this contour may be written in the polar form s = 

with —7r/2 < ^ < 7r/2. So, since is strictly proper, —> 0 as 

R — ^ + 0 0 . H e n c e t h e m a x i m u m v a l u e o f | i ? ( s ) | is a c h i e v e d o n t h e i m a g i n a r y a x i s . 

So, ||.E(s)|| = maxi<,<msup^=^^ which can be evaluated by searching 

t h e i m a g i n a r y a x i s . 

N o w c o n s i d e r a g a i n t h e h i g h g a i n c o n d i t i o n ( 6 . 6 5 ) . I n p a r t i c u l a r , n o t e t h a t if H{s) is 

'small' in the sense that the right hand side of (6.65) is small then Gyi(g), the transfer-

function matrix of the derived conventional linear system obtained by deleting the 

t e r m H{s) i n ( 6 . 5 0 ) , w i l l b e a g o o d a p p r o x i m a t i o n t o G{s) i n b o t h t h e c l o s e d a n d 

o p e n l o o p s y s t e m . I n m o r e g e n e r a l s i t u a t i o n s , h o w e v e r , H{s) m a y b e s i g n i f i c a n t a n d 

higher gains are required to ensure stability. Note that this technique will not cope 

with any general system, since the transfer-function matrix (^"^(g) of the derived 

conventional linear system must be of the form (6.50), and it may be that the control 

g a i n s r e q u i r e d t o satisfy ( 6 . 6 5 ) a r e t o o h i g h f o r p r a c t i c a l a p p l i c a t i o n . 

Now return to condition (c) of the stability along the pass theorem 3.6. If the scalar 

gain p has been chosen so that condition (b) of this result holds, i.e. if p > H.H'II, 

t h e n t h e c l o s e d l o o p s y s t e m is s t a b l e a l o n g t h e p a s s if , a n d o n l y if , t h e e i g e n v a l u e s of 

G i ( s ) o f ( 6 . 5 6 ) h a v e m o d u l u s s t r i c t l y l e s s t h a n u n i t y V s = iuj, w > 0. T h i s c o n d i t i o n 

can be tested via standard linear system techniques. 

The closed loop limit profile of the process can be represented by 

{sIm + P{lm — - (^0 ^ H{s)))Y^{S) = p{Im ^ )Rca{s)- (6.66) 

Notice for high gain (i.e. as p — + 0 0 ) this is equivalent to 

(G.67) 

w h i c h i s t h e s a m e l i m i t p r o f i l e f o r t h e e x a c t m u l t i v a r i a b l e first o r d e r l a g r e p e t i t i v e 

p r o c e s s c a s e ( a s o u t l i n e d i n ( R o g e r s a n d O w e n s , 1 9 9 2 b ) a n d a s c a n b e s e e n from 

t a k i n g L a p l a c e t r a n s f o r m s of ( 6 . 3 8 ) ) . H e n c e , i n t h e l i m i t , t h e o u t p u t o f t h e s y s t e m 

u n d e r t h e c o n t r o l l e r b a s e d o n t h e r e d u c e d o r d e r m o d e l a p p r o a c h e s t h a t o f t h e e x a c t 

m u l t i v a r i a b l e first o r d e r l a g p r o c e s s . 
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6.6 Effective use of M e m o r y Terms 

T h e c o n t r o l s t r u c t u r e s of t h e p r e v i o u s s e c t i o n s a l l p o s s e s s t h e s o - c a l l e d m e m o r y l e s s 

property in that information is used from the current pass only. These memoryless 

s c h e m e s h a v e a s i m p l e s t r u c t u r e a n d r e l a t i v e l y l o w d e m a n d s o n i n f o r m a t i o n w h i c h 

m u s t b e l o g g e d / s t o r e d , a n d h e n c e t h e m a j o r i t y of r e s e a r c h t o d a t e h a s b e e n f o c u s s e d 

o n t h i s c l a s s of c o n t r o l s c h e m e . P r o b l e m s a r i s e , h o w e v e r , w h e n o n e o r m o r e of t h e 

control objectives cannot be met by a current pass controller. Then one way forward 

is t o i n t r o d u c e c o n t r o l l e r s w i t h m e m o r y , i .e . t h o s e w h i c h e x p l i c i t l y u s e i n f o r m a t i o n 

f r o m t h e c u r r e n t p a s s a n d / o r p r e v i o u s p a s s p r o f i l e s , s t a t e v e c t o r s a n d i n p u t v e c t o r s . 

Such controllers utilise data from the ^2 set in the definition of causal information 

of (6.4). 

(Rogers and Owens, 1992b) analyses so-called proportional repetitive minor loop 

compensation schemes which constitute a subclass of all possible control schemes 

with memory. Here, with respect to the diSerential process (2.11)-(2.12), a memory-

l e s s l i n e a r s t a t e f e e d b a c k l a w w i t h p r o p o r t i o n a l r e p e t i t i v e m i n o r l o o p c o m p e n s a t i o n 

has the structure 

M 

% k̂+i(() = ::&+i(() + G' r&+i(f) - ?/&+i_;((), 0 < ( < a, A; > 0, (6.68) 
i = i 

where F, G and ATj, 1 < j < M, are / x / x mand ( x m matrices respectively, and 

rt+i(() is the new m x 1 external reference vector on pass A; + 1. Figure 6.3 shows a 

s c h e m a t i c d i a g r a m of t h i s c o n t r o l a c t i o n . N o t e t h a t t h i s r e d u c e s t o t h e m e m o r y l e s s 

forward path controller (6.2) if the previous pass contribution terms are deleted. 

A p p l y i n g t h e c o n t r o l s c h e m e ( 6 . 6 8 ) t o t h e d i f f e r e n t i a l p r o c e s s (2.11) y i e l d s t h e c l o s e d 

loop state-space model 

M 

Xk+i{i) = (A + BF) Xk+i{t) + BG rk+i{t) + — B K j ) 2/&+i-;(^) 

2/A+i(() = C" a ; t+ i ( ( ) 4- D j ^&+i_j ( t ) , 0 < ( < o;, A: > 0, ( 6 . 6 9 ) 

i = i 

which is c l o s e d i n t h e s e n s e t h a t i t h a s a n i d e n t i c a l s t r u c t u r e t o (2.11). H e n c e 

k n o w n s t a b i l i t y t h e o r y a p p l i e s . N o t e o n c e a g a i n t h a t t h e Dj, 1 < j < M, m a t r i c e s 

a r e i n v a r i a n t u n d e r t h i s c o n t r o l a c t i o n , a n d h e n c e i t is n e c e s s a r y t o a s s u m e o p e n 
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2 / t + i - M W 2/&+i -M(( ) 

K M Ko K, 

G 
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A A 
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Figure 6.3: Structure of a memoryless linear state feedback controller with propor-

tional repetitive minor loop compensation 

loop asymptotic stability. The extra design freedom achieved by implementing a 

c o n t r o l l e r with memory i s clearly t h e choice of the m a t r i c e s K j , I < j < M. 

Returning now to output feedback control schemes, a memoryless dynamic unity 

negative feedback controller with proportional repetitive minor loop compensation 

f o r ( 2 . 1 1 ) c o n s t r u c t s t h e i n p u t U k + i { t ) , & > 0, a s 

M 
?/t+i(() = ^^i(() - ^ 2/t+i-;((), 0 < t < a, A; > 0, (6.70) 

i = i 

w h e r e K j , 1 < j < M , is a / x m m a t r i x a n d is t h e output f r o m 

^i(^) = 37^1 (() + et+i(^) c 

2 / ^ 1 (^) = e & + i ( ( ) , 0 < ( < a , A: > 0 , (6.71) 

where a;^i(() is the Mi x 1 internal state of (6.71) and the current pass error vector 

B k + i i t ) i s a g a i n d e f i n e d by ( 6 . 5 ) . N o t e t h a t t h i s s c h e m e r e d u c e s t o (6.5)-(6.6) if 

, 1 < J < M, are chosen to be identically zero. 

T h e n , using t h e a u g m e n t e d s t a t e vector d e f i n i t i o n of (6.7), application of t h e c o n -

troller (6.70)-(6.71) to the diEerential process (2.11) yields the following composite 
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state-space model describing the forward path system, 

M 

i = i 
M 

= (7 ^ 0 < ( < a, A: > 0, (6.72) 
i = i 

w h e r e A, B, C a n d Dj, 1 < j < M, a r e a s i n ( 6 . 1 0 ) , b u t h e r e 

A - i 
Bj—i — 

0 
1 < ; < M. (6.73) 

F u r t h e r , c o m b i n i n g ( 6 . 5 ) a n d ( 6 . 7 2 ) y i e l d s t h e c l o s e d l o o p s t a t e - s p a c e m o d e l 

M 

= (^ - ^ r,+i(t) + ^ ( 4 _ i - ^ 4 ) z/.+i-x^) 
i = i 

M 

?/k+i(t) = c %^i(() + ^ A 3/t+i-;((), 0 < ( < a, A: > 0. (6.74) 
j=i 

Both (6.72) and (6.74) are closed in the sense that they have an identical structure to 

( 2 . 1 1 ) . H e n c e k n o w n s t a b i l i t y c a n o n c e a g a i n b e a p p l i e d , b u t n o t e t h a t t h e Dj, 1 < 

j < M , m a t r i c e s a r e a g a i n i n v a r i a n t . H e n c e i t is n e c e s s a r y t o o n c e a g a i n a s s u m e 

open loop asymptotic stability. As with the state feedback scheme introduced earlier 

in this section, the extra design freedom associated with this scheme is the choice of 

design parameters 1 < j < M. These terms only inEuence the interpretation of 

condition (c) of theorem 3.6 in that they effect the previous pass driving terms in 

t h e s t a t e e q u a t i o n o n l y a n d h e n c e a r e r e f e r r e d t o a s h a v i n g t h e s o - c a l l e d s e p a r a t i o n 

p r o p e r t y . A s a r e s u l t o f t h i s , s u c h c o n t r o l l e r s s h o u l d b e o f p a r t i c u l a r u s e i n t e r m s of 

t h e s o - c a l l e d r e p e t i t i v e s y s t e m s d i s t u r b a n c e d e c o u p l i n g problem ( s e e l a t e r ) . W i t h i n 

the next section, this scheme is applied to a class of benchmark problems - so-called 

m u l t i v a r i a b l e s e c o n d o r d e r l a g s . 

6.7 Appl ica t ion to B e n c h m a r k P rob l ems II . 

Mul t ivar iab le Second Order Lags 

D e s p i t e t h e i n t r o d u c t i o n o f a n a p p r o x i m a t i o n t e r m i n t o t h e m o d e l o f t h e s t a t e -

s p a c e t r i p l e {A, B, C), m u l t i v a r i a b l e f i r s t o r d e r lags d o n o t d e s c r i b e a l l t h e dynamics 
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effects observed in differential linear systems. In particular, the multivariable first 

o r d e r l a g m o d e l d o e s n o t a d m i t t h e m o d e l l i n g of o s c i l l a t i o n s i n t h e c l o s e d l o o p 

system. (Owens, 1975) introduces the concept of a multivariable second order 

t y p e s y s t e m a s a u s e f u l v e h i c l e f o r i l l u s t r a t i n g o s c i l l a t i o n i n m u l t i v a r i a b l e f e e d b a c k 

s y s t e m s . N o t e t h a t , i n g e n e r a l , a h i g h e r o r d e r m o d e l w i l l p r o d u c e l e s s c o n s e r v a t i v e 

r e s u l t s a t t h e p o t e n t i a l e x p e n s e of w o r k i n g w i t h a m o r e c o m p l e x m o d e l . W i t h i n t h i s 

s e c t i o n , p r e v i o u s l y d i s c u s s e d c o n t r o l s t r u c t u r e s a r e a p p l i e d t o t h i s s e c o n d c l a s s of 

b e n c h m a r k p r o b l e m s . 

C o n s i d e r t h e s u b c l a s s of d i f f e r e n t i a l l i n e a r r e p e t i t i v e p r o c e s s e s w h e r e t h e s t a t e -

s p a c e t r i p l e i n ( 2 . 1 3 ) t a k e s t h e s t r u c t u r e of a m u l t i v a r i a b l e s e c o n d or-

der l a g ( O w e n s , 1 9 7 5 ) . A second o r d e r s t r u c t u r e ( t e r m e d ' r e s t r i c t i v e ' i n t h e l i t -

erature) is be defined by analogy with the second order inverse transfer-function 

p-i(g) = s(soo + Gi), Go 7̂  0, has the derived conventional m x m invertible 

linear system Z,f,(A, B ,C) with inverse transfer-function matrix, 

G ^(s) = s{sAo + Ai}, |j4o| ^ 0 

o r ( j r ( s ) = —{s-Aq -f- v4 i} ^ ( 6 . 7 5 ) 

i . e . t h e o u t p u t s a r e s i m p l y i n t e g r a t e d o u t p u t s f r o m t h e first o r d e r l a g + 

It can easily be verified that the process whose derived conventional linear system 

h a s t h i s s t r u c t u r e c a n b e d e s c r i b e d b y t h e f o l l o w i n g s e c o n d o r d e r d i f f e r e n t i a l e q u a t i o n 

w i t h m a t r i x c o e f f i c i e n t s , 

A q — ( t ) + Ai {t) = Uk+i{t) + AqBq yk{i), 0 < t < a, k > 0, 

^^2 ( 0 + ^ 0 (^) — -^0 ^ u i ; ^ i { t ) + BQ y k { t ) . ( 6 . 7 6 ) 

T h i s p r o c e s s c a n b e w r i t t e n i n t h e f o r m of a s t a t e - v e c t o r m o d e l b y i n t r o d u c i n g t h e 

variables 

X 
(1) 

(^) — yk+i(,i) 

4 + 1 W = h+iW (6T7) 
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where and are m x 1 vectors, and writing 

Bn 0 

0 ) ^ y 0 < ( < a , A; > 0, ( 6 . 7 8 ) 

or, introducing the augmented state vector gives, 

= A + g + Bo w 

?/A+i(() = C ' X ^ i M , 0 < ( < a , A ; > 0 , ( 6 . 7 9 ) 

w h e r e 

An Ai 

a n d C = 0 I 

B 
Bo 0 

(6.80) 

A t t h i s p o i n t a b r i e f i n t r o d u c t i o n t o t h e w e l l k n o w n d i s t u r b a n c e d e c o u p l i n g w i t h 

s t a b i l i t y p r o b l e m f o r I D l i n e a r s y s t e m s is g i v e n . C o n s i d e r , t h e n , t h e s y s t e m 

x{t) = A x(t) + B u{t) + D q{t) 

i / ( t ) = C a ; ( ( ) , t > 0 , ( 6 . 8 1 ) 

where a;(t) is the M x 1 state vector, 2/(̂ ) is the m x 1 output vector, «(() is the 

/ X 1 vector of control inputs and g(() is a f x 1 vector representing a disturbance 

w h i c h is a s s u m e d n o t t o b e d i r e c t l y m e a s u r a b l e b y t h e c o n t r o l l e r . F u r t h e r , s u p p o s e 

t h a t t h e l i n e a r s t a t e f e e d b a c k l a w u{t) = F x{t) is a p p l i e d . T h e n t h e d i s t u r b a n c e 

d e c o u p l i n g p r o b l e m is t o f i n d a s u i t a b l e F s u c h t h a t t h e d i s t u r b a n c e q{t) h a s n o 

i n f l u e n c e o n t h e c o n t r o l l e d o u t p u t y{t). E q u i v a l e n t l y , t h e c l o s e d l o o p s y s t e m is s a i d 

t o b e d i s t u r b a n c e d e c o u p l e d r e l a t i v e t o t h e p a i r {y{t), g ( ( ) } if , f o r e a c h n x 1 i n i t i a l 

c o n d i t i o n r ( 0 ) , t h e o u t p u t y{t), t > 0, is i d e n t i c a l V g ( t ) E M". 

