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Whilst nonlinear system modelling, analysis and control are fundamentally important 
to a wide range of industries, they are difficult in practice due to nonlinearities and lack of 
precise knowledge of the systems, and therefore lack of developed theoretical and instrumental 
techniques. Among various efforts trying to overcome the difficulties, local schemes play an 
important role. Local methods are promising because: 1. Naturally any complex nonlinear 
system exhibits relatively simple behaviour in local areas, and 2. by obtaining simple local 
models for nonlinear systems, the maturely developed classical techniques such as linear theory 
can be employed to solve nonlinear problems. 

However, currently the proposed local techniques using such as fuzzy system and neural 
networks are still suffering from the curse of dimensionality, the huge computing load in 
interpolation areas, and the problem of being unable to provide efficient control strategies 
for various nonlinear systems in practice. As an attempt to overcome some of the problems, 
this thesis is devoted to the development of methods for local modelling, control and stability 
analysis. The work of this thesis can be summarized as: 1. Local modelling: a new fuzzy mod-
elling algorithm and an optimal piecewise locally linear modelling algorithm are developed. 
The methods are able to derive local models from experimental data of nonlinear systems and 
avoid the curse of dimensionality. 2. Local Lyapunov stability: new conditions of Lyapunov 
stability of local systems are derived. The conditions incorporate the input membership or 
interpolation function characteristics and consequently only one local Lyapunov function even 
in an interpolation region needs to be searched. This both relaxes the stability conditions 
and reduces the computation load in solving the stability problems. 3. Controller design: 
Following the modelling and stability results obtained, this thesis has formulated and solved 
the problem of robust feedback stabilization for a broad class of fuzzy systems. The results 
have two advantages compared with other methods: 1. It is capable of handling modelling 
error and parametric uncertainty, and 2. by using the stability results derived in this thesis, the 
design solutions are minimally less conservative and the design process is easy to perform as a 
problem of solving linear matrix inequalities. Also, the control problem of a class of nonlinear 
systems whose parameters are unknown nonlinear functions of the measurable operating point 
is solved for the most general case of an MIMO system whose operating point is completely 
dependent on the system states. 

Some open problems for further research are discussed at the end of this thesis. 
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Chapter 1 

Introduction 

Dynamic system analysis and control are fundamentally important to a wide range 

of industries, and as the requirements for improved performance and plant efficiency 

increase they are also becoming instrumental in coping with increased complexity 

and the need to guarantee quality of real time nonlinear systems. At the same time, 

increased performance demands over wide operating ranges force control engineers 

to move from linear to nonlinear techniques. More and more often, linear techniques 

fall short in analysis of complex control systems. Unfortunately, there is not a mature 

systematic theory and methodology for dealing with nonlinear systems. The main 

problems of nonlinear systems that face engineers are due to nonlinearities and lack 

of precise knowledge of the system dynamic, to which linear modelling and control 

techniques are not applicable directly. Recently, a few researchers have made efforts 

to overcome the difficluties. A significant result is the constructive nonlinear con-

troller design techonology presented by French et. al. (French, Szepesvari and Rogers, 

2000a; French, Szepesvari and Rogers, 2000b; French, Szepesvari and Rogers, 2000c; 

French and Rogers, 2000a) which concerns controlling uncertain nonlinear systems 

via adaptive techniques by evaluating the performance of adaptive controllers, and 

comparing them against eg. robust designs. This has involved developing techniques 

which allow lower and upper bound estimates to be made of eg. LQ performance. 

Uniquely in adaptive control theory, they are accounting for the control effort in the 

cost. Also, some motheds to apply stability theory to design a class of neuro-fuzzy 

feedback control schemes are introduced by (French and Rogers, 2(X)0b). 

An alternative efficient solution for this difficulty is to consider the problems 

ZocaZZy because, generally speaking, a multiple local modelling approach can be more 

efficient in capturing the real system dynamics than a single global nonlinear mod-

el, and relatively simpler local models enable classical control design and stability 

1 
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analysis methods to be applicable if and only if there is some mechanism linking 

local behaviour such as stability to global behaviour. Aiming at this objective, this 

thesis addresses the modelling and control of complex, nonlinear, a pnon unknown 

systems by means of techniques based on a piecewise local model structure. Methods 

are described in subsequent chapters for the development of local models from data, 

for the design of control systems which makes use of the derived models, and for the 

stability analysis of the resulting composite systems. 

This chapter initially gives a general view of local modelling and control in section 

1.1. Then in section 1.2 the contributions of this thesis are summarized. Finally, the 

outline of the thesis is given in section 1.3 

1.1 Local methods for modelling and control 

Within the local model framework, we typically have three kinds of tasks to perform: 

# modelling: including decomposition of the operating space and model paramet-

ric estimation, 

# controller design, and 

# stability determination of the resulting composite system. 

In the following we briefly review the states in the three domains. 

1.1.1 Modelling 

In system engineering, modelling and identification are important steps in the design of 

controllers, supervision systems and fault-detection systems. Modem production and 

manufacturing methods in industry, combined with the growing demands concerning 

product lifetime, quality, flexibility in production, and safety, have increased the perfor-

mance requirements placed on the control systems. Production is often characterized 

by frequent changes in product throughout, product mix, operating point and operating 

conditions. To satisfy the increasingly tight quality requirements, control systems must 

guarantee high performance over a wide range of operating conditions. Under these 

conditions, process modelling often becomes a m^or bottleneck for the application of 

advanced model-based techniques. Many systems are not amenable to conventional 

modelling approaches due to the lack of precise, formal knowledge about the system, 

strong nonlinear behaviour, a high degree of uncertainty, time varying characteristics. 
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etc. Examples of such systems can be found not only in the process industry, Aexible 

manufacturing, aerospace engineering, chemical engineering, but also in ecological, 

social or financial domains. 

A natural way to overcome the difficulties raised above is to use local modelling. 

Often, in a large range of complex systems, the system behaviour varies according to 

some kind of operating point. If the operating point space is split into a number of 

smaller areas, it is reasonable to expect the system behaviour to be much simpler, for 

example, allowing linear approximation in the local areas to a satisfactory accuracy. 

The overall model then can be obtained by combining the local models by means of 

interpolation. 

A local modelling strategy needs to solve two problems, ie., 

1. how to minimally partition the operating point space, and 

2. how to identify the consequent local models which includes determination of the 

model structure and estimating the model parameters. 

Because it is always supposed that the system behaviour in local areas is relatively 

simple, the second problem can be solved by employing conventional mature control 

theories. Therefore, the research here focuses on the partitioning strategy problem. 

Currently, there are two kinds of partitioning methodologies. One is clustering which 

originated from fuzzy modelling, and the other is to recursively orthogonally partition 

each axis of the operating point space to a satisfactory level. 

A m^or drawback of orthogonal partitioning is the cwrje q/" 

ty (Brown and Harris, 1994). It is easy to see that, if the dimension of the operating 

point space is high, the number of local areas grows rapidly whilst the partitioning in-

creases. Clustering avoids the curse of dimensionality, but usually the number of local 

areas needs to be known a priori, which obviously is a prior knowledge requirement 

of the unknown system, limiting the use in practice to modelling purely from data 

observation. 

1.1.2 Stability analysis 

Among various stability theories, Lyapunov techniques are very useful in system anal-

ysis. Not only do they allow stability analysis and gain computation, but they are also 

useful in the solution of optimal control problems. This makes Lyapunov techniques 

a natural basis for the analysis of local systems. Irrespective of the precise definition 

that we choose to use, stability is an intuitive property that a system response does not 

explode, ie., does not go to infinity. 
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Stability analysis of dynamic systems was pioneered by Lyapunov more than one 

hundred years ago. There is a close relation between Lyapunov stability and notions 

of energy. The key idea was that if every motion of a system has the property that its 

energy decreases with time, the system must eventually come to rest irrespective of its 

initial state (Lyapunov, 1892; Lyapunov, 1992). An energy measure of the system is 

called a Lyapw/iov ywMcn'oM for the system. It is a very useful tool in system theory. 

For some systems, physical insight may hint at the selection of appropriate energy 

functions. But, for the great m^ority of systems, the choice is much less obvious. To 

this day, the main obstacle in the use of Lyapunov's method for a general system is the 

nontrivial process of finding an appropriate Lyapunov function. 

Nevertheless, the situation is much simpler for linear systems of the form 

A:=A%. (1.1) 

Lyapunov showed that for asymptotic stability of linear systems it is both necessary and 

sufficient that there exists a quadratic Lyapunov function V(x) = x^fx. The conditions 

that such a function be proper, and that its value decreases along all motions of the 

linear systems result in the well-known Zj/apw/zov mggwaZffzgj' 

f > 0 , + (1.2) 

In today's terminology, we would say that these conditions are Zmear mamz rnggwaZ-

ities in P. The inequalities admit an explicit solution. In fact, by picking an arbitrary 

positive definite matrix <2 = <2̂  > 0, the stabihty of (1.1) can be assessed from the 

solution f to the system of linear equalities 

+ = - g . 

The system is ajyTMpfoncaZZy if and only if f is positive definite. 

In the light of the above observation, a natural idea of solving the stability prob-

lems for nonlinear systems is to decompose the global system into a number of locally 

linear subsystems and then consider the stability problem of subsystems locally. If a 

nonlinear system can be decomposed into a set of locally linear subsystems, then Lya-

punov functions for the subsystems can be found easily in the local area, and a global 

Lyapunov function, which is termed as a Zj/apw/zov /imcn'oM in this thesis, 

can be formed from the local Lyapunov functions via some interpolation procedure. 

There are a number of different researches toward this general objective (Johansson, 

1999; Branicky, 1995; Hassibi and Boyd, 1998). The key point is to develop appropri-

ate methods to cope with the interpolation problem, about which there are two kinds of 
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techniques developed to date: One is making the local Lyapunov functions to be con-

tinuous in the interpolation areas, and another one is ensuring that the local Lyapunov 

functions are non increasing in the interpolation areas while allowing discontinuity. 

Both of the results can be reformulated as problems that require the solution of linear 

matrix inequalities. 

A common drawback of the existing methods is that they need to consider all local 

models involved in a interpolation area whilst forming conditions requiring the search 

for local Lyapunov functions. That is to say, any single local Lyapunov function in 

one area has to fulfill certain conditions within all areas which have intersections with 

that area. Consequently, it may be required to solve a large number of linear matrix 

inequalities in the interpolation regions between the system submodels. In addition 

to the high number of linear matrix inequalities, the computation complexity and cost 

also increases dramatically as the input dimensionality increases. This means that the 

number of parameters involved in the optimization process becomes prohibitively large 

for large dimensional systems. 

1.1.3 Controller design 

The controller design techniques strongly dependent on the derived system model 

structure. In the local modelling structure, since the relatively simple local models 

are available, conventional controller design techniques can be employed. However, 

research is needed to develop methods of integrating the local controllers to form a 

global controller. There are a wide range of classes of controller design methods in this 

area. As representative examples, this thesis considers two particular control problems 

for local model structures: 

1. Feedback stabilizing control based on state space fuzzy systems. Fuzzy log-

fc coMfmZ (FCL) has recently proved to be a successful control approach for 

complex nonlinear systems and has been suggested as an alternative approach 

to conventional control techniques in many case. FLC techniques represent 

a means of both collecting human knowledge and expertise and dealing with 

impression and uncertainties in the control process. Fuzzy control usually de-

composes a complex system into several subsystems and uses a simple control 

law to emulate, say, the human control strategy in each local operating region. 

The global control law is then constructed by combining all the local control 

actions through fuzzy membership functions. 

One of the basic forms of FLC is theygg<j6acA: confmZZgr. The idea 
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is to design a state feedback controller for each local state space model and to 

construct the global controller from those local controllers in such a way that 

the global fuzzy control system is stable. Most of results to date deal with the 

state feedback control that requires the states of the fuzzy dynamical systems 

to be available or measured. In many cases, this requirement is too restrictive. 

Recently, there have appeared a few results of output feedback control design for 

fuzzy dynamical systems. However, the design methods are non-constructive, 

and, many iterative trials might be needed before an acceptable controller is 

found. 

Using certain special simple structure for local models, eg., linear structure or 

afGne structure, a feedback stabilizing problem for fuzzy systems can be trans-

formed into a linear matrix inequality problem. Therefore, the control problem 

Anally becomes a stability analysis problem which we described above, inherit-

ing the same problem, ie., the high number of linear matrix inequalities in the 

intersection areas. 

Another consideration is the robustness of the controller against modelling error 

and parametric uncertainty, which has been ignored in most recent research. 

2. Adaptive control based on a class of quasi-linear system models with neu-

rofuzzy parameters. In the design of nonlinear control systems linearisation 

about a set of fixed, known operating points is a natural and standard solution 

as it leads to a locally linear model for which a controller can be synthesized 

by classical linear control design methods. For many practical processes (e.g., 

aircraft gas turbines or ship dynamics), the operating point varies either as a 

function of independent parameters (such as mach number and altitude for an 

aero-gas turbine) or more usually, as a function of the system states. This phe-

nomenon justifies the importance of a class of special local modelling structure, 

ie., the quasi-linear system model with operating point dependent parameters of 

the form (Brown and Harris, 1994; Wang, Brown and Harris, 1996) 

y(r-l-l) = ai(Of)y(r)-| t -aM(Of)y( f -»+l ) 

-\-b\ ((9;)u(? — d) — d — m-\- V). (1.3) 

If the system is single input single output, and the operating point is independent 

of the system states, an on-line adaptive controller of the 1 -step ahead predictor 

kind has been constructed by solving a simplified Diophantine equation, which 

ensures tracking property. Stability of the resultant closed loop system is estab-

lished (Wang, Brown and Harris, 1996). 
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It is clear that in practice most systems are multivariable input multivariable out-

put (MIMO). Also, for this model structure, it is more common that the operating 

point dependents on the system states. For this kind of M7M0 

opgrafmg pomf the results obtained in Wang, Brown and Harris (1996) is 

not applicable. Therefore, further research is needed for the general cases which 

obviously have something to do with strong nonlinearities. 

1.2 The contributions of this thesis 

This thesis is not intended to be a complete exposition of local modelling and control. 

Its aim is to elaborate on certain specific ideas and concepts and develop them into 

useful techniques, as an attempt to rise to the challenges proposed in the last section. 

The thesis includes the following new results: 

1. Two kinds of new local modelling techniques are developed in chapter 3 for 

constructing data based model of a dynamical system by new methods of par-

titioning the data input space. The methods are able to derive a system model 

from data automatically and avoid the curse of dimension problem usually asso-

ciated with orthogonally partition methods used conventionally in fuzzy logic, 

neurofuzzy algorithms and in RBF networks. 

2. New Lyapunov stability conditions for local model structure are derived in chap-

ter 5. This new approach includes a consideration of the input membership 

functions, via this a reduction in the number of candidate Lyapunov functions 

and associated linear matrix inequalities is produced. This approach significantly 

reduces the computational load associated with determining closed loop stability 

as the input dimension increases. 

3. Based on the derived piecewise Lyapunov functions, new design techniques for 

state feedback and output feedback controllers for a class of fuzzy systems are 

proposed in chapter 6. The resultant controller is robust against measurement 

and modelling perturbations. The design conditions are non-conservative, and 

the design process is easy to construct by using commercially supported linear 

matrix inequalities software packages. 

4. A neurofuzzy based scheme for modelling and control of the local model struc-

ture of (1.3) is developed in chapter 7. The model is a class of nonlinear systems 

with an ARMA like model (a generalized Takagi-Sugeno fuzzy model), whose 
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parameters are unknown nonlinear functions of the input and output variables 

or states of the plant. An associative memory network is used to identify each 

nonlinear function. The controller is a feedback linearising control law which 

can decouple the nonlinearity of the system. For the cases of adaptive and the 

fixed model parameters, detailed closed-loop stability analysis is carried out. It 

is shown that the consequent closed-loop system is globally stable. The main 

assumptions placed on the system and model for stability are minimum phase 

and a limit on the modeling mismatch error or uncertainty. Simulation examples 

are given in chapter 7 to illustrate the efficacy of the proposed approach. 

1.3 Outline of the thesis 

There are eight chapters in this thesis. Beside this introduction chapter, the remaining 

chapters are concerned with: 

After illustrating the concept of local modelling, this chapter presents an overview of 

the existing methods of local modelling. Two kinds of local models are discussed: 

Fuzzy models and quasi-linear system models of the form (1.3). Basic modelling 

strategies and some convergent results are introduced. 

This chapter focuses on developing new local modelling algorithms. Two types of the 

model structures are considered. One is a kind of fuzzy models and another one is 

the optimal piecewise locally linear model structure. New partitioning methods are 

developed and local model identification is incorporated in the algorithms. 

CAapfgr f q/Fwzry 

This chapter gives basic concepts and results concerning the Lyapunov stability analy-

sis of local models. Quadratic Lyapunov functions and piecewise Lyapunov functions 

for both continuous time and discrete time systems are discussed. The advances of the 

research in this area are formulated as a number of theorems which will be used in 

subsequent chapters. 

This chapter addresses the stability analysis of piecewise local systems. By incorpo-
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rating the input membership function characteristics, it is shown that, under certain 

conditions placed on the input membership functions, we need only search for one 

local Lyapunov function even in the intermodel interpolation region. This both relax-

es the stability conditions and reduces the computation load in solving the resultant 

reduced number of LMIs. 

6 coMfmZ q/Ywzzy 

Following the results obtained in the preceding chapters, this chapter formulates and 

solves the problem of robust stabilization for a broad class of fuzzy systems. Both 

state feedback controller and output controller design methods are derived by seeking 

a piecewise Lyapunov function for the closed-loop system so that the design solutions 

are minimally less conservative. 

7 vg Ngwrq/wzzy CoMfroZ /or A CZa 

This chapter concerns the control problems of quasi-linear systems with neurofuzzy 

parameters. The operating point dependent processes considered in this chapter are 

the most general form, ie., the multivariable input multivariable output system with 

state vectors as the operating points. A stable decoupling controller design method 

is developed. If the coefficients are a priori unknown, a modified recursive least 

square algorithm combined with feedback linearising controller is employed to de-

sign an adaptive control system. For both cases, the closed loop system stability is 

analysed in detail and the weight convergence is shown to be guaranteed, for practical 

implementation the resultant controllers can be realized as conventional controllers or 

as neurofuzzy controllers. 

Chapters Conclusions 

This chapter gives the conclusions of the thesis, together with some suggestions for 

further research. 

The content from chapter 3 to chapter 7 are all original contributions, which have 

been published in: 

» A(fva»cgf m A^gwrc^z^ AZgonY/zfM.y ybr RgaZ-nmg Mo<:(g/ZzMg CoMfroZ, J. 

Engineering Application of AI, Vol. 9, 1996, p. 1-16. 

# Ajpgcff q/ fAg TTigoA]; oMcf AppZicafzo/z q/" /MfgZZ/ggMf Mô ZgZZmg, CoMfroZ a/W 

Proc. 2nd Asian Control Conference, 1997, p. 1-10. 
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# CZoj.yq/^AafgDgpgWgMfNoMZmearfrocg^y^y-

es, International Journal of System Science, Vol 29, 1998, p.759-771. 

# A new parffn'oMmg approach /or /wzzy Proceedings of 3rd 

World Multiconference on Systemics, Cybernetic and Informatics (SCr99) and 

5th International Conference on Information Systems Analysis and Synthesis 

(ISAS'99), Orlando, Florida, USA, July 31 - August 4, 1999. 

# Opfz/MaZ f fgcewMg Zoca/Z); Zmear SPIE AeroSense'99,Applications 

and Science of Computational Intelligence II, Orlando, USA, 1999. 

# Pfgcgyvfjg Submitted to the IEEE 

Transactions on SMC, 1999. 

# v;a Zmgar Accepted 

for publication, International Journal of System Science, To appear 2000. 



Chapter 2 

Local modelling 

2.1 Introduction 

Developing mathematical models of real systems is a central topic in many disciplines 

of engineering and science. Models can be used for simulation, diagnosis, monitoring, 

analysis of the system's behavior, better understanding of the underlying mechanisms 

in the system, design of new processes, and for controlling systems. 

While most real processes are complex and nonlinear, unfortunately, the m^or-

ity modelling methods are currently developed to a mature level for linear systems 

only (Harris, Brown, Bossley, Mills and Feng, 1996; Harris, Wu and Feng, 1997; 

D'Azzo and Houpi, 1995). As a result, many practical systems are not amenable to 

conventional modelling approaches. 

To overcome such difficulties, one solution is to model a globally nonlinear sys-

tem in terms of a series of local models. In fact, any model will only have a limited 

range of validity. This may be restricted by the modelling assumptions for a mechanis-

tic model, or by the experimental conditions under which the data was logged for an 

empirical model. Global modelling is complicated, or maybe impossible because of 

the need to describe the interactions between a large number of phenomena that appear 

globally. Alternatively, local modelling may be considerably simpler because locally 

there may be a smaller number of phenomena that are relevant, and their interactions 

are less complex. Consequently, within a local modelling framework, it is possible to 

construct relatively simpler local models and associated controllers. For example, the 

local nature of model representation has computational advantages when the model 

is applied for model based control, and in particular adaptive control. One reason 

is that only a few model parameters will be relevant at a given instant. Hence, drift 

phenomena will be reduced in an on-line parameter estimator caused by lack of global 

11 
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persistence of excitation. 

Alternatively if linear models are selected as local models, the well-established 

linear techniques (D'Azzo and Houpi, 1995) are directly applicable to nonlinear sys-

tems, which is clearly a great advantage of local modelling. 

Region 2 

Region 1 

Region 3 
Region 4 

Figure 2.1: The set of two-dimensional operating points is decomposed into four regions 

Local modelling framework can be conceptually illustrated as in Figure 2.1, which 

is adapted from Johansen (1994b). The system's full range of operation (which we 

refer to as the operating point space) is completely covered by a number of possibly 

overlapping regzoMj. In each operating region the system is modeled by 

a ZocaZ mocfeZ, and the local models can be combined into a using an 

interpolation technique between each region. Design approaches differ from each other 

by their policies of operating point space partitioning, local model structure, and in-

terpolation strategies. This chapter describes a number of modelling approaches using 

clustering or axis orthogonal partitioning, common neurofuzzy interpolation strategies. 

The local models can be linear, afOne or nonlinear; discrete time or continuous time; 

input-output or state space models. In next chapter, two new modelling approaches 

will be introduced which have new partitioning and interpolation strategies. 

Before get into details of local modelling, let us hrst have a look of various types 

nonlinear systems which will be the study objects in subsequent chapters. 
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2.1.1 Discrete-time nonlinear systems 

Suppose a multi-input multi-output (MIMO) nonlinear system can be described by a 

discrete time series model 

y(^ + 1) = g(yW,'" " , u ( f - a f - m + l ) ) . (2.1) 

where g(-) is an unknown nonlinear input/output (I/O) function, {u(?),y(?)}^j are 

measured input/output vector pairs, the integers n and m are known a priori or assumed 

system orders and is the known time delay of the system. 

Define 

u(f — 1) 

y? = 

y ( f - M + 1) 

y(r - M + 2) 

y(0 

u 

and 

f(yf,Uf) = 

u(f — d — /w + 2) 

u(? — (f) 

y(f-M + 1) 

y(? — 1) 

g ( y W , ' " , y ( ^ - M + i ) , u ( f - ^ ) , - " , u ( f - ^ - 7 M + i ) ) 

Then we obtain a nonlinear discrete-time multivariable dynamical system of the form 

yr+l =f(yf,U(), (2.2) 

generating an output sequence {y^}. Here f ( ) is some unknown nonlinear vector 

function. We define = [y^ so that (2.2) becomes 

yf+i=f(Xf). (2.3) 

If y(f) e u(r) e then x, E 

Remark: The expression of (2.3) essentially means that all MIMO systems can be 

considered as a surface mapping from a {np-\-mq) dimensional space into p dimen-

sional output space, hence the use of any neural network approximation algorithm for 

modelling (2.3) (or (2.1)) from observation data {Xf,yf} (Brown and Harris, 1994). 

The state space counterpart of (2.1) is 

x ( r + l ) = f(x(f) ,u(f) /) , 

y(f) = g(x(f),u(f),r). (2.4) 

where the notations of f and g have nothing to do with those in (2.1), (2.2) and (2.3). 
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2.1.2 Continuous-time nonlinear systems 

Many modelling and control algorithms are expressed in the continuous time domain, 

using measured variable which assess the state of the plant, the control signal and the 

desired plant's response, in order to predict the change in the plant's state (model) or 

to calculate the required change in control signal necessary to make the plant behave 

as required. A general unknown connnwofty-n/Mg no/zZmgar can be 

described by (Brown and Harris, 1994) 

x(f) = f(x(f),u(f),f), 

y(f) = g(x(f),r). (2.5) 

Given a set of input/output data {y(r),u(r)}, we are able to build a global nonlinear 

model for system (2.5). But if we do not further specify the structure of the functions 

/ and g in (2.5), the model (2.5) is not very useful in control and estimate problems. 

In practice we often need models with which it is easy to determine stability, design 

controllers, or estimate parameters. For example, sometimes we need to consider the 

AMo< ĝ/,(aff]ne with respect to input variables) which is a special case of (2.5): 

x(f) = f(x(r),f) + g(x(r),f)u(r), x ( f )E%" ,u ( f ) e% ' " , 

y(f) = Cx(r). (2.6) 

2.1.3 Modelling and identification of nonlinear systems 

Generally speaking, modelling and identification deals with the mapping of prior 

knowledge and empirical data to a model. While the former concerns finding a set 

of models that is likely to contain a model that describes the desired aspects of the 

system adequately, the latter needs to find a model within the model set that minimizes 

an objective criterion which measures the mismatch between the prediction of a given 

model and the empirical data. Obviously they are two stages involved in building a 

model for a plant. However, in this thesis, the term of modelling means the whole 

process of the model building, ie., given empirical data of the systems (2.1) - (2.6), 

find a suitable model which is able to describe the system to satisfactory accuracy to 

meet the application needs. There are a wide range of model structures from traditional 

mathematics models to intelligent model structures, among which fuzzy, neurofuzzy, 

and artificial neural networks (Brown and Harris, 1994) models are within the local 

modelling framework. As a typical representation, the fuzzy model structure is chosen 

to illustrate the local model idea. Also, another representive chosen in this thesis is a 

class of operating point dependent quasi-linear model described in (1.3). 



