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Biophysical simulation of neuronal aggregates typically utilizes analogue descrip-
tions of the spatio-temporal dynamics of the membrane voltage in neurons. While this 
approach constitutes a convenient framework for realistic modelling of single neurons 
or small neural aggregates, the computational cost involved in the solution of the 
associated systems of non-linear differential equations has hampered its use in large 
scale simulations. 

This thesis explores an emerging alternative to biophysical modelling which ex-
ploits the spike-based nature of inter-neuronal communication to replace the continu-
ous simulation framework by a computationally more efficient event-driven technique. 

A hierarchical finite state automaton neuron model suitable for message-based 
event-driven simulation (the MBED model) is described and discussed. It encapsulates 
various aspects of neuronal biophysics: synaptic/cixonal latency, finite synapse activ-
ation duration, single spike and bursting behaviour, pace making, inhibition driven 
burst truncation and others. 

The message-based event-driven simulator is designed to deliver efficient simula-
tion of large aggregates of MBED neurons, incorporating a customized event queue 
management algorithm and a strategy for memory-efficient storage of synaptic para-
meter sets. 

Two biological neural systems are tackled utilizing the MBED framework; the 
locomotory neural circuit of the nematode C. elegans and the mammalian olfactory 
cortex. The MBED model of the C. elegans locomotory system replicates experimental 
observations of normal, mutant and laser ablated animals and provides a 
description of a rich set of locomotory behaviours. Video recordings of active C. 
elegans behaviour, an automated image analysis system and a mechanical body model 
were developed to complement the neuronal simulation. 

To further assess the validity of the MBED framework in biological simulations of 
neuronal aggregates, a model of the olfactory cortex incorporating 10^ neurons of three 
cortical cell classes was developed. The model consistently replicates results obtained 
experimentally and with the less efficient compartmental technique, while retaining 
the computational efficiency inherent to event-driven simulation. The typical speed 
differential between the two techniques is a factor in the range 10-100. The response 
of the model to shock and random stimuli of various intensities is studied and shown 
to be in good agreement with previous results. 

Finally, preliminary data on the scalability of the MBED framework utilizing 
Beowulf clusters is presented and further work is discussed. 
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Chapter 1 

Introduction and structure of the 

thesis 

In the last few decades, neuroscience has succeeded in providing explanations for a 

number of processes involved in information processing in the nervous system. Since 

the pioneering work of the Spanish scientist Ram6n y Cajal, who described the 

nervous system as a network of cooperating neurons propagating information from 

dendrites to cell body and along the axon [1], intense research has been carried out 

aiming at increasing our knowledge of neural functions. 

Much progress hcis been made at /Ae amg/e ceff Ze(;eZ, mmnly as a result of 

increasingly sophisticated experimental techniques. In particular, the development 

of electrophysiology has allowed the characterization of the electrical properties of 

cellular membranes [2]. Less invEisive imaging techniques (e.g. using voltage sensitive 

dyes) are also emerging as alternative methods to record neural activity [3]. 

Despite these advances, progress in the understanding of the cooperative 

behaviour of neurons at the network level has been hampered by the difficulties 

associated with the recording of activity from large numbers of cells for long periods 

of time. Several methods with potential to tackle this problem are gradually being 

developed: especially promising are multielectrode arrays, which aim at extending 

electrophysiological techniques to multicell recording [4], and photodiode arrays and 

high temporal resolution CCD imaging, which build on current optical techniques to 

allow imaging of activity in large aggregates of cells [5]. 

Simulation has emerged, concomitantly with the increaae in computer power, as 

another useful tool for the neuroscientist [6]. The development of models of ion 

channels, dendrites, axons and synaptic communication between cells, has paved the 



CHAPTER 1 INTRODC/CTZON AND STRI7CTC/EE O F THE TEESZS 

way to the construction of realistic models of single neurons [7] and aggregates of 

cells [8]. The availability of these models has facilitated the testing of hypotheses, 

while minimizing the amount of experimental data required, and has directed the 

design of new experiments for the validation of model predictions. 

As the problem of network behaviour remains unsolved, there is an increasing 

need for techniques capable of simulating large aggregates of neurons. The brute 

force approach, the extension of classical models used for single cell simulation to 

large scale networks without fundamental changes in their design, has proved an 

arduous task due to the computational power required and the veist amount of 

experimental data needed to set model parameters. 

This thesis aims at developing a framework where the simulation of large 

networks of neurons (in the order of 10^ cells) is feasible with commodity 

computational resources while retaining the fundamental properties needed for 

realistic network activity. This goal is pursued with the development of the MBED 

(Message-Based Event-Driven) neuron model, in an a t t empt to bridge the gap 

between classical biophysical models and oversimplified artificial neural network 

models. In providing a model with this common ground, some of the benefits of 

discrete abstract models (efficiency) and their analogue counterparts (direct 

mapping of biophysical parameters into the model) are retained. 

In Chapter 2, background information on modelling of the nervous system is 

provided. Firstly, a description of the two main frameworks in computer simulation, 

continuous and discrete, is presented, highlighting issues relevant to neural 

simulation. Secondly, the levels at which models can be constructed (molecular 

kinetics, ion channels, single compartment neurons, multicompartment anatomically 

realistic neurons, small networks and large scale networks) are described. Network 

simulation is identified as the target level for this thesis. 

Chapter 3 reviews neuron models and simulation tools from the perspective of 

network simulation. The selection of a particular type of neuron model affects 

dramatically the efficiency of a large scale network simulation. For this reason, 

model types are reviewed progressing from biophysically realistic compartmental 

models to highly abstract representations of neurons. Platforms available for the 

simulation of networks of these models are described. 

Chapter 4 reviews previous work on modelling of the two biological systems 

which are studied in this thesis, the nematode C. and the olfactory cortex of 

mammals. After providing background information on the invertebrate C. elegans 

and describing the experimental data available, previous work on computer models 
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is discussed. The lack of a quantitative model of the locomotory neural circuit which 

generates the observed patterns of muscle contraction is identified. 

Similarly, the piriform cortex is first presented in the context of the biological 

olfactory system. Experimental data, including anatomical information and some 

activity recordings, are presented. Finally, network models of the olfactory cortex 

are reviewed. Two standing issues are identified as aspects to tackle with the MBED 

framework: firstly, the limitation of existing biophysical models to networks in the 

order of a few thousand neurons, when using the compartmental techniques, and 

secondly, the unsuitability of loosely biologically constrained models to replicate 

experimental data. 

Chapter 5 presents the MBED neuron model which enhances oversimplified 

neuron models by including components which allow the direct mapping of several 

biophysical parameters (dendritic delay, ajconal delay, synaptic latencies, finite 

synaptic activation duration, bursting, pace making) while retaining the 

computational efficiency of event-driven simulation. 

Chapter 6 describes the MBED simulator. This is an object-oriented 

event-driven simulator implemented in the C + + programming language, integrated 

to a numerical package and optimized for the simulation of large networks of MBED 

models. 

Chapter 7 extends the single cell simulations carried out in Chapter 5 to small 

size networks. In particular, the MBED concept is applied to the locomotory circuit 

of the nematode C. elegans. A network model is constructed which succeeds in 

replicating experimentally obtained patterns of muscle activation. The design of the 

MBED network model is complemented by a mechanical model of C. and 

the use of an image processing algorithm developed with Matlab to analyse 

recordings of the behaving animal. 

Chapter 8 extends the work presented in Chapters 5, 6 and 7 to large networks. 

A biologically constrained large scale MBED model of the olfactory (piriform) cortex 

is presented and validated by comparison with previous work carried out with 

classical models and with experimental data. 

Chapter 9 explores the scalability of the MBED framework using Beowulf 

clusters of commodity computers. Experiments are carried out with an 8-node 

Beowulf in order to study the effects of the inter-process communication overhead on 

the performance of a distributed cortical simulation. 

In Chapter 10, future work is proposed. In particular, enhancements to the 

MBED neuron model, its application to support emerging neural recording 
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technologies and the development of multimodule cortical models are discussed. 

A number of appendices provide additional information. Appendix A contains 

mathematical material complementing Chapter 3. Appendices B and C contain the 

video recordings of C. and a detailed description of the image processing 

algorithm developed to analyse them, respectively. Appendix D provides copies of 

papers baaed on this work. 



Chapter 2 

Background 

The second half of the 20th century has seen an explosion in the amount of research 

aiming at a quantitative description of neural processes. This trend has been 

motivated by the maturation of the experimental techniques, in particular 

electrophysiological methods, which allowed for the first time direct recording of 

neuronal activity. During the 19th century and first decades of the 20th, 

neuroscience had been circumscribed by the limits of anatomy, where functional 

properties of neurons had to be inferred from the patterns of their anatomically 

observable features [1]. 

The increasing wealth of experimental data available in the decade of the 50s, 

sparked an interest in providing more quantitative descriptions of neurobiological 

phenomena by developing models of neural function. This trend was accentuated by 

the increasing availability of computers. 

The increasing power of computing resources has made simulation a common 

tool for hypothesis validation in science and for system design in engineering. With 

an estimated 10^^ neurons and 10^^ synapses, the simulation of the human brain is a 

huge challenge, both algorithmically and computationally. Active research is 

underway to achieve functional models of brain modules whose simulation is feasible 

with the currently available technology. 

Before delving into the details of the current applications of simulation in 

neuroscience, it is relevant to discuss the main simulation frameworks within which 

models are constructed. 
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2.1 Continuous vs discrete simulation 

A general question facing the modeller in most simulation problems is the selection 

of the adequate level of abstraction for a particular system. The Hrst watershed is 

the choice between analogue models, requiring continuous simulation, and discrete 

models, suitable for discrete simulation. 

The distinction between continuous and discrete simulation lies in the nature of 

the way in which states change in the model throughout time. In continuous 

simulation, the granularity of time is typically several orders of magnitude smaller 

than the scale of the information in the system. For instance, in a continuous 

framework, an action potential, with a duration of approximately 10 ms, requires 

time steps of the order of 100 iis. Moreover, all components in the system are 

updated at each time step. 

On the other hand, discrete simulation involves the identification of atomic 

information units or events. For example, if the information carried by an action 

potential is assumed to be captured by a pulse, the time course of the spike can be 

disregarded and the onset and falling edges of the equivalent pulse become the only 

significant events in the system. The update of the states of the components in the 

model is triggered by the occurrence of these events and can be restricted to those 

elements directly affected by them. 

The different nature of the relationship between model and time leads to 

different frameworks of simulation and model specification methods. It also has 

implications in terms of efficiency which are relevant when aiming at the simulation 

of large aggregates of neurons. 

2.1.1 Continuous simulation 

Generalities 

In continuous simulation, models are often specified as differential and algebraic 

equations. In the context of engineering, a block-oriented description of the system 

is common (e.g. a cascade of filters). A block is an entity characterized by its 

inputs, outputs and the mathematical relationships between them. 

Models which describe physical phenomena do not possess such degree of 

modularity (e.g. diffussion processes). However, when the model at tempts to 

capture the dynamics of a complex and physically heterogeneous object (e.g. an 

anatomically complex neuron) the physical entity may be represented by a model 



constructed by repetition of a number of submodels which interact (e.g. chemical 

synapses, dendrites, axons, electrical synapses and so on). A certain degree of 

modularity arises from this approach. 

Continuous simulation is characterized by the continuous update of the state 

variables in the model. As an example, consider the following partial differential 

equation, 

This is the general form of the cable equation for passive dendrites and axons. 

Its application is described in Chapter 3. For the moment, it is a convenient case to 

illustrate the techniques of continuous simulation. 

The solution of this equation is found by spatial and temporal discretization of 

the partial differential equation (PDE)[9], 

Discretization turns the PDE into a set of algebraic relationships between a finite 

number of variables (in the previous example, voltages at different points in a one 

dimensional cable and at different points in time). Figure 2.1 shows the general 

algorithm involved in finding a solution for such a discretized PDE. 

Note that all the voltages along the cable are updated at each time step 

(continuous change of state in the model). There are several numerical integration 

methods to realize each update. They are often classified in single step or multiple 

integration methods. Another classification distinguishes between implicit and 

explicit. The selection between methods is driven by considerations of stability and 

efficiency[10]. 

Efficiency issues 

Of especial interest for the problem of simulation of aggregates of neurons is the 

issue of speed of numerical integration. Most commonly, the linear PDE in Equation 

2.1 will be substituted by a more realistic non-linear version, 

of 

where I{x,t) depends non-linearly on V{x,t). The anatomical complexity of 
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Figure 2.1: Continuous simulation execution flow-

most neurons requires the use of multiple non-linear cable equations, which, after 

discretization, lead to a system of coupled non-linear differential equations. 

Several techniques, especially designed for the problem of neural simulation, exist 

to reduce the computational cost of solving these equations. By exploiting the 

branched structure of dendrites and by casting the cable equations in a linear form, 

each time step requires 0 (N) arithmetic operations, N being the number of points 

obtained after discretization of the PDEs [9, 11]. Hence, the total number of 

arithmetic operations required for a simulation is 0 (NT) where T is the total 

number of time steps. 

As an example, consider the continuous model of an hippocampal cell developed 

by Traub et al. [12]. The simulation of a network of 10000 of these neurons would 

require the numerical solution of approximately 250000 coupled differential 

equations [13]. Simulations of networks of hundreds of continuous neuron models are 

feasible. However, elapsed CPU times in the order of hours are typically required for 

simulation times in the order of hundreds of milliseconds. 
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2.1,2 Discrete simulation 

Generalities 

Traditionally, discrete simulation heis been utilized in cireaa as diverse as 

telecommunications, operational science, and digital circuits. In general, discrete 

simulation deals with a class of problems known as queueing problems. These are 

mainly concerned with some of the following: the delays incurred by 

propagating through a system, the transformations applied to the of the 

entities as they propagate and the occupancy of reaourcea through which entities 

propagate. 

In contrast with continuous simulation, the state of the system in discrete 

simulation does not change at all time steps. On the contrary, state changes only 

happen as a consequence of the displacement of an entity in the model environment, 

an event. No update of the state of the system is needed in between two consecutive 

events. This leads to the discrete simulation framework where the model evolves 

through time with discrete jumps triggered by events. 

A fundamental concept associated with discrete simulation is the idea of the 

event queue. The displacement of entities in the discrete model happens with a 

certain delay. The dynamic behaviour of the model can be thought of as entities 

departing from certain points in the model and arriving to their destinations after a 

delay. The arrival would constitute an event and would trigger the simulation time 

advance and an update of the state of the system. The event queue holds a list of 

events sorted by time of arrival to their destinations in the system. Time advance is 

achieved by the extraction of the first event in the queue and its introduction back 

to the system. The entities undergoing displacements within the system, may carry 

associated attributes which affect the way in which the system interprets an event 

originated by this 

Figure 2.2 illustrates the concept of discrete simulation with a classical example 

taken from the problem of packet relay in a data communications network. 

in this system are either data packets, which must be transmitted from an origin 

node to a destination node through a communication link, or notification entities. 

The attribute of a data packet entity is a single flag indicating its priority (H, high 

or L, low). Communication links and relay nodes introduce delays, labelled as dx 

and Dx respectively. The origin node generates packets labelled with their priority 

level. The arrival of a packet to a free node changes its s tate to busy. The arrival of 

a packet to a busy node leads to the packet being discarded if its priority is lower 
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Figure 2.2: Packet communications network as a typical discrete system 

than the packet being processed in the node. Otherwise, the packet in the busy node 

is discarded and the new packet takes its place. 

Notification tokens are scheduled by nodes in order to introduce a delay between 

the acceptance of a new packet and its broadcasting to the following node in its 

route. In a typical sequence of events, a packet arrives at a free node at t = to. The 

node accepts the packet, changes its state to busy and schedules a notification token 

for ( = 0̂ + Dz, where is the delay involved in the processing of a packet in a 

node. The notification token is inserted into the event queue. As time advances, this 

entity approaches the head of the queue. When it finally occupies the first position 

in the queue, it is popped out and delivered to the node which, upon the occurrence 

of this event, retransmits the packet and changes its state back to free. 

The event queue stores the entities which have been scheduled for delivery to 

their destinations at a point in the future. 
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Figure 2.3; Discrete simulation execution flow 

Efficiency issues: selective trace 

Figure 2.3 shows a diagram of the execution flow in a typical discrete simulator. 

As opposed to continuous simulation, the updating of states in the model is 

driven by the events scheduled and held in the queue until processing. In the 

example of a communications network, only those nodes which receive an event may 

change state (may become busy or free). Evaluation of the states of the rest of the 

nodes is superfluous as only those targeted by an event may need an update. This 

approach, based on following the events to determine which components must be 

updated (known as minimizes the computation carried out by the 

simulator [14]. 

The fact that discrete models are often constructed at a higher level of 

abstraction than analogue models (implying fewer arithmetical operations in each 

state update) and that selective trace can be used (which reduces the number of 

updates), makes discrete simulation a more efficient framework than continuous 

simulation in those problems where equivalent discrete and continuous models exist. 

This thesis applies the concepts of discrete simulation to the problem of realistic 
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Figure 2.4; Modelling levels in neuroscience 

neural simulation with the goal of increasing the efficiency of existing techniques and 

achieving a simplification of the parameter space. Selective trace will play a pivotal 

role in the efficiency increase. 

2.2 Modelling in neuroscience: an overview 

Models of relevance in neuroscience have been constructed ranging from the 

molecular level (e.g. molecule-molecule reaction kinetics models) to the neuron 

network level (e.g. networks with thousands of biophysically realistic neuron 

models). Figure 2.4 shows a diagram with several modelling levels and an 

approximate value for the dimensions of the physical entity modelled. 

Two main approaches must be distinguished; biophysical models and abstract 

models. Biophysical models are based on physical descriptions of biological processes 
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and there is a direct mapping between the entities in the model and their physical 

counterparts. For instance, at the neural network level, biophysical models 

incorporate physical processes like ion diffusion through cellular membranes, 

intra-cellular ionic currents, effective capacity of the cellular membrane and so on 

[6]. This is the natural framework for electrophysioiogists to develop quantitative 

descriptions based on experimental results. In Egure 2.4, the biophysical approach to 

modelling is represented by the main trunk in the How chart. 

The rightmost branch below the bifurcation in figure 2.4 corresponds to an 

alternative approach to network modelling, based on highly simplified neuron 

models. Constraints imposed on the realism of the models are relaxed when the 

assumption is made that neural dynamics arise from the cooperation of functionally 

simple neurons. The direct use of electrophysiological da ta in the model is not an 

issue, rather, experimental results are abstracted to construct highly idealized 

models. Emphasis shifts, with respect to biophysical modelling, towards developing 

theories of neural population dynamics. This is an ideal framework to be used by 

engineers (targeting the construction of biologically inspired systems) and 

mathematicians (aiming at the discovery of mathematical laws underlying neuronal 

function). 

2.2.1 Subnetwork biophysical models 

Subcellular modell ing 

Neurobiological processes can be described in terms of interactions involving 

proteins, non-protein molecules and ions. Mathematical descriptions in this context, 

usually make use of a kinetic formalism. For instance, communication between 

neurons can be accomplished by means of a cascade of events originated in a 

presynaptic neuron which culminates in changes in a postsynaptic neuron. Each 

event involves the interaction between different molecules or ions. Figure 2.5 shows a 

schematic representation of a model of synaptic communication (modified 

from [15]). In particular, Calcium (Ca^+) interacts with protein Xa to render it 

active. Xb, the active form of protein Xa, interacts with vesicles loaded with 

neurotransmitter (labelled Na) to trigger its release. The freed form of the 

neurotransmittet (Nb) interacts with receptors in the postsynaptic cell and triggers 

the transformation of protein Ga into its activated form Gb. This, in turn, will 

trigger further reactions. 

Such detailed description of neural processes, involves the solution of systems of 
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Figure 2.5: Kinetic description of synaptic transmission 

differential equations where the time evolution of the concentrations of each 

participant in the cascade of events (e.g. Xa, Xb, Na, Nb, Ga, Gb in the example 

above) constitutes the solution of the equation. 

Single cell modell ing 

Although, in principle, complex neuron level functions can be modelled considering 

all the molecular interactions involved, models of single neurons are often 

constructed with coarser granularity. A neuron is represented by a hierarchical 

structure where each component constitutes a model of a portion of the biological 

neuron. Components interact in a realistic way, by means of ionic currents flowing 

within the cell. Figure 2.6 shows a schematic model of a pyramidal cell. 

Axons and dendrites have been segmented and each segment (known as a 

compartment) modelled and connected to other blocks following the anatomy of the 

real cell. The equations describing the dynamics of each compartment are typically 

systems of non-linear differential equations which make this model suitable for 

simulation within a continuous framework. 

Single cell models of multiple neuron classes are available ranging from a 

thousand compartments (1600 in the Purkinje neuron model by DeSchutter et al. 

[16]) to a single compartment (see for instance the model of thalamic neurons used 
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Figure 2.6: Single (A) and multicompartment (B) neuron models 

in [17]). Models of intermediate size are used when anatomical characteristics are 

relevant but the computational cost must be minimized (for instance, Bower et al. 

developed a model of a pyramidal cell in the piriform cortex including 15 

compartments [6]). 

2.2.2 Network models: competing approaches 

When the aim of the modelling effort is to construct system level models of the 

nervous system, the model is often viewed as a network of entities (neurons) 

interconnected through communication channels (synapses and gap junctions). Two 

main competing approaches have been taken; biophysical and abstract. 

The biophysical approach extends the techniques used in biophysical subnetwork 

models to network level simulation. Realistic single cell models are interconnected 

by biophysical synapses and gap junctions and simulated within the framework of 

continuous simulation. Networks in the order of a few thousand neurons are 

attainable in single processor architectures. However, simplification of the single cell 

models making up the network is often required. Further increases in network size 

require parallelization of the simulation tools using clusters of workstations or 

maasively parallel architectures. 

An alternative approach is the substitution of the computationally demanding 

single cell models by more abstract representations which capture the main 

characteristics of neuron function while offering improved efficiency. Chapter 3 
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reviews specific neuron models belonging to biophysical and abstract techniques as 

well ag alternatives in the interface between these two approaches. 

2.3 Standing problems at the network level 

Biophysical models have succeeded in providing a quantitative description of a 

number of processes in neurons; the generation of action potentials, the effect of 

different types of ion channels on the shape of the action potential, the effect of 

synapses on neuronal function, the regular firing of neurons involved in the creation 

of locomotor patterns and many others [7]. 

Despite these advances, the cooperation of neurons in a large network, in order 

to accomplish useful tasks, is still poorly understood. This is the area where more 

simplistic models were expected to provide the necessary insight. It is so because 

their simplicity reduces the number of parameters to be specified in the model and 

because the low amount of computation per neuron allows the simulation of large 

aggregates of neurons. Biophysical models are limited to networks of thousands of 

neurons on general purpose computer architectures. Highly parallel hardware is 

necessary for realistic simulation of tens to hundreds of thousands [18]. 

Simplified neuron models, however, have found little use in neuroscience due to 

their level of abstraction. The difficulties in mapping experimental data to these 

type of models have motivated their rejection by biologically orientated modellers. 

2.4 Summary 

Simulation techniques can be classified into continuous and discrete. The nature of 

the two approaches is fundamentally different. Continuous simulation requires the 

update of the state variables of the system at each time step, whereas discrete 

simulation is applicable to systems where the state evolves in discrete jumps, where 

updates are not required in between two consecutive events. 

In the context of realistic simulation of the nervous system, models have been 

proposed ranging from the molecular level up to the level of large aggregates of 

neurons. Biophysical models have mainly made use of continuous simulation. 

Abstract models, however, are designed for mathematical tractability rather than 

realism, and are often suitable for discrete simulation. Their computational 

efficiency often comes at the expense of a lack of direct mapping between model 



parameters and biophysical variables. 



Chapter 3 

Simulation of aggregates of neurons 

In this Chapter, previous work on biologically motivated simulation of aggregates of 

neurons is reviewed. Firstly, background information on neuron models is provided. 

Secondly, representative tools available for the simulation of these models are 

described. Approaches based on general purpose single-processor architectures and 

special purpose parallel-architectures are compared. 

Finally, the rationale for the selection of the message-based event-driven 

simulation framework on commodity architectures, as the technique to achieve 

low-cost efBcient simulation of large scale neuronal aggregates, is discussed. 

3.1 Neuron models 

A wide range of models of individual neurons have been developed to serve as the 

atomic entity in neural network simulations. They are often classified with regard to 

their degree of biophysical realism [19, 20]. Compartmental models, utilized when 

the emphasis is on replication of physiological data, constitute the biologically 

accurate end of the spectrum. At the other end, abstract models, of which the 

binary Perceptron is an example, have traditionally been used in artificial 

applications and are considered oversimplified for biologically meaningful 

simulations. The following sections survey the main strategies for neuron modelling 

progressing from biophysical towards more abstract models. 

18 
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3.1.1 Compar tmen ta l simulation and the Hodgkin-Huxley 

model 

The cornerstones in biophysical models were the development of the 

Hodgkin-Huxley (HH) model of ion channels [21] and the extension of cable theory 

to dendrites and axons [22, 23, 24]. 

In this context, a neuron is modelled as a physical entity, often with a complex 

branched 3D structure, which separates two conductive media, the intracellular and 

the external spaces with its cellular membrane. Local differences in the 

concentrations of several types of ions (mainly A/'o+, C / ' and between 

the external and internal sites of the membrane give rise to a transmembrane 

voltage. This is an important physical variable in the system; the current state of 

understanding of neuron function is based on a quantitative description of the 

time-space evolution of the membrane voltage. 

The membrane behaves as a leaky capacitor, storing charges and letting them 

flow in and out in a controlled manner. Charge movement causes changes in 

transmembrane voltage which propagate along dendrites and axons. Ion channels 

play an important role in the control of this influx and outflux of charges. 

Ion channels and single compartment neurons: t h e Hodgkin-Huxley 

model 

Ion channel models are relevant to network modelling because ion-selective channels 

confer excitability to individual neurons in the network and constrain the patterns of 

neuronal activity. 

Ion channels have been modelled as variable conductances across the cellular 

membrane [7, 21]. In the linear approximation, the current flowing through the 

channel is given by: 

IchariA ~ gmaxx{t, vm, c , . . . ) ( K n — erev) (3 1) 

where fc/ianx is the total current flowing through all channels of type /I , Gmoi 

the maximal conductance achieved when all channels of this particular type are 

open, % a normalized time-changing variable expressing the degree of openness 

(X = 1 for all channels of type A open, X = 0 for all channels of type A closed), 

the membrane voltage and Eret, the potential at which the current reverses its sign. 

The variable % accounts for changes in the conformation of the proteins which 
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make up the channels and which affect their conductances. These changes may be 

induced by alterations in the membrane voltage ), by changes in the 

concentration of an ion type to which the channel is sensitive (e.g. by the 

release of neurotransmitter and others. These changes of conformation may render a 

channel closed (unable to conduct ions) or open (able to transport ions) [25], in 

addition to other intermediate states. 

The current through ionic channels is responsible for the dynamic properties of 

neurons which lead to a local and abrupt change in the t ransmembrane voltage, the 

action potential. The Hodgkin-Huxley model succeeded in quantifying this 

phenomenon [21]. ' 

The Hodgkin-Huxley model considered two types of ion-selective channels, 

voltage-dependent #0"''-selective and ^''''-selective channels. For both channels, the 

dynamic variable X(( , . . . ) was only dependent on time and membrane 

voltage, %(^, %n). In the Ccise of the No'"' channel, X;va((, %n) was given by (time 

and voltage dependency are not explicitly stated for clarity), 

where and are dynamic variables described by 6rst order ODEs, 

— Q^Tn(%n)(l /^m(%n)^ 

where a(%n) and /)(%») are the voltage dependent opening and closing rates. An 

alternative form for these equations clarifies their dynamic properties, 

0(7?% _ m - moo(%n) 

dt tjji ( vfn ) 

^ - /loo(%n) 

T/,(%7,) 

where moo a']:id /̂ oo are the voltage dependent steady state values of m and /i, 

respectively, and T^(%n) r,,(V^) their voltage dependent time constant. 

As a result of a synaptically driven increase of Vm from resting potential to firing 
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threshold, m increases with a fast time constant, originating a current influx, 

charging the membrane capacitance and rising This is the fast onset of an 

action potential. 

The m (activation) variable is responsible for an increase in permeability 

leading to the charge inHux. Since this increase is seen experimentally to be 

transitory, a second (inactivation) variable, /i, is added to the model. The variable A 

tends to decrease with a slow time constant within the voltage range where m takes 

its maximum. 

The combination of the fast activating variable m and the slow inactivating 

variable A, attributes transitory activating properties to the channel. 

The activation variable for the /C+channel is given by: 

where M is described by 

it' — C>;n(Vm)(l n) M 

The variable n shares some characteristics with m. A rising membrane voltage 

increases n, resulting in the opening of /C^-selective channels and in a charge outflux 

which decreases the voltage across the membrane capacitance. The current 

constributes to the ending of the sharp voltage spike. 

When the 3D anatomy of the neuron does not need to be captured by the model, 

a neuron can be modelled as a single compartment (see figure 3.1). A compartment 

is defined as a section of membrane separating an isopotential intracellular volume 

from the isopotential external cell volume. The equation describing the electrical 

properties of a compartment is 

^ () „ (3.2) 

where cm is the membrane capacitance, vm the membrane voltage, gm the 

membrane conductance and E ĝot the voltage at which the leakage current reverses 

its sign. This expression is only valid for a passive compartment, i.e. one that only 

includes ion channels whose conductances are fixed, unaffected by transmembrane 

voltage or other physiological variables (this excludes the No"'' and 7̂ '"' channels 

described above). 

When active conductances, i.e. channels affected by membrane voltage, are 
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Figure 3.1: Components of a single compartment model 

added, equation 3.2 becomes 

a 
dt 

•S'ieafe) ~t~ ^ c h a n (3.3) 

where ichan is the total current flowing through active channels. 

As the wealth of functionality implemented by a single neuron depends on the 

ion channels embedded in its membrane, most single compartment neuron models 

will not fall into the category of passive. They often include active conductances, 

making the magnitude of the transmembrane current dependent on membrane 

voltage (this is the case of voltage-dependent channels responsible for action 

potential generation), ion concentration (e.g. Ca^+), the concentration of a 

particular neurotransmitter and so on. 

Ichan typically accumulates currents through various types of ion channels, 

a 
' dt 

" ^ T n ( ^ K n -5'ieafc) E G ' 
i=i 

j^jiym ^revj) ^inj (3.4) 

where the summation is over j types of channels present in the compartment and 

linj has been added to account for current injected which an electrode. 

Hodgkin and Huxley [21] demonstrated that, with the addition of and 

channels to the passive single compartment model, setting /inj to a positive value 

above a certain threshold is sufRcient to trigger transient changes of membrane 

voltage. These replicated the axon potentials observed experimentally in the squid's 
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Figure 3.2: Spiking rate adaptation in an hippocampal neuron (from [26]) 

axon. Figure 3.2-A shows a train of action potentials obtained from a model of an 

hippocampal pyramidal cell by simulated current injection [26]. 

Single cell models incorporating several types of channels are capable of a rich set 

of responses to simple stimuli. Table 3.1 lists several important classes of ionic 

currents. Their notation (first column), ion type making up the current (second 

column), activation/inactivation characteristics (third column) and their effect upon 

neuronal activity (fourth column) are given. 

Detailed models of hippocampal pyramidal cells were constructed in [26], 

Current Ion Characteristics Effect 

^na 7Vo+ Fast, transient Onset of action potential 

Ia k+ Transient Spike repolarization 

Ixd Non-transient Spike repolarization 

Ic k+ activated Spike repolarization 

Im Slow, non-transient Spike freq. adaptation 
Ca?'^ activated Spike freq. adaptation 

Ca2+ Low threshold Low threshold spikes 

High threshold Elongation of action pot. 

Table 3.1: Several ionic currents which participate in patterning neuronal excitability 
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Figure 3.3: Compartmental models of chemical (A) and electrical (B) synapses 

incorporating several of these channels. Figure 3.2 compares the response of a 

pyramidal neuron model to the injection of a I s current pulse with an intensity of 

0.5 nA (taken from [26]). Four cases are shown, corresponding to IM and IAHP 

currents present (A), Im absent (B), Iahp absent (D) and both absent (C). The four 

responses are triggered by identical stimuli. However, the neuron shows markedly 

different patterns of activity as a consequence of the variations in ionic channel 

typ&^ 

Network models wi th single compartment neurons 

For the creation of networks, compartmental models must incorporate synapses 

and/or gap junctions [27]. The former are introduced as neurotransmitter activated 

ion channels and the latter as resistive connections between the intracellular medium 

of the two cells participating in the gap junction (see figure 3.3) [15]. 

The neuron providing input to the synapse (presynaptic cell) releases 

neurotransmitter into the synaptic cleft, activating the synaptic channels in the 

receiving (postsynaptic) neuron. The opening of postsynaptic channels due to 

neurotransmitter release at ( = (o leads to a transitory increase in synaptic 

conductance often modelled by 

(3.5) 

where is the synaptic conductance and a a scaling factor related to the 
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synaptic eGcacy. The resulting synaptic current is given by a similar expression to 

that of other ionic channel currents (expression 3.1) , 

hhan{t) = G syn{'t){Vm — Egyn) (3.6) 

where is the synaptic current and Ê ^̂  the potential at which the synaptic 

current reverses sign. 

Single compartment neuron models and the interconnecting synapses are the 

building blocks upon which networks can be constructed. The computational cost of 

this framework is evident in, for instance, simulations of cerebellar [8) and thalamic 

[17] networks. 

The model of the cerebellar granule cell layer developed by Maex ef oZ. [8], 

incorporates single compartment Golgi and granule cell models. Its 30 Golgi cells 

receive in the order of a few thousand connections and approximately 10'̂  granule 

cells receive 5 synapses each. The simulation ran for 18 h on a dedicated Sun 

UltraSparc workstation to simulate 10 s network time (6.48 CPU seconds per 

simulated ms). 

Destexhe et al. [17] have constructed a network model of the thalamic reticular 

nucleus incorporating 100 single compartment neurons. The neuron model included 

the fast N a ^ and JC"'"current channels responsible for the generation of action 

potentials, in addition to the low threshold current (T̂ r ) and the 

activated and /cAN currents. The model was used to investigate the effect of 

network parameters on the 7-14 Hz spindle oscillations. The simulations where 

performed using NEURON and ran on a Sun Sparc 10 workstation. A typical 

simulation took 0.96 CPU seconds per simulated ms. 

Cable theory of dendrites and axons. Mul t i compartment neuron models. 

Following the generation of an action potential at a particular membrane location in 

the 3D structure of the cell, this local and transitory change in membrane voltage 

propagates along nearby branches. This process follows physical principles similar to 

those in classical cable theory and were successfully described by the cable theory of 

dendrites and axons developed by Rail et al. [22, 23, 24]. 

'' = {V„ix, t) - '' (3 ' ) 

where A and r are the space and time constants respectively, is the membrane 
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Figure 3.4: Signal attenuation in a dendritic tree (from [6]) 

voltage and Eî ak is the voltage at which transmembrane leakage current ceases. 

This equation predicts that a change in membrane potential at one end of a 

dendritic terminal will propagate with a certain attenuation and velocity towards 

the other end. 

Figure 3.4, taken from [6], shows the solution corresponding to the transient 

response to a current pulse injected at a single branch (labelled BI) in the neuronal 

dendritic tree shown in the figure. The length of each branch is |A. Traces in the 

plot correspond to the voltage obtained at different points in the cell as a function of 

the dimensionless time variable T = The dendritic tree introduces a delay of 0.2 

(0.2r s) between the maximum at branch BI and the maximum seen at the soma 

and an attenuation by a factor of 0.5 x 10 .̂ 

When the effects of the neuron anatomy must be captured by the model, the 

branched structure of the neuron is partitioned in isopotential compartments (see 

figure 2.6). Each one of these compartments is described by an equation similar to 

3.4, 

^{v-m ~ eres) + ^i+1 " h-l " gleahi^m " eieak) 

Note, however, two new terms, Ii_i and li+i. They correspond to the current 

drawn from the two adjacent compartments, i + 1 and i — 1. The magnitude of these 

currents is given by Ohm's law, 
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where is the membrane voltage in compartment z, is the voltage in the 

adjacent compartment % — 1 and is the internal axial resistance. 

Simulat ions wi th mul t icompartment models 

The computational cost involved in the simulation of network models with 

multicompartmental neurons is exemplified by studies of cerebellar and cortical 

dynamics. 

DeSchutter et al. [16] constructed a multicompartmental model of the cerebellar 

Purkinje cell with 1600 compartments. However, the computational requirements of 

the model made it unsuitable for network simulations; 550 ms simulated time 

required 1 h CPU time (6.53 CPU seconds per simula,ted ms). 

A model of a pyramidal cell in the piriform cortex with 1089 compartments was 

constructed and simulated on a 200MHz PC running Linux (1.3 CPU seconds per 

simulated ms). With a reduced version of this model including 15 compartments, 

the computational requirements were reduced to 30 CPU ms per simulated ms)[6]. 

An even more simplified model with 5 compartments was used in a network 

simulation incorporating 4500 neurons requiring 100 CPU seconds per simulated ms 
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on a Sun 2/360 workstation [28]. 

3.1.2 Simplified Hodgkin-Huxley models 

A reduction in the complexity of the HH model is possible by minimizing the number 

of dynamic variables [29]. The FitzHugh-Nagumo (FN) [30] neuron model includes 

two coupled variables, a; (the excitation variable) and %/ (the inhibition variable), 

r \ r 

, 
where p(z) = 37(3; — o)(z — 1) and o and 6 are parameters controlling the 

asymptotic or periodic response of the system and 7 provides the external input to 

the system. 

Network models of oscillating neurons have been constructed to study object 

segmentation in the visual cortex [31] and sound recognition [32]. An FN neuron 

model was also used in a simulation of the olfactory bulb aiming at replicating 

experimentally obtained recordings [33]. 

Other simplifications of the HH model rely on approximations of the voltage 

dependence of the opening/closing rates (a and (3). For instance, in [34], the 

commonly used sigmoidal form was substituted by a pulse function. This 

simplification allows an analytical solution of the channel gating equations (those 

describing m, h and n in the HH model). The obtained solutions are of the form 

m(^) = A + 

Two sets of expressions must be found; one valid during an action potential and 

a second solution valid during inter-spike periods. As a result of the availability of 

an analytical solution, the fast changes in the rate constants during action potentials 

do not force a considerable reduction of the integration step in order to guarantee 

stability. These results in an increased efficiency of the model with respect to the 

original HH formalism while retaining an acceptable degree of realism [34]. 
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3.1.3 The integrate and fire model 

The integrate and fire (IF) model is a widely used further simplification of the HH 

formalism which exploits the invariability of the shape of action potentials. The 

assumption that the timing of the spike is the information carrier, rather than its 

shape (see for example Appendix A5 in [35]) is implicitly contained in IF models. 

Hence, the No"*" and i f "'"channels, responsible for the shaping of the spike, are 

excluded from the model. Such a simplification would lead to a complete absence of 

spikes, unless an alternative firing mechanism is added. This is the purpose of the 

threshold function incorporated into the model. An action potential is generated 

when the membrane voltage increases beyond a Gring threshold, by setting F to 

the maximal voltage during a spike, for a short period of time (typically less 

than 1 ms) and the after-spike potential, (10 to 20 mV below the resting 

potential). 

The refractory period is introduced by the time needed by the membrane 

capacitance to recover from to the resting potential yrgg. The dynamics of the 

membrane voltage are described by an equation of the type 

~ i^res ~ v) + isyn (3-8) 
dt 

where isyn is the current injected into the cell through synapses. Equation 3 

applies only while the condition y < holds. Otherwise, if y > t = t n 

y ̂  f t + (ft I 
I ^AS t = tn + 2 dt J 

where dt is the integration step. Equation 3.8 holds in the interval t E {t^, tn+i} 

where denotes the timing of the next spike. 

Various versions of the IF model have been developed. For instance, equation 3.8 

can be enriched with non-spiking conductances (such are ra te adaptation 

if"""conductances) which modulate the effective time constant of the cell [35]. Also, 

to account for randomness in neuronal activity, noisy IF models have been proposed 

by introducing stochasticity in the generation of the spike or in the activation of 

synaptic current [36]. 

The computational cost of simulating IF models is greatly reduced with respect 

to compartmental models including HH channels since the integration step can take 

larger values. This is made possible by the absence of fast-changing action potential 

conductances. Multiple biologically motivated network models can be found in the 
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literature [37, 38, 36] which take advantage of the IF approach. 

Wilson et al. [28] constructed a model of the piriform cortex with 4500 neurons. 

The neuron model was multicompartmental but the and 7̂ '"' channels were 

substituted by the threshold principle used in IF neurons. 

To study the variations in the patterns of activity in a generic cortical network as 

a result of changes in the neuronal excitation threshold and the membrane time 

constant, Hill ef a/. [39] used single compartment IF neurons. A network with 

100 X 100 IF neurons, including excitatory and inhibitory cells, displayed network 

state transitions in certain regions of the threshold-time constant parameter space, 

as a result of alterations of the balance between excitatory cind inhibitory synapses. 

IF models have also been used in simulations of the visual system. Experimental 

evidence of image segmentation based on neuronal 6ring synchronization has 

motivated the creation of spiking network models which rely on this principle 

[40, 41, 42]. The conditions to be met by pairs and small networks of IF neurons to 

achieve synchronization have been studied using an event-driven simulator in [43]. 

In a further simplification of the IF model, specifically aimed at visual processing 

simulation, Thorpe et al. [44, 45] have developed a feedforward network with three 

layers of cells which sequentially propagate the activity triggered by an input image. 

The neurons were modelled as spiking units constrained to the generation of a single 

action potential throughout the entire simulation corresponding to the processing of 

one image. At the expense of biological realism, this simplification resulted in 

improved efficiency. A simulation of 100 ms of activity in a network of 7 10^ neurons 

with 35 10® connections took 15 s of CPU time [45]. 

3.1.4 Biophysical continuous (non-spiking) models 

In non-spiking models, the possibility of generating action potentials is removed 

altogether, the membrane voltage evolving smoothly over time. Biophysically 

motivated non-spiking models have been proposed for the study of both mammalian 

and invertebrate neural functions. 

In [46], Wright et al. studied the generation of cortical electro-encephalographic 

(EEG) rhythms. In this work, individual neurons were not modelled, rather, entire 

cortical regions were represented by entities in an interconnected 20x20 lattice. 

Each node in the lattice had an associated continuously changing variable, y(^), 

representing the average membrane voltage in the associated cortical volume. 
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y(Z) = --
j=l 

where p is the synaptic gain, Qo(^) is the density of afferent pulses, is the 

discrete time step and wj is the prototype synaptic response, and 

which is a discrete version of the alpha function in equation 3.5. 

Time constants, relative magnitude of excitatory and inhibitory synapses and 

dendritic and axonal delays were set to realistic values. The effect of changes in 

network parameters (namely, dendritic delay, synaptic strength and synaptic 

reversal potential) on the spectral content of simulated E E G signal was explored. 

These studies concluded that realistic frequency components can be generated by 

the model and that the relative magnitude of each component is governed by the 

network parameters. 

Wicks et al. [47] constructed a model of the tab-withdrawal circuitry in an 

invertebrate, the nematode C. elegans, with non-spiking neuron models. The 

membrane voltage for each neuron was given by 

cm ^ t ) — eieak) + Azt 

where Igyn is the current due to synaptic events and lext is is the injected current. 

Note that the active conductances required for action potential generation were not 

included, allowing continuous membrane potential change in this model. The 

network incorporated 9 neurons and was designed following available anatomical 

data. The simulation aimed at determining the polarities (excitatory versus 

inhibitory) of the synapses in the network. For this purpose, all possible 

configurations were tested and likelihood values assigned. 

3.1.5 Abst rac t models 

Binary models 

The binary neuron models developed by McCulloch and Pi t t s [48] in the 40s, 

constitute a landmark in abstract neuron representations. They considered the 
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Figure 3.6; Perceptron with step function 

neuron a bivaluated processing element and proposed these binary elements as the 

conceptual foundation upon which a formal logic of neural processing would be built. 

A closely related model, the original Perceptron developed by Rosenblatt [49], is 

also a binary neuron abstraction with the added particularity of being suitable for 

pattern classification when associated to its learning rule. Figure 3.6 shows a 

diagram with its main blocks. 

The output, o, of a Perceptron with j inputs is given by 

(3.10) 

where wj is the synaptic weight associated to the j ^ i n p u t , i j is the analogue 

value provided by the j*'' synapse and takes the value +1 if z > 0 and 0 if 

z < 0 . 

Similar simplified binary neurons have been used in multiple network models; for 

instance, Hopfield networks achieve associative memory [50] and Boltzmann 

machines are stochastic neural networks capable of solving certain types of 

combinatorial optimization problems [51]. 

Spiking rate models 

Spiking rate models, on the other hand, assume that the relevant feature of neuronal 

activity is the spiking frequency and that the precise timing of individual action 

potentials is not fundamental to achieve functional neural activity. 
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Figure 3.7: Perceptron with sigmoidal function 

A modification of the binary Perceptron [52], shown in figure 3.7, is often used in 

this context where the output of the neuron is given by 

With respect to expression 3.10, the sign function has been substituted by 

which is differentiable and monotonically increasing; typically, a sigmoid 

function, 

1 
1 g - A ( x — S o ) 

As a result of this change in the input-output relationship, the parallelism 

between the Perceptron and the biological neuron is modified with respect to binary 

models. Whereas, in a binary Perceptron, the activation of the neuronal output can 

be interpreted as a single action potential, the graded ou tpu t of a continuous 

Perceptron lends itself to the interpretation in terms of spiking rate. The spiking 

rate of the neuron model is provided by the value at its output . 