I n t h e field of I D s y s t e m s t h e o r y , m u c h r e s e a r c h e f f o r t h a s b e e n i n v e s t e d i n t h i s 

c o n t r o l p r o b l e m . T h e f a c t t h a t t h e r e s u l t i n g c o n d i t i o n s d o n o t e n s u r e c l o s e d l o o p 

stability (in that the eigenvalues of (A+BF) have strictly negative real parts) has led 

t o t h e i n t r o d u c t i o n of t h e s o - c a l l e d d i s t u r b a n c e d e c o u p l i n g w i t h s t a b i l i t y p r o b l e m . 
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Returning now to repetitive processes, it is clear that a similar problem can be 

formulated. In particular, consider the differential unit memory case (all results 

g e n e r a l i s e i n a n a t u r a l m a n n e r t o t h e n o n - u n i t m e m o r y c a s e ) a n d interpret the 

previous pass term 2/t(^), A : > 0 , a s a disturbance which is not directly 

measurable b y t h e c o n t r o l l e r o n p a s s k + 1. S u p p o s e a l s o t h a t t h e current p a s s 

controller 

7/A+i(() = F 3;A+i(t), 0 < t < a. A: > 0, (6.82) 

is applied. Then the first requirement of the so-called repetitive systems disturbance 

d e c o u p l i n g w i t h s t a b i l i t y p r o b l e m ( R S D D S P ) i s that, g i v e n a n y i n i t i a l c o n d i t i o n 

X j t ( O ) = dk e MT', t h e c l o s e d l o o p output yk{t) is t h e s a m e for a l l yk-i{t) E M " . 

H e n c e r e p e t i t i v e s y s t e m s d i s t u r b a n c e d e c o u p l i n g s i m p l y m e a n s t h a t t h e c o n t r i b u t i o n 

o f t h e p r e v i o u s pass p r o f i l e t o t h e c u r r e n t o n e i s z e r o , ^ < t < a, k > k* > 1, i . e . 

the previous pass profile is regarded as a disturbance to be rejected. Clearly the 

o p t i m a l c h o i c e o f k* here is = 1. T h e s e c o n d r e q u i r e m e n t o f t h e R S D D S P i s t h a t 

( a s a b a s i c m i n i m u m ) a l l e i g e n v a l u e s o f y l + B F h a v e s t r i c t l y n e g a t i v e r e a l p a r t s . 

I t t h e r e f o r e a p p e a r s t h a t there e x i s t s s o m e s t r o n g s t r u c t u r a l s i m i l a r i t i e s b e t w e e n 

t h e R S D D S P a n d i t s c o n v e n t i o n a l l i n e a r s y s t e m s c o u n t e r p a r t . A s a r e s u l t o f t h i s 

link, it appears that an extension of ID approaches such as using geometric concepts 

such a s {A, B ) - i n v a r i a n t s u b s p a c e s m a y m a k e p r o g r e s s i n t a c k l i n g t h e problem. T h i s 

general area remains a subject for future work. 

For now, we use the memoryless dynamic unity negative feedback controller with 

p r o p o r t i o n a l r e p e t i t i v e minor l o o p c o m p e n s a t i o n i n t r o d u c e d i n s e c t i o n 6 . 6 t o s o l v e 

t h e R S D D S P i n t h e s p e c i a l c a s e o f t h e s u b c l a s s o f d i f f e r e n t i a l p r o c e s s e s whose d e r i v e d 

c o n v e n t i o n a l l i n e a r s y s t e m h a s t h e s t r u c t u r e o f a m u l t i v a r i a b l e s e c o n d order l a g . 

Return, therefore, to the differenticil process (6.79) and consider the application of 

t h e f o l l o w i n g f o r w a r d p a t h c o n t r o l l e r o v e r 0 < t < a , A : > 0 , 

!/t+i(^) = .Rr(rk+i(() - i/A+i(t)) - ^&(t) (6.83) 

with K > ( 6 . 8 3 ) i s a n e x a m p l e o f t h e m e m o r y l e s s d y n a m i c u n i t y n e g a t i v e f e e d b a c k 

c o n t r o l a c t i o n w i t h p r o p o r t i o n a l r e p e t i t i v e m i n o r l o o p c o m p e n s a t i o n o f ( 6 . 5 ) a n d 

( 6 . 7 0 ) - ( 6 . 7 1 ) introduced i n s e c t i o n 6 . 6 . 

T h e n , a p p l i c a t i o n o f ( 6 . 8 3 ) y i e l d s t h e f o l l o w i n g c l o s e d l o o p s y s t e m 

= A c % ^ i ( t ) + B c r , + i ( f ) 

i/&+i(t) == C%j^i((), 0 < ( < a : , A;>0, (6.84) 
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with and C defined as in (6.79), 

—An K —An Ai = [ -A-,^K ) • 

Clearly, the repetitive interaction terms have disappeared and hence this is just a 

s t a n d a r d ( s e c o n d - o r d e r ) I D s y s t e m . H e n c e i n ( 6 . 7 4 ) t h e p a s s p r o f i l e yk{t), 0 < t < 

a, k >0, is i n d e p e n d e n t o f t h e p a s s p r o f i l e s yk-j{t), 1 < j < M, for a l l p a s s e s k>l. 

E q u i v a l e n t l y , t h e r e p e t i t i v e s y s t e m s d i s t u r b a n c e d e c o u p l i n g p r o b l e m i s a c h i e v e d i n 

t h i s c a s e w i t h a n o p t i m u m c h o i c e o f A : * = 1 . 

T h e c l o s e d l o o p l i m i t p r o f i l e i n t h i s c a s e i s d e s c r i b e d i n t r a n s f e r - f u n c t i o n m a t r i x 

terms by 

Yoo{s) = C{slm — Ac) ^BcRoo{s) (6.86) 

which is just the transfer-function matrix of the derived conventional linear system 

u n d e r t h e m e m o r y l e s s c o n t r o l s c h e m e o b t a i n e d b y d e l e t i n g t h e r e p e t i t i v e i n t e r a c t i o n 

t e r m s i n ( 6 . 8 3 ) . H e n c e t h e d e s i g n e x e r c i s e c a n b e c o m p l e t e d b y u s i n g a p p r o p r i a t e 

ID techniques to choose the A" in (6.83) to meet the required speciScations. 

6.8 Discre te Firs t Orde r Models for Linear 

Repe t i t ive Processes 

W i t h i n t h i s s e c t i o n , d i s c r e t e l i n e a r r e p e t i t i v e p r o c e s s e s a r e c o n s i d e r e d . I n i t i a l l y i t i s 

s h o w n h o w a u n i t m e m o r y d i f f e r e n t i a l l i n e a r r e p e t i t i v e p r o c e s s c a n b e s u c c e s s f u l l y 

s a m p l e d t o o b t a i n a l i n e a r t i m e - i n v a r i a n t d i s c r e t e r e p e t i t i v e p r o c e s s , p r o v i d e d t h a t 

t h e s a m p l i n g r a t e i s h i g h e n o u g h . T h e m u l t i v a r i a b l e f i r s t o r d e r l a g m o d e l i n t r o d u c e d 

i n s e c t i o n 6 . 4 f o r d i f f e r e n t i a l p r o c e s s e s i s e x t e n d e d t o d e f i n e a n e q u i v a l e n t f o r m u l a t i o n 

f o r d i s c r e t e s a m p l e d d a t a p r o c e s s e s . F i n a l l y , i t i s s h o w n h o w a m u l t i v a r i a b l e d i s c r e t e 

first o r d e r l a g , i n m a n y c a s e s o f p r a c t i c a l i n t e r e s t , i s a q u i t e a d e q u a t e a p p r o x i m a t i o n 

f o r t h e p u r p o s e o f c o n t r o l l e r d e s i g n p r o v i d e d t h a t t h e p l a n t i s m i n i m u m p h a s e a n d 

s a t i s f i e s a c o n t r a c t i o n m a p p i n g c o n d i t i o n . T h e a n a l y s i s i n t r o d u c t i o n i n t h i s s e c t i o n 

i s n o v e l a n d c a n b e f o u n d i n ( B e n t o n e t a l . , 2 0 0 0 b ) . 
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6.8.1 Fast Sampling of Linear Repet i t ive Processes 

D u e t o a d v a n c e s i n c o m p u t e r t e c h n o l o g y , s y s t e m s t o d a y t e n d t o b e v i e w e d a s s a m -

pled data systems. Within this section it is shown how the discrete unit memory 

l i n e a r r e p e t i t i v e p r o c e s s , d e n o t e d S d , d e s c r i b e d b y t h e f o l l o w i n g s t a t e - s p a c e m o d e l 

over 0 < p < a, A: > 0, 

+ 1) = A a;t+i(p) + B 2f&+i(p) + Bo Z/tW 

= (6.87) 

can be regarded as being derived from a differential unit memory process, denoted 

S , o f t h e f o l l o w i n g f o r m o v e r 0 < t < a , k > 0 , 

i t+i( ( ) = A a;t+i(^) + B «t+i(t) + Bo 2/&(̂ ) 

?/t+i(() = CzA+i(() (6.88) 

with initial conditions a;t+i(0) = A; > 0, and i/o(() = ^((), 0 < ( < a. 

N o w s u b j e c t ( 6 . 8 8 ) t o s y n c h r o n o u s d i g i t a l c o n t r o l w i t h s a m p l i n g p e r i o d h , w h e r e 

a;A+i:=^A+iM (6 89) 

and where, for integer g, 0 < g < ^, and piecewise continuous input 

= 'UA+i(̂ ) on g/i < ( < (g + l)/i. (6.90) 

I n a d d i t i o n , n o t e t h a t , u n d e r f a s t s a m p l i n g c o n d i t i o n s ( i . e . h —y 0), yk(,t) o n t h e 

interval [g/i, (g + l)/i) can be approximated by ^^(9/^), 0 < 9 0. This 

a p p r o x i m a t i o n i m p r o v e s a s h — 7 ^ 0 , a n d w e h a v e 

lim 2/A(T) = ( W , oil [9/̂ , (9 + 1)/^)- (6.91) 

N o t e t h a t t h i s i s e q u i v a l e n t t o t h e a s s u m p t i o n t h a t t h e p r e v i o u s p a s s p r o f i l e i s 

piecewise continuous. 

T h e n , i f t h e d i f f e r e n t i a l l i n e a r r e p e t i t i v e p r o c e s s ( 6 . 8 8 ) i s s u b j e c t t o t h e s a m p l i n g 

s c h e m e d e s c r i b e d b y ( 6 . 8 9 ) a n d ( 6 . 9 0 ) , a d i s c r e t e l i n e a r r e p e t i t i v e p r o c e s s o f t h e 

f o r m ( 6 . 8 7 ) i s o b t a i n e d w i t h 

A = B = A / e-^^B d-r and Bo = v4 / e'^^Bo dy. (6.92) 
Jo Jo 
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The derivations of the result given here is lengthy and hence has been included as 

a n a p p e n d i x ( s e c t i o n B ) . I t s h o u l d b e n o t e d , h o w e v e r , that t h e a p p r o x i m a t i o n in 

t h e f i n a l t e r m o f ( 6 . 9 2 ) i m p r o v e s a s h — 0 , i . e . u n d e r f a s t s a m p l i n g c o n d i t i o n s , 

a n d t h a t t h e d i f f e r e n t i a l m o d e l i s r e c o v e r e d i n t h e l i m i t . 

6.8.2 Appl icat ion to Benchmark Prob lems III . 

Mult ivar iable Discrete Firs t Order Lags 

Consider the subclass of discrete unit memory processes where the state-space triple 

(yl, B, C) in (2.24)-(2.25) takes the structure of a multivariable discrete Grst order 

l a g ( O w e n s , 1 9 7 9 ) . I n t h e c i t e d r e f e r e n c e , a n m x m d i s c r e t e f i r s t o r d e r l a g i s d e f i n e d 

to be a controllable and observable m-input m-output discrete time system with 

i n v e r s e t r a n s f e r - f u n c t i o n m a t r i x 

G ^ { z i ) = ( z i — l ) A o + A i ( 6 . 9 3 ) 

where A q a n d A i a r e r e a l m x m m a t r i c e s a n d | A o | ^ 0 . 

G i v e n ( 2 . 2 4 ) - ( 2 . 2 5 ) w i t h m = I = n a n d \ C B \ ^ 0 , a s i m p l e ( c u r r e n t p a s s ) s t a t e 

t r a n s f o r m a t i o n yields t h e e q u i v a l e n t d e s c r i p t i o n o v e r 0 < p < a, k > 0, 

% + i ( p + 1 ) = {Im — ̂ 0^^i) yk+i{p) + ^0^ Uk+i{p) + Bq yk{p), ( 6 . 9 4 ) 

w h e r e A q , A i a n d B q a r e r e a l c o n s t a n t m x m m a t r i c e s w i t h | A o | ^ 0 . T h i s s t a t e -

s p a c e r e p r e s e n t a t i o n h a s 2 D t r a n s f e r - f u n c t i o n m a t r i x G a { z i , z ) , w h e r e 

z) = (zi — l ) A o - f - A i — z ^ A q B q . ( 6 . 9 5 ) 

A s a first a t t e m p t a t c o n t r o l l e r d e s i g n , c o n s i d e r t h e m e m o r y l e s s p r o p o r t i o n a l f o r w a r d 

path c o n t r o l l e r o f t h e g e n e r a l p a r a m e t r i c f o r m 

[ / (z i , z ) = ^ ( z i ) (diag{l - - A J E(z i , z ) , (6.96) 

w h e r e t h e Pj{z), 1 < j < m, a r e p r o p e r m i n i m u m p h a s e t r a n s f e r - f u n c t i o n m a t r i c e s , 

t h e m X 1 c u r r e n t p a s s e r r o r v e c t o r e ^ + i ( p ) o n p a s s k + 1 h a s 2 D t r a n s f o r m 

E'(zi,z) = E ( z i , z ) - y ( z i , z ) (6.97) 

a n d w h e r e R{zi,z) i s t h e 2 D t r a n s f o r m o f the n e w e x t e r n a l r e f e r e n c e i n p u t . 
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This control scheme is a discrete example of the differential error actuated feedback 

systems introduced in section 6.2. Application of this control action to (6.94) yields 

the closed loop system, 

.z) = Go(zi) z) + y (z i , z) (6.98) 

w h e r e 

G'o(zi) = diag j — _ \ } (diag{l - Ai) 

Gi(zi) = d i a g ( ^0- (G99) 

A p p l i c a t i o n o f t h e o r e m 3 . 6 f o r s t a b i l i t y a l o n g t h e p a s s t h e n p r o c e e d s a s f o l l o w s . 

Clearly, both the open and closed loop systems are asymptotically stable. Now for 

c o n d i t i o n ( b ) o f t h e o r e m 3 . 6 t o h o l d , w e r e q u i r e that t h e d e r i v e d c o n v e n t i o n a l l i n e a r 

s y s t e m L £ , { A , B , C ) i s s t a b l e i n t h e s t a n d a r d I D s e n s e . 

T h e c l o s e d l o o p transfer-function m a t r i x o f LD{A, B, C) i s g i v e n b y GO{ZI) i n ( 6 . 9 9 ) 

a b o v e , w h i c h i s clearly s t a b l e i f , a n d o n l y i f , \ p j { z i ) \ < 1 , 1 < j < m V | z i | = 1 . 

In particular, the closed loop derived conventional linear system possesses small 

steady state errors and small interaction effects in response to unit step demands 

o n l y i f t h e e l e m e n t s o f t h e m a t r i x A j " a r e ' s m a l l e n o u g h ' . I t can b e s e e n t h a t t h i s 

is not a severe restriction on the practical application of the results by regarding the 

discrete process (6.94) as being derived from a differential process of the form (6.87) 

under the sampling scheme described by (6.89) and (6.90). Clearly the discrete 

process is a discrete model of the diiferential process 5" which is parameterised 

by t h e sampling interval h. H e n c e Ga{zi) o f ( 6 . 9 3 ) i s a l s o p a r a m e t e r i s e d by h i n t h e 

s e n s e t h a t t h e c h o i c e o f A q a n d A i w i l l d e p e n d e x p l i c i t l y o n t h i s s a m p l i n g i n t e r v a l . 

T h e n , o n c o m p a r i n g t h e matrices o f ( 6 . 9 4 ) w i t h ( 6 . 9 2 ) , i t f o l l o w s t h a t 

l i m A ^ ^ A i = l i m { I m — e ^ ' ^ } = 0 ( 6 . 1 0 0 ) 

A-4-0+ /i^0+ 

a n d h e n c e t h e c l o s e d l o o p d e r i v e d c o n v e n t i o n a l l i n e a r s y s t e m w i l l p o s s e s s small 

i n t e r a c t i o n e f f e c t s a n d steady s t a t e e r r o r s i n r e s p o n s e to u n i t s t e p d e m a n d s i f t h e 

sampling rate is fcist enough. 

A s s u m i n g , f o r s i m p l i c i t y , t h a t A h a s a d i a g o n a l c a n o n i c a l f o r m w i t h e i g e n v a l u e s 

denoted by Aj, 1 < j and eigenvector matrix .B. Then 

A = E diagle^;''}!^^^^ (6.101) 
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suggesting that a necessary condition for A^^Ai to be small is that 

1, 1 < ; < m. (6.102) 

Eqnivalently, the sampling rate must be fast in comparison to the poles of the 

u n d e r l y i n g c o n t i n u o u s o p e n l o o p p l a n t . 