CHAPTERS. LOCAL MODELLING 15 

In the remainder of the chapter, a review of the two kinds of typical local mod-

elling methods is given. The first local model structure is fuzzy models which is 

reviewed in section 2.2 including its general description, and the constructing methods 

in section 2.3. A few useful types of Takagi-Sugeno fuzzy model are given in section 

2.4. In section 2.5, the quasi-linear model structure of (1.3) is discussed. Finally, 

section 2.6 concludes the chapter. 

2.2 Fuzzy modelling 

The concepts of fuzzy-set theory can be employed in the modelling of systems in 

a number of ways. The most often used are (Zadeh, 1973), 

Zmgar (Tanaka, Uejima and Asai, 1982) which generalizes convention-

al linear regression models by using fuzzy numbers as the model parameters, and 

wjmg cg/Z (Smith, Nokleby and Comer, 1994) which are a fuzzy 

variant of the systems based on cell-to-cell mappings (Hsu, 1980; Hsu, 1987). This 

thesis deals only with rule-based fuzzy systems, ie., systems where the relationships 

between variables are represented by a means of fuzzy if-then rules and an associated 

fuzzy inference mechanism. Fuzzy if-then rules take a general form: 

If oMfecgcfgnf proposition then con̂ ggwgMf proposifion. 

Depending on the particular form of the consequent proposition and on the structure 

of the rule base, three types of rule-based fuzzy models are distinguished: 

1. Lingwiffic /wzzy mô ZgZ (Zadeh, 1973; Driankov, Hellendoom and Reinfrank, 

1993), where both the antecedent and consequent are fuzzy propositions. 

2. rg/at;o»aZ7MO(ZgZ (Tong, 1979; Yi and Chung, 1993), which can be regard-

ed as a generalization of the linguistic model, allowing one particular antecedent 

proposition to be associated with several different consequent propositions via a 

fuzzy relation. 

3. 7a^g;-5'wgg»oyMzzy mocfeZ (Takagi and Sugeno, 1985; Sugeno and Tanaka, 

1991), where the consequent is a crisp function of the antecedent variables rather 

than a fuzzy proposition. 

2.2.1 Takagi-Sugeno fuzzy model 

A rule-based model suitable for the approximation of a large class of nonlinear systems 

was introduced by Takagi and Sugeno (1985). Concerning nonlinear model, the most 



general form of a Takagi-Sugeno fuzzy rule is 

: If z is A; then y, = f;(x), ; = 1,2, ...1, (2.7) 

where Rj denotes the ith rule and L is the number of rules in the rule base. The first 

part of the rule, called the is defined as a fuzzy proposition "z is A," where 

z G is a crisp vector called operating point, and A, is a fuzzy set defined by its 

(multivariate) 

'• 91^ —> [0,1]. 

The (fggrgg ((fegrgg c^frwrA) w>: (z) of the antecedent proposition for 

a given value of the vector z is evaluated as the degree of membership of this vector 

into the set A, : M); (z) = By means of fuzzy sets, the input space is partitioned 

into smaller regions, in which the modelling problem becomes more tractable. 

Since the consequents in the TS model are not fuzzy sets but crisp functions, the 

and reduced to a simple algebraic expression, similar to the 

fuzzy-mean defuzzification formula (Takagi and Sugeno, 1985): 

y = 

where W; (z) is the degree of fulfillment of the antecedent of the fth mle and y, is the 

output of the local consequent model of that rule. 

Defining the normalized degree of fulfillment W; (z) = W; (z)/^y^; 

model (2.7) the global output can be written simply as a weighted sum 

L 

1 
( = 1 

y = %W;(z)f,(x). (2.8) 

This representation is appealing, since many real systems naturally change be-

havior smoothly as a function of the operating point z, and the soft transition between 

the regions introduced by the fuzzy sets representations captures this feature in an 

elegant fashion. This makes TS model suitable for the approximation of a large class 

of nonlinear systems and therefore being considered as one of the most interesting 

approaches in the local modeling literature. 

If the f, (x) in (2.8) is chosen to be A^x + .B;, then we get the 73' 

y=A(z)x + B(z). (2.9) 



where A(z) and B(z) are convex linear combinations of the consequent parameters A, 

and Bi, ie., 

L L 

= Z (zMn ^(x) = Z (z)^, 
i= 1 i— 1 

The special structure of (2.9) facilitates the analysis of affine TS models in ± e frame-

work of polytopic systems (Boyd, Ghaoui, Feron and Balakrishnan, 1994). Therefore 

an affine TS model can be regarded as a mapping from the antecedent (input) space to 

a convex region (polytope) in the space of parameters of a quasi-linear system. This 

fact makes TS model attractive in stability analysis. There are a number of researches 

concerning the application of T-S models in real world systems. Readers please refer 

to (Ollero and Cuesta, 1998) for detail information. Also, the quasi-linear structure of 

(2.9) enable us to solve control problems by utilising linear control techniques. In this 

thesis we choose TS model for fuzzy modelling and control. 

2.3 Constructing fuzzy models 

Generally speaking, to develop a fuzzy model requires the following decisions (Babus-

k ^ l 9 9 6 ^ 

1. Choose the type of fuzzy model. 

2. Choose the inference and defuzzification methods and the particular fuzzy logic 

or set-theoretic operators. 

3. Develop the knowledge base, ie., the rules and the membership functions. 

4. Apply data to derive the model and validate it. 

And also, a wide range of topics such as how to use expert knowledge and how to use 

experiment data are involved. Here only discuss a few typical basic approaches to con-

struct TS models directly from experimental data. The main approaches investigated 

are the operating point space (also referred to as jpacg hereafter in this thesis) 

partitioning and the consequent local model identification. 

Roughly the input space partitioning approaches can be divide into two categories: 

data clustering, and lattice partitioning of the input space. 
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2.3.1 Clustering 

The objective of clustering is to partition the data set into c clusters. For the time being, 

assume that c is known, based on prior knowledge of the plant, for instance. There are 

two characteristic clustering methods in fuzzy modelling, ie., hard clustering (Lewis, 

1990; Jang, Sun and Mizutani, 1997) and /wzQ; (Jang, Sun and Mizutani, 

1997; Kim, Park, Ji and Park, 1997). In the following we briefly describe these two 

techniques. 

2.3.1.1 Hard clustering (HCM algorithm) 

The c-mgaAW (HCM) algorithm tries to locate clusters in the multi-dimensional 

input space. The goal is to assign to each point in the input space to a particular cluster. 

The basic approach is as follows (Lewis, 1990). 

1. Manually seed the algorithm with c clusters, one for each cluster we are seeking. 

This requires prior information from the outside world of the number of different 

clusters into which the points are to be divided; thus the algorithm belongs to the 

class of algorithms. 

2. Each point is assigned to the cluster centre nearest to it. 

3. A new cluster centre is computed for each class by taking the mean values of the 

coordinates of the point assigned to it. 

4. If not complete according to some stopping criterion, return to step 2. 

Some additional rules can be added to remove the necessity of knowing precisely 

how many clusters there are. The rules allow nearby clusters to merge and clusters 

which have large standard deviations in coordinates to split. 

The hard c-means algorithm is based on a c-partition of the data space Z into a 

family of clusters {Q}, z = 1,2,..., c, where the following set-theoretic equations apply. 

I JC ' = 
(=1 

Q r i Q = 0, ^(9^7, 

0 C Q CZ, Vf, 

where 0 denotes the empty set. The set Z = {zi,Z2,...,z^r} is a finite set with points, 

and c is the number of clusters such that 2 < c < Â . 
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Formally, the c-means algorithm finds a centre in each cluster, minimizing an 

objective function based on a distance measure. The objective function depends on the 

distances between vectors and cluster centre C/, and when the Euclidean distance is 

chosen as the distance function, the expression for the objective function is, 

% ||zt — ) , (2.10) 
/=] i=\ k.Zf^eCi 

where 7, is the objective function within cluster Q. 

The partitioned clusters are typically defined by a c x binary characteristic 

matrix M, called the /Mofnx, where each element is 1 if the Mh data 

point Zjk belongs to cluster Q, and 0 otherwise. Since a data point can only belong to 

one cluster, the membership matrix M has the properties: 

# the sum of each column is one, and 

# the sum of all elements is # . 

If the cluster centers c, are fixed, the that minimize 7, can be derived as 

' 1 0 otherwise. 

That is, belongs to cluster C, if c, is the closest centre among all centres. If 

alternatively is fixed, then the optimal centre c, that minimizes (2.10) is the mean 

of all vectors in cluster Q, 

C; = % ZA:, 
I 'I t.ztEQ 

where |C; | is the number of objects in Q, and the summation is an element-by-element 

summation of vectors. 

The algorithm is iterative, and there is no guarantee that it will converge to an 

optimum solution. The performance depends on the initial positions of the cluster 

centres, and it is advisable to employ some method to find good initial cluster centres. 

A major drawback of HCM is the way in which it treats the boundary points. Because 

boundary data points may represent patterns with a mixture of properties of data in 

more than one clusters, they cannot be fully assigned to either of these clusters, or do 

they constitute a separate class. This shortcoming can be alleviated by using fuzzy 

clustering as shown in the following. 
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2.3.1.2 Fuzzy clustering (FCM algorithm) 

It is reasonable to assume that points in the middle region between two cluster centres 

have a gradual membership of both clusters. The fuzzified c-means algorithm (Jang, 

Sun and Mizutani, 1997) allows each data point to belong to a cluster to a degree 

specified by a membership grade, and thus each point may belong to several clusters. 

T h e c - m g o A w (FCM) algorithm partitions a collection of data points spec-

ified by TM-dimensional vectors zjt (A; = 1,2, ...,A^) into c fuzzy clusters, and finds a 

cluster centre in each, minimizing an objective function. Fuzzy c-means is different 

from hard c-means, mainly because it employs fuzzy partitioning, where a point can 

belong to several clusters with degree of membership. To accommodate the fuzzy 

partitioning, the membership matrix M is allowed to have elements in the range [0, 1]. 

A point's total membership of all clusters, however, must always be equal to unity to 

maintain the properties of the M matrix mentioned above. The objective function is a 

generalisation of (2.10), 

c c TV 

y(M,Ci,...,Cc) = ^ 7 , = % 
i— 1 i~ 1 k— 1 

where is a membership between 0 and 1, c, is the centre of fuzzy cluster Q, = 

||zt — C:|| is the Euclidean distance between the ;th cluster centre and Ath data point, 

and g E [l,oo) is a weighting exponent. There are two necessaiy conditions for 7 to 

reach a minimum. 

C,- = 

1 

The algorithm is simply an iteration through the preceding two conditions. The cluster 

centres can alternatively be initialised before carrying out the iterative procedure. The 

algorithm may not converge to an optimum solution and the performance depends on 

the initial clusters centres, just as in the case of the hard c-means algorithm. 

FCM is also a supervised algorithm, because it is necessary to tell it how many 

clusters to look for. If c is not known beforehand, it is necessary to apply an 

algorithm such as cZwj'fgrmg. Subtractive clustering is based on 

a measure of the density of data points in the input space (Jang, Sun and Mizutani, 

1997). The idea is to find regions in the input space with high densities of data points. 

The point with the highest number of neighbours is selected as centre for a cluster. The 
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data points within a prespeciAed, fuzzy radius are then removed (subtracted), and the 

algorithm looks for a new point with the highest number of neighbours. This continues 

until all data points are examined. In the following we look at the algorithm in more 

detail. 

Consider the set of Z given above. Since each data point is a candidate for a 

cluster centre, a density measure at data point can be defined as 

where is a positive constant. A data point will have a high density value if it has 

many neighbouring data points. Only the fuzzy neighbourhood within the radius 

contributes to the density measure. 

After calculating the density measure for each data point, the point with the high-

est density is selected as the first cluster centre. Let Zc, be the point selected and is 

its density measure. Next, the density measure for each data point is revised by the 

formula 

^ exp( -

where is a positive constant. Therefore, the data points near the first cluster centre z^, 

will have significantly reduced density measures, thereby making the points unlikely 

to be selected as the next cluster centre. The constant defines a neighbourhood to 

be reduced in density measure. It is normally larger than to prevent closely spaced 

cluster centres; typically = 1.5^^. 

After the density measure for each point is revised, the next cluster centre is 

selected and all the density measure are revised again. The process is repeated until a 

sufficient number of cluster centres are generated. 

2.3.1.3 Identification of consequent submodels 

Normally clustering methods are not concerned with the problem of identification of 

consequent submodels. This is one of the major weakness of clustering approaches 

used for model construction, since it is natural to have a dual process of data (model) 

structuring or construction (ie., clustering here) together with model determination, 

since there is clearly a trade off between the number of clusters, or models, model 

accuracy and model complexity. 

In some cases the submodel identification problem can be incorporated in the 

clustering. One of the special cases is that the structure of the submodels is a jpnor 
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determined, and therefore the task reduces to parameter estimation. This idea can 

be illustrated by a special fuzzy clustering technique called jpacg fenng 

applied to a simple model structure. 

A simple and practically useful parameterisation of (2.7) is an afGne form, result-

ing in the following rules: 

IF (|) is A; then = a^(|) + 6;. z = 1, (2.11) 

where a, is a parameter vector and bi is a scalar offset, (|) G This is the affine TS 

model defined in (2.9). We will now explain how fuzzy clustering can be used for 

constructing affine TS fuzzy models from data. The approach, proposed by Babuska 

and Verbruggen (1995a), is based on an assumption that the identification data is a 

representative sample of the regression surface (surface defined by y = /((|))). In 

practice, this may not be true as there may be data sparsity in serial regions of the 

data space, and some form of regularisation may be needed in modelling. A fuzzy 

clustering algorithm based on an adaptive distance measure is applied to partition this 

data into several clusters. These clusters are projected onto the antecedent variables to 

form the membership functions and from the fuzzy covariance matrices of the clusters 

the consequent parameters are derived. Cluster validity measures and cluster merging 

techniques can be applied to find an appropriate number of rules. In the following we 

briefly describe this method. 

1. The Gustafson-Kessel's algorithm 

Suppose a set of N data pairs (({);,}')),^ = 1, ...,N is available. Denoting = 

we can write this data set in a matrix form 

Z=[zi,...,ZAr], 

The vectors ẑ  will be partitioned into c clusters with prototypes v, = i,..., ^ E 

A = 1 , c . The c-tuple of the cluster prototypes is denoted as V = [vi,..., v j . 

The partitioning of the data is defined by means of a r n a m x 

^ = [f^ij]cxN^ 

where E [0,1] represents the membership degree of the data vector zy in the ith 

cluster with the prototype v,. The Gustafson-Kessers (GK) algorithm (Gustafson and 

Kessel, 1979) finds the partition matrix and the cluster prototypes by minimizing the 

following objective function: 

' = 1 ; = ] 
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subject to 

ZLiAv = 1 , ;= l , . . . , ;A^and 

-J= 0<C 2^LiA4; ;==1,..,(^ 

where m > 1 is a parameter ±at controls fuzziness of the clusters, with higher values of 

m the clusters overlap more. The shape of the clusters is determined by the particular 

distance measure ^(z^,V;) involved. Gustafson and Kessel (1979) gives an 

/Mga.ywrg: 

(Zy , V;) = ( Z ; - V/) (Z^ - V;) , (2. 1 2) 

where M; is a positive definite matrix adapted according to the actual shapes of the 

individual clusters approximately described by the cZwjfgr f): 

M; is calculated as a normalized inverse of the cluster covariance matrix f): 

M; = det(f;)3i^f;.-\ (2.14) 

Algorithm: 

Given a data set Z, the number of clusters c and an initial (random) partition U, 

the cluster prototypes V and the final partition matrix U are found by repeating the 

following steps; 

yN ,/>ly. 
1. Compute V; = V . 

2. Calculate using (2.13). 

3. Compute the matrices M, using (2.14). 

4. Calculate ^^(z^,V;) as given in (2.12). 

5. update the fuzzy partition matrix [/ : /y/y = V(z v )-2/('n-]) 

if <^ (̂zy, V;) = 0 for some z — A:, set = 1 and = 0, V; ^ 

until a specified convergence criterion is satisfied, e.g. ||[/z — [//_i || < e where Z is the 

iteration step and E is a termination tolerance. 

After convergence, the partition matrix [/, the cluster prototypes v, and covariance 

matrices F i , i= 1 , c are obtained. 
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2. Extracting rules from the clusters 

Suppose 0 ; = [cp/̂ i, is the normal eigenvector corresponding to the s-

mallest eigenvalue of Fi. Recalling that v, is the cluster prototypical point we can 

directly write an implicit form of the TS consequents: 

<^^'([4),)']-^,) = 0. 

The parameters a, and 6, of the explicit form (2.11) are 

% — ^ [ % ' , 1) • • •) ^i,d\ y bi = • V;. 
(P(W+1 (P:W+1 

and thus the clusters found by the GK algorithm can be represented by a set of TS rules 

(2.11). 

The antecedent fuzzy sets A, are obtained by projecting the fuzzy set defined 

pointwise in the product space onto the regression vector space: 

max /y;^VZE{l,...,A^}. 

3. Determine the number of rules 

The number of clusters must be specified before clustering. Empirical relations 

among the number of clusters c, the dimension of the regression vector d and the 

number of data points have been suggested by Jain and Dubes (1988). If no par-

ticular knowledge about the type of the process nonlinearity is available, automated 

procedures for determining the number of rules can be applied. In connection with 

fuzzy clustering two main approaches are used, i.e., validity measures and compatible 

cluster merging: 

• Validity measures are numerical indicators that assess the qualities of the cluster-

s. The data must be clustered several times, each time with a different number of 

clusters. The number of clusters that minimize (maximize) the validity measure 

is selected. A dedicated validity measure for the clustering-based identification 

of nonlinear systems was proposed by Babuska and Verbruggen (1995b), which 

combines a measure of the cluster flatness with the mean prediction error. This 

approach conceptually resembles the use of information criteria in linear system 

identification (Akaike, 1974) and can also be used for selecting the structure of 

the model. 
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# CZŵ yfgr TMgrgmg approaches start wi± a high number of clusters and proceed by 

gradually merging similar clusters (Krishnapuram and Freg, 1992; Kaymak and 

Babuska, 1995). The initial number of clusters must be set sufficiently high such 

that the nonlinearity of the regression hypersurface can be captured accurately 

enough. The number of clusters is iteratively reduced by merging clusters that 

are sufficiently close and approximately parallel. Two clusters Q and Cy are 

approximately parallel if the dot product of their normal vectors is close to one: 

|0( > k\, k\ close to 1. 

The distance of the clusters is measured as the Euclidean distance of the cluster 

prototypical points: 

||V; — VyII < ^2, ^2 close tO 0. 

2.3.2 Lattice partitioning 

In this category the TS model in (2.7) is decomposed into the following form 

: If zi is Ah AND Z2 is A2, AND ... AND Zj is 

then y; = f;(x), ; = 1,2, ...1, (2.15) 

where univariate fuzzy sets are formed in each input axis which independent of fuzzy 

sets defined on other input axis. Multivariate fuzzy sets are formed by taking the tensor 

product of the univariate fuzzy sets. 

Our meaning of the term lattice partitioning here includes all of input axis or-

thogonal partitioning strategies, rather than the normal sense of lattices. Increased 

resolution can always be achieved by refining the input lattice by additional basis 

functions, again preserving the fuzzy linguistic interpretation of the resultant system. 

Possible methods for achieving this are shown in figure 2.2. 

The ^-tree and quad-tree approaches produce axis orthogonal splits, which whilst 

aiding the representational aspects of the fuzzy system, limits the submodel modelling 

capability. In the following we demonstrate the basic idea of lattice partitioning by a 

simple algorithm using the CriferioM (UC). 

2.3.2.1 UC algorithm 

The UC is provided by Sugeno and Kang (1988) for the verification of a model struc-

ture. Using the criterion, it generates an algorithm for identifying the structure and 
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(a) (b) (c) 
Figure 2.2: Three different lattice partitioning strategies: (a) standard lattice (b) TT-tree and (c) 
quad tree. 

parameters of a TS model from observed data. We first divide the observed data into 

sets and and identify the consequent parameters for each set of data separately. 

Then the UC is calculated as 

"A 

:=1 

where is the number of the elements in data set A/)), the estimated output for the 

data set Â ^ from the model identified by using the data set A/)̂ , and the estimated 

output for the data set A/ĵ  from the model identified by using the data set A/g. 

% % 

(a) 

X; 

(b) 

% 

. A . X; 

(C) (d) 

Figure 2.3: Premise structure identification 
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UC Algorithm 

1. An ordinary linear model is identified. Its UC is calculated and written as UC[ij. 

2. A fuzzy model consisting of two fuzzy implications is constructed by first di-

viding the range of xi into two fuzzy subspaces. Then the premise parameters, 

the consequent structure and parameters are identified. The UC of the model 

is calculated. Similarly, a fuzzy model dividing the range of Xi for i = 2,...,k 

is identified and its UC is calculated. Among the k models, one with the least 

UC is picked up. Its premise structure and UC are written as STp] and UC[2], 

respectively. 

3. Suppose that the input variable is found to be put into the premises at the stage 

2. Then STp] is as shown in Figure 2.3(a). The three possible constructions of 

premise structure are shown in figure 2.3(b)—(d). 

4. the stages after the stage 3 are similar to the stage 3. Whether the process is 

terminated or not is decided by comparing UC ,̂] with UC[i_2] 

Figure 2.4 illustrates the algorithm for identifying the structure and parameters 

of a TS model. From figure 2.3 we can see that the algorithm is one kind of ^-tree 

methods. 

— choice of premise structure 

premise parameters identification 

choice of consequent structure 

consequent parameters identification 

calculation of UC 

verification of consequent structure 

verification of premise structure 

Figure 2.4: The UC Algorithm 
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Other similar algorithms based on lattice partitioning include the so called local 

Linear Model Trees method described in Nelles, Sinsel and Isermann (1996) which 

is for identification of models with local basis function networks structure, and the 

pomf jpacg proposed by Johansen and Foss 

(1995) which is developed within a more general local modelling framework. 

2.3.2.2 Local model identification 

Johansen and Foss (1995) gives a typical general technique which integrates the lo-

cal model identification problem with the partitioning of the operating point space. 

Suppose we have a decomposition of operating space into L disjoint regions: 

z= tjz,. 

for some index set A model structure of (2.8) based on above decom-

position is defined as 

(2-16) 

where 8/ is the parameter of the ith local model. Assume that the data observations 

are bounded. Then the system's operating range Z can be approximated by the 

dimensional box 

Next we consider the problem of decomposing Z\ into regions. 

Consider the possible decompositions Zi = Zn UZ12. We restrict these possibili-

ties by the constraint that the splitting boundary is a hyper-plane orthogonal to one of 

the natural basis vectors of i.e. 

Zi 1 = {z G Zi \Zdi } 

Z 1 2 = {z G Zi \zd-̂  ^ } 

for some dimension index d\ E {\,...,d} and splitting point G Local 

model validity functions for the two regions are defined by the recursion 

Wl2(z) = Wi(z)6(z^, 

where = 0.5(z™" for z G {11,12} is the center point of Z, in the 

direction. The function 6(/-;X) is a scalar basis function with scaling parameter X, 
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and the ZocaZ moJgZ vaZWfryywMcZfoM (degree of fulfillment) associated with the region 

Z\ is M>] (z) = 1. The scaling parameters are chosen by considering the overlap between 

the local model validity functions. For z E {11,12}, we choose A,, = 0.5y(z™^ — z™") 

where y is a design parameter that typically takes a value between 0.25 and 2.0. There 

will be almost no overlap when y = 0.25, and large overlap when y = 2.0. For each 

dimension index 6̂ ] G {1,..., we represent the interval by a finite number 

of L\ points uniformly covering the interval. Now (i], , fi, and defines a new model 

structure, where the region Z] is decomposed according to the dimension index at 

the point and the two local model structures are f] and IS. Formally, the set of 

candidate model structures ^ with » (» = 1,2,...) regions is given by 

= {{(Zi,m,fy)};;E{l,2,...,A^z.}} 

{ l , 2 , . . . , 6 f { 1 , 2 , . . . , ^ / ^ } } 

{1,2,...,(^ {1,2,...,A^}} 

S4 — 

The model structure set is now 

u ^ u ^ u . . . 

which is illustrated as a search tree in figure 2.5 (from Johansen and Foss (1995)). Now 

the structure identification problem can be looked upon as a multi-step decomposition 

process, where at each step one region from the previous step is decomposed into two 

sub-regions. Such an approach will lead to a sequence of mode] structures 5"], , - - , 

where the model structure has more degree of Areedom than 

1. Model structure identification criteria 

Let a model structure S of the form (2.16) be given. Together with the admissible 

parameter set 65, S induces a model set 

i7Ŵ  = {M=(^ ,8 ) ; eG8^} . 

Introduce the notation 

yW = / ( % - ] ) 

E(r|^,8) = 
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Z!: 

zL. Zn. , 

Figure 2.5: Model structure search tree illustrating possible decompositions into regions and 
choice of local model structures. Each level in the tree corresponds to the possible decompo-
sitions into one more region than at the previous level, i.e., the model structure sets 
etc. The subset of model structures at each "super-node" in the tree corresponds to a fixed 
decomposition into regions, but different combinations of local model structures. 

where is the observation data with f — 1 points and );*(%_]) is the deterministic 

(predictable) component of the system output, e{t) is the stochastic (unpredictable) 

component and e(r|5,0) is the residual. Let 65 be a parameter estimate that minimize 

the prediction error criterion (Ljung, 1987) 

;^(8) 
1 ^ 

^trace(E(f|6^,8)e^(f|S,8)). N 
(2.17) 

t=i 

Let an unknown/wrwrg data sequence be denoted by 2^, and assume and are 

uncorrelated. Moreover, let Eq) and Eqj* denote expectations with respect to and 

!Ẑ *, respectively. The prediction error is given by (Ljung, 1987) 

The expected squared prediction error is defined by 

The mean square error (MSB) criterion is defined by 

^.yE(.S') = trace (2(5")). 



Because the probability distribution for the prediction error is unknown, Jmse cannot 

be computed. An alternative would be to minimize the average squared prediction 

error (PE) criterion (Ljung, 1987) 

1 n 

= t race( -

For finite Tpg may be a strongly biased estimate of In the following several 

criteria ±at are far better estimates of than Jpg will be present. 

1. FmaZ grror criterion (FPE) (Akaike, 1969): 

T /m\ 1 +;)(5 ' ) /# 

where p(5') is the effective number of parameters (degrees of freedom) in the 

model structure. 

2. Vh/fWafmn (GCV) (Craven and Wahba, 1979): 

which is easily seen to be asymptotically equivalent to FPE, and assumes linear 

parameterization of the predictor. 

