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Abstract

Recognising faces through model-based feature extraction and description currently appears to be
less popular than statistical or face-based recognition approaches. Certainly there is concern that
model-based approaches might not prove reliable in practice. Accordingly, this thesis describes a
programme of research for improving model-based recognition through robust feature extraction,
selection and combination. First we present a new two stage process for finding eyes. A
reformulated evidence gathering process is used to determine the rough location of the eyes by
exploiting their natural concentricity. Their location was refined by an improved deformable eye
template which does not require internal energy terms and uses few parameters. These parameters
were best optimised using a genetic algorithm. The technique produced 91% and 93% successful
location rates on face databases of 1000, and 88 faces, respectively. A feature vector composed of
29 geometric, 6 colour and 55 forehead contour measures, was extracted from 44 faces from the
XM2VTS database. To achieve this, the skin boundary was extracted by region growing using a
sample of skin below the eyes. Other features such as the nose, mouth and eyebrows were then
located by noting that these features are enclosed by skin but exhibit different statistical properties.
A new method, based on intrinsic feature variance, is presented for combining and selecting
features which are of potentially disparate magnitude and/or independent sources. Our method
provided an increased variance in the classification matrix and facilitated identification of the most
discriminating features. Surprisingly, although the eyes were a good initialiser in the search for
other face features, their template parameters offered low discriminatory power. Much higher
discriminatory power was available through the normalised Fourier descriptors of the forehead
contour. We simulated the effect of measurement noise on classification performance and found
that errors of 6 pixels on the geometric features resulted in up to 43% classification error.
Recognition rates of 77% and 72% were experienced using manual and automatic geometric
measures. However, when we combined the geometric measures with perfectly extracted contour
measures from its first eight Fourier descriptors we achieved 100% classification. Our work
indicates that model-based face recognition is achievable and suggests relative importance of the
components of a feature vector. This information is clearly of interest given the high computational

requirements of such an approach.
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1. Introduction

There is an ever increasing commercial demand for reliable personal identification systems which
has driven research into areas such as voice recognition [11], fingerprint analysis [9], gait [18], and
signature analysis [66]. Currently, face recognition systems are emerging as a powerful tool within
the biometric recognition community. Closed circuit television (CCTV) systems are now common
place in retail shops and society in general and can be used to capture images of suspects. An
attractive benefit of automatic face recognition is that, unlike finger print analysis, it can be
performed without the observed target being made aware. For obvious reasons, these benefits
appeal to organisations involved in security or covert operations. Face recognition systems are now
able to provide a significant contribution in forensic security and law enforcement applications.
These applications currently use human descriptions of faces as a system input; parameters may
include, colour of the eyes, shape of the nose, jaw and eyebrows, size of the mouth, colour and
texture of skin and hair for example. The recognition system is then tasked with retrieving faces
from a database which best match the data input from the human description. In this type of
application the natural features of the face (eyes, nose, mouth etc) are extracted and compared in
order to effect recognition; such systems are known as feature-based. A feature-based face
recognition system may have just one instance of a particular subject's face which needs to be
located on a potentially large database. In feature-based systems we need to develop techniques
which are robust enough to locate the major face organs and landmark points which are common to
most faces, over the full range of the database. After locating the common features, we seek metrics
which emphasise the differences in the extracted features, yielding the maximum discriminatory
measure between all the faces in the database. Unlike gait recognition, we cannot rely on powerful
temporal information to initialise our search for features [18]. The only assumption that we can
reasonably make is that there is a face somewhere within the image. Given this limited information,
clearly, feature-based face recognition is fundamentally a difficult task for computer vision
techniques. On the opposing end of the face recognition spectrum, the holistic-based methods are
typically used for security access systems. In these methods, the whole face (indivisibly from its

components) is used to train a recognition system. The face must be segmented from the



background in order to minimise the effect of variations in backgrounds or other extraneous
artefacts on recognition. Then after training, the system can either grant or refuse access to the
requested resource. Typically, holistic systems require a large number instances of each training
image with a small set of distinct images. For example, the eigenface based system of Turk and
Pentland [78] used a total of 2500 training image of 16 different subjects. After training, which
may be performed as a background task, the system was able to perform in near real-time, i.e.
considerably faster than a feature-based system. Our interest in face recognition systems is biased

towards realising the aspirations of our sponsor's requirements which are detailed in the following

section.

1.1 Sponsor's Requirements

This research was part funded by the Home Office (UK) and was therefore a programme of
research with perhaps more pre-defined goals and deliverables than other research programmes.
The Police Information Technology Organisation (PITO) within the Home Office, have a
psychological coding scheme which attempts to encode aspects of facial appearance which are
most likely to be remembered by a witness recalling a face. Their scheme is adapted for witnesses
searching a database of facial images to retrieve a previously viewed face. They believe this
contrasts with facial coding schemes which have been developed for the automatic comparison by
computer of target facial images within a database of facial images. Nevertheless, there are
common functional units which can be implemented and investigated. The Home Office wish to
train artificial neural networks to encode facial components when individual features (eyes, nose,
mouth etc.) are presented to the appropriate network. The neural network portion of work is outside
the main thrust of our research but ran concurrently with researchers at Warwick University. We
(Southampton University) were contracted to identify and isolate facial features for presentation to
the networks. The Home Office provided a database consisting mainly of students and staff from
Aberdeen University and police officers. The database contains over 1000 faces from different
ethnic backgrounds, and genders. The images are typical passport photos: usually the whole head is
visible, surrounded by a plain background but in many cases the face fills most of the image so that
the head is outside the frame of the image.

Jia and Nixon [42] tested feature extraction techniques which were able to extract
geometric features on a small (40 faces) database. In order to interface with the existing Home
Office's psychological coding scheme it was initially suggested that we convert the existing

FORTAN suite of feature extraction algorithms to be structured as MicroSoft (MS) Windows



dynamic link libraries (DLL's), with a well defined and public application programmers interface
(API). This would allow third party Windows development tools, for example MS Visual Basic, to
be used to handle overall control of the system and provide a customisable Graphical User Interface
(GUI) front end. It became apparent [3] that while the algorithms showed interesting feature
extraction techniques on a database of 40 faces, they appeared insufficiently robust for feature
extraction on a 1000+ database. Part of our research included devising new algorithms capable of

addressing feature extraction on a larger scale than previously reported in the literature.

1.1.1 Manually coded face features

Each subject is represented by a front-view full-face image and a profile image. From these images
the operator is required to produce a physical coding record of the face, mainly from the front-view
image) and a psychological rating on the facial features. The physical measures consists of the
location of 38 landmark points on a face, shown in Figure 1.1. Some of the points in the coding
scheme (such as eyes nose, mouth) are quite obvious, others require a little more explanation. The
landmark points and the measures derived from them is given in section 1.1.1.1 while the

parameters for the psychological coding is given in section 1.1.1.2.

1.1.1.1 Physical coding

Points 1, 2. The manual coding process begins by inputting the eyes’ points 18 and 19. The system

draws lines at 120" to the horizontal axis which enables points 1 and 2 on the outer hair

boundary to be input. Points (19, 18, 1) and (18, 19, 2) make an angle of 120"

Points 5, 6. The system extends a vertical line mid way between the eyes, representing their axis.

The operator is prompted to input the co-ordinates where this line intersects the inner and

outer hair boundary.

Points 33, 34. The system prompts the operator for points 34, 32, 35 on the mouth. The system

extends a line through points 34 and 35 and prompts the operator to input points 33 and 36
on the jaw. Our sponsors define points 33, 34, 31, 35, 36 as the mouth line.

Points 30, 32, 37. The system extends a line perpendicular to the mouth line through the centre of

the mouth, point 31and prompts the operator for the upper lip, lower lip, and chin.

Points 3, 4. The system extends lines from the centre of the mouth to intersect the left and right

jaw. The angle subtended by points 33, 31, 3 and point 36, 31, 4 is 30" in both cases.



Points 7, 8, 9, 10. The system prompts the operator for point 38 which is the highest point on the

left eyebrow. The system then extends a line through this point to intersect the inner and

outer hair boundaries on the left and right sides of the face.

Figure 1.1 Landmark points used in PITO coding scheme.

Our sponsors use each set of face points to calculate three types of measures:

e Distance measures D, between two points p1, p2 with co-ordinates (x;, y;) and (xz, y2)
1

D=((x1—x2)2-—(y]—y2)2)5 (1.1)

s Angle measures defined by the angle subtended by three points, p1, p2, p3.

e Area measures A, in which the features of interest are represented as an irregular polygon.



A= 0.5((x,y2 + )cz){g—i-...)cny,)—(y,x2 +x,y2+...x,y2)) (1.2)

The area and distance measures of interest are shown in Figure 1.2 and Figure 1.3 respectively.

Points 3, 37,4 constitute the chin angle which will vary with the lowest point on the chin, point 37.

Area Points
Face area 3,37,4,36,10,2,5,1,7,33
Hair area 11,8,6,12,10,2,5,1,7
Eye Area 22,20, 23,21
Chin area 33, 3,37, 4, 36
Mouth area | 34, 32, 35, 30
Nose area 26,27,23,24

Figure 1.2 Area measures from landmark points using the PITO coding scheme.

Measure number Name X1 »n X2y
dml Face Height S 5 137 37
dm?2 Face width at brow 7 7 10 10
dm3 Face width at cheek 28 28 129 29
dm4 Face width at mouth 33 33136 36
dm5 Face width at chin 3 3 4 4
dmb6 Hair length 5 5 11 11
dm?7 Forehead height 6 8 5 5
dm8 Forehead width 8 7 9 10
dm9 Eyebrow height 14 14121 21
dm10 Eyebrow width 16 16 | 17 17
dmll Eyebrow setting 15 1516 16
dml2 Eyebrow thickness 388 38| 14 14
dm13 Interocular distance 18 18 119 19
dml14 Eye Narrowness 20 20 | 21 21
dml5 Nose width at bridge 23 23 | 24 24
dml16 Nose width at base 26 26| 27 27
dml7 Nose length 5 231 5 26




dm18 Mouth width 34 34 | 35 35
dm19 Upper lip thickness 30 30 | 31 31
dm20 Lower lip thickness 31 31 | 32 32
dm?21 Chin height 32 32|37 37

Figure 1.3 Distance measures from landmark points using the PITO coding scheme.

1.1.1.2 Psychological coding

The psychological features of interest and their ranges are listed in below are self explanatory.

Feature

Range

—

face height
face width

face shape

complexion
complexion
complexion
complexion

hair length

© e N LA W R

hair tidiness

—_
o

. hair type

. hair volume

— —
N =

. hair greyness

. hair colour

[ -
W

. forehead height
. forehead width

—_
W

. forehead

[
~ O

. eyebrow thickness

[,
oo

. eyebrow shape

[
O

. eyebrow setting

[\
o

. eyebrow height

o
—

. eye size

N
[\

. eye narrow

[\
[¥8]

. eye spacing

short, long
narrow, broad
bony, fleshy
fair, dark

pale, florid
unlined, lined
clear, blemished
short, long

tidy, untidy
straight, curly
bald, full-head
no grey, white
black, brown, red, fair, blond
low, high
narrow, broad
straight, sloping
thin, thick
straight, bent
meet in middle, set far apart
low, high

small, large
narrowed, open

close set, wide spaced




24. eye setting

25. eye colour

26. ear size

27. nose (small/large)
28. nose length

29. nose width

30. nose shape

31. nostril size

32. nose tip width

33. mouth size
34.upper lip thickness
35. lower lip thickness
36. chin size

37. chin shape

38. chin recession
39. no facial hair

40. moustache

41. sideburns

42. beard

43. squint

44. bags under eyes
45. scars

46. spectacles

47. earrings

deep-set, protruding
blue, grey, green, hazel, brown
small, large
small, large
short, long
narrow, broad
concave, hooked
small, large
narrow, broad
small, large
thin, thick

thin, thick
small, large
pointed, square
receding, jutting
no, yes

no, yes

no, yes

no, yes

no, yes

no, yes

no, yes

no, yes

no, yes

Figure 1.4 Psychological parameters for PITO coding scheme.




1.1.2 The motivation and scope of automation.

Coding each subject in terms of their physical and psychological feature would appear to be a
tedious and labour intensive process. Our sponsors would like to code faces from 43 police forces
in the UK. They estimate 20,000 pictures to be presented each year with a suggested coding time of
2 minutes per face. Due to the volume of pictures and speed conversion rate required, it is obvious
why our sponsors are keen to automate the process. Our sponsors are interested to be able to
determine:-

e What features might be automatically extracted and at what cost.

e What degree of automation might be possible. User intervention is admissible but not

preferred.

e What quality of picture is required.
They also advise that algorithms which facilitate:

e The location of the head, eyes, nose etc, determination of features such as complexion.

e Tidiness of hair etc.

are of particular interest.

Essentially, the main areas of interest lie in the physical points as our sponsors envisage
that these parameters will be easier to define and extract than the psychological parameters.
However, examination of the psychological features suggests that it may be possible to derive many
of their values from the physical points. It is difficult to define an algorithm which robustly

identifies hair so we shall focus on the facial features such as eyes, nose, mouth and the skin

boundary.

1.1.3 Automatic extraction of physical points

Some of these physical features appear to be quite distinct whereas others would appear less clear,
especially for extraction by automatic techniques using computer vision. The eyes are a well
defined structure not only because they are the only face feature containing an analytically
described shape (the circle in the iris), but also that there is considerable reflected structure. For
example, the shape of the eyebrow can follow closely the eye socket which surrounds the eyeball.
As such, it is not surprising that there have been computer vision approaches targeted primarily at
automatic eye extraction. The mouth would appear to be quite distinct spatially, but it is subject to
change in shape with facial expression and when talking. The nose would appear less distinct for

automatic extraction since the PITO coding points' accuracy depends primarily on available



contrast of the sides of the nose with facial skin. Other features are much less distinct. This is in
part because they may depend on the absence of hair for precise definition. For example, the points
on the inner hair line just above the eyebrow naturally depend on the arrangement of a subject's
hair. Other points depend more on illumination, such as the chin. It is possible that the contrast in
the jaw might be poor unless special illumination is used. Of these measures, the eyes appear to be
the best defined, justifying their inclusion in model-based recognition scenarios. In a similar
manner, and to conform with the ambitions of this project's sponsors, this research has developed
new ways to find the eyes, with reliability and precision in large databases and without priming.
Then, the other face features marked as of interest to the PITO scheme are extracted. Some of these
are exactly those points used within the PITO scheme, such as extrema of the eyes and mouth. Due
to the nature of the face data, the nose points are extracted via the minima which represent the
positions of the nostrils. Given difficulty in precise location of some of the points defining the face
outline, especially in the region of the jaw, these points are determined with a contour which
follows the upper face region. In this way, a set of measures is derived which follows closely the
original PITO coding scheme, but with selection consistent on the nature and abilities of automatic

computer vision algorithms.

1.2 Combining the Face Features for Recognition

After extracting facial features (especially those which a witness may use to describe a suspect) we
attempt to combine the features in a manner which reinforces the differences between faces in a
database, and thereby minimise the probability of mis-identification. Using a database of 1000+
faces, we aim to show that the variance of a discriminatory measure can be reduced by using
measurements which are statistically uncorrelated. It appears that the original application to faces
was made by Jia and Nixon [42]. It has been noted that, "The importance of using multisource
data....lies in the fact that it is generally correct to assume that improvements in terms of
classification accuracy can be achieved by employing additional independent features provided by
separate sensors”, [46]. We wish to extend this idea to multiple orthogonal face features and also
expect improvements in classification accuracy. Furthermore, by identifying the features containing
the highest variation we can minimise effort in extracting redundant features. This is of importance

to vision-based biometrics, where the computational effort in feature extraction can be high.



1.3 Thesis Organisation

The remainder of this chapter presents an overview of some of the techniques available in
face-based and feature-based recognition systems. Our work for locating face features will require
feature-based tools. However, to justify our generic method of feature selection and combination
we have adopted principal component analysis (PCA) from face-based techniques. Accordingly, we
describe PCA and the eigenface method of face recognition before exploring some feature-based
techniques. In chapter 2 we review earlier eye extraction techniques and present a new and robust
method of eye centre location. In chapter 3 we extract the remaining features using the eyes as an
initialiser. Section 3.4 provides an appraisal of the automatic feature extraction technique used in
this thesis. The techniques were chosen to be best suited to system requirements indicated in
section 1.1. Chapter 4 compares Fourier descriptors (FDs) representations proposed by Zahn and
Roskies [89] and Kuhl and Giardina [41]. Zahn and Roskies descriptors were selected for
comparing the forehead boundary, extracted by skin segmentation. A general framework for
selecting and combining extracted features is presented in chapter 5 with overall conclusions and

further work in chapter 6.

1.4 Face-Based Recognition systems

Turk and Pentland's [78] eigenfaces based on Principal Component Analysis (PCA), is one of the
most well known and popular holistic approaches to face recognition. In order to appreciate an
eigenface based recognition system the salient points on PCA are summarised from Manly's primer
on Multivariate Statistical Methods [56]. Given a data set of n individuals expressed as p vectors,
X, X,...X,, PCA attempts to find p ordered, uncorrelated indices Z;, Z,,...Z,, which describe the
variance in the original data. The indices Z; are known as the principal components of the data, and
are ordered in decreasing magnitude, i.e. 0(Z) 2 6XZy) ... GZ(Z,)) where o° denotes variance.

Expressed mathematically,

10



Z,=a, X, +ta,X,+...a,, X (1.3)

PP
and the variance of the first principal component, 6°(Z;) is a maximum subject to the constraint
aj, +ay+..a;, =1 (1.4)
The constraint is introduced to prevent an increase in 6°(Z;) simply by increasing the j-th

coefficient aj;. Similarly,

Z,=a,X ta,X,+..a, X (1.5)

pp
and the variance of the second principal component, 6°(Z,) is a maximum subject to
2 2 2 _
a, +ayt..a,, =1 (1.6)

with the additional constraint that Z;, and Z, are uncorrelated. In general, the i-th principal

component Z; is given by

14
Z =Z%Xj (1.7)
j=1

subject to

Yaz= (18)

j=1
and the Z; being uncorrelated. The variances of the principal components, 6°(Z) = A; are the

eigenvalues of the sample covariance matrix C, where

o Cyp
Gy Cp 6
2 P
c=| 7 (1.9)
C C C

in which the diagonal element c¢; is the variance of X; and c;; is the covariance between vectors X;
and X;. The set of constants a;;, ay,...a; (scaled such that the sum of their squared values equals
unity as in equation (1.8)) is an eigenvector calculated from A, its corresponding eigenvalue. The

sum of the eigenvalues equals the trace of C i.e.