N o w r e t u r n i n g t o t h e s t a b i l i t y a l o n g t h e p a s s t h e o r e m 3 . 6 , t h e c l o s e d l o o p i n t e r p a s s 

t r a n s f e r - f u n c t i o n o f (6.94) has the f o r m 

Gi(zi) = diag' | \ . j Bg. (6.103) 
Lzi - J 

Therefore, if the /);(zi), 1 < j have been chosen so as condition (b) of theo-

r e m 3.6 h o l d s , t h e n t h e c l o s e d l o o p s y s t e m i s s t a b l e a l o n g t h e p a s s i f , a n d only i f , a l l 

e i g e n v a l u e s o f G i { z i ) h a v e m o d u l u s s t r i c t l y l e s s t h a n u n i t y f o r a l l r e a l f r e q u e n c i e s 

satisfying |zi| = 1. This condition can be tested via standard ID linear systems 

techniques. 

T h e d e s i g n m e t h o d c a n b e e x t e n d e d t o t h e c a s e w h e r e t h e s t a t e - s p a c e t r i p l e [ A , B , C ) 

in (2.24)-(2.25) only approximates the structure of a discrete multivariable first order 

lag. 

Consider the subclass of discrete linear repetitive processes whose derived conven-

tional linear system Z,2)(-^,-B,C) has the approximate structure of a multivariable 

d i s c r e t e m u l t i v a r i a b l e f i r s t o r d e r lag. I n t h i s case Ld{A, B,C) h a s a n o p e n l o o p 

m X m i n v e r t i b l e , m i n i m u m p h a s e t r a n s f e r - f u n c t i o n m a t r i x G { z i ) o f t h e f o r m 

G ^(zi) = (zi — l)Ao + Ai + AQH[zi) (6.104) 

w h e r e H { z i ) i s s t r i c t l y p r o p e r , H { 1 ) = 0 a n d | A o | ^ 0 . 

T h e n , i n a m e t h o d a n a l o g o u s t o t h e o n e p r e s e n t e d i n s e c t i o n 6 . 5 . 2 f o r d i f f e r e n t i a l 

p r o c e s s e s , the d i s c r e t e f i r s t o r d e r lag m o d e l G ^ { z i ) o f (6.93) c a n b e u s e d a s a 

r e d u c e d o r d e r m o d e l f o r t h e p u r p o s e o f c o n t r o l l e r d e s i g n p r o v i d e d t h a t H { z i ) s a t i s f i e s 

a c o n t r a c t i o n m a p p i n g c o n d i t i o n . 

T h e r e l e v a n t m a t r i x i s 

L{zi) = [K(zi) + G(zi)] ^[Gj^{zi) — G X^i)] 

= ( - l ) d i a g ( — ( 6 . 1 0 5 ) 
L-Zi - PA-zij J 
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and a sufEcient condition for closed loop stability is that ||Z,(zi)|| < 1. 

Since the analysis here is just the discrete counterpart to that presented in sec-

t i o n 6 . 5 . 2 , t h e d e t a i l s a r e o m i t t e d - s e e f o r e x a m p l e ( O w e n s , 1 9 7 9 ) f o r t h e c a s e o f 

I D m u l t i v a r i a b l e d i s c r e t e s y s t e m s . 

6.9 Control ler Design using a 2D Lyapunov 

Equa t ion Approach 

Within t h i s s e c t i o n t h e 2 D L y a p u n o v e q u a t i o n o f c h a p t e r 4 i s used in t h e d e s i g n o f a 

s o - c a l l e d c u r r e n t p a s s s t a t e f e e d b a c k c o n t r o l l a w a u g m e n t e d b y ' f e e d f o r w a r d ' p r e v i -

ous pass output action, which is an example of a controller with memory discussed 

e a r l i e r i n t h i s c h a p t e r . 

Consider a discrete linear repetitive process with state-space representation (2.24) 

and (2.25). Then for this process, such a control law has the form 

= --P" a;t+i(p) + 6" ?/&(p), 0 < p < O!, A; > 0. (6.106) 

Application of this control action to the process yields the following closed loop 

system over 0 < p < a, k > 0, 

a;A+i(p+l) = (A-BF)a;&+i(p) + (Bo + B5')%(p) 

2/t+i(p) = Ca;t+i(p) + Dii/t(p). 

T h e c l o s e d l o o p a u g m e n t e d plant m a t r i x f o r ( 6 . 1 0 7 ) i s d e f i n e d b y 

(6.107) 

= $ - (6.108) 

w h e r e $ i s t h e a u g m e n t e d p l a n t m a t r i x o f t h e u n c o n t r o l l e d s y s t e m a n d 

B = 
B 

0 
s (6.109) 

F o l l o w i n g t h e a n a l y s i s i n ( L u a n d L e e , 1 9 8 5 ) f o r t h e c a s e o f d i s c r e t e l i n e a r s y s t e m s 

d e s c r i b e d b y t h e R o e s s e r 2 D s t a t e - s p a c e m o d e l , w e r e p l a c e $ i n t h e 2 D L y a p u n o v 
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equation (4.93) by to give 

($ - = - Q 

=> + (:^ - - Q) = o 
(6.110) 

o r 

where 

+ Q = 0 

$ = 

D = 

(6.111) 

(6.112) 

N o w c o n s i d e r ( t e m p o r a r i l y ) t h e c a s e w h e n I = N : = n + m . T h e n i n t h i s c a s e , ( 6 . 1 1 1 ) 

i s a m a t r i x R i c c a t i e q u a t i o n w i t h D > 0 a n d = Q . T h i s l e a d s i m m e d i a t e l y t o 

the following results on invoking the 2D Lyapunov equation as a sufBcient condition 

for closed loop stability along the paas. 

Theorem 6.6 Consider S[Ea,Wa, La) generated by (2.24)-(2.25) subject to the 

control law (6.106) in the case when I — N. Then the resulting closed loop sys-

(em 25 afoAZe (Ae paaa 3 (wo AT x AT maMces @ W2 > 0 Q > 0 

such that the Riccati equation (6.111) has a real solution K. 

T o s o l v e t h i s R i c c a t i e q u a t i o n , f i r s t c o n s t r u c t t h e 2 N x 2 N m a t r i x 

M = = $ - D 
- Q 

(6.113) 

Also let Oi be the 2JV x 1 eigenvector of M corresponding to the eigenvalue Â , 1 < 

i < 2 N , a n d p a r t i t i o n i t a s 

i < % < 2Ar, (6.114) 

w h e r e h i a n d c , a r e T V x 1 v e c t o r s . T h e n w e h a v e t h e f o l l o w i n g r e s u l t f r o m ( R o g e r s 

et al., 2000a), 
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3 AT 

T h e o r e m 6.7 Suppose that Oi, • • • , a^r are eigenvectors of the matrix M of (6.113) 
r 1—1 

correapoTidmp (o Ai, - - - , ,9wppoge ako - -

r/iGM, %/Ai ^ - A j , ! < % , ; < # , 

-1 
K Cl hi (6.115) 

is a solution of the Riccati equation (6.111). Also if the eigenvectors a,, 1 < i < N, 

are real then the matrix K here is a real solution of this Riccati equation. 

H e n c e w e h a v e t h e f o l l o w i n g t h e o r e m , 

T h e o r e m 6.8 Consider S{Ea,Wa, La) generated by (2.24)-(2.25) with I = N and 

subject to the control law (6.106). Then the resulting closed loop system is stable 

along the pass if Q > 0 and W = ® W2 > 0 can be chosen such that M of (6.113) 

Aaa reaZ oi, - - , Ojv (0 (Ae Ai, - - , Ayy, 

Ai ^ — Aj, 1 < bi 

Example 6.1 As an example, consider the case when 

1 1 1 - 1 
$ = , B = 

0 - 1 - 1 1 
(6.116) 

device we ca/i ae( W = 0 = A-̂ 2 A > 0, % = 1,2. 

m caae, 

M = 

— 1 — 2 2 - 2 

1 2 - 2 2 

g - 1 - 1 1 - 1 

— 1 g — 2 2 - 2 

:= - A M (6.117) 

w/iere g = 1 — ^ 
/3i-

Tiofe <AoWet(A7 —M) = A (̂A^ —(4g —1)), /le/ice = 1, ^2 = 1/2 

gt'ues (A,e etgen-uaZnes o/ M as Ai,3 = 0, A2,4 = ±1 . .AZso (/le eigeni^ecfors /or Ai = 0 

and A2 = 1 are 

ai 

1 

0 

1/2 

0 

02 = 

1 

- 1 

1/2 
1/2 

(6.118) 
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.ffeMce 

K 
1/2 0 

0 1/2 
(6.119) 

wAic/i a reaZ aoWiozz o/ 6̂. 

Also note that 

$r 
1/2 1/2 
1/2 - 1 / 2 

(6.120) 

w/iz'cA co7Teapo7i(f5 (o a oZoMg (Ae paaa process. 

Now consider the (more realistic) caae of when / < zi + m and let the matrix be of 

t h e f o r m K = P1P2, w h e r e P2 h a s dimensions N x N. T h e n ( 6 . 1 1 1 ) t a k e s t h e f o r m 

+ + Q = 0 (6.121) 

where 

# = E = (6.122) 

a n d h e n c e t h e a b o v e s t a b i l i s a t i o n c a n also b e a p p l i e d i n t h e g e n e r a l c a s e . 

Example 6.2 As an example, consider the case when 

$ 
' 1 1 1 

) B 
0 - 1 - 1 

(6.123) 

Here set Pi = 1 - 1 and then 

-
1 - 1 

- 1 1 
(6.124) 

ylko, yrom f/ie premoifa eiamp/e, Aaa a reaZ 

P2--

QMcf /le/ice m coge 

^ = Pifg 

1/2 0 

0 - 1 / 2 
(6.125) 

1/2 

- 1 / 2 
(6.126) 
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6.10 S u m m a r y and Conclusions 

T h i s c h a p t e r h a s p r e s e n t e d s o m e o f t h e a v a i l a b l e c o n t r o l s t r u c t u r e s f o r l i n e a r r e p e t -

i t i v e p r o c e s s e s w h i c h h a v e b e e n c o n s i d e r e d t o d a t e . C o n t r o l s c h e m e s f o r d i f f e r e n t i a l 

a n d d i s c r e t e p r o c e s s e s i n h e r e n t l y f a l l i n t o t w o d i f f e r e n t c a t e g o r i e s , 

( i ) t h o s e w h i c h e x p l i c i t l y u s e i n f o r m a t i o n f r o m t h e c u r r e n t p a s s o n l y , t e r m e d 

memoryless controllers, and 

(ii) those which explicitly use information from the current pass and/or previ-

o u s p a s s p r o f i l e s , s t a t e v e c t o r s a n d i n p u t v e c t o r s - s o - c a l l e d c o n t r o l l e r s w i t h 

memory. 

Differential and discrete linear repetitive processes clearly have strong structural 

l i n k s w i t h s t a n d a r d ( I D ) d i f f e r e n t i a l a n d d i s c r e t e linear s y s t e m s r e s p e c t i v e l y . I n f a c t , 

i t h a s b e e n s h o w n i n c h a p t e r 3 t h a t t h e s t a b i l i t y t h e o r y f o r t h e s e t w o s u b c l a s s e s o f 

p r o c e s s e s c a n b e t e s t e d b y d i r e c t a p p l i c a t i o n o f w e l l k n o w n I D l i n e a r s y s t e m s t e s t s . 

T h i s r a i s e s t h e n a t u r a l q u e s t i o n o f w h a t e x a c t l y c a n b e a c h i e v e d b y s t a n d a r d ( I D ) 

feedback control schemes in this context, e.g. is it possible to use standard unity 

n e g a t i v e f e e d b a c k c o n t r o l p o l i c i e s t o s t a b i l i s e t h e s e p r o c e s s e s ? 

A s a s t a r t i n g p o i n t i n a n s w e r i n g t h i s q u e s t i o n , s e c t i o n 6 . 2 h a s p r e s e n t e d c l a s s e s o f 

s t a t e f e e d b a c k ( s e e , f o r e x a m p l e , ( S m y t h , 1 9 9 2 ; R o g e r s a n d O w e n s , 1 9 9 2 b ) ) a n d 

output feedback (see, for example, (Rogers and Owens, 1993) and (Rogers and 

O w e n s , 1 9 9 5 a ) f o r t h e d i s c r e t e / d i f f e r e n t i a l c a s e s r e s p e c t i v e l y ) c o n t r o l l a w s , w h i c h 

are examples of so-called current point schemes. The application of both types of 

s t r u c t u r e r e s u l t s i n a c l o s e d s y s t e m , a n d h e n c e k n o w n s t a b i l i t y t h e o r y c a n b e a p p l i e d . 

I t i s f o u n d , h o w e v e r , t h a t t h e p r o p e r t y o f a s y m p t o t i c s t a b i l i t y r e m a i n s i n v a r i a n t 

u n d e r t h e s e c o n t r o l p o l i c i e s , a n d , i n f a c t , u n d e r a l l m u l t i p a s s c a u s a l f e e d b a c k c o n t r o l 

s c h e m e s ( R o g e r s a n d O w e n s , 1 9 9 2 b ) f o r t h e f o l l o w i n g r e a s o n s : 

( i ) f o r t h e s i m p l e b o u n d a r y c o n d i t i o n s c a s e , a s y m p t o t i c s t a b i l i t y d e p e n d s o n l y o n 

t h e m a t r i c e s D j , 1 < j < M . F o r t h e c a s e o f d y n a m i c b o u n d a r y c o n d i t i o n s , t h e 

r e s u l t j u s t n o t e d i s a n e c e s s a r y c o n d i t i o n f o r a s y m p t o t i c s t a b i l i t y o f p r o c e s s e s 

w i t h t h e s e b o u n d a r y c o n d i t i o n s , a n d h e n c e t h e s a m e c o n c l u s i o n c a n b e d r a w n ; 

( i i ) f o r e g . d i f f e r e n t i a l p r o c e s s e s , t h e o u t p u t yk+i{t) does n o t e x p l i c i t l y d e p e n d o n 
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t h e i n p u t Uk^i{t), 0 < t < a, k > 0, ( i . e . t h e r e i s n o ' d i r e c t f e e d t h r o u g h ' 

between input and output on any pass). 

How to overcome this systems theoretic problem is not clear, and remains a topic for 

f u r t h e r research. F o r n o w , we u s e t h e a r g u m e n t that, i n p r a c t i c a l c a s e s , a s y m p t o t i c 

stability is always present due to the stabilising in&uence of resetting the initial 

c o n d i t i o n s o n each p a s s , a n d h e n c e f o r this chapter a s y m p t o t i c s t a b i l i t y h a s b e e n 

a s s u m e d t o hold. 

An additional point should be made about the state feedback schemes already men-

t i o n e d . S u c h s t r u c t u r e s r e q u i r e t h e a v a i l a b i l i t y o f a l l e l e m e n t s o f t h e s t a t e v e c t o r , 

and hence current pass state feedback laws can, in general, only be implemented with 

an observer structure. Observer theory for differential and discrete linear repetitive 

p r o c e s s e s i s not c o v e r e d h e r e and r e m a i n s an open a r e a for f u t u r e r e s e a r c h . 

T o illustrate the p o t e n t i a l o f this g e n e r a l approach, s e c t i o n 6 . 4 s e e s the a p p l i c a t i o n 

o f m e m o r y l e s s f e e d b a c k c o n t r o l s c h e m e s t o p r o c e s s e s p o s s e s s i n g a c e r t a i n s p e c i a l 

s t r u c t u r e - s o - c a l l e d b e n c h m a r k p r o b l e m s . H e r e i t i s shown t h a t t h e q u e s t i o n o f a s 

to what exactly can be achieved using a standard (ID) memoryless feedback control 

scheme has a solution in one case of practical interest with the added benefit of 

' h i g h ' p e r f o r m a n c e i n a m e a n i n g f u l s e n s e . T h e a n a l y s i s p r e s e n t e d h e r e i s n o v e l a n d 

p r o v i d e s t h e b a s i s f o r t h e p a p e r ( B e n t o n e t a l . , 1 9 9 8 a ) . T h e g e n e r a l p h i l o s o p h y 

adopted in this work is in the spirit of (Sebek and Kraus, 1995) for other classes of 

2 D l i n e a r s y s t e m s , i . e . t h e u s e o f ' s i m p l e ' s t r u c t u r e c o n t r o l l e r s . I n c o n t r a s t t o t h i s 

p r e v i o u s w o r k w h i c h c a n o n l y c o n s i d e r s t a b i l i t y , h e r e t h e d e s i g n o f t h e c o n t r o l l e r f o r 

stability and performance can be achieved in one step. The analysis replaces the 

necessary and sufBcient condition on gain for stability along the pass of theorem 6.3 

b y a s u f f i c i e n t b u t n o t n e c e s s a r y a l t e r n a t i v e . T h i s p o t e n t i a l c o n s e r v a t i v e i s o f f s e t 

b y t h e a v a i l a b i l i t y o f s t r o n g i n f o r m a t i o n o n p e r f o r m a n c e along a g i v e n p a s s f r o m 

t h i s r e s u l t a t n o e x t r a c o m p u t a t i o n a l cost, w h i c h i s n o t a v a i l a b l e f r o m N y q u i s t - l i k e 

a l t e r n a t i v e s . 