Any one of these criteria can be applied with the structure identification algorithm 

presented in the following subsection. 

2. Basic search algorithm 

The problem is now to search the set S for the best possible model structure. The 

estimate of the parameters in model structure is defined by 

9 = arg rninJs(9) 

where Js(0) is defined by (2.17), and it has been assumed that a unique minimum 

exists. Now, the chosen structure identification criterion is written as 7'(5"). We define 

for a given » 

S'n = arg min7'(^) 
S£Sn 

where it again has been assumed that a unique minimum exists. Consider the follow-

ing extended horizon search algorithm, where the integer »* > 1 is called the search 

horizon: 

Search Algorithm 



1. Start with the region Z\. Let n=l. 

2. At each step n>l, find a sequence of decompositions and local model structures 

'S'n, , - -, that solves the optimization problem 

min J'iS). 

3. Restrict the search tree by keeping the decomposition that leads to fixed for 

the future. 

4. E 

min /(5'M+X:) 
/ ; € { ! , 2 , . . . , « * } 

then increment» and go to step 2. Otherwise, the model structure 5'̂  is chosen. 

Referring to figure 2.5, this algorithm will search the tree starting at the top, and 

selecting a decomposition at each level through a sequence of "locally exhaustive" 

searches of depth n*. In other words, this algorithm will make an n*-step-ahead optimal 

decomposition at each step, in the sense that the decomposition is optimal if there is 

going to be exactly more decompositions. If M* = 1, this is a local search algorithm. 

3. Heuristic search algorithm 

To reduce the number of candidates, Johansen and Foss (1995) suggests to apply 

the following heuristic search algorithm in the "locally exhaustive" search at the second 

step in the previous search algorithm: 

1. At each level in the search tree, proceed with only the most promising candi-

dates. 

2. Discard the candidate decompositions that give an increase in the criterion from 

one level in the search tree to the next. 

3. Discard the candidate decompositions that lead to regions with less data points 

relevant to the region than the number of degrees of freedom in the correspond-

ing local model structure and local model validity function. 

4. Use a (backward or forward) stepwise regression procedure to handle local mod-

el structure sets L of combinatorial nature. 



LOCAL MODELLING 33 

2.3.3 Comments 

In this section, two typical operating point space partitioning methods were presented, 

ie., clustering and lattice partitioning. The lattice partitioning methods are able to 

determine the model structure and construct models from the experimental data. But 

it is easy to see that within the lattice partitioning framework, when the dimension 

of the operating point variable is large, the number of the possible structures at each 

stage becomes combinatorially large. That is to say, these kind of algorithms share 

the common problem of fAg cwriye zy. Clustering, on the other hand, 

can avoid the curse of dimensionality. But for a general local model structure present 

clustering methods are unable to include the problem of identification of consequent 

submodels. Also, most clustering algorithms need a p n o n known number of clusters. 

Besides the above mentioned techniques, another popular modelling algorithm in 

this field is Dafa (ASMOD) (Kavli, 1993; 

Kavli, 1994; Brown and Harris, 1994). This is covered in other theses by ISIS research-

es, see eg., Bossley (1997). ASMOD is an important attempt to solve the problem 

by reproducing the internal structure and dependencies contained in the training data 

whilst retaining transparency. But It still has not thoroughly overcome the curse due to 

its inherent lattice partitioning nature. 

Nevertheless, using the techniques presented in this section or the new techniques 

in next chapter, we are able to construct TS models for the systems (2.1) - (2.6). Next 

section lists a number of typical TS models which can be derived by these techniques 

from experiment data of systems (2.1) - (2.6) and will be used in subsequent chapters. 

2.4 Some types of TS models 

There are many alternatives of the local models in TS model (2.7) or (2.8). We can 

choose either continuous time models or discrete time models, and also either input-

output models or state space models. In the following we list some types of TS models 

corresponding to some of the systems (2.1)—(2.6) which can be established by the 

techniques described in section 2.3. 

Discrete time input-output TS model 

y(+i=%M;;(Xf)f;(Xf). (2.18) 
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Discrete time state space TS model 

+ 1) = (2.19) 
i 

Continuous time state space TS model 

x(^) = %w,(x(f))f,(x(f)). (2.20) 
i 

Afflne continuous time state space dynamic TS model 

= %M/,(x(f))f,(x(f))+%M',(x(r))g,(x(f))u(f). (2.21) 

Chapter 3 will use the discrete time TS models (2.18) and (2.19) to demonstrate the 

new modelling techniques. Chapter 5 will use model (2.20) for local stability analysis. 

The afAne continuous time state space dynamic TS model (2.21) is afAne in control 

signal which will be used in chapter 6 for controller design. 

2.5 Quasi-linear system models with neural network 

parameters 

Consider a general nonlinear dynamical system given by (2.1). In the design of non-

linear control systems linearisation about a fixed, known operating point is a standard 

solution as it leads to a Zoca/Zy linear model for which a controller can be synthesized 

by classical linear control design methods. For many practical processes (e.g., aircraft 

gas turbines or ship dynamics), the operating point varies either as a function of in-

dependent parameters (such as mach number and altitude for an aero-gas turbine) or 

more usually, as a function of the system states. In the light of this observation, (2.1) 

can be represented by quasi-linear system model of the form (Billings and Vbon, 1987; 

Chen and Billings, 1989; lohansen, 1994a; Johansen andFoss, 1993; Priestley, 1988; 

Sastry and Isidori, 1989) 

y ( f + l ) - ai(0f)y(r)4 | -aM(0()y(f-M+l) 

((9;)u(? — <i) + • • • + b,n{Ot)yi{t — d — m-\-1) (2.22) 

where 0;(Of) and 6; (Of) (z = 1,2, - - y = 1,2, - ,7M) are a unknown func-

tions of the measured operating point Of. The existence of representation (2.22) de-

pends on g ( ) being first order differentiable with respect to its arguments x̂  defined 

in section 2.1.1 (Billings and Voon, 1987; Chen and Billings, 1989; Sastry and Isidori, 
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1989). This is an assertion since g ( ) is a pnori unknown in adaptive control, but for 

most practical processes it applies. When (2.22) is a single-input single-output (SISO) 

system, various special cases have been studied including: 

(i) The nonlinear function g(-) can be decomposed (Wang, Liu, Harris and Brown, 

1995) such that 

n — 1 m~l 

g() = 

0 7=0 

for all yi(), gy() first order differentiable. 

(ii) The operating point Of is independent of current value of Xf, and is a function 

of independent measurable variables (Wang, Liu and You, 1991; Wang, Wang, 

Brown and Harris, 1996). Under assumptions concerning smoothness properties 

of the MMAnowM parameters a,, Taylor series expansions have been utilised 

to identify the unknown system, which is in turn controlled by an adaptive con-

troller under the ggiMfvaZeMcg pnMcfpZg (Xie and Evans, 1984). The 

high order smoothness properties of the Taylor series approach greatly limit this 

method. 

(iii) Other special cases that have been well researched via conventional statistical 

based methods (Priestley, 1988) include: 

(a) {a;()} are constants and 

p 

i=l 

for constants. Then the system (2.22) is bilinear. 

(b) {a,()}, )} are constants, then (2.22) is an autoregressive moving aver-

age (ARMA) process. 

(c) {«:( )}, (')} depend only on f, then (2.22) is linear and non-stationary. 

2.5.1 Model structure 

For the general class of operating point dependent quasi-linear model (2.22), if Of is 

independent of the system input and output, the multiple differentiability, local condi-

tioning, and input boundedness conditions can be relaxed, even when the parameters 

{a:()}, {6y()} are a pnon unknown. It is well known (Brown and Harris, 1994; 
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Harris, Moore and Brown, 1993) that unknown continuous nonlinear function (such 

as a , ( ) , 6y() and f ( ) ) defined on a bounded closed set can be approximated with 

arbitrary accuracy by various neural networks, avoiding the restrictions and limitations 

of the Taylor series approach. 

If (2.22) is SISO, the nonlinear coefficients can be expressed via mem-

(Wang, Brown and Harris, 1996) as (from now on we assume = 0 for 

simplicity) 

I 
(2.23) 

k=\ 

I 
7 = 1 , ( 2 . 2 4 ) 

t = l 

where and are the unknown weights of the neural networks, and )} 

are known basis functions (including B-spline, CMAC, and Radial basis functions with 

prespecified centres (Brown and Harris, 1994)) and Z is a known integer (Z M,7M). 

The motivation for using this type of architecture is the assertion that the space of 

measurable operating points is generally considerably smaller than a conventional 

nonlinear autoregressive moving average (NARMAX) system input space; in practice 

this is generally true. If the nonlinear coefficient representations (2.23) and (2.24) 

are based on B-spline polynomials (Brown and Harris, 1994), then the resulting local 

models (see equations (2.25) and (2.26) below) are a generalised neurofuzzy model-

ing extension (Harris, Wu and Feng, 1997) of the Takagi-Sugeno fuzzy input/output 

model (Jain, 1997). These equivalence conditions are quite mild, in that the fuzzy 

operations are restricted to the algebraic sum/product operations, defuzzification is by 

centre of area, and the membership functions are B-splines with a partition of unity 

W = 1) to provide normalisation. The number of parameters or weights 

and used in the representations (2.23) and (2.24) can be pruned by automatic 

construction algorithms such as ASMOD, that have been derived for solving the curse 

of dimensionality in neurofuzzy systems (Harris, Wu and Feng, 1997). In practice this 

reduces the numbers of parameters from exponential in the input dimension («-t- m) to 

almost linear in (»-|-m). The system (2.22) can be rewritten using (2.23) and (2.24) as 

-t- 1) = ^ A/a^(Of));(f — A:+ 1) + % A/6^(0f)w(f — A;4- 1) + A / ( 0 ; ) , (2.25) 
—̂1 1 
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Figure 2.6: The neurofuzzy modelling architecture for the quasi-linear system (2.25). 

where A/ (Of ) is a model mismatching error: 

—a;:(Of)));(r —A:-|- 1) + —6t(0f))w(f —/:+ 1). 
t=] t=i 

(2.26) 

Figure 2.6 illustrates the neurofuzzy modelling architecture for the quasi-linear system 

(2.25). 

2.5.2 Parameter estimation 

If the networks can exactly model the nonlinear functions, the system is referred to 

as a matching system, whereas the system which can only approximate the nonlinear 

functions to a known accuracy is called a mismatching system. For a matching system 

it has been shown (Wang, Brown and Harris, 1996) that the representation (2.25) can 

be transformed into the form 

)'(f + 1) = 0^( f )8 , 

where 

..b iT 

(2.27) 

(2.28) 

0 ( f ) — [(t)iy(f)-"(|)/)'(f) "(|););(f-»4-l)(|)iM(f)---(|)/M(f-7M4-l)]^. (2.29) 

Equation (2.27) is in the standard form of linear regression for parametric identifi-

cation. Let 6 be the estimate of 6 then the normalised least mean square (LMS) 



CHAPTER 2. LOCAL MODELLING 38 

algorithm (Brown and Harris, 1994) can be utilised: 

A9(() = e ( 0 - 9 ( < - l ) = T 1 -• (2.30) 
||<P(? — 1 )\\^ + C 

1), (2.31) 
y(?—1) = — 1)6(? — 1), (2.32) 

where T| E (0,2) is the learning rate, c a positive arbitrarily small constant, 8(0) ini-

tial condition. The quasi-linear model identification of the system (2.25) for model 

matching is summarized by: 

Theorem 2.1 (foZycarpow /oannow, 7P92) WTzgn rAg LM,̂  aZgonfAm 

—(2.J2j fo fAg j'gr {);(f),w(f)} ongmaZ 

(2.22) (j'mgZg-mpwf fAe 

lim;_ ,̂̂  rr;;:; = 0, 
0 ( f - 1)||2 + C 

lim̂ —̂ oo ||8(r)—9(f — fo) | |~0 

wAgrg fo <3po ẑn'vg mfeggr FwrrAgrmorg, ^ | |0(f — 1)|| < 0°, lim(_^»,()'(f) — 

j ) ( r - l ) ) = 0. 

Later in chapter 7, we will deal with the modelling and control problems of MIMO 

mismatching systems of general form (2.22) with known orders, in which flj(-) and 

6y() are unknown functions of X;. 

2.6 Conclusions 

In this chapter, a general view of existing local modelling techniques is given. The con-

cepts and the typical methods of fuzzy modelling and a class of quasi linear operating 

point dependent modelling are presented. In summary, to overcome the shortcomings 

of clustering and lattice partitioning, it is necessary to develop new local modelling 

methods which are able to get rid of the curse of dimensionality, do not need to 

prespecify the number of local areas, and identify the local models with the process 

of partitioning. In next chapter, we will use the background presented in this chapter 

to develop such kind of methods. In chapter 7, the modelling problem of general quasi 

linear operating point dependent model structwe (2.22) is solved together with the 

controller design and stability analysis. 



Chapter 3 

Two New Local Modelling Schemes 

The purpose of this chapter is to present two new partitioning techniques for data 

based modelling of a p n o n unknown nonlinear dynamical system. As we have seen 

in chapter 2, there has been a considerable number of studies on fuzzy based mod-

elling (Brown and Harris, 1994; Bossley, 1997). Many of them are based on lattice 

based partitioning of the input space and as such suffer from fAe 

(COD), in that as the input dimension increases the parametrisation, computation cost, 

training data requirements, etc. increase exponentially. The Adaptive Spline Modelling 

of Observational Data (ASMOD) algorithm (Kavli, 1993) was introduced to overcome 

this problem by decomposing a multivariable input-output mapping into a sum of lower 

dimensional submodels. But the number of submodels still grows very quickly when 

the dimension increases because of the input-space inherent lattice partitioning nature. 

Another main disadvantage of lattice partitioning is the problem of model discontinu-

ities resulting in large approximation error possibly leading to instability of consequent 

controllers. Another typical partitioning method is clustering including hard cluster-

(Mg (Lewis, 1990; Jang, Sun and Mizutani, 1997) a n d ( J a n g , Sun and 

Mizutani, 1997; Kim, Park, Ji and Park, 1997) which have been described in chapter 

2. One of the drawbacks of clustering methods is that normally the number of clusters 

must be specified before clustering. Also, a high density of data may not be significant 

because it may simply be where high numbers of samples have been taken. Perhaps 

more significant is the variance of the data in clusters, since high data variance suggests 

rapid changes in process variables. 

Nonlinear systems can also be approximated by ZocaZZy Zmaar 

via local linearisation (Smith and Johnansen, 1997; Billings and Voon, 1987). Not only 

can a multiple local modelling approach be more efficient in capturing the real system 

dynamics than a single global nonlinear model (Smith and Johnansen, 1997; Hsu, 

39 
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1987), but also piecewise locally linear models are advantageous in that well-known 

linear control and filtering methods are directly applicable to the identified model. In 

a piecewise linear model, the input space is partitioned into a set of local (usually 

orthogonal) regions. The local models that operate on these regions are identified 

separately and the system output is based on a composition of the local models to 

obtain a good global approximation to the real system. 

The approximation performance of a piecewise locally model is strongly influ-

enced by how the input space is partitioned. To overcome the problems raised by lattice 

partitioning and clustering, in this chapter, firstly we provide a new fuzzy modelling 

technique by modifying the lattice partitioning method proposed by Tan and (1996) 

and a method of adding new multi-dimensional membership functions to the system 

to form a new model (Feng and Harris, 1999a). This method is able to derive fuzzy 

models from data automatically, avoiding the COD problem, which is illustrated by an 

example. 

Secondly, we introduce a new algorithm for the construction of a Delaunay input 

space partitioned optimal piecewise locally linear models to overcome the COD as well 

as generate locally linear models directly amenable to linear control and estimation 

algorithms (Harris, Hong and Feng, 1999). The training of the model is configured as 

a new mixture of experts network with a new fast decision rule derived using convex 

set theory. A very fast simulated reannealing (VFSR) algorithm is utilised to search 

for a global optimal solution of the Delaunay input space partitioning. A benchmark 

non-linear time series is used to demonstrate the modelling approach. 

This chapter is organized as follows; Section 3.1 to section 3.4 are devoted to 

develop the first modelling scheme; Section 3.5 to section 3.8 are for developing the 

second modelling scheme. For the first method, section 3.1 presents the model struc-

ture. Section 3.2 derives the modelling algorithm. Section 3.3 proves the convergence 

results. Section 3.4 gives a simulation example. For the second method, section 3.5 

gives an overview of the algorithm including its background. Section 3.6 presents the 

training algorithm of Delaunay input space partitioned piecewise linear models with 

the introduction of the new decision rule derived from convex set theory. Section 3.7 

describes the application of VFSR algorithm to achieve a global smooth piecewise 

linear model via the optimisation of input space partition. Numerical examples are 

presented in Section 3.8. The conclusions of the whole chapter are given in Section 

3.10. 



3.1 A new partitioning approach for fuzzy model con-

struction 

In this section, we assume that an input sequence {Uf} is applied to an unknown nonlin-

ear discrete-time multivariable dynamical system (2.2) generating an output sequence 

{Yf}. Recall that in section 2.1.1 we obtained a discrete time nonlinear model of the 

form 

Yf+l =f(yr ,u,) , (3.1) 

where e and E at discrete-time instant f; f ( ) is some unknown nonlinear 

vector function. With the definition = [y^ E T| 4-^ = + (3.1) 

becomes (cf. (2.2) and (2.3)) 

y;+i=f(Xf). (3.2) 

3.1.1 Fuzzy model 

Let a subset D in be given. With the help of membership functions, we can readily 

define fuzzy quantities on D. To this end, let us suppose by some means we have a set 

of appropriately distributed points p;(! = 1,2,...) in D. Then the Gaussian membership 

function centered at p, can be defined by: 

= (3.3) 

where x E D, || • || denotes the y-vector norm, and G, is a positive scalar which deter-

mines the shape of )U; (x). In the following we will use the MormaZzzgcf 

of the form 

We regard the collection of all such membership functions {w;(x)|( = 1,2,...} as 

defining a fuzzy quantization on D, and each Wi(x) as a fuzzy quantity. We shall use w 

to identify the fuzzy quantity with the membership function w(x), and Df — = 

1,2,...} to denote a fuzzy quantization on D. 

We use notation iX = Cf (%) to denote a set of fuzzy rules, where % and ^ are 

two fuzzy variables. Let the ;th fuzzy rule from % to ^ be given as "If % = w, then 

fX = v" (/ = 1,2,...). If we choose the TS fuzzy model structure, the Vj can be a crisp 
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function of x. In this cliapter, functions which are afhne with respect to x are used in 

local models as v,, ie., v, = + Let p, be the centres of w,. Then ^ = Gf (J^) 

can be determined by Gf (p,) = A,x+B(. This results in the affine TS fuzzy model (of. 

(2.9) and (2.11)) 

Yf+l = %W;(Xf)KX( +g ; ) . (3.5) 

In light of (3.5), our objective of fuzzy modelling is to find both the membership 

functions w/;() and model parameters A,,By, (f = 1,2,...) such that the output of (3.5) 

approaches the real system output asymptotically when excited by the same but 

arbitrary data sequence. Suppose there are c local models. 

Denote 

A(x) = [x^Wl (x) Wi (x) X^W2(x) W2(x) ... x^wc(x) Wc(x)], (3.6) 

and 

<2=[AiBiA2B2.. .AcB,] . (3.7) 

Using the definitions of Q and A(x) in (3.6) and (3.7), equation (3.5) can be 

rewritten in the matrix form 

yr+l = GA^(X(). (3.8) 

It is essentially a weighted sum of Gaussian functions. For any continuous nonlinear 

function f ( ) defined on a compact set D and an arbitrary small number e, there always 

exist a matrix Q and a vector of Gaussian functions A(x(), all of finite dimension, such 

that (Park and Sandberg, 1990) 

n ^ ||f(X() - <2A(Xf)II < E. (3.9) 

This approjczmaffoM enables us to ascertain that (3.8) can indeed 

approximate any nonlinear function by adjusting the matrix Q and the parameters 

involved in the membership functions. 

3.2 The modelling scheme 

Suppose that a set of A sample data pairs denoted by {(x;,yf), 1 < r < A} is obtained 

from an appropriate experiment. Our task now is to extract a fuzzy model of the form 

y,+i = G A ^ N . (3.10) 

from the data. The fuzzy modelling scheme is as follows: 
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1. Algorithm initialization: set c = 1. The membership function centre pi is located 

on the centre of gravity of the input data, that is, the point whose components 

are the average values of corresponding components of all data. As there is only 

one multi-dimensional fuzzy sub-set covering the overall domain, the associated 

membership function wi (x,) is everywhere equal to 1. So A(x;) = 1] for any 

t, and our first model is 

yf+i = GA^(x(). (3.11) 

where <2 = [Ai Bi]. Defining = y' — to be the modelling error at point f, g 

in (3.11) can be estimated as follows: 

G = G/:, 

where a and |3 are positive constants chosen as 0 < a < 2 and p > 0. (go can be 

assigned arbitrarily. 

2. Model expansion: At step k, define 

= (3 12) 

Suppose pk is the data point on which the modelling error is maximum in step 

^ — 1. Add Pk into the centre points set to form a new matrix P = [pi p2 ... pt]. 

Define 

min | |P/-P;H. 

Determine a, such that 

^ A * < c , < A t , f = l,2,...,A:. (3.13) 

From (3.4), (3.5) and (3.6) we calculate A(Xf). The matrix g in (3.10) is esti-

mated as follows: 

n _ n «e^A(Xf_i) 
&+] &_i p + ^(xr_i)A^(x,_i) ' 

Z = 1, ...A — 1 (3.14) 

<2 = G/i 

Again, oc and P are set same as in step 1. 
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3. Set c = ^. E ^J |e*| | is small enough then stop, otherwise ^ + 1, go to the 

above step. 

The a and P can be choosen by the designer within the permitted intervals. 

(X will affect the speed of the convergence and a accuracy of the estimation, ie., the 

smaller the a, the slower of the convergence, the choice of Gi in (3.13) is obtained on 

observation and experiment. 

3.3 Convergence of the algorithm 

The following theorem summarizes the convergence result of the proposed modelling 

algorithm: 

Theorem 3.1 Lgf ê  (.). CAoojg a j'o fAaf 0 < a < 2, P > 

lim ||e*H = 0. 

Proof: In the following we use a standard method (cf. (Tan and Yii, 1996)) to prove 

± e theorem. According to (3.9), there is a large enough integer /: and a matrix Q 

whose number of column is ^ such that = <2A(Xf). Subtracting g from both sides 

of (3.14), and denoting Ef = gf — g, we have that 

Define V/ = with E( being the ith row of the error matrix Et (/ = 1,2, ....T]). 

Then 

V/-V/Lj = { E l - E l ^ i E i - E l ^ + ( E i - E i _ ^ ( 2 E i _ ^ . (3,16) 

Substituting (3.15) into (3.16) and noting that the zth row of is g* = E^_2A^(%f_i), 

we have 
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(P + A(Xr_2)A^(Xf_2))2 

P + A(Xf_2)A^(Xf_2)' 

P + A(Xf_2)A^(Xf_2)' 

Thus from equation (3.16) we have 

%'-%L2 < 
P + A(X(_2) A^ (Xf _2) P + A(Xf _2) A^ (Xf _2) 

< 0, 

le, 
\2 

" ' ^ " ° > P + A('x,-2)A^(x,:d - " ^'' ' 

Therefore, 

| " p - " ' P + a ( x | ! ; ) A ^ ( X , _ , ) -

< 

which leads to 

From the above we have that 
Iĝ .l 

lim = = 0 
v P + A(X(_i)A^(Xf_i) 

for all;. But 

o<—!AL< 
y P + M i / P + A ( X f _ i ) A ^ ( X f _ ] ) 

We conclude that limf-^.. kn i = 

lim ||e^|| = 0, 
f— ôo 

proving the theorem. 
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3.4 Example 

The well-known Box and Jenkins gas furnace data is used (Box and Jenkins, 1970) as 

an example to illustrate the above modelling algorithm. The data consist of 296 I/O 

measurements of a gas furnace system. The input w(f) is the gas How rate into the 

furnace and the output y{t) is CO2 concentration in outlet gas. The sampling interval 

is 9 seconds. The furnace's input and output data are shown in Figure 3.1 and Figure 

3.2, respectively. We will now construct a fuzzy model of the form 

+ 1) = - 1) - 2), w(r), w(r - 1), - 2)), (3.17) 

which was also suggested in Kim et al. (1997). Within our modelling framework, let 

Uf = [w(f —2)w(f—l)w(f)]^, 

Xf = [yf uf] , 

then we have 

Yf+l 

which is a 6-input 3-output fuzzy model. 

Figure 3.1: The input measurements of the gas furnace 

Using the above proposed algorithm, we get a fuzzy model consisting of 4 rules 

which partition the 6-dimensional input space into 4 subspaces. The membership 
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Figure 3.2: The output measurements of the gas furnace 

Rule P, 

1 [53.3901 53.4214 54.1673 -0.0173 -0.0470 0.2801] 3.5867 

2 [53.6510 53.3827 53.1590 0.1840 -0.0374 -0.0346] 2.9874 

3 [51.0111 52.3321 49.0901 1.5213 1.0112 1.8002] 1.2432 

4 [56.2434 55.5421 55.0121 -1.8756-1.3452-1.1345] 2.0021 

Table 3.1: The membership functions of Example 1 

Rule A; Bi 

1 [0.4075 -1.4869 2.0160 -0.1521 -0.1636 0.0762] 3.4112 

2 [-0.0913 -0.2034 1.0882-1.5711 1.3619-0.4190] 10.9817 

3 [0 -0.5490 1.4131 -0.7552 0.4451 -0.1210] 7.3461 

4 [0.3820-1.3421 1.8589-0.5358 0.1901 0.3817] 5.4141 

Table 3.2: The local models of Example 1 
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— actual ayslem I' I — fuzzy motW 

Figure 3.3: The modelling performance 

Figure 3.4: The modelling error 
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functions are shown in table 3.1 and the local models are shown in table 3.2 (only 

the last rows are shown). The modelling performance is shown in Figure 3.3. The 

modelling error is shown in Figure 3.4. We can see that even with such a simple 

structure the model is quite satisfactory. Note that if using the lattice partitioning 

algorithms such as that proposed in Tan and Yu (1996), then the number of rules will 

be substantially bigger due to the high dimension of the input space. For example, 

if each axis is partitioned into only two regions, then the total number of submodels 

would be 2^ = 64! Generally speaking, if the dimension of input vector varable Xf is n, 

if use lattice partitioning algorithms, then the number of local areas is an exponential 

function of «. But if use the proposed method, the number of local areas does not have 

to depend on n. Therefore it can avoid COD problem. 