11



L+h+. A =c teyt..c, (1.10)
The sum of the variance of the principal components is equal to the total variance of original
variables. For maximum data compression, the original data should be highly correlated, so that
PCA can represent a large number of variables by a smaller set of principal components, each
component representing a different dimension in the data. If the original data was already
uncorrelated, then there is little to advantage be gained from PCA. If the first few principal
components are deemed to contain a sufficiently high percentage of the total variance, these
principal components may be used to represent the data. However, at this point it is worth noting
that the form of the principal components is still a linear combination of all the original variables in
equation (1.7) and does not offer any information regarding the variance of the individual variables.

Turk and Pentland [78] used a database of M faces images, I'; I, .. I'y, to create the image

of an average face, ¥, defined by

I M
W= — 1.11
M;F,, (1.11)

where each face image of size NxN was converted to an N* vector. The difference ¢;, between each
face I}, and the average face ¥ is given by

O =T,-¥ (1.12)
The difference in the database of faces can be characterised using PCA to find M uncorrelated

vectors, u, which best describe the data chosen such that

1 M
A :M—’;(u,{@nﬁ (1.13)
is a maximum subject to
; 5 1 ifl=k 14
W =% =0 otherwise (.19

where the scalars Ay and vector u, are the eigenvalues and corresponding eigenvectors of the
covariance matrix

M
C=) @ 0" =AA’ (1.15)

n=1
where the N°xM matrix of face image differences constructed by packing the training vectors in a
g yp g g

matrix A, given by,
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A=[o, 0, 0,] (1.16)

Applying PCA to the covariance matrix C, with face images of size 128x128 pixels, would require
finding the eigenvalues and eigenvectors of C, which is a N’xN’= 16384x16384 matrix requiring
approximately 2.7x10° bytes of memory. These excessive memory requirements were avoided by

first finding the eigenvalues 4, and eigenvectors v;, of A"A such that
ATAv, =puv, (1.17)
Pre-multiplying by A gives
AATAv, = Ay, (1.18)
By definition, if C has eigenvalues and eigenvectors A and x, then
Cx=Ax (1.19)
Substituting C = AA", A = i; and x = Av,, shows that Av, are the eigenvectors of C. The matrix
L=A"A is an MxM matrix whose elements are given by
T
L,,=2,2, (1.20)

so finding the eigenvalues and eigenvectors of L requires less computational effort than finding the

eigenvalues and eigenvectors of C from equation (1.15). The eigenvectors w,; are now found using

M

u, =2v,kd)k (1.21)

k=1
In practice it may be possible to use a reduced number of eigenfaces, M' instead of M, for faces to
be adequately classified. The characteristics of a class of face images, €2, can be assigned to a
vector of weights which are proportional to the contribution of each eigenface in the class. Each

face class is projected into "face space" using

Q" =wy,,...0, | (1.22)
where the weights, ax are given by,
w, =u (I'-Y¥) (1.23)

An image with a characteristic pattern vector Q may be deemed to belong to the k-th face class with

vector Q, if the Euclidean distance between the vectors is less than a threshold value 6,
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g =le-a.]<6 (1.24)
Alternatively, the image may be classified as a face which has not been presented to the system or
classified as not being a face at all. Introducing a new face into the system requires retraining, a
computationally intensive process but one which can be performed as a background task. Turk and
Pentland also show that it is possible to use face space to locate a face in an image. A face map is
constructed from an input image /(x, y) by calculating the distance &, between the local sub-image

and face space. After some algebra and correlation (denoted by ®) they show that

M
£ (x, ) =TT (x, )T (x, ) -2T(x, )@Y+ ¥ ¥ [T(x,y) ®u,~¥®u,| (1.25)

i=1
where regions of low distance ¢ indicate the likely location of a face. Their database comprised
2500 faces of 16 different subjects. Although they achieved a peak classification rate of 96%, their
system was sensitive to variations in face orientation, illumination and very sensitive to head size.
Their system also required the face images to be cropped to prevent intensity variations in the
background from contributing to the eigenfaces.

Purnell et al [65] have noticed that most face recognition results currently in the literature
have been generated from databases which have used Caucasians to test their algorithms, with little
or no reference to other population groups. They evaluated an eigenface based recognition system
and concluded that the system performance did not depend on the different population groups. The
method of face recognition used in this thesis is based on extracting geometric features, as opposed
to Eigenface based. However, based on the work of Purnell et al it seems reasonable to assume that
a face recognition system based on extraction of geometric features would also be invariant to the
population group. Robertson and Craw [70] have noted that many researcher have published results
on their own, small sized databases with images which may be suited to their own particular
application. Testing on different databases makes comparison of techniques difficult, hence the
introduction of the Face Recognition Technology (FERET) Test in 1994. This database contains
multiple images of a few thousand face images which can be used as a common database for
evaluating face recognition systems. Some of the face images were reserved for training while
others were reserved for testing. Phillips et al [64] evaluated ten face recognition systems in 1996
and improved versions of these systems in 1997. These systems used holistic methods such as,
elastic bunch graph matching, template matching, neural networks and variations on eigenfaces.
The recognition rates varied from 30% to over 80% if the eye co-ordinates were not given, rising to

in excess of 90% where the eye co-ordinate were supplied.
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Zong [32] uses singular value decomposition (SVD) for face recognition. The system used
45 training samples of 9 subjects. An error rate of 42.6% was attributed to statistical limitations of
the small number of training samples. Isodensity lines (curves of constant grey-level intensity) have
been used by Nakamura ez a/ [60] on a database consisting ten pairs of pictures; three pairs of men
wore spectacles, two pairs of men had thin beards and the other two pairs of face images were of
women. On this small data set 100% accuracy was reported. Currently, there appears to be great
interest in neural network based face recognition systems. Starkey and Aleksander [75] present an
overview of a neural network based face recognition system. In this study, the net was trained to
recognise 100% of their 96 face database.

Lanitis et al [52] used active shape models, which could account for variances in facial
expression, individual appearance, 3D pose, and lighting. PCA was used to characterise the above
variances from 690 training images of 30 individuals. Instead of searching for a key feature and
using this to locate the remaining features, they attempt to fit a complete model to a face image.
Their model used three main components:- (a) A shape model consisting of a manually acquired
152 Points Distribution Model (PDM), with the landmarks distributed around the eyes, nose,
mouth, chin and ears. (b) a "shape-free" grey-level model of the face obtained by deforming each
face PDM to the mean face PDM in the training set (¢} A local grey-level model which uses the
grey-level profile perpendicular to the 152 landmark points. The models can then be used in a
multi-resolution Active Shape Model (ASM) search for the corresponding points on a new face
image. To test the technique a new model was trained using 40 test images from the database and
fitted to another 40 faces. Landmarks were successfully located when then the model was
initialised + 20 pixels from the correct position, £ 12 degrees from the correct orientation and 70%
of the mean scale. A fast processing time of approximately 2 seconds on a Sun Sparc 20 work
station was mentioned to achieve * 3 pixels from the measured landmarks. A minimum
Mahalanobis distance classifier was used on their normal test set consisting of 10 images of 30
people and their difficult database, consisting of 3 images of 30 people. On the normal database
they reported recognition rates of 50.3% for the using the shape model up to 92.0% when using
shape combined with local grey-level and shape free models. For the difficult test set the
corresponding recognition rates were 15.6% and 48.9% respectively. Their results on gender
classification suggests that the shape free and grey-level models were best suited for this task,
achieving 94% correct classification using 10 images of 20 individuals for training and 10 images
of 10 people for testing. Results for variations in illumination were not presented but can be

accommodated by training the shape free and grey-level models under varying illumination
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conditions. The results appear encouraging and robust also offering a certain degree of insensitivity
to occlusion. However, Lanitis et al point out that although the models are flexible, they are still
specific and can therefore only vary in ways encountered in the training set. The training stage for
this approach is quite tedious since it requires 152 manually coded landmarks per example face.
The amount of manual work required is amplified ten fold since they have used a 10:1 ratio of
training images to individuals. Training of this type of system is less attractive than training purely
grey-level intensity variation required in Turk and Pentland's scheme [77]. It would be most
interesting to use Lanitis et al's shape models on a larger database of individuals to evaluate the
effectiveness of a training set. It may then be possible to build libraries of shape modes, from which
shape-free and grey-level models may be derived.

Chellappa et al [13] present an extensive, critical literature review which outlines many of
the techniques and applications for face recognition systems. This review compares the results
obtained by various numerous authors employing techniques ranging from face-based to feature-
based. The task of direct comparison of the techniques was made more difficult because the
different authors used different databases of different sizes, which usually contained less than 50
people. Zhang et al [90] redressed these difficulties by comparing three topical techniques on a
common database of 100 people. The techniques chosen for comparison were eigenfaces [78],
elastic matching [49] and auto-association and back-propagation neural networks [15]. Their
images were taken from the Massachusetts Institute of Technology, the Olivetti Research Lab,
Weizmann Institute of Science and Bern University. A range of illumination conditions were
included for each person and the images were cropped and scaled to have roughly the same size. A
nearest neighbour classifier was employed for the eigenface approach. For the auto-association
neural network, matching was performed using a second neural network operating in classification
mode. The elastic matching scheme used Gabor wavelets [19] to generate a set of face features,
which often co-incidentally but not necessarily, correspond to features that may be extracted in
model-based such as eye, nose, mouth etc. Matching was again performed using a nearest
neighbour classifier. Their results, summarised in Figure 1.5, indicate that the elastic matching
scheme performed consistently well across the set of databases with recognition rate at least equal
to the eigenface scheme. The neural network approach consistently provided the poorest
recognition rate. When tested on the database composed of the four databases, recognition rates for
the eigenface and elastic matching systems were 66% and 93% respectively. The drop in
performance in the eigenface system on the large database was due to variations in illumination

between the smaller databases which introduce biases in distance calculations, through the "average
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face". Given the relatively poor performance of the neural network system on the individual
databases, recognition was not attempted on the large databases. However, in the overview of the
three techniques, Zong et al referenced Bourlard and Kamp [5] who show that the best performance
achievable by the neural network is limited to that obtainable by the eigenface system. Using Gabor
wavelets to extract key feature points in the elastic matching method made matching algorithm less
sensitive to lighting variations, since the key points rather than the whole image is used for
matching. In addition, the elastic matching algorithm supports deformation which made the system
more tolerant to changes in facial expression. Elastic matching is computationally more expensive
than nearest neighbour classification used by eigenface systems. However its benefits outweigh its
costs, since unlike eigenfaces, a retraining stage is not required to include a new face into the
system for recognition. Finally, deformable matching offers itself to multi-resolution schemes

which may be less readily usable in an eigenface environment.

Database Eigenface  Elastic Matching  Neural Network
MIT 97 % 97% 72%
Olivetti 80% 80% 20%
Weizmann 84 % 100% 41%
Bern 87% 93% 43%

Figure 1.5 Recognition rates achieved using popular face-based methods.

1.5 Feature-Based Recognition Systems

In feature-based recognition we seek to locate, measure and compare constituents and the contour
of the face. Kaya and Kobayashi [38] developed face recognition systems based on 9 manually
extracted face features and a nearest neighbour classifiers. Their data was from photographs of 62
faces using special equipment to ensure consistent face orientation. They developed an information
theory based model of a recognition system in which ideal feature extraction signal sources,
corresponded to signal. Noise in the recognition system was modelled as the sum of measurement
errors from hardware equipment and intrinsic within-class differences. They extrapolated a 90%
recognition rate for 15,000 faces using constants derived from their 62 face database.

Kanade [37] used distance and angle measurements on the eyes, nose and mouth regions to
characterise a database of 40 images. The face features were located by searching for local minima

in the vertical and horizontal projections of edge maps. First the eyes were located using the
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vertical projection of the edge map. The vertical projection also enabled the height of the head, the
locations of the mouth and nostrils to be determined. The horizontal projection enabled them to
determine the width of the face and the bridge of the nose. Their database consisted of 20 training
images and 20 test images which were acquired one month after the training images. They
compensated for variations in picture size by considering ratios of their 16 face measurements and
achieved a peak recognition rate of 75% using a simple distance based similarity measure.

Kelly [44] used many heuristics in a multi-resolution scheme to extract face and body
measurements. This work is more significant than those mentioned above because Kelly's scheme
used computer vision techniques, rather than manual extraction of features. The head was located
by searching the edge map for an oval shape using template matching. The locations of the eyes,
nose and mouth were then found using knowledge of the likely position of these features within the
head. The outline of the body was segmented by generating an image which was the difference
between an image that contained a person, and one that did not. They extracted 10 body
measurements and distance measures between various part of the face, e.g. between the eyes, eyes
to nose, eyes to the top of the head. Nearest neighbour classification using the leave-one-out rule
was used on their database of 72 images of 10 people.

Craw et al [16] also used a multi-resolution scheme to locate face features. They reduced
their images from 128x128 to 8x8 using local averaging. The head outline on the reduced image is
traced using a line follower, which included some heuristic rules, guided by the template, to
identify edge pixels belonging to the head outline. They found the process was more successful by
iterating from the low resolution of 8x8 through 16x16, 32x32, 64x64 before reaching the full
image size. They did not attempt to classify faces from their 20 face database. Instead their
subjective appraisal of the extracted features indicated 50% correct eye location, 67% correct
eyebrow location, 95% correct mouth location and 60% correct head outlines. Craw er al [17] used
another template matching scheme to locate face and its features in an mage. They attempted to
locate 40 landmark points using a template composed of 1462 feature points. They used simulated
annealing to optimise the template which was represented by a polygonal random transformation as
described by Grenander et al [30] solution than their line following algorithm, but only 1292 were
reliably located.

Brunelli and Poggio [8] compared geometric feature extraction with template matching and
concluded that the optimum strategy for face recognition is based on holistic methods, specifically
template matching. They used feature extraction techniques similar to those used by Kanade [37] to

extract face features such as eyes, nose, mouth and eyebrows. Dynamic programming was used to
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follow the roughly elliptical line of the chin. From these facial features they constructed a 35
dimensional feature vector. The suitability of the features for recognition was examined by
considering the Min/Max ratio, which is the minimum distance to a wrong correspondence divided
by the maximum distance to the correct correspondence. High values of Min/Max ratios are
desirable since it implies high separations of the face classes. For their data set, the Min/Max ratio
varied from 1.6 to 1.3 as the class size varied from 5 to 47. A Bayes classifier provided recognition
rates which varied from 90% to 50% over the range of the class size. Recognition experiments
using correlation were performed to determine the effect of scale and pre-processing. Their results
indicated that intensity gradient, computed with an L; norm on a Gaussian Regularised image was
better than on an unprocessed image, normalisation by the local intensity or the Laplacian of the
image intensity. The authors mention a 100% success rate using their correlation based recognition
scheme. They also note that the recognition rate achievable using PCA, for a given set of images,
will be at best equal to that attainable using correlation, since principal components are linear

combinations of the data.

1.6 Conclusion on Current Face Recognition Methods.

Neural Networks, eigenfaces and other holistic face recognition systems may use a large database,
but multiple cues of the same face are typically required for training. They do not typically provide
individual face features, in which our sponsors are most interested. It is possible to train holistic
methods to locate individual features. For example, the idea behind "face space" to locate a face
may also be extended to locate local face features. Our sponsors have expressed a preference to
minimise human intervention. Model based methods do not generally require a potentially long
training phase are therefore better suited to our sponsor's requirement of minimal human
intervention. Generally, model based feature extraction is slower than a trained holistic system.
However, if required, speed issues may be resolved by using hardware implementations or relying
on the ever increasing speed of processors. From the previous sections, it is clear that there appear
to be few face recognition systems with the ability to recognise a face within a large number of
distinct faces using model based techniques. The feature extraction approach is readily analogous
to our application since the witness describes the constituent face features. Although there are
quantitative accuracy measures for locating individual features, systems which provide such

measures for a combination individual features, are rare.
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1.7 Databases used for face recognition in this thesis

In this thesis we have used faces from four different databases which are

e An existing database from Jia and Nixon's work [42] with some additions from the Southampton
University World Wide Web (WWW).

e A large database of single shots of police officers supplied by our sponsors, the PITO database.

e The Aberdeen 1000 database which is a large database of 1000 faces also, supplied by our
SpPONSOrS.

e The XM2VTS database [54] is a low cost commercially available system which contains
multiple front-view shots of each person.

Publishing restrictions apply to our sponsor supplied databases and the resolution of existing

databases from Jia and Nixon was not as high as that in the XM2VTS database. Consequently,

towards the end of the research programme the XM2VTS database was chosen to show the results

of our new feature extraction algorithms, but we shall describe the other database used throughout

our research.

Jia and Nixon's images were of relatively low resolution (e.g. 174 x 250 x 8 bit grey scale)
and were captured in controlled lighting conditions to minimise shadows. It is significant to notice
that these images have a light face on a dark background whereas the background is approximately
the same grey-level intensity as the face for the Web images. The face images in Jia and Nixon's
database captured the subject's head to just below the chin, excluding clothing. Thus by using
careful lighting Jia and Nixon started with face images which were readily segmented from
background. Consequently, their idea for eye location of searching the whole image for pair of
local intensity minima under the eyebrows seems reasonable on their images. The images from
other databases are not subject to such favourable lighting conditions.

The face images from the PITO database are usually of uniformed police officers. The vast
majority of the faces in this database were of Caucasian males in the age range 25 to 45, with short
hair and without beards. These images contained additional items which were useful in the task of
manual extraction and subsequent coding of extracted face features. These items included colour
charts so that the human expert, but could subjectively classify the subject's skin colour, rulers to
provide a reference of size of the face features and text to label the file currently being coded. Such
additional facilities may have proved useful to face coding by a human expert could hinder
automatic segmentation of the face. A typical image from this database, shown in Figure 1.6(c),

used 509 x 634 x 8 bit colour. The grey-level intensity of the background is approximately the same
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as that for the skin, so the face can be segmented using colour information without producing very
strong gradients at the boundary between the background and the skin. This is a benefit for
extracting the chin which usually has weak edge strength.

