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ABSTRACT 

Faculty of Engineering and Applied Science 

School of Engineering Sciences 

Doctor of Philosophy 

Neurofuzzy and SUPANOVA Modelling of the Processing-Property Relationships of 

Aerospace Al-Alloys 

by Oliver Paul Femminella 

Whilst direct physical understanding of materials behaviour that may be obtained from 
experimental and theoretical investigations is essential to materials development, the complex, 
multivariate nature of commercial processing routes may preclude the use of such explicit 
understanding for real materials/process development and optimisation. The development of 
process models which scale up to industrial processing environments thus remains elusive. 
In recent years there has been a growing interest in applying neural networks as alternative 
approaches in modelling material properties. A significant drawback however of general neural 
network architectures remains the lack of transparency in the modelling process. 

Neurofuzzy networks and the SUPANOVA technique comprise two parsimonious adap-
tive modelling approaches, the former combining well established neural-type learning algo-
rithms with the transparent knowledge representation of fuzzy systems, the latter emerging 
from recent advances in statistical learning theory and support vector methods for regression. 

This thesis has investigated the performance of such techniques in modelling physical and 
tensile properties of Al-Mg-Li powder metallurgy and wrought Al-Zn-Mg-Cu alloy systems, 
from compositional and processing information. Prior system knowledge was employed in the 
form of physically motivated transformations and initialising (neurofuzzy) network structures. 

By adapting their structure to infer the nature of the processing-property relationships 
contained in the data, both adaptive methods determined a number of non-linear dependencies, 
resulting in more appropriate models compared with multiple linear regression analyses. The 
data sets were seen to be representative of experimental, small and large scale processing 
conditions, which then reflected the different predictive performances exhibited by the adaptive 
methods. 

Metallurgical understanding, conditioning and regression diagnostics, allowed a greater 
understanding of the statistical properties of the data, permitting an enhanced interpretation 
and validation of the models identified by the adaptive methods, understanding the empirical 
results in light of the representativeness of the set of input variables, sample sizes and data 
weaknesses characterising the data. Generally, the dependencies inferred by the adaptive 
methods were seen to be consistent with metallurgical understanding, a number of which 
suggesting interesting interdependences, particularly an interaction between the Magnesium 
content of Al-Zn-Mg-Cu alloys and the age-hardening behaviour. Overall, the results gave a 
clear indication of the benefits associated by performing statistical analyses on experimentally 
designed data sets and highlighted the problems of modelling observational data. 
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Nomenclature 

The following list includes the main terms used throughout this thesis. A number of additional 

terms are however identified and defined at specific points in the text, but are not generally 

repeated. 

General Physical Metallurgy 

0̂ 2 0.2% proof stress. 

E Young's modulus of elasticity. 

CgZ electrical conductivity. 

uts ultimate tensile strength. 

percentage elongation. 

plane strain fracture toughness. 

^Hgoi enthalpy of formation. 

ks Boltzmann's constant (13.8 x 10"^^ J / i f ) . 

V Poisson's ratio. 

General Data Modelling 

N - number of samples (or observations). 

Vn - training data set (sample) comprising N data pairs (samples). 

- {(x*, 

X - vector of input samples. 

= [3̂ 1, , Xji] • 

y - vector of output samples (target values). 

— [yii • • • ; Vn]-

w - vector of regression coefficients (or weights). 

X - matrix of input vectors. 

= [x i , . . . , Xp]. 

vin 



AKMWENCLATURE ix 

y (x, w) - model output for the inputs in x and parameter vector w. 

Wmp - maximum posterior estimate of the weights. 

Ux - number of input variables in the model. 

p - number of parameters in the model. 

df - number of degrees of freedom in the model. 

Jjv - Mean Square Error (MSB) cost function. 

- biased estimate of the variance of the assumed additive noise component. 

This corresponds to the Mean Square Error. 

CTIJ - unbiased estimate of the variance of the assumed additive noise component. 

= 7 7 ^ Z j l i - %/: (x, w)]^. 

"̂ df std " unbiased estimate of the variance of the assumed additive noise component 

determined on the output standardised to have zero mean and unit variance. 

(7^ - variance of the estimated model parameters. 

cr? - variance of the assumed Gaussian noise on the model's output due to the 

variance in the model's weights. This is used to define error bars. 

T - signal-to-noise parameter. 

^xx - matrix of correlation coefficients between input variables, 

with elements r^x-

r y x - vector of correlation coefficients between the output and the input variables, 

with elements elements ryx-

C (X) - condition number of the design matrix X. 

jjLk - singular value of X. 

pi'max - largest singular value of X 

/"mm - smallest singular value of X. 

% - condition index of X. 

TXjk - ( j , variance-decomposition proportion: proportion of the regression 

coefficient associated with the component of its decomposition. 

H - hat matrix. 

hii - diagonal element of the hat matrix H. 

Ci - error (or residual) between the observed value and the model's output. 

e* - semistudentised residual. 

Tj - 2̂ ^ studentised residual. 

Cf - Cook's distance measure for the observation. 

Hf - Hadi's overall potential measure for the observation. 



NOMENCLATURE 

Neurofuzzy Networks 

Ha {^) - ^ fuzzy set, where A represents the fuzzy label. 

/"A' (x) - multivariate fuzzy set, the vector A represents the fuzzy labels. 

This also represents the basis functions in the neurofuzzy network. 

A\ - fuzzy input labels. 

- fuzzy output labels. 

Cij - a rule confidence. 

y j - centre of the fuzzy output set. 

a [x) - univariate B-spline basis function. 

a (x) - vector of membership function outputs. 

p - number of multivariate fuzzy membership functions (different antecedents) 

in a neurofuzzy network (rule-base). 

This is also equal to the number of network weights. 

U - number of subnetworks. 

A - vector of knots representing a B-spline fuzzy variable, 

r - number of univariate membership functions defined on a variable. 

Pu - number of multivariate basis functions in the subnetwork. 

This also corresponds to the number of weights in the subnetwork. 

k - order of a B-spline fuzzy membership function. 

A - [N X p] solution matrix. 

R - [p X p] autocorrelation matrix. 

p - the [p X 1] cross-correlation vector. 

S - the [A'" X N] smoother matrix. 

Sii - 2*̂  diagonal element of the smoother matrix S. 

Fm - failure margin in the model construction termination criteria. 

ftoi - forward tolerance in the model construction termination criteria. 

btoi - backward tolerance in the model construction termination criteria. 

Regularisation 

A - regularisation coefficient. 

JR - regularised cost function. 

E c (%,) - sum of squared error (iV x MSE) /2 

- penalty term. 

- local penalty term. 

K [p X p] curvature matrix. 

Ki - local \pi X Pi] curvature matrix. 
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Probabilities 

P (•) - probability. 

p (x) - probability density function (p.d.f.). 

p (x, y) - joint probability density function, 

p (y|x) - conditional density. 

X - set of input vectors. 

= (xi, . . . , Xjv) . 

y - vector of output samples (target values). 

= (yi,--- jUn)-

% - represents model structure and type of regulariser used. 

a - reciprocal of the variance of assumed Gaussian prior distribution. 

/? - reciprocal of the variance of assumed Gaussian likelihood function, 

i.e. the distribution of the assumed additive Gaussian noise. 

P (x, q) - prior for the weights. 

P{-x,au) - local prior for the weights in a subnetwork. 

P {y\X,vi-,a, (3,71) - likelihood function. 

P {y\^) - evidence for the output data. 

P (wjDjv, a , (3) - posterior p.d.f. for the weights. 

P (a, [3) - prior distribution for the hyperparameters. 

P {a, , "H) - posterior p.d.f. for the hyperparameters a and /3 

for a given model structure and type of regulariser used. 

Zd - normalisation factor for the likelihood function. 

Zw - normalisation factor for the prior p.d.f. 

Support Vector Machines 

R [/] - expected risk functional or average loss. 

Remp [/] - empirical risk functional. 

Lquad - quadratic loss function. 

Le - e-insensitive loss function (equivalent to the Laplacian loss for e = 0). 

K (x, y) - general kernel function. 

^ - slack variables. 

C - smoothing parameter. 

a - dual variables or Lagrange multipliers. 

b - bias term. 

h - Vapnik-Chervonenkis dimension. 

A - sparseness parameter. 

c - vector of coefficients associated with terms in an ANOVA basis. 

S2tol - Stage II sparse selection threshold. 
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The Al-Mg-Li Powder Metallurgy System 

PVc - forging temperature. 

P^b/a ' proprietary measure of the extent of mechanical alloying. 

pea - process control agent. 

The Al-Zn-Mg-Cu Experimental System 

XAa - atomic concentration (at.%) of element Aa. 

XAa,w - weight percentage (wt.%) of element Aa. 

xcu,a - atomic fraction of Magnesium dissolvable in the Al-rich phase. 

XMg,a - atomic fraction of Copper dissolvable in the Al-rich phase. 

xg - atomic fraction of the S phase. 

Xrj' - maximum atomic fraction of the rj' phase. 

XMg,xs - atomic fraction of excess Magnesium left in solution after 

complete formation of the main precipitates. 

t - age-hardening heat treatment time. 

The 7x75 Al-Alloy System 

Q - quarter thickness position in a plate form. 

C - mid-thickness position in a plate form. 

.3W - 1/3 width position in a plate form. 

.5W - mid-width position in a plate form. 

LT - longitudinal test orientation. 

TL - long-transverse test orientation. 

SL - short-transverse test orientation. 

LTf - strain in the long-transverse direction. 

Le - strain in the longitudinal (or rolling) direction. 

CRS - cross rolling strain. 

GR - gauge reduction. 

Tf - final temperature of the plates exiting the hot rolling mill. 

STt - solutionising heat treatment time. 
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Acronyms 

AA - Al-Alloy. 

AMN - Associative Memory Network. 

ANOVA - ANalysis Of VAriance. 

ARD - Automatic Relevance Determination. 

ASMOD - Adaptive Spline Modelling of Observation Data. 

BMLP - Bayesian Multi-Layer Perceptron. 

CG - Conjugate Gradient. 

DM - Data Mining. 

ERM - Empirical Risk Minimisation. 

FS/BE - Forward Selection/Backward Elimination. 

GP - Guinier-Preston (zones). 

lACS - International Annealed Copper Standard. 

IADS - International Alloy Designation System. 

I/M - Ingot/Metallurgy. 

KDD - Knowledge Discovery in Databases. 

LOOCV Leave-One-Out Cross-Validation. 

MA - Mechanically Alloyed. 

ML? - Multi-Layer Perceptron. 

]WLR - Multiple Linear Regression. 

MSE • Mean Squared Error. 

PFZ Precipitate Free Zone. 

P/M Powder/Metallurgy. 

RBF Radial Basis Function. 

see Stress Corrosion Cracking. 

SFE Stacking Fault Energy. 

SLT Statistical Learning Theory. 

SRM Structural Risk Minimisation. 

ssss Super-Saturated Solid Solution. 

SUPANOVA - support vector Parsimonious ANOVA. 

SVD Singular Value Decomposition. 

SW Stepwise. 

VC Vapnik-Chervonenkis (dimension). 

VIF Variance Inflation Factor. 

sv Support Vectors. 

SVM Support Vector Machines. 

TMP Thermomechanical Processing. 



Chapter 1 

Introduction 

1.1 Background 

The aerospace industry demands for increased performance in mechanical and physical prop-

erties of structural components have greatly benefitted in recent decades by the development 

of new alloy series and processing routes. Whilst traditionally, significant developments have 

been attained by some form or other of "enlightened empiricism", more recently the ability to 

exert a greater control over industrial processing conditions and advances in thermodynamic 

and thermomechanical modelling have enabled both development and optimisation of new al-

loys, through the formulation of tighter compositional ranges, thermal treatments and mechani-

cal processing, with microstructural characterisation remaining at the heart of recent advances. 

In addition, the greater ability to attain controlled microstructures allows minimisation of the 

variability in properties, which may result in substantial economic savings. 

However, although extensive knowledge of the physical metallurgy of Al-alloys has been 

built-up over the years, quantitative understanding of commercial processing-property relation-

ships remains limited. This may be attributable to the underlying complexity and interdepen-

dence of many of the microstructural evolution processes and performance micro-mechanisms 

in commercial materials, and the complexities of the industrial production environment. 

The uncertainty as to which processing parameters/variables of industrial alloy production 

routes control the properties developed has resulted in processing specifications rather than 

reliable process models. Developing a theoretical or physically based model for a particular 

processing route from first principles is very demanding and unlikely to adequately characterise 

industrial processing conditions. Generally, these are often limited to describing one particular 

step in the process (e.g. casting, ageing, etc.) and frequently do not predict the final properties 

but intermediary variables, describing the microstructural development attained at a particular 

stage in the alloy fabrication. Models which do predict alloy properties seldom make use of 

production data to describe the industrial processing conditions. Thus, the development of 

accurate models for multi-stage commercial processes remains arduous. 

1 



Developing an empirical model directly from bulk or raw process data may be an effective 

alternative, enabling the development of more useful models in a minimal amount of time. In 

large scale processing conditions, although the variability between production runs for the 

commercial production route of a particular alloy may generally represent a limited range of 

microstructural conditions, there will be significant advantages of being able to identify the 

processing conditions responsible for the resultant property scatter. 

1.2 Neural networks 

Neural networks comprise a large number of statistical models which have been applied to 

modelling and classifying non-linear, interdependent and noisy data sets that are not fully 

understood and for which analytical solutions are lacking. Of the different classes of neural net-

works, multi-layered perceptrons (MLPs) (Haykin 1998) are the most widely used. Probably 

the main reason for their widespread use is that the underlying relationships do not have to be 

explicitly stated, rather these are learnt from the data, and hence may significantly outperform 

conventional techniques when prior system knowledge is poor. 

In recent years, interest in applying neural and other adaptive modelling techniques has 

arisen in the materials science and engineering field, being proposed as alternative modelling 

approaches to standard regression analyses, semi-empirical and physical-based modelling ap-

proaches. Recently, in a preface to a special issue on the application of neural network analyses 

in materials science, Fujii and Bhadeshia (1999) stated that neural networks (particularly with 

reference to MLPs) are not black box models; 

The function and its associated coefficients are precisely defined and hence 

transparent to observation; there are no black boxes! 

The general definition of black box is that the characteristics of the construct/box are known, but 

it's "black" because the internals are unspecified or not understood by the person looking at the 

box. Thus, in the construction of a black box model no physical knowledge is used, the model 

structure chosen is a parameterised function which is used to fit the observations. The definition 

of whether a model is a black box is then in the majority of the cases subjective, depending on 

whether the person is the designer or user, and so different perspectives can be associated with 

training algorithms, architectures and methods used for incorporating/extracting the knowledge 

stored in the model. 

Whether or not neural networks constitute black box modelling approaches, one signif-

icant drawback of general architectures remains the lack of transparency in the modelling 

process and this has hindered more widespread use of the techniques. For the functional depen-

dencies inferred by MLPs to be visualised and subsequently validated in light of physical-based 

system understanding, requires the generation of a number of artificial data sets, whereby the 

model is queried through varying one input variable at a time, whilst all other inputs are held at 
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constant values. At best this allows a very local form of transparency and a full understanding 

and validation of how the model generalises throughout input space is unfeasible. 

As such, neural networks remain difficult to validate against physical understanding, de-

spite the significant effort recently directed towards both including/extracting physical knowl-

edge from these systems (Tresp et al. 1993; Shavlik and Towell 1994) and visualising the 

functions computed (Plate et al. 1998). Subsequent chapters will review several techniques 

which have been proposed to infer the relevance of the input variables, the most noteworthy of 

which being the automatic relevance determination (ARD) model. 

1.3 Neural modelling in materials science 

Materials science is a field where process/structure-property relationships are established or 

examined critically, and as such the use of black box or other empirical modelling approaches 

may be questioned as they offer no immediate physical insight. As a result, they are often re-

garded with suspicion by physical metallurgists. Industrialists on the other hand who routinely 

use regression and statistical techniques may be less reluctant to make use of them. 

In materials science and engineering, neural networks have been applied to a range of 

systems and data sets, either collated from the scientific literature, generated experimentally or 

obtained from commercial alloy producers. Sumpter and Noid (1996) and Bhadeshia (1999) 

have reviewed recent applications of neural networks in materials science and engineering. 

In the large majority of these studies, the predictive ability of neural techniques has gener-

ally been seen to outperform both physical-based models and simple linear regression analyses. 

For example, Thomson et al. (1999) after having subselected a managable number of input 

variables from a large database, compared the performance of a Bayesian MLP (which made 

use of a Markov Chain Monte Carlo method) with that attained by a simple linear regression 

analysis in the prediction of weld metal chemistry. The neural network was seen to exhibit a 

better empirical performance when the input-output dependencies were approximated by non-

linear terms; in the presence of simple physical relationships, the performance of the neural 

network did not provide advantages over a linear regression analysis. 

In an increasing number of studies, e.g. (Badmos et al. 1998; Badmos and Bhadeshia 

1998), that address model validation other than in terms of predictive ability alone, through in-

terpreting and validating the relationships in terms of metallurgical understanding, the physical 

trends inferred have been reported as being in general agreement with metallurgical under-

standing, with only a few studies reporting novel and/or conflicting relationships. 

A number of simple studies (Song et al. 1995; Seibi and Al-Alawi 1997; Schmidt 1998; 

Zhang et al. 1999) have perhaps applied neural techniques in naive and misleading ways, and 

often neural networks are used as black boxes, generally by employing a large number of input 

variables (51 (Fujii et al. 1996) and 108 (Singh et al. 1998)), with little prior data analysis and 

pre-processing of the data. Furthermore, in a number of studies, it remains difficult to infer the 
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advantages in the application of neural modelling techniques, when a comparison with other 

modelling approaches, e.g. multiple linear regression analysis is lacking. 

Whilst several classes of neural networks are being used, the most significant studies 

and results have been achieved through the application of modelling approaches which make 

use of Bayesian inference techniques, whereby the network learning process is given a prob-

abilistic interpretation. These comprise the Bayesian MLPs (BMLPs), and Gaussian process 

(GP) modelling approaches. In BMLPs, the evidence framework and ARD model enable the 

selection of an appropriate model and the significance of each input variable to be assessed and 

subsequently compared with metallurgical understanding. 

Although it may be argued that Bayesian learning and sophisticated regularisation ap-

proaches enable models to deal with a large number of inputs, the justification for the inclusion 

of a very large number of input variables, particularly where there is little prior analysis of how 

well the data is distributed in input space may be questionable. It may not only unduly increase 

the complexity of the models, increasing the risks of inferring non causal dependencies and 

overfitting the training data set, but makes the validation of the relationships inferred more 

problematic. For instance, in repeating the analysis originally performed by Gavard et al. 

(1996) which used BMLPs, the results obtained by Bailer-Jones et al. (1999) using a GP model 

on a subset of the original number of input variables was seen to exhibit improved performance, 

with more plausible models obtained. 

Neural network applications in the modelling of complex materials characteristics have 

included studies in which phase transformations (Gavard et al. 1996; Vermeulen et al. 1998; 

Bailer-Jones et al. 1999), tensile properties (Singh et al. 1998; Jones 1997), fatigue crack 

propagation (Fujii et al. 1996; Schooling 1997; Schooling et al. 1999) of steels and Ni-base 

superalloys, were modelled as a function of compositional levels and processing conditions. 

Until recently comparably fewer studies have been performed on Al-alloy systems. In these 

light alloys, neural approaches have been applied in the prediction of the location and volume 

fraction of porosity in Al castings (Huang et al. 1998), the effects of deformation and solid 

solution time on the ageing dynamics in AA7175 (Song et al. 1995), and in modelling mi-

crostructural parameters (Sabin et al. 1997; Bailer-Jones et al. 1997; Clinch et al. 2000). An 

increasing number of studies are seen to be investigating the applicability of neural approaches, 

including recurrent neural networks, in modelling and optimisation of both cold rolling mill 

processes (Cho et al. 1997; Larkiola et al. 1996; Singh et al. 1998) and thermomechanical 

processing of materials (Sabin et al. 1998; Chun et al. 1999; Shercliff and Lovatt 1999). 

Comparisons between neural and fuzzy approaches in the areas of material processing and 

manufacturing have been presented in some recent publications (Cios et al. 1995; Kandola 

et al. 1999; Arafeh et al. 1999). 
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1.4 General approach 

The empirical modelling design cycle defined in Figure 1.1 shows the general methodology 

used in this work, whereby the process of learning from data is seen as a continuous process in 

which the data set selection and analysis, use of prior knowledge sources and the construction 

and validation of a model are part of an iterative and interactive modelling cycle. 

Prior V Data 

Knowledge e j e c t i o n 

M o d e l s -M o d e l s -
Validation 

Design 

Figure 1.1: Empirical model design cycle. 

Model validation by assessing predictive ability and validating the statistical inferences 

attained from physical/process understanding is critical in developing reliable models of a 

system. This requires a model that attempts to learn the relationships and trends contained in 

the data, in a manner that is easier to interpret and validate from use of domain expertise. This 

may be more desirable than an inherently less comprehensible model, even at the expense of 

slightly inferior predictive ability. Neurofuzzy networks and the recently developed SUPANO-

VA technique, comprise two adaptive modelling approaches which appear to be well suited to 

a parsimonious modelling approach. Both techniques will be reviewed in subsequent chapters, 

discussing strengths as well as limitations. The main aims of this thesis are then to assess of 

the perfomance of these two techniques in the modelling processing-property relationships of 

several Al-alloy data sets. 

Modelling per se is only part of the process of discovering informative patterns or rela-

tionships which may be contained in the data. The validation of the model, whether by use of 

an independent test set and/or using metallurgical understanding of how processing variables 

are expected to influence the behaviour of the material under investigation is seen to be a 

fundamental step if meaningful inferences are to be obtained. Understanding the structure 

of the models inferred in terms of the statistical properties of the data set, may explain poor 

empirical performances attained by the neurofuzzy and SUPANOVA modelling approaches. 

For these purposes, a number of statistical methods have been used. 
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1.5 Thesis overview 

As a result of both the breadth of the systems and properties investigated and the statis-

tical/modelling techniques applied, this thesis represents a broad interdisciplinary scientific 

contribution, in which some fundamental metallurgy and data modelling material has been 

reviewed. A reader familiar with the principles of materials science and engineering, general 

linear regression analysis, data pre-processing issues and/or adaptive modelling techniques may 

wish to start directly at Chapter 7. 

Chapter 2: Physical metallurgy and processing of aerospace Al-alloys 

General physical metallurgy issues and the processing route used in the production of wrought 

high-strength Al-alloys are reviewed in this chapter. The focus is primarily on how metallurgi-

cal features and the physical and mechanical properties of heat-treatable Al-alloys are affected 

by the individual processing stages. 

Chapter 3: Data modelling 

This chapter serves as a general introduction to the basic assumptions and concepts of learning 

from data. A brief discussion of data quality issues and general modelling objectives is then 

intended to place the work of subsequent chapters into perspective. Approaches to parameter 

estimation and model selection, general approaches which are used for controlling the com-

plexity of parametric models, and methods which are widely used to assess the generalisation 

performance of a model are outlined. 

Chapter 4: Data pre-processing, sensitivity analysis and conditioning diagnostics 

As data is seldom readily amenable to a meaningful statistical analysis, in particular for reliable 

knowledge extraction, this chapter introduces some elementary pre-processing steps that bene-

fit the learning process and statistical inferencing. Two sources of data weaknesses, which can 

severely affect the estimation of parameters in linear models are then discussed. Established 

conditioning diagnostics are presented, which upon detecting the nature of any data weakness 

can help in the interpretation of poor inferences attained in linear regression analyses. In small 

data sets, the influence exerted by individual observations can be unduly high and be seen to 

exert a significant effect on the parametric estimates. For the purposes of detecting non-trivial 

influential data pairs, in high-dimensional settings, two measures of influence are presented. 

Chapter 5: Neurofuzzy networks 

This chapter summarises the developments achieved in recent years by several researchers of 

a particular class of neurofuzzy networks (or systems). A brief introduction to fuzzy systems 



leads to the description of the modelling framework developed and the fundamental theory 

upon which these networks are based. Training of neurofuzzy networks is then considered in 

terms of weight and model structure identification. The model construction algorithm used 

to determine additive models is outlined together with the hypothesis testing framework and 

model complexity measure used to determine a model structure supported by the available data. 

The extension of Bayesian inference techniques within MacKay's (MacKay 1992a) evidence 

framework is then presented, focusing on the local regularisation approaches defined for addi-

tive neurofuzzy models by Bossley (1997). The derivation of error bars is discussed and the 

interpretation of neurofuzzy models as linear smoothers allows the influence measures defined 

in Chapter 4 to be extended to these networks. The chapter concludes with an illustrative ex-

ample, whereby the neurofuzzy networks are used to model a non-linear analytical expression 

(equation for the plastic zone size at the crack tip). 

Chapter 6: Statistical learning theory and support vector methods for regression 

Recent developments in statistical learning theory and the development of support vector meth-

ods for regression have given rise to a promising subfield of machine learning. Support Vector 

Machines (SVM) offer an alternative approach to problems in which general neural network 

approaches have until recently prevailed. This chapter introduces the theory developed by Vap-

nik (1998) for statistical estimation from small samples. Vapnik's structural risk minimisation 

principle is seen to provide a general method which can be used for the purposes of model 

selection and complexity (capacity) control. The chapter then provides a brief introduction 

of SVM methods for regression and describes the SUPANOVA (SUpport vector Parsimonious 

ANOVA) modelling technique developed by Gunn and Brown (1999). 

Chapter 7: Data modelling of processing-property relationships in an Al-Mg-Li 

powder metallurgy alloy system 

The first of the data sets investigated comprised a small set of production runs of an Al-Mg-Li 

power metallurgy alloy system. After a short introduction to the metallurgy and strengthening 

mechanisms of mechanically alloyed Al-Mg(-Li) materials and a data analysis of the data set, 

multiple linear regression (MLR), neurofuzzy and SVM approaches were used in the modelling 

of three tensile properties: 0.2% proof stress (ao.2), ultimate tensile strength (uts), and per-

centage elongation (%e/.), using compositional information and processing variables. Results 

were compared both in terms of the approximation abilities and the structural relationships 

determined by the adaptive methods. Both conditioning and regression diagnostics were used 

as a further means of interpreting the results. 



Chapter 8: Data modelling of structure-properties of experimental trials in the 

Al-Zn-Mg-Cu alloy system 

In the second of the data sets investigated, comprising a small experimental series of 

compositional-ageing time alloy variants of the Al-Zn-Mg(-Cu) alloy system, two properties 

were investigated: ao.2 and electrical conductivity (o-g/). Prior to the application of the various 

data modelling techniques, the precipitation sequences governing these alloys are briefly cov-

ered, discussing how the microstructure determined by compositional and thermal treatments 

is expected to influence the properties developed. In addition to determining models from the 

original data set, which included compositional information and heat treatment times, two other 

data sets based on general rule-of-thumb understanding and a physically-based (microstruc-

tural) set of data transformations were defined. Models for these three data sets were then 

determined using the same methodologies as those used in Chapter 7 and results validated. 

The effect of the data transformations were also assessed by means of initialising neurofuzzy 

models with structures determined from metallurgical understanding and knowledge gained 

from the initial modelling results. 

Chapter 9: Knowledge discovery and data mining of 7xxx series Al-alloy produc-

tion databases 

High-strength 7xxx series (Al-Zn-Mg-Cu) Al-alloys are seen to account for an ever increas-

ing volume of structural material sold to the aerospace industry. The large scale commercial 

production of these alloys means that production databases store a large volume of processing 

information pertaining to the different stages of the manufacturing of wrought products. In this, 

the final statistical analysis performed, the feasibility of obtaining "useful" models of fracture 

toughness (K/c) levels in terms of different test conditions and variations in the processing 

variables is investigated. As the original data sets included a very large number of fields and 

the data required a considerable amount of pre-processing, the investigation was placed in a 

knowledge discovery in databases (KDD) context, and the modelling per se in a data mining 

(DM) perspective. 

Chapter 10: Conclusions and future work 

Finally, the results and main themes which have emerged from the different analyses performed 

are discussed and some general conclusions are drawn and suggestions for future work are 

outlined. 



CHAPTER 1. INTRODUCTION 

1.6 Contributions 

Given the large interest that adaptive modelling techniques, MLPs in particular, have expe-

rienced in both steel and Ni-base superalloy property modelling and alloy development, this 

thesis has been directed towards extending the application of adaptive methods to the modelling 

of physical and tensile properties of Al-alloys. Thus, the main contributions of this work are 

seen as the following; 

• The application and assessment of transparent modelling paradigms, namely neurofuzzy 

networks and SUPANOVA in the modelling of process-property relationships in several 

Al-alloy systems. 

• Statistical techniques, typically used in applied statistics, namely conditioning and re-

gression diagnostics have been used as complementary data analysis tools, allowing a 

more rigorous understanding of the data than that attained from the application of neural-

type modelling approaches alone. 

• Influence measures previously defined for linear models have been extended for the class 

of additive neurofuzzy networks considered in this work. 

• Quantities based on stoichiometry and inspired by physical-based transformations have 

been derived and an interaction between the Magnesium content and the age-hardened 

condition of the alloy has been proposed as being a significant interdependency in influ-

encing the microstructural development of Al-Zn-Mg-Cu alloys. 

« KDD and DM are techniques which will experience increasing importance in the assess-

ment of the production data. This work has introduced the KDD and DM techniques as 

useful approaches in the statistical investigation of large commercial processes. 

This work has contributed to the following list of journal publications: 

• Femminella O.P., Starink M.J., Brown M., Sinclair I., Harris C.J. and Reed P.A.S. Data 

pre-processing/model initialisation in neurofuzzy modelling of structure-property rela-

tionships in Al-Zn-Mg-Cu alloys. ISIJ International, vol.39, no. 10, pages 1027-1037, 

1999. 

» Femminella O.P., Starink M.J., Gunn S.R. and Reed P.A.S. Neurofuzzy and SUPANOVA 

Modelling of Structure-Property Relationships in Al-Zn-Mg-Cu alloys. In Proceedings 

of the 7*'^ International Conference on Aluminum Alloys (ICAA-7), Charlottesville, VA, 

April. Materials Science Forum, volumes 331-337, pages 1255-1260, 2000. 

® Christensen S.W., Kandola J.S., Femminella O R, Gunn S.R., and Reed P.A.S., and 

Sinclair I. Adaptive numerical modelling of commercial aluminium plate performance. 
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In Proceedings of the 7̂ ^ International Conference on Aluminum Alloys {ICAA-7), Char-

lottesville, VA, April. Materials Science Forum, volumes 331-337, pages 533-538, 2000. 



Chapter 2 

Physical Metallurgy and Processing of 

Aerospace Al-Alloys 

2.1 Introduction 

Structural materials used in the aerospace industry require a certain balance of physical and 

mechanical properties to enable their safe and efficient use. These properties can be arbi-

trarily separated into those that affect the structural performance ab initio and those limiting 

continuing service performance. Among the former, density, strength, stiffness are key prop-

erties, amongst the latter, resistance to fatigue and corrosion are important examples (Peel and 

Gregson 1995). Typical structural components include fuselage skin and stringers, wing spars, 

upper wing structures and lower wing skin, each of which require a particular balance of service 

performance properties, depending on the structural section of the airframe. 

The ability to predict and control microstructure is central to the development of new 

materials and achieving desired levels of performance. The performance requirements for 

airframe components are reviewed by Starke and Staley (1996), in terms of the structure-

property relationships, describing the background and drivers for the development of modem 

Al-alloys to improve performance. Developments in aerospace structural materials rely upon 

enhancement of a balance of properties, rarely upon the improvement and optimisation of a 

single characteristic, thus necessitating an understanding of the interdependencies and factors 

governing the balance of such properties. At present, major developments in aircraft struc-

tural components are concentrating on improvements and optimisation in properties at reduced 

manufacturing costs (Rendigs 1997; Warner et al. 1997). 

Despite the significant advances that have been made in the physical understanding of 

microstructure and mechanical properties of aluminium based materials, commercial alloy and 

processing route development has until recently been driven by empiricism. However, it has 

become recognised that future alloy design can no longer be performed using such purely 

empirical and/or experimental approaches. 

11 



C:tL4PTIiR2. CUCyAJCRKIKuFWiC?; 
y4uL-/LLjL0TrS 12 

Combining knowledge acquired from scientific studies and industrial experiments has 

replaced the "trial and error" approach to alloy development. This has led to reduced develop-

ment timescales and advances in the understanding of the relationships between composition, 

processing, microstructural characteristics and material properties, resulting in improvements 

in the properties attained for aircraft applications. Although a design of experiments approach 

to optimisation can be very efficient and cost effective (Sigli et al. 1996), it depends critically 

on the selection and range of the process conditions varied, and may be criticised' in that it 

gives little insight into the metallurgical phenomena occurring. 

It is recognised that both a quantitative knowledge and greater understanding of thermo-

mechanical process parameters and related metallurgical effects is required in order to be able 

to extrapolate and generalise to different processing routes and alloy variations. The integration 

of the different sub-models is recognised as a powerful tool for industrial product optimisation. 

For example, Vatne et al. (2000) have combined models for work-hardening, deformation tex-

ture evolution and recrystallisation. The underlying complexity and interdependence of many 

microstructural evolution processes and mechanical property micro-mechanisms, hinders the 

development of reliable process models^ of multi-stage production routes and optimal methods 

of integrating existing models for commercial processing stages. Thus, there remains a lack of 

understanding of how to combine metallurgical models, which describe overall alloy behaviour, 

and the typically insufficiently quantified descriptions of microstructural features. 

Thermodynamic calculation of phase diagrams has been a possibility since the 70's due 

to enhanced thermodynamic modelling and computational capabihties. However approaches 

based on analytical equations derived from equilibrium phase diagram analysis are of limited 

quantitative use when nucleation and growth kinetics are of primary importance during solidi-

fication, e.g. see Dubost (1993) for a review. In more recent years considerable advances have 

been made in the metallurgy of multi-component alloy systems and in the implementation and 

use of equilibrium phase diagrams using simple analytic criteria and advances have been made 

in nucleation and growth kinetics modelling. 

The predictive capabilities of the modelling framework developed by Pechiney, for ex-

ample, rely on existing understanding of physical phenomena, availability of physical models 

and on empirical parameters determined from both experimental and industrial data. This 

framework has led to the development of Al-alloys 7050A and 7040, used for ultra thick plate 

applications and the new upper wing skin alloys 7349 and 7449 (Warner et al. 1997; Shahani 

etaL 1998X 

Although not offering immediate physical insight, statistical and adaptive methods, of-

' in addition to being expensive, time consuming and limited to the equipment and the specific alloys test-

ed, Hirsch et al. (2000) criticises trial and error approaches. Results tend to be ambiguous, the limited set of trials 

impairing reliable inferencing, with the possibility that significant variables have not been measured. 

" Shercliff and Ashby (1990) define a process model as a mathematical relation between process variables (e.g. 

alloy compostion, heat-treatment temperature and time, etc.) and the alloy properties (e.g. strength), based on 

physical principles (thermodynamics, kinetic theory, dislocation mechanics and so on). 
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ten regarded with deep suspicion or even hostihty by physical metallurgists, are attracting 

significant interest due to their ability to infer trends from the data of multivariate systems. 

Industrialists on the other hand who are used to empirical methods may be less reluctant to 

make use of them. In industrial settings, adaptive methods may attain useful generalisation 

abilities, providing a means to optimise without time-consuming experiments by inferring 

trends in multivariate, noisy, non-systematic, and complex data. 

In this chapter the physical metallurgy of conventional Al-alloys used in aerospace ap-

plications is reviewed. A description of the fabrication of wrought Al-alloys will address the 

multi-stage production methods in terms of processing conditions and metallurgical features. 

An understanding of the interactions between process variables and practical production lim-

itations is fundamental for the validation of the dependencies and relationships that may be 

inferred from process data. Assessing the empirical performance of data-driven modelling 

techniques in terms of the statistical characteristics of the processing variables and integrity of 

the data available also requires this fundamental understanding. 

2.2 Physical metallurgy of aluminium alloys 

The following sections provide an overview of the physical basis of the properties of heat-

treatable Al-alloys, with particular attention to the physical and mechanical properties and 

the processing route used to attain the properties required for aerospace applications. More 

extensive reviews of the physical metallurgy and processing of Al-alloys can be found in (Hatch 

1984; Polmear 1981; Mondolfo 1976; Gregson 1995). 

2.2.1 Principles of age-hardening 

Heat-treatable Al-alloys contain elements that decrease in solubility with decreasing tempera-

ture, at concentrations that exceed their equilibrium solid solubility at room and ageing tem-

peratures. This decrease from appreciable solid solubility at elevated temperatures to relatively 

low solid solubility at low temperatures is a fundamental characteristic that provides the basis 

for substantially increasing the hardness/strength of Al-alloys by solution heat treatment and 

subsequent precipitation ageing. A typical multi-stage age-hardening process involves the 

following thermal treatments: 

• a solution treatment at a relatively high temperature within the solid state to dissolve the 

alloying elements, 

® quenching, usually to room temperature, to obtain a supersaturated solid solution (SSSS) 

of both elements and vacancies, 

8 ageing treatment(s) used to achieve a controlled decomposition of the SSSS so that a 

finely dispersed precipitate is obtained. 
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The complete decomposition of the SSSS is usually a complex process which may involve 

several stages (Polmear 1981; Starke 1989). 

Typically, coherent Guinier-Preston (GP) zones and a semi-coherent intermediate precip-

itate may precede the formation of the final incoherent equilibrium precipitate during ageing. 

GP zones are fine, clusters of the precipitating elements having the same crystal structure as 

the matrix. In general, heat treatments are designed to produce a very high density of fine 

GP zones or precipitates that strongly interact with dislocations, thereby increasing the yield 

strength of the alloy. Homogeneous precipitation involving GP zones depends upon the ageing 

temperature and the concentration of vacancies which will in turn be affected by the solution 

treatment temperature and cooling rate during the subsequent quench. The presence of such 

vacancies has a marked effect on precipitation kinetics and strengthening potential: several 

specific interactions between vacancies and various solute atoms influence the ageing kinetics, 

making the effects of even quite minor alloying additions important. In 7xxx series alloys, 

Mg content is believed to play a significant role in this process; because of its large atomic 

diameter, Mg-vacancy interactions may enhance the retention of excess vacancies during the 

quench (Hatch 1984). 

The development of precipitate free zones (PFZ) at grain boundaries after a slow quench 

and subsequent ageing may be attributed to the depletion of solute atoms near grain boundary 

particles (i.e. segregation to the grain boundaries) and/or the migration of vacancies to bound-

aries during the quench. Processing procedures are frequently employed to minimise grain 

boundary precipitation and PFZ formation, as these two phenomena generally have a delete-

rious effect on the properties of Al-alloys as they can become regions of strain localisation, 

leading to premature fracture. 

The prediction of precipitate phases in Al-alloys has been the subject of considerable 

study. Homogeneous nucleation theory may be used to explain the kinetic origin of precip-

itation from solid solution and classical solution thermodynamics used to derive equations 

that examine multiphase equilibrium and stability (Mondolfo 1976). As will be discussed 

in section 2.3.1, many studies have focused on relating precipitates to different strengthening 

mechanisms, which in addition to terms involving precipitate size spacing and volume fraction, 

include terms such as the elastic moduli of metastable phases (Embury et al. 1989). 

2.2.2 Ageing condition 

Varying the state of ageing is a simple means by which strength and balance of properties 

may be modified. Alloys which are allowed to develop and stabilise their strength at room 

temperature are said to be naturally aged, whilst alloys aged at temperatures above room tem-

perature are said to be artificially aged. During artificial ageing the strength of the alloy initially 

increases as the number and size of the precipitates increases. Eventually, strength levels reach 

a maximum value, corresponding to the peak-aged condition and any further overageing leads 
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to the coarsening of the precipitates and a reduction in strength. Due to the nature of the 

hardening precipitates, many variables are significant in high-temperature ageing of Al-alloys. 

Since many heat treatable alloys exhibit age hardening at room temperatures after quenching, 

a slow heating rate up to the ageing temperature may effectively act as a two step treatment. 

The sensitivity exhibited by certain alloys to natural ageing intervals, heating rate and two-

step ageing sequences have been attributed to the critical GP zone size formation. Modifying 

soak times can compensate for precipitation during heating and for the effects of soaking at 

temperatures above or below the nominal ageing temperature (Gregson 1995). 

The rate and extent of strengthening during precipitation heat treatments can be consid-

erably increased in some alloys by cold working after quenching, whereas other alloys show 

little or no added strengthening upon working. These improvements are commonly attributed 

to a combination of cold work and precipitation changes and due to nucleation of additional 

precipitate particles at dislocations. 

2.2.3 Grain structure 

During ingot casting, small additions of Ti and B are used as grain refiners. Boron is typically 

added to enhance the refining effect of Ti, the main effect of B being to reduce the solubility of 

Ti in liquid Al, enabling grain refinement at lower Ti levels. However, in excessive amounts, B 

can promote the formation of inclusions. The addition of Ti and B have little effect on changes 

in grain size that occur during or as a result of thermomechanical processing. The grain size 

of final wrought products is strongly influenced by the amount of work received prior to the 

solution treatment, generally decreasing as the amount of work increases. Annealing practice 

and rate of heating to the solution heat treating temperature can also affect grain size in recrys-

tallised materials, a small grain size being promoted by a fast heating rate and a short time at 

the annealing temperature. Grain size control has many purposes, which include ensuring good 

stress corrosion cracking (SCC) resistance and high fracture toughness. Anisotropic mechani-

cal properties may arise from the crystallographic textures developed within the material from 

working and annealing practices. 

Recrystallisation processes in wrought materials are commonly stimulated by high dislo-

cation densities in the vicinity of coarse constituent particles, but retarded by small particles 

which impede the nucleation and growth of recrystallising grains. Alloys which have received 

a certain amount of cold work may recrystallise completely during solution heat treatment, as 

the stored energy of deformation may be sufficient to overcome the pinning effect of small 

particles on grain boundaries. The decrease in dislocation density caused by recovery-type 

annealing produces a decrease in strength and other property changes (e.g. increase in electrical 

conductivity). In general, a greater amount of cold work reduces the time and temperature for 

recrystallisation. Complete recovery from the effects of cold working is obtained only with 

recrystallisation. Due to the heterogeneous distribution of dispersoid particles, the morphology 
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of the deformed grains may be retained in the final recrystallised product. 

2.2.4 Constituent particles 

Constituent particles (or coarse intermetallics) varying in size from 0.5 to 10/im, are common-

ly formed by non-equilibrium micro-segregation and liquid-solid eutectic reaction occurring 

during ingot solidification. 

Insoluble constituent particles typically contain impurity elements, such as Fe and Si, 

while soluble constituents consist of equilibrium and/or metastable intermetaUic compounds of 

the major alloying elements. Homogenisation and solutionising treatments are used to dissolve 

these soluble constituents (see section 2.4). A high density of dislocations develops in the 

vicinity of these particles during processing, providing nucleation sites for recrystallisation. 

In that they generally provide nucleation sites and propagation paths for low energy failure, 

constituent particles have a strong effect on the fracture behaviour of Al-alloys. 

The size and size distribution of constituent particles are controlled by the rate of ingot 

solidification, the chemical composition, and the extent and nature of bulk deformation. Parti-

cle size decreases as solidification rate increases, impurity levels decrease, and as the amount 

of deformation increases. Generally, the insoluble constituent particles are coarsest and most 

heterogeneously distributed in thick plate and are finer and more homogeneously distributed 

in thin sheet. Hamerton et al. (2000) for example describe work conducted to improve under-

standing of the development of the coarse particles population through different processing 

stages. 

2.2.5 Dispersoid particles 

Small submicron (0.05—0.5/im) particles form during ingot homogenisation (or other high 

temperature treatments), by the solid state precipitation of compounds containing elements 

having modest solubility and which diffuse slowly in solid aluminium. Once formed these 

particles (e.g. AlgMn, Al2oCuMn, Ali2Mg2Cr, AlaZr) resist both dissolution or coarsening 

during subsequent lower temperature thermal treatments. The primary role of these particles 

is in retarding recrystallisation and grain size control during processing and subsequent heat 

treatments, although they may also exert an important influence on certain mechanical prop-

erties through their effects on both the response of the alloy to ageing treatment and on the 

dislocation substructures imparted by plastic deformation. By promoting a homogeneous slip 

character, these particles may prevent dislocation pile-ups at grain boundaries. The effective-

ness of a particular dispersoid in controlling the grain structure depends on its size, spacing and 

coherency, the former largely controlled by heat treatment time and temperature. 

It is well established that the dispersoids are not homogeneously distributed in commercial 

wrought material, but can be observed in long thin bands and layered in the deformed grains: 

this results from segregation during solidification and the nature of most deformation processes. 
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2.3 Properties of heat-treatable Al-alloys 

Properties of high-strength alloys are seen to be controlled by a complex interaction of the 

microstructural features. Chemical composition and processing are seen to control the mi-

crostructure and thus the physical and mechanical properties of heat-treatable Al-alloys. The 

following sections discuss the microstructural characteristics, processing and, where present, 

the relationships that are used to determined the physical and mechanical properties of high-

strength Al-alloys that will be the subject of analysis in subsequent chapters. 

2.3.1 Strengthening mechanisms 

In commercial high-strength alloys, many strengthening mechanisms are operating simultane-

ously, the magnitude of the individual contributions depending on alloy composition, process-

ing and fabrication (e.g. wrought, mechanically alloyed, etc.). 

Recent work on modelling the strength of precipitation hardened Al-alloys (Shercliff 

and Ashby 1990; Gomiero et al. 1992; Hombogen and Starke 1993; Starink et al. 1999; 

Starink et al. 2000) has provided quantitative relationships and strengthening contributions, 

establishing a set of comprehensive equations for the different contribution of the main hard-

ening mechanisms, typically including the type, size, volume fraction, shape, coherency and 

distribution of precipitates. Different approaches have combined the contribution of separate 

strengthening mechanisms, such as simple additive or superposition laws. In multi-component 

precipitate systems and in systems where competitive mechanisms are present, more complex 

models, e.g. Pythagorean addition rules (Embury et al. 1989), laws of mixtures (Deshamps 

and Brechet 1999) have been found to be more appropriate in approximating empirical data. 

For example Hombogen and Starke (1993) provide the following equation for the different 

contributions to high yield strength Al-alloys accounting for the main hardening mechanisms: 

Cj/ — <7_L + AcTg 4- ( Acr^ -f- AcTp ) 2 + 2 I A ,2 11 4-
P ^ 5 a 

pure Al solid solution, dislocation, hard particles . , 
coherent particles sub - boundar ies gram oun anes 

However, the direct applicability and translation of the relationships described by theoretical 

and semi-empirical models developed for a particular strengthening mechanism, into practical 

plant process guidelines remains arduous. 

In the following sections, the main strengthening contributions present in Al-alloys are 

briefly described. In Chapters 7 and 8 a more detailed treatment and discussion of the main 

strengthening effects in wrought Al-Mg-Zn-Cu wrought and mechanically alloyed Al-Mg-Li 

materials will be considered. 
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2.3.1.1 Grain-size effects 

The proof stress (How stress at a given strain), Op, as given by the Hall-Petch equation is 

commonly seen to depend inversely on the average grain diameter, d\ 

k 

\/d 

where cjo is a constant depending on dislocation interactions with the lattice, solute atoms and 

statistically stored dislocations (i.e. lattice resistance to deformation), and A; is a constant asso-

ciated with the stress concentration required to generate dislocations from the grain boundary 

or activate/unpin dislocation sources on the opposite side of the boundary. Thus, the greater 

the number of grain boundaries, the more difficult plastic deformation becomes and increased 

strength levels can be obtained by decreasing the grain size. Subgrain boundaries act in a 

similar way, but are less effective slip boundaries. 

Generally, in age-hardenable alloys, grain size effects are not a major strengthening con-

tribution, although they can become important at very fine grain sizes. Grain size contributions 

are seen to provide a significant strengthening mechanism in mechanically alloyed materials. 

2.3.1.2 Solid solution strengthening 

Strengthening from solute atoms arises either from differences in atomic size between the 

solute and solvent atoms and/or from differences in elastic modulus. In the case of alumini-

um, the size effect is considered the dominant source of solute strengthening. Solid solution 

strengthening contributions may be significant in underaged tempers. Theoretical approach-

es (Embury et al. 1989; Gomiero et al. 1992) express the increase in shear yield stress in 

terms of a solute atom mismatch parameter and other material variables (e.g. Burger's vector, 

shear and combined modulus, atomic concentration of the solute, etc.). Alloying additions that 

significantly increase solid solution strength of Al-alloys are Cu, Mg and Si. An important 

role of solute atoms is with respect to the modification of the work-hardening behaviour at 

large strains. Solid solution additions may also lower the stacking fault energy (SEE) of Al, 

enhancing planar slip. 

2.3.1.3 Precipitation hardening 

High strength levels developed by heat treatable Al-alloys are primarily due to the interaction 

of dislocations with precipitates that are formed during the ageing treatment. Strength levels 

can be optimised by maximising those elements that participate in the ageing sequence and can 

be put in solid solution at the solutionising temperature. The maximum solubilities of these 

elements should not be exceeded, since excesses will tend to form coarse particles that do not 

add significantly to the strength, adversely affecting other properties. 

In theoretical approaches, precipitation hardening mechanisms are usually described in 

terms of the interaction of a dislocation with an array of point obstacles. Precipitation hardening 
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mechanisms reviewed by Martin (1998) and Ardell (1985) are considered to arise from several 

physical mechanisms including chemical (surface), stacking-fault, modulus, coherency, order 

and Orowan, e.g. see (Kovacs et al. 1977; Melander and Persson 1978) for some examples of 

these contributions. A comprehensive overview of physical-based models developed for each 

of the above mechanisms is given in (Embury et al. 1989). 

In some systems hardening mechanisms may be operating simultaneously, in others one 

mechanism may dominate the precipitate-dislocation interaction. Orowan strengthening may 

be an important mechanism in overaged materials; coherency strengthening mechanisms are 

considered to play an important role in alloys aged to peak strength (Ardell 1985). Char-

acterisation of the dislocation-particle interactions of commercial Al-alloy systems requires 

the quantification of several parameters. This is made difficult by the complex sequence of 

precipitation reactions that may occur in Al-alloy systems. 

2.3.2 Additional factors 

The effect of constituent and dispersoid particles on strength may be particularly reflected in 

their effects on the degree of recrystallisation and development of crystallographic textures, 

which impart an anisotropy of properties. Coarse intermetallic compounds have little direct 

effect on attainable strength levels, but can cause a marked loss in ductility. Processing-induced 

gradients in through-thickness composition and quench rate variations can significantly affect 

the through-thickness constituent and precipitate particle distribution, influencing plate proper-

ties (Miller et al. 2000). Most high-strength plate products exhibit a characteristic "W-shaped" 

through-thickness pattern of strength in the long-transverse direction: strength being lowest at 

the quarter thickness positions. This pattern has been attributed to the competing effects of 

texture strengthening, compositional variations and quench effects (Staley 1992; Chakrabarti 

et al. 1996). 

2.3.3 Fracture toughness 

In general, the toughness of Al-alloys decreases as the strength is increased by heat treat-

ment. A microstructural condition favouring inhomogeneous slip (shearable strengthening 

precipitates in under and peak aged conditions) may have deleterious effects on toughness as 

associated strain concentrations may act as void nucleation sites. Once peak strength is reached 

for a particular alloy, some improvement in toughness may be obtained by overageing. In terms 

of tensile properties, changes in toughness with ageing have additionally been correlated with 

varying strain hardening capacity by a number of authors (Garrett and Knott 1978; Chen and 

Knott 1981). 

The analysis of fracture toughness may be complicated by the presence of three types of 

particles in commercial alloys and the fact that grain and subgrain boundaries may also directly 

influence failure modes. The spatial distribution of all these (i.e. boundaries and particles) may 
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have direct influences on behaviour, the implications of which may be difficult to assess given 

the intimate relationships that exist between the different microstructural features during pro-

cessing. Starke and Staley (1996) summarise and classify the contribution of microstructural 

features to toughness by means of a "toughness tree" diagram. 

The effect of dispersoids on toughness is complex, as they can have both positive and 

negative influence (Garrett and Knott, 1978). Dispersoids may either cause a high energy 

absorbing fracture mode by suppressing recrystallisation and/or grain growth, or cause void 

sheet formation by nucleating microvoids at the particle-matrix interface. The detrimental 

effects due to microvoid nucleation may be reduced by decreasing the dispersoid size and im-

proving particle-matrix interface bonding strength, both of which may be achieved by using Zr 

containing dispersoids instead of Mn or Cr containing dispersoids. The incidence of decreasing 

toughness with overageing has been identified with a change in fracture mode from predomi-

nantly transgranular to intergranular (Kirman 1971). Transgranular fracture was suggested to 

nucleate at dispersoid particles (decohesion of the particle/matrix interface), whilst intergran-

ular fracture proceeded by the nucleation of voids at grain boundary MgZng particle/matrix 

interfaces (Kirman 1971). As such, different influences of dispersoid distribution on toughness 

may be expected as overageing proceeds. 

The effects of constituent particles (insoluble and soluble) and hardening precipitates are 

generally well known and understood (Kirman 1971; Hahn and Rosenfield 1975; Staley 1976). 

The primary insoluble Fe and Si intermetallics (Al7Cu2Fe, MggSi and (Fe,Mn)Al6) are readily 

fractured during primary processing or under service loading, providing crack nucleation sites 

and paths for low-energy crack propagation. In particular, Fe containing particles appear to 

be more detrimental to toughness than those containing Si (Van Stone et al. 1974). For higher 

fracture toughness levels to be attained, it is desirable to simultaneously decrease the size and 

increase the spacing of the larger void nucleating particles (Van Stone et al. 1974). Decreasing 

particle sizes increase the stress/strain levels necessary to cause void nucleation as well as 

decreasing the initial size of a void, thus permitting more void growth before coalescence. 

The effect of fine precipitates on toughness is not simple as slip character invariably varies 

with the strength of the alloy. Fine-scale strengthening precipitates may have a beneficial effect 

on the fracture toughness by increasing the deformation resistance and decreasing the crack 

opening displacement, or a detrimental effect by promoting strain localisation and premature 

crack nucleation, facilitating void coalescence and final fracture (Ludtka and Laughlin, 1982). 

Ehrstrom et al. (1996) showed that in order to model anisotropic toughness, distributions 

of particles should be taken into account, and in so doing significant improvement over Hahn 

and Rosenfield (1968) type models (see below) have been obtained. Ludtka and Laughlin 

(1982) suggest the difference in fracture toughness behaviour of 7xxx series alloys is dependent 

on the coarseness of matrix slip and the strength differential between matrix and PFZ, the 

latter considered as a measure of the tendency toward intergranular fracture, explaining the 

dependency between strength and toughness as a function of both ageing time and temperature. 
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With decreasing quench rate, grain boundary precipitation was seen to become coarser and 

the PFZ formed during ageing at grain and subgrain boundaries increases in width, giving 

reduced levels of toughness for a given ageing treatment. Morere et al. (2000) have reviewed 

parameters and models which have been proposed in the literature to characterise intergranular 

ductile fracture mechanisms, which may depend on void initiation at boundary precipitates, 

strain localisation within soft PFZ and stress/strain concentration at slip band/grain boundary 

intersections, all of which are strongly dependent on the ageing conditions. 

The effects of quench rate and recrystallisation on toughness, whereby slack quenches 

reduce toughness, as do recrystallised structures (Staley 1976; Thompson 1975) are generally 

accepted and known to be interrelated. Increased recrystallisation levels and/or slow quench 

rates primarily compromise fracture resistance in wrought materials by promoting grain bound-

ary failure (Thompson 1975; Ludtka and Laughlin 1982; Dorward and Beemtsen 1995). The 

effect of quench rate on the toughness of 7xxx series alloys can be influenced by the degree of 

recrystallisation, the loss in toughness with decreasing quench rate being substantially higher 

for recrystallised products (Dorward and Beemtsen 1995)^. Toughness was seen to decrease 

almost linearly with an increasing degree of recrystallisation, the effect being greatest in rapidly 

quenched plates, recrystallisation having less effect on slowly quenched material. 

In Morere et al. (2000), quench rate and recrystallisation effects have been studied for con-

stant yield strength levels in AA7010-T76 plate as a function of underlying material anisotropy 

at relatively low recrystallisation levels representative of commercial plate product forms. The 

high quench sensitivity exhibited in the SL orientation for unrecrystallised microstructures was 

attributed to the synergistic location of intermetallics and coarse boundary precipitates in slow 

quenched material. 

Sugamata et al. (1993) review the different models describing the effects of precipitate s-

hearing and bypassing, strain hardening, and precipitate sizes and volume fractions on Kic that 

have been proposed in the literature to characterise the dependencies between microstructural 

features and mechanical parameters on fracture toughness. 

In terms of quantitative modelling, it is clear from the above that fracture toughness of 

high strength Al-alloys depends on many parameters, including flow strength, work hardening 

rate, slip character, dispersoid content, intermetallic content, grain structure and grain boundary 

structure (Garrett and Knott 1978). Based on the concept that the critical step in the fracture 

process being coalescence between the cracked particles Hahn and Rosenfield (1975) develope-

d a model which correlated the spacing of cracked constituent particles to plane strain fracture 

' a multiple regression analysis of the fracture toughness data, using an F-test of significance and hypothesis 

testing methodology, yielded the following model: 

= 14.1 -I- 7.631nQ - 0.041A, InQ 

with a correlation coefficient of 0.95 and an estimated standard error of 1.5 M P a / ^ m , where is the percent 

recrystallisation and Q the quench rate. 
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toughness: 

A is the nearest neighbour spacing of the void initiating particles. Crack extension is considered 

to occur when the extent of the heavily deformed region approaches the interparticle spacing 

which approximates to the ligament width Acnt, this may be shown to give: 

Kic 
2 _1 

where D is the diameter of the large inclusion particles, fy is their volume fraction, ay and 

E are the yield stress and Young's modulus. This model has been shown to give a reasonable 

prediction of the effect of the volume fraction of inclusions for constant yield strength and 

constant particle size in a number of systems, but does not agree with experimental results 

concerning the influence of yield stress and particle size (Van Stone and Psioda 1975). In an 

earlier model, Hahn and Rosenfield (1968) considered the effects of strain hardening coefficient 

and yield stress on toughness, particularly in terms of the increased flow localisation, and hence 

crack tip "damage" that occurs with decreasing work-hardening rate. Garrett and Knott (1978) 

reviewed the derivation of this model leading to the relationship: 

P .3 , 

where C is a constant, e* is the critical crack tip strain at which unstable propagation occurs 

(e* is taken to be a function of the volume fraction of void nucleating particles), n is the work 

hardening exponent and u is Poisson's ratio. 

The predicted n , Ja^ dependency of fracture toughness for a constant distribution of par-

ticles has been shown to provide a reasonable description of toughness behaviour as a function 

of ageing between under- and overaged conditions for several Al-based alloys. Peak aged 

alloys, having lower n values compared to under and overaged conditions, will then exhibit 

low toughness levels due to an increased tendency for strain concentration reducing the crack 

tip opening strain before fracture. The effect of increasing alloy purity or optimising other 

aspects of the microstructure may then be observed through effects on e*. It has been suggested 

that the volume fraction of dispersoid particles may result in easier, and perhaps earlier void 

sheet formation and therefore lower toughness (Garrett and Knott 1978; Van Stone and Psioda 

1975). Garrett and Knott (1978) consider the role of small particles in terms of their effect on 

the slip process, i.e. on the flow stress and hardening characteristics of the matrix, rather than in 

their effect on void initiation and coalescence. Chen and Knott (1981) have studied the effect 

of dispersoid particles on fracture, indicating that strain localisation within shear bands in the 

plastic zone ahead of the crack tip could lead to decohesion of the interface between the matrix 

and dispersoids. They proposed the use of a critical stress criterion to describe the decohesion 
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of the interface between the matrix and the dispersoids, and by using the same description of 

the plastic zone as Hahn and Rosenfield (1968) derive the following relationship: 

,A 

d 
Kjc = \l CEucOyV?- (2.4) 

where Oc is the critical dispersoid-matrix decohesion stress, A is the dispersoid spacing and 

d is the dispersoid diameter. In terms of this model, and the others noted above, it should 

be recognised that multiple failure mechanisms may occur in commercial products, with, for 

example, Gokhale et al. (1998) developing a multiple-mechanism model for toughness in 

partially recrystallised 7xxx series Al-alloys, relating fracture toughness to a variety of features 

such as the degree of recrystallisation, grain size of the recrystallised grains, the thickness of 

recrystallised regions, the total surface area of the constituent particles per unit volume, and 

microstructural anisotopy. 

In summary, the fracture toughness of particle-strengthened Al-alloys may be optimised if 

the particles are small, non-shearable, and strongly bonded to the matrix. Alloy design trends 

for high fracture toughness have focused on reducing the volume fraction of void nucleating 

particles, by minimising Fe and Si contents, optimising solute content to prevent the formation 

of coarse primary phases, and using Zr as the dispersoid forming addition, to control the 

grain size and degree of recrystallisation. Whilst models for fracture toughness have been 

successfully applied in the analysis of selected aspects of toughness behaviour, the complex-

ity and interdependencies involved in microstructure-toughness relations are problematic for 

development of comprehensive process-based models. 

2.3.4 Stress-corrosion cracking 

In Al-alloys stress corrosion cracking (SCC) (the deterioration of a material under the combined 

action of a stress and corrosive environment) almost invariably occurs at or near grain bound-

aries. The initial stages of precipitation hardening decrease SCC resistance whilst overageing 

beyond peak hardness improves SCC resistance (see Figure 2.1). There are differences in 

opinion concerning the relative importance of electrochemical and microstructural aspects of 

the failures. Most proposed mechanisms are variations of two basic theories - crack advance 

by anodic dissolution, or by hydrogen embrittlement. Although SCC eludes a complete mech-

anistic interpretation, it is clear that it is a stress-activated process. It is also evident when 

examining the properties of a wide range of Al-alloys that neither the toughness nor strength 

alone control their susceptibility to SCC (Speidel 1975). Controlling the chemical composition 

of the matrix and the precipitates is important in controlling SCC, the details of which may 

be complex in ternary and higher-order alloys (Speidel and Hyatt 1972). Variation in SCC 

resistance in 7xxx series alloys is furthermore a function of the rate of quenching from the 

solution treatment temperature (Speidel and Hyatt 1972), with poorer SCC resistance being 

seen in thick/slow quench materials. 
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SCC resistance 

strength 

Ageing time (isothermal) 

Figure 2.1: R e l a t i o n s h i p b e t w e e n s t rength a n d S C C res i s t ance d u r i n g a g e i n g of h igh - s t r eng th Al -a l loy 

(Spe ide l and H y a t t 1972) . 

Considerable effort has been directed towards understanding SCC mechanisms in Al-

alloys, predominantly in terms of microstructural features such as PFZs, matrix and grain 

boundary precipitate characteristics, and solute concentrations in the vicinity of grain bound-

aries (Adler et al. 1972; Polmear 1981). The localisation of strain at either grain boundaries or 

inside the grains has been considered partially responsible for sensitivity to SCC (Sarkar et al. 

1981). 

Reduced susceptibility to SCC has been achieved through control of both composition 

and heat-treatment processing, e.g. addition of Zr to replace Cr and Mn (reducing the quench 

sensitivity of the alloys) and development of two step heat-treatments. An unrecrystallised 

elongated grain structure is also considered desirable for SCC resistance. 

The quench rate and Cu content are known to play important roles in determining the SCC 

resistance. The effect of the former are markedly different for high and low Cu concentrations 

in Al-Zn-Mg alloys: the stress corrosion performance of low Cu alloys benefiting from as slow 

a quench rate as is consistent with strength requirements (Thompson 1975). In Deshais and 

Newcomb (2000) Cu and Fe-rich constituent particles were seen to increase the SCC suscepti-

bility of 7xxx series Al-alloys. Sarkar et al. (1981) have related SCC kinetics for Al-Zn-Mg-Cu 

alloys with the deformation behaviour and electrochemical characteristics in terms of the Cu 

content. 

SCC susceptibility in Al-Zn-Mg-Cu alloys is strongly influenced by grain boundary pre-

cipitation and has been related to the grain boundary segregation of Mg (Hepples 1987; Sca-

mans et al. 1987), although no studies of Mg as a function of ageing time have been correlated 

with SCC resistance. Chen et al. (1977) and Viswanadham et al. (1980) observe that at the 

grain boundaries not all the Mg is present as the MgZng intermetallic, a considerable fraction 

being present in solution at grain boundaries. Increased susceptibility to SCC for low Zn:Mg 

ratios was attributed to this free Mg. A high resistance to SCC develops upon overageing as 
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the free Mg is reduced and coarse grain boundary precipitates are developed. 

Direct relationships between electrical conductivity ( % ) and SCC of overaged 7xxx series 

Al-alloys have been established (e.g see Tsai and Chuang (1996)), with SCC resistance being 

found to increase with increasing oa . As such, minimum electrical conductivity levels are 

included in many corrosion resistant temper specifications. Conductivity increases with an 

increasing degree of ageing (Hepples, 1987) and it is related to changes in the type and volume 

fraction of matrix precipitates. The size and distribution of the precipitates are also signifi-

cant, being responsive to changes in composition and thermal condition. Using both electrical 

resistivity and thermoelectric power techniques Vooijs et al. (2000) obtained qualitative and 

quantitative information about precipitation processes. Quenching an alloy after a solution 

treatment generally results in low Gei, as a large amount of the alloying elements present are 

retained in solid solution. Depleting the solid solution of constituents, ageing and annealing all 

increase Electrical conductivity thus provides a means of quantifying the changes in solute 

distribution. 

2.4 Wrought alloy production 

An understanding of the typical stages involved in the production of wrought alloys will be 

seen to be important in Chapter 9, where an understanding of commercial fabrication practices 

will be a mandatory step in data mining of process data. The typical stages involved in the 

production of wrought plate, from initial alloying at the melt, through to final heat treatment 

can be summarised as; 

• ingot casting 

« homogenisation 

• hot rolling 

® solutionising 

® quenching 

s cold working 

• ageing 

These stages are schematically illustrated in Figure 2.2. Depending on the particular alloy 

composition and extent of TMP, each stage may influence the balance of properties attained. 

Table 2.1, adapted from (Staley 1992), summarises the metallurgical features that are developed 

at each stage of the production of wrought plate products. 
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Melt 

Solution 

Precipitation 

heat treatment 

Homogenisation 
Quenching 

Casting 

Hot rolling 

••• 

Cold working / straightening 

Figure 2.2: Schemat ic d iagram of the stages involved in the commerc ia l product ion route of the fabri-

cation of wrough t plate products used in aerospace appl icat ions . 

Metallurgical Feature Processing Step 

constituents solidification 

dispersoids homogenisation 

grain structure hot-rolling 

dislocations cold working 

precipitates final ageing treatment 

Table 2.1: Deve lopmen t of metal lurgical features. 

2.4.1 Ingot casting 

The production process begins with melting nominally pure aluminium ingots, together with 

production scrap off-cuts and quantities of alloying metals. During non-equihbrium freezing 

two main structural developments occur; an uneven distribution of constituents (both micro-

and macro-segregation) and the formation of non-equilibrium phases. Most elements which 

have a very low solid solubility in aluminium are found to be segregated during casting and 

can be responsible for the formation of second phase particles which cannot be easily removed 

during subsequent processing. The sizes of the constituent particles developed are related to the 

solidification rate, with coarser constituents located at the centre of an ingot where the cooling 

rate is slowest. Control of grain structure in ingot casts is achieved by providing the right 

combination of nucleation and growth conditions. In section 2.2.3 it was seen that additions 
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of Ti and B as grain refiners are used for such purposes. The ingot structure developed upon 

solidification can considerably influence the properties attained in the final product. Analytical 

modelling of DC cast ingot solidification may be limited by the complexity of the process and 

by the accurate estimation of coefficients (Granger 1989). 