S e c t i o n 6 . 5 h a s i n t r o d u c e d s o m e r e f i n e m e n t s t o t h e a n a l y s i s o f t h e p r e v i o u s s e c t i o n . 

I f t h e r e q u i r e d v a l u e o f t h e s c a l a r g a i n p i s o u t s i d e t h e a v a i l a b l e r a n g e , b y a n a l o g y 

w i t h s t a n d a r d I D l i n e a r s y s t e m s theory, a n a p p r o a c h i s t o i n c l u d e d y n a m i c s within 

t h e f o r w a r d p a t h c o n t r o l l e r . T h e a p p l i c a t i o n o f a g e n e r a l p a r a m e t r i c f o r m o f a p r o -

p o r t i o n a l c o n t r o l l e r h a s b e e n g i v e n i n s e c t i o n 6 . 5 . 1 . F o r t h e i n c l u s i o n o f a n i n t e g r a l 
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control element, see for example (Owens, 1978). Section 6.5.2 has considered the use 

of reduced order models in the design of controllers for linear repetitive processes. 

Here it has been shown that a hrst order model may be used to achieve acceptable 

s y s t e m s p e r f o r m a n c e f o r p r o c e s s e s p o s s e s s i n g a c e r t a i n s t r u c t u r e , p r o v i d e d a c o n -

t r a c t i o n m a p p i n g c o n d i t i o n i s s a t i s f i e d . T h i s e n s u r e s t h a t i f t h e a p p r o x i m a t i o n t e r m 

H { s ) i s ' s m a l l ' i n s o m e w e l l d e f i n e d s e n s e , t h e n t h e r e d u c e d o r d e r m o d e l w i l l b e a 

good approximation for both the closed and open loop system dynamics. In more 

general situations, however, may be significant and higher gains are required 

t o e n s u r e s t a b i l i t y . 

W h e n o n e o r m o r e o f t h e c o n t r o l o b j e c t i v e s c a n n o t b e m e t b y a c u r r e n t p a s s c o n -

troller, o n e w a y f o r w a r d i s t o i n t r o d u c e c o n t r o l l e r s w i t h m e m o r y , i . e . t h o s e w h i c h 

e x p l i c i t l y u s e i n f o r m a t i o n f r o m t h e c u r r e n t p a s s a n d / o r p r e v i o u s p a s s p r o f i l e s , s t a t e 

v e c t o r s a n d i n p u t v e c t o r s . W i t h i n s e c t i o n 6 . 6 , a s a n e x a m p l e o f a c o n t r o l l e r w i t h 

m e m o r y , a s o - c a l l e d m e m o r y l e s s l i n e a r s t a t e f e e d b a c k l a w w i t h p r o p o r t i o n a l r e p e t -

i t i v e m i n o r l o o p c o m p e n s a t i o n h a s b e e n p r e s e n t e d . T h i s t y p e o f c o n t r o l s t r u c t u r e 

has been applied to a benchmark class of processes whose derived conventional lin-

e a r s y s t e m h a s t h e s t r u c t u r e o f a m u l t i v a r i a b l e s e c o n d o r d e r l a g , w h e r e i t h a s b e e n 

s h o w n t o s u c c e s s f u l l y g i v e a s o l u t i o n t o t h e s o - c a l l e d r e p e t i t i v e s y s t e m s d i s t u r b a n c e 

decoupling with stability problem. 

I n s e c t i o n 6 . 8 d i s c r e t e p r o c e s s e s have b e e n c o n s i d e r e d . I t h a s b e e n s h o w n h o w a 

discrete linear repetitive process can be regarded as being derived from a differential 

p r o c e s s u n d e r f a s t s a m p l i n g c o n d i t i o n s . T h e a n a l y s i s p r e s e n t e d h e r e i s n o v e l a n d 

c a n b e f o u n d i n ( B e n t o n e t a l . , 2 0 0 0 b ) . T h e s t r u c t u r e s o f t h e p r e v i o u s s e c t i o n s h a v e 

t h e n b e e n a p p l i e d t o a b e n c h m a r k c l a s s o f d i s c r e t e p r o c e s s e s - s o - c a l l e d d i s c r e t e 

m u l t i v a r i a b l e f i r s t o r d e r l a g s . 

F i n a l l y , i n s e c t i o n 6 . 9 t h e 2 D L y a p u n o v e q u a t i o n o f c h a p t e r 4 h a s b e e n u s e d i n t h e 

d e s i g n o f a c u r r e n t p a s s s t a t e f e e d b a c k l a w w i t h ' f e e d f o r w a r d ' o f t h e p r e v i o u s p a s s 

o u t p u t a c t i o n , w h i c h i s a n e x a m p l e o f a c o n t r o l a c t i o n w i t h m e m o r y . T h i s l e a d s 

t o t h e 2 D L y a p u n o v e q u a t i o n b e i n g u s e d a s a s u f f i c i e n t c o n d i t i o n f o r c l o s e d l o o p 

stability along the pass. 

T h e c o n t r o l l e r s t r u c t u r e s p r e s e n t e d w i t h i n t h i s c h a p t e r a r e b y n o m e a n s e x h a u s t i v e . 

R e s e a r c h i n t o a v a i l a b l e c o n t r o l s c h e m e s f o r l i n e a r r e p e t i t i v e p r o c e s s e s r e m a i n s i n i t s 

e a r l y s t a g e s , a n d o n l y c e r t a i n a s p e c t s o f t h e g e n e r a l p r o b l e m a r e a h a v e b e e n a d -

d r e s s e d . I t e r a t i v e l e a r n i n g c o n t r o l r e m a i n s a n a p p l i c a t i o n w h e r e t h e m o s t p r o g r e s s 

206 



6 Controller Structures 207 

h a s b e e n m a d e t o d a y i n t e r m s o f t h e d e v e l o p m e n t o f c o n t r o l s c h e m e s f o r d i f f e r e n t i a l 

and discrete processes - see, for example, (Amann et al., 1996) for feedback and 

f e e d f o r w a r d a c t i o n s o r ( A m a n n e t a l . , 1 9 9 8 ) f o r 2 D p r e d i c t i v e c o n t r o l . I n t e r m s 

of repetitive processes, this chapter and other work (eg. (Rogers and Owens, 1993; 

Rogers and Owens, 1995a)) has demonstrated the potential strength of feedback 

c o n t r o l s t r u c t u r e s . I n a d d i t i o n , t h e r e l a t i v e s i m p l i c i t y o f t h e s c h e m e s i m p l i e s t h a t 

t h e i r p o t e n t i a l s h o u l d b e f u l l y i n v e s t i g a t e d p r i o r t o t h e c o n s i d e r a t i o n o f t h o s e w i t h 

a m o r e c o m p l e x s t r u c t u r e . A n o p e n a r e a w h e r e f u t u r e r e s e a r c h e f f o r t s h o u l d b e d i -

r e c t e d i s t h e d e v e l o p m e n t o f m e a n i n g f u l o p t i m a l c o n t r o l p o l i c i e s f o r l i n e a r r e p e t i t i v e 

p r o c e s s e s . T h i s i s d i s c u s s e d f u r t h e r i n t h e f i n a l c h a p t e r o f t h i s t h e s i s . 
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Chapter 7 

Conclusions and Further Work 

T h e a i m o f t h i s t h e s i s h a s b e e n t o e x t e n d t h e e x i s t i n g s y s t e m s t h e o r y f o r l i n e a r 

r e p e t i t i v e p r o c e s s e s w i t h a c o n s t a n t p a s s l e n g t h a . W i t h i n t h i s c h a p t e r e a c h o f t h e 

major areas covered are discussed including a summary of what has been presented, 

n o v e l c o n t r i b u t i o n s m a d e a n d i d e a s o n h o w t h e w o r k p e r f o r m e d m a y b e e x t e n d e d . 

F i n a l l y s o m e d i r e c t i o n s f o r s h o r t t o m e d i u m t e r m f u t u r e r e s e a r c h a r e d i s c u s s e d . 

7.1 Stabi l i ty 

W i t h i n c h a p t e r 3 t h e r i g o r o u s s t a b i l i t y t h e o r y f o r l i n e a r r e p e t i t i v e p r o c e s s e s w i t h a 

constant pass length a developed by Rogers and Owens has been presented. The 

theory is based on an abstract model in a Banach space setting and includes all such 

p r o c e s s e s a s s p e c i a l c a s e s , a n d h e n c e p r o v i d e s a p o w e r f u l g e n e r a l b a s e f o r t h e c o n t r o l 

related study of these processes. In particular, asymptotic stability and stability 

a l o n g t h e pass r e s u l t s f o r t h e s u b c l a s s e s o f d i f f e r e n t i a l a n d d i s c r e t e p r o c e s s e s h a v e 

b e e n g i v e n , w h i c h a r e t h e s u b j e c t o f t h i s t h e s i s . 

Despite its apparent weakness, there are cases where asymptotic stability is all that 

i s n e e d e d f o r a c c e p t a b l e s y s t e m s p e r f o r m a n c e , s e e f o r e x a m p l e ( A m a n n e t a l . , 1 9 9 6 ; 

O w e n s a n d R o g e r s , 2 0 0 0 ) , o r i n d e e d a l l t h a t i s a c h i e v a b l e , s e e f o r e x a m p l e ( R o b e r t s , 

1996; Roberts, 2000), but in the majority of cases it is the stronger condition of 

s t a b i l i t y a l o n g t h e p a s s w h i c h i s r e q u i r e d . 

T h e p r o b l e m o f t e s t i n g a d i f f e r e n t i a l / d i s c r e t e p r o c e s s f o r s t a b i l i t y a l o n g t h e p a s s 
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r e d u c e s t o t h r e e c o n d i t i o n s w h i c h c a n a l l b e t e s t e d v i a w e l l k n o w n I D l i n e a r s y s t e m s 

stability techniques (and hence can be implemented into a computer aided analysis 

e n v i r o n m e n t ) . T h e s e t e s t s h o w e v e r p r o v i d e n o r e a l l y ' u s e f u l ' i n f o r m a t i o n c o n c e r n i n g 

expected systems performcmce and, in particular, about the behaviour of the output 

sequence of pass proBles cis the process evolves from pass to pass. In addition, the 

t h i r d c o n d i t i o n f o r b o t h s u b c l a s s e s i n v o l v e s t h e c o m p u t a t i o n o f t h e e i g e n v a l u e s o f a 

p o t e n t i a l l y h i g h d i m e n s i o n e d t r a n s f e r - f u n c t i o n m a t r i x f o r a l l p o i n t s o n t h e u n i t c i r c l e 

i n t h e c o m p l e x p l a n e f o r t h e d i s c r e t e c a s e a n d t h e i m a g i n a r y a x i s o f t h e c o m p l e x 

p l a n e f o r t h e d i f f e r e n t i a l c a s e , w h i c h m a y r e s u l t i n a v e r y h i g h c o m p u t a t i o n a l l o a d . 

W i t h t h i s m o t i v a t i o n , s i m p l e s t r u c t u r e s t a b i l i t y t e s t s h a v e b e e n p r e s e n t e d i n s e c -

tion 3.6 which, for the discrete subclciss of processes, replace the computational 

c o m p l e x i t y o f t h i s f i n a l s t a b i l i t y a l o n g t h e p a s s c o n d i t i o n w i t h t h e o n e - o f f c o m p u -

t a t i o n o f t h e e i g e n v a l u e s o f a m a t r i x w i t h c o n s t a n t e n t r i e s . T h i s w o r k i s n o v e l a n d 

forms the basis for the paper (Benton et al., 1998b). The analysis exploits the basic 

p r o p e r t i e s o f n o n n e g a t i v e m a t r i c e s a n d p r o v i d e s a l t e r n a t i v e s u f f i c i e n t c o n d i t i o n s f o r 

s t a b i l i t y a l o n g t h e p a s s . A l t h o u g h t h e s u f f i c i e n t n a t u r e o f t h e t e s t s m e a n s t h a t t h e 

r e s u l t s w i l l n o t p r o d u c e a c o n c l u s i v e r e s u l t f o r a l l e x a m p l e s , t h e y a c t a s a s i m p l e 

low-computational load 'acceptance' criterion in some cases. To offset this conser-

vativeness, the tests provide, at no extra computational cost, strong information 

o n p e r f o r m a n c e a l o n g a g i v e n pass, w h i c h i s n o t a v a i l a b l e f r o m t h e N y q u i s t - l i k e 

c h a r a c t e r i s a t i o n s o f s t a b i l i t y a l o n g t h e p a s s . S i m i l a r r e s u l t s t o t h e a b o v e h a v e b e e n 

p r e s e n t e d f o r s y s t e m s d e s c r i b e d b y t h e R o e s s e r / F o r n a s i n i - M a r c h e s i n i 2 D s t a t e -

s p a c e models, b u t t h e r e a r e no R o e s s e r / F o r n a s i n i - M a r c h e s i n i a l t e r n a t i v e s p o s s i b l e 

for these performance measures. 

I n c h a p t e r 2 i t i s h i g h l i g h t e d h o w t h e b o u n d a r y c o n d i t i o n s a ; t + i ( 0 ) = d k + i , k > 

0, are sometimes not strong enough to adequately model the process dynamics. 

With this motivation, so-called dynamic boundary conditions have been proposed 

i n ( O w e n s a n d R o g e r s , 1 9 9 9 ) f o r t h e d i f f e r e n t i a l c a s e ( a n d ( R o g e r s e t a l . , 1 9 9 8 ) 

f o r t h e d i s c r e t e c a s e ) . I n t h e s a m e p a p e r i t h a s b e e n s h o w n h o w t h e d y n a m i c 

b o u n d a r y c o n d i t i o n t e r m e f f e c t s t h e b o u n d e d l i n e a r o p e r a t o r w h i c h g o v e r n s t h e 

p r o c e s s d y n a m i c s , a n d h e n c e t h e s t a b i l i t y o f t h e p r o c e s s i s a f f e c t e d . I n f a c t , t h e 

i n c o r r e c t m o d e l l i n g o f b o u n d a r y c o n d i t i o n s c o u l d l e a d t o a n a s y m p t o t i c a l l y u n s t a b l e 

p r o c e s s b e i n g m i s i n t e r p r e t e d a s a s y m p t o t i c a l l y s t a b l e . F o r t h e d i f f e r e n t i a l s u b c l a s s o f 

p r o c e s s e s w i t h d y n a m i c b o u n d a r y c o n d i t i o n s t h e a s y m p t o t i c s t a b i l i t y r e s u l t c a n n o 

l o n g e r b e t e s t e d b y u s i n g w e l l k n o w n I D s y s t e m s t h e o r y t e c h n i q u e s . T h e p r o b l e m o f 
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developing computationally efRcient stability tests here is still an open problem. For 

a certain subclass of discrete processes with dynamic boundary conditions, however, 

the resulting conditions can be tested for using ID techniques. The route is via a 

I D e q u i v a l e n t l i n e a r s y s t e m s s t a t e - s p a c e m o d e l of t h e p r o c e s s d y n a m i c s a n d further 

details of this and the issues arising here due to the inclusion of dynamic boundary 

c o n d i t i o n s c a n b e f o u n d i n , f o r e x a m p l e , ( G a l k o w s k i e t a l . , 2 0 0 0 ) . 

D i s c r e t e l i n e a r r e p e t i t i v e p r o c e s s e s h a v e s t r o n g s t r u c t u r a l l i n k s w i t h 2 D d i s c r e t e l i n -

e a r s y s t e m s d e s c r i b e d b y t h e R o e s s e r a n d F o r n a s i n i - M a r c h e s i n i s t a t e - s p a c e m o d e l s . 