3.5 Optimal piecewise locally linear modelling 

In the remainder of this chapter, we introduce an optimal piecewise locally linear 

modelling algorithm for nonlinear systems that is amenable to controller design, but 

utilise only input-output data to formulate the design (Harris, Hong and Feng, 1999). 

In next section, a new (MEN) (Harris, Hong and Feng, 

1999) is introduced to form smooth piecewise linear models using a DgZawMa); parffYmn 

of the input space (Sibson, 1978; Lo, 1989; Wu and Harris, 1998), a popular domain 

partition method in numerical analysis which is efficient in forming irregular regions. 

One of the main advantages of the MEN algorithm in dynamical system modelling is 

that the local models are formulated in a global form and consequently can be trained 

adaptive]y and on-line. At each iteration, each local linear model is selected to be 

trained using a Min/Max decision rule in the mixture of experts network. However 

the application of the method is restricted due to an a p / ion assumption of convexity 

of the output surface which determines the decision rules that are used to train the 

network. For a wider class of nonlinear systems with nonconvex multimodal output 

surfaces, global optimisation techniques may provide viable approaches to obtain the 

most appropriate Delaunay partitioned input space which is necessary to obtain smooth 

piecewise linear models with optimal approximation properties. In section 3.7. a vg/y 

yhjf rg-a/zMeaZmg (VFSR) method is introduced for global optimisation of 

non-convex cost functions (Ingber, 1989; Ingber, 1992), which has been effectively 

applied in nonlinear signal processing applications (Chen and Luk, 1999). A new 

optimal piecewise local linear modelling algorithm is established based on the MEN 

and VFSR. The proposed algorithm consists of two training phases, global optimi-



(Tfz/LPrjpR 50 

sation of the input space partition using the VFSR procedure and a local linear model 

training using conventional gradient descent such as the normalised least mean squares 

(NLMS) method (Brown and Harris, 1994) with the introduction of a new mixture of 

experts network using a new decision rule derived from convex set theory. The VSFR 

method is applied with a global optimisation cost function to find an optimal set of 

vertices of a Delaunay triangulation that forms a collection of subsets of the input 

space in order to obtain an optimal piecewise linear model. The new MEN algorithm 

is formed with a new simple and fast decision rule for the gate control in training 

each local model, which is derived using convex set theory and is applicable to high 

dimensional Delaunay input space partitioning. In consequence the advantage of fast 

on-line properties of MEN is extended to unknown output surface convexity problems. 

3.6 The decision rule for the training of piecewise lin-

ear model 

The mixture of expert network is a hierarchical structure as shown in Figure 3.5 (Smith 

and Johnansen, 1997; Wu and Harris, 1998; Harris, Hong and Feng, 1999). The nodes 

Manager 

Experts 

Input vector x = [x, x^] 

Figure 3.5: The mixture of experts network 

of the first layer of the network represents the individual expert who sends a report 

to the manager. The manager monitors and evaluates all the reports to form a final 

opinion of the system output and how the network is to be trained, by operating the 



CHAPTER 3. TWO NEW LOCAL MODELLING SCHEMES 51 

gate g; of each expert using some decision rules. 

In the piecewise hnear modelling problem, the experts correspond to a set of local 

linear models. Consider a system y = / (x ) where y denotes system output, x is system 

input vector with an appropriate dimension and / ( ) is described by a piecewise linear 

model. Denote the input space x € 5" C A piecewise linear model consists of a 

set of L local linear models with a set of L operating ranges , 5'̂ )̂ which 

satisfy 

(3.18) 

and 

Q _ 0̂  when ; f A, (3.19) 

where 0 denotes empty set. Each local model is written as 

y,(x) = [1 x^]0('), IF X E , ; = 1,. - - ,L, (3.20) 

where E denotes parameter estimate vector used in fth local linear model. 

The output of the network is defined by 

L 
I 
/ = ] 

= (3.21) 

with 

1 IF X E 

0 otherwise. 

For the application of mixture of experts network to dynamical system modelling 

and time series that the training of the network is carried out in an adaptive and on-line 

processing manner, some fast decision rules for the control of the gate gi is desirable. 

Before developing such a rule, firstly we need to introduce the concept of Delaunay 

fnangw/arfoM (Sibson, 1978; Lo, 1989). For simplicity, we only discuss the two dimen-

sional case. For Delaunay triangulation in a ^-dimensional Euclidean space (» > 2), 

please refer to Brostow and Dussault (1978) or Bowyer (1981). 

Let P = ; = 1, be a set of N points in and define the set of poly-

gons V — - 1,...,N} where % — {x E H x - f ; | | < ||x — ^ and 

II. II denotes Euclidean distance norm. % represents a region of 91̂  whose points are 

nearer to node point than to any other points. Thus, % is an open convex polygon, 

usually called a Vbmno! poZygon (Brostow and Dussault, 1978), whose boundaries 



are portions of the perpendicular bisectors of the lines joining node P, to node Pj 

when % and V) are contiguous. The collection of Vbronoi polygons V is called the 

Dirichlet tessellation (Bowyer, 1981). In general, a vertex of a Voronoi polygon is 

shared by two other neighbouring polygons so that connecting the three node points 

associated with such ac^acent polygons forms a triaugle, say, 7^. The set of triangles 

{7]k} is called the DgZawMay fnangw/anon. This construction can be shown to be a 

triangulation of a convex hull for the set of node points P (Sibson, 1978). Figure 3.6 

gives a demonstration of these concepts for » = 2 and = 5. 

4 -

Figure 3.6: A Delaunay triangulation in Node points: P = Voronoi 
polygons: vertices of Vbronoi polygons: {%i,Z2,i:3,;c4}, Delaunay triangu-
lation of P: Afzfgfs, Af3f4f5} 

An important property of the Delaunay triangulation is that any three node points 

will form a Delaunay triangle if and only if the circumcircle defined by these three 

nodes contains no other node points in its interior. Note that a Delaunay triangle is a 

triangle in 2D, a tetrahedron in 3D, and so on. Each Delaunay triangle connects » + 1 

vertices in the n-dimensional space. Although Delaunay triangulation is a useful tool 

in finite element method, its application has primarily been to convex hulls. In the 

sequel, Delaunay triangulations are used to develop a fast decision rule for the control 

of the gate g, . 

Consider the model input space operating ranges which is formed using 

Delaunay triangles as where denote 

the vertices of by allowing some points freely within or on the hull of the 



CHAPTER 3. TWO NEWLOCAZ. MODELLING SCHEMES 53 

input space to form these vertices, as illustrated in Figure 3.7. The free parameters 

determining the positions of these free points can be written as a vector CO G 9?^ with 

an appropriate dimension p, which can be optimally determined using the VFSR al-

gorithm described in next section. Note that with present method, the transformation 

from CO to must be explicitly defined by the modeller subject to the 

neighbour information produced when he or she defines and labels these Delaunay 

triangulations satisfying (3.18) and (3.19). These neighbour information involve a 

few constraints, such as, some of the vertices use the natural vertices of the input 

domain, some of the free point are constrained on the hull of input domain, and the 

vertices of different Delaunay triangles use a coincident point. As a consequence of 

these constraints, the dimension size of free parameter co can be reduced to a small 

number. For example, the input partition of Figure 3.7 involves only 8 free parameters. 

Hence the derivation of from o) would not incur much difficulty 

because it is always advised to use as small number of free points as possible in order 

to overcome the curse of dimensionality. For this purpose it is also recommended that 

preprocessing of variable selection is used to reduce », the dimension of input vector x, 

prior to modelling for very complicated systems using conventional signal processing 

algorithms such as projection pursuit, principal component analysis (PCA), canonical 

analysis or some special model construction algorithm (Bossley, 1997; Hong, Harris 

and Wilson, 1998; Huang, Harris and Nixon, 1998). 

It can be shown from convex set theory that any point x within 5'̂ ') is a unique 

convex combination of as (Stoer and Witzgall, 1970) 

S (3.22) 
i = o 

where > 0, = 1- Denote E SR" and substitute = 

1 - into (3.22), yielding 

A(') ^ vl'O, (3.23) 

where y(') - — Vg \ 6 Hence the IF statement in (3.20) can be 

represented through L experts opinions given by (3.23). The manager chooses the gate 

gi by using a new decision rule, that is, to check the solutions given by L set of A^'), 

( = 1, - ,L and to select that which satisfies the constraints ^ E [0,1) for 1 < _/ < » 

and ^ e [0,1), and then let g, = 1. 

The training of local linear models can be carried out adaptively in a on-line man-

ner within a global framework using the mixture of experts network, and is summarized 
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[min(x,), max( )] 

[min(x, ), min( x, )] 

[max(x,). maxCx; )] 

[max( X,), min( )] 

O 

Figure 3.7: Delaunay triangulation partition of input space 

as follows. 

1. Determine the input space domain (the convex set S) constrained within the 

maximum and minimum value of the data range of the input vector x by using data 

preprocessing. Given an appropriate number of points which located within or on the 

hull of the input space to form vertices of a set of L subranges (simplexes, Delaunay 

triangles), denoted as 5'̂ ') = Corresponding to each given a 

set of initial parameters for L local linear models 0^') E , z = 1,2, - - , L. 

2. At iteration the training sample is given as {)'(f),x(f)}. Each expert opinion 

is formed using the solution of (3.23) (where x is replaced by x(f)) and reported to the 

manager. The manager selects the ;th model that satisfies the constraints E [0,1) 

for 1 < _/ < M and 6 [0,1), and then sets g; = 1, = 0 for X: ^ f. 

3. The output of the network is produced and the network weights is adjusted 

using the NLMS algorithm as 

0(')(f) 
g(^) 

[1 x ( f ) ^ ] 8 W ( f - l ) , 

0 ( ' ) ( f - 1)+T| 
[1 X^( f - l ) ]^g( f ) 

c + [ l x ^ ( r - l ) ] [ l x ^ ( r - l ) ] ^ ' 
(3.24) 

where T| is a preset learning rate, c is an arbitrarily small positive constant. 

4. The overall performance of the network can be measured using the mean square 

error (MSE) as 7 = XfLi ^^(0- The network output is a highly complex nonlinear 
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function of the positions of the vertices which determines how the input space is 

partitioned. The optimization of 7 with respect to the vertices position to generate 

the optimal piecewise linear model can be realized using the VFSR algorithm given in 

the following section. 

3.7 VFSR for optimal Delaunay input space partition 

a/iMgaZmg (SA) belongs to a class of so called meth-

ods. It evolves a single solution in the parameter space with certain guiding principles 

that imitate the random behaviour of molecules during the annealing process, ie., it 

represents a global optimization technique with some striking positive and negative 

features. An attractive feature of SA is that it is very easy to program and the algorithm 

typically has few parameters that require tuning. An elegant discussion on how the 

general SA algorithm works can be found in Rosen (1997). 

However, a serious drawback of SA is that it is often very slow. The VFSR 

algorithm is a global optimization method which is modified from the traditional SA 

algorithm to overcome the disadvantage of the slow convergence of the SA but main-

tains the advantage of the simplicity of SA. It employ a very fast annealing schedule, 

as it has self adaptation ability to re-scale temperatures. The VFSR is very suitable for 

constrained optimization problems, such as a search for an optimal parameter vector of 

limited dimension within a constraint space. In the present problem the free parameter 

vector 0) forming the free vertices of the Delaunay triangulation is the parameter vector 

chosen to be optimized. One implementation of VFSR algorithm, described in Chen 

and Luk (1999) or Rosen (1997) will be used in this work. The proposed algorithm is 

as follows: 

1. In the initialisation, an initial O) G is randomly generated within a feasible 

set as O : L; < m, < 77̂ . The values of L, and correspond to some min[xy] and max[%y] 

respectively, the initial temperature of the acceptance probability function, 7^(0), is set 

to /(co), and the initial temperatures of the parameter generating probability functions, 

7}(0), l<i<p, are set to 1.0. A user defined control parameter c in annealing is given, 

and the annealing times for 1 < f < p and are all set to 0. 

2. The algorithm generates a new point in the parameter space with: 

- 4 ) , for 1 < f < p and 0)^"" e Q, (3.25) 
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where g, is calculated as 

^, = sgn(v, - 0 . 5 ) % ) + , (3.26) 

and Vi is a uniformly distributed random variable in [0,1]. If is not in O it 

is discarded until a new E O is produced. The is then transformed to 

" ,VM }̂ by the user defined labelling. The local linear models algorithm 

given in the last section is used to obtain a new which is then evaluated and 

the acceptance probability of m"^ is given by 

^ 1 +exp[(y(Gf^*^) 

A uniform random variable is generated in [0,1]. If is 

accepted; otherwise it is rejected. 

3. Denote as the best point amongst a predetermined number accep-

tance points. The reannealing procedure involves first calculating the sensitivities 

(3.28) 
o 

where 6 is a small step size, and e, E is a unit vector with zth element as 1, other 

elements as 0. Let = max{f;, I < / < p}. Each parameter generating temperature 

7] is scaled by a factor &nd the annealing time is reset 

A:, = ^ _ l l o g [ ^ ] y . (3.29) 

Similarly, 7^(0) is reset to the value of the last accepted cost cost function, 7^(^c) is 

reset to and the annealing time is rescaled accordingly 

4. After every A/ggnera generated points, annealing takes places with 

h = k i + \ 

7;(X:,) = 7;(0)exp(-cA:n, 
! < ( < ; ) 

and 

1 ^ ^ f 
+ 1 

= 7;:(0)exp(-c^^). 

Otherwise goto step 2. 

5. The algorithm is terminated if the parameters has remained unchanged for a 

few successive reannealings or a preset maximum number of cost function evaluations 

has been reached; Otherwise, goto step (2). 



3.8 Numerical example 

Consider the benchmark MO»Zmear awforggrej^^;vg (NAR) time series (Chen and 

Billings, 1992) 

);(r) = ( 0 . 8 - 0 . 5 e x p ( - y ^ ( r - l ) ) ) ) ; ( r - l ) - ( 0 . 3 + 0 .9exp( - ) ' ^ ( r - l ) ) ) ) ' ( r -2 ) 

+0.1sin(: i :x};(f- l)) + g(f), (3.31) 

where % is the q/" fAg cfrcw/M/ergMce a czrc/g fo (/fafHergr, the noise 

g(^) is a wAifg ^ggwg/zcg with mean zero and variance 0.02. 1000 data 

points were generated and the first 500 points were used as an estimation data set. 

The remaining data were used as a validation data set. The input vector is set as 

X = [)'(r — l),)'(r — 2)]^. The input space partition is shown in Figure 3.8, where the 

rectangle ABCD represents the bounds of a slightly enlarged input space 5'. 4 points 

are allowed to move along each side of the rectangular ABCD and point ^ is a 

free point within the input space, forming Z, = 8 triangles 5"̂ ') 's that can be determined 

using a free parameter vector m of dimension size p = 6. The VFSR algorithm was 

applied to determine the parameter vector m, or the position of points E, F, G, H and 

K, as plotted in Figure 3.8. At this identification stage, the local linear models were 

trained using ordinary least squares to reduce computation time. 8 local linear models 

of (3.20) were obtained as 

yi (x(r) 

:p2(x(^) 

:y3(x(f) 

}4(X(^) 

y5(x(r) 

y6(xW 

:p7(x(f) 

:y8(x(0 

= -0 .06054-0 .6845) ' ( f - l ) -0 .6636X^-2 ) , IFx(f)E^(^), 

- -0.4503 + 1.1478}'(f - 1) - 0.7507)'(f - 2), IF x(f) e , 

= - 0 . 4 4 6 3 + 1 . 3 5 6 3 X f - l ) - 0 . 9 2 2 0 X f - 2 ) , IFx(f)e^(3) , 

= -0.1022 + 0 . 9 2 6 2 X ^ - 1 ) - 1 . 1 1 9 7 X ^ - 2 ) , 

= -0.1336 + 0 . 2 9 0 7 X f - l ) - 1 . 0 5 3 5 X f - 2 ) , IFx(r)G^(^), 

- 0.2329+ 0 . 8 5 9 3 X f - l ) - 0 . 6 8 4 3 ) ' ( f - 2 ) , IFx(f)G^(^), 

= 0 .2200+1 .2104) ' ( f - l ) -1 .0669) ' ( r -2 ) , IFx(f)E^(^), 

- 0.1853 + 0.238 l)'(r - 1) - 1.0057)'(f - 2), IF x(f) E , (3.32) 

The results of one-step ahead prediction using these local linear models are plotted in 

Figure 3.8 demonstrating the good predictive performance of the amended MEN mod-

el. The VFSR algorithm in this application is still slow, however once an appropriate 

input partition is obtained, the on-line processing using the proposed algorithm can be 

carried out successfully. The model validity test and the one-step ahead prediction over 

the validation data set f = 8(X) 900 are plotted in Figure 3.9 demonstrating the model 

(3.32) is appropriate. The MSE of the validation data set f = 501 10(X) is (0.023)^. 
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Figure 3.8: Piecewise locally linear modelling for numerical example (Circles: System mea-
surements and Xs: one-step ahead predictions) 

800 810 820 830 840 850 860 870 880 890 900 

Figure 3.9: Model validation for numerical example: (a) Model validity test (t) and (b)one-
step ahead prediction over the validation data set (Solid Line: System measurements, Dotted 
Line: one-step ahead prediction and Dash-dot Line: model residual) 
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In summary, the algorithm is efficient for the construction of Delaunay trian-

gulation input space partitioned optimal piecewise locally linear model. Within the 

framework of a mixture of experts network, a new fast decision rule derived using 

convex set theory has been developed to train the model. A very fast simulated 

reannealing (VFSR) algorithm is utilised to search a global optimal solution for the 

Delaunay triangulation input space partition. The new approach can partly overcome 

the problem of discontinuity of lattice partitioned piecewise local linear models. 

3.9 Comparision of two methods 

To compare the two methods presented in this chapter, we apply the modelling scheme 

presented in section 3.2 to model system (3.31. We aim at constructing a fuzzy model 

of the form 

) ; ( r+ l ) 1)). (3.33) 

Let Yf = [);(r) — 1)]^ and Xf = y ,̂ then (3.33) can be written as a 2-input 2-output 

fuzzy model: 

yr+l = +B;]. (3.34) 

Using the algorithm presented in section 3.2, the modelling procedure can stop 

a t ! = 4, the last rows of obtained A/, and parameters of w, are given in table 3.3. 

The system measurements, one-step ahead predictions and modelling errors are given 

in figure 3.10. 

Rule Bi P, <3i 

1 [1.2503 -0.8506] -0.4432 [0.7880 0.6532] 0.5200 

2 [0.4611 -0.8340] 0.0625 [-0.2374 0.6846] 0.9874 

3 [1.0350 -0.8740] 0.2280 [-0.7681 -0.8786] 0.4432 

4 [0.6085-1.0901] -0.1200 [0.2452 -0.6345] 0.7021 

Table 3.3: The T-S fuzzy model of Example 2 

Comparing the preceeding results with the simulation results in last section we 

can see that: 

# There is no remarkable difference between the modelling capabilities of the two 

methods. 
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B M 810 ( # 0 & M 840 EK# & M 870 890 900 

Figure 3 . 10 : F u z z y mode l l i ng fo r e x a m p l e 2 (Sol id l ine: S y s t e m m e a s u r e m e n t s . Do t t ed line: 

one - s t ep ahead predic t ions , and D a s h - d o t l ine: m o d e l residual) 

The first scheme is able to produce less number of local models than ± e second 

one. This is because the first method has included membership functions. 

The modelling speed of the first scheme is much faster than the second one 

because the VFSR algorithm in this application is still slow. 

The form of the final model of the second method is simpler than that of the first 

one because the second model only involves local linear models whereas the first 

one needs to take account of membership functions. 

3.10 Concluding remarks 

In this chapter, two new modelling algorithms have been introduced for constructing 

models of nonlinear systems from data. The new approaches can partly overcome the 

problem of discontinuity of lattice partitioned piecewise local linear models and the 

problem of COD since we partition the input space that is not based upon a lattice 

structure. 

The first approach partitions the operating point space in a fuzzy clustering man-

ner but avoids the requirement of a priori known number of clusters by a kind of 

mechanism which can the new cluster centre. In this way, it is able to derive 



fuzzy models from data automatically and avoid ± e problems mentioned above. 

Although the second method is introduced in quite a general framework, users are 

advised to apply the method to relatively low dimension problems due to the irregular 

shape of input space partitions, or to use input variable selection preprocessing. 

Whilst the VFSR algorithm is slow in finding the optimal input space partition, 

this does not change the effectiveness of the on-line algorithm described in this chapter 

if an appropriate input partition had already been found. The new algorithm may also 

be combined with other global optimization approaches such as genetic algorithms, 

but these are likely to be even slower than VFSR. 

Finally, the principles of the proposed techniques can also be used in other kinds 

for local modelling, which is an open research topic. 



Chapter 4 

Local stability 

Stability is one of the most fundamental properties of dynamic systems, and many 

concepts have been introduced for the mathematical study of stability. The stability 

methods and results from the general nonlinear systems theory also apply to the sys-

tems considered in this thesis which are special cases of nonlinear systems. Among 

various stability theories, Lyapunov techniques are very useful in system analysis. Not 

only do they allow stability analysis and gain computation, but they are also useful in 

the solution of optimal control problems. This makes Lyapunov techniques a natural 

basis for analysis of local linear systems. The main obstacle to a direct application of 

the existing techniques is the nontrivial step of finding the appropriate Lyapunov func-

tion. Hence, methods for efficient Lyapunov function construction are of fundamental 

importance in a useful theory for local modelling and control. 

In this section we give the basic Lyapunov stability results relevant to local mod-

elling and control topics. In section 4.1, some basic concepts of Lyapunov stability are 

presented. Quadratic and piecewise Lyapunov stability functions for continuous time 

systems are discussed in section 4.2 and section 4.3, respectively. The corresponding 

results for discrete time systems are presented in section 4.4. Section 4.5 gives a 

number of useful results concerning linear matrix inequalities which will be used in 

subsequent chapters for developing new Lyapunov stability results for local systems. 

4.1 Lyapunov stability 

Primarily Lyapunov stability concerns autonomous systems of the form 

x = f(x) (4.1) 
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with X = 0 as an equilibrium point. The following definition (Kbalii, 1992) makes 

more precise what is meant by stability in the sense of Lyapunov for a equilibrium 

point of an autonomous system. The state Xo = x(0). 

DeGnition 4.1 x = 0 

• gacA ̂  > 0, fAerg r = > 0 f/zaf 

| | xo | |<r ^ V f > 0 , 

® unstable if not stable, 

• a/K/ r caw rAof 

| | xo | |<r lmx( f ) = 0, 

• exponentially stable i f , for each R>0, there exists r = r{R) > 0 and two numbers 

C] = ci (^) > 0 C2 = C2(^) > 0 f/zar 

||xo||</- | |x(f) | |<cig"^^^| |xo| | ,Vf>0. 

Since ||x(f)|| —>̂0 when f —̂  oo for an exponentially stable equilibrium point, expo-

nential stability implies asymptotic stability. However, the converse is not true, as can 

be shown by constructing examples which are stable but converge slower than any 

exponential function (Slotine and Li, 1991). 

The geometrical implication of stability, instability, asymptotic stability and ex-

ponential stability are shown in Figure 4.1. 

Definition 4.1 is formulated to characterize the ZocaZ behaviour of system tra-

jectories starting near the equilibrium point. Local properties say nothing about the 

trajectories when starting some distance away from the equilibrium point. For this 

reason, concepts about stability are required. 

Definition 4.2 The equilibrium point x — 0 of (4. /) is 

• globally asymptotically stable if it is asymptotically stable for any initial states. 

• globally exponentially stable if it is exponentially stable for any initial states. 



CHAfTEj(4. LOCAL S]XBiLf ry 64 

Trajectory 1 - stable 
Trajectory 2 - unstable 
Trajectory 3 - asymptotically stable 
Trajectory 4 - exponentially stable 

Figure 4.1: The concepts of stability 

It is easy to see from the definition 4.2 that if the equilibrium point x = 0 of a system is 

globally exponentially (asymptotically) stable, then it must be the unique equilibrium 

point of the system. 

Based on the definitions 4.1 and 4.2, the Lyapunov stability theorem is stated in 

the following for the continuous time case (Khalil, 1992): 

Theorem 4.1 Agf x = 0 

an equilibrium point for (4.1) and let V : D —R be a continuously differentiable 

on a D q /x = 0 .ywcA f/zaf 

y(0) = 0 aW y(x) > 0 m D - { 0 } , 

y(x) < 0 m D. 

Then, x = 0 is stable. Moreover, if 

y(x) < 0 M D, 

X = 0 fJ m D. 

(4.2) 

(4.3) 

(4.4) 

The function y(x) is called a Lyapunov function. The Lyapnov function can 

sometimes be interpreted as an energy function. If the energy of the system is al-

ways positive and decreases along every tr^ectoiy of the system then the tr^ectory 

eventually will approach the origin. 

If in addition to the conditions in theorem 4.1, also the condition 

V(x) for (4.5) 
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is satisfied, then x = 0 is globally asymptotically stable. A function satisfying condition 

(4.5) is said to be The notation || || in this chapter stands for 

an arbitrary vector norm in for instance, the Euclidean norm {h norm) ||x|| = 

\ / E L i iiorm (/«. norm) ||x|| = max{|%i|,..., 1x̂ 1}. Any two norms in 

a finite-dimensional vector space are equivalent in the sense that they define the same 

convergence (Chillingworth, 1976). 

The conditions in Lyapunov's stability theorem are only sufficient. Failure of a 

Lyapunov function candidate to fulfill the conditions does not mean that thk equilibri-

um is not stable or asymptotically stable. It simply means that the current candidate 

does not suffice. 

A Lyapunov function can have arbitrary structure. In the local system modelling 

and control area it is, however, common to mainly consider the following types of 

Lyapunov functions: 

* quadratic Lyapunov functions 

* piecewise quadratic Lyapunov functions 

* Piecewise affine Lyapunov functions 

For our interest in the following we describe the first two types. 

4.2 Quadratic Lyapunov functions 

is a class of functions for which it is easy to verify sign definiteness, 

ie., the case 

y(x) = x^fx, (4.6) 

where f is a real symmetric matrix. In this case, y (x) is poj'/fzvg 

if and only if all the eigenvalues of f are positive (nonnegative). If y(x) = 

x ^ f x is positive definite (semi positive definite), we say that the matrix f is 

(^em; poj/r/vg and write f > 0 (f > 0). 