2.4.2 Homogenisation 

The as-cast ingots are heated up and soaked for a few hours in furnaces (soaking pits) at 

temperatures in the range of 400-500° C. The purpose of this pre-heating stage is to dissolve the 

soluble constituent particles formed during the ingot casting and alleviate micro-segregation, 

relying on the diffusion of alloying elements at the scale of the cast dendrite structure. Also an 

improved workability of the ingot can be attained. 

While commercial homogenising treatments are effective in homogenising the distribution 

of some alloying additions (e.g. Cu, Mg, Si and Zn) they cannot fully eliminate the segregation 

of other elements (e.g. Cr and Fe) and so the as-cast structure of some elements is retained 

after this thermal treatment. Homogenisation is particularly important for the higher-strength 

alloys as it serves to precipitate submicron dispersoid particles. The homogenisation treatment 

which is a solution treatment for the former may act as a precipitation treatment for the latter. 

Time, temperature and heating rate will control to a certain extent the final particle distribution, 

although significant heterogeneity is retained from the casting process. 

2.4.3 Hot rolling 

Ingots are hot-worked to breakdown the as-cast structure with the intent of achieving refined 

grain structure, as well as reduced constituent particle size and spatial distribution. During the 

hot-deformation process (Zaidi and Wert 1989) ingots of up to 500mm may be rolled down to 

plate/sheet forms with typical thicknesses ranging from hundreds of mm to a few mm. 

Aluminium dynamically recovers during this hot deformation, producing a network of 

subgrains, their size being influenced by alloying additions and by the deformation vari-

ables (Jonas et al. 1969). In hot-rolling plate, the degree of working is uneven throughout 

the thickness, decreasing from surface to centre. However, thicker products are usually fab-

ricated at high temperatures to minimise flow stress and will have a low driving force for 

recrystallisation. Also, thick sections will typically experience less deformation, and hence 

will not undergo bulk recrystallisation, retaining an elongated grain structure. 

2.4.4 Solution heat treatment 

During solution heat treatment, material is heated to within a few degrees of the temperature 

at which incipient melting occurs and held at such a temperature for a predetermined length 

of time. During the solutionising heat treatment, the stored energy of deformation is given the 
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opportunity to decrease by static recovery and/or recrystallisation. Reduced solution treatment 

temperatures and times may give a reduction in both the solute and in the number of vacancies 

retained in solid solution upon quenching. The time required to heat a load to the treatment 

temperature increases with section thickness and furnace loading. The soak times for wrought 

alloys should be designed to take into account the normal thermal lag between furnace and part 

and the difference between surface and centre temperatures. 

2.4.5 Quench 

Quench sensitivity of 7xxx series Al-alloys is a major concern in the aerospace industry, where 

the drive towards producing thick plate and the desire for reducing quench-induced internal 

stresses result in relatively slow cooling rates at plate mid-planes. A slow quench not only 

promotes solute precipitation, it also permits vacancies to diffuse. A balance must be obtained 

between the need to quench sufficiently quickly to retain most of the hardening elements in 

solution and the need to minimise residual stress and distortion in the parts being quenched. 

The magnitude of the residual stresses is determined by the severity of the quench and section 

thickness. The extent to which slower quench rates can be tolerated is controlled by the quench 

sensitivity of the alloy. During a slow quench, extensive nucleation of precipitates may occur 

on various microstructural features, particularly grain boundaries and dispersoids, resulting in 

a decrease of the solute available for fine-scale precipitation and therefore a reduction in the 

hardening potential. Of the dispersoids commonly present in the high-strength alloys, the Cr-

containing phases (Ali2Mg2Cr) are thought to cause the greatest quench sensitivity, whereas 

the Zr-containing phases (AlgZr) have a much less deleterious effect. 

The decrease in quench rate from surface to centre and the solute depletion at the mid-

plane and solute enrichment at the quarter through to surface will impart a gradient in proper-

ties. By considering homogeneous nucleation theory and kinetics of precipitation it is possible 

to calculate the fraction of solute precipitated and thus predict the effects of precipitation during 

the quench on properties. Evancho and Staley (1974) introduced quench factor analysis as a 

method of interrelating the cooling rate, section thickness of a part, and alloy precipitation 

kinetics, developing analytical expressions to represent time-temperature-property (TTP) C-

curves. Thus, quench factor analysis has been used by Staley (1987) to describe how precipi-

tation during the quench affects the development of properties of Al-alloys during subsequent 

ageing treatments. Quench factor analysis can be used to predict the strength in Al-alloys, from 

experimental and analytical cooling curves. Bates and Totten (1988) devised a quench factor, 

Q, to interrelate quenching variables, part section size and transformation rate data, providing 

a variable indicating the extent to which a solution-treated Al-alloy can be strengthened by 

subsequent ageing. Quench factor and heat transfer analyses have been combined to develop 

quenching practices providing optimal combinations of residual stresses and strength after 

ageing (Archambault et al. 1980). 
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The effect of quenching conditions on fracture characteristics are more complex than for 

strength. Rapidly quenched, precipitation hardened Al-alloys generally fracture in a trans-

granular manner by the coalescence and growth of microvoids. Decreasing the quench rate 

increases the amount of grain boundary precipitate which, in turn, increases the tendency for 

low toughness, intergranular fracture to occur. 

Several material and quenchant characteristics influence the rate of heat removal from a 

part during quenching, and hence cooling rates, e.g. see (Bates and Totten 1988). In com-

mercial spray quenching, the quench rate is a function of the coolant flow rate (or spray/nozzle 

pressure), i.e. the velocity and volume of water per unit time of impingement on the workpiece. 

The rate of travel of the workpiece through the quenching zones will also be an important 

variable. 

2.4.6 Cold working and stretching 

The residual stresses introduced during the quench may cause a certain amount of buckling. 

To reduce this problem, prior to stretching, wrought plates are commonly passed through a 

leveller. By subsequently stretching the plates to permanently increase their length, typically 

in the range 1.5-8%, the internal stresses are almost entirely relieved and the plate is flattened 

and straightened to its final dimensions. When cold working is followed by age-hardening heat 

treatments, the precipitation effects on strength may be accentuated. In some alloy systems, a 

degree of work hardening may be retained in the formed product. 

2.4.7 Precipitation heat treatment 

In this, the final stage of the age hardening process responsible for the high strength levels of 

7xxx series Al-alloys, batches of plates are held at pre-specified temperatures (up to 200° C, 

+/— a few °C), below the meta-stable solvus of the desired strengthening phase. Some of 

the loss in strength resulting from slow quenching can be minimised by decreasing the ageing 

temperature to maximise homogeneous nucleation. 

2.5 Advances in thermodynamic and physical-based modelling 

Efforts to model phenomena such as solidification, homogenisation, and segregation rely heav-

ily on the availability of high quality thermodynamic and phase diagram data. The potential 

for using phase diagrams in process modelling is beginning to be realised with the devel-

opment of thermodynamically calculated phase diagrams, e.g. see (Saunders, 1996; Kolby, 

1996). Phase diagram, solidification and long-range diffusion routines have been integrated in 

a modelling framework under development by Pechiney for heat-treatable Al-alloys (Sainfort 

et al. 1997). Classical laws for homogeneous nucleation, growth and coarsening of spherical 

precipitates (and co-precipitation) are used to describe the kinetics of precipitation of the most 
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stable precipitates and to predict their volume fraction, density and radius (Sigli et al. 1998; 

Sigli 2000). The proprietary methods used require fewer adjustable parameters than more 

fundamental thermodynamics approaches. 

To produce a valuable commercial tool, such modelling must be integrated through an 

entire production process (e.g. casting, homogenising, hot rolling, solutionising, quenching, 

stretching, ageing) to yield a final microstructure, which is then used to predict properties 

of interest. Final properties may be determined by combining physically-based models with 

processing parameters measurable at the industrial scale and parameters describing the alloy 

microstructure such as chemical composition, volume fraction and nature of precipitates, pre-

cipitate and grain geometry/dimensional parameters. Models may also be used to take into 

account heterogeneities within the material due to macrosegregation, as well as temperature 

and deformation gradients occuring during secondary processing (Sainfort et al. 1997). 

Modelling of commercial thermomechanical processing (TMP) and subsequent materials' 

properties, may be broken down into an understanding of temperature, strain and strain rate 

evolution, the microstructural response of the material to a given thermomechanical history and 

structure-property relationships for the performance characteristics of interest. The temperature 

and strain/strain rate distributions associated with any given TMP may be further dependent on 

previous microstructural developments via changes in the constitutive equations of the under-

lying material. Basic quantitative process models of commercial TMP stages and associated 

microstructural evolution have been put forward in recent years (Sellars 1987; Shercliff and 

Ashby 1990; Sellars 1992; Sigli et al. 1996), often relying on a high degree of empiricism 

and extensive calibration data for specific alloy systems. As noted in section 2.1, this may be 

attributed to the complex nature of commercial TMP and difficulties in simulating industrial 

scale processes in laboratory experimental trials. 

Microstructural models developed from a physical basis are likely to provide improved 

predictive capabilities for alloy processing such as rolling, extrusion and forging when com-

pared to empirical approximations (Furu et al. 1996), as the lack of the fundamental mech-

anisms in the latter is not suitable for alloy development. However, as a greater physical 

detail is integrated into the physical model, the number of adjustable parameters increases, 

compromising the predictive capabilities of physical-based modelling approaches in industrial 

settings (Furu et al. 1996). Shercliff and Lovatt (1999) have reviewed physical-based, semi-

empirical and adaptive approaches (BMLPs, recurrent neural networks and Gaussian process 

models) used in modelling microstructural evolution during hot deformation, in predicting flow 

stresses during deformation and the subsequent annealing behaviour of Al-Mg alloys, suggest-

ing that although adaptive methods do not provide any physical insight into the deformation 

processes, their main use, in addition to providing valuable predictive abilities (with associated 

measures of uncertainty, i.e. error bars), is seen as methods for optimising time-consuming 

experimental work and sufficient in themselves for industrial applications. 
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2.6 Conclusions 

From the alloy fabrication route described in this chapter, it is seen that a large number of 

processing conditions and practices may, depending on the processing history, influence the 

final properties developed. 

Both experimental and industrial studies have contributed significantly in the development 

and optimisation of many processing conditions which are now widely employed in commer-

cial settings. However, as Staley (1992) discusses, theoretical modelling approaches provide 

only the broadest guidance to the metallurgist interested in selecting alloying levels and pro-

cessing conditions in order to obtain a useful balance of properties, controllable in large scale 

commercial processes. Industrial processing routes may gather a potentially very large amount 

of process data which will be complementary to the scientific and theoretical research studies. 

Typically, in these settings, empirical curve fitting is used without regard to mechanisms, and 

although providing useful and practical equations for the processing conditions considered, as 

discussed in section 2.1, such analysis in many cases provides no insight into the underlying 

mechanisms responsible for the levels of properties attained. 

The use of adaptive data modelling techniques such as neural networks and support vector 

machines may offer significant advantages over simple ad hoc regression analysis, both in 

terms of system description and predictive modelling, whereby the application of advanced 

learning methods are able to determine a model that is well supported by the information 

contained in the available data. 

An inadequate description of the processing conditions in terms of process variables and 

microstructural features will be reflected in a sub-optimal process description. Consequently, 

data-driven modelling techniques will lack the empirical knowledge required to obtain a good 

description of the process. Under these circumstances, models will exhibit poor generalisa-

tion performance and inferring the significance of certain processing variables will at best be 

problematic and any inferences should be viewed with caution. In such settings a good under-

standing of the production route, in particular the historical microstructural developments, is a 

mandatory step in validating the modelling results, both in terms of the empirical performance 

attained but also in terms of the nature of the dependencies inferred. 



Chapter 3 

Data Modelling 

3.1 Introduction 

In any physical process in which processing conditions vary, it is of interest to understand how 

these affect the system's behaviour. In many real world systems there will be uncertainty as 

to the true causes (variables) responsible for the behaviour observed, and there will rarely be 

a simple relationship between explanatory and response variables, as the relationships of most 

physical processes will be too complex to be described by means of simple analytical expres-

sions. In addition, the data will generally be characterised by measurement errors. It becomes 

desirable then to approximate the true unknown function from the available data, augmenting 

the empirical observations with prior knowledge when possible. This chapter presents a general 

introduction to data modelling, focusing on a number of topics including linear regression, 

complexity control, model selection and Bayesian methods. Subsequent chapters will discuss 

data integrity issues and the two adaptive modelling techniques comprising the main modelling 

approaches used in this work. 

3.2 Function approximation 

The task of function approximation can be viewed as the process of learning, i.e. estimating 

unknown input-output dependencies of the process which are responsible for generating the 

observations. Figure 3.1 shows a simplified view of statistical process modelling. The objective 

of learning is therefore to predict an output y from an input vector x, where the pair (x, y) is 

drawn from some unknown joint probability distribution p(x, y), assumed to be independently 

drawn and identically distributed. This assumption allows a distribution of y for a given x. 

The process is assumed to be characterised by the vector x of random samples, drawn 

from an unknown density p(x). For an input vector x, the process produces an output value 

y according to the unknown conditional density p(y|x). Typically, the process will be charac-

terised by experimental measurement errors and often will have unmeasured inputs. 

32 
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Figure 3.1: S c h e m a t i c d i a g r a m of the stat is t ical p r o c e s s m o d e l l i n g p r o b l e m ( C h e r k a s s k y and M u l i e r 

1998y 

A training set, Vn = {(xi, y i ) , ( x a t , j/at)}, is a collection of N observed (x, y) pairs 

containing the response observed y for each input x, the learning problem then being that 

of determining a function / (x) from this training set, so that / (x) approximates the desired 

response y. The function /(•) is generally chosen to minimise some objective function (or 

model performance criteria) such that the model is taught in a way that the error (y - y) is 

sufficiently small. 

The different approaches to the problem of modelling a probability density function p(x) 

broadly fall into either parametric, non-parametric or semi-parametric methods (Bishop 1995). 

In parametric methods, the form of the functional relationship between the response and the 

explanatory variables is assumed to be known and so the modelling process is then limited 

to a parameter estimation task. When a priori models of the process are unavailable, semi-

parametric and non-parametric methods are adopted as these methods respectively assume 

a very general class of functional forms or none whatsoever. Many neural network class-

es (Haykin 1998) can be regarded as semi-parametric methods in that they allow the number of 

adaptive parameters to be increased/decreased, this flexibility enabling to approximate a wide 

range of functions. 

Computational methods of model construction have proliferated in recent years. Friedman 

(1994) reviews the underlying principles of many approaches which have been developed in 

the fields of applied mathematics, statistics, pattern recognition and machine learning, plac-

ing them in a common perspective. Methods that have become popular over the past two 

decades include tree based methods (Breiman et al. 1984), generalised additive models (Hastie 

and Tibshirani 1990), generalised linear models (McCullagh and Nelder 1989), regression 

splines (Friedman 1991) and several classes of neural networks, fuzzy systems (Wang 1992) 

and hybrid paradigms combining fuzzy-type reasoning within neural network architectures 

and learning methods (Brown and Harris 1994; Jang et al. 1997). The application of Bayesian 

inferencing techniques within neural networks (MacKay 1992b; Neal 1996) has been a recent 

significant development. Finally, despite being originally proposed nearly thirty years ago, sup-
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port vector machines (SVM) (Vapnik 1995) (see Chapter 6) have only recently seen significant 

implementations. 

3.3 Observational and experimental data 

Before addressing statistical and computational aspects of data modelling it is of value to 

discuss the nature of typical data sets. Understanding the nature of the data plays a critical 

role in any subsequent inferences. As Snee (1983) notes, modelling observational data, as op-

posed to data generated from carefully designed experiments is, at best, a risky business. Data 

collected without the aid of statistical design criteria may be suspect for a variety of reasons, 

including errors in both explanatory and response variables, near-linear dependencies amongst 

the former, inadequate sampling of the experimental region, etc. Box et al. (1978) discuss 

the hazards of performing a regression analysis on what the authors term "happenstance" data, 

such as ranges and distributions of input variables limited by process control, semiconfounding 

effects (i.e. change in one processing condition accompanied by a corresponding change in 

another), nonsense correlations (often attributable to unmeasured variables), etc. 

The (x, y) pairs must be drawn from the same process, e.g. if y is the value obtained 

from a tensile test performed on a specimen taken from a certain plate, then all a:'s, comprising 

the complete (x, y) instance should be determined for the same plate. If instead (x, y) is the 

collation of historical data pertaining to the same type of alloy, but with the x's obtained from 

different plates (despite having the same alloy designation and nominal processing conditions), 

statistical inferences will be questionable. The integrity of the data set appears an obvious 

requisite, but many industrial and commercial alloy property databases are gathered in an 

unsystematic manner. 

Depending on the gathering process, data may be viewed as either experimental or ob-

servational. Although processing conditions are taken to be specified design variables, in 

many cases it is more appropriate to consider them as random variables and assume a joint 

distribution on y and x. 

The data analyst should have some understanding of the likely interactions and effects 

of the variables recorded. Variables included in the data set may describe a broad range of 

processing conditions, characterised by different statistical properties: some may be contin-

uous, while others will assume a finite set of values (which may assume a natural ordering). 

Certain variables may be labels, e.g. tensile test directions: long-transverse (LT), transverse 

(TL) and short-transverse (SL). Statistical properties will reflect the origin and nature of the 

variables: typically, continuous variables will be measurements of processing conditions (e.g. 

the temperature of a hot mill, solutionising times), or physical characteristics (e.g. weight 

percentages of alloying elements, physical properties, mechanical responses), whereas discrete 

variables will typically provide information identifying the alloy types, test conditions, (e.g. 

environment, test positions, etc.). 
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The observed quantities may finally be either response, intermediate or explanatory vari-

ables (intermediate variables are responses to some variables and explanatory to others), thus 

yielding a hierarchy between the variables. 

3.3.1 Data quality 

The quality of a data set plays a significant role in any form of empirical modelling, since the 

main limitation in extracting reliable and meaningful knowledge from the data is ultimately 

related to its richness and information content. In the neural network literature the phrase 

garbage in - garbage out is used to emphasise the importance of having a good data set. The 

quality of the data set can be assessed in terms of the statistical properties of the variables 

(e.g. a variable that does not experience much variation in values will be uninformative) and 

the representativeness of the set of variables in describing the process. The main difficulty in 

learning from data is in separating the structural information from the noise. Finally, the data 

set may have limited depth, with important variables missing. 

If data is to be collected purposefully for a statistical investigation, from which reliable 

inferences are to be attained, then experimental design criteria should be employed whenever 

possible. Unfortunately, due to process limitations, constraints and costs, employing such 

design criteria is not always feasible. 

Chapter 4 will review diagnostic statistics useful in identifying potential sources of mod-

elling problems. The rest of this section discusses the major reasons why data quality is of such 

concern and attempts to clarify practical reasons behind the generation of a poor data set. 

3.3.1.1 Sampling distributions 

Data is seldom recorded for the purposes of statistical analyses: the data set may be historical, 

recorded solely for process control and product traceability. Process requirements may reflect 

the distibution of the data in input space, generating dependencies amongst process variables. 

For instance, master alloys rich in certain alloying elements (e.g. Mg, Zn), may contain oth-

er elements (e.g. Fe, Mn, Si), giving rise to correlations between compositional elements. 

Similarly, requirements to dilute or refine the melt, say, due to unacceptable levels of certain 

compositional elements (e.g. Fe, Ni), will affect compositional levels of many other elements, 

also generating dependencies among compositional elements. The effect here is the inability 

to isolate the distribution of certain variables with respect to others (e.g. Fe and Si both of 

which are impurities in Al-alloys, will be present in similar quantities: trying to limit the Si 

content while not affecting Fe may be problematic). It then becomes problematic to infer which 

properties are affected for example by Fe, Mn or both. 

In general, the sampled distribution p(x) of many observational process variables will be 

influenced by the process development history and design criteria pursued, often resulting in a 

poor coverage of the input space. As Hocking (1983a) notes, important processing conditions 
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will be varied only over a limited range because of the desire to retain tight process control 

procedures. Standard regression analyses will conclude such variables to be statistically "not 

significant". 

In addition, there may be data deficient regions of the input space attributable to either 

the lack of, or poor design criteria, for instance changing processing conditions through a con-

comitant change in more than one process variable. Also, dependencies may arise due to other 

processing requirements, e.g. thicker plates will experience different processing conditions 

(e.g. longer soak times, quench rates, amount of deformation). 

It should be clear that as well as differing in size, commercial databases gathered with-

out the aid of sound design criteria will exhibit substantially different statistical properties to 

experimental and scientific data sets. 

3.3.1.2 Process variables 

As the input quantities present in the data set will be used to describe the process, and in many 

cases used to determine a predictive model, it is important that these variables are representative 

of the system. Unfortunately, in many systems a number of important features can remain 

unobserved. There may be several reasons for missing variables, including cost, proprietary 

information and a limited understanding of the process. In addition, it may be problematic 

to characterise certain microstructural features (e.g. PFZs, volume fractions, etc.). In large 

databases on the other hand, typically containing a very large number of fields (variables), 

valuable information may be contained in a small subset of these. Attempting a statistical anal-

ysis of such data, combined with lack of process understanding will result in a greater risk in 

failing to identify significant variables, increasing the risk of inferring noncausal dependencies 

as well as an increased unnecessary computational effort. 

3.3.1.3 Noise levels 

Process variables may be characterised by different noise levels with some affected by higher 

noise levels than others. Likewise the observed response will also have a noise component. 

All the above will affect the entire knowlege discovery and modelling processes, limiting the 

reliability of statistical inferences. 

3.4 Modelling objectives 

Prior to any statistical analysis, the main objectives of the investigation should be identified and 

prioritised; this will help in the choice of an appropriate modelling approach. Generally, there 

will be different reasons for modelling data. For instance, the sole purpose of the analysis may 

be simply to explore the data distributions, identifying anomalies in the control of particular 
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processing conditions. On the other hand, the primary objective may be predictive abihty, i.e. 

developing a model of the process so that future outcomes of the response variable may be 

predicted from a set of input variables. A greater process understanding may be desirable, the 

objective being to infer which input variables have the strongest effects on the response and 

the nature of the dependencies. Finally, it may be desirable to perform some form of data 

compression, summarising the data by means of summary statistics. The following sections 

discuss the principal attributes that are sought in this work. 

3.4.1 Generalisation (prediction) 

Generalisation^ is generally considered the most important property of a model. The model 

should not only provide an adequate fit to the exemplar training data, it should generalise well 

to previously unseen, or new observations (patterns) obtained from the same process that was 

responsible for generating the training set. 

Three conditions are typically necessary (although not sufficient) for a model to have good 

generalisation (Sarle 1997). Firstly, the inputs should contain sufficient information pertaining 

to the response, so that structural relationships between inputs and outputs exists. Secondly, 

the function to be learnt should be, in some sense smooth: a small change in the inputs should 

produce a small change in the outputs. Thirdly, the training set should be a sufficiently large and 

representative sample of the population to which to generalise to. The importance of this last 

condition is related to the fact that there are two different types of generalisation: interpolation 

and extrapolation. The former applying to cases that are more or less surrounded by nearby 

training cases; everything else should be regarded as extrapolation, particularly cases that are 

outside the range of the training data. Interpolation can often be done reliably, whereas extrap-

olation is notoriously unreliable, emphasising the importance of having sufficient training data 

to avoid the need for extrapolation. 

Good generalisation to unseen data will be possible when the model captures the under-

lying relationships contained in the data, rather than fitting the idiosyncrasies present in the 

training set (noise contribution). Typically, for parametric models, generalisation ability reach-

es an optimum value for a particular degree of complexity of the model, generally occurring 

when the number of degrees of freedom in the model (section 3.7) is relatively small compared 

to the size of the data set. Recent developments in the neural network field show that it is not 

so much the number of weights but the relative magnitude of these that is important (Bartlett 

1997) and by the application of Bayesian methods (Neal 1996) it has also been shown there is 

no statistical need to limit the complexity of the model, thus models can have more parameters 

than the number of data points (Neal 1994; Neal 1996; Williams 1997). 

'Typically defined as the ability of the system model to respond appropriately to input conditions which are not 

contained in the training set. 
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3.4.2 Interpretability (description) 

In many situations, it is desirable to learn the trends and patterns that the learning paradigm 

(model) has itself learned. In such cases, it is important for the framework to be in some 

sense transparent, so that the knowledge stored in the model may be interpreted and validated. 

It may be desirable to infer which variables explain the variation in the observed values of 

the process response and the nature of the dependencies characterising the explanatory and 

response variables. 

Unfortunately general neural network architectures may well have no affinity to the phys-

ical laws of the system being modelled, with network weights having no relation to physical 

parameters. As such neural network models are in many cases used as a means to a predictive 

end. 

In general, accuracy and interpretability may be conflicting attributes, with some 

paradigms more suited than others in achieving a useful balance. Predictive abilities will only 

be achieved if an appropriate model is inferred; if the inherent complexity of the process is 

inadequately approximated, this will not only compromise its generalisation capabilities, but 

result in misleading inferences. 

3.4.3 Uncertainty 

Generally, regression analyses will lead to some form of inferencing. This may be either 

in terms of the model structure identified, predictions, value of the estimated parameters, 

generalisation performance, noise levels, etc. The model should reflect the uncertainty 

associated with these inferences, which in many cases will be based on finite sample sizes, 

with some measure of uncertainty (or confidence). Uncertainty is dealt with in different ways 

depending on the properties of the modelling technique. 

Often regression analyses may be performed for two purposes: prediction and intervention. 

The former is feasible if it can be assumed that the same dependencies that were present when 

the data was gathered, are also present when predictions are made. To intervene and change a 

system's behaviour, causal relationships are necessary. However, when modelling historical 

data, correlation may indicate causation, although this may not necessarily always be the 

case. Box et al. (1978) assert that to safely infer causality, natural or historical happenings of 

the data cannot be relied upon. 

3.5 Multiple linear regression 

The classical (or normal) linear regression model and its extension to more than one input 

variable, multiple linear regression (MLR) remain commonly used regression methods. Many 

textbooks (Draper and Smith 1981; Fox 1984; Weisberg 1995; Neter et al. 1996) provide a 
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comprehensive introduction to regression analysis. Unfortunately, there are several factors 

limiting the applicability of simple regression analysis, mainly the recognition that many real 

world processes depend on many variables in a more complex, often non-linear way. 

The principal purpose of regression analyses is generally to learn, i.e understand the 

relationships between input variables and the response variable. However, the presence of a 

statistical relation between x and y does not imply in any way that y depends causally on 

X (Box 1966). Thus, caution is needed when drawing conclusions from a regression analysis. 

The simplest and most straightforward way of approaching these problems, is in using domain 

knowledge when this is available, by means of selecting a good set of explanatory variables 

and using similar expertise to validate the results. 

The basic form of the MLR model is expressed as: 

p 

y = / ( x , w ) = Wo + wixi 4 + WpXp = ^ WjXj (3.1) 

where x\,... ,Xp are the set of explanatory {independent, predictor or covariate) variables, 

WQ, ... ,WP the set of adjustable weights (parameters), and y the response (or dependent) 

variable. In equation 3.1 wq is the bias (intercept) term, associated with which is a dummy 

vector zo of length N, fixed at 1, where N is the number of observations (training patterns). 

The functional form / (•) indicates the type of input-output relationship, which in equation 3.1 

is linear with respect to the weights and the response variable. 

Acknowledging the fact that there will be some noise present in both explanatory and 

response variables, and expressing equation 3.1 in matrix notation: 

y = X w 4- e (3.2) 

where X is an [N x (p 4-1)] matrix of input variables of full rank, y an x 1] response 

vector, w a [(p + 1) X 1] vector of regression coefficients and e an [iV x 1] vector of additive 

noise components^ that are assumed to be independent of x and normally distributed with 

mean E {ei} = 0 and variance cr^. Graphical methods are commonly employed (Weisberg 

1995) for detecting non-normality of the error distribution assumptions. Carroll and Ruppert 

(1988) present an analysis of regression data when some of the above assumptions are violated, 

discussing suitable methods (e.g. data trasformation and robust estimation procedures) for 

dealing with such data sets. 

When the data lacks an orthogonal design factor space, a number of problems arise due to 

this non-orthogonality of the data. The effects on inferences will be discussed in section 3.12, 

while computational and statistical issues are the subject of Chapter 4. 

"Generally e is dismissed as a random variable with properties described above, however it should be understood 

to describe the effect of all unmeasured variables. 
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3.6 Parameter estimation 

Given a data set of size N, denoted by Vn = { (x i , y i ) , . . . , and a functional 

form for the model, /(•), in conventional maximum likelihood estimation a single set of val-

ues for the weights is determined by minimisation of a suitable error fuction. The Bayesian 

approach however considers a probability distribution over weight values, representing the 

relative degrees of belief in different values for the weight vector (Bishop 1995). In Bayesian 

estimation, the parameters w are then seen to be treated as random variables, with a probability 

density function (p.d.f.) P(w), before the data has been observed, representing the most likely 

distribution of the weights before the data has been seen. Once the data has been observed, 

the p.d.f. for the weights can be converted to a posterior distribution through use of Bayes' 

theorem: 

where A! denotes the set of input vectors ( x i , . . . , x # ) and y are the target values 

(y i , . . . ,yiv). Form the above, the a posterior p.d.f. is seen to be composed of three dif-

ferent p.d.f.'s: 1. the likelihood function P{y\X, w), a conditional p.d.f. of the data given the 

parameters, 2. the prior P (w) , and 3. the evidence P{y\X), which is simply a normalisation 

coefficient: 

likelihood x prior 
posterior = — 

evidence 

This posterior distribution can then be used to evaluate model predictions on new data. Instead 

of evaluating the full posterior distribution for w, a common approach is that of finding the 

weight vector that corresponds to the maximum of the posterior probability^. The value for 

w for which the observed data has the highest probability is obtained by maximising the 

likelihood function P{y\X, w) with respect to w. 

As the amount of training data increases, the maximum likelihood solution will provide a 

good approximation to the most probable solution. For small data sets, the prior will have an 

important role in determining the most probable solution. If no information about the weight 

vector is known P(w) should represent complete ignorance, which can be modelled by a prior 

distribution with a very large variance. Then, the a posterior p.d.f. will be swamped by the 

likelihood function and the maximum of the posterior will be equivalent to maximum Hkelihood 

(ML) estimation, equivalent to finding the parameter vector, w, that minimises: 

1 ^ 
./N = ^ [%/i - (x, w)]^ (3.4) 

^The full Bayesian approach determines the posterior probability distribution of the model's output by integrat-

ing over the weight space (i.e. over all possible values of the parameters, weighted by their posterior distribution). 
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This cost function is referred to as the mean square error (MSE) and is a biased estimate of 

the variance (CT )̂ of the assumed additive noise component"^. For a model that is linear in its 

weights this corresponds to the solution: 

The least squares method provides unbiased point estimators of the parameter vector w, that 

have minimum variance among all unbiased linear estimators. 

3.7 Model selection 

The major problem in the use of parametric models is that of determining an appropriate model 

structure. A model that is not sufficiently flexible may fail to learn the underlying function 

{imderfitting), whereas a model that is too flexible may model the noise contribution together 

with the true underlying function (overfitting). Overfitting can easily lead to predictions that 

are far beyond the range of the training data. 

From the finite data set T>n, the objective is then to find a model y(x; V^) such that the 

expected error across all data sets of size N: 

E' Vn (x; - / ( x ) ) ' 

is minimised. The objective of model identification is therefore to identify the y (•) such that 

the MSE across these data sets is minimised. 

It should be recognised that there may be several "good" models which can be identified, 

with a similar number of weights, that give a similar fit to the training data. Box (1976) states 

that "all models are wrong " since it is impossible to obtain a completely "correct" model of the 

process and so an economical (parsimonious) description of the phenomena should be sought. 

3.7.1 The bias/variance trade-off 

In practice, .6%,̂  (y (x; Djv) — /(x))^ cannot be measured, but gives rise to the fundamental 

bias/variance decomposition of generalisation error (Geman et al. 1992), describing the sources 

of modelling errors: 

^For linear models, p degrees of freedom (df) will have been used in determining the mean j /(x, w ) . Thus, the 

variance of the noise on the training data (MSE) will be a biased estimate. An unbiased estimate of this variance 

will be: 

1 ^ 
^df = j y T d f H ~ w)]^ (3.5) 

t = l 



Evi, (^(x;D^) - / ( x ) ) ' (3/7) 

E-"Dp/ (^(x; (x; I>Ar)])̂  + [(^(x; D;/))] - / (x ) ) 

variance 

The bias measures the extent to which the average (over all data sets T>n of size N) 

model differs from the true function / (x ) , thus representing a consistent tendency towards 

over or underestimation. The variance measures the extent to which the model y (x; VN) is 

sensitive to the particular data set used by measuring the expected error between the average 

model and a model identified on a single data set instance. A model which is too simple will 

exhibit a high bias term, while one which has too much flexibility in relation to the particular 

data set will have a high variance. 

In Figure 3.2 polynomials of differing orders are fitted on a data set comprising 25 training 

samples, generated by a third order polynomial on which Gaussian noise was added. The 

linear model will exhibit low data set sensitivity but a high MSE, systematically under and 

overestimating the true value of the response. The highest order polynomial will exhibit a 

very low MSE but extreme data set sensitivity, also entailing a poor generalisation ability. 

The polynomial approximation in Figure 3.2 (b), achieves a reasonable approximation to the 

training data and amongst the three models, will be expected to have the best generalisation 

performance. 

It is then clear that using equation 3.4 as the objective (cost) function to be minimised, 

is non-optimal, as a model will always be seen to reduce the MSE by including additional 

degrees of freedom. The variance component of a model is seen to be an increasing function 

of the number of variables and/or parameters added to the model. Best generalisation will 

be obtained when a compromise between the conflicting requirements of low bias and low 

variance are met: by reducing the number of redundant parameters in the model, the bias and 

variance contributions can be drawn towards their minimum. In order to find this optimal bal-

ance between bias and variance, a way of controlling the complexity of the model is required, 

for example in neural networks, this can be controlled by changing the number of hidden nodes 

and hence the number of adaptive parameters in the network. Many of the criteria and objective 

functions used to evaluate and compare models are based on empirical error based measures 

(section 3.8.1) or on criteria in which the objective function penahses models with a large 

number of parameters (section 3.9). 

The extent to which the model fits the data should be traded off against its complexity. 

However, the addition of a variable or extra flexibility, may decrease the squared bias compo-

nent, but this decrease may be small relative to the increase in the variance. Statistical theory 

will show in subsequent sections that the variance of an estimate is affected by its complexity. 

Statistical inferencing from a simpler model, compared to a more complex one with the same 

generalisation ability, will be preferable and is generally referred to as Occam's razor. 
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(a) (b) 

(c) 
F i g u r e 3 .2 : I l lus t ra t ion of the b i a s /va r i ance t r ade -o f f : (a) under f i t t i ng (h igh M S E , high bias) , (b ) ade -

q u a t e a p p r o x i m a t i o n to the u n d e r l y i n g f u n c t i o n , (c) over f i t t ing ( low M S E , h igh var iance) . 

3.8 Assessing generalisation performance 

As will be discussed in more detail in Chapter 6, minimising equation 3.4 is also referred to 

as empirical risk minimisation. However, the model which minimises does not necessarily 

minimise the generalisation error, the minimum of the risk functional (section 6.2.1) over the 

full distribution of possible inputs and their corresponding outputs. 

The prediction risk (Moody 1994), defined as the expected performance of an estimator in 

predicting new observations (equation 3.8), cannot be computed directly but must be estimated. 

N 

^ ^ i (x, w)) (3.8) 

i=l 

The simplest and most commonly employed method for obtaining an unbiased estimate of the 

prediction risk (generalisation performance), is to reserve part of the data as a test set, which 

must not be used in any way during training^. The disadvantage of reserving part of the data in 

this way is that it reduces the amount of data available for both training and validation. Even 

' i f M models are trained on the same data set and a validation set is used to select the best network topology, a 

third data set, the test set, should be used to obtain an unbiased estimate of the generalisation error for the selected 

model. 
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in cases where the data set is large, it is desirable to use as much data as possible for training, 

since the estimation error associated with the model variance becomes worse as the training set 

size is reduced. Furthermore, holding out a small and unrepresentative set of independent test 

samples will provide noisy estimates of the generalisation performance. 

In these situations, alternative approaches that enable the estimation of the prediction 

risk trom the training data alone must be considered. Resampling schemes such as cross-

validation (Stone 1974) and bootstrapping (Efron and Tibshirani 1993) and statistical signifi-

cance (or model complexity) measures allow all the data to be used during training. 

A simple statistic which is commonly used for obtaining an (unbiased) estimate of 

is leave-one-out cross-validation (LOOCV), where each one of the observations are in turn 

removed from the training set and the observation estimated from all the other # - 1 

observations: 

1 ^ \ 2 
j&OOCl/ = (%/, - (3.9) 

2=1 

3,8.1 Model performance measures 

The MSE is an estimator of the accuracy of the model, and as such is often employed within 

statistical significance (SS) measures. There are many analytical functions which have been 

proposed in the literature, typically in the form: 

ars = Jkfgrf; X jF(;v\f,) (3.ico 

where p is the number of weights and N is the number of training patterns. 

Typically, such analytic model selection criteria have been developed in statistics using 

asymptotic (large-sample) theory. 

Gunn et al. (1997) assessed the performance of several model selection criteria in the 

framework described in Chapter 5. The measure derived from the structural risk minimisation 

(SRM) principle (Vapnik 1995) was seen to provide a reliable method of matching the com-

plexity of the model to the amount of training data available. The SRM measure was seen 

to differ from the other statistical significance measures in that it placed an upper limit on p, 

whilst the other measures did not place an upper limit on the number of weights (potentially 

allowing for over-fitted models to be selected) or exhibited an asymptotic behaviour forp = N. 

The SRM measure thus limits the number of weights in the network to be less than the number 

of training patterns. 

Cherkassky et al. (1999) using the complexity measure proposed by Vapnik-Chervonenkis 

(VC) theory (section 6.2.2) also found it significantly outperformed other model selection cri-

teria for linear and penalised linear estimators, particularly for small sample sizes. As will be 

seen in Chapter 6, statistical learning theory provides analytical generalisation bounds that can 

be used for estimating the prediction risk. 
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The above results suggest that the model complexity measure derived from VC-theory is 

superior to classical methods for model selection, in terms of selecting the models with the 

lowest worst-case prediction risk, and the lowest variability of risk estimates^, despite a slight 

underperformance observed for large sample sizes under low-noise settings. 

The disadvantage of all these measures is that they are inherently dependent upon the 

MSB as a measure of model suitability, and as such rely on a biased estimate of the variance. 

3.9 Complexity control 

In (semi)-parametric models there are two methods which attempt to limit the complexity of the 

approximating function, these are regularisation and model selection. The complexity control 

approaches used within the neural network field are architecture selection, regularisation, early 

stopping (Wang et al. 1994) and training with noise (Reed et al. 1995). 

In the neural network literature, model selection generally refers to selecting an appro-

priate network architecture, i.e. choosing a network with j hidden layers and h nodes, and 

redundant structure is typically removed by eliminating connections between nodes by means 

of pruning methods. Even in regularised networks, the presence of irrelevant inputs may still 

affect the generalisation performance and so the use of soft or hard feature selection remains 

desirable. Van de Laar et al. (1997) proposed an input selection employing partial retrain-

ing (Van de Laar 1999) to remove in an iterative way the least relevant input variables from a 

trained neural network. Thodberg (1993) and MacKay (1995) have implemented two different 

pruning methods within MacKay's Bayesian evidence framework. 

By using multiple weight decay parameters, one associated with each input variable, the 

automatic relevance determination (ARD) technique (MacKay 1995; Neal 1996) performs a 

soft-feature selection by shrinking the weights associated with certain inputs to zero. ARD can 

then be used to perform a hard feature selection, as the inspection of the hyperparameters leads 

to selection of a subset of variables which can then be used for training a new network. 

Within the statistics literature, model selection is generally synonymous with variable 

selection, i.e. selecting an appropriate number of variables to be included in a model. 

In Chapters 5 and 6, it will be seen that in the search for an appropriate description of the 

system, both the neurofuzzy and support vector techniques seek a parsimonious description of 

the system, adapting their structure and number of variables present in the model. 

3.9.1 Model selection 

In variable selection strategies, it is desirable to determine whether the number of input vari-

ables can be reduced without an appreciable loss (or even a gain) in predictive ability, so 

''The performace of classical methods was seen to be greatly affected by random variability of (small) training 

samples, whereas VC-based model selection was found to be very insensitive in this respect. 
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that subsequent inferences may then concentrate on a reduced set of variables. This may be 

desirable for example in lowering the costs associated with data collection. 

From a statistical viewpoint, selection of a smaller set of explanatory variables finds its 

motivation in variance reduction (i.e. greater confidence) and a parsimonious modelling ap-

proach. Since it is unfeasible to search for all possible models in high-dimensional problems, 

alternatives are to use prior knowledge and select a particular model structure comprising the 

subset of variables believed to be important, or to apply automatic model search algorithms. 

Various (sub-optimal) methods have been proposed for evaluating only a small number 

of models, generally refining the structure of the model in an iterative manner driven by 

heuristic searches and/or using the criteria discussed in section 3.8.1. Typical subset selection 

techniques are generally based on either forward selection, backward elimination, best subsets 

and stepwise (Hocking 1976; Miller 1984). The deficiencies of stepwise methods have been 

discussed in several papers (Hocking 1976; Berk 1978). Model construction procedures have 

been criticised on many occasions, the most common being that neither will assure, except for 

the very simplest of cases, that the "best" model is identified. The instability of heuristic 

searches is well recognised (Breiman 1996b). Subset selection procedures suffer from an 

instability with respect to small perturbations in the data: the removal or addition of a datum or 

variable from the data set may drastically change the model structure and weights. Variables 

that appear important, or conversely, appear to have little value based on standard indicators 

may in fact appear so because of a single influential observation. 

The performance of widely used subset selection criteria are assessed in several stud-

ies (Breiman and Spector 1992; Breiman 1992). It is of some concern that many criteria have 

been empirically found to perform poorly for model selection purposes, common pitfalls being 

in the selection of models of a too high dimensionality, resulting in over-optimistic estimates of 

the variance. Breiman and Spector (1992) observed that leave-one-out was inferior to 10-fold 

cross-validation in the selection of the best subset dimension, interpreted as a consequence of 

instability (Breiman 1996a). 

Two main problems are that stepwise procedures imply an order of importance to the 

variables, an ordering that may be misleading (it is not uncommon to find that the first variable 

added is superfluous in the presence of other variables), and in the case of early termination, 

the procedure may fail to detect important (or important combinations of) variables. 

The problem of variable selection is often confusing and aggravated when collinearities 

are present. If the collinearity is inherent in the system being investigated, then one of the 

variables involved in a near-linear dependency might be eliminated. On the other hand, the 

collinearity might be induced by the sample size. In this case, subset results may lead to 

misleading conclusions and model misspecifications. 

Derksen and Keselman (1992) presented results from a Monte Carlo study on the fre-

quency with which "authentic" and noise variables were selected by iterative model selection 

algorithms. Their results indicated that the degree of correlation between the explanatory 
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variables influenced the frequency with which the former were included in the model, while the 

number of candidate input variables affected the number of the latter type which were included 

in the model. Sample size was seen to be of limited importance in determining the number of 

authentic variables present in the final model. Vafaie and DeJong (1993) also attributed the 

high variance exhibited by greedy search (iterative) algorithms to feature interdependences, 

and proposed a more robust approach by employing a genetic algorithm (GA), despite being 

less efficient when there are few or no intercorrelations between variables. 

In the context of feature selection Jensen and Cohen (2000) discuss how in multiple 

comparison procedures (i.e. iterative/incremental algorithms), the failure to take into account 

and adjust for the number of candidate refinements considered was responsible for attribute 

selection errors, overfitting and oversearching^. 

From the above, it emerges that iterative procedures can result in inadequate represen-

tations of the data. However it should be acknowledged that iterative model contruction al-

gorithms were not designed to find "best" models; but rather to select subsets from data sets 

"padded" with extraneous variables. 

3,9,2 Regularisation 

Regularisation approaches are common to many disciplines, particular forms of which are 

known as weight-decay in the neural network literature (Krogh and Hertz 1992), ridge re-

gression (Hoerl and Kennard 1970) by statisticians and the Levenberg-Marquardt optimisation 

method (Gill et al. 1993). Draper and Van Nostrand (1979) discuss the two circumstances 

in which ridge regression is appropriate, these are in a Bayesian and a restricted least squares 

formulation, both of which involve the inclusion into the problem of some external information. 

Ridge regression was originally proposed as a method for solving badly conditioned linear 

regression problems^. In the presence of multicollinearity, regularisation techniques result in 

biased estimates of the parameters which however exhibit a smaller variance than least squares 

estimators. The regularisation performed in ridge regression can be interpreted as augmenting 

the data with dummy observations (Allen 1974), which improve the condition of the learning 

task^. From a computational viewpoint, regularisation involves constraining or penalising 

the solution of the parametric estimation problem in order to improve generalisation. The 

regularised cost function is generally formulated as: 

J r = J n + ^E^ (3.11) 

'Jensen and Cohen (2000) overfitting per se arises because attempting a large number of models leads to a high 

probability of finding a model that fits the training data purely by chance. 

^Badly conditioned here reflects difficulties in performing the inverse of X ^ X . 

^The ridge estimator is equivalent to a least-squares estimator in which the data has been augmented by a 

fictitious set of points, such that the response is zero and a diagonal matrix is added to X ^ X . The possibility of 

actually collecting additional data, which would improve the stability of X ^ X is thus implied. 
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where Ew is the regularisation (or penalty) term resulting from the introduction of a prior and 

A is a (shrinkage or regularisation) parameter used to determine the amount of regularisation 

performed, effectively controlling the bias/variance trade-off. 

The regularisation term may take several different forms, with common choice of pri-

ors including p.d.f.'s which make small weights and/or small model output curvature highly 

probable, corresponding to the regularisers: 

Ew = E [ |w|] 

and 

Eo,, = E 
dx'^ 

referred to as zero and second order regularisation, respectively. An analytically attractive form 

of the regulariser is one which is a quadratic function of the weights: 

= w ^ K w (3.12) 

as for generalised linear models this produces a cost function which can be solved by simple 

linear optimisation techniques. The solution to the resulting cost function (equation 3.11) is 

found by differentiating with respect to the weights and setting to zero, giving the solution: 

w = (X^X-f-AK)"^X^Y 

Zero order regularisationresults in weight estimates given by the solution of equa-

tion 3.9.2 with K the identity matrix, i.e. K = I. 

In general, regularisation methods may considerably improve upon ordinary least squares 

regression when the data is sparse and/or noisy, or when the predictor variables are highly 

collinear (Frank and Friedman 1993). In studying the effects of instability on predictive loss 

and on the bias and error of the prediction error estimates Breiman (1996a) observed that subset 

selection attained high predictive losses, while ridge regression failed in problems where there 

was a mixture of large and small coefficient values. Ridge estimation was found to be superior 

to variable selection procedures when all but a few of the parameters were nearly zero and the 

rest large, whereas in the presence of only a few nonzero coefficients, subset selection attained 

good performance. Thus, the belief that ridge regression is always better than least squares 

is unjustified. Draper and Van Nostrand (1979) condemned a mechanical application of ridge 

regression and Smith and Campbell (1980) provide a strong critique on its use. Marquardt 

and Snee (1975) suggest that it is only appropriate to use variable selection in the presence 

of multicollinear data after having biased the estimators. Breiman (1995) proposed the non-

negative garrote as an intermediate technique to subset selection and ridge regression. 

Although ridge regression was not designed for the purpose of variable selection, it should 

be realised that there is an inherent deletion of variables (namely, those for which the coeffi-

cients are shrunk to zero by A). 

"'Known as ridge regression in statistics and weight-decay in neural networks. 
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3.10 Bayesian methods 

In section 3.6 Bayesian estimation was seen to provide powerful technique for performing 

statistical inferences. Central to Bayesian methods is the assumption that alternative models 

and their competing assumptions are often plausible. Rather than making an estimate based 

on a single model, several models can be considered and an estimate obtained as the weighted 

average of the estimates given by the individual models. Hence, in Bayesian model averaging, 

priors are attached to the models rather than just the model parameters. 

The correct Bayesian approach is to make use of the complete set of models, where the 

predicted outputs are obtained by performing a weighted sum over the predictions of all the 

models. More probable models therefore contributing more strongly to the predicted output. 

However, in certain systems it may be essentia! to recognise that different interpretations de-

scribe the data equally well and that procedures which force a single choice of model may 

be potentially misleading. Bayesian model averaging does not lead to a simple model. This 

may not be important for certain applications but is when description and interpretation of the 

model structure is desired. Models with low posterior probabilities may be discarded to keep 

the problem manageable and then a weighted sum of the remaining competing models is taken. 

Model expansion approaches, advocated by Draper (1995) and the concept of an Occam's 

window (Madigan and Raftery, 1994) may be pursued. 

3.10.1 Evidence framework 

The evidence framework was first proposed by Gull (1989) as an approximate method for 

performing Bayesian inference, and has been subsequently applied to neural networks (MacK-

ay 1992a; MacKay 1992b) providing a unifying theoretical treatment of learning in neural 

networks. Its practical benefits include principled methods for determining optimal regularisa-

tion coefficients and methods for both soft feature selection and model comparison". It also 

provides a framework for using committees of networks. 

The maximum evidence framework looks for the simplest model which can be used to 

represent the data and so Occam's razor is implicit in this approach. While the full Bayesian 

method produces a posterior distribution for the weights (or a predictive distribution for the 

outputs) which can be very complicated, the evidence framework relies on the approxima-

tions that the hyperparameters, a and P, are optimised rather than integrated over and that 

" i n Bayesian model selection, the evidence is obtained by multiplying the best fit likelihood by the Occam 

factor. In the evidence framework, the Occam factor is used as a measure of complexity of the model, but unlike 

the VC dimension it is related to the complexity of the predictions that the model makes and is therefore dependent 

not only on the number of data points and parameters in the model but also on the prior probabilities that the model 

assigns to them. However, in assessing the performance of the evidence framework on a number of classification 

problems. Penny and Roberts (1998a) came to the conclusion that the use of the evidence in model selection was 

only tenable when the number of training examples exceeded the number of network weights by a factor of five or 

ten. 
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the posterior distribution for the weights is approximated by a Gaussian, centred on a (local) 

maximum of the distribution, thus making analytical derivations tractable, so that predictions 

can be summarised by a point estimate and corresponding error bar. 

The evidence approach has been questioned by several researchers for not being statisti-

cally correct since the correct Bayesian treatment for the hyperparameters involves marginali-

sation, i.e. integration over all possible values. In the evidence framework, this integration is 

approximated and the hyperparameters are fixed to their most probable values. Methods which 

integrate over the hyperparameters analytically have been proposed (Buntine and Weigend 

1991; Wolpert 1993; Williams 1995), and the approximation strategies of Buntine and Weigend 

(1991) and Mac Kay (1992a) for handling hyperparameters have been compared in (MacKay 

1999y 

Empirically, the correlation between the evidence and generalisation error is often good, 

but a theoretical connection between the two is not established. 

3.11 Characterising uncertainty 

From previous sections it emerges that there are two sources of uncertainty: structural and 

parametric. The uncertainty associated with parameter estimates and how this propagates 

through to the model predictions y should be understood. For the MLR model specified in 

equation 3.1, the variance of the estimated regression parameters w can be estimated from the 

variance-covariance (X^X) matrix: 

The uncertainty in the weights are obtained from multiplying the variance estimate by the 

diagonal elements of (X^X) \ from which a simple statistic such as 

(3.14 
O'wk 

may be informative, and in the case of a small value should draw our attention towards under-

standing the source of such uncertainty. 

Structural uncertanty which will be greatest in small sample sizes is often not accounted 

for, with inferences proceeding as if the structural and error distribution assumptions were 

known to be correct. Draper (1995) discusses the propagation of model uncertainty, in terms 

of Bayesian approaches that are becoming feasible through recent computational advances. 

It is common practice to use computationally intensive model selection algorithms to 

search for a single optimal model from a large number of candidates. Chatfield (1995) discusses 

model uncertainty and model selection biases which result from data-dependent specification 

searches. Model selection biases result when a model is formulated and fitted to the same data, 

resulting in biased and over-confident inferences. Bayesian model averaging approaches then 

provide a natural way of accounting for model uncertainty. 
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MacKay (1995) notes that the practice of deliberately using a simple model when data is 

sparse is one of the reasons for dangerously overconfident predictions. 

3.11.1 Error bars 

In addition to estimating the overall generalisation error, it is often useful to be able to estimate 

the accuracy of the model's predictions on individual cases, through means of prediction versus 

target scatterplots, augmenting the model estimates with confidence or prediction intervals. 

Error bars are a means to represent model output uncertainty with respect to an input. In 

regions where the training data is noisy and/or sparse, error bars should reflect uncertainty and 

therefore should be large. Conversely, in regions where training data is populating the input 

space well, a good approximation to the data can be inferred and a relatively high confidence 

in the output can be placed, resulting in small error bars on the prediction. Thus, derivation of 

error bars is a valuable property of the model, giving a measure of confidence of how well the 

model performs in different regions of the input space. For the MLR model, the variance of the 

estimate of the mean response, yi, can be shown (Neter et al. 1996; Penny and Roberts 1998b) 

to be given by: 

cr| = o-^xf ( x ^ x ) ^ Xj (3.15) 

or expressed as a function of the variance-covariance matrix of w; 

2 T 2 

The uncertainty associated with the prediction from a new observation, Xj, is given by: 

(7 .̂ = (X^X) Xi (3.16) 

then the standard deviation ay. can be directly interpreted as the magnitude of the error bar. 

3.12 Knowledge extraction 

It is often desirable to infer qualitative knowledge as well as quantitative estimates. 

If X has orthogonal columns, the effects of individual variables are clear, as the tasks of 

estimation and model selection are greatly simplified. Unfortunately with undesigned exper-

iments the columns of X are rarely orthogonal and there may be the presence of near-linear 

dependencies amongst the explanatory variables. In such cases, it is generally difficult to assess 

the effects of individual variables on the output response. In such cases, as will be discussed 

in Chapter 4, an eigenvalue examination should be an integral part of the regression analysis 

and direct towards suitable "remedies" (e.g. subset selection, regularisation methods, data 

augmentation). Collinearity, also discussed in the following chapter may be responsible for 

unnecessarily high variances and nonsensical values in some of the regression coefficients. The 

resulting model estimates may be unreliable, especially outside the immediate neighbourhood 

of the training data. 
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3.12.1 Input relevance 

The notion of relevance^^ is subjective. For example, the conclusion that variables omitted by 

subset selection procedures are not relevant and do not have a dependency with the response 

variable may be unsatisfactory and potentially misleading. In iterative model construction algo-

rithms the order of inclusion/deletion of variables in a model should be understood not to relate 

to variable importance, as it is possible that the first variable included in a forward selection 

procedure is the first variable deleted in a subsequent backward elimination procedure. 

Within the neural network literature, several measures have been proposed to give an 

indication of the contribution of each input to the response (Garson 1991; Milne 1995; Gedeon 

1997), based on an analysis of weight magnitudes (sums of products of normalised weight-

s). Sarle (1997) with a simple example has however illustrated how these measures can lead to 

incorrect conclusions. 

Wichmann and Bartlett (1997) have proposed the use of a general regression neural 

network as a means of ranking inputs with respect to their importance (based on LOOCV), 

which was then used as a subset selection technique from which subsequent analyses (e.g. 

network training) can be performed. Van de Laar et al. (1999) propose partial retraining of the 

neural network in order to determine the relevance of inputs of a trained model. 

The most significant method developed for the purposes of inferring the relevance of the 

input variables, remains the ARD framework (MacKay 1995; Neal 1996). Interpretation of the 

hyperparameter values allows the influence of a particular input to be assessed. Importantly, 

ARD avoids the use of iterative pruning strategies. 

However, Penny and Roberts (1998a) found ARD to be useful in networks with many 

hidden units and in data sets containing many irrelevant variables, while Kandola et al. (1999) 

have observed that ARD results tend to be sensitive to the initial values of the hyperparameters. 

3.13 Prior knowledge 

Prior knowledge can be effectively employed as a means of reducing the variance of the 

estimates (if this reduction is not overshadowed by a comparable increase in the bias). Pre-

sceening the input variables, initialising a model or formulating a set of fuzzy rules may aid 

in directing the iterative model construction procedures towards better described regions of the 

model space. In section 3.6, it was seen that in Bayesian inferencing, the prior P (w) p.d.f. is 

used to encode prior knowledge about the parameter vector w, before the data is observed. 

'"Van de Laar et al. (1999) defines the relevance TZi of an input Xi as the difference in performance on a given 

task with and without Xi, given all other input variables: 

% = P -
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The Wind use of priors should however be viewed as a black box approach to regression 

problems (Hocking 1983b). 

3.14 Data mining and knowledge discovery in databases 

The requirement for appropriate techniques able to extract meaningful knowledge from large 

databases emerges from the fact that many companies are confronted with the challenge of 

handing an ever-increasing amount of data. As a result it is becoming more difficult to ac-

cess the information that is contained in the data. Knowledge discovery in databases (KDD) 

is an emerging multi-disciplinary field of research that combines techniques from machine 

learning, pattern recognition, statistics, exploratory data analysis, expert systems, databases, 

and visualisation to automatically extract concepts, interrelationships, and patterns of interest 

from large databases. The basic tools used to extract patterns from data are referred to as data 

mining methods, while the process surrounding the use of these tools (including pre-processing, 

selection, and transformation of the data) and the interpretation of patterns into "knowledge" 

is the KDD process. 

A commonly used definition of data mining, given by Fayyad et al. (1996) is: 

the non-trivial process of identifying valid, novel, potentially useful, and ulti-

mately understandable patterns in data. 

The knowledge discovery process involves a series of iterative stages: 

1. Data selection Develop an understanding of the application domain, the relevant prior 

knowledge, and the objectives of the analysis. Selecting a data set or focusing on a subset 

of variables or data samples, upon which knowledge discovery is to be performed. 

2. Data cleaning Basic operations such as the removal of outliers, deciding strategies for 

handling missing data fields. 

3. Data representation and coding Find useful features to represent the data, using dimen-

sionality reduction or transformation methods to reduce the effective number of variables 

or to find invariant representations for the data. 

4. Data mining Choosing appropriate methods to be used for searching for patterns in the 

data. 

5. Validation Interpreting the knowledge inferred, which may involve visualisation of the 

data and patterns inferred. 

Steps 1-4, can all be viewed as data pre-processing steps and will be discussed in the following 

chapter. 



CHAPTERS. IMJAAfODELLm^ 54 

The relative importance of prediction and description for particular data mining applica-

tions can vary considerably. In the context of KDD, description tends to be more important 

than prediction, making the Bayesian model averaging approach less appealing, and is in 

contrast to pattern recognition and machine learning applications where prediction is often 

the primary goal. Elder and Pregibon (1996) give good statistical perspectives of KDD and 

review developments that have characterised the last few decades. 

3.15 Conclusions 

This chapter has introduced the general concepts, assumptions and problems in the modelling 

of empirical data. The major conceptual limitation of all regression techniques is that one can 

only ascertain possible relationships, but never be sure about underlying causal mechanisms. 

Subsequent chapters will discuss in greater depth some of the topics introduced, such as model 

selection, regularisation and data pre-processing. In any regression analysis it is useful to 

understand the nature of the data and the limitations that a poor data set imposes. This will be 

the subject of the next chapter. 



Chapter 4 

Data Pre-Processing, Sensitivity 
Analysis and Conditioning Diagnostics 

4.1 Introduction 

Previous chapters have emphasised that a significant objective of regression analyses is data 

interpretation. It has been discussed how drawing inferences from observational data may be 

affected by several potential sources of misinterpretation. As such, it is important to determine 

the statistical properties and integrity of the available data. In this chapter statistical techniques, 

namely sensitivity measures and conditioning diagnostic procedures, are reviewed for such 

purposes. 

It seldom occurs that data obtained from a process or retrieved from large databases, is 

readily amenable to a statistical analysis. Often the form in which the data is obtained prevents 

a straightforward knowledge extraction. Identifying missing values, inconsistencies, outliers as 

well as defining sensible training sets and appropriate transformations of the data using appro-

priate forms of pre-processing will enhance the structural integrity of subsequent inferences. 

Data pre-processing is then an important but often neglected stage in the modelling process, 

the nature of which is determined by the integrity and quality of the data, the complexity and 

nature of the system, and the type of inferences sought. 

Sensitivity and diagnostic procedures are concerned with the factors which characterise 

the conditional match of the model to the data. It seems desirable when a single model is 

determined from the data to see how sensitive any conclusions are to the model assumptions. 

These not only determine whether a collinearity or conditioning problem exists but can be used 

to identify the number of variates involved, determining the effect of individual or a subset of 

the observations. Detecting the presence of dependencies amongst the explanatory variables 

will help to understand the nature of the data and dependencies inferred. 

5 5 
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4.2 Data pre-processing 

From section 3.14 it was seen that there are several stages involved in pre-processing the data 

for a successful application of data mining (modelling) techniques and subsequent knowledge 

extraction. The objectives of the pre-processing stage being to detect and rectify problems 

and/or to apply transformations to the data. 

When processing large quantities of data it becomes essential to automate procedures, to 

avoid possible error-prone manual sifting of the database entries. The following sections dis-

cuss the different forms of pre-processing, drawing examples from the analyses of subsequent 

chapters. 

4.2,1 Data set selection 

Selection of a data set comprising a representative set of explanatory and response variables 

requires domain knowledge as large commercial databases may store records pertaining to dif-

ferent systems (e.g. age-hardenable, not age-hardenable alloys), product forms (cast, wrought), 

processing (single, double ageing sequences), etc. This simple pre-screening of the variables 

may reduce the risks of inferring non-causal dependencies. 

It is seldom that a first analysis answers all the questions sought, since in the first definition 

of the data set significant variables may be missing. Unsatisfactory results may indicate the 

absence of important explanatory variables. In some cases, it may be possible to go back and 

retreive these from the database, in others a new set of observations may be required. In certain 

systems though, important physical variables will remain inaccessible. 

In these circumstances it may be possible to characterise unmeasured features, by one or 

more of the variables that are contained in the data set. Considering the situation where process 

understanding suggests a set of explanatory variables to be related to the response variable, 

y. However, when some variates in Xq are inaccessible or characterisation is problematic, this 

may require the use of a less optimal explanatory vector, x j , (which may or may not comprise 

some of the variates present in Xq), whose characterisation is less problematic. 

The following example illustrates the above situation; it is well known that grain size 

information (e.g. morphology, distribution, etc.) is significant in strengthening certain alloy 

systems. Hence, a direct quantification of such microstructural features will have significant 

explanatory abilities for the tensile properties. However, while in scientific studies such 

features often form part of the alloy characterisation, in industrial settings their measurement 

is seldom accomplished. The variance in the material's tensile properties will then have to be 

explained through other variables characterising the microstructure, which may exhibit both 

higher experimental scatter (and a less direct relationship to the output value). The question 

is then whether for example compositional information (e.g. weight percentages of Fe, Mn, 

Si) together with processing variables can adequately characterise the microstructure, i.e. the 

degree of recrystallisation, which will then affect the tensile properties. 
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As discussed in section 3.4, the development of a predictive model that generalises 

sensibly relies critically on the availability of a set of both representative and informative 

features. In view of the suboptimality of iterative model construction algorithms, it is generally 

advisable to pre-screen variables present in the original data set/database and retain only those 

which according to prior knowledge are expected to be related to the response variable. 

4.2.2 Data cleaning 

For meaningful analyses to be performed, the data set should be free of nonsensical values or 

inconsistencies. It is the purpose of data cleaning routines to sift the data set for erroneous 

entries, typically introduced during data gathering. While some forms of data corruption may 

be easily detected by a simple inspection of the data distributions and removed prior to the 

analysis (e.g. domain inconsistencies, missing or zero entries, etc.), others arise only after a first 

analysis has been undertaken (e.g. from inspection of the residuals), and are associated with 

errors in the information storage (e.g. typos, duplicate records). The removal (de-duplication) 

of replicate cases is advisable in frameworks in which the complexity of the approximating 

function is bound by the sample size. 

In certain cases, it may be appropriate to remove certain outliers. Learning algorithms 

(see Chapter 6) based on ideas drawn from robust statistics (Huber, 1981) have been developed, 

offering robustness in the presence of outliers. 

4.2.3 Data representation and coding 

An appropriate representation of the variables may enhance the interpretability of the data, 

facilitating the data mining process and knowledge extraction. 

In certain cases, it will be necessary to re-define the data format: in flattening, a data 

field with cardinality c is replaced by c fields, as illustrated in Table 4.1 (see also Chapter 9). 

Table 4.2 shows two alternative ways of coding a categorical variable (i.e. label). The advan-

tage of the latter is in representing the labels with a single dummy variable (whilst the former 

uses three dummy variables), but may impose an inappropriate ordering of the attributes. It 

should be recognised that the usual definitions of smoothness do not apply to variables that 

assume unorderable categorical values. B-splines (section 5.3.1) however provide a way of 

coding c ordinal variables into fewer than c variables, intrinsically performing a dummy coding 

(whereby the attributes are defined on a fuzzy variable) (van Rijckevorsel 1988). Concepts of 

smoothness appropriate for categorical variables are discussed by Friedman (1993). 

A simple alternative (and sometimes more meaningful approach) for regression analyses 

in the presence of categorical variables is to partition the data set into several smaller subsets 

to be modelled independently, or to use an appropriate algorithm (Breiman et al. 1984). 
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P L A T E N O • • H E A T T Y P E • • H E A T T I M E 

4 7 2 9 4 

4 7 2 9 4 PT 102 

4 7 2 9 4 

4 8 2 3 9 H 5 0 0 

4 8 : 8 9 

4 8 2 3 9 S T 4 7 0 

4 8 2 3 9 -

4 8 2 3 9 PT 104 

4 9 6 1 0 H 2 0 0 

P L A T E N O • • H S T P T 

472&1 - 5 2 0 395 102 

4&M9 - 5 0 0 4 7 0 104 

4 8 2 3 9 - 7 0 0 4 7 2 97 

Table 4 .1: E x a m p l e of flattening, whereby the informat ion conta ined in the H E A T T Y P E and HEAT-

T I M E fields is rep laced in the new set of def ined fields H, S T and PT. 

TL LT SL DIRECTION 

1 0 0 - 1 

0 1 0 0 

0 0 1 4-1 

Od (b) 

Table 4 .2: E x a m p l e s of; (a) 1 -of -C coding of a categorical variable D I R E C T I O N that assumes three 

d i f ferent labels; (b) represent ing (ordering) the labels of the s ame variable, by m e a n s of a s ingle variable 

( L T = 1 , T L = 0 , S L = - 1 ) . 

4.2.4 Data transformation 

There may be several reasons why it is appropriate to perform a transformation of the data set 

prior to the regression analysis. These may be motivated by the inclusion of domain knowl-

edge, representational issues, data conditioning, or limitations of the learning paradigm. The 

following sections discuss transformations which have been part of the analysis of subsequent 

chapters. 

4.2.4.1 System transformations 

Statistical techniques will be most effective when combined with prior system knowledge. 