Multilayer feed-forward Perceptron networks (MLP) based on continuous 

output-input mapping were first developed and trained by Rumelhart et al. [53] who 

introduced the back-propagation learning rule. The suitability of these networks to 

perform classification and function approximation resulted in its wide-spread use in 

the 6eld of articial neural network. 
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The linear HopHeld model [54], constitutes another example of rate neuron; it 

exhibits properties similar to its binary counterpart. 

The 6eld concerned with the use of abstract neuron models, both binary and rate 

based, partly to understand network behaviour in the nervous system and partly as 

an engineering technique suitable for the design of biologically inspired systems, is 

commonly referred to as artificial neural networks [55] and neurocomputing [56]. 

Cell automata 

Cell automata models make use of the finite state automaton formalism to capture 

the functionality of a physical entity [57]. In the general case, a state vector is 

associated to each cell and its time evolution is determined by its state-history and 

the inputs received from other cells through cell-cell interactions. 

Pytte et al. [13] have proposed a model of the CAS hippocampal region based on 

this technique. It utilized a binary neuron model which undergoes a state transition, 

from inactive to active, as a result of incoming synaptic activity reaching a set 

threshold or by spontaneous firing if the time since the last activation exceeds a 

randomly chosen time 

For excitatory neurons the firing condition was given by 

mgATg - -t- — Tr) 

where mg , and are the number of synaptic excitatory, fcist inhibitory and 

slow inhibitory simultaneously active synaptic inputs. Kg , and denote their 

respective strengths. The function — T̂ ) corresponds to a monotonically 

decreasing firing threshold, taking its maximum at n — 0, the time of the last spike, 

0 for n > tauj.. The firing threshold of inhibitory cells was set to a time-independent 

value of 0. 

Upon firing, a neuron remains active for a duration equivalent to a burst of 

action potentials in the real neuron. Individual spikes in a burst were not modelled. 

The hippocampal model included 10^ neurons of three types; excitatory, fast 

inhibitory {GAB A A mediated) and slow inhibitory {GABAB mediated) with an 

average of 38 synapses per neuron. Figure 3.8, taken from [13], shows the percentage 

of neurons firing in four simulations including 900 neurons where the strength of fast 

inhibitory synapses was progressively decreased ((a) 10.00, (b) 0.45, (c) 0.34, (d) 

0.00). As a result of the decrease in total inhibition, a high percentage of the 

neurons in the network fired simultaneously (see (c)). A further decrease of 
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inhibition, resulted in an increase in the regularity of the population firing (see (d)). 

Pytte et al. explicitly state that, in their implementation, neuronal states were 

continuously updated, rather than exploiting the discrete nature of the system by 

using an event queue to selectively update those neurons receiving synaptic 

activation (selective trace). 

In another example of a cell automata network model, Axelrad, Guiraud et al. 

[58, 59] carried our simulations of the cerebellar cortex. In particular, the collateral 

inhibition between Purkinje cells was modelled by an array of tri-state {silent, tonic 

and phasic) automata. This study concluded that, in such a model, the 

spatio-temporal patterns of neuronal activity are characterized by Markov-type 

cyclic dynamics, where the network evolves through a number of global states; each 

new state depending exclusively on the previous one. 

Moreover, the effects of general anaesthesia on cortical activity have been studied 

with an 80 x 80 lattice of cellular automata [60]. The tota l number of active 
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automata was taken to represent the EEG. These simulations concluded that an 

increase in synaptic strength induced low amplitude high frequency EEG 

components whereas a decrease (hypothesised to be equivalent to anaesthesia) gave 

rise to the appearance of high amplitude low frequency components. 

Other instances of cell automata based neural simulation have been only loosely 

biologically motivated. Korkin et al. [61] and Gers [62] proposed the CoDi (collect 

and distribute) 1-bit model, targeted at a special purpose architecture (a cell 

automata machine) developed with FPGAs (Field-Programmable Gate-Arrays) 

capable of simulating 75 million neurons. In the simple CoDi model, communication 

between neurons is achieved through 1-bit buses (no concept of synaptic weight 

exists), where synaptic delays, synaptic activation duration times and long range 

connections are difficult to implement. The emphasis of the CoDi model is on 

efficiency and compactness for hardware implementation of genetic algorithms, 

rather than biological realism. 

In addition to the dynamics of neural function, au tomata have also been 

proposed as adequate models for the simulation of other biological phenomena 

involving excitable cells. 

Luthi et al. [63] simulated neurogenesis in Drosophila using cell automata. The 

model consisted of a 128 x 128 matrix of automata and was simulated on a parallel 

CM-200 (8000 processors) achieving a rate of 10^ single automaton updates per 

second. Through inhibition between nearest neighbours in the matrix, a proportion 

of the initial pool of cells differentiated into neuroblasts while others remained 

undifferentiated. Quantitative results were shown to be consistent with values 

obtained experimentally. 

Another developmental study was performed by Eddi et al. [64], who proposed a 

model for the establishment of synapses between climbing " and Purkinje cells 

during a transitory developmental phase, when the number , .ynapses is thought to 

reach a maximal level of redundancy. 

Siregar et al. [65] proposed a model of the excitability of the heart consisting of a 

3D matrix with 140 x 120 x 100 automata which was able to simulate cardiac 

electrical activity. 

3.2 Simulation platforms 

Since the simulation of biophysical models is a computationally expensive task, there 

is active research aimed at the development of efficient simulation platforms. Both 
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Simulator T y p e of neuron model Simulation framework Network Size (1 C P U ) Comments 

G E N E S I S Biophysical Continuous 10^ 

N E U R O N Biophysical Continuous 10^ 

B I O S I M Biophysical Continuous 10^ Teaching and research 

N E O S I M Biophysical Mixed Mode 10^ 

N B C Biophys ica l / IAP Continuous 10^ 

S W I M Biophysical Continuous 10= Hybrid neuro-mechanical 

XSIM Multiple models Continuous 

S P I K E / N E U R A L O G Spiking neurons Event-Driven 10^ Not optimized for large nets 

S U R F - H I P P O Biophysical Continuous 1 0 ' 

S Y N O I D Biophysical Continuous 

N A N S Biophysical Continuous 10= GUI based 

S P I E D E R W E B Multiple models Continuous 10= C-h-k libraries 

SLIM Biophysical Continuous 10= 

S N N A P Biophysical Continuous 10= 

N O D U S F N & IF Continuous 10* 

Niachwibz-Gluender I F Event-Driven 10= 

Table 3.2: Software packages for biological neural simulation 

single processor and parallel architectures have been exploited for this purpose [18]. 

3.2.1 Single processor architectures 

Single processor architectures are commonly available and are the main platform for 

single cell and small network simulations. Table 3.2 includes some of the software 

tools available for network simulation with an emphasis on biological realism. The 

simulators GENESIS [66] and NEURON [9] are widely used in compartmental 

simulations, both packages offering similar features. However, NEURON provides 

cross-platform compatibility, running on Windows and Unix environments. Other 

simulators like SURF-HIPPO [67] and Biosim ['68] offer similar capabilities, although 

their use is less wide spread. In general, these biophysical simulators are limited to 

networks of a few hundred neurons, reaching the thousands with reduced 

compartmental models. SWIM and the SPLI library [18] were also developed for 

biophysical simulation, however, they have been optimized for network simulations 

with thousands of neurons and tested on different platforms. Also, SWIM has been 

used in hybrid neuro-mechanical simulations of the lamprey [69]. 
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Figure 3.9: Comparison of the performance of several PAs (from [71] 

3.2.2 Parallel architectures 

Parallel architectures (PA) have been successfully used for the simulation of large 

networks. Brettle et al. [70] constructed a model of the primary visual pathway of 

the cat with 16000 single compartment neurons with 1000 synapses per neuron. The 

model ran on a Connection Machine CM-2 (a single instruction-multiple data, 

SIMD, machine) with 65536 one-bit processors and 1 Mbit local memory. The 

performance obtained W6is in the order of 10 //g CPU time per 1 ma simulated time. 

The performance of several PAs has been studied in [71] for networks of IF 

neurons. The architectures explored were CM-2 (SIMD), TMS 320C80 (Texas 

Instruments), 4xP90 (with four Pentium P90) and SP2 (IBM, with 256 R6000 

processing elements). The latter three platforms are all MIMD (multiple 

instruction-multiple data). Figure 3.9 shows the total computing time taken by a 

single time slice of 1 ms as a function of network size. The study concludes that 

massively parallel platforms (e.g. CM-2) are suitable for real time simulation of 

large networks of IF models. However, general purpose PAs are constrained by 

inter-processor communication bandwidth. 

Special purpose parallel architectures (neurocomputers) have been proposed to 

overcome these limitations. For instance, toroidal lattice architectures (TLA) and 
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planar lattice architectures (PLA) were described in [72] for the simulation of 

abstract neuron models (Perceptrons and HopSeld neurons). It was estimated that 

the TLA architecture would allow high speed simulation of 10® million neurons with 

10^ synapses per neuron with 256 x 256 node processors and 128 Gb of memory. 

The CNAPS SIMD neurocomputer, developed by Hammerstrom [73], constitutes 

another example of a parallel hardware accelerator which has been used for eEcient 

simulation of cortex-like networks [74]. 

Parallel versions of the simulators GENESIS (PGENESIS) and NEURON 

(PNEURON) have been developed to run on workstation clusters and 

supercomputers. By distributing the computing load amongst several processors and 

using a message-based synchronization procedure, thousands of neurons can be 

simulated. Parallelization of NEURON developed at the Pi t tsburgh Supercomputing 

Center (Carnegie Mellon University) used the Cray C90 architecture, achieving 100 

fold increase in speed with respect to equivalent simulations ran on a Sparc II. 

NEOSIM is under development to provide a parallel environment for mixed mode 

simulation which would achieve inter-operability between existing biophysical 

simulators [75]. 

3.3 Rationale for the use of message-based 

event-driven simulation on general purpose 

architectures 

Compartmental models have been used in biophysical simulation of single neurons 

and small aggregates of neurons. However, the use of continuous simulation hampers 

its scalability. 

Parallel architectures, in particular special purpose designs, offer high speed 

simulation of large networks. However, the cost of such systems makes the use of 

general purpose computing resources a more favorable alternative. 

On the other hand, discrete simulation [76] results in a considerable increase in 

simulation performance when analogue models can be abstracted to their 

event-driven counterparts and the continuous framework can be substituted by a 

discrete framework [14]. Moreover, considerable research has been carried out on 

algorithms for efficient discrete simulation, in particular, to achieve an optimal 

management strategy for the event queue [77, 78, 79, 80]. Hence, discrete singulation 

was chosen as the framework to construct large scale and highly biologically 
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constrained models. 

Classical biophysical neuron models are suitable for continuous simulation. A 

simplified description, adequate for discrete simulation, had to be developed. 

Although this task had been partially targeted by most abstract neuron models 

(Perceptron, Hopfield and others), which are compatible with discrete simulation, 

their loosely biologically based design limits direct use of physiological data in the 

model. 

Message-based event-driven simulation is a natural framework to model 

distributed systems [81]. The message communication philosophy makes 

parallelization possible, if necessary for further improvements in performance, 

without fundamental changes in the algorithms. 

The work by Pyt te et al. [13] set a framework for the use of discrete neuron 

models in biologically realistic simulations. However, their implementation did not 

exploit some of the advantages of discrete simulation. In particular, the updating of 

states was continuous and selective trace was not implemented. Moreover, the 

neuron model used in this work could be further enhanced to account for 

physiologically measurable phenomena: delays introduced by the anatomical 

characteristics of dendritic trees, distance dependent delays in the axonal 

propagation of action potentials, pace making firing in CPGs (central pattern 

generators), inter-spike latencies within neuronal bursts and others. 

Overall, the decision to adapt event-driven simulation techniques was taken 

because 

• A reduction of the computational cost incurred by compartmental models is 

imperative to achieve large scale neural models 

• Event-driven simulation is a well established field which has proven 

computationally efficient in areas like telecommunications and digital 

electronics 

• The discrete nature of inter-neuronal communication motivates the use of 

neuron models suitable for an event-driven framework 

• Previous work in this direction shows the feasibility of this approach but has 

not fully exploited its advantages 



Chapter 4 

C. elegans and the olfactory cortex 

This Chapter provides, firstly, background information on the nematode C. 

and reviews computer models of its neural circuits and mechanical properties. 

Secondly, the piriform cortex is introduced and previous network simulations are 

reviewed. MBED models of both biological systems, C. efegGTw and piriform cortex, 

will be constructed and discussed further in this thesis. 

4.1 Biological targets of neural modelling 

A wide range of biological targets can be found in the literature on neural modeling. 

Invertebrates like the leech, the lobster and the mollusc Aplysia offer small-size 

neural aggregates subserving simple behavioural functions [82]. Their simplicity has 

motivated a large number of models in the hope of establishing links between neural 

activity and system level function. In this direction, the neural subsystems involved 

in locomotion have been the focus of a large amount of research effort. Experimental 

work on the leech using both standard microelectrode-based electrophysiological 

techniques [83, 84] and optical recording [85] have led to the development of 

computer models of its neuronal properties [86]. 

The stomatogastric system of the lobster and the associated neural ganglia are 

involved in food flow control and have also been the targets of network models. In a 

neuromechanical model [87] the connectivity space of the neural aggregate was 

searched and the conditions that maximized food flow found. 

Neural control of locomotion in vertebrates offers a more complex problem than 

invertebrates [88]. A well understood system is the lamprey, whose loconiotory 

nervous system has been extensively used in the study of fish swimming. A 

41 
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neuromechanical model (neural aggregate + mechanical model) has been developed 

[69] based on experimental data [89]. It shows that swimming motion can be 

achieved by a chain of linked segments with the timing of motorneuron activation 

being regulated centrally by the brainstem and locally by intrasegmental 

interneurons. 

Interest in the modelling of larger neural aggregates, in particular cortical 

modules, has been motivated by their role in high level functions in mammals. The 

cortical regions directly involved in the processing of incoming sensory information 

provide a somewhat easier case to link neural activity and function since controlled 

stimuli can be related to cortical activity patterns. 

The visual cortex, for instance, has provided data on cortical image processing 

[41, 42, 90] and has motivated network models of image feature linking [41], 

direction selectivity [91], multiple topographic maps [92] and others. The auditory 

and somatosensory cortices have also been studied by network models [93], as well as 

extracortical areas like the cerebellum [8, 16]. 

The nervous system of the nematode C. elegans and the olfactory cortex of 

mammals constitute two examples of small and large scale neural aggregates, 

respectively; they are the target of the MBED network models developed in chapters 

7 and 8. The following sections provide background information on these systems 

and review previous modelling work. 

4.2 C. elegans 

4.2.1 Background 

C. elegans is a free living nematode of small size (1 mm long and approximately 

80/im in diameter). It has a relatively rich set of behaviours which include feeding, 

temperature sensing, chemical sensing, mechanical sensing, defecation, mating, 

detection of changes in osmotic pressure, and others [94]. 

Its cylinder-like body is under considerable internal pressure which acts against 

an external cuticle [95]. The rigidity conferred by this internal pressure aids in the 

generation of wave-like locomotion. Figure 4.1-A shows an image taken with an 

optical microscope and figure 4.1-B is a diagram of the anatomy of C. elegans. 

Two rows of electrically coupled muscles, situated in opposite sites of the body, 

constrain the nematode to movements in a plane. However, the head has an extra 

degree of freedom due to the grouping of its muscles in four electrically independent 
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Figure 4.1: (A) Image of C. elegans taken with an optical microscope. (B) Schematic 
diagram of C. elegans. 

quadrants. 

The nervous system of C. elegans includes 302 neurons which can be found in 

three main locations; head, body and tail ganglia. Head ganglia work as information 

relay centers, the nerve ring being the most prominent, in addition to implementing 

paths of sensory input. Along the body, neurons extend longitudinally controlling 

the muscle contractions required for locomotion. Several neurons in the body 

constitute the egg laying subcircuit. In the tail, neurons sense their local 

environment and control functions like defecation [94, 96, 97]. 

C. elegans has a number of peculiarities which make its nervous system 

interesting from the modelling point of view; mainly, its known topology, its 

adequacy for the use of genetic tools and its transparency which allows laser 

ablation of individual neurons. 

Regarding topology, the same neurons can be identified in different individuals, 

by their morphology and position with respect to the rest of the body. The 

connectivity can also be used as a means to identify neurons as it has been shown to 

be fairly constant [97]. In addition to this unusual invariability, the nematode is a 

very special case as the topology of its nervous system has been completely mapped 

using electron microscopy [96, 98, 97, 99]. 

Moreover, C. elegans is often used in genetic studies. Strains carrying mutations 

which affect genes required for the normal function of the nervous system are 

available. When those neurons affected by the mutation are involved in locomotion 

control, the result is an abnormal movement coordination. 

These malfunctions may be due to erroneous connectivity of neurons or to 
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abnormal neural functionality [100, 101, 102]. Examples of both cases will be used in 

the validation of the MBED model of the locomotory neural circuit. 

The body of the nematode is transparent, allowing the use of laser beams to 

ablate specific neurons. The functional elimination of identified neurons may induce 

abnormal behavioural patterns and provide clues on the role of the ablated cells on 

network level dynamics [103, 101, 104]. This technique has generated data which can 

be used in assessing the vaHdity of neural models as it is possible to simulate 

ablation of a neuron in the model and compare the results with the experimental 

data. This approach has also been taken with the MBED model of C. elegans 

presented in this thesis. 

Finally, histochemical experiments allow the identification of the 

neurotransmitters used in individual synapses and suggest a tentative classification 

of these connections into excitatory or inhibitory. This is possible by creating 

fluorescently labelled antibodies that specifically bind to a selected type of 

neurotransmitter receptor. The identification of fluorescent spots due to clustering 

of the antibodies indicates the presence of that particular receptor and 

neurotransmitter [105]. This type of information will also be introduced in the 

model. 

Despite the abundance of topological and genetic data, electrophysiological 

recordings are limited so far to muscle cells [106], unidentified neurons (Lockery, 

personal communication) and chemical sensor neurons in the head [107]. This is due 

to the reduced size of its neurons (a few microns in diameter) and their lack of 

accessibility (due to the internal pressure, dissections easily damage the nervous 

system). 

4.2.2 Models of C. elegans 

C. elegans has been the target of several computer models dealing with the physics 

of nematode locomotion and the neural circuitry involved in its response to chemical 

compounds, touch stimuli and temperature changes. 

Locomotion 

The 2D mechanical model of the body developed by Niebur et al. [108] is relevant to 

the development of neural models since it provides a tool to predict the behavioural 

effect of a given pattern of neural activity. The body was modelled as a segmented 
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elastic cuticle with any one patch of this cuticle experiencing four force vectors; 

internal pressure, surface elastic force, environmental friction and muscle contraction. 

The internal pressure force vector is given by 

where p(0) and y(0) are the pressure and total volume of the body at ( = 0, o is 

a positive integer in the range (4 — 8), 5" is the surface of the patch of cuticle 

considered and is a unitary vector normal to the surface. 

The elasticity of the cuticle introduces a second force term. In the case of two 

points situated at opposite sites of the body, the elastic force is given by 

= k I 1 ) (^ , -

where A: is a scaling constant, d is the diameter of the body and and are 

position vectors of the points. In the case of two contiguous points, ^ and , 

situated on the same site of the body, the elastic force is given by 

= / ( 0 ( ? - - ^ i+1 -
i 

where / corresponds to the distance between the pair of points ^ and 

d"^: — and / ( ( ) is a non-linear function accounting for the non-linear 

elasticity of the cuticle. 

The environment introduces a frictional force term acting on any one point on 

the surface of the body, 

= - C i V , - C 2 V » 

where and are the tangential and normal components of the velocity 

vector at the considered point. ci and cg are positive scaling constants. 

Finally, muscles introduce a fourth force component, collinear with a vector 

tangent to the body surface, given by 

where e(m, t) is a dimensionless number which depends on the state of the 
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motorneuron at time (, 7; is a constant and f is a unitary vector tangent to the 

surface. Niebur oZ. confirmed with this model that a pattern of muscle excitation 

consisting of waves propagating towards the tail and the head succeeded in 

generating realistic forward and backward locomotion respectively. 

The focus of this work was the mechanical dynamics of locomotion rather than 

the neural circuitry underlying locomotory behaviour. However, in further work, the 

same author estimated the attenuation and velocity associated with paasive 

propagation of activity in the axons of the motoneurons in C. elegans [95]. 

The estimated velocity in motorneurons (~ 8 — 30 cm/s ) was found to be much 

larger than the observed velocity of propagation of muscle contraction 0.2 cm/s), 

ruling out the possibility of obtaining the observed patterns of muscle contraction 

solely as the result of passive propagation in motorneurons. These ccilculations 

suggested that the generation and propagation of waves along the body of C. 

could rely on the use of stretch receptors. In agreement with these results, stretch 

receptors play an important role in the MBED model presented in Chapter 7. 

The problem of the genesis of muscle contraction patterns was tackled 

experimentally by Stretton ef oZ. [109] in the nematode Aacang, which is thought to 

use mechanisms similar to those found in C. elegans. As a first approximation, a 

qualitative description of the propagation of the muscle contraction wave was put 

forward by Walrond et al. [110]. Experimentally, it was shown that the excitation 

wave propagates within motorneuron axons as opposite to a exclusively muscular 

propagation and further evidence for the presence of stretch receptors was put 

forward. These results are in agreement with Niebur's estimations. However, no 

computer simulation was provided for further quantitative studies. 

Neural processing of sensory input 

Detailed information on sensory circuits in C. elegans [111] has motivated several 

computer models of its response to sensory input (chemicals, light touch and 

temperature). 

Chemotcixis refers to the ability of the worm to escape from damaging chemicals 

and to approach zones of high concentration of desirable compounds. The circuit 

involved in chemotaxis has been studied with laser ablation and a network model 

has been developed [112]. This model was constructed using neurons with relaxation 

dynamics, where the membrane voltage for any one neuron is given by 
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u, Wji 

(fy 
11 == 4- -- tj:o) 

where % is the membrane voltage of the z*'' neuron, Ti is its time constant, 

the synaptic weight between cells j and z, is the membrane voltage at which the 

synapse does not produce changes in the postsynaptic cell and C(() is a term only 

present in those cells that receive input from the environment. A number of cells in 

the network acted as steering signals feeding a black box model of the locomotory 

system. With appropriate selection of parameters, the model predicted movement 

towards increasing gradients of desirable chemical compounds. Thus, the network 

did not include a cell-level representation of the locomotory circuit. 

Tab-withdrawal in C. e/epama has also been modelled. It has been observed 

experimentally that the nematode locomotes backwards when its nose is touched 

and forwards when its tail is touched. The neural circuit involved in controlling this 

behaviour was identified by laser ablation [113, 103]. 

In [47], a continuous non-spiking neuron model was used in a simulation of the 

tab-withdrawal circuit. The aim of this work was to determine the sign of the 

synapses in the circuit (positive being excitatory and negative inhibitory) by testing 

multiple configurations and quantifying the probability of a certain parameter set 

generating the experimentally observed behaviour. 

The dynamics of the membrane voltage in a neuron were given by 

ext 

where Cm is the membrane capacitance, its total leakage resistance, Vjgak the 

membrane voltage at which no leakage current Hows through the membrane, 7̂ ;,̂  the 

synaptic currents and lext corresponds to the injected current. 

The network model is shown in figure 4.2. It does not explicitly incorporate 

nematode locomotion. Rather, neurons AVA and AVE are assumed to be the main 

output to the locomotory circuit and to control locomotion as described by the 

gearbox analogy; the difference between the membrane voltage in neurons AVA and 

AVB, the steering signals, determines the speed and direction of locomotion 

Jtn 
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Figure 4.2: Network model as constructed by Wicks aZ.[47] 

where L is a quantitative measure of speed and direction of locomotion, VAVB 

and Vava are the membrane potentials in neurons AVE and AVA respectively and to 

is the last sign reversal. The sign of L distinguishes between forward and backward 

propagation and its magnitude sets the speed. 

Laser ablation experiments were simulated with the model and the results 

quantitatively compared to experimental observations. For this purpose, a measure 

of the difference between the simulated and experimental values of L , based on 

least-squares error, was used to determine the fitness of each of the tested synaptic 

conAguraUons. 

An alternative approach to the modelling of the touch sensitivity circuit is being 

pursued by Osana et al. (personal communication) using the Boltzman machine 

formalism with a network of 66 neurons. Preliminary results indicate that , after 

training with Hebbian-like learning algorithm, the network converges to a 

configuration where the excitation of head and tail mechanical sensors generates 

backward and forward locomotion respectively. 

The neural circuit involved in thermotaxis (the ability of the animal to move 

towards zones with an ideal temperature) has been identified with laser ablation. 

Tentative functions for some neurons were assigned after laser studies [114]. 

However, no mathematical model has been published. This is also the case with 

regard to the locomotory circuit, responsible for direct control of the body muscles. 
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Although several classes of neurons have been identified and generic functions 

proposed, no computer model is available. 

The models of chemotaxis, thermotaxis and tab-withdrawal mentioned above did 

not explain the generation and control of the patterns of muscle contraction seen in 

C. They focused on the neural circuitry which maps the sensory input into 

a steering signal delivered to the locomotory system. The model proposed in 

Chapter 7 will deal with this untackled problem. 

4.3 The piriform cortex 

The neural structures involved in odour perception consti tute a phylogenically old 

part of the mammalian brain. Several species have served as model systems to study 

their physiology and information processing capabilities; the cat [115], the rabbit 

[116], the rat [117] and the opossum [118] among others. A subset of the information 

obtained from these studies, specifically that relevant for the MBED model of the 

piriform cortex, is presented in the following sections. 

4.3.1 Modules within the olfactory sys tem 

The first stage in the olfactory system (Ggure 4.3) corresponds to the transduction 

carried out by the chemical receptors located in the nasal cavity, within a layer 

known as olfactory epithelium. Each one of these chemical sensors detects the 

presence of a range of chemical compounds and transmits olfactory information to 

the first processing center, the olfactory bulb. Different odours generate spatially 

different patterns of input activity [119]. 

The olfactory bulb consists of several conglomerates of cells, glomeruli. By means 

of the interaction between excitatory (mitral) and inhibitory (granular) cells in these 

glomeruli, the sensory input from the smell receptors triggers the onset of oscillatory 

activity. It is believed that the olfactory bulb carries out an initial processing on 

smell information. However, the exact nature of this processing is still unclear [33]. 

In mammals, the olfactory bulb sends its output directly to several cortical 

modules. The biggest of these areas is the piriform cortex or primary olfactory 

cortex, which is involved in further processing of olfactory information. The 

connection from olfactory bulb to piriform cortex is provided by a bundle of axons 

termed the lateral olfactory track (LOT). There is also anatomical evidence of a 

feedback connection from piriform cortex to olfactory bulb [120]. 
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Figure 4.3: Block diagram of the olfactory system 

4.3.2 St ruc ture of the piriform cortex 

The piriform cortex contains an estimated 10^ neurons of 10 different types 

[121, 118, 120]. Its anatomical structure is often divided in three areas with 

distinctive characteristics (see figure 4.4). Layer I, the plexiform layer, includes few 

cell bodies and is mainly occupied by dendrites from neurons located in deeper 

layers. Layer I is further divided in la (superficial lamina) and lb (deep sublamina). 

In sublayer la, the LOT establishes synapses with the dendritic trees which fill layer 

1. Sublayer lb is characterized by the presence of synapses between pyramidal cells. 

Layer II corresponds to the lamina with the highest density of cell bodies. Figure 

4.5 shows a cross section of the piriform cortex stained with the Golgi technique 

(taken from [121]) where, due to its high density of cells, layer II appears as a dark 

band. The more superficial layer I, shows as a brighter band. The density of cells 

decreases gradually from layer II towards the deeper layer III, showing as a graded 

increase in brightness in figure 4.5. 

Layer III contains both cell bodies (although at a lower density than layer II) 

and dendrites emanating from cells and directed downward in figures 4.4 and 4.5. 

Layers II and III contain large numbers of pyramidal cells. These are 

anatomically similar to pyramidal cells in other cortical areas. Two dendritic trees 

originate in the cell body; an upper tree extends along layer I whereas the bottom 

tree extends along layers II and III. A typical pyramidal cell in the piriform cortex 

receives synaptic input from the olfactory bulb through the LOT and from other 

cells in the cortex. Axons from pyramidal cells establish excitatory local synaptic 

connections with nearby neurons and also long range excitatory connections with 
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Figure 4.4: Layered structure of the piriform cortex (from [122]) 

distant neurons [122]. 

In addition to pyramidal cells, at least nine anatomically distinct classes of 

non-pyramidal neurons have also been identified in the piriform cortex. Some of 

these types are thought to be inhibitory cells. In particular, three classes of 

inhibitory connections have been observed physiologically; GABAA slow, GABAA 

fast and GABAB slow. GABAA synapses have a short onset latency (approximately 

1 ms) and an activation duration of about 10 ms. On the other hand, GABAB 

synapses have an onset latency of 50 ms and an activation duration of 100 ms [28]. 

For modelling purposes, inhibitory cells have often been grouped into two classes; 

Figure 4.5: Cross section of the olfactory cortex stained with Golgi techniques, bar= 
800 iJ,m (from [121]) 
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Figure 4.6: EEG recordings from olfactory bulb (a), anterior (b) and posterior (c) 
olfactory cortex (from [116]) 

slow feedforward inhibition and fast feedback inhibition. The former receives input 

from LOT and pyramidal cells and synapses back onto pyramidal neurons and the 

latter receives input from pyramidal neurons and synapses back onto them [28, 123]. 

4.3.3 Exper imenta l da t a 

Multiple electrophysiological and optical recordings of activity in the piriform cortex 

have been described in the literature. A limited number of these recordings aimed at 

the measurement of the cortical response to odour perception in-vivo. The main 

feature of these results was the presence of bursts of activity in the gamma range (at 

approximately 40 Hz) synchronized with sniffings [116]. Figure 4.6 shows EEG 

recordings obtained from the olfactory bulb (a) and from two distant locations in 

the olfactory cortex (b and c). During odour perception, bursts of high frequency 

and amplitude can be seen in the traces. 

Due to experimental difficulties, the majority of recordings have been obtained in 

far less realistic setups. In most experiments, cortical activity is not evoked by 

odour perception, rather, electrical stimulation of the LOT causes the observed 

neural activation. 

Ketchum et al. [124, 117] recorded the potentials generated by neuronal activity 

at several locations in the cortex after excitation of the L O T with a 0.1 ms current 

pulse. Two types of responses were obtained (see Egure 4.7); a single peak and a 

damped oscillation responses could be triggered, the parameter determining the 
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Figure 4.7: (A) Strong shock stimulus response, (B) Weak shock stimulus response 
(from [124]) 

response type being the intensity of the excitation current pulse. High intensity 

pulses evoked the single peak response whereas lower intensity pulses triggered 

damped oscillations. 

Optical recordings using voltage sensitive dyes have also been carried out in the 

olfactory cortex. Curtis et al. [125] and Litaudon et al. [126] reported waves of 

activity across the cortex evoked by excitation of the LOT and olfactory bulb. 

4.3.4 Network models 

Several network models of the olfactory cortex have focused on its suspected role in 

odour recognition, proposing mechanisms for the achievement of an associative 

memory [122]. Freeman proposed, in 1987, such a network model of the olfactory 

cortex using an analytical approach and avoiding the modelling of individual 

neurons. The dynamics of the cortex were described in terms of ODEs and pointed 

at the resemblance between the cytoarchitecture of the olfactory cortex and the 

networks shown to implement associative memories [127, 128]. 

The Lynch-Granger model [129, 130] was proposed to study the function of the 

olfactory bulb and olfactory cortex system as an odour classifier system. The 

network model in [129] included 400 excitatory and inhibitory cells in the olfactory 

bulb model and 1000 excitatory and 50 inhibitory cells in the olfactory cortex model 

(see Hgure 4.8). Neurons were modelled as linear elements which summated the 

incoming inputs according to a matrix of weights 14̂ . A Hebbian learning algorithm 
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Figure 4.8: Bulb-cortex model developed by Lynch et al. [129] 

was applied in conjunction with a "winner-take-all" mechanism to adjust synaptic 

weights as a result of the input generated by simulated sensing of odours. The aim 

of this model was to show that such a network was suitable for the implementation 

of an odour classifier. However, the activity of the model was only compared to 

psychophysical data. Comparisons with electrophysiological results were precluded 

by the level of abstraction of the model. 

Li and Hertz [119] have recently proposed an alternative bulb-cortex model. In 

one of its implementations, the network included 200 neurons of four cell types 

(excitatory and inhibitory in bulb and cortex) in equal proportions. Formal 

excitatory and inhibitory neurons in the bulb model had an associated membrane 

potential, x and y respectively, whose dynamics are given by 

dt 
-az, 

-QfJ/j + "y ' Wij g{Xj^ + Icortex 

where Hij and Wij are the synaptic weights between units i and j, and y is a 
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Figure 4.9: Activity in five neurons from a bulb-cortex model in response to three 
(A,B,C) diEerent odours (from [119]). 

function that maps membrane potential into firing rate. 

The dynamics of the cortical model were described by similar expressions 

dt 
-aiti — ^ + /: 

dt 

where u and v are the membrane potentials for excitatory and inhibitory cells 

and J and D are synaptic strength matrixes. 

The aim of this model Wcis to study how a biologically motivated neural network 

model could detect, recognize and segment odours. Figure 4.9 shows the temporal 

traces of the outputs from 5 excitatory cells in the bulb and cortex obtained for 

three different odour stimuli (A, B and C). A common feature in all responses is the 

oscillatory nature of the signal with a frequency of approximately 50 Hz and an 

intensity dependent on the number of previous exposures of the system to the odour. 

In figure 4.9, odours A and B (with which the model had been trained) trigger more 

generalized activity than odour C (completely unknown to the network). 

A small network model with 10 x 10 neurons was constructed in [131] to 
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Figure 4.10: Schematic drawing of the structure simulated by Wilson et al. [28] 

demonstrate associative memory properties of the piriform cortex. As in previous 

associative memory models, the proposed cortical mechanisms were based on 

anatomical data and psychophysical experiments with no direct reference to 

electrophysiological data. 

Although this line of research provided qualitative understanding of cortical 

dynamics, the lack of direct mapping between biophysical parameters and 

parameters in the model limited its use cis a tool for the neuroscientist. 

Following an alternative approach based on realistic compartmental neurons, a 

model of the piriform cortex including 4500 neurons (effectively 405 neurons, given 

that, during data collection, the number of neurons had to be reduced) was 

constructed by Wilson et al. [28]. The network included three types of cells; slow 

inhibitory, fast inhibitory and pyramidals (excitatory). 

Pyramidal neurons were modelled by a six compartment structure as shown in 

figure 4.10; the upper-most compartment received synapses from the LOT and slow 

inhibitory cells, the middle compartment received input from pyramidal cells, the 

cell body received synapses from fast inhibitory neurons and the bottom-most 

compartments received local connections from nearby pyramidal cells. Inhibitory 

cells were modelled with a single compartment. 

Field potentials were simulated applying the following approximation 

V{t) 
J K 

j vjk 
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Experiment Result 

Strong shock stimulus Single wave 
Weak shock stimulus Damped oscillation 

Random input 40 Hz + 5 Hz frequency components 

Table 4.1: Experimental results considered in the simulation by Wilson et al. [28] 

40 ms 40 ms 

Figure 4.11: (A) Strong shock response, (B) Weak shock response 

where 

Tjk — (y Vjk)'^ ^jk) ] 

and and (r, 2/, z) are the position of the compartment in the j*'' 

neuron and the location of recording electrode, respectively. is the current 

flowing through the compartment and a is a scaling constant. 

Table 4.1 summarizes the main results obtained. The response of the model was 

tested by providing three different types of stimulus through the LOT; low intensity 

shock stimulus, high intensity shock stimulus and random input. 

Figure 4.11 shows the simulated field potential recordings obtained after low and 

high intensity shock stimuli. The response to the low intensity stimulus is a damped 

oscillation whereas the simulation predicts a single peak response to a strong shock 

stimulus. 

With the same model, the frequency components present in simulated EEGs 

were also studied. The EEG recording was simulated by linearly adding the 

simulated Held potentials obtained with regularly spaced virtual electrodes 

positioned in a grid over the cortical model 
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Figure 4.12: Simulated EEG power spectrum obtained by Wilson et al. [28]. 
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where is the potential recorded by the electrode placed in position (a;,?/) 

and the summations are over the X x y electrodes of the grid. The cissumption 

contained in this approximation states that the EEG signal corresponds to a 

measurement of average activity in a large region of the cortex. This approximation 

was consistent with previous work on EEG [132]. 

EEG simulations were carried out providing random input to the model through 

the LOT. Figure 4.12 shows the estimated power spectrum of the EEG signal 

obtained. The main features of this result were a relatively high frequency 

component (40 Hz) and the theta-type activity peak (3-10 Hz). Both have been 

observed experimentally. Secondary peaks in frequency bands centered at 80 Hz and 

20 Hz were also obtained. 

Building on these simulations, Barkai et al. [123, 133] constructed a biophysical 

model of the piriform cortex including 240 pyramidal and 58 inhibitory cells of two 

classes, GABAA and GABAB- Each compartmental neuron contained three 

compartments and several voltage and calcium dependent currents Ik{dr), 

responsible for shaping the trains of action potentials in 
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individual neurons. The simulation was carried out with the GENESIS simulation 

package and aimed at studying the effects of the neuromodulator acetylcholine on 

the postulated associative memory mechanism implemented by the piriform cortex. 

This work concluded that the increased rate of synaptic modiScation triggered by 

acetylcholine favours the learning phase whereas the suppression of the effects of 

acetylcholine facilitates the recall phase. 

Ballain et al. [134] proposed an alternative approach to the compartmental 

modelling techniques based on relaxation dynamics to describe mathematically the 

time evolution of the optically recorded activity in the olfactory cortex. Since this 

type of recordings do not allow the measurement of activity from individual cells 

(each photodiode imaging average activity in approximately 2000 to 4000 neurons), 

the model consisted of a network of 54 x 24 units representing the ensembles of 

neurons imaged by individual photodiodes. For each ensemble, two subpopulations 

and the corresponding two associated state variables were introduced in the network 

model; Vij, representing the average state of the excitatory variables in the pool, and 

[/jj , corresponding to the inhibitory subensemble. 

The dynamics of each subensemble were given by 

k w 

^ =-/?{/ + (U, - U)gi4.(V(t - tjs)) 

where and Vi are excitatory and inhibitory equilibrium potentials respectively, 

b represents the input activity from the olfactory bulb, 0 is a transfer function, Qx 

are scaling factors and the summations are over the A" input signals from the 

olfactory bulb and over the total number of ensembles, W. 

Simulations were carried out to study the response of this model to strong and 

weak shock stimulus, obtaining single peak and oscillatory responses respectively, in 

accordance to experimental results. Moreover, propagation of waves and pacemaking 

activity between preferentially coupled ensembles was also successfully predicted by 

the model. 
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The nervous system of the nematode C. eZê oMa contains 302 neurons and its 

connectivity has been mapped in its entirety with EM. Several network models have 

been constructed to study chemotaxis and tab-withdrawal. 

A subcircuit containing approximately 100 neurons is directly involved in the 

control of locomotion. A model explaining the cooperation of the network to achieve 

locomotion has not been described in the literature. Progress has been hampered by 

the lack of electrophysiological data from these cells. However, tentative functions 

can be assigned to some neuron classes based on topological information and laser 

ablation experiments. This makes the locomotory circuit an interesting case from a 

modelling perspective. 

The piriform cortex constitutes an opposite case, a large network where only 

statistical connectivity rules are known but where electrophysiological data are 

available. Several network models of the piriform cortex have been constructed. 

Those with emphasis on the replication of electrophysiological data have made use of 

compartmental models. The computational cost involved in the simulation of these 

types of models has limited the size of network models to approximately 5000 

neurons. Other network models, with an emphasis on the suggested implementation 

of associative memory by the olfactory cortex, have relied on analytical descriptions 

of the dynamics of neuronal ensembles. Although this approach is potentially 

suitable for large scale simulations, its high level of abstraction complicates the 

correlation of simulation results and experimental data. Thus, there is a need for the 

development of large scale models, which allow the incorporation of biophysical 

parameters, such as synaptic timings, in order to explore the e&cts of these 

parameters on network dynamics. 



Chapter 5 

Message-based event-driven neuron 

model 

In this Chapter, the message-based event-driven neuron model (MBED) is 

described. The blocks making up its internal structure (synapses, threshold 

subsystem, burst generator and oscillator) are explained and examples are provided 

both to illustrate their operation and to validate the correctness of the 

implementation. Functional similarities and differences between the event-driven 

model and conipartmental models are shown. For this purpose, simulations of 

compartmental models have been carried out using the simulator Neuron [9]. 

5.1 Internal structure 

The MBED neuron model is a finite state automaton. It is made up of several 

blocks (synapses, threshold subsystem, burst generator and oscillator), each of them 

capturing the functionality of a different component of the neuron (see figure 5.1). 

Communication between blocks within a single neuron is achieved by message 

passing through unidirectional message channels (see table 5.1 for a complete list of 

message channels and legal message types for each channel). Message channels are 

depicted as solid line arrows in figure 5.1. 

Each message is a data packet containing the following fields: delay, message 

type label and an optional parameter (see section 2.1.2 for a description of a discrete 

simulation framework based on packet exchange). The delay field contains the delay 

between message generation and message delivery to the destination. The message 

type label indicates the type of message which will determine the action taken by 

61 
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w e i g h t e d s u m 
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2 d u r 
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Figure 5.1: Message-based event-driven neuron model (solid arrows indicate channels 
for message broadcasting). 

Channel Message structure Legal values Legal values 
of m of p 

a . on Synapse type 
/? {t,m} 071,0// 
7 {t,m,p} om,o// ' Synapse type 
(5 {t,m} change 
e {t,m} 071,0// 
c {t,m} on 

V {t,m} o / / , r e / 

Table 5.1: Message channels in the neuron model 
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Parameter Function 
Excitation threshold 
Inhibition threshold 

tap Duration of action potential 

tref Duration of refractory period 

^burst Number of spikes per burst 
iosc Period of pace maker 

Time offset of pace maker 

^del Synaptic delay 
idur Duration of synaptic pulse 

^syn Synaptic efficacy 

Table 5.2: Parameters used in the model 

the target block upon reception of the message. The optional parameter provides 

complementary information required by the destination block to process the 

message. 

The message space of a neuron can be classified as external input events, external 

output events and internal events. External input events arrive through a channels 

and communicate to local synapses that a presynaptic neuron has fired. External 

output events correspond to outgoing messages broadcast to postsynaptic cells upon 

initiation of an action potential. Internal events are amenable to further 

categorization; inter-block messages (a, ( ) are communicated between internal 

blocks of a single neuron whereas intra-block messages (̂ ) are scheduled for the 

same block which generated them with the sole purpose of introducing a delay 

between two s tate changes. The former have a biological counterpart in the 

propagation of transient membrane voltage changes from synapses, along dendrites, 

to the cell body and proximal axonal segment (hillock zone, where the spike is 

initiated) and along axons to the next synapse. The la t ter are convenient 

abstractions to support the desired functionality. 

Blocks in the neuron model are either state machines or combinational functions. 

In the state machines, the arrival of a message may trigger a change of state, an 

action (the update of internal state variables) and an output (the broadcasting of 

new messages). In combinational functions, the arrival of an input message triggers 

the broadcasting of one or more output messages. 

Tables 5.2 and 5.3 show the complete set of parameters, s tates and variables in 

the MBED neuron. Their purpose is described further in the following sections 

simultaneously with the block to which they are associated. 
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Block Allowed states State variables Parameters 
Synapae - - ^deh 

Threshold - t/h^ J thi 
Burst generator o n , o / / , r e / ^burst ^api ^reft ^burst 

Oscillator - iosc) 

Table 5.3: Allowed states, state variables and parameters for each block in the model 
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Figure 5.2: (A) Change in membrane voltage due to t h e activation of a GABAB 
synapse, (B) synaptic current 

5.2 The synapse block 

5.2.1 Compar tmen ta l models of synapses 

Within the context of compartmental modelling, synapses are often modelled as 

time-varying conductances which transport current across the cell membrane, 

charging and discharging the membrane capacitance and altering the transmembrane 

voltage. Figures 5.2-A and 5.2-B show the transient change of membrane voltage 

and the synaptic current produced by an inhibitory GABAB synapse. 

The magnitude of the synaptic current is given by equation 3.6, reproduced here 

for convenience, 

E. synj (5.1) 

where Isyn{i) is the current across the synapse, Gsyn{t) the conductance of the 

synapse, Vm the membrane voltage and Egyn a voltage source whose value sets the 
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Synapse 

Figure 5.3: Synapse block and associated channels 

Input Output 
a := on := {(dehon} 
(3 := on := 7 := {O,(m,a%/nopaef?/pe} 

^ := o / / "y := {0, o / / , aymopaeft/pe} 

Table 5.4: The synapse block function 

membrane voltage for which no current flows across the synapse. 