For a linear time-invariant autonomous system 

X = Ax 

the derivative of y(x) along the tr^ectories of the system is given by 

y(x) = x^fx + x^fx 

= x^(A4+A^f)x 

= - x ^ g x . 
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Hence, in the linear case the quadratic Lyapunov stability test involves Anding a matrix 

P that fulfills the two conditions 

f > 0, 

< 0. (4.7) 

The inequality (4.7) is called Lyapwnov megwafify. The solution to this can be obtained 

analytically by solving the Lyapunov equation PA + A^P = —g. A solution exists and 

is unique if and only if A is a /Morru: (a ffwni/zYz /Mafnx), ie., if ReX^ < 0 for all 

eigenvalues of A. 

Quadratic Lyapunov functions can also be used to investigate the stability of Zm-

gar (LDIs), ie., the systems of type 

x=A( f )x , A( r )EQ, XE91'', 

where O C This LDI can be interpreted as describing an uncertain time-varying 

linear system with the set O describing the uncertainty in the matrix A(r). A special 

form of LDI is the poZyfopic LDI where A(f) e Co{A], ...,A2.} where Co denotes the 

convex hull, ie., 

Co{Ai,...,Ai} = e {Ai,...,Az^},l, E > 0}. 

i=\ 

Therefore A(r) lies in the convex hull spanned by the matrices Ai,...,A2,, which is 

equivalent to 
L 

X = % W,(X)A:X, (4.8) 
i=\ 

where W;(x) satisfies 

0 < M ' , ( x ) < l (4.9) 
L 

2 w ; , ( x ) = l . (4.10) 
;=I 

The conditions (4.9) and (4.9) are known as the convexity conditions. 

For polytopic LDI a sufficient stability condition can be formulated in the follow-

ing way. 

Theorem 4.2 ( x = 0 

P > 0 

A^P + P4; < 0, *=1, . . .L. (4.11) 
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This is equivalent to saying that one must And a single Lyapunov function that 

holds for all the linear dynamic systems A, involved. 

The quadratic stability problem for polytopic LDIs has no analytic solution. How-

ever, it can be conveniently solved using a convex optimization technique (Boyd, 

Ghaoui, Feron and Balakrishnan, 1994). 

In some cases it is also of interest to verify that no common solution f exists. 

This can be verified by solving the following dual problem (Boyd, Ghaoui, Feron and 

Balakrishnan, 1994; Johansson and Rantzer, 1998): 

Theorem 4.3 morncgj' 7?,, nor oZZ zero, jwcA 

l 

> 0, 
( = 1 

zAgrg MO a a commoM 

aZZ focaZ mocZek 

Quadratic stability can be used to decide stability for continuous time linear TS 

systems, since it is easy to see that, if we choose f;(x) to be linear model A;X, the 

continuous time state space TS model (2.20) is exactly a polytopic LDL 

4.3 Piecewise Lyapunov functions 

When no globally quadratic Lyapunov function can be found, there are few methods for 

efficient construction of Lyapunov functions. For systems with local model structure, a 

natural and powerful extension of globally quadratic Lyapunov functions is to consider 

functions that are piecewise quadratic, since the dynamics given by local models are 

only valid within local areas. The search for a piecewise quadratic Lyapunov function 

can also be formulated as a convex optimization problem. As an illustrative exam-

ple, we consider the state space TS models (2.19) and (2.20). Before starting, a few 

concepts need to be defined. 

By the O, of W;(x(f)) we mean the set of states of (2.19) (or (2.20)) 

fulfilling: 

a , = { x e % " | m ( x ) > 0 } , (G7i = {l,...Z,}. (4.12) 

It is required that the state space of x: Oi U ... = O C where 0 G Q. There 

is no loss of generality in assuming that the origin is the equilibrium point of (2.19) 
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(or (2.20)) since otherwise the equilibrium can be shifted to the origin by a simple 

translation of the state variables. 

For brevity denote W;(x(r)) as Wi(t), and define 

Z, = (x E %"|w;(x(f)) > wXx(f)), ; e Zi}, f G (4.13) 

where {Zi, ...,Zr} is a partition of the state space O which is determined by the domi-

nance of the local subsystems (2.19) (or (2.20)). 

The regzoM is defined as 

A;; = {xe%"|x(f )EZ/ ,x ( f )EZ;} , (4.14) 

which is the set of states where the tr^ectory x(f) passes from Z, to Zy. Note that A/y 

are given by hyper-surfaces. 

Define 

^ = {(' ,)) |Av 7^0}- (4.15) 

The concepts of O,, Z, and Â y are illustrated in Figure 4.2 for the case of x = 

[%i %2] and triangular fuzzy membership functions. Note that while O; (; = 1,2,3,4) 

are overlaped areas, Z, (f = 1,2,3,4) forms a partition of the operating point space O. 

Also, the sets A12 and A43 are empty sets, ie., both A12 and A43 are not in defined 

in (4.15) on this occasion. 

X", Ci 

f 
e B 

0' 

F; 
- = « > 

D 

Q , = r e c t a n g u l a r a r e a abcd 

Z , = r e c t a n g u l a r a r e a aego 

A , , = l i ne e o 

A = l i n e f o 

Figure 4.2: An example of Q,, Z, and A, ., the arrows show the vector field of the system. 

We now have the following theorem about piecewise Lyapunov stability condi-

tions (Pettersson andLennartson, 1997a): 
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Theorem 4.4 fAaf fAe fra/ecfory gvoZvê  according fo (2.20j. {^(/lerg 

gzî f ^caZar^McfioMf % (x): Z, —> %, gacA % (x) di^rgnna^Ze i» x, i E /[., aMdconj^fanf:; 

oc> 0,P > 0, ancfy> 0̂ ywcArAô  

# Vx e Z;, a||x||^ < v;(x) < p||x|p, i E 7̂ , 

# Vx e Z„ %(x) < -Y||x||^, i E 7̂ , 

# Vx E A,;,y;(x) < %(x),(A;) E /A, 

fAg» g^wiZ;6nwm poinr 0 gxpongnrioZZ); in fAe j'gMjg c^LyapwMov. 

E we define a global piecewise Lyapunov function by combining the local Lya-

punov functions, the key of theorem 4.4 is to ensure that the global Lyapunov function 

does not increase at points in the switch regions. Another way to form a global 

Lyapunov function from local Lyapunov functions is to guarantee the continuity of 

the global Lyapunov function at points in the switch regions. Readers please refer 

to Johansson and Rantzer (1998) for further details. 

4.4 Lyapunov stability of discrete time systems 

This section states the corresponding stability results for discrete time systems. 

Consider a discrete system described by 

x ( f + l ) = f ( x ( f ) ) , (4.16) 

where x(f) E %",f(x(f)) is an » x 1 function vector with the property that 

f(0) = 0. 

We have the following corresponding stability definitions: 

Definition 4.3 TTzg ggwiZî riwrn poinf x = 0 

# ybr gacA 2? > 0, fAere gxijfj r = r(/?) > 0 fwcA rAaf 

| |xo| |<r ||x(r)||<^, \ / f > 0 , 

e asymptotically stable if it is stable and r can be chosen such that 

| |xo| |<7- = > l imx(f ) = 0, 
f— ôo 
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# ejiyoTzewfiaffy g(o6fe ^ ybr gacA ̂  > 0, fAgrg gzz'ffr - r(7() > 0 <3M(/ Mwrn̂ gr̂  

ci = Ci (J() > 0 C2 = C2(/() > 0 ^/lar 

| |xo| |<r Hx(f)||<cig"''2f||xg|j Y f > 0 . 

DeGnition 4.4 7%e ggMfZ;6nw/Mpomf x = 0 ;\y 

• globally asymptotically stable if it is asymptotically stable for any initial states. 

® globally exponentially stable if it is exponentially stable for any initial states. 

Based on definitions 4.3 and 4.4, the following theorems can be obtained. 

Theorem 4.5 7980j^w/7-

po^e X evoZvê  accorcfmg fo gxi&fg a gcaZar^ncfioM y(x(f)) coMfiMwow,s 

m x(f) fwcA 

7. y ( 0 ) = 0 , 

2. V ( x ( f ) ) > 0 y b r x ( f ) ^ 0 , 

.). y(x(f)) ap/pmacAgj ||x(f)|| —> 0°, 

Ay(x(f)) = y(x( f+1) ) - y ( x ( f ) ) < oybrx(r) ^ o. 

77%g» fAg ĝ MfZ/̂ nwAM j^afg x = 0 ajy/Mpfof/caZZ)/ jfa^/g m f/zg Zo/̂ g y(x(r)) » a 

Zj/apWMOV /wMCffOM. 

Choosing the local models in (2.19) to be linear models, we obtain the following 

< !̂̂ crgrg r/mg ^rafg apacg Zmgor Tiy mof̂ gZ: 

l 

1) = Zw/,(x(f))A;x(r). (4.17) 
!=1 

The quadratic Lyapunov stability theorem for (4.17) can be state as follows (Tanaka 

and Sugeno, 1992). 

Theorem 4.6 TTzg g^w/Zî nwrn q/'aywzry yy.yfg/M (̂ ^ 77) 

6Zg f/̂ rAgrg gz/j'fj' a common poĵ fVZvg af^n/fg mafnx f ybr aZZ fAg .yw ĵyj'fgmj fwcZi fZiaf 

< 0 / o r zG 7L = {1,...,L}. (4.18) 
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The conditions of a piecewise Lyapunov function for system (2.19) can be state 

as (Feng and Harris, 1999b) 

Theorem 4.7 Assume that the state trajectory evolves according to (2.19). If there 

a > 0, P > 0, and y > 0 such that 

* Vx e Z;,a||x||^ < %(x) < p||x||^,! G Ti, 

* V x e Z ; , % ( x ( f 4 - l ) ) - % ( x ( f ) ) < -'y||x(f)|p,;E7z., 

* Vx(E A;;,y;(x(f)) < %(x(f-)) , (f,y) G /A, 

f/zgM fAg 0 m c^LyapwMov. 

Proof: DeHne a piecewise difFerentiable function F (x) as 

y = I ^ ^ ^ (9, r) G /A, ^ 

^ V^(x) if X G Agr, where (^, r) G Â-

Suppose x(0) = XQ. Without lose of generality, suppose P > y, since if not, we 

can choose a bigger Pi > y and replace the P in the hrst condition with Pi. Dehne 

ci = (§)^, C2 = —^10(1 — ^). then C2 > 0. Firstly let us prove that 

y(x(f)) < y(xo)g-^":\ Vr > 0 (4.20) 

is true by induction. Assume that the trajectory is in region Zp in the time interval 

f G [0 f]). Then according to the definition (4.19), V(x(f)) = V},(x(f)), f G [0 fi). Using 

the first and second condition of the theorem we have 

— ^ G [ O r i ) . (4.21) 

Consequently 

y(x(f)) < ( 1 - g ) ^(xo) = y(xo)g-^'% r G [0 fi). (4.22) 

If f] is infinite, meaning that the tr^ectory never leaves the region Z^, then (4.20) is 

true. Otherwise, assume that the tr^ectory passes through different regions and stays 

in Zg for f E [r* Assume that 

y ( x ( f ) ) < y(xo)g Vr G ^t+i)- (4.23) 



Note that according to ± e definition (4.19) V(x(r)) = V^(x(f)) for r G [f* )- Suppose 

the tr^ectory reaches at time f^+i and stays in the region for r E (̂ t+2), 

where tk+i maybe infinite. Using the first and second condition of the theorem, 

1)) < - 'y | |x(^- 1)11̂  < — 1)), f E [ft+i ^t+z)-

Therefore 

y(x(f)) < Vf G [fjk+i ft+2). (4.24) 

Note ±at in (4.24) y(x(f^+i)) = %.(x(rt+])) < l^(x(fx:+i)) according to the Aird con-

dition of the theorem. Therefore from (4.24) and (4.23), 

= y(xo)e"^^^% VrE[rt+ift+2). (4.25) 

Combining (4.23) and (4.25) it follows that 

y(x(r)) < y(xo)e-^^% Vf e ft+2). (4.26) 

It can be concluded from the principle of induction that (4.20) is true. According to 

the first condition of the theorem and (4.20), 

1 

1 
||x(f)|| < ^^y(x ( r ) )^ 

= Cig'̂ ^^ l̂lxoll Vf > 0. 

According to the definitions 4.3 and 4.4 of exponentially stability, the theorem has 

been established. 

4.5 Linear matrix inequalities 

The first Zmgor /MoWz (LMI) used to analyse stability of a dynamical sys-

tem was the Lyapunov inequality (4.7) which was investigated by Lyapunov himself. 
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The important role of LMIs in system and control theory was already recognized in 

the early 1960's, especially by Yakubovich (Yakubovich, 1962; Yakubovich, 1964; 

Yakubovich, 1967). In 1984, Karmarkar (1984) introduced a new linear programming 

algorithm that solves linear programs in polynomial-time, which is very efficient in 

practice. Karmarkar's work spurred an enormous amount of work in the area of 

interior-point methods for linear programming. Then in 1988, Nesterov (Nesterov and 

Nemirovsky, 1988; Nesterov and Nemirovsky, 1994) developed interior-point methods 

that apply directly to convex problems involving LMIs. Although there remains much 

to be done in this area, several interior-point algorithms for LMI problems have been 

implemented and tested on specific families of LMIs that arise in system and control 

theory, and found to be extremely efficient. Nowadays efficient computerized methods 

to solve such problems are available in conmiercially supported software such as MAT-

LAB (Gahinet, Nemirovski, Laub and Chilali, 1995). In the following we introduce 

some basic concepts of LMIs concerning the topics of this thesis. 

A general LMI has the form 

/M 
F(x) = fb -I- > 0, (4.27) 

(=1 

where x E W is the variable and the symmetric matrices G = 

0, l,...,m, are given. The inequality symbol in (4.27) means that F{x) is positive 

definite. Of course, the LMI (4.27) is equivalent to a set of n polynomial inequalities 

in ie., the leading principal minors of F(x) must be positive. 

We will also encounter nonstrict LMIs, which have the form 

F(x) > 0, (4.28) 

The LMI (4.27) is a convex constraint on x, ie., the set {x|F(x) > 0} is convex. 

Although the LMI (4.27) may seem to have a specialized form, it can represent a wide 

variety of convex constraints on x. In particular, linear inequalities, (convex) quadratic 

inequalities, matrix norm inequalities, and constraints that arise in control theory, such 

as Lyapunov and convex quadratic matrix inequalities, can all be cast in the form of an 

LMI. 

Multiple LMIs Fi(x) > 0,...,f};(x) > 0 can be expressed as a single LMI 

diag(Fi(x),...,f};(x)) > 0 where diag() means diagonal matrix. Therefore we will 

make no distinction between a set of LMIs and a single LMI, ie., "the LMIs Fi (x) > 

0,...,f};(x) > 0" will mean "the LMI diag(F](x),...,f};(x)) > 0". We also note that 

when the matrix are diagonal, the LMI Fix) > 0 is just a set of linear inequalities. 
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4.5.1 The ^-procedure 

The ^-procedure (Aizerman and Gantmacher, 1964; Aiserman and Gantmacher, 1965) 

is a technique to replace a condition on a function with constraints by a condition 

without constraints. When dealing with local Lyapunov stability problems, we often 

encounter the constraint that some quadratic function (or quadratic form) be negative 

whenever some other quadratic functions (or quadratic forms) are all negative, for 

example, if some conditions must be satisfied in some special regions such as the 

conditions in theorem 4.4 and theorem 4.7. In some cases, this constraint can be 

expressed as an LMI in the data defining the quadratic functions or forms; in other 

cases, we can form an LMI that is a conservative but often useful approximation of the 

constraint. In the following we describe two common versions of the ^-procedure. 

4.5.1.1 The ^-procedure for quadratic functions and nonstrict inequalities 

Let fb, be quadratic functions of a variable x E ie., 

f)' (x) = x ^ M / x + 2 u ^ x + V;, 1 = 0 , . . . , ;? , 

where Mi = MJ. Consider the following condition on Fq, 

f b ( x ) > 0 for { x E 9 l " | f ; ( x ) > 0 * = l , ( 4 . 2 9 ) 

Obviously if there exist T; > 0, > 0 such that 

Vx e %",fb(x) > %T,f;(x), (4.30) 
i=\ 

then (4.29) holds. When = 1, the converse holds provided that there is some Xo such 

that Fi (xo) > 0. 

If the functions f) are affine, ie., 

f;(x) =U^X + V;, 

then according to Zgmma (Boyd, Ghaoui, Feron andBalakrishnan, 1994), (4.29) 

and (4.30) are equivalent. That is to say, 

UoX + v o > 0 for { x e % " | u ^ x + v , > O f = l , . . . , p } 

if and only if there exist T] > 0,..., Tp > 0 such that 
p 

Vx 6 Uo X + VQ > ^ -
f = l 
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Note that (4.30) can be written as an LMI: 

Mo 
T 

Mo 
p M; W; 

T 
Vo i=\ w; V, 

>0. 

4.5.1.2 The 5-procedure for quadratic forms and strict inequalities 

Let Mo, ...,Mp E 9?"^" be symmetric matrices. We consider the following condition on 

x^Mox > 0 for all x ^ 0 such that X^M;X > 0 , ; = 1 , ( 4 . 3 1 ) 

It is obvious that if there exist T] > 0, ...,Tp > 0 such that 

p 

1 
(=1 

(4.32) 

then (4.31) holds. Similarly as the last section, when p = 1, the converse holds provid-

ed that there exists some xo such that x^MiXo > 0. Note that (4.32) is an LMI in the 

variables Mq and Xi,...Xp. 

The Arst version of the ^-procedure deals with nonstrict inequalities and quadratic 

functions that may include constant and linear terms. The second version deals with 

strict inequalities and quadratic forms only, ie., quadratic functions without constant 

or linear terms. 

4.5.2 Schur complements 

Schur complements are used to convert certain MonZmgar marn'jc to LMIs. 

We state the basic result of Schur complements as the following lemma (Boyd, Ghaoui, 

Feron and Balakrishnan, 1994): 

Lemma 4.1 LM/ 

>0, 
G(x) ^(x) 

.y(x)^ j;(x) 
(4.33) 

j;(x) > 0, G(x) - ;y(x)^(x)-^^(x)^ > 0. (4.34) 
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The preceding Schur complement lemma can be generalized to nonstrict inequal-

ities (Boyd, Ghaoui, Feron and Balakrishnan, 1994). Suppose <2 and are symmetric. 

The condition 

<2 ^ 
> 0, (4.35) 

is equivalent to 

;?>o, : y ( 7 = 0, (4.36) 

where R" denotes the Moore-Penrose inverse of R. 

4.6 Conclusions 

In this chapter, the existing Lyapunov stability results of both continuous and discrete 

time systems concerning our work have been presented. Quadratic Lyapunov functions 

for linear systems and piecewise Lyapunov functions for local systems are discussed 

in detail. A strict proof of piecewise Lyapunov stability conditions for discrete time 

system has been given. Aspects of LMIs concerning Lyapunov stability, such as the 

procedure and Schur complements are also discussed in this chapter. Next, in chapter 5, 

we will use all of the results presented in this chapter to derive new efficient Lyapunov 

stability conditions for local system model structure. 



Chapter 5 

Piecewise Lyapunov Stability 

Conditions of Fuzzy Systems 

Stability plays a fundamental role in system and control theory. For fuzzy and neu-

rofuzzy systems, stability analysis has been difficult because these systems are both 

nonlinear and represent linguistic/symbolic knowledge in terms of rules with vari-

ables that encapsulate vague or imprecise notions. Recently, some stability results for 

fuzzy systems have been reported: An investigation of input/output data signal based 

stability of a given direct static multiple-input single-output neuro-fuzzy controller 

operating under feedback control has been developed in French and Rogers (1998). For 

Lyapunov stability, one of the more recent approaches (Takagi and Sugeno, 1985) to 

determining stability of fuzzy/neurofuzzy systems is to decompose the global process 

into a series of local models/subsystems represented as TS models. Theorems 4.2 

and 4.6 introduce sufficient conditions for the asymptotic stability of fuzzy systems 

in the sense of Lyapunov through the existence of a common Lyapunov function for 

all the subsystems (Tanaka and Sugeno, 1992); Whereas a general method for the 

computation of piecewise quadratic Lyapunov functions for hybrid systems which 

include Takagi-Sugeno fuzzy systems as a special case has also been derived (Jo-

hansson and Rantzer, 1998). Compared with the global results of theorem 4.6, the 

'local' results of Johansson and Rantzer (1998) is significant, in that it searches for 

different quadratic Lyapunov function in different operating regions in state space and 

so significantly relaxes the stability conditions for a global fuzzy system. However, 

there are many situations where continuous Lyapunov functions are too restrictive; So 

a construction method (Pettersson and Lennartson, 1997b) for generating stability con-

ditions of hybrid systems using discontinuous Lyapunov functions has been derived. 

Both local and hybrid methods of Johansson and Rantzer (1998) and Pettersson and 

77 
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Lennartson (1997b) are attractive since the search for local Lyapunov functions can be 

reformulated as a set of LMIs. 

A drawback that limits the practical use of the methods presented in Johansson 

and Rantzer (1998) and Pettersson and Lennartson (1997b) is that it may be required to 

solve a large number of LMIs in the interpolation regions between the system submod-

els. In addition to the high number of LMIs, the computation complexity and cost also 

increases dramatically as the input dimensionality increases. This means that the num-

ber of model parameters involved in the optimization process becomes prohibitively 

large for large dimensional systems. Also, for fuzzy membership functions with global 

support the stability conditions reduce to the case of global quadratic stability, hence 

the preference for basis functions such as B-splines with compact support. The m^or-

ity of current methods for stability analysis of fuzzy systems ignore the membership 

function characteristics, which contain important stmctural information about the sys-

tem contained in the rule premises. Many of the methods simply restrict membership 

functions to triangular functions (with compact support) for ease of analysis, leading 

to piecewise linear control surfaces—albeit with discontinuities. 

In this chapter, we present a new method for the stability analysis of fuzzy systems 

that incorporates the input membership function characteristics. We show that, under 

certain conditions placed on the input membership functions, we need only search 

for one local Lyapunov function even in the intermodel interpolation region. This 

both relaxes the stability conditions and reduces the computation load in solving the 

resultant reduced number of LMIs. 

5.1 System description 

The Takagi-Sugeno fuzzy model is considered in this chapter since it has established 

modelling, stability and control conditions. Both the discrete time state space model 

(2.19) and continuous time state space model (2.20) are considered. That is to say, the 

model can be both continuous time; 

x(^) = +g,] , (5.1) 
i=l 

or discrete time 

l 

+ 1) = (5.2) 
1 = 1 
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where w, : E It = {l,...,L} are normalized membership functions with 

> 0 for z e Tz, and 

%w,(r) = l,Vf. 
,=] 

We will use the definitions of O;, Z,, A,; and which are defined in (4.12)—(4.15). 

Recall that it is required that the state space of x: Oi U... U O -̂ = Q C where 0 G Q 

and there is no loss of generality in assuming that the origin is the equilibrium point 

of (5.1) and (5.2). Because A, is a matrix with constant entries, A;x(f) +B; is an affine 

system defined on Q/. We note that origin being the equilibrium implies that, 

%M/,(0)B,' = 0. 
;=1 

For brevity denote W;(x(f)) as yy;(f), and introduce 

A; 
0 0 

( E Tz., X = 
x 

1 

Within each subregion Z„ the fuzzy system (5.1) can be rewritten as: 

x(f) = [A;+%wy(r)(Ay-A,)]x(f) 
j=i 

L 
= A,x(f) + ^ w X f ) ^ o x W 

;=i 

= A:x(r)+h,(f,x(f)), 

where 

AAij = Aj-Ai 
Aj —AiBj — Bi 

0 0 

h,(^,x(r)) = 

Accordingly, within Z,, the fuzzy system (5.2) can be rewritten as: 

x(f + l) =A;x(f)+h;(r ,x(r)) . 

(5.3) 

(5.4) 

Note that h;(f,x(r)) can be viewed as a kind of modelling error of the dominate local 

model in the subregion Z,. 
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5.2 Stability conditions 

Applying theorem 4.4 or theorem 4.7 to perform a stability analysis of the system (5.1) 

and (5.2), we are going to find a type of discontinuous Lyapunov function. This means 

that we have to construct the different Lyapunov functions z e 7 ,̂ satisfying the 

specified conditions in the subspace Z,,; E 7̂  and A/y, (i,)) G 7 .̂. This can be achieved 

by re-stating the stability conditions as LMIs. We express / G Tf, with quadratic local 

Lyapunov functions according to 

% (x) = + 2p^x + = x^f(x, (5.5) 

where 

Pi 
P, 

Pf 

and = f . e p, E 91'"' ̂  and E %. 

From (5.3) and (5.5) we get 

y(x) = x^.^x + x^.^x 

= [x^A; + h [ (r, x)]^x + X^^[A;X + h, (r, x)] 

= x^ (A^^- + ^A:)x + (r, x)f:x + x^^-h; (r, x) 

< x ^ ( A M + % ) x + 2x^f, %^,yX 
j=i 

= x ^ ( A M + % + 2 f , % ^ , , ) x , (5.6) 
7=1 

where 

(5-7) 

and II - II is the square norm of a matrix. 

Analogously, for the discrete-time model (5.2), from (5.4) and (5.5) we get 

y (x ( r+1) ) - y ( x ( r ) ) = A + lAffy + f , ( ^ (5-8) 
;=1 y=i 

where again is expressed in (5.7). 

The following theorem for continuous-time model (5.1) is obtained from equation 

(5.6) and theorem 4.4 directly: 



j: PJZiCZErM/TSuG of7f7L%7%ry 
sryiSTrEavfs s i 

Theorem 5.1 Affwrng fAg fro/ecfoAy gvoZvĝ  acco/zZmg fo (J.7). TjffAerg gxwr 

.^ (x) = , f E /[, coMjra/zff a > 0, P > 0, y > 0 jwc/z f/wzf 

(i) Vx e Z,,a||x|p < x^f.x < p||x||^,f 6 /i, 

(ii) Vx€Zy,x^(Arf, + % ) x + 2x f̂,l4_;̂ ^^^^^ 

(lii) Vx e A:;,x^^x < x^^x, (;J) e Â, 

fAg/z Âg ggw(Z;6nMm pomf 0 z,; gxpo/ignrfaZZy ^^a6/g m fAg fg/ij'g q/'Zj;apM»ov. 