Often a non-linear transformation of a variable can increase the smoothness of the functional 

relationship as well as representing dependencies in a form simpler to validate (e.g. log a;,, 

y^57)- It can be argued that modelling techniques should not require such a "linearisation" 

of the data, however limitations imposed by different modelling techniques (e.g. curse of 

dimensionality, complexity control, etc.) should be recognised. Multivariable transformations. 
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for instance of the effects of certain variables, xi and zg, may be more appropriately expressed 

in terms of their ratio x i /x2 and/or their sum xi + X2-

Transformations induced by physical-based understanding (Chapter 8), can augment the 

data or define more informative features, which may lead to improved generalisation perfor-

mance. 

4.2.4.2 Standardising the data 

Standardising' the input and/or target variables tends to improve the numerical condition of the 

optimisation problem, making the training process better behaved. 

Standardising (or normalising) the output variable and the k set of variables to have zero 

mean and unit variance (also referred to as the correlation transformation) is given by: 

Vi Xik fJ'Xk 
(J 11 a 

where and are the means of the quantities and the standard deviations Oy and Uk are 

given by; 

(Joi \ 
N 

N - l 
2 = 1 \ 

1 
N 

y ] i^ik t̂ Xk) A; — 1, 
2 = 1 

By forming the matrix X ^ X , and the vector YX, the simple correlation coefficients be-

tween explanatory variables and those between the response variable and explanatory variables 

respectively, are readily summarised; 

1 

r%l 

n , 2 

1 r2,p-i 
r y x 

rp-1,1 rp_i,2 • • • 1 

The standardised weights can then be shown to be: 

which allow a meaningful comparison of the magnitude of the individual weights. When 

the variates are linearly related, the correlation coefficient will be a measure of the degree of 

relationship present. Limitations and misinterpretations of the simple correlation coefficients 

are discussed in (Neter et al. 1996). Inspecting the distribution of the data will allow a better 

interpretation of the correlation coefficients. 

'Standardising a vector usually refers to subtracting a measure of location (centering) and dividing by a measure 

of scale (scaling). 
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For neurofuzzy networks (Chapter 5), the data is scaled to lie in the interval [-1,1], by 

means of the following standardisation: 

Xnorm ~ ~ ^ c e n t r e ) ( 2 / X w i d t h ) 

with: 

^cen t r e — ( ^ m a x ^ m i n ) / 2 

Xwidth — (Xmax ~ ^ m i n ) 

In the application of the support vector methods (Chapter 6) the data is scaled to lie in the [0,1] 

interval. 

Scaling can help in controlling numerical problems associated with the inversion of X ^ X , as 

well as expressing the data in a form that lends itself to more straightforward interpretation. 

Centering is advised as it eliminates potential collinearities arising from the origins of the 

variables. Together then, centering and scaling are viewed as removing "non-essential" 

ill-conditioning in X, reducing the variance inflation in the coefficient estimates. 

4.3 Collinearity and short data 

Together, collinearity and short data constitute the sources of data weakness in the estimation 

of linear models by least squares. Data weaknesses are characteristics of the data that rob them 

of the information needed for statistical analysis to proceed in some dimensions with adequate 

precision (Belsley 1991). 

Intuitively, the potential harm that results from collinear data can be understood by realis-

ing that a collinear variate, being nearly a linear combination of other variates does not provide 

information that is very different from that already inherent in these others. In many systems, 

collinearity is a natural flaw in the data set, resulting from physical or processing constraints 

and as such it can be difficult to infer the separate influence of such explanatory variables on 

the response. Small sample sizes, unrepresentative data sets, misspecified models and many 

other factors can contribute to unexpected coefficient signs and magnitudes. 

The different characteristics and weaknesses of a data set which can arise as categorised 

by Belsley (1991) are shown in Figure 4.1: 



CONDITIONING DIAGNOSTICS 61 

z 
6 

g" •o 

Collinearity 
yes 

no problems non-harmful 
collinearity 

short data 
harmful 

short data 
collinearity 

Figure 4.1: Collinearity - short data 

I Represents the ideal situation for both system identification and parameter estimation; 

neither collinearity nor inadequate signal-to-noise are present. 

II Collinearity is present but does not result in inadequate signal-to-noise: the ill effects of 

collinearity are mitigated by the presence of relatively small and/or long ||xj| |. 

III There is no collinearity in X but an inadequate signal-to-noise is present. In this sit-

uation, while data weaknesses exist, collinearity is not the culprit. Poor estimates and 

predictive abilities are attributable to what Belsley calls short data, and occurs when a 

variate x, has little length, | |xj| | , so that the term WiXi adds little to the overall determi-

nation of yi-

IV The joint occurrence of collinearity and inadequate signal-to-noise constitutes the situa-

tion of harmful collinearity. 

From the above, collinearity is seen not to be the only problem afflicting the quality of 

the data. In section 3.11 a simple signal-to-noise parameter^ was suggested (equation 3.14). 

Parameters associated with estimates that are small in comparison to their variances (e.g. 

Tfc < 2) are unlikely to be well determined. Low signal-to-noise values can indicate the 

presence of inflated variances, reducing the power of statistical significance and hypothesis 

tests. Although useful for detecting the presence of weak data, simple parameters such as r 

cannot determine whether the cause is attributable to collinearity or short data. Collinearity di-

agnostics (section 4.3.4) by contrast cannot detect the presence of weak data, since they ignore 

the parameters while trying to assess the information inherent in the data (Smith and Campbell 

1980), but can determine whether an already detected data weakness is due to collinearity or 

short data. A detailed treatment of signal-to-noise measures, including conditions establishing 

when harmful collinearities prevail is discussed by Belsley (1991). 

While not affecting signal-to-noise, linear transformations of the data can mitigate ill-

conditioning, i.e. they cannot remove data weaknesses but can only alter its form. 

"It is seen that r bears a superficial resemblance to the (—statistic. Alternatively, a measure defined as the 

inverse of T, the coefficient of variation can be defined. 
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4.3.1 Ill-conditioning 

Least squares solutions given by equation 3.6 are said to be ill-conditioned if small relative 

changes in the x ' s (and y's) can result in large relative changes in the estimates w. The severity 

of the ill-conditioning can be characterised by C (X), the condition number of the design 

matrix, defined as: 

=; (4.1) 
l^min 

where Umax is the largest singular value of the spectral decomposition of X and /Jmin its 

smallest singular value^. Thus, the degree of ill-conditioning depends on how small the min-

imum singular value is relative to the maximum singular value. As noted in section 4.2.4.2 

standardising the data is seen to improve the condition number. 

Often X ^ X is ill-conditioned (near singular) due to either a poor distribution of input 

data and/or model mismatch. Ill-conditioning then makes it hard to efficiently determine the 

optimal weight vector and can make the learning algorithm slow to converge'^. 

Ill-conditioning is generally due to excessive degrees of freedom in a model, i.e. re-

dundant parameters. In neurofuzzy networks, a common cause of redundant parameters is 

poorly excited basis functions which produce zero (or significantly small) diagonals in the 

autocorrelation matrix. 

4.3.2 Sources of collinearity 

The nature and sources of collinearity that are typically encountered in the analysis of small, 

multivariate, observational data have been summarised in several studies (Gunst 1983; Mason 

and Gunst 1985) as the following: 

• Model specification (constraints). The correctness of the model does not preclude the 

occurrence of collinearities. 

• Population characteristics that restrict variate values due to some inherent characteristics 

of the process. In many cases, this type of collinearity cannot be eliminated and as such. 

^The singular value decomposition (SVD) of X is given by: 

X = U A V - ' 

where U is a [N x p] orthonormal matrix whose columns represent the p eigenvalues associated with the p largest 

eigenvalues of X X ^ , V is a [p x p] orthonormal matrix whose columns represent the eigenvectors of X ^ X , and A 

is a diagonal matrix whose diagonal contains the singular values of X , which are generally assumed to be ordered, 

i.e. A = diag ( p i , . . . 

''Collinearity is thus concerned with the existence of near linear relationships among a set of variates whereas 

conditioning is centred on the sensitivity of a given relation to perturbations in the data. Collinearity among the co-

variates can result in sensitivity (ill-conditioning) in the least-squares estimates to changes in the data, the converse 

however need not be necessarily true, i.e. ill-conditioning does not necessarily imply a collinear problem. Thus, 

collinearity and ill-conditioning should not be used synonymously to denote a particular form of data weakness. 
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can seriously limit regression analyses and subsequent inferences. Typically associated 

with observational rather that experimental data. Transformations may mitigate this type 

of collinearity, removing "non-essential" ill-conditioning (section 4.2.4.2). 

• Sampling deficiencies of a particular data set, not expected to occur in similar data 

sets. Due to the substantial biases introduced, subset selection procedures are not to 

be recommended, the most satisfactory solution being data augmentation, i.e. collecting 

more data or including a priori knowledge e.g. Bayesian and biased estimation. 

• Overdefined models, where the number of parameters exceed the number of training 

samples {N < p). Such collinearities introduced are a direct consequence of the rank of 

X. 

• Collinear-influential observations. Either removing the outliers or using robust regres-

sion methods will mitigate or even remove the collinearity problem. 

The above categorisation of the sources of collinearity are not mutually exclusive. An inad-

equate sampling may yield an outlying observation, thus inducing the collinearity problem. 

Some of the problems described above can be eliminated by simply re-defining the training 

set, whilst others necessitate use of appropriate statistical techniques. 

4.3.3 Ill-effects of collinearity 

Although collinearities need not always be harmful or hinder the regression analysis, they may 

still have some adverse effects regardless of problems attributable to short data, particularly 

in a qualitative interpretation of regression results. In the presence of collinearity among the 

columns of X, the common interpretation of regression coefficients as indicating the change in 

the expected value of the response variable when the given predictor is varied while all other 

predictor variables are held constant is not fully applicable. Other "ill-effects" (Belsley 1991; 

Neter et al. 1996) that should be acknowledged include; 

1. Large sampling variability of the estimated regression coefficients, when a particular 

variable and/or observation is added or removed. As noted previously, the presence of 

collinearity can severely reduce the power of standard statistical tests of significance. 

2. Marginal contribution of a particular covariate in reducing the MSB. 

3. Estimated regression coefficients become more imprecise as more inputs are included 

in the model, consequently large variance (i.e. wide confidence intervals) are observed 

for the regression coefficients. Parameter estimates may result in an algebraic sign that 

is opposite of that expected from physical understanding (e.g. increasing instead of 

decreasing trends inferred). 
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4. Stability in the precision of the estimated mean response, despite the inflated variance in 

the regression coefficients. 

4.3.4 Diagnosing collinearity 

Some of the ill-effects discussed above are however not necessarily due to the presence of 

collinearity. If collinearity is to be blamed, it must it be shown to be adversely affecting the 

estimates. As Gunst (1983) observes, the unexpected occurrence of coefficient estimates and 

large standard errors is not necessarily due to collinearities among the predictor variables. 

In order to assess conditioning meaningfully, the data must be in a form that possesses 

structural interpretability itself. Belsley (1984) argued that mean-centering can remove infor-

mation needed to assess conditioning correctly, masking the role of the constant term in any 

underlying near-dependencies, producing misleading diagnostics. 

The absence of high correlations among covariates cannot be viewed as evidence of the 

absence of a collinearity problem. A single measure will rarely fully characterise the nature 

and effects of collinear predictor variables, and some measures will be more interpretable 

and informative than others (Belsley et al. 1980). Some measures will be appropriate for 

assessing the sensitivity of least squares estimates to minor perturbations of the input data 

(condition indices), others more readily measure the effects of collinearity on the variances 

of the estimators (variance inflation factors), and others still help to identify the nature of 

the collinearities (variate correlation coefficients, eigenvalues and eigenvectors of X^X) . As 

a result, a large number of studies have been directed towards assessing the relative merits 

(and deficiencies) of various diagnostic measures. The following sections present some useful 

conditioning diagnostics. 

4.3.4.1 Variance inflation factors 

Hoerl et al. (1986) draw attention to the trace of (X^X) ^ as one of the best measures of the 

degree of collinearity^. The variance inflation factor of the regression coefficient, VIF^ is 

defined as the diagonal element of the matrix 

= r - j (4.2) 

then for the term in a MLR model, equation 3.13 can be written as: 

= &21/7.FL (4.3) 

The variance, or confidence interval of a regression coefficient is therefore directly proportional 

to the collinearity of % with the other x's in the model, as measured by VIFk (Montgomery 

^The A:"' diagonal entry in H = X ^ X is the variance for Xk- The sum of the variances on the diagonal of H , 

the trace of the matrix, tr ( H ) will be the total variance. 

' 'Provided the columns of X are scaled to have unit norm. 
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and Peck 1992). Each VIF is then a measure of the collective impact of the simple correlations 

on the variance of each weight in the model and the largest VIF can be used to indicate the 

severity of the collinearity^. Berk (1977) shows that the VIF is a lower bound on the condition 

number of X. Scahng is seen not to affect the VIF's, whilst centering will. 

The limitations of the VIF's for detecting collinearity are discussed in (Belsley 1991; 

Neter et al. 1996). 

4.3.4.2 Collinearity diagnostic based on the eigensystem 

When the source of the collinearity is not clear from the VIF's, the eigensystem of the correla-

tion matrix can be studied. In particular, the eigenvalues can be used to form a set of condition 

indices that allow determination of the strength and number of near dependencies, with both 

eigenvalues and eigenvectors forming a set of variance-decomposition proportions that allow 

determination of variate involvement. 

The condition indices (determining the number of collinear relations) As each near 

linear dependency will give rise to a small singular value of X (or eigenvalue of X^X) , the 

number of collinear relations present can be determined by establishing the number of small 

singular values present. In section 4.3,1, it was seen that the severity of the ill-conditioning 

can be characterised by the condition number. However, used by itself it has limited value as 

a collinearity diagnostic (Snee 1983) since it apphes to the whole model and does not identify 

which terms are contributing to the collinearity. 

It is useful to determine the set of condition indices of X, defined as: 

% = A = 1 , . . . ,p (4.4) 
l^k 

where the /j,k's are the singular values of X. Thus, there will be as many near dependencies 

among the columns of X as there are large condition indices. 

The variance-decomposition (determining variate involvement) Performing the sin-

gular value decomposition, X = UAV^, the variance-covariance matrix and the correspond-

ing weight variances can be written as: 

(X^X) V A - 2 ( 4 . 5 ) 

From this the variance of the regression coefficient can be written as: 

j=i 

' a maximum VIF value in excess of 10 is often taken as an indication that collinearity may be unduly influ-

encing the least squares estimates (Snee 1983; Neter et al. 1996), larger values indicating that it is appropriate to 

consider the use of biased regression techniques. 
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where the ^ j ' s are the singular values of X and V = (vij). Thus, the variance associated with 

the weight is decomposed into a sum of components, each associated with one (and only 

one) of the p singular values of X. In the presence of small singular values, a high proportion 

of the variance of two or more coefficients will be concentrated in components associated with 

the same (small) singular value, providing evidence that the variates corresponding to those 

coefficients are involved in the near dependency corresponding to the particular singular value. 

Thus, not all the VIF's will be equally affected by a small eigenvalue, but the effect will be 

dependent on the Vij values (Gunst 1983). 

Belsley (1991) determines the variance-decomposition proportions by letting: 

and 
p 

E ' 
i=i 

k = 1,... ,p 

Then the variance-decomposition proportions are given by: 

k j = I,. •• ,p TTjk 

The (k,jY'' variance-decomposition proportion is defined as the proportion of the variance of 

the regression coefficient associated with the component of its decomposition obtained 

in equation 4.6. These proportions can be summarised in the 11—matrix, where each row 

corresponds to a singular value (Hj), or equivalently its corresponding condition index (rjj). 

Generally, the rows are ordered so that condition indices are in increasing order. Note that the 

columns of tt's should sum to unity. 

Condition Proportions of 

Index T] 

m TTll 7ri2 TTlp 

m TTgl 7J-22 TTZp 

Vp '^pl T^p2 TTpp 

4.3.5 The hat matrix 

From section 3.6 the vector of output estimates can be written as: 

y = H y 

where: 

-1 
H = X ( X ^ X ) X^ 

(4.7) 

(4.8) 
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is termed the hat matrix. This can be interpreted as the orthogonal projection operator on the 

column space of X (Weisberg 1995). The leverage of the observation may be defined as 

the magnitude of the derivative of the predicted value with respect to the response value 

(dyi/dyi = ha). Then the diagonal elements of the hat matrix, 

= Xi -1X?" (4 9) 

directly indicate the sensitivity of the estimate, yt, to changes in the observed response, 

yi. Similarly, elements hij of H have a direct interpretation as providing a measure of leverage 

(or influence) exerted on yi by yj. Two significant properties of H are: 

N 

0 < hii < 1 and ^ ha = p 
i—l 

from which it is seen why Hoaglin and Welsch (1978) suggest an observation to have high 

leverage if/ i j j > 2p/N. 

Considering the case in which one of the ha = 1, then yt = yi, i.e. the model has learnt 

the datum value exactly, effectively allocating a parameter to the observation. 

The hii values may be used to identify hidden extrapolations for unseen Xp vectors: if the 

leverage of these is within the range of ha values of the training data set, no extrapolation is 

involved. 

4.3.6 Analysis of residuals 

The analysis of residuals can provide useful information, regarding the adequacy of the model 

and the constancy of the variance of the error terms as well as providing information about 

outliers. The residual is the difference between the observed value yi and the fitted value yi, 

e, = yi — iji, not to be misinterpreted as the unknown, true error. 

Semistudentised (equation 4.10) and studentised (equation 4.11) residuals (Belsley 1991; 

Neter et al. 1996) are a means of standardising the residuals, observations with large values of 

Tj will be outliers in the Y-space. 

ei 
(4.10) 

r; = == . === (4.11) 
(Te; y M g E ( l - W 

Modified residuals can allow some understanding as to the effect of the inclusion of a 

variable in a regression model. At the stage of an iterative model construction, a plot of 

the residual ej as a function of the input variables will elucidate residual information: 

r*,!* = y -- Tv) 
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where y is the vector of observed responses and M k i ^ , w) the corresponding vector of esti-

mates obtained from the model. 

4.4 Outliers and influential cases 

From the above, it is seen that a linear regression model may be interpreted as a smoothed repre-

sentation of the data, that captures global and essential features of the data. However as Chatter-

jee and Hadi (1986) note, this view is not always appropriate since salient features of the model 

can be dominated by a single observation, particularly when the data is poorly distributed and 

conditioned. The analysis of outlying observations can lead to diagnosing model inadequacies, 

such as the omission of an important variable and/or other model misspecifications. In some 

cases influential observations may contribute more to the understanding of the process under 

study than the rest of the data combined. An influential observation (Mason and Gunst 1985) 

refers to an outlier whose inclusion in a data set substantially changes regression coefficient 

estimates, predicted responses, or the results of inferential procedures. An observation may 

influence (some or all) regression results if it is an: 

• outlying response value, 

• high leverage point in the factor space, 

• combination of both. 

When reasoning about the nature of outlying cases background knowledge should be used in 

order to distinguish between outliers that represent interesting/unusual cases, i.e. "phenomena 

of interest" (Wu et al. 1997) and outliers induced by large experimental/observational errors 

(including outliers resulting from typos). 

When two or more explanatory variables are included in the regression model, identifica-

tion of outlying cases by simple graphical means becomes difficult and appropriate sensitivity 

measures should be used. Measures of influence which study whether a particular case is 

influential are typically based on omitting a single case and measuring the influence this has on 

the quantities of interest, e.g. change in individual or all response estimates, y — parameter 

estimates w — W(jj. Chatterjee and Hadi (1986) review measures proposed in outlier analysis. 

Measures based on the change in the condition of the hat matrix resulting from the deletion 

of an observation can discover collinearity-creating or masking observations. Hoaglin and 

Welsch (1978) have drawn attention to the effect of removing a high-leverage observation 

in increasing the variance of the estimated parameters in the model, proposing a sensitivity 

analysis based on the ha's for detecting high-leverage design points, and studentised residuals 

Tj for diagnosing discrepancies in the response values. A collinearity-influential case however 

is not necessarily an influential observation as established by some measures of influence. 
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4.5 Measures of influence 

Because high-leverage observations tend to have small residuals, examination of the residuals 

alone may not detect influential observations. In such cases analytical measures can be used. 

4.5.1 Cook's distance measure 

Cook's distance (Cook 1979) measures the influence of the case on all N response esti-

mates®. This measure has the advantage that it can be calculated without having to repeatedly 

re-estimate the weights after each deletion, but can be estimated by an algebraic expression 

involving the hu's: 

Ef=. _ r . V h. 
= pMSE = 7 

A large value of Cf indicating that the case exerts a strong influence on the estimates. From 

equation 4.12, the case can be determined as being influential by having: 

• a large residual and only a moderate leverage 

• a large leverage with only a moderate sized residual 

• both a large residual and a large leverage 

While equation 4.12 gives useful information about the model identified, Leger and Altman 

(1993) argue that despite being computationally demanding, an unconditional approach (spec-

ifying an equivalent Cf measure based on re-determining the model with the case omitted) 

would lead to greater insight about the influence of individual observations on the model con-

struction process. 

4.5.2 Hadi's overall potential measure 

Hadi (1992) proposes the development of an overall potential influence measure, H f , as other 

influence measures proposed highlight observations which influence a particular inference, 

failing to identify cases which may influence other least-squares results. Hadi's measure is 

based on the fact that potentially influential observations are outliers in either the X-space, the 

y-space, or both; 

^Cook's distance measure can equivalently be written in terms of the effect of the deletion of the i"® case on the 

p weights in the model: 

2 _ ( w - W ( i ) ) X ^ X ( w - W ( j ) ) 

p 
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where p is the number of parameters in the model and df = ef/e^e is the square of the 

normalised residual. A comparison between and Hf shows that while the former is a 

multiplicative function of the residual and the leverage value, the latter is an additive function 

of the two. 

Generally, graphical methods are used to infer the influence of particular cases in relation to 

others. Cut-oif points should be used with caution and values attained from one diagnostic 

measure should not be compared with others. 

If a data set contains a single outlier or influential observation, the problem of identify-

ing such cases is relatively simple. However, if the data set contains more than one of the 

above cases, the problem of identifying these observations becomes more difficult. This is 

due to masking and swamping effects. Masking occurs when an outlying subset is undetected, 

generally due to the presence of another, usually adjacent, subset. Swamping occurs when 

observations are incorrectly identified as outliers because of the presence of another, usually, 

remote, subset of observations. Several procedures for the identification of multiple outliers 

in linear models have been proposed, generally based on robust estimation methods or fuzzy 

clustering strategies (Atkinson 1986; Hadi and Simonoff 1993; Seaver et al. 1999). 

4.6 Conclusions 

From preceding chapters it is clear that knowledge discovery is an iterative and interactive 

process, whereby the data may be revisited frequently, subjected to various forms of pre-

processing, elucidating and improving data quality/information content and consequently as-

sessing the reliability of the statistical inferences drawn. 

This chapter has presented methods, namely conditioning diagnostics and sensitivity anal-

yses which allow the data-model (mis-)match to be investigated. The detection and understand-

ing of the causes of any data weaknesses can then lead to appropriate analytical solutions. 

For instance it may be that through experimental design criteria more informative samples 

can be gathered, which may address the data weaknesses inherent in the original data set. 

Once the data weaknesses have been acknowledged, appropriate "remedies" should be 

employed. For instance, a single observation may be instrumental in determining a model 

structure. Chatterjee and Hadi (1988) studied the impact of simultaneously omitting a variable 

and an observation in linear regression whilst Hoeting et al. (1996) proposes a method for si-

multaneous variable selection and outlier identification, the latter based on computing posterior 

model probabilities. 

The decrease in parameter sensitivity that can result from introducing prior information 

suggests that anomalous data can be confounded with problems arising from collinearity. In 

(Belsley 1991), it is seen that collinearity can disguise anomalous data, as indicated by the 

increased coefficient sensitivity, when data conditioning was improved through the use of prior 
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knowledge. 

Biased estimators, as discussed in Chapter 3, are ways of dealing and understanding cer-

tain collinearity problems, for example the ridge trace in ridge regression estimates provides 

a graphical account of the effect of collinearity in the coefficient estimates (Gibbons and Mc-

Donald 1984). These methods however, may not be effective alternatives when collinearities 

are outlier-induced. 



Chapter 5 

Neurofuzzy Networks 

5.1 Introduction 

Neurofuzzy networks (or systems) have evolved over recent years as researchers have tried 

to combine the linguistic, vague representation of a fuzzy system with the structural and 

learning attributes of neural networks. The algorithms have predominantly been developed 

by researchers in the fields of system identification and control (Brown and Harris 1994; Jang 

et al. 1997) as it proved natural to use both expert, fuzzy knowledge for either initialising or 

validating a trained system, and neural-type learning algorithms which made the best use of the 

available training data. This combination was proposed as an efficient way to allow systems to 

overcome the explicit dependence on either an expert or the availability of numerical data. 

This chapter describes a class of neurofuzzy networks used in subsequent chapters in 

modelling several properties of Al-alloys. The material presented reflects the progress made in 

the neurofuzzy framework initially formalised by Brown and Harris (1994), and subsequently 

extended by Bossley (1997) and ultimately by Gunn et al. (1997), in the development of par-

simonious system modelling. Some fundamental concepts will be described together with the 

important links that characterise neurofuzzy networks. 

5.2 Fuzzy systems 

A fuzzy system is a non-linear model whose behaviour is described by a set of easily inter-

pretable rules, representing an alternative approach to neural networks in system modelling. 

Unlike typical neural network architectures, fuzzy systems reason in a seemingly natural man-

ner, by the application of a series of rules. A fuzzy system generally consists of a rule-base 

composed of vague production rules such as: 

IF Cu is high AND ageing time is medium THEN proof stress is high 
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The rules are generally linguistic representations and since the knowledge in a fuzzy system is 

stored as a set of interpretable rules, such systems are said to be transparent. Transparency is 

arguably the most important element in any fuzzy system, as the designer can understand how 

different fuzzy rules interact and adjust the process accordingly. 

Often fuzzy systems are identified from heuristics and limited empirical knowledge. How-

ever, such an approach may result in inadequate models. This has motivated the development 

of adaptive fuzzy systems which adjust their rule base parameters via heuristic training rules. 

Both approaches have been heavily criticised, in terms of formulation of inadequate models to 

which no standard system identification mathematical analysis can be applied. Furthermore, 

there has been a notable lack of rigorous theory to expain how these systems generalise, and 

also to provide insights into the relative merits of different implementation strategies. 

5.2.1 Fuzzy sets 

To represent linguistic statements (such as x is small), Zadeh (Zadeh 1965; Zadeh 1973) 

introduced the concept of a fuzzy set. A fuzzy set. A, is a collection of elements defined in a 

universe of discourse, labelled X. Mathematically, this can be written as: 

///I (z) : X [0,1] 

where A is the fuzzy label, set or linguistic variable, describing the variable x. As an extension 

to Boolean logic, IJ.A (X) represents the grade of membership of x belonging to the fuzzy set 

A. Thus, fuzzy logic generalises the concept of a classical set by allowing its elements to have 

partial membership, the degree to which x belongs to A is characterised by a membership 

function, PA{X). By specifying membership functions, the vague fuzzy labels are given a 

precise definition. Each linguistic term is represented by a membership function and the set of 

all of these terms determines how an input variable is represented in the fuzzy system. 

An example of the representation of a fuzzy variable, ageing time, in terms of three fuzzy 

sets short, medium and long is shown in Figure 5.1. At any given value of the variable, mem-

bership of the three sets adds to unity. For example, at a value of 0.25, the membership of the 

set short, /ighort {ageing time), is 0.5, of the set medium is 0.5 and of the set long is zero. The 

point at which the membership of the fuzzy sets comes to zero (at a value of 0.5 in Figure 5.1) 

is called a knot, and is likely to represent a change in the trend between input and output. 

Fuzzy sets enable a system to generalise locally between neighbouring rules, so that sim-

ilar inputs will produce similar outputs. 
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medium 

F i g u r e 5 .1 : S c h e m a t i c r ep resen ta t ion of a f u z z y var iab le 

5.2.2 Fuzzy rules 

For an n-dimensional input, x = (a^i,... ,a;„), single output fuzzy system, the rule base is 

composed of a sequence of fuzzy rules formally defined as: 

antecedent consequent 

ra : IF a;i is AND X2 is AND . . . AND Xn is A), THEN y is c. •ij (5.1) 

The terms A\, k , n and B^ are linguistic (input and output) variables which repre-

sent vague terms such as small, medium or large and associated with each rule is a variable 

Cij G [0,1] that denotes the confidence in the rule being true. The rule maps the antecedent, 

formed by the intersection (the fuzzy AND operation) of n linguistic statements Xk is A\, to the 

consequent formed by a single univariate linguistic statement y is B^ (describing the system's 

output), through the fuzzy implication operator (IF (.) THEN (.)). A confidence of = 0 

means that the rule will never fire whereas if > 0 the rule will partially fire when the input 

is a partial member of the antecedent. The rule can be written more concisely as; 

I F O c i s j l ' ) T7HE:]\r 

where A ' is the multivariate fuzzy set formed from the fuzzy intersection (AND) of the 

individual univariate fuzzy sets. Multivariate fuzzy membership functions are formed by taking 

the tensor product of n univariates, resulting in different rule antecedents. 

In general, a number of production rules are required to adequately describe the relation-

ship between input and output and these are connected together using the fuzzy union (OR) 

operator to form the fuzzy algorithm. A system with m outputs can be implemented as m 

fuzzy algorithms each with n inputs and one output. 

Fuzzy rules provide a finite, vague description of the continuous input-output mapping, 

hence they can be used to either initialise or validate the model. The fuzzy rules provide a 

point-to-point mapping, the shape of the membership function determines how the network 

interpolates between these points. 
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5.3 Neurofuzzy systems 

Neurofuzzy systems (Brown and Harris 1994; Jang et al. 1997) are a particular fuzzy system 

where the fundamental components of the fuzzy system are constrained, enforcing a mathe-

matical structure. A neurofuzzy system combines the positive attributes (principally, learning 

and function approximation abilities) of a neural network with those of a fuzzy system rep-

resentation. This provides a transparent framework for representing linguistic rules with well 

defined modelling and learning characteristics. Whilst neurofuzzy techniques provide quanti-

tative predictions of complex multivariate systems, dependencies on individual input variables 

can remain transparent since underlying relationships contained in the data are (modelled) 

represented by easily understood rules. 

Generally, neurofuzzy networks are designed by first training a network on numerical 

data, then validating and correcting/extending its behaviour using fuzzy rules. The fuzzy 

interpretation plays a small (but significant) role, whereas the major part is the extraction of 

structural knowledge from the numerical data. When the basis functions are allowed to be 

distributed arbitrarily across the input space, as occurs in many radial basis function (RBF) 

networks (Jang et al. 1997), it is difficult to produce an easily understood fuzzy interpretation; 

however, if they are constrained to lie on a lattice (Bossley 1997), the concept of a fuzzy 

variable has a natural interpretation, the network's generalisation capabilities are transparent 

(enabling improved validation to take place) and simple fuzzy rule-bases can be generated. 

In lattice based systems, the fuzzy membership functions and the fuzzy operators will 

be seen in section 5.3.3 to be defined in such a manner that there exists a direct invertible 

relationship between the fuzzy rule-base and an associative memory network (AMN). Brown 

and Harris (1994) have shown that when B-splines are used to implement multivariate fuzzy 

membership functions, the output of a neurofuzzy system is given by: 

p 

% (x) = (%:) tui (5 2) 
1=1 

where (x) is the membership function of the multivariate fuzzy input set A\ and Wi is 

the corresponding weight. Therefore, the network's output is seen to be a weighted linear 

combination of the input membership functions. 

5.3.1 B-splines 

B-splines represent a method for approximating general multivariate functions in the form of 

polynomial segments defined over a grid partitioning of the input space. Figure 5.2 shows 

univariate B-splines of orders k = 1,... ,4. In each partition the output is approximated 

by a polynomial specified by the order of the univariate B-splines, joined together to form 

a continuous and smooth function over the input domain. On each interval, k coefficients 

are necessary to represent a polynomial of order k, and so k B-spline weights (basis functions) 
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contribute to the output. A series of these univariate basis functions are defined on the complete 

plecewise constant 

025 Oa 075 unhwlak Input 

(a) 

piecewlse quac&atic 

^ 025 05 075 1 uniwiak input 

plecewise linear 

025 05 075 wlvarlaW input 

(b) 

piecewise cubic 

025 &5 075 1 unhwiale Input 

(C) (d) 

Figure 5 .2: Univariate B-spl ine basis funct ions of order 1-4. 

input space of each input variable. The shape of a univariate B-spline is defined by its order. 

The shape, position and number of these basis functions determines the accuracy and flexibility 

of the resulting model, the degree of smoothness depending on the polynomial degree of the B-

spline. The set of univariate B-splines are defined by a knot vector, A = ( A q , A I , . . . , 

where k is the order of the splines, and r the number of univariate basis functions defined on the 

axis. The input domain of a set of univariate basis functions is given by [At, A ]̂ giving a total 

of (r — 2k) interior knots, A^ and Â  are known as the boundary knots. Univariate B-spline 

outputs are evaluated by the simple, stable recursive relationship: 

Z - A; 
(a;) = T (a;) -1- ̂  

where ay * represents the basis function with order k. 

Generally, it is advisable to limit the order of the B-splines to as low an order as is possible 

that produces an acceptable fit to the data, since high-order basis functions are generally too 

flexible, causing the network to overfit the data, reflected by a badly conditioned learning 

problem. 

Multivariate basis functions are constructed by tensor multiplication of the univariate basis 

functions. Each univariate and consequent multivariate basis function is tensor multiplied with 

every other one defined on the remaining variables, resulting in a lattice partitioning of the 
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input space. The number of multivariate basis functions produced from this operation is an 

exponential function of the number of inputs: 

i=l 

where pi is the number of univariate basis functions defined on the input. This property 

is known as the curse of dimensionality (Bellman 1961) and is common to many modelling 

techniques. As a result the cost, in terms of the number of basis functions required to im-

plement a network increases exponentially as the input space grows linearly. This is the one 

major disadvantage of B-spline networks, Umiting the use of such networks to problems of low 

dimensions (i.e. <4). 

5.3.2 B-spline networks 

B-spline networks have been widely used as surface fitting algorithms in graphical applications, 

a task comparable to modelling a continuous input-output mapping. In these networks, B-spline 

basis functions are employed to produce a continuous piecewise polynomial output and belong 

to the class of AMNs as they generalise locally (i.e. similar inputs map to similar outputs, 

whereas dissimilar inputs map to independent outputs). Since only the output layer weights are 

adapted, well established linear training algorithms, with provable behaviour characteristics, 

such as conjugate gradient (CG) or singular value decomposition (SVD), can be employed. 

B-spline networks form the output by a weighted sum of multi-dimensional basis func-

tions, given by: 

p 

y (x) = ^ ai (x) Wi = a ^ w (5.3) 
2 = 1 

where y (x) is the output, a is the vector of the multi-dimensional basis function outputs 

(ao ( x ) , . . . , Qp (x)), when presented by the input vector x = (a;i, . . . , Xn) and w is the 

vector of the associated weights. The structure resulting from this type of network is shown 

in Figure 5.3. Since the representation given in equation 5.2 is equivalent to that of a B-spline 

network, where the multivariate basis functions, o, (x) are the multivariate fuzzy membership 

functions, univariate B-spline basis functions can be used to implement fuzzy linguistic terms 

such as ageing time is short. This direct equivalence enables mathematical and algebraic tools 

used to train and analyse B-spline networks to be applied to neurofuzzy systems, with the added 

advantage that behaviour of the model can be represented as a set of fuzzy rules. 

The modelling ability of these networks is determined by the non-linear mapping per-

formed by the p n-dimensional basis functions, with the fundamental non-linear function 

controlled by the set of adjustable weights. 
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Figure 5.3; Representation of the structure of a B-spline network 

5.3.3 Weights and rule confidences 

From equation 5.2, the consequent and rule confidence corresponding to each rule antecedent is 

seen to be represented by the weight, w,. If the fuzzy output membership functions are chosen 

as symmetrical B-splines of order k < 2, the following relationship has been shown (Brown 

and Harris 1994) to hold: 

i = i 

(5.4) 

where q is the number of fuzzy output sets, is the centre of the output set and where: 

Cij ~ {wi) (5.5) 

i.e. given a weight Wi, the corresponding rule confidence Cij can be calculated by evaluating the 

membership of the weight of the fuzzy output set. Each weight will then generate a unique 

rule confidence vector. This unique invertible relationship allows the transformation from a 

network representation to the fuzzy rule base, and vice versa with no loss of information. 

5.3.4 Additive neurofuzzy models 

From section 5.3.1 it is seen that the application of neurofuzzy systems is limited to problems 

involving a small number of input variables by the curse of dimensionality. Thus to make high-

dimensional approximation feasible some form of complexity reduction must be performed, i.e. 

the number of production rules must be reduced without affecting (and possibly improving) the 

quality of the approximation. 
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The fact that experts find it hard to correctly articulate rules that depend on a large number 

of inputs, coupled with the curse of dimensionality, has directed considerable effort (Brown 

et al. 1995; Mills et al. 1995; Bossley 1997) to develop neurofuzzy construction algorithms 

capable of determining their structure automatically from a training set. The algorithms inves-

tigated were driven by and embodied the following data modelling principles: 

• Principle of data reduction: the smallest number of input variables should be used to 

explain a maximum amount of information. 

® Principle of network parsimony: the best models are obtained using the simplest pos-

sible, acceptable structures that contain the smallest number of adjustable parameters. 

This is also referred to as Occam's razor. 

The curse of dimensionality can be alleviated by exploiting structural information (such 

as redundancy) present in the data, whereby the function to be approximated is additively 

decomposed (globally partitioned) into a series of smaller submodels each of which can be 

viewed as a conventional neurofuzzy system: 

u 

U = 1 

where s (•) is a conventional neurofuzzy system whose input vector x„ is a subset of x. 

In globally partitioned neurofuzzy networks, both network transparency and the use of 

simple linear training algorithms is retained. The construction procedures search for additive 

structural relationships that may exist in the training data using an ANalysis Of VAriance 

(ANOVA) decomposition: 

n~l n—l3=i+\ 

/ (x) = /o 4- ^ (Zi) + ^ ^ (3:,, + . . . + ,n-i (x) (5.7) 
2=0 2=0 n—1 

where the function / (x) is simply an additive decomposition of simpler subfunctions, in which 

/o is a bias component and f i (xi), f i j (xi ,xj) , ... represent univariate, bivariate, and higher 

order terms. For many functions certain interactions are redundant, and hence their associated 

subfunctions can be removed from the ANOVA decomposition in equation 5.7, resulting in a 

less complex, more parsimonious model. 

The structure of an additive neurofuzzy network using second order basis functions is 

shown in Figure 5.4, in which the contribution of inputs xi,... ,X4 have been modelled by 

three separate subnetworks, two of which are given by piecewise linear approximations of xi 

and X2 and the third subnetwork contribution is provided by a tensor product involving 373 and 

3:4. 
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KXI 
Figure 5.4: Representa t ion of a n e u r o f u z z y addit ive network s tructure 

5.3.4.1 ASMOD algorithm 

The Adaptive Spline Modelling of Observation Data (ASMOD) algorithm (Kavli 1993) search-

es for an appropriate ANOVA decomposition, from a representative training set. 

Model construction can begin with an empty ASMOD model (containing no subnetworks) 

or it can be initialised from a set of fuzzy rules provided by an expert, specifying a set of 

statements describing the expected behaviour of the system. In the ASMOD algorithm, a suc-

cession of step refinements are performed on the model until an "optimal" model is obtained. 

The candidate refinements used and described below fall into either model building or pruning 

categories. 

® Univariate addition; inclusion of a new input variable into the model is achieved by 

introducing a new one-dimensional submodel. Univariate models are only included into 

the existing model if the new input is not present in the existing model. To make the 

model construction process more efficient candidate univariate subnetworks are drawn 

from an external store. These external stores represent a set of univariate subnetworks 

of different fuzzy densities for each input variable. Each univariate subnetwork in the 

external store defined on the input variables is added to the current subnetwork to produce 

a new candidate model. 

Tensor product: an existing submodel is given the dependency on another input variable 

by allowing a tensor multiplication of this with a univariate subnetwork drawn from the 

external store. Tensor multiplication is only allowed if the new input variable appears in 

the current ASMOD model, but not in the subnetwork to which it is to be multiphed. By 

having an external store containing different fuzzy set densities, the candidate models 

are provided with a range of possible flexibilities. 

Knot insertion: modelling flexibility of a subnetwork can be increased by insertion of 

a new basis function. This is achieved by inserting a new knot into one of its univariate 
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knot vectors, creating a new set of fuzzy membership functions for the input variable. 

To reduce the number of candidate refinements, the locations of these new knots are re-

stricted to lie halfway between existing interior knots present in the current subnetwork. 

During model construction, redundant model flexibility (i.e. fuzzy rules) may be introduced in 

certain regions of the input space. This undue flexibility (complexity) may be reflected in local 

overfitting and may contribute to inflating the uncertainty in some rules and weights. Redun-

dant flexibility (variance) may be removed by means of a set of model pruning refinements: 

• Subnetwork deletion: superfluous submodels in the ANOVA decomposition are re-

moved by deleting each of the subnetworks in the current model, producing a set of 

candidate evaluation models, each containing one less subnetwork than the current mod-

el. 

• Tensor split: some input variable interactions in the current model may be redundant 

and/or some basis functions poorly conditioned. These are prevented by allowing the 

splitting of existing submodels into two new additive submodels. 

• Knot deletion: redundant flexibility can be pruned by the deletion of input membership 

functions, by deleting a knot from one of the subnetwork knot vectors. Every interior 

knot in the entire ASMOD model is considered for knot deletion. 

• Reduce order: the condition of the basis functions and risk of overfitting small data sets 

may be improved by reducing the current order of the basis functions. 

The refinements described above are generally combined (e.g. (Friedman 1991)), to provide a 

coherent model search, into a series of pass structures. A typical/orwarJ selection /backward 

elimination (FS/BE) pass structure is: 

pass 

univariate addition 

tensor product 

tensor split 

pass 

subnet deletion 

pass 

knot insertion 

pass 

knot deletion 

pass 

reduce order 



Thus, in the FS/BE iterative construction algorithm an additive decomposition is identified by 

using univariate additions and tensor product refinements. When input variable interactions 

and general ANOVA decomposition have been found, the specific structure of the subnetworks 

can be further refined by evaluating a series of knot insertions and deletions. Both building and 

pruning refinements are performed until no further model improvement can be determined. 

5.4 Training neurofuzzy networks 

Training neurofuzzy networks can be decomposed into their linear and non-linear components: 

a search technique is used to identify the structural non-linearities whereas standard linear 

optimisation algorithms are used to identify the weights. This corresponds to the two distinct 

optimisation problems of model identification and parameter estimation. The following sec-

tions describe the model search methodology, criteria employed and weight estimation. 

5.4.1 Iterative model construction 

In common with many other modelling techniques (e.g. determining the optimal number of 

nodes in the hidden layer of an MLP, choosing the polynomial order of the approximating 

function, etc.) an appropriate model structure is determined by searching for a model that 

achieves an "optimal" performance on the particular objective function. 

The model should have sufficient adaptability to learn the structural information contained 

in the training data, but it should not be over-parameterised, as this will cause the model to fit 

the noise which is inherent in the data, and corresponds to selecting an appropriate size and 

structure for the model. 

When system understanding is limited, automatic model construction algorithms are re-

quired to search for an optimal model. Since an exhausive search in model space becomes 

computationally unfeasible in high-dimensional approximations, it is desirable to evaluate 

only a limited number of models. Section 5.3.4.1 outlined a series of candidate refinements 

to be considered in the development of an appropriate model structure. Implementation of 

the ASMOD algorithm into the neurofuzzy framework can be summarised by the following 

iterative procedure; 

• Start: model construction is initialised from an initial network structure, which may 

simply be an empty model or a model reflecting prior system understanding. 

® Evaluation: depending on the pass structure employed in the model search and the 

step in the model construction, a number of candidate refinements (indicated by the 

pass) are considered for updating the current model. 

• Estimation: the set of candidate models defined by the pass are trained on the 

training data using efficient matrix update formulae (Orr 1996) wherever possible to 
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speed up this computationally demanding process. 

« Selection; the performance of all candidate models resulting from the pass, including 

the current model), are evaluated. Model selection is then based on the network 

exhibiting the best performance measure (section 5.4.1.1). 

• Termination/Re-evaluation: if the model construction has not reached the final pass, 

then either the search moves on to the successive pass or a new set of candidate 

refinements defined by the (same) pass are evaluated, depending on whether the 

^th+i niodel resulting from the selection procedure is respectively, the same as the 

model or one of the candidate refinements evaluated from the pass (in which case 

^th+i ^ ^th jnodel). If the final pass has been evaluated, with no development in 

the model (i.e. the model search is terminated, otherwise a new set of 

candidate models defined by the final pass are evaluated. 

As with all iterative searches, there is still no guarantee that an optimal model will be found. 

In section 5.4.1.2 criteria which negotiate local minima in the objective function, built into the 

construction algorithms are discussed. Marenbach and Brown (1997) proposed an alternative 

model search strategy based on genetic algorithms to successfully overcome such local minima. 

5.4.1.1 Model performance measure 

From the set of candidate models present at each step in the model construction, a model 

selection is performed. The selection must be such that a compromise between the accuracy 

and the complexity of the approximation is achieved, i.e. addressing the bias/variance trade-off 

discussed in Chapter 3. 

As discussed in section 3.8.1 there are a number of techniques which try to address this 

problem, all of which try to minimise the prediction risk (equation 3.8). It was seen that 

a method that tries to achieve a balance between the quality of the approximation and the 

complexity of the approximating function of the final model is through use of statistical signif-

icance (SS) measures derived from information theory heuristics and which measure network 

parsimony. These combine the training MSB with some measure of the model's complexity, 

giving an expression of the form presented in equation 3.10. 

In view of the performance and properties exhibited by the SRM principle, this was used 

as the model complexity measure throughout this work, yielding the following SS measure: 

gg(MSB,Ar,p) = MSE X 
1 

1 (1+p) ln(2Ar)-ln((l+p)!)+A'2 
N 

(5.8) 

defined in (Gunn et al. 1997), see also section 6.2.3. 
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5.4.1.2 Termination criteria 

To terminate the model selection at each pass, termination criteria are built into model construc-

tion procedures. Two rules, & failure margin and a tolerance requirement are used to embody 

model search termination criteria (Gunn et al. 1997). The failure margin (Fm) effectively 

allows for the model search to escape from local minima during the refinement process, by 

allowing the model to look n steps ahead into the model structure (as defined by the value set for 

Fm)- The second rule, defined by the forward {ftoi) or backward (6^/) tolerance levels, places 

an emphasis on the parsimony of the network. In a model building stage a new refinement 

(which in general will increase the network size) will be required to reduce the model perfor-

mance measure by a certain percentage, defined by ftou whereas during a model pruning stage 

a new refinement (which generally will reduce the network size) will be allowed to produce 

an increase in the model performance measure by a certain percentage, defined by btoi- These 

may improve model construction by rejecting refinements for which the inclusion/retention of 

extra parameters yields only a marginal improvement in the model performance measure, thus 

acting as a further safeguard against constructing over-parameterised models. 

The typical values for the tolerance levels and failure margin which have been used in 

previous studies have been retained in the present work and are summarised in Table 5.1. At 

Pm ftol btol 

2 3% - 1 U ) % 

Table 5.1: Model search termination criteria values employed. 

each iteration of the ASMOD algorithm, the refinement producing the largest reduction in the 

statistical significance measure, subject to the tolerance requirements, is chosen. If a succession 

(defined by Fm) of optimal refinements fail to improve the statistical significance measure of 

the whole model, then the algorithm is terminated. 

5.4.2 Parameter estimation 

From section 3.6 it was seen that assuming a flat prior distribution for the weights, the most 

probable weights for a given model structure are found by the maximum likelihood (ML) esti-

mates which minimise equation 3.4. This cost function can be expanded to a positive quadratic 

function of the weight vector, given by: 

T 
J n = w ^ R w — 2w^p -f (5.9) 

where 

1 ^ 1 
R = (5.10) 

i=l 
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is the [p X p] autocorrelation matrix, A is the [TV x p] solution matrix whose row, a^, is the 

transformed input vector for the input, and 

1 ^ 1 
p = jY == (5 11) 

%=1 

is the p-dimensional cross-correlation vector. Equation 5.9 has its minimum at w*, where 

each element of the gradient vector dJ/dw, is identically equal to zero (i.e. dJ^/dwi = 0, 

1 <: % p): 

== 2]tTv --S!p = 0 (5.12) 
a w 

Then, Jjv is minimised by the weight vector w, which satisfies the system of linear equations, 

the normal equations, R w = p, giving the least squares solution to the system, A w = y. 

Thus, minimising the MSE across the training set reduces to identifying the optimal weight 

vector given by: 

TV* = ]RL-il) (5.13) 

which relies on the availability of computing the inverse of the autocorrelation matrix, R, 

which is by definition a real symmetric positive semi-definite matrix. If R is nonsingular 

(rank (A) = p), it can be inverted, the normal equations have a unique solution and the MSE 

has a global minimum in weight space. By contrast if R is singular, there exists an infinite 

number of solutions and the problem is said to be underdetermined (often the existence of a 

singular autocorrelation matrix is the result of a poorly distributed training set). In such cases, 

it is desirable to find the minimum norm solution, i.e. the unique solution which yields the 

smallest size weight vector ||w||2 (small weight values mean that the network should generalise 

sensibly across its input space). The solution to the system A w = y can then be determined 

by performing the pseudo-inverse of A: 

J i t = Ajr = 

from which the least-squares solution is given by 

w = A^y 

Generally methods based on the normal equations are computationally cheaper but round-off 

errors can be introduced in the formulation of R, which for ill-conditioned problems produces 

large errors in the solution. Since B-splines are naturally sparse (the constant term for one 

submodel can be shifted by an arbitrary amount and the other submodels adjusted so that the 

output is equivalent) the autocorrelation matrix will be singular. 

Parameter convergence is essential if the model is expected to generalise sensibly outside 

its training domain. The condition of the basis functions provides an important measure of how 



well this is achieved. The magnitude of the weight vector error related to the output error is 

shown by Brown and Harris (1994) to be bounded by the following; 

The significance of this equation stems from the fact that when the condition number of the 

set of basis functions is large, a small normalised output error does not necessarily imply that 

the normalisation error in the weight vector is small, i.e. output error tests are not sufficient to 

determine when to stop training, as the parameter errors could be very large. 

A further result is that when the order of the B-splines is incremented by one, the corre-

sponding condition of the set of basis functions increases by a factor of two (Brown and Harris 

1994). Thus, the order of the basis functions should therefore be sufficiently high that the 

desired function can be modelled adequately, but it should also be as small as possible to keep 

the basis well conditioned. Using basis functions of as low an order as possible also reduces 

the computational cost of the algorithm and lowers the possibility of overfitting the data. 

A detailed description and comparison of methods (both direct and indirect) that have been 

used to solve the linear optimisation problem in neurofuzzy systems is given in (Brown and 

Harris 1994; Bossley 1997). Among these SVD based and conjugate gradient (CG) methods 

were preferred as they possess several important properties. SVD is a direct method in which 

the pseudo-inverse is found in a well defined number and sequence of arithmetic operations; 

CG is an iterative method that optimises without explicitly performing matrix inversion 

and is particularly well suited to large sparse systems. In CG, an initial solution is successfully 

improved by repeating a set of simple operations until an acceptable solution is obtained. 

For singular matrices, both methods give the minimum norm solution (for CG by initiahs-

ing weight values to zero) and so introduce uniqueness. The minimum norm solution becomes 

relevant if there are two or more subnetworks, or an input is included multiple times. 

5.5 Regularised networks 

Neurofuzzy model construction algorithms attempt to minimise structural redundancy by 

searching for a parsimonious model structure where weight identification was based on max-

imising the likelihood function in equation 3.3. However, iterative construction algorithms 

have been found to be prone to overfitting, due to the inclusion of redundant degrees of freedom 

during the model construction. In regions of the input space where there is redundant model 

structure, rule confidences will be inadequately identified by the data, often resulting in erratic 

output surfaces and nonsensical fuzzy rules. In neurofuzzy networks the principal reason for 

the presence of redundant parameters results from the structural symmetry enforced by the 

requirement for model transparency. As discussed in section 3.6, a solution to this is to assign a 

prior p.d.f., P (w) on the value of the weights in order to regularise superfluous model structure. 
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By giving the network learning process a probabilistic interpretation (Bishop 1995), the 

error function is interpreted as minus the log likelihood for a noise model: 

f exp( - ;8^D(w)) 

where ZD{/3) is a normalisation factor, E c ( w ) = N/2JN corresponds to the assumption of 

Gaussian noise on the output and 0 defines the noise level a l = l / p . Similarly, defining the 

regulariser in terms of a log prior probability distribution over the parameters; 

where Zw{ct) is a normalisation factor and the corresponding prior distribution is a Gaussian 

with variance = 1 /a. Then, making normal regression theory assumptions, the maximum 

of the posterior estimate of the weights becomes the weight vector that minimises the cost 

function given by: 

2=1 

= P E o i ' ^ ) + ciEyj{-w) (5.14) 

The ratio a / [7V/3] is the regularisation coefficient (A), controlling the trade-off between the 

MSE and the regulariser, and so controls the bias/variance trade-off. The amount of regular-

isation performed will significantly affect the generalisation ability of the model and a good 

match must be established between the model's bias and variance. The function Eu,{w) is 

known as the regulariser, which penalises the MSE cost function by constraining the values 

of the weights, and in so doing controls redundant degrees of freedom. From section 3.9.2 

the form of a second order regulariser should represent the expected curvature of the model's 

output across the input space (denoted by V): 

— f 
Jv 

y(x, w) 
dx? 

2 

p{x)dx (5.15) 

and in the limit the resulting curvature regularisation should produce models which are linear. 

To form the curvature matrix K requires the second order derivatives of the model's output 

to be determined. Bossley (1997) approximated the expected value of the curvature for additive 

B-spline networks by taking the sum of the curvature at various points throughout the input 

space. To adequately regularise across the model's input space a grid was considered on this 

space by taking the tensor product of the centres of the univariate basis functions of the various 

subnetworks. The curvature is then calculated at the intersects of the grid, requiring the sum 

of Up = Hmzzi PU curvatures, where pu is the number of multivariate basis functions in the 

subnetwork. The curvature of the model at a given input was then considered as the sum of the 



weights. Denoting the intersects of this grid by gj, the regulariser becomes; 

1 ^ 1 v—\ 

2 ^ 
1=1 

2 

- ' 4 

2 

1 ^ 

-
2=1 .M = l 

2 

(5.16) 

where [k"]^w represents the curvature of the output of the u subnetwork at g,. As w is the 

concatenation of the subnetwork's weight vectors: 

Ewi-w) 

np 

1=1 

- w ^ K w (5.17) 

where k, is the concatenation of the subnetwork curvature vectors k", and so K represents the 

sum of the curvature squared (evaluated at g,, the curvature is determined at the centres of the 

Pj subnetwork basis functions) for an additive model. 

Applying this to conventional neurofuzzy models, modifies the cost function to be; 

JR 2 -JN + g W K w (5.18) 

and since Jpf is the conventional MSE cost function (equation 5.9), this leads to the following 

quadratic cost function: 

JR 
2 

w R w — 2w p + 
t y y 
N 

a 
+ — w ^ K w (5.19) 

and differentiating this with respect to the weights and setting to zero, gives the solution: 

vfmp ==/3 (5.20) 

Thus by defining the regulariser as a quadratic function of the weights, for fixed a and P, the 

optimal weight vector can be found by simple linear optimisation techniques. The resulting 

prior distribution is a multivariate normal distribution with zero mean and covariance matrix 

and so the number of degrees of freedom identified by the data are controlled by the 

variances of the priors. A global prior across the complete weight vector assumes an equal 

degree of smoothness throughout the input space. For additive models it may be more appro-

priate to treat the weights of the individual subnetworks independently, since real non-linear 
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processes exhibit different degrees of smoothness. As such, different priors may be placed on 

different areas of the input space, giving a more flexible, local form of regularisation. 

Thus for local regularisation, different priors are assigned to the different subnetworks, 

producing a posterior p.d.f. for the weights given by: 

where a represents a {/-dimensional vector consisting of the variances of the U priors. These 

priors are defined as normal distributed p.d.f.'s producing quadratic regularisers of the form: 

(5.22) 

and the maximum of the posterior weight estimate from this new posterior gives the following 

cost function: 

u 
a, ;8) = -1- ̂  (5.23) 

i 

where the individual subnetwork's weights are regularised independently by their own regu-

lariser, each with its own regularisation coefficient, thus accounting for different smoothness 

conditions on the subnetwork's output. Here K will be a block diagonal matrix comprising all 

the local prior's variances a%'s and K„ matrices: 

K 

ftiKi 0 

0 o iu^u 

The extension of Bayesian regularisation techniques to the neurofuzzy framework, within 

an evidence framework, was developed by Bossley (1997) as a post-processing method of 

controlling redundant degrees of freedom in models determined by the iterative construction 

algorithms. 

In the evidence framework, briefly discussed in section 3.10.1, the balance between the 

model's bias and variance will be controlled by the variances of the likelihood function and 

the prior p.d.f.'s, the reciprocals of which are referred to as the hyperparameters, i.e. P and a. 

From section 3.10.1 these control how much the weights are regularised, thus controlling the 

effective complexity of the model. The identification of the multiple hyperparameters can be 

found by maximising their posterior p.d.f.: 

(5.24, 

where is introduced to these p.d.f's to represent the model structure, and the type of regu-

lariser used. 
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Assuming the prior p.d.f. for these hyperparameters to be uniform (representing no a 

priori knowledge) and since P{y\X,'hL) is simply a normalising constant, the maximum 

posterior values for the hyperparameters can be found by maximising the likelihood term 

P{y\X, a , /3, T-L). This is the evidence for the data given a and P, which is the normalisation 

coefficient in the posterior p.d.f. for weights given by; 

P{y\?C,a,l3,'H) = [ likelihood x prior dw (5.25) 
Jw 

Jw 

By using a Taylor series expansion of the cost function around the maximum of the poste-

rior weight estimate, Wmp, performing appropriate Gaussian integrals and taking the log of the 

resulting evidence, an equivalent evidence function can be determined: 

E (a, ,8) = - Jj; (wmp, a, ^ log det (H) (5.26) 

N V—^ 

u=l 

^ "O 1 
y log «« + 2 log det (Ku) 

The hyperparameters are found by maximising this evidence and results in a non-linear optimi-

sation problem. By assuming the Hessian and the maximum of the posterior weight estimate 

to be stationary with respect to the hyperparameters, Bossely derived re-estimation formulae in 

order to determine the values of /3 and a which maximise the evidence: 

3*4-1 A" -

2-£'D (w,np) 
(5.27) 

where: 

where H is the Hessian of the cost function, given by H = 4- K, and is the 

maximum of the posterior weight estimate determined for the current value of the set of hy-

perparameters. By constraining the hyperparameters such that {ajj{N/3)] G (0,1] these were 

found to converge to a practical and consistent solution (Bossley 1997). However, as these are 

non-stationary, a maximum of the posterior weight vector is re-evaluated after each iteration. 

By considering a and ^ as opposed to a single regularisation coefficient. A, can give 

insight into the success of the final model, i.e. /3 gives an estimate of the noise variance and 

can be used to incorporate available a priori knowledge about the expected noise level. Also, 

Bayesian regularisation allows the values of the regularisation coefficients to be determined 

directly from the data, without the necessity of employing cross-validation procedures. 



5.6 Linear smoothers 

As neurofuzzy networks are linear in the weights, they can be represented as a linear smoother, 

where the fit to the data set is given by: 

y = Sy 

The matrix S is known as the smoother matrix, and for unregularised models is represented by: 

S = AR-^A^ (5.30) 

Since the number of degrees of freedom is a measure of the number of independent parameters 

used to fit the data, for a linear smoother this is given by the sum of the eigenvalues of S, i.e. 

tr{S) (Buja et al. 1989). For neurofuzzy networks, S has r non-zero eigenvalues, where r is 

the rank of A. Hence the degrees of freedom found in a conventionally trained neurofuzzy 

model' is given by the rank of A: 

df = rank{A) = tr{S) (5.31) 

As regularisation changes the form of this smoother, and consequently the number of degrees of 

freedom, the amended linear smoother matrix for a regularised neurofuzzy network becomes: 

3a, /LdLbg/VTRH- (5.32) 

The number of degrees of freedom are hence controlled by the hyperparameters a and p. If we 

represent [PNH + aK] by H, i.e. the Hessian of the cost function, the number of degrees of 

freedom of a regularised model is given by: 

df = JV,9^r(RH-^) (5.33) 

For linear smoothers the LOOCV variance estimate can be determined as 

jLOOCl/ = /l/i -%/ i (x ,w)\ 
\ 1 / 

where sa are the diagonal elements of the smoother matrix defined in equation 5.30 and so 

there is no need to remove the data pair from the training set and re-estimate the weights, 

as it can be determined with simple matrix algebra^. 

'For additive unregularised networks the degrees of freedom can also more simply be determined as: 

df = p — (! / — 1) 

^For linear models, LOOCV can be calculated analytically (Orr 1996) as: 

where P = I — is referred to as the projection matrix. 
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5.7 Error bars 

In Chapter 3 a useful property of a model was identified to be the representation of output 

uncertainty, i.e. assessing the confidence of the model's own predictions with respect to an 

input. As the neurofuzzy systems are linear in the weights, error bars can be derived in a 

similar way to that presented in section 3.11. In neurofuzzy networks, the sensitivity of the 

output with respect to the weights is given by dy (x) / 5 w = da. (x)^ w / 0 w = a (x). 

As there will be uncertainty in both the estimate given by the regression function and the 

noise level on the output, the variance in the model's prediction for unregularised models will 

be given by: 

a ^ = + (T^a'^(x)H~^a(x) (5.36) 

where H = A ^ A is the Hessian^ of the cost function, J^r (equation 5.9). 

In networks regularised within a Bayesian framework, error bars will be comprised by a 

term comprising the posterior weight uncertanty (i.e. width of the posterior distribution of the 

network weights) and one which arises from the intrinsic noise in the data as determined by the 

hyperparameters. Under the assumption that the posterior in weight space can be approximated 

by a Gaussian, the contribution of the weight uncertainty to the variance in the prediction is 

given by; 

o"! = a^ (x)H"^a(x) 

Then, the noise on the network's output will be a Gaussian p.d.f. with mean y (x, w^p) = 

a^(x)wmp and variance: 

or̂  = i + a^ (x)H"^a(x) (5.37) 

where H = /3A^A + K is now the Hessian of JR (equation 5.19). However, as error bars will 

be large when the output is inferred from weights for which both the prior and the likelihood 

function have little confidence, there will be no indication of whether the model's output has 

been inferred from the regulariser as opposed to the data. Therefore, regularisation may lead 

to unfounded confidence in the model's output estimates. 

^The Hessian matrix of a cost function J , denoted by H , is defined as the second derivative of J with respect to 

the weight vector w : 

H = ^ 

Then the covariance matrix represents the uncertainty in the (maximum posterior) weight estimate. For 

directions in the weight space for which the variance is high the associated confidence in the weights will be low. 

To provide error bars on the output, this covariance needs to be translated from the weight space into the output 

space. As neurofuzzy networks are linear in the weights this is seen to be trivial. 
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When model outputs have been inferred entirely from the prior p.d.f. little confidence 

should be placed in the model's predictions. By approximating the posterior p.d.f. by the 

likelihood function, error bars can be derived entirely from the data as in maximum likelihood 

estimation (Bossley 1997), representing the confidence in the model's output given by the data: 

= a^(x) a(x) 

5.8 Network diagnostics 

In section 4.5, two examples of diagnostics (influence measures) for linear models were consid-

ered. In a similar way, an appropriate Cook distance measure has been defined for generalised 

additive models (Hastie and Tibshirani, 1990), sensitivity measures can also be defined for 

additive neurofuzzy models, resulting in the following one-case deletion formulae, Cf and 

Hh I 

o2 

df M g E 

and 

(1 — Sii) . 
(5.38) 

(1 - 1 1 --5a (^"39) 

where sa are the diagonal elements of S and df, the degrees of freedom as given by equation-

s 5.31 or 5.33 depending on whether the model has been regularised. 

A comparison between the Cf and the diagonal elements of the respective smoother 

matrices, (H,S) obtained on the BAP4SLC5W data set (Chapter 9) from a MLR model and 

an equivalent neurofuzzy model structure"' are shown in Figure 5.5. 

' 'The sensitivity results shown in Figure 5.5 were obtained f rom defining equivalent linear models (i.e. the 

neurofuzzy network was defined with two second order basis functions), including all 13 inputs in the BAP4SLC5W 

data set. In the M L R model the bias term was defined implicitly. For both models, df = 14 and hence = 8.89. 
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Figure 5.5: Comparison between the Cf values and elements of the diagonal elements of the hat 
(smoother in the neurofuzzy model) matrix determined for a MLR model (a) and (c) with those derived 
form an equivalent unregularised neurofuzzy model (b) and (d). 
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5.9 Worked example: modelling the equation of the plastic zone 

size 

For the purposes of illustrating the empirical capabilities of the neurofuzzy framework consid-

ered throughout this work, a worked example relevant to the materials application investigated 

is presented. A suitable test for the ASMOD construction algorithm would be to see whether 

a known analytical function can be approximated from a simulated data set generated from a 

known function. 

The equation for the plastic zone size (PZS) at the crack tip, r^, (i.e. boundary of the 

plastic zone) is derived from a simple elastic description of the crack tip stress field, given by: 

Fp == 3F [ (cos (§)) (1 + 3 (sin (§)) 

+K1K11 s i n (9) 3 c o s ( 0 ) — ( 1 — 2u) (5.40) 

3 + (sin (§))^ [(l - 2i/)^ - 9 (cos (§))' 

with; 

i Ck 
Ki = . = and Kn = 

\ / l v T + 

and where 9 is the angle with respect to the crack tip, u is Poisson's ratio of the material, Kj 

and Kii are respectively mode I and II stress intensity factors, and finally a defined as Ku/Kj 

describes the elastic stress field (see e.g. (Ewalds and Wanhill 1984)). 

Additive Gaussian noise was added to the inputs (iV(0,0.001)) and to the output values 

(iV(0,0.01)) obtained for the estimated radius of the plasic zone size determined from equa-

tion 5.40 from the noisy inputs. 

Data was appropriately sampled and constrained to lie within sensible ranges; 9 was 

uniformly sampled in the range [0,27r], i> was normally distributed around a typical value 

for metallic structures (0.33) and a was uniformly sampled in the range [0,1] (i.e. from pure 

Ki to Ki = Kii', thus for the same net crack tip driving force (or strain energy release rate), 

the Ki i /Ki ratio has been varied). A relatively small data set comprising 250 samples was 

generated, from which a training set of 200 randomly sampled data pairs was defined, leaving 

the remaining samples (50) as a validation set. 

Starting from an empty model structure, the ASMOD algorithm defined in section 5.3.4.1 

was left to determine an appropriate model structure by employing the model selection criteria 

outlined in section 5.4.1. The order of the basis functions was limited to be < 3 while the data 

was normalised to lie between [—1, -f-1]. 