The sequence of events in a biological synapse is as follows; neurotransmitter is 

released by the presynaptic cell, introducing a delay of the order of ms and 

triggering the onset of by increasing Ggyn(t) the current through the 

synapse increases the membrane voltage (EPSP, excitatory postsynaptic potential) 

or decreases it (IPSP, inhibitory postsynaptic potential). The duration of the change 

in membrane voltage depends on the type of synapse, varying from a few ms for fast 

(ionotropic) synapses up to hundreds of ms for slow (metabotropic) synapses. After 

the activation period, the neurotransmitter ceases its action on the synapse and 

Gayn(() returns to its initial value. 

5.2.2 The discrete synapse model 

The discrete synapse model is a combinational block with no internal state 

information. Three aspects of the biological synapse are captured; the synaptic 

delay, the finite duration of the synaptic activation and its efficacy. 

Synaptic delay and activation duration 

Figure 5.3 depicts the synapse block and table 5.4 shows the function that it 

implements. 
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A complete sequence of events in the MBED synapse is as follows: 

• The synapse receives an on message (discrete equivalent of neurotransmitter 

release) at time f on channel a. 

• The synapse schedules its delayed activation at ( + by broadcasting a 

message on with a delay field set to t^ei through channel /?. This accounts for 

the synaptic delay. 

• The synapse receives the message on at t + t^eu which triggers the broadcast of 

an on message through channel 7 to notify its activation to the threshold 

block. The inactivation is scheduled by the broadcasting of an of f message 

through channel {3 with the delay field set to tdur-

• At t + tdei + tdur the synapse receives the o f f message through channel P and 

notifies the threshold block of its inactivation by broadcasting a message o f f 

through channel 7. 

Figure 5.4 shows two examples of the function implemented by the synapse 

block. In figure 5.4-A, the synapse is activated at ^ = 2 ms and t = 9 ms by the 

reception of two on messages on the a channel. Due to the size of the delay between 

the two incoming messages, the two consecutive synaptic activations do not overlap 

in time. The synapse broadcasts the first of f message, notifying the end of the first 

synaptic activation to the threshold block, before the broadcasting of the second on 

message on the 7 channel, indicating the start of the second activation. Conversely, 

in figure 5.4-B, the on messages delivered to the synapse through the a channel, 

arrives with a delay of 3 ms, producing two overlapping synaptic activations. 

Synaptic efficacy 

In biological neurons, the simultaneous activation of multiple synapses may increase 

the membrane voltage above the firing threshold and trigger the generation of an 

action potential [27]. The contribution of each synapse to this change of membrane 

voltage depends on its functional characteristics (e.g. Gsyn in expression 5.1) and 

also on its location in the dendritic tree. Transient changes in membrane voltage due 

to synapses located far from the cell body, undergo a distance dependent 

attenuation during its propagation along the dendrites. This effect is introduced in 

the MBED model by means of a synaptic efficacy factor. 
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Figure 5.4: Examples of the function implemented by the synapse block. Nonover-
lapping (A) and overlapping (B) activations and corresponding queues (C,D) 

To demonstrate the impact of the anatomical location of the synapse on its 

efficacy in generating an action potential in the biological neuron, a standard 

compartmental model with spherical soma geometry and a single cylindrical 

dendrite (10 //m in diameter and 500 fim of longitude) was simulated using the 

Neuron simulator. Figure 5.5-A shows the merhbrane voltage in the cell body in the 

case of synaptic input received at the initial segment of the dendrite (synapse-soma 

distance of 0 When the synaptic input is received at 250 fim from the cell 

body (figure 5.5-B) the number of action potentials is reduced from 33 to 24. This 

result indicates that the anatomical location of a synapse influences its synaptic 

efficacy in generating somatic action potentials. 

The discrete synapse model captures the concept of synaptic efRcacy by 

associating a synaptic weight to each synapse. Messages of type on and o / / 
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Figure 5.5: Effect of synapse position on synapse efficacy. (A) EPSPs at the initial 
segment of the dendrite, (B) EPSPs 250 fim away from the cell body 

are broadcasted by the synapse to the threshold block to notify synaptic activation 

and inactivation respectively. The optional field in the message data packet {p in 

table 5.1) is used in these cases to communicate the efficacy of the synapse to the 

threshold block. Based on this efficacy, the synapse block updates its discrete 

estimation of the membrane voltage. 

5.3 The threshold block 

5.3.1 Nonlinear response of biological neurons 

To illustrate the nonlinear neuronal input-output function, a single compartment 

model (spherical geometry with 100 fim^ of total membrane surface) incorporating 

Hodgkin-Huxley Na'^ and channels was constructed. The transient neuronal 

response was probed with a set of injected current steps (100 ms in duration) of 

increasing magnitude within the range 0 - 8 0 pA. Figures 5.6-A and 5.6-B show the 

time course of the injected current and the membrane voltage, respectively. 

Currents of 20, 40 and QQpA increase the membrane voltage from —65 mV to 

—60 mV following a linear current-voltage function. However, a current of 80 pA 

succeeds in triggering an action potential, leading to a nonlinear increase of the 

membrane voltage up to 30 mV. 
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Figure 5.6: Simulation of the neuronal response triggered by pulse-shaped current 
injection. (A) Time course of the injected current, (B) Membrane voltage 

T o t a l N a c u r r e n t 

Figure 5.7; Time course of the Na~^ current responsible for the nonlinear onset of the 
action potential 

Nonlinear voltage-gated Na'^ channels are responsible for this threshold effect. 

The iVa+ channels inject a cationic current into the cell, iNa, 

^Naii) — Gj\fa{t, Vrn)iy^m -S'sj/n) (5.2) 

where GNA{T, Kn) is the conductance of the channel, VM the membrane voltage 

and Egyn the voltage at which no current flows through the channel. Note that the 

conductance of the channel G^ait , Vm) is a function of t ime and membrane voltage. 

The total current through the iVa+ channels, underlying the action potential, is 

shown in figure 5.7. It increases nonlinearly for an injected current greater than 

60 pA. 
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Input Action Output 

7 := on 

— ^syn 
^sum ^ th^ ? 

true: | e := {0, on} 

^sum ^ — thi ? 
true: e := {0, o f / } 

7 o / / 

^sum — '^syn 
^sum ^— thg ? 

true: e := {0, on} 

^sum — thi ? 

true: | 6 := { 0 , 0 / / } 

Table 5.5: The threshold block state machine 

5.3.2 The core threshold block 

The threshold block in the MBED neuron model captures two experimentally 

observed effects; the integration of synaptic activity by the dendritic tree 

[22, 135, 136] and the threshold effect introduced by nonlinear voltage gated 

channels [21, 25]. 

It is a state machine and table 5.5 shows the transition table for the block. Its 

internal state variable, stores a weighted sum of active synapses, 

s 
'^surrij — Oii'^syrii (5.3) 

5.4) 
n if synapse i was activated n times 

0 % 25 moctiue 

where S is the number of synapses onto neuron j, Wsyn, is the synaptic weight of 

the synapse and Ai takes the value 0 if the synapse is inactive and n if the 

synapse was activated by M incoming OM messages. 

Each synaptic event triggers an update of Wsum in the threshold block, after 

which, its value is compared against the excitation (thg) and the inhibition {thi) 

thresholds. If the condition {wsum > iK) holds, an on message is broadcast to the 

burst generator block through the e channel in order to trigger a burst of action 

potentials. If, alternatively, the condition < ^/i,) is evaluated true, an o / / 

message is broadcast to the burst generator block through the e channel to truncate 

an ongoing burst. Note that these conditions are mutually exclusive given that, in 
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Figure 5.8: Small network used to illustrate the internals of the model 
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Figure 5.9: Integration of synaptic input by the threshold block. (A) All synapses 
excitatory, (B) mixed excitatory-inhibitory, (C) all inhibitory 

order to confer biological realism to the model, the inequality thi < th^ must be 

observed when setting model parameters. 

The circuit of four neurons shown in figure 5.8 is used to illustrate the function 

implemented by the threshold block. Figure 5.9 shows the synaptic events (three 

uppermost traces in each plot) and the value of the internal state variable in 

neuron D (bottom trace). Synaptic events are signaled by an assertion, indicating 

synaptic activation, and deassertion, to indicate deactivation. 

Three cases are considered; in figure 5.9-A, all synapses onto neuron D (AD,BD 

and CD) were configured as excitatory with unit weight = +1). To generate 

figure 5.9-B, synapses AD and CD remained configured as excitatory connections 

with unit weight, {w syn +1) but synapse BD was configured as inhibitory 

{wsyn = —1). For figure 5.9-C, all three synapses were configured as inhibitory 

connections (w syn •1)-
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Figure 5.10: An increase of above t/ig or a decrease below triggers message 
broadcasting on channel e. 

Figure 5.10 shows the output of the threshold block corresponding to the 

examples of figures 5.9-A and 5.9-C. The upper traces reproduce the time evolution 

of Wsum whereas the bottom trace contains delta functions indicating the 

broadcasting of messages on channel e. Their types are indicated by the associated 

labels. 

5.4 The burst generator 

Figure 5.6 shows the single spike obtained with a compartmental model 

incorporating voltage-gated 7Vo+ channels. An increase in the duration of the 

current pulse from 100 fis to 500 ms induces a change in the neuron response to a 

burst of 25 action potentials (see figure 5.11). 

The burst generator block introduces the concept of burst in the event-driven 

model by implementing message streams and broadcasting them on the output 

channel a . These are interpreted at the receiving end (the synapse blocks of 

postsynaptic cells) as notifications of presynaptic action potentials. Upon reception 

of an on message either on the e or C channels, the burst block outputs a stream of 

messages of type on through its output channel a , the number of messages per burst 

being determined by the parameter Nhurst- The reception of an o f f message on the 

e channel before the end of the output stream results in its premature truncation. 

The burst generator consists of a three state (oM, o / / and r e / ) automaton. It 

also contains the internal state variable nburaf which stores the number of remaining 
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Figure 5.11: Burst of action potentials elicited by a current pulse of 500 ms 

messages in an ongoing burst. Table 5.6 shows the state transition table for the 

burst generator block. Entries adhere to the format (next state | action | output). 

A typical sequence of events leading to the generation of a burst is as follows: 

# The state machine remains in its initial state, of f and = Nburst, until 

the arrival of an on message input at time t. This causes its state to change to 

071 (indicating the onset of an action potential) and triggers the broadccisting 

of the first on message of the outgoing burst. 

# Xt t + tap, the state machine changes to state ref ( the action potential has 

finished and it enters the refractory state). 

# At t + (re/ the refractory state ends and the counter is decreased in 

one unit. The state machine returns to state on (initiating the next potential 

in the burst) if uburst > 0. Alternatively, if nburst = = 0, it changes to of f and 

resets — ^burst • 

Note that, setting = 1, the neuron generates single action potentials rather 

than bursts. 

Figure 5.12 shows two examples of the behaviour of the burst generator. Four 

traces are shown in each plot; they correspond, in succession from top to bottom, to 

a train of deltas indicating the sequence of message arrivals on channel e, the 

time-evolution of the state of the burst block and the train of outgoing messages on 

channel a and value of the state variable nburst- In 5.12-A, the arrival of an on 
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Figure 5.12: Example of burst generation (A) and truncation of a burst due to inhib-
ition by an o / / message (B). 

message at f = 4 ms, triggers the broadcasting of a burst of 5 output messages 

= 5). In 5.12-B, the burst is truncated to 3 messages upon the reception of 

an o f f message at t = 35 ms which resets the state variable riburst to 0. 

The burst block can also be configured to generate infinite length bursts. By 

setting the parameter Nî urst to a negative value, the condition riburst —— 0 never 

holds. In this case, the train of outgoing messages can only be finalized by an 

inhibitory o f f message on channel e which leads to burst truncation. 

5.5 Axonal delay 

Action potential generation in biological neurons is followed by the propagation 

along the neuronal axon. Figure 5.13-A shows the results of the simulation of an 

action potential propagating along an axon of 20 jim in diameter and 20 mm in 

length. The attenuation of the propagating spike is eliminated by the regenerative 

effect of homogeneously distributed HH and channels. 

The velocity of propagation, as calculated from figure 5.13-A, is 2.5 m/s. The 

reduction of the axonal diameter to 10 jim decreases the velocity of propagation to 

1.6 m/s (from figure 5.13-B). For axons of a few mm in length, the arrival of the 

action potential to the most distal parts of the axon will introduce a latency of 

several mg. 

Delays derived from the finite axonal velocity have been shown to be important 

in the generation of EEG oscillations, as indicated by the EEG models developed by 
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Figure 5.13: Action potential propagation in an axon of 20 jim (A) and 10 fim (B) in 
diameter 

Nunez [132]. The axonal latency is captured in the event-driven model by the 

synaptic delay {tdei), which accumulates the delay involved in the release of the 

neurotransmitter and the latency due to axonal propagation of the action potential. 

Figure 5.14 shows an example based on the small circuit of figure 5.8. The four 

traces in 5.14-A correspond (top to bottom) to the the outgoing messages from 

neuron D, the DE synapse activation/deactivation state, the time-evolution of the 

Wsum state variable in cell E and the state of its burst block. Figure 5.14-B plots the 

output of neuron D and three traces corresponding to the output of cell E as 

obtained for three different values oitdei-

5.6 The oscillator 

The oscillator block is a two state machine which implements a free-running 

oscillator. When activated by setting parameter > 0, it broadcasts an on 

message to the burst generator every tosc time units. The first message in the 

sequence is broadcasted at f Table 5.7 shows its state transition table. 

Figure 5.15 demonstrates the function of the oscillator block when configured 

with tosc = 150 ms and = 250 ms. The upper and middle traces show the state of 

the burst generator and oscillator blocks respectively. The bot tom trace is the 
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Figure 5.14: The axonal and synaptic delay introduced between the action potential 
in cell D and the action potential in cell E as set by parameter tdei of synapse DE 

Current state Next state | Output 
:= {tofcc/iange} 

on o / / 1 ^ := {<o«c,c/iange},( := {0,OM} 
0 / / on \ 6 := {tosc^ change},( := (0, on} 

Table 5.7: The oscillator state machine 

sequence of on messages broadcasted by the oscillator on channel ( . At intervals of 

150 ms, it changes state cmd broadcasts a message to the burst generator which, 

when configured with nburst = 3, generates a burst of three action potentials. 

5.7 Coding schemes implementable with the MBED 

model 

Several schemes for information coding in neural aggregates have been proposed 

[137, 138]. The two most prominent are rate codes and temporal codes [139]. The 

MBED model was simulated to validate its suitability for implementing these codes. 

In particular, it is shown that the sublinear summation of inputs ,often captured in 

rate coding models, and correlation detection, which underlies temporal codes, can 

be implemented with the MBED neuron. 
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Figure 5.15: Oscillator block 

5.7.1 Rate coding and sublinear synaptic summation 

Rate coding is based on the assumption that the spiking frequency of the cell is the 

information carrier. Thus, the timing of individual spikes is considered irrelevant 

and usually not captured by these neuronal models. There is experimental evidence 

of this type of information coding in neurons located close to sensory inputs [27]. 

Neuron models used for rate coding map input Sring rates into output firing 

rates. A common form for this mapping implements a nonlinear parameterized 

function of the input firing rates as shown in figure 5.16. This sigmoidal mapping 

was described in Chapter 3 within the context of the Perceptron model. 

In biological neurons, such a sigmoidal input-output function results from the 

refractory period (approx. 10 ms), which limits the maximum firing rate of the cell. 

A biophysical neuron model constructed with a single compartment soma attached 

to two passive dendrites was constructed. The cell body included voltage-gated N a ^ 

and K'^ channels with Hodgkin-Huxley dynamics. 

Figure 5.17-A shows the number of action potentials generated within a time 

window of 100 ms in response to a train of excitatory postsynaptic potentials. As 

the synaptic conductance is increased from 20 pS to 200 pS, the number of action 

potentials reaches a maximum of 8. This is the upper bound of the firing rate as 

imposed by the refractory period. The spiking rate versus synaptic conductance plot 

resembles the commonly used sigmoidal function. 

Figure 5.17-B shows the results obtained in a similar experiment using the MBED 

model. A single neuron with an excitation threshold of thg = 100 received 2000 
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Figure 5.16: Sigmoid function as used for rate coding neuron models 
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Figure 5.18: (A) Correlation detection in a compartmental model, (B) Correlation 
detection in the event-driven model 

synaptic activations over an interval of 100 ms, with onset t iming given by a uniform 

distribution in the range (0..100 ms). Synapses were configured with tdur — 5 ms. 

Figure 5.17-B shows the number of action potentials obtained as a function of 

the synaptic weight (wg^n). As the synaptic efRcacy increases, is more likely to 

reach the excitation threshold and generate an action potential. However, its 

maximum firing rate is limited by the refractory period {tref = 10 ms) in the burst 

generator block. The result is a sigmoidal spiking rate versus synaptic weight 

function, analogous to the biological sublinear summation of inputs of figure 5.17-A., 

5.7.2 Temporal coding 

Temporal coding makes use of the timing of individual action potentials as the 

carrier of information between neurons. There is some experimental evidence of this 

type of neuronal coding in the central nervous system (e.g. in the visual cortex 

[41, 42]). In this context, neurons are often modelled as correlation detectors which 

generate action potentials when their inputs are correlated in time. The firing rate is 

no longer the relevant parameter, rather, the timing of individual spikes is thought 

to support neural function. 

Figure 5.18-A shows the time course of the somatic membrane voltage in the 

two-dendrite compartmental single neuron model used in the previous Section. A 

train of 2000 EPSPs was generated, triggering several action potentials when the 
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subset of simultaneously active synapses was suEcient to increase the membrane 

voltage up to its firing threshold. 

Figure 5.18-B shows the result of the simulation of an MBED neuron receiving 

the same train of excitatory synaptic activations. The neuron was configured with 

(/le = 10 and synapses with = 1 S'̂ d = 5 mg. The timing of individual 

spikes in the MBED simulation of figure 5.18-B coincides within the interval 0<t<95 

ms with those in the compartmental model of figure 5.18-A, with a timing error 

e < 5 mg. 

However, dX t = 100 ms the MBED model predicts an action potential not seen 

in the compartmental model. The extra spike is the result of the simplifications 

inherent to the discrete representation of a neuron when compared to biophysical 

models. The following sections describe some examples of these differences. 

5.8 Comparative analysis 

The simplifications involved in the construction of discrete neuron models are 

responsible for deviations from the dynamics of compartmental models. Studies 

dealing with large populations of simplified neuron models have demonstrated t hat 

collective dynamics observed in abstract representations of neural populations are 

capable of displaying realistic behaviour. For instance, Wright [46] has shown that 

40 Hz gamma oscillations arise from pools of continuous neurons consisting of basic 

computational units implementing gain and lag operations. Nevertheless, several 

differences between the discrete and the continuous approaches were studied in order 

to asses the validity of MBED network simulations; voltage dependent efficacy of 

GABA synapses, NMDA channels and firing rate adaptation. 

5.8.1 Efficacy of GABAA synapses 

GABA is the major inhibitory neurotransmitter within the central nervous system 

[6]. Its release activates inhibitory synapses and triggers the onset of the synaptic 

current. As indicated in equation 5.1, the magnitude of the instantaneous synaptic 

current depends linearly, in a first approximation, on (%n — ^re«), ^res taking the 

value —IQMV for the GABAA synapse subtype. 

A compartmental model was simulated to study the effect of the average 

membrane voltage on the efficacy of GABAA synapses. The model consists of a 

passive compartment incorporating two types of synapses; excitatory synapses and 
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Figure 5.19: Effect of the average membrane voltage on the efficacy of GABA synapses. 

GABAA inhibitory synapses. Due to the absence of NA'^ and channels, action 

potentials can not be generated. 

The membrane resting potential was scanned in the range ( — 70 mV to —25 mV) 

in 5 mV steps. At t = 0 ms, a train of EPSPs was generated by random activation of 

the excitatory synapses. As a result, an increase of the average value of Vm within 

the interval t — 0 — 50 ms can be seen in figure 5.19. At ( = 50 ms, concomitantly 

with the train of EPSPs, a sequence of IPSPs was triggered by random activation of 

GABAA inhibitory synapses. The resulting effect was a decrease in membrane 

potential in the order of 0 to 20 mV within the interval ( = 50 — 120 ms. 

For values of Vm close to E^es (bottom traces), the magnitude of the charge 

injected into the cell is close to 0 and the change in membrane voltage due to this 

charge is unnoticeable. As the resting potential was increased (upwards in figure 

5.19) the voltage decrease induced by GABAA activation becomes more marked (up 

to 20 mV). 

These simulations show that the efficacy of the inhibitory effect of a GABAA 

synapse depends on the value of Vm at the time of its activation. Such dependency 

was not introduced in the MBED model for the following reason; biological neurons 

incorporate non-linear conductances which effectively implement a threshold 

function. Values of the membrane voltage above this threshold, trigger an action 
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Figure 5.20: (A) Conductance of NMDA channels during voltage clamp, (B) Max-
imum current through NMDA channels during voltage clamp. 

potential. During an action potential, synaptic activity has no effect on the 

stereotyped pattern of a spike. Thus, the functional interval of membrane values for 

GAB A A synapses corresponds to the subset of the traces seen in figure 5.19 within 

the range limited by the resting voltage and the firing threshold . Within this 

subset, the variability of the efficacy of the train of GABAA I P S P S is reduced to 

approximately 5 mV. 

If required, equivalent effects could be introduced in the MEED model (see 

Chapter 9) by making Wgyn (the synaptic weight) of inhibitory synapses a function 

of (the weighted sum of inputs calculated by the threshold block). However, 

the limited range within which GABAA efficacy variations are physiologically 

realistic, led to the simplification that synaptic efficacy remained constant. 

5.8.2 NMDA synapses 

NMDA receptors constitute a class of neurotransmitter gated channels which are 

believed to be involved in learning [140]. The synaptic current for these channels is 

grhren l]y [6], 

hynit) — B{Vm)Gsyn{t){Vm — ENMDA) (5.5) 

where B(%n) is an increasing function of the membrane voltage, 

For the synapse to modify Kn when activated by the release of neurotransmitter, 

B{VM) > 0 must hold. Figure 5.20-A shows the value of the product B{VM)GSYNIT) 
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as obtained from the simulation of a voltage clamp experiment in a single 

compartment model with NMDA channels. It illustrates the dependence of the 

NMDA conductance on Vm- At t = 13 ms, the synaptic conductance is at its 

maximum. The peak conductance is shown to increase with 14, (upwards in figure 

5.20-A). Figure 5.20-B plots the maximum synaptic current as a function of Vm- In 

an NMDA synapse, the magnitude of the current injected into the post-synaptic cell, 

which is directly related to its efficacy, is a function of Vm through the factors B{Vm) 

and (Vm — Ep4mda)-

As in the case of GABA^ synapses, the MBED model could be modified to make 

the synaptic efficacy, Wgyn, a function of Wgum- However, the network models studied 

in Chapters 7 and 8 do not incorporate learning. Thus, the implementation of 

NMDA channels was not necessary. 

5.8.3 Firing rate adaptat ion 

The MBED model is able to generate bursts of action potentials as observed in 

biological cells. The model assumes that the delay between two action potentials in 

a burst is not modified during the simulation and is specified by the parameter tref-

Several types of classes of cells (e.g. pyramidal neurons) have been shown to adapt 

their firing rate as a function of past activity [141]. 

Figure 5.21 shows the results of the simulation of a compartmental model 

incorporating channels of the type IAHP during a current pulse of 0.6 nA 

injected into the cell for an interval of 500 ms. Figures 5.21-A and 5.21-B show the 

membrane voltage and IAHP conductance, respectively, for a model with no IAHP 

channels. In figures 5.21-C and 5.21-D, IAHP channels were added with a 

conductance density of 100 ^S/cw?. The conductance was increased in figures 

5.21-E and 5.21-F to 200 jiS/cvn?. 

Comparison of figures 5.21-A, 5.21-C and 5.21-E indicates that , as the density of 

channels and the magnitude of IAHP current increases, the number of action 

potentials per burst decreases while increasing their inter-spike delay. 

For the MBED model to be used to simulate neurons incorporating IAHP 

channels, the value of tdei should be adjusted during the simulation. However, there 

is no experimental evidence of spike rate adaption in the locomotory system of C. 

elegans. Moreover, for the network model of the piriform cortex presented in 

Chapter 8, neurons were configured as single spike cells. Thus, spike rate adaptation 

within bursts need not be implemented. 
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current. 



Chapter 6 

The MBED simulator 

This Chapter describes the software developed for efRcient message-based 

event-driven simulation of networks of MBED neurons. Firstly, an overview of the 

tool is provided, with emphasis on general design issues and the user interface. 

Secondly, the internal structure and algorithms are described. Several techniques 

have been utilized for improved simulation speed and memory use; a look-up-table 

(LUT) based priority queue provides 0(1) queue insertion times irrespective of 

queue size and 0(1) extraction latencies within the range of queue sizes typically 

encountered in large scale simulations. Memory efficient da ta structures for the 

storage of synaptic parameters and neuron identifiers, in addition to the use of an 

optimized algorithm for dynamic allocation of new messages, reduce memory 

consumption. 

Finally, the performance of the simulator is tested using a uniformly connected 

network of MBED neurons including both excitatory and inhibitory synapses. The 

impact of several network parameters on simulation performance is studied. In 

particular, the effect of the relative proportion of the two types of synapses, the 

neuronal threshold, the number of synapses per neuron and the size of the network 

is explored. A more realistic topology, consisting of a model of the piriform cortex, 

is also considered. 

6.1 Overview of the simulator 

The simulator was implemented using the C-t—t- programming language and 

embedded within Yorick [142]. This is a freely available numerical package with user 

interface and capabilities similar to Matlab. Yorick provides an interpreted and 

86 
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mathematically orientated scripting language which can be used interactively and in 

batch mode. The default command set allows the creation of vectors and 

multidimensional matrices, implements a large number of operations on these 

mathematical structures and provides a variety of visualization routines. Yorick also 

supports functions and flow control statements following ANSI C syntax. 

A typical interactive session starts invoking Yorick f rom the UNIX prompt. 

$ yorick 

Copyright (c) 1996. The Regents of the University of California. 

All rights reserved. Yorick 1.4 ready. For help type 'help' 

The > prompt indicates tha t Yorick is ready to accept interactive commands. A 

7-element vector and a 2 x 5 matrix can be created by 

> V = [1,5,3,6,7] 

> m = [ [ 1 , 2 , 3 , 4 , 5 ] , [ 6 , 7 , 8 , 9 , 1 0 ] ] 

Commands are invoked using the ANSI C syntax for function calls. In the first 

line of the following example, the command sum is used, re turning a scalar value 

with the sum of the elements of the vector v. The return value is stored in the 

variable z and visualized with the print command. The session is finished with quit 

and returns the user to the UNIX prompt. 

> z = sum (v) 

> print (z) 

22 

> quit 

$ 

Yorick also supports a non-interactive (batch) mode invoked as 

$ yorick -batch filename 

where filename is a file containing the commands to be executed by Yorick. 

The advantages obtained by the integration of a s t andard package and the 

simulator core are, 
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Figure 6.1: Overview of the simulation tool 

• Simplification of the data visualization and analysis. The standard tools 

available in the package can be used to process the results of the simulation 

(e.g. the Fourier transform is a built-in function and allows frequency domain 

analysis of EEG simulations). Routines for 2D and 3D static and animated 

visualization of matrices are also provided by the package and are utilized for 

post-simulation data analysis. 

• The integration of the simulator within a standard numerical package makes it 

possible to automate some of the tasks associated with the simulations. This is 

the case during studies of network dynamics, when a systematic search of a 

region of the parameter space is often needed. The possibility of using a 

scripting language to control the parameter search allows fast implementation 

of different search algorithms. 

® The portability of the simulator is increased reusing the input /output 

functions included in the numerical package. As many packages have been 

ported to several operating systems, the programmer does not need to recode 

(e.g. the plotting routines) for cross-platform portability. In the case of the 

package Yorick, which has been enhanced with the addition of the simulator 

core, versions exist for the Unix, Windows and MacOS platforms. 

Yorick was designed for easy customization of its command set. New commands 

can be implemented in C, C-I-+ and Yorick's language to provide the functionality 

required by the user. Taking advantage of this feature, a number of commands were 
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Command Purpose Parameters S N D S / L N D S 
initevent (conf,con) Topology creation conf : neuron configuration SNDS 

con : connectivity matrix 
createpiriform(z) Topology creation z : Topology vector LNDS 
initmodels (m) Synaptic models m : vector of synaptic models LNDS 
simuevent(t) Start simulation t ; stop time Both 
deleteall() Deallocates memory - Both 

Table 6.1; Command set provided by the simulator 

implemented to extend the command set available in the default installation of 

Yorick. They constitute the user interface to the MBED simulator (figure 6.1) and 

support the specification of the topology of the network, initialization of neuronal 

and synaptic parameters and simulation control, providing access to functions 

within the C + + simulator core. 

Table 6.1 lists these commands. As will be described in section 6.4.1, the 

simulator can be compiled with one of two da ta structures, the small networks data 

structure (SNDS) and the large network da ta structure (LNDS). Table 6.1 indicates 

the type of network appropriate for each command. The following sections describe 

the steps involved in a typical simulation. 

Data visualization and analysis makes use of the commands provided by Yorick's 

command set. 

6.2 Exemplar interactive session 

An interactive session is started invoking Yorick from the UNIX prompt 

$ y o r i c k 

Copyright (c) 1996. The Regents of the University of California. 

All rights reserved. Yorick 1.4 ready. For help type 'help' 

and is followed by the specification of the topology of the network, the execution 

of the simulation and the visualization of the results. 
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6.2.1 Topology specification 

The topology of the network and its neuronal and synaptic parameters can be 

specified in two ways: 

• Two matrices can be created to describe the topology and the neuronal 

configuration. The topology of an N neuron aggregate is contained in a x TV 

connectivity matrix, each element corresponding to a possible connection in 

the network. Since the dynamics of a synapse are totally specified by three 

synaptic parameters {tdei,wsyn,tdur), each entry in the matrix is a 3-element 

vector. A second matrix is necessary to contain neuronal parameters. The 

seven parameters needed by each neuron make 

up a TV X 7 matrix. 

The connectivity (coM in the example below) and the configuration (con/) 

matrices for a 3 neuron network can be created using Yorick's environment as 

> synapse1 = [ 1 , 1 , 1 ] 

> nosynapse = [ 0 , 0 , 0 ] 

> con = [ [synapsel ,nosynapse ,nosynapse] , 

[synapsel ,nosynapse.nosynapse] , 

[synapsel ,nosynapse,nosynapse]] 

> typicalneuronl = [ 1 0 , - 1 0 , 0 , 1 , 1 , 1 0 , 2 ] 

> typicalneuron2 = [ 2 0 , - 1 0 , 0 , 1 , 1 , 1 0 , 2 ] 

> conf = [ typ ica lneuron l , typ ica lneuron l , typ ica lneuron2] 

The command can now be used, with c o a / and con as its 

parameters, to instruct the event-driven simulator to instantiate its internal 

data structures according to the specified topology. 

> i n i t e v e n t (conf ,con) 

At this point the internal data structures have been created and the neurons 

are initialized. The network is ready to start the simulation. 

An alternative way to create the network avoids the specification of individual 

connections by describing the aggregate with a set of connectivity rules. This 

approach is specially suited for large scale simulations where the number of 
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connections is in the order of tens of millions. This is also consistent with the 

type of experimental data available from studies of cortical anatomy, where 

only the statistics of the connectivity are known. Typically, these rules will be 

parameterized and the creation of the network will only require the selection of 

values for these parameters (e.g. probability of establishing an excitatory 

synapse between two neurons at a distance d). 

In the case of the MBED model of the piriform cortex which will be presented 

in Chapter 8, a new command was implemented, createpiriform(), which 

accepts the topological parameters and instantiates the network. 

A vector describing the topology of the network can be created as 

> network = [20, ... , 250,250,100,150,200, ... ] 

The first entries of the vector specify the characteristics of the pool of 

pyramidal cells. The first seven elements correspond to the configuration of 

the neurons in the pyramidal pool, starting by the excitat ion threshold (set to 

20 in the example above). The following parameters specify a grid of 250 x 250 

neurons where each cell establishes 100 synapses wi th other pyramidal cells, 

150 synapses with fast inhibitory (GABAA) cells and 200 with slow inhibitory 

(GABAB) neurons. The parameters needed by the cortical model will be 

described in Chapter 8. 

The simulator is instructed to create its internal d a t a structures according to 

the specified network topology by using the command createpirif orm{) with 

the vector network as its parameter. 

> createpiriform (network) 

Of the two methods described for topology specification, the first approach (i.e. 

using the initevent() command) is adequate for small networks as it requires the 

specification of each connection as parameters. However, the implementation of 

simulations is accelerated by the fact tha t the generic command initeventQ can be 

used for any topology. 

In the second alternative, the creation of new commands (e.g. crea^ep%ri/or?7%()) 

is required to support new network topologies. Since only the parameters of the 

connectivity rules have to be passed to the simulator, it provides a compact 

representation of the network which makes it adequate for large simulations. 
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Data Visualization format 
State of the burst generator Waveform/ Matrix 
Value of Wsum in the threshold block Waveform/ Matrix 
Instantaneous number of messages in the priority queue Waveform 

Table 6.2: Formats for the visualization of simulation results. 

6.2.2 Simulation control 

Following the creation of the network, the command simuevent{) is used to initiate 

the simulation. Its parameter speciEes the number of time steps to execute and the 

results are contained in the array returned by the function call. 

> results = simuevent (100) 

6.2.3 Visualization of results 

Throughout the simulation, the occurrence of events leads to changes in the state 

vectors and variables of the neurons in the aggregate. These are logged and returned 

by the command simueventQ as a M x 3 matrix, where M is the number of variable 

updates logged. Each item corresponds to a 3-element vector, whose elements are 

the time point when the variable change occurred (first vector element), a number 

which identifies the variable and the neuron to which it belongs (second element) 

and its new value (third element). 

Table 6.2 lists the types of items in the results log (leftmost column) and the 

visualization formats which will be used in Chapters 7 and 8 for each type 

(rightmost column). The plots are generated using Yorick's command set. 

The three types of da ta logged are; 

« The state vector of the burst block. It is represented using a waveform view in 

figure 6.2 (traces are asserted when the burst block is in s tate on and 

deasserted in states off and ref) and as a coloured m a t r i x in figure 6.3-A 

(neurons in state on, of f and ref are represented by white, black and gray 

pixels respectively). 

# T/ie o/ (Ae (/ireaAoW 6/oct : It shows the total synaptic 

input received by a neuron at a point in time and can be viewed as a waveform 

and as a coloured matrix (figure 6.3-B) where blue areas correspond to regions 
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Figure 6.2; Waveform view of neuronal output 

Figure 6.3: (A) Matrix representation of neuronal state (black, white and gray pixels 
correspond to neurons in o f f , on and ref states) (B) Matrix representation of the 
parameter Wsum in all neurons 
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receiving stronger inhibition than excitation < 0) whereas yellow/red 

areas indicate greater excitation than inhibition (waum > 0). 

The visualization of the contribution of individual classes of synapses to Wsum 

also facilitates the understanding of the dynamics of the network. In the case 

of the piriform cortex (Chapter 8), for instance, pyramidal neurons receive two 

types of inhibitory (fast GABA^ synapses and slow GABAg synapses) and one 

type of excitatory synapses (fast Glutamate synapses). The measurement of 

the contribution to Wsumm of each of these three types of synapses clarifies the 

role of each synaptic type in driving the dynamics of the neuronal population. 

For a given neuron Waum; at time ( can be expressed as 

M Sm 

Wsunijit) — (6-1) 
m i 

where M is the number of types of synapses, Sm the number of synapses of the 

type through which neuron j receives synaptic input, Wsyn„, is the 

synaptic weight of the synapse of the class and ami is its number 

simultaneous synaptic activations at time t. 

An alternative way of expressing Wgum; is, 

M 

^ ^ P'^surrim (^•^) 
771 

where pwsumm is the partial contribution to Wsum of all synapses of type ra and 

the summation is over the total number of synaptic types, M, through which 

the neuron receives its input. 

Figure 6.4 shows a matrix plot of the partial contribution to tUgum (pwgumm) 

the excitatory synapses (those with positive synaptic weight). A shift towards 

red indicates an increase of the total excitation. 

• The number of messages in the queue : The time evolution of the 

instantaneous number of messages in the queue is used, later in this Chapter, 

in order to study the impact of queue size on the performance of the simulator. 
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Figure 6.4: Matrix representation of the contribution of excitatory synapses to Wgum 

6.3 Exemplar batch session for parameter space 

search 

Parameter space search has been utilized in Chapter 8 to explore the effect of 

changes in network parameters on the dynamics of the model. Batch mode is more 

suited for this task than the interactive style shown in previous sections. 

Figure 6.5 shows the listing corresponding to the file containing the commands to 

be executed by Yorick. 

The first lines of code initialize vector z with a set of parameters used by the 

function createpiriform() to generate the network. A call to eventstore() and 

initmodels() sets the type of results to be retrieved and initializes the table of 

synaptic models respectively. 

The parameter to be scanned is the first element in the vector, z{l), and the 

range of the scan is (1..number_of_iterations). Within the loop, the parameter z{l) 

is set to the value of the counter i and the topology is created by means of a call to 

the function createpiriform(). The simulation is run for 1000 time units (call to 

simueventO) and the results returned in vector d can be visualized or stored before 

the next iteration. 
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/ / S e t d e f a u l t v a l u e for n o n - s c a n n e d p a r a m e t e r s 
z= [ 1 , - 1 0 0 0 , 0,0, 1,0] 

/ / S e l e c t d a t a to r e t r i e v e 
e v e n t s t o r e ( [0,0, 1, 1 0 0 0 0 0 0 , 2 , 2 0 0 0 0 0 0 ] ) 

/ / m a i n l o o p 
for ( 1 = 1 ; i < n u m b e r _ o f _ i t e r a t i o n s ; 1 + + ) 

/ / s e t v a l u e of t h e s c a n n e d p a r a m e t e r 
/ / f o r t h i s i t e r a t i o n 
z ( l ) = i 

/ / i n i t i a l i z e s y n a p s e t y p e s 
i n i t m o d e l s ( m o d e l s ) 

/ / c r e a t e n e t w o r k 
/ / ( z c o n t a i n s a v e c t o r of p a r a m e t e r s f o r t h e 
// c o n n e c t i v i t y r u l e s ) 
c r e a t e p i r i f o r m ( z ) 

/ / s i m u l a t e for 1 0 0 0 t i m e u n i t s 
d= s i m u e v e n t (10 0 0) 

/ / S t o r e / a n a l y z e r e s u l t s 

Figure 6.5: An example script implementing parameter space search 
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Figure 6.6: Block diagram of the internal structure of the simulator 



6.4 Simulator internals 

Figure 6.6 shows the main components of the simulator; the core of the simulation 

engine, which includes the initialization phase and the simulation loop, the event 

queue and the neuronal data structures. During the initialization stage (lefthand 

side of Sgure 6.6), the topological information provided by the user is used to create 

the network data structures (bottom-right in figure 6.6). These consist of the 

iiistantiated and their synapses. 

The simulator initializes the neuron objects calling their initialization function 

and enters the main simulation loop. Within each iteration, the message at the head 

of the priority queue (top-right in Egure 6.6) is extracted and delivered to the 

destination device by a call to its procesa_ ez/e/if function. As a result of the arrival 

of a new message, the message processing routine within the neuron object updates 

its internal state vector and variables and, if needed, creates new messages to be 

inserted in the priority queue. Following the processing of the message, control is 

returned to the main simulation loop which continues with the next iteration until 

the condition t > stop_time is evaluated true. 

6.4.1 Neuronal data structures 

Two data structures have been implemented for the storage of the network: the 

large-network data structure (LNDS) is adequate for the problem of large scale 

simulation of networks in the order of 10^ neurons, whereas an alternative 

implementation, the small-network data structure (SNDS), was developed for 

networks in the order of 100 neurons. 

Data structure for large networks 

The data structures used for the storage of large scale models are shown in figure 6.7. 

The largest structure is the memory block allocated for the instantiation of 

neuron objects (center in figure 6.7). A neuron object contains the following fields; a 

neuron identifier (32 bits), the number of synapses from this neuron onto other 

neurons (32 bits), the state vector (32 bits), the state variables (three 32 bit-words), 

neuronal parameters (seven 32-bit words) and a list of synapses. The three state 

variables correspond to the sum of inputs, Wgum̂  the number of pending action 

potentials in an ongoing burst and a variable used for debugging purposes. 

Each neuron object has an associated list of synapses. Each synapse is 
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Figure 6.7: Data structures used for storage of neurons and synapses 

functionally characterized by its parameter set {tdel,Wsyn,idur) and the identifier of its 

target neuron. A major concern in deciding the most adequate data structures to 

store these data was to minimize their size, since the number of connections in a 

realistic model is expected to be two to four orders of magnitude higher than the 

number of neurons. Two strategies were implemented for this purpose: 

• Synaptic parameters are not stored for each synaptic instantiation. Rather, a 

synapse type number is associated with each connection (8 bits). The actual 

parameters can be retrieved from a table containing synaptic parameter sets 

(seen on the lefthand side of figure 6.7) using the type number as an index into 

the table. Each entry in this table is a synaptic structure containing the 

parameters for one of the allowed types of synapses. 

• The target neuron of a synapse is stored as a 24 bit identifier rather than a full 

32 bit pointer. Considering that the MBED simulator run on a machine with a 

32 bit-wide address bus, a 4 byte word would be needed to identify the target 

neuron if a pointer was to be stored in each synapse. Instead, an extra 

dereferencing level is introduced to minimize memory consumption. A neuron 

number is associated to any one synapse, identifying its postsynaptic cell. The 

actual memory address of the target neuron is found by accessing a table 
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Figure 6.8; Memory space required for network storage as a function of the number 
of synapses per neuron (S) 

(righthand side of figure 6.7), which contains actual pointers to the neuron 

objects, using the neuron number as an index into the table. Given that the 

neuron number does not correspond to a physical memory address, its size is 

not constrained to 32 bit (as required by a pointer) and can be reduced to a 24 

bit identifier. The remaining 8 bits in a 32 bit synaptic word can allocate the 

synapse type number. 

Hence, with the two strategies ^escribed above (a table of synaptic models and a 

dereferencing table of pointers to neurons), the parameters needed for a synapse can 

be masked into a single 32 bits word (24 bits for the target neuron identifier and 8 

bits for the synapse type). 

Efficient use of memory space was also achieved minimizing the overhead 

associated with dynamic allocation of large numbers of small objects [143]. Rather 

than allocating neurons individually, the simulator estimates the amount of memory 

required for the storage of all neurons and synapses in the network as 

M = N C S + TVf (6.3) 

where N is the number of neurons, C the number of connections per neuron and 

S and P the size of the neuronal structure (excluding synapse list) and the single 

synapse data structure respectively. A memory block of size M is requested from the 
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standard memory manager, avoiding dynamic allocation of individual neurons. 

Overall, the described data structures implement a unidirectionally linked 

(presynaptic to postsynaptic neurons) network of /letfrozioZ Linked structures 

were chosen because they are suitable for sparsely connected systems [55] whereas 

array based storage is memory-efficient for highly connected networks. This is a 

convenient design decision given that the expected degree of connectivity in a large 

scale network model incorporating experimentally obtained topological data is likely 

to be low and variable across different structures. For instance, the connectivity is 

estimated to be in the order of 4 % within the CA3 area but 0.005 % between 

dentate gyrus and CAS pyramidal cells in hippocampus [35]. Unidirectionality of the 

inter-neuron connections (pre to postsynaptic) contributes to the memory efficiency 

of the data structures by eliminating the need for back-linking (post to presynaptic). 

Figure 6.8 shows the memory space required for the storage of the network as a 

function of the number of neurons and synapses. 

Data structure for small networks 

Figure 6.9 shows the data structures implemented for small networks. With respect 

to those used for large aggregates (figure 6.7), two differences must be noted: the 

storage of a copy of the synaptic configuration for each connection and the addition 

of backlinking from postsynaptic to presynaptic neurons. 

As depicted in figure 6.9, any one neuron has an associated set of parameters and 

state variables and two additional substructures: the table of synapses onto 

postsynaptic cells and the table of pointers to presynaptic cells. The entries in the 

table of synapses accommodate instantiations of synaptic %: arameter sets 

((de(,(dur,Wfpn) in addition to the identifier of target neurons. 

The table of pointers to presynaptic neurons was added to provide backlinking 

from postsynaptic to presynaptic neurons, transforming the unidirectionally linked 

network implemented for large scale simulations into a a doubly linked aggregate. 

The advantage of this data structure is its adequacy for the implementation of 

the algorithms involved in the adaptation of synaptic parameters (e.g. weight 

adaptation for the simulation of LTP/LTD), if these mechanisms were to be 

modelled in the future. In a network incorporating learning algorithms, synaptic 

parameters would be adjusted during the simulation. Because the parameters 

associated to different synapses are likely to take different values, it is convenient to 

store a complete set of synaptic parameters for each connection. Moreover, activity 
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Figure 6.9; Data structures as implemented for small networks 
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in a postsynaptic neuron may induce changes in a presynaptic cell. For this reason, 

a doubly linked structure is preferred to a unidirectionally (presynaptic to 

postsynaptic) linked network. 