For the discrete-time model (5.2), from (5.8) and ±eorem 4.7 we have: 

Theorem 5.2 Â ŵmg fAaf fAg jfofg ̂ ro/gcfo^ gvo/vgj' occoAyimg ro (J.2j. (/"rAgrg gxî f 

f;(x) = (^), ( G Tf,, a»(Z coMj'fanf^ (X> 0, P > 0, y > 0 fAaf 

(i) Vx e Z:,a||x||^ < x^f;x < P||x||^,z e Jl, 

(::) Vx e Z,,x^(Arf,A,- - f , + 24^^,^)=! +f,(Zy=] ^v)^)x < -y||x||",' € 

(iii) Vx G A:y,x^^x < x^f.x, (;, y) e Â, 

rAg» fAg ggw;Zf6nwfM pomf 0 ;j' gx/̂ o/igMffaZZ}; f̂a6Zg m fAg jg/^g q/Zj/a/^wnov. 

5.3 LMI formulation 

As discussed in chapter 4, the main obstacle to a direct application of the Lyapunov 

techniques is the nontrivial step of finding the appropriate Lyapunov function for a 

nonlinear system. Nevertheless, the conditions in theorem 5.1 and theorem 5.2 can 

be reformulated in the form of LMIs described in chapter 4 to enable us search for 

the solutions by optimal techniques. Before doing so, attention must be paid that the 

conditions only have to be satisfied in specified regions Zj, whereas an LMI is a global 

condition. If the conditions are converted globally when reformulated as LMIs, then 

the results would be much more conservative. To solve the problem, we can utilize the 

^-procedure described in chapter 4 to express the different conditions in theorem 5.1 

and theorem 5.2 as LMIs. 

The regions Z,, f E /z, and A/y, (;,y) E &re hyperplanes in the space 5R". There-

fore it can be assumed that 

Z, = {xE%' ' |G^x + 6f,t>0A:e7,}, (5.9) 

A,̂  = {xe9(" | / ;^x + c o = 0 } , (5.10) 
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where and are « x M matrices, and are scalar numbers. Define 

0 r!2:t 

Qlk djic 2 îA: 
= 

0 

Using the ^-procedure, the following theorem can be derived from theorem 5.1; 

Theorem 5.3 fAof fAe fra/gcfoA}; gvo/vgiT occon^mg fo TjffAgrg gxzj'f 

f ; E ancf a > 0, p > 0,y > 0, amf > 0 , > 0, 

(i) a / + Zt ^ < p/ - AtG:*, Z G 

(ii) /G/L, 

(iu) (*,;)e7A, 

wAgfg / Âg fWgM îfy mafnjc, fAgn fAg ggw(Zf6nwm 0 gApongMffoZZy ĵ ra6Zg m 

Âg jg/iyg 6̂ Ẑ yapwMov. 

Proof: V( E /[,, firstly let's consider the inequality 

Vx 6 Z,,a| |x|P < (5.11) 

of theorem 5.1. According to the definitions of Qn̂  and Rij, (5.9) can be rewritten as 

Z; = {x e Ix^a^x > 0, A: E A}. (5.12) 

Using (5.12), the condition (5.11) is equivalent to 

X^P(X-(X||X||^>0 for {xE%""^^|x^!2;tx>0, ^ET,}. (5.13) 

Noting ±at xg,^* is affine in x, according to Zgrnma stated in section 4.5.1.1, 

(5.13) is equivalent to Ae following condition, ie., there exist > 0, ^ E Z; such ±at 

Vx E , x^^x - (x||x||^ > % 
k 

which can be rewritten as 

Vx E , a||x||^ + %)U,tX^Gw^x < x^P,x. 
k 

Since the above condition holds in the whole space, it can be rewritten as an LMI as 

following 

4" ^.f^ikQik ^ Pi J 
k 
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which is the left part of ± e first condition in the theorem. All other parts of the 

conditions can be obtained similarly. The theorem established. 

Similarly, from theorem 5.2 the following theorem can be established: 

Theorem 5.4 fAaf fAg gvoZvgf accorofmg fo gx;.yf 

^ E E 7^ <3726̂  0(> 0,p > 0,'y> 0, ^ > 0, 

T|;y j'WCA 

(i) a / 4- ^ < P/ - Z t ! G /L, 

(iii) 

w/Agrg / f/zg zWg»rzfy /Mafnx, fAg/z fAg ĝ wzZẑ nwrn pozVzf 0 zj gAyoTzgMfzaZZy .yfa^/g m 

/̂zg .ygfzjg q/Z^opz^Mov. 

Theorem 5.3 and theorem 5.4 give the stability conditions of system (5.1) and 

(5.2) respectively re-formulated as LMIs. Hence, it is computationally possible to And 

the unknown variables f , in the theorems by efficient convex optimization algorithms, 

which is illustrated by the following examples. 

5.4 Simulation examples 

5.4.1 Example 1 

This example is adopted from Johansson and Rantzer (1998) to compare the efficien-

cies of the proposed approach and the methods given in Johansson and Rantzer (1998) 

and Pettersson and Lennartson (1997b). 

Assuming that some local modelling scheme (see chapter 3) has been implement-

ed for some nonlinear process and resulted in a TS model of the form (5.1) with the 

following three local affine systems: 

Ai = 

Az = 

A] = 

- 1 0 - 1 0 

10 5 

- 1 - 2 

2 - 8 

- 1 0 - 1 1 

10 9 

B] = 

^2 = 

^3 = 

0 

2 

0 

0 

0 
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The weight functions Wi{t) and the partitioning of the state-space are shown in Figure 

5.1. 

4 

Figure 5.1: T h e we igh t func t ions and the s tate space par t i t ioned i n t o opera t ing regions fo r 

example 5.]. 

Therefore the global model of the system is 

3 

X = % vv; (f) [A,x(r) + B,]. 
i=\ 

We note that the traditional method to find a common quadratic Lyapunov function for 

all local models is inapplicable here, because, according to theorem 4.3, the following 

dual problem can be solved: There exist positive semidefinite matrices Ri, not all zero, 

such that 

1 = 1 

where A, = ; = 1,2,3. 
A; 

0 0 
Stating the stability conditions in theorem 5.3 for the partitioning in Figure 5.1, 
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we formulate (3+3+4) LMIs as follows: 

k k 

ol+%;/2t<22t < ^ < p/ -
k k 

o / + < A < p/ -

+2Pi < —y/, 
;=I t 

_ 3 

^2 ^ + 27^ % ^2; + ^V2t!22A: < —1 ,̂ 

A ^ P 3 + % 

7=1 

2 P 3 i ^ 3 ) 
J=1 

-%V3t<23t < -7^ , 
k 

^ < f ] — Tll2^12, 

A < ^ -1121^21, 

A < ^ -T|23^23, 

^ -T|32^32, (5.14) 

Note that <2,̂  and can be calculated according to (5.9) and (5.10) where Zy and 

A/y are local areas and boundaries of the partitioned operating regions shown in figure 

5.1. A solution of the LMI system (5.14 is obtained via the routines of Matlab LMI 

library. The three obtained quadratic local Lyapunov functions are: 

' 0.6042 0.4660 0.0553 

P] = 0.4660 0.6733 -0.0829 

0.0553 -0.0829 0.0553 

Pi = 

A = 10 

0.0143 -0.0454 0.0000 

-0.0454 0.1447 0.0000 

0.0000 0.0000 0.0000 

0.2678 0.2043 0.0779 

0.2043 0.1818 0.1105 

0.0779 0.1105 0.0125 

-15 

With the methods presented in Johansson and Rantzer (1998) and Pettersson and 

Lennartson (1997b), we need to solve (5+7) LMIs and (3+7+4) LMIs respectively. 

The computational difference between the proposed approach and those of Johansson 

and Rantzer (1998) and Pettersson and Lennartson (1997b) becomes large if the inter-

polation is performed in multiple dimensions for dynamical processes whose models 
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require high input dimension. Assume Aat fuzzy interpolation is also applied in 

the %2—dimension in the example using the same membership function shape and 

position as in the X]—dimension. Then we obtain 9 operating regions each with 

its own local dynamics, and 16 interpolation regions. In 4 of the interpolation re-

gions 4 local dynamics are involved, and in the remaining 12 two local dynamics 

are involved. The total numbers of LMIs that need to be simultaneously solved are 

25+((9*l)+(12*2)+(4*4))=74 and 9+((9*l)+(6*4)+(4*4))+24=82 with the methods 

presented in Johansson and Rantzer (1998) and Pettersson and Lennartson (1997b) 

respectively. But here we need only to solve 9+9+24=42 LMIs with our method. In 

the cast of three dimensional partitioning as Figure 5.2, the number of LMIs of the 

three methods are 468, 478, and 135 respectively, as illustrated in Figure 5.3. 

Generally speaking, suppose the n-dimensional input space is decomposed by 

partitioning each axis with the same number of local areas, if each axis is partitioned 

into A: areas, using both methods of Johansson and Rantzer (1998) and Pettersson and 

Lennartson (1997b) will need to solve ci[2(^— 1)]" number of LMIs, but using the 

proposed method only needs to solve number of LMIs, where ci and C2 are 

polinomial functions of n. 

/ ^ 
/ 

IH y1 

/ 

Figure 5.2: T h r e e d imens iona l par t i t ion ing of the s ta te s p a c e 
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2 3 
input dimension 

Figure 5.3: C o m p a r i s o n of the n u m b e r s of L M I s us ing t h r e e app roaches : m e t h o d I -

Johansson; method n—^Pettersson; method m—this chapter. 

The numbers of LMIs using three approaches 

5.4.2 Example 2 

Also the approach presented in section 5.2 can be used for wider range of systems than 

that of Johansson and Rantzer (1998) and Pettersson and Lennartson (1997b) because 

the conditions are less conservative. The following example will illustrate the point. 

Consider (5.1) with the following three local afAne systems: 

A2 = 

A] = 

- 1 0 - 1 0 . 5 

10.5 - 9 

- 5 - 2 . 5 

1 - 5 

- 1 0 - 1 0 . 5 

10.5 - 1 0 

B\ = 

B2 = 

B3 = 

11 

7.5 

0 

0 

11 

10.5 

The weight functions and the partitioning of the state-space are shown in 

Figure 5.4. 

Utilising the stability conditions of theorem 5.3 for the partitioning given in Figure 

5.4, we formulate (3+3+4) LMIs. A solution of the LMI system is evaluated by the 
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0.9 

0.7 

0.6 

0.5 

0.4 

0.3 

0.2 

Figure 5.4: The weight functions and the state space partitioned into operating regions of 
example 5.2. 

LMI toolbox of Matlab. The three obtained quadratic local Lyapunov functions are: 

1.3897 -0 .1854 0.0359 

f i = 10^ -0.1854 1.2954 - 1 . 2 1 3 6 

0.0359 - 1.2136 1.1509 

' 0.7165 -0 .1585 0 

f z ^ 10^ -0.1585 1.3928 0 

0 0 0 

1.7358 -0 .1659 0.1760 

fg = 10^ -0.1659 1.6024 - 1 . 6 8 0 7 

0.1760 -1 .6807 1.7629 

However, the LMIs formulated by methods presented in Johansson and Rantzer (1998) 

or Pettersson and Lennartson (1997b) are non-feasible using Matlab routines, as there 

is no common quadratic Lypunov function for the local models in the interpolation 

areas. 

5.5 Concluding remarks 

In this chapter, a new method for stability analysis of fuzzy systems is proposed. 

Similar to Pettersson and Lennartson (1997b), we provide a constructive technique to 
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seek a form of discontinuous Lyapunov functions, but, by making use of membership 

functions, this method needs only to find one local Lyapunov function for every inter-

polation region. Therefore the proposed technique drastically reduces the complexity 

of the associated LMI problem. Furthermore, because of the much simpler formu-

lations in theorem 5.1 and theorem 5.2, we have relaxed the stability conditions of 

fuzzy systems given in Johansson and Rantzer (1998), and Pettersson and Lennartson 

(1997b) (which are considered the best stability results for fuzzy system stability to 

date). 

Future research can be conducted along two directions. One is to integrate the 

stability determination with the modelling schemes described in chapter 3. Another 

one is to simplify the boundary conditions for local Lyapunov functions. We will 

discuss these ideas in more detail in chapter 8. 

Next chapter will use the results obtained in this chapter to study control problems 

of local systems. 



Chapter 6 

Feedback stabilizing control of fuzzy 

systems 

Various methods of fuzzy-model-based control have emerged as a powerful approach 

to the control design of complex non-linear systems (Takagi and Sugeno, 1985; Tanaka 

and Sugeno, 1992; Wang, 1996; Tanaka, Ikeda and Wang, 1996; Wang, Tanaka and 

Griffin, 1996), several of which have addressed this problem via the stabilization of 

state-space fuzzy models. Often, these solutions depend on finding a common Lya-

punov function for the feedback control of nonlinear systems represented by a set of 

linear local models (Wang, Tanaka and Griffin, 1996; Kiriakidis, 1999). In Wang, 

Tanaka and Griffin (1996), a nonlinear system is represented by a set of TS models, 

and the control design is carried out by the so called /pamZZeZ compgMj'affoM 

scheme. The idea is that for each local linear model, a linear feedback controller is 

designed. The resulting overall controller, which in general is nonlinear, is like the 

modelling representation, a fuzzy blending of each individual linear controller. Kiri-

akidis (1999) developed a framework that exploits the property of the fuzzy model 

as a convex hull of linear system matrices. Using a quasi-linear model structure, 

the robust stabilization of complex non-linear systems, against modelling error and 

parametric uncertainty, based on feedback control, is transformed into an LMI prob-

lem. In Cao, Rees and Feng (1997b), the authors presented a fuzzy controller design 

method which attempts to combine individual local linear based solutions to obtain a 

global solution for the overall design problem. The approach is based on the so called 

fuzzy dynamic model which is an extension of TS model. Instead of searching for a 

common Lyapunov function for all the subsystems, this algorithm sought for piecewise 

local quadratic Lyapunov functions. As such it generates a less conservative controller 

solution than that obtained in Kiriakidis (1999), although some boundary conditions 

90 
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need to be incorporated. Another drawback of Cao, Rees and Feng (1997b) is that the 

resultant controller design is formulated so as to require a set of Riccati equations to 

be solved with an associated computational overhead. 

In this chapter, following the results obtained in the preceding chapter, we formu-

late and solve the problem of robust stabilization for a broad class of fuzzy systems. 

Initially a class of affine continuous nonlinear dynamical systems are represented by 

a class of fuzzy models with sector bound modelling errors, for which the state space 

is partitioned into a set of local linear fuzzy models with bounded additive parametric 

and modelling errors/disturbances. In Section 6.2, state feedback controller design 

is derived by seeking a piecewise Lyapunov function for the closed-loop system so 

that the design solutions are minimally less conservative. Section 6.3 discusses output 

feedback controller design methods. An illustrative example is given in Section 6.4. 

Finally, section 6.5 concludes the chapter. 

6.1 Fuzzy model of nonlinear systems 

Here we consider the affine nonlinear dynamical systems described by (2.6), which is 

re-written here for convenience: 

X = f(x) + g(x)u, 

y = Cx, (6.1) 

where the Jacobi matrix Vf(x) continuously differentiable and f(0) = 0, g(x) G 

Expanding f(x) about the origin we obtain f(x) = A^(x)x. Therefore system (6.1) can 

be approximated about the origin as 

X —Af(x)x + g(x)u, X e 9(",u 6 SR'" (6.2) 

Inside an arbitrarily large compact subspace % E the above class of non-linear 

systems can be approximated by a class of fuzzy models to any desired accuracy (Wang 

and Mendel, 1992). The fuzzy model that approximates the system matrix, A^(x), 

for all X E stems from the following expansion in terms o fyhz^ 

(FBFs) (Wang and Mendel, 1992; Kiriakidis, 1996) 

L 

A^x) ^ %w,(x)A: + AA(x), A;, AA(x) E ||AA(x)||a (6.3) 
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where > 0 is arbitrarily small, Z, is finite, and the absolute matrix norm ||D|| 

M * maxi<t,z<M |^w|, ^ 6 The normalized fuzzy basis functions are given by 

W;(x) 

Z L i % ( x ) 
i — 1;^ L. (6.4) 

where w,: % —> [0, 1] are the fuzzy membership functions. Suppose that» < m, if we 

set jBj(x) - [g(x) Onx(M-m)], then similar to the process of representing Af(x) in FBFs 

we get 

L 

1 
(=1 

= %w,(x)B„' + AgXx), A8Xx) e llABXx)!!^ < (6.5) 

If we denote .8 /̂ = [B, OMx(M-m)] Ag^(x) = [AB 0;;x(M-m)], then the resulting fuzzy 

system of (6.2) takes the form 

x = A(x)x + .B(x)u + Af(x,u), x E % , (6.6) 

where 

L L 

^(x) = ZM/,(x)A,', g(x) = ]^W;(x)B;. (6.7) 
:=] z=I 

In the following it is assumed that the modelling error satisfies the sector bounds 

Af^(x,u)Af(x,u) < / / 

- T -

X X 

u u 
(6.8) 

where // is a constant. Note that the modelling error Af(x, u) has been added into (2.21) 

to form (6.6) since (6.6) is considered to represent the original plant. 

The fuzzy model description (6.6) is general enough to also incorporate pertur-

bations that originate from other sources such as parameter uncertainty or external 

perturbations (Kiriakidis, 1999). For example, suppose that the matrix A^(x) in (6.2) 

depends linearly on a parameter vector 8, which is normal for say B-spline expansions 

of a general function f ( ) . Then we have A^(x,8) = A^(x,8o) +AAp(x,A8). We need 

only approximate the nominal part A^(x,8o) by the fuzzy model as shown above, and 

obtain the following 

A^(x,8) — A(x,8o) +AA(x,8o) +AA^(x,A8) 

Similarly g(x,8) = B(x,8o) + A8(x,8o) + A8p(x, A8) in (6.2). Here AAp(x, A8) and 

A8^(x,A8) represent parametric uncertainty, whereas AA(x, 8o) and A8(x,8o) repre-

sent modelling error which are uniformly bounded as in (6.3) and (6.5). If the matrix 



norms ||AAp(x,A8)||g, ||Ag^(x,A8)||a are also uniformly bounded, and their upper 

bounds are same as the upper bounds of ||AA(x, 9o)||a and ||Afi(x, 6o)||a, respectively, 

then the parametric uncertainty can be lumped with the modelling error. 

Within each subregion Z, the fuzzy system (6.6) can be denoted as 

X = (A,' + AA:)x + (B; + Ag;)u + Af(x,u) 

= (A;X + B;U) + (AA,x + A8:u)+Af(x,u) x E Z , (6.9) 

where AA/ = AB, = w;(B; — B,) ; = 1, We need the 

following important upper bounds of the system (6.9): 

[AA, A6,]^ [AA, AB;] < (6.10) 

where E, = [En is a constant matrix. E u E then E, E The upper 

bounds E; have to be selected by the designer. If unavailable, then the following search 

algorithm (Cao, Rees and Feng, 1997b) can be used to obtain approximate bounds 

from observable input/output data of the process (6.1): 

7. Denote AA, = ^ ^ (Ay — A,) and Ag, = ^ , (By — B;), f = 1,..., I,. Choose 

the the approximate upper bounds (6.10) with the form: 

E,^E, = A.,[AA, Ag, f [AA, A8,] f = 1,2,...E, (6.11) 

or the form 

= ;=1 ,2 , . . . ,E . (6.12) 

Agp 2. Initially, set k, = 0, f = 1,2,...,!,, and determine whether the closed-loop 

subsystems in (6.14) are stable with Af(x) = 0. If any one does not, the algorithm ends 

and the upper bounds cannot be found; otherwise go to Step 3. 

Step 3. Increase the values of X, = X, + O/, where a, > 0, / = 1,2,..., L. Then determine 

whether the set of closed-loop subsystems in (6.14) are stable. If they are all stable then 

repeat Step 3 until the maximum values of X/, i = 1,2, ...,L have been found, which 

guarantee that the set of closed-loop subsystems (6.14) are stable. Substituting These 

values into (6.11) we obtained the approximate upper bounds. 

It should be noted that the above searching algorithm gives the largest al-

lowable upper bounds, which represent the largest allowable interaction among the 

subsystems. 
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6.2 State feedback controller 

Initially we assume that all states, x, are available from observation. Later in Section 

6.3 we relax this assumption. In this case, a piecewise static state feedback controller 

of the form 

U = f;X, XEZ; (6.13) 

can be used for system (6.9) to form a closed-loop system 

X = (A; + B ;^ )x 4- (AA; + Ag;%K;)x + Af(x), X E Z,', (6. 14) 

where Af (x) is a simplified notation for Af (x, ̂ ;X) and satisfies the sector bounds 

7 
T 

I 

Ki Ki 
Af (x)Af(x) < ; / x 

where / is an identity matrix with suitable dimension. 

From the upper bound of (6.10), we also have 

(6.15) 

(AA; + Ag,';[,y(AA^ + Ag,'^,) < 
7 

Ki 

1 

Ki 
(6.16) 

Applying theorem 4.4 we can prove the following lemma (Feng and Harris, 

1999b): 

Lemma 6.1 A.yjw/Me fAaf f/ig occonimg fo 

%(x) = xf^x, ; E Ti, JwcA 

(i) Vx ^ 0 E Z;, %(x) > 0, z = 1, ...L, 

(ii) Vx E Z;, %(x) < 0, f = 1, ...L, 

(iii) Vx E A,y,yy(x) < %(x), ( z j ) E /A, 

f/zgM fAg (wMf/brmZy) expoMgwrzaZZ); m a'gnjg q/'Lyapwrnov. 

Proof Let 

OC = min (^/) ; P — 1 

then for any i = E II, within the region x E Z/, 

a||x||^ <%(x) < Pl|x||^. 
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Also, Solutions to the strict inequalities in (ii) implies the existence of positive real 

nuintyers #:> OsvKyh diat 

Denote y = min/Y;, then 

%(x) < 

^(x) < 

Now it is direct from theorem 4.4 that the lemma can be established. 

Using lemma 6.1, we obtain the following stability result for the closed-loop 

system (6.14) (Feng and Harris, 2000): 

Theorem6.1 fAere mafnceg {<2l, - ,61}, 

(i) 

+ A , G , + + 2 7 

<2, 

Yi 

6, y / 

- ( / / / - E / E y ) 
< 0 ; (6.17) 

(il) 

Qi ~ Qj (')i) ^ ^A- (6.18) 

7%gM fAg (6.7^), ^w6/gcf fo gom ^ = 

= 1, ...,Z, jfaNg m q/'I,)'apw»ov. 

Proof According to Lemma 6.1, we need only to find a piecewise Lyapunov function 

for the system to ensure the stability. Consider the Lyapunov function candidate given 

by % = x^/^x, where % is positive for ; = 1,...,!,. In the following we will 

prove that % < 0 for all x ^ 0 and z = 1, ...,1, or equivalently 

= x^(A,+j? , -^ , f f ,x + x^f,(A; + g , f , )x 

+x^ (AA,' + A8,Jir,) ̂ f ,x + x^f,' (AA,' + AB, Jg,) x + Af (x) .x + x^f/Af (x) 

= X^A:X:<0, (6.19) 
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where we denote 

X (A,+B,j[,)^B, + f,(A,+B,ji:,) Pi Pi 

(AA, + AB,Ar:)x , = Pi 0 0 

. Af(x) . Pi 0 0 

By (6.15) and (6.16), AA,, AB, and A/(%) satisfy the following condition 

0 7 0 x , < 0 

0 0 / 

(6.20) 

Applying the J-procedure, inequalities (6.19) and (6.20) hold if there exists T > 0 such 

that 

A; — T 0 

0 

/ 0 

0 7 

<0. (6.21) 

From the Schur complement lemma 4.1, inequality (6.21) hold if and only if there 

exists T > 0 such that 

(A,- + B , f , y f / + f,(Ay + B,^ , )+T( ; / (7 + ^fjir ,) + (En+Ea^^^^ 

[f,- f,] 
T - V 0 ' Pi' 

0 - T - V Pi 
<0. (6.22) 

Substituting g , = ^ and after manipulation, inequality (6.22) becomes 

T 

<2,Af + A,G, + B,}^ + E^Bf + 27 + 
Qi 

Yi 
(;y^/ + EfE,.) 

Qi 

Yi 
<0. (6.23) 

Using the Schur complement lemma on (6.17), (6.23) follows, and so the Arst and 

second conditions of Lemma 6.1 hold. Since Pi > Pj if and only if Qi < Qj, the 

third condition of Lemma 6.1 is a direct consequence of (6.18) after applying the S-

procedure, establishing the theorem. 

Remark: The conditions of theorem 6.1 is a set of LMIs and so it is easy to 

use standard software packages to And their solution. Therefore it provides an easy 

construction method for controller design. 

6.3 Output feedback controller design 

The above state feedback control requires that the system states are available. In 

practice this requirement may be too restrictive since frequently only an input/output 
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model is available from online observations. In this section we consider the control 

law based on output feedback. Recall in (6.1) the output equation for the fuzzy system 

is 

y = Cx, (6.24) 

based on which we construct a state observer and output feedback controller via 

z = + 

U = ^ ; Z , Z e Z; , 

(6.25) 

(6.26) 

where Ac, Be and Ki are controller matrices to be determined. Applying the output 

feedback controller (6.26) to system (6.9), the closed loop fuzzy control system can be 

obtained as 

X = (A;X + g / f ; Z ) + (AA;X + A g ; ^ ; Z ) + A f ( X , Z) (6.27) 

Define the augment state vector x 

using (6.24) 

X 

z 
E then (6.25) and (6.27) becomes on 

X = A;X + AA:(x)x + Af(x) (6.28) 

where 

Ai = 
A, % 

A, 
AA;(x) = 

AAj ABiKi 

0 0 
, Af(x) = 

Af(x, z) 

0 

From (6.8) and (6.10) the following inequalities hold, respectively 

x^AAr(x)AA;(x)x < 

where & 
1 0 

0 

Af^(x)Af(x) < / x ^ ^ , ^ ^ , x , 

. We have the following lemma: 

(6.29) 

(6.30) 

Lemma 6.2 rAar rAg ffafg fo (6.6). //"fAgrg 

^ > 0, a/W fAaf 

A f f , + f/A, + 2 f ; < 0, 

wg Âg o^^grvgr (6.2.5) anaf coMfmZZgrj' (6.26) fo (6.6), rAgn rAg cZoĵ gfi Zoop 

yy.yrg7M, jw6/gcf fo (6.&) (6.70), gApoMgnfiaZZ); ffa6Zg m fAg ^g»j'g 
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Proof: Initially consider the Lyapunov function candidate V = x f/x, where P, 

is a positive matrix. We have 

X 
T 

' A r A + % A ' X 
v = AA;X Pi 0 0 AA(X (6.31) 

Af Pi 0 0 Af 

From (6.29) and (6.30) we also have 

X 
T 

0 0 ' X 
AAgX 0 I 0 AA(X < 0 . (6.32) 

Af 0 0 I Af 

Applying the ^-procedure, we know that F < 0 and (6.32) hold if there exists T > 0 

such that 

A / P . + P A P, P, 

P, 0 0 

P 0 0 

rzrri 

0 

0 

I 0 

0 I 

<0. 