In Figure 5.6 the refinements performed in the iterative search by the model construction 

algorithms can be seen. From the variables included in the final model (Figure 5.6 (h)), it is 
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seen that the behaviour of the crack tip stress field is characterised by a, with both Ki and Kn 

omitted from the model. The omission of these two variables is reasonable as they are part of 

the definition of a . The evolution of the iterative search in terms of the model performance 

measure (SS) and the training set MSE are illustrated in Figure 5.7. The corresponding subnet-

work outputs for the final model are shown in Figure 5.8; the tensor subnetwork a x 9 can be 

understood in terms of both the range of a ' s considered and the symmetry exhibited by 9. The 

scatterplot between model predictions and the corresponding targets (output vectors) are shown 

in Figure 5.9 for both training and test data sets, showing that good predictive performance has 

been obtained. 

Finally, in Figure 5.10 the predictions obtained for the neurofuzzy model determined are 

compared with the true analytical values given by equation 5.40 as a function of 9 and by 

setting the other inputs to arbitrary values. Clearly, for this simulated data set, the construction 

algorithms have been able to approximate the underlying analytical solution well. 

5.10 Conclusions 

Two points, raised by Brown et al. (1996) are considered important in the present work: in the 

simplest situation, a network should be able to model a linear input-output relationship (which 

should be explicit in the network's structure) and the network's structure must be the simplest 

possible as this will enhance the transparency, enabling the validation of the dependencies 

inferred, and by limiting redundancy is likely to result in improved generalisation abilities. 

As with any empirical modelling technique, the quality of the data (as discussed at length 

in Chapter 3) is important, both in terms of the availability of a sufficiently descriptive set of 

training samples, as well as a set of reliable explanatory input variables. In high-dimensional 

approximation however, regions of the input space will be poorly covered by data (a direct 

consequence of the curse of dimensionality). The additive decomposition used in this work 

can be an effective method of dealing with poorly distributed data sets. The main advantage of 

a global decomposition of the input space is in the attainment of simple local representations 

which can be used to explain the knowledge extracted from the training data, with the advantage 

of a fuzzy rule base interpretation, i.e. transparency and parsimony. 

The advantages of the models being linear in the weights, not only allows efficient linear 

learning algorithms to be used to adapt the weights, but also allows straightforward generalisa-

tions of statistical methods developed for linear models to be implemented. 

The construction algorithms may however still produce models that generalise poorly, 

which can be attributed to ill-conditioned basis functions, resulting from a poor distribution 

of the training data in intervals corresponding to certain basis functions. Local ill-conditioned 

basis functions are not picked up in the overall model's condition number due to continuity 

constraints imposed by the B-splines. 

Bayesian regularisation techniques can be used as a post-processing method for control-
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Figure 5.6: Iterative model refinements performed by the ASMOD algorithm in the modelling of 
equation 5.40. Subfigures (a) to (h) illustrate the refinements performed at each step in the model 
construction. 
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Figure 5 .7 : Mode l p e r f o r m a n c e measu res at each step in the mode l const ruct ion: M S E (a), SS (b). 

The dashed line represents the re f inements considered at par t icular s tages of the mode l search which 

a l though m a y in some c i rcumstances improve the fit to the t raining set, fai led to sat isfy the mode l 

selection criteria. 

00 (b) 
Figure 5.8: Subne twork responses cor responding to the final mode l (Figure 5 .6 (h)) obtained by the 

A S M O D mode l const ruct ion a lgor i thms: the a x 0 tensor subne twork (a), and the univariate subne twork 

for V (b). 

ling excessive degrees of freedom present in the models identified by the iterative construction 

algorithms. 

The implementation of Bayesian forms of inferencing (e.g. model comparison and reg-

ularisation) within iterative model construction procedures would result in a computationally 

very expensive training framework since the evidence and the optimal values for the hyper-

parameters have to be determined for each candidate refinement considered. Although such 

inferencing may enable improved performance over maximum likelihood estimation, since 

larger models are likely to be determined (arising from a less severe form of variable selection) 

as a result of biasing the maximum likelihood weight values, the iterative nature of the model 

construction will not prevent local minima entrapment. 
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f o r a rb i t ra ry va lues of the o t h e r va r i ab le s ( a = 0 .5 , v — 0 . 3 3 ) a n d the t rue e s t ima te s of the u n d e r y i n g 

f u n c t i o n . 



Chapter 6 

Statistical Learning Theory and 

Support Vector Methods for 

Regression 

6.1 Introduction 

In recent years there have been significant advances in statistical learning theory and the devel-

opment of support vector (SV) methods for both classification and regression (Scholkopf et al. 

1999). Support vector machines (SVM) are an emerging technique, which has proven success-

ful in many traditionally neural network dominated applications (Cherkassky and Mulier 1998) 

(see also references in (Surges 1998)). In this chapter, the fundamentals will be described upon 

which SV methods for regression are based. Both theoretical and implementation issues will 

be briefly described to enable a general understanding of the properties of these learning ma-

chines' . SVM properties and implementation techniques offer an interesting alternative to the 

neurofuzzy approach. The chapter will conclude by describing a recently proposed transpar-

ent modelling approach. Support vector Parsimonious ANOVA (SUPANOVA). In subsequent 

chapters this will be the principal SVM implementation of interest, which has been applied to 

the alloy systems under investigation and compared with the results achieved by the neurofuzzy 

framework. 

6.2 Statistical learning theory 

In contrast to the classical approaches developed for large samples and based on using various 

types of a priori information, statistical learning theory (SLT) (Vapnik 1998) describes sta-

tistical estimation for small data samples. SLT provides a quantitative characterisation of the 

'Here learning machine refers to a family of functions / (x, w) . 
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trade-off between the complexity of approximating functions and the quality of fitting to the 

training data. 

6.2.1 Empirical risk minimisation 

The goals of predictive learning are to estimate unknown dependencies in a class of approx-

imating functions using the available data, with the optimal estimate corresponding to the 

minimum of the expected risk functional; 

^ [ / ] = y^ (3 / , / ( x ,w) )p (x , ! / ) dx ( i2 / (6.1) 

The objective is therefore to find a function - L ( y , / ( x , w ) ) that minimises equation 6.1 in 

the case when the probability distribution p (x, y) is unknown but the sample {x, of 

observations drawn randomly and independently according to p (x, y) is available. 

The empirical risk minimisation (ERM) principle seeks an estimate providing the mini-

mum of the (known) empirical risk, as a substitute for the (unknown) true expected risk: 

1 ^ 
^ ^ (2/, / (Xi, W) ) (6.2) 

%=1 

However, approximations provided by the ERM principle for a given sample size N are always 

biased estimates of the "optimal" functions minimising the true risk (as the true risk does not 

depend on a particular sample), since for a given sample size it can be expected that Remp [/] < 

R [/], as the learning machine always chooses a function that minimises the empirical risk but 

not necessarily the true risk. 

The ERM method is said to be consistent if it provides the sequence of functions 

L {y, f (x,w)) , N = 1 , 2 , . . . , for which both R [f] and Remp [/] converge in probability 

to the minimal possible (for a given set of functions) value of risk as the number of samples 

grows infinite. The ERM method however does not contain any means of capacity control 

(besides choosing a smaller set of functions) which makes it very sensitive to overfitting and 

noisy data. 

6.2.2 Structural risk minimisation 

SLT does not rely on a priori knowledge about the problem to be solved and provides upper 

bound estimates on the expected risk. The minimisation of these bounds, which depend on 

both the empirical risk and the capacity of the function class, leads to the principle of structural 

risk minimisation (SRM) (Vapnik 1979). 

The SRM inductive principle provides a formal mechanism for choosing an optimal model 

complexity for a finite sample. Unlike statistical methods, SRM provides accurate analytical 

estimates for model selection based on generalisation bounds. 
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Expected risk R [ / ] 

m i n R [ / ] 

\ 
Empirical risk R — [ / ] 

N 

Figure 6.1: The learning process is consistent if both the expected risks R [/] and the empirical risks 
Remp [/] converge to the minimal possible value of the risk R [/]. Estimates provided by the ERM 
principle should converge to the true (or best possible) values as the number of training samples grows 
large. 

According to the SRM principle, solving a learning problem with finite data requires a 

priori specification of a structure on a set of approximating (or loss) functions. Under SRM the 

set S of loss functions L (y, / (x, w)), w G Q has a structure, that is, it consists of the nested 

subsets (or elements) Sk = {L {y, f (x, w) ) , w E such that 

,Si c: S 2 ( : . . . c: ,St c . . . 

where each element of the structure % has finite Vapnik-Chervonenkis (VC) dimension 

hk (Vapnik 1998). The VC dimension, h, is a scalar value that measures the capacity or 

expressive power of a set of functions realised by the learning machine^. By definition, a 

structure provides ordering of its elements according to their complexity: 

hi < /i2 . . . < /ifc . . . 

SUr shows that it is imperative to restrict the class of functions that / is chosen from to one 

which has a capacity that is suitable for the amount of available training data. For a given set of 

observations, the SRM method chooses the element Sk of the structure for which the smallest 

bound on the risk is achieved. 

To control generalisation in the framework of this paradigm, two factors are taken into 

consideration: the quality of the approximation of the data by the chosen function and the 

capacity of the subset of functions from which the approximating function was chosen. 

The main difference between the SRM principle and statistical methods is in the control of 

a general capacity factor (VC dimension) instead of a specific one (e.g. number of parameters). 

An important feature of the SRM principle is that capacity control can be implemented in many 

different ways (using different types of structures). 

^For linear methods, the VC dimension can be estimated as the number of degrees of freedom. 
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6.2.3 Generalisation bounds 

The theory of uniform convergence in probability (Vapnik 1979) provides bounds on the de-

viation of the empirical risk from the expected risk. The upper bounds on the rate of uniform 

convergence of the learning process evaluate the difference between (unknown) true risk and 

the known empirical risk as a function of sample size N, properties of the unknown p.d.f. 

p{x,y), properties of the loss function, and properties of the set of approximating function-

s (Cherkassky and Mulier 1998). These bounds not only provide the main theoretical basis 

for the ERM inference, but also motivate the SRM method of inductive inference. Both the 

necessary and sufficient conditions of consistency and the rate of convergence of the ERM 

principle depend on the capacity of the set of functions implemented by the learning machine. 

With probability I — r], the bounds are given by: 

-RLf] < + <6.3) 

VC confidence 

The right-hand side of equation 6.3 is termed the risk bound or guaranteed risk. Minimis-

ing the expected risk R [/] requires the minimisation of the right-hand side of the inequality 

simultaneously over both terms, thus requiring the VC dimension to be a controlling variable. 

From the above it is seen that, in order to achieve small expected risk (i.e. good generali-

sation performance), both the empirical risk and the h/N ratio have to be small. The first term 

in the above inequality depends on a specific function of the set of functions, while for a fixed 

number of observations the second term depends mainly on the VC dimension of the whole 

set of functions. Best generalisation performance is then attained by matching the machine 

capacity to the amount of training data available. 

In the above inequality, for a fixed number of training examples N, the training error 

decreases as the capacity (or VC dimension) h is increased, whereas the confidence interval 

increases. Accordingly, both the guaranteed risk and the generalisation error go through a 

minimum. 

A trade-off between the accuracy of the approximation of the training data and the capacity 

of the machine has to be made, as formalised in the SRM principle. 

Before the minimum point is reached, the learning problem is overdetermined in the sense 

that the machine capacity h is too small for the amount of training detail. Beyond the minimum 

point, the learning problem is underdetennined because the machine capacity is too large for 

the amount of training data. 

For large sample sizes, the value of the confidence interval (or VC confidence) becomes 

small, and the empirical risk (and hence the ERM principle) can be safely used as a measure 

of true risk. However, for small sample sizes^, a small value of the empirical risk does not 

^In (Vapnik 1998) the size N of the sample is considered to be small for the purpose of estimating functions, on 

the basis of the set of functions with V C dimension h if the ratio N/h is small, say N/h < 20. 
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Error 

Guaranteed risk 
\ / (bounded on generalisation error) 

Confidence interval 

Training error 

VC dimension, h 

Figure 6.2: Relationship between training error, confidence interval and guaranteed risk. The bound on 
the risk is the sum of the empirical risk and of the confidence interval. The smallest bound of the risk is 
achieved on some appropriate element of the structure S defined on the set of functions. 

guarantee a small value of the expected risk. 

The above then leads to the following principle (Vapnik 1998) for controlling the general-

isation ability of learning machines: 

To achieve the smallest bound on the test error by controlling (minimising) the 

training error, the machine (the set of functions) with the smallest VC dimension 

should be used. 

The SRM inductive principle describes a general method of capacity control, whereby the 

amount of data is taken into account. 

For the quadratic loss function, SLT provides an upper bound estimation for prediction 

risk; 

N 
Prediction risk < — ^ (yj - yi (x, w))" 

1 

i=l 
I _ ^1 h\n(2N)\n{h\)+K2 

(6.4) 

6.3 Support vector machines 

The SVM is a universal constructive learning procedure (the SV method describes a general 

concept of a learning machine) based on SLT, the formulation of which embodies the SRM 

principle. The foundations of Support Vector Machines (SVMs) have been developed by Vap-

nik (Vapnik 1998). A schematic of the method is shown in Figure 6.3. The SVM maps the input 

vectors x into a high-dimensional feature space (Z) through some non-linear mapping chosen 

a priori. A linear approximation in the feature space with parameters w is used to determine 

the output. Thus, unlike conventional statistical and neural methods, the SVM approach does 

not attempt to control model complexity by keeping the number of features small. 
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X • / V 

g ( x ) —»• z • w-z * —3^ 

' . : 

Input Output 
space space 

Feature 
space 

Figure 6.3; Illustration of the mapping implemented by the support vector machine. 

The SVM overcomes two problems in its design (Vapnik 1998): the conceptual problem of 

how to control the complexity of the set of approximating functions in a high-dimensional space 

(in order to provide good generalisation ability) is solved by using penalised linear estimators 

with a large number of basis functions. The resulting SVM approach results in a constrained 

quadratic optimisation formulation of the learning problem. The computational problem of 

how to perform numerical optimisation (i.e. solve the quadratic optimisation problem) in a 

high-dimensional space is solved by taking advantage of the dual kernel representation of linear 

functions. In SVM, capacity control can be controlled effectively through the regularisation 

functional used (see section 6.4). 

In summary, the SVM approach is seen to be characterised by the following; 

• New implementation of the SRM inductive principle. 

• Input samples mapped onto a high-dimensional (feature) space by using a set of non-

linear basis functions (mapping) defined a priori. 

• Linear functions with constraints on complexity used to approximate the data in high-

dimensional space. 

• Duality theory of optimisation used to make estimation of model parameters in a high-

dimensional space computationally tractable. 

• Characterisation of complexity independently from dimensionality. 

® Non-linear feature selection. 

6.3.1 Loss functions 

Under conditions of normal additive noise, the quadratic loss function: 

= (;/, / (x, w)) = ( ? / - / (x, w))^ (6.5) 
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provides an efficient (best unbiased) estimator of the regression function. 

However, least-squares estimators are sensitive to the presence of outliers and may perfor-

m poorly when the underlying distribution of the additive noise has a long tail. To overcome 

these limitations, a robust estimator that is insensitive to small changes in the model is required. 

In the e-insensitive loss function, defined by: 

^6(y) = 
0 , for Lf ()C,TV) --%/! <: f , 

1/ (x, w) — y\ — e otherwise 
(6.6) 

the loss is equal to 0 if the discrepancy between the predicted and the observed values is less 

than e. Then, e represents in some way the desired resolution. 

The loss function is an attractive choice in the implementation of an SVM since choos-

ing the value of e controls the number of support vectors, introducing sparseness in the solution, 

unlike the quadratic cost function, where all the data points will be support vectors. 

- E 0 +E 0 

00 (b) 
Figure 6 .4 : Typical loss func t ions used in the implementa t ion of a S V M : (a) e-insensit ive and (b) 

quadrat ic loss func t ions . 

6.4 Support vector regression 

The generalisation of the SV method for function approximation as described in (Vapnik 1995; 

Vapnik et al. 1997) exploits the idea of computing a linear function in high-dimensional feature 

space, corresponding to a non-linear function in the input data space. 

6.4.1 Linear support vector regression 

In the SV method, estimation of the optimal (linear) regression function of the form: 

/ (x, w) = (w • x) -f 6 (6.7) 
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with precision e, may be determined by minimising: 

1 ^ 
-11 w| 1̂  + C ^ |3/i - / ( x j |( (6.8) 

i = l 

Written as a constrained optimisation problem, this is equivalent to the problem of finding 

the pair w, b that minimises the quantity defined by the slack variables = 1 , . . . ,N 

(the introduction of slack variables into the constraints, assumes an extra cost for errors). The 

optimal regression function is then given by the minimum of the cost functional: 

/AT AT \ 
$ (W, r , f ) = . 11 W| |2 + C g & + g (6.9) 

subject to the following constraints, 

((w Xi) + 6) - 3/i < E + 

3/i - (w Xi) + 6 < e + 

6,^r>o 

for all i = 1 , N . 

In the above, C is the smoothing parameter which can be determined by resampling 

methods (e.g. cross-validation), and are slack variables representing upper and lower 

errors on the outputs of the model (the second term, thus represents a bound on the training 

error, thus including an implicit form of regularisation). It has been shown that for certain 

kernels the parameter C can be directly related to a regularisation parameter (Smola et al. 

1998). 

The quadratic loss function produces a solution which is equivalent to zero order regular-

isation, where the regularisation parameter A = 

6.4.2 Kernel funct ions 

Generalisation of the SV regression method to non-linear regression is performed using kernel 

functions: 

jiT (xi, Xj) = 0 (xi) - 0 (xj) (6.10) 

where K (xj, xj) is the kernel function performing the non-linear mapping into feature space. 

A mapping into a high dimensional space constructed by the use of reproducing kernels, en-

ables operations (linear regression) to be performed in the input space rather than the potentially 

high dimensional feature space, addressing the curse of dimensionality. 

To construct polynomials of degree d, one can use the following generating kernel: 

K {•xi,-x:j) = [{-Xi,Xj)+ l f (6.11) 
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Infinite splines (Vapnik 1998) comprise a practical kernel choice in the implementation of a 

SVM. An infinite spline kernel of order p, which passes through the origin, is defined on the 

interval [0,1) by: 

K{u,v)= f (u - r ) ^ (w - r ) ^ d r (6.12) 
Jo 

In the case of a first order (p = 1) spline, the kernel is given by 

K {u, v) = uv +'^ min {u, %) — ^ (min {u, v))^ (6.13) 

The formulation of equation 6.12 constrains the univariate spline to pass through the origin 

ensuring a unique expansion in the ANOVA term is obtained. 

Multidimensional kernels can be obtained by forming tensor products of the univariate 

kernels (Vapnik 1998). A multivariate ANOVA spline kernel is given by the tensor product of 

univariate spline kernels plus a bias term, 

n 

j ^ ( u , v ) =: {1 + (%,%)} (6.14) 
d=l 

For example, the ANOVA expansion for a three dimensional input vector is given by: 

3 

K {u,v) = J|{1+ 
2=1 

= H - g ( u i , i ; i ) + g ( u 2 , ( ; 2 ) + g ( i / 3 , % ) 

+ + g(K2,(;2)g(i(3,i;3) 

+ g(t^i,«i)g("2,(;2)9("3,(;3) 

For spline kernels, the computational complexity of the solution depends on the number 

of support vectors that are necessary to adequately approximate the desired function with e-

accuracy, rather than on the dimensionality of the space or on the number of knots. 

6.4,3 Non-linear support vector regression 

In the Lagrangian formulation of the problem, the constraints in section 6.4.1 are replaced by 

constraints on the Lagrange multipliers themselves, the training data only appearing in the form 

of dot products between vectors. 

From the preceding sections it is clear that the implementation of a non-linear regression 

approximation to the data is achieved by replacing the dot product (xj, Xj) with K (x,, xj). 

For the case of using the e-insensitive loss function, the solution to the constrained optimi-

sation problem is obtained by maximising W {a, a*) with respect to the Lagrange multipliers: 

N N N 

^ (a , a * ) = - ^ (a- -t- a , ) 4- T/i - Oi) - % ^ (aZ - « : ) ^ (xi , Xj) 
2 . . ^ 

2=1 2 = 1 2J = 1 
(6.15) 
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subject to a new set of constraints that include the parameter C: 

0 < < C , 2 = 1,... ,iV 

0 < < C , % = 1 , . . . , N 

E £ , («.- - < ) = 0 

and satisfying: 

a i a l = 0 , % = , TV. (6.16) 

Solving equation 6.15 subject to the constraints in equations 6.4.3 determines the La-

grange multipliers a?, from which the regression estimate takes the form: 

/ N = ^ (*' ' x) + 6 (6.17) 

Due to the nature of the quadratic programming problem, only a number of coefficients a , — a* 

will be non-zero. The input data points Xj associated with these are the support vectors. 

For 6 = 0, the optimisation problem is simplified to: 

^ JV AT AT 

with constraints. 

2 • , • , 
2=1 J = 1 2=1 

- C < A < C , % = 

Z!%=i A = 0 

Using a quadratic loss function, the solution is given by maximising the quadratic form: 

, yv N N 

TV (a, «*) = - % ^ («! - O ^ (x„ Xj) + ^ ( « i - o:*) - ^ ^ W + 2 / ^ ^ ^1/ 2g' 
%j=l i=l %=1 

(6.19) 

simphfying, yields: 

N N N ^ N 

2=1 j=l i = l 2=1 

with constraints: 

N 

^ A = 0 (6.21) 
2 = 1 

The choice of the kernel function, together with the values of the parameters C and e, 

determine the smoothness properties of the solution and should reflect prior knowledge of the 

data. The number of support vectors depends on both C and e. 
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6.5 Support vector parsimonious ANOVA modelling 

The SUPANOVA (SUpport vector Parsimonious ANOVA) technique (Gunn and Brown 1999) 

selects a parsimonious model representation by extracting a small set of terms from the com-

plete ANOVA representation of equation 5.7. This is achieved by decomposing the non-linear 

modelling problem into three stages, as shown in Figure 6.5. This technique contrasts with 

the neurofuzzy and other parsimonious techniques, in that it aims to find a full model, from 

which a subsequent sub-selection of the significant terms is performed. Consequently, the 

sparse basis selection avoids problems associated with local minima entrapment during the 

construction process. For the purposes of determining the regularisation parameter C and 

Training Data 

I I T 
ANOVA 

Support Vector 
Regression 

1=) 
Parameter 

Selection 

Sparse ANOVA 

Selection 

ANOVA Basis 

Selection 

Model 

Stage I Stage II Stage III 

F i g u r e 6 .5 : S c h e m a t i c r e p r e s e n t a t i o n of the S U P A N O V A t e c h n i q u e : t he first s tage is used to se lec t 

a c o m p l e t e A N O V A bas i s f r o m w h i c h the s econd s tage se lec ts a spa r se subse t that m a i n t a i n s g o o d 

accuracy . F ina l ly , a n e w m o d e l is c o n s t r u c t e d us ing a spa r se r ep re sen t a t i on . 

obtaining an estimate of the generalisation performance of the machine, the data is partitioned 

and resampled (using 8-fold cross validation) as illustrated in Figure 6.6. 

^ Validation error 
.Srfold.cro&s validation,. 

Traihihg: dataZ 

Test data 

Training error 

Generalisation error 

F i g u r e 6 .6 : I l lus t ra t ion of t he d a t a pa r t i t i on ing and r e s a m p l i n g p e r f o r m e d wi th in the S U P A N O V A 

f r a m e w o r k . 

6.5.1 ANOVA basis selection 

The initial stage in the SUPANOVA framework is to obtain a complete ANOVA basis that is a 

suitable representation for the model. This is implemented by approximating the data with a 

SVM with an ANOVA spline kernel. This produces a complete ANOVA expansion from which 

the 2^ components of equation 5.7 can be extracted. 
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The model will consist of a product of piecewise cubic splines with a finite number of 

knots located at a subset of the data points (support vectors). 

At this stage, the estimate of the capacity control parameter C is determined using 8-fold 

cross validation, by searching for a local minimum of the validation error. The value of the C 

parameter being determined by a gradient descent algorithm (Press et al. 1992). 

6.5.2 Sparse basis selection 

Interpretation of the complete ANOVA representation obtained in the first stage is difficult. 

Furthermore the ANOVA expansion may determine an overly flexible approximation to the 

data. It is then desirable to select a sparse basis from an overdetermined one, by means of 

extracting the most significant terms in the ANOVA expansion. For such purposes, the SU-

PANOVA technique borrows a technique (Chen 1995) used in the wavelet community, whereby 

a trade-off between the error in the approximation and the sparseness of the representation is 

sought: 

min Error + A Sparsity 

with A controlling the trade-off. To enforce continuity, the implementation of the technique 

retains the loss function that was employed in the basis selection stage. 

The optimisation problem is given by 

minZ (y, $c) -t- XS (c) subject to c, > 0, A > 0 
C 

where L is the loss function, $ is the ANOVA basis obtained from the first stage, S is the 

sparseness measure and c is a vector of coefficients associated with each of the terms in the 

ANOVA basis. The goal in selecting a sparse representation is to minimise the number of 

non-zero coefficients, Ci. 

By characterising sparseness by means of a p-norm; 

S (c) = ||c| 
IP 

with a value of p = 1, employed in basis pursuit techniques (Chen 1995), produces a sparse 

solution which can be implemented by solving a quadratic program. 

The sparseness parameter A is estimated by selecting the value giving the nearest loss to 

the error estimate obtained on the validation sets employed in the first stage. 

6.5.3 Parameter selection 

The two stages together can be considered as a sparse kernel selection method. In the final 

stage, the sparse kernel representation of stage II is deployed within an SVM to produce a 

sparse ANOVA model. 
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6.6 Conclusions 

This chapter has presented a summary of the statistical learning theory adopted by the two 

techniques used in this work in the determination of parsimonious models from small data 

samples. The common interpretation of Occam's razor (i.e. in terms of a simplicity concept) 

given in previous chapters differs from the assertion that emerges from SLT (capacity concept). 

The distinction between the two concepts are highlighted in (Vapnik 1998). 

Both neurofuzzy and SV regression methods realise the SRM principle (although there 

is no clear correspondence between SRM and greedy optimisation techniques (Cherkassky 

and Mulier 1998)). However, the two techniques differ in the implementation of the capacity 

control: by model selection and by regularisation. Under SRM a set of approximating functions 

is specified a priori, whereas under the greedy nature of model selection algorithms, approxi-

mating functions are considered as dictated by the data. In (Vapnik 1998) it is stated that while 

such an approach can be useful for data fitting and data analysis, there is no theory and little 

empirical evidence to suggest its usefulness as an inductive principle for predictive learning. 

Training a SVM is seen to consist in a (computationally efficient) quadratic programming 

problem, guaranteed to find a global solution (minima of the error surface). This is in contrast 

to the case of general neural networks, which in (Vapnik 1998) are referred to as "not well-

controlled learning machines". The implementation of the SUPANOVA framework avoids the 

problem of local minima entrapment which is seen to afflict the majority of model construction 

algorithms, including the ASMOD algorithm (used in the neurofuzzy approach). 

Overall, the main features of SVM, e.g. embodiment of the SRM principle, robustness 

to outliers, overcoming the curse of dimensionality, etc., characterise the SVM as a powerful 

technique for determining models possessing good generalisation properties. In subsequent 

chapters the empirical performance of SVM will be investigated and compared with the semi-

parametric nature of the neurofuzzy framework, on the materials data sets that are the focus of 

this work. 



Chapter 7 

Data Modelling of 

Processing-Property Relationships in 

an Al-Mg-Li Powder Metallurgy Alloy 

System 

7.1 Introduction 

In this chapter a commercial data set comprising a set of production runs of an Al-Mg-Li 

powder metallurgy (P/M) alloy system has been investigated. The manufacturers wished to 

assess how the tensile properties of the alloys fabricated were influenced by the particular 

processing conditions and compositional levels. An analysis of the data precedes the results of 

applying the neurofuzzy and SVM methods. The performance of the neurofuzzy framework is 

assessed and compared with a simple MLR analysis, the modelling inferences attained being 

assessed by both conditioning diagnostics and sensitivity analyses. The results of the SVM 

methods are then compared with those determined by the ASMOD construction algorithm in 

terms of the empirical approximation abilities and the ANOVA representation inferred by both 

the neurofuzzy and SUPANOVA frameworks, by means of multiple model runs determined 

from resampling the complete data set. 

7.2 Powder metallurgy 

Over the last two decades, P/M alloy fabrication has been considered as an alternative to 

traditional ingot metallurgy (I/M) routes in the production of specialised aerospace structural 

components. Compared to traditional I/M fabrication the advantages of a P/M route include 

the fabrication of (fine) composite materials with controlled microstructures, higher strengths 
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attained without a sacrifice of corrosion resistance (which accompanies the presence of precip-

itates), property isotropy, good elevated temperature properties and stability, and a potential for 

near-net-shape forming. Currently, the major disadvantage of the P/M route remains the costs 

associated with the production of alloys for a very small market. A review and description 

of P/M technology and the processing steps involved in the fabrication of high-strength Al-

alloys can be found in several publications, e.g. see (Pickens 1981; Hatch 1984; Hildeman and 

Koczak 1989). 

7.2.1 Mechanical alloying 

The production of mechanically alloyed (MA) powders (Oilman and Benjamin 1983) consists 

of grinding together the constituent elements/master alloys as powders, subjecting these to 

large compressive forces in a high speed mill. Through control of repeated solid state (cold) 

welding and subsequent micro-fracturing of the constituent powder particles in the ball mill, 

the resultant fine powder particles attain the chemical composition of the original powder 

charge. Since the process takes place entirely in the solid state, limitations imposed by the 

phase diagrams (solubility limits) can be overcome, with the desired mixing of the elements 

achieved without melting taking place. Concurrently with the mechanical aspects of alloying, 

dissolution of solute elements is facilitated by heating and the presence of lattice defects and 

short diffusion distances (Oilman 1983). 

In order to prevent the powders welding together to form one solid mass during mechan-

ical alloying, an organic lubricant is added as a process control agent (pea), so that a dynamic 

balance between fracturing and welding can be established (welding tends to increase average 

particle size, while fracturing tends to decrease particle size). In delaying cold welding, the 

pea allows the powder particles to work harden and fracture. 

The powder particle size will reach a steady-state distribution which is dependent upon the 

composition of the system and processing variables (e.g. powder size distribution, processing 

time, etc.) (Benjamin and Violin 1974; Oilman and Nix 1981) with much of the pea eventually 

trapped between the cold welded layers of the composite particles, decreasing the amount of 

pea available to delay cold welding. This steady-state processing is associated with reaching 

saturation hardness and constant particle size distribution, although structural refinement con-

tinues (Benjamin and Violin 1974), described by an approximate logarithmic function of time, 

depending on the mechanical energy put into the MA process and work hardening properties 

of the materials being processed. Aikin and Courtney (1993) have used a discretised form of a 

fission-fusion (i.e. fracture-welding) equation to model the particle size distributions during the 

mechanical milling process. Zhang et al. (1999) have used standard back-propagation training 

of an MLP to predict the amount of pea required for a particular mean particle size and milling 

duration'. 

' in this study 12 data pairs are used for training. Model selection and empirical performance of different 
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Once a stable particle size is achieved, the powder is de-gassed and consolidated using 

conventional P/M methods. The hot pressed billet may then be subsequently forged. Alumini-

um oxide ( 7 - A I 2 O 3 ) particles, originating from prior particle boundaries of the original powder 

(i.e. the surfaces of the original aluminium/master alloy powders) and those generated by the 

oxidation of fractured particle surfaces exposed during MA are embedded into the matrix of 

the composite aluminium powders by the repeated fracturing and cold welding of the powder 

charge. During processing the pea breaks down to form carbon, hydrogen and oxygen. While 

the latter two elements are removed by subsequent degassing (hot pressing), carbon which is 

embedded amongst the powder particles during MA, forms aluminium carbide ( A I 4 C 3 ) . 

Particle fracturing will be assisted to some extent by the increased carbon and oxygen 

content resulting from the inclusion of the pea. The cold work imparted by ball-milling, much 

of which is retained after hot pressing, results in increased dislocation strengthening and upon 

consolidation a finer grain (and subgrain) size than obtained by working a larger ingot. 

The high angle boundary pinning imparted by the dispersoids develops a highly stabilised 

microstructure inhibiting static recrystallisation and grain growth. Boundaries corresponding 

to the surface of the powder particles (prior particle boundaries) are seen to have a higher 

concentration of dispersoids, when compared with other boundaries. 

7.2.2 Powder metallurgy Al-Mg-Li alloys 

From the previous section, the MA process can be understood to enhance strength, ductility 

and toughness, through the attainment of a fine homogeneous grain structure and distribution 

of dispersoids. Optimising processing conditions and parameters at the powder processing, 

de-gassing and consolidation stages such that the strength is derived from intrinsic disper-

soid strengthening effects, will minimise the loss in strength caused by subsequent process-

ing (Donachie and Oilman 1983). Dispersoid and grain strengthening, avoids the problems 

associated with undesirable precipitates that may form during ageing of heat treatable alloys. 

In the 5xxx series, the MA route has been used to produce Al-4wt.% Mg alloys, e.g. (Pick-

ens et al. 1981a), combining the strengthening mechanisms described in section 7.2.3. The 

requirements of the aerospace industry for lightweight alloys subsequently resulted in the 

development of Li containing alloys, such as Al-alloy 5091 (or AL-905XL) (Pickens 1985), 

where careful selection of the Al-Mg-Li base composition enables a single phase matrix to be 

achieved. The primary reason for the addition of Li is to reduce density and increase modulus 

of the alloy (Last and Garrett 1996). The increase in modulus may be due to the presence 

of Li in solid solution or in oxides. Low Li levels (< 1.5%) are chosen to avoid embrittling 

precipitates that may form during ageing^. Since these alloys do not precipitate a second phase, 

network architectures was inferred from 4 data pairs (through trial-and-error, the final network structure has 8 

hidden neurons (Zhang et al. 1999)). 

^The IN-905XL Al-alloy having 1.5 wt.% Li showed significant age hardening, i.e. large increase in strength 

and a decrease in ductility (Weber and Phillips 1993), which led to the refinement of the Li content (1.3wt.%) 
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they do not soften by overageing or dissolution of precipitates, thus imparting microstructural 

stability. With an 8% density saving, IN-905XL has been proposed as a lightweight substitute 

for Al-alloy 7075-T73. The nominal composition of the Al-alloy 5091 which has found use 

in structural airframe applications (e.g. see (Smith 1992)) is given in Table 7.1. Weber and 

Phillips (1993) report standard deviations for strength for this alloy as 10-17 MPa, typical of 

I/M Al-alloys. 

Mg Li C 0 

3.7-4.2 1.2-1.4 1.0-1.3 0.20-0.70 

Table 7.1: Composition ranges (wt.%) for AA 5091. 

Dispersoids can be formed during the MA stage and/or consolidation and thermomechan-

ical processing stages and may be present not only as carbides and A1 oxides, but also in the 

form of Li or Mg oxides or combinations thereof (Sugamata et al. 1998). In the case of solute 

Mg co-existing with solute Li, the former tends to be internally oxidised to MgO in preference 

to Li (Sugamata et al. 1998). Intermetallic dispersoids may also be present, e.g. AlgMgg (Vi-

tiaz et al. 1997). In 8090 P/M material, coarse lithium carbonate (LigCOg) dispersoids were 

identified to form during the fabrication process (Hunt 1992). Preferably, the dispersoid levels 

are kept as low as is possible, consistent with desired strength. In particular, the oxygen content 

is generally controlled to be present in a small but effective amount (preferably not exceeding 

0.4-0.5%, so that carbon levels exceed oxygen levels with a ratio greater than 2:1 (Donachie 

and Oilman 1986)) for increased strength and stability. Alloys with high oxygen concentrations 

(>1 wt.%) will exhibit poor ductility. 

7.2.3 Strengthening mechanisms 

In Al-Mg(-Li) alloys a combination of solid solution, dispersion, substructural (high dislocation 

density and fine subgrain size) and fine grain size are regarded as the operative strengthen-

ing mechanisms (Pickens 1981). The major strengthening effect has been attributed to the 

development of a submicron grain size, whilst solid solution and dispersion strengthening 

mechanism contributions to the yield strength are considered as important secondary additive 

components (Last and Garrett 1996)^. Alloying additions (Mg and Li) present in solid solution 

after powder processing will contribute a solution strengthening component. Due to its rela-

tively high solubility Mg, is the most effective solution strengthener of the Al-matrix (Polmear 

and specification of the Al-alloy AL-905XL. Despite a very slight supersaturation of Mg/Li in some grains, which 

upon extended ageing was seen to form a low volume fraction precipitate (probably <5'). Bridges et al. (1985) did 

not detect a hardening response upon ageing. Characteristics of age-hardening of Al-Mg-Li-C-O alloys have been 

studied by Papazian and Oilman (1990). 

' in this particular study, the effect of Li, in particular how this alloying addition is distributed between the matrix 

and the oxides, remained unanswered. 
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1981). The Mg solute strengthening contribution in Al-alloys has been reported as approx-

imately 18 MPa/wt% (Polmear 1981) and 13.8 MPa/wt% in the IN-905XL Al-alloy (Mukai 

et al. 1995). Benjamin and Schelleng (1981) report that in a MA Al-Mg alloy, a 4 wt.% Mg 

addition increased the yield stress by approximately 150 MPa, whilst Li has been found to give 

approximately a 24 MPa strengthening contribution per wt.% in binary Al-Li alloys (Noble 

et al. 1982). In SAP-type (sintered aluminium powder) materials, strengthening due to grain 

and subgrain effects and oxide dispersion contributions have been considered as additive (Ben-

jamin and Bomford 1977)̂ .̂ 

From section 7.2.1, the pea, as well as being a weld-controlling agent, is also a dispersoid 

contributing agent, facilitating the homogeneous dispersion of both carbides and oxides: the 

fine dispersion of 7 - A I 2 O 3 (Singer et al. 1980) and A I 4 C 3 particles will provide the major 

dispersoid strengthening component (through an Orowan type mechanism). 

Tensile properties are seen to be dependent on the volume fraction of the dispersoids 

efficiently embedded within the matrix. As many of the dispersoids are located on the grain 

boundaries (i.e. they do not contribute to the intragranular hardening mechanism), grain size is 

considered to provide the main contribution to crg g (Michot and Champier 1991). Result-

s obtained for a pure Al-C-0 alloy have showed a linear increase of the yield and tensile 

strengths with an increasing volume fraction of dispersoids, whilst ductility was seen to be a 

decreasing function of volume fraction (Michot and Champier 1991). Benjamin and Bomford 

(1977) noticed that the correlation between tensile strength and volume percent dispersoid was 

stronger for the combined volume fraction of AI2O3 and C than for AI2O3 alone. An empirical 

regression for the ultimate tensile strength used by Pickens et al. (1981b) establishes a 20 

MPa increment per unit wt.% of C additions. Styles and Pitcher (1998) considered increasing 

carbon and solute contents to both result in almost linear increases in proof stress in a range 

of MA Al-Mg-Li-C MMCs, with Hall-Petch type relationships being used to predict the flow 

stress in these alloys. Mukai et al. (1995) have determined analytical expressions for the 

strengthening components present in the IN-905XL alloy, though experimental values agreed 

with the analytical models only over a limited range of alloys. England et al. (1988) assessed 

strengthening contributions due to grain boundary and dispersoid strengthening in P/M Al-Mg-

Zr alloys using both Hall-Petch and Orowan equations; Pythagorean rules of addition yielded 

a better accuracy than simple linear additive components. 

In a series of experimental trials performed on Al-Li-Mg alloys Narayanan et al. (1983) 

concluded that Mg additions contributed to a substantial solution strengthening component, 

whilst Li exhibited the least amount of solution hardening. Oilman et al. (1985) found that 

the tensile properties of three Al-4Mg-1.5Li alloys appeared similar to those of non-lithium 

containing Al-4Mg alloys. Narayanan et al. (1983) considered the fracture processes in P/M 

alloys to be dominated by the presence of inclusions and weak interparticle interfaces, which 

''Typically, SAP alloys require greater oxide levels to achieve the same level of strength attained by MA mate-

rials, with the latter also exhibiting greater ductility and workability. 
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were believed to account for poor correlations between ductility and composition. A frac-

tographic analysis identified deleterious features such as foreign particles that promoted crack 

nucleation and failure along prior powder particle boundaries (the latter generally recognised as 

a consequence of poor interparticle bonding, caused by insufficient break-up and redistribution 

of the oxide film originally present on powder particle surfaces). Improvements in ductility 

through a P/M approach cannot be achieved by grain refinement alone, but must be sought also 

through powder processing and consolidation procedures. Lower ductility will be exhibited 

if a critical amount of work is not achieved during forming as particle boundaries will not be 

bonded effectively (failure in these alloys has been proposed to initiate at oxides and carbides 

present on grain boundaries). Benjamin and Schelleng (1981) found that in Al-Mg alloys, both 

tensile and yield strengths were found to increase with increasing the Mg content, concomitant 

with a decrease in ductility. 

Hence, it can be seen that although some physical understanding of composi-

tion/microstructure/property relationships exists, existing models of these relationships tend to 

be rather simplistic linear regressions, or based upon microstructural features that are difficult 

to assess, rather than simple processing variables. 

7.3 The AA5091 data set 

The data set investigated in this study was based on the specifications set out for the 5091 Al-

alloy, whose nominal composition range was that given in Table 7.1. Design criteria moved 

away from these specifications as the development programme evolved, driven by a combina-

tion of trial and error, and cost constraints. The proprietary data set, provided by Aerospace 

Metal Composites (AMC) U.K., comprised six process variables, two of which described pro-

cessing conditions (PVc corresponding to forging temperature and PVhja corresponding to a 

measure of the extent of mechanical alloying), while the remainder were weight percentages 

(wt.%) of the four compositional elements (Li, Mg, C, O) measured. In addition to these 

process variables, each alloy was designated with a billet number identifier, and, depending on 

the final product form, a label indicating whether the product was of die forged or plate type. 

Tensile properties, 0.2% proof stress (<ro.2), ultimate tensile strength (uts), percentage e-

longation {%el.) and Young's modulus {E) were measured for each billet^. A differing number 

of tensile tests were repeated for each individual billet. 

Although experimental in origin, the heuristic design criteria employed rendered the statis-

tical properties of the data set much more characteristic of typical commercial alloy production 

runs, rather than those typically associated with carefully designed experimental programmes. 

Several alloys were observed to differ only in terms of a single process condition {PVc), as 

the consolidated billets were sectioned and then forged at different temperatures. The data set 

'Several modulus {E) tests were not carried out for several alloys and hence constituted missing entries. 
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contained four alloys with certain compositional elements omitted, intended to provide an in-

dication of the baseline tensile properties attainable for particular boundary process conditions, 

e.g. commercial purity MA aluminium, etc. 

7.4 Data pre-processing 

The original supplied data set comprised a total of 264 data pairs (i.e. input and corresponding 

outputs), corresponding to 71 different billets, of which 67 were of plate, the remainder die 

forged. As the latter product type was seen to exhibit significant differences in tensile properties 

for identical processing conditions to those of an equivalent plate type, the analysis was limited 

to the plate data. 

A de-duplication of the plate data set reduced the number of training patterns to 56 data 

pairs, corresponding to the different processing and compositional conditions. Mean tensile 

properties were determined for identical input patterns and used as the observed output values. 

The estimation of a pure error component, shown in Table 7.2, obtained from instances of 

multiple tests on individual materials provided an estimate of the experimental scatter in the 

tensile properties. 

Property (70.2 (MPa^) uts (MPa^) (9%2) 

SSPE 1577 1154 4.66 

Table 7.2: S u m m a r y of the pure error sum-of - squa res (SSPE) componen t s for the tensile proper t ies 

cons idered . 

For the MLR analysis the input variables were standardised to have zero mean, unit 

variance, while for the adaptive methods these were standardised to lie between ±1 for the 

neurofuzzy framework and in the [0,1] interval for the SVM. Inferences were also obtained 

from standardisation of the output quantities (zero mean, unit variance). To preserve commer-

cial confidentiality, all plots involving input variables are presented in normalised form, while 

predictions are presented in their original ranges. 

7.5 Data analysis 

As initial alloy production was based on AA509I, a number of billets show limited variance 

in the processing conditions. However, once the design criteria evolved, a wider range of 

processing conditions were used, as reflected in the statistical properties and data distributions 

shown in Figures A.l to A.4. The mean and standard deviations for the process variables 

(inputs) and properties measured (outputs) are summarised in Tables A.l and A.2, from which 

the limited variance in certain compositional elements (e.g. Mg, Li) is evident. 
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The values of the simple correlation coefficients, r ^ , among the variates are summarised 

below in the correlation matrices, r x x , r y y and the vectors of correlation coefficients, ry%, 

for uts, (70.2 and %el. 

Li Mg C 0 

1 A29 - .500 - .331 .213 ^02 

.129 1 - .091 ^10 ^34 J 5 1 

Li - ^ 0 0 - .091 1 J 3 8 - - J87 J 0 8 

Mg - ^ 3 1 - .010 .738 1 - - J55 .080 

C ^13 J 3 3 - - J87 - J 5 5 1 .415 

0 .002 J.51 J.08 .080 ^15 1 

VYY 
cro.2 
uts 

cro.2 
1 

0.967 

-0.659 

uts 

0.967 

1 

-0.698 

-0.659 

-0.698 

1 

r y x = 

- ^ 6 5 - .439 ^46 

^04 ^85 - ^ 8 8 

Li Li .489 Li - j W l 
r y x = ry% = 

Mg ^32 
r y x = 

Mg ^72 
ry% = 

Mg - .081 

C ^99 C .445 C - ^ 8 9 

0 j # 9 0 ^80 0 — .496 

(uts) W.z) (%eA) 

For the reasons discussed in Chapter 4, the values are regarded simply as descriptive 

measures of the degree of linear association between the variates. The influence of the outliers 

corresponding to the boundary processing conditions and baseline alloys on the simple 

correlation coefficients is evident from the full residual plots. The effects (leverage) exerted by 

such cases on subsequent statistical inferences will be discussed in appropriate sections. 

From the r x x matrix, the largest correlations among the input variables are identified as 

those between PV^/a and C, and, Li and Mg, whilst from inspecting the r y x vectors it is seen 

that correlations for Mg and Li with ao.2 are somewhat milder than those exhibited for uts, for 

which PV^ja exhibits a larger coefficient. 

In order to elucidate some of the statistical properties of the data set, it is useful to under-

stand the nature of the processing variables, how these were quantified and most importantly, 

justifications for their inclusion in subsequent analyses. 

Forging temperature was characterised through measuring the temperature of the billets 

at which the material was pre-heated, and as such PVc is a rough estimate of the actual tem-

perature of the material during forging. A histogram for this variable (Figure A. 1 (a)) shows 
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how PVc exhibits little variation, with the large majority of the observations shared between 

two temperatures. The billet forging temperatures reflected preferred temperature ranges for 

Al-Mg-Li alloys (Pickens et al. 1981b; Oilman and Donachie 1987), reflecting optimum work-

ability conditions without sacrificing strength. 

A more accurate estimate of the forging temperature would be achieved by taking into con-

sideration factors such as pre heated temperature, transfer time, die temperatures, accounting 

for possible adiabatic heating, thermal mass of the object, final section thickness, etc. Typically, 

lower forging temperatures reduce the degree of grain growth and recrystallisation. In the 

alloy system considered, the submicron microstructure developed during the MA process is 

stabilised by the pinning effect of the dispersoids. From the full residuals shown in Figures A.5 

and A.6 (a) it can be tentatively inferred that higher forging temperatures have an adverse 

effect on the strength levels obtained, consistent with our metallurgical understanding: as the 

forging temperature is decreased a finer grain size is retained and dislocations will no longer 

be annealed out. Process constraints (i.e. shaping and formability) issues, limit the practical 

use of low forging temperatures. 

The second of the process variables, PVi,/a, characterises the amount of energy imparted 

to the powder during the MA: the extent of powder processing should be sufficient to attain 

a submicron microstructure and an efficient dispersion of carbides and oxides; suboptimal 

powder processing (underprocessing) will be reflected by poor tensile properties. As discussed 

in section 7.2.1, the addition of a carbon containing lubricant facilitates powder processing. 

Then, intuitively a dependency characterising PVb/a and C would not be surprising (Tarrant 

1998). The extent of the correlation between these two variates for low values is clear from the 

corresponding pairwise scatterplots shown in Figure A.3. The lack of a dependency for both 

higher PFfc/a and C levels suggests a change in powder processing conditions. 

From Figures A.l (b) and (e), it is seen that a significant number of billets have been 

fabricated using very similar powder processing conditions and a further comparison of the 

full residuals is shown in Figures A.5 (b) and (e), with Figures A.7 (b) and (e), revealing 

C and -PVft/a to exhibit similar relationships with tensile properties. These scatterplots also 

show that comparable strength levels can be attained using lower carbon contents, though a 

further analysis of the data is required to elucidate the source of strengthening for such alloys 

(e.g. different strengthening mechanism, more efficient processing conditions, etc.). A close 

inspection of the data distributions reveals C to exhibit a greater scatter than PFj/q. This may 

reflect C being inherently less controllable (i.e. having an inherently greater scatter). The 

similar dependencies exhibited with the tensile properties indicates that these two variables 

comprise similar information, and are descriptive of the same phenomena. 

The effects of C additions on microstructural development may be understood in terms of 

two main effects: an extrinsic grain refinement effect and an intrinsic dispersoid strengthening 

contribution, both dependent on the efficiency of the powder processing (as characterised by 

P^b/a)- It was suggested (Tarrant 1998) that carbon concentrations below a certain level 
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contribute to the grain refinement, whilst in higher concentrations, dispersoid strengthening 

becomes more significant (grain refinement contributions for high C levels would then be 

comparable). It is clear that the efficiency of powder processing and in particular whether 

an optimal processing of the powder has been attained is a significant factor. However, only 

a full quantification of microstructural features such as grain size morphology, grain boundary 

features and dispersoid volume fractions for differing carbon levels would clarify this issue. 

Process understanding (Tarrant 1998) indicated that the carbide dispersoids are not the 

most effective of the dispersion strengthening mechanisms attainable, though preferable to 

those induced by aluminium oxides, thus there is a manufacturing interest in processing condi-

tions minimising C levels (providing these do not hinder the development of submicron grain 

sizes). Minimising carbon contents also reduces processing costs and results in less hazardous 

processing conditions®. 

Although higher C concentrations are seen to result in lower %el. values, this effect may 

be attributed to powder processing efficiency since f exhibits a similar, although weaker 

dependency, as reflected by the values of the correlation coefficients. 

From the above, it becomes important to know how carbon concentrations are determined, 

for instance whether smaller amounts or less carbon rich pea are used, and establishing whether 

PVfj/a determines the amount of pea (or vice versa). In particular, whether a similar amount of 

energy can be efficiently imparted during the powder processing, despite lower C levels (Fig-

ure A.3), and consequently whether work-hardening, grain refinement effects and comparable 

dispersoid volume fractions can be achieved. In addition the pea may be added at various times 

during the powder processing, based on conditions such as the ball-to-powder ratio, starting 

powder size, mill temperature, etc. However, since this information was unavailable it was 

problematic to establish whether all alloys have been processed in a similar way, in particular it 

is difficult to elucidate the effectiveness of varying the carbon levels, whilst imparting a similar 

amount of powder processing. 

The distribution of both Li and Mg, although slightly broader than the nominal com-

positional range for AA5091, is seen to be limited with only a few alloys showing significant 

variations from mean values. Unsurprisingly, from an inspection of the data there is no tangible 

indication that these elements significantly affect tensile properties, although a comparison with 

the baseline alloys reveals that 5091 type alloys exhibit considerably higher strength levels. 

The cluster of outlying data evident in the distribution of Li were a result of a misjudgement 

in alloying levels. It is noteworthy that billet fabrication was characterised by a difficulty in 

controlling Mg levels. 

An indication of oxide levels can be inferred through quantifying oxygen concentrations 

present in the alloys. However, due to costs associated with this characterisation, oxygen 

levels were not always measured and nominal values were used (Tarrant 1998). Unless a 

''The fine powders required to give sufficiently small interparticle spacings present handling problems and are 

often pyrophoric. The problem of pyrophoricity being more severe when reactive alloying elements are present. 
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strong leverage is given to a limited number of observations at the higher O levels (in which 

case it could be speculated that a weak increasing dependency with strength and a decreasing 

trend for %el. are present) the residuals do not reveal any strong dependencies with the tensile 

properties. Any interactions characterising O and dispersoid-forming compositional elements 

may be explained by dispersoid formation during powder and subsequent processing. 

The distribution and ranges of output properties investigated shown in Figures A.2 and A.4 

show the wide range in tensile properties attained. The strong dependency between uts and 

(Jo.2 is evident, and the ryy coefficients between these and %el., indicate a strong relationship 

between strength and ductility. Tests performed on very ductile specimens (exceeding 12.5%) 

had been recorded simply as 12.5 %el., due to equipment limitations, resulting in some biased 

measurements. 

7.6 Multiple linear regression 

From process understanding and the analysis of the data presented in the previous section, it 

was decided to perform a regression analysis retaining all six processing variables. The results 

of the MLR analysis for each of the tensile properties investigated are summarised in Table 7.3. 

From these results, it is seen that compared to the approximation obtained for uts, a consid-

erably higher output variance is seen to characterise cro.2. A comparison of the proportions 

of explained variance determined on the normalised output quantities (o-̂ f gĵ j) shows that the 

linear models are capable of accounting for 85%, 81% and 54% in the variation of uts, cro.2 

and %el. from the mean respectively. 

^df ^df ^df,std df Ml 

<7̂0.2 1312 1500 38.37 0.19 7/6 6 

uts 939 1073 33.66 0.15 7/6 6 

%eZ. 3.32 3.79 1.95 0.46 7/6 6 

Table 7 .3: S u m m a r y of the M L R results ob ta ined fo r the three tensile propert ies . In these results 

iTdf is the unb iased roo t -mean-squared er ror and the variance es t imate cor responding to a M L R 

pe r fo rmed on the output values normal ised to have zero mean, unit variance. 

Tables 7.4 to 7.6 summarise the standardised regression coefficients, associated parametric 

uncertainties and signal-to-noise estimates (r) for each term in the model. 

An inspection of the weights for the cro.2 model reveals increasing trends for all input 

variables, with exception of PVc, which exhibits a decreasing trend. The largest weights are 

associated with the two process variables and Mg, while Li and O exhibit small magnitudes and 

smallest r levels. The weight magnitude for C being of an intermediate value. As the weights 

typically exhibit similar uncertainties (a^), the highest t ' s are seen to correspond to terms with 

the largest weight magnitudes. 
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w r 

PVc -0.375 &068 5.52 

&437 0.091 4.80 

Li 0.063 0.095 0.67 

Mg &431 0.089 4jW 

C 0.255 0.102 2.51 

0 &068 &068 0^9 

d parametric inferences inferred for the 

w r 

PVc -0.310 0.061 5J9 

PVb/. 0.337 0081 4.06 

Li 0.293 0.085 3J0 

Mg 0.351 0^179 4^4 

C 0300 0.091 3jJ 

0 0.064 0.061 1J2 

1.2-

Table 7.5: Weights and parametric inferences inferred for the MLR model for uts. 

w T 

PVc 0.294 CU07 2J6 

PVfc/a -0.217 0U43 L52 

Li -0.220 &149 L50 

Mg 0.146 &138 1.05 

C - O J M &159 2^6 

0 -0.289 0UO7 2.71 

Table 7.6: Weights and parametric inferences inferred for the MLR model for %el. 

Similar trends were exhibited for uts, though the magnitude of the corresponding weights 

(with the exception of O, which retains a very small value) are much more comparable, par-

ticularly the weight associated with Li. Thus, the signal-to-noise parameters are seen to attain 

comparable values. 

For %el., weight values indicate increasing trends for PVc and Mg, with the remaining 

variables characterised by decreasing trends, with C exhibiting the largest magnitude. 

A comparison between the ryx correlation coefficient between Mg and %el. and the cor-

responding weight in the MLR model, reveals how the formulation of a model can result in 

different inferences^. The small r associated with the WMQ term in the model (seen to be 

'Note also that the weight values differ from the values of the simple correlation coefficients ryx- The only 
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the smallest) shows how the Mg contribution is pooriy determined. As such, whether reliable 

inferences can be obtained from the MLR models remains questionable: small r levels indi-

cate large uncertainty, which in the presence of very small weight magnitudes limits reliable 

inference. 

To further understand the statistical properties of the data set and infer whether high para-

metric uncertainties and hence small signal-to-noise ratios are attributable to data conditioning 

problems, the condition of the design matrix, X, was determined^. An SVD of X resulted in 

the singular values shown in Table 7.7, from which the smallest singular value, is seen to be 

significantly larger that zero. Further, the condition number C (X) ~ 3.5, does not indicate the 

presence of any significant ill-conditioning and hence data weaknesses arising from near-linear 

dependencies among the variates. The variance-decomposition of X, shown in Table 7.8, does 

however indicate some variate involvement in the weight uncertainties associated with 

and C, although the small magnitude of the respective condition index, limits variance 

inflation in these weights. 

Singular Values 

m = 11.17 

/̂ 2 = 9.87 

/i3 = 6.83 

/j,4 = 6.14 

^5 = 3.64 

/i6 = 3.18 

Table 7.7: Singular values of the design matrix, X. 

Condition Proportions of 

Index T] ^Wpvc 
2 

1 0.061 0.022 0.044 0.040 0.028 0.004 

1.132 0.013 0.055 0.028 0XB5 0.045 0.084 

1.637 0.003 0U29 0.001 0.012 0IW2 0.601 

1.819 0.779 0.002 0.014 0U44 0.006 0.000 

3.067 0.108 0.075 0.791 0UW8 0U36 0XW6 

3.515 0.036 0.718 0.122 0.270 0.782 &215 

Table 7.8: Condition indices and associated variance-decompositon proportions for X. 

way in which regression/correlation weights/coefficients will result in identical values is if the mean and standard 

deviation of both variates are identical (Edwards 1984). 

^In this and all other subsequent conditioning diagnostics determined in subsequent chapters, inferences were 

drawn from normalised data sets. 
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The variance-decomposition proportions also revealed a marginal Li-Mg variate involve-

ment (corresponding to the weight uncertainties associated with %), possibly induced by one 

or more of the outlying cases noted previously. 

As the weight uncertainties associated with the variates do not appear to be associated 

with near-linear dependencies among the columns of X, this suggests that other causes of 

data weakness (e.g. short data, high noise levels) are responsible for the large uncertainties 

characterising the parameters in the models. 

7.7 Neurofuzzy data modelling 

The neurofuzzy framework described in Chapter 5 was used to determine models for each of 

the tensile properties. Thus, the model construction pass structure, termination criteria and the 

statistical significance measure used are those outlined in respective sections. Due to the small 

sample size, the order of the B-spline basis functions was restricted to be less than or equal to 

two, in order to prevent the inclusion of severely ill-conditioned basis functions. 

In an initial investigation, the complete data set (56 data pairs) was used in training 

(i.e. both model construction and parameter estimation), as it was considered inappropriate 

to partition the data into training and test sets since this would further limit the number of 

samples available during model identification. Furthermore, a single training-test split would 

yield sample sizes too small to provide a reliable estimate of the generalisation performance of 

the model. 

The ASMOD algorithm, employing a FS/BE pass structure was used to search for an 

appropriate ("optimal") network structure starting from an empty model, reflecting no a priori 

beliefs as to the dependencies expected to be present in the data. 

Once the construction algorithms determined a final model structure, leave-one-out cross 

validation (LOOCV) was used to obtain an unbiased variance estimate for the model structures 

inferred^. These estimates can then be compared with the variance estimates determined from 

the training set: if these are seen to significantly differ (e.g. the training estimates being much 

smaller than the LOOCV estimates) this strongly suggests a poor model and hence description 

of the process, i.e. poor generalisation abilities. 

The models were then assessed in terms of the adjusted training set MSE (taking into 

account the number of degrees of freedom used), the number of variables (n-x) included in the 

model and the LOOCV estimates. These are summarised in Table 7.9. 

A comparison between the empirical performance attained by the neurofuzzy models, 

with those obtained in section 7.6 shows how the iterative model construction algorithms have 

inferred models exhibiting comparable accuracies on the training data sets. Although using a 

'^However, as the model structures are inferred from the complete data set, the LOOCV variance estimates will 

inevitably be biased. In addition, whether such estimates can be considered as good indicators of the generalisation 

performance of the model, will rely on the data being a representative sample of the process. 
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2 "fdf LOOCV 2 SS df f^x 

cro.2 1354 1487 3&56 1710 0.171 4344 5 4 

uts 985 1104 3123 1266 0.155 3675 6 3 

4.07 4.30 2.07 4.53 0.528 10.3 3 2 

Table 7.9: Summary of the performance obtained by the neurofuzzy models for the models determined 

for the tensile properties investigated. 

similar number of degrees of freedom to those in the corresponding MLR models, the network 

structures for the strength models are seen to include only a subset of the inputs. The most 

severe subset selection is seen to be performed in determining a model for %el., whereby only 

two input variables are retained in the final model structure. It is then not surprising that the 

neurofuzzy models do not show any improvement over the MLR analysis. 

From the network structures identified for the different tensile properties (Figures 7.1 

to 7.3) and the corresponding subnetwork responses (Figures 7.4 to 7.6), it is seen that the 

models are comprised by simple linear subnetworks, except for the C term determined in the 

uts model, which is seen to be approximated by a piecewise linear fit. 

As shown by the evolution in the model performance measures (MSB and SS) at each 

step in the model construction (Figures 7.7 to 7.9) corresponding to the refinements performed 

by the ASMOD algorithm for each of the tensile properties, the model searches exhibit both 

a different set and number of refinements. The set of refinements and corresponding model 

performance measures evaluated at each step in the model construction are also summarised in 

Tables A.3 to A.5 included in Appendix A"'. 

PVc and C are seen to have been retained in the final model structures for all three 

properties, Mg is present in the strength-related models and f present in only the fTo.2 

model. Neither Li or O are present in the final models, the former never considered as the 

best candidate refinement at any stage in the model constructions, whilst the contribution of 

the latter was attempted in the %eL model but failed to achieve a significant reduction in the 

SS measure. 

Table A.3 reveals that the second refinement selected in the model construction of the uts 

model comprises a piecewise approximation with a high flexibility (store 2). Subsequently, 

during model pruning refinements, a knot deletion is seen to remove one of the internal knots. 

The inclusion of the C subnetwork with a relatively complex fit, from inspection of the corre-

sponding modified residual, is seen to be influenced by a limited number of observations, which 

may have induced an overfitted model structure and affected the subsequent model search. 

"'These tables summarise the set of refinements considered at the n"* step in the model search, which are either 

accepted (in which case n = n + 1) or rejected. The set of refinements attempted over two steps {Fm = 2) 

are identified by the same letter. The refinement types are identified by: ua, tp, ts, ki, kd and ro and the number 

within the (•) indicates either the store (for ua, tp and ts) or the position along the subnetwork axis where a knot is 

placed/removed (for ki, kd). 
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However, it may be the case that these training data pairs constituted a set of alloys which 

exhibited anomalous uts levels. Section 7.7.1 will assess whether the final model is unduly 

influenced by these observations. The results obtained in subsequent analyses will reveal the 

sensitivity of the inferred model structures to small changes in the training data set. 

From the model construction for %el. shown in Table A.5, it is seen that the inclusion of 

O was attempted over two steps, yielding a more accurate model but not giving a significant 

improvement on the SS measure. The omission of PV^/a suggests that carbon levels provided 

a greater variance in processing conditions and hence a greater description of the process. 

The performance of the models on the individual observations, in terms of both training 

and LOOCV network estimates can be inferred from the target versus prediction scatterplots 

shown in Figure 7.10. The bias exhibited in the model predictions for %el. is evident: low 

ductility alloys are consistently overestimated, whilst high ductility alloys are consistently 

underestimated (the presence of this bias may be understood from inspection of the subnet-

works and full residual plots for C and PVc). The uncertainty in the model estimates (o-y^) are 

displayed from deriving error bars reflecting the uncertainty in the weights (i.e. second term on 

the r.h.s. of equation 5.36), as the term characterising the inferred output noise level was seen 

to overshadow the weight uncertainty term, making the error bars less informative. 

From these scatterplots it is seen that there is limited variation between LOOCV and full 

training estimates (though this does not imply that the weights have low variance), which is not 

surprising as the model has a small number of degrees of freedom. 
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Figure 7.1: N e t w o r k s t ructure fo r the neu ro fuzzy mode l de te rmined for ao.2-
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Figure 7.2: Ne twork s tructure fo r the neu ro fuzzy model de te rmined for uts. 

Figure 7.3: Ne twork structure fo r the neuro fuzzy model de te rmined for %el. 
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(a) 

(c) 

(b) 

(d) 
Figure 7.4: Subnetwork outputs for the neurofuzzy model determined for ao.2-' Mg (a), C (b), PVc (c) 

and PV;,/a (d). 
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(a) (b) 

(c) 

Figure 7.5: Subnetwork outputs for the neurofuzzy model determined for uts: Mg (a), C (b) and PVc 

(c). 

(a) (b) 

Figure 7.6: Subnetwork outputs for the neurofuzzy model determined for %el.: C (a), PVc (b). 
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Figure 7.7: Evolution of the training set MSE (a) and SS measure (b) during the iterative model search 
performed in determining an appropriate neurofuzzy network structure for <jo.2. 
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Figure 7.8: Evolution of the training set MSE (a) and SS measure (b) during the iterative model search 
performed in determining an appropriate neurofuzzy network structure for uts. 
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2 3 
Refinement Iteration 
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Figure 7.9: Evolution of the training set MSE (a) and SS measure (b) during the iterative model search 
performed in determining an appropriate neurofuzzy network structure for %el. 
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Figure 7.10: Prediction scatterplots for: 0.2% proof stress (cro.2) (a), tensile strength {uts) (b) and 
percentage elongation {%el.) (c). Model estimates attained are shown for both the training (•) and 
leave-one-out data (x), the former augmented with ±lcr error bars. 
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7.7,1 Influence analysis 

Whilst the form of the approximations identified on C for all tensile properties is in general 

agreement with metallurgical understanding, e.g. (Vitiaz et al. 1997), validation of the extra 

flexibility introduced in the C subnetwork for the uts model remains problematic, as this 

piecewise approximation results from a poor model refinement induced by the poor distribution 

of the data. The intermediate piecewise approximation (exhibiting a decreasing trend) is seen 

to be determined by only four data pairs, and is inferred early on in the model search. 

In order to infer whether these observations, and the baseline alloys induced a high influ-

ence in the results, the diagnostic measures for the neurofuzzy networks defined in section 5.8 

were determined for the uts network upon training on the complete data set. The influence 

of the individual samples as established by Cf and Hf influence measures are shown in Fig-

ure 7.11. 

From the index influence plots, both influence measures identify one case as being partic-

ularly influential, although the particular observation differs in each case. In addition a subset 

of the training samples are seen to have a moderately higher influence in a comparison to the 

remainder of the data. The proportional influence plots reveal that whilst Hf determines the 

most influential case as having the largest residual, C? is seen to suggest the most influential 

observation as having a high leverage. Figure 7.11 (g) confirms that the observation with 

the largest Cf corresponds to the case with the highest leverage, su. In the response and 

modified residuals corresponding to the C subnetwork. Figures 7.11 (e) and (f) reveal how the 

subset of training patterns approximated by the intermediate piecewise term are seen to have 

comparable influences to other observations. Thus, although responsible for the piecewise 

approximation and hence influencing the model search, these four training samples are seen 

not to be influential cases, as determined by both Cf and H];. The justification for why these 

sensitivity measures fail to place a high influence to such cases may be understood in terms of 

both the low order of the basis functions and their local nature, reflected by the sparsity of A, 

the solution matrix, from the presence of more than two univariate fuzzy membership functions 

defined on the fuzzy variable. 