The main disadvantage of this approach, when compared to the data structures 

for large scale models, is its less efficient use of memory resources. However, in the 

case of small networks (e.g. the C. elegans model described in Chapter 7) memory 

consumption is not an issue. For networks including in the order of 100 neurons and 

100 synapses per neuron with an allocation of 20 bytes (five 32-bit words) per 

connection, the estimated memory space required exclusively for synaptic structures 

is 2 10̂  bytes. This value is well below the available memory in most desktop 

computers. 

6.4.2 Priority queue 

In a message-based event-driven framework, entities in the model communicate by 

message broadcasting [144, 145]. This is also the case with the neuronal objects in 

the MBED simulator, which transmit messages to their postsynaptic cells to 

communicate the occurrence of action potentials. As new messages are generated, 

those that do not carry an aissociated delay between generation and delivery to the 

target neuron object, are immediately processed by their destination neuron. On the 

other hand, those with non-zero latency between origin and destination are inserted 

in a time-sorted queue. 

Since typical simulations of large network models (e.g. the cortical aggregates 

studied in Chapter 8) involve in the order of 10® messages, the design of the priority 

queue will affect the computational efficiency of the simulator. Two issues in this 

respect have been addressed; efficiency in terms of CPU time required for 

insertion/extraction of events into and from the queue and memory consumption by 

the queued messages themselves. 

Efficient queue management 

Numerous algorithms have been suggested for efficient queue management 

[78, 79, 146, 77]. Their performance is influenced by the insertion operations, usually 

the most costly operation in event-driven simulation, as events have to be 

time-sorted. 

In general, insertion times in most queue management algorithms are affected by 

the size of the queue (the number of messages already queued); linear search 
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Figure 6.10: Priority queue managed with the aid of a circular lookup table 

provides hold times (the latency involved in an extraction followed by an insertion) 

proportional to queue size, whereas binomial queues, pagodas, skew heaps, pairing 

heaps and splay trees run with 0(log n) per hold operation [78]. 

An improved performance has been achieved with a caching technique [146]. 

This approach relies on the assumption that the insertion point of a new event is 

likely to be close to the insertion points of recent events and has proved efRcient 

(0(1)) with five cache pointers. However, insertion latencies are expected to be 

dependent on the distribution of events in the queue, penalizing simulations in 

which events do not cluster in time. 

The calendar queue, a multiple list scheme, also offers insertion latencies 

independent of queue size (0(1)) [77] and incorporates a dynamic adjustment of the 

internal structures which increases the robustness of the algorithm in the face of 

dynamic changes in the time distribution of events. 

The calendar algorithm was inspired by the concept of a desk calendar. The 

priority queue, the calendar in the desk-calendar analogy, is partitioned into a 

number of sorted linked sublists. An array containing one pointer to the head of 

each sublist (page of the calendar) is used to find the appropriate sublist when an 

insertion is to be performed. A search for the insertion point is only necessary 

within a sublist. The implementation of an algorithm for dynamic adjustment of the 

total number of sublists was proposed in order to maintain an adequate mean sublist 

occupation. The algorithm was designed for robustness against transitory variations 
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in event distributions. With this mechanism, insertions 0 ( 1 ) in queue size were 

achieved. 

There is, however, a computational cost associated to the dynamic adaption of 

the internal structures of the queue. This is aggravated in the case of a non-uniform 

distribution of events where most events cluster in a single sublist. This situation 

forces an increment in the number of sublists (pages in the calendar) to reduce the 

average number of events per sublist. As a consequence of event clustering, most 

sublists would remain empty throughout the simulation, at the expense of the 

computational efficiency of the algorithm. 

Building on the calendar queue scheme, a new algorithm has been developed and 

used within the MBED simulator in order to further reduce the intra-sublist search 

cost and to simplify the algorithms involved in dynamic adjustment of the 

pagination of the queue. As a result, the developed algorithm provides 0(1) 

insertion latencies and considerably simplifies the overall queue management. This 

has been possible migrating from a continuous time representation (as assumed in 

most priority queue algorithms) onto a discrete time representation. 

The fine granularity of the time representation required by some event-driven 

problems (e.g. mixed-mode simulation) can be relaxed in the case of neural 

simulation. Neuronal activity consists of action potentials of, at least, 1 — 2 ms of 

duration followed by a refractory period in the order of 10 ms. For discrete 

simulation of networks of neurons, time will be represented as a multiple of a time 

step in the range 100/iS to 1 ms. Previous work on discretization of time in a 

realistic neural model [13] indicates that such an approximation is unlikely to 

compromise the usefulness of the simulation. Given this coarse granularity of time, a 

priority queue based on a LUT (look up table) and a multiple list scheme with one 

list per time point can be used (see figure 6.10). Since all messages within a given 

sublist are scheduled for the same point in time, no search is needed for an insertion. 

Figure 6.10 illustrates this idea. The priority queue consists of a set of linked 

lists of messages. Each list links all the messages which have been scheduled for the 

same time in the future. An LUT stores pointers to the first message in each sublist. 

For an LUT with 10® entries, a maximum of 10® lists can be indexed. The first list 

links all messages scheduled for t = 0, and the last links all messages for t — 10^ - 1. 

With a time step of 100/iS, messages cannot be scheduled further into the future 

than 100 s. The total amount of memory required for the storage of this array, using 

32-bit pointers, is approximately 4 Mbytes. With the parameters above, an overflow 

occurs only if a neuron object introduces a delay greater than 100 s. Most single cell 
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Figure 6.11: Algorithm for message insertion 

neural processes occur within a time scale of 1 ms to 1 s, hence, an overflow is never 

to be expected in a realistic neural model. However, if longer delays have to be 

implemented, they can be introduced cis a series of shorter delays. 

The insertion of a new event (shown in 6gure 6.11) involves two steps; first, the 

entry in the LUT which keeps a pointer to the sublist where the event has to be 

added is calculated 6is 

LUT^ntrynumber ^delivery ^current (6.4) 

where td.eiivery is the delivery time for the message to be inserted and tcurrent is 

the current time (both expressed in time steps). 

Secondly, once a pointer to the appropriate sublist has been found, the actual 

insertion consists of the relinking of the chain of events with the new event being 

added to the head of the sublist. 

The table of pointers is implemented as a cyclic buffer. A pointer to an entry in 

the table sets the time origin. As time advances, the pointer is moved forward in the 

buffer. 

Figure 6.12 shows the steps involved in the extraction of the event at the head of 
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Figure 6.12: Algorithm for message extraction 
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Messages in queue 

Figure 6.13: Hold latency as a function of queue size 

the queue. First, the LUT slot corresponding to the current-time sublist is checked. 

If it points to a non-empty sublist, a message is extracted. If the sublist was empty, 

the current-time pointer (labelled p in figure 6.12) is incremented and the next 

sublist checked. This process is repeated until a non-empty list is found or until all 

slots in the LUT have been checked. 

Figure 6.13 shows the latency associated with hold operations as a function of 

the size of the queue. It was generated by measuring the total CPU time taken by 

10^ hold operations, on queues of several sizes, TV. 

For N > 10^, the hold-time is independent with respect to queue size, whereas 

for < 10 ,̂ the hold-time increases as the size of the queue decreases. This result 

can be better understood by dissociating the latency involved in insertion from that 

incurred by extraction (see figure 6.14). Insertion latency is 0(1) in queue size. 

Extraction times increase markedly as queue size decreases. A decrease in then 

number of messages in the queue leads to a sparse distribution of events and to a 

large number of sublists being empty. A penalization of the extraction operations 

was to be expected under this conditions, since it involves a linear search in order to 

find a non-empty bucket. 

This does not compromise the performance of the algorithm in the context of 

neural simulation. Nearly empty queues constitute a highly unrealistic situation (as 

shown in simulations presented later in this Chapter) with queue sizes of the order 

of millions of messages being a more common situation. Within the limits of a 

typical large scale simulation, the simplicity of the modified calendar queue 
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Figure 6.14: Insertion and extraction latencies as a function of queue size 

presented here provides highly efficient queue management. 

The memory required for the storage of the LUT is a function of the granularity 

of the representation of time and the maximum value allowed for the difference 

between current time and the time of message delivery, dtmax- Given a time step of 

tstep, the number of slots in the LUT is, 

S,uT = ~ ( 6 ^ 5 ) 

^ step 

In a typical case, with tstep = 100 jj.s and dtmax = 15, the number of slots in the 

LUT is = 10^ and the memory required 39.06 Kbytes. This constitutes a 

0.015% of the total 256 Mbytes of RAM used for the performance studies presented 

later in this Chapter. 

Efficient dynamic memory allocation 

The second major aspect to consider in the implementation of the event queue is the 

allocation and deallocation of memory for the storage of messages. A small block of 

memory is requested from the memory manager for the creation of each new 

message. Given the small size of the message data structure, it was found that 

dynamic allocation using the standard memory allocator provided by the C + + 
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Figure 6.15: Comparison of overheads between standard dynamic allocation of mes-
sages and the improved algorithm 

libraries constituted a rather inefficient alternative. Figure 6.15 shows the average 

memory taken by each dynamic allocation of a 24-byte object using the standard 

allocator. This was measured using a test program which dynamically allocates a 

large number of objects. The average memory taken by each object was estimated 

dividing the total memory requested by the process by the total number of objects 

instantiated. The average object size was 32 bytes, 8 bytes in excess of the actual 

dimensions of the data structure. 

The amount of memory needed by the process of message creation and scheduling 

had to be minimized due to the size of the queue (typically millions of messages). 

Use of swap space degreides the performance of the simulator dramatically. Hence, 

this is not a viable alternative to the reduction of memory requirements. 

The use of standard implementations of memory allocators is not adequate for 

the priority queue problem, because most standard memory managers have been 

designed for efficient memory allocation of heterogeneous objects. The empirical test 

shown in figure 6.15 identiEes an overhead associated with dynamic allocation of 

small objects. 

However, all message structures share a common size. This fact can be exploited 

to provide a more efficient memory allocator/deallocator. Gontmakher et al. [143] 

developed a memory management algorithm particularly suited for the allocation of 

homogeneous, fixed size, objects. This technique has been incorporated to the 
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Figure 6.16: Efficient memory allocation for the priority queue 

MBED simulator overriding the new operator for message objects. 

Figure 6.15 shows that the improved implementation of the memory manager 

introduces an unnoticeable overhead when allocating homogeneous objects of 24 

bytes in size. Note that the total memory requested by this improved algorithm (see 

6.15-A) appears greater than that allocated by the standard manager only when the 

number of objects allocated is small. This is an expected result. Even when only a 

single object is allocated, the new memory manager requests a complete page and 

the average memory per allocated object is, apparently, high. As the number of 

objects increases, the advantage of using the new memory manager becomes more 

evident. 

Figure 6.16 illustrates the algorithm. Upon initialization, the memory manager 

allocates a single page using the standard allocator. New messages are allocated in 

slots inside this page. Following the extraction of a message from the queue and its 

processing, it must be deleted from memory. Deallocation leaves empty spaces in the 

page. Free slots are added to a linked list of available slots. 

Allocation of a message is a single step process when the free-slot list is not 

empty; the new operator removes the first slot from the free list. When this list is 

empty (no more free spaces in the current page), the standard memory allocator is 

requested to supply a new page and the first slot in this page is allocated. 

Figure 6.17 compares the memory allocation times between the standard and the 

new memory allocators. 
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Figure 6.17: Comparison of allocation times for the standard dynamic allocation of 
messages and special purpose algorithm 

6.4.3 Efficient computation of weighted synaptic input 

To further increase the computational efficiency of the model, the update operation 

of the weighted sum of inputs {wsum) in the threshold block can be optimized. An 

update of Wsum requires the computation of 

s 
'^sum.j — Y ] Oii'^syrii (6.6) 

Oii = (6.7) 
0 m a c t i f e 

where S is the number of synapses providing input to neuron j, a , is n if synapse 

i has been activated by n incoming messages and 0 if it remains inactive, and Wgyn, 

is the synaptic weight of synapse i. 

The variable must be updated upon the arrival of OM and o / / messages on 

channel "y. Complete recalculation of as in expression 6.6, requires the 

weighted addition of S synaptic weights. In a typical neuron, the number of 

synapses (5) is expected to be in the range 10^ — 10"̂ . 

Alternatively, can be recalculated as 
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w sum ^sum 53 syrii (6.8^ 

where and are the weighted sums before and after an update 

respectively, s is the number of synapses which changed state simultaneously 

(typically g < < 5"), is 1 if synapse % has been activated and -1 if it has been 

inactivated and WGYN, its weight. This requires the storage of the weighted sum as a 

state variable for each neuron but speeds up state recalculation of since the 

number of synapses which change state (g) is considerably lower than the total 

number of ;-:,'napses .9. 

6.5 Performance evaluation with spatially uniform 

connectivity profiles 

To study the performance of the simulator, a network of 5 • 10^ neurons with random 

connectivity weis simulated. Each neuron established C synapses with postsynaptic 

neurons chosen at random. Two types of synapses were included in the network; 

excitatory synapses with synaptic delay tdei = 5 ms , efficacy Wgyn = 1 and duration 

of activation = 10 ms ; and inhibitory synapses with = 5 ms, 

tdur = 10 ms. The type of each synapse was chosen at random with probability Pe of 

being excitatory and 1 - pg of being inhibitory. Multiple synapses of the same type 

from a given neuron to a target neuron were allowed, which is functionally 

equivalent to a single synapse of higher efRcacy. 

To provide input activity to the model, 5 • 10^ out of the total 5 • 10^ neurons were 

configured cis pace makers which Hred a single action potential (2 ms duration and 

10 ms absolute refractory period) every 100 ms = 100 ms). The parameter 

(the time offset) was set according to a uniform distribution in the range (0 — 60 ms) 

to ensure that the subpopulation of pace makers did not fire in complete synchrony. 

All neurons behaved as correlation detectors, firing a single action potential (also 

2 ms duration and 10 ms refractory period) when the weighted sum of 

instantaneous synaptic inputs increases above the excitation threshold. 

Several values for the percentage of inhibitory synapses, total number of synapses 

per neuron and the excitation threshold are explored in the following sections, to 

evaluate their impact on performance (simulation time and memory consumption). 

All simulations of the randomly connected network were run for a simulated time 
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N e u r o n s in slate refractory N e u r o n s in state off Neurons in state 

T-A rA rA 

Figure 6.18: Total number of neurons in state on (A), off (B) and refractory (C), and 
time sequence of the neuron states for the network displaying epileptic-like activity 
(D) (pe = 0.9). Neurons in state on, off and refractory are represented by white, 
black and gray pixels respectively 

of 200 ms (2000 time steps) on a 233 MHz PC running Linux 2.2 with 256 Mb RAM. 

6.5.1 Operation modes of the randomly connected network 

During performance studies, the network displayed abrupt changes between different 

types of activity. 

Figure 6.18 shows a set of simulations of the randomly connected model which 

contain both generalized and sparse network activity. Figures 6.18-A, 6.18-B and 

6.18-C show the total number of neurons in states on, off and refractory 

respectively, for several values of the percentage of inhibitory synapses (1 — Pe). 

The sequence of peaks in figure 6.18-B, obtained with 10% of the synapses 

configured as inhibitory (1 — Pe — 0.1), indicate that the neural ensemble becomes 

active and enters the refractory state nearly simultaneously. The lower trace in figure 

6.18-A shows that few cells were in the o f f state since most neurons remained firing 

or refractory. This mode of operation resembles epileptic activity recorded with 

EEC and has been obtained previously with aggregates of cell automata models [13]. 
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Figure 6.18-D shows the instantaneous state of the network (1 - Pe = 0.1) in 

matrix form. Neurons in states OM, and re_/roc(ory are displayed as white, black 

and gray pixels respectively. The network-wide synchronization can be observed at 

t = 15 ms, when a large proportion of the cell population is firing (on state). This 

corresponds to the first peak in figure 6.18-B for pe — 0.9. At ^ = 20 ms and 

t = 25 ms most neurons are in refractory state, which shows as a valley in figure 

6.18-B and a maximum in figure 6.18-C. 

As the percentage of inhibitory synapses is increased to 50% (1 — 0.5), 

activation becomes less generalized and the global activity is characterized by a 

damped oscillation (middle trace in figure 6.18-B). Higher values of inhibition 

(1 — Pe > 0.5) result in neural activity confined to a small percentage of neurons, the 

maxima reaching 1000 in figure 6.18-B. Under these conditions, activity does not 

propagate in the network and, as a result, it is unable to trigger generalized 

synchronous firing. 

These results are consistent with experimental results which have shown that the 

transition between generalized and low level activity can be triggered by the 

reduction in the total inhibition [147]. More generally, the global dynamics of brain 

tissue (as recorded by EEG) often shows different modes of operation. In an 

epileptic mode, a high percentage of the neurons in the ensemble fire simultaneously, 

whereas in normally behaving brain the overall activity is characterized by less 

generalized and less synchronous spiking and by the presence of characteristic 

frequency components [13]. 

The following sections provide quantitative results that demonstrate the effect of 

these modes of operation on simulator performance. 

6.5.2 CPU time 

The CPU time required for randomly connected networks has been studied running 

a set of simulations with several values for Pe (percentage of excitatory neurons), the 

(excitation threshold) and C (total number of connections per neuron). The region 

of the parameter space associated to these parameters includes configurations 

leading to near saturation network activity as well as sparse activation, allowing 

performance evaluation in a wide range of situations. 

Figure 6.19-A shows the total number of messages processed during the 

simulations, which here serves as an indicator of processing load, versus Pe and thg. 

The number of synapses per neuron was fixed to 200. Figure 6.19-B gives the CPU 
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Figure 6.19: (A) Total number of messages versus percentage of inhibitory synapses 
and excitation threshold (number of synapses per neuron set to 200), (B) Simulation 
time versus total number of messages processed 

time as a function of the total number of messages processed. 

Figure 6.20-A shows the total number of messages as a function of the number of 

synapses per neuron and the value of the excitation threshold. The percentage of 

inhibitory synapses wcis set to 10% (pe = 0.9). In Figure 6.20-B the simulation time 

is plotted as a function of the total number of messages processed. 

The elapsed time can be found for any of the tested parameter sets in two steps: 

the number of processed messages can be looked up on the lefthand side plot and the 

CPU time required for this value is obtained from the plot on the righthand side. 

Figures 6.19-A and 6.20-A indicate that, in the aggregates with the higher 

excitation threshold ((/ig = 15), the activity remains comparatively sparse for all 

tested values of % and C. However, in those with lower thresholds, th^ = 5 and 

= 10, the number of messages shows an abrupt increase indicating a transition in 

network dynamics from sparse activation into generalized 6ring. Generalized activity 

in the network decreases the performance of the simulator by increasing the total 

number of messages to process and, as a consequence, the CPU time required. 

The relationship between the number of messages and the elapsed time is shown 

in figures 6.19-B and 6.20-B. The total CPU time taken by the simulations depends 

linearly on the total number of messages generated and processed during the 

simulation. This is explained by the fact that the two main tasks of the simulation 
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Figure 6.20: (A) Total number of messages versus number of synapses per neuron and 
excitation threshold (percentage of inhibitory synapses set to 10%), (B) Simulation 
time versus total number of messages processed 

loop are the insertion of new messages into the priority queue and their extraction 

and processing. 

An analytical expression can be found to relate simulation time and the number 

of messages processed 

^ ̂  2.9 X l O ' ^ e (6.9) 

where e is the total number of messages and < the CPU time in seconds. Each 

message requires 2.9 /.iS for its processing. 

Since it is useful to estimate, beforehand, the resources that will be required by a 

simulation, it is desirable to be able to predict the total number of messages which 

will be generated. However, this is difficult to anticipate aa it depends not only on 

the topology of the network but also on its activity which will only be known after 

simulating. 

The worst case scenario is produced by all the neurons in the aggregate firing 

simultaneously at their maximum firing rate throughout the entire simulation. In 

this case, the total number of messages processed is given by 

6 Egy-fi + (6.10) 
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where is the total number of messages generated by synapses and the 

number of messages generated by the rest of blocks in the neuron model. As the 

number of synapses is several orders of magnitude bigger than the number of 

neurons, the total number of messages processed can be approximated by 

2NC 
6 ~ Egyn ~ — tsimu ( 6 . 1 1 ^ 

^ref 

where N is the total number of neurons, C the average number of connections 

per neuron, tref the neuronal refractory period and tgimu the time of simulation. The 

factor 2 accounts for the two messages (activation and inactivation) inserted in the 

queue by a synapse. 

In a typical simulation the average firing rate of a neuron is expected to be far 

from the maximum rate attainable. For this more realistic situation, expression 6.11 

has to include a correction term P 

e = (6.12) 

^dei 

where (3 is the normalized average firing rate. 

For the lowest values of pg in figure 6.19-B, the total number of messages would 

be approximated by equation 6.12 with P = 0.005 whereas for high values of Pe a 

good match is achieved with P = 0.5. 

Finally, figure 6.21-A plots the size of the queue versus time. When the 

generation (insertion) and processing (extraction) of messages is evenly distributed 

over time (see lower traces), the CPU time will also be evenly distributed 

throughout the simulation. However, the upper traces show that fluctuations of the 

queue size occur. Due to the event-driven nature of the simulator, the peaks in the 

number of messages to be processed will concentrate most of the CPU time whereas, 

in continuous-simulation, the processing load is evenly distributed over time. 

Moreover, variations in queue size lead to a dynamic demand of memory resources, 

as discussed below. 

6.5.3 Memory requirements 

The simulation of large networks is a demanding problem, not only with regards to 

CPU processing power, but also in terms of memory space. 

To study the use of this resource by the MBED simulator, it is convenient to 

consider independently the two main sources of memory consumption: 
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Figure 6.21: Instantaneous (A) and maximum (B) queue occupancy as a function of 
the percentage of inhibitory synapses and the excitation threshold (200 synapses per 
neuron) 

topology/parameters, which are not dependent on the activity of the network, and 

the priority queue, whose size changes over time. 

The amount of memory required to store topology and parameters (using the 

data structure described in section 6.4.1 for large scale models) can be estimated 

with equation 6.3 (reproduced for convenience) 

M = TVCg + TVf (6.13) 

where N is the number of neurons, C the number of connections per neuron and 

S and P the space allocated for parameters and state variables for a single synapse 

and neuron respectively. 

Figure 6.8 already gave the size of the network data structure for various 

aggregate sizes and numbers of synapses per neuron. It indicates, for example, that 

networks of 10^ neurons with 100 connections per neuron required 100 Mb of 

memory. 

Empirical measurements during the simulations of the network with 5 • 10^ 

neurons used for figures 6.18, 6.19 and 6.20 yielded a value for the total memory 

allocated (including topology, parameters of the models, LUT of the priority queue 

and Yorick) of 53.5M6. This is consistent with the estimation provided by expression 

6.3 taking N = 5 • 10^ neurons, C = 200 synapses, 5 = 4 bytes, P = 52 bytes). 
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In the case of models where the topology does not change during the simulation, 

the only uncertainty in terms of memory consumption lies in the size of the priority 

queue. 

The queue, and the memory allocated for its storage, depends on the number of 

neurons and synapses simultaneously active. Figure 6.21-A shows superimposed 

traces with the instantaneous number of messages present in the queue during 

several simulations of the randomly connected network. Upper traces correspond to 

values of pg close to 1 whereas lower traces correspond to values close to 0. 

Synchronization of neuronal firing of large ensembles of neurons in the network 

causes oscillations in the size of the priority queue (as seen in figure 6.21-A for 

Pe = 0.9). These peaks in the number of firing neurons produce an accumulation of 

messages in the queue and the resulting increase of memory allocated to store it. 

Sufficient memory must be available in order to store the queue at any time during 

the simulation and avoid swapping, as this would have a negative impact on the 

performance of the simulator. 

Since the maximum size of the queue during a simulation is the limiting factor, 

figure 6.21-B shows the maximum number of messages found in the queue during 

the simulations shown in figure 6.19. When the percentage of inhibitory synapses is 

small, the activity generated by the pace makers propagates in the network 

activating most neurons and flooding the event queue. As the percentage of 

inhibitory synapses increases, the network becomes only sparsely active and the 

maximum number of messages in the queue during a simulation decreases 

dramatically. This reduces the memory resources needed for the simulator. 

The amount of memory allocated reached 120 Mbytes when the queue grew to its 

maximum size of 10^ (message size of 12 bytes). 

6.5.4 Effect of network size 

The size of the randomly connected network (N) was set to values in the range 

10^ to 8 • 10^ at intervals of 10^ neurons, in order to study the effect of neural 

population size on ensemble dynamics and queue occupancy. The number of pace 

maker neurons was fixed to 5000. Four simulations were run for each network size, 

corresponding to four different values of the number of synapses per neuron 

(S-50,100,150 and 200). 

Figure 6.22 shows the instantaneous number of neurons in state o / / as a 

function of the size of the network and the number of synapses per neuron. Traces 
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Figure 6.22: Instantaneous number of neurons in state off as a function of the size 
of the network and the number of synapses per neuron 

are labelled with a pair of numbers, corresponding to N (expressed as multiples of 

10 )̂ and 5". 

Because at time t = 0 all neurons are in state o f f , the value taken by the initial 

segment of each trace indicates the total number of neurons in each network. As the 

pace maker neurons start firing, some networks undergo the transition from a low 

activity mode to a whole-network spiking mode. This transition is indicated by the 

abrupt change of the traces towards a near-zero value, showing that very few cells 

remain inactive (in state o f f ) . This is a consequence of the initiation of a cycle 

where nearly all neurons exhibit periodic changes from on to refractory state, 

avoiding the o / / state. 

Some networks did not undergo generalized firing. Their corresponding traces 

curve slightly at around 50 ms and 125 ms as a result of the activation of the pace 

makers showing that most cells remained inactive. 

As the size of the network increases (moving upwards in figure 6.22), the 

transition to a generalized firing mode occurs later in the simulation and for higher 

values of per neuron synapses. Compare, for example, the 10^ neurons network 

(bottom trace) with the 5 • 10^ neurons network (fifth trace from bottom). The 

former, undergoes transition for S = 100,150, 200 at around f == 10 ms whereas the 
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Figure 6.23: Instantaneous queue occupancy as a function of the product size of the 
network x number of synapses per neuron 

latter exhibits generalized spiking only for S = 200 and at f — 40 ms. 

Figure 6.23 plots the number of messages in the queue as a function of the 

product network size x synapse density. Two subsets of traces can be readily 

identified; those corresponding to networks that did not undergo generalized spiking 

and those that did (analogous to the results shown in figure 6.21-A). Within the first 

subset, the average number of messages in the queue increases with the product 

N X S. This indicates that, for a network displaying generalized epileptic-like 

activity, the CPU time taken by the simulation, which was shown in previous 

sections to depend linearly on the total number of messages processed, will decrease 

with increasing values of N x S. 

6.6 Performance evaluation with pa t te rned 

connectivity 

The performance of the simulator was also evaluated with a more realistic network; 

a model of the piriform cortex. The details of this model and its dynamics are 

provided in Chapter 8. 

The network includes four pools of neurons; pyramidals (4 • 10^ cells), GABAA 
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(4 • 10*) and GABAB (4 • 10*) inhibitory neurons and pace makers (3 • 10*) totalling 

1.5 • 10® neurons. Pace makers fire regularly (freq.= 10 Hz) introducing activity in 

the network. Pyramidal cells propagate excitation by pyramidal-pyramidal 

connections (100 synapses per neuron) and activate inhibitory GABA cells through 

pyramidal-inhibitory synapses (200 synapses per neuron). Inhibitory cells synapse 

back onto pyramidal cells (100 synapses per neuron). Pyramidal-pyramidal 

connections are long range whereas pyramidal-inhibitory are local. GABAA 

synapses were configured with (jg, = 5 mg, = —10 mg and = 9 

GABAB connections have longer activation latencies and duration but less efficacy 

and were configured with = 10 = —1 ma and = 150 ma. 

The plots on the lefthand side of figure 6.24 show the CPU time taken by 1 

second of simulation as a function of the excitation threshold (f/ig) of the pyramidal 

neurons (r axis) and the same parameter in and inhibitory 

neurons (indicated with a two element vector associated to each trace). The 

righthand side columns shows the total number of messages processed during the 

same simulations. 

The CPU time decreases monotonically with increasing pyramidal excitation 

thresholds. Moreover, two regions can be distinguished in the x axis. Within the 

range 4 — 15, the elapsed CPU time decreases approximately linearly from 400 s to 

50 s. Smaller values of this parameter provoke a steep increase of the computational 

cost of the simulation, reaching 3500 s in the worst case (bottom-left plot). 

The dependency of the elapsed time on the excitation threshold of the pyramidal 

cells is a consequence of its impact on the probability of firing: high thresholds lead 

to fewer spikes and, consequently, fewer synaptic activations and messages to 

process. Conversely, low excitation thresholds lead to more spikes and to a more 

computationally costly simulation. This interpretation of the results is confirmed by 

the plots in the righthand column, where the total number of messages are given as 

a function of the excitation thresholds. Moving along the x axis, the number of 

messages decreases towards higher values of thfe pyramidal threshold. Since the 

refractory period sets a maximum firing frequency, the number of messages reaches a 

plateau as the threshold approaches its minimum value. 

The excitation thresholds of the inhibitory cells {GABAA and GABAB cell 

types) are given as a 2-element vector for each trace. As they are decreased, 

inhibitory cells are more likely to fire and the total inhibition in the aggregate 

increases. When the excitation threshold of the pyramidal cells is high (righthand 

half of the z axis), the activity of the pyramidal population is sensitive to the total 
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Figure 6.25: CPU time versus total number of messages processed 

inhibition. This effect is seen as a decrease of the total number of messages in the 

top-right plot of figure 6.24. When the excitation threshold of the pyramidal cells is 

close to its .minimum, the pyramidal population is firing at its maximum rate and is 

relatively insensitive to the inhibition in the network. 

The steep increase of CPU time associated to low excitation thresholds is the 

result of the exhaustion of memory resources and the start of intensive swapping. 

The scatter plot in figure 6.25 relates the CPU time and the total number of 

messages processed and contains all the simulations included in figure 6.24. It shows 

a linear increase within the range {0 — 200 • 10®} messages, where swapping is not 

necessary because of sufficient free memory space. Beyond 200 • 10® messages, 

several simulations required CPU times that deviate from the straight line. In these 

cases, the event-queue grew reaching the limits of the available memory. 

Overall, these results indicates that: (1) the simulation of cortical models with 

sizes in the order of 1.5 10^ can be executed with elapsed times bellow 500 s in 

realistic conditions where the excitation threshold of pyramidal cells are sufficiently 

high to avoid the saturation of the firing rate, (2) the amount of available memory 

has a marked impact on performance, and (3) an increase of memory resources 

should be considered for network sizes beyond 1.5 10®. 



Chapter 7 

Event-driven model of C. elegans 

7.1 Introduction 

In this Chapter, the MBED neuron is used to construct a network model of the 

small circuit (in the order of 100 cells) which makes up the locomotory nervous 

system of the nematode C. elegans. The aim is two fold; to provide insight on the 

control of muscle contraction patterns in C. elegans, a problem only partially tackled 

by previous work [47] [108] and to illustrate the capabilities of the MBED approach 

in the modelling of small systems, bridging the gap between the single cell 

simulations of Chapter 5 and the large scale simulations of Chapter 8. 

Firstly, experimental data upon which the model was developed is presented. 

Recordings of behaving animals and an automated image analysis algorithm were 

used to obtain the patterns of muscle excitation. Secondly, the capability of these 

patterns to generate locomotion was tested by developing a mechanical model of the 

body of C. elegans. Having obtained the patterns of muscle activity required for the 

control of locomotion, the problem of finding a neural circuit capable of originating 

this activity is tackled. A circuit using the MBED neuron model and based on the 

available experimental data is proposed and its capability to generate forward, 

backward, reversal and coiling motions is demonstrated. Further validation of the 

model is provided by comparison of predicted and experimental effects of mutations 

and laser ablation of neurons. The model also serves to propose a testable 

hypothesis to explain the capability of C. elegans to modify its propagation velocity 

as a result of external stimuli. 

125 
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7.2 Experimental data 

Previous work on models of small invertebrate networks (see for example [87]) have 

heavily relied on electrophysiological measurements to specify neuron parameters. 

Due to the limited electrophysiological information available in C. elegans [107], the 

model of its locomotory circuit is based on the following types of data: anatomical 

information obtained with electron microscopy, laser ablation, histochemistry, 

genetic mutations and analysis of CCD recordings of behaving animals. 

Of the 302 neurons which make up the nervous system of C. elegans, around 80 

are directly involved in the generation of forward and backward locomotion [108]. 

These neurons were first identified as participating in locomotion on anatomical 

grounds [96] and further studies employing laser ablation have confirmed these 

preliminary results [104]. 

Figure 7.1 shows the topology of the locomotory circuit, based on data from 

White et al. [97]. Neuron classes VA, VB, VD, DA, AS, DB and DD are located 

along the body of the nematode. Cell types AS and DA, which share several 

characteristics [97], were considered as a single class and labelled as DA in the 

figure. The two units labelled AVA and AVB in the figure, correspond to two pairs 

of cells in C. elegans which possess axons extending the full length of the body. The 

leftmost and rightmost columns of cells in figure 7.1 correspond to ventral (labelled 

MSCVx) and dorsal (MSCDx) muscles. 

Table 7.1 summarizes the neuronal types incorporated into the model and 

experimental data relevant to identify their function in the circuit. Neurons have 

been grouped in classes by their morphology and connectivity patterns as described 

in [97]. Available data on the neurotransmitter secreted were included, since this 

information aids in assigning tentative polarity to synapses (acetylcholine 

corresponding to excitatory and GAB A to inhibitory connections). The rightmost 

column includes the suspected neuronal functions. 

In addition to the static information available, summarized in Figure 7.1 and 

Table 7.1, dynamic data regarding the activity of muscles and motoneurons during 

locomotion were needed to construct the network model. Due to the reduced 

number of classes of neurons involved in locomotion (eight types in the model), a 

number of predictions can be made about the underlying motoneurons through the 

analysis of the visually observable patterns of body movements and muscular 

activity while locomoting. 
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Figure 7.1: SimpliHed topology of the locomotory system 
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Neuron type Number Neurotransmitter secreted Suspected function 
VA 12 Acetylcholine Motoneuron active in forward locom 
VB 11 Acetylcholine Motoneuron active in backward locom 
VD 13 GABA Inhibition of contralateral muscles 

DA+AS 20 Acetylcholine Motoneuron active in backward locom 
DB 7 Acetylcholine Motoneuron active in forward locom 
DD 6 GABA Inhibition of contralateral muscles 

AVA 2 Control of backward locomotion 
AVE 2 Control of forward locomotion 

Table 7.1: Neuron classes involved in locomotion 

Forward locomotion 

0.4 O.f 

Normalized distance from head 

Figure 7.2: Local curvature of the body as a function of frame number and distance 
from the head during forward locomotion 

7.3 Analysis of video recordings 

Muscle contraction is required to generate and maintain the curvature of the body 

[101]. Hence, quantification of the body curvature can be used as an indirect way to 

measure muscle contraction without direct recording from muscle cells. 

For this purpose, mature animals were transported to Petri dishes and imaged 

while locomoting on agar. An optical microscope (magnification x40) and standard 

interlaced video rate CCD camera (25 frames/sec, 50 fields/sec) were used. Figures 

B.l, B.2, B.3 and B.4 in Appendix B show sequences obtained during forward 

locomotion, backward locomotion, reversal and coiling respectively. 

To allow further quantification of the temporal evolution of muscle states, the 
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Figure 7.3: Local curvature of the body as a function of frame number and distance 
from the head during backward locomotion 
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Figure 7.4: Local curvature of the body as a function of frame number and distance 
from the head during reversal 
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images were analysed with an automated image processing system. Details on the 

implementation of the algorithm are provided in Appendix C. 

Briefly, sequences of images with locomoting animals were obtained with the 

CCD camera. Firstly, the body was identiEed in each image. Secondly, its contour 

was followed and stored as a sequence of two-coordinate position vectors. Finally, 

the second spatial derivative was calculated on the parameterized contour in order 

to estimate the local curvature of the body at different positions along its 

longitudinal axis. 

The results are shown in figures 7.2, 7.3 and 7.4. They plot the temporal 

evolution of the local curvature of the body at different locations as it performs 

forward locomotion, backward locomotion and motion reversal, respectively. 

The data are plotted as a coloured 2-D array where each row corresponds to a 

frame in the video sequence (time advances downwards) and columns to different 

positions along the body (leftmost and rightmost closest to the head and tail 

respectively). Curvature values were normalized to the maximum within the video 

sequence and plotted using a gray scale. Brighter segments indicate pronounced 

curvature whereas dark regions correspond to body segments remaining in a straight 

line position. 

Figure 7.2 shows that forward locomotion was generated by propagation of 

muscle contraction from head to tail. Likewise, backward locomotion (figure 7.3) 

involved the propagation of waves of muscle contraction in the opposite direction 

(tail to head). Figure 7.4 shows the state of the muscles during motion reversal. 

Three phases can be distinguished: forward locomotion, halt and backward 

locomotion. During the halt phase, the spatial pattern of muscle contraction 

remains static. 

From these CCD recordings, it was estimated that muscle contraction propagates 

at approximately 0.28 bodylengths/second. Considering ten neurons lined along the 

body in any one motoneuron class, it follows that the delay introduced between two 

contiguous neurons in the propagation of contraction is 360 ms. The latency 

between two excitations of any one muscle during forward movement is 

approximately 2.4 seconds. This is also the period of the head movement while 

propagating. The parameters in the MBED neuron model were set to obtain results 

consistent with these observations. 

Having extracted the time-space evolution of body curvatures during locomotion, 

further proof of the equivalence between local curvature and muscle contraction was 

sought. 
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parameter value units 
velocity of contraction propagation 0.28 bodylengths/sec. 

delay between motoneuron 360 msec. 
period of the body wave 2.4 sec. 

Table 7.2: Quantitative data obtained from CCD recordings (average from n = 4 
worms) 

7.4 Mechanical model 

A mechanical model of C. elegans was developed to confirm that the patterns of 

local curvature were indicative of muscle contraction by showing tha t they were 

capable of generating locomotion. 

The model is based on previous work by Niebur et al. [108]. Their model was 

extended from two to three dimensions, allowing future work on out-of-plane head 

movements, and several force terms were simplified. 

The body of the nematode was modelled as an elastic cylinder, a grid of i? x C 

nodes (figure 7.5) with each node connected to its four closest neighbours by linear 

springs. The force acting on a node is the net contribution of its four neighbours 

F. = j : F , (7.1) 
2 = 1 

where is the net force and ^ the contribution of the spring. The 

contribution of each spring is given by 

Er,c = A:(4,c - (7.2) 

where is the force exerted by the spring located in row r and column c in the 

body grid, k is the spring constant, the distance between the nodes connected by 

the spring, do the ideal length and a unitary vector in the direction of the spring. 

The resting length, do, was set to confer stability to the model in a cylindrical shape, 

do, = 3) 

where dot and d^i are the resting lengths for transversal (perpendicular to the 

long axis) and longitudinal (oriented along the long body axis) springs respectively, 
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Figure 7.5: C. elegans mechanical model 

rad is the radius of the cylinder, I its length and C and R the number of 

longitudinal and transversal bands of springs. 

To maintain its cylindrical shape, the nematode requires the presence of internal 

pressure [108]. The internal pressure term is calculated in the model as. 

Fp = kp • fi (7.4) 

where kp is a scaling factor and n is a unitary vector normal to the surface of the 

body. 

The action of the environment is modelled as in equation 7.5. 

& (7.5) 

where kr is a scaling factor, n a unitary vector normal to the body and v is the 

velocity vector. The component of v tangential to the body surface is neglected, 
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since the nematode slips within a jelly groove with minimal friction. The normal 

component, however, encounters the resistance opposed by the jelly agar medium 

(analogous to the force acting on a free falling object in a fluid or gas). This force 

acts as a damping term to stop the mesh from oscillating in addition to providing 

the propulsion for body movement. 

The net force acting on a point in the mesh is 

^ ^ ^ (7.6) 

where Fg is the force due to surface tension , Fp the internal pressure and the 

resistance created by the environment. 

Muscle contraction is simulated by changing the ideal length of the longitudinal 

springs in the body wall (equation 7.2). During contraction, the resting spring 

length is decreased. Conversely, during muscle relaxation, it is increased back to its 

initial value. 

Figure 7.6 shows a sequence of images of the mechanical model performing 

forward locomotion. The spatio-temporal pattern of resting spring lengths 

corresponds to a travelling wave of contraction [108] and is given by 

2 T̂TT* 
4,c(() = 4 ( 1 + 

where dr,c(̂ ) is the time changing ideal length of the spring in position (r, c), do 

the length as in expression 7.3 and w the frequency of the muscle contraction wave. 

Expression 7.7 describes a wave of muscle contraction propagating from head to 

tail. At a point with maximal muscular contraction, it reaches its maximum, 

(io(l + a) whereas in regions with total muscle relaxation it yields a minimum of 

do(l — &). 

The first cosines in expression 7.7 introduces a vr radians phase lag between 

springs within the same transversal section but in opposite sites of the body (i.e. 

between column M and n 4- y). This phase allows the bending of the body by 

msuring that the contraction of the springs in one side coincides with relaxation of 

those in the opposite site. The second cosines takes the form cos(A;r — wf) 

corresponding to a wave propagating along the elastic cylinder. 

Figure 7.7 shows the local curvature of the mechanical model as a function of 

time and distance from the head. 

The capability of the model to move forwards with this pattern of muscle activity 

suggests that the neural circuitry controlling locomotion must be capable of 
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Figure 7.6: Sequence of images of the mechanical model during locomotion 
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Normalized distance from the head 

Figure 7.7; Local curvature of the mechanical model as a function of time and distance 
from the head 

Figure 7.8; Complete body bending in the mechanical model 

generating this output. It also confirms that the curvature data presented in figures 

7.2, 7.3 and 7.4 are indicative of muscle contraction patterns, as they match those 

used in the mechanical model (figure 7.7) to generate forward locomotion. 

These results have further constrained the network model presented in the 

following section to those configurations with motoneuron activity patterns 

consistent with the experimental observations. 

The muscle states compatible with body coiling were also tested with the 

mechanical model. Figure 7.8 shows the mechanical model performing whole body 

bending. 

The pattern of muscle excitation which induced whole body bending is given by, 

QiTTC 
dcr — c?o(l + (7.8) 
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Parameter Value Parameter Value 
C 10 1 30 
R 8 rad 1 
k 1 doi 3.3 
hp 0.03 dot 0.63 
tr 1 a 0.5 
oj 2-11/2.5 dt 0.8 s 

Table 7.3: Numerical values used in the mechanical model 

which corresponds to all muscles on one side being contracted while those on the 

opposite site are relaxed. Note that the time dependent te rm included in expression 

7.7 has been left out in 7.8. 

Table 7.3 lists the numerical values used for the simulations of locomotion and 

coiling. The number of rows and columns in the grid of springs (R and C) were 

chosen, in order to minimize the number of springs and the computational cost, as 

the lowest values giving smooth locomotion. The scaling factors k and were 

arbitrarily set to 1 and Ap adjusted to confer realistic proportions to the resulting 

cylinder. The angular frequency w was set to 27r/2.5, corresponding to a period of 

2,5 s as obtained from image processing of the locomoting C. elegans. The length (/) 

and radius (rad) were set to match the physical proportions of the nematode and 

the inter-node distances {doi and doi) were calculated as in expression 7.3. The 

parameter a , the fractional change of spring length associated to maximal muscle 

contraction, was found by trial-error. The chosen value, 0.5, was found to achieve 

suGcient curvature for locomotion while maintaining the smoothness of the body 

surface. Finally, the time step dt was adjusted to ensure convergence and limit 

computational burden. 

Having obtained the muscular states compatible with locomotion (the output of 

the locomotory neural circuitry), a network model consistent with topological and 

functional data and capable of generating such output was constructed. 

7.5 Model of the locomotory nervous system 

7.5.1 Topology 

The starting point for the construction of the model is the complete topological map 

of the nervous system of C. elegans [97] [96] [148]. 
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Figure 7.9: Sketch of the anatomy of the neuron classes in the locomotory circuit 

Those classes of neurons no further than two levels of synapses away from muscle 

are identified. Several of these types of neurons have already been associated with 

functions other than locomotion, e.g. egg laying circuitry, and are excluded from the 

model [97]. Table 7.1 lists the remaining neuronal types, and a sketch of the 

connectivity amongst them is depicted in figure 7.1. 

Figure 7.9 depicts their dendritic and axonal geometries, which aid the 

assignment of functional roles to individual neuron types. 

The model includes ten cell types; VA, DA, VB, DB, VD, DD, AVA, AVE, 

MSCD and MSCV (cell notation as used by White et al. [97]). Classes VA, DA, and 

VB and DB have a short dendrite which receives synaptic input and a long axon 

synapsing onto nearby neurons. VA and DA neurons are a mirror image of VB and 

DB, with a symmetry axis perpendicular to the body. The former play the role of 

directional (tail to head) signal propagators whereas the latter have an analogous 

function for the propagation in the opposite direction [108]. 