The face images from the Aberdeen 1000 database are coded to 24 bit colour and the face
could be segmented from the background by using colour information. Revealing any faces from
this database is prohibited. Even with this restriction, Aberdeen 1000 database has already been
used in some studies [16]. Although these images did not contain extraneous items as in the PITO
database, there was often a loop on the subject's clothing for example on the bottom right of Figure
1.6 (d), which made eye extraction more difficult. We cannot display any of the faces in this
database, but it is important to note that these pictures would appear to have been taken in the mid
1970s as opposed to the early 1990s for the PITO images. The Aberdeen 1000 faces were not
constrained to have short hair and minimal facial hair as in the PITO database. Long hair, sideburns
and other facial hair present in the Aberdeen 1000 gallery of faces also caused problems for feature
extraction.

Images from the XM2VTS database (24 bit colour) have a dark background resulting in
strong gradients between the skin and the background, which hinders the process of extracting the
chin using snakes. However the main advantage of using this database over all the aforementioned
databases is that there were up to four copies of each face. For a given similarity measure, we
require the within class similarities to be better than between class similarities. The other databases
contained only one instance of each face, i.e. a within class size of one which renders these
databases less suitable for face recognition. The XM2VTS database is a large inexpensive database
which is widely available. We believe that it will become a popular database providing a common

set of research quality images, enabling direct comparison of new algorithms.
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1.8 Contributions of this thesis

This thesis describes a programme of research aimed at improving the extraction, selection and
combination of features for model-based face recognition systems. New algorithms for face feature
extraction are developed which are both of academic interest and practical interest to our sponsors.
The main contributions contained in this thesis are indicated below.

e We begin our search for features with new method for finding eyes in an image. An evidence
gathering process is reformulated to implement a new concentricity operator. The concentricity
operator is applied to the whole image and eye candidates are identified by peaks in the
concentricity map. Our method offers invariance to image scale and rotation, yet requires few
parameters.

e The location and parameters of the best candidate eyes are determined by applying an improved
deformable eye template initialised at the peaks in the concentricity map. The internal energy of
the template is optimised when the template contracts to a point; a state which is in conflict with
the template’s image energies. Existing templates attempt to resolve these conflicting energy
requirements, by introducing artificial internal energy terms designed to prevent the template
from contracting. By improved modelling, we alleviate this problem and avoid the problem of
determining the associated coefficients of the balancing energy terms.

e Using our concentricity operator and improved eye template, we achieved 91% and 93%
successful location rates on face databases of size 1000 and 88 respectively. The size of our
database is significantly larger than many of the databases used for eye location and combined
with the high levels of success provides a useful alternative to other methods used in the
literature.

e The skin boundary can be extracted by assuming the region under the eyes is skin and applying
standard region growing techniques. Features such as eyebrows, lips and nostrils may then be
extracted by noting that they will be enclosed by the skin boundary, but have different statistical
properties. We tested this method on a database of 44 faces so the techniques do not command
the level of confidence that may be afforded to our eye location work. Nonetheless, it provides
an alternative method of face organ location which opens further avenues for research.

e Next the discriminating power of the components of a 90 dimensional feature vector was
examined. By normalising a set of features we derived a measure of the intrinsic variance

contained within each feature set. The intrinsic variance of each feature provided the
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coefficients for a distance based similarity measure which in turn provides the basis for a
general method for combining features of disparate magnitude and independent sources.

Our method embraces some of the concepts used in PCA in as much as it is able to account for
the major components of the total variance. PCA requires that all the original variables (or
features) are used to represent the variations in the data. Using our formulation, the variance of
each individual feature is extracted which enables us to select the most discriminating feature.
The new approach produced an increased variance in the classification matrix compared to a
system of equal coefficients.

The feature vector was composed of 29 geometric measures, 6 colour measures and 55 Fourier
descriptors. Surprisingly, although the eyes were essential for locating the other face features,
their deformable template parameters were amongst the least discriminating set of features,
while the Fourier descriptors of the forehead contour boundary contained much higher
discriminatory power. Classification tests on a database of 44 faces from the XM2VTS database
yielded modest recognition rates of 72% and 77% using automatic and manual feature
extraction. However, the XM2VTS images for each person were captured over a number of
months which makes the database more realistic than other databases used in the literature and
more difficult to achieve high classification rates. A simulation on the effect of measurement
noise on system performance revealed that errors of only 6 pixels on the geometric feature set
could result in a 43% classification error. However when we combined the geometric measures
with perfectly extracted contour measures from its first eight Fourier descriptors we achieved
100% classification.

In addition to presenting new methods for model-based feature extraction, we have presented a
new method for identifying the features which offer the most discriminating power for use in a
model-based recognition system. Given that model-based feature extraction is computationally
expensive, these contributions are important system considerations, since they can be used to

guide feature selection for model-based automatic face recognition.
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(a) Jia and Nixon database. (b) XM2VTS database
720 x 576 x 24 bit colour

(¢) PITO database (d) Aberdeen 1000 database.
509 x 634 x 8 bit colour 384 x 512 x 24 bit colour

Figure 1.6 Sample images from the databases used for feature extraction
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2. Locating the Eyes

2.1 Introduction

Finding the eyes is an important stage of feature extraction in automatic face recognition. They are
spatially well-defined round structures on the face and the distance between them varies little with
different facial expressions. Thus, measurements of eye spacing have been used to provide
invariance to distance from the camera and to normalise other face measurements [42] [75]. Having
located the eyes, we can use them combined with other anthropometric measures to locate the
position of other face features.

Reisfield and Yeshurun [68] [69] used a generalised symmetry accumulator to locate the
eyes. A face usually exhibits a high degree of symmetry about a line through the vertical axis of the
nose. For example, the eyes are either side of this axis, as well as being locally symmetric. Thus the
symmetry accumulator can be used to locate the position of the eyes. One apparent advantage of
the approach over a correlation-based method such as [42] is that it is independent of scale or
orientation. However since no a priori knowledge of the face is used in the search for symmetry,
the process is computationally intensive, requiring several hours to produce a symmetry map. The
authors mention a success rate of 95% (on a very small database) providing the faces occupy
between 15 and 60% of the image. The main difficulty encountered when applying this symmetry
formulation to our database was the lack of feature selectivity. In Figure 2.1 we show a face image
in (a) and the corresponding symmetry map in (b). In (b) we also show the integrals of the vertical
and horizontal projections of the symmetry map. Considering the vertical projection, it can be seen
that there are local peaks which correspond to the location of the nose and mouth. The eye region
produced the largest peak as shown by the white line which has been extended into the symmetry
map. Note however, that there are large peaks due to the subject's shirt collar and hair, which
suggests that it would be difficult to select the desired features using symmetry alone. Parsons and
Nixon [62], refined the symmetry operator to improve local feature sensitivity, enabling large
features to be distinguished from small ones. By adding just one parameter, the position and value

of the peak in the symmetry accumulator space can vary with the choice of the size of a target
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feature. However, the full effectiveness of this improvement was not confirmed by backmapping to
the image space and identifying the extracted feature points. Overall, the general isotropic
symmetry concept does not use the circular shape of the iris; a better result may have been achieved

using a rotational symmetry accumulator as described by Yip et al [86].

(a) Original image (b) Symmetry map.

Figure 2.1 Hair and clothing as well as eye have high symmetry.

A deformable template was used by Yuille et al [88] and Xie et al [84] to locate the eyes.
The eyes can be modelled mathematically as a circular iris which is enclosed (or occluded) by two
parabolae, the eyelids, containing two white regions, the sclera [85] [88]. In order to determine the
parameters of the iris, sclera and eyelids, appropriate energy functions are defined using the
information about the valleys, edges, peaks and intensity of the face image. The eye template
interacts with the face image by adjusting its parameters to minimise a composite energy
functional. Thus, finding the eyes reduces to numerical optimisation of minimising the energy
functional. The template is sufficiently flexible to locate the eyes despite variations in size,
orientation and lighting conditions. More shape information is used, but the algorithm sometimes
does not converge to the desired result. The algorithm was computationally costly, involving
sequential change in the values of up to 11 parameters, followed by numerical optimisation of the
energy term. The success of the process was very sensitive to initial starting conditions. When the
template was initially positioned above the eyebrows the algorithm failed to distinguish between

the eyebrows and the eyes. It was claimed that by using a better choice of parameters and
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optimisation techniques, the problems resulting in non-convergence suffered in [88] were
alleviated, however the size of their database is not reported.

Lam and Yan [50] reported that they found the eyes by searching for the eye corners. They
suggest that these corners would be located where the two parabolae of the eyelids intersect and
where an eyelid parabola intersects with the circular arch of the iris. This approach cannot be
applied across the whole face because there are several places on the face where corners may be
detected, notably the mouth. On our databases, we also found that there was often poor contrast
between the lower eye lid and the skin as illustrated by the edge map of Figure 2.21. Our remedy to
the lack of corner information was to develop Yuille's eye template as detailed in section 2.7.2. As
with the symmetry operator, we suggest that searching for comers alone would be insufficient to
locate eyes but a second stage of examining the candidate eye locations for the existence of an eye
should improve the process.

In [76] Stringa uses the bright spot of light reflected from an illuminating light source to
locate the pupil. Even though it is possible for the light spot be absent, Stringa relies on this and
then postulates that the horizontal intensity variation across the eye will be symmetric about this
bright spot, with a change in intensity between sclera and iris and another sharp change in intensity
between bright spot and iris. The shape of the eye is used only indirectly, via the intensity
variations. Stringa reported 100% success on a database of 333 faces with a fast processing time.
However, the technique is intrusive and may not be so successful in cases where an artificial light
source is not be available.

A standard Hough transform (SHT) has been used [58] to detect the instance of a circular
shape and an ellipsoidal shape which approximate the perimeter of the iris and sclera respectively.
Both the measured iris and sclera centre were used to provide eye spacing measurements. The iris
centre measurements were within = 2 pixels of the subjective estimate of the eye centre. A recent
approach has employed a non explicit form of concentricity [48] and achieved good results.
However, the databases used in [58] and [48] were relatively small, comprising only 6 pairs of eye
measurements.

Jia and Nixon [42] and Craw et al [16] share the premise than the eyes are a pair of local
intensity minima under the eyebrows. Jia attempted to locate the iris using template matching to
define the search window for the eyes. Within this window the intensity either side of a circular or
round edge was considered. If the intensity inside the round edge was at least 1.5 times the intensity
outside then the edge pixel was deemed to be a candidate iris pixel. The final location for the eye

centre determined as the location which had the highest ratio of candidate iris pixels per unit radius
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of the round edge. This idea of count per unit radius can work well if the eyes are wide open,
however in the not uncommon case where the iris is occluded by the eyelids, the technique tends to
favour small circles since they appear more completely formed. Numerous small circles yielding a
high count per unit radius can be found within the eye window which are not near the eye centres.
The eye window is likely to be less useful if the image is that of a person with a dark skin tone.
Clearly, dark skin combined with light intensity eyes would exacerbate the search for the pair of
"local intensity minima" as illustrated by Figure 2.2. In this figure, we project the mean intensity in
grey to the right of each face. For Figure 2.2(b) the local minima are less pronounced because his
skin tone and face features are dark and does not offer regions of high variance in intensity. In
Figure 2.2(a) there are more pronounced local minima due to a combination of lighter skin tone and
dark facial features. However, there is still a problem to decide which local minimum corresponds
to the eyes. The global minimum actually corresponds to the head, midway down his hair. The 2™
largest local minimum corresponds to the eyebrows while the eyes are only the 3™ most significant
local minimum. The width of the eyebrows is usually approximately twice that of the eyes. This
implies that the eyebrows correspond to a more significant local minimum that the eyes, assuming
the eyes and the eyebrows exhibit the same grey-level intensity. Locating the eyes by means of

local minima appears to introduce uncertainty regarding which local minimum to select for an eye

window.

(a) Adequate eye window localisation (b) Local intensity minimum less pronounced

Figure 2.2 Defining eye windows based on local intensity minima.

Shackleton and Welsh [71] combined Yuille et al's deformable eye template [86] with Turk
and Pentland's use of PCA [76] as a basis for classifying and recognising facial features. They
envisaged a complete recognition system based on recognition of local features such as the eyes,

nose, mouth etc which are classified and recognised using PCA. Their scheme used a deformable
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eye template as an example local feature and applied PCA to geometrically normalised eye images.
A training set of sixty faces was used before recognition tests were performed on a further 24 faces.
They included a term to improve segmentation between the sclera and skin. The results produced
31 fits comparable to a manual fit, 8 fits which could have been improved by hand, 2 fits with some
error noticeable, 12 obviously poor fits and 7 instances where the eye template failed to locate the
iris. In cases where the deformable template results were unsatisfactory, manually extracted eye
images were used in order to verify the value of the PCA approach for recognition. The left eye of
each face was used as the cue while the right eye was used as the target. They were able to match
16 left eyes to the corresponding right eye of the same face. Of the remaining eight eyes, five were
amongst the best five matches. PCA was used to classify the extracted eye features, however the
crucial stage of locating the eyes was not performed automatically. Specifically, they manually
initialised the deformable template approximately 20 pixels from the iris.

In [3] we implemented and compared the SHT versus the candidate count per unit radius
approach used in [42]. Our results indicated that attempts to locate the iris based on a count per unit
radius tend to favour small circles in the corner of the sclera. Using 23 faces of the original
database (half the original database) it was found that the SHT performed better than the method
used in [42]. In order to circumvent the problem of defining an eye window and improve the
performance obtained by the SHT a new method was developed which exploits the inherent
concentricity of the eye region. This method, based on the HT uses edge gradient information
instead of intensity.

None of the approaches hitherto (except Kothari et al [48] where concentricity was not
explicit) have used one particularly strong feature of the eye, namely that it is the centre of a set of
concentric shapes. This allows extension of a proven technique (the HT provides a result equivalent
to matched filtering) in a non-heuristic manner. The resulting technique is invariant to scale and
rotation, requires few parameters, and is not specific to the eyes. Also, it offers the potential for
finding the eyes without priming by prior knowledge. Since the eyes are the only feature with this
concentricity, a technique formulated to use it will deliver the eyes automatically, when applied to
a whole face image. The eyebrows enclose the eyelids which enclose the iris which contains the
pupil. We suggest that the eyes are the epicentre of two holes in the head which emanate
concentricity. This premise is less prone to exceptional circumstances, which result in failure, than
other methods use in the literature. Thus, concentricity affords the basis for a new method of eye
location, which needs little prior knowledge concerning the face or its location. We formulate our

concentricity operator in terms of an evidence gathering process, typified by the Hough transform.
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Before the subtleties of our new concentricity formulation is employed on real face images we

discuss the Hough transform.

2.2 Origins of the Hough transform (HT).

The Hough Transform [33] was developed by Paul Hough while studying particle tracks in a
bubble chamber. To detect these complex patterns of points in a binary image, Hough interchanged
the role of the parameters and the independent variable in the image. A discrete version of the
parameter space, known as an accumulator, was constructed to accumulate evidence for the
existence of a specified shape within the bounds of the parameter space. Each image point votes for
the existence a specified shape for a range of parameter values. A peak in the accumulator
indicated that the image points fit a shape corresponding to the parameter values at the peak.
Although much work has been done in reducing the dimensional requirements, the memory and
computation requirements increase exponentially with the number of parameters. However the HT
has been shown to deliver the same results as template matching [83] but faster, since the HT
requires only the feature points not the whole image space. This simple parametric transformation
mapping was shown by Deans [21] to be merely a special case of the Radon transform [67]. The
Hough transform is currently a popular technique for finding parametric shapes in images with low

dimensionality such as lines, circles and ellipses [53].

2.3 The Standard Hough transform for Lines

A straight line connecting a sequence of pixels can be expressed in the form

y=mx+c 2.1
where x, y are points on a line of gradient m and intercept ¢. Re-arranging Equation 2.1 such that m
and c are the variables and x and y are the parameters, then

c=—xm+y (2.2)
which is the equation of a line with gradient —x and intercept y passing through the point (m, ¢).
Thus a point (x, y) in the image space can be mapped to a line in the parameter space and each line
in the parameter space corresponds to a point in the image space. The intersection of lines in the
parameter space indicate that corresponding image points are co-linear. Furthermore, the point of
intersection in the parameter space give the parameters of the co-linear points in the image space

and the number of intersecting lines equals the number of co-linear points. In practise, in order to

search for a line in an image, we first define a parameter space in which to accumulate evidence of
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a line in the image. The parameter space is therefore usually simply referred to as an accumulator.
For each point in the image, votes are cast for a range of one of the parameters, say m, which
generates corresponding values of ¢ as described by equation 2.2. A line of votes in the
accumulator is implemented by incrementing the cells in an array, whose vector corresponds to the
parameters, in this case the values obtained for ¢ and m. If the same cell is incremented by votes
from another image point, then this represents an intersection of a lines of votes. The cell with the
highest count corresponds to the largest number of co-linear points.

There are two fundamental practical constraints to consider before the accumulator can be
used. These are the quantization and the range of the parameters for the accumulator. Any point in
an image has an infinite number of lines that may pass through it. In Figure 2.3, point C is shown
with five lines passing through it ranging from m = 2 to m = 0. If the parameter quantisation is too
coarse the desired line may not be detected. If the parameter space quantisation is too fine, the
computation cost of evaluating equation 2.2 may become significant. The Cartesian
parameterisation of a vertical straight line is difficult to realise on computer since vertical lines
require a representation corresponding to an infinite slope. This problem can be circumvented by

using the polar representation of a point (x, y) on a line given by

60 -
50}
40}

> 30+

10}

Figure 2.3 Cartesian Representation of line y=mx+c
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p=xcos@+ysinf (2.3)
where p is the perpendicular distance from the origin to the line and 6 is the angle subtended by the

perpendicular and the x axis as illustrated in Figure 2.4. Figure 2.5 shows 10 image points

corresponding to the line in Figure 2.3. Using the polar representation, the range of the parameters
are @ from O to 360 degrees and p from 0 to (nr2 +nc2) , where nr and nc are the number of rows

and columns in the image. The parameters line in Figure 2.3 are m = -1 and ¢ = 57 using Cartesian
representation, which translates to @ = 45 degrees and p = 40 pixels using polar representation. The
corresponding parameter space, shown in Figure 2.6, was quantised to an accuracy of 1 degree for
6 and one pixel for p. The full range of the parameters were used to find the peak, but to provide
clarity and detail, the accumulator is displayed only in the region of the peak. The peak in the
accumulator has value 10 and is located at the co-ordinates 8 = 45, p = 40, which is in agreement

with the actual parameters of the line in the image of Figure 2.5.