From the influence analysis, the baseline alloys are seen to have only a moderately higher 

influence. 
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Figure 7.11: Influence plots obtained for the neurofuzzy model for uts, from using Hadi's and Cook's 
measures of influence: index influence plots (a)-(b), proportional influence plot (c)-(d), C subnetwork 
response and corresponding modified residuals (e)-(f), and su versus Of (g). 
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7.7.2 Assessing stability of the model selection 

In addition to the forward selection / backward elimination (FS/BE) model construction proce-

dure employed in the ASMOD algorithm, a stepwise (SW) pass structure of the form: 

pass 

univariate addition 

tensor product 

tensor split 

subnet deletion 

knot insertion 

knot deletion 

reduce order 

whereby all model building and pruning refinements are considered at each iteration, was 

used to assess whether the same network structures would be inferred from using a different 

search strategy. The effect of initialising networks with univariate structures reflecting simple 

metallurgical understanding of the trends believed to characterise input-output dependencies 

was also assessed. In both cases, the network structures obtained were identical to those 

determined by the FS/BE construction, indicating that the data supported only the identification 

of simple dependencies. 

As discussed in previous chapters, the use of SS measures allows all data to be used in 

training. However, it remains desirable to assess the performance of a technique on unseen 

data to obtain an estimate of the generalisation performance. The sample size, distribution and 

properties of the input data, outliers and/or a subset of the samples may unduly influence the 

model search. As such, it is desirable to assess whether small perturbations in the training set 

(e.g. resampling procedures, addition of noise, etc.) can cause large changes in the results (e.g. 

model structure, output estimates, parameter values, etc.). 

When the sample size is very limited, reserving part of the data as a test set will inevitably 

remove informative samples from the training data. Furthermore, the generalisation error 

estimate inferred from a very small sample may be unreliable, exhibiting a large variance 

depending on the particular training-test split. However, by training M. models on different 

(resampled) training-test sets, it may be possible to infer a more reliable estimate of the 

generalisation error. Thus, the sensitivity of the ASMOD algorithm to small changes in the 

training data was investigated by training multiple models on different training-test sets. 

The complete data set (56 data pairs) was resampled (randomly) 20 times, so that different 

training-test sets were generated: in each of these partitions, 90% of the data was used for 

training, while the remaining 10% (corresponding to 6 data pairs) was used to obtain the 

performance on unseen data pairs for each model M., from which the average test error would 

provide an estimate of the generalisation performance of the neurofuzzy framework. These 
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empirical results will be discussed in section 7.9, as a similar approach was used to assess 

the generalisation capabilities of the SVM methods. The normalisation coefficients employed 

in the neurofuzzy input data normalisation were determined from the complete data set, thus 

ensuring that test samples were within the [—1,1] interval (the range on which the basis 

functions are defined). 

The ANOVA terms determined by the ASMOD construction algorithm for each one of 

the 20 models identified from the resampled data sets, for all three tensile properties'' are 

summarised in Tables 7.10 to 7.12, while the typical form of the subnetwork responses, 

corresponding to the most significant terms identified are shown in Figures 7.12 to 7.14. 

As was the case upon training on the complete data set, the terms present in the cto.2 

models are seen to comprise simple univariate linear approximations, differing only by the 

inclusion/omission of a carbon univariate contribution. The model structure comprising four 

univariate terms was determined 11 times out of the 20 model runs, and is consistent with the 

structure inferred from the complete data set. 

From the models determined for uts, Table 7.11 shows that over the multiple runs all input 

variables are selected at least once. Generally model structures are seen to differ by the number 

of degrees of freedom used in the approximation (linear/piecewise linear) characterising the C 

dependency and the inclusion/omission of P^b/a and Li. These results for uts show that the 

model structure determined with greatest consistency (12 times) is seen to differ from that 

attained from training on the complete data set. A comparison with the (To.2 resampling results 

shows the model structures as differing in terms of the inclusion of a Li contribution. 

All models determined for %el. (Table 7.12) are also seen to be consistent with those 

determined from the complete data set, comprising univariate linear C and PVc terms 

(Figure 7.14). 

These results highlight to some extent the sensitivity of model selection processes, whereby 

small perturbations in the training data can result in different inferences. 

Since the variance estimates obtained are seen to be rather high and the model structures 

relatively simple, it is useful to compare the approximation abilities of the neurofuzzy frame-

work with those exhibited by the SVM methods presented in Chapter 6. 

"in these tables $ indicates an identical model structure as that determined from the model inferred from the 
complete data set, while f indicates the model structure which over the multiple model runs is the most consistently 
inferred. 
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run Mg C 

1 • • • 

• • • • 

3t.t • e • • 

4t,$ • • • • 

5 • # 9 

6t,$ • • 0 • 

7 • • • 

gt,$ • • • • 

9 • # • 

IQt't • • • e 

11 0 • • 

12t.* • • • 9 

13 • • • 

14 • • • 

15 '̂* 9 • • • 

16t'* e • 9 • 

17 e • 9 

Igt't • • 9 • 

19t,$ • • 9 • 

20 • • • 

Total 20 20 20 11 

Table 7.10: Summary of the ANOVA terms determined for (J0.2 by the ASMOD algorithm, f indicates 
the model structure identified more consistently, J the model structure equivalent to that determined in 
section 7.7. 
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Figure 7.12: Subnetwork responses inferred for the set of ANOVA terms most consistently identified 
in the models determined by the neurofuzzy framework in modelling f7o.2-
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run Li Mg C O 

1 • • 

2t • • • • • 

3* • • 9 

4* • • • 

5t 0 • • O • 

6̂  # • • 

7t • • • • • 

8t • • e • • 

9 • • • • 

]0* • • • 

l i t • • • • • 

12+ • • • • • 

13t • • • • 9 
14t O • • • • 

15t # # • • e 
16t • # • • 0 
17 e • • • e 

18* e • • 

19t • • • • • 

20^ • « • • • 

Total 19 15 15 19 17 1 

Table 7.11: Summary of the ANOVA terms determined for uts by the ASMOD algorithm. 
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Figure 7.13: Subnetwork responses for the ANOVA terms most consistently determined in the models 
constructed by the neurofuzzy framework in modelling of uts. 
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run Li C 

lt,t • • 

• • 

3^1 0 • 

4t.t • 

5 • • 

gfjt • • 

7t4 • • 

g f j • • 

9t,t • • 

lOf'f e • 

• • 

12t'f # • 

13t.* • • 

14f,$ • • 

15t.^ 9 • 

16t'i • • 

17t,t • • 

Igt'i • • 

19t,$ • • 

20t.t • • 

Total 19 1 20 

Table 7.12: Summary of the ANOVA terms determined for %el. by the ASMOD algorithm. 

X 

X 

(a) (b) 

Figure 7.14: Subnetwork responses for the ANOVA terms most consistently determined in the models 
constructed by the neurofuzzy framework in modelling %el. 
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7.8 Support vector regression 

The SUPANOVA modelling framework described in Chapter 6 was used to determine models 

for the tensile properties using the same 20 training-test set partitions defined in section 7.7.2, 

from which an average estimate of the generalisation performance of the technique could be 

inferred. The modelling results were obtained by employing a quadratic loss function and 

an infinite ANOVA spline as the kernel function choice. Along with the empirical results 

attained by the SUPANOVA framework, variance estimates for a support vector regression 

corresponding to Stage I in the SUPANOVA framework, were also determined. The direct 

comparison of which allowed the sparseness of the ANOVA representations inferred by the 

subselection of ANOVA terms to be assessed. 

The comparison between the empirical performances attained for the neurofuzzy. Stage I 

and SUPANOVA approaches for the three properties investigated is summarised in Table 7.13. 

As in tables presented in the previous section (which were seen to summarise the ANOVA terms 

determined by the neurofuzzy framework over the multiple runs), in Table 7.13, f indicates 

the model structure most consistently inferred (for both neurofuzzy and SUPANOVA results), 

whilst t again indicates results corresponding to the neurofuzzy model structures consistent 

with those obtained from training on the complete data set. As the SUPANOVA results did not 

attain one consistent ANOVA representation in modelling cro.z, only the overall results obtained 

by the SVM methods are presented for this property. 

A comparison between the average training set variance estimates for the different mod-

elling approaches show how the SVM methods exhibit better approximation capabilities on the 

training data, this being particularly evident in the Stage I results. Whilst the generalisation 

performance of the SVM methods for both cro.2 and %el. is generally comparable to those 

exhibited by the neurofuzzy framework (SUPANOVA marginally better, Stage I worst on the 

%el.), the benefits of the kernel approximations are more evident in the uts results. 

The predictions made by the different modelling approaches on the test data sets are graph-

ically summarised in the scatterplots shown in Figure 7.15, from which the variance exhibited 

on individual test data pairs can be inferred. 

The relatively poor test performance exhibited by both the neurofuzzy and SUPANOVA 

approaches in the cro.2 results over the complete 20 model runs are attributable to a small 

set of observations which were frequently present in a number of test set partitions (as can 

also be seen from inspecting Figure 7.15). This emphasises the difficulty in assessing the 

generalisation performance of a model from a very small data set. 

A number of models were characterised by significantly larger values in the smoothing pa-

rameter C, and an inspection of the regression functions indicated an inadequate regularisation, 

resulting in significant overfitting of the training data. 

For a subset of these under-regularised models, the general form of the approximation on 

C resembled that attained by the uts subnetworks in section 7.7. In general, there was a greater 
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Figure 7.15: Predictions attained by the different modelling techniques on the test data for (To,2 (a)-(c), 
uts (d)-(f) and %eZ. (g)-(i). 

variability in the estimation of the C (smoothing) parameter for both uts and %el. than for 

co.2-

The ANOVA terms extracted by the sparse basis selection stage of the SUPANOVA frame-

work for each one of the M. models determined are summarised in Tables 7.14 to 7.16 for each 

tensile property. The general form of the approximations inferred for the most consistently 

selected terms are those shown in Figures 7.16 to 7.18. 

Interpretation and validation of the SUPANOVA models, for which the contribution of the 



AN AL-MG-Lf POWDER METALLURGYALLOy SYSTEM 145 

Frequency of Training error Test error 

selection 

0&2 uts 0&2 uts 0&2 uts 

Neurofuzzy 20 20 20 1339 1000 44G 3000 1897 4 j # 

t 11 12 19 1341 947 4.06 1557 1311 4 J 6 

t 11 4 19 1341 921 4.06 1557 1716 4J6 

SUPANOVA 20 20 20 962 813 3^0 2987 1499 4 J 2 

t — 10 11 - 816 337 - 968 4.84 

Stage I 20 20 20 830 683 2^6 2906 1637 5.70 

t - (10) (11) - 705 2.69 - 1123 5.17 

Table 7.13: Summary of the mean training and test (generalisation) set error estimates inferred from the 
20 resampled data sets in modelling ao.2, uts and %el. Comparison of the consistency (stability) ex-
hibited by the neurofuzzy and SUPANOVA techniques in the determination of parsimonious models for 
the three properties investigated. The error estimates given are the mean error attained for the ANOVA 
representation most frequently selected (f). The table also presents empirical errors for the neurofuzzy 
models determined over the 20 resampled data sets whose structure was the same as that determined by 
training on the complete data set (f). Error estimates for Stage I are also given, corresponding to the 
data sets from which the most consistent SUPANOVA models were obtained. 

same variate is present in more than one term is not straightforward. The overall dependency 

must be understood by considering the superposition of all terms (e.g. the overall strengthening 

contribution of Li should be inferred by considering the effects arising from the univariate and 

any higher order terms present). Furthermore, interpretation of the bivariate terms should 

proceed with an understanding of how the input data is distributed. In regions where the 

data is sparse (e.g. high levels of PVc and Li) the functions should be viewed sceptically 

as extrapolation. 

Tables 7.14 and 7.15 show that over the 20 runs a considerable number of different terms 

(13 and 11 respectively) have been considered to account for strengthening effects. Univariate 

contributions of f Li and Mg are consistently selected, with the bivariate terms PVc x Li 

and X Li present in a significant number of models. More generally, PVc is combined 

with Li whilst P H / a forms bivariate and trivariate terms with Li, C and O. It is seen that the 

higher order terms selected comprise Li and not Mg. 

In modelling oq_2, H/a generally exhibits an almost linear strengthening effect, and both 

Mg and Li are seen to exhibit similar strengthening contributions. A few models exhibited a 

greater non-linearity in the C dependency, characterised by a smaller strengthening contribution 

for C concentrations where prior knowledge (see section 7.5) suggested a saturation of the grain 

refinement effect. 

The presence of Li in the models identified is somewhat surprising, as metallurgical un-

derstanding indicates that Li additions to A1 are generally recognised as having a very minor 
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solute strengthening effect (Noble et al. 1982; Sanders and Starke 1982; Starink et al. 1999) 

compared to Mg additions, as is also noted in section 7.2.3. 

The PVc X Li term suggests that more work is retained for higher Li contents and lower 

forging temperatures. In regions where most of the data is distributed, it may be concluded that 

there is an enhanced temperature sensitivity for Li-rich alloys, the reduction in strength being 

greater for higher Li contents. The absence of a dependency characterising PVc and cro.2 at 

very low Li contents (Figure 7.16 (d)) corresponds to the region where data is lacking. The 

PVb/a X Li term shown in Figure 7.16 (e) suggests an effect of Li on the deformation mode of 

the material: during hot deformation Li may influence how work is stored as it is known that 

solute elements (i.e. Li and Mg) result in a more planar slip mode (through lowering SFE). 

These dependencies may affect the micro-fracturing process and grain size development 

(affecting any recovery process that may be present), but also may be related to a dispersoid 

strengthening effect in addition to solute strengthening contributions. 

In the models determined for uts, there appears to be a more significant univariate C 

contribution compared with the (Jo.2 models. Generally, though the dependencies inferred for 

both (70.2 and uts are seen to be similar. The PVc x f x Li term remains hard to validate 

as the PVh/a x Li subdependency is seen to be inconsistent with that exhibited for (7o.2- Its 

effect on uts should be viewed in light of the other terms present in the model. 

In contrast to the strength models, where a considerable number of terms are seen to be 

considered over the 20 resampled data sets, models determined for %el. are seen to comprise 

very few ANOVA terms (1-2) and a smaller numer of terms considered (5) over the multiple 

runs. The PV^/a x Li X C term is seen to be consistently selected, the general form of the 

approximation inferred being consistent with our understanding of the source of strengthening 

in these alloys. This term appears to reflect the significance of the powder processing in the 

attainment of adequate ductility levels. 
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(a) (b) 

(c) (d) 

150, 

(e) 

Figure 7.16: General form of the kernel approximations exhibited by the ANOVA terms most consis-
tently identified in the basis selection stage of the SUPANOVA framework in the modelling of do.2-
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# # # 

• • • 

• • • 

• • • 

• • • 

• • • 

9 • 

• • • 

# # # 

# 

Total 20 20 20 19 12 1 

Table 7.15: Summary of the ANOVA terms determined for uts by the sparse basis selection employed 
within the SUPANOVA framework. 
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(a) (b) 

(c) (d) 

P V 

2 2 - 1 0 0 

< 2 - 1 0 0 

(e) 

Figure 7.17: General form of the kernel approximations exhibited by the ANOVA terms most consis-
tently identified in the basis selection stage of the SUPANOVA framework in the modelling of uts. 
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run bias x L i x C L i x C f X C X 0 

1 0 # # 

2 0 o 9 

3t o # 

4 0 • 9 

5t o # 

6 o # • 

7 o e • 

8t o e 

9 o 9 

lo t 0 • 

l i t 0 • 

12 o • 9 

13t o • 

14t o • 

15t o # 

16t 0 • 

17 o • 9 

18t o 9 

19 o 0 9 

20t o 9 

Total 1 2 15 1 3 

Table 7.16: Summary of the ANOVA terms determined for %el. by the sparse basis selection employed 
within the SUPANOVA framework. 
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(b) 
Figure 7.18: General form of the kernel approximations exhibited by the ANOVA terms most consis-
tently identified in the basis selection stage of the SUPANOVA framework in the modelling of %el. 
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7.9 Discussion 

In a comparison with the MLR analyses, the results obtained from the neurofuzzy and SU-

PANOVA modelling techniques achieve comparable approximations to the data though using 

a subset of the input variables and where considered appropriate, adapting the flexibility of the 

approximations in order to attain a better description of the dependencies present in the training 

data. Although the general form of the dependencies inferred by the adaptive modelling ap-

proaches were seen to be in general agreement, the SUPANOVA models were seen to include 

a number of higher order terms, suggesting the presence of interdependencies characterising 

the tensile properties and the processing conditions. In particular, a number of interactions 

between compositional elements and processing variables, suggested the presence of a number 

of strengthening effects in these alloys. 

The larger number and higher order of the terms present in the SUPANOVA models, 

reflects the different implementations of the SRM principle used by the two modelling frame-

works, showing how the SVM methods overcome the curse of dimensionality. 

The instability of the model structures inferred and consequently the large number of 

terms considered in the SUPANOVA framework over the 20 resampled data sets is indicative 

of the considerable uncertainty in inferring a model from the data set, and hence the true 

representativeness of the present data of the properties investigated. 

The nature of the dependencies were in agreement with the metallurgical understanding 

reviewed in section 7.2.3. Higher forging temperatures (PVc) were seen to have an adverse 

effect on strength, approximated by simple linear terms in the neurofuzzy models, with PVc 

generally being present as bivariate or trivariate terms in the SUPANOVA models. 

The %eZ. dependencies may be interpreted in terms of the influence of microstructural 

refinement (PVh/a, C) and work-hardening effects (PVc) on ductility. In the SUPANOVA 

results for %el., PVi,/a and C are systematically selected as higher order terms, whilst the 

ASMOD algorithm includes a univariate C dependency, PV^fa never being present. 

For (70.2 both the neurofuzzy and SUPANOVA approaches identify a stronger univariate 

contribution compared with a C dependency (the contribution of this latter being char-

acterised in the SUPANOVA models in higher order terms). 

In modelling uts, both techniques exhibit similar trends for Mg, PVc and a general 

increasing trend for C. In the neurofuzzy results, training on the complete data was seen to 

result in a model structure omitting the contribution of both Li and f which however are 

seen to be present in the results obtained from determining multiple models (both neurofuzzy 

and SUPANOVA). The piecewise approximation on C may be held responsible for a smaller 

number of univariate additions, as the absence of PV^ja is concomitant with the presence of 

this term. Once again this raises issues as to whether the extra flexibility of the C subnetwork 

has unduly accounted for a proportion of the variance that could be achieved by the inclusion of 

PVija- Additional degrees of freedom may have achieved a better overall approximation to the 
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data (MSB) but reflected a closer fit to a subset of the training data pairs (overfitting). Inferring 

from this that is an insignificant variable is clearly misleading, and its omission is a 

consequence of the variable selection and complexity control approach used in the neurofuzzy 

framework. 

Therefore, inferences based upon variable selection strategies will be highly dependent 

on the statistical properties of the training data set instance, as one variate may be a better 

explanatory variable in one data set, but not necessarily over all other possible data sets. As 

such, regularisation approaches to complexity control may be preferable to the greedy nature 

of maximum Hkelihood subset selection procedures. 

The SUPANOVA models obtained for the strength models did not elucidate any further 

the dependencies between P V J , a n d C as in the neurofuzzy results a degree of subset selection 

is present, particularly in the ao.2 models. In the SUPANOVA models determined for uts, both 

PVh/a and C are generally described by univariate and higher order terms. 

The Mg dependencies can be understood in terms of an additive solid solution strengthen-

ing contribution, although a contribution arising from a dispersion strengthening effect through 

the formation of MgO is possible. As Mg was not combined with other processing variables, 

the strengthening effect of this alloying element was not further elucidated. 

The inclusion of Mg in strength related models determined by the ASMOD algorithm 

requires some consideration. From Figures 7.4 and 7.5, the influence exerted in a regression 

of Mg by the baseline alloys is evident, and as such although in the final models the influence 

of the data pairs is not highly influential, the inclusion of a Mg subnetwork is nethertheless 

strongly influenced by these data pairs. 

The omission of Li in the neurofuzzy models can also be understood in terms of complex-

ity control and the one-step ahead iterative nature of the construction algorithms. 

From an inspection of the univariate candidate refinements considered at a particular step 

in the model search in the uts, 2"*̂  in crg g) the best refinement (corresponding to the 

inclusion of a univariate linear Mg subnetwork) gave only a marginally greater improvement 

in the model performance measures compared with an equivalent refinement performed by the 

inclusion of a Li subnetwork (identified as the second best refinement). Subsequent to the 

inclusion of the Mg subnetworks, the best constructive candidate refinements were seen to be 

achieved from the inclusion of other variables (PVc and C) and not Li. This may be seen to be a 

consequence of maximum likelihood estimation and the greedy nature of iterative construction 

algorithms. 

7.10 Conclusions 

In this initial study, neurofuzzy networks and SVM methods have been used to determine 

models for three tensile properties of MA Al-Mg-Li materials, using compositional and alloy 

processing information. 
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Metallurgical understanding, conditioning and regression diagnostics have together al-

lowed a greater understanding of the statistical properties of the data set, enabling a better 

interpretation and validation of the models identified by the adaptive approaches. 

In the neurofuzzy framework, the SRM statistical significance measure prevented the de-

velopment of over-parameterised models, limiting the capacity of the models to a complexity 

supported by the available data. Models identified in the neurofuzzy framework attained a 

comparable accuracy to the MLR results, though using a subset of the original set of input 

variables. In general, the SVM methods were seen to exhibit a better empirical performance, 

attained by use of the spline kernel approximation and the method by which the SVM approach 

addresses the curse of dimensionality. Overall however the output variance estimates on all 

three tensile properties were seen to be relatively high. 

The simple nature of the structural relationships determined however basically questions 

the quality of the data set. Both in terms of the representativeness of the inputs, and whether 

the data was a sufficiently large sample of the process conditions to allow a useful model to be 

inferred. 

Finally, the results have highlighted the instability of iterative model construction algo-

rithms, whereby small perturbations of the data set can lead to the determination of different 

models. This also highlights the dilemma governing transparency and model complexity. The 

transparency attained by subset selection procedures may in certain processes be misleading. 

As several authors (e.g. see (Miller 1984; Derksen and Keselman 1992; Chatfield 1995)) note: 

If you torture the data for long enough, in the end they will confess...what more 

brutal torture can there be than subset selection? The data will always confess, 

and the confession will usually be wrong. 



Chapter 8 

Data Modelling of 

Structure-Properties of Experimental 

Trials in the Al-Zn-Mg-Cu Alloy 

System 

8.1 Introduction 

High strength 7xxx series alloys (Al-Zn-Mg-Cu) comprise an increasing volume of Al-alloys 

sold to the aerospace industry and due to increasing demands for property improvement, most 

research and development work of aluminium producers is directed towards this alloy system. 

Typically (in aerospace applications) these alloys have minimum target levels in three critical 

properties: yield strength, toughness and stress corrosion cracking (SCC) resistance. As SCC 

is problematic to measure on production-line timescales, the more easily obtainable electrical 

conductivity is used as a measure of SCC resistance. Of these three main properties, yield 

strength and conductivity are determined primarily by the precipitation processes that occur 

during commercial thermal treatments of the alloys. The third property, toughness, is a complex 

function of matrix flow characteristics, intermetallic particle populations (coarse primary con-

stituents and dispersoids), grain structure and coarse heterogeneous precipitation (particularly 

on boundaries and dispersoids). The balance between these three main properties of 7xxx 

alloys is a precarious and sensitive one, with compositional and processing parameters having 

conflicting effects on the various properties. Modelling and optimisation of these properties 

is made problematic by the complexity of the relationships between primary process variables 

(composition, quenching rate, ageing time, ageing temperature, etc.) and target properties, par-

ticularly toughness and strength. To elucidate some of the relationships governing this balance 

of properties, a data set was formulated (as part of a commercial development programme). 

156 
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and a series of experimental alloys were fabricated and tested by DERA on behalf of British 

Aluminium Plate (BAP). 

The work included in this chapter presents the results obtained from the statistical inves-

tigation performed on this data (comprising a series of compositional and heat treatment trials) 

which broadly covers the commercial compositional range of Al-Zn-Mg-Cu alloys. Both the 

neurofuzzy framework and the SVM techniques have been used to determine models for yield 

strength and electrical conductivity from the experimental data. Simple statistical analyses 

have been performed on the data and MLR models obtained, allowing an assessment of the 

inferences obtained by the adaptive modelling approaches. In addition, in light of established 

understanding of the precipitation sequences characterising the 7xxx system, the investigation 

has been extended by assessing the effect of physical and heuristic based transformations of the 

input variables to develop more interpretable and representative feature sets. These transfor-

mations are expected to provide better characterisation of the main strengthening and physical 

characteristics of the alloys. 

8.2 High-strength AI-Zn-Mg-Cu alloys 

Based on the Al-Zn-Mg system, these alloys exhibit the greatest response to age hardening'. 

They respond to natural ageing, but unlike the 2xxx alloys, do not develop a stable naturally 

aged condition and so generally are not used in the T3 or T4 tempers. Pre-ageing deformation 

has little effect on the precipitation behaviour during the ageing treatment and generally there 

is no advantage upon stretching other than residual stress relief (this is due to the very low 

coherency strains of the GP zones formed in Al-Zn-Mg(-Cu) alloys). 7xxx alloys are generally 

employed in either a peak-aged T6 or overaged T7 condition. In this system, composition-

al changes do not alter the basic character of the hardening precipitates, but exert a subtle 

influence on the overall precipitated structure, e.g. the highest hardening levels and fastest 

precipitation rates are found in alloys with particular Zn;Mg ratios (Mondolfo 1971). Small 

amounts of Mn, Cr or Zr are typically added to control the microstructure during thermome-

chanical processing. In 7x75 Al-alloys Ali2MgCr dispersoids aid in retaining the directional 

grain structure developed during processing of wrought products, preventing excessive growth 

of recrystallised grains which form during subsequent heat treatments. These incoherent dis-

persoids however increase the quench sensitivity of high-copper Al-Zn-Mg alloys since they 

act as nucleating agents for solute-rich precipitates during quenching. This process (forming 

the basis of the transformations derived in subsequent sections) eliminates some of the Cu 

and Mg from participating in the low-temperature ageing sequence, leading to lower strength 

levels (Polmear 1981; Starke 1989). Some alloys (e.g. 7010 and 7050) contain Zr for more 

' T h e addition of Zn to Al-Mg produces an acceleration of the ageing process whereas the addition of Mg to Al-

Zn alloys causes a retardation or an acceleration, but no appreciable change in the precipitation sequence (Mondolfo 

1971). 
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efficient grain refinement and reduced quench sensitivity, also imparting improved strength 

and toughness. Due to their susceptibility to SCC, manufacturers have developed thermal 

treatments to attain a useful balance in strength and SCC resistance (e.g. T77, T79 and T74). 

8.2.1 Precipitation in Al-Zn-Mg-Cu alloys 

Whilst several precipitation sequences in 7xxx series alloys have been reported, e.g. see (Park 

and Ardell 1983), it is well established that the main sequence responsible for most of the 

age-hardening in 7xxx alloys is: 

ssss a —> GP zones r]' rj (8.1) 

where ssss a is the supersaturated solid solution of the Al-rich (a) phase, rj' is thought to have a 

stoichiometry close to Mg4ZnuAl (Park and Ardell 1988), whilst r] is based on MgZng (Mon-

dolfo 1976; Park and Ardell 1988). It is known that in the peak aged condition most of the GP 

zones formed early on in the precipitation sequence are replaced by the t]' phase, whilst the r] 

phase (if at all present in the slightly overaged alloys investigated) will not be responsible for 

significant strengthening effects. Ageing alloys with high Zn:Mg ratios produces the transition 

precipitate rj', the precursor to the equilibrium r] phase (MgZng). For low Zn:Mg ratios, the T 

phase (AlgZngMgs) may form, though usually the amount of this phase is minor and has little 

effect on the precipitation process. 

In concentrations below 1 wt.%, Cu does not appear to alter the basic precipitation mech-

anism and probably contributes a solid solution strengthening effect. With somewhat higher 

concentrations, copper does not produce new phases, but mostly goes to replace Zn and Mg in 

the precipitating compounds, thus participating in the precipitation process, decreasing the 

coherency of the precipitate when aged to peak strength. It remains uncertain whether or 

not Cu modifies the existing ageing process in Al-Zn-Mg alloys and/or introduces additional 

precipitates normally occurring in the Al-Cu-Mg system. The results obtained by Moloney 

et al. (2000) appear to confirm that Cu additions promote a rapid early hardening reaction 

when ageing at elevated temperatures, suggesting that Cu introduces clustering or precipitate 

processes which are additional to those observed in ternary Al-Zn-Mg alloys (i.e. accelerated 

nucleation of r] and rj' precipitates and induced precipitation of grain boundary zones and S 

phase). The addition of Cu increases the nucleation frequency of GP zones and of the t]' phase 

without affecting the growth rate of the GP zones (Wagner and Shenoy 1991), thereby consid-

erably increasing the strength of Al-Zn-Mg alloys, although increasing the quench sensitivity^. 

Overall, the effects of Cu additions are in increasing the ageing rate by increasing the degree of 

supersaturation and perhaps through nucleation of the S phase (Al2CuMg) (the acceleration of 

the early stages of the transformation from GP zones to intermediate phase has been attributed 

"In additions up to approximately 0.6 wt.% though Cu additions appreciably reduce the quench sensitivity of 

these alloys. 
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to the nucleation of this phase). Thus, the effects of Cu on the nucleation of the rj' (MgZn2, 

(Al,Zn)2Mg) strengthening precipitate and any solution strengthening contribution, may be 

offset by the presence of coarse, incoherent S phase formation. 

A large body of work on the thermodynamics, microstructure and microstructure-property 

relations of 7xxx series alloys exists (Strawbridge et al. 1948; Brown and Willey 1967; Mondol-

fo 1976; Liang et al. 1997; Sainfort et al. 1997; Warner et al. 1997). Based on this knowledge, 

modelling of the strength of ternary Al-Zn-Mg alloys on an analytical microstructure related 

basis (Deshamps and Brechet 1999) has been carried out, and modelling quaternary 7xxx series 

alloys on the basis of similar microstructure-property relations appears to be possible (Warner 

et al. 1997). Section 2.5 discussed recent developments and advances in thermodynamic and 

physical based modelling approaches. A review and case studies in modelling properties of 

Al-alloys using both adaptive modelling techniques and physical-based models is presented 

by Starink et al. (2000). 

8.2.2 Main microstructure related strengthening and conductivity effects 

From Chapter 2 chemical composition and processing are seen to control the microstructure 

and thus the physical, mechanical, and corrosion properties of heat-treatable Al-alloys. During 

homogenising and solution treatments some of the Cu and Mg present in the 7xxx series alloys 

will not dissolve in the Al-rich matrix, as some S phase will be stable at the solution treatment 

temperature. Hence, the Cu and Mg "tied-up" in the S phase will not cause any reduction 

in conductivity levels of the Al-rich phase (this phase being the only significant conductive 

pathway in the alloy). Additionally, these elements will not be available for subsequent precip-

itation hardening during ageing (precipitation hardening being the dominating strengthening 

mechanism). This means that the Cu and Mg present in S phase have become largely irrelevant 

in affecting both conductivity and strength levels. It must however be recognised that the S 

phase will have a detrimental effect on a third critical property, the toughness of the alloy. 

The property variations as a function of copper and magnesium concentrations are sum-

marised in Figure 8.1, see also Warner et al. (1997). The addition of Zn has in general the effect 

of increasing the maximum attainable strength with little effect on toughness at a given strength, 

though it decreases castability. The high-strength, Cu-containing alloys are quite susceptible 

to s e e in the under- and peak-aged tempers. In Chapter 2 it was seen that SCC susceptibility 

increases with increasing solid solution alloying content and that it is influenced not only by 

the sum of the alloying additions, but also by their ratios. To minimise this susceptibility to 

SCC, over-aged treatments are utilised at some sacrifice in tensile strength. Ageing practices 

have been developed to improve the corrosion resistance of 7xxx alloys containing more than 

1 % Cu, and are based on the reduction of selective corrosion at grain boundaries with increased 

overageing; the concomitant increase in electrical conductivity above a minimum value devel-

oped upon ageing, coincides with the onset of coarsening of the 77' precipitates. Hepples (1987) 
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Figure 8.1: Schematic phase diagram and corresponding property variations for copper rich 7xxx alloys. 

explained the reduced susceptibility to SCC of Al-alloys 7179 and 7475 upon extended ageing 

in terms of the Mg segregation to the grain boundaries. The increased susceptibility to SCC 

of low Zn:Mg alloys was thus attributed to the free Mg, i.e. that present in solution at grain 

boundaries (see section 2.3.4). 

Improvements in SCC resistance have also been achieved through Cu additions (Starke 

1989), increasing the Zn:Mg ratio (Al-alloy 7050) and through Zr additions, the latter reducing 

susceptibility caused by slow quenching. Increasing the Zn:Mg ratio above three has been 

considered to be detrimental to SCC resistance (Hatch 1984). 

In section 2.3.4 it was discussed how a direct relationship between electrical conductivity 

and the SCC resistance of overaged 7xxx series Al-alloys appears to have been established 

(SCC resistance found to increase with increasing electrical conductivity). Electrical conduc-

tivity (the reciprocal of resistivity) of metals can be described by Matthiessen's rule^. Several 

'According to Matthiessen's rule, the resistivity is the sum of a temperature and a composition dependent term: 

P — pP (^) 4- Presis^l 5 • • • , Cn ) 

where pp(T) is the temperature dependent resistivity of the matrix, and presici, • •. ,c„) is the contribution from 

the disturbances in the lattice structure from alloying elements with concentrations c,. At low concentrations 

resistivity increases almost linearly with the amount of elements in solution. The resistivity contribution from 

precipitates is lower compared to elements in solid solution: 

:fO C-Pi + (8.2) 

c'i cl are the concentrations (wt.%) of element i in solid solution and element k out of solution respectively, for 

i^k = I , . . . , M. The terms associated with the constants pi, pk yield the resistivity increase for each wt.% addition 

of element i in solid solution and element k out of solution respectively, e.g. see Olafsson et al. (1996). 
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physically-based models for the conductivity of 7xxx series alloys have recently been proposed. 

These interpret conductivity increases upon overageing to be due to the reduction in electron 

scattering resulting from coarsening of precipitates (Guyot and Cottignies 1996), reduction 

in the amount of dissolved atoms (Dorward 1999) resulting from the nucleation and growth 

of precipitates and finally due to the reduction in the amount of dissolved atoms in the PFZ 

adjacent to the grain boundaries (Starink et al. 2000). 

8.3 The 7xxx experimental data set 

The proprietary data set investigated comprised results obtained from heat treatment trial-

s carried out by DERA, Famborough, U.K. under contract from BAP, on a range of alloy 

compositions that broadly covered the high strength variants of the 7xxx series Al-alloys. 

The main objective of this series of trials was to develop an understanding of how compo-

sition and ageing affected the strength/electrical conductivity balance around the 7010 compo-

sition (including compositional ranges of 7050 and 7075 Al-alloys). A total of 36 alloy/ageing 

time combinations were formulated, with selected compositional variations and ageing condi-

tions (Pitcher 1998; Pitcher 1999). 

To allow direct comparison, all alloys were identically processed: alloys were cast and 

processed to a thick plate form following industrial practices as closely as possible, receiving 

identical heat treatments - alloys were given the same solution heat treatment (475° C for 1 

hour) and subsequently aged for varying times at 172°C with a heating rate of 20°C/h, similar 

to those used in commercial T7 tempers. 

For each alloy, compositional levels (wt.%) of Zn, Mg, Cu, Zr, Fe and Si were quantified 

(comparison of the target compositions with those measured revealed that in general the in-

tended compositions were attained) and the subsequent 0.2% proof stress (cro.2) and electrical 

conductivity (aei) were measured for each alloy variant. Transverse tensile test specimens were 

taken from the plates at the half plate thickness position. For each alloy variant, a number of 

tensile tests were repeated and conductivity levels monitored at different positions, from which 

mean property levels were estimated and used throughout the present analyses as the target 

outputs. 

The wt.% concentrations of the alloying elements, xzn,w> XMg.w, xcu.w, xzr.w, xpe.w and 

xsi,w along with the ageing time, t (hours), for each of the alloys was designated data set A. The 

mean and standard deviations for the inputs and output variables are summarised in Tables B.l 

and B.2, from which it is seen that the main variables under investigation exhibit considerably 

larger standard deviations when compared to minor and impurity elements, the variability of 

the latter two being associated with uncontrollable processing conditions. 

The pairwise input scatterplots shown in Figure B.l do not identify any significant cor-

relations existing between the input variables, while the conflicting requirements of attaining 

useful cro.2 levels whilst retaining satisfactory aei levels, shown in Figure B.4 are consistent 
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with the behaviour exhibited in Figure 2.1 (the ryy correlation coefficient being —0.737). The 

simple correlation coefficients summarising the data distribution plots are shown below. 

' Zn Mg Cu Zr Fe Si t 

Zn 1 -0.332 0.118 0.118 0.417 -0.333 -0.211 

Mg -0.332 1 0.038 0.366 -0.028 0.158 0.572 

Cu 0.118 0.038 1 0.112 -0.221 -0.205 0.001 
= = 

Zr 0.118 0.366 0.112 1 0.669 -0.635 0.199 

Fe 0.417 -0.028 -0.221 0.669 1 -0.534 -0.023 

Si -0.333 0.158 -0.205 -0.635 -0.534 1 0.101 

t -0.211 0.572 0.001 0.199 -0.023 0.101 1 

r y x 

Zn 0.354 Zn 0.204 

Mg 0.125 Mg -0.410 

Cu 0.365 Cu -0.081 

Zr 0.174 (cro 2) ryx = Zr -0.109 

Fe 0.052 Fe 0.123 

Si -0.119 Si -0.171 

t -0.436 t 0.270 

From an inspection of the full residuals between inputs and output properties shown in 

Figures B.5 and B.6 it is difficult to identify clear structural relationships, the only suggested 

trend being that between Mg and CTe/. A limited number of observations suggest a dependency 

between output properties and ageing time, the general nature of which remains unclear partic-

ularly for CTo.2, due to the large variation in properties attained at low ageing times for several 

differing compositional levels. 

From the above analysis of the statistical properties and distributions of the data it is 

seen that although of limited size, the data set reflects its experimental design origins, as the 

distribution of the variables of interest were wide ranging, if somewhat sparse. 

8.4 Data transformations 

It may be argued that (non-linear) adaptive data-driven modelling techniques should be suffi-

ciently flexible to automatically learn an appropriate input-output mapping without the necessi-

ty of any prior data processing. This may be the case when the inputs are both a representative 

set of features and the amount of data available is sufficient to allow reliable inferences to take 

place. However, the use of prior knowledge in the form of precipitation based understanding 

may not only augment the empirical performance of the modelling technique but may also 

enhance the interpretability of the dependencies inferred. As such, transformations of the input 

data based on physical/metallurgical understanding were considered. 
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The input transformations described in the following sections will be subsequently as-

sessed in terms of whether they enhance the interpretability of the relationships and confidence 

in the estimates and improve the information (condition) of the data through use of prior system 

understanding to derive more descriptive input quantities. 

8.4.1 Physical and precipitation sequence motivated transformations 

In the first of the transformations considered the original compositional concentrations char-

acterising the Al-Zn-Mg-Cu type alloys were transformed into variables that reflected key 

microstructural features, most notably the amounts of the main phases: the volume fraction 

of the main strengthening phase 77' that forms in the alloys and the volume fraction of the main 

coarse intermetallic phase, the S phase'*. Transforming the atomic fractions of Cu and Mg, 

xcu and XMg, into their corresponding fractions dissolvable in the Al-rich (a) phase, x q u . q and 

XMg,a, formed the basis upon which further input features were derived. 

If the stoichiometry of a phase is fixed, the solubility of an intermetallic phase can often 

be described by the regular solution model (Brown and Willey 1967; Starink and Gregson 

1995; Starink and Gregson 1996). In this model, the solvus related to an intermetallic phase 

MmAaBfjCc {Mm is the main constituent of the alloy, and Aa, Q are the alloying ele-

ments) is given by: 

( c ^ ) " ( c g ) * (cc)"" = Co e x p ( 8 . 3 ) 

where AHgoi is the enthalpy of formation of one "molecule" of MmAaBbCc, Ag is Boltzman-

n's constant and cq is a constant. If appropriate values for AH sol, cq, a, 6 and c, for each phase 

can be derived from available solubility data, a phase diagram can be constructed. However, 

only for T = 460°C are significant data on the solvi of all phases available (Strawbridge et al. 

1948). For the S phase, the AHgoiiS) in ternary alloys has been determined previously (Starink 

and Gregson 1996), and by combining solvus data at 460°C (Strawbridge et al. 1948) with 

AH sol, the S solvus as a function of the temperature can be estimated. 

At the solution treatment temperature applied to the present data set, for the S phase, it is 

thus estimated: 

( x M g ) ( x c u ) = 8.48 X 10^ e x p 
-O.SleF 

(8.4) 

From this, the atomic fractions, xcu.a and XMg,a, dissolvable in the a-rich phase can then be 

calculated by considering a dichotomy determined by the conditions described below. 

If: 

" -0.81ey 
(xMg) (xcu) < 8.48 X 10^ e x p (8.5) 

""in the present investigation it is understood that the S phase is readily dissolved in the 7075 compositional 

range, but it is more difficult to dissolve in 7050 type Al-alloys. 
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then 

whereas if 

then 

^Cu,Q — XCu 

^Mg,Q — ^Mg 

( x M g ) ( x c u ) > 8.48 X 10^ e x p 
-O.gley 

AgT 

(8.6) 

(8.7) 

I (xMg xcu) + f (xMg ~ xcu)^ + 4 X 8.48 X lO^exp 

(xCu ~ XCujq) 

-O.SleV 
t a r 

(8.8) 

The atomic fraction of S phase, xg, (i.e. the number of atoms present as S phase divided by the 

total number of atoms in the system) is given by: 

xs == 4 0q:u --)%:u,a) (8.9) 

From section 8.2 it was seen that rj' will be the main hardening phase, and by using the 

estimated composition of rj' phase of Mg^ZnuAl, the maximum atomic fraction of rj' that 

can form is given by: 

Xn' = 16min ( ^ , 5 ^ ) (8.10) 

From the above, the main strengthening mechanisms involved are considered to be precipitation 

hardening due to rj' and solution hardening of the a phase due to Zn, Cu and Mg. In the latter 

mechanism Mg is expected to have the strongest influence, as solution strengthening due to 

Mg is generally considered to be more important than due to Cu or Zn (Gomiero et al. 1992; 

Starink et al. 1999). Thus, the maximum level of precipitation hardening is expected to be 

determined by x^ while the maximum level of solution hardening is mainly determined by 

XMg,a- The relative contributions of solution hardening and precipitation hardening will be 

dependent on ageing time as precipitation of alloying elements progresses, with precipitation 

hardening gradually replacing solution hardening as the main strengthening mechanism. For 

the present overaged alloys, significant ?]' precipitation will have occured in all alloys. 

It is further known that the amount of Mg that is left in solution after complete formation 

of the main precipitates is a significant variable, influencing the properties (mainly o^i) of 

overaged alloys (Anderson 1994). For all alloy variants comprising the data set, and indeed for 

all commercial 7xxx series alloys, ^ , and hence the amount of T( will be controlled 

by the Zn content. Thus, the amount of excess Mg, XMg,xs, can be determined as: 

4 
XMgjXs ~ XMg,a ~ (8.11) 
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This excess Mg is expected to have a pronounced influence on conductivity, as the correspond-

ing atoms will not be involved in the main precipitation sequence and will thus remain in the 

Al-rich phase. 

In summary, it is considered likely that the main variables determining (To.2 are and 

t, with secondary effects (Brown and Willey 1967) determined by XMg,Q and xcu,q, whereas 

for aei, XMg,xs and t are considered the main variables, with further minor contributions from 

xcu,a and a very small influence due to xzn (or x^). 

The set of features derived above, namely x^, XMg,a, xcu.a, XMg,xs and xg, together with 

the ageing time t, comprised the second data set investigated, designated the "microstructural" 

or data set B. The concentration of the minor and impurity alloying elements were omitted 

from this data set, as they were considered from a preliminary data analysis to be unlikely to 

influence the properties investigated. 

8.4.2 Rule-of-thumb transformations 

In technical publications, alloys are often categorised and discussed in terms of sums and ratios 

of the weight percentages of the main alloying elements. In the Al-Zn-Mg-Cu system, some 

of the quantities which have been considered include Zn:Mg, (Zn+Cu):Mg and Zn+Mg. These 

quantities can have physical meanings, for instance in section 8.2 it was seen that the Zn:Mg 

ratio will exert a considerable influence on the balance of the main precipitation sequences 

operating in the alloy system, with some literature defining particular dichotomies character-

ising the precise nature of the phase precipitated, e.g. see in particular (MondoJfo 1971)^. 

However, in terms of the solid state reactions, the relevance of adding weight percentages of 

atoms is generally unclear. Although, it can be seen that with the atomic weight of Zn being 

approximately 2.7 times that of Mg, adding Zn+Mg, in weight percentages, may be some 

measure of the amount of strengthening -q' phase, provided that this phase has a broad range of 

stability around its central composition of Mg^Zn^Al. 

Thus, certain quantities derived from sums and ratios of alloying elements participating 

in precipitation sequences can both provide a more interpretable and parsimonious description 

of the data. Hence, in order to fully investigate possible permutations of the input variables, 

the three quantities, X2n,w • xjviĝ w? (̂ Zn,w ^Cu,w) - X]y[ĝ ^ and X2n,w 4̂  x^g w, have been 

considered, which, in addition to ageing time t constituted the third data set investigated, 

designated the "rule-of-thumb" or data set C^. 

' in this review article an extensive use of such quantities is employed to describe the physical properties of 

Al-Zn-Mg(-Cu) alloys. For example, the Zn:Mg ratio, considered to characterise the Zn bearing phase, in ratios 

greater than 2.5 is considered to promote MgZn2 (r?), while for lower levels is considered to give AbMgsZns (T). 

The definition of such dichotomies characterising precipitation in the alloy remains questionable. 

''The motivation behind the (Zn -I- Cu) : Mg quantity originates from a comparatively similar behaviour of Cu 

with Zn in the ratio, as already seen previously, Cu may be dissolved in MgZng or A^MgsZns, as well as being 

present in solid solution and/or constituent particles (Mondolfo 1971). 
' a further quantity which could have been considered was the Cu:Mg ratio, as in (Mondolfo 1971) it is seen 
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It should be understood that the two data sets derived above (B and C) are substantially 

different from both physical and statistical perspectives. The set of transformations giving rise 

to data set B are directly including system understanding to modify (augment) the statistical 

distributions of the original compositional levels, having the effect of "smearing" the data in 

input space (as may be inferred by comparing the data distributions of XMg,w. xcu,w and xzn,w 

with XMg,a (or XMg,xs)> xcu.a (or xg) and respectively - see the following section) the 

degree of which being greater for some data pairs than for others. 

In contrast, the variables comprising data set C are the result of a set of transformations 

which give rise to a set of features which may have benefits in interpretability, in terms of 

general rule-of-thumb understandings, but are not "pre-conditioned" from a priori physical 

based system understanding. For example, data set C (and consequently data set A) does not 

discriminate between the wt.% of the alloying additions (particularly Mg, Zn and Cu) present in 

solution or out of solution, these quantities known to have considerable differences in affecting 

as implied in section 8.2, see also (Hepples 1987). 

Given a sufficiently representative and large data set, it is again acknowledged that data-

driven adaptive modelling approaches should be capable of identifying and approximating 

non-linear input-output dependencies, without necessitating of the forms of pre-processing 

presented above; however, interpretability and knowledge representation requirements together 

with the limitations imposed by the small sample sizes, make both data sets B and C worthy 

of investigation. 

As in Chapter 7, the input variables were transformed to have zero mean and unit variance. 

This simple pre-processing has already been seen to be beneficial as it removes non-essential 

sources of ill-conditioning, allowing a comparison of the magnitudes of the weights determined 

in a MLR analysis. Inferences were also obtained from a similar standardisation of the output 

quantities. For the neurofuzzy framework, the data was transformed to lie within ±1, whereas 

the data was standardised to lie in the interval [0,1] for the SVM methods. Again, to preserve 

the commercial confidentiality of the data set, all plots involving input variables are presented 

in normalised forms, whilst final predictions and measured output values are presented in their 

original ranges. 

8.4.3 Effects of the transformations 

Whilst the transformations proposed in previous sections can generate more descriptive and in-

terpretable features, more amenable to physical based understanding, a poor choice of transfor-

that for Cu>Mg, S phase can be present and furthermore, if Cu>>Mg, 9 phase (AbCu) can form. For the present 

alloy variants and indeed in 7xxx alloys, however this latter phase does not form. Thus, any effect of Cu in the 

system will be represented by the (Zn+Cu):Mg quantity. 
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mations can generate sources of ill-conditioning in a regression analysis, leading to misleading 

and/or nonsensical results, as discussed in previous chapters. 

A simple inspection of the data distributions for the variables comprising data sets B and 

C will be useful in assessing the effect of the transformations compared to the original distri-

butions. The application of conditioning diagnostic measures will be discussed in section 8.5, 

in the context of the MLR analysis, elucidating any sources of uncertainty. 

Figures B.2 and B.3 show the input pairwise scatterplots for the two data sets, whilst the 

simple correlation coefficients between the variates are summarised below. 

ta'A' = 

^Cu,a M̂g,Ck xs Xjj' ^MgjXs t 

XCu,Q 1 0.033 0.531 0.207 -0.015 - 0.011 

XMg,a: 0.033 1 0.085 - 0.308 0.977 0.570 

xs 0.531 0.085 1 0.177 0.040 0.056 

X '̂ 0.207 -0.308 0.177 1 -0.503 - 0.209 

XMg,xs -0.015 0.977 0.040 - 0.503 1 0.565 

t -0.011 0.570 0.056 - 0.209 0.565 1 

XCu,Q 0.370 ' XCu,Q -0.091 " 

XMg,Q 0.138 XMg,a -0.418 

xs 0.221 
(cro.2) XS 0.057 xs 

0.379 
(cro.2) r y x = XS 

0.194 Xn' 0.379 
(cro.2) 

Xjj' 0.194 

XMg,xs 0.041 XMg,xE —0.423 

t -0.436 t 0.270 

Zn : Mg (Zn + Cu) : Mg Zn + Mg t 

1 : Mg 1 0.941 0.262 -0.500 

,11 + Cu) : Mg 0.941 1 0.209 -0.496 

Zn 

t 

Mg 0.262 

-0.500 

0.209 

-0.496 

1 

0.125 

0.125 

1 

Zn : Mg 0.086 

(Zn + Cu) : Mg 0.166 

Zn + Mg 0.438 

( -0.436 

(ĉ O.2) r y x 

Zn : Mg 

(Zn + Cu) : Mg 

Zn + Mg 

0.380 

0.339 

-0.035 

0.270 

The correlations characterising input variables generated by the microstructural transfor-

mations are clear, particularly between XMg,xs and XMg,Q, while dependencies characterising 

the other Mg-related features remain less evident. 
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The data distribution characterising xg and several of the other quantities are seen to be 

affected by xg, which for several alloys is descriptive of the situation where no S phase is 

considered to form. 

The dependencies characterising the set of variables derived from the rule-of-thumb trans-

formations are also clear and are a reflection of the compositional levels of the 7xxx system, 

particularly the dependency between xzn,w : XMg,w and (xzn,w + xcu.w) : XMg.w 

The full residuals for both data sets are shown in Figures B.7 to B.IO, from which the 

effects of the microstructural transformations on the distribution of the samples can be clear-

ly understood. Unsurprisingly, the trends exhibited for the Mg related features are retained. 

Inspection of the residuals for data set C reveal increasing trends between xzn,w + XMg,w and 

(70.2, increasing trends between the Zn:Mg related variables and a^i, while the addition of Zn 

to Mg has obscured the dependencies identified previously between the Mg content and dg/ . 

8.5 Multiple linear regression 

In order to assess the effect of the data transformations a MLR analysis was performed on all 

three data sets. Due to the small sample sizes and the different number of variables comprising 

the data sets, the results were compared in terms of the adjusted training MSB for both 

unnormalised and normalised output vectors (the latter quantity indicating the output variance 

"explained" by the model) enabling an unbiased comparison between (training set) variance 

estimates obtained for the different models. The results obtained from the MLR analyses are 

summarised below in Tables 8.1 and 8.2. For completeness, variance estimates as determined 

from equation 3.4 are also given. 

Data set df 

A 642 O/Wl 8/7 7 

B 50&9 629 0.408 7/6 6 

C 51&2 601 0.391 5/4 4 

Table 8.1: Summary of the MLR models determined for the three data sets investigated for ao.2-

From these results, the models are seen to exhibit high training errors for <to.2, with 

no significant improvement obtained from data sets B and C (in all cases comparable to an 

effective standard deviation on the estimates of approximately ± 25 MPa). The models for 

cTgf are seen to account for a similar proportion of the variance with the cro.2 models (typically 

^It should be understood that the interpretability of these univariate plots is partial. The loss of any input-output 

correlation induced by the transformations (e.g. data set B) should not necessarily be viewed negatively, as these 

transformations may mitigate the risk of discovering fortuitous dependencies among the variates. Furthermore, 

what may appear as univariate dependencies may be better described through multivariate and/or higher order 

dependencies. 
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Data set ^df 
^2 

df,std 
df 

A 2.70 3.47 0.51 8/7 7 

B 2.63 3.27 0.48 7/6 6 

C 3.03 3.52 0.52 5/4 4 

Table 8.2: Summary of the MLR models determined for the three data sets investigated for agi. 

50% compared with 60% for the former), and again training error variance estimates were 

unaffected by the transformations (giving an effective standard deviation on the estimates of 

typically ± 1.85 %IACS). 

The set of standardised regression coefficients and associated measures of parameteric 

uncertainty for the properties investigated, determined from the three data sets are summarised 

in Tables 8.3, 8.6 and 8.9. 

<70.2 (^EL 

W T w r 

X Z n , w 0.434 0.139 3.13 0.038 0.151 0.25 

^ M g , w 0.596 0.172 3.47 -0.718 0.187 3.84 

^ C u , w 0.263 0.133 1.98 -0.048 0.145 0.33 

^ Z r , w 0.173 0.235 0.74 -0.198 0.256 0.77 

X F e , w -0.134 0.202 0.66 0.124 0.220 0.56 

^Si,w 0.099 0.176 0.56 -0.191 0.192 0.99 

t -0.733 0.135 5.42 0.750 0.147 5.09 

Table 8.3: Parametric inferences determined from the MLR models for (To.2 and aei from data set A. 

From Table 8.3 it is seen that ageing time, x^g.w and xzn,w exhibit the largest weights 

and signal-to-noise levels in modelling 0-0.2, whereas for agi, ageing time and Mg are seen to 

be the variates with the most significant linear dependencies; a further comparison with the 

<70.2 model shows that for aei, xzn,w and xcu,w attain considerably lower weights, resulting in 

the low r levels. Generally, the largest structural uncertainties (low r 's) are associated with 

xzr,w, XFe,w and xgî w, the former two exhibiting somewhat larger parametric uncertainties 

(high a-uj). From a variance-decomposition of X (performed on the normalised data), shown in 

Table 8.4, the uncertainty in the weights for xzr,w and xpe.w are to some degree reflected by the 

corresponding variance decomposition proportions, despite the lack of a significant collinearity 

problem (the simple correlation coefficient between xpe.w and xzr,w being 0.669, possibly a 

reflection of the small sample size), as indicated by the singular values given in Table 8.5. 

Thus, the large uncertainty in the weights exhibited for these variates are due to other sources 

of data weaknesses, primarily attributable to the lack of significant (linear) trends exhibited 

with the outputs. 
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Condition Proportions of 

Index T] 0-2 2 

1 0.033 0.000 0.001 0.025 0.038 0.048 0.000 

1.13 0.040 0.094 0.000 0.014 0.000 0.001 0.121 

1/45 0.003 0.000 0.502 0.000 0.034 0.013 0.000 

1.84 0.542 0.003 0.001 0.018 0.002 0.052 0.221 

2.30 0.055 0.266 0.019 0.014 0.012 0.181 0.589 

3.02 0.210 0.257 0.356 0.007 0.358 0.406 0.057 

4.40 0.118 0.380 0.120 0.922 0.556 0.299 0.011 

Table 8.4: Condition indices and associated variance-decompositon proportions for data set A. 

Singular Values 

/^l 

/̂ 2 

M3 

M5 

A«6 

P'l 

9.19 

8.13 

6.33 

4.99 

4.00 

3.04 

2.09 

Table 8.5: Singular values of X for data set A. 

The weights determined for the (To.2 model from data set B, shown in Table 8.6, appear to 

be consistent with the analysis presented in section 8.4.1. Increasing ageing time will reduce 

the strength (as data is obtained mostly for the overaged regime) and among the compositional 

related variables and XMg,Q exhibit the largest weights. Consistent with the assessment in 

section 8.2 and unsurprisingly from the data distributions, xg exhibits a near to negligible in-

fluence. However for Cei, the results are less interpretable, particularly the sign and magnitude 

of the weights for the Mg related variates, which without a statistical interpretation are likely 

to give rise to erroneous conclusions. 

From the uncertainty measures shown in Table 8.6, a MLR analysis has resulted in con-

siderably high parametric uncertainties, suggesting some form of data weakness. As such, 

inferences based on the MLR model determined are questionable if not inappropriate. A 

comparison between the magnitude of the weights and the Vxy values reveals the nonsensical 

MLR inferences, suggesting the presence of an ill-conditioning problem to be affecting the 

MLR results. The definition of data set B, comprising all the quantities defined from the set 

of transformations used, has then resulted in the formulation of a linear (least-squares) model 

which is affected by an ill-conditioning problem. 

An SVD of the design matrix for this data set (Table 8.8) and a subsequent variance 
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0̂ 0.2 ^el 
w T w T 

XCUjQ 0.263 0.131 2.007 -0.152 0.14 1.07 

^Mg,Q 0.721 22.47 0.032 4.615 24.385 0.19 

xs 0.0001 0.136 8e-'^ 0.160 0.147 1.09 

x /̂ 0.361 5.548 0.065 -1.238 6.021 0.21 

XMg,xs -0.064 24.747 2e-^ -5.987 26.858 0.22 

t -0.733 0.132 5.56 0.749 0.143 5.24 

Table 8.6: Parametric inferences determined form the MLR models for 0-0.2 and agi from data set B. 

decomposition (Table 8.7), clearly identify the near-linear dependencies present among the 

variates: the collinearity detected between XMg,Q, XMg,xs, associated with a condition 

index % — 511, is responsible for the large uncertainty in the corresponding weights. 

Condition Proportions of 

Index T] "tUCu.ci a2 2 a2 
M̂g,X8 

1 0.000 0.000 0.000 0.000 0.000 0.050 

1.28 0.185 0.000 0.175 0.000 0.000 0.003 

1.89 0.054 0.000 0.031 0.000 0.000 0.232 

2.28 0.017 0.000 0.095 0.000 0.000 0.634 

2.40 0.710 0.000 0.603 0.000 0.000 0.080 

511 0.035 1.000 0.097 0.999 1.000 0.000 

Table 8.7: Condition indices and associated variance-decompositon proportions for data set B. 

Singular Values 

fj-l = 9.63 

1x2 = 7.55 

jU3 = 5.11 

/LI4 = 4.23 

/i5 = 4.02 

/J.Q = 0.02 

Table 8.8: Singular values of X for data set B. 

Also, though not as damaging as this near-linear dependency, the variance-decomposition 

proportions reveal a certain amount of uncertainty associated with the weights for x c u , q and 

xg. The inflated variances affecting these two variates is not clear (the r^x being 0.531), though 
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the distribution of xg values may be held responsible^. 

Finally, in the MLR analysis of data set C, Table 8.9 shows low r levels associated 

with variates in the form Xx:Mg, resulting from higher parametric uncertainties than those 

exhibited by the other variables. Again, simple inferences based on the sign and magnitude of 

the weights may be misleading, e.g. the XxiMg quantities are seen to exhibit opposite trends. 

The difference in these trends may be associated with an effective Cu contribution. 

0&2 '^el 

W T w T 

X Z n , w • ^ M g , w --1.2()6 0.322 3J4 &930 0.371 2.51 

( x z n , w "t" X C u , w ) • ^ M g , w 0.799 0.314 2.55 -0.103 0J61 0J9 

X Z n , w ^ M g , w 0.677 &116 5.86 -0.348 CU33 2.62 

t - O J ^ &128 5.66 0J?6 0U48 4.92 

Table 8.9: Parametric inferences determined from the MLR for (To.2 and Oei from data set C. 

It is necessary to elucidate to what extent the parametric estimates are affected by 

dependencies amongst the variates. A spectral decomposition and analysis was per-

formed (Tables 8.11 and 8.10) revealing that despite the absence of a severe condition-

ing problem, some variate involvement is unsurprisingly present between xzn,w : XMg,w and 

(xzn,w + xcu,w) • XMg,w. as indicated also by the simple correlation coefficient (0.941). 

Singular Values 

Hi = 9.09 

//2 = 6.22 

/i3 = 4.10 

^4 = 1.42 

Table 8.10: Singular values of X for data set C. 

From the above analysis and interpretation of the MLR results, it should be clear that 

misleading conclusions may be drawn, if these are based on the assumption that all inputs are 

described by linear dependencies with the output properties, and that dependencies between the 

input variates are not understood. The near-linear dependencies identified are seen to inflate the 

parametric uncertainty in least-squares solutions. In order to obtain more reliable parametric 

inferences appropriate estimation methods, e.g. subset selection, regularisation methods should 

be considered even in simple linear analyses. 

^In order to explain this dependency, variance-decomposition proportions were performed by the inclusion of a 

bias term in the normalised data set and on the original unnormalised data (also clearly including a bias term). The 

variate involvement was unchanged in the former decomposition whereas the variance for xcu.a was considerably 

reduced in the latter. 
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Condition Proportions of 

Index T] £^2 
•"'ZnrMg 

^ 2 9 

1 0.018 0.019 0.011 0X#6 

1.46 0.001 0.000 0^63 &154 

222 0.020 OIGl 0J92 0.785 

6.40 0.962 0.950 0.034 OL005 

Table 8.11: Condition indices and associated variance-decompositon proportions for data set C. 

In the following sections, the results obtained from the adaptive nature of both the B-

spline approximations inferred by the neurofuzzy framework and those determined by the 

kernel methods used in the SVM technique will be used to highlight the limitations of MLR 

analyses, particularly in terms of inferencing and knowledge extraction. 

8.6 Neurofuzzy data modelling 

The neurofuzzy framework was used to determine models for ^ and from each data set, 

with the same criteria and methodologies as previously outlined and applied in Chapter 7. 

A direct comparison between the approximation capabilities of neurofuzzy models and 

those obtained from equivalent MLR models for each data set enabled an assessment of the 

neurofuzzy approach, while the effectiveness of the transformation was validated in terms of 

typical model performance statistics, metallurgical understanding and initialisation of simple 

model structures. 

The networks identified by the construction algorithms determined from empty model 

structures for data set A, B and C are shown in Figures 8.2 to 8.4, whilst the subnetwork 

responses for each model are shown in Figures 8.5 to 8.10. 

The corresponding performance measures for these models are summarised in Tables 8.12 

and 8.13. As in Chapter 7, training MSE are presented together with unbiased variance 

estimates {(7%) for normalised and unnormalised output vectors. 

Data set <7̂  ^df LOOCV ,̂ 2 
"̂ dfjStd 

SS df nx 

A 351 42L58 50%9 &28 2394 6 4 

B 454 526.68 59&6 0J5 2444 5 3 

C 279 334.32 43&9 &22 1898 6 4 

Table 8.12: Summary and comparison of the neurofuzzy models for cro.2 identified from the three data 
sets considered. 
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Data set LOOCV ^2 
df,std 

SS df nx 

A 0.296 0.333 0.385 0.050 1.29 4 2 

B 0.223 0.251 0.271 0.038 0.98 4 2 

C 0.206 0.247 0.272 0.038 1.41 6 3 

Table 8.13: Summary and comparison of the neurofuzzy models for a^i identified from the three data 

sets considered. 

'Zn,w — 

'Cu.w — 

X 

I °0.2 

t — 

Z )-

(a) (b) 
Figure 8.2: Network structures for the neurofuzzy models determined for cro.2 (a) and cTe; (b) from data 

set A. 

Mg.a 

1 H " e l 

(a) 
(b) 

Figure 8.3: Network structures for the neurofuzzy models determined for cro.2 (a) and aei (b) from data 

set B. 
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'Zn,w'*'̂Mg,w— 

t — 

X (s> " • 

^^Zn,w^^Cu,w '̂̂ Mg,w 

(a) 

'Zn,w' Mg,w — 

'Zn,w'*'̂Mg,w — 

t — 

w 
X 

(b) 

Figure 8.4: Network structures for the neurofuzzy models determined for ao.2 (a) and aei (b) from data 

set C. 

a-15 

(a) 

Cu,w 

Zn,w 

(b) 

(c) 
Figure 8.5: Subnetwork responses for the neurofuzzy model for ao.2 determined from data set A: 

XMg,w X t (a), X2n,w (b) , XCu,w (c). 
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-0.5 0 0.5 1 1.5 
M̂g,w 

00 (b) 

Figure 8.6: Subnetwork responses for the neurofuzzy model identified for aei determined from data set 

A. XMg,w (^)> ^ (b). 

Mg.a 

(a) (b) 

Figure 8.7: Subnetwork responses for the neurofuzzy model for cro.2 determined from data set B: 

XMg.a X f (a), X;,' (b). 

Mg,xs 

(a) (b) 

Figure 8.8: Subnetwork responses for the neurofuzzy model identified for a^i determined from data set 

B: XMg,xs (a), ^ (b). 
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Zn,w Mg,w 

(a) 

Zn.w Mg.w 

(b) 

1 0 1 
'̂ Zn,ŵ Ĉu,w)'̂ Mg,w 

(C) 
Figure 8.9: Subnetwork responses for the neurofuzzy model identified for cro.2 determined from data 

set C. X2n,w ^Mg,w (^}j {^Zn,w • ̂ Mg,w) X ^ (b) , (xZn,w 4" XCii,w) • ̂ Mg,w (c). 

Zn,w Mg.w 
Zn,w Mg,w 

(a) (b) 
Figure 8.10: Subnetwork responses for the neurofuzzy model identified for agi determined from data 

set C. (X2n,w 4" XMg,w) X (xZn,w - XMg,w) (^), i (b). 
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A comparison between the MLR and neurofuzzy results, indicates the latter attains a better 

approximation to the data for both cro.2 and a^i, the improvement in the latter is particularly 

evident. 

Figure 8.11 shows the network target versus network output scatterplots corresponding 

to the three data sets. As in Chapter 7, the uncertainty in the model output estimates (on the 

training data) are displayed with corresponding error bars characterising the weight uncertainty 

term only. A comparison between training set output estimates and the leave-one-out predic-

tions typically shows limited variance, with only a small subset of model predictions exhibiting 

large discrepancies (more observable in the ao.2 models). 

A comparison between the proportions of variance explained by the cto.2 models (ranging 

between approximately 65 and 78%), shows a marginal improvement in the approximation of 

the data has been achieved when compared to the MLR results, although generally employing a 

subset of the inputs. Whereas for aei the proportions explained are typically 96%, considerably 

improving on the levels attained by MLR, in all cases using a subset of the inputs. 