VD and DD cells receive synaptic input from one side of the body and inhibit 

cells in the opposite site [110, 149]. AVA and AVE are interneurons which provide 
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input to VA-DA and VB-DB neurons respectively. MSCD and MSCV are muscle 

cells. The model includes ten neurons for each of the cell classes VA, VB, DA, DB, 

VD and DD and a single neuron for AVE and AVA. Ten muscles (MSCDx and 

MSCVx) are located in each side of the body. 

Four units in the model, labelled NRD, NRV, TSD and TSV, act as signal 

sources encapsulating activity originated in other circuits and do not correspond to 

individual cells in C. eZepOTW. 

NRD and NRV account for dorsal and ventral input from the nerve ring, the 

main neuronal aggregate in the head. TSD and TSV correspond to dorsal and 

ventral neurons in the tail subsystem. Severil mechanisms are capable of generating 

the activity modelled by these units in the animal. Proprioceptive sensors, 

mechanically activated cells, have been identiSed in Ascaris [109], a nematode with 

anatomical and functional similarities with C. elegans, and may provide direct input 

to the locomotory circuit. Passive gap junction propagation from neurons in the 

nerve ring and the tail may also provide a source of input (these connections have 

indeed been identified anatomically [97]). 

In the model presented here, the following additional assumptions were made; 

that for classes VA, VB, DA and DB, the activity of the neurons is modulated by 

stretch receptors [108] (a similar hypothesis has been put forward and corroborated 

for other invertebrates, e.g. the leech [150]) and that gap junctions within classes 

VA, VB, DA and DB may be necessary for synchronization but are not essential to 

generate basic locomotion. 

7.5.2 Neuronal parameters 

Neurons and muscles were modelled with the MBED neuron described in Chapter 5. 

The excitation threshold {the) of neurons belonging to classes VA, VB, DA, DB, VD 

and DD was set aa, 

i 

where (Ag is the excitation threshold of the N is the total number of neurons 

in the model and a(z, j) = 1 if neuron % hcis an excitatory synapse > 0) onto 

neuron j, otherwise 0!(2, j) = 0. 

As a consequence, all excitatory presynaptic neurons must be active to elicit an 

action potential in neuron j. For instance, VA neurons receive excitatory input from 
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Parameter VA DA VB DB MSCD MSCV VD DD AVA AVB 
(/le 2 2 2 2 1 1 1 1 1 1 

-1 -1 -1 -1 -1 -1 -1 -1 -1 -1 
tosc 0 0 0 0 0 0 0 0 - -

^burst 1 1 1 1 -1 -1 1 1 5 5 
tap 1 ms 1 ms 1 ms 1 ms 10 ms 10 ms 1 ms 1 ms 1 ms 1 ms 

^ref 2 ms 2 ms 2 ms 2 ms 5 ms 5 ms 2 ms 2 ms 2 ms 2 ms 
i(p 0 ms 0 ms 0 ms 0 ms 0 ms 0 ms 0 ms 0 ms - -

Table 7.4: Fixed parameters of the model (I) 

Parameter Value Parameter Value 
tdeli 1 ms t-delz 1 ms 

'^syni 1 Wsyns 1 
tduri 300 ms tdur^ 1 ms 
tdeh 15 ms tdeU 1 ms 

Wsyn2 1 Wsyjn -1 
tdur2 100 ms tdurn 1 ms 

Table 7.5: Fixed synaptic parameters of the network (II) 

Motion-type dependent parameter values 
Forward Backward Coiling 

Neuron Type iosc tosc tosc tip 

AVA 0 0 360 ms 0 0 0 
AVB 360 ms 0 0 0 360 ms 0 
NRV 2.4 s 0 0 0 2.4 s 0 
NRD 2.4 s 1.2 s 0 0 0 0 
TSV 0 0 2.4 s 0 0 2.4 s 
TSD 0 0 2.4 s 1.2 8 0 0 

Table 7.6: Parameters of driving neurons for several types of locomotion 
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AVA and from their stretch receptors that sense the contraction of nearby muscles. 

Hence, the = 2 for all neurons in this class. 

In muscle cells (MSCV and MSCD) the excitation threshold was set to the = 1. 

Consequently, the activation of any one of their presynaptic partners provides 

sufficient excitation to trigger the generation of action potentials. 

Neuron classes AVA, AVB, NRV, NRD, TSV and TSD serve as activity sources 

and do not receive input from any other cells. For this reason, their excitation 

thresholds do not affect their operation. 

The inhibition threshold was set to thi = —1 for all neurons and muscles. 

Neurons of classes AVA and AVB generate a burst of five pulses (TVburst = 5) as a 

result of an increase of input activity above the excitation threshold. The remaining 

neuron types generate a single pulse = 1). 

The oscillator block of the cells belonging to classes VA, VB, DA, DB, VD, DD 

was inactivated {tosc = 0,tphi = 0). These neurons fire action potentials as a result of 

the simultaneous activation of a sufficient number of excitatory synapses, and do not 

display pace maker behaviour. Neurons AVA and AVB are configured to generate 

rhythmic activity every 360 ms (tosc = 360ms) during forward and backward 

locomotion respectively. 

Muscles (MSG and MSD) fire continuously after the first action potential is 

triggered by input activity (TVburat = — 1)- Effectively, they are conSgured to 

generate bursts of infinite length. Their oscillator blocks were inactivated = 0)-

After activation, muscle contraction continues until inhibition truncates the ongoing 

sequence of spikes. 

The duration of the activity pulses (tap) and post-pulse refractory period (tref) is 

set to 1 and 2 ms respectively in neurons and to 10 and 5 ms in muscles. 

Synapses in the model are configured with one of four possible combinations of 

synaptic delay, weight, and synaptic activation duration (see table 7.5 for complete 

listing). Three synaptic parameter sets with excitatory properties are defined (top 

three in table 7.5); the first configuration is used for synapses from NRV, NRD, TSV 

and TSD to muscles. The second corresponds to connections from VB, DB, VA and 

DA onto muscles. The third synaptic type is used for the remaining connections. All 

inhibitory synapses are configured with — —1, = 1msec, = 1msec). 

Figure 7.10 shows the connectivity matrix of the network in figure 7.1, which 

follows the synaptic patterns described in [97]. White dots indicate excitatory 

synapses whereas gray dots mark inhibitory synapses. 

To elicit different behaviours, the topology and parameters of the neurons in the 
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Figure 7.10: Connectivity matrix of the model 

model remained unchanged. Only sources of signals driving the locomotory circuit 

(namely NRV, NRD, TSV, TSD and AVE and AVA) are activated or inactivated as 

necessary to elicit different motor patterns. These driving signals are generated, in 

the worm, by other subcircuits of the nervous system which have not been modelled 

here. 

7.5.3 Forward locomotion 

Driving signals 

C. elegans locomotes forward by bending its head dorsally and ventrally and 

propagating the body curvature towards the tail [108]. 

Forward movement is generated in the model by the coordinated activation of the 

AVE neuron and units NRV and NRD. The timing in these units is set to the values 

determined experimentally from CCD recordings. AVE is configured to generate 

bursts of pulses with a period of tosc — 360 ms. The pattern of activity in the NRV 

and NRD units corresponds to two out of phase trains of pulses with an interpulse 
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Figure 7.11: Neuron activity during forward locomotion 

period of 2.4 s {tosc = 2.4 s). The time lag between NRV and NRD was set to 1.2 s. 

NRV and NRD account for activity triggered by the bending of the head, which 

was observed concomitantly with forward locomotion (see figure B.l in Appendix 

B). NRV generates pulses during a ventral bend of the head, whereas NRD fires 

during a dorsal bend. While locomoting forwards, neuron AVA and units TSD and 

TSV remain inactive — 0). 

The results of the simulation of forward locomotion are shown in figure 7.11. 

Shift-register description of forward locomotion 

The neuron classes participating in forward locomotion are VB, DB, VD, DD, AVB, 

NRV and NRD. Understanding of the mechanisms underlying forward locomotion in 

the model is aided by the shift-register analogy of figure 7.12. VB and DB neurons 

function as biological equivalents of AND gates in the model, which sense the state 

of nearby muscles (contracted/relaxed) and propagate the contraction towards the 

tail. In this analogy, muscles (MSCV and MSCD) are the counterparts of the 

flip-flops in the shift-register. They contract as a result of the onset of an action 
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Figure 7.12: Schematic representation of the combined function of AVE and VB cells 
in the model 

potential in the motoneurons VB and DB, and remain contracted until inhibition 

causes their relaxation. 

Inhibitory neurons VD and DD, provide cross-inhibition between contralateral 

muscles. VD neurons become active whenever the muscles in the ventral side are 

activated and inhibit the muscles at the opposite (dorsal) site of the body, forcing 

them to stop the contraction. DD neurons have a similar eifect but are activated by 

the dorsal side and inhibit the ventral muscles. 

Clocking in this biological shift-register is provided by the AVE interneuron. 

Each burst of pulses generated by AVE triggers the propagation of muscle 

contraction further towards the tail. 

The overall sequence of events during forward locomotion as seen in figure 7.11 is 

as follows: 

• The head bends ventrally, activating the NRV unit, contracting the first 

ventral muscle (MSCVl) and triggering EPSPs in neuron VBl . 

• A burst in AVE (central clock in the model), activates neuron VBl which, in 

turn, contracts its nearby ventral muscle MSCV2, effectively propagating the 

state of MSCVl. 

• Subsequent bursts from AVE, further propagate muscle states towards the tail. 

• VD neurons, sensing muscle contraction in the ventral site, are activated and 



(THvLPnaS 7. C. fMJSG^AfK? 144 

inhibit dorsal muscles, post-synaptic to VD. 

® After 1.2 s, the head bends dorsally, activating the NRD unit, contracting the 

Rrst dorsal muscle (MSDl) and silencing NRV. 

• A burst in AVE, activates neuron DBl, which propagates the state of MSDl 

to MSD2. 

• DD neurons are activated by dorsal muscle contraction and inhibit the ventral 

muscles located in the initial segment of the body. 

• Subsequent bursts of AVE propagate dorsal and ventral muscle contraction 

towards the tail. 

• After 2.4 s the head bends ventrally and the cycle restarts. 

This model assumes that VB and DB neurons provide unidirectional propagation 

of activity (from head to tail). This functional polarization was suggested by the 

observation of the anatomical particularities of neurons VB and DB [96] (see the 

diagram in figure 7.9). 

VB and DB neurons are bipolar, having all synapses onto postsynaptic neurons 

in a long axon extended towards the tail, whereas all synapses from presynaptic 

neurons are located in a short dendrite extended towards the head [97]. This pattern 

of synapses supports the idea of a directional propagation of excitation, which is also 

functionally consistent. In addition to the anatomical evidence, laser ablation 

experiments have confirmed that VB and DB are required for the propagation of 

head-to-tail muscle contraction waves [113]. 

The capability of VB and DB neurons to sense contraction in nearby muscles was 

introduced in the model by the addition of connections from muscles to VB and DB 

neurons. These are not anatomically identifiable connections, rather, a convenient 

way to simulate the stretch receptors. There is genetic evidence of the importance of 

stretch receptors in the generation of locomotion. Mutant unc-8, which is thought to 

carry a mutation affecting mechanosensation, shows abnormal locomotion [151]. 

7.5.4 Backward locomotion 

Driving signals 

C. e/egoMg locomotes backwards by bending its tail dorsally and ventrally and 

propagating the curvature towards the head [95]. 
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Figure 7.13: Neuron activity during backward locomotion 

The results obtained in a simulation of backward locomotion are shown in figure 

7.13. The parameters of AVA and AVB in forward locomotion have been exchanged 

to generate backward locomotion. AVA generates a burst of pulses every 360 ms 

{tosc = 360 ms) whereas AVB remains inactive {tosc = 0). 

NRV and NRD units have also exchanged configuration parameters with TSR 

and TSD with respect to forward locomotion. TSV and TSD model the activity 

associated to dorsal bending of the tail, respectively. NRV and NRD remain inactive 

during backward locomotion. 

Events during backward locomotion 

The neuron classes participating in backward locomotion are VA, DA, VD, DD, 

AVB, TSV and TSD. Figure 7.9 shows that, anatomically, VA/DA can be seen as a 

180 degrees rotation of VB/DB neurons. Neurons VA,DA,VB and DB share the 

same spatial arrangement of synapses (long axon with synapses to postsynaptic 

neurons and short dendrite with synapses from presynaptic neurons). In the model, 

the function of neurons VA and DA is equivalent to that attributed to VB/DB 
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neurons during forward locomotion, they propagate muscle contraction. However, as 

suggested by their anatomy, neurons VA and DA propagate contraction towards the 

head whereas neurons VB and DB propagate muscle activity towards the tail. 

Neurons VD and DD carry out the same function during forward and backward 

locomotion; they inhibit contralateral sites to allow body torsion. 

Neuron AVA takes on the role of central clock during backward locomotion and 

AVE (which acted as clock during forward locomotion) remains inactive. 

The circuit controlling the movement of the tail, which activates the signal 

source units TSV and TSD, is not included in the model. As the worm propagates 

backwards, it often follows the groove created during forward motion. The curvature 

induced by the groove could activate stretch receptors which provide the input to 

TSV and TSD, but this possibility has not been confirmed experimentally. 

The sequence of events during backward locomotion is similar to that seen during 

locomotion, 

The tail bends ventrally, activating the unit TSV unit, contracting the ventral 

muscle closest to the tail (MSCVIO) and triggering EPSPs in the VAlO neuron. 

A burst in AVA (central clock in the model), triggers VAlO which, in turn, 

contracts its nearby ventral muscle MSCV9. 

Subsequent bursts from AVA, propagate muscle contraction further towards 

the head. 

VD neurons, sensing muscle contraction in the ventral site, inhibit dorsal 

muscles. 

After 1.2 s, the tail bends dorsally, activating the unit TSD, contracting the 

dorsal muscle closest to the tail (MSDIO) and inactivating TSV. 

A burst of pulses in AVA, trigger the activation of DAIO which contracts 

muscle MSD9. 

DD neurons are activated by dorsal muscle contraction and inhibit the ventral 

muscles located in the final segment of the body. 

Subsequent bursts of AVA propagate dorsal and ventral muscle contraction 

towards the head. 

• Upon ventral bending of the tail, the sequence of events restarts. 
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Figure 7.14: Neuron activity during reversal 

7.5.5 Reversal 

C. elegans is able to switch between forward and backward locomotion without 

abrupt changes in the sinusoidal shape of its body. Figure B.3 in Appendix B shows 

a reversal. 

Three phases can be distinguished in figure 7.4; forward locomotion, halt and 

backward locomotion. Up to frame number 75 (( < 3 a), the nematode propagates 

forward. Between frames 75 and 90 (3 s < i < 3.6 s), it pauses mantaining the 

curvature of the body. From frame 90 onwards [t > 3.6 s), it locomotes backwards. 

Figure 7.14 shows the waveforms corresponding to reversal. The forward 

locomotion phase is achieved by configuring the driving signals in the model as in 

section 7.5.3. The halt phase is started by the inactivation of AVB {tosc = 0). The 

lack of activity in the central clock, AVB, stops the propagation of the muscular 

contraction wave and takes the system into a static phase. 

To reverse, AVB remained inactivated {tosc = 0) and AVA was activated 

{tosc — 360 ms). Units TSV and TSD were also activated as in section 7.5.4, to 
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Figure 7.15: Neuron activity during coiling 

account for ample tail bending. 

7.5.6 Whole body bending 

During periods of absence of locomotion, C. elegans is able to perform a whole body 

bending, adopting a "U" position. To achieve this shape, the spatial pattern of 

muscle contraction must be substantially different from that required for normal 

locomotion. For a ventral bending, all ventral muscles must be contracted whereas 

dorsal muscles should be relaxed (the opposite is the case for dorsal bending) 

jkfjfCKn == (7.10) 

where MSCVn denotes the state of ventral muscles which, to achieve whole body 

bending, must be in the negated state of dorsal muscles, MSCDn- This was 

confirmed by the mechanical model (figure 7.8) which coils as a result of such a 

pattern of muscle activation. 

Figure 7.15 shows the results of the simulation of ventral bending. For this 
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Experiment TSx NRx AVA AVE 
forward loc. pace maker silent silent pace maker 
backward loc. silent pace maker pace maker silent 
direc. change pace maker pace maker pace maker pace maker 
bend silent NRV pace maker, NRD silent silent pace maker 

Configuration of the st imulus units Table 7.7: 

purpose, both AVE and AVA neurons are configured to generate rhythmic activity. 

Coiling is initiated by a ventral bend of the head and the tail. This is introduced 

in the model by the activation of NRV (signal 0 in figure 7.15) and TSV (signal 85 

in figure 7.15) at t = 0 msec. The simultaneous activation of NRV/TSV and 

rhythmic bursting of AVB/AVA (signals 11 and 63 in figure 7.15) propagates muscle 

contractions from opposite ends of the body towards the center. After 1.5 s all 

muscles in the ventral side have been contracted, corresponding to a ventrally 

curved body. Relcixation of all muscles in the dorsal side is guaranteed by the 

inhibition produced by DD neurons. 

The time required for a bending to be completed can be controlled by adjusting 

the period of bursting of neurons AVE and AVA, in an analogous way to the control 

of speed in forward locomotion. 

Table 7.5.6 summarizes the configuration of the units driving the network, TSx, 

NRx, AVA and AVE, to elicit the four types of behaviour treated in the previous 

sections. 

7.6 Velocity control 

C. elegans is able to adapt its propagation velocity in response to external stimuli. 

A similar behaviour is displayed by the model; since the firing frequency of AVE 

determines the speed of propagation of the contraction wave along the body, changes 

in the firing rate lead to predictable variations of the locomotion velocity. 

Figure 7.16 shows the waveforms obtained for several values (50 ms, 150 ms, 250 

ms and 350 ms) of the inter-burst period, tosc, of neuron AVE. Figure 7.17 plots the 

velocity of muscle contraction propagation as a function of the AVE neuron 

inter-burst period. An increase of the AVE firing frequency leads to a faster 

propagation of muscle contraction towards the tail. 
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Figure 7.16: Forward locomotion for several values of the inter-burst period in the 
AVB neuron 
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Figure 7.17: Velocity versus inter-burst period in neuron AVB 

Type of Defect Abnormal behaviour 
Ablation of AVB No forward movement. Backward movement still possible 
Ablation of AVA No backward movement. Forward movement still possible 
Decreased GABA synthesis Contraction of contralateral muscles. Impaired locomotion 
Abnormal connection of AVA Functional forward movement. Coiling when backward 

Table 7.8; Several ablation and mutation experiments considered for validation of the 
model 

7.7 Model validation with laser ablated and mutant 

worms 

It has been shown in previous sections that the model is able to replicate four 

common types of locomotory behaviours (forward, backward, reversal and whole 

body bending). 

Additional experimental data, including observations of individuals having 

undergone laser ablation of identified neurons [103] and muta t ions affecting either 

the topology or the neurotransmitters in the locomotory nervous system [100], were 

compared to model predictions for further validation. Table 7.8 summarizes the 

experimental results considered in the following sections. 
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Figure 7.18: Effect of laser ablation of AVB on forward locomotion 

7.7.1 Ablation of AVB/AVA neurons 

Laser ablation of AVB and AVA neurons in C. elegans impairs forward and 

backward locomotion respectively [152]. 

The parameters of the oscillator block in the AVB neuron in the model were 

modified, tosc = 0, in order to simulate its ablation. The inactivation of its oscillator, 

renders AVB inactive, which is functionally equivalent to its removal with a laser 

beam. 

Figure 7.18 shows the results of the simulation of the forward locomotion 

configuration after the inactivation of AVB. Units NRV and NRD fire action 

potentials (waveforms 0 and 52), accounting for the effect of ventral and dorsal head 

bending. They trigger contraction in the first segment of ventral and dorsal muscle 

cells (signals 1 and 53) onto which NRV and NRD synapse. 

Due to the absence of AVB, the contraction of these muscles is not propagated 

along the body, a spatial wave is not created and forward locomotion is impaired. 

An analogous result is obtained when backward locomotion is simulated after 
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Figure 7.19; Effect of laser ablation of AVA on backward locomotion 

inactivation of AVA (simulation results shown in figure 7.19). When AVA is 

inactivated, tosc = 0, bending of the tail triggers contraction in the segment of 

muscles closest to the tail, cells MSCVIO and MSDIO (waveforms 10 and 62 in figure 

7.19). However, due to the absence of activity in the interneuron AVA, this 

contraction is not propagated towards the head and backward locomotion is 

impaired. 

In good accordance with experimental results, the ablation of AVE and AVA 

neurons disrupts totally forward and backward locomotion in the model. 

7.7.2 Defective GABA synthesis mutat ion 

Neurons belonging to classes VD and DD are thought to provide GABA mediated 

contralateral inhibition [153] [108] to allow body bending. 

Muscle contraction in the body during locomotion obeys the condition imposed 

by expression 7.10, i.e. the state of the n"' ventral muscle (relaxed/contracted) is 

opposite to the state of the dorsal muscle. 
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Figure 7.20; Simulation of forward locomotion in a model lacking VD and DD neurons 

Abnormal locomotion has been reported in mutant worms which are defective in 

the production of GABA due a mutation affecting the synthesis and release of this 

neurotransmitter [101]. As a result of the reduced release of GABA in VD and DD 

neurons, contralateral muscles contract simultaneously, making propagation 

impossible and causing a shrinkage of the body [101]. The condition 7.10 does not 

hold in this case, instead 

(7.11) 

where MSCVn is the state of the n''* ventral muscle and MSCDn that of the 

dorsal muscle. 

Figure 7.20 shows the results obtained in a simulation of forward locomotion 

with a model lacking contralateral GABA mediated inhibition. The loss of function 

of neurons VD and DD has been introduced in the model by rising their excitation 

threshold {the = 100). With a sufficiently high value of the, VD and DD neurons 
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never reach the firing threshold and they remain inactive throughout the simulation. 

Ventral bending of the head, at i = 0 s, activates unit NRV and muscle MSCVl. 

Subsequent activation of interneuron AVE propagates ventral contraction 

(waveforms 1 to 10 in figure 7.20). At ( = 1.2 s, dorsal bending of the head activates 

NRD and the dorsal muscle MSCDl. Interneuron AVE causes propagation of dorsal 

contraction (waveforms 53 to 62). 

In the model incorporating VD and DD neurons, simultaneous contraction of 

muscles at opposite sites of the body is not possible due to mutual inhibition. Thus, 

a spatial periodic pattern of activated and inactivated muscles is created in each 

body side. In the VD/DD inactivated model, both ventral and dorsal muscles 

become simultaneously contracted. 

After 5 s, all muscles in the dorsal and ventral sides are contracted. The release 

of the contraction is not possible since there is no functional inhibitory mechanism. 

The network remains in this state indefinitely, forcing the worm to remain static. 

7.7.3 Muta t ion induced abnormal topology 

Several mutations in C. elegans have been reported to result in abnormal 

connectivity between neurons in the locomotory nervous system [100]. The result of 

the anomalous topology is an abnormal locomotion. 

In the unc-4 mutant, the connections from the interneuron AVA to the 

motorneurons VA are absent. Instead, the AVE interneuron provides synaptic input 

to VA neurons [100]. 

The observable effect in locomotion is the impossibility of generating backward 

movement. When the head of the worm is touched to elicit backward locomotion, 

the body coils instead of locomoting backwards. However, touching its tail triggers 

an abnormal (but still functional) forward locomotion [100]. 

To simulate this effect, the connectivity matrix of the model was altered, 

accommodating the new AVE-VA connections and removing the AVA-VA synapses. 

Figure 7.21 shows the new connectivity matrix, highlighting the synaptic changes in 

the model with respect to those present in the wild-type animal. All parameters, 

with the only exception of the new connections, were set as in the simulation of 

forward and backward locomotion described in sections 7.5.3 and 7.5.4. 
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Figure 7.21: Connectivity matrix of the model of the unc-4 mutant with abnormal 
topology 

Impaired backward locomotion 

Figure 7.22 shows the results of the simulation of backward locomotion with the 

modified model. At ^ = 0 5, the two ventral muscles closest to the tail (MSCVIO and 

MSCV9, waveforms 9 and 10) contract. This contraction, however, does not 

propagate further towards the head (downwards from waveforms 10 and 9), as 

required for backward locomotion. At t — 1.2 s, dorsal muscle MSDIO contracts and 

its contraction progressively propagates towards the head. At t = 5 s, 8 out of the 

10 dorsal muscles (MSCDl to MSCD8) are simultaneously contracted and remain in 

this state indefinitely. The generalized activation of the dorsal muscles added to the 

relaxation of their ventral counterparts, causes a dorsal coiling. 

The reason for the inactivity of ventral muscles is the abnormal connectivity 

between VA neurons and AVA and AVB neurons. In the wild type animal, 

activation of neuron AVA during backward locomotion triggers activity in VA 

neurons which propagate ventral muscle contraction towards the head. In the unc-4 

mutant, VA neurons do not receive input from AVA but from AVB. Neuron AVB 
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Figure 7.22: Simulation of backward locomotion in a model of the unc-4 mutant worm 

remains inactive during backward locomotion and, as a result, ventral muscles fails 

to contract. A reduced activity in the ventral side leads to a decreased inhibition to 

the dorsal side through the contralateral inhibition carried out by neurons VD. As a 

consequence, dorsal muscles are not inhibited and the periodic spatial pattern of 

contraction, typical of normal locomotion, is not generated, resulting in a complete 

contraction of all muscles in the dorsal side. 

Forward locomotion 

Forward locomotion is anomalous but still functional in the abnormally connected 

unc-4 mutant [100]. Due to the lack of a quantitative description of this 

abnormalities, it was assumed that an abnormal forward locomotion involved a 

deviation of the pattern of muscle contraction from the wild-type animal but, to 

allow forward movement, a head to tail contraction wave should be present. 

Figure 7.23 shows the simulation of forward locomotion. The results show a 

comparatively increased degree of muscle contraction in ventral muscles (waveforms 

1 to 10) with respect to dorsal muscles (waves 53 to 62). This is the result of 
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Figure 7.23: Simulation of forward locomotion in a model of the unc-4 mutant worm 

synaptic activity provided by VA neurons. In the wild-type animal, during forward 

locomotion, ventral muscles receive excitatory synaptic input exclusively from VB 

neurons. In the unc-4 mutant, excitatory input is relayed by both VB and VA 

neurons, which increases the degree of activation of ventral muscles with respect to 

dorsal muscles. 

However, head to tail waves of muscle contraction can be seen, indicating that 

forward locomotion, though with an uncompensated dorsal-ventral excitation, is 

possible in the model. This is in accordance with experimental observations. 

7.8 Conclusions 

A model for the locomotory nervous system of C. elegans, based on the event driven 

neuron model, has been proposed. This model is able to generate normal locomotion 

(forward and backward locomotion, forward/backward switching and whole body 

bending). It successfully predicts experimental observations with mutant and laser 

ablated worms (ablation of AVA/AVB, abnormal GAB A release in VD/DD neurons 
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and anomalous topology in unc-4 mutant). 

As electrophysiological data of C. efego?%a are still scarce, the model has ciimed at 

reproducing the gross locomotion behaviour. 

Constraining the model by the synaptic topology and accepting some 

assumptions on the parameters have sufficed to create a working model. Due to the 

simplistic nature of discrete models of neurons, the parameter space can be searched 

more easily than those required for Hodgkin-Huxley models [154]. 

Even with the parameter uncertainty, the model displays a rich set of realistic 

locomotion behaviours which require a limited set of constraints in the parameters. 

It is clear, though, that even with a subcircuit of a relatively small nervous system, 

experimental data are required for the creation of a working model with realistic 

parameters. 



Chapter 8 

Event-driven model of the piriform 

cortex 

8.1 Introduction 

The MBED model was utilized in simulations of a small network of neurons in 

Chapter 7. In this Chapter, it is used to construct a large scale model (10^ neurons) 

of the piriform cortex. The aim is to demonstrate the adequacy of the MBED 

framework as an alternative to compartmental models in large simulations, 

providing an improvement in computational efficiency while retaining the capability 

of incorporating electrophysiological data and producing realistic results. 

To this end, an MBED model of the piriform cortex including 10® neurons is 

constructed. The effect of network parameters on the dynamics of the aggregate are 

explored and the results compared with available experimental data and previous 

theoretical work. Table 8.1, reproduced for convenience from table 4.1, summarizes 

the three types of aggregate activity obtained experimentally by Ketchum et al. 

[124, 117] and theoretically with compartmental models [28]. 

The MBED model of the piriform cortex and the procedures employed to 

simulate field potentials and EEG recordings will be described first. Secondly, a set 

of test simulations are carried out which explore the dynamics of partially connected 

instantiations of the model in order to rule out implementation errors. Thirdly, the 

responses of the model to shock and random stimuli are studied, and several 

synaptic parameters and spatial patterns of LOT afferents are tested. Finally, the 

neural population sizes are modified. The balanced pyramidal-inhibitory neural 

pools, as proposed in [28], are substituted by a more realistic 4:1 excitatory to 

160 
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Experiment Results 

Strong shock stimulus Single wave 
Weak shock stimulus Damped oscillations 
Random input 40 Hz + 5 Hz frequency components 

Table 8.1; Experimental [124, 117] and compartmental modelling [28] results 

inhibitory cells ratio, following Hasselmo et al. [133]. 

8.2 The piriform cortex model with homogeneously 

sized neural pools 

The MBED model of the piriform cortex is based on the compartmental model by 

Wilson oZ. [28]. Four types of cells have been included: fast excitatory pyramidal 

cells, fast inhibitory cells, slow inhibitory (G/lBAg) cells and stimulus 

(LOT) cells (figure 8.1). 

Each one of the first three cell populations (pyramidal, and Gv4By^B) 

consists of a grid of 150 x 150 neurons. For clarity, these layers are depicted in 

separate planes in Egure 8.1. However, when topological information is needed (e.g. 

to simulate EEC and field recordings, as will be described in section 8.3), the 3-D 

model of figure 8.1 is collapsed into a 2-D model where the grids with pyramidal and 

inhibitory cells (GAB/^A and GABv4B) are positioned in the same z-plane. 

The LOT layer models the afferent activity which originates in the olfactory bulb 

and reaches the piriform cortex through the lateral olfactory track. The number of 

cells in this pool has been adjusted for each simulation in order to provide the 

desired degree of excitation. 

The LOT units in the model represent axonal bundles rather than a fourth cell 

type within the olfactory cortex. They are assumed to be situated at a distant point 

location with respect to the rest of neurons. As a consequence, the simulation of 

BEG recordings incorporates exclusively the contribution of the three cell classes, 

pyramidals and fast and slow inhibitory, physically located in the cortical region. 

Pyramidal cells possess local and long range intralayer excitatory connections 

(amongst pyramidal cells) and local interlayer connections (exciting nearby neurons 

in the GABAA and GABAB layers). Inhibitory cells {GABAA and GABAB layers) 

do not have intralayer connections in the model. Instead, they inhibit pyramidal 
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Figure 8.1; Piriform cortex model 

cells by means of local connections. 

The number of connections established by any one neuron is deterministically 

fixed and listed amongst other network parameters in table 8.2. The target neuron, 

j, of a synapse from neuron i, is chosen generating a random vector d of components 

{p, (̂ } (in polar coordinates), where p is an exponential variable and ^ a uniformly 

distributed value in the range 0 — 2%. The target neuron is chosen as the closest cell 

to, 

== 2% 4-,d (8 .1 ) 

where Pi is the position vector for neuron i. This expression is valid for all 

intracortical connections (pyramidal-pyramidal, pyramidal-inhibitory and 

inhibitory-pyramidal) 

LOT cells synapse onto pyramidal cells and introduce an external stimulus into 
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Neuronal parameters 
5 
— 1000 (burst truncation inactivated) 

tap 1 ma 
tfgf 10 ms 

^burst 1 
tosc (pyramidals and inhibitory) 0 {inactive oscillator) 

(pyramidals and inhibitory) 0 {inactive oscillator) 
tosc (LOT cells, all stimuli) 3000 ms 
tfj, (LOT ceils, shock stimulus) 0 ms 

(LOT cells, random input) Uniform(0 - tgtop) 
Number of synapses per neuron 

pyramidal to pyramidal 180 
pyramidal to fast inhibitory 12 
pyramidal to slow inhibitory 10 
fast inhibitory to pyramidals 12 
slow inhibitory to pyramidals 5 

Synaptic parameters 
(de/ (pyramidal to pyr./inh.) (3 — 12 ms) 
tdur (pyramidal to pyr./inh.) 5 ms 
Wsyn (pyramidal to pyr./inh.) 1 
tdei (fast inh. to pyramidal) 5 ms 
tdur (fast inh. to pyramidal) 9 ms 
Wsyn (fast inh. to pyramidal) - % ) 

tdei (slow inh. to pyramidal) 10 ms 
tdur (slow inh. to pyramidal) 150 ms 
Wsyn (slow inh. to pyramidal) - 1 
tdei (LOT to pyramidal) ( 1 - 4 ms) 
tdur (LOT to pyramidal) 5 ms 
Wsyn (LOT to pyramidal) 1 

Connection range. A (normalized distance) 
pyramidal to pyramidal 2 
pyramidal to fast inhibitory 10 
pyramidal to slow inhibitory 10 
fast inhibitory to pyramidals 10 
slow inhibitory to pyramidals 10 
LOT to pyramidals 2 

Table 8.2: Numerical values of parameters in the homogeneously sized piriform cortex 

model 
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Figure 8.2: (A) Excursion of a compartmental excitatory synaptic conductance and its 
discrete approximation. (B) Pyramidal-pyramidal synaptic latency (tdei) as a function 
of pre to postsynaptic cell distance. 

the model. The density of connections from LOT to pyramidal cells decreases 

exponentially from left to right in the pyramidal layer of figure 8.1. The target in 

the pyramidal layer of a connection from a LOT cell, is chosen as in expression 8.1 

but, in this case, vector d = {dx,dy} (in cartesian coordinates) where dx and dy are 

exponential and uniform (range 0 — 1) random variables respectively. 

Numerical values for the As of the exponential distributions are given in table 8.2 

in units of normalized distance (position (0, 0) corresponding to the top-left corner 

of the layers in figure 8.1 and (1,1) to the bottom-right corner). 

Note that connections from pyramidal to inhibitory neurons and back from 

inhibitory to pyramidals are short range ( A = 10). The probability of establishing a 

connection between a pyramidal and an inhibitory neuron at a distance of 0.1 

(normalized to the dimensions of the model) decreases by a factor of 1/e with 

respect to the probability of setting connections with nearby (distance % 0) neurons. 

Pyramidal to pyramidal connections are long range (A = 2). For this type of 

connections, the probability decreases to 1/e times the value for close neurons for a 

distance of 0.5, which corresponds to half the distance between opposite ends of the 

cortical model. 

The duration of the synaptic activation (tdur) and the synaptic delays (tdei) were 

set in accordance with experimentally determined values as in [28]. Figure 8.2-A 

compares the excursions of an excitatory synaptic conductance during a synaptic 
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event as modelled in a compartmental framework (solid line) and the discrete 

approximation used in the MBED model (dotted line). T h e parameter t^ur 

corresponds to the width of the pulse with onset at = to.smoz and falling edge at 

2̂ = ((o.smoa: ^^d 0̂,5̂ 01 the half conductauce times) and rounded to the 

closest integer. 

The parameter tdei was calculated as, 

^del — tsyn 4" ̂ axon (8 2) 

where the term tgyn accumulates the delay involved in the chemical activation of 

a synapse and the propagation of activity in the dendritic tree, whereas taxon 

accounts for the delay due to the propagation of the action potential along the 

presynaptic axon. 

Axonal delays are distance dependent. For an axon of length I, the delay is 

obtained as 

taxon — ^ ( 8 . 3 ) 

^axon 

where Vaxon is the velocity of an action potential propagating along the axon. In 

order to make use of the synaptic model strategy (see section 6.4.1), the number of 

allowed synaptic parameter sets was reduced. For this purpose several 

approximations were introduced. In the case of pyramidal to pyramidal and 

pyramidal to GABA connections, the parameter tdei was quantized and the number 

of allowed values limited to 10. The maximum delay corresponds to connections 

ranging the complete length of the cortex and the minimum delay to connections 

between nearby neurons. The remaining 8 values are equally spaced as a function of 

distance, totalling ten synaptic models for pyramidal-pyramidal and pyramidal to 

inhibitory connections. Figure 8.2-B plots tdei as a function of interneuronal 

distance. A similar quantification was used for the delay in synapses from LOT to 

pyramidal cells, allowing four distance dependent values for tdei-

The third simplification applies to connections from GABA to pyramidal cells. 

Since these are short range connections, the small difference between the delay 

introduced by the shortest and the longest axons allows a distance independence 

approximation. Thus, synapses from GABAA and GABAB neurons have a fixed, 

distance independent, (jg; parameter (see table 8.2). 

As a result of the delay quantification described above, sixteen different synaptic 

parameter sets (synaptic models) are used. 



The synaptic efRcacy, of the various synaptic types in the model was set to 

make their relative strengths consistent with the maximal conductance of synaptic 

channels in compartmental models. It takes negative values for inhibitory 

connections and and positive for excitatory (pyramidals). 

The MBED neurons in the network are configured to fire one-spike bursts 

{Nburst = 1) of a duration of tap = 1 ms followed by a refractory period of 

Uef = 10 ms. Pyramidal and GABAA/GABAB neurons fire whenever Wsum 

(weighted sum of inputs) increases above the excitation threshold. Suitable values 

for the excitation threshold were determined by parameter space search. Units in 

the LOT pool, which provide input to the model, were configured as pace makers 

and the firing frequency modified for each simulation to provide the various types of 

stimuli required. -

8.3 Simulation of field potential recordings, EEGs 

and power spectra 

Field potentials [33, 155] and EEGs [132] are measurements of time changing electric 

potentials generated by neuronal activity. Field potentials are recorded with a pair 

of microelectrodes, one serving as a reference and the second located close to the 

pool of neurons under study, whereas EEGs make use of arrays of electrodes placed 

on the scalp. For the purpose of model validation, it is desirable to obtain simulated 

field potentials and EEG recordings associated to MBED network simulations. In 

this way, the patterns predicted by the discrete model can be compared to those 

obtained with compartmental models. 

For the simulation of EEG recordings, a procedure similar to that described by 

Wilson et al. [28] has been followed. A number of virtual electrodes are spatially 

distributed forming a grid oi E x E recording sites (figure 8.3). Each one of these 

simulated electrodes records a field potential calculated as, 

^ ^ (8 4) 
J & 

where SFP^ is the field potential signal recorded by the 2*̂  electrode, dij is the 

distance between the electrode and neuron j , 5j{t — (&) is a delta function 

indicating that neuron j fired an action potential at t and h(t) is the field 

potential function recorded from a group of neurons firing nearly simultaneously. 
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Figure 8.3: Setup used for the simulation of Held recordings and EEGs 

This impulse response is convolved with the train of weighted deltas to obtain the 

total measured potential. The summations are over the number of action potentials 

K generated by neuron j and over all neurons J in the network. 

The impulse response, h{t), as utilized for EEG and field potential estimation is 

given by {t in ms). 

0 

2 

0 

i.5 

Z < 0 

0 < ( < 

f l < Z < f 2 

where the negative segment accounts for the negative potential, recorded 

experimentally during the onset of action potentials and the subsequent positive 

segment corresponds to the positive potential seen during repolarization of the 

neuronal membrane (the return to resting voltage) [24, 155]. 

The shape of the field potentials depends strongly on the time sequence of 

neuronal activations, the anatomical characteristics of the tissue and the position of 

the recording electrode [33]. It was found that ^ = 5 and (g = 12 provided the best 

match between the recordings predicted by the MBED model and those obtained 

experimentally and with compartmental models. 

Consistently with studies on the linearity of the electrical properties of living 

tissue [132], the EEG signal is obtained by linear combination of the field potentials, 
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Figure 8.4: EEGs obtained with grids of 2 x 2 (A) and 6 x 6 (B) electrodes 
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where SEEG is the EEG signal, Spp^ the field potential recorded by the 

electrode and the summation is over all the electrodes forming the E x E grid. The 

eifect of the grid, as opposed to the single electrode recordings, is to provide a 

measurement of the average activity in the network. 

Figure 8.4 shows the EEG calculated as in equation 8.6 for two values of E. 

Setting E = 2 results in a low spatial sampling frequency and a single peak 

propagating in the cortex generates several peaks in the EEG (figure 8.4-A). For 

E = 6, the sampling effect is reduced and single waves generate single peaks in the 

EEG (figure 8.4-B). In the following sections, EEG measurements will be carried out 

using grids with 10 x 10 electrodes. 

Estimations of the EEG power spectrum were carried out following the procedure 

described in [156], with a Manning window, segments of 512 samples and an 

equivalent sampling frequency of 1 KHz. 

8.4 The partially connected model 

Partially connected versions of the piriform cortex model were simulated. Firstly, 

the simplified topology allows better understanding of the dynamics of the model. 

This will be required in this Chapter to comprehend the origin of the responses of 
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Figure 8.5: State and Wsum of pyramidal neurons in a partially connected model for 
two exponentially distributed LOT to pyramidal spatial patterns; A = 10 (A,B) and 
A = 2 (C,D) 

the fully connected model to several kinds of stimuli. Secondly, implementation 
errors would be manifested and more easily identified in simulations of the simplified 
topology whereas they could be misinterpreted in the fully connected model. 

8.4.1 LOT-pyramidal interactions 

Figure 8.5 shows the time evolution of the states and Wgum of the pyramidal cells in 
a partially connected model. Single cells are represented as individual dots in the 
2-D coloured arrays. In the state sequences (A and C), black, gray and white dots 
indicate neurons in state o f f , refractory and on, respectively. Panels B and C 
show the normalized value of Wsum in all pyramidal cells, a shift from black to red 
indicating an increase of Wgum-

For these simulations, all connections with the exception of those from LOT cells 
to pyramidal neurons have been removed. Through these synapses, the LOT units, 
which provide the input stimulus in the model, are able to excite the pyramidal 
cells. This excitation, however, can not propagate in the pyramidal layer through 



8. A4(2jrHSjL (]%? gnfffg PIFtjjPY)j%jVf COfMlB-X: 17(] 

pyramidal-pyramidal connections or affect inhibitory cells by pyramidal-GAB/l;) or 

pyramidal-Gv4BAg connections, since these are not present. 

Figures 8.5-A and 8.5-B show the activation of the pyramidal cells due to the 

simultaneous Gring of 150 LOT cells at ( = 0 mg each establishing 10̂  excitatory 

connections with pyramidal neurons. The probability of choosing a given pyramidal 

neuron as the target for an LOT-pyramidal synapse decreases exponentially with its 

distance from the LOT entry region (area on the lefthand side) with space constant 

A = 10 (figures 8.5-A and 8.5-B) and A = 2 (figures 8.5-C and 8.5-D). 

At t = 0 ms, all pyramidal cells remain in the initial ( o f f ) state and all LOT 

cells (not shown in the figures) simultaneously fire an action potential. Since the 

propagation delay between LOT and pyramidal cells was set in this example to a 

distance independent value, tdei = 1 ms, the pyramidal layer receives the excitatory 

synaptic activations from the LOT cells at t = 1 ms. The excitatory synaptic input 

to the pyramidal cells leads to the change of state depicted in the figures. 

The area activated by the LOT input in the pyramidal cell layer increased in 

figures 8.5-C,D with respect to figures 8.5-A,B. This was the result of an increase of 

the mean of the exponentially distributed pattern of LOT-pyramidal connections. 

This heterogeneous excitation of the pyramidal layer will be relevant for the 

understanding of the origin of waves in the fully connected model. The higher level 

of excitatory input received by leftmost areas of the cortex with respect to rightmost 

areas, will result in waves propagating from left to right during shock and random 

stimulus, as described later in this Chapter. 

8.4.2 Pyramidal -pyramidal interactions 

To illustrate the mechanisms involved in the generation and propagation of waves in 

the pyramidal cell layer, the interlayer connections f rom/to inhibitory cells to/from 

pyramidal cells have been removed. This renders open the feedback loop 

pyramidal-> inhibitory->pyramidal, ensuring that the activity seen in the pyramidal 

layer is the result of the LOT stimulus and the intralayer interactions, with no 

inhibition present. To aid in the visualization of wave genesis, the pool of LOT cells 

was collapsed into a single neuron with connections to one randomly chosen 

pyramidal cell. Figures 8.6-A and 8.6-B show the state and the value of the 

weighted sum of inputs of the pyrcimidal cells, respectively, at selected times. 

At ^ = 8 ms, only one pyramidal neuron fires, due to the single LOT cell 

generating its excitatory input. At t = 11 ms, local excitatory pyramidal to 
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Figure 8.6; State (A) and Ws 
removal of inhibition 

(B) of pyramidal neurons in the cortical model after 

pyramidal connections spread the excitation. At t = 15 ms, the cells located at the 
core of the excited patch become refractory (gray area). At i = 25 ms, the wave of 
firing neurons has reached the borders of the cortex. Most pyramidal cells are still in 
refractory state. However, those which originated the wave at ( — 11 ms have 
finished their refractory period and enter the o f f state. They can now be re-excited 
by long range axonal connections carrying action potentials from the distant wave 
(now at the boundary of the cortex) towards the core. In this way, a second wave is 
initiated. 