S e v e r a l k e y d i f f e r e n c e s e x i s t h o w e v e r . R e p e t i t i v e p r o c e s s e s a r e u n i q u e l y c h a r a c -

t e r i s e d b y a f i n i t e p a s s l e n g t h - t h i s i s t h e k e y d i s t i n c t i o n b e t w e e n t h e s e p r o c e s s e s 

a n d t h e c l a s s e s o f c o n t i n u o u s - d i s c r e t e a n d d i s c r e t e - d i s c r e t e systems r e p o r t e d i n t h e 

l i t e r a t u r e . A n o t h e r p o i n t t o n o t e i s t h a t n o t a l l l i n e a r r e p e t i t i v e p r o c e s s e s h a v e a n 

equivalent Roesser / Fornagini-Marchesini state-space model interpretation (such 

as processes with interpass smoothing) - hence linear repetitive processes are not, 

in general, a subclass of 2D systems having a Roesser / Fornasini-Marchesini type 

d y n a m i c r e p r e s e n t a t i o n . F o r t h e s e r e a s o n s , t h e w e l l d e v e l o p e d 2 D linear s y s t e m s 

theory cannot be directly applied here, such aa what is meant (if anything) by con-

t r o l l a b i l i t y f o r t h e s e p r o c e s s e s . H o w e v e r , i t i s s t i l l f e a s i b l e t o e x p l o i t s u c h t h e o r y f o r 

e x a m p l e s f o r w h i c h a R o e s s e r / F o r n a s i n i - M a r c h e s i n i i n t e r p r e t a t i o n o f t h e p r o c e s s 

d y n a m i c s e x i s t s . F o r e x a m p l e , c h a p t e r 2 i n c l u d e s R o e s s e r / F o r n a s i n i - M a r c h e s i n i 

interpretations of the dynamics of a subclass of discrete processes. The Fornasini-

Marchesini model presented is singular, however, but it is concluded in (Galkowski 

e t a l . , 1 9 9 9 b ) t h a t t h e s i n g u l a r i t y i s n o t a n i n t r i n s i c f e a t u r e o f t h e p r o c e s s . 

C h a p t e r 3 includes stability results o b t a i n e d f r o m w e l l k n o w n 2D t h e o r y using t h e s e 

r e p r e s e n t a t i o n s o f t h e p r o c e s s d y n a m i c s a s s t a r t i n g p o i n t s . T h e 2 D s y s t e m s i n t e r -

p r e t a t i o n s h a v e l e d t o t h e f o l l o w i n g a d v a n c e s i n t e r m s o f s y s t e m s t h e o r y f o r d i s c r e t e 

l i n e a r r e p e t i t i v e p r o c e s s e s : 

( i ) f o r t h e s t a n d a r d ( n o n s i n g u l a r ) m o d e l , a f o r m a l e q u i v a l e n c e h a s b e e n shown to 

e x i s t b e t w e e n s t a b i l i t y a l o n g t h e p a s s a n d t h e B I B O s t a b i l i t y o f t h e R o e s s e r 

( a n d t h e r e f o r e F o r n a s i n i - M a r c h e s i n i ) i n t e r p r e t a t i o n s ; a n d 

( i i ) t h e s i n g u l a r m o d e l h a s l e d t o t h e d e v e l o p m e n t o f a t r a n s i t i o n m a t r i x ( o r f u n -

d a m e n t a l m a t r i x s e q u e n c e ) a n d h e n c e a g e n e r a l r e s p o n s e f o r m u l a w h i c h l e a d s 

t o a c h a r a c t e r i s a t i o n o f c e r t a i n r e a c h a b i l i t y / c o n t r o l l a b i l i t y p r o p e r t i e s . 
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T h e s e c o n c l u s i o n s a r e d r a w n f o r t h e s i m p l e s t b o u n d a r y c o n d i t i o n s c a s e , b u t a g e n -

e r a l i s a t i o n t o t h e c a s e o f d y n a m i c b o u n d a r y c o n d i t i o n s s h o u l d b e p o s s i b l e ( O w e n s 

and Rogers, 2000), and this stands as a short term future research area. 

F i n a l l y , i n t h i s c h a p t e r , a V o l t e r r a a p p r o a c h t o t h e s t a b i l i t y a n a l y s i s o f d i s c r e t e 

linear repetitive processes has been introduced. The powerful theory of the Volterra 

o p e r a t o r h a s o n l y r e c e n t l y s t a r t e d t o b e a p p l i e d t o t h e a r e a o f l i n e a r r e p e t i t i v e 

p r o c e s s e s a n d s o , a s y e t , n o c o n c l u s i v e a p p r a i s a l o f t h e a p p r o a c h c a n b e m a d e . 

I t is a n t i c i p a t e d , however, t h a t this r o u t e w i l l h a v e a m a j o r r o l e t o p l a y i n t h e 

o n w a r d d e v e l o p m e n t o f a m a t u r e s y s t e m s t h e o r y f o r l i n e a r ( a n d n o n l i n e a r ) r e p e t i t i v e 

p r o c e s s e s , a n d h e n c e i s a n a r e a f o r short to m e d i u m t e r m r e s e a r c h . I n p a r t i c u l a r , 

t h e a p p r o a c h h a s a l r e a d y b e e n u s e d ( D y m k o v e t a l . , 2 0 0 0 ) t o p r o d u c e s i g n i f i c a n t 

n e w r e s u l t s o n c o n t r o l l a b i l i t y f o r t h e s e p r o c e s s e s . 

7.2 Lyapunov Equa t ions 

A s a r e s u l t o f t h e e q u i v a l e n c e b e t w e e n s t a n d a r d 2 D s t a b i l i t y c o n c e p t s a n d t h e s t a -

b i l i t y a l o n g t h e p a s s o f c e r t a i n s u b c l a s s e s o f d i s c r e t e l i n e a r r e p e t i t i v e processes, i t i s 

n a t u r a l t o c o n s i d e r t h e a p p l i c a t i o n o f w e l l k n o w n 2 D t e c h n i q u e s . W i t h i n c h a p t e r 4 , 

t h e q u e s t i o n o f t o w h a t e x t e n t a L y a p u n o v e q u a t i o n b a s e d a p p r o a c h t o t h e s t a b i l i t y 

analysis of linear repetitive processes is applicable haa been addressed. The aim 

here is to give a suitable extension to existing ID theory and provide an alternative 

r o u t e t o o b t a i n i n g p e r f o r m a n c e p r e d i c t i o n i n f o r m a t i o n t h a n t h e t i m e - d o m a i n ( a l s o 

t e r m e d s i m u l a t i o n - b a s e d ) t e s t s o f c h a p t e r 3 . A r e v i e w o f t h e l i t e r a t u r e r e v e a l s t h a t , 

f o r 2 D l i n e a r s y s t e m s d e s c r i b e d b y t h e R o e s s e r / F o r n a s i n i - M a r c h e s i n i s t a t e - s p a c e 

m o d e l s , e s s e n t i a l l y t w o d i f f e r e n t t y p e s o f e q u a t i o n h a v e b e e n c o n s i d e r e d : 

(i) the ID Lyapunov equation, so-called because the equation has an identical 

s t r u c t u r e t o t h a t f o r d i s c r e t e l i n e a r t i m e - i n v a r i a n t s y s t e m s , b u t w i t h m a t r i c e s 

w h i c h a r e f u n c t i o n s o f a c o m p l e x v a r i a b l e ; a n d 

( i i ) t h e s o - c a l l e d 2 D L y a p u n o v e q u a t i o n , d e f i n e d i n t e r m s o f m a t r i c e s w i t h c o n s t a n t 

entries. 

I n i t i a l l y t h e I D e q u a t i o n a p p r o a c h h a s b e e n c o n s i d e r e d . T h e n e c e s s a r y a n d s u f f i c i e n t 

s t a b i l i t y a l o n g t h e p a s s c o n d i t i o n s p r e s e n t e d a r e i m p l e m e n t e d v i a c o m p u t a t i o n s 
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on matrices with constant entries and provide an alternative to the Nyquist-like 

stability along the pass tests of chapter 3. In addition, the test produces at no extra 

c o m p u t a t i o n a l c o s t p e r f o r m a n c e m e a s u r e s i n t h e f o r m o f c o m p u t a b l e i n f o r m a t i o n 

concerning the convergence of the output sequence of peiss proGles under stability 

along the pass to the resulting limit profile (for which, for the discrete subclass, there 

a r e n o R o e s s e r / F o r n a s i n i - M a r c h e s i n i a l t e r n a t i v e s ) . T h e I D L y a p u n o v e q u a t i o n 

a p p r o a c h , however, h a s n o t b e e n u s e f u l i n providing m e a s u r e s of r o b u s t n e s s s u c h a s 

s t a b i l i t y margins, w h i c h h a v e b e e n d i s c u s s e d i n c h a p t e r 5 . 

A d i s c u s s i o n o n m e t h o d s o f s o l v i n g t h e I D L y a p u n o v e q u a t i o n h a s b e e n p r o v i d e d i n 

s e c t i o n 4 . 3 . H e r e i t h a s been shown h o w t h e s o l u t i o n o f t h e I D L y a p u n o v e q u a t i o n 

( a n d h e n c e s t a b i l i t y t e s t s o n l y i n v o l v i n g c o m p u t a t i o n s o n m a t r i c e s with c o n s t a n t 

e n t r i e s ) i n t h e g e n e r a l c a s e r e q u i r e s t h e u s e o f t h e K r o n e c k e r p r o d u c t f o r m a t r i c e s . 

The solution involves the requirement that a Hermitian matrix f (a) evaluated on the 

imaginary axis, s = zw, satisfies the so-called axis positivity property of Siljak (Siljak, 

1971). 

Within section 4.4, a ID Lyapunov equation has been developed for a subclass 

o f d i f f e r e n t i a l l i n e a r r e p e t i t i v e p r o c e s s e s p o s s e s s i n g a s p e c i a l s t r u c t u r e o f d y n a m i c 

b o u n d a r y c o n d i t i o n s , which i s of p a r t i c u l a r i n t e r e s t i n t e r m s of l i n k s w i t h d e l a y -

differential systems and also repetitive control schemes. The analysis presented here 

provides the basis for the papers (Benton et al., 2000c) and (Benton et al., 2000d). In 

c h a p t e r 3 i t was highlighted how t h e f i r s t c o n d i t i o n o f t h e t e s t f o r s t a b i l i t y a l o n g t h e 

pass (i.e. the asymptotic stability condition) for processes with dynamic boundary 

c o n d i t i o n s c a n n o t b e t e s t e d u s i n g w e l l known I D l i n e a r s y s t e m s t e c h n i q u e s . T h u s t h e 

a i m o f t h e a n a l y s i s h e r e h a s b e e n t o d e v e l o p a I D L y a p u n o v e q u a t i o n i n t e r p r e t a t i o n 

of this condition for differential processes with this special class of dynamic boundary 

c o n d i t i o n s , a n d h e n c e supplying a c o m p u t a t i o n a l l y v i a b l e t e s t i n g m e t h o d . S t r i c t 

p o s i t i v e r e a l n e s s b a s e d t e s t s h a v e b e e n g i v e n f o r t h e n e w s t a b i l i t y c o n d i t i o n s w h i c h 

indicate how the condition is equivalent to testing for positive realness of a certain 

ID rational transfer-function matrix. Hence a ID characterisation of stability along 

t h e pass h a s b e e n o b t a i n e d for t h i s s u b c l a s s o f d i f f e r e n t i a l p r o c e s s e s . 

T h e 2 D L y a p u n o v e q u a t i o n d i f f e r s f r o m t h e I D c a s e i n t h a t i t p r o v i d e s s u f f i c i e n t 

b u t n o t n e c e s s a r y c o n d i t i o n s f o r s t a b i l i t y a l o n g t h e p a s s (except i n a n u m b e r o f 

s p e c i a l c a s e s - s e e t h e text f o r t h e d e t a i l s ) . T h e a n a l y s i s g i v e n o n t h i s a p p r o a c h 

i s p r e s e n t e d i n ( B e n t o n e t a l . , 1 9 9 9 ) a n d s u b s e q u e n t l y extended i n ( B e n t o n e t a l . , 
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2000a). The analysis uses the theory and results of strictly bounded real matrices, 

a n d i n p a r t i c u l a r u s e s t h e b o u n d e d r e a l l e m m a . A c o u n t e r - e x a m p l e i s g i v e n w h i c h 

shows that there exists stable along the paas processes for which no solution pair 

{ W , Q } t o t h e 2 D L y a p u n o v e q u a t i o n e x i s t s . D e s p i t e t h i s c o n s e r v a t i v e n e s s , t h e 

2 D L y a p u n o v e q u a t i o n h a s a ( p o t e n t i a l l y ) m a j o r r o l e t o p l a y i n t h e a n a l y s i s o f 

discrete linear repetitive processes in terms of the provision of strong computable 

p e r f o r m a n c e i n f o r m a t i o n ( s e e s e c t i o n 4 . 9 ) f o r a g i v e n p a s s , a n d i n p r o v i d i n g a s t a r t i n g 

p o i n t i n t h e e v a l u a t i o n o f s t a b i l i t y m a r g i n s a n d r o b u s t s t a b i l i t y t h e o r y , w h i c h h a v e 

b e e n d i s c u s s e d i n c h a p t e r 5 . 

In section 4.7, a 2D Lyapunov equation haa been derived for a class of discrete 

processes using a Fornasini-Marchesini representation of the process dynamics cis 

a starting point. The resulting new sufficient stability along the pass conditions 

i n v o l v e the c o m p u t a t i o n o f g e n e r a l i s e d e i g e n v a l u e s . T w o n e w a l g o r i t h m s f o r giving 

a p o s i t i v e d e f i n i t e s o l u t i o n p a i r t o t h e 2 D L y a p u n o v e q u a t i o n h a v e b e e n i n t r o d u c e d . 

I n b o t h , t h e e q u a t i o n h a s b e e n r e d u c e d t o s o l v i n g s i m u l t a n e o u s l y t h r e e e x p r e s s i o n s . 

T h e first a l g o r i t h m i s b a s e d o n t h e u s e o f s p e c t r a l f a c t o r i s a t i o n a n d u t i l i s e s w e l l 

k n o w n I D m e t h o d s at e a c h s t e p . T h e s e c o n d algorithm r e p l a c e s t h e u s e o f s p e c t r a l 

f a c t o r i s a t i o n w i t h t h e n e e d t o s o l v e a R i c c a t i - t y p e e q u a t i o n t o d e t e r m i n e W i . 

F i n a l l y , i t s h o u l d b e n o t e d t h a t t h e a n a l y s i s p r e s e n t e d u s i n g t h e 2 D L y a p u n o v e q u a -

tion approach has only been for the discrete subclass of processes. The development 

of a 2D Lyapunov equation for the differential subclass of processes remains an open 

area. 

7.3 R o b u s t n e s s 

W i t h i n c h a p t e r 5 a n i n i t i a l i n v e s t i g a t i o n i n t o t h e a r e a o f r o b u s t s t a b i l i t y t h e o r y f o r 

l i n e a r r e p e t i t i v e p r o c e s s e s h a s b e e n m a d e . W h e n a n a l y s i n g a p r o c e s s i t i s i m p o r t a n t 

t o n o t o n l y d e t e r m i n e s t a b i l i t y , b u t a l s o o b t a i n s o m e i n d i c a t i o n o f h o w r o b u s t t h e 

p r o c e s s i s t o p e r t u r b a t i o n s i n t h e s y s t e m . I n p a r t i c u l a r , w i t h i n t h i s t h e s i s , t h e 

s u b j e c t a r e a s o f a l l o w a b l e p a r a m e t e r v a r i a t i o n b o u n d s a n d s t a b i l i t y m a r g i n s h a v e 

b e e n i n v e s t i g a t e d . 

G i v e n a stable a l o n g t h e p a s s d i s c r e t e l i n e a r r e p e t i t i v e p r o c e s s , t h e first of t h e s e 

a r e a s c o n s i d e r s h o w t h e p r o c e s s s t a b i l i t y i s a f f e c t e d b y p e r t u r b a t i o n s w i t h i n t h e 
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process system matrices, which may arise due to model inaccuracy or measurement 

n o i s e f o r e x a m p l e . T w o d i f f e r e n t t y p e s o f p e r t u r b a t i o n i n t h e m a t r i c e s w h i c h d e f i n e 

the state-space model have been looked at: 

( i ) s t r u c t u r e d , w h e r e t h e p e r t u r b a t i o n m o d e l s t r u c t u r e a n d b o u n d s o n t h e i n d i -

v i d u a l e l e m e n t s o f t h e p e r t u r b a t i o n m a t r i x a r e k n o w n ; a n d 

( i i ) u n s t r u c t u r e d , w h e r e a t m o s t a s p e c t r a l n o r m b o u n d o n t h e p e r t u r b a t i o n i s 

k n o w n . 