In modelling cro.z from data sets A and B a subset of the inputs are present in the final 

models identified, whereas for data set C, the model includes all inputs despite the correlations 

identified previously. In all cases an input variable related to Mg and t have been combined 

to form a tensor subnetwork, leading to the improvement attained in MSE levels over those 

achieved by the MLR analysis. The other terms present in the model exhibit simple linear 

approximations. 

In the aei models, the ageing time contribution is described by a piecewise linear approx-

imation, this extra flexibility allowing a considerable improvement in the variance estimates 

attained compared to the MLR results. The improvement exhibited upon comparing data 

sets A and B (which are seen to differ only in terms of the variable used to describe the Mg 

contribution), being significant. 

The series of model refinements performed by the ASMOD algorithm in the construction 

of the models for <tq,2 and a^i on the three data sets are summarised in Tables B.3 to B.8. The 

similarity between the iterative model refinements is noticeable, particularly for data sets A and 

B. From these it is seen that the inclusion of a Cu related variable was attempted and although 

yielding an improved approximation to the data, the corresponding increase in the model's SS 

measure prevented the inclusion of this variable in the aei models determined. Finally, it is 

seen why the two univariate additive subnetworks, one for Mg and the other for t, were refined 

in favour of a tensor subnetwork of the from Mg x t. 

The values of the ryx coefficient between aei, XMg,a and XMg,xs, (-0.418 and -0.423 

respectively), explain the inclusion of the latter in the model construction: the first refinement 

is seen to correspond to a univariate addition with a simple linear approximation and as such 

between these two Mg-related variates, the one with the highest correlation with the output will 

be selected. 

From the refinement histories for the agi models, it is seen how the second refinement cor-
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(e) (f) 
Figure 8.11: Prediction scatterplots for the neurofuzzy models for the output properties investigated for 

data sets A, B and C: cro.2 (a), (c) and (e) and aei (b), (d) and (f). Model estimates attained are shown 

for both the training data (») and leave-one-out predictions ( x ) , the former augmented with ± l a error 

bars. 
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responds to the univariate addition of ageing time with a highly flexible approximation (store 2), 

whereby the subnetwork uses three internal knots whose response is shown in Figure 8.12 (a). 

This is clearly seen to have resulted in a highly overfitted subnetwork structure and during the 

model pruning, two successive knot deletions are seen to remove the redundancy present in 

this subnetwork, the first of which modifies the approximation on ageing time to that shown in 

Figure 8.12 (b), the second yielding the final subnetwork response shown in previous figures. 

Although the pruning refinements have been seen to successfully remove undue degrees of 

freedom, the addition of ageing time with an unduly complex fit may have prevented other 

constructive refinements, resulting in the identification of a poor model for % . A comparison 

with the results in sections 8.6.1 and 8.7 will identify whether this has resulted in a suboptimal 

model search. 

(a) fb) 

Figure 8.12: Subnetwork responses for ageing time corresponding to the 2""^ (a) and 3'^'' (b) refinements 

performed in the model constructions for the aei models. 

From an inspection of the subnetwork responses, it is seen that strength levels generally 

increase with increasing the Zn+Mg content, while for a^i Figure 8.8 shows that decreasing the 

Zn+Mg content reduces the a^i levels attainable. 

The general effect of an increase in the xzn,w : XMg,w quantity was to decrease (To.2 and 

increase a^i. For both properties, the Zn:Mg dependency is further clarified by inspection of 

the tensor subnetwork response surface. From Figure 8.9 (b) it is suggested that alloy variants 

exhibiting higher xzn,w : XMg,w ratios have the greatest susceptibility to a loss in strength with 

ageing. The general trend for decreasing CTO.2 upon ageing is consistent with an increasing 

degree of overaging, i.e. coarsening of the 77' phase upon extended ageing. 

As in the MLR analysis, the nature of the approximation on the (Zn+Cu);Mg quan-

tity may again be interpreted as the effective Cu contribution. The presence of both 

(xzn,vv + xcu,w) : XMg,w and xzn,w : XMg.w (despite a correlation value of 0.941 between these 

two quantities) is an indication that copper additions increase strength levels, whereas the 

omission of the Cu-related quantity in the aei model suggests Cu as having a lesser effect 

on electrical conductivity. These results are seen to be consistent with the alloy system and the 
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analysis performed by Pitcher (1998). 

The results obtained show that, in general, the most parsimonious models were inferred 

from data set B, suggesting this data set comprises a subset of the variates having greater de-

scriptive metallurgical features, enabling the determination of a more physically representative 

set of dependencies, more amenable to an explicit interpretation of microstructure-property 

relationships. The model construction procedures identified t and XMg,xs as the most descrip-

tive variables determining o-g/, whilst the selection of t, and XMg,a for cro.2 are both in 

accordance with the metallurgical understanding described in section 8.4.1. One interesting 

result was the selection of the tensor product XMg,a x t. In terms of microstructure development 

this interaction identifies the amount of Mg initially dissolved in the Al-rich phase as having 

a significant influence on the rate of strength reduction, due to coarsening of the main phases, 

suggesting the XMg,a x t dependency possibly being related to the interaction of Mg atoms 

with vacancies, this latter interaction significantly influencing diffusion rates, see e.g. (Starink 

and Zahra 1998). The Mg x t dependency is supported by the consistency with which input 

variables related to Mg have also been combined with t to form tensor product subnetworks 

in the other data sets. From inspection of the Mg x t subnetworks, there is a clear suggestion 

that the strength of the higher Mg alloys does not decrease as rapidly as in the case of low Mg 

alloys. 

8.6.1 Model initialisation 

In Chapter 5 it was seen that one of the appealing features of the neurofuzzy networks consid-

ered in this work, was the ability to formulate a set of rules within a neural-type architecture. 

Therefore a simple initialisation of the network structures reflecting both metallurgical and 

empirical understanding of the dependencies characterising the present alloy system was in-

vestigated. The modelling task then corresponding to weight-rule confidence training. 

For (70.2, models were constrained in the form shown in Figure 8.13 (a), reflecting the 

sources of strengthening believed to be present, introducing the Mg x t term identified by the 

previous model construction procedures. 

A comparison of the network structures determined by the ASMOD algorithm shows that 

the models for are generally determined by an additive structure comprising a piecewise 

linear approximation of t and (depending on the data set) composition related inputs. Hence, a 

general model structure including all these terms is shown in Figure 8.13 (b). 

Thus, constraining the models to the general forms shown in Figures 8.13 (a) and (b), re-

flected system understanding achieved both empirically and physically, and provided a further 

comparison of the effect of the data set transformations on modelling 0-0.2 and a^i. 

An assessment of the approximations attained for the different input subsets, by con-

strained network structures as described above, are shown in Tables 8.14 and 8.15. In addition 

to these sets, obtained from data sets A, B and C, a fourth set, D, was defined. This data set 
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Zn related variable— Zn related variable 

related variable Mg related variable— 

t— t— 

Cu related variable— Cu related variable— 

X 

(a) (b) 

Figure 8.13: General form of the model structures suggested for the neurofuzzy networks for ao.2 (a) 

and aei (b). 

being the same as that derived from data set B apart from taking l/xMg,Q instead of XMg,Q 

for the model for cro.2 model. This simple (non-linear) permutation was based on inspection 

of the model performances attained by inputs of the type 1/Mg, and revealed this term to 

attain a better (linearised) approximation to the data'®. As seen from Table 8.14 a tangible 

improvement is achieved by the simple linearisation yielded by the l/xMg,Q term. 

Data set ANOVA terms LOOCV 

A t X XMg,w, X2n,w ; ^Cu,w 421 507 

B t X XMg,a, t ̂ Cu,a 437 528 

C 
t X XZn,w - ^ M g j W : XZn,w 4" ^ M g , \ v j 

334 436 
( x Z n , w 4" X C u , w ) • XMg ,w 

D t X l /x jv Ig^Q, , X^ ' , XCu^Q, 384 466 

Table 8.14: Summary of the effects of the data transformations through defining network structures for 

cro.2- Note that for all models, p = 8 and df = 6. 

Data set ANOVA terms *df LOOCV 

A ^Mg,w» Xzn,w? XCu,w 0J:51 0.291 

B XMg,xs, ̂ Tj') XCu,a 0U83 0.219 

C ^Zn,w • XMg,W)XZn,w • ^Mg,wi 

(̂ Zn,w + XCu,w) • XMg,w 
&359 O j j 2 

Table 8.15: Summary of the effects of the data transformations through defining network structures for 

Note that for all models, p = 9 and df = 6. 

"This single modification to set B is thus seen to be based on the results attained by data set C. 
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8.6.2 Assessing stability of the model selection 

As in Chapter 7, a stepwise (SW) model search was employed to determine models on all 

three data sets for both ao.2 and aei in order to assess the stability of the model structure 

inferred using a different iterative construction procedure. Identical model structures to those 

identified by the FS/BE construction were determined with the exception of models for Uei for 

data sets A and C. For data set A, an additional univariate piecewise subnetwork for was 

included, while for data set C four univariate subnetworks were determined (of which ageing 

time and (xzn,w + xcu,w) : XMg.w were piecewise linear approximations). Although yielding 

improvements in the SS and both training set and LOOCV variance estimates, the inclusion 

of XFe,w in preference to other refinements (from inspection of the model construction 

history) was marginal and the form of the approximation inferred problematic to validate. 

The piecewise approximation determined on (xzn,w + xcu,w) : XMg,w was promoted by 

removing redundancy early on in the model construction (on the t subnetwork), subsequently 

promoting the (piecewise) univariate addition of (xzn,w + xcu.w) : XMg,w as opposed to the 

tensor product (xzn,w : XMg.w) x (xzn,w + ^Mg.w) refinement determined in the FS/BE model 

construction. 

The sensitivity of the FS/BE construction algorithm to small perturbations in the data 

set was investigated by resampling the complete data set into multiple training-test sets (with 

a 90%-10% split). The generalisation performances attained were inferred from the average 

predictive performance obtained from the 20 models where, each of the model's test errors 

were estimated on four samples. These results subsequently allowed a comparison to be made 

with those obtained in section 8.7, from application of the SVM methods. 

The ANOVA terms determined over each of the multiple model runs for both erg % and 

Gel by the ASMOD algorithm are summarised in Tables 8.16 to 8.21". The model structure 

determined with greater consistency (11 times) from data set A in modelling erg 2, as noted 

above, is seen to differ from that identified upon using the complete data set for training, which 

over these multiple runs is determined 7 times (Table 8.16). The trends for the former model 

structure are shown in Figure 8.14'^. 

From Table 8.17 it is seen that the models determined by the ASMOD algorithm typically 

comprise x,^', XMg,Q and t univariate terms, with a number of models (8) exhibiting bivariate 

terms (mainly Mg x t) in preference to univariate terms. As for data set A, a number of 

models approximate the ageing time dependency with a piecewise approximation (5 out of the 

11 univariate ageing time subnetworks). As in the case of training on the complete data set, 

the absence of a Cu contribution can be explained in light of the transformations performed 

"AS in Chapter 7, $ indicates an identical model structure as that determined from the model inferred from the 

complete data set, while f indicates the model structure which over the multiple model runs is the most consistently 

inferred. 
'^A few models (three) exhibited a univarite piecewise approximation to t. 
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in section 8.4. This can be understood in terms of both the properties of this data set and the 

smaller training set sizes, the latter is seen to further restrict the number of degrees of freedom 

allowed by the model complexity measure. 

Models for ao.2 determined from data set C (Table 8.18), show that ageing time is never 

retained as a univariate term, being present as a tensor product (the two univariate contribu-

tions refined in favour of a bivariate term). The most consistent terms identified are seen to 

comprise the Zn+Mg univariate and the (Zn : Mg) x t bivariate terms. The model structure 

determined with greater consistency is then seen to differ from that determined from training 

on the complete data set by the absence of the (Zn + Cu) : Mg term. 

A comparison between the models inferred for Uei from data sets A and B show consistent 

results to those attained on training on the complete data set, with structures comprising a 

piecewise approximation for the ageing time dependency and a univariate term characterising 

that between aei with Mg. From data set B, a number of models are seen to include XMg,a in 

place of XMg,xs, depending on the particular training-test split. 

The models inferred from data set C (Table 8.21) are generally comprised by univariate 

contributions of Zn:Mg, Zn+Mg and t, the latter approximated by a piecewise linear term. The 

original model structure determined by training on all data is never identified from any of the 

multiple runs, the construction algorithms being unable to support (refine) a tensor product 

term between the Zn:Mg and Zn+Mg terms. As in previous analyses, the contribution of Cu 

was never included. 

The error estimates inferred over the multiple model runs are summarised in Tables 8.22 

and 8.23'^. On all data sets, models for which ao.2 attained the same structure as those deter-

mined from training on the full data set exhibited lower training errors compared to the most 

consistently inferred network structures from the multiple runs. More significantly, models 

inferred from data sets B and C exhibited a lower validation error. However, due to both the 

small number of models inferred, and more significantly, the size of the data set considered, it 

is inappropriate to identify which of these two is a better model structure. 

In terms of the different data sets considered, the results for <jo.2 are consistent with those 

attained from training on all data, with data set C providing the best approximation abilities. 

A comparison between the test errors and the LOOCV estimates previously determined shows 

the latter as giving somewhat conservative estimates of the generalisation performance. 

For Gel, a comparison between validation error estimates shows that whilst data sets A and 

B attain similar accuracies, data set C exhibits poorer empirical performance. 

" i n the presentation of these results, the test errors refer to the mean of the error estimates on unseen data 

obtained over the 20 different training-test splits. In addition, the performance obtained by the most consistently 

identified model structures (i.e. ANOVA terms) are presented. These correspond to the results indicated by f. 

Neurofuzzy models attaining the same structure as that determined from using all the data for training correspond 

to the t results. 
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run Zn Mg Cu t Mg X t Zn X t 

i t • • • 

2t • • • 

3t • 0 

4 • • 

5t • • • 

6t • • • 

7t 0 • 

8t 9 • • 

9 • • 

10 • • 

11* • • # 

12t • • • 

13* • 0 9 
14t • • • 

15+ • • • 

16 • • 

17 • e • • 

Igt • • • 

19 • • 

20+ • • • 

Total 18 13 5 12 7 1 

Table 8.16; Summary of the ANOVA terms determined for ao.2 by the neurofuzzy model construction 

algorithms from data set A for each of the 20 resampled data sets. 

a 400 S 4 0 C 

0 . 2 0 . 4 0 . 6 0 . 8 

''zn.w 

(&) 
Figure 8.14: General form of the subnetwork responses for the ANOVA terms most consistently deter-

mined in the models constructed by the neurofuzzy framework from data set A in modelling 0-0.2• 
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run ^Cu,a ^Mg,a X^' t ^Mg,a ^ ^ ^T)' X i ^Mg,xs X ^ 

1 • • 9 

2t • • 9 

3t # 9 9 

4t 9 9 

5t • 9 9 

6t • 9 9 

7t m 9 • 

8t 9 9 • 

9 0 9 

lOf 9 9 

l i t 9 9 

12t • 9 9 

13 • • e 

14t # 9 9 

15+ • 9 • 

16t • 9 • 

17 * • 9 • 

18+ • 9 • 

19+ 9 • 

20 9 9 

Total 3 14 18 12 5 1 2 

Table 8.17: Summary of the ANOVA terms determined for <70.2 by the neurofuzzy model construction 

algorithms from data set B for each of the 20 resampled data sets. 

( a ) ( b ) ( c ) 

Figure 8.15: General form of the subnetwork responses for the ANOVA terms most consistently deter-

mined in the models constructed by the neurofuzzy framework from data set B in modelling (To,2-
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run Zn:Mg (Zn+Cu):Mg Zn+Mg Zn : Mg X t (Zn H h Cu) : Mg X t 

IT • # • 

2 T • • 

3 e • 9 

4 T 9 • 

5 T • • 

6 • • 9 

7 T m # 

8 T • • 

9 T • • 

LOT • • 

11* 9 9 • 

12 • 9 9 

13* • 9 • 

1 4 T 9 9 

15t 9 9 

16 # 9 • 

17 • 9 • 

Igt • 9 

]9t • 9 

20* • • 9 

Total 5 4 20 15 5 

Table 8.18: Summary of the ANOVA terms determined for (To.2 by the neurofuzzy model construction 

algorithms from data set C for each of the resampled data sets. 

(a) (b) 

Figure 8.16: General form of the subnetwork responses for the ANOVA terms most consistently deter-

mined in the models constructed by the neurofuzzy framework from data set C in modelling ao.2-
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run Zn Mg t 

l t4 * • 

• • 

9 9 

4t.t 9 « 

5t4 • • 

6 t j • • 

7t,t e o 
gtJ • • 

9t4 • • 

10 • • • 

nt,$ • e 

12t.* 9 9 

13t.t 9 9 

14t,t 9 9 

15t't 9 9 

]6+'f 9 9 

17t,l 9 9 

18*'* 9 9 

19*'* 9 9 

20*'* 9 9 

Total 1 ^ 20 

Table 8.19: Summary of the ANOVA terms determined for agi by the neurofuzzy model construction 

algorithms from data set A for each of the resampled data sets. 

0 . 2 0 . 4 0 . 6 0 .6 

M̂g.w 

(a) (b) 
Figure 8.17: General form of the subnetwork responses for the ANOVA terms most consistently deter-

mined in the models constructed by the neurofuzzy framework from data set A in modelling aei. 
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run ^Mg,a XMg,xs t 
l t4 # • 

2 • # 

3t't • * 

4 # • 

• • 

• • 

7 o 9 
g t j 0 • 

9 • • 

lOt't • • 

nt,$ • • 

12t'* • • 

13?'* • • 

]4t,t • e 

15t't • • 

16 • • 

17 • • 

18*'* • • 

19*'* • • 

20 • • 

Total 7 13 20 

Table 8.20: Summary of the ANOVA terms determined for agi by the neurofuzzy model construction 
algorithms from data set B for each of the 20 resampled data sets. 

( a ) ( b ) 

Figure 8.18: General form of the subnetwork responses for the ANOVA terms most consistently deter-
mined in the models constructed by the neurofuzzy framework from data set B in modelling aei-
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run Zn:Mg Zn+Mg t Zn : Mg x t Zn + Mg x t 

It • • 9 

2 # 9 

3t 0 • 9 

4t e • 9 

5t # 9 9 

6 9 9 

7+ 9 9 9 

g t • 9 9 

9t • 9 9 

l o t • 9 9 

l i t • 9 9 

1 2 t • 9 9 

13t • 9 9 

1 4 t # 9 9 

15 9 9 

1 6 t # 9 9 

17 9 9 

1 8 9 9 

19t • 9 9 

20 • 9 9 

Total 15 2 0 14 5 1 

Table 8.21: Summary of the ANOVA terms determined for aei by the neurofuzzy model construction 
algorithms from data set C for each of the 20 resampled data sets. 

In.fi Mg 
02 Oj Oa Oa 

t 

(t) 
Figure 8.19: General form of the subnetwork responses for the ANOVA terms most consistently deter-
mined in the models constructed by the neurofuzzy framework from data set C in modelling agi. 
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8.7 Support vector regression 

The approximation abilities of the SVM methods described in Chapter 6 were investigated on 

all three data sets in modelling both o-q.s and erg/. The SUPANOVA approach was repeated 

on the same 20 training-test set partitions used in section 8.6, from which estimates of the 

generalisation performance could be determined. 

As in Chapter 7, a quadratic loss function was used and an infinite ANOVA spline as 

the kernel choice to perform the non-linear mapping into feature space. As in section 7.8 the 

empirical performance attained by Stage I in the SUPANOVA framework was also determined. 

The empirical results obtained for the neurofuzzy, Stage I, and SUPANOVA for (To.2 and 

aei are summarised in Tables 8.22 and 8.23*"̂ . 

Frequency 

of selection 

A B C 

Training error 

A B C 

Test error 

A B C 
Neurofuzzy 

t 

t 

20 20 20 
11 11 11 

3 4 4 

460 403 312 
540 444 373 
273 435 236 

1159 860 709 
1008 837 830 
1108 619 695 

SUPANOVA 

t 

20 20 20 
2 7 8 

297 579 155 
73 207 60 

791 867 368 
768 338 207 

Stage I 

t 

20 20 20 
(2) (7) (8) 

108 55 49 
94 71 36 

614 510 195 
1483 426 165 

Table 8.22: Summary of the mean training and test (generalisation) set error estimates attained over 
the 20 resampled data sets in the modelling of ao.2 by the three techniques for all three data sets (A,B 
and C). The error estimates given are the mean error attained for the ANOVA basis most frequently 
selected. The table also presents empirical errors for the models determined over the 20 resampled 
data sets whose structure was the same as that determined by training on the complete data set. Error 
estimates corresponding to Stage I in the SUPANOVA models quoted are also given. 

The test set predictions obtained for the different modelling approaches are graphically 

summarised in the target versus prediction scatterplots shown in Figures 8.20 and 8.21, from 

which the variance attained in predicting the same test cases can be observed. 

In a comparison between the different modelling approaches, the results presented in 

Table 8.22 show how Stage I attains better generalisation abilities in modelling c7o.2 over all 

three data sets. However, Table 8.23 shows that whilst attaining a similar training error on all 

three data sets, the performance of Stage I in terms of the validation/test variance estimates are 

seen to be inferior to the parsimonious modelling results. In general, the neurofuzzy models 

are seen to underperform, particularly in modelling ao.2-

' ' 'For the SVM results, the average performance obtained by the most consistently identified model stmctures 

(i.e. ANOVA terms) are presented by f . 
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« 500 

9 

4 0 0 450 500 550 
network ta rge ts (MPa) 

data set A; neurofuzzy (a), 

450 500 550 
network targets (MPa) 

SUPANOVA (b), 

;450 

400 450 500 550 
network targets (MPa) 

Stage I (c). 

400 

400 450 500 550 
network targets (MPa) 

data set B: neurofuzzy (d), 

S450 

00 450 500 550 
network targets (MPa) 

SUPANOVA (e). 

%450| 

400 450 500 550 
network targets (MPa) 

Stage I (f). 

01520 

400 450 500 550 
network targets (MPa) 

400 450 500 550 
network targets (MPa) 

550 

a 500 

$ 4 5 0 - ' ' y 

yg" -

data set C: neurofuzzy (g), 

450 500 550 
network targets (MPa) 

SUPANOVA (h). Stage I (i) 
Figure 8.20: Predictions attained by the different modelling techniques on the test data for cro.2 from 
data set A: (a)-(c), data set B (d)-(f) and data set C (g)-(i). 
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34 36 38 40 42 44 
network targets (%IACS) 

data set A: neurofuzzy (a), 

34 36 3 8 4 0 42 44 
network targets (%IACS) 

SUPANOVA (b). 

34 36 38 40 42 44 
network targets (%IACS) 

Stage I (c). 

34 36 38 40 42 44 
network targets (%IACS) 

data set B; neurofuzzy (d), 

34 36 3 8 4 0 42 44 
network targets (%IACS) 

SUPANOVA (e). 

44 

0 42 

m40 5 

8 38 

1 

y 

34 36 38 40 42 44 
network targets (%IACS) 

Stage I (f). 

34 36 38 40 42 44 
network targets (%IACS) 

data set C: neurofuzzy(g), 

34 3 6 3 8 4 0 42 44 
network targets (%IACS) 

34 36 38 40 42 44 
network targets (%IACS) 

SUPANOVA (h). Stage I (i). 
Figure 8.21: Predictions attained by the different modelling techniques on the test data for agi from 
data set A: (a)-(c), data set B (d)-(f) and data set C (g)-(i). 
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Frequency 

of selection 

A B C 

Training error 

A B C 

Test error 

A B C 

Neurofuzzy 

t 
$ 

20 20 20 
19 13 14 

19 13 

0.290 0.227 0.58 
0.296 0.211 0.295 
0.296 0.211 

0.37 0.35 1.44 
0.349 0.362 0.429 
0.349 0.362 

SUPANOVA 

t 

20 20 20 
12 10 6 

0.639 0.239 0.13 
0.310 0.231 0.068 

0.67 0.47 0.35 
0.513 0.411 0.177 

Stage I 

t 

20 20 20 
(12) (10) (6) 

0.087 0.04 0.06 
0.088 0.023 0.023 

1.27 0.42 0.88 
1.25 0.594 0.106 

Table 8.23: Summary of the mean training and test (generalisation) set error estimates attained over the 

20 resampled data sets in the modelling of aei by the three techniques for all three data sets (A,B and 

C). Comparison of the consistency (stability) exhibited by the neurofuzzy and SUPANOVA techniques 

in the determination of parsimonious models for aei for all three data sets. The error estimates given 

are the mean error attained for the A N O V A basis most frequently selected. The table also presents 

empirical errors for the models determined over the 20 resampled data sets whose structure was the 

same as that determined by training on the complete data set. Error estimates corresponding to Stage I 

in the SUPANOVA models quoted are also given. 

In general, the ANOVA representations determined by both SUPANOVA and neurofuzzy 

frameworks, exhibit a greater stability in the modelling results obtained for cTg/- Whereas there 

was seen to be considerable uncertainty (instability) in inferring ANOVA representations for 

<70.2, particularly from data set A. In the SUPANOVA framework, this can be seen to be a 

reflection of the size of the full ANOVA basis considered, from which the sparse subselection 

is performed. As both data sets A and B give rise to larger ANOVA basis, compared with data 

set C, the sensitivity in subselecting the same ANOVA components over the different training-

test set partitions is understandably greater for the former two. 

The general nature of the approximations determined for the most consistently selected 

ANOVA terms are shown in Figures 8.22 to 8.27. The smoothness of these approximations in 

certain data set instances differed by a considerable amount, resulting from the different degree 

of regularisation inferred from the cross-validation resampling procedure used for determining 

the smoothing parameter C. On certain data set instances the approximations inferred clearly 

resulted in a considerable overfitting of the training data. 

Table 8.24 shows that for cro.2, the number of ANOVA terms selected varies from the 

presence of only a bias term to models having seven terms, with a considerable number of 

different terms considered (11) over the multiple runs. Consequently it is seen that there is 

a degree of uncertainty in the sparse representations, with no overall structure systematically 

inferred. Models are generally characterised by a number of univariate terms and by a bivariate 

term, the most consistently selected being the Zn x t dependency. The bivariate and trivariate 
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terms selected in a few instances (e.g. the Cu x Zr, Zn x Fe x Si) are difficult to validate. 

In Figure 8.22, the selection of univariate terms xzn,w and XMg,w are both in agreement 

with the trends inferred in section 8.6. More problematic is the validation of the general form 

of the approximations characterising the xcu,w and xzr,w terms (the subset of models with 

a greater degree of regularisation than those shown in Figure 8.22 exhibited monotonically 

increasing trends for these two variates). As in section 8.6, the ageing time dependency 

is consistent with an overageing behaviour, the kernel approximation attaining a physically 

believable behaviour. The dependencies characterising cro.2 with xzn,w and t are to be fully 

understood by considering both univariate and bivariate terms: alloys with a higher Zn content 

are more susceptible to a loss in strength arising from overageing. 

It is seen that the Znxt dependency inferred by the SUPANOVA framework is not present 

in the models identified by the ASMOD algorithm, where a dependency of the form Mg x t 

dependency was preferred'^. 

Table 8.25 shows that in modelling ao.2 from data set B, the univariate terms XMg,xs 

and t terms are consistently selected, whereas compared to data set A, x c u , q i s seldom present. 

As in section 8.6, this may be attributed to the effect of the input transformations, whereby other 

terms, particularly XMg,xs and x^ , are more parsimoniously accounting for the output variance. 

This consideration seems to be further supported by the fact that a comparison between the Zn 

and Mg-related approximations reveals a stronger non-linearity associated with the quantities 

present in data set B. Thus, an intrinsic contribution of the Cu levels may inherently be present. 

In a further comparison with the other cro.2 results, data set A in particular reveals a 

considerably higher proportion of models (5) comprising only a bias term. This suggests that 

the dependencies present in data set B are reflected in the sparse subset selection performed in 

the SUPANOVA framework, whereby the solution corresponding to minimising the )| • ||i norm 

of the c coefficients (see section 6.5.2) is seen to result in the subsequent selection of only the 

bias term. 

A comparison in terms of the ANOVA terms determined by the two parsimonious 

modelling approaches shows that the SUPANOVA approach is seen to include the XMg.xs 

rather than the XMg,Q univariate term. The bivariate terms determined in the SUPANOVA 

framework differ from those determined by the ASMOD algorithm, the neurofuzzy models 

include bivariate terms with a greater consistency. 

As in section 8.6.2, a term describing the dependency of cro.2 with ageing time and the 

balance of the precipitation sequence is (apart from one instance) always present in the 

models determined from data set C. The most consistently selected terms being the univariate 

approximations of t and Zn+Mg dependencies and the ((Zn + Cu) : Mg) x t bivariate term, 

this latter selected in preference to (Zn : Mg) x t, and seen to be consistently present in the 

'̂ An inspection of the model construction showed a consistency to select (from the SS scores) a tensor product 

(replacing the respective univariate subnetworks) between t and Mg rather than Zn. 
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higher order terms. The univariate trends are seen to be consistent with those inferred from the 

MLR analysis of section 8.5. 

The bivariate term shown in Figure 8.24 (e) suggests that when the alloy is at its greatest 

strengthening potential it has the greatest susceptibility to a loss in strength with ageing. 

Where variates of the form Xa;:Mg are present in the same model, the dependencies as shown 

in Figures 8.24 (a), (b) and (e) require some consideration. As in previous sections, Figure 8.24 

(b) suggests an intrinsic strengthening effect arising from Cu additions. Then, Figures 8.24 (a) 

and (e) indicate a decreasing dependency of cro.2 with the effective quantities characterising 

the balance of the precipitation sequence. 

From Figures 8.25 and 8.26 models inferred for a^i from data sets A and B are seen to 

be characterised by similar univariate approximations determined on the Mg-related variates 

and t, with a bivariate term Mg x t present in several models. Both the SUPANOVA and 

neurofuzzy frameworks are seen to identify similar terms, with models differing in the 

Mg-related variate (xMg.xs selected with greater consistency in the former, XMg,Q always 

preferred in the latter). A comparison with section 8.6.2, shows how the complexity control 

approach used in the neurofuzzy framework prevents the inclusion of both univariate and 

higher order terms, which are present in the SUPANOVA models. 

Figures 8.25 and 8.26 reveal a greater non-linearity in approximating the XMg,xs contribu-

tion compared with XMg,w, and on in comparison with xzn,w- This was seen to be consistent 

over the whole set of models determined from the different training-test partitions. 

Similarly to the results obtained in modelling cro.2, the approximations attained from 

data set C show a systematic preference in characterising the a^i dependency with ageing and 

precipitation balance with the (Zn + Cu) : Mg x t term. The trend in Figure 8.27 (d) may be 

attributed to an intrinsic effect of Cu on aei levels. Then from Figures 8.25 (a) and (e), the 

increasing trend exhibited by the quantities characterising the balance of the precipitates with 

a el is consistent with the results reported by Pitcher (1998). Figure 8.27 (e) suggests that at 

low ageing times there is little effect of the precipitate balance upon aei levels, but upon an 

increased overaged condition, a greater sensitivity of aei is exhibited. 

From a comparison between the variance estimates presented in Tables 8.22 and 8.23 it 

is seen that the SUPANOVA models determined from data set C exhibit the best generalisation 

abilities for both properties. However, the results obtained by considering all 20 models 

determined for cro.2 are seen to be biased due to the presence of a number of models 

comprising only a bias term. Unsurprisingly, considerably better generalisation performance 

is inferred for the subset of models determined with greatest frequency. 
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EXPERIMEATZAL TRMLS ZN THE AL-ZN-MG-CLT ALLOY SYSTEM 197 

run bias Zn Mg Cu Zr t Zn X f Mg X ̂  Cu X Zr Zn X Cu X ̂  Zn X Fe X Si 

1 o o # 9 # 

2 o • • • • • 

3 o 9 • 

4 o • • • • • • • 

5 o • o • • • 

6 o • 

7 o • • • • • 

8 o 0 e e # # 

9 o • • 

10 o • • • • • 

11 o • • • • • • • 

12 o # • • • • • 

13t o • # • • • • • 

14 o • • • 

15 o • • # • 

16 o • 0 9 • 

17t o # # # # e • e 
18 o # # # $ • • 

19 • 

20 o » • • 

Total 1 13 9 12 16 13 17 2 1 3 3 

Table 8.24: Summary of the ANOVA terms determined for ao.2 by the sparse basis selection employed 

within the SUPANOVA framework for each of the 20 resampled data sets obtained from data set A. 
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lOOi 

(c) (d) 

- 0 0 

(e) (0 
Figure 8.22: General form of the kernel approximations exhibited by the ANOVA terms most consis-
tently identified in the basis selection stage of the SUPANOVA framework from data set A in modelling 
0̂ 0.2-
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run bias ^Cu,Q: XMg,xs t Xjĵ  X t ^ 7̂?' X t Xjyiĝ Q. X Xjjf X t 

1 O • 

2 o • • • 9 

3 o 

4t o o • 0 
5 • 

6 • 

7 o # o 

8t o • • • 

9t o • • • 

10 o • 9 • 9 9 

11 # 

12+ o • • • 

13 o 9 • • • 

14+ o • e • 

15 0 
16 o • • 

17 o • • • • 

18+ o • • • 

19 o • 

20+ o • • • 

Total 5 2 11 13 15 1 1 1 

Table 8.25: Summary of the ANOVA terms determined for cro.2 from data set B by the sparse basis 
selection employed within the SUPANOVA framework for each of the 20 resampled data sets. 

( a ) ( b ) ( c ) 

Figure 8.23: General form of the kernel approximations exhibited by the ANOVA terms most consis-
tently identified in the basis selection stage of the SUPANOVA framework from data set B in modelling 
Co.2-



run bias Zn:Mg (Zn+Cu);Mg Zn+Mg t 
(Zn + Cu) : Mg 

X 

t 

Zn : Mg 

X 

t 

Zn : Mg 

X 

(Zn + Cu) : Mg 

X 

t 

(Zn + Cu) : Mg 

X 

Zn + Mg 

X 

t 
It o 9 9 9 9 9 

2 o 9 9 9 9 

3 0 9 9 9 

4 o 9 9 9 

5 0 9 9 9 

6t o 9 9 9 9 9 

7 o 9 9 9 9 

8t 0 # 9 9 9 9 

9 o • 9 9 9 9 9 

IQt o • 9 9 9 9 

11 o 9 9 9 9 

12t o 9 9 9 9 9 

13t o # 9 9 9 9 

14t o « 9 9 9 9 

15 o 9 9 9 9 

16 o 9 9 9 9 

17t o 9 9 9 9 9 

18 o 9 9 9 

19 o 9 9 

20 o 9 9 9 

Total - 11 11 20 19 17 3 1 

p 

I 
i 
Go 

00 

i 

I 
i i 

P 
11 
> hi 

PS O 

in 

3 _ 
as 

1 
M 

Table 8.26: Summary of the ANOVA terms determined for (To.2 from data set C by the sparse basis selection employed within the SUPANOVA framework for 
each of the 20 resampled data sets. 

i 
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150 

-150 
—1.5 —0.5 ^ 0.5 

Zn,w Mg.w 

(c) (d) 

(X.. +X_.J:X 

- 2 0 0 

- 3 0 0 

(e) 
Figure 8.24: General form of the kernel approximations exhibited by the A N O V A terms most consis-

tently identified in the basis selection stage of the SUPANOVA framework from data set C in modelling 

Co.2-
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run bias M g t Mg X Si M g X t 

1 o • 9 • 9 

2t o • 9 9 

3t o 9 9 9 

4t o 9 • 9 

5 0 9 • 

6 o 9 • 

7 o 9 # 

8t o 9 • 

9t o 9 • • 

lot o 9 • • 

11 • 

12t o 9 • • 

13t o 9 • • 

14t o 9 • • 

15 o • • 

16t o • e • 

17 o • 0 

18 o • • 

19t o • • • 

20t o • • • 

Total 1 19 19 1 13 

Table 8.27: Summary of the ANOVA terms determined for agi from data set A by the sparse basis 
selection employed within the SUPANOVA framework for each of the resampled data sets. 

( a ) (b) (c) 
Figure 8.25: General form of the kernel approximations exhibited by the ANOVA terms most consis-

tently identified in the basis selection stage of the SUPANOVA framework from data set A in modelling 



CHAPTER & MODELLING OF STRUCTC/RE-PROPERTZES OP 
EXPERIMENTAL TRMLS IN THE AL-ZN-MG-CU ALLOY SYSTEM 203 

run bias XMg,Q t ^Mg,Q ^ ^ 

1 0 » • 

2t 0 • • • 

3t o 9 • • 

4t o • • 

5 0 • e 

6 o • • 

7 o # e 

8 0 • • 

9t o • • • 

lot 0 • • 

11 0 • • 

12 o • • 

13t o • • • 

14t 0 • • • 

15 0 • • 

16+ o • • • 

17 o • • 

18 o • • 

19t o • • • 

20t o • • e 

Total - 20 20 10 

Table 8.28: Summary of the ANOVA terms determined for cr,; from data set B by the sparse basis 
selection employed within the SUPANOVA framework for each of the 20 resampled data sets. 

(a) (b) (c) 
Figure 8.26: General form of the kernel approximations exhibited by the ANOVA terms most consis-

tently identified in the basis selection stage of the SUPANOVA framework from data set B in modelling 

^el' 



(Zn + Cu) : Mg Zn : Mg (Zn + Cu) : Mg Zn + Mg 

run bias Zn:Mg Zn+Mg t X X X X 

t (Zn + Cu) : Mg Zn + Mg t 
]t o • 9 9 9 

2 o • 9 9 9 9 

3t o 9 9 9 9 

4t o • 9 9 9 

5 o • 9 

6 0 « 9 9 • • 

7 0 9 9 9 

8 o 9 9 9 

9 o 9 9 9 9 9 

lot o 9 9 9 9 

11 o 9 9 9 

12 o 9 9 9 9 

13 0 9 9 9 9 

14t 0 9 9 9 9 

15 o 9 9 9 9 • 

16t 0 9 9 9 9 

17 o 9 9 9 9 

18 o 9 9 9 9 9 

19 o 9 9 9 9 9 

20 o 9 9 9 9 9 

Total - 20 11 19 20 2 7 2 

p 
00 

i 

il 
> o 
ir-' "n 

P 
11 
O 

Oo 

as 
I 

Table 8.29: Summary of the ANOVA terms determined for â i from data set C by the sparse basis selection employed within the SUPANOVA framework for 
each of the 20 resampled data sets. g 
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-1 .5 - 0 . 5 y .y 0.5 
^ w ^ M g , w 

- 0 . 5 

Zn.w Mg 

(a) (b) 

(c) (d) 

(Xz„.+Xĉ J:X«̂ . 

(e) 
Figure 8.27: General form of the kernel approximations exhibited by the ANOVA terms most consis-

tently identified in the basis selection stage of the SUPANOVA framework from data set C in modelling 

fe/-



CHAPTER 8. DATA MODELLING OF STRUCTURE-PROPERTIES OF 

8.8 Discussion 

For both ao.2 and a^i (irrespective of data pre-processing) the neurofuzzy models consistently 

yielded improved approximation abilities compared to a MLR analysis. These improvements, 

particularly evident in the agi results, are attributable to a better functional representation than 

that attained by the simple MLR analysis. 

In general, similar trends are extracted by the parsimonious techniques employed. Whilst 

the ANOVA spline kernels provided more flexible approximations and generally attained better 

approximation capabilities compared with the neurofuzzy models, a number of terms and 

non-linear approximations determined by the kernel approximations are difficult to validate 

(e.g. inclusion of Zr and the trends characterising Cu and t terms). On the other hand, the 

approximations inferred by the neurofuzzy construction algorithms attained rather simplistic 

approximations, generally limited to linear (in some cases piecewise linear) dependencies. The 

simple models determined in the neurofuzzy framework are not surprising, given the small size 

of the data sets and the model complexity control endorsed by the implementation of the SRM 

principle. This does however successfully constrain the inclusion of a large number of degrees 

of freedom and hence prevents undue flexibility which would have resulted in ill-conditioned 

basis functions and overfitting. 

Regarding the model construction procedures used (FS/BE and SW), it remains problem-

atic to infer which is the better strategy, since one approach may outperform the other, depend-

ing on the problem or training sample. More significantly, both approaches remain susceptible 

to local minima entrapment due to the iterative search procedure. In general though, the FS/BE 

procedure is preferable due to its coherent and structured search procedure. Stepwise searches, 

although performing a less structured and computationally less efficient search procedure, have 

the advantage of removing redundancy introduced early on in the model construction. The 

training data set sizes, particularly in the SVM models, where a validation set is necessary to 

determine the degree of regularisation, mean that it is unsurprising that the SUPANOVA results 

showed a higher sensitivity to the particular training-test splits, compared with the ASMOD 

construction algorithm. The number of variables present in the different data sets is seen to 

affect the stability of the ANOVA representations inferred, and can be understood in terms of 

the size of the full ANOVA basis considered. The variability in the regularisation coefficient 

inferred from cross-validation on the different training-test splits was reflected by a number of 

models significantly overfitting the training data. As the smoothing parameter C is determined 

by cross-validation and employing a gradient descent algorithm which may settle in a local 

minima, the variability in the regularisation parameter C is not surprising. 

Overall, the results showed that there was a greater stability in the ANOVA representa-

tions inferred for Ce; compared with cro.z, particularly in training from data sets A and B. The 

instability in the subset selection of terms from data sets B and C can also be understood in 

light of the input dependencies present. 
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From sections 8.6.2 and 8.7 the amount of strengthening potential as characterised by 

the Zn + Mg term is always present (mainly as a univariate term) whereas a bivariate term 

of the form {Xx : Mg) x i is better suited for describing the dependency of the balance of 

strengthening upon ageing time. 

The approximations attained characterising the dependency of a^i with t are comparable 

to those determined by Hepples (1987), while increasing the levels of alloying elements which 

may be retained in solid solution causes lower aet levels to be attained. In section 8.6 it was 

seen that cro.2 w a s characterised by a bivariate term (combining the contribution of t and that of 

an Mg-related variable), whilst for agi, a piecewise linear approximation for the t dependency 

was established. These results suggest that the former can be seen to represent the complex 

interaction of dissolved Mg, with vacancies bound to the Mg atoms slowing ageing in the 

present overaged alloys. Although the Mg x t term was less frequently selected in the results 

of sections 8.6.2 and 8.7, compared to the neurofuzzy models determined using all the avail-

able data, the dependency of ageing time and variates characterising the precipitation process 

supports the Mg x ageing time interaction. 

Overall, the trends inferred from data sets A and C are consistent with the analysis per-

formed by Pitcher (1998). The strengthening contributions of Mg and Zn being comparable to 

those previously reported, while the aei contribution attributed to Mg does not differ signifi-

cantly from that concluded by our analysis of aei-

Comparing the performance of the different modelling approaches in terms of the data 

transformations and the modelling techniques used, a mixed picture emerges, and the results of 

modelling cro.2 and a^i have to be discussed separately. 

For aei. Tables 8.15 and 8.23 showed that in a comparison with the original data set, 

the use of transformed input data set B is clearly beneficial for both adaptive modelling tech-

niques, suggesting that this data set enabled a greater and more explicit characterisation of the 

microstructural features influencing conductivity (the SVM methods however, attained the best 

performances from data set C). 

The results obtained for ao.2 and summarised in Tables 8.14 and 8.22 show the results 

obtained from data set C as exhibiting better approximation abilities, suggesting that quantities 

derived from sums and ratios of the main variables involved in the precipitation dynamics in 

the alloy system considered comprise a descriptive set of features for the strengthening process. 

Notwithstanding the better performance of data set C, there are still reasons for preferring 

models inferred from data set B. Firstly, from this data set a more parsimonious model was 

determined, enabling a better insight into the relevant physical quantites. Secondly, models 

determined from data set B are more likely to attain a better generalisation performance de-

rived from the inclusion of a priori physical understanding, with models therefore being more 

reliable in extrapolating beyond the current compositional range'®. This can be illustrated 

""Here extrapolation is considered with respect to the original at.% (or wt.%) composition levels, i.e. no extrap-

olation beyond the limits defined by the physical based transformation will take place. 
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from an analysis of the dependency of yield strength upon Mg content, which would show 

that models obtained from data set C will, unrealistically, predict a single stage, monotonically 

increasing yield strength with increasing Mg content, whilst models obtained from data set B 

(in light of the transformations of section 8.4.1) will predict a (more realistic) levelling off of 

the strength increase obtainable through increasing the Mg content. 

Although it can be argued that with sufficient data, particularly for alloys with XMg > > 2 , 

an empirical modelling approach should be capable of describing this strengthening be-

haviour'^, the present data was insufficient to enable the reliable description of this physical 

behaviour, and so the use of prior knowledge can be seen to partly compensate for the sample 

size limitations. It is further noted that the empirical results obtained from data set D in part 

elucidate the source of the relatively weaker performance attained from data set B compared 

with data set C in modelling yield strength. This being mainly due to the subnetwork including 

a Mg related variable and t, i.e. related to the way in which Mg influences the kinetics of the 

reaction and so does not directly indicate that the simplified ideas concerning the strengthening 

mechanisms (section 8.4.1) are inaccurate. Nethertheless, the quantities present in data set C do 

offer some valuable description of the alloys in terms of quantities characterising the balance 

and amount of strengthening potential for the precipitation present in the alloy system. How-

ever, inferences based on models determined from these quantities remain more problematic, 

due to the dependencies present among the variates. The problem was seen to be reflected 

in the least-squares solutions of the parameters in the neurofuzzy models where the LOOCV 

estimates inferred from this data set were seen to be considerably inflated (particularly for cro.2) 

in a comparison to the training 

The increasing dependency exhibited by with xzn,w : XMg,w is not consisten-

t with (Mondolfo 1971), where a higher Zn:Mg ratio is generally associated with worse SCC 

resistance. 

8.9 Conclusions 

In considering the overall implications of the modelling approaches attempted, the combination 

of data-driven approaches and transformation of the input data has elucidated the dependencies 

present in the 7xxx Al-alloy data set. 

The use of adaptive data-driven modelling approaches in the description of underlying 

structures inherent in the data has been demonstrated as a useful approach in modelling where 

prior data set transformations are based on well-founded physically based relationships. In 

situations where more limited physical understanding exists, both neurofuzzy and SUPANO-

" i t should be noted that alloys with XMg > > 2 are unsuited for commercial use due to the high volume fraction 

of undissolvable intermetallics (e.g. S phase) which cause unacceptably low toughness levels. Thus, commercial 

A1 producers will in general not invest in producing high Mg containing alloys, thereby, preventing the generation 

of data sets with high Mg levels. 
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VA frameworks can offer a combination of pure empirical modelling and physically based 

modelling possibilities. 

The transformations developed to derive data set B are seen to have the potential of facil-

itating the control of the Zn, Cu and Mg levels so that both deleterious intermetallics (e.g. S 

phase) and excess alloying elements can be eliminated (i.e. for a given amount of Zn, Mg and 

Cu, estimates of the expected excess of Mg and Cu can be determined). Thus, one or more of 

the alloying elements may be adjusted to maintain an alloy free of excess Mg or Cu'®. 

From the inspection of the FS/BE model construction obtained in the initial results, gen-

eral initialised models were defined for each property with a similar structure for each data set. 

This formed a basis for comparison of the effects on modelling performance for each data set 

transformation. 

The present analysis can be used to draw out some of the microstructure-property issues 

for 7xxx alloys. Firstly, it is noted that compared to the original data set (A) the data set 

transformations, using some relatively simple information on the microstructure (B) yielded 

a considerable improvement in modelling performances attained for but no significan-

t improvement in the modelling of erg g. In retrospect this difference is not surprising as 

strength is the more complex property, more dependent on additional microstructural features 

that are more problematic to identify (e.g. grain size, precipitate size distribution, PFZs). In 

addition, tensile test results exhibit more noise, with higher experimental measurement error 

levels characterising the outputs. Overall, the analysis confirms the main expected structure-

property relationships, e.g. the significance of the maximum amount of 77', x^ , determining 

strength. Of particular interest was the identification of an interaction present between ageing 

time and an Mg related variable, characterising the yield strength of the Al-Zn-Mg-Cu alloys, 

which enabled improved empirical modelling performances and possibly leading to improved 

understanding of the ageing dynamics in these alloys. 

Generally, an excess of Cu is preferable to an excess in Mg concentrations (Anderson 1994). 



Chapter 9 

Knowledge Discovery and Data 

Mining of 7xxx Series Al-Alloy 

Production Databases 

9.1 Introduction 

The analyses in Chapters 7 and 8 were seen to have been performed on relatively small data 

sets, both in terms of the number of input variables and training patterns available. Both 

experimental designs (Chapter 8), and the relatively less complex mechanical alloying process 

enabled relatively simple analyses to be carried out compared to those which are typically 

required in an analysis of large scale industial processes. 

In Chapter 2 it was seen how the properties of heat-treatable wrought Al-alloys are ob-

tained from a multi-stage fabrication process, which includes several thermal treatments and 

deformation processes. As a result, the fabrication of commercial wrought alloys may be 

determined by a large number of parameters and processing conditions, some of which may 

significantly influence the balance of physical, mechanical and structural properties attained. 

While several processing procedures may follow tight guidelines, others may exhibit a greater 

variability, determined by ad hoc procedures and practical processing requirements and con-

straints. 

Together with this process and plant information, both quality control and physi-

cal/mechanical test results necessary to fulfil customer specifications such as minimum 

strength, toughness and electrical conductivity levels will also be stored in plant databases. 

A simple statistical investigation performed using standard regression analysis tools will 

not be straightforward as certain fields in such databases may contain non-numeric information. 

Not only will the dimensionality and complexity of the system make simple statistical analysis 

problematic, but the large amount of data will necessitate some form of pre-processing prior 

to any such analyses so that sensible data sets which are amenable to a statistical investigation 

210 
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can be defined. The analysis of this data can then proceed using appropriate exploratory data 

analysis techniques. Due to the dimensionality of the databases, knowledge discovery and data 

mining techniques will be required, in order to determine whether any useful knowledge or 

novel, unexpected patterns may be identified. 

However, whether predictive process models can be reliably inferred from such "happen-

stance" data will be determined by the particular process and by the representativeness of the 

sampled data of the underlying physical processes, and as such, will be domain dependent. 

Although a parsimonious description of the data may be inferred, the development of a truly 

predictive model will be critically dependent on the data quality and the presence of any data 

deficiencies', as well as the properties and assumptions made by the modelling technique used. 

This chapter presents the results obtained from a statistical analysis performed on 7xxx 

series alloy process data (specifically in terms of toughness performance), placing the overall 

data analysis and modelling performed within a KDD and data mining context. Compared 

to previous chapters, a considerable amount of the knowledge discovery process was in the 

data pre-processing and defining sensible data sets that were amenable to "mining". The 

adaptive approaches used in analyses performed in previous chapters have been employed in 

the modelling of process-property relationships from raw production data. 

The processing stages and large number of fields present in the databases required a sound 

knowledge of both industrial practices and processing conditions, as well as a fundamental 

understanding of the physical metallurgy of high-strength Al-alloys. The nature of the process 

variables and the sampled ranges could then be understood prior to the analysis, subsequently 

using metallurgical understanding to validate the relationships determined and to understand 

whether any deficiencies in the modelling results could be explained in terms of data weak-

nesses. 

The statistical investigation required a certain degree of interaction with the data set sup-

pliers and proceeded with analyses being performed on a number of data levels, comprising 

different partitioning of the data and corresponding to particular sub-systems, all extracted 

from the original data. Simple visualisation of the data distributions and dependencies between 

processing conditions provided valuable insight into the statistical properties of the data, which 

were not possible to appreciate from inspection of simple summary statistics. Initially, the data 

mining capabilities of the neurofuzzy framework were assessed on the largest of these data sets, 

for which a large number of input variables were retained. Subsequently, the validitity of the 

data mining results were investigated by refining the analyses on the smaller data set partitions, 

on which both the neurofuzzy and SVM techniques were assessed. As in previous chapters 

results were also compared with simple linear regression analyses. 

As well as describing general trends present in the data, in many processes it is of interest 

to detect the presence of interesting/novel patterns, such as peculiar (local) behaviours and 

'Good generalisation will only be obtained if a sufficiently descriptive set of training samples and input features 

are both available. 
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the identification of a small set of data samples which do not comply with the rest of the 

data and the process model inferred (e.g. outliers). Hence, the influence measures defined in 

Chapter 5 formed an integral part of the analysis of the neurofuzzy results. Finally, Bayesian 

regularisation approaches were investigated on a subset of the data as an alternative approach 

to controlling excessive degrees of freedom present in neurofuzzy models. 

9.2 The British Aluminium Plate data 

As discussed in previous chapters, 7xxx series alloys exhibit the greatest response to age-

hardening, their good combination of low density and high strength making them attractive 

materials for the aerospace industry. The processing and properties of these alloys have been 

discussed at length in Chapter 2, whilst section 8.2.1 provided a detailed treatment of the 

precipitation sequences present in Al-Zn-Mg-Cu alloys. 

Production data for 7x75 type Al-alloys was extracted from several BAP process databas-

es, each of which contained process data pertaining to particular stages in the production (e.g. 

casting, plate formation, etc.) and merged using customised data retrival routines. This data 

comprised a large amount of information on the production of wrought plate spanning a period 

of approximately 16 months^, the amount of data determined by the number of plates produced. 

Table 9.1 shows international standards for the compositional ranges of the major alloying 

elements, maximum levels of trace additions and maximum impurity levels for the different 

7x75 Al-alloys considered^. From these compositional ranges it is seen that the 7175 and 7475 

Al-alloy Zn Mg Cu Mn Cr Zr Si Fe Ti Ni 

7075 5.1-6.1 2.1-2.9 1.2-2.0 OJO 0.18-0.28 OJW 0.40 OjO OJW -
7175 5.1-6.1 Z1-Z9 1.2-2.0 0.10 0.18-0.28 ouo 0.15 OJW 0.10 -

7475 5.2-6.2 1.9-2.6 1.2-1.9 0.06 0.18-0.25 0.06 0.10 0.12 0.06 -

Table 9.1: Composition ranges (wt.%) for the 7075,7175 and 7475 Al-alloys. 

alloys derive from the same base alloy (7075) but have modifications to certain compositional 

ranges and impurity levels. Compared to the 7075 alloy, 7175 has the same level of Cu, Mg 

and Zn, while Fe, Si, Mn and Ti are controlled to lower levels. Alloy 7475, the first Al-alloy 

developed to provide improved fracture toughness, is a leaner variant of the 7075 alloy, with 

^Although significantly more off-l ine data is stored within other historical (archived) databases, it was consid-

ered that data amenable to a reliable statistical analysis was confined to the on-line databases, since old process 

specifications limited the integrity of any larger data sets. 

' i t should be recognised during subsequent analysis that BAP use significantly different (tighter) ranges of the 

major alloying elements (which is proprietary knowledge) as well as controlling trace elements and impurities to 

tighter limits than those specified in Table 9.1. Also, as will emerge below, BAP use a number of different alloy 

designations for alloys in the 7x75 compositional ranges. 
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lower limits for Fe and Si, lower maximum Cr content and modifications in the Cu, Mg and Zn 

concentrations. In all 7x75 alloys Cr is used as the main grain refining addition. 

As discussed in section 8.2 the Al^gMgCr dispersoid aids in retaining an unrecrys-

tallised grain structure during processing of wrought products. Incoherent dispersoids such 

as Ali2MgCr (and also Al2oCu2Mn3) are responsible for an increased quench sensitivity of 

Cu-rich Al-Zn-Mg alloys as they act as nucleating agents for solute-rich precipitates during the 

quench. 

The original data sizes were 2020x48 and 4475x48 for the 7175 and 7475 Al-alloys 

respec t ive ly '* . Limitations in the database retrival system required fracture toughness data 

to be extracted separately from the reminder of the tensile data, which included percentage 

elongation, yield and tensile strengths. Thus, two separate data sets contained the mechanical 

properties of interest to alloy producers. 

Table 9.2 exemplifies the different fields extracted from the BAP databases. The informa-

tion retrieved is seen to comprise a description of the alloy fabrication in terms of processing 

conditions, which include the chemical composition of the melt, the as-cast ingot dimensions, 

heat-treatment type and conditions, initial and final temperatures of the hot rolling mills, final 

plate dimensions, post solutionising stretch, together with physical and mechanical properties 

and corresponding specimen test conditions. In addition, a number of other fields include 

information regarding the alloy type, various fabrication codes, fabrication dates, etc. 

Toughness data were seen to have been determined for various combinations of test and 

specimen conditions: at the quarter (Q) and mid-thickness (C) positions in the plate, the 1/3 

(.3W) and mid-width (.5W) positions and in three different test orientations (LT, TL and SL). 

Plate geometry and these test orientations are illustated below in Figure 9.1. A comparison of 

the records in terms of PLATE-NO identifies plates tested in more than one orientation^. As 

well as the international standard alloy designation, each plate alloy type was seen to have an 

additional BAP designation. In particular, records pertaining to a certain 7x75 alloy type are 

seen to have an ALLOY KG designation. While processing conditions with some exceptions, 

e.g. cast slab dimensions (see section 9.2.1), can be regarded as continuous variables, sample 

test information and alloy type comprise a set of categorical variables or labels. 

As the definition of reasonable data sets on which to base statistical analysis requires 

both metallurgical and process understanding to ensure that valuable information has not been 

inadvertently discarded, processing conditions will be briefly discussed in terms of the set of 

explanatory variables available in the present analysis. 

As discussed at length in Chapter 2, while generally the toughness of Al-alloys decreases 

as the strength level is increased by heat treatment, fracture toughness behaviour is complicated 

by the presence of a number of microstructural features. Although heat treatment conditions are 

well understood to influence the toughness behaviour, their direct effect is difficult to assess due 

''Rows Xcolumns, i.e. entries x fields. 

"''The number and test conditions will be according to the particular customer specifications. 
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Field Description 

PLATE-NO Plate identifier (7 digit identifier) 

P L - G A U G E Slab gauge (mm) 

P L - L E N G T H Slab length (mm) 

P L - W I D T H Slab width (mm) 

P L - G A U G E - O F F As rolled plate gauge (mm) 

P L - L E N G T H - O F F As rolled plate length (mm) 

P L - W I D T H - O F F As rolled plate width (mm) 

A L L O Y Alloy designation [7075, 7175, 7475] 

C U S T C O N D Customer condition (temper designation) [T7351] 

D I M N S ( l ) Final plate gauge (mm) 

DIMNS(2) Final plate length(mm) 

DIMNS(3) Final plate width (mm) 

C A S T Cast number identifier 

L O T BAP plate code [week + product code + plate number] 

C O N D Y ( l ) Minimum conductivity (aei) 

CONDY(2) Maximum conductivity (aei) 

S T R E T C H Post-solutionising stretch (%) 

ENTRYDATE Processing date [day, month, year] 

DIRECTION* Tensile test orientation [LT, TL, SL] 

T H I C K P O S N Thickness position of specimen [Q, C] 

W I D T H P O S N Width position of specimen [.3W, .5W] 

02PS* 0 .2% proof stress (MPa) 

UTS* ultimate tensile strength (MPa) 

ELONG* percentage elongation (%) 

AT/c fracture toughness (MPa / i / m ) 

Cu Concentration of Cu (wt.%) 

Fe Concentration of Fe (wt.%) 

Mg Concentration of M g (wt.%) 

Mn Concentration of Mn (wt.%) 

Si Concentration of Si (wt.%) 

Zn Concentration of Zn (wt.%) 

Ti Concentration of Ti (wt .%) 

Cr Concentration of Cr (wt.%) 

Ni Concentration of Ni (wt .%) 

Zr Concentration of Zr (wt .%) 

B Concentration of B (wt.%) 

S L G A U G E Slab gauge (dm) 

HRGAUGE Hot rolled gauge (dm) 

HEATTYPE Heat treatment; homogenisation, solution or precipitation [H, ST, PT] 

HEATTIME Heat treatment time (mins.) 

HTTEMPMIN(1 ,2 ) Minimum heat treatment temperatures (°C) 

HTTEMPMAX(],2) Maximum heat treatment temperatures (°C) 

H E A T C O D E BAP heat-treatment designation (alpha numeric code) 

S T E M P Hot mill rolling start temperature (°C) 

F T E M P Hot mill rolling final temperature (°C) 

ALLOY KG BAP alloy type designation (two digit alpha code) 

Table 9.2: List of the processing conditions, tensile properties and test information extracted from the 

7x75 BAP production databases. 
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ShoM-Transverse 

.3W .5W 

Longitudinal 

rolling direction 

Long-Transverse 

F i g u r e 9 . 1 : S c h e m a t i c d i a g r a m of t he p l a t e g e o m e t r y a n d f r a c t u r e t o u g h n e s s tes t c o n d i t i o n s . 

to the interdependencies existing with the thermomechanical processing of these alloys. For 

example, the formation of coarse intermetallics (which may be subsequently fractured during 

primary processing or under service loading) provide crack nucleation sites and paths for low-

energy crack propagation. Fracture toughness can therefore be improved by controlling the Fe 

and Si levels. The effect of reducing the presence of any soluble S phase through controlled ho-

mogenisation is likely to promote higher attainable toughness levels. Typically, lower quench 

rates will result in an increase in the proportion of intergranular fracture, decreasing the fracture 

toughness of the alloy. However, for quench sensitive plates, thermal gradients present within 

the material and macroscopic segregation from the cast may contribute to a through-thickness 

"W-shape" in properties, with the worst distribution of coarse secondary particles occurring at 

the quarter thickness position, as noted in section 2.3.2. 

In industrial settings, quench procedures will be determined by the alloy system and the 

quench analysis performed. Although it is desirable to achieve the fastest possible quench 

rate, other factors, principally the control of residual stresses and flatness will limit the use of 

rapid quench rates. In thick section materials, where cooling rates will be limited by physical 

constraints, the scope for increasing toughness by optimisation of the quench rate is limited 

(the maximum attainable quench rates will be lower for thicker section sizes). 

In order to compensate for the property degradation with increasing thickness, BAP use 

purer alloy variants (identifiable by the ALLOY KG designation) in the fabrication of larger 

gauge sizes. In thin sections on the other hand compositional ranges closer to those specified 

for 7075 can be used. 

Toughness levels will typically be improved upon breaking down the as-cast structure 

of the alloy, achieved primarily through hot deformation processes. The final temperature 

(FTEMP, Tf hereafter) of the plates exiting the hot rolling mill can be expected to influence the 
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deformation substructure of the material and consequently the grain structure developed, as a 

higher temperature might be expected to limit the driving force and degree of recrystallisation 

during a subsequent solution treatment (recrystallisation entailing a loss in toughness levels). 

Typically, the degree of recrystallisation during the solutionising treatment will be greater in 

thin section sizes, resulting from the greater deformation occurring during processing. 

Differences in the fracture toughness levels attained at the two different width positions 

may be associated with the casting conditions and understood in terms of microstructural pro-

files imparted by the different cooling rates and macrosegregation present within the material 

in the original cast. 

9.2,1 Data representation and coding 

From Table 9.2 it is seen that different slab and plate dimensions are measured at several pro-

cessing steps (i.e. as-cast and scalped, the latter obtained prior to the hot deformation stage)^. 

While slab thickness (PL-GAUGE) and width (PL-WIDTH) correspond to the DC-cast dimen-

sions^, the final dimensions of the plate will be determined by the customer specifications. 

For the purposes of defining a set of deformation variables that provide a physically mean-

ingful representation of the TMP stage, the following strains associated with the hot rolling 

were defined and appended as extra fields to the original data. The strain in the LT direction 

(LT() was defined as: 

PL WIDTH OFF - PL WIDTH 
' ~ PL WIDTH 

and that in the rolling direction (L^) as: 

_ PL LENGTH OFF - PL LENGTH 
PL LENGTH 

from which the cross rolling strain (CRS) can be defined by: 

TT 
CRS = : (9.1) 

L e 

In addition, the overall gauge reduction (GR) was simply defined as: 

PL GAUGE 
PL GAUGE OFF ^ ^ 

The effect of increased deformation levels (a greater gauge reduction) on the fracture 

toughness levels developed can be interpreted together with the deformation temperature, 

in terms of texture developments and possible recrystallisation effects. It may be expected 

that the degree of cross rolling (in that it will promote a more isotropic in-plane distribution 

of microstructural features such as coarse intermetallics and grain structure) will have a 

' 'This redundancy was unavoidable resulting from integration of the data extracted from the different databases. 

' P L - G A U G E and PL-WIDTH dimensions revealing that only two cast moulds were used. 
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significant influence on toughness levels attained in the TL orientation. 

The attributes in the fields determining the test conditions and alloy type were replaced 

with the numerical values shown in Table 9.3, encoding a natural ordering of these attributes 

where appropriate. In terms of the ALLOY KG labels shown in Table 9.3, the three 

designations represent changes in impurity levels (specifically Fe and Si) and primary alloying 

element levels (particularly Mg content). The sequence, LT->LE->LK represents increasing 

impurity levels, with a parallel reduction in major alloying elements. For any specific IADS 

alloy type (i.e. 7175 versus 7475), higher purity/leaner variants are used for thicker plates. As 

Fields and attributes 

DIRECTION THICKPOSN WIDTHPOSN ALLOY KG 

labels SL TL LT Q c .3W .5W LT LE LK 

coding - 1 0 1 0 1 &3 &5 0 1 2 

T a b l e 9 . 3 : S u m m a r y of t h e c o d i n g u s e d to r e p r e s e n t tes t i n f o r m a t i o n a n d a l loy t y p e fields as n u m e r i c a l 

en t r i e s . 

will emerge from subsequent analyses, the majority of the 7175 data corresponded to the LT 

alloy type, whilst the 7475 data was almost entirely comprised by LK type alloys. 

9.3 Data pre-processing 

In the KDD process, and particularly in data mining, the quality and integrity of the data are 

seen to play a central role in the extraction of meaningful knowledge. In order to obtain a data 

matrix D = [X : Y] comprising the set of explanatory variates and output vector in a form 

from which sensible inferences and knowledge can be determined, the as-obtained data format 

required a considerable amount of pre-processing. For such purposes, a set of routines were 

written^ with different pre-processing, cleaning and filtering operations allowing the desired 

data format to be obtained. 

9.3.1 Data sifting 

In addition to data selection (section 9.3.2), different forms of sifting were required in order to 

detect and correct a number of inconsistencies in the various data fields. Only after an initial 

understanding and inspection of the different fields were the different data problems revealed 

(e.g. entries with a gauge reduction value greater than one were clearly the result of an error in 

recording the plate thicknesses). The data sifting operations performed (detailed further below) 

can be summarised as: 

These procedures were written as a set of MATLAB scripts. 
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• data flattening, 

• redundancy removal (e.g. averaging output values corresponding to records having iden-

tical input patterns), 

• removal of unusual/anomalous batches, 

• removal of zero entries, 

• removal of missing values, 

8 removal of extreme outliers, 

• removal of "physically unrealistic" records, 

» de-duplication of records. 

The BAP data covered plates that had been aged to the T7351 (overaged) condition by means of 

employing two different commercial precipitation heat treatments: a single or a double ageing 

step sequence (BAP 2000). These two ageing procedures were identifiable by the information 

contained in the HEATCODE, HEATTYPE and HEATTIME fields. 