From the Schur complement lemma 4.1, the above inequality is equivalent to 

Af A + P,A, + , + 2T-1 ̂  < 0 

After multiplying by and re-denote as ^ we get 

AfP, + P^A, + , + 2P; < 0. 

This proves the lemma. 

E we use the following observers: 

Z = A;Z+B;y z e Z ; , 

then we obtain the following theorem from Lemma 6.2: 

(6.33) 

(6.34) 

Theorem 6.2 Af̂ wmg fAe rrq/gcfOAy acco/zfmg fo (6.6). 1% <zpp(y 

f/zg (6..)'^) (6.26j fo (6.6). TyrAgrg gxzjf 

(i) g; >0 , f = 1, ...L rAaf 

G,Af+A,G, + 27 a 

0 

0 

-I 

<0, (6.35) 
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(ii) matrices P, > 0, / = 1, ...L such that 

+ % + ̂ /+ 
Pi 

w/igre 

Pi 
-1 

<0, 

(6.36) 

G, = G , A f + A , G , + A ^ } ^ + };^E,^E,2y; + 27, 

N, = (5,C+};;E,^En)^Gri(g,C+y,^E,^En). 

(iii) mafncg;; Tl,j, y = 1,...,Z, j'wcA fAaf 

(6.37) 

Pi 

Qi 
< 

Pi 

Q1 
^ijPijj ('• j ) G /A- (6.38) 

TTzgM fAg cZô g<̂  Zoop j;w6/ecf To aW (6.70), m 

fAg jgMj'g q/'Zj'apMMOv. 

Proof: Let's consider the positive matrix Pi 
Pi 

» X M positive matrices. Set Y} = Then = 

multiply (6.33) by f and after manipulation, we get 

e r 

Yi 

where and g, are 

. Pre- and post-

al! 1̂2 

g21 2̂2 
<0 

where 

en = f r ^ A r + A , f r ] + / f - 2 + f - ] E r g . , p - i _ ^ 2 7 , 

g]2 = f r i ( g , c ) ^ + % G , + fr'E,^E,2}^, 

g2i = <2,(g,Ar,f + B , C f r i + } ; . ^ E , ^ E n f r \ 

^22 = 6,A^+A,(2,+//};;};+y;; 'E,^E/2i^+2/. 

Applying Schur complement lemma, and using the defnition in (6.34) and (6.37), the 

above condition holds if 

G/Af + A,<2, + };^E,̂ E,2}^ + 2/ < 0, (6.39) 
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and 

i - i p r , 
I ' r ; • - I —n —ti- I 

)—1 T> V /̂ —l<o /D v\T (6.40) 

Pre- and post-multiplying (6.40) by 7 ,̂ and applying Schur complement lemma again, 

(6.39) equivalent to (6.35), and (6.40) equivalent to (6.36). Therefore, (6.35) and (6.36) 

enable us to ensure F < 0. Also, similar to ± e proof of theorem 6.1, the inequality 

(6.38) guarantees the third condition of Lemma 6.1 to be satisfied, establishing the 

theorem. 

6.3.1 Observer design 

To obtain an improved performance of the closed loop system, we can further use the 

LMIs technique to design the observers in (6.25). We summarize the method in the 

following theorem: 

Theorem 6.3 jfafe frq/gcfory evoZvgj acco/zfmg fo Vkk oppZ); fAg 

coMfroZ/gra' (6.26) (6.6). ; = 1, fAerg gzf̂ yf mafncgj' 

Fn, r;2, r , ] fAaf 

mil F,2 +A; A/Fn YiEl + TnEl Yi I 

F ^ + A f /M22 A// 0 El I Xi 

^lI - / 0 0 0 0 

0 0 -I 0 0 0 

Ei,};;+E2,F^ Eh 0 0 -I 0 0 

1̂- / 0 0 0 -2F,4 -2}^ 

/ 0 0 0 -27 , - 2 7 

<0, 

(6.41) 

wAgrg 

^22 = 

Yi I 

/ Z. 
> 0 , (6.42) 
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(z, '̂) E /A, fAgrg mo^ncgf coMJfaMf^ Tj/y ̂ ywc/z fAaf 

, (6.43) 
D, 

Df 

wAgre D; f} are o6fame(^ 

< 
D, 

D^f;/ = / - z , } ^ , 

rAg/z f^g cZo^gf̂  Zoop j^w^ecf ro (6.&j aM<̂  (6.70j, ;,y gApo»g»r;aZ(y r̂a6Zg in rAe 

jgMj'g o/" Zj;apw»ov. Fwr^Agrmorg, fAg o6.ygrwgr ancf con^mZ/gr can Z)g coZcw/aW of 

ybZZow/f 

Be 

= rl(F-'f 

= flr'r,3, (6.44) 

DT' ( r S - XiAiYi -XiB.Tl - r , 301) {Fr I ) ^ , 

ybr z G Z;. 

Proof: According to lemma 6.2, if we have matrices ^ > 0 and such that 

+ f^A: + , + 2 ? ; < 0 

then the closed-loop system is stable. Apply the Schur complement lemma to above 

inequality we have 

Pi 

- / 0 0 

E, f , 0 - / 0 

Pi 0 0 -27 

<0. (6.45) 

Now we consider non-diagonal positive matrix of the form 

Pi = 

We denote 

D, 

Df & 

P: - 1 
y; f ; 

* Fi 
f ^ ( 
T 

Yi I 

0 
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Note that XiYi+DiF^ = I, and PiWi 

is equivalent to 

/ X, 

0 Df 
. suppose f ) is invertible, Aen (6.45) 

W-

which in turn is equivalent to 

-AfP/ + PiAi Pi 

-I 0 0 

0 —I 0 

Pi 0 0 -11 

mil ^12 mi5 I 
T 

^12 fM22 lAl 0 El / Xi 

— / 0 0 0 0 

0 0 -I 0 0 0 
T 

^15 Eu 0 0 -I 0 0 

Yi I 0 0 0 —2m66 -2}^ 

I Xi 0 0 0 —21/ - 2 7 

<0, 

where 

mil = 

mi5 = 

^22 

/M66 

+ D.BcC, ; 

T 

Define 

n , = 

^ 2 = } ^ A r z , + f ; ^ r B r x , + y ; c ^ g ^ D f + f ; A r D r , 

DiBc, Ts 

^ 4 = 

Substituting (6.47) into (6.46) we obtain (6.41). Furthermore, 

>0. 
Yi I 
/ %, 

< 0 , 

(6.46) 

(6.47) 

Therefore Pi > 0. Similarly to theorem 6.2, the inequality (6.43) guarantees that the 

third condition of lemma 6.1 is satisfied. (6.44) is a direct consequence of (6.47). The 

proof is complete. 
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6.4 Illustrative design example 

Consider as an illustrative problem, the stabilization of a simple spacecraft. The dy-

namic behaviour of the spacecraft can be modelled by (Kiriakidis, 1999; Wang, Tanaka 

and GrifAn, 1996) 

X2 
(6.48) acos(%])« 

4//3—aW coŝ (%]) 

where is the angular displacement of the axis of symmetry from the upward vertical 

equilibrium, the angular velocity, w the force from the thrusters, and g the accelera-

tion of gravity. For a planet the size of Earth, g is given by 
, 6370x 103 ^2 

6370 X 103+j : / 

where go = 9.8m/s^ and ^ the altitude of the spacecraft in kilometers from the surface 

of the planet. Taking for a typical micro spacecraft, m = 2kg, M = 8kg, / = Im and 

. The altitude variation of the acceleration of gravity induces parametric a = 
/M+M 

uncertainty in (6.48). We treat this uncertainty as a perturbation term. Denote x = 

' . The nominal drift dynamics can be obtained from Wang, Tanaka and Griffin 
;(2 J 

(1996). Combining the nominal drift dynamics and the uncertainty part produced by 

77 the altitude, we obtain the following fuzzy model for system (6.48) in the subspace 

[-(7c/2),:r/2] x (-00,00): 

2 

X = % w;, (x) (A;X+.8, w) + Af(x), (6.49) 
i=\ 

where W; are calculated according to (6.4), and 

(x) = 

W2(x) = 

+ 
1 -

_ 2^ 
n 

2%i 
71 ' 

2x]_ 
n ' 
2%] 

y < %l < 0, 
n 
2 ' 

0 < ^ 

- § < x i < 0 , 

0<%1 < #. 

The local models are 

Ai = 

Bi = 

Af(x) = 

0 
go 

1 

0 41/3—ami 

0 
—a 

All 3—ami 

0 
Agsin(%]) 

4Z/3—cos^ (%]) 

A2 

^2 = 

0 

0 
— (3a 

4//3—am/p2 

1 

0 
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where p = cos(88°). Note ±at ± e model (6.49) is different from ± e model of Wang, 

Tanaka and Griffin (1996) since we include the modelling error term Af(x). For xi G 

[—(7i:/2),7t/2] andH E [0,100] km, we have ||Af(x)H < 6 x lO '̂̂ HxH, i.e. /y = 6x 10"" .̂ 

6.4.1 State feedback control 

Solving the LMIs (6.17) and (6.18) formulated in theorem 6.1 results in the following 

matrices: 

<2i = lO^'x 

7 ] = 10"^ X 

0.0292 -0.0571 

-0.0571 1.8079 

1.2161 

3.6264 

Gz = 
54.4335 -144.6490 

-144.6490 393.9323 

= lO'^x 
2.2208 

-5.8098 

The response of the resultant state feedback control system with initial conditions 

= (15^,0) is plotted in Figure 6.1. The control input is plotted in Figure 6.2. 

m —0.6 

/ \ ; ̂  ; * , » 
; \ 
^ \ / 
1 
1 

-

1 
J 
1 

1 
-

1 ' 
1 1 solid line Xl 

1 ' 
1 ' 

dot line x2 

- 1 ' 
1 1 
1 ' 

- I ' -

2 2.5 3 
tim8(sec) 

Figure 6.1: State feedback — the angular displacement, xi, and angular velocity, X2. 

6.4.2 Output feedback control 

The techniques derived in section 6.3.1 are used now to design the observers and 

controllers simultaneously. Suppose that the output matrix in (6.24) is C = [1 0]. 



P 40 

2 & 5 3 
time(sec) 

Figure 6.2: State feedback — the controller, thrust, w. 

Solving the requisite LMIs (6.41), (6.42) and (6.43) in theorem 6.3, we obtain the 

following matrices: 

Aci = 

^ct 

-940.2012 238.8003 

-1354.7145 316.3020 

225.3332 

322.8026 

Ac2 = 
-9 .6723 6.9901 

-5.9111 8.7924 

4.9325 

5.6217 

= [1900.2008 2483.1123], 

Bel = 

^=^[3 .3313 7.1212]. 

The corresponding output and input results are depicted in Figure 6.3 and Figure 6.4, 

respectively. 

The Agures demonstrate that the performance is satisfactory even though there 

exists system uncertainty. 

This simulation example is well know in the literature and many designs have 

been done. A typical work is the PDC (Parallel Distributed Compensation) controller 

presented by Wang, Tanaka and GrifAn (1996). But their model does not include mod-

elling mismatch term Af(x). Kiriakidis (1999) considered Af(x) in their stabilizing 

controller design. Both papers only solved the problem of state feedback controller de-

sign. Here following our scheme, both state feedback and output feedback controllers 

can be derived. 
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1 15 

solid line x1 

dot line x2 

2 2 ^ 3 
tim8(sec) 

Figure 6.3: O u t p u t f e e d b a c k — the angu la r d i sp lacement , x i , a n d angu la r velocity, xo. 

dmefsec) 

Figure 6.4: O u t p u t f e e d b a c k — the control ler , thrust , u. 
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6.5 Conclusions 

In this chapter we have developed a fuzzy model based feedback stabilizing control 

method that utilize LMIs. The sufficient conditions for stabilization of the feedback 

systems are given in terms of LMIs. The fuzzy feedback controller can be obtained 

by solving the LMIs. The technique is robust in the sense that we can handle mod-

elling errors or system perturbations. By applying the piecewise Lyapunov stability 

conditions which were derived in last chapter, the LMIs involved in the design are less 

conservative and the usage of commercial LMI solvers provides easy design evalua-

tion. 

According to Lemma 6.1, we only need the inequality (6.17) to hold in a local area 

Z;. Therefore a further research can be made to further relax the conditions by applying 

the J-procedure. Anther possible development is to derive a non-linear stabilizing con-

troller by generalizing the above results to parallel distributed compensation (Wang, 

Tanaka and Griffin, 1996). 



Chapter 7 

Adaptive Neurofuzzy Control for A 

Class of State Dependent Nonlinear 

Processes 

In chapter 2, a general MIMO discrete time nonlinear system described by (2.1) was 

modelled by (2.22), which is rewritten here for easy reference: 

y ( r + l ) = ai(0f)y(r)4 l-an(Of)y(r —M+1) 

+ 6 ] ( 0 , ) u ( f - ( f ) 4 |-6M:(0f)u(f — — 1 ) (7.1) 

where {u(^),y(f)}jL] are measured input/output vector pairs, the integers » and m are 

known a p n o n or assumed system orders and ^ is the known time delay of the system, 

a:(Of) and 6; (Of) (f = 1,2, - y = 1,2, - ,m) are a unknown functions of 

the measured operating point 

The topic of this chapter concerns the control problems of the system (7.1) (Feng 

and Harris, 1998). It was remarked in chapter 2 that, if Of is independent of the system 

input and output, and (7.1) is SISO, the nonlinear coefficients can be expressed via 

and therefore the system (7.1) can be expressed as 

);(f + 1) = ^ A/^^(Of));(f — ^ + 1) + ^ ^ + 1) + A/(Of) , (7.2) 
t=l t=l 

where Af(Of) is a model mismatching error: 

n m 

^ / ( O f ) — — 1 ) + % — 6;t(0f))M(^ —A:+1), 
t - i t=] 

(7.3) 

108 
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which have already been formulated in (2.25) and (2.26). 

If the operating point variations of (7.1) are known then various forms of con-

troller gain scheduling may be deployed. Often these parametric relationships are 

complex, unknown, and nonlinear but the operating points may be measurable or at 

least inferred from other sensor outputs. While the general control problem of system 

(7.1) is considered difficult, researchers have made some progress for a few special 

cases. For a matching system, by using the parametric (neural net) estimation from 

equations (2.30) — (2.32), an on-line adaptive controller of the 1-step ahead predictor 

kind (it has been generalized to (f-step ahead for time delay systems) can be easily 

constructed (Wang, Brown and Harris, 1996) by solving the simplified (for d = 0) 

Diophantine equation 

l=A( r ,g -^ ) + ^-]G(f,^-^) 

for a polynomial G(f, g"^) in the backward shift operator where 

A ( f , 9 - ' ) - l - % j V ^ , ( 0 f ) 9 " ' . 
:=1 

The 1-step ahead control signal w(f) that ensures y(f-|- 1) = }'*(f + 1) satisfies 

y*(^+ 1) = (7.4) 

wherey*(f) is the desired output reference signal and.^(f,^"^) — 
Stability of the resultant closed loop system is established by the following: 

Theorem 7.1 (Wbng, Brown anaf ̂ ornX 7996) T/'fAg jy-yfem (7.7j 

(fg, rAg ow/pwf y* (f) can coMfroZ 

4)*(Of) org w»(/br/MZy fAg rgfuZfa/if jy.yfgm 

(.y cZo.yg<̂ -Zoop jfa6Zg w/zcfgr rAg confroZ/gr <7gnvg<î 07M (7.4), Z.g. 

|y(f)|<oo, |w(f)|<oo. 

For mismatching systems with known common parametric bound 8(> 0) 

K . ( 0 f ) - 6 z , ( 0 f ) | < 6 , 

|A^6y(0f)-6X0f) |<6, 

for all (/, j) and Ot, such that the total known mismatch model error is 

I ^ / ( O f ) | < 6 ( ^ |y(f — ^-t-1)1 + ^ |w(f — A:+ 1)1), (7.5) 
k= 1 k= 1 
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the above adaptive controller applies, but with an amended parameter estimator, that 

incorporates the a prion determined modeling accuracy (7.5). 

The above neural network modeling procedure requires that the input vector Ot is 

both measurable and bounded. In the more general case when Ot = X;, the dynamical 

system (2.1) must be open-loop stable and bounded, somewhat restricting the above 

methodology. If however a one-to-one mapping can be generated (Wang, Wang, Brown 

and Harris, 1996) that transforms an unbounded input definition domain into an open 

set, which is covered by a closed bounded set, then the above modeling and controller 

design is applicable. 

This chapter extends operating point dependent processes form of local modelling 

and control to the multivariable input multivariable output system of general form (7.1) 

with known orders, in which a ; ( ) and 6^ ( ) are unknown functions of the vector of 

system input and output deHned in section 2.1.1. Because the discrete time state space 

model is going to be used in this chapter, we alter the notations in a slightly different 

way as: 

x(f) = [xfW, 4 (r)]^ e 

Xl(f) — [ y l f - - » + l ) , . . . , y ^ ( f ) r E % " / ' , 

X2(̂ ) = -m+l ) , . . . , u^ ( f ) ]^ESR'"? 

y(^) = [yi(f), 

u(f) = [wi(f), • • • , Uq{t)Y E 

In the following it is shown that when the nonlinearities a;(^(^)) 

be modelled off-line by artificial neural networks (ANNs) then a stable decoupling 

controller can be synthesized. If the coefficients of ANNs are a unknown, a 

modified recursive least square(NRLS) algorithm combined with feedback linearising 

controller is employed to design an adaptive control system. For both cases, the closed 

loop system stability is analysed in detail and the weight convergence is shown to be 

guaranteed, for practical implementation the resultant controllers can be realized as 

conventional controllers or as neurofuzzy controllers (Brown and Harris, 1994). 

7.1 Minimum Phase Property 

It is well known that certain classes of ANNs can approximate any continuous non-

linear function defined on a compact set to an arbitrary accuracy (Brown and Harris, 

1994). Therefore, if ANNs are used to approximate the unknown nonlinear functions 
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in (7.1), estimates for the unknown parameters a:(x(f)) and 6y(x(f)) can be obtained. 

In this chapter we use B-spline networks, since they have a direct fuzzy interpretation, 

and have strong mathematical properties that determine weight stability, convergence 

and network conditioning (Brown and Harris, 1994). 

With Of being replaced by x(^) in (7.1) and modifying (2.23) and (2.24) for MIMO 

systems as 

^ ' = 1 , ( 7 . 6 ) 

%,(x(r)) = i w > , ( x ( 0 ) , J = l , • • • , " , (7.7) 
t=l 

where is a p x p matrix, is a p x g matrix, and ({);k(x(̂ )) is a scalar neurofuzzy 

basis function, the model representation (7.1) can be rewritten as the following form: 

y ( ^ + i ) = + (7-8) 
k= 1 k= 1 

where 

Af(x(f)) = Y ( ^ « X ^ W ) - ^ t ( x ( r ) ) ) y ( f - A : + l ) 

+ % — 6t(x(f)))u(f — 1). 
* = ! 

is a vector G and can be represented as Af(x(f)) - (A / ] (x(r)), - - -, Ayp(x(r)))^. 

The control objective is to track a given bounded reference sequence {y*(f)} 

while rejecting the impact of model mismatch error Af(x(f)) . To do this we introduce 

aygg(f6ac^ confmZ Zaw (Sastry and Bodson, 1989) given by 

72 m 
+ 1) + + 1) = r(r). (7.9) 

t=l k=\ 

where r(f) = (ri (f), - , /'^(f))^ G is an external signal vector to be determined or 

selected by the designer. 

Remark Strictly speaking, the existence of the feedback linearising controller 

requires the system to be (Sastry and Isidori, 1989) which involves a 

special matrix of the system being bounded away from singularity. Here we suppose 

the condition is met, ie., suppose that (7.9) has at least one solution for u(^) at any time 

t >0. (which is true in particular if the ANNs do not explicitly depend on u(f) or if 

they are invertible as a function of u(r)). 

it I 
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Denote the u(?) implicitly determined by (7.9) as g(xi (?),X2(r — l),r(?)). If the 

basis functions in (7.6) and (7.7) are uniformly bounded, g(X](f),X2(r— l) ,r(f)) has 

bounded partial derivatives and so satisfies Lipschitz condition with Lipschitz constant 

-g-

Together with (7.9) we can easily obtain the state model for (7.8) as 

x i ( f + l ) = A]x]( r )+Bi( r ( f ) + Af(x(r))) , (7.10) 

X2(f+1) = A2X2(f)+B2U(f+l), (7.11) 

y(f) = ; fxi(r) , (7.12) 

where 

' 0 h 0 . . . 0 0 " 0 

0 0 h ••• 0 0 0 

A ] = , — 
0 0 0 . . . 0 h 0 

0 0 0 . . . 0 0 J . h _ 

' 0 h 0 . . . 0 0 ' 0 

0 0 2̂ " 0 0 0 

Az = , ^2 = 

0 0 0 . . . 0 0 

_ 0 0 0 . . . 0 0 . h _ 

where and ^ are p X p and g X ^ identity matrices, respectively. 

^ = [0...07i], 

Model (7.10) — (7.12) is in the If it starts from xi(0) = 0, r(^) = 0 

and Af(x(f)) = 0, then xi (f) = 0 and the plant o u t p u t , s t a y s at zero. The motion of 

the resultant system is determined by the dynamics of X2(f). We then define the zero 

of (7.10) — (7.12) as 

X 2 ( r + l ) = A 2 X 2 ( f ) + B 2 u ( r + l ) , (7.13) 

where u ( r + 1) is a function of x(f) implicitly defined by 

(x(? + l ) )u(?+ 1) +7V^(x(^+ l))u(?) H + l))u(f — m + 2) = 0. 

The nonlinear system (7.10) — (7.12) is said to be TMmzmwm 

if its zero dynamics (7.13) are globally exponentially stable independent of 

xi(r). 
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It can be shown (Chen and Khalil, 1994; S as try and Bodson, 1989)) that if (7.13) 

is exponentially stable there exists a Lyapunov function l^(x2(f)) such that 

< ^(^2(r)) < C2| |x2Wf, 

V2(x2(r+ 1)) < -a | |x2(f ) | |^ , 

< Lllxll 
dx 

(7.14) 

(7.15) 

(7.16) 

hold in some ball Bu C 9t'", where c\, C2, a and L are constants. 

For the purpose of this chapter the norm of a transfer function ^ (9"^ ) is defined 

as 

7.2 Decoupling control 

Let the tracking error be 

yW = y W - y * W ( = [ y i W , -

Selecting the external signal 

r W = y*(^+l i 
T{g->y 

where ^|^_,|y(f) is defined as 

T, 

(7.17) 

we obtain from (7.10) that 

XI (f + 1) = Ai XI (f) + g] G(^- ^) A f (x(f)), 

where Af(x(r)) is defined as 

G ( ^ - ' ) A f(x(f)) = (Ci (^-^) A / i (x(r)),..., ^) A yp(x(f)))' 

(7.18) 

where G/;(^ -1 ' for /z = 1, ...,p are transfer functions in ± e delay 

operator q~^, which can be chosen to be exponentially stable. 

Ai is a stable matrix since all of its eigenvalues are at the origin. Therefore, given 

any symmetric <2 > 0, there is a symmetric P > 0 such that 

A f P 4 i - P = - ( 2 . (7.19) 
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Theorem 7.2 If 

(1) y*(r) wfrA = ;ywpf>o||y*(f)||; 

(ii) 7%g G/:(^'"^) arg proper g;cpoMeMf;aZZ); Agncg fAgrg 

arg p G (0; 1) Cp > 0 .ywcA fAaf fAg f/Mpw/̂ g rgjpoMfg co^cfg/zr^ 

org aZZ Z)ow»̂ fg<̂  6); Cpp^^r aZZ f > 0; 

(iii) (7.70) — (7.72) ;,y gZo6oZZy g;(poMgMn'aZZ}' p/ia^g; 

(iv) AZZ m (7.6) (7.7) org wM^rmZy 6oM»6̂ g<7; 

(v) 7%grg g%f,yr̂  a § 6 (0,1) 

8 < ^ : r ^ , (7.20) 

| |Af(x(r)) | | < 8||x,(f)||, (7.21) 

rAg» fAg coMfroZZow (7.9) aM<7(7.77) rĝ yw/r̂  m 6owWg<ifracA^mg, fAaf x(r) E 5R"/'+'"9 

6owM<̂ g<i aW lim;_>cx,y(r) = y*(^). 

Proof Choose Lyapunov function candidate for xi (f) as 

^ i (xi(^))=xr(^)fxi(^) , 

where P is determined by (7.19). Then, using (7.20) and (7.21), 

y i ( x ] ( f + l ) ) - y i ( x i ( f ) ) = -x f ( f )Gx i ( f ) + 2xf ( f )AfPgi (G(g- i )Af (x( f ) ) ) 

+BfPB](G(9- ' )Af (x ( f ) ) )^ 

< -x f ( f )Gxi ( r ) + 2||AfPBi|| 5||xi(^)ll^ 

6^| |xi(r) |" 

< - x [ ( f ) G x i ( f ) + ( ^ 2 | | A f P B i | | Y ^ 

j 5 | | x i ( f ) | | " 

< -x [ ( f )Gx] ( f ) + ||G||||xi(r)||^ 

< 0. 
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Therefore (xi (f)) is a lower bounded and decreasing series. Hence 

Imxi (t) = 0, 

which means that xi (f) is bounded and limf_^,^y(f) — y*(r). 