T h e a i m o f t h e a n a l y s i s h e r e t h e n h a s b e e n t o find m e t h o d s o f d e t e r m i n i n g t h e 

m i n i m u m n o r m o f t h e m a t r i x A $ s u c h t h a t t h e p e r t u r b e d p r o c e s s r e m a i n s s t a b l e 

a l o n g t h e p a s s . A d i s c u s s i o n o f s o m e o f t h e m e t h o d s a v a i l a b l e f o r d e t e r m i n i n g t h i s 

exact bound have been given - in many cases, however, a good lower bound often 

s u f f i c e s . I n s e c t i o n 5 . 4 , a L y a p u n o v a p p r o a c h t o finding l o w e r b o u n d s f o r t h i s e x a c t 

m i n i m u m n o r m b o u n d h a s b e e n p r e s e n t e d . T h e a n a l y s i s u s e s t h e e x i s t e n c e o f a 

p o s i t i v e d e f i n i t e s o l u t i o n p a i r t o t h e 2 D L y a p u n o v e q u a t i o n a s a s t a r t i n g p o i n t , 

a n d h e n c e i s a n a p p l i c a t i o n a r e a o f p a r t o f t h e a n a l y s i s o f c h a p t e r 4 . I n a d d i t i o n , 

t h e a v a i l a b i l i t y o f t h e s e r o b u s t s t a b i l i t y m e a s u r e s u s i n g t h e 2 D L y a p u n o v e q u a t i o n 

o f f s e t s s o m e o f t h e i n h e r e n t c o n s e r v a t i v e n e s s d u e t o t h e e q u a t i o n s s u f f i c i e n t b u t n o t 

necessary nature. 

I t s h o u l d b e n o t e d t h a t t h e b o u n d s o b t a i n e d 

( i ) a r e n o t a v a i l a b l e f o r a l l s t a b l e a l o n g t h e p a s s d i s c r e t e p r o c e s s e s ( s i n c e t h e r e 

e x i s t p r o c e s s e s w h i c h a r e s t a b l e a l o n g t h e p a s s a n d f o r w h i c h t h e r e e x i s t s n o 

s o l u t i o n t o t h e 2 D L y a p u n o v e q u a t i o n ) , a n d 

( i i ) d e p e n d e x p l i c i t l y o n t h e m a t r i c e s W a n d Q w h i c h p r o v i d e t h e s o l u t i o n t o t h e 

2 D L y a p u n o v e q u a t i o n . 

I t h a s b e e n s h o w n i n s e c t i o n 5 . 8 t h a t t h e l e a s t c o n s e r v a t i v e l o w e r b o u n d c o r r e s p o n d s 

t o t h e m i n i m u m n o r m o f t h e a u g m e n t e d p l a n t m a t r i x $ . 

F i n a l l y i n t h i s s e c t i o n , r o b u s t n e s s a n a l y s i s h a s b e e n p r e s e n t e d u s i n g a F o r n a s i n i -

M a r c h e s i n i r e p r e s e n t a t i o n o f t h e p r o c e s s d y n a m i c s a s a s t a r t i n g p o i n t . DiSFerent 

b o u n d s a r e o b t a i n e d , a n d c l e a r l y t o f u l l y e x p l o i t t h e s e r e s u l t s , t h e l e a s t c o n s e r v a t i v e 

set for a particular example should be used. 
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Clearly further development is needed here, in particularly in terms of the develop-

ment of alternative approaches and on comparing these bounds in terms of conser-

v a t i v e n e s s a n d r e l a t e d f a c t o r s . 

Stabihty margins provide an indication as to what extent the singularities of a system 

may be 'moved' before the process becomes unstable. Given a stable along the pass 

p r o c e s s , the s t a b i l i t y m a r g i n has b e e n d e f i n e d a s the shortest distance b e t w e e n the 

s i n g u l a r i t i e s o f t h e s y s t e m a n d t h e b o u n d a r y o f t h e s t a b i l i t y r e g i o n - f o r d i s c r e t e 

l i n e a r r e p e t i t i v e p r o c e s s e s , t h i s i s t h e b o u n d a r y o f t h e u n i t b i d i s c . T h e n a n e c e s s a r y 

and sufficient condition for stability along the pass of these processes is that this 

m e a s u r e , c r s a y , i s g r e a t e r t h a n z e r o . 

D i f f e r e n t methods f o r e v a l u a t i n g t h e s e s t a b i l i t y m a r g i n s have b e e n d i s c u s s e d , a n d 

once again it hag been shown how a 2D Lyapunov equation approach can be used 

to obtain good lower bounds for the margins. 

A valid c r i t i c i s m o n the w o r k t o d a t e o n s t a b i l i t y m a r g i n s h a s b e e n the l a c k o f a 

'transparent' link to resulting systems performance. With this motivation, in sec-

t i o n 5 . 9 s o m e v e r y r e c e n t r e s u l t s o n t h e d e f i n i t i o n o f a p o l e o f a m u l t i d i m e n s i o n a l 

system using the behavioural approach have been interpreted for a subclass of dis-

crete linear repetitive processes. Here a pole has been deAned as an element of 

space which is a zero of the characteristic polynomial of the process. The 

potential strength of this approach is that the poles can be interpreted in terms of 

so-called exponential trajectories of the process which, in the caae of discrete linear 

r e p e t i t i v e p r o c e s s e s , h a v e a w e l l d e f i n e d p h y s i c a l m e a n i n g . I n e f f e c t , t h e s e e x p o n e n -

t i a l t r a j e c t o r i e s f o r m t h e ' b u i l d i n g b l o c k s ' o f the p r o c e s s d y n a m i c s , a n d hence t h i s 

h a s m a j o r i m p l i c a t i o n s r e g a r d i n g t h e a n a l y s i s o f t h e s e p r o c e s s e s . I n p a r t i c u l a r , i t 

i s a n t i c i p a t e d t h a t t h e a p p l i c a t i o n o f t h i s a p p r o a c h t o s t a b i l i t y m a r g i n a n a l y s i s w i l l 

r e s u l t i n a 'transparent' l i n k t o e x p e c t e d s y s t e m s p e r f o r m a n c e . H e n c e this h i g h l y 

promising a r e a i s o n e i n which i m m e d i a t e f u t u r e r e s e a r c h e f f o r t s h o u l d b e d i r e c t e d . 

7.4 Control ler S t r u c t u r e s 

The unique control problem cissociated with linear repetitive processes is that the 

o u t p u t s e q u e n c e o f p a s s p r o f i l e s c a n c o n t a i n o s c i l l a t i o n s w h i c h i n c r e a s e i n a m p l i t u d e 

f r o m p a s s t o p a s s . T h i s behaviour c a n b e s e e n i n t h e long-wall c o a l c u t t i n g e x a m p l e 
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via the presence of severe undulations in the newly cut coal floor wall which have to 

b e r e m o v e d m a n u a l l y , a n d h e n c e t h i s i s a k e y r e a s o n b e h i n d t h e ' s t o p / s t a r t ' t y p i c a l 

cutting pattern in a working coal mine. 

I n ( S m y t h , 1 9 9 2 ; S m y t h e t a l . , 1 9 9 4 ) o b j e c t i v e s f o r t h e c o n t r o l o f l i n e a r r e p e t i t i v e 

processes have been formulated, together with the development of design algorithms. 

H e r e w e h a v e c o n c e n t r a t e d o n t h e s p e c i f i c a t i o n o f c o n t r o l l e r s t r u c t u r e s f o r t h e s e 

processes, which can be classified under the two general headings: 

( i ) m e m o r y l e s s c o n t r o l l e r s , w h i c h e x p l i c i t l y u s e i n f o r m a t i o n f r o m t h e c u r r e n t p a s s 

o n l y ; a n d 

( i i ) s o - c a l l e d c o n t r o l l e r s w i t h m e m o r y w h i c h e x p l i c i t l y u s e i n f o r m a t i o n f r o m t h e 

current pass and/or previous pass proEles, state vectors and input vectors. 

Memoryless schemes clearly have the simpler structure in terms of implementation 

and of data which must be logged/stored and hence the initial work in this area haa 

c o n c e n t r a t e d o n s u c h s c h e m e s . D i f f e r e n t i a l a n d d i s c r e t e l i n e a r r e p e t i t i v e p r o c e s s e s 

h a v e s t r o n g s t r u c t u r a l l i n k s w i t h I D d i f f e r e n t i a l a n d d i s c r e t e l i n e a r s y s t e m s . T h i s 

r a i s e s t h e n a t u r a l q u e s t i o n o f w h a t c a n b e a c h i e v e d u s i n g s t a n d a r d I D f e e d b a c k 

c o n t r o l s c h e m e s . S u c h s c h e m e s u s e d a t a f r o m t h e c u r r e n t t i m e i n s t a n t o n t h e c u r r e n t 

pass only and as such are termed current point controllers. 

S e c t i o n 6 . 2 h a s i n t r o d u c e d c u r r e n t p a s s s t a t e f e e d b a c k a n d o u t p u t f e e d b a c k c o n t r o l 

l a w s . I t h a s b e e n s h o w n t h a t l i n e a r r e p e t i t i v e p r o c e s s e s a r e c l o s e d u n d e r such c o n -

t r o l a c t i o n s , a n d h e n c e k n o w n s t a b i l i t y t h e o r y m a y b e a p p l i e d . I t i s s h o w n h e r e 

that the property of asymptotic stability is invariant under memoryless state and 

o u t p u t f e e d b a c k , i . e . a n a s y m p t o t i c a l l y u n s t a b l e s y s t e m c a n n o t b e s t a b i l i s e d b y a 

m e m o r y l e s s m u l t i p a s s c a u s a l f e e d b a c k c o n t r o l s c h e m e . T h i s i s d u e t o t h e f a c t s that, 

u n d e r a l l m u l t i p a s s c a u s a l f e e d b a c k c o n t r o l s c h e m e s , 

( i ) a s y m p t o t i c s t a b i l i t y o n l y d e p e n d s o n D i , a n d 

( i i ) t h e o u t p u t y k + i ( i ) d o e s n o t e x p l i c i t l y d e p e n d o n t h e i n p u t U k + i ( t ) o n a g i v e n 

p a s s - i . e . t h e r e i s n o ' d i r e c t f e e d t h r o u g h ' o f t h e i n p u t t o t h e o u t p u t . 

H o w t o o v e r c o m e t h i s p r o b l e m r e m a i n s a n o p e n a r e a f o r f u t u r e r e s e a r c h . F o r n o w 

t h e a r g u m e n t i s u s e d t h a t a s y m p t o t i c s t a b i l i t y i s p r a c t i c a l l y i n h e r e n t . N o t e t h a t t h e 
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state feedback control schemes can in general only be implemented with an observer 

structure. Observer theory for linear repetitive processes remains an open research 

a r e a . 

Valuable insight into the general area of controller design can be gained by studying 

subclasses of processes with certain special structural properties - so-called bench-

m a r k p r o b l e m s . T h e a p p l i c a t i o n o f p u r e l y I D c o n t r o l a c t i o n s t e n d t o f a i l , e x c e p t 

i n a f e w c e r t a i n s p e c i a l c a s e s , s i n c e t h e p r o c e s s d y n a m i c s d e p e n d e x p l i c i t l y o n t w o 

i n d e p e n d e n t v a r i a b l e s . H e r e , h o w e v e r , i t i s s h o w n h o w f o r o n e s u b c l a s s o f practical 

i n t e r e s t ( s o c a l l e d m u l t i v a r i a b l e f i r s t o r d e r l a g s ) a I D c o n t r o l a c t i o n i s a l l t h a t i s r e -

q u i r e d f o r a c c e p t a b l e s y s t e m s p e r f o r m a n c e u n d e r c e r t a i n r e q u i r e m e n t s o n g a i n . T h e 

work presented here is novel and can be found in (Benton et al., 1998a). The anal-

y s i s r e p l a c e s t h e n e c e s s a r y a n d s u f f i c i e n t s t a b i l i t y a l o n g t h e p a s s c o n d i t i o n o n g a i n 

w i t h a s u f f i c i e n t o n l y a l t e r n a t i v e . T o o f f s e t t h i s p o t e n t i a l c o n s e r v a t i v e n e s s , s t r o n g 

information on performance along a given paas is available from the tests at no extra 

c o m p u t a t i o n a l c o s t , w h i c h i s n o t a v a i l a b l e f r o m t h e N y q u i s t - l i k e c h a r a c t e r i s a t i o n s o f 

s t a b i l i t y a l o n g t h e p a s s . T w o r e f i n e m e n t s t o t h i s a n a l y s i s h a v e a l s o b e e n p r e s e n t e d 

w h i c h e x t e n d t h e s c o p e o f a p p l i c a t i o n o f t h e t h e o r y . 

W h e n o n e o r m o r e o f t h e c o n t r o l o b j e c t i v e s c a n n o t b e m e t b y a current p a s s c o n -

troller, a way forward is to look at controllers with memory. Within section 6.6, a 

s o - c a l l e d m e m o r y l e s s l i n e a r s t a t e f e e d b a c k l a w w i t h p r o p o r t i o n a l r e p e t i t i v e m i n o r 

loop compensation has been presented and applied to a class of benchmark problem 

w h e r e i t h a s b e e n s h o w n , i n t h i s c a s e , t o g i v e a s o l u t i o n t o t h e s o - c a l l e d r e p e t i t i v e 

s y s t e m s d i s t u r b a n c e d e c o u p l i n g w i t h s t a b i l i t y p r o b l e m . 

I n s e c t i o n 6 . 8 d i s c r e t e p r o c e s s e s h a v e b e e n c o n s i d e r e d . H e r e i t h a s b e e n s h o w n h o w 

a discrete process can be regarded as being derived from a diSerential process under 

f a s t s a m p l i n g c o n d i t i o n s . T h e a n a l y s i s p r e s e n t e d h e r e c a n b e f o u n d i n ( B e n t o n e t a l . , 

2000b). 

F i n a l l y w i t h i n t h i s c h a p t e r , t h e 2 D L y a p u n o v e q u a t i o n o f c h a p t e r 4 h a s b e e n u s e d 

i n t h e d e s i g n o f a c u r r e n t p a s s s t a t e f e e d b a c k l a w w i t h ' f e e d f o r w a r d ' o f t h e p r e v i o u s 

pass o u t p u t a c t i o n , w h i c h i s a n e x a m p l e o f a c o n t r o l a c t i o n w i t h m e m o r y . T h i s 

p r o v i d e s a n a d d i t i o n a l a p p l i c a t i o n a r e a o f t h e 2 D L y a p u n o v e q u a t i o n a n a l y s i s o f 

c h a p t e r 4 , t h u s o f f s e t t i n g p a r t o f i t s o v e r a l l c o n s e r v a t i v e n a t u r e . 

The controller structures presented in this chapter do not provide an exhaustive list. 
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Research into available control schemes for these processes remains in its early stages 

and only certain aspects of the general problem have been addressed. Clearly much 

f u t u r e w o r k m u s t b e p e r f o r m e d b e f o r e a r e a l i s t i c a s s e s s m e n t o f a v a i l a b l e t e c h n i q u e s 

c a n b e m a d e . I t e r a t i v e l e a r n i n g c o n t r o l r e m a i n s a n a p p l i c a t i o n a r e a w h e r e t h e m o s t 

p r o g r e s s h a s b e e n m a d e t o d a t e i n t e r m s o f t h e d e v e l o p m e n t o f c o n t r o l s c h e m e s f o r 

differential and discrete processes, and is one area where current research effort is 

b e i n g focussed. 

A s a final p o i n t , t h e d e v e l o p m e n t o f o p t i m a l c o n t r o l s c h e m e s f o r l i n e a r r e p e t i t i v e 

p r o c e s s e s r e m a i n s o p e n . I n ( J o n e s a n d O w e n s , 1 9 8 1 ) a n initial a t t e m p t at t h e 

n u m e r i c a l o p t i m i s a t i o n o f m u l t i p a s s p r o c e s s e s w a s g i v e n , b u t l i t t l e p r o g r e s s h a s 

been made since, leaving this subject open for future research. 

7.5 Final R e m a r k s 

B e f o r e c o n c l u d i n g t h i s t h e s i s , a f e w f i n a l r e m a r k s s h o u l d b e m a d e . F i r s t l y n o t e 

that alternative approaches to the analysis of repetitive processes are also possible. 

F o r e x a m p l e , i n ( J o h n s o n e t a l . , 1 9 9 6 ) , a n a l y s i s g e n e r a l i s i n g t h e R o s e n b r o c k s y s t e m s 

m a t r i x t h e o r y ( R o s e n b r o c k , 1 9 7 0 ) f o r t h e s e p r o c e s s e s h a s b e e n p e r f o r m e d . S i m i l a r l y , 

there is much scope for the use of the behavioural approach here, aa noted in the 

robustness section above. 