An analysis conducted by considering both these ageing procedures as a single "system" 

was considered inappropriate and hence the analysis was confined to the single ageing step 

treatment, which corresponded to the large majority of the data. Thus, in addition to removing 

the double step aged alloys, other non systematic heat treatments, such as re-solutionised treat-

ments, extended ageing treatments (performed by re-heating alloys which attained inadequate 

conductivity levels) were also removed. As no ii'/c tests were performed below plate thick-

nesses of approximately 20mm, this yielded zero entries in the Kjc and test condition fields, 

and as such these records were also removed for such thin materials. 

The data set sizes after sifting the original BAP data and retaining only single step 

precipitation hardened alloys were 942x55 and 1958x55 for the 7475 and 7175 data sets, 

respectively. The expansion in the number of fields has arisen from the need to flatten the data 

(see section 4.2.3) by redefining the HEATTYPE and heat treatment variables (HEATTIME, 

HEATTEMPMIN(1,2), HEATTEMPMAX( 1,2)) in terms of distinct fields for the homogenis-

ing (HT), solutionising (ST) and age-hardening (PT) heat-treatment processing conditions. 

9.3.2 Data selection 

An analysis conducted on a data set which retained all fields would have further assessed the 

data mining capabilities of the neurofuzzy framework in terms of computational efficiency, 

scaleability of the technique and assessing the effect of retaining a very large number of unin-

formative and redundant fields in terms of oversearching and overfitting phenomena. However, 

where process knowledge can be used to pre-screen the fields, identifying a subset of the inputs 
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considered to influence the physical behaviour of the system is more sensible compared to an 

analysis centred on simply assessing the data modelling technique and drawing inferences in 

the presence of a large number of irrelevant features. Thus, in this study input variables were 

pre-screened to discard what were considered the more uninformative and redundant variates. 

As different processing conditions may characterise the two 7x75 alloys considered (al-

tough cast under the same conditions, different pre-heat treatments conditions are used) (BAP, 

2000), the 7175 and 7475 data were investigated separately^. In the present analysis, tensile 

properties such as cro.2. uts and %el were not considered as input variables, as they have 

been in other neural network studies, e.g. (Fujii et al. 1996). These studies used (to.2 and 

uts as explanatory variates which were seen to exhibit strong (linear) dependencies with the 

corresponding output property (e.g. fatigue thresholds AKth)- Similarly, conductivity which 

previous analysis had indicated to be a useful indicator of the microstructural condition, pro-

viding information on the condition of age-hardened microstructures, was also not considered. 

Although these properties are undoubtedly linked to fracture toughness, they are not linked to 

the process control stage (being final properties themselves) and so were inappropriate in this 

study, where the effects of process control variables on Kjc are considered. The objective being 

developing process control, which is not possible with a model that includes other processing 

outputs. 

Table 9.4 shows the processing variables and test information used. This comprised the 

final plate thickness, the concentration of major alloying elements, grain refining elements, 

impurity elements, deformation/TMP conditions and solution heat treatment time, along with 

test condition and alloy type indicators. All heat-treatment temperatures were seen to be tightly 

Plate gauge %stretch (DIRECTION) (THICKPOSN) (WIDTHPOSN) Cu 

Fe M g (Mn) Si Zn Ti 

Cr Tf (ALLOY KG) g r . GR CRS 

Table 9.4: Summary of the input variables retained in the analysis of /Oc data. Variables in (•) are only 

present in certain data sets. 

controlled and for the purposes of subsequent analyses were considered uninformative, as were 

the homogenising (H) and age-hardening (FT) thermal treatment times. Also, in all records 

Boron levels (wt.%) had identical values, hence this compositional element was also removed 

from the data set. 

Unsurprisingly, initial and final hot-rolling temperatures (Tg and T/) were seen to be 

somewhat correlated. The final rolling temperature, Tj and not the start temperature, was 

retained for subsequent analysis as the former was considered to be a more representative 

variable of the final hot rolled structure of the material. 

'As there was a very limited overlap between the 7175 and 7475 test conditions, little benefit would have resulted 

from integrating the two data sets. 
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For the 7175 data set Mn was retained as the compositional range and variance of this 

element (section 9.4) was unexpectedly large. In the 7475 data only two plates were identified 

as the less purer variant (LE) of the 7475 alloy, the majority being of the LT type. In the 7175 

data on the other hand a considerable number of LE alloys were present, corresponding to the 

thicker 7175 plates. 

In terms of the labels in Table 9.3, data sets covering all variables (test information and 

processing data) were designated BAPl and BAP4, addressing the 7175 and 7475 plates 

respectively. Subsequently, the 7x75 data were partitioned in terms of the thickness 

(THICKPOSN), width (WIDTHPOSN) positions, alloy type (ALLOY KG) and test directions 

(DIRECTION) attributes. These data sets, constituting all the available data that were 

suitable for subsequent modelling are summarised in Table 9.5. The 7175 plates tested in the 

mid-thickness position were seen to correspond to one BAP alloy variant, whilst those in the 

quarter position comprised two different BAP variants of the 7175 alloy. In Table 9.5, data 

set BAP1TLQ3W80 is a subset of BAP1TLQ3W, with the gauge range limited to 80mm for 

which only one alloy variant is present'®. From these partitions the largest data sets are seen 

to correspond to plates tested in the mid-thickness position and in the LT/TL orientations. 

The considerable reduction in data set sizes compared to the original dimensions of the data 

Alloy DIRECTION THICKPOSN WIDTHPOSN 
Plate gauge 

range (mm) 

Dataset 

size 

Number 

of inputs 

Dataset 

designation 

7175 all all all 25.57-102.06 302 16 BAPl 
7175 T L C .3W 25.57-62.53 193 14 BAP1TLC3W 

7175 TL Q .3W 64.42-102.06 109 14 BAP1TLQ3W 
7175 TL Q .3W 64.42-77.56 70 14 BAP1TLQ3W80 

7475 all all all 19.17-112.52 805 18 BAP4 

7475 LT C .5W 19.17-112.52 296 13 BAP4LTC5W 

7475 SL C .5W 64.81-112.52 107 13 BAPSLC5W 
7475 TL C .5W 19.17-112.52 294 13 BAP4TLC5W 

Table 9.5: Summary of the various data set partitions considered. 

extracted from the databases was primarily due to considerable redundancy inherent in the 

database retrival routines and the presence of missing entries in several fields". 

A first assessment of the representativeness of the data of the overall wrought production 

"'Partitioning the quarter thickness 7175 data in terms of either Plate gauge (<80mm, >80mm) or ALLOY KG 

(LK, LE) resulted in the same subset. 

" i n the majority of cases, missing values corresponded to compositional levels and time and temperatures 

of thermal and TMP processes. These missing values corresponded in the great majority of cases to the older 

records. As noted previously, missing output (and consequently test information) corresponded to alloys with 

section thicknesses below 19mm. 
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process indicates that certain processing stages are described in more detail than others: whilst 

heat treatments and TMP are described through a number of variables, information pertaining 

to the casting/solidification (e.g. rate of solidification) and quench variables (e.g. pump pres-

sure, differential pressure, etc.) was lacking. Hence, any effect of these stages can only be 

conveyed indirectly through other inputs such as cast ingot dimensions and plate thickness. 

The data sets summarised in Table 9.5 comprise the data sets on which the statistical 

analysis of subsequent sections will be performed. While in some cases, it may be desirable 

to obtain an overall representation of the system, in others, it may be more appropriate to 

perform separate inferences, for instance each one corresponding to a particular regime or 

system behaviour, particularly when the process is likely to be influenced by different factors 

with distinct effects. 

9.3.3 Data normalisation 

As in previous chapters the commercial sensitivity of the data means the processing conditions 

are presented as normalised values, while measured and predicted Kjc values are presented 

in their original range of values. The MLR analysis was conducted on data normalised to 

have a zero mean and unit variance, while as in previous analyses, the adaptive techniques 

were performed on input data transformed to lie in the interval [+1, —1] in the neurofuzzy 

framework and in the [0,1 ] range for the S VM methods. 

9.4 Data analysis 

Although the data sets were of a high dimensionality, an inspection of the input and output 

distributions was nevertheless useful, revealing the presence of any strong dependencies and 

allowing greater understanding of the variance in both input and output quantities, and allowing 

better understanding of dependencies inferred in subsequent regression analyses. Inspection of 

the data distributions helped to determine whether any further pre-processing (e.g. further 

partitioning of the data set, outlier removal, etc.) was required. 

Histograms for the distribution of Kjc for the data set partitions considered are shown in 

Figure C.l, while Table 9.6 summarises the means and variances. 

A distinct bimodal distribution in Kjc is evident in Figure C.l (b), which was attributable 

to the two alloy variants associated with this particular data set (two alloy variants arise in 

the 7475 data sets represented by Figure C.l (e) and (f), however the vast majority of the 

results in these cases where for one alloy variant, hence a unimodal distribution is dominant). 

The distribution of Kjc values for the various 7475 data sets showed that on average, higher 

toughness levels are associated with the LT direction, and lowest in the SL, with tests 

performed in the TL direction exhibiting intermediate toughness levels. As expected, the 

comparison of toughness levels for the different alloys showed that the purer 7475 plates attain 
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Data set <72 

BAPl 30J2 6^3 

BAP1TLC3W :%U4 1.63 

BAP1TLQ3W 3L87 1L27 

BAP1TLQ3W80 29.86 3.46 

BAP4 45J6 4WJ8 

BAP4LTC5W 5L80 16.96 

BAP4SLC5W 40.46 18^9 

BAP4TLC5W 42.94 10.55 

Table 9.6: Mean and variance of K j c for the different 7x75 data sets. 

considerably higher toughnesses compared with the 7175 alloy. While a considerably lower 

variance in Kjc levels was apparent for the 7175 alloys tested at the mid-thickness position 

compared to tests performed in the quarter position, the variance exhibited in the 7475 data 

sets was seen to have a high variance in all the different test conditions. The large variance in 

the data sets with larger plate thickness ranges (i.e. the 7475 data sets) does suggest toughness 

levels are dependent (either directly or indirectly) on the section thickness. 

The full residuals for the complete 7175 and 7475 data sets (BAPl and BAP4) for Kjc 

levels and a selected number of the input variables are shown in Figures C.2 to C.IO'^. For the 

7175 data (Figure C.2), thicker plates are seen to exhibit considerably higher toughness levels 

(linked to the higher purity alloy variant used in thicker material), whilst inspection of the 

residuals for both Fe and Si show clear dependencies with Ki^, with purer alloys exhibiting 

higher toughness levels. 

The influence of test specification on the data sets may be seen in the Fe plots in Fig-

ures C.4 and C.5, where the fact that mid-thickness tests (Figure C.4), are only performed 

for thinner plates, means that there is a reasonably unimodal Fe distribution, as only one 

alloy variant was used for the gauges in question. The higher gauge range represented by the 

data in Figure C.5 however spans two composition variants, with clearly bimodal composition 

characteristics, and corresponding toughness levels. It may be valuable to note that thicker 

plates/alloy variants received less cross rolling (see below). 

The residuals shown in Figure C.3 corresponding to the BAP4 data show little structure, 

with only the residuals for Fe and Si showing slight dependencies with Kic- Overall, the 

inspection of the BAPl and BAP4 residuals revealed only a limited number of first order 

dependencies between the inputs and Kjc-

'"To avoid overburdening the reader and presenting uninformative plots, the residual plots shown are limited 

to those for which dependencies are evident and those for which subsequent analyses considered as having some 

explanatory capabilities, e.g. elucidating the extent of extrapolation in poorly covered regions of the input space. 
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The presence of the two alloy variants in the BAP1TLQ3W data set may confound the 

interpretation of thickness effects with other variables (e.g. impurity levels) in terms of whether 

quench sensitivity or other effects were both present. 

In the 7475 data, a comparison between Figures C.3 and C.7 reveals how the mid-thickness 

tests conducted in the LT orientation correspond to the plates exhibiting the higher toughness 

levels. For tests conducted in the SL direction, Figure C.9 suggests that increasing temperature 

at which the hot-rolling is performed imparts a positive effect on toughness. 

In summary, the inspection of the residual plots revealed that whilst some general trends 

are consistent over different test conditions and alloy types, there appear to be a few differences 

in the dependencies characterising toughness levels exhibited in certain test conditions. 

In order to infer whether there were any significant dependencies amongst the processing 

variables, pairwise scatterplots between the input variables were inspected and a number are 

shown in Figures C.l l to C.18. The bimodality in the 7175 data (due to the two alloy types) 

is evident from a number of the pairwise scatterplots. Unsurprisingly, final gauge thickness 

and the gauge reduction were seen to be correlated, exhibiting two different correlations 

corresponding to the two cast ingot gauges used. The dependency between the section 

thickness and gauge reduction, likely to result in problematic inferences in a MLR analysis, 

suggested a further possible partitioning of the data. However, this would have further 

limited the sample sizes. The inferences attained would reveal whether this dependency was 

problematic. 

There appeared to be dependencies amongst the major alloying elements (Mg, Cu and Zn) 

and the impurities, with the degree of correlation between Fe and Si being greater in thicker 

plates. The thicker plates also exhibited greater control in Mn levels. Figure C.12 shows that 

in the 7475 data, dependencies between Cu, Zn and Mg are not as strong as for the 7175 data. 

In a number of pairwise plots the distribution of the data between section thickness and 

solutionising time showed a clear lower limit in solutionising times which increased with plate 

thickness'^. A number of plots also show that some thinner plates may exit the hot mill at 

lower temperatures. 

The presence of two alloy types is clear in the pairwise scatterplots for the BAP1TLQ3W 

data set (Figure C.14), from which it may also be noted that CRS values appeared to be reduced 

for thicker plate gauges. 

In general, the inspection of the data distributions revealed the presence of a number of 

outliers, in the X and Y spaces, the effect of which will be subsequently assessed. 

While several other observations can be made from inspecting all the other plots shown, 

similar distributions and dependencies were generally present in the data sets. Overall, the 

distribution and ranges of the process conditions were characterised by varying degrees of 

control. Some variates which prior knowledge identified as exerting a considerable influence 

'^Confirmed by (BAP, 2000). 
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on toughness levels showed a high level of control and hence little structure with Kjc. Although 

such control is desirable and the objective of industrial processing, the uninformative nature of 

these variates implies that the variance in K jc values in the present data sets is attributable to 

other effects. 

9.5 Multiple linear regression 

As in previous chapters, a MLR analysis was conducted prior to the application of the adaptive 

modelling approaches. In addition to fitting MLR models to all the data in each of the data sets 

Training errors Test error df 

Data set ^̂2 
^df 

- 2 
" ŝtdjdf 

BAP1TLC3W 0 J 4 0.80 &49 0.94 0U4 14/15 

E*AJ)1T1LQ3W 1.88 218 0 J 9 2.70 5^2 14/15 

BAP1TLQ3W80 OjW 1.07 0 3 0 L60 L34 14/15 

BAP4LTC5W 7.69 0.45 6.61 9.79 13/14 

IS/LPMkSLXZfTWf 8 j # 1&23 &54 12^4 17.94 13/14 

BAP4TLC5W 4 J 4 4.55 0.43 3.64 3.00 13/14 

Table 9.7: Summary of the approximations attained from a MLR analysis conducted on the different 

7175 and 7475 data sets. 

in Table 9.5, an estimate of the generalisation performance of each MLR analysis was obtained 

from fitting multiple models and determining the average errors over 20 random (90-10%) 

training-test set partitions. This subsequently allowed the linear regression performance to be 

compared with the generalisation abilities obtained for the adaptive modelling approaches. 

The performance attained by MLR models on the different data sets is summarised in 

Table 9.7, in terms of variance estimates obtained from an analysis performed on all the data 

(<7^, and the adjusted, for results obtained on normalised Kjc data (zero mean, unit 

variance), and statistics (n and cr̂  over the multiple test sets) summarising the generalisation 

performance inferred from multiple model fits. 

As the model structure is prespecified and no model selection is performed, the high 

variance in the test errors exhibited on particular data sets reflects the different training-test 

set partitions. As such, these should be acknowledged when comparing the performance at-

tained from the adaptive methods, whereby the complexity and structure of the models will be 

determined by training on 90% of the data and the test performance on the remaining 10%. 

From the test error results, the linear regression models appear to attain a reasonable 

generalisation performance and accuracy on the training data on two of the three 7175 data 

sets, while for the 7475 data these are seen to give poor performance. The standardised variance 

estimates, reveal that typically only half of the output variance is accounted for (a^^j 



being the proportion of the output variance not explained by the model). 

An indication as to whether the data is appropriately described by a combination of linear 

effects can be inferred by inspecting the parametric uncertainties and the confidence placed 

in the parameters in the MLR. Tables 9.8 and 9.9 summarise the standardised regression co-

efficients, associated parametric uncertainties and r estimates for each of the input variables 

present in the model. 

BAP1TLC3W BAP1TLQ3W BAP1TLQ3W80 

w 6-%, t w t w t 

Plate gauge 0.664 &120 5.54 0.017 &107 CU6 &122 0.087 1.41 

Stretch -0.080 0IG3 1.52 -0.043 0.044 0.97 -0.055 0.076 0.72 

Cu -0.156 0.083 1.88 0.070 &067 1.05 &091 &120 0J6 

Fe -0.373 0.060 6 21 -0.462 0.106 436 --0.5(K) 0.089 5.69 

Mg 0.015 0.076 OJW -0.233 0.191 L22 -0.054 0.156 0J5 

Mn 0.205 0^159 3^9 &021 CL063 0J3 0.090 &106 Oj^ 

Si -0.374 0.061 612 -0.357 0I#6 3.71 -0.429 0.119 3.61 

Zn &081 0.083 0.97 OL008 0059 0.14 0.029 0UO3 0J# 

Ti 0IW6 O.OM 0J2 0.016 0.073 0.21 0X#6 0.082 0.68 

Cr 0.018 0^G6 0J3 0.046 0LO49 0.94 0IM8 0XW6 0.91 

Tf -0.103 0^G6 1.85 —0.065 0X#3 1.23 -0.109 0^#5 1.15 

0.029 0IG8 0.51 0.005 0.044 0.11 0.012 0.080 0J6 

GR -0.518 0U22 4j& -0.039 0.051 0J6 -0.278 0^W3 2.98 

CRS 0.293 0^53 5.52 0.213 0.052 4.06 0.386 0.085 4J5 

Table 9.8: Parametric inferences for 7175 K i c for each data set. 

The largest weights and signal-to-noise parameters are generally obtained for Fe and Si in 

both the 7175 and 7475 data sets. A comparison over the different data sets shows that there is 

a certain degree of variability in both the weight magnitudes and parametric uncertainties for 

other variables (e.g. Mg, Tj, CRS) and that in several instances contrasting trends are inferred. 

For particular inputs, e.g. CRS, and different test directions metallurgical understanding may 

suggest this to be plausible whereas in others it is more problematic (e.g. Cu in the 7175 data 

sets). Where contradictory, trend inferences are associated with high parametric uncertainties, 

interpretation of individual effects may of course be misleading. 

In a number of data sets, the highest parameteric uncertainties are seen to be associated 

with plate gauge and GR, suggesting that the correlations characterising these two variates may 

be held responsible for the lower r 's. 

Overall, the small weight magnitudes and associated t ' s show that the effect of a signifi-

cant number of terms in the models are inadequately determined. 
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BAP4LTC5W BAP4SLC5W BAP4TLC5W 

w T w Cw r w T 

Plate gauge 0.348 0.060 5J6 0J:55 &105 2.42 0.306 0.059 5.15 

Stretch -0.012 0.041 OJO 0.058 0.082 OJU —0.044 &040 1.09 

Cu &033 0LCW6 0.70 &185 0.091 2.03 0.044 0LO45 0.98 

Fe -0.487 0IW8 10^6 -0.302 0XW9 3.40 -0.525 0.047 11^6 

Mg 0XW9 3.00 -0.157 GU08 1.45 -0.154 0XW8 3.24 

Si -0.285 0.046 6J4 -0.108 0.089 1.21 -0.291 0.044 6.55 

Zn -0.059 0.051 1.16 -0.045 0U18 0^8 -0.013 0XW9 0.27 

Ti 0.015 0XM3 0J4 -0.025 0.082 OJO 0.066 0^W2 1.58 

Cr 0^#9 0^W2 1.41 -0.093 0.083 1.12 0.051 0.041 1.25 

Tf - 0 ^ 0 5 0.051 0.10 0U99 0.102 1.95 —0.064 0.050 L26 

-0.067 0.047 1.43 -0I%5 0.085 OJO - & 1 # 0IK6 3.53 

GR -&101 0.063 1.59 oim9 0.100 0.09 -0.051 0^162 0^2 

CRS - 0 J 3 0 0^043 5.31 -0.249 0.080 3.13 0.082 0LO42 1.93 

Table 9.9: Parametric inferences for 7475 Kjc for each data set. 

9.6 Neurofuzzy modelling 

In Chapter 5 it was seen how neurofuzzy systems exhibit a number of useful knowledge 

representation properties, particularly attractive in data mining analyses, e.g. model initiali-

sation, parsimonious system description and the ability to handle both continuous and discrete 

variables. Although previous chapters have highlighted the suboptimality of iterative model 

construction procedures, it should be acknowledged that the relatively simple approximations 

inferred in such analyses were a reflection of the relatively Hmited data sets, for which the SRM 

based statistical significance measure prevented the inclusion of a large number of degrees of 

freedom. In light of the relatively larger sizes of the BAP data sets and a number of linearities 

between the input variables and Kic, suggested by inspection of the data distributions (e.g. Fe, 

Si), it was of interest to assess whether the neurofuzzy model construction framework could 

adequately approximate these dependencies and discover any other relationships which were 

not evident from the residuals. 

In the following sections, the analyses and inferences attained from the application of 

the neurofuzzy system identification and representation capabilities are discussed, enabling the 

merits of the approach and the various inferences drawn to be assessed. 

9.6.1 Data mining 

Following the same methodology employed in previous chapters, the ASMOD algorithm (using 

a FS/BE search pass structure) was used to determine network structures from the BAPl and 
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BAP4 data sets. Models were determined using third order B-splines as well as (second order) 

piecewise linear basis functions, as the amount of data and the nature of the non-linearities 

exhibited in a number of the full residual plots suggested that higher order basis functions might 

attain better representation abilities compared to the linear piecewise approximation obtainable 

from second order B-splines. 

In addition, simple network initialisations were considered for the BAPl and BAP4 data 

sets to assess the influence of the test condition and ALLOY KG (categorical variables). These 

are shown in Figures 9.2 (a) and (b), whereby first order basis functions are used to encode the 

different test conditions and alloy types. Upon weight-rule confidence training (i.e. determin-

ing the network weights corresponding to these basis functions), the resulting biases associated 

with each of the attributes are illustrated in the subnetwork responses shown in Figures 9.3 

and 9.4. 

For the BAPl network, these show that the data corresponding to the alloys tested in the 

quarter thickness position exhibit a higher mean in the and that the LE alloy types on 

average attain considerably higher Kjc levels than the LK alloys. The alloy type attribute is 

therefore understood to account for the toughness levels attained by the thicker alloys and thus 

explains why alloys tested in the mid-thickness position exhibit a lower Kjc average than those 

tested in the quarter position (Table 9.6). 

A similar bias for the thickness position is seen for the BAP4 data, whereby alloys tested 

in the quarter thickness position exhibit a marginally higher average Kfc- In addition, the 

DIRECTION subnetwork confirms that SL data correspond to the lowest range in toughness 

values and the LT direction correspond to alloys with the highest toughness levels. Finally, 

the biases exhibited for the two width positions show alloys tested at the mid-width position to 

exhibit a higher mean Kjc-

It should be recognised that interpretation of the initialised network structures per se is 

potentially misleading, as the biases determined for the alloy type and test attributes are seen 

to account for other sources of variance (e.g. purity levels, plate thickness dependencies, etc.). 

In this instance, it may be noted that the quarter thickness tests were all derived in the TL and 

LT directions, giving a data set dependent bias (as opposed to a "true" physical trend). 

In terms of final network structures determined by initialising the ASMOD algorithm from 

both empty and initialised structures (as in Figure 9.2) gave identical model structures, whereas 

employing different order B-splines resulted in differences in the form of the approximations. 

Network structures determined for the BAPl and BAP4 data sets using respectively third and 

second order basis functions are shown in Figures 9.5 (a) and (b). The corresponding prediction 

scatterplots are shown in Figures 9.8 (a) and (b). 

The network structures inferred from the different initial conditions and the empirical per-

formance attained are summarised in Table 9.10. These show that while a small improvement in 

the empirical performance in modelling the BAP4 data set can be obtain from using third order 

B-spline basis functions, similar approximations are inferred for the BAPl data regardless of 
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Data set LOOCV 
B-spline 

order 
ANOVA terms df 

BAPl 2.5 
1.43 

1.42 

1.48 

1.49 

1 - 2 

1 - 3 

FeP' 
F C ,(3R5l',Si' 

5 

5 

BAP4 15.09 
7.56 

7 ^ 9 

7.66 

7.48 

1 - 2 

1 - 3 

DIRECTIONP', Fe', 81^', Plate gauge?' 

I)IBUEK7I']K)r4c,Fe',Siq,F'laLte gaiyreS 

8 

8 

Table 9.10: Summary of the empirical results attained by the neurofuzzy models determined by the 

ASMOD algorithm for the 7175 and 7475 data sets, trained from either an initialised or an empty 

structure, using different order B-spline basis functions. In these results, the different order of the B-

splines associated with the approximations inferred on the input variables is indicated by the superscripts 

in the ANOVA terms field (c, 1'* order, piecewise constant; 1, 2""^ order linear approximation; pi, 2""* 

order piecewise linear and q, order approximation). 

T H I C K P O S N -

A L L O Y - K G -

D I R E C T I O N -

THICKPOSN 

W I D T H P O S N -

K,c 

(a) (b) 
Figure 9.2: Initialised model structures for the BAPl (a) and BAP4 (b) data sets. 

THICKPOSN ALLOY-KG 

00 (b) 
Figure 9.3: Subnetwork response outputs corresponding to the initialised model structures shown in 

Figure 9.2 (a) upon weight-rule confidence training. 
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Figure 9.4: Subnetwork response outputs corresponding to the initialised model structures shown in 

Figure 9.2 (b) upon weight-rule confidence training. 

CRS 1X1 K. 

(a) 

DIRECTION-

Fe— 

Plate gauge 

(b) 
Figure 9.5: Network structures determined from initialised model structures by the ASMOD algorithm 

for (a) the BAPl data set, employing univariate B-spline basis functions of orders 2-3, and (b) the BAP4 

data set, employing 1-2 univariate basis functions. 
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a 35 

(a) (b) 

(C) 
Figure 9.6: Subnetwork responses obtained from training on the BAP l data set and allowing the 

ASMOD algorithm to employ 1-3 B-spline basis functions: Fe (a), CRS (b) and Si (c). 

employing higher order B-splines. Subnetwork responses corresponding to models determined 

from employing third order basis functions are shown in Figures 9.6 and 9.7 for the BAPl and 

BAP4 data sets respectively. 

From these results it is seen that different model structures were determined for the 

BAPl and BAP4 data sets, with the larger of the two (BAP4) exhibiting more degrees of 

freedom. Whilst training from empty and initialised model structures resulted in identical 

inferred networks, differences in the complexity of the approximating functions were found 

from employing second or third order basis functions in the candidate refinements. 

The refinements performed and evolution of the model performance measures during the 

FS/BE construction stages are shown in Figure 9.9 for models trained from initialised structures 

and employing third order basis functions. These, together with the other results presented 

above show how in the BAPl model evolution, both initialised dichotomies on THICKPOSN 

and ALLOY KG type have been removed, with the final network comprising three variables: 

Fe, Si and CRS. The model construction history shows how deleting the ALLOY KG and 

WIDTHPOSN subnetworks (at the 5*^ and 6*^ refinements) has negligible effect on the accu-

racy of the model, resulting from the contribution of Fe, Si and plate gauge subnetworks. Thus 
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p 5011 
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Plate gauge 

(C) (d) 

Figure 9.7: Subnetwork responses obtained from training on the BAP4 data set and allowing the AS-

MOD algorithm to employ 1-3 B-spline basis functions: DIRECTION (a), Fe (b), Si (c) and plate gauge 

(d). 

o 3 0 

26 30 34 38 42 
network targets (MPa/ V m) 
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Figure 9.8: Prediction scatterplots obtained for the neurofuzzy models identified by the ASMOD algo-

rithm upon training from the initialised network structures shown in Figure 9.2 for data sets BAPl (a) 

and BAP4 (b), using 1-2 and 1-3 order B-splines. 
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it is seen that the model structure has been refined to comprise a set of explanatory variables, 

which more successfully explain the variance in Kic levels, compared to the approximations 

attained by the simple initialised model. 
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Figure 9.9: Evolution of the model perfomance measures during the iterative model search performed 
from the initialised structures for (a) BAPl and (b) BAP4 data set respectively, upon initialising the 
model search to include third order basis functions. 

The final model determined form the BAP4 data set shown in Figure 9.5 (b) is seen to 

retain the discrimination on test DIRECTION, whilst both THICKPOSN and WIDTHPOSN 

are removed during network refinement. The subnetwork response (and corresponding modi-
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fied residuals), shown in Figure 9.7 is seen to maintain the i^/c(LT) > KidTL) > -fC/c(SL) 

ordering placed on DIRECTION. The contributions of Fe, Si, and plate gauge are seen to 

be included as either additive linear, piecewise linear and quadratic univariate subnetworks 

depending on the order of the basis functions considered during training. Figure 9.7 (d) shows 

how the piecewise approximation determined on plate gauge, initially decreases with a modest 

slope, whilst thicker alloys are seen to induce a different approximation, whereby higher plate 

gauges suggest improvements in toughness. This apparent recovery in toughness with increas-

ing gauge for the thickest plates is perhaps surprising, and will be discussed further in relation 

to the various subsets of the BAP4 data later in the chapter. 

In summary, it is seen that the final model structures include similar compositional de-

pendencies (specifically in terms of Fe and Si) as well as simple relationships with dimen-

sional/deformation inputs, as well as accounting for different test conditions where necessary. 

Although a limited number of inputs were included, the approximation obtained for the 7175 

data are seen to be considerably better than those obtained for the 7475 data set, the latter data 

exhibiting very high training and LOOCV variance estimates. 

9.6.2 Data modelling 

Although attaining plausible structural dependencies, the accuracy of the models inferred above 

in the data mining approach was seen to be unable to account for a considerable proportion of 

the variance in toughness levels. This may be due to the formulation of either an inappropriate 

global model, whereby an additive system representation is unable to successfully account for 

differences in the behaviour exhibited in different test conditions, or the presence of a high 

noise component (missing features, inherent measurement scatter of Kjc tests) limiting further 

significant improvements. It is also clear that the BAPl and BAP4 data sets would be problem-

atic to model in a transparent meaningful way (upon using a global, additive decomposition of 

the input space), given the presence of important interdependencies (such as gauge and alloy 

purity in the 7175), and due to the wide range of toughnesses and physical dependencies that 

may be involved with different test directions and locations. It was useful therefore to assess 

whether the fracture toughness of the 7x75 alloys in the different test conditions was charac-

terised by different structural dependencies and noise levels. Hence models were determined 

for the different 7x75 data set partitions. These were again determined by using a FS/BE 

search, initialising the model construction algorithm from an empty model structure and again 

employing both second and third order B-splines. 

The network structures and empirical performance attained are summarised in Table 9.11, 

where the ordering of the ANOVA terms reflects the order of inclusion of the inputs. Although 

the same input variables are seen to be present in the majority of the final network structures, 

both the order of inclusion of the inputs and the refinements attempted show the different model 

searches performed. 
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Data set 
B-spline 

order 
ANOVA terms d̂f LOOCV df 

BAP1TLC3W 
1 - 2 

1 - 3 

Fe', CRS', Si', Mn', Plate gauge', GR' 

Fe',CRS' 
0.81 
1.18 

0.87 
1.20 

7 

3 

BAP1TLQ3W 
1 - 2 
1 - 3 

FeP',CRS',Si',GRP' 
Fe^Si ' ,CRS',GRi 

1.60 
1.63 

1.79 

1.88 

7 

7 

BAP1TLQ3W80 
1 - 2 

1 - 3 

Fe' X CRS',Si',GR' 
Fei,CRS',GR' 

0.98 
1.26 

1.09 
2.17 

6 

6 

BAP4LTC5W 
1 - 2 

1 - 3 

Fe', Si', Plate gauge^' 
Fe',Siq, Plate gauge'), CRS' 

8.12 
7.09 

8.32 
7.33 

5 

7 

BAP4SLC5W 
1 - 2 

1 - 3 

Plate gauge', Fe', Sî  

Plate gauge', Si'', Fe' 
10.64 
10.44 

11.56 
10.91 

5 

5 

BAP4TLC5W 
1 - 2 
1 - 3 

Fe', Si', Plate gaugeP' 

Fe', Si'', Plate gauge'' 
4.60 
4.55 

4.70 
4.71 

5 
6 

Table 9.11: Summary of the results determined by the neurofuzzy framework for each of the data sets. 

The prediction scatterplots corresponding to the models attaining lower LOOCV errors 

are shown in Figure 9.10. 

A comparison between the model structures inferred from employing second or third order 

basis functions shows greater discrepancies in the 7175 networks. As the implementation costs 

(i.e. in terms of the number of degrees of freedom) associated with third order basis functions 

are greater than that of similar piecewise linear approximations, they may be seen to prevent 

the inclusion of additional degrees of freedom during model building refinements, this would 

seem to have occurred in the small model determined from the BAP1TLC3W data set. 

A comparison with the results obtained in section 9.6.1 shows that similar dependen-

cies with the impurity elements (Fe, Si) and dimensional/deformation variables are deter-

mined. The network structures inferred all comprise univariate terms, with the exception of 

the Fe x CRS tensor product present in the model obtained using third order basis functions 

on the BAP1TLQ3W80 data set. The terms determined on the 7475 data sets are (with the 

exception of the addition of CRS in the BAP4LTC5W data sets, employing third order basis 

functions), seen to be the same as those determined on the BAP4 data, although in some in-

stances differing in the form of the approximations, particularly in terms of plate gauge effects, 

which will be discussed later. Models determined on the 7175 data are seen to differ from 

the BAPl network structure by the inclusion of GR subnetworks, and in the BAP1TLC3W 

data set (determined using second order B-splines), a linear Mn contribution. A number of 

subnetworks also exhibited different flexibilities, e.g. Fe being a linear effect in a number of 

models in Table 9.11 as opposed to piecewise linear or quadratic terms in Table 9.10 for the 

7175 data sets. 

A comparison with the training set variance estimates (in terms of the unbiased o-Jj-) 
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obtained by the MLR analysis (Table 9.7) reveals that only the BAP1TLQ3W data set models 

determined from using either second and third order basis functions attain lower More 

generally, the 7175 results employing third order basis functions result in models attaining 

error variance estimates (both and LOOCV) marginally higher than models determined by 

using second order B-splines. The results obtained on the larger of the 7475 data sets however 

show that the use of higher order basis functions yield both lower training set and LOOCV 

estimates. Notwithstanding the underperformance and/or lack of significant improvement in 

empirical performance exhibited from the above in comparison with the MLR results in terms 

of CTjc levels, models determined by the ASMOD algorithm are seen to comprise more parsi-

monious descriptions of the data, enabling a number of non-linear approximations to be repre-

sented. The training set variance estimates, although allowing an assessment and comparison 

of the neurofuzzy models in terms of network parsimony and nature of the dependencies with 

the MLR results per se, cannot be used to infer the generalisation performance of the models 

as these should be determined on unseen data (section 9.6.3). 

Model construction histories corresponding to networks determined from the 

BAP1TLC3W and BAP4TLC5W data sets are shown in Figures 9.11 and 9.12, respectively. 

These show how the inclusion of the input variates (e.g. T/, Cu and Mg, STt in the 7175 and 

7475 data set, respectively) cause an increase in the SS measure, whilst the inclusion of extra 

flexibility (i.e. knot insertion) is seen in some instances to improve (reducing) the SS measure 

(e.g. knot insertion on Si in the 7175 data set) but not sufficiently to successfully accept the 

refinement, as determined by the ftoi- Figure 9.11 (a) also shows how the evolution in the 

training set MSE evolves in relation to the level obtained from the corresponding MLR 

model (shown by the •— line). 

9.6.3 Assessing stability of the model selection 

As in previous chapters, the stability of the representations inferred in the previous section were 

assessed by determining models on different training-test set partitions. This would also allow 

estimates of the generalisation performance of the neurofuzzy framework to be compared with 

those previously exhibited by the MLR analysis and with the SVM in section 9.7. Hence using 

the same 20 random training-test set partitions that were used in section 9.5 with the MLR, the 

ASMOD algorithm was used to determine multiple models for each of the 7x75 data sets. 

Training was initialised from an empty model structure and models determined again 

employing either second and third order basis functions. The mean and variance of the training 

set MSE, LOOCV and test set error estimates inferred from the multiple model runs are shown 

in Table 9.12, while the frequency of selection of the different ANOVA terms for each data set, 

are summarised in Table 9.13. 

Unsurprisingly, in most data sets, and particularly the smallest, the LOOCV estimates are 

optimistic estimates of the output variance compared with the generalisation error estimates 
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Figure 9.10: Prediction scatterplots corresponding to the neurofuzzy models having the lower LOOCV 
estimates, identified by the ASMOD algorithm from training on the different data sets, using different 
order B-spline basis functions: 1-2 for the 7175 data sets (a)-(c); 1-3 for the 7475 data sets (d)-(f). 
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(b) 
Figure 9.11: Evolution of the training set MSE (a) and SS measure (b) during the iterative model search 
performed in determining the network structure for the BAP1TLC3W data set, employing second order 
B-spline basis functions. 
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Figure 9.12: E v o l u t i o n o f t h e t r a i n i n g s e t M S B (a ) a n d S S m e a s u r e ( b ) d u r i n g t h e i t e r a t i ve m o d e l s e a r c h 

p e r f o r m e d in d e t e r m i n i n g t h e n e t w o r k s t r u c t u r e f o r t h e B A P 4 T L C 5 W d a t a se t , e m p l o y i n g t h i r d o r d e r 

B - s p l i n e b a s i s f u n c t i o n s . 
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Training error LOOCV Test error 

Data set 
B-spHne 

fJ' ^2 
order 

fJ' 

1 — 2 0.91 0 .03 0 .98 0 ^ 8 L 2 8 0 .21 
BAP1TLC3W 

1 - 3 L 1 8 0 .01 1 .22 0 .01 1.43 0 .29 

1 - 2 
1.45 

0 . 0 7 1.68 0.07 3.09 3 .07 
BAP1TLQ3W 1.45 

0 .04 0 .06 2 .74 
BAP1TLQ3W 

1 - 3 0 .04 1.80 0 .06 2 .74 3.13 

1 - 2 0 .90 0 .01 1 J 9 L 3 8 
BAP1TLQ3W80 

1 ^ 8 0 .08 
1 ^ 2 0 .13 

2 .74 
BAP1TLQ3W80 

1 - 3 1 ^ 8 0 .08 2 .74 6 .37 

1 - 2 7.90 0.17 8jW 0.17 7.57 8 .27 
BAP4LTC5W 

1 - 3 7.17 0 .11 7jW O J l 6.49 6 .32 

1 - 2 10.56 1.25 11.53 1.06 15.64 3&37 
BAP4SLC5W 

1 - 3 12.09 3 .30 12.96 2 .83 17.02 45 .38 

1 - 2 4 .92 OjW 5.03 0 .26 4 J 8 3 J 4 
BAP4TLC5W 

1 - 3 4jW 0 ^ 2 5 .03 0.19 4 .04 2 .95 

Table 9.12: Summary of the empirical performance inferred from the multiple model runs obtained for 

the neurofuzzy framework. 

inferred from unseen data in many cases'"^. A comparison with Table 9.7 shows that only the 

model determined for the BAP4LTC5W data set, using third order basis functions is seen to 

achieve a slight improvement over MLR in terms of the average generalisation (test set) error 

(/i). In a few instances (generally corresponding to the largest data sets) higher order basis 

functions were seen to attain a marginal improvement in approximation abilities. A comparison 

between the summary statistics shows the smallest data sets to exhibit the largest variances 

particularly when using higher order basis functions. 

The terms selected with the greatest consistency are in agreement with previous results: 

models typically comprised univariate subnetworks and the limited number of bivariate (tensor) 

terms comprised by a subnetwork in the form "deformation variable x impurity". A larger 

proportion of these are determined from models trained using lower order basis functions. 

The general form of the subnetwork responses inferred for the most frequently selected 

terms are shown in Figures 9.13 to 9.18. A comparison between the subnetwork responses 

show that for a number of data sets, the contribution of particular terms is seen to differ from 

those attained from modelling the BAPl and BAP4 data sets, implying that the dependencies 

between Kjc and certain variates (e.g. GR, Fe in the 7175 data sets, CRS in the 7475) are 

dependent on the test conditions and the presence of different alloy types (7175). 

'"'Although it should be understood that the LOOCV and generalisation performances were obtained on different 

data sets: the former from the training set used to determine the model structure, the latter from the 10% unseen 

data. 



Data set 
B - spline 

order 

Plate 

gauge 
CRS GR Fe Si Mn Zn Mg Tf STt CRS X Fe CRS x Si GR x Fe Fe x Si 

BAP1TLC3W 
1 - 2 
1 - 3 

6 20 

15 
6 20 

20 

14 14 

BAP1TLQ3W 
1 - 2 
1 - 3 

18 
20 

14 

18 

16 

18 
14 
16 

2 4 
2 

BAP1TLQ3W80 
1 - 2 

1 - 3 

8 
15 

18 
13 

8 
20 

18 1 2 11 1 

BAP4LTC5W 
1 - 2 
1 - 3 

20 

20 

3 
19 

20 
20 

20 
20 

BAP4SLC5W 
1 - 2 
1 - 3 

16 
13 

9 
1 

13 
7 

9 
12 

1 4 
6 

3 

BAP4TLC5W 
1 - 2 
1 - 3 

12 
15 

20 

20 

20 

20 

1 

Table 9.13: Frequency of selection of ANOVA terms over 20 model runs for the neurofuzzy models. 
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(a) 

(c) 

0 1 
Plate gauqe 

(b) 

(d) 

(e) (f) 
Figure 9.13: Typical subnetwork responses for the most frequently selected ANOVA terms determined 
by the ASMOD algorithm upon training on the BAP1TLC3W data set. 
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(a) 

(c) 

(b) 

(d) 

^0 (0 
Figure 9.14: Typical subnetwork responses for the most frequently selected ANOVA terms determined 
by the ASMOD algorithm upon training on the BAP1TLQ3W data set. 
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(a) 

1.5 - 1 -0 .5 0 0.5 

(c) 

(b) 

(d) 

(e) 
Figure 9.15: Typical subnetwork responses for the most frequently selected ANOVA terms determined 
by the ASMOD algorithm upon training on the BAP1TLQ3W80 data set. 
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Figure 9.16: Typical subnetwork responses for the most frequently selected ANOVA terms determined 
by the ASMOD algorithm upon training on the BAP4LTC5W data set. 
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Figure 9.17: Typical subnetwork responses for the most frequently selected ANOVA terms determined 
by the ASMOD algorithm upon training on the BAP4SLC5W data set. 
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Figure 9.18: Typical subnetwork responses for the most frequently selected ANOVA terms determined 
by the ASMOD algorithm upon training on the BAP4TLC5W data set. 
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9.6.4 Influence analysis 

From the various residual plots shown in previous sections, a number of outliers are seen to 

be present in the data sets. As such, it is important to assess whether these observations or 

other influential cases are seen to exert an undue leverage on the output estimates, especially 

as a number of (non-linear) approximations inferred were determined by a limited subset of 

training patterns. 

For such purposes, the Cf and Hf measures defined in section 5.8 were used to infer 

whether particular data pairs attained a high influence. From the index and proportional influ-

ence plots'^ obtained for a subset of the models determined in section 9.6.2 for both Cf and 

Hf influence measures are shown in Figures 9.19 to 9.22. In several of the data sets a small 

subset (in some cases a single observation) of the training cases exhibit a high influence in 

comparison to the remainder of the training data. The proportional influence plots show that 

the majority of these influential cases are associated with large residuals, although a plot of the 

leverage values (diagonal elements of the S matrix) in terms of their corresponding Cf values 

show that in in some cases (e.g. Figures 9.23 (a) and (b)), the largest leverages (%) correspond 

to the largest Cf's. 

These results imply that in the present data sets, influential cases are to a certain degree 

outliers in both the X and Y spaces and that the identification of the latter is generally less 

problematic than the former (although the conditional structure of the model can considerably 

affect results). To futher understand whether influential cases could be associated with par-

ticular sub-networks and possibly be induced by excessive degrees of freedom, the modified 

residuals were displayed reflecting their corresponding influence levels. For the most simple 

of cases, these confirmed the nature of the influence as can be seen in Figures 9.24 (a) and 

(b), where the influential case is seen to be a clear Y-space outlier. Figures 9.24 (c) and (d), 

highlight the problematic elucidation by simple residual plots of high leverage cases for non-

trivial outliers. 

The modified residuals shown in Figure 9.24 (e), corresponding to the Fe subnetwork for 

the model determined in section 9.6.2 for the BAP1TLQ3W80 data set, show a high influ-

ence associated with the low-Fe cases. The high influence associated with these observations 

suggests that the network weights associated with the respective basis functions are strongly 

influenced by these data pairs. It is interesting to note the one non-influential observation 

surrounded by the high influence cases. Although this univariate plot provides only a partial 

understanding of the distribution of the data and conditional model match, inspection of the 

other subnetwork responses (and corresponding modified residuals) suggest a masking effect 

from the various high influence points surrounding this one low influence case (see section 4.5). 

'^As in previous analyses, in the proportional influence plots, the relative magnitude of the influence of the 

observations is displayed in terms of the size of the dots, larger dots corresponding to increasingly higher influential 

data pairs. 



In Chapter 7, it was seen that a small subset of the training patterns induced a piecewise 

linear fit but upon an influence analysis, were seen to be non influential cases. In contrast, the 

influence analysis on the BAP1TLQ3W80 data set, performed on a model exhibiting a third 

order (quadratic) Fe-subnetwork, identifies a significant influence associated with a set of ob-

servations where the data is sparse. These results somewhat illustrate the higher susceptibility 

to overfitting in regions of the input space where the data is poorly distributed upon using more 

complex approximating functions. 

Although both influence measures (Cf and Hf) are typically seen to agree in terms of 

identifying the same influential subsets, a comparison between the two shows a disagreement 

in the ranking of the observations in terms of their influence. Compared with Hadi's overall 

potential measure (which as discussed in Chapter 7) which attributes a high influence to both 

(Y-space) outliers and high leverage observations. Cook's distance measure attributes a higher 

influence to high leverage cases. This can be seen in the proportional influence plots shown in 

Figures 9.19 (c) and (d). 

A further assessment as to whether particular training patterns exerted an undue influence 

in the model construction and hence in the final model structures determined can be obtained 

using a leave-one or m out strategy. A comparison with the results obtained from the above 

influence measures would then provide a further understanding of which influential cases result 

in the greatest influence in the model construction. Such exhaustive data analysis is however 

beyond the scope of the present thesis. 
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Figure 9.19: Index influence plots obtained for Cook's (C f ) and Hadi's ( H f ) measures of influence 

corresponding to the neurofuzzy models (1-2 order B-splines) identified for the 7175 Al-alloy data sets; 

BAP1TLC3W (a)-(b), BAP1TLQ3W (c)-(d) and BAP1TLQ3W80 (e).(f). 
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Figure 9.20: Index influence plots obtained for Cook's (C?) and Hadi's (Hf) measures of influence 

corresponding to the neurofuzzy models (1-3 order B-splines) identified for the 7475 Al-alloy data sets: 

BAP4LTC5W (a)-(b), BAP4SLC5W (c)-(d) and BAP4TLC5W (e)-(f). 
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Figure 9.21: Proportional influence plots corresponding to the neurofuzzy models (1-3 order B-splines) 

identified by the ASMOD algorithm for the 7175 data sets: BAP1TLC3W (a)-(b), BAP1TLQ3W (c)-(d) 
and BAP1TLQ3W80 (e)-(f). 
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Figure 9.22: Proportional influence plots corresponding to the neurofuzzy models (1-3 order B-splines) 
identified by the ASMOD algorithm for the 7475 data sets: BAP4LTC5W (a)-(b), BAP4SLC5W (c)-(d) 
and BAP4TLC5W (e)-(f). 
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Figure 9.23: Leverage (su) versus Cf plots for the neurofuzzy models determined using second order 
(a)-(c) and third order (d)-(f) basis functions: (a) BAP1TLC3W, (b) BAP1TLQ3W, (c) BAP1TLQ3W80, 

(d) BAP4LTC5W. (e) BAP4SLC5W, (f) BAP4TLC5W. 
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(a)C^ ( b ) ^ f 

(c)C^ 

^35 

(e)Cj: 

Figure 9.24: Subnetwork responses and corresponding partial residuals plotted in order to reflect the 
magnitude of the measures of influence used: (a)-(b) BAP1TLC3W and (c)-(d) BAP1TLQ3W, (e) 
BAP1TLQ3W80. 
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9.6.5 Regularised networks 

Within the neurofuzzy model construction framework, redundancy and, more generally, the 

inclusion of excessive degrees of freedom is prevented by constraining the basis functions 

used to a low (second) order. More generally redundancy is controlled by use of the pruning 

refinements during the model construction. However, although the results obtained on the 

BAP data sets are in general seen to determine broadly plausible models employing third order 

basis functions, the FS/BE construction algorithms (and consequently the SS measure) in some 

instances were seen to unsuccessfully prevent models exhibiting an undue flexibility in poorly 

covered regions of the input space and as a result exhibiting a local overfitting behaviour on a 

subset of the training samples (e.g. Figure 9.15 (b), or 9.24 (e)). As discussed in Chapter 3, 

both maximum likelihood estimation and subset selection procedures may exhibit inferior gen-

eralisation capabilities compared with regularisation approaches. 

The results obtained from the FS/BE model construction procedures show that only a 

subset of the inputs present are included in the final models for Kic, and although no sub-

network deletion refinements are performed, redundancy is controlled by a series of knot 

deletion and order reduction refinements. In certain instances however, pruning may result 

in rather simplistic model structures, which may exhibit a considerable bias component in the 

generalisation error. Parameters in linear unregularised models are optimised by minimising 

the quadratic cost function, Jjv, corresponding to maximum likelihood estimation. This can 

reveal how a small subset of "greedy" variables may explain a higher variance in the output 

than they are truly accountable for, which will then compromise the generalisation performance 

of the model. In addition, a considerably biased representation of the system will be inferred. 

In view of these considerations and the control of redundancy in a maximum likelihood and 

subset selection framework, Bayesian regularisation was investigated (in a limited way) as an 

alternative approach to control excessive degrees of freedom in over-parameterised models. 

As model parsimony was still desired, the present work proposed the use of model build-

ing refinements to determine a subset of inputs and an appropriate model structure which 

was then regularised. Modifying the model construction pass structure employed in previous 

analyses to include only model identification/building refinements led to the following two pass 

structure; 

pass 

univariate addition 

tensor product 

tensor split 

pass 

knot insertion 

where the tensor split (model pruning) refinement was retained so that the construction pro-

cedures were given the flexibility to refine from a model structure including a tensor product 



CHAPTER 9. KNOWLEDGE DISCOVERY AjVD DATA MDVDVG OF 7XXX SERiES 

term. 

A second order regulariser in the form discussed in section 5.5 was used, for which 

the values of the a and /3 hyperparameters were optimised using the re-estimation formulae 

given by equations 5.28 and 5.27, respectively. In order to allow different regularisers to be 

determined for each subnetwork, a local regularisation approach was implemented. In view 

of the similarities characterising the data sets and iterative model constructions determined in 

previous sections, regularisation was investigated for only three data sets, corresponding to 

those for which the model pruning refinements performed the largest number of refinements, 

and as such, corresponding to the models which retained the largest number of degrees of 

freedom and the greatest redundancy (as determined by the pruning methods). It should be 

however understood that these results do not necessarily correspond to the largest amount of 

regularisation performed nor the greatest difference in approximation abilities (e.g. training 

and test set performance), since different regularisation coefficients will be determined on the 

various different data sets. 

To allow a comparison between the results obtained in sections 9.6.2 and 9.6.3, models 

determined from the FS + regularisation strategy were initially obtained for the BAP1TLC3W 

and BAP4LTC5W data sets using all data for training. This allowed the use of a second order 

regulariser to be investigated on networks comprising both second and third order basis func-

tions. Subsequently, in order to determine whether the FS + regularisation entailed an improved 

generalisation performance compared to the FS/BE methodology, training and test set variance 

estimates were determined over multiple model runs (20) determined from the same training-

test set partitions as were used in previous sections. In addition to the BAP1TLC3W and 

BAP4LTC5W data sets, the empirical performance on the BAP4TLC5W was also assessed. 

The model structures determined for the BAP1TLC3W and BAP4LTC5W data sets from 

the two pass structure defined above are shown in Figures 9.25 and 9.26, while Figures 9.27 

and 9.28 show the corresponding subnetwork responses. 

A comparison with the networks identified by the FS/BE model construction approach 

shows a difference in terms of both the order and number of basis functions; in the 7175 

model, the pruning refinements remove all six (internal) knots in the model, whilst for the 7475 

model, in addition to removing one knot (present at the same position on the input axis) in each 

of the subnetworks, the B-spline order on the Fe and CRS axis were reduced to second order 

basis functions. 

The form of the approximations obtained after the networks have been penalised with 

the second order regulariser are shown in Figures 9.29 and 9.30'^. Table 9.14 summarises 

the values of the hyperparameters inferred and the training errors of the unregularised and 

regularised models obtained for the BAP4LTC5W data set. A comparison between the un-

regularised and regularised network responses shows how the different regularisers inferred 

"'The different offsets in these figures are not significant as they represent the individual bias for each sub-

network. 
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Figure 9.25: Neurofuzzy network structures determined from training on the BAP1TLC3W data set 
employing a forward selection constructive set of refinements. 
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Figure 9.26: Neurofuzzy network structures determined from training on the BAP4LTC5W data set 
employing a forward selection constructive set of refinements. 
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Figure 9.27: Subnetwork response outputs corresponding to the network structure shown in Figure 9.25 
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Figure 9.28: Subnetwork response outputs corresponding to the network structure shown in Figure 9.26. 

subnetwork output curvatures, e.g. see the distinct change in slope at low Fe content in Fig-

ure 9.28 (a) for the unregularised model, as opposed to the same region of Figure 9.30 (a) for a 

regularised model. 

For the BAP1TLC3W model, the same amount of regularisation was inferred for the 

different subnetworks, as can be seen from the (linearised) subnetwork responses. 

Table 9.14: Summary of the value of the hyperparameters and variance estimates determined for the 
BAP4LTC5W data set. 

/3 ape asi Q P̂late gauge a c R S 2 
^A ,̂reg. 

& 1 5 l e - 3 2 e - 3 0 . 0 0 2 . 8 e - 3 6.35 6 ^ 2 

A summary of the results obtained from the multiple model runs is shown in Table 9.15, 

which may then be compared with Table 9.12. This shows that while an improvement in the 

generalisation performance on all data sets is attained, the greatest improvement is seen to be 

on the two 7475 data sets particularly when regularisation is employed to constrain the output 

curvature of third order B-spline subnetworks. 
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Figure 9.29: Subnetwork response outputs corresponding to the network structure shown in Figure 9.25 
after second order regularisation. 
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Figure 9.30: Subnetwork response outputs corresponding to the network structure shown in Figure 9.26. 

Data set 
B-Spline Training error Test error 

order 

BAP1TLC3W 2 0.90 1.23 

2 7.14 
BAP4LrC5W 

3 6.59 5.78 

2 4.07 
BAP4TLC5W 

4.07 

3 3.38 

Table 9.15: Summary of the empirical results obtained for the FS + regularisation framework. The 
average errors were obtained in terms of the attained on each data set instance over the multiple 
model runs. 
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9.7 Support vector regression 

In view of the lack in improved approximation abilities exhibited by the neurofuzzy modelling 

approach compared with the MLR analysis, it was of interest to assess whether the SVM 

methods could offer any improved performance. 

Since the large number of variates would have resulted in a very large, high dimensional 

basis expansion in the first stage of the SUPANOVA framework, this was limited to include 

only interactions that could easily be visuahsed (i.e. up to trivariate terms). This also allowed 

the SVM models to be trained in more acceptable times. Thus, SUPANOVA models were de-

termined by limiting the sparse selection to be performed on a full basis expansion comprising 

univariate, bivariate and trivariate terms. 

The presence of a number of outliers identified in previous sections presented an op-

portunity to compare the performance of the SVM using different loss functions. As such, in 

addition to the quadratic loss function, used throughout this work, SVM were also trained using 

the Laplace loss function. Although the e-insensitive zone did not introduce any sparseness 

to the solution (e = 0), in terms of the number of support vectors, the use of the Laplace 

loss provided an opportunity to assess whether any robustness was gained and reflected in the 

empirical results. 

A Stage II sparse selection threshold (or tolerance level), S2toI = 0.4, as used in previous 

chapters, was seen in Chapter 8 to give rise to a number of SUPANOVA models comprising on-

ly of a bias term. In modelling the BAP data using this same threshold, particularly when larger 

ANOVA basis were considered (i.e. including bivariate and trivariate terms), a comparable if 

not larger number of models comprising only a bias term were produced. 

Although the training set variance estimates attained by both the MLR and neurofuzzy 

results suggested a high output noise component, the dependencies inferred by the neurofuzzy 

model construction algorithms showed that a subset of the inputs exhibited structural relation-

ships with Kjc- Therefore SUPANOVA models which exhibited only a bias term on certain 

training sets were unsatisfactory, which will be discussed in more detail in section 9.9. 

Adjusting the S2tol level, to some arbitrary value will determine the subset selection and 

hence the sparseness (in terms of the number of ANOVA components) of the final models. 

Thus the S2tol value can be seen to be a tunable parameter in the SUPANOVA framework, 

effectively determining the parsimony of the final models. To assess whether the number of 

models comprising only a bias term could be reduced by lowering the Stage II threshold, this 

was subsequently set to S2tol = 0.01. As in previous chapters an infinite ANOVA spline kernel 

was used to perform the non-linear mapping into feature space. 

The SVM modelling approach was limited to the same 7x75 data set partitions defined 

in Table 9.5, and in order to allow a comparison with previous sections, the same 20 training-

test set data splits used in the MLR and neurofuzzy analyses were used to infer the empirical 

performance of the SVM models. For brevity, the results have been presented in concise for-
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mats, summarising the empirical performance inferred from the multiple model runs, whilst the 

nature of the dependencies determined are limited to those identified with the greatest stability. 

As in previous chapters, the performance of the SUPANOVA approach was compared with 

that of a support vector regression comprising a full ANOVA spline kernel basis expansion, i.e. 

a model consisting of the product of piecewise cubic splines with the knots located at the 

training data points, corresponding to the Stage I model. 

The empirical performance attained by Stage I models on the 7x75 data sets is summarised 

in Table 9.16, for models determined from using the quadratic {Lquad) and Laplace {L^) loss 

functions. From these results it is seen that the (average) training set variance estimates are 

considerably lower than those attained on unseen data, suggesting a significant degree of over-

fitting. Unsurprisingly then, a comparison with the MLR results show how the simple linear 

models attain a better generalisation performance. 

A further comparison in terms of the results attained from different loss functions shows 

how the models determined from using the loss are generally seen to exhibit higher average 

training error (//), measured in terms of the quadratic loss'^. While exhibiting similar variances 

(cr^) with the Lquad results on the test sets, models determined from the loss function are 

seen to exhibit a considerably higher variance in the training errors. 

Lquad L, 

P- a 2 

Data set Training Test Training Test Training Test Training Test 

BAP1TLC3W 0.22 1.87 1.6e-^ 0.56 
0.20 

(0.21) 

1.05 

(2.18) 

2.6e-^ 

(0.01) 

0.03 

(0.63) 

BAP1TLQ3W 0.37 4.12 8.2e-^ 7.26 
0.19 

(0.46) 

1.45 

(4.15) 

7e-^ 

(0.05) 

0.22 

(7.59) 

BAP1TLQ3W80 0.33 6.38 0.06 26.42 
0.17 

(0.55) 

1.86 

(6.45) 

0.02 

(0.46) 

0.30 

(23.50) 

BAP4LTC5W 3.18 7.13 0.23 12.13 
0.89 

(4.00) 

1.84 

(7.73) 

0.02 

(1.14) 

0.17 
(14.32) 

BAP4SLC5W 3.75 17.28 0.48 31.95 
0.90 

(3.66) 

3.17 

(17.35) 

0.06 

(1.09) 

0.33 

(56.40) 

BAP4TLC5W 2.06 5.07 0.05 7.51 
0.73 

(2.84) 

1.42 

(5.06) 

8e"^ 

(0.30) 

0.05 

(8.64) 

Table 9.16: Empirical performance inferred over multiple model runs corresponding to the Stage I 
models in the SUPANOVA framework determined from different training-test set partitions. 

The training error statistics corresponding to the SUPANOVA models inferred from the 

In the following tables, summarising the empirical performance (training and test set error estimates) exhibited 

by the SUPANOVA and Stage I models, error estimates corresponding to models trained using the loss function 

are also measured in terms of the quadratic loss {Lquad)- This allows a direct comparison between models trained 

using different loss functions. 
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multiple models, obtained using the two dififerent Stage II sparse selection thresholds (0.4 and 

0.01) and the Lguad loss function are summarised in Table 9.17. 

Univariate basis Bivariate basis Trivariate basis 

Data set 
Stage II 

(7% A* (72 <7̂  
tel. 

BAP1TLC3W 
0.4 0.89 1.4e-^ 1.16 0.11 1.39 0.09 

BAP1TLC3W 
0.4 0.89 0.11 1.39 0.09 

0.01 0J4 6.6e~^ 0.71 0.02 1.12 OIW 

BAP1TLQ3W 
0.4 2J4 &26 1.75 o j a OjG 

BAP1TLQ3W 
0.4 &26 

1.24 OjW 

OjG 
BAP1TLQ3W 

0.01 1.04 0.12 1.24 OjW l j # CU8 

BAP1TLQ3W80 
0.4 I J a &16 1.50 0.50 2.58 0.93 

BAP1TLQ3W80 
0.4 I J a 

0.02 1J9 0.18 1.94 

0.93 
BAP1TLQ3W80 

0.01 0.02 1J9 0.18 1.94 1.19 

BAP4LTC5W 
0.4 6.88 &15 0^2 6 j ^ 0.58 

BAP4LTC5W 
0.4 &15 0^2 6 j ^ 0.58 

0.01 0.17 6^@ OjW 6.10 0J4 

BAP4SLC5W 
0.4 lOJO 2.53 9jW 2j% lOJD 6.17 

BAP4SLC5W 
0.4 lOJO 2.53 lOJD 

0.01 3.47 8.36 &43 9.55 2.14 

BAP4TLC5W 
0.4 3.98 0.06 3.61 0.33 3.53 0.40 

BAP4TLC5W 
0.4 3.98 3.53 

0.01 3.54 0J4 3.05 &08 3jW OjG 

Table 9.17: Training error variance estimates for the SUPANOVA models obtained from using a 
quadratic error function. 

For the smaller of the data sets, a comparison of the average variance estimates (/i) shows 

that models determined from univariate basis expansions attain a better approximation to the 

training data when compared to models inferred from larger ANOVA basis (i.e bivariate and 

trivariate basis). This is primarily attributable to the presence of a number of models comprising 

only a bias term. 

A comparison of these results in terms of the Stage II tolerance values used, shows that the 

use of the lower S2tol is reflected by a better approximation to the training data, resulting from 

a larger number of terms subselected and consequently a smaller number of models comprising 

only a bias component'^. 

The generalisation performance of the SUPANOVA models are summarised in Tables 9.18 

to 9.20 for the different loss functions and S2tol values used. 

It is apparent that in instances for which the generalisation estimates exhibit a large 

variance, little confidence can be placed in the estimates, and comparisons between different 

training conditions should proceed acknowledging this high uncertainty. 

With a few exceptions, it is seen that allowing a larger number of ANOVA terms to be 

included in the final models results in an improved generalisation performance. It remain-

s difficult however to assess the generalisation performance exhibited by the SUPANOVA 

framework, since the presence of models comprising only bias components will bias empirical 

should be noted that the regularisation coefficient will be the same, since C is determined in the first stage 

(Stage I) of the SUPANOVA framework. 
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Data set 

BAP1TLC3W 

BAP1TLQ3W 

BAP1TLQ3W80 

Stage II tol. (0.4) 

^quad 

^ cr̂  

L26 &21 

3 ^ 4 3 ^ 3 

2 6 4 4.58 

0.83 

(1.33) 

1.32 

(3.28) 

1.11 

(2.61) 

<7 

0.02 

(0.39) 

0.09 

(2.36) 

0.12 

(5.63) 

Stage II tol. (0.01) 

J-'quad 
2 

jj, 

1.06 0.18 

3 ^ 2 4jW 

1^8 1 J 5 

M 

0.78 

(LOn 

1.16 

(2.60) 

0.99 

(2.20) 

cr 

0.01 

(0.17) 

0.11 

(2.4^ 

0.13 

(5.27) 

BAP4LTC5W 

BAP4SLC5W 

BAP4TLC5W 

&71 6.54 

14^0 33J1 

126 3 J # 

1.80 

(5.95) 

3.06 

(14.53) 

L24 

(3.09) 

0.08 

(5.98) 

0.36 

(24.82) 

0.04 

(3.01) 

5^3 6J7 

14J1 2L76 

120 3 J 3 

1.72 

(5.55) 

3.11 

(15.26) 

1.21 

(3.04) 

0.06 

(5.67) 

0 ^ 4 

(30.38) 

0.04 

(3.05) 

Table 9.18: Empirical performance inferred over multiple model runs for the SUPANOVA framework 
determined from different training-test set partitions and constrained to form the ANOVA basis from 
univariate terms. Results are shown using two different sparse selection threshold values and loss 
functions. 