A comparison of figures 8.6-A and 8.6-B, for instance at i = 21 ms, indicates 
that the finite axonal propagation velocity introduces a delay in the propagation of 
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Figure 8.7: Sequence of images representing the state of pyramidal and GABAA 
neurons. (A) Pyramidal neurons, (B) GABAA cells 

excitation between pyramidal cells. Although cells are firing in the outer shell at 

t = 21 ms, the maximal synaptic excitation is being received at the core (see first 

image in 8.6-B) where the neurons have already entered refractory period and are 

unable to fire. 

In this partially connected model, the absence of inhibition allows continuous 

wave generation. The addition of inhibitory connections, described in following 

sections, introduces attenuation and limits the number and intensity of the waves. 

8.4.3 Pyramida l -GABA interactions 

As in the previous section, the LOT pool has been collapsed to a single unit which 

excites one randomly chosen neuron in the pyramidal layer. Pyramidal-pyramidal, 

pyramidal-GABAg and connections from GABAA to pyramidals have been 

removed. Only the synapses from LOT to pyramidals and from pyramidals to 

GABAA remain in the model. Figures 8.7-A and 8.7-B show the states of the 

neurons in the pyramidal and GABAA layers, respectively. 

At t = 8 ms, the activity from the LOT pool arrives at the pyramidal cell layer. 



activating only one neuron (see Hgure 8.7-A). At ( = 9 mg, the pyramidal neuron 

enters refractory state. At t = 12 ms, connections between pyramidal cells and 

GABAA neurons trigger action potentials in those GABAA cells closest to the 

activated pyramidal (see Agure 8.7-B). Due to the distance dependent axonal latency 

from pyramidals to GABAA neurons, more distant GABAA cells fire at t = 13 ms 

and ( = 14 ms. 

Note that the lack of GABAA to GABAA synapses eliminates the possibility of 

wave generation within the GABAA layer. Only the pyramidal layer is capable of 

generating and sustaining cortical waves. 

8.4.4 GAB A-pyramidal interactions 

Figure 8.8 shows the time evolution of the states and the normalized Wsum state 

variables of the pyramidal neurons for a model incorporating only LOT-pyramidal 

and pyramidal-GABA/i connections. The pyramidal-pyramidal and 

pyramidal-GABAg synapses have been removed. Note tha t the inhibitory loop 

pyramidal->inhibitory->pyramidal is closed. Thus, pyramidal excitation triggers 

activity in the GABAA layer and eventually results in the inhibition of pyramidal 

neurons. 

As in previous sections, the LOT pool has been collapsed into a single unit which 

excites a single neuron in the pyramidal layer. This simplication allows easier 

visualization of the GA^A^-pyramidal interactions. Further, the number of 

connections from each pyramidal cell to GABAA neurons has been reduced to one. 

This ensures that the inhibition seen in the pyramidal layer from the GABAA layer 

is due to the activation of a single GABAA cell. 

At t = 0 ms, the pyramidal cell layer remains in its initial inactive state. At 

t = 4 ms, excitatory activity arrives to a single pyramidal unit, triggering an action 

potential. The pyramidal to GABAA connections trigger action potentials in the 

GABAA layer (not shown in the figure). In turn, at t = 12 ms, the feedback loop 

consisting of inhibitory connections from GABAA cells to pyramidal cells, generate 

IPSPs (inhibitory postsynaptic potentials) in the pyramidal layer. This effect can be 

seen in the fourth panel of Figure 8.8-B as a local shift towards blue indicating that 

the state variable Wsum has decreased below 0. The last panel in 8.8-B shows a 

magnified image of the core of the inhibited area in the pyramidal layer. 

Given that the duration of the activation of GABAA synapses was set to 

tduT = 5 ms, at i = 17 ms the inhibition ends, having started at t = 12 ms. 
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Figure 8.8: States (A) and Wgum (B) of pyramidal neurons showing the effect of the 
GABAA inhibitory loop 

The interaction between pyramidal cells and GAB As neurons follows the same 

pattern. However, TDUR = 150 ms for GABAB inhibitory synapses, which results in a 

long lasting inhibition, as opposite to the short (5 ms) inhibition generated by 

GABAA synapses. 

8.5 Shock stimulus response 

Having tested the functionality of partially connected networks, this section 
addresses the issue of adequacy of the MBED framework to replicate biological 
aggregate dynamics. To this end, the responses of the network to shock stimuli are 
compared to previous theoretical and experimental data. 

In a shock stimulus experiment, the LOT is stimulated with a short duration 
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40 ms 

Figure 8.9: Piriform cortex response to weak shock stimulus (A) and strong shock 
stimulus (B) as obtained with a compartmental model (from Wilson et al. [28]) 
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Figure 8.10: (A) Simulated field potential after weak shock stimulus, (B) Simulated 
field potential after strong shock stimulus 

(< 1 ms) current pulse while monitoring the field potentials elicited in the olfactory 

cortex. Two types of recordings have been obtained with such experimental setups; 

single wave responses and damped oscillations [124, 117, 157]. High intensity current 

pulses generate single peak extracellular recordings whereas lower intensity pulses 

produce long lasting responses consisting of several damped peaks [115]. Figures 

8.9-A and 8.9-B show the simulated field potentials obtained by Wilson et al. [28] 

with a compartmental model of the piriform cortex stimulated with weak and strong 

shock stimuli. 
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Figure 8.11: States, Wsum and pyramidal-pyramidal excitation of pyramidal neurons 
after weak shock stimulus 
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Figure 8.12: States, Wgum and pyramidal-pyramidal excitation of pyramidal neurons 
after strong shock stimulus 



Shock stimuli were simulated in the MBED network model by the simultaneous 

firing of all LOT cells at t = 0. For this purpose, the LOT neurons were configured 

as pace makers with the parameters of the oscillator block set to = 0, in order to 

generate the first spike exactly at i = 0 and tosc > tmax, to ensure that the second 

action potential in the sequence was triggered beyond the finishing time of the 

simulation, tmax-

The intensity of the shock was adjusted changing the total number of cells in the 

LOT pool and the weights of LOT-pyramidal synapses. Figure 8.10 shows the field 

potential obtained with a centered virtual electrode and calculated as in expression 

8.4. In accordance with experimental observations, a weak stimulus generated by 

600 LOT cells (shown in figure 8.10-A) generates a damped oscillation whereas an 

stimulus created by 2500 LOT cells (shown in figure 8.10-B) produces a single peak 

in the simulated field recording. 

Understanding of the mechanisms underlying these two responses can be gained 

studying the panels shown in figures 8.11 and 8.12 (only pyramidal cells are shown) 

and the plots of figures 8.13 and 8.14. The coloured images in 8.11 and 8.12 

correspond to the state (leftmost column), normalized value of Wsum (middle 

column) and normalized partial contribution to Wsum by other pyramidal cells 

(rightmost column) at selected points in time. Each neuron is represented by a dot 

in the matrix using the corresponding colour palette. 

Figures 8.13-A,B and C show the total excitatory, GABAA and GABAB 

synaptic input received by pyramidal cells during the course of the first wave after 

weak shock stimulus. These are presented as the average over the pyramidal cells 

located in the same column in the panels of figures 8.11 and 8.12 (column numbers 

increasing from left to right). Figure 8.13-D plots the temporal evolution of the three 

synaptic input types calculated as an average across the leftmost third (column 1 to 

50) of the pyramidal cell layer, where the cortical waves originate. Figures 

8.14-A,B,C and D plot analogous data for the strong shock stimulus experiment. 

Figure 8.11 shows how the weak stimulus triggers a wave of activity, its front 

reaching the distant region of the cortex after 15 ms (leftmost column). In the 

middle panels, plotting the spatial distribution of Wjum, it is seen that the wave of 

neuronal spiking causes a wave of excitatory synaptic activations, its front reaching 

the far cortical end at 20 ms. In the wake of the excitatory wave, appears a region 

of inhibited cells (identified by a shift towards blue) due to the activation of 

inhibitory cells in the GABAA and GABAB layers. However, at t = 25 ms, the area 

where the first wave was originated (leftmost region in all panels) is returning to the 
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Figure 8.13: Weak stimulus induced synaptic input to pyramidal cells versus column 
number (A,B,C) and time (D) 
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Figure 8.14: Strong stimulus induced synaptic input to pyramidal cells versus column 
number (A,B,C) and time (D) 



initial state (indicated by the shift from blue to green). The disappearance of 

inhibition makes it possible to generate a second wave. 

This wave is triggered by excitation carried by long axons from the front of the 

first wave back to the leftmost region in the panels. At t = 20 ms, the image in the 

first column shows how the initial wave has already disappeared and only the wake 

of neurons in refractory state are left. However, also at i = 20 ms, the third 

column of images shows a marked excitation reaching pyramidal cells. The intensity 

decreases from right to left, indicating that it was generated by the first wave while 

approaching the rightmost end of the cortex. This remaining excitation originates 

the second wave seen at i = 25 ms and t = 30 ms. 

Figure 8.12 shows the results for the high intensity shock stimulus. In 

comparison with figure 8.11, the initial wave of excitation propagates faster, arriving 

at the far end of the cortex at t = 7 ms (see leftmost panel) in contrast with the 

15 ms needed by the weak shock. 15 ms after the strong stimulus, the entire 

pyramidal layer remains still inhibited (middle panel) and long range excitatory 

connections between pyramidal cells (see rightmost column) are unable to generate a 

second wave. Simultaneously with the decrease of inhibition at t = 20 ms and 

t — 25 ms, the pyramidal to pyramidal excitation has also decreased (compare 

rightmost panels at t = 15 ms and t = 20 ms). The remaining excitation is only able 

to trigger sparse action potentials (see leftmost regions of the panels in the leftmost 

column at t = 20 ms) and insufficient to promote the genesis of a new wave. 

These latency differences are also manifested in figures 8.13-A and 8.14-A. The 

wave of excitatory synaptic activation reaches the rightmost end of the cortex 

(neuronal column number 150) five milliseconds later after a weak stimulus (8.13-A) 

than after strong shock (8.14-A) . The unequal efficacy of the overall inhibition to 

decrease the excitability of the cortex can be further understood studying figures 

8.13-B,C and 8.14-B,C. The region affected by the GAB A a and GABAb inhibition 

triggered by weak stimulus covers a larger range of columns than that obtained with 

a strong shock. This can be explained by the differences in timing of the excitatory 

wave and the finite duration of inhibitory synaptic activation. The slower wave after 

weak stimulus reaches the far end of the cortex before the inhibition resulting from 

its progression disappears. Conversely, the strong shock travels across the entire 

cortex faster, reaching the rightmost end before the inhibition in its wake vanishes. 

Figure 8.15 plots the temporal evolution of the spatial average of Wgum after weak 

and strong stimuli. Only the subset of neurons confined to the region 

1 < < 50 Wcis considered, since this region originates the rebound activity. 
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Figure 8.15: Average Wsum per neuron across leftmost region of the pyramidal layer 
(rows 1 to 150, col. 1 to 50) 

Both traces have maxima at t = 9 ms but their time courses exhibit a time lag of 4 

ms. The weak stimulus succeeds, with posteriority to the end of the negative 

(inhibited) phase of Wgum, in generating a build up interval which, eventually, 

triggers a second wave of excitation. Subsequent waves show a decrease in their peak 

value, consistent with a progressive build up of the cortex-wide GAB AS inhibition 

(see Egure 8.13-D). 

A similar sequence of events was observed by Wilson et al. [28] in their 

compartmental cortical model. 

8.6 Random input response 

Further validation of the MBED model is sought in this section studying the 

network response to continuous rather than shock stimulation. In experimentally 

obtained EEGs from the olfactory cortex, theta-type (3-10 Hz) and gamma-type (40 

Hz) components have been identified [158]. Previous theoretical work has shown 

that continuous stimulation triggers EEG oscillations at similar frequencies in 

compartmental models [28]. The MBED model is used to explore the mechanisms 

underlying the generation of these patterns of activity. 
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Figure 8.16: Power spectrum of a typical random input stimulus 

8.6.1 LOT stimulus 

The dynamics of the model was studied using random input stimuli. These were 

generated by spreading the firing times of the LOT neurons throughout the entire 

simulation. LOT neurons functioned as pace makers and were configured to ensure 

that the second spike would occur beyond the simulation stop time, so that only one 

action potential was generated Their firing times, were given by an 

uniform distribution in the range (0 — tstop)' Hence, the intrinsic firing frequencies of 

the LOT neurons can be ruled out as the cause of emergent temporal or spatial 

patterns that are be observed in the cortex. 

The average number of activations of excitatory synaptic connections from LOT 

cells to pyramidal neurons per unit of time is given by, 

R 
NLOTClOT-to-pyr 

t 
(8.7) 

stop 

where NLOT is the number of LOT cells and CLOT- to—pyr the number of 

connections to pyramidal cells from a single LOT cell. The stimulus obtained in this 

way, provides a temporally unstructured and spectrally broad input signal for the 

cortical model. Figure 8.16 shows the power spectrum of such an unpatterned signal 

for a stimulus intensity of 97.65 epsps/ms. 

No changes, other than the modification of the stimulus type, were made to the 

model with respect to the parameters used for the study of the shock stimulus 
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response. All EEGs in this section were obtained using a grid of 10x10 electrodes. 

8.6.2 Results with nominal parameter values 

In order to explore the activity patterns generated by LOT stimuli of various 

intensities, a range of input firing rates was tested (see figures 8.17 and 8.18). The 

plots at the top row of Egure 8.17 show the EEGs obtained for 500 epsp/ms and 

1000 epsp/ms. Their amplitudes, three to four orders of magnitude lower than 

subsequent EEGs, indicate that excitation was confined to isolated neurons and that 

activation was not generalized. As expected from an unpatterned input, no 

structured signal was seen in the EEG. However, an increase of the input intensity 

to 1500 epsp/ms and 3500 epsp/ms (second row of figure 8.17) originates bursts in 

the EEG. The number of waves per burst increases with the stimulus intensity 

whereas the interburst delay decreases from 300 ms, corresponding to 1500 epsp/ms, 

down to the 150 ms obtained with 20000 epsp/ms. 

Figure 8.18 shows both temporal and spectral EEG patterns. At 16000 epsp/ms 

(top row) the pattern in the EEG presents characteristics similar to those obtained 

with lower intensity. Its power spectrum presents a double peak at about 40 Hz 

(gamma oscillations) and a low frequency peak (theta oscillations). Subsequent 

increases of the stimulus to 17000 epsp/ms and 21000 epsp/ms, bring about the loss 

of burst patterned oscillations while retaining a high frequency oscillation. 

Concomitantly with the disappearance of the burst-like pattern, the associated 

power spectra shows an emerging peak at 75 Hz. 

More detailed analysis of these results indicate that the high frequency 

component seen during an EEG burst is caused by the propagation of cortical waves 

similar to those observed after shock stimuli. EEG peaks are associated with 

individual waves propagating across the cortex. Figure 8.19-A shows a fragment of 

an EEG during a burst and figure 8.20 shows the activity in the pyramidal layer 

occurring simultaneously. Note that waves originate on the lefthand side in the 

pyramidal layer (closest to the LOT input) and propagate to the distant end. The 

same pattern had been observed as a result of single shock stimuli. 

An example of the period of diminished activity between EEG bursts is shown in 

figure 8.19-B and its corresponding sequence of activity in the pyramidal cell layer 

depicted in figure 8.21. Large regions of the the pyramidal layer are inhibited (seen 

as a shift towards blue in the panels) during the interburst period (see t = 160 ms). 

This inhibition reduces the probability of neuronal firing resulting in a absence of 
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Figure 8.19: EEG burst (A) and interburst period (B) 

cortical waves. As the inhibition vanishes, a new wave is generated. 

The bursting component is controlled by the slow GABAB inhibitory cells. This 

is hinted at by the fact that the duration of the synaptic activation in the GABAB 

synapses of the model lasts 150 ms, which is the only parameter in the model of the 

same order of magnitude as the period between bursts in the EEG. In previous 

experiments with shock stimuli, the appearance of consecutive waves led to a 

progressive build up of the overall GABAB inhibition (figure 8.13-D). Further, this 

assumption was confirmed by the fact that a decrease in the duration of GABAB 

synapse activation to tdur = 50 ms produces an EEG consisting of a high frequency 

oscillation without bursting components. 
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Figure 8.20: Activity in the pyramidal layer during an EEG burst 
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Figure 8.21: Spatial profile of Wsum (A) and neuronal states (B) in the pyramidal cell 
layer during an inter-burst interval 



8.6.3 Impact of synaptic parameter variation on the 

temporal and spectral contents of t h e EEGs 

Previous work with compartmental models has predicted a decrease in the frequency 

of the main spectral peak in the EEG power spectrum as a result of an increase of 

the activation times, tdur, of the fast inhibitory {GAB A a) synapses [28]. A similar 

parameter variation was tested with the MBED cortical model in order to establish 

the consistency of its predictions. 

Figure 8.22 shows the EEGs and power spectra for several values of in 

GABAA synapses. The high frequency peak decreases f rom 80 Hz for tdur = 1 ms to 

40 Hz for tdur — 9 ms (nominal value) and, further, to 30 Hz for tdur = 13 ms. 

In addition to this shift in the main frequency component, the EEG indicates 

marked changes in the dynamics of the model. For tdur < = 9 ms, the EEGs show 

bursts of activity whereas for tdur > 9 ms, the bursts disappear leaving an 

unmodulated high frequency oscillation. 

Further experiments were carried out to study the effect of tdur in GABAB 

synapses on the temporal and spectral characteristics of the EEG; figure 8.23 shows 

the results obtained. The increase of GABAB activation times, from 150 ms to 250 

ms, results in elongated interburst latencies. This is consistent with the 

measurements obtained in previous sections which identified the prominent role of 

GABAB synapses on oscillation damping after shock stimuli, and burst generation 

during a random stimulus. 

The two main peaks of the power spectra (corresponding to theta and gamma 

oscillations) remain unchanged. However, a third component, with a frequency 

between 70 and 80 Hz appears for tdur > 200 ms. 

Figure 8.24 shows the results obtained for several values of the 

pyramidal-pyramidal synaptic strength, Wsyn- The sequence of EEG bursts obtained 

for Wsyn = 1, are discontinued after the second burst for Wgyn = 2. They reappear 

with more irregular temporal and wider spectral components for Wsyn = 3. Further 

increases of the synaptic strength lead to a damped oscillation in the EEG and to 

the concentration of the spectral contents in two frequency bands; 1 — 5 Hz and 

80 — 90 Hz. These results are consistent with the existence of phase transitions as 

observed in more abstract lattices of Boolean automata [159, 160] and indicate that 

such network mode switchings are possible in cortical structures as a result of 

synaptic parameter variation. 
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Figure 8.22: EEGs and power spectra obtained for several values of GABAa activation 

times (tdur) 
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Figure 8.23: EEGs and power spectra obtained for several values of GABAB activation 

times 
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Figure 8.24: Effect of pyramidal-pyramidal synapse strength, Wsyn, on temporal and 

spectral EEG characteristics (I) 
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Figure 8.25: Effect of pyramidal-pyramidal synapse strength, Wgyn, on temporal and 
spectral EEG characteristics (II) 

8.6.4 Spatially uniform LOT stimulus 

The previous sections, have used LOT stimuli with an exponentially decreasing 

spatial profile of intensity towards the right hand side of the panels. Such a spatial 

pattern of stimulus activity led to waves being generated in the leftmost cortical area 

where the intensity of the input activity was higher (see for example figure 8.20). 

Cortical waves, however, have also been experimentally observed in cortical 

regions where the input stimuli are more uniformly distributed across the entire area 

(132|. 

To study the efifect of the spatial profile of the stimulus on wave generation, the 

exponentially decreasing density of connections from LOT to pyramidal neurons was 

substituted by an uniform distribution. Hence, the target for a synapse from an 

LOT neuron was chosen by generating a random vector p = {x, y} (given in 

normalized rectangular coordinates) where x and y are uniform random variables 

within the limits of the model. The target neuron for the connection is chosen as the 

pyramidal neuron closest to the vector p. Further, the delay introduced by the axons 
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Figure 8.26: EEGs obtained with uniformly distributed and fixed delay LOT to pyr-
amidal connections (I) 

from LOT cells to pyramidal neurons {tdei of LOT-pyramidal synapses) was fixed to 

a distance independent value of 1 ms. These modifications to the model ensured 

that the input stimuli did not favour a specific region in the cortex due to an 

spatially heterogeneous number of LOT-pyramidal connections (as it was the case 

with an exponential spatial profile) or by exciting different areas with different 

latencies (as would occur with a distance dependent axonal delay). 

Figures 8.26 and 8.27 show the simulated EEGs obtained for several values of the 

stimulus intensity, given as the number of activations of excitatory LOT-pyramidal 

synapses per unit of time. 

The magnitude of the EEGs shown in the two upper plots of figure 8.26 
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Figure 8.27: EEGs obtained with uniformly distributed and fixed delay LOT to pyr-
amidal connections (II) 
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Figure 8.28: Sequence of images showing the time evolution of the normalized Wg 
for the pyramidal cell layer 
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Figure 8.29: Spatio-temporal evolution of Wg 
the cross-section marked in figure 8.28 

in the pyramidal neurons located in 

(corresponding to stimuli of 1000 epsps/ms and 1500 epsps/ms) is four orders of 

magnitude lower than that of the EEGs obtained for input intensities higher than 

1500 epsps/ms. This fact indicates that activity was limited to sporadic firings and 

that coherent waves, involving generalized synchronization, were not generated in the 

first two simulations. For values greater than 1500 epsps/ms, two types of responses 

were obtained: isolated waves and bursts with multiple waves. Both types of 

responses are alternated during most of the simulations. However, figure 8.27 shows 

an spontaneous switch between single wave and burst response at 4000 epsps/ms. 

The fact that the EEG peaks indicate spatial waves of cortical activity is 

confirmed by the images shown in figures 8.28, which display the time evolution of 

the state variable Wsum in the pyramidal cell layer. The sequence corresponds to the 

two-wave burst generated at approximately t = 1600 ms during the simulation with 

an stimulus intensity of 2000 epsps/ms shown in figure 8.26. 

Figure 8.28 shows, at t = 1604 ms, an increase of Wsum confined to a circular area. 

Figure 8.29 provides an alternative view of the creation of this focus of activity. It 

plots Wgum at six time points coinciding with the generation of the new wave for the 

cross-section indicated in figure 8.28 (second panel in the top row). At t = 1608 ms, 

a wave front had been formed which propagated radially from the center of the 
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Figure 8.30: Sequence of cross-sections showing the normalized Wgum during a two 
wave burst 

region excited at i = 1604 ms. Ki t= 1612 ms, the wave of excitation reaches the 

limits of the layer whereas the core area is inhibited. Four milliseconds later, the 

totality of the piriform layer remained inhibited by the inhibitory interneurons. At 

t — 1620 ms, the core returns to the initial state and at t = 1632 ms, a second wave 

starts. Note, however, that the excitation corona of the second wave shows less 

intensity than that of the first wave (compare for example t = 1640 ms and 

t = 1608 ms in figure 8.28). This attenuation is apparent in figure 8.30, which shows 

a time extended colour-scale representation of the sequence of cross-sections plotted 

in figure 8.29. Each row in the matrix corresponds to the value of Wgum for the 

neurons (150) located in the cross-section at a particular point in time. As time 

progresses (downwards in figure 8.29), excitation propagates from the centre of the 

section towards its limits. Note that the shift towards red is clearly more marked in 

the first wave than in the second indicating an attenuation in the last wave. 

The main finding of these experiments is that cortical waves with radial 

propagation can occur in a network with an evenly distributed input stimulus where 

the temporal and spatial heterogeneities of the LOT stimuli have been removed. 



8.7 Heterogeneous neural pools 

The network model presented in previous sections was constructed with a 1:1:1 

population size ratio for the three cortical cell types; pyramidal, fast and slow 

inhibitory. The response to shock and random input followed the patterns obtained 

by [28] with a compartmental network model incorporating equal size neural 

populations. 

Barkai et al. [133] have also constructed a compartmental network model, akin 

to that described in [28], including 298 neurons distributed among the three neuron 

classes with a biologically realistic proportion of neuron types; 20% inhibitory and 

80% pyramidals. Other researchers have also constructed cortical models with these 

excitation-inhibition proportions [39]. 

The relative size of the neural populations in the MBED model was modified to 

adhere to the above percentages. The following sections describe the simulations 

carried out in order to confirm that a parameter set exists which displays realistic 

responses to shock and random stimuli in such a model. 

8.7.1 Network parameters 

Table 8.3 lists the parameters of the model found to replicate the experimental 

responses to shock and continuous stimuli. The network includes a layer of 250 x 250 

pyramidal neurons and two layers of 80 x 80 inhibitory cells each, with an average of 

285 synapses per neuron. The spatial patterns of connectivity have not been altered 

with respect to the model used in previous sections. The excitation threshold, the, 

was raised from 5 to 7 in the pyramidal layer. Likewise, the threshold of inhibitory 

cells was increased to 30, to limit their level of activity. This was necessary as a 

consequence of an overall increase of the average excitation received per inhibitory 

cell. Stronger excitation was due to the larger number of excitatory pyramidal cells 

(from 150 x 150 to 250 x 250) and the reduction in the number of inhibitory neurons 

(from 150 x 150 x 2 to 80 x 80 x 2) with respect to the homogeneously sized model. 

8.7.2 Shock and random stimuli 

Figure 8.31 shows the single electrode measurement obtained after a weak (A) and a 

strong (B) stimulus. The weak shock stimulus was generated with a pool of 1000 

LOT units firing simultaneously at ^ — 0 ms whereas the strong stimulus response 

was obtained with a pool of 6000 LOT units. Figure 8.32 shows the EEG obtained 
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Neuronal parameters 
the (pyramidal) 7 
the (fast inh.) 30 
the (slow inh.) 30 
(A, -1000 (burst truncation inactivated) 
iap 1 ms 
iref 10 ms 
^bur St 1 
tosc (pyramidals and inhibitory) 0 {inactive oscillator) 
t^ (pyramidals and inhibitory) 0 {inactive oscillator) 
tosc (LOT cells, all stimuli) 3000 ms 
t(p (LOT cells, shock stimulus) 0 ms 
t^ (LOT cells, random input) Uniform(0 - tstop) 

Number of synapses per neuron 
pyramidal to pyramidal 300 
pyramidal to fast inhibitory 20 
pyramidal to slow inhibitory 10 
fast inhibitory to pyramidals 70 
slow inhibitory to pyramidals 60 

Synaptic parameters 
idei (pyramidal to pyr./inh.) (3 - 12 nia) 
tdur (pyramidal to pyr./inh.) 5 ms 
^syn (pyramidal to pyr./inh.) 1 
tdei (fast inh. to pyramidal) 5 ms 
tdur (fast inh. to pyramidal) 12 ms 
Wsyn (fast inh. to pyramidal) -15 
tdei (slow inh. to pyramidal) 10 ms 
tdur (slow inh. to pyramidal) 150 ms 
Wsyn (slow inh. to pyramidal) - 1 
tdei (LOT to pyramidal) ( 1 - 4 ms) 
tdur (LOT to pyramidal) 5 ms 
Wsyn (LOT to pyramidal) 4 

Connection range. A (normalized distance) 
pyramidal to pyramidal 2 
pyramidal to fast inhibitory 10 
pyramidal to slow inhibitory 10 
fast inhibitory to pyramidals 10 
slow inhibitory to pyramidals 10 
LOT to pyramidals 2 

Table 8.3: Numerical values of parameters in the heterogeneously sized piriform cortex 
model 
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Figure 8.31; Response to weak (A) and strong (B) shock stimuli 
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Figure 8.32: EEG obtained with a random stimulus 
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with a random stimulus consisting of IQ'^epsps/ms generated by LOT units onto 

pyramidal cells and uniformly distributed in time throughout the entire simulation. 

These responses, single peak, damped oscillation and gamma-type EEG components, 

are equivalent to those already described for homogeneous neuronal populations and 

conSrm that both, homogeneous and heterogeneous MBED cortical models, are 

capable of replicating experimentally obtained measurements. 

8.8 Conclusions 

In this Chapter, the cortical model based on the MBED framework has been shown 

to replicate results obtained both experimentally and with compartmental models, 

which substantiates the hypothesis that automata models are suitable for 

quantitative, in addition to qualitative, biologically motivated simulation. Moreover, 

the computational efficiency of the MBED model compares favourably with 

competing modelling approaches. The heterogeneous MBED network model 

incorporating 75300 cortical neurons and 10® LOT units with an average of 285 

synapses per neuron, took 10-20 minutes to simulate 2000 ms of the random 

stimulus experiments (the actual CPU time varied amongst simulations with 

changes in the spatio-temporal patterns of cortical activity). In contrast, the 

existing compartmental models by Hasselmo, Barkai et al. [123, 133] and Wilson et 

at. [28] were limited to 298 and 4500 neurons, respectively, due to their 

computational cost. More efficient integrate and fire cortical models incorporating 

10"̂  neurons and 100 synapses per neuron running on a set of workstations (Digital 

Alpha, Sun Sparc 20 and HP 712/100) took 1-3 CPU hours to simulate 5000 ms of 

activity in the network [39]. A quantitative comparison between the MBED 

simulator and the efficient cortical simulations based on integrate and fire models is 

possible by applying correction factors to account for the difference in network size 

and computer architecture. 

Considering a performance ratio of 2 between an AMD-K6 350 computer and the 

workstation Sun Sparc 20 as measured with the LINPACK benchmark (data 

obtained from the Performance Database Server [161]) and a ratio of 30 between the 

total number of synapses in the MBED cortical model and that in [39], the 

event-driven framework provides a scaled reduction in the CPU time corresponding 

to a factor of 45. 

A similar comparison with the cortical model in [28], considering a factor of 60 

between the performance of an AMD K6 350 and the Sun 3/260 [161] and a three 
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fold increase in network size, the MBED framework results in a decrease of the CPU 

time in a factor of 11. 



Chapter 9 

MBED simulations on Beowulf 

architectures 

9.1 Introduction 

Previous Chapters in this thesis have made use of commodity PC-based single 

processor architectures as the preferred hardware platforms for MBED neural 

simulations. Work on large scale neural simulations has often resorted to parallel 

architectures to achieve the necessary processing power [18, 70, 72, 162]. Although 

substantial performance increases have been demonstrated with hypercube 

architectures [163], the cost of these platforms and the considerable development 

involved in the customization of the simulation environments have limited the 

impact of parallel architectures in the field of neural simulation. Beowulfs constitute 

an emerging technology aiming at delivering parallel processing power at a 

reasonable cost by interconnecting commodity single processor PC-based 

architectures with high speed data links [164, 165, 166]. 

The message-passing nature of the MBED model and simulator makes them 

suitable for this platform. In order to assess the performance increase and scalability 

achievable with Beowulfs, the simulator was modified to allow the partitioning of the 

simulated neural aggregate and the concurrent simulation of individual partitions on 

different nodes of the cluster. 

204 
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Figure 9.1; Schematic diagram of the cluster 

9.2 The Beowulf platform 

The Beowulf platform under test is illustrated in figure 9.1. It consists of 8 single 

processor Athlon (AMD-K7) machines running Linux RedHat 6.0 with an aggregate 

peak performance of 900 Megaflops, with 2 Gigabytes of memory (256 Mbytes per 

node) and 100 GigaBytes of disk space. Two SuperStack II 3C16464A 3C0M Fast 

Ethernet switches interconnect the nodes in a star-like topology. An extra node 

(totalling 9 nodes) functions as a server in charge of job scheduling across the 8-node 

architecture and other maintenance tasks. For this purpose, the PBS (Portable 

Batch System) software package is available. This computer does not participate in 

distributed computations. 

9.3 Parallelization of the MBED simulator 

Concurrent execution of the MBED simulator can be achieved with the command 

qsub, part of the PBS package, which schedules the execution of multiple images of 

the program across the cluster. It takes one command line argument, 

$ qsub job_description_script 

where job_ description_ script is a text-based file containing the information 

necessary for job scheduling. The script used for the simulations in this Chapter 
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follows, 

#! /bin/sh 

#PBS -N MPI_TEST 

#PBS -m be 

#PBS -1 nodes=8 

# executable including any command line arguments 

EXE="simulator -batch script.i" 

#to run a LAM MPI job 

mpidistr="lam" 

. /usr/local/mpi_scripts/pbs.function 

The most relevant entries are the number of nodes allocated in the cluster, 

specified with the directive PBS -I nodes=node_ number and the command line to 

be executed, specified by EXE—command__line. In the code above, the command 

line "simulator -batch script.i" invokes the simulator with the script file script.i as 

the input stream (in place of the keyboard) in all eight nodes. 

The strategy followed to distribute the simulation across the cluster was to 

partition the neural aggregate in sub-aggregates, each one being assigned to a single 

node in the cluster. 

Several enhancements were made to the MBED simulator to make it suitable for 

this parallel environment; mainly, the implementation of a synchronization 

mechanism between concurrent sub-aggregate simulations and the addition of 

inter-process (across-cluster) neuronal communications to account for 

inter-aggregate axonal bundles. 

Both additions made use of the LAM 6.3.1 [167] free implementation of the 

Message Passing Interface (MPI) [168] libraries . 

9.3.1 Process synchronization 

Process synchronization is necessary in the context of distributed message-based 

event-driven simulation [169] in order to compensate for the unavoidable workload 

imbalance between simulation processes. Without a synchronization mechanism, a 

time lag would arise between the simulation clocks of different processes, which could 

l e a d to the loss of inter-process messages when the simulation clock at the receiving 

end is advanced with respect to that of the process originating the message. 
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Figure 9.2: Synchronization algorithm to achieve a cluster-wide coordinated simula-
tion clock 
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The MBED simulator was modified to incorporate such a synchronization 

mechanism. Figure 9.2 provides a complete flow-chart description of the algorithm. 

Upon initialization, all processes are synchronized to the time slice t = 0 ms. At 

the end of each of the subsequent time steps, a termination MPI message is sent to 

all processes. At this point, the process awaits the reception of the corresponding 

N-1 termination messages (N being the number of nodes) from the remaining nodes. 

All processes having finished the current time slice, they propose a next value for 

the global simulation clock as the scheduling time of the first message in their 

respective priority queues. Each process broadcasts its proposed value to process 0, 

which acts as the coordinator. Of the proposed times, process 0 chooses the 

minimum and broadcasts the value to the rest of the processes, which set their 

respective local simulation clocks to the agreed values and start processing the 

messages in their queues scheduled for this consensued clock time. 

The simulation finishes when the agreed global simulation clock takes a value 

beyond the specified simulation stop time, in which case all processes terminate. 

9.3.2 Inter-module communication 

Inter-module communication accounts for axonal bundles which carry action 

potentials across sub-aggregates. 

The MBED simulator minimizes the number of MPI messages for action 

potential propagation by means of a buffer. Throughout the simulation, the firing of 

a neuron (a transition in its burst block to state on) triggers the addition of its 

neuron identifier, a 4-byte integer, to the buffer. Upon finishing a time slice or 

whenever the buffer is full, its contents, a list of neuron identifiers and a 4-byte 

header set to the actual number of entries in the transmitted data structure, are sent 

as an MPI message to those nodes which, in the previously specified neuronal 

topologically, directly receive axonal tracks. The experiments carried out in this 

Chapter made use of a 10 Kbyte buffer. 

9.4 Results 

The cortical model described in Chapter 8 was chosen as the atomic sub-aggregate 

(the portion of the network simulated by one node) because previous studies had 

shown that it was capable of replicating experimental data on cortical dynamics. 

Thus, the results of the benchmarking are likely to be representative of the 
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Figure 9.3: Chain, Star and Chained-star topologies used for performance benchmark-
ing 

performance attainable with a wide range of biologically realistic neural simulation 

problems. 

Given an arbitrarily chosen set of brain areas, only a subset of all the possible 

pairs would be directly connected by axonal bundles. Assuming a one-to-one 

mapping between nodes in the cluster and modelled brain regions, it follows that 

several logical cluster topologies are possible. For performance evaluation, models 

with various numbers of modules (1-8) and patterns of axonal bundles were 

simulated in order to explore the effect of these parameters on the elapsed time. 

Figure 9.3 depicts the simulated topologies. In addition to those contained in the 

figure, a completely unconnected aggregate, without inter-module axonal bundles 

altogether, was also simulated. 

Further, special care was taken to ensure that the performance evaluation was 
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carried out with realistic neural simulations; since the performance of an MBED 

simulation engine is strongly affected by the network activity pattern, misleading 

performance studies can result from simulations with exceedingly low or high 

neuronal activity. Parameter space search is needed to find the configuration that 

results in realistic activity in all the nodes conforming the cluster. This is a 

computationally costly problem in itself, and aggravated by the fact that a new set of 

parameters has to be found for each one of the logical cluster topologies under test. 

A convenient simplification to the network model was put in place to achieve 

realistic activity and inter-node communication overhead for all nodes while 

eliminating the need for computationally intensive parameter space searches. Each 

sub-aggregate includes a pool of neurons which provides stimulation to the local 

model. The inter-module neuronal spikes transported by afferent bundles (and 

implemented by means of MPI messaging) is actually transmitted to retain the 

performance degradation caused by communication overhead. This guarantees the 

validity of the performance results. However, the receiving end disregards the 

incoming trains of action potentials, and takes its input from the stimulus neuronal 

pool. The dynamics of such a network is simpler and the parameter space search 

needs to be carried out once and with a single sub-aggregate rather than with the 

entire network. 

In this way, (1) all sub-aggregates display a realistic level of intra and 

inter-aggregate activity irrespective of network size and topology, (2) the inter-node 

data are actually transmitted to evaluate the effect on the performance and (3) 

computationally expensive parameter space searches are avoided. 

Figure 9.4 plots the time taken by simulations of 1 s of network activity. The 

lower trace corresponds to the measured elapsed times averaged over the four 

topologies tested: unconnected, chain, star and chained-star. For comparison, the 

upper trace represents a linear estimation of the time taken to simulate equivalent 

network sizes on a single-processor architecture. Actual measurements of 

single-processor times could not be performed given that individual sub-aggregates, 

totalling 1.753 10^ neurons, were already at the limit of memory resources. The 

estimated values for a single-processor platform were calculated with a linear 

approximation; the time taken by the simulation of a network aggregate of N 

sub-aggregates running on a single node (assuming enough memory space) was 

approximated by N times the measured time taken by a single sub-aggregate 

running on a single node. 

The flat profile of the Beowulf system indicates that, within the measured range 
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Figure 9.4: Elapsed time for single node and Beowulf architectures versus number of 
nodes and network size 

of 1-8 nodes, network size can be increased with nearly constant elapsed times. 

Quantification of Beowulf results is possible with figure 9.5, which shows the elapsed 

time for the four network layouts tested. Considering the shortest (874.14 s) and 

longest simulations (947.4 s), an 8-fold increase in network size (from 1 to 8 nodes) 

results in a mere 8.3% in elapsed time in the worst case. 

The low overhead incurred by the migration from single node to Beowulf 

distributed processing results from the low communication requirements when 

compared to the computation part. Further, the used inter-node bandwidth 

represents a small fraction of the available bandwidth: The measured average size of 

an inter-node packet carrying the contents of the spike buffer described in the 

previous section was 8915.76 bytes (2227.94 spikes x 4 bytes per spike -I- 4 bytes 

header). The number of packets travelling through the switch during a 1 s 

simulation was measured to be C x 10^, where c is the number of inter-node 

unidirectional channels (arrows in figure 9.3) in the topology under test. For 

instance, 28000 packets were transmitted for the 8 node chained-star network which 

results from 28 inter-node channels and 1000 time slices of 1 ms per simulated 
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Figure 9.5: Elapsed time versus number of nodes and network size for various network 
topologies 

second. It follows that the total amount of data communicated between nodes 

throughout the entire simulation was approximately 28000 x 10 Kb, 280 Mbytes. 

This corresponds to 320 Kbytes/s (considering an elapsed time of 874.14 s), which is 

well below the approximately 40 Mbytes/s of available bandwidth (estimated with 

in-house benchmarking tools). 

9.5 Conclusions 

This Chapter has presented preliminary results concerning the scalability of a 

message-based event-driven framework for biologically motivated neural simulation 

on Beowulf architectures. The experiments carried out with an 8-node Beowulf 

indicate that the migration from a single node to this parallel environment results in 

an 8-fold increase in aggregate size with an 8.3% increase in elapsed time; the total 

size of the distributed aggregate reached 10® neurons with an average of 179 

synapses per cell. 
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Further tests are needed with Beowulfs in excess of 8 nodes to explore the 

scalability to larger simulations. Nevertheless, the results already obtained with an 

8-node cluster indicate that low communication overhead can be achieved with an 

event-driven framework, resulting in efficient scalability. 

The cortical model used for the benchmarking purposes has been developed as 

part of ongoing research on the dynamics of the piriform olfactory cortex. This 

cortical region contains approximately 10^ neurons with several thousand synapses 

per cell [118]. Further code optimization and an increase in the number of nodes 

promise to make such problem sizes tractable using clusters of commodity 

computers. 



Chapter 10 

Further work and final comments 

Further work is proposed in this Chapter dealing with three aspects of the MBED 

framework developed in the thesis; at the single cell level, the enhancement of the 

functionality of the MBED model. At the small network level, the application of the 

MBED paradigm to multielectrode-array (MEA) data and, in the domain of large 

scale networks, the extension of the cortical model presented in Chapter 8 to a 

multi-module model of the olfactory system. 

Finally, the main outcomes of the thesis are outlined. 

10.1 The single cell MBED model 

Three enhancements to the model contained in Chapter 5 would extend the 

capabilities of the MBED framework to reproduce biological data; the introduction 

of dendritic delay, tden, the substitution of fixed parameters, e.g. the synaptic 

efRcacy and inter-spike delay in bursts, and (re/, by variable values dependent 

on Waum and the addition of synaptic plasticity. 

Dendritic trees introduce a propagation delay between the activation of a 

synapse and its resulting effect at the cell body [24]. The addition of a delay on the 

7 channel from synapses to threshold block and its associated parameter tden (see 

model depicted in figure 10.1) would account for this latency. This modification is 

necessary in order to accurately replicate the timing of synaptic events present in 

field potential recordings as those obtained, for instance, by Ketchum [124). Figure 

4.7 in Chapter 4 showed the response of the piriform cortex to shock stimuli. The 

trace corresponding to the strong shock response can be segmented in intervals 

according to the synaptic type whose contribution to the recorded potential is 

214 
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maximal. The modelling of this temporal sequence of synaptic activations will be 

possible after the addition of the dendritic delay to the MBED model. 

A synaptic weight, obtained as a function of Wgum would account for the 

variability of the synaptic efficacy due to changes in membrane voltage. The 

substitution of the fixed refractory period, (re/, by a variable pareimeter dependent 

on Wsum would also allow the implementation of adaptation within bursts. The 

inter-spike delay could be made dependent on previous activity of the cell. 

Finally, synaptic plasticity, the proposed mechanism of learning in the nervous 

system, can be implemented in the MBED neuron model. The execution of learning 

algorithms (e.g. Hebbian learning rules [170]) would involve the update of synaptic 

parameters throughout the simulation. This gives rise to a potential problem; since 

different synapses experience different sequences of activation, their learning 

algorithms will most likely adjust their respective synaptic parameters to different 

values. This is not a problem when each synapse has its associated copy of the 

complete synaptic parameter set. However, the data structure proposed in Chapter 

6 for memory-efficient large scale simulations, relies on a table of synaptic models. 

Each synapse stores an index into this table. Thus, one synaptic parameter set is 

shared by multiple synapse instantiations. Learning is still possible by providing a 

sufficiently large set of possible synaptic models and implementing the adaptation 

algorithms to act on the synaptic type index associated to each synapse rather than 

on the synaptic parameters themselves. For instance, long term potentiation (LTP) 

would be implemented as a change of the synaptic type index of the potentiated 

synapse, taking the value of an existing synaptic model with identical synaptic delay 

(tdei) and activation duration (tdur) but with increased synaptic weight {wgyn)-

10.2 MEA data modelling 

The above mentioned modifications to the MBED neuron model would extend its 

time-constant parameter set and also add time-dependent adaptation algorithms. 

For the goal of the MBED framework is two fold, efficient and biologically realistic 

modelling, experimental characterization of these parameters and algorithms will be 

of fundamental interest. 

Multielectrode-array technology (MEA) is emerging as a tool for quantitative 

study of the cooperation of cells in small networks. This technology relies on 

microfabricated structures, using silicon as their substrate, which accommodate a 

number of electrodes and neurons. Figure 10.2 illustrates such a set up, including 
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Figure 10.1: MBED model enhanced by the addition of dendritic delay and membrane 
voltage dependent and (re/ 

optical imaging. A system for recording and stimulation of all cells in a 16 neuron 

network has been developed [171]. 

The MBED model of the piriform cortex described in Chapter 8 relied on EEG 

and field potential data, which typically correspond to the average activity of 

populations of neurons [132]. It is desirable, however, to base the network models on 

quantitative information regarding the interaction of individual cells making up the 

network. MEA technology is the ideal candidate for such studies in-vitro, since it 

provides independent monitoring of all cells integrating a small network. 

The MBED framework is suitable for the problem of modelling MEA recordings. 

The parameter set associated to the MBED neuron model matches the type of data 

readily available with MEAs (axonal delay, burst duration, refractory period 

duration and others). On the other hand, MEAs do not provide detailed information 

as required for the development of compartmental models (e.g. ion channel types, 

conductance distribution, and so on). 