F i n a l l y , t h e s u b j e c t o f t h e i m p l e m e n t a t i o n o f t h e s t a b i l i t y t e s t s o f c h a p t e r 3 a n d 

controller design algorithms of chapter 6 into a computer aided design environment is 

b e y o n d t h e s c o p e o f t h i s t h e s i s . T h i s i s t h e s u b j e c t o f a n o n g o i n g r e s e a r c h p r o g r a m m e 

i n t o t h e d e v e l o p m e n t a n d d e s i g n o f M A T L A B t o o l b o x e s b y G r a m a c k i e t a l . , s e e f o r 

e x a m p l e ( G r a m a c k i e t a l . , 1 9 9 9 ) . 
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Appendix A 

Background Results and Theory 

A . l Some Resul t s f r o m Funct ional Analysis and 

t h e Theo ry of Mat r ices 

T h e a n a l y s i s w i t h i n t h i s t h e s i s u s e s r e s u l t s f r o m t h e t h e o r y o f m a t r i c e s a n d f u n c t i o n a l 

a n a l y s i s w h i c h a r e s u m m a r i s e d b e l o w . T h e p r o o f s o f t h e r e s u l t s c a n b e f o u n d i n a n y 

relevant text and so are omitted. 

Definit ion A . l (Spectral Value, Spectrum, Spectral Radius) A complex 

number A is said not to be a spectral value of i f , and only i f , the bounded linear 

Af — 1/^, w/iere 7 operator m Aag roMpe oMcf 

a bounded inverse (A/ — Then the set a{La) of all spectral values of La is 

called the spectrum of and its spectral radius is defined to be the finite positive 

number 

r(Z^)^= sup |A| ( A l ) 
X^a{La) 

or equivalently 

lim (A.2) 
K-H-00 

I f E a i s f i n i t e d i m e n s i o n a l , t h e n L a c a n b e r e p r e s e n t e d b y a c o m p l e x s q u a r e m a t r i x . 

T h e n r { L a ) i s t h e m a x i m u m o f t h e m o d u l i o f t h e e i g e n v a l u e s . 
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Definit ion A.2 (Partial Ordering, Nonnegative Matrix) The partial ordering 

< OM Ml X M2 matrices by (Ae 

A< B, i f , and only i f , Aij < Bij V i,j (A.3) 

fa/'ue 0/ a/i Mi x mafnr v4 cZeyiMecf (o 6e fAe Mi x M2 reaZ, 

or ao-coZW MOMMepô zfe, 

Ul 
1̂ 111 

IA„lll IA 

ln2 I 

nin2 I 

(A.4) 

Lemma A . l (Properties of Nonnegative Matrices) The absolute value, ||A||p, 

0/ OM Ml X Mg A /lag (Ae 'Morm-Zî e' properfiea, 

W Mllp > 0, 

IÎ Ajlp = I'yl ||A||p, /or oZZ compZea: gcaZara "y, 

(c) If B is another Mi x M2 matrix then ||A + B\\p < ||A||p + ||-B||p, 

(d) If B is another matrix compatible for pre-multiplication by A then 

||AB||p < ||A||p||B||p, 

(e) If A and B are square matrices then 0 < ||A||p < B ^ r(A) < r(||A||p) < 

r(B). 

Lemma A.2 If A is an Mi x Mi matrix then (/„j — ||A||p) ^ exists and is nonnegative 

OMCf OM/1/ 

r(MIW < 1- (A.5) 

Definit ion A.3 (Absolute Value of a Vector) Let X be a Banach space and 

CoTiesmM prod'uc^ reparcZed og (Ae Zmeor i;ec<or gpoce 0/ coZi/MiMa ^ = 

(azi, X2, • • • , Zj)^ of elements of X. Then the absolute value of x E X'^ is defined 

ag 

klip = (Ikill, IIZ2II, - " , Ikdii)^ E (A.6) 
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w/iere || - || (Ae norm m (Ae norm m 25 oa 

llzIL = max IzJ (A.7) 

w/iere a; E 25 regardetf og (Ae coZ?imM z = (zi, Z2, - - - , fAe norm m 

%6 (fe_̂ ne(f aa 

|lz|l = max llzi||. (A.8) 

Definit ion A.4 (Absolute Value of an Operator) Let B{X^^, denote the 

space of bounded linear operators mapping into X'^^. Further, represent L G 

y = Z,z ( A . 9 ) 

or 

Hi = ^ y ^ij^j (A.10) 
j 

where the Lij are bounded linear operators in X. Then the absolute value of L is 

(o 6e 

ll-̂ llp — 
1 r II II r I 
I ill II 2̂ I 

( A J l ) 

where || • || is also used to denote the operator norm induced by the vector norm in 

X. 

Theorem A . l (Banach-Steinhaus (Uniform Boundedness) Theorem) 

{ ^ } a aegiteMce o/ bottzidecf Zmeor operafora F 

from a Banach space X into a normed space Y such that {||T^z||} is bounded for 

eren/ z E gai/, 

||T^2;||<Cz, M = l , 2 , ( A . 1 2 ) 

where c^ is a real number. Then the sequence of the norms {||T„||} is bounded, that 

/̂lere o c swc/i 

||T„|| < c, n = l ,2, (A.13) 
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Definit ion A.5 (Contraction) Let X = {X, d) be a metric space. A mapping 

T : % — c a / W a (/lere a rem/ yitfmber < 1 

V z, 2/ E 

d(Ta;, Ti/) < ^ (f(z, 2/). (A. 14) 

G e o m e t r i c a l l y t h i s m e a n s t h a t a n y p o i n t s x a n d y h a v e i m a g e s w h i c h a r e c l o s e r 

t o g e t h e r t h a n t h e p o i n t s x a n d y . 

Definit ion A.6 (Kronecker Product) The Kronecker product of two matrices of 

appropriate dimensions takes the form 

Oll-B QI2-S • • • Oln-B 

(A.15) 

Definit ion A.7 (Positive Definiteness) The matrix A is positive semidefinite, 

denoted A > 0, if the quadratic form x'^Ax > 0 Vx. If equality holds only when 

X = 0, we say that A is positive definite, denoted v4 > 0. Note that because 2x'^Ax = 

x'^{A + A'^)x + x'^{A — A'^)x = x'^{A+A'^)x, we usually assume that A is symmetric. 

Lemma A.3 (Properties of Posit ive Definite Matrices) The following prop-

vl gi/mmefr%c mafnz /I of/ 

are 

(b) A is positive semidefinite i f , and only i f , it can be written in the factored 

form A = TT^ for some matrix T, known as a square root of A; 

nite. In particular, all the diagonal entries are positive; 

(d) If A is positive definite then the factorization A = LDM"^ exists and D = 

, dn) /log po5%(%2;e (fmgoMoZ e?i(ries/ a/icZ 

(e) If A E is positive definite, and X G has rank k, then B = 

X'^AX E is also positive definite. 
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L e m m a A.4 (Cholesky Factorization) If A e is symmetric positive def-

(Aere o Zower (riaMpi/Zar G E 

efiMea attcA A = 

Definition A.8 (Normal Matrices) If for matrix A G R"^" 

f/iGTi za 50zd (o 5e fiormaZ. 

L e m m a A.5 A E C"^" is normal if, and only if, there exists a unitary Q E C"^" 

such that 

, An} (A.17) 

wAere Ai, 1 < i are (Ae o/vl . 

A.2 A Formal Der ivat ion of t h e 2D Transfer-

Func t ion Represen ta t ion 

In order to introduce a transfer-function matrix description for linear repetitive 

processes described by, say, the diEerential non-unit memory subclass of processes 

with the state-space representation (2.11)-(2.12), some formal definitions are first 

required. These definitions can be regarded as the natural generalisation of the as-

sociated ID concepts from the well known differential/discrete linear systems theory 

and here just the main results are stated without proof. For a complete discussion 

(plus related proofs etc.) see, for example, (Rogers and Owens, 1992b; Rogers and 

Owens, 1989a). 

Definition A.9 (z-Transform) The 'z-transforms'of the sequences Uf.^i(t),Xk+i{t) 

and %/A+i(f), 0 < ( < CK, A: > 0, are de_/zMe(f 

[/(t, z) = 'Ui(() + Z"^'U2(()+^"'^^i3(()'" 

%(f:,z) = Zi(t)-|-Z"^Z2(() + Z"^3;3(()-" 

;z) = 2/1 (̂ ) + 'Z"\2(^) + z"^2/3(()''' (A.18) 

reapec^ii^efi/. 
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Results on the convergence and existence properties of the equations (A. 18) are 

contained in the following result, 

L e m m a A . 6 Suppose that the terms in (A. 18) are bounded in the sense that there 

reaZ > 0, > 0, 1 < % < 3, atfc/i 

< MiA^-\ A: > 1 

lkt(')ll < M 2 A ^ \ k >1 and 

ll%(')ll < M 3 A | - \ A; > 1 (A.19) 

where || • | is chosen as any suitable norm in 

m (Ae |z| > Ai, |z| > Ag kl > A3 respectively. 

Define •§iX{t, z) as 

—%((, z ) : = — a ; i ( ( ) + z Z 2 M + Z r3(()-{ (A.20) 

and consider, without loss of generality, the special case of zero initial pass profiles 

and state initial conditions on each pass, i.e. 

^ i _ j ( t ) = 0 , 0 < ( < a , 

4 + 1 = 0, A > 0 . (A.21) 

Hence %(0, z) = 0, and the 'z-transform' of (2.11)-(2.12) in this case is easily shown 

to be 

= (A + B ( z ) ( / m - D ( z ) ) - ^ C ) % ( ( , z ) + B % z ) 

y ( ( , 2 ) = ( 7 m - D ( z ) ) - ^ C % ( ^ , z ) (A.22) 

where 

M M 
B(z) = ^ D(z) - ^ DjZ-:' (A.23) 

j=i j=i 

and the term {Im — D{z)) is always invertible since 

lim ( 7 ^ - D ( z ) ) = ;^. (A.24) 
|z|-^+oo 

One method for solving for %((, z) (and hence for y ( f , z)) in (A.22)-(A.23) is to 

use a Laplace transform approach. The potential problem here is tha t the variables 
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and %((), > 1, of the series z), z) and y(^, z) respectively 

are only defined on the finite interval [0, a]. The use of the Laplace transform 

however, requires the variables to be defined over [0,+oo). This problem can be 

overcome by noting that, due to multipass causality, the result will be unaEected if 

the Laplace transform is applied to arbitrary extensions of the variables from [0, a] 

to [0, +oo) (provided, of course, that these extensions satisfy the necessary existence 

conditions). 

Then, assuming tha t the variables Xj{t) and y j { t ) , j > I, have been suitably 

extended from [0, a] to [0, +00), the Laplace transforms can be defined as follows, 

Definition A. 10 (s-Transform) The 's-transforms' of the series U{t, z), X{t,z) 

y((, z), 0 < ( < a, A; > 0, ore 61/ 

[/(s,z) = + 

%(g,z) — z) = /2a;i(̂ ) + z"̂ /Ia;2(() + z"̂ /2a;3(()'-- oMcZ 

y(g,z) = z) = /:2/i(() + z"^z:i/2(f) + z"^z:i/3(()-" (A.25) 

respectively, where C denotes the Laplace transform with respect to the along the 

Results on the convergence and existence properties of the equations (A.25) are 

contained in the following lemma. 

L e m m a A . 7 (Aere real Mitmbera Mi > 0 , > 0, > 0, 1 < 

i < 3, such that 

\Uj /Mil < A:>1 

||a;j(t)|| < & > 1 ancf 

||%(()|| < A:>1 (A.26) 

respectively, j > 1, Vt > 0, where || • || denotes any suitable vector norm. Then the 

series of (A.25) converge absolutely in the regions {|z| > Ai, i?e{s} > /3i}, {|z| > 

A2, ̂ e{g} > /32} GMd {|z| > A 3 , .Re{s} > 

The results and definitions presented here are for the differential subclass of pro-

cesses. Equivalent results for discrete processes Eire presented in (Rogers and Owens, 

1992b) and, since the results generalise in a natural manner, the details are omitted 

here. 
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A.3 Mathematical Background for Simulation-

Based Stabili ty Tests 

This section introduces the background results necessary for the simulation-based 

stability tests and subsequent analysis of section 3.5. Further details of these results 

can be found in, for example, (Owens and Chotai, 1983) and (Rogers and Owens, 

1990b) and the relevant references therein. The section begins with the following 

result, known as the total variation lemma, 

L e m m a A.8 (Total Variation Lemma) Suppose that g E Li{Q,T), d is a real 

/ ( ^ ) : = d - t - / ^y(T)(i'7- ( A . 2 7 ) 
Jo 

za open mfe/raZ 0 < t < -Hcxo Zoco/ 

avid mzmma < (2 < ' " sup = -l-oo m 

half-line t > 0. Then with to = 0, 

A ^ ( / ) = | ( Z | + / |F(()|(^^ ( A . 2 8 ) 
Jo 

w/iere 

k' 
N r i f ) •= | / ( 0 + ) | + ^ I f i ' t k ) — f { t k - i ) \ + | / ( ^ ) - f { t k ' ) \ , (A.29) 

k—l 

/u* Zorgegf m^eger A aitcA (Aof < T, azid 

A r _ ( / ) : = s u p j V T , ( / ) . ( A . 3 0 ) 
T > 0 

The quantity A^t(/) is the norm of / regarded as a function of the bounded variations 

on the half-open interval 0 < t < T (for each function / ) . Hence it is termed the 

total variation of / . Nrif) is a continuous function of T and is monotonically 

increasing. Hence 7Voo(/) can be obtained as 

A r « , ( / ) = l i m j V T ( / ) . ( A . 3 1 ) 
T-̂ +oo 

Further, N r i f ) can easily be computed from simple graphical operations on f { t ) as 

can been seen via figure A. l . 

226 



A Background Results and Theory 227 

ti t2 T 3̂ 

A^t'(/) = a + 6 + c + (i 

^4 — I OO 

Figure A . l: A^t(/) - The Total Variation of / 

These operations can be implemented into a CAD environment (for further details 

see (Smyth, 1992)). Note also that 

lim | A ^ o o ( / ) - W K / ) l = 0 , 
T-^+co 

(A.32) 

and consequently A/oo(/) can be accurately estimated using data on a 'long enough' 

t ime interval 0 < t < T. 

Note tha t an equivalent discrete result to lemma A.8 can be found in (Rogers and 

Owens, 1992b). 

The following analysis requires some basic results from the theory of nonnegative 

matrices which are reviewed in the appendix section A. l . In particular, use will be 

made of the special case X = I/oo(0, +oo) in definitions A.3 and A.4 as follows, 

Definition A.11 (Extended Space, Natural Projection) The extended space 

= 1/^(0,+oo) (feMoW 6%/ (Ae projecfmn o/Z/ E 

W o = 1,^(0,%') recorded og a gitbapace o / d e M o W 61/ 
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L e m m a A . 9 CoMaWer Z, E ancf eZemen^s 2,̂ ^ Aofe (Ae 

coMroZ'ufzoM /orm 

(A.33) 
Jo 

Then PrLij has induced norm 

llfTl'ull = 141 + r (A.34) 
Jo 

m Z,oo(0,T). 

Further, use will be made of the following results, 

L e m m a A. 10 Suppose that L E B{X'^^, has elements of the form (A.33) and 

(fe^ofe (Ae 5(ep respo/ige o/Z/ 6?/ Q(() T/ien 

1 1 % ; I I = ArT(Qij), 1 < % < c(i, 1 < ; < dz, V T > 0, (A.35) 

/iGTice 

N T { Q i i ) ••• 

|PxL|| 

-^(Qdi l ) -^(Qdidz) 

V T > 0. (A.36) 

Theorem A.2 Suppose that the elements of L E B{X'^'', X'^^) have the structure of 

rAe^V T > 0, 

\\PTL\\ = | | ( | | P r i | l , ) l l = max J ] i V j . W y ) 
- - i=i 

d2 
< l | i | | = l l (P=o£ |WII= max J ] iV„( (3 j^ ) . (A.37) 

- - i=i 

A.4 Two-Dimens ional Sys tems : A Review of 

Basic Concep t s 

This section introduces some of the well established theory for 2D linear systems. 

For a comprehensive treatment see, for example, (Dudgeon and Mersereau, 1984). 
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Initially we introduce the following partial ordering scheme for ordered pairs of 

integers with % > 0, ; > 0, 

(A, A) < (z, if, and only if, < % and A; < j 

(h, k) = (z, j) if, and only if, h = i and k = j 

(/z, < (%,j)if, andonlyi f , (A, A;)<(2 , j )and( / i ,A;)^(%,j) . (A.38) 

Then a two-dimensional linear shift-invariant system, in general, can be described 

by a convolution of the input u{m,n) and the impulse response function h{m,n). 