Next, consider the Lyapunov function V2(x2(f)) in (7.14)—(7.16). Denoting the 

solution of (7.13) as X2(^), we have that 

V2(x2(f+l))-V2(X2W) = I ^ ( x 2 ( f + l ) ) - ^ ( x 2 ( f ) ) 

+V2(x2(f 4- 1)) — V^(x2(f + 1 ) ) 

9V^(x 
< -a | |x2(f) | | + | | X 2 ( f + l ) - X 2 ( f + l ] 

9x 

< -a| |x2(f) | |^+Z,| |x2(f) | | | |x2(f+ 1 ) -X2( f+ 1)11 

= - a | | x 2 ( f ) | | ^ + l , | | x 2 ( r ) | | | | g ( x i ( r ) , x 2 ( r - l ) , r ( f ) ) 

—8(0,X2(^— ^),0)|| 

< - (x | | x2 ( f ) | | ^ + Z , | | x 2 ( f ) | | c g ( | | x ] ( f ) | | + | | r ( f ) | | ) 

< -a| |x2(r)| |^ + C3||x2(f)||, 

where cg = Z v C g f w p f > o ( | | x ] (f) || + | | r ( r ) ||), which exists since X] (f) is bounded. So 

;^(x2(r+l))-V2(x2(r)) < 0 , 

if llxzWII > 
Using this along with the bounds in (7.14), it is easy to establish that X2{t) is 

bounded, establishing the theorem. 

In section 7.4, examples will be given to illustrate the technique developed in this 

section. 

7.3 Adaptive Control 

7.3.1 Parameter Estimation 

For MIMO systems, we need to extend the deAnitions of 8 and 0(^) in (2.28) and 

(2.29). RedeAne 0 ( f ) as 

0 ( f ) = [(|)ix^(r),---,(|)/x^(f)]^, 
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and define 9/, as 

0/i = 
8*1 

G/zZ 

Qhi = 

w ha 

W 

W 

ha 

At 

w At 
1/ J 

h= 1 , • • 

; = 1,. 
•.P 

J 

where vector is the transpose of the h-th row of the matrix A: = 1, -

is the transpose of the h-th row of the matrix y = 1, 

+ 1) = + Ay/:(x(f)). 

and 

,m. Then 

(7.22) 

according to (7.8). If 8 is unknown, the following NRLS algorithm can be used to 

estimate these parameters. 

As suggested in Johansen (1994a), define the normalized signal M(f) as 

M(r) = 1) + ||x(^)|| 

where P E (0,1) is a constant and M(0) > 0. Denote 

y»W = 

0 ; : ( f - l ) = 0 ( f - l ) / » ( r ) , 

A^f(x(f)) = Af(x(f))/M(f). 

Then the normalized equation 

+ 1) = + 

can be obtained from (7.22). Assume that Af(x(r)) satisfies 

II Af(x(r)) | | < 6i||x(f)|| 

for some constant 8i. Then from (7.23) it follows that 

II A»f(x(f))|| < 8i. 

Consider the following NRLS algorithm: 

'r|(^)P(f — 2)0n(^— l)eM(r) 

(7.23) 

£n/z(0 

P ( r - l ) 

ynh{t) Snhi^)-) 

0 l ( f - l ) 8 „ ( f - l ) , 

T i ( r ) P ( r - 2 ) 0 , ( f - l ) 0 l ( r - l ) 

l + 0 ^ ( r - l ) P ( r - 2 ) 0 » ( f - l ) 
P ( f - 2 ) , 

(7.24) 

(7.25) 

(7.26) 

(7.27) 

(7.28) 

(7.29) 

(7.30) 
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where 

and 

( l + 0 ^ ( r - l ) P ( r - 2 ) 0 , ( r - l ) ) i / 2 ' 

Theorem 7.3 If 

(i) TAg aZgonf/zTM (7.27)—(7.J2) fj' fAg owzpwf {u(f),y(r)} q/" 

(2.7); 

(11) 7%g grror 6oM/KZg<̂  || A f(x(f)) || < 6] ||x(r) ||, 

T^gM.ybr A — 1, ...,p, 

| i „ <Ml _ g2 
\+<S>l(t-\)P{t-2)t>„{t-l) " 

lim^-^oo \\Qh{t) — Bfi(t — kij)\\ = 0, 

wAgyg org po^fn'vg mfgggr^. 

Proof See Wang, Brown and Harris (1996). 

7.3.2 The Controller 

Replace the unknown parameters in (7.9) by 0/„ which gives the certainty equivalence 

feedback controller 

l-A^^y(f-M+ l ) + ^ 6 , u W - l HA,mU(f -m+ 1) = r(f), 

where r(f) determined by (7.17). With this control algorithm, the closed loop is de-

scribed by 

n m 

y(r + 1) = r(f) + %(A/g^ - / : + 1) + Y ( % - / : + 1) + Af(x(f)), 
t=i t=] 

and so 

yA(̂ ) = GA(^ ^)(—0^(r—l)8/;(r—1) + Ay);(x(f))). (7.33) 

The stability of the closed loop adaptive system is given by the following theorem. 
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Theorem 7.4 TjffAg ayjw/Mpn'o/w fzj—f;vj oyfAeorgm 7.2 m 

(i) 7%g mo6fgZmg g/ror if jwcA r/zaf || A f(x(f))| | < 8i ||x(f)||/ 

(li) 1-&-1 ((^5+ 1_^_I ( l + ^(g-1))) \ < 1, 

vvAgre C4, cg, cg, ancf o org coMjranfj ;» rAe f/zgn/br inf^faZ 

ffOMJ, aZZ varfa6Zgj'm rAg cZô g(̂  Zoo/? org 6owM6̂ g6f f/zg grror 

lim j Y||y(A:)H^<oo. 
^ t=o 

Proof Since (7.13) is globally exponentially stable independent of X](f), there ex-

ist constants > 0 and G E (0,1) such that the transition matrix of (7.13), E(f,fo), 

satisfies 

| |E(f ,ro) | |<c«o'- 'o. 

On the other hand, the solution of (7.11) takes the form 

t 
X 2 ( f ) = E ( f , 0 ) x 2 ( 0 ) + % E ( f , A : ) B ( u ( A : + I ) - u ( A : + l ) ) . 

t=o 

Therefore 

| | x 2 ( f ) | | < | | E ( r , 0 ) | | | | x 2 ( 0 ) | | + Y l | E ( f , A ; ) | | | | u ( A : + l ) - u ( A : + l ) | | 

k=Q 

< ||i-((,0)|| | |x,(0)|| + i | |B(l,*)| |Cg(| |xi(<:)| | + t|r(*:)||) 
k=0 

< CMO"||X2(0)|| + % c^c/-%(||xi(X:)| | + ||r(A:)||) 
t=o 

< CM(f||x2(0)||+ + llrWII) 
1 — Oq 

< Cwcf||x2(o)|| + Y 3 ^ z Y ( l | y ( ^ - » + 1 ) 1 1 -I H llyWII + llrWII) 

z T ( | | y ( f - M + 1 ) 1 1 + - " + | | y ( r ) | | + | | r ( r ) | | ) + 0 ( 0 ^ ) , 
1 — (Jq 

where o(o^) denotes the exponentially decay term. It follows that 

| |X2(f)| | —G||x2(f — 1)11 < CwCg(||y(̂  —»+ 1)11 -I 1- l|y(^)ll + l|r(^)||) + o ( ( f ) . 
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From the inequality above we obtain that 

llxzWII < c«Cg%(f -* ( | | y ( / : -M+l ) | | + ..- + ||y(A:)|| + ||r(A;)||) + o(c') 
k=\ 

\/=Ot=l *=] / 

CuCg 
J=Q \ t = / + l / l = \ k=\ 

+ % ( / ^||r(A:)|| j +o( (y) 
t=i / 

< ^ ( / " * | | y W I I + c V + c«Cg o ' - ^ | | r ( t ) | | + o ( ( / ) 
/=0 t = l t = l 

a 1 3 ^ 1 1 ^ 0 1 1 + y : ^ I I > - ( ' ) I I + ° ( < ^ ' ) , 

where / = o'"*||y(A:- Z)|| and = c«Cg(l + 4 1- (7""+^) are 

constants. Similarly, 

^ " " - 1 _ | L R - " + l ' ^ + ' " + P ) i iyWii+ ' ' (P) l _ P g - l l l - l _ p g 

1 - p g 

where cg = 1 + -I 1- is a constant. 
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It can be seen that 

< ^ T |(:5||yWII+ . _%_i ( l | yWII + l | r ( f ) | | ) + o M I + o ( P 3 

< 

1 - \ 1 - ( ^9 

1 ( \\ / I I , ^6 
i - p , - . v̂ =IW')ll + T3^IW')' l 

' ' ; r T ( l | y ' ( ' + l ) l l + 
1 - a q ~ ^ \ # A ' < " 

+ o(c / )^ +o(P ' ) 

- ("= + T ^ ) + '•*' + {1 -P«->)(1 - a r 

+ ( l - | i , - ' ) ( l - a , - ' ) I , U N I + + "(P ' ' 

1 — p g 

where ^ j c* is a constant. 

Alternatively, as the basis functions (|);t(:':(^)) in (7.6) and (7.7) are uniformly 

bounded, there exists a constant such that the in (7.28) satisfies (Wang, Brown 

and Harris, 1996) 

|£«/i(0 I (-4-

From (7.24), (7.28), (7.29) and (7.33), 

%(^) = G/;(^ ^)( — l ) 8 / : ( f — l) + Ay/;(x(^))) 

= G/:(^"^)eMA(f)M(f). (7.34) 

Hence 

«(') ^ + + 

4-c" + o((/) + o(p^). 

Denote 

I + ( l + | | r T | ) ) G.(,-'). 

According to assumption (ii) of the theorem, ||F(g"^^)||oo < 1. Also, according to 

assumption (ii) of theorem 3, M(f) is a bounded sequence and 
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So ||x(f)|| = (1 - is also bounded. Furthermore, from (7.34), 

llyWII^ - % |GA(^-^)E^(f)M(f)|^ 
h=\ 

It is trivial to derive from the preceding results that 

Ihny % | | y ( r ) | | ^< 
^ t=o 

The theorem has been proved. 

7.4 Simulation Examples 

Rather than introduce our own examples we demonstrate the efficacy of our approach 

with the bench-mark example: 

= 11'yHt'f+W- 1) +0.7.m(0.5().(,) + 
^ ( f - l)))co^(0.5()'(f) + ) ' ( f - 1))) + 1.2M(f). (7.35) 

A simplified version of this process was considered for control design by Sastry and 

Isidori (1989) with complete plant knowledge, Chen and Khalil (1994) extended this 

to the case when the gains (1.5, 0.7 and 1.2) were a priori unknown via a neural net-

work. In the following examples we consider the same example, but the only a priori 

knowledge utilised is the process model orders, the model structure and nonlinearities 

being assumed unknown throughout. 

7.4.1 Example 1: System with time varying parameters 

Suppose that the unknown system (7.35) has in addition some unknown time varying 

parameters: 

= 1 + P2(i)M0-5(y(t) 

l ) ) )+P3WwW, (7.36) 
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0 < rem(f/100) < 30 30 < rem(f/100) < 60 60 < rem(f/100) <100 

p i W 1.5 5 10 

P2(f) 0.7 0.9 0.4 

/)3(r) 1.2 2 4 

Table 7.1: The time varying parameters 

where pi (f), P2(^) and f3(r) are time varying functions listed in Table 7.1 to evaluate 

the robustness capability of the proposed methodology to parametric changes, where 

rem(f/100) denotes the remainer of r divided by 100. 

We model the system (7.36) via associative memory networks as 

1) — + — 1) 4-A^]M(f). (7.37) 

where A/g, and are networks each with 49 two-dimensional multivariate B-

spline basis functions whose input vector is ()'(^),)'(r— 1)). The 7 univariate basis 

functions for both );(f) and );(f — 1) are shown in Figure 7.1. 

-1.5 - 1 -0.5 0 0.5 1 1.5 

Figure 7.1: Univariate B-spline basis functions for input y{t) or y{l — 1) 

Suppose that we take )'*(r) = 0 and = 1 and so r(f) = — T o perform 

adaptive control, set );(0) = 0.4, y(l) = 0.2 and M(l) = —0.2. The initial values of 

weights are chosen randomly in the interval [—0.1,0.1]. The (3 in (7.23) and the initial 

matrix P(0) are selected to be 0.2 and 500/, respectively. The results of the closed loop 

response are shown in Figure 7.2. The resultant controller is insensitive to temporal 

parametric change. 
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Time steps 

Figure 7.2: The input and output of the adaptive control for Example 7.1 

7.4.2 Example 2: Tracking varying reference signal 

Suppose that the unknown system is 

= 1 + ' ^ 2 f t ) + ' y V t ' - 1) 

+);(f — l)))cO;y(0.5()'(f) +)'(r— 1))) + 1.2w(f), (7.38) 

where P2(^) is same as in Example 1. We now select to be: 

/ (r + 1) = 0.8)7* (f) - 0 . 0 2 / (f - 1) + 0.82z(f), 

where 

[ 0 if 0 < rem(r/80) < 40, 

( 4 if 40 < rem(f/80) < 80. 

The rest are taken same as in Section 7.4.1. The results of the closed loop response are 

shown in Figure 7.3. 

7.4.3 Example 3: System with stronger nonlinearity 

We now consider a system with a stronger nonlinearity: 

l ) ( l + w(f)) 
) ' (^+l ) = 

1 — 1) + 
+0.7^m(0.5() '(f)+) '(r- l)))coj'(0.5(y(f)4-y(^- 1))). 

(7.39) 

(7.40) 
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Solid line y(t) 

Dashed line y*(t) 

Time steps 

Figure 7.3: The output of the adaptive control for tracking reference signal. 

In the previous example, process (7.36) was additive in w(f). In this example, it is 

not only nonlinear in w(r) but involves an inverse function for which the quasi-linear 

model may will be inadequate. Despite this the example demonstrates the modeling 

robustness of this method. Again we use (7.37) to model (7.40). )'*(f) and are 

chosen same as in Section 7.4.1. 

7,4,3.1 Decoupled Control 

The neural networks in (7.37) are trained using the data {u{t),y(t)} of (7.40) for 100 

steps. The training algorithm is the NRLS described in Section 7.3.1. During training 

the M(f) are chosen randomly in (—1.5,1.5). After the learning process, the control 

law (7.9) and (7.17) is used to drive the system output from —0.5 to zero. The results 

are depicted in Figure 7.4. 

7.4,3,2 Adaptive Control 

For adaptive control design of (7.40), );(0), );(1) and w(l) are set same as in Section 

7.4.1, and so as are the initial values of weights, P and the matrix P(0). The results 

of the closed loop response are shown in Figure 7.5. It can be readily seen that good 

transient response is achieved. 

For completeness the convergence of modeling error during the adaptive control 

phase is shown in Figure 7.6. The above examples have been subjected to additive 
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Figure 7.4: The input and output of the decouphng control for (7.40). 
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Figure 7.5: The input and output of the adaptive control for (7.40). 
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noise, the resultant behaviour does not indicate serious deterioration in performance. 
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Figure 7.6: The modeling errory-y . 

7.5 Conclusion 

In this chapter, a novel neurofuzzy based scheme has been proposed to solve the 

problem of modeling and control of a class of nonlinear systems in which the obser-

vational process parameters are unknown nonlinear functions of the system input and 

output. Examining the conditions of theorem 7.2 and theorem 7.4 it can be seen that 

the fundamental assumptions which guarantee the parameter convergence and closed 

loop stability are minimum phase (assumption (iii) of theorem 7.2) and a limit on 

the unstructured uncertainty (assumption (v) of theorem 7.2 and assumption (i) of 

theorem 7.4), which are reasonable from a practical viewpoint. It is interesting to 

observe from the examples that excellent results can be obtained despite the presence 

of a priori unknown strong nonlinearity in the system and temporal change in process 

gains. This illustrates the efAcacy of combining the neurofuzzy local operating point 

modeling approach with the classical feedback linearising controller for certain classes 

of nonlinear system. 



Chapter 8 

Conclusions 

This thesis has dealt with modelling, stability, and control problems of nonlinear sys-

tems within local model framework. Both the theoreticaJ aspects and the methodology 

considerations are emphasized. The results are made easily available through software 

which implements many of the recent results of LMIs. Several new results were de-

rived while many interesting and important problems remain open research issues. This 

final chapter gives general conclusions on the research reported in this thesis. More 

detailed and specific conclusions can be found at the end of the individual chapters. 

Some open problems and suggestions for further research are also presented. 

8.1 Local modelling 

Local modelling approaches provide an efficient way for the modelling of complex 

nonlinear systems. Not only can a multiple local modelling approach be more effi-

cient in capturing the real system dynamics than a single global nonlinear model, but 

also piecewise locally simpler models (in contrast with the complex global model) are 

advantageous in that many control and filtering methods are directly applicable to the 

identified model. For example, piecewise locally linear models enable well-known 

linear system theory to be directly applicable. In a local model structure, the input 

space is partitioned into a set of local regions. The local models that operate in these 

regions are identified separately and the system output is based on a composition of 

the local models to obtain a good global approximation to the real system. 

If a system's behaviour is dependent on some kind of operating point, then a 

model based on local modelling for the nonlinear system can be obtained in two ways: 

linearising the system about a set of fixed, known operating points; or partitioning the 

operating point space into smaller regions and then modelling the system behaviours 

127 
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locally in the smaller regions. In the latter case, the global model of the system is 

obtained by combining the local models with some interpolation methods. A typical 

example of such model structure is fuzzy modelling. Currently there are two categories 

of methods to partitioning the operating point space, ie., clustering which normally 

needs to know the number of clusters a pnon , and operating point space axis orthog-

onal partitioning which suffers the curse of dimensionality. 

In this thesis we attempted to solve the problems discussed above by having 

developed three kinds of modelling techniques: 

1. A new fuzzy modelling approach has been developed in chapter 3. This is a 

technique for constructing data based fuzzy model of a dynamical system by a 

new method of partitioning the data input space. The method is able to derive a 

fuzzy model from data automatically and avoids the curse of dimension problem 

usually associated with fuzzy system. 

2. An optimal piecewise locally linear modelling approach has been derived in 

chapter 3. A new algorithm is introduced for the construction of a Delaunay 

input space partitioned optimal piecewise locally linear models to overcome the 

COD as well as generate locally linear models directly amenable to linear control 

and estimation algorithms. The training of the model is configured as a new 

mixture of experts network with a new fast decision rule derived using convex 

set theory. A very fast simulated reannealing algorithm is utilised to search a 

global optimal solution of the Delaunay input space partition. 

3. A class of state dependent N ARM AX model structure has been developed in 

chapter 7. This is a neurofuzzy based scheme for modeling of a class of nonlinear 

systems with an ARMA like model (a generalised Takagi-Sugeno fuzzy model), 

whose parameters are unknown nonlinear functions of the input and output vari-

ables or states of the plant. An associative memory network is used to identify 

each nonlinear function. The main assumptions placed on the system and model 

for stability are minimum phase and a limit on the modeling mismatch error or 

uncertainty. 

8.2 Local Lyapunov stability 

Construction of Lyapunov functions is one of the most fundamental problems of sys-

tems theory. The most direct application is of course stability analysis, but analogi-

cal problems appear more or less implicitly also in performance analysis, controller 
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synthesis and system identification. The early results of the Lyapunov stability for 

neurofuzzy based systems are expressed globally, which is conservative and too strict 

in practice. The main obstacle to a direct application of the existing techniques is the 

nontrivial step of finding the appropriate Lyapunov function, which is more like an 

art than a traceable instrument. On the other hand, the characteristic local property of 

neurofuzzy modelling prompts the investigation of local Lyapunov stabilities, that is, 

to develop methods which can search for Lyapunov functions ZocaZZ); and combine the 

local Lyapunov functions to form a global Lyapunov function. 

There have been already a couple of methods to deal with this topic. The methods 

successfully reformulate the problem of searching for Lyapunov functions as a problem 

of solving a set of LMIs. In this way, the difficulty of finding an appropriate Lyapunov 

function is overcome by converting the problem to a standard mathematical convex 

optimizing problem which can be easily implemented by software. 

The main drawback that limits the practical use of the above methods is that it 

may be required to solve a large number of LMIs in the interpolation regions between 

the system submodels. In addition to the high number of LMIs, the computation com-

plexity and cost also increases dramatically as the input dimensionality increases. This 

means that the number of parameters involved in the optimization process becomes 

prohibitively large for large dimensional systems. In this thesis, a new method for 

the stability analysis of neurofuzzy systems that incorporates the input membership 

function characteristics is developed in chapter 5. It is shown that, under certain con-

ditions placed on the input membership functions, we need only search for one local 

Lyapunov function even in the intermodel interpolation region. This both relaxes the 

stability conditions and reduces the computation load in solving the resultant reduced 

number of LMIs. 

8.3 Controller design for piecewise locally models 

Local model based control has emerged as a powerful approach to the controller design 

of complex non-linear systems. Using the local model structure obtained in this thesis, 

two important control tasks are addressed in this thesis. One is to stabilize the feedback 

closed-loop systems via the controller, another one is to design an adaptive controller 

to achieve tracking performance while guarantees the closed-loop system to be stable. 

Often, the first solution depends on finding a common Lyapunov function for 

the feedback control of nonlinear systems represented by a set of local models. If 

a nonlinear system is represented by a set of linear TS model, for each local linear 
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model, a linear feedback controller is designed. The resulting overall controller, which 

in general is nonlinear, is like the modelling representation, a fuzzy blending of each 

individual linear controller. The design procedure can finally be expressed as a prob-

lem of solving a set of LMIs by using a quasi-linear model structure. More recently, 

a fuzzy controller design method which attempts to combine individual local linear 

based solutions to obtain a global solution for the overall design problem has been 

developed (Cao, Rees and Feng, 1997a; Cao, Rees and Feng, 1997b). The approach 

is based on the so called fuzzy dynamic model which is an extension of TS model. 

Instead of searching for a common Lyapunov function for all the subsystems, this al-

gorithm sought for piecewise local quadratic Lyapunov functions. As such it generates 

a less conservative controller solution than the approaches before. But the resultant 

controller design is formulated so as to require a set of Riccati equations to be solved 

with an associated computational overhead. 

Following the modelling and stability results obtained, this thesis has formulated 

and solved the problem of robust stabilization for a broad class of fuzzy systems, in 

which a class of afhne continuous nonlinear dynamical systems are represented by a 

class of fuzzy models with sector bound modelling errors, for which the state space 

is partitioned into a set of local linear fuzzy models with bounded additive parametric 

and modelling errors/disturbances. Both state feedback controller and output feedback 

controller design methods are derived by seeking a piecewise Lyapunov function for 

the closed-loop system. The results have two advantages compared with other meth-

ods: 

1. It is capable of handling modelling error and parametric uncertainty, and 

2. by using the stability results derived in this thesis, the design solutions are min-

imally less conservative and the design process is easy to perform as a problem 

of solving LMIs. 

Concerning the second aspect, a class of nonlinear systems whose parameters are 

unknown nonlinear functions of the measurable operating point is considered. Before 

this thesis, a novel approach to the modelling and control for a special case of the 

system was published (Brown and Harris, 1994; Wang, Brown and Harris, 1996), ie., 

the SISO case in which the operating point is independent of the system states. But, in 

practice, this is rarely the case, hence limiting the use of the approach. 

This thesis considers the most general case of an MIMO system whose operating 

point is completely dependent on the system states. It is shown that when the nonlinear 

coefficients can be modelled off-line by neurofuzzy models then a stable decoupling 
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controller can be synthesized. If otherwise the coefficients are a pnon unknown, a 

modified recursive least square algorithm combined with feedback linearising con-

troller is employed to design an adaptive control system. For both cases, the closed 

loop system stability is analysed in detail and the weight convergence is shown to be 

guaranteed, for practical implementation the resultant controllers can be realized as 

conventional controllers or as neurofuzzy controllers. 

8.4 Open problems and ideas for future research 

The set of tools and methods for local modelling, control and stability analysis devel-

oped in this thesis is not complete nor definitive. Virtually, each presented issue can be 

investigated in more depth, to yield new insights and extensions. This section discusses 

some issues based on the results obtained and may be considered as extensions of the 

material presented in this thesis. 

Adaptively partition the operating point space for local modelling 

In chapter 3, we have developed a new partitioning approach for fuzzy model 

construction. The algorithm is able to partition the operating point space recursively in 

an non-orthogonal manner so that avoids the curse of dimensionality. The framework 

of the problem formulation was intentionally established in a way that allows the es-

sential aspects of the problem to be examined with ease, ie., in an application-oriented 

fashion, by the notion of fuzzy quantization. This leads to a natural consideration of 

extending the approach to on-line fuzzy modelling. 

In view of this topic, we have noticed that the universal approximation proper-

ty of fuzzy models has been established in some recent work (Wang, 1994; Wang, 

1996), which provides the basis for the on-line fuzzy modelling. The existing schemes 

normally break the construction problem into two parts. One is the determination of 

the structure of the fuzzy model, the other is the parameteric estimation. The scheme 

proposed in Wang (1994), for example, divides the construction into that of initial 

fuzzy system construction and on-line adaptation. The initialization part determines 

the structure of the fuzzy system, including the number of fuzzy rules and the locations 

and shapes of membership functions, while the adaptation part adjusts the parameters 

of the fuzzy system within a fixed structure. On the other hand, obviously an on-line 

adaptively fuzzy modelling scheme is more useful in real time control problems. 

Examining the fuzzy construction algorithm proposed in chapter 3, we can see 

that the parameter adaptation is not hard. The key is how to re-partition the operating 
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point space, ie., choose the new centre point, in each adaptive step. Further research of 

this problem is both valuable and viable. 

Other control schemes for local modelling structure 

The locality of control means that the scheme first partitions the operating space 

of the system into a set of local bounded regions, then the designers select an operating 

point in each local region and represent the nonlinear system as a simple local system 

in each region. Finally, they specify or design a local control law in each local region. 

Because of the complexities of nonlinear systems, to And a set of local control actions 

is much easier than to find a global control action for the whole systems. Perhaps this 

is the most important advantage of the local model design methods. In this thesis, only 

two typical control problems are considered. No doubt there are further classes of con-

trol problems concerning local control structure worth further study. The research can 

progress in at least two ways: one is to apply another kind of control technique to local 

control structure, ie., adaptive control, predictive control, pole-zero configuration, 

control, etc. Another is to develop new interpolation schemes such as generalization 

of the paraZZgZ (Wang, Tanaka and Griffin, 1996). 

Also, according to Lemma 6.1, most inequalities in chapter 6 only need to hold 

in a local area Z,. Therefore a further research can be made to relax the conditions by 

applying the ^-procedure. 

Integrating stability conditions with modelling schemes 

A prospective subject of research is to combine the stability determination with 

the modelling schemes described in chapter 3, Or develop new local modelling meth-

ods with consideration of stability issues. 
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