The proposed experimental procedure would consist of two phases; in phase 1, 

the MEA would be used to record from 16 neurons obtained at early developmental 

stages which would establish connections, aa is frequently the case with cultures of 

developing cells. In phase 2, parameter space search would be run on the MBED 



Jo. ;i7VD frfff/LL c%:%v47kHrrfTS 217 

Cage i 

Electrode 

Compression 
and 

Storage 

CCD Camera 

Figure 10.2: Multielectrode array setup as used in the recording/stimulation of small 
networks of neurons 

network model in order to fit the experimental data. Successful match of 

experimental data will indicate an adequate modelling of small network dynamics 

and will lead to the extension of the model to larger (multi-module) networks. 

10.3 Multi-module models 

The understanding of the neural processing carried out on incoming sensory 

information would be facilitated by the construction of models including several of 

the brain modules participating in a particular sensory pathway. 

Parallel architecture are capable of providing the computational power necessary 

for such simulations. Niebur et al. [70, 162] and Jahnke et al. [163] have 

demonstrated that the supercomputer CM-2 is suitable for the simulation of 

networks of spiking neurons of up to 4 • 10® cells. Such highly parallel architectures 

guarantee wide inter-neuron communication bandwidth and prevent quick 

performance degradation with increasing network sizes. Preliminary results, 

presented in Chapter 9, indicate that the MBED framework can be ported to low 

cost parallel architectures based on Beowulf clusters to achieve increases in tractable 

problem sizes. 

The availability of a computational framework capable of simulations in the 

order of millions of neurons would allow the construction of a multi-module model of 
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Figure 10.3: Proposed multi-module MBED model of the olfactory system 

the olfactory system. Firstly, an MBED model of the olfactory bulb including three 

populations of cells, mitral, tufted and granular, would be constructed. Secondly, a 

pool of sensory cells accounting for olfactory receptors would be added to the model. 

Finally, sensory receptors, olfactory bulb and piriform cortex would be connected to 

form a multi-module model to support studies of the dynamics of smell recognition 

and segmentation. 

Figure 10.3 depicts the proposed model, including estimations of the 

inter-module communication overhead. All values have been scaled down with an 

approximate real/model ratio of 10:1. To estimate the overhead caused by 

inter-module communication, a worst-case scenario is considered; all neurons firing 

at 100 Hz and contributing with one message per spike. Note that, in the olfactory 

bulb, only mitral and tufted cells, taken to be two thirds of the total bulbar cell 

population, contribute to the communications towards the piriform cortex. Equally, 

in figure 10.3, two thirds of the piriform cortex cells are assumed to synapse back 

onto the olfactory bulb. 

The network size already achieved on Beowulf clusters (above 10® neurons) 

indicates that further increases in the number of nodes (up to approximately 50 

PCs) would be sufficient to construct and simulate the described model. 

10.4 Final comments 

The main outcomes of this thesis are: 

• Development of a neuron model based on the finite state automaton formalism 

incorporating synaptic timing (activation latency and duration and synaptic 

efficacy), axonal delays, single spike, bursting and pace making dynamics and 

excitation and burst truncation inhibition thresholds. 



jo. fff/ftgrm&rt ti/oftfc yuvj] jF%vL4JL (:c)Ad]VfjSj\r]is 21(3 

Implementation of an efficient MBED simulator incorporating synaptic model 

structures for memory efficiency, and an LUT based queue and a low-overhead 

memory manager for improved CPU and memory efficiency. 

The application of the MBED framework to a small network model of the 

locomotory circuit of C. elegans, consistent with quantitative experimental 

data obtained from wild-type, mutated and laser ablated animals. 

The development of a large scale model of the piriform cortex including 10^ 

neurons with physiologically realistic properties and its validation by 

comparison with field potential recordings and EEGs. 

Preliminary tests on the scalability of MBED cortical models utilizing 

commodity Beowulf architectures. The low inter-process communication 

overhead made possible an 8-fold increase in problem size with an 8% increase 

CPU time. 
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Figure A.l: Schematic representation of an axon 

® The core current, assumed to flow axially inside the axon, is considered 

constant within a cross-section. 

• The membrane is a partly conductive partly capacitive shield which 

completely seals the infinite length cylindrical axon. 

• The external medium, an purely conductive open space, provides a low 

resistance path that can be approximated by a zero resistance equipotential 

($e = 0) conductor. 

When the surface integral of equation A.4 is applied to the differential volume of 

figure A.l it yields, 

(cTi I Ezi(zo) I -CTi I + (fz) |)7rr^ - 27rr dz (cr^ | Erm(ro) 
d I EJ-JYI ( T o ) 

' dt 
(Vl.5) 

where the subindices i, e and m correspond to intracelular, extracelular and 

membrane and z and r indicate axial (alongside the z axis) and radial components. 

The righthand term, I, accounts for the current injected through a microelectrode. 

Since the cable equation for axons and dendrites is often expressed in terms of 

the transmembrane voltage, v, the electric field term, e, in A.5 can be substituted 

taking into account the following equalities. 

(vl.6) 
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2 ^ o J 
(Ti dz -n-Trr — 27rr 020-^-; 27rr dz 6^-;—r 

oz^ or or o( 
Further arrangements lead to, 

dr 
CTjTrr̂  

(7m27rr Jz^ 
$ Cm Idr 

(7m (T̂mSTT r Jz 
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takes the usual form of the cable equation for neuronal branches 
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(A.7) 
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(A.12) 

(A.13) 



Appendix B 

CCD imaging of locomotion in C 

elegans 

Video recordings of behaving C. elegans were obtained with a standard IMT-2 

Olympus microscope and a x4 objective. Worms were grown on agar-filled Petri 

dishes. Adults were identified by their body dimensions, isolated and imaged while 

performing forward and backward locomotion, reversal and body coiling. A subset 

of the 16-bit depth 320 by 240 pixel gray scale images is included in this Appendix. 

Details on C. elegans protocols can be found in [94]. 

223 
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Figure B.l : Forward locomotion 
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Figure B.2: Backward locomotion 
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Figure B.3: Reversal 
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Figure B.4: Whole body bending 



Appendix C 

The image processing algorithm 

The algorithm used to process the video recordings of C. elegans is summarized in 

the flow chart of figure C.l. 

A threshold operation is applied first to the unprocessed frames (figure C.2-A), 

y) = I ' % V) > th (C,l) 

The resulting image shows the worm as a dark stain on white background (figure 

A contour closing algorithm is then used to eliminate the bright stains which 

appear inside the body as a result of light reflections (figure C.2-C). 

Next, a sliding window of size NxN pixels is used to find a region of the image 

which includes a segment of the body edge. The windows scans the image until a 

region is found where the number of dark pixels cover between 30% and 90% of its 

surface. This condition ensures that the window overlaps partially with the body of 

the worm and contains a segment of its edge (figure C.2-D), 

for (i=0;i<=imax;i++) 

for (j=0;j<=jmax;j++) 

if ( CountBlackPixels(i,i+N,j,j+N) > 0.3*N*N ) && 

( CountBlackPixels(i,i+N,j,j+N) < 0.9*N*N) 

break; 

} 

228 



(?. OrffE; jKVf/l(3jS fftOĈ fSSKSirVCZ ÎjLCZOftrrjRTAf 229 

Unprocessed video sequence 

Muscle contraction patterns 

Threshold 

Body detection 

Contour closing 

Edge smoothing 

Edge detection 

Second derivative 

Muscle contraction patterns 

Figure C.l: Flow chart of the image processing algorithm 

where CountBlackPixels(xl,x2,yl,y2) is a function which counts the number of 

dark pixels in the image area delimited by (xl,x2,yl,y2). 

The selected region is scanned to find a pair of contiguous pixels with one point 

inside the body and one outside (Agure C.2-E), 

for (i=xl;i<=xl+N;i++) 

for (j=yl;j<=yl+N;j++) 

{ 
if ( image(xl,yl) != image(xl+1,yl)) 

break; 

> 

The complete edge of the body is then detected, using a contour following 

algorithm which operates starting at the pair of pixels. The extracted contour is 

stored as a list of position vectors (figure C.2-F). 

The local curvature is obtained from this parametric representation calculating 

the second derivative of the contour vector sequence (figure C.3-A). Low pass 

filtering is required previous to the determination of the curvature for smoothing of 

the data. The tips of the head and the tail show as the two maxima in the second 

derivative of the contour. 
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Finally, the sequence of second derivative functions obtained from multiple 

consecutive images are aligned and shown in matrix format in figure C.3-B. 
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Figure C.2: Image processing algorithm (I) 
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Abstract: - C.Elegans is a nematode whose nervous system has 302 neurons. Its swimming motion 
is controlled by a subsystem of 80 neurons, which are able to generate both forward and backward 
locomotion at variable speed. We present both a model of this circuitry based upon event-driven models 
of neurons and a model of the nematode's body. We test its capability of generating forward/backward 
locomotion. The final aim of this work is to demonstrate the feasibility of using event-based models of 
neurons to reproduce the fundamental behaviour of circuits of neurons not only in locomotion but also 
in sensory signal processing. 

Key-Words: - neuronal simulation, discrete simulation, C. elegans, locomotion 

1 In t roduct ion 

C.Elegans is a nematode of small dimensions (1 
mm long and 80 micrometers wide) which is found 
in soil. It lives on bacteria which it must locate 
and ingest. Despite the reduced size of its ner-
vous system,with 302 neurons [1], it still has a 
relatively rich behaviour. Its locomotion is based 
on crawling, both forward and backward and its 
speed of propagation may be changed depending 
on stimulation from environment.lt also bends in 
an elaborate manner when mating. 

Several attempts have been made to model and 
simulate subcircuits of C.elegans' nervous system 
[2] [3] [4]. Functional data is presently limited 
to observation of behaviour due to difficulties in 
electrophysiological recordings. 

In this paper we present a model of the locomo-

tion neural circuitry which accounts for a variety 
of behaviours. We have extracted the relevant 
features of it and simulated a simplified version. 
A mechanical model for the nematode has been 
proposed [2]. We extend this model from two to 
three dimensions to allow the evaluation of the 
modeled nervous system at the behavioural level. 

Different types of models have been used for the 
simulation of single neurons or small aggregates 
of neurons [5]. We have chosen an event-driven 
neuron model which combines the rich behaviour 
of real neurons with efficient simulation. 

2 Event based simulation versus 
compar tmen ta l models 

Traditionally, modeling of realistic circuits of neu-
rons has been based on compartmental mod-

mailto:etc97r@ecs.soton.ac.uk
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els. The simulation of these models usually in-
volves the numerical solution of non-linear dif-
ferential equations (due to the non-linearity of 
the Hodgkin-Huxley ion channel equations). In 
addition to the computational requirements of 
the simulation, compartmental models tend to be 
highly sensitive to the many parameters required. 
This makes them specially difficult to tune and 
difficult to use in simulating large aggregates of 
neurons. On the other hand, integrate and fire 
models use leaky capacitors and threshold func-
tions. This solution reduces the computational 
requirements for simulation, allowing simulation 
of large aggregates, but limits the functionality of 
the neurons [6]. 

We use event driven models of neurons, whose 
computation requirements allow fast simulation 
but maintain a relatively high complexity in the 
functionality of each model neuron. Discrete sim-
ulation allows exploitation of latency in biological 
neurons to speed up simulation. 

As an example, consider the simulation of in-
tegrate and fire versus event based. In an event 
driven model, the number of events depends on 
the number of action potentials. If no action po-
tential is generated, the processor spends no time 
in that neuron whereas in integrate and fire mod-
els the membrane voltage is still updated for every 
time step. 

The drawback of discrete models is their limi-
tation in reproducing the neuron dynamics at the 
membrane voltage level. Our working hypothesis 
is that the behaviour of a neuron can be captured 
by pulse based models. 

3 Event-driven neuron model 

In Figure 1 the different blocks making up the 
model neuron are presented. It is an asyn-
chronous system based on pulse modulation. Sig-
nals (pulses) are evaluated and propagated in the 
direction of the arrows in the diagram. 

Signals originating in chemical synapses and 
electrical junctions (gaps) enter the neuron from 
the left hand side of Fig. 1. Blocks marked as 
gaps/synapses behave as monostable oscillators 
triggered by the incoming pulses (which model 

biological action potentials). They are stretched 
(thereby implementing a low pass filter) and a 
propagation delay is also introduced. 

Delayed and stretched pulses reach the mul-
tifunctional block. This stage is responsible for 
evaluating different combinational functions with 
the inputs from the gaps/synapses. The specific 
function implemented depends on the functional-
ity of the neuron. 

For example, for a neuron working as a correla-
tion detector, this stage would calculate the usual 
weighted sum of inputs and apply a thresholding 
function to it. 

N 

out (1) 
2 = 1 

Where TH is the thresholding function, N is 
the number of synapses, Xj is the value of input 
i (1 or 0) and Wi is the weight of the synapse 
i. Negative weights account for inhibitory inputs 
whereas positive weigths account for excitatory 
inputs. 

For a bypass neuron, the model behaves as 
a D flip-flop. Inputs are flagged with type ids 
therefore grouping input synapses into two classes 
(clocking synapses and D synapses setting the fu-
ture state). When the neuron is in its asserted 
state, its output is a train of pulses. In the de-
asserted state its output is silent. 

Both correlation detectors and bypass neurons 
are used in our model of the locomotion system 
in C.Elegans. 

Two outputs drive the burst generator block 
from the multifunctional block. The line labeled 
"exc" is asserted when input activity is exciting 
the neuron. The " inh" line is asserted only when 
input activity gives rise to sufficient inhibition (as 
opposite to excitation). Both lines may be de-
asserted indicating that the input pulses do not 
force neither excitation nor inhibition. 

To account for spontaneous activity an astable 
oscillator drives the bursting block. In our loco-
motion circuitry this block is only active for AVE 
and AVA inter neurons which control the speed 
of locomotion. 

The last block, AP shaper, generates pulses of 
variable duty cycle when the output of the burst 
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Figure 1: Blocks diagram of the neuron model. Figure 2: Locomotion circuit of C. elegans 

block is asserted. The refractory period is mod-
eled by silent periods between two pulses within 
which no action potential can be generated. This 
stage drives the output 

4 Existing d a t a about the loco-
motion circuitry 

The nervous system of C. elegans has been 
mapped completely using electron microscopy 
[1]. In addition to this topological information, 
several techniques have provided insight to the 
functionality of specific neurons (immunochem-
istry allows staining cells which release a partic-
ular type of neurotransmitter, genetic studies al-
low identification of malfunctioning cells in mu-
tants.and so on) [7]. 

Laser ablation allows the elimination of identi-
fied neurons and the study of the effect on loco-
motion [8]. 

Based on this data we propose the model pre-
sented in Fig. 2. Circles represent neurons 
and arrows represent synapses/electrical junc-
tions.The top part of the diagram is closest to 
the head. On both sides square boxes represent 
body muscles. NRV and NRD stand for nerve 
ring ventral and dorsal excitation. AVE, DB and 
AVB generate and propagate contractions down 

the body while DD and VD inhibit antagonistic 
muscles. 

Only a part of the forward locomotion circuit is 
included in the figure. The backward locomotion 
circuit uses a separate set of cells which is sym-
metrical to the forward locomotion circuit but ro-
tated 180 degrees. 

5 Mechanical model 

To test the usefulness of the proposed neural cir-
cuit in the generation of forward and backward 
movement, it is advantageous to interface the 
control circuitry with the mechanical model, to 
allow the gross interaction of the system to be 
easily viewed. Our mechanical model is based 
on previous work on modeling the body move-
ment of the nematode[2]. We have extended this 
model to three dimensions to allow further stud-
ies of the head movement (which has an extra 
degree of freedom when compared to the body). 
We have also simplified some force terms as ex-
plained below. 

In summary, the model is based on an elastic 
cylinder made of an array of linear springs. Each 
point of the body mesh is connected to its four 
closest neighbours by a spring. The force acting 
on this point is the net contribution of all four 
springs. The resting length of the springs has 
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been set to force the mesh to be stable in cylin-
drical shape. 

Fg = k * {di — do) * Ui (2 ) 

where k is the spring constant, di the distance 
to the point i in the mesh, do the ideal length and 
Ui the unitary vector towards neighbouring point 
i. 

To maintain its cylindrical shape, the nema-
tode requires a high internal pressure [2], The 
internal pressure term is calculated as, 

Fp — kp * Tl (3) 

where kp is a scaling factor and n is a unitary 
vector normal to the surface of the body. 

The action of the environment is modeled as in 
Eq.3 Only inertial forces are considered; viscous 
forces are neglected as in [2], 

& -kr * {v * n) *n (4) 

where kr is a scaling factor, n a unitary vector 
normal to the body and v is the velocity vector. 

This force acts as a damping term to stop the 
mesh from oscillating in addition to provide the 
propulsion for body movement. 

Finally, all types of forces acting on a point in 
the mesh are, 

+ Fg (5) 

where Fs is the force by neighboring point, Fp 
the internal pressure and Fg the resistance cre-
ated by the environment. 

Muscle contraction is simulated by changing 
the ideal length of the springs in the body wall 
(Eq. 1). Those springs located at the position 
where the contracted muscle is, will see their ideal 
lengths reduced until relaxation. 

Fig. 3 shows the resulting body shape. 
The cylindrical body of the nematode is cov-

ered by muscles which are organised in longitu-
dinal stripes . Contraction of these muscles gen-
erates the bending of the body required for loco-
motion, mating, and so on. 

In C.Elegans there are twelve muscles per row 
and eight rows in the body. 

Figure 3: Screen shot of the mechanical model. 

Sets of muscles are connected by electrical junc-
tions and controlled by a single neuron. In our 
model, we have collapsed the body muscles into 
two rows (ventral and dorsal). 

6 Simulat ion results 

6.1 Normal forward/backward propa-
gation 

In Fig. 5 the results of the simulation of the for-
ward locomotion circuit are shown. Only 4 mus-
cles from the ventral side of the body have been 
included in the plot. 

As mentioned before no electrophysiological ex-
periments have been conducted so far on neurons 
from the locomotion system. Action potentials in 
mammalian neurons last for a few milliseconds. 
On the other hand, action potentials in pharyn-
geal muscle of C.Elegans has been shown to last 
hundreds of milliseconds and in Ascaris (a nema-
tode similar to C. Elegans) pulse-like signals in 
neurons of up to a few hundreds of msec have 
been recorded [9]. 

In our model we have long pulses (action po-
tentials) in muscles but we use pulses of a few 
msec in neurons. 

The equivalent of the simulated circuit in the 
digital electronics domain would be a shift reg-
ister. NRV and NRD act as inputs to the regis-
ter, VB and DB behave as flip-flops making up 
the shift register and AVB takes the place of the 
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Figure 4: Simulation of forward locomotion cir-
cuit. 

clock. 
At t=0 all muscles in the body (labeled 

MSCxV) are relaxed and the animal remains still 
in a straight line. When it initiates forward loco-
motion, its muscles in the head contract forcing 
the bending of the tip of the body. 

The head is driven by a neural circuit situated 
in the nerve ring which is independent from the 
forward/backward locomotion circuit. We have 
not simulated that circuit, hence, we assume that 
the head circuitry has forced the contraction of 
muscles in the head. 

AVE is the inter neuron which controls the 
speed at which contraction propagates along the 
body. Each pulse generated by this inter neuron 
forces a displacement of the contraction pattern 
in the body muscles towards the tail. 

Muscle cells close to the head (MSCIV and 
MSC2D) become active as a result of activity ar-
riving from the AVE inter neuron and from the 
head (NRV and VRD). They generate a train of 
pulses and the muscle in the mechanical model 
contracts. 

VE motor neurons behave as flip-flops making 
up the shift register. When AVE is asserted, the 
state of VBn is propagated to VB^+i. 

The output of the VE cell activates the adja-
cent muscle, creating a propagating wave of con-

traction. 

The ability of the nematode to change speed 
can be accounted for by changing the frequency 
at which AVE works. An increase in frequency 
forces faster propagation of the contraction, in-
creasing the speed of the animal through the 
medium. 

VD and DD inhibitory neurons (not shown in 
Fig.5) will fire whenever the motorneuron they 
are connected to becomes active. Their output 
inhibits the muscle in the opposite side of the 
body preventing simultaneous contraction of two 
muscles in opposite positions (ventral and dorsal) 
in the same segment. 

Backward locomotion follows the same mech-
anism. AVA is the inter neuron responsible for 
speed control and VA and DA are the bypass neu-
rons which propagate contraction along the body 
muscles towards the head. 

DD and VD act as inhibitory neurons prevent-
ing simultaneous contraction in antagonistic mus-
cles in the same way they acted for forward loco-
motion. 

6.2 Defect ive locomot ion 

Laser ablation of neurons in the locomotion cir-
cuit generates nematodes with locomotion de-
fects. 

When the AVA inter neuron is laser ablated [10] 
, backward locomotion is never observed. AVA is 
also required in our model to trigger the propaga-
tion of contraction down the body. If it is forced 
to be silent, though the head muscles contract, 
no contraction wave propagates in the body and 
backward locomotion is impossible. 

When the AVE inter neuron is ablated, the ef-
fect in both animal and model is the opposite; 
no forward locomotion is seen though backward 
locomotion is possible. 

The ablation of the VE and DE neurons also 
perturbs normal locomotion in the nematode. If 
these motor neurons are forced to be silent, con-
traction cannot be propagated correctly and nor-
mal locomotion is impaired. 
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7 Conclusions and fu ture work 

The presented work is part of ongoing research 
studying the possibility of using event-driven 
models of neurons in simulations of biological 
neural circuits. If the behaviour of biological neu-
ral nets can be captured by a set of event driven 
neuron models, the simulation of aggregates of 
hundreds of thousands of neurons would become 
feasible. In the case of the locomotion system, 
correlate detector neurons were not enough to 
generate the locomotion pattern. Bypass neurons 
(VB, VA, DA and DB) had to be added. 

It is likely that more complex functionality will 
have to be added to the model neuron as more 
complex neural circuits are simulated. 

C.Elegans has been chosen as the first target 
system. The simulation of the locomotion cir-
cuitry is being currently extended to other neural 
circuits. In particular, ongoing work is focusing 
on thermo taxis. C.Elegans is able to steer its lo-
comotion towards a suitable temperature. Once 
the ideal temperature zone has been reached, the 
nematode ensures it does not move out of that 
region. 
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Discrete simulation of large aggregates of 

neurons 

Enric T. Claverol, Andrew D. Brown, John E. Chad 

A b s t r a c t 

Realistic simulation of aggregates of neurons often utilises compar tmenta l models which limit the scope of the 

simulations in single processor architectures to small or medium size ne tworks (typically hundreds of neurons). 

An alternative approach, based on cell au toma ta models, allows efficient s imula t ion of nervous tissue by m o d e l l i n g 

neurons as finite s ta te au tomata . In this paper , d a t a s t ructures and algori thms appropr i a t e for efficient simulation of 

message based event driven models of neurons in single processor architectures a r e presented. Wi th these techniques, 

the simulation of large networks (of the order of 10® neurons with 10^ synapses per neuron) becomes feasible. 

K e y w o r d s 

Neuronal simulation, discrete simulation, pulse coded neuron models, cell a u t o m a t a 

I . INTRODUCTION 

Simulation of the nervous system is one of the techniques available to the neuroscientist to 

help understand the way in which neurons cooperate to process information. Realistic simulation 

of brain tissue often relies on compartmental models of neurons. In this context, the dynamics 

of a neuron are captured by a set of non-linear differential equations describing the changes in 

the voltage across the cellular membrane [1,2]. Each of these equations describes the voltage in 

a section of the cell which is assumed to be isopotential.The membrane is modelled as a leaky 

capacitor which draws and delivers current to nearby compartments, 

BV 1 
^ Vm)gi - - Ej)gj{t, Vm)) 
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where Kn is the membrane voltage in the isopotential compartment, Cm the capacitance of 

the membrane in that compartment, Vi the membrane voltage in one of I contiguous compartments 

which draw and inject current into the compartment through an internal conductance gi and E j 

and Qj are the voltage source and conductance modelling one of J ion channels which may also 

draw and inject current to the membrane capacitance. The value of the conductance gj is usually 

a non-linear function of time, voltage or concentration of neurotransmitter and ions. 

Extensive work has been done on optimization of the simulation of compartmental models (for a 

review see [1]). However, the simulation of compartmental models is still inherently computation-

ally demanding and limited for this reason to networks of modest size (a few thousand neurons for 

models with a few compartments). 

In addition to their computational complexity, compartmental models have extensive experi-

mental requirements. Modelling ion channels following the classical Hodgkin-Huxley approach, as 

required for most compartmental models, involves the isolation of the different types of ion chan-

nels present in the cell (sometimes impossible) and determination of its kinetic properties (usually 

through voltage clamp and similar techniques). 

Several more simplified models (e.g. integrate and fire) have been suggested as an alternative 

to compartmental modelling for large scale simulations [4-6]. In these models, the differential 

equations have been simplified for improved efficiency by eliminating some of the non-linear con-

tributions to the membrane current. 

Drawing from the techniques used in the simulation of discrete systems, neurons can also be 

modelled as complex finite state machines. Neurons are described as automata with a finite 

number of possib' states which interact by communicating action potentials. This approach has 

been successfully used for the simulation of the hippocampus and has proven to be efficient enough 

for the simulation of tens of thousands of neurons [2], 

In this paper, efficiency issues relating to the simulation of a discrete neuron model are presented. 

This model allows neurons with diverse types of behaviour (correlation detection, spontaneous 

bursting activity, single action potentials and pulse width modulation) and can be extended easily 

to incorporate other types of properties. 



D. 2412 

First, the discrete neuron model is described. Secondly, issues arising from the implementation 

of an efficient simulator for these models are discussed. 

Finally, the performance of the implementation of the discrete simulator is studied, showing the 

suitability for simulations of networks in the order of 10® or greater neurons. 

I I . MESSAGE BASED EVENT DRIVEN NEURON MODEL 

Message based event driven neural simulation is a generic concept which may refer to a large 

number of models, all of them sharing the same principles, but with different levels of complexity. 

An example is briefly described for the sole purpose of clarifying the principles underlying message 

based event driven simulation of neurons. The same issues dealt with here are applicable to other 

message based event driven models. For a review of event driven simulation techniques see [8,9]. 

The model presented here to illustrate the basics of the message based simulator is being used for 

realistic simulation of circuits of neurons [3]. 

The message based event driven neuron model is a finite state automaton. It is made up of 

several blocks, each of them capturing the functionality of a different component of the neuron 

(see 1). 

Communication between neurons and blocks within a single neuron is achieved by message 

passing. Each message is a data packet containing the time at which the message will be delivered 

to its destination (expressed as the difference between delivery t ime and current time), a label 

field indicating the type of message and a third optional field with an extra parameter used by the 

target to process the message. Arrows with solid lines in Fig. 1 indicate message paths. Note that 

some solid arrows are originated and terminate in the same block. 

A change of state in a block is always triggered by the arrival of a message. After a change of 

state, new messages may be scheduled for broadcasting to other blocks or to the same block. 

Table I and Table II list the parameters which characterise the model and the channels for 

message broadcasting respectively. Tables III,IV,V and VI show the state transition tables and 

combinational functions implemented by the blocks in the neuron model. When a message is 

delivered to a block, the automaton will be in one of a finite number of states and may change 

to a new state. This change of state may be accompanied by the scheduling of a new message 
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Parameter Function 

the Excitation threshold 

Inhibition threshold 

tap Duration of action potential 

tref Duration of refractory period 

^burst Number of spikes per burst 

^osc Period of pace maker 

Time offset of pace maker 

^del Synaptic delay 

^dur Duration of synaptic pulse 

'^syn Synaptic efficacy 

T A B L E I 

P A R A M E T E R S USED IN T H E MODEL 

(an output) and the update of state variables in the block (an action). For purely combinational 

functions (e.g. the synapse block) the output is only a function of its input. 

A. The synapse block 

Synapses receiving the on message at t, become activated and, af ter introducing a synaptic delay, 

deliver an on message to the threshold block (at t + tdei)- A t ( + tdei + tdur, the synapse inactivates 

and sends an o f f message to the threshold block. Synapses are combinational functions which 

schedule new messages depending on the last message received (they do not need memory of their 

current state). 

In real neurons the consequence of an action potential is the release of neurotransmitter af-

ter a certain delay. The release of neurotransmitter affects postsynaptic neurons by increasing 

(excitatory) or decreasing (inhibitory) its membrane potential. In the message based model, the 

neurotransmitter is substituted by a message and its release by the broadcasting of the message to 

the target neuron. 
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T A B L E II 

M E S S A G E CHANNELS IN THE NEURON M O D E L 

B. The threshold block 

This block is responsible for calculating a weighted sum of the active synapses (the weight being 

their efficacies, Wgyn). Whenever the weighted sum goes above the excitation threshold {the), an 

on message is sent to the burst generator block which generates a burst of action potentials. If the 

weighted sum goes below the inhibition threshold {thi), the threshold block sends an of f message 

to the burst block to stop the ongoing burst. 

The update of the weighted sum of inputs and its comparison with the excitation and inhibition 

thresholds is triggered by the reception of on and of f messages from synapses. 

C. The oscillator block 

An oscillator block has been added to the model which sends on messages to the burst generator 

block every tosc time units starting at t = t^. This block simulates rhythmic activity in neurons. 

D. The burst generator block 

The burst generator block generates a burst upon reception of an on message. The arrival of 

the on message triggers the start of a cycle of state changes. The sequence starts with a change 

from state o f f to state on (onset of the first action potential). After tap time units, the state 
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Fig. 1. Message based event driven neuron model. Solid arrows indicate origins a n d dest inat ions of messages. Thick 

dashed arrows indicate the correspondence between par t s of the real neuron and blocks in the model. 

changes from on to ref (beginning of the refractory period) and, af ter tref time units, back to on 

(start of the second action potential in the sequence). This cycle is repeated Nb^rst times (making 

up a burst of N^urst action potentials). An on message is broadcasted to all synapses driven by 

the burst block when its state changes from o f f to on in order to communicate neurotransmitter 

release. 

I I I . IMPLEMENTATION OF THE EVENT DRIVEN SIMULATOR 

A. Overview 

The simulator has been implemented as an extension of the commands provided by the scripting 

language of a standard numerical package (see Fig. 2 for an overview of the system developed). This 

approach provides flexibility in the storage of topology, data analysis, automation of parameter 

space search and portability across platforms. 
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Input Output 

a := on 

(3 := on P 'Y •— {^-iOn^Wsyn^ 

:= o / / 7 := { 0 , o / / , - w . y n } 

T A B L E I I I 

T H E S Y N A P S E BLOCK FUNCTION 

Input Action 1 Output 

^sum ~t~ — ^syn 

^sum ^ ? 

7 := on true: - | e := {0, on} 

^sum ^— th-i ? 

true: - | e := {0, o f f } 

^sum — ^syn 

^sum ^— ihg ? 

? := o / / true: - | e := {0,on} 

sum ^— thi ? 

true: - e := {0, of f } 

T A B L E I V 

T H E THRESHOLD BLOCK STATE MACHINE 

Current state Next state | Output 

:= {(o«c,c/iange} 

on o / y 1 := {(o,c,cAonge},C := {0,on} 

o / / on \ 6 ~ {tosc, change},( •= {0, on} 

T A B L E V 

T H E OSCILLATOR STATE MACHINE 
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Fig. 2. Overview of t he s imula t ion tool 

When aiming at large scale simulations of the nervous system, the simulation tool must provide 

an efficient way of storing the topology and parameters of the network. Storage of individual 

connections and neurons in files is not efficient (files in the order of hundreds of Megabytes would 

be needed for networks of 10® neurons and 10^ synapses). 

The simulator described here offers two alternatives. A program written using the scripting 

language of the numerical package creates a vector with each entry declaring a synapse. A new 

command, part of the language extension, accepts the vector of connections as a parameter and 

creates the data structures required for the simulation. With this approach, only the code needed 

to create the vector of synapses (and not the synapses themselves) has to be stored. 

A second alternative is to provide special purpose higher level commands which do not accept 

vectors of synapses but parameters which characterize the connectivity rules of the topology. As 

an example, for the randomly connected network of Section IV, the parameters would include 

the number of neurons, number of connections per neuron and the probability of establishing an 

excitatory or an inhibitory connection. Although this approach offers an efficient use of memory (no 

intermediate lists of synapses must be created) it requires the implementation of a new command 

for each family of topologies. 

The integration of the simulator within a standard numerical package also simplifies the analysis 

of the data. The standard tools available in the package can be used with the results of the 

simulation 
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(e.g. the Fourier transform is implemented in most numerical packages and allows frequency 

domain analysis of EEG simulations). The results of interest are typically parameters which sum-

marize properties of the network dynamics (see Fig. 6-A,B,C) for comparison with experimental 

bulk measurements like EEG and external field potentials. The knowledge of the state of individ-

ual cells is also important to understand the bulk measurements. Cell states are plotted in matrix 

form and used to create mpeg movies with the activity of the network (see Fig. 6-D). 

The integration of the simulator within a standard numerical package makes also possible the 

automation of some of the tasks associated with the simulations. For example, when exploring the 

dynamics of a network, a search of a region of the parameter space is likely to be needed. The 

possibility of using a scripting language to control the parameter search allows fast implementation 

of different search algorithms. Finally, relying on the numerical package for input/output increases 

the portability of the simulator. As many packages have been ported to several operating systems, 

the programmer does not need to recode (e.g. the plotting routines) for cross-platform portability. 

B. Data structures 

The data structures which store topology, parameters and state variables of neurons and synapses 

are shown in Fig. 3 (see [4] for a comparison of data structures for the simulation of neural 

networks). 

Upon initialization, the simulator estimates and allocates the to ta l amount of memory required 

for the storage of all neurons and synapses. Dynamic allocation of individual neurons and synapses 

must be avoided to reduce the overhead associated with dynamic allocation. 

The data structure for a neuron contains the following fields: a neuron id, the number of synapses 

from this neuron onto other neurons, the state vector, the state variables, parameters and a list of 

synapses. 

The number of synapses in realistic simulations will be at least two orders of magnitude higher 

than the number of neurons. Hence, the minimization of the memory allocated for each synapse 

is important. 

Each synapse is characterized by its parameters {tdei,tdur,Wsyn) and the identifier of its target 

neuron. The parameters are not stored for each synapse. Instead, only an index into a table of 
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Synapbc delay (idel) 
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Synapbc delay (kW) 
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SlMpM 1 Model Taroe* neuron 
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Pomw loneufon 2 
Pomler (oneufon 3 
Poimef bneufon 4 
Pofilefk) neuron 5 
Poinlef kneufonG 
Poinief loneufon? 

Fig. 3. Da ta s t ructures used for storage of neurons a n d synapses. 

types of synapses (seen on the lefthand side of Fig. 3) is stored. 

Entries in this table are model structures which contain the parameters for one of the allowed 

types of synapses. For our implementation, the table of synaptic models may have up to 64 entries, 

allowing 64 types of synapses. 

In addition to its parameters, each synapse structure needs to identify the target neuron. Our 

simulator, running on a machine with a 32 bits wide address bus, would need a 4 bytes word to 

identify the target neuron if a pointer was to be stored in each synapse. Instead, an index into a 

table of pointers is stored. 

Given an addressable memory space of 2^^ bytes, it is unlikely t ha t a simulation of 2^^ neurons 

(16 million) or more would fit in the available memory. Hence, neurons are labeled with a 24 bit 

identifier which is used as an index into the table of pointers to neurons (righthand side of Fig. 3) 

to locate the neuron in memory. 

With these two strategies (a table of models and a table of pointers to neurons), the parameters 

needed for a synapse can be masked into a single 32 bits word (24 bits for the target neuron 

identifier, 6 bits for the synapse type and 2 bits unused). Memory consumption for the storage of 
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synapses is reduced in this way. 

C. Priority queue 

Neurons communicate by message broadcasting. As new messages are generated, those that are 

scheduled for delayed delivery to their destinations are inserted in a time-sorted queue. The main 

loop of the simulator is responsible for extracting the messages and for their delivery to their target 

devices at the appropriate time. 

Two main issues have to be considered when implementing the priority queue. Efficiency in 

terms of CPU time required for insertion/extraction of new events into the queue and memory 

consumption. 

C.l Efficient insertion of new messages 

The insertion of messages in the queue is usually the most costly operation in event driven 

simulation, as messages have to be sorted by time of delivery. Several algorithms have been 

suggested for queue management (for a review see [12,13]). In most cases, the insertion time is 

affected by the number of messages in the queue. Calendar queues deserve special attention as 

this approach offers insertion latencies independent of the size of the queue (0(1))[5]. 

Neuronal activity consists of action potentials of, at least, 1 — 2 ms of duration. For discrete 

simulation of a network of neurons, time can be represented as a multiple of a basic time step 

of lOO^s without compromising the usefulness of the simulation. Given this coarse granularity of 

time, a priority queue based on an LUT (look up table) for fast insertion can be used (see Fig. 

The priority queue is made up of a set of linked lists of messages. Each list containing all the 

messages which have been scheduled for the same time in the future. An LUT stores pointers to 

the first message in each sublist. For an LUT with 10® entries, a maximum of 10® lists can be 

indexed. The first list links all messages scheduled for i = 0, and the last links all messages for 

t — 10® — 1. With a time step of 100/is, messages could be scheduled no further into the future 

than 100 s. The total amount of memory required for the storage of this table, when using 32 bit 

pointers, would be approximately 4 Mbytes. 
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Fig. 5. Efficient memory allocation is possible for priority queues due to the cons tan t size of message structures.A 

- Memory allocation algorithm, B - Comparison of s tandard and new al locators . 

and there is no extra computation involved in finding a free slot of the appropriate size. Fig. 5-B 

shows the average memory required per object (overhead+data) as a function of the number of 

dynamically allocated objects (each one consisting of a 24 bytes long data structure). There is no 

overhead with the new allocator whereas, with the standard allocator, there is an overhead of 8 

bytes per object. 

D. Other implementation issues 

It is important to note that the high number of connections per neuron may slow down the 

update of the weighted sum of inputs (wsum) in the threshold block. Each update of Wsum requires 

the computation of, 

w. Ij — 'y ^ CaWsym (2) 

(3) 
1 if synapse i is active 

0 if synapse i is inactive 

where S is the number of synapses providing input to neuron j, a , is 1 if synapse i has been 

activated and 0 if it remains inactive and Wgym is the synaptic weight of synapse i. 
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Wsum must be updated each time one of the synapses becomes active or inactive (the threshold 

block is notified by the arrival of an on or of f messages). Complete recalculation of Wsum requires 

the weighted addition of S synaptic weights and, for a typical neuron, the number of synapses (S) 

is in the range 10^ — 10*. However, this is not needed if Wsum is updated as, 

^ ^ (4) 

where and are the weighted sums before and after an update respectively, s is the 

number of synapses which changed state simultaneously (typically s < < 5), Oj is 1 if synapse i 

has been activated and -1 if it has been inactivated and Wsym its weight. This requires the storage 

of the weighted sum as a state variable for each neuron but speeds up state recalculation of Wgum 

as the number of synapses which change state (s) is considerably lower than the total number of 

synapses S. 

Regarding the overall implementation of the neuron, it is convenient to follow an object oriented 

approach. The neuron object offers an interface which allows the simulation engine to initialize 

the automaton at the beginning of the simulation and to deliver the messages to be processed. 

This object oriented approach reduces programming time whenever the behaviour of the finite 

state machine has to be modified. New device objects can be created without forcing any modifi-

cation in the rest of the code as long as the interface with the simulator does not change. 

The cost of modifying the functionality of the model and the simulator is an important factor to 

consider. Simulation of the nervous system with cell automata is still in its infancy. It will often 

be necessary to modify the model to incorporate new types of behaviours. An object oriented 

implementation considerably reduces the time involved in these changes. 

I V . P E R F O R M A N C E OF THE SIMULATOR 

To study the performance of the simulator, a network of 5 10* neurons with random connections 

has been simulated. 

Each neuron has exactly C synapses with postsynaptic neurons chosen at random. Two types 

of synapses are included in the network; excitatory synapses with synaptic delay tdei = 5 ms , 

efficacy Wsyn - 1 and duration of activation tdur = 10 ms ; inhibitory synapses with tdei = 5 ms, 
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Neurons in state off Neurons in state on Neurons in state refractory 

pe=0.9 _ 

• ' I ' f- . 0.0—f . 
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jf j u 
li'M' W'r o-4̂ -n77 ' r w-r" 
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t=20 ms [=25 ms t=30 ms t=35 ms 

so 100 ISO 200 

Fig. 6. A,B,C - Total number of neurons in s ta te off (A), on (B) and refractory (C), D - Time sequence of the 

neuron s ta tes for the network displaying epileptic-like activity (pe = 0.9). M a t r i x of 200x250 neurons. Those in 

s ta te on, off and refractory are represented by white, black and gray dots respectively. 

Wsyn = - 1 and t^ur = 10 mg. The type of each synapse is chosen a t random with probability Pe 

of being excitatory and 1—pe of being inhibitory. Multiple synapses of the same type from a given 

neuron to a target neuron are allowed (equivalent to a single synapse of increased efficacy). 

5 10^ out of the 5 10"' neurons have been configured as pace makers which fire a single action 

potential (2 ms duration and 10 ms absolute refractory period) every 100 ms {tosc — 100 ms) with 

a time shift of ms, where is a random variable given by a uniform distribution in the range 

(0..60 ms). 

All neurons behave as correlation detectors, firing an action potential (also 2 ms duration and 

10 ms refractory period) when the weighted sum of instantaneous synaptic inputs goes above the 

excitation threshold. 

Several values for the percentage of inhibitory synapses, total number of synapses per neuron 
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Fig. 7. A - Tota l n u m b e r of messages versus percentage of inhibi tory synapses a n d exci ta t ion threshold (number 

of synapses per neu ron set to 200), B - Simulat ion t ime versus to ta l n u m b e r of messages processed 

(total number of connections per neuron). 

In Fig. 7-A the total number of messages processed during the simulations is shown as a function 

of pe and thg. The number of synapses per neuron has been set to 200. It can be seen in the plot 

that, as Pe is increased, there is a transition from sparse activity into generalized firing made 

evident by the increase in the total number of messages generated. Fig. 7-B shows the CPU time 

as a function of the total number of messages processed. 

Fig. 8-A shows the total number of messages as a function of the number of synapses per neuron 

and the value of the excitation threshold. The percentage of inhibitory synapses has been set to 

10% {pe = 0.9). In Fig. 8-B the simulation time is plotted as a function of the total number of 

messages processed. 

Note that in Figs. 7-A and 8-A, for the = 15, the network activity remains sparse for all 

tested values of pe and C. However, for the = 5 and the = 10 the number of messages generated 

shows an abrupt increase indicating the switch of the network dynamics from sparse activation into 

generalized firing. Generalized activity in the network decreases the performance of the simulator 

by increasing the total number of messages to process. 

As seen in Figs. 7-B and 8-B, the simulation time depends linearly on the total number of 

messages generated and processed during the simulation. This is because the two main tasks of 
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Fig. 8. A - Total number of messages versus number of synapses per neuron a n d excitation threshold (percentage 

of inhibitory synapses set to 10%), B - Simulation time versus total number of messages processed 

the simulation loop are the insertion of new messages into the priority queue and their extraction 

and processing. The simulation time in seconds is given by. 

( - 2.9 (5) 

where e is the total number of messages. Each message requires 2.9 /is for its processing. 

As it is useful to estimate the resources that will be required by a simulation, it is desirable to 

be able to predict the total number of messages which will be generated. However,this is difficult 

to anticipate as it depends not only on the topology of the network (known beforehand) but also 

on the activity which will be known only after simulating. 

Considering a worst case scenario, all neurons could fire simultaneously at their maximum firing 

rate during the entire simulation. In this case, the total number of messages processed is given by, 

€• ^syn ~l~ (6) 

where Egyn is the total number of messages generated by synapses and En the number of 

messages generated by the rest of blocks in the neuron model. As the number of synapses is 

several orders of magnitude bigger than the number of neurons, the total number of messages 
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processed can be approximated by, 

27VC 
^ ~ ^syn ~ 7̂ ^simu (7) 

tre/ 

where N is the total number of neurons, C the average number of connections per neuron, 

the neuronal refractory period and tgimu the time of simulation. The factor 2 accounts for the two 

messages (activation and inactivation) inserted in the queue by a synapse. 

In a typical simulation the average firing rate of a neuron is expected to be far from the maximum 

rate attainable. In this more realistic situation, expression 7 has to include a correction term /?, 

2./VC 
€ — ŝimu (8) 

where /3 is the normalized average firing rate. 

For the lowest values of Pe in Fig. 7-B , the total number of messages would be approximated 

by Eq. 8 with /3 = 0.005 whereas for high values of Pe a good match is achieved for (3 = 0.5. 

Finally, note that if the generation and processing of events is evenly distributed throughout time 

(see lower traces in Fig. 9-A) the CPU time per time step will be also evenly distributed throughout 

the simulation. However, in contrast with non-event driven simulation, when oscillations occur in 

the total number of neurons firing in the network (see upper traces in Fig, 9-A), the peaks in the 

oscillations (large number of messages being broadcasted) will concentrate most of the CPU time. 