Figure 2.4 Polar representation of a line Figure 2.5 Image of points in a line
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Figure 2.6 Accumulator for image of a line of points.

2.4 The standard Hough transform for circles

The equation of a circle can be expressed as

2

(x—xa)z +(y—y0)2 = 2.4)
where (x, y) is a point on the circle with centre (x,, ¥,) and radius r. In the previous section, a point
in the image mapped to a line of votes in the two-dimensional parameter space. In the case of
detecting circles, a point in the image space maps to a circle of votes of a given radius. Thus, each
point in the image space generates a cone of votes as shown in Figure 2.7 The location of the peak

count of intersecting votes in the accumulator space gives the parameters of the circle in the image.
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Before discussing how gradient information can be used to implement a concentricity
accumulator, it is useful to note that this may not be readily achieved using the SHT. Figure 2.8
shows a circle of radius 11 pixels, the accumulator space for radii ranging from 5 to 17 pixels and
the resultant accumulator achieved by summing these counts over the range of radii. For the
accumulator which corresponds to the radius of the circle in the image, r = 11, there is a large peak
at the centre of the circle. For all other radii there are local minima of intersecting votes at these
locations. The result of summing these counts over all radii indicates that there is not a peak at the
desired locations and thus a concentricity accumulator using the SHT fails.

Brown [10] applies traditional signal detection terminology to the Hough transform. The
target peak may loosely be referred to as "signal” while the counts elsewhere that do not contribute
to the signal may be considered to be "noise". The target may be aliased by a circle of another size
which is displaced from the true target location. Kiryati and Bruckstien [45] show that the SHT
implies sampling of a non-bandlimited signal and also propose an effectively alias-free Hough

transform.
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2.5 Concentricity using gradient decomposed HT

The gradients of concentric circles can be arranged to combine constructively to define the centre
of concentricity as shown in Figure 2.9. If point 2 is on the iris and point 1 is on an eyebrow, then
the process of locating the eye centre may actually be enhanced by the eyebrows. Differentiating

equation 2.4 with respect to x yields
dy/dx:_(x_x())/(y—yo) (25)

where dy and dx are the vertical and horizontal components of the gradient intensity at the point

(x, y). By substitution,

.
X =xt—— (2.6)

I+ (dx/ dy)2

r

Y, =yt
J1+(dy/dx)

Using equations 2.6 and 2.7, the centre of a circle can now be found using a pair of two-

2.7

dimensional accumulators (x,, ), (¥,, r) or a single two-dimensional accumulator (x,, y,). Using
gradient information, we gain reduced memory requirements (two-dimensional space, c.f. three-
dimensional space for SHT) at the expense of accurate measurement of the gradient at a given
point.

In our first concentricity formulation [3], we defined the co-ordinates of the centre of

concentricity as

(max(X ), max(¥,)) (2.8)

where
X,= Z x, (2.9)
and Y=Yy, (2.10)

rmin

where rmax and rmin are the minimum and maximum values likely for the radii of the iris.
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Figure 2.9 Gradients of concentric circles intersect at the circle's centre.

In the dual accumulator arrangement, horizontal and vertical lines can introduce valid but
undesirable solutions to equations (2.6) and (2.7). In the case of a vertical line, equation (2.6)
reduces to x, = x = r. Each point on the vertical line results in the same cell, (x,, r) being
incremented and, the longer the line, the larger the undesirable peak. Equivalent difficulty can be
experienced with horizontal lines in accumulator (y,, 7). In the single accumulator case, equation
(2.6) again reduces to x, = x + r for a vertical line but equation (2.7) reduces to y, =y. Now, cells
given by (x,, ¥,) are only incremented once for each point on a vertical line. Figure 2.10 illustrates
how the single accumulator is less susceptible to a vertical line than the (x,, r) accumulator. Figure
2.10(a) show a synthetic image of concentric circles while Figure 2.10(b) and Figure 2.10(c) show
the resultant (x,,v,) and (x,, ) accumulators. The co-ordinates at the peak in the (x,, y,)
accumulator correspond to the co-ordinates of the centre of the concentric circles in Figure 2.10(a).
The x co-ordinate of the concentric circles can be found by summing the counts over the radii of
interest and locating the peak of this distribution as described in [4]. Figure 2.10(d) shows a set of

concentric circles in the presence of a vertical line. Using the (x,, ¥,) accumulator, Figure 2.10(e), it
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Figure 2.10 Locating concentricity peaks using accumulators.
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can be seen that the detected centre of concentricity is unchanged. However, in the case of the (x,,
r) arrangement. Figure 2.10(f), the accumulator counts are dominated by the presence of the

vertical line in the image and the desired co-ordinates are less readily extracted.

2.6 Finding eye candidates.

In this section we present details of experiments for eye extraction techniques discussed in the
previous section. The first experiment suggests that the SHT performed better than the correlation
method of Jia and Nixon [42]. We then show that the dual two-dimensional concentricity
accumulator performed better than the SHT, despite relying on some heuristics to filter straight
lines. From the discussion in the previous section, we expect the single concentricity accumulator
to provide the same advantages over the SHT as the dual concentricity accumulator, but without the
need to filter straight lines from the image. The single concentricity accumulator was applied to the
whole image without the need for ambiguous search windows. When this accumulator was applied

to the bulk of the Aberdeen 1000 database and XM2VTS database we achieved success rates of
50% and 84% respectively.

2.6.1 Circular correlation vs SHT for eye extraction.

In this experiment we compare the performance of the SHT and Jia and Nixon's circular correlation
method [42] when applied to real images for eye extraction. Their technique is similar to a Hough
transform for circles but also attempts to incorporate grey-level information present in the eye

region. The search space for points inside and outside the circle i;, and i, are determined using
(> Jin) =iy —2c0s(0), j, —2sin(0)) (2.11)

(s > Jour ) = (i +2c0s(0), j, +2sin(B)) (2.12)
where (iy, jo) is the centre of a circle of variable radius representing the iris, (i, j) is a point on the
circle representing an iris pixel and 6 is the angle subtended by the x axis, the centre of the circle
(¥0, Jo) and a point on its perimeter (i, j). The circular correlation method considers a pixel as a
suitable iris pixel if the average intensity inside the circle representing the iris is 1.5 times less than

that outside the circle, otherwise it is ignored. Candidate iris pixels are accepted if
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[ (iin+]’jin+1) (ioul+1>joul+1)

1 if S o fap< 31576
(i:j)=(iin_l»jin_1) (ivj)z(iom_l'jmu_l)

e(iy, o) =3 (2.13)
0 otherwise

N

The circle with the largest ratio of pixels on an acceptable iris edge to those on a circle with
variable radius, c(i, j) gives the final estimate of the iris position. This ratio, R, is given by
> e, )
R=1L— (2.14)
>.c, )
(i, pecs
where ¢; and ¢s are circular ring, two and five pixels wide, respectively. Figure 2.11 shows some
sample faces from the database of faces used for this experiment. The sample face images bmc94
and ajgh were from the Southampton University World Wide Web gallery, whereas images Face10
and Facell were from Jia and Nixon's original database. The position of the extracted eye centres,
within a manually selected window, is shown in by a cross "+" for both the SHT and circular
correlation. The result was classified as good if an algorithm produced a result which was less than
3 pixels from manually estimated location of the eye centre. If the result error was greater than 3
pixels but within the iris, the result was classified as marginal and a result outside the iris was
classified as bad. Using a database of 23 faces, including 19 from Jia and Nixon's database, the
SHT performed better than the correlation method. The SHT achieved 37 good, 6 marginal and 3

bad results, whereas the correlation method achieved 32 good, 5 marginal and 9 bad results.

2.6.2 SHT vs dual concentricity accumulators for eye extraction.

In theory, the new approach can be applied to the whole face and the two peaks in the X,
histogram, equation 2.9, provide the x co-ordinates of the eyes centres. In practice it is necessary to
pre-filter the edge map to remove edge points that lie on vertical or horizontal straight lines which
can introduce valid but, undesirable solutions to equations 2.6 and 2.7 resulting in a peak in the
accumulator which corresponds to a straight line, instead of a circle. The sides of the face can
contribute to this undesirable effect, Consequently, straight lines consisting of more than 40 pixels
and = 10° of vertical or horizontal were removed. In order to achieve this one might consider
rejecting pixels = 10° of vertical or horizontal straight from the output of the Sobel edge detector,

however this may also reject the pixels in the eye region. It is necessary to examine the whole

40



SHT Circular correlation

facelO facelO

177 )
-4 y / ] |‘

P B

@ [
b | 1 i

)

/
v

§ ™

facell facel facell

Figure 2.11 Sample faces used for eye extraction with manually defined eye windows.

picture after edge detection to decide whether a pixel is part of the side of the face. To this end, a

crude heuristic was employed, namely using a Hough transform for lines to find and remove the
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sides of the face. The face images measured approximately 300x400 pixels. The pre-processing
stage consisted of intensity normalisation, edge detection via a 3x3 Sobel edge detector
implementing dx and dy from equation 2.5 followed by uniform thresholding above 160 to remove
the sides of the face as described above, see Figure 2.14(b). This simple pre-processing was
preferred to Canny edge detection which may require more parameter tuning to achieve the desired
edge map. In addition, our new method's strength lies in its ability to detect the highest density of
concentric edge points, but the Canny edge detector, with its non-maximum suppression may filter
out some of these necessary edge points. Figure 2.14 shows a processed face image with a cross to
mark the detected eyes. First x co-ordinates of the eyes corresponding to the two prominent peaks
in the X, histogram are found using the whole face (see Figure 2.12(a)). The face can then be split
into two halves, the centre line being midway between the eyes found using the X, histogram. The y
co-ordinates of the eyes are found using separate accumulators for the left and right side of the
face, thus compensating for any non vertical orientation of the face (see Figure 2.12(b) and (c)).
The SHT requires a 3-dimensional accumulator in 7, a, b. In order to minimise memory
requirements of the SHT, both methods were re-applied in a window measuring 110x110 pixels
centred on the extracted eye centres.

Figure 2.15 clearly illustrates the advantage of the new method. The extracted eye centre
using the new method is marked with a "+" while a "X" is used to mark the eye centre extracted via
the SHT. Using the concentricity property of the eye a cluster of pixels, centred around the pupil is
extracted. In contrast, the SHT located a large arch of an eyelid which is not centred on the pupil.
Figure 2.16 shows the statistics of the difference between the estimates of the eye co-ordinates
provided by the standard HT and the new formulation, both from the values of manually-obtained
estimates of the eye co-ordinates. Figure 2.16 gives the statistics for a large radius variation (as to
be expected in application) and for a smaller radius variation. (A small radius variation can be
justified in applications where face contour extraction [27] precedes eye location and primes a
small expected radius variation.) The difference between the eye co-ordinates is less between the
new formulation and the manual estimates, compared with the standard HT. For large variations,
the mean difference for the new formulation on the left eye is 1.8 pixels, whereas for the same eye
the mean difference for the SHT is 6.8 pixels. For the right eye, the mean difference is 2.5 and 6.4
pixels for the new and the SHT methods respectively. Reducing the potential radius variation
improves the mean difference for the new concentricity formulation which is still considerably
lower than for the SHT, being nearly half its value. Given that the average iris radius is

approximately 8 pixels we see that the new formulation will locate eye centres within the iris.
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(a) Left yO histogram (b) Edge map (c) Right yO histogram

(d) xo histogram. Highest peaks locate eyes

Figure 2.12 x, and y, histograms after removing vertical and horizontal lines

(a) Left yo histogram (b) Edge map (c) Right yo histogram

(d) xo histogram. Highest peaks locate sides of face

Figure 2.13 x, and y, histograms without removing vertical and horizontal lines.
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(a) Extracted eye centres (b) Filtered Sobel edge map (¢) Filtered Canny edge map

Figure 2.14 Extracted eye centres

SHT = x concentricity SHT edge data
concentricity = + edge data

Figure 2.15 Eye pixels for new method vs SHT
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method SHT (left) | new (left) || SHT (right) | new (right)

actual - measured x vy df x y 4 x y df x y d

Mean error radius=4-25 | 3.6 10 11} 24 13 31} 38 9 10] 33 1.7 4.1
Sdev error radius=4-25 | 2.5 53 54436 2 39j§3.1 49 5226 25 3

Mean error radius=4-10 | 2.5 2.7 4314 07 19} 1.7 19 3.1} 1.8 1.7 2.8
Sdev error radius=4-10 || 2.8 3.8 4.1 1.6 1 1.6)| 3.5 32 44,24 32 3.7

(Note: average iris radius = 8 pixels, all measurements in pixels)
x=measured error in xg
y=measured error in y,

d= Euclidean error

Figure 2.16 Comparing SHT and new method for finding eye centres

Overall, for the 54 eye database, the use of concentricity in the new technique resulted in a mean

difference of 3 pixels, whereas the mean difference for the SHT was 10 pixels, a three-fold

improvement in accuracy.

2.6.3 Eye extraction using a single concentricity accumulator.

In the previous section we showed that the dual concentricity accumulator performed better than
the SHT for circles when applied to locating eyes in a face image. The problem of vertical and
horizontal lines dominating the dual concentricity accumulator was circumvented by removing the
straight lines. This solution is unsatisfactory for two reasons. Firstly, pixels in the eye region may
be removed if they are on the path which includes the straight lines being removed. Secondly, it is
difficult to determine the length of the line of pixels to be removed. The single concentricity
accumulator (using the same equations as for the dual accumulators) elegantly solves the problems
posed by vertical and horizontal lines in the image. Figure 2.17(b) shows the resultant concentricity
maps for two face images. The locations of peaks in concentricity are marked by cross "+" in
Figure 2.17(a), the peak labelled 1 corresponding to the highest peak count down to 9
corresponding to the lowest 9" highest peak count. For face 1, the two highest peaks in
concentricity correspond to the eyes. However, for face 2, although the peaks in concentricity are
close to the eye centres, they are only the 5" and 7™ highest peaks in concentricity. The subject's

glasses, ears and tie provided higher concentricity peaks.
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(a) Concentricity peaks

(b) Concentricity map
face 1 face 2

Figure 2.17 Face processing for eye candidates using single concentricity accumulator

To determine whether the results for face 1 or face 2 were more representative, the improved
technique was tested on two databases. The first database contained 1000 faces images, of which
approximately 800 came from the Aberdeen 1000 database while 200 PITO faces were included to
round the numbers up to 1000. The second database comprised of 88 face images form the XMVTS
database. The PITO images were cropped to remove extraneous artefacts such as rulers and text

labels which could yield high values of concentricity and confuse the search for the eyes. Similarly,
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the XMVTS face images were selected to exclude images in which clothing was excessively
striped or checked.

Figure 2.18 summarises the performance for these two databases. In the ideal case, the
extracted eye centres would correspond to the two highest peaks in a concentricity accumulator.
We consider the nine highest peaks and their Euclidean distance from the manually measured eye
centres, classified into four classes as follows. Class A represents an actual distance of between 0
to 4 pixels, class B between 5 to 8 pixels, class C between 9 to 15 pixels and class D greater than
15 pixels. Each peak in concentricity is a candidate for an eye centre, so the ideal distribution for
eye location would be all counts in the cells given by class A and candidates one and two. Class A
represents a very good automatically located eye position. Class B is also good because this
approximates to a result which is still within the iris. If Classes A and B are considered, our new
concentricity algorithm achieved 84% for a selection of the XM2VTS database faces, which is
better than a 74% success rate achieved by Sobottka and Pitas using similar images on a smaller
database of 38 images [73]. For the one thousand face database only approximately 50% of the
extracted eye centres were inside the approximate radius of the iris. However, it is worth noting
that there are a large number of extracted eye centres which are in class A but not amongst the two
highest peaks in concentricity, for example class A candidate 3 has 246 counts. These high
concentricity counts may be attributed to hair or clothing. The images in the one thousand face

database had a high edge gradient around the head, usually caused by dark hair against a light

background.
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Figure 2.18 Performance classification using concentricity analysis.
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2.7 Deformable templates for eye extraction

2.7.1 Standard deformable eye templates

In Yuille et al's deformable eye template model [88], the eye consists of two parabolas positioned
at X, for the eyelid and a circle of radius r centred at X, for the iris. The points p; and p, represent
the centres of the whites of the eyes. The upper eyelid has height a, the lower eyelid has depth b
and both have width ¢ all measured with respect to the parabola co-ordinate axis. The parabola co-
ordinates axis is rotated by an angle of 6, with respect to the iris co-ordinate axis. In order to
determine the parameters of the iris, sclera and eyelids, appropriate energy cost functions are
defined using the information about the valleys, edges, peaks and intensity of the face image. The
eye template interacts with the face image by adjusting its parameters to optimise a composite
energy functional. If a good match between the template and the image has been obtained; the
perimeter of the iris will correlate with the edge data for the iris, the area within the iris will
correspond to a valley in the image intensity and the sclera area corresponds to peaks in the image
intensity. In general, finding the eyes reduces to the construction of a suitable model and numerical
optimisation of the energy cost function.