Here, however, it is only necessary to consider initially the special case of scalar 

systems whose inpu t /ou tpu t map is described by the recursive structure 

AT Z, 7 7 
^ ^ o(A;, /) - A:, ^ ^ ^ 6(z, j ) ?/(m - n - (A.39) 
k—0 l~Q 2=0 j=0 

for (%, ^ 0. This difference equation describes, in effect, a quarter plane 2D digital 

Alter, which is said to be spatially causal over the quadrant (z, j ) > 0 since ?/(m, n) 

depends only on input and output variables at points {i,j) < {m,n). 

Applying the 2D z-transform to (A.39) (where, using 2D systems convention, zi and 

z are regarded as 'backwards' shift operators) yields the 2D transfer-function matrix 

description 

where 

K L I J 

^(^1,-2:) = - 8 ( z i , z ) = ^ ^ 6 ( A ; , / ) z ^ z ^ , ( A . 4 1 ) 
A;=0 Z=0 2=0 j=0 

and, for notational simplicity, we take 5(0, 0) = 1. 

Now, since 6(0, 0) = 1, B{zi, z) ^ 0 in some neighbourhood of (0, 0), where 

: = {('^1,'^) : k i l < ( A . 4 2 ) 

Hence, in U^, the function G{zi,z) is analytic and has the power series expansion 

00 00 
G(zi, z) = ^ ^ (A.43) 

771=0 n=0 
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As in the ID case, the only truly useful systems are those which are stable. We 

say tha t a system is BIBO (bounded input / bounded output) stable if its output 

sequence remains bounded whenever its input sequence is bounded. Then the linear 

shift-invariant 2D system (A.39) is said to be BIBO stable if, and only if, 

OO 00 

n)| < +00, (A.44) 
m = 0 n = 0 

i.e. if the impulse response is absolutely summable. 

At this stage, a fundamental difference between ID and 2D systems theory should 

be noted (which is one of the major reasons why, in the analysis of 2D systems, a 

simple extension of the ID results is often incorrect). Given two functions P{p) and 

Q(p), consider Then when the dimension of p > 1, even if f (p) and Q(p) are 

relatively prime, their zero sets may intersect resulting in a 'bad' type of singularity 

called a nonessential singularity of the second kind. This type of singularity is only 

encountered in systems of dimension > 2 and has no one-dimensional counterpart. 

Note tha t a zero of Q{p) which is not simultaneously a zero of P{p) is called a 

nonessential singularity of the first kind (which is analogous to a pole of a ID 

system). In (Goodman, 1977) it has been shown (via clever counter-examples) that 

the existence of nonessential singularities of the second kind on the boundary of the 

unit polydisc in the z-plane can cause problems. This has the unexpected result in 

that the stability problem is influenced not only by the denominator polynomial but 

also by the numerator polynomial. For the remainder of this section, however, this 

problem is avoided by assuming tha t A(zi, z) and B{zi, z) are mutually coprime and 

have no nonessential singularities of the second kind. 

The following then is the basic result for BIBO stability of systems given by (A.39) 

due to Shanks, 

L e m m a A . 1 1 (Shanks B I B O Stabi l i ty Test) (Shanks et al, 1972) The 2D sys-

tem (A.39) with 2D transfer-function matrix G{zi,z) of (A.40) is BIBO stable if, 

and only if, 

B ( z i , z ) ^ 0, |zi| < 1, |z| < 1. (A.45) 

Since this result is computationally intensive to check, lemma A.11 cannot be tested 

in all but a very few simple cases. This problem can be overcome, however, by using 

the following equivalent s tandard result due to Huang, 
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L e m m a A . 12 (Huang B I B O Stabi l i ty Test) (Huang, 1972) The 2D system 

W 

B ( z i , 0 ) 9 ^ 0 V | z i | < l , ( A . 4 6 ) 

and 

(b) 

B{zi, z) ^ 0 V |zi| = 1, \z\ < 1. (A.47) 

Note tha t the conditions of lemma A. 12 are interchangeable in terms of Zi and z. 

A.5 Some P rope r t i e s of t h e Vol te r ra O p e r a t o r 

Within this section, some properties of the Volterra operator are established which 

are required for the analysis presented in section 3.9. For proofs of the results see, 

for example, (Dymkov et al., 1999). 

Let E he a finite dimensional normed linear space over the complex field C with 

norm || - ||g and let %+ be the set of nonnegative integers. Also let 5'(Z+, E) be the 

linear space of all sequences on .E, i.e. the functions / : 2 + — T h e n 5'(Z+, E) 

is a locally convex Hausdorff topological space when equipped with the topology of 

uniform convergence on finite sets, i.e. the family of neighbourhoods is defined as 

C/M,. = { / : / G ^(Z+, E), ||/(A:)||g < e, A € ^V} (A.48) 

where N is the set of all finite subsets from Z+, and e ranges over the set M_|_ of all 

positive real numbers. 

Suppose now that E) denotes the subspace of S(Z+, E) of all bounded func-

tions, i.e. / : such that supĵ .̂ ^^ ||/(A)||f; < +oo. Then it is a standard 

fact tha t -B(Z+, E) is dense in 5(Z_|_, E) with respect to the topology of uniform con-

vergence over finite sets. Also B(Z_|_, E ) is a Banach space under a suitable norm 

definition, eg. | | / | | ^ sup;̂ gz_̂  11/(^)11^. 

231 



A Background Results and Theory 232 

The Volterra operator used within this thesis, —>' is 

defined by 

a 
{Vof){s) '•=^'^^Aif{s — i), a E Z+ (A.49) 

1=0 

where ^ y, 2 6%+, are given linear operators. Operators of this form are 

known as discrete Volterra operators or shift operators of the second type. 

Suppose now that there exists some fixed bases in E and V. Then the linear op-

erators Ai, i E Z_|_, can be interpreted as matrices on the complex field C. Also 

associate with each function x E S(Z_|_, E) the analytic function x{z) defined by the 

power series 

00 

a;(z) = (A.50) 
1 = 0 

which converges in the unit disc U = {z E C \ \z\ < 1}. Then it can easily be shown 

that the mapping z —> z(z) is bijective. 

Now associate with each Volterra operator VQ its representation VQ{Z) in the ring of 

power series defined by 

00 

%(z) = ^ z G C. (A.51) 
1 = 0 

Then the mapping is injective between operators on the form (A.49) 

and the set of formal matrix series whose members are of the form (A.51), and it 

can easily be seen tha t the matrix function Vo{z) : E —> F is a linear map for each 

2 G [/. 

Suppose now that the matrices Ai, i E Z_|_, are such that the power series (A.51) con-

verges in some domain which contains the unit disc U. Then it follows immediately 

tha t 

00 

^ ] II A;II < +00, (A.52) 
1 = 0 

and hence, for each function / E -B(Z+, E), 

A i f { s — i ) 

2 = 0 
(00 

i = 0 
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Hence, under these assumptions, Vq is a bounded linear operator. 

Let Vi, V2 : B{'LJ^,E) — b e Volterra operators. Then the composition 

V1V2 : B{Z^,E) —y B{Z^,E) is also a Volterra operator and its representation in 

the ring of power series is given by Also if G -B(Z+, E) then 

the image VoP E B{Z^,E) corresponds to the analytic function Vo{z)P{z). 

The following result now characterises the inverse operator of VQ{Z), 

L e m m a A.13 (Inverse Volterra Operator) If E = V and det 7̂  0, |z| < 

1, z G C, then the Volterra operator VQ is invertible. 

It can be shown that the matrix %/o(z) can be transformed (or factored) by applying 

appropriate elementary operations to obtain the following 

1^(2) = (7i(z)p(z)cr2(2) , ( A . 5 4 ) 

where o'i(z) and (72 (z) are square matrices of appropriate dimension which are an-

alytic in the unit disc U and have nonzero determinants at all points of the closed 

unit disc U, and the matrix p{z), which has the same dimensions as Vo{z), and has 

elements which are all are zero except, possibly, for those on the leading diagonal 

which are monic polynomials with roots in the closed unit disc U. 

Without loss of generality, it is assumed that the nonzero diagonal elements pi(z), - - , 

Pi{z) of the matrix p{z) are in the first I rows with the property tha t each nonzero 

polynomial j);(z) divides pj+i(z), 1 < j f - 1. Then, the matrix p(z) can be 

written in the form 

^ Pi ("Z) 0 ••• ••• 0^ 
0 P2(z) -

p(z) 

\ 

0 

0 

0 

0 0 

0 

0 

0 

( A . 5 5 ) 

The following result establishes tha t the Volterra operators Qi and Q2 generated by 

the matrices (7i(z) and cr2(z) respectively are invertible, 

L e m m a A. 14 (Bijective Volterra Operators) The Volterra operator 

Vo : B ( Z + , E ) — B ( Z _ | _ , ^ ) ia amcf omZy raMtl^(z) = TiVz E C, |z| < 

1, where n = dimi? . 
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The spectrum of the Volterra operator can be characterised by the following result, 

Theorem A.3 (Spectrum of the Volterra Operator) The spectrum S(V'o) of 

operator Vo bg/ 

= U (A.56) 
kl<i 

wAere cr(V[)(z)) mofna; l^(z). 

A.6 T h e o r y of t h e Mult ivar iable Fi rs t Orde r Lag 

The theory of standard differential linear systems with the structure of a multivari-

able Erst order lag can be found in (Owens, 1978) and the references therein. There 

follows a brief summary of the main facts. 

Def in i t i on A . 1 2 (Mult ivariable First Order Lag) (Owens, 1978) An m-input 

proper (Zeacn6e(f 61/ (Ae m x m <roM5/er-/tiMcfwM ma^rza; 

Gyi(g) M (o 6e a mi//(%ranaWeyzr5( order avid oziZ;/ |G/i(s)| ^ 0 

and 

( j ^ ^ ( s ) = A q s + A i ( A . 5 7 ) 

w/iere Ag and Ai are rea^ c07%g<0M( mafncea |.Ao| ^ 0. 

The term 6rst order lag is motivated by the analogy with the classical 6rst order 

lag defined by the transfer-function 

^"^(g) = 005-1-01, Oo^O. (A.58) 

Writing 

GA('S) = { A q s + A x } ^ = { s I m + A i \ ^Aq \ ( A . 5 9 ) 

it can be seen that G/i(g) hcis a state-space realisation specified by A = — Ag A^, 

0 B = Ag ^, C = Im and n = m. This is formalised in the following theorem, 
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T h e o r e m A . 4 ("Owena, 6(nc(/y proper, coR<roZ/a6Ze 

QTid o t g e r f a b / e a y g f e m specz^etf 6 /̂ a f o ^ e - g p a c e ( r i p k ( y l , B , C ) %a <z m z f / f i n o n a b Z e 

first order lag if, and only if,n = m and \CB\ ^ 0. 

[/amp (/le geneg ezpaMgio/i o/G/i(s) /or ̂arge wZtteg o/ |g| we /tore 

GA{S) = C{SLM — A) =• —CB H — - C A B - t—-CA?B + • • • (A.60) 

and hence 

IM — ^ A{S) — {̂ 0 + '^AI\{CB + —CAB + • • • } (A.61) 

and, by equating powers of s"^, it follows that AqCB = IM, i-e. Aq = (CB)"^. Also 

CQM 5e 5ee)% v4i = limg_)oĜ (̂a). 

Extending the analogy, a differential unit memory linear repetitive process whose 

derived conventional linear system Z,^(A, B, C) takes the form of a multivariable 

first order lag has the state-space model 

= —^0 + -̂ 0 ^ + -Bo 

(A.62) 

2 3 5 



Appendix B 

Sampling Result Derivation 

Within this section, the fast sampling of linear repetitive processes result of sec-

tion 6.8.1 is derived. 

Consider the discrete unit memory linear repetitive process described by the state-

space model 

27̂ +1 (p + 1) = ^ + g (p) + Bo 2/A(p), 

2/&+i(p) = a;t+i(p), 0 < p < a, A; > 0, (B.l) 

and regard this process as being derived from a differential unit memory process of 

the form 

^ + Bo ?/&((), 

= C" 0 < t < a, A; > 0, (B.2) 

with initial conditions 2:^+1(0) = d^+i, k > 0, and yo{t) = y{t), 0 <t < a. 

Now subject (B.2) to synchronous digital control with sampling period h, where 

^k+i{Qh), (B.3) 

and where, for integer g, 0 < g < ^, and piecewise continuous input 

'^k+i 

= 'UA+i(̂ ) on [g/i, ( g + l ) / i ) . (B.4) 
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As a starting point to the following analysis, first note that (B.2) has the following 

solution iov k > 0, 0 <t < a, 

2/A+i(^) = C" / 2/t(T) + B d r + 4 + i . ( B . 5 ) 

Jo 

At the time instant t = qh, the solution (B.5), A: > 0, of (B.2) is 

nqh 

Jo 

a;t+i(?/i) = e"'^''{Bo2/t(T) + B%f&+i(T)}(fT + ( f t + i l . (B.6) 

Similarly, at the t ime instant t = {q + l)h we have, for k > 0, 

( ^(9+l)'i 
a;t+i((9 + l)/i) = e-'^''{go3/&(T)+B'UA+i(T)}dT + dA+i 

= e %(^) + B ?/&+i(T)} (fT 

f (g+i)^ 
+ / 2/6(1-)+ gi/t+i(T)}(f'r + (ft+i 

J qh 

r{q+l)h 

7 
J qh 

e"' { Xt-n{qh) + e''''" / e "^{Bo ^ ( t ) + B mh-i(t)} dr 

(B7) 

Now consider each term in this expression in turn. 

Firstly look at the term involving Uk+i{t) in (B.7). Due to the fact tha t the input 

is piecewise continuous, i.e. 'Ut+i(() = ^&+i(g/^) on [g/z, (g + l)/i), we can write for 

A:>0, 0 < g < ^ , 

p(q+l)h ph 

-J qh i/ 0 
nh 

= (B.8) 
Jo 

Now consider the 3/j%(() term in (B.7). Initially note that, under fast sampling con-

ditions (i.e. under h — 0 ) , yk{t) on the interval [qh, {q + l)h) can be approximated 

by Vki^h), 0 < q < k >0. This approximation improves as h — 0 , and we have 

lim i/A(T) = 3/&(g/i), on [g/i, (g + l)/i). (B.9) 
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This is equivalent to the cissumption that the previous pass proRle is piecewise 

continuous. 

Hence, under this assumption, the yk{t) term in (B.7) can be written 

r{g+l)h ph 

dy = (fT (B.IO) 
J qh Jo 

Then combining (B.8) and (B.IO) and introducing the notation of (B.3) enables 

(B.7) to be written 

37^!! = + + (B . l l ) fc+i 
JO 

Comparing this result with (B.2) gives 

A = = e-"^^BdTandBo = A / e-^^Bod-r (B.12) 
Jo Jo 

aa required. 

In the following analysis, it is shown tha t the discrete linear repetitive process (B.l) 

obtained via the synchronous sampling scheme defined by (B.3) and (B.4) becomes 

a differential linear repetitive process of the form (B.2) in the limit h —>- 0+. 

Following the approach in (Ackermaun, 1985), from (B . l l ) we can write, 

(B.13) e 
' 0 

Now consider each term in this expression in turn. 

Firstly look at the term involving Using the power series expansion for 

we can write 

" A%+ A + 0(/l^) - /n ) 

= (B.14) 

where 0(/i^) represents terms involving h'^ or higher powers of h. 
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Similarly, for the term involving ul^-^ we can write, 

lim 
h I Jo 

linr^ + -Ah + 0{h^)^ J (J„ + AT + 0(r^)j B dr ul,^^ j-
ft—>•0+ 

= lim ^ {(7^ + AA + [/t + } 

= ( B . 1 5 ) 

Finally for yl we have 

= ^lii^ — ^ (/n + Ah + 0(h'^)^ J ( / n + AT + 0(T^)'J BQ DT 

= B o 2/^. ( B . 1 6 ) 

Also note that , in the limit h —> 0+, and yl become continuous variables. 

Hence, combining these three results, and noting that , in the limit, 

^1!^+ ̂  - 4+i) = (B.17) 

we can write 

^%+i — ^ ^ % + i + -B^&+i + -Bo3/&, ( B . 1 8 ) 

which, as h —>- 0+, approaches 

w A r A + i ( t ) + B + Bo ?/&((), ( B . 1 9 ) 

which is just the differential linear repetitive process (B.2) as required. 
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