C. Memory requirements 

Two factors have to be considered regarding memory consumption: topology/parameters and 

the priority queue. The amount of memory required to store topology and parameters can be 

estimated by, 

= Aff) (9) 

where N is the number of neurons, C the number of connections per neuron and S and P the 

space allocated for parameters and state variables for a single synapse and neuron respectively. 
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For the simulations of Figs. 6, 7 and 8, the total memory allocated for topology, parameters of 

the models, LUT of the priority queue and numerical package was 53.5Mb {N ~ 5 10^ neurons, 

C = 200 synapses, 5 = 4 bytes, P = 52 bytes). 

In the case of simulations where the topology does not change online, the only uncertainty in 

the memory consumption lies in the size of the priority queue. 

The instantaneous number of events in the queue, and the memory allocated to store them, de-

pends on the number of neurons and synapses simultaneously active. Fig. 9-A shows superimposed 

traces with the instantaneous number of messages present in the queue during several simulations 

of the randomly connected network. Upper traces correspond to values of pg close to 1 whereas 

lower traces correspond to values close to 0. 

Synchronization of neuronal firing of large ensembles of neurons in the network causes oscillations 

in the size of the priority queue (as seen in Fig. 9-A for % == 0.9). These peaks in the number 

of neurons firing produce an accumulation of messages in the queue and the resulting increase of 

memory allocated to store it. Enough memory has to be available in order to store the queue at 

any time during the simulation and avoid swapping, as this would have a negative impact on the 

performance of the simulator. 

As the maximum size of the queue during a simulation is the limiting factor. Fig. 9-B shows the 

maximum number of messages found in the queue during the simulations shown in Fig. 7. When the 

percentage of inhibitory synapses is small, the activity generated by the pace makers propagates in 

the network activating most neurons and flooding the event queue. As the percentage of inhibitory 

synapses increases, the network becomes only sparsely active and the maximum number of messages 

in the queue during a simulation decreases dramatically. This reduces the memory resources needed 

for the simulator. 

For a maximum size of the queue of 10^ messages and messages of size 12 bytes, 120 Mb were 

allocated for the queue. 

V . CONCLUSION 

In this paper, a tool is presented for the simulation of event driven models of neurons which are 

being explore ' as alternatives to more detailed but less efficient compartmental models. 
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Fig. 9, A - Ins tantaneous queue occupancy for increasing values of the pe rcen tage of inhibitory synapses. B -

Maximum queue occupancy as a function of the percentage of inhibitory synapses and the excitation threshold 

(200 synapses per neuron). 

Neuronal models based on finite state automata provide a framework where the functionality of 

a real neuron can be captured while avoiding the modelling of molecular details. 

Several techniques for efficient simulation of these models have been shown. The use of the 

LUT based priority queue allows 0(1) queue insertion times, minimizing CPU time for message 

processing. Model structures, an LUT for device indexing and the use of an optimized algorithm 

for dynamic memory allocation of new messages reduce memory consumption. 

Changes between different modes of operation in a network of randomly connected neurons, 

qualitatively similar to those observed in EEC recordings, have been triggered by changes in the 

total number of inhibitory synapses. 

Simulations of hundreds of thousands of discrete neurons on a desktop computer are feasible 

with this approach. 
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A Large Scale Simulation of the Piriform 

Cortex by a Cell Automaton-Based 

Network Model 

Enric T. Claverol, Student Member, IEEE, Andrew D. Brown, Senior Member, 

IEEE, John E. Chad 

A b s t r a c t 

An event-driven framework is used to construct a physiologically motivated large scale model of the piriform 

cortex containing in the order of 10^ neurons. This approach is based on a hierarchically defined neuron model 

consisting of finite state machines. It provides computational efficiency while incorporat ing components which have 

identifiable counterparts in the neurophysiological domain. The network model incorporates four neuron types and 

their main electrophysiological features. 

The spatio-temporal pat terns of cortical activity and the temporal and spec t ra l characteristics of simulated 

EEGs are studied. In line with previous experimental and compartmental work, 1) shock stimuli elicit EEG profiles 

with either isolated peaks or damped oscillations, the response type being determined by the intensity of the stimuli, 

and 2) temporally unpat terned input generates EEG oscillations supported by model-wide waves of excitation. 

K e y w o r d s 

Piriform olfactory cortex, discrete simulation, pulse coded neuron model, cell au toma ta , EEG oscillations 

I . INTRODUCTION 

The simulation of the mechanisms implicated in information processing in the nervous system 

is an area of active research [1], [2], [3], [4], [5], [6], [7]. It provides a tool for the understanding of 

brain functions which are difficult to study experimentally due to the large number of cells involved 

and the difficulties arising from the execution of in-vivo experiments. 

The techniques used for the simulation of large aggregates of neurons can be grouped into two 

categories; biophysically detailed models [1] and artificial neural networks [2]. 
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2 

Biophysically detailed models are based on cable theory applied to dendrites and axons and 

make use of ion channel models which are usually described using the Hodgkin-Huxley formalism 

[3]. In this context, neurons are described by systems of nonlinear differential equations which 

must be solved numerically. Two undesirable properties of this approach are the computational 

cost of numerical integration and the amount of experimental da ta required to set the parameters 

in the model. As a result of these limitations, the simulation of large aggregates of neurons (more 

than 10*) is unfeasible,or requires parallel architectures [4]. Artificial neural networks, in general, 

do not allow direct mapping of biophysical parameters into model parameters and are considered 

unrealistic. However, they provide a computationally efficient alternative to biophysical models. 

During the past decade, several software tools have been developed for the realistic simulation 

of single cells and small aggregates of neurons (e.g. GENESIS [5], NEURON [6]). There is on-

going research to develop simulators capable of handling large networks [4] by means of parallel 

architectures. 

We have chosen an alternative approach, based on the adaptat ion of event-driven simulation 

techniques to the problem of neural simulation These allow direct use of biophysical parameters 

while permitting large scale simulations with the available computing resources. 

Drawing from the methods used in discrete simulation, neurons can be modelled as complex 

finite state machines [7]. By describing the automaton as a hierarchical structure where each 

component has a counterpart in the biological neuron, biophysical parameters can be introduced 

in the model. By introducing the concept of an event-driven neuron, the efficiency inherent to 

discrete simulation is retained [8]. 

The availability of both experimental data [9] [10] and simulations based on biophysically detailed 

models [11] [12], makes the piriform cortex an ideal cortical module to validate this approach. The 

piriform cortex is thought to be involved in smell recognition [13]. It receives input from the 

olfactory bulb, which performs the first stages in smell identification [14], through the lateral 

olfactory track (LOT). After carrying out certain computations on the input data (the nature of 

which is still unclear) it relays the results to higher level cortical modules. Previous simulations 



vAjPjDZCTVDDC D. jPyijPfCf&S 262% 

3 

have been confined to networks of 4500 neurons in [11] and 292 neurons in [12], far from the 

approximately 10^ neurons found in the piriform cortex. 

A cortical model including 10^ discrete neurons of four types (fast glutamate excitatory, fast 

GABAa inhibitory, slow GABAb inhibitory and LOT) is presented in this paper. 

The message-based event-driven neuron model will be described first. Secondly, the piriform 

cortex model and the calculations involved in the estimation of field potentials and EEGs will be 

discussed. Thirdly, the responses of the cortical model to shock stimulus and random input will 

be studied and shown to share the main characteristics of experimental data and results obtained 

with compartmental models. 

Issues regarding the implementation of an efficient simulator for this type of models and networks 

in the order of 10^ neurons are discussed elsewhere [15]. 

I I . M E T H O D S 

A. Message-based event-driven neuron model 

The message-based event-driven neuron model is a hierarchically defined finite state automaton 

[16]. It is made up of several blocks, each of them capturing the functionality of a different 

component of the neuron (see Fig. 1). 

[Figure 1 about here.] 

Message passing is the method used for communication between neurons and between blocks 

within a single neuron. Each message is a data packet containing the time at which the message 

will be delivered to its destination, a label field indicating the type of message and a third optional 

field with extra information used by the target neuron to process the message (see Table I). Arrows 

with solid lines in Fig. 1 indicate message paths. 

The delivery of a message to a block, triggers the update of its state, which may be accompanied 

by the broadcasting of new messages (an output) and the update of state variables in the block (an 

action). For purely combinational functions (e.g. the synapse block) the output is only a function 

of the input. 
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Table II lists the parameters required for the configuration of the model and Appendix A contains 

the state transition tables and combinational functions implemented by the blocks in the neuron 

model. 

A.l The synapse block 

Synapses receiving the on message at time t, which notifies of the firing of a presynaptic neuron, 

introduce a synaptic delay and become activated at t + tdei • An on message is then broadcasted 

to the threshold block. 

At t + tdei + tdur, the synapse inactivates, having remained activated for tdur time units, and 

sends an o f f message to the threshold block. 

Synapses are combinational functions which schedule new messages depending on the last mes-

sage received (they do not need memory of their current state). 

[Table 1 about here.] 

[Table 2 about here.] 

A.2 The threshold block 

The threshold block computes a weighted sum of inputs (wsum) where the weights are the 

synaptic efficacies {wgyn)- The arrival of on and o f f messages from synapses, triggers the update 

of Wsum- After an update, its value is compared against the excitation (the) and inhibition {thi) 

thresholds. An on message is sent to the burst generator block (which generates a burst of action 

potentials) if Wgum increases beyond thg. Conversely, if the weighted sum becomes more negative 

than the inhibition threshold {thi), the threshold block sends an o f f message to the burst block 

to stop an ongoing burst. Note that, since neurons in the cortical model presented in this paper 

were configured to fire single spikes, burst truncation does not apply. Thus, in order to avoid the 

unnecessary generation of o f f messages, thi was set to -1000, a value never reached by Wsum-

A.3 The oscillator block 

The oscillator block simulates rhythmic activity in neurons. It sends an on message to the burst 

generator block every tosc time units starting at t = t^. 
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A.4 The burst generator block 

The burst generator block generates a burst of action potentials upon reception of an on message. 

The arrival of the on message triggers the start of a cycle of state changes. The sequence starts 

with a change from state of f to state on (onset of the first action potential). After tap time units, 

the state changes from on to ref (beginning of the refractory period). After tref time units it 

returns to state on (start of the second action potential in the sequence). This cycle is repeated 

Nbur St times (making up a burst of Nburst action potentials). An on message is broadcasted to 

all synapses driven by the burst block whenever its state changes from o f f to on in order to 

communicate the start of the propagation of an action potential along its axon. 

B. Piriform cortex model 

This discrete model of the piriform cortex is based on the compartmental simulations by Wilson 

et. al [11] and Barkai et al. [12]. Four types of cells have been included: fast excitatory pyramidal 

cells, fast inhibitory {GAB A a) cells, slow inhibitory {GABAb) cells and stimulus (LOT) cells 

(Fig. 2). 

[Figure 2 about here.] 

The pyramidal cell layer consists of a grid of 250 x 250 neurons whereas GAB A a and GABAb 

inhibitory cells are arranged in two layers of 80 x 80 cells each. For clarity, these are depicted in 

separate planes in Fig. 2. However, they occupy the same plane in the actual model. 

The layer labeled LOT, models the input activity which arrives at the piriform cortex by the 

lateral olfactory track. The number of cells in this pool has been adjusted for each simulation in 

order to provide the desired rate of excitation. As they are topologically far from the rest of the 

cells, these neurons do not contribute to the simulated field potential recordings. 

Pyramidal cells possess local and long range intralayer excitatory connections (amongst pyrami-

dal cells) and local interlayer connections (exciting nearby GAB A a and GABAb cells). Inhibitory 

cells {GAB A A and GABAb layers) do not have intralayer connections in this model. Instead, they 

locally inhibit pyramidal cells by means of local connections. 
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The target neuron, j, of a synapse from neuron i is chosen by generating a random vector dof 

components {p,<f>} (in polar coordinates), where p is an exponential random variable (A given in 

Appendix B ) and ^lisa uniform variable in the range 0 - 2TV. The target neuron is chosen as the 

closest cell to the vector, 

2% +or (1) 

where pi and pj are the position vectors for neurons i and j respectively. 

LOT cells synapse onto pyramidal cells and introduce external stimulus into the model. The 

density of connections from LOT to pyramidal cells decreases exponentially from left to right in 

the pyramidal layer of Fig. 2. 

Values for the duration of synaptic activation and synaptic delay have been chosen to reproduce 

experimentally determined values. Variations of synaptic efficacies across different synapse types 

are analogous to the maximal c iuctance of synaptic channels as used in compartmental models. 

Delays due to axonal propagation have been estimated from experimentally determined values [11]. 

Further, to reduce memory consumption, the axonal delay has been quantised and the number of 

allowed values limited to 10. 

Neurons fire a single action potential (with a duration of 1 ms and followed by a 10 ms refractory 

period) whenever Wsum (weighted sum of inputs) increases above the excitation threshold. Suitable 

values for the excitation threshold were determined by parameter space search. 

Numerical values for the parameters of the model are provided in Appendix B. Note that, in 

order to reduce the memory resources required by the simulation, the synaptic delays {tdei) were 

constrained to integer values within the ranges contained in Appendix B. ^ 

^The quantisat ion of the synaptic delays causes art ifacts in shock st imulus s imulat ions consisting of precisely 

delimited cortical bands showing homogeneous neuronal s tates (Fig. 6,t = 13 m s ; Fig. 7,t = 14 ms). This effect 

is not present in realistic long-lasting simulations of EEGs (e.g. Fig. 8(c)), for which reason the computat ional 

advantages of delay quantisat ion motivated the introduction of this simplification in the model 
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C. Simulation of field potential recordings, EEGs and power spectra 

Field potentials and EEGs are measurements of time changing potentials generated by neuronal 

activity. Field potentials are recorded with single microelectrodes located close to the pool of 

neurons under study whereas EEGs are recorded with electrodes placed on the skull. For the 

purpose of model validation, it is desirable to compare the characteristics of the recordings predicted 

by the model with those seen in experimentally recorded signals. 

[Figure 3 about here.] 

For the simulation of EEC recordings, a procedure similar to that described by Wilson et al. 

[11] has been followed. A number of virtual electrodes are spatially distributed forming a grid of 

E X E recording sites (Fig. 3). Each one of these simulated electrodes obtains a field potential 

calculated as, 

J K 

where SpPi is the field potential signal recorded by the electrode , dij is the distance between 

the i"" electrode and neuron j, 5j{t — is the delta function indicating that neuron j fired an 

action potential at t = t^ and h{t) is the prototype field potential recorded from a group of neurons 

firing nearly simultaneously. The summations are over the total number of action potentials K 

generated by neuron j and over all the neurons J in the network. 

The prototype field potential, h{t), is shown in the box in Fig. 3 and given by {t in ms), 

t < 0 0 

0 < t < 5 —5 
(3) 

5 < f < ^ 2 

12 0 

where the negative segment accounts for the negative field potential recorded experimentally 

during the onset of action potentials and the positive segment corresponds to the positive field 

potential seen during repolarization (its return to resting voltage) [17] [18]. 
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second wave. Simultaneously, the pyramidal to pyramidal excitation has also decreased (compare 

rightmost panels at i = 14 - 15 ms and < = 18 ms). The remaining excitation is only able to 

trigger sparse action potentials in a few cells (see leftmost region in the first column of panels at 

( = 1 5 — 18 ms). 

In contrast with the weak stimulus, the strong stimulus causes fast excitation which leads to 

the disappearance of excitatory input before the GABA inhibition following the passing wave 

deactivates. 

C. Random input response 

Experimentally recorded EEGs often display oscillations with well delimited frequency bands 

[21]. These pseudo-periodic EEG profiles are thought to be supported by spatial waves of excitation 

[22], [23] sweeping across the cortex. To study these phenomena with our cortical model, a long-

lasting random input stimulus was used. Random excitation is more closely related to the normally 

functioning piriform cortex than the shock stimulus. It was generated by spreading the firing times 

of the LOT neurons throughout the entire simulation. Each neuron in the LOT pool was configured 

to fire once and its firing time is given by a uniform distribution in the range (0 - tstop)̂  where tstop 

is the duration of the simulation. Hence, the stimulus intensity, expressed as the average number 

of excitatory synaptic connections from LOT cells to pyramidal neurons activated per unit of time, 

is given by 

R 
NlOT ClOT-to-pyr 

^stop 

where N^qt is the number of LOT cells and CiOT-to-pyr the number of connections to pyra-

midal cells from a single LOT cell. Fig. 8(a) shows the simulated EEG obtained using a grid of 

10x10 electrodes and a stimulus oi R = 10"̂  activations/ms. Fig. 8(b) is the corresponding power 

spectrum. 

[Figure 8 about here.] 

The unstructured random input generates an structured activity pattern in the cortical model. 
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The simulated EEG (Fig. 8(a)) shows an initial transitory phase of approximately 150 ms, followed 

by sequences of peaks with intervals of diminished activity. In its power spectrum (Fig. 8(b)), 

two main frequency bands appear; 0-10 Hz and a higher frequency range 30-35 Hz. A secondary 

harmonic peak is also present at 60-65 Hz. Fig. 8(c) shows a state map of the pyramidal layer. It 

is characterized by cortex-wide excitation waves, reminiscent of those observed for shock stimulus. 

Each peak of the main frequency component (30 Hz) in the EEG can be associated to a single 

wave propagating across the cortex. 

D. Effect of synaptic parameters on EEG profiles 

The impact of model parameters on the characteristics of the EEG was explored. In partic-

ular, variations of tdur in inhibitory and excitatory synapses were found to trigger EEG profile 

transitions. Fig. 9 shows the EEG traces for several values of tdur in GAB A a (leftmost column), 

GABAB (middle column) and excitatory synapses (rightmost column). The middle trace in all 

columns corresponds to nominal values. 

Only minor profile alterations were induced by variations in GABAA synapses. Close analysis 

of the leftmost column in Fig. 9 shows, however, that the EEG corresponding to tdur = 14 ms 

displays higher regularity than those seen for tdur = 10 ms and tdur = 11 ms. 

On the other hand, a decrease of tdur in GABAB synapses from 150 ms to 50 ms produces 

marked changes in the EEG, leading to the absence of bursts and nearly sinusoidal traces. Con-

versely, an increase to 250 ms results in an EEG with longer interburst latencies. 

[Figure 9 about here.] 

An opposite effect results from changes in the activation duration of excitatory synapses (see 

rightmost column in Fig. 9). For a value of tdur = 3 ms (top), the EEG corresponds to a biphasic 

sequence of bursts. Progressive increases (towards bottom) lead to a steady state consisting of 

nearly sinusoidal profile, for tdur = 6 ms and tdur — 7 ms. 
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I V . DISCUSSION 

A model of the piriform cortex has been constructed by means of a hierarchically defined finite 

state automaton neuron. It aims at demonstrating the usefulness of an event-driven framework 

where fundamental features of neuronal function can be captured while avoiding the computational 

complexity inherent to analog models. The model with 10® and 3 x 10^ synapses represents an 

increase of two to three orders of magnitude in problem size with respect to previous simulations 

The standard approach to realistic simulation of large neural aggregates makes use of an analog 

paradigm based on core-conductor theory of axons and dendrites [24] and Hodgkin-Huxley ion 

channel models [3]. Computational complexity can be reduced in various ways; minimizing the 

number of isopotential segments (compartments), limiting the number ion channel types or even 

substituting those responsible for action potential generation by a threshold function (e.g. the 

integrate and fire model [25]). Uncoupling of the equations belonging to different neurons is possible 

by exploiting the discrete nature of the spike. In this case, analog models describe neurons whereas 

an event-driven engine manages the inter-neuron communication at the synaptic level [4]. 

We have used a completely event-driven description of the neuron itself, eliminating the need for 

a continuous simulation engine altogether. Within this framework, computational efficiency arises 

from the state update scheme, where only those neurons receiving messages at a particular time 

point must be re-evaluated. The simplicity of the update operation also contributes to diminishing 

the need for processing resources. 

To investigate the dynamics of a large scale cortical model, the cell types and the connectiv-

ity patterns in the network were constrained by anatomical studies. The three synaptic classes 

considered, GAB A A, GABAB and excitatory were configured with relative efficacies and time 

constants in accordance with experimental findings. The following issues have been addressed: 1) 

wave generation in a pyramidal layer deprived of inhibition; 2) response of the model, including 

pyramidal and inhibitory inter-neurons, to pulse-like excitation (shock stimuli); 3) the genesis of 

EEC oscillations as a result of unpatterned long-lasting stimuli; 4) the modulation of the temporal 
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EEG profiles by variations in the synaptic time constants. 

A. Shock stimulus 

The predicted response to shock stimuli shows non-linear properties in agreement with exper-

imental results [10]. Namely, a low intensity pulse stimulus elicits a sequence of model-wide ex-

citation waves and a ringing EEG whereas high intensity stimuli lead to single waves and single 

peak EEGs. More subtle experimental results are also accounted for by the model. For instance, 

current source density analysis shows that different synaptic types are maximally active at dif-

ferent points in time during shock response [26]. This effect can be seen in Fig. 5(a) where two 

secondary peaks can be distinguished, the first corresponding to excitatory synapses from LOT to 

pyramidal neurons and the second to the delayed activation of pyramidal to pyramidal synapses. 

Similar double-bumped shock responses were obtained with compartmental [11] and relaxation 

models [22]. 

B. Random stimulus 

Waves of excitation have been proposed as the physical phenomena underlying EEG oscillations 

and are thought to arise throughout the cortex [23]. Experimental in-vivo studies of piriform cortex 

and olfactory bulb activity have indeed confirmed that EEG oscillations occur and are especially 

regular during odour inhalation [27]. 

To investigate the generation of cortical waves, a temporally unstructured input stimulus was 

used. The cells in the LOT neuronal pool, which project to the piriform cortex from the olfactory 

bulb in the actual cortex, were configured to fire randomly throughout the simulation. This setup 

aimed at producing an input stimulus more closely related to the real pattern of activations than 

that utilized in shock experiments. Its random nature guarantees that the derived cortical spatio-

temporal patterns arise from the intrinsic anatomical and dynamical properties of the model rather 

than the pre-arranged structure of its input. 

This activity leads to cortex-wide waves in our model, in line with compartmental simulations 

[11]. Further, .ach EEG peak can be related to a particular cortical wave sweeping across the model. 



v4J°f)f&rfDDC D. fVUPfCRS 280 

15 

These waves are preferentially originated in the leftmost region in all panels (corresponding to the 

rostral end in the actual cortex). This result is the consequence of the decrease of LOT-pyramidal 

connections when movir-i from left to right in the panels (dorsal to caudal in the actual cortex), 

an anatomical feature already observed in early experimental studies [28]. 

There is experimental and theoretical evidence supporting the hypothesis that global changes of 

network parameters trigger a switch between functionally different aggregate states. In the olfac-

tory cortex, such a mechanism has been reported [12], [29]. The generalized release of Acetylcholine 

(Ach) is thought to alter synaptic dynamics and neuronal excitability [30], triggering a mode tran-

sition from memory recall to memory acquisition. More generally, abrupt EEG transitions are a 

well known phenomenon, often associated with changes of conscious states (sleep, walk, anesthesia 

and so on). 

The variations in the temporal and frequencial profiles of the EEG resulting from parameter 

changes were investigated. In particular, transitions between nearly periodic, bursting and irregular 

EEGs can be achieved by means of changes in the synaptic activation duration (i^^r) of the different 

synaptic types. 

The emergence of spatially coherent patterns and the transition between modes of operation 

by means of network parameter variation is also in agreement with previous cortical simulations 

utilizing integrate and fire models [31]. 

Additional simulations were carried out with equal size cell populations, with three 150x150 

grids corresponding to the pyramidal, fast and slow inhibitory cell types (results not shown). This 

was done to compare our results with those obtained by Wilson et al. [11] who included 1500 

neurons in each pool. With this configuration, a parameter set was also found which produced 

single peak and damped ringing in response to shock stimuli and continuous oscillations in response 

to unpatterned long-lasting input. In the latter case, the main spectral component was centered 

at 40 Hz, which coincides with the results in [11]. This constitutes a shift of approximately 10 Hz 

towards higher frequencies with respect to the spectra described in the results section, obtained for 

more realistic relative population sizes. The large parameter space presented by the model makes 
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it likely that multiple configurations exist whose EEG share a number of temporal and frequencial 

characteristics. As already shown, the synaptic parameter t^ur affects EEG profiles and suggests 

that parameter tuning would induce further shifts in the main frequency components. 

The simulations carried out have aimed at comparing the model response with experimentally 

obtained recordings and theoretical investigations with analog neuron descriptions. It has not been 

attempted, however, to link network dynamics to the suspected functionality of the piriform cortex 

within the olfactory system. Several studies have tackled this problem: the Lynch-Granger model 

[32], [33] suggests that the system olfactory bulb-olfactory cortex performs hierarchical clustering 

of the cue environment; the Li-Hertz model [14] proposes that odour recognition is achieved by 

a resonance phenomenon between cortex and bulbar oscillations; the Wilson-Bower model [34] 

implements an associative memory able to store and retrieve odour information. 

A feature shared by this model is the use of synaptic modification algorithms or other types 

of network plasticity which must me activity-dependent to allow the storage of new odours. The 

model described here does not incorporate plasticity. However, the striking similarities between 

the physiological data and the results obtained with the simple event-driven model supports the 

possibility of utilizing the same framework for investigations of the functional role of synaptic 

plcisticity. 

V . CONCLUDING REMARKS 

In summary, the approach presented in this paper allows large scale neural simulations on single 

processor desktop computers and the exploration of the effects of physiological parameters on 

neural population dynamics. This is achieved by devising a completely event-driven framework 

where the need for computationally costly continuous simulation engines is eliminated altogether. 

The piriform cortex model provides a tool for the testing of theories related to the nature of the 

computations carried out by this cortical area. The results obtained so far demonstrate that the 

main features of the olfactory cortex response to short and long-lasting stimuli can be accounted 

for by a simple event-driven cortical model. 
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Moreover, the techniques presented here can also be applied to other areas of the nervous system. 

The reduction of computational complexity in comparison with alternative strategies suggests the 

adequacy of the proposed approach for large-scale models incorporating multiple cortical areas. 

Research is underway to exploit Beowulf clusters in order to provide the necessary resources for 

such computationally costly simulations. Preliminary results indicate that problem size could be 

increased at least one order of magnitude by means of a proportional increase in the number of 

processing nodes with a mere 10% simulation time overhead due to internode communication. 

A P P E N D I X 

I . STATE TRANSITION TABLES 

[Table 3 about here.] 

[Table 4 about here.] 

[Table 5 about here.] 

[Table 6 about here.] 

I I . M O D E L PARAMETERS 

[Table 7 about here.] 
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Fig. 2. Model of the piriform cortex. 
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Figures 23 

Electrode array as used 
for EEG simulation 

Field potential function, h(t), 
as used for EEG estimation 
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3 : 
< 0 -

Time (ms) : 

9 Pyramidal neuron 

9 Fast inhibitory neuron 

O Slow inhibitory neuron 

Fig . 3. S e t u p u s e d for t h e s i m u l a t i o n of f ie ld r e c o r d i n g s a n d E E G s . 
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Figures 24 

t= 2 ms t=5 ms t=9 ms t=15 ms 

LOT input 

[=19 ms t=22 ms t=25 ms 1=29 ms Refractory 

(a) 

t=15 ms t=19 ms t=22 ms t=25 ms 

(b) 

Fig. 4. Sequence of images represent ing, (a) the s t a t e a n d (b) t he weighted s u m of i n p u t s (tUsum) of pyramidal 
neu rons in a par t ia l ly connec ted model (each pixel in t he a r r ays co r r e sponds to a n ind iv idua l neuron) 
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Figures 25 
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Fig. 5. (a) S imula ted field po ten t ia l a f t e r weak shock s t imulus , (b) S imu la t ed field potent ia l a f te r s t rong shock 
s t imulus 
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F i g u r e s 26 
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Figures 27 
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Fig, 7. S ta tes , tu .um a n d p y r a m i d a l - p y r a m i d a l exci ta t ion for p y r a m i d a l n e u r o n s a f t e r s t rong shock s t imulus 
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Figures 
28 
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Fig. 8. (a) Simulated BEG. (b) Power spectrum of the EBG. (c) Cortical waves underlying BEG oscillations 
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Figures 2 9 
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Fig. 9. B E G profile for several values of in GABAA, GABAB a n d exc i t a to ry synapses 
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Figures 30 
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Tables 31 

Channel Message structure Legal values 
of m 

Legal values 
of p 

a {t,m} on 

13 {t,m} 
7 {t,m,p} on,off e@cacy(w,yn) 

{t,m} change 
e {t,m} 
c {t,m} on 

V {t,m} o / / , 

T A B L E I 

M E S S A G E C H A N N E L S IN T H E N E U R O N M O D E L 
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T a b l e s 32 

Parameter Function 
(Ae Excitation threshold 
thi Inhibition threshold 
tap Duration of action potential 
tref Duration of refractory period 

^burst Number of spikes per burst 
tosc Period of pace maker 
t(p Time offset of pace maker 

tdel Synaptic delay 
tdur Duration of synaptic pulse 

"^syn Synaptic efficacy 

T A B L E I I 

PARAMETERS IN THE NEURON MODEL 



APjPjSJVDDC D. 298 

Tables 3 3 

Synapse block 
Input Output 

a := on /? — ) on 
P := on := {(dur.o//}, 7 := {O,on,iu,^n} 

^ U = o / / 7 := {0, o / / , 

T A B L E I I I 

T H E S Y N A P S E B L O C K F U N C T I O N 
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Tables 3 4 

Threshold block 
Input Action Output 

7 := on 

"^sum^ — ^ syn 

^sum ^ ? 

true; - | e ;= {0, on} 
sum ihi ? 

true: - | g:= {0, o f f } 

7 : ^ 0 / / 

^sum — ^syn 
^sum. ^ ? 

true: - | e := {0, on} 
^sum ^— thi ? 

true: - | e := {0, o f f } 

T A B L E I V 

T H E T H R E S H O L D B L O C K S T A T E M A C H I N E 
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Tables 35 

Oscillator 
Current state Next state | Output 

Input 
<5 := {tosc, change} ^ 

on o /y 1 ^ := {fo«c,c/ionae},( := {0,on} 
o / / on \ 5 •.= {tosc, change},:= {0, on} 

TABLE V 

THE OSCILLATOR STATE MACHINE 



Burst generator 
Current Next state | Action | Output 

Input 
e := e := off V := of f r; := r _ o / / 

on on [ - 1 - on 1 n i , „ , . , t = 0 1 - r e / 1 - ] r) ;= , r _ o / / } on 1 - 1 - on 1 - 1 -

r e / r e / i - 1 - r e / 1 = 0 | - r e / 1 - 1 -
nfeiiraf 1 0 ? 

true: o f f |n[,„,,,, = j -
false; on = 1 j >/ := {tap, of f ) 

r e / 1 - 1 -

off on 1 - 1 a := {0, on}, 
'/ := ( t a p , o f f ) 

o / / 1 - 1 - off 1 - 1 - off 1 - 1 - on 1 - 1 i» := {0, OTi}, 
'1 := {tap,off} 

i 
2 

i 

T A B L E V I 

T H E B U R S T G E N E R A T O R S T A T E M A C H I N E 

CO 

O 
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Tables 37 

Neuronal parameters 
the (pyramidal) 7 
the (fast inh.) 30 
the (slow inh.) 30 
thi -1000 (burst truncation inactivated) 
iap 1 ms 
tref 10 ms 
^burst 1 
tosc (pyramidals and inhibitory) 0 {inactive oscillator) 

(pyramidals and inhibitory) 0 {inactive oscillator) 
tosc (LOT cells, all stimuli) 3000 ms 
t^ (LOT cells, shock stimulus) 0 ms 

(LOT cells, random input) Uniform(0 - tstop) 
Number of synapses per neuron 

LOT to pyramidal 100 
pyramidal to pyramidal 300 
pyramidal to fast inhibitory 20 
pyramidal to slow inhibitory 10 
fast inhibitory to pyramidals 70 
slow inhibitory to pyramidals 60 

Synaptic parameters 
tdei (pyramidal to pyr./inh.) (3 - 12 ma) 
tdur (pyramidal to pyr./inh.) 5 ms 
•Wgyn (pyramidal to pyr./inh.) 1 
tdei (fast inh. to pyramidal) 5 ms 
tdur (fast inh. to pyramidal) 12 ms 
Wsyn (fast inh. to pyramidal) - 1 5 
tdei (slow inh. to pyramidal) 10 ms 
tdur (slow inh. to pyramidal) 150 ms 
Wsyn (slow inh. to pyramidal) - 1 
tdei (LOT to pyramidal) (1—4 ms) 
tduT (LOT to pyramidal) 5 ms 
Wsyn (LOT to pyramidal) 4 

Mean connection range, 1/A (normalized distance) 
pyramidal to pyramidal 2 
pyramidal to fast inhibitory 10 
pyramidal to slow inhibitory 10 
fast inhibitory to pyramidals 10 
slow inhibitory to pyramidals 10 
LOT to pyramidals 2 

TABLE VII 

N U M E R I C A L VALUES O F P A R A M E T E R S IN T H E P I R I F O R M C O R T E X M O D E L 
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Abstract 

Biologically motivated simulation of large scale neural networks is a computationally costly task. In 

this paper, a commodity 8-node Beowulf architecture is proposed as a scalable low cost environment 

for studies of cortical dynamics. By means of a distributed message-based event-driven framework, the 

size of memory-limited tractable problems increased 8-fold, resulting in a mere 8.3% increase in elapsed 

CPU time, attributable to inter-process communication overhead. The attainable network size reached 

over 10® neurons and 2.5 10̂  synapses, with a typical performance of 900 s, Beowulf processing time, 

per simulated second. 
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1 Introduct ion 

Biophysical neuron models rely on analogue descriptions of the spatio-temporal patterns of elec-

trical activity in living cells [1]. Although physically accurate, these models are computationally 

intensive, requiring the numerical integration of systems of non-linear differential equations. 

Work on large scale neural simulations has often resorted to parallel architectures to achieve 

the necessary processing power [2, 3, 4, 5]. Although substantial performance increases have been 

demonstrated with hypercube architectures (see for example [6]), the cost of these platforms and 

the considerable development involved in the customization of the simulation environments, have 

limited the impact of parallel architectures in the field of neural simulation. 

Cell automata models can substantially decrease the demand for processing power [7], since 

they are suitable for event-driven rather analogue simulation frameworks. Moreover, distributed 

computation can take advantage of the efficiency inherent to event-driven simulation to achieve 

further increases in the size of the tractable problems. 

Beowulfs constitute an emerging technology aiming at delivering parallel processing power 

at a reasonable cost by interconnecting commodity single processor PC-based architectures with 

high speed data links [8, 9, 10]. Their application to simulation of neuronal dynamics is still in 

its infancy [11]. 

This paper presents results regarding the application of Beowulf systems to the study of 

cortical dynamics. The emphasis is on problem scalability employing a distributed event-driven 

framework. 

The cortical model will be briefly described first. Next, the Beowulf under test and the inter-

node communication algorithms will be presented. Finally, its performance will be evaluated for 

various cortical network sizes and topologies. 

2 Cortical model 

The cortical model consists of a set 2-D lattices of automaton-like neurons suitable for message-

based event-driven (MBED) simulation. Action potentials are represented by pulses propagating 

across the network, a mechanism implemented by message broadcasting between the entities in 
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the model. Synapses introduce a time lag, implement pulse stretching and have associated weight 

terms. Neurons generate a spike when the weighted sum of simultaneously active synaptic inputs 

yields a value above an specified threshold. This is followed by an absolute refractory period, 

after which, the neuron returns to its initial (excitable) state. Time is represented by integer 

multiples of a basic simulation time unit of 1ms. 

Three classes of cells were included; excitatory (pyramidal), fast inhibitory (GABAa) and slow 

inhibitory (GABAb), with synaptic parameters in accordance with electrophysiological data. 

The connectivity was guided by previous experimental and modelling work of the olfactory 

cortex [12]. Excitatory-excitatory connections are long-range (network-wide) whereas excitatory-

inhibitory connections are local. No inhibitory-inhibitory synapses were included. 

Within each 2-D lattice, input activity was randomly distributed over time and cortical area 

and generated by a fourth pool of neurons. Its intensity, as well as firing thresholds across 

the network, were adjusted to replicate previously described cortical waves. Each individual 

2-D lattice, a neural sub-aggregate, establishes connections through axonal bundles with other 

lattices to make up the multi-lattice aggregate. 

The strategy followed to distribute the simulation across the cluster was to assign each one 

of the equal size sub-aggregates to a Beowulf node, yielding a majcimum attainable size of 8 

sub-aggregates with 1.75 10^ neurons and 31.45 10® synapses each. 

3 Beowulf p la t form 

The Beowulf platform under test is illustrated in figure 1-A. It consists of 8 single processor 

Athlon (AMD-K7) machines running Linux RedHat 6.0 with an aggregate peak performance of 

900 MegaFlops, with 2 Gigabytes of memory (256 Mbytes per node) and 100 GigaBytes of disk 

space. Two SuperStack II 3C16464A 3C0M Fast Ethernet switches interconnect the nodes in 

a star-like topology. An extra node (totalling 9 nodes) functions as a server in charge of job 

scheduling across the 8-node architecture and other maintenance tasks. This computer does not 

participate in distributed computations. Inter-process communications make use of the LAM 

6.3.1 [13] free implementation of the Message Passing Interface (MPI) [14] libraries. 
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Chained-Star 

Figure 1; A - Schematic diagram of the Beowulf, B - Neural aggrega te topologies under test 

4 Inter-aggregate communications 

Process synchronization is necessary in the context of distributed message-based event-driven 

simulation [15] in order to compensate for the unavoidable workload imbalance between sim-

ulation processes. Without a synchronization mechanism, a time lag would arise between the 

simulation clocks of different processes, which could lead to the loss of inter-process messages 

when the simulation clock at the receiving end is advanced with respect to that of the process 

originating the message. 

Figure 2 provides a complete flow-chart description of the implemented synchronization mech-

anism. Upon initialization, all processes are synchronized to the time slice t = 0 ms. At the 

end of each of the subsequent time steps, each process broadccists a (ermmofzom message (TM) 

to the others. At this point, the process awaits the reception of the corresponding N-1 TM's (N 

being the number of nodes) from the rest of the cluster. In the, meantime, it continues receiving 

action potential messages from those nodes where the current time step is still under execution. 

All processes, having finished the current time slice, propose the next value for the global 

simulation clock; this is taken ag the scheduling time of the Hrst message in their respective 

local priority queues. Each process broadcasts its proposed value to process 0, which acts as the 

coordinator. Of the proposed times, process 0 selects the minimum and broadcasts the value 

to the rest of the nodes, which set their respective local simulation clocks to the agreed value 
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Figure 2: Synchronization algorithm to achieve a cluster-wide coordinated simulation clock 
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and start processing the messages in their queues (if any) scheduled for this consensued clock 

time. The simulation Anishes when the agreed global simulation clock takes a value beyond the 

speci6ed simulation stop time. 

Another issue regarding inter-node communications, the mapping between action potentials 

and MPI messages, bears relevance to the overall simulation efBciency. A one-to-one relationship 

between inter-node MPI messages and propagated action potentials would constitute an inefBcient 

strategy, resulting in a large number of small size messages quickly exhausting the available 

communication bandwidth. The number of MPI messages for inter-node communication can be 

minimized, however, by means of a buffering mechanism. The firing of a neuron triggers the 

addition of its neuron id, a 4-byte integer, to the buffer. Upon finishing a time slice or whenever 

the buffer is full, its contents, the list of identifiers of firing neurons and a 4-byte header set 

to the actual number of entries in the data structure, are sent as a single MPI message. The 

destination nodes are those machines which, in the previously specified neuronal topologically, 

directly receive axonal tracks. The experiments carried out in this paper made use of a 10 Kbyte 

buffer which proved sufficiently large to avoid buffer overflow in all the tested cases. 

5 Results 

The cortical model described in section 2 waa chosen as the atomic sub-aggregate (the portion 

of the network simulated by one node) because previous studies had shown that it was capable 

of replicating experimental data on cortical dynamics. Thus, the results of the benchmarking 

are likely to be representative of the performance attainable with a wide range of biologically 

realistic neural simulation problems. 

Given an arbitrarily chosen set of brain areas, only a subset of all the possible pairs would 

be directly connected by axonal bundles. Assuming a one-to-one mapping between nodes in the 

cluster and modelled brain regions, it follows that several logical cluster topologies are possible. 

For performance evaluation, models with various numbers of modules (1-8) and patterns of axonal 

bundles were simulated in order to explore the effect of these parameters on the elapsed time. 

Figure 1-B depicts the simulated topologies. 

Further, special care was taken to ensure that the performance evaluation was carried out 
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with realistic neural simulations; since the performance of an MBED simulation engine is strongly 

affected by the network activity pattern, misleading performance studies can result from sim-

ulations with exceedingly low or high neuronal activity. Parameter space search is needed to 

End the configuration that results in realistic activity in all the nodes conforming the cluster. 

This is a computationally costly problem in itself, and aggravated by the fact that a new set of 

parameters hcis to be found for each one of the logical cluster topologies under test. 

A convenient simplification of the network model was put in place to achieve realistic activity 

and inter-node communication overhead for all nodes while eliminating the need for compu-

tationally intensive parameter space searches. Each sub-aggregate includes a pool of neurons 

which provides stimulation. The inter-module neuronal spikes transported by aEerent bundles 

(and implemented by means of MPI messaging) is actually transmitted to retain the performance 

degradation caused by communication overhead. This guarantees the validity of the performance 

results. However, the receiving end disregards the incoming trains of action potentials, and takes 

its input from the stimulus neuronal pool. The dynamics of such a network is simpler and the 

parameter space search needs to be carried out once and with a single sub-aggregate rather than 

with the entire network. 

In this way, (1) all sub-aggregates display a realistic level of intra and inter-aggregate activ-

ity irrespective of network size and topology, (2) the inter-node data are actually transmitted 

to evaluate the effect on the performance and (3) computationally expensive parameter space 

searches are avoided. 

Figure 3-A plots the time taken by simulations of 1 s of network activity. The lower trace cor-

responds to the measured elapsed times averaged over the four topologies tested: unconnected, 

chain, star and chained-star. For comparison, the upper trace represents a linear estimation of the 

time taken to simulate equivalent network sizes on a single-processor architecture. Actual mea-

surements of single-processor times could not be performed given that individucU sub-aggregates, 

totalling 1.75 10® neurons, were already at the limit of memory resources. The estimated values 

for a single-processor platform were calculated with a linear approximation; the time taken by 

the simulation of a network aggregate of N sub-aggregates running on a single node (assum-

ing enough memory space) was approximated by N times the measured time taken by a single 

sub-aggregate running on a single node. 
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Linear versus actual beowulf performance 
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Figure 3: Elapsed t ime versus number of nodes and network size, A - Beowulf averaged over tes ted 

topologies compared with linear es t imat ion, B - Beowulf for various ne twork topologies 

The flat profile of the Beowulf system indicates that, within the measured range of 1-8 nodes, 

network size can be increased with nearly constant elapsed times. Quantification of Beowulf 

results is possible with figure 3-B, which shows the elapsed time for the four network layouts 

tested. Considering the shortest (874.14 s) and longest simulations (947.4 s), an 8-fold increase 

in network size (from 1 to 8 nodes) results in a mere 8.3% in elapsed time in the worst case. 

The low overhead incurred by the migration from single node to Beowulf distributed pro-

cessing results from the low communication requirements when compared to the computation 

part. Further, the used inter-node bandwidth represents a small fraction of the available band-

width. The measured average size of an inter-node packet carrying the contents of the spike 

buffer described in the previous section was 8915.76 bytes (2227.94 spikes x 4 bytes per spike 

+ 4 bytes header). The number of packets travelling through the switch during a 1 s simula-

tion was measured to be C x 10^, where c is the number of inter-node unidirectional channels 

(arrows in figure 1-B) in the topology under test. For instance, 28000 packets were transmitted 

for the 8 nodp chained-star network which results from 28 inter-node channels and 1000 time 

slices of 1 ms per simulated second. It follows that the total amount of data communicated 

between nodes throughout the entire simulation wcis approximately 28000 x 10 Kb, 280 Mbytes. 

10 
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This corresponds to 320 Kbytes/s (considering an elapsed time of 874.14 s), which is well below 

the approximately 40 Mbytes/s of available bandwidth (estimated with in-house benchmarking 

tools). 

6 Conclusions 

This paper has presented preliminary results concerning the scalability of a message-based event-

driven framework for biologically motivated neural simulation on Beowulf architectures. The 

experiments carried out with an 8-node Beowulf indicate that the migration from a single node 

to this parallel environment results in an 8-fold increase in aggregate size with an 8.3% increase 

in elapsed time; the total size of the distributed aggregate reached 10^ neurons with an average 

of 179 synapses per cell. 

Further tests are needed with Beowulfs in excess of 8 nodes to explore the scalability to larger 

simulations. Nevertheless, the results already obtained with an 8-node cluster indicate that low 

communication overhead can be achieved with an event-driven framework, resulting in efficient 

scalability. 

The cortical model used for the benchmarking purposes has been developed as part of ongoing 

research on the dynamics of the piriform olfactory cortex. This cortical region contains approxi-

mately 10^ neurons with several thousand synapses per cell [16]. Further code optimization and 

an increase in the number of nodes promise to make such problem sizes tractable using clusters 

of commodity computers. 
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