Parabola co-ordinate axis

iris co-ordinate axis

Figure 2.19 Yuille et al Deformable Eye Template

To provide explicit representation for the model boundaries, Yuille et al define two unit vectors
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€, = (cos0,sinf) (2.15)
é, =(—sinf,cos0) (2.16)

which are used to represent variations in the orientation of the model. A point X can be represented

by the co-ordinate (x;,x,) where
X=x€ +x,6, 2.17)
The parabola for the upper eyelid can be represented by

a
xzza—z—xlz (2.18)

x, =—c+z(:—x,2 (2.19)

where x, € [~b,b]. The energy function of the template, E, (%,,%,, p,, P,,a,b,c,r,0), which is
a function of eleven variables, can be expressed in terms of the valley, edge, peak and internal

energies,

E =E +E +E +E,+E, (2.20)

The valley, edge and peak fields are defined in terms of the image intensity at point X, /(X) as

O,(x) = -1(x) 2.21)
D,(x) = VIx).VIx) (2.22)
D,(x) =1(x) (2.23)

The valley energy is given by the surface integral of the valley field defined by area of the iris,

normalised by the area of the iris,

£ = [[ o, 2.24)
Iris area

Iris area

The edge energies for the eyelids and iris are given by

— 5 oG 2.25
Eyelid length J o (X)ds (2:23)

Iris bounday Eyelid boundary

c
E = ——‘_‘2 J.q) X -
‘ Iris length o(X)ds
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The energy which due to intensity in the iris and sclera is given by

c c
E =—— j.[@i (¥)dA —-———— J J(I),. (¥)dA (2.26)
Iris area oY Sclera area o
The energy due to the sclera is given by
Cs -
E =- @ (¥)dA (2.27)
Area
Sclera
The energy due to the peak points p, and p, is given by
E,=c{®,, +pé)+ @, +p,é)} (2.28)

and the internal energy is given by

E :ﬁ(;z —55)2+k—2( —~1-{r+b})2+k—2( +l{r+b})2+k(b—2r)2 (2.29)
in 2 e ¢ 2 pl 2 2 p2 2 3 :

Yuille er al used steepest descent to minimise equation (2.20). They defined six sequential time
epochs in which the {¢;} and {k;} coefficients were allowed to vary during the matching process in

order to exploit the salient features of the eye as follows:-

1. The coefficients for the valley energy are designed to dominate the template energy. If the

initial position of the template is displaced from the desired position, only X, and X, are

allowed to vary by steepest descent which should pull the whole template towards the iris.
2. The intensity coefficients are increased to match the size of the iris.
3. The edge coefficients are increased to fine tune the iris boundary.
4. The peak coefficients are increased to rotate the template to the correct orientation.

5. The intensity coefficients for the whites of the eyes are increased to adjust the outer boundary

of the template
6. Fine tuning of the edge boundaries are achieved by increasing the edge coefficients

Yuille e al [88] noted that their template failed to converge to the required solution if the template
was initialised above the eyebrows. This failure could be attributed to strategy employed in the
first epoch. If the template was initialised above an eyebrow, the valley energy would attract it to

an eyebrow, which was the first local minimum encountered by the template. Xie er al [84]

51



proposed simultaneous rather than sequential optimisation of the eye parameters using the
Levenberg-Marquardt (L-M) method. They defined an energy function as the weighted sum of ten

non-linear functions,
10
F(X)= ZW,-E,-Z(??) (2.30)
i=1

where, X is the vector of template parameters, W; is a vector of weights and the E; correspond
energy terms similar to those used by Yuille ez al [88]. This energy function was optimised with all

template parameters allowed to vary simultaneously using an iterative process such that
X, =X, +d, (231)
(J."WJ, + A)d, =—J]WF, (2.32)

where J; is the Jacobian matrix for the non-linear functions E,.(X ) andA is an adjustable

constant. If A — oo in equation 2.32 then the optimisation process approximates the steepest
descent used by Yuille et al [88]. Xie et al used a small value for A, in which case the optimisation
process is similar to Newton's method. However, both steepest descent and the L-M method
require gradient information which may be difficult to obtain accurately for all parameters. Figure
2.20 shows an optimisation sequence where all the parameters were allowed to vary
simultaneously. Initially, the template was pulled towards the iris as required. However due to the
difficulty in establishing the correct weights for the internal energies over a large range of eyes, the

template began to shrink towards a point.

Figure 2.20. The template shrinks to a point if its internal energy weights are wrong.
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Another potential problem lies in the implementation of equation 2.25. Even if we assume that
there were edge pixels in the eye corner, then using a count per unit length basis, the parabola
which has a smaller width will yield the best edge energy. This results in the eyelid parabolas
collapsing onto the iris as shown in Figure 2.21. The internal template energies used throughout the
literature attempt to compensate for this drawback. Xie et a/ [84] also included a number of internal
energies to their template which were designed to control the expected final shape of the template.
They attempted to force the intersection of the parabolas into the eye corners using internal energy

force,
E;; = k;ylb-2r. (2.33)

A further internal force

Ei; = kiplb-4cl (2.34)
1s applied to keep the eye lids open. However such terms are somewhat artificial and require some
extra weighting constants (k;; and &;; ) in the template energy function.

In summary, using gradient methods, the energy function needs to be differentiable and
preferably smooth for the template parameters to proceed in the correct direction. These goals may
be partially satisfied by Gaussian filtering the peak, edge and valley fields. However the pre-
processing can play a significant role on the steady state template parameters. If a parameter is far
from the desired solution, pre-processing should effect rapid convergence. Over filtering may
prevent the parameters moving from their initial values. Alternatively, excess filtering may cause
the template to pass over and subsequently oscillate about the desired solution. Ill-chosen
weighting factors could cause the contours to attempt to shrink to a point. In the next section we
detail our next contribution to the literature in the form of an improved eye model which does not
require the use of internal energies. The improved model is then optimised using an improved
search strategy which does not require the use of gradient information. We used a genetic algorithm
(GA) although the simplex method [125] used by Chow and Xi [122] maybe a reasonable

alternative.
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Figure 2.21. Poor edge data results in undesirably small eyelid width being selected.

2.7.2 Improved deformable eye template techniques

Instead of searching for the small areas defined by p; and p,, we use the whole of the region inside
the parabolas (minus the iris) to represent the sclera and remove these two parameters from our eye
model. We define an energy function E, composed of edge energy E,, peak energy E,, valley energy
E, and internal energy E;.

E=k,E, +k,E, +kE,+kE, (2.35)
where k,, k,, k. and k; are tuning coefficients. The image energies (E,, E, and E,) represent line or
surface integrals of the image intensity, normalised by the length or area of the bounding contour.
The problem of the parabolas intersections collapsing onto the iris can be alleviated by not
allowing pixels in the eyelid edge boundary to be shared with those of the iris edge boundary.
Applying this rule to Figure 2.22, yields a low edge count per unit boundary length because many
pixel on the parabola arch are already part of the iris edge boundary. The remaining parabola
boundary lies in the sclera where there are few edge pixels. At this stage of processing, the Canny
edge detector [12] is preferred to the Sobel as it provides arcs which are one pixel wide, minimising
the likelihood of pixel being shared by iris and parabola boundaries. Since pixels in the iris cannot
be shared with those of the eyelid, a high count per unit length can best be achieved by using the
pixels in the eye corners, as required.

Accordingly, the required surface and edge boundaries are represented in terms of sets of
points. We denote the set of points in the areas enclosed by the circle and parabolas as Agirie and
Aparabola TESpectively; similarly the boundaries as Beicie and Bypampoa. The iris and sclera, areas and

boundaries are now given by
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Figure 2.22. Correct eyelid extraction even in presence of poor edge data.

Ajris = A parabola N Acircle (236)

Bjyis = Aparabola N Beircle (2.37)

Agsclera = A parabola € Ajris (2.38)

Bsclera = B parabola & Biyig (2.39)

The image, intensity normalised and represented in 256 grey levels, is pre-processed to obtain
binarized valley edge, and peak fields, @, ,®. and @, as shown in Figure 2.23. The valley field was
inverted by evaluating the maximum grey-level minus the image intensity, then uniformly
thresholded. The feature pixels, in white are set to 1 and the non-feature pixel, in black are set to 0.
Uniform thresholding is also used for the peak field, while a Canny edge detector [12] is used for

the edge field.

P Y

(a) original face (b) valley field (c) edge field (d) peak field

Figure 2.23 Field processing for valley, edge and peak fields.

55



In many deformable eye template applications e.g.[84][88] the peak field processing is designed to
segment the sclera using morphological operators [82]. The processing is applied to a small
window in the image which is assumed to already contain an eye. Referring to Figure 2.17 we note
that there are many eye candidates near the background of the image. A morphological operator
may group large areas of a light background as a candidates for the sclera. Worse still, the
background intensity may be lighter than the true sclera intensity, in which case it is safer to use
simple thresholding but note that a valid sclera candidate must be bounded by edge pixels
belonging to the eye template. This can be achieved by including the edge energy, E,, in the
definition of the peak energy E,, as indicated in equation (2.41). The values for tuning constants k,,
k,, k. were set to one for simplicity, although they may be optimised by discriminant function

analysis and k; is not required thus; the extended energy is

1 1

E,=t— 2% t3 2@ (2.40)
l sclera| Bselera 5 Biris
1
E,=E,;7— 2.9, (2.41)
Asclera Asclera
1

E, = 242
" N(Apis) 2 242

Airis

2.7.3 Genetic Algorithm (GA) optimisation methods.

GAs perform a stochastic search for an optimum solution and can be applied to ill-behaved
functions of high dimensional spaces [123]. They work in a manner analogous to the survival of the
fittest in natural evolution. For a given species, the strongest (or firtest) tend to live longer than the
weaker individuals and therefore bear more offspring than their weaker counterparts. If the
attributes which provide the advantage over the weaker individuals are inherited by their offspring,
then eventually the weak individuals will die, leaving a population of strong individuals.

The terminology used in genetic algorithm (GA) implementations for optimisation is itself
inherited from the field of biological genetics. Each parameter to be optimised is coded as a gene.
A typical coding scheme would map the range and resolution of each parameter to a binary Gray
scale [26]. A complete set of parameters, or set of genes, comprise a chromosome for an individual.
The objective function is simply the function to be optimised enabling the fitness of an individual
to be evaluated in terms of the objective function. The optimisation process starts with a random

population of N individuals or chromosomes. The parameters are then decoded and applied to the
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objective function to evaluate the fitness of the i-th chromosome, f;. Parent individuals are selected
for reproduction with a probability of selection which is proportional to the their fitness. The cross-
over operator is used to implement the mating of two parent chromosomes to produce two
offspring. A randomly chosen point is chosen to spilt both parent chromosomes. Two offspring
chromosome are produced by concatenating half the genes from one side of the spilt point of one
parent, to half genes on the other side of the split point of the second parent. The mutation operator
is then applied to the children produced from the cross-over stage in order to introduce new genetic
material into the population pool. Randomly changing a gene, may yield a particularly fit
chromosome which may flourish in successive generation. Alternatively, it may be particularly
weak, in which case in may die quickly in successive generations. A very low probability of
mutation was used to prevent the pool of chromosomes loosing the attributes inherited from their
parents. It should be noted that if a small mutation or perturbation of a chromosome is combined
with a high probability of mutation, then the process is approximating simulated annealing instead
of a GA. Successive generations of parent selection, cross-over and mutation are applied until a
predefined termination condition is met. For example the evolution process may be deemed
complete if the mean population fitness is within 5% of the max population fitness or simply after a

fixed number of generations.

2.7.4 Eye Template Energy Optimisation

During the evolution process a population of 100 genes with a mutation probability of 0.001 was
used. The evolution was deemed to be complete after 50 generations or if the maximum fitness was
within 5% of the average population fitness. An initial population of 1000 genes (ten times the
evolution population) were randomly selected for mating. By selecting a large initial population the
process is given a wide selection of genetic material from which to evolve which also implies a
wide sampling of the parameter space. By using a large initial population we increase the
probability of selecting a parameter set which locates the template at the correct position. In the
event that we also include a parameter set which corresponds to the location of an eyebrow, we
expect that the parameter set corresponding to the eyebrow will eventually be evolved from the
pool of eye candidates. In the unlikely event that the initial pool of 1000 chromosomes does not
contain a parameter set which is sufficiently close to the desired location of the iris, then there is
still a chance that the mutation process will generate the chromosome which corresponds to the

template being positioned near the iris. Thus for our application, the GA optimisation appears to
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offer significant advantage over gradient methods in eluding local minima such as the eyebrows,
from which Yuille et al’s method [88] could not recover.

In order to obtain a good template solution in a reasonable time, it is necessary to be able to
evaluate the energy function as quickly as possible. The energy function, was pre-evaluated for all
the parameters of interest and stored in a lookup table. To reduce the size of the lookup table we set
the parabola centres equal to the iris centre (X, = X,) and 8 = 0. Subsequent evaluations of the
energy function can then be obtained by indexing the lookup table by X,, r, a, b, c¢. Using the lookup
table enable us to process all nine candidate sites very quickly (in approximately 20-30 seconds on

a Pentium 233Mhz).

2.8 Deformable eye template results

Figure 2.24 illustrates two examples of the eye location method. Figure 2.24(a) shows the result of
the first stage of processing, in which the nine best sites are ordered (1 through 9) in term of peak
concentricity magnitude. The white cross shows the location of a local concentricity peaks. The
results of the final processing stage for face 1 are shown in (b) ordered (1 through 9) in term of best
eye match. For face 1 the best two concentricity locations are excellent and can hardly be improved
by the deformable template. However, it is important that it does not degrade the result obtained by
concentricity. In fact, the best deformable template matches at these location are the top two and
the templates are very good fits to the eyes. The extracted iris edge boundary, B, is shown in
white, while the extracted sclera edge boundary, B,.... is shown in black. Note also, that since
sclera pixels cannot be shared with iris pixels, by equation (2.39), it is unlikely that the sclera will
collapse onto the iris and there is no need for a term in the energy function to prevent this.
Considering face 2 shows the benefits our two stage process even move clearly. The eyes are
included in the list of candidate sites delivered by concentricity but are not the highest ranked (at
5™ and 7™ ). After deformable template analysis, the eyes have moved to be the 1% and 2™
candidates, an excellent result. Referring to the right eye of face 2, note how the template has
moved its initial location, marked by the cross, to find the centre of the iris. This example is
particularly challenging as the subject is wearing spectacles. However, we found that providing the

eyes were not obscured by reflected light, spectacles can contribute to the concentricity counts in

the eye region.
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®)

(c) Best eye locations for face 1 (d) Best eye locations for face 2

Figure 2.24 Improved eye location using enhanced deformable template
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Figure 2.25 shows the classification for the PITO and 1000 face database using concentricity
combined with improved deformable template analysis. Referring back to Figure 2.18 which shows
classification on the same databases using only concentricity, it can be seen that the deformable
template has improved the eye location system. Using only concentricity analysis on the 1000 face
database, just over 50% of the counts are in class A with rating 1 and 2. As such, the majority of
the candidate eye centres are determined correctly by concentricity analysis. However, the majority
of the remainder are in the right place (class A) but not ranked correctly as the most likely to be eye
centres. After applying the deformable template, initialised at the location of peak concentricity,
candidates. 91% of the counts are class A, B candidates 1 and 2. Similarly, the results of the
improve deformable template combined with concentricity achieved 93% successful eye location
using the XM2VTS database. The performance improvement gained by using the deformable
template is not as pronounced on this database as the 1000 face database, since the output of the
concentricity analysis was arguably sufficiently high at 84%. The average radius of the irises was
approximately 10 pixels, which means that most of the extracted eye centres were within the iris.
The benefit of the deformable template analysis can been seen by noting the shift in the data
distribution when using concentricity analysis alone, compared to concentricity and deformable

template analysis.
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(a) Classtfication for 1000 faces from Aberdeen 1000 and PITO databases
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(b) Classification for 88 faces from the XM2VTS database

Figure 2.25 Classification using concentricity and improved deformable template analysis
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2.9 Conclusions and further work

Concentricity affords a new basis to extend the HT for eye extraction in a manner which is well
suited to the normal appearance of eyes in a face image. The standard HT (SHT) can provide good
results when a good prior estimate of iris radius is known. However, the results obtained with our
model of the eye region being the centre of concentricity, has surpassed the SHT in terms of
accuracy, providing a factor of three improvement over the SHT. The approach to finding eye
centres using the SHT was to search for a single circle which represents the iris. A maximum count
approach could produce poorer results because the iris pixels may not yield a higher count than the
pixels from an eyelid or an eyebrow. A maximum count per unit radius may also not extract the iris
pixels but may instead find the eye comers since small circles in this area would have a higher
count per unit radius. The problem of attempting to select a specific radius for the iris was
desensitised by using all the radii of interest to effect a measure of concentricity. If the SHT is used
as the basis of a concentricity operator, the centres of concentric circles combine destructively.
However, using gradient information, the concentric circles in the eye region combine
constructively to reinforce the location of the eyes. Thus the new approach can be applied to a wide
range of radii over the whole face without the need for an intermediate eye window location stage
or a priori knowledge of the face. Our concentricity operator has been successfully tested on
images, which are similar to passport type photos which include the shoulders as opposed to
images often used in research which have to be cropped to only include the head. For 88 faces on
from the M2VTS database, 84% of the extracted eye centres were within the approximate region of
the iris. Using the same definition of success on the 1000 face database, only 50% of the extracted
eye centres were within the iris and amongst the two highest peaks in concentricity. The low
success rate on this database was due to the light colour of the background which produced strong
gradient information near the head which in turn attracted the algorithm to high concentricity found
in the hair. We have improved Yuille ez al's deformable template [88] which when initialised at the
peaks of concentricity, improve the classification of extracted eye centres. The improved template
model does not require internal energies or tuning constants which may be difficult to specify.
Local minima in the template energy space can be avoided using a genetic algorithm which
inherently obviates the requirement for accurate gradient information. Our improved eye template
model and search strategy was verified on a database of over one thousand faces yielding in excess

of 90% successful eye location.
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3. Locating features using the Eyes.

The next set of features that we attempt to extract are those related to the head boundary. Robust
extraction of the skin should help in locating points 6, 8 and 9 from Figure 1.1. We expect that any
region that is enclosed by facial skin but exhibiting different statistical properties is likely to be of
interest. This is the basis on which we locate the eyebrows. If the eyebrows are occluded by hair,
they will not be correctly detected. The eyebrows will also be occluded and be less likely to be
detected if the face is not positioned normally to the camera. A database consisting of 44 images of
28 different people were pre-selected at random to prevent eyebrow occlusion.

We investigated the feasibility of the dynamic programming technique for chin extraction
[71, [27] to find points on the chin 33, 3, 37, 4 and 36. We did not attempt to locate the bridge of
the nose, points 23 and 23 or the width of the nose, points 26 and 27. However, as an alternative to
finding the base of the nose, we used the local intensity minima to locate the nostrils. The points on
the mouth 30, 31, 32, 34 and 35 were located using a closed-mouth model described by Yuillie ez al
[88], but using a GA instead of gradient methods.

Good initialisation for the search for the above features can be obtained if the head
boundary can be extracted. Turk and Pentland [78] showed that an eigenface based system could be
trained to recognise a face by pre-determining the expected distance to face space, c.f. equation
(1.25). This method may require some operator interaction at the end of the learning phase before
being able to locate face space. The effect of size and the number of images required for training
would also require specification. Although a limited amount of human intervention is acceptable, it
is not desirable.

Jia and Nixon [42] used a quadratic curve fit to the chin region. The search space for the
chin was identified by first locating the sides of the neck which were assumed to approximate to a
pair of roughly parallel vertical straight lines. In a large database, head boundary extraction using
this heuristic method is likely to suffer from two drawbacks (a) initialisation of the quadratic curve
fitting process by searching for the neck may fail if the neck is obscured by clothing (b) the

quadratic fit may not be a good match to the chin.
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Brunelli and Poggio [7] integrated the horizontal projection of the edge map to locate the
sides of the head. The difficulty in applying this method for our sponsors’ purposes would be in
differentiating between points 7 and 8 the outer and inner boundaries of the hair.

The task of fitting a set of points to the head boundary, which includes the chin, can be
more accurately achieved using an active contour or snake. Snakes have the ability to track a target
feature, yielding a flexible implicit boundary description instead of an explicit parametric
description. Although the human head is roughly oval in shape, biometric differences in head size
and shape can be used to distinguish between face images. Thus, accurate head boundary
determination can be used as part a face feature vector as well as enhancing the performance of
another feature vector, the eye spacing measurement. Fortunately, we have been able to locate the
eyes on a large database with reasonable accuracy and without using heuristic methods.
Concentricity combined with our improved deformable eye template work gives the locations of the
points 19, through 25 on Figure 1.1. In addition the eyes can be used as an initialiser for all the

other face features.

3.1 Active contours

An active contour will attempt to vary the spatial distribution of its contour points from some initial
distribution and location to align itself with the target feature. The extracted feature results from a
minimum of a combination of internal energy, derived from local spatial constraints, and image
energy from the image edge data. The original snake model was introduced by Kass [43]. A
contour can be described parametrically by v(s)=(x(s), y(s)) where x(s), y(s) are the x and y co-

ordinates along the contour and se [0, 1] is the normalised arc length. The snake model defines the

energy of a contour v(s) to be

Eye (V) = [ B (V) + (1= D)y (50 3.0

where E,, is the internal energy of the contour Ejme is the image energy and Ae[0, 1] is the
regularisation parameter used to bias the solution either to the internal energy or to the image
energy. The energy integral is called a functional since its independent variable is a function. In the
original formulation, minimisation of equation 3.1 was achieved using an evolutionary approach
which used local energy variations to locate the target feature. A weakness of this local
minimisation approach was the difficulty in determining suitable parameters and sensitivity to

initialisation. The performance of the local minimum criterion can suffer if the target feature is
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obstructed by extraneous features or noise. Furthermore, the technique can exhibit a tendency for
the contour to contract into a point in the absence of image energy. The problems caused by
extraneous obstructions can be alleviated using global minimisation techniques. Global
minimisation employ an exhaustive search for the minimum contour energy within a region
containing the target feature. Gunn and Nixon [27], Brunelli and Poggio [7] and Amini [1] have

successfully applied dynamic programming to find a globally minimised solution to equation 3.1

3.2 Application of Dynamic Programming

The search based technique uses two initial contours to define the head boundary; one outside the
head boundary and the other inside the head boundary. In contrast to the evolutionary technique,
the search based technique does not employ "snake-like” behaviour but considers all possible
solutions in the search space to find the optimum contour. Dynamic programming uses the
principle of optimality [74] which states: Whatever the path to a node X, there exists an optimal
path between X and the end point. In other words if the optimal path (start point to end point) goes

through X then both its parts start point to X and X to end point are also optimal.

3.2.1 Head Boundary Search Space

Figure 3.1 shows an image and the search space used for the dynamic programming search. The
inner and outer contours are open contours consisting of N points or stages of the dynamic
programming search. The corresponding point on each contour is joined by a line of M points or
nodes. M must be sufficiently large to ensure that local intensity minima can be sampled while N
governs the number of points on the extracted head boundary. The aim is to find the minimum cost
| path from the first stage through to the end stage. For this mode of dynamic programming there

should be no circular path from the first stage to the last therefore, the initial contours are open

rather than closed contours.
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(a) nodes = 15, stages = 30 (b) nodes =70, stages = 100

Figure 3.1 Search Space for Dynamic Programming.

3.2.2 Dynamic Programming Search
A closed discrete contour can be described as

v.=(x,, y.) i=0.N-1 (3.2)

I

where N is the number of points and the subscript arithmetic is modulo N. The energy of an open
contour is given by
E e (M)=E;(vy,V,,V,)+E(V,V,,V )+ +E (V5. V 0. Vyy) (3.3)
and the energy at each snake point or node is given by
EVi Vi Vi) =AE, (Vi Vi Vi) + (=) E (v) 34
where A €[0, 1] is a regularisation parameter. In order to apply dynamic programming to equation
3.4, a two element vector of state variables (v,,,,v;), is calculated at each stage. The optimal

value function, S;, is a function of two adjacent points on the contour and is calculated as
S;i(Viy,Vy) = r‘l;lin[Si—l Vi Vi) Y LE G (Vi Vi Vi) (=) E,, (V)] (3.5)
i-1

given the initial conditions S,(v,,v,)=0
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Iv -2V, + v,._]|

i+1

where, E (v, ,,v,v, )= (3.6)

v _Vi—l'

i+l
In addition to the energy matrix corresponding to the optimal value function, a position matrix is

also required. Each entry of the position matrix at stage i stores the value of v,_, that minimises the

optimality function Equation 3.5 This is evaluated for i=1..N-2. The result is obtained by back-

tracking through the position matrix.

3.2.3 Manually Initialised Snakes.

Gunn and Nixon [27] automatically initialise the search space using a number of heuristics. This
resulted in subjective success rates of 95% and 73% for the outer and inner contours respectively
on a database of 75 faces. In order to demonstrate the effectiveness of the dynamic programming
approach to active contours we have initialised the search space manually. Figure 3.2 shows
examples of a search space and the corresponding extracted head boundary. Figure 3.2 (a) shows a
search space with a black line on the subject's left cheek which is in the search space. Figure 3.2 (b)
shows that despite being in the search space, the dynamic programming algorithm (unlike the
greedy algorithm) is sufficiently robust to avoid the local minimum offered by the black line in the
search space. However, it is important to note that by reducing the background contrast of image
(b), the inner head boundary was extracted instead of the outer head boundary, see image Figure

3.2(c). This will cause problems in a large database if it is desirable to compare all inner or all

outer head boundaries.
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(a) Search Space (b) Outer head boundary extracted

(d) Search space (e) Extracted contour

Figure 3.2 Type of head boundary (inner or outer) extracted dependant on background.
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3.2.4 Automatically Initialised Snakes.

In the previous chapter the eyes were located to a high degree of accuracy. The distance between
them can be used as a guide to where nose, mouth and eye brows may be located. Referring to
Figure 3.3, the eyes are located at co-ordinates el, e2 and the distance between them is d pixels. An
ellipse with semi-major axis d and semi-minor axis 0.75d, centred at (x, y) can be used as a search
space which should enclose the eyes, nose and mouth. This ellipse was used to define the inner
contour. The top of the head and the width of head measured at height of the eyes can be used to

define the ellipse for the outer contour.

Figure 3.3 Search space for face organs based on eye spacing.

Figure 3.4 shows four examples head boundary extraction based on the eye locations. In example
(a) the final contour has been attracted to the strong edge data provided by the shirt collar. Recall,
that the final solution is the minimum energy around the contour which is evaluated at each stage in
terms of curvature and normalised edge strength. The extracted contour in Figure 3.4(a) is just as

valid as the solution of Figure 3.4(b) for the corresponding search spaces. The main difference
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between the two search spaces is that in Figure 3.4(a) a section of clothing with high gradient
information was included. This problem is further highlighted in Figure 3.4(b)/(c) where the shirt
collar is selected in preference to the chin by virtue of its stronger edge data. Example (d) shows an
extreme case where the lower portion of the extracted contour is quite poor. Using the eyes alone,
we are unable to satisfactorily control the size of the search space. Ideally, we need to restrict the
search space to areas of skin. In the next section we describe a chromatic clustering algorithm

which can be used to segment the skin and could act as a pre-filter to head boundary extraction

stage.

3.3 Skin segmentation

Active contours need to be near the vicinity of desired contour to provide the required extracted
contour. In the absence of a priori knowledge which defines the boundary of the skin, the quality of
the head boundaries extracted by active contour methods will depend on the edge gradients
produced by clothing. If the skin boundary can be located, this may offer good initialisation for the
active contour.

From our work in eye location, we have to located the eyes with reasonable frequency. It is
also reasonable to assume that the region below the eyes is skin. If we further assume that the skin
is a homogeneous region, then a region growing algorithm [61], seeded from the region below the
eyes, can be used to extract the required skin boundary. Immediately the assumption of the skin
being a homogeneous region means that moustaches and beards which do not match sample of skin
under the eyes in terms of homogeneity may extract incorrect outer skin boundaries. However, if
there are relatively few such faces in the database then this approach is acceptable. Given a sample
region, s, below the eyes containing N pixels, if the colour of a pixel I(i, j) at co-ordinates (i, ) is
split into its red, green and blue components, /,, I,, I, then the mean colour of a sample of skin

below the eyes is given by
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Figure 3.4 Poor head boundary extraction due to strong edge data.
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) Poor head boundary extraction due to strong edge data.

Figure 3.5(cont.
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Auiv(l.’j):(/‘tr’ug’lllb) (37)

where [, ,U o> My are the mean of the red, green and blue components of a pixel given by

R
1, j)= N(Zuz,]) (3.8)
i,j)es
1
G )= D16 (3.9)
(i, j)es
1 -
NGRS Ng;sl,,(w) (3.10)

A pixel may be considered to belong to the skin region if its Euclidean distance to the sample skin
pixel is less than a threshold value, D,, and it is region-4 connected to a pixel in the skin sample.
The Euclidean distance between two pixels p; and p, is given with colour components (1, g1, b1)

and (r,, g2, b>) 1s given by

d=((r =) +(g,~ )"+ (b, ~5,))" (3.11)
A region which is completely surrounded by skin but does not satisfy the criteria for skin is also of
interest, since this region is likely to be the location of a face organ such as a mouth or nostril.
Furthermore, we observed that the lips and nostrils usually have a high proportion of red compared
to green and blue which can be used to refine the skin location process. A candidate for a non-skin

pixel was identified if the pixel the red component was significantly higher than other colours, viz.

L >S,. s (3.12)
(Ig+1b) (“g+“b)

where S, is a empirically determined threshold. Figure 3.6 shows an example of the skin
segmentation process. The segmented skin is shown in grey, holes in the skin which correspond to
face organs are shown in black and the background is represented as dark grey. This example
shows that the holes in the skin can be used to initialise the search for the face organs such as the

nose and mouth. The nose and mouth windows can now be initialised using the distance between

the extracted eye centres.
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Figure 3.6 Skin segmentation using region growing, seeded from skin under the eyes.

The full set of extracted features are shown in the appendix. From Figure 3.6 we can extract

automatic distance measures listed in terms of co-ordinates of landmark points from Figure 1.1.

The names of these measures are listed in Figure 3.7. In addition, we can extract the red, green and

blue components (skinColourRed, skinColourGreen, skinColourBlue) from the skin. Similarly, the

colour components for the iris can also be extracted.

Name X1 Y1 X2y
headHeight X X |37 37
foreheadright 18 18 A A
foreheadleft 19 19| B B
headWidth 33 33 | 36 36
noselength X X
nosewidth E E F F
chinwidth 33 33 | 36 36
eyeaxistomouth X X |31 31
intereyebrowdist 15 15| 16 16
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mouthwidth 34 34|35 35
mouthdepth 31 31| 32 32
mouthheight 30 30| 31 31
scerlawidthl 22 22|23 23
scerlawidthr 24 24125 25
scleraheightl 18 18 | 21 21
scleradepthl 18 18 | 20 20
eyetohairl 18 18| C C

eyetohairr 19 19 D D

eyebrowwidthl 13 13 {15 15
eyebrowwidthr 16 16 | 17 17
eyebrowdepthl 38 38 |14 14
eyetocheekl 18 187 C C

eyetocheekr 19 19| D D

mouthtojawl 31 31| 33 33

Figure 3.7 Features by automatic or manual extraction.

3.4 Assessment of Extracted Features.

In this section we appraise the overall automatic feature extraction process with particular
reference to issues that may be of interest to our sponsors. The appendix shows features extracted
for 44 faces of 18 different people from the XM2VTS database. The eye location techniques have
been tested on a large database (more than one thousand faces) compared to the size of many
databases used in the literature. The success of the eye location techniques indicates that we have
made a good start to production volume feature extraction.

However, it was not possible to extract the chin with any degree of accuracy due to
inadequate active contour initialisation. We note that a different contour may be extracted from the
same face image simply by changing the background intensity. It may be possible to determine an
optimum regularisation parameter, but this may require consistent edge strength at the
skin-background boundary. This consistency would be required throughout our sponsor's 20,000
face images. If correctly illuminated, the active contour initialisation for the chin may be obtained
from the skin extraction algorithms. However, it does appear that inconsistent illumination has

caused shadows under the chin on a number of occasions. We would also suggest that poor
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illumination was responsible for poor within-class feature segmentation, in particular, the
eyebrows. Ignoring the illumination effects under the chin, facial skin was successfully segmented
from the background using empirically derived thresholding limits. These limits would need to be
evaluated over a range of skin colours or an alternative approach employed. We have used a simple
distance measure to a sample of skin using its red, green and blue components. Perhaps more
research into illumination invariant colour representations [55] could be useful, although from the
introduction, it is clear that illumination is a difficult problem for face-based as well as feature-
based recognition.

The hair is of particular interest to our sponsors but its extraction was not attempted. It
would be easy to segment the hair from the background in the XM2VTS because the background is
dark blue in colour and probably not easily confused with hair. However our sponsors expressed an
interest in being able to obtain a subjective description of hair which might include tidiness,
waviness, spikiness etc. This would require very high resolution images so that texture information
could be extracted. Such high resolution images would also be useful for extracting the eyebrows.

From the extracted skin boundary, skin colour can certainly be determined from the
resolution of image supplied. However, to determine more detail such as gender, age and
complexion much higher resolution images may be required.

The mouth extraction results could possibly be improved by an increased population size in
the genetic algorithm used for the mouth template optimisation. However it is difficult to suggest
methods to reliably measure the nose parameters over a range of skin colours.

Clearly, there is still much research to be done before acceptable results are likely to be
obtained on our sponsors' database of 20,000 images. The main proposals for our sponsors’
consideration are to use high resolution images and pay much greater attention to illumination,
background and to subjects’ pose. However, this remains a visual assessment of the results of
extracting natural features using eyes as a primer. Visual analysis suggests that within class
variation in some features by these extractions might reduce their use in an automatic recognition

system. Prior to confirming this we shall consider descriptions of the contour for use within a

recognition system.
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4. Fourier Descriptors for contour

comparison.

We are ultimately interested in using the contours, which have been extracted from the face, as part
of a face feature vector. Any properties of a contour representation which enhance automatic face
recognition are important considerations. There are many techniques available for describing
contours such as, chain codes [24] and B-splines [31]. However, Fourier descriptors (FDs) offer a
method for shape comparison which can be made invariant to rotation, scaling, translation (RST)
and start point. They also enable the use of numerous analysis and manipulation techniques after
the contour has been converted to the frequency domain. In addition, the wealth of experimental
and theoretical research suggests that Fourier descriptors are a suitable choice for our application.
In this chapter we compare the methods proposed by Zahn & Roskies [89] and Kuhl & Giardina

[41] for comparing contour boundaries which may be obtained from head boundary extraction.

4.1 Elliptic Fourier Descriptors

Kuhl and Giardina [41] represent a continuous closed contour in two dimensions, as a parametric
function v(z) of time . The projections of v(#) on the x and y axes are x(¢) and y(¢). Since the contour
is closed, both x(#) and y(¢) are periodic with period 7, where T is the time taken to traverse the

contour at a constant rate. The functions x(¢) and y(z) are eligible for Fourier analysis and can be

written as
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N 2nm . 2nm
x(t)=A0+z a, cosTt+bn sm——j—:ﬁ 4.1

n=1

N 2nm . 2nrw
y(t)=CO+Z ¢, cos——t+d, sin——t 4.2)
e T T
For the x projection,
1 T
A, = —J.x(t)dt (4.3)
T
0
T
_EJ ; 2nrw J 44
a, =7 x()cos—Tt t 4.4)
0
T
b—EJ‘ t in 22T d 4.5
W =T x()smTt ¢ (4.5)
0

and similar term can be evaluated for the coefficients Cy, ¢, and d, for the y projection. Kuhl and
Giradina [41] showed that for a piece-wise linear contour (e.g. a Freeman chain coded contour) the

elliptic Fourier descriptors a,, b,, ¢, and d, can be evaluated as

T Ax,[  2nm 2nmw
2 coSs 1, —Ccos——1, (4.6)

4.7

4.9

K
T ZAy,,f 2nm 2nm
C LCOS T t —Ccos——t ] “4.8)

where K is the number of piecewise linear sections in the boundary, Ax[, , Ayp are the lengths of

the projection of the p-th link on the x and y axis and
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At,=t,-1,,

(4.10)

is the time to traverse link p. The terms A, and C, represent a contour positional offset and are

given by
K
1 Axl’ 2 2
A, = ?Zﬁt——(tp —2 ) +E (1, 1)
p=1 P
K
INYAY 2 o
G = T TAr (t, —zp_1)+6p(tp —1,,)
p=l P
where
p—1 p-1
_ 4
f-Sa S,
j=1 P =
p-1 p-1
A
5]) = ZAy} b yp zAt]
j:] tp j=
and

§=4=0

An approximation to the original contour can be reconstructed using

x(z)=A0+zN:Xn

N
yN=G+ D T,
n=1

where the projections for X, and Y, are given by,

2nmw . 2nmw
X, (t)=a,cos——t+b, sin——t
" T " T
Y (1) 2n7rt+d . 2n77:t
=c COS—— sin——
h n T n T

4.11)

(4.12)

(4.13)

4.14)

(4.15)

(4.16)

(4.17)

(4.18)

(4.19)

Giardina and Kuhl [25] show that the points (X,, ¥,) describe elliptic loci. Thus the approximation

of a closed contour using can be represented as the vectorial sum of rotating phasors, which are

defined by the above projections. The frequency of each phasor, relative to the fundamental
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frequency of the first harmonic is determined by its harmonic number, n. They also show that the
error between a point on the original contour and the reconstructed contour, & can controlled to any

degree of accuracy by the number of harmonics, N. If the reconstruction error, &, is defined as

£= ma;{sup’x(t) — Xy (t)l, sup]y(t) - Yy (t)l} (4.20)

then the error is bounded as

£< 27; ~ max[‘z (x(1)), KZ/d(r))] (4.21)

T . o
where V represents the sum of the variation and x(t)and y(¢)are the derivatives of x(r)
0

approximated by
a(t)'-Ai 4.22
X0 = (4.22)
and
y(t) = £, 4.23)
) =" 4.

The accuracy of the original representation can be increased by increasing N. Translation
invariance can be achieved by ignoring the positional offset terms A, and C,. Kuhl and Giardina
note that the locus for the first harmonic can be either circular or elliptic. In the case of an elliptical
first harmonic, scaling invariance can be achieved by dividing each of the coefficients by the
magnitude of the semi-major axis or the radius of the circle. A nearest neighbour classifier was

used to classify the shape of class m minimising the distance D of the unknown shape r to the

known shape p.

D= min | min ZD,Z(r,p,m) (4.24)
P
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a:y (4.25)

r-nm

original shape

harmonic = 64 harmonic = 128

harmonic = 160 harmonic = 200

Figure 4.1 Shape reconstruction using elliptic Fourier descriptors.

4.2 Zahn and Roskies Fourier Descriptors

Zahn and Roskies [89] describe a simple closed curve, 7y, with parametric representation

u(l)=x(I)+ jy(l) where 0 <[ < L is arc length and L is the total length of the curve. The

accumulated angular change in direction of the curve since the start point is defined ¢(/). For a
closed curve, ¢(0)=0 and ¢(L)= 2r. To apply Fourier analysis, ¢ is mapped to a periodic function,

¢* where

) Lt
¢ (1) = ‘P(ﬂj +1t (4.26)

is periodic with period 2w and O < r < 2m. Expressed mathematically, the boundary may be

described in term of its Fourier series as,
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¢"(t) = iy + 3 (a, coskt + b, sinkr) (4.27)
k=1
Or in polar form the expansion is

O () =pty + 3 A, cos(kt — ) (4.28)
k=1

where the { A,,,} and {a;, b} are the Fourier descriptors in polar and Cartesian form

respectively and u, represents a positional offset. The Cartesian form of the Fourier coefficients for

the » th harmonic evaluated at the m th vertex is given by,

o, =—— § A, sin 2T (4.29)
AT k=1 L
m 2
b =L § A, cos 2k (4.30)
AT k=1 L
and the positional offset is given by

1 m
Uy =—T —— Y AlLAQ, (4.31)

L k=1

where the terms A/, and A¢ represent the length of the polygon and change in angle at vertex &, see
Figure 4.2. The polar representation of Zahn and Roskies' Fourier descriptors can be evaluated

using,

Figure 4.2 Closed Planar polygon in terms of Edge Lengths Al; and Vertex Bends Agy
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A, =(a’ +b2) (4.33)

n

T<O, ST (4.34)
Reconstruction of an approximation to the spatial domain curve given its Fourier descriptors can be

achieved via numerical integration of

2r !

L N
Z(1) = Z(0) + % [ exp i[— t+ 8+ + D A, cos(kt — e )} d (4.35)
k=1

0
where Z(0) represents a positional start point. Furthermore Zahn and Roskies noted that given an
originally closed contour, the reconstructed contour is not necessarily closed. The requirement for
numerical integration for contour reconstruction and the appearance of the reconstructed are
unattractive characteristics. However these drawbacks can be overlooked when the ease of shape
comparison is considered. Essentially, shapes can be compared by measuring the amount by which
the shapes differ from a circular shape. Fourier descriptors of a shape can be made invariant to
scale by normalising the A, by the magnitude of the first harmonic, A;. The expressions for Zahn
and Roskies Fourier descriptors are invariant to the start point and rotation. The ¢, terms can be
used to detect mirror images if necessary. Thus, the magnitude of the Fourier descriptors offer a
simple means of comparing two shapes in term of rotation, scale and translation (RST). Given two
curves p and g with normalised Fourier descriptors {Ap, On} and {A,, 040} a distance measure

between the two contours can be evaluated as

n

)

k=1

(4.36)

A, —A

Pk qk

A distance measure of D = 0 indicates that curves y and y are identical.
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Figure 4.3 Sample shapes for recognition.

Fourier descriptor for square (a) circles (c) and (d)
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Figure 4.4 Fourier descriptors for three shapes using Zahn and Roskies method.
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4.3 Elliptic vs Angular Fourier Descriptors

Van Otterloo [79] compares the properties of many of the popular forms of Fourier descriptors and
shows that the convergence rate for Zahn and Roskies' method is much slower than other methods,
for example elliptic loci [41] or complex number [29] based Fourier descriptors (FDs). The
reconstruction algorithm for Zahn and Roskies' FDs, described by equation (4.35) requires a
numerical integration solution. This often results in a contour, which was originally closed, being
represented as an open contour after reconstruction. If our major concern was to achieve a faithful
reproduction of the original contour and to control the number of harmonics required to achieve the
desired reproduction quality, as perhaps in the case of digital transmission, then elliptic FDs seem
most appropriate. Using elliptic FDs, the error between the original contour and the reconstructed
contour can be controlled using equation (4.21). Furthermore, the loci of reconstructed contour
always describes a closed contour. However we are most interested in shape comparison, rather
than shape representation or reconstruction and Zahn and Roskies' method results in a very simple
expression for shape comparison as expressed by equation (4.37). Two shapes are the same if their
Fourier descriptors are identical. In Zahn and Roskies presentation, the amplitude of the FDs offers
direct shape comparison by means of a distance measure between the two sets of FDs. In Kuhl and
Giardina's presentation [41] shapes are classified using a nearest neighbour classifier. The nearest
neighbour classifier requires a distance measure to be minimised over the set of shapes. Shapes
with the smallest minimised distance measures are considered to be most similar. We have adopted
Zahn and Roskies’ method for further experimentation rather than Kuhl and Giardina's method

since we can avoid minimisation over the set of shapes.

4.4 Enhanced shape discrimination for FDs

We note that although the first harmonic is required for a shape's reconstruction, it does not vary
across the set shapes since it is usually normalised to unity for shape comparison. Considering the
example of shape reconstruction in Figure 4.1 it may be necessary to use many Fourier descriptors
to achieve the desired degree of accuracy. However, only a few descriptors may be required to
distinguish different shapes. Accordingly, we prescribe that the lack of variation in the value of the
first harmonic, should be incorporated into the similarity measure for shape comparison. On the
other hand, a harmonic which contains a large amount of variation across the sample set should be

used to amplify the difference in the shapes. Thus, we introduce a new set of weights into the
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distance measure for comparing Zahn and Roskies' FDs, equation (4.37). The distance measure

between shapes p and g can now be written,

D= ZWk
k=1

where the coefficient weights to be determined wy are proportional to the variation of the k-th

(4.37)

Apk - Aqk

harmonic, across the set of n shapes. The form for the weights can be expressed as

<

w, =V(F,) (4.38)

1

!

n
where V represents the variation over the set of shapes and Fj represents the k-th harmonic (or

&

feature) for the i-th shape (or sample). For the case of Zahn and Roskies' FDs, we can directly use
the variation in the amplitude of the FDs to amplify important harmonics by setting set Fy=A;. On
this basis, the coefficient weighting for the first harmonic, w; = 0, since there is no variation in
amplitude of the first harmonic A, The nearest neighbour classifier for the elliptic FDs, equation
(4.9) can also be enhanced by variation weighting coefficients by applying the variation weights to
distance measures that require minimisation. We note however, that for the elliptic FDs we would
need to quantify the variation of the set of vectors (ay, by, ci, di) whereas with Zahn and Roskies'
FDs we only need to quantify the variation of A; which is a scalar quantity.

The terms "features" and "samples" are included in parenthesis to emphasise that weights
defined in this manner could also apply to a general set of features, F. The form of the distance
measure for the Zahn and Roskies FDs is conveniently similar to distance measures which may be
used compare feature vectors. A method for determining the amount of variation contained in a set

of measures, V, is the topic of the next chapter.
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5. Feature Selection & Combination.

We have described some of the techniques available to extract face features, both in our studies and
elsewhere, but much less attention has been paid to how to select or combine features to achieve a
useful result. Even if features can be robustly extracted over a large database of faces, we still need
to quantify the usefulness of a set of extracted features. The question posed by feature selection 1is;
which features, and in what proportions, maximise the systems recognition rate, yet optimise
computational costs 7 An exhaustive examination of the feature set rapidly becomes impractical as
the number of features increases. One approach to feature selection could be to formulate and
optimise a cost function which uses the features as its input. We have already discussed the use of
techniques such as generic algorithms, dynamic programming, or gradient methods which might be
use for optimisation. Alternatively, one might attempt to identify a subset of features that provide a
good acceptable performance using domain knowledge of the feature space.

Kittler et al [40] provide a theoretical framework for combining multi-modal data sources.
One face recognition study compared the relative merits of features versus templates [7] summing
the performance from the individual features as a means of feature combination and then extended
the approach to fuse speaker recognition and face data derived from templates around the eyes,
nose and mouth [6]. Jain and Zonker [35] illustrate the value of feature selection in combining
features from different data models and demonstrate the potential difficulties of performing feature
selection in small sample size situation. This study compared fifteen search techniques and
emphasised the power of the sequential forward floating selection method. These tests used, twenty
dimensional, two-class data sets. Fisher's Linear Discriminant Analysis (LDA) is designed to
maximise the ratio of between-class to within-class scatter {23]. However in a face retrieval system
we do not typically have such a priori class information.

Roeder and Li [71] qualitatively analyse accuracy requirements for face-based face
recognition. Twelve face-based features including eyes, nose, mouth and contour measurement
were used. Individual and groups of feature measurement were perturbed in order to examine the
effects on recognition success. They used a database of 333 faces with a recognition system based

on a nearest neighbour classifier. Their results indicated that the eyes were least sensitive to the
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recognition process whereas the measurements involving the cheeks and chin were amongst the
most sensitive.

Nixon et al [59] present theoretical arguments which further support the combination of
features from different sources. The theory was applied to the complete (112 images) Brodatz
texture set and provided an improved classification from 82% and 76% up to 88%. Jia and Nixon
[42] used four feature sets; geometric measurements of the major face organs, Fourier descriptors
on the head boundary contour, moments of the eye area and the Walsh power spectrum of a face
profile. They found that an extended feature vector composed of 4 weighting of the original
features proved a better discriminator than any single feature. This result was achieved on one face
in their database but suggested that discriminatory power may be increased by combining
orthogonal feature sets.

Kaya and Kobayashi [38] performed manual measurements on 62 enlarged photographs of
8 different faces and developed an information theory based approach to face recognition. They

modelled the extracted face features as a signal

Y=X+D 6.1
where D represents noise corrupting an otherwise perfectly extracted one dimensional feature
vector X. They note that the maximum number of classifiable patterns is limited by the average

mutual information between X and Y defined as
I(X;Y)=H(X)- H(XIY) (5.3)

where H(X) is the entropy of X and H(X!Y) is the entropy of X given Y. When the noise D and the

feature vector are normally distributed the mutual information between X and Y is given by

M, + M|~ log,|M,|) (5.3)

1
1(X:Y) =§(log2

Where My and Mp, are the covariance matrices of X and D respectively. Two sources of noise were
identified: (a) measurement noise D,, introduced by from the hardware equipment etc. which
would cause different results to be obtained from the same photograph and (b) intrinsic noise D,
which accounts for differences in multiple versions of the same face. Sources of intrinsic noise
would include variations facial expression and orientation to the camera, changes of hair styles etc.
PCA was applied to X and D to produce orthogonal linear transformations of the features and noise

LX and LD. Assuming D; rather than D,, to be the dominant source of noise,
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I(X;)Y)=1(X;LY) (5.4)

1 My + M,

=—log,

> (5.5)

M|

1 o’
= —1 1+ 5.6
22 oI+ (5.6)

where My and M, are the covariance matrices of LX and LD respectively and o’ and %2 are the

variances of the diagonalised matrices LX and LD. Kaya and Kobayashi then continued by
developing a nearest neighbour classifier relying on PCA as a method of data reduction.

The problem with PCA from a feature selection point of view, is that although it can result
in considerable data reduction for highly correlated data, it is still a transformation of all of the
original variables. As such, it does not tell us which variable or feature contains the most
information. However, if our feature selection strategy is based on selecting uncorrelated features,
whose covariance matrix is already a diagonal matrix, then PCA will merely order the variables in
terms of their variances without an interdependence on all the original variables. A heuristic answer
to the rhetorical question poised by feature extraction at the beginning of this chapter is to select
statistically orthogonal features, since all the variance and information is captured in the leading
diagonal of its covariance matrix.

Brunelli and Poggio [8] found that template matching produced better recognition rates
than geometric feature extraction. They found that the discriminating power of their templates,
arranged in decreasing performance, were the eyes, nose, mouth and whole face. They considered
approaches to combine the similarity score of different features to produce a global score. The
following strategies were identified:

1. Choose the score of the most similar feature.

2. Add the feature scores.

3. Add the feature scores, but include a different weight for each feature. The weight for

each feature being the same for each person in the database.

4. Add the features including a different feature weighting for each person in the database.

5. Feature score are optimised using a nearest neighbour classifier or a hyper basis

function neural network.
Brunelli and Poggio found that even the simple approach of adding the feature scores improved
overall recognition. Jia and Nixon in effect implemented this approach since they simply used

equal weighing of % for each of their 4 statistically independent features. In the next section we
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define weights for each feature and applied them to each person database. Ignoring the inevitable
noise introduced by feature extraction, these weights quantify the amount of variation present in

each extracted feature and can be used to weight the components of a distance measure.

5.1 Classification via variance weightings

We have extracted a set of face measures which need to be compared in order to realise a
recognition system. Some of the popular methods for measuring the similarity or difference
between two vectors in earlier chapters. These include the Euclidean distance, the Mahalanobis
distance and the nearest neighbour classifier. The relative merits of these and other similarity
metrics are discussed by Webb [81]. Although these measure can be used to implement a
recognition system, they do not provide information which indicates which individual components
of the feature vector are efficient discriminators. To identify these components we first define the

similarity measure of a feature vector, of length M, for two faces ¢ and b as,

M
S(ab)= Y w5, (ab) (5.10)
i=1

where S/a, b) is a distance based similarity measure and w; are weighting coefficients to be
determined. The form of Si(a, b) that we have chosen is shown in equation 5.12 but first we

determine the terms w;. The set of feature vector measurements extracted from a database of faces

can be expressed in matrix form,

X X Xin
X X, X
21 i ZN
F=] . . (5.10)
X1 Xu2 7 Xuw

where, element x; represents the i-th feature measurement for the j-th face and N is the number of
faces in the database. Assuming that the between class variation is greater than the within class
variation, we seek to choose values for the weights which are proportional to a feature's population
variation. The unprocessed sample variance may unfairly bias the coefficient weighting in favour
of features of large magnitude. This is because the sample variance of large measures, may be
greater than for a set of measures of small magnitude. To compensate for this, each feature is
normalised by the maximum feature measurement in the vector of N faces before calculating its
sample variance. Normalising the data in this way before calculating the sample variance provides

a more useful measure of a feature's intrinsic variance. For example, the head width for each person
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in the database is normalised by the largest head width within the database. The normalised feature

vector is given by

* X;
= 5.10
max(x;) (>-10)

j

i

By normalising each feature by its maximum value, we obtain a new set of feature measures, F~
which are bounded in the range [0, 1]. A feature that does not vary will have zero variance and
correspondingly any weighting term used in a similarity measure should also be zero. The weights
for improved classification are now given by the ratio of the variance of a row of a particular

feature measure, to the total normalised variance,

W, o=— (5.10)

subject to the constraint

M

Yow =1 (5.11)

i=1

where ¢ denotes variance. A similarity measure, based on the Canberra distance measure was
chosen as

N

S.(a.,b) = 2 N (5.12)

ol i T X

where g and b are two feature vectors. If the extracted features are to be used as part of an effective
recognition system, the within class similarities should be greater than between class similarities. In
this case a face may be considered as being recognised. As discussed in the introduction, there are
many criteria used in the literature to provide benchmark system performance. We shall define a
recognition rate to be the ratio of recognised faces to the number of faces in the database. This
definition of success is more stringent that used by Kamel er al [39] who achieved a 95%
recognition rate by considering the best four matches on a database of 84 faces. Our definition of
recognition is not only simpler, it is also closer to the requirements of a commercial system or a

human recollection of a specific face. We also define success in terms of a system classification

error, ce, which is related to the recognition rate rr by,
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rr=1-—ce (5.13)