Stage II tol. (0.4) 

Data set •'quad 

IJ. cr' 

BAP1TLC3W 1.60 0.37 

BAP1TLQ3W 4.21 3.65 

13AJP1TTJCX3V/80 4.37 :20.()5 

0.94 

(1.66) 

1.38 

(3.80) 

1.12 

(3.74) 

a 

0.03 

(0.63) 

0 J 7 

(5.36) 

0.48 

(22.81) 

Stage II tol. (0.01) 

•'quad 

1.05 

a 

0 ^ 4 

3.47 2J8 

3.08 16.46 

0.81 

(1.2% 

1.26 

(3.17) 

1.18 

(3.75) 

cr* 

0.02 

(0.40) 

O J j 

(3.30) 

0.39 

(22.16) 

BAP4LTC5W 7.09 7.47 

BAP4SLC5W 14.25 38.24 

ELAĴ lTIjCfllAr 3.53 1.49 

1.89 

(6.46) 

3 J j 

(15.63) 

I j ^ 

(3.61) 

0.10 

(9.85) 

0.49 

(7.40) 

0.05 

(3.05) 

&78 9.91 

13.65 25.19 

133 1^6 

I jW 

(6.72) 

3.07 

(15.50) 

L25 

(3.16) 

0.09 

(10.01) 

&39 

(38.18) 

0.05 

(2.56) 

Table 9.19: Empirical performance inferred over multiple model runs for the SUPANOVA framework 
determined from different training-test set partitions and constrained to form the ANOVA basis from 
univariate and bivariate terms. Results are shown using two different sparse selection threshold values 
and loss functions. 
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Data set •'quad 

Stage II tol. (0.4) 

L, 

II cr" 

BAP1TLC3W 1.66 0.60 

BAP1TLQ3W 3.98 4.60 

BAPITLQSWSO 4.79 19.67 

0.95 

( 1 7 ^ 

1.43 

(3.98) 

1.45 

(4.85) 

cr 

0.04 

(0.70) 

OjW 

(6.76) 

OjW 

(22.32) 

Stage II tol. (0.01) 

•^quad 
2 

/i a 

1.44 0.42 

3^9 2 ^ 2 

4.52 20.90 

M 

0.91 

(1.58) 

1.38 

(3Jn 
1.40 

(4.71) 

a' ' 

0.04 

(0.69) 

0.14 

(3.89) 

0.38 

(23.02) 

BAP4LTC5W 6.66 12.25 

BAP4SLC5W 14.90 39.40 

BLAF%rrix:5\v 3.32 2.31 

1.81 

(6.19) 

3.11 

(15.25) 

L32 

(3.34) 

0.09 

(10.06) 

0.45 

(35.39) 

0.03 

(1.94) 

6.95 1&41 

13.77 39.24 

3.37 1.64 

1.76 

(6.29) 

2.97 

(14.79) 

1.23 

(3.22) 

0.13 

(13.51) 

0.51 

(37.24) 

0.04 

(1.96) 

Table 9.20: Empirical performance inferred over multiple model runs for the SUPANOVA framework 
determined from different training-test set partitions and constrained to form the ANOVA basis from u-
nivariate, bivariate and trivariate terms. Results are shown using two different sparse selection threshold 
values and loss functions. 

comparisons, both with the MLR and neurofuzzy results but also between the SVM models 

determined from different basis expansions and loss functions considered. The effect of con-

sidering larger basis expansions and different Stage II thresholds on the number of ANOVA 

terms present in the final models is summarised in Tables 9.21 and 9.22. 

The consistency with which particular input variables are selected in the SUPANOVA 

models and the degree of interaction with other variates, can be appreciated from Tables 9.23 

to 9.25, summarising the number and type of ANOVA components inferred across the multiple 

model runs. These show that in results obtained from models determined from a univariate 

ANOVA expansion, contributions of Fe and Si are present in most of the 7175 and 7475 data 

sets. 

Similarly to the results obtained in previous chapters, approximations inferred on the 

different training-test splits exhibit differing degrees of regularisation, with some terms over-

regularised while others under-regularised. Again, this is seen to result from the use of a global 

smoothing parameter C, whereby in addition to being inferred at Stage I and hence from the 

complete set of inputs, some terms will be under whilst others over-regularised. 



Number of ANOVA terms 

Data set 
Loss Stage II 

Data set 
function 

Stage II 
Basis Bias 1 2 3 4 5 6 7 8 9 10 II function tol 

3 5 10 II 

uni 1 1 12 5 1 

^quad 0.4 biv 3 6 5 4 1 1 

tri 11 3 1 4 1 
uni 2 11 7 

0 01 biv 7 3 4 5 1 

BAP1TLC3W 
tri 3 2 4 2 6 2 1 

uni 1 1 2 16 

Le 0.4 biv 3 9 5 3 

tri 14 3 2 1 

0.01 uni 8 11 1 
biv 1 1 2 6 3 2 3 1 1 
tri 5 1 8 3 1 2 

uni 5 10 2 3 

^quad 0.4 biv 9 6 3 1 1 
tri 3 9 5 3 

uni 4 7 9 
O^U biv 5 4 4 5 1 1 

BAP1TLQ3W 
tri 3 9 4 1 3 
uni 5 7 7 1 

Le 0.4 biv 1 9 9 1 
tri 11 8 1 

0.01 uni 2 2 15 1 

biv 4 8 3 3 2 
tri 1 3 3 6 4 1 2 
uni 8 7 4 

Lquad 0.4 biv 5 7 7 1 

tri 11 5 4 

uni 19 1 

0.01 biv 2 1 1 15 1 

tri 8 3 7 1 
BAP1TLQ3W80 

tri 1 

uni 2 12 4 2 

Le 0.4 biv 6 2 12 

tri 16 3 1 

0.01 uni 2 2 6 4 1 1 

biv 4 1 3 9 1 1 1 

1 tri 11 1 4 3 1 

p 
i! 

I 
H 

§ 

I 
1 

I 
1 

N) 
5 

Table 9.21: Summary of the number of ANOVA terms determined across the multiple model runs for the SUPANOVA framework for the 7175 data sets from 
using different loss functions, Stage II thresholds and basis expansions. 



Number of ANOVA terms 

Data set 
Loss Stage II 

Data set 
funct ion 

Stage II 
Basis Bias 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 funct ion tol 

10 11 12 13 14 15 

uni 20 

^quad 0.4 biv 1 5 7 6 1 

tri 9 4 1 5 1 

uni 1 19 
0.01 biv 3 4 1 6 5 

BAP4LTC5W 
tri 6 2 1 5 4 2 

uni 5 15 

Le 0.4 biv 1 2 3 3 4 5 2 

tri 4 4 4 1 3 2 2 
0.01 uni 16 2 1 1 

biv 1 4 2 3 8 2 
tri 1 2 1 1 2 1 1 1 2 6 1 
uni 2 18 

^quad 0.4 biv 3 12 5 

tri 1 5 13 1 

uni 2 6 8 4 

0.01 biv 8 6 1 5 

tri 3 15 2 
BAP4SLC5W 

tri 15 

uni 3 12 4 1 

Le 0.4 biv 5 3 9 3 

tri 1 2 15 2 

0.01 uni 11 4 4 1 

biv 5 1 3 8 1 1 1 

tri 1 1 5 10 3 

uni 1 19 

^quad 0.4 biv 3 1 3 7 4 2 

tri 4 7 4 3 2 

uni 7 9 4 

0.01 biv 1 3 2 8 5 1 

BAP4TLC5W 
tri 2 2 2 5 1 3 1 3 1 

uni 9 7 4 

Le 0.4 biv 1 2 7 5 4 1 

tri 1 1 4 7 3 2 1 

0.01 uni 2 4 10 4 

biv 2 7 2 4 1 2 2 2 
tri 1 2 3 5 1 3 2 3 

§ ! 
i 
i 

J 
5 8 

I 
I 

i 

I 
1 

00 

Table 9.22: Summary of the number of ANOVA terms determined across the multiple model runs for the SUPANOVA framework for the 7475 data sets from 
using different loss functions, Stage II thresholds and basis expansions. 



ANOVA terms 

Data set 
Loss Stage II 

function tol 
Bias Stretch Cu Fe Mg Mn Si Zn Ti Cr T/ STt GR CRS 

gauge 

BAP1TLC3W 

BAP1TLQ3W 

BAP1TLQ3W80 

I^quad 0*4 

0.01 
Le 0.4 

0.01 

I^quad 0-4 

0.01 

OIU 

I^quad 0.4 

0.01 
&4 
0.01 

3 M 3 19 18 
19 20 B 20 7 20 

1 17 18 18 
M 20 Ml 20 1 20 

BAP1TLC3W 

BAP1TLQ3W 

BAP1TLQ3W80 

I^quad 0*4 

0.01 
Le 0.4 

0.01 

I^quad 0-4 

0.01 

OIU 

I^quad 0.4 

0.01 
&4 
0.01 

20 15 3 5 
20 17 9 19 
20 12 3 9 
20 1 20 17 17 

BAP1TLC3W 

BAP1TLQ3W 

BAP1TLQ3W80 

I^quad 0*4 

0.01 
Le 0.4 

0.01 

I^quad 0-4 

0.01 

OIU 

I^quad 0.4 

0.01 
&4 
0.01 

1 %) 5 12 
1 M 20 1 20 

2 18 2 6 
2 18 10 1 2 16 

BAP4LTC5W 

Lquad 0-4 
0.01 

2; &4 

0.01 

20 20 20 
20 20 20 19 
20 20 20 15 
20 20 2 20 1 4 20 

BAP4SLC5W 

^quad 0.4 
0.01 

I t &4 
0.01 

19 3 16 

20 18 9 18 9 
15 6 4 

20 2 18 1 7 7 

BAP4TLC5W 

^quad 0.4 

0.01 
If &4 

0.01 

19 20 20 
20 3 20 20 13 1 
M 20 20 10 5 
20 20 20 3 2 ^ 13 

^ 8 

§ 

R 

i 

Table 9.23: Frequency of selection for the SUPANOVA univariate models determined over the multiple model runs. 
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ANOVA terms 

Data set 
Loss 

Funct ion 

s t a g e II 

tol 
Bias 

P l a t e 

gauge 
Stretch Cu Fe Mg Mn Si Zn Ti Cr Tf GR CRS 

0.4 3 13(12,1) 7 ( , 7 ) 12( . ,12) 5 ( . ,5 ) 7 ( , 8 ) 5 ( . , 5 ) 5 (5 , . ) 

BAP1TLC3W 
^quad 0.01 20(19 ,1) 15( . ,15) 20( . ,41) 13(13, . ) 1 2 ( . , 1 6 ) 2 ( . ,2 ) 1 ( , 1 ) 16( . ,19) 17( . ,21) 20(20 , . ) 

BAP1TLC3W 

J 
0.4 3 4(4 , . ) 15( . ,15) 15( . ,15) 8 ( . ,8 ) 2 ( , 2 ) 2 ( , 2 ) 2 ( , 2 ) 1 (1 , . ) 

0.01 1 17(15 ,3) 18(1 ,18) 3 ( . , 3 ) 19( . ,25) 5 (5 , . ) 16( . ,24) 11(1,11) 1(1, ) 5 ( . , 5 ) 10( . ,10) 7 ( . , 9 ) 19(19 , . ) 

0.4 20(20 ,2 ) 2 ( . , 2 ) 20( . ,40) 4(,5) 1 ( , 1 ) 2(,3) 18( . ,18) 20(10 ,21) 4 (4 , . ) 

BAP1TLQ3W 
0.01 20(20 ,6) 11(11,6) 20( . ,43) 8( . ,11) 3 (2 ,2 ) 4 ( . , 6 ) 19(9 ,19) 20(17 ,24) 20(20, .) 

BAP1TLQ3W 
0.4 19(19,1) 2 ( . , 2 ) 20(1 ,31) 2 ( . , 2 ) 17( . ,17) 15( . ,22) 1 2 ( , 1 3 ) 20(10 ,28) 2 (2 , . ) 

0.01 20(20 ,4 ) 10(7,6) 20(1 ,35) 10(., 10) 18( . ,23) 2 (1 ,1 ) 18( . ,29) 19( . ,25) 3 (3 , . ) 20(14,36) 19(19, . ) 

0.4 5 15( . ,15) 15(1 ,16) 8 (7 ,1 ) 

BAP1TLQ3W80 
^quad 

T 

0.01 

0.4 

2 

6 

16(15,1) 18( . ,19) 

13( . ,13) 

1(,1) 18(16,19) 17(16,2) 

13( . ,14) 13(12,1) 

O^U 4 12(12, ) 15( . ,17) 3 ( . ,3 ) 1(1, . ) 3 (3 , . ) 15(13,18) 16(15,3) 

0.4 20(19 ,2 ) 19(5 ,24) 3 ( . , 3 ) 2 0 ( , 3 8 ) 3 ( , 3 ) 20( . ,30) 11(7,10) 6 ( 2 , 7 ) 12( . ,12) 2 ( , 2 ) 

BAP4LTC5W 
^quad OIW 2 0 ( 1 9 , 2 2 ) 2 0 ( 1 6 , 2 8 ) 12( . ,13) 20( . ,60) 16( . ,17) 20( . ,40) 18( . ,18) 20(20 ,24) 12(12, ) 13(4 ,14) 17( . ,17) 1 ( . , 1 ) 13( . ,13) 

BAP4LTC5W 
0.4 20(10 ,14) 14(11,15) 20(1 ,36) 17( . ,24) 2 0 ( , 3 1 ) 2 ( . , 3 ) 13(10,14) 1(1 ,1) 13( . ,25) 2 ( , 2 ) 10( . ,10) 19( . ,19) 

0.01 20(17 ,25) 19(16,22) 13(2,15) 20(2 ,69) 20(., 31) 20( . ,42) 11(1,17) 20(18 ,32) 20(20 ,3) 17(1 ,38) 18(1 ,18) 14( . ,16) 20( . ,21) 

BAP4SLC5W 
T 

0.4 

OjU 

0.4 5 

19(16,3) 

20(18 ,6) 

15(7 ,8) 

5 ( . , 5 ) 

1 ( , 1 ) 5 ( . , 5 ) 

1 ( , 1 ) 3 ( . ,4 ) 1 0 ( , 1 0 ) 

1( . ,1) 6 ( . , 6 ) 1 ( , 1 ) 

1 ( , 1 ) 
1 ( , 1 ) 

3 ( . ,3 ) 

19(17,3) 

20(19 ,11) 

15(8 ,8) 

5 ( . , 5 ) 

10( . ,11) 

6( . ,6 ) 

0.01 5 15(7 ,8) 4 (3 ,1 ) 2 (1 ,1 ) 8 ( . , 9 ) 5 ( . , 5 ) 5 (3 ,3 ) 15(9 ,8) 10( . ,10) 

0.4 15(-,17) 13(4 ,13) 9 ( . , 9 ) 2 0 ( . , 3 1 ) 1 0 ( . , 1 0 ) 20( . ,28) 8 (4 ,8 ) 14( . ,18) 

BAP4TLC5W 
r 

0.01 

0.4 

20( . ,41) 19(14,19) 20( . ,21) 20( . ,37) 20( . ,20) 

20(1 ,25) 18(12,18) 14( , 14) 20(2 ,29) 6 ( . , 6 ) 

20( . ,39) 

2 0 ( , 3 6 ) 

20(20,13) 

18(7,21) 

3 (2 ,1 ) 20( . ,46) 

14( . ,31) 
l ( . . l ) 

0.01 20(4 ,33 ) 19(18,19) 19(2 ,27) 20(2 ,35) 16( ,17) 20( . ,43) 20(20 ,28) 14(14,3) 18( . ,44) 3 ( . , 3 ) 20(20 , . ) 

i 
\o 

I 
i 

P 
0 

1 
i 
S 
5 8 

S I 
I 
I 
I 
I 
s Table 9.24: Frequency of selection for the SUPANOVA bivariate models determined over the multiple model runs. The numbers in the (•, •) represent the total 

number of ANOVA terms containing the particular variable as either a univariate or bivariate term respectively. 
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I 
ANOVA icrms 

Dalasci 
F u n c t i o n 

S t a g e II 

t o l 
Bias 

P l a t e 

g a u g e 
Stretch Cu Fc Mg Mil Si Zn Ti Cr STt OR CRS 

^quad 0 . 4 11 6 ( 6 , . , ) 6 ( - , , 6 ) 6(- 1 , 6 ) 5 ( . , . , 5 ) 
1 ( - , 1 , ) 

2 ( . , 2 , . ) 

8 ( 8 , . , . ) 

BAP1TLC3W 
Le 

0 . 0 1 

0 . 4 

3 

14 

1 5 ( 1 5 , • 

2 ( 2 , , 

•) 

) 

1 2 ( 1 , •, 13) 

1( , , 1 ) 

12( . 

1(-

2, 13) 

, - . 1 ) 

8 ( 8 , . , . 2 ( . , . , 2 ) 

2 ( . , . , 2 ) 2 ( , . , 2 ) 2 ( , . , 2) 

12( , . , 1 3 ) 

1( , , 1 ) 

1 ( - , 1 , ) 

2 ( . , 2 , . ) 
1 6 ( 1 6 , , ) 

5 ( 5 , . , . ) 
0 . 0 1 5 1 5 ( 1 5 , • •) 6 ( , , 7 ) 6 ( . . - . 7 ) 3( , , 4 ) 3 ( . , , 3 ) 3 ( , ', 3) 6 ( 1 , , 6 ) 1 4 ( 1 4 . , . ) 

^quad 0 . 4 2 0 ( 2 0 , - •) 2 0 ( . . 3 1 , ) 1 1 ( , 1 1 . ) 2 0 ( 8 , 2 0 , • ) 9 ( 9 , . , . ) 

BAP1TLQ3W 
0 . 0 1 2 0 ( 2 0 , • • ) 1 3 ( 1 3 , • •) 2 0 ( . , 3 4 , . ) 1( , 1 , ) 3 ( 3 , . , . ) 2 ( 2 , . , . ) 1(- . 1 •) 1 4 ( 2 , 14, •) 2 0 ( 1 7 , 2 0 , •) 2 0 ( 2 0 , ., •) 

BAP1TLQ3W 
Le 0 . 4 2 0 ( 2 0 , • •) 2 0 ( . 3 1 , 2 ) 1(- , 1 ) 1( , 1 , ) 1 ( , 1 •) 13{. , 1 1 , 2 ) 2 0 ( 1 3 , 2 0 , 1 ) 3 ( 3 , , 1 ) 

0 . 0 1 2 0 ( 2 0 , • •) 6 ( 8 , . •) 2 0 ( . 3 1 , 4 ) 1(- • , 1 ) 1( , 1 , ) 1 2 ( 1 2 , ., . ) 3 ( 3 , . , . ) 1(- . 1 •) 1 5 ( , 1 1 , 4 ) 8 ( 8 , . , . ) 2 0 ( 1 9 , 2 0 , 3 ) 1 6 ( 1 6 , . , . ) 

Lguad 0 . 4 11 4( . , , 4 ) 1(- - . 1 ) 3 ( , . , 3 ) 4 ( . , , 4 ) 9 ( 9 , . , . ) 

BAP1TLQ3W8() 
L, 

0 . 0 1 

0 . 4 

0 . 0 1 

8 

16 

11 

9 ( 9 , . , 

1 (1 , •, 

) 

) 

9(-

1( 

8( 

• , 1 1 ) 

, , 1 ) 

, . , 8 ) 

4(-

! ( • 

3 ( . 

• , 4 ) 

- . 1 ) 

, 3 ) 

7( , , 7 ) 

5 ( . , . , B ) 4 ( 4 , . , . ) 

9 ( 1 , . , 1 1 ) 

1( , . , 1 ) 

8 ( . , . , 8 ) 

12(12 , ., . ) 

4 ( 4 , . , . ) 

8 ( 8 , , ) 

L„uad 0 .4 2 0 ( 2 0 , 1) 6( , 5 , 1 ) 2 ( . , . , 2) 2 0 ( . , 2 1 , 1) 5 ( . , 5 , . ) 2 0 ( . , 2 9 . . ) 6 ( 1 , 7 , . ) 3 ( 1 , 2 , 1 ) 1( , 1 , ) 8 ( , 8 , ) 

BAP4LTC5W 
0 . 0 1 2 0 ( 2 0 , 2 , 2 ) 7 ( 1 , 6 , 1 ) 2 ( . , . , 2) 2 0 ( . , 2 4 , 1 ) 13( . 1 7 , ) 2 0 ( . , 3 2 , ) 2 ( . , 2 , . ) 1 8 ( 1 8 , 1 5 , • ) 5 ( 5 , . •) 8 ( 4 , 3 , 2 ) 3 ( . , 3 , .) 10( . , 1 0 , . ) 

BAP4LTC5W 
i-c 0 . 4 2 0 ( 2 0 , 1 , 7 ) 7 ( - . 4 , 4 ) 7( 7) 2 0 ( , 37 , 3 ) 18( . 2 7 , 1 ) 2 0 ( . , 2 4 , 6 ) 1 ( , , 1 ) 1 0 ( , 9 , 2 ) 1 1 ( . , 1 2 , 6 ) 7 ( . , 7 , . ) 2 ( , 2 , . ) 2 0 ( 2 , 2 1 . ) 

0 . 0 1 2 0 ( 2 0 , 3 , 19) 1 3 ( 9 . 4 , 9 ) 1 4 ( 2 , . 18) 20( , 4 7 , 11) 2 0 ^ 4 0 , 3 ) 2 0 ( , 2 6 , 7) 7 ( 2 , 2 . 3 ) 1 8 ( 1 5 , 1 8 , 1 ) 1 8 ( 1 8 , 1 7 ( 6 , 2 3 , 1 3 ) 1 3 ( . , 1 3 , .) 2( , 2 , . ) 2 0 ( 2 , 2 0 , . ) 

Ijquad 0 . 4 1 6 ( 1 6 , - , • ) 1(- . 1 , - ) 1 7 ( 1 7 , , . ) 1( , 1 , ) 

BAP4SLC5W 
Lc 

0 . 0 1 

0 . 4 

0 . 0 1 

1 8 ( 1 8 , • 

1 8 ( 1 5 , 3 

1 9 ( 1 6 , 3 

. • ) 

, ) 

, • ) 1 1 ( 1 1 , , ) 

2(-

2(-

3 ( 

, 1 , ) 

. 2 , . ) 

, 3 , . ) 5 ( 5 , . , . ) 

1 9 ( 1 9 , •, •) 

1 9 ( 1 8 , 3 , . ) 

1 9 ( 1 8 , 3 , . ) 

2 ( , 1 , ) 

2 ( , 2 , . ) 

3 ( . , 3 . . ) 

Z/guad 0 . 4 1 6 ( 3 , 2, 12) 2( , 2 , . ) 1 4 ( . . 2 12) 2 0 ( , 2 6 , ) 9 ( . 11, •) 2 0 ( . , 2 1 , . ) 4 ( , 4 . ) 1 2 ( . , 6 , 12 ) 

BAP4TLC5W 
0 . 0 1 1 6 ( 6 , 4, 14) 4 ( 1 , 4 , . ) 1 5 ( . , 4 14) 2 0 ( , 3 0 . ) 13( . , 1 8 , . ) 2 0 ^ , 2 3 , ) 2 0 ( 2 0 , 7 , - ) 5 ( 5 , , • ) 1 4 ( . , 11, 14) 1 8 ( 1 8 , . , . ) 

BAP4TLC5W 
Le 0 . 4 2 0 ( 1 2 , 4 14) 6 ( . , 5 , 1 ) 15( , 4 13) 20( , 4 6 , 4 ) 7( . 7 , . ) 20( , 2 7 , 6 ) 1 4 ( 3 . 1 1 , 8 ) 1 ( - . - 1) 1 8 ( 1 , 18, 12) 1( , 1 , ) 

0 . 0 1 2 0 ( 1 5 , 5, 19) 1 3 ( 9 , 7 , 2 ) 1 9 ( 6 , 5 , 17) 20( , 59 , 4) 15(- , 1 5 , 2 ) 2 0 ( . , 3 2 , 6 ) 2 0 ( 2 0 , 20 , 14) 1 3 ( 1 2 , 1 , 1 ) 2 0 ( 1 , 2 4 , 1 6 ) 3 ( . , 3 , . ) 1 8 ( 1 8 , . , . ) 

Table 9.25: Frequency of selection for the SUPANOVA trivariate models determined over the multiple model runs. The numbers in the (•, • 
number of ANOVA terms containing the particular variable as either a univariate, bivariate or trivariate term respectively. 

•) represent the total 
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9.8 Metallurgical considerations 

In terms of the more physical interpretation of the models of the 7x75 data subsets, it is clear 

that Fe and Si are common significant input variables. In the neurofuzzy and SUPANOVA 

results, both are seen to reduce i^/c, consistent with conventional metallurgical understanding 

of coarse intermetallic particle formation, and their influence on failure. As noted previously, 

evidence of overfitting was seen in some Fe univariate ANOVA terms (e.g. Figures 9.15 (b) 

and 9.24 (e)), but the general trends were consistent. 

In terms of the categorical variable models applied to the BAPl and BAP4 data sets in 

section 9.6.1 (as shown in Figures 9.3 and 9.4), it may be seen that the simple test direction 

effect in Figure 9.4 is consistent with the mechanical fibring of these plate materials. In terms 

of thickness position, the quarter position may be expected to exhibit lower toughness than the 

centreline (De Jong 1980). In terms of both the BAPl and BAP4 data sets, a contradictory 

effect was seen. It should be noted however that the models represented in Figures 9.3 and 9.4 

were specifically for the categorical variables (direction, thickness position, width position and 

alloy type). In these cases it must be noted that the categorical variables were "concealing" 

other important variables. In the case of the BAPl data set, the quarter-thickness toughness 

results all came from the thicker, high purity alloy variant, whilst in the BAP4 data set, the 

quarter-thickness results all corresponded to the tougher LT and TL test directions. 

It was seen that for the various TL orientation data sets for both alloys (as shown in 

Figures 9.13 to 9.15 and 9.18) cross-rolling (i.e. CRS), had a generally beneficial influence on 

toughness in the neurofuzzy models. This was closely confirmed by the SUPANOVA models 

(although the flexibility of the kernel functions used by the SUPANOVA modelling allowed 

some local non-linearities to appear). Such an effect may be considered consistent with a 

beneficial redistribution of coarse intermetallics and grain boundaries away from the nominal 

crack growth plane in this test direction. In keeping with this, increasing CRS was seen to 

reduce toughness in the LT orientation data set for the 7475 (Figure 9.16). The influence of 

such redistribution on SL toughness is not intuitively obvious, as the relevant microstructural 

features will be aligned in the nominal fracture plane by both straight and cross-rolling passes. 

A detrimental influence of cross-rolling on SL toughness is evident in Figure 9.17, which may 

merit further investigation. 

Without further assessment, it is difficult to separate the effects of gauge and gauge re-

duction in this work, as the two are so clearly correlated. In the first instance, it should be 

noted that thicker material (increasing gauge or gauge reduction value) should have reduced 

fracture resistance due to more limited breakdown of the cast structure and slower quench rates 

on cooling. From Figures 9.13 and 9.15 for the neurofuzzy models obtained for the 7175 

data, and Figures C.19 to C.26, for the SUPANOVA models it may be found that the two 

thickness related terms (i.e. gauge and gauge reduction value) exhibit a number of increasing 

and decreasing functions. The univariate neurofuzzy models may be considered in the first 



CHAPTER 9. KNOWLEDGE DISCOVERY AND DATA MINING OF 7XXX SERIES 

instance as providing a simple assessment of these variable's effects. 

In terms of the 7175 neurofuzzy models, Figure 9.15 (c) shows the expected simple trend 

of decreasing toughness with increasing thickness (in terms of gauge reduction in this diagram). 

Figure 9.13 (f) shows a similar trend in terms of gauge reduction, however there is an apparent 

compensatory influence acting via the gauge in Figure 9.13 (e). Figure 9.14 (e) or (f) show 

an initial decrease in toughness with increasing gauge reduction value, however a clear change 

occurs at high gauge reduction values (i.e. greater thickness). In the first instance it may 

be noted that the influence in Figure 9.14 was associated with a gauge range spanning two 

alloys variants, with a purer alloy being used for thicker plate, consistent with higher apparent 

toughness for the thicker material. This may then be consistent with the simple trend in Fig-

ure 9.15 (c) which was associated with just one alloy variant. In terms of the 7475 neurofuzzy 

models, all included plate gauge (and not gauge reduction), with Figures 9.16 and 9.18 showing 

a decreasing and then increasing trend in toughness with increasing gauge, whilst Figure 9.17 

shows a simple linear increase in toughness with gauge. 

Overall, it may be seen that for both 7175 and 7475 data sets, a number of decreasing and 

increasing trends in toughness were identified with varying gauge, that are not consistent with 

simple metallurgical understanding, even when alloy purity variations were considered. Given 

the complexities of the present data sets and associated processing routes, it is not possible to 

explain all these effects, and further work would be needed on this issue. In the first instance 

it may be noted that information on quenching practice and how this varies with gauge was 

not available for this work, and further investigation of this and other potentially significant 

information would be considered valuable. 

It is clear that the SUPANOVA modelling suggested a variety of other potentially interest-

ing functionalities. For example, it is interesting to note that SUPANOVA models (and indeed 

the neurofuzzy models) identified combined influences of deformation parameters (e.g. gauge 

reduction) with the intermetallic forming impurities (particularly Fe, see Figure C.20 (a)), 

which may then be related to the mechanical fibring process. Overall however it may be seen 

that the complexity and the relative indirectness of much of the data considered here (i.e. the 

inputs are directly from processing and do not include real microstructural factors such as grain 

size, dispersoid separation distances, etc.) it is not considered reasonable to assess all of the 

suggested functionalities in detail. The inherent value of transparent modelling approaches 

that allow such detailed model analysis may however be appreciated from the present work, 

although in models for which the contribution of individual variates appear in more than one 

term can be difficult to interpret. 

9.9 Summary and conclusions 

In this chapter adaptive modelling techniques have been used for the purposes of determining 

interpretable, parsimonious descriptions of how fracture toughness is influenced by processing 
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conditions of high-strength wrought Al-alloys. The statistical analysis of the industrial process 

investigated, was conducted on data obtained from commercial production databases. The 

process variables which comprised the data sets modelled included material compositional 

information, basic TMP conditions/practices and the testing variables. 

The preliminary assessment of the integrity of the data performed in section 9.2, noted 

the lack of process information describing certain important processing stages (e.g. the cast, 

quenching). The subsequent definition of the data sets resulted in the omission of some process-

ing variables that had been provided due to tight process control limiting the expected influence 

on material performance (e.g. the temperature associated with the precipitation treatment). 

The knowledge gained from these simple data assessments suggested that the highly desirable 

objective of developing a generally applicable predictive model was unrealistic, although the 

modelling of the present data was still considered to be of value for specific understanding 

and potential improvement of the process routes in question: at least within the input variable 

windows that were available. 

Whilst on the majority of the data sets the initial MLR analyses provided high variance 

estimates, on the BAP1TLC3W data set in particular both the training and generalisation per-

formance appeared comparable with accepted experimental Ki^ measurement scatter. 

In light of the important missing information (e.g. quench data), it is perhaps not sur-

prising to find that the generalisation performances attained by both the neurofuzzy and SVM 

methods were seen to be comparable, if not "inferior" to the MLR results. In view of the 

integrity and statistical properties of the input variables, data-driven modelling approaches were 

exposed to a number of data weaknesses which would naturally result in the identification of 

poor models, e.g. inferring non-causal interactions and dependencies, and more generally over-

fitting. Given the high interpretability of both adaptive methods used, it was however possible 

to validate the models obtained to some extent, distinguishing between the dependencies which 

constituted plausible interdependencies and those which were potentially suspect due to data 

deficiencies. 

Notwithstanding such shortcoming, it was nevertheless useful to use adaptive modelling 

approaches for the purposes of attaining a parsimonious description of the various data sets 

defined, particularly since both the inspection of the data and the MLR results suggested the 

presence of a number of dependencies between Kjc and a subset of the processing variables. 

In terms of the model structures that were found, it was not surprising to find that the main 

variables included in the fracture toughness models were: 1. the impurity elements Fe and Si, 

which, as well as having a strong effect on toughness, may be expensive to control; 2. the final 

thickness section, which in the 7475 data sets in particular was seen to have a considerable 

range, and comprises an important factor in the quench; 3. the deformation variables resulting 

from the hot rolling (particulary cross rolhng). 

A comparison between the two adaptive approaches showed that the dependencies inferred 

by the SUPANOVA models were generally consistent with the simpler approximations attained 
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from the neurofuzzy framework. As in previous chapters, the approximations determined by 

the infinite ANOVA spline kernel functions enabled a greater flexibility to be attained compared 

to the practical limitations in the approximation capabilities obtainable in sparse data sets and 

high-dimensional problems by B-spline functions. 

In light of the nature of the BAP data, the higher variance showed by the SUPANOVA 

framework both in terms of the ANOVA components subselected (particularly in the bivariate 

and trivariate basis expansions) and the smoothness (i.e. degree of regularisation) of the spline 

approximations, over the multiple training-test set partitions, is not surprising. The large basis 

expansion obtained from considering higher order ANOVA terms and the optimisation of the 

C smoothing parameter from a cross-validation procedure together can be held responsible for 

the considerable instability of the SUPANOVA framework. As such, a number of terms which 

are selected only in a few instances remain difficult to validate. In addition, the sparse subset 

selection performed in the SUPANOVA framework is seen to be sensitive to the size of the 

full ANOVA basis expansion. This has been seen to result in suboptimal inferences, whereby 

input variables which are subselected from univariate ANOVA basis expansions are absent in 

models inferred from higher order basis, and in the most severe conditions resulting in models 

comprising only a bias term. 

Due to the more limited approximation capabilities of the neurofuzzy framework, both 

in terms of model structure and non-linear approximation capabilities, limited by the iterative 

search procedure and the implementation of the SRM principle, the neurofuzzy results showed 

a greater structural stability. 

Although several of the outliers detected in section 9.6.4 were clear from the data distri-

butions, the detection of non-trivial influential observations by a simple inspection of input and 

output scatterplots is generally more problematic in high-dimensional data sets. The influence 

measures were then seen to successfully detect the trivial, Y-space outliers, and a number of 

other influential cases, the latter in some cases arising from the conditional fit to the data. A full 

understanding of the nature of certain influential cases remained limited from simple residual 

plots. The results also highlight the deficiencies of the one-case influence measures, and that 

more appropriate techniques should be used to overcome masking effects. 

The present analysis has illustrated the difficulty of extracting reliable knowledge from 

large observational databases of complex processes, showing how the modelling or data mining 

component in a statistical analysis of industrial databases is only part of the investigation. The 

different stages of the KDD process, from the definition of meaningful data sets amenable to 

valid statistical analyses, through to the modelling per se and the subsequent interpretation 

(validation) of results are seen to be re-visited several times, and that rarely will the first set of 

results fulfil all the modelling objectives. 

In view of both the complexity of the process and the integrity of the process data, the 

development of a general predictive process model was seen to be an unrealistic objective, 

and instead the statistical analysis of the BAP data was conducted primarily within a KDD 
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context, with a greater emphasis on data description and knowledge extraction rather than the 

formulation of a model as a means to a predictive end. 

In the neurofuzzy framework, the Bayesian regularisation employed was seen to success-

fully control excessive degrees of freedom present in a model, comparing favourably with 

model pruning refinements. Overall, the neurofuzzy framework has been seen to be a useful 

data mining tool allowing both sensitivity analyses and regression diagnostics to be performed. 

Although not attaining improvements (as measured in terms of generalisation perfor-

mance), compared with simple MLR analysis, both the neurofuzzy and SUPANOVA mod-

elling results were seen to attain more reasonable descriptions of the data. This was achieved 

by means of adapting the structure and complexity of the models to account for non-linear 

dependencies between processing variables and fracture toughness, and suggested a number of 

interdependencies characterising different process variables (particularly in the SUPANOVA, 

as opposed to the neurofuzzy framework). Whilst the disappointing empirical results were 

understood in terms of the data weaknesses characterising the BAP data sets, a number of de-

pendencies inferred by the adaptive methods were consistent with metallurgical understanding. 



Chapter 10 

Conclusions and Future Work 

10.1 Process-property modelling 

Modelling of processing-property relationships of complex alloying systems is of great poten-

tial benefit, however despite the recent advances that have been made in thermodynamic and 

thermomechanical processing, the development of reliable models which scale up to industrial 

processing environments remains elusive. 

This thesis has investigated the performance of the neurofuzzy and SUPANOVA tech-

niques in the modelling of physical and tensile properties of two different Al-alloy systems 

with the objectives of developing models exhibiting good predictive ability on unseen data 

whilst allowing interpretation of the processing-property relationships learnt. 

In Chapter 7, models for the tensile properties (cro.2, uts and %el.) of an Al-Mg-Li me-

chanically alloyed system have been determined from a small set of commercial trials using 

simple compositional information and processing variables, while in Chapters 8 and 9 models 

for both physical and tensile properties (c7o.2, (̂ ei and Kic) were obtained from compositional 

information and thermal/thermomechanical variables, describing the processing-property rela-

tionships of high-strength Al-Zn-Mg-Cu (7xxx series) alloys. Whilst the data set investigated 

in Chapter 8 was the result of a series of experimental trials conducted in a carefully controlled 

processing environment, the analysis in Chapter 9 was performed on data obtained from large 

scale commercial production data. 

The performance of the neurofuzzy and SUPANOVA modelling approaches have been 

assessed in terms of the approximation obtained on the training data sets, the predictive per-

formance on test data and the form of the processing-property dependencies inferred. The 

empirical results were compared with those obtained by simple MLR analyses and a support 

vector ANOVA spline kernel regression, whilst the nature of the relationships were validated in 

terms of metallurgical understanding. In addition, the transparency of the neurofuzzy models 
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was used to initialise networks with simple structures accounting for processing/test conditions 

and prior system knowledge. 

The properties of the Al-Mg-Li alloys were seen to be typically approximated by both 

adaptive methods with simple linear dependencies. In addition, the SUPANOVA results i-

dentified a number of interdependencies between the processing variables and a subset of the 

alloying elements. Overall, the results suggested that strengthening effects were determined 

by a number of mechanisms, in agreement with metallurgical understanding of the tensile 

properties of these alloys. These comprised solid solution, grain size and dispersoid effects. 

The empirical performances attained by the adaptive modelling approaches on training and test 

sets was seen to be relatively disappointing, with the former comparable to that attained by a 

MLR analysis. 

The results from the Al-Mg-Zn-Cu experimental trials gave the most revealing relation-

ships and improvements in empirical performances compared with the MLR analysis. The 

adaptive methods exhibited a better approximation capability in the modelling of ao,2, but the 

most significant improvement over the MLR models was obtained in the agi results, mainly 

determined by the non-linear approximations inferred from the precipitation hardening heat-

treatment time. Limitations imposed by the small sample size were seen to bias the approxi-

mation capabilitites exhibited by the SUPANOVA modelling framework. 

The interaction between the Magnesium content of the alloys and the ageing time, inferred 

from both adaptive methods was interpreted on a physical basis. The interaction of Mg atoms 

with vacancies is believed to influence the rate of ageing in these alloys. The benefits of 

rule-of-thumb and physical based data transformations were seen to improve the empirical 

performance of the adaptive methods, compared with those obtained on the original data set. 

The latter set of transformations providing the derivation of some novel quantities which were 

seen to enhance the characterisation of Al-Zn-Mg-Cu alloys with a set of microstructurally 

related features. 

The approach adopted in the statistical analysis of the large 7x75 data sets showed how a 

significant amount of pre-processing was required in order to obtain valid statistical analyses 

and meaningful inferences. Although the empirical performances attained from the neurofuzzy 

and SVM approaches in the modelling of Kjc did not generally exhibit improvements over 

MLR results (in some instances exhibiting worse performance), in terms of training set approx-

imation errors and generalisation performance, the adaptive methods were seen to determine a 

number of non-linear approximations and interdependencies amongst the input variables that 

were validated/representative of both accepted behaviours (e.g. the role of Fe and Si) and 

particular processing conditions. 

To a certain extent, the nature of the relationships inferred highlighted the conflicting 

requirements characterising the physical and mechanical properties; for example in the Al-

Mg-Li system it was seen that forging conditions should be such that workability and strength 

levels attained are comparable with the required ductility levels. In the Al-Zn-Mg-Cu data set. 
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extensive overageing is seen to reduce ao.2 but increase agi. 

The data analysis and results obtained in the various analyses indicate that for the present 

data sets, the much sought after optimisation and balance of properties were unrealistic objec-

tives and beyond the scope of the data. As such, it is more appropriate to conclude by discussing 

issues such as data integrity and description. The following discussion leads to the suggestions 

made in section 10.3 for future areas of research, which directly address data quality issues. 

It is perhaps indicative that the most successful modelling results in the present work have 

been attained in the statistical analysis performed on the experimental data set (Chapter 8): the 

carefully designed compositional/ageing time variants enabled a wider range of microstructural 

conditions to be attained, facilitating the development of more reliable descriptions of how 

variations of compositional and thermal treatments influence these properties. 

The dependencies inferred with greater consistency (frequency) in the other investigations 

were also seen to be associated with the input variables exhibiting the greatest variance and 

range in values (e.g. Fe, Si, plate gauge, deformation variables), which may be effectively 

uncontrollable quantities or determined by production/fabrication requirements. 

While the neurofuzzy models were generally seen to exhibit relatively simple dependen-

cies, the approximations obtained by the SUPANOVA framework, in a number of instances 

exhibited pronounced non-linearities, in some cases clearly overfitting the training data due to 

a nonoptimal degree of regularisation inferred. Thus, a validation of both the general form of 

the structural relationships identified and the local nature of the approximations was needed 

in terms of the input ranges and the level of control which can realistically be obtained in an 

industrial processing environment. 

Overall then, it emerged that the quality of the data and the need for experimental design 

are of utmost importance in inferring reliable dependencies between the quantities contained in 

the data. The results being a clear indication of the benefits obtained from carefully designed 

data sets and highlighting the problems associated in modelling observational data. 

However, the statistical investigation and modelling of production (historical) data is often 

valuable as an assessment of the process route. The application of data mining methods may 

reveal some informative patterns, indicating suboptimal processing conditions or other useful 

knowledge which can be used to identify particular processing conditions responsible for the 

scatter observed in the properties attained in a number of materials. It may be argued that 

no experimentation is required in a statistical investigation of industrial processes since a large 

amount of historical data is available and from this it ought to be possible to extract information 

relating the changes in the material properties with the modification in the processing condi-

tions which have occurred "naturally". However, it appears from this work that further planned 

experimentation will allow for a better appreciation of the underlying physical relationships. 

The "hazards" of modelling observational data have emerged in the results obtained in 

Chapters 7 and 9. From which it was seen that important variables which a priori were consid-

ered to significantly influence the properties of the alloys investigated were limited by process 
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control, unrecorded variables can be held responsible for giving rise to nonsensical correlations 

and the sparsity of the data in certain regions of the input space leading to overfitting. 

10.2 Neurofuzzy networks and SVM 

From the observations made above and the more detailed results and discussions presented 

in respective chapters, both the success and limitations of the neurofuzzy and SUPANOVA 

frameworks can be put into perspective alongside the integrity of the data sets investigated. 

Suggestions for future topics of research, addressing the shortcomings and underperformances 

identified for both adaptive modelling techniques are made in section 10.3. 

Although exhibiting fundamental differences and implementing in different ways the S-

RM principle, both neurofuzzy and SUPANOVA techniques are seen to search for a similar 

ANOVA representation. 

The results obtained in the application of the neurofuzzy framework showed the use of 

the SRM principle as a model complexity (statistical significance) measure was consistent with 

previous studies. It enabled parsimonious networks to be determined, limiting the degrees of 

freedom in a model to that which is supported by the data, although prone in some instances 

to identify inadequate model structures. The limitations imposed by the finite data set sizes, 

together with the high implementation costs (in terms of the number of degrees of freedom) in 

constructing tensor (bivariate) subnetworks was seen to limit the dependencies attained by the 

neurofuzzy models to typically univariate approximations or bivariate terms comprising a low 

number of basis functions defined on the input axis. 

Model selection/performance criteria inherently based on the training set MSB, the num-

ber of parameters in the model and the training set sample size are used to select models whose 

parameters are determined through maximum likelihood estimation. The main criticism of this 

approach is that they remain prone to making incorrect choices, leading to the identification of 

nonsensical dependencies and overfitting regions of the input space where data is sparse. Con-

sequently, the performance of iterative model construction algorithms will have the tendency 

to perform suboptimal refinements and hence become prone to local minima entrapment (in 

terms of the model performance measure). This will be accentuated in the presence of noisy 

data sets and interdependencies amongst the input features (Caruana and Freitag 1994; Vafaie 

and Imam 1994). 

Furthermore, the bias resulting from the omission of inputs from using variable selection 

procedures, may be disconcertingly, interpreted in two contrasting ways: 1. a lack of structure 

with the output; 2. a dependency with the other explanatory variables present in the model, thus 

making the inclusion of an additional input redundant. In this respect, the inherent preference 

for simpler models which has been interpreted by Domingos (1999) as a misuse of Occam's ra-

zor, i.e. that greater simplicity does not necessarily lead to greater accuracy and generalisation 
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performance', is an inherent problem of parsimonious system modelling. 

In the interpretation of the model structures obtained by the neurofuzzy models, it should 

be clear that the order of variable inclusion during model construction should not be used to in-

fer the input variable importance, as the nature of certain dependencies may lead to misleading 

measures of relevance, whereby the notion of independent contribution to the output variance 

may have no meaning. 

In several of the data sets investigated, it was seen that the ANOVA representations 

inferred by both adaptive modelling approaches exhibited a degree of instability. In both 

techniques this can be understood mainly in terms of the data set sizes being an insufficiently 

representative sample of the process, particularly for the observational data sets. In the SVM 

results this also resulted in the variance in the selection of an appropriate smoothing parameter. 

Undoubtedly, both the neurofuzzy and SUPANOVA modelling approaches constitute a 

significant improvement over MLR analysis. In adapting their structure to identify the depen-

dencies that are contained in the data, they allow a better description of the processing-property 

relationships. 

Finally, in the analysis performed, assessing the generalisation performance exhibited by 

these techniques has been problematic, due to both the finite sample sizes and quality of the 

data sets. 

10.3 Future research 

Multivariate regression 

In this work, modelling has been approached by obtaining a separate model for each output of 

interest. However, it may be valuable to obtain a model which describes the overall system, 

considering the interdependencies amongst the output quantities. Breiman and Friedman 

(1997) discuss predicting multivariate responses in a multiple linear regression framework 

and derive strategies which take advantage of correlations between the response variables 

to improve predictive accuracy compared to the general method of regressing each response 

variable on the common set of predictor variables. In a similar approach which Tibshirani and 

Hinton (1998) termed coaching, a set of variates (z) (which for example may only be available 

during network training as they may be difficult to subsequently measure) is used to coach the 

inputs (x) in estimating the response variables (y). General classes of influence measures have 

been defined for multivariate linear models (Barrett and Ling 1992). 

' Domingos (1999) notes that Occam's razor is generally interpreted in two ways: as favouring the simpler 

of two models with the same generalisation error because simplicity is a goal in itself, or as favoring the simpler 

of two models with the same training set error because this leads to lower generalisation error. Domingos finds 

the second interpretation to be provably and empirically false and argues that the first version is only a proxy for 

interpretability. 



In their present form neurofuzzy networks and model construction procedures are not 

readily amenable to attaining multivariate responses, requiring the appropriate methods for 

dealing with multivariate responses, model selection and complexity control frameworks. 

Regularised model construction 

Chapter 9 has shown that model structures with a larger number of parameters can generalise 

reliably, if complexity is constrained through regularisation approaches. Here regularisation 

was used as a post-processing step once the structure of the model was determined by a forward 

selection procedure. 

It may then be of interest to employ regularisation methods during the model construction 

(e.g. regularised forward selection), allowing more variables to be included in the model, whilst 

controlling redundancy by optimising the regularisation coefficients. The drawback of this pro-

cedure is that it imposes a significant computational overhead as the regularisation coefficients 

have to be re-estimated for each candidate refinement considered. Model construction will 

however remain susceptible to local minima. Notwithstanding this, it is considered a preferable 

approach to iterative model construction algorithms based on maximum likelihood estimation. 

It may offer a better (less biased) description of the process, whereby the inclusion of inputs 

which a greedy model construction algorithm considers uninformative, will cause the output 

variance to be averaged over two or more input variables, which may also result in improved 

generalisation performance. 

Limiting the size and complexity of models will then require an appropriate model com-

parison framework. Two suggestions are made: one based on determining the Occam factors 

for the models, the other retaining the use of a SS measure but replacing p, the number of 

parameters, by peff > the effective number of parameters in the model. 

Regularised model construction procedures have been previously proposed (Chen et al. 

1996; Orr 1995b; Orr 1995a) whereby subset selection and zero order regularisation are com-

bined in the construction of parsimonious regularised radial basis function networks. 

Model averaging 

Probably the main criticism of the approach adopted in this thesis is that conditioning on a sin-

gle model ignores model uncertainty, resulting in underestimation of uncertainty when making 

inferences about quantities of interest (Raftery et al. 1993). Although this may be addressed 

through a complete Bayesian solution by means of averaging over all possible models when 

making inferences about quantities of interest, this approach remains impractical. Relatively 

simple methods have been proposed to improve the performance of unstable learners (Breiman 

1996a) by means of averaging over a finite number of models, using a number of weighting 

schemes, e.g. see (Breiman 1996a; Tresp and Taniguchi 1995; Taniguchi and Tresp 1997). 

With such methods however the simple interpretable structures of the individual models are 



lost. 

Support vector methods 

The S VM is a fast developing field with an increasing number of implementation and optimisa-

tion techniques being proposed. As such a considerable number of alternative implementation 

schemes to that used in this thesis are available. 

The present results have shown that the use of cross validation procedures in the selection 

of the regularisation parameter was seen to be both computationally expensive and susceptible 

to inferring inadequate smoothing, alternative schemes for inferring the amount of regularisa-

tion are then of particular interest. In recently proposed Bayesian methods for SVM, MacKay's 

evidence framework can be used in the selection of the smoothing parameter and allow error 

bars on the predictions to be obtained (Kwok 1999; Sollich 2000). 

Alloy characterisation (microstructural feature sets) 

The present results have been either attained from the use of bulk alloy process data or 

microstructurally-related quantities derived from compositional information. Using a set of 

input features which allow a greater characterisation of the microstructural condition is likely 

to enhance the performance of adaptive modelling approaches. For instance, Li and Starink 

(2000) have used DSC (differential scanning calorimetry) data to achieve a greater under-

standing of the relation between composition, precipitation and the balance of strength and 

electrical conductivity in 7xxx Al-alloys, providing valuable information on optimal chemistry 

(Mg, Zn and Cu contents) and heat treatment. Further investigation of DSC results as additional 

microstructural features/inputs may be worthwhile. 

Design of experiments 

In Chapter 8, it was seen how a carefully chosen set of experiments have allowed a greater 

interpretation of the influence of compositional elements and ageing times to be understood. 

Poorly designed experiments on the other hand (Chapter 7), not only waste resources, but 

may fail to provide unambiguous answers. The use of statistical techniques which can define 

optimal sampling of the input space is highly desirable. Design of experiments, e.g. see (Box 

et al. 1978; Box and Draper 1987; Atkinson and Donev 1992) is the application of geometric 

principles to statistical sampling which are useful in minimising the number of experiments 

necessary to obtain reliable statistical inferences (e.g. minimising the variance of estimated 

coefficients performed in a subsequent MLR analysis). 

In a rare statistical approach in modelling the mechanical properties of (pressed and sin-

tered powder metal) alloys, Mantini and Prucher (1993) showed that in a comparison between 

methods based on random data (i.e. stepwise regression) and experimental data, the latter 

enabled a more complete and accurate model to be inferred. 



Appendix A 

Data Modelling of Processing-Property 

Relationships in an Al-Mg-Li Powder 

Metallurgy Alloy System 

A.l Statisical properties of the data 

X fJ-x CTx 

f (°C) 323.21 75^7 

f (*) 12L54 48.84 

Li (Wt.%) 1J9 0.32 

Mg (wt.%) 3 j a 0.91 

C (wt.%) 0.68 0.41 

0 (wt.%) 0.11 0.06 

Table A . l : Mean and standard deviation for the input variables comprising the Al-Mg-Li data set. * 

proprietary processing variable (nominal units). 

y iJ-y ay 

cro.2 (MPa) 37&50 88.88 

uts (MPa) 440.31 84J8 

(9%) 8J3 2.85 

Table A.2: Mean and standard deviation for the output properties comprising the Al-Mg-Li data set. 
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A.2 Neurofuzzy model construction 

Ref. no. Inputs Refinement MSB SS 

1 Mg ua(0) 4203.87 9417.65 

2 C ua(2) 1343.59 4857.32 

3 fK: ua(0) 1014.31 4144.44 

4a ua(0) 908.91 4217.67 

5a tp(0,0) 1186.1 4287.99 

4b sd 1343.59 4857.32 

5b C sd 4203.87 9417.65 

4c C ki(0.75) 959.79 4453.78 

5c c ki(0.625) 85&67 4556.04 

4 c kd(-0.5) 1016.56 3675.04 

5d c kd(0) 1411.67 4529.19 

6d c kd(0.5) 1508.38 430038 

5e ro 1348.75 4327.33 

6e c ro 3004.39 856548 

Table A,3: Summary of the iterative model search performed by the ASMOD algorithm in determining 

the uts model. 

Ref. no. Inputs Refinement MSB SS 

1 ua(l) 4302.37 10891.5 

2 Mg ua(0) 2547.96 7264.19 

3 ua(0) 1634.28 5243.41 

4 c ua(0) 1338.27 4838.09 

5 tp(0,0) 1300.94 4703.15 

6 ts(0,0) 1353.84 4343.65 

7a c sd 1668.96 4758.17 

8a sd 2612.61 6613.82 

7b Mg kj(0) 1292.57 4672.86 

8b C ki(0) 1274.05 5205.71 

7c C ro 1668.96 4758.17 

8c ro 2612.61 6613.82 

Table A.4: Summary of the iterative model search performed by the ASMOD algorithm in determining 

the (70.2 model. 
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Ref. no. Inputs Refinement MSE SS 

1 C ua(0) 5221 1L69 

2 ua((^ 4^168 10.30 

3a o ua(0) 3.606 10.28 

4a CxO tp(0,0) 3U60 10.14 

3b sd 5221 1169 

3c C ki(0) 3.902 11.13 

4c c ki(0.5) 3^90 11^8 

3d o ro 5221 1169 

4d c ro 7.99 15J2 

Table A.5: Summary of the iterative model search performed by the A S M O D algorithm in determining 

the %el. model. 
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A.3 Histogram plots 
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Figure A. l : Histogram plots for the input variables: PVc (a), PVj/a (b), Li (c), Mg (d), C (e), O (f). 
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Figure A.2: Histogram plots for the tensile properties (outputs) investigated: ao.2 (a), uts (b) and %el. 

(c). 
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A.4 Pairwise scatter plots 
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Figure A.3: Pairwise scatter plots between the input variables comprising the Al-Mg-Li data set. 
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Figure A.4: Pairwise scatter plots between the tensile properties (outputs) investigated. 
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A.5 Residual scatter plots 
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Figure A.5: Full residual plots between ao,2 and the input variables comprising the Al-Mg-Li data set: 

PV, (a), PV&/. (b), Li (c), Mg (d). C (e). O (f). 
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Figure A.6: Full residual plots between uts and the input variables comprising the Al-Mg-Li data set: 

PV, (a), PV&/. (b). Li (c). Mg (d), C (e), O (f). 
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Figure A.7: Full residual plots between %e/. and the input variables comprising the Al-Mg-Li data set: 

PV, (a), PV&/. (b). Li (c), Mg (d). C (e), O (f). 
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Data Modelling of Structure-Properties of 

Experimental Trials in the Al-Zn-Mg-Cu 

Alloy System 

B.l Statistical summary of datasets 

X f^x CTx 

XZn,w ( W t . % ) 6.09 0L648 

XMg,w (wt.%) 2 J 2 0 J 7 7 

XCu,w (wt.%) 1.87 0.492 

XZr.w (wt.%) 0 U 2 0X#2 

XFe.w (wt.%) 0.06 oxm9 

XSi,w (wt.%) 0.02 o i m i 

t (hours) 7 ^ 0 7.663 

Table B.l: Mean and standard deviations for the input variables comprising data set A. 

y ay 
ao.2 (MPa) 478.69 3&61 

(Zg, (%IACS) 38.92 2.56 

Table B.2: Mean and standard deviations for the output properties of the Al-Zn-Mg-Cu data. 
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B.2 Neurofuzzy model construction 

Ref. no. Inputs Refinement MSE SS 

1 t ua(0) 1174 3486 

2 XMg,w ua(0) 872 3128 

3 XZn,w ua(0) 637 2779 

4 t X XMg,w tp(0,0) 471 2542 

5 ^ C u , w ua(0) 351 2395 

6a ^ 1 ^ M g , w ts(0,0) 513 2764 

6b ^ C u , w sd 471 2542 

7b ^ M g , w sd 694 3031 

6c ^ Z n , w ki(0) 294 2634 

7c ^ Z n , w kd(0.5) 282 3539 

Id ^ C u , w ro 471 2542 

8d ^Zn, \v ro 694 3031 

Table B.3: Summary of the iterative model search performed by the A S M O D algorithm in determining 
the cro.2 model from data set A. 

Ref. no. Inputs Refinement MSE SS 

1 XMg,w ua(0) 5.317 15.79 

2 t ua(2) 0.292 1.99 

3a ^Zn,\v ua(0) 0.225 2.02 

4a ^Cu,w ua(0) 0.205 2^8 

3b t sd 5.317 15J9 

3c ^MgjW kj(0) 0.292 2.61 

4c ^Mg,w ki(-0.5) 0J91 3^4 

3 t kd(0.5) 0.292 1.57 

4 t kd((» 0.296 l j # 

5d t kd(-0.5) 2.907 1&43 

5e ^Mg,w ro 3J4 13^2 

6e t ro 6J2 1&47 

Table B.4: Summary of the iterative model search performed by the A S M O D algorithm in determining 
the fje; model from data set A. 
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Ref. no. Inputs Refinement MSB SS 

1 t ua(0) 1174 3486 

2 ^Mg,a ua(0) 853 3061 

3 X^i' ua(0) 602 2627 

4 t X XMg,Q tp(0,0) 454 2444 

5a XCu,Q; ua(0) 364 2483 

6a t ) XMg,a ts(0,0) 507 2732 

5b X,/ sd 691 3017 

5c Xjf' ki(0) 431 2936 

6c X '̂ ki(0.5) 414 3708 

5d X.fi' ro 691 3017 

6d ^Mg.a ro 1174 3486 

Table B.5: Summary of the iterative model search performed by the A S M O D algorithm in determining 
the (70,2 model from data set B. 

Ref. no. Inputs Refinement MSB SS 

1 XMg,xs ua(0) 5.248 15.58 

2 t ua(2) 0.219 1.49 

3a Xq' ua(0) &174 1^6 

4a XCu,Q ua(0) &I47 IjW 

3b t sd 5.248 15^8 

3c XMg,xs ki(0) 0.218 1.95 

4c XMg,xs ki(-0.5) 0.207 2.59 

3 t kd(0.5) &218 IJ^ 

4 t kd((0 O J ^ 0^^ 

5d t kd(-0.5) 2^26 10^4 

5e XMg,xs ro 3.741 13.42 

6e t ro 6.220 18jJ 

Table B.6: Summary of the iterative model search performed by the A S M O D algorithm in determining 
the aei model from data set B. 



APPENDDCB. 296 

Ref. no. Inputs Refinement MSB SS 

1 XZn,w 4" ^Mg,w ua(0) 1172 3481 

2 t ua(0) 818 2933 

3 %n,w • XMg,w ua(0) 623 2720 

4 (xZn,w • XMg,w) ^ ^ tp(0,0) 392 2114 

5 (xZn,w + XCu,w) •' XMg,w ua(0) 279 1899 

6a ((xZn,w + XCu,w) • XMg,w) ^ (xZn,w + XMg,w) tp(0,0) 274 2456 

7a (xzn,w + ^Cu,w) • XMg,w ) ^Zn,w + )̂ Mg,w ts(0,0) 279 1899 

6b (xZn,w + XCujw) • XMg,w sd 392 2114 

7b (xZn,w • XMg,w) ^ ^ sd 1172 3481 

6c (xZn,w + ^Cujw) • XMg,\v ki(0) 250 2242 

7c XZn,w + ^MgjW kj(0) 237 2974 

6d (xZn,w 4" XCu,w) • XMg,w ro 392 2114 

7d XZn,w • XMg,w ro 818 2933 

Table B.7: Summary of the iterative model search performed by the A S M O D algorithm in determining 

the (To.2 model from data set C. 

Ref. no. Inputs Refinement MSE SS 

1 XZn,w • XMg,w ua(0) 5.470 16.24 

2 t ua(2) L034 7.05 

3 XZn,w 4" XMg,w ua(0) 0J02 2J0 

4 (xzn,w : XMg,w) ^ (xZn,w 4" ^Mgjw) tp(0,0) 0.205 2.57 

5a *Zn ,w • XMg,w ; XZn,w + Xjvlg,w ts(0,0) 0 j02 2JU 

6a (xZn,w • XMg,w) ̂  (xzn,w + XMg,w) sd 3J33 20.12 

5b t ki(-0.75) 0.205 4.06 

6b t kd(0.875) 0U95 8J8 

5 t kd(0.5) 0.205 l̂ W 

6 t kd(-0.5) 0.206 IjO 

7c ^Zn,\v 4- Xjvlĝ w ro 1.035 4^2 

8c XZn,w • X]Y[g,w ro 3J4 13.42 

Table B.8: Summary of the iterative model search performed by the A S M O D algorithm in determining 

the (7ei model from data set C. 
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B.3 Pairwise scatterplots 
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Figure B. l: Pairwise scatter plots between the input variables comprising data set A. 

' x X X 

X / : 

* X adf X % 

x % 
X X 

s_ 

I t X 

X 

X 

*( * 

mg 

Mgx: 

& 
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Figure B.2: Pairwise scatter plots between the input variables comprising data set B. 



APPENDIX B. 298 

* K 

Zn.w-'Mg 

-qKNixiii: 

Figure B.3: Pairwise scatter plots between the input variables comprising data set C. 
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Figure B.4: Scatter plot between cro.2 and Ugi-
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B.4 Residual scatter plots 
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Figure B.5: Full residual plots between <70.2 and the input variables comprising data set A: xzn,w (&), 

XMg,w (b), xcu,w (c), xzr,w (d), xpê w (̂)» ̂ Si,w (f); ageing time, t (g). 
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Figure B.6: Full residual plots between aei and the input variables comprising data set A: xzn.w (a), 
XMg,w (b), (c), X2r,w (d)' (e), xgî w (f), ̂ g^ing time, t (g). 
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Figure B.7: Full residual plots between cto.2 and the input variables comprising data set B: xcu.a (a), 

XMg,» (b), xs (c) ,X;;' (d), XMg,xs (e), ageing time, f (f). 



APPENDIX B. 302 

O'O 

- 2 . 
- 2 - 1 

xX 
X 

X 

X 
1 

XX 

X 

X 

X X - 1 

% 
0 

^ C u , a 

1 2 - 2 

(a) 

Mg,a 

(b) 

(c) (d) 

4̂ (0 
Figure B.8: Full residual plots between aei and the input variables comprising data set B; xcu,a (a), 
X M g . a (b), Xg (c) (d), XMg,xs (c), ageing time, f (f). 
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Figure B .9: Full residual plots between (To.2 and the input variables comprising data set C: xzn,v 

^Mg,w (&), (xZn,w 'f" XCu,w) • ̂ Mg,w (b)> ̂ Zn,w ^Cu,w (c); time, t (d). 
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Figure B.IO: Full residual plots between aei and the input variables comprising data set C: xzn,v 
^Mg,w (̂ )» (̂ Zn,w xcu,w) • ^Mg,w (b), X2n,w xcu,w (c); ageing time, t (d). 
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C.l Histogram plots 
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Figure C.l: Histogram plots for Kjc for the 7xxx series data sets considered. 
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C.2 Residual scatter plots 
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Figure C.2: Full residual scatterplots between Kjc and a selected number of processing variables for 

the BAP I data set. 
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Figure C.3: Full residual scatterplots between Kjc and a selected number of processing variables for 
the BAP4 data set. 
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Figure C.4: Full residual scatterplots between Kjc and a selected number of processing variables for 

the BAP1LTC3W data set. 
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Figure C.5: Input scatterplots for a selected number of processing variables for the BAP1TLQ3W data 
set. 
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Figure C.6: Input scatterplots for a selected number of processing variables for the BAP1TLQ3W80 
data set. 
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Figure C.7: Full residual scatterplots between Kjc and the processing conditions for the BAP4LTC5W 
data set. 
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Figure C.8: Full residual scatterplots between Kjc and compositional elements in the BAP4LTC5W 

data set. 
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Figure C.9: Full residual scatterplots between Kjc and a selected number of processing variables for 
the BAP4SLC5W data set. 
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Figure C.IO: Full residual scatterplots between Kjc and a selected number of processing variables for 

the BAP4TLC5W data set. 



AfPENDDTC. 316 

C.3 Pairwise scatter plots 
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Figure C.l l : Input scatterplots for a selected number of processing variables for the BAPl data set. 
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Figure C.12: Input scatterplots for a selected number of processing variables for the BAP4 data set. 
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Figure C.13: Input scatterplots for a selected number of processing variables for the BAP1TLC3W data 
set. 
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Figure C.14: Input scatterplots for a selected number of processing variables for the BAP1TLQ3W data 
set. 
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Figure C.15: Full residual scatterplots between K/c and a selected number of processing variables for 
the BAP1TLQ3W80 data set. 
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Figure C.16: Input scatterplots for a selected number of processing variables for the BAP4LTC5W data 

set. 
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Plate gauge Plate gauge 

Figure C.17: Input scatterplots for a selected number of processing variables for the BAP4SLC5W data 

set. 
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Figure C.18: Input scatterplots for a selected number of processing variables for the BAP4TLC5W data 

set. 
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Figure C.19: General form of the univariate kernel approximations exhibited by the ANOVA terms 
most consistently selected in the sparse basis selection for the BAP1TLC3W data set. 
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Figure C.20: General form of the bivariate kernel approximations exhibited by the ANOVA terms most 
consistently selected in the sparse basis selection for the BAP1TLC3W data set. 
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Figure C.21: General form of the trivariate kernel approximations exhibited by the ANOVA terms most 
consistently selected in the sparse basis selection for the BAP1TLC3W data set. 
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Figure C.22: General form of the univariate kernel approximations exhibited by the ANOVA terms 
most consistently selected in the sparse basis selection for the BAP1TLQ3W data set. 
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Figure C.23: General form of the bivariate kernel approximations exhibited by the ANOVA terms most 
consistently selected in the sparse basis selection for the BAP1TLQ3W data set. 
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Figure C.24: General form of the univariate kernel approximations exhibited by the ANOVA terms 
most consistently selected in the sparse basis selection for the BAP1TLQ3W80 data set. 
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Figure C.25: General form of the bivariate kernel approximations exhibited by the ANOVA terms most 
consistently selected in the sparse basis selection for the BAP1TLQ3W80 data set. 

Fe 

Figure C.26: General form of the trivariate kernel approximations exhibited by the ANOVA terms most 
consistently selected in the sparse basis selection for the BAP1TLQ3W80 data set. 
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Figure C.27: General form of the univariate kernel approximations exhibited by the ANOVA terms 
most consistently selected in the sparse basis selection for the BAP4LTC5W data set. 



AfPENDiXC. 331 

Plate gauge 

Stretch 2 

(a) (b) 

Figure C.28: General form of the bivariate kernel approximations exhibited by the ANOVA terms most 
consistently selected in the sparse basis selection for the BAP4LTC5W data set. 
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Figure C.29: General form of the bivariate kernel approximations exhibited by the ANOVA terms most 
consistently selected in the sparse basis selection for the BAP4LTC5W data set. 
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Figure C.30: General form of the univariate kernel approximations exhibited by the ANOVA terms 
most consistently selected in the sparse basis selection for the BAP4SLC5W data set. 
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Figure C.31: General form of the bivariate kernel approximations exhibited by the ANOVA terms most 
consistently selected in the sparse basis selection for the BAP4SLC5W data set. 
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Figure C.32: General form of the univariate kernel approximations exhibited by the ANOVA terms 

most consistently selected in the sparse basis selection for the BAP4TLC5W data set. 
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Figure C.33: General form of the bivariate kernel approximations exhibited by the ANOVA terms most 

consistently selected in the sparse basis selection for the BAP4TLC5W data set. 
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(C) (d) 

Figure C.34: General form of the bivariate kernel approximations exhibited by the ANOVA terms most 

consistently selected in the sparse basis selection for the BAP4TLC5W data set. 
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Plate gauge 

Figure C.35: General form of the trivariate kernel approximations exhibited by the ANOVA terms most 
consistently selected in the sparse basis selection for the BAP4TLC5W data set. 
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