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ABSTRACT

An event-driven approach to biologically realistic simulation
of neural aggregates

by
Enric T. Claverol

Biophysical simulation of neuronal aggregates typically utilizes analogue descrip-
tions of the spatio-temporal dynamics of the membrane voltage in neurons. While this
approach constitutes a convenient framework for realistic modelling of single neurons
or small neural aggregates, the computational cost involved in the solution of the
associated systems of non-linear differential equations has hampered its use in large
scale simulations.

This thesis explores an emerging alternative to biophysical modelling which ex-
ploits the spike-based nature of inter-neuronal communication to replace the continu-
ous simulation framework by a computationally more efficient event-driven technique.

A hierarchical finite state automaton neuron model suitable for message-based
event-driven simulation (the MBED model) is described and discussed. It encapsulates
various aspects of neuronal biophysics: synaptic/axonal latency, finite synapse activ-
ation duration, single spike and bursting behaviour, pace making, inhibition driven
burst truncation and others.

The message-based event-driven simulator is designed to deliver efficient simula-
tion of large aggregates of MBED neurons, incorporating a customized event queue
management algorithm and a strategy for memory-efficient storage of synaptic para-
meter sets.

Two biological neural systems are tackled utilizing the MBED framework; the
locomotory neural circuit of the nematode C. elegans and the mammalian olfactory
cortex. The MBED model of the C. elegans locomotory system replicates experimental
observations of normal, mutant and laser ablated animals and provides a quantitative
description of a rich set of locomotory behaviours. Video recordings of active C.
elegans behaviour, an automated image analysis system and a mechanical body model
were developed to complement the neuronal simulation.

To further assess the validity of the MBED framework in biological simulations of
neuronal aggregates, a model of the olfactory cortex incorporating 10° neurons of three
cortical cell classes was developed. The model consistently replicates results obtained
experimentally and with the less efficient compartmental technique, while retaining
the computational efficiency inherent to event-driven simulation. The typical speed
differential between the two techniques is a factor in the range 10-100. The response
of the model to shock and random stimuli of various intensities is studied and shown
to be in good agreement with previous results.

Finally, preliminary data on the scalability of the MBED framework utilizing
Beowulf clusters is presented and further work is discussed.
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Chapter 1

Introduction and structure of the

thesis

In the last few decades, neuroscience has succeeded in providing explanations for a
number of processes involved in information processing in the nervous system. Since
the pioneering work of the Spanish scientist Ramén y Cajal, who described the
nervous system as a network of cooperating neurons propagating information from
dendrites to cell body and along the axon [1], intense research has been carried out
aiming at increasing our knowledge of neural functions.

Much progress has been made at the single cell level, mainly as a result of
increasingly sophisticated experimental techniques. In particular, the development
of electrophysiology has allowed the characterization of the electrical properties of
cellular membranes [2]. Less invasive imaging techniques (e.g. using voltage sensitive
dyes) are also emerging as alternative methods to record neural activity [3].

Despite these advances, progress in the understanding of the cooperative
behaviour of neurons at the network level has been hampered by the difficulties
associated with the recording of activity from large numbers of cells for long periods
of time. Several methods with potential to tackle this problem are gradually being
developed: especially promising are multielectrode arrays, which aim at extending
electrophysiological techniques to multicell recording [4], and photodiode arrays and
high temporal resolution CCD imaging, which build on current optical techniques to
allow imaging of activity in large aggregates of cells [5].

Simulation has emerged, concomitantly with the increase in computer power, as
another useful tool for the neuroscientist [6]. The development of models of ion

channels, dendrites, axons and synaptic communication between cells, has paved the
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way to the construction of realistic models of single neurons [7] and aggregates of
cells [8]. The availability of these models has facilitated the testing of hypotheses,
while minimizing the amount of experimental data required, and has directed the
design of new experiments for the validation of model predictions.

As the problem of network behaviour remains unsolved, there is an increasing
need for techniques capable of simulating large aggregates of neurons. The brute
force approach, the extension of classical models used for single cell simulation to
large scale networks without fundamental changes in their design, has proved an
arduous task due to the computational power required and the vast amount of
experimental data needed to set model parameters. ,

This thesis aims at developing a framework where the simulation of large
networks of neurons (in the order of 10° cells) is feasible with commodity
computational resources while retaining the fundamental properties needed for
realistic network activity. This goal is pursued with the development of the MBED
(Message-Based Event-Driven) neuron model, in an attempt to bridge the gap
between classical biophysical models and oversimplified artificial neural network
models. In providing a model with this common ground, some of the benefits of
discrete abstract models (efficiency) and their analogue counterparts (direct
mapping of biophysical parameters into the model) are retained.

In Chapter 2, background information on modelling of the nervous system is
provided. Firstly, a description of the two main frameworks in computer simulation,
continuous and discrete, is presented, highlighting issues relevant to neural
simulation. Secondly, the levels at which models can be constructed (molecular
kinetics, ion channels, single compartment neurons, multicompartment anatomically
realistic neurons, small networks and large scale networks) are described. Network
simulation is identified as the target level for this thesis.

Chapter 3 reviews neuron models and simulation tools from the perspective of
network simulation. The selection of a particular type of neuron model affects
dramatically the efficiency of a large scale network simulation. For this reason,
model types are reviewed progressing from biophysically realistic compartmental
models to highly abstract representations of neurons. Platforms available for the
simulation of networks of these models are described.

Chapter 4 reviews previous work on modelling of the two biological systems
which are studied in this thesis, the nematode C. elegans and the olfactory cortex of
mammals. After providing background information on the invertebrate C. elegans

and describing the experimental data available, previous work on computer models
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is discussed. The lack of a quantitative model of the locomotory neural circuit which
generates the observed patterns of muscle contraction is identified.

Similarly, the piriform cortex is first presented in the context of the biological
olfactory system. Experimental data, including anatomical information and some
activity recordings, are presented. Finally, network models of the olfactory cortex
are reviewed. Two standing issues are identified as aspects to tackle with the MBED
framework: firstly, the limitation of existing biophysical models to networks in the
order of a few thousand neurons, when using the compartmental techniques, and
secondly, the unsuitability of loosely biologically constrained models to replicate
experimental data.

Chapter 5 presents the MBED neuron model which enhances oversimplified
neuron models by including components which allow the direct mapping of several
biophysical parameters (dendritic delay, axonal delay, synaptic latencies, finite
synaptic activation duration, bursting, pace making) while retaining the
computational efficiency of event-driven simulation.

Chapter 6 describes the MBED simulator. This is an object-oriented
event-driven simulator implemented in the C++ programming language, integrated
to a numerical package and optimized for the simulation of large networks of MBED
models.

Chapter 7 extends the single cell simulations carried out in Chapter 5 to small
size networks. In particular, the MBED concept is applied to the locomotory circuit
of the nematode C. elegans. A network model is constructed which succeeds in
replicating experimentally obtained patterns of muscle activation. The design of the
MBED network model is complemented by a mechanical model of C. elegans and
the use of an image processing algorithm developed with Matlab to analyse
recordings of the behaving animal.

Chapter 8 extends the work presented in Chapters 5, 6 and 7 to large networks.
A biologically constrained large scale MBED model of the olfactory (piriform) cortex
is presented and validated by comparison with previous work carried out with
classical models and with experimental data.

Chapter 9 explores the scalability of the MBED framework using Beowulf
clusters of commodity computers. Experiments are carried out with an 8-node
Beowulf in order to study the effects of the inter-process communication overhead on
the performance of a distributed cortical simulation.

In Chapter 10, future work is proposed. In particular, enhancements to the
MBED neuron model, its application to support emerging neural recording
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technologies and the development of multimodule cortical models are discussed.

A number of appendices provide additional information. Appendix A contains
mathematical material complementing Chapter 3. Appendices B and C contain the
video recordings of C. elegans and a detailed description of the image processing
algorithm developed to analyse them, respectively. Appendix D provides copies of

papers based on this work.

4



Chapter 2
Background

The second half of the 20th century has seen an explosion in the amount of research
alming at a quantitative description of neural processes. This trend has been
motivated by the maturation of the experimental techniques, in particular
electrophysiological methods, which allowed for the first time direct recording of
neuronal activity. During the 19th century and first decades of the 20th,
neuroscience had been circumscribed by the limits of anatomy, where functional
properties of neurons had to be inferred from the patterns of their anatomically
observable features [1].

The increasing wealth of experimental data available in the decade of the 50s,
sparked an interest in providing more quantitative descriptions of neurobiological
phenomena by developing models of neural function. This trend was accentuated by
the increasing availability of computers.

The increasing power of computing resources has made simulation a common
tool for hypothesis validation in science and for system design in engineering. With
an estimated 10*! neurons and 10'* synapses, the simulation of the human brain is a
huge challenge, both algorithmically and computationally. Active research is
underway to achieve functional models of brain modules whose simulation is feasible
with the currently available technology.

Before delving into the details of the current applications of simulation in

neuroscience, it is relevant to discuss the main simulation frameworks within which

models are constructed.
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2.1 Continuous vs discrete simulation

A general question facing the modeller in most simulation problems is the selection
of the adequate level of abstraction for a particular system. The first watershed is

the choice between analogue models, requiring continuous simulation, and discrete

models, suitable for discrete simulation.

The distinction between continuous and discrete simulation lies in the nature of
the way in which states change in the model throughout time. In continuous
simulation, the granularity of time is typically several orders of magnitude smaller
than the scale of the information in the system. For instance, in a continuous
framework, an action potential, with a duration of approximately 10 ms, requires
time steps of the order of 100 us. Moreover, all components in the system are
updated at each time step.

On the other hand, discrete simulation involves the identification of atomic
information units or events. For example, if the information carried by an action
potential is assumed to be captured by a pulse, the time course of the spike can be
disregarded and the onset and falling edges of the equivalent pulse become the only
significant events in the system. The update of the states of the components in the
model is triggered by the occurrence of these events and can be restricted to those
elements directly affected by them.

The different nature of the relationship between model and time leads to
different frameworks of simulation and model specification methods. It also has

implications in terms of efficiency which are relevant when aiming at the simulation

of large aggregates of neurons.

2.1.1 Continuous simulation

Generalities

In continuous simulation, models are often specified as differential and algebraic
equations. In the context of engineering, a block-oriented description of the system
is common (e.g. a cascade of filters). A block is an entity characterized by its
inputs, outputs and the mathematical relationships between them.

Models which describe physical phenomena do not possess such degree of
modularity (e.g. diffussion processes). However, when the model attempts to
capture the dynamics of a complex and physically heterogeneous object (e.g. an
anatomically complex neuron) the physical entity may be represented by a model
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constructed by repetition of a number of submodels which interact (e.g. chemical
synapses, dendrites, axons, electrical synapses and so on). A certain degree of
modularity arises from this approach.

Continuous simulation is characterized by the continuous update of the state
variables in the model. As an example, consider the following partial differential

equation,

d?V(z,t) dV(z,t)

dx? dt

This is the general form of the cable equation for passive dendrites and axons.
Its application is described in Chapter 3. For the moment, it is a convenient case to

=aV(z,t)+ 3 (2.1)

illustrate the techniques of continuocus simulation.
The solution of this equation is found by spatial and temporal discretization of

the partial differential equation (PDE)[9],

V(IE]', tz) - V(a:j,ti_l)
Ay

Vizgje, i) = Vg, ti) Vg ts) = Vizj-1, i)
AZ - AZ

= aV(zj,t;) + 8

Discretization turns the PDE into a set of algebraic relationships between a finite
number of variables (in the previous example, voltages at different points in a one
dimensional cable and at different points in time). Figure 2.1 shows the general
algorithm involved in finding a solution for such a discretized PDE.

Note that all the voltages along the cable are updated at each time step
(continuous change of state in the model). There are several numerical integration
methods to realize each update. They are often classified in single step or multiple
integration methods. Another classification distinguishes between implicit and
explicit. The selection between methods is driven by considerations of stability and

efficiency[10].

Efficiency issues

Of especial interest for the problem of simulation of aggregates of neurons is the
issue of speed of numerical integration. Most commonly, the linear PDE in Equation

2.1 will be substituted by a more realistic non-linear version,

d*V(z,t)
dx?

dVv(z,t)

= al(z,t) +6T

where I(z,t) depends non-linearly on V(z,¢). The anatomical complexity of
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Figure 2.1: Continuous simulation execution flow

most neurons requires the use of multiple non-linear cable equations, which, after
discretization, lead to a system of coupled non-linear differential equations.

Several techniques, especially designed for the problem of neural simulation, exist
to reduce the computational cost of solving these equations. By exploiting the
branched structure of dendrites and by casting the cable equations in a linear form,
each time step requires O(N) arithmetic operations, N being the number of points
obtained after discretization of the PDEs [9, 11]. Hence, the total number of
arithmetic operations required for a simulation is O(NT) where T is the total
number of time steps.

As an example, consider the continuous model of an hippocampal cell developed
by Traub et al. [12]. The simulation of a network of 10000 of these neurons would
require the numerical solution of approximately 250000 coupled differential
equations [13]. Simulations of networks of hundreds of continuous neuron models are
feasible. However, elapsed CPU times in the order of hours are typically required for

simulation times in the order of hundreds of milliseconds.
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2.1.2 Discrete simulation

Generalities

Traditionally, discrete simulation has been utilized in areas as diverse as
telecommunications, operational science, and digital circuits. In general, discrete
simulation deals with a class of problems known as queueing problems. These are
mainly concerned with some of the followiﬁg: the delays incurred by entities
propagating through a system, the transformations applied to the attributes of the
entities as they propagate and the occupancy of resources through which entities
propagate.

In contrast with continuous simulation, the state of the system in discrete
simulation does not change at all time steps. On the contrary, state changes only
happen as a consequence of the displacement of an entity in the model environment,
an event. No update of the state of the system is needed in between two consecutive
events. This leads to the discrete simulation framework where the model evolves
through time with discrete jumps triggered by events.

A fundamental concept associated with discrete simulation is the idea of the
event queue. The displacement of entities in the discrete model happens with a
certain delay. The dynamic behaviour of the model can be thought of as entities
departing from certain points in the model and arriving to their destinations after a
delay. The arrival would constitute an event and would trigger the simulation time
advance and an update of the state of the system. The event queue holds a list of
events sorted by time of arrival to their destinations in the system. Time advance is
achieved by the extraction of the first event in the queue and its introduction back
to the system. The entities undergoing displacements within the system, may carry
associated attributes which affect the way in which the system interprets an event
originated by this entity.

Figure 2.2 illustrates the concept of discrete simulation with a classical example
taken from the problem of packet relay in a data communications network. Entities
in this system are either data packets, which must be transmitted from an origin
node to a destination node through a communication link, or notification entities.
The attribute of a data packet entity is a single flag indicating its priority (H, high
or L, low). Communication links and relay nodes introduce delays, labelled as d,
and D, respectively. The origin node generates packets labelled with their priority
level. The arrival of a packet to a free node changes its state to busy. The arrival of
a packet to a busy node leads to the packet being discarded if its priority is lower
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Figure 2.2: Packet communications network as a typical discrete system

than the packet being processed in the node. Otherwise, the packet in the busy node

is discarded and the new packet takes its place.

Notification tokens are scheduled by nodes in order to introduce a delay between
the acceptance of a new packet and its broadcasting to the following node in its
route. In a typical sequence of events, a packet arrives at a free node at t = tyg. The
node accepts the packet, changes its state to busy and schedules a notification token
for ¢t =ty + D,, where D, is the delay involved in the processing of a packet in a
node. The notification token is inserted into the event queue. As time advances, this
entity approaches the head of the queue. When it finally occupies the first position
in the queue, it is popped out and delivered to the node which, upon the occurrence
of this event, retransmits the packet and changes its state back to free.

The event queue stores the entities which have been scheduled for delivery to

their destinations at a point in the future.
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Figure 2.3: Discrete simulation execution flow

Efficiency issues: selective trace

Figure 2.3 shows a diagram of the execution flow in a typical discrete simulator.

As opposed to continuous simulation, the updating of states in the model is
driven by the events scheduled and held in the queue until processing. In the
example of a communications network, only those nodes which receive an event may
change state (may become busy or free). Evaluation of the states of the rest of the
nodes is superfluous as only those targeted by an event may need an update. This
approach, based on following the events to determine which components must be
updated (known as selective trace) minimizes the computation carried out by the
simulator [14].

The fact that discrete models are often constructed at a higher level of
abstraction than analogue models (implying fewer arithmetical operations in each
state update) and that selective trace can be used (which reduces the number of
updates), makes discrete simulation a more efficient framework than continuous
simulation in those problems where equivalent discrete and continuous models exist.

This thesis applies the concepts of discrete simulation to the problem of realistic
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Figure 2.4: Modelling levels in neuroscience

neural simulation with the goal of increasing the efficiency of existing techniques and
achieving a simplification of the parameter space. Selective trace will play a pivotal

role in the efficiency increase.

2.2 Modelling in neuroscience: an overview

Models of relevance in neuroscience have been constructed ranging from the
molecular level (e.g. molecule-molecule reaction kinetics models) to the neuron
network level (e.g. networks with thousands of biophysically realistic neuron
models). Figure 2.4 shows a diagram with several modelling levels and an
approximate value for the dimensions of the physical entity modelled.

Two main approaches must be distinguished; biophysical models and abstract
models. Biophysical models are based on physical descriptions of biological processes
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and there is a direct mapping between the entities in the model and their physical
counterparts. For instance, at the neural network level, biophysical models
incorporate physical processes like ion diffusion through cellular membranes,
intra-cellular ionic currents, effective capacity of the cellular membrane and so on
[6]. This is the natural framework for electrophysiologists to develop quantitative
descriptions based on experimental results. In figure 2.4, the biophysical approach to
modelling is represented by the main trunk in the flow chart.

The rightmost branch below the bifurcation in figure 2.4 corresponds to an
alternative approach to network modelling, based on highly simplified neuron
models. Constraints imposed on the realism of the models are relaxed when the
assumption is made that neural dynamics arise from the cooperation of functionally
simple neurons. The direct use of electrophysiological data in the model is not an
issue, rather, experimental results are abstracted to construct highly idealized
models. Emphasis shifts, with respect to biophysical modelling, towards developing
theories of neural population dynamics. This is an ideal framework to be used by
engineers (targeting the construction of biologically inspired systems) and
mathematicians (aiming at the discovery of mathematical laws underlying neuronal

function).

2.2.1 Subnetwork biophysical models

Subcellular modelling

Neurobiological processes can be described in terms of interactions involving
proteins, non-protein molecules and ions. Mathematical descriptions in this context,
usually make use of a kinetic formalism. For instance, communication between
neurons can be accomplished by means of a cascade of events originated in a
presynaptic neuron which culminates in changes in a postsynaptic neuron. Each
event involves the interaction between different molecules or ions. Figure 2.5 shows a
schematic representation of a kinetic model of synaptic communication (modified
from [15]). In particular, Calcium (Ca®") interacts with protein Xa to render it
active. Xb, the active form of protein Xa, interacts with vesicles loaded with
neurotransmitter (labelled Na) to trigger its release. The freed form of the
neurotransmitter (Nb) interacts with receptors in the postsynaptic cell and triggers
the transformation of protein Ga into its activated form Gb. This, in turn, will

- trigger further reactions.

Such detailed description of neural processes, involves the solution of systems of
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Figure 2.5: Kinetic description of synaptic transmission

differential equations where the time evolution of the concentrations of each
participant in the cascade of events (e.g. Xa, Xb, Na, Nb, Ga, Gb in the example

above) constitutes the solution of the equation.

Single cell modelling

Although, in principle, complex neuron level functions can be modelled considering
all the molecular interactions involved, models of single neurons are often
constructed with coarser granularity. A neuron is represented by a hierarchical
structure where each component constitutes a model of a portion of the biological
neuron. Components interact in a realistic way, by means of ionic currents flowing
within the cell. Figure 2.6 shows a schematic model of a pyramidal cell.

Axons and dendrites have been segmented and each segment (known as a
compartment) modelled and connected to other blocks following the anatomy of the
real cell. The equations describing the dynamics of each compartment are typically
systems of non-linear differential equations which make this model suitable for
simulation within a continuous framework.

Single cell models of multiple neuron classes are available ranging from a
thousand compartments (1600 in the Purkinje neuron model by DeSchutter et al.

[16]) to a single compartment (see for instance the model of thalamic neurons used
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Figure 2.6: Single (A) and multicompartment (B) neuron models

in [17]). Models of intermediate size are used when anatomical characteristics are
relevant but the computational cost must be minimized (for instance, Bower et al.
developed a model of a pyramidal cell in the piriform cortex including 15

compartments [6]).

2.2.2 Network models: competing approaches

When the aim of the modelling effort is to construct system level models of the
nervous system, the model is often viewed as a network of entities (neurons)
interconnected through communication channels (synapses and gap junctions). Two .
main competing approaches have been taken; biophysical and abstract.

The biophysical approach extends the techniques used in biophysical subnetwork
models to network level simulation. Realistic single cell models are interconnected
by biophysical synapses and gap junctions and simulated within the framework of
continuous simulation. Networks in the order of a few thousand neurons are
attainable in single processor architectures. However, simplification of the single cell
models making up the network is often required. Further increases in network size
require parallelization of the simulation tools using clusters of workstations or
massively parallel architectures.

An alternative approach is the substitution of the computationally demanding
single cell models by more abstract representations which capture the main
characteristics of neuron function while offering improved efficiency. Chapter 3
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reviews specific neuron models belonging to biophysical and abstract techniques as

well as alternatives in the interface between these two approaches.

2.3 Standing problems at the network level

Biophysical models have succeeded in providing a quantitative description of a
number of processes in neurons; the generation of action potentials, the effect of
different types of ion channels on the shape of the action potential, the effect of
synapses on neuronal function, the regular firing of neurons involved in the creation
of locomotor patterns and many others [7]. '

Despite these advances, the cooperation of neurons in a large network, in order
to accomplish useful tasks, is still poorly understood. This is the area where more
simplistic models were expected to provide the necessary insight. It is so because
their simplicity reduces the number of parameters to be specified in the model and
because the low amount of computation per neuron allows the simulation of large
aggregates of neurons. Biophysical models are limited to networks of thousands of
neurons on general purpose computer architectures. Highly parallel hardware is
necessary for realistic simulation of tens to hundreds of thousands [18].

Simplified neuron models, however, have found little use in neuroscience due to
their level of abstraction. The difficulties in mapping experimental data to these
type of models have motivated their rejection by biologically orientated modellers.

2.4 Summary

Simulation techniques can be classified into continuous and discrete. The nature of
the two approaches is fundamentally different. Continuous simulation requires the
update of the state variables of the system at each time step, whereas discrete
simulation is applicable to systems where the state evolves in discrete jumps, where
updates are not required in between two consecutive events.

In the context of realistic simulation of the nervous system, models have been
proposed ranging from the molecular level up to the level of large aggregates of
neurons. Biophysical models have mainly made use of continuous simulation.
Abstract models, however, are designed for mathematical tractability rather than
realism, and are often suitable for discrete simulation. Their computational
efficiency often comes at the expense of a lack of direct mapping between model
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parameters and biophysical variables.



Chapter 3

Simulation of aggregates of neurons

In this Chapter, previous work on biologically motivated simulation of aggregates of
neurons is reviewed. Firstly, background information on neuron models is provided.
Secondly, representative tools available for the simulation of these models are
described. Approaches based on general purpose single-processor architectures and
special purpose parallel-architectures are compared.

Finally, the rationale for the selection of the message-based event-driven
simulation framework on commodity architectures, as the technique to achieve
low-cost efficient simulation of large scale neuronal aggregates, is discussed.

3.1 Neuron models

A wide range of models of individual neurons have been developed to serve as the
atomic entity in neural network simulations. They are often classified with regard to
their degree of biophysical realism [19, 20]. Compartmental models, utilized when
the emphasis is on replication of physiological data, constitute the biologically
accurate end of the spectrum. At the other end, abstract models, of which the
binary Perceptron is an example, have traditionally been used in artificial
applications and are considered oversimplified for biologically meaningful
simulations. The following sections survey the main strategies for neuron modelling

progressing from biophysical towards more abstract models.

18
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3.1.1 Compartmental simulation and the Hodgkin-Huxley

model

The cornerstones in biophysical models were the development of the
Hodgkin-Huxley (HH) model of ion channels [21] and the extension of cable theory
to dendrites and axons [22, 23, 24].

In this context, a neuron is modelled as'a physical entity, often with a complex
branched 3D structure, which separates two conductive media, the intracellular and
the external spaces with its cellular membrane. Local differences in the
concentrations of several types of ions (mainly Na™, K, Cl~ and Ca?") between
the external and internal sites of the membrane give rise to a transmembrane
voltage. This is an important physical variable in the system; the current state of
understanding of neuron function is based on a quantitative description of the
time-space evolution of the membrane voltage.

The membrane behaves as a leaky capacitor, storing charges and letting them
flow in and out in a controlled manner. Charge movement causes changes in
transmembrane voltage which propagate along dendrites and axons. Ion channels
play an important role in the control of this influx and outflux of charges.

Ion channels and single compartment neurons: the Hodgkin-Huxley

model

Ion channel models are relevant to network modelling because ion-selective channels
confer excitability to individual neurons in the network and constrain the patterns of
neuronal activity.

Ion channels have been modelled as variable conductances across the cellular
membrane [7, 21]. In the linear approximation, the current flowing through the

channel is given by:

[chanA - GmazX(ta Vm, Ca2+» .- )(Vm - Erev) (31)

where Iopan, is the total current flowing through all channels of type A, G
the maximal conductance achieved when all channels of this particular type are
open, X a normalized time-changing variable expressing the degree of openness
(X =1 for all channels of type A open, X = 0 for all channels of type A closed), V;,
the membrane voltage and F,., the potential at which the current reverses its sign.

The variable X accounts for changes in the conformation of the proteins which



CHAPTER 3. SIMULATION OF AGGREGATES OF NEURONS 20

make up the channels and which affect their conductances. These changes may be
induced by alterations in the membrane voltage (V;, ), by changes in the
concentration of an ion type to which the channel is sensitive (e.g. Ca®"), by the
release of neurotransmitter and others. These changes of conformation may render a
channel closed (unable to conduct ions) or open (able to transport ions) [25], in
addition to other intermediate states.

The current through ionic channels is responsible for the dynamic properties of
neurons which lead to a local and abrupt change in the transmembrane voltage, the
action potential. The Hodgkin-Huxley model succeeded in quantifying this
phenomenon [21].

The Hodgkin-Huxley model considered two types of ion-selective channels,
voltage-dependent Na™-selective and K *-selective channels. For both channels, the
dynamic variable X (¢, V,,,Ca®*",...) was only dependent on time and membrane
voltage, X (¢, Vi,). In the case of the Na't channel, Xy,(t, V;,) was given by (time
and voltage dependency are not explicitly stated for clarity),

XNa = th

where m and h are dynamic variables described by first order ODEs,

o = an(Va)(1 = m) = B (Vi)
o = a(V)(1 = ) = Bu(Vi )

where a(V;,) and 8(V;,) are the voltage dependent opening and closing rates. An

alternative form for these equations clarifies their dynamic properties,

dm = m— mu(Vi)
dt T(Vim)

dh b= hoo(Vim)
dt - Th(Vm)

where mq, and hy, are the voltage dependent steady state values of m and h,
respectively, and 7,,(V;,) and 7,(V,,) their voltage dependent time constant.
As a result of a synaptically driven increase of V,,, from resting potential to firing
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threshold, m increases with a fast time constant, originating a Na* current influx,
charging the membrane capacitance and rising V;,. This is the fast onset of an
action potential.

The m (activation) variable is responsible for an increase in Na* permeability
leading to the charge influx. Since this increase is seen experimentally to be
transitory, a second (inactivation) variable, A, is added to the model. The variable A
tends to decrease with a slow time constant within the voltage range where m takes
1ts maximum.

The combination of the fast activating variable m and the slow inactivating
variable h, attributes transitory activating properties to the Na™ channel.

The activation variable for the K *channel is given by:

XK = TL4
where n is described by
n=a,(Vn)(1—n) = Bn(Vm)n

The variable n shares some characteristics with m. A rising membrane voltage
increases n, resulting in the opening of K *-selective channels and in a charge outflux
which decreases the voltage across the membrane capacitance. The KT current
constributes to the ending of the sharp voltage spike.

When the 3D anatomy of the neuron does not need to be captured by the model,
a neuron can be modelled as a single compartment (see figure 3.1). A compartment
is defined as a section of membrane separating an isopotential intracellular volume
from the isopotential external cell volume. The equation describing the electrical

properties of a compartment is

AV (z,t)
dt
where C,, is the membrane capacitance, V;, the membrane voltage, G, the

membrane conductance and Ejq; the voltage at which the leakage current reverses

its sign. This expression is only valid for a passive compartment, i.e. one that only
includes ion channels whose conductances are fixed, unaffected by transmembrane

voltage or other physiological variables (this excludes the Nat and K+ channels

Cm = *Gm(Vm(.’E, t) - Eleak) (32)

described above).
When active conductances, i.e. channels affected by membrane voltage, are
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Figure 3.1: Components of a single compartment model

added, equation 3.2 becomes

dVi(z,t)
dt
where I.pan i1s the total current flowing through active channels.

As the wealth of functionality implemented by a single neuron depends on the
ion channels embedded in its membrane, most single compartment neuron models
will not fall into the category of passive. They often include active conductances,
making the magnitude of the transmembrane current dependent on membrane
voltage (this is the case of voltage-dependent channels responsible for action

Cm = “Gm(Vm(xyt) - Eleak) + [chan (33)

potential generation), ion concentration (e.g. Ca**), the concentration of a
particular neurotransmitter and so on.
I han typically accumulates currents through various types of ion channels,

AV (z,t)

Cm dt

J
= —Gn(Vin = Eleat) = ), Gmaz, X;(Vin = Erev;) + Iimy (3.4)
j=1

where the summation is over J types of channels present in the compartment and
Iin; has been added to account for current injected which an electrode.

Hodgkin and Huxley [21] demonstrated that, with the addition of Na* and K™
channels to the passive single compartment model, setting I,,; to a positive value
above a certain threshold is sufficient to trigger transient changes of membrane
voltage. These replicated the axon potentials observed experimentally in the squid’s
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Figure 3.2: Spiking rate adaptation in an hippocampal neuron (from [26])

axon. Figure 3.2-A shows a train of action potentials obtained from a model of an
hippocampal pyramidal cell by simulated current injection [26].

Single cell models incorporating several types of channels are capable of a rich set
of responses to simple stimuli. Table 3.1 lists several important classes of ionic
currents. Their notation (first column), ion type making up the current (second
column), activation/inactivation characteristics (third column) and their effect upon

neuronal activity (fourth column) are given.
Detailed models of hippocampal pyramidal cells were constructed in [26],

| Current | Ton | Characteristics | Effect ]
Inag Na™* Fast, transient Onset of action potential
T4 K+ Transient Spike repolarization
Ixq K+ Non-transient Spike repolarization
Ic K* | V&Ca?T activated Spike repolarization
Iy K* | Slow, non-transient | Spike freq. adaptation
Laup Kt Ca®** activated Spike freq. adaptation
Irvay | Ca®t Low threshold Low threshold spikes
Icava) | Ca** High threshold Elongation of action pot.

Table 3.1: Several ionic currents which participate in patterning neuronal excitability
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Figure 3.3: Compartmental models of chemical (A) and electrical (B) synapses

incorporating several of these channels. Figure 3.2 compares the response of a
pyramidal neuron model to the injection of a 1 s current pulse with an intensity of
0.5 nA (taken from [26]). Four cases are shown, corresponding to Iy and Iamp
currents present (A), Ips absent (B), Iagp absent (D) and both absent (C). The four
responses are triggered by identical stimuli. However, the neuron shows markedly

different patterns of activity as a consequence of the variations in ionic channel

types.

Network models with single compartment neurons

For the creation of networks, compartmental models must incorporate synapses
and/or gap junctions [27]. The former are introduced as neurotransmitter activated
ion channels and the latter as resistive connections between the intracellular medium
of the two cells participating in the gap junction (see figure 3.3) [15].

The neuron providing input to the synapse (presynaptic cell) releases
neurotransmitter into the synaptic cleft, activating the synaptic channels in the
receiving (postsynaptic) neuron. The opening of postsynaptic channels due to
neurotransmitter release at t = tg leads to a transitory increase in synaptic

conductance often modelled by

Goyn = ate™ 70 (3.5)

where Gy, is the synaptic conductance and « a scaling factor related to the
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synaptic efficacy. The resulting synaptic current is given by a similar expression to
that of other ionic channel currents (expression 3.1) ,

[chan(t) — Gsyn(t)(vm - Esyn) (36)

where [y, is the synaptic current and E,,, the potential at which the synaptic
current reverses sign.

Single compartment neuron models and the interconnecting synapses are the
building blocks upon which networks can be constructed. The computational cost of
this framework is evident in, for instance, simulations of cerebellar [8] and thalamic
[17] networks.

The model of the cerebellar granule cell layer developed by Maex et al. [8],
incorporates single compartment Golgi and granule cell models. Its 30 Golgi cells
receive in the order of a few thousand connections and approximately 10* granule
cells receive 5 synapses each. The simulation ran for 18 h on a dedicated Sun
UltraSparc workstation to simulate 10 s network time (6.48 CPU seconds per
simulated ms).

Destexhe et al. [17] have constructed a network model of the thalamic reticular
nucleus incorporating 100 single compartment neurons. The neuron model included
the fast Na* and K *current channels responsible for the generation of action
potentials, in addition to the low threshold Ca?* current (I7 ) and the Ca®"-
activated Ix(cq and Ican currents. The model was used to investigate the effect of
network parameters on the 7-14 Hz spindle oscillations. The simulations where
performed using NEURON and ran on a Sun Sparc 10 workstation. A typical

simulation took 0.96 CPU seconds per simulated ms.

Cable theory of dendrites and axons. Multicompartment neuron models.

Following the generation of an action potential at a particular membrane location in
the 3D structure of the cell, this local and transitory change in membrane voltage
propagates along nearby branches. This process follows physical principles similar to
those in classical cable theory and were successfully described by the cable theory of
dendrites and axons developed by Rall et al. [22, 23, 24].
2
)‘2“’—“—61 V;ag:, 2 (Vin(z,t) — Etear) + T-—_‘—‘dvmd(:) 2

where A and 7 are the space and time constants respectively, V, is the membrane

(3.7)
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Figure 3.4: Signal attenuation in a dendritic tree (from [6])

voltage and Ej.,; is the voltage at which transmembrane leakage current ceases.
This equation predicts that a change in membrane potential at one end of a
dendritic terminal will propagate with a certain attenuation and velocity towards
the other end.

Figure 3.4, taken from [6], shows the solution corresponding to the transient
response to a current pulse injected at a single branch (labelled BI) in the neuronal
dendritic tree shown in the figure. The length of each branch is 1A, Traces in the
plot correspond to the voltage obtained at different points in the cell as a function of
the dimensionless time variable T = f The dendritic tree introduces a delay of 0.2
(0.27 s) between the maximum at branch BI and the maximum seen at the soma
and an attenuation by a factor of 0.5 x 103

When the effects of the neuron anatomy must be captured by the model, the
branched structure of the neuron is partitioned in isopotential compartments (see
figure 2.6). Each one of these compartments is described by an equation similar to
3.4,

AV,
C—dt— = ——Gmam/‘((vm — Eres) + -[i—+-1 - [i-—-l - Gleak(vm - Eleak)

Note, however, two new terms, I;_; and [;;1. They correspond to the current
drawn from the two adjacent compartments, 7 + 1 and ¢ — 1. The magnitude of these

currents is given by Ohm’s law,
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where V,,, is the membrane voltage in compartment ¢, V,,,_, is the voltage in the

adjacent compartment ¢ — 1 and R, is the internal axial resistance.

Simulations with multicompartment models

The computational cost involved in the simulation of network models with
multicompartmental neurons is exemplified by studies of cerebellar and cortical
dynamics.

DeSchutter et al. [16] constructed a multicompartmental model of the cerebellar
Purkinje cell with 1600 compartments. However, the computational requirements of
the model made it unsuitable for network simulations; 550 ms simulated time
required 1 h CPU time (6.53 CPU seconds per simulated ms).

A model of a pyramidal cell in the piriform cortex with 1089 compartments was
constructed and simulated on a 200MHz PC running Linux (1.3 CPU seconds per
simulated ms). With a reduced version of this model including 15 compartments,
the computational requirements were reduced to 30 CPU ms per simulated ms)[6].
An even more simplified model with 5 compartments was used in a network
simulation incorporating 4500 neurons requiring 100 CPU seconds per simulated ms
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on a Sun 2/360 workstation [28].

3.1.2 Simplified Hodgkin-Huxley models

A reduction in the complexity of the HH model is possible by minimizing the number
of dynamic variables [29]. The FitzHugh-Nagumo (FN) [30] neuron model includes
two coupled variables, = (the excitation variable) and y (the inhibition variable),

dr

eaz—y—g(:ﬁ)-}—]

where g(z) = z(z — a)(z — 1) and a and b are parameters controlling the
asymptotic or periodic response of the system and I provides the external input to
the system.

Network models of oscillating neurons have been constructed to study object
segmentation in the visual cortex [31] and sound recognition [32]. An FN neuron
model was also used in a simulation of the olfactory bulb aiming at replicating
experimentally obtained recordings [33].

Other simplifications of the HH model rely on approximations of the voltage
dependence of the opening/closing rates (o and 3). For instance, in [34], the
commonly used sigmoidal form was substituted by a pulse function. This
simplification allows an analytical solution of the channel gating equations (those
describing m, h and n in the HH model). The obtained solutions are of the form

m(t) = A + Be~(t7%)

Two sets of expressions must be found: one valid during an action potential and
a second solution valid during inter-spike periods. As a result of the availability of
an analytical solution, the fast changes in the rate constants during action potentials
do not force a considerable reduction of the integration step in order to guarantee
stability. These results in an increased efficiency of the model with respect to the

original HH formalism while retaining an acceptable degree of realism [34].
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3.1.3 The integrate and fire model

The integrate and fire (IF) model is a widely used further simplification of the HH
formalism which exploits the invariability of the shape of action potentials. The
assumption that the timing of the spike is the information carrier, rather than its
shape (see for example Appendix A5 in [35]) is implicitly contained in IF models.
Hence, the NaTand K™ channels, responsible for the shaping of the spike, are
excluded from the model. Such a simplification would lead to a complete absence of
spikes, unless an alternative firing mechanism is added. This is the purpose of the
threshold function incorporated into the model. An action potential is generated
when the membrane voltage increases beyond a firing threshold, V}, by setting V' to
Vinaz, the maximal voltage during a spike, for a short period of time (typically less
than 1 ms) and the after-spike potential, V45 (10 to 20 mV below the resting
potential).

The refractory period is introduced by the time needed by the membrane
capacitance to recover from Vs to the resting potential V,..,. The dynamics of the

membrane voltage are described by an equation of the type

v

T =

where I;,, is the current injected into the cell through synapses. Equation 3.8
applies only' while the condition V < Vip holds. Otherwise, if V >V at t =t¢,

Vinas t = tn + dt
V= + (3.9)
Vas t=tn+2dt

(Vies = V) + Lsyn (3.8)

where dt is the integration step. Equation 3.8 holds in the interval t € {¢,,tn41}
where t,;; denotes the timing of the next spike.

Various versions of the IF model have been developed. For instance, equation 3.8
can be enriched with non-spiking conductances (such are rate adaptation
K*conductances) which modulate the effective time constant of the cell [35]. Also,
to account for randomness in neuronal activity, noisy IF models have been proposed
by introducing stochasticity in the generation of the spike or in the activation of
synaptic current [36].

The computational cost of simulating IF models is greatly reduced with respect
to compartmental models including HH channels since the integration step can take
larger values. This is made possible by the absence of fast-changing action potential
conductances. Multiple biologically motivated network models can be found in the



CHAPTER 3. SIMULATION OF AGGREGATES OF NEURONS 30

literature [37, 38, 36] which take advantage of the IF approach.

Wilson et al. [28] constructed a model of the piriform cortex with 4500 neurons.
The neuron model was multicompartmental but the Na™ and K+ channels were
substituted by the threshold principle used in IF neurons.

To study the variations in the patterns of activity in a generic cortical network as
a result of changes in the neuronal excitation threshold and the membrane time
constant, Hill et al. [39] used single compartment IF neurons. A network with
100 x 100 IF neurons, including excitatory and inhibitory cells, displayed network
state transitions in certain regions of the threshold-time constant parameter space,
as a result of alterations of the balance between excitatory and inhibitory synapses.

IF models have also been used in simulations of the visual system. Experimental
evidence of image segmentation based on neuronal firing synchronization has
motivated the creation of spiking network models which rely on this principle
[40, 41, 42]. The conditions to be met by pairs and small networks of IF neurons to
achieve synchronization have been studied using an event-driven simulator in [43].

In a further simplification of the IF model, specifically aimed at visual processing
simulation, Thorpe et al. [44, 45] have developed a feedforward network with three
layers of cells which sequentially propagate the activity triggered by an input image.
The neurons were modelled as spiking units constrained to the generation of a single
action potential throughout the entire simulation corresponding to the processing of
one image. At the expense of biological realism, this simplification resulted in
improved efficiency. A simulation of 100 ms of activity in a network of 7 10° neurons
with 3510° connections took 15 s of CPU time [45].

3.1.4 Biophysical continuous (non-spiking) models

In non-spiking models, the possibility of generating action potentials is removed
altogether, the membrane voltage evolving smoothly over time. Biophysically
motivated non-spiking models have been proposed for the study of both mammalian
and invertebrate neural functions.

In [46], Wright et al. studied the generation of cortical electro-encephalographic
(EEG) rhythms. In this work, individual neurons were not modelled, rather, entire
cortical regions were represented by entities in an interconnected 20x20 lattice.
Each node in the lattice had an associated continuously changing variable, V (¢),

representing the average membrane voltage in the associated cortical volume,
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V(t)=g i w;Q,(t — jAL)

where g is the synaptic gain, Q,(t) is the density of afferent pulses, At is the

discrete time step and wj; is the prototype synaptic response, and
w; = b2jAte VA

which is a discrete version of the alpha function in equation 3.5. -

Time constants, relative magnitude of excitatory and inhibitory synapses and
dendritic and axonal delays were set to realistic values. The effect of changes in
network parameters (namely, dendritic delay, synaptic strength and synaptic
reversal potential) on the spectral content of simulated EEG signal was explored.
These studies concluded that realistic frequency components can be generated by
the model and that the relative magnitude of each component is governed by the
network parameters.

Wicks et al. [47] constructed a model of the tab-withdrawal circuitry in an
invertebrate, the nematode C. elegans, with non-spiking neuron models. The

membrane voltage for each neuron was given by

AV (z,t)

dt = —Gm<Vm<xa t) - Eleak) + Z Isyn + Leat

Cm

where [y, is the current due to synaptic events and /.. is is the injected current.
Note that the active conductances required for action potential generation were not
included, allowing continuous membrane potential change in this model. The
network incorporated 9 neurons and was designed following available anatomical
data. The simulation aimed at determining the polarities (excitatory versus
inhibitory) of the synapses in the network. For this purpose, all possible
configurations were tested and likelihood values assigned.

3.1.5 Abstract models

Binary models

The binary neuron models developed by McCulloch and Pitts [48] in the 40s,
constitute a landmark in abstract neuron representations. They considered the
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Figure 3.6: Perceptron with step function

neuron a bivaluated processing element and proposed these binary elements as the
conceptual foundation upon which a formal logic of neural processing would be built.
A closely related model, the original Perceptron developed by Rosenblatt [49], is
also a binary neuron abstraction with the added particularity of being suitable for
pattern classification when associated to its learning rule. Figure 3.6 shows a
diagram with its main blocks.
The output, o, of a Perceptron with J inputs is given by

0= Sz'gn(i wji;) (3.10)
j

where w; is the synaptic weight associated to the j*input, ¢; is the analogue
value provided by the j** synapse and sign(z) takes the value +1if z > 0 and 0 if
z<0.

Similar simplified binary neurons have been used in multiple network models; for
instance, Hopfield networks achieve associative memory [50] and Boltzmann
machines are stochastic neural networks capable of solving certain types of

combinatorial optimization problems [51].

Spiking rate models

Spiking rate models, on the other hand, assume that the relevant feature of neuronal
activity is the spiking frequency and that the precise timing of individual action

potentials is not fundamental to achieve functional neural activity.
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A modification of the binary Perceptron [52], shown in figure 3.7, is often used in

this context where the output of the neuron is given by

o = sigm(D>_ wji;)
J
With respect to expression 3.10, the sign function has been substituted by
sigm(x), which is differentiable and monotonically increasing; typically, a sigmoid

function,

1

sigm(z) = e

As a result of this change in the input-output relationship, the parallelism
between the Perceptron and the biological neuron is modified with respect to binary
models. Whereas, in a binary Perceptron, the activation of the neuronal output can
be interpreted as a single action potential, the graded output of a continuous
Perceptron lends itself to the interpretation in terms of spiking rate. The spiking
rate of the neuron model is provided by the value at its output.

Multilayer feed-forward Perceptron networks (MLP) based on continuous
output-input mapping were first developed and trained by Rumelhart et al. [53] who
introduced the back—propagation learning rule. The suitability of these networks to
perform classification and function approximation resulted in its wide-spread use in

the field of articial neural network.
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The linear Hopfield model [54], constitutes another example of rate neuron; it
exhibits properties similar to its binary counterpart.

The field concerned with the use of abstract neuron models, both binary and rate
based, partly to understand network behaviour in the nervous system and partly as
an engineering technique suitable for the design of biologically inspired systems, is
commonly referred to as artificial neural networks [55] and neurocomputing [56].

Cell automata

Cell automata models make use of the finite state automaton formalism to capture
the functionality of a physical entity [57]. In the general case, a state vector is
associated to each cell and its time evolution is determined by its state-history and
the inputs received from other cells through cell-cell interactions.

Pytte et al. [13] have proposed a model of the CA3 hippocampal region based on
this technique. It utilized a binary neuron model which undergoes a state transition,
from inactive to active, as a result of incoming synaptic activity reaching a set
threshold or by spontaneous firing if the time since the last activation exceeds a
randomly chosen time 7.

For excitatory neurons the firing condition was given by

meK, — (msKy+ msK;) > h(n — 1)

where m, , my and m; are the number of synaptic excitatory, fast inhibitory and
slow inhibitory simultaneously active synaptic inputs. K. , K; and K, denote their
respective strengths. The function h(n — 7,.) corresponds to a monotonically
decreasing firing threshold, taking its maximum at n = 0, the time of the last spike,
0 for n > tau,. The firing threshold of inhibitory cells was set to a time-independent
value of 0.

Upon firing, a neuron remains active for a duration equivalent to a burst of
action potentials in the real neuron. Individual spikes in a burst were not modelled.
The hippocampal model included 10* neurons of three types; excitatory, fast

inhibitory (GABA4 mediated) and slow inhibitory (GABAg mediated) with an
average of 38 synapses per neuron. Figure 3.8, taken from [13], shows the percentage
of neurons firing in four simulations including 900 neurons where the strength of fast
inhibitory synapses was progressively decreased ((a) 10.00, (b) 0.45, (c) 0.34, (d)
0.00). As a result of the decrease in total inhibition, a high percentage of the
neurons in the network fired simultaneously (see (c)). A further decrease of
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Figure 3.8: Percentage of neurons firing in a network with 900 automata neurons
(from [13])

inhibition, resulted in an increase in the regularity of the population firing (see (d)).

Pytte et al. explicitly state that, in their implementation, neuronal states were
continuously updated, rather than exploiting the discrete nature of the system by
using an event queue to selectively update those neurons receiving synaptic
activation (selective trace).

In another example of a cell automata network model, Axelrad, Guiraud et al.
[58, 59] carried our simulations of the cerebellar cortex. In particular, the collateral
inhibition between Purkinje cells was modelled by an array of tri-state (silent, tonic
and phasic) automata. This study concluded that, in such a model, the
spatio-temporal patterns of neuronal activity are characterized by Markov-type
cyclic dynamics, where the network evolves through a number of global states; each
new state depending exclusively on the previous one.

Moreover, the effects of general anaesthesia on cortical activity have been studied
with an 80 x 80 lattice of cellular automata [60]. The total number of active
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automata was taken to represent the EEG. These simulations concluded that an
increase in synaptic strength induced low amplitude high frequency EEG
components whereas a decrease (hypothesised to be equivalent to anaesthesia) gave
rise to the appearance of high amplitude low frequency components.

Other instances of cell automata based neural simulation have been only loosely
biologically motivated. Korkin et al. [61] and Gers [62] proposed the CoDi (collect
and distribute) 1-bit model, targeted at a special purpose architecture (a cell
automata machine) developed with FPGAs (Field-Programmable Gate-Arrays)
capable of simulating 75 million neurons. In the simple CoDi model, communication
between neurons is achieved through 1-bit buses (no concept of synaptic weight
exists), where synaptic delays, synaptic activation duration times and long range
connections are difficult to implement. The emphasis of the CoDi model is on
efficiency and compactness for hardware implementation of genetic algorithms,
rather than biological realism.

In addition to the dynamics of neural function, automata have also been
proposed as adequate models for the simulation of other biological phenomena
involving excitable cells.

Luthi et al. [63] simulated neurogenesis in Drosophila using cell automata. The
model consisted of a 128 x 128 matrix of automata and was simulated on a parallel
CM-200 (8000 processors) achieving a rate of 107 single automaton updates per
second. Through inhibition between nearest neighbours in the matrix, a proportion
of the initial pool of cells differentiated into neuroblasts while others remained
undifferentiated. Quantitative results were shown to be consistent with values
obtained experimentally.

Another developmental study was performed by Eddi et al. [64], who proposed a
model for the establishment of synapses between climbing fi
during a transitory developmental phase, when the number < .ynapses is thought to
reach a maximal level of redundancy.

Siregar et al. [65] proposed a model of the excitability of the heart consisting of a
3D matrix with 140 x 120 x 100 automata which was able to simulate cardiac

electrical activity.

3.2 Simulation platforms

Since the simulation of biophysical models is a computationally expensive task, there
is active research aimed at the development of efficient simulation platforms. Both
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L Simulator Type of neuron model Simulation framework T Network Size (1 CPU) ” Commen'w j
GENESIS Biophysical Continuous 102
NEURON Biophysical Continuous 102
BIOSIM Biophysical Continuous 102 Teaching and research
NEOSIM Biophysical Mixed Mode 102
NBC Biophysical/IAF Continuous 102
SWIM Biophysical Continuous 108 Hybrid neuro-mechanical
. XSIM Multiple models Continuous
SPIKE/NEURALOG Spiking neurons Event-Driven 102 Not optimized for large nets
SURF-HIPPO Biophysical Continuous 102
SYNOID Biophysical Continuous
NANS Biophysical Continuous 102 GUI based
SPIEDERWEB Multiple models Continuous 102 C++ libraries
SLIM Biophysical Continuous 102
SNNAP Biophysical Continuous 102
NODUS FN & IF Continuous 104
Nischwita-Gluender IF Event-Driven 102

Table 3.2: Software packages for biological neural simulation

single processor and parallel architectures have been exploited for this purpose [18].

3.2.1 Single processor architectures

Single processor architectures are commonly available and are the main platform for
single cell and small network simulations. Table 3.2 includes some of the software
tools available for network simulation with an emphasis on biological realism. The
simulators GENESIS [66] and NEURON |[9] are widely used in compartmental
simulations, both packages offering similar features. However, NEURON provides
cross-platform compatibility, running on Windows and Unix environments. Other
simulators like SURF-HIPPO [67] and Biosim [68] offer similar capabilities, although
their use is less wide spread. In general, these biophysical simulators are limited to
networks of a few hundred neurons, reaching the thousands with reduced
compartmental models. SWIM and the SPLI library [18] were also developed for
biophysical simulation, however, they have been optimized for network simulations
with thousands of neurons and tested on different platforms. Also, SWIM has been

used in hybrid neuro-mechanical simulations of the lamprey [69].
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Figure 3.9: Comparison of the performance of several PAs (from [71])

3.2.2 Parallel architectures

Parallel architectures (PA) have been successfully used for the simulation of large
networks. Brettle et al. [70] constructed a model of the primary visual pathway of
the cat with 16000 single compartment neurons with 1000 synapses per neuron. The
model ran on a Connection Machine CM-2 (a single instruction-multiple data,
SIMD, machine) with 65536 one-bit processors and 1 Mbit local memory. The
performance obtained was in the order of 10 us CPU time per 1 ms simulated time.

The performance of several PAs has been studied in [71] for networks of IF
neurons. The architectures explored were CM-2 (SIMD), TMS 320C80 (Texas
Instruments), 4xP90 (with four Pentium P90) and SP2 (IBM, with 256 R6000
processing elements). The latter three platforms are all MIMD (multiple
instruction-multiple data). Figure 3.9 shows the total computing time taken by a
single time slice of 1 ms as a function of network size. The study concludes that
massively parallel platforms (e.g. CM-2) are suitable for real time simulation of
large networks of IF models. However, general purpose PAs are constrained by
inter-processor communication bandwidth.

Special purpose parallel architectures (neurocomputers) have been proposed to
overcome these limitations. For instance, toroidal lattice architectures (TLA) and
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planar lattice architectures (PLA) were described in [72] for the simulation of
abstract neuron models (Perceptrons and Hopfield neurons). It was estimated that
the TLA architecture would allow high speed simulation of 10® million neurons with
10* synapses per neuron with 256 x 256 node processors and 128 Gb of memory.
The CNAPS SIMD neurocomputer, developed by Hammerstrom [73], constitutes
another example of a parallel hardware accelerator which has been used for efficient
simulation of cortex-like networks [74]. '

Parallel versions of the simulators GENESIS (PGENESIS) and NEURON
(PNEURON) have been developed to run on workstation clusters and
supercomputers. By distributing the computing load amongst several processors and
using a message-based synchronization procedure, thousands of neurons can be
simulated. Parallelization of NEURON developed at the Pittsburgh Supercomputing
Center (Carnegie Mellon University) used the Cray C90 architecture, achieving 100
fold increase in speed with respect to equivalent simulations ran on a Sparc II.

NEOSIM is under development to provide a parallel environment for mixed mode
simulation which would achieve inter-operability between existing biophysical

simulators [75].

3.3 Rationale for the use of message-based
event-driven simulation on general purpose

architectures

Compartmental models have been used in biophysical simulation of single neurons
and small aggregates of neurons. However, the use of continuous simulation hampers
its scalability.

Parallel architectures, in particular special purpose designs, offer high speed
simulation of large networks. However, the cost of such systems makes the use of
general purpose computing resources a more favorable alternative.

On the other hand, discrete simulation [76] results in a considerable increase in
simulation performance when analogue models can be abstracted to their
event-driven counterparts and the continuous framework can be substituted by a
discrete framework [14]. Moreover, considerable research has been carried out on
algorithms for efficient discrete simulation, in particular, to achieve an optimal
management strategy for the event queue 77, 78, 79, 80]. Hence, discrete sin:ulation

was chosen as the framework to construct large scale and highly biologically
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constrained models.

Classical biophysical neuron models are suitable for continuous simulation. A
simplified description, adequate for discrete simulation, had to be developed.
Although this task had been partially targeted by most abstract neuron models
(Perceptron, Hopfield and others), which are compatible with discrete simulation,
their loosely biologically based design limits direct use of physiological data in the
model.

Message-based event-driven simulation is a natural framework to model
distributed systems [81]. The message communication philosophy makes
parallelization possible, if necessary for further improvements in performance,
without fundamental changes in the algorithms.

The work by Pytte et al. [13] set a framework for the use of discrete neuron
models in biologically realistic simulations. However, their implementation did not
exploit some of the advantages of discrete simulation. In particular, the updating of
states was continuous and selective trace was not implemented. Moreover, the
neuron model used in this work could be further enhanced to account for
physiologically measurable phenomena: delays introduced by the anatomical
characteristics of dendritic trees, distance dependent delays in the axonal
propagation of action potentials, pace making firing in CPGs (central pattern
generators), inter-spike latencies within neuronal bursts and others.

Overall, the decision to adapt event-driven simulation techniques was taken

because

e A reduction of the computational cost incurred by compartmental models is

imperative to achieve large scale neural models

e Event-driven simulation is a well established field which has proven
computationally efficient in areas like telecommunications and digital

electronics

e The discrete nature of inter-neuronal communication motivates the use of

neuron models suitable for an event-driven framework

e Previous work in this direction shows the feasibility of this approach but has

not fully exploited its advantages



Chapter 4

C. elegans and the olfactory cortex

This Chapter provides, firstly, background information on the nematode C. elegans
and reviews computer models of its neural circuits and mechanical properties.
Secondly, the piriform cortex is introduced and previous network simulations are
reviewed. MBED models of both biological systems, C. elegans and piriform cortex,

will be constructed and discussed further in this thesis.

4.1 Biological targets of neural modelling

A wide range of biological targets can be found in the literature on neural modelling.

Invertebrates like the leech, the lobster and the mollusc Aplysia offer small-size
neural aggregates subserving simple behavioural functions [82]. Their simplicity has
motivated a large number of models in the hope of establishing links between neural
activity and system level function. In this direction, the neural subsystems involved
in locomotion have been the focus of a large amount of research effort. Experimental
work on the leech using both standard microelectrode-based electrophysiological
techniques [83, 84] and optical recording [85] have led to the development of
computer models of its neuronal properties [86].

The stomatogastric system of the lobster and the associated neural ganglia are
involved in food flow control and have also been the targets of network models. In a
neuromechanical model [87] the connectivity space of the neural aggregate was
searched and the conditions that maximized food flow found.

Neural control of locomotion in vertebrates offers a more complex problem than
invertebrates [88]. A well understood system is the lamprey, whose locomotory

nervous system has been extensively used in the study of fish swimming. A

41
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neuromechanical model (neural aggregate + mechanical model) has been developed
[69] based on experimental data [89]. It shows that swimming motion can be
achieved by a chain of linked segments with the timing of motorneuron activation
being regulated centrally by the brainstem and locally by intrasegmental
interneurons.

Interest in the modelling of larger neural aggregates, in particular cortical
modules, has been motivated by their role in high level functions in mammals. The
cortical regions directly involved in the processing of incoming sensory information
provide a somewhat easier case to link neural activity and function since controlled
stimuli can be related to cortical activity patterns.

The visual cortex, for instance, has provided data on cortical image processing
[41, 42, 90] and has motivated network models of image feature linking [41],
direction selectivity [91], multiple topographic maps [92] and others. The auditory
and somatosensory cortices have also been studied by network models [93], as well as
extracortical areas like the cerebellum [8, 16].

The nervous system of the nematode C. elegans and the olfactory cortex of
mammals constitute two examples of small and large scale neural aggregates,
respectively; they are the target of the MBED network models developed in chapters
7 and 8. The following sections provide background information on these systems

and review previous modelling work.

4.2 C. elegans

4.2.1 Background

C. elegans is a free living nematode of small size (1 mm long and approximately
80um in diameter). It has a relatively rich set of behaviours which include feeding,
temperature sensing, chemical sensing, mechanical sensing, defecation, mating,
detection of changes in osmotic pressure, and others [94].

Its cylinder-like body is under considerable internal pressure which acts against
an external cuticle [95]. The rigidity conferred by this internal pressure aids in the
generation of wave-like locomotion. Figure 4.1-A shows an image taken with an
optical microscope and figure 4.1-B is a diagram of the anatomy of C. elegans.

Two rows of electrically coupled muscles, situated in opposite sites of the body,
constrain the nematode to movements in a plane. However, the head has an extra
degree of freedom due to the grouping of its muscles in four electrically independent
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Figure 4.1: (A) Image of C. elegans taken with an optical microscope. (B) Schematic
diagram of C. elegans.

quadrants.
The nervous system of C. elegans includes 302 neurons which can be found in

three main locations; head, body and tail ganglia. Head ganglia work as information
relay centers, the nerve ring being the most prominent, in addition to implementing
paths of sensory input. Along the body, neurons extend longitudinally controlling
the muscle contractions required for locomotion. Several neurons in the body
constitute the egg laying subcircuit. In the tail, neurons sense their local
environment and control functions like defecation [94, 96, 97].

C. elegans has a number of peculiarities which make its nervous system
interesting from the modelling point of view; mainly, its known topology, its
adequacy for the use of genetic tools and its transparency which allows laser
ablation of individual neurons.

Regarding topology, the same neurons can be identified in different individuals,
by their morphology and position with respect to the rest of the body. The
connectivity can also be used as a means to identify neurons as it has been shown to
be fairly constant [97]. In addition to this unusual invariability, the nematode is a
very special case as the topology of its nervous system has been completely mapped
using electron microscopy [96, 98, 97, 99].

Moreover, C. elegans is often used in genetic studies. Strains carrying mutations
which affect genes required for the normal function of the nervous system are
available. When those neurons affected by the mutation are involved in locomotion
control, the result is an abnormal movement coordination.

These malfunctions may be due to erroneous connectivity of neurons or to
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abnormal neural functionality [100, 101, 102]. Examples of both cases will be used in
the validation of the MBED model of the locomotory neural circuit.

The body of the nematode is transparent, allowing the use of laser beams to
ablate specific neurons. The functional elimination of identified neurons may induce
abnormal behavioural patterns and provide clues on the role of the ablated cells on
network level dynamics [103, 101, 104]. This technique has generated data which can
be used in assessing the validity of neural models as it is possible to simulate
ablation of a neuron in the model and compare the results with the experimental
data. This approach has also been taken with the MBED model of C. elegans
presented in this thesis.

Finally, histochemical experiments allow the identification of the
neurotransmitters used in individual synapses and suggest a tentative classification
of these connections into excitatory or inhibitory. This is possible by creating
fluorescently labelled antibodies that specifically bind to a selected type of
neurotransmitter receptor. The identification of fluorescent spots due to clustering
of the antibodies indicates the presence of that particular receptor and
neurotransmitter [105]. This type of information will also be introduced in the
model.

Despite the abundance of topological and genetic data, electrophysiological
recordings are limited so far to muscle cells [106], unidentified neurons (Lockery,
personal cofﬁmunication) and chemical sensor neurons in the head [107]. This is due
to the reduced size of its neurons (a few microns in diameter) and their lack of
accessibility (due to the internal pressure, dissections easily damage the nervous

system).

4.2.2 Models of C. elegans

C. elegans has been the target of several computer models dealing with the physics
of nematode locomotion and the neural circuitry involved in its response to chemical

compounds, touch stimuli and temperature changes.

Locomotion

The 2D mechanical model of the body developed by Niebur et al. [108] is relevant to
the development of neural models since it provides a tool to predict the behavioural
effect of a given pattern of neural activity. The body was modelled as a segmented
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elastic cuticle with any one patch of this cuticle experiencing four force vectors;
internal pressure, surface elastic force, environmental friction and muscle contraction.

The internal pressure force vector is given by

where p(0) and V(0) are the pressure and total volume of the body at t = 0, a is
a positive integer in the range (4 — 8), S is the surface of the patch of cuticle
considered and 7 is a unitary vector normal to the surface.

The elasticity of the cuticle introduces a second force term. In the case of two
points situated at opposite sites of the body, the elastic force is given by

F = k(;zﬁ—?—] -1)(T:i—-7T;)

where k is a scaling constant, d is the diameter of the body and 7; and T; are
position vectors of the points. In the case of two contiguous points, Z; and T4 ,

situated on the same site of the body, the elastic force is given by

R

where [ corresponds to the distance between the pair of points Z; and 74,

(|7 — Ti41]) and (1) is a non-linear function accounting for the non-linear

elasticity of the cuticle.
The environment introduces a frictional force term acting on any one point on

the surface of the body,
?ff = —617t - 02711

where 7/, and 7, are the tangential and normal components of the velocity
vector at the considered point. ¢; and ¢y are positive scaling constants.
Finally, muscles introduce a fourth force component, collinear with a vector

tangent to the body surface, given by

—~

?mf =e(m,t)nt

where e(m, t) is a dimensionless number which depends on the state of the m™



CHAPTER 4. C. ELEGANS AND THE OLFACTORY CORTEX 46

motorneuron at time ¢, 7 is a constant and £ is a unitary vector tangent to the
surface. Niebur et al. confirmed with this model that a pattern of muscle excitation
consisting of waves propagating towards the tail and the head succeeded in
generating realistic forward and backward locomotion respectively.

The focus of this work was the mechanical dynamics of locomotion rather than
the neural circuitry underlying locomotory behaviour. However, in further work, the
same author estimated the attenuation and velocity associated with passive
propagation of activity in the axons of the motoneurons in C. elegans [95].

The estimated velocity in motorneurons (~ 8 — 30 cm/s) was found to be much
larger than the observed velocity of propagation of muscle contraction (~ 0.2 cm/s),
ruling out the possibility of obtaining the observed patterns of muscle contraction
solely as the result of passive propagation in motorneurons. These calculations
suggested that the generation and propagation of waves along the body of C. elegans
could rely on the use of stretch receptors. In agreement with these results, stretch
receptors play an important role in the MBED model presented in Chapter 7.

The problem of the genesis of muscle contraction patterns was tackled
experimentally by Stretton et al. [109] in the nematode Ascaris, which is thought to
use mechanisms similar to those found in C. elegans. As a first approximation, a
qualitative description of the propagation of the muscle contraction wave was put
forward by Walrond et al. [110]. Experimentally, it was shown that the excitation
wave propagates within motorneuron axons as opposite to a exclusively muscular
propagation and further evidence for the presence of stretch receptors was put
forward. These results are in agreement with Niebur’s estimations. However, no

computer simulation was provided for further quantitative studies.

Neural processing of sensory input

Detailed information on sensory circuits in C. elegans [111] has motivated several
computer models of its response to sensory input (chemicals, light touch and
temperature).

Chemotaxis refers to the ability of the worm to escape from damaging chemicals
and to approach zones of high concentration of desirable compounds. The circuit
involved in chemotaxis has been studied with laser ablation and a network model
has been developed [112]. This model was constructed using neurons with relaxation

dynamics, where the membrane voltage for any one neuron is given by
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R = ot T wplV; - Vi) + C(1)

where V; is the membrane voltage of the *" neuron, 7; is its time constant, (I
the synaptic weight between cells j and ¢, V};, is the membrane voltage at which the
synapse does not produce changes in the postsynaptic cell and C(t) is a term only
present in those cells that receive input from the environment. A number of cells in
the network acted as steering signals feeding a black box model of the locomotory
system. With appropriate selection of parameters, the model predicted movement
towards increasing gradients of desirable chemical compounds. Thus, the network
did not include a cell-level representation of the locomotory circuit.

Tab-withdrawal in C. elegans has also been modelled. It has been observed
experimentally that the nematode locomotes backwards when its nose is touched
and forwards when its tail is touched. The neural circuit involved in controlling this
behaviour was identified by laser ablation [113, 103].

In [47], a continuous non-spiking neuron model was used in a simulation of the
tab-withdrawal circuit. The aim of this work was to determine the sign of the
synapses in the circuit (positive being excitatory and negative inhibitory) by testing
multiple configurations and quantifying the probability of a certain parameter set
generating the experimentally observed behaviour.

The dynamics of the membrane voltage in a neuron were given by

av 1

C’m—d—{ = R—m(

Vieat = V) + > Loy + Lews

where C, is the membrane capacitance, R,, its total leakage resistance, Vi, the
membrane voltage at which no leakage current flows through the membrane, I,,, the
synaptic currents and I, corresponds to the injected current.

The network model is shown in figure 4.2. It does not explicitly incorporate
nematode locomotion. Rather, neurons AVA and AVB are assumed to be the main
output to the locomotory circuit and to control locomotion as described by the
gearboz analogy; the difference between the membrane voltage in neurons AVA and
AVB, the steering signals, determines the speed and direction of locomotion

L x t(VAVB(/\) — Vava(A))dA

to
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Figure 4.2: Network model as constructed by Wicks et al.[47]

where L is a quantitative measure of speed and direction of locomotion, Vv g
and V4y 4 are the membrane potentials in neurons AVB and AVA respectively and g
is the last sign reversal. The sign of L distinguishes between forward and backward
propagation and its magnitude sets the speed.

Laser ablation experiments were simulated with the model and the results
quantitatively compared to experimental observations. For this purpose, a measure
of the difference between the simulated and experimental values of L , based on
least-squares error, was used to determine the fitness of each of the tested synaptic
configurations.

An alternative approach to the modelling of the touch sensitivity circuit is being
pursued by Osana et al. (personal communication) using the Boltzman machine
formalism with a network of 66 neurons. Preliminary results indicate that, after
training with Hebbian-like learning algorithm, the network converges to a
configuration where the excitation of head and tail mechanical sensors generates
- backward and forward locomotion respectively.

The neural circuit involved in thermotaxis (the ability of the animal to move
towards zones with an ideal temperature) has been identified with laser ablation.
Tentative functions for some neurons were assigned after laser studies [114].
However, no mathematical model has been published. This is also the case with
regard to the locomotory circuit, responsible for direct control of the body muscles.
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Although several classes of neurons have been identified and generic functions
proposed, no computer model is available.

The models of chemotaxis, thermotaxis and tab-withdrawal mentioned above did
not explain the generation and control of the patterns of muscle contraction seen in
C. elegans. They focused on the neural circuitry which maps the sensory input into
a steering signal delivered to the locomotory system. The model proposed in
Chapter 7 will deal with this untackled problem.

4.3 The piriform cortex

The neural structures involved in odour perception constitute a phylogenically old
part of the mammalian brain. Several species have served as model systems to study
their physiology and information processing capabilities; the cat [115], the rabbit
[116], the rat [117] and the opossum [118] among others. A subset of the information
obtained from these studies, specifically that relevant for the MBED model of the

piriform cortex, is presented in the following sections.

4.3.1 Modules within the olfactory system

The first stage in the olfactory system (figure 4.3) corresponds to the transduction
carried out by the chemical receptors located in the nasal cavity, within a layer
known as olfactory epithelium. Each one of these chemical sensors detects the
presence of a range of chemical compounds and transmits olfactory information to
the first processing center, the olfactory bulb. Different odours generate spatially
different patterns of input activity [119].

The olfactory bulb consists of several conglomerates of cells, glomeruli. By means
of the interaction between excitatory (mitral) and inhibitory (granular) cells in these
glomeruli, the sensory input from the smell receptors triggers the onset of oscillatory
activity. It is believed that the olfactory bulb carries out an initial processing on
smell information. However, the exact nature of this processing is still unclear [33].

In mammals, the olfactory bulb sends its output directly to several cortical
modules. The biggest of these areas is the piriform cortex or primary olfactory
cortex, which is involved in further processing of olfactory information. The
connection from olfactory bulb to piriform cortex is provided by a bundle of axons
termed the lateral olfactory track (LOT). There is also anatomical evidence of a

feedback connection from piriform cortex to olfactory bulb [120].
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Figure 4.3: Block diagram of the olfactory system

4.3.2 Structure of the piriform cortex

The piriform cortex contains an estimated 107 neurons of 10 different types
[121, 118, 120]. Its anatomical structure is often divided in three areas with
distinctive characteristics (see figure 4.4). Layer I, the plexiform layer, includes few
cell bodies and is mainly occupied by dendrites from neurons located in deeper
layers. Layer I is further divided in Ia (superficial lamina) and Ib (deep sublamina).
In sublayer Ia, the LOT establishes synapses with the dendritic trees which fill layer
[. Sublayer Ib is characterized by the presence of synapses between pyramidal cells.

Layer II corresponds to the lamina with the highest density of cell bodies. Figure
4.5 shows a cross section of the piriform cortex stained with the Golgi technique
(taken from [121]) where, due to its high density of cells, layer II appears as a dark
band. The more superficial layer I, shows as a brighter band. The density of cells
decreases gradually from layer II towards the deeper layer III, showing as a graded
increase in brightness in figure 4.5.

Layer I1I contains both cell bodies (although at a lower density than layer II)
and dendrites emanating from cells and directed downward in figures 4.4 and 4.5.

Layers II and III contain large numbers of pyramidal cells. These are
anatomically similar to pyramidal cells in other cortical areas. Two dendritic trees
originate in the cell body; an upper tree extends along layer I whereas the bottom
tree extends along layers II and III. A typical pyramidal cell in the piriform cortex
receives synaptic input from the olfactory bulb through the LOT and from other
cells in the cortex. Axons from pyramidal cells establish excitatory local synaptic

connections with nearby neurons and also long range excitatory connections with
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Figure 4.4: Layered structure of the piriform cortex (from [122])

distant neurons [122].

In addition to pyramidal cells, at least nine anatomically distinct classes of
non-pyramidal neurons have also been identified in the piriform cortex. Some of
these types are thought to be inhibitory cells. In particular, three classes of
inhibitory connections have been observed physiologically; GABA4 slow, GABA4
fast and GABAp slow. GABA4 synapses have a short onset latency (approximately
1 ms) and an activation duration of about 10 ms. On the other hand, GABAg
synapses have an onset latency of 50 ms and an activation duration of 100 ms [28].

For modelling purposes, inhibitory cells have often been grouped into two classes;

SN
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Figure 4.5: Cross section of the olfactory cortex stained with Golgi techniques, bar=
800 pm (from [121])
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Figure 4.6: EEG recordings from olfactory bulb (a), anterior (b) and posterior (c)
olfactory cortex (from [116])

slow feedforward inhibition and fast feedback inhibition. The former receives input
from LOT and pyramidal cells and synapses back onto pyramidal neurons and the

latter receives input from pyramidal neurons and synapses back onto them [28, 123].

4.3.3 Experimental data

Multiple electrophysiological and optical recordings of activity in the piriform cortex
have been described in the literature. A limited number of these recordings aimed at
the measurement of the cortical response to odour perception in-vivo. The main
feature of these results was the presence of bursts of activity in the gamma range (at
approximately 40 Hz) synchronized with sniffings [116]. Figure 4.6 shows EEG
recordings obtained from the olfactory bulb (a) and from two distant locations in
the olfactory cortex (b and c¢). During odour perception, bursts of high frequency
and amplitude can be seen in the traces.

Due to experimental difficulties, the majority of recordings have been obtained in
far less realistic setups. In most experiments, cortical activity is not evoked by
odour perception, rather, electrical stimulation of the LOT causes the observed
neural activation.

Ketchum et al. [124, 117] recorded the potentials generated by neuronal activity
at several locations in the cortex after excitation of the LOT with a 0.1 ms current
pulse. Two types of responses were obtained (see figure 4.7); a single peak and a
damped oscillation responses could be triggered, the parameter determining the
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Figure 4.7: (A) Strong shock stimulus response, (B) Weak shock stimulus response
(from [124])

response type being the intensity of the excitation current pulse. High intensity
pulses evoked the single peak response whereas lower intensity pulses triggered
damped oscillations.

Optical recordings using voltage sensitive dyes have also been carried out in the
olfactory cortex. Curtis et al. [125] and Litaudon et al. [126] reported waves of
activity across the cortex evoked by excitation of the LOT and olfactory bulb.

4.3.4 Network models

Several network models of the olfactory cortex have focused on its suspected role in
odour recognition, proposing mechanisms for the achievement of an associative
memory [122]. Freeman proposed, in 1987, such a network model of the olfactory
cortex using an analytical approach and avoiding the modelling of individual
neurons. The dynamics of the cortex were described in terms of ODEs and pointed
at the resemblance between the cytoarchitecture of the olfactory cortex and the
networks shown to implement associative memories [127, 128].

The Lynch-Granger model {129, 130] was proposed to study the function of the
olfactory bulb and olfactory cortex system as an odour classifier system. The
network model in [129] included 400 excitatory and inhibitory cells in the olfactory
bulb model and 1000 excitatory and 50 inhibitory cells in the olfactory cortex model
(see figure 4.8). Neurons were modelled as linear elements which summated the
incoming inputs according to a matrix of weights W. A Hebbian learning algorithm
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Figure 4.8: Bulb-cortex model developed by Lynch et al. [129]

was applied in conjunction with a “winner-take-all” mechanism to adjust synaptic
weights as a result of the input generated by simulated sensing of odours. The aim
of this model was to show that such a network was suitable for the implementation
of an odour classifier. However, the activity of the model was only compared to
psychophysical data. Comparisons with electrophysiological results were precluded
by the level of abstraction of the model.

Li and Hertz [119] have recently proposed an alternative bulb-cortex model. In
one of its implementations, the network included 200 neurons of four cell types
(excitatory and inhibitory in bulb and cortex) in equal proportions. Formal
excitatory and inhibitory neurons in the bulb model had an associated membrane

potential, z and y respectively, whose dynamics are given by

d:L‘i

-_d_t.. = —QI; — E Hug(yj) + [sensors
dy; Z

_d_t_ = —ay; + mjg(xj) + Icortem

where H;; and W;; are the synaptic weights between units ¢ and j, and g is a
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Figure 4.9: Activity in five neurons from a bulb-cortex model in response to three
(A,B,C) different odours (from [119]).

function that maps membrane potential into firing rate.
The dynamics of the cortical model were described by similar expressions

du;

= —au; — B9(v) + 3 Jiglw;) + 1
dUz‘
I = —av; + Bg(u;) — ZDzjg(U]’)

where u and v are the membrane potentials for excitatory and inhibitory cells
and J and D are synaptic strength matrixes.

The aim of this model was to study how a biologically motivated neural network
model could detect, recognize and segment odours. Figure 4.9 shows the temporal
traces of the outputs from 5 excitatory cells in the bulb and cortex obtained for
three different odour stimuli (A, B and C). A common feature in all responses is the
oscillatory nature of the signal with a frequency of approximately 50 Hz and an
intensity dependent on the number of previous exposures of the system to the odour.
In figure 4.9, odours A and B (with which the model had been trained) trigger more
generalized activity than odour C (completely unknown to the network).

A small network model with 10 x 10 neurons was constructed in [131] to
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Figure 4.10: Schematic drawing of the structure simulated by Wilson et al. [28]

demonstrate associative memory properties of the piriform cortex. As in previous
associative memory models, the proposed cortical mechanisms were based on
anatomical data and psychophysical experiments with no direct reference to
electrophysiological data.

Although this line of research provided qualitative understanding of cortical
dynamics, the lack of direct mapping between biophysical parameters and
parameters in the model limited its use as a tool for the neuroscientist.

Following an alternative approach based on realistic compartmental neurons, a
model of the piriform cortex including 4500 neurons (effectively 405 neurons, given
that, during data collection, the number of neurons had to be reduced) was
constructed by Wilson et al. [28]. The network included three types of cells; slow
inhibitory, fast inhibitory and pyramidals (excitatory).

Pyramidal neurons were modelled by a six compartment structure as shown in
figure 4.10; the upper-most compartment received synapses from the LOT and slow
inhibitory cells, the middle compartment received input from pyramidal cells, the
cell body received synapses from fast inhibitory neurons and the bottom-most
compartments received local connections from nearby pyramidal cells. Inhibitory
cells were modelled with a single compartment.

Field potentials were simulated applying the following approximation

Lk (t)
Tjk

V(t) :azz
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l Experiment [ Result
Strong shock stimulus Single wave
Weak shock stimulus Damped oscillation
Random input 40 Hz + 5 Hz frequency components

Table 4.1: Experimental results considered in the simulation by Wilson et al. [28]

A B

40 ms 40 ms

Figure 4.11: (A) Strong shock response, (B) Weak shock response

where

Tik = \/[(33 —z)? + (Y — yin)? + (2 — 21)?]

and (5, Y1, 2;x) and (z,y, z) are the position of the k** compartment in the j**
neuron and the location of recording electrode, respectively. I;;(t) is the current
flowing through the compartment and « is a scaling constant.

Table 4.1 summarizes the main results obtained. The response of the model was
tested by providing three different types of stimulus through the LOT; low intensity
shock stimulus, high intensity shock stimulus and random input.

Figure 4.11 shows the simulated field potential recordings obtained after low and
high intensity shock stimuli. The response to the low intensity stimulus is a damped
oscillation whereas the simulation predicts a single peak response to a strong shock
stimulus. |

With the same model, the frequency components present in simulated EEGs
were also studied. The EEG recording was simulated by linearly adding the
simulated field potentials obtained with regularly spaced virtual electrodes

positioned in a grid over the cortical model
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Figure 4.12: Simulated EEG power spectrum obtained by Wilson et al. [28].

VEEG(t) = Z Z ny<t)

where vz, (t) is the potential recorded by the electrode placed in position (z,y)
and the summations are over the X x Y electrodes of the grid. The assumption
contained in this approximation states that the EEG signal corresponds to a
measurement of average activity in a large region of the cortex. This approximation
was consistent with previous work on EEG [132].

EEG simulations were carried out providing random input to the model through
the LOT. Figure 4.12 shows the estimated power spectrum of the EEG signal
obtained. The main features of this result were a relatively high frequency
component (40 Hz) and the theta-type activity peak (3-10 Hz). Both have been
observed experimentally. Secondary peaks in frequency bands centered at 80 Hz and
20 Hz were also obtained.

Building on these simulations, Barkai et al. [123, 133] constructed a biophysical
model of the piriform cortex including 240 pyramidal and 58 inhibitory cells of two
classes, GABA,4 and GABAg. Each compartmental neuron contained three
compartments and several voltage and calcium dependent currents (Ina, Ix(pr),
Tx(ay, Ik, Ik(aup)) responsible for shaping the trains of action potentials in
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individual neurons. The simulation was carried out with the GENESIS simulation
package and aimed at studying the effects of the neuromodulator acetylcholine on
the postulated associative memory mechanism implemented by the piriform cortex.
This work concluded that the increased rate of synaptic modification triggered by
acetylcholine favours the learning phase whereas the suppression of the effects of
acetylcholine facilitates the recall phase.

Ballain et al. [134] proposed an alternative approach to the compartmental
modelling techniques based on relaxation dynamics to describe mathematically the
time evolution of the optically recorded activity in the olfactory cortex. Since this
type of recordings do not allow the measurement of activity from individual cells
(each photodiode imaging average activity in approximately 2000 to 4000 neurons),
the model consisted of a network of 54 x 24 units representing the ensembles of
neurons imaged by individual photodiodes. For each ensemble, two subpopulations
and the corresponding two associated state variables were introduced in the network
model; Vj;, representing the average state of the excitatory variables in the pool, and
Uij, corresponding to the inhibitory subensemble.

The dynamics of each subensemble were given by
av K

W
P —aV+(Ve=V)d g1 B(t—ta)+(Ve=V)D_ 920(V (t—ta))+(Vi=V )gsp(U (t—tas))
k w

%({. = ~BU + (U; = Ugad(V (¢ — ta))

where V, and V; are excitatory and inhibitory equilibrium potentials respectively,
B represents the input activity from the olfactory bulb, ¢ is a transfer function, g,
are scaling factors and the summations are over the K input signals from the
olfactory bulb and over the total number of ensembles, W.

Simulations were carried out to study the response of this model to strong and
weak shock stimulus, obtaining single peak and oscillatory responses respectively, in
accordance to experimental results. Moreover, propagation of waves and pacemaking
activity between preferentially coupled ensembles was also successfully predicted by

the model.
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4.4 Summary

The nervous system of the nematode C. elegans contains 302 neurons and its
connectivity has been mapped in its entirety with EM. Several network models have
been constructed to study chemotaxis and tab-withdrawal.

A subcircuit containing approximately 100 neurons is directly involved in the
control of locomotion. A model explaining the cooperation of the network to achieve
locomotion has not been described in the literature. Progress has been hampered by
the lack of electrophysiological data from these cells. However, tentative functions
can be assigned to some neuron classes based on topological information and laser
ablation experiments. This makes the locomotory circuit an interesting case from a
modelling perspective.

The piriform cortex constitutes an opposite case, a large network where only
statistical connectivity rules are known but where electrophysiological data are
available. Several network models of the piriform cortex have been constructed.
Those with emphasis on the replication of electrophysiological data have made use of
compartmental models. The computational cost involved in the simulation of these
types of models has limited the size of network models to approximately 5000
neurons. Other network models, with an emphasis on the suggested implementation
of associative memory by the olfactory cortex, have relied on analytical descriptions
of the dynamics of neuronal ensembles. Although this approach is potentially
suitable for large scale simulations, its high level of abstraction complicates the
correlation of simulation results and experimental data. Thus, there is a need for the
development of large scale models, which allow the incorporation of biophysical
parameters, such as synaptic timings, in order to explore the effects of these

parameters on network dynamics.



Chapter 5

Message-based event-driven neuron

model

In this Chapter, the message-based event-driven neuron model (MBED) is
described. The blocks making up its internal structure (synapses, threshold
subsystem, burst generator and oscillator) are explained and examples are provided
both to illustrate their operation and to validate the correctness of the
implementation. Functional similarities and differences between the event-driven
model and compartmental models are shown. For this purpose, simulations of

compartmental models have been carried out using the simulator Neuron [9].

5.1 Internal structure

The MBED neuron model is a finite state automaton. It is made up of several
blocks (synapses, threshold subsystem, burst generator and oscillator), each of them
capturing the functionality of a different component of the neuron (see figure 5.1).

Communication between blocks within a single neuron is achieved by message
passing through unidirectional message channels (see table 5.1 for a complete list of
message channels and legal message types for each channel). Message channels are
depicted as solid line arrows in figure 5.1.

Each message is a data packet containing the following fields: delay, message
type label and an optional parameter (see section 2.1.2 for a description of a discrete
simulation framework based on packet exchange). The delay field contains the delay
between message generation and message delivery to the destination. The message
type label indicates the type of message which will determine the action taken by

61
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Figure 5.1: Message-based event-driven neuron model (solid arrows indicate channels
for message broadcasting).

Channel Message structure Legal values Legal values
of m of p

o {t,m,p} . on Synapse type
8 {t,m} on,of f

v {t,m,p} on,of f ' Synapse type
) {t,m} change

€ {t,m} on,of f

¢ {t,m} on

1

{t,m} of f, ref

Table 5.1: Message channels in the neuron model
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Parameter Function
the Excitation threshold
th; Inhibition threshold
tap Duration of action potential
tref Duration of refractory period
Npurst Number of spikes per burst
tosc Period of pace maker
12 Time offset of pace maker
tde Synaptic delay
tdur Duration of synaptic pulse
Weyn Synaptic efficacy

Table 5.2: Parameters used in the model

the target block upon reception of the message. The optional parameter provides
complementary information required by the destination block to process the
message.

The message space of a neuron can be classified as external input events, external
output events and internal events. External input events arrive through o channels
and communicate to local synapses that a presynaptic neuron has fired. External
output events correspond to outgoing messages broadcast to postsynaptic cells upon
initiation of an action potential. Internal events are amenable to further
categorization; inter-block messages (o, v,¢, () are communicated between internal
blocks of a single neuron whereas intra-block messages (3, n, §) are scheduled for the
same block which generated them with the sole purpose of introducing a delay
between two state changes. The former have a biological counterpart in the
propagation of transient membrane voltage changes from synapses, along dendrites,
to the cell body and proximal axonal segment (hillock zone, where the spike is
initiated) and along axons to the next synapse. The latter are convenient
abstractions to support the desired functionality.

Blocks in the neuron model are either state machines or combinational functions.
In the state machines, the arrival of a message may trigger a change of state, an
action (the update of internal state variables) and an output (the broadcasting of
new messages). In combinational functions, the arrival of an input message triggers
the broadcasting of one or more output messages.