5.1.1 Variance weights applied to Fourier descriptors

The method of calculating the variance in each feature is exemplified in Figure 5.1. The table in
Figure 5.1 (a) shows the normalised Fourier descriptors for the sample shapes of Figure 4.3. Note
that first harmonic is normalised to unity and therefore does not contain any discriminatory power.
To prevent the coefficient weights from being dominated by the variance of the larger lower order
harmonics, we first normalise the row of the feature vector matrix by the largest harmonic in the
row as shown in Figure 5.1 (b). The sample variance of the row of normalised Fourier descriptors
are the coefficient weights are also shown in Figure 5.1 (b). The resulting weights profile is shown
in Figure 5.2. The cumulative weight shows what percentage of the total variance is accounted for
by using up to the n-th harmonic. For example the 43 harmonic, corresponds to a coefficient
weighting of approximately 3 and 83% of the total variance if all harmonics up to the 43" are used.
If the cumulative weight was a sharp exponential, it may be possible to capture the majority of the
variance with the first few harmonics. However, the camulative distribution is approximately linear
and we cannot truncate the series of harmonics without losing significant amounts of variance.
Nonetheless, it is clear that some harmonics have greater variance and accordingly are assigned
greater weighting. The benefit of applying variance weights can be seen in the system performance
summarised in Figure 5.3. The variance of the confusion matrix is generally higher when variance
weights are applied. This is particularly apparent for a small number of harmonics because in the
case of equal weights the first harmonic is given the same weighting as the other harmonics when it
actually does not contain any discriminatory power. We have calculated the Fourier descriptors so
in the absence of noise it would be desirable to be able to be able to recognise the full set of sample
shapes. The desired 100% recognition rate is achieved using variance weighted similarity
coefficients. However, in the case of using equal weighted similarity coefficients, the recognition
rate falls because the weighting (1/harmonics) become too small to act on the important terms in
the similarity measure. It is important to note that in this experiment the variance weights have

improved recognition in an environment where there is no measurement noise, since we have

calculated the Fourier descriptors.
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Harmonic| shape a shapeb shapec shaped shapee shapef shapeh shapeg
1 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
2 1.000 1.000 0.896 0.919 0.253 0.222 0.645 0.645
3 0.667 0.667 0.515 0.546 0.662 0.667 0.667 0.667
4 0.000 0.000 0.288 0.335 0.204 0.177 0.493 0.493
5 0.400 0.400 0.184 0.225 0.392 0.401 0.400 0.400
6 0.333 0.333 0.104 0.144 0.184 0.161 0.287 0.287
7 0.286 0.286 0.064 0.096 0.275 0.287 0.286 0.286
8 0.000 0.000 0.046 0.077 0.164 0.144 0.083 0.083
9 0.222 0.222 0.066 0.077 0.208 0.223 0.222 0.222
10 0.200 0.200 0.069 0.081 0.149 0.135 0.071 0.071

(a) Zahn and Roskies Fourier descriptors for sample shapes.

Harmonic | shape a shapeb shapec shaped shapee shapef shapeh shape g |Weights
1 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 0.00
2 1.000 1.000 0.896 0.919 0.253 0.222 0.645 0.645 1.90
3 0.999 0.999 0.772 0.819 0.992 1.000 0.999 0.999 0.17
4 0.000 0.000 0.585 0.68 0414 0.359 1.000 1.000 2.89
5 0.998 0.998 0.459 0.562 0.979 1.000 0.998 0.998 0.97
6 1.000 1.000 0311 0.432 0.551 0.483 0.861 0.861 1.42
7 0.997 0.997 0.222 0.334 0.959 1.000 0.997 0.997 2.09
8 0.000 0.000 0.28 0.468 1.000 0.882 0.505 0.505 2.52
9 0.996 0.996 0.296 0.343 0.931 1.000 0.996 0.996 1.82
10 1.000 1.000 0.346 0.406 0.747 0.676 0.357 0.357 1.54

(b) Variance weights from normalised feature vector matrix.

Figure 5.1 Calculating variance weights for sample shapes using first 10 harmonics
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5.1.2 Variance weights applied to geometric face measures

The face measurements of 44 faces from the M2VTS database were manually extracted by two
expert coders. The database contained multiple copies of each of the 18 different faces so that
recognition experiments could be performed. Our sponsors kindly provided a database of 200 faces,
one face per subject with face features coded in accordance to the PITO coding scheme. Even using
expert coders, we must expect some measurement noise on each feature. We assume that the noise
due to data acquisition and sampling is small compared to the intrinsic noise introduced by
variations in illumination and facial expressions. Ideally, the intrinsic noise should be small
compared to the actual feature being measured, e.g. head height, otherwise the weights are
reflection of the noise and the recognition rate will suffer. Figure 5.4 shows the variance weighting
coefficients obtained by applying equation (5.10) to 44 faces from the XM2VTS database.

Figure 5.5 compares the results obtained by applying variation weightings and constant
weighting to 200 faces from the PITO database and 44 faces from the M2VYS database. It can be
seen that the variance of the confusion matrices using variation weightings are always higher then
those obtained without variation weights. However, the recognition rates obtained using variance
weights were lower than those obtained by equal weightings, which indicates a high level of

measurement noise was present.
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(a) Automatic extraction, (b) Automatic extraction,

equal weights, 44 XM2VTS faces, variance weights, 44 XM2VTS faces,
variance = 9.80 recognition = 72.73% variance = 44.22 recognition = 54.55%
(¢) Manual extraction, (d) Manual extraction,
equal weights, 44 XM2VTS faces, variance weights, 44 XM2VTS faces,
variance = 10.33 recognition = 77.27% variance = 19.43 recognition = 59.10%
(e) Manual extraction, (f) Manual extraction,

equal weights 200 PITO faces, variance = 2.43  variance weights 200 PITO faces, variance = 3.35
recognition N/A since only one image per person  recognition N/A since only one image per person

Figure 5.5 Confusion matrices for manual and automatically extracted features.
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5.1.3 Variance weights applied to composite feature vector

Within the extracted feature set, there are a number of different types of features. For example, we
have distance measures, such as the eye parameters obtained from the deformable eye template,
area measures for the eyebrows, colour information from the skin and iris boundaries and contour

information from the Fourier descriptors of the forehead boundary.
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Figure 5.6 Weightings for geometric, colour and contour features
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Figure 5.6(c) shows the variance weights distribution using automatically extracted feature for the
database of 44 faces. The distribution in Figure 5.6(d) also uses the full set of extracted features,
but in this case we have assumed perfectly robust within class contour extraction by assigning
within classes to the same contour.

The results are interesting because they show that despite being the most robustly
extracted, the geometry of the deformable eye template offers little in terms of discriminatory
power. The most discriminating geometric features are the area of the eyebrows and those
measurements relating to the parameters of the deformable mouth template. Examination of the
extracted features in the appendix suggests that extraction of the eyebrow boundary is amongst the
least robustly geometric features. This distribution is in contrast to the results obtained by Brunelli
and Poggio using template matching [7]. They found that the most discriminating features in
decreasing order of importance were the eyes, nose, mouth and whole face template. They
suggested that the whole face templates were the least successful because of difficulties in
normalising the scale of their pictures and sensitivity to head rotations. We suggest that
discriminating order for the eye, nose and mouth templates may be reasoned in terms of their likely
variance content.

The associated high weighting given to the eyebrow areas in the similarity measure will
have an adverse effect on the recognition rate or classification error. One might be tempted to
assume that the variance weightings are proportional to the magnitude of the original measurements
which might explain why the eye parameters have less discriminatory power than the eyebrows or
mouth parameters. This argument can be easily refuted when we consider the complete feature
vector Figure 5.6(c) and (d) which include the Fourier descriptors whose initial magnitude are the
smallest in the feature vector set. It is most interesting to note that the weightings for the Fourier
descriptors are generally higher than those for the geometric and colour information features.
Comparing the weights for Figure 5.6(c) and (d) it can be seen that in the case where we have
assumed perfect forehead boundary extraction (d), the weights are even greater in favour of the set
of Fourier descriptors.

The effect of noise and the benefit of robust feature extraction can be seen by comparing
the system performance reported in Figure 5.9 (a) and (b). Both cases start with a classification
error of approximately 30% and 47% for equal and variance weights respectively using geometric
and colour features, plus the first Fourier descriptor from the forehead boundary. It can also be seen
that in both cases, the variance of the confusion matrix is higher if variance weights are used

instead of equal weights. Examining Figure 5.9 (c), the classification error using variance weights
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increases up to a peak of 81% when at the 40™ harmonic. This is in contrast to the result achieve
when perfect feature extraction is used for Figure 5.9 (d). The classification error now rapidly
decreases to zero as the similarity measure becomes dominated by the high weights for the Fourier
descriptors. Indeed, it would appear that our variance weightings has enables us to identify the
principal features for discrimination. The original feature vector was 90 dimensional, 55 harmonics
for the Fourier descriptors and 35 for the remanding features, but the same result could have been
obtained using the just the first eight Fourier descriptors. Our method thus serves as a powerful

principal feature selector.

5.1.4 Effect of noisy feature extraction on recognition

Perfectly robust feature extraction on real face images is desirable but usually too difficult to
achieve in practice. The effect of noisy feature extraction is to degrade the system recognition rate.
To avoid system degradation, features should extracted such that the within-class distances are
smaller than the between-class distances. In this section we simulate the effect of noise on system
recognition by perturbing the set of feature values

The geometric face measurements of 18 different people were automatically extracted
using our feature extraction methods. To simulate the effect of noise extra within classes were
generated with increasing amounts of noise. A portion of the feature vector matrix constructed by
adding noise to create a class size of five within class measures is shown for individual 000_1 with

noise level equal up to = 5 pixels of the extracted measure.

000_1_1 000_1_2 000_1_3 000_1_4 000_1_5] 009_2_1 009 2_5
headHeight 211 214 216 219 221 204 214
headwidth 192 195 197 200 202 192 202
noselength 65 68 70 73 75 72 82
nosewidth 29 32 34 37 39 35 45
chinwidth 192 195 197 200 202 192 202
eyeaxistomouth 119 122 124 127 129 119 129
intereyebrowdist 34 37 39 42 44 19 29
mouthwidth 72 75 77 80 82 89 99
mouthdepth 5 8 10 13 15 0 10
mouthheight 8 11 13 16 18 17 27
sclerawidthl 12 15 17 20 22 14 24
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sclerawidthr 42 45 47 50 52 41 51
scleraheightl 11 14 16 19 21 13 23
scleradepthl 23 26 28 31 33 23 33
eyetohairl 114 117 119 122 124 188 198
eyetohairr 111 114 116 119 121 175 185
eyebrowwidthl 73 76 78 81 83 86 96
eyebrowwidthr 66 69 71 74 76 73 83
eyebrowdepthl 7 10 12 15 17 13 23
eyetocheekl 47 50 52 55 57 58 68
eyetocheekr 54 57 59 62 64 50 60
mouthtojawl 58 61 63 66 68 54 64

Figure 5.7 Noise added extracted to measures to create a class size of five.

For a given set of measures, the within class distribution will overlap the between class distribution
with increasing noise, resulting in impaired system performance. Figure 5.8 shows the relationship
between additive noise and classification error. With up to six pixels error the equally weighted
coefficient similarity measures are unable to detect any classification errors. The variance weighted
coefficient similarity measures method is able to detect the effect of noise at a lower level of about
four pixels. Thus variance weighting has enabled the system to be more sensitive to differences in
the distance measures which may be due to a different face being presented to a recognition system.
The important factor is that again the variance of the confusion matrix is again greater when
variance base coefficient weightings are employed. This result strongly suggests that in the absence
of noise, or with sufficiently robust and accurate feature extraction, the variation based coefficient

similarity measures are the most useful.
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Figure 5.8 Effect of perturbing face distance measurements on system performance.

The simulated effect of feature perturbation was useful not only to determine how much
measurement can be tolerated, but also to serve as a benchmark for classification results that may

be attained using automatic feature extraction system.

5.2 Conclusions.

We have presented a useful method of combining features of various magnitudes from different
sources. The approach consists of determining coefficient weights which optimise a distance based
similarity measure. The weights are computed from the natural variance in the feature vector
matrix, yet are insensitive to the relative scale of the components of the feature vector matrix. We
have used scalar quantities such as the Euclidean distance between landmark face measures to
show the increase variance obtained using the weighted coefficient. The principle can be extended
for use on vector quantities, if the vector can be converted to a scalar quantity.

We have simulated the effect of extraction noise on system performance and determined
that an error of 5 pixels on geometric measure may reduce the system recognition rate to 84%.
Using automatically extracted features we achieve a recognition rate of 72% which is lower than
the success rates achieve by Brunelli and Poggio [7] and Lam and Yan [51] who achieved 90% and
96% recognition rate respectively. Our reduced success rate may be due to the more realistic image
capture conditions in which the images were captured over a period of several days. Even using

manual coding of the database the success rates of Brunelli and Poggio and Lam and Yam could
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not be achieved. If it is assumed that manual extraction could be acquired to within 5 pixels, then
the reduced recognition rate may be attributed changes of facial expression, hair styles or a facial
hair.

The approach has been tested on features sets originating from face geometric facial
measurement combined with the Fourier descriptors from forehead contours. The results showed an
in increase in the variance of the confusion matrix if our method for calculating the coefficients
were used compared to using equally weighted coefficients. From the distribution of calculated
coefficients we note that the model of the eye [88] is amongst the least discriminatory feature sets,
whereas the eyebrow's area were amongst the most discriminatory geometric features. The
coefficients for Fourier descriptors were the most discriminatory feature within the 90 dimensional
feature vector. They were significantly higher than the geometric and colour features, despite being
smaller in magnitude. Actually, 100% recognition could be achieved using just eight robustly
extracted Fourier descriptors. Our method thus identifies the principal features for face recognition
which is a useful information considering the expensive computational costs of feature extraction.

The investigation into the variance coding of face feature measures is at an introductory
stage only, rather than an established one. It would certainly appear that using the variance of face
features can be used to control their contribution to a recognition metric. However, some areas
require further study, such as the effect of noise on the measures, the accuracy of the estimates of
variance and the accuracy of the measures themselves. These effects combine, in a practical face
recognition system, to control the maximum achievable recognition rate. As such however, the full

extent of the contribution of these factors awaits further research.
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Figure 5.9 System performance using noisy and perfect feature extraction.

104



6. Conclusions and Further Work

This thesis has developed new ways for face feature extraction within a model-based recognition
scenario. More detailed conclusions can be found at the end of each chapter, however in broad
summary we observed that the eyes represent regions of high concentricity. This has enable us to
locate them using an evidence gathering process, designed to identify such regions. The success
rate using concentricity was quite variable ranging from 50% on a database of a thousand faces to
84% using 88 faces from the M2VTS database. We have improved the model of the standard eye
template by imposing rules on its construction, and thereby avoiding the use of explicit internal
energy terms. The original template optimisation used gradient information, which could result in
the template being trapped in a local energy minima at the eyebrows. We also experienced
difficulty in the determining suitable termination criteria for the iterative gradient based approach.
The problem of eluding local minima and specifying termination criteria for gradient based
optimisation were both solved using genetic algorithms. Although more computationally expensive,
they proved more suited to optimisation of the eye template, using populations of stochastic
solutions to evade local minima. Applying our improved deformable eye template to the top ten
peaks of concentricity, increased the success rates to 91% and 93% on the one thousand face and
88 faces from the XM2VTS database.

We have presented a new method for combining features which may be different in terms
of their magnitude and/or source. The method involves using the feature vector matrix to derive
coefficients for an Euclidean based similarity measure. These coefficients, calculated from a
normalised feature vector represent the intrinsic variance of a feature. The benefits of this relatively
inexpensive pre-processing was an net increased variance in the classification matrix and a
variance profile indicating the discriminating capability of each feature. The variance profile may
be used to determine which features should be extracted make the most efficient use of
computational effort. In this respect, the parameters of the deformable eye temple were very
expensive for their return in terms of discriminatory power. The concentric algorithm could achieve
a success rate of 84% success in seconds using 88 faces from the XM2VTS database. Application

of our improved deformable template improved the eye location rate from 84% to 93% but added
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several minutes to the eye extraction process for a mere total 2% weighting in the Similarity
measure. Clearly, robust feature extraction is crucial for a face recognition system based of features
is to be practicable. The features with the highest coefficients should be extracted with the highest

confidence and robustness to avoid classification rates dominated by noisy feature extraction.

6.1 Further Work

Although the eye template parameters offer little as a discriminator, they are a key initialiser in the
search for other facial features. We have shown that, without strong initialisation, the results from
the dynamic programming solution to head boundary extraction may vary with the background
intensity, which is a most undesirable effect. We were able to extract the skin boundary, using the
eyes as an initialiser, but even so, it was very difficult to robustly extract the chin boundary and
hence measure the head height. The variance profile for manually extracted features suggests that
the computational overhead for dynamic programming may not merit the extraction of this feature.
On the other hand, the chin contour is potentially a very useful feature because it is a part of the
facial bone structure. As such, it is less easily altered, unlike the forehead contour. In addition we
have seen that Fourier descriptors of the contours provide more discriminating capacity that
geometric measures, so perhaps perseverance should be extended to extract this elusive feature.

Images for the XM2VTS database were obtained over a number of months. The time
interval between successive images of the same person allowed changes in illumination, clothing,
hairstyles, facial expression, facial hair, orientation to the camera, any combination of which could
impair classification results. Where possible, these effect may need to be incorporated into the
recognition process.

We have suggested that the face features could be found by assuming that they are located
at holes in the skin boundary. We have applied simple thresholding with some empirically derived
constants to segment these features. If we assume the number of features are known, there may be
some benefit in applying clustering techniques rather than simple thresholding to locate face
organs. The eyebrows nose mouth etc. were extracted by looking at holes in skin rather than
intensity variations. If a model such as a deformable eye template is used there will be an error
between the a point on the contour and the closest point on a simple geometric parameter model.
Our variance profile shows that there is substantial discriminatory capability in the Fourier
descriptors of boundaries. It would be interesting to compare the classification performance of a
system of face features extracted as contour models rather than their approximation by geometric

models.
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7. Appendix

7.1 Extracted features
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