Tables 5.2 and 5.3 show the complete set of parameters, states and variables in
the MBED neuron. Their purpose is described further in the following sections

simultaneously with the block to which they are associated.
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Block Allowed states State variables Parameters
Synapse - - tdel, Laurs Wsyn
Threshold - Wsum the, th;
Burst generator on,off,ref Nburst tap, trefs Nourst
Oscillator on,of f - tosc) Lo

64

Table 5.3: Allowed states, state variables and parameters for each block in the model
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Figure 5.2: (A) Change in membrane voltage due to the activation of a GABAg

synapse, (B) synaptic current

5.2 The synapse block

5.2.1

Within the context of compartmental modelling, synapses are often modelled as

time-varying conductances which transport current across the cell membrane,

Compartmental models of synapses

charging and discharging the membrane capacitance and altering the transmembrane

voltage. Figures 5.2-A and 5.2-B show the transient change of membrane voltage

and the synaptic current produced by an inhibitory GAB Ap synapse.

The magnitude of the synaptic current is given by equation 3.6, reproduced here

for convenience,

Iiyn(t) = Gayn(t)(Vin —

Esyn)

(5.1)

where 5y, (¢) is the current across the synapse, Ggyn(t) the conductance of the

synapse, V;, the membrane voltage and E,,, a voltage source whose value sets the
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0 Synapse

Figure 5.3: Synapse block and associated channels

Input Output

o=on B = {tger,on}
B:=on | B = {taw0f /1, 7 = {0, 0n, synapsetype}
Bi=off + = {0, 0 f, synapsetype}

Table 5.4: The synapse block function

membrane voltage for which no current flows across the synapse.

The sequence of events in a biological synapse is as follows; neurotransmitter is
released by the presynaptic cell, introducing a delay of the order of ms and
triggering the onset of Iy, by increasing Gy,(t) and the current through the
synapse increases the membrane voltage (EPSP, excitatory postsynaptic potential)
or decreases it (IPSP, inhibitory postsynaptic potential). The duration of the change
in membrane voltage depends on the type of synapse, varying from a few ms for fast
(ionotropic) synapses up to hundreds of ms for slow (metabotropic) synapses. After
the activation period, the neurotransmitter ceases its action on the synapse and

Gsyn(t) returns to its initial value.

5.2.2 The discrete synapse model

The discrete synapse model is a combinational block with no internal state
information. Three aspects of the biological synapse are captured; the synaptic
delay, the finite duration of the synaptic activation and its efficacy.

Synaptic delay and activation duration

Figure 5.3 depicts the synapse block and table 5.4 shows the function that it

implements.
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A complete sequence of events in the MBED synapse is as follows:

e The synapse receives an on message (discrete equivalent of neurotransmitter

release) at time ¢ on channel «.

e The synapse schedules its delayed activation at ¢ + ¢4, by broadcasting a
message on with a delay field set to tg; through channel 3. This accounts for

the synaptic delay.

e The synapse receives the message on at t + t4, which triggers the broadcast of
an on message through channel v to notify its activation to the threshold
block. The inactivation is scheduled by the broadcasting of an of f message
through channel 8 with the delay field set to gy,

® At t + tge + tagur the synapse receives the of f message through channel 5 and
notifies the threshold block of its inactivation by broadcasting a message of f

through channel 7.

Figure 5.4 shows two examples of the function implemented by the synapse
block. In figure 5.4-A, the synapse is activated at t = 2 ms and t = 9 ms by the
reception of two on messages on the o channel. Due to the size of the delay between
the two incoming messages, the two consecutive synaptic activations do not overlap
in time. The synapse broadcasts the first of f message, notifying the end of the first
synaptic activation to the threshold block, before the broadcasting of the second on
message on the v channel, indicating the start of the second activation. Conversely,
in figure 5.4-B, the on messages delivered to the synapse through the o channel,
arrives with a delay of 3 ms, producing two overlapping synaptic activations.

Synaptic efficacy

In biological neurons, the simultaneous activation of multiple synapses may increase
the membrane voltage above the firing threshold and trigger the generation of an
action potential [27]. The contribution of each synapse to this change of membrane
voltage depends on its functional characteristics (e.g. Gy, in expression 5.1) and
also on its location in the dendritic tree. Transient changes in membrane voltage due
to synapses located far from the cell body, undergo a distance dependent
attenuation during its propagation along the dendrites. This effect is introduced in
the MBED model by means of a synaptic efficacy factor.
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Figure 5.4: Examples of the function implemented by the synapse block. Nonover-
lapping (A) and overlapping (B) activations and corresponding queues (C,D)

To demonstrate the impact of the anatomical location of the synapse on its
efficacy in generating an action potential in the biological neuron, a standard
compartmental model with spherical soma geometry and a single cylindrical
dendrite (10 um in diameter and 500 um of longitude) was simulated using the
Neuron simulator. Figure 5.5-A shows the menibrane voltage in the cell body in the
case of synaptic input received at the initial segment of the dendrite (synapse-soma
distance of 0 um). When the synaptic input is received at 250 um from the cell
body (figure 5.5-B) the number of action potentials is reduced from 33 to 24. This
result indicates that the anatomical location of a synapse influences its synaptic
efficacy in generating somatic action potentials.

The discrete synapse model captures the concept of synaptic efficacy by
associating a synaptic weight (ws,,) to each synapse. Messages of type on and of f
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Figure 5.5: Effect of synapse position on synapse efficacy. (A) EPSPs at the initial
segment of the dendrite, (B) EPSPs 250 um away from the cell body

are broadcasted by the synapse to the threshold block to notify synaptic activation
and inactivation respectively. The optional field in the message data packet (p in
table 5.1) is used in these cases to communicate the efficacy of the synapse to the
threshold block. Based on this efficacy, the synapse block updates its discrete

estimation of the membrane voltage.

5.3 The threshold block

5.3.1 Nonlinear response of biological neurons

To illustrate the nonlinear neuronal input-output function, a single compartment
model (spherical geometry with 100 um? of total membrane surface) incorporating
Hodgkin-Huxley Na* and K* channels was constructed. The transient neuronal
response was probed with a set of injected current steps (100 ms in duration) of
increasing magnitude within the range 0 - 80 pA. Figures 5.6-A and 5.6-B show the
time course of the injected current and the membrane voltage, respectively.
Currents of 20, 40 and 60pA increase the membrane voltage from —65 mV to
—60 mV following a linear current-voltage function. However, a current of 80 pA
succeeds in triggering an action potential, leading to a nonlinear increase of the

membrane voltage up to 30 mV.
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Figure 5.6: Simulation of the neuronal response triggered by pulse-shaped current
injection. (A) Time course of the injected current, (B) Membrane voltage
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Figure 5.7: Time course of the Na™ current responsible for the nonlinear onset of the
action potential

Nonlinear voltage-gated Na™ channels are responsible for this threshold effect.

The Na™ channels inject a cationic current into the cell, Iyg,

INa(t) - GNa<t> Vm)(vm - Esyn) (52)

where G n,(t, Vi) is the conductance of the channel, V,, the membrane voltage
and E,, the voltage at which no current flows through the channel. Note that the
conductance of the channel Gy, (¢, Vi) is a function of time and membrane voltage.
The total current through the Na™ channels, underlying the action potential, is
shown in figure 5.7. It increases nonlinearly for an injected current greater than
60 pA.
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Input Action | Output
Wsym+ = Wsyn
Weym >= the 7
y:=on | true: | e:={0,0on}
Weym <= thz ?
true: | e := {0,0f f}
Wsym— = Wsyn
Weym >= the 7
v:=off | true: | e:= {0,0on}
Weym <= th; ?

true: | e := {0,0f f}
Table 5.5: The threshold block state machine

5.3.2 The core threshold block

The threshold block in the MBED neuron model captures two experimentally
observed effects; the integration of synaptic activity by the dendritic tree
[22, 135, 136] and the threshold effect introduced by nonlinear voltage gated
channels [21, 25].

It is a state machine and table 5.5 shows the transition table for the block. Its

internal state variable, ws,m, stores a weighted sum of active synapses,

s
wsumj = Z O Wsyn, (53)
i
n if synapse i was activated n times .
Q; = . C . (5.4)
0 if synapse i is inactive

where S is the number of synapses onto neuron j, wsyn, is the synaptic weight of
the i*" synapse and «; takes the value 0 if the synapse is inactive and n if the
synapse was activated by n incoming on messages.

Each synaptic event triggers an update of wg,,, in the threshold block, after
which, its value is compared against the excitation (th.) and the inhibition (th;)
thresholds. If the condition (wsy, > th.) holds, an on message is broadcast to the
burst generator block through the e channel in order to trigger a burst of action
potentials. If, alternatively, the condition (ws,, < th;) is evaluated true, an of f
message is broadcast to the burst generator block through the € channel to truncate
an ongoing burst. Note that these conditions are mutually exclusive given that, in
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Figure 5.8: Small network used to illustrate the internals of the model
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Figure 5.9: Integration of synaptic input by the threshold block. (A) All synapses
excitatory, (B) mixed excitatory-inhibitory, (C) all inhibitory

order to confer biological realism to the model, the inequality th; < th, must be
observed when setting model parameters.

The circuit of four neurons shown in figure 5.8 is used to illustrate the function
implemented by the threshold block. Figure 5.9 shows the synaptic events (three
uppermost traces in each plot) and the value of the internal state variable wsym in
neuron D (bottom trace). Synaptic events are signaled by an assertion, indicating
synaptic activation, and deassertion, to indicate deactivation.

Three cases are considered; in figure 5.9-A, all synapses onto neuron D (AD,BD
and CD) were configured as excitatory with unit weight (ws,, = +1). To generate
figure 5.9-B, synapses AD and CD remained configured as excitatory connections
with unit weight, (ws,, = +1) but synapse BD was configured as inhibitory
(wsyn = —1). For figure 5.9-C, all three synapses were configured as inhibitory

connections (wsy, = —1).
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Figure 5.10: An increase of wg,, above th, or a decrease below th; triggers message
broadcasting on channel e.

Figure 5.10 shows the output of the threshold block corresponding to the
examples of figures 5.9-A and 5.9-C. The upper traces reproduce the time evolution
of ws,m Wwhereas the bottom trace contains delta functions indicating the
broadcasting of messages on channel e. Their types are indicated by the associated

labels.

5.4 The burst generator

Figure 5.6 shows the single spike obtained with a compartmental model
incorporating voltage-gated Na™ channels. An increase in the duration of the
current pulse from 100 us to 500 ms induces a change in the neuron response to a
burst of 25 action potentials (see figure 5.11).

The burst generator block introduces the concept of burst in the event-driven
model by implementing message streams and broadcasting them on the output
channel . These are interpreted at the receivi'ng end (the synapse blocks of
postsynaptic cells) as notifications of presynaptic action potentials. Upon reception
of an on message either on the € or ¢ channels, the burst block outputs a stream of
messages of typé on through its output channel «, the number of messages per burst
being determined by the parameter Ny,.;;. The reception of an of f message on the
¢ channel before the end of the output stream results in its premature truncation.

The burst generator consists of a three state (on, of f and ref) automaton. It

also contains the internal state variable npurs; which stores the number of remaining
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Figure 5.11: Burst of action potentials elicited by a current pulse of 500 ms

messages in an ongoing burst. Table 5.6 shows the state transition table for the
burst generator block. Entries adhere to the format (next state | action | output).

A typical sequence of events leading to the generation of a burst is as follows:

e The state machine remains in its initial state, of f and neurst = Npurst, until
the arrival of an on message input at time ¢. This causes its state to change to
on (indicating the onset of an action potential) and triggers the broadcasting

of the first on message of the outgoing burst.

e At t +t,,, the state machine changes to state ref (the action potential has

finished and it enters the refractory state).

o At ¢ + 4 + tres the refractory state ends and the counter nyyq; is decreased in
one unit. The state machine returns to state on (initiating the next potential
in the burst) if nyyrse > 0. Alternatively, if np,,s; == 0, it changes to of f and

resets Npurst = Npurst -

Note that, setting Ny,-s: = 1, the neuron generates single action potentials rather
than bursts.

Figure 5.12 shows two examples of the behaviour of the burst generator. Four
traces are shown in each plot; they correspond, in succession from top to bottom, to
a train of deltas indicating the sequence of message arrivals on channel ¢, the
time-evolution of the state of the burst block and the train of outgoing messages on
channel o and value of the state variable ng,;. In 5.12-A, the arrival of an on



Burst generator

Current Next state | Action | Output
state Input
€:= on e:=off n:=off n:=r_off ¢ :=on
on 0n|‘{‘ onlnburst:()[‘ T€f¥‘|771:{tref,7‘_0ff} On|“|' Onl'l'
Npurst — 1 == 07
ref ref|-]- ref | Npurst =0 | - ref | - ! - true: of f |nburst = Npurat * - ref i - -
false: on |npyrei— = 1 | 0 := {tap,0f f}
of f on|-|a:={0,on}, of fl-1- off1-1- of fl-1- on |- |a:={0,on},
n = {tap,0f f} n:= {tap,0f f}

Table 5.6: The burst generator state machine
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Figure 5.12: Example of burst generation (A) and truncation of a burst due to inhib-
ition by an of f message (B).

message at t = 4 ms, triggers the broadcasting of a burst of 5 output messages
(Npurse = 5). In 5.12-B, the burst is truncated to 3 messages upon the reception of
an of f message at t = 35 ms which resets the state variable npy.s: to 0.

The burst block can also be configured to generate infinite length bursts. By
setting the parameter Ny,,.; to a negative value, the condition npy,ss == 0 never
holds. In this case, the train of outgoing messages can only be finalized by an
inhibitory of f message on channel e which leads to burst truncation.

5.5 Axonal delay

Action potential generation in biological neurons is followed by the propagation
along the neuronal axon. Figure 5.13-A shows the results of the simulation of an
action potential propagating along an axon of 20 wm in diameter and 20 mm in
length. The attenuation of the propagating spike is eliminated by the regenerative
effect of homogeneously distributed HH Na*™ and Kt channels.

The velocity of propagation, as calculated from figure 5.13-A, is 2.5 m/s. The
reduction of the axonal diameter to 10 um decreases the velocity of propagation to
1.6 m/s (from figure 5.13-B). For axons of a few mm in length, the arrival of the
action potential to the most distal parts of the axon will introduce a latency of
several ms.

Delays derived from the finite axonal velocity have been shown to be important
in the generation of EEG oscillations, as indicated by the EEG models developed by
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Figure 5.13: Action potential propagation in an axon of 20 um (A) and 10 um (B) in
diameter

Nunez [132]. The axonal latency is captured in the event-driven model by the
synaptic delay (f4e), which accumulates the delay involved in the release of the
neurotransmitter and the latency due to axonal propagation of the action potential.
Figure 5.14 shows an example based on the small circuit of figure 5.8. The four
traces in 5.14-A correspond (top to bottom) to the the outgoing messages from
neuron D, the DE synapse activation/deactivation state, the time-evolution of the
Wsum State variable in cell E and the state of its burst block. Figure 5.14-B plots the
output of neuron D and three traces corresponding to the output of cell E as

obtained for three different values of ¢4;.

5.6 The oscillator

The oscillator block is a two state machine which implements a free-running
oscillator. When activated by setting parameter t,sc > 0, it broadcasts an on
message to the burst generator every t,, time units. The first message in the
sequence is broadcasted at ¢t = ¢,. Table 5.7 shows its state transition table.

Figure 5.15 demonstrates the function of the oscillator block when configured
with to5. = 150 ms and t; = 250 ms. The upper and middle traces show the state of
the burst generator and oscillator blocks respectively. The bottom trace is the
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Figure 5.14: The axonal and synaptic delay introduced between the action potential
in cell D and the action potential in cell E as set by parameter tq4; of synapse DE

Current state Next state | Output
0 := {tose, change}

on of f | 8 := {tose, change},( := {0,on}

of f on | § == {tosc, change},( := {0,0n}

Table 5.7: The oscillator state machine

sequence of on messages broadcasted by the oscillator on channel ¢. At intervals of
150 ms, it changes state and broadcasts a message to the burst generator which,
when configured with Ny..s; = 3, generates a burst of three action potentials.

5.7 Coding schemes implementable with the MBED
model

Several schemes for information coding in neural aggfegates have been proposed
[137, 138]. The two most prominent are rate codes and temporal codes [139]. The
MBED model was simulated to validate its suitability for implementing these codes.
In particular, it is shown that the sublinear summation of inputs ,often captured in
rate coding models, and correlation detection, which underlies temporal codes, can

be implemented with the MBED neuron.
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Figure 5.15: Oscillator block

5.7.1 Rate coding and sublinear synaptic summation

Rate coding is based on the assumption that the spiking frequency of the cell is the
information carrier. Thus, the timing of individual spikes is considered irrelevant
and usually not captured by these neuronal models. There is experimental evidence
of this type of information coding in neurons located close to sensory inputs [27].

Neuron models used for rate coding map input firing rates into output firing
rates. A common form for this mapping implements a nonlinear parameterized
function of the input firing rates as shown in figure 5.16. This sigmoidal mapping
was described in Chapter 3 within the context of the Perceptron model.

In biological neurons, such a sigmoidal input-output function results from the
refractory period (approx. 10 ms), which limits the maximum firing rate of the cell.
A biophysical neuron model constructed with a single compartment soma attached
to two passive dendrites was constructed. The cell body included voltage-gated Na™
and K" channels with Hodgkin-Huxley dynamics.

Figure 5.17-A shows the number of action potentials generated within a time
window of 100 ms in response to a train of excitatory postsynaptic potentials. As
the synaptic conductance is increased from 20 pS to 200 pS, the number of action
potentials reaches a maximum of 8. This is the upper bound of the firing rate as
imposed by the refractory period. The spiking rate versus synaptic conductance plot
resembles the commonly used sigmoidal function.

Figure 5.17-B shows the results obtained in a similar experiment using the MBED
model. A single neuron with an excitation threshold of th, = 100 received 2000
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Figure 5.18: (A) Correlation detection in a compartmental model, (B) Correlation
detection in the event-driven model

synaptic activations over an interval of 100 ms, with onset timing given by a uniform
distribution in the range (0..100 ms). Synapses were configured with ¢z, = 5 ms.
Figure 5.17-B shows the number of action potentials obtained as a function of
the synaptic weight (wsy,). As the synaptic efficacy increases, wsym, is more likely to
reach the excitation threshold and generate an action potential. However, its
maximum firing rate is limited by the refractory period (¢, = 10 ms) in the burst
generator block. The result is a sigmoidal spiking rate versus synaptic weight
function, analogous to the biological sublinear summation of inputs of figure 5.17-A.

5.7.2 Temporal coding

Temporal coding makes use of the timing of individual action potentials as the
carrier of information between neurons. There is some experimental evidence of this
type of neuronal coding in the central nervous system (e.g. in the visual cortex
[41, 42]). In this context, neurons are often modelled as correlation detectors which
generate action potentials when their inputs are correlated in time. The firing rate is
no longer the relevant parameter, rather, the timing of individual spikes is thought
to support neural function.

Figure 5.18-A shows the time course of the somatic membrane voltage in the
two-dendrite compartmentai single neuron model used in the previous Section. A
train of 2000 EPSPs was generated, triggering several action potentials when the
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subset of simultaneously active synapses was sufficient to increase the membrane
voltage up to its firing threshold.

Figure 5.18-B shows the result of the simulation of an MBED neuron receiving
the same train of excitatory synaptic activations. The neuron was configured with
the = 10 and synapses with w,y, = 1 and ¢4, = 5 ms. The timing of individual
spikes in the MBED simulation of figure 5.18-B coincides within the interval 0<t<95
ms with those in the Compartmental model of figure 5.18-A, with a timing error
e < dms.

However, at t = 100 ms the MBED model predicts an action potential not seen
in the compartmental model. The extra spike is the result of the simplifications
inherent to the discrete representation of a neuron when compared to biophysical
models. The following sections describe some examples of these differences.

5.8 Comparative analysis

The simplifications involved in the construction of discrete neuron models are
responsible for deviations from the dynamics of compartmental models. Studies
dealing with large populations of simplified neuron models have demonstrated rhat
collective dynamics observed in abstract representations of neural populations are
capable of displaying realistic behaviour. For instance, Wright [46] has shown that
40 Hz gamma oscillations arise from pools of continuous neurons consisting of basic
computational units implementing gain and lag operations. Nevertheless, several
differences between the discrete and the continuous approaches were studied in order
to asses the validity of MBED network simulations; voltage dependent efficacy of
GABA synapses, NMDA channels and firing rate adaptation.

5.8.1 Efficacy of GABA,4 synapses

GABA is the major inhibitory neurotransmitter within the central nervous system
[6]. Its release activates inhibitory synapses and triggers the onset of the synaptic
current. As indicated in equation 5.1, the magnitude of the instantaneous synaptic
current depends linearly, in a first approximation, on (Vi, — Eres), Eres taking the
value —70mV for the GABA, synapse subtype.

A compartmental model was simulated to study the effect of the average
membrane voltage on the efficacy of GABA4 synapses. The model consists of a

passive compartment incorporating two types of synapses: excitatory synapses and
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Figure 5.19: Effect of the average membrane voltage on the efficacy of GABA synapses.

GABA, inhibitory synapses. Due to the absence of Na* and K+ channels, action
potentials can not be generated.

The membrane resting potential was scanned in the range (=70 mV to —25 mV)
in 5 mV steps. At t = 0 ms, a train of EPSPs was generated by random activation of
the excitatory synapses. As a result, an increase of the average value of V'm within
the interval ¢ = 0 — 50 ms can be seen in figure 5.19. At ¢t = 50 ms, concomitantly
with the train of EPSPs, a sequence of IPSPs was triggered by random activation of
GABA, inhibitory synapses. The resulting effect was a decrease in membrane
potential in the order of 0 to 20 mV within the interval ¢ = 50 — 120 ms.

For values of V,, close to E,., (bottom traces), the magnitude of the charge
injected into the cell is close to 0 and the change in membrane voltage due to this
charge is unnoticeable. As the resting potential was increased (upwards in figure
5.19) the voltage decrease induced by GAB A, activation becomes more marked (up
to 20 mV).

These simulations show that the efficacy of the inhibitory effect of a GABA4
synapse depends on the value of V,,, at the time of its activation. Such dependency
was not introduced in the MBED model for the following reason; biological neurons
incorporate non-linear conductances which effectively implement a threshold
function. Values of the membrane voltage above this threshold, trigger an action
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Figure 5.20: (A) Conductance of NMDA channels during voltage clamp, (B) Max-
imum current through NMDA channels during voltage clamp.

potential. During an action potential, synaptic activity has no effect on the
stereotyped pattern of a spike. Thus, the functional interval of membrane values for
GABA 4 synapses corresponds to the subset of the traces seen in figure 5.19 within
the range limited by the resting voltage and the firing threshold . Within this
subset, the variability of the efficacy of the train of GABA 4 IPSPs is reduced to
approximately 5 mV.

If required, equivalent effects could be introduced in the MBED model (see
Chapter 9) by making wg,, (the synaptic weight) of inhibitory synapses a function
of wym (the weighted sum of inputs calculated by the threshold block). However,
the limited range within which GABA4 efficacy variations are physiologically
realistic, led to the simplification that synaptic efficacy remained constant.

5.8.2 NMDA synapses

NMDA receptors constitute a class of neurotransmitter gated channels which are
believed to be involved in learning [140]. The synaptic current for these channels is

given by [6],

Iiyn(t) = B(Vin)Gsyn(t)(Vin — ENmpa) (5.5)

where B(V,,) is an increasing function of the membrane voltage, V,.
For the synapse to modify V,, when activated by the release of neurotransmitter,
B(Vyn) > 0 must hold. Figure 5.20-A shows the value of the product B(Vp,)Gsyn(t)



CHAPTER 5. MESSAGE-BASED EVENT-DRIVEN NEURON MODEL 84

as obtained from the simulation of a voltage clamp experiment in a single
compartment model with NMDA channels. It illustrates the dependence of the
NMDA conductance on V,,. At ¢t = 13 ms, the synaptic conductance is at its
maximum. The peak conductance is shown to increase with V, (upwards in figure
5.20-A). Figure 5.20-B plots the maximum synaptic current as a function of V,,. In
an NMDA synapse, the magnitude of the current injected into the post-synaptic cell,
which is directly related to its efficacy, is a function of Vi through the factors B(V,,)
and (Vi, — Enmpa)-

As in the case of GABA,4 synapses, the MBED model could be modified to make
the synaptic efficacy, wsyn, a function of wsym,. However, the network models studied
in Chapters 7 and 8 do not incorporate learning. Thus, the implementation of

NMDA channels was not necessary.

5.8.3 Firing rate adaptation

The MBED model is able to generate bursts of action potentials as observed in
biological cells. The model assumes that the delay between two action potentials in
a burst is not modified during the simulation and is specified by the parameter ¢,.s.
Several types of classes of cells (e.g. pyramidal neurons) have been shown to adapt
their firing rate as a function of past activity [141].

Figure 5.21 shows the results of the simulation of a compartmental model
incorporating K channels of the type I4gp during a current pulse of 0.6 nA
injected into the cell for an interval of 500 ms. Figures 5.21-A and 5.21-B show the
membrane voltage and I45p conductance, respectively, for a model with no Iugp
channels. In figures 5.21-C and 5.21-D, T4y p channels were added with a
conductance density of 100 uS/cm?. The conductance was increased in figures
5.21-E and 5.21-F to 200 uS/cm?.

Comparison of figures 5.21-A, 5.21-C and 5.21-E indicates that, as the density of
channels and the magnitude of I4gp current increases, the number of action
potentials per burst decreases while increasing their inter-spike delay.

For the MBED model to be used to simulate neurons incorporating /4zp
channels, the value of t4; should be adjusted during the simulation. However, there
is no experimental evidence of spike rate adaption in the locomotory system of C.
elegans. Moreover, for the network model of the piriform cortex presented in
Chapter 8, neurons were configured as single spike cells. Thus, spike rate adaptation

within bursts need not be implemented.
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Chapter 6

The MBED simulator

This Chapter describes the software developed for eflicient message-based
event-driven simulation of networks of MBED neurons. Firstly, an overview of the
tool is provided, with emphasis on general design issues and the user interface.
Secondly, the internal structure and algorithms are described. Several techniques
have been utilized for improved simulation speed and memory use; a look-up-table
(LUT) based priority queue provides O(1) queue insertion times irrespective of
queue size and O(1) extraction latencies within the range of queue sizes typically
encountered in large scale simulations. Memory efficient data structures for the
storage of synaptic parameters and neuron identifiers, in addition to the use of an
optimized algorithm for dynamic allocation of new messages, reduce memory
consumption.

Finally, the performance of the simulator is tested using a uniformly connected
network of MBED neurons including both excitatory and inhibitory synapses. The
impact of several network parameters on simulation performance is studied. In
particular, the effect of the relative proportion of the two types of synapses, the
neuronal threshold, the number of synapses per neuron and the size of the network
is explored. A more realistic topology, consisting of a model of the piriform cortex,

is also considered.

6.1 Overview of the simulator

The simulator was implemented using the C++ programming language and
embedded within Yorick [142]. This is a freely available numerical package with user
interface and capabilities similar to Matlab. Yorick provides an interpreted and

86
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mathematically orientated scripting language which can be used interactively and in
batch mode. The default command set allows the creation of vectors and
multidimensional matrices, implements a large number of operations on these
mathematical structures and provides a variety of visualization routines. Yorick also
supports functions and flow control statements following ANSI C syntax.

A typical interactive session starts invoking Yorick from the UNIX prompt.

$ yorick

Copyright (c) 1996. The Regents of the University of California.
A1l rights reserved. Yorick 1.4 ready. For help type ’help’

The > prompt indicates that Yorick is ready to accept interactive commands. A

T-element vector and a 2 x 5 matrix can be created by

1]

(1,5,3,6,7]
(ft+,2,3,4,51,06,7,8,9,10]]

> v
> m

1]

Commands are invoked using the ANSI C syntax for function calls. In the first
line of the following example, the command sum is used, returning a scalar value
with the sum of the elements of the vector v. The return value is stored in the
variable z and visualized with the print command. The session is finished with quit

and returns the user to the UNIX prompt.

>z = sum (v)
> print (2)

22

> quit

$

Yorick also supports a non-interactive (batch) mode invoked as

$ yorick -batch filename

where filename is a file containing the commands to be executed by Yorick.
The advantages obtained by the integration of a standard package and the

simulator core are,
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Figure 6.1: Overview of the simulation tool

e Simplification of the data visualization and analysis. The standard tools
available in the package can be used to process the results of the simulation
(e.g. the Fourier transform is a built-in function and allows frequency domain
analysis of EEG simulations). Routines for 2D and 3D static and animated
visualization of matrices are also provided by the package and are utilized for

post-simulation data analysis.

e The integration of the simulator within a standard numerical package makes it
possible to automate some of the tasks associated with the simulations. This is
the case during studies of network dynamics, when a systematic search of a
region of the parameter space is often needed. The possibility of using a
scripting language to control the parameter search allows fast implementation

of different search algorithms.

e The portability of the simulator is increased reusing the input/output
functions included in the numerical package. As many packages have been
ported to several operating systems, the programmer does not need to recode
(e.g. the plotting routines) for cross-platform portability. In the case of the
package Yorick, which has been enhanced with the addition of the simulator

core, versions exist for the Unix, Windows and MacOS platforms.

Yorick was designed for easy customization of its command set. New commands
can be implemented in C, C++ and Yorick’s language to provide the functionality
required by the user. Taking advantage of this feature, a number of commands were
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Command Purpose Parameters SNDS / LNDS

initevent(conf,con) Topology creation conf : neuron configuration SNDS
con : connectivity matrix

createpiriform(z) Topology creation z : Topology vector LNDS

initmodels (m) Synaptic models m : vector of synaptic models LNDS

simuevent(t) Start simulation t : stop time Both

deleteall() Deallocates memory - Both

Table 6.1: Command set provided by the simulator

implemented to extend the command set available in the default installation of
Yorick. They constitute the user interface to the MBED simulator (figure 6.1) and
support the specification of the topology of the network, initialization of neuronal
and synaptic parameters and simulation control, providing access to functions

within the C++ simulator core.

Table 6.1 lists these commands. As will be described in section 6.4.1, the
simulator can be compiled with one of two data structures, the small networks data
structure (SNDS) and the large network data structure (LNDS). Table 6.1 indicates
the type of network appropriate for each command. The following sections describe

the steps involved in a typical simulation.
Data visualization and analysis makes use of the commands provided by Yorick’s

command set.

6.2 Exemplar interactive session

An interactive session is started invoking Yorick from the UNIX prompt
$ yorick

Copyright (c) 1996. The Regents of the University of California.
All rights reserved. Yorick 1.4 ready. For help type ’help’

and is followed by the specification of the topology of the network, the execution

of the simulation and the visualization of the results.
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6.2.1 Topology specification

The topology of the network and its neuronal and synaptic parameters can be

‘specified in two ways:

e Two matrices can be created to describe the topology and the neuronal
configuration. The topology of an N neuron aggregate is contained in a N x N
connectivity matrix, each element corresponding to a possible connection in
the network. Since the dynamics of a synapse are totally specified by three
synaptic parameters (fgei, Weyn, taur), €ach entry in the matrix is a 3-element
vector. A second matrix is necessary to contain neuronal parameters. The
seven parameters needed by each neuron (the,thitose, Nourststap,tref,tphi) make

up a N x 7 matrix.

The connectivity (con in the example below) and the configuration (conf)

matrices for a 3 neuron network can be created using Yorick’s environment as

> synapsel = [1,1,1]

> nosynapse = [0,0,0]

> con = [[synapsel,nosynapse,nosynapsel],
[synapsel,nosynapse,nosynapsel],
[synapsel,nosynapse,nosynapse]]

(10,-10,0,1,1,10,2]

[20,-10,0,1,1,10,2]

> conf = [typicalneuronl,typicalneuronl,typicalneuron2]

> typicalneuronl

> typicalneuron2

The command initevent() can now be used, with conf and con as its
parameters, to instruct the event-driven simulator to instantiate its internal

data structures according to the specified topology.

> initevent (conf,con)

At this point the internal data structures have been created and the neurons
are initialized. The network is ready to start the simulation.

e An alternative way to create the network avoids the specification of individual
connections by describing the aggregate with a set of connectivity rules. This

approach is specially suited for large scale simulations where the number of
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connections is in the order of tens of millions. This is also consistent with the
type of experimental data available from studies of cortical anatomy, where
only the statistics of the connectivity are known. Typically, these rules will be
parameterized and the creation of the network will only require the selection of
values for these parameters (e.g. probability of establishing an excitatory

synapse between two neurons at a distance d).

In the case of the MBED model of the piriform cortex which will be presented
in Chapter 8, a new command was implemented, createpiriform(), which
accepts the topological parameters and instantiates the network.

A vector describing the topology of the network can be created as
> network = [20, ... , 250,250,100,150,200, ... ]

The first entries of the vector specify the characteristics of the pool of
pyramidal cells. The first seven elements correspond to the configuration of
the neurons in the pyramidal pool, starting by the excitation threshold (set to
20 in the example above). The following parameters specify a grid of 250 x 250
neurons where each cell establishes 100 synapses with other pyramidal cells,
150 synapses with fast inhibitory (GABA,) cells and 200 with slow inhibitory
(GABAg) neurons. The parameters needed by the cortical model will be
described in Chapter 8.

The simulator is instructed to create its internal data structures according to
the specified network topology by using the command createpiriform() with

the vector network as its parameter.
> createpiriform (network)

Of the two methods described for topology specification, the first approach (i.e.
using the initevent() command) is adequate for small networks as it requires the
specification of each connection as parameters. However, the implementation of
simulations is accelerated by the fact that the generic command initevent() can be
used for any topology.

In the second alternative, the creation of new commands (e.g. createpiriform())
is required to support new network topologies. Since only the parameters of the
connectivity rules have to be passed to the simulator, it provides a compact
representation of the network which makes it adequate for large simulations.
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Data Visualization format
State of the burst generator Waveform/ Matrix
Value of w,ym in the threshold block Waveform/ Matrix

Instantaneous number of messages in the priority queue  Waveform

Table 6.2: Formats for the visualization of simulation results.

6.2.2 Simulation control

Following the creation of the network, the command simuevent() is used to initiate
the simulation. Its parameter specifies the number of time steps to execute and the

results are contained in the array returned by the function call.

> results = simuevent (100)

6.2.3 Visualization of results

Throughout the simulation, the occurrence of events leads to changes in the state
vectors and variables of the neurons in the aggregate. These are logged and returned
by the command simuevent() as a M x 3 matrix, where M is the number of variable
updates logged. Each item corresponds to a 3-element vector, whose elements are
the time point when the variable change occurred (first vector element), a number
which identifies the variable and the neuron to which it belongs (second element)
and its new value (third element).

Table 6.2 lists the types of items in the results log (leftmost column) and the
visualization formats which will be used in Chapters 7 and 8 for each type
(rightmost column). The plots are generated using Yorick’s command set.

The three types of data logged are:

e The state vector of the burst block. It is represented using a waveform view in
figure 6.2 (traces are asserted when the burst block is in state on and
deasserted in states off and ref) and as a coloured matrix in figure 6.3-A
(neurons in state on, of f and ref are represented by white, black and gray

pixels respectively).

e The state variable of the threshold block (weum) : It shows the total synaptic
input received by a neuron at a point in time and can be viewed as a waveform
and as a coloured matrix (figure 6.3-B) where blue areas correspond to regions
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Figure 6.3: (A) Matrix representation of neuronal state (black, white and gray pixels
correspond to neurons in of f, on and ref states) (B) Matrix representation of the
parameter Wgy., in all neurons
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receiving stronger inhibition than excitation (wgum < 0) whereas yellow/red

areas indicate greater excitation than inhibition (Weum > 0).

The visualization of the contribution of individual classes of synapses to Wsum
also facilitates the understanding of the dynamics of the network. In the case
of the piriform cortex (Chapter 8), for instance, pyramidal neurons receive two
types of inhibitory (fast GABA 4 synapses and slow GABAp synapses) and one
type of excitatory synapses (fast Glutamate synapses). The measurement of
the contribution to wsym,, of each of these three types of synapses clarifies the
role of each synaptic type in driving the dynamics of the neuronal population.

For a given neuron j, wsum, at time ¢ can be expressed as

M Sm

Wsum; (t) - Z Z AmiWsyn, g (61)

m 3

where M is the number of types of synapses, S,, the number of synapses of the
mi* type through which neuron j receives synaptic input, wgyn,,, is the
synaptic weight of the i** synapse of the m* class and cy,; is its number

simultaneous synaptic activations at time ¢.

An alternative way of expressing wsum, 18,

M
Wsum; (t) - prsumm (62)

where pwyyum,. is the partial contribution to wg,m of all synapses of type m and
the summation is over the total number of synaptic types, M, through which

the neuron receives its input.

Figure 6.4 shows a matrix plot of the partial contribution to Wsym (PWsum,,) bY
the excitatory synapses (those with positive synaptic weight). A shift towards

red indicates an increase of the total excitation.

o The number of messages in the queue : The time evolution of the
instantaneous number of messages in the queue is used, later in this Chapter,
in order to study the impact of queue size on the performance of the simulator.
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6.3 Exemplar batch session for parameter space
search

Parameter space search has been utilized in Chapter 8 to explore the effect of
changes in network parameters on the dynamics of the model. Batch mode is more
suited for this task than the interactive style shown in previous sections.

Figure 6.5 shows the listing corresponding to the file containing the commands to
be executed by Yorick.

The first lines of code initialize vector z with a set of parameters used by the
function createpiriform() to generate the network. A call to eventstore() and
initmodels() sets the type of results to be retrieved and initializes the table of
synaptic models respectively.

The parameter to be scanned is the first element in the vector, 2(1), and the
range of the scan is (1..number_of _iterations). Within the loop, the parameter z(1)
is set to the value of the counter 7 and the topology is created by means of a call to
the function createpiriform(). The simulation is run for 1000 time units (call to
simuevent()) and the results returned in vector d can be visualized or stored before

the next iteration.
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//Set default value for non-scanned parameters
z=({1,-1000,0,0, ... ...1,0)

//Select data to retrieve
eventstore([0,0,1,1000000,2,20000001)

//main loop
for (i=l;i<number_of_iterations;i++)

{
//set value of the scanned parameter
//for this iteration
z (1) =1

i

//initialize synapse types
initmodels (models)

//create network

//(z contains a vector of parameters for the
// connectivity rules)

createpiriform(z)

//simulate for 1000 time units
d=gsimuevent (1000)

//Store/analyze results

Figure 6.5: An example script implementing parameter space search

Initialization
Initialization of topological data structures Priority queue manager
object
Initialization of neuron object states
Message Message
A Extraction Insertion
Main simulation loop
{ - Exiract first message :
from queue Neuron objects
/7 O
N
Functions: 1
Pass message to destination Initialize
neuron for processing Process message
Data:
Neuron configuration
\_ Synapses W,
~
Functions: 2
Initialize
Process message
Data:
H Neuron configuration
* \_ Synapses W,
Exit simulation
N\ /

Figure 6.6: Block diagram of the internal structure of the simulator
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6.4 Simulator internals

Figure 6.6 shows the main components of the simulator: the core of the simulation
engine, which includes the initialization phase and the simulation loop, the event
queue and the neuronal data structures. During the initialization stage (lefthand
side of figure 6.6), the topological information provided by the user is used to create
the network data structures (bottom-right in figure 6.6). These consist of the
instantiated neuron objects and their synapses.

The simulator initializes the neuron objects calling their initialization function
and enters the main simulation loop. Within each iteration, the message at the head
of the priority queue (top-right in figure 6.6) is extracted and delivered to the
destination device by a call to its process event function. As a result of the arrival
of a new message, the message processing routine within the neuron object updates
its internal state vector and variables and, if needed, creates new messages to be
inserted in the priority queue. Following the processing of the message, control is
returned to the main simulation loop which continues with the next iteration until

the condition t > stop_time is evaluated true.

6.4.1 Neuronal data structures

Two data structures have been implemented for the storage of the network: the
large-network data structure (LNDS) is adequate for the problem of large scale
simulation of networks in the order of 10° neurons, whereas an alternative
implementation, the small-network data structure (SNDS), was developed for

networks in the order of 100 neurons.

Data structure for large networks

The data structures used for the storage of large scale models are shown in figure 6.7.

The largest structure is the memory block allocated for the instantiation of
neuron objects (center in figure 6.7). A neuron object contains the following fields: a
neuron identifier (32 bits), the number of synapses from this neuron onto other
neurons (32 bits), the state vector (32 bits), the state variables (three 32 bit-words),
neuronal parameters (seven 32-bit words) and a list of synapses. The three state
variables correspond to the sum of inputs, wsy.,, the number of pending action
potentials in an ongoing burst and a variable used for debugging purposes.

Each neuron object has an associated list of synapses. Each synapse is
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Figure 6.7: Data structures used for storage of neurons and synapses

functionally characterized by its parameter set (tgel,Wsyn,taur) and the identifier of its
target neuron. A major concern in deciding the most adequate data structures to
store these data was to minimize their size, since the number of connections in a
realistic model is expected to be two to four orders of magnitude higher than the

number of neurons. Two strategies were implemented for this purpose:

e Synaptic parameters are not stored for each synaptic instantiation. Rather, a
synapse type number is associated with each connection (8 bits). The actual
parameters can be retrieved from a table containing synaptic parameter sets
(seen on the lefthand side of figure 6.7) using the type number as an index into
the table. Each entry in this table is a synaptic structure containing the

parameters for one of the allowed types of synapses.

o The target neuron of a synapse is stored as a 24 bit identifier rather than a full
32 bit pointer. Considering that the MBED simulator run on a machine with a
32 bit-wide address bus, a 4 byte word would be needed to identify the target
neuron if a pointer was to be stored in each synapse. Instead, an extra
dereferencing level is introduced to minimize memory consumption. A neuron
number is associated to any one synapse, identifying its postsynaptic cell. The
actual memory address of the target neuron is found by accessing a table
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(righthand side of figure 6.7), which contains actual pointers to the neuron
objects, using the neuron number as an index into the table. Given that the
neuron number does not correspond to a physical memory address, its size is
not constrained to 32 bit (as required by a pointer) and can be reduced to a 24
bit identifier. The remaining 8 bits in a 32 bit synaptic word can allocate the

synapse type number.

Hence, with the two strategies 'ascribed above (a table of synaptic models and a
dereferencing table of pointers to neurons), the parameters needed for a synapse can
be masked into a single 32 bits word (24 bits for the target neuron identifier and 8
bits for the synapse type).

Efficient use of memory space was also achieved minimizing the overhead
associated with dynamic allocation of large numbers of small objects [143]. Rather
than allocating neurons individually, the simulator estimates the amount of memory

required for the storage of all neurons and synapses in the network as

M =NCS+NP (6.3)

where N is the number of neurons, C' the number of connections per neuron and
S and P the size of the neuronal structure (excluding synapse list) and the single
synapse data structure respectively. A memory block of size M is requested from the
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standard memory manager, avoiding dynamic allocation of individual neurons.
Overall, the described data structures implement a unidirectionally linked
(presynaptic to postsynaptic neurons) network of neuronal objects. Linked structures
were chosen because they are suitable for sparsely connected systems [55] whereas
array based storage is memory-efficient for highly connected networks. This is a
convenient design decision given that the expected degree of connectivity in a large
scale network model incorporating experimentally obtained topological data is likely
to be low and variable across different structures. For instance, the connectivity is
estimated to be in the order of 4 % within the CA3 area but 0.005 % between
dentate gyrus and CA3 pyramidal cells in hippocampus [35]. Unidirectionality of the
inter-neuron connections (pre to postsynaptic) contributes to the memory efficiency
of the data structures by eliminating the need for back-linking (post to presynaptic).
Figure 6.8 shows the memory space required for the storage of the network as a

function of the number of neurons and synapses.

Data structure for small networks

Figure 6.9 shows the data structures implemented for small networks. With respect
to those used for large aggregates (figure 6.7), two differences must be noted: the
storage of a copy of the synaptic configuration for each connection and the addition
of backlinking from postsynaptic to presynaptic neurons.

As depicted in figure 6.9, any one neuron has an associated set of parémeters and
state variables and two additional substructures: the table of synapses onto
postsynaptic cells and the table of pointers to presynaptic cells. The entries in the
table of synapses accommodate instantiations of synaptic 1 arameter sets
(tdet,taur,Wsyn) in addition to the identifier of target neurons.

The table of pointers to presynaptic neurons was added to provide backlinking
from postsynaptic to presynaptic neurons, transforming the unidirectionally linked
network implemented for large scale simulations into a a doubly linked aggregate.

The advantage of this data structure is its adequacy for the implementation of
the algorithms involved in the adaptation of synaptic parameters (e.g. weight
adaptation for the simulation of LTP/LTD), if these mechanisms were to be
modelled in the future. In a network incorporating learning algorithms, synaptic
parameters would be adjusted during the simulation. Because the parameters
associated to different synapses are likely to take different values, it is convenient to

store a complete set of synaptic parameters for each connection. Moreover, activity
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Figure 6.9: Data structures as implemented for small networks
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in a postsynaptic neuron may induce changes in a presynaptic cell. For this reason,
a doubly linked structure is preferred to a unidirectionally (presynaptic to
postsynaptic) linked network.

The main disadvantage of this approach, when compared to the data structures
for large scale models, is its less efficient use of memory resources. However, in the
case of small networks (e.g. the C. elegans model described in Chapter 7) memory
consumption is not an issue. For networks including in the order of 100 neurons and
100 synapses per neuron with an allocation of 20 bytes (five 32-bit words) per
connection, the estimated memory space required exclusively for synaptic structures

is 2 - 10° bytes. This value is well below the available memory in most desktop

computers.

6.4.2 Priority queue

In a message-based event-driven framework, entities in the model communicate by
message broadcasting [144, 145]. This is also the case with the neuronal objects in
the MBED simulator, which transmit messages to their postsynaptic cells to
communicate the occurrence of action potentials. As new messages are generated,
those that do not carry an associated delay between generation and delivery to the
target neuron object, are immediately processed by their destination neuron. On the
other hand, those with non-zero latency between origin and destination are inserted
in a time-sorted queue.

Since typical simulations of large network models (e.g. the cortical aggregates
studied in Chapter 8) involve in the order of 108 messages, the design of the priority
queue will affect the computational efficiency of the simulator. Two issues in this
respect have been addressed: efficiency in terms of CPU time required for
insertion /extraction of events into and from the queue and memory consumption by

the queued messages themselves.

Efficient queue management

Numerous algorithms have been suggested for efficient queue management
[78, 79, 146, 77]. Their performénce is influenced by the insertion operations, usually
the most costly operation in event-driven simulation, as events have to be
time-sorted.

In general, insertion times in most queue management algorithms are affected by

the size of the queue (the number of messages already queued); linear search
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Figure 6.10: Priority queue managed with the aid of a circular lookup table

provides hold times (the latency involved in an extraction followed by an insertion)
proportional to queue size, whereas binomial queues, pagodas, skew heaps, pairing
heaps and splay trees run with O(log n) per hold operation [78].

An improved performance has been achieved with a caching technique [146].
This approach relies on the assumption that the insertion point of a new event is
likely to be close to the insertion points of recent events and has proved efficient
(O(1)) with five cache pointers. However, insertion latencies are expected to be
dependent on the distribution of events in the queue, penalizing simulations in
which events do not cluster in time.

The calendar queue, a multiple list scheme, also offers insertion latencies
independent of queue size (O(1)) [77] and incorporates a dynamic adjustment of the
internal structures which increases the robustness of the algorithm in the face of
dynamic changes in the time distribution of events.

The calendar algorithm was inspired by the concept of a desk calendar. The
priority queue, the calendar in the desk-calendar analogy, is partitioned into a
number of sorted linked sublists. An array containing one pointer to the head of
each sublist (page of the calendar) is used to find the appropriate sublist when an
insertion is to be performed. A search for the insertion point is only necessary
within a sublist. The implementation of an algorithm for dynamic adjustment of the
total number of sublists was proposed in order to maintain an adequate mean sublist
occupation. The algorithm was designed for robustness against transitory variations



CHAPTER 6. THE MBED SIMULATOR 104

in event distributions. With this mechanism, insertions O(1) in queue size were
achieved.

There is, however, a computational cost associated to the dynamic adaption of
the internal structures of the queue. This is aggravated in the case of a non-uniform
distribution of events where most events cluster in a single sublist. This situation
forces an increment in the number of sublists (pages in the calendar) to reduce the
average number of events per sublist. As a éonsequence of event clustering, most
sublists would remain empty throughout the simulation, at the expense of the
computational efficiency of the algorithm.

Building on the calendar queue scheme, a new algorithm has been developed and
used within the MBED simulator in order to further reduce the intra-sublist search
cost and to simplify the algorithms involved in dynamic adjustment of the
pagination of the queue. As a result, the developed algorithm provides O(1)
insertion latencies and considerably simplifies the overall queue management. This
has been possible migrating from a continuous time representation (as assumed in
most priority queue algorithms) onto a discrete time representation.

The fine granularity of the time representation required by some event-driven
problems (e.g. mixed-mode simulation) can be relaxed in the case of neural
simulation. Neuronal activity consists of action potentials of, at least, 1 — 2 ms of
duration followed by a refractory period in the order of 10 ms. For discrete
simulation of networks of neurons, time will be represented as a multiple of a time
step in the range 100us to 1 ms. Previous work on discretization of time in a
realistic neural model [13] indicates that such an approximation is unlikely to
compromise the usefulness of the simulation. Given this coarse granularity of time, a
priority queue based on a LUT (look up table) and a multiple list scheme with one
list per time point can be used (see figure 6.10). Since all messages within a given
sublist are scheduled for the same point in time, no search is needed for an insertion.

Figure 6.10 illustrates this idea. The priority queue consists of a set of linked
lists of messages. Each list links all the messages which have been scheduled for the
same time in the future. An LUT stores pointers to the first message in each sublist.
For an LUT with 10% entries, a maximum of 10 lists can be indexed. The first list
links all messages scheduled for ¢t = 0, and the last links all messages for ¢ = 10% — 1.
With a time step of 100us, messages cannot be scheduled further into the future
than 100 s. The total amount of memory required for the storage of this array, using
32-bit pointers, is approximately 4 Mbytes. With the parameters above, an overflow

occurs only if a neuron object introduces a delay greater than 100 s. Most single cell
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neural processes occur within a time scale of 1 ms to 1 s, hence, an overflow is never
to be expected in a realistic neural model. However, if longer delays have to be
implemented, they can be introduced as a series of shorter delays.

The insertion of a new event (shown in figure 6.11) involves two steps; first, the
entry in the LUT which keeps a pointer to the sublist where the event has to be

added is calculated as

LUTentrynumber - tdelivery - tcurrent (64)

where tgeiivery 1 the delivery time for the message to be inserted and tcurrent 18
the current time (both expressed in time steps).

Secondly, once a pointer to the appropriate sublist has been found, the actual
insertion consists of the relinking of the chain of events with the new event being
added to the head of the sublist.

The table of pointers is implemented as a cyclic buffer. A pointer to an entry in
the table sets the time origin. As time advances, the pointer is moved forward in the

buffer.
Figure 6.12 shows the steps involved in the extraction of the event at the head of
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Figure 6.13: Hold latency as a function of queue size

the queue. First, the LUT slot corresponding to the current-time sublist is checked.
If it points to a non-empty sublist, a message is extracted. If the sublist was empty,
the current-time pointer (labelled p in figure 6.12) is incremented and the next
sublist checked. This process is repeated until a non-empty list is found or until all
slots in the LUT have been checked.

Figure 6.13 shows the latency associated with hold operations as a function of
the size of the queue. It was generated by measuring the total CPU time taken by
107 hold operations, theq, On queues of several sizes, N.

For N > 103, the hold-time is independent with respect to queue size, whereas
for N < 103, the hold-time increases as the size of the queue decreases. This result
can be better understood by dissociating the latency involved in insertion from that
incurred by extraction (see figure 6.14). Insertion latency is O(1) in queue size.
Extraction times increase markedly as queue size decreases. A decrease in then
number of messages in the queue leads to a sparse distribution of events and to a
large number of sublists being empty. A penalization of the extraction operations
was to be expected under this conditions, since it involves a linear search in order to
find a non-empty bucket.

This does not compromise the performance of the algorithm in the context of
neural simulation. Nearly empty queues constitute a highly unrealistic situation (as
shown in simulations presented later in this Chapter) with queue sizes of the order
of millions of messages being a more common situation. Within the limits of a
typical large scale simulation, the simplicity of the modified calendar queue
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Figure 6.14: Insertion and extraction latencies as a function of queue size

presented here provides highly efficient queue management.

The memory required for the storage of the LUT is a function of the granularity
of the representation of time and the maximum value allowed for the difference
between current time and the time of message delivery, dt, ... Given a time step of
tstep, the number of slots in the LUT is,

dtma:c

(6.5)

Stur =
tstep

In a typical case, with ty., = 100 us and dtne, = 1 s, the number of slots in the
LUT is Sy = 10 and the memory required 39.06 Kbytes. This constitutes a
0.015% of the total 256 Mbytes of RAM used for the perforfnance studies presented
later in this Chapter.

Efficient dynamic memory allocation

The second major aspect to consider in the implementation of the event queue is the
allocation and deallocation of memory for the storage of messages. A small block of
memory is requested from the memory manager for the creation of each new

~ message. Given the small size of the message data structure, it was found that
dynamic allocation using the standard memory allocator provided by the C++
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Figure 6.15: Comparison of overheads between standard dynamic allocation of mes-
sages and the improved algorithm

libraries constituted a rather inefficient alternative. Figure 6.15 shows the average
memory taken by each dynamic allocation of a 24-byte object using the standard
allocator. This was measured using a test program which dynamically allocates a
large number of objects. The average memory taken by each object was estimated
dividing the total memory requested by the process by the total number of objects
instantiated. The average object size was 32 bytes, 8 bytes in excess of the actual
dimensions of the data structure.

The amount of memory needed by the process of message creation and scheduling
had to be minimized due to the size of the queue (typically millions of messages).
Use of swap space degrades the performance of the simulator dramatically. Hence,
this is not a viable alternative to the reduction of memory requirements.

The use of standard implementations of memory allocators is not adequate for
the priority queue problem, because most standard memory managers have been
designed for efficient memory allocation of heterogeneous objects. The empirical test
shown in figure 6.15 identifies an overhead associated with dynamic allocation of
small objects.

However, all message structures share a common size. This fact can be exploited
to provide a more efficient memory allocator/deallocator. Gontmakher et al. [143]
developed a memory management algorithm particularly suited for the allocation of
homogeneousk, fixed size, objects. This technique has been incorporated to the
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MBED simulator overriding the new operator for message objects.

Figure 6.15 shows that the improved implementation of the memory manager
introduces an unnoticeable overhead when allocating homogeneous objects of 24
bytes in size. Note that the total memory requested by this improved algorithm (see
6.15-A) appears greater than that allocated by the standard manager only when the
number of objects allocated is small. This is an expected result. Even when only a
single object is allocated, the new memory manager requests a complete page and
the average memory per allocated object is, apparently, high. As the number of
objects increases, the advantage of using the new memory manager becomes more
evident.

Figure 6.16 illustrates the algorithm. Upon initialization, the memory manager
allocates a single page using the standard allocator. New messages are allocated in
slots inside this page. Following the extraction of a message from the queue and its
processing, it must be deleted from memory. Deallocation leaves empty spaces in the
page. Free slots are added to a linked list of available slots.

Allocation of a message is a single step process when the free-slot list is not
empty; the new operator removes the first slot from the free list. When this list is
empty (no more free spaces in the current page), the standard memory allocator is
requested to supply a new page and the first slot in this page is allocated.

Figure 6.17 compares the memory allocation times between the standard and the

new memory allocators.
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6.4.3 Efficient computation of weighted synaptic input

To further increase the computational efficiency of the model, the update operation
of the weighted sum of inputs (wsy.,) in the threshold block can be optimized. An

update of wy,, requires the computation of

S
Wsum; — Z Qi Wsyn, (66)

n if synapse i was activated n times
a; = (6.7)

0 ¢f synapse s inactive

where S is the number of synapses providing input to neuron j, ¢; is n if synapse
i has been activated by n incoming messages and 0 if it remains inactive, and wsyn,
is the synaptic weight of synapse .

The variable wgy,,, must be updated upon the arrival of on and of f messages on
channel v. Complete recalculation of ws,m, as in expression 6.6, requires the
weighted addition of S synaptic weights. In a typical neuron, the number of
synapses (S) is expected to be in the range 102 — 10*.

Alternatively, wsum can be recalculated as
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s .
w:;;m - ws_um + Z Qi Wsyn, (68)
i

where w,,, and w/,, are the weighted sums before and after an update
respectively, s is the number of synapses which changed state simultaneously
(typically s << S), o is 1 if synapse 7 has been activated and -1 if it has been
inactivated and wsys, its weight. This requires the storage of the weighted sum as a
state variable for each neuron but speeds up state recalculation of wg,m, since the
number of synapses which change state (s) is considerably lower than the total

number of s~napses S.

6.5 Performance evaluation with spatially uniform
connectivity profiles

To study the performance of the simulator, a network of 5 - 10 neurons with random
connectivity was simulated. Each neuron established C synapses with postsynaptic
neurons chosen at random. Two types of synapses were included in the network;
excitatory synapses with synaptic delay ¢4y = 5 ms , efficacy wgy, = 1 and duration
of activation t4,, = 10 ms ; and inhibitory synapses with t4e; = 5 ms, wsyn = —1 and
tawr = 10 ms. The type of each synapse was chosen at random with probability p. of
being excitatory and 1 — p, of being inhibitory. Multiple synapses of the same type
from a given neuron to a target neuron were allowed, which is functionally
equivalent to a single synapse of higher efficacy.

To provide input activity to the model, 5-10% out of the total 5-10* nenrons were
configured as pace makers which fired a single action potential (2 ms duration and
10 ms absolute refractory period) every 100 ms (t,sc = 100 ms). The parameter ¢4
(the time offset) was set according to a uniform distribution in the range (0 — 60 ms)
to ensure that the subpopulation of pace makers did not fire in complete synchrony.

All neurons behaved as correlation detectors, firing a single action potential (also
2 ms duration and 10 ms refractory period) when the weighted sum of
instantaneous synaptic inputs increases above the excitation threshold.

Several values for the percentage of inhibitory synapses, total number of synapses
per neuron and the excitation threshold are explored in the following sections, to
evaluate their impact on performance (simulation time and memory consumption).

All simulations of the randomly connected network were run for a simulated time
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of 200 ms (2000 time steps) on a 233 MHz PC running Linux 2.2 with 256 Mb RAM.

6.5.1 Operation modes of the randomly connected network

During performance studies, the network displayed abrupt changes between different
types of activity.

Figure 6.18 shows a set of simulations of the randomly connected model which
contain both generalized and sparse network activity. Figures 6.18-A, 6.18-B and
6.18-C show the total number of neurons in states on, off and refractory
respectively, for several values of the percentage of inhibitory synapses (1 — p.).

The sequence of peaks in figure 6.18-B, obtained with 10% of the synapses
configured as inhibitory (1 — p. = 0.1), indicate that the neural ensemble becomes
active and enters the refractory state nearly simultaneously. The lower trace in figure
6.18-A shows that few cells were in the of f state since most neurons remained firing
or refractory. This mode of operation resembles epileptic activity recorded with
EEG and has been obtained previously with aggregates of cell automata models [13].
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Figure 6.18-D shows the instantaneous state of the network (1 — p, = 0.1) in
matrix form. Neurons in states on, off and refractory are displayed as white, black
and gray pixels respectively. The network-wide synchronization can be observed at
t = 15 ms, when a large proportion of the cell population is firing (on state). This
corresponds to the first peak in figure 6.18-B for p. = 0.9. At ¢ = 20 ms and
t = 25 ms most neurons are in refractory state, which shows as a valley in figure
6.18-B and a maximum in figure 6.18-C. |

As the percentage of inhibitory synapses is increased to 50% (1 — pe=0.5),
activation becomes less generalized and the global activity is characterized by a
damped oscillation (middle trace in figure 6.18-B). Higher values of inhibition
(1 — pe > 0.5) result in neural activity confined to a small percentage of neurons, the
maxima reaching 1000 in figure 6.18-B. Under these conditions, activity does not
propagate in the network and, as a result, it is unable to trigger generalized
synchronous firing.

These results are consistent with experimental results which have shown that the
transition between generalized and low level activity can be triggered by the
reduction in the total inhibition [147]. More generally, the global dynamics of brain
tissue (as recorded by EEG) often shows different modes of operation. In an
epileptic mode, a high percentage of the neurons in the ensemble fire simultaneously,
whereas in normally behaving brain the overall activity is characterized by less
generalized and less synchronous spiking and by the presence of characteristic
frequency components [13].

The following sections provide quantitative results that demonstrate the effect of

these modes of operation on simulator performance.

6.5.2 CPU time

The CPU time required for randomly connected networks has been studied running
a set of simulations with several values for p. (percentage of excitatory neurons), th,
(excitation threshold) and C (total number of connections per neuron). The region
of the parameter space associated to these parameters includes configurations
leading to near saturation network activity as well as sparse activation, allowing
performance evaluation in a wide range of situations.

Figure 6.19-A shows the total number of messages processed during the
simulations, which here serves as an indicator of processing load, versus p. and th,.
The number of synapses per neuron was fixed to 200. Figure 6.19-B gives the CPU
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Figure 6.19: (A) Total number of messages versus percentage of inhibitory synapses
and excitation threshold (number of synapses per neuron set to 200), (B) Simulation
time versus total number of messages processed

time as a function of the total number of messages processed.

Figure 6.20-A shows the total number of messages as a function of the number of
synapses per neuron and the value of the excitation threshold. The percentage of
inhibitory synapses was set to 10% (pe = 0.9). In Figure 6.20-B the simulation time
is plotted as a function of the total number of messages processed. |

The elapsed time can be found for any of the tested parameter sets in two steps:
the number of processed messages can be looked up on the lefthand side plot and the
CPU time required for this value is obtained from the plot on the righthand side.

Figures 6.19-A and 6.20-A indicate that, in the aggregates with the higher
excitation threshold (th. = 15), the activity remains comparatively sparse for all
tested values of p, and C. However, in those with lower thresholds, th, = 5 and
the = 10, the number of messages shows an abrupt increase indicating a transition in
network dynamics from sparse activation into generalized firing. Generalized activity
in the network decreases the performance of the simulator by increasing the total
number of messages to process and, as a consequence, the CPU time required.

, The relationship between the number of messages and the elapsed time is shown
in figures 6.19-B and 6.20-B. The total CPU time taken by the simulations depends

linearly on the total number of messages generated and processed during the

simulation. This is explained by the fact that the two main tasks of the simulation
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loop are the insertion of new messages into the priority queue and their extraction

and processing.

An analytical expression can be found to relate simulation time and the number

of messages processed

t=129x10"%

(6.9)

where e is the total number of messages and ¢t the CPU time in seconds. Each

message requires 2.9 us for its processing.
Since it is useful to estimate, beforehand, the resources that will be required by a
simulation, it is desirable to be able to predict the total number of messages which
will be generated. However, this is difficult to anticipate as it depends not only on
the topology of the network but also on its activity which will only be known after

simulating.

The worst case scenario is produced by all the neurons in the aggregate firing

simultaneously at their maximum firing rate throughout the entire simulation. In

this case, the total number of messages processed is given by

e = Egyn + E,

(6.10)
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where Ey, is the total number of messages generated by synapses and E,, the
number of messages generated by the rest of blocks in the neuron model. As the
number of synapses is several orders of magnitude bigger than the number of
neurons, the total number of messages processed can be approximated by
erx Eyn = -&—C—’-tsimu (6.11)
bref ,

- where N is the total number of neurons, C' the average number of connections
per neuron, t..; the neuronal refractory period and tsm, the time of simulation. The
factor 2 accounts for the two messages (activation and inactivation) inserted in the
queue by a synapse.

In a typical simulation the average firing rate of a neuron is expected to be far

from the maximum rate attainable. For this more realistic situation, expression 6.11

has to include a correction term [

e= ﬂg-]\-f—c—tsimu (6.12)
tdel

where [ is the normalized average firing rate.

For the lowest values of p. in figure 6.19-B, the total number of messages would
be approximated by equation 6.12 with 3 = 0.005 whereas for high values of p, a
good match is achieved with 5 = 0.5.

Finally, figure 6.21-A plots the size of the queue versus time. When the
generation (insertion) and processing (extraction) of messages is evenly distributed
over time (see lower traces), the CPU time will also be evenly distributed
throughout the simulation. However, the upper traces show that fluctuations of the
queue size occur. Due to the event-driven nature of the simulator, the peaks in the
number of messages to be processed will concentrate most of the CPU time whereas,
in continuous-simulation, the processing load is evenly distributed over time.
Moreover, variations in queue size lead to a dypamic demand of memory resources,

as discussed below.

6.5.3 Memory requirements

The simulation of large networks is a demanding problem, not only with regards to

CPU processing power, but also in terms of memory space.
To study the use of this resource by the MBED simulator, it is convenient to

consider independently the two main sources of memory consumption:
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Figure 6.21: Instantaneous (A) and maximum (B) queue occupancy as a function of
the percentage of inhibitory synapses and the excitation threshold (200 synapses per
neuron)

topology/parameters, which are not dependent on the activity of the network, and
the priority queue, whose size changes over time.

The amount of memory required to store topology and parameters (using the
data structure described in section 6.4.1 for large scale models) can be estimated

with equation 6.3 (reproduced for convenience)

M =NCS+NP (6.13)

where N is the number of neurons, C' the number of connections per neuron and
S and P the space allocated for parameters and state variables for a single synapse
and neuron respectively.

Figure 6.8 already gave the size of the network data structure for various
aggregate sizes and numbers of synapses per neuron. It indicates, for example, that
networks of 10° neurons with 100 connections per neuron required 100 Mb of
memory.

Empirical measurements during the simulations of the network with 5 - 10*
neurons used for figures 6.18, 6.19 and 6.20 yielded a value for the total memory
allocated (including topology, parameters of the models, LUT of the priority queue
and Yorick) of 53.5Mb. This is consistent with the estimation provided by expression
6.3 taking N = 5 - 10* neurons, C' = 200 synapses, S = 4 bytes, P = 52 bytes).
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In the case of models where the topology does not change during the simulation,
the only uncertainty in terms of memory consumption lies in the size of the priority
queue.

The queue, and the memory allocated for its storage, depends on the number of
neurons and synapses simultaneously active. Figure 6.21-A shows superimposed
traces with the instantaneous number of messages present in the queue during
several simulations of the randomly connected network. Upper traces correspond to
values of p. close to 1 whereas lower traces correspond to values close to 0.

Synchronization of neuronal firing of large ensembles of neurons in the network
causes oscillations in the size of the priority queue (as seen in figure 6.21-A for
pe = 0.9). These peaks in the number of firing neurons produce an accumulation of
messages in the queue and the resulting increase of memory allocated to store it.
Sufficient memory must be available in order to store the queue at any time during
the simulation and avoid swapping, as this would have a negative impact on the
performance of the simulator.

Since the maximum size of the queue during a simulation is the limiting factor,
figure 6.21-B shows the maximum number of messages found in the queue during
the simulations shown in figure 6.19. When the percentage of inhibitory synapses is
small, the activity generated by the pace makers propagates in the network
activating most neurons and flooding the event queue. As the percentage of
inhibitory éynapses increases, the network becomes only sparsely active and the
maximum number of messages in the queue during a simulation decreases
dramatically. This reduces the memory resources needed for the simulator.

The amount of memory allocated reached 120 Mbytes when the queue grew to its

maximum size of 107 (message size of 12 bytes).

6.5.4 Effect of network size

The size of the randomly connected network (N) was set to values in the range
10% to 8 - 10* at intervals of 10* neurons, in order to study the effect of neural
population size on ensemble dynamics and queue occupancy. The number of pace
maker neurons was fixed to 5000. Four simulations were run for each network size,
corresponding to four different values of the number of synapses per neuron
(S=50,100,150 and 200).

Figure 6.22 shows the instantaneous number of neurons in state of f as a

function of the size of the network and the number of synapses per neuron. Traces
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Figure 6.22: Instantaneous number of neurons in state of f as a function of the size
of the network and the number of synapses per neuron

are labelled with a pair of numbers, corresponding to N (expressed as multiples of
10*) and S.

Because at time ¢t = 0 all neurons are in state of f, the value taken by the initial
segment of each trace indicates the total number of neurons in each network. As the
pace maker neurons start firing, some networks undergo the transition from a low
activity mode to a whole-network spiking mode. This transition is indicated by the
abrupt change of the traces towards a near-zero value, showing that very few cells
remain inactive (in state of f). This is a consequence of the initiation of a cycle
where nearly all neurons exhibit periodic changes from on to refractory state,
avoiding the of f state.

Some networks did not undergo generalized firing. Their corresponding traces
curve slightly at around 50 ms and 125 ms as a result of the activation of the pace
makers showing that most cells remained inactive.

As the size of the network increases (moving upwards in figure 6.22), the
transition to a generalized firing mode occurs later in the simulation and for higher
values of per neuron synapses. Compare, for example, the 10* neurons network
(bottom trace) with the 5 - 10* neurons network (fifth trace from bottom). The
former, undergoes transition for S = 100, 150, 200 at around ¢ = 10 ms whereas the
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Figure 6.23: Instantaneous queue occupancy as a function of the product size of the
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latter exhibits generalized spiking only for S = 200 and at ¢ = 40 ms.

Figure 6.23 plots the number of messages in the queue as a function of the
product network size x synapse density. Two subsets of traces can be readily
identified; those corresponding to networks that did not undergo generalized spiking
and those that did (analogous to the results shown in figure 6.21-A). Within the first
subset, the average number of messages in the queue increases with the product
N x S. This indicates that, for a network displaying generalized epileptic-like
activity, the CPU time taken by the simulation, which was shown in previous
sections to depend linearly on the total number of messages processed, will decrease

with increasing values of N x §.

6.6 Performance evaluation with patterned
connectivity

The performance of the simulator was also evaluated with a more realistic network;
a model of the piriform cortex. The details of this model and its dynamics are

provided in Chapter 8.
The network includes four pools of neurons; pyramidals (4 - 10* cells), GABAy4
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(4-10%) and GABAp (4 -10%) inhibitory neurons and pace makers (3-10%) totalling
1.5 - 10° neurons. Pace makers fire regularly (freq.= 10 Hz) introducing acti\}ity in
the network. Pyramidal cells propagate excitation by pyramidal-pyramidal
connections (100 synapses per neuron) and activate inhibitory GABA cells through
pyramidal-inhibitory synapses (200 synapses per neuron). Inhibitory cells synapse
back onto pyramidal cells (100 synapses per neuron). Pyramidal-pyramidal
connections are long range whereas pyramidal-inhibitory are local. GABA4
synapses were configured with t4,; = 5 ms, wsy, = —10 ms and tg,, = 9 ms.

G ABApg connections have longer activation latencies and duration but less efficacy
and were configured with tge; = 10 ms, wgyn, = —1 ms and tg4,, = 150 ms.

The plots on the lefthand side of figure 6.24 show the CPU time taken by 1
second of simulation as a function of the excitation threshold (th,) of the pyramidal
neurons (z axis) and the same parameter in GABA,4 and GABAp inhibitory
neurons (indicated with a two element vector associated to each trace). The
righthand side columns shows the total number of messages processed during the
same simulations.

The CPU time decreases monotonically with increasing pyramidal excitation
thresholds. Moreover, two regions can be distinguished in the z axis. Within the
range 4 — 15, the elapsed CPU time decreases approximately linearly from 400 s to
50 s. Smaller values of this parameter provoke a steep increase of the computational
cost of the simulation, reaching 3500 s in the worst case (bottom-left plot).

The dependency of the elapsed time on the excitation threshold of the pyramidal
cells is a consequence of its impact on the probability of firing: high thresholds lead
to fewer spikes and, consequently, fewer synaptic activations and messages to
process. Conversely, low excitation thresholds lead to more spikes and to a more
computationally costly simulation. This interpretation of the results is confirmed by
the plots in the righthand column, where the total number of messages are given as
a function of the excitation thresholds. Moving along the z axis, the number of
messages decreases towards higher values of the pyramidal threshold. Since the
refractory period sets a maximum firing frequency, the number of messages reaches a
plateau as the threshold approaches its minimum value.

The excitation thresholds of the inhibitory cells (GABA4 and GABAg cell
types) are given as a 2-element vector for each trace. As they are decreased,
inhibitory cells are more likely to fire and the total inhibition in the aggregate
increases. When the excitation threshold of the pyramidal cells is high (righthand
half of the z axis), the activity of the pyramidal population is sensitive to the total
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Figure 6.24: CPU time and number of processed messages as a function of the excit-
ation threshold (th.) of pyramidal and inhibitory neurons
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inhibition. This effect is seen as a decrease of the total number of messages in the
top-right plot of figure 6.24. When the excitation threshold of the pyramidal cells is
close to its minimum, the pyramidal population is firing at its maximum rate and is
relatively insensitive to the inhibition in the network.

The steep increase of CPU time associated to low excitation thresholds is the
result of the exhaustion of memory resources and the start of intensive swapping.
The scatter plot in figure 6.25 relates the CPU time and the total number of
messages processed and contains all the simulations included in figure 6.24. It shows
a linear increase within the range {0 — 200 - 108} messages, where swapping is not
necessary because of sufficient free memory space. Beyond 200 - 10° messages,
several simulations required CPU times that deviate from the straight line. In these
cases, the event-queue grew reaching the limits of the available memory.

Overall, these results indicates that: (1) the simulation of cortical models with
sizes in the order of 1.5 10° can be executed with elapsed times bellow 500 s in
realistic conditions where the excitation threshold of pyramidal cells are sufficiently
high to avoid the saturation of the firing rate, (2) the amount of available memory
has a marked impact on performance, and (3) an increase of memory resources

should be considered for network sizes beyond 1.5 10°.



Chapter 7

Event-driven model of C. elegans

7.1 Introduction

In this Chapter, the MBED neuron is used to construct a network model of the
small circuit (in the order of 100 cells) which makes up the locomotory nervous
system of the nematode C. elegans. The aim is two fold; to provide insight on the
control of muscle contraction patterns in C. elegans, a problem only partially tackled
by previous work [47][108] and to illustrate the capabilities of the MBED approach
in the modelling of small systems, bridging the gap between the single cell
simulations of Chapter 5 and the large scale simulations of Chapter 8.

Firstly, experimental data upon which the model was developed is presented.
Recordings of behaving animals and an automated image analysis algorithm were
used to obtain the patterns of muscle excitation. Secondly, the capability of these
patterns to generate locomotion was tested by developing a mechanical model of the
body of C. elegans. Having obtained the patterns of muscle activity required for the
control of locomotion, the problem of finding a neural circuit capable of originating
this activity is tackled. A circuit using the MBED neuron model and based on the
available experimental data is proposed and its capability to generate forward,
backward, reversal and coiling motions is demonstrated. Further validation of the
model is provided by comparison of predicted and experimental effects of mutations
and laser ablation of neurons. The model also serves to propose a testable
hypothesis to explain the capability of C. elegans to modify its propagation velocity

as a result of external stimuli.

125
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7.2 Experimental data

Previous work on models of small invertebrate networks (see for example [87]) have
heavily relied on electrophysiological measurements to specify neuron parameters.
Due to the limited electrophysiological information available in C. elegans [107], the
model of its locomotory circuit is based on the following types of data: anatomical
information obtained with electron microscopy, laser ablation, histochemistry,
genetic mutations and analysis of CCD recordings of behaving animals.

Of the 302 neurons which make up the nervous system of C. elegans, around 80
are directly involved in the generation of forward and backward locomotion [108].
These neurons were first identified as participating in locomotion on anatomical
grounds [96] and further studies employing laser ablation have confirmed these
preliminary results [104].

Figure 7.1 shows the topology of the locomotory circuit, based on data from
White et al. [97]. Neuron classes VA, VB, VD, DA, AS, DB and DD are located
along the body of the nematode. Cell types AS and DA, which share several
characteristics [97], were considered as a single class and labelled as DA in the
figure. The two units labelled AVA and AVB in the figure, correspond to two pairs
of cells in C. elegans which possess axons extending the full length of the body. The
leftmost and rightmost columns of cells in figure 7.1 correspond to ventral (labelled
MSCVx) and dorsal (MSCDx) muscles.

Table 7.1 summarizes the neuronal types incorporated into the model and
experimental data relevant to identify their function in the circuit. Neurons have
been grouped in classes by their morphology and connectivity patterns as described
in [97]. Available data on the neurotransmitter secreted were included, since this
information aids in assigning tentative polarity to synapses (acetylcholine
corresponding to excitatory and GABA to inhibitory connections). The rightmost
column includes the suspected neuronal functions.

In addition to the static information available, summarized in Figure 7.1 and
Table 7.1, dynamic data regarding the activity of muscles and motoneurons during
locomotion were needed to construct the network model. Due to the reduced
number of classes of neurons involved in locomotion (eight types in the model), a
number of predictions can be made about the underlying motoneurons through the
analysis of the visually observable patterns of body movements and muscular

activity while locomoting.
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Neuron type Number Neurotransmitter secreted Suspected function

VA 12 Acetylcholine Motoneuron active in forward locom
VB 11 Acetylcholine Motoneuron active in backward locom
VD 13 GABA Inhibition of contralateral muscles
DA+AS 20 Acetylcholine Motoneuron active in backward locom
DB 7 Acetylcholine Motoneuron active in forward locom
DD 6 GABA Inhibition of contralateral muscles
AVA 2 Control of backward locomotion
AVB 2 Control of forward locomotion

Table 7.1: Neuron classes involved in locomotion

Forward locomotion

Frame number

0 0.2 04 0.6 0.8 1
Head Normalized distance from head Tail

Figure 7.2: Local curvature of the body as a function of frame number and distance
from the head during forward locomotion

7.3 Analysis of video recordings

Muscle contraction is required to generate and maintain the curvature of the body
[101]. Hence, quantification of the body curvature can be used as an indirect way to
measure muscle contraction without direct recording from muscle cells.

For this purpose, mature animals were transported to Petri dishes and imaged
while locomoting on agar. An optical microscope (magnification x40) and standard
interlaced video rate CCD camera (25 frames/sec, 50 fields/sec) were used. Figures
B.1, B.2, B.3 and B.4 in Appendix B show sequences obtained during forward
locomotion, backward locomotion, reversal and coiling respectively.

To allow further quantification of the temporal evolution of muscle states, the
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Backward locomotion

Frame number
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Figure 7.3: Local curvature of the body as a function of frame number and distance
from the head during backward locomotion

Reversal
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Figure 7.4: Local curvature of the body as a function of frame number and distance
from the head during reversal
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images were analysed with an automated image processing system. Details on the
implementation of the algorithm are provided in Appendix C.

Briefly, sequences of images with locomoting animals were obtained with the
CCD camera. Firstly, the body was identified in each image. Secondly, its contour
was followed and stored as a sequence of two-coordinate position vectors. Finally,
the second spatial derivative was calculated on the parameterized contour in order
to estimate the local curvature of the body at different positions along its
longitudinal axis.

The results are shown in figures 7.2, 7.3 and 7.4. They plot the temporal
evolution of the local curvature of the body at different locations as it performs
forward locomotion, backward locomotion and motion reversal, respectively.

The data are plotted as a coloured 2-D array where each row corresponds to a
frame in the video sequence (time advances downwards) and columns to different
positions along the body (leftmost and rightmost closest to the head and tail
respectively). Curvature values were normalized to the maximum within the video
sequence and plotted using a gray scale. Brighter segments indicate pronounced
curvature whereas dark regions correspond to body segments remaining in a straight
line position.

Figure 7.2 shows that forward locomotion was generated by propagation of
muscle contraction from head to tail. Likewise, backward locomotion (figure 7.3)
involved the propagation of waves of muscle contraction in the opposite direction
(tail to head). Figure 7.4 shows the state of the muscles during motion reversal.
Three phases can be distinguished: forward locomotion, halt and backward
locomotion. During the halt phase, the spatial pattern of muscle contraction
remains static.

From these CCD recordings, it was estimated that muscle contraction propagates
at approximately 0.28 bodylengths/second. Considering ten neurons lined along the
body in any one motoneuron class, it follows that the delay introduced between two
contiguous neurons in the propagation of contraction is 360 ms. The latency
between two excitations of any one muscle during forward movement is
approximately 2.4 seconds. This is also the period of the head movement while
propagating. The parameters in the MBED neuron model were set to obtain results
consistent with these observations.

Having extracted the time-space evolution of body curvatures during locomotion,

further proof of the equivalence between local curvature and muscle contraction was

sought.
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parameter value units
velocity of contraction propagation 0.28  bodylengths/sec.
delay between motoneuron 360 msec.
period of the body wave 2.4 sec.

Table 7.2: Quantitative data obtained from CCD recordings (average from n = 4
worms)

7.4 Mechanical model

A mechanical model of C. elegans was developed to confirm that the patterns of
local curvature were indicative of muscle contraction by showing that they were
capable of generating locomotion.

The model is based on previous work by Niebur et al. [108]. Their model was
extended from two to three dimensions, allowing future work on out-of-plane head
movements, and several force terms were simplified.

The body of the nematode was modelled as an elastic cylinder, a grid of R x C
nodes (figure 7.5) with each node connected to its four closest neighbours by linear
springs. The force acting on a node is the net contribution of its four neighbours

i

©

F.=SF (11
i=1
where F, is the net force and F. the contribution of the i** spring. The

contribution of each spring is given by

Fyc = k(dpc — do)i (7:2)

where F:’C is the force exerted by the spring located in row r and column c in the

body grid, k is the spring constant, d,. the distance between the nodes connected by

the spring, do the ideal length and u; a unitary vector in the direction of the spring.

The resting length, dy, was set to confer stability to the model in a cylindrical shape,
dOt — 2 Wé‘ad

do = (7.3)

x|~

where dy; and dy; are the resting lengths for transversal (perpendicular to the
long axis) and longitudinal (oriented along the long body axis) springs respectively,
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Figure 7.5: C. elegans mechanical model

rad is the radius of the cylinder, [ its length and C and R the number of

longitudinal and transversal bands of springs.
To maintain its cylindrical shape, the nematode requires the presence of internal

pressure [108]. The internal pressure term is calculated in the model as,
Ey=ky-n (7.4)

where k, is a scaling factor and 7 is a unitary vector normal to the surface of the

body.
The action of the environment is modelled as in equation 7.5.

Bo=—k -(7-7) 7 (7.5)

where k, is a scaling factor, 7 a unitary vector normal to the body and ¥ is the
velocity vector. The component of ¥ tangential to the body surface is neglected,
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since the nematode slips within a jelly groove with minimal friction. The normal
component, however, encounters the resistance opposed by the jelly agar medium
(analogous to the force acting on a free falling object in a fluid or gas). This force
acts as a damping term to stop the mesh from oscillating in addition to providing
the propulsion for body movement.

The net force acting on a point in the mesh is

where F: is the force due to surface tension , F}D the internal pressure and F’e the
resistance created by the environment.

Muscle contraction is simulated by changing the ideal length of the longitudinal
springs in the body wall (equation 7.2). During contraction, the resting spring
length is decreased. Conversely, during muscle relaxation, it is increased back to its
initial value.

Figure 7.6 shows a sequence of images of the mechanical model performing
forward locomotion. The spatio-temporal pattern of resting spring lengths
corresponds to a travelling wave of contraction [108] and is given by

2me 2mr (7.7)

dro(t) = do(1+ acos(—c——)cos(m — wt))

where d, .(¢) is the time changing ideal length of the spring in position (r,¢), do
the length as in expression 7.3 and w the frequency of the muscle contraction wave.

Expression 7.7 describes a wave of muscle contraction propagating from head to
tail. At a point with maximal muscular contraction, it reaches its maximum,
do(1 + a) whereas in regions with total muscle relaxation it yields a minimum of
do(1 — o).

The first cosines in expression 7.7 introduces a m radians phase lag between
springs within the same transversal section but in opposite sites of the body (i.e.
between column n and n + %) This phase allows the bending of the body by
~nsuring that the contraction of the springs in one side coincides with relaxation of
those in the opposite site. The second cosines takes the form cos(kr — wt)
corresponding to a wave propagating along the elastic cylinder.

Figure 7.7 shows the local curvature of the mechanical model as a function of
time and distance from the head.

The capability of the model to move forwards with this pattern of muscle activity

suggests that the neural circuitry controlling locomotion must be capable of
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Figure 7.7: Local curvature of the mechanical model as a function of time and distance
from the head

Figure 7.8: Complete body bending in the mechanical model

generating this output. It also confirms that the curvature data presented in figures
7.2, 7.3 and 7.4 are indicative of muscle contraction patterns, as they match those
used in the mechanical model (figure 7.7) to generate forward locomotion.

These results have further constrained the network model presented in the
following section to those configurations with motoneuron activity patterns
consistent with the experimental observations.

The muscle states compatible with body coiling were also tested with the
mechanical model. Figure 7.8 shows the mechanical model performing whole body
bending.

The pattern of muscle excitation which induced whole body bending is given by,

der = do(1 + acos(%)) (7.8)
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Parameter Value | Parameter Value
C 10 | 30
R 8 rad 1
k 1 do 3.3
ky 0.03 dos 0.63
k, 1 o 0.5
w 27 /2.5 dt 0.8 s

Table 7.3: Numerical values used in the mechanical model

which corresponds to all muscles on one side being contracted while those on the
opposite site are relaxed. Note that the time dependent term included in expression
7.7 has been left out in 7.8.

Table 7.3 lists the numerical values used for the simulations of locomotion and
coiling. The number of rows and columns in the grid of springs (R and C) were
chosen, in order to minimize the number of springs and the computational cost, as
the lowest values giving smooth locomotion. The scaling factors £ and &, were
arbitrarily set to 1 and £, adjusted to confer realistic proportions to the resulting
cylinder. The angular frequency w was set to 27 /2.5, corresponding to a period of
2,5 s as obtained from image processing of the locomoting C. elegans. The length (1)
and radius (rad) were set to match the physical proportions of the nematode and
the inter-node distances (dy; and dy;) were calculated as in expression 7.3. The
parameter «, the fractional change of spring length associated to maximal muscle
contraction, was found by trial-error. The chosen value, 0.5, was found to achieve
sufficient curvature for locomotion while maintaining the smoothness of the body
surface. Finally, the time step dt was adjusted to ensure convergence and limit
computational burden.

Having obtained the muscular states compatible with locomotion (the output of
the locomotory neural circuitry), a network model consistent with topological and
functional data and capable of generating such output was constructed.

7.5 Model of the locomotory nervous system

7.5.1 Topology

The starting point for the construction of the model is the complete topological map

of the nervous system of C. elegans [97][96][148].
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Figure 7.9: Sketch of the anatomy of the neuron classes in the locomotory circuit

Those classes of neurons no further than two levels of synapses away from muscle
are identified. Several of these types of neurons have already been associated with
functions other than locomotion, e.g. egg laying circuitry, and are excluded from the
model [97]. Table 7.1 lists the remaining neuronal types, and a sketch of the
connectivity amongst them is depicted in figure 7.1.

Figure 7.9 depicts their dendritic and axonal geometries, which aid the
assignment of functional roles to individual neuron types.

The model includes ten cell types; VA, DA, VB, DB, VD, DD, AVA | AVB,
MSCD and MSCV (cell notation as used by White et al. [97]). Classes VA, DA, and
VB and DB have a short dendrite which receives synaptic input and a long axon
synapsing onto nearby neurons. VA and DA neurons are a mirror image of VB and
DB, with a symmetry axis perpendicular to the body. The former play the role of
directional (tail to head) signal propagators whereas the latter have an analogous
function for the propagation in the opposite direction [108].

VD and DD cells receive synaptic input from one side of the body and inhibit
cells in the opposite site [110, 149]. AVA and AVB are interneurons which provide
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input to VA-DA and VB-DB neurons respectively. MSCD and MSCV are muscle
cells. The model includes ten neurons for each of the cell classes VA, VB, DA, DB,
VD and DD and a single neuron for AVB and AVA. Ten muscles (MSCDx and
MSCVx) are located in each side of the body.

Four units in the model, labelled NRD, NRV, TSD and TSV, act as signal
sources encapsulating activity originated in other circuits and do not correspond to
individual cells in C. elegans.

NRD and NRV account for dorsal and ventral input from the nerve ring, the
main neuronal aggregate in the head. TSD and TSV correspond to dorsal and
ventral neurons in the tail subsystem. Several mechanisms are capable of generating
the activity modelled by these units in the animal. Proprioceptive sensors,
mechanically activated cells, have been identified in Ascaris [109], a nematode with
anatomical and functional similarities with C. elegans, and may provide direct input
to the locomotory circuit. Passive gap junction propagation from neurons in the
nerve ring and the tail may also provide a source of input (these connections have
indeed been identified anatomically [97]).

In the model presented here, the following additional assumptions were made;
that for classes VA, VB, DA and DB, the activity of the neurons is modulated by
stretch receptors [108] (a similar hypothesis has been put forward and corroborated
for other invertebrates, e.g. the leech [150]) and that gap junctions within classes
VA, VB, DA and DB may be necessary for synchronization but are not essential to

generate basic locomotion.

7.5.2 Neuronal parameters

Neurons and muscles were modelled with the MBED neuron described in Chapter 5.
The excitation threshold (th.) of neurons belonging to classes VA, VB, DA, DB, VD

and DD was set as,

N

the, = 5 a(i, 5) (7.9)

1

where th,, is the excitation threshold of the 4t N is the total number of neurons
in the model and «(4, ;) = 1 if neuron i has an excitatory synapse (wsy, > 0) onto
neuron j, otherwise a(i,7) = 0.

As a consequence, all excitatory presynaptic neurons must be active to elicit an

action potential in neuron j. For instance, VA neurons receive excitatory input from
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Parameter VA DA VB DB MSCD MSCV VD DD AVA AVB
the 2 2 2 2 1 1 1 1 1 1
th; -1 -1 -1 -1 -1 -1 -1 -1 -1 -1
tosc 0 0 0 0 0 0 0 0 - -
Nipurst 1 1 1 1 -1 -1 1 1 5 5

tap Ims 1ms 1Ims Ims 10ms 10ms 1ms 1ms 1lms 1ms

tref 2ms 2ms 2ms 2ms 5ms 5 ms 2ms 2ms 2ms 2ms
te Oms Oms Oms Oms Oms 0 ms Oms O ms - -

Table 7.4: Fixed parameters of the model (I)

Parameter Value  Parameter Value
tdel, 1 ms tdels 1 ms
Wsyn; 1 Wsyns 1
taur, 300 ms Laurs 1 ms
tdels 15 ms tdely 1 ms
Wsyny 1 Wsyny -1
tdurg 100 ms tdur4 1 ms

Table 7.5: Fixed synaptic parameters of the network (II)

Motion-type dependent parameter values

Forward Backward Coiling
Neuron Type tose te tose o tose te
AVA 0 0 360ms 0 0 0
AVB 360ms O 0 0 360 ms 0
NRV 24s 0 0 0 24 s 0
NRD 24s 125 0 0 0 0
TSV 0 0 24s 0 0 24s
TSD 0 0 24s  12s 0 0

Table 7.6: Parameters of driving neurons for several types of locomotion
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AVA and from their stretch receptors that sense the contraction of nearby muscles.
Hence, the = 2 for all neurons in this class.

In muscle cells (MSCV and MSCD) the excitation threshold was set to th, = 1.
Consequently, the activation of any one of their presynaptic partners provides
sufficient excitation to trigger the generation of action potentials.

Neuron classes AVA, AVB, NRV, NRD, TSV and TSD serve as activity sources
and do not receive input from any other cells. For this reason, their excitation
thresholds do not affect their operation.

The inhibition threshold was set to th; = —1 for all neurons and muscles.

Neurons of classes AVA and AVB generate a burst of five pulses (Nyurst = 5) as a
result of an increase of input activity above the excitation threshold. The remaining
neuron types generate a single pulse (Nyyps: = 1).

The oscillator block of the cells belonging to classes VA, VB, DA, DB, VD, DD
was inactivated (t,sc = 0,tpn; = 0). These neurons fire action potentials as a result of
the simultaneous activation of a sufficient number of excitatory synapses, and do not
display pace maker behaviour. Neurons AVA and AVB are configured to generate
rhythmic activity every 360 ms (s = 360ms) during forward and backward
locomotion respectively. ,

Muscles (MSC and MSD) fire continuously after the first action potential is
triggered by input activity (Np,ss = —1). Effectively, they are configured to
generate bursts of infinite length. Their oscillator blocks were inactivated (¢osc = 0).
After activation, muscle contraction continues until inhibition truncates the ongoing
sequence of spikes.

The duration of the activity pulses (t,,) and post-pulse refractory period (t,ef) is
set to 1 and 2 ms respectively in neurons and to 10 and 5 ms in muscles.

Synapses in the model are configured with one of four possible combinations of
synaptic delay, weight, and synaptic activation duration (see table 7.5 for complete
listing). Three synaptic parameter sets with excitatory properties are defined (top
three in table 7.5); the first configuration is used for synapses from NRV, NRD, TSV
and TSD to muscles. The second corresponds to connections from VB, DB, VA and
DA onto muscles. The third synaptic type is used for the remaining connections. All
inhibitory synapses are configured with (Weyn = —1, tger = L msec, taur = 1 msec).

Figure 7.10 shows the connectivity matrix of the network in figure 7.1, which
follows the synaptic patterns described in [97]. White dots indicate excitatory
synapses whereas gray dots mark inhibitory synapses.

To elicit different behaviours, the topology and parameters of the neurons in the
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Figure 7.10: Connectivity matrix of the model

model] remained unchanged. Only sources of signals driving the locomotory circuit
(namely NRV, NRD, TSV, TSD and AVB and AVA) are activated or inactivated as
necessary to elicit different motor patterns. These driving signals are generated, in

the worm, by other subcircuits of the nervous system which have not been

here.

7.5.3 Forward locomotion

Driving signals

modelled

C. elegans locomotes forward by bending its head dorsally and ventrally and

propagating the body curvature towards the tail [108].

Forward movement is generated in the model by the coordinated activation of the

AVB neuron and units NRV and NRD. The timing in these units is set to

the values

determined experimentally from CCD recordings. AVB is configured to generate
bursts of pulses with a period of t,;. = 360 ms. The pattern of activity in the NRV
and NRD units corresponds to two out of phase trains of pulses with an interpulse
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Figure 7.11: Neuron activity during forward locomotion

period of 2.4 s (tosc = 2.4 ). The time lag between NRV and NRD was set to 1.2 s.
NRV and NRD account for activity triggered by the bending of the head, which
was observed concomitantly with forward locomotion (see figure B.1 in Appendix
B). NRV generates pulses during a ventral bend of the head, whereas NRD fires
during a dorsal bend. While locomoting forwards, neuron AVA and units TSD and
TSV remain inactive (ty5c = 0).
The results of the simulation of forward locomotion are shown in figure 7.11.

Shift-register description of forward locomotion

The neuron classes participating in forward locomotion are VB, DB, VD, DD, AVB,
NRV and NRD. Understanding of the mechanisms underlying forward locomotion in
the model is aided by the shift-register analogy of figure 7.12. VB and DB neurons
function as biological equivalents of AN D gates in the model, which sense the state
of nearby muscles (contracted/relaxed) and propagate the contraction towards the
tail. In this analogy, muscles (MSCV and MSCD) are the counterparts of the
flip-flops in the shift-register. They contract as a result of the onset of an action
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Figure 7.12: Schematic representation of the combined function of AVB and VB cells
in the model

potential in the motoneurons VB and DB, and remain contracted until inhibition

causes their relaxation.

Inhibitory neurons VD and DD, provide cross-inhibition between contralateral
muscles. VD neurons become active whenever the muscles in the ventral side are
activated and inhibit the muscles at the opposite (dorsal) site of the body, forcing
them to stop the contraction. DD neurons have a similar effect but are activated by
the dorsal side and inhibit the ventral muscles.

Clocking in this biological shift-register is provided by the AVB interneuron.
Each burst of pulses generated by AVB triggers the propagation of muscle
contraction further towards the tail.

The overall sequence of events during forward locomotion as seen in figure 7.11 1s

as follows:

e The head bends ventrally, activating the NRV unit, contracting the first
ventral muscle (MSCV1) and triggering EPSPs in neuron VBI.

e A burst in AVB (central clock in the model), activates neuron VB1 which, in
turn, contracts its nearby ventral muscle MSCV2, effectively propagating the
state of MSCV1.

e Subsequent bursts from AVB, further propagate muscle states towards the tail.

e VD neurons, sensing muscle contraction in the ventral site, are activated and
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inhibit dorsal muscles, post-synaptic to VD.

e After 1.2 s, the head bends dorsally, activating the NRD unit, contracting the
first dorsal muscle (MSD1) and silencing NRV.

e A burst in AVB, activates neuron DB1, which propagates the state of MSD1
to MSD2.

e DD neurons are activated by dorsal muscle contraction and inhibit the ventral

muscles located in the initial segment of the body.

e Subsequent bursts of AVB propagate dorsal and ventral muscle contraction

towards the tail.
e After 2.4 s the head bends ventrally and the cycle restarts.

This model assumes that VB and DB neurons provide unidirectional propagation
of activity (from head to tail). This functional polarization was suggested by the
observation of the anatomical particularities of neurons VB and DB [96] (see the
diagram in figure 7.9).

VB and DB neurons are bipolar, having all synapses onto postsynaptic neurons
in a long axon extended towards the tail, whereas all synapses from presynaptic
neurons are located in a short dendrite extended towards the head [97]. This pattern
of synapses supports the idea of a directional propagation of excitation, which is also
functionally consistent. In addition to the anatomical evidence, laser ablation
experiments have confirmed that VB and DB are required for the propagation of
head-to-tail muscle contraction waves [113].

The capability of VB and DB neurons to sense contraction in nearby muscles was
introduced in the model by the addition of connections from muscles to VB and DB
neurons. These are not anatomically identifiable connections, rather, a convenient
way to simulate the stretch receptors. There is genetic evidence of the importance of
stretch receptors in the generation of locomotion. Mutant unc-8, which is thought to
carry a mutation affecting mechanosensation, shows abnormal locomotion [151].

7.5.4 Backward locomotion
Driving signals

C. elegans locomotes backwards by bending its tail dorsally and ventrally and

propagating the curvature towards the head [95].
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Figure 7.13: Neuron activity during backward locomotion

The results obtained in a simulation of backward locomotion are shown in figure
7.13. The parameters of AVA and AVB in forward locomotion have been exchanged
to generate backward locomotion. AVA generates a burst of pulses every 360 ms

(tosc = 360 ms) whereas AVB remains inactive (¢, = 0).

NRV and NRD units have also exchanged configuration parameters with TSR
and TSD with respect to forward locomotion. TSV and TSD model the activity
associated to dorsal bending of the tail, respectively. NRV and NRD remain inactive

during backward locomotion.

Events during backward locomotion

The neuron classes participating in backward locomotion are VA, DA, VD, DD,
AVB, TSV and TSD. Figure 7.9 shows that, anatomically, VA/DA can be seen as a
180 degrees rotation of VB/DB neurons. Neurons VA,DA,VB and DB share the
same spatial arrangement of synapses (long axon with synapses to postsynaptic
neurons and short dendrite with synapses from presynaptic neurons). In the model,
the function of neurons VA and DA is equivalent to that attributed to VB/DB
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neurons during forward locomotion, they propagate muscle contraction. However, as
suggested by their anatomy, neurons VA and DA propagate contraction towards the
head whereas neurons VB and DB propagate muscle activity towards the tail.

Neurons VD and DD carry out the same function during forward and backward
locomotion; they inhibit contralateral sites to allow body torsion.

Neuron AVA takes on the role of central clock during backward locomotion and
AVB (which acted as clock during forward locomotion) remains inactive.

The circuit controlling the movement of the tail, which activates the signal
source units TSV and TSD, is not included in the model. As the worm propagates
backwards, it often follows the groove created during forward motion. The curvature
induced by the groove could activate stretch receptors which provide the input to
TSV and TSD, but this possibility has not been confirmed experimentally.

The sequence of events during backward locomotion is similar to that seen during

locomotion,

e The tail bends ventrally, activating the unit TSV unit, contracting the ventral
muscle closest to the tail (MSCV10) and triggering EPSPs in the VA10 neuron.

e A burst in AVA (central clock in the model), triggers VA10 which, in turn,
contracts its nearby ventral muscle MSCV9.

e Subsequent bursts from AVA, propagate muscle contraction further towards
the head.

e VD neurons, sensing muscle contraction in the ventral site, inhibit dorsal

muscles.

e After 1.2 s, the tail bends dorsally, activating the unit TSD, contracting the
dorsal muscle closest to the tail (MSD10) and inactivating TSV.

e A burst of pulses in AVA| trigger the activation of DA10 which contracts
muscle MSD9.

e DD neurons are activated by dorsal muscle contraction and inhibit the ventral

muscles located in the final segment of the body.

e Subsequent bursts of AVA propagate dorsal and ventral muscle contraction

towards the head.

e Upon ventral bending of the tail, the sequence of events restarts.
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Figure 7.14: Neuron activity during reversal

7.5.5 Reversal

C. elegans is able to switch between forward and backward locomotion without
abrupt changes in the sinusoidal shape of its body. Figure B.3 in Appendix B shows

a reversal.

Three phases can be distinguished in figure 7.4; forward locomotion, halt and

backward locomotion. Up to frame number 75 (¢ < 3 s), the nematode propagates
forward. Between frames 75 and 90 (3 s < ¢t < 3.6 s), it pauses mantaining the
curvature of the body. From frame 90 onwards (¢ > 3.6 s), it locomotes backwards.
Figure 7.14 shows the waveforms corresponding to reversal. The forward
locomotion phase is achieved by configuring the driving signals in the model as in
section 7.5.3. The halt phase is started by the inactivation of AVB (¢, = 0). The
lack of activity in the central clock, AVB, stops the propagation of the muscular
contraction wave and takes the system into a static phase.
To reverse, AVB remained inactivated (t,sc = 0) and AVA was activated
(tose = 360 ms). Units TSV and TSD were also activated as in section 7.5.4, to
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Figure 7.15: Neuron activity during coiling

account for ample tail bending.

7.5.6 Whole body bending

6

During periods of absence of locomotion, C. elegans is able to perform a whole body
bending, adopting a "U" position. To achieve this shape, the spatial pattern of
muscle contraction must be substantially different from that required for normal
locomotion. For a ventral bending, all ventral muscles must be contracted whereas

dorsal muscles should be relaxed (the opposite is the case for dorsal bending)

MSCV, = MSCD,

(7.10)

where M SCV,, denotes the state of ventral muscles which, to achieve whole body
bending, must be in the negated state of dorsal muscles, M SCD,. This was
confirmed by the mechanical model (figure 7.8) which coils as a result of such a

pattern of muscle activation.

Figure 7.15 shows the results of the simulation of ventral bending. For this
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Experiment TSx NRx AVA AVB
forward loc. pace maker silent silent pace maker
backward loc. silent pace maker pace maker silent
direc. change pace maker pace maker pace maker pace maker
bend silent NRYV pace maker, NRD silent silent pace maker

Table 7.7: Configuration of the stimulus units

purpose, both AVB and AVA neurons are configured to generate rhythmic activity.

Coiling is initiated by a ventral bend of the head and the tail. This is introduced
in the model by the activation of NRV (signal 0 in figure 7.15) and TSV (signal 85
in figure 7.15) at t = 0 msec. The simultaneous activation of NRV/TSV and
rhythmic bursting of AVB/AVA (signals 11 and 63 in figure 7.15) propagates muscle
contractions from opposite ends of the body towards the center. After 1.5 s all
muscles in the ventral side have been contracted, corresponding to a ventrally
curved body. Relaxation of all muscles in the dorsal side is guaranteed by the
inhibition produced by DD neurons.

The time required for a bending to be completed can be controlled by adjusting
the period of bursting of neurons AVB and AVA, in an analogous way to the control
of speed in forward locomotion.

Table 7.5.6 summarizes the configuration of the units driving the network, TSx,
NRx, AVA and AVB, to elicit the four types of behaviour treated in the previous

sections.

7.6  Velocity control

C. elegans is able to adapt its propagation velocity in response to external stimuli.
A similar behaviour is displayed by the model; since the firing frequency of AVB
determines the speed of propagation of the contraction wave along the body, changes
in the firing rate lead to predictable variations of the locomotion velocity.

Figure 7.16 shows the waveforms obtained for several values (50 ms, 150 ms, 250
ms and 350 ms) of the inter-burst period, ¢, of neuron AVB. Figure 7.17 plots the
velocity of muscle contraction propagation as a function of the AVB neuron
inter-burst period. An increase of the AVB firing frequency leads to a faster

propagation of muscle contraction towards the tail.
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Figure 7.16: Forward locomotion for several values of the inter-burst period in the
AVB neuron
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Figure 7.17: Velocity versus inter-burst period in neuron AVB

Type of Defect Abnormal behaviour

Ablation of AVB No forward movement. Backward movement still possible

Ablation of AVA No backward movement. Forward movement still possible

Decreased GABA synthesis Contraction of contralateral muscles. Impaired locomotion

Abnormal connection of AVA  Functional forward movement. Coiling when backward

Table 7.8: Several ablation and mutation experiments considered for validation of the
model

7.7 Model validation with laser ablated and mutant
WwOorms

It has been shown in previous sections that the model is able to replicate four
common types of locomotory behaviours (forward, backward, reversal and whole
body bending).

Additional experimental data, including observations of individuals having
undergone laser ablation of identified neurons [103] and mutations affecting either
the topology or the neurotransmitters in the locomotory nervous system [100], were
compared to model predictions for further validation. Table 7.8 summarizes the

experimental results considered in the following sections.
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Figure 7.18: Effect of laser ablation of AVB on forward locomotion

7.7.1 Ablation of AVB/AVA neurons

Laser ablation of AVB and AVA neurons in C. elegans impairs forward and
backward locomotion respectively [152].

The parameters of the oscillator block in the AVB neuron in the model were
modified, to,. = 0, in order to simulate its ablation. The inactivation of its oscillator,
renders AVB inactive, which is functionally equivalent to its removal with a laser
beam.

Figure 7.18 shows the results of the simulation of the forward locomotion
configuration after the inactivation of AVB. Units NRV and NRD fire action
potentials (waveforms 0 and 52), accounting for the effect of ventral and dorsal head
bending. They trigger contraction in the first segment of ventral and dorsal muscle
cells (signals 1 and 53) onto which NRV and NRD synapse.

Due to the absence of AVB, the contraction of these muscles is not propagated
along the body, a spatial wave is not created and forward locomotion is impaired.

An analogous result is obtained when backward locomotion is simulated after
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Figure 7.19: Effect of laser ablation of AVA on backward locomotion

inactivation of AVA (simulation results shown in figure 7.19). When AVA is

inactivated, to,. = 0, bending of the tail triggers contraction in the segment of
muscles closest to the tail, cells MSCV10 and MSD10 (waveforms 10 and 62 in figure
7.19). However, due to the absence of activity in the interneuron AVA, this
contraction is not propagated towards the head and backward locomotion is

impaired.

In good accordance with experimental results, the ablation of AVB and AVA

neurons disrupts totally forward and backward locomotion in the model.

7.7.2 Defective GABA synthesis mutation

Neurons belonging to classes VD and DD are thought to provide GABA mediated

contralateral inhibition [153] [108] to allow body bending.

Muscle contraction in the body during locomotion obeys the condition imposed
by expression 7.10, i.e. the state of the n'" ventral muscle (relaxed/contracted) is

opposite to the state of the nt® dorsal muscle.
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Figure 7.20: Simulation of forward locomotion in a model lacking VD and DD neurons

Abnormal locomotion has been reported in mutant worms which are defective in
the production of GABA due a mutation affecting the synthesis and release of this
neurotransmitter [101]. As a result of the reduced release of GABA in VD and DD
neurons, contralateral muscles contract simultaneously, making propagation
impossible and causing a shrinkage of the body [101]. The condition 7.10 does not

hold in this case, instead

MSCV, = MSCD, (7.11)

where MSCV, is the state of the n‘® ventral muscle and MSCD,, that of the n
dorsal muscle.

Figure 7.20 shows the results obtained in a simulation of forward locomotion
with a model lacking contralateral GABA mediated inhibition. The loss of function
of neurons VD and DD has been introduced in the model by rising their excitation
threshold (th, = 100). With a sufficiently high value of th., VD and DD neurons
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never reach the firing threshold and they remain inactive throughout the simulation.

Ventral bending of the head, at t = 0 s, activates unit NRV and muscle MSCV1.
Subsequent activation of interneuron AVB propagates ventral contraction
(waveforms 1 to 10 in figure 7.20). At ¢ = 1.2 s, dorsal bending of the head activates
NRD and the dorsal muscle MSCD1. Interneuron AVB causes propagation of dorsal
contraction (waveforms 53 to 62).

In the model incorporating VD and DD neurons, simultaneous contraction of
muscles at opposite sites of the body is not possible due to mutual inhibition. Thus,
a spatial periodic pattern of activated and inactivated muscles is created in each
body side. In the VD/DD inactivated model, both ventral and dorsal muscles
become simultaneously contracted.

After 5 s, all muscles in the dorsal and ventral sides are contracted. The release
of the contraction is not possible since there is no functional inhibitory mechanism.

The network remains in this state indefinitely, forcing the worm to remain static.

7.7.3 Mutation induced abnormal topology

Several mutations in C. elegans have been reported to result in abnormal
connectivity between neurons in the locomotory nervous system [100]. The result of
the anomalous topology is an abnormal locomotion.

In the unc-4 mutant, the connections from the interneuron AVA to the
motorneurons VA are absent. Instead, the AVB interneuron provides synaptic input
to VA neurons [100].

The observable effect in locomotion is the impossibility of generating backward
movement. When the head of the worm is touched to elicit backward locomotion,
the body coils instead of locomoting backwards. However, touching its tail triggers
an abnormal (but still functional) forward locomotion [100].

To simulate this effect, the connectivity matrix of the model was altered,
accommodating the new AVB-VA connections and removing the AVA-VA synapses.
Figure 7.21 shows the new connectivity matrix, highlighting the synaptic changes in
the model with respect to those present in the wild-type animal. All parameters,
with the only exception of the new connections, were set as in the simulation of
forward and backward locomotion described in sections 7.5.3 and 7.5.4.
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Figure 7.21: Connectivity matrix of the model of the unc-4 mutant with abnormal

topology

Impaired backward locomotion

Figure 7.22 shows the results of the simulation of backward locomotion with the
modified model. At ¢t = 0 s, the two ventral muscles closest to the tail (MSCV10 and
MSCV9, waveforms 9 and 10) contract. This contraction, however, does not
propagate further towards the head (downwards from waveforms 10 and 9), as
required for backward locomotion. At t = 1.2 s, dorsal muscle MSD10 contracts and
its contraction progressively propagates towards the head. At ¢t =5 s, 8 out of the
10 dorsal muscles (MSCD1 to MSCD8) are simultaneously contracted and remain in
this state indefinitely. The generalized activation of the dorsal muscles added to the

relaxation of their ventral counterparts, causes a dorsal coiling.

The reason for the inactivity of ventral muscles is the abnormal connectivity

between VA neurons and AVA and AVB neurons. In the wild type animal,

activation of neuron AVA during backward locomotion triggers activity in VA
neurons which propagate ventral muscle contraction towards the head. In the unc-4
mutant, VA neurons do not receive input from AVA but from AVB. Neuron AVB
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Figure 7.22: Simulation of backward locomotion in a model of the unc-4 mutant worm

remains inactive during backward locomotion and, as a result, ventral muscles fails
to contract. A reduced activity in the ventral side leads to a decreased inhibition to
the dorsal side through the contralateral inhibition carried out by neurons VD. As a
consequence, dorsal muscles are not inhibited and the periodic spatial pattern of
contraction, typical of normal locomotion, is not generated, resulting in a complete

contraction of all muscles in the dorsal side.

Forward locomotion

Forward locomotion is anomalous but still functional in the abnormally connected
unc-4 mutant [100]. Due to the lack of a quantitative description of this
abnormalities, it was assumed that an abnormal forward locomotion involved a
deviation of the pattern of muscle contraction from the wild-type animal but, to
allow forward movement, a head to tail contraction wave should be present.

Figure 7.23 shows the simulation of forward locomotion. The results show a
comparatively increased degree of muscle contraction in ventral muscles (waveforms
1 to 10) with respect to dorsal muscles (waves 53 to 62). This is the result of
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Figure 7.23: Simulation of forward locomotion in a model of the unc-4 mutant worm

synaptic activity provided by VA neurons. In the wild-type animal, during forward
locomotion, ventral muscles receive excitatory synaptic input exclusively from VB
neurons. In the unc-4 mutant, excitatory input is relayed by both VB and VA
neurons, which increases the degree of activation of ventral muscles with respect to
dorsal muscles.

However, head to tail waves of muscle contraction can be seen, indicating that
forward locomotion, though with an uncompensated dorsal-ventral excitation, is
possible in the model. This is in accordance with experimental observations.

7.8 Conclusions

A model for the locomotory nervous system of C. elegans, based on the event driven
neuron model, has been proposed. This model is able to generate normal locomotion
(forward and backward locomotion, forward/backward switching and whole body
bending). It successfully predicts experimental observations with mutant and laser
ablated worms (ablation of AVA/AVB, abnormal GABA release in VD/DD neurons
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and anomalous topology in unc-4 mutant).

As electrophysiological data of C. elegans are still scarce, the model has aimed at
reproducing the gross locomotion behaviour.

Constraining the model by the synaptic topology and accepting some
assumptions on the parameters have sufficed to create a working model. Due to the
simplistic nature of discrete models of neurons, the parameter space can be searched
more easily than those required for Hodgkin-Huxley models [154].

Even with the parameter uncertainty, the model displays a rich set of realistic
locomotion behaviours which require a limited set of constraints in the parameters.
It is clear, though, that even with a subcircuit of a relatively small nervous system,
experimental data are required for the creation of a working model with realistic

parameters.



Chapter 8

Event-driven model of the piriform

cortex

8.1 Introduction

The MBED model was utilized in simulations of a small network of neurons in
Chapter 7. In this Chapter, it is used to construct a large scale model (10° neurons)
of the piriform cortex. The aim is to demonstrate the adeQuacy of the MBED
framework as an alternative to compartmental models in large simulations,
providing an improvement in computational efficiency while retaining the capability
of incorporating electrophysiological data and producing realistic results.

To this end, an MBED model of the piriform cortex including 10 neurons is
constructed. The effect of network parameters on the dynamics of the aggregate are
explored and the results compared with available experimental data and previous
theoretical work. Table 8.1, reproduced for convenience from table 4.1, summarizes
the three types of aggregate activity obtained experimentally by Ketchum et al.
[124, 117] and theoretically with compartmental models [28].

The MBED model of the piriform cortex and the procedures employed to
simulate field potentials and EEG recordings will be described first. Secondly, a set
of test simulations are carried out which explore the dynamics of partially connected
instantiations of the model in order to rule out implementation errors. Thirdly, the
responses of the model to shock and random stimuli are studied, and several
synaptic parameters and spatial patterns of LOT afferents are tested. Finally, the
neural population sizes are modified. The balanced pyramidal-inhibitory neural
pools, as proposed in [28], are substituted by a more realistic 4:1 excitatory to

160
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Experiment Results

Strong shock stimulus  Single wave
Weak shock stimulus  Damped oscillations
Random input 40 Hz + 5 Hz frequency components

Table 8.1: Experimental [124, 117] and compartmental modelling [28] results

inhibitory cells ratio, following Hasselmo et al. [133].

8.2 The piriform cortex model with homogeneously
sized neural pools

The MBED model of the piriform cortex is based on the compartmental model by
Wilson et al. [28]. Four types of cells have been included: fast excitatory pyramidal
cells, fast inhibitory (GABA,) cells, slow inhibitory (GABAg) cells and stimulus
(LOT) cells (figure 8.1).

Each one of the first three cell populations (pyramidal, GABA4 and GABAR)
consists of a grid of 150 x 150 neurons. For clarity, these layers are depicted in
separate planes in figure 8.1. However, when topological information is needed (e.g.
to simulate EEG and field recordings, as will be described in section 8.3), the 3-D
model of figure 8.1 is collapsed into a 2-D model where the grids with pyramidal and
inhibitory cells (GABA4 and GABAg) are positioned in the same z-plane.

The LOT layer models the afferent activity which originates in the olfactory bulb
and reaches the piriform cortex through the lateral olfactory track. The number of
cells in this pool has been adjusted for each simulation in order to provide the
desired degree of excitation.

The LOT units in the model represent axonal bundles rather than a fourth cell
type within the olfactory cortex. They are assumed to be situated at a distant point
location with respect to the rest of neurons. As a consequence, the simulation of
EEG recordings incorporates exclusively the contribution of the three cell classes,
pyramidals and fast and slow inhibitory, physically located in the cortical region.

Pyramidal cells possess local and long range intralayer excitatory connections
(amongst pyramidal cells) and local interlayer connections (exciting nearby neurons
in the GABA, and GABAp layers). Inhibitory cells (GABA4 and GABAg layers)
do not have intralayer connections in the model. Instead, they inhibit pyramidal
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Figure 8.1: Piriform cortex model

cells by means of local connections.

The number of connections established by any one neuron is deterministically
fixed and listed amongst other network parameters in table 8.2. The target neuron,
j, of a synapse from neuron i, is chosen generating a random vector d of components
{p, ¢} (in polar coordinates), where p is an exponential variable and ¢ a uniformly
distributed value in the range 0 — 27. The target neuron is chosen as the closest cell

to,

p;=p; +d (8.1)

where p; is the position vector for neuron ¢. This expression is valid for all
intracortical connections (pyramidal-pyramidal, pyramidal-inhibitory and
inhibitory-pyramidal)

LOT cells synapse onto pyramidal cells and introduce an external stimulus into
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Neuronal parameters

the 5

th; —1000 (burst truncation inactivated)
tap 1ms

tref 10 ms

Npurst 1

tosc (pyramidals and inhibitory) 0 (inactive oscillator)

ts (pyramidals and inhibitory) 0 (inactive oscillator)

tosc (LOT cells, all stimuli) 3000 ms

tp (LOT cells, shock stimulus) 0 ms

ty (LOT cells, random input) Uniform(0 — t540p)
Number of synapses per neuron

pyramidal to pyramidal 180
pyramidal to fast inhibitory 12
pyramidal to slow inhibitory 10
fast inhibitory to pyramidals 12
slow inhibitory to pyramidals 5
Synaptic parameters

tger (pyramidal to pyr./inh.) (3 — 12 ms)
taur (pyramidal to pyr./inh.) 5 ms
Wsyn (pyramidal to pyr./inh.) 1
tge: (fast inh. to pyramidal) 5 ms
taur (fast inh. to pyramidal) 9 ms
Wsyn (fast inh. to pyramidal) -10
tge: (slow inh. to pyramidal) 10 ms
tgur (slow inh. to pyramidal) 150 ms
Wsyn (slow inh. to pyramidal) -1
tger (LOT to pyramidal) (1 ~4ms)
taur (LOT to pyramidal) 5 ms
wsyn (LOT to pyramidal) 1

Connection range, A (normalized distance)
pyramidal to pyramidal 2
pyramidal to fast inhibitory 10
pyramidal to slow inhibitory 10
fast inhibitory to pyramidals 10
slow inhibitory to pyramidals 10
LOT to pyramidals 2

Table 8.2: Numerical values of parameters in the homogeneously sized piriform cortex
model
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Figure 8.2: (A) Excursion of a compartmental excitatory synaptic conductance and its
discrete approximation. (B) Pyramidal-pyramidal synaptic latency (¢4¢) as a function
of pre to postsynaptic cell distance.

the model. The density of connections from LOT to pyramidal cells decreases
exponentially from left to right in the pyramidal layer of figure 8.1. The target in
the pyramidal layer of a connection from a LOT cell, is chosen as in expression 8.1
but, in this case, vector d = {dg, dy} (in cartesian coordinates) where d, and d, are
exponential and uniform (range 0 — 1) random variables respectively.

Numerical values for the As of the exponential distributions are given in table 8.2
in units of normalized distance (position (0,0) corresponding to the top-left corner
of the layers in figure 8.1 and (1, 1) to the bottom-right corner).

Note that connections from pyramidal to inhibitory neurons and back from
inhibitory to pyramidals are short range ( A = 10). The probability of establishing a
connection between a pyramidal and an inhibitory neuron at a distance of 0.1
(normalized to the dimensions of the model) decreases by a factor of 1/e with
respect to the probability of setting connections with nearby (distance ~ 0) neurons.
Pyramidal to pyramidal connections are long range (A = 2). For this type of
connections, the probability decreases to 1/e times the value for close neurons for a
distance of 0.5, which corresponds to half the distance between opposite ends of the
cortical model.

The duration of the synaptic activation (t4,.) and the synaptic delays (tqe;) were
set in accordance with experimentally determined values as in [28]. Figure 8.2-A
compares the excursions of an excitatory synaptic conductance during a synaptic
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event as modelled in a compartmental framework (solid line) and the discrete
approximation used in the MBED model (dotted line). The parameter ¢z,
corresponds to the width of the pulse with onset at ¢; = ¢¢.5ma, and falling edge at
ts =ty smap (t0.5maz a0d tysmae are the half conductance times) and rounded to the
closest integer.

The parameter tg4; was calculated as,

tger = tsyn + tazon (82)

where the term t,,, accumulates the delay involved in the chemical activation of
a synapse and the propagation of activity in the dendritic tree, whereas tozon
accounts for the delay due to the propagation of the action potential along the

presynaptic axon.
Axonal delays are distance dependent. For an axon of length [, the delay is

obtained as

1

I (8.3)

tagon =
Vazon

where vq.0n 18 the velocity of an action potential propagating along the axon. In
order to make use of the synaptic model strategy (see section 6.4.1), the number of
allowed synaptic parameter sets was reduced. For this purpose several
approximations were introduced. In the case of pyramidal to pyramidal and
pyramidal to GABA connections, the parameter ¢4, was quantized and the number
of allowed values limited to 10. The maximum delay corresponds to connections
ranging the complete length of the cortex and the minimum delay to connections
between nearby neurons. The remaining 8 values are equally spaced as a function of
distance, totalling ten synaptic models for pyramidal-pyramidal and pyramidal to
inhibitory connections. Figure 8.2-B plots t4; as a function of interneuronal
distance. A similar quantification was used for the delay in synapses from LOT to
pyramidal cells, allowing four distance dependent values for t4.

The third simplification applies to connections from GABA to pyramidal cells.
Since these are short range connections, the small difference between the delay
introduced by the shortest and the longest axons allows a distance independence
approximation. Thus, synapses from GABA, and GAB Ag neurons have a fixed,
distance independent, t4,; parameter (see table 8.2).

As a result of the delay quantification described above, sixteen different synaptic

parameter sets (synaptic models) are used.
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The synaptic efficacy, wgyn, of the various synaptic types in the model was set to
make their relative strengths consistent with the maximal conductance of synaptic
channels in compartmental models. It takes negative values for inhibitory
connections (GABA4 and GABAg) and positive for excitatory (pyramidals).

The MBED neurons in the network are configured to fire one-spike bursts
(Npurst = 1) of a duration of o, = 1 ms followed by a refractory period of
trer = 10 ms. Pyramidal and GABA,/GABAp neurons fire whenever wsum
(weighted sum of inputs) increases above the excitation threshold. Suitable values
for the excitation threshold were determined by parameter space search. Units in
the LOT pool, which provide input to the model, were configured as pace makers
and the firing frequency modified for each simulation to provide the various types of

stimuli required. -

8.3 Simulation of field potential recordings, EEGs
and power spectra

Field potentials [33, 155] and EEGs [132] are measurements of time changing electric
potentials generated by neuronal activity. Field potentials are recorded with a pair
of microelectrodes, one serving as a reference and the second located close to the
pool of neurons under study, whereas EEGs make use of arrays of electrodes placed
on the scalp. For the purpose of model validation, it is desirable to obtain simulated
field potentials and EEG recordings associated to MBED network simulations. In
this way, the patterns predicted by the discrete model can be compared to those
obtained with compartmental models.

For the simulation of EEG recordings, a procedure similar to that described by
Wilson et al. [28] has been followed. A number of virtual electrodes are spatially
distributed forming a grid of E x E recording sites (figure 8.3). Each one of these
simulated electrodes records a field potential calculated as,

J K
1
Sep = 2‘ j(t = te) x h(2) (8.4)
i ok

where Sgp, is the field potential signal recorded by the ith electrode, d;; is the
distance between the i electrode and neuron j, 0;(t — tx) is a delta function
indicating that neuron j fired an action potential at ¢t = ¢x and h(t) is the field

potential function recorded from a group of neurons firing nearly simultaneously.
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Figure 8.3: Setup used for the simulation of field recordings and EEGs

This impulse response is convolved with the train of weighted deltas to obtain the
total measured potential. The summations are over the number of action potentials
K generated by neuron j and over all neurons J in the network.

The impulse response, h(t), as utilized for EEG and field potential estimation is

given by (¢t in ms),

0 t<0
-5 O<t<t
h(t) = ! (8.5)
2 t1 <t <ty
0 to <t

where the negative segment accounts for the negative potential, recorded
experimentally during the onset of action potentials and the subsequent positive
segment corresponds to the positive potential seen during repolarization of the
neuronal membrane (the return to resting voltage) [24, 155].

The shape of the field potentials depends strongly on the time sequence of
neuronal activations, the anatomical characteristics of the tissue and the position of
the recording electrode [33]. It was found that ¢; = 5 and ¢, = 12 provided the best
match between the recordings predicted by the MBED model and those obtained
experimentally and with compartmental models.

Consistently with studies on the linearity of the electrical properties of living
tissue [132], the EEG signal is obtained by linear combination of the field potentials,
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Figure 8.4: EEGs obtained with grids of 2 x 2 (A) and 6 x 6 (B) electrodes

EzE

Serc = Z Srp,

where Sgpe is the EEG signal, Spp, the field potential recorded by the ith

168

(8.6)

electrode and the summation is over all the electrodes forming the £ x E grid. The

effect of the grid, as opposed to the single electrode recordings, is to provide a

measurement of the average activity in the network.

Figure 8.4 shows the EEG calculated as in equation 8.6 for two values of £.

Setting £ = 2 results in a low spatial sampling frequency and a single peak

propagating in the cortex generates several peaks in the EEG (figure 8.4-A). For

E =6, the sampling effect is reduced and single waves generate single peaks in the
EEG (figure 8.4-B). In the following sections, EEG measurements will be carried out

using grids with 10 x 10 electrodes.

Estimations of the EEG power spectrum were carried out following the procedure

described in [156], with a Hanning window, segments of 512 samples and an

equivalent sampling frequency of 1 KHz.

8.4 The partially connected model

Partially connected versions of the piriform cortex model were simulated. Firstly,
the simplified topology allows better understanding of the dynamics of the model.
This will be required in this Chapter to comprehend the origin of the responses of
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Figure 8.5: State and wgy,, of pyramidal neurons in a partially connected model for
two exponentially distributed LOT to pyramidal spatial patterns; A = 10 (A,B) and
A=2(CD)

the fully connected model to several kinds of stimuli. Secondly, implementation
errors would be manifested and more easily identified in simulations of the simplified

topology whereas they could be misinterpreted in the fully connected model.

8.4.1 LOT-pyramidal interactions

Figure 8.5 shows the time evolution of the states and wg,,, of the pyramidal cells in
a partially connected model. Single cells are represented as individual dots in the
2-D coloured arrays. In the state sequences (A and C), black, gray and white dots
indicate neurons in state of f, refractory and on, respectively. Panels B and C
show the normalized value of w,,,, in all pyramidal cells, a shift from black to red
indicating an increase of Wgym.

For these simulations, all connections with the exception of those from LOT cells
to pyramidal neurons have been removed. Through these synapses, the LOT units,
which provide the input stimulus in the model, are able to excite the pyramidal

cells. This excitation, however, can not propagate in the pyramidal layer through
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pyramidal-pyramidal connections or affect inhibitory cells by pyramidal-GABA4 or
pyramidal-GABAg connections, since these are not present.

Figures 8.5-A and 8.5-B show the activation of the pyramidal cells due to the
simultaneous firing of 150 LOT cells at ¢t = 0 ms each establishing 10® excitatory
connections with pyramidal neurons. The probability of choosing a given pyramidal
neuron as the target for an LOT-pyramidal synapse decreases exponentially with its
distance from the LOT entry region (area on the lefthand side) with space constant
A = 10 (figures 8.5-A and 8.5-B) and A = 2 (figures 8.5-C and 8.5-D).

At t = 0 ms, all pyramidal cells remain in the initial (of f) state and all LOT
cells (not shown in the figures) simultaneously fire an action potential. Since the
propagation delay between LOT and pyramidal cells was set in this example to a
distance independent value, t4; = 1 ms, the pyramidal layer receives the excitatory
synaptic activations from the LOT cells at t = 1 ms. The excitatory synaptic input
to the pyramidal cells leads to the change of state depicted in the figures.

The area activated by the LOT input in the pyramidal cell layer increased in
figures 8.5-C,D with respect to figures 8.5-A B. This was the result of an increase of
the mean of the exponentially distributed pattern of LOT-pyramidal connections.
This heterogeneous excitation of the pyramidal layer will be relevant for the
understanding of the origin of waves in the fully connected model. The higher level
of excitatory input received by leftmost areas of the cortex with respect to rightmost
areas, will result in waves propagating from left to right during shock and random

stimulus, as described later in this Chapter.

8.4.2 Pyramidal-pyramidal interactions

To illustrate the mechanisms involved in the generation and propagation of waves in
the pyramidal cell layer, the interlayer connections from /to inhibitory cells to/from
pyramidal cells have been removed. This renders open the feedback loop
pyramidal->inhibitory->pyramidal, ensuring that the activity seen in the pyramidal
layer is the result of the LOT stimulus and the intralayer interactions, with no
inhibition present. To aid in the visualization of wave genesis, the pool of LOT cells
was collapsed into a single neuron with connections to one randomly chosen
pyramidal cell. Figures 8.6-A and 8.6-B show the state and the value of the
weighted sum of inputs (wgm) of the pyramidal cells, respectively, at selected times.
At t = 8 ms, only one pyramidal neuron fires, due to the single LOT cell

generating its excitatory input. At ¢ = 11 ms, local excitatory pyramidal to
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Figure 8.6: State (A) and wsy, (B) of pyramidal neurons in the cortical model after
removal of inhibition

pyramidal connections spread the excitation. At ¢ = 15 ms, the cells located at the
core of the excited patch become refractory (gray area). At ¢ = 25 ms, the wave of
firing neurons has reached the borders of the cortex. Most pyramidal cells are still in
refractory state. However, those which originated the wave at ¢ = 11 ms have
finished their refractory period and enter the of f state. They can now be re-excited
by long range axonal connections carrying action potentials from the distant wave
(now at the boundary of the cortex) towards the core. In this way, a second wave is
initiated.

A comparison of figures 8.6-A and 8.6-B, for instance at ¢ = 21 ms, indicates
that the finite axonal propagation velocity introduces a delay in the propagation of
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Figure 8.7: Sequence of images representing the state of pyramidal and GABA4
neurons. (A) Pyramidal neurons, (B) GABA,4 cells

excitation between pyramidal cells. Although cells are firing in the outer shell at
t = 21 ms, the maximal synaptic excitation is being received at the core (see first
image in 8.6-B) where the neurons have already entered refractory period and are
unable to fire.

In this partially connected model, the absence of inhibition allows continuous
wave generation. The addition of inhibitory connections, described in following

sections, introduces attenuation and limits the number and intensity of the waves.

8.4.3 Pyramidal-GABA interactions

As in the previous section, the LOT pool has been collapsed to a single unit which
excites one randomly chosen neuron in the pyramidal layer. Pyramidal-pyramidal,
pyramidal-GABAg and connections from GABA,4 to pyramidals have been
removed. Only the synapses from LOT to pyramidals and from pyramidals to
GABA 4 remain in the model. Figures 8.7-A and 8.7-B show the states of the
neurons in the pyramidal and GABA,4 layers, respectively.

At t = 8 ms, the activity from the LOT pool arrives at the pyramidal cell layer,
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activating only one neuron (see figure 8.7-A). At £ = 9 ms, the pyramidal neuron
enters refractory state. At t = 12 ms, connections between pyramidal cells and
G ABA 4 neurons trigger action potentials in those GABA 4 cells closest to the
activated pyramidal (see figure 8.7-B). Due to the distance dependent axonal latency
from pyramidals to GABA,4 neurons, more distant GABA 4 cells fire at t = 13 ms
and t = 14 ms.

Note that the lack of GABA, to GABA, synapses eliminates the possibility of
wave generation within the GABA4 layer. Only the pyramidal layer is capable of

generating and sustaining cortical waves.

8.4.4 GABA-pyramidal interactions

Figure 8.8 shows the time evolution of the states and the normalized wg,,, state
variables of the pyramidal neurons for a model incorporating only LOT-pyramidal
and pyramidal-GABA, connections. The pyramidal-pyramidal and
pyramidal-GABAg synapses have been removed. Note that the inhibitory loop
pyramidal->inhibitory->pyramidal is closed. Thus, pyramidal excitation triggers
activity in the GABA4 layer and eventually results in the inhibition of pyramidal
neurons.

As in previous sections, the LOT pool has been collapsed into a single unit which
excites a single neuron in the pyramidal layer. This simplication allows easier
visualization of the GAB A 4-pyramidal interactions. Further, the number of
connections from each pyramidal cell to GABA4 neurons has been reduced to one.
This ensures that the inhibition seen in the pyramidal layer from the GABA4 layer
is due to the activation of a single GABA4 cell.

At t = 0 ms, the pyramidal cell layer remains in its initial inactive state. At
t = 4 ms, excitatory activity arrives to a single pyramidal unit, triggering an action
potential. The pyramidal to GABA4 connections trigger action potentials in the
GABA, layer (not shown in the figure). In turn, at t = 12 ms, the feedback loop
consisting of inhibitory connections from GABA4 cells to pyramidal cells, generate
IPSPs (inhibitory postsynaptic potentials) in the pyramidal layer. This effect can be
seen in the fourth panel of Figure 8.8-B as a local shift towards blue indicating that
the state variable w;,, has decreased below 0. The last panel in 8.8-B shows a
magnified image of the core of the inhibited area in the pyramidal layer.

Given that the duration of the activation of GABA,4 synapses was set to
taur = D ms, at t = 17 ms the inhibition ends, having started at ¢t = 12 ms.
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Figure 8.8: States (A) and wsy, (B) of pyramidal neurons showing the effect of the
GABA, inhibitory loop

LOT mput

The interaction between pyramidal cells and GABAg neurons follows the same
pattern. However, tg,, = 150 ms for GABAp inhibitory synapses, which results in a
long lasting inhibition, as opposite to the short (5 ms) inhibition generated by
GABA 4 synapses.

8.5 Shock stimulus response

Having tested the functionality of partially connected networks, this section
addresses the issue of adequacy of the MBED framework to replicate biological
aggregate dynamics. To this end, the responses of the network to shock stimuli are
compared to previous theoretical and experimental data.

In a shock stimulus experiment, the LOT is stimulated with a short duration
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Figure 8.9: Piriform cortex response to weak shock stimulus (A) and strong shock
stimulus (B) as obtained with a compartmental model (from Wilson et al. [28])
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Figure 8.10: (A) Simulated field potential after weak shock stimulus, (B) Simulated
field potential after strong shock stimulus

(< 1 ms) current pulse while monitoring the field potentials elicited in the olfactory
cortex. Two types of recordings have been obtained with such experimental setups;
single wave responses and damped oscillations [124, 117, 157]. High intensity current
pulses generate single peak extracellular recordings whereas lower intensity pulses
produce long lasting responses consisting of several damped peaks [115]. Figures
8.9-A and 8.9-B show the simulated field potentials obtained by Wilson et al. [28]
with a compartmental model of the piriform cortex stimulated with weak and strong

shock stimuli.
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Figure 8.11: States, Wgum and pyramidal-pyramidal excitation of pyramidal neurons
after weak shock stimulus



CHAPTER 8. EVENT-DRIVEN MODEL OF THE PIRIFORM CORTEX 177

§ . Weighted sum of inputs (wsum) Contribution of pyramidal cells
Time State of pyramidal cells for pyramidal cells to wsum
7ms
LOT input
Refractory
On
Off
11ms
+1
16 ms
0
20 ms
-1
+1
25 ms
30 ms
0

Figure 8.12: States, w;yum and pyramidal-pyramidal excitation of pyramidal neurons
after strong shock stimulus
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Shock stimuli were simulated in the MBED network model by the simultaneous
firing of all LOT cells at ¢ = 0. For this purpose, the LOT neurons were configured
as pace makers with the parameters of the oscillator block set to ¢, = 0, in order to
generate the first spike exactly at ¢t = 0 and ¢y, > tmaz, tO ensure that the second
action potential in the sequence was triggered beyond the finishing time of the
simulation, ¢4z

The intensity of the shock was adjusted changing the total number of cells in the
LOT pool and the weights of LOT-pyramidal synapses. Figure 8.10 shows the field
putential obtained with a centered virtual electrode and calculated as in expression
8.4. In accordance with experimental observations, a weak stimulus generated by
600 LOT cells (shown in figure 8.10-A) generates a damped oscillation whereas an
stimulus created by 2500 LOT cells (shown in figure 8.10-B) produces a single peak
in the simulated field recording.

Understanding of the mechanisms underlying these two responses can be gained
studying the panels shown in figures 8.11 and 8.12 (only pyramidal cells are shown)
and the plots of figures 8.13 and 8.14. The coloured images in 8.11 and 8.12
correspond to the state (leftmost column), normalized value of wgym (middle
column) and normalized partial contribution to wsy, by other pyramidal cells
(rightmost column) at selected points in time. Each neuron is represented by a dot
in the matrix using the corresponding colour palette.

Figures 8.13-A,B and C show the total excitatory, GABA, and GABAp
synaptic input received by pyramidal cells during the course of the first wave after
weak shock stimulus. These are presented as the average over the pyramidal cells
located in the same column in the panels of figures 8.11 and 8.12 (column numbers
increasing from left to right). Figure 8.13-D plots the temporal evolution of the three
synaptic input types calculated as an average across the leftmost third (column 1 to
50) of the pyramidal cell layer, where the cortical waves originate. Figures
8.14-A,B,C and D plot analogous data for the strong shock stimulus experiment.

Figure 8.11 shows how the weak stimulus triggers a wave of activity, its front
reaching the distant region of the cortex after 15 ms (leftmost column). In the
middle panels, plotting the spatial distribution of wyy,mn, it is seen that the wave of
neuronal spiking causes a wave of excitatory synaptic activations, its front reaching
the far cortical end at 20 ms. In the wake of the excitatory wave, appears a region
of inhibited cells (identified by a shift towards blue) due to the activation of
inhibitory cells in the GABA4 and GABApg layers. However, at t = 25 ms, the area
where the first wave was originated (leftmost region in all panels) is returning to the



CHAPTER 8. EVENT-DRIVEN MODEL OF THE PIRIFORM CORTEX 179

A Excitatory synaptic input B8 GABAA synaptic input
v, N N I I I I AV IS A I IO PR B O I R R T i A P I IV A N I A N
60— z -
0= - s
40— - -
30— - -
20— - -
10— Z _
0— = 120 -
1 EH i H ! ] [ i l t [ EH i b ] i ] H | ] ] H l ¥ l 1 ! 1 | i ; j 1 ! 1 ! i ; i ’ i I i I i ‘ i K 1 ] 1 [ ] | 1 ! I I ] l I i_
0 50 100 150 0 50 100 150
Column number Column number
GABA, synaptic input Regional average versus time
C1_[st[‘s¢1.;.[,\.1‘1;!.i;[»t.l_ T N T N
- } - 50— avavet _
- 5+12ms - - s ’Wave2 -
S : : e '~
- 15 ms z —: Excitatory synaptic input —
q— +—17 ms - - -
- - 0— y
-2—:\1 - - -
.3{ \ 20ms :_ _50:5 GABA, synaptic input ;
z - E <~— GABA, synapticinput  ~
4 - - Ay synaptic inp -
'5_)‘|x]4‘|i1;|]r15l11»{411[1\|!— '100_-"f‘[‘i‘Q'1‘|‘I‘!‘1‘1‘|'|"'9';'3W’!‘!'[_
0 20 40 60 80 100 120 140 0 50 100 150 200
Column number Time (ms)

Figure 8.13: Weak stimulus induced synaptic input to pyramidal cells versus column
number (A,B,C) and time (D)
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initial state (indicated by the shift from blue to green). The disappearance of
inhibition makes it possible to generate a second wave.

This wave is triggered by excitation carried by long axons from the front of the
first wave back to the leftmost region in the panels. At ¢t = 20 ms, the image in the
first column shows how the initial wave has already disappeared and only the wake
of neurons in refractory state are left. However, also at ¢ = 20 ms, the third
column of images shows a marked excitation reaching pyramidal cells. The intensity
decreases from right to left, indicating that it was generated by the first wave while
approaching the rightmost end of the cortex. This remaining excitation originates
the second wave seen at t = 25 ms and t = 30 ms.

Figure 8.12 shows the results for the high intensity shock stimulus. In
comparison with figure 8.11, the initial wave of excitation propagates faster, arriving
at the far end of the cortex at ¢t = 7 ms (see leftmost panel) in contrast with the
15 ms needed by the weak shock. 15 ms after the strong stimulus, the entire
pyramidal layer remains still inhibited (middle panel) and long range excitatory
connections between pyramidal cells (see rightmost column) are unable to generate a
second wave. Simultaneously with the decrease of inhibition at ¢ = 20 ms and
t = 25 ms, the pyramidal to pyramidal excitation has also decreased (compare
rightmost panels at ¢t = 15 ms and ¢ = 20 ms). The remaining excitation is only able
to trigger sparse action potentials (see leftmost regions of the panels in the leftmost
column at ¢t = 20 ms) and insufficient to promote the genesis of a new wave.

These latency differences are also manifested in figures 8.13-A and 8.14-A. The
wave of excitatory synaptic activation reaches the rightmost end of the cortex
(neuronal column number 150) five milliseconds later after a weak stimulus (8.13-A)
than after strong shock (8.14-A) . The unequal efficacy of the overall inhibition to
decrease the excitability of the cortex can be further understood studying figures
8.13-B,C and 8.14-B,C. The region affected by the GABA 4 and GABAg inhibition
triggered by weak stimulus covers a larger range of columns than that obtained with
a strong shock. This can be explained by the differences in timing of the excitatory
wave and the finite duration of inhibitory synaptic activation. The slower wave after
weak stimulus reaches the far end of the cortex before the inhibition resulting from
its progression disappears. Conversely, the strong shock travels across the entire
cortex faster, reaching the rightmost end before the inhibition in its wake vanishes.

Figure 8.15 plots the temporal evolution of the spatial average of wsy, after weak
and strong stimuli. Only the subset of neurons confined to the region
1 < column < 50 was considered, since this region originates the rebound activity.
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Figure 8.15: Average wsy,, per neuron across leftmost region of the pyramidal layer
(rows 1 to 150, col. 1 to 50)

Both traces have maxima at t = 9 ms but their time courses exhibit a time lag of 4
ms. The weak stimulus succeeds, with posteriority to the end of the negative
(inhibited) phase of wgym, in generating a build up interval which, eventually,
triggers a second wave of excitation. Subsequent waves show a decrease in their peak
value, consistent with a progressive build up of the cortex-wide GABApg inhibition
(see figure 8.13-D).

A similar sequence of events was observed by Wilson et al. [28] in their

compartmental cortical model.

8.6 Random input response

Further validation of the MBED model is sought in this section studying the
network response to continuous rather than shock stimulation. In experimentally
obtained EEGs from the olfactory cortex, theta-type (3-10 Hz) and gamma-type (40
Hz) components have been identified [158]. Previous theoretical work has shown
that continuous stimulation triggers EEG oscillations at similar frequencies in
compartmental models [28]. The MBED model is used to explore the mechanisms

underlying the generation of these patterns of activity.



CHAPTER 8. EVENT-DRIVEN MODEL OF THE PIRIFORM CORTEX 183

5
L
r

Arbitrary units
o
[s¢]
|

|‘||||||||\

8‘“|||li|‘x

00— v e
0 100 200 300 400

4]

Frequency (Hz)

Figure 8.16: Power spectrum of a typical random input stimulus

8.6.1 LOT stimulus

The dynamics of the model was studied using random input stimuli. These were
generated by spreading the firing times of the LOT neurons throughout the entire
simulation. LOT neurons functioned as pace makers and were configured to ensure
that the second spike would occur beyond the simulation stop time, so that only one
action potential was generated (fsc > tstop). Their firing times, t4, were given by an
uniform distribution in the range (0 — ¢5p). Hence, the intrinsic firing frequencies of
the LOT neurons can be ruled out as the cause of emergent temporal or spatial
patterns that are be observed in the cortex.

The average number of activations of excitatory synaptic connections from LOT
cells to pyramidal neurons per unit of time is given by,

R— NrorCror—to—pyr (8.7)

tstop

where Npor is the number of LOT cells and Cro7—to—pyr the number of
connections to pyramidal cells from a single LOT cell. The stimulus obtained in this
way, provides a temporally unstructured and spectrally broad input signal for the
cortical model. Figure 8.16 shows the power spectrum of such an unpatterned signal
for a stimulus intensity of 97.65 epsps/ms.

No changes, other than the modification of the stimulus type, were made to the
model with respect to the parameters used for the study of the shock stimulus
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response. All EEGs in this section were obtained using a grid of 10x10 electrodes.

8.6.2 Results with nominal parameter values

In order to explore the activity patterns generated by LOT stimuli of various
intensities, a range of input firing rates was tested (see figures 8.17 and 8.18). The
plots at the top row of figure 8.17 show the EEGs obtained for 500 epsp/ms and
1000 epsp/ms. Their amplitudes, three to four orders of magnitude lower than
subsequent EEGs, indicate that excitation was confined to isolated neurons and that
activation was not g.eneralized. As expected from an unpatterned input, no
structured signal was seen in the EEG. However, an increase of the input intensity
to 1500 epsp/ms and 3500 epsp/ms (second row of figure 8.17) originates bursts in
the EEG. The number of waves per burst increases with the stimulus intensity
whereas the interburst delay decreases from 300 ms, corresponding to 1500 epsp/ms,
down to the 150 ms obtained with 20000 epsp/ms.

Figure 8.18 shows both temporal and spectral EEG patterns. At 16000 epsp/ms
(top row) the pattern in the EEG presents characteristics similar to those obtained
with lower intensity. Its power spectrum presents a double peak at about 40 Hz
(gamma oscillations) and a low frequency peak (theta oscillations). Subsequent
increases of the stimulus to 17000 epsp/ms and 21000 epsp/ms, bring about the loss
of burst patterned oscillations while retaining a high frequency oscillation.
Concomitantly with the disappearance of the burst-like pattern, the associated
power spectra shows an emerging peak at 75 Hz.

More detailed analysis of these results indicate that the high frequency
component seen during an EEG burst is caused by the propagation of cortical waves
similar to those observed after shock stimuli. EEG peaks are associated with
individual waves propagating across the cortex. Figure 8.19-A shows a fragment of
an EEG during a burst and figure 8.20 shows the activity in the pyramidal layer
occurring simultaneously. Note that waves originate on the lefthand side in the
pyramidal layer (closest to the LOT input) and propagate to the distant end. The
same pattern had been observed as a result of single shock stimuli.

An example of the period of diminished activity between EEG bursts is shown in
figure 8.19-B and its corresponding sequence of activity in the pyramidal cell layer
depicted in figure 8.21. Large regions of the the pyramidal layer are inhibited (seen
as a shift towards blue in the panels) during the interburst period (see t = 160 ms).
This inhibition reduces the probability of neuronal firing resulting in a absence of
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Figure 8.19: EEG burst (A) and interburst period (B)

cortical waves. As the inhibition vanishes, a new wave is generated.

The bursting component is controlled by the slow GABAg inhibitory cells. This
is hinted at by the fact that the duration of the synaptic activation in the GABAg
synapses of the model lasts 150 ms, which is the only parameter in the model of the
same order of magnitude as the period between bursts in the EEG. In previous
experiments with shock stimuli, the appearance of consecutive waves led to a
progressive build up of the overall GABApg inhibition (figure 8.13-D). Further, this
assumption was confirmed by the fact that a decrease in the duration of GABAp
synapse activation to tg,, = 50 ms produces an EEG consisting of a high frequency

oscillation without bursting components.
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Figure 8.20: Activity in the pyramidal layer during an EEG burst
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Figure 8.21: Spatial profile of wsym (A) and neuronal states (B) in the pyramidal cell
layer during an inter-burst interval
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8.6.3 Impact of synaptic parameter variation on the
temporal and spectral contents of the EEGs

Previous work with compartmental models has predicted a decrease in the frequency
of the main spectral peak in the EEG power spectrum as a result of an increase of
the activation times, tg4,r, of the fast inhibitory (GABA4,4) synapses [28]. A similar
parameter variation was tested with the MBED cortical model in order to establish
the consistency of its predictions.

Figure 8.22 shows the EEGs and power spectra for several values of ¢4, in
GABA, synapses. The high frequency peak decreases from 80 Hz for taur = 1 ms to
40 Hz for tg,, = 9 ms (nominal value) and, further, to 30 Hz for tgy, = 13 ms.

In addition to this shift in the main frequency component, the EEG indicates
marked changes in the dynamics of the model. For tg4,, <= 9 ms, the EEGs show
bursts of activity whereas for t4,, > 9 ms, the bursts disappear leaving an
unmodulated high frequency oscillation.

Further experiments were carried out to study the effect of t4,, in GABAp
synapses on the temporal and spectral characteristics of the EEG; figure 8.23 shows
the results obtained. The increase of GABAp activation times, from 150 ms to 250
ms, results in elongated interburst latencies. This is consistent with the
measurements obtained in previous sections which identified the prominent role of
GABAg synapses on oscillation damping after shock stimuli, and burst generation
during a random stimulus.

The two main peaks of the power spectra (corresponding to theta and gamma
oscillations) remain unchanged. However, a third component, with a frequency
between 70 and 80 Hz appears for tg,, > 200 ms.

Figure 8.24 shows the results obtained for several values of the
pyramidal-pyramidal synaptic strength, w,y,. The sequence of EEG bursts obtained
for weyn = 1, are discontinued after the second burst for w,y, = 2. They reappear
with more irregular temporal and wider spectral components for wyy, = 3. Further
increases of the synaptic strength lead to a damped oscillation in the EEG and to
the concentration of the spectral contents in two frequency bands; 1 — 5 Hz and
80 — 90 Hz. These results are consistent with the existence of phase transitions as
observed in more abstract lattices of Boolean automata [159, 160] and indicate that
such network mode switchings are possible in cortical structures as a result of

synaptic parameter variation.
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Figure 8.25: Effect of pyramidal-pyramidal synapse strength, w,y,, on temporal and
spectral EEG characteristics (II)

8.6.4 Spatially uniform LOT stimulus

The previous sections, have used LOT stimuli with an exponentially decreasing
spatial profile of intensity towards the righthand side of the panels. Such a spatial
pattern of stimulus activity led to waves being generated in the leftmost cortical area
where the intensity of the input activity was higher (see for example figure 8.20).

Cortical waves, however, have also been experimentally observed in cortical
regions where the input stimuli are more uniformly distributed across the entire area
[132].

To study the effect of the spatial profile of the stimulus on wave generation, the
exponentially decreasing density of connections from LOT to pyramidal neurons was
substituted by an uniform distribution. Hence, the target for a synapse from an
LOT neuron was chosen by generating a random vector p = {z, y} (given in
normalized rectangular coordinates) where z and y are uniform random variables
within the limits of the model. The target neuron for the connection is chosen as the
pyramidal neuron closest to the vector p. Further, the delay introduced by the axons
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Figure 8.26: EEGs obtained with uniformly distributed and fixed delay LOT to pyr-
amidal connections (I)

from LOT cells to pyramidal neurons (¢4 of LOT-pyramidal synapses) was fixed to
a distance independent value of 1 ms. These modifications to the model ensured
that the input stimuli did not favour a specific region in the cortex due to an
spatially heterogeneous number of LOT-pyramidal connections (as it was the case
with an exponential spatial profile) or by exciting different areas with different
latencies (as would occur with a distance dependent axonal delay).

Figures 8.26 and 8.27 show the simulated EEGs obtained for several values of the
stimulus intensity, given as the number of activations of excitatory LOT-pyramidal
synapses per unit of time.

The magnitude of the EEGs shown in the two upper plots of figure 8.26
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Figure 8.27: EEGs obtained with uniformly distributed and fixed delay LOT to pyr-
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Figure 8.28: Sequence of images showing the time evolution of the normalized Wum
for the pyramidal cell layer
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Figure 8.29: Spatio-temporal evolution of wgy, in the pyramidal neurons located in
the cross-section marked in figure 8.28

(corresponding to stimuli of 1000 epsps/ms and 1500 epsps/ms) is four orders of
magnitude lower than that of the EEGs obtained for input intensities higher than
1500 epsps/ms. This fact indicates that activity was limited to sporadic firings and
that coherent waves, involving generalized synchronization, were not generated in the
first two simulations. For values greater than 1500 epsps/ms, two types of responses
were obtained: isolated waves and bursts with multiple waves. Both types of
responses are alternated during most of the simulations. However, figure 8.27 shows
an spontaneous switch between single wave and burst response at 4000 epsps/ms.

The fact that the EEG peaks indicate spatial waves of cortical activity is
confirmed by the images shown in figures 8.28, which display the time evolution of
the state variable wg,,, in the pyramidal cell layer. The sequence corresponds to the
two-wave burst generated at approximately ¢ = 1600 ms during the simulation with
an stimulus intensity of 2000 epsps/ms shown in figure 8.26.

Figure 8.28 shows, at t = 1604 ms, an increase of wgy,, confined to a circular area.
Figure 8.29 provides an alternative view of the creation of this focus of activity. It
plots Wy, at six time points coinciding with the generation of the new wave for the
cross-section indicated in figure 8.28 (second panel in the top row). At t = 1608 ms,
a wave front had been formed which propagated radially from the center of the
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Figure 8.30: Sequence of cross-sections showing the normalized wgy,, during a two
wave burst

region excited at t = 1604 ms. At t = 1612 ms, the wave of excitation reaches the
limits of the layer whereas the core area is inhibited. Four milliseconds later, the
totality of the piriform layer remained inhibited by the inhibitory interneurons. At
t = 1620 ms, the core returns to the initial state and at ¢ = 1632 ms, a second wave
starts. Note, however, that the excitation corona of the second wave shows less
intensity than that of the first wave (compare for example t = 1640 ms and
t = 1608 ms in figure 8.28). This attenuation is apparent in figure 8.30, which shows
a time extended colour-scale representation of the sequence of cross-sections plotted
in figure 8.29. Each row in the matrix corresponds to the value of w;,,, for the
neurons (150) located in the cross-section at a particular point in time. As time
progresses (downwards in figure 8.29), excitation propagates from the centre of the
section towards its limits. Note that the shift towards red is clearly more marked in
the first wave than in the second indicating an attenuation in the last wave.

The main finding of these experiments is that cortical waves with radial
propagation can occur in a network with an evenly distributed input stimulus where
the temporal and spatial heterogeneities of the LOT stimuli have been removed.
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8.7 Heterogeneous neural pools

The network model presented in previous sections was constructed with a 1:1:1
population size ratio for the three cortical cell types; pyramidal, fast and slow
inhibitory. The response to shock and random input followed the patterns obtained
by [28] with a compartmental network model incorporating equal size neural
populations.

Barkai et al. [133] have also constructed a compartmental network model, akin
to that described in [28], including 298 neurons distributed among the three neuron
classes with a biologically realistic proportion of neuron types; 20% inhibitory and
80% pyramidals. Other researchers have also constructed cortical models with these
excitation-inhibition proportions [39)].

The relative size of the neural populations in the MBED model was modified to
adhere to the above percentages. The following sections describe the simulations
carried out in order to confirm that a parameter set exists which displays realistic

responses to shock and random stimuli in such a model.

8.7.1 Network parameters

Table 8.3 lists the parameters of the model found to replicate the experimental
responses to shock and continuous stimuli. The network includes a layer of 250 x 250
pyramidal neurons and two layers of 80 x 80 inhibitory cells each, with an average of
285 synapses per neuron. The spatial patterns of connectivity have not been altered
with respect to the model used in previous sections. The excitation threshold, th.,
was raised from 5 to 7 in the pyramidal layer. Likewise, the threshold of inhibitory
cells was increased to 30, to limit their level of activity. This was necessary as a
consequence of an overall increase of the average excitation received per inhibitory
cell. Stronger excitation was due to the larger number of excitatory pyramidal cells
(from 150 x 150 to 250 x 250) and the reduction in the number of inhibitory neurons
(from 150 x 150 x 2 to 80 x 80 x 2) with respect to the homogeneously sized model.

8.7.2 Shock and random stimuli

Figure 8.31 shows the single electrode measurement obtained after a weak (A) and a
strong (B) stimulus. The weak shock stimulus was generated with a pool of 1000
LOT units firing simultaneously at ¢ = 0 ms whereas the strong stimulus response
was obtained with a pool of 6000 LOT units. Figure 8.32 shows the EEG obtained
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Neuronal parameters

the (pyramidal) 7

the (fast inh.) 30

the (slow inh.) 30

th; —1000 (burst truncation inactivated)
tap 1 ms

tref 10 ms

Nyurst 1

tose (pyramidals and inhibitory) 0 (inactive oscillator)

ts (pyramidals and inhibitory) 0 (inactive oscillator)

tose (LOT cells, all stimuli) 3000 ms

ty (LOT cells, shock stimulus) 0 ms

ts (LOT cells, random input) Uniform (0 — #540p)
Number of synapses per neuron

pyramidal to pyramidal 300
pyramidal to fast inhibitory 20
pyramidal to slow inhibitory 10

fast inhibitory to pyramidals 70

slow inhibitory to pyramidals 60
Synaptic parameters

tger (pyramidal to pyr./inh.) (3 — 12 ms)

taur (pyramidal to pyr./inh.) 5 ms

Wsyn (pyramidal to pyr./inh.) 1

tger (fast inh. to pyramidal) 5ms

tqur (fast inh. to pyramidal) 12 ms

Wsyn (fast inh. to pyramidal) -15

tdger (slow inh. to pyramidal) 10 ms

tgur (slow inh. to pyramidal) 150 ms

Wsyn (slow inh. to pyramidal) -1

taet (LOT to pyramidal) (1 -4 ms)

taur (LOT to pyramidal) 5 ms

Wsyn (LOT to pyramidal) 4
Connection range, A (normalized distance)

pyramidal to pyramidal 2

pyramidal to fast inhibitory 10

pyramidal to slow inhibitory 10

fast inhibitory to pyramidals 10
slow inhibitory to pyramidals 10
LOT to pyramidals 2

Table 8.3: Numerical values of parameters in the heterogeneously sized piriform cortex
model
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with a random stimulus consisting of 10%epsps/ms generated by LOT units onto
pyramidal cells and uniformly distributed in time throughout the entire simulation.
These responses, single peak, damped oscillation and gamma-type EEG components,
are equivalent to those already described for homogeneous neuronal populations and
confirm that both, homogeneous and heterogeneous MBED cortical models, are

capable of replicating experimentally obtained measurements.

8.8 Conclusions

In this Chapter, the cortical model based on the MBED framework has been shown
to replicate results obtained both experimentally and with compartmental models,
which substantiates the hypothesis that automata models are suitable for
quantitative, in addition to qualitative, biologically motivated simulation. Moreover,
the computational efficiency of the MBED model compares favourably with
competing modelling approaches. The heterogeneous MBED network model
incorporating 75300 cortical neurons and 10° LOT units with an average of 285
synapses per neuron, took 10-20 minutes to simulate 2000 ms of the random
stimulus experiments (the actual CPU time varied amongst simulations with
changes in the spatio-temporal patterns of cortical activity). In contrast, the
existing compartmental models by Hasselmo, Barkai et al. [123, 133] and Wilson et
al. [28] were limited to 298 and 4500 neurons, respectively, due to their
computational cost. More efficient integrate and fire cortical models incorporating
10* neurons and 100 synapses per neuron running on a set of workstations (Digital
Alpha, Sun Sparc 20 and HP 712/100) took 1-3 CPU hours to simulate 5000 ms of
activity in the network [39]. A quantitative comparison between the MBED
simulator and the efficient cortical simulations based on integrate and fire models is
possible by applying correction factors to account for the difference in network size
and computer architecture.

Considering a performance ratio of 2 between an AMD-K6 350 computer and the
workstation Sun Sparc 20 as measured with the LINPACK benchmark (data
obtained from the Performance Database Server [161]) and a ratio of 30 between the
total number of synapses in the MBED cortical model and that in [39], the
event-driven framework provides a scaled reduction in the CPU time corresponding
to a factor of 45.

A similar comparison with the cortical model in [28], considering a factor of 60
between the performance of an AMD K6 350 and the Sun 3/260 [161] and a three
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fold increase in network size, the MBED framework results in a decrease of the CPU

time in a factor of 11.



Chapter 9

MBED simulations on Beowulf

architectures

9.1 Introduction

Previous Chapters in this thesis have made use of commodity PC-based single
processor architectures as the preferred hardware platforms for MBED neural
simulations. Work on large scale neural simulations has often resorted to parallel
architectures to achieve the necessary processing power [18, 70, 72, 162]. Although
substantial performance increases have been demonstrated with hypercuvbe
architectures [163], the cost of these platforms and the considerable development
involved in the customization of the simulation environments have limited the
impact of parallel architectures in the field of neural simulation. Beowulfs constitute
an emerging technology aiming at delivering parallel processing power at a
reasonable cost by interconnecting commodity single processor PC-based
architectures with high speed data links [164, 165, 166].

The message-passing nature of the MBED model and simulator makes them
suitable for this platform. In order to assess the performance increase and scalability
achievable with Beowulfs, the simulator was modified to allow the partitioning of the
simulated neural aggregate and the concurrent simulation of individual partitions on

different nodes of the cluster.

204
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Figure 9.1: Schematic diagram of the cluster

9.2 The Beowulf platform

The Beowulf platform under test is illustrated in figure 9.1. It consists of 8 single
processor Athlon (AMD-K7) machines running Linux RedHat 6.0 with an aggregate
peak performance of 900 MegaFlops, with 2 Gigabytes of memory (256 Mbytes per
node) and 100 GigaBytes of disk space. Two SuperStack II 3C16464A 3COM Fast
Ethernet switches interconnect the nodes in a star-like topology. An extra node
(totalling 9 nodes) functions as a server in charge of job scheduling across the 8-node
architecture and other maintenance tasks. For this purpose, the PBS (Portable
Batch System) software package is available. This computer does not participate in

distributed computations.

9.3 Parallelization of the MBED simulator

Concurrent execution of the MBED simulator can be achieved with the command
gsub, part of the PBS package, which schedules the execution of multiple images of

the program across the cluster. It takes one command line argument,
$ gsub job_description_script

where job_ description_ script is a text-based file containing the information
necessary for job scheduling. The script used for the simulations in this Chapter
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follows,

#! /bin/sh

#PBS -N MPI_TEST

#PBS -m be

#PBS -1 nodes=8

# executable including any command line arguments

EXE=“simulator -batch script.i"

#to run a LAM MPI job

mpidistr="lam"
/usr/local/mpi_scripts/pbs.function

The most relevant entries are the number of nodes allocated in the cluster,
specified with the directive PBS -l nodes=node_ number and the command line to
be executed, specified by EXE=command_ line. In the code above, the command
line "simulator -batch script.i” invokes the simulator with the script file script.? as
the input stream (in place of the keyboard) in all eight nodes.

The strategy followed to distribute the simulation across the cluster was to
partition the neural aggregate in sub-aggregates, each one being assigned to a single
node in the cluster.

Several enhancements were made to the MBED simulator to make it suitable for
this parallel environment; mainly, the implementation of a synchronization
mechanism between concurrent sub-aggregate simulations and the addition of
inter-process (across-cluster) neuronal communications to account for
inter-aggregate axonal bundles.

Both additions made use of the LAM 6.3.1 [167] free implementation of the
Message Passing Interface (MPI) [168] libraries .

9.3.1 Process synchronization

Process synchronization is necessary in the context of distributed message-based
event-driven simulation [169] in order to compensate for the unavoidable workload
imbalance between simulation processes. Without a synchronization mechanism, a
time lag would arise between the simulation clocks of different processes, which could
lead to the loss of inter-process messages when the simulation clock at the receiving
end is advanced with respect to that of the process originating the message.
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Figure 9.2: Synchronization algorithm to achieve a cluster-wide coordinated simula-
tion clock
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The MBED simulator was modified to incorporate such a synchronization
mechanism. Figure 9.2 provides a complete flow-chart description of the algorithm.

Upon initialization, all processes are synchronized to the time slice t = 0 ms. At
the end of each of the subsequent time steps, a termination MPI message is sent to
all processes. At this point, the process awaits the reception of the corresponding
N-1 termination messages (N being the number of nodes) from the remaining nodes.

All processes having finished the current time slice, they propose a next value for
the global simulation clock as the scheduling time of the first message in their
respective priority queues. Each process broadcasts its proposed value to process 0,
which acts as the coordinator. Of the proposed times, process 0 chooses the
minimum and broadcasts the value to the rest of the processes, which set their
respective local simulation clocks to the agreed values and start processing the
messages in their queues scheduled for this consensued clock time.

The simulation finishes when the agreed global simulation clock takes a value
beyond the specified simulation stop time, in which case all processes terminate.

9.3.2 Inter-module communication

Inter-module communication accounts for axonal bundles which carry action
potentials across sub-aggregates.

The MBED simulator minimizes the number of MPI messages for action
potential propagation by means of a buffer. Throughout the simulation, the firing of
a neuron (a transition in its burst block to state on) triggers the addition of its
neuron identifier, a 4-byte integer, to the buffer. Upon finishing a time slice or
whenever the buffer is full, its contents, a list of neuron identifiers and a 4-byte
header set to the actual number of entries in the transmitted data structure, are sent
as an MPI message to those nodes which, in the previously specified neuronal
topologically, directly receive axonal tracks. The experiments carried out in this
Chapter made use of a 10 Kbyte buffer.

9.4 Results

The cortical model described in Chapter 8 was chosen as the atomic sub-aggregate
(the portion of the network simulated by one node) because previous studies had
shown that it was capable of replicating experimental data on cortical dynamics.
Thus, the results of the benchmarking are likely to be representative of the
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ing

performance attainable with a wide range of biologically realistic neural simulation
problems.

Given an arbitrarily chosen set of brain areas, only a subset of all the possible
pairs would be directly connected by axonal bundles. Assuming a one-to-one
mapping between nodes in the cluster and modelled brain regions, it follows that
several logical cluster topologies are possible. For performance evaluation, models
with various numbers of modules (1-8) and patterns of axonal bundles were
simulated in order to explore the effect of these parameters on the elapsed time.
Figure 9.3 depicts the simulated topologies. In addition to those contained in the
figure, a completely unconnected aggregate, without inter-module axonal bundles
altogether, was also simulated.

Further, special care was taken to ensure that the performance evaluation was
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carried out with realistic neural simulations; since the performance of an MBED
simulation engine is strongly affected by the network activity pattern, misleading
performance studies can result from simulations with exceedingly low or high
neuronal activity. Parameter space search is needed to find the configuration that
results in realistic activity in all the nodes conforming the cluster. This is a
computationally costly problem in itself, and aggravated by the fact that a new set of
parameters has to be found for each one of the logical cluster topologies under test.

A convenient simplification to the network model was put in place to achieve
realistic activity and inter-node communication overhead for all nodes while
eliminating the need for computationally intensive parameter space searches. Each
sub-aggregate includes a pool of neurons which provides stimulation to the local
model. The inter-module neuronal spikes transported by afferent bundles (and
implemented by means of MPI messaging) is actually transmitted to retain the
performance degradation caused by communication overhead. This guarantees the
validity of the performance results. However, the receiving end disregards the
incoming trains of action potentials, and takes its input from the stimulus neuronal
pool. The dynamics of such a network is simpler and the parameter space search
needs to be carried out once and with a single sub-aggregate rather than with the
entire network.

In this way, (1) all sub-aggregates display a realistic level of intra and
inter-aggregate activity irrespective of network size and topology, (2) the inter-node
data are actually transmitted to evaluate the effect on the performance and (3)
computationally expensive parameter space searches are avoided.

Figure 9.4 plots the time taken by simulations of 1 s of network activity. The
lower trace corresponds to the measured elapsed times averaged over the four
topologies tested: unconnected, chain, star and chained-star. For comparison, the
upper trace represents a linear estimation of the time taken to simulate equivalent
network sizes on a single-processor architecture. Actual measurements of
single-processor times could not be performed given that individual sub-aggregates,
totalling 1.753 10° neurons, were already at the limit of memory resources. The
estimated values for a single-processor platform were calculated with a linear
approximation; the time taken by the simulation of a network aggregate of N
sub-aggregates running on a single node (assuming enough memory space) was
approximated by N times the measured time taken by a single sub-aggregate

running on a single node.
The flat profile of the Beowulf system indicates that, within the measured range
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Figure 9.4: Elapsed time for single node and Beowulf architectures versus number of
nodes and network size

of 1-8 nodes, network size can be increased with nearly constant elapsed times.
Quantification of Beowulf results is possible with figure 9.5, which shows the elapsed
time for the four network layouts tested. Considering the shortest (874.14 s) and
longest simulations (947.4 s), an 8-fold increase in network size (from 1 to 8 nodes)
results in a mere 8.3% in elapsed time in the worst case.

The low overhead incurred by the migration from single node to Beowulf
distributed processing results from the low communication requirements when
compared to the computation part. Further, the used inter-node bandwidth
represents a small fraction of the available bandwidth: The measured average size of
an inter-node packet carrying the contents of the spike buffer described in the
previous section was 8915.76 bytes (2227.94 spikes x 4 bytes per spike + 4 bytes
header). The number of packets travelling through the switch during a 1s
simulation was measured to be C' x 103, where C is the number of inter-node
unidirectional channels (arrows in figure 9.3) in the topology under test. For
instance, 28000 packets were transmitted for the 8 node chained-star network which
results from 28 inter-node channels and 1000 time slices of 1 ms per simulated



CHAPTER 9. MBED SIMULATIONS ON BEOWULF ARCHITECTURES 212

Beowulf performance

I R O T O T N A O O T O B R O O A R AN A RS S IO

940_: Tf:_

= S Unconnected -
e = ——=— Chain :
g 920__ — Star _
2 - —+— Chained-Star / -
& = ra -
- & -

- 7 -

900 — / -

E / -

: & -

880 — ‘ —

- S, :::ﬁ:—;——:'-"// z
__1!I|||Ilil|iillgi|!1|llll|iilIi!lii[:'

1 2 3 4 5 6 7 8

Nodes

t | R E— — — f | I

0.2 0.4 0.6 0.8 1 1.2 1.4

Network size (x1 O%
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second. It follows that the total amount of data communicated between nodes
throughout the entire simulation was approximately 28000 x 10 Kb, 280 Mbytes.
This corresponds to 320 Kbytes/s (considering an elapsed time of 874.14 s), which is
well below the approximately 40 Mbytes/s of available bandwidth (estimated with

in-house benchmarking tools).

9.5 Conclusions

This Chapter has presented preliminary results concerning the scalability of a
message-based event-driven framework for biologically motivated neural simulation
on Beowulf architectures. The experiments carried out with an 8-node Beowulf
indicate that the migration from a single node to this parallel environment results in
an 8-fold increase in aggregate size with an 8.3% increase in elapsed time; the total
size of the distributed aggregate reached 10% neurons with an average of 179

synapses per cell.



CHAPTER 9. MBED SIMULATIONS ON BEOWULF ARCHITECTURES 213

Further tests are needed with Beowulfs in excess of 8 nodes to explore the
scalability to larger simulations. Nevertheless, the results already obtained with an
8-node cluster indicate that low communication overhead can be achieved with an
event-driven framework, resulting in efficient scalability.

The cortical model used for the benchmarking purposes has been developed as
part of ongoing research on the dynamics of the piriform olfactory cortex. This
cortical region contains approximately 107 neurons with several thousand synapses
per cell [118]. Further code optimization and an increase in the number of nodes
promise to make such problem sizes tractable using clusters of commodity

computers.



Chapter 10

Further work and final comments

Further work is proposed in this Chapter dealing with three aspects of the MBED
framework developed in the thesis; at the single cell level, the enhancement of the
functionality of the MBED model. At the small network level, the application of the
MBED paradigm to multielectrode-array (MEA) data and, in the domain of large
scale networks, the extension of the cortical model presented in Chapter 8 to a
multi-module model of the olfactory system.

Finally, the main outcomes of the thesis are outlined.

10.1 The single cell MBED model

Three enhancements to the model contained in Chapter 5 would extend the
capabilities of the MBED framework to reproduce biological data; the introduction
of dendritic delay, tgen, the substitution of fixed parameters, e.g. the synaptic
efficacy and inter-spike delay in bursts, w,y, and t,.¢, by variable values dependent
on Wsym and the addition of synaptic plasticity.

Dendritic trees introduce a propagation delay between the activation of a
synapse and its resulting effect at the cell body [24]). The addition of a delay on the
v channel from synapses to threshold block and its associated parameter ¢4, (see
model depicted in figure 10.1) would account for this latency. This modification is
necessary in order to accurately replicate the timing of synaptic events present in
field potential recordings as those obtained, for instance, by Ketchum [124]. Figure
4.7 in Chapter 4 showed the response of the piriform cortex to shock stimuli. The
trace corresponding to the strong shock response can be segmented in intervals
according to the synaptic type whose contribution to the recorded potential is
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maximal. The modelling of this temporal sequence of synaptic activations will be
possible after the addition of the dendritic delay to the MBED model.

A synaptic weight, w,y,, obtained as a function of wsym,m would account for the
variability of the synaptic efficacy due to changes in membrane voltage. The
substitution of the fixed refractory period, ¢,.s, by a variable parameter dependent
on Wgym would also allow the implementation of adaptation within bursts. The
inter-spike delay could be made dependent on previous activity of the cell.

Finally, synaptic plasticity, the proposed mechanism of learning in the nervous
system, can be implemented in the MBED neuron model. The execution of learning
algorithms (e.g. Hebbian learning rules [170]) would involve the update of synaptic
parameters throughout the simulation. This gives rise to a potential problem; since
different synapses experience different sequences of activation, their learning
algorithms will most likely adjust their respective synaptic parameters to different
values. This is not a problem when each synapse has its associated copy of the
complete synaptic parameter set. However, the data structure proposed in Chapter
6 for memory-efficient large scale simulations, relies on a table of synaptic models.
Each synapse stores an index into this table. Thus, one synaptic parameter set is
shared by multiple synapse instantiations. Learning is still possible by providing a
sufficiently large set of possible synaptic models and implementing the adaptation
algorithms to act on the synaptic type index associated to each synapse rather than
on the synaptic parameters themselves. For instance, long term potentiation (LTP)
would be implemented as a change of the synaptic type index of the potentiated
synapse, taking the value of an existing synaptic model with identical synaptic delay

(tger) and activation duration (fg,) but with increased synaptic weight (weyn).

10.2 MEA data modelling

The above mentioned modifications to the MBED neuron model would extend its
time-constant parameter set and also add time-dependent adaptation algorithms.
For the goal of the MBED framework is two fold, efficient and biologically realistic
modelling, experimental characterization of these parameters and algorithms will be
of fundamental interest.

Multielectrode-array technology (MEA) is emerging as a tool for quantitative
study of the cooperation of cells in small networks. This technology relies on
microfabricated structures, using silicon as their substrate, which accommodate a
number of electrodes and neurons. Figure 10.2 illustrates such a set up, including
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Figure 10.1: MBED model enhanced by the addition of dendritic delay and membrane
voltage dependent wyy, and t,.¢

optical imaging. A system for recording and stimulation of all cells in a 16 neuron
network has been developed [171].

The MBED model of the piriform cortex described in Chapter 8 relied on EEG
and field potential data, which typically correspond to the average activity of
populations of neurons [132]. It is desirable, however, to base the network models on
quantitative information regarding the interaction of individual cells making up the
network. MEA technology is the ideal candidate for such studies in-vitro, since it
provides independent monitoring of all cells integrating a small network.

The MBED framework is suitable for the problem of modelling MEA recordings.
The parameter set associated to the MBED neuron model matches the type of data
readily available with MEAs (axonal delay, burst duration, refractory period
duration and others). On the other hand, MEAs do not provide detailed information
as required for the development of compartmental models (e.g. ion channel types,
conductance distribution, and so on).

The proposed experimental procedure would consist of two phases; in phase 1,
the MEA would be used to record from 16 neurons obtained at early developmental
stages which would establish connections, as is frequently the case with cultures of
developing cells. In phase 2, parameter space search would be run on the MBED
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Figure 10.2: Multielectrode array setup as used in the recording/stimulation of small
networks of neurons

network model in order to fit the experimental data. Successful match of
experimental data will indicate an adequate modelling of small network dynamics
and will lead to the extension of the model to larger (multi-module) networks.

10.3 Multi-module models

The understanding of the neural processing carried out on incoming sensory
information would be facilitated by the construction of models including several of
the brain modules participating in a particular sensory pathway.

Parallel architecture are capable of providing the computational power necessary
for such simulations. Niebur et al. [70, 162] and Jahnke et al. [163] have
demonstrated that the supercomputer CM-2 is suitable for the simulation of
networks of spiking neurons of up to 4 - 10° cells. Such highly parallel architectures
guarantee wide inter-neuron communication bandwidth and prevent quick
performance degradation with increasing network sizes. Preliminary results,
presented in Chapter 9, indicate that the MBED framework can be ported to low
cost parallel architectures based on Beowulf clusters to achieve increases in tractable
problem sizes.

The availability of a computational framework capable of simulations in the

order of millions of neurons would allow the construction of a multi-module model of
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Figure 10.3: Proposed multi-module MBED model of the olfactory system

the olfactory system. Firstly, an MBED model of the olfactory bulb including three

populations of cells, mitral, tufted and granular, would be constructed. Secondly, a

pool of sensory cells accounting for olfactory receptors would be added to the model.
Finally, sensory receptors, olfactory bulb and piriform cortex would be connected to
form a multi-module model to support studies of the dynamics of smell recognition

and segmentation.

Figure 10.3 depicts the proposed model, including estimations of the
inter-module communication overhead. All values have been scaled down with an
approximate real/model ratio of 10:1. To estimate the overhead caused by
inter-module communication, a worst-case scenario is considered; all neurons firing
at 100 Hz and contributing with one message per spike. Note that, in the olfactory
bulb, only mitral and tufted cells, taken to be two thirds of the total bulbar cell
population, contribute to the communications towards the piriform cortex. Equally,
in figure 10.3, two thirds of the piriform cortex cells are assumed to synapse back
onto the olfactory bulb.

The network size already achieved on Beowulf clusters (above 10° neurons)
indicates that further increases in the number of nodes (up to approximately 50
PCs) would be sufficient to construct and simulate the described model.

10.4 Final comments
The main outcomes of this thesis are:

e Development of a neuron model based on the finite state automaton formalism
incorporating synaptic timing (activation latency and duration and synaptic
efficacy), axonal delays, single spike, bursting and pace making dynamics and

excitation and burst truncation inhibition thresholds.
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e Implementation of an efficient MBED simulator incorporating synaptic model
structures for memory efficiency, and an LUT based queue and a low-overhead
memory manager for improved CPU and memory efficiency.

e The application of the MBED framework to a small network model of the
locomotory circuit of C. elegans, consistent with quantitative experimental
data obtained from wild-type, mutated and laser ablated animals.

e The development of a large scale model of the piriform cortex including 10°
neurons with physiologically realistic properties and its validation by
comparison with field potential recordings and EEGs.

e Preliminary tests on the scalability of MBED cortical models utilizing
commodity Beowulf architectures. The low inter-process communication

overhead made possible an 8-fold increase in problem size with an 8% increase
CPU time.
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Figure A.1: Schematic representation of an axon

e The core current, assumed to flow axially inside the axon, is considered

constant within a cross-section.

o The membrane is a partly conductive partly capacitive shield which
completely seals the infinite length cylindrical axon.

e The external medium, an purely conductive open space, provides a low
resistance path that can be approximated by a zero resistance equipotential
(®. = 0) conductor.

When the surface integral of equation A.4 is applied to the differential volume of

figure A.1 it yields,

d | Erm(TO) [

=1
dt )

(A.5)
where the subindices 7, e and m correspond to intracelular, extracelular and
membrane and z and 7 indicate axial (alongside the z axis) and radial components.
The righthand term, I, accounts for the current injected through a microelectrode.
Since the cable equation for axons and dendrites is often expressed in terms of
the transmembrane voltage, V, the electric field term, E, in A.5 can be substituted

taking into account the following equalities,

(o; | E:i(zo) | =0y | Ezi(zo +dz) \rr? — 277 dz (o, | Erm(ro) | —€m
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which, with the aid of the following definitions,
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takes the usual form of the cable equation for neuronal branches
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Appendix B

CCD imaging of locomotion in C.

elegans

Video recordings of behaving C. elegans were obtained with a standard IMT-2

Olympus microscope and a x4 objective. Worms were grown on agar-filled Petri

dishes. Adults were identified by their body dimensions, isolated and imaged while

performing forward and backward locomotion, reversal and body coiling. A subset

of the 16-bit depth 320 by 240 pixel gray scale images is included in this Appendix.
Details on C. elegans protocols can be found in [94].
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Figure B.1: Forward locomotion
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Figure B.2: Backward locomotion
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Figure B.3: Reversal
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Figure B.4: Whole body bending



Appendix C

The image processing algorithm

The algorithm used to process the video recordings of C. elegans is summarized in

the flow chart of figure C.1.
A threshold operation is applied first to the unprocessed frames (figure C.2-A),

1 Zf ?munprm(xay) > th (Cl)
0 Zf Zmunproc(m? y) <=th

7:7’nthres(xa y) - {

The resulting image shows the worm as a dark stain on white background (figure
C.2-B).

A contour closing algorithm is then used to eliminate the bright stains which
appear inside the body as a result of light reflections (figure C.2-C).

Next, a sliding window of size NxN pixels is used to find a region of the image
which includes a segment of the body edge. The windows scans the image until a
region is found where the number of dark pixels cover between 30% and 90% of its
surface. This condition ensures that the window overlaps partially with the body of

the worm and contains a segment of its edge (figure C.2-D),

for (i=0;i<=imax;i++)
for (j=0;j<=jmax;j++)
{
if  ( CountBlackPixels(i,i+N,j,j+N) > 0.3*N*N ) &&
~ ( CountBlackPixels(i,i+N,j,j+N) < 0.9%N*N)

break;
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Figure C.1: Flow chart of the image processing algorithm

where CountBlackPixels(x1,x2,y1,y2) is a function which counts the number of
dark pixels in the image area delimited by (x1,x2,y1,y2).
The selected region is scanned to find a pair of contiguous pixels with one point

inside the body and one outside (figure C.2-E),

for (i=x1;i<=x1+N;i++)

for (j=yl;j<=yl+N;j++)

{

if  ( image(xl,y1) != image(xl+1,y1))
break;

¥

The complete edge of the body is then detected, using a contour following
algorithm which operates starting at the pair of pixels. The extracted contour is
stored as a list of position vectors (figure C.2-F).

The local curvature is obtained from this parametric representation calculating
the second derivative of the contour vector sequence (figure C.3-A). Low pass
filtering is required previous to the determination of the curvature for smoothing of
the data. The tips of the head and the tail show as the two maxima in the second

derivative of the contour.
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Finally, the sequence of second derivative functions obtained from multiple

consecutive images are aligned and shown in matrix format in figure C.3-B.
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Abstract: - C.Elegans is a nematode whose nervous system has 302 neurons. Its swimming motion
is controlled by a subsystem of 80 neurons, which are able to generate both forward and backward
locomotion at variable speed. We present both a model of this circuitry based upon event-driven models
of neurons and a model of the nematode’s body. We test its capability of generating forward/backward
locomotion. The final aim of this work is to demonstrate the feasibility of using event-based models of
neurons to reproduce the fundamental behaviour of circuits of neurons not only in locomotion but also

in sensory signal processing.

Key-Words: - neuronal simulation, discrete simulation, C. elegans, locomotion

1 Introduction

C.Elegans is a nematode of small dimensions (1
mm long and 80 micrometers wide) which is found
in soil. It lives on bacteria which it must locate
and ingest. Despite the reduced size of its ner-
vous system,with 302 neurons [1], it still has a
relatively rick behaviour. Its locomotion is based
on crawling, both forward and backward and its
speed of propagation may be changed depending
on stimulation from environment.It also bends in
an elaborate manner when mating.

Several attempts have been made to model and
simulate subcircuits of C.elegans’ nervous system
(2] [3] [4]. Functional data is presently limited
to observation of behaviour due to difficulties in
electrophysiological recordings.

In this paper we present a model of the locomo-

tion neural circuitry which accounts for a variety
of behaviours. We have extracted the relevant
features of it and simulated a simplified version.
A mechanical model for the nematode has been
proposed [2]. We extend this model from two to
three dimensions to allow the evaluation of the
modeled nervous system at the behavioural level.

Different types of models have been used for the
simulation of single neurons or small aggregates
of neurons [5]. We have chosen an event-driven
neuron model which combines the rich behaviour
of real neurons with efficient simulation.

2 Event based simulation versus
compartmental models

Traditionally, modeling of realistic circuits of neu-
rons has been based on compartmental mod-
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els. The simulation of these models usually in-
volves the numerical solution of non-linear dif-
ferential equations (due to the non-linearity of
the Hodgkin-Huxley ion channel equations). In
addition to the computational requirements of
the simulation, compartmental models tend to be
highly sensitive to the many parameters required.
This makes them specially difficult to tune and
difficult to use in simulating large aggregates of
neurons. On the other hand, integrate and fire
models use leaky capacitors and threshold func-
tions. This solution reduces the computational
requirements for simulation, allowing simulation
of large aggregates, but limits the functionality of
the neurons [6].

We use event driven models of neurons, whose
computation requirements allow fast simulation
but maintain a relatively high complexity in the
functionality of each model neuron. Discrete sim-
ulation allows exploitation of latency in biological
neurons to speed up simulation.

As an example, consider the simulation of in-
tegrate and fire versus event based. In an event
driven model, the number of events depends on
the number of action potentials. If no action po-
tential is generated, the processor spends no time
in that neuron whereas in integrate and fire mod-
els the membrane voltage is still updated for every
time step.

The drawback of discrete models is their limi-
tation in reproducing the neuron dynamics at the
membrane voltage level. Our working hypothesis
is that the behaviour of a neuron can be captured
by pulse based models.

3 Event-driven neuron model

In Figure 1 the different blocks making up the
model neuron are presented. It is an asyn-
chronous system based on pulse modulation. Sig-
nals (pulses) are evaluated and propagated in the
direction of the arrows in the diagram.

Signals originating in chemical synapses and
electrical junctions (gaps) enter the neuron from
the left hand side of Fig. 1. Blocks marked as
gaps/synapses behave as monostable oscillators
triggered by the incoming pulses (which model
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biological action potentials). They are stretched
(thereby implementing a low pass filter) and a
propagation delay is also introduced.

Delayed and stretched pulses reach the mul-
tifunctional block. This stage is responsible for
evaluating different combinational functions with
the inputs from the gaps/synapses. The specific
function implemented depends on the functional-
ity of the neuron.

For example, for a neuron working as a correla-
tion detector, this stage would calculate the usual
weighted sum of inputs and apply a thresholdin
function to it. '

N
out:TH(Zmi*wi) (1)
i=1

Where TH is the thresholding function, N is
the number of synapses, z; is the value of input
i (1 or 0) and w; is the weight of the synapse
i. Negative weights account for inhibitory inputs
whereas positive weigths account for excitatory
inputs.

For a bypass neuron, the model behaves as
a D flip-flop. Inputs are flagged with type ids
therefore grouping input synapses into two classes
(clocking synapses and D synapses setting the fu-
ture state). When the neuron is in its asserted
state, its output is a train of pulses. In the de-
asserted state its output is silent.

Both correlation detectors and bypass neurons
are used in our model of the locomotion system
in C.Elegans.

Two outputs drive the burst generator block
from the multifunctional block. The line labeled
“exc” is asserted when input activity is exciting
the neuron. The “ inh” line is asserted only when
input activity gives rise to sufficient inhibition (as
opposite to excitation). Both lines may be de-
asserted indicating that the input pulses do not
force neither excitation nor inhibition.

To account for spontaneous activity an astable
oscillator drives the bursting block. In our loco-
motion circuitry this block is only active for AVB
and AVA inter neurons which control the speed
of locomotion.

The last block, AP shaper, generates pulses of
variable duty cycle when the output of the burst
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Figure 1: Blocks diagram of the neuron model.

block is asserted. The refractory period is mod-
eled by silent periods between two pulses within
which no action potential can be generated. This
stage drives the output

4 Existing data about the loco-
motion circuitry

The nervous system of C. elegans has been
mapped completely using electron microscopy
[1]. In addition to this topological information,
several techniques have provided insight to the
functionality of specific neurons (immunochem-
istry allows staining cells which release a partic-
ular type of neurotransmitter, genetic studies al-
low identification of malfunctioning cells in mu-
tants,and so on) [7].

Laser ablation allows the elimination of identi-
fied neurons and the study of the effect on loco-
motion [8].

Based on this data we propose the model pre-
sented in Fig. 2. Circles represent neurons
and arrows represent synapses/electrical junc-
tions.The top part of the diagram is closest to
the head. On both sides square boxes represent
body muscles. NRV and NRD stand for nerve
ring ventral and dorsal excitation. AVB, DB and
AVB generate and propagate contractions down
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Figure 2: Locomotion circuit of C. elegans

the body while DD and VD inhibit antagonistic
muscles.

Only a part of the forward locomotion circuit is
included in the figure. The backward locomotion
circuit uses a separate set of cells which is sym-
metrical to the forward locomotion circuit but ro-
tated 180 degrees.

5 Mechanical model

To test the usefulness of the proposed neural cir-
cuit in the generation of forward and backward
movement, it is advantageous to interface the
control circuitry with the mechanical model, to
allow the gross interaction of the system to be
easily viewed. Our mechanical model is based
on previous work on modeling the body move-
ment of the nematode[2]. We have extended this
model to three dimensions to allow further stud-
ies of the head movement (which has an extra
degree of freedom when compared to the body).
We have also simplified some force terms as ex-
plained below.

In summary, the model is based on an elastic
cylinder made of an array of linear springs. Each
point of the body mesh is connected to its four
closest neighbours by a spring. The force acting
on this point is the net contribution of all four
springs. The resting length of the springs has
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been set to force the mesh to be stable in cylin-
drical shape.

Fy =k x(d; —dp) v, (2)

where k is the spring constant, d; the distance
to the point i in the mesh, dy the ideal length and
u; the unitary vector towards neighbouring point
i.

To maintain its cylindrical shape, the nema-
tode requires a high internal pressure [2]. The
internal pressure term is calculated as,

Fy=kpxn (3)

where k£, is a scaling factor and n is a unitary
vector normal to the surface of the body.

The action of the environment is modeled as in
Eq.3 Only inertial forces are considered; viscous
forces are neglected as in [2].

Fe=—krx(v*n)*n (4)

where k, is a scaling factor, n a unitary vector
normal to the body and v is the velocity vector.

This force acts as a damping term to stop the
mesh from oscillating in addition to provide the
propulsion for body movement.

Finally, all types of forces acting on a point in
the mesh are,

Fy=F,+F,+F, (5)

where F; is the force by neighboring point, Fj,
the internal pressure and F, the resistance cre-
ated by the environment.

Muscle contraction is simulated by changing
the ideal length of the springs in the body wall
(Eq. 1). Those springs located at the position
where the contracted muscle is, will see their ideal
lengths reduced until relaxation.

Fig. 3 shows the resulting body shape.

The cylindrical body of the nematode is cov-
ered by muscles which are organised in longitu-
dinal stripes . Contraction of these muscles gen-
erates the bending of the body required for loco-
motion, mating, and so on.

In C.Elegans there are twelve muscles per row
and eight rows in the body.
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Figure 3: Screen shot of the mechanical model.

Sets of muscles are connected by electrical junc-
tions and controlled by a single neuron. In our
model, we have collapsed the body muscles into
two rows (ventral and dorsal).

6 Simulation results

6.1 Normal forward/backward propa-
gation

In Fig. 5 the results of the simulation of the for-
ward locomotion circuit are shown. Only 4 mus-
cles from the ventral side of the body have been
included in the plot.

As mentioned before no electrophysiological ex-
periments have been conducted so far on neurons
from the locomotion system. Action potentials in
mammalian neurons last for a few milliseconds.
On the other hand, action potentials in pharyn-
geal muscle of C.Elegans has been shown to last
hundreds of milliseconds and in Ascaris (a nema-
tode similar to C. Elegans) pulse-like signals in
neurons of up to a few hundreds of msec have
been recorded [9].

In our model we have long pulses (action po-
tentials) in muscles but we use pulses of a few
msec in neurons.

The equivalent of the simulated circuit in the
digital electronics domain would be a shift reg-
ister. NRV and NRD act as inputs to the regis-
ter, VB and DB behave as flip-flops making up
the shift register and AVB takes the place of the
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Figure 4: Simulation of forward locomotion cir-
cuit.

clock.

At t=0 all muscles in the body (labeled
MSCxV) are relaxed and the animal remains still
in a straight line. When it initiates forward loco-
motion, its muscles in the head contract forcing
the bending of the tip of the body.

The head is driven by a neural circuit situated
in the nerve ring which is independent from the
forward /backward locomotion circuit. We have
not simulated that circuit, hence, we assume that
the head circuitry has forced the contraction of
muscles in the head.

AVB is the inter neuron which controls the
speed at which contraction propagates along the
body. Each pulse generated by this inter neuron
forces a displacement of the contraction pattern
in the body muscles towards the tail.

Muscle cells close to the head (MSC1V and
MSC2D) become active as a result of activity ar-
riving from the AVB inter neuron and from the
head (NRV and VRD). They generate a train of
pulses and the muscle in the mechanical model
contracts.

VB motor neurons behave as flip-flops making
up the shift register. When AVB is asserted, the
state of VB, is propagated to VBp41.

The output of the VB cell activates the adja-
cent muscle, creating = propagating wave of con-
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traction.

The ability of the nematode to change speed
can be accounted for by changing the frequency
at which AVB works. An increase in frequency
forces faster propagation of the contraction, in-
creasing the speed of the animal through the
medium.

VD and DD inhibitory neurons (not shown in
Fig.5) will fire whenever the motorneuron they
are connected to becomes active. Their output
inhibits the muscle in the opposite side of the
body preventing simultaneous contraction of two
muscles in opposite positions (ventral and dorsal)
in the same segment.

Backward locomotion follows the same mech-
anism. AVA is the inter neuron responsible for
speed control and VA and DA are the bypass neu-
rons which propagate contraction along the body
muscles towards the head.

DD and VD act as inhibitory neurons prevent-
ing simultaneous contraction in antagonistic mus-
cles in the same way they acted for forward loco-
motion.

6.2 Defective locomotion

Laser ablation of neurons in the locomotion cir-
cuit generates nematodes with locomotion de-
fects.

When the AVA inter neuron is laser ablated [10]
, backward locomotion is never observed. AVA is
also required in our model to trigger the propaga-
tion of contraction down the body. If it is forced
to be silent, though the head muscles contract,
no contraction wave propagates in the body and
backward locomotion is impossible.

When the AVB inter neuron is ablated, the ef-
fect in both animal and model is the opposite;
no forward locomotion is seen though backward
locomotion is possible.

The ablation of the VB and DB neurons also
perturbs normal locomotion in the nematode. If
these motor neurons are forced to be silent, con-
traction cannot be propagated correctly and nor-
mal locomotion is impaired.
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7 Conclusions and future work

The presented work is part of ongoing research
studying the possibility of using event-driven
models of neurons in simulations of biological
neural circuits. If the behaviour of biological neu-
ral nets can be captured by a set of event driven
neuron models, the simulation of aggregates of
hundreds of thousands of neurons would become
feasible. In the case of the locomotion system,
correlate detector neurons were not enough to
generate the locomotion pattern. Bypass neurons
(VB, VA, DA and DB) had to be added.

It is likely that more complex functionality will
have to be added to the model neuron as more
complex neural circuits are simulated.

C.Elegans has been chosen as the first target
system. The simulation of the locomotion cir-
cuitry is being currently extended to other neural
circuits. In particular, ongoing work is focusing
on thermo taxis. C.Elegans is able to steer its lo-
comotion towards a suitable temperature. Once
the ideal temperature zone has been reached, the
nematode ensures it does not move out of that
region.
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Discrete simulation of large aggregates of

nneuroIls

Enric T. Claverol, Andrew D. Brown, John E. Chad

Abstract

Realistic simulation ot: aggregates of neurons often utilises compartmental models which limit the scope of the
simulations in single processor architectures to small or medium size networks (typically hundreds of neurons).
An alternative approach, based on cell automata models, allows efficient simulation of nervous tissue by modelling
neurons as finite state automata. In this paper, data structures and algorithms appropriate for efficient simulation of
message based event driven models of neurons in single processor architectures are presented. With these techniques,

the simulation of large networks (of the order of 105 neurons with 102 synapses per neuron) becomes feasible.

Keywords

Neuronal simulation, discrete simulation, pulse coded neuron models, cell automata

I. INTRODUCTION

Simulation of the nervous system is one of the techniques available to the neuroscientist to
help understand the way in which neurons cooperate to process information. Realistic simulation
of brain tissue often relies on compartmental models of neurons. In this context, the dynamics
of a neuron are captured by a set of non-linear differential equations describing the changes in
the voltage across the cellular membrane [1,2]. Each of these equations describes the voltage in
a section of the cell which is assumed to be isopotential. The membrane is modelled as a leaky

capacitor which draws and delivers current to nearby compartments,

I J
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where V;, is the membrane voltage in the m*" isopotential compartment, Cp, the capacitance of
the membrane in that compartment, V; the membrane voltage in one of I contiguous compartments
which draw and inject current into the compartment through an internal conductance g; and E;
and g; are the voltage source and conductance modelling one of J ion channels which may also
draw and inject current to the membrane capacitance. The value of the conductance g; is usually
a non-linear function of time, voltage or concentration of neurotransmitter and ions.

Extensive work has been done on optimization of the simulation of compartmental models (for a
review see [1]). However, the simulation of compartmental models is still inherently computation-
ally demanding and limited for this reason to networks of modest size (a few thousand neurons for
models with a few compartments).

In addition to their computational complexity, compartmental models have extensive experi-
mgntal requirements. Modelling ion channels following the classical Hodgkin-Huxley approach, as
required for most compartmental models, involves the isolation of the different types of ion chan-
nels present in the cell (sometimes impossible) and determination of its kinetic properties (usually
through voltage clamp and similar techniques).

Several more simplified models {(e.g. integrate and fire) have been suggested as an alternative
to compartmental modelling for large scale simulations [4-6]. In these models, the differential
equations-have been simplified for improved efficiency by eliminating some of the non-linear con-
tributions to the membrane current.

Drawing from the techniques used in the simulation of discrete systems, neurons can also be
modelled as complex finite state machines. Neurons are described as automata with a fnite
number of possil:'  states which interact by communicating action potentials. This approach has
been successfully used for the simulation of the hippocampus and has proven to be efficient enough
for the simulation of tens of thousands of neurons [2].

In this paper, efficiency issues relating to the simulation of a discrete neuron model are presented.
This model allows neurons with diverse types of behaviour (correlation detection, spontaneous
bursting activity, single action potentials and pulse width modulation) and can be extended easily

to incorporate other types of properties.
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First, the discrete neuron model is described. Secondly, issues arising from the implementation
of an efficient simulator for these models are discussed.
Finally, the performance of the implementation of the discrete simulator is studied, showing the

suitability for simulations of networks in the order of 10° or greater neurons.

II. MESSAGE BASED EVENT DRIVEN NEURON MODEL

‘ Message based event driven neural simulation is a generic concept which may refer to a large
number of models, all of them sharing the same principles, but with different levels of complexity.
An example is briefly described for the sole purpose of clarifying the principles underlying messager
based event driven simulation of neurons. The same issues dealt with here are applicable to other
message based event driven models. For a review of event driven simulation techniques see [8,9].
The model presented here to illustrate the basics of the message based simulator is being used for
realistic simulation of circuits of neurons [3].

The message based event driven neuron model is a finite state automaton. It is made up of
several blocks, each of them capturing the functionality of a different component of the neuron
(see Fig. 1).

Communication between neurons and blocks within a single neuron is achieved by message
passing. Each message is a data packet containing the time at which the message will be delivered
to its destination (expressed as the difference between delivery time and current time), a label
field indicating the type of message and a third optional field with an extra parameter used by the
target to process the message. Arrows with solid lines in Fig. 1 indicate message paths. Note that
some solid arrows are originated and terminate in the same block.

A change of state in a block is always triggered by the arriv'al of a message. After a change of
state, new messages may be scheduled for broadcasting to other blocks or to the same block.

Table I and Table II list the parameters which characterise the model and the channels for
message broadcasting respectively. Tables III,IV,V and VI show the state transition tables and
combinational functions implemented by the blocks in the neuron model. When a message is
delivered to a block, the automaton will be in one of a finite number of states and may change

to a new state. This change of state may be accompanied by the scheduling of a new message
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Parameter Function
the Excitation threshold
th; Inhibition threshold
tap Duration of action potential
trey Duration of refractory period
Npurst Number of spikes per burst
tosc Period of pace maker
ts Time offset of pace maker
tdel Synaptic delay
tdur Duration of synaptic pulse
Weyn Synaptic efficacy

TABLE I

PARAMETERS USED IN THE MODEL
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(an output) and the update of state variables in the block (an action). For purely combinational

functions (e.g. the synapse block) the output is only a function of its input.

A. The synapse block

Synapses receiving the on message at ¢, become activated and, after introducing a synaptic delay,
deliver an on message to the threshold block (at ¢+ ¢4e;). At t + fger + taur, the synapse inactivates
and sends an of f message to the threshold block. Synapses are combinational functions which
schedule new messages depending on the last message received (they do not need memory bf their
current state).

In real neurons the consequence of an action potential is the release of neurotransmitter af-
ter a certain delay; The release of neurotransmitter affects postsynaptic neurons by increasing
(excitatory) or decreasing (inhibitory) its membrane potential. In the message based model, the
neurotransmitter is substituted by a message and its release by the broadcasting of the message to

the target neuron.
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Channel Message structure Legal values  Legal values

of m of p

o {t,m,p} on efficacy(wsyn)
5 {t,m} on,of f
vy - {tmp} onoff  efficacy(wayn)
5 {t,m} change
€ {t,m} on,of f
¢ {t,m} on
U {t,m} of fyrof f

TABLE 11

MESSAGE CHANNELS IN THE NEURON MODEL

B. The threshold block

This block is responsible for calculating a weighted sum of the active synapses (the weight being
their efficacies, Wsyn). Whenever the weighted sum goes above the excitation threshold (th.), an
on message is sent to the burst generator block which generates a burst of action potentials. If the
weighted sum goes below the inhibition threshold (th;), the threshold block sends an of f message
to the burst block to stop the ongoing burst.

The update of the weighted sum of inputs and its comparison with the excitation and inhibition

thresholds is triggered by the reception of on and of f messages from synapses.

C. The oscillator block

An oscillator block has been added to the model which sends on messages to the burst generator

block every tos. time units starting at ¢ = ¢4. This block simulates rhythmic activity in neurons.

D. The burst generator block

The burst generator block generates a burst upon reception of an on message. The arrival of
the on message triggers the start of a cycle of state changes. The sequence starts with a change

from state of f to state on (onset of the first action potential). After ¢,, time units, the state
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Fig. 1. Message based event driven neuron model. Solid arrows indicate origins and destinations of messages. Thick

dashed arrows indicate the correspondence between parts of the real neuron and blocks in

the model.

changes from on to ref (beginning of the refractory period) and, after t,.; time units, back to on

(start of the second action potential in the sequence). This cycle is repeated Npyrs¢ times (making

up a burst of Ny,.s¢ action potentials). An on message is broadcasted to all synapses driven by

the burst block when its state changes from of f to on in order to communicate neurotransmitter

release.

I1I. IMPLEMENTATION OF THE EVENT DRIVEN SIMULATOR

A. Overview

The simulator has been implemented as an extension of the commands provided by the scripting

language of a standard numerical package (see Fig. 2 for an overview of the system developed). This

approach provides flexibility in the storage of topology, data analysis, automation of parameter

space search and portability across platforms.
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Input Output
a:=on B := {tger, on}
Bi=on | B:= {taur,of f}, v :={0,0n, wey,}
B:=off v:={0,0ff, —wsyn}
TABLE 11
THE SYNAPSE BLOCK FUNCTION
Input Action | Output

Wsum+ = Wsyn

Woum >= the 7

y:=on | true: -|e:= {0,on}

Weum <= th; 7

true: - | e := {0,0f f}

Wsum— = Wsyn

Weum >= the 7

y:=off | true: -|e:={0,on}

Weym <= th; ?

true: - | e:={0,0ff}

TABLE IV

THE THRESHOLD BLOCK STATE MACHINE

Current state

Next state | Output

§ := {tosc, change}

on

of f | 8 := {tosc, change},( := {0,0n}

of f

on | § := {tosc, change},C := {0,0n}

TABLE V

THE OSCILLATOR STATE MACHINE

246
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Fig. 2. Overview of the simulation tool

When aiming at large scale simulations of the nervous system, the simulation tool must provide
an efficient way of storing the topology and parameters of the network. Storage of individual
connections and neurons in files is not efficient (files in the order of hundreds of Megabytes would
be needed for networks of 10° neurons and 107 synapses).

The simulator described here offers two alternatives. A program written using the scripting
language of the numerical package creates a vector with each entry declaring a synapse. A new
command, part of the language extension, accepts the vector of connections as a parameter and
creates the data structures required for the simulation. With this approach, only the code needed
to create the vector of synapses (and not the synapses themselves) has to be stored.

A second alternative is to provide special purpose higher level commands which do not accept
vectors of synapses but parameters which characterize the connectivity rules of the topology. As
an example, for the randomly connected network of Section IV, the parameters would include
the number of neurons, number of connections per neuron and the probability of establishing an
excitatory or an inhibitory connection. Although this approach offers an efficient use of memory (no
intermediate lists of synapses must be created) it requires the implementation of a new command
for each family of topologies.

The integration of the simulator within a standard numerical package also simplifies the analysis
of the data. The standard tools available in the package can be used with the results of the

simulation
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(e.g. the Fourier transform is implemented in most numerical packages and allows frequency
domain analysis of EEG simulations). The results of interest are typically parameters which sum-
marize properties of the network dynamics (see Fig. 6-A,B,C) for comparison with experimental
bulk measurements like EEG and external field potentials. The knowledge of the state of individ-
ual cells is also important to understand the bulk measurements. Cell states are plotted in matrix
form and used to create mpeg movies with the activity of the network (see Fig. 6-D).

The integration of the simulator within a standard numerical package makes also possible the
automation of some of the tasks associated with the simulations. For example, when exploring the
dynamics of a network, a search of a region of the parameter space is likely to be needed. The
possibility of using a scripting language to control the parameter search allows fast implementation
of different search algorithms. Finally, relying on the numerical package for input/output increases
the portability of the simulator. As many packages have been ported to several operating systems,

the programmer does not need to recode (e.g. the plotting routines) for cross-platform portability.

B. Data structures

The data structures which store topology, parameters and state variables of neurons and synapses
are shown in Fig. 3 (see [4] for a comparison of data structures for the simulation of neural
networks).

Upon initialization, the simulator estimates and allocates the total amount of memory required
for the storage of all neurons and synapses. Dynamic allocation of individual neurons and synapses
must be avoided to reduce the overhead associated with dynamic allocation.

The data structure for a neuron contains the following fields: a neuron id, the number of synapses
from this neuron onto other neurons, the state vector, the state variables, parameters and a list of
synapses.

The number of synapses in realistic simulations will be at least two orders of magnitude higher
than the number of neurons. Hence, the minimization of the memory allocated for each synapse
is important.

Each synapse is characterized by its parameters (tgeistdur,wsyn) and the identifier of its target

neuron. The narameters are not stored for each synapse. Instead, only an index into a table of
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Data structure for neurons
and synapses
Neuron 0
Neuron dentifier "~._.
Table of synapse models LI . Table of pointers to neurons
ao Number ol synapses T, a0
10 other neurons .
Synaptic delay (idel} +® Pointer 1o neuron 0
z3]
Duration {tdur) "'.‘ Pointer to neuron 1
. State vector
Synaptic weight (wsyn})

Pointer to neuron 2 ez

Painter to neuron 3 83
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Duration {tdur)

3

@4
v Pointer to neuron 4
wsum
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Synaptic weight (wsyn)
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Fig. 3. Data structures used for storage of neurons and synapses.
types of synapses (seen on the lefthand side of Fig. 3) is stored.

Entries in this table are model structures which contain the parameters for one of the allowed

types of synapses. For our implementation, the table of synaptic models may have up to 64 entries,
allowing 64 types of synapses.

In addition to its parameters, each synapse structure needs to identify the target neuron. Our

simulator, running on a machine with a 32 bits wide address bus, would need a 4 bytes word to

identify the target neuron if a pointer was to be stored in each synapse. Instead, an index into a
table of pointers is stored.

Given an addressable memory space of 232

bytes, it is unlikely that a simulation of 22* neurons

(16 million) or more would fit in the available memory. Hence, neurons are labeled with a 24 bit

identifier which is used as an index into the table of pointers to neurons (righthand side of Fig. 3)
to locate the neuron in memory.

With these two strategies (a table of models and a table of pointers to neurons), the parameters

needed for a synapse can be masked into a single 32 bits word (24 bits for the target neuron

identifier, 6 bits for the synapse type and 2 bits unused). Memory consumption for the storage of
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synapses is reduced in this way.

C. Priority queue

Neurons communicate by message broadcasting. As new messages are generated, those that are
scheduled for delayed delivery to their destinations are inserted in a time-sorted queue. The main
loop of the simulator is responsible for extracting the messages and for their delivery to their target
devices at the appropriate time.

Two main issues have to be considered when implementing the priority queue. Efficiency in
terms of CPU time required for insertion/extraction of new events into the queue and memory

consumption.

C.1 Efficient insertion of new messages

The insertion of messages in the queue is usually the most costly operation in event driven
simulation, as messages have to be sorted by time of delivery. Several algorithms have been
suggested for queue management (for a review see [12,13]). In most cases, the insertion time is
affected by the number of messages in the queue. Calendar queues deserve special attention as
this approach offers insertion latencies independent of the size of the queue (O(1))[5].

Neuronal activity consists of action potentials of, at least, 1 — 2 ms of duration. For discrete
simulation of a network of neurons, time can be represented as a multiple of a basic time step
of 100us without compromising the usefulness of the simulation. Given this coarse granularity of
time, a priority queue based on an LUT (look up table) for fast insertion can be used (see Fig.
4-A).

The priority queue is made up of a set of linked lists of messages. Each list containing all the
messages which have been scheduled for the same time in the future. An LUT stores pointers to
the first message in each sublist. For an LUT with 10% entries, a maximum of 10° lists can be
indexed. The first list links all messages scheduled for ¢t = 0, and the last links all messages for
t = 108 — 1. With a time step of 100us, messages could be scheduled no further into the future
than 100 s. The total amount of memory required for the storage of this table, when using 32 bit

pointers, would be approximately 4 Mbytes.
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Fig. 5. Efficient memory allocation is possible for priority queues due to the constant size of message structures.A

- Memory allocation algorithm, B - Comparison of standard and new allocators.

and there is no extra computation involved in finding a free slot of the appropriate size. Fig. 5-B
shows the average memory required per object (overhead+data) as a function of the number of
dynamically allocated objects (each one consisting of a 24 bytes long data structure). There is no
overhead with the new allocator whereas, with the standard allocator, there is an overhead of 8

bytes per object.

D. Other implementation issues

It is important to note that the high number of connections per neuron may slow down the
update of the weighted sum of inputs (wsym) in the threshold block. Each update of wgym, requires

the computation of,
S
) wsumj = Zaiwsyn,‘ (2)
i

1 if synapsei is active
a; = (3)
0 if synapset is inactive

where S is the number of synapses providing input to neuron j, ¢; is 1 if synapse ¢ has been

activated and 0 if it remains inactive and w,yn, is the synaptic weight of synapse i.
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Wsum must be updated each time one of the synapses becomes active or inactive (the threshold
block is notified by the arrival of an on or of f messages). Complete recalculation of wgy,, requires
the weighted addition of S synaptic weights and, for a typical neuron, the number of synapses (S)

is in the range 102 — 10*. However, this is not needed if wy.m is updated as,

s
Wy = Woum + Z QiWsyn; (4)
i

where w;,,,, and w},,, are the weighted sums before and after an update respectively, s is the
number of synapses which changed state simultaneously (typically s << S), «; is 1 if synapse 4
has been activated and -1 if it has been inactivated and wsyn, its weight. This requires the storage
of the weighted sum as a state variable for each neuron but speeds up state recalculation of wgy.,
as the number of synapses which change state (s) is considerably lower than the total number of
synapses S.

Regarding the overall implementation of the neuron, it is convenient to follow an object oriented
approach. The neuron object offers an interface which allows the simulation engine to initialize
the automaton at the beginning of the simulation and to deliver the messages to be processed.

This object oriented approach reduces programming time whenever the behaviour of the finite
state machine has to be modified. New device objects can be created without forcing any modifi-
cation in the rest of the code as long as the interface with the simulator does not change.

The cost of modifying the functionality of the model and the simulator is an important factor to
consider. Simulation of the nervous system with cell automata is still in its infancy. It will often

be necessary to modify the model to incorporate new types of behaviours. An object oriented

implementation considerably reduces the time involved in these changes.

IV. PERFORMANCE OF THE SIMULATOR

To study the performance of the simulator, a network of 5 10* neurons with random connections
has been simulated.

Each neuron has exactly C synapses with postsynaptic neurons chosen at random. Two types
of synapses are included in the network; excitatory synapses with synaptic delay t{qey = 5 ms ,

efficacy w,y,, = 1 and duration of activation ¢4, = 10 ms ; inhibitory synapses with ¢qe; = 5 ms,



APPENDIX D. PAPERS 256

Neurons in state on
Lovaranbererevendbota i, i,

Neurons in state off

Neurons in state refractory
oy ol g Ny

(PR

5 il - |
o= = - = i
10 ]‘ \ A = g =
3| - = : :
as | — = = £
- | pe=04 - - E E

sl z - E =

= ‘ | - e H :
3.— = - = Z
| = - : z

ej ‘— : al A
pe=0.5 - - _; {

1 - - ‘E ;
i pe=0.9 - = pe=0.2 f—
0-1'|'L7"ATA1’7J‘\'7‘1ATM‘AI’M"TATT'» T T T T T R I R aca A KR RN e AR
o 50 100 150 200 0 50 100 150 200 o 50 100 150 200
Time (ms) Time (ms) Time (ms)

D t=0 ms t=5ms t=10 ms t=15ms

Fig. 6. A,B,C - Total number of neurons in state off (A), on (B) and refractory (C), D - Time sequence of the
neuron states for the network displaying epileptic-like activity (pe = 0.9). Matrix of 200x250 neurons. Those in

state on, off and refractory are represented by white, black and gray dots respectively.

Wsyn = —1 and tgu, = 10 ms. The type of each synapse is chosen at random with probability p.
of being excitatory and 1 — p. of being inhibitory. Multiple synapses of the same type from a given
neuron to a target neuron are allowed (equivalent to a single synapse of increased efficacy).

5 103 out of the 5 10* neurons have been configured as pace makers which fire a single action
potential (2 ms duration and 10 ms absolute refractory period) every 100 ms (tosc = 100 ms) with
a time shift of t4 ms, where t, is a random variable given by a uniform distribution in the range
(0..60 ms).

All neurons behave as correlation detectors, firing an action potential (also 2 ms duration and
10 ms refractory period) when the weighted sum of instantaneous synaptic inputs goes above the
excitation threshold.

Several values for the percentage of inhibitory synapses, total number of synapses per neuron
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Fig. 7. A - Total number of messages versus percentage of inhibitory synapses and excitation threshold (number

of synapses per neuron set to 200), B - Simulation time versus total number of messages processed

(total number of connections per neuron).

In Fig. 7-A the total number of messages processed during the simulations is shown as a function
of p. and th.. The number of synapses per neuron has been set to 200. It can be seen in the plot
that, as p. is increased, there is a transition from sparse activity into generalized firing made
evident by the increase in the total number of messages generated. Fig. 7-B shows the CPU time
as a function of the total number of messages processed.

Fig. 8-A shows the total number of messages as a function of the number of synapses per neuron
and the value of the excitation threshold. The percentage of inhibitory synapses has been set to
10% (pe = 0.9). In Fig. 8-B the simulation time is plotted as a function of the total number of
messages processed.

Note that in Figs. 7-A and 8-A, for the = 15, the network activity remains sparse for all
tested values of p, and C. However, for the = 5 and the = 10 the number of messages generated
shows an abrupt increase indicating the switch of the network dynamics from sparse activation into
generalized firing. Generalized activity in the network decreases the performance of the simulator
by increasing the total number of messages to process.

As seen in Figs. 7-B and 8-B, the simulation time depends linearly on the total number of

messages generated and processed during the simulation. This is because the two main tasks of



APPENDIX D. PAPERS 259

@D NERREE A [ DR RIS R P PR FERE TS PR YRR DRTS PRRR RSN TS P
5 200— o 600—_‘ /—
E - 2 - -
A = 500= -
Q - - — -
2 1s0- - - VAR
2 - / - © 00— . —
e E the=10/ 5 £ - —/ -
5 - 5 - r/ -
o 100 / = 0. 300— ! -
@ - the=5 - O - / -
Q - /’ - - - -
£ E - z
2 [ 200= e =
g 50- / = - -
g - | - -
SR / : 100 -
- | the=15= - -

= / g Z z

Q TUT e [ b Vi s ,]pwi‘iwwuw"u

50 100 150 200 50 100 150 200

Number of synapses per neuron Total number of messages (millions)

Fig. 8. A - Total number of messages versus number of synapses per neuron and excitation threshold (percentage

of inhibitory synapses set to 10%), B - Simulation time versus total number of messages processed

the simulation loop are the insertion of new messages into the priority queue and their extraction

and processing. The simulation time in seconds is given by,

t=12.910"% (5)

where e is the total number of messages. Each message requires 2.9 pys for its processing.

As it is useful to estimate the resources that will be required by a simulation, it is desirable to
be able to predict the total number of messages which will be generated. However,this is difficult
to anticipate as it depends not only on the topology of the network (known beforehand) but also
on the activity which will be known only after simulating.

Considering a worst case scenario, all neurons could fire simultaneously at their maximum firing

rate during the entire simulation. In this case, the total number of messages processed is given by,

e = Esyn + Ep (6)

where Ej,, is the total number of messages generated by synapses and E, the number of
messages generated by the rest of blocks in the neuron model. As the number of synapses is

several orders of magnitude bigger than the number of neurons, the total number of messages
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processed can be approximated by,

2NC
e~ Esyn =~ ‘t—r';tsimu (7)

where N is the total number of neurons, C the average number of connections per neuron, ¢,.;
the neuronal refractory period and t,;,,, the time of simulation. The factor 2 accounts for the two
messages (activation and inactivation) inserted in the queue by a synapse.

In a typical simulation the average firing rate of a neuron is expected to be far from the maximum

rate attainable. In this more realistic situation, expression 7 has to include a correction term f3,

€= ﬂ;"—"tsimu (8)

where § is the normalized average firing rate.

For the lowest values of p. in Fig. 7-B , the total number of messages would be approximated
by Eq. 8 with 8 = 0.005 whereas for high values of p. a good match is achieved for 5 = 0.5.

Finally, note that if the generation and processing of events is evenly distributed throughout time
(see lower traces in Fig. 9-A) the CPU time per time step will be also evenly distributed throughout
the simulation. However, in contrast with non-event driven simulation, when oscillations occur in
the total number of néurons firing in the network (see upper traces in Fig. 9-A), the peaks in the

oscillations (large number of messages being broadcasted) will concentrate most of the CPU time.

C. Memory requirements

Two factors have to be considered regarding memory consumption: topology/parameters and
the priority queue. The amount of memory required to store topology and parameters can be

estimated by,

M =NCS+ NP (9)

where N is the number of neurons, C' the number of connections per neuron and S and P the

space allocated for parameters and state variables for a single synapse and neuron respectively.
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For the simulations of Figs. 6, 7 and 8, the total memory allocated for topology, parameters of
the models, LUT of the priority queue and numerical package was 53.5Mb (N = 510% neurons,
C =200 synapses, S = 4 bytes, P = 52 bytes).

In the case of simulations where the topology does not change online, the only uncertainty in
the memory consumption lies in the size of the priority queue.

The instantaneous number of events in the queue, and the memory allocated to store them, de-
pends on the number of neurons and synapses simultaneously active. Fig. 9-A shows superimposed
traces with the instantaneous number of messages present in the queue during several simulations
of the randomly connected network. Upper traces correspond to values of p, close to 1 whereas
lower traces correspond to x)alues close to 0.

Synchronization of neuronal firing of large ensembles of neurons in the network causes oscillations
in the size of the priority queue (as seen in Fig. 9-A for p. = 0.9). These peaks in the number
of neurons firing produce an accumulation of messages in the queue and the resulting increase of
memory allocated to store it. Enough memory has to be available in order to store the queue at
any time during the simulation and avoid swapping, as this would have a negative impact on the
performance of the simulator.

As the maximum size of the queue during a simulation is the limiting factor, Fig. 9-B shows the
maximum number of messages found in the queue during the simulations shown in Fig. 7. When the
percentage of inhibitory synapses is small, the activity generated by the pace makers propagates in
the network activating most neurons and flooding the event queue. As the percentage of inhibitory
synapses increases, the network becomes only sparsely active and the maximum number of messages
in the queue during a simulation decreases dramatically. This reduces the memory resources needed
for the simulator.

For a maximum §ize of the queue of 107 messages and messages of size 12 bytes, 120 Mb were

allocated for the queue.

V. CONCLUSION

In this paper, a tool is presented for the simulation of event driven models of neurons which are

being explore as alternatives to more detailed but less efficient compartmental models.
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Fig. 9. = A - Instantaneous queue occupancy for increasing values of the percentage of inhibitory synapses. B -
Maximum queue occupancy as a function of the percentage of inhibitory synapses and the excitation threshold

(200 synapses per neuron).

Neuronal models based on finite state automata provide a framework where the functionality of
a real neuron can be captured while avoiding the modelling of molecular details.

Several techniques for efficient simulation of these models have been shown. The use of the
LUT based priority queue allows O(1) queue insertion times, minimizing CPU time for message
processing. Model structures, an LUT for device indexing and the use of an optimized algorithm
for dynamic memory allocation of new messages reduce memory consumption.

Changes between different modes of operation in a network of randomly connected neurons,
qualitatively similar to those observed in EEG recordings, have been triggered by changes in the
total number of inhibitory synapses.

Simulations of hundreds of thousands of discrete neurons on a desktop computer are feasible

with this approach.
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A Large Scale Simulation of the Piriform
Cortex by a Cell Automaton-Based

Network Model
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Abstract

An event-driven framework is used to construct a physiologically motivated large scale model of the piriform
cortex containing in the order of 10° neurons. This approach is based on a hierarchically defined neuron model
consisting of finite state machines. It provides computational efficiency while incorporating components which have
identifiable counterparts in the neurophysiological domain. The network model incorporates four neuron types and
their main electrophysiological features.

The spatiotemporal patterns of cortical activity and the temporal and spectral characteristics of simulated
EEGs are studied. In line with previous experimental and compartmental work, 1) shock stimuli elicit EEG profiles
with either isolated peaks or damped oscillations, the response type being determined by the intensity of the stimuli,

and 2) temporally unpatterned input generates EEG oscillations supported by model-wide waves of excitation.

Keywords

Piriform olfactory cortex, discrete simulation, pulse coded neuron model, cell automata, EEG oscillations

I. INTRODUCTION

The simulation of the mechanisms implicated in information processing in the nervous system
is an area of active research (1], [2], [3], [4], [5], [6], [7]. It provides a tool for the understanding of
brain functions which are difficult to study experimentally due to the large number of cells involved
and the difficulties arising from the execution of in-vivo experiments.

The techniques used for the simulation of large aggregates of neurons can be grouped into two

categories: biophysically detailed models [1] and artificial neural networks [2].
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Biophysically detailed models are based on cable theory applied to dendrites and axons and
make use of ion channel models which are usually described using the Hodgkin-Huxley formalism
[3]. In this context, neurons are described by systems of nonlinear differential equations which
must be solved numerically. Two undesirable properties of this approach are the computational
cost of numerical integration and the amount of experimental data required to set the parameters
in the model. As a result of these limitations, the simulation of large aggregates of neurons (more
than 10*) is unfeasible.or requires parallel architectures [4]. Artificial neural networks, in general,
do not allow direct mapping of biophysical parameters into model parameters and are considered
unrealistic. However, they provide a computationally efficient alternative to biophysical models.

During the past decade, several software tools have been developed for the realistic simulation
of single cells and small aggregates of neurons (e.g. GENESIS [5], NEURON [6]). There is on-
going research to develop simulators capable of handling large networks [4] by means of parallel
architectures.

We have chosen an alternative approach, based on the adaptation of event-driven simulation
techniques to the problem of neural simulation These allow direct use of biophysical parameters
while permitting large scale simulations with the available computing resources.

Drawing from the methods used in discrete simulation, neurons can be modelled as complex
finite state machines [7]. By describing the automaton as a hierarchical structure where each
component has a counterpart in the biological neuron, biophysical parameters can be introduced
in the model. By introducing the concept of an event-driven neuron, the efficiency inherent to
discrete simulation is retained [8].

The availability of both experimental data [9] [10] and simulations based on biophysically detailed
models [11] [12]; makes the piriform cortex an ideal cortical module to validate this approach. The
piriform cortex is thought to be involved in smell recognition [13]. It receives input from the
olfactory bulb, which performs the first stages in smell identification [14], through the lateral
olfactory track (LOT). After carrying out certain computations on the input data (the nature of

which is still unclear) it relays the results to higher level cortical modules. Previous simulations
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have been confined to networks of 4500 neurons in [11] and 292 neuronms in [12], far from the
approximately 107 neurons found in the piriform cortex.

A cortical model including 10° discrete neurons of four types (fast glutamate excitatory, fast
GABA , inhibitory, slow GABAp inhibitory and LOT) is presented in this paper.

The message-based event-driven neuron model will be described first. Secondly, the piriform
cortex model and the calculations involved in the estimation of field potentials and EEGs will be
discussed. Thirdly, the responses of the cortical model to shock stimulus and random input will
be studied and shown to share the main characteristics of experimental data and results obtained
with compartmental models.

Issues regarding the implementation of an efficient simulator for this type of models and networks

in the order of 10° neurons are discussed elsewhere [15].

II. METHODS

A. Message-based event-driven neuron model

The message-based event-driven neuron model is a hierarchically defined finite state automaton
[16]. It is made up of several blocks, each of them capturing the functionality of a different

component of the neuron (see Fig. 1).
[Figure 1 about here.]

Message passing is the method used for communication between neurons and between blocks
within a single neuron. Each message is a data packet containing the time at which the message
will be delivered to its destination, a label field indicating the type of message and a third optional
field with extra information used by the target neuron to process the message (see Table I). Arrows
with solid lines in Fig. 1 indicate message paths.

The delivery of a message to a block, triggers the update of its state, which may be accompanied
by the broadcasting of new messages (an output) and the update of state variables in the block (an
action). For purely combinational functions (e.g. the synapse block) the output is only a function

of the input.
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Table I lists the parameters required for the configuration of the model and Appendix A contains
the state transition tables and combinational functions implemented by the blocks in the neuron

model.

A.1 The synapse block

Synapses receiving the on message at time ¢, which notifies of the firing of a presynaptic neuron,
introduce a synaptic delay and become activated at t + t4e;. An on message is then broadcasted
to the threshold block.

At t + tgei + tgur, the synapse inactivates, having remained activated for t4,, time units, and
sends an of f message to the threshold block.

Synapses are combinational functions which schedule new messages depending on the last mes-

sage received {they do not need memory of their current state).
[Table 1 about here.]
[Table 2 about here.]

A.2 The threshold block

The threshold block computes a weighted sum of inputs (wsym) where the weights are the
synaptic efficacies (wsyn). The arrival of on and of f messages from synapses, triggers the update
of wsum. After an update, its value is compared against the excitation (th.) and inhibition (th;)
thresholds. An on message is sent to the burst generator block (which generates a burst of action
potentials) if wgym increases beyond th.. Conversely, if the weighted sum becomes more negative
than the inhibition threshold (th;), the threshold block sends an of f message to the burst block
to stop an ongoing burst. Note that, since neurons in the cortical model presented in this paper
were configured to fire single spikes, burst truncation does not apply. Thus, in order to avoid the

unnecessary generation of of f messages, th; was set to -1000, a value never reached by wsym-

A.3 The oscillator block

The oscillator block simulates rhythmic activity in neurons. It sends an on message to the burst

generator block every f,,, time units starting at ¢ = t4.
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A.4 The burst generator block

The burst generator block generates a burst of action potentials upon reception of an on message.
The arrival of the on message triggers the start of a cycle of state changes. The sequence starts
with a change from state of f to state on (onset of the first action potential). After ¢,, time units,
the state changes from on to ref (beginning of the refractory period). After ¢,.; time units it
returns to state on (start of the second action potential in the sequence). This cycle is repeated
Npurst times (making up a burst of Npyrs¢ action potentials). An on message is broadcasted to
all synapses driven by the burst block whenever its state changes from off to on in order to

communicate the start of the propagation of an action potential along its axon.

B. Piriform cortez model

This discrete model of the piriform cortex is based on the compartmental simulations by Wilson
et. al [11] and Barkai et al. [12]. Four types of cells have been included: fast excitatory pyramidal
cells, fast inhibitory (GABA,4) cells, slow inhibitory (FABAg) cells and stimulus (LOT) cells

(Fig. 2).
[Figure 2 about here.]

The pyramidal cell layer consists of a grid of 250 x 250 neurons whereas GABA4 and GABAp
inhibitory cells are arranged in two layers of 80 x 80 cells each. For clarity, these are depicted in
separate planes in Fig. 2. However, they occupy the same plane in the actual model.

The layer labeled LOT, models the input activity which arrives at the piriform cortex by the
lateral olfactory track. The number of cells in this pool has been adjusted for each simulation in
order to provide the desired rate of excitation. As they are topologically far from the rest of the
cells, these neurons do not contribute to the simulated field potential recordings.

Pyramidal cells possess local and long range intralayer excitatory connections (amongst pyrami-
dal cells) and local interlayer connections (exciting nearby GABA 4 and GABARg cells). Inhibitory
cells (GABA 4 and GABAp layers) do not have intralayer connections in this model. Instead, they

locally inhibit pyramidal cells by means of local connections.
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The target neuron, j, of a synapse from neuron ¢ is chosen by generating a random vector d of
components {p, ¢} (in polar coordinates), where p is an exponential random variable () given in
Appendix B ) and ¢ is a uniform variable in the range 0 — 27. The target neuron is chosen as the
closest cell to the vector,

-
—

p;=p;i+d (1)

where p; and p; are the position vectors for neurons ¢ and j respectively.

LOT cells synapse onto pyramidal cells and introduce external stimulus into the model. The
density of connections from LOT to pyramidal cells decreases exponentially from left to right in
the pyramidal layer of Fig. 2.

Values for the duration of synaptic activation and synaptic delay have been chosen to reproduce
experimentally determined values. Variations of synaptic efficacies across different synapse types
are analogous to the maximal ¢ iuctance of synaptic channels as used in compartmental models.
Delays due to axonal propagation have been estimated from experimentally determined values [11].
Further, to reduce memory consumption, the axonal delay has been quantised and the number of
allowed values limited to 10.

Neurons fire a single action potential (with a duration of 1 ms and followed by a 10 ms refractory
period) whenever w,y, (weighted sum of inputs) increases above the excitation threshold. Suitable
values for the excitation threshold were determined by parameter space search.

Numerical values for the parameters of the model are provided in Appendix B. Note that, in
order to reduce the memory resources required by the simulation, the synaptic delays (tq4e;) were

constrained to integer values within the ranges contained in Appendix B. !

!The quantisation of the synaptic delays causes artifacts in shock stimulus simulations consisting of precisely
delimited cortical bands showing homogeneous neuronal states (Fig. 6, = 13 ms; Fig. 7,t = 14 ms). This effect
is not present in realistic long-lasting simulations of EEGs (e.g. Fig. 8(c)), for which reason the computational

advantages of delay quantisation motivated the introduction of this simplification in the model
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C. Simulation of field potential recordings, FEGs and power spectra

Field potentials and EEGs are measurements of time changing potentials generated by neuronal
activity. Field potentials are recorded with single microelectrodes located close to the pool of
neurons under study whereas EEGs are recorded with electrodes placed on the skull. For the
purpose of model validation, it is desirable to compare the characteristics of the recordings predicted

by the model with those seen in experimentally recorded signals.
[Figure 3 about here.]

For the simulation of EEG recordings, a procedure similar to that described by Wilson et al.
[11] has been followed. A number of virtual electrodes are spatially distributed forming a grid of

E x E recording sites (Fig. 3). Each one of these simulated electrodes obtains a field potential

calculated as,

1)

J K
1
Srp, = Z Z m 65 (t — tx) * h(t) (2)
ik
where Spp, is the field potential signal recorded by the it" electrode , d;; is the distance between
the i*" electrode and neuron j, §;(t — t;) is the delta function indicating that neuron j fired an
action potential at ¢t = ¢4, and h(¢) is the prototype field potential recorded from a group of neurons
firing nearly simultaneously. The summations are over the total number of action potentials K
generated by neuron j and over all the neurons J in the network.

The prototype field potential, A(t), is shown in the box in Fig. 3 and given by (¢ in ms),

t<0 0
0<t<5 =5
h(t) = (3)
5<t<12 2
12 <t 0

\
where the negative segment accounts for the negative field potential recorded experimentally

during the onset of action potentials and the positive segment corresponds to the positive field

potential seen during repolarization (its return to resting voltage) [17] [18].
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second wave. Simultaneously, the pyramidal to pyramidal excitation has also decreased (compare
rightmost panels at ¢ = 14 — 15 ms and ¢ = 18 ms). The remaining excitation is only able to
trigger sparse action potentials in a few cells (see leftmost region in the first column of panels at
t =15 — 18 ms).

In contrast with the weak stimulus, the strong stimulus causes fast excitation which leads to
the disappearance of excitatory input before the GABA inhibition following the passing wave

deactivates.

C. Random input response

Experimentally recorded EEGs often display oscillations with well delimited frequency bands
[21]. These pseudo-periodic EEG profiles are thought to be supported by spatial waves of excitation
[22], [23] sweeping across the cortex. To study these phenomena with our cortical model, a long-
lasting random input stimulus was used. Random excitation is more closely related to the normally
functioning piriform cortex than the shock stimulus. It was generated by spreading the firing times
of the LOT neurons throughout the entire simulation. Each neuron in the LOT pool was configured
to fire once and its firing time is given by a uniform distribution in the range (0 —tyzop), Where t,z0p
is the duration of the simulation. Hence, the stimulus intensity, expressed as the average number
of excitatory synaptic connections from LOT cells to pyramidal neurons activated per unit of time,

is given by

R Nror CLor—to—pyr (5)

tstop
where Npor is the number of LOT cells and Cpo7-to—pyr the number of connections to pyra-
midal cells from a single LOT cell. Fig. 8(a) shows the simulated EEG obtained using a grid of

10x10 electrodes and a stimulus of R = 10* activations/ms. Fig. 8(b) is the corresponding power

spectrum.
(Figure 8 about here.]

The unstructured random input generates an structured activity pattern in the cortical model.
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The simulated EEG (Fig. 8(a)) shows an initial transitory phase of approximately 150 ms, followed
by sequences of peaks with intervals of diminished activity. In its power spectrum (Fig. 8(b)),
two main frequency bands appear; 0-10 Hz and a higher frequency range 30-35 Hz. A secondary
harmonic peak is also present at 60-65 Hz. Fig. 8(c) shows a state map of the pyramidal layer. It
is characterized by cortex-wide excitation waves, reminiscent of those observed for shock stimulus.
Each peak of the main frequency component (30 Hz) in the EEG can be associated to a single

wave propagating across the cortex.

D. Effect of synaptic parameters on EEG profiles

The impact of model parameters on the characteristics of the EEG was explored. In partic-
ular, variations of tq,, in inhibitory and excitatory synapses were found to trigger EEG profile
transitions. Fig. 9 shows the EEG traces for several values of t4,, in GABA,4 (leftmost column),
GABAp (middle column) and excitatory synapses (rightmost column). The middle trace in all
columns corresponds to nominal values.

Only minor profile alterations were induced by variations in GAB A4 synapses. Close analysis
of the leftmost column in Fig. 9 shows, however, that the EEG corresponding to tgur = 14 ms
displays higher regularity than those seen for tyy,, = 10 ms and tg,, = 11 ms.

On the other hand, a decrease of t4,. in GABAp synapses from 150 ms to 50 ms produces
marked changes in the EEG, leading to the absence of bursts and nearly sinusoidal traces. Con-

versely, an increase to 250 ms results in an EEG with longer interburst latencies.
[Figure 9 about here.]

An opposite effect results from changes in the activation duration of excitatory synapses (see
rightmost column in Fig. 9). For a value of ¢4, = 3 ms (top), the EEG corresponds to a biphasic
sequence of bursts. Progressive increases (towards bottom) lead to a steady state consisting of

nearly sinusoidal profile, for t4, = 6 ms and tg.r = 7 ms.
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IV. DISCUSSION

A model of the piriform cortex has been constructed by means of a hierarchically defined finite
state automaton neuron. It aims at demonstrating the usefulness of an event-driven framework
where fundamental features of neuronal function can be captured while avoiding the computational
complexity inherent to analog models. The model with 10° and 3 x 107 synapses represents an
increase of two to three orders of magnitude in problem size with respect to previoué simulations
[11][12].

The standard approach to realistic simulation of large neural aggregates makes use of an analog
paradigm based on core-conductor theory of axons and dendrites [24] and Hodgkin-Huxley ion
channel models [3]. Computational complexity can be reduced in various ways; minimizing the
number of isopotential segments (compartments), limiting the number ion channel types or even
substituting those responsible for action potential generation by a threshold function (e.g. the
integrate and fire model [25]). Uncoupling of the equations belonging to different neurons is possible
by exploiting the discrete nature of the spike. In this case, analog models describe neurons whereas
an event-driven engine manages the inter-neuron communication at the synaptic level [4].

We have used a completely event-driven description of the neuron itself, eliminating the need for
a continuous simulation engine altogether. Within this framework, computational efficiency arises
from the state update scheme, where only those neurons receiving messages at a particular time
point must be re-evaluated. The simplicity of the update operation also contributes to diminishing
the need for processing resources. |

To investigate the dynamics of a large scale cortical model, the cell types and the connectiv-
ity patterns in the network were congtrained by anatomical studies. The three synaptic classes
considered, GABA4, GABAp and excitatory were configured with relative efficacies and time
constants in accordance with experimental findings. The following issues have been addressed: 1)
wave generation in a pyramidal layer deprived of inhibition; 2) response of the model, including
pyramidal and inhibitory inter-neurons, to pulse-like excitation (shock stimuli); 3) the genesis of

EEG oscillations as a result of unpatterned long-lasting stimuli; 4) the modulation of the temporal
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EEG profiles by variations in the synaptic time constants.

A. Shock stimulus

The predicted response to shock stimuli shows non-linear properties in agreement with exper-
imental results [10]. Namely, a low intensity pulse stimulus elicits a sequence of model-wide ex-
citation waves and a ringing EEG whereas high intensity stimuli lead to single waves and single
peak EEGs. More subtle experimental results are also accounted for by the model. For instance,
current source density analysis shows that different synaptic types are maximally active at dif-
ferent points in time during shock response [26]. This effect can be seen in Fig. 5(a) where two
secondary peaks can be distinguished, the first corresponding to excitatory synapses from LOT to
pyramidal neurons and the second to the delayed activation of pyramidal to pyramidal synapses.
Similar double-bumped shock responses were obtained with compartmental [11] and relaxation

models [22].

B. Random stimulus

Waves of excitation have been proposed as the physical phenomena underlying EEG oscillations
and are thought to arise throughout the cortex [23]. Experimental in-vivo studies of piriform cortex
and olfactory bulb activity have indeed confirmed that EEG oscillations occur and are especially
regular during odour inhalation [27].

To investigate the generation of cortical waves, a temporally unstructured input stimulus was
used. The cells in the LOT neuronal pool, which project to the piriform cortex from the olfactory
bulb in the actual cortex, were configured to fire randomly throughout the simulation. This setup
aimed at producing an input stimulus more closely related to the real pattern of activations than
that utilized in shock experiments. Its random nature guarantees that the derived cortical spatio-
temporal patterns arise from the intrinsic anatomical and dynamical properties of the model rather
than the pre-arranged structure of its input.

This activity leads to cortex-wide waves in our model, in line with compartmental simulations

[11]. Further, -ach EEG peak can be related to a particular cortical wave sweeping across the model.
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These waves are preferentially originated in the leftmost region in all panels (corresponding to the
rostral end in the actual cortex). This result is the consequence of the decrease of LOT-pyramidal
connections when movirg from left to right in the panels (dorsal to caudal in the actual cortex),
an anatomical feature already observed in early exﬁerimental studies [28].

There is experimental and theoretical evidence supporting the hypothesis that global changes of
network parameters trigger a switch between functionally different aggregate states. In the olfac-
tory cortex, such a mechanism has been reported [12], [29]. The generalized release of Acetylcholine
(Ach) is thought to alter synaptic dynamics and neuronal excitability [30], triggering a mode tran-
sition from memory recall to memory acquisition. More generally, abrupt EEG transitions are a
well known phenomenon, often associated with changes of conscious states (sleep, walk, anesthesia
and so on).

The variations in the temporal and frequencial profiles of the EEG resulting from parameter
changes were investigated. In particular, transitions between nearly periodic, bursting and irregular
EEGs can be achieved by means of changes in the synaptic activation duration (¢4, ) of the different
synaptic types.

The emergence of spatially coherent patterns and the transition between modes of operation
by means of network parameter variation is also in agreement with previous cortical simulations
utilizing integrate and fire models [31].

Additional simulations were carried out with equal size cell populations, with three 150x150
grids corresponding to the pyramidal, fast and slow inhibitory cell types (results not shown). This
was done to compare our results with those obtained by Wilson et al. [11] who included 1500
neurons in each pool. With this configuration, a parameter set was also found which produced
single peak and damped ringing in response to shock stimuli and continuous oscillations in response
to unpatterned long-lasting input. In the latter case, the main spectral component was centered
at 40 Hz, which coincides with the results in [11]. This constitutes a shift of approximately 10 Hz
towards higher frequencies with respect to the spectra described in the results section, obtained for

more realistic relative population sizes. The large parameter space presented by the model makes
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it likely that multiple configurations exist whose EEG share a number of temporal and frequencial
characteristics. As already shown, the synaptic parameter ¢4, affects EEG profiles and suggests
that parameter tuning would induce further shifts in the main frequency components.

The simulations carried out have aimed at comparing the model response with experimentally
obtained recordings and theoretical investigations with analog neuron descriptions. It has not been
attempted, however, to link network dynamics to the suspected functionality of the piriform cortex
within the olfactory sy;tem. Several studies have tackled this problem: the Lynch-Granger model
[32], [33] suggests that the system olfactory bulb-olfactory cortex performs hierarchical clustering
of the cue environment; the Li-Hertz model [14] proposes that odour recognition is achieved by
a resonance phenomenon between cortex and bulbar oscillations; the Wilson-Bower model [34]
implements an associative memory able to store and retrieve odour information.

A feature shared by this model is the use of synaptic modification algorithms or other types
of network plasticity which must me activity-dependent to allow the storage of new odours. The
mode! described here does not incorporate plasticity. However, the striking similarities between
the physiological data and the results obtained with the simple event-driven model ‘supports the

possibility of utilizing the same framework for investigations of the functional role of synaptic

plasticity.
V. CONCLUDING REMARKS

In summary, the approach presented in this paper allows large scale neural simulations on single
processor desktop computers and the exploration of the effects of physiological parameters on
neural population dynamics. This is achieved by devising a completely event-driven framework
where the need for computationally costly continuous simulation engines is eliminated altogether.

The piriform cortex model provides a tool for the testing of theories related to the nature of the
computations carried out by this cortical area. The results obtained so far demonstrate that the
main features of the olfactory cortex response to short and long-lasting stimuli can be accounted

for by a simple event-driven cortical model.
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Moreover, the techniques presented here can also be applied to other areas of the nervous system.
The reduction of computational complexity in comparison with alternative strategies suggests the
adequacy of the proposed approach for large-scale models incorporating multiple cortical areas.
Research is underway to exploit Beowulf clusters in order to provide the necessary resources for
such computationally costly simulations. Preliminary results indicate that problem size could be
increased at least one order of magnitude by means of a proportional increase in the number of

processing nodes with a mere 10% simulation time overhead due to internode communication.

APPENDIX
I. STATE TRANSITION TABLES
[Table 3 about here.]
[Table 4 about here.]
[Table 5 about here.]
[Table 6 about here.]
II. MODEL PARAMETERS

[Table 7 about here.]
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Fig. 2. Model of the piriform cortex.
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Fig. 3. Setup used for the simulation of field recordings and EEGs.
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neurons in a partially connected model (each pixel in the arrays corresponds to an individual neuron)
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Fig. 6. States, wsum and pyramidal-pyramidal excitation for pyramidal neurons after weak shock stimulus
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Fig. 7. States, wsum and pyramidal-pyramidal excitation for pyramidal neurons after strong shock stimulus
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Tables 31

Channel Message structure Legal values  Legal values

of m of p
a {t,m} on
] {t,m} on,of f
v {t,m,p} on,of f efficacy(wsyn)
) {t,m} change
€ {t,m} on,of f
¢ {t,m} on
n {t,m} of fyrof f

TABLE I
MESSAGE CHANNELS IN THE NEURON MODEL
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Parameter Function
the Excitation threshold
th; Inhibition threshold
tap Duration of action potential
treg Duration of refractory period
Nourst Number of spikes per burst
tose Period of pace maker
te Time offset of pace maker
tdel Synaptic delay
tdur Duration of synaptic pulse
Weyn Synaptic efficacy

TABLE II

PARAMETERS IN THE NEURON MODEL
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32
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Synapse block

Input Output
o= on B := {tgei,on}
B:=on | B:={tqur,0f [}, v:={0,0n, weyn}
8= Off Y= {O»Offv _wsyn}

TABLE III
THE SYNAPSE BLOCK FUNCTION
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33
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Threshold block

Input Action | Output
Weum+ = Wsyn
Weum >= the 7

yi=on | true: -|e:= {0,on}
Weum <= th; 7

true: - | e := {0,0ff}
Wsum — = Wsyn
Waum >= the 7

y:=off | true: -|¢e:={0,on}

Weum <= thi ?

true: - | e := {0,0f f}

TABLE IV

THE THRESHOLD BLOCK STATE MACHINE
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34
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Oscillator

Current state Next state | Qutput

Input

d:= {toscychange} :

on

of f |0 := {tosc, change},( := {0,0n}

of f

on | § := {tose, change},( := {0,0on}

TABLE V
THE OSCILLATOR STATE MACHINE
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35



Burst generator

Current Next state | Action | Output
state Input
€= on e:=off n:=off n:=r.off ¢ = on
on on |- |- on [ nyurse =0 [- | ref [-1n:= {tres,vr0ff on-[- on[-T1-
Tpurst — 1 == 07
ref ref |-]- ref | Npuree = 0| - ref|-1]- true: of f [Npurst = Nyurst | - ref]-]-
false: on |nburse— = 1| n:= {tap,0ff} )
of f on | - [« := {0,on}, of FI-T- of fT-T- of f1-1- on [ -]« := {0,0n},
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TABLE VI

THE BURST GENERATOR STATE MACHINE
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Neuronal parameters

the (pyramidal)

the (fast inh.)

the (slow inh.)

th;

tap

tref

Nburst

tosc (pyramidals and inhibitory)
ty (pyramidals and inhibitory)
tose (LOT cells, all stimuli)

ty (LOT cells, shock stimulus)
ty (LOT cells, random input)

7

30

30

—1000 (burst truncation inactivated)
1ms

10 ms

1

0 (inactive oscillator)
0 (inactive oscillator)
3000 ms

0 ms

Uniform(0 — t,t0p)

Number of synapses per neuron

LOT to pyramidal 100
pyramidal to pyramidal 300
pyramidal to fast inhibitory 20
pyramidal to slow inhibitory 10
fast inhibitory to pyramidals 70
slow inhibitory to pyramidals 60

Synaptic parameters

tde: (pyramidal to pyr./inh.) (3 -12ms)
tqur (pyramidal to pyr./inh.) 5ms
Weyn (pyramidal to pyr./inh.) 1

tqer (fast inh. to pyramidal) 5 ms

tqur (fast inh. to pyramidal) 12 ms
Wsyn (fast inh. to pyramidal) -15

tyer (slow inh. to pyramidal) 10 ms
tqur (slow inh. to pyramidal) 150 ms
Wsyn (slow inh. to pyramidal) -1

taer (LOT to pyramidal) (1 —4ms)
taur (LOT to pyramidal) 5 ms

Wsyn (LOT to pyramidal) 4

Mean connection range, 1/A (normalized distance)

pyramidal to pyramidal 2
pyramidal to fast inhibitory 10
pyramidal to slow inhibitory 10
fast inhibitory to pyramidals 10
slow inhibitory to pyramidals 10
LOT to pyramidals 2
TABLE VII

NUMERICAL VALUES OF PARAMETERS IN THE PIRIFORM CORTEX MODEL
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Abstract

Biologically motivated simulation of large scale neural networks is a computationally costly task. In
this paper, a commodity 8-node Beowulf architecture is proposed as a scalable low cost environment
for studies of cortical dynamics. By means of a distributed message-based event-driven framework, the
size of memory-limited tractable problems increased 8-fold, resulting in a mere 8.3% increase in elapsed
CPU time, attributable to inter-process communication overhead. The attainable network size reached

over 10% neurons and 2.5 10® synapses, with a typical performance of 900 s, Beowulf processing time,

per simulated second.
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1 Introduction

Biophysical neuron models rely on analogue descriptions of the spatio-temporal patterns of elec-
trical activity in living cells [1]. Although physically accurate, these models are computationally
intensive, requiring the numerical integration of systems of non-linear differential equations.

Work on large scale neural simulations has often resorted to parallel architectures to achieve
the necessary processing power [2, 3, 4, 5]. Although substantial performance increases have been
demonstrated with hypercube architectures (see for example [6]), the cost of these platforms and
the considerable development involved in the customization of the simulation environments, have
limited the impact of parallel architectures in the field of neural simulation.

Cell automata models can substantially decrease the demand for processing power [7], since
they are suitable for event-driven rather analogue simulation frameworks. Moreover, distributed
computation can take advantage of the efficiency inherent to event-driven simulation to achieve
further increases in the size of the tractable problems.

Beowulfs constitute an emerging technology aiming at delivering parallel processing power
at a reasonable cost by interconnecting commodity single processor PC-based architectures with
high speed data links [8, 9, 10]. Their application to simulation of neuronal dynamics is still in
its infancy [11].

‘This paper presents results regarding the application of Beowulf systems to the study of
cortical dynamics. The emphasis is on problem scalability employing a distributed event-driven
framework.

The cortical model will be briefly described first. Next, the Beowulf under test and the inter-
node communication algorithms will be presented. Finally, its performance will be evaluated for

various cortical network sizes and topologies.

2  Cortical model

The cortical model consists of a set 2-D lattices of automaton-like neurons suitable for message-
based event-driven (MBED) simulation. Action potentials are represented by pulses propagating

across the network, a mechanism implemented by message broadcasting between the entities in
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the model. Synapses introduce a time lag, implement pulse stretching and have associated weight
terms. Neurons generate a spike when the weighted sum of simultaneously active synaptic inputs
yields a value above an specified threshold. This is followed by an absolute refractory period,
after which, the neuron returns to its initial (excitable) state. Time is represented by integer
multiples of a basic simulation time unit of 1ms.

Three classes of cells were included; excitatory (pyramidal), fast inhibitory (GABAa) and slow
inhibitory (GABAbD), with synaptic parameters in accordance with electrophysiological data.

The connectivity was guided by previous experimental and modelling work of the olfactory
cortex [12]. Excitatory-excitatory connections are long-range (network-wide) whereas excitatory-
inhibitory connections are local. No inhibitory-inhibitory synapses were included.

Within each 2-D lattice, input activity was randomly distributed over time and cortical area
and generated by a fourth pool of neurons. Its intensity, as well as firing thresholds across
the network, were adjusted to replicate previously described cortical waves. Each individual
2-D lattice, a neural sub-aggregate, establishes connections through axonal bundles with other
lattices to make up the multi-lattice aggregate.

The strategy followed to distribute the simulation across the cluster was to assign each one
of the equal size sub-aggregates to a Beowulf node, yielding a maximum attainable size of 8

sub-aggregates with 1.75 10° neurons and 31.45 10% synapses each.

3 Beowulf platform

The Beowulf platform under test is illustrated in figure 1-A. It consists of 8 single processor
Athlon (AMD-K7) machines running Linux RedHat 6.0 with an aggregate peak performance of
900 MegaFlops, with 2 Gigabytes of memory (256 Mbytes per node) and 100 GigaBytes of disk
space. Two SuperStack II 3C16464A 3COM Fast Ethernet switches interconnect the nodes in
a star-like topology. An extra node (totalling 9 nodes) functions as a server in charge of job
scheduling across the 8-node architecture and other maintenance tasks. This computer does not
participate in distributed computations. Inter-process communications make use of the LAM

6.3.1 [13] free implementation of the Message Passing Interface (MPI) [14] libraries.
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Node 1 Node 2
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Figure 1: A - Schematic diagram of the Beowulf, B - Neural aggregate topologies under test

4 Inter-aggregate communications

Process synchronization is necessary in the context of distributed message-based event-driven
simulation [15] in order to compensate for the unavoidable workload imbalance between sim-
ulation processes. Without a synchronization mechanism, a time lag would arise between the
simulation clocks of different processes, which could lead to the loss of inter-process messages
when the simulation clock at the receiving end is advanced with respect to that of the process
originating the message.

Figure 2 provides a complete flow-chart description of the implemented synchronization mech-
anism. Upon initialization, all processes are synchronized to the time slice t = 0 ms. At the
end of each of the subsequent time steps, each process broadcasts a termination message (TM)
to the others. At this point, the process awaits the reception of the corresponding N-1 TM’s (N
being the number of nodes) from the rest of the cluster. In the meantime, it continues receiving
action potential messages from those nodes where the current time step is still under execution.

All processes, having finished the cufrent time slice, propose the next value for the global
simulation clock; this is taken as the scheduling time of the first message in their respective
local priority queues. Each process broadcasts its proposed value to process 0, which acts as the
coordinator. Of the proposed times, process 0 selects the minimum and broadcasts the value

to the rest of the nodes, which set their respective local simulation clocks to the agreed value
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and start processing the messages in their queues (if any) scheduled for this consensued clock
time. The simulation finishes when the agreed global simulation clock takes a value beyond the
specified simulation stop time.

Another issue regarding inter-node communications, the mapping between action potentials
and MPI messages, bears relevance to the overall simulation efliciency. A one-to-one relationship
between inter-node MPI messages and propagated action potentials would constitute an inefficient
strategy, resulting in a large number of small size messages quickly exhausting the available
communication bandwidth. The number of MPI messages for inter-node communication can be.
minimized, however, by means of a buffering mechanism. The firing of a neuron triggers the
addition of its neuron id, a 4-byte integer, to the buffer. Upon finishing a time slice or whenever
the buffer is full, its contents, the list of identifiers of firing neurons and a 4-byte header set
to the actual number of entries in the data structure, are sent as a single MPI message. The
destination nodes are those machines which, in the previously specified neuronal topologically,
directly receive axonal tracks. The experiments carried out in this paper made use of a 10 Kbyte

buffer which proved sufficiently large to avoid buffer overflow in all the tested cases.

5 Results

The cortical model described in section 2 was chosen as the atomic sub-aggregate (the portion
of the network simulated by one node) because previous studies had shown that it was capable
of replicating experimental data on cortical dynamics. Thus, the results of the benchmarking
are likely to be representative of the performance attainable with a wide range of biologically
realistic neural simulation problems.

Given an arbitrarily chosen set of brain areas, only a subset of all the possible pairs would
be directly connecfed by axonal bundles. Assuming a one-to-one mapping between nodes in the
cluster and modelled brain regions, it follows that several logical cluster topologies are possible.
For performance evaluation, models with various numbers of modules (1-8) and patterns of axonal
bundles were simulated in order to explore the effect of these parameters on the elapsed time.
Figure 1-B depicts the simulated topologies.

Further, special care was taken to ensure that the performance evaluation was carried out
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with realistic neural simulations; since the performance of an MBED simulation engine is strongly
affected by the network activity pattern, misleading performance studies can result from sim-
ulations with exceedingly low or high neuronal activity. Parameter space search is needed to
find the configuration that results in realistic activity in all the nodes conforming the cluster.
This is a computationally costly problem in itself, and aggravated by the fact that a new set of
parameters has to be found for each one of the logical cluster topologies under test.

A convenient simplification of the network model was put in place to achieve realistic activity
and inter-node communication overhead for all nodes while eliminating the need for compu-
tationally intensive parametér space searches. Each sub-aggregate includes a pool of neurons
which provides stimulation. The inter-module neuronal spikes transported by afferent bundles
(and implemented by means of MPI messaging) is actually transmitted to retain the performance
degradation caused by communication overhead. This guarantees the validity of the performance
results. However, the receiving end disregards the incoming trains of action potentials, and takes
its input from the stimulus neuronal pool. The dynamics of such a network is simpler and the
parameter space search needs to be carried out once and with a single sub-aggregate rather than
with the entire network.

In this way, (1) all sub-aggregates display a realistic level of intra and inter-aggregate activ-
ity irrespective of network size and topology, (2) the inter-node data are actually transmitted
to evaluate the effect on the performance and (3) computationally expensive parameter space
searches are avoided.

Figure 3-A plots the time taken by simulations of 1 s of network activity. The lower trace cor-
responds to the measured elapsed times averaged over the four topologies tested: unconnected,
chain, star and chained-star. For comparison, the upper trace represents a linear estimation of the
time taken to simulate equivalent network sizes on a single-processor architecture. Actual mea-
surements of single-processor times could not be performed given that individual sub-aggregates,
totalling 1.75 10° neurons, were already at the limit of memory resources. The estimated values
for a single-processor platform were calculated with a linear approximation; the time taken by
the simulation of a network aggregate of N sub-aggregates running on a single node (assum-
ing enough memory space) was approximated by N times the measured time taken by a single

sub-aggregate running on a single node.



APPENDIX D. PAPERS 312

Linear versus actual beowuif performance Beowulf performance
dovvaa bbb ovaa oo boone b L v bovon by b b oo brena b L
: 940 = ' E
5000. — - . s .
N — N Unconnected ) —
2 ) - . z
> E ] g I ~—=- Chain :
E E Linear £ 920 — Star =
2 - T - Chained-Star / -
S © - / -
- 4 :
2000. — — z F -
900 / =
E a -
_ Beowulf i - 4 -
1000.— — 880— £ -
K Ny - _/_1:.—:“::-'-// z
'] I f | [ | [ B A j [ { [ ! [ A P [ [_ ;| [ I [ f Pt ‘ [N [ [ } [ g [ E
1 3 4 5 6 7 8 1 2 3 4 5 6 8
Nodes Nodes
1t t— LR R f 1 t t [— t } | . ————
0.2 0.4 0.6 0.8 1 1.2 1.4 0.2 0.4 0.6 0.8 1 1.2 1.4
Network size (x10% Network size (x1 0%

Figure 3: Elapsed time versus number of nodes and network size, A - Beowulf averaged over tested
topologies compared with linear estimation, B - Beowulf for various network topologies

The flat profile of the Beowulf system indicates that, within the measured range of 1-8 nodes,
network size can be increased with nearly constant elapsed times. Quantification of Beowulf
results is possible with figure 3-B, which shows the elapsed time for the four network layouts
tested. Considering the shortest (874.14 s) and longest simulations (947.4 s), an 8-fold increase
in network size (from 1 to 8 nodes) results in a mere 8.3% in elapsed time in the worst case.

The low overhead incurred by the migration from single node to Beowulf distributed pro-
cessing results from the low communication requirements when compared to the computation
part. Further, the used inter-node bandwidth represents a small fraction of the available band-
width. The measured average size of an inter-node packet carrying the contents of the spike
buffer described in the previous section was 8915.76 bytes (2227.94 spikes x 4 bytes per spike
+ 4 bytes header). The number of packets travelling through the switch during a 1 s simula-
tion was measured to be C' x 10%, where C is the number of inter-node unidirectional channels
(arrows in figure 1-B) in the topology under test. For instance, 28000 packets were transmitted
for the 8 node chained-star network which results from 28 inter-node channels and 1000 time
slices of 1 ms per simulated second. It follows that the total amount of data communicated

between nodes throughout the entire simulation was approximately 28000 x 10 Kb, 280 Mbytes.

10
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This corresponds to 320 Kbytes/s (considering an elapsed time of 874.14 s), which is well below
the approximately 40 Mbytes/s of available bandwidth (estimated with in-house benchmarking

tools).

6 Conclusions

This paper has presented preliminary results concerning the scalability of a message-based event-
driven framework for biologically motivated neural simulation on Beowulf architectures. The
experiments carried out with an 8-node Beowulf indicate that the migration from a single node
to this parallel environment results in an 8-fold increase in aggregate size with an 8.3% increase
in elapsed time; the total size of the distributed aggregate reached 10° neurons with an average
of 179 synapses per cell.

Further tests are needed with Beowulfs in excess of 8 nodes to explore the scalability to larger
simulations. Nevertheless, the results already obtained with an 8-node cluster indicate that low
communication overhead can be achieved with an event-driven framework, resulting in efficient
scalability. |

The cortical model used for the benchmarking purposes has been developed as part of ongoing
research on the dynamics of the piriform olfactory cortex. This cortical region contains approxi-
mately 107 neurons with several thousand synapses per cell [16]. Further code optimization and
an increase in the number of nodes promise to make such problem sizes tractable using clusters

of commodity computers.
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UK. This project was funded by the Biotechnology and Biological Sciences Research